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Zusammenfassung

In dieser Arbeit wird gezeigt, wie optimale Trajektorien für ein unteraktuiertes

me
hanis
hes System � das Doppel- bzw. Dreifa
hpendel auf einem Wagen �

mittels optimaler Steuerung bestimmt werden können. Dabei werden neuartige

mathematis
he Methoden verwendet und deren Vorteile in der Anwendung

aufgezeigt. Es werden sowohl die theoretis
hen Ergebnisse analysiert als au
h

die praktis
he Umsetzung in Simulationen und am Prüfstand untersu
ht.

Das Manöver, wel
hes hier hauptsä
hli
h betra
htet wird, ist der Aufs
hwung

des Pendels aus der stabilen unteren Ruhelage in die instabile obere Ruhelage.

Dabei werden mit Hilfe von Methoden der Mehrzieloptimierung viele Varianten

von Lösungen bere
hnet, die die zwei gegenläu�gen Zielgröÿen Dauer des

Manövers und Steueraufwand unters
hiedli
h stark berü
ksi
htigen. So ist es

mögli
h eine komplexe Bibliothek von optimalen Lösungen zu erhalten und

diese weitergehend bezügli
h des Gesamtsystemverhaltens zu analysieren.

Ein weiterer Ansatz ist die Entwi
klung von Strategien für eine optimale

Steuerung auf Mannigfaltigkeiten, die besondere dynamis
he Strukturen des

Pendelsystems für einen optimalen Aufs
hwung nutzen. Auf der stabilen

Mannigfaltigkeit kann si
h das dynamis
he System kostenlos in die Ruhelage

bewegen. Dies ist somit ein besonderer physikalis
h motivierter Ansatz, um

optimale Manöver zu �nden.

Abstract

This thesis presents the determination of optimal traje
tories for an

undera
tuated me
hani
al system � the double or triple pendulum on a 
art �

by means of optimal 
ontrol methods. For this novel mathemati
al methods are

used and their advantages in the appli
ation are pointed out. The theoreti
al

results are analysed, as well as the pra
ti
al implementation in simulations and

at the test rig is examined.

The main maneuver under 
onsideration here is the swing-up of the pendulum

from its lower stable equilibrium to its upper unstable equilibrium. By means of

multiobje
tive optimization the 
omputation of a great variety of solutions with

respe
t to the 
ontrary obje
tives duration of the maneuver and 
ontrol e�ort is

possible. This results in a 
omplex library of optimal solutions whi
h 
an be


reated and it 
an be analysed regarding the 
omplete system behavior.

A further approa
h is the development of strategies for the optimal 
ontrol on

manifolds using spe
ial dynami
al stru
tures for the swing-up of the pendulum.

A motion on a stable manifold to the equilibrium is free of 
osts. This is a

spe
ial physi
ally inspired approa
h to �nd optimal 
ontrol maneuvers.
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Einleitung 1

1 Einleitung

Ein aktuiertes Pendel ist ein klassis
hes Anwendungsbeispiel, an dem neue rege-

lungste
hnis
he und systemtheoretis
he Ansätze von Fors
hern getestet werden.

Ans
hauli
h liegt das Interesse hauptsä
hli
h in dem Errei
hen und der Stabilisie-

rung der instabilen oberen Ruhelage. Mehrfa
hpendel besitzen dabei besondere

Eigens
haften, z. B. ist ein Doppelpendel auf einem Wagen ein unteraktuiertes

System (die Anzahl der Freiheitsgrade ist gröÿer als die Anzahl der Steuerein-

gänge), denn die Pendelarme können ni
ht direkt, sondern nur indirekt über den

Wagen angesteuert werden. Die Trajektorienplanung und Dur
hführung stellt für

sol
he Systeme eine groÿe Herausforderung dar.

In dieser Arbeit werden Strategien entwi
kelt, um den Aufs
hwung des Doppel-

bzw. Dreifa
hpendels in die instabile obere Ruhelage umzusetzen. Dabei liegt

der Hauptaspekt bei der Bestimmung eines Manövers hierfür und somit bei der

Auslegung der passenden Vorsteuerung. Die zusätzli
h benötigte Regelung für

die Stabilisierung basiert auf klassis
her linearer Regelungste
hnik. Mit Hilfe von

optimaler Steuerung können geeignete Vorsteuerungen für das Pendel bestimmt

werden, sodass dieses si
h ni
ht auf einer beliebigen Bahn bewegt, sondern das

Manöver in die instabile Ruhelage zusätzli
h optimal bezügli
h gewüns
hter Ziele

ist. Dur
h den Einsatz von Mehrzieloptimierung bei der Auslegung der optimalen

Steuerung ist es auÿerdem mögli
h, optimale Kompromisse zwis
hen mehreren

Zielen für das System zu bestimmen.

1.1 Motivation

Die Bere
hnung von Trajektorien mittels Methoden der optimalen Steuerung für

den Entwurf und die Realisierung einer Folgeregelung für das Pendel ist eine

Besonderheit dieser Arbeit im Verglei
h zu anderen Ansätzen. Dur
h sie ist es z. B.

mögli
h, optimale Manöver zu bere
hnen und dabei te
hnis
he Bes
hränkungen,

die bei realen me
hatronis
hen Systemen immer auftreten, sehr elegant s
hon

in der Bere
hnung einzubinden. Im Folgenden werden in Abs
hnitt 1.1.1 einige

Grundideen zur optimalen Steuerung erläutert.

Auÿerdem ist die Dynamik von Pendelsystemen ein zentraler Aspekt, der zur

Komplexität der hier behandelten Aufgabe beiträgt. In Abs
hnitt 1.1.2 wird an-

s
hauli
h das Verhalten eines idealisierten Pendels dargestellt und analysiert, wel-


he Auswirkungen seine Eigens
haften auf den Entwurf und die Umsetzung von

Trajektorien an einem realen Pendel haben.



2 Kapitel 1

1.1.1 Optimale Steuerung dynamischer Systeme

Die Optimierung von Bewegungen eines me
hanis
hen Systems ist eine wi
htige

Aufgabe in vielen te
hnis
hen Anwendungen. Dabei bes
häftigt si
h das Gebiet

der optimalen Steuerung mit der Bere
hnung von Trajektorien, die ein bestimm-

tes Optimalitätskriterium erfüllen. Es wird untersu
ht, wie die Eingangsgröÿe des

Systems zu wählen ist, um Optimalität zu errei
hen. Dabei stellt si
h die Frage,

wann eine bestimmte Steuerung die optimale Steuerung eines dynamis
hen Sys-

tems darstellt.

Bei der Bere
hnung einer optimalen Steuerung wird die Optimalität immer bezüg-

li
h einer vom Benutzer de�nierten Zielfunktion ausgedrü
kt. Diese Zielfunktion

kann ein oder mehrere, für das System wi
htige, Ziele berü
ksi
htigen. Dies führt

dazu, dass dur
h die Veränderung der Zielfunktion au
h eine andere Lösung op-

timal für das System ist. Daher kann man sagen, dass die optimale Lösung stark

von der gewählten Zielfunktion abhängt und eine optimale Lösung immer nur

optimal bezügli
h der gewählten Zielfunktion ist.

Vor der Bere
hnung der optimalen Steuerung muss das Optimalsteuerungspro-

blem des dynamis
hen Systems zuerst in geeigneter Weise formuliert werden.

Dabei müssen diverse zusätzli
he Nebenbedingungen berü
ksi
htigt werden: Die

Bewegung eines allgemeinen me
hanis
hen Systems wird mit Hilfe von Bewe-

gungsglei
hungen bes
hrieben, denen die Lösungstrajektorie des Optimalsteue-

rungsproblems entspre
hen muss. Zusätzli
h müssen ein Start- und Endpunkt

angegeben werden. Dabei unterliegen me
hanis
he Systeme normalerweise te
h-

nis
hen Bes
hränkungen an die Zustände und die Eingangsgröÿen, so kann ein

Aktor z. B. keine beliebig groÿe Kraft stellen. Diese te
hnis
hen Eigens
haften

sollten au
h bei der optimalen Steuerung berü
ksi
htigt werden, denn wenn dies

ni
ht bea
htet wird, können si
h unzulässige, also ni
ht realisierbare, Lösungen

des Optimalsteuerungsproblems ergeben.

Na
hdem das Optimalsteuerungsproblem in geeigneter Weise aufgestellt worden

ist, wird ans
hlieÿend eine optimale Steuerung bestimmt. Diese Lösung erfolgt in

den meisten Fällen numeris
h, da eine optimale Steuerung nur für sehr einfa
he

Systeme analytis
h bere
hnet werden kann. Um das bes
hriebene kontinuierli
he

optimale Steuerungsproblem numeris
h lösen zu können, muss dieses in ein dis-

kretes Problem umgewandelt werden. Dies ist ein ents
heidender S
hritt bei der

Bestimmung der optimalen Steuerung, da das Ergebnis stark von der Wahl des

numeris
hen Verfahrens und dessen Parametrisierung abhängt. Das diskrete Op-

timierungsproblem kann ans
hlieÿend mit numeris
hen Standardverfahren gelöst

werden, und im Falle der Konvergenz des Algorithmus erhält man eine Lösung

des Optimalsteuerungsproblems.
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In dieser Arbeit werden Methoden der optimalen Steuerung verwendet, um opti-

male Trajektorien für den Aufs
hwung des Mehrfa
hpendels zu bere
hnen. Dabei

geht es ni
ht allein darum, eine einzelne optimale Trajektorie zu bestimmen,

sondern dur
h die Variation des Optimalsteuerungsproblems und die dadur
h

entstehenden Lösungen au
h zusätzli
hes Systemwissen zu erhalten.

1.1.2 Mehrfachpendel und ihre Eigenschaften

φ

φ

π 2π 3π-π-2π-3π

l

m

φ

g

φ=
g

l
sinφ

1

3

2

Bild 1-1: Modell des mathematis
hen Pendels (links) und ausgewählte Trajekto-

rien in der Zustandsebene (re
hts)

Das einfa
he Pendel (siehe Bild 1-1 (links)) wird in der Lehre und Fors
hung als

ein ans
hauli
hes Beispiel für die Entwi
klung und Demonstration von regelungs-

te
hnis
hen Theorien und Methoden verwendet. Die Stabilisierung in der insta-

bilen oberen Ruhelage lässt si
h dur
h einen einfa
hen Stab als Balan
ierstange

na
hstellen. Je na
h Gröÿe und Gewi
ht der Stange funktioniert die Stabilisie-

rung auf der Hand oder dem Finger mehr oder weniger gut, aber na
h etwas

Übung sind die meisten Mens
hen in der Lage diese �regelungste
hnis
he� Aufga-

be für ein paar Sekunden auszuführen. Dabei �ndet eine Regelung wie in jedem

klassis
hen Regelkreis (siehe Bild 1-2) statt: Dur
h die Augen und andere Sinnes-

organe werden die Bewegungen des Stabes und der Hand beoba
htet (Messung

der Regelgröÿe), es wird überprüft, ob si
h der Stab in einer mögli
hst vertikalen

Position be�ndet (Soll-/Istwert Verglei
h) und bei einer entspre
henden Abwei-


hung (Regeldi�erenz) wird die Hand (Stelleinri
htung) so bewegt (Stellgröÿe),

dass die aufre
hte Position des Stabes wieder errei
ht wird. Der Mens
h selbst

fungiert in diesem Fall also als Regler.

Ein Pendelsystem kann in vers
hiedensten Ausprägungen auftreten. Von einem

mathematis
hen Pendel (siehe Bild 1-1 (links)) spri
ht man, wenn die Rotation



4 Kapitel 1

Regler
Stell-

einrichtung

dynamisches

System

Stell-

größe

Regelgröße

Messung
Rückführgröße

Regel-

differenz

Soll-/Istwert

Vergleich

Führungs-

größe -

Bild 1-2: Standardregelkreis

der Gelenke ideal statt�ndet, also keine Dämpfung vorhanden ist. Ein Einfa
hpen-

del dieser Art wird, wenn man es lei
ht auslenkt, eine Dauers
hwingung ausfüh-

ren und somit �ewig� weiter s
hwingen. In der Zustandsebene des Einfa
hpendels

(siehe Bild 1-1 (re
hts)) stellt eine sol
he Dauers
hwingung näherungsweise eine

Ellipse um die untere stabile Ruhelage (z. B. (ϕ = 0, ϕ̇ = 0)) dar, hier gekenn-

zei
hnet dur
h

❧1 . Da die Ruhelagen ni
ht eindeutig sind, wiederholen si
h diese

Strukturen in der Zustandsebene. Es sind aber no
h weitere interessante und dy-

namis
h unters
hiedli
he Trajektorien zu erkennen. Wenn das Pendel mit einer

ausrei
hend hohen Anfangsges
hwindigkeit gestartet wird, wird es aufeinander

folgende Übers
hläge dur
hführen, so dass der Winkel ϕ immer weiter wä
hst

bzw. abnimmt, je na
hdem ob die Anfangsges
hwindigkeit positiv oder negativ

ist (Trajektorien oben bzw. unten in der Zustandsebene in Bild 1-1, gekennzei
h-

net dur
h

❧2 ). Eine besondere Form von Trajektorien ist hier rot eingezei
hnet

und mit

❧3 gekennzei
hnet. Sie be�ndet si
h genau zwis
hen den zwei Berei
hen,

in dem das Systemverhalten entweder dur
h eine Dauers
hwingung oder dur
h

Übers
hläge gekennzei
hnet ist. Wenn das Pendel auf der roten Trajektorie star-

tet, läuft es automatis
h in die obere instabile Ruhelage. Eine derartige Struktur

wird im Weiteren au
h als stabile Mannigfaltigkeit der Ruhelage bezei
hnet und

in Kapitel 5 für die Bere
hnung von optimalen Steuerungen ausgenutzt. Um die-

ses Pendelsystem der Realität weiter anzunähern, kann zusätzli
h Reibung im

Gelenk betra
htet werden. Dadur
h wird die untere Ruhelage des Pendels asym-

ptotis
h stabil, da dem System dur
h die dämpfende Wirkung des Gelenks die

Energie vollständig entzogen wird und es zur Ruhe kommt.

Die Komplexität des Systems wird erhöht, wenn zwei dur
h ein weiteres Gelenk

verbundene Pendelarme betra
htet werden: ein sogenanntes Doppelpendel. In die-

sem Fall s
heint si
h das System auf den ersten Bli
k ni
ht ents
heidend geändert

zu haben, aber für die Dynamik gilt dies ni
ht. Ein mathematis
hes Doppelpendel

(also ohne Reibung in den Gelenken) ist ein 
haotis
hes dynamis
hes System. In

der Praxis ist das Bewegungsverhalten eines sol
hen Systems nahezu unvorher-

sagbar. Mit Hilfe von Leu
htdioden und einer Langzeitbeli
htung wird in Bild 1-3
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eine sol
he Bewegung eines Doppelpendels beispielhaft dargestellt. Es wird deut-

li
h, dass si
h das Doppelpendel keineswegs glei
hmäÿig bewegt, sondern dur
h

die Verkopplung der beiden Pendelarme ein sehr komplexes Manöver ausführt.

Eine besondere Eigens
haft von 
haotis
hen Systemen ist, das s
hon kleine Ver-

änderungen der Ausgangssituation das Verhalten des Pendels stark verändern.

So ist es mit dem in Bild 1-3 dargestellten Versu
h niemals mögli
h, zweimal die

glei
he Trajektorie zu erzeugen. Dieses Verhalten wird au
h als sensitive Abhän-

gigkeit vom Anfangswert bezei
hnet.

Bild 1-3: Chaotis
her Orbit eines Doppelpendels

Diese besonderen Eigens
haften des mathematis
hen Pendels haben au
h Auswir-

kungen auf das praktis
he Anwendungsbeispiel. Sowohl in Simulationen als au
h

am Prüfstand des Doppelpendels werden in dieser Arbeit Manöver umgesetzt.

Aufgrund der sensitiven Abhängigkeit vom Anfangswert wirken si
h Störungen

bzw. Fehler stark aus, sodass immer auf eine mögli
hst exakte Ausführung gea
h-

tet werden muss und eine zusätzli
he Regelung zur Kompensation der Störungen

notwendig ist. Ansonsten wären selbst einfa
he Manöver am Pendel ni
ht umsetz-

bar. Zusätzli
h muss au
h auf die starke Ni
htlinearität des Systems hingewie-

sen werden, denn dur
h die beiden rotatoris
hen Pendelarme kommt es zu einer

starken Verkopplung von trigonometris
hen Funktionen. In diesem Sinne werden

geeignete Regelungskonzepte verwendet, um das Pendel gezielt regeln zu können.

1.2 Zielsetzung

In dieser Arbeit wird gezeigt, wie optimale Trajektorien für ein unteraktuier-

tes me
hanis
hes System � das Doppel- bzw. Dreifa
hpendel auf einem Wagen �

mittels optimaler Steuerung bestimmt werden können. Dabei werden neuartige
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mathematis
he Methoden verwendet und deren Vorteile aufgezeigt. Es werden

sowohl die theoretis
hen Ergebnisse als au
h die praktis
he Umsetzung in Simu-

lationen und am Prüfstand untersu
ht.

Ein Hauptziel ist dabei, mit Hilfe von Mehrzieloptimierung eine groÿe Varian-

tenvielfalt an Lösungen zu erhalten. Dies ist wi
htig, um auf unters
hiedli
he

Anforderungen von auÿen reagieren zu können. Es werden dabei zwei Zielgröÿen

berü
ksi
htigt: Zum einen der Steueraufwand des Motors, der ein Maÿ für die

Energiee�zienz darstellt, und zum anderen die Dauer des Manövers, um mög-

li
hst s
hnelle Manöver zu erhalten. Da diese beiden Ziele gegenläu�g sind, erge-

ben si
h für die jeweiligen optimalen Lösungen Kompromisse zwis
hen ihnen, die

dur
h eine unters
hiedli
he Gewi
htung der Ziele verändert werden können.

Dur
h die Mögli
hkeit, viele unters
hiedli
he Lösungen bezügli
h ihrer Zielfunkti-

onswerte untersu
hen zu können, kann zusätzli
hes Systemwissen erlangt werden.

Die entstehenden Trajektorien stellen eine Wissensbasis für das System dar. So

kann z. B. analysiert werden, wie eine Bewegung des Pendels aussieht, die für eine

bestimmte Manöverzeit optimal ist. Im Vorfeld besitzt man speziell für komplexe

me
hanis
he Systeme keine Vorstellung darüber, wie eine sol
he Bewegung aus-

sehen könnte. Dur
h die Variation von äuÿeren Parametern bei der Bestimmung

von optimalen Lösungstrajektorien lässt si
h auÿerdem untersu
hen, ob si
h eine

Veränderung des Systems positiv auf die Dynamik eines Manövers auswirkt. Zum

Beispiel kann hier die Wirkung eines verlängerten Verfahrwegs am Prüfstand auf

die Zielfunktionswerte des Manövers untersu
ht werden.

In einem weiteren S
hritt werde Strategien entwi
kelt und analysiert, die Mannig-

faltigkeiten eines dynamis
hen Systems für die optimale Steuerung nutzen. Auf

diesen speziellen Strukturen kann si
h das System kostenlos bewegen und dur
h

das Ausnutzen dieser sogenannten natürli
hen Dynamik ist es mögli
h, besondere,

physikalis
h motivierte Ansätze für eine optimale Steuerung zu verwenden. Dur
h

den Verglei
h mit einem Standardansatz lässt si
h diese neuartige Strategie der

Verwendung der natürli
hen Dynamik weitergehend evaluieren.

Das Manöver, wel
hes in dieser Arbeit hauptsä
hli
h betra
htet wird, ist der

Aufs
hwung des Pendels aus der unteren Ruhelage (siehe

❧1 in Bild 1-4) in die

instabile obere Ruhelage (siehe

❧4 in Bild 1-4). Prinzipiell können die hier vor-

gestellten Methoden aber genauso auf Manöver zwis
hen den anderen Ruhelagen

angewendet werden.

In dieser Arbeit werden somit die drei folgenden zentralen Aspekte behandelt:

� Am Anfang steht die Modellbildung und die Bes
hreibung des Prüfstands

für das Mehrfa
hpendel auf einem Wagen. Dazu gehört au
h der Regelungs-

ansatz mit der Zwei-Freiheitsgrade-Regelung.
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1 2

3 4

Bild 1-4: Die vier unters
hiedli
hen Ruhelagen des Doppelpendels mit Wagen

� Im zweiten S
hritt geht es um die optimale Steuerung mit der Methode

Dis
rete Me
hani
s and Optimal Control (DMOC), die zunä
hst theore-

tis
h eingeführt und ans
hlieÿend für die Bere
hnung vielfältiger Manöver

verwendet wird. Diese werden au
h am Prüfstand getestet.

� Als weitere Methode wird dann die optimale Steuerung auf Mannigfaltigkei-

ten vorgestellt. Hierbei wird au
h die DMOC Methode für die Bere
hnung

von optimalen Sequenzen angewendet. Au
h dieser neuartige Ansatz wird

am Prüfstand evaluiert.

Es wird deutli
h, dass diese Aspekte stark miteinander verzahnt sind und auf-

einander aufbauen. Dabei sind die optimale Steuerung mit der Anwendung am

Mehrfa
hpendel die zentralen Punkte, die immer wieder aufgegri�en werden. Dies

ist au
h in Bild 1-5 gra�s
h dargestellt.

Insgesamt ist es ein Ziel dieser Arbeit, die verwendeten Methoden und das Vorge-

hen so zu bes
hreiben, dass es au
h auf andere me
hanis
he Mehrkörpersysteme

übertragen werden kann. Dies kann dadur
h errei
ht werden, dass die verwende-

ten Methoden zur optimalen Steuerung allgemein erläutert und die Systemana-

lyse ans
hlieÿend am Beispiel des Doppelpendels auf einem Wagen ausführli
h

diskutiert wird. Dadur
h ist es mögli
h, das Vorgehen au
h für andere Syste-

me zu wiederholen und in entspre
hender Weise dur
h die Bere
hnung von Ma-

növern Systemwissen zu generieren. Dies können z. B. Systeme im Berei
h der

Robotik sein, bei denen e�ziente Trajektorien bere
hnet werden sollen, die nur

einges
hränkte Bewegungsmögli
hkeiten besitzen, da sie mit anderen Robotern

kooperieren müssen. Von Vorteil wäre hier, dass die Trajektorien optimal bezüg-

li
h gewählter Ziele sind und te
hnis
he Eins
hränkungen einfa
h berü
ksi
htigt

werden können.



8 Kapitel 1

Modellbildung

 und Prüfstand 

des 

Mehrfach-

pendels

(Kapitel 2)

Steuerung
 

auf 

Mannig-

faltigkeiten

(Kapitel 5)

Optimale

 Steuerung

 mit DMOC

(Kapitel 3

 und 4)

Optimale Steuerung und Regelung

des Mehrfachpendels

Bild 1-5: Aufbau der zentralen Aspekte dieser Arbeit

1.3 Aufbau der Arbeit

In Kapitel 2 werden zunä
hst die Grundlagen zum Einsatz von Mehrfa
hpen-

delsystemen vorgestellt. Dabei wird sowohl auf den Stand der Te
hnik bezügli
h

der Systeme und Methoden eingegangen, als au
h die Modellierung des in dieser

Arbeit verwendete Doppel- bzw. Dreifa
hpendels erläutert. Es wird die Zwei-

Freiheitsgrade-Struktur vorgestellt, die für den Aufs
hwung des Mehrfa
hpendels

angewendet wird. Für die Auslegung der Regelung werden zwei unters
hiedli
he

Ansätze dargestellt, die beide auf linearen Methoden basieren. Erste Tests dieser

Regelung in Simulationen und am Prüfstand s
hlieÿen dieses Kapitel ab.

Die Grundlagen zur optimalen Steuerung von dynamis
hen Systemen werden in

Kapitel 3 vorgestellt. Das allgemeine Optimalsteuerungsproblem wird hergeleitet

und ans
hlieÿend werden unters
hiedli
he Methoden zur Lösung vorgestellt. In

dieser Arbeit wird die Methode DMOC für die Herleitung des diskreten Opti-

malsteuerungsproblems verwendet. Die theoretis
hen Grundlagen dieser Metho-

de und ihre besonderen Eigens
haften werden dargestellt. Auÿerdem wird auf die

aktuelle Fors
hungsarbeit mit der DMOC Methode eingegangen.

In Kapitel 4 wird dann gezeigt, wie das diskrete Optimalsteuerungsproblem mit-

tels SQP-Verfahren (Sequentielle Quadratis
he Programmierung) gelöst werden

kann. Dabei werden dur
h einfa
he Mehrzieloptimierungsmethoden unters
hied-

li
he Ziele für die Auslegung der Trajektorien für das Pendel berü
ksi
htigt. Im

Ans
hluss werden die Ergebnisse ausführli
h diskutiert. Ein Aspekt dabei ist die

groÿe Variantenvielfalt, die für den Aufs
hwung des Doppelpendels mittels Mehr-

zieloptimierung erzielt werden kann. Die entstehenden Lösungen können bezügli
h
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ihrer Pareto-Optimalität analysiert werden. Dur
h eine geeignete Na
hoptimie-

rung wird ans
hlieÿend untersu
ht, wie si
h die Lösungen bezügli
h der unter-

s
hiedli
hen Ziele gezielt variieren lassen.

Eine neue Methode für die optimale Steuerung von me
hanis
hen Systemen auf

(in)stabilen Mannigfaltigkeiten wird in Kapitel 5 bes
hrieben. Dabei wird die sta-

bile Mannigfaltigkeit genutzt, da si
h das System auf ihr unaktuiert, also ohne

Kosten, in die obere Ruhelage bewegt. Der Ansatz basiert imWesentli
hen darauf,

eine Sequenz aus einem gesteuerten Teilstü
k zur stabilen Mannigfaltigkeit und

der Bewegung auf dieser bis zur oberen Ruhelage zu bilden. Dur
h eine ans
hlie-

ÿende Na
hoptimierung, bei der die Sequenz als initial guess verwendet wird,

lassen si
h die Ergebnisse no
h verbessern. Verglei
he mit Lösungen, die dur
h

einen linear interpolierten initial guess (Standardansatz) bere
hnet worden sind,

zeigen weitere Vorteile dieses neuen Ansatzes. Au
h am Prüfstand des Doppel-

pendels auf einem Wagen wird die Bewegung auf der stabilen Mannigfaltigkeit

analysiert.

Zum Abs
hluss der Arbeit wird in Kapitel 6 eine ausführli
he Zusammenfassung

des Vorgehens und der erzielten Ergebnisse gegeben. Auÿerdem werden in einem

Ausbli
k zusätzli
he Aspekte für weiterführende Fors
hungsaufgaben bes
hrie-

ben.
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2 Grundlagen zum Einsatz von
Mehrfachpendelsystemen

Dieses Kapitel widmet si
h den Grundlagen zur Einstimmung und Vorbereitung

der weiteren Kapitel der vorliegenden Arbeit. Zunä
hst wird ein Überbli
k über

die Mögli
hkeiten für den Aufbau und die Steuerung von Pendelsystemen gege-

ben und erläutert, wel
he grundsätzli
hen Ansätze verwendet werden können, um

sol
he Systeme zu steuern und zu regeln.

ImWeiteren werden die Grundlagen für die Anwendung von theoretis
hen Metho-

den und praktis
hen Anwendungen am Pendel vorgestellt. Dazu wird der Prüf-

stand eines Mehrfa
hpendels auf einemWagen vorgestellt, der in dieser Arbeit für

die praktis
he Umsetzung verwendet wird. Die notwendige Modellbildung wird für

das Doppel- und Dreifa
hpendel dur
hgeführt, und es wird au
h auf die Mögli
h-

keit von vers
hiedenen Modelldarstellungen eingegangen. Ans
hlieÿend wird die

Zwei-Freiheitsgrade-Regelung bestehend aus Vorsteuerung und zusätzli
her Re-

gelung bes
hrieben. Dies ist ein etabliertes Konzept und wurde z.B. au
h s
hon

in [GTZ05℄, [GTZ07℄ und [GEK13℄ verwendet, um Manöver für das Doppel- und

Dreifa
hpendel inklusive Steuerung und Regelung umzusetzen. In diesem Kapitel

werden zum einen diese Methode für die Anwendung am Prüfstand und zum an-

deren erste Ergebnisse für die Reglerauslegung vorgestellt. Dabei geht es darum,

dass das System mit Hilfe eines zusätzli
hen Reglers der vorgegebenen Trajektorie

mögli
hst exakt folgt.

Am Ende dieses Kapitels ist ein grundlegendes Konzept bestehend aus den Haupt-

komponenten Steuerung und Regelung für die Arbeit mit dem Pendelsystem gege-

ben. In den folgenden Kapiteln wird dieses im Berei
h der Steuerung aufgegri�en,

um neue mathematis
he Methoden für die Auslegung eines optimalen Systemver-

haltens zu entwi
keln.

2.1 Pendelsysteme in Theorie und Praxis - Ein Stand der
Technik

Das in dieser Arbeit betra
htete Pendelsystem auf einem Wagen ist ni
ht die

einzige Mögli
hkeit der praktis
hen Realisierung. Im Folgenden werden weitere

Mögli
hkeiten für den Aufbau eines allgemeinen Pendelsystems bes
hrieben und

es wird gezeigt, wel
he Methoden der Steuerung und Regelung daran entwi
kelt

und getestet wurden.
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2.1.1 Aufbau und Ansteuerung von Pendelsystemen

Viele Wissens
haftler haben si
h in ihrer Fors
hung mit unters
hiedli
hen Pendel-

systemen und Manipulatoren bes
häftigt, um diverse Methoden der Regelungs-

te
hnik zu entwi
keln oder au
h deren Anwendung in der Lehre darstellen zu

können. Neue Methoden, vor allem in der ni
htlinearen Regelungste
hnik, wurden

mit Pendelsystemen getestet, realisiert und au
h ans
hauli
h dargestellt. Dabei

lassen si
h zwei grundsätzli
h vers
hiedene Arten von Pendelsystemen bes
hrei-

ben: Die einen besitzen ein aktuiertes Gelenk, und die anderen können si
h dur
h

einen Wagen (Motor) auf einem horizontalen Fahrweg bewegen. Eine Variante

des zuletzt genannten Systems ist das rotatoris
he Pendel.

Bei den Mehrfa
hpendelsystemen handelt es si
h meist um unteraktuierte me
ha-

nis
he Systeme. Dies bedeutet, dass bei diesen Systemen die Anzahl der Freiheits-

grade gröÿer ist als die Anzahl der Steuergröÿen. Die Steuerung und Regelung von

unteraktuierten Systemen ist auf Grund ihrer diversen komplexen Eigens
haften

s
hwierig und eine allgemeine Behandlung sol
her Systeme existiert ni
ht. Aus re-

gelungste
hnis
her Si
ht ist es eine besondere Herausforderung, dass es dadur
h

Körper gibt, die ni
ht direkt beein�usst werden können. Bei unteraktuierten Sys-

temen kann keine vollständige Zustandslinearisierung dur
hgeführt werden, so

dass si
h eine ni
ht beoba
htbare interne Dynamik (Nulldynamik) des Systems

ergibt. Die Regelung wird häu�g passivitätsbasiert ausgeführt (siehe zum Bei-

spiel [Spo98℄). Für eine erfolgrei
he Steuerung und Regelung ist es nötig, eine

genaue Systemkenntnis inklusive detaillierter Modellbildung zu besitzen und in

der Umsetzung sehr exakt zu arbeiten. Die Entwi
klung von neuen Methoden an

Mehrfa
hpendelsystemen dient der Motivation dieser Verfahren, da die Ergebnis-

se dann auf andere unteraktuierte Systeme übertragen werden können. Beispiele

für sol
he Untersu
hungen lassen si
h in [Spo96℄, [FL01℄, [FLS00℄, [LFB00℄ und

[SPLE00℄ �nden.

Pendel mit aktuiertem Gelenk

In diesem Abs
hnitt wird der Fokus auf Pendelsysteme gelegt, die eine Variante

des Pendelsystems auf einem Wagen darstellen. Dabei wird kein Wagen als Aktor

verwendet, sondern eines der Gelenke wird direkt aktuiert.

Die Systeme A
robot (siehe [MH90℄, [Spo95℄) und Pendubot (siehe [SB95℄) be-

stehen beide aus zwei Pendelarmen die mit zwei rotatoris
hen Gelenken verbun-

den bzw. gelagert werden. Sol
he unteraktuierten Systeme treten im Berei
h von

Robotersystemen häu�g auf und werden als akademis
he Beispiele bei der Ent-

wi
klung von Methoden verwendet. Beim A
robot ist dabei das fest gelagerte

Gelenk aktuiert und beim Pendubot das Gelenk zwis
hen den Pendelarmen (sie-

he Bild 2-1). Dadur
h sind si
h beide Systeme ähnli
h, und es können prinzipiell
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die glei
hen Methoden für eine Regelung verwendet werden [SB95℄. Mit Hilfe von

partieller Zustandslinearisierung des Systems und der Analyse der Nulldynamik

lässt si
h z. B. ein Regler für den Aufs
hwung herleiten. Da diese Systeme nur

eine unabhängige Eingangsgröÿe besitzen, ergibt si
h eine eindimensionale Man-

nigfaltigkeit von Ruhelagen. Da z. B. beim Pendubot der innere Pendelarm dur
h

ein bestimmtes konstantes Moment in dem aktuierten Gelenk in jeder beliebigen

Position gehalten werden kann, gibt es jeweils eine instabile obere Ruhelage des

Systems, wenn der andere Pendelarm senkre
ht steht. Eine instabile Ruhelage

kann beim A
robot dadur
h eingestellt werden, dass das aktuierte Gelenk die

Pendelarme in einer ausbalan
ierten Pose �xiert. Eine mögli
he Ruhelage dieser

Systeme ist jeweils au
h in Bild 2-1 dargestellt.

Bild 2-1: Pendubot und A
robot, jeweils in einer mögli
hen instabilen Ruhelage;

die roten Pfeile markieren die aktuierten Gelenke

Pendel mit Wagen bzw. rotatorisches Pendel

Eine weitere Art von Pendelsystemen sind Pendel auf einem Wagen, wel
he si
h

auf einem horizontalen Fahrweg bewegen (siehe z. B. [GTZ07℄, [ZR01℄). Diese

Systeme haben im Gegensatz zu den Pendeln mit aktuiertem Gelenk eine an-

dere Dynamik, da sie z. B. im Fall eines Doppelpendels auf einem Wagen zwei

frei s
hwingende Pendelarme besitzen. Somit können die Pendelarme ni
ht di-

rekt, sondern nur dur
h den aktuierten Wagen bewegt werden. Im Gegensatz

zum A
robot und Pendubot ist das Doppelpendel auf einem Wagen ein zweifa
h

unteraktuiertes System (Anzahl Freiheitsgrade: 3, Anzahl Aktoren: 1). Für die
Dynamik eines mathematis
hen Doppelpendels, bestehend aus zwei Massepunk-

ten, die reibungsfrei s
hwingen, kann sogar gezeigt werden, dass sie 
haotis
h ist,
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siehe au
h Abs
hnitt 5.1.1. Wegen dieser Eigens
haft ist das Systemverhalten sehr

komplex.

Eine Variante des Pendels auf einem Wagen ist das rotatoris
he Pendel, wel
hes

au
h Furuta-Pendel genannt wird [ÅF96℄, [LFSM09℄. Ein rotatoris
hes Pendel

mit einem Pendelarm ist in Bild 2-2 zu sehen. Hierbei ist ein Pendelarm an einem

rotierenden Stab befestigt, der si
h mit Hilfe eines Aktors drehen lässt. Dieser

Aufbau des Pendels hat den Vorteil, dass der Fahrweg unbes
hränkt ist, da der

Aktor beliebig viele Umdrehungen in eine Ri
htung dur
hführen kann, um das

Pendel aufzus
hwingen.

Bild 2-2: Rotatoris
hes Pendel [Wik13℄

2.1.2 Ansätze für Steuerung und Regelung

Der Aufs
hwung des Einfa
h- oder Doppelpendels auf einem Wagen in die inver-

se Position (obere Ruhelage) ist eine herausfordernde Aufgabe, da das System

unteraktuiert ist und eine komplexe Dynamik besitzt. Dieses Problem wird z. B.

dur
h energiebasierte Methoden gelöst (siehe [ZR01℄, [ÅF96℄). Bei diesen Me-

thoden geht es darum, mit Hilfe von Energie- bzw. Lyapunov-Funktionen einen

Regler zu entwerfen, der ein bestimmtes Energielevel (z. B. das der oberen Ruhe-

lage) einregelt. Wenn die gewüns
hte Ruhelage errei
ht ist, kann dann ein linearer

Regler (LQ-Regler, siehe au
h Abs
hnitt 2.4.2) verwendet werden, um diese zu

stabilisieren.
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In [ZR01℄ wird ein Regler für den Aufs
hwung des Doppelpendels aus einer belie-

bigen Position in die inverse Position mit Hilfe von Passivitätseigens
haften und

energy shaping ausgelegt. Während des Aufs
hwungs bringt der energiebasierte

Regler das Pendel in einen bestimmten Einzugsberei
h um die inverse Position,

wo dann ein Regler zum Balan
ieren in der oberen Ruhelage aktiviert werden

kann. Der in der Ruhelage verwendete Regler basiert auf linearen Methoden.

Für einen in ähnli
her Weise ausgelegten Regler kann in [Xin11℄ sogar gezeigt

werden, dass im ges
hlossenen Regelkreis das Pendel gegen die obere Ruhelage

konvergiert, indem das entspre
hende Energieniveau angenommen wird.

Die energiebasierten Methoden haben den Vorteil einer hohen Robustheit des

Systems bezügli
h Störungen oder au
h Modellungenauigkeiten, denn es wird

keine Trajektorie fest vorgegeben. Wenn Störungen auftreten, ist der Regler in

der Lage si
h anzupassen und au
h dann no
h das Regelziel zu errei
hen.

Ein Na
hteil, der si
h aus dem eben bes
hriebenen Verhalten ergibt, besteht darin,

dass die Regelung eines Systems mit energiebasierten Methoden ni
ht zeite�zient

ist. Das Errei
hen des Regelziels kann erstens sehr lange dauern, und man kann

zweitens keine genaue Zeit angeben, zu der es wirkli
h errei
ht wird.

Dieser Na
hteil kann dadur
h behoben werden, dass im Vorfeld eine - na
h Mög-

li
hkeit optimale - Trajektorie für die Bewegung des Systems bere
hnet wird.

Man gibt also dem System das komplette Verhalten von der Ausgangslage zum

Zielpunkt vor und kann mit Hilfe einer zusätzli
hen Regelung dafür sorgen, dass

diese ausgeführt wird. Ein sol
her Ansatz, bestehend aus einer Kombination aus

Steuerung und Regelung, wird als Zwei-Freiheitsgrade-Struktur bezei
hnet. Dur
h

dieses Vorgehen ist das Systemverhalten deterministis
h, und es ist die Mögli
h-

keit gegeben, z. B. die Dauer der Bewegung oder die Auslenkung der Zustände

genau vorherzusagen. Kleinere Störungen können dur
h die zusätzli
he Regelung

abgefangen werden. Hierdur
h kommt es nur zu lei
hten Abwei
hungen von der

Solltrajektorie. Gröÿere Eingri�e in das System führen dagegen dazu, dass die

gewüns
hte Trajektorie ni
ht dur
hgeführt werden kann. Für einen erneuten Test

muss das System auÿerdem wieder in die exakte Ausgangslage versetzt werden.

Somit wird deutli
h, dass beide Ansätze gewisse Vor- und Na
hteile besitzen.

Es muss immer ein Kompromiss zwis
hen Robustheit bzw. Flexibilität und der

S
hnelligkeit des gewüns
hten Manövers getro�en werden.

Eine Regelung dur
h eine Zwei-Freiheitsgrade-Struktur wird z. B. in [GTZ07℄ oder

[RRA02℄ dazu verwendet, einen Aufs
hwung des Doppelpendels auf einem Wa-

gen aus der unteren in die obere instabile Ruhelage dur
hzuführen. In [GTZ07℄

wird eine inversionsbasierte Steuerung verwendet, um Trajektorien für das Auf-

s
hwungmanöver zu bere
hnen. Ein Randwertproblem wird gelöst, um die interne

Dynamik des Pendels zu berü
ksi
htigen. Dabei werden freie Parameter in der

gesu
hten Lösungstrajektorie eingeführt, um ausrei
hend Freiheitsgrade zu erhal-
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ten. Der zusätzli
he stabilisierende Regler wird ebenfalls mit linearen Methoden

ausgelegt. Dur
h ein verglei
hbares Vorgehen ist es in [GEK13℄ sogar mögli
h,

den Aufs
hwung und die Stabilisierung für das Dreifa
hpendel auf einem Wagen

am Prüfstand dur
hzuführen.

2.2 Prüfstand

Für die Arbeiten mit einem Mehrfa
hpendel (in dieser Arbeit wird das Doppel-

bzw. Dreifa
hpendel getestet) wurde am Lehrstuhl für Regelungste
hnik und Me-


hatronik (RtM) ein entspre
hender Prüfstand aufgebaut. In Bild 2-3 ist der reale

Prüfstand zu sehen.

Bild 2-3: Prüfstand des Doppelpendels auf einem Wagen

Beim Aufbau des Prüfstands wurde ein Linearantrieb (Linearmotor LKL 20-85,

Bos
h Rexroth) verbaut, der gewährleistet, dass ho
hdynamis
he Bewegungen

der Pendelarme dur
hgeführt werden können. Der Motor besitzt einen Verfahr-

weg von ±0.6m, eine maximale Ges
hwindigkeit von 5 m
s
und eine maximale

Bes
hleunigung von 101 m
s2
. Es wurde auÿerdem darauf gea
htet, dass die Gelen-

ke des Pendels besonderen Anforderungen genügen. Sie sind am Lehrstuhl für

Regelungste
hnik und Me
hatronik der Universität Paderborn konstruiert wor-

den und sehr reibungsarm ausgelegt. Dies hat den Vorteil, dass die dynamis
hen

Bewegungen der Pendelarme nur wenig dur
h Reibung beeinträ
htigt werden.

Des Weiteren wurden in den Gelenken ho
hau�ösende optis
he En
oder mit ei-

ner Au�ösung von 20000 Stri
he pro Umdrehung verbaut, um die Winkellage der

Pendelarme und die Bewegung des Wagens sehr präzise messen zu können. Die

Signalübertragung wird mit Hilfe von S
hleifringen in den Gelenken realisiert, um
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eine aufwändige und störende Kabelführung im Pendel zu umgehen. Ein weiterer

wi
htiger Aspekt ist die Auslegung der Rahmenkonstruktion. Um ho
hdynami-

s
he Trajektorien mit dem Mehrfa
hpendel exakt ausführen zu können, ist es

notwendig, dass die Rahmenkonstruktion mögli
hst standfest und s
hwingungs-

arm ist. Um diese Anforderungen zu realisieren, wurde die Rahmenkonstruktion

mit Hilfe eines biege- und torsionssteifen Aluminium-Pro�lsystems aufgebaut.

Auÿerdem wurde beim Aufbau auf eine zusätzli
he Versteifung des Prüfstandes

dur
h Verspannelemente gea
htet. Zusätzli
he Mas
hinenfüÿe aus einer s
hwin-

gungsdämpfenden Gummimis
hung sind gut für die auftretenden dynamis
hen

Belastungen geeignet. Der Aufbau des Gesamtsystems ist in Bild 2-4 zu sehen.

Die Auslegung des gesamten Prüfstandes wurde in den Arbeiten [Leÿ09℄ und

[Koh09℄ untersu
ht und dokumentiert. Dabei wurden zur Auswahl der Kompo-

nenten Nutzwertanalysen aufgestellt.

Bild 2-4: Prüfstand des Mehrfa
hpendels auf einem Wagen (CAD-Zei
hnung)

Für die Realisierung der Ansteuerung und Regelung des Pendelsystems am Prüf-

stand wird ein e
htzeitfähiges Hardwaresystem der Firma dSPACE verwendet.

Integriert ist ein E
htzeitre
hner und vers
hiedene I/O-Panel für die notwendige

digitale Signalverarbeitung.

2.3 Modellbildung

Für die Modellbildung des Mehrfa
hpendels wird nun das Modell eines Mehrkör-

persystems hergeleitet, das die grundsätzli
he Funktionsweise des realen Prüfstan-

des darstellt. Dazu sind zunä
hst die Abgrenzung zur Umwelt und ans
hlieÿend
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die Erstellung eines physikalis
hen Ersatzbildes notwendig. Mit Hilfe der Metho-

de na
h Lagrange werden die Bewegungsglei
hungen des Systems aufgestellt, die

numeris
h simuliert werden können.

2.3.1 Doppelpendel

PSfrag repla
ements

a2

a1

ϕ1

ϕ2

u(t)

y

m0

m1, l1, J1

m2, l2, J2

x1

x2

Bild 2-5: Modell des Doppelpendels auf einem Wagen

Das Modell des Doppelpendels auf einem Wagen besteht aus drei Starrkörpern,

wel
he die zwei Pendelarme bzw. den Linearmotor repräsentieren. Die 
harakte-

risierenden Gröÿen der Pendelarme werden dur
h ihre Masse mi, ihre Länge li,
den Abstand zwis
hen Gelenk und S
hwerpunkt ai und das Trägheitsmoment Ji
mit i = 1, 2 bes
hrieben (siehe Bild 2-5). Der Wagen besitzt die Masse m0. Die

generalisierten Koordinaten des Doppelpendels auf einem Wagen sind die absolu-

ten Winkel ϕ1 und ϕ2 der Pendelarme bezügli
h einer vertikalen Auslenkung und

die Vers
hiebung des Wagens y. Die Steuergröÿe des Systems wird mit u(t) be-
zei
hnet. Im Folgenden sollen zwei äquivalente Modelle für das Pendel hergeleitet

werden, die si
h in der Wahl der Steuergröÿe unters
heiden. Zum einen kann hier

die Kraft des Aktors uF (t) = F0 und zum anderen au
h die Bes
hleunigung des

Wagens uy(t) = ÿ gewählt werden. Eine Überführung vom einen in das andere

Modell ist dur
h die partielle Zustandslinearisierung mögli
h. Es wird zusätzli
h

angenommen, dass in den Gelenken die Dämpfung d1 bzw. d2 wirkt.
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Für die Simulation des Pendels werden realistis
he Werte für die aufgeführten

Gröÿen benötigt. Diese sind in Tabelle 2-1 aufgeführt und konnten dur
h Mes-

sungen am Prüfstand und mit Hilfe von CAD-Daten gewonnen werden.

Tabelle 2-1: Me
hanis
he Parameter des Doppelpendels auf einem Wagen

innerer Pendelarm äuÿerer Pendelarm

(i=1) (i=2)

Länge li [m℄ 0.356 0.356

Abstand zum S
hwerpunkt ai [m℄ 0.18 0.148

Masse mi [kg℄ 0.775 0.654

Trägheitsmoment Ji [N ms2℄ 0.0224 0.0179

Dämpfungskonstante di [N ms℄ 0.005 0.005

Masse des Wagens m0: 4 [kg℄

Herleitung der Bewegungsgleichungen mit Krafteingang

Die Bewegungsglei
hungen des Doppelpendels auf einem Wagen werden mit Hil-

fe des Lagrange-Formalismus hergeleitet. Dies hat den Vorteil, dass ni
ht alle

S
hnittkräfte in den Gelenken bere
hnet werden müssen, die im Folgenden in den

Bewegungsglei
hungen au
h ni
ht benötigt werden. Beim Lagrange-Formalismus

ist es notwendig, die Lagrange-Funktion des Systems herzuleiten. Diese besteht

für me
hanis
he Systeme aus kinetis
her und potentieller Energie (siehe au
h

Glei
hung (A-2-4) im Anhang). Dur
h eine partielle Ableitung na
h den Zustän-

den des Systems werden dann die Euler-Lagrange-Glei
hungen mit Kräften be-

re
hnet (siehe au
h Glei
hung (A-2-5) im Anhang). Hierfür wird die Darstellung

der Pendel und des Wagens in redundanten Koordinaten x01 sowie x
i
1, x

i
2, ϕi, i =

1, 2 bes
hrieben. Mit xi =
[
xi1 xi2

]
, i = 0, 1, 2 als S
hwerpunktkoordinaten der

Körper lässt si
h die Beziehung zwis
hen redundanten und generalisierten Koor-

dinaten dur
h

x0 =

[
y
0

]

,

x1 =

[
y − a1 sinϕ1

a1 cosϕ1

]

,

x2 =

[
y − l1 sinϕ1 − a2 sinϕ2

l1 cosϕ1 + a2 cosϕ2

]
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ausdrü
ken. Mittels dieser Charakterisierung können die kinetis
he und potenti-

elle Energie als

T =
1

2

(
2∑

i=0

mi

∥
∥ẋi
∥
∥2

2
+

2∑

i=1

Jiϕ̇
2
i

)

,

V =
2∑

i=0

mi g x
i
2

bestimmt werden, wobei g die Gravitationskonstante ist. Die ni
ht konservativen
Dämpfungsmomente werden modelliert dur
h die folgenden linearen Ausdrü
ke

F d
1 = −d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1),

F d
2 = −d2(ϕ̇2 − ϕ̇1).

Es wird an dieser Stelle angenommen, dass zwis
hen dem Motor und dem Ver-

fahrweg keine Reibungskräfte wirken. Diese können verna
hlässigt werden, da

der Motor am Prüfstand ges
hwindigkeitsgeregelt betrieben wird. Dadur
h kann

davon ausgegangen werden, das eine etwaige Abwei
hung von der Sollges
hwin-

digkeit, die dur
h Reibung verursa
ht werden könnte, dur
h die Regelung kom-

pensiert wird. Die zweite Mögli
hkeit ist es, den Motor kraftgeregelt zu betrei-

ben. Dabei würde die Reibung als Störkraft auf den Motor wirken. In diesem

Fall kann die Reibung dur
h den Einsatz eines Reibbeoba
hters ges
hätzt und

direkt kompensiert werden. Dadur
h ist es mögli
h, den Motor in beiden Modi

mit zufriedenstellender Genauigkeit zu betreiben.

Als einzige Eingangsgröÿe auf das System wird vorerst eine Aktorkraft auf den

Wagen uF (t) = F0(t) gewählt. Die Gelenke der Pendelarme sind dagegen frei

s
hwingend. Im Folgenden sei q =
[
q1 q2 q0

]
=
[
ϕ1 ϕ2 y

]T
der Vektor der

verallgemeinerte Lagekoordinaten und q̇ =
[
ϕ̇1 ϕ̇2 ẏ

]T
der Vektor der ver-

allgemeinerten Ges
hwindigkeiten. Mit Hilfe der Lagrange-Funktion L(q, q̇) =
T (q, q̇) − V (q), bestehend aus kinetis
her und potentieller Energie des Systems

(siehe au
h Glei
hung (A-2-4) im Anhang), lassen si
h nun die Bewegungsglei-


hungen na
h dem Lagrange-Formalismus wie folgt bestimmen

d

dt

∂L

∂q̇i
−
∂L

∂qi
= F d

i , i = 1, 2,

d

dt

∂L

∂q̇0
−
∂L

∂q0
= F0,

Daraus ergibt si
h dann das folgende System von Di�erentialglei
hungen zweiter

Ordnung

M(q) · q̈ + C(q, q̇) · q̇ + G(q) = F(q̇) + B · uF , (2-1)
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mit den Matrizen

M =





J1 + a21m1 + l21m2 a2l1m2 cos(ϕ1 − ϕ2) −(a1m1 + l1m2) cos(ϕ1)
a2l1m2 cos(ϕ1 − ϕ2) J2 + a22m2 −a2m2 cos(ϕ2)

−(a1m1 + l1m2) cos(ϕ1) −a2m2 cos(ϕ2) m1 +m2 +m0



 ,

C =





0 a2l1m2 sin(ϕ1 − ϕ2)ϕ̇2 0
−a2l1m2 sin(ϕ1 − ϕ2)ϕ̇1 0 0
(a1m1 + l1m2) sin(ϕ1)ϕ̇1 a2m2 sin(ϕ2)ϕ̇2 0



 , (2-2)

G =





−g(a1m1 + l1m2) sin(ϕ1)
−ga2m2 sin(ϕ2)

0



 , (2-3)

F =





−d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1)
d2(ϕ̇1 − ϕ̇2)

0



 , (2-4)

B =
[
0 0 1

]
. (2-5)

Das hier entstandene ni
htlineare System von Di�erentialglei
hungen besitzt den

typis
hen Aufbau für ein Mehrkörpersystem mit der symmetris
hen Massenma-

trix M(q), der Matrix C(q, q̇), die Coriolis- und Zentrifugalkräfte enthält, und

den wirkenden Kräften auf der re
hten Seite bestehend aus den Dämpfungskräf-

ten und der Aktorkraft uF . Man bea
hte, dass der Eingang nur auf die dritte

Di�erentialglei
hung direkten Ein�uss besitzt, da das System unteraktuiert ist.

Partielle Zustandslinearisierung von unteraktuierten me chanischen
Systemen

Die allgemeine exakte Zustandslinearisierung wird bei ni
htlinearen Systemen zur

Auslegung einer Regelung dur
h ni
htlineare Kompensation und Entkopplung ge-

nutzt. Dur
h die Wahl eines ni
htlinearen Vor�lters und einer ni
htlinearen Rü
k-

führung können in der Stre
ke enthaltene Ni
htlinearitäten kompensiert werden.

Das dadur
h entstehende Gesamtsystem ist wirkungsäquivalent zu einem ent-

spre
henden linearen System, und für dieses können dann mit linearen Methoden

Regelungen für das dynamis
he Verhalten entworfen werden. Siehe hierzu au
h

[Föl93℄ oder [Isi95℄, wo eine ausführli
he Einführung in diese Thematik dur
h-

geführt wird und auÿerdem auf die Voraussetzungen zur Dur
hführung dieser

Methode eingegangen wird.

Im Folgenden wird untersu
ht, wie die Methode der Zustandslinearisierung auf

ein allgemeines unteraktuiertes me
hanis
hes System angewendet werden kann.

Bei einem sol
hen System ist es ni
ht mögli
h, die exakte Zustandslinearisie-

rung für das komplette ni
htlineare System dur
hzuführen, sondern man be-
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s
hränkt si
h auf die aktuierten Freiheitsgrade und erhält dadur
h eine Ein-

/Ausgangslinearisierung, au
h partielle Zustandslinearisierung genannt. Dieses

Verfahren wird z. B. in [ZR01℄ und [Isi95℄ bes
hrieben.

Das betra
htete unteraktuierte System sei bes
hrieben dur
h n generalisierte Ko-

ordinaten q1, . . . , qn, und die Anzahl der Steuergröÿen bzw. Aktoren sei nu < n.
Dann ist es mögli
h, den Vektor q in zwei vers
hiedene Anteile qT = (qT1 , q

T
2 )

aufzuteilen. Dabei entspri
ht q1 den passiven Variablen und q2 den aktuierten

Variablen. Mit Hilfe dieser Darstellung lassen si
h die Euler-Lagrange Glei
hun-

gen des System dur
h

M11q̈1 +M12q̈2 + C1(q, q̇) + G1(q) = 0, (2-6)

M21q̈1 +M22q̈2 + C2(q, q̇) + G2(q) = F (2-7)

bes
hreiben, wobei

M(q) =

[
M11 M12

M21 M22

]

,

C(q, q̇)q̇ =

[
C1(q, q̇)
C2(q, q̇)

]

,

G(q) =

[
G1(q)
G2(q)

]

die Systemmatrizen des Gesamtsystems bezei
hnen, wie s
hon dur
h die System-

darstellung (2-1)-(2-5) bes
hrieben wurde. Mit F werden die nu generalisierten

Kräfte der nu Aktoren bezei
hnet.

Auf Grund der positiven De�nitheit der Massenmatrix besitzen alle unteraktuier-

ten Systeme die Eigens
haft, dass sie partiell zustandslinearisierbar sind. Dur
h

diese Methode wird nun eine Rü
kführung bestimmt, so dass die Bewegungsglei-


hungen der aktiven Zustände q2 in linearer Form vorliegen. Aus Glei
hung (2-6)

kann man folgern, dass

q̈1 = −M−1
11 (M12q̈2 + C1 + G1) (2-8)

gilt. Die Inverse M−1
11 existiert, da M positiv de�nit ist.

Die so erhaltene Glei
hung (2-8) lässt si
h nun wieder in (2-7) einsetzen, und man

erhält ein abgewandeltes System

M̄22q̈2 + C̄2 + Ḡ2 = F ,

wobei

M̄22 = M22 −M21M
−1
11 M12,

C̄2 = C2 −M21M
−1
11 C1,

Ḡ2 = G2 −M21M
−1
11 G1



Grundlagen zum Einsatz von Mehrfa
hpendelsystemen 23

gilt. Anhand der entstandenen Glei
hung wird nun die partielle Zustandslineari-

sierung dur
hgeführt. Es wird eine Rü
kführung

F = M̄22 · uy + C̄2 + Ḡ2

ausgelegt, dur
h die ein neues System von Bewegungsglei
hungen entsteht

M11q̈1 + C1 + G1 = −M12uy, (2-9)

q̈2 = uy, (2-10)

wobei uy der neue Eingang des Systems ist. Dur
h die partielle Zustandslineari-

sierung des Originalsystems (2-6), (2-7) erhält man ein neues System (2-9), (2-10)

mit äquivalentem Ausgangsverhalten.

Die partielle Zustandslinearisierung wird nun am Doppelpendel auf einem Wa-

gen dur
hgeführt. Die aktuierte Variable ist in diesem System die Vers
hiebung

des Wagens y, und die passiven Variablen sind die Winkel ϕ1 und ϕ2 der Pen-

delarme. Es ergibt si
h dann ein Di�erentialglei
hungssystem, in dem nur no
h

die Dynamik der Pendelarme in Form von zwei Di�erentialglei
hungen zweiter

Ordnung bes
hrieben wird und als neue Eingangsgröÿe die Bes
hleunigung des

Wagens uy = ÿ eingeht:

uy = ÿ, (2-11)

M11(q)q̈1 + C1(q, q̇) + G1(q) = F1(q̇) + B1(q)uy, (2-12)

mit den Matrizen

M11(q) =

[
J1 + a21m1 + l21m2 a2l1m2 cos(ϕ1 − ϕ2)
a2l1m2 cos(ϕ1 − ϕ2) J2 + a22m2

]

,

C1(q, q̇) =

[
a2l1m2 sin(ϕ1 − ϕ2)ϕ̇

2
2

−a2l1m2 sin(ϕ1 − ϕ2)ϕ̇
2
1

]

,

G1(q) =

[
−(a1m1 + l1m2)g sinϕ1

−a2m2g sinϕ2

]

,

F1(q̇) =

[
−d1ϕ̇1 − d2(ϕ̇1 − ϕ̇2)

d2(ϕ̇1 − ϕ̇2)

]

,

B1(q) =

[
−(a1m1 + l1m2) cos(ϕ1)

−a2m2 cos(ϕ2)

]

und dem Zustandsvektor x = [qT , q̇T ] =
[
ϕ1 ϕ2 ϕ̇1 ϕ̇2

]T
. Hier bestehen die

Kräfte des Systems aus den Dämpfungsmomenten F1(q̇) und dem Term B1(q) ·
uy = −M12ÿ, wie es au
h in Glei
hung (2-9) bes
hrieben ist. In der Simulation

des Doppelpendels wird dieses vereinfa
hte Modell mit der Eingangsgröÿe ÿ ver-
wendet. Die Ordnung des Problems und damit die benötigte Re
henleistung wird

geringer, da mit der Vorgabe von ÿ nur die Glei
hungen (2-12) simuliert werden

müssen.
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Bemerkung Die Bewegungsglei
hungen (2-12) wurden dur
h die partielle Zu-

standslinearisierung aus den ursprüngli
h na
h dem Lagrange-Formalismus be-

re
hneten Glei
hungen (2-1) hergeleitet. Dur
h eine etwas veränderte Modellbil-

dung kann aber au
h dasselbe System erzeugt werden. Dabei wird angenommen,

dass ni
ht eine Kraft als Steuergröÿe auf den Wagen wirkt, sondern dass die

Bes
hleunigung des Wagens ÿ direkt als Steuergröÿe gewählt wird. Man erhält

dann das System eines Doppelpendels mit Fuÿpunktbes
hleunigung, und die Be-

wegung des Wagens wird dadur
h ni
ht mehr gesondert betra
htet. Dur
h die

Glei
hungen

uy = ÿ,

d

dt

∂L

∂ϕ̇1

−
∂L

∂ϕ1

= F d
1 ,

d

dt

∂L

∂ϕ̇2
−

∂L

∂ϕ2
= F d

2 ,

erhält man somit ebenfalls ein zu (2-1) äquivalentes System von Di�erentialglei-


hungen.

Hier soll zusätzli
h darauf hingewiesen werden, dass dur
h die partielle Zustands-

linearisierung das ursprüngli
he System (2-1) ni
ht approximiert wurde, sondern

dass dur
h die Umformungen ein glei
hwertiges System (2-12) hergeleitet wurde.

Im ersten Fall wirkt eine Aktorkraft auf den Wagen als Eingangsgröÿe, und im

zweiten Fall wird die Bewegung des Wagens über seine Bes
hleunigung bestimmt.

Der direkte Zusammenhang der zwei unters
hiedli
hen Eingangsgröÿen uF und

uy kann dur
h einen Verglei
h der Bewegungsglei
hungen als

− (a1m1 + l1m2) cos(ϕ1)ϕ̈1 − a2m2 cos(ϕ2)ϕ̈2 + (m1 +m2 +m0)uy

+ (a1m1 + l1m2)ϕ̇
2
1 sin(ϕ1) + a2m2ϕ̇

2
2 sin(ϕ2) = uF .

(2-13)

bestimmt werden. Dadur
h ist die direkte Umre
hnung der zwei Modelle mögli
h.

2.3.2 Dreifachpendel

Das Modell des Dreifa
hpendels wird analog zu dem des Doppelpendels erstellt,

verglei
he dazu au
h Abs
hnitt 2.3.1. Der zusätzli
he dritte Pendelarm besitzt die

Masse m3, die Länge l3, den Abstand zum S
hwerpunkt a3 und das Trägheitsmo-

ment J3. Die generalisierten Koordinaten werden im Verglei
h zum Doppelpendel

um den Winkel ϕ3 erweitert. Dur
h den zusätzli
hen Pendelarm verändern si
h

auÿerdem au
h die Parameter des zweiten Arms. Die gesamten Parameter des

Dreifa
hpendels sind in der Tabelle 2-2 bes
hrieben.
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Tabelle 2-2: Me
hanis
he Parameter des Dreifa
hpendels auf einem Wagen

1. Pendel 2. Pendel 3. Pendel
(innen) (mitte) (auÿen)

(i=1) (i=2) (i=3)

Länge li [m℄ 0.356 0.356 0.356

Abstand S
hwerpunkt ai [m℄ 0.18 0.18 0.148

Masse mi [kg℄ 0.775 0.775 0.654

Trägheitsmoment Ji [N ms2℄ 0.0224 0.0224 0.0179

Dämpfungskonstante di [N ms℄ 0.005 0.005 0.005

Masse des Wagens m0: 4 [kg℄

Au
h für das Dreifa
hpendel lässt si
h die Beziehung der generalisierten Koordi-

naten zu den redundanten Koordinaten dur
h die Koordinaten xi =
[
xi1 xi2

]T
,

i = 0, . . . , 3 bezügli
h des S
hwerpunkts der Pendelarme angeben:

x0 =

[
y
0

]

,

x1 =

[
y − a1 sinϕ1

a1 cosϕ1

]

,

x2 =

[
y − l1 sinϕ1 − a2 sinϕ2

l1 cosϕ1 + a2 cosϕ2

]

,

x3 =

[
y − l1 sinϕ1 − l2 sinϕ2 − a3 sinϕ3

l1 cosϕ1 + l2 cosϕ2 + a3 cosϕ3

]

.

Für die kinetis
he und potentielle Energie ergeben si
h dann

T =
1

2

(
3∑

i=0

mi

∥
∥ẋi
∥
∥
2

2
+

2∑

i=1

Jiϕ̇
2
i

)

,

V =

3∑

i=0

mi g x
i
2.

Die generalisierten ni
ht konservativen Dämpfungsmomente werden dur
h die

linearen Ausdrü
ke

F d
1 = −d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1),

F d
2 = −d2(ϕ̇2 − ϕ̇1) + d3(ϕ̇3 − ϕ̇2),

F d
3 = −d3(ϕ̇3 − ϕ̇2)



26 Kapitel 2

modelliert, wobei di, i = 1, 2, 3 die Dämpfungskonstanten bezügli
h des jeweiligen
Gelenkes bezei
hnen.

Analog zum Vorgehen beim Doppelpendel lassen si
h die Bewegungsglei
hungen

des Dreifa
hpendels ebenfalls mit dem Lagrange-Formalismus herleiten, so dass

si
h die folgenden Glei
hungen ergeben:

M(q)q̈ + C(q, q̇)q̇ + G(q) = F(q̇) + B(q)uy,

mit den Matrizen

M =





h1 l1h4 cos(ϕ1 − ϕ2) l1h5 cos(ϕ1 − ϕ3)
l1h4 cos(ϕ1 − ϕ2) h2 l2h5 cos(ϕ2 − ϕ3)
l1h5 cos(ϕ1 − ϕ3) l2h5 cos(ϕ2 − ϕ3) h3



 ,

C =





0 l1h4 sin(ϕ1 − ϕ2)ϕ̇2 l1h5 sin(ϕ1 − ϕ3)ϕ̇3

−l1h4 sin(ϕ1 − ϕ2)ϕ̇1 0 l2h5 sin(ϕ2 − ϕ3)ϕ̇3

−l1h5 sin(ϕ1 − ϕ3)ϕ̇1 −l2h5 sin(ϕ2 − ϕ3)ϕ̇2 0



 ,

G =





−gh6 sin(ϕ1)
−gh4 sin(ϕ2)
−gh5 sin(ϕ3)



 ,

F =





−d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1)
−d2(ϕ̇2 − ϕ̇1) + d3(ϕ̇3 − ϕ̇2)

−d3(ϕ̇3 − ϕ̇2)



 ,

B =





h6 cos(ϕ1)
h4 cos(ϕ2)
h5 cos(ϕ3)



 ,

mit

h1 = J1 + a21m1 + l21(m2 +m3),

h2 = J2 + a22m2 + l22m3,

h3 = J3 + a23m3,

h4 = a2m2 + l2m3,

h5 = a3m3,

h6 = a1m1 + l1(m2 +m3).

Hierbei ist q =
[
ϕ1 ϕ2 ϕ3

]T
und uy = ÿ. Somit liegen die Bewegungsglei
hun-

gen des Dreifa
hpendels hier s
hon in der partiell zustandslinearisierten Form

vor.
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2.4 Zwei-Freiheitsgrade-Struktur

Die Zwei-Freiheitsgrade-Struktur zur Steuerung und Regelung von te
hnis
hen

Systemen ist ein etabliertes Verfahren, das vielfa
he Verwendung bei praktis
hen

Anwendungen �ndet [Kre99℄. Horowitz führt in [Hor63℄ eine Zwei-Freiheitsgrade-

Struktur ein, um in der Regelung eines Systems zwei Probleme glei
hzeitig zu

behandeln: Zum einen die Vorgabe einer gewüns
hten Systemantwort dur
h Vor-

steuerung und zum anderen die glei
hzeitige Regelung des Systems. Dur
h die

Nutzung der Zwei-Freiheitsgrade-Struktur ist es somit mögli
h, das Führungs-

und Störverhalten dur
h Vorsteuerung und Regelung unabhängig voneinander

zu entwerfen. Dies ges
hieht gewöhnli
h modellbasiert und o�ine, sodass die ge-

wüns
hte Trajektorie des Systems dur
h die Vorsteuerung vorgegeben ist und

dur
h die Verwendung eines geeigneten Reglers eingeregelt wird. Dur
h die mo-

dellbasierten Bere
hnungen ist es zusätzli
h mögli
h, Eingangs- und Zustandsbe-

s
hränkungen zu berü
ksi
htigen.

Bild 2-6 zeigt die in dieser Arbeit verwendete Zwei-Freiheitsgrade-Struktur für das

Pendelsystem. Dabei wird davon ausgegangen, dass sowohl die nominale Steue-

rung als au
h die zugehörige Trajektorie des Systems bekannt sind. Mit dieser

Steuerung wird das Pendel angesteuert, und der Verlauf der Gröÿen ϕ1, ϕ2, y
und ÿ wird mit Sensoren gemessen. Die fehlenden Zustandsgröÿen ϕ̇1, ϕ̇2 und ẏ
werden dur
h Di�erentiation zusätzli
h bere
hnet. Dadur
h, dass die nominale

Trajektorie bekannt ist, kann eine Abwei
hung dur
h einen Soll-Istwert-Verglei
h

sofort festgestellt werden. Der im Vorfeld ausgelegte Regler kann dann dur
h das

Ausregeln der Abwei
hung das System wieder auf die nominale Trajektorie brin-

gen. Wenn keine Abwei
hung zur nominalen Trajektorie auftritt, wird der Regler

dementspre
hend au
h ni
ht aktiv.

Es existieren zahlrei
he Entwurfsverfahren für die Regelung, aber nur wenige

zur Bere
hnung einer geeigneten Vorsteuerung. In den hier folgenden Abs
hnit-

ten wird daher nur kurz auf die eingesetzten Regelungsmethoden eingegangen.

In den weiteren Kapiteln der Arbeit geht es dann zu einem groÿen Teil darum,

mögli
hst optimale Trajektorien für die Vorsteuerung des Pendels zu bere
hnen.

Dabei wird darauf eingegangen, in wel
hem Sinne Trajektorien optimal sein kön-

nen und wie diese mittels optimaler Steuerung bestimmt werden können. Eine

weitere Idee ist es, au
h die inhärente Dynamik des Systems auszunutzen und

dadur
h sinnvolle Manöver für das Pendelsystem zu entwi
keln. Für die Umset-

zung dieser Ideen werden aktuelle mathematis
he Methoden aus den Berei
hen

der Optimalsteuerung und der dynamis
hen Systeme verwendet.
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Bild 2-6: S
hematis
he Darstellung der Zwei-Freiheitsgrade-Struktur

2.4.1 Simulationsmodell

Um sowohl die Steuerung als au
h die Regelung modellbasiert testen zu können,

wurde ein Simulationsmodell des gesamten Pendelprüfstands inklusive Aktor-

und Sensormodelle in Matlab/Simulink erstellt. Modellbasiertes Testen hat für

das Pendel den Vorteil, dass z. B. ungünstige Regelungsparameter dur
h eine Si-

mulation des Systemverhaltens sofort ausges
hlossen werden können. Dadur
h

wird verhindert, dass es am Prüfstand zu einem instabilen Systemverhalten (z. B.

Ans
hläge des Motors) kommt. Dur
h die Evaluation einer Kon�guration von

Steuerung und Regelung am Modell erhält man eine höhere Entwi
klungsreife

der Regelalgorithmen, und dies führt dazu, dass Tests am Prüfstand mit höherer

Wahrs
heinli
hkeit erfolgrei
h sind.

Um ein sol
hes Simulationsmodell zu erstellen, wird na
h der Zwei-Freiheitsgrade-

Struktur vorgegangen (siehe Bild 2-7). Die Bere
hnung der nominalen Steuerung

und Trajektorie wird in den folgenden Kapiteln und die Reglerauslegung in dem

folgenden Abs
hnitt 2.4.2 erläutert. Weiterhin ist es wi
htig, die Dynamik der

vers
hiedenen Bauteile des Prüfstandes zu berü
ksi
htigen. Zum Beispiel werden

am Prüfstand die Gröÿen ϕ1, ϕ2, y und ÿ gemessen und die fehlenden Zustands-

gröÿen ϕ̇1, ϕ̇2 und ẏ daraus dur
h Di�erentiation bestimmt. Daher müssen sowohl
der Motor, als au
h die Sensoren mit ihrem Verzögerungsverhalten und zusätzli-


hen E�ekten, die dur
h die Wandlung der Signale auftreten, modelliert werden.

Für die Pendeldynamik werden die Di�erentialglei
hungen verwendet, wie sie in

Abs
hnitt 2.3 hergeleitet wurden. Mit dem entwi
kelten Simulationsmodell erhält
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man somit die Mögli
hkeit, die Dynamik des Prüfstands re
ht genau na
hzubilden

und dadur
h vers
hiedene Manöver zu testen.

Bild 2-7: S
hematis
he Darstellung des Simulationsmodells mit der Zwei-Frei-

heitsgrade-Struktur

2.4.2 Reglerauslegung

Im folgenden Abs
hnitt soll der Regler für die Zwei-Freiheitsgrade-Regelung aus-

gelegt werden. Dazu werden Standardmethoden der linearen Regelungste
hnik

verwendet. Es werden zwei vers
hiedene Regelungsansätze betra
htet, die aber

von derselben Idee ausgehen, nämli
h lineare Methoden dazu zu nutzen, die Ab-

wei
hung des dynamis
hen Systems von der bere
hneten Solltrajektorie auszure-

geln.

Die Idee des hier verwendeten linear quadratis
hen Reglers (LQR) ist die Berü
k-

si
htigung von konträren Aspekten für die Regelung eines te
hnis
hen Systems.

Das Ziel der Reglerauslegung kann dadur
h bes
hrieben werden, dass eine Ruhe-

lage aus einem beliebigen Anfangszustand zum einen mögli
hst s
hnell und ohne

starke Oszillation, also mit einer hohen Regelgüte, und zum anderen mit mögli
hst

geringer Steuerenergie errei
ht werden soll. Um diese Ziele bei der Auslegung des

Reglers bea
hten zu können, müssen sie quantitativ gefasst werden. Dies ist dur
h

die Einführung eines allgemeinen quadratis
hen Gütemaÿes mögli
h:

J =

∫ tf

0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt. (2-14)
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Hierbei sind Q(t) und R(t) symmetris
he und positiv de�nite Matrizen. Dur
h

ihre Wahl lässt si
h eine Gewi
htung der Zustände x(t) und des Steuereingangs

u(t) im Gütemaÿ dur
hführen. Dur
h das Gütemaÿ werden also sowohl der Ver-

lauf des Zustandes, als au
h der Verbrau
h der Steuerenergie beurteilt. Ein in

diesem Sinne optimaler Regler k(t) minimiert das Gütemaÿ und führt damit zu

einem für das System optimalen Verlauf des Zustandes und der Steuerenergie.

Siehe hierzu au
h [Föl08℄ oder [KS72℄.

Gain-scheduling

Der Gain-s
heduling-Ansatz ist eine relativ einfa
he und etablierte Methode, um

eine Regelung für ein ni
htlineares System auszulegen, die auf linearen Ansätzen

basiert. Aus diesem Grund werden Gain-s
heduling-Regler bei vielen Anwendun-

gen verwendet. Für das Design eines sol
hen Reglers wird das ni
htlineare System

an vers
hiedenen Punkten, z. B. entlang einer Trajektorie linearisiert. Dadur
h

erhält man eine Menge von linearen Teilmodellen, für die jeweils ein Regler be-

stimmt werden kann. Für den Fall des Doppelpendels wird dieser Regler als LQ-

Regler ausgelegt. Während des Einsatzes in der Simulation bzw. am Prüfstand

wird dann derjenige Regler aktiviert, der der aktuellen Situation am besten ent-

spri
ht. Auf diese Weise ist es mögli
h, Methoden der linearen Systemtheorie für

die Auslegung eines Reglers für ein ni
htlineares System zu nutzen. Mehr Infor-

mationen über den Gain-s
heduling-Ansatz sind in [Ada09℄, [AA98℄, [LL00℄ und

[LL98℄ zu �nden.

Die Reglerauslegung wird im Folgenden beispielhaft anhand des Doppelpendels

bes
hrieben, ist aber analog auf das Dreifa
hpendel anwendbar. Dafür wird das

partiell zustandslinearisierte Modell (2-11)-(2-12) verwendet, um das System ẋ =

f(x, u) mit dem Zustandsvektor x =
[
ϕ1 ϕ2 y ϕ̇1 ϕ̇2 ẏ

]T
aufzustellen. Es

sei x∗ =
[
ϕ∗
1 ϕ∗

2 y∗ ϕ̇∗
1 ϕ̇∗

2 ẏ∗
]T

die nominale Trajektorie und u∗ die nomi-

nale Steuerung, die z .B. mittels Optimierungsmethoden bere
hnet werden kann.

Entlang dieser Trajektorie wird das System wie folgt linearisiert:

∆ẋ = A(ρ, t)∆x+B(ρ, t)∆u, (2-15)

mit ρ =
[
x∗T u∗

]T
und

A(ρ, t) =
∂f

∂x

∣
∣
∣
∣
(x∗(t),u∗(t))

, B(ρ, t) =
∂f

∂u

∣
∣
∣
∣
(x∗(t),u∗(t))

.

Dies führt zu einem zeitvarianten und parametrisierten linearen System mit dem

Parametervektor ρ, wel
her au
h s
heduling-Vektor genannt wird.
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Entspre
hend der Zwei-Freiheitsgrade-Struktur in Bild 2-6 kann die Regelung für

das Pendel dur
h

u(t) = u∗(t) + k(t)(x∗(t)− x(t))

bere
hnet werden, wobei k : [0, tf ] → R
6
eine Funktion der Reglerparameter ist.

k(t) wird dabei dur
h den Gain-s
heduling-Ansatz und einen LQR-Ansatz be-

stimmt. Dafür wird das linearisierte System (2-15) entlang der diskretenWerte des

Parametervektors ρi =
[
x∗(ti)T u∗(ti)

]T
ausgewertet, wobei ti ∈ {0, ξ, 2ξ, . . . ,

Mξ = tf}. Hier ist ξ die S
hrittweite des Zeitintervalls und damit die Diskreti-

sierung des Parametervektors [ρ0, . . . , ρM ] mit M ∈ N. Für jedes System

∆ẋ = Ai∆x+Bi∆u,

mit Ai = A(ρi, ti), Bi = B(ρi, ti) wird nun ein LQ-Regler entworfen, der das

folgende Kostenfunktional minimiert:

J(x(t), u(t)) =

∫ ∞

0

(
∆x(t)TQ∆x(t) + ∆u(t)2R

)
dt, (2-16)

wobei die Matrix Q ∈ R
6×6

symmetris
h und positiv de�nit und R ein positiver

Skalar ist. Die Lösung P i
der Ri

ati Glei
hung

(Ai)TP i + P iAi − P iBiR−1(Bi)TP i +Q = 0 (2-17)

führt zu den Reglerparametern

ki = R−1(Bi)TP i, i = 0, . . . ,M − 1.

Somit wurde hier jeweils ein Vektor konstanter Regelparameter mit Hilfe des

Ri

ati-Entwurfs bestimmt, der abs
hnittsweise entlang der Solltrajektorie de�-

niert ist. Während der Regelung des Systems wird immer der passende Regelpa-

rameter dur
h eine Aktualisierung des Reglers bestimmt

k(t) = ki, t ∈ [iξ, (i+ 1)ξ], i = 0, . . . ,M − 1, (2-18)

wobei zwis
hen den konstanten Parametern umges
haltet wird.

Kontinuierlicher LQ-Regler

Im Gegensatz zum gerade bes
hriebenen Ansatz mit abs
hnittsweise konstanten

Reglerparametern wird nun ein zeitkontinuierli
her Regler ausgelegt (siehe hierzu

au
h [KS72℄). Dazu wird au
h in diesem Fall das zeitvariante, linearisierte System

betra
htet:

∆ẋ = A(t)∆x +B(t)∆u, (2-19)
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mit

A(t) =
∂f

∂x

∣
∣
∣
∣
(x∗(t),u∗(t))

, B(t) =
∂f

∂u

∣
∣
∣
∣
(x∗(t),u∗(t))

.

Zusätzli
h wird das folgende Gütemaÿ de�niert

J(x(t), u(t)) =

∫ tf

0

(
∆x(t)TQ(t)∆x(t) + ∆u(t)TR(t)∆u(t)

)
dt

+∆x(tf )
TP1∆x(tf ),

(2-20)

wobei die zeitvarianten Gewi
htungsmatrizen Q(t) und R(t) symmetris
h und

positiv de�nit sind und die Matrix P1 symmetris
h und positiv semi-de�nit ist.

Dur
h den Term ∆x(tf )
TP1∆x(tf ) ist es hier mögli
h, eine Abwei
hung des Zu-

stands von der Ruhelage am Ende der Trajektorie besonders zu berü
ksi
htigen.

Es soll nun der optimale zeitkontinuierli
he Regler

u(t) = u∗(t) + k(t)(x∗(t)− x(t)),

gefunden werden, der das Gütemaÿ (2-20) minimiert.

Einen Ansatz zur Lösung dieses Minimierungsproblems bietet die Variationsre
h-

nung. Es ergibt si
h die sogenannte Matrix-Ri

ati-Di�erentialglei
hung

−Ṗ (t) = Q(t)− P (t)B(t)R−1(t)BT (t)P (t) + P (t)A(t) + AT (t)P (t) (2-21)

und der optimale Regler wird dann dur
h

k(t) = R−1(t)BT (t)P (t) (2-22)

bestimmt. Zusätzli
h besteht no
h die Nebenbedingung P (tf) = P1, die aus der

Wahl des Gütemaÿes (2-20) entsteht und die Anfangsbedingung zur Di�erenti-

alglei
hung (2-21) darstellt. Es kann dann au
h gezeigt werden, dass der Regler

(2-22) das Gütemaÿ (2-20) minimiert. Eine ausführli
he Herleitung des zeitvari-

anten LQ-Reglers und ein Beweis hierzu sind in [KS72℄ und [?℄ zu �nden.

Zwis
hen der hier zu lösenden Matrix-Ri

ati-Di�erentialglei
hung (2-21) und der

Ri

ati-Glei
hung (2-17) aus dem Gain-s
heduling-Ansatz besteht ein Zusammen-

hang, der si
h entspre
hend dem zu lösenden Reglerentwurfsproblem ergibt. Wenn

in dem Gütemaÿ ein unendli
hes Integrationsintervall (tf → ∞) und zeitli
h kon-

stante Gewi
htungen gewählt werden, wird aus der Ri

ati-Di�erentialglei
hung

die aufgeführte Ri

ati-Glei
hung (2-17) mit Ṗ = 0 und einer konstanten Lösung

P mit konstanten Regelungsparametern.
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Bemerkung (Numeris
he Lösung der Ri

ati-Glei
hung)

Die Matrix Ri

ati Glei
hung (2-21) mit der Randbedingung P (tf) = P1 wird

nun numeris
h gelöst. Dadur
h ergibt si
h für das Regelungsproblem des Systems

(2-19) ein kontinuierli
her Regler. Bei der Bere
hnung der Lösung kann ausge-

nutzt werden, dass die Matrix P (t) auf Grund der Eigens
haften von Q(t) und
R(t) und der Struktur der Ri

ati-Glei
hung ebenfalls symmetris
h sein muss.

Ein direkter Lösungsansatz ist es, die Glei
hung (2-21) als eine Menge von n2

ni
htlinearen Di�erentialglei
hungen erster Ordnung zu betra
hten, die simultan

gelöst werden müssen. Dazu lässt si
h jede numeris
he Standardte
hnik verwen-

den, wobei die Di�erentialglei
hungen in Rü
kwärtszeit, also für das Intervall

[tf , t0], gelöst werden müssen. Dies ist der Fall, da gezeigt werden konnte, dass

die Vorwärtsintegration der Ri

ati Glei
hung numeris
h instabil ist. Dur
h die

einfa
he Integration aller Di�erentialglei
hungen kann es aber dazu kommen, dass

die zuvor festgestellte Symmetrie der Lösung dur
h numeris
he Bere
hnungsfehler

zerstört wird. Dies kann dadur
h verhindert werden, dass die Symmetrie der Ma-

trix na
h jedem S
hritt dur
h das Ersetzen von P (t) dur
h 1
2
[P (t)+P T (t)] wieder

hergestellt wird. Eine weitere Alternative, die Symmetrie von P (t) zu erhalten, ist
es, die Glei
hung (2-21) auf ein Menge von

1
2
n(n+1) Di�erentialglei
hungen erster

Ordnung zu reduzieren, indem nur die obere bzw. untere Dreie
ksmatrix betra
h-

tet wird und die Ergebnisse für die andere Hälfte entspre
hend der Symmetrie

übernommen werden. Dies führt zusätzli
h zu einer kürzeren Bere
hnungszeit

der Lösung. Für die Implementierung wird in dieser Arbeit dieser zweite Ansatz

verwendet, so dass deutli
h weniger als n2
Di�erentialglei
hungen gelöst werden

müssen.

Vergleich der verschiedenen Regelungsverfahren

Im Folgenden werden Regelungsparameter für eine Aufs
hwungtrajektorie des

Doppelpendels bere
hnet, so dass der Endzustand des Systems die obere Ruhela-

ge ist. Dabei werden die Ergebnisse der Reglerauslegung für die beiden bes
hrie-

benen Verfahren vergli
hen. Für beide Regelungen werden die glei
hen Gewi
h-

tungsmatrizen

Q(t) =











500 0 0 0 0 0
0 500 0 0 0 0
0 0 1000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











und R(t) = 1 (2-23)

verwendet. In diesem Fall werden nur die Winkelauslenkung (Gewi
htung 500)
und die Wagenbewegung (Gewi
htung 1000) in der Gütefunktion berü
ksi
htigt.
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Dies führt dazu, dass ein Regler ausgelegt wird, der eine Abwei
hung in diesen

Zuständen besonders stark berü
ksi
htigt. Die Wahl der Gewi
htungen muss im-

mer abhängig vom System getro�en werden. Im Fall des Pendels ist es besonders

wi
htig, dass es mögli
hst keinen Fehler in der Winkellage gibt, da s
hon kleine

Abwei
hungen von der Solltrajektorie auf Grund des 
haotis
hen Verhaltens des

Systems zu groÿen Fehlern führen.
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Bild 2-8: Reglerkonstanten (Gain-s
heduling-Ansatz); re
hts: Auss
hnitt; für jede

Zustandsgröÿe gibt es einen skalaren Reglerparameter

Dur
h die Wahl der Gewi
htungsmatrix (2-23) für beide Regelungen ergeben si
h

in der oberen Ruhelage wie erwartet dieselben Parameter. In diesem Fall ist dies

der Vektor

k(tf) =
[
188.78 −342 31.62 −1.1 −54.35 32.42

]
.

Wenn der Regler mit der Gain-s
heduling-Methode ausgelegt wird, wird jeweils

nur das linearisierte Modell in einem Arbeitspunkt ausgewertet und für diesen ein

statis
her Regler ausgelegt. Informationen über den weiteren Verlauf der Trajek-

torie und die Änderung der Systemmatrix A(t) werden in diesem Entwurf ni
ht

berü
ksi
htigt. Dur
h die Linearisierung wird somit das Systemverhalten stark

vereinfa
ht. Wenn man si
h aber vom gewählten Arbeitspunkt entfernt, stimmt

die Approximation des Systems ni
ht mehr mit dem ni
htlinearen Ausgangssys-

tem überein, was zu groÿen Fehlern führt. Auÿerdem kommt es dazu, dass si
h die

Regelparameter bei unters
hiedli
hen Arbeitspunkten entlang der Solltrajektorie

stark ändern. Dies ist vor allem im Berei
h der s
hle
ht bzw. ni
ht steuerbaren

Positionen des Pendels (waagere
hte Pendelarme) der Fall, siehe au
h Bild 2-8.

Eine Regelung ist mit diesen Parametern ni
ht mögli
h, da der Regler unverhält-

nismäÿig stark in das Systemverhalten eingreift. Daher werden die Regelpara-

meter im Berei
h der starken Auss
hläge auf null gesetzt, der Regler wird also

ausges
haltet. Dadur
h ist es mögli
h, ein stabiles Systemverhalten zu erzielen.
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Bild 2-9: Reglerkonstanten (kontinuierli
her Ansatz); für jede Zustandsgröÿe gibt

es einen skalaren Reglerparameter

Im Gegensatz dazu wird beim kontinuierli
hen Regler ni
ht die statis
he, sondern

die Ri

ati-Di�erentialglei
hung gelöst. Bei stetiger re
hter Seite der Di�erenti-

alglei
hung (2-21) existiert na
h dem Existenzsatz von Peano eine Lösung des

Anfangswertproblems, die stetig di�erenzierbar ist. Die Stetigkeit der re
hten

Seite wird dur
h die kontinuierli
hen Systemmatrizen A(t) und B(t) gewährleis-
tet. (Dur
h Splineinterpolation entlang der diskreten Steuertrajektorie entstehen

stetige Systemmatrizen.) Die so entstandene Lösung (siehe Bild 2-9) hat deutli-


he Vorteile gegenüber der Lösung mit dem Gain-s
heduling-Ansatz. Die stetig

di�erenzierbaren Parameter sind für die Regelung des Systems geeigneter, da das

System ni
ht dur
h extreme Sprünge und sehr groÿe Regelungsparameter gestört

wird. Bei der Regelung des realen Systems werden bei Verwendung dieses Reglers

gute Ergebnisse erzielt.

Im Folgenden werden die Regelansätze anhand einer beispielhaften Steuerungs-

trajektorie für den Aufs
hwung des Doppelpendels innerhalb der Simulationsum-

gebung getestet. Zum Verglei
h wird in Bild 2-10 zunä
hst die Solltrajektorie

dargestellt. Deren Herleitung wird in den folgenden Kapiteln erläutert. Der erste

Test ist dann die Dur
hführung des Manövers für das ungeregelte System. Dazu

wird nur die bere
hnete Steuerung auf das Pendelmodell aufgebra
ht. Es ist zu

erkennen, dass das Pendel der Solltrajektorie gut folgt, aber ni
ht in der insta-

bilen oberen Ruhelage verbleibt. Als nä
hstes wird der Gain-s
heduling-Regler

verwendet, und zwar mit den Reglerparametern, wie sie in Bild 2-8 dargestellt

sind. Auf Grund der zu groÿen Verstärkungsfaktoren dieses Reglers wird das

Systemverhalten instabil, und das Pendel kann den Aufs
hwung ni
ht komplett

dur
hführen. Der Einsatz des zeitkontinuierli
hen Reglers dagegen führt dazu,

dass sowohl Aufs
hwung als au
h Stabilisierung in der oberen Ruhelage gelingen.
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Bild 2-10: Verglei
h vers
hiedener Regelungsansätze anhand einer Solltrajektorie;

es werden jeweils ϕ1 (blaue dur
hgezogene Linie), ϕ2 (grün gestri
helte

Linie) und y (rote Stri
hpunktlinie) dargestellt
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Dieser Regler kann somit prinzipiell ohne weitere Anpassungen am Prüfstand

verwendet werden.

Es besteht aber sowohl für den Gain-s
heduling-Ansatz als au
h für den kontinu-

ierli
hen Regler die Mögli
hkeit, das Systemverhalten dur
h manuelle Anpassung

des Reglers zu verbessern. Dazu können z. B. die zu groÿen Spitzen der Reglerpa-

rameter begrenzt oder auf Null gesetzt werden, oder der Regler kann grundsätzli
h

erst zu einem späteren Zeitpunkt einges
haltet werden. Sol
he Anpassungen müs-

sen aber für jede einzelne Trajektorie individuell gema
ht werden und lassen si
h

ni
ht verallgemeinern. Im letzten Test in Bild 2-10 wurde der Gain-s
heduling-

Regler erst im letzten Drittel der Trajektorie einges
haltet. Beim Verglei
h der

Regelgüte im Sinne von (2-14) konnte der manuell angepasste Regler einen Wert

von 18.83 errei
hen. Die Regelgüte bei Einsatz des kontinuierli
hen Reglers war

dagegen 211.5. Somit konnte ein sehr gutes Regelergebnis für das System errei
ht

werden.

Als Fazit kann festgestellt werden, dass der kontinuierli
he Regler für die Dur
h-

führung von Manövern am Pendel gut anwendbar ist. Dur
h eine manuelle An-

passung einer der beiden Regelansätze kann die Regelgüte aber no
h verbessert

werden.
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3 Optimale Steuerung mittels Discrete Mechanics
and Optimal Control

Ein Optimalsteuerungsproblem für ein me
hanis
hes System bes
hreibt die Auf-

gabe, das System von einem gegebenen Anfangszustand in einen gewüns
hten

Endzustand zu überführen. Dabei soll das Manöver so gewählt werden, dass eine

vorgegebene Zielfunktion minimiert wird, die Bewegungsglei
hungen erfüllt sind

und zusätzli
h weitere te
hnis
he Bes
hränkungen eingehalten werden. Beispiele

für diese Art von Problemen entstehen bei te
hnis
hen Systemen sehr häu�g. In

der Fahrzeugdynamik besteht z. B. die Frage, wie ein zeitoptimales Manöver auf

einer Teststre
ke bes
hrieben werden kann [RNH10℄, [KT11℄. In der Raumfahrt-

te
hnik müssen energieoptimale Trajektorien für Satelliten bere
hnet werden, da-

mit diese trotz minimaler Brennsto�menge ihr Ziel errei
hen können [MOBM08℄.

Für Roboter oder biome
hanis
he Systeme ist ein Ziel der Fors
hung, mens
hli-


he Bewegungen bes
hreiben zu können, und Ergebnisse zeigen, dass Lösungen

eines Optimalsteuerungsproblems den natürli
hen Bewegungen des Mens
hen gut

entspre
hen können [MSL11℄, [OBT09℄.

In dieser Arbeit werden die Methoden der optimalen Steuerung dazu verwen-

det, Manöver für das Doppelpendel auf einem Wagen zu bere
hnen. Jede Lösung

dient als nominale Trajektorie und Steuerung, wie es in der Zwei-Freiheitsgrade-

Struktur (siehe Abs
hnitt 2.4) hergeleitet wurde. Es werden optimale Bewegungen

bezügli
h der Manöverzeit oder des Energieverbrau
hs bestimmt. Dies hat den

Vorteil, dass man ni
ht nur eine zulässige Lösung des Steuerungsproblems erhält,

sondern auÿerdem die Optimalität bezügli
h eines ausgewählten Zieles gegeben

ist.

Optimalsteuerungsprobleme können im Allgemeinen nur numeris
h gelöst wer-

den, da sie für eine analytis
he Lösung zu komplex sind. Es existieren diver-

se Methoden, um das kontinuierli
he Optimalsteuerungsproblem in ein endli
h-

dimensionales diskretes Optimierungsproblem umzuwandeln. Hier wird die Me-

thode Dis
rete Me
hani
s and Optimal Control (DMOC) verwendet, wel
he erst-

mals in [JMOB05℄ bes
hrieben wurde. Diese Methode basiert auf der direkten

Diskretisierung der variationellen Struktur eines me
hanis
hen Systems. Im Kon-

text von Variationsintegratoren (siehe [MW01℄) führt die direkte Diskretisierung

des Lagrange-d'Alembert Prinzips zu einem strukturerhaltenden Zeits
hrittver-

fahren, wel
hes dazu genutzt wird, die Glei
hheitsnebenbedingungen für das Op-

timierungsproblem herzuleiten. Das entstehende diskrete Problem kann dann mit
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Standardte
hniken der ni
htlinearen Optimierung, wie zum Beispiel der Sequen-

tiellen Quadratis
hen Programmierung (SQP) gelöst werden.

In diesem Kapitel werden Lösungsmethoden für Optimalsteueurungsprobleme

vorgestellt. Zunä
hst widmet si
h 3.1 der allgemeinen Formulierung eines Op-

timalsteuerungsproblems und der konkreten Herleitung für das Mehrfa
hpendel.

In 3.2 wird zum einen das Pontryagins
he Maximumprinzip vorgestellt, mit dem

si
h optimale Steuerungen für einfa
he dynamis
he Systeme au
h kontinuierli
h

bestimmen lassen. Zum anderen werden numeris
he Standardlösungsverfahren,

wie S
hieÿverfahren und Kollokation bes
hrieben. Ans
hlieÿend wird in 3.3 die

in dieser Arbeit verwendete DMOC Methode vorgestellt. Es wird zusätzli
h auf

den Unters
hied zu den Standardmethoden, die speziellen Eigens
haften und die

aktuelle Fors
hung mit DMOC eingegangen.

3.1 Das Optimalsteuerungsproblem

Es sei x ∈ R
n
der Zustandsvektor eines dynamis
hen Systems. Die Steuerung

wird als nu-dimensionale Vektorfunktion u(t) ∈ U abhängig von der Zeit de�niert.

Die Steuerungen, die in U liegen, heiÿen zulässige Steuerungen. Das Verhalten

des Systems kann dur
h eine Menge von n gewöhnli
hen Di�erentialglei
hungen

1. Ordnung modelliert werden oder in vektorwertiger Form

ẋ(t) = f(x(t), u(t), t), t ∈ I = [t0, tf ], (3-1)

wobei x : I → R
n, n ∈ N und u : I → R

nu , nu ∈ N die Zustands- bzw. Steuerva-

riablen darstellen. Die gewöhnli
hen Di�erentialglei
hungen des Systems werden

dur
h die Funktion f : Rn × R
nu × I → R

n
dargestellt.

Das betra
htete System kann zusätzli
h dur
h weitere Nebenbedingungen der

Dimension nc in der Form

0 ≤ c(x(t), u(t), t), t ∈ I (3-2)

mit c : Rn × R
nu × I → R

nc , nc ≥ 1 bes
hränkt werden. Die Funktion

0 = r(x(tf))

mit r : Rn → R
nr , nr ≥ 0 gibt dann die Nebenbedingungen am Endpunkt der

Trajektorie an.

Dieses Steuerungsproblem wird nun zu einem Optimalsteuerungsproblem, wenn

man das System vom Zustand x0 zum Zeitpunkt t0 zum Zustand xf zum Zeit-

punkt tf so steuern mö
hte, dass eine gegebene Zielfunktion

J(x, u, tf) =

∫ tf

t0

C(x(t), u(t), t)dt+ κ(x(tf ), tf) (3-3)
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minimiert wird. Hierbei ist C : Rn × R
nu × I → R eine Funktion, die abhängig

vom Zustand x(t) und der Steuerung u(t) eine Trajektorie in gewüns
hter Weise

beurteilt und κ : Rn × I → R eine Funktion, die zusätzli
h Eigens
haften des

Endpunkts in die Zielfunktion einbringt. Auÿerdem soll in vielen Fällen die Dauer

des Manövers minimiert werden können, sodass hierfür eine freie Endzeit gewählt

wird und diese ebenfalls in die Zielfunktion eingeht.

Das gesamte Optimalsteuerungsproblem stellt si
h somit wie folgt dar:

min
x,u,tf

J(x, u, tf) :=

∫ tf

t0

C(x(t), u(t), t)dt+ κ(x(tf ), tf), (3-4)

unter den Nebenbedingungen

ẋ(t) = f(x(t), u(t), t), (3-5)

x(t0) = x0, (3-6)

0 ≤ c(x(t), u(t), t), (3-7)

0 = r(x(tf )). (3-8)

Es wird angenommen, dass zulässige Steuerungen existieren, die das System von

x0 na
h xf überführen, und in dieser Teilmenge der zulässigen Steuerungen ist

diejenige die optimale Steuerung u∗, wel
he J minimiert. Im Folgenden wird an-

genommen, dass eine sol
he optimale Steuerung existiert.

3.1.1 Herleitung des Optimalsteuerungsproblems für das
Mehrfachpendel

Für das Doppelpendel auf einem Wagen wird im Folgenden das Optimalsteue-

rungsproblem für die Bere
hnung von optimalen Manövern aufgestellt. Die Her-

leitung verläuft für das Dreifa
hpendel analog.

Der erste S
hritt dazu ist die Bestimmung einer geeigneten Zielfunktion. Bei der

Steuerung von realen Systemen bestehen in vielen Fällen zwei konträre Ziele. Zum

einen soll die Zeit für den Übergang z. B. zwis
hen zwei vers
hiedenen Ruhelagen

mögli
hst kurz sein, um eine zeitoptimale Lösung zu erhalten. Zum anderen ist

oftmals au
h der Steueraufwand zu berü
ksi
htigen, um ein mögli
hst energie-

e�zientes Manöver realisieren zu können. Daher ist es bei der Bere
hnung der

Lösung wi
htig, beide Aspekte zu berü
ksi
htigen, so dass si
h z. B. die folgende

Zielfunktion ergibt:

J(x, u, tf) = a ·

∫ tf

t0

u(t)2dt+ b · tf , (3-9)
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wobei für die Gewi
htungsfaktoren a und b gilt: a+ b = 1. Wenn z.B. a im Ver-

glei
h zu b vergröÿert wird, erhält man eine langsamere, aber günstigere Lösung

und entspre
hend gilt dies au
h anders herum. Eine sol
he Optimierung mittels

einer gewi
hteten Summe ist ein Verfahren aus dem Gebiet der Mehrzielopti-

mierung und wird dort häu�g als relativ einfa
h anwendbares Standardverfahren

verwendet. Diese Methode wird in Abs
hnitt 4.2 ausführli
her behandelt. Bei der

Wahl von a und b muss die Skalierung der zwei Terme in der Zielfunktion auf die

glei
he Gröÿenordnung zusätzli
h berü
ksi
htigt werden.

Um die Anfangs- und Endbedingungen des Optimalsteuerungsproblems zu be-

stimmen, muss zunä
hst festgelegt werden, wel
hes Manöver dur
hgeführt werden

soll. Ein interessantes und anspru
hsvolles Manöver ist dabei der Aufs
hwung des

Pendels aus der stabilen unteren Ruhelage in die instabile obere Ruhelage. Dies

kann dann dur
h den Anfangszustand x0 =
[
−π −π 0 0 0 0

]
und den End-

zustand xf =
[
0 0 0 0 0 0

]
bes
hrieben werden, wobei der Zustandsvektor

des Systems x =
[
ϕ1 ϕ2 y ϕ̇1 ϕ̇2 ẏ

]
ist, siehe au
h Bild 2-5.

Als weitere Nebenbedingung bestehen die Di�erentialglei
hungen, die das Sys-

temverhalten bes
hreiben und die in (2-1) hergeleitet wurden.

Für ein reales System ist es zusätzli
h wi
htig, dass die bestehenden te
hni-

s
hen Bes
hränkungen berü
ksi
htigt werden. So sind der Verfahrweg des Wa-

gens und die maximale Ges
hwindigkeit und Bes
hleunigung bes
hränkt (siehe

Tabelle 3-1). Diese Bes
hränkungen können aber dur
h Boxs
hranken in das Op-

timalsteuerungsproblem aufgenommen werden.

Tabelle 3-1: Te
hnis
he Bes
hränkungen des Motors

Verfahrweg |y| ≤ 0.6m
Ges
hwindigkeit |ẏ| ≤ 6 m

s

Bes
hleunigung |ÿ| ≤ 100 m
s2

Das gesamte Optimalsteuerungsproblem für das Doppelpendel auf einem Wagen

ergibt si
h somit als

min
x,u,tf

J(x, u, tf) = a ·

∫ tf

t0

u(t)2dt+ b · tf ,
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unter den Nebenbedingungen

x0 =
[
−π −π 0 0 0 0

]
, (3-10a)

xf =
[
0 0 0 0 0 0

]
, (3-10b)

M(q) · q̈ + C(q, q̇) · q̇ + G(q) = F(q̇) + B · u, (3-10
)

lzb ≤





q(t)
q̇(t)
q̈(t)



 ≤ uzb , t ∈ [t0, tf ], (3-10d)

lub ≤ u(t) ≤ uub , t ∈ [t0, tf ], (3-10e)

wobei q =
[
ϕ1 ϕ2 y

]
ist. Die Wahl des Endpunkts xf sorgt dafür, dass der Wa-

gen wieder seine Mittelposition einnimmt und die Pendelarme keine Übers
hläge

dur
hführen. Die Glei
hung (3-10
) bes
hreibt die Dynamik, wie sie in Abs
hnitt

2.3.1 hergeleitet wurde. Auÿerdem bes
hreiben lzb und u
z
b die unteren und oberen

Grenzen der Zustandsgröÿen und ihrer Ableitung (Position, Ges
hwindigkeit und

Bes
hleunigung) und lub und u
u
b diejenigen für den Eingang.

3.2 Lösungsmethoden für das Optimalsteuerungsproblem

Für die Lösung eines Optimalsteuerungsproblems gibt es vielfältige Ansätze. In

einem ersten S
hritt lassen si
h diese in analytis
he und numeris
he Verfahren

unterteilen. Dur
h das Pontryagins
he Maximumprinzip ergeben si
h notwendige

Bedingungen für eine global optimale Lösung des Optimalsteuerungsproblems.

Für einfa
he Systeme lässt si
h dur
h Auswertung dieser Bedingungen eine ana-

lytis
he Lösung bestimmen. Im Allgemeinen ist dies aber ni
ht mögli
h, und es

werden numeris
he Verfahren verwendet, die das Optimalsteuerungsproblem dis-

kretisieren, so dass das entstehende ni
htlineare Programm (NLP) numeris
h ge-

löst werden kann. Beispiele für die Diskretisierungsverfahren sind S
hieÿverfahren

und Kollokation (siehe Abs
hnitt 3.2.2). In dieser Arbeit wird dazu die sogenannte

DMOC Methode verwendet (siehe Abs
hnitt 3.3.2), da diese Methode besonde-

re Vorteile besitzt. Ans
hlieÿend kann das NLP z.B. mit SQP-Verfahren (siehe

Abs
hnitt 4.1) gelöst werden.

3.2.1 Das Pontryaginsche Maximumprinzip

Wie bei der Bere
hnung von Extremalpunkten von skalaren Funktionen gibt es

bei der Bere
hnung von optimalen Steuerungen ebenfalls notwendige und hinrei-


hende Bedingungen für ein Optimum. Eine notwendige Bedingung für die Opti-

malität einer Lösung kann mit Hilfe der Variationsre
hnung und den Lagrange-

Multiplikatoren bestimmt werden und wird als Pontryagins
hes Maximumprinzip
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bezei
hnet. (In der Literatur ist man
hmal au
h das analog herzuleitende Mini-

mumprinzip aufgeführt.) Eine Steuerung u∗(t), die die Bedingungen des Pontryag-
ins
hen Maximumprinzips erfüllt, ist ein Kandidat für eine global optimale Lö-

sung des Optialsteuerungsproblems. Die hier gewählte Darstellung folgt [Gee07℄.

Satz 3.1 (Das Pontryagins
he Maximumprinzip)

Zunä
hst wird die sogenannte Hamilton-Funktion H : Rn×U ×R
n× [t0, tf ] → R

wie folgt de�niert:

H(x(t), u(t), λ(t), t) = λT (t)f(x(t), u(t), t)− C(x(t), u(t), t).

Hierbei ist λ(t) = [λ1(t), . . . , λn(t)]
T
der Vektor der sogenannten adjungierten

Variablen.

Das Maximumprinzip wird hier für den Fall dargestellt, dass die zulässigen Steue-

rungen dur
h die Menge U = {u(t) ∈ R
nu |0 ≤ cu(u(t), t), t ∈ [t0, tf ]} bes
hränkt

sind, mit cu(t) : R
nu × [t0, tf ] → R

nb
und nb der Dimension der vorliegenden

Bes
hränkungen.

Es sei u∗(t) ∈ R
nu

eine zulässige Steuerung mit dem zugehörigen Pfad x∗(t) ∈ R
n
,

wel
he das System vom Zustand x0 zur Zeit t0 zum Zustand xf zum Zeitpunkt

tf überführt.

Falls die Steuerung u∗(t) die optimale Steuerung ist, dann existiert eine stetig

di�erenzierbare Funktion λ(t) : [t0, tf ] → R
n
und ein Vektor α ∈ R

nr
so dass die

folgenden Bedingungen erfüllt sind:

(i)

ẋ∗(t) = ∇λH(x∗(t), u∗(t), λ(t), t), (3-11a)

x∗(t0) = x0, (3-11b)

x∗(tf ) = xf , (3-11
)

λ̇(t) = ∇xH(x∗(t), u∗(t), λ(t), t) (3-11d)

= −∇xC(x
∗(t), u∗(t), t)− [∇xf(x

∗(t), u∗(t), t)]T λ(t), (3-11e)

λ(tf ) = ∇xκ(x
∗(tf))−∇xr(x

∗(tf ))α. (3-11f)

(ii) Für alle t ∈ [t0, tf ] besitzt die Hamilton-Funktion H(x∗(t), u(t), λ(t), t) ein
globales Maximum bei u∗ ∈ U . Das heiÿt

H(x∗(t), u(t), λ(t), t) ≤ H(x∗(t), u∗(t), λ(t), t) (3-12)

für u ∈ U .

Dur
h die Verwendung von weiteren Bedingungen kann das Pontryagins
he Maxi-

mumprinzip au
h an andere Optimalsteuerungsprobleme angepasst werden. So ist
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es mögli
h au
h Systeme mit freiem oder festem Endzustand, bes
hränktem End-

zustand oder Zustandsbes
hränkungen zu behandeln. Siehe hierzu au
h [Gee07℄,

[BBB

+
01℄ oder [Pin93℄. Ein Beweis des Maximumprinzips ist z. B. in [PBGM62℄

zu �nden.

3.2.2 Numerische Methoden

Zur numeris
hen Lösung des Optimalsteuerungsproblems gibt es zwei vers
hie-

dene Ansätze: die sogenannten indirekten und die direkten Methoden. Die hier

aufgeführte Darstellung der numeris
hen Verfahren folgt [BBB

+
01℄.

Bei den indirekten Methoden werden zuerst die kontinuierli
hen Glei
hungen des

Pontryagins
hen Maximumprinzips (3-11a)-(3-11f) und (3-12) für das Optimal-

steuerungsproblem hergeleitet. Diese bilden dann ein komplexes Mehrpunktrand-

wertproblem, wel
hes dann numeris
h gelöst werden kann.

Die Grundidee zur Lösung eines optimalen Steuerproblems mit direkten Metho-

den ist es, das originale unendli
h dimensionale Problem in ein endli
h dimensio-

nales ni
htlineares Programmierproblem (NLP) umzus
hreiben und es ans
hlie-

ÿend numeris
h zu lösen. Im Folgenden werden zunä
hst das direkte Einfa
h- bzw.

Mehrfa
hs
hieÿverfahren und die direkte Kollokation näher ausgeführt.

Schießverfahren

Bei dieser Methode zur Lösung eines Optimalsteuerungsproblems lassen si
h

Einfa
h- und Mehrfa
hs
hieÿverfahren unters
heiden. Die Grundidee ist aber bei

beiden Verfahren glei
h.

Bei der Methode des Einfa
hs
hieÿverfahrens (siehe z. B. [Kra85℄) wird eine zum

Problem passende Ansatzfunktion für die kontinuierli
he Steuerung u(t) gewählt,
die von einem endli
h dimensionalen Parametervektor p ∈ R

np
abhängt. Dann

wird das aus dem Optimalsteuerungsproblem entstehende Anfangswertproblem

betra
htet, dessen Lösung si
h dur
h die Variation des Parameters p beein�ussen
lässt. Dur
h Vorwärtsintegration und Variation von p wird derjenige Parameter-

vektor ermittelt, der in der optimalen Lösung des Steuerungsproblems resultiert.

Zusätzli
he Unglei
hheitsnebenbedingungen lassen si
h z. B. entlang eines diskre-

ten Zeitgitters t0 < · · · < tN = tf überprüfen. Dadur
h entsteht das folgende

NLP:

Minimierep∈Rnp J̃(p) :=

∫ tf

t0

C(x̃(t, p), ũ(t, p), t)dt+ κ(x̃(tf , p), tf),

unter den Nebenbedingungen

0 ≤ c̃i(p) := c(x̃(ti, p), ũ(ti, p), ti), i = 0, . . . , N,

0 = r̃(p) := r(x̃(tN , p)).
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Beim Mehrfa
hs
hieÿverfahren (siehe [Pli81℄, [BP84℄) beginnt die Umformulie-

rung des Optimalsteuerungsproblems aus (3-4)-(3-8) in ein NLP, ähnli
h wie beim

Einfa
hs
hieÿverfahren dur
h eine Parametrisierung der kontinuierli
hen Steue-

rung. Zunä
hst wird aber das Zeitintervall I = [t0, tf ] in N Teilintervalle mit den

Stützstellen t0 < t1 < · · · < tN = tf unterteilt. Dann wird die Steuerung dur
h

eine stü
kweise Darstellung parametrisiert

ũi(t, pi) für t ∈ [ti, ti+1],

mit N lokalen Steuerparametervektoren p0, p1, . . . , pN−1; pi ∈ R
np
.

In dem ents
heidenden zweiten S
hritt werden nun N + 1 zusätzli
he Vektoren

s0, s1, . . . , sN eingeführt, wel
he von derselben Dimension n wie die Zustandsva-

riablen sind (si ∈ R
n
). Sie werden als Knotenwerte des Mehrfa
hs
hieÿverfahrens

bezei
hnet. Alle bis auf den letzten zusätzli
hen Vektor dienen als Anfangswerte

für N unabhängige Anfangswertprobleme:

ẋi(t) = f(xi(t), ũi(t, pi), t),

xi(ti) = si.

Die Lösungen dieser Probleme sindN unabhängige Trajektorien xi(t) auf [ti, ti+1],
wel
he nur von si und pi abhängen.

Die entkoppelten Anfangswertprobleme sind dur
h Übereinstimmungsbedingun-

gen miteinander verbunden und diese fordern, dass jeder Knotenwert glei
h dem

Endwert der vorhergehenden Trajektorie ist:

si+1 = x̃i(ti+1, si, pi), i = 0, . . . , N − 1. (3-13)

Der erste Knotenwert des Mehrfa
hs
hieÿverfahrens muss glei
h dem Anfangswert

x0 des Steuerungsproblems sein:

s0 = x0. (3-14)

Zusammen heben die neuen Nebenbedingungen (3-13) und (3-14) die zusätzli-


hen Freiheitsgrade, die dur
h die Einführung der Parameter si, i = 0, . . . , N
entstanden sind, auf.

Die Unglei
hheitsnebenbedingungen können wiederum entlang des Zeitgitters be-

rü
ksi
htigt werden:

0 ≤ c̃i(si, pi) := c(si, ũi(ti, pi), ti), i = 0, . . . , N.

Zusammenfassend ergibt si
h das folgende endli
h dimensionale NLP dur
h die

Parametrisierung mit dem direkten Mehrfa
hs
hieÿverfahren:

Minimieres0,...,sN ,p0,...,pN−1

N−1∑

i=0

J̃i(si, pi) + κ̃(sN),
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unter den Nebenbedingungen

si+1 = x̃i(ti+1, si, pi), i = 0, . . . , N − 1,

s0 = x0,

0 ≤ c̃i(si, pi),

0 = r(sN).

Kollokation

Beim Kollokationsverfahren werden sowohl der Zustand als au
h die Steuerung

dur
h polynomielle Ansatzfunktionen parametrisiert. Dabei ist die Grundidee,

dass die Bewegungsglei
hungen des Systems an N Kollokationspunkten auf dem

Zeitgitter t0 < t1 < · · · < tN+1 = tf erfüllt sind.

Die Zustands- und Steuervariablen werden dazu dur
h stü
kweise de�nierte Funk-

tionen x̃(t, s) und ũ(t, p) auf dem Zeitgitter approximiert. Hierbei sind s und p
die Paramtervektoren. Innerhalb jedes Kollokationsintervalls [ti, ti+1[, 0 ≤ i ≤ N
werden diese Funktionen als parameterabhängige Polynome der Ordnung k, l ∈ N

gewählt:

x̃(t, s)|[ti,ti+1[ := x̃i(t, si) := πXi (t, si) ∈ Πn
k ,

ũ(t, p)|[ti,ti+1[ := ũi(t, pi) := πUi (t, pi) ∈ Πnc

l .

Hierbei kennzei
hnet Πν
µ den Raum der Polynome bis zum Grad µmit ν-dimensio-

nalen Vektoren. Die Koe�zienten der Polynome werden in den Vektoren

s := (sT0 , . . . , s
T
N)

T ∈ R
N ·(k+1)·n, si ∈ R

(k+1)·n, i = 0, . . . , N,

p := (pT0 , . . . , p
T
N)

T ∈ R
N ·(l+1)·nc , pi ∈ R

(l+1)·nc , i = 0, . . . , N

erfasst.

Übereinstimmungsbedingungen von der Form

πi(t
−
i+1, ·) = πi+1(t

+
i+1, ·), i = 0, . . . , N − 1

müssen an den Grenzen der Teilintervalle eingeführt werden, um die Stetigkeit

der Approximationsfunktionen auf [t0, tf ] zu erzwingen. Zusätzli
h kann Di�eren-
zierbarkeit höherer Ordnung dur
h die Bedingungen

dγ

dtγ
πi(t

−
i+1, ·) =

dγ

dtγ
πi+1(t

+
i+1, ·),

{
γ = 1, . . . , K
i = 0, . . . , N − 1

eingeführt werden, wobei K die benötigte Ordnung der Di�erenzierbarkeit dar-

stellt.

Um ein ni
htlineares Optimierungsproblem formulieren zu können, werden nun

die Systemglei
hungen und die Unglei
hheitsbedingungen explizit diskretisiert:
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(i) Die Systemglei
hungen (3-1) müssen nur an den Kollokationspunkten tiµ,
µ = 1, . . . ,M innerhalb der Teilintervalle [ti, ti+1[, i = 0, . . . , N − 1 und

[tN , tN+1], erfüllt sein:

ti ≤ ti0 < · · · < tiM < ti+1, i = 0, . . . , N − 1,

tN ≤ tN0 < · · · < tNM ≤ tN+1.

(ii) Die Unglei
hheitsbedingungen c werden auf einem anderen Gitter in [t0, tf ]
mit L+ 1 Stützstellen ausgewertet:

t0 ≤ tc1 < · · · < tcL ≤ tf .

Zusammenfassend ergibt si
h somit das folgende diskretisierte Optimalsteuerungs-

problem dur
h die Kollokationsmethode:

min
s,p

J̃(s, p),

unter den ni
htlinearen Nebenbedingungen

f(x̃(til, s), ũ(til, p), til)− ˙̃x(til, s) = 0,

{
i = 0, . . . , N,
l = 0, . . . ,M,

c(x̃(tcβ , s), ũ(t
c
β , p), t

c
β) ≥ 0, β = 1, . . . , L,

x̃(t0, s)− x0 = 0,

r(x̃(tf , s)) = 0.

Falls die Lösung zusätzli
h na
h den Zustands- und Steuervariablen stetig di�e-

renzierbar sein soll, müssen die folgenden Übereinstimmungsbedingungen eben-

falls erfüllt sein:

dγ

dtγ
πXi (t

−
i+1, si)−

dγ

dtγ
πXi+1(t

+
i+1, si+1) = 0,

{
γ = 1, . . . , Ks,
i = 0, . . . , N − 1,

dγ

dtγ
πUi (t

−
i+1, pi)−

dγ

dtγ
πUi+1(t

+
i+1, pi+1) = 0,

{
γ = 1, . . . , Kc,
i = 0, . . . , N − 1,

wobei Ks ≤ k die Ordnung der Di�erenzierbarkeit na
h den Zustandsvariablen

und Kc ≤ l die Ordnung der Di�erenzierbarkeit na
h den Steuervariablen ist.
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3.3 Discrete Mechanics and Optimal Control

In diesem Abs
hnitt wird die Methode Dis
rete Me
hani
s and Optimal Con-

trol (DMOC) zur Diskretisierung eines Optimalsteuerungsproblems vorgestellt.

Zunä
hst werden in Abs
hnitt 3.3.1 einige Grundlagen zur Variationsme
hanik

vorgestellt. Ans
hlieÿend wird in Abs
hnitt 3.3.2 der spezielle Diskretisierungs-

ansatz von DMOC selbst vorgestellt, und in Abs
hnitt 3.3.3 wird bes
hrieben,

was DMOC von anderen Standardverfahren zur optimalen Steuerung unters
hei-

det. Die dabei verwendeten mathematis
hen Grundlagen aus den Berei
hen der

Di�erentialgeometrie, der Herleitung von Euler-Lagrange-Glei
hungen und dem

Lagrange-d'Alembert Prinzip, die für das Verständnis dieses Abs
hnitts hilfrei
h

sind, werden im Anhang A dargestellt. Zusätzli
he Informationen zur DMOC Me-

thode sind in den Quellen [OBJM11℄, [OB08℄, [JMOB05℄ und [MW01℄ zu �nden,

die au
h in dieser Arbeit als Grundlage für die Darstellung der DMOC Methode

dienen.

Ans
hlieÿend wird in Abs
hnitt 3.3.4 auf das diskrete Optimalsteuerungsproblem

für das Mehrfa
hpendel eingegangen. Auÿerdem wird in Abs
hnitt 3.3.5 bes
hrie-

ben, wel
he besonderen Eigens
haften das entstehende diskrete Verfahren besitzt.

In Abs
hnitt 3.3.6 wird ein kurzer Überbli
k über die aktuelle Fors
hungsarbeit

mit der DMOC Methode gegeben und dadur
h gezeigt, in wel
hen Berei
hen sie

angewendet werden kann.

3.3.1 Einführung in Variationsmechanik

Für das bessere Verständnis der Herleitung der DMOC Methode, die auf ei-

nem Variationsprinzip beruht, wird zunä
hst eine kurze Einführung in dieses

Themengebiet gegeben. Dabei wird darauf eingegangen, wie die Euler-Lagrange-

Glei
hungen bzw. ein diskretes Zeits
hrittverfahren mit Hilfe von Variationsprin-

zipien hergeleitet werden kann [MW01℄. Für weitere Informationen zum Hinter-

grund der Variationsre
hnung siehe [Pin93℄ und [Kie10℄.

Es wird die Lagrange-Funktion L(q, q̇) = 1
2
q̇TMq̇ − V (q) eines me
hanis
hen

Systems betra
htet, wie sie au
h im Anhang A.2 hergeleitet werden. Dabei istM
eine positiv de�nite Matrix und V (q) die potentielle Energie des Systems. Es wer-
den die generalisierten Koordinaten q = [q0, . . . , qN ] für die Systembes
hreibung
gewählt. Der Standardansatz in der Lagrangeme
hanik betra
htet das Wirkungs-

integral, also das Integral von L entlang der Kurve q(t) und bere
hnet dann eine
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Variation δ, wobei die Endpunkte von δq(t) fest gewählt werden. Dadur
h erhält

man

δ

∫ tf

0

L(q(t), q̇(t))dt =

∫ tf

0

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇

]

dt

=

∫ tf

0

[
∂L

∂q
· δq −

d

dt

∂L

∂q̇
· δq

]

dt+

[
∂L

∂q̇
· δq

]tf

0

=

∫ tf

0

[
∂L

∂q
−

d

dt

∂L

∂q̇

]

· δq dt,

wobei hier partielle Integration und die Information δq(0) = δq(tf) = 0 verwen-

det wird. Bei dem Variationsansatz wird nun gefordert, dass die Variation des

Wirkungsintegrals null für alle Variationen δq sein muss. Dadur
h ergeben si
h

die bekannten Euler-Lagrange-Glei
hungen

∂L

∂q
−

d

dt

∂L

∂q̇
= 0.

Es ist allgemein bekannt, dass die Euler-Lagrange-Glei
hungen spezielle Erhal-

tungseigens
haften besitzen. Zum Beispiel ist der Fluss symplektis
h (siehe au
h

Abs
hnitt 3.3.5). Bei der Betra
htung von diskreter Lagrangeme
hanik ist es dann

ein Ziel eine analoge diskrete Herleitung mittels Variationsprinzipien dur
hzufüh-

ren, um die vorhandenen Erhaltungseigens
haften au
h beim diskreten Integrati-

onss
hema beizubehalten. Anstatt Position q und Ges
hwindigkeit q̇ werden nun

zwei diskrete Positionen q0 und q1 zusammen mit dem Zeits
hritt h betra
htet.

Dabei stellen q0 ≈ q(0) und q1 ≈ q(h) zwei Punkte auf einer Kurve dar, die dur
h
den Zeits
hritt h getrennt sind.

Ausgehend von diesem Ansatz wird eine diskrete Lagrange-Funktion Ld(q0, q1)
bestimmt, die eine Approximation des Wirkungsintegrals zwis
hen den Punkten

q0 und q1 darstellt. Um dies zu verdeutli
hen kann z. B. eine einfa
he Approxima-

tion des Integrals

∫ tf
0
Ldt dur
h die Re
hte
k-Regel verwendet werden. Hierbei

wird die Länge des Intervalls mit dem Wert des Integranden multipliziert, wobei

der Ges
hwindigkeitsvektor dur
h (q1 − q0)/h ersetzt wird:

Ld(q0, q1) = h

[(
q1 − q0
h

)T

M

(
q1 − q0
h

)

− V (q0)

]

.

Es kann weiterführend eine diskrete Kurve von Punkten {qk}
N
k=0, N ∈ N be-

tra
htet werden und daraus das diskrete Wirkungsintegral bestimmt werden. Dies

kann dur
h die Summation der diskreten Lagrange-Funktion für jedes bena
hbar-

te Paar der diskreten Punkte dur
hgeführt werden. Entspre
hend dem Vorgehen
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im kontinuierli
hen Fall, wird nun die Variation dieser Summe betra
htet und es

werden wiederum die Punkte q0 und qN fest gewählt. Dadur
h ergibt si
h

δ

N−1∑

k=0

Ld(qk, qk+1)

=
N−1∑

k=0

[D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1]

=

N−1∑

k=1

[D2Ld(qk−1, qk) +D1Ld(qk, qk+1)] · δqk,

wobei hier die diskrete partielle Integration verwendet wird, was eine Umstellung

der Summationsterme bedeutet, und wiederum δq0 = δqN = 0 an den Randpunk-
ten der Kurve gilt. Auÿerdem bes
hreibt D1 die Ableitung na
h der ersten und

D2 die Ableitung na
h der zweiten Komponente der diskreten Lagrange-Funktion.

Es wird nun erneut gefordert, dass die Variation des Wirkungsintegrals für jede

Variation δqk null ist, sodass si
h die diskreten Euler-Lagrange-Glei
hungen er-

geben:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0,

die für k = 1, . . . , N − 1 erfüllt sein müssen.

Ausgehend von den Anfangsbedingungen (q0, q1) de�nieren die diskreten Euler-

Lagrange-Glei
hungen eine rekursive Vors
hrift für die Bere
hnung der gesam-

ten Sequenz {qk}
N
k=0. Somit kann dur
h diese Glei
hungen eine Abbildung FLd

:
(qk, qk+1) 7→ (qk+1, qk+2) bestimmt werden, die als Eins
hritt-Integrator für das,
den kontinuierli
hen Euler-Lagrange-Glei
hungen zugrunde liegende, System dient.

3.3.2 Die DMOC Methode

Im Folgenden werden me
hanis
he Systeme betra
htet, die si
h auf einer soge-

nannten Kon�gurationsmannigfaltigkeit Q bewegen. Um den vollständigen Zu-

standsraum eines me
hanis
hen Systems zu erhalten, wird in jedem Punkt q ∈ Q
der Tangentialraum TqQ betra
htet, der die mögli
hen Ges
hwindigkeitsvekto-

ren im Punkte q bes
hreibt. Die Vereinigung aller Tangentialräume bes
hreibt

dann das Tangentialbündel TQ zur Kon�gurationsmannigfaltigkeit Q. Hierdur
h
können alle mögli
hen Zustände (q, q̇) ∈ TQ bes
hrieben werden, siehe au
h bei-

spielhaft Bild 3-1 und Anhang A.1.

Es ist nun das folgende Optimalsteuerungsproblem gegeben: Betra
htet wird ein

me
hanis
hes System, wel
hes si
h in dem Kon�gurationsraum Q auf einer Kurve
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Q

q

Tangentialvektoren

v ∈ TqQ

mögli
he

Bild 3-1: Kon�gurationsmannigfaltigkeit Q und Tangentialvektoren v ∈ TqQ im

Punkt q ∈ Q

q(t) ∈ Q in einem Zeitintervall [t0 = 0, tf ] von dem Zustand (q0, q̇0) ∈ TQ in den

Zustand (qtf , q̇tf ) ∈ TQ bewegt. Das me
hanis
he System be�ndet si
h unter dem

Ein�uss von generalisierten Kräften F(q(t), q̇(t), u(t)) ∈ T ∗
q(t)Q, die so gewählt

werden sollen, dass die Kostenfunktion

J(q, q̇, u, tf) =

∫ tf

0

C(q(t), q̇(t), u(t))dt+ κ(q(tf ), tf) (3-15)

minimiert wird. Es sind dabei T ∗
q(t)Q der Kotangentialraum

1

und u(t) ∈ U die

Steuerung des me
hanis
hen Systems, wobei U der Raum der zulässigen Steue-

rungen darstellt.

Zur glei
hen Zeit muss die Kon�guration q(t) des Systems das Lagrange-d'Alem-
bert-Prinzip erfüllen, wel
hes fordert, dass

δ

∫ tf

0

L(q(t), q̇(t))dt+

∫ tf

0

F(q(t), q̇(t), u(t)) · δq(t)dt = 0 (3-16)

für alle Variationen δq ∈ Tq(t)Q mit δq(0) = δq(tf) = 0 gilt, wobei L : TQ → R

die Lagrange-Funktion des me
hanis
hen Systems ist.

Somit kann dieses Problem abstrakt als Optimierungsproblem mit Zwangsbedin-

gungen gesehen werden, denn man versu
ht die Funktion

J(q, q̇, u, tf)

bezügli
h der Parameter q, q̇, u und tf zu minimieren, wobei die zusätzli
hen

Zwangsbedingungen

L(q, q̇, f) = 0

1Der Kotangentialraum besteht aus allen linearen Abbildungen von TqQ nach R.
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bestehen. Hierbei ist die Funktion L eine abstrakte Form für die Euler-Lagrange-

Glei
hungen, wel
he die Bewegungsglei
hungen des me
hanis
hen Systems be-

s
hreiben.

Die Diskretisierung

Die Idee der DMOC Methode ist es, die Variationsstruktur direkt auszunutzen,

ohne zuerst die Bewegungsglei
hungen des Systems, also die Euler-Lagrange-

Glei
hungen, herzuleiten. Dur
h den Gebrau
h einer globalen Diskretisierung des

Zustands und der Steuerung erhält man, dur
h das diskrete Lagrange-d'Alembert-

Prinzip, Glei
hheitsbedingungen für das resultierende endli
h dimensionale ni
ht-

lineare Optimierungsproblem. Dieses kann dann z. B. dur
h ein SQP-Verfahren

gelöst werden.

Dazu wird das Optimalsteuerungsproblem aus (3-15) und (3-16) in ein endli
h-

dimensionales Optimierungsproblem mit Nebenbedingungen umgeformt. Im Fol-

genden werden die dazu nötigen Diskretisierungss
hritte bes
hrieben.

Der Zustandsraum TQ des Systems wird auf Basis von Lagekoordinaten dur
h

den diskreten Zustandsraum Q × Q und das Diskretisierungsgitter wird dur
h

∆t = {tk = kh | k = 0, . . . , N}, Nh = tf de�niert, wobei N ∈ N die Anzahl der

Knotenpunkte ist und h die gewählte S
hrittweite. Dabei enthält dann der diskre-
te Zustandsraum Q×Q die glei
hen Informationen wie TQ kontinuierli
hen Fall.

Der Pfad q : [t0 = 0, tf ] → Q wird dur
h einen diskreten Pfad qd : {tk}
N
k=0 → Q er-

setzt, wobei dann qk = qd(kh) als eine Approximation von q(kh) angesehen wird,

siehe au
h Bild 3-2. Analog dazu wird der Pfad der Steuerung u : [t0 = 0, tf ] → U
ebenfalls dur
h einen diskreten Pfad ersetzt. Zu diesem Zwe
k wird ein verfei-

nertes Gitter ∆t̃ eingeführt, wel
hes dur
h eine Menge von Steuerungspunkten

0 ≤ c1 < · · · < cs ≤ 1 als ∆t̃ = {tkl = tk + clh | k = 0, . . . , N − 1, l = 1, . . . , s}
erzeugt wird. Dur
h diese Notation wird der diskrete Pfad dur
h ud : ∆t̃ → U
de�niert. Die dazwis
hen liegenden Werte der Steuerung uk auf [tk, tk+1] werden
dur
h uk = (uk1, . . . , uks) ∈ Us

als diejenigen Steuerparameter de�niert, die das

System von qk = qd(tk) na
h qk+1 = qd(tk+1) überführen, wobei ukl = ud(tkl) für
l ∈ {1, . . . , s} gilt.

Das diskrete Lagrange-d’Alembert-Prinzip

Basierend auf dieser Diskretisierung wird das Integral in (3-16) auf dem Zeitin-

tervall [kh, (k + 1)h] dur
h eine diskrete Lagrange-Funktion Ld : Q × Q → R,

Ld(qk, qk+1) ≈

∫ (k+1)h

kh

L(q(t), q̇(t))dt, (3-17)
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(q0, q̇0)

(qtf , q̇tf )

(q0, q̇0)

(qtf , q̇tf )

Kräfte

diskrete Kräfte

q(t), t ∈ [0, tf ]
qd = {qk}

N
k=0

Bild 3-2: Diskretisierung des Pfades q(t)

approximiert, und ebenso wird die virtuelle Arbeit dur
h einen Ausdru
k der

Form

N−1∑

k=0

f−
d (qk, qk+1, uk)·δqk+f

+
d (qk, qk+1, uk)·δqk+1 ≈

∫ tf

0

F(q(t), q̇(t), u(t))·δq(t)dt

approximiert, wobei

f±
d (qk, qk+1, uk) := f±

k ∈ T ∗Q

als linke bzw. re
hte diskrete Kräfte bezei
hnet werden und von den diskreten

Werten (qk, qk+1, uk) abhängig sind, siehe au
h Bild 3-3.

qk−1

qk

qk+1

uk−1 uk

f−
k−1

f−
k

f+
k

f+
k−1

Bild 3-3: Linke und re
hte diskrete Kräfte

Die diskrete Version des Lagrange-d'Alembert-Prinzips (3-16) verlangt diskrete

Pfade {qk}
N
k=0 zu �nden, sodass für alle Variationen {δqk}

N
k=0 mit δq0 = δqN = 0

gilt, dass gilt

δ

N−1∑

k=0

Ld(qk, qk+1) +

N−1∑

k=0

(f−
k · δqk + f+

k · δqk+1) = 0.

Das diskrete Lagrange-d'Alembert-Prinzip ist äquivalent zu dem System

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0,
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für k = 1, . . . , N − 1, und dies sind die diskreten Euler-Lagrange-Glei
hungen

mit Kräften. Hierbei ist D1 die Ableitung der diskreten Lagrange-Funktion na
h

der ersten Komponente bzw. D2 die Ableitung na
h der zweiten Komponente. In

Anhang A.2 wird eine kurze Herleitung zur Idee einer Variation, der Herleitung

der Euler-Lagrange-Glei
hungen und dem Lagrange-d'Alembert-Prinzip gegeben

und die diskreten Euler-Lagrange-Glei
hungen wurden s
hon in Abs
hnitt 3.3.1

hergeleitet.

Diskrete Euler-Lagrange-Glei
hungen werden zur Simulation von me
hanis
hen

Systemen verwendet, und sol
he Verfahren werden als Variationsintegratoren

bezei
hnet. Dur
h die Verwendung dieser Glei
hungen besitzt DMOC spezielle

Eigens
haften, auf die in Abs
hnitt 3.3.5 eingegangen wird. Weitere ausführli-


he Bes
hreibungen und Analysen zum Thema Variationsintegratoren werden in

[MW01℄ gegeben.

Diskrete Kostenfunktion

Die Kostenfunktion (3-15) wird nun im Zeitintervall [kh, (k + 1)h] dur
h

Cd(qk, qk+1, uk) ≈

∫ (k+1)h

kh

C(q(t), q̇(t), u(t))dt,

approximiert, und dies führt zu der diskreten Kostenfunktion

Jd(qd, fd, tf) =

N−1∑

k=0

Cd(qk, qk+1, uk) + κ(qN , tf).

Randbedingungen

S
hlieÿli
h müssen die Randbedingungen q(0) = q0, q̇(0) = q̇0 und q(tf ) =
qtf , q̇(tf ) = q̇tf in die diskrete Bes
hreibung einbezogen werden. Zu diesem Zwe
k

wird die Darstellung in Q × Q mit einer Darstellung in TQ verbunden und

zwar dur
h die diskrete Legendre-Transformation F
f+Ld : Q × Q → T ∗Q und

F
f−Ld : Q×Q→ T ∗Q für Systeme mit Kräften, die wie folgt de�niert ist

F
f+Ld : (qk−1, qk) 7→ (qk, pk), (3-18)

pk = D2Ld(qk−1, qk) + f+
d (qk−1, qk, uk−1) und (3-19)

F
f−Ld : (qk−1, qk) 7→ (qk−1, pk−1), (3-20)

pk−1 = −D1Ld(qk−1, qk)− f−
d (qk−1, qk, uk−1), (3-21)

wobei pk der diskrete Impuls ist. Diese besondere Form der Legendre-Transforma-

tion kann [MW01℄ entnommen werden.
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Der zusätzli
he Gebrau
h der gewöhnli
hen Legendre-Transformation FL : TQ→
T ∗Q

FL : (q, q̇) 7→ (q, p) = (q,D2L(q, q̇)),

führt zu den zwei folgenden diskreten Randbedingungen

D2L(q
0, q̇0) +D1Ld(q0, q1) + f−

d (q0, q1, u0) = 0,

−D2L(q
tf , q̇tf ) +D2Ld(qN−1, qN) + f+

d (qN−1, qN , uN−1) = 0

auf Basis von Lage q und Ges
hwindigkeit q̇ des Systems. Aus diesen Glei
hungen
lassen si
h dur
h die Legendre-Transformation au
h die folgenden Randbedingun-

gen für den Impuls bestimmen:

p0 = −D1Ld(q0, q1)−f
−
d (q0, q1, u0), pN = D2Ld(qN−1, qN)+f

+
d (qN−1, qN , uN−1).

In Anhang A.3.2 wird diese Herleitung mit Hilfe der diskreten Legendre-Transfor-

mation ausführli
her erläutert.

Das diskrete Optimalsteuerungsproblem mit Zwangsbedingu ngen

Zusammengefasst bekommt man na
h Dur
hführung der obigen Diskretisierungs-

s
hritte das folgende ni
htlineare Optimierungsproblem mit Zwangsbedingungen:

Minimiereqd,fd,tf Jd(qd, fd, tf ) =

N−1∑

k=0

Cd(qk, qk+1, uk) + κ(qN , tf )

unter den Zwangsbedingungen

(q0, p0) = (q0,−D1Ld(q0, q1)−f
−
d (q0, q1, u0)), (3-22a)

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0, (3-22b)

(qtf , ptf ) = (qN , D2Ld(qN−1, qN)+f
+
d (qN−1, qN , uN−1)), (3-22
)

für k = 1, . . . , N − 1. Hierbei sind p0 und ptf der Impuls an den Randwerten, der

aus den gegebenen Anfangs- und Endzuständen (q0, q̇0) und (qtf , q̇tf ) dur
h die

Legendre-Transformation bestimmt wird.

Implementierung der Optimierung mit DMOC

Als ein guter Kompromiss zwis
hen der Exaktheit und der E�zienz der Lösung

werden die diskrete Kostenfunktion Cd, die diskrete Lagrange-Funktion Ld und
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die diskreten Kräfte mit der Mittelpunktregel und konstanten Steuerungspara-

metern auf jedem Zeitintervall approximiert. Hierbei werden l = 1 und c1 = 1
2

gewählt:

Cd(qk, qk+1, uk) = hC

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk

)

,

Ld(qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)

,

f−
k = f+

k =
h

2
F

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk

)

.

Die Mittelpunktregel wird in Bild 3-4 links s
hematis
h dargestellt. Auf der re
h-

ten Seite ist die Auswertung der diskreten Steuerung mit den gewählten Kon-

stanten bestimmt.

t

f

tk tk+1
h

f(qk+1)

f(qk)

t
tk tk+1

h

u

uk = ud(tk +
1
2
h)

f( qk+qk+1

2
)

Bild 3-4: Links: S
hematis
he Darstellung der Mittelpunktregel; re
hts: diskrete

Steuerung

Die Approximation des Integrals in (3-17) mit der Mittelpunktregel stellt nur eine

Mögli
hkeit dar. Andere Quadraturformeln sind an dieser Stelle ebenfalls denk-

bar. Dabei führen Quadraturformeln höherer Ordnung zu exakteren numeris
hen

Ergebnissen. Für einen Überbli
k zu unters
hiedli
hen Quadraturverfahren siehe

z. B. [SK11℄.

Als Fazit lässt si
h festhalten, dass die Glei
hungen (3-22a) bis (3-22
) ein ni
ht-

lineares Optimierungsproblem mit Nebenbedingungen bes
hreiben, wel
hes mit

Standardoptimierungsmethoden gelöst werden kann (siehe hierzu au
h Abs
hnitt

4.1 und Abs
hnitt 4.3).
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3.3.3 Vergleich mit Standardmethoden

Beim Verglei
h von Standardmethoden zur optimalen Steuerung mit DMOC er-

geben si
h die ents
heidenden Unters
hiede im Vorgehen dur
h die Reihenfolge

der Variation und Diskretisierung für die Herleitung der notwendigen Optimali-

tätsbedingungen. Dies ist in Bild 3-5 dargestellt: Der linke Ast des Diagramms

basiert allein auf der Variation auf kontinuierli
her Ebene (Variation, Variation,

Diskretisierung), wie es bei indirekten Methoden dur
hgeführt wird. Im mittleren

Ast ist eine Mis
hung der Variation auf kontinuierli
her und diskreter Ebene zu

erkennen (Variation, Diskretisierung). Dies entspri
ht dem Vorgehen bei direk-

ten Methoden, wie z. B. dem Kollokationsverfahren oder dem S
hieÿverfahren.

Im re
hten Ast wird dann das Vorgehen bei der DMOC Methode dargestellt,

bei der die Variation nur auf diskreter Ebene dur
hgeführt wird (Diskretisierung,

diskrete Variation). Es handelt si
h ebenfalls um eine direkte Methode für die

Herleitung eines Optimalsteuerungsproblems, da zunä
hst die diskreten Bewe-

gungsglei
hungen aufgestellt werden und dann das resultierende NLP gelöst wird.

Der hauptsä
hli
he Unters
hied zwis
hen DMOC und anderen direkten Metho-

den besteht darin, dass ni
ht die Di�erentialglei
hungen, die aus dem Lagrange-

d'Alembert-Prinzip hervorgehen, diskretisiert werden, sondern stattdessen s
hon

ein S
hritt früher diskretisiert wird. Und zwar werden bei DMOC die Glei
hun-

gen für das Optimierungsproblem dur
h die Variation des diskreten Lagrange-

d'Alembert-Prinzips direkt hergeleitet. Dies führt zu vorteilhaften Eigens
haften

dieser Methode, die in Abs
hnitt 3.3.5 genauer dargestellt werden, siehe hierzu

au
h [OB08℄.

Weiterführend können au
h andere Unters
hiede zwis
hen S
hieÿverfahren, Kol-

lokation und DMOC als Methoden für die Lösung von Optimalsteuerungspro-

blemen herausgestellt werden. Hier werden Argumente dafür gegeben, warum in

dieser Arbeit DMOC ausgewählt wurde.

Beim Einfa
hs
hieÿverfahren muss in jedem S
hritt des SQP-Verfahrens zur Opti-

mierung ein numeris
hes Anfangswertproblem (AWP) gelöst werden. Da dies auf

dem gesamten Intervall ges
hieht, ist die Gefahr von groÿen Integrationsfehlern

ho
h, und die Integration muss mit hoher Genauigkeit dur
hgeführt werden. Au-

ÿerdem ist die Untersu
hung von stark instabilen Systemen s
hwierig, da diese ei-

ne starke Abhängigkeit vom Anfangswert besitzen. Dadur
h ist das AWP s
hle
ht

konditioniert, und es ist s
hwer, eine Lösung des Optimalsteuerungsproblems zu

�nden. Dafür ist das NLP, das dur
h das Einfa
hs
hieÿverfahren entsteht, klein,

da wenige Optimierungsvariablen und Nebenbedingungen vorliegen. Auÿerdem

sind die Bewegungsglei
hungen des Systems während des Optimierungsprozesses

immer erfüllt, da in jedem S
hritt eine Vorwärtsintegration dur
hgeführt wird.

Wenn bei einem zeitkritis
hen Problem die Optimierung vorzeitig abgebro
hen

werden muss, führt dies dazu, dass sehr wahrs
heinli
h die geforderten Rand-



Optimale Steuerung mittels Dis
rete Me
hani
s and Optimal Control 59

Zielfunktional +

Lagrange-d'Alembert-Prinzip

Zielfunktional +

Euler-Lagrange Glei
hungen

diskretes Zielfunktional +

diskretes Lagrange-

d'Alembert-Prinzip

Pontryagin's
hes

Maximumprinzip

diskrete Zielfunktion

+ diskretisierte

Di�erentialglei
hung

diskrete Zielfunktion +

diskrete Euler-Lagrange

Glei
hungen

diskretisiertes

Pontryagins
hes

Maximumprinzip
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Variation Diskretisierung

Variation Diskretisierung

diskrete

Variation

Diskretisierung

indirekt

direkt DMOC

Bild 3-5: Optimale Steuerung für me
hanis
he Systeme: Reihenfolge der Varia-

tion und Diskretisierung für die Herleitung der notwendigen Optimali-

tätsbedingungen (vgl. [OBJM11℄)
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bedingungen ni
ht erfüllt sind, si
h aber eine physikalis
h sinnvolle Trajektorie

ergibt.

Beim Mehrfa
hs
hieÿverfahren besteht eine ähnli
he Vorgehensweise wie beim

Einfa
hs
hieÿverfahren, auÿer dass hier das gesamte Intervall diskretisiert wird

und damit auf jedem Teilintervall die unterlagerten AWP gelöst werden müssen.

Somit ist der numeris
he Aufwand zur Lösung des AWP insgesamt ebenso groÿ

wie beim Einfa
hs
hieÿverfahren, die Stetigkeit der Lösung ist dagegen nur bei

erfolgrei
her Optimierung gegeben. Insgesamt ist das NLP dur
h das Mehrfa
h-

s
hieÿverfahren gröÿer als beim Einfa
hs
hieÿverfahren, da mehr Optimierungs-

variablen und Nebenbedingungen (z. B. für die Stetigkeit der Lösung) vorliegen.

Dur
h Ausnutzung der besonderen Struktur kann aber mit diesem Verfahren so-

gar eine s
hnellere Konvergenz errei
ht werden.

Bei der Kollokation sind im Verglei
h zu den S
hieÿverfahren potentiell no
h

s
hnellere Bere
hnungen mögli
h. Dies liegt daran, dass hier die Simulation der

Di�enrentialglei
hungen und die Optimierung der Steuerung simultan ablaufen.

Sowohl der Zustand als au
h die Steuerung werden dur
h die Ansatzfunktio-

nen mit Parametern diskretisiert und gehen zusammen in die Optimierung ein.

Dadur
h wird das NLP komplex, da es viele Optimierungsvariablen (Parame-

ter für die Ansatzfunktionen) und Nebenbedingungen besitzt. Kollokation und

Mehrfa
hs
hieÿverfahren sind in der Lage, stark instabile Systeme auf Grund der

Diskretisierung des Zeitintervalls deutli
h besser zu lösen als das Einfa
hs
hieÿ-

verfahren.

Au
h bei der DMOC Methode werden Kon�guration (Position) und Steuerung

diskretisiert, so dass au
h hier eine simultane Lösung des Optimalsteuerungspro-

blems mögli
h ist. Dies führt zu einer s
hnellen Re
henzeit bei der Lösung. Da

aber die Diskretisierung nur auf Basis der Kon�guration (Q × Q) statt�ndet,

ist das NLP dur
h DMOC weniger komplex als beim Kollokationsverfahren. Die

entspre
henden Ges
hwindigkeiten und Impulse werden ans
hlieÿend mittels der

diskreten Legendre-Transformation rekonstruiert.

In [OB08℄ wurde anhand eines Beispielsystems das vielverspre
hendste Standard-

verfahren � das Kollokationsverfahren � mit der DMOC Methode bezügli
h ih-

rer Leistungsfähigkeit vergli
hen. Dabei wurde ein Kollokationsverfahren zweiter

Ordnung und DMOC mit Mittelpunktregel (ebenfalls zweiter Ordnung) verwen-

det. Die ermittelten Konvergenzraten waren dabei in beiden Fällen O(h2), ent-
spre
hend der gewählten Ordnung. Bei der Untersu
hung der Re
henzeiten für

die Bere
hnung einer optimalen Trajektorie wird deutli
h, dass DMOC s
hneller

konvergiert als die Kollokationsmethode. Hierfür wurde das betra
htete System

mit unters
hiedli
her Anzahl an Diskretisierungspunkten N ∈ N untersu
ht. Die-

ser Vorteil in der Re
henzeit basiert wiederum auf der besonderen Diskretisierung
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auf Q× Q, was zu weniger Variablen im Optimierungsproblem und weniger Ne-

benbedingungen führt.

Zusammenfassend vereint DMOC viele einzelne vorteilhafte numeris
he Eigen-

s
haften der anderen Verfahren. Es ist eine simultane Lösung des Problems mög-

li
h, auf Grund der besonderen Diskretisierung ist die Re
henzeit deutli
h geringer

als bei den Standardverfahren und das NLP ist weniger komplex als z. B. beim

Kollokationsverfahren. Auÿerdem besitzt DMOC weitere spezielle Eigens
haften,

auf die in Abs
hnitt 3.3.5 no
h genauer eingegangen wird.

3.3.4 Herleitung des diskreten Optimalsteuerungsproblem s mit DMOC
für das Mehrfachpendel

Das diskrete Optimalsteuerungsproblem für das Mehrfa
hpendel wird aus dem

kontinuierli
hen Optimalsteuerungsproblem in Abs
hnitt 3.1.1 hergeleitet. Dazu

wird die DMOC Methode im Folgenden auf das Modell des Doppelpendels auf

einem Wagen angewendet.

Für das Doppelpendel mit Wagen ist der Kon�gurationsraum Q ⊆ R
3
, der Kon-

�gurationsvektor q =
[
ϕ1 ϕ2 y

]
und uF die Kraft, die vom Motor aufgebra
ht

wird. Diese Gröÿen werden entspre
hend Abs
hnitt 3.3.2 diskretisiert, sodass si
h

der diskrete Kon�gurationsvektor qk = qd(tk) für k = 0, . . . , N und der diskre-

te Steuerungsvektor uk = ud(tk) für k = 0, . . . , N − 1 Knotenpunkte ergibt. Die

Anfangs- und Endpunkte werden für den Aufs
hwung aus der unteren in die insta-

bile obere Ruhelage als q0 =
[
−π −π 0

]
, q̇0 = 0 und qtf =

[
0 0 0

]
, q̇tf = 0

gewählt.

Die Zielfunktion (3-9) wird mit Hilfe der diskreten Steuerung approximiert:

Jd(qd, ud, tf ) = a · h
N−1∑

k=0

u2k + b · tf ,

wiederummit a+b = 1. Bei Verwendung dieser Zielfunktion lässt si
h dur
h Varia-
tion der Gewi
htungsparameter a und b eine Mehrzieloptimierung dur
hführen.

Für die Optimierung muss darauf gea
htet werden, dass die beiden Terme der

Zielfunktion in der glei
hen Gröÿenordnung liegen. Diese Skalierung kann au
h

mit Hilfe der Gewi
htungsparameter a und b dur
hgeführt werden.

Dur
h die DMOC Methode werden die Bewegungsglei
hungen dur
h einen va-

riationellen Ansatz diskretisiert. Hierbei ergeben si
h die allgemeinen diskreten

Glei
hungen (3-22a) - (3-22
) mit der kontinuierli
hen Lagrange-Funktion

L : TQ→ R, L(q, q̇) = T (q, q̇)− V (q),
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wie sie aus Abs
hnitt 2.3.1 bekannt ist. Diese wird entspre
hend (3-17) dur
h die

diskrete Lagrange-Funktion Ld : Q×Q→ R approximiert.

Zusätzli
h bestehen au
h weiterhin Bes
hränkungen an die diskreten Zustände

und die Steuerung:

lbqk ≤ qk ≤ ubqk, k = 0, . . . , N,

lbuk ≤ uk ≤ ubuk , k = 0, . . . , N − 1.

Auÿer diesen direkten Bes
hränkungen an die diskreten Lagekoordinaten und

diskreten Steuerungen müssen Bedingungen an Ges
hwindigkeit und Bes
hleuni-

gung aufgestellt werden, die entspre
hend der gewählten diskreten Kon�guration

dur
h qk, k = 0, . . . , N bes
hrieben werden müssen. Aufgrund der feinen Diskre-

tisierung der Lagekoordinaten kann angenommen werden, dass die Ges
hwindig-

keit und Bes
hleunigung mittels Di�erenzenquotienten genau genug approximiert

werden können, was der gewählten Mittelpunktregel entspri
ht. Prinzipiell ist es

au
h mögli
h dur
h eine komplexere Re
hnung mit Hilfe der diskreten Legendre-

Transformation die Ges
hwindigkeiten exakt herzuleiten, siehe hierzu au
h An-

hang A.3.3. Mit dem Di�erenzenquotient werden

q̇k =
qk+1 − qk

h
, für k = 0, . . . , N − 1,

q̈k =
q̇k+1 − q̇k

h
, für k = 0, . . . , N − 2

de�niert und die gewüns
hten Unglei
hheitsnebenbedingungen können dur
h

q̇k − q̇max ≤ 0, für k = 0, . . . , N − 1,

q̈k − q̈max ≤ 0, für k = 0, . . . , N − 2

bes
hrieben werden. Ein weiterer Grund für die Verwendung des Di�erenzen-

quotienten ist, dass für die Werte q̇max und q̈max in der Optimierung ni
ht die

wirkli
hen maximalen Werte verwendet werden sollten. Für den späteren Reg-

lereingri� muss eine Reserve in den physikalis
hen Begrenzungen berü
ksi
htigt

werden.

Somit ergibt si
h als gesamtes Optimalsteuerungsproblem:

Minimiereqd,ud,tf Jd(qd, ud, tf) = a · h
N−1∑

k=0

u2k + b · tf (3-23)
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mit a + b = 1, unter den Nebenbedingungen

(q0, p0) =
([
−π −π 0

]
, −D1Ld(q0, q1)− f−

0

)
, (3-24a)

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0, k = 1, . . . , N − 1 (3-24b)

(qtf , ptf ) =
([
0 0 0

]
, D2Ld(qN−1, qN) + f+

N−1

)
, (3-24
)

q̇k − q̇max,≤ 0 k = 0, . . . , N − 1, (3-24d)

q̈k − q̈max,≤ 0 k = 0, . . . , N − 2, (3-24e)

lbqk ≤ qk ≤ ubqk, k = 0, . . . , N, (3-24f)

lbuk ≤ uk ≤ ubuk , k = 0, . . . , N − 1. (3-24g)

Die Glei
hungen (3-24a) - (3-24
) müssen entspre
hend der hier gezeigten Vor-

s
hrift für das Doppelpendel auf einemWagen bestimmt werden, um dann im Op-

timierungsalgorithmus umgesetzt werden zu können. Hierauf wird im Anhang A.3

genauer eingegangen.

3.3.5 Spezielle Eigenschaften der DMOC Methode

Aufgrund der speziellen Diskretisierungsform besitzt DMOC gegenüber ande-

ren numeris
hen Bere
hnungsverfahren Vorteile bei der Behandlung me
hani-

s
her Systeme. Dieser Ansatz beruht auf Konzepten der diskreten Me
hanik und

führt auf eine spezielle Diskretisierung der Systemglei
hungen, wel
he auf Varia-

tionsintegratoren basiert, siehe hierzu au
h [MW01℄. Daher besitzt das diskrete

Optimalsteuerungsproblem ebenfalls spezielle Eigens
haften die von den Variati-

onsintegratoren sozusagen �geerbt� werden. Bestimmte Strukturen, wie z. B. der

Impuls, das Drehmoment oder die symplektis
he Form (siehe hierzu [MR05℄) der

numeris
hen Lösung bleiben erhalten. Bei Systemen mit äuÿeren Steuerungskräf-

ten kann der Ein�uss dieser exakt abgebildet werden, was zu einer genaueren

Approximation führt. Im Folgenden wird anhand des mathematis
hen Pendels �

einem Hamilton System � gezeigt, wel
he Eigens
haften Variationsintegratoren

besitzen, und ans
hlieÿend wird auf ihre Bedeutung im Kontext von Optimal-

steuerungsproblemen eingegangen.

Variationsintegratoren am mathematischen Pendel

Es wird im Folgenden das mathematis
he Pendel (Masse m = 1, masseloser Stab
mit Länge l = 1, Gravitation g = 1) betra
htet, wel
hes einen Freiheitsgrad

besitzt und dur
h die Lagrange-Funktion

L(q, q̇) =
1

2
ml2q̇2 −mgl(1− cos q)
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bes
hrieben werden kann. Es ergibt si
h die Bewegungsglei
hung

q̈ = −
g

l
sin q.

Es werden drei vers
hiedene numeris
he Integrationsverfahren an diesem System

getestet:

(i) Explizite Euler-Methode: yk+1 = yk + hf(yk), mit yk =
[
qk q̇k

]T
.

(ii) Implizite Euler-Methode: yk+1 = yk + hf(yk+1), mit yk =
[
qk q̇k

]T
.

(iii) Symplektis
he Euler-Methode (ebenfalls ein implizites Verfahren):

[
qk+1

q̇k+1

]

=

[
qk
q̇k

]

+ h · f(qk, q̇k+1).
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Bild 3-6: Verglei
h vers
hiedener Euler Integratoren am mathematis
hen Einfa
h-

pendel (es werden Winkel und Winkelges
hwindigkeit dargestellt): expli-

zit (blaue dur
hgezogene Linie), implizit (grün gestri
helte Linie) und

symplektis
h (rote Stri
hpunktlinie)

Beim mathematis
hen Pendel ist zu erwarten, dass es mit konstanter Amplitu-

de immer weiter s
hwingt, da keine Dämpfung wirkt und es si
h daher um ein

idealisiertes, ni
ht dissipatives System handelt. Die drei vers
hiedenen Verfahren

zur numeris
hen Approximation werden nun auf das System angewendet. Dabei

wird eine S
hrittweite von h = 0.1 s verwendet. In Bild 3-6 sind die Ergebnis-

se dargestellt und es wird deutli
h, dass das zu erwartende Verhalten dur
h die

numeris
hen Approximationsmethoden (i) und (ii) ni
ht wiedergegeben werden
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kann. Das explizite Euler-Verfahren ist instabil und führt zu einer aufklingenden

Amplitude des Pendelwinkels. Das implizite Euler-Verfahren wirkt dagegen wie

eine künstli
he Dämpfung im System, und die S
hwingungsamplitude nimmt ab.

Beide Verfahren sind somit ni
ht in der Lage, das korrekte Verhalten des Sys-

tems abzubilden. Anders ist es beim symplektis
hen Euler-Verfahren, denn hier

bleibt die S
hwigungsamplitude des Pendels konstant, au
h über eine längere In-

tegrationszeit hinweg. Dur
h dieses Verfahren ist es also mögli
h, das dynamis
he

Verhalten des Systems qualitativ ri
htig zu approximieren.

Variationsintegratoren für Simulation realer Systeme

Es ist nun deutli
h geworden, dass es sinnvoll ist, numeris
he Integratoren so

zu bestimmen, dass vorhandene Erhaltungseigens
haften des Systems au
h bei

der numeris
hen Lösung weiterbestehen. Bei Hamilton Systemen kann z. B. die

Symplektizität des Flusses dur
h die Verwendung eines symplektis
hen Integra-

tors erhalten werden. Variationsintegratoren besitzen aber au
h Vorteile bei der

Behandlung von anderen Systemen. Ein allgemeines me
hanis
hes System ist im

Normalfall kein Hamilton System, da es Energieverluste z. B. dur
h Dämpfung

oder au
h eine Energiezufuhr, z. B. dur
h Aktoren beinhaltet. Au
h wenn hier

ni
ht die Symplektizität erhalten werden muss, hat der Einsatz von Variationsin-

tegratoren Vorteile, denn im Gegensatz zu anderen Integratoren können sie das

Energieverhalten au
h dann gut approximieren, wenn es si
h verändert, so dass

es ni
ht zu künstli
hen Energieverlusten bzw. -gewinnen kommt. Ein Einsatz die-

ser Verfahren für die Simulation dynamis
her Systeme ist also erstrebenswert,

um Integrationsfehler zu minimieren und das dynamis
he Verhalten des Systems

mögli
hst gut zu approximieren.

Diese Eigens
haften können au
h im Verglei
h von drei unters
hiedli
hen Inte-

gratoren am mathematis
hen Pendel mit und ohne Dämpfung gezeigt werden.

Es werden das explizite Euler-Verfahren mit einer S
hrittweite h = 0.005 s, ein
Integrator basierend auf den Glei
hungen von DMOC ebenfalls mit der S
hritt-

weite 0.005 s und ein explizites Runge-Kutta-Verfahren mit der Dormand-Prin
e

Formel (in Matlab ode45 ) mit einer hohen Genauigkeit als Referenz für die an-

deren Integratoren, vergli
hen. In Bild 3-7 wird das mathematis
he Pendel ohne

Dämpfung betra
htet. Der Anfangswert ist [ϕ, ϕ̇] = [π
4
, 0] und bei t = 12.5 s wird

ein konstantes Moment von 1Nm auf das Gelenk des Pendels aufgebra
ht, was

dur
h eine vertikale gestri
helte Linie gekennzei
hnet ist. Es wird deutli
h, dass

das Euler-Verfahren instabil ist: Die Gesamtenergie, die Amplitude der S
hwin-

gung und die Winkelges
hwindigkeit nehmen zu. Der Integrator, der basierend

auf DMOC bere
hnet wurde, bildet das reale Systemverhalten dagegen korrekt

ab, denn er stimmt mit der Referenz überein. Zunä
hst bleibt die Energie des

Systems konstant, und bei der Wirkung des konstanten Moments ergibt si
h,
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entspre
hend der Erwartungen, ein periodis
hes Verhalten. Dur
h die Wirkung

des Moments wird der Winkel ϕ etwas in positive Ri
htung vers
hoben, und die

Winkelges
hwindigkeit wird kleiner.
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Bild 3-7: Verglei
h von Integratoren am mathematis
hen Pendel: explizites Eu-

lerverfahren (blau gestri
helte Linie), DMOC (grün dur
hgezogene Li-

nie) und Dormand-Prin
e Formel (explizites Runge-Kutta Verfahren)

mit hoher Genauigkeit (rot gepunktete Linie); ab t = 12.5 s wird ein

konstantes Moment aufgebra
ht und es werden ϕ, ϕ̇ und die Gesamt-

energie des Systems gezeigt

In Bild 3-8 wird dann das mathematis
he Pendel mit Dämpfung d = 0.005 unter-
su
ht. Dieses ist verglei
hbar mit dem in dieser Arbeit untersu
hten Anwendungs-

beispiel des Doppelpendels auf einem Wagen, denn au
h dort liegt Dämpfung in

den Gelenken vor. Es werden dieselben Anfangswerte wie im ersten Beispiel ver-

wendet. Erwartungsgemäÿ verliert das System Energie dur
h die Wirkung der

Dämpfung und beim Einsetzen des konstanten Momentes ergibt si
h das periodi-

s
he Verhalten der Energie, wie s
hon im ersten Beispiel. Aber au
h in diesem

Fall wird deutli
h, dass das Euler-Verfahren im Gegensatz zu den anderen beiden

Integratoren das Systemverhalten ni
ht korrekt abbildet. Es stellt si
h kein Ener-

gieverlust ein, und au
h die Amplitude von Winkel und Winkelges
hwindigkeit

wird ni
ht wie erwartet geringer.
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Bild 3-8: Verglei
h von Integratoren am mathematis
hen Pendel mit Dämpfung:

explizites Euler-Verfahren (blau gestri
helte Linie), DMOC (grün dur
h-

gezogene Linie) und Dormand-Prin
e Formel (explizites Runge-Kutta

Verfahren) mit hoher Genauigkeit (rot gepunktete Linie); ab t = 12.5 s
wir ein konstantes Moment aufgebra
ht und es werden ϕ, ϕ̇ und die

Gesamtenergie des Systems gezeigt
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Als Fazit kann festgehalten werden, dass der Integrator basierend auf den Glei-


hungen der DMOC Methode ebenso gut funktioniert, wie das sehr genaue Re-

ferenzverfahren. Diese Ergebnisse motivieren zusätzli
h den Einsatz der DMOC

Methode für die Anwendungsfälle in dieser Arbeit.

3.3.6 Aktuelle Forschungsarbeiten mit DMOC

Na
h der ersten Verö�entli
hung der DMOC Methode im Jahr 2005 wurde sie

in den folgenden Jahren weiter entwi
kelt und ihre Anwendung auf unters
hied-

li
he dynamis
he Systeme getestet. Im Folgenden wird ein Überbli
k hierüber

dargestellt.

In den Arbeiten [JOB05℄ und [JMOB06℄ wird DMOC zum ersten Mal an einem

gröÿeren Anwendungsbeispiel getestet. Es geht um die optimale Rekon�gurati-

on von Raumfahrzeugen die si
h in einer Formation bewegen. Dabei be�nden

si
h n Raumfahrzeuge auf einem Orbit im Drei-Körper-Problem und die Auf-

gabe ist es, eine optimale Steuerung zu �nden, die die Raumfahrzeuge aus einer

inertialen Kon�guration auf eine Zielmannigfaltigkeit bringt. Dabei soll der Treib-

sto�verbrau
h minimiert werden. Die Zielmannigfaltigkeit bes
hreibt die relative

Position der Raumfahrzeuge zueinander und ihre vorgegebene Ges
hwindigkeit.

Dur
h diese Bes
hreibung ist es mögli
h, dass im Optimierungsprozess die beste

Ausri
htung der Formation abhängig von der inertialen Kon�guration der Raum-

fahrzeuge gefunden wird. Zur Kollisionsvermeidung werden künstli
he Potentiale

in der Systemdynamik oder Strafterme in der Kostenfunktion eingefügt, so dass

si
h die Raumfahrzeuge gegenseitig abstoÿen, wenn sie si
h zu nahe kommen.

Dur
h die Anwendung von DMOC auf dieses Optimalsteuerungsproblem kann

die gewüns
hte Endkon�guration mit minimalem Steueraufwand errei
ht werden.

Es kann auÿerdem gezeigt werden, dass der numeris
he Aufwand von DMOC auf

Grund der speziellen Implementierung geringer ist als bei einem verglei
hbaren

Standardansatz.

Weitergehende theoretis
he Untersu
hungen zur Approximationsgüte der diskre-

ten Lösung, Konvergenzeigens
haften und au
h den strukturerhaltenden Eigen-

s
haften sind in [OBJM11℄ und [OB08℄ zu �nden. Dort wird genauer auf die

Verbindung zwis
hen optimaler Steuerung und variationeller Me
hanik eingegan-

gen, wel
he dur
h DMOC ges
ha�en wird. Denn DMOC ist der erste Ansatz,

der strukturerhaltende Methoden verwendet, um Lösungen für ein Optimalsteue-

rungsproblem zu bere
hnen. Die Vorteile der strukturerhaltenden Methoden wer-

den dadur
h an die Lösung des Optimalsteuerungsproblems weitergegeben. Die

wi
htigsten Aspekte sind

(i) Erhaltung der Impulsabbildung: Unter bestimmten Voraussetzungen an das

System wird die Impulsabbildung au
h bei der diskreten Lösung des Opti-
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malsteuerungsproblems erhalten. Bei Systemen mit Kräften wird der Impuls

entspre
hend der Wirkung der Kräfte exakt abgebildet.

(ii) Energieerhaltung: Variationsintegratoren sind symplektis
h, was bedeutet,

dass sie bestimmte Eigens
haften erhalten (z. B. Energie). Dies ist eine wi
h-

tige Eigens
haft, wenn man das Langzeitverhalten eines dynamis
hen Sys-

tems betra
htet.

(iii) Implementierung: Anstatt einer Implementierung auf Grundlage von Kon-

�guration und Impuls arbeitet DMOC auf Q × Q. Das heiÿt, es wird nur

die optimale Trajektorie für die Kon�guration und die Kräfte bestimmt

und der Impuls bzw. die Ges
hwindigkeiten können mittels der diskreten

Legendre-Transformation im Rahmen der numeris
hen Approximation ex-

akt rekonstruiert werden.

Eine neue Fors
hungsri
htung ist entstanden, als mit Hilfe der DMOC Methode

eine strukturerhaltende Methode für die optimale Steuerung me
hanis
her Mehr-

körpersysteme (MKS) mit holonomen Zwangsbedingungen erstellt wurde, siehe

[LOBMO07℄ und [LOBMO10℄. Die neue Methode wurde mit "Dis
rete Me
ha-

ni
s and Optimal Control for Constrained Systems" (DMOCC) bezei
hnet und

ist eine Verbindung zwis
hen der Nullraum-Methode [Bet05℄, [BL06℄, [LBS08℄

und DMOC.

Die Nullraum-Methode ist ein e�zientes Verfahren zur zeitli
hen Integration

von dynamis
hen Systemen mit Zwangsbedingungen. Auÿerdem können mit ih-

rer Hilfe die Bewegungsglei
hungen eines endli
h dimensionalen me
hanis
hen

MKS mit holonomen Zwangsbedingungen bestimmt werden. Die einzelnen Teil-

körper des MKS werden dabei in redundanten Koordinaten bes
hrieben und

unterliegen internen Zwangsbedingungen. Sie sind dur
h Gelenke, also exter-

ne holonome Zwangsbedingungen verbunden. Für diese Art von Systemen kön-

nen die Bewegungsglei
hungen mit Hilfe des Lagrange-d'Alembert-Prinzips mit

Lagrange-Multiplikatoren aufgestellt werden. Um dann die Anzahl der Unbe-

kannten zu reduzieren, können dur
h den Gebrau
h der Nullraum-Matrix die

Lagrange-Multiplikatoren wieder aus den Bewegungsglei
hungen eliminiert wer-

den. Dur
h eine Reparametrisierung kann die minimal mögli
he Anzahl von Un-

bekannten in den Bewegungsglei
hungen errei
ht werden.

Bei der Kombination von Nullraum-Methode und DMOC wird aus dem DAE Sys-

tem der Bewegungsglei
hungen dur
h die diskrete Nullraum-Methode eine zeitdis-

krete Form hergeleitet. Die entstandenen reduzierten Glei
hungen bes
hreiben ein

Zeits
hrittverfahren und sie dienen als Nebenbedingungen bei der Bestimmung

der optimalen Steuerung mit DMOC dur
h einen Optimierungsalgorithmus.

DMOCC hat vers
hiedenen Vorteile: Erstens können die diskreten Bewegungs-

glei
hungen einfa
h in redundanten Koordinaten bes
hrieben werden. Im zweiten

S
hritt wird die diskrete Nullraum-Methode angewendet, wodur
h si
h die mini-
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mal mögli
he Anzahl von Variablen und Glei
hungen ergibt. Dies führt zu einem

deutli
h geringeren Re
henaufwand im Optimierungsalgorithmus. Drittens sind

au
h hier die strukturerhaltenden Eigens
haften der DMOC Methode von Vorteil.

Sie führen zu einem guten Energieverhalten der diskreten Lösung, was vor allem

für ho
hdimensionale MKS mit Zwangsbedingungen von hoher Bedeutung ist.

Es sind einige Anwendungsbeispiele von DMOCC in der Biome
hanik zu �nden,

da hier häu�g MKS mit holonomen Zwangsbedingungen vorliegen. In [OBT09℄

wird der mens
hli
he Arm als MKS modelliert und es werden optimale Bewe-

gungssequenzen eines Wurfes bere
hnet und analysiert. Dabei können z. B. Mo-

delle mit unters
hiedli
her Anzahl an Freiheitsgraden untersu
ht werden, was si
h

aus der Verwendung von vers
hiedenen Gelenken im Arm ergibt. Das Ziel dieser

Arbeit ist es, eine Wurfbewegung mit mögli
hst hoher Endges
hwindigkeit der

Hand zu bere
hnen.

In [MSL11℄ wird ein biome
hanis
hes Modell für einen Finger vorgestellt. Dabei

werden neben dem MKS bestehend aus drei Körpern, die wirkenden Kräfte dur
h

Muskelmodelle bere
hnet. Au
h in diesem Beispiel wird betont, wie wi
htig es ist,

strukturerhaltende Verfahren zu nutzen, damit z. B. die Momente und die angrei-

fenden Muskelkräfte ni
ht über- oder unters
hätzt werden.

Bisher wurden bei DMOCC in der Simulation von MKS Kontakte oder Kollisio-

nen zwis
hen den Körpern verna
hlässigt. In neueren Arbeiten [LJO12℄, [LHK

+
12℄

wird nun sowohl die Vermeidung von Kollisionen als au
h der geplante Kontakt

zwis
hen Körpern bei einer optimalen Steuerungstrajektorie berü
ksi
htigt. Da-

zu werden bestimmte Algorithmen verwendet, die Kontakte zwis
hen Körpern

mittels orientierter Hyper�ä
hen detektieren können.

In der Raumfahrt werden für die Steuerung von Satelliten häu�g sehr komplexe

Trajektorien entwi
kelt, da Raumfahrzeuge auf Grund der bes
hränkten Kapa-

zität nur wenig Treibsto� verbrau
hen dürfen. Für die Bestimmung sol
her Tra-

jektorien werden invariante Mannigfaltigkeiten benutzt [MOBM08℄. Diese mathe-

matis
hen Objekte stellen energiee�ziente Trajektorien dar, die der natürli
hen

Dynamik des Sonnensystems von einer Region des Weltalls in eine andere folgen.

DMOC wird für die Bestimmung einer optimalen Trajektorie und für die Bere
h-

nung von optimalen Übergängen bei der Kombination von mehreren invarian-

ten Mannigfaltigkeiten aus unters
hiedli
hen Drei-Körper-Problemen verwendet.

In die zugehörige Zielfunktion können vers
hiedene Aspekte, wie Zeitoptimalität

und Energiee�zienz eingehen. Ein weiterer Aspekt ist der Ges
hwindigkeitsun-

ters
hied beim Übergang zwis
hen zwei invarianten Mannigfaltigkeiten. Bei einer

guten Trajektorie sollte er klein sein, um mögli
hst wenig Energie zu verbrau
hen.

Zusätzli
h wurde DMOC im Rahmen dieser Arbeit zur Bere
hnung optimaler Tra-

jektorien auf den Gebrau
h von unters
hiedli
hen Gittern erweitert [MOBM11℄.

Dadur
h kann z. B. in der Nähe eines Planeten mit kleiner S
hrittweite gere
hnet
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werden, um eine mögli
hst exakte Trajektorie zu erhalten. Wenn si
h der Satellit

weiter entfernt, rei
ht dann die Verwendung einer gröberen S
hrittweite aus.

In den Arbeiten [FOB12℄,[FOBK12℄ wird ein ähnli
hes Konzept verwendet, um

global optimale Trajektorien für me
hanis
he Systeme zu bere
hnen. Die Idee ist

es, inhärente dynamis
he Eigens
haften des Systems auszunutzen. Diese natür-

li
hen Bewegungen des Systems ergeben si
h ohne Steuereingri� und können so

kostenlos verwendet werden. Dabei werden motion planning Methoden verwen-

det, die vers
hiedene Trajektorienstü
ke in einer Bibliothek hinterlegen und es so

ermögli
hen, eine optimale Trajektorie aus geeigneten Stü
ken zusammenzuset-

zen. Elemente der Bibliothek sind dabei invariante (in)stabile Mannigfaltigkeiten

oder au
h periodis
he Orbits. Zusätzli
h werden dur
h DMOC bere
hnete Über-

gangsmanöver verwendet, um zwis
hen einzelnen Teilstü
ken we
hseln zu kön-

nen. Die zusammengesetzte Trajektorie ergibt einen guten initial guess, der mit

DMOC na
hoptimiert werden kann, wodur
h si
h eine geglättete optimale Trajek-

torie ergibt. Dieses Vorgehen wird an einem sphäris
hen Doppelpendel getestet,

und errei
ht dort dur
h die Kombination von invarianten Mannigfaltigkeiten und

Teilstü
ken mit Steuereingri� gute Ergebnisse.

Als Fazit dieses Abs
hnitts lässt si
h festhalten, dass die DMOC Methode in den

letzten Jahren auf vielerlei Weise weiterentwi
kelt wurde. Dies geht einerseits

in die Ri
htung, dass allgemein au
h optimale Steuerung für komplexe System-

klassen ermögli
ht wird (z. B. DMOCC) und andererseits wird DMOC für die

Anwendung an komplexen Anwendungsbeispielen weiterentwi
kelt (z. B. Trajek-

torienplanung für Raumfahrzeuge mit Hilfe von invarianten Mannigfaltigkeiten).

Im Folgenden wird in dieser Arbeit DMOC dazu verwendet, um für das Dop-

pel(und Dreifa
h-)pendel mit Wagen optimale Trajektorien bezügli
h gegenläu-

�ger Ziele (Manöverzeit und Energieverbrau
h) zu bere
hnen, dabei die Varian-

tenvielfalt der Ergebnisse zu analysieren und na
h paretooptimalen Lösungen zu

su
hen, siehe Kapitel 4. Im Weiteren wird au
h für das Doppelpendel mit Wa-

gen ein Ansatz getestet, bei dem die inhärente Systemdynamik genutzt wird, um

optimale Trajektorien zu bestimmen, siehe Kapitel 5.
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4 Optimale Steuerungstrajektorien für das
Mehrfachpendel

Dieses Kapitel widmet si
h der Bere
hnung von Trajektorien für den Aufs
hwung

des Pendels auf einem Wagen. Dazu wird die in Kapitel 3 bes
hriebene DMOC

Methode verwendet, um aus dem kontinuierli
hen Optimalsteuerungsproblem ein

endli
h dimensionales, ni
htlineares Programmierproblem (NLP) herzuleiten, wel-


hes ans
hlieÿend numeris
h gelöst werden kann. Hierzu wird die sequentielle

quadratis
he Programmierung (SQP-Verfahren) verwendet, die in Abs
hnitt 4.1

bes
hrieben wird. Die Idee dabei ist es, das NLP iterativ zu lösen und dabei sowohl

das Newton-Verfahren, als au
h notwendige Optimalitätsbedingungen (Karush-

Kuhn-Tu
ker Bedingungen) zu verwenden. Im darauf folgenden Abs
hnitt 4.2

werden Verfahren der Mehrzieloptimierung erläutert und das Konzept der Pareto-

Optimalität bes
hrieben. Die Methoden der Mehrzieloptimierung werden dazu

verwendet, mehrere Ziele in der Optimierung berü
ksi
htigen zu können. Diese

Lösungen stellen jeweils einen optimalen Kompromiss bezügli
h der gewählten

Ziele, z. B. Zeit und Energie, dar und werden au
h als paretooptimale Lösun-

gen bezei
hnet. Die Mögli
hkeit der Berü
ksi
htigung mehrerer Zielgröÿen ist ein

Vorteil der Mehrzieloptimierung und führt dazu, dass eine Auswahl optimaler

Kompromisse z. B. für einen Anwender zur Verfügung steht.

In Abs
hnitt 4.3 werden dann vier vers
hiedene Aufs
hwungmanöver für das Dop-

pelpendel vorgestellt und bezügli
h ihrer paretooptimalen Zielfunktionswerte ver-

gli
hen. Dur
h die Mehrzieloptimierung ergeben si
h vielfältige Manöver für den

Aufs
hwung des Pendels, d. h. es ergeben si
h Manöver mit unters
hiedli
her Dy-

namik. Aus der groÿen Menge von optimalen Lösungen können Paretofronten

gebildet werden, an denen si
h interessante Eigens
haften der Dynamik des Pen-

dels ablesen lassen.

Es kann zusätzli
h gezeigt werden, dass si
h eine ausgewählte Lösung au
h in

gewissen Berei
hen variieren lässt. Das heiÿt, dass man dur
h eine Na
hoptimie-

rung die Bewegung beibehält, aber die Manöverzeit bzw. den Energieverbrau
h

lei
ht abändert. Dadur
h ist es mögli
h, eine Trajektorie den genauen Wüns
hen

eines Anwenders anzupassen.

Ausgewählte Lösungen der Optimierung werden am Prüfstand implementiert. Da-

dur
h kann gezeigt werden, dass der modellbasierte Regelungsentwurf au
h auf

die praktis
he Anwendung übertragen werden kann und diese Trajektorien au
h

realisiert werden können.

Eine weitere Eigens
haft, die in diesem Kapitel untersu
ht wird, ist die Form der

Paretofront. In diesem Zusammenhang wird gezeigt, dass es mögli
h ist, für den
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Aufs
hwung des Pendels eine Paretofront ohne Lü
ken und Sprünge zu bere
hnen.

Auf die Vorteile einer sol
hen Eigens
haft, vor allem für die weitere Verwendung

der Lösungen in einem übergeordneten Kontext, wird später eingegangen. Au-

ÿerdem kann in dieser Analyse gezeigt werden, dass die der realen Anwendung

entstammende Wegbes
hränkung von 0.55m für den Wagen keinen relevanten

Ein�uss auf die Bes
ha�enheit der Lösungen besitzt.

In Abs
hnitt 4.4 werden dann Ergebnisse für den Aufs
hwung des Dreifa
hpendels

vorgestellt. Im Verglei
h zum Doppelpendel ergeben si
h deutli
h komplexere Be-

wegungen, die bestimmten Mustern folgen. Es wird deutli
h, dass der Aufs
hwung

des Dreifa
hpendels immer mit dem Übergang über vers
hiedene Ruhelagen ge-

s
hieht, da für ein direktes Manöver der zur Verfügung stehende Verfahrweg von

±0.55m zu kurz ist.

Abs
hlieÿend wird in Abs
hnitt 4.5 ein Fazit zur Verwendung von Optimierungs-

methoden für die Bere
hnung von Trajektorien für den Aufs
hwung des Pendels

gezogen. Dabei werden die Vorteile dieses Ansatzes im Verglei
h zu anderen An-

sätze dargestellt.

4.1 Numerische Lösung des Optimalsteuerungsproblems
mit SQP-Verfahren

Das sequentielle quadratis
he Programmieren (SQP) (siehe [Han76℄, [Pow77℄) ist

eine e�ziente iterative Methode für die Lösung eines NLP, wie es aus der Dis-

kretisierung eines Optimalsteuerungsproblems dur
h direkte Methoden entsteht.

Die hier gewählte Darstellung dieses Verfahrens folgt [Rao09℄.

Es sei x ∈ R
n
die Menge der Parameter, die dur
h die Diskretisierung des

unendli
h-dimensionalen Optimalsteuerungsproblems eingeführt wurde. Die Idee

des SQP-Verfahrens besteht in der Anwendung des Newton-Verfahrens auf die

Karush-Kuhn-Tu
ker Optimalitätsbedingungen. Dabei wird das ni
htlineare Op-

timierungsproblemmit Nebenbedingungen im aktuellen Iterationss
hritt xk dur
h
ein quadratis
hes Teilproblem approximiert und die Lösung dieses Teilproblems

dazu genutzt, den neuen Wert der Parameter xk+1 zu bere
hnen. Es besteht das

Ziel, den optimalen Parametern x∗ in jedem Iterationss
hritt näher zu kommen.

Im Folgenden wird in 4.1.1 zunä
hst die Herleitung der Glei
hungen aus dem NLP

bes
hrieben. Daraus ergibt si
h ein quadratis
hes Programmierproblem, dessen

Lösung in 4.1.2 bes
hrieben wird.
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4.1.1 Herleitung

Im Folgenden betra
hten wir ein NLP mit Glei
hheitsnebenbedingungen in der

Form

Minimierex J(x),

unter den Nebenbedingungen g(x) = 0, g : Rn → R
ng .

(4-1)

Auf die Erweiterung des Optimierungsproblems um zusätzli
he Unglei
hheitsne-

benbedingungen wird später eingegangen.

Die Lagrange-Funktion des Optimierungsproblems (4-1) ist gegeben dur
h

L(x, λ) := J(x) + λTg(x), L : Rn×ng → R, λ ∈ R
ng ,

wobei λk den Lagrange-Multiplikator für die k-te Glei
hheitsnebenbedingung dar-
stellt. Die Nullstellen der Karush-Kuhn-Tu
ker Glei
hungen sind notwendige Be-

dingungen für eine lokal optimale Lösung (siehe au
h Satz 4.4 und De�nition 4.5),

und für das Optimierungsproblem (4-1) können sie dur
h

∂L

∂x
(x, λ) = ∇J(x) + λT∇g(x) = 0,

∂L

∂λ
(x, λ) = g(x) = 0

(4-2)

bes
hrieben werden. Somit ist (4-2) ein System von n+ng Glei
hungen mit ebenso
vielen Unbekannten (x ∈ R

n
und λ ∈ R

ng
). Dieses wird im Folgenden mit Hilfe des

Newton-Verfahrens gelöst. Zur Vereinfa
hung kann (4-2) umges
hrieben werden

zu

H(η) = 0, mit H : Rn×ng → R
n×ng , H =

(
∇xL(x, λ)
g(x)

)

,

η =

(
x
λ

)

∈ R
n×ng ,

(4-3)

und ans
hlieÿend kann eine Lösung von (4-3) iterativ dur
h das Newton-Verfahren

gefunden werden:

ηj+1 = ηj +∆ηj , mit ∇H(ηj)
T∆ηj = −H(ηj), (4-4)

wobei ηj die Lösung zu Beginn der j-ten Iteration und ∆ηj die notwendige Ände-
rung von ηj ist, um die verbesserte Lösung ηj+1 zu erhalten. Im Folgenden wird

nun ∆ηi geeignet bestimmt.
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Dur
h Einsetzen von (4-3) in (4-4) erhält man

[
∇2
xL(xj , λj) ∇g(xj)
∇g(xj)

T 0

](
∆xj
∆λj

)

= −

(
∇xL(xj , λj)

g(xj)

)

, (4-5a)

∆xj = xj+1 − xj , (4-5b)

∆λj = λj+1 − λj, (4-5
)

wobei ∇2
xL die Hesse-Matrix der Lagrange-Funktion ist. Die erste Zeile von (4-5a)

kann dur
h Einsetzen von (4-5
) und (4-2) vereinfa
ht werden zu

∇2
xL(xj , λj)∆xj +∇g(xj)λj+1 = −∇J(xj),

was zu einer Neuformulierung von (4-5a) führt:

[
∇2
xL(xj , λj) ∇g(xj)
∇g(xj)

T 0

](
∆xj
λj+1

)

= −

(
∇J(xj)
g(xj)

)

. (4-6)

Dur
h die Lösung von (4-6) können nun prinzipiell die notwendige Änderung des

Parametervektors ∆xj und die neuen Werte der Lagrange-Multiplikatoren λj+1

bestimmt werden. Dieser iterative Prozess kann so lange fortgeführt werden, bis

die Konvergenz errei
ht ist.

Anstatt das ni
htlineare Glei
hungssystems (4-6) iterativ zu lösen, wird dieses

beim Vorgehen des SQP-Verfahrens in eine quadratis
hes Programmierproblem

(QP) umgewandelt. Dadur
h kann die gewüns
hte Änderung ∆xj in Ri
htung der
optimalen Lösung dur
h die Konstruktion und Lösung eines sol
hen lokalen Glei-


hungssystems bere
hnet werden. Das QP hat die numeris
hen Vorteile, dass es

fast vollständig linear ist und eine eindeutige Lösung besitzt [Rao09℄. Somit wird

das Problem (4-3) in jeder Iteration dur
h ein quadratis
hes Programmierproblem

approximiert. Deshalb nennt man die Methode au
h sequentielles quadratis
hes

Programmieren. Im Folgenden wird die Herleitung des QP ausführli
her bes
hrie-

ben.

Gegeben sei nun also das folgende quadratis
he Programmierproblem:

Finde ∆x, so dass die quadratis
he Zielfunktion

Q = ∇JT∆x+
1

2
∆xT∇2

xL∆x mit den Nebenbedingungen

gk +∇gTk∆x = 0, k = 1, . . . , ng, minimiert wird.

(4-7)

Die entspre
hende Lagrange-Funktion zu diesem Problem lautet

L̃(∆x, λ) = ∇JT∆x+
1

2
∆xT∇2

xL∆x+

ng∑

k=1

λk(gk +∇gTk∆x).
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Hierzu können au
h wieder die notwendigen Karush-Kuhn-Tu
ker Bedingungen

bestimmt werden:

∇J +∇2
xL∆x +∇gλ = 0,

gk +∇gTk∆x = 0, k = 1, . . . , ng.
(4-8)

Hier fällt auf, dass (4-8) dasselbe bes
hreibt wie (4-6). Dies zeigt, dass das Ori-

ginalproblems (4-1) au
h iterativ dur
h die Lösung des quadratis
hen Problems

(4-7) gelöst werden kann.

Wenn das Originalproblem (4-1) nun au
h no
h Unglei
hheitsnebenbedingungen

enthält, ändert si
h das quadratis
he Problem (4-7) wie folgt

Finde ∆x, so dass

Q = ∇JT∆x+
1

2
∆xT∇2

xL∆x mit den Nebenbedingungen

cj +∇cTj ∆x ≤ 0, j = 1, . . . , nc, c : Rn → R
nc

und gk +∇gTk∆x = 0, k = 1, . . . , ng minimiert wird.

(4-9)

Die Lagrange-Funktion lautet dann

L̃(∆x, λ) =∇JT∆x+
1

2
∆xT∇2

xL∆x+

nc∑

j=1

λj(cj +∇cTj ∆x)

+

ng∑

k=1

λnc+k(gk +∇gTk∆x).

(4-10)

4.1.2 Lösung

Wie bei der Anwendung des Newton-Verfahrens für die Minimierung ohne Ne-

benbedingungen, wird der Lösungsvektor ∆x des Problems (4-9) nun als Su
h-

ri
htung S verwendet, und das quadratis
he Programmierproblem kann wie folgt

mit S = ∆x angepasst werden:

Finde S, so dass Q(S) = ∇JTS +
1

2
ST∇2

xLS

mit den Nebenbedingungen cj +∇cTj S ≤ 0, j = 1, . . . , nc

und gk +∇gTk S = 0, k = 1, . . . , ng, minimiert wird.

(4-11)

Insgesamt werden dur
h das SQP-Verfahren die Zielfunktion quadratis
h und die

Nebenbedingungen linear approximiert, was zu einem quadratis
hen Program-

mierproblem (4-11) führt. Dieses kann mit Standardmethoden lei
ht und nur mit
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Hilfe von Matrixmultiplikationen gelöst werden. Auÿerdem ist ein sol
hes qua-

dratis
hes Programm immer eindeutig lösbar, und jedes lokale Optimum ist ein

globales Optimum. Wenn dann die Su
hri
htung S gefunden wurde, kann der

neue Parametervektor dur
h

xj+1 = xj + α∗S

bere
hnet werden. Hierbei ist α∗
die optimale S
hrittweite entlang der Su
hri
h-

tung S, wel
he dur
h die Minimierung einer Zielfunktion, mit Straftermen bezüg-

li
h der Erfüllung der Nebenbedingungen, bestimmt werden kann. Die eindimen-

sionale S
hrittweite α∗
wird im Allgemeinen mittels eines Gradientenverfahrens

bere
hnet.

Man kann also feststellen, dass der SQP-Algorithmus einen klaren Vorteil ge-

genüber der direkten Anwendung des Newton-Verfahrens auf die notwendigen

Optimalitätsbedingungen besitzt, denn SQP bietet die Mögli
hkeit, die S
hritt-

weite α∗
geeignet anzupassen, wenn der aktuelle Parametervektor (xk, λk) no
h

ni
ht ausrei
hend nahe an der optimalen Lösung (x∗, λ∗) liegt und reduziert die

Lösung des Problems auf ein einfa
heres QP.

Im Allgemeinen kann dur
h ein sol
hes ni
htlineares Verfahren nur eine lokal

optimale Lösung des NLP gefunden werden und damit keine globale Optimalität

si
hergestellt werden.

4.2 Mehrzieloptimierung und Pareto-Optimalität

Oftmals ist es bei te
hnis
hen Systemen ein Ziel, ein gewüns
htes Manöver z. B.

zwis
hen zwei Arbeitspunkten s
hnell und mit niedrigem Energieverbrau
h dur
h-

zuführen. Für jedes reale System sind diese Ansprü
he aber widersprü
hli
h und

können ni
ht beliebig gut erfüllt werden. Bei der Auslegung von Trajektorien für

te
hnis
he Systeme müssen also häu�g mehrere Kriterien optimiert werden, wo-

bei im besten Fall ein optimaler Kompromiss gefunden wird. Dieser kann dadur
h

identi�ziert werden, dass bei mehreren konträren Zielen ein einzelnes Kriterium

nur dann verbessert werden kann, wenn ein anderes Kriterium vers
hle
htert wird.

Ein sol
hes Problem wird als Mehrzieloptimierungsproblem (MOP) und der op-

timale Kompromiss als paretooptimale Lösung bezei
hnet.

Die hier dargestellten Grundlagen sollen im Weiteren dazu verwendet werden, um

mit Hilfe der optimalen Steuerungsmethoden Trajektorien für das Mehrfa
hpen-

del zu bere
hnen, die sowohl zeit- als au
h energieoptimal sind.

Im Folgenden wird ein Minimierungsproblem mit mehreren Zielfunktionen be-

tra
htet. Die Lösung dieses Problems führt auf eine Menge von optimalen Kom-

promissen bezügli
h aller gegebenen Zielfunktionen, wel
he au
h als Paretomen-

ge bezei
hnet wird. Aus dieser Menge kann dann ein Ents
heidungsträger, der



Optimale Steuerungstrajektorien für das Mehrfa
hpendel 79

Kenntnis über die physikalis
he Bedeutung einzelner Zielfunktionen besitzt, aus-

wählen. Das Konzept der Pareto-Optimalität wird in Abs
hnitt 4.2.1 bes
hrieben.

Ein Ansatz für die Lösung eines MOP ist es, eine Transformation in ein skalares

Optimierungsproblem dur
hzuführen. Dann können die Methoden der skalaren

Optimierung verwendet werden, um optimale Lösungen zu bere
hnen. Dur
h ei-

ne Variation der unters
hiedli
hen Parameter des Transformationsverfahrens ist

es mögli
h, diverse unters
hiedli
he Lösungen für das Optimierungsergebnis zu

erhalten. In Abs
hnitt 4.2.2 werden einige einfa
he Methoden zur Lösung eines

MOP vorgestellt, die ans
hlieÿend für die Bere
hnungen verwendet werden.

Einen Überbli
k über MOP und deren Lösung ist z. B. in [Hil01℄ oder [Mie99℄ zu

�nden. Die Lösung von MOP mit Hilfe von mengenorientierten Methoden ist in

[S
h04℄ bes
hrieben, siehe dazu au
h Abs
hnitt 5.1.2. Diese Quellen werden au
h

für die Darstellung der Methoden zur Mehrzieloptimierung in diesem Abs
hnitt

verwendet.

4.2.1 Pareto-Optimalität

Ein Mehrzieloptimierungsproblem mit nk Zielfunktionen f1, . . . , fnk
: Rn → R

kann wie folgt formuliert werden:

min
x∈R

{F (x)}, mitR := {x ∈ R
n|g(x) = 0, c(x) ≤ 0}.

Hierbei ist F der Vektor der einzelnen Zielfunktionen:

F : Rn → R
nk , F (x) = (f1(x), . . . , fnk

(x)),

g : Rn → R
ng , ng ≤ n mögli
he Glei
hheitsnebenbedingungen und c : Rn → R

nc
,

nc mögli
he Unglei
hheitsnebenbedingungen.

Um die Minimierung dieses Problems dur
hführen zu können, muss es die Mög-

li
hkeit geben, vers
hiedene Werte der nun vektorwertig gegebenen Zielfunktion

verglei
hen zu können. Dazu wird eine Ordnungsrelation im R
nk

de�niert.

De�nition 4.1 (Ordnungsrelation)

Gegeben seien die Vektoren v, w ∈ R
nk
. Dann ist v kleiner als w (v <p w), falls

vi < wi für alle i ∈ {1, . . . , nk}. Die Relation ≤p ergibt si
h analog.

Die folgende De�nition bes
hreibt eine Beziehung zwis
hen Zielfunktionswerten,

die mit Hilfe der Ordnungsrelation ausgedrü
kt werden kann.

De�nition 4.2 Der Vektor v ∈ R
nk

wird dur
h den Vektor w ∈ R
nk

dominiert,

falls w ≤p v und w 6= v gilt, d. h. es existiert ein j ∈ {1, . . . , nk}, so dass wj < vj .

Mit Hilfe dieser partiellen Ordnung ist es ni
ht mögli
h, nur ein einzelnes Ergebnis

der Minimierung zu bestimmen, sondern es ergibt si
h eine ganze Menge optimaler
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Kompromisse. Ein Punkt in dieser Menge zei
hnet si
h dadur
h aus, dass die

Verbesserung einer der Zielfunktionen immer die Vers
hle
hterung von anderen

Zielfunktionen na
h si
h zieht.

De�nition 4.3 (Paretopunkt)

(i) Gegeben sei ein Mehrzieloptimierungsproblem. Der Punkt x∗ heiÿt (global)
paretooptimal oder au
h (globaler) Paretopunkt, falls kein y ∈ R existiert,

so dass

F (y) 6= F (x∗) undF (y) ≤p F (x
∗). (4-12)

Das heiÿt der Punkt x∗ ist ni
ht dominiert von einem anderen Punkt y ∈ R.

(ii) x∗ ist lokaler Paretopunkt, falls es eine Umgebung U(x∗) ⊂ R von x∗ gibt,
so dass kein y ∈ U(x∗) existiert, so dass (4-12) erfüllt ist.

Die Menge aller Paretopunkte wird Paretomenge genannt. Na
h [Ehr05℄ heiÿt das

Bild der Paretomenge unter F Paretofront.

Eine notwendige Bedingung für einen Paretopunkt ist dur
h den folgenden Satz

gegeben:

Satz 4.4 Es sei x∗ ein Paretopunkt eines MOP. Es sei weiterhin die Menge der

Vektoren {∇gi(x)|i = 1, . . . , ng} linear unabhängig. Dann existieren Vektoren

γ ∈ R
nk

mit γi ≥ 0, i = 1, . . . , nk und

∑nk

j=1 γi = 1, λ ∈ R
ng

und β ∈ R
nc

mit

βl ≥ 0, i = 1, . . . , nc, so dass

nk∑

i=1

γi∇fi(x
∗) +

ng∑

j=1

λj∇gj(x
∗) +

nc∑

l=1

βl∇cl(x
∗) = 0, (4-13)

βlcl(x
∗) = 0, l = 1, . . . , nc, (4-14)

gj(x
∗) = 0, j = 1, . . . , ng, (4-15)

cl(x
∗) ≤ 0, l = 1, . . . , nc. (4-16)

Im unbes
hränkten Fall (ng = 0 und nc = 0, keine Nebenbedingungen vorhan-

den) bes
hreibt dieser Satz, dass es eine Linearkombination der Gradienten der

Zielfunktionen im Paretopunkt gibt, wel
he Null ergibt. Da (4-13) eine notwen-

dige Bedingung für Optimalität darstellt, ist jeder Punkt, der (4-13) erfüllt, ein

Kandidat für einen paretooptimalen Punkt.

De�nition 4.5 (Karush-Kuhn-Tu
ker-Bedingung)

Der Vektor x ∈ R
n
heiÿt Karush-Kuhn-Tu
ker (KKT) Punkt, wenn γ ∈ R

nk
,

λ ∈ R
ng

und β ∈ R
nc

existieren, so dass (4-13) - (4-16) erfüllt sind.

In [Kar39℄ und [KT51℄ sind weitere Informationen zur Herleitung dieser Bedin-

gung zu �nden.
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4.2.2 Lösung des MOP

Ein Standardansatz für die Lösung eines MOP ist die Umformung in ein skala-

res Optimierungsproblem. In diesem Fall können die Standardmethoden für die

Optimierung einer skalaren Zielfunktion f : Rn → R angewendet werden. Die

Transformation des MOP wird häu�g dur
h eine Parametrierung der Zielfunktio-

nen mittels eines Parametrierungsvektors µ = (µ1, . . . , µN) dur
hgeführt (siehe
hierzu au
h Bild 4-1). Dur
h jede einzelne Optimierung des transformierten Sys-

tems lässt si
h dann - im idealen Fall - ein paretooptimaler Punkt bere
hnen.

Bild 4-1: Grundidee der Transformation eines MOP in ein skalares Optimie-

rungsproblem: Zunä
hst wird eine dur
h µ parametrisierbare skalare

Zielfunktion erstellt, und dur
h Variation von µ ist es mögli
h, ver-

s
hiedene paretooptimale Punkte zu bere
hnen.

Gewichtete Summe

Diese Methode wurde zuerst in [Zad63℄ bes
hrieben und ist ein sehr häu�g ver-

wendeter Ansatz zur Lösung eines MOP. Es wird jeder einzelnen der nk Zielfunk-
tionen ein Gewi
htungsfaktor αi ≥ 0 zugeordnet, wobei

∑nk

i=1 αi = 1 gelten muss

(Normalisierung der Gewi
htungsfaktoren). Somit wird dann anstatt des MOP

das folgende skalare Problem gelöst

min
x∈R

nk∑

i=1

αifi(x).

Der Transformationsvektor ist hier also der Gewi
htungsvektor α = (α1, . . . , αnk
)T

und jeder Faktor entspri
ht der Bedeutung der jeweiligen Zielfunktion in der Op-

timierung. Dur
h eine Variation von α erhält man eine Teilmenge aller pareto-

optimalen Punkte. Im Fall eines konvexen MOP kann gezeigt werden, dass alle



82 Kapitel 4

paretooptimalen Punkte bere
hnet werden können, siehe [Mie99℄. Auÿerdem gilt,

dass globale Minima von αTF (x) notwendig au
h globale paretooptimale Punkte

des MOP sind. Entspre
hendes gilt für lokale Minima.

In Bild 4-2 ist die Methode der gewi
hteten Summe beispielhaft mit zwei Ziel-

funktionen gra�s
h dargestellt. Die Zielfunktion α1f1 + α2f2 mit α1, α2 ≥ 0 soll

minimiert werden: α1f1+α2f2 = cmin. Dies ist eine allgemeine Geradenglei
hung,

und somit ist diejenige Gerade gesu
ht, die das Minimierungsproblem im zuläs-

sigen Berei
h löst. α = (α1, α2)
T
ist der Normalenvektor dieser Geraden.

f1

f2
F (R)

α
y∗α

Bild 4-2: Gra�s
he Darstellung der Methode der gewi
hteten Summe: Jede Gera-

de entspri
ht einer Geradenglei
hung α1f1+α2f2 = c. Die Minimierung

ergibt dann ein y∗α als Minimum im zulässigen Bildberei
h F (R).

Da die Zielfunktion dur
h dieses Verfahren bezügli
h des Parameters α diskreti-

siert ist, kann bei der Lösung des MOP nur eine endli
he Anzahl an Paretopunk-

ten bere
hnet werden. Daher ist es wi
htig, dass diese glei
hmäÿig im Raum der

Zielfunktionen verteilt sind, um eine gute Approximation aller Paretopunkte zu

erhalten. Die Methode der gewi
hteten Summe erfüllt diese Anforderung ni
ht.

Eine äquidistante Diskretisierung von α errei
ht bei den Lösungen im Allgemei-

nen nur eine unregelmäÿige Diskretisierung der Paretopunkte, da der Abstand

zwis
hen vers
hiedenen bere
hneten Punkten im Bildraum ni
ht direkt gesteuert

werden kann.

Es besteht ein besonderer Zusammenhang zwis
hen der Methode der gewi
hteten

Summe und der KKT-Bedingung (siehe De�nition 4.5). Es sei

gα(x) =

nk∑

i=1

αifi(x)
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eine skalare Funktion, wie sie au
h als Zielfunktion für die Methode der gewi
h-

teten Summe gewählt werden kann. Dann gilt au
h

∇gα(x) =
nk∑

i=1

αi∇fi(x). (4-17)

Somit sind die beiden folgenden Aussagen äquivalent

(i) x∗ ist Paretopunkt des MOP. Notwendig hierfür ist die Erfüllung der KKT-

Bedingung, d. h. es existiert ein α mit

∑k
i=0 αi = 1, so dass

k∑

i=0

αi∇fi(x
∗) = 0

gilt.

(ii) x∗ ist KKT-Punkt des skalaren Problems mit Zielfunktion

∑nk

i=1 αifi. Wie

in (4-17) dargestellt, ist für ein Minimum die KKT-Bedingung automatis
h

erfüllt, denn es gilt

∇gα(x
∗) = 0 =

k∑

i=0

αi∇fi(x
∗).

Man bea
hte hierbei, dass in (ii) keine Optimalitätsbedingung zweiter Ordnung

der skalaren Zielfunktion gα überprüft wird. Eine sol
he Bedingung ist notwendig
dafür, dass x∗ ein lokales Minimum von gα ist, aber ni
ht notwendig, damit x∗

ein Pareto-Punkt des vektorwertigen Mehrzieloptimierungsproblems ist.

ε-constraint Methode

Die ε-
onstraint Methode beruht auf den Ideen von [Mar67℄ und [Hai73℄. Hier-

bei wird eine einzelne Zielfunktion fj, j ∈ {1, . . . , nk} ausgewählt, die minimiert

werden soll. Für alle anderen Zielfunktionen des MOP wird eine obere S
hranke

fest gewählt, die ni
ht übers
hritten werden darf. Das skalare Ersatzproblem hat

dann die folgende Form

min
x∈(R∩Cε)

fj(x) für ein j ∈ {1, . . . nk},

wobei Cε := {x ∈ R
n|fi(x) ≤ εi ∀ i ∈ {1, . . . , nk}mit i 6= j} gilt.

Hier wird die Transformation des MOP in ein skalares Problem dur
h die Wahl

der zu minimierenden Zielfunktion fj und der Grenzen εi für die anderen Ziel-

funktionen bestimmt. Eine S
hwierigkeit dieser Methode ist es, die S
hranken εi
geeignet zu wählen, um sowohl zulässige als au
h sinnvolle Grenzen für das un-

tersu
hte Problem zu erhalten. Wenn εi z. B. zu groÿ gewählt wird, erhält man

keine neuen Lösungen, da es ni
ht zu einer weiteren Eins
hränkung des Optimie-

rungsproblems kommt.
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Methode mit Gleichheitsnebenbedingungen

Die Methode mit Glei
hheitsnebenbedingungen ist eine Erweiterung der ε-
on-
straint Methode und wurde zuerst in [Lin76℄ bes
hrieben. Au
h hier wird eine feste

Zielfunktion für die Optimierung ausgewählt. Die weiteren Zielfunktionen werden

für die Umwandlung in ein skalares Problem als Glei
hheitsnebenbedingungen

formuliert. Es ergibt si
h dadur
h die folgende Bes
hreibung

min
x∈(R∩D)

fj(x) für ein j ∈ {1, . . . , nk},

mit D := {x ∈ R
n|fi(x) − εi = 0 ∀ i ∈ {1, . . . , nk}mit i 6= j}. Eine gra�s
he

Interpretation des Verfahrens ist in Bild 4-3 zu sehen.

f1

f2

F (R)

F (x̄)

F (x∗)
ε12
ε22

Bild 4-3: S
hematis
he Darstellung der Methode mit Glei
hheitsnebenbedingun-

gen: Im Fall von ε12 erhält man einen Paretopunkt. Bei ε22 dagegen erhält

man einen dur
h andere Punkte dominierten Punkt. Dur
h die gewähl-

ten Eins
hränkungen ist es dem Minimierungsverfahren in diesem Fall

ni
ht mögli
h einen globalen Paretopunkt zu bere
hnen.

Dur
h eine Variation der festen Zielfunktion fj und der Bes
hränkungen εi können
prinzipiell alle paretooptimalen Punkte bere
hnet werden. Dabei ist die Pareto-

Optimalität aber ni
ht für jede Parameterkon�guration gegeben, denn es sind

viele Mögli
hkeiten denkbar, bei denen es keine zulässige Lösung gibt.

4.3 Optimale Trajektorien am Doppelpendel

In diesem Abs
hnitt werden die Ergebnisse für die Bere
hnung von Trajektorien

des Doppelpendels vorgestellt. Die unter dynamis
hen Aspekten anspru
hsvolls-

te Aufgabe ist es, das Pendel aus der unteren Ruhelage in die obere instabile
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Ruhelage zu überführen. Daher wird im Folgenden dieses Manöver untersu
ht.

Prinzipiell können aber au
h beliebige andere Manöver bere
hnet werden, z. B.

Manöver bei denen andere Ruhelagen als Start- bzw. Endpunkt gewählt werden.

Bei der Bere
hnung dieser Lösungen gibt es, wie s
hon erwähnt, vers
hiedene

Ziele. Zum einen ist es erstrebenswert, mögli
hst zeitoptimale Trajektorien zu

erhalten, zum anderen spielt au
h der Energieverbrau
h eine groÿe Rolle. Für ein

reales te
hnis
hes System sind dies gegenläu�ge Anforderungen, denn wenn ein

Manöver sehr s
hnell dur
hgeführt werden soll, wird im Allgemeinen der Energie-

aufwand ho
h sein. Daher kann die beste Lösung nur ein optimaler Kompromiss

� ein paretooptimaler Punkt (siehe De�nition 4.3) � sein. Von den Ergebnissen

dieser Arbeit ist zu erwarten, dass sie auf andere automatisierbare Prozesse, z. B.

in der Robotik, übertragbar sind, um dort Anwendungen realisieren zu können,

die im gewüns
hten Maÿe sowohl ressour
ens
honend als au
h zeite�zient sind.

Einen Prozess, der diese Anforderungen erfüllt, kann man als optimalen Prozess

bezei
hnen. Dabei ist es mögli
h, au
h andere Ziele bei der Auslegung zu berü
k-

si
htigen. Ein weiteres Ziel, das bei der Optimierung berü
ksi
htigt werden kann,

ist z. B. die Regelgüte.

Zur Bere
hnung der Manöver für das Doppelpendel werden die zuvor bes
hrie-

benen Grundlagen verwendet. Beim Aufstellen des Modells (siehe Abs
hnitt 2.3)

ergeben si
h die stark ni
htlinearen Bewegungsglei
hungen des Doppelpendels.

Diese werden gebrau
ht, um mittels DMOC (siehe Abs
hnitt 3.3) ein diskretes,

endli
h dimensionales Optimalsteuerungsproblem aufzustellen (siehe Abs
hnitt

3.3.4). Mit dem gerade angeführten Wuns
h der zeit- und energieoptimalen Lö-

sungen muss ein Mehrzieloptimierungproblem gelöst werden. Dazu werden die

Methoden aus Abs
hnitt 4.2 angewendet. Das Gesamtproblem kann dann mit

Hilfe von SQP-Verfahren (siehe Abs
hnitt 4.1) numeris
h gelöst werden.

Die Ergebnisse dieses Vorgehens werden in den folgenden Abs
hnitten bes
hrie-

ben. Es wird zunä
hst genauer auf die Implementierung und deren Besonderheiten

eingegangen. Ans
hlieÿend werden einige der vielfältigen Lösungen dargestellt.

Auf die Pareto-Optimalität und die Variabilität der Manöver wird ans
hlieÿend

besonderer Wert gelegt.

4.3.1 Umsetzung der Optimierung

Bei der Umsetzung der Optimalsteuerung, also der Implementierung des Optimie-

rungsverfahrens, existieren viele variable Parameter, die die Lösung des Problems

stark beein�ussen können. Zum Beispiel bestimmt die Anzahl an Knotenpunk-

ten für die Diskretisierung einer Trajektorie, wie genau die diskrete numeris
he

Lösung die exakte kontinuierli
he Lösung approximiert. Je mehr Knotenpunkte

gewählt werden, desto besser ist diese Approximation. Mit steigender Knotenzahl
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vergröÿert si
h aber au
h der Re
henaufwand, so dass immer ein Kompromiss zwi-

s
hen der Approximationsgüte der Lösung und dem Aufwand der Bere
hnungen

eingegangen werden muss.

Die hier verwendeten Algorithmen lösen skalare Optimierungsprobleme. Wenn

mehrere Ziele zu berü
ksi
htigen sind, können die in Abs
hnitt 4.2 bes
hriebenen

Methoden der Skalarisierung verwendet werden. Dabei ergeben si
h bei unter-

s
hiedli
hen Methoden (z. B. gewi
htete Summe oder skalare Optimierung mit

Glei
hheitsnebenbedingungen) dur
haus sehr unters
hiedli
he Bewegungsmuster

der Manöver.

Um realistis
he Lösungen für das te
hnis
he System zu erhalten, müssen te
hni-

s
he Bes
hränkungen (z. B. des Motors) bea
htet werden. Diese können bei der

Optimierung für alle diskreten Zustände und au
h den Steuereingang vorgegeben

werden. Eine Lösung des Optimierungsproblems ist dann immer eine zulässige

Lösung für das reale System, da die Bes
hränkungen s
hon in der Bere
hnung

berü
ksi
htigt werden.

Als weiterer, sehr wi
htiger Aspekt ist die Wahl des initial guess (Anfangss
hät-

zung) für die Optimierung zu nennen. Das Optimierungsverfahren benötigt für

alle Variablen (also die diskreten Zustände und Eingänge) einen Anfangswert,

bei dem der Algorithmus startet. Das Ergebnis der Optimierung hängt sehr stark

von der Wahl des initial guess ab. Vor allem die Lokalität der Lösung wird davon

beein�usst. Ni
htlineare Optimierungsverfahren, wie z. B. SQP-Verfahren, kön-

nen ni
ht si
herstellen, dass die Lösung der Optimierung ein globales Optimum

darstellt. Wenn also der initial guess in der Nähe eines lokalen Optimums liegt,

ist es wahrs
heinli
h, dass der Optimierungsalgorithmus dorthin konvergiert und

ni
ht in das globale Optimum.

Insgesamt hängt die Lösung der Optimierung sehr sensitiv von diversen Einstel-

lungen ab. Dabei besteht au
h immer die Frage, ob das Problem überhaupt eine

zulässige Lösung besitzt und der Optimierer konvergiert. Bei einer zu restrikti-

ven Wahl der Zustandsbes
hränkungen könnte z. B. au
h keine zulässige Lösung

existieren. Das heiÿt, dass das gewüns
hte Manöver physikalis
h ni
ht umsetzbar

ist. Es bedarf somit Systemwissen und der Erfahrung des Programmierers, um

vernünftige Einstellungen für die Optimierung vorzugeben. Andererseits erhält

man dur
h die Anwendung einer Optimierung au
h zusätzli
hes Systemwissen,

z. B. in wel
hen Berei
hen zulässige bzw. optimale Lösungen liegen.

Für die Bere
hnung der Lösungen in den folgenden Abs
hnitten wurden meistens

zwis
hen 200 und 300 Knotenpunkte gewählt, so dass man in etwa eine S
hritt-

weite von 0.01 s errei
ht. Als te
hnis
he Bes
hränkungen sind die Leistungsda-

ten des Linearmotors zu bea
hten (siehe Abs
hnitt 2.2). Als initial guess wird

� wenn ni
ht anders erwähnt � eine zwis
hen Start- und Endpunkt linear inter-
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polierte Trajektorie gewählt. Dies zeigte zufriedenstellende Ergebnisse bezügli
h

Konvergenz und Form der Lösungen.

In dieser Arbeit wird hauptsä
hli
h die Software der Numeri
al Algorithms Group

(NAG) verwendet, wel
he unter anderem Optimierungsalgorithmen zur Minimie-

rung und Maximierung einer Funktion als C-Code bereitstellen. Dieser lässt eine

deutli
h s
hnellere Bere
hnung zu als z. B. die fmin
on-Funktion in Matlab. Prin-

zipiell sind aber beide Ansätze glei
hwertig.

Die NAG-Software hat den weiteren Vorteil, dass sie die Dünnbesetztheit des Pro-

grammierproblems ausnutzt. In der hier betra
hteten Anwendung ist die Ja
obi-

Matrix der Nebenbedingungen dünn besetzt. Dies ist dur
h die Struktur der

diskreten Bewegungsglei
hungen bedingt, denn die k-te diskrete Bewegungsglei-

hung ist dur
h die Approximation mittels des Di�erenzenquotienten nur von

drei diskreten Zuständen qk−1, qk und qk+1 abhängig. Es ergibt si
h bei der Ab-

leitung na
h allen Zustandsvariablen eine Tridiagonalstruktur der Ja
obi-Matrix,

wodur
h diese deutli
h s
hneller bere
hnet werden kann als eine voll besetzte

Matrix. Dieses Vorgehen kann mit der speziellen Bibliothek e04ug
 verwirkli
ht

werden. Die Dokumentation der Software kann unter [Nat13℄ eingesehen werden.

4.3.2 Lösungstrajektorien für den Aufschwung des Doppelpe ndels

Dur
h den Einsatz von Mehrzieloptimierungsverfahren und dadur
h, dass der

Optimierungsalgorithmus nur lokal optimale Lösungen bere
hnet, ergeben si
h

mehrere vers
hiedene Lösungstrajektorien für den Aufs
hwung des Doppelpen-

dels. Auÿerdem sind die Ergebnisse abhängig von vielen mögli
hen Parametern

bei der Implementierung des Optimalsteuerungsproblems und der Einstellung des

Optimierungsverfahrens (siehe Abs
hnitt 4.3.1). Im Folgenden sollen einzelne Lö-

sungen dargestellt werden. Es wurde jeweils die Methode der gewi
hteten Summe

verwendet, und bei den vier vorgestellten Lösungen nimmt die Gewi
htung der

Zeit zu und die des Steueraufwands

(

h ·
∑N−1

k=0 u
2
k

)

ab. Dadur
h werden die Lö-

sungen s
hneller, und der Steueraufwand nimmt zu.

Lösung 1

Die Bewegung 1 ist die komplexeste der vier ausgewählten Trajektorien, d. h. die

Pendelarme werden für den Aufs
hwung des Pendels stark bewegt, siehe Bild 4-4.

In diesem Fall ist die Gewi
htung des Steueraufwands relativ ho
h, sodass si
h

eine Trajektorie ergibt, die wenig Steueraufwand benötigt.

Bei der Bewegung s
hwingt das Pendel zuerst na
h links, und in der Gegenbe-

wegung na
h re
hts wird der untere Arm eingeklappt. Im Weiteren bewegen si
h

die beiden Pendelarme gegeneinander, sodass die Arme in Ri
htung der oberen



88 Kapitel 4

Ruhelage gelangen. Der zweite Pendelarm ma
ht dann no
h eine zusätzli
he kom-

plette Drehung, bis si
h beide Pendelarme in der oberen Ruhelage be�nden. Dies

ist notwendig, um den vorgegebenen Endzustand zu errei
hen und führt trotzdem

zu einem sehr günstigen Manöver.

Die Bewegung 1 ist mit 3.49 s mit Abstand am langsamsten. Dafür ist der Steu-

eraufwand mit 571N2s im Verglei
h am geringsten. Hier ist sehr gut der Zu-

sammenhang zwis
hen dem Steueraufwand und der Zeit für den Aufs
hwung zu

erkennen.
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Bild 4-4: Lösung 1: Aufs
hwung des Doppelpendels auf einem Wagen mit Endzeit

tf = 3.49 s und Steueraufwand E = 571N2s

Lösung 2

Bei Bewegung 2 (siehe Bild 4-5) s
hwingen beide Pendelarme zuerst zügig na
h

links und verfahren dann mit dem erzeugten S
hwung na
h re
hts, sodass si
h

beide Pendelarme weiter na
h oben bewegt. Dabei ist der äuÿere Pendelarm �ein-

geklappt�, d. h. fast parallel zum inneren Pendelarm. Dur
h eine weitere Gegen-

bewegung na
h links wird der Pendelarm dann in die obere Ruhelage geführt und

dort stabilisiert. Diese Bewegung benötigt im Gegensatz zur ersten Bewegung

einen gröÿeren Steueraufwand von 721N2s, ist dafür aber au
h mit 2.32 s mehr
als eine Sekunde s
hneller.
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Bild 4-5: Lösung 2: Aufs
hwung des Doppelpendels auf einem Wagen mit Endzeit

tf = 2.32 s und Steueraufwand E = 721N2s

Lösung 3

Bei der Bewegung 3 (siehe Bild 4-6) fährt das Pendel zunä
hst relativ langsam

na
h re
hts und bringt dann beide Pendelarme glei
hzeitig dur
h eine starke Be-

s
hleunigung na
h links in Ri
htung der oberen Ruhelage. Oben muss es no
h

dur
h kleinere Steuereingri�e stabilisiert und in den Endzustand in der oberen

Ruhelage verfahren werden. Diese s
hnelle Bewegung führt zu einer kurzen Ma-

növerzeit von 2.05 s und einem relativ hohen Steueraufwand von 1593N2s.

Lösung 4

Die Bewegung 4 (siehe Bild 4-7) ist ähnli
h zur Bewegung 3. Hier wurde die

Gewi
htung der Zeit des Manövers am gröÿten gewählt, sodass si
h eine sehr

kurze Manöverzeit ergibt. Das gesamte Pendel wird au
h hier dur
h eine s
hnelle

Bewegung na
h links na
h oben gezogen und dann dort stabilisiert. In diesem

Fall wird nur eine s
hwa
he Ausholbewegung na
h re
hts ausgeführt und der

Aufs
hwung dann in der Bewegung na
h links dur
hgeführt. Es wirkt eine hohe

Bes
hleunigung, und dadur
h entsteht ein hoher Steueraufwand. Die Bewegung 4
ist im Verglei
h mit 1.38 s am s
hnellsten. Entspre
hend benötigt sie mit 5402N2s
aber den gröÿten Steueraufwand.
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Bild 4-6: Lösung 3: Aufs
hwung des Doppelpendels auf einem Wagen mit Endzeit

tf = 2.05 s und Steueraufwand E = 1593N2s
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Bild 4-7: Lösung 4: Aufs
hwung des Doppelpendels auf einem Wagen mit Endzeit

tf = 1.38 s und Steueraufwand E = 5402N2s
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In Bild 4-8 sind die Zielfunktionswerte der eben bes
hriebenen Trajektorien aufge-

tragen. Hierbei wird deutli
h, dass diese Punkte eine Menge von ni
ht dominierten

Punkten bilden und somit optimale Kompromisse zwis
hen einem energiee�zien-

ten und zeitoptimalen Manöver darstellen. Für die Ergebnisse dieser Optimierung

gibt es keine Methode, die si
herstellt, dass es si
h wirkli
h um paretooptimale

Lösungen handelt. Da aber im Folgenden sehr viele Lösungen dur
h unters
hied-

li
he Ansätze bere
hnet werden, wird davon ausgegangen, dass die si
h dadur
h

ergebenden ni
ht dominierten Punkte als paretooptimal für das System angesehen

werden können. Die Zielfunktionswerte können prinzipiell dur
h eine Kurve ver-

bunden werden. Es ist zu erwarten, dass weitere paretooptimale Lösungen dann

auf dieser Kurve liegen, was in Abs
hnitt 4.3.4 genauer evaluiert wird.
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Bild 4-8: Paretofront mit den Zielfunktionswerten der vier ausgewählten Trajek-

torien

4.3.3 Ergebnisse am Prüfstand des Doppelpendels

Bevor die bere
hneten optimalen Steuerstrategien am Prüfstand erprobt werden

können, müssen zunä
hst modellbasierte Tests gema
ht werden. Es wird eine

zeitvariante Regelung entlang der Solltrajektorie bere
hnet, um Abwei
hungen

vom Sollwert kompensieren zu können (siehe Abs
hnitt 2.4.2). Das gesamte Re-

gelungskonzept mit der Zwei-Freiheitsgrade-Struktur wird dann an dem Simu-

lationsmodell (siehe Abs
hnitt 2.4.1) untersu
ht. Dadur
h ist es mögli
h, s
hon

vor den ersten praktis
hen Tests einen mögli
hst guten Regler auszulegen. Hierzu

können die Gewi
htungsmatrizen im LQR-Entwurf variiert werden, siehe (2-20).

Da im Simulationsmodell alle wesentli
hen dynamis
hen E�ekte berü
ksi
htigt

werden, ist es mögli
h, von den modellbasierten Tests auf eine Dur
hführung am

Prüfstand zu s
hlieÿen.
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Bild 4-9: Aufs
hwung des Doppelpendels auf einem Wagen am Prüfstand (dar-

gestellt werden ϕ1, ϕ2 und y): Solltrajektorie (blaue dur
hgezogene Li-

nie), Messwerte für das gesteuerte System (grüne Stri
hpunktlinie) und

Messwerte für das gesteuerte System inklusive Regelung (rote gestri
hel-

te Linie)

Die Bewegung 2 aus dem vorhergehenden Abs
hnitt konnte so als diejenige Tra-

jektorie identi�ziert werden, bei der imModell das Pendel dur
h den Reglereinsatz

am besten der Solltrajektorie folgt. Dies liegt unter anderem daran, dass s
hon

das Folgeverhalten ohne Regelung bei dieser Trajektorie als sehr gut bewertet

werden kann. Daher wurde diese Trajektorie für Tests am Prüfstand ausgewählt.

In Bild 4-9 sind die entspre
henden Ergebnisse dargestellt. Die dur
hgezogene

blaue Linie entspri
ht der nominalen Trajektorie und damit dem Sollverlauf der

Zustandsgröÿen. Bei der gepunkteten grünen Linie wird nur die nominale Steue-

rung auf das Pendel aufgebra
ht, ohne die Regelung zu verwenden. Es wird deut-

li
h, dass das Pendel au
h allein dur
h diese Vorsteuerung der Solltrajektorie

gut folgt. Die Pendelarme können aber ni
ht in der oberen Ruhelage stabilisiert

werden. Dies ist dann dur
h den zusätzli
hen Einsatz der Regelung entlang der

Trajektorie und in der Ruhelage gewährleistet und wird dur
h die gestri
helte

rote Linie dargestellt. Mit Hilfe der Zwei-Freiheitsgrade-Regelung ist es mögli
h,

dass das Pendel der bere
hneten Solltrajektorie sehr gut folgt. Nur beim Verlauf

der Wagenbewegung y ist eine geringe Abwei
hung zu erkennen, die dur
h die Re-
aktion des Wagens auf Störungen zu erklären ist. Der Wagen muss hier dur
h eine

zusätzli
he Auswei
hbewegung das Pendel so ansteuern, dass eine Stabilisierung

in der oberen Ruhelage mögli
h ist.
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Die Ergebnisse aus den Abs
hnitten 4.3.2 und 4.3.3 wurden au
h in [TKOBT11℄

verö�entli
ht.

4.3.4 Pareto-Optimalität von Lösungen für den Aufschwung

Bei der Bere
hnung von Trajektorien für den Aufs
hwung des Doppelpendels auf

einem Wagen dur
h den bes
hriebenen Ansatz mit optimaler Steuerung gibt es

viele Mögli
hkeiten, die Lösung zu beein�ussen. Es können z. B. unters
hiedli
he

Ansätze für die Mehrzieloptimierung benutzt oder die te
hnis
hen Eins
hränkun-

gen variiert werden. In diesem Abs
hnitt werden nun einige Verglei
he aufgestellt,

indem eine groÿe Menge an einzelnen Optimierungen dur
hgeführt wird und dann

die Zielfunktionswerte der Manöverzeit und des Steueraufwands für das Manö-

ver ausgewertet werden. Die Ergebnisse werden dann bezügli
h paretooptima-

ler Punkte bzw. Paretofronten analysiert. Diese Strukturen können in diversen

Anwendungsbeispielen verwendet werden, um weiterführende Fragestellungen zu

beantworten. Im Rahmen des Sonderfors
hungsberei
hs (SFB) 614 - Selbstopti-

mierende Systeme des Mas
hinenbaus an der Universität Paderborn werden Pare-

tofronten z. B. dazu verwendet, optimale Reglerparameter für vers
hiedene Stre-


kenabs
hnitte eines autonom fahrenden S
hienenfahrzeugs anzupassen [VT08℄.

Eine andere Anwendung ist ein hierar
his
her Mehrzieloptimierungsansatz, bei

dem das optimale Verhalten von unterlagerten Systemen mit Hilfe von Pareto-

fronten dargestellt wird [MAK

+
08℄. Dies bietet Vorteile für die ans
hlieÿende

Optimierung des Gesamtsystems. Zusammenfassend lässt si
h für viele Anwen-

dungsbeispiele ein optimales Verhalten mit Hilfe von Paretofronten abstrahieren

und damit ist eine einfa
here Auswahl bestimmter Systemkon�gurationen mög-

li
h.

Eine wi
htige Eigens
haft, die in den oben genannten Arbeiten gefordert wird, ist,

dass die Paretofronten keine Unstetigkeiten besitzen dürfen. Dies dient einer mög-

li
hst glei
hmäÿigen Anpassung des Systemverhaltens bezügli
h der ausgewählten

Zielfunktionen. Daher soll au
h hier untersu
ht werden, in wie weit es mögli
h

ist, für den Aufs
hwung des Doppelpendels eine Paretofront zu bestimmen, die

keine Lü
ken oder Sprünge hat.

Im Folgenden werden sowohl die Mehrzieloptimierung mit gewi
hteter Summe als

au
h mit Glei
hheitsnebenbedingungen verwendet (siehe hierzu Abs
hnitt 4.2).

Bei der zweiten Methode wird die Manöverzeit festgehalten und nur der Steuerauf-

wand für das Manöver optimiert. Auÿerdem wird untersu
ht, wel
hen Ein�uss die

Wegbegrenzung des Motors auf die Lösungen besitzt, denn es besteht die Frage,

ob der reale Verfahrweg am Prüfstand von maximal ±0.55m ein eins
hränkender

Faktor für die Lösungen zum Aufs
hwung ist. Hierzu werden Optimierungen mit

einer Wegbegrenzung von ±0.55m und ±1.5m dur
hgeführt. Bei allen Optimie-
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rungen wird die Zeit auf das Intervall I = [0.8, 4] s bes
hränkt. Die bere
hne-

ten Trajektorien besitzen 200 Knotenpunkte, so dass si
h eine S
hrittweite von

0.004 s ≤ h ≤ 0.02 s ergibt.

Ergebnisse der Optimierung

Zunä
hst wurde die Mehrzieloptimierung mit der Methode der gewi
hteten Sum-

me für vers
hiedene Wegbegrenzungen des Motors dur
hgeführt. Die Ergebnisse

sind in Bild 4-10 zu sehen. Es fällt auf, dass es mehrere Zweige von lokal optimalen

Lösungen gibt, die jeweils einem unters
hiedli
hen Manöver für den Aufs
hwung

entspre
hen. Auÿerdem be�nden si
h viele Lösungen bei einer maximalen Zeit

von 4 s, besitzen aber einen hohen Steueraufwand, der deutli
h ma
ht, dass die-

se Lösungen keinesfalls paretooptimale Punkte darstellen. Sie werden daher ni
ht

weiter betra
htet. Weiterhin ist zu erkennen, dass si
h viele Lösungen in mehreren

kleinen Gebieten häufen. Dies kann dadur
h erklärt werden, dass es wahrs
hein-

li
h ein Manöver mit ungefähr diesem Zielfunktionswert gibt, das si
h dynamis
h

gut realisieren lässt, also z. B. einer mögli
hst einfa
hen Bewegung für die ent-

spre
hende Manöverzeit entspri
ht. Daher konvergiert die Optimierung häu�ger

in diesen Berei
hen und man erhält si
h ähnelnde Lösungen. An den Ergebnissen

sieht man au
h, dass die Lösungen mit der Wegbegrenzung von ±1.5m prinzipiell

etwas günstiger sind. Dies ist zu erwarten, da dur
h den gröÿeren Weg dynami-

s
he E�ekte besser genutzt werden können, so dass der Aufs
hwung mit weniger

Steueraufwand dur
hgeführt werden kann.
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Bild 4-10: Mehrzieloptimierung mit gewi
hteter Summe und unters
hiedli
her

Wegbegrenzung für den Motor (Wegbegrenzung ±0.55m blaue Sterne,

Wegbegrenzung ±1.5m grüne Kreuze); re
hts: Auss
hnitt
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Bild 4-11: Mehrzieloptimierung mit gewi
hteter Summe und unters
hiedli
her

Wegbegrenzung für den Motor (Wegbegrenzung ±0.55m blaue Sterne,

Wegbegrenzung ±1.5m grüne Kreuze); Darstellung der ni
ht dominier-

ten Punkte; re
hts: Auss
hnitt

Aus dieser groÿen Menge von Punkten werden im zweiten S
hritt diejenigen be-

stimmt, die einem optimalen Kompromiss zwis
hen den beiden Zielfunktionen

entspre
hen � also die paretooptimalen Punkte. Dazu wird unter den Zielfunkti-

onswerten der einzelnen Lösungen ein Ni
htdominanztest dur
hgeführt. Punkte,

die ni
ht von anderen Punkten dominiert werden, sind Kandidaten für paretoop-

timale Punkte (siehe au
h die De�nitionen 4.2 und 4.3). Für jede einzelne Menge

von Punkten (Wegbegrenzung von ±0.55m und ±1.5m) werden die ni
ht domi-

nierten Punkte bere
hnet und sind in Bild 4-11 dargestellt. Es wird deutli
h, dass

sehr viele Punkte dur
h andere dominiert werden und im Verglei
h zu Bild 4-10

entfernt wurden. Somit sind alle entfernten Punkte nur lokal optimale Lösungen.

An einigen Stellen häufen si
h die Punkte, und dazwis
hen gibt es groÿe Lü
ken,

so dass si
h keine stetige Menge an Zielfunktionswerten ergibt. Dies liegt daran,

dass dur
h die Mehrzieloptimierung mit gewi
hteter Summe keine glei
hmäÿi-

ge Verteilung der Zielfunktionswerte im Bildraum garantiert werden kann (siehe

au
h Abs
hnitt 4.2).

Als zweite Methode wird die Mehrzieloptimierung mit Glei
hheitsnebenbedingun-

gen verwendet. Hier wird für jede Optimierung die Manöverzeit festgelegt und nur

no
h der Steueraufwand des Manövers (J = h ·
∑N−1

k=0 u
2
k) optimiert. In Bild 4-12

sind die Ergebnisse dieser Optimierung dargestellt, und zwar auf der linken Seite

wieder alle Ergebnisse für vers
hiedene Wegbegrenzungen und re
hts die daraus

resultierenden ni
ht dominierten Punkte. Dur
h diese Methode lassen si
h o�en-

si
htli
h Ergebnisse mit einer deutli
h besseren Verteilung im Bildraum erzeugen.
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Bild 4-12: Links: Mehrzieloptimierung mit Glei
hheitsnebenbedingungen und un-

ters
hiedli
her Wegbegrenzung für den Motor (Wegbegrenzung ±0.55m
blaue Sterne, Wegbegrenzung ±1.5m grüne Kreise); re
hts: Darstel-

lung der ni
ht-dominierten Punkte

Bei den s
hnellen Lösungen um 1 s erhält man eine annähernd stetige Verteilung

der ni
ht dominierten Punkte, was einer Paretofront mit den gewüns
hten Ei-

gens
haften nahe kommt. Auÿerdem ist hier zu sehen, dass die Lösungen mit

vers
hiedenen Wegbegrenzungen fast identis
h sind. Es lässt si
h s
hlussfolgern,

dass für die optimale Lösung mit starker Zeitgewi
htung ein Verfahrweg kleiner

als ±0.55m ausrei
ht, bzw. dass mit einem gröÿeren Verfahrweg keine deutli
h

besseren Lösungen erzielt werden können. Bei den langsameren Lösungen gibt

es eine deutli
h gröÿere Streuung der Ergebnisse. Dies liegt daran, dass es hier

viele unters
hiedli
he dynamis
he Manöver für den Aufs
hwung gibt. Im Gegen-

satz dazu ist bei den s
hnellen Lösungen nur ein einziges Manöver überhaupt in

der Lage, alle Randbedingungen des optimalen Steueurungsproblems zu erfüllen.

Bei den Lösungen zwis
hen 3 s und 4 s sind die günstigsten Lösungen bei einer

Optimierung mit Wegbegrenzung von ±0.55m entstanden, obwohl dies ni
ht un-

bedingt zu erwarten war. Ans
heinend ergibt si
h aber gerade dur
h die stärkere

Wegbegrenzung eine günstigere lokale Lösung. Die Menge der ni
ht dominierten

Punkte besitzt in diesem Fall weniger und kleinere Lü
ken und kommt daher dem

Ziel einer stetigen Paretofront für den Aufs
hwung des Doppelpendels auf einem

Wagen näher.

In Bild 4-13 werden die beiden Verfahren zur Mehrzieloptimierung für Bere
h-

nungen mit einer Wegbegrenzung von ±0.55m vergli
hen. Die Optimierung mit

gewi
hteter Summe besitzt deutli
h mehr lokal optimale Lösungen, aber insge-

samt ergänzen si
h beide Verfahren gut. Beim Einsatz von nur einer Methode
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Bild 4-13: Verglei
h Optimierung mit Glei
hheitsnebenbedingungen (blaue Ster-

ne) und Optimierung mit gewi
hteter Summe (grüne Kreise) für eine

Wegbegrenzung von ±0.55m; re
hts: Darstellung der ni
ht-dominierten

Punkte

wäre die Optimierung mit Glei
hheitsnebenbedingungen zu bevorzugen, wenn

man glei
hmäÿig verteilte Ergebnisse errei
hen mö
hte. Hier ist bei den ni
ht do-

minierten Punkten s
hon die typis
he hyperbelartige Form einer Paretofront zu

erkennen. Die Optimierung mit gewi
hteter Summe besitzt dafür mehr Freiheiten,

da sie ni
ht auf eine Manöverzeit festgelegt ist. Für erste Abs
hätzungen über die

mögli
hen Varianten der Lösungen ist diese Methode daher zu empfehlen. Dabei

lässt si
h au
h z. B. evaluieren, in wel
hem Berei
h der Zielfunktionswerte mit

der Methode mit Glei
hheitsnebenbedingungen zusätzli
h bzw. genauer gesu
ht

werden sollte.

Abs
hlieÿend werden in Bild 4-14 auf der linken Seite alle ni
ht dominierten

Punkte der vers
hiedenen Ansätze vergli
hen. Es wird deutli
h, dass si
h die Ver-

fahren gut ergänzen und si
h eine Paretofront mit nur no
h kleineren Lü
ken

ergibt. Es gibt keinen ents
heidenden Unters
hied für die Zielfunktionswerte bei

der unters
hiedli
hen Wahl der Wegbegrenzung. Somit lässt si
h s
hlieÿen, dass

für einen optimalen Aufs
hwung des Doppelpendels auf einem Wagen kein gröÿe-

rer Verfahrweg vorteilhaft ist. Aus den hier gezeigten Punkten können nun au
h

die dominierten Punkte entfernt werden und auf der re
hten Seite von Bild 4-14

ist das entspre
hende Ergebnis dargestellt. Ein Ziel für weitere Untersu
hungen

ist es, die Lü
ken und Sprünge innerhalb dieser Ergebnisse zu glätten.
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Bild 4-14: Links: Zusammenstellung aller ni
ht-dominierten Punkte: Optimie-

rung mit Glei
hheitsnebenbedingungen und Wegbegrenzung ±0.55m
(blaue Sterne), Optimierung mit gewi
hteter Summe und Wegbegren-

zung ±0.55m (grüne Kreise), Optimierung mit Glei
hheitsnebenbedin-

gungen und Wegbegrenzung ±1.5m (rote Quadrate) und Optimierung

mit gewi
hteter Summe und Wegbegrenzung ±1.5m (gelbe Kreuze);

re
hts: ni
ht-dominierte Punkte aller Punkte auf der linken Seite
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4.3.5 Nachoptimierung

Es werden nun die paretooptimalen Punkte aus dem letzten Abs
hnitt ausge-

wählt, um eine Na
hoptimierung dur
hzuführen. Das heiÿt, dass diese Lösungen

jeweils als neuer initial guess für die Optimierung genutzt werden und dabei aber

die Parameter der Mehrzieloptimierungsmethode mit Glei
hheitsnebenbedingun-

gen verändert werden. Dies wird z. B. dur
h eine Anpassung der Manöverzeit

dur
hgeführt. Da in diesem Fall s
hon zu Beginn der Optimierung eine lokal op-

timale Lösung vorliegt, konvergiert die Optimierung s
hnell, und die Lösung wird

dur
h eine geringe Veränderung der Parameter nur lei
ht verändert. Es ergibt

si
h ein Manöver mit einer ähnli
hen Bewegung, aber etwas anderen Zielfunkti-

onswerten.
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Bild 4-15: Links: Na
hoptimierung ausgewählter Punkte mit Wegbegrenzung

0.55m: Ausgangssituation der Paretofront (blaue Sterne), ausgewähl-

te Lösungen für den Start der Na
hoptimierung (lila Rauten); re
hts:

Darstellung der ni
ht-dominierten Punkte

In Bild 4-15 werden die Ergebnisse der Na
hoptimierung für drei ausgewählte

Fälle dargestellt. Mit den violetten Rauten sind diejenigen Lösungen markiert,

die für eine Na
hoptimierung ausgewählt worden sind. Diese werden in der Opti-

mierung als neuer initial guess gesetzt, und die Manöverzeit wird dur
h die Wahl

tf,Nachoptimierung = tf,initial ± εt etwas variiert, wobei εt = 0.05 s ist. Die hieraus
bere
hnete Lösung wird dann wieder für die nä
hste Na
hoptimierung als initi-

al guess gewählt, so dass diese aufeinander aufbauen. In Bild 4-15 wird deutli
h,

dass si
h dur
h dieses Vorgehen vers
hiedene Zweige von Lösungen ergeben. Jeder

dieser Zweige entspri
ht einer bestimmten Bewegungsform für den Aufs
hwung

des Doppelpendels. Es gibt bei jedem der ausgewählten Fälle der Na
hoptimie-

rung Stellen, an denen die einzelnen Zweige umspringen, und si
h dadur
h eine
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Bild 4-16: Variation einer Trajektorie dur
h Na
hoptimierung: dargestellt werden

ϕ1, ϕ2 und y; die gelbe Trajektorie ist die S
hnellste und die grüne

Trajektorie ist die Langsamste

weitere neue Bewegung ergibt. In Bild 4-16 sind die Verläufe der Zustände von

vers
hiedenen Lösungen des mittleren roten bzw. mit Quadraten gekennzei
hne-

ten Zweiges dargestellt. Hier wird deutli
h, dass es si
h immer um die glei
he

Aufs
hwungbewegung handelt, diese aber unters
hiedli
h lange dauert. Entspre-


hend ändert si
h au
h der Steueraufwand; er wird also bei einem Manöver mit

längerer Zeit geringer. Wenn nun eine Auswahl einer Lösung für das dynamis
he

System gema
ht werden muss, ist es dur
h diesen Ansatz mögli
h, die Bewegung

fast beliebig bezügli
h der Aufs
hwungzeit und dem Steueraufwand anzupassen.

Na
hdem eine sol
he Na
hoptimierung für alle ursprüngli
h ausgewählten pareto-

optimalen Punkte für das gesamte Zeitintervall dur
hgeführt wurde und ans
hlie-

ÿend die dominierten Punkte entfernt sind, ergibt si
h eine neue Paretofront, die

in Bild 4-15 (re
hts) dargestellt ist. Diese Paretofront besteht aus drei Zweigen,

die dur
h die Na
hoptimierung entstanden sind, und diese einzelnen Zweige ent-

spre
hen jeweils einer Bewegungsform, die in einem bestimmten Zeitintervall die

optimale Lösung darstellt. Die einzelnen Zweige gehen ineinander über und bilden

so eine stetige Paretofront im Bildraum der Zielfunktionen. Dabei ist hier mit der

stetigen Paretofront eine sehr feine Approximation eines kontinuierli
hen Objekts

gemeint, denn sie besteht weiterhin aus vielen diskreten Punkten im Bildraum.

Zusammenfassend ist es gelungen mit Hilfe von vers
hiedenen Ansätzen der Mehr-

zieloptimierung und einer gezielten Na
hoptimierung von vers
hiedenen Lösun-

gen eine stetige Paretofront zu bere
hnen. Aus dieser Paretofront lässt si
h au
h

zusätzli
hes Systemverständnis ziehen. Für den Aufs
hwung des Doppelpendels
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ergeben si
h drei Lösungen, die jeweils in einem Zeitintervall die optimale Bewe-

gung darstellen. Sie gehen ineinander über, so dass si
h eine Paretofront mit der

gewüns
hten stetigen Form ergibt.

Dieses Vorgehen ist au
h für andere Systeme mit ähnli
hem dynamis
hen Ver-

halten anwendbar, so dass man Paretofronten erhält, die Informationen über das

Systemverhalten enthalten oder für weitere Aufgaben verwendet werden können.

Au
h die Mögli
hkeit, eine optimale Trajektorie dur
h eine Na
hoptimierung fast

beliebig an die gewüns
hten Zielfunktionswerte anpassen zu können, bietet einen

Vorteil gegenüber anderen Methoden zur Bestimmung von Steuerungen für dy-

namis
he Systeme.

Anwendung der Nachoptimierung am Prüfstand

Die na
hoptimierten Trajektorien können au
h am Prüfstand umgesetzt werden.

Die Ergebnisse dieser Untersu
hung sind in Bild 4-17 dargestellt. Oben werden

unters
hiedli
he Zielfunktionswerte der na
hoptimierten Trajektorie dargestellt,

die au
h s
hon in Abs
hnitt 4.3.3 für die Umsetzung am Prüfstand ausgewählt

wurde. Es sind dann drei der getesteten Trajektorien in rot (Kreuz), blau (Kreis)

und grün (Quadrat) gekennzei
hnet. Die Verläufe der Winkel und des Wagens

sind zusätzli
h in den entspre
henden Farben (bzw. dur
hgezogene, gepunkte-

te, gestri
helte Linie) dargestellt. Dabei wird deutli
h, dass die rote Trajektorie

au
h am Prüfstand das s
hnellste Manöver für den Aufs
hwung ist und die grün

gestri
helte das Langsamste. Auÿerdem wird au
h der E�ekt der Variation der

Trajektorien genauso wie in Bild 4-16 deutli
h.

Diese Variation der Trajektorien au
h am Prüfstand bietet eine hohe Adaptions-

mögli
hkeit der Manöver für den Anwender. Auÿerdem kann so getestet werden,

ob es eine spezielle Kombination der Zielfunktionen gibt, die z. B. eine gute Re-

gelbarkeit zeigt. Insgesamt konnte gezeigt werden, dass si
h die Anpassung von

Trajektorien für den Aufs
hwung des Doppelpendels dur
h Na
hoptimierung so-

wohl für die Ergebnisse der Optimierung als au
h für die Umsetzung am Prüfstand

als vorteilhaft erwiesen hat.

4.4 Optimale Trajektorien am Dreifachpendel

Im Folgenden wird für das Dreifa
hpendel auf einem Wagen die Anwendung der

DMOC Methode analog zum Doppelpendel auf einem Wagen dur
hgeführt. Es

lassen si
h ebenfalls optimale Steuerungsmanöver für dieses System bestimmen.

Es ist allerdings zu berü
ksi
htigen, dass das Dreifa
hpendel eine komplexere Dy-

namik besitzt und s
hon allein dur
h die gröÿere Anzahl der Zustandsgröÿen die

Optimierung aufwändiger wird. Au
h für das Dreifa
hpendel ist der Fahrweg des
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Bild 4-17: Umsetzung von na
hoptimierten Trajektorien am Prüfstand: Die Far-

ben der Verläufe von ϕ1, ϕ2 und y entspre
hen der Kennzei
hnung

der Paretofront; Dur
hlauf 1: rotes Kreuz - rote dur
hgezogene Linie,

Dur
hlauf 2: blauer Kreis - blaue gepunktete Linie, Dur
hlauf 3: grünes
Quadrat - grüne gestri
helte Linie
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Motors auf ±0.55m bes
hränkt, um die realen Bes
hränkungen zu berü
ksi
hti-

gen. Dur
h die Ergebnisse der optimalen Steuerung wird gezeigt, dass der Ver-

fahrweg au
h für dieses System ausrei
hend ist. Alle hier vorgestellten Lösungen

sind mit der Methode der gewi
hteten Summe bere
hnet worden. Im Folgenden

werden nun einige dieser Lösungen für das Dreifa
hpendel vorgestellt.

4.4.1 Lösungstrajektorien für den Aufschwung des Dreifach pendels

Au
h für das Dreifa
hpendel ergeben si
h dur
h die Mehrzieloptimierung mehrere

Lösungen für den Aufs
hwung. Bei den Ergebnissen ist au�ällig, dass bei vielen

Lösungen die obere Ruhelage erst dur
h einen Übergang dur
h eine der ande-

ren Ruhelagen errei
ht wird. Dabei kommt das Pendel im Verlauf der Bewegung

ni
ht zur Ruhe, sondern nimmt nur die entspre
henden Lagekoordinaten ein. Die

hier angespro
henen Ruhelagen werden ni
ht exakt dur
hlaufen, sind aber in den

folgenden Bildern gut zu erkennen. Das Dur
hlaufen der Ruhelagen ist dadur
h

zu erklären, dass für den Aufs
hwung nur ein kurzer Verfahrweg zur Verfügung

steht und das dem Dreifa
hpendel na
h und na
h über die anderen Ruhelagen

immer mehr Energie zugeführt wird. Dur
h den Übergang kann die potentielle

Energie immer weiter erhöht werden. Für die bessere Bes
hreibung der Bewegun-

gen sind in Bild 4-18 die Ruhelagen vorgestellt, die innerhalb der Lösungen für

den Aufs
hwung auftau
hen werden.

Bild 4-18: Vers
hiedene Ruhelagen des Dreifa
hpendels

Lösung 1

Die erste Lösung aus Bild 4-19 bes
hreibt mit 2.52 s den s
hnellsten der ausge-

wählten Aufs
hwünge des Dreifa
hpendels auf einem Wagen, und daher ist au
h
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der Steueraufwand mit E = 2404N2s am hö
hsten. Die Bewegung besteht aus

zwei Teilen: Zunä
hst wird das Pendel in die Position der Ruhelage 2 aus Bild 4-18
gebra
ht, um si
h dann weiter in die obere Ruhelage zu bewegen. Im ersten Teil

der Bewegung wird das Pendel also �zusammengeklappt� und stre
kt si
h dann

wieder in Ri
htung der oberen Ruhelage.

t ∈ [0.00, 0.21]s t ∈ [0.21, 0.42]s t ∈ [0.42, 0.63]s t ∈ [0.63, 0.84]s

t ∈ [0.84, 1.04]s t ∈ [1.04, 1.25]s t ∈ [1.25, 1.46]s t ∈ [1.46, 1.67]s

t ∈ [1.67, 1.88]s t ∈ [1.88, 2.09]s t ∈ [2.09, 2.30]s t ∈ [2.30, 2.51]s

Bild 4-19: Lösung 1: Aufs
hwung des Dreifa
hpendels auf einem Wagen mit End-

zeit tf = 2.51 s und Steueraufwand E = 2404N2s

Lösung 2

In der zweiten Lösung (siehe Bild 4-20) sind dann sogar die Positionen von zwei

vers
hiedenen Ruhelagen während des Manövers zu erkennen. Zunä
hst die Be-

wegung zur Ruhelage drei und von dort zur Ruhelage vier. Im letzten S
hritt

muss nur no
h der äuÿerste Pendelarm �ausgeklappt� werden, und das Dreifa
h-

pendel be�ndet si
h in der oberen Ruhelage. Diese Bewegung dauert 2.6 s bei

einem Steueraufwand von E = 2123N2s.

Lösung 3

In Bewegung 3 (siehe Bild 4-21) wird im ersten Teil die Position der Ruhelage drei

erzeugt und im zweiten Teil des Aufs
hwungs werden dann alle drei Pendelarme

in die obere Ruhelage gebra
ht. Dieses Manöver dauert 2.79 s und hat einen
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t ∈ [0.00, 0.22]s t ∈ [0.22, 0.43]s t ∈ [0.43, 0.65]s t ∈ [0.65, 0.87]s

t ∈ [0.87, 1.08]s t ∈ [1.08, 1.30]s t ∈ [1.30, 1.52]s t ∈ [1.52, 1.73]s

t ∈ [1.73, 1.95]s t ∈ [1.95, 2.17]s t ∈ [2.17, 2.38]s t ∈ [2.38, 2.60]s

Bild 4-20: Lösung 2: Aufs
hwung des Dreifa
hpendels auf einem Wagen mit End-

zeit tf = 2.6 s und Steueraufwand E = 2123N2s

Steueraufwand von E = 1117N2s. Ähnli
he Manöver haben si
h au
h s
hon

beim Doppelpendel ergeben, wenn man eine Bewegung vorgegeben hat, die die

entspre
hende Ruhelage beinhaltet. Hier, beim Dreifa
hpendel, ergibt si
h diese

komplexe Bewegung automatis
h dadur
h, dass für ein direktes Manöver ni
ht

genügend Verfahrweg zur Verfügung steht. Abhilfe von dieser Problematik s
ha�t

dann Lösung 5.

Lösung 4

Die vierte Bewegung (siehe Bild 4-22) ist im Prinzip ähnli
h zu Bewegung 3. Hier
wird zunä
hst die Position der Ruhelage 1 angefahren und aus dieser heraus das

Pendel im zweiten Teil des Aufs
hwungs in die obere Ruhelage gebra
ht. Dieses

Manöver dauert 3.13 s und benötigt einen Steueraufwand von 938N2s.

Lösung 5

Dur
h Lösung 5 wird untersu
ht, ob ein direkter Aufs
hwung des Dreifa
hpendels
mögli
h ist, wenn man den zur Verfügung stehenden Verfahrweg in eine Ri
htung

komplett ausnutzt. Dazu ist der Anfangszustand jetzt ganz re
hts gewählt, sodass

dem Motor insgesamt 1.1m zur Verfügung stehen. In Bild 4-23 ist zu erkennen,
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t ∈ [0.00, 0.23]s t ∈ [0.23, 0.47]s t ∈ [0.47, 0.70]s t ∈ [0.70, 0.93]s

t ∈ [0.93, 1.16]s t ∈ [1.16, 1.40]s t ∈ [1.40, 1.63]s t ∈ [1.63, 1.86]s

t ∈ [1.86, 2.10]s t ∈ [2.10, 2.33]s t ∈ [2.33, 2.56]s t ∈ [2.56, 2.79]s

Bild 4-21: Lösung 3: Aufs
hwung des Dreifa
hpendels auf einem Wagen mit End-

zeit tf = 2.79 s und Steueraufwand E = 1117N2s

t ∈ [0.00, 0.26]s t ∈ [0.26, 0.52]s t ∈ [0.52, 0.78]s t ∈ [0.78, 1.04]s

t ∈ [1.04, 1.31]s t ∈ [1.31, 1.57]s t ∈ [1.57, 1.83]s t ∈ [1.83, 2.09]s

t ∈ [2.09, 2.35]s t ∈ [2.35, 2.61]s t ∈ [2.61, 2.87]s t ∈ [2.87, 3.13]s

Bild 4-22: Lösung 4: Aufs
hwung des Dreifa
hpendels auf einem Wagen mit End-

zeit tf = 3.13 s und Steueraufwand E = 939N2s
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dass dur
h das Nutzen des gesamten Weges ein direkter Aufs
hwung in die obere

Ruhelage mögli
h ist. Dieses Manöver dauert 2.43 s bei einem Steueraufwand

von E = 2865N2s. Es besteht also die Mögli
hkeit, dur
h eine Veränderung der

Randwerte weitere Arten von Bewegungen für den Aufs
hwung zu erhalten. Au
h

dieses Manöver ähnelt dem direkten Aufs
hwung für das Doppelpendel (siehe Bild

4-7).

t ∈ [0.00, 0.20]s t ∈ [0.20, 0.41]s t ∈ [0.41, 0.61]s t ∈ [0.61, 0.81]s

t ∈ [0.81, 1.01]s t ∈ [1.01, 1.22]s t ∈ [1.22, 1.42]s t ∈ [1.42, 1.62]s

t ∈ [1.62, 1.82]s t ∈ [1.82, 2.03]s t ∈ [2.03, 2.23]s t ∈ [2.23, 2.43]s

Bild 4-23: Lösung 5: Aufs
hwung des Dreifa
hpendels auf einem Wagen mit End-

zeit tf = 2.43 s und Steueraufwand E = 2865N2s

Für die hier bes
hriebenen Manöver kann, wie au
h für das Doppelpendel, eine

Na
hoptimierung dur
hgeführt werden, siehe Abs
hnitt 4.3.5. Die Na
hoptimie-

rung wurde hier au
h mittels der Methode der gewi
hteten Summe dur
hgeführt.

Dabei wurde darauf gea
htet, für jeden Fall die Na
hoptimierungen mit den glei-


hen Gewi
htungsfaktoren dur
hzuführen, um verglei
hbare Ergebnisse zu be-

kommen. Die entspre
henden Zielfunktionswerte sind in Bild 4-24 dargestellt.

Die Zielfunktionswerte der hier bes
hriebenen Manöver sind dabei jeweils dur
h

Kreise gekennzei
hnet. Für jede einzelne Na
hoptimierung bildet si
h ein Zweig

an Zielfunktionswerten. Insgesamt haben die Lösungen 3 und 4 den geringsten

Steueraufwand, dauern aber unters
hiedli
h lang. Auÿerdem zeigen die Lösungen

1 und 2 fast identis
he Werte der Zielfunktion. Beim genauen Verglei
h dieser

Lösungen wird deutli
h, dass sie si
h nur sehr wenig unters
heiden, was die ähnli-


hen Zielfunktionswerte erklärt. Der Steueraufwand bei Lösung 5 ist am hö
hsten.
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Dies liegt daran, dass hier das Pendel direkt in einer s
hnellen Bewegung in die

obere Ruhelage befördert wird. Dass ein sol
hes Manöver besonders hohe Kosten

verursa
ht, wurde au
h s
hon beim Doppelpendel deutli
h.
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Bild 4-24: Zielfunktionswerte für vers
hiedene Manöver für den Aufs
hwung des

Dreifa
hpendels mit Variation dur
h Na
hoptimierung; die vorherge-

hend bes
hriebenen Manöver werden jeweils als Ausgangspunkte ver-

wendet und sind dur
h Kreise gekennzei
hnet, die jeweiligen Farben

stellen Lösungen mit derselben Ausgangslösung dar

4.4.2 Ergebnisse am Prüfstand des Dreifachpendels

Für die Umsetzung von Trajektorien am Prüfstand des Dreifa
hpendels wird ana-

log zum Doppelpendel auf einem Wagen vorgegangen, siehe Abs
hnitt 4.3.3. Zu-

nä
hst wird mit Hilfe der Simulationsumgebung für das Dreifa
hpendel die Funk-

tionalität des LQR-Ansatzes als Regelung getestet. Wenn ans
hlieÿend sowohl die

Steuerung als au
h die Regelung im Rahmen der Zwei-Freiheitsgrade-Struktur

geeignet bestimmt sind, kann das Manöver am Prüfstand getestet werden. In

Bild 4-25 ist ein erfolgrei
her Aufs
hwung dargestellt. Dabei wird hier nur der

Aufs
hwung aus der unteren Ruhelage in die Ruhelage 1 aus Bild 4-18 dur
h-

geführt. Dies liegt daran, dass der Aufbau des Dreifa
hpendels extrem stark auf

Störungen und Ungenauigkeiten reagiert. Daher ist der eigentli
he Aufs
hwung

des Pendels in die obere Ruhelage am derzeit zur Verfügung stehenden Prüfstand

ni
ht umsetzbar. An den Ergebnissen wird dieser E�ekt ebenfalls deutli
h: Es ist

mögli
h, die Pendelarme in die gewüns
hte Ruhelage zu steuern, dabei kommt

es aber zu gröÿeren Abwei
hungen in den Winkellagen und beim Motor. Au
h

lässt si
h das Pendel in der Ruhelage ni
ht so ruhig regeln, wie dies z. B. beim
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Doppelpendel der Fall war.

Für die weitergehende Umsetzung von Manövern am Dreifa
hpendel müssen diese

Stabilitätsprobleme behoben werden.
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Bild 4-25: Aufs
hwung des Dreifa
hpendels am Prüfstand in Ruhelage 1 (siehe

Bild 4-18); dargestellt werden ϕ1, ϕ2, ϕ3 und y jeweils für die bere
h-

nete nominale Trajektorie (blaue dur
hgezogene Linie) und die gemes-

sene geregelte Trajektorie am Prüfstand (grüne gestri
helte Linie)

4.5 Vergleich von Methoden für die Berechnung des
Aufschwungs am Pendel

In dieser Arbeit werden optimale Steuerung und Optimierungsverfahren für die

Bere
hnung von Steuerungen für das Mehrfa
hpendel verwendet. Dabei ergeben

si
h dur
h den Einsatz von Mehrzieloptimierung viele vers
hiedene Lösungen, die

teilweise ein sehr unters
hiedli
hes dynamis
hes Verhalten zeigen. Dies ist insofern

ein gewüns
htes Ergebnis, da es die Mögli
hkeit bietet, zwis
hen den Lösungen ei-

ne Auswahl zu tre�en. Wenn dieser Ansatz auf ein allgemeines te
hnis
hes System

angewendet wird, besteht die Mögli
hkeit, unter Einsatz von zusätzli
hemWissen

über das System die beste Lösung auszuwählen. Oder man nutzt die Ergebnisse

der Optimierung, um das Systemverhalten an vers
hiedene äuÿere Umstände an-

zupassen. Dabei stehen dann die Lösungen zur Auswahl, deren Zielfunktionswerte
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si
h auf der Paretofront be�nden.

Es existieren aber au
h weitere Verfahren für die Bere
hnung und Dur
hführung

eines Aufs
hwungs des Pendels (siehe au
h Abs
hnitt 2.1.2). Im Folgenden wer-

den zwei dieser Ansätze genauer vorgestellt, und es wird auf die Unters
hiede

zum Vorgehen in der vorliegenden Arbeit eingegangen.

In [GTZ07℄ wird ein verglei
hbarer Ansatz mit einer Zwei-Freiheitsgrade-Struktur

für den Aufs
hwung des Pendels verwendet. Au
h hier ist somit der Aufs
hwung

mittels Vorsteuerung und zusätzli
her Regelung bestimmt. Dabei besteht der

Hauptunters
hied dieses Ansatzes in der Bere
hnung der Steuerung. Für die Mo-

dellierung des Aufs
hwungs des Pendels wird ein überbestimmtes Randwertpro-

blem aufgestellt. Die fehlenden Freiheitsgrade werden ans
hlieÿend dur
h eine

Ansatzfunktion mit freien Parametern ergänzt. Diese besteht z. B. aus trigono-

metris
hen Funktionen

Y(t, p) = a0 + a1 cos

(
πt

tf

)

+

5∑

k=2

pk−1 cos

(
kπt

tf

)

.

Hierbei ist p = (p1, . . . , p4) der Vektor der freien Parameter und Y(t, p) die pa-
rameterabhängige Ansatzfunktion. Die Parameter a0 und a1 können dur
h die

Auswertung der Randbedingungen bestimmt werden. Die Lösung eines sol
hen

Randwertproblems kann dann für eine feste Manöverzeit tf mit numeris
hen

Standardverfahren (z. B. bvp4
 in Matlab) erfolgen. Au
h hier lassen si
h somit

Trajektorien mit unters
hiedli
her Endzeit tf bestimmen, wel
he unters
hiedli
he
Manöver des Pendels bes
hreiben.

Für die Umsetzung am Prüfstand wird ein Manöver ausgewählt, wel
hes einen

guten Kompromiss der maximalen Auslenkung der Trajektorien für y(t), ẏ(t), ÿ(t)
bezügli
h der Bes
hränkungen darstellt. Für die Regelung wird entspre
hend der

Zwei-Freiheitsgrade Struktur ein linearer Ansatz entlang der nominalen Trajek-

torie verwendet.

Bei diesem Vorgehen zur Bestimmung einer Aufs
hwungtrajektorie für das Pendel

besteht die Problematik, dass die Existenz einer Lösung für vers
hiedene Ansatz-

funktionen ni
ht gesi
hert ist. Man benötigt vorausgehendes Systemwissen über

die Bes
ha�enheit der Steuertrajektorie, um wirkli
h eine Lösung zu erhalten.

In [GTZ07℄ wird davon ausgegangen, dass eine Ansatzfunktion mit trigonometri-

s
hen Funktionen gute Ergebnisse liefert, was aufgrund der S
hwünge des Pendels

si
herli
h sinnvoll ist. Bei der Bestimmung der nominalen Trajektorie und Steue-

rung dur
h Optimierungsverfahren kann dagegen auf eine sol
he Eins
hränkung

verzi
htet werden. Dies lässt einen zusätzli
hen Variantenrei
htum und die Be-

wertung dieser Manöver bezügli
h ihrer Zielfunktion zu.

Die Arbeit [ZR01℄ verfolgt dagegen einen anderen Ansatz für den Aufs
hwung

eines Doppelpendels auf einem Wagen. Es wird ein energie- und passivitätsba-
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sierter Regler ausgelegt, um das Pendel in die Nähe der Ruhelage zu bringen, und

dann wird in der Nähe der oberen Ruhelage auf einen Regler umges
haltet, der

auf einem linearisierten Modell basiert und die obere Ruhelage stabilisiert. Der

ni
htlineare Regler besteht dabei aus zwei Teilen:

u = −k1y − k2ẏ + k3Ẽ ((m1a1 +m2l1)ϕ̇1 cos(ϕ1) +m2a2ϕ̇2 cos(ϕ2)) .

Die ersten zwei Terme sorgen dafür, dass die Position des Wagens und seine Ge-

s
hwindigkeit gegen Null konvergieren, und der zweite Term zwingt die Pendel,

das Energielevel der oberen Ruhelage anzunehmen, wel
hes dur
h den Parameter

Ẽ in den Regler eingeht. Dieses Energielevel kann dur
h eine Mannigfaltigkeit

abhängig von den Zustandsgröÿen bes
hrieben werden und wirkt damit als ei-

ne zusätzli
h Zwangsbedingung für das System, die dur
h die Regelung erfüllt

werden muss.

Simulationsergebnisse dieses Ansatzes zeigen, dass innerhalb von 30 s die obere
Ruhelage angefahren wird. Dabei kommt es zu einem na
h und na
h ausgeführ-

ten Aufs
hwung des Pendels, bis es si
h s
hlieÿli
h in der Ruhelage be�ndet. Der

Vorteil dieser Methode ist, dass sie ohne Probleme au
h auf starke Störungen rea-

gieren kann, denn die Regelstrategie besitzt keinen de�nierten Anfangszustand.

Aus dieser Situation ergeben si
h aber ebenfalls Na
hteile, denn es kann keine

Aussage darüber getro�en werden, wann die Ruhelage errei
ht wird, und au
h

ni
ht, in wel
hem Berei
h si
h die Zustandsgröÿen währenddessen be�nden. Für

viele te
hnis
he Systeme s
heidet eine Umsetzung mit einer sol
hen Methode

demna
h aus.

Als Fazit kann festgehalten werden, dass der Ansatz der Bere
hnung des Auf-

s
hwungs für das Doppelpendel mit Hilfe von Optimalsteuerung und Optimie-

rungsverfahren viele Vorteile vereint. Mit dieser Methode ist man in der Lage,

eine Vielfalt an Trajektorien zu erzeugen und eine Bewertung bezügli
h vers
hie-

dener Ziele vorzunehmen. Dabei ist si
her, wel
he Zustände angenommen werden,

da die nominale Steuerung und Trajektorie bekannt sind, und Störungen werden

mit Hilfe einer zusätzli
hen Regelung abgefangen.
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5 Strategien für optimale Steuerung auf
invarianten Mannigfaltigkeiten

Ein häu�g verwendetes Ziel für Manöver von me
hanis
hen Systemen besteht dar-

in, mögli
hst energiee�ziente Trajektorien zu �nden. Hierfür können Methoden

der optimalen Steuerung verwendet werden. Zusätzli
h können für dynamis
he

Systeme Strukturen identi�ziert werden, auf denen eine kostenlose Bewegung in

eine Ruhelage mögli
h ist. Somit ist es denkbar, diese au
h für ein optimales

Steuerungsmanöver zu verwenden. In diesem Kapitel wird der Einsatz von stabi-

len und instabilen invarianten Mannigfaltigkeiten (im Folgenden au
h dur
h die

Bezei
hnung (in)stabile Mannigfaltigkeiten zusammengefasst) für die optimale

Steuerung untersu
ht. Es werden sowohl der Einsatz von (in)stabilen Mannig-

faltigkeiten innerhalb einer optimalen Trajektorie, als au
h die Ergebnisse dieses

neuen Ansatzes im Verglei
h zum Standardansatz (siehe Kapitel 4) evaluiert.

Dynamis
he Systeme besitzen (in)stabile Mannigfaltigkeiten, die (mehrdimensio-

nale) Teilmengen des Zustandsraums darstellen und eine Bewegung des Systems

ohne Steuereingri� aus einer bzw. in eine Ruhelage bes
hreiben. Eine (in)stabile

Mannigfaltigkeit ist invariant unter dem Fluss des Systems, was bedeutet, dass

das System bei einer Bewegung ohne äuÿeren Stelleingri� auf ihr verbleibt, wenn

der Anfangszustand auf der (in)stabilen Mannigfaltigkeit lag. Daher muss für

diese Bewegung keine Energie aufgebra
ht werden. In diesem Kapitel wird da-

her untersu
ht, wie die inhärente, natürli
he Dynamik des Systems, wel
he dur
h

die invariante Mannigfaltigkeit gegeben ist, dazu ausgenutzt werden kann opti-

male Steuerungen zu bestimmen. Bisher wurde eine sol
he Idee der optimalen

Steuerung auf invarianten Mannigfaltigkeiten im Kontext von me
hatronis
hen

Systemen no
h ni
ht für neuartige Methoden der Optimalsteuerung verwendet.

Eine interessante Anwendung von optimaler Steuerung auf invarianten Mannigfal-

tigkeiten entstammt aus dem Design von Raumfahrtmissionen, siehe [KLMR00℄,

[MR06℄, [MOBM08℄ und [DOBP

+
09℄. Da Satelliten nur begrenzten Brennsto�

für ihre Reise im Weltall besitzen, sollen na
h Mögli
hkeit Strukturen gefunden

werden, die eine Bewegung ohne Energieaufwand ermögli
hen. Nur so können die

langen Stre
ken im All überwunden werden. Es lassen si
h hierfür im Kraftfeld

der Planeten Mannigfaltigkeiten identi�zieren, die eine sol
he Bewegung ohne

Energieaufwand ermögli
hen. Es entstehen komplexe Trajektorien, und die Fort-

bewegung dauert lange, aber weit entfernte Ziele können mit sehr wenig Treibsto�

errei
ht werden.
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Im Folgenden wird weiterhin der Aufs
hwung des Doppelpendels betra
htet. In

einem ersten S
hritt wird das Modell vereinfa
ht und ein Doppelpendel ohne Wa-

gen, aber mit einem aktuierten Gelenk an der Aufhängung verwendet (Pendubot,

siehe Kapitel 2). Für dieses System soll der Einsatz von invarianten Mannigfal-

tigkeiten zur Bestimmung einer optimalen Steuerung zunä
hst getestet werden.

Das System besitzt nur zwei Freiheitsgrade und ist daher weniger komplex als das

Doppelpendel mit Wagen. Es wird später gezeigt, dass die Vorgehensweise dann

einfa
h erweitert werden kann. Au
h hier wird die DMOC Methode für die Op-

timalsteuerung verwendet. Die Ergebnisse werden mit Lösungen vergli
hen, die

bei der Bere
hnung mit einem Standardansatz (linear interpolierter initial guess)

bestimmt werden. Das Ziel dieses neuen Ansatzes ist es, die Mögli
hkeiten für

eine Steuerung und Regelung eines dynamis
hen Systems auf einer (in)stabilen

Mannigfaltigkeit zu evaluieren und etwaige dynamis
he Vorteile zu untersu
hen.

In diesem Kapitel werden zunä
hst in Abs
hnitt 5.1 die Grundlagen zu dynami-

s
hen Systemen bes
hrieben, die für das Verständnis des Konzepts von (in)stabilen

Mannigfaltigkeiten notwendig sind. Auÿerdem wird die numeris
he Methode Glo-

bal Analysis of Invariant Obje
ts (GAIO) bes
hrieben, mit deren Hilfe diese Ob-

jekte bere
hnet werden. Ans
hlieÿend wird in Abs
hnitt 5.2 ein Ansatz für die

optimale Steuerung des Doppelpendels auf (in)stabile Mannigfaltigkeiten vorge-

stellt und die dabei erzielten Ergebnisse gezeigt. In Abs
hnitt 5.3 wird dieser

Ansatz auf das Doppelpendel mit Wagen erweitert und in Abs
hnitt 5.4 au
h

am Prüfstand angewendet. Die weiteren Abs
hnitte 5.5 und 5.6 bes
häftigen si
h

genauer mit dem Verglei
h der optimalen Steuerung auf Mannigfaltigkeiten mit

dem Standardansatz zur Bere
hnung von Aufs
hwüngen für das Doppelpendel

bzw. mit weitergehenden Fors
hungsansätzen in diesem Berei
h.

5.1 Grundlagen

In diesem Abs
hnitt werden die Grundlagen zur Untersu
hung dynamis
her Sys-

teme im Kontext der Bere
hnung von stabilen und instabilen Mannigfaltigkeiten

für Fixpunkte - also Ruhelagen - vorgestellt. Eine detailliertere Darstellung dy-

namis
her Systeme und ihrer Eigens
haften sind zum Beispiel in [Pd82℄, [GJ09℄,

[GH83℄ und [KH95℄ zu �nden. Die hier aufgeführten Grundlagen folgen ebenfalls

der Darstellung in diesen Quellen. Im Rahmen der Vorstellung der Grundlagen

zu dynamis
hen Systemen wird zusätzli
h genauer auf die 
haotis
he Dynamik

des Pendels eingegangen, die au
h s
hon in den vorhergehenden Kapiteln dieser

Arbeit angespro
hen wurde.

In einem zweiten S
hritt wird ans
hlieÿend das Konzept der sogenannten stark

(in)stabilen Mannigfaltigkeit bes
hrieben. Dies ist eine invariante Teilmenge der

(in)stabilen Mannigfaltigkeit eines Fixpunkts.
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Auÿerdem soll in diesem Abs
hnitt gezeigt werden, wie stabile und instabile Man-

nigfaltigkeiten eines dynamis
hen Systems mit Hilfe des Tools GAIO numeris
h

bere
hnet werden können. Weitere Informationen hierzu sind [DJ02℄ und [DFJ01℄

zu entnehmen.

Abs
hlieÿend werden die zusätzli
h benötigten Modelle des Pendels ohne Wa-

gen für dieses Kapitel und die Bere
hnung der (in)stabilen Mannigfaltigkeiten

vorgestellt.

5.1.1 Dynamische Systeme

Lineare Systeme

Zunä
hst wird das lineare System

ẋ = Ax, x ∈ R
n, A ∈ R

n×n

betra
htet.

De�nition 5.1 Es sind

Es = span{v1, . . . , vns}, der stabile Unterraum,

Eu = span{u1, . . . , unu}, der instabile Unterraum,

Ec = span{w1, . . . , wnc}, der Zentrumsunterraum,

wobei {v1, . . . , vns}, {u1, . . . , unu}, {w1, . . . , wnc} die Eigenvektoren zu den Eigen-

werten mit negativem Realteil, positivem Realteil und Realteil 0 sind.

Bemerkung 5.2 (i) Es gilt nx + nu + nc = n.

(ii) Lösungen in Es
fallen exponentiell für t→ ∞.

Lösungen in Eu
fallen exponentiell für t→ −∞.

Lösungen in Ec
zeigen kein exponentielles Verhalten.

(iii) Der Fluss etA heiÿt hyperbolis
h, falls nc = 0 gilt. Falls zudem nu = 0 bzw.

ns = 0 gilt, so heiÿt etA Kontraktion bzw. Expansion.

Satz 5.3 Der Fluss etA sei hyperbolis
h. Dann existiert eine Zerlegung R
n =

Es⊕Eu
in invariante Unterräume, so dass der induzierte Fluss auf Es

eine Kon-

traktion und der induzierte Fluss auf Eu
eine Expansion ist. Die Zerlegung ist

eindeutig.

Dur
h die Kenntnisse über die Unterräume Es, Eu
und Ec

können somit Aussagen

über das dynamis
he Verhalten des betra
hteten Systems gema
ht werden.

Erweiterung auf nichtlineare Systeme

Diese Eigens
haften können im Folgenden au
h auf ni
htlineare Systeme

ẋ = f(x),
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mit f : Rn → R
n
, erweitert werden.

Die Taylorentwi
klung von f im Fixpunkt x∗ kann dur
h

f(x) = f(x∗) +Df(x∗)(x− x∗) +O(‖x− x∗‖2)

bes
hrieben werden. Somit erhält man eine linearisierte Approximation des ni
ht-

linearen Systems dur
h ż = Df(x∗)z mit z = x− x∗.

Ein wi
htiger Satz über das dynamis
he Verhalten von ni
htlinearen Systemen

in der Nähe der Ruhelage ist der Satz von Hartman-Grobmann (siehe [Pd82℄,

[GH83℄). Er ma
ht eine Aussage über das lokale Verhalten eines dynamis
hen

Systems in der Nähe eines hyperbolis
hen Fixpunkts. Das Verhalten des ni
htli-

nearen Systems ist qualitativ glei
h dem der Linearisierung in dieser Umgebung.

Daher kann z. B. zur Untersu
hung der Stabilität sol
her Fixpunkte die Lineari-

sierung des Systems verwendet werden, was im Folgenden au
h für Betra
htungen

von (in)stabilen Mannigfaltigkeiten ausgenutzt wird.

De�nition 5.4 Es sei Bε(x
∗) eine Kugel in R

n
um den Fixpunkt x∗ mit Radius

ε. Dann heiÿen

W s
ε = {x|Φt(x) ∈ Bε(x

∗) für t ≥ 0 und lim
t→∞

Φt(x) = x∗},

W u
ε = {x|Φt(x) ∈ Bε(x

∗) für t ≤ 0 und lim
t→−∞

Φt(x) = x∗},

die lokale stabile und die lokale instabile Mannigfaltigkeit von x∗, wobei Φt :
R
n → R

n
mit Φt(x) = Φ(x, t) den Fluss des dynamis
hen Systems darstellt, für

den gilt

d
dt
(Φ(x, t))|t=τ = f(Φ(x, τ)), siehe [GH83℄.

Diese De�nition ist das Analogon der stabilen und instabilen Unterräume für das

ni
htlineare System ẋ = f(x).

Satz 5.5 (Satz über die stabile Mannigfaltigkeit eines Fixpunktes)

Es sei x∗ ein hyperbolis
her Fixpunkt von ẋ = f(x). Dann existieren die lo-

kale stabile und instabile Mannigfaltigkeit W s
ε (x

∗) und W u
ε (x

∗), und sie besitzen

dieselben Dimensionen ns und nu wie die zu ż = Df(x∗)z gehörenden stabilen

und instabilen Unterräume Es
und Eu

. Zudem sind die Tangentialräume von

W s
ε (x

∗) und W u
ε (x

∗) in x∗ Es
und Eu

.

Beweis. Siehe [Pd82℄.

Dur
h Erweiterung der lokalen (in)stabilen Mannigfaltigkeit lässt si
h au
h die

globale (in)stabile Mannigfaltigkeit de�nieren. Mit Hilfe des Flusses wird die loka-

le stabile Mannigfaltigkeit rü
kwärts in der Zeit abgebildet, so dass man dann die

Menge aller Punkte erhält, deren Lösungskurve für t → ∞ asymptotis
h gegen

den Fixpunkt x∗ konvergiert.
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De�nition 5.6 Die globale stabile und instabile Mannigfaltigkeit sind dur
h

W s(x∗) =
⋃

t≤0

Φt(W s
ε (x

∗)),

W u(x∗) =
⋃

t≥0

Φt(W u
ε (x

∗))

gegeben.

Weitere Informationen zu Mannigfaltigkeiten im Kontext der Di�erentialgeome-

trie sind im Anhang A.1 zu �nden.

Chaotische Dynamik

Beim passiven mathematis
hen Doppelpendel handelt es si
h um ein 
haotis
hes

System, siehe [SO06℄. Diese Eigens
haft wird hier im Rahmen der Analyse dyna-

mis
her Systeme kurz vorgestellt und diskutiert.

Im Folgenden soll ein Eindru
k vermittelt werden, wel
he speziellen Eigens
haften


haotis
he dynamis
he Systeme besitzen können. Dabei variiert die De�nition für

Chaos bei vers
hiedenen Systemklassen, im Allgemeinen tri�t aber mindestens

eine der folgenden Eigens
haften zu [Ber01℄:

� Die Trajektorien von 
haotis
hen Systemen zeigen ein Zeitverhalten, das

si
h komplizierter als stationär, periodis
h oder quasiperiodis
h verhält.

� Die Bewegung ist sehr emp�ndli
h bezügli
h Veränderungen in den An-

fangsbedingungen. Trajektorien, die nah beieinander starten, divergieren

exponentiell s
hnell. Diese Eigens
haft wird au
h als sensitive Abhängig-

keit vom Anfangswert bezei
hnet.

� Die asymptotis
he Bewegung �ndet auf einem geometris
h komplexen Ob-

jekt statt (häu�g ein Fraktal). Dieses Objekt wird au
h �seltsamer Attrak-

tor� genannt. Beispiele hierfür sind der Henon- und der Lorenz- Attraktor.

� Chaotis
he Trajektorien besitzen unendli
h viele periodis
he Orbits.

� Im Zeitverlauf vers
hlingen si
h die Bilder von zwei Teilmengen des Zu-

standsraums unter dem Fluss des Systems in komplizierter Weise.

Diese Eigens
haften vermitteln ein allgemeines Bild von den komplexen Eigen-

s
haften eines 
haotis
hen dynamis
hen Systems. Für genauere mathematis
he

Betra
htungen und ausführli
he Beispiele siehe [Ber01℄, [Pd82℄, [GH83℄.

Die sensitive Abhängigkeit vom Anfangswert ist eine zentrale Eigens
haft des

Doppelpendels und wird daher hier formal de�niert.
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De�nition 5.7 Es sei Φt der Fluss eines dynamis
hen Systems auf R
n
. Der

Fluss Φt besitzt sensitive Abhängigkeit vom Anfangswert auf R
n
, falls ein ε > 0

mit der folgenden Eigens
haft existiert: Für jedes x ∈ R
n
und jede Umgebung U

von x existiert ein y ∈ U und ein t > 0, so dass ‖Φt(x)− Φt(y)‖ ≥ ε gilt.

Seltsame Attraktoren sind darüber de�niert, dass sie sensitive Abhängigkeit vom

Anfangswert besitzen.

De�nition 5.8 Eine abges
hlossene invariante Menge D ⊆ R
n
ist topologis
h

transitiv, falls Φt einen di
hten Orbit in D besitzt. Ein Attraktor ist eine Menge,

die topologis
h transitiv und attraktiv ist.

Die 
haotis
he Dynamik ma
ht das Doppelpendel zu einem komplexen System.

Ein besonderes Kennzei
hen ist dabei die sensitive Abhängigkeit vom Anfangs-

wert [SGWY92℄. Diese Eigens
haft bedeutet, dass si
h kleine Abwei
hungen∆x(t0)
zwis
hen nahe zusammen liegenden Anfangsbedingungen exponentiell verstärken

∆x(t) = ∆x(t0)e
λt,

wobei ∆x(t) die Abwei
hung zwis
hen den Trajektorien bes
hreibt und λ eine

positive Konstante ist. Für eine genauere Analyse dieser Eigens
haft werden im

Folgenden die beiden Trajektorien x1(t) und x2(t) für das Doppelpendel betra
h-
tet. Dann kann das dynamis
he Verhalten dur
h

∆ẋ = A ·∆x+O(|∆x|2),

mit einer linearen Matrix A approximiert werden, wobei ∆x(t) = x1(t)−x2(t) ist.
Wenn die Pendelarme nahe zusammen beginnen, ist |∆x| klein, und die Terme

höherer Ordnung können verna
hlässigt werden:

∆ẋ = A∆x. (5-1)

Die Lösung dieses System lautet dann

∆x(t) = ∆x(t0)e
At,

und das Verhalten der Lösung wird dur
h die Eigenwerte der Matrix A bestimmt.

Weitere Aussagen können dann entspre
hend dem Realteil des gröÿten Eigenwerts

getro�en werden:

� Ist er positiv, dann wa
hsen die Abwei
hungen ∆x im zeitli
hen Verlauf

stark an. Das System (5-1) ist instabil, und damit wird die Di�erenz zwi-

s
hen den Trajektorien x1(t) und x2(t) immer gröÿer.

� Ist er negativ, vers
hwinden die Abwei
hungen zwis
hen den Trajektorien

und das System (5-1) ist stabil. In diesem Fall bleibt die Di�erenz also klein.
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Na
h diesen Ausführungen ist au
h eine weitere De�nition von 
haotis
hem Ver-

halten über den sogenannten Lyapunov-Exponenten λ mögli
h, die somit direkt

mit der sensitiven Abhängigkeit vom Anfangswert zusammenhängt. Wenn λ für

typis
he Anfangswerte positiv ist, dann ist das zugrunde liegende dynamis
he

System 
haotis
h [SGWY92℄.
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Bild 5-1: Trajektorien von nahe zusammen liegenden Anfangswerten: ϕ1: blaue

dur
hgezogene Linie, ϕ2: rote gestri
helte Linie; Anfangswerte oben:

x01 =
[
π + ε π + ε 0.5 0.5

]
und x02 =

[
π + 2ε π + 2ε 0.5 0.5

]
;

Anfangswerte mitte: x̄01 =
[
ε ε 0 0

]
und x̄02 =

[
2ε 2ε 0 0

]
mit

ε = 0.1; unten: Di�erenz der Trajektorien: x10 − x20 gelbe dur
hgezogene

Linie, x̄10 − x̄20 grüne gestri
helte Linie

In Bild 5-1 ist der E�ekt der sensitiven Abhängigkeit vom Anfangswert für ver-

s
hiedene Anfangswerte qualitativ dargestellt. An dieser Stelle wird ein mathema-

tis
hes Pendel mit Punktmassen und der unteren Ruhelage xR =
[
0 0 0 0

]
be-

tra
htet. Im oberen Teil des Bildes sind zwei Trajektorien mit den Anfangswerten

x01 =
[
π + ε π + ε 0.5 0.5

]
und x02 =

[
π + 2ε π + 2ε 0.5 0.5

]
mit ε = 0.1

dargestellt. Dabei ist ϕ1 in blau und ϕ2 in rot gestri
helt dargestellt. Die Di�erenz

des Anfangswertes beträgt somit nur ε = 0.1, aber im Verlauf der dargestellten

30 s bewegen si
h die Zustände weit auseinander. Ganz anders dazu verhält es

si
h in der mittleren Abbildung, in der die Anfangswerte x̄01 =
[
ε ε 0 0

]
und

x̄02 =
[
2ε 2ε 0 0

]
gewählt wurden. Au
h hier beträgt die Di�erenz der Winkel
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am Anfang ε = 0.1. Das Systemverhalten unters
heidet si
h aber sehr stark, denn
bei dieser zweiten Simulation bleiben die Winkel nahe beieinander, was vor allem

au�ällt, wenn man die Di�erenz der Winkel ∆x betra
htet. Bei der Analyse der

Di�erenz zwis
hen den Trajektoren (Bild 5-1, unten) wird deutli
h, dass diese

für die erste Trajektorie wä
hst, sodass hier der Lyapunov-Exponent positiv ist.

Bei der zweiten Trajektorie ist die Di�erenz dagegen (fast) null, sodass au
h der

Lyapunov-Exponent null ist.

Die 
haotis
he Dynamik wird beim Doppelpendel somit erst dann si
htbar, wenn

ausrei
hend viel Energie im System ist.

5.1.2 Mengenorientierte Berechnung von Mannigfaltigkeit en mit Hilfe
von GAIO

Na
hdem jetzt die theoretis
hen Grundlagen von (in)stabilen Mannigfaltigkeiten

vorgestellt wurden, bes
häftigt si
h der folgende Abs
hnitt mit der Bere
hnung

dieser Mengen. Hierzu wird das Software-Tool GAIO (Global Analysis of Invariant

Obje
ts, siehe [DFJ01℄, [DJ02℄) verwendet, um die Mannigfaltigkeiten numeris
h

zu bestimmen. In diesem Abs
hnitt werden die Motivation und das Vorgehen der

mengenorientierten Bere
hnung von Mannigfaltigkeiten mit diesem Tool erläu-

tert. Später werden mit dieser Methode Mannigfaltigkeiten für das Doppelpendel

bere
hnet, um diese ans
hlieÿend für das Lösen eines Optimalsteuerungsproblems

zu verwenden.

Motivation

Mit Hilfe von GAIO lässt si
h die globale Struktur eines dynamis
hen Systems

mengenorientiert erfassen. Hierbei wird ni
ht das Langzeitverhalten einer einzel-

nen Trajektorie untersu
ht, sondern es werden invariante Mengen betra
htet, da

sie das Verhalten des dynamis
hen Systems für beliebige Zeit angeben. Wenn die

Dynamik des Systems einen bestimmten Grad an Glattheit und Hyperbolizität

1

besitzt, können invariante Mannigfaltigkeiten bestimmt werden, die eine Einsi
ht

in die geometris
he Struktur der Dynamik bieten.

Der mengenorientierte Ansatz, um z.B. globale Attraktoren oder invariante Men-

gen zu bestimmen, ist ein Unterteilungsalgorithmus. Die zentrale Idee ist es, die

invariante Menge im Zustandsraum mit Boxen zu überde
ken. Ans
hlieÿend wird

das dynamis
he Verhalten auf dieser Menge dur
h eine Markov-Kette approxi-

miert. Diese beinhaltet Übergangswahrs
heinli
hkeiten zwis
hen Elementen der

1Für die numerische Berechnung ist es notwendig, dass die Eigenwerte der Linearisierung
des dynamischen Systems im Fixpunkt nicht zu nahe an der imaginären Achse liegen. In
diesem Fall zeigt das System nämlich kein ausreichend starkes Kontraktions- bzw. Expan-
sionsverhalten.
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Box-Überde
kung und bes
hreibt daher das dynamis
he Verhalten des Systems.

Dur
h eine Verfeinerung der Boxen und Analyse der Dynamik des Systems kon-

vergiert der Algorithmus gegen die invariante Menge.

Berechnung invarianter Mengen

Da es si
h bei den (in)stabilen Mannigfaltigkeiten um invariante Mengen handelt,

soll dieser Begri� kurz erläutert werden:

De�nition 5.9 (Invariante Menge)

Für eine stetige Abbildung θ : Rn → R
n
ist A ⊂ R

n
eine invariante Menge, falls

θ(A) = θ−1(A) = A ist.

Die grundsätzli
he Idee, um eine invariante Menge mit GAIO zu bere
hnen, ist

es, diese mit Boxen zu überde
ken und diese ans
hlieÿend rekursiv zu verfeinern.

Dur
h die passende Wahl von Boxen erhält man eine mögli
hst exakte Überde-


kung der gesu
hten invarianten Menge mit Boxen. Für die Umsetzung wird der

folgende Algorithms verwendet:

Algorithmus 5.10 (Unterteilungsalgorithmus für die Bere
hnung von

invarianten Mengen)

Beginne mit B0 = {Q}. Für k = 1, 2, . . . wird Bk aus Bk−1 in zwei S
hritten

bere
hnet:

(i) Unterteilung: Teile jede Box der aktuellen Menge Bk−1 in zwei kleinere

Boxen derselben Gröÿe.

(ii) Auswahl: Entferne diejenigen der verfeinerten Boxen, deren Urbild keine

der aktuellen verfeinerten Boxen s
hneidet. Die übrigen Boxen bilden die

neue Sammlung von Mengen Bk.

In der GAIO-Software ist der zweite S
hritt der Auswahl der Boxen wie folgt

umgesetzt: In jeder Box be�ndet si
h eine Menge von Testpunkten. Die gesam-

te Menge der Testpunkte wird dur
h die betra
htete Systemdynamik mit einer

festgelegten S
hrittweite vorwärts abgebildet und so lange mindestens einer der

dadur
h entstehenden Bildpunkte in der Box B liegt, wird diese ni
ht entfernt.

Die Parameter, wie z. B. die Gröÿe der Boxen oder die S
hrittweite müssen ent-

spre
hend des vorliegenden dynamis
hen Systems angepasst werden, um eine gute

Approximation mit Boxen zu erhalten.

Invariante Mannigfaltigkeiten

Die mengenorientierten Methoden können au
h angewendet werden, um eine

Überde
kung von invarianten Mannigfaltigkeiten in einer vorgegebenen Box Q
zu bere
hnen. Dabei ist das Vorgehen in diesem Fall ähnli
h zur Bere
hnung
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von invarianten Mengen, wobei zusätzli
h die Kenntnisse über die Dynamik von

(in)stabilen Mannigfaltigkeiten ausgenutzt wird.

Im Folgenden wird die instabile Mannigfaltigkeit eines hyperbolis
hen Fixpunkts

untersu
ht.

Au
h bei diesem Algorithmus ist es das Ziel, die instabile Mannigfaltigkeit dur
h

Boxen zu überde
ken und dadur
h ihre geometris
he Form im Zustandsraum zu

approximieren. Zunä
hst wird GAIO dazu verwendet, einen kleinen Berei
h zu

identi�zieren, der den Fixpunkt enthält (falls dieser ni
ht bekannt ist). Dies kann

dadur
h errei
ht werden, dass die Boxen zyklis
h unterteilt und jeweils diejenigen

entfernt werden, deren Bilder si
h ni
ht selbst s
hneiden. Alle übrigen Boxen ent-

halten Fixpunkte. Ans
hlieÿend wird auf eine kleine Box, die den Fixpunkt ent-

hält, Algorithmus 5.10 angewendet. Die so erhaltenen Boxen werden im nä
hsten

S
hritt vorwärts abgebildet, und alle in dieser Iteration getro�enen Boxen werden

der Sammlung an Boxen hinzugefügt. Die so entstandenen neuen Boxen werden

au
h wieder vorwärts abgebildet, und die Prozedur wird entspre
hend wiederholt.

So erhält man die Überde
kung eines Teils der instabilen Mannigfaltigkeit.

Algorithmus 5.11 (Fortsetzungsalgorithmus zur Bere
hnung von

W
u(x∗))

(i) Initialisierung: Wende den Algorithmus 5.10 auf eine kleine Box an, die

den hyperbolis
hen Fixpunkt enthält.

Wiederhole den folgenden S
hritt, bis keine weiteren Boxen der aktuellen

Sammlung hinzugefügt werden.

(ii) Fortsetzung: Bilde die erhaltene Sammlung an Boxen vorwärts ab und

beoba
hte, wel
he anderen Boxen der gesamten unterteilten Boxen getro�en

werden. Diese Boxen werden der Sammlung hinzugefügt.

B

 x
...

Bild 5-2: S
hematis
he Darstellung des Fortsetzungsalgorithmus von GAIO für

die Bere
hnung von instabilen Mannigfaltigkeiten

In Bild 5-2 wird das Vorgehen aus Punkt (ii) des Fortsetzungsalgorithmus s
he-

matis
h dargestellt. Der Algorithmus beginnt mit einer Anfangsbox, die den Fix-

punkt enthält. Testpunkte aus dieser Box werden dann abgebildet, indem sie
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mit der Sytemdynamik einen meist kurzen Zeits
hritt vorwärts integriert wer-

den. Ans
hlieÿend werden alle Boxen, die von mindestens einem Testpunkt ge-

tro�en worden sind, mit neuen Testpunkten gefüllt und der nä
hste Dur
hlauf

des Fortsetzungsalgorithmus wird gestartet. Der Algorithmus terminiert, wenn

der Teil der instabilen Mannigfaltigkeit in B vollständig mit Boxen überde
kt

ist, d. h. es werden keine neuen Boxen von Testpunkten getro�en, oder wenn ei-

ne bestimmte Anzahl an Dur
hläufen des Algorithmus dur
hgeführt worden ist.

Die Gröÿe der Boxen muss hier als ein Kompromiss zwis
hen Genauigkeit der

Boxüberde
kung und dem Re
henaufwand gewählt werden. Für die Integration

kann z. B. ein Runge-Kutta Verfahren höherer Ordnung verwendet werden. Da

bei diesem Algorithmus jeweils nur sehr kurz integriert wird, ist die Methode ro-

bust bezügli
h numeris
hen Fehlern (z. B. Drifts), die bei einer Integration über

einen längeren Zeitraum häu�g entstehen. Ein weiterer Vorteil von GAIO sind

die vielfältigen Anwendungsmögli
hkeiten auf Probleme mit einem Zustandsraum

von mittlerer Gröÿe, d. h. die Methode ist ni
ht auf zweidimensionale Beispiele

bes
hränkt. In diesem Kapitel werden stabile und instabile Mannigfaltigkeiten

von hyperbolis
hen Fixpunkten als Teilsequenzen für die Lösung von Optimal-

steuerungsproblemen verwendet. Dabei ist die stabile Mannigfaltigkeit äquivalent

zur instabilen Mannigfaltigkeit des dynamis
hen Systems, wenn man es in um-

gekehrter Zeit betra
htet. Daher kann die stabile Mannigfaltigkeit genauso wie

die instabile Mannigfaltigkeit bere
hnet werden, nur das die Integration in Rü
k-

wärtszeit dur
hgeführt werden muss.

5.1.3 Stark (in)stabile Mannigfaltigkeiten

Der Satz über die stabile Mannigfaltigkeit 5.5 bes
hreibt, dass die Dimension

der (in)stabilen Mannigfaltigkeiten der Dimension der (in)stabilen Eigenräume

der Linearisierung im Fixpunkt entspri
ht. Für eine (in)stabile Mannigfaltigkeit

mit Dimension gröÿer als eins kann dann die Dynamik no
h weiter untersu
ht

werden. Wenn ein eindeutiger gröÿter bzw. kleinster Eigenwert vorliegt, können

stark (in)stabile Mannigfaltigkeiten [OLT04℄ identi�ziert werden, die eindimen-

sionale Untermannigfaltigkeiten der (in)stabilen Mannigfaltigkeit darstellen und

den Ri
htungen entspre
hen, in der die Expansion bzw. Kontraktion am stärksten

ist. Für die Bere
hnung stark (in)stabiler Mannigfaltigkeiten wird das dynamis
he

System so transformiert, dass si
h das Eigenspektrum vers
hiebt. Zum Beispiel

wird für die Bere
hnung der stark stabilen Mannigfaltigkeit das Eigenwertspek-

trum na
h re
hts vers
hoben, sodass es in der linken Halbebene nur no
h einen

Eigenwert gibt, siehe au
h Bild 5-3. Hierfür muss λss als der Eigenwert des in der
Ruhelage x̄ = 0 linearisierten, autonomen, dynamis
hen Systems ẋ = f(x) mit
dem kleinsten Realteil identi�ziert werden. Es wird angenommen, dass λss ein-
deutig und einfa
h ist. Der zugehörige Eigenvektor vss spannt dann den eindimen-
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sionalen stark stabilen Eigenraum auf, d. h. für das in Vorwärtszeit untersu
hte

lineare System zeigt er vom Fixpunkt aus in die Ri
htung der stärksten Kontrak-

tion. Die stark instabile Mannigfaltigkeit des ni
htlinearen Ausgangssystems ist

tangential zu vss in x̄ und sie ist eine eindimensionale Untermannigfaltigkeit der

instabilen Mannigfaltigkeit. Die stark instabile Mannigfaltigkeit entspri
ht analog

dem eindeutigen Eigenwert λuu mit gröÿten Realteil der Linearisierung im Fix-

punkt x̄. Für die Bere
hnung einer stark stabilen Mannigfaltigkeit werden hier

zwei vers
hiedene Wege vorgestellt.

komplexe

Ebene

Shift des 

Spektrums

komplexe

Ebene

Bild 5-3: Vers
hiebung des Spektrums für die Bere
hnung der stark stabilen Man-

nigfaltigkeit; grüne Kreuze: stabile Eigenwerte, rote Kreuze: instabile

Eigenwerte

Eine Mögli
hkeit besteht darin, die stark stabile Mannigfaltigkeit ebenfalls mit

dem Tool GAIO zu bere
hnen. Für das ni
htlineare System ẋ = f(x) sei Df(0)
die Ja
obi-Matrix von f in der Ruhelage, also die linearisierte Systemmatrix, und

λi, i = 1, . . . , n seien die zugehörigen Eigenwerte. Es wird angenommen, dass ein

einzelner betragsmäÿig gröÿter Eigenwert in der linken komplexen Halbebene

existiert. Dabei gelte Re(λss = λ1) < Re(λ2) ≤ · · · ≤ 0 ≤ Re(λi) ≤ · · · ≤
Re(λuu = λn).

Es wird nun ein λ̄ ∈ R gewählt, so dass |Re(λ1)| < λ̄ < |Re(λ2)| gilt. Dur
h den

Parameter λ̄ wird eine Systemtransformation dur
h x̃(t) := e

λ̄tx(t) eingeführt.

Damit gilt dann

˙̃x(t) = λ̄x̃(t) + e

λ̄tf(e−λ̄tx̃(t)). (5-2)

Für (5-2) ist x̃ = 0 immer no
h ein Fixpunkt. Es lässt si
h na
hre
hnen, dass für

das Spektrum von ḡ(x̃) = λ̄x̃(t) + e

λ̄f(e−λ̄x̃(t)) gilt:

σ(Dḡ|x̃=0) = λ̄ + σ(Df |x=0).

Das gesamte Eigenwertspektrum wurde also um den Wert λ̄ vers
hoben, sodass

das transformierte System nur no
h einen einzigen Eigenwert in der linken Halb-

ebene besitzt. GAIO kann nun auf das transformierte System angewendet wer-

den, wel
hes jetzt ni
ht-autonom ist, also explizit von der Zeit t abhängt (siehe
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[ARS05℄, [ARS06℄ für eine Untersu
hung von invarianten Mannigfaltigkeiten von

ni
ht-autonomen Systemen). Ans
hlieÿend kann die bere
hnete eindimensionale

stabile Mannigfaltigkeit wieder zurü
k transformiert werden, so dass man eine Ap-

proximation der stark stabilen Mannigfaltigkeit des Originalsystems erhält (siehe

[S
h99℄ für eine Vorstellung der hierfür notwendigen Erweiterungen in GAIO).

Eine zweite Alternative zur Bere
hnung der stark stabilen Mannigfaltigkeit ist, ein

sol
hes eindimensionales Objekt dur
h einfa
he Integration von einem passenden

Anfangspunkt aus zu bere
hnen. Um einen Orbit der stark stabilen Mannigfal-

tigkeit des Fixpunkts x̄ = 0 zu erhalten, wird das Eigenwertspektrum der Linea-

risierung bere
hnet, und man erhält den eindeutigen stark stabilen Eigenwert λss

mit dem zugehörigen Eigenvektor vss. Der Anfangswert für die Integration wird

dann in der Umgebung des Fixpunkts x̄ gewählt, und zwar dur
h eine Vers
hie-

bung in Ri
htung von vss: x0 = x̄+ δ · vss. Es ist o�ensi
htli
h, dass der Fixpunkt
selbst ni
ht als Anfangswert gewählt werden kann, da er invariant ist. Weitere

Analysen zeigen, dass Punkte auf der stabilen Mannigfaltigkeit den Fixpunkt in

Vorwärtszeit ni
ht in endli
her Zeit errei
hen und daher eine Integration in Rü
k-

wärtszeit, die zu nahe am Fixpunkt x̄ startet, sehr lange benötigen würde, um die

direkte Umgebung des Fixpunkts zu verlassen (siehe [OLT04℄ für eine ausführ-

li
he Untersu
hung dieses E�ekts). Daher ist es erstrebenswert, δ so zu wählen,

dass die Trajektorie eine ausrei
hend groÿe Expansion vom Fixpunkt zeigt, aber

immer no
h ausrei
hend nahe an x̄ liegt. Diese Trajektorie kann dann dur
h ei-

ne Integration in Rü
kwärtszeit mit vorgegebener Dauer bestimmt werden, d. h.

x(t) : [−t, 0] 7→ Φ̃−t(x), wobei Φ̃t(x) ein Integrationsverfahren darstellt, das den

tatsä
hli
hen Fluss des Systems Φt(x) approximiert. Abs
hlieÿend muss der re-

sultierende Orbit dur
h die Anpassung des Zeitvektors umgekehrt werden, um

bezügli
h der Zeitparametrierung eine zulässige Lösung des Originalsystems zu

erhalten.

Zum einen muss für dieses Verfahren ein sehr exakter Integrator gewählt werden,

da die Bere
hnung der Trajektorie auf einer Langzeitintegration basiert, und au-

ÿerdem muss der Anfangspunkt sehr sorgfältig und daher vorzugsweise manuell

ausgewählt werden. Zum anderen erhält man aber eine Trajektorie, die direkt

innerhalb der Optimalsteuerung verwendet werden kann, wohingegen die Appro-

ximation der Mannigfaltigkeit mit GAIO eine sol
he explizite Trajektorie ni
ht

beinhaltet, sondern nur die entspre
hende Boxüberde
kung.

5.1.4 Modellierung

Zusätzli
h zum Doppelpendel auf einem Wagen wird in diesem Kapitel au
h das

klassis
he, akademis
he Beispiel des in einem Gelenk aktuierten Doppelpendels

untersu
ht. Die Modellierung dieses Anwendungsbeispiels folgt dabei grundsätz-
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li
h den Ansätzen aus Abs
hnitt 2.3. Damit die Systeme verglei
hbar sind, wer-

den au
h die entspre
henden me
hanis
hen Parameter für Längen und Massen

der Pendelarme übernommen, siehe Abs
hnitt 2.3.1.

Der Zustandsvektor dieses vereinfa
hten Systems ist de�niert dur
h

[
q q̇

]
=

[
ϕ1 ϕ2 ϕ̇1 ϕ̇2

]
. Die Lagrange-Funktion des Systems kann wiederum dur
h die

Di�erenz zwis
hen kinetis
her und potentieller Energie bes
hrieben werden

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) =
1

2

(
ϕ̇1

ϕ̇2

)T (
J1 + a21m1 + l21m2 a2l1m2 cos(ϕ1 − ϕ2)
a2l1m2 cos(ϕ1 − ϕ2) J2 + a22m2

)(
ϕ̇1

ϕ̇2

)

− g · (m1a1 cos(ϕ1) +m2 · (l1 cos(ϕ1) + a2 cos(ϕ2))) ,

und in den Gelenken wird die ebenfalls s
hon verwendete Dämpfungskraft

F(ϕ̇1, ϕ̇2) = (−d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1), d2(ϕ̇1 − ϕ̇2))
T

angenommen. Dur
h die Anwendung des Lagrange-Formalismus können die Be-

wegungsglei
hungen des Systems in der Form

M(q)q̈ + G(q, q̇) = F(q, q̇) (5-3)

bestimmt werden, wobei q =
[
ϕ1 ϕ2

]
den Vektor der Lagekoordinaten und

q̇ =
[
ϕ̇1 ϕ̇2

]
den Vektor der Ges
hwindigkeiten darstellt. Somit ergibt si
h die

natürli
he, also ni
ht aktuierte Dynamik des Doppelpendels als

(
J1 + a21m1 + l21m2 a2l1m2 cos(ϕ1 − ϕ2)
a2l1m2 cos(ϕ1 − ϕ2) J2 + a22m2

)

·

(
ϕ̈1

ϕ̈2

)

(5-4)

+

(
−g sin(ϕ1)(a1m1 + l1m2) + a2l1m2 sin(ϕ1 − ϕ2)ϕ̇

2
2

−a2gm2 sin(ϕ2)− a2l1m2 sin(ϕ1 − ϕ2)ϕ̇
2
1

)

=

(
−d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1)

d2(ϕ̇1 − ϕ̇2)

)

. (5-5)

Um das System steuern zu können, wird zusätzli
h ein äuÿeres Moment uM(t)
an dem Gelenk, an dem das Doppelpendel aufgehängt ist, eingeführt. Es ergibt

si
h ein einfa
h unteraktuiertes System. Die Euler-Lagrange Glei
hungen sind

weiterhin von der Form (5-3), wobei der Kraftvektor jetzt zusätzli
h von uM(t)
abhängt

F(q, q̇, uM) =

(
−d1ϕ̇1 + d2(ϕ̇2 − ϕ̇1)

d2(ϕ̇1 − ϕ̇2)

)

+

(
uM
0

)

. (5-6)

Zusammen mit den bekannten Modellen des Doppelpendels auf einem Wagen ist

das vorgestellte neue Modell in Bild 5-4 dargestellt. Im Folgenden werden bei
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x1

x2

1

2

m2, l2, J2
a2

a1

m1, l1, J1

(a) Mathematisches Doppelpendel

1

2

m2, l2, J2
a2

a1

m1, l1, J1

(b) Doppelpendel gesteuert 

      durch Moment uM

(c) Doppelpendel auf Wagen 

      mit Kraftanregung uF

(d) Doppelpendel auf Wagen

      mit Beschleunigungsanregung uy

(e) Prüfstand

1

2

m2, l2, J2
a2

a1

m1, l1, J1

m0

y

uF(t)

1

2

m2, l2, J2
a2

a1

m1, l1, J1

m0

y

uy(t)

Störungen

uM(t)

Bild 5-4: Modelle des Pendels mit vers
hiedenen Eingangsgröÿen und Prüfstand

unters
hiedli
hen Fragestellungen au
h unters
hiedli
he Modelle verwendet. So

werden für Modell (a) die (stark) stabilen Mannigfaltigkeiten bere
hnet und an

Modell (b) die Methode der optimalen Steuerung auf Mannigfaltigkeiten zum

ersten Mal getestet. Ans
hlieÿend wird das Doppelpendel auf einem Wagen un-

tersu
ht, um die Anwendbarkeit des Ansatzes am realen Prüfstand (e) zu zeigen.

Dazu werden, wie aus Kapitel 2 bekannt, das Modell mit Kraftanregung (
) für

die Bere
hnung optimaler Trajektorien mit DMOC und das Modell mit Bes
hleu-

nigungsanregung (d) für die Umsetzung im Simulationsmodell und den Test der

Zwei-Freiheitsgrade-Regelung verwendet.

5.1.5 Berechnung der (in)stabilen Mannigfaltigkeiten

Der erste S
hritt zur Umsetzung der optimalen Steuerung auf Mannigfaltigkeiten

ist die Bere
hnung der (in)stabilen Mannigfaltigkeiten für die obere Ruhelage

des Pendels. Hierbei wird zunä
hst das einfa
he Modell des Pendels (a) ohne

Wagen betra
htet. Na
h dem Satz über die stabile Mannigfaltigkeit 5.5 wird deren

Dimension dur
h die Dimension der Eigenräume der linearisierten Systemmatrix

in der Ruhelage bestimmt. Die Eigenwerte dieser Matrix für die obere Ruhelage

lauten

λ1 = −8.0336, λ2 = −4.342, λ3 = 4.3183, λ4 = 7.6202,



128 Kapitel 5

und somit existieren ein zweidimensionaler stabiler und ein zweidimensionaler in-

stabiler Eigenraum. Auÿerdem liegt ein hyperbolis
her Fixpunkt vor, und Satz

5.5 kann angewendet werden. Für die obere Ruhelage existieren daher eine zwei-

dimensionale instabile und eine zweidimensionale stabile Mannigfaltigkeit. Die

weitere Analyse zeigt, dass die Ruhelagen mit jeweils einem na
h oben und einem

na
h unten zeigenden Pendelarm eine dreidimensionale stabile und eine eindimen-

sionale instabile Mannigfaltigkeit besitzen. Da es si
h um ein gedämpftes System

handelt, hat die untere Ruhelage eine vierdimensionale stabile Mannigfaltigkeit.

Für die Bere
hnung der zweidimensionalen stabilen Mannigfaltigkeit der oberen

Ruhelage wird der Fortsetzungsalgorithmus 5.11 von GAIO verwendet. Da der

Fixpunkt in x0 =
[
0 0 0 0

]
bekannt ist, muss nur Teil (ii) des Fortsetzungs-

algorithmus angewendet werden. Hierbei wird eine negative Integrationszeit ver-

wendet, da die stark stabile Mannigfaltigkeit approximiert werden soll.

Bild 5-5: Stabile (links) und instabile (re
hts) Mannigfaltigkeit der oberen Ruhe-

lage

Es ergibt si
h eine Boxüberde
kung der stabilen Mannigfaltigkeit, wie sie in

Bild 5-5 auf der linken Seite dargestellt ist. Hier wird das zweidimensionale Objekt

als eine Projektion in den dreidimensionalen (ϕ1, ϕ2, ϕ̇1)-Raum dargestellt, und

die jeweiligen Werte der vierten Koordinate ϕ̇2 werden dur
h die Farben 
odiert.

Die in diesem Bild si
htbaren roten und blauen Krater entspre
hen Berei
hen mit

hoher Ges
hwindigkeit von beiden Pendelarmen. Auf der re
hten Seite ist zusätz-

li
h die instabile Mannigfaltigkeit der oberen Ruhelage dargestellt. Sie steht im

Fixpunkt orthogonal auf der stabilen Mannigfaltigkeit.

Im nä
hsten S
hritt kann dur
h die Anwendung des Fortsetzungsalgorithmus von

GAIO auf das transformierte System die stark stabile Mannigfaltigkeit bere
hnet

werden. Die stark stabile Mannigfaltigkeit ist die s
hwarze Menge in Bild 5-6. Auf

der linken Seite wird deutli
h, dass die stark stabile Mannigfaltigkeit tatsä
hli
h



Strategien für optimale Steuerung auf invarianten Mannigfaltigkeiten 129

−10
−5

0
5

10

−10

−5

0

5

10
−20

−10

0

10

20

ϕ1

ϕ2

ϕ̇
1

Bild 5-6: Stark stabile Mannigfaltigkeit der oberen Ruhelage

innerhalb der stabilen Mannigfaltigkeit liegt. Auf der re
hten Seite ist die stark

stabile Mannigfaltigkeit erneut dargestellt, wobei hier eine gröÿere Startbox für

die Bere
hnung gewählt wurde, sodass die Struktur dieses Objekts deutli
her

wird.

In der weiteren Anwendung wird als stark stabile Mannigfaltigkeit eine Trajek-

torie verwendet, die dur
h Integration mit einer geringen positiven Anfangsge-

s
hwindigkeit in Ri
htung des stabilen Eigenraums bere
hnet wurde. Daher folgt

diese Trajektorie der stark stabilen Mannigfaltigkeit vom Fixpunkt aus na
h links

oben. Diese Idee der Bere
hnung wurde au
h s
hon in Abs
hnitt 5.1.3 vorgestellt

und ist z. B. au
h in Bild 5-12 zu sehen. Mit Hilfe der dur
h GAIO bere
hneten

stark stabilen Mannigfaltigkeit konnte die Genauigkeit dieser dur
h Integration

bere
hneten Trajektorie evaluiert werden.

5.2 Steuerungsstrategie auf (in)stabilen Mannigfaltigke iten

Im Folgenden wird ein neuartiger Ansatz zur Bere
hnung von Optimalsteuerungs-

manövern vorgestellt, der die natürli
he Dynamik eines me
hanis
hen Systems

ausnutzt und damit energieoptimale Trajektorien bestimmt. Dabei hängen die

Lösungen stark von der Manöverzeit ab, sodass sie im Folgenden au
h bezügli
h

der Dauer als einem weiteren Ziel vergli
hen werden. Dieser Ansatz kann z. B. für

die Bere
hnung eines Aufs
hwungs des Doppelpendels verwendet werden.

Für die Bere
hnung einer optimalen Steuerung besteht der hier gezeigte Ansatz

darin, zum einen ungesteuerte Trajektorien auf der stark stabilen Mannigfaltigkeit

zu generieren und zum anderen diese mit kurzen gesteuerten Manövern (bere
hnet

mit DMOC) zu einer Sequenz zu verbinden und dadur
h die Randbedingungen

des Optimalsteuerungsproblems zu erfüllen. In Bild 5-7 wird dargestellt, wie dur
h
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Bild 5-7: S
hematis
he Darstellung der Steuerungsstrategie für einen energiee�-

zienten Aufs
hwung des Doppelpendels dur
h die Verwendung inhärenter

Eigens
haften der natürli
hen Dynamik des Systems

diese Strategie Sequenzen für die Lösung des Optimalsteuerungsproblems erzeugt

werden können. Eine sol
he Sequenz ist zum einen eine zulässige Lösung des Op-

timalsteuerungsproblems, da sie die geforderten Nebenbedingungen erfüllt und

zum anderen au
h s
hon bezügli
h der Zielfunktionen Steueraufwand und Dauer

des Manövers lokal optimal. Eine ans
hlieÿende Na
hoptimierung, die mit der

entstandenen Sequenz als initial guess dur
hgeführt wird, ergibt dann bezügli
h

des Mehrzieloptimierungsproblems no
h verbesserte Ergebnisse. Für die Stabi-

lisierung in der oberen Ruhelage wird eine Regelung dur
h einen LQR-Ansatz

verwendet, der s
hon aus Kapitel 2 bekannt ist.

Ergebnisse dieser Arbeit sind au
h in [FTOB

+
12℄ dokumentiert.

5.2.1 Grundidee der Methodik

Die grundsätzli
he Steuerstrategie besteht aus den folgenden S
hritten:

(i) Zunä
hst müssen die entspre
henden Ruhelagen als Anfangs- und Endpunk-

te für das Optimalsteuerungsmanöver identi�ziert werden.

(ii) Für den Endpunkt wird ans
hlieÿend die stabile Mannigfaltigkeit bere
h-

net. Wenn eine mehrdimensionale Mannigfaltigkeit vorliegt, kann dann die

gewüns
hte Trajektorie auf der Mannigfaltigkeit ausgewählt werden. Im Fol-

genden wird hierfür die stark stabile Mannigfaltigkeit ausgewählt.

(iii) Ein Teilproblem ist, ein Optimalsteuerungsmanöver vom Startpunkt zur

Trajektorie auf der Mannigfaltigkeit numeris
h zu bere
hnen. Diese Manö-

ver werden als Sequenzen mit den Trajektorien auf der Mannigfaltigkeit

zusammengesetzt und sind damit zulässige Lösungen des ursprüngli
hen
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Optimalsteuerungsproblems, da sie die Randbedingungen und diskreten Be-

wegungsglei
hungen erfüllen.

(iv) Im letzten S
hritt werden die Sequenzen als initial guess für eine Na
hop-

timierung des ursprüngli
hen Optimalsteuerungsproblems verwendet. Da

die Bere
hnung von Optimalsteuerungsmanövern im Allgemeinen nur lokal

optimale Lösungen erlaubt, ist ein initial guess der dur
h das Ausnutzen

der natürli
hen Dynamik des System entsteht, hilfrei
h um eine (globale)

kosten- und zeitsparende Lösung zu �nden.

An dieser Stelle soll no
h kurz darauf eingegangen werden, dass für die Bestim-

mung der optimalen Steuerung wieder die DMOC Methode verwendet wird, wie

sie aus Kapitel 3 bekannt ist. Dabei wird DMOC sowohl für die Bere
hnung

der Manöver von der unteren Ruhelage zur stark stabilen Mannigfaltigkeit als

au
h für die Na
hoptimierung der zusammengesetzten Sequenzen verwendet. Das

entstehende ni
htlineare Programm wird wiederum mit SQP-Verfahren aus der

NAG-Bibliothek (siehe [Nat13℄) gelöst.

Zunä
hst werden S
hritt (i) und (ii) des Sequenzansatzes genauer bes
hrieben:

Für ein dynamis
hes System, das in eine instabile Ruhelage gesteuert werden

soll, hat die Wahl der stabilen Mannigfaltigkeit als ein Teil des Optimalsteue-

rungsmanövers dynamis
he Vorteile. Dabei wird die stabile Mannigfaltigkeit aus-

gewählt, da si
h das System auf ihr ohne Steuereingri�, also kostenlos, in die

gewüns
hte Ruhelage bewegt. Die stabile Mannigfaltigkeit einer Ruhelage kann

im Allgemeinen ein mehrdimensionales Objekt sein, sodass darauf prinzipiell viele

vers
hiedene Manöver zur Ruhelage denkbar sind. Da aber eines der vorliegen-

den Ziele eine mögli
hst kurze Manöverzeit ist, ist die stark stabile Mannigfal-

tigkeit ein guter Kandidat für eine Trajektorie auf der stabilen Mannigfaltikeit,

denn sie bes
hreibt die Ri
htung mit der stärksten Kontraktion zur Ruhelage.

Man erhält also eine Trajektorie, die einem guten Kompromiss zwis
hen einer

s
hnellen, aber immer no
h kostenlosen Bewegung entspri
ht. Wie au
h s
hon in

Abs
hnitt 5.1.3 bes
hrieben, wird eine feste Zeit auf der Mannigfaltigkeit T
mnf

ge-

wählt und der zugehörige Orbit auf der stark stabilen Mannigfaltigkeit bere
hnet:

x
mnf

: [0, T
mnf

] 7→ x
mnf

(t), wobei x
mnf

(T
mnf

) ∈ U(xf ) in der Nähe des Endpunkts

liegt.

Ans
hlieÿend können in S
hritt (iii) vers
hiedene kurze Manöver, die für die Ver-

bindung des gewählten Startpunkts mit der stark stabilen Mannigfaltigkeit not-

wendig sind, bere
hnet werden. Dabei können unters
hiedli
he Sequenzen dur
h

die Variation der folgenden Entwurfsparameter erzielt werden (siehe au
h Bild 5-8)

� der Ums
haltpunkt, d. h. der Zustand auf dem Orbit der Mannigfaltigkeit,

an dem das gesteuerte Manöver endet und die Lösungssequenz ums
haltet

und der ungesteuerten Trajektorie auf der Mannigfaltigkeit folgt,



132 Kapitel 5

� die Zeit, die auf dem Orbit der Mannigfaltigkeit verbra
ht wird,

� die Gesamtzeit des gesteuerten Manövers, das auf den Orbit der Mannig-

faltigkeit führt.

Dur
h die De�nition des Orbits der Mannigfaltigkeit x
mnf

wird deutli
h, dass der

erste und zweite Parameter korrelieren, d. h. mit der Wahl eines Ums
haltpunktes

auf dem Orbit der Mannigfaltigkeit ist automatis
h de�niert, wie lange die Bewe-

gung bis zum Endpunkt dauert, siehe au
h Bild 5-8. Deshalb wird nun eine Zeit-

diskretisierung eines ausgewählten Teils des Orbits der stark stabilen Mannigfal-

tigkeit [T 0
mnf

, T f
mnf

] mit S
hrittweite ∆τ wie folgt de�niert Γ := {T 0
mnf

+η ·∆τ | η =

1, . . . , L}, mit T 0
mnf

+L ·∆τ = T f
mnf

. Dabei müssen T 0
mnf

,∆τ und L für die konkre-

te Anwendung geeignet gewählt werden, um eine passende Menge an Ums
halt-

punkten zu generieren. Diese Ums
haltpunkte werden mit m1, . . . , mL bezei
hnet

(blaue Punkte in Bild 5-8), und es gilt mi = x
mnf

(T 0
mnf

+ i ·∆τ) für i = 1, . . . , L.
Zusätzli
h wird für die Endzeit des gesteuerten Manövers ein Zeitgitter dur
h

T = {T1, . . . , TK} für K ∈ N, Tj ∈ R
+
und für j = 1, . . . , K de�niert. Dann

kann für jeden Ums
haltpunkt mi, i ∈ {1, . . . , L} ein Optimalsteuerungsproblem

für das Manöver zur stark stabilen Mannigfaltigkeit mit der Zeit Tj ∈ T für

j ∈ {1, . . . , K} aufgestellt werden, und dies führt zu unters
hiedli
hen optimalen

Lösungen jeweils mit einer festen Endzeit Tj und Kosten cj, die in Bild 5-8 als

grüne Linien dargestellt werden. Zusammenfassend können dur
h die Verbindung

dieser unters
hiedli
hen Manöver L · K Sequenzen erzeugt werden, die alle als

Ausgangspunkt für eine Na
hoptimierung genutzt werden. Da das ungesteuerte

System autonom ist, d. h. ni
ht explizit von der Zeit abhängt, kann die Teilsequenz

auf dem Orbit der Mannigfaltigkeit bezügli
h der Zeit transformiert werden, so

dass eine Lösung für das gesamte Steuerungsproblem generiert werden kann. Die

(i, j)−Lösungssequenz ist dann gegeben dur
h

(xi,j, ui,j) : [0, Tj + T
mnf

− (T 0
mnf

+ i ·∆τ)]

7→

{

(x∗(t), u∗(t)) für t ∈ [0, Tj],

(x
mnf

(t+ T 0
mnf

+ i ·∆τ − Tj), 0) für t ∈ [Tj, Tj + T
mnf

− (T 0
mnf

+ i ·∆τ)],

wobei (x∗(·), u∗(·)) die bezügli
h der Energie optimale Lösung des Optimalsteue-
rungsproblems vom Startpunkt x0 zum Endpunkt mi in der Zeit Tj darstellt.

Man bea
hte, dass das Zeitintervall der zusammengesetzten Sequenz ni
ht mit

demjenigen des Orbits der Mannigfaltigkeit x
mnf

übereinstimmt. Da die Kon-

�gurationen und Ges
hwindigkeiten am Übergangspunkt des Manövers auf die

Mannigfaltigkeit übereinstimmen, sind alle so bestimmten Sequenzen stetig.

In S
hritt (iv) kann dann die Sequenz als initial guess für eine Na
hoptimierung

verwendet werden. Nur dur
h diese zusätzli
he Optimierung kann die Optimali-

tät des Manövers über die Mannigfaltigkeit si
hergestellt werden, da ni
ht davon
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Bild 5-8: S
hematis
he Darstellung von vers
hiedenen Sequenzen bestehend aus

gesteuerten Manövern (grün) und Trajektorien auf dem Orbit der stark

stabilen Mannigfaltigkeit (blau). Z.B. kann ein Manöver mit Dauer T1
und Kosten c1 zum Ums
haltpunkt m1 zusammengesetzt werden mit der

ungesteuerten Trajektorie von m1 zum Endpunkt xf . Eine Alternative

ist ein Manöver mit (T2, c2) oder au
h mit (T3, c3) zum dazwis
henlie-

genden Punkt m2 zusammen mit einer Trajektorie auf dem Orbit der

Mannigfaltigkeit, der um ∆τ kürzer ist.

ausgegangen werden kann, dass die zwei optimalen Teiltrajektorien ein optimales

Ergebnis für das gesamte Optimalsteuerungsproblem ergeben. Dies liegt daran,

dass das System gezwungen ist, den Ums
haltpunkt mi zu dur
hlaufen. Dur
h

dieses Vorgehen kann ni
ht gewährleistet werden, dass es keine Trajektorien mit

besserem Zielfunktionswert gibt, die diesen Punkt ni
ht beinhalten. In der Na
h-

optimierung wird der Steueraufwand als Zielfunktion gewählt, und die Gesamtzeit

der (i, j)-Sequenz Tges = Tj+Tmnf

−(T 0
mnf

+i·∆τ) wird als konstant angenommen.

Mit diesem Ansatz werden viele optimale Lösungen für den Aufs
hwung des Pen-

dels über die stark stabile Mannigfaltigkeit bestimmt. Ein Verglei
h der Ergeb-

nisse ist dur
h die Untersu
hung der Pareto-Optimalität mögli
h. Dabei werden

wieder die Zielfunktionen Dauer des Manövers und Steueraufwand gewählt. Im

Folgenden wird der hier vorgestellte Ansatz dur
h Tests für den Aufs
hwung von

unters
hiedli
hen Doppelpendelsystemen evaluiert.

5.3 Anwendung der optimalen Steuerung auf
Mannigfaltigkeiten am Doppelpendel

Das erste Anwendungsbeispiel ist das momentengesteuerte Doppelpendel (siehe

Bild 5-4 (b)), dem das Modell des mathematis
hen Pendels zu Grunde liegt. Für

die Ruhelagen dieses unaktuierten Systems wurden die in Abs
hnitt 5.1.5 vorge-

stellten Mannigfaltigkeiten bere
hnet, und diese werden jetzt in einer Sequenz zur
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Optimalsteuerung verwendet. Die stabile Mannigfaltigkeit der oberen Ruhelage

ist ein zweidimensionales Objekt, und die stark stabile Mannigfaltigkeit kann als

eindimensionale Trajektorie identi�ziert werden, die die stärkste Kontraktion auf

der stabilen Mannigfaltigkeit besitzt und deswegen für die weiteren Bere
hnungen

verwendet wird. In Abs
hnitt 5.3.1 werden die Ergebnisse für dieses momenten-

gesteuerte Doppelpendel vorgestellt. Aber au
h für das Doppelpendel auf dem

Wagen kann die zuvor bere
hnete stark stabile Mannigfaltigkeit für die Bere
h-

nung von optimalen Trajektorien mit dem Sequenzansatz verwendet werden. Dies

wird in Abs
hnitt 5.3.2 genauer diskutiert. In Abs
hnitt 5.3.3 werden als Fazit

die numeris
hen Eigens
haften der Re
hnungen analysiert.

5.3.1 Anwendung am momentengesteuerten Doppelpendel

Dur
h eine Analyse der Lösungen des Sequenzansatzes für das momentengesteu-

erte Doppelpendel wird im Folgenden gezeigt, dass dieser neuartige Ansatz Vor-

teile bezügli
h der Zielfunktionen Zeit und Steueraufwand besitzt. Dazu werden

die Lösungen des Sequenzansatzes mit Lösungen eines sogenannten �bla
k-box�-

Ansatzes, bei dem ein linear interpolierter initial guess verwendet wird, vergli-


hen. Ein sol
her initial guess wurde au
h s
hon in Kapitel 4 für die Bere
hnungen

verwendet.

Ein Verglei
h der Zielfunktionen für vers
hiedene Lösungen des Optimalsteue-

rungsproblems mit den zwei unters
hiedli
hen Ansätzen ist in Bild 5-9 zu sehen.

Die grauen Punkte gehören dabei zu der entstehenden Sequenz, wobei die Ge-

samtzeit aus der Summe der Zeit des Manövers zur Mannigfaltigkeit und der

Zeit auf dieser besteht und die Kosten nur aus dem ersten Teil stammen, da die

Bewegung auf der Mannigfaltigkeit kostenlos ist. Die blauen Sterne stehen für

Trajektorien, die mit einer Na
hoptimierung der Sequenz bere
hnet wurden, und

die grünen Kreise für Lösungen basierend auf dem bla
k-box Ansatz. Es wird

davon ausgegangen, dass ein sol
her bla
k-box Ansatz immer dann für die Op-

timierung genutzt wird, wenn kein anderes spezielles Systemwissen bekannt ist.

Auf der linken Seite von Bild 5-9 wird deutli
h, dass die Kosten der unters
hiedli-


hen Sequenzen (graue Punkte) dur
h eine Na
hoptimierung (blaue Sterne) no
h

deutli
h verbessert werden können. Dies liegt daran, dass die Na
hoptimierung die

ursprüngli
he Sequenz an der Übergangsstelle zur Mannigfaltigkeit glättet und

dadur
h in fast allen Bere
hnungen die Kosten reduziert. Auÿerdem wird deutli
h,

dass sehr viele lokal optimale Lösungen bere
hnet wurden, d. h. der Optimierungs-

algorithmus konvergiert in ein Optimum, das ni
ht global optimal ist. Wie au
h

s
hon in vorhergehenden Ergebnissen zur Mehrzieloptimierung des Aufs
hwungs

am Doppelpendel ergeben si
h wieder unters
hiedli
he Zweige der Zielfunktions-

werte, die jeweils unters
hiedli
he Arten des Aufs
hwungs repräsentieren (vgl.

Kapitel 4). Sogar für eine bestimmte feste Endzeit des Manövers existieren meh-
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Bild 5-9: Zielfunktionswerte für den Aufs
hwung des momentengesteuerten Dop-

pelpendels: Für T = [0.8, 1.9] s werden bla
k-box Optimierungen dur
h-

geführt (grüne Kreise), im Verglei
h dazu werden au
h Lösungen aus

den zwei Sequenzteilen (graue Punkte) und aus der Na
hoptimierung

der Sequenz (blaue Sterne) dargestellt; re
hts: ni
ht-dominierte Lösun-

gen

rere lokal optimale Lösungen mit unters
hiedli
hen Kosten, was daran liegt, dass

unters
hiedli
he Sequenzen mit glei
her Endzeit erzeugt werden, die aber zu ver-

s
hiedenen Ergebnissen führen (siehe au
h Bild 5-8). Neben diesen Zweigen gibt

es au
h verteilte Lösungen in der oberen re
hten E
ke. Diese Punkte gehören zu

Lösungen, die die Mannigfaltigkeit verlassen haben und ein unrealistis
hes Ver-

halten zeigen, sodass sie ni
ht weiter bea
htet werden müssen. Ni
htsdestotrotz

kann, aufgrund der Konstruktion der Na
hoptimierung, im Allgemeinen ni
ht si-


hergestellt werden, dass die Lösung in der Nähe Mannigfaltigkeit bleibt, wie es

z. B. in Bild 5-12 gezeigt wird. Tatsä
hli
h wei
hen man
he Lösungen klar von der

Mannigfaltigkeit ab. Dieser E�ekt wird in Abs
hnitt 5.3.2 für das Doppelpendel

mit Wagen genauer analysiert.

Auf der re
hten Seite von Bild 5-9 sind nur die ni
ht-dominierten Punkte der

gesamten Menge an Lösungen dargestellt. Diese Punkte sind Kandidaten für pa-

retooptimale Lösungen. Sie bilden einen optimalen Kompromiss zwis
hen den

zwei untersu
hten Zielfunktionen. Insgesamt wird deutli
h, dass es groÿe Berei-


he gibt, in denen der Sequenzansatz die besten Lösungen ergibt. Hauptsä
hli
h in

einem kleineren Berei
h bei einer Gesamtzeit von Tges = 0.98 s, . . . , 1.07 s ist der
bla
k-box Ansatz genauso gut, aber an keiner Stelle besser als der Sequenzansatz

(in diesem Fall sind die Lösungstrajektorien von beiden Bere
hnungen glei
h).
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Anhand von diesen Ergebnissen lässt si
h feststellen, dass der Sequenzansatz, der

die natürli
he Dynamik des Systems ausnutzt, ein gut geeignetes Vorgehen ist,

um paretooptimale Lösungen zu �nden.

t ∈ [0.000, 0.156]s t ∈ [0.161, 0.311]s t ∈ [0.316, 0.467]s

t ∈ [0.472, 0.622]s t ∈ [0.627, 0.778]s t ∈ [0.783, 0.933]s

t ∈ [0.938, 1.089]s t ∈ [1.094, 1.244]s t ∈ [1.249, 1.400]s

Bild 5-10: Zeit-diskrete Momentaufnahmen für den Aufs
hwung des Doppelpen-

dels; Na
hoptimierung des Sequenzansatzes; ab t = 0.755 s be�ndet

si
h das Manöver auf der Mannigfaltigkeit, vgl. au
h Bild 5-12

Bei einer genaueren Untersu
hung von repräsentativen Lösungen, die dur
h die

zwei Ansätze entstanden sind und glei
he Endzeiten aber unters
hiedli
he Kos-

ten haben, wird deutli
h, dass die Lösungen bedeutende strukturelle Unters
hiede

besitzen. Dazu werden in den Bildern 5-10 und 5-11 die Bewegungen dur
h eine

Reihe von Momentaufnahmen verdeutli
ht. In Bild 5-10 wird eine na
hoptimierte

Lösung des Sequenzansatzes und in Bild 5-11 eine Lösung des bla
k-box Ansat-

zes gezeigt. Das Beispielmanöver, das entlang der stark stabilen Mannigfaltigkeit

verläuft (Bild 5-10) hat eine Dauer von 1.4 s und dabei einen Steueraufwand von

12.142 (Nm)2s. Das Doppelpendel holt zunä
hst S
hwung und bewegt si
h an-

s
hlieÿend mit der passenden Ges
hwindigkeit in die obere Ruhelage. Dabei stellt

der zweite Teil dieses Manövers die Bewegung auf der stark stabilen Mannigfal-

tigkeit dar. Es wird nun ein Ergebnis der bla
k-box Optimierung zum Verglei
h

betra
htet (Bild 5-11). Die Dauer dieses Manövers ist ebenfalls 1.4 s, aber der
Steueraufwand beträgt 45.217 (Nm)2s, was 3.7 mal höher ist als der Steuerauf-

wand des anderen Manövers. Bei dieser Bewegung wird das Doppelpendel s
hon

etwa in der Mitte des gesamten Manövers in die obere Halbebene bewegt, und

zwar dur
h einen hohen Steueraufwand. Diese Bewegung führt au
h insgesamt zu
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t ∈ [0.000, 0.156]s t ∈ [0.161, 0.311]s t ∈ [0.316, 0.467]s

t ∈ [0.472, 0.622]s t ∈ [0.627, 0.778]s t ∈ [0.783, 0.933]s

t ∈ [0.938, 1.089]s t ∈ [1.094, 1.244]s t ∈ [1.249, 1.400]s

Bild 5-11: Zeit-diskrete Momentaufnahmen für den Aufs
hwung des Doppelpen-

dels; bere
hnet mit dem linear interpolierten initial guess (bla
k-box

Optimierung)

den hohen Kosten des Manövers. Am Ende muss das Pendel abgebremst werden,

um die obere Ruhelage zu errei
hen.

Die bes
hriebenen Trajektorien können au
h in einer dreidimensionalen Projek-

tion des Zustandsraums analysiert werden. Dies wird in Bild 5-12 dargestellt, in

dem die Zustände ϕ1, ϕ2 und ϕ̇1 gezeigt werden. Die blaue Linie ist der Orbit der

stark stabilen Mannigfaltigkeit der oberen Ruhelage. Es wird eine Sequenz aus-

gewählt, die aus einem Manöver zur stark stabilen Mannigfaltigkeit (dargestellt

dur
h die grüne Linie) und dem darauf folgenden Abs
hnitt auf der Mannigfaltig-

keit besteht. Die gelbe Linie stellt dann die na
hoptimierte Trajektorie dar, die

als initial guess die zwei Abs
hnitte der Sequenz erhalten hat. Es wird deutli
h,

dass diese na
hoptimierte Trajektorie ni
ht direkt auf der stark stabilen Man-

nigfaltigkeit liegt, sondern si
h um diese herum s
hlängelt. Anhand der für die

Steuerung bere
hneten Trajektorie lässt si
h s
hlieÿen, dass die Trajektorie der

Na
hoptimierung ni
ht genau der kostenlosen Bewegung auf der stark stabilen

Mannigfaltigkeit folgt, sondern einem Manöver mit geringen Kosten, wel
hes na-

he daran liegt. Eine weitere Analyse dieses Phänomens zeigt, dass die Lösung für

die Steuerung des Pendels zur Mannigfaltigkeit am letzten Diskretisierungspunkt

auf null springt, um das ni
ht aktuierte Systemverhalten auf der Mannigfaltig-

keit zu errei
hen. Dur
h die Na
hoptimierung wird dieser Sprung, der au
h dur
h

einen Kni
k der Trajektorie im Zustandsraum deutli
h wird, geglättet. Als Fol-
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Bild 5-12: Oben: Unters
hiedli
he Trajektorien im Zustandsraum: Orbit der stark

stabilen Mannigfaltigkeit (blau), Manöver zur Mannigfaltigkeit (grün),

Na
hoptimierung der Sequenz (gelb), Manöver mit linear interpolier-

tem initial guess (lila); unten: zugehörige Steuerungen u(t) jeweils in
der glei
hen Farbe gekennzei
hnet
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ge davon kann der ni
ht exakte Verlauf der na
hoptimierten Lösung entlang der

stark stabilen Mannigfaltigkeit erklärt werden. Diese Lösung besitzt in Steuerung

und Verlauf der Zustandsgröÿen keine Sprünge bzw. Kni
ke. Die lilafarbene Linie

ist die Lösung, die auf der bla
k-box Optimierung basiert und es ist ersi
htli
h,

dass diese einen vollständig anderen Pfad zur oberen Ruhelage verfolgt.

5.3.2 Anwendung am Doppelpendel mit Wagen

In diesem Abs
hnitt wird der Sequenzansatz auf das Doppelpendel auf einem Wa-

gen erweitert. Dabei wird die strukturelle Ähnli
hkeit der Pendelmodelle (siehe

Bild 5-4) ausgenutzt, um die (stark) stabile Mannigfaltigkeit wiederzuverwenden.

Dies ist mögli
h, da die Modelle (b) und (
) genau dann übereinstimmen, wenn

die Systeme ni
ht aktuiert sind, d. h wenn das Moment in Modell (b) glei
h Null

ist und der Wagen in Modell (
) still steht. So erhält man erneut die zwei un-

ters
hiedli
hen Teile des Sequenzansatzes. Die s
hon vorhandene und getestete

Strategie aus Abs
hnitt 5.2.1 und 5.3.1 kann beibehalten werden, um optimale

Trajektorien für den Aufs
hwung des Doppelpendels auf einem Wagen zu be-

re
hnen. Der Sequenzansatz kann nun für dieses Anwendungsbeispiel wie folgt

formuliert werden:

� Im ersten S
hritt wird ein optimales Steuerungsmanöver für den Wagen

bere
hnet (mit yf = 0, ẏf = 0), um das Pendel auf einen gewüns
hten

Punkt auf der stark stabilen Mannigfaltigkeit zu befördern.

� Ans
hlieÿend steht der Wagen still, und das Pendel bewegt si
h auf der

stark stabilen Mannigfaltigkeit in Ri
htung der oberen Ruhelage.

� S
hlieÿli
h kann die Sequenz für eine Na
hoptimierung des Originalproblems

für Modell (
) in Bild 5-4 verwendet werden.

Für das Optimalsteuerungsproblem des Doppelpendels auf einem Wagen werden

als Startpunkt die untere Ruhelage (ϕ0
1, ϕ

0
2, y

0, ϕ̇0
1, ϕ̇

0
2, ẏ

0) = (−π, π, 0, 0, 0, 0) und
als Endpunkt die obere Ruhelage (ϕf1 , ϕ

f
2 , y

f , ϕ̇f1 , ϕ̇
f
2 , ẏ

f) = (0, 0, 0, 0, 0, 0) gewählt.
Dabei sind die Ruhelagen im Zustandsraum 2π-periodis
h und damit ni
ht ein-

deutig. Die Wahl einer bestimmten Darstellung beein�usst die Lösung für den

Aufs
hwung, denn dur
h die Wahl von festen Start- und Endpunkten für die

Bewegung wird die Ri
htung, in die si
h die Pendelarme in die obere Ruhelage

bewegen, vorgegeben. Der Grund dafür, dass (ϕ0
1, ϕ

0
2) = (−π, π) als Darstellung

der unteren Ruhelage für den Startpunkt gewählt wird, liegt darin, dass dieser im

Zustandsraum am nä
hsten zur stark stabilen Mannigfaltigkeit liegt. Weitere nu-

meris
he Tests, die mit anderen Darstellungen der unteren Ruhelage dur
hgeführt

worden sind, zeigten, dass dies eine sinnvolle Wahl ist.

Auf Grund des zusätzli
hen Freiheitsgrades des Systems ist das gesamte Opti-

malsteuerungsproblem für das Doppelpendel auf einem Wagen komplexer als das
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aus Abs
hnitt 5.3.1. Im Verglei
h zur Implementierung von Modell (b) existieren

mehr Optimierungsvariablen, was im Allgemeinen zu einer längeren Re
henzeit

und zu einer geringeren Anzahl an konvergierten Lösungen führt.
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Sequenzansatz

Trajektorie nahe Mfk

Bild 5-13: Zielfunktionswerte für den Aufs
hwung des Doppelpendels auf einem

Wagen mit dem Sequenzansatz (blaue Sterne); Trajektorien, die na
h

der Na
hoptimierung tatsä
hli
h nahe der Mannigfaltigkeit verlau-

fen sind mit grünen Kreisen gekennzei
hnet; re
hts: ni
ht-dominierte

Punkte

Bei einem ersten Test wird eine Sequenz betra
htet, die aus einem Manöver zum

Orbit der Mannigfaltigkeit mit einer Zeit von 1.55 s und einem zweiten Stü
k auf

der stark stabilen Mannigfaltigkeit von 0.85 s besteht. Es ergibt si
h eine Gesamt-
zeit von Tges = 2.4 s. Diese Lösung wird später au
h in Abs
hnitt 5.4 als nominale
Trajektorie für die Umsetzung am Prüfstand gewählt. Die Trajektorie, die dur
h

die Na
hoptimierung bestimmt wurde, liegt wiederum ni
ht exakt auf der stark

stabilen Mannigfaltigkeit und dies ist ein analoges Ergebnis zu der Lösungstra-

jektorie aus dem Anwendungsbeispiel in Abs
hnitt 5.3.1. Die lei
hte Abwei
hung

von der stark stabilen Mannigfaltigkeit entspri
ht einer geringen korrigierenden

Bewegung des Wagens in dem zweiten Teil der na
hoptimierten Trajektorie. Im

nä
hsten S
hritt werden die Bere
hnungen für die unters
hiedli
hen Sequenzen

wiederholt, wie es in Abs
hnitt 5.2.1 bes
hrieben wurde. In Bild 5-13 sind die

Zielfunktionswerte der na
hoptimierten Lösungen für das Doppelpendel auf ei-

nem Wagen dargestellt (blaue Sterne). Es wird wiederum deutli
h, dass die Lö-

sungen vers
hiedene Äste bilden, die die typis
he Form von Lösungen besitzen,

die dur
h einen Mehrzieloptimierungsansatz bere
hnet wurden. Die Lösungen für

das Doppelpendel auf einem Wagen können an dieser Stelle ni
ht mit Lösungen
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des Standardansatzes vergli
hen werden, da der Optimierungsalgorithmus mit ei-

nem bla
k-box Ansatz für die hier vorgestellte Kon�guration ni
ht konvergiert

ist. Dies ist dadur
h zu erklären, das si
h aus der gewählten Anfangsruhelage in

die instabile obere Ruhelage komplexe Manöver ergeben, die dur
h den linear in-

terpolierten initial guess ni
ht gefunden werden konnten. Bei einer Untersu
hung

der Lösungen im Zustandsraum wird ersi
htli
h, dass ni
ht alle konvergierten

Lösungen der Na
hoptimierung wirkli
h in der Nähe der stark stabilen Mannig-

faltigkeit verlaufen. Das liegt an der Tatsa
he, dass eine globale Optimalität der

Lösungen, die mit dem Sequenzansatz bere
hnet werden, ni
ht garantiert wer-

den kann, siehe au
h die Diskussion dazu in Abs
hnitt 5.2.1. Daher werden die

Trajektorien, die entlang der stark stabilen Mannigfaltigkeit verlaufen, zusätzli
h

mit grünen Kreisen markiert. Auf der re
hten Seite von Bild 5-13 werden die

ni
ht dominierten Punkte dargestellt, und a
ht von zehn von ihnen be�nden si
h

wie erwartet in der Nähe der stark stabilen Mannigfaltigkeit. Dementspre
hend

konnte das Ziel, optimale Trajektorien auf stabilen Mannigfaltigkeiten der oberen

Ruhelage zu bere
hnen, in 80% der Fälle errei
ht werden.

Auf Grund dieser Ergebnisse kann man den Sequenzansatz au
h no
h aus einer

anderen Perspektive als vorteilhaft ansehen. Au
h wenn ni
ht jede Lösung der

Na
hoptimierung der Sequenz wirkli
h in der Nähe der Mannigfaltigkeit liegt,

ergeben si
h insgesamt gute paretooptimale Trajektorien. Da es für komplexe

Bewegungen von unteraktuierten Systemen s
hwer ist, einen physikalis
h moti-

vierten initial guess zu �nden, ist hierfür der Sequenzansatz empfehlenswert. So

ist es vorstellbar, dass es dur
h die Kombination von kurzen Teiltrajektorien, die

dann einen zulässigen initial guess bilden, überhaupt erst mögli
h ist, Lösungen

des Optimalsteuerungsproblems für komplexe Systeme zu �nden.

5.3.3 Numerische Ergebnisse

Als Fazit lässt si
h sagen, dass die Ergebnisse von Abs
hnitt 5.3.1 und Ab-

s
hnitt 5.3.2 zeigen, dass dur
h den neuartige Ansatz eine optimale Steuerung

auf einer stabilen Mannigfaltigkeit zu bestimmen, das Ziel errei
ht werden kann,

dass Pendel in die oberen Ruhelage zu bringen.

Zusätzli
h wird in Bild 5-14 der numeris
he Aufwand vergli
hen, der bei der

Bere
hnung der Lösungen für das momentengesteuerte Pendel dur
h den NAG-

Algorithmus entstanden ist. Da in der Optimierung eine konstante S
hrittweite

h = 0.005 s verwendet wird, entspri
ht ein längeres Manöver einer höheren An-

zahl an Knoten. Für den Sequenzansatz wird die Summe der Re
henzeiten für das

Manöver zur Mannigfaltigkeit und der Na
hoptimierung gebildet. Ans
hlieÿend

wird für jede feste Anzahl an Knoten ein Dur
hs
hnittswert der unters
hiedli
hen

initial guesses gebildet, um die Werte gut verglei
hen zu können (blaue Sterne).
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Sequenz (Manöver zur Mannigfaltigkeit + Nachoptimierung)
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Bild 5-14: Verglei
h der Re
henzeiten der gemittelten Summe des Manövers zur

Mannigfaltigkeit und der Na
hoptmierung (blaue Sterne) mit der Op-

timierung des bla
k-box Ansatzes (grüne Kreise) bezügli
h der Anzahl

an Knoten, die für die Optimierung verwendet wurde.

Im Verglei
h dieser Ergebnisse zu der Re
henzeit der bla
k-box Optimierung als

Referenz (grüne Kreise), hat der neuartige Ansatz eine verglei
hbare Re
henzeit,

obwohl er zwei Optimierungen beinhaltet. Bei kürzeren Manöver, mit einer ge-

ringeren Anzahl an Knoten, benötigt der Sequenzansatz weniger Re
henzeit als

der bla
k-box Ansatz, und für eine höhere Knotenzahl ist es umgekehrt.

5.4 Validierung durch Simulation und Tests am Prüfstand

In diesem Abs
hnitt werden die Ergebnisse des Sequenzansatzes für das Doppel-

pendel auf einem Wagen validiert. Ziel dabei ist es, diese Lösungen am Prüfstand

umzusetzen. Dazu muss zusätzli
h eine Regelung in der s
hon bekannten Zwei-

Freiheitsgrade-Struktur ausgelegt werden (siehe Abs
hnitt 2.4). Die Funktionsfä-

higkeit kann dann in der Simulationsumgebung für das Doppelpendel auf einem

Wagen getestet werden (siehe Abs
hnitt 2.4.1). In diesem Fall wird ein konti-

nuierli
her LQ-Regler verwendet, wie er in Abs
hnitt 2.4.2 bes
hrieben wurde.

Ans
hlieÿend werden Tests am Prüfstand (siehe Abs
hnitt 2.2) dur
hgeführt, an

dem die Ausnutzung der natürli
hen Systemdynamik sehr ans
hauli
h beoba
htet

werden kann.
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5.4.1 Ergebnisse Simulationsumgebung

Für die Validierung in der Simulationsumgebung wird das aus Abs
hnitt 2.4.1

bekannte Modell verwendet. Dabei wird für 5 s simuliert und die s
hon verwendete
Trajektorie aus Abs
hnitt 5.3.2 mit einer Gesamtzeit Tges = 2.4 s getestet.
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Bild 5-15: Links: Verglei
h der gesteuerten Trajektorie (rot gepunktete Linie) aus

der Simulation mit der geregelten Trajektorie (dur
hgezogene grüne Li-

nie) und der nominalen Trajektorie (blaue gestri
helte Linie) für ϕ1,

ϕ2 und y; die gestri
helte Linie kennzei
hnet das Ende der nomina-

len Trajektorie in der Simulation; re
hts: oben: Reglerkonstanten der

Reglermatrix k; unten: Trajektorie der gesamten Steuerfunktion u(t)
(grüne dur
hgezogene Linie, die aus der Vorsteuerung (blaue gestri-


helte Linie) und dem Regleranteil (rote gepunktete Linie) besteht

Die Ergebnisse der na
hoptimierten Lösung des Sequenzansatzes aus der Simula-

tionsumgebung werden in Bild 5-15 gezeigt. Insgesamt sind die Ergebnisse ähnli
h

zu denen von den untersu
hten Standardtrajektorien (siehe Abs
hnitt 2.4.2), da-

her werden die Ergebnisse hier nur kurz diskutiert und die Besonderheiten der

Lösungen des Sequenzansatzes herausgestellt.
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Auf der re
hten Seite sind die Verstärkungsfaktoren der Regelung für die Lösung

dargestellt. Am Ende der Trajektorie, also in der Nähe der oberen Ruhelage,

werden diese gröÿer, da ein stärkerer Eingri� des Reglers notwendig ist, um das

Pendel zu stabilisieren. Auf der linken Seite werden die Trajektorien für die Win-

kel der Pendelarme und die Position des Wagens dargestellt. Dabei werden die

nominale (blau gestri
helt), die gesteuerte (rot gepunktet) und die sowohl ge-

steuerte als au
h geregelte Trajektorie (grün dur
hgehend) vergli
hen. Es wird

deutli
h, dass mit Hilfe des kontinuierli
hen LQ-Reglers das Doppelpendel auf

einem Wagen in der oberen Ruhelage stabilisiert werden kann. Am Ende der no-

minalen Trajektorie bei 2.4 s muss der Wagen zusätzli
he Auswei
hbewegungen

dur
hführen, um das Pendel zu stabilisieren, was au
h in der Darstellung der Ein-

gangsgröÿe (re
hts unten) ersi
htli
h ist. Dies widerspri
ht der eigentli
hen Idee

des Sequenzansatzes, nämli
h dass si
h das Pendel im zweiten Teil des Manövers

auf der stark stabilen Mannigfaltigkeit be�ndet und si
h der Wagen eigentli
h

ni
ht mehr bewegen muss. Diese verstärkte Regleraktivität ist aber für die Stabi-

lisierung notwendig und konnte au
h bei den bisher untersu
hten Beispielen am

Prüfstand beoba
htet werden. Aber anhand der nominalen Trajektorie der Wa-

genbewegung kann trotzdem der eigentli
h gewüns
hte E�ekt abgelesen werden:

Ab 
a. 1.9 s ist die Sollbewegung des Wagens fast null. Dieser E�ekt wird im

nä
hsten Abs
hnitt au
h für den Test am Prüfstand untersu
ht. Dort wird au
h

die Bewegung auf der stark stabilen Mannigfaltigkeit besser deutli
h.

5.4.2 Ergebnisse am Prüfstand

Es wird wieder die Trajektorie mit einer Gesamtzeit von 2.4 s betra
htet, die au
h
im vorherigen Abs
hnitt 5.4.1 verwendet wurde. In Bild 5-16 wird der Testlauf

dieser Trajektorie am Prüfstand dargestellt. Insgesamt sind die Ergebnisse am

Prüfstand verglei
hbar zu denen in der Simulation, denn au
h hier muss der

Wagen in der zweiten Hälfte des Manövers zusätzli
he Bewegungen dur
hführen,

um das Doppelpendel stabilisieren zu können.

Bei der Beoba
htung des Aufs
hwungs am Prüfstand werden au
h die speziellen

Eigens
haften deutli
h, die die na
hoptimierte Lösung des vorgestellten Ansatzes

besitzt. Dies gilt vor allem, wenn man nur die gesteuerte Trajektorie betra
htet,

bei der keine Regelung wirkt, denn dabei werden die zwei Teile, die dem Se-

quenzansatz entstammen, sehr deutli
h. In Bild 5-16 ist daher der zweite Teil des

Manövers, bei dem die Pendelarme entlang der stark stabilen Mannigfaltigkeit

verlaufen, mit einer gestri
helten Linie gekennzei
hnet. Für die nominale und die

gesteuerte Trajektorie (ohne Regelung) zeigt diese Auswertung, dass fast keine

zusätzli
he Bewegung des Wagens notwendig ist und si
h die Pendelarme selbst-

ständig auf der Mannigfaltigkeit in Ri
htung der oberen Ruhelage bewegen. Dies

ist das erwartete Ergebnis für das Manöver, das mit Hilfe des Sequenzansatzes
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Bild 5-16: Winkel der Pendelarme, Position des Wagens und Steuerung für den

Aufs
hwung des Doppelpendels auf einem Wagen am Prüfstand; als

nominale Trajektorie (blaue gestri
helte Linie) wird die aus Bild 5-15

verwendet; es werden ein Dur
hlauf ohne Regelung (rote gepunktete

Linie) und einer mit zusätzli
her Regelung (grüne dur
hgezogene Linie)

gezeigt; unten ist die Gesamtsteuerung (grüne dur
hgezogene Linie)

bestehend aus dem Vorsteuerungsanteil (blaue gestri
helte Linie) und

dem Regelungsanteil (rote gepunktete Linie) dargestellt; die vertikale

gestri
helte Linie kennzei
hnet hier den Beginn der Bewegung auf der

stark stabilen Mannigfaltikeit
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bere
hnet wurde, und es zeigt au
h die physikalis
he Bedeutung der stabilen Man-

nigfaltigkeit sehr ans
hauli
h. Sogar bei der Trajektorie, die am Prüfstand mit

zusätzli
her Regelung (grüne Linie in Bild 5-16) dur
hgeführt wird, bleibt die

gewüns
hte Struktur in der Bewegung des Wagens teilweise erhalten. Im Verlauf

der Steuerung des Wagens (siehe Bild 5-16 unten) wird im zweiten Teil si
htbar,

dass diese si
h zunä
hst fast bei null be�ndet, dann aber ein Regeleingri� benö-

tigt wird, um die Stabilisierung dur
hzuführen. Im Verglei
h zu der Simulation

dieser Trajektorie (siehe Bild 5-15) sind die Spitzen, die in der Steuerung am

Ende des Manövers auftreten, am Prüfstand ni
ht so ausgeprägt. Ein mögli
her

Aspekt, der dies erklärt, ist, dass der Motor am Prüfstand zusätzli
he Dämp-

fung besitzt, die im Simulationsmodell ni
ht berü
ksi
htigt ist und die si
h auf

die Tests vorteilhaft auswirkt. Auÿerdem kann die Ri
htungsumkehr am Motor

ni
ht beliebig s
hnell ausgeführt werden, sodass immer nur ein begrenzter Ru
k

umgesetzt werden kann.

Zusammenfassend bietet der vorges
hlagene Sequenzansatz die Mögli
hkeit qua-

litativ neue Lösungen für den Aufs
hwung des Doppelpendels auf einem Wagen

zu �nden. Im Verglei
h zu den Lösungen aus Kapitel 4, bei denen ein linear

interpolierter initial guess für die Optimierung verwendet wurde, ergeben si
h

hier deutli
h komplexere Lösungen, die au
h nur mit diesem deutli
h komple-

xeren initial guess erzeugt werden konnten. Dies kann dadur
h erklärt werden,

dass zusätzli
hes Systemwissen dur
h die Verwendung der natürli
hen Dynamik

beim Sequenzansatz verwendet wird. Bei der Übertragung dieser Idee auf andere

Systeme kann das zusätzli
he Systemwissen hilfrei
h sein, um überhaupt opti-

male Lösungen zu �nden oder die s
hon bestehenden Lösungen zu verbessern.

Insgesamt lässt si
h feststellen, dass die Verwendung des Sequenzansatzes, der

die natürli
he Dynamik des Systems ausnutzt, ein hilfrei
her Prozess ist, um sehr

gute Lösungen des Optimalsteuerungsproblems für den Aufs
hwung des Pendels

zu �nden.

5.5 Vergleich der optimalen Steuerung auf
Mannigfaltigkeiten mit dem Standardansatz

Es ist nun naheliegend, die Ergebnisse, die für den Aufs
hwung des Doppelpen-

dels auf einem Wagen unter Verwendung der stabilen Mannigfaltigkeit der oberen

Ruhelage erzielt werden konnten, mit den Ergebnissen des Standardansatzes aus

Kapitel 4 zu verglei
hen. Dafür wird zunä
hst kurz auf die Unters
hiede der Op-

timalsteuerungsprobleme eingegangen.

Beim Ansatz der optimalen Steuerung mit Mannigfaltigkeiten wurde als unte-

re Ruhelage x01 =
[
−π π 0 0 0 0

]
gewählt, da si
h dies zum Errei
hen der
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stark stabilen Mannigfaltigkeit als die beste Repräsentation herausgestellt hat.

Bei dem Standardansatz, der in Kapitel 4 mit einem linear interpolierten initial

guess dur
hgeführt wurde, war x02 =
[
−π −π 0 0 0 0

]
die gewählte Reprä-

sentation der unteren Ruhelage. Weiterführende Untersu
hungen haben ergeben,

dass der Standardansatz mit x01 für diverse unters
hiedli
he Parametrierungen des
Problems ni
ht konvergiert ist. Dies ist dadur
h zu erklären, dass der Aufs
hwung

aus der Ruhelage x01 eine Bewegung darstellt, bei der si
h die beiden Pendelarme

gegeneinander in Ri
htung der oberen Ruhelage drehen müssen. Dieses Manöver

ist komplexer als ein Aufs
hwung aus der Ruhelage x02, bei dem si
h die Pendel-

arme in die glei
he Ri
htung bewegen. Somit muss festgehalten werden, dass es

si
h bei den Lösungen der beiden Ansätze um qualitativ unters
hiedli
he Bewe-

gungen handelt. Denno
h werden die Ergebnisse im Folgenden vergli
hen, da es

si
h prinzipiell um die Lösung des glei
hen Problems handelt.
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Sequenzansatz

Bild 5-17: Verglei
h der Ergebnisse des Standardansatzes aus Abs
hnitt 4.3.4 (ro-

te Kreise) und des Sequenzansatzes (blaue Punkte)

In Bild 5-17 sind die Zielfunktionswerte der zwei vers
hiedenen Ansätze zusam-

men dargestellt. Dabei handelt es si
h bei den roten Kreisen um die Ergebnisse

der Re
hnungen, die mit einem linear interpolierten initial guess und der Mehr-

zieloptimierung mit Glei
hheitsnebenbedingungen dur
hgeführt wurden. Diese

Ergebnisse wurden au
h s
hon in Bild 4-12 dargestellt. Die Lösungen aus dem

Sequenzansatz sind mit blauen Punkten gekennzei
hnet und wurden s
hon in

Bild 5-13 gezeigt. Im Verglei
h der Werte fällt zunä
hst auf, dass es einen Berei
h

von 1.5 s bis 2.8 s gibt, in dem die Ergebnisse des Sequenzansatzes besser sind als

diejenigen des Standardansatzes. Dies war au
h zu erwarten, da beim Sequenzan-

satz mehr Systemwissen eingesetzt wurde, um bessere Ergebnisse zu erhalten.

Es wird ebenfalls deutli
h, dass dur
h den Sequenzansatz im Verglei
h sehr viele



148 Kapitel 5

nur lokal optimale Lösungen bere
hnet werden, was dur
h die groÿe Anzahl an

Kombination in diesem Ansatz zu erklären ist. Es gibt nur einige Kombinationen

die zu (vermutli
h) global optimalen Lösungen konvergieren. Dies hängt mit ei-

ner weiteren Beoba
htung für die Lösungen im Zustandsraum zusammen: Es gibt

einen bestimmten Berei
h für den Übergang auf die stark stabile Mannigfaltig-

keit, für den si
h die besten Lösungen ergeben und wo die Lösungen vermehrt

konvergieren.
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Standardansatz mit Nachoptimierung
Sequenzansatz

Bild 5-18: Ni
ht-dominierte Punkte des Standardansatzes mit Na
hoptimierung

(rote Kreise) aus Abs
hnitt 4.3.5 und des Sequenzansatzes (blaue Ster-

ne)

In Bild 5-18 sind die Zielfunktionswerte der ni
ht-dominierten Punkte des Se-

quenzansatzes (blaue Sterne) und die Ergebnisse der Na
hoptimierung des Stan-

dardansatzes aus Bild 4-15 (rote Kreise) dargestellt. Es wird deutli
h, dass die

Lösungen aus dem Sequenzansatz ni
ht so glei
hmäÿig verteilt sind, wie die der

Na
hoptimierung des Standardansatzes. Hier ist es aber au
h mögli
h, die vor-

liegenden Ergebnisse des Sequenzansatzes erneut dur
h eine Na
hoptimierung zu

variieren und so eine zusammenhängende Paretofront zu erhalten.

In den beiden Fällen des Sequenzansatzes und der Variation dur
h Na
hopti-

mierung wurde im Verglei
h zum Standardansatz zusätzli
her Aufwand für die

Bere
hnung der Ergebnisse notwendig. Beide Varianten ergeben dabei Lösungen,

die ungefähr glei
h gute Zielfunktionswerte bezügli
h der betra
hteten Ziele besit-

zen. Somit lässt si
h als Fazit festhalten, dass si
h dur
h zusätzli
hes Systemwis-

sen (z. B. Mannigfaltigkeiten) und dur
h spezielle Auswahl und Na
hoptimierung

besonders gute Ergebnisse erzielen lassen.
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5.6 Erweiterungsmöglichkeiten und zukünftige
Anwendungen

Weiterführend ist es notwendig zu validieren, ob der hier vorgestellte Ansatz der

optimalen Steuerung auf Mannigfaltigkeiten allgemeiner anwendbar ist und dies

au
h an anderen Anwendungsbeispielen zu testen. Für zukünftige Arbeiten wäre

es von Vorteil im Rahmen der optimalen Steuerung eine e�ziente Methodik für

die Lösung der Optimalsteuerungsprobleme au
h in Hinbli
k der Mehrzielopti-

mierung zu �nden. Zum Beispiel wurde in [ORF12℄ eine Methode mit Referenz-

punkten verwendet, um die Bere
hnung von ganzen Mengen von Manövern zu

bes
hleunigen.

Auÿerdem ist es denkbar, weniger eins
hränkende Teilprobleme für die Optimal-

steuerung zu verwenden, um nur einige wenige unters
hiedli
he Manöver zu be-

re
hnen. Neben einer freien Zeit des Manövers könnte au
h der Endpunkt auf der

Mannigfaltigkeit weggelassen werden. Diese Randbedingung kann dann dur
h die

Nebenbedingung ersetzt werden, dass die Mannigfaltigkeit einen Zielberei
h dar-

stellt, der während des Manövers errei
ht werden soll. Dies könnte in DMOC

einfa
h umgesetzt werden, benötigt aber eine analytis
he Bes
hreibung des Or-

bits der Mannigfaltigkeit, wel
her z. B. mit Splines approximiert werden kann.

Wenn man andere Szenarien als den Aufs
hwung des Pendels aus der unteren in

die obere Ruhelage betra
hten mö
hte, könnten Mannigfaltigkeiten der anderen

Ruhelagen interessant sein. Es müssen dann mehrere Orbits von unters
hiedli-


hen Mannigfaltigkeiten berü
ksi
htigt werden, und die Sequenzen könnten sogar

Übergänge von einer Mannigfaltigkeit zu einer anderen beinhalten. Ein Beispiel

für ein sol
hes Vorgehen ist die Auslegung von energiee�zienten orbitalen Trans-

fers für Weltraummissionen. Der in diesem Kapitel vorgestellte Ansatz der Para-

metrisierung führt dazu, dass si
h die Anzahl an kurzen gesteuerten Manövern

stark erhöht, wenn au
h no
h unters
hiedli
he Mannigfaltigkeiten betra
htet wer-

den. In einem sol
hen Fall wäre ein systematis
hes Vorgehen hilfrei
h, das den

Anwender dabei unterstützt. Um s
hlieÿli
h einen automatisierbaren Prozess zu

erhalten, wäre ein graphbasierter Ansatz ähnli
h dem Manöverautomaten aus

[FDF05℄ denkbar.

Langfristig gesehen sollte die optimale Steuerung auf Mannigfaltigkeiten au
h

bezügli
h der Anwendbarkeit auf eine allgemeinere und anwendungsorientierte

Klasse von Systemen untersu
ht werden. Im Besonderen für ho
hdimensionale,

komplexe Mehrkörpersysteme kann der Sequenzansatz ein Mittel dazu sein, einen

klugen, physikalis
h motivierten und sogar s
hon zulässigen initial guess zu �n-

den, der dem Optimierungsalgorithmus hilft ein mögli
hst gutes Optimum zu

errei
hen und s
hnell zu einer Lösung zu konvergieren. Eine der besonderen Her-

ausforderungen der optimalen Steuerung des Doppelpendels besteht darin, dass
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dieses System unteraktuiert ist. Weitere Beispiele für unteraktuierte me
hanis
he

Systeme sind Raumfahrzeuge und Unterwasserfahrzeuge, Systeme mit �exiblen

Verbindungen, oder au
h Systeme im Berei
h der Fortbewegung [Spo97℄. Dabei ist

die Verwendung von invarianten Mannigfaltigkeiten im Berei
h der Entwi
klung

von energiee�zienten Weltraummissionen bereits aktueller Stand der Te
hnik,

worauf in der Einleitung dieses Kapitels s
hon eingegangen wurde. Potentiale

für die Anwendung des neuen Ansatzes werden daher vor allem im Berei
h von

unteraktuierten Robotiksystemen gesehen, z. B. bei Systemen die si
h mit der

Fortbewegung von Robotern bes
häftigen. Bei dieser Art von Systemen ist es

das Ziel die mens
hli
he Bewegung zu imitieren und dabei auf die Minimierung

der notwendigen Steuerung zu a
hten, siehe [CWR01℄. Dabei zeigten z. B. Tests

mit dem �Honda Humanoid�, dass das Laufen des Roboters 20 mal mehr Mus-

kelleistung als bei einem verglei
hbar groÿen Mens
h benötigt. Daher ers
heint

Optimalsteuerung als ein passendes Konzept, um energiee�ziente Lösungen zu

�nden. Es ist dabei denkbar mehrere Ziele glei
hzeitig zu berü
ksi
htigen (Mehr-

zieloptimierung), da z. B. eine kurze Dauer von Manövern au
h wi
htig ist. In

[M
G90℄ wird das biome
hanis
h inspirierte Design von Robotern bes
hrieben.

Der Autor stellt einige fundamentale Aussagen vor, z. B dass ein groÿer Teil der

S
hwungphase der mens
hli
hen Bewegung passiv ist. Eine sol
he Eigens
haft

entspri
ht der Idee der optimalen Steuerung auf Mannigfaltigkeiten, denn die

Bewegung auf dieser ist ebenfalls passiv. Daher werden hier vielverspre
hende

Verbindungen gesehen.

Auf Grundlage dieser Ideen sollen die konkrete Anwendbarkeit und Leistungsfä-

higkeit des hier vorgestellten neuen Ansatzes für weitere unteraktuierte Systeme

in der Zukunft evaluiert werden.
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6 Zusammenfassung und Ausblick

Zum Abs
hluss folgen eine Zusammenfassung der in dieser Arbeit erzielten Er-

gebnisse und ein Ausbli
k auf weitere Fors
hungsarbeiten.

6.1 Zusammenfassung

In dieser Arbeit wurde die optimale Steuerung von unteraktuierten dynamis
hen

Systemen am Beispiel des Mehrfa
hpendels auf einem Wagen untersu
ht. Da-

bei lag ein besonderer S
hwerpunkt auf der Berü
ksi
htigung mehrerer Ziele für

die Auslegung der optimalen Steuerung. Dur
h eine Mehrzieloptimierung war

es mögli
h, viele Varianten für einen Aufs
hwung des Pendels bezügli
h ihrer

Pareto-Optimalität zu untersu
hen. Dabei konnten bei dem Verglei
h der Lösun-

gen abhängig von den Systemzielen optimale Kompromisse für das dynamis
he

System identi�ziert werden. Ein weiterer Ansatz bestand darin, die natürli
he

Dynamik in Form von (in)stabilen Mannigfaltigkeiten zu nutzen, um optimale

Trajektorien zu bestimmen.

In Kapitel 2 wurden zunä
hst vers
hiedene Pendelsysteme vorgestellt, die im Rah-

men von Fors
hungsprojekten bei der Entwi
klung von neuartigen Steuerungs-

und Regelungskonzepten verwendet werden. In dieser Arbeit wurde das mehrfa
h

unteraktuierte Doppel- bzw. Dreifa
hpendel auf einem Wagen betra
htet. Lösun-

gen für den Aufs
hwung des Pendels wurden simulativ, aber au
h am Prüfstand

evaluiert. Mit Hilfe des Lagrange-Formalismus wurde für dieses System eine aus-

führli
he Modellbildung dur
hgeführt. Dabei wurde die partielle Zustandslineari-

sierung dazu verwendet, das kraftgesteuerte Modell in ein weniger komplexes Mo-

dell zu transformieren, das dur
h die Bes
hleunigung des Wagens gesteuert wird.

Für die Ausführung der Trajektorien am Pendel wurde die Zwei-Freiheitsgrade-

Struktur verwendet. Hierbei müssen zuerst eine nominale Steuerung und Trajek-

torie bestimmt werden und diese muss ans
hlieÿend dur
h eine zusätzli
he Rege-

lung entlang der Trajektorie stabilisiert werden. Die Regelung basierte dabei auf

linearen Ansätzen und wurde mit einem zeitvarianten LQ-Regler dur
hgeführt.

Es konnte gezeigt werden, dass si
h das ni
htlineare System des Doppelpendels

mit Hilfe dieses Vorgehens regeln lässt. Auÿerdem konnte dur
h manuelle Anpas-

sungen der Regelparameter in besonders kritis
hen Berei
hen der Bewegung die

Güte der Regelung zum Teil no
h verbessert werden.

Der Hauptaspekt der Arbeit war die Bestimmung der Steuerung für das unter-

aktuierte Pendel. Diese wurde mit Hilfe von optimalen Steuerungsmethoden be-

re
hnet, um die gewüns
hten Systemziele berü
ksi
htigen zu können. Dazu wurde
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die Thematik der optimalen Steuerung in Kapitel 3 eingeführt und auf die un-

ters
hiedli
hen Lösungsmethoden eingegangen. Man unters
heidet zwis
hen indi-

rekten und direkten Methoden: Bei den indirekten Methoden werden notwendige

Bedingungen mit Hilfe des Pontryagins
hen Maximumsprinzips hergeleitet und

dazu verwendet, ein (diskretes) Glei
hungssystem zur Lösung des Optimalsteue-

rungsproblems zu bestimmen. Bei den direkten Methoden werden die Bewegungs-

glei
hungen des Systems selbst dazu verwendet, ein diskretes Problem für die

ans
hlieÿende Lösung dur
h Optimierungsverfahren herzuleiten. Beispiele hierfür

sind S
hieÿverfahren und Kollokation. Au
h DMOC (Dis
rete Me
hani
s and Op-

timal Control) ist eine sol
he direkte Methode, bei der das Lagrange-d'Alembert-

Prinzip zur Herleitung der Bewegungsglei
hungen zunä
hst diskretisiert wird und

die Bewegungsglei
hungen ans
hlieÿend dur
h eine diskrete Variation hergeleitet

werden. DMOC hat spezielle Eigens
haften, die auf der variationellen Herleitung

dieser Methode beruhen. Zum Beispiel führt die symplektis
he Form der Metho-

de zu einem qualitativ guten Energieverhalten der Trajektorien für me
hanis
he

Systeme.

Die Ergebnisse der optimalen Steuerung mit DMOC für den Aufs
hwung des

Doppelpendels auf einem Wagen wurden in Kapitel 4 dargestellt. Das NLP, das

mit Hilfe von DMOC hergeleitet werden konnte, konnte dur
h die Anwendung von

SQP-Verfahren gelöst werden. Ein essentieller Ein�ussfaktor in dieser Optimie-

rung war die Wahl der Zielfunktion, in der mehrere Ziele berü
ksi
htigt wurden.

Hierfür wurden Methoden der Mehrzieloptimierung, wie z. B. die Einführung ei-

ner gewi
hteten Summe in der Zielfunktion verwendet. Als Ziele wurden dabei

die Dauer und der entstehende Steueraufwand des Manövers verwendet.

Ein zentrales Ergebnis war es, dass hierdur
h dynamis
h sehr unters
hiedli
he

Manöver für den Aufs
hwung aus der unteren Ruhelage in die obere Ruhelage

des Pendels bestimmt wurden. Diese Lösungen wurden bezügli
h ihrer Zielfunk-

tionswerte vergli
hen und damit auf ihre Pareto-Optimalität hin untersu
ht. Eine

zusätzli
he Untersu
hung von Lösungen mit einem deutli
h gröÿeren Verfahrweg

des Motors zeigten, dass dieser si
h ni
ht bedeutend auf eine Verbesserung der

Manöver bezügli
h der gewählten Ziele auswirkt. Hierdur
h wurde gezeigt, dass

die Bes
hränkung des Verfahrwegs keine bedeutende Eins
hränkung für die Lö-

sung des Optimalsteuerungsproblems darstellt.

Dur
h eine Na
hoptimierung, bei der die vorausgehenden Lösungen als initial

guess verwendet wurden, wurden dur
h lei
hte Variationen des Optimierungspro-

blems weitere Lösungen bere
hnet. Es war mögli
h, eine Paretofront ohne Sprünge

zu bere
hnen, die im Wesentli
hen aus drei dynamis
h unters
hiedli
hen Manö-

vern für den Aufs
hwung besteht. Dabei entspre
hen die drei Äste, aus denen die

Paretofront besteht, jeweils Variationen der glei
hen Bewegung mit lei
ht unter-

s
hiedli
hen Zielfunktionswerten. Es existieren somit für vers
hiedene Gesamtzei-

ten von Manövern unters
hiedli
he Bewegungen, die für den Aufs
hwung optimal
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sind. Dies ist eine interessante Systemeigens
haft, die nur dur
h die Analyse von

unters
hiedli
hen Lösungen ersi
htli
h werden konnte. Für einen Ents
heidungs-

träger ist es mit diesen Ergebnissen mögli
h, eine bestimmte Trajektorie abhängig

von der gewüns
hten Wi
htigkeit der Ziele der Anwendung auszuwählen. Dur
h

die Pareto-Optimalität der Lösungen ist si
hergestellt, dass es si
h dabei um sehr

e�ziente Lösungen für das dynamis
he System handelt.

Eine neuartige Methode für die Bere
hnung von optimalen Trajektorien wurde

in Kapitel 5 vorgestellt. Das Ziel war es, die natürli
he Dynamik von me
hani-

s
hen Systemen für die optimale Steuerung auszunutzen. Die natürli
he Dynamik

eines dynamis
hen Systems wurde dabei mittels stabiler und instabiler Mannig-

faltigkeiten bes
hrieben. Die stabile Mannigfaltigkeit besteht z. B. aus allen Zu-

standspunkten, die eine Ruhelage ohne Steuereingri� errei
hen. Mannigfaltigkei-

ten wurden ausgenutzt, um energiee�ziente Trajektorien zu bere
hnen, da die

(ungesteuerte) Bewegung auf ihnen kostenlos ist. Eine derartige Verwendung von

Mannigfaltigkeiten für die optimale Steuerung wurde bisher vor allem im Rahmen

des Designs von Weltraummissionen verwendet und stellte daher im Berei
h von

me
hanis
hen Systemen einen neuartigen Ansatz dar. Das wesentli
he Konzept

war es, eine Sequenz aus einer gesteuerten optimalen Trajektorie aus der unte-

ren Ruhelage auf die stabile Mannigfaltigkeit der oberen Ruhelage zu bere
hnen

und der stabilen Mannigfaltigkeit dann unaktuiert, also kostenlos, in die obere

Ruhelage zu folgen. Eine zusätzli
he Regelung im Sinne einer Zwei-Freiheitsgrade-

Struktur sorgte für die Stabilisierung des Pendels während des Aufs
hwungs und

in der oberen Ruhelage. Eine weitere Na
hoptimierung mit der Sequenz als initial

guess in der Optimierung führte zu no
h besseren Zielfunktionswerten der Lösun-

gen. Im Rahmen der Arbeit an diesem Ansatz konnte gezeigt werden, dass si
h

optimale Trajektorien entlang der (stark) stabilen Mannigfaltigkeit der oberen

Ruhelage des Doppelpendels bere
hnen lassen. Der Ansatz zeigte auÿerdem in

vielen Fällen bessere Zielfunktionswerte der optimalen Trajektorien im Verglei
h

zu Lösungen, die mit einem einfa
hen linear interpolierten initial guess bere
hnet

wurden.

Au
h am Prüfstand des Doppelpendels auf einem Wagen konnte die Bewegung

auf der Mannigfaltigkeit ans
hauli
h beoba
htet werden. Vor allem beim ni
ht

geregelten Manöver konnte man im zweiten Teil der Trajektorie beoba
hten, dass

si
h der Wagen fast ni
ht mehr bewegen musste, um das Pendel in Ri
htung der

oberen Ruhelage zu bringen. Dies entspra
h der Bewegung auf der Mannigfaltig-

keit.

Insgesamt wurde in dieser Arbeit dur
h die Bere
hnung von optimalen Manövern

für das Pendel viel Systemwissen zusammengeführt. So ist es mit den vorlie-

genden Ergebnissen mögli
h, zu ermitteln, wie der s
hnellste Aufs
hwung oder

derjenige mit dem geringsten Steueraufwand aussieht. Auÿerdem kann eine belie-
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bige Lösung mittels Na
hoptimierung einfa
h variiert werden, um eine gewüns
h-

te Kombination der Zielfunktionswerte zu erhalten. Die optimale Steuerung auf

Mannigfaltigkeiten bietet zusätzli
h die Mögli
hkeit, eine besondere Bewegung

dur
h physikalis
h motivierte Ansätze herzuleiten, die ebenfalls sehr gute Ziel-

funktionswerte besitzt. Die optimalen Trajektorien aus beiden Ansätzen konnten

erfolgrei
h am Prüfstand umgesetzt werden. Dadur
h wurde ersi
htli
h, dass die

numeris
hen Lösungen des Optimalsteuerungsproblems exakt genug für eine prak-

tis
he Umsetzung bere
hnet wurde. Es konnte gezeigt werden, dass ein Vorgehen

entwi
kelt wurde, das von der Modellbildung über die theoretis
he Bere
hnung

der optimalen Steuerung bis hin zur Realisierung am Prüfstand umsetzbar ist. Es

wird auÿerdem davon ausgegangen, dass die hier vorgestellten Ansätze ebenfalls

vorteilhaft auf andere me
hanis
he Systeme angewendet werden können, worauf

im folgenden Ausbli
k genauer eingegangen wird.

6.2 Ausblick

Innerhalb der Thematik der optimalen Steuerung dynamis
her Systeme am Bei-

spiel des Pendels auf einem Wagen gibt es weitere Aspekte, die in künftigen

Fors
hungsthemen aufgegri�en werden können.

Mit den in dieser Arbeit vorgestellten Methoden ist es ni
ht mögli
h, die dur
h

Optimierung bere
hneten Trajektorien na
hträgli
h anzupassen, um z.B. einen

anderen Anfangspunkt zu erhalten. Eine sol
he Trajektorie müsste dur
h eine

neue Bere
hnung bestimmt werden. Da aber für einen e
htzeitfähigen Aufs
hwung

aus einer beliebigen Position des Pendels aufgrund der Komplexität des Problems

die benötigten Trajektorien ni
ht online, also in E
htzeit, bere
hnet werden kön-

nen, muss ein neuer Ansatz gewählt werden. Eine Idee hierfür ist es, im Vorfeld

kurze optimale Trajektorienabs
hnitte in Ri
htung der oberen Ruhelage zu be-

re
hnen und diese in einer Bibliothek zu hinterlegen. Diese optimalen Steuerungen

können wiederum mit Hilfe von DMOC bere
hnet werden. Dann kann abhängig

von der Position des Pendels im Zustandsraum das passende Trajektorienstü
k

ausgewählt und aufges
haltet werden. Dies muss dann mehrfa
h wiederholt wer-

den, da dabei Systemungenauigkeiten auftreten werden. Denkbar ist, dass si
h

aufgrund der Dynamik des Pendels bestimmte Strukturen für die gewüns
hte

Bewegung ergeben, die ausgenutzt werden können. Erste Tests zeigen, dass si
h

z. B. in der Nähe der oberen Ruhelage Trajektorien entlang der stark stabilen

Mannigfaltigkeit ergeben. Insgesamt besteht die Idee darin, ähnli
h einer Model

Predi
tive Control zu arbeiten: Entspre
hend dem aktuellen Zustand wird das

Systemverhalten immer wieder neu angepasst, bis die Ruhelage errei
ht wird.

Für die optimale Steuerung auf Mannigfaltigkeiten soll in Zukunft die Anwend-

barkeit der Strategie auf andere Systeme getestet werden. Dabei kann es vor allem
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für komplexe Mehrkörpersysteme von Vorteil sein, eine sol
he physikalis
h mo-

tivierte Methode für die Bere
hnung von optimalen Steuerungen zu verwenden.

Groÿe Potentiale werden hier vor allem im Berei
h von unteraktuierten Robo-

tersystemen gesehen. Au
h bei der automatis
hen Fortbewegung von Robotern

soll die beim mens
hli
hen Gang vorkommende S
hwungphase ausgenutzt werden

(siehe weitere Ausführungen hierzu in Abs
hnitt 5.6).

Eine weitere Problematik ist die Umsetzbarkeit von komplexen dynamis
hen Ma-

növern am Prüfstand. Es hat si
h gezeigt, dass si
h anhand der optimalen Lösung

keine direkte Aussage tre�en lässt, ob das Manöver au
h praktis
h gut umsetzbar

ist. Ein Teil der Lösungen lieÿ si
h sowohl in der Simulation und au
h am Prüf-

stand gut umsetzen, andere erforderten eine starke manuelle Anpassung. Hier

wäre eine weitgehend automatisierbare Methode für die Tests der Manöver wün-

s
henswert, die au
h weniger manuelle Eingri�e notwendig ma
ht.

Die Methode, optimale Steuerungen mit Berü
ksi
htigung mehrerer Ziele für das

unteraktuierte Doppelpendel zu bere
hnen, kann ebenfalls auf voll aktuierte Ro-

botiksysteme angewendet werden. In industriellen Anwendungen werden für die

Planung von optimalen Trajektorien in [GBLV12℄ z. B. die folgenden Ziele an-

gegeben: minimale Ausführzeit, minimale Energie bzw. minimaler Aufwand für

den Aktor und minimaler Ru
k. Daher ist es gut vorstellbar, au
h hier mittels

Mehrzieloptimierung gute Ergebnisse zu erzielen. Eine erhöhte Komplexität der

Aufgabe erhält man bei Industrierobotern häu�g dur
h einen bes
hränkten Bau-

raum und die Berü
ksi
htigung der Bewegung von anderen Robotern [BBLT12℄.

Bei der Bere
hnung von optimalen Steuerungen, wie sie in dieser Arbeit vorge-

stellt wurden, ist es relativ einfa
h, sol
he Zustandsraumbes
hränkungen in der

Optimierung zu berü
ksi
htigen.
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A Mathematischer Anhang

Für das tiefere Verständnis der DMOC Methode in Kapitel 3 werden einige

Grundlagen der Di�erentialgeometrie benötigt. Dort werden z. B. me
hanis
he

Mehrkörpersysteme auf n-dimensionalen Mannigfaltigkeiten, sogenannte Kon�-

gurationsmannigfaltigkeiten, betra
htet. Auÿerdem sind diese Grundlagen über

Mannigfaltigkeiten au
h vorteilhaft für das Verständnis der optimalen Steuerung

auf Mannigfaltigkeiten aus Kapitel 5.

In diesem mathematis
hen Anhang werden in Abs
hnitt A.1 zuerst di�erenzier-

bare Mannigfaltigkeiten de�niert und dann einige weiterführende Konzepte aus

der Si
ht der Di�erentialgeometrie erläutert. Hierbei wird den Darstellungen in

[BL05℄ und [Bär00℄ gefolgt.

In Abs
hnitt A.2 wird genauer auf die Herleitung der Euler-Lagrange-Glei
hungen

mit Hilfe von Variationsre
hnung und dem Lagrange-d'Alembert-Prinzip einge-

gangen.

Zum Abs
hluss werden in Abs
hnitt A.3 die diskreten Bewegungsglei
hungen und

Randbedingungen des Optimalsteuerungsproblems für die Implementierung im

Optimierungsalgorithmus mit DMOC genauer hergeleitet. Dabei wird ersi
htli
h,

dass si
h abhängig von der Lagrange-Funktion eine bestimmte Struktur dieser

Glei
hungen ergibt.

A.1 Mannigfaltigkeiten

Das fundamentale Objekt der Di�erentialgeometrie ist die di�erenzierbare Man-

nigfaltigkeit. Sie stellt eine Menge dar, die lokal ähnli
h einer o�enen Menge im

euklidis
hen Raum ist. Um eine Mannigfaltigkeit zu de�nieren, benötigt man ers-

tens eine Karte, also eine Abbildung von einer Teilmenge der Mannigfaltigkeit in

eine o�ene Menge des euklidis
hen Raums und zweitens einen Atlas, das heiÿt

eine Sammlung von Karten, wel
he die gesamte Mannigfaltigkeit überde
ken,

wobei bestimmte Überde
kungseigens
haften erfüllt sein müssen. Mit diesen Vor-

aussetzungen kann man dann über Kurven auf Mannigfaltigkeiten, Abbildungen

zwis
hen Mannigfaltigkeiten, oder au
h deren Glattheit reden.

Als ein ans
hauli
hes Beispiel für eine Mannigfaltigkeit dient eine Sphäre, also

eine Kugelober�ä
he, wie etwa die Erdober�ä
he. Vers
hiedene Länder der Erde

können mit Hilfe einer Karte auf eine Ebene, also in R
2
abgebildet werden. Am

Rand einer Karte besteht dann die Mögli
hkeit auf eine zweite Karte der angren-

zenden Region zu we
hseln. In dieser Weise lässt si
h eine Mannigfaltigkeit dur
h
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einen vollständigen Satz an Karten bes
hreiben. Dabei brau
ht man Regeln, wie

si
h beim Kartenwe
hsel die Karten überlappen. Ans
hauli
h ist aber au
h klar,

dass si
h die gesamte Kugelober�ä
he ni
ht mit einer einzigen Karte im R
2
dar-

stellