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Zusammenfassung

In dieser Arbeit wird gezeigt, wie optimale Trajektorien fiir ein unteraktuiertes
mechanisches System — das Doppel- bzw. Dreifachpendel auf einem Wagen —
mittels optimaler Steuerung bestimmt werden kénnen. Dabei werden neuartige
mathematische Methoden verwendet und deren Vorteile in der Anwendung
aufgezeigt. Es werden sowohl die theoretischen Ergebnisse analysiert als auch
die praktische Umsetzung in Simulationen und am Priifstand untersucht.

Das Mandver, welches hier hauptséchlich betrachtet wird, ist der Aufschwung
des Pendels aus der stabilen unteren Ruhelage in die instabile obere Ruhelage.
Dabei werden mit Hilfe von Methoden der Mehrzieloptimierung viele Varianten
von Losungen berechnet, die die zwei gegenldufigen Zielgrofen Dauer des
Manoévers und Steueraufwand unterschiedlich stark beriicksichtigen. So ist es
moglich eine komplexe Bibliothek von optimalen Losungen zu erhalten und
diese weitergehend beziiglich des Gesamtsystemverhaltens zu analysieren.

Ein weiterer Ansatz ist die Entwicklung von Strategien fiir eine optimale
Steuerung auf Mannigfaltigkeiten, die besondere dynamische Strukturen des
Pendelsystems fiir einen optimalen Aufschwung nutzen. Auf der stabilen
Mannigfaltigkeit kann sich das dynamische System kostenlos in die Ruhelage
bewegen. Dies ist somit ein besonderer physikalisch motivierter Ansatz, um
optimale Manover zu finden.

Abstract

This thesis presents the determination of optimal trajectories for an
underactuated mechanical system — the double or triple pendulum on a cart —
by means of optimal control methods. For this novel mathematical methods are
used and their advantages in the application are pointed out. The theoretical
results are analysed, as well as the practical implementation in simulations and
at the test rig is examined.

The main maneuver under consideration here is the swing-up of the pendulum
from its lower stable equilibrium to its upper unstable equilibrium. By means of
multiobjective optimization the computation of a great variety of solutions with
respect to the contrary objectives duration of the maneuver and control effort is
possible. This results in a complex library of optimal solutions which can be
created and it can be analysed regarding the complete system behavior.

A further approach is the development of strategies for the optimal control on
manifolds using special dynamical structures for the swing-up of the pendulum.
A motion on a stable manifold to the equilibrium is free of costs. This is a
special physically inspired approach to find optimal control maneuvers.
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Einleitung 1

1 Einleitung

Ein aktuiertes Pendel ist ein klassisches Anwendungsbeispiel, an dem neue rege-
lungstechnische und systemtheoretische Ansitze von Forschern getestet werden.
Anschaulich liegt das Interesse hauptséchlich in dem Erreichen und der Stabilisie-
rung der instabilen oberen Ruhelage. Mehrfachpendel besitzen dabei besondere
Eigenschaften, z.B. ist ein Doppelpendel auf einem Wagen ein unteraktuiertes
System (die Anzahl der Freiheitsgrade ist grofer als die Anzahl der Steuerein-
ginge), denn die Pendelarme konnen nicht direkt, sondern nur indirekt iiber den
Wagen angesteuert werden. Die Trajektorienplanung und Durchfiihrung stellt fiir
solche Systeme eine groke Herausforderung dar.

In dieser Arbeit werden Strategien entwickelt, um den Aufschwung des Doppel-
bzw. Dreifachpendels in die instabile obere Ruhelage umzusetzen. Dabei liegt
der Hauptaspekt bei der Bestimmung eines Mano6vers hierfiir und somit bei der
Auslegung der passenden Vorsteuerung. Die zusétzlich benotigte Regelung fiir
die Stabilisierung basiert auf klassischer linearer Regelungstechnik. Mit Hilfe von
optimaler Steuerung konnen geeignete Vorsteuerungen fiir das Pendel bestimmt
werden, sodass dieses sich nicht auf einer beliebigen Bahn bewegt, sondern das
Manover in die instabile Ruhelage zusitzlich optimal beziiglich gewiinschter Ziele
ist. Durch den Einsatz von Mehrzieloptimierung bei der Auslegung der optimalen
Steuerung ist es aufkerdem moglich, optimale Kompromisse zwischen mehreren
Zielen fiir das System zu bestimmen.

1.1 Motivation

Die Berechnung von Trajektorien mittels Methoden der optimalen Steuerung fiir
den Entwurf und die Realisierung einer Folgeregelung fiir das Pendel ist eine
Besonderheit dieser Arbeit im Vergleich zu anderen Ansétzen. Durch sie ist es z. B.
moglich, optimale Manéver zu berechnen und dabei technische Beschrankungen,
die bei realen mechatronischen Systemen immer auftreten, sehr elegant schon
in der Berechnung einzubinden. Im Folgenden werden in Abschnitt [LI1.1] einige
Grundideen zur optimalen Steuerung erldutert.

Auferdem ist die Dynamik von Pendelsystemen ein zentraler Aspekt, der zur
Komplexitdt der hier behandelten Aufgabe beitriagt. In Abschnitt wird an-
schaulich das Verhalten eines idealisierten Pendels dargestellt und analysiert, wel-
che Auswirkungen seine Eigenschaften auf den Entwurf und die Umsetzung von
Trajektorien an einem realen Pendel haben.
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1.1.1 Optimale Steuerung dynamischer Systeme

Die Optimierung von Bewegungen eines mechanischen Systems ist eine wichtige
Aufgabe in vielen technischen Anwendungen. Dabei beschiftigt sich das Gebiet
der optimalen Steuerung mit der Berechnung von Trajektorien, die ein bestimm-
tes Optimalitatskriterium erfiillen. Es wird untersucht, wie die Eingangsgrofe des
Systems zu wéhlen ist, um Optimalitit zu erreichen. Dabei stellt sich die Frage,
wann eine bestimmte Steuerung die optimale Steuerung eines dynamischen Sys-
tems darstellt.

Bei der Berechnung einer optimalen Steuerung wird die Optimalitit immer beziig-
lich einer vom Benutzer definierten Zielfunktion ausgedriickt. Diese Zielfunktion
kann ein oder mehrere, fiir das System wichtige, Ziele beriicksichtigen. Dies fiihrt
dazu, dass durch die Verdnderung der Zielfunktion auch eine andere Lésung op-
timal fiir das System ist. Daher kann man sagen, dass die optimale Losung stark
von der gewéhlten Zielfunktion abhingt und eine optimale Lésung immer nur
optimal beziiglich der gewihlten Zielfunktion ist.

Vor der Berechnung der optimalen Steuerung muss das Optimalsteuerungspro-
blem des dynamischen Systems zuerst in geeigneter Weise formuliert werden.
Dabei miissen diverse zusétzliche Nebenbedingungen beriicksichtigt werden: Die
Bewegung eines allgemeinen mechanischen Systems wird mit Hilfe von Bewe-
gungsgleichungen beschrieben, denen die Ldsungstrajektorie des Optimalsteue-
rungsproblems entsprechen muss. Zusitzlich miissen ein Start- und Endpunkt
angegeben werden. Dabei unterliegen mechanische Systeme normalerweise tech-
nischen Beschrankungen an die Zustinde und die Eingangsgrofsen, so kann ein
Aktor z. B. keine beliebig grofse Kraft stellen. Diese technischen Eigenschaften
sollten auch bei der optimalen Steuerung beriicksichtigt werden, denn wenn dies
nicht beachtet wird, kdnnen sich unzuléssige, also nicht realisierbare, Losungen
des Optimalsteuerungsproblems ergeben.

Nachdem das Optimalsteuerungsproblem in geeigneter Weise aufgestellt worden
ist, wird anschliefend eine optimale Steuerung bestimmt. Diese Losung erfolgt in
den meisten Fillen numerisch, da eine optimale Steuerung nur fiir sehr einfache
Systeme analytisch berechnet werden kann. Um das beschriebene kontinuierliche
optimale Steuerungsproblem numerisch 16sen zu kénnen, muss dieses in ein dis-
kretes Problem umgewandelt werden. Dies ist ein entscheidender Schritt bei der
Bestimmung der optimalen Steuerung, da das Ergebnis stark von der Wahl des
numerischen Verfahrens und dessen Parametrisierung abhéingt. Das diskrete Op-
timierungsproblem kann anschlieffend mit numerischen Standardverfahren gel6st
werden, und im Falle der Konvergenz des Algorithmus erhilt man eine Losung
des Optimalsteuerungsproblems.
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In dieser Arbeit werden Methoden der optimalen Steuerung verwendet, um opti-
male Trajektorien fiir den Aufschwung des Mehrfachpendels zu berechnen. Dabei
geht es nicht allein darum, eine einzelne optimale Trajektorie zu bestimmen,
sondern durch die Variation des Optimalsteuerungsproblems und die dadurch
entstehenden Losungen auch zusétzliches Systemwissen zu erhalten.

1.1.2 Mehrfachpendel und ihre Eigenschaften

i

I 22

A
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I
-3 \Q\_ﬂj)l -
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Bild 1-1: Modell des mathematischen Pendels (links) und ausgewdihlte Trajekto-
rien in der Zustandsebene (rechts)
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<

Das einfache Pendel (siehe Bild [[=1] (links)) wird in der Lehre und Forschung als
ein anschauliches Beispiel fiir die Entwicklung und Demonstration von regelungs-
technischen Theorien und Methoden verwendet. Die Stabilisierung in der insta-
bilen oberen Ruhelage lisst sich durch einen einfachen Stab als Balancierstange
nachstellen. Je nach Grofe und Gewicht der Stange funktioniert die Stabilisie-
rung auf der Hand oder dem Finger mehr oder weniger gut, aber nach etwas
Ubung sind die meisten Menschen in der Lage diese ,regelungstechnische” Aufga-
be fiir ein paar Sekunden auszufiihren. Dabei findet eine Regelung wie in jedem
klassischen Regelkreis (siehe Bild [[=2)) statt: Durch die Augen und andere Sinnes-
organe werden die Bewegungen des Stabes und der Hand beobachtet (Messung
der Regelgrofe), es wird iiberpriift, ob sich der Stab in einer moglichst vertikalen
Position befindet (Soll-/Istwert Vergleich) und bei einer entsprechenden Abwei-
chung (Regeldifferenz) wird die Hand (Stelleinrichtung) so bewegt (Stellgrofe),
dass die aufrechte Position des Stabes wieder erreicht wird. Der Mensch selbst
fungiert in diesem Fall also als Regler.

Ein Pendelsystem kann in verschiedensten Ausprigungen auftreten. Von einem
mathematischen Pendel (siehe Bild [[=1] (links)) spricht man, wenn die Rotation
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Soll-/Istwert
Vergleich

Fiihrungs- Regel- Stell- Stell- dynamisches
— - Regler |—— —
groke _ differenz einrichtung | gréRe System

Regelgrofie

Ruckfuhrgrofie
Messung

Bild 1-2: Standardregelkreis

der Gelenke ideal stattfindet, also keine Ddmpfung vorhanden ist. Ein Einfachpen-
del dieser Art wird, wenn man es leicht auslenkt, eine Dauerschwingung ausfiih-
ren und somit ,,ewig“ weiter schwingen. In der Zustandsebene des Einfachpendels
(siehe Bild [I=1] (rechts)) stellt eine solche Dauerschwingung nidherungsweise eine
Ellipse um die untere stabile Ruhelage (z.B. (¢ = 0, = 0)) dar, hier gekenn-

zeichnet durch (1). Da die Ruhelagen nicht eindeutig sind, wiederholen sich diese
Strukturen in der Zustandsebene. Es sind aber noch weitere interessante und dy-
namisch unterschiedliche Trajektorien zu erkennen. Wenn das Pendel mit einer
ausreichend hohen Anfangsgeschwindigkeit gestartet wird, wird es aufeinander
folgende Uberschlige durchfiihren, so dass der Winkel ¢ immer weiter wiichst
bzw. abnimmt, je nachdem ob die Anfangsgeschwindigkeit positiv oder negativ
ist (Trajektorien oben bzw. unten in der Zustandsebene in Bild [[=]] gekennzeich-

net durch (2)). Eine besondere Form von Trajektorien ist hier rot eingezeichnet

und mit (3) gekennzeichnet. Sie befindet sich genau zwischen den zwei Bereichen,
in dem das Systemverhalten entweder durch eine Dauerschwingung oder durch
Uberschlige gekennzeichnet ist. Wenn das Pendel auf der roten Trajektorie star-
tet, lauft es automatisch in die obere instabile Ruhelage. Eine derartige Struktur
wird im Weiteren auch als stabile Mannigfaltigkeit der Ruhelage bezeichnet und
in Kapitel [ fiir die Berechnung von optimalen Steuerungen ausgenutzt. Um die-
ses Pendelsystem der Realitit weiter anzunihern, kann zusétzlich Reibung im
Gelenk betrachtet werden. Dadurch wird die untere Ruhelage des Pendels asym-
ptotisch stabil, da dem System durch die ddmpfende Wirkung des Gelenks die
Energie vollstdndig entzogen wird und es zur Ruhe kommt.

Die Komplexitit des Systems wird erhoht, wenn zwei durch ein weiteres Gelenk
verbundene Pendelarme betrachtet werden: ein sogenanntes Doppelpendel. In die-
sem Fall scheint sich das System auf den ersten Blick nicht entscheidend gedndert
zu haben, aber fiir die Dynamik gilt dies nicht. Ein mathematisches Doppelpendel
(also ohne Reibung in den Gelenken) ist ein chaotisches dynamisches System. In
der Praxis ist das Bewegungsverhalten eines solchen Systems nahezu unvorher-
sagbar. Mit Hilfe von Leuchtdioden und einer Langzeitbelichtung wird in Bild =3
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eine solche Bewegung eines Doppelpendels beispielhaft dargestellt. Es wird deut-
lich, dass sich das Doppelpendel keineswegs gleichméfkig bewegt, sondern durch
die Verkopplung der beiden Pendelarme ein sehr komplexes Manéver ausfiihrt.
Eine besondere Figenschaft von chaotischen Systemen ist, das schon kleine Ver-
anderungen der Ausgangssituation das Verhalten des Pendels stark verdndern.
So ist es mit dem in Bild [[-3] dargestellten Versuch niemals moglich, zweimal die
gleiche Trajektorie zu erzeugen. Dieses Verhalten wird auch als sensitive Abhén-
gigkeit vom Anfangswert bezeichnet.

Bild 1-3: Chaotischer Orbit eines Doppelpendels

Diese besonderen Eigenschaften des mathematischen Pendels haben auch Auswir-
kungen auf das praktische Anwendungsbeispiel. Sowohl in Simulationen als auch
am Priifstand des Doppelpendels werden in dieser Arbeit Manover umgesetzt.
Aufgrund der sensitiven Abhéngigkeit vom Anfangswert wirken sich Storungen
bzw. Fehler stark aus, sodass immer auf eine moglichst exakte Ausfithrung geach-
tet werden muss und eine zusétzliche Regelung zur Kompensation der Stérungen
notwendig ist. Ansonsten waren selbst einfache Manover am Pendel nicht umsetz-
bar. Zusitzlich muss auch auf die starke Nichtlinearitdt des Systems hingewie-
sen werden, denn durch die beiden rotatorischen Pendelarme kommt es zu einer
starken Verkopplung von trigonometrischen Funktionen. In diesem Sinne werden
geeignete Regelungskonzepte verwendet, um das Pendel gezielt regeln zu konnen.

1.2 Zielsetzung

In dieser Arbeit wird gezeigt, wie optimale Trajektorien fiir ein unteraktuier-
tes mechanisches System — das Doppel- bzw. Dreifachpendel auf einem Wagen —
mittels optimaler Steuerung bestimmt werden kénnen. Dabei werden neuartige
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mathematische Methoden verwendet und deren Vorteile aufgezeigt. Es werden
sowohl die theoretischen Ergebnisse als auch die praktische Umsetzung in Simu-
lationen und am Priifstand untersucht.

Ein Hauptziel ist dabei, mit Hilfe von Mehrzieloptimierung eine grofse Varian-
tenvielfalt an Losungen zu erhalten. Dies ist wichtig, um auf unterschiedliche
Anforderungen von aufsen reagieren zu konnen. Es werden dabei zwei Zielgréfsen
beriicksichtigt: Zum einen der Steueraufwand des Motors, der ein Mak fiir die
Energieeffizienz darstellt, und zum anderen die Dauer des Mand&vers, um mog-
lichst schnelle Mand6ver zu erhalten. Da diese beiden Ziele gegenlaufig sind, erge-
ben sich fiir die jeweiligen optimalen Losungen Kompromisse zwischen ihnen, die
durch eine unterschiedliche Gewichtung der Ziele verdndert werden konnen.

Durch die Moglichkeit, viele unterschiedliche Losungen beziiglich ihrer Zielfunkti-
onswerte untersuchen zu konnen, kann zusétzliches Systemwissen erlangt werden.
Die entstehenden Trajektorien stellen eine Wissensbasis fiir das System dar. So
kann z. B. analysiert werden, wie eine Bewegung des Pendels aussieht, die fiir eine
bestimmte Mandoverzeit optimal ist. Im Vorfeld besitzt man speziell fiir komplexe
mechanische Systeme keine Vorstellung dariiber, wie eine solche Bewegung aus-
sehen konnte. Durch die Variation von dufleren Parametern bei der Bestimmung
von optimalen Losungstrajektorien ldsst sich auferdem untersuchen, ob sich eine
Verénderung des Systems positiv auf die Dynamik eines Manovers auswirkt. Zum
Beispiel kann hier die Wirkung eines verlingerten Verfahrwegs am Priifstand auf
die Zielfunktionswerte des Mandvers untersucht werden.

In einem weiteren Schritt werde Strategien entwickelt und analysiert, die Mannig-
faltigkeiten eines dynamischen Systems fiir die optimale Steuerung nutzen. Auf
diesen speziellen Strukturen kann sich das System kostenlos bewegen und durch
das Ausnutzen dieser sogenannten natiirlichen Dynamik ist es moglich, besondere,
physikalisch motivierte Ansétze fiir eine optimale Steuerung zu verwenden. Durch
den Vergleich mit einem Standardansatz lasst sich diese neuartige Strategie der
Verwendung der natiirlichen Dynamik weitergehend evaluieren.

Das Manover, welches in dieser Arbeit hauptsichlich betrachtet wird, ist der
Aufschwung des Pendels aus der unteren Ruhelage (siehe (1) in Bild T4 in die

instabile obere Ruhelage (siehe (4) in Bild [=4). Prinzipiell kénnen die hier vor-
gestellten Methoden aber genauso auf Mandver zwischen den anderen Ruhelagen
angewendet werden.

In dieser Arbeit werden somit die drei folgenden zentralen Aspekte behandelt:

e Am Anfang steht die Modellbildung und die Beschreibung des Priifstands
fiir das Mehrfachpendel auf einem Wagen. Dazu gehort auch der Regelungs-
ansatz mit der Zwei-Freiheitsgrade-Regelung.



Einleitung 7

.
6}

®

@

Bild 1-4: Die vier unterschiedlichen Ruhelagen des Doppelpendels mit Wagen

e Im zweiten Schritt geht es um die optimale Steuerung mit der Methode
Discrete Mechanics and Optimal Control (DMOC), die zunéchst theore-
tisch eingefiihrt und anschliefend fiir die Berechnung vielfdltiger Mandver
verwendet wird. Diese werden auch am Priifstand getestet.

e Als weitere Methode wird dann die optimale Steuerung auf Mannigfaltigkei-
ten vorgestellt. Hierbei wird auch die DMOC Methode fiir die Berechnung
von optimalen Sequenzen angewendet. Auch dieser neuartige Ansatz wird
am Priifstand evaluiert.

Es wird deutlich, dass diese Aspekte stark miteinander verzahnt sind und auf-
einander aufbauen. Dabei sind die optimale Steuerung mit der Anwendung am
Mehrfachpendel die zentralen Punkte, die immer wieder aufgegriffen werden. Dies
ist auch in Bild grafisch dargestellt.

Insgesamt ist es ein Ziel dieser Arbeit, die verwendeten Methoden und das Vorge-
hen so zu beschreiben, dass es auch auf andere mechanische Mehrkorpersysteme
iibertragen werden kann. Dies kann dadurch erreicht werden, dass die verwende-
ten Methoden zur optimalen Steuerung allgemein erlidutert und die Systemana-
lyse anschlieffend am Beispiel des Doppelpendels auf einem Wagen ausfiihrlich
diskutiert wird. Dadurch ist es moglich, das Vorgehen auch fiir andere Syste-
me zu wiederholen und in entsprechender Weise durch die Berechnung von Ma-
névern Systemwissen zu generieren. Dies konnen z.B. Systeme im Bereich der
Robotik sein, bei denen effiziente Trajektorien berechnet werden sollen, die nur
eingeschrinkte Bewegungsmdglichkeiten besitzen, da sie mit anderen Robotern
kooperieren miissen. Von Vorteil wére hier, dass die Trajektorien optimal beziig-
lich gewahlter Ziele sind und technische Einschriankungen einfach beriicksichtigt
werden konnen.
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Steuerung
mit DMOC
(Kapitel 3
und 4)

Bild 1-5: Aufbau der zentralen Aspekte dieser Arbeit

1.3 Aufbau der Arbeit

In Kapitel 2] werden zunéchst die Grundlagen zum Einsatz von Mehrfachpen-
delsystemen vorgestellt. Dabei wird sowohl auf den Stand der Technik beziiglich
der Systeme und Methoden eingegangen, als auch die Modellierung des in dieser
Arbeit verwendete Doppel- bzw. Dreifachpendels erlautert. Es wird die Zwei-
Freiheitsgrade-Struktur vorgestellt, die fiir den Aufschwung des Mehrfachpendels
angewendet wird. Fiir die Auslegung der Regelung werden zwei unterschiedliche
Ansitze dargestellt, die beide auf linearen Methoden basieren. Erste Tests dieser
Regelung in Simulationen und am Priifstand schliefen dieses Kapitel ab.

Die Grundlagen zur optimalen Steuerung von dynamischen Systemen werden in
Kapitel 3 vorgestellt. Das allgemeine Optimalsteuerungsproblem wird hergeleitet
und anschliefsend werden unterschiedliche Methoden zur Losung vorgestellt. In
dieser Arbeit wird die Methode DMOC fiir die Herleitung des diskreten Opti-
malsteuerungsproblems verwendet. Die theoretischen Grundlagen dieser Metho-
de und ihre besonderen Figenschaften werden dargestellt. Aukerdem wird auf die
aktuelle Forschungsarbeit mit der DMOC Methode eingegangen.

In Kapitel dl wird dann gezeigt, wie das diskrete Optimalsteuerungsproblem mit-
tels SQP-Verfahren (Sequentielle Quadratische Programmierung) gelost werden
kann. Dabei werden durch einfache Mehrzieloptimierungsmethoden unterschied-
liche Ziele fiir die Auslegung der Trajektorien fiir das Pendel beriicksichtigt. Im
Anschluss werden die Ergebnisse ausfiihrlich diskutiert. Ein Aspekt dabei ist die
grofte Variantenvielfalt, die fiir den Aufschwung des Doppelpendels mittels Mehr-
zieloptimierung erzielt werden kann. Die entstehenden Losungen kénnen beziiglich
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ihrer Pareto-Optimalitdt analysiert werden. Durch eine geeignete Nachoptimie-
rung wird anschlieffend untersucht, wie sich die Losungen beziiglich der unter-
schiedlichen Ziele gezielt variieren lassen.

Eine neue Methode fiir die optimale Steuerung von mechanischen Systemen auf
(in)stabilen Mannigfaltigkeiten wird in Kapitel B beschrieben. Dabei wird die sta-
bile Mannigfaltigkeit genutzt, da sich das System auf ihr unaktuiert, also ohne
Kosten, in die obere Ruhelage bewegt. Der Ansatz basiert im Wesentlichen darauf,
eine Sequenz aus einem gesteuerten Teilstiick zur stabilen Mannigfaltigkeit und
der Bewegung auf dieser bis zur oberen Ruhelage zu bilden. Durch eine anschlie-
flende Nachoptimierung, bei der die Sequenz als initial guess verwendet wird,
lassen sich die Ergebnisse noch verbessern. Vergleiche mit Losungen, die durch
einen linear interpolierten initial guess (Standardansatz) berechnet worden sind,
zeigen weitere Vorteile dieses neuen Ansatzes. Auch am Priifstand des Doppel-
pendels auf einem Wagen wird die Bewegung auf der stabilen Mannigfaltigkeit
analysiert.

Zum Abschluss der Arbeit wird in Kapitel [l eine ausfiihrliche Zusammenfassung
des Vorgehens und der erzielten Ergebnisse gegeben. Auferdem werden in einem
Ausblick zuséitzliche Aspekte fiir weiterfilhrende Forschungsaufgaben beschrie-
ben.






Grundlagen zum Einsatz von Mehrfachpendelsystemen 11

2 Grundlagen zum Einsatz von
Mehrfachpendelsystemen

Dieses Kapitel widmet sich den Grundlagen zur Einstimmung und Vorbereitung
der weiteren Kapitel der vorliegenden Arbeit. Zunichst wird ein Uberblick iiber
die Moglichkeiten fiir den Aufbau und die Steuerung von Pendelsystemen gege-
ben und erldutert, welche grundsétzlichen Anséitze verwendet werden kénnen, um
solche Systeme zu steuern und zu regeln.

Im Weiteren werden die Grundlagen fiir die Anwendung von theoretischen Metho-
den und praktischen Anwendungen am Pendel vorgestellt. Dazu wird der Priif-
stand eines Mehrfachpendels auf einem Wagen vorgestellt, der in dieser Arbeit fiir
die praktische Umsetzung verwendet wird. Die notwendige Modellbildung wird fiir
das Doppel- und Dreifachpendel durchgefiihrt, und es wird auch auf die Moglich-
keit von verschiedenen Modelldarstellungen eingegangen. Anschliefend wird die
Zwei-Freiheitsgrade-Regelung bestehend aus Vorsteuerung und zusitzlicher Re-
gelung beschrieben. Dies ist ein etabliertes Konzept und wurde z.B. auch schon
in [GTZ05], [GTZ07] und [GEK13| verwendet, um Mangver fiir das Doppel- und
Dreifachpendel inklusive Steuerung und Regelung umzusetzen. In diesem Kapitel
werden zum einen diese Methode fiir die Anwendung am Priifstand und zum an-
deren erste Ergebnisse fiir die Reglerauslegung vorgestellt. Dabei geht es darum,
dass das System mit Hilfe eines zusétzlichen Reglers der vorgegebenen Trajektorie
moglichst exakt folgt.

Am Ende dieses Kapitels ist ein grundlegendes Konzept bestehend aus den Haupt-
komponenten Steuerung und Regelung fiir die Arbeit mit dem Pendelsystem gege-
ben. In den folgenden Kapiteln wird dieses im Bereich der Steuerung aufgegriffen,
um neue mathematische Methoden fiir die Auslegung eines optimalen Systemver-
haltens zu entwickeln.

2.1 Pendelsysteme in Theorie und Praxis - Ein Stand der
Technik

Das in dieser Arbeit betrachtete Pendelsystem auf einem Wagen ist nicht die
einzige Moglichkeit der praktischen Realisierung. Im Folgenden werden weitere
Moglichkeiten fiir den Aufbau eines allgemeinen Pendelsystems beschrieben und
es wird gezeigt, welche Methoden der Steuerung und Regelung daran entwickelt
und getestet wurden.
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2.1.1 Aufbau und Ansteuerung von Pendelsystemen

Viele Wissenschaftler haben sich in ihrer Forschung mit unterschiedlichen Pendel-
systemen und Manipulatoren beschéftigt, um diverse Methoden der Regelungs-
technik zu entwickeln oder auch deren Anwendung in der Lehre darstellen zu
konnen. Neue Methoden, vor allem in der nichtlinearen Regelungstechnik, wurden
mit Pendelsystemen getestet, realisiert und auch anschaulich dargestellt. Dabei
lassen sich zwei grundsitzlich verschiedene Arten von Pendelsystemen beschrei-
ben: Die einen besitzen ein aktuiertes Gelenk, und die anderen kénnen sich durch
einen Wagen (Motor) auf einem horizontalen Fahrweg bewegen. Eine Variante
des zuletzt genannten Systems ist das rotatorische Pendel.

Bei den Mehrfachpendelsystemen handelt es sich meist um unteraktuierte mecha-
nische Systeme. Dies bedeutet, dass bei diesen Systemen die Anzahl der Freiheits-
grade grofser ist als die Anzahl der Steuergrofsen. Die Steuerung und Regelung von
unteraktuierten Systemen ist auf Grund ihrer diversen komplexen Eigenschaften
schwierig und eine allgemeine Behandlung solcher Systeme existiert nicht. Aus re-
gelungstechnischer Sicht ist es eine besondere Herausforderung, dass es dadurch
Korper gibt, die nicht direkt beeinflusst werden kénnen. Bei unteraktuierten Sys-
temen kann keine vollstdndige Zustandslinearisierung durchgefiihrt werden, so
dass sich eine nicht beobachtbare interne Dynamik (Nulldynamik) des Systems
ergibt. Die Regelung wird héiufig passivititsbasiert ausgefiihrt (sieche zum Bei-
spiel [Spo98]). Fiir eine erfolgreiche Steuerung und Regelung ist es néotig, eine
genaue Systemkenntnis inklusive detaillierter Modellbildung zu besitzen und in
der Umsetzung sehr exakt zu arbeiten. Die Entwicklung von neuen Methoden an
Mehrfachpendelsystemen dient der Motivation dieser Verfahren, da die Ergebnis-
se dann auf andere unteraktuierte Systeme iibertragen werden konnen. Beispiele
fiir solche Untersuchungen lassen sich in [Spo96], [ELO1], [FLS00], [LEB00] und
[SPLEO0| finden.

Pendel mit aktuiertem Gelenk

In diesem Abschnitt wird der Fokus auf Pendelsysteme gelegt, die eine Variante
des Pendelsystems auf einem Wagen darstellen. Dabei wird kein Wagen als Aktor
verwendet, sondern eines der Gelenke wird direkt aktuiert.

Die Systeme Acrobot (siehe [MH90|, [Spo95]) und Pendubot (siehe [SB95|) be-
stehen beide aus zwei Pendelarmen die mit zwei rotatorischen Gelenken verbun-
den bzw. gelagert werden. Solche unteraktuierten Systeme treten im Bereich von
Robotersystemen héufig auf und werden als akademische Beispiele bei der Ent-
wicklung von Methoden verwendet. Beim Acrobot ist dabei das fest gelagerte
Gelenk aktuiert und beim Pendubot das Gelenk zwischen den Pendelarmen (sie-
he Bild 2=1]). Dadurch sind sich beide Systeme &hnlich, und es kénnen prinzipiell
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die gleichen Methoden fiir eine Regelung verwendet werden [SB95|. Mit Hilfe von
partieller Zustandslinearisierung des Systems und der Analyse der Nulldynamik
lasst sich z. B. ein Regler fiir den Aufschwung herleiten. Da diese Systeme nur
eine unabhingige Kingangsgrofe besitzen, ergibt sich eine eindimensionale Man-
nigfaltigkeit von Ruhelagen. Da z. B. beim Pendubot der innere Pendelarm durch
ein bestimmtes konstantes Moment in dem aktuierten Gelenk in jeder beliebigen
Position gehalten werden kann, gibt es jeweils eine instabile obere Ruhelage des
Systems, wenn der andere Pendelarm senkrecht steht. Eine instabile Ruhelage
kann beim Acrobot dadurch eingestellt werden, dass das aktuierte Gelenk die
Pendelarme in einer ausbalancierten Pose fixiert. Eine mogliche Ruhelage dieser
Systeme ist jeweils auch in Bild R-T] dargestellt.

aktuiertes
Gelenk
aktuiertes
Gelenk
Pendubot Acrobot

Bild 2-1: Pendubot und Acrobot, jeweils in einer maglichen instabilen Ruhelage;
die roten Pfeile markieren die aktuierten Gelenke

Pendel mit Wagen bzw. rotatorisches Pendel

Eine weitere Art von Pendelsystemen sind Pendel auf einem Wagen, welche sich
auf einem horizontalen Fahrweg bewegen (siehe z.B. [GTZ07|, [ZR01]). Diese
Systeme haben im Gegensatz zu den Pendeln mit aktuiertem Gelenk eine an-
dere Dynamik, da sie z.B. im Fall eines Doppelpendels auf einem Wagen zwei
frei schwingende Pendelarme besitzen. Somit kénnen die Pendelarme nicht di-
rekt, sondern nur durch den aktuierten Wagen bewegt werden. Im Gegensatz
zum Acrobot und Pendubot ist das Doppelpendel auf einem Wagen ein zweifach
unteraktuiertes System (Anzahl Freiheitsgrade: 3, Anzahl Aktoren: 1). Fiir die
Dynamik eines mathematischen Doppelpendels, bestehend aus zwei Massepunk-
ten, die reibungsfrei schwingen, kann sogar gezeigt werden, dass sie chaotisch ist,
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siehe auch Abschnitt 5. 1.1l Wegen dieser Eigenschaft ist das Systemverhalten sehr
komplex.

Eine Variante des Pendels auf einem Wagen ist das rotatorische Pendel, welches
auch Furuta-Pendel genannt wird [AF96], [LFSM09]. Ein rotatorisches Pendel
mit einem Pendelarm ist in Bild zu sehen. Hierbei ist ein Pendelarm an einem
rotierenden Stab befestigt, der sich mit Hilfe eines Aktors drehen ldsst. Dieser
Aufbau des Pendels hat den Vorteil, dass der Fahrweg unbeschrankt ist, da der
Aktor beliebig viele Umdrehungen in eine Richtung durchfiihren kann, um das
Pendel aufzuschwingen.

Bild 2-2: Rotatorisches Pendel [Wik135]

2.1.2 Ansatze fur Steuerung und Regelung

Der Aufschwung des Einfach- oder Doppelpendels auf einem Wagen in die inver-
se Position (obere Ruhelage) ist eine herausfordernde Aufgabe, da das System
unteraktuiert ist und eine komplexe Dynamik besitzt. Dieses Problem wird z. B.
durch energiebasierte Methoden gelost (siche [ZR0I], [AF96]). Bei diesen Me-
thoden geht es darum, mit Hilfe von Energie- bzw. Lyapunov-Funktionen einen
Regler zu entwerfen, der ein bestimmtes Energielevel (z. B. das der oberen Ruhe-
lage) einregelt. Wenn die gewiinschte Ruhelage erreicht ist, kann dann ein linearer
Regler (LQ-Regler, siehe auch Abschnitt 2.4.2) verwendet werden, um diese zu
stabilisieren.
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In [ZR0O1] wird ein Regler fiir den Aufschwung des Doppelpendels aus einer belie-
bigen Position in die inverse Position mit Hilfe von Passivitéitseigenschaften und
energy shaping ausgelegt. Wahrend des Aufschwungs bringt der energiebasierte
Regler das Pendel in einen bestimmten Einzugsbereich um die inverse Position,
wo dann ein Regler zum Balancieren in der oberen Ruhelage aktiviert werden
kann. Der in der Ruhelage verwendete Regler basiert auf linearen Methoden.
Fiir einen in &hnlicher Weise ausgelegten Regler kann in [Xinll] sogar gezeigt
werden, dass im geschlossenen Regelkreis das Pendel gegen die obere Ruhelage
konvergiert, indem das entsprechende Energieniveau angenommen wird.

Die energiebasierten Methoden haben den Vorteil einer hohen Robustheit des
Systems beziiglich Storungen oder auch Modellungenauigkeiten, denn es wird
keine Trajektorie fest vorgegeben. Wenn Storungen auftreten, ist der Regler in
der Lage sich anzupassen und auch dann noch das Regelziel zu erreichen.

Ein Nachteil, der sich aus dem eben beschriebenen Verhalten ergibt, besteht darin,
dass die Regelung eines Systems mit energiebasierten Methoden nicht zeiteffizient
ist. Das Erreichen des Regelziels kann erstens sehr lange dauern, und man kann
zweitens keine genaue Zeit angeben, zu der es wirklich erreicht wird.

Dieser Nachteil kann dadurch behoben werden, dass im Vorfeld eine - nach M&g-
lichkeit optimale - Trajektorie fiir die Bewegung des Systems berechnet wird.
Man gibt also dem System das komplette Verhalten von der Ausgangslage zum
Zielpunkt vor und kann mit Hilfe einer zusétzlichen Regelung dafiir sorgen, dass
diese ausgefiihrt wird. Ein solcher Ansatz, bestehend aus einer Kombination aus
Steuerung und Regelung, wird als Zwei-Freiheitsgrade-Struktur bezeichnet. Durch
dieses Vorgehen ist das Systemverhalten deterministisch, und es ist die M6glich-
keit gegeben, z.B. die Dauer der Bewegung oder die Auslenkung der Zusténde
genau vorherzusagen. Kleinere Storungen konnen durch die zuséitzliche Regelung
abgefangen werden. Hierdurch kommt es nur zu leichten Abweichungen von der
Solltrajektorie. Grofsere Eingriffe in das System fiihren dagegen dazu, dass die
gewiinschte Trajektorie nicht durchgefiihrt werden kann. Fiir einen erneuten Test
muss das System aufserdem wieder in die exakte Ausgangslage versetzt werden.
Somit wird deutlich, dass beide Ansitze gewisse Vor- und Nachteile besitzen.
Es muss immer ein Kompromiss zwischen Robustheit bzw. Flexibilitdat und der
Schnelligkeit des gewiinschten Mand6vers getroffen werden.

Eine Regelung durch eine Zwei-Freiheitsgrade-Struktur wird z. B. in [GTZ07] oder
[RRA02] dazu verwendet, einen Aufschwung des Doppelpendels auf einem Wa-
gen aus der unteren in die obere instabile Ruhelage durchzufiihren. In [GTZ07]
wird eine inversionsbasierte Steuerung verwendet, um Trajektorien fiir das Auf-
schwungmandéver zu berechnen. Ein Randwertproblem wird geldst, um die interne
Dynamik des Pendels zu beriicksichtigen. Dabei werden freie Parameter in der
gesuchten Losungstrajektorie eingefiihrt, um ausreichend Freiheitsgrade zu erhal-
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ten. Der zusitzliche stabilisierende Regler wird ebenfalls mit linearen Methoden
ausgelegt. Durch ein vergleichbares Vorgehen ist es in sogar moglich,
den Aufschwung und die Stabilisierung fiir das Dreifachpendel auf einem Wagen
am Priifstand durchzufiihren.

2.2 Prufstand

Fiir die Arbeiten mit einem Mehrfachpendel (in dieser Arbeit wird das Doppel-
bzw. Dreifachpendel getestet) wurde am Lehrstuhl fiir Regelungstechnik und Me-
chatronik (RtM) ein entsprechender Priifstand aufgebaut. In Bild 2=3]ist der reale
Priifstand zu sehen.

Bild 2-3: Priifstand des Doppelpendels auf einem Wagen

Beim Aufbau des Priifstands wurde ein Linearantrieb (Linearmotor LKL 20-85,
Bosch Rexroth) verbaut, der gewihrleistet, dass hochdynamische Bewegungen
der Pendelarme durchgefiihrt werden kénnen. Der Motor besitzt einen Verfahr-
weg von £0.6m, eine maximale Geschwindigkeit von 57 und eine maximale
Beschleunigung von 101 7. Es wurde aukerdem darauf geachtet, dass die Gelen-
ke des Pendels besonderen Anforderungen geniigen. Sie sind am Lehrstuhl fiir
Regelungstechnik und Mechatronik der Universitidt Paderborn konstruiert wor-
den und sehr reibungsarm ausgelegt. Dies hat den Vorteil, dass die dynamischen
Bewegungen der Pendelarme nur wenig durch Reibung beeintrichtigt werden.
Des Weiteren wurden in den Gelenken hochauflésende optische Encoder mit ei-
ner Auflésung von 20000 Striche pro Umdrehung verbaut, um die Winkellage der
Pendelarme und die Bewegung des Wagens sehr prézise messen zu kénnen. Die
Signaliibertragung wird mit Hilfe von Schleifringen in den Gelenken realisiert, um
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eine aufwindige und storende Kabelfiihrung im Pendel zu umgehen. Ein weiterer
wichtiger Aspekt ist die Auslegung der Rahmenkonstruktion. Um hochdynami-
sche Trajektorien mit dem Mehrfachpendel exakt ausfithren zu konnen, ist es
notwendig, dass die Rahmenkonstruktion mdoglichst standfest und schwingungs-
arm ist. Um diese Anforderungen zu realisieren, wurde die Rahmenkonstruktion
mit Hilfe eines biege- und torsionssteifen Aluminium-Profilsystems aufgebaut.
Auferdem wurde beim Aufbau auf eine zusitzliche Versteifung des Priifstandes
durch Verspannelemente geachtet. Zusétzliche Maschinenfiife aus einer schwin-
gungsddmpfenden Gummimischung sind gut fiir die auftretenden dynamischen
Belastungen geeignet. Der Aufbau des Gesamtsystems ist in Bild 2-4] zu sehen.
Die Auslegung des gesamten Priifstandes wurde in den Arbeiten [Lef09] und
[Koh(09] untersucht und dokumentiert. Dabei wurden zur Auswahl der Kompo-
nenten Nutzwertanalysen aufgestellt.

Bild 2-4: Priifstand des Mehrfachpendels auf einem Wagen (CAD-Zeichnung)

Fiir die Realisierung der Ansteuerung und Regelung des Pendelsystems am Priif-
stand wird ein echtzeitfihiges Hardwaresystem der Firma dSPACE verwendet.
Integriert ist ein Echtzeitrechner und verschiedene I/O-Panel fiir die notwendige
digitale Signalverarbeitung.

2.3 Modellbildung

Fiir die Modellbildung des Mehrfachpendels wird nun das Modell eines Mehrkor-
persystems hergeleitet, das die grundsétzliche Funktionsweise des realen Priifstan-
des darstellt. Dazu sind zunichst die Abgrenzung zur Umwelt und anschliefsend
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die Erstellung eines physikalischen Ersatzbildes notwendig. Mit Hilfe der Metho-
de nach Lagrange werden die Bewegungsgleichungen des Systems aufgestellt, die
numerisch simuliert werden konnen.

2.3.1 Doppelpendel

L

x

@,

\/
Y
Bild 2-5: Modell des Doppelpendels auf einem Wagen

Das Modell des Doppelpendels auf einem Wagen besteht aus drei Starrkérpern,
welche die zwei Pendelarme bzw. den Linearmotor reprasentieren. Die charakte-
risierenden Grofen der Pendelarme werden durch ihre Masse m;, ihre Linge [;,
den Abstand zwischen Gelenk und Schwerpunkt a; und das Trégheitsmoment J;
mit ¢ = 1,2 beschrieben (siehe Bild 2=5]). Der Wagen besitzt die Masse my. Die
generalisierten Koordinaten des Doppelpendels auf einem Wagen sind die absolu-
ten Winkel ¢y und ¢y der Pendelarme beziiglich einer vertikalen Auslenkung und
die Verschiebung des Wagens y. Die Steuergrofe des Systems wird mit u(t) be-
zeichnet. Im Folgenden sollen zwei dquivalente Modelle fiir das Pendel hergeleitet
werden, die sich in der Wahl der Steuergrofe unterscheiden. Zum einen kann hier
die Kraft des Aktors ug(t) = Fy und zum anderen auch die Beschleunigung des
Wagens wu,(t) = i gewihlt werden. Eine Uberfiihrung vom einen in das andere
Modell ist durch die partielle Zustandslinearisierung moglich. Es wird zusétzlich
angenommen, dass in den Gelenken die Dampfung d; bzw. dy wirkt.
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Fiir die Simulation des Pendels werden realistische Werte fiir die aufgefiihrten
Grofsen benotigt. Diese sind in Tabelle 2-1] aufgefiihrt und konnten durch Mes-
sungen am Priifstand und mit Hilfe von CAD-Daten gewonnen werden.

Tabelle 2-1: Mechanische Parameter des Doppelpendels auf einem Wagen
innerer Pendelarm &ufserer Pendelarm

(i=1) (i=2)

Lange I; [m] 0.356 0.356
Abstand zum Schwerpunkt a; [m] 0.18 0.148
Masse m; |kg] 0.775 0.654
Triigheitsmoment J; [N m s?| 0.0224 0.0179
Déampfungskonstante d; [N m s| 0.005 0.005

Masse des Wagens mq: 4 |kg]

Herleitung der Bewegungsgleichungen mit Krafteingang

Die Bewegungsgleichungen des Doppelpendels auf einem Wagen werden mit Hil-
fe des Lagrange-Formalismus hergeleitet. Dies hat den Vorteil, dass nicht alle
Schnittkrifte in den Gelenken berechnet werden miissen, die im Folgenden in den
Bewegungsgleichungen auch nicht benotigt werden. Beim Lagrange-Formalismus
ist es notwendig, die Lagrange-Funktion des Systems herzuleiten. Diese besteht
fiir mechanische Systeme aus kinetischer und potentieller Energie (siehe auch
Gleichung (A-2-4) im Anhang). Durch eine partielle Ableitung nach den Zustén-
den des Systems werden dann die Euler-Lagrange-Gleichungen mit Kriften be-
rechnet (siehe auch Gleichung ([A-2-5l) im Anhang). Hierfiir wird die Darstellung
der Pendel und des Wagens in redundanten Koordinaten 29 sowie 2%, 2%, oy, i =
1,2 beschrieben. Mit 2’ = [z} 3], = 0,1,2 als Schwerpunktkoordinaten der
Korper lésst sich die Beziehung zwischen redundanten und generalisierten Koor-
dinaten durch

0 __ _y
20— _0},
o _y—alsingol
i ajp COS Y1
2 _y—llsingol—agsingog
| licospr +agcos gy
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ausdriicken. Mittels dieser Charakterisierung konnen die kinetische und potenti-
elle Energie als

1 2 A 2
=0 i=1

2
V= Zmigxg
i=0

bestimmt werden, wobei g die Gravitationskonstante ist. Die nicht konservativen
Dampfungsmomente werden modelliert durch die folgenden linearen Ausdriicke

Flf = —dig1 + da(pa — ¢1),
Fyf = —dy(p2 — ¢1).

Es wird an dieser Stelle angenommen, dass zwischen dem Motor und dem Ver-
fahrweg keine Reibungskrifte wirken. Diese kdnnen vernachlissigt werden, da
der Motor am Priifstand geschwindigkeitsgeregelt betrieben wird. Dadurch kann
davon ausgegangen werden, das eine etwaige Abweichung von der Sollgeschwin-
digkeit, die durch Reibung verursacht werden konnte, durch die Regelung kom-
pensiert wird. Die zweite Mdoglichkeit ist es, den Motor kraftgeregelt zu betrei-
ben. Dabei wiirde die Reibung als Storkraft auf den Motor wirken. In diesem
Fall kann die Reibung durch den Einsatz eines Reibbeobachters geschitzt und
direkt kompensiert werden. Dadurch ist es moglich, den Motor in beiden Modi
mit zufriedenstellender Genauigkeit zu betreiben.

Als einzige Eingangsgrofe auf das System wird vorerst eine Aktorkraft auf den
Wagen up(t) = Fo(t) gewdhlt. Die Gelenke der Pendelarme sind dagegen frei

schwingend. Im Folgenden sei ¢ = [ql G2 qo} = [<p1 o y]T der Vektor der

verallgemeinerte Lagekoordinaten und ¢ = [gbl D9 y}T der Vektor der ver-
allgemeinerten Geschwindigkeiten. Mit Hilfe der Lagrange-Funktion L(q,q) =
T(q,q) — V(q), bestehend aus kinetischer und potentieller Energie des Systems
(siehe auch Gleichung ([A-2-4)) im Anhang), lassen sich nun die Bewegungsglei-
chungen nach dem Lagrange-Formalismus wie folgt bestimmen

doL oL o

doL OL

dt 8(]0 8(]0 o
Daraus ergibt sich dann das folgende System von Differentialgleichungen zweiter
Ordnung

M(q) - G+C(q,4) - ¢+ G(q) = F(q) + B-up, (2-1)

i=1,2,
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mit den Matrizen

Ji + a2my + 3my aslymg cos(pr — @2)  —(aymy + lyma) cos(¢r)
M = aslyms cos(p1 — ¢o) Jo + azmy —asms cos(ps) ,
—(a1m1 + llmg) COS(QOl) — Q219 COS(QOQ) mi + meo + myg

[ 0 aglimy sin(pr — 2)p2 0

C= —a211m2 SiIl(()Ol — @2)@1 0 0 s (2—2)
_(a1m1 + llmQ) sin(@l)go'l a2 Siﬂ(()OQ)@Q O
[—g(aymy + l1my) sin(¢1)

g = —gasms sin(ps) ) (2-3)
i 0
[—d1¢1 + da(2 — 1)

F= da(p1 — 2) ; (2-4)
i 0

B=1[0 0 1]. (2-5)

Das hier entstandene nichtlineare System von Differentialgleichungen besitzt den
typischen Aufbau fiir ein Mehrkorpersystem mit der symmetrischen Massenma-
trix M(q), der Matrix C(q, ¢), die Coriolis- und Zentrifugalkréfte enthélt, und
den wirkenden Kriften auf der rechten Seite bestehend aus den Dampfungskraf-
ten und der Aktorkraft up. Man beachte, dass der Eingang nur auf die dritte
Differentialgleichung direkten Einfluss besitzt, da das System unteraktuiert ist.

Partielle Zustandslinearisierung von unteraktuierten me chanischen
Systemen

Die allgemeine exakte Zustandslinearisierung wird bei nichtlinearen Systemen zur
Auslegung einer Regelung durch nichtlineare Kompensation und Entkopplung ge-
nutzt. Durch die Wahl eines nichtlinearen Vorfilters und einer nichtlinearen Riick-
fiihrung konnen in der Strecke enthaltene Nichtlinearititen kompensiert werden.
Das dadurch entstehende Gesamtsystem ist wirkungsiquivalent zu einem ent-
sprechenden linearen System, und fiir dieses konnen dann mit linearen Methoden
Regelungen fiir das dynamische Verhalten entworfen werden. Siehe hierzu auch
[E6193] oder [Isi95], wo eine ausfiihrliche Einfithrung in diese Thematik durch-
gefiihrt wird und aufserdem auf die Voraussetzungen zur Durchfiihrung dieser
Methode eingegangen wird.

Im Folgenden wird untersucht, wie die Methode der Zustandslinearisierung auf
ein allgemeines unteraktuiertes mechanisches System angewendet werden kann.
Bei einem solchen System ist es nicht moglich, die exakte Zustandslinearisie-
rung fiir das komplette nichtlineare System durchzufiihren, sondern man be-
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schrinkt sich auf die aktuierten Freiheitsgrade und erhélt dadurch eine Ein-
/Ausgangslinearisierung, auch partielle Zustandslinearisierung genannt. Dieses
Verfahren wird z.B. in [ZR01] und [Isi95] beschrieben.

Das betrachtete unteraktuierte System sei beschrieben durch n generalisierte Ko-
ordinaten ¢y, ..., q,, und die Anzahl der Steuergréfen bzw. Aktoren sei n, < n.
Dann ist es moglich, den Vektor g in zwei verschiedene Anteile ¢7 = (¢f,q?)
aufzuteilen. Dabei entspricht ¢; den passiven Variablen und ¢ den aktuierten
Variablen. Mit Hilfe dieser Darstellung lassen sich die Euler-Lagrange Gleichun-
gen des System durch

Mgy + Migda + Ci(q, 4) + Gi(q)
Moy + Masda + Ca(q, §) + G2(q)

beschreiben, wobei

- My My,
M(Q) - _M21 M22:| 9
. [ N,
C(g,4)q = C;Eg gﬂ :

_[G:(9)
g(q) N _g2<Q)]

die Systemmatrizen des Gesamtsystems bezeichnen, wie schon durch die System-
darstellung (2=1)-(2=5) beschrieben wurde. Mit F werden die n, generalisierten
Kréafte der n, Aktoren bezeichnet.

0, (2-6)
F (2-7)

Auf Grund der positiven Definitheit der Massenmatrix besitzen alle unteraktuier-
ten Systeme die Eigenschaft, dass sie partiell zustandslinearisierbar sind. Durch
diese Methode wird nun eine Riickfiihrung bestimmt, so dass die Bewegungsglei-
chungen der aktiven Zusténde g, in linearer Form vorliegen. Aus Gleichung (2=6))
kann man folgern, dass

G = =My (Mo +C1 + G) (2-8)
gilt. Die Inverse M existiert, da M positiv definit ist.

Die so erhaltene Gleichung (2-8)) ldsst sich nun wieder in (2=7) einsetzen, und man
erhilt ein abgewandeltes System

M226'j2+62+g_2 :‘F7
wobei
Moy = Moy — M21M1_11M12,
Co = Cy — Moy M'Cy,
Go =Gy — M21Mf11g1
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gilt. Anhand der entstandenen Gleichung wird nun die partielle Zustandslineari-
sierung durchgefiihrt. Es wird eine Riickfiihrung

f:M22~uy+52+GQ
ausgelegt, durch die ein neues System von Bewegungsgleichungen entsteht
Mg +C + G = —Miauy,
(j2 = uy7

wobei u, der neue Eingang des Systems ist. Durch die partielle Zustandslineari-

sierung des Originalsystems (2=6)), (2-7)) erhilt man ein neues System ([2=9), (2-10)
mit Aquivalentem Ausgangsverhalten.

(2-9)
(2-10)

Die partielle Zustandslinearisierung wird nun am Doppelpendel auf einem Wa-
gen durchgefiihrt. Die aktuierte Variable ist in diesem System die Verschiebung
des Wagens y, und die passiven Variablen sind die Winkel ¢y und ¢o der Pen-
delarme. Es ergibt sich dann ein Differentialgleichungssystem, in dem nur noch
die Dynamik der Pendelarme in Form von zwei Differentialgleichungen zweiter
Ordnung beschrieben wird und als neue Eingangsgrofse die Beschleunigung des
Wagens u,, = ij eingeht:

(2-11)
(2-12)

Uy = f&,
Mi1(q)Gr + Ci(q,q) + Gi(q) = F1(q) + Bi(q)uy,

mit den Matrizen

Mu(g) = | T aim +lime ashims cos(pr = a))
:a2l1m2 cos(ip1 — 2) Jo 7 ayy
Ciq,4) = _fjﬁﬁf@?ﬁ@f—%ﬁ%ﬁ |
Gy = [T o)
Fi(q) = :_dlizlz(_sbfl 2—(%2)_ @)} ’
Byla) = '—(alil;;?:gs();;))s(%)]

und dem Zustandsvektor x = [¢, '] = [901 Yo 1 gbg]T. Hier bestehen die
Krifte des Systems aus den Dampfungsmomenten F;(¢) und dem Term Bi(q) -
u, = —Mi2y, wie es auch in Gleichung (2:0]) beschrieben ist. In der Simulation
des Doppelpendels wird dieses vereinfachte Modell mit der Eingangsgrofe i ver-
wendet. Die Ordnung des Problems und damit die benotigte Rechenleistung wird
geringer, da mit der Vorgabe von  nur die Gleichungen (2-12]) simuliert werden
miissen.
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Bemerkung Die Bewegungsgleichungen (2-12) wurden durch die partielle Zu-
standslinearisierung aus den urspriinglich nach dem Lagrange-Formalismus be-
rechneten Gleichungen (2=I)) hergeleitet. Durch eine etwas verdnderte Modellbil-
dung kann aber auch dasselbe System erzeugt werden. Dabei wird angenommen,
dass nicht eine Kraft als Steuergrofe auf den Wagen wirkt, sondern dass die
Beschleunigung des Wagens 4 direkt als Steuergrofe gewdhlt wird. Man erhilt
dann das System eines Doppelpendels mit Fupunktbeschleunigung, und die Be-
wegung des Wagens wird dadurch nicht mehr gesondert betrachtet. Durch die
Gleichungen

erhilt man somit ebenfalls ein zu (21 dquivalentes System von Differentialglei-
chungen.

Hier soll zuséitzlich darauf hingewiesen werden, dass durch die partielle Zustands-
linearisierung das urspriingliche System (2=I]) nicht approximiert wurde, sondern
dass durch die Umformungen ein gleichwertiges System (2=12]) hergeleitet wurde.
Im ersten Fall wirkt eine Aktorkraft auf den Wagen als Eingangsgréfe, und im
zweiten Fall wird die Bewegung des Wagens iiber seine Beschleunigung bestimmt.
Der direkte Zusammenhang der zwei unterschiedlichen Eingangsgrofsen up und
u, kann durch einen Vergleich der Bewegungsgleichungen als

— (a1my + limg) cos(p1)P1 — asma cos(p2)Pa + (my + me + mo)u,

9 . L9 . 2-13
+ (aymy + llmg)gof sin(¢y) + agmggog sin(py) = up. ( )

bestimmt werden. Dadurch ist die direkte Umrechnung der zwei Modelle moglich.

2.3.2 Dreifachpendel

Das Modell des Dreifachpendels wird analog zu dem des Doppelpendels erstellt,
vergleiche dazu auch Abschnitt 23311 Der zusétzliche dritte Pendelarm besitzt die
Masse mgs, die Liange l3, den Abstand zum Schwerpunkt a3 und das Trigheitsmo-
ment J3. Die generalisierten Koordinaten werden im Vergleich zum Doppelpendel
um den Winkel (3 erweitert. Durch den zusétzlichen Pendelarm verdndern sich
aufkerdem auch die Parameter des zweiten Arms. Die gesamten Parameter des
Dreifachpendels sind in der Tabelle beschrieben.
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Tabelle 2-2: Mechanische Parameter des Dreifachpendels auf einem Wagen
1. Pendel 2. Pendel 3. Pendel

(innen) (mitte)  (aufen)

() (2 (-3)
Lange ; |m] 0356 0.356 0.356
Abstand Schwerpunkt a; [m] 0.18 0.18 0.148
Masse m; [kg] 0.775 0.775 0.654
Trigheitsmoment J; [N m s 0.0224 0.0224 0.0179
Déampfungskonstante d; [N ms|  0.005 0.005 0.005

Masse des Wagens mg: 4 [kg|

Auch fiir das Dreifachpendel lésst sich die Beziehung der generalisierten Koordi-
naten zu den redundanten Koordinaten durch die Koordinaten 2/ = [} xg]T,
1 =0,...,3 beziiglich des Schwerpunkts der Pendelarme angeben:

0 __ [y
20 = _0},
L= [y — ap sin ¢,
a1 COS (1
22 = -y_ZISiH901—a28ing02
B | licosprtagcospy |7
. S _y — Iy sin gy — [y sin g — as sin g3
~ | licosgy 4 lacosps +azcosps |

Fiir die kinetische und potentielle Energie ergeben sich dann
WA , &
T=3 <Z mg ||2 ]2+ > Jm?) :
=0 i=1

3
V= Zmigxg.
i=0

Die generalisierten nicht konservativen Daémpfungsmomente werden durch die
linearen Ausdriicke

Fl = —dig1 + da(pa — ¢1),

Fy = —da(p2 — ¢1) + d3(p3 — $2),
Fyl = —d3(p3 — @2)
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modelliert, wobei d;, © = 1, 2, 3 die Dampfungskonstanten beziiglich des jeweiligen
Gelenkes bezeichnen.

Analog zum Vorgehen beim Doppelpendel lassen sich die Bewegungsgleichungen
des Dreifachpendels ebenfalls mit dem Lagrange-Formalismus herleiten, so dass
sich die folgenden Gleichungen ergeben:

M(q)G+Clq,4)q + G(q) = F(q) + Blq)uy,

mit den Matrizen

hy lihy cos(p1 — pa)  lihs cos(pr — 3)
M = |l1hycos(p1 — o) h lahs cos(p2 — ¢3) |
[1hs cos(p1 — @3)  lahs cos(ipa — p3) hs
[ 0 lihysin(or — @2)@e  lihssin(pr — ©3)p3
C = |—lihysin(p; — p2)p1 0 lahs sin(ps — v3)@3 |
| —lihssin(pr — @3)@1 —lahssin(pa — ©3)P9 0
__ghﬁ Sil’l(gOl)
G = |—ghysin(ps) | ,
| —ghs sin(ps)
[ —dipr + do(2 — 1)
F = | —da(p2 — 1) +ds(¥3 — p2) |
I —d3(p3 — ¢2)
[ h cos(p1)
B = |hscos(ps)| ,
| his cos(s)

mit

hy = Jy + a?my + 2(my + ms),
hy = Jy + a3my + l3ma,

hs = Js + agmg,

hy = azmy + lams,

hs = agms,

he = aymy + l1(mgy + m3).

Hierbei ist ¢ = [(pl V2 @3}T und u, = y. Somit liegen die Bewegungsgleichun-
gen des Dreifachpendels hier schon in der partiell zustandslinearisierten Form
VOr.



Grundlagen zum Einsatz von Mehrfachpendelsystemen 27

2.4 Zwei-Freiheitsgrade-Struktur

Die Zwei-Freiheitsgrade-Struktur zur Steuerung und Regelung von technischen
Systemen ist ein etabliertes Verfahren, das vielfache Verwendung bei praktischen
Anwendungen findet [Kre99|. Horowitz fiihrt in [Hor63| eine Zwei-Freiheitsgrade-
Struktur ein, um in der Regelung eines Systems zwei Probleme gleichzeitig zu
behandeln: Zum einen die Vorgabe einer gewiinschten Systemantwort durch Vor-
steuerung und zum anderen die gleichzeitige Regelung des Systems. Durch die
Nutzung der Zwei-Freiheitsgrade-Struktur ist es somit moglich, das Fiihrungs-
und Storverhalten durch Vorsteuerung und Regelung unabhéngig voneinander
zu entwerfen. Dies geschieht gewOhnlich modellbasiert und offline, sodass die ge-
wiinschte Trajektorie des Systems durch die Vorsteuerung vorgegeben ist und
durch die Verwendung eines geeigneten Reglers eingeregelt wird. Durch die mo-
dellbasierten Berechnungen ist es zusétzlich moglich, Eingangs- und Zustandsbe-
schrinkungen zu beriicksichtigen.

Bild 2=Glzeigt die in dieser Arbeit verwendete Zwei-Freiheitsgrade-Struktur fiir das
Pendelsystem. Dabei wird davon ausgegangen, dass sowohl die nominale Steue-
rung als auch die zugehorige Trajektorie des Systems bekannt sind. Mit dieser
Steuerung wird das Pendel angesteuert, und der Verlauf der Grofen o1, @o,y
und ¢ wird mit Sensoren gemessen. Die fehlenden Zustandsgrofen ¢, ¢, und 3
werden durch Differentiation zusédtzlich berechnet. Dadurch, dass die nominale
Trajektorie bekannt ist, kann eine Abweichung durch einen Soll-Istwert-Vergleich
sofort festgestellt werden. Der im Vorfeld ausgelegte Regler kann dann durch das
Ausregeln der Abweichung das System wieder auf die nominale Trajektorie brin-
gen. Wenn keine Abweichung zur nominalen Trajektorie auftritt, wird der Regler
dementsprechend auch nicht aktiv.

Es existieren zahlreiche Entwurfsverfahren fiir die Regelung, aber nur wenige
zur Berechnung einer geeigneten Vorsteuerung. In den hier folgenden Abschnit-
ten wird daher nur kurz auf die eingesetzten Regelungsmethoden eingegangen.
In den weiteren Kapiteln der Arbeit geht es dann zu einem grofen Teil darum,
moglichst optimale Trajektorien fiir die Vorsteuerung des Pendels zu berechnen.
Dabei wird darauf eingegangen, in welchem Sinne Trajektorien optimal sein kon-
nen und wie diese mittels optimaler Steuerung bestimmt werden konnen. Eine
weitere Idee ist es, auch die inhirente Dynamik des Systems auszunutzen und
dadurch sinnvolle Mandéver fiir das Pendelsystem zu entwickeln. Fiir die Umset-
zung dieser Ideen werden aktuelle mathematische Methoden aus den Bereichen
der Optimalsteuerung und der dynamischen Systeme verwendet.
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nominale Vorsteuerun Pendel-

€ .M N
Steuerung \r dynamik

zeitvarianter
Regler

v

Vorsteuerung

N

Sensoren

nominale Sollzustéande \J\, gemessene/
\\A

Trajektorie berechnete
Zusténde

Soll-Istwert-
Vergleich

Bild 2-6: Schematische Darstellung der Zwei-Freiheitsgrade-Struktur

2.4.1 Simulationsmodell

Um sowohl die Steuerung als auch die Regelung modellbasiert testen zu kénnen,
wurde ein Simulationsmodell des gesamten Pendelpriifstands inklusive Aktor-
und Sensormodelle in Matlab/Simulink erstellt. Modellbasiertes Testen hat fiir
das Pendel den Vorteil, dass z. B. ungiinstige Regelungsparameter durch eine Si-
mulation des Systemverhaltens sofort ausgeschlossen werden kénnen. Dadurch
wird verhindert, dass es am Priifstand zu einem instabilen Systemverhalten (z. B.
Anschlidge des Motors) kommt. Durch die Evaluation einer Konfiguration von
Steuerung und Regelung am Modell erhilt man eine hohere Entwicklungsreife
der Regelalgorithmen, und dies fiihrt dazu, dass Tests am Priifstand mit hoherer
Wahrscheinlichkeit erfolgreich sind.

Um ein solches Simulationsmodell zu erstellen, wird nach der Zwei-Freiheitsgrade-
Struktur vorgegangen (siehe Bild 2-7)). Die Berechnung der nominalen Steuerung
und Trajektorie wird in den folgenden Kapiteln und die Reglerauslegung in dem
folgenden Abschnitt erldutert. Weiterhin ist es wichtig, die Dynamik der
verschiedenen Bauteile des Priifstandes zu beriicksichtigen. Zum Beispiel werden
am Priifstand die Grofen @1, @9,y und ¢ gemessen und die fehlenden Zustands-
grofen ¢1, ¢o und y daraus durch Differentiation bestimmt. Daher miissen sowohl
der Motor, als auch die Sensoren mit ihrem Verzégerungsverhalten und zusétzli-
chen Effekten, die durch die Wandlung der Signale auftreten, modelliert werden.
Fiir die Pendeldynamik werden die Differentialgleichungen verwendet, wie sie in
Abschnitt hergeleitet wurden. Mit dem entwickelten Simulationsmodell erhélt
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man somit die Moglichkeit, die Dynamik des Priifstands recht genau nachzubilden
und dadurch verschiedene Manover zu testen.

- e e e e e e o e e e e em em e e = = = =

I Streckenmodell :

|
|
Vorsteuerung ! K |

nominale ! Motor- Aktor- Pendel-

Steuerung : dynamik eingriff |  dynamik :
L e— e |

zeitvarianter

Vorsteuerung Regler

nominale Sollzusténdgil gemessene/ Sensor-

Trajektorie \_/'= berechnete dynamik
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Bild 2-7. Schematische Darstellung des Simulationsmodells mit der Zwei-Frei-
heitsgrade-Struktur

2.4.2 Reglerauslegung

Im folgenden Abschnitt soll der Regler fiir die Zwei-Freiheitsgrade-Regelung aus-
gelegt werden. Dazu werden Standardmethoden der linearen Regelungstechnik
verwendet. Es werden zwei verschiedene Regelungsansitze betrachtet, die aber
von derselben Idee ausgehen, namlich lineare Methoden dazu zu nutzen, die Ab-
weichung des dynamischen Systems von der berechneten Solltrajektorie auszure-
geln.

Die Idee des hier verwendeten linear quadratischen Reglers (LQR) ist die Bertick-
sichtigung von kontriaren Aspekten fiir die Regelung eines technischen Systems.
Das Ziel der Reglerauslegung kann dadurch beschrieben werden, dass eine Ruhe-
lage aus einem beliebigen Anfangszustand zum einen moglichst schnell und ohne
starke Oszillation, also mit einer hohen Regelgiite, und zum anderen mit moglichst
geringer Steuerenergie erreicht werden soll. Um diese Ziele bei der Auslegung des
Reglers beachten zu kdnnen, miissen sie quantitativ gefasst werden. Dies ist durch
die Einfiihrung eines allgemeinen quadratischen Giitemafes mdoglich:

J= /0 ' [ (1) Q(t)z(t) +u" ()R (t)u(t)] dt. (2-14)
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Hierbei sind Q(¢) und R(¢) symmetrische und positiv definite Matrizen. Durch
ihre Wahl lisst sich eine Gewichtung der Zustande z(¢) und des Steuereingangs
u(t) im Giitemaf durchfithren. Durch das Giitemaf werden also sowohl der Ver-
lauf des Zustandes, als auch der Verbrauch der Steuerenergie beurteilt. Ein in
diesem Sinne optimaler Regler k(¢) minimiert das Giitemaf und fithrt damit zu

einem fiir das System optimalen Verlauf des Zustandes und der Steuerenergie.
Siehe hierzu auch [F6I08] oder [KS72].

Gain-scheduling

Der Gain-scheduling-Ansatz ist eine relativ einfache und etablierte Methode, um
eine Regelung fiir ein nichtlineares System auszulegen, die auf linearen Ansétzen
basiert. Aus diesem Grund werden Gain-scheduling-Regler bei vielen Anwendun-
gen verwendet. Fiir das Design eines solchen Reglers wird das nichtlineare System
an verschiedenen Punkten, z. B. entlang einer Trajektorie linearisiert. Dadurch
erhilt man eine Menge von linearen Teilmodellen, fiir die jeweils ein Regler be-
stimmt werden kann. Fiir den Fall des Doppelpendels wird dieser Regler als LQ-
Regler ausgelegt. Wahrend des Einsatzes in der Simulation bzw. am Priifstand
wird dann derjenige Regler aktiviert, der der aktuellen Situation am besten ent-
spricht. Auf diese Weise ist es moglich, Methoden der linearen Systemtheorie fiir
die Auslegung eines Reglers fiir ein nichtlineares System zu nutzen. Mehr Infor-
mationen iiber den Gain-scheduling-Ansatz sind in [Ada09], [AA9S8], [LL0O0] und
[LL98| zu finden.

Die Reglerauslegung wird im Folgenden beispielhaft anhand des Doppelpendels
beschrieben, ist aber analog auf das Dreifachpendel anwendbar. Dafiir wird das
partiell zustandslinearisierte Modell (2-I1))-(2=12) verwendet, um das System & =

f(z,u) mit dem Zustandsvektor z = [p1 @2 ¥ @1 ¢2 y]T aufzustellen. Es
sei x* = [gol vy Yyt 9T @ y} die nominale Trajektorie und u* die nomi-
nale Steuerung, die z.B. mittels Optimierungsmethoden berechnet werden kann.
Entlang dieser Trajektorie wird das System wie folgt linearisiert:

At = A(p,t) Az + B(p, t)Au, (2-15)

mit p = [z u*}T und
of of
(z*(t),u*(t)) (z*(8),u* (1))

Dies fiihrt zu einem zeitvarianten und parametrisierten linearen System mit dem
Parametervektor p, welcher auch scheduling-Vektor genannt wird.
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Entsprechend der Zwei-Freiheitsgrade-Struktur in Bild 2-6 kann die Regelung fiir
das Pendel durch

u(t) = u'(t) + k() (2" (t) — x(t))

berechnet werden, wobei k : [0,¢;] — R® eine Funktion der Reglerparameter ist.
k(t) wird dabei durch den Gain-scheduling-Ansatz und einen LQR-Ansatz be-
stimmt. Dafiir wird das linearisierte System (2-15]) entlang der diskreten Werte des
Parametervektors p' = [2*(¢%)" u*(ti)}T ausgewertet, wobei t' € {0,&,2¢,. ..,
M¢ = t;}. Hier ist £ die Schrittweite des Zeitintervalls und damit die Diskreti-
sierung des Parametervektors [p°, ..., p"] mit M € N. Fiir jedes System

Ai = A'Az + B'Au,
mit A" = A(p', '), B = B(p%, ') wird nun ein LQ-Regler entworfen, der das

folgende Kostenfunktional minimiert:

J(x(t),u(t)) = /OO (Az(t)" QAx(t) + Au(t)*R) dt, (2-16)

0

wobei die Matrix Q € R%%¢ symmetrisch und positiv definit und R ein positiver
Skalar ist. Die Losung P! der Riccati Gleichung

(ANTP' + P'A" — PPB'R Y (B P'+ Q=0 (2-17)
fiihrt zu den Reglerparametern
E=RYBYP,i=0,...,.M—1.

Somit wurde hier jeweils ein Vektor konstanter Regelparameter mit Hilfe des
Riccati-Entwurfs bestimmt, der abschnittsweise entlang der Solltrajektorie defi-
niert ist. Wahrend der Regelung des Systems wird immer der passende Regelpa-
rameter durch eine Aktualisierung des Reglers bestimmt

k(t) =k teli& (i+1)¢,i=0,...,M —1, (2-18)

wobei zwischen den konstanten Parametern umgeschaltet wird.

Kontinuierlicher LQ-Regler

Im Gegensatz zum gerade beschriebenen Ansatz mit abschnittsweise konstanten
Reglerparametern wird nun ein zeitkontinuierlicher Regler ausgelegt (siehe hierzu
auch [KS72]). Dazu wird auch in diesem Fall das zeitvariante, linearisierte System
betrachtet:

Az = A(t)Azx + B(t)Au, (2-19)
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mit

. Bp=Y

of
Alt) = 2L = = .
(z*(t),u* (1)) (z*(t)u* (1))

~ or

Zusitzlich wird das folgende Giitemafs definiert

J(x(t),u(t)) = /0 ' (Az(t)" Q(t) Az (t) + Au(t) " R(t)Au(t)) dt

+ Az(ty) T P Az(ty),

(2-20)

wobei die zeitvarianten Gewichtungsmatrizen Q(¢) und R(¢) symmetrisch und
positiv definit sind und die Matrix P; symmetrisch und positiv semi-definit ist.
Durch den Term Ax(t;)" PiAx(t;) ist es hier méglich, eine Abweichung des Zu-
stands von der Ruhelage am Ende der Trajektorie besonders zu beriicksichtigen.
Es soll nun der optimale zeitkontinuierliche Regler

u(t) = u*(t) + k() (2" (t) — =(1)),

gefunden werden, der das Giitemaf (2-20) minimiert.

Einen Ansatz zur Losung dieses Minimierungsproblems bietet die Variationsrech-
nung. Es ergibt sich die sogenannte Matrix-Riccati-Differentialgleichung

—P(t) = Q(t) — P()B(t)R' () BT (t)P(t) + P(t)A(t) + AT(t)P(t) (2-21)
und der optimale Regler wird dann durch
k(t) =R ()BT (t)P(t) (2-22)

bestimmt. Zusétzlich besteht noch die Nebenbedingung P(t;) = P;, die aus der
Wahl des Giitemafes (2-20)) entsteht und die Anfangsbedingung zur Differenti-
algleichung (2=21]) darstellt. Es kann dann auch gezeigt werden, dass der Regler
[2=22)) das Giitemaf (2-20) minimiert. Eine ausfiihrliche Herleitung des zeitvari-
anten LQ-Reglers und ein Beweis hierzu sind in [KS72] und [?] zu finden.

Zwischen der hier zu 16senden Matrix-Riccati-Differentialgleichung (2=21]) und der
Riccati-Gleichung (2-I7) aus dem Gain-scheduling-Ansatz besteht ein Zusammen-
hang, der sich entsprechend dem zu l6senden Reglerentwurfsproblem ergibt. Wenn
in dem Giitemak ein unendliches Integrationsintervall (¢; — co) und zeitlich kon-
stante Gewichtungen gewahlt werden, wird aus der Riccati-Differentialgleichung
die aufgefiihrte Riccati-Gleichung (2=I7) mit P = 0 und einer konstanten Losung
P mit konstanten Regelungsparametern.
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Bemerkung (Numerische Losung der Riccati-Gleichung)

Die Matrix Riccati Gleichung (2=21I)) mit der Randbedingung P(t;) = P wird
nun numerisch gelést. Dadurch ergibt sich fiir das Regelungsproblem des Systems
(2=19)) ein kontinuierlicher Regler. Bei der Berechnung der Lisung kann ausge-
nutzt werden, dass die Matrix P(¢) auf Grund der Eigenschaften von Q(¢) und
R(t) und der Struktur der Riccati-Gleichung ebenfalls symmetrisch sein muss.

Ein direkter Losungsansatz ist es, die Gleichung (2-21)) als eine Menge von n?

nichtlinearen Differentialgleichungen erster Ordnung zu betrachten, die simultan
gelost werden miissen. Dazu lésst sich jede numerische Standardtechnik verwen-
den, wobei die Differentialgleichungen in Riickwértszeit, also fiir das Intervall
[ts,t0], gelost werden miissen. Dies ist der Fall, da gezeigt werden konnte, dass
die Vorwértsintegration der Riccati Gleichung numerisch instabil ist. Durch die
einfache Integration aller Differentialgleichungen kann es aber dazu kommen, dass
die zuvor festgestellte Symmetrie der Lésung durch numerische Berechnungsfehler
zerstort wird. Dies kann dadurch verhindert werden, dass die Symmetrie der Ma-
trix nach jedem Schritt durch das Ersetzen von P(t) durch 3[P(t)+ P*(t)] wieder
hergestellt wird. Eine weitere Alternative, die Symmetrie von P(t) zu erhalten, ist
es, die Gleichung (2=21)) auf ein Menge von $n(n+1) Differentialgleichungen erster
Ordnung zu reduzieren, indem nur die obere bzw. untere Dreiecksmatrix betrach-
tet wird und die Ergebnisse fiir die andere Hilfte entsprechend der Symmetrie
iibernommen werden. Dies fiihrt zusdtzlich zu einer kiirzeren Berechnungszeit
der Losung. Fiir die Implementierung wird in dieser Arbeit dieser zweite Ansatz
verwendet, so dass deutlich weniger als n? Differentialgleichungen geldst werden
miissen.

Vergleich der verschiedenen Regelungsverfahren

Im Folgenden werden Regelungsparameter fiir eine Aufschwungtrajektorie des
Doppelpendels berechnet, so dass der Endzustand des Systems die obere Ruhela-
ge ist. Dabei werden die Ergebnisse der Reglerauslegung fiir die beiden beschrie-
benen Verfahren verglichen. Fiir beide Regelungen werden die gleichen Gewich-
tungsmatrizen

500

und R(t) =1 (2-23)
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verwendet. In diesem Fall werden nur die Winkelauslenkung (Gewichtung 500)
und die Wagenbewegung (Gewichtung 1000) in der Giitefunktion beriicksichtigt.
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Dies fithrt dazu, dass ein Regler ausgelegt wird, der eine Abweichung in diesen
Zustanden besonders stark beriicksichtigt. Die Wahl der Gewichtungen muss im-
mer abhéngig vom System getroffen werden. Im Fall des Pendels ist es besonders
wichtig, dass es moglichst keinen Fehler in der Winkellage gibt, da schon kleine
Abweichungen von der Solltrajektorie auf Grund des chaotischen Verhaltens des
Systems zu grofen Fehlern fiihren.
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Bild 2-8: Reglerkonstanten (Gain-scheduling-Ansatz); rechts: Ausschnitt; fir jede
Zustandsgrifie gibt es einen skalaren Reglerparameter

Durch die Wahl der Gewichtungsmatrix (2=23) fiir beide Regelungen ergeben sich
in der oberen Ruhelage wie erwartet dieselben Parameter. In diesem Fall ist dies
der Vektor

k(ty) = [188.78 —342  31.62 —1.1 —54.35 32.42].

Wenn der Regler mit der Gain-scheduling-Methode ausgelegt wird, wird jeweils
nur das linearisierte Modell in einem Arbeitspunkt ausgewertet und fiir diesen ein
statischer Regler ausgelegt. Informationen iiber den weiteren Verlauf der Trajek-
torie und die Anderung der Systemmatrix A(t) werden in diesem Entwurf nicht
beriicksichtigt. Durch die Linearisierung wird somit das Systemverhalten stark
vereinfacht. Wenn man sich aber vom gewéhlten Arbeitspunkt entfernt, stimmt
die Approximation des Systems nicht mehr mit dem nichtlinearen Ausgangssys-
tem iiberein, was zu grofen Fehlern fiihrt. Aufserdem kommt es dazu, dass sich die
Regelparameter bei unterschiedlichen Arbeitspunkten entlang der Solltrajektorie
stark dndern. Dies ist vor allem im Bereich der schlecht bzw. nicht steuerbaren
Positionen des Pendels (waagerechte Pendelarme) der Fall, siehe auch Bild 2=8
Eine Regelung ist mit diesen Parametern nicht mdglich, da der Regler unverhélt-
nismébig stark in das Systemverhalten eingreift. Daher werden die Regelpara-
meter im Bereich der starken Ausschlige auf null gesetzt, der Regler wird also
ausgeschaltet. Dadurch ist es moglich, ein stabiles Systemverhalten zu erzielen.
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Bild 2-9: Reglerkonstanten (kontinuierlicher Ansatz); fiir jede Zustandsgrofe gibt
es einen skalaren Reglerparameter

Im Gegensatz dazu wird beim kontinuierlichen Regler nicht die statische, sondern
die Riccati-Differentialgleichung gelost. Bei stetiger rechter Seite der Differenti-
algleichung (2=21)) existiert nach dem Existenzsatz von Peano eine Losung des
Anfangswertproblems, die stetig differenzierbar ist. Die Stetigkeit der rechten
Seite wird durch die kontinuierlichen Systemmatrizen A(t) und B(t) gewéahrleis-
tet. (Durch Splineinterpolation entlang der diskreten Steuertrajektorie entstehen
stetige Systemmatrizen.) Die so entstandene Losung (siehe Bild 2-9) hat deutli-
che Vorteile gegeniiber der Losung mit dem Gain-scheduling-Ansatz. Die stetig
differenzierbaren Parameter sind fiir die Regelung des Systems geeigneter, da das
System nicht durch extreme Spriinge und sehr grofte Regelungsparameter gestort
wird. Bei der Regelung des realen Systems werden bei Verwendung dieses Reglers
gute Ergebnisse erzielt.

Im Folgenden werden die Regelanséitze anhand einer beispielhaften Steuerungs-
trajektorie fiir den Aufschwung des Doppelpendels innerhalb der Simulationsum-
gebung getestet. Zum Vergleich wird in Bild 2-I0 zunéchst die Solltrajektorie
dargestellt. Deren Herleitung wird in den folgenden Kapiteln erldautert. Der erste
Test ist dann die Durchfiihrung des Mandvers fiir das ungeregelte System. Dazu
wird nur die berechnete Steuerung auf das Pendelmodell aufgebracht. Es ist zu
erkennen, dass das Pendel der Solltrajektorie gut folgt, aber nicht in der insta-
bilen oberen Ruhelage verbleibt. Als nichstes wird der Gain-scheduling-Regler
verwendet, und zwar mit den Reglerparametern, wie sie in Bild 2=8] dargestellt
sind. Auf Grund der zu grofen Verstirkungsfaktoren dieses Reglers wird das
Systemverhalten instabil, und das Pendel kann den Aufschwung nicht komplett
durchfiihren. Der Einsatz des zeitkontinuierlichen Reglers dagegen fiihrt dazu,
dass sowohl Aufschwung als auch Stabilisierung in der oberen Ruhelage gelingen.
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Winkel [rad]|, Fahrweg [m]
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Bild 2-10. Vergleich verschiedener Regelungsansdtze anhand einer Solltrajektorie;
es werden jeweils p1 (blaue durchgezogene Linie), oo (grin gestrichelte
Linie) und y (rote Strichpunktlinie) dargestellt
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Dieser Regler kann somit prinzipiell ohne weitere Anpassungen am Priifstand
verwendet werden.

Es besteht aber sowohl fiir den Gain-scheduling-Ansatz als auch fiir den kontinu-
ierlichen Regler die Moglichkeit, das Systemverhalten durch manuelle Anpassung
des Reglers zu verbessern. Dazu konnen z. B. die zu grofen Spitzen der Reglerpa-
rameter begrenzt oder auf Null gesetzt werden, oder der Regler kann grundsétzlich
erst zu einem spéteren Zeitpunkt eingeschaltet werden. Solche Anpassungen miis-
sen aber fiir jede einzelne Trajektorie individuell gemacht werden und lassen sich
nicht verallgemeinern. Im letzten Test in Bild P=I0] wurde der Gain-scheduling-
Regler erst im letzten Drittel der Trajektorie eingeschaltet. Beim Vergleich der
Regelgiite im Sinne von (2=14)) konnte der manuell angepasste Regler einen Wert
von 18.83 erreichen. Die Regelgiite bei Einsatz des kontinuierlichen Reglers war
dagegen 211.5. Somit konnte ein sehr gutes Regelergebnis fiir das System erreicht
werden.

Als Fazit kann festgestellt werden, dass der kontinuierliche Regler fiir die Durch-
fiihrung von Man6vern am Pendel gut anwendbar ist. Durch eine manuelle An-
passung einer der beiden Regelansitze kann die Regelgiite aber noch verbessert
werden.






Optimale Steuerung mittels Discrete Mechanics and Optimal Control 39

3 Optimale Steuerung mittels Discrete Mechanics
and Optimal Control

Ein Optimalsteuerungsproblem fiir ein mechanisches System beschreibt die Auf-
gabe, das System von einem gegebenen Anfangszustand in einen gewiinschten
Endzustand zu iiberfithren. Dabei soll das Manover so gewéhlt werden, dass eine
vorgegebene Zielfunktion minimiert wird, die Bewegungsgleichungen erfiillt sind
und zusétzlich weitere technische Beschriankungen eingehalten werden. Beispiele
fiir diese Art von Problemen entstehen bei technischen Systemen sehr haufig. In
der Fahrzeugdynamik besteht z. B. die Frage, wie ein zeitoptimales Manover auf
einer Teststrecke beschrieben werden kann [RNHI0], [KT11]. In der Raumfahrt-
technik miissen energieoptimale Trajektorien fiir Satelliten berechnet werden, da-
mit diese trotz minimaler Brennstoffmenge ihr Ziel erreichen kénnen [MOBMOS].
Fiir Roboter oder biomechanische Systeme ist ein Ziel der Forschung, menschli-
che Bewegungen beschreiben zu kénnen, und Ergebnisse zeigen, dass Losungen
eines Optimalsteuerungsproblems den natiirlichen Bewegungen des Menschen gut
entsprechen konnen [MSLI1T], [OBT09].

In dieser Arbeit werden die Methoden der optimalen Steuerung dazu verwen-
det, Manover fiir das Doppelpendel auf einem Wagen zu berechnen. Jede Losung
dient als nominale Trajektorie und Steuerung, wie es in der Zwei-Freiheitsgrade-
Struktur (siehe Abschnitt[24]) hergeleitet wurde. Es werden optimale Bewegungen
beziiglich der Manoverzeit oder des Energieverbrauchs bestimmt. Dies hat den
Vorteil, dass man nicht nur eine zuléssige Losung des Steuerungsproblems erhilt,
sondern aufkerdem die Optimalitit beziiglich eines ausgewéhlten Zieles gegeben
ist.

Optimalsteuerungsprobleme kénnen im Allgemeinen nur numerisch gelost wer-
den, da sie fiir eine analytische Losung zu komplex sind. Es existieren diver-
se Methoden, um das kontinuierliche Optimalsteuerungsproblem in ein endlich-
dimensionales diskretes Optimierungsproblem umzuwandeln. Hier wird die Me-
thode Discrete Mechanics and Optimal Control (DMOC) verwendet, welche erst-
mals in [JMOBO05| beschrieben wurde. Diese Methode basiert auf der direkten
Diskretisierung der variationellen Struktur eines mechanischen Systems. Im Kon-
text von Variationsintegratoren (siche [MWO01]) fiihrt die direkte Diskretisierung
des Lagrange-d’Alembert Prinzips zu einem strukturerhaltenden Zeitschrittver-
fahren, welches dazu genutzt wird, die Gleichheitsnebenbedingungen fiir das Op-
timierungsproblem herzuleiten. Das entstehende diskrete Problem kann dann mit
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Standardtechniken der nichtlinearen Optimierung, wie zum Beispiel der Sequen-
tiellen Quadratischen Programmierung (SQP) gelost werden.

In diesem Kapitel werden Losungsmethoden fiir Optimalsteueurungsprobleme
vorgestellt. Zunéchst widmet sich B3] der allgemeinen Formulierung eines Op-
timalsteuerungsproblems und der konkreten Herleitung fiir das Mehrfachpendel.
In wird zum einen das Pontryaginsche Maximumprinzip vorgestellt, mit dem
sich optimale Steuerungen fiir einfache dynamische Systeme auch kontinuierlich
bestimmen lassen. Zum anderen werden numerische Standardlésungsverfahren,
wie Schiefverfahren und Kollokation beschrieben. Anschlieffend wird in B.3] die
in dieser Arbeit verwendete DMOC Methode vorgestellt. Es wird zusétzlich auf
den Unterschied zu den Standardmethoden, die speziellen Eigenschaften und die
aktuelle Forschung mit DMOC eingegangen.

3.1 Das Optimalsteuerungsproblem

Es sei x € R™ der Zustandsvektor eines dynamischen Systems. Die Steuerung
wird als n,~-dimensionale Vektorfunktion u(¢) € U abhéngig von der Zeit definiert.
Die Steuerungen, die in U liegen, heifen zuldssige Steuerungen. Das Verhalten
des Systems kann durch eine Menge von n gewohnlichen Differentialgleichungen
1. Ordnung modelliert werden oder in vektorwertiger Form

#(t) = fx(t), u(t),t), tel=Iloty, (3-1)

wobei z : I - R",n € Nund u : I — R" n, € N die Zustands- bzw. Steuerva-
riablen darstellen. Die gewOhnlichen Differentialgleichungen des Systems werden
durch die Funktion f : R" x R™ x I — R" dargestellt.

Das betrachtete System kann zusitzlich durch weitere Nebenbedingungen der
Dimension n, in der Form

0 <c(x(t),u(t),t), tel (3-2)
mit ¢ : R" x R™ x [ — R™ n. > 1 beschriankt werden. Die Funktion

0 =r(x(ty))

mit r : R® — R"" . n, > 0 gibt dann die Nebenbedingungen am Endpunkt der
Trajektorie an.

Dieses Steuerungsproblem wird nun zu einem Optimalsteuerungsproblem, wenn
man das System vom Zustand z° zum Zeitpunkt ¢, zum Zustand z/ zum Zeit-
punkt ¢, so steuern mochte, dass eine gegebene Zielfunktion

J(z,u,tp) = /t ' Clx(t), u(t), t)dt + w(x(ty), ty) (3-3)

0
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minimiert wird. Hierbei ist C' : R™ x R™ x [ — R eine Funktion, die abhingig
vom Zustand z(t) und der Steuerung u(t) eine Trajektorie in gewiinschter Weise
beurteilt und x : R® x I — R eine Funktion, die zusitzlich Eigenschaften des
Endpunkts in die Zielfunktion einbringt. Auferdem soll in vielen Féllen die Dauer
des Manovers minimiert werden kénnen, sodass hierfiir eine freie Endzeit gewahlt
wird und diese ebenfalls in die Zielfunktion eingeht.

Das gesamte Optimalsteuerungsproblem stellt sich somit wie folgt dar:

min J(z,u,ty) : / C(z ), t)dt + w(x(ty), ty), (3-4)

T,u,ty

unter den Nebenbedingungen

w(t) = fla(t),ut),1), (3-5)
x(ty) = a°, (3-6)
0 < c(z(t),ul(t),t), (3-7)
0 = r(z(ty)). (3-8)

Es wird angenommen, dass zulédssige Steuerungen existieren, die das System von
2° nach x/ iiberfiihren, und in dieser Teilmenge der zulissigen Steuerungen ist
diejenige die optimale Steuerung u*, welche J minimiert. Im Folgenden wird an-

genommen, dass eine solche optimale Steuerung existiert.

3.1.1 Herleitung des Optimalsteuerungsproblems fir das
Mehrfachpendel

Fiir das Doppelpendel auf einem Wagen wird im Folgenden das Optimalsteue-
rungsproblem fiir die Berechnung von optimalen Mandévern aufgestellt. Die Her-
leitung verlauft fiir das Dreifachpendel analog.

Der erste Schritt dazu ist die Bestimmung einer geeigneten Zielfunktion. Bei der
Steuerung von realen Systemen bestehen in vielen Fillen zwei kontrire Ziele. Zum
einen soll die Zeit fiir den Ubergang z. B. zwischen zwei verschiedenen Ruhelagen
moglichst kurz sein, um eine zeitoptimale Losung zu erhalten. Zum anderen ist
oftmals auch der Steueraufwand zu beriicksichtigen, um ein moglichst energie-
effizientes Mandver realisieren zu kénnen. Daher ist es bei der Berechnung der
Losung wichtig, beide Aspekte zu beriicksichtigen, so dass sich z. B. die folgende
Zielfunktion ergibt:

tr
J(z,u,tp) = a-/ u(t)?dt + b ty, (3-9)
t

0
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wobei fiir die Gewichtungsfaktoren a und b gilt: a +b = 1. Wenn z. B. a im Ver-
gleich zu b vergrofert wird, erhélt man eine langsamere, aber giinstigere Losung
und entsprechend gilt dies auch anders herum. Eine solche Optimierung mittels
einer gewichteten Summe ist ein Verfahren aus dem Gebiet der Mehrzielopti-
mierung und wird dort hiufig als relativ einfach anwendbares Standardverfahren
verwendet. Diese Methode wird in Abschnitt ausfiihrlicher behandelt. Bei der
Wahl von a und b muss die Skalierung der zwei Terme in der Zielfunktion auf die
gleiche Grofenordnung zusétzlich beriicksichtigt werden.

Um die Anfangs- und Endbedingungen des Optimalsteuerungsproblems zu be-
stimmen, muss zunéchst festgelegt werden, welches Mano6ver durchgefiithrt werden
soll. Ein interessantes und anspruchsvolles Mandver ist dabei der Aufschwung des
Pendels aus der stabilen unteren Ruhelage in die instabile obere Ruhelage. Dies
kann dann durch den Anfangszustand 2° = [—TF -7 0 0 0 O] und den End-
zustand x/ = [O 00 0O 0} beschrieben werden, wobei der Zustandsvektor
des Systems z = [(pl Y2 Y P1 Po y] ist, siehe auch Bild 2-3

Als weitere Nebenbedingung bestehen die Differentialgleichungen, die das Sys-
temverhalten beschreiben und die in (21 hergeleitet wurden.

Fiir ein reales System ist es zusitzlich wichtig, dass die bestehenden techni-
schen Beschrankungen beriicksichtigt werden. So sind der Verfahrweg des Wa-
gens und die maximale Geschwindigkeit und Beschleunigung beschriankt (siehe
Tabelle B-T)). Diese Beschrinkungen konnen aber durch Boxschranken in das Op-
timalsteuerungsproblem aufgenommen werden.

Tabelle 3-1: Technische Beschrinkungen des Motors

Verfahrweg ly] < 0.6m
Geschwindigkeit | |y[ <67
Beschleunigung | [j] <100 %

Das gesamte Optimalsteuerungsproblem fiir das Doppelpendel auf einem Wagen
ergibt sich somit als

tr
min J(z,u,tf) = a- / u(t)?dt +b-ty,

T,u,ty to
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unter den Nebenbedingungen

P =[-7 -7 0 0 0 0], (3-10a)

/=0 00 0 0 0], (3-10b)

M(q)-G+Clg.4) -4+ G(q) = F(q) +B-u, (3-10¢)
t

Iy < 38 <y, tE [t ], (3-10d)
G(t)

L <u(t) <uy, teltyty], (3-10e)

wobei ¢ = [<p1 o y] ist. Die Wahl des Endpunkts z; sorgt dafiir, dass der Wa-
gen wieder seine Mittelposition einnimmt und die Pendelarme keine Uberschlige
durchfithren. Die Gleichung (B-1I0d) beschreibt die Dynamik, wie sie in Abschnitt
2.3 T hergeleitet wurde. Aufserdem beschreiben /7 und uj die unteren und oberen
Grenzen der Zustandsgrofen und ihrer Ableitung (Position, Geschwindigkeit und
Beschleunigung) und [} und v diejenigen fiir den Eingang.

3.2 Losungsmethoden flr das Optimalsteuerungsproblem

Fiir die Losung eines Optimalsteuerungsproblems gibt es vielfiltige Ansitze. In
einem ersten Schritt lassen sich diese in analytische und numerische Verfahren
unterteilen. Durch das Pontryaginsche Maximumprinzip ergeben sich notwendige
Bedingungen fiir eine global optimale Losung des Optimalsteuerungsproblems.
Fiir einfache Systeme lasst sich durch Auswertung dieser Bedingungen eine ana-
lytische Losung bestimmen. Im Allgemeinen ist dies aber nicht moglich, und es
werden numerische Verfahren verwendet, die das Optimalsteuerungsproblem dis-
kretisieren, so dass das entstehende nichtlineare Programm (NLP) numerisch ge-
16st werden kann. Beispiele fiir die Diskretisierungsverfahren sind Schiefsverfahren
und Kollokation (siehe Abschnitt B.2.2]). In dieser Arbeit wird dazu die sogenannte
DMOC Methode verwendet (sieche Abschnitt B:3.2]), da diese Methode besonde-
re Vorteile besitzt. Anschliefend kann das NLP z.B. mit SQP-Verfahren (siehe
Abschnitt 1)) gelost werden.

3.2.1 Das Pontryaginsche Maximumprinzip

Wie bei der Berechnung von Extremalpunkten von skalaren Funktionen gibt es
bei der Berechnung von optimalen Steuerungen ebenfalls notwendige und hinrei-
chende Bedingungen fiir ein Optimum. Eine notwendige Bedingung fiir die Opti-
malitit einer Losung kann mit Hilfe der Variationsrechnung und den Lagrange-
Multiplikatoren bestimmt werden und wird als Pontryaginsches Maximumprinzip
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bezeichnet. (In der Literatur ist manchmal auch das analog herzuleitende Mini-
mumprinzip aufgefiihrt.) Eine Steuerung u*(t), die die Bedingungen des Pontryag-
inschen Maximumprinzips erfiillt, ist ein Kandidat fiir eine global optimale Lo-
sung des Optialsteuerungsproblems. Die hier gewiihlte Darstellung folgt [Gee07].

Satz 3.1 (Das Pontryaginsche Maximumprinzip)
Zunéchst wird die sogenannte Hamilton-Funktion H : R” x U x R™ x [to, t;] = R
wie folgt definiert:

H(x(t), u(t), A1), ) = AT(1) f (1), u(t), ¢) — C(x(t), u(t), ).

Hierbei ist A(t) = [Ai(t),..., A\ (#)]T der Vektor der sogenannten adjungierten
Variablen.

Das Maximumprinzip wird hier fiir den Fall dargestellt, dass die zuldssigen Steue-
rungen durch die Menge U = {u(t) € R™|0 < ¢,(u(t),t), t € [to,ts]} beschriankt
sind, mit ¢,(t) : R™ X [to,t;] — R™ und n, der Dimension der vorliegenden
Beschrankungen.

Es sei u*(t) € R™ eine zuléssige Steuerung mit dem zugehorigen Pfad x*(t) € R”,
welche das System vom Zustand z° zur Zeit ¢, zum Zustand z/ zum Zeitpunkt
ty tiberfiihrt.

Falls die Steuerung w*(¢) die optimale Steuerung ist, dann existiert eine stetig
differenzierbare Funktion A(t) : [to,tf] — R™ und ein Vektor a € R™ so dass die
folgenden Bedingungen erfiillt sind:

(1)

#(1) = VAH (1), u* (£), \(1), 1), (3-11a)
*(ty) = 2, (3-11b)
*(ty) =, (3-11c)

A(t) = Vo H (2" (t), u" (t), A(t), 1) (3-11d)
— _VLC( (1), u (1), ) — [V f (@ (6,0 (), )] A®),  (3-11e)
Aty) = Vak(a"(ty)) — Var(z"(tr)) o (3-11f)

(ii) Fiir alle ¢ € [to, tf] besitzt die Hamilton-Funktion H(z*(t), u(t), A(t),t) ein
globales Maximum bei u* € U. Das heift

H(x*(t),u(t), \(t),t) < H(z"(t),u"(t), \(t),t) (3-12)
firu € U.

Durch die Verwendung von weiteren Bedingungen kann das Pontryaginsche Maxi-
mumprinzip auch an andere Optimalsteuerungsprobleme angepasst werden. So ist
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es moglich auch Systeme mit freiem oder festem Endzustand, beschrinktem End-
zustand oder Zustandsbeschrankungen zu behandeln. Siehe hierzu auch |Gee07],
[BBB*01] oder [Pin93]. Ein Beweis des Maximumprinzips ist z. B. in [PBGM62]
zu finden.

3.2.2 Numerische Methoden

Zur numerischen Losung des Optimalsteuerungsproblems gibt es zwei verschie-
dene Ansitze: die sogenannten indirekten und die direkten Methoden. Die hier
aufgefiihrte Darstellung der numerischen Verfahren folgt [BBBT01].

Bei den indirekten Methoden werden zuerst die kontinuierlichen Gleichungen des
Pontryaginschen Maximumprinzips (B=ITal)-(B-11f) und (B-12) fiir das Optimal-
steuerungsproblem hergeleitet. Diese bilden dann ein komplexes Mehrpunktrand-
wertproblem, welches dann numerisch gelost werden kann.

Die Grundidee zur Losung eines optimalen Steuerproblems mit direkten Metho-
den ist es, das originale unendlich dimensionale Problem in ein endlich dimensio-
nales nichtlineares Programmierproblem (NLP) umzuschreiben und es anschlie-
fsend numerisch zu 16sen. Im Folgenden werden zunéchst das direkte Finfach- bzw.
Mehrfachschiefverfahren und die direkte Kollokation ndher ausgefiihrt.

SchielRverfahren

Bei dieser Methode zur Losung eines Optimalsteuerungsproblems lassen sich
Einfach- und Mehrfachschiefsverfahren unterscheiden. Die Grundidee ist aber bei
beiden Verfahren gleich.

Bei der Methode des Einfachschiefsverfahrens (siehe z. B. [Kra85]) wird eine zum
Problem passende Ansatzfunktion fiir die kontinuierliche Steuerung u(t) gewahlt,
die von einem endlich dimensionalen Parametervektor p € R" abhéngt. Dann
wird das aus dem Optimalsteuerungsproblem entstehende Anfangswertproblem
betrachtet, dessen Losung sich durch die Variation des Parameters p beeinflussen
lasst. Durch Vorwirtsintegration und Variation von p wird derjenige Parameter-
vektor ermittelt, der in der optimalen Losung des Steuerungsproblems resultiert.
Zusitzliche Ungleichheitsnebenbedingungen lassen sich z. B. entlang eines diskre-
ten Zeitgitters ¢y < --- < ty = ty liberpriifen. Dadurch entsteht das folgende
NLP:

~ tf
Minimiere,cgny J(p) := / C(z(t,p),u(t,p), t)dt + w(Z(ts, p), tr),

to

unter den Nebenbedingungen
Oﬁél(p) = C(i’(tl,p),ﬁ(tz,p>,tz), ’i:O,...,N,
0 =7(p) = r((tx, p))-
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Beim Mehrfachschiefverfahren (siehe [Pli81], [BP84]) beginnt die Umformulie-
rung des Optimalsteuerungsproblems aus (3-4))- (3-8)) in ein NLP, &hnlich wie beim
Einfachschiefsverfahren durch eine Parametrisierung der kontinuierlichen Steue-
rung. Zundchst wird aber das Zeitintervall I = [to, t;] in N Teilintervalle mit den
Stiitzstellen ¢y < ¢; < --- <ty = t; unterteilt. Dann wird die Steuerung durch
eine stiickweise Darstellung parametrisiert

ﬁz(t,pl) firt € [tl, ti+1],

mit N lokalen Steuerparametervektoren pg, p1,...,pv_1;p; € R"™.

In dem entscheidenden zweiten Schritt werden nun N + 1 zusétzliche Vektoren
S0, S1, - - -, sy eingefiihrt, welche von derselben Dimension n wie die Zustandsva-
riablen sind (s; € R™). Sie werden als Knotenwerte des Mehrfachschiefverfahrens
bezeichnet. Alle bis auf den letzten zusétzlichen Vektor dienen als Anfangswerte
fiir N unabhéngige Anfangswertprobleme:

oi(t) = f(xi(t), ui(t,pi), 1),
zi(t;) = s

Die Losungen dieser Probleme sind N unabhéngige Trajektorien x;(t) auf [¢;, t;11],
welche nur von s; und p; abhéngen.

Die entkoppelten Anfangswertprobleme sind durch Ubereinstimmungsbedingun-
gen miteinander verbunden und diese fordern, dass jeder Knotenwert gleich dem
Endwert der vorhergehenden Trajektorie ist:

Siv1 = Ti(tiy1,s5,pi), 1=0,...,N—1. (3-13)

Der erste Knotenwert des Mehrfachschieftverfahrens muss gleich dem Anfangswert
xo des Steuerungsproblems sein:

so = 1", (3-14)

Zusammen heben die neuen Nebenbedingungen (B3-13) und (B-14) die zusétzli-
chen Freiheitsgrade, die durch die Einfiihrung der Parameter s;, ¢« = 0,..., N
entstanden sind, auf.
Die Ungleichheitsnebenbedingungen kénnen wiederum entlang des Zeitgitters be-
riicksichtigt werden:

0 < Gi(si,pi) = c(si, Uilti, pi), ti), i=0,...,N.
Zusammenfassend ergibt sich das folgende endlich dimensionale NLLP durch die
Parametrisierung mit dem direkten Mehrfachschieftverfahren:

N-1

Minimieres, . sy .po...px_1 jl-(sl-, pi) + E(sn),
i=0
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unter den Nebenbedingungen

Si+1 = ji(ti-i-lasiap’i)) Z'ZO,...,N—]_,

So — .TO,
S 6’i(8iapi)a
= r(sn).
Kollokation

Beim Kollokationsverfahren werden sowohl der Zustand als auch die Steuerung
durch polynomielle Ansatzfunktionen parametrisiert. Dabei ist die Grundidee,
dass die Bewegungsgleichungen des Systems an N Kollokationspunkten auf dem
Zeitgitter to < t; < --- <tny1 = ty erfiillt sind.

Die Zustands- und Steuervariablen werden dazu durch stiickweise definierte Funk-
tionen (¢, s) und a(t,p) auf dem Zeitgitter approximiert. Hierbei sind s und p
die Paramtervektoren. Innerhalb jedes Kollokationsintervalls [t;, ;. 1[, 0 <i < N
werden diese Funktionen als parameterabhingige Polynome der Ordnung k,1 € N
gewihlt:

z(t, s) [tistival Ti(t, si) == 7Tz‘X(t> s;) € 11,
Gt D) ftien) = Wilt,ps) :=m (t,p;) € II°.

Hierbei kennzeichnet I den Raum der Polynome bis zum Grad p mit v-dimensio-
nalen Vektoren. Die Koeffizienten der Polynome werden in den Vektoren

s = (sg,...,sn) € RVEFDm g e REFD™ =0, N,
p o= (p,...,pN)" €RVUFDme o p e RUFDme i =0, N
erfasst.

Ubereinstimmungsbedingungen von der Form

Wi(t;rla')zﬂi-l—l(t;:la')a ZZO,,N—l
miissen an den Grenzen der Teilintervalle eingefiihrt werden, um die Stetigkeit
der Approximationsfunktionen auf [¢y, ;| zu erzwingen. Zusétzlich kann Differen-
zierbarkeit hoherer Ordnung durch die Bedingungen

dY B d’ L ’y:l,,K
%ﬂ-i(ti_‘_l,'):%Wi‘f'l(ti-l-l")’ { Z:O,,N_l

eingefiihrt werden, wobei K die benétigte Ordnung der Differenzierbarkeit dar-
stellt.

Um ein nichtlineares Optimierungsproblem formulieren zu kénnen, werden nun
die Systemgleichungen und die Ungleichheitsbedingungen explizit diskretisiert:
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(i) Die Systemgleichungen (B-I)) miissen nur an den Kollokationspunkten ¢;,,
p = 1,..., M innerhalb der Teilintervalle [t;, ;1 1[,7 = 0,...,N — 1 und
[tn, tni1], erfiillt sein:

tiéti0<"'<ti]\/[<ti+1, iZO,...,N—l,

In <tno < <inm < tny1

(ii) Die Ungleichheitsbedingungen ¢ werden auf einem anderen Gitter in [to, ¢ f]
mit L + 1 Stiitzstellen ausgewertet:

to <16 < - <18 < ty.

Zusammenfassend ergibt sich somit das folgende diskretisierte Optimalsteuerungs-
problem durch die Kollokationsmethode:

min j(s,p),

87p

unter den nichtlinearen Nebenbedingungen

~ .
Il
o o

f(:i’(til,s),ﬂ(tu,p),tu)—:%(til,s) = O, {
B

c(Z(t5, s), ulth, p).tz) = 0,
T(tg,s) — 2" = 0,
r(Z(ty,s)) = 0.

I
\'I—‘
=~

Falls die Losung zusétzlich nach den Zustands- und Steuervariablen stetig diffe-
renzierbar sein soll, miissen die folgenden Ubereinstimmungsbedingungen eben-
falls erfiillt sein:

d - d v = ’...,Ks,
%ﬂ-ix(ti—i—lasi) - %Wﬁl(tzﬁrl’si“) =0 { i=0,...,N—1
&, o, vy=1,..., K,
%ﬂ-z’ (ti+1,pz‘) - %ﬂ-wrl(tz—:—l’pi‘f'l) - 0’ { 1= . .,N — 1,

wobei K, < k die Ordnung der Differenzierbarkeit nach den Zustandsvariablen
und K. <[ die Ordnung der Differenzierbarkeit nach den Steuervariablen ist.
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3.3 Discrete Mechanics and Optimal Control

In diesem Abschnitt wird die Methode Discrete Mechanics and Optimal Con-
trol (DMOC) zur Diskretisierung eines Optimalsteuerungsproblems vorgestellt.
Zunichst werden in Abschnitt B.3.1] einige Grundlagen zur Variationsmechanik
vorgestellt. Anschliefsend wird in Abschnitt der spezielle Diskretisierungs-
ansatz von DMOC selbst vorgestellt, und in Abschnitt 3.3.3] wird beschrieben,
was DMOC von anderen Standardverfahren zur optimalen Steuerung unterschei-
det. Die dabei verwendeten mathematischen Grundlagen aus den Bereichen der
Differentialgeometrie, der Herleitung von Euler-Lagrange-Gleichungen und dem
Lagrange-d’Alembert Prinzip, die fiir das Verstindnis dieses Abschnitts hilfreich
sind, werden im Anhang[A]dargestellt. Zusétzliche Informationen zur DMOC Me-
thode sind in den Quellen [OBJMT11], [OBO0S], [IMOBO05] und [MWO01] zu finden,
die auch in dieser Arbeit als Grundlage fiir die Darstellung der DMOC Methode
dienen.

Anschliefsend wird in Abschnitt auf das diskrete Optimalsteuerungsproblem
fiir das Mehrfachpendel eingegangen. Aufserdem wird in Abschnitt beschrie-
ben, welche besonderen Eigenschaften das entstehende diskrete Verfahren besitzt.
In Abschnitt wird ein kurzer Uberblick iiber die aktuelle Forschungsarbeit
mit der DMOC Methode gegeben und dadurch gezeigt, in welchen Bereichen sie
angewendet werden kann.

3.3.1 Einfuhrung in Variationsmechanik

Fiir das bessere Verstindnis der Herleitung der DMOC Methode, die auf ei-
nem Variationsprinzip beruht, wird zunéchst eine kurze Einfithrung in dieses
Themengebiet gegeben. Dabei wird darauf eingegangen, wie die Euler-Lagrange-
Gleichungen bzw. ein diskretes Zeitschrittverfahren mit Hilfe von Variationsprin-
zipien hergeleitet werden kann [MWOI]. Fiir weitere Informationen zum Hinter-
grund der Variationsrechnung siehe [Pin93| und [Kiel0].

Es wird die Lagrange-Funktion L(q,q) = 3¢"M¢ — V(q) eines mechanischen
Systems betrachtet, wie sie auch im Anhang hergeleitet werden. Dabei ist M
eine positiv definite Matrix und V' (g) die potentielle Energie des Systems. Es wer-
den die generalisierten Koordinaten ¢ = [qo, . .., qx]| fiir die Systembeschreibung
gewihlt. Der Standardansatz in der Lagrangemechanik betrachtet das Wirkungs-
integral, also das Integral von L entlang der Kurve ¢(¢) und berechnet dann eine
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Variation d, wobei die Endpunkte von dq(t) fest gewihlt werden. Dadurch erhélt

man
ts ) trTOL oL .
s [ .y~ [ _a—q-5q+8—q.-5q] it

ty T ty
:/ a—L~5q—ia—L-5q}dt+{a—L,~5q]
o L0g

dt 0q dq 0
' TOL  d OL
- T L sqdt
/0 9q dtw] e

wobei hier partielle Integration und die Information d¢(0) = 0¢(t;) = 0 verwen-
det wird. Bei dem Variationsansatz wird nun gefordert, dass die Variation des
Wirkungsintegrals null fiir alle Variationen dg sein muss. Dadurch ergeben sich
die bekannten Euler-Lagrange-Gleichungen

oL doL

dqg dtoq
Es ist allgemein bekannt, dass die Euler-Lagrange-Gleichungen spezielle Erhal-
tungseigenschaften besitzen. Zum Beispiel ist der Fluss symplektisch (siehe auch
Abschnitt B:3.5). Bei der Betrachtung von diskreter Lagrangemechanik ist es dann
ein Ziel eine analoge diskrete Herleitung mittels Variationsprinzipien durchzufiih-
ren, um die vorhandenen Erhaltungseigenschaften auch beim diskreten Integrati-
onsschema beizubehalten. Anstatt Position ¢ und Geschwindigkeit ¢ werden nun
zwei diskrete Positionen ¢g und ¢; zusammen mit dem Zeitschritt h betrachtet.
Dabei stellen gy ~ ¢(0) und ¢; =~ q(h) zwei Punkte auf einer Kurve dar, die durch
den Zeitschritt A getrennt sind.

Ausgehend von diesem Ansatz wird eine diskrete Lagrange-Funktion Lg(qo,q1)
bestimmt, die eine Approximation des Wirkungsintegrals zwischen den Punkten
qo und ¢; darstellt. Um dies zu verdeutlichen kann z. B. eine einfache Approxima-
tion des Integrals f(ff Ldt durch die Rechteck-Regel verwendet werden. Hierbei
wird die Linge des Intervalls mit dem Wert des Integranden multipliziert, wobei
der Geschwindigkeitsvektor durch (¢ — qo)/h ersetzt wird:

La(q0, 1) = h [(%)TM (m ; qo) — V()

Es kann weiterfiihrend eine diskrete Kurve von Punkten {qz}2_,, N € N be-
trachtet werden und daraus das diskrete Wirkungsintegral bestimmt werden. Dies
kann durch die Summation der diskreten Lagrange-Funktion fiir jedes benachbar-
te Paar der diskreten Punkte durchgefiihrt werden. Entsprechend dem Vorgehen
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im kontinuierlichen Fall, wird nun die Variation dieser Summe betrachtet und es
werden wiederum die Punkte ¢y und gy fest gewahlt. Dadurch ergibt sich

N-1

52%(%7%“)

k=0
N—

Z [D1La(qk, @r+1) - 0Gs + D2La(qr; Get1) - 01]

—_

il
o

=

[DoLa(qk—1,qx) + D1La(qk, Grs1)] - Ok,
1

T

wobei hier die diskrete partielle Integration verwendet wird, was eine Umstellung
der Summationsterme bedeutet, und wiederum dq¢y = dgy = 0 an den Randpunk-
ten der Kurve gilt. Aufserdem beschreibt D; die Ableitung nach der ersten und
D, die Ableitung nach der zweiten Komponente der diskreten Lagrange-Funktion.
Es wird nun erneut gefordert, dass die Variation des Wirkungsintegrals fiir jede
Variation d¢; null ist, sodass sich die diskreten Euler-Lagrange-Gleichungen er-
geben:

DoLa(qr—1,ax) + D1La(qk, qx+1) = 0,

die fiir k =1,..., N — 1 erfiillt sein miissen.

Ausgehend von den Anfangsbedingungen (qo, q;) definieren die diskreten Euler-
Lagrange-Gleichungen eine rekursive Vorschrift fiir die Berechnung der gesam-
ten Sequenz {qx}4_,. Somit kann durch diese Gleichungen eine Abbildung Fr,, :
(ks @r+1) = (Qrs1, Qee2) bestimmt werden, die als Einschritt-Integrator fiir das,
den kontinuierlichen Euler-Lagrange-Gleichungen zugrunde liegende, System dient.

3.3.2 Die DMOC Methode

Im Folgenden werden mechanische Systeme betrachtet, die sich auf einer soge-
nannten Konfigurationsmannigfaltigkeit () bewegen. Um den vollstindigen Zu-
standsraum eines mechanischen Systems zu erhalten, wird in jedem Punkt ¢ € @
der Tangentialraum 7;,() betrachtet, der die moglichen Geschwindigkeitsvekto-
ren im Punkte ¢ beschreibt. Die Vereinigung aller Tangentialrdume beschreibt
dann das Tangentialbiindel T'Q) zur Konfigurationsmannigfaltigkeit ). Hierdurch
konnen alle moglichen Zusténde (g, ¢) € T'Q) beschrieben werden, siehe auch bei-
spielhaft Bild 3=1] und Anhang [A 1]

Es ist nun das folgende Optimalsteuerungsproblem gegeben: Betrachtet wird ein
mechanisches System, welches sich in dem Konfigurationsraum ) auf einer Kurve
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mogliche
Tangentialvektoren
veTl,Q

Bild 3-1: Konfigurationsmannigfaltigkeit () und Tangentialvektoren v € T,Q) im
Punkt q € Q

q(t) € Q in einem Zeitintervall [ty = 0, ;] von dem Zustand (¢°, ¢") € TQ in den
Zustand (¢'7, ¢'f) € TQ bewegt. Das mechanische System befindet sich unter dem
Einfluss von generalisierten Kréften F(q(t),q(t), u(t)) € Ty, Q, die so gewihlt
werden sollen, dass die Kostenfunktion

(g, dousty) = / " Oatt), d(t), ult))dt + wlalty), 1) (3-15)

minimiert wird. Es sind dabei T, @ der Kotangentialrauml] und u(t) € U die
Steuerung des mechanischen Systems, wobei U der Raum der zuléssigen Steue-
rungen darstellt.

Zur gleichen Zeit muss die Konfiguration ¢(t) des Systems das Lagrange-d’Alem-
bert-Prinzip erfiillen, welches fordert, dass

ty ty
5 [ Lato.awyier [ Fa®.d0. ) -satt)e =0 (310
0 0
fiir alle Variationen dq € T @ mit dg(0) = dq(ty) = 0 gilt, wobei L : TQ — R
die Lagrange-Funktion des mechanischen Systems ist.

Somit kann dieses Problem abstrakt als Optimierungsproblem mit Zwangsbedin-
gungen gesehen werden, denn man versucht die Funktion

J(Qaquuutf)

beziiglich der Parameter ¢,¢,u und t; zu minimieren, wobei die zusétzlichen
Zwangsbedingungen

L(q,q,f) =0

1Der Kotangentialraum besteht aus allen linearen Abbildungen von 7,Q nach R.
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bestehen. Hierbei ist die Funktion £ eine abstrakte Form fiir die Euler-Lagrange-
Gleichungen, welche die Bewegungsgleichungen des mechanischen Systems be-
schreiben.

Die Diskretisierung

Die Idee der DMOC Methode ist es, die Variationsstruktur direkt auszunutzen,
ohne zuerst die Bewegungsgleichungen des Systems, also die Euler-Lagrange-
Gleichungen, herzuleiten. Durch den Gebrauch einer globalen Diskretisierung des
Zustands und der Steuerung erhilt man, durch das diskrete Lagrange-d’Alembert-
Prinzip, Gleichheitsbedingungen fiir das resultierende endlich dimensionale nicht-
lineare Optimierungsproblem. Dieses kann dann z. B. durch ein SQP-Verfahren
gelst werden.

Dazu wird das Optimalsteuerungsproblem aus (8-15) und (B-I6) in ein endlich-
dimensionales Optimierungsproblem mit Nebenbedingungen umgeformt. Im Fol-
genden werden die dazu notigen Diskretisierungsschritte beschrieben.

Der Zustandsraum 7T'() des Systems wird auf Basis von Lagekoordinaten durch
den diskreten Zustandsraum ) x ) und das Diskretisierungsgitter wird durch
At = {t, =kh|k=0,...,N}, Nh = t; definiert, wobei N € N die Anzahl der
Knotenpunkte ist und A die gewdhlte Schrittweite. Dabei enthilt dann der diskre-
te Zustandsraum @) x @) die gleichen Informationen wie 7'(Q) kontinuierlichen Fall.
Der Pfad q : [to = 0,t;] — Q wird durch einen diskreten Pfad qq : {tx}5_o — Q er-
setzt, wobei dann ¢ = g4(kh) als eine Approximation von ¢(kh) angesehen wird,
siehe auch Bild B2l Analog dazu wird der Pfad der Steuerung w : [to = 0,t¢] = U
ebenfalls durch einen diskreten Pfad ersetzt. Zu diesem Zweck wird ein verfei-
nertes Gitter At eingefiihrt, welches durch eine Menge von Steuerungspunkten
0<c<--<c¢ <1als Al = {tkl = tk+Clh|]€ = 0,...,N— 1,[ = 1,...,8}
erzeugt wird. Durch diese Notation wird der diskrete Pfad durch ug : At — U
definiert. Die dazwischen liegenden Werte der Steuerung wuy auf [ty tx 1] werden
durch wy = (ug1, ..., uxs) € U® als diejenigen Steuerparameter definiert, die das
System von g, = qq(tx) nach qzr1 = qq(tx41) tiberfithren, wobei uy = wuq(tx) fiir
led{l,..., s} gilt.

Das diskrete Lagrange-d’Alembert-Prinzip

Basierend auf dieser Diskretisierung wird das Integral in (B3=16]) auf dem Zeitin-
tervall [kh, (k 4+ 1)h] durch eine diskrete Lagrange-Funktion Ly : Q X @ — R,

(k+1)h

L. qus) / O Llatedto) (3.17)
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(¢',4") ..(qtf7q'tf)
diskrete Krafte

\
_-) .
\ 1 = {a 1o

Q<t)7t € [07 tf]

(90, o) ‘(q(),élo)

Bild 3-2: Diskretisierung des Pfades q(t)

approximiert, und ebenso wird die virtuelle Arbeit durch einen Ausdruck der
Form
N-1

S i (G Gt 1) 001+ £ (06 G, 00)- O ~ /f (1), u(t))-da(t)dt

k=0

approximiert, wobei

fj(qkaqk-i-l)uk) = f];t € T*Q

als linke bzw. rechte diskrete Krifte bezeichnet werden und von den diskreten
Werten (g, qx+1, ux) abhéngig sind, siehe auch Bild B3l

Bild 3-3: Linke und rechte diskrete Krdifte

Die diskrete Version des Lagrange-d’Alembert-Prinzips (B=16]) verlangt diskrete
Pfade {qx}1_, zu finden, sodass fiir alle Variationen {dq; }2_, mit dgo = dgn = 0
gilt, dass gilt

N-1 N-1
0 Z La(qk, qr41) + Z ~Oqy + fi - 0qr+1) = 0.
k=0 k=0

Das diskrete Lagrange-d’Alembert-Prinzip ist dquivalent zu dem System

DoLa(qr—1,qx) + DiLa(qe, qu1) + fiy + fr =0,
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fiir Kk = 1,..., N — 1, und dies sind die diskreten Euler-Lagrange-Gleichungen
mit Kriften. Hierbei ist Dy die Ableitung der diskreten Lagrange-Funktion nach
der ersten Komponente bzw. D, die Ableitung nach der zweiten Komponente. In
Anhang wird eine kurze Herleitung zur Idee einer Variation, der Herleitung
der Euler-Lagrange-Gleichungen und dem Lagrange-d’Alembert-Prinzip gegeben
und die diskreten Euler-Lagrange-Gleichungen wurden schon in Abschnitt B.3.1]
hergeleitet.

Diskrete Euler-Lagrange-Gleichungen werden zur Simulation von mechanischen
Systemen verwendet, und solche Verfahren werden als Variationsintegratoren
bezeichnet. Durch die Verwendung dieser Gleichungen besitzt DMOC spezielle
Eigenschaften, auf die in Abschnitt eingegangen wird. Weitere ausfiihrli-
che Beschreibungen und Analysen zum Thema Variationsintegratoren werden in
IMWO1]| gegeben.

Diskrete Kostenfunktion

Die Kostenfunktion (B=I5]) wird nun im Zeitintervall [kh, (k 4+ 1)h] durch

(k+1)h

Cul st 1) = / 0. d(0.ute)

approximiert, und dies fithrt zu der diskreten Kostenfunktion

Ja(qa, fa ty) = Ca( @, Got1, ux) + £(gn, tr).
0

=

e
Il

Randbedingungen

Schlieflich miissen die Randbedingungen ¢(0) = ¢",¢(0) = ¢° und q(t;) =
q'1,q(ty) = ¢' in die diskrete Beschreibung einbezogen werden. Zu diesem Zweck
wird die Darstellung in @ x @) mit einer Darstellung in 7'() verbunden und
zwar durch die diskrete Legendre-Transformation F/TLy : Q x Q — T*Q und
F/~Lys: Q x Q — T*Q fiir Systeme mit Kriiften, die wie folgt definiert ist

F* Lyt (gr-1,qx) = (g, p1), ( )
pi = DoLa(qe—1,qr) + £ (qu—1, @, up—1) und (3-19)
F/= Ly (Gk—1, k) = (Qe—1,Dr-1), (3-20)
Ph—1 = —D1La(qe—1, k) — [ (Qk—1, Gk, Wk—1), (3-21)

wobei py der diskrete Impuls ist. Diese besondere Form der Legendre-Transforma-
tion kann [MWO01] entnommen werden.
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Der zusétzliche Gebrauch der gewdéhnlichen Legendre- Transformation FL : T'Q) —

7Q
FL: (an) = (Q7p) = (Q7D2L(an))7

fithrt zu den zwei folgenden diskreten Randbedingungen

DyL(q°, ") + D1 La(go, 1) + f; (0, q1,u0) = 0,
—DyL(¢", ") + DoLa(gn—1,qn5) + fj(QN—l, qn,un-1) =0

auf Basis von Lage ¢ und Geschwindigkeit ¢ des Systems. Aus diesen Gleichungen
lassen sich durch die Legendre-Transformation auch die folgenden Randbedingun-
gen fiir den Impuls bestimmen:

po = —D1La(qo, ¢1)— [ (90, @1, u0)s PN = DaLalqn-1,qn)+ ] (an-1,qn, un—1).

In Anhang[A.3.2l wird diese Herleitung mit Hilfe der diskreten Legendre-Transfor-
mation ausfiihrlicher erlautert.

Das diskrete Optimalsteuerungsproblem mit Zwangsbedingu ngen

Zusammengefasst bekommt man nach Durchfiihrung der obigen Diskretisierungs-
schritte das folgende nichtlineare Optimierungsproblem mit Zwangsbedingungen:

N-1
Minimierey, r,¢,  Ja(qa, fa, t7) = Ca(Qk, Qet1, ur) + K(gn, ty)
k=0
unter den Zwangsbedingungen
(qoapo) = (qo, —DlLd(QOa%)_fJ(Qanhuo)), (3-22a)
DyLa(qr—1,qr) + D1 La(qe, 1) + fr1 + [ =0, (3-22b)
(¢",p") = (qn, DaLa(qn-1, qn )+ (an—1, an, un-1)), (3-22¢)

fir k =1,..., N — 1. Hierbei sind p° und p’/ der Impuls an den Randwerten, der
aus den gegebenen Anfangs- und Endzustéinden (¢°, ¢°) und (¢'/, ¢'#) durch die
Legendre-Transformation bestimmt wird.

Implementierung der Optimierung mit DMOC

Als ein guter Kompromiss zwischen der Exaktheit und der Effizienz der Lésung
werden die diskrete Kostenfunktion Cy, die diskrete Lagrange-Funktion L; und
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die diskreten Krifte mit der Mittelpunktregel und konstanten Steuerungspara-
metern auf jedem Zeitintervall approximiert. Hierbei werden [ = 1 und ¢; = %
gewahlt:

q +qr q —q
Cd(Qka Qk-i-l)uk) = hC ( bl L Lan kauk) P

2 ’ h
q +ar q —dq
Ld(qkuqurl) = hL ( k+12 k7 k+1h k) )
- h Qr+1+ Gk Qrr1 — Gk

Die Mittelpunktregel wird in Bild B-4] links schematisch dargestellt. Auf der rech-
ten Seite ist die Auswertung der diskreten Steuerung mit den gew#hlten Kon-
stanten bestimmt.

I A u A
f(Qk+1)

f( Qk+§k+1 )

U = ud(tk + %h)

> | —
h t h t

7% U+ iy tht1

Bild 3-4: Links: Schematische Darstellung der Mittelpunktregel; rechts: diskrete
Steuerung

Die Approximation des Integrals in (B=17)) mit der Mittelpunktregel stellt nur eine
Moglichkeit dar. Andere Quadraturformeln sind an dieser Stelle ebenfalls denk-
bar. Dabei fithren Quadraturformeln héherer Ordnung zu exakteren numerischen
Ergebnissen. Fiir einen Uberblick zu unterschiedlichen Quadraturverfahren siehe
z. B. [SK11].

Als Fazit ldsst sich festhalten, dass die Gleichungen (B-22al) bis (8-=22d)) ein nicht-
lineares Optimierungsproblem mit Nebenbedingungen beschreiben, welches mit
Standardoptimierungsmethoden gelost werden kann (siehe hierzu auch Abschnitt
AT und Abschnitt [3).
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3.3.3 Vergleich mit Standardmethoden

Beim Vergleich von Standardmethoden zur optimalen Steuerung mit DMOC er-
geben sich die entscheidenden Unterschiede im Vorgehen durch die Reihenfolge
der Variation und Diskretisierung fiir die Herleitung der notwendigen Optimali-
tiatsbedingungen. Dies ist in Bild dargestellt: Der linke Ast des Diagramms
basiert allein auf der Variation auf kontinuierlicher Ebene (Variation, Variation,
Diskretisierung), wie es bei indirekten Methoden durchgefiihrt wird. Im mittleren
Ast ist eine Mischung der Variation auf kontinuierlicher und diskreter Ebene zu
erkennen (Variation, Diskretisierung). Dies entspricht dem Vorgehen bei direk-
ten Methoden, wie z.B. dem Kollokationsverfahren oder dem Schiefsverfahren.
Im rechten Ast wird dann das Vorgehen bei der DMOC Methode dargestellt,
bei der die Variation nur auf diskreter Ebene durchgefiihrt wird (Diskretisierung,
diskrete Variation). Es handelt sich ebenfalls um eine direkte Methode fiir die
Herleitung eines Optimalsteuerungsproblems, da zunéchst die diskreten Bewe-
gungsgleichungen aufgestellt werden und dann das resultierende NLP gelost wird.
Der hauptséichliche Unterschied zwischen DMOC und anderen direkten Metho-
den besteht darin, dass nicht die Differentialgleichungen, die aus dem Lagrange-
d’Alembert-Prinzip hervorgehen, diskretisiert werden, sondern stattdessen schon
ein Schritt friither diskretisiert wird. Und zwar werden bei DMOC die Gleichun-
gen fiir das Optimierungsproblem durch die Variation des diskreten Lagrange-
d’Alembert-Prinzips direkt hergeleitet. Dies fiihrt zu vorteilhaften Eigenschaften
dieser Methode, die in Abschnitt genauer dargestellt werden, siehe hierzu
auch [OBOg].

Weiterfiihrend kénnen auch andere Unterschiede zwischen Schiefsverfahren, Kol-
lokation und DMOC als Methoden fiir die Losung von Optimalsteuerungspro-
blemen herausgestellt werden. Hier werden Argumente dafiir gegeben, warum in
dieser Arbeit DMOC ausgewéhlt wurde.

Beim Einfachschiefsverfahren muss in jedem Schritt des SQP-Verfahrens zur Opti-
mierung ein numerisches Anfangswertproblem (AWP) gelost werden. Da dies auf
dem gesamten Intervall geschieht, ist die Gefahr von grofen Integrationsfehlern
hoch, und die Integration muss mit hoher Genauigkeit durchgefiihrt werden. Au-
fserdem ist die Untersuchung von stark instabilen Systemen schwierig, da diese ei-
ne starke Abhingigkeit vom Anfangswert besitzen. Dadurch ist das AWP schlecht
konditioniert, und es ist schwer, eine Losung des Optimalsteuerungsproblems zu
finden. Dafiir ist das NLP, das durch das Einfachschiefsverfahren entsteht, klein,
da wenige Optimierungsvariablen und Nebenbedingungen vorliegen. Aufserdem
sind die Bewegungsgleichungen des Systems wihrend des Optimierungsprozesses
immer erfiillt, da in jedem Schritt eine Vorwirtsintegration durchgefiihrt wird.
Wenn bei einem zeitkritischen Problem die Optimierung vorzeitig abgebrochen
werden muss, fithrt dies dazu, dass sehr wahrscheinlich die geforderten Rand-
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Zielfunktional +
Lagrange-d’Alembert-Prinzip

Variat ior/

Zielfunktional +
Euler-Lagrange Gleichungen

Variat ion/ \[iiSkretisierung

\Diskretisierung

diskretes Zielfunktional +
diskretes Lagrange-
d’Alembert-Prinzip

Pontryagin’sches
Maximumprinzip

diskrete Zielfunktion
+ diskretisierte
Differentialgleichung

diskretisiertes
Pontryaginsches
Maximumprinzip

indirekt

direkt

Diskretisierung

diskrete
Variation

diskrete Zielfunktion -+
diskrete Fuler-Lagrange
Gleichungen

DMOC

Bild 3-5: Optimale Steuerung fiir mechanische Systeme: Reihenfolge der Varia-
tion und Diskretisierung fir die Herleitung der notwendigen Optimali-

tatsbedingungen (vgl. [OBJM11])
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bedingungen nicht erfiillt sind, sich aber eine physikalisch sinnvolle Trajektorie
ergibt.

Beim Mehrfachschielverfahren besteht eine dhnliche Vorgehensweise wie beim
Einfachschieftverfahren, aufter dass hier das gesamte Intervall diskretisiert wird
und damit auf jedem Teilintervall die unterlagerten AWP gelst werden miissen.
Somit ist der numerische Aufwand zur Losung des AWP insgesamt ebenso grofs
wie beim FEinfachschiefsverfahren, die Stetigkeit der Losung ist dagegen nur bei
erfolgreicher Optimierung gegeben. Insgesamt ist das NLP durch das Mehrfach-
schiefverfahren grofier als beim Einfachschiefsverfahren, da mehr Optimierungs-
variablen und Nebenbedingungen (z.B. fiir die Stetigkeit der Losung) vorliegen.
Durch Ausnutzung der besonderen Struktur kann aber mit diesem Verfahren so-
gar eine schnellere Konvergenz erreicht werden.

Bei der Kollokation sind im Vergleich zu den Schiefverfahren potentiell noch
schnellere Berechnungen moglich. Dies liegt daran, dass hier die Simulation der
Diffenrentialgleichungen und die Optimierung der Steuerung simultan ablaufen.
Sowohl der Zustand als auch die Steuerung werden durch die Ansatzfunktio-
nen mit Parametern diskretisiert und gehen zusammen in die Optimierung ein.
Dadurch wird das NLP komplex, da es viele Optimierungsvariablen (Parame-
ter fiir die Ansatzfunktionen) und Nebenbedingungen besitzt. Kollokation und
Mehrfachschiefverfahren sind in der Lage, stark instabile Systeme auf Grund der
Diskretisierung des Zeitintervalls deutlich besser zu l6sen als das Einfachschief-
verfahren.

Auch bei der DMOC Methode werden Konfiguration (Position) und Steuerung
diskretisiert, so dass auch hier eine simultane Losung des Optimalsteuerungspro-
blems moglich ist. Dies fiihrt zu einer schnellen Rechenzeit bei der Losung. Da
aber die Diskretisierung nur auf Basis der Konfiguration (@ x @) stattfindet,
ist das NLP durch DMOC weniger komplex als beim Kollokationsverfahren. Die
entsprechenden Geschwindigkeiten und Impulse werden anschlieffend mittels der
diskreten Legendre-Transformation rekonstruiert.

In [OBO8| wurde anhand eines Beispielsystems das vielversprechendste Standard-
verfahren — das Kollokationsverfahren — mit der DMOC Methode beziiglich ih-
rer Leistungsfihigkeit verglichen. Dabei wurde ein Kollokationsverfahren zweiter
Ordnung und DMOC mit Mittelpunktregel (ebenfalls zweiter Ordnung) verwen-
det. Die ermittelten Konvergenzraten waren dabei in beiden Féllen O(h?), ent-
sprechend der gewidhlten Ordnung. Bei der Untersuchung der Rechenzeiten fiir
die Berechnung einer optimalen Trajektorie wird deutlich, dass DMOC schneller
konvergiert als die Kollokationsmethode. Hierfiir wurde das betrachtete System
mit unterschiedlicher Anzahl an Diskretisierungspunkten N € N untersucht. Die-
ser Vorteil in der Rechenzeit basiert wiederum auf der besonderen Diskretisierung
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auf () x @), was zu weniger Variablen im Optimierungsproblem und weniger Ne-
benbedingungen fiihrt.

Zusammenfassend vereint DMOC viele einzelne vorteilhafte numerische Eigen-
schaften der anderen Verfahren. Es ist eine simultane Lésung des Problems mog-
lich, auf Grund der besonderen Diskretisierung ist die Rechenzeit deutlich geringer
als bei den Standardverfahren und das NLP ist weniger komplex als z. B. beim
Kollokationsverfahren. Aufserdem besitzt DMOC weitere spezielle Eigenschaften,
auf die in Abschnitt noch genauer eingegangen wird.

3.3.4 Herleitung des diskreten Optimalsteuerungsproblem s mit DMOC
fur das Mehrfachpendel

Das diskrete Optimalsteuerungsproblem fiir das Mehrfachpendel wird aus dem
kontinuierlichen Optimalsteuerungsproblem in Abschnitt B.T.1] hergeleitet. Dazu
wird die DMOC Methode im Folgenden auf das Modell des Doppelpendels auf
einem Wagen angewendet.

Fiir das Doppelpendel mit Wagen ist der Konfigurationsraum @ C R3, der Kon-
figurationsvektor ¢ = [4,01 D2 y] und up die Kraft, die vom Motor aufgebracht
wird. Diese Grofen werden entsprechend Abschnitt diskretisiert, sodass sich
der diskrete Konfigurationsvektor g, = qq(ty) fiir £ = 0,..., N und der diskre-
te Steuerungsvektor uy = ug(ty) fir k = 0,..., N — 1 Knotenpunkte ergibt. Die
Anfangs- und Endpunkte werden fiir den Aufschwung aus der unteren in die insta-
bile obere Ruhelage als ¢° = [-7 —7 0],¢° =0und ¢ = [0 0 0],¢"" =0
gewihlt.

Die Zielfunktion (3-9)) wird mit Hilfe der diskreten Steuerung approximiert:

N-1

Jd(qd,ud,tf) =a- hZuZ -+ b- f;f,
k=0

wiederum mit a+b = 1. Bei Verwendung dieser Zielfunktion lésst sich durch Varia-
tion der Gewichtungsparameter a und b eine Mehrzieloptimierung durchfiihren.
Fiir die Optimierung muss darauf geachtet werden, dass die beiden Terme der
Zielfunktion in der gleichen Grofenordnung liegen. Diese Skalierung kann auch
mit Hilfe der Gewichtungsparameter a und b durchgefiihrt werden.

Durch die DMOC Methode werden die Bewegungsgleichungen durch einen va-
riationellen Ansatz diskretisiert. Hierbei ergeben sich die allgemeinen diskreten
Gleichungen ([B-22al) - (8=22d)) mit der kontinuierlichen Lagrange-Funktion

L:TQ—R, L(g,4)=T(q.4q) —V(q),
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wie sie aus Abschnitt 231 bekannt ist. Diese wird entsprechend (B=17)) durch die
diskrete Lagrange-Funktion Ly : ) X () — R approximiert.

Zuséatzlich bestehen auch weiterhin Beschrankungen an die diskreten Zusténde
und die Steuerung:

I <gqp <ubl, k=0,...,N,
by <wup <ub;,, k=0,...,N—-1

Aufer diesen direkten Beschrankungen an die diskreten Lagekoordinaten und
diskreten Steuerungen miissen Bedingungen an Geschwindigkeit und Beschleuni-
gung aufgestellt werden, die entsprechend der gewahlten diskreten Konfiguration
durch ¢, £k =0,..., N beschrieben werden miissen. Aufgrund der feinen Diskre-
tisierung der Lagekoordinaten kann angenommen werden, dass die Geschwindig-
keit und Beschleunigung mittels Differenzenquotienten genau genug approximiert
werden konnen, was der gewédhlten Mittelpunktregel entspricht. Prinzipiell ist es
auch moglich durch eine komplexere Rechnung mit Hilfe der diskreten Legendre-
Transformation die Geschwindigkeiten exakt herzuleiten, siehe hierzu auch An-
hang [A.3.3l Mit dem Differenzenquotient werden

q‘k:w, firk=0,...,N —1,

qk:w, firk =0,..., N — 2

definiert und die gewiinschten Ungleichheitsnebenbedingungen kénnen durch

Qk_Qmazgou furkZO,,N—l,
Gk — Gmae <0, firk=0,...,N —2

beschrieben werden. Ein weiterer Grund fiir die Verwendung des Differenzen-
quotienten ist, dass fiir die Werte ¢q; Und §pq, in der Optimierung nicht die
wirklichen maximalen Werte verwendet werden sollten. Fiir den spiteren Reg-
lereingriff muss eine Reserve in den physikalischen Begrenzungen beriicksichtigt
werden.

Somit ergibt sich als gesamtes Optimalsteuerungsproblem:

N-1
Minimiereg, v, ¢,  Ja(qa, wa,ty) = a-h Z uy +b-ty (3-23)
k=0
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mit a + b = 1, unter den Nebenbedingungen

(¢°,p") = ([—W - 0] . —D1La(q0, 1) — f(f) ; )

DoLg(qr—1,qr) + D1La(q, 1) + i+ f =0,k=1,...,N —1 (3-24b)
(¢, p")= ([0 0 0], DsLa(gn-1,qn)+ fi_1), (3-24c)

, (3-24d)
)

)

)

QK_Qmazago k:O,,N—l
éik—éimam,ﬁo k:O,---,N_Q, (3-24@
I <qp <ubl, k=0,...,N, (3-24f
B <, <ubl, k=0,....N—1. (3-24g

Die Gleichungen (3-24al) - (3-24c]) miissen entsprechend der hier gezeigten Vor-
schrift fiir das Doppelpendel auf einem Wagen bestimmt werden, um dann im Op-
timierungsalgorithmus umgesetzt werden zu konnen. Hierauf wird im Anhang[A 3]
genauer eingegangen.

3.3.5 Spezielle Eigenschaften der DMOC Methode

Aufgrund der speziellen Diskretisierungsform besitzt DMOC gegeniiber ande-
ren numerischen Berechnungsverfahren Vorteile bei der Behandlung mechani-
scher Systeme. Dieser Ansatz beruht auf Konzepten der diskreten Mechanik und
fiihrt auf eine spezielle Diskretisierung der Systemgleichungen, welche auf Varia-
tionsintegratoren basiert, siehe hierzu auch [MWOI]. Daher besitzt das diskrete
Optimalsteuerungsproblem ebenfalls spezielle Eigenschaften die von den Variati-
onsintegratoren sozusagen ,,geerbt” werden. Bestimmte Strukturen, wie z. B. der
Impuls, das Drehmoment oder die symplektische Form (siehe hierzu [MR05]) der
numerischen Losung bleiben erhalten. Bei Systemen mit dufseren Steuerungskréaf-
ten kann der Einfluss dieser exakt abgebildet werden, was zu einer genaueren
Approximation fiithrt. Im Folgenden wird anhand des mathematischen Pendels —
einem Hamilton System — gezeigt, welche Eigenschaften Variationsintegratoren
besitzen, und anschliefsend wird auf ihre Bedeutung im Kontext von Optimal-
steuerungsproblemen eingegangen.

Variationsintegratoren am mathematischen Pendel

Es wird im Folgenden das mathematische Pendel (Masse m = 1, masseloser Stab
mit Lange | = 1, Gravitation ¢ = 1) betrachtet, welches einen Freiheitsgrad
besitzt und durch die Lagrange-Funktion

) 1 i
L(q,q) = 5ml2q2 —mgl(1 — cosq)
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beschrieben werden kann. Es ergibt sich die Bewegungsgleichung
. g
§=—7sing.

Es werden drei verschiedene numerische Integrationsverfahren an diesem System
getestet:
(i) Explizite Euler-Methode: g1 = yi, + hf (yr), mity, = [qx qk}T
(ii) Implizite Euler-Methode: yx11 = yx + hf(Yry1), mit yx = [qk qk]T.
(iii) Symplektische Euler-Methode (ebenfalls ein implizites Verfahren):
[Qk—i-l] _ {Qk} +h - fqr, Gei1)-

Gr+1 qk

N

Winkel (rad)
o
J/
o /-
N |

-2 explizit
implizit
21— = symplektisch

Winkelgesch. (rad/s)

30

Zeit [s]

Bild 3-6: Vergleich verschiedener Euler Integratoren am mathematischen Einfach-
pendel (es werden Winkel und Winkelgeschwindigkeit dargestellt): expli-
zit (blaue durchgezogene Linie), implizit (griin gestrichelte Linie) und
symplektisch (rote Strichpunktlinie)

Beim mathematischen Pendel ist zu erwarten, dass es mit konstanter Amplitu-
de immer weiter schwingt, da keine Dampfung wirkt und es sich daher um ein
idealisiertes, nicht dissipatives System handelt. Die drei verschiedenen Verfahren
zur numerischen Approximation werden nun auf das System angewendet. Dabei
wird eine Schrittweite von h = 0.1 s verwendet. In Bild sind die Ergebnis-
se dargestellt und es wird deutlich, dass das zu erwartende Verhalten durch die
numerischen Approximationsmethoden (i) und (ii) nicht wiedergegeben werden



Optimale Steuerung mittels Discrete Mechanics and Optimal Control 65

kann. Das explizite Euler-Verfahren ist instabil und fiihrt zu einer aufklingenden
Amplitude des Pendelwinkels. Das implizite Euler-Verfahren wirkt dagegen wie
eine kiinstliche Ddmpfung im System, und die Schwingungsamplitude nimmt ab.
Beide Verfahren sind somit nicht in der Lage, das korrekte Verhalten des Sys-
tems abzubilden. Anders ist es beim symplektischen Euler-Verfahren, denn hier
bleibt die Schwigungsamplitude des Pendels konstant, auch iiber eine lingere In-
tegrationszeit hinweg. Durch dieses Verfahren ist es also moglich, das dynamische
Verhalten des Systems qualitativ richtig zu approximieren.

Variationsintegratoren fur Simulation realer Systeme

Es ist nun deutlich geworden, dass es sinnvoll ist, numerische Integratoren so
zu bestimmen, dass vorhandene Erhaltungseigenschaften des Systems auch bei
der numerischen Losung weiterbestehen. Bei Hamilton Systemen kann z.B. die
Symplektizitit des Flusses durch die Verwendung eines symplektischen Integra-
tors erhalten werden. Variationsintegratoren besitzen aber auch Vorteile bei der
Behandlung von anderen Systemen. Ein allgemeines mechanisches System ist im
Normalfall kein Hamilton System, da es Energieverluste z. B. durch Dampfung
oder auch eine Energiezufuhr, z.B. durch Aktoren beinhaltet. Auch wenn hier
nicht die Symplektizitit erhalten werden muss, hat der Einsatz von Variationsin-
tegratoren Vorteile, denn im Gegensatz zu anderen Integratoren konnen sie das
Energieverhalten auch dann gut approximieren, wenn es sich verdndert, so dass
es nicht zu kiinstlichen Energieverlusten bzw. -gewinnen kommt. Ein Einsatz die-
ser Verfahren fiir die Simulation dynamischer Systeme ist also erstrebenswert,
um Integrationsfehler zu minimieren und das dynamische Verhalten des Systems
moglichst gut zu approximieren.

Diese Eigenschaften kénnen auch im Vergleich von drei unterschiedlichen Inte-
gratoren am mathematischen Pendel mit und ohne Dampfung gezeigt werden.
Es werden das explizite Euler-Verfahren mit einer Schrittweite h = 0.005 s, ein
Integrator basierend auf den Gleichungen von DMOC ebenfalls mit der Schritt-
weite 0.005 s und ein explizites Runge-Kutta-Verfahren mit der Dormand-Prince
Formel (in Matlab ode45) mit einer hohen Genauigkeit als Referenz fiir die an-
deren Integratoren, verglichen. In Bild B-7] wird das mathematische Pendel ohne
Dimpfung betrachtet. Der Anfangswert ist [p, ¢] = [F,0] und bei ¢t = 12.5 s wird
ein konstantes Moment von 1 Nm auf das Gelenk des Pendels aufgebracht, was
durch eine vertikale gestrichelte Linie gekennzeichnet ist. Es wird deutlich, dass
das Euler-Verfahren instabil ist: Die Gesamtenergie, die Amplitude der Schwin-
gung und die Winkelgeschwindigkeit nehmen zu. Der Integrator, der basierend
auf DMOC berechnet wurde, bildet das reale Systemverhalten dagegen korrekt
ab, denn er stimmt mit der Referenz iiberein. Zunichst bleibt die Energie des
Systems konstant, und bei der Wirkung des konstanten Moments ergibt sich,
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entsprechend der Erwartungen, ein periodisches Verhalten. Durch die Wirkung
des Moments wird der Winkel ¢ etwas in positive Richtung verschoben, und die
Winkelgeschwindigkeit wird kleiner.

@ [rad)

¢ [rad/s|

) — — — Euler
S 15} bDMOC | /konstantes Moment
g 1ok Runge-Kutta ~,~ 1
% I T~ T 7
:‘g Ot 1 1 | 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Zeit [s]

Bild 3-7. Vergleich von Integratoren am mathematischen Pendel: explizites Fu-
lerverfahren (blau gestrichelte Linie), DMOC (griin durchgezogene Li-
nie) und Dormand-Prince Formel (explizites Runge-Kutta Verfahren)
mit hoher Genauigkeit (rot gepunktete Linie); ab t = 12.5s wird ein
konstantes Moment aufgebracht und es werden ¢, ¢ und die Gesamt-
energie des Systems gezeigt

In Bild B=§ wird dann das mathematische Pendel mit Dampfung d = 0.005 unter-
sucht. Dieses ist vergleichbar mit dem in dieser Arbeit untersuchten Anwendungs-
beispiel des Doppelpendels auf einem Wagen, denn auch dort liegt Dampfung in
den Gelenken vor. Es werden dieselben Anfangswerte wie im ersten Beispiel ver-
wendet. Erwartungsgeméaf verliert das System Energie durch die Wirkung der
Dampfung und beim Einsetzen des konstanten Momentes ergibt sich das periodi-
sche Verhalten der Energie, wie schon im ersten Beispiel. Aber auch in diesem
Fall wird deutlich, dass das Euler-Verfahren im Gegensatz zu den anderen beiden
Integratoren das Systemverhalten nicht korrekt abbildet. Es stellt sich kein Ener-
gieverlust ein, und auch die Amplitude von Winkel und Winkelgeschwindigkeit
wird nicht wie erwartet geringer.
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Bild 3-8: Vergleich von Integratoren am mathematischen Pendel mit Dimpfung:
explizites Euler- Verfahren (blau gestrichelte Linie), DMOC (grin durch-
gezogene Linie) und Dormand-Prince Formel (explizites Runge-Kutta
Verfahren) mit hoher Genauigkeit (rot gepunktete Linie); ab t = 12.5s

wir ein konstantes Moment aufgebracht und es werden p, ¢ und die
Gesamtenergie des Systems gezeigt
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Als Fazit kann festgehalten werden, dass der Integrator basierend auf den Glei-
chungen der DMOC Methode ebenso gut funktioniert, wie das sehr genaue Re-
ferenzverfahren. Diese Ergebnisse motivieren zusétzlich den Einsatz der DMOC
Methode fiir die Anwendungsfille in dieser Arbeit.

3.3.6 Aktuelle Forschungsarbeiten mit DMOC

Nach der ersten Veroffentlichung der DMOC Methode im Jahr 2005 wurde sie
in den folgenden Jahren weiter entwickelt und ihre Anwendung auf unterschied-
liche dynamische Systeme getestet. Im Folgenden wird ein Uberblick hieriiber
dargestellt.

In den Arbeiten [JOBO05| und [IMOBO06] wird DMOC zum ersten Mal an einem
groferen Anwendungsbeispiel getestet. Es geht um die optimale Rekonfigurati-
on von Raumfahrzeugen die sich in einer Formation bewegen. Dabei befinden
sich n Raumfahrzeuge auf einem Orbit im Drei-K6rper-Problem und die Auf-
gabe ist es, eine optimale Steuerung zu finden, die die Raumfahrzeuge aus einer
inertialen Konfiguration auf eine Zielmannigfaltigkeit bringt. Dabei soll der Treib-
stoffverbrauch minimiert werden. Die Zielmannigfaltigkeit beschreibt die relative
Position der Raumfahrzeuge zueinander und ihre vorgegebene Geschwindigkeit.
Durch diese Beschreibung ist es moglich, dass im Optimierungsprozess die beste
Ausrichtung der Formation abhéngig von der inertialen Konfiguration der Raum-
fahrzeuge gefunden wird. Zur Kollisionsvermeidung werden kiinstliche Potentiale
in der Systemdynamik oder Strafterme in der Kostenfunktion eingefiigt, so dass
sich die Raumfahrzeuge gegenseitig abstoflen, wenn sie sich zu nahe kommen.
Durch die Anwendung von DMOC auf dieses Optimalsteuerungsproblem kann
die gewiinschte Endkonfiguration mit minimalem Steueraufwand erreicht werden.
Es kann aufserdem gezeigt werden, dass der numerische Aufwand von DMOC auf
Grund der speziellen Implementierung geringer ist als bei einem vergleichbaren
Standardansatz.

Weitergehende theoretische Untersuchungen zur Approximationsgiite der diskre-
ten Losung, Konvergenzeigenschaften und auch den strukturerhaltenden Eigen-
schaften sind in [OBJMI1I] und [OBOS§| zu finden. Dort wird genauer auf die
Verbindung zwischen optimaler Steuerung und variationeller Mechanik eingegan-
gen, welche durch DMOC geschaffen wird. Denn DMOC ist der erste Ansatz,
der strukturerhaltende Methoden verwendet, um Losungen fiir ein Optimalsteue-
rungsproblem zu berechnen. Die Vorteile der strukturerhaltenden Methoden wer-
den dadurch an die Losung des Optimalsteuerungsproblems weitergegeben. Die
wichtigsten Aspekte sind

(i) Erhaltung der Impulsabbildung: Unter bestimmten Voraussetzungen an das
System wird die Impulsabbildung auch bei der diskreten Losung des Opti-
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malsteuerungsproblems erhalten. Bei Systemen mit Kréiften wird der Impuls
entsprechend der Wirkung der Kréfte exakt abgebildet.

(ii) Energieerhaltung: Variationsintegratoren sind symplektisch, was bedeutet,
dass sie bestimmte Eigenschaften erhalten (z. B. Energie). Dies ist eine wich-
tige Eigenschaft, wenn man das Langzeitverhalten eines dynamischen Sys-
tems betrachtet.

(iii) Implementierung: Anstatt einer Implementierung auf Grundlage von Kon-
figuration und Impuls arbeitet DMOC auf @ x (). Das heifst, es wird nur
die optimale Trajektorie fiir die Konfiguration und die Kréfte bestimmt
und der Impuls bzw. die Geschwindigkeiten kdnnen mittels der diskreten
Legendre-Transformation im Rahmen der numerischen Approximation ex-
akt rekonstruiert werden.

Eine neue Forschungsrichtung ist entstanden, als mit Hilfe der DMOC Methode
eine strukturerhaltende Methode fiir die optimale Steuerung mechanischer Mehr-
korpersysteme (MKS) mit holonomen Zwangsbedingungen erstellt wurde, siehe
[LOBMOO07] und [LOBMO10]. Die neue Methode wurde mit "Discrete Mecha-
nics and Optimal Control for Constrained Systems” (DMOCC) bezeichnet und
ist eine Verbindung zwischen der Nullraum-Methode [Bet05], [BLOG], [LBSOS]
und DMOC.

Die Nullraum-Methode ist ein effizientes Verfahren zur zeitlichen Integration
von dynamischen Systemen mit Zwangsbedingungen. Auferdem kénnen mit ih-
rer Hilfe die Bewegungsgleichungen eines endlich dimensionalen mechanischen
MKS mit holonomen Zwangsbedingungen bestimmt werden. Die einzelnen Teil-
korper des MKS werden dabei in redundanten Koordinaten beschrieben und
unterliegen internen Zwangsbedingungen. Sie sind durch Gelenke, also exter-
ne holonome Zwangsbedingungen verbunden. Fiir diese Art von Systemen kon-
nen die Bewegungsgleichungen mit Hilfe des Lagrange-d’Alembert-Prinzips mit
Lagrange-Multiplikatoren aufgestellt werden. Um dann die Anzahl der Unbe-
kannten zu reduzieren, konnen durch den Gebrauch der Nullraum-Matrix die
Lagrange-Multiplikatoren wieder aus den Bewegungsgleichungen eliminiert wer-
den. Durch eine Reparametrisierung kann die minimal mégliche Anzahl von Un-
bekannten in den Bewegungsgleichungen erreicht werden.

Bei der Kombination von Nullraum-Methode und DMOC wird aus dem DAE Sys-
tem der Bewegungsgleichungen durch die diskrete Nullraum-Methode eine zeitdis-
krete Form hergeleitet. Die entstandenen reduzierten Gleichungen beschreiben ein
Zeitschrittverfahren und sie dienen als Nebenbedingungen bei der Bestimmung
der optimalen Steuerung mit DMOC durch einen Optimierungsalgorithmus.
DMOCC hat verschiedenen Vorteile: Erstens kénnen die diskreten Bewegungs-
gleichungen einfach in redundanten Koordinaten beschrieben werden. Im zweiten
Schritt wird die diskrete Nullraum-Methode angewendet, wodurch sich die mini-
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mal mogliche Anzahl von Variablen und Gleichungen ergibt. Dies fiihrt zu einem
deutlich geringeren Rechenaufwand im Optimierungsalgorithmus. Drittens sind
auch hier die strukturerhaltenden Eigenschaften der DMOC Methode von Vorteil.
Sie fithren zu einem guten Energieverhalten der diskreten Losung, was vor allem
fiir hochdimensionale MKS mit Zwangsbedingungen von hoher Bedeutung ist.

Es sind einige Anwendungsbeispiele von DMOCC in der Biomechanik zu finden,
da hier haufig MKS mit holonomen Zwangsbedingungen vorliegen. In [OBT09]
wird der menschliche Arm als MKS modelliert und es werden optimale Bewe-
gungssequenzen eines Wurfes berechnet und analysiert. Dabei kénnen z. B. Mo-
delle mit unterschiedlicher Anzahl an Freiheitsgraden untersucht werden, was sich
aus der Verwendung von verschiedenen Gelenken im Arm ergibt. Das Ziel dieser
Arbeit ist es, eine Wurfbewegung mit moglichst hoher Endgeschwindigkeit der
Hand zu berechnen.

In [MSL11] wird ein biomechanisches Modell fiir einen Finger vorgestellt. Dabei
werden neben dem MKS bestehend aus drei Kérpern, die wirkenden Kréfte durch
Muskelmodelle berechnet. Auch in diesem Beispiel wird betont, wie wichtig es ist,
strukturerhaltende Verfahren zu nutzen, damit z. B. die Momente und die angrei-
fenden Muskelkrifte nicht iiber- oder unterschétzt werden.

Bisher wurden bei DMOCC in der Simulation von MKS Kontakte oder Kollisio-
nen zwischen den Korpern vernachlissigt. In neueren Arbeiten [LJO12], [LHK 12|
wird nun sowohl die Vermeidung von Kollisionen als auch der geplante Kontakt
zwischen Korpern bei einer optimalen Steuerungstrajektorie beriicksichtigt. Da-
zu werden bestimmte Algorithmen verwendet, die Kontakte zwischen Korpern
mittels orientierter Hyperflichen detektieren kénnen.

In der Raumfahrt werden fiir die Steuerung von Satelliten hiufig sehr komplexe
Trajektorien entwickelt, da Raumfahrzeuge auf Grund der beschrinkten Kapa-
zitdt nur wenig Treibstoff verbrauchen diirfen. Fiir die Bestimmung solcher Tra-
jektorien werden invariante Mannigfaltigkeiten benutzt [MOBMOS§|. Diese mathe-
matischen Objekte stellen energieeffiziente Trajektorien dar, die der natiirlichen
Dynamik des Sonnensystems von einer Region des Weltalls in eine andere folgen.
DMOC wird fiir die Bestimmung einer optimalen Trajektorie und fiir die Berech-
nung von optimalen Ubergingen bei der Kombination von mehreren invarian-
ten Mannigfaltigkeiten aus unterschiedlichen Drei-Koérper-Problemen verwendet.
In die zugehorige Zielfunktion konnen verschiedene Aspekte, wie Zeitoptimalitét
und Energieeffizienz eingehen. Ein weiterer Aspekt ist der Geschwindigkeitsun-
terschied beim Ubergang zwischen zwei invarianten Mannigfaltigkeiten. Bei einer
guten Trajektorie sollte er klein sein, um moglichst wenig Energie zu verbrauchen.
Zusitzlich wurde DMOC im Rahmen dieser Arbeit zur Berechnung optimaler Tra-
jektorien auf den Gebrauch von unterschiedlichen Gittern erweitert [MOBMTI].
Dadurch kann z. B. in der Néhe eines Planeten mit kleiner Schrittweite gerechnet
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werden, um eine moglichst exakte Trajektorie zu erhalten. Wenn sich der Satellit
weiter entfernt, reicht dann die Verwendung einer groberen Schrittweite aus.

In den Arbeiten [FOB12|,[FOBK12| wird ein dhnliches Konzept verwendet, um
global optimale Trajektorien fiir mechanische Systeme zu berechnen. Die Idee ist
es, inhirente dynamische Eigenschaften des Systems auszunutzen. Diese natiir-
lichen Bewegungen des Systems ergeben sich ohne Steuereingriff und kénnen so
kostenlos verwendet werden. Dabei werden motion planning Methoden verwen-
det, die verschiedene Trajektorienstiicke in einer Bibliothek hinterlegen und es so
ermoglichen, eine optimale Trajektorie aus geeigneten Stiicken zusammenzuset-
zen. Elemente der Bibliothek sind dabei invariante (in)stabile Mannigfaltigkeiten
oder auch periodische Orbits. Zusitzlich werden durch DMOC berechnete Uber-
gangsmanover verwendet, um zwischen einzelnen Teilstiicken wechseln zu kon-
nen. Die zusammengesetzte Trajektorie ergibt einen guten initial guess, der mit
DMOC nachoptimiert werden kann, wodurch sich eine gegléttete optimale Trajek-
torie ergibt. Dieses Vorgehen wird an einem sphéarischen Doppelpendel getestet,
und erreicht dort durch die Kombination von invarianten Mannigfaltigkeiten und
Teilstiicken mit Steuereingriff gute Ergebnisse.

Als Fazit dieses Abschnitts lédsst sich festhalten, dass die DMOC Methode in den
letzten Jahren auf vielerlei Weise weiterentwickelt wurde. Dies geht einerseits
in die Richtung, dass allgemein auch optimale Steuerung fiir komplexe System-
klassen ermoglicht wird (z. B. DMOCC) und andererseits wird DMOC fiir die
Anwendung an komplexen Anwendungsbeispielen weiterentwickelt (z. B. Trajek-
torienplanung fiir Raumfahrzeuge mit Hilfe von invarianten Mannigfaltigkeiten).
Im Folgenden wird in dieser Arbeit DMOC dazu verwendet, um fiir das Dop-
pel(und Dreifach-)pendel mit Wagen optimale Trajektorien beziiglich gegenldu-
figer Ziele (Manoverzeit und Energieverbrauch) zu berechnen, dabei die Varian-
tenvielfalt der Ergebnisse zu analysieren und nach paretooptimalen Losungen zu
suchen, siehe Kapitel 4. Im Weiteren wird auch fiir das Doppelpendel mit Wa-
gen ein Ansatz getestet, bei dem die inharente Systemdynamik genutzt wird, um
optimale Trajektorien zu bestimmen, siehe Kapitel
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4 Optimale Steuerungstrajektorien flr das
Mehrfachpendel

Dieses Kapitel widmet sich der Berechnung von Trajektorien fiir den Aufschwung
des Pendels auf einem Wagen. Dazu wird die in Kapitel 3] beschriebene DMOC
Methode verwendet, um aus dem kontinuierlichen Optimalsteuerungsproblem ein
endlich dimensionales, nichtlineares Programmierproblem (NLP) herzuleiten, wel-
ches anschlieflend numerisch gelést werden kann. Hierzu wird die sequentielle
quadratische Programmierung (SQP-Verfahren) verwendet, die in Abschnitt [4.1]
beschrieben wird. Die Idee dabei ist es, das NLP iterativ zu l6sen und dabei sowohl
das Newton-Verfahren, als auch notwendige Optimalitdtsbedingungen (Karush-
Kuhn-Tucker Bedingungen) zu verwenden. Im darauf folgenden Abschnitt
werden Verfahren der Mehrzieloptimierung erldutert und das Konzept der Pareto-
Optimalitdt beschrieben. Die Methoden der Mehrzieloptimierung werden dazu
verwendet, mehrere Ziele in der Optimierung beriicksichtigen zu kénnen. Diese
Losungen stellen jeweils einen optimalen Kompromiss beziiglich der gewdhlten
Ziele, z.B. Zeit und Energie, dar und werden auch als paretooptimale Losun-
gen bezeichnet. Die Moglichkeit der Beriicksichtigung mehrerer Zielgrofen ist ein
Vorteil der Mehrzieloptimierung und fiihrt dazu, dass eine Auswahl optimaler
Kompromisse z. B. fiir einen Anwender zur Verfiigung steht.

In Abschnitt 4.3 werden dann vier verschiedene Aufschwungmandéver fiir das Dop-
pelpendel vorgestellt und beziiglich ihrer paretooptimalen Zielfunktionswerte ver-
glichen. Durch die Mehrzieloptimierung ergeben sich vielfialtige Manover fiir den
Aufschwung des Pendels, d. h. es ergeben sich Man6ver mit unterschiedlicher Dy-
namik. Aus der grofsen Menge von optimalen Losungen kénnen Paretofronten
gebildet werden, an denen sich interessante Eigenschaften der Dynamik des Pen-
dels ablesen lassen.

Es kann zusdtzlich gezeigt werden, dass sich eine ausgewéhlte Losung auch in
gewissen Bereichen variieren lasst. Das heifst, dass man durch eine Nachoptimie-
rung die Bewegung beibehélt, aber die Mandverzeit bzw. den Energieverbrauch
leicht abdndert. Dadurch ist es moglich, eine Trajektorie den genauen Wiinschen
eines Anwenders anzupassen.

Ausgewihlte Losungen der Optimierung werden am Priifstand implementiert. Da-
durch kann gezeigt werden, dass der modellbasierte Regelungsentwurf auch auf
die praktische Anwendung iibertragen werden kann und diese Trajektorien auch
realisiert werden kénnen.

Eine weitere Eigenschaft, die in diesem Kapitel untersucht wird, ist die Form der
Paretofront. In diesem Zusammenhang wird gezeigt, dass es moglich ist, fiir den
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Aufschwung des Pendels eine Paretofront ohne Liicken und Spriinge zu berechnen.
Auf die Vorteile einer solchen Eigenschaft, vor allem fiir die weitere Verwendung
der Losungen in einem iibergeordneten Kontext, wird spiter eingegangen. Au-
fserdem kann in dieser Analyse gezeigt werden, dass die der realen Anwendung
entstammende Wegbeschrinkung von 0.55m fiir den Wagen keinen relevanten
Einfluss auf die Beschaffenheit der Losungen besitzt.

In Abschnitt [4.4 werden dann Ergebnisse fiir den Aufschwung des Dreifachpendels
vorgestellt. Im Vergleich zum Doppelpendel ergeben sich deutlich komplexere Be-
wegungen, die bestimmten Mustern folgen. Es wird deutlich, dass der Aufschwung
des Dreifachpendels immer mit dem Ubergang iiber verschiedene Ruhelagen ge-
schieht, da fiir ein direktes Manover der zur Verfiigung stehende Verfahrweg von
40.55m zu kurz ist.

Abschliefsend wird in Abschnitt ein Fazit zur Verwendung von Optimierungs-
methoden fiir die Berechnung von Trajektorien fiir den Aufschwung des Pendels
gezogen. Dabei werden die Vorteile dieses Ansatzes im Vergleich zu anderen An-
sitze dargestellt.

4.1 Numerische Losung des Optimalsteuerungsproblems
mit SQP-Verfahren

Das sequentielle quadratische Programmieren (SQP) (siehe [Han76], [Pow77]) ist
eine effiziente iterative Methode fiir die Losung eines NLP, wie es aus der Dis-
kretisierung eines Optimalsteuerungsproblems durch direkte Methoden entsteht.
Die hier gewihlte Darstellung dieses Verfahrens folgt [Rao09].

Es sei x € R” die Menge der Parameter, die durch die Diskretisierung des
unendlich-dimensionalen Optimalsteuerungsproblems eingefiihrt wurde. Die Idee
des SQP-Verfahrens besteht in der Anwendung des Newton-Verfahrens auf die
Karush-Kuhn-Tucker Optimalititsbedingungen. Dabei wird das nichtlineare Op-
timierungsproblem mit Nebenbedingungen im aktuellen Iterationsschritt x durch
ein quadratisches Teilproblem approximiert und die Losung dieses Teilproblems
dazu genutzt, den neuen Wert der Parameter ;. zu berechnen. Es besteht das
Ziel, den optimalen Parametern z* in jedem Iterationsschritt ndher zu kommen.

Im Folgenden wird in[A.T.T]zunéchst die Herleitung der Gleichungen aus dem NLP
beschrieben. Daraus ergibt sich ein quadratisches Programmierproblem, dessen
Losung in [4.1.2] beschrieben wird.
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4.1.1 Herleitung

Im Folgenden betrachten wir ein NLP mit Gleichheitsnebenbedingungen in der
Form

Minimiere, J(x), (1)
unter den Nebenbedingungen g¢(z) =0, g¢:R" — R".

Auf die Erweiterung des Optimierungsproblems um zusétzliche Ungleichheitsne-
benbedingungen wird spéter eingegangen.

Die Lagrange-Funktion des Optimierungsproblems (4=1]) ist gegeben durch
L(z,\) = J(z) + \g(z), L:R™™ =R, XcR",

wobei A\, den Lagrange-Multiplikator fiir die k-te Gleichheitsnebenbedingung dar-
stellt. Die Nullstellen der Karush-Kuhn-Tucker Gleichungen sind notwendige Be-
dingungen fiir eine lokal optimale Losung (siehe auch Satz [.4lund Definition [£35)),
und fiir das Optimierungsproblem (4=I]) kénnen sie durch

oL

o (1:2) = V() + ATVg(z) = 0,
’ oL .
(@A) =gl@) =0

beschrieben werden. Somit ist (4=2) ein System von n+n, Gleichungen mit ebenso
vielen Unbekannten (z € R™ und A € R"). Dieses wird im Folgenden mit Hilfe des
Newton-Verfahrens gelost. Zur Vereinfachung kann (4=2) umgeschrieben werden
7

H(n) =0, mit H:R"™" R " H = (VxL<5U7 )\)) ’

9(x)
Z nXng

und anschliefend kann eine Losung von ([=3)) iterativ durch das Newton-Verfahren
gefunden werden:

(43)

Ni1 =+ An;, mit VH(n) An; = —H(n;), (4-4)

wobei 7; die Losung zu Beginn der j-ten Iteration und A7n; die notwendige Ande-
rung von 7; ist, um die verbesserte Losung 7,41 zu erhalten. Im Folgenden wird
nun Arn; geeignet bestimmt.
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Durch Einsetzen von (4=3)) in (4=4]) erhilt man

ViL(zj, A)) Vg(xj)} (A%‘) _ (VzL(ﬂfJa)\j)) (4-52)
Vg(xj)T 0 A)\] g(l‘]) ’

AI‘J‘ = Tj41 — Ty, (4_5b)

A)\j = )‘j-l-l — )‘ja (4_56)

wobei V2L die Hesse-Matrix der Lagrange-Funktion ist. Die erste Zeile von (E=5al)
kann durch Einsetzen von (4=5d) und (4=2)) vereinfacht werden zu

V2L(zj, A\ Az; 4+ Vg(z)A\j = =V (z;),

was zu einer Neuformulierung von (4=5al) fiihrt:

e T () == Coed): (-

Durch die Losung von (4=6)) kénnen nun prinzipiell die notwendige Anderung des
Parametervektors Az, und die neuen Werte der Lagrange-Multiplikatoren A;.;
bestimmt werden. Dieser iterative Prozess kann so lange fortgefiihrt werden, bis
die Konvergenz erreicht ist.

Anstatt das nichtlineare Gleichungssystems (@=0]) iterativ zu losen, wird dieses
beim Vorgehen des SQP-Verfahrens in eine quadratisches Programmierproblem
(QP) umgewandelt. Dadurch kann die gewiinschte Anderung Az; in Richtung der
optimalen Lésung durch die Konstruktion und Losung eines solchen lokalen Glei-
chungssystems berechnet werden. Das QP hat die numerischen Vorteile, dass es
fast vollstdndig linear ist und eine eindeutige Losung besitzt [Rao09]. Somit wird
das Problem (4=3)) in jeder Iteration durch ein quadratisches Programmierproblem
approximiert. Deshalb nennt man die Methode auch sequentielles quadratisches
Programmieren. Im Folgenden wird die Herleitung des QP ausfiihrlicher beschrie-
ben.

Gegeben sei nun also das folgende quadratische Programmierproblem:
Finde Az, so dass die quadratische Zielfunktion
Q=VJ Az + %AazTViLAaz mit den Nebenbedingungen (4-7)
g +VgiAr =0, k=1,... , Mg, Mminimiert wird.

Die entsprechende Lagrange-Funktion zu diesem Problem lautet

Ng

~ 1
L(Az,\) =VJ Az + §AxTv§LAa; +) " Milge + Vi Ax).
k=1
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Hierzu konnen auch wieder die notwendigen Karush-Kuhn-Tucker Bedingungen
bestimmt werden:

VJ+ V2LAz 4+ Vg\ =0,

4-8
g +VgiAz =0, k=1,...,n,. (+-8)

Hier fillt auf, dass (4=8)) dasselbe beschreibt wie (4=6)). Dies zeigt, dass das Ori-
ginalproblems (4=1)) auch iterativ durch die Losung des quadratischen Problems
([@=T)) gelost werden kann.

Wenn das Originalproblem (4=I) nun auch noch Ungleichheitsnebenbedingungen
enthilt, dndert sich das quadratische Problem (4=1) wie folgt

Finde Az, so dass

1
Q=VJ Az + éASL’TViLA.T mit den Nebenbedingungen

(4-9)
G+ Vel Ar <0, j=1,...,n, c:R"—R"™
und g+ Vgl Ar =0, k=1,... ,ng minimiert wird.
Die Lagrange-Funktion lautet dann
- 1 e
L(Az, \) =VJ' Az + §AxTViLAx + Z Aj(e; + Vc?Ax)
= (4-10)

+ Z )‘nchk(gk + VggA:L’).
k=1

4.1.2 L6sung

Wie bei der Anwendung des Newton-Verfahrens fiir die Minimierung ohne Ne-
benbedingungen, wird der Losungsvektor Az des Problems (4=9) nun als Such-
richtung S verwendet, und das quadratische Programmierproblem kann wie folgt
mit S = Az angepasst werden:

Finde S, so dass Q(S) = VJIS + %STViLS

mit den Nebenbedingungen c¢; + VCJTS <0, j=1,...,n, (4-11)

und g, +VglS =0, k=1,... , Mg, minimiert wird.

Insgesamt werden durch das SQP-Verfahren die Zielfunktion quadratisch und die
Nebenbedingungen linear approximiert, was zu einem quadratischen Program-
mierproblem (4=TTJ) fithrt. Dieses kann mit Standardmethoden leicht und nur mit
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Hilfe von Matrixmultiplikationen gelost werden. Aufierdem ist ein solches qua-
dratisches Programm immer eindeutig l6sbar, und jedes lokale Optimum ist ein
globales Optimum. Wenn dann die Suchrichtung S gefunden wurde, kann der
neue Parametervektor durch

Tjt1 = Tj + a*S

berechnet werden. Hierbei ist a* die optimale Schrittweite entlang der Suchrich-
tung S, welche durch die Minimierung einer Zielfunktion, mit Straftermen beziig-
lich der Erfiillung der Nebenbedingungen, bestimmt werden kann. Die eindimen-
sionale Schrittweite o wird im Allgemeinen mittels eines Gradientenverfahrens
berechnet.

Man kann also feststellen, dass der SQP-Algorithmus einen klaren Vorteil ge-
geniiber der direkten Anwendung des Newton-Verfahrens auf die notwendigen
Optimalitatsbedingungen besitzt, denn SQP bietet die Moglichkeit, die Schritt-
weite o geeignet anzupassen, wenn der aktuelle Parametervektor (zy, Ax) noch
nicht ausreichend nahe an der optimalen Losung (z*, \*) liegt und reduziert die
Losung des Problems auf ein einfacheres QP.

Im Allgemeinen kann durch ein solches nichtlineares Verfahren nur eine lokal
optimale Losung des NLP gefunden werden und damit keine globale Optimalitét
sichergestellt werden.

4.2 Mehrzieloptimierung und Pareto-Optimalitat

Oftmals ist es bei technischen Systemen ein Ziel, ein gewiinschtes Manover z. B.
zwischen zwei Arbeitspunkten schnell und mit niedrigem Energieverbrauch durch-
zufithren. Fiir jedes reale System sind diese Anspriiche aber widerspriichlich und
konnen nicht beliebig gut erfiillt werden. Bei der Auslegung von Trajektorien fiir
technische Systeme miissen also hiufig mehrere Kriterien optimiert werden, wo-
bei im besten Fall ein optimaler Kompromiss gefunden wird. Dieser kann dadurch
identifiziert werden, dass bei mehreren kontriren Zielen ein einzelnes Kriterium
nur dann verbessert werden kann, wenn ein anderes Kriterium verschlechtert wird.
Ein solches Problem wird als Mehrzieloptimierungsproblem (MOP) und der op-
timale Kompromiss als paretooptimale Losung bezeichnet.

Die hier dargestellten Grundlagen sollen im Weiteren dazu verwendet werden, um
mit Hilfe der optimalen Steuerungsmethoden Trajektorien fiir das Mehrfachpen-
del zu berechnen, die sowohl zeit- als auch energieoptimal sind.

Im Folgenden wird ein Minimierungsproblem mit mehreren Zielfunktionen be-
trachtet. Die Losung dieses Problems fiihrt auf eine Menge von optimalen Kom-
promissen beziiglich aller gegebenen Zielfunktionen, welche auch als Paretomen-
ge bezeichnet wird. Aus dieser Menge kann dann ein Entscheidungstriager, der
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Kenntnis iiber die physikalische Bedeutung einzelner Zielfunktionen besitzt, aus-
wihlen. Das Konzept der Pareto-Optimalitit wird in Abschnitt [4.2.T]beschrieben.
Ein Ansatz fiir die Losung eines MOP ist es, eine Transformation in ein skalares
Optimierungsproblem durchzufiihren. Dann kénnen die Methoden der skalaren
Optimierung verwendet werden, um optimale Losungen zu berechnen. Durch ei-
ne Variation der unterschiedlichen Parameter des Transformationsverfahrens ist
es moglich, diverse unterschiedliche Losungen fiir das Optimierungsergebnis zu
erhalten. In Abschnitt werden einige einfache Methoden zur Lisung eines
MOP vorgestellt, die anschlieftend fiir die Berechnungen verwendet werden.

Einen Uberblick iiber MOP und deren Losung ist z. B. in [Hil01] oder [Mie99] zu
finden. Die Losung von MOP mit Hilfe von mengenorientierten Methoden ist in
[Sch04] beschrieben, siehe dazu auch Abschnitt B.1.21 Diese Quellen werden auch
fiir die Darstellung der Methoden zur Mehrzieloptimierung in diesem Abschnitt
verwendet.

4.2.1 Pareto-Optimalitat

Ein Mehrzieloptimierungsproblem mit n; Zielfunktionen fi,...,f, : R" = R
kann wie folgt formuliert werden:

mi}g{F(az)}, mit R := {x € R"|g(z) =0, ¢(z) < 0}.

re

Hierbei ist F' der Vektor der einzelnen Zielfunktionen:
F:R" = R"™,  F(z)=(fi(x),..., fa,(2)),

g:R" = R" ng, <n mogliche Gleichheitsnebenbedingungen und ¢ : R" — R"¢,
n. mogliche Ungleichheitsnebenbedingungen.

Um die Minimierung dieses Problems durchfiihren zu kénnen, muss es die M&g-
lichkeit geben, verschiedene Werte der nun vektorwertig gegebenen Zielfunktion
vergleichen zu konnen. Dazu wird eine Ordnungsrelation im R™ definiert.

Definition 4.1 (Ordnungsrelation)
Gegeben seien die Vektoren v,w € R"™. Dann ist v kleiner als w (v <, w), falls
v; < w; fiir alle i € {1,...,n;}. Die Relation <, ergibt sich analog.

Die folgende Definition beschreibt eine Beziehung zwischen Zielfunktionswerten,
die mit Hilfe der Ordnungsrelation ausgedriickt werden kann.

Definition 4.2 Der Vektor v € R™ wird durch den Vektor w € R™ dominiert,
falls w <, v und w # v gilt, d. h. es existiert ein j € {1,...,n4}, so dass w; < v;.

Mit Hilfe dieser partiellen Ordnung ist es nicht moglich, nur ein einzelnes Ergebnis
der Minimierung zu bestimmen, sondern es ergibt sich eine ganze Menge optimaler
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Kompromisse. Ein Punkt in dieser Menge zeichnet sich dadurch aus, dass die
Verbesserung einer der Zielfunktionen immer die Verschlechterung von anderen
Zielfunktionen nach sich zieht.

Definition 4.3 (Paretopunkt)
(i) Gegeben sei ein Mehrzieloptimierungsproblem. Der Punkt 2* heifst (global)

paretooptimal oder auch (globaler) Paretopunkt, falls kein y € R existiert,
so dass

F(y) # F(a") und F(y) <, F(a"). (4-12)

Das heifst der Punkt x* ist nicht dominiert von einem anderen Punkt y € R.

(ii) «* ist lokaler Paretopunkt, falls es eine Umgebung U(x*) C R von z* gibt,
so dass kein y € U(z*) existiert, so dass (4-12)) erfiillt ist.

Die Menge aller Paretopunkte wird Paretomenge genannt. Nach [Ehr05] heifst das
Bild der Paretomenge unter F' Paretofront.

Eine notwendige Bedingung fiir einen Paretopunkt ist durch den folgenden Satz
gegeben:

Satz 4.4 Es sei z* ein Paretopunkt eines MOP. Es sei weiterhin die Menge der
Vektoren {Vg;(z)li = 1,..., ng} linear unabhéngig. Dann existieren Vektoren
v € R™ mit v > 0,7=1,...,n;, und Z] 1% =1, A € R™ und g € R" mit
6, >0,i=1,...,n. so dass

ng
D uViila*) + Z AV (") + Z BV (4-13)
i=1

ﬁlcl( *) 0 l=1,.. Ne, (4—14)
g]( ") =0, J=1,...,ng, (4-15)
a(z*)<0,l=1,...,n.. (4-16)

Im unbeschrinkten Fall (n, = 0 und n. = 0, keine Nebenbedingungen vorhan-
den) beschreibt dieser Satz, dass es eine Linearkombination der Gradienten der
Zielfunktionen im Paretopunkt gibt, welche Null ergibt. Da (4=I3)) eine notwen-
dige Bedingung fiir Optimalitit darstellt, ist jeder Punkt, der ([=I3)) erfiillt, ein
Kandidat fiir einen paretooptimalen Punkt.

Definition 4.5 (Karush-Kuhn-Tucker-Bedingung)
Der Vektor x € R™ heift Karush-Kuhn-Tucker (KKT) Punkt, wenn v € R™,
A € R™ und 8 € R™ existieren, so dass (4=13)) - (@=16) erfiillt sind.

In [Kar39] und [KT51] sind weitere Informationen zur Herleitung dieser Bedin-
gung zu finden.
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4.2.2 Lésung des MOP

Ein Standardansatz fiir die Losung eines MOP ist die Umformung in ein skala-
res Optimierungsproblem. In diesem Fall kénnen die Standardmethoden fiir die
Optimierung einer skalaren Zielfunktion f : R®™ — R angewendet werden. Die
Transformation des MOP wird héufig durch eine Parametrierung der Zielfunktio-
nen mittels eines Parametrierungsvektors p = (p,. .., uy) durchgefiihrt (siehe
hierzu auch Bild @=T]). Durch jede einzelne Optimierung des transformierten Sys-
tems ldsst sich dann - im idealen Fall - ein paretooptimaler Punkt berechnen.

~
. .skalarcs =2 Pareto Optimum (1)
Optimierungsproblem A
Transformation J
MoP | D) :
durch N
Parametrierung )\ skalares .
Optimierungsproblem AN Pareto Optimum (N)
v

Bild /-1: Grundidee der Transformation eines MOP in ein skalares Optimie-
rungsproblem: Zundgchst wird eine durch p parametrisierbare skalare
Zielfunktion erstellt, und durch Variation von u ist es mdglich, ver-
schiedene paretooptimale Punkte zu berechnen.

Gewichtete Summe

Diese Methode wurde zuerst in [Zad63] beschrieben und ist ein sehr hiufig ver-
wendeter Ansatz zur Losung eines MOP. Es wird jeder einzelnen der n;, Zielfunk-
tionen ein Gewichtungsfaktor a; > 0 zugeordnet, wobei Y % a; = 1 gelten muss
(Normalisierung der Gewichtungsfaktoren). Somit wird dann anstatt des MOP
das folgende skalare Problem gelost

Der Transformationsvektor ist hier also der Gewichtungsvektor o = (avy, . . ., ay,, )T
und jeder Faktor entspricht der Bedeutung der jeweiligen Zielfunktion in der Op-
timierung. Durch eine Variation von « erhélt man eine Teilmenge aller pareto-

optimalen Punkte. Im Fall eines konvexen MOP kann gezeigt werden, dass alle
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paretooptimalen Punkte berechnet werden konnen, siehe [Mie99]. Auferdem gilt,
dass globale Minima von o F'(z) notwendig auch globale paretooptimale Punkte
des MOP sind. Entsprechendes gilt fiir lokale Minima.

In Bild ist die Methode der gewichteten Summe beispielhaft mit zwei Ziel-
funktionen grafisch dargestellt. Die Zielfunktion oy fi + as fo mit aq, s > 0 soll
minimiert werden: aq fi + ao fo = cpin. Dies ist eine allgemeine Geradengleichung,
und somit ist diejenige Gerade gesucht, die das Minimierungsproblem im zul&s-
sigen Bereich 16st. o = (ay, )T ist der Normalenvektor dieser Geraden.

A
f2

>
S

Bild /-2: Grafische Darstellung der Methode der gewichteten Summe: Jede Gera-
de entspricht einer Geradengleichung oy f1+aso fo = ¢. Die Minimierung
ergibt dann ein y, als Minimum im zuldssigen Bildbereich F(R).

Da die Zielfunktion durch dieses Verfahren beziiglich des Parameters a diskreti-
siert ist, kann bei der Losung des MOP nur eine endliche Anzahl an Paretopunk-
ten berechnet werden. Daher ist es wichtig, dass diese gleichméfig im Raum der
Zielfunktionen verteilt sind, um eine gute Approximation aller Paretopunkte zu
erhalten. Die Methode der gewichteten Summe erfiillt diese Anforderung nicht.
Eine dquidistante Diskretisierung von « erreicht bei den Losungen im Allgemei-
nen nur eine unregelmifige Diskretisierung der Paretopunkte, da der Abstand
zwischen verschiedenen berechneten Punkten im Bildraum nicht direkt gesteuert
werden kann.

Es besteht ein besonderer Zusammenhang zwischen der Methode der gewichteten
Summe und der KKT-Bedingung (sieche Definition [.5). Es sei

ga(r) = Z a; fi(x)
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eine skalare Funktion, wie sie auch als Zielfunktion fiir die Methode der gewich-
teten Summe gewéhlt werden kann. Dann gilt auch

Va(z) = zk: a;V fi(x). (4-17)

Somit sind die beiden folgenden Aussagen dquivalent

(i) z* ist Paretopunkt des MOP. Notwendig hierfiir ist die Erfiillung der KKT-
Bedingung, d. h. es existiert ein o mit Z?:o a; = 1, so dass

k
1=0

gilt.
(ii) z* ist KKT-Punkt des skalaren Problems mit Zielfunktion ) .*, o f;. Wie

in ([{=I7) dargestellt, ist fiir ein Minimum die KKT-Bedingung automatisch
erfiillt, denn es gilt

k
Vgo(z*)=0= Zaini(x*).
i=0

Man beachte hierbei, dass in (ii) keine Optimalititsbedingung zweiter Ordnung
der skalaren Zielfunktion g, iiberpriift wird. Eine solche Bedingung ist notwendig
dafiir, dass z* ein lokales Minimum von g, ist, aber nicht notwendig, damit x*
ein Pareto-Punkt des vektorwertigen Mehrzieloptimierungsproblems ist.

e-constraint Methode

Die e-constraint Methode beruht auf den Ideen von [Mar67] und [Hai73|. Hier-
bei wird eine einzelne Zielfunktion f;, j € {1,...,n;} ausgewéhlt, die minimiert
werden soll. Fiir alle anderen Zielfunktionen des MOP wird eine obere Schranke
fest gewdhlt, die nicht iiberschritten werden darf. Das skalare Ersatzproblem hat
dann die folgende Form

in f;(«)fiir einj € {1,...n4},
xe{%%%g)f](x) iir einj € {1,...n4}

wobei C. := {x € R"|fi(z) < &;Vie{1,...,n,} miti # j} gilt.

Hier wird die Transformation des MOP in ein skalares Problem durch die Wahl
der zu minimierenden Zielfunktion f; und der Grenzen ¢; fiir die anderen Ziel-
funktionen bestimmt. Eine Schwierigkeit dieser Methode ist es, die Schranken ¢;
geeignet zu wihlen, um sowohl zuldssige als auch sinnvolle Grenzen fiir das un-
tersuchte Problem zu erhalten. Wenn ¢; z. B. zu grofs gew#hlt wird, erhélt man
keine neuen Losungen, da es nicht zu einer weiteren Einschrinkung des Optimie-
rungsproblems kommt.
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Methode mit Gleichheitsnebenbedingungen

Die Methode mit Gleichheitsnebenbedingungen ist eine Erweiterung der e-con-
straint Methode und wurde zuerst in [Lin76] beschrieben. Auch hier wird eine feste
Zielfunktion fiir die Optimierung ausgewihlt. Die weiteren Zielfunktionen werden
fiir die Umwandlung in ein skalares Problem als Gleichheitsnebenbedingungen
formuliert. Es ergibt sich dadurch die folgende Beschreibung
i (x) fiireing € {1,...
:BEI(ang}lD) f] (.T) ur em j { ’ 7nk}7

mit D = {z € R"|f;(z) — ¢ = 0Vi € {1,...,n,} mit¢ # j}. Eine grafische
Interpretation des Verfahrens ist in Bild B=3] zu sehen.

2

S

Bild 4-3: Schematische Darstellung der Methode mit Gleichheitsnebenbedingun-
gen: Im Fall von € erhdlt man einen Paretopunkt. Bei 3 dagegen erhiilt
man einen durch andere Punkte dominierten Punkt. Durch die gewdhl-
ten Finschrinkungen ist es dem Minimierungsverfahren in diesem Fall
nicht maoglich einen globalen Paretopunkt zu berechnen.

Durch eine Variation der festen Zielfunktion f; und der Beschrinkungen ¢; konnen
prinzipiell alle paretooptimalen Punkte berechnet werden. Dabei ist die Pareto-
Optimalitdt aber nicht fiir jede Parameterkonfiguration gegeben, denn es sind
viele Méglichkeiten denkbar, bei denen es keine zuldssige Losung gibt.

4.3 Optimale Trajektorien am Doppelpendel

In diesem Abschnitt werden die Ergebnisse fiir die Berechnung von Trajektorien
des Doppelpendels vorgestellt. Die unter dynamischen Aspekten anspruchsvolls-
te Aufgabe ist es, das Pendel aus der unteren Ruhelage in die obere instabile
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Ruhelage zu iiberfiihren. Daher wird im Folgenden dieses Manover untersucht.
Prinzipiell kénnen aber auch beliebige andere Mandver berechnet werden, z. B.
Mangéver bei denen andere Ruhelagen als Start- bzw. Endpunkt gewihlt werden.

Bei der Berechnung dieser Losungen gibt es, wie schon erwihnt, verschiedene
Ziele. Zum einen ist es erstrebenswert, moglichst zeitoptimale Trajektorien zu
erhalten, zum anderen spielt auch der Energieverbrauch eine grofe Rolle. Fiir ein
reales technisches System sind dies gegenldufige Anforderungen, denn wenn ein
Mangver sehr schnell durchgefiihrt werden soll, wird im Allgemeinen der Energie-
aufwand hoch sein. Daher kann die beste Losung nur ein optimaler Kompromiss
— ein paretooptimaler Punkt (siehe Definition [£3) — sein. Von den Ergebnissen
dieser Arbeit ist zu erwarten, dass sie auf andere automatisierbare Prozesse, z. B.
in der Robotik, iibertragbar sind, um dort Anwendungen realisieren zu konnen,
die im gewiinschten Mafse sowohl ressourcenschonend als auch zeiteffizient sind.
Einen Prozess, der diese Anforderungen erfiillt, kann man als optimalen Prozess
bezeichnen. Dabei ist es moglich, auch andere Ziele bei der Auslegung zu beriick-
sichtigen. Ein weiteres Ziel, das bei der Optimierung beriicksichtigt werden kann,
ist z. B. die Regelgiite.

Zur Berechnung der Manover fiir das Doppelpendel werden die zuvor beschrie-
benen Grundlagen verwendet. Beim Aufstellen des Modells (siehe Abschnitt 223))
ergeben sich die stark nichtlinearen Bewegungsgleichungen des Doppelpendels.
Diese werden gebraucht, um mittels DMOC (siehe Abschnitt B.3)) ein diskretes,
endlich dimensionales Optimalsteuerungsproblem aufzustellen (siehe Abschnitt
B34). Mit dem gerade angefiihrten Wunsch der zeit- und energieoptimalen Lo-
sungen muss ein Mehrzieloptimierungproblem gelost werden. Dazu werden die
Methoden aus Abschnitt angewendet. Das Gesamtproblem kann dann mit
Hilfe von SQP-Verfahren (siehe Abschnitt LT)) numerisch gelost werden.

Die Ergebnisse dieses Vorgehens werden in den folgenden Abschnitten beschrie-
ben. Es wird zunéchst genauer auf die Implementierung und deren Besonderheiten
eingegangen. Anschlieffend werden einige der vielfaltigen Losungen dargestellt.
Auf die Pareto-Optimalitit und die Variabilitit der Manover wird anschliefend
besonderer Wert gelegt.

4.3.1 Umsetzung der Optimierung

Bei der Umsetzung der Optimalsteuerung, also der Implementierung des Optimie-
rungsverfahrens, existieren viele variable Parameter, die die Losung des Problems
stark beeinflussen konnen. Zum Beispiel bestimmt die Anzahl an Knotenpunk-
ten fiir die Diskretisierung einer Trajektorie, wie genau die diskrete numerische
Losung die exakte kontinuierliche Losung approximiert. Je mehr Knotenpunkte
gewahlt werden, desto besser ist diese Approximation. Mit steigender Knotenzahl
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vergrofert sich aber auch der Rechenaufwand, so dass immer ein Kompromiss zwi-
schen der Approximationsgiite der Losung und dem Aufwand der Berechnungen
eingegangen werden muss.

Die hier verwendeten Algorithmen 16sen skalare Optimierungsprobleme. Wenn
mehrere Ziele zu beriicksichtigen sind, konnen die in Abschnitt beschriebenen
Methoden der Skalarisierung verwendet werden. Dabei ergeben sich bei unter-
schiedlichen Methoden (z.B. gewichtete Summe oder skalare Optimierung mit
Gleichheitsnebenbedingungen) durchaus sehr unterschiedliche Bewegungsmuster
der Manover.

Um realistische Losungen fiir das technische System zu erhalten, miissen techni-
sche Beschriankungen (z.B. des Motors) beachtet werden. Diese konnen bei der
Optimierung fiir alle diskreten Zustdnde und auch den Steuereingang vorgegeben
werden. Eine Losung des Optimierungsproblems ist dann immer eine zuldssige
Losung fiir das reale System, da die Beschriankungen schon in der Berechnung
beriicksichtigt werden.

Als weiterer, sehr wichtiger Aspekt ist die Wahl des initial guess (Anfangsschét-
zung) fiir die Optimierung zu nennen. Das Optimierungsverfahren bendtigt fiir
alle Variablen (also die diskreten Zustinde und Eingéinge) einen Anfangswert,
bei dem der Algorithmus startet. Das Ergebnis der Optimierung héingt sehr stark
von der Wahl des initial guess ab. Vor allem die Lokalitit der Losung wird davon
beeinflusst. Nichtlineare Optimierungsverfahren, wie z. B. SQP-Verfahren, kon-
nen nicht sicherstellen, dass die Losung der Optimierung ein globales Optimum
darstellt. Wenn also der initial guess in der Nihe eines lokalen Optimums liegt,
ist es wahrscheinlich, dass der Optimierungsalgorithmus dorthin konvergiert und
nicht in das globale Optimum.

Insgesamt hangt die Losung der Optimierung sehr sensitiv von diversen Einstel-
lungen ab. Dabei besteht auch immer die Frage, ob das Problem iiberhaupt eine
zuldssige Losung besitzt und der Optimierer konvergiert. Bei einer zu restrikti-
ven Wahl der Zustandsbeschrinkungen kénnte z. B. auch keine zuldssige Losung
existieren. Das heifst, dass das gewiinschte Mandver physikalisch nicht umsetzbar
ist. Es bedarf somit Systemwissen und der Erfahrung des Programmierers, um
verniinftige Einstellungen fiir die Optimierung vorzugeben. Andererseits erhilt
man durch die Anwendung einer Optimierung auch zusitzliches Systemwissen,
z. B. in welchen Bereichen zuléssige bzw. optimale Losungen liegen.

Fiir die Berechnung der Losungen in den folgenden Abschnitten wurden meistens
zwischen 200 und 300 Knotenpunkte gew#hlt, so dass man in etwa eine Schritt-
weite von 0.01 s erreicht. Als technische Beschrinkungen sind die Leistungsda-
ten des Linearmotors zu beachten (siehe Abschnitt 2.2]). Als initial guess wird
— wenn nicht anders erwidhnt — eine zwischen Start- und Endpunkt linear inter-
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polierte Trajektorie gewihlt. Dies zeigte zufriedenstellende Ergebnisse beziiglich
Konvergenz und Form der Losungen.

In dieser Arbeit wird hauptséchlich die Software der Numerical Algorithms Group
(NAG) verwendet, welche unter anderem Optimierungsalgorithmen zur Minimie-
rung und Maximierung einer Funktion als C-Code bereitstellen. Dieser ldsst eine
deutlich schnellere Berechnung zu als z. B. die fmincon-Funktion in Matlab. Prin-
zipiell sind aber beide Ansétze gleichwertig.

Die NAG-Software hat den weiteren Vorteil, dass sie die Diinnbesetztheit des Pro-
grammierproblems ausnutzt. In der hier betrachteten Anwendung ist die Jacobi-
Matrix der Nebenbedingungen diinn besetzt. Dies ist durch die Struktur der
diskreten Bewegungsgleichungen bedingt, denn die k-te diskrete Bewegungsglei-
chung ist durch die Approximation mittels des Differenzenquotienten nur von
drei diskreten Zustdnden ¢ 1, qx und ¢z, abhingig. Es ergibt sich bei der Ab-
leitung nach allen Zustandsvariablen eine Tridiagonalstruktur der Jacobi-Matrix,
wodurch diese deutlich schneller berechnet werden kann als eine voll besetzte
Matrix. Dieses Vorgehen kann mit der speziellen Bibliothek e04ugc verwirklicht
werden. Die Dokumentation der Software kann unter [Nat13| eingesehen werden.

4.3.2 Losungstrajektorien fuir den Aufschwung des Doppelpe ndels

Durch den Einsatz von Mehrzieloptimierungsverfahren und dadurch, dass der
Optimierungsalgorithmus nur lokal optimale Lésungen berechnet, ergeben sich
mehrere verschiedene Losungstrajektorien fiir den Aufschwung des Doppelpen-
dels. Auferdem sind die Ergebnisse abhingig von vielen méglichen Parametern
bei der Implementierung des Optimalsteuerungsproblems und der Einstellung des
Optimierungsverfahrens (siehe Abschnitt L:3.]). Im Folgenden sollen einzelne L6-
sungen dargestellt werden. Es wurde jeweils die Methode der gewichteten Summe
verwendet, und bei den vier vorgestellten Losungen nimmt die Gewichtung der

Zeit zu und die des Steueraufwands (/- Z]kvzfol ui) ab. Dadurch werden die Lo-

sungen schneller, und der Steueraufwand nimmt zu.

Losung 1

Die Bewegung 1 ist die komplexeste der vier ausgewahlten Trajektorien, d. h. die
Pendelarme werden fiir den Aufschwung des Pendels stark bewegt, siehe Bild [4=4]
In diesem Fall ist die Gewichtung des Steueraufwands relativ hoch, sodass sich
eine Trajektorie ergibt, die wenig Steueraufwand bendétigt.

Bei der Bewegung schwingt das Pendel zuerst nach links, und in der Gegenbe-
wegung nach rechts wird der untere Arm eingeklappt. Im Weiteren bewegen sich
die beiden Pendelarme gegeneinander, sodass die Arme in Richtung der oberen
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Ruhelage gelangen. Der zweite Pendelarm macht dann noch eine zusétzliche kom-
plette Drehung, bis sich beide Pendelarme in der oberen Ruhelage befinden. Dies
ist notwendig, um den vorgegebenen Endzustand zu erreichen und fiihrt trotzdem
zu einem sehr giinstigen Mandver.

Die Bewegung 1 ist mit 3.49 s mit Abstand am langsamsten. Dafiir ist der Steu-
eraufwand mit 571 N2s im Vergleich am geringsten. Hier ist sehr gut der Zu-
sammenhang zwischen dem Steueraufwand und der Zeit fiir den Aufschwung zu
erkennen.

t €1[0,0.38] t €[0.39,0.77] t €[0.78,1.16]
t € [1.17,1.55] t € [1.56,1.94] t € [1.95,2.33]
B 1 RE
t € [2.34,2.72] t € [2.73,3.11] t € [3.12,3.49]

Bild /-4: Losung 1: Aufschwung des Doppelpendels auf einem Wagen mit Endzeit
ty = 3.49 s und Steueraufwand E = 571 N%s

Losung 2

Bei Bewegung 2 (siehe Bild =5 schwingen beide Pendelarme zuerst ziigig nach
links und verfahren dann mit dem erzeugten Schwung nach rechts, sodass sich
beide Pendelarme weiter nach oben bewegt. Dabei ist der dufere Pendelarm ,ein-
geklappt®, d. h. fast parallel zum inneren Pendelarm. Durch eine weitere Gegen-
bewegung nach links wird der Pendelarm dann in die obere Ruhelage gefiihrt und
dort stabilisiert. Diese Bewegung benétigt im Gegensatz zur ersten Bewegung
einen groferen Steueraufwand von 721 N?2s, ist dafiir aber auch mit 2.32 s mehr
als eine Sekunde schneller.
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t € [0,0.26] t €]0.27,0.52] t € 10.53,0.77]

‘
b

t €1]0.78,1.03] t € [1.04,1.29] t €[1.3,1.55]

t € [1.56,1.8] t € [1.81,2.06] t € [2.07,2.32]

|.~.
|.._.

Bild /-5: Losung 2: Aufschwung des Doppelpendels auf einem Wagen mit Endzeit
ty = 2.32 s und Steueraufwand E = 721 N%s

LOsung 3

Bei der Bewegung 3 (siehe Bild B=6)) fihrt das Pendel zunéchst relativ langsam
nach rechts und bringt dann beide Pendelarme gleichzeitig durch eine starke Be-
schleunigung nach links in Richtung der oberen Ruhelage. Oben muss es noch
durch kleinere Steuereingriffe stabilisiert und in den Endzustand in der oberen
Ruhelage verfahren werden. Diese schnelle Bewegung fiihrt zu einer kurzen Ma-
néverzeit von 2.05 s und einem relativ hohen Steueraufwand von 1593 N2s.

LOosung 4

Die Bewegung 4 (siehe Bild E=T) ist dhnlich zur Bewegung 3. Hier wurde die
Gewichtung der Zeit des Mandévers am groften gewihlt, sodass sich eine sehr
kurze Manoverzeit ergibt. Das gesamte Pendel wird auch hier durch eine schnelle
Bewegung nach links nach oben gezogen und dann dort stabilisiert. In diesem
Fall wird nur eine schwache Ausholbewegung nach rechts ausgefiihrt und der
Aufschwung dann in der Bewegung nach links durchgefiihrt. Es wirkt eine hohe
Beschleunigung, und dadurch entsteht ein hoher Steueraufwand. Die Bewegung 4
ist im Vergleich mit 1.38 s am schnellsten. Entsprechend benétigt sie mit 5402 N?s
aber den grofsten Steueraufwand.
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t € [1.37,1.59]

t €[0.23,0.45] t € 0.46,0.68]
t €10.92,1.13] t € [1.14,1.36]
t €[1.6,1.82] t € [1.83,2.05]

ty = 2.05 s und Steueraufwand E = 1593 N?s

—

~.<|

t € 0.47,0.61]

t € 0.93,1.07]

t €[0.16,0.3] t € [0.31,0.46]
t € [0.62,0.76] t €[0.77,0.92]
t € [1.08,1.22] t € [1.23,1.38

Bild /-6: Losung 3: Aufschwung des Doppelpendels auf einem Wagen mit Endzeit

Bild /-7 Losung 4: Aufschwung des Doppelpendels auf einem Wagen mit Endzeit

ty = 1.38 s und Steueraufwand E = 5402 N?s
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In Bild4-8|sind die Zielfunktionswerte der eben beschriebenen Trajektorien aufge-
tragen. Hierbei wird deutlich, dass diese Punkte eine Menge von nicht dominierten
Punkten bilden und somit optimale Kompromisse zwischen einem energieeffizien-
ten und zeitoptimalen Manover darstellen. Fiir die Ergebnisse dieser Optimierung
gibt es keine Methode, die sicherstellt, dass es sich wirklich um paretooptimale
Losungen handelt. Da aber im Folgenden sehr viele Losungen durch unterschied-
liche Ansétze berechnet werden, wird davon ausgegangen, dass die sich dadurch
ergebenden nicht dominierten Punkte als paretooptimal fiir das System angesehen
werden konnen. Die Zielfunktionswerte konnen prinzipiell durch eine Kurve ver-
bunden werden. Es ist zu erwarten, dass weitere paretooptimale Losungen dann
auf dieser Kurve liegen, was in Abschnitt genauer evaluiert wird.

———~
= 5000¢ @
2 4000
<
= 30001
E
5
T 2000¢ 1
g O
<]
= 1000t 1
- +Q
%005 1 15 2,25 3 35 4
Zeit [s
Bild 4-8: Paretofront mit den Zielfunktionswerten der vier ausgewdhlten Trajek-
torien

4.3.3 Ergebnisse am Prifstand des Doppelpendels

Bevor die berechneten optimalen Steuerstrategien am Priifstand erprobt werden
kénnen, miissen zunédchst modellbasierte Tests gemacht werden. Es wird eine
zeitvariante Regelung entlang der Solltrajektorie berechnet, um Abweichungen
vom Sollwert kompensieren zu konnen (siehe Abschnitt 2.4.2). Das gesamte Re-
gelungskonzept mit der Zwei-Freiheitsgrade-Struktur wird dann an dem Simu-
lationsmodell (siehe Abschnitt [Z4.]) untersucht. Dadurch ist es mdglich, schon
vor den ersten praktischen Tests einen moglichst guten Regler auszulegen. Hierzu
konnen die Gewichtungsmatrizen im LQR-Entwurf variiert werden, siehe (2-20]).
Da im Simulationsmodell alle wesentlichen dynamischen Effekte beriicksichtigt
werden, ist es moglich, von den modellbasierten Tests auf eine Durchfiihrung am
Priifstand zu schliefsen.
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Bild 4-9: Aufschwung des Doppelpendels auf einem Wagen am Priifstand (dar-
gestellt werden @1, po und y): Solltrajektorie (blave durchgezogene Li-
nie), Messwerte fiir das gesteuerte System (griine Strichpunktlinie) und
Messwerte fiir das gesteuerte System inklusive Regelung (rote gestrichel-
te Linie)

Die Bewegung 2 aus dem vorhergehenden Abschnitt konnte so als diejenige Tra-
jektorie identifiziert werden, bei der im Modell das Pendel durch den Reglereinsatz
am besten der Solltrajektorie folgt. Dies liegt unter anderem daran, dass schon
das Folgeverhalten ohne Regelung bei dieser Trajektorie als sehr gut bewertet
werden kann. Daher wurde diese Trajektorie fiir Tests am Priifstand ausgewihlt.
In Bild [4-9 sind die entsprechenden Ergebnisse dargestellt. Die durchgezogene
blaue Linie entspricht der nominalen Trajektorie und damit dem Sollverlauf der
Zustandsgrofen. Bei der gepunkteten griinen Linie wird nur die nominale Steue-
rung auf das Pendel aufgebracht, ohne die Regelung zu verwenden. Es wird deut-
lich, dass das Pendel auch allein durch diese Vorsteuerung der Solltrajektorie
gut folgt. Die Pendelarme konnen aber nicht in der oberen Ruhelage stabilisiert
werden. Dies ist dann durch den zusétzlichen Einsatz der Regelung entlang der
Trajektorie und in der Ruhelage gewédhrleistet und wird durch die gestrichelte
rote Linie dargestellt. Mit Hilfe der Zwei-Freiheitsgrade-Regelung ist es moglich,
dass das Pendel der berechneten Solltrajektorie sehr gut folgt. Nur beim Verlauf
der Wagenbewegung vy ist eine geringe Abweichung zu erkennen, die durch die Re-
aktion des Wagens auf Storungen zu erkléiren ist. Der Wagen muss hier durch eine
zusitzliche Ausweichbewegung das Pendel so ansteuern, dass eine Stabilisierung
in der oberen Ruhelage moglich ist.
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Die Ergebnisse aus den Abschnitten 3.2l und 3.3 wurden auch in [TKOBTTI]
veroffentlicht.

4.3.4 Pareto-Optimalitat von Losungen fur den Aufschwung

Bei der Berechnung von Trajektorien fiir den Aufschwung des Doppelpendels auf
einem Wagen durch den beschriebenen Ansatz mit optimaler Steuerung gibt es
viele Moglichkeiten, die Losung zu beeinflussen. Es konnen z. B. unterschiedliche
Ansitze fiir die Mehrzieloptimierung benutzt oder die technischen Einschrankun-
gen variiert werden. In diesem Abschnitt werden nun einige Vergleiche aufgestellt,
indem eine grofte Menge an einzelnen Optimierungen durchgefiihrt wird und dann
die Zielfunktionswerte der Manoverzeit und des Steueraufwands fiir das Mano-
ver ausgewertet werden. Die Ergebnisse werden dann beziiglich paretooptima-
ler Punkte bzw. Paretofronten analysiert. Diese Strukturen konnen in diversen
Anwendungsbeispielen verwendet werden, um weiterfithrende Fragestellungen zu
beantworten. Im Rahmen des Sonderforschungsbereichs (SFB) 614 - Selbstopti-
mierende Systeme des Maschinenbaus an der Universitit Paderborn werden Pare-
tofronten z. B. dazu verwendet, optimale Reglerparameter fiir verschiedene Stre-
ckenabschnitte eines autonom fahrenden Schienenfahrzeugs anzupassen [VTOS].
Eine andere Anwendung ist ein hierarchischer Mehrzieloptimierungsansatz, bei
dem das optimale Verhalten von unterlagerten Systemen mit Hilfe von Pareto-
fronten dargestellt wird [MAKTO08|. Dies bietet Vorteile fiir die anschliefende
Optimierung des Gesamtsystems. Zusammenfassend lésst sich fiir viele Anwen-
dungsbeispiele ein optimales Verhalten mit Hilfe von Paretofronten abstrahieren

und damit ist eine einfachere Auswahl bestimmter Systemkonfigurationen mog-
lich.

Eine wichtige Eigenschaft, die in den oben genannten Arbeiten gefordert wird, ist,
dass die Paretofronten keine Unstetigkeiten besitzen diirfen. Dies dient einer mdog-
lichst gleichméfigen Anpassung des Systemverhaltens beziiglich der ausgewéhlten
Zielfunktionen. Daher soll auch hier untersucht werden, in wie weit es moglich
ist, fiir den Aufschwung des Doppelpendels eine Paretofront zu bestimmen, die
keine Liicken oder Spriinge hat.

Im Folgenden werden sowohl die Mehrzieloptimierung mit gewichteter Summe als
auch mit Gleichheitsnebenbedingungen verwendet (siehe hierzu Abschnitt [4.2)).
Bei der zweiten Methode wird die Mandverzeit festgehalten und nur der Steuerauf-
wand fiir das Manover optimiert. Auferdem wird untersucht, welchen Einfluss die
Wegbegrenzung des Motors auf die Losungen besitzt, denn es besteht die Frage,
ob der reale Verfahrweg am Priifstand von maximal £0.55m ein einschrinkender
Faktor fiir die Losungen zum Aufschwung ist. Hierzu werden Optimierungen mit
einer Wegbegrenzung von £0.55m und £1.5m durchgefiihrt. Bei allen Optimie-
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rungen wird die Zeit auf das Intervall I = [0.8,4] s beschrinkt. Die berechne-
ten Trajektorien besitzen 200 Knotenpunkte, so dass sich eine Schrittweite von
0.004s < h <0.02s ergibt.

Ergebnisse der Optimierung

Zunichst wurde die Mehrzieloptimierung mit der Methode der gewichteten Sum-
me fiir verschiedene Wegbegrenzungen des Motors durchgefiihrt. Die Ergebnisse
sind in Bild[d=10lzu sehen. Es fallt auf, dass es mehrere Zweige von lokal optimalen
Losungen gibt, die jeweils einem unterschiedlichen Manover fiir den Aufschwung
entsprechen. Auflerdem befinden sich viele Losungen bei einer maximalen Zeit
von 4 s, besitzen aber einen hohen Steueraufwand, der deutlich macht, dass die-
se Losungen keinesfalls paretooptimale Punkte darstellen. Sie werden daher nicht
weiter betrachtet. Weiterhin ist zu erkennen, dass sich viele Losungen in mehreren
kleinen Gebieten haufen. Dies kann dadurch erklirt werden, dass es wahrschein-
lich ein Manover mit ungefihr diesem Zielfunktionswert gibt, das sich dynamisch
gut realisieren lésst, also z.B. einer moglichst einfachen Bewegung fiir die ent-
sprechende Mand&verzeit entspricht. Daher konvergiert die Optimierung hiufiger
in diesen Bereichen und man erhilt sich d4hnelnde Lésungen. An den Ergebnissen
sieht man auch, dass die Losungen mit der Wegbegrenzung von 1.5 m prinzipiell
etwas giinstiger sind. Dies ist zu erwarten, da durch den gréferen Weg dynami-
sche Effekte besser genutzt werden konnen, so dass der Aufschwung mit weniger
Steueraufwand durchgefiihrt werden kann.

Ausschnitt
1200 % Wegbegrenzung £0.55 m 2500y S S . ;
Wegbegrenzung +1.5m
1000 d i
= : : 2000k i SRR AT
28000t SRTPITPN TP : : ; ; ;
e} : : ; 1500** el L Lol
5 : : * : Wk e
S 6000 R EEEEE SECERTRITTOT ~ : : :
“5 * . . . . . i
g Bk % *: G1010/0 SERRRRRRRRRRRRIS SRS T
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Bild 4-10: Mehrzieloptimierung mit gewichteter Summe und wunterschiedlicher
Wegbegrenzung fiir den Motor (Wegbegrenzung +0.55m blaue Sterne,
Wegbegrenzung +1.5m grine Kreuze); rechts: Ausschnitt
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Bild /-11: Mehrzieloptimierung mit gewichteter Summe und unterschiedlicher
Wegbegrenzung fir den Motor (Wegbegrenzung +0.55m blaue Sterne,
Wegbegrenzung +1.5m griine Kreuze); Darstellung der nicht dominier-
ten Punkte; rechts: Ausschnitt

Aus dieser grofsen Menge von Punkten werden im zweiten Schritt diejenigen be-
stimmt, die einem optimalen Kompromiss zwischen den beiden Zielfunktionen
entsprechen — also die paretooptimalen Punkte. Dazu wird unter den Zielfunkti-
onswerten der einzelnen Losungen ein Nichtdominanztest durchgefiihrt. Punkte,
die nicht von anderen Punkten dominiert werden, sind Kandidaten fiir paretoop-
timale Punkte (siehe auch die Definitionen 2] und [£3)). Fiir jede einzelne Menge
von Punkten (Wegbegrenzung von £0.55m und £1.5m) werden die nicht domi-
nierten Punkte berechnet und sind in Bild @=TTl dargestellt. Es wird deutlich, dass
sehr viele Punkte durch andere dominiert werden und im Vergleich zu Bild @10
entfernt wurden. Somit sind alle entfernten Punkte nur lokal optimale Lésungen.
An einigen Stellen héufen sich die Punkte, und dazwischen gibt es grofe Liicken,
so dass sich keine stetige Menge an Zielfunktionswerten ergibt. Dies liegt daran,
dass durch die Mehrzieloptimierung mit gewichteter Summe keine gleichmafsi-
ge Verteilung der Zielfunktionswerte im Bildraum garantiert werden kann (siehe
auch Abschnitt [£.2)).

Als zweite Methode wird die Mehrzieloptimierung mit Gleichheitsnebenbedingun-
gen verwendet. Hier wird fiir jede Optimierung die Mandoverzeit festgelegt und nur
noch der Steueraufwand des Manovers (J = h- 3 n_ u3) optimiert. In Bild
sind die Ergebnisse dieser Optimierung dargestellt, und zwar auf der linken Seite
wieder alle Ergebnisse fiir verschiedene Wegbegrenzungen und rechts die daraus
resultierenden nicht dominierten Punkte. Durch diese Methode lassen sich offen-

sichtlich Ergebnisse mit einer deutlich besseren Verteilung im Bildraum erzeugen.
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% Wegbegrenzung £0.55m
Wegbegrenzung +1.5m

Steueraufwand [N2s] (logarithmisch)

Bild /-12: Links: Mehrzieloptimierung mit Gleichheitsnebenbedingungen und un-
terschiedlicher Wegbegrenzung fiir den Motor (Wegbegrenzung +0.55m
blaue Sterne, Wegbegrenzung +1.5m griine Kreise); rechts: Darstel-
lung der nicht-dominierten Punkte

Bei den schnellen Losungen um 1 s erhélt man eine annihernd stetige Verteilung
der nicht dominierten Punkte, was einer Paretofront mit den gewiinschten Ei-
genschaften nahe kommt. Aufterdem ist hier zu sehen, dass die Losungen mit
verschiedenen Wegbegrenzungen fast identisch sind. Es lésst sich schlussfolgern,
dass fiir die optimale Losung mit starker Zeitgewichtung ein Verfahrweg kleiner
als £0.55 m ausreicht, bzw. dass mit einem groferen Verfahrweg keine deutlich
besseren Losungen erzielt werden konnen. Bei den langsameren Losungen gibt
es eine deutlich grofere Streuung der Ergebnisse. Dies liegt daran, dass es hier
viele unterschiedliche dynamische Manover fiir den Aufschwung gibt. Im Gegen-
satz dazu ist bei den schnellen Losungen nur ein einziges Mandéver iiberhaupt in
der Lage, alle Randbedingungen des optimalen Steueurungsproblems zu erfiillen.
Bei den Losungen zwischen 3 s und 4 s sind die gilinstigsten Losungen bei einer
Optimierung mit Wegbegrenzung von +0.55 m entstanden, obwohl dies nicht un-
bedingt zu erwarten war. Anscheinend ergibt sich aber gerade durch die stirkere
Wegbegrenzung eine giinstigere lokale Losung. Die Menge der nicht dominierten
Punkte besitzt in diesem Fall weniger und kleinere Liicken und kommt daher dem
Ziel einer stetigen Paretofront fiir den Aufschwung des Doppelpendels auf einem
Wagen néher.

In Bild werden die beiden Verfahren zur Mehrzieloptimierung fiir Berech-
nungen mit einer Wegbegrenzung von £0.55m verglichen. Die Optimierung mit
gewichteter Summe besitzt deutlich mehr lokal optimale Losungen, aber insge-
samt ergidnzen sich beide Verfahren gut. Beim Einsatz von nur einer Methode
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10 ::w| *  Opt. mit Gleichheitsbed.
R Opt. mit gew. Summe

Steueraufwand [N2s] (logarithmisch)

Bild 4-153: Vergleich Optimierung mit Gleichheitsnebenbedingungen (blaue Ster-
ne) und Optimierung mit gewichteter Summe (grine Kreise) fir eine

Wegbegrenzung von £0.55 m; rechts: Darstellung der nicht-dominierten
Punkte

wire die Optimierung mit Gleichheitsnebenbedingungen zu bevorzugen, wenn
man gleichméfig verteilte Ergebnisse erreichen méchte. Hier ist bei den nicht do-
minierten Punkten schon die typische hyperbelartige Form einer Paretofront zu
erkennen. Die Optimierung mit gewichteter Summe besitzt dafiir mehr Freiheiten,
da sie nicht auf eine Manoverzeit festgelegt ist. Fiir erste Abschétzungen iiber die
moglichen Varianten der Losungen ist diese Methode daher zu empfehlen. Dabei
ldasst sich auch z.B. evaluieren, in welchem Bereich der Zielfunktionswerte mit
der Methode mit Gleichheitsnebenbedingungen zuséitzlich bzw. genauer gesucht
werden sollte.

Abschliefsend werden in Bild auf der linken Seite alle nicht dominierten
Punkte der verschiedenen Ansétze verglichen. Es wird deutlich, dass sich die Ver-
fahren gut ergénzen und sich eine Paretofront mit nur noch kleineren Liicken
ergibt. Es gibt keinen entscheidenden Unterschied fiir die Zielfunktionswerte bei
der unterschiedlichen Wahl der Wegbegrenzung. Somit lasst sich schliefen, dass
fiir einen optimalen Aufschwung des Doppelpendels auf einem Wagen kein grofse-
rer Verfahrweg vorteilhaft ist. Aus den hier gezeigten Punkten kénnen nun auch
die dominierten Punkte entfernt werden und auf der rechten Seite von Bild
ist das entsprechende Ergebnis dargestellt. Ein Ziel fiir weitere Untersuchungen
ist es, die Liicken und Spriinge innerhalb dieser Ergebnisse zu glétten.
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% Opt. mit GNB, Wegbeg. £0.55 m

Opt. mit gew. Summe, Wegbeg. +0.55 m
0O  Opt. mit GNB, Wegbeg. £1.5m

Opt. mit gew. Summe, Wegbeg. +1.5m

Nicht dominierte Punkte (gesamt)

Steueraufwand [N2s] (logarithmisch)

Zeit [s] Zeit [s]

Bild /-14: Links: Zusammenstellung aller nicht-dominierten Punkte: Optimie-
rung mit Gleichheitsnebenbedingungen und Wegbegrenzung £0.55m
(blaue Sterne), Optimierung mit gewichteter Summe und Wegbegren-
zung £0.55m (grine Kreise), Optimierung mit Gleichheitsnebenbedin-
gungen und Wegbegrenzung +£1.5m (rote Quadrate) und Optimierung
mit gewichteter Summe und Wegbegrenzung £1.5m (gelbe Kreuze);
rechts: nicht-dominierte Punkte aller Punkte auf der linken Seite
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4.3.5 Nachoptimierung

Es werden nun die paretooptimalen Punkte aus dem letzten Abschnitt ausge-
wahlt, um eine Nachoptimierung durchzufiihren. Das heift, dass diese Losungen
jeweils als neuer initial guess fiir die Optimierung genutzt werden und dabei aber
die Parameter der Mehrzieloptimierungsmethode mit Gleichheitsnebenbedingun-
gen verdndert werden. Dies wird z.B. durch eine Anpassung der Mandéverzeit
durchgefiihrt. Da in diesem Fall schon zu Beginn der Optimierung eine lokal op-
timale Losung vorliegt, konvergiert die Optimierung schnell, und die Lésung wird
durch eine geringe Verdnderung der Parameter nur leicht verindert. Es ergibt
sich ein Manover mit einer dhnlichen Bewegung, aber etwas anderen Zielfunkti-
onswerten.

%  Ausgangsituation
o Punkte zur Nachopt.
Nachopt. 1
O Nachopt. 2
Nachopt. 3

Steueraufwand [N2s] (logarithmisch)

Zeit [s] Zeit [s]

Bild 4-15: Links: Nachoptimierung ausgewdhlter Punkte mit Wegbegrenzung
0.55m: Ausgangssituation der Paretofront (blaue Sterne), ausgewdhl-
te Losungen fir den Start der Nachoptimierung (lila Rauten); rechts:
Darstellung der nicht-dominierten Punkte

In Bild werden die Ergebnisse der Nachoptimierung fiir drei ausgewéhlte
Fille dargestellt. Mit den violetten Rauten sind diejenigen Losungen markiert,
die fiir eine Nachoptimierung ausgew#hlt worden sind. Diese werden in der Opti-
mierung als neuer initial guess gesetzt, und die Mandéverzeit wird durch die Wahl
L Nachoptimierung = Uf,initial == €+ etwas variiert, wobei €, = 0.05 s ist. Die hieraus
berechnete Losung wird dann wieder fiir die nichste Nachoptimierung als initi-
al guess gewahlt, so dass diese aufeinander aufbauen. In Bild wird deutlich,
dass sich durch dieses Vorgehen verschiedene Zweige von Losungen ergeben. Jeder
dieser Zweige entspricht einer bestimmten Bewegungsform fiir den Aufschwung
des Doppelpendels. Es gibt bei jedem der ausgewéhlten Fille der Nachoptimie-
rung Stellen, an denen die einzelnen Zweige umspringen, und sich dadurch eine
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Zeit [s]

Bild 4-16: Variation einer Trajektorie durch Nachoptimierung: dargestellt werden
w1, w2 und y; die gelbe Trajektorie ist die Schnellste und die grine
Trajektorie ist die Langsamste

weitere neue Bewegung ergibt. In Bild sind die Verldufe der Zustinde von
verschiedenen Losungen des mittleren roten bzw. mit Quadraten gekennzeichne-
ten Zweiges dargestellt. Hier wird deutlich, dass es sich immer um die gleiche
Aufschwungbewegung handelt, diese aber unterschiedlich lange dauert. Entspre-
chend &ndert sich auch der Steueraufwand; er wird also bei einem Mano6ver mit
lingerer Zeit geringer. Wenn nun eine Auswahl einer Losung fiir das dynamische
System gemacht werden muss, ist es durch diesen Ansatz moglich, die Bewegung
fast beliebig beziiglich der Aufschwungzeit und dem Steueraufwand anzupassen.

Nachdem eine solche Nachoptimierung fiir alle urspriinglich ausgew#hlten pareto-
optimalen Punkte fiir das gesamte Zeitintervall durchgefiihrt wurde und anschlie-
flend die dominierten Punkte entfernt sind, ergibt sich eine neue Paretofront, die
in Bild (rechts) dargestellt ist. Diese Paretofront besteht aus drei Zweigen,
die durch die Nachoptimierung entstanden sind, und diese einzelnen Zweige ent-
sprechen jeweils einer Bewegungsform, die in einem bestimmten Zeitintervall die
optimale Losung darstellt. Die einzelnen Zweige gehen ineinander iiber und bilden
so eine stetige Paretofront im Bildraum der Zielfunktionen. Dabei ist hier mit der
stetigen Paretofront eine sehr feine Approximation eines kontinuierlichen Objekts
gemeint, denn sie besteht weiterhin aus vielen diskreten Punkten im Bildraum.

Zusammenfassend ist es gelungen mit Hilfe von verschiedenen Ansétzen der Mehr-
zieloptimierung und einer gezielten Nachoptimierung von verschiedenen Losun-
gen eine stetige Paretofront zu berechnen. Aus dieser Paretofront lasst sich auch
zusitzliches Systemverstindnis ziehen. Fiir den Aufschwung des Doppelpendels



Optimale Steuerungstrajektorien fiir das Mehrfachpendel 101

ergeben sich drei Losungen, die jeweils in einem Zeitintervall die optimale Bewe-
gung darstellen. Sie gehen ineinander iiber, so dass sich eine Paretofront mit der
gewiinschten stetigen Form ergibt.

Dieses Vorgehen ist auch fiir andere Systeme mit dhnlichem dynamischen Ver-
halten anwendbar, so dass man Paretofronten erhilt, die Informationen iiber das
Systemverhalten enthalten oder fiir weitere Aufgaben verwendet werden konnen.
Auch die Moglichkeit, eine optimale Trajektorie durch eine Nachoptimierung fast
beliebig an die gewiinschten Zielfunktionswerte anpassen zu kdnnen, bietet einen
Vorteil gegeniiber anderen Methoden zur Bestimmung von Steuerungen fiir dy-
namische Systeme.

Anwendung der Nachoptimierung am Prufstand

Die nachoptimierten Trajektorien konnen auch am Priifstand umgesetzt werden.
Die Ergebnisse dieser Untersuchung sind in Bild 4-17] dargestellt. Oben werden
unterschiedliche Zielfunktionswerte der nachoptimierten Trajektorie dargestellt,
die auch schon in Abschnitt [£.3.3] fiir die Umsetzung am Priifstand ausgew#hlt
wurde. Es sind dann drei der getesteten Trajektorien in rot (Kreuz), blau (Kreis)
und griin (Quadrat) gekennzeichnet. Die Verldufe der Winkel und des Wagens
sind zusétzlich in den entsprechenden Farben (bzw. durchgezogene, gepunkte-
te, gestrichelte Linie) dargestellt. Dabei wird deutlich, dass die rote Trajektorie
auch am Priifstand das schnellste Mandver fiir den Aufschwung ist und die griin
gestrichelte das Langsamste. Aufserdem wird auch der Effekt der Variation der
Trajektorien genauso wie in Bild deutlich.

Diese Variation der Trajektorien auch am Priifstand bietet eine hohe Adaptions-
moglichkeit der Manover fiir den Anwender. Aufterdem kann so getestet werden,
ob es eine spezielle Kombination der Zielfunktionen gibt, die z. B. eine gute Re-
gelbarkeit zeigt. Insgesamt konnte gezeigt werden, dass sich die Anpassung von
Trajektorien fiir den Aufschwung des Doppelpendels durch Nachoptimierung so-
wohl fiir die Ergebnisse der Optimierung als auch fiir die Umsetzung am Priifstand
als vorteilhaft erwiesen hat.

4.4 Optimale Trajektorien am Dreifachpendel

Im Folgenden wird fiir das Dreifachpendel auf einem Wagen die Anwendung der
DMOC Methode analog zum Doppelpendel auf einem Wagen durchgefiihrt. Es
lassen sich ebenfalls optimale Steuerungsmandver fiir dieses System bestimmen.
Es ist allerdings zu beriicksichtigen, dass das Dreifachpendel eine komplexere Dy-
namik besitzt und schon allein durch die gréfsere Anzahl der Zustandsgrofsen die
Optimierung aufwindiger wird. Auch fiir das Dreifachpendel ist der Fahrweg des
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Bild /-17- Umsetzung von nachoptimierten Trajektorien am Prifstand: Die Far-
ben der Verldufe von @1, ws und y entsprechen der Kennzeichnung
der Paretofront; Durchlauf 1: rotes Kreuz - rote durchgezogene Linie,

Durchlauf 2: blauer Kreis - blaue gepunktete Linie, Durchlauf 3: griines
Quadrat - grine gestrichelte Linie
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Motors auf £0.55m beschrinkt, um die realen Beschréinkungen zu beriicksichti-
gen. Durch die Ergebnisse der optimalen Steuerung wird gezeigt, dass der Ver-
fahrweg auch fiir dieses System ausreichend ist. Alle hier vorgestellten Losungen
sind mit der Methode der gewichteten Summe berechnet worden. Im Folgenden
werden nun einige dieser Losungen fiir das Dreifachpendel vorgestellt.

4.4.1 Losungstrajektorien fur den Aufschwung des Dreifach pendels

Auch fiir das Dreifachpendel ergeben sich durch die Mehrzieloptimierung mehrere
Losungen fiir den Aufschwung. Bei den Ergebnissen ist auffillig, dass bei vielen
Losungen die obere Ruhelage erst durch einen Ubergang durch eine der ande-
ren Ruhelagen erreicht wird. Dabei kommt das Pendel im Verlauf der Bewegung
nicht zur Ruhe, sondern nimmt nur die entsprechenden Lagekoordinaten ein. Die
hier angesprochenen Ruhelagen werden nicht exakt durchlaufen, sind aber in den
folgenden Bildern gut zu erkennen. Das Durchlaufen der Ruhelagen ist dadurch
zu erklidren, dass fiir den Aufschwung nur ein kurzer Verfahrweg zur Verfiigung
steht und das dem Dreifachpendel nach und nach iiber die anderen Ruhelagen
immer mehr Energie zugefiihrt wird. Durch den Ubergang kann die potentielle
Energie immer weiter erhoht werden. Fiir die bessere Beschreibung der Bewegun-
gen sind in Bild die Ruhelagen vorgestellt, die innerhalb der Losungen fiir
den Aufschwung auftauchen werden.

1141

® @ 6 6

Bild /-18: Verschiedene Ruhelagen des Dreifachpendels

LOosung 1

Die erste Losung aus Bild beschreibt mit 2.52 s den schnellsten der ausge-
wahlten Aufschwiinge des Dreifachpendels auf einem Wagen, und daher ist auch
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der Steueraufwand mit £ = 2404 N%2s am hochsten. Die Bewegung besteht aus
zwei Teilen: Zunachst wird das Pendel in die Position der Ruhelage 2 aus Bild 4-18
gebracht, um sich dann weiter in die obere Ruhelage zu bewegen. Im ersten Teil
der Bewegung wird das Pendel also ,zusammengeklappt® und streckt sich dann
wieder in Richtung der oberen Ruhelage.

Y5 o) |+
t€[0.00,0.21]s  t€[0.21,0.42)s ¢ [0.42,0.63]s t € [0.63,0.84]s
= —3 £
te[0.84,1.04)s t€[1.04,1.25]s te[1.25,1.46]s te[1.46,1.67)s
LA
te[1.67,1.88)s  te[1.88,2.00s te[2.00,2.30]s te[2.30,2.51]s

Bild /-19: Losung 1: Aufschwung des Dreifachpendels auf einem Wagen mit End-
zeit ty = 2.51 s und Steueraufwand E = 2404 N?s

LOosung 2

In der zweiten Losung (siehe Bild [4=20]) sind dann sogar die Positionen von zwei
verschiedenen Ruhelagen wihrend des Mandvers zu erkennen. Zunéchst die Be-
wegung zur Ruhelage drei und von dort zur Ruhelage vier. Im letzten Schritt
muss nur noch der duflerste Pendelarm ,,ausgeklappt” werden, und das Dreifach-
pendel befindet sich in der oberen Ruhelage. Diese Bewegung dauert 2.6 s bei
einem Steueraufwand von E = 2123 N?s.

LOosung 3

In Bewegung 3 (siehe Bild [4=2T]) wird im ersten Teil die Position der Ruhelage drei
erzeugt und im zweiten Teil des Aufschwungs werden dann alle drei Pendelarme
in die obere Ruhelage gebracht. Dieses Mandver dauert 2.79 s und hat einen
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t€1[0.00,0.22]s ¢ €[0.22,0.43]s  t€[0.43,0.65]s t € [0.65,0.87]s

| || | | £

t€[0.87,1.08]s t€[1.08,1.30]s t€[1.30,1.52]s t€[1.52,1.73]s

L L] L]

te[1.73,1.95]s t€[1.95,2.17]s te€[2.17,2.38]s t < [2.38,2.60]s

Bild /-20. Losung 2: Aufschwung des Dreifachpendels auf einem Wagen mit End-
zeit t; = 2.6 s und Steueraufwand E = 2123 N?s

Steueraufwand von E = 1117 N?s. Ahnliche Mandver haben sich auch schon
beim Doppelpendel ergeben, wenn man eine Bewegung vorgegeben hat, die die
entsprechende Ruhelage beinhaltet. Hier, beim Dreifachpendel, ergibt sich diese
komplexe Bewegung automatisch dadurch, dass fiir ein direktes Mandver nicht
geniigend Verfahrweg zur Verfiigung steht. Abhilfe von dieser Problematik schafft
dann Lésung 5.

Losung 4

Die vierte Bewegung (siehe Bild [A=22]) ist im Prinzip dhnlich zu Bewegung 3. Hier
wird zunéchst die Position der Ruhelage 1 angefahren und aus dieser heraus das
Pendel im zweiten Teil des Aufschwungs in die obere Ruhelage gebracht. Dieses
Mandver dauert 3.13 s und bendtigt einen Steueraufwand von 938 N2s.

LOosung 5

Durch Lésung 5 wird untersucht, ob ein direkter Aufschwung des Dreifachpendels
moglich ist, wenn man den zur Verfiigung stehenden Verfahrweg in eine Richtung
komplett ausnutzt. Dazu ist der Anfangszustand jetzt ganz rechts gew#hlt, sodass
dem Motor insgesamt 1.1 m zur Verfiigung stehen. In Bild [A=23] ist zu erkennen,
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t€[1.86,2.10]s ¢ €[2.10,2.33]s  t€[2.33,2.56]s tc[2.56,2.79]s

Bild 4-21: Lésung 3: Aufschwung des Dreifachpendels auf einem Wagen mit End-
zeit t; = 2.79 s und Steueraufwand E = 1117 N?s

T YIS ||

t€[0.00,0.26]s t€[0.26,0.52]s t€[0.52,0.78]s  t€[0.78,1.04]s

a—| o= | o | | =

te[1.04,131]s te[1.31,1.57]s te[1.57,1.83]s € [1.83,2.09]s

AL L

t€[2.09,2.35]s tc[2.35261]s tc[261,2.87)s tc[2.87,3.13]s

Bild 4-22: Losung 4: Aufschwung des Dreifachpendels auf einem Wagen mit End-
zeit ty = 3.13 s und Steueraufwand E = 939 N2s
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dass durch das Nutzen des gesamten Weges ein direkter Aufschwung in die obere
Ruhelage moglich ist. Dieses Mandver dauert 2.43 s bei einem Steueraufwand
von F = 2865 N2s. Es besteht also die Moglichkeit, durch eine Veriinderung der
Randwerte weitere Arten von Bewegungen fiir den Aufschwung zu erhalten. Auch
dieses Manover dhnelt dem direkten Aufschwung fiir das Doppelpendel (siehe Bild

=),

17 £ 2

+€1[0.00,0.20]s ¢ €[0.20,0.41]s ¢ €[0.41,0.61]s t€[0.61,0.81]s

t€[0.81,1.01]s te€[1.01,1.22]s t€[1.22,1.42)s t€[1.42,1.62]s

VAR SR

t€[1.62,1.82]s te[1.82,2.03]s te[2.03,2.23]s tc[2.23,2.43]s

Bild /-23: Losung 5: Aufschwung des Dreifachpendels auf einem Wagen mit End-
zeit tp = 2.43 s und Steueraufwand E = 2865 N?s

Fiir die hier beschriebenen Mandver kann, wie auch fiir das Doppelpendel, eine
Nachoptimierung durchgefiihrt werden, siehe Abschnitt [4.3.5] Die Nachoptimie-
rung wurde hier auch mittels der Methode der gewichteten Summe durchgefiihrt.
Dabei wurde darauf geachtet, fiir jeden Fall die Nachoptimierungen mit den glei-
chen Gewichtungsfaktoren durchzufiihren, um vergleichbare Ergebnisse zu be-
kommen. Die entsprechenden Zielfunktionswerte sind in Bild dargestellt.
Die Zielfunktionswerte der hier beschriebenen Mano6ver sind dabei jeweils durch
Kreise gekennzeichnet. Fiir jede einzelne Nachoptimierung bildet sich ein Zweig
an Zielfunktionswerten. Insgesamt haben die Losungen 3 und 4 den geringsten
Steueraufwand, dauern aber unterschiedlich lang. Aufterdem zeigen die Losungen
1 und 2 fast identische Werte der Zielfunktion. Beim genauen Vergleich dieser
Losungen wird deutlich, dass sie sich nur sehr wenig unterscheiden, was die dhnli-
chen Zielfunktionswerte erklart. Der Steueraufwand bei Losung 5 ist am hochsten.
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Dies liegt daran, dass hier das Pendel direkt in einer schnellen Bewegung in die
obere Ruhelage befordert wird. Dass ein solches Mandver besonders hohe Kosten
verursacht, wurde auch schon beim Doppelpendel deutlich.

3800 S ¥  Losung 1
* Lésung 2
_ 3000} - ....... q .. . % Losung 3
= : Lésung 4
E 2500p = o [0 Losung 5
E 2000 ........... "'_A._ ..........
A g
é 1500} - ........... XA ..........
1000 ........... % ......
2 2.5 3
Zeit [s]

Bild 4-24: Zielfunktionswerte fiir verschiedene Mandver fiir den Aufschwung des
Dreifachpendels mit Variation durch Nachoptimierung; die vorherge-
hend beschriebenen Mandver werden jeweils als Ausgangspunkte ver-
wendet und sind durch Kreise gekennzeichnet, die jeweiligen Farben
stellen Losungen mit derselben Ausgangslosung dar

4.4.2 Ergebnisse am Prifstand des Dreifachpendels

Fiir die Umsetzung von Trajektorien am Priifstand des Dreifachpendels wird ana-
log zum Doppelpendel auf einem Wagen vorgegangen, sieche Abschnitt [£.3.3 Zu-
nichst wird mit Hilfe der Simulationsumgebung fiir das Dreifachpendel die Funk-
tionalitat des LQR~Ansatzes als Regelung getestet. Wenn anschliefsend sowohl die
Steuerung als auch die Regelung im Rahmen der Zwei-Freiheitsgrade-Struktur
geeignet bestimmt sind, kann das Mandver am Priifstand getestet werden. In
Bild ist ein erfolgreicher Aufschwung dargestellt. Dabei wird hier nur der
Aufschwung aus der unteren Ruhelage in die Ruhelage 1 aus Bild durch-
gefiihrt. Dies liegt daran, dass der Aufbau des Dreifachpendels extrem stark auf
Storungen und Ungenauigkeiten reagiert. Daher ist der eigentliche Aufschwung
des Pendels in die obere Ruhelage am derzeit zur Verfiigung stehenden Priifstand
nicht umsetzbar. An den Ergebnissen wird dieser Effekt ebenfalls deutlich: Es ist
moglich, die Pendelarme in die gewiinschte Ruhelage zu steuern, dabei kommt
es aber zu groferen Abweichungen in den Winkellagen und beim Motor. Auch
lasst sich das Pendel in der Ruhelage nicht so ruhig regeln, wie dies z. B. beim
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Doppelpendel der Fall war.
Fiir die weitergehende Umsetzung von Manévern am Dreifachpendel miissen diese
Stabilitdtsprobleme behoben werden.

nominale Trajektorie

—25 geregelte Trajektorie
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Bild 4-25: Aufschwung des Dreifachpendels am Priifstand in Ruhelage 1 (siehe
Bild[J-18); dargestellt werden 1, w2, @3 und y jeweils fir die berech-
nete nominale Trajektorie (blaue durchgezogene Linie) und die gemes-
sene geregelte Trajektorie am Priifstand (grine gestrichelte Linie)

4.5 Vergleich von Methoden fiir die Berechnung des
Aufschwungs am Pendel

In dieser Arbeit werden optimale Steuerung und Optimierungsverfahren fiir die
Berechnung von Steuerungen fiir das Mehrfachpendel verwendet. Dabei ergeben
sich durch den Einsatz von Mehrzieloptimierung viele verschiedene Lésungen, die
teilweise ein sehr unterschiedliches dynamisches Verhalten zeigen. Dies ist insofern
ein gewiinschtes Ergebnis, da es die M6glichkeit bietet, zwischen den Lésungen ei-
ne Auswahl zu treffen. Wenn dieser Ansatz auf ein allgemeines technisches System
angewendet wird, besteht die Moglichkeit, unter Einsatz von zusétzlichem Wissen
iiber das System die beste Losung auszuwihlen. Oder man nutzt die Ergebnisse
der Optimierung, um das Systemverhalten an verschiedene dufere Umstéinde an-
zupassen. Dabei stehen dann die Losungen zur Auswahl, deren Zielfunktionswerte
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sich auf der Paretofront befinden.

Es existieren aber auch weitere Verfahren fiir die Berechnung und Durchfiihrung
eines Aufschwungs des Pendels (siehe auch Abschnitt 21.2)). Im Folgenden wer-
den zwei dieser Ansitze genauer vorgestellt, und es wird auf die Unterschiede
zum Vorgehen in der vorliegenden Arbeit eingegangen.

In [GTZ07] wird ein vergleichbarer Ansatz mit einer Zwei-Freiheitsgrade-Struktur
fiir den Aufschwung des Pendels verwendet. Auch hier ist somit der Aufschwung
mittels Vorsteuerung und zusétzlicher Regelung bestimmt. Dabei besteht der
Hauptunterschied dieses Ansatzes in der Berechnung der Steuerung. Fiir die Mo-
dellierung des Aufschwungs des Pendels wird ein iiberbestimmtes Randwertpro-
blem aufgestellt. Die fehlenden Freiheitsgrade werden anschlieffend durch eine
Ansatzfunktion mit freien Parametern ergénzt. Diese besteht z. B. aus trigono-
metrischen Funktionen

5
7t kmt
y(tap) =ap+ajcos | — +Zpk_1cos — .
ty k=2 ty

Hierbei ist p = (p1,...,ps4) der Vektor der freien Parameter und ) (¢, p) die pa-
rameterabhéingige Ansatzfunktion. Die Parameter ag und a; koénnen durch die
Auswertung der Randbedingungen bestimmt werden. Die Losung eines solchen
Randwertproblems kann dann fiir eine feste Mandverzeit ¢; mit numerischen
Standardverfahren (z.B. bup4c in Matlab) erfolgen. Auch hier lassen sich somit
Trajektorien mit unterschiedlicher Endzeit t; bestimmen, welche unterschiedliche
Manéver des Pendels beschreiben.

Fiir die Umsetzung am Priifstand wird ein Mandver ausgewihlt, welches einen
guten Kompromiss der maximalen Auslenkung der Trajektorien fiir y(t), y(t), #(t)
beziiglich der Beschriankungen darstellt. Fiir die Regelung wird entsprechend der
Zwei-Freiheitsgrade Struktur ein linearer Ansatz entlang der nominalen Trajek-
torie verwendet.

Bei diesem Vorgehen zur Bestimmung einer Aufschwungtrajektorie fiir das Pendel
besteht die Problematik, dass die Existenz einer Losung fiir verschiedene Ansatz-
funktionen nicht gesichert ist. Man bendétigt vorausgehendes Systemwissen iiber
die Beschaffenheit der Steuertrajektorie, um wirklich eine Losung zu erhalten.
In [GTZ07] wird davon ausgegangen, dass eine Ansatzfunktion mit trigonometri-
schen Funktionen gute Ergebnisse liefert, was aufgrund der Schwiinge des Pendels
sicherlich sinnvoll ist. Bei der Bestimmung der nominalen Trajektorie und Steue-
rung durch Optimierungsverfahren kann dagegen auf eine solche Einschriankung
verzichtet werden. Dies ldsst einen zusatzlichen Variantenreichtum und die Be-
wertung dieser Mandver beziiglich ihrer Zielfunktion zu.

Die Arbeit [ZROI] verfolgt dagegen einen anderen Ansatz fiir den Aufschwung
eines Doppelpendels auf einem Wagen. Es wird ein energie- und passivitiatsba-
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sierter Regler ausgelegt, um das Pendel in die Ndhe der Ruhelage zu bringen, und
dann wird in der Ndhe der oberen Ruhelage auf einen Regler umgeschaltet, der
auf einem linearisierten Modell basiert und die obere Ruhelage stabilisiert. Der
nichtlineare Regler besteht dabei aus zwei Teilen:

u=—k1y — koy + ks E ((mya1 + maly)p1 cos(p1) + maasps cos(ps)) .

Die ersten zwei Terme sorgen dafiir, dass die Position des Wagens und seine Ge-
schwindigkeit gegen Null konvergieren, und der zweite Term zwingt die Pendel,
das Energielevel der oberen Ruhelage anzunehmen, welches durch den Parameter
E in den Regler eingeht. Dieses Energielevel kann durch eine Mannigfaltigkeit
abhingig von den Zustandsgrofsen beschrieben werden und wirkt damit als ei-
ne zusitzlich Zwangsbedingung fiir das System, die durch die Regelung erfiillt
werden muss.

Simulationsergebnisse dieses Ansatzes zeigen, dass innerhalb von 30 s die obere
Ruhelage angefahren wird. Dabei kommt es zu einem nach und nach ausgefiihr-
ten Aufschwung des Pendels, bis es sich schliefslich in der Ruhelage befindet. Der
Vorteil dieser Methode ist, dass sie ohne Probleme auch auf starke Stérungen rea-
gieren kann, denn die Regelstrategie besitzt keinen definierten Anfangszustand.
Aus dieser Situation ergeben sich aber ebenfalls Nachteile, denn es kann keine
Aussage dariiber getroffen werden, wann die Ruhelage erreicht wird, und auch
nicht, in welchem Bereich sich die Zustandsgréfen wahrenddessen befinden. Fiir
viele technische Systeme scheidet eine Umsetzung mit einer solchen Methode
demnach aus.

Als Fazit kann festgehalten werden, dass der Ansatz der Berechnung des Auf-
schwungs fiir das Doppelpendel mit Hilfe von Optimalsteuerung und Optimie-
rungsverfahren viele Vorteile vereint. Mit dieser Methode ist man in der Lage,
eine Vielfalt an Trajektorien zu erzeugen und eine Bewertung beziiglich verschie-
dener Ziele vorzunehmen. Dabei ist sicher, welche Zustdnde angenommen werden,
da die nominale Steuerung und Trajektorie bekannt sind, und Stérungen werden
mit Hilfe einer zusétzlichen Regelung abgefangen.
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5 Strategien fur optimale Steuerung auf
invarianten Mannigfaltigkeiten

Ein héufig verwendetes Ziel fiir Man6ver von mechanischen Systemen besteht dar-
in, moglichst energieeffiziente Trajektorien zu finden. Hierfiir konnen Methoden
der optimalen Steuerung verwendet werden. Zusdtzlich konnen fiir dynamische
Systeme Strukturen identifiziert werden, auf denen eine kostenlose Bewegung in
eine Ruhelage moglich ist. Somit ist es denkbar, diese auch fiir ein optimales
Steuerungsmandéver zu verwenden. In diesem Kapitel wird der Einsatz von stabi-
len und instabilen invarianten Mannigfaltigkeiten (im Folgenden auch durch die
Bezeichnung (in)stabile Mannigfaltigkeiten zusammengefasst) fiir die optimale
Steuerung untersucht. Es werden sowohl der Einsatz von (in)stabilen Mannig-
faltigkeiten innerhalb einer optimalen Trajektorie, als auch die Ergebnisse dieses
neuen Ansatzes im Vergleich zum Standardansatz (siehe Kapitel ) evaluiert.

Dynamische Systeme besitzen (in)stabile Mannigfaltigkeiten, die (mehrdimensio-
nale) Teilmengen des Zustandsraums darstellen und eine Bewegung des Systems
ohne Steuereingriff aus einer bzw. in eine Ruhelage beschreiben. Eine (in)stabile
Mannigfaltigkeit ist invariant unter dem Fluss des Systems, was bedeutet, dass
das System bei einer Bewegung ohne dufseren Stelleingriff auf ihr verbleibt, wenn
der Anfangszustand auf der (in)stabilen Mannigfaltigkeit lag. Daher muss fiir
diese Bewegung keine Energie aufgebracht werden. In diesem Kapitel wird da-
her untersucht, wie die inhérente, natiirliche Dynamik des Systems, welche durch
die invariante Mannigfaltigkeit gegeben ist, dazu ausgenutzt werden kann opti-
male Steuerungen zu bestimmen. Bisher wurde eine solche Idee der optimalen
Steuerung auf invarianten Mannigfaltigkeiten im Kontext von mechatronischen
Systemen noch nicht fiir neuartige Methoden der Optimalsteuerung verwendet.

Eine interessante Anwendung von optimaler Steuerung auf invarianten Mannigfal-
tigkeiten entstammt aus dem Design von Raumfahrtmissionen, siehe [KLMRO0],
IMRO6], [MOBMO08| und [DOBPT09|. Da Satelliten nur begrenzten Brennstoff
fiir ihre Reise im Weltall besitzen, sollen nach Mdoglichkeit Strukturen gefunden
werden, die eine Bewegung ohne Energieaufwand ermoglichen. Nur so konnen die
langen Strecken im All iiberwunden werden. Es lassen sich hierfiir im Kraftfeld
der Planeten Mannigfaltigkeiten identifizieren, die eine solche Bewegung ohne
Energieaufwand ermdglichen. Es entstehen komplexe Trajektorien, und die Fort-
bewegung dauert lange, aber weit entfernte Ziele konnen mit sehr wenig Treibstoff
erreicht werden.
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Im Folgenden wird weiterhin der Aufschwung des Doppelpendels betrachtet. In
einem ersten Schritt wird das Modell vereinfacht und ein Doppelpendel ohne Wa-
gen, aber mit einem aktuierten Gelenk an der Aufhédngung verwendet (Pendubot,
siehe Kapitel 2)). Fiir dieses System soll der Einsatz von invarianten Mannigfal-
tigkeiten zur Bestimmung einer optimalen Steuerung zunichst getestet werden.
Das System besitzt nur zwei Freiheitsgrade und ist daher weniger komplex als das
Doppelpendel mit Wagen. Es wird spéter gezeigt, dass die Vorgehensweise dann
einfach erweitert werden kann. Auch hier wird die DMOC Methode fiir die Op-
timalsteuerung verwendet. Die Ergebnisse werden mit Losungen verglichen, die
bei der Berechnung mit einem Standardansatz (linear interpolierter initial guess)
bestimmt werden. Das Ziel dieses neuen Ansatzes ist es, die Moglichkeiten fiir
eine Steuerung und Regelung eines dynamischen Systems auf einer (in)stabilen
Mannigfaltigkeit zu evaluieren und etwaige dynamische Vorteile zu untersuchen.

In diesem Kapitel werden zunédchst in Abschnitt [5.1] die Grundlagen zu dynami-
schen Systemen beschrieben, die fiir das Verstdndnis des Konzepts von (in)stabilen
Mannigfaltigkeiten notwendig sind. Auferdem wird die numerische Methode Glo-
bal Analysis of Invariant Objects (GAIO) beschrieben, mit deren Hilfe diese Ob-
jekte berechnet werden. Anschlieflend wird in Abschnitt ein Ansatz fir die
optimale Steuerung des Doppelpendels auf (in)stabile Mannigfaltigkeiten vorge-
stellt und die dabei erzielten Ergebnisse gezeigt. In Abschnitt (3] wird dieser
Ansatz auf das Doppelpendel mit Wagen erweitert und in Abschnitt auch
am Priifstand angewendet. Die weiteren Abschnitte und beschéftigen sich
genauer mit dem Vergleich der optimalen Steuerung auf Mannigfaltigkeiten mit
dem Standardansatz zur Berechnung von Aufschwiingen fiir das Doppelpendel
bzw. mit weitergehenden Forschungsansitzen in diesem Bereich.

5.1 Grundlagen

In diesem Abschnitt werden die Grundlagen zur Untersuchung dynamischer Sys-
teme im Kontext der Berechnung von stabilen und instabilen Mannigfaltigkeiten
fiir Fixpunkte - also Ruhelagen - vorgestellt. Eine detailliertere Darstellung dy-
namischer Systeme und ihrer Eigenschaften sind zum Beispiel in [Pd82], [G.J09],
[GH83| und [KH95| zu finden. Die hier aufgefiithrten Grundlagen folgen ebenfalls
der Darstellung in diesen Quellen. Im Rahmen der Vorstellung der Grundlagen
zu dynamischen Systemen wird zusétzlich genauer auf die chaotische Dynamik
des Pendels eingegangen, die auch schon in den vorhergehenden Kapiteln dieser
Arbeit angesprochen wurde.

In einem zweiten Schritt wird anschliefend das Konzept der sogenannten stark
(in)stabilen Mannigfaltigkeit beschrieben. Dies ist eine invariante Teilmenge der
(in)stabilen Mannigfaltigkeit eines Fixpunkts.
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Auferdem soll in diesem Abschnitt gezeigt werden, wie stabile und instabile Man-
nigfaltigkeiten eines dynamischen Systems mit Hilfe des Tools GAIO numerisch
berechnet werden konnen. Weitere Informationen hierzu sind [D.J02] und [DEJOI]
zu entnehmen.

Abschliefsend werden die zusitzlich bendtigten Modelle des Pendels ohne Wa-
gen fiir dieses Kapitel und die Berechnung der (in)stabilen Mannigfaltigkeiten
vorgestellt.

5.1.1 Dynamische Systeme

Lineare Systeme

Zunachst wird das lineare System
t=Azx, xe€R" AeR™"

betrachtet.
Definition 5.1 Es sind

E* = span{v',...,v™}, der stabile Unterraum,
E" = span{u',...,u™}, der instabile Unterraum,
E° = span{w",...,w™}, der Zentrumsunterraum,
wobei {vt, ... v} {ut, ... u™} {w!, ... w"} die Eigenvektoren zu den Eigen-

werten mit negativem Realteil, positivem Realteil und Realteil 0 sind.
Bemerkung 5.2 (i) Es gilt n, + n, + n. = n.
(ii) Losungen in E* fallen exponentiell fiir ¢ — oo.

Losungen in E* fallen exponentiell fiir ¢ — —oo0.
Losungen in E° zeigen kein exponentielles Verhalten.

(iii) Der Fluss e heiRt hyperbolisch, falls n, = 0 gilt. Falls zudem n, = 0 bzw.
ns = 0 gilt, so heifit !4 Kontraktion bzw. Expansion.

Satz 5.3 Der Fluss e sei hyperbolisch. Dann existiert eine Zerlegung R® =
E* @ E" in invariante Unterrdume, so dass der induzierte Fluss auf E*® eine Kon-
traktion und der induzierte Fluss auf E" eine Expansion ist. Die Zerlegung ist
eindeutig.

Durch die Kenntnisse iiber die Unterrdume E°, E* und E° konnen somit Aussagen
iiber das dynamische Verhalten des betrachteten Systems gemacht werden.

Erweiterung auf nichtlineare Systeme

Diese Eigenschaften kénnen im Folgenden auch auf nichtlineare Systeme

&= f(z),
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mit f: R” — R", erweitert werden.

Die Taylorentwicklung von f im Fixpunkt x* kann durch
fla) = f(a") + Df(z")(x — ") + O]z — *|]?)

beschrieben werden. Somit erhélt man eine linearisierte Approximation des nicht-
linearen Systems durch Z = D f(z*)z mit z = x — z*.

Ein wichtiger Satz iiber das dynamische Verhalten von nichtlinearen Systemen
in der N#he der Ruhelage ist der Satz von Hartman-Grobmann (siehe [Pd82],
[GH83]). Er macht eine Aussage iiber das lokale Verhalten eines dynamischen
Systems in der Nihe eines hyperbolischen Fixpunkts. Das Verhalten des nichtli-
nearen Systems ist qualitativ gleich dem der Linearisierung in dieser Umgebung.
Daher kann z. B. zur Untersuchung der Stabilitdt solcher Fixpunkte die Lineari-
sierung des Systems verwendet werden, was im Folgenden auch fiir Betrachtungen
von (in)stabilen Mannigfaltigkeiten ausgenutzt wird.

Definition 5.4 Es sei B.(2*) eine Kugel in R” um den Fixpunkt 2* mit Radius
e. Dann heifien

W? = {z|®"(z) € B.(z*)fiirt > Ound lim ®'(z)

t—00

'},

W = {z|®"(x) € B.(z*) fiirt < 0und tlim ' (z) = z*},
——00

die lokale stabile und die lokale instabile Mannigfaltigkeit von z*, wobei ®° :

R™ — R"™ mit ®'(x) = ®(x,t) den Fluss des dynamischen Systems darstellt, fiir
den gilt £ (®(z,1))|,_, = f(®(x,7)), siehe [GHS3].

Diese Definition ist das Analogon der stabilen und instabilen Unterrdume fiir das
nichtlineare System & = f(z).

Satz 5.5 (Satz iiber die stabile Mannigfaltigkeit eines Fixpunktes)
Es sei z* ein hyperbolischer Fixpunkt von & = f(z). Dann existieren die lo-
kale stabile und instabile Mannigfaltigkeit W2(2*) und W*(z*), und sie besitzen
dieselben Dimensionen ng und n, wie die zu Z = D f(2*)z gehorenden stabilen
und instabilen Unterrdume E° und E*. Zudem sind die Tangentialriume von

W2 (z*) und W2(z*) in 2* E° und E".
Beweis. Siehe [Pd82]. O

Durch Erweiterung der lokalen (in)stabilen Mannigfaltigkeit ldsst sich auch die
globale (in)stabile Mannigfaltigkeit definieren. Mit Hilfe des Flusses wird die loka-
le stabile Mannigfaltigkeit riickwérts in der Zeit abgebildet, so dass man dann die
Menge aller Punkte erhiilt, deren Losungskurve fiir ¢ — oo asymptotisch gegen
den Fixpunkt x* konvergiert.
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Definition 5.6 Die globale stabile und instabile Mannigfaltigkeit sind durch

W (z®) =o' (W2 (x%),
wh(at) = ' (W (=)

>0
gegeben.

Weitere Informationen zu Mannigfaltigkeiten im Kontext der Differentialgeome-
trie sind im Anhang [A.T] zu finden.

Chaotische Dynamik

Beim passiven mathematischen Doppelpendel handelt es sich um ein chaotisches
System, siehe [SO06]. Diese Eigenschaft wird hier im Rahmen der Analyse dyna-
mischer Systeme kurz vorgestellt und diskutiert.

Im Folgenden soll ein Eindruck vermittelt werden, welche speziellen Eigenschaften
chaotische dynamische Systeme besitzen kdnnen. Dabei variiert die Definition fiir
Chaos bei verschiedenen Systemklassen, im Allgemeinen trifft aber mindestens
eine der folgenden Eigenschaften zu [Ber(1]:

e Die Trajektorien von chaotischen Systemen zeigen ein Zeitverhalten, das
sich komplizierter als stationér, periodisch oder quasiperiodisch verhalt.

e Die Bewegung ist sehr empfindlich beziiglich Verdnderungen in den An-
fangsbedingungen. Trajektorien, die nah beieinander starten, divergieren
exponentiell schnell. Diese Eigenschaft wird auch als sensitive Abhéngig-
keit vom Anfangswert bezeichnet.

e Die asymptotische Bewegung findet auf einem geometrisch komplexen Ob-
jekt statt (hdufig ein Fraktal). Dieses Objekt wird auch ,seltsamer Attrak-
tor* genannt. Beispiele hierfiir sind der Henon- und der Lorenz- Attraktor.

e Chaotische Trajektorien besitzen unendlich viele periodische Orbits.

e Im Zeitverlauf verschlingen sich die Bilder von zwei Teilmengen des Zu-
standsraums unter dem Fluss des Systems in komplizierter Weise.

Diese Eigenschaften vermitteln ein allgemeines Bild von den komplexen Eigen-
schaften eines chaotischen dynamischen Systems. Fiir genauere mathematische
Betrachtungen und ausfiihrliche Beispiele siehe [Ber01], [Pd82], [GHS3].

Die sensitive Abhéingigkeit vom Anfangswert ist eine zentrale Eigenschaft des
Doppelpendels und wird daher hier formal definiert.
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Definition 5.7 Es sei ®' der Fluss eines dynamischen Systems auf R™. Der
Fluss ®! besitzt sensitive Abhdingigkeit vom Anfangswert auf R™, falls ein ¢ > 0
mit der folgenden Eigenschaft existiert: Fiir jedes x € R™ und jede Umgebung U
von x existiert ein y € U und ein ¢ > 0, so dass | ®'(z) — (y)| > ¢ gilt.

Seltsame Attraktoren sind dariiber definiert, dass sie sensitive Abhingigkeit vom
Anfangswert besitzen.

Definition 5.8 FEine abgeschlossene invariante Menge D C R"™ ist topologisch
transitiv, falls ® einen dichten Orbit in D besitzt. Ein Attraktor ist eine Menge,
die topologisch transitiv und attraktiv ist.

Die chaotische Dynamik macht das Doppelpendel zu einem komplexen System.
Ein besonderes Kennzeichen ist dabei die sensitive Abhéngigkeit vom Anfangs-
wert [SGWY92|. Diese Eigenschaft bedeutet, dass sich kleine Abweichungen Ax(ty)
zwischen nahe zusammen liegenden Anfangsbedingungen exponentiell verstiarken

Ax(t) = Az(ty)e™,

wobei Axz(t) die Abweichung zwischen den Trajektorien beschreibt und A eine
positive Konstante ist. Fiir eine genauere Analyse dieser Eigenschaft werden im
Folgenden die beiden Trajektorien x(¢) und x5(t) fiir das Doppelpendel betrach-
tet. Dann kann das dynamische Verhalten durch

Ai = A- Ax + O(|Az|?),

mit einer linearen Matrix A approximiert werden, wobei Az(t) = x1(t) — o (t) ist.
Wenn die Pendelarme nahe zusammen beginnen, ist |Az| klein, und die Terme
héherer Ordnung kénnen vernachléssigt werden:

Ai = AAx. (5-1)
Die Losung dieses System lautet dann
Az(t) = Ax(ty)e,

und das Verhalten der Losung wird durch die Eigenwerte der Matrix A bestimmt.
Weitere Aussagen konnen dann entsprechend dem Realteil des groften Eigenwerts
getroffen werden:

e Ist er positiv, dann wachsen die Abweichungen Az im zeitlichen Verlauf
stark an. Das System (5=I)) ist instabil, und damit wird die Differenz zwi-
schen den Trajektorien x(t) und z5(t) immer grofer.

e Ist er negativ, verschwinden die Abweichungen zwischen den Trajektorien
und das System (B=1)) ist stabil. In diesem Fall bleibt die Differenz also klein.
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Nach diesen Ausfithrungen ist auch eine weitere Definition von chaotischem Ver-
halten iiber den sogenannten Lyapunov-Exponenten A moglich, die somit direkt
mit der sensitiven Abhéngigkeit vom Anfangswert zusammenhingt. Wenn A fiir
typische Anfangswerte positiv ist, dann ist das zugrunde liegende dynamische

System chaotisch [SGWY92].
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Bild 5-1: Trajektorien von nahe zusammen liegenden Anfangswerten: p1: blaue
durchgezogene Linie, ps: rote gestrichelte Linie; Anfangswerte oben:
) = [r+e m+e 05 05| und 2§ = [7+2 7+2 05 05];
Anfangswerte mitte: T) = [¢ € 0 0] und z) = [2¢ 2 0 0] mit
e = 0.1; unten: Differenz der Trajektorien: x} — x3 gelbe durchgezogene
Linie, Ty — T3 griine gestrichelte Linie

In Bild B=Tlist der Effekt der sensitiven Abhéngigkeit vom Anfangswert fiir ver-
schiedene Anfangswerte qualitativ dargestellt. An dieser Stelle wird ein mathema-
tisches Pendel mit Punktmassen und der unteren Ruhelage v = [0 0 0 O] be-
trachtet. Im oberen Teil des Bildes sind zwei Trajektorien mit den Anfangswerten
) =[r+e m+e 05 05] und 2 = [r+2 7+2¢ 0.5 0.5] mite = 0.1
dargestellt. Dabei ist (1 in blau und 5 in rot gestrichelt dargestellt. Die Differenz
des Anfangswertes betrigt somit nur ¢ = 0.1, aber im Verlauf der dargestellten
30 s bewegen sich die Zustinde weit auseinander. Ganz anders dazu verhilt es
sich in der mittleren Abbildung, in der die Anfangswerte 7 = [e e 0 0} und
79 =[2¢ 2¢ 0 0] gewihlt wurden. Auch hier betriigt die Differenz der Winkel



120 Kapitel 5

am Anfang ¢ = 0.1. Das Systemverhalten unterscheidet sich aber sehr stark, denn
bei dieser zweiten Simulation bleiben die Winkel nahe beieinander, was vor allem
auffillt, wenn man die Differenz der Winkel Ax betrachtet. Bei der Analyse der
Differenz zwischen den Trajektoren (Bild B=Il unten) wird deutlich, dass diese
fiir die erste Trajektorie wéchst, sodass hier der Lyapunov-Exponent positiv ist.
Bei der zweiten Trajektorie ist die Differenz dagegen (fast) null, sodass auch der
Lyapunov-Exponent null ist.

Die chaotische Dynamik wird beim Doppelpendel somit erst dann sichtbar, wenn
ausreichend viel Energie im System ist.

5.1.2 Mengenorientierte Berechnung von Mannigfaltigkeit en mit Hilfe
von GAIO

Nachdem jetzt die theoretischen Grundlagen von (in)stabilen Mannigfaltigkeiten
vorgestellt wurden, beschiftigt sich der folgende Abschnitt mit der Berechnung
dieser Mengen. Hierzu wird das Software-Tool GAIO (Global Analysis of Invariant
Objects, siehe [DEJ01], [DJ02]) verwendet, um die Mannigfaltigkeiten numerisch
zu bestimmen. In diesem Abschnitt werden die Motivation und das Vorgehen der
mengenorientierten Berechnung von Mannigfaltigkeiten mit diesem Tool erldu-
tert. Spater werden mit dieser Methode Mannigfaltigkeiten fiir das Doppelpendel
berechnet, um diese anschlieffend fiir das Losen eines Optimalsteuerungsproblems
zu verwenden.

Motivation

Mit Hilfe von GAIO lésst sich die globale Struktur eines dynamischen Systems
mengenorientiert erfassen. Hierbei wird nicht das Langzeitverhalten einer einzel-
nen Trajektorie untersucht, sondern es werden invariante Mengen betrachtet, da
sie das Verhalten des dynamischen Systems fiir beliebige Zeit angeben. Wenn die
Dynamik des Systems einen bestimmten Grad an Glattheit und Hyperbolizitéitﬂ
besitzt, konnen invariante Mannigfaltigkeiten bestimmt werden, die eine Einsicht
in die geometrische Struktur der Dynamik bieten.

Der mengenorientierte Ansatz, um z. B. globale Attraktoren oder invariante Men-
gen zu bestimmen, ist ein Unterteilungsalgorithmus. Die zentrale Idee ist es, die
invariante Menge im Zustandsraum mit Boxen zu iiberdecken. Anschlieffend wird
das dynamische Verhalten auf dieser Menge durch eine Markov-Kette approxi-
miert. Diese beinhaltet Ubergangswahrscheinlichkeiten zwischen Elementen der

LFiir die numerische Berechnung ist es notwendig, dass die Eigenwerte der Linearisierung
des dynamischen Systems im Fixpunkt nicht zu nahe an der imaginaren Achse liegen. In
diesem Fall zeigt das System namlich kein ausreichend starkes Kontraktions- bzw. Expan-
sionsverhalten.
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Box-Uberdeckung und beschreibt daher das dynamische Verhalten des Systems.
Durch eine Verfeinerung der Boxen und Analyse der Dynamik des Systems kon-
vergiert der Algorithmus gegen die invariante Menge.

Berechnung invarianter Mengen

Da es sich bei den (in)stabilen Mannigfaltigkeiten um invariante Mengen handelt,
soll dieser Begriff kurz erlautert werden:

Definition 5.9 (Invariante Menge)
Fiir eine stetige Abbildung 6 : R® — R™ ist A C R" eine invariante Menge, falls
O(A) =071 (A) = A ist.

Die grundsétzliche Idee, um eine invariante Menge mit GAIO zu berechnen, ist
es, diese mit Boxen zu iiberdecken und diese anschliefend rekursiv zu verfeinern.
Durch die passende Wahl von Boxen erhilt man eine méglichst exakte Uberde-
ckung der gesuchten invarianten Menge mit Boxen. Fiir die Umsetzung wird der
folgende Algorithms verwendet:

Algorithmus 5.10 (Unterteilungsalgorithmus fiir die Berechnung von
invarianten Mengen)

Beginne mit By = {Q}. Fiir £k = 1,2,... wird By aus Bj_; in zwei Schritten
berechnet:

(i) Unterteilung: Teile jede Box der aktuellen Menge Bjy_; in zwei kleinere
Boxen derselben Grofe.

(ii) Auswahl: Entferne diejenigen der verfeinerten Boxen, deren Urbild keine
der aktuellen verfeinerten Boxen schneidet. Die iibrigen Boxen bilden die
neue Sammlung von Mengen By.

In der GAIO-Software ist der zweite Schritt der Auswahl der Boxen wie folgt
umgesetzt: In jeder Box befindet sich eine Menge von Testpunkten. Die gesam-
te Menge der Testpunkte wird durch die betrachtete Systemdynamik mit einer
festgelegten Schrittweite vorwirts abgebildet und so lange mindestens einer der
dadurch entstehenden Bildpunkte in der Box B liegt, wird diese nicht entfernt.

Die Parameter, wie z. B. die Grofe der Boxen oder die Schrittweite miissen ent-
sprechend des vorliegenden dynamischen Systems angepasst werden, um eine gute
Approximation mit Boxen zu erhalten.

Invariante Mannigfaltigkeiten

Die mengenorientierten Methoden konnen auch angewendet werden, um eine
Uberdeckung von invarianten Mannigfaltigkeiten in einer vorgegebenen Box @
zu berechnen. Dabei ist das Vorgehen in diesem Fall dhnlich zur Berechnung
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von invarianten Mengen, wobei zusétzlich die Kenntnisse iiber die Dynamik von
(in)stabilen Mannigfaltigkeiten ausgenutzt wird.

Im Folgenden wird die instabile Mannigfaltigkeit eines hyperbolischen Fixpunkts
untersucht.

Auch bei diesem Algorithmus ist es das Ziel, die instabile Mannigfaltigkeit durch
Boxen zu iiberdecken und dadurch ihre geometrische Form im Zustandsraum zu
approximieren. Zunichst wird GAIO dazu verwendet, einen kleinen Bereich zu
identifizieren, der den Fixpunkt enthélt (falls dieser nicht bekannt ist). Dies kann
dadurch erreicht werden, dass die Boxen zyklisch unterteilt und jeweils diejenigen
entfernt werden, deren Bilder sich nicht selbst schneiden. Alle {ibrigen Boxen ent-
halten Fixpunkte. Anschliefsend wird auf eine kleine Box, die den Fixpunkt ent-
halt, Algorithmus [5.10] angewendet. Die so erhaltenen Boxen werden im néchsten
Schritt vorwérts abgebildet, und alle in dieser Iteration getroffenen Boxen werden
der Sammlung an Boxen hinzugefiigt. Die so entstandenen neuen Boxen werden
auch wieder vorwéarts abgebildet, und die Prozedur wird entsprechend wiederholt.
So erhilt man die Uberdeckung eines Teils der instabilen Mannigfaltigkeit.

Algorithmus 5.11 (Fortsetzungsalgorithmus zur Berechnung von
W (z))
(i) Initialisierung: Wende den Algorithmus auf eine kleine Box an, die
den hyperbolischen Fixpunkt enthélt.

Wiederhole den folgenden Schritt, bis keine weiteren Boxen der aktuellen
Sammlung hinzugefiigt werden.

(ii) Fortsetzung: Bilde die erhaltene Sammlung an Boxen vorwérts ab und
beobachte, welche anderen Boxen der gesamten unterteilten Boxen getroffen
werden. Diese Boxen werden der Sammlung hinzugefiigt.

B N

>

S

Bild 5-2: Schematische Darstellung des Fortsetzungsalgorithmus von GAIO fiir
die Berechnung von instabilen Mannigfaltigkeiten

In Bild wird das Vorgehen aus Punkt (ii) des Fortsetzungsalgorithmus sche-
matisch dargestellt. Der Algorithmus beginnt mit einer Anfangsbox, die den Fix-
punkt enthilt. Testpunkte aus dieser Box werden dann abgebildet, indem sie
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mit der Sytemdynamik einen meist kurzen Zeitschritt vorwirts integriert wer-
den. Anschliefsend werden alle Boxen, die von mindestens einem Testpunkt ge-
troffen worden sind, mit neuen Testpunkten gefiillt und der néchste Durchlauf
des Fortsetzungsalgorithmus wird gestartet. Der Algorithmus terminiert, wenn
der Teil der instabilen Mannigfaltigkeit in B vollstindig mit Boxen iiberdeckt
ist, d.h. es werden keine neuen Boxen von Testpunkten getroffen, oder wenn ei-
ne bestimmte Anzahl an Durchlaufen des Algorithmus durchgefiihrt worden ist.
Die Grofe der Boxen muss hier als ein Kompromiss zwischen Genauigkeit der
Boxiiberdeckung und dem Rechenaufwand gewihlt werden. Fiir die Integration
kann z.B. ein Runge-Kutta Verfahren hoherer Ordnung verwendet werden. Da
bei diesem Algorithmus jeweils nur sehr kurz integriert wird, ist die Methode ro-
bust beziiglich numerischen Fehlern (z. B. Drifts), die bei einer Integration iiber
einen lingeren Zeitraum haufig entstehen. Ein weiterer Vorteil von GAIO sind
die vielfaltigen Anwendungsmoglichkeiten auf Probleme mit einem Zustandsraum
von mittlerer Grofse, d.h. die Methode ist nicht auf zweidimensionale Beispiele
beschriankt. In diesem Kapitel werden stabile und instabile Mannigfaltigkeiten
von hyperbolischen Fixpunkten als Teilsequenzen fiir die Losung von Optimal-
steuerungsproblemen verwendet. Dabei ist die stabile Mannigfaltigkeit dquivalent
zur instabilen Mannigfaltigkeit des dynamischen Systems, wenn man es in um-
gekehrter Zeit betrachtet. Daher kann die stabile Mannigfaltigkeit genauso wie
die instabile Mannigfaltigkeit berechnet werden, nur das die Integration in Riick-
wartszeit durchgefiihrt werden muss.

5.1.3 Stark (in)stabile Mannigfaltigkeiten

Der Satz iiber die stabile Mannigfaltigkeit beschreibt, dass die Dimension
der (in)stabilen Mannigfaltigkeiten der Dimension der (in)stabilen Eigenrdume
der Linearisierung im Fixpunkt entspricht. Fiir eine (in)stabile Mannigfaltigkeit
mit Dimension grofer als eins kann dann die Dynamik noch weiter untersucht
werden. Wenn ein eindeutiger grofster bzw. kleinster Eigenwert vorliegt, konnen
stark (in)stabile Mannigfaltigkeiten [OLT04] identifiziert werden, die eindimen-
sionale Untermannigfaltigkeiten der (in)stabilen Mannigfaltigkeit darstellen und
den Richtungen entsprechen, in der die Expansion bzw. Kontraktion am stirksten
ist. Fiir die Berechnung stark (in)stabiler Mannigfaltigkeiten wird das dynamische
System so transformiert, dass sich das Eigenspektrum verschiebt. Zum Beispiel
wird fiir die Berechnung der stark stabilen Mannigfaltigkeit das Eigenwertspek-
trum nach rechts verschoben, sodass es in der linken Halbebene nur noch einen
Eigenwert gibt, siehe auch Bild B=3] Hierfiir muss A** als der Eigenwert des in der
Ruhelage © = 0 linearisierten, autonomen, dynamischen Systems & = f(x) mit
dem kleinsten Realteil identifiziert werden. Es wird angenommen, dass A*® ein-
deutig und einfach ist. Der zugehorige Eigenvektor v** spannt dann den eindimen-
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sionalen stark stabilen Eigenraum auf, d.h. fiir das in Vorwiirtszeit untersuchte
lineare System zeigt er vom Fixpunkt aus in die Richtung der stirksten Kontrak-
tion. Die stark instabile Mannigfaltigkeit des nichtlinearen Ausgangssystems ist
tangential zu v** in Z und sie ist eine eindimensionale Untermannigfaltigkeit der
instabilen Mannigfaltigkeit. Die stark instabile Mannigfaltigkeit entspricht analog
dem eindeutigen Eigenwert A** mit groften Realteil der Linearisierung im Fix-
punkt z. Fiir die Berechnung einer stark stabilen Mannigfaltigkeit werden hier
zwei verschiedene Wege vorgestellt.

A A
komplexe komplexe
Ebene Ebene
— K m— W
Shift des
Spektrums

Bild 5-3: Verschiebung des Spektrums fiir die Berechnung der stark stabilen Man-
nigfaltigkeit; grime Kreuze: stabile Eigenwerte, rote Kreuze: instabile
Eigenwerte

Eine Moglichkeit besteht darin, die stark stabile Mannigfaltigkeit ebenfalls mit
dem Tool GAIO zu berechnen. Fiir das nichtlineare System & = f(x) sei Df(0)
die Jacobi-Matrix von f in der Ruhelage, also die linearisierte Systemmatrix, und
Ai, © =1,...,n seien die zugehorigen Figenwerte. Es wird angenommen, dass ein
einzelner betragsméfbig grofter Eigenwert in der linken komplexen Halbebene
existiert. Dabei gelte Re(A*® = A1) < Re(Ag) < --- < 0 < Re(\) < -+ <
Re(A" = \,).

Es wird nun ein A € R gewiihlt, so dass |[Re(\;)| < A < |Re(\2)] gilt. Durch den

Parameter \ wird eine Systemtransformation durch Z(t) := eMx(t) eingefiihrt.
Damit gilt dann
B(t) = AE(t) + M feME(). (5-2)

Fiir (5=2) ist ¥ = 0 immer noch ein Fixpunkt. Es lésst sich nachrechnen, dass fiir
das Spektrum von g(7) = Az (t) + e f(e % (t)) gilt:

U(Dg|j:0) = 5\ + O'(Df|$:0).

Das gesamte Eigenwertspektrum wurde also um den Wert A\ verschoben, sodass
das transformierte System nur noch einen einzigen Eigenwert in der linken Halb-
ebene besitzt. GAIO kann nun auf das transformierte System angewendet wer-
den, welches jetzt nicht-autonom ist, also explizit von der Zeit ¢ abhéngt (siehe
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[ARS05], [ARSO6] fiir eine Untersuchung von invarianten Mannigfaltigkeiten von
nicht-autonomen Systemen). Anschliefend kann die berechnete eindimensionale
stabile Mannigfaltigkeit wieder zuriick transformiert werden, so dass man eine Ap-
proximation der stark stabilen Mannigfaltigkeit des Originalsystems erhélt (siehe
[Sch99] fiir eine Vorstellung der hierfiir notwendigen Erweiterungen in GAIO).

Eine zweite Alternative zur Berechnung der stark stabilen Mannigfaltigkeit ist, ein
solches eindimensionales Objekt durch einfache Integration von einem passenden
Anfangspunkt aus zu berechnen. Um einen Orbit der stark stabilen Mannigfal-
tigkeit des Fixpunkts & = 0 zu erhalten, wird das Eigenwertspektrum der Linea-
risierung berechnet, und man erhélt den eindeutigen stark stabilen Eigenwert \*°
mit dem zugehorigen Eigenvektor v**. Der Anfangswert fiir die Integration wird
dann in der Umgebung des Fixpunkts & gewdhlt, und zwar durch eine Verschie-
bung in Richtung von v®: 2° =  + § - v®. Es ist offensichtlich, dass der Fixpunkt
selbst nicht als Anfangswert gew#hlt werden kann, da er invariant ist. Weitere
Analysen zeigen, dass Punkte auf der stabilen Mannigfaltigkeit den Fixpunkt in
Vorwértszeit nicht in endlicher Zeit erreichen und daher eine Integration in Riick-
wartszeit, die zu nahe am Fixpunkt z startet, sehr lange benotigen wiirde, um die
direkte Umgebung des Fixpunkts zu verlassen (siehe |[OLT04] fiir eine ausfiihr-
liche Untersuchung dieses Effekts). Daher ist es erstrebenswert, § so zu wéhlen,
dass die Trajektorie eine ausreichend grofte Expansion vom Fixpunkt zeigt, aber
immer noch ausreichend nahe an z liegt. Diese Trajektorie kann dann durch ei-
ne Integration in Riickwértszeit mit vorgegebener Dauer bestimmt werden, d. h.
x(t) : [t,0] — ®~*(x), wobei ®!(z) ein Integrationsverfahren darstellt, das den
tatsdchlichen Fluss des Systems ®'(x) approximiert. Abschliefend muss der re-
sultierende Orbit durch die Anpassung des Zeitvektors umgekehrt werden, um
beziiglich der Zeitparametrierung eine zuldssige Losung des Originalsystems zu
erhalten.

Zum einen muss fiir dieses Verfahren ein sehr exakter Integrator gewihlt werden,
da die Berechnung der Trajektorie auf einer Langzeitintegration basiert, und au-
fserdem muss der Anfangspunkt sehr sorgfiltig und daher vorzugsweise manuell
ausgewahlt werden. Zum anderen erhilt man aber eine Trajektorie, die direkt
innerhalb der Optimalsteuerung verwendet werden kann, wohingegen die Appro-
ximation der Mannigfaltigkeit mit GAIO eine solche explizite Trajektorie nicht
beinhaltet, sondern nur die entsprechende Boxiiberdeckung.

5.1.4 Modellierung

Zusitzlich zum Doppelpendel auf einem Wagen wird in diesem Kapitel auch das
klassische, akademische Beispiel des in einem Gelenk aktuierten Doppelpendels
untersucht. Die Modellierung dieses Anwendungsbeispiels folgt dabei grundsétz-
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lich den Ansétzen aus Abschnitt 2.3l Damit die Systeme vergleichbar sind, wer-
den auch die entsprechenden mechanischen Parameter fiir Lingen und Massen
der Pendelarme iibernommen, siche Abschnitt 2.3.11

Der Zustandsvektor dieses vereinfachten Systems ist definiert durch [q Q} =
[4,01 Y2 Y1 gbg]. Die Lagrange-Funktion des Systems kann wiederum durch die
Differenz zwischen kinetischer und potentieller Energie beschrieben werden

1 (gbl)T ( Ji+aimy +Gmy  aslimg cos(pr — 902)) (951)

Ller o2 01:02) =5 { 5, )\ agymy cos(ior — o) o + a3my P

— g+ (myay cos(p1) + ma - (Iy cos(p1) + az cos(pa)))

und in den Gelenken wird die ebenfalls schon verwendete Dampfungskraft

F(p1,¢2) = (—digr + da2 — 1), da(1 — ¢2))"

angenommen. Durch die Anwendung des Lagrange-Formalismus konnen die Be-
wegungsgleichungen des Systems in der Form

M(9)i+G(q,9) = F(q,q) (5-3)

bestimmt werden, wobei ¢ = [<p1 @2} den Vektor der Lagekoordinaten und
q = [@1 @2] den Vektor der Geschwindigkeiten darstellt. Somit ergibt sich die
natiirliche, also nicht aktuierte Dynamik des Doppelpendels als

Ji+aimy +1imy  aghimgcos(pr — ¢2)\ (&1 (5-4)
aslymg cos(pr — o) Jo + azmo P2
N —gsin(py)(aymy + lims) + aslyms sin(p; — ps)H3
—agme sin(ps) — aslyms sin(p; — @)

(o)

Um das System steuern zu konnen, wird zusitzlich ein duferes Moment wup,(t)
an dem Gelenk, an dem das Doppelpendel aufgehéingt ist, eingefiihrt. Es ergibt
sich ein einfach unteraktuiertes System. Die Euler-Lagrange Gleichungen sind
weiterhin von der Form (5-3]), wobei der Kraftvektor jetzt zusitzlich von wp(¢)
abhingt

ai- (ST (). e

Zusammen mit den bekannten Modellen des Doppelpendels auf einem Wagen ist
das vorgestellte neue Modell in Bild dargestellt. Im Folgenden werden bei
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(b) Doppelpendel gesteuert
durch Moment uy,

Storungen

——Yy Y
(c) Doppelpendel auf Wagen (d) Doppelpendel auf Wagen (e) Priifstand
mit Kraftanregung uy mit Beschleunigungsanregung u,

Bild 5-4: Modelle des Pendels mit verschiedenen Fingangsgrofien und Priifstand

unterschiedlichen Fragestellungen auch unterschiedliche Modelle verwendet. So
werden fiir Modell (a) die (stark) stabilen Mannigfaltigkeiten berechnet und an
Modell (b) die Methode der optimalen Steuerung auf Mannigfaltigkeiten zum
ersten Mal getestet. Anschliefend wird das Doppelpendel auf einem Wagen un-
tersucht, um die Anwendbarkeit des Ansatzes am realen Priifstand (e) zu zeigen.
Dazu werden, wie aus Kapitel 2] bekannt, das Modell mit Kraftanregung (c) fiir
die Berechnung optimaler Trajektorien mit DMOC und das Modell mit Beschleu-
nigungsanregung (d) fiir die Umsetzung im Simulationsmodell und den Test der
Zwei-Freiheitsgrade-Regelung verwendet.

5.1.5 Berechnung der (in)stabilen Mannigfaltigkeiten

Der erste Schritt zur Umsetzung der optimalen Steuerung auf Mannigfaltigkeiten
ist die Berechnung der (in)stabilen Mannigfaltigkeiten fiir die obere Ruhelage
des Pendels. Hierbei wird zunéchst das einfache Modell des Pendels (a) ohne
Wagen betrachtet. Nach dem Satz iiber die stabile Mannigfaltigkeit[5.5 wird deren
Dimension durch die Dimension der Eigenrdume der linearisierten Systemmatrix
in der Ruhelage bestimmt. Die Eigenwerte dieser Matrix fiir die obere Ruhelage
lauten

A = —8.0336, M= —4.342, Xy =4.3183, A\ = 7.6202,
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und somit existieren ein zweidimensionaler stabiler und ein zweidimensionaler in-
stabiler Figenraum. Aufterdem liegt ein hyperbolischer Fixpunkt vor, und Satz
kann angewendet werden. Fiir die obere Ruhelage existieren daher eine zwei-
dimensionale instabile und eine zweidimensionale stabile Mannigfaltigkeit. Die
weitere Analyse zeigt, dass die Ruhelagen mit jeweils einem nach oben und einem
nach unten zeigenden Pendelarm eine dreidimensionale stabile und eine eindimen-
sionale instabile Mannigfaltigkeit besitzen. Da es sich um ein gedampftes System
handelt, hat die untere Ruhelage eine vierdimensionale stabile Mannigfaltigkeit.

Fiir die Berechnung der zweidimensionalen stabilen Mannigfaltigkeit der oberen
Ruhelage wird der Fortsetzungsalgorithmus [5.11] von GAIO verwendet. Da der
Fixpunkt in 2o = [0 0 0 0] bekannt ist, muss nur Teil (ii) des Fortsetzungs-
algorithmus angewendet werden. Hierbei wird eine negative Integrationszeit ver-
wendet, da die stark stabile Mannigfaltigkeit approximiert werden soll.

Bild 5-5: Stabile (links) und instabile (rechts) Mannigfaltigkeit der oberen Ruhe-
lage

Es ergibt sich eine Boxiiberdeckung der stabilen Mannigfaltigkeit, wie sie in
Bild[5-5lauf der linken Seite dargestellt ist. Hier wird das zweidimensionale Objekt
als eine Projektion in den dreidimensionalen (1, @9, 1)-Raum dargestellt, und
die jeweiligen Werte der vierten Koordinate ¢, werden durch die Farben codiert.
Die in diesem Bild sichtbaren roten und blauen Krater entsprechen Bereichen mit
hoher Geschwindigkeit von beiden Pendelarmen. Auf der rechten Seite ist zusitz-
lich die instabile Mannigfaltigkeit der oberen Ruhelage dargestellt. Sie steht im
Fixpunkt orthogonal auf der stabilen Mannigfaltigkeit.

Im néchsten Schritt kann durch die Anwendung des Fortsetzungsalgorithmus von
GAIO auf das transformierte System die stark stabile Mannigfaltigkeit berechnet
werden. Die stark stabile Mannigfaltigkeit ist die schwarze Menge in Bild G-6. Auf
der linken Seite wird deutlich, dass die stark stabile Mannigfaltigkeit tatsichlich
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\

Bild 5-6: Stark stabile Mannigfaltigkeit der oberen Ruhelage

innerhalb der stabilen Mannigfaltigkeit liegt. Auf der rechten Seite ist die stark
stabile Mannigfaltigkeit erneut dargestellt, wobei hier eine grofere Startbox fiir
die Berechnung gewéhlt wurde, sodass die Struktur dieses Objekts deutlicher
wird.

In der weiteren Anwendung wird als stark stabile Mannigfaltigkeit eine Trajek-
torie verwendet, die durch Integration mit einer geringen positiven Anfangsge-
schwindigkeit in Richtung des stabilen Eigenraums berechnet wurde. Daher folgt
diese Trajektorie der stark stabilen Mannigfaltigkeit vom Fixpunkt aus nach links
oben. Diese Idee der Berechnung wurde auch schon in Abschnitt 5.1.3] vorgestellt
und ist z. B. auch in Bild zu sehen. Mit Hilfe der durch GAIO berechneten
stark stabilen Mannigfaltigkeit konnte die Genauigkeit dieser durch Integration
berechneten Trajektorie evaluiert werden.

5.2 Steuerungsstrategie auf (in)stabilen Mannigfaltigke iten

Im Folgenden wird ein neuartiger Ansatz zur Berechnung von Optimalsteuerungs-
manovern vorgestellt, der die natiirliche Dynamik eines mechanischen Systems
ausnutzt und damit energieoptimale Trajektorien bestimmt. Dabei hidngen die
Losungen stark von der Mandverzeit ab, sodass sie im Folgenden auch beziiglich
der Dauer als einem weiteren Ziel verglichen werden. Dieser Ansatz kann z. B. fiir
die Berechnung eines Aufschwungs des Doppelpendels verwendet werden.

Fiir die Berechnung einer optimalen Steuerung besteht der hier gezeigte Ansatz
darin, zum einen ungesteuerte Trajektorien auf der stark stabilen Mannigfaltigkeit
zu generieren und zum anderen diese mit kurzen gesteuerten Manévern (berechnet
mit DMOC) zu einer Sequenz zu verbinden und dadurch die Randbedingungen
des Optimalsteuerungsproblems zu erfiillen. In Bild 5-7lwird dargestellt, wie durch
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Startpunkt: Endpunkt: obere
untere Ruhelage
Ruhelage

Sequenz: initial guess der Nachoptimierung

—

: T w1
gesteuertes Manover auf ~ kostenloses, ungesteuertes Regelung der
die Mannigfaltigkeit Mangver auf der Mannig- oberen Ruhelage
faltigkeit

S

Bild 5-7. Schematische Darstellung der Steuerungsstrategie fiir einen energieeffi-
zienten Aufschwung des Doppelpendels durch die Verwendung inhdrenter
Figenschaften der natiirlichen Dynamik des Systems

diese Strategie Sequenzen fiir die Losung des Optimalsteuerungsproblems erzeugt
werden konnen. Eine solche Sequenz ist zum einen eine zuléssige Losung des Op-
timalsteuerungsproblems, da sie die geforderten Nebenbedingungen erfiillt und
zum anderen auch schon beziiglich der Zielfunktionen Steueraufwand und Dauer
des Manovers lokal optimal. Eine anschliefende Nachoptimierung, die mit der
entstandenen Sequenz als initial guess durchgefiihrt wird, ergibt dann beziiglich
des Mehrzieloptimierungsproblems noch verbesserte Ergebnisse. Fiir die Stabi-
lisierung in der oberen Ruhelage wird eine Regelung durch einen LQR-Ansatz
verwendet, der schon aus Kapitel 2] bekannt ist.

Ergebnisse dieser Arbeit sind auch in [ETOB*12| dokumentiert.

5.2.1 Grundidee der Methodik

Die grundséitzliche Steuerstrategie besteht aus den folgenden Schritten:

(i) Zunéchst miissen die entsprechenden Ruhelagen als Anfangs- und Endpunk-
te fiir das Optimalsteuerungsmandéver identifiziert werden.

(ii) Fiir den Endpunkt wird anschliefiend die stabile Mannigfaltigkeit berech-
net. Wenn eine mehrdimensionale Mannigfaltigkeit vorliegt, kann dann die
gewiinschte Trajektorie auf der Mannigfaltigkeit ausgewéhlt werden. Im Fol-
genden wird hierfiir die stark stabile Mannigfaltigkeit ausgewahlt.

(iii) Ein Teilproblem ist, ein Optimalsteuerungsmandver vom Startpunkt zur
Trajektorie auf der Mannigfaltigkeit numerisch zu berechnen. Diese Mano-
ver werden als Sequenzen mit den Trajektorien auf der Mannigfaltigkeit
zusammengesetzt und sind damit zuldssige Losungen des urspriinglichen
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Optimalsteuerungsproblems, da sie die Randbedingungen und diskreten Be-
wegungsgleichungen erfiillen.

(iv) Im letzten Schritt werden die Sequenzen als initial guess fiir eine Nachop-
timierung des urspriinglichen Optimalsteuerungsproblems verwendet. Da
die Berechnung von Optimalsteuerungsmanoévern im Allgemeinen nur lokal
optimale Losungen erlaubt, ist ein initial guess der durch das Ausnutzen
der natiirlichen Dynamik des System entsteht, hilfreich um eine (globale)
kosten- und zeitsparende Losung zu finden.

An dieser Stelle soll noch kurz darauf eingegangen werden, dass fiir die Bestim-
mung der optimalen Steuerung wieder die DMOC Methode verwendet wird, wie
sie aus Kapitel 8] bekannt ist. Dabei wird DMOC sowohl fiir die Berechnung
der Manover von der unteren Ruhelage zur stark stabilen Mannigfaltigkeit als
auch fiir die Nachoptimierung der zusammengesetzten Sequenzen verwendet. Das
entstehende nichtlineare Programm wird wiederum mit SQP-Verfahren aus der
NAG-Bibliothek (siehe [Nat13]) gelost.

Zunéchst werden Schritt (i) und (ii) des Sequenzansatzes genauer beschrieben:
Fiir ein dynamisches System, das in eine instabile Ruhelage gesteuert werden
soll, hat die Wahl der stabilen Mannigfaltigkeit als ein Teil des Optimalsteue-
rungsmanovers dynamische Vorteile. Dabei wird die stabile Mannigfaltigkeit aus-
gewihlt, da sich das System auf ihr ohne Steuereingriff, also kostenlos, in die
gewiinschte Ruhelage bewegt. Die stabile Mannigfaltigkeit einer Ruhelage kann
im Allgemeinen ein mehrdimensionales Objekt sein, sodass darauf prinzipiell viele
verschiedene Manover zur Ruhelage denkbar sind. Da aber eines der vorliegen-
den Ziele eine moglichst kurze Mandverzeit ist, ist die stark stabile Mannigfal-
tigkeit ein guter Kandidat fiir eine Trajektorie auf der stabilen Mannigfaltikeit,
denn sie beschreibt die Richtung mit der stirksten Kontraktion zur Ruhelage.
Man erhélt also eine Trajektorie, die einem guten Kompromiss zwischen einer
schnellen, aber immer noch kostenlosen Bewegung entspricht. Wie auch schon in
Abschnitt B.T.3 beschrieben, wird eine feste Zeit auf der Mannigfaltigkeit T},,¢ ge-
wéhlt und der zugehorige Orbit auf der stark stabilen Mannigfaltigkeit berechnet:
Tt ¢ [0, Tong] > Zone(t), Wobei Zmne(Ting) € U(z7) in der Nithe des Endpunkts
liegt.

Anschlieflend konnen in Schritt (iii) verschiedene kurze Manéver, die fiir die Ver-
bindung des gewdhlten Startpunkts mit der stark stabilen Mannigfaltigkeit not-
wendig sind, berechnet werden. Dabei konnen unterschiedliche Sequenzen durch
die Variation der folgenden Entwurfsparameter erzielt werden (siehe auch Bild[5-8)

e der Umschaltpunkt, d.h. der Zustand auf dem Orbit der Mannigfaltigkeit,
an dem das gesteuerte Manover endet und die Losungssequenz umschaltet
und der ungesteuerten Trajektorie auf der Mannigfaltigkeit folgt,
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e die Zeit, die auf dem Orbit der Mannigfaltigkeit verbracht wird,

e die Gesamtzeit des gesteuerten Mandvers, das auf den Orbit der Mannig-
faltigkeit fiihrt.

Durch die Definition des Orbits der Mannigfaltigkeit ¢ wird deutlich, dass der
erste und zweite Parameter korrelieren, d. h. mit der Wahl eines Umschaltpunktes
auf dem Orbit der Mannigfaltigkeit ist automatisch definiert, wie lange die Bewe-
gung bis zum Endpunkt dauert, siehe auch Bild [5=8] Deshalb wird nun eine Zeit-
diskretisierung eines ausgewéhlten Teils des Orbits der stark stabilen Mannigfal-
tigkeit [0 . T/ ] mit Schrittweite A7 wie folgt definiert T' := {T° .+n-Ar|n =

1,..., L}, mit T° .+ L-A7 = T/ .. Dabei miissen T° ., A7 und L fiir die konkre-
te Anwendung geeignet gewihlt werden, um eine passende Menge an Umschalt-

punkten zu generieren. Diese Umschaltpunkte werden mit my, ..., my bezeichnet
(blaue Punkte in Bild B=8)), und es gilt m; = Tune(To, + 7+ A7) fiir e =1,..., L.

Zusitzlich wird fiir die Endzeit des gesteuerten Mandvers ein Zeitgitter durch
T ={T\,.... Tk} fir K € N, T; € R" und fiir j = 1,..., K definiert. Dann
kann fiir jeden Umschaltpunkt m;, ¢ € {1,..., L} ein Optimalsteuerungsproblem
fir das Manover zur stark stabilen Mannigfaltigkeit mit der Zeit 7; € 7T fiir
j € {1,..., K} aufgestellt werden, und dies fithrt zu unterschiedlichen optimalen
Losungen jeweils mit einer festen Endzeit 7, und Kosten c;, die in Bild B-§ als
griine Linien dargestellt werden. Zusammenfassend kénnen durch die Verbindung
dieser unterschiedlichen Manover L - K Sequenzen erzeugt werden, die alle als
Ausgangspunkt fiir eine Nachoptimierung genutzt werden. Da das ungesteuerte
System autonom ist, d. h. nicht explizit von der Zeit abhéngt, kann die Teilsequenz
auf dem Orbit der Mannigfaltigkeit beziiglich der Zeit transformiert werden, so
dass eine Losung fiir das gesamte Steuerungsproblem generiert werden kann. Die
(1, 7)—Losungssequenz ist dann gegeben durch

(:Eivj7 ui7j) : [Oa 7} + Tmnf - (Trgmf +- AT)]

N GORE0) fir t € [0, 3],

(@mne(t + Tope + i AT = 1T5),0)  fiir ¢ € [15, T + Toonr — (Tine +1 - A7),
wobei (z*(+),u*(+)) die beziiglich der Energie optimale Losung des Optimalsteue-
rungsproblems vom Startpunkt z° zum Endpunkt m; in der Zeit Tj darstellt.
Man beachte, dass das Zeitintervall der zusammengesetzten Sequenz nicht mit
demjenigen des Orbits der Mannigfaltigkeit x,,r libereinstimmt. Da die Kon-
figurationen und Geschwindigkeiten am Ubergangspunkt des Mandvers auf die
Mannigfaltigkeit iibereinstimmen, sind alle so bestimmten Sequenzen stetig.

In Schritt (iv) kann dann die Sequenz als initial guess fiir eine Nachoptimierung
verwendet werden. Nur durch diese zusétzliche Optimierung kann die Optimali-
tiat des Mandovers iiber die Mannigfaltigkeit sichergestellt werden, da nicht davon
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m -z

Trajektorie auf
m, My der stark stabilen
Mannigfaltigkeit

anf(TOmnf)=m1

(T,c) Mandver mit (T1,c1)

Zeit T und
Kosten ¢

my,....,m | Endpunkte der Start-
Teilprobleme punkt x°

Bild 5-8: Schematische Darstellung von verschiedenen Sequenzen bestehend aus
gesteuerten Mandévern (grin) und Trajektorien auf dem Orbit der stark
stabilen Mannigfaltigkeit (blaw). Z.B. kann ein Mandver mit Dauer T}
und Kosten ¢y zum Umschaltpunkt mq zusammengesetzt werden mit der
ungesteuerten Trajektorie von my zum Endpunkt /. Eine Alternative
ist ein Mandver mit (Ty, co) oder auch mit (T3, c3) zum dazwischenlie-
genden Punkt my zusammen mit einer Trajektorie auf dem Orbit der
Mannigfaltigkeit, der um AT kiirzer ist.

ausgegangen werden kann, dass die zwei optimalen Teiltrajektorien ein optimales
Ergebnis fiir das gesamte Optimalsteuerungsproblem ergeben. Dies liegt daran,
dass das System gezwungen ist, den Umschaltpunkt m; zu durchlaufen. Durch
dieses Vorgehen kann nicht gewihrleistet werden, dass es keine Trajektorien mit
besserem Zielfunktionswert gibt, die diesen Punkt nicht beinhalten. In der Nach-
optimierung wird der Steueraufwand als Zielfunktion gewéhlt, und die Gesamtzeit
der (i, 7)-Sequenz Tyes = Tj+Tinr— (T +1- A7) wird als konstant angenommen.

m

Mit diesem Ansatz werden viele optimale Losungen fiir den Aufschwung des Pen-
dels iiber die stark stabile Mannigfaltigkeit bestimmt. Ein Vergleich der Ergeb-
nisse ist durch die Untersuchung der Pareto-Optimalitit moglich. Dabei werden
wieder die Zielfunktionen Dauer des Mano6vers und Steueraufwand gewihlt. Im
Folgenden wird der hier vorgestellte Ansatz durch Tests fiir den Aufschwung von
unterschiedlichen Doppelpendelsystemen evaluiert.

5.3 Anwendung der optimalen Steuerung auf
Mannigfaltigkeiten am Doppelpendel

Das erste Anwendungsbeispiel ist das momentengesteuerte Doppelpendel (siehe
Bild 5=4] (b)), dem das Modell des mathematischen Pendels zu Grunde liegt. Fiir
die Ruhelagen dieses unaktuierten Systems wurden die in Abschnitt vorge-
stellten Mannigfaltigkeiten berechnet, und diese werden jetzt in einer Sequenz zur
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Optimalsteuerung verwendet. Die stabile Mannigfaltigkeit der oberen Ruhelage
ist ein zweidimensionales Objekt, und die stark stabile Mannigfaltigkeit kann als
eindimensionale Trajektorie identifiziert werden, die die stirkste Kontraktion auf
der stabilen Mannigfaltigkeit besitzt und deswegen fiir die weiteren Berechnungen
verwendet wird. In Abschnitt [5.3.1] werden die Ergebnisse fiir dieses momenten-
gesteuerte Doppelpendel vorgestellt. Aber auch fiir das Doppelpendel auf dem
Wagen kann die zuvor berechnete stark stabile Mannigfaltigkeit fiir die Berech-
nung von optimalen Trajektorien mit dem Sequenzansatz verwendet werden. Dies
wird in Abschnitt genauer diskutiert. In Abschnitt 5.3.3] werden als Fazit
die numerischen Eigenschaften der Rechnungen analysiert.

5.3.1 Anwendung am momentengesteuerten Doppelpendel

Durch eine Analyse der Losungen des Sequenzansatzes fiir das momentengesteu-
erte Doppelpendel wird im Folgenden gezeigt, dass dieser neuartige Ansatz Vor-
teile beziiglich der Zielfunktionen Zeit und Steueraufwand besitzt. Dazu werden
die Losungen des Sequenzansatzes mit Losungen eines sogenannten ,black-box“-
Ansatzes, bei dem ein linear interpolierter initial guess verwendet wird, vergli-
chen. Ein solcher initial guess wurde auch schon in Kapitel d fiir die Berechnungen
verwendet,.

Ein Vergleich der Zielfunktionen fiir verschiedene Losungen des Optimalsteue-
rungsproblems mit den zwei unterschiedlichen Ansétzen ist in Bild (5=9] zu sehen.
Die grauen Punkte gehdren dabei zu der entstehenden Sequenz, wobei die Ge-
samtzeit aus der Summe der Zeit des Mandvers zur Mannigfaltigkeit und der
Zeit auf dieser besteht und die Kosten nur aus dem ersten Teil stammen, da die
Bewegung auf der Mannigfaltigkeit kostenlos ist. Die blauen Sterne stehen fiir
Trajektorien, die mit einer Nachoptimierung der Sequenz berechnet wurden, und
die griinen Kreise fiir Losungen basierend auf dem black-box Ansatz. Es wird
davon ausgegangen, dass ein solcher black-box Ansatz immer dann fiir die Op-
timierung genutzt wird, wenn kein anderes spezielles Systemwissen bekannt ist.
Auf der linken Seite von Bild 5=9 wird deutlich, dass die Kosten der unterschiedli-
chen Sequenzen (graue Punkte) durch eine Nachoptimierung (blaue Sterne) noch
deutlich verbessert werden kénnen. Dies liegt daran, dass die Nachoptimierung die
urspriingliche Sequenz an der Ubergangsstelle zur Mannigfaltigkeit glittet und
dadurch in fast allen Berechnungen die Kosten reduziert. Auferdem wird deutlich,
dass sehr viele lokal optimale Losungen berechnet wurden, d. h. der Optimierungs-
algorithmus konvergiert in ein Optimum, das nicht global optimal ist. Wie auch
schon in vorhergehenden Ergebnissen zur Mehrzieloptimierung des Aufschwungs
am Doppelpendel ergeben sich wieder unterschiedliche Zweige der Zielfunktions-
werte, die jeweils unterschiedliche Arten des Aufschwungs représentieren (vgl.
Kapitel M]). Sogar fiir eine bestimmte feste Endzeit des Mandovers existieren meh-
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Sequenzansatz
Sequenzansatz; Nachoptimierun
Black—-box Ansatz

Steueraufwand (N2s)

Zeit (s)

Bild 5-9: Zielfunktionswerte fiir den Aufschwung des momentengesteuerten Dop-
pelpendels: Fir T = [0.8,1.9] s werden black-box Optimierungen durch-
gefiihrt (grine Kreise), im Vergleich dazu werden auch Lésungen aus
den zwei Sequenzteilen (graue Punkte) und aus der Nachoptimierung
der Sequenz (blaue Sterne) dargestellt; rechts: nicht-dominierte Losun-
gen

rere lokal optimale Losungen mit unterschiedlichen Kosten, was daran liegt, dass
unterschiedliche Sequenzen mit gleicher Endzeit erzeugt werden, die aber zu ver-
schiedenen Ergebnissen fithren (siehe auch Bild (=8)). Neben diesen Zweigen gibt
es auch verteilte Losungen in der oberen rechten Ecke. Diese Punkte gehoren zu
Losungen, die die Mannigfaltigkeit verlassen haben und ein unrealistisches Ver-
halten zeigen, sodass sie nicht weiter beachtet werden miissen. Nichtsdestotrotz
kann, aufgrund der Konstruktion der Nachoptimierung, im Allgemeinen nicht si-
chergestellt werden, dass die Losung in der Ndhe Mannigfaltigkeit bleibt, wie es
z. B. in Bild B-12] gezeigt wird. Tatséchlich weichen manche Losungen klar von der
Mannigfaltigkeit ab. Dieser Effekt wird in Abschnitt fiir das Doppelpendel
mit Wagen genauer analysiert.

Auf der rechten Seite von Bild sind nur die nicht-dominierten Punkte der
gesamten Menge an Losungen dargestellt. Diese Punkte sind Kandidaten fiir pa-
retooptimale Losungen. Sie bilden einen optimalen Kompromiss zwischen den
zwei untersuchten Zielfunktionen. Insgesamt wird deutlich, dass es grofse Berei-
che gibt, in denen der Sequenzansatz die besten Losungen ergibt. Hauptséchlich in
einem kleineren Bereich bei einer Gesamtzeit von Ty.s = 0.98s,...,1.07 s ist der
black-box Ansatz genauso gut, aber an keiner Stelle besser als der Sequenzansatz
(in diesem Fall sind die Losungstrajektorien von beiden Berechnungen gleich).
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Anhand von diesen Ergebnissen lisst sich feststellen, dass der Sequenzansatz, der
die natiirliche Dynamik des Systems ausnutzt, ein gut geeignetes Vorgehen ist,
um paretooptimale Losungen zu finden.

T

—

<

t € [0.000, 0.156]s

t €[0.161,0.311]s

t € [0.316,0.467]s

-

f
A

t €[0.472,0.622]s

t € [0.627,0.778] s

t €[0.783,0.933]s

—&

=z

1

t €[0.938,1.089]s

t € [1.094,1.244]s

t € [1.249,1.400]s

Bild 5-10. Zeit-diskrete Momentaufnahmen fiir den Aufschwung des Doppelpen-
dels; Nachoptimierung des Sequenzansatzes; ab t = 0.755 s befindet
sich das Mandover auf der Mannigfaltigkeit, vgl. auch Bild[5-12

Bei einer genaueren Untersuchung von reprasentativen Losungen, die durch die
zwei Ansitze entstanden sind und gleiche Endzeiten aber unterschiedliche Kos-
ten haben, wird deutlich, dass die Losungen bedeutende strukturelle Unterschiede
besitzen. Dazu werden in den Bildern 5-10/ und BE-11] die Bewegungen durch eine
Reihe von Momentaufnahmen verdeutlicht. In Bild 5-10 wird eine nachoptimierte
Losung des Sequenzansatzes und in Bild B-11] eine Losung des black-box Ansat-
zes gezeigt. Das Beispielmanover, das entlang der stark stabilen Mannigfaltigkeit
verlauft (Bild B=T0)) hat eine Dauer von 1.4 s und dabei einen Steueraufwand von
12.142 (Nm)?s. Das Doppelpendel holt zunichst Schwung und bewegt sich an-
schliefend mit der passenden Geschwindigkeit in die obere Ruhelage. Dabei stellt
der zweite Teil dieses Manovers die Bewegung auf der stark stabilen Mannigfal-
tigkeit dar. Es wird nun ein Ergebnis der black-box Optimierung zum Vergleich
betrachtet (Bild B=TT]). Die Dauer dieses Manovers ist ebenfalls 1.4 s, aber der
Steueraufwand betrigt 45.217 (Nm)?s, was 3.7 mal hoher ist als der Steuerauf-
wand des anderen Mandvers. Bei dieser Bewegung wird das Doppelpendel schon
etwa in der Mitte des gesamten Mandvers in die obere Halbebene bewegt, und
zwar durch einen hohen Steueraufwand. Diese Bewegung fiihrt auch insgesamt zu
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{ L
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Bild 5-11: Zeit-diskrete Momentaufnahmen fiir den Aufschwung des Doppelpen-
dels; berechnet mit dem linear interpolierten initial guess (black-box
Optimierung)

den hohen Kosten des Mandvers. Am Ende muss das Pendel abgebremst werden,
um die obere Ruhelage zu erreichen.

Die beschriebenen Trajektorien konnen auch in einer dreidimensionalen Projek-
tion des Zustandsraums analysiert werden. Dies wird in Bild dargestellt, in
dem die Zustinde @1, 5 und 1 gezeigt werden. Die blaue Linie ist der Orbit der
stark stabilen Mannigfaltigkeit der oberen Ruhelage. Es wird eine Sequenz aus-
gewéhlt, die aus einem Mandver zur stark stabilen Mannigfaltigkeit (dargestellt
durch die griine Linie) und dem darauf folgenden Abschnitt auf der Mannigfaltig-
keit besteht. Die gelbe Linie stellt dann die nachoptimierte Trajektorie dar, die
als initial gquess die zwei Abschnitte der Sequenz erhalten hat. Es wird deutlich,
dass diese nachoptimierte Trajektorie nicht direkt auf der stark stabilen Man-
nigfaltigkeit liegt, sondern sich um diese herum schlingelt. Anhand der fiir die
Steuerung berechneten Trajektorie ldsst sich schliefen, dass die Trajektorie der
Nachoptimierung nicht genau der kostenlosen Bewegung auf der stark stabilen
Mannigfaltigkeit folgt, sondern einem Mandver mit geringen Kosten, welches na-
he daran liegt. Eine weitere Analyse dieses Phianomens zeigt, dass die Losung fiir
die Steuerung des Pendels zur Mannigfaltigkeit am letzten Diskretisierungspunkt
auf null springt, um das nicht aktuierte Systemverhalten auf der Mannigfaltig-
keit zu erreichen. Durch die Nachoptimierung wird dieser Sprung, der auch durch
einen Knick der Trajektorie im Zustandsraum deutlich wird, geglittet. Als Fol-
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Trajektorie
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Bild 5-12: Oben: Unterschiedliche Trajektorien im Zustandsraum: Orbit der stark
stabilen Mannigfaltigkeit (blau), Mandver zur Mannigfaltigkeit (grin),
Nachoptimierung der Sequenz (gelb), Mandéver mit linear interpolier-

tem initial guess (lila); unten: zugehdorige Steuerungen u(t) jeweils in
der gleichen Farbe gekennzeichnet
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ge davon kann der nicht exakte Verlauf der nachoptimierten Losung entlang der
stark stabilen Mannigfaltigkeit erkldrt werden. Diese Losung besitzt in Steuerung
und Verlauf der Zustandsgrofen keine Spriinge bzw. Knicke. Die lilafarbene Linie
ist die Losung, die auf der black-box Optimierung basiert und es ist ersichtlich,
dass diese einen vollstindig anderen Pfad zur oberen Ruhelage verfolgt.

5.3.2 Anwendung am Doppelpendel mit Wagen

In diesem Abschnitt wird der Sequenzansatz auf das Doppelpendel auf einem Wa-
gen erweitert. Dabei wird die strukturelle Ahnlichkeit der Pendelmodelle (siche
Bild B=4]) ausgenutzt, um die (stark) stabile Mannigfaltigkeit wiederzuverwenden.
Dies ist moglich, da die Modelle (b) und (¢) genau dann iibereinstimmen, wenn
die Systeme nicht aktuiert sind, d.h wenn das Moment in Modell (b) gleich Null
ist und der Wagen in Modell (c) still steht. So erhélt man erneut die zwei un-
terschiedlichen Teile des Sequenzansatzes. Die schon vorhandene und getestete
Strategie aus Abschnitt (.21 und (.31 kann beibehalten werden, um optimale
Trajektorien fiir den Aufschwung des Doppelpendels auf einem Wagen zu be-
rechnen. Der Sequenzansatz kann nun fiir dieses Anwendungsbeispiel wie folgt
formuliert werden:

e Im ersten Schritt wird ein optimales Steuerungsmandéver fiir den Wagen
berechnet (mit 3/ = 0,7/ = 0), um das Pendel auf einen gewiinschten
Punkt auf der stark stabilen Mannigfaltigkeit zu beférdern.

e Anschliefend steht der Wagen still, und das Pendel bewegt sich auf der
stark stabilen Mannigfaltigkeit in Richtung der oberen Ruhelage.

e Schliefslich kann die Sequenz fiir eine Nachoptimierung des Originalproblems
fiir Modell (c¢) in Bild B=4] verwendet werden.

Fiir das Optimalsteuerungsproblem des Doppelpendels auf einem Wagen werden
als Startpunkt die untere Ruhelage (09, 09, 3%, @?, 09, 9°) = (=7, 7, 0,0,0,0) und
als Endpunkt die obere Ruhelage (gp{, 4,05, y/, gb{, ¢§, y7) = (0,0,0,0,0,0) gewiihlt.
Dabei sind die Ruhelagen im Zustandsraum 27-periodisch und damit nicht ein-
deutig. Die Wahl einer bestimmten Darstellung beeinflusst die Losung fiir den
Aufschwung, denn durch die Wahl von festen Start- und Endpunkten fiir die
Bewegung wird die Richtung, in die sich die Pendelarme in die obere Ruhelage
bewegen, vorgegeben. Der Grund dafiir, dass (¢9,p3) = (—m, ) als Darstellung
der unteren Ruhelage fiir den Startpunkt gewéhlt wird, liegt darin, dass dieser im
Zustandsraum am néchsten zur stark stabilen Mannigfaltigkeit liegt. Weitere nu-
merische Tests, die mit anderen Darstellungen der unteren Ruhelage durchgefiihrt
worden sind, zeigten, dass dies eine sinnvolle Wahl ist.

Auf Grund des zusétzlichen Freiheitsgrades des Systems ist das gesamte Opti-
malsteuerungsproblem fiir das Doppelpendel auf einem Wagen komplexer als das
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aus Abschnitt 5301 Im Vergleich zur Implementierung von Modell (b) existieren
mehr Optimierungsvariablen, was im Allgemeinen zu einer lingeren Rechenzeit
und zu einer geringeren Anzahl an konvergierten Losungen fiihrt.

5000 e PR e e e . PP e e e 5000 ..........
: : : : % ®Z : ® ¥  Sequenzansatz

4500p -+ S SR % B C S 4500p - o (O  Trajektorie nahe Mfk
4000F - o 2000b- - - S o .

3500

3000
2500f - - - e

2000

Steueraufwand [N 2s]

1500
1000
500

12 14 16 18 2 22 24 26 15 2 2.5
Zeit [s] Zeit [s]

Bild 5-13: Zielfunktionswerte fiir den Aufschwung des Doppelpendels auf einem
Wagen mit dem Sequenzansatz (blaue Sterne); Trajektorien, die nach
der Nachoptimierung tatsdichlich nahe der Mannigfaltigkeit verlau-
fen sind mit grinen Kreisen gekennzeichnet; rechts: nicht-dominierte
Punkte

Bei einem ersten Test wird eine Sequenz betrachtet, die aus einem Mandver zum
Orbit der Mannigfaltigkeit mit einer Zeit von 1.55 s und einem zweiten Stiick auf
der stark stabilen Mannigfaltigkeit von 0.85 s besteht. Es ergibt sich eine Gesamt-
zeit von T, = 2.4 5. Diese Losung wird spéter auch in Abschnitt [5.4]als nominale
Trajektorie fiir die Umsetzung am Priifstand gewihlt. Die Trajektorie, die durch
die Nachoptimierung bestimmt wurde, liegt wiederum nicht exakt auf der stark
stabilen Mannigfaltigkeit und dies ist ein analoges Ergebnis zu der Losungstra-
jektorie aus dem Anwendungsbeispiel in Abschnitt [(.3.1] Die leichte Abweichung
von der stark stabilen Mannigfaltigkeit entspricht einer geringen korrigierenden
Bewegung des Wagens in dem zweiten Teil der nachoptimierten Trajektorie. Im
nichsten Schritt werden die Berechnungen fiir die unterschiedlichen Sequenzen
wiederholt, wie es in Abschnitt £.2.1] beschrieben wurde. In Bild sind die
Zielfunktionswerte der nachoptimierten Losungen fiir das Doppelpendel auf ei-
nem Wagen dargestellt (blaue Sterne). Es wird wiederum deutlich, dass die Lo-
sungen verschiedene Aste bilden, die die typische Form von Losungen besitzen,
die durch einen Mehrzieloptimierungsansatz berechnet wurden. Die Losungen fiir
das Doppelpendel auf einem Wagen kénnen an dieser Stelle nicht mit Losungen
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des Standardansatzes verglichen werden, da der Optimierungsalgorithmus mit ei-
nem black-box Ansatz fiir die hier vorgestellte Konfiguration nicht konvergiert
ist. Dies ist dadurch zu erklaren, das sich aus der gewahlten Anfangsruhelage in
die instabile obere Ruhelage komplexe Mandver ergeben, die durch den linear in-
terpolierten initial guess nicht gefunden werden konnten. Bei einer Untersuchung
der Losungen im Zustandsraum wird ersichtlich, dass nicht alle konvergierten
Losungen der Nachoptimierung wirklich in der Nahe der stark stabilen Mannig-
faltigkeit verlaufen. Das liegt an der Tatsache, dass eine globale Optimalitéit der
Losungen, die mit dem Sequenzansatz berechnet werden, nicht garantiert wer-
den kann, siehe auch die Diskussion dazu in Abschnitt [.2.1l Daher werden die
Trajektorien, die entlang der stark stabilen Mannigfaltigkeit verlaufen, zusétzlich
mit griinen Kreisen markiert. Auf der rechten Seite von Bild B-13] werden die
nicht dominierten Punkte dargestellt, und acht von zehn von ihnen befinden sich
wie erwartet in der Ndhe der stark stabilen Mannigfaltigkeit. Dementsprechend
konnte das Ziel, optimale Trajektorien auf stabilen Mannigfaltigkeiten der oberen
Ruhelage zu berechnen, in 80 % der Félle erreicht werden.

Auf Grund dieser Ergebnisse kann man den Sequenzansatz auch noch aus einer
anderen Perspektive als vorteilhaft ansehen. Auch wenn nicht jede Losung der
Nachoptimierung der Sequenz wirklich in der Nihe der Mannigfaltigkeit liegt,
ergeben sich insgesamt gute paretooptimale Trajektorien. Da es fiir komplexe
Bewegungen von unteraktuierten Systemen schwer ist, einen physikalisch moti-
vierten initial guess zu finden, ist hierfiir der Sequenzansatz empfehlenswert. So
ist es vorstellbar, dass es durch die Kombination von kurzen Teiltrajektorien, die
dann einen zuldssigen initial guess bilden, iiberhaupt erst moglich ist, Losungen
des Optimalsteuerungsproblems fiir komplexe Systeme zu finden.

5.3.3 Numerische Ergebnisse

Als Fazit ldsst sich sagen, dass die Ergebnisse von Abschnitt 531 und Ab-
schnitt zeigen, dass durch den neuartige Ansatz eine optimale Steuerung
auf einer stabilen Mannigfaltigkeit zu bestimmen, das Ziel erreicht werden kann,
dass Pendel in die oberen Ruhelage zu bringen.

Zusatzlich wird in Bild B-14] der numerische Aufwand verglichen, der bei der
Berechnung der Losungen fiir das momentengesteuerte Pendel durch den NAG-
Algorithmus entstanden ist. Da in der Optimierung eine konstante Schrittweite
h = 0.005 s verwendet wird, entspricht ein lingeres Manover einer héheren An-
zahl an Knoten. Fiir den Sequenzansatz wird die Summe der Rechenzeiten fiir das
Mandéver zur Mannigfaltigkeit und der Nachoptimierung gebildet. Anschliefsend
wird fiir jede feste Anzahl an Knoten ein Durchschnittswert der unterschiedlichen
initial guesses gebildet, um die Werte gut vergleichen zu kénnen (blaue Sterne).
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Rechenzeit (s)

Anzahl Knoten

%¥  Sequenz (Manéver zur Mannigfaltigkeit + Nachoptimierung)
Black—box Optimierung

Bild 5-14: Vergleich der Rechenzeiten der gemittelten Summe des Mandvers zur
Mannigfaltigkeit und der Nachoptmierung (blaue Sterne) mit der Op-
timierung des black-box Ansatzes (grine Kreise) beziiglich der Anzahl
an Knoten, die fiir die Optimierung verwendet wurde.

Im Vergleich dieser Ergebnisse zu der Rechenzeit der black-box Optimierung als
Referenz (griine Kreise), hat der neuartige Ansatz eine vergleichbare Rechenzeit,
obwohl er zwei Optimierungen beinhaltet. Bei kiirzeren Mandver, mit einer ge-
ringeren Anzahl an Knoten, benétigt der Sequenzansatz weniger Rechenzeit als
der black-box Ansatz, und fiir eine hohere Knotenzahl ist es umgekehrt.

5.4 Validierung durch Simulation und Tests am Prifstand

In diesem Abschnitt werden die Ergebnisse des Sequenzansatzes fiir das Doppel-
pendel auf einem Wagen validiert. Ziel dabei ist es, diese Losungen am Priifstand
umzusetzen. Dazu muss zusétzlich eine Regelung in der schon bekannten Zwei-
Freiheitsgrade-Struktur ausgelegt werden (siehe Abschnitt 2.4]). Die Funktionsfi-
higkeit kann dann in der Simulationsumgebung fiir das Doppelpendel auf einem
Wagen getestet werden (siehe Abschnitt Z4T]). In diesem Fall wird ein konti-
nuierlicher LQ-Regler verwendet, wie er in Abschnitt beschrieben wurde.
Anschlieflend werden Tests am Priifstand (siehe Abschnitt 2.2]) durchgefiihrt, an
dem die Ausnutzung der natiirlichen Systemdynamik sehr anschaulich beobachtet
werden kann.
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5.4.1 Ergebnisse Simulationsumgebung

Fiir die Validierung in der Simulationsumgebung wird das aus Abschnitt 2.4.1]
bekannte Modell verwendet. Dabei wird fiir 5 s simuliert und die schon verwendete
Trajektorie aus Abschnitt 0.3.2] mit einer Gesamtzeit T,., = 2.4 s getestet.
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Bild 5-15: Links: Vergleich der gesteuerten Trajektorie (rot gepunktete Linie) aus
der Simulation mit der geregelten Trajektorie (durchgezogene griine Li-
nie) und der nominalen Trajektorie (blaue gestrichelte Linie) fiir ¢,
w9 und y; die gestrichelte Linie kennzeichnet das Ende der nomina-
len Trajektorie in der Simulation; rechts: oben: Reglerkonstanten der
Reglermatriz k; unten: Trajektorie der gesamten Steuerfunktion wu(t)
(griine durchgezogene Linie, die aus der Vorsteuerung (blaue gestri-
chelte Linie) und dem Regleranteil (rote gepunktete Linie) besteht

Die Ergebnisse der nachoptimierten Losung des Sequenzansatzes aus der Simula-
tionsumgebung werden in Bild 5-T5]gezeigt. Insgesamt sind die Ergebnisse d&hnlich
zu denen von den untersuchten Standardtrajektorien (siehe Abschnitt 2.4.2)), da-
her werden die Ergebnisse hier nur kurz diskutiert und die Besonderheiten der
Losungen des Sequenzansatzes herausgestellt.
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Auf der rechten Seite sind die Verstarkungsfaktoren der Regelung fiir die Losung
dargestellt. Am Ende der Trajektorie, also in der Nidhe der oberen Ruhelage,
werden diese grofer, da ein stirkerer Eingriff des Reglers notwendig ist, um das
Pendel zu stabilisieren. Auf der linken Seite werden die Trajektorien fiir die Win-
kel der Pendelarme und die Position des Wagens dargestellt. Dabei werden die
nominale (blau gestrichelt), die gesteuerte (rot gepunktet) und die sowohl ge-
steuerte als auch geregelte Trajektorie (griin durchgehend) verglichen. Es wird
deutlich, dass mit Hilfe des kontinuierlichen LQ-Reglers das Doppelpendel auf
einem Wagen in der oberen Ruhelage stabilisiert werden kann. Am Ende der no-
minalen Trajektorie bei 2.4 s muss der Wagen zusétzliche Ausweichbewegungen
durchfiihren, um das Pendel zu stabilisieren, was auch in der Darstellung der Ein-
gangsgrofe (rechts unten) ersichtlich ist. Dies widerspricht der eigentlichen Idee
des Sequenzansatzes, namlich dass sich das Pendel im zweiten Teil des Mand6vers
auf der stark stabilen Mannigfaltigkeit befindet und sich der Wagen eigentlich
nicht mehr bewegen muss. Diese verstirkte Regleraktivitit ist aber fiir die Stabi-
lisierung notwendig und konnte auch bei den bisher untersuchten Beispielen am
Priifstand beobachtet werden. Aber anhand der nominalen Trajektorie der Wa-
genbewegung kann trotzdem der eigentlich gewiinschte Effekt abgelesen werden:
Ab ca. 1.95s ist die Sollbewegung des Wagens fast null. Dieser Effekt wird im
nichsten Abschnitt auch fiir den Test am Priifstand untersucht. Dort wird auch
die Bewegung auf der stark stabilen Mannigfaltigkeit besser deutlich.

5.4.2 Ergebnisse am Prifstand

Es wird wieder die Trajektorie mit einer Gesamtzeit von 2.4 s betrachtet, die auch
im vorherigen Abschnitt (.4.7] verwendet wurde. In Bild wird der Testlauf
dieser Trajektorie am Priifstand dargestellt. Insgesamt sind die Ergebnisse am
Priifstand vergleichbar zu denen in der Simulation, denn auch hier muss der
Wagen in der zweiten Halfte des Mandvers zusétzliche Bewegungen durchfiihren,
um das Doppelpendel stabilisieren zu konnen.

Bei der Beobachtung des Aufschwungs am Priifstand werden auch die speziellen
Eigenschaften deutlich, die die nachoptimierte Lésung des vorgestellten Ansatzes
besitzt. Dies gilt vor allem, wenn man nur die gesteuerte Trajektorie betrachtet,
bei der keine Regelung wirkt, denn dabei werden die zwei Teile, die dem Se-
quenzansatz entstammen, sehr deutlich. In Bild ist daher der zweite Teil des
Mandévers, bei dem die Pendelarme entlang der stark stabilen Mannigfaltigkeit
verlaufen, mit einer gestrichelten Linie gekennzeichnet. Fiir die nominale und die
gesteuerte Trajektorie (ohne Regelung) zeigt diese Auswertung, dass fast keine
zusitzliche Bewegung des Wagens notwendig ist und sich die Pendelarme selbst-
stindig auf der Mannigfaltigkeit in Richtung der oberen Ruhelage bewegen. Dies
ist das erwartete Ergebnis fiir das Manover, das mit Hilfe des Sequenzansatzes
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Bild 5-16: Winkel der Pendelarme, Position des Wagens und Steuerung fiir den
Aufschwung des Doppelpendels auf einem Wagen am Priifstand; als
nominale Trajektorie (blaue gestrichelte Linie) wird die aus Bild [5-11
verwendet; es werden ein Durchlauf ohne Regelung (rote gepunktete
Linie) und einer mit zusdtzlicher Regelung (grime durchgezogene Linie)
gezeigt; unten ist die Gesamtsteuerung (grine durchgezogene Linie)
bestehend aus dem Vorsteuerungsanteil (blaue gestrichelte Linie) und
dem Regelungsanteil (rote gepunktete Linie) dargestellt; die vertikale
gestrichelte Linie kennzeichnet hier den Beginn der Bewegqung auf der
stark stabilen Mannigfaltikeit
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berechnet wurde, und es zeigt auch die physikalische Bedeutung der stabilen Man-
nigfaltigkeit sehr anschaulich. Sogar bei der Trajektorie, die am Priifstand mit
zusitzlicher Regelung (griine Linie in Bild B=16) durchgefiihrt wird, bleibt die
gewiinschte Struktur in der Bewegung des Wagens teilweise erhalten. Im Verlauf
der Steuerung des Wagens (siehe Bild unten) wird im zweiten Teil sichtbar,
dass diese sich zunéchst fast bei null befindet, dann aber ein Regeleingriff beno-
tigt wird, um die Stabilisierung durchzufiihren. Im Vergleich zu der Simulation
dieser Trajektorie (siehe Bild B=T5]) sind die Spitzen, die in der Steuerung am
Ende des Manoévers auftreten, am Priifstand nicht so ausgepréigt. Ein moglicher
Aspekt, der dies erklart, ist, dass der Motor am Priifstand zusitzliche Damp-
fung besitzt, die im Simulationsmodell nicht beriicksichtigt ist und die sich auf
die Tests vorteilhaft auswirkt. Auferdem kann die Richtungsumkehr am Motor
nicht beliebig schnell ausgefiihrt werden, sodass immer nur ein begrenzter Ruck
umgesetzt werden kann.

Zusammenfassend bietet der vorgeschlagene Sequenzansatz die Moglichkeit qua-
litativ neue Losungen fiir den Aufschwung des Doppelpendels auf einem Wagen
zu finden. Im Vergleich zu den Losungen aus Kapitel @, bei denen ein linear
interpolierter initial guess fiir die Optimierung verwendet wurde, ergeben sich
hier deutlich komplexere Losungen, die auch nur mit diesem deutlich komple-
xeren initial guess erzeugt werden konnten. Dies kann dadurch erklart werden,
dass zusétzliches Systemwissen durch die Verwendung der natiirlichen Dynamik
beim Sequenzansatz verwendet wird. Bei der Ubertragung dieser Idee auf andere
Systeme kann das zusétzliche Systemwissen hilfreich sein, um iiberhaupt opti-
male Losungen zu finden oder die schon bestehenden Losungen zu verbessern.
Insgesamt lasst sich feststellen, dass die Verwendung des Sequenzansatzes, der
die natiirliche Dynamik des Systems ausnutzt, ein hilfreicher Prozess ist, um sehr
gute Losungen des Optimalsteuerungsproblems fiir den Aufschwung des Pendels
zu finden.

5.5 Vergleich der optimalen Steuerung auf
Mannigfaltigkeiten mit dem Standardansatz

Es ist nun naheliegend, die Ergebnisse, die fiir den Aufschwung des Doppelpen-
dels auf einem Wagen unter Verwendung der stabilen Mannigfaltigkeit der oberen
Ruhelage erzielt werden konnten, mit den Ergebnissen des Standardansatzes aus
Kapitel [d] zu vergleichen. Dafiir wird zunéchst kurz auf die Unterschiede der Op-
timalsteuerungsprobleme eingegangen.

Beim Ansatz der optimalen Steuerung mit Mannigfaltigkeiten wurde als unte-
re Ruhelage 20 = [—7? = 0 0 0 0] gewahlt, da sich dies zum Erreichen der
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stark stabilen Mannigfaltigkeit als die beste Reprisentation herausgestellt hat.
Bei dem Standardansatz, der in Kapitel 4] mit einem linear interpolierten initial
guess durchgefiihrt wurde, war 29 = [—7T -7 0 0 0 O] die gewahlte Repra-
sentation der unteren Ruhelage. Weiterfithrende Untersuchungen haben ergeben,
dass der Standardansatz mit 29 fiir diverse unterschiedliche Parametrierungen des
Problems nicht konvergiert ist. Dies ist dadurch zu erkliren, dass der Aufschwung
aus der Ruhelage z{ eine Bewegung darstellt, bei der sich die beiden Pendelarme
gegeneinander in Richtung der oberen Ruhelage drehen miissen. Dieses Mand&ver
ist komplexer als ein Aufschwung aus der Ruhelage x9, bei dem sich die Pendel-
arme in die gleiche Richtung bewegen. Somit muss festgehalten werden, dass es
sich bei den Losungen der beiden Ansédtze um qualitativ unterschiedliche Bewe-
gungen handelt. Dennoch werden die Ergebnisse im Folgenden verglichen, da es
sich prinzipiell um die Losung des gleichen Problems handelt.

6

10 O Standardansat

Sequenzansat

N

N

Steueraufwand [N?s| (logarithmisch)

Bild 5-17: Vergleich der Ergebnisse des Standardansatzes aus Abschnitt[{.3.4) (ro-

te Kreise) und des Sequenzansatzes (blaue Punkte)

In Bild B-17 sind die Zielfunktionswerte der zwei verschiedenen Anséitze zusam-
men dargestellt. Dabei handelt es sich bei den roten Kreisen um die Ergebnisse
der Rechnungen, die mit einem linear interpolierten initial guess und der Mehr-
zieloptimierung mit Gleichheitsnebenbedingungen durchgefiihrt wurden. Diese
Ergebnisse wurden auch schon in Bild dargestellt. Die Losungen aus dem
Sequenzansatz sind mit blauen Punkten gekennzeichnet und wurden schon in
Bild B=13] gezeigt. Im Vergleich der Werte fillt zundchst auf, dass es einen Bereich
von 1.5 s bis 2.8 s gibt, in dem die Ergebnisse des Sequenzansatzes besser sind als
diejenigen des Standardansatzes. Dies war auch zu erwarten, da beim Sequenzan-
satz mehr Systemwissen eingesetzt wurde, um bessere Ergebnisse zu erhalten.
Es wird ebenfalls deutlich, dass durch den Sequenzansatz im Vergleich sehr viele
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nur lokal optimale Losungen berechnet werden, was durch die grofte Anzahl an
Kombination in diesem Ansatz zu erkliren ist. Es gibt nur einige Kombinationen
die zu (vermutlich) global optimalen Losungen konvergieren. Dies héngt mit ei-
ner weiteren Beobachtung fiir die Losungen im Zustandsraum zusammen: Es gibt
einen bestimmten Bereich fiir den Ubergang auf die stark stabile Mannigfaltig-
keit, fiir den sich die besten Losungen ergeben und wo die Losungen vermehrt
konvergieren.

O Standardansatz mit Nachoptimierun
% Sequenzansatz

«Q

Steueraufwand [N?2s] (logarithmisch)

Bild 5-18: Nicht-dominierte Punkte des Standardansatzes mit Nachoptimierung
(rote Kreise) aus Abschnitt[{.3.5 und des Sequenzansatzes (blaue Ster-

ne)

In Bild B-I8 sind die Zielfunktionswerte der nicht-dominierten Punkte des Se-
quenzansatzes (blaue Sterne) und die Ergebnisse der Nachoptimierung des Stan-
dardansatzes aus Bild (rote Kreise) dargestellt. Es wird deutlich, dass die
Losungen aus dem Sequenzansatz nicht so gleichméfig verteilt sind, wie die der
Nachoptimierung des Standardansatzes. Hier ist es aber auch mdglich, die vor-
liegenden Ergebnisse des Sequenzansatzes erneut durch eine Nachoptimierung zu
variieren und so eine zusammenhéngende Paretofront zu erhalten.

In den beiden Fillen des Sequenzansatzes und der Variation durch Nachopti-
mierung wurde im Vergleich zum Standardansatz zusitzlicher Aufwand fiir die
Berechnung der Ergebnisse notwendig. Beide Varianten ergeben dabei Losungen,
die ungefiahr gleich gute Zielfunktionswerte beziiglich der betrachteten Ziele besit-
zen. Somit ldsst sich als Fazit festhalten, dass sich durch zusétzliches Systemwis-
sen (z. B. Mannigfaltigkeiten) und durch spezielle Auswahl und Nachoptimierung
besonders gute FErgebnisse erzielen lassen.
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5.6 Erweiterungsmaoglichkeiten und zuktnftige
Anwendungen

Weiterfithrend ist es notwendig zu validieren, ob der hier vorgestellte Ansatz der
optimalen Steuerung auf Mannigfaltigkeiten allgemeiner anwendbar ist und dies
auch an anderen Anwendungsbeispielen zu testen. Fiir zukiinftige Arbeiten wire
es von Vorteil im Rahmen der optimalen Steuerung eine effiziente Methodik fiir
die Losung der Optimalsteuerungsprobleme auch in Hinblick der Mehrzielopti-
mierung zu finden. Zum Beispiel wurde in [ORF12] eine Methode mit Referenz-
punkten verwendet, um die Berechnung von ganzen Mengen von Mand&vern zu
beschleunigen.

Auferdem ist es denkbar, weniger einschrankende Teilprobleme fiir die Optimal-
steuerung zu verwenden, um nur einige wenige unterschiedliche Mandver zu be-
rechnen. Neben einer freien Zeit des Mandvers konnte auch der Endpunkt auf der
Mannigfaltigkeit weggelassen werden. Diese Randbedingung kann dann durch die
Nebenbedingung ersetzt werden, dass die Mannigfaltigkeit einen Zielbereich dar-
stellt, der wihrend des Mandvers erreicht werden soll. Dies konnte in DMOC
einfach umgesetzt werden, benétigt aber eine analytische Beschreibung des Or-
bits der Mannigfaltigkeit, welcher z. B. mit Splines approximiert werden kann.

Wenn man andere Szenarien als den Aufschwung des Pendels aus der unteren in
die obere Ruhelage betrachten mochte, konnten Mannigfaltigkeiten der anderen
Ruhelagen interessant sein. Es miissen dann mehrere Orbits von unterschiedli-
chen Mannigfaltigkeiten beriicksichtigt werden, und die Sequenzen kdnnten sogar
Ubergiinge von einer Mannigfaltigkeit zu einer anderen beinhalten. Ein Beispiel
fiir ein solches Vorgehen ist die Auslegung von energieeffizienten orbitalen Trans-
fers fiir Weltraummissionen. Der in diesem Kapitel vorgestellte Ansatz der Para-
metrisierung fiihrt dazu, dass sich die Anzahl an kurzen gesteuerten Mandvern
stark erhoht, wenn auch noch unterschiedliche Mannigfaltigkeiten betrachtet wer-
den. In einem solchen Fall wire ein systematisches Vorgehen hilfreich, das den
Anwender dabei unterstiitzt. Um schlieflich einen automatisierbaren Prozess zu

erhalten, wire ein graphbasierter Ansatz dhnlich dem Manoverautomaten aus
[FDF05] denkbar.

Langfristig gesehen sollte die optimale Steuerung auf Mannigfaltigkeiten auch
beziiglich der Anwendbarkeit auf eine allgemeinere und anwendungsorientierte
Klasse von Systemen untersucht werden. Im Besonderen fiir hochdimensionale,
komplexe Mehrkorpersysteme kann der Sequenzansatz ein Mittel dazu sein, einen
klugen, physikalisch motivierten und sogar schon zuléssigen initial guess zu fin-
den, der dem Optimierungsalgorithmus hilft ein moglichst gutes Optimum zu
erreichen und schnell zu einer Lésung zu konvergieren. Eine der besonderen Her-
ausforderungen der optimalen Steuerung des Doppelpendels besteht darin, dass
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dieses System unteraktuiert ist. Weitere Beispiele fiir unteraktuierte mechanische
Systeme sind Raumfahrzeuge und Unterwasserfahrzeuge, Systeme mit flexiblen
Verbindungen, oder auch Systeme im Bereich der Fortbewegung [Spo97]. Dabei ist
die Verwendung von invarianten Mannigfaltigkeiten im Bereich der Entwicklung
von energieeffizienten Weltraummissionen bereits aktueller Stand der Technik,
worauf in der Einleitung dieses Kapitels schon eingegangen wurde. Potentiale
fiir die Anwendung des neuen Ansatzes werden daher vor allem im Bereich von
unteraktuierten Robotiksystemen gesehen, z.B. bei Systemen die sich mit der
Fortbewegung von Robotern beschéiftigen. Bei dieser Art von Systemen ist es
das Ziel die menschliche Bewegung zu imitieren und dabei auf die Minimierung
der notwendigen Steuerung zu achten, sieche [CWRO01]. Dabei zeigten z.B. Tests
mit dem ,Honda Humanoid“, dass das Laufen des Roboters 20 mal mehr Mus-
kelleistung als bei einem vergleichbar grofen Mensch benétigt. Daher erscheint
Optimalsteuerung als ein passendes Konzept, um energieeffiziente Losungen zu
finden. Es ist dabei denkbar mehrere Ziele gleichzeitig zu beriicksichtigen (Mehr-
zieloptimierung), da z.B. eine kurze Dauer von Mano6vern auch wichtig ist. In
[McG90] wird das biomechanisch inspirierte Design von Robotern beschrieben.
Der Autor stellt einige fundamentale Aussagen vor, z. B dass ein grofer Teil der
Schwungphase der menschlichen Bewegung passiv ist. Eine solche Eigenschaft
entspricht der Idee der optimalen Steuerung auf Mannigfaltigkeiten, denn die
Bewegung auf dieser ist ebenfalls passiv. Daher werden hier vielversprechende
Verbindungen gesehen.

Auf Grundlage dieser Ideen sollen die konkrete Anwendbarkeit und Leistungsfa-
higkeit des hier vorgestellten neuen Ansatzes fiir weitere unteraktuierte Systeme
in der Zukunft evaluiert werden.
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6 Zusammenfassung und Ausblick

Zum Abschluss folgen eine Zusammenfassung der in dieser Arbeit erzielten Er-
gebnisse und ein Ausblick auf weitere Forschungsarbeiten.

6.1 Zusammenfassung

In dieser Arbeit wurde die optimale Steuerung von unteraktuierten dynamischen
Systemen am Beispiel des Mehrfachpendels auf einem Wagen untersucht. Da-
bei lag ein besonderer Schwerpunkt auf der Beriicksichtigung mehrerer Ziele fiir
die Auslegung der optimalen Steuerung. Durch eine Mehrzieloptimierung war
es moglich, viele Varianten fiir einen Aufschwung des Pendels beziiglich ihrer
Pareto-Optimalitiat zu untersuchen. Dabei konnten bei dem Vergleich der Losun-
gen abhingig von den Systemzielen optimale Kompromisse fiir das dynamische
System identifiziert werden. Ein weiterer Ansatz bestand darin, die natiirliche
Dynamik in Form von (in)stabilen Mannigfaltigkeiten zu nutzen, um optimale
Trajektorien zu bestimmen.

In Kapitel 2l'wurden zunéchst verschiedene Pendelsysteme vorgestellt, die im Rah-
men von Forschungsprojekten bei der Entwicklung von neuartigen Steuerungs-
und Regelungskonzepten verwendet werden. In dieser Arbeit wurde das mehrfach
unteraktuierte Doppel- bzw. Dreifachpendel auf einem Wagen betrachtet. Losun-
gen fiir den Aufschwung des Pendels wurden simulativ, aber auch am Priifstand
evaluiert. Mit Hilfe des Lagrange-Formalismus wurde fiir dieses System eine aus-
fithrliche Modellbildung durchgefiihrt. Dabei wurde die partielle Zustandslineari-
sierung dazu verwendet, das kraftgesteuerte Modell in ein weniger komplexes Mo-
dell zu transformieren, das durch die Beschleunigung des Wagens gesteuert wird.
Fiir die Ausfiihrung der Trajektorien am Pendel wurde die Zwei-Freiheitsgrade-
Struktur verwendet. Hierbei miissen zuerst eine nominale Steuerung und Trajek-
torie bestimmt werden und diese muss anschliefend durch eine zusitzliche Rege-
lung entlang der Trajektorie stabilisiert werden. Die Regelung basierte dabei auf
linearen Ansitzen und wurde mit einem zeitvarianten L(Q-Regler durchgefiihrt.
Es konnte gezeigt werden, dass sich das nichtlineare System des Doppelpendels
mit Hilfe dieses Vorgehens regeln ldsst. Aufserdem konnte durch manuelle Anpas-
sungen der Regelparameter in besonders kritischen Bereichen der Bewegung die
Giite der Regelung zum Teil noch verbessert werden.

Der Hauptaspekt der Arbeit war die Bestimmung der Steuerung fiir das unter-
aktuierte Pendel. Diese wurde mit Hilfe von optimalen Steuerungsmethoden be-
rechnet, um die gewiinschten Systemziele beriicksichtigen zu konnen. Dazu wurde
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die Thematik der optimalen Steuerung in Kapitel [3 eingefiihrt und auf die un-
terschiedlichen Losungsmethoden eingegangen. Man unterscheidet zwischen indi-
rekten und direkten Methoden: Bei den indirekten Methoden werden notwendige
Bedingungen mit Hilfe des Pontryaginschen Maximumsprinzips hergeleitet und
dazu verwendet, ein (diskretes) Gleichungssystem zur Losung des Optimalsteue-
rungsproblems zu bestimmen. Bei den direkten Methoden werden die Bewegungs-
gleichungen des Systems selbst dazu verwendet, ein diskretes Problem fiir die
anschliefsende Losung durch Optimierungsverfahren herzuleiten. Beispiele hierfiir
sind Schiefsverfahren und Kollokation. Auch DMOC (Discrete Mechanics and Op-
timal Control) ist eine solche direkte Methode, bei der das Lagrange-d’Alembert-
Prinzip zur Herleitung der Bewegungsgleichungen zunéchst diskretisiert wird und
die Bewegungsgleichungen anschliefslend durch eine diskrete Variation hergeleitet
werden. DMOC hat spezielle Eigenschaften, die auf der variationellen Herleitung
dieser Methode beruhen. Zum Beispiel fiihrt die symplektische Form der Metho-
de zu einem qualitativ guten Energieverhalten der Trajektorien fiir mechanische
Systeme.

Die Ergebnisse der optimalen Steuerung mit DMOC fiir den Aufschwung des
Doppelpendels auf einem Wagen wurden in Kapitel d] dargestellt. Das NLP, das
mit Hilfe von DMOC hergeleitet werden konnte, konnte durch die Anwendung von
SQP-Verfahren gelost werden. Ein essentieller Einflussfaktor in dieser Optimie-
rung war die Wahl der Zielfunktion, in der mehrere Ziele beriicksichtigt wurden.
Hierfiir wurden Methoden der Mehrzieloptimierung, wie z. B. die Einfiihrung ei-
ner gewichteten Summe in der Zielfunktion verwendet. Als Ziele wurden dabei
die Dauer und der entstehende Steueraufwand des Mandévers verwendet.

Ein zentrales Ergebnis war es, dass hierdurch dynamisch sehr unterschiedliche
Manover fiir den Aufschwung aus der unteren Ruhelage in die obere Ruhelage
des Pendels bestimmt wurden. Diese Losungen wurden beziiglich ihrer Zielfunk-
tionswerte verglichen und damit auf ihre Pareto-Optimalitit hin untersucht. Eine
zusitzliche Untersuchung von Losungen mit einem deutlich groferen Verfahrweg
des Motors zeigten, dass dieser sich nicht bedeutend auf eine Verbesserung der
Manover beziiglich der gewéhlten Ziele auswirkt. Hierdurch wurde gezeigt, dass
die Beschrinkung des Verfahrwegs keine bedeutende Einschrankung fiir die Lo-
sung des Optimalsteuerungsproblems darstellt.

Durch eine Nachoptimierung, bei der die vorausgehenden Loésungen als initial
guess verwendet wurden, wurden durch leichte Variationen des Optimierungspro-
blems weitere Losungen berechnet. Es war moglich, eine Paretofront ohne Spriinge
zu berechnen, die im Wesentlichen aus drei dynamisch unterschiedlichen Mano-
vern fiir den Aufschwung besteht. Dabei entsprechen die drei Aste, aus denen die
Paretofront besteht, jeweils Variationen der gleichen Bewegung mit leicht unter-
schiedlichen Zielfunktionswerten. Es existieren somit fiir verschiedene Gesamtzei-
ten von Manovern unterschiedliche Bewegungen, die fiir den Aufschwung optimal
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sind. Dies ist eine interessante Systemeigenschaft, die nur durch die Analyse von
unterschiedlichen Losungen ersichtlich werden konnte. Fiir einen Entscheidungs-
trager ist es mit diesen Ergebnissen moglich, eine bestimmte Trajektorie abhangig
von der gewiinschten Wichtigkeit der Ziele der Anwendung auszuwéhlen. Durch
die Pareto-Optimalitit der Losungen ist sichergestellt, dass es sich dabei um sehr
effiziente Losungen fiir das dynamische System handelt.

Eine neuartige Methode fiir die Berechnung von optimalen Trajektorien wurde
in Kapitel Bl vorgestellt. Das Ziel war es, die natiirliche Dynamik von mechani-
schen Systemen fiir die optimale Steuerung auszunutzen. Die natiirliche Dynamik
eines dynamischen Systems wurde dabei mittels stabiler und instabiler Mannig-
faltigkeiten beschrieben. Die stabile Mannigfaltigkeit besteht z.B. aus allen Zu-
standspunkten, die eine Ruhelage ohne Steuereingriff erreichen. Mannigfaltigkei-
ten wurden ausgenutzt, um energieeffiziente Trajektorien zu berechnen, da die
(ungesteuerte) Bewegung auf ihnen kostenlos ist. Eine derartige Verwendung von
Mannigfaltigkeiten fiir die optimale Steuerung wurde bisher vor allem im Rahmen
des Designs von Weltraummissionen verwendet und stellte daher im Bereich von
mechanischen Systemen einen neuartigen Ansatz dar. Das wesentliche Konzept
war es, eine Sequenz aus einer gesteuerten optimalen Trajektorie aus der unte-
ren Ruhelage auf die stabile Mannigfaltigkeit der oberen Ruhelage zu berechnen
und der stabilen Mannigfaltigkeit dann unaktuiert, also kostenlos, in die obere
Ruhelage zu folgen. Eine zusétzliche Regelung im Sinne einer Zwei-Freiheitsgrade-
Struktur sorgte fiir die Stabilisierung des Pendels wihrend des Aufschwungs und
in der oberen Ruhelage. Eine weitere Nachoptimierung mit der Sequenz als initial
guess in der Optimierung fithrte zu noch besseren Zielfunktionswerten der Losun-
gen. Im Rahmen der Arbeit an diesem Ansatz konnte gezeigt werden, dass sich
optimale Trajektorien entlang der (stark) stabilen Mannigfaltigkeit der oberen
Ruhelage des Doppelpendels berechnen lassen. Der Ansatz zeigte auferdem in
vielen Fillen bessere Zielfunktionswerte der optimalen Trajektorien im Vergleich
zu Losungen, die mit einem einfachen linear interpolierten initial guess berechnet
wurden.

Auch am Priifstand des Doppelpendels auf einem Wagen konnte die Bewegung
auf der Mannigfaltigkeit anschaulich beobachtet werden. Vor allem beim nicht
geregelten Manover konnte man im zweiten Teil der Trajektorie beobachten, dass
sich der Wagen fast nicht mehr bewegen musste, um das Pendel in Richtung der
oberen Ruhelage zu bringen. Dies entsprach der Bewegung auf der Mannigfaltig-
keit.

Insgesamt wurde in dieser Arbeit durch die Berechnung von optimalen Mandvern
fiir das Pendel viel Systemwissen zusammengefiihrt. So ist es mit den vorlie-
genden Ergebnissen moglich, zu ermitteln, wie der schnellste Aufschwung oder
derjenige mit dem geringsten Steueraufwand aussieht. Auflerdem kann eine belie-
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bige Losung mittels Nachoptimierung einfach variiert werden, um eine gewiinsch-
te Kombination der Zielfunktionswerte zu erhalten. Die optimale Steuerung auf
Mannigfaltigkeiten bietet zusitzlich die Md&glichkeit, eine besondere Bewegung
durch physikalisch motivierte Ansétze herzuleiten, die ebenfalls sehr gute Ziel-
funktionswerte besitzt. Die optimalen Trajektorien aus beiden Ansétzen konnten
erfolgreich am Priifstand umgesetzt werden. Dadurch wurde ersichtlich, dass die
numerischen Losungen des Optimalsteuerungsproblems exakt genug fiir eine prak-
tische Umsetzung berechnet wurde. Es konnte gezeigt werden, dass ein Vorgehen
entwickelt wurde, das von der Modellbildung iiber die theoretische Berechnung
der optimalen Steuerung bis hin zur Realisierung am Priifstand umsetzbar ist. Es
wird auferdem davon ausgegangen, dass die hier vorgestellten Ansétze ebenfalls
vorteilhaft auf andere mechanische Systeme angewendet werden konnen, worauf
im folgenden Ausblick genauer eingegangen wird.

6.2 Ausblick

Innerhalb der Thematik der optimalen Steuerung dynamischer Systeme am Bei-
spiel des Pendels auf einem Wagen gibt es weitere Aspekte, die in kiinftigen
Forschungsthemen aufgegriffen werden kénnen.

Mit den in dieser Arbeit vorgestellten Methoden ist es nicht moglich, die durch
Optimierung berechneten Trajektorien nachtriglich anzupassen, um z. B. einen
anderen Anfangspunkt zu erhalten. Eine solche Trajektorie miisste durch eine
neue Berechnung bestimmt werden. Da aber fiir einen echtzeitfahigen Aufschwung
aus einer beliebigen Position des Pendels aufgrund der Komplexitiat des Problems
die benotigten Trajektorien nicht online, also in Echtzeit, berechnet werden kon-
nen, muss ein neuer Ansatz gewahlt werden. Eine Idee hierfiir ist es, im Vorfeld
kurze optimale Trajektorienabschnitte in Richtung der oberen Ruhelage zu be-
rechnen und diese in einer Bibliothek zu hinterlegen. Diese optimalen Steuerungen
konnen wiederum mit Hilfe von DMOC berechnet werden. Dann kann abhingig
von der Position des Pendels im Zustandsraum das passende Trajektorienstiick
ausgewahlt und aufgeschaltet werden. Dies muss dann mehrfach wiederholt wer-
den, da dabei Systemungenauigkeiten auftreten werden. Denkbar ist, dass sich
aufgrund der Dynamik des Pendels bestimmte Strukturen fiir die gewiinschte
Bewegung ergeben, die ausgenutzt werden konnen. Erste Tests zeigen, dass sich
z.B. in der Nihe der oberen Ruhelage Trajektorien entlang der stark stabilen
Mannigfaltigkeit ergeben. Insgesamt besteht die Idee darin, dhnlich einer Model
Predictive Control zu arbeiten: Entsprechend dem aktuellen Zustand wird das
Systemverhalten immer wieder neu angepasst, bis die Ruhelage erreicht wird.

Fiir die optimale Steuerung auf Mannigfaltigkeiten soll in Zukunft die Anwend-
barkeit der Strategie auf andere Systeme getestet werden. Dabei kann es vor allem
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fiir komplexe Mehrkorpersysteme von Vorteil sein, eine solche physikalisch mo-
tivierte Methode fiir die Berechnung von optimalen Steuerungen zu verwenden.
Grofse Potentiale werden hier vor allem im Bereich von unteraktuierten Robo-
tersystemen gesehen. Auch bei der automatischen Fortbewegung von Robotern
soll die beim menschlichen Gang vorkommende Schwungphase ausgenutzt werden
(siehe weitere Ausfithrungen hierzu in Abschnitt [.6]).

Eine weitere Problematik ist die Umsetzbarkeit von komplexen dynamischen Ma-
novern am Priifstand. Es hat sich gezeigt, dass sich anhand der optimalen Losung
keine direkte Aussage treffen lasst, ob das Manover auch praktisch gut umsetzbar
ist. Ein Teil der Losungen liefs sich sowohl in der Simulation und auch am Priif-
stand gut umsetzen, andere erforderten eine starke manuelle Anpassung. Hier
wire eine weitgehend automatisierbare Methode fiir die Tests der Mand6ver wiin-
schenswert, die auch weniger manuelle Eingriffe notwendig macht.

Die Methode, optimale Steuerungen mit Beriicksichtigung mehrerer Ziele fiir das
unteraktuierte Doppelpendel zu berechnen, kann ebenfalls auf voll aktuierte Ro-
botiksysteme angewendet werden. In industriellen Anwendungen werden fiir die
Planung von optimalen Trajektorien in [GBLV12] z.B. die folgenden Ziele an-
gegeben: minimale Ausfiihrzeit, minimale Energie bzw. minimaler Aufwand fiir
den Aktor und minimaler Ruck. Daher ist es gut vorstellbar, auch hier mittels
Mehrzieloptimierung gute Ergebnisse zu erzielen. Eine erh6hte Komplexitit der
Aufgabe erhilt man bei Industrierobotern haufig durch einen beschrinkten Bau-
raum und die Beriicksichtigung der Bewegung von anderen Robotern [BBLT12].
Bei der Berechnung von optimalen Steuerungen, wie sie in dieser Arbeit vorge-
stellt wurden, ist es relativ einfach, solche Zustandsraumbeschriankungen in der
Optimierung zu beriicksichtigen.
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A Mathematischer Anhang

Fiir das tiefere Verstdndnis der DMOC Methode in Kapitel Bl werden einige
Grundlagen der Differentialgeometrie bendtigt. Dort werden z.B. mechanische
Mehrkorpersysteme auf n-dimensionalen Mannigfaltigkeiten, sogenannte Konfi-
gurationsmannigfaltigkeiten, betrachtet. Auferdem sind diese Grundlagen iiber
Mannigfaltigkeiten auch vorteilhaft fiir das Verstindnis der optimalen Steuerung
auf Mannigfaltigkeiten aus Kapitel 5l

In diesem mathematischen Anhang werden in Abschnitt [A.1] zuerst differenzier-
bare Mannigfaltigkeiten definiert und dann einige weiterfiihrende Konzepte aus
der Sicht der Differentialgeometrie erldutert. Hierbei wird den Darstellungen in
[BLO5| und [Bar00] gefolgt.

In Abschnitt[A.2wird genauer auf die Herleitung der Euler-Lagrange-Gleichungen
mit Hilfe von Variationsrechnung und dem Lagrange-d’Alembert-Prinzip einge-
gangen.

Zum Abschluss werden in Abschnitt[A.3|die diskreten Bewegungsgleichungen und
Randbedingungen des Optimalsteuerungsproblems fiir die Implementierung im
Optimierungsalgorithmus mit DMOC genauer hergeleitet. Dabei wird ersichtlich,
dass sich abhingig von der Lagrange-Funktion eine bestimmte Struktur dieser
Gleichungen ergibt.

A.1 Mannigfaltigkeiten

Das fundamentale Objekt der Differentialgeometrie ist die differenzierbare Man-
nigfaltigkeit. Sie stellt eine Menge dar, die lokal dhnlich einer offenen Menge im
euklidischen Raum ist. Um eine Mannigfaltigkeit zu definieren, bendtigt man ers-
tens eine Karte, also eine Abbildung von einer Teilmenge der Mannigfaltigkeit in
eine offene Menge des euklidischen Raums und zweitens einen Atlas, das heift
eine Sammlung von Karten, welche die gesamte Mannigfaltigkeit {iberdecken,
wobei bestimmte Uberdeckungseigenschaften erfiillt sein miissen. Mit diesen Vor-
aussetzungen kann man dann iiber Kurven auf Mannigfaltigkeiten, Abbildungen
zwischen Mannigfaltigkeiten, oder auch deren Glattheit reden.

Als ein anschauliches Beispiel fiir eine Mannigfaltigkeit dient eine Sphére, also
eine Kugeloberfliche, wie etwa die Erdoberfliche. Verschiedene Lénder der Erde
kénnen mit Hilfe einer Karte auf eine Ebene, also in R? abgebildet werden. Am
Rand einer Karte besteht dann die Md&glichkeit auf eine zweite Karte der angren-
zenden Region zu wechseln. In dieser Weise lésst sich eine Mannigfaltigkeit durch
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einen vollstindigen Satz an Karten beschreiben. Dabei braucht man Regeln, wie
sich beim Kartenwechsel die Karten iiberlappen. Anschaulich ist aber auch klar,
dass sich die gesamte Kugeloberfliche nicht mit einer einzigen Karte im R? dar-
stellen ldsst. Die Dimension einer Mannigfaltigkeit entspricht der Dimension einer
lokalen Karte und alle Karten haben die gleiche Dimension [Wik].

Definition A.1 (Differenzierbare Mannigfaltigkeit)
Es sei S eine Menge. Eine Karte fiir S ist ein Paar (U, ¢) mit den Eigenschaften,
dass

(i) U eine Teilmenge von S ist und

(ii) ¢ : U — R" eine injektive Abbildung ist, wobei ¢(U) eine offene Teilmenge
des R™ sei.

Sei r € NU {00}, dann ist ein C"-Atlas fiir S eine Sammlung A = {(Uq, ©4) }aca
von Karten mit der Eigenschaft, dass S = J,., U, und fiir jede nicht leere
Schnittmenge U, N U, # () muss gelten:

(1) (U, NUp) und @p(U, N Up) sind offene Teilmengen des R™ und

a€A

(ii) die Uberdeckungsabbildung ¢, := ¢y 0 ;" = 0o (Uy NUy) — @p(U, NUy) ist
ein C’T—Diﬁ'eomorphismusﬁ, siehe auch Bild [A-1-1l

Unterschiedliche Karten in einem Atlas mit den obigen Eigenschaften (i) und (ii)
heifsen kompatibel.

Zwei C"-Atlanten A; und A, sind dquivalent, falls A; N Ay ebenfalls ein C"-Atlas
ist.

M ist eine C"-differenzierbare Mannigfaltigkeit, oder einfach C"-Mannigfaltigkeit,
wenn folgendes gilt:

(i) M ist iiberdeckt mit einem Satz kompatibler Karten, d.h. jeder Punkt kann
in mindestens einer Karte dargestellt werden.

(ii) M hat einen Atlas.

Wenn jede Karte ihr Bild in einem n-dimensionalen Unterraum hat, dann wird
M eine n-dimensionale Mannigfaltigkeit genannt.
A.1.1 Abbildungen zwischen Mannigfaltigkeiten

Nachdem die Eigenschaften einer Mannigfaltigkeit definiert wurden, werden nun
Abbildungen zwischen Mannigfaltigkeiten definiert, wie es fiir den euklidischen

LEin Diffeomorphismus ist eine bijektive, stetig differenzierbare Abbildung, deren Umkehrab-
bildung auch stetig differenzierbar ist. Im Falle eines C"-Diffeomorphismus ist die Abbildung
r-fach stetig differenzierbar
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Bild A-1-1: Interpretation der Uberdeckungsabbildung
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Raum aus der Analysis folgt. Mit Hilfe des lokalen Vertreters einer Abbildung
konnen Eigenschaften von Abbildungen zwischen Mannigfaltigkeiten gekennzeich-
net werden.

Definition A.2 (Lokaler Vertreter einer Abbildung)

Fiir r € NU{oo} sei f: M — N eine Abbildung zwischen C"-Mannigfaltigkeiten
und fiir x € M sei (U, ) eine Karte, wobei U eine Umgebung von x ist. Auferdem
sei (V,1) eine Karte, wobei V' eine Umgebung von f(z) sei, mit der Annahme,
dass f(U) C V ist. Falls f stetig ist, kann U immer soweit verkleinert werden,
dass diese letzte Bedingung erfiillt ist. Dann ist der lokale Vertreter (siehe auch
Bild [A-1-2]) von f beziiglich der zwei Karten die Abbildung f,, : ¢(U) — ¥(V)
und diese ist gegeben durch

fos(y) =wo fop ' (y). (A-1-1)

Definition A.3 (C"-Abbildung zwischen Mannigfaltigkeiten)
Essei f: M — N eine stetige Abbildung zwischen Mannigfaltigkeiten.

(i) Es gilt, dass f : M — N von der Klasse C" (oder auch f € C"(M; N)) mit
r € NU{oo} ist, wenn fiir jeden Punkt z € M Karten (U, ¢) fiir M und
(V,¢) fiir N wie in Definition [A.2] existieren und der lokale Vertreter f,,
von der Klasse C", also r-mal stetig differenzierbar, ist.

(ii) Die Menge der Klasse C"-Abbildungen von M nach N wird mit C"(M; N)
bezeichnet.
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Bild A-1-2: Der lokale Vertreter einer Abbildung f.

(iii) Falls f eine Bijektion der Klasse C" ist und falls f~! auch von der Klasse
C" ist, dann ist f ein C"-Diffeomorphismus.

A.1.2 Untermannigfaltigkeiten

Bei der Betrachtung von Vektorrdumen entsteht der Begriff eines Unterraums,
wenn man eine Teilmenge des Vektorraums erhilt, die beziiglich der Struktur
des Vektorraums abgeschlossen ist. Fiir Mannigfaltigkeiten gibt es ein dhnliches
Konzept fiir Teilmengen, die die differenzierbare Struktur der Mannigfaltigkeiten
erhalten, in denen sie Teilmengen sind.

Definition A.4 (Untermannigfaltigkeit)

Es sei r € NU {oo}. Eine Teilmenge S einer C"-Mannigfaltigkeit M ist eine C”-
Untermannigfaltigkeit, falls fiir jedes = € S eine zuléssige Karte (U, ) fiir M mit
x € U existiert, so dass

(i) ¢ in den Produktraum R* x R"~* abbildet, und
(ii) (U NS) = (U) N (RF x {0}) gilt.

Eine Karte mit diesen Eigenschaften heifst auch Karte der Untermannigfaltigkeit
fiir S.

A.1.3 Tangentialbiindel

Hier soll nun der Begriff des Tangentialbiindels eingefiihrt werden. Man kann
sagen, dass das Tangentialbiindel die Menge aller méglichen Geschwindigkeiten
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an allen Punkten der Mannigfaltigkeit M darstellt. Bemerkenswerterweise ist
aber das Tangentialbiindel auch selbst eine Mannigfaltigkeit, deren Dimension
doppelt so grof wie die von M ist. Im Konzept der Lagrange-Mechanik heifst
dies, wenn die Menge der Positionen eines Systems eine Mannigfaltigkeit ist, dann
wird das Tangentialbiindel dieser Mannigfaltigkeit als Menge der Positionen und
Geschwindigkeiten betrachtet. Daher ist die gesamte Zustandsmannigfaltigkeit
des Systems gerade das Tangentialbiindel.

Definition A.5 (Tangentialvektor, Tangentialraum und Tangentialbiin-
del)

Gegeben sei eine Mannigfaltigkeit M. Eine Kurve an z ist eine Abbildung ~ :
I — M, wobei I ein 0 im Innern enthaltendes Intervall ist und fiir welche gilt
~v(0) = z. Zwei Kurven 7, und s sind dquivalent in z, falls in einer Karte (U, ¢)
mit x € U die lokalen Vertreter von v, und -, die gleiche Ableitung in 0 besitzen.
Falls v, und =9 dquivalent in x sind, wird dies durch v; ~, 7, dargestellt. Mit
dieser Aquivalenzrelation lisst sich die Aquivalenzklasse von + in = durch [4],
beschreiben.

Ein Tangentialvektor in x ist eine Aquivalenzklasse von Kurven unter der Aquiva-
lenzrelation ~,. Die Menge aller Tangentialvektoren in x ist der Tangentialraum
in z und wird durch 7, M bezeichnet. Die disjunkte Vereinigung

™ = | J .M (A-1-2)

xeM

von allen Tangentialrdumen fiir alle x € M wird mit Tangentialbiindel bezeichnet.

Definition A.6 (Tangentialabbildung)

Es sei f: M — N eine Abbildung zwischen zwei differenzierbaren Mannigfaltig-
keiten M und N. Es seien x € M und [y], € T, M. Dann ist f o~y eine Kurve
an f(x) und wir definieren T'f([v],) = [f © 7](x). Dies definiert nun eine Abbil-
dung T'f : TM — TN, und diese wird als Tangentialabbildung bezeichnet. Die
Einschrankung von T'f auf T,M wird mit T, f bezeichnet. Man beachte, dass
Definition A.7 (Differential, Kotangentialraum und Kotangentialbiin-
del)

Es sei M eine n-dimensionale Mannigfaltigkeit und f : M — R eine glatte
Funktion, die an jedem Punkt x € M differenziert werden kann, sodass sich
die Abbildung T, f : T,M — Ty R ergibt. Da der Tangentialraum von R in
jedem Punkt durch sich selbst bestimmt ist, erhédlt man die lineare Abbildung
df(z) : T,M — R. Das heift, df(x) € T;M ist der Dualraum des Vektorraums
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T, M, und wird als Kotangentialraum bezeichnet. In Koordinatendarstellung er-
gibt sich

N

= ',
T
— ox

wobei v € T, M ist. df heilkt Differential von f.
Unter Gebrauch der Operatoren 9/0x" kann eine Basis von T, M durch

(20
€l1,...,Ep) = 8[1;‘1’”.’8[1;‘”

angegeben werden, sodass v = Y7 v'0/0x" ist.

Wenn nun jeder Vektorraum 7, M durch seinen Dualraum 777 M ersetzt wird, er-
h&lt man eine neue 2n-dimensionale Mannigfaltigkeit, die als Kotangentialbiindel
T*M bezeichnet wird. Die duale Basis zu 9/0x" wird mit dz' bezeichnet. Somit
erhélt man die Formel

df(z) = Y 8f.dxi

o )
=1 Oz

df(z)-v

fiir jede glatte Funktion f: M — R.

Definition A.8 (regulidrer Wert)

Fiir ein 7 € NU {oo} sei f € C"(M; N). Ein reguldrer Wert von f ist ein Punkt
y € N mit der Eigenschaft, dass fiir jedes € f~1(y) die Tangentialabbildung
T, f surjektiv ist.

A.1.4 Vektorfelder

Ein weiteres Objekt der Differentialgeometrie ist das Vektorfeld. Es ordnet jedem
Punkt einer Mannigfaltigkeit einen Tangentialvektor zu.

Definition A.9 (Vektorfeld)

Ein Vektorfeld V' auf einer differenzierbaren Mannigfaltigkeit M ordnet jedem
Punkt p € M einen Vektor V(p) € T,M zu. V ist somit eine Abbildung von der
Mannigfaltigkeit M in das Tangentialbiindel T'M.

Definition A.10 (Vektorfeld entlang einer Kurve)

Ein Vektorfeld V' entlang einer Kurve v : I — M ist eine differenzierbare Abbil-
dung, die jedem ¢ € I einen Tangentialvektor V' (t) € T )M zuordnet.

A.2 Euler-Lagrange-Gleichungen und
Lagrange-d’Alembert-Prinzip

In diesem Abschnitt werden kurz die Herleitung der Euler-Lagrange-Gleichungen
mit Hilfe der Variationsrechnung und das Lagrange-d’Alembert-Prinzip vorge-
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stellt, die fiir die Herleitung der DMOC Methode notwendig sind. Dabei wird der
Darstellung aus [BL05| gefolgt.

Es sei () eine differenzierbare Mannigfaltigkeit. Eine Lagrange-Funktion ist dann
eine Funktion L auf R x T'Q), welche von der Zeit, den Positionen und den Ge-
schwindigkeiten des Systems abhéngt. Eine Lagrange-Funktion L : RxT'Q) ist zeit-
unabhdngig, wenn eine Funktion Ly : T'CQ) — R existiert, fiir die L(t,v,) = Lo(v,)
gilt. In dieser Arbeit werden ausschlieflich zeitunabhéingige Lagrange-Funktionen
betrachtet und diese werden dann ebenfalls mit L anstatt Ly bezeichnet.

Definition A.11 (Variation)
Es sei v : [to,tf] — @ eine Kurve. Eine Variation von + ist eine Abbildung
U : [to, tg] X [—€o, €0) — @ mit den Eigenschaften

(i) U(t,0) = ~(¢) fir alle ¢ € [to, tf],

(i) I(to,€) = (o) fiir alle € € [—¢, €] und

(iii) V(ts,€) = y(ty) fiir alle € € [—e, €]
Eine infinitesimale Variation zu der Variation ¢ ist das Vektorfeld entlang ~,
gegeben durch

5’[9(t) = % ’19(15, 6) S T’y(t)Q-
e=0

Eine Variation von -y ist somit eine ,,Stérung” von ~ und eine zugehorige infinite-
simale Variation ist ein Maf der Storung fiir kleine Stérparameter. Man beachte,
dass die Endpunkte einer Variation stationdr bleiben, sodass die infinitesimale
Variation an den Endpunkten verschwindet (siehe hierzu auch Bild [A-2-3)).

s 59(t)

()
Bild A-2-3: Eine Variation (links) und eine infinitesimale Variation (rechts)

Es sei () eine differenzierbare Mannigfaltigkeit, [to, ¢s] ein Intervall mit ¢, ¢, € R
und g, ¢f € Q. Man erhélt durch

C*([to, t¢], a0, ar) ={7 : [to, t4] = Q 1v(to) = q0,7(ts) = gy,
v zweimal stetig differenzierbar }
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eine Familie von zweimal stetig differenzierbaren Kurven, die auf [to,tf] defi-
niert sind, in gy beginnen und in ¢y enden. Es wird nun angenommen, dass eine
Lagrange-Funktion auf der Mannigfaltigkeit () existiert, und dazu wird eine Funk-
tion J : C*([to, tf], g0, ¢s) — R durch

definiert. Die Abbildung ¢ — +/(¢) ist hier das Tangentialvektorfeld entlang ~.
Die Funktion J wird Giitefunktion oder auch Kostenfunktion genannt.

Die zentrale Fragestellung in der Variationsrechnung ist es nun, diejenige Kurve
v* € C*([to, 4], qo, qr) zu finden, fiir die J(7*) < J(v) fiir alle v € C?([to, 4], g0, qr)
gilt. Gesucht ist also die Kurve, die das Giitemaf J minimiert. Eine direkte Be-
rechnung dieser minimierenden Funktion ist nicht moglich, da fiir jede Kurve
v € C*([to, ts], g0, qf) die Bedingung J(v*) < J(v) ausgetestet werden miisste.
Daher soll nun zumindest eine notwendige Bedingung dafiir aufgestellt werden,
dass eine Kurve v das Giitemak minimiert. Alle Kurven v € C?*([to,t¢], q0, qy),
die diese Bedingung nicht erfiillen, konnen dann ausgeschlossen werden.

Eine notwendige Bedingung sind die sogenannten Euler-Lagrange-Gleichungen.
Satz A.12 (Notwendige Bedingung fiir die Minimierung)

Wenn eine Kurve v € C*([to, tf],q0,q;) das GiitemaR J minimiert, dann miis-
sen die Zustandsvariablen des Systems auf der Mannigfaltigkeit an jedem Punkt
(t,q(t),q(t)) auf der Kurve v die Gleichungen

d (0L oL :
@(8%)_6—%_0’ ZE{l,,’I’L} (A—2—3)

erfiilllen. Die Gleichungen (A-2-3) werden Euler-Lagrange-Gleichungen zu der
Lagran-ge-Funktion L genannt.

Beweis. Ein Beweis dieses Satzes kann in [BLO5| gefunden werden. O

Um im Weiteren die Steuertheorie eines mechanischen Systems zu betrachten,
soll die Lagrange-Funktion fiir ein solches System beschrieben werden.

Definition A.13 (Lagrange-Funktion eines mechanischen Systems)
Die Lagrange-Funktion eines mechanischen Systems wird durch

L:TQ—R, L(q,q) =T(q,4) —V(g) (A-2-4)

beschrieben, wobei T : T'() — R die kinetische Energie und V' :  — R die
potentielle Energie des Systems darstellen.
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In Kapitel B wurde dargelegt, wie man optimale Steuerungen u* fiir ein System
bestimmen kann. Es wird nun die Steuerung eines mechanischen Systems durch
Kréfte f betrachtet. Diese sind von nun an die Parameter, die zu optimieren
sind. Innerhalb der Lagrange-Mechanik, wie sie bisher betrachtet wurde, konnen
Krifte wie folgt definiert werden:

Definition A.14 (Kraft)

Es sei @) eine differenzierbare Mannigfaltigkeit und I € R ein Intervall. Dann ist
eine Kraft eine Abbildung f : I xT'Q — T*(Q, welche stetig von der Zeit abhingt,
und fiir die f(t,v,) € T;Q fiir jedes (t,v,) € R x TQ gilt.

Eine Kraft entlang einer Kurve 7 ist dann definiert durch ¢t — f(¢,4/(¢)).

Mit dem folgenden Lagrange-d’Alembert-Prinzip lassen sich die Euler-Lagrange-
Gleichungen mit Kraften herleiten.

Definition A.15 (Das Lagrange-d’Alembert-Prinzip)

Es sei L eine Lagrange-Funktion auf der differenzierbaren Mannigfaltigkeit )
und sei f eine Kraft. Eine zweimal differenzierbare Kurve v : [to, ;] — @ erfiillt
das Lagrange-d’Alembert-Prinzip fiir die Kraft f und die Lagrange-Funktion L
entlang ~, falls fiir jede Variation ¥ : [to, ] X [—€o, €] = @ von 7 gilt

a
de

/tof L(t, %ﬁ(t, €))dt + /tof F(t, 7 (1)) - 60(t)dt = 0.

e=0

Mit dem Lagrange-d’Alembert-Prinzip lassen sich die Euler-Lagrange-Gleichungen
mit Kréften aufstellen:

Satz A.16 (Euler-Lagrange-Gleichungen mit Kriften)

Es sei L eine Lagrange-Funktion und f eine Kraft auf (). Eine zweimal differen-
zierbare Kurve 7 : [to,t;] — @ erfiillt das Lagrange-d’Alembert-Prinzip fiir die
Kraft f und die Lagrange-Funktion L genau dann, wenn die Zustandsvariablen
des Systems zu jedem Zeitpunkt ¢ € [to,tf] die Gleichungen

%(8L)—8—L:fi, ie{l,...,n} (A-2-5)

dq; 0g;

erfiillen, wobei f1,..., f, die Komponenten von f sind. Die Gleichungen (A-2-5))
werden Fuler-Lagrange-Gleichungen mit Krdiften genannt.

Beweis. Siehe [BL05]. O

A.3 Diskrete Gleichungen mittels DMOC

In diesem Teil des Anhangs werden die Bestimmung der diskreten Euler-Lagrange-
Gleichungen und der diskreten Randbedingungen genauer betrachtet, um zu zei-
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gen, wie diese im Optimierungsalgorithmus bei Verwendung der DMOC Methode
umgesetzt werden konnen.

A.3.1 Diskrete Euler-Lagrange-Gleichungen

Zu bestimmen sind die Gleichungen
D2Ld<%717 Qk) + DlLd(QkH QkhLl) + fl;tl + fk_ = 07 k= 17 R N — 17

wie sie z.B. in ([8-24DL) fiir das Optimalsteuerungsproblem des Doppelpendels
auf einem Wagen dargestellt sind. Dabei ist D; die Ableitung nach der ersten
Komponente und D, die Ableitung nach der zweiten Komponente der diskreten
Lagrange-Funktion. In diesem Fall ergibt sich somit zweimal die Ableitung nach

qk:

o o . B

—La(qr—1, ) + =—La(qr, qer1) + fi, + f =0,k=1,...,N — 1.
8Qk 8qk

Wie auch schon in Abschnitt beschrieben, wird eine Approximation der
Zustédnde durch die Mittelpunktregel durchgefiihrt. Fiir die folgenden Rechnungen
werden dabei die Abkiirzungen

m _ &+ Gk k. — Qr—1
Qk 2 h Y
benotigt. Dadurch ergibt sich die diskrete Lagrange-Funktion

und ¢;' = firk=1,...,N

+ - - —
La(qr—1,qr) = hL (‘Jk 2‘Jk 1’ 4k hqk 1)

= hL(qy", 4") = hT(qi", &") — hV (g;"),

wobei T" und V' der kinetischen bzw. der potentiellen Energie entsprechen, wie
sie in Abschnitt 23] fiir das Doppelpendel auf einem Wagen definiert wurden.
Diese Gleichungen kénnen wie folgt ausgewertet werden

d _ — Qk— d —
4, (qk+qk LG — G 1)+—hL (qk+1+qk k41 Qk)

dqy 2 7 h dqy, 2 7 h
Qe+ qr—1 @ — qr—1) 1 G+ -1 QG —qr—1) 1
— Tm - — T-m . —
( T ( 2 h ) 2 g ( 2 7 h ) h

Qo1+ Qe —q ) 1 Q1 + Q% Q1 — G
+h(Tq;cn-H ( 9 ) 3 ) 'Q_qulﬂ ( 9 ) 3 ) )

Qo1 +qr ) 1
(%) )

SRS
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— Ty, (a0, ) + T (7, 6) + 0.5k (T, (00, 50) + Top (0", 657 )

— 0.5k (Vq@l(q?ﬂ) + ng;(q;’?)) =0,

und dienen dann mit den folgenden Ableitungen als Grundlage fiir die Implemen-

tierung:

(J1 + a3my + lfmg)gbfk — (limg + aymy) i cos(pt,) + aglima@hly, cos(@ly, — p5Y)
Tym = (J2 + a3ma) @y, — agmagit cos(hy) + aslima@ty cos(@fy — @54

(M1 + my +me )Yt — (army + Lima) @ty cos(py) — aama@hy, cos(psl)

[(a1my + Limo) QTR sin(@) — aolyma@l oy, sin(@fy — 57
Tgp = azma@yy (U5 sin(ehy + LpTy sin(@) — ©5%)

i 0

_—g sin @Tk(alml -+ l1m2)
Var = —azgmy sin(ehY)

0

Dabei steht z. B. Tym fiir die Ableitung der kinetischen Energie nach dem Term
qr"

oT
Ty = @(Q?,QZ”)-
Die obigen Gleichungen gelten fiir alle mechanischen Systeme, deren Dynamik
mit Hilfe einer Lagrange-Funktion, bestehend aus kinetischer und potentieller
Energie, bestimmt werden kann. Es miissen dann nur die entsprechenden Ablei-
tungen neu bestimmt werden. Durch diese Struktur ist eine Neuimplementierung
des Optimierungsalgorithmus effizient mdoglich.

A.3.2 Diskrete Randbedingungen

Zusitzlich miissen noch die diskreten Gleichungen fiir den Anfangs- und Endim-
puls bestimmt werden, damit alle Randbedingungen erfiillt sind. Diese Gleichun-
gen konnen nicht auf Grundlage der Geschwindigkeiten ausgewertet werden, da
diese an den Réndern durch den Differenzenquotienten nicht definiert sind. Da-
her wird mit der diskreten Legendre-Transformation (siehe Abschnitt B.3.2]) eine
Transformation auf den Impuls p = ‘g—s(q, G) durchgefiihrt.

Zunachst wird gezeigt, dass die Definition der diskreten Legendre-Transformation
konsistent zu den diskreten Euler-Lagrange-Gleichungen ist. Dazu wird gefordert,
dass der diskrete Impuls an einem Knotenpunkt ¢, sowohl durch die Berechnung
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qk+1

Bild A-3-4: Berechnung des diskreten Impulses aus zwei benachbarten Intervallen

aus dem Knotenpaar (gx_1, qx) als auch aus dem Knotenpaar (qx, gx+1) gleich ist,
siche auch Bild [A-3-4l Somit soll

P =Dk (A-3-6)
am Knoten g; gelten. Dabei ist p; aus (gx_1, qx) mittels /" Ly(gr_1, gx) mit

pi = DaLa(qr—1, i) + [ (Ge—1, Q> Uk—1)
und p; aus (gx, gr41) mittels B/ La(gr, gr41) mit

pr = —DiLa(ar, qe1) — o (@, @rosrs ur)
bestimmt. Aus (A-3-6)) folgt dann

Dy La(qr—1, i) + fof (Gr-1, Q> Ur—1) (A-3-7)

= — D1La(qk, @r+1) — fo (@, Q1 wr) (A-3-8)

was den diskreten Euler-Lagrange-Gleichungen entspricht.

Fiir die Randbedingungen ergibt sich dann die folgende Umformung;:

DoLa(qr-1,q) + fif 1 +D1La(q, qes1) + [ =0,

~~

Pr

= pr + D1La(qr, gr1) + fr, = 0.

Fiir die Bestimmung des diskreten Impulses p, wird nun die kontinuierliche
Legendre-Transformation zuséitzlich angewendet. Diese lautet: FL : T'QQ — T*Q),
FL : (q,9) — (q,p) = (q, D2L(q,¢)). Dadurch folgt die Approximation des dis-
kreten Impulses durch p, ~ p(kh) = DyL(q(kh),q(kh)) und es ergibt sich die
folgenden Anfangsbedingung:

Dy L(qo,Go) + D1La(qo, 1) + fy = 0.

Eine Endbedingung ergibt sich analog zu dem eben gezeigten Vorgehen:

—DsL(qn, qn) + DaLa(gn-1,qn) + f_1 = 0.
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Entsprechend dieser Herleitung lassen sich die folgenden Gleichungen fiir die

Randbedingungen (3-24a)) und (B3-24c)) bestimmen:

Dy L(qo,Go) + D1La(qo, 1) + fo

0 , 0 . d @ +q 91— Qo

=—1T ——V —hL

8@0 (QOa q0) aqo (QO> CJO) + dqo ( 2 ) h
(J1 +aimy + Bma)@Y — (luma + a1my)y° cos(¢) + aslymagpy cos(pf) — )

(J2 + a3ma) Py — azmay® cos(py) + aslimap) cos(p] — )
(my 4+ mag + me)y° — (army + l1mso)@? cos(¢Y) — aamal cos())

T+ 0.5h( Ty — Vi) + f
=0

und

— Do L(qn, 4n) + DaLa(gn—1,a9n5) + fr_,
0 0 d
=7 T(gw,dn) — ——V(gn, dn) + ——hL
(J1 + a2my + Bmy) o — (Iyma + aymy) g cos(o) + aglimal cos(pl — )

= - (J2 + a3ma)¢h — asmay™ cos(d’) + azlimaipy cos(p]’ — ¢})
(my +mg +m)yY — (aymy + lyma) @Y cos(p)) — aama@h cos(pd)

qN +qn-1 N — gN-1
2 ’ h

—Tgm + 0.50(Tye — Vgm) + f_y

aN
=0.

Hierbei muss auf die zwei unterschiedlichen Terme der kontinuierlichen und der

diskreten Lagrange-Funktion geachtet werden, da hier die Ableitungen einmal
beziiglich des letzten Diskretisierungspunktes ¢y bzw. ¢y und einmal beziiglich
des letzten Terms der Mittelpunktregel ¢if bzw. ¢3} bestimmt werden. Die Werte
(0, 9, 4°, 9,69, 5°) und (o), 0}, 5V, oV, oY, V) sind dabei die Anfangs- bzw.
Endwerte des Optimalsteuerungsproblems, die in die Gleichungen eingesetzt wer-
den miissen.

A.3.3 Bestimmung der exakten Geschwindigkeiten

Eine mittels DMOC berechnete optimale Steuerungstrajektorie besteht aus den
Konfigurationen qq,...,qy und den optimalen Steuerungen fo,..., fx. Fiir die
Approximation der Geschwindigkeiten kann dann z.B. der Differenzenquotient
verwendet werden. Es gibt aber auch eine Moglichkeit, die Geschwindigkeiten
aus den diskreten Konfigurationen exakt zu berechnen. Dies geht durch die Ver-
wendung des Impulses p, der durch die Gleichung

. _ . _ NI
=M "(q,49)p=M"(q, )a—q(q,q)
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beschrieben werden kann.

Im Falle der diskreten optimalen Trajektorie muss entsprechend der diskrete
Impuls durch die Anwendung der diskreten Legendre-Transformation verwendet
werden. Es wird dabei deutlich, dass - wie gewiinscht - der Impuls nur von der
Konfiguration abhingt:

po = —D1La(qo, 1) — fy
Pro1 = —D1La(qe—1, a) — fr_1

P = DaLa(qe—1, ar) + i1,

pv = DaLa(qn-1,qn) + fr_.

Um den Impuls an allen beliebigen Knotenpunkten £ = 0,..., N berechnen
zu konnen, muss sowohl die positive als auch die negative diskrete Legendre-
Transformation verwendet werden. Damit Liisst sich ¢, = M, *(gx, )Pk als exakte
Geschwindigkeit am diskreten Knotenpunkt k& berechnen. Fiir die Anfangsbedin-
gung lasst sich folgern, dass

po = —D1La(q0, 1) — fo

d G9+q @1—qo _
— ——— hL _
dqo ( 2 7 h Jo

__i Go+aq g1 — G\ Qo + q1 e
—ng (7 (B 072 v (2h)) -6
1 o 1 0T 1 oV _

- fo

ISR R T
= DTy a5 ) + T (a5 6°) + Ve (6§) — Sy
gilt. Eine dhnliche Formel lédsst sich als Endbedingung formulieren
pv = DaLa(gy-1,qn) + [,

d N +dN-1 N — gN-1 gy + qN—1
=h— (T — = +
dqy ( ( 2 h v 2 LS

= 5T (R 48) + Tag (a0, 4%) + 5hVag (@) — fy-o-

Dabei ist die diskrete Legendre-Transformation wie in (3=I8)-(B3=2I)) bestimmt.
Auf den 0-ten Knoten ist daher die Transformation F/~L,; anzuwenden und auf
den N-ten Knoten dementsprechend die Transformation F/* L.
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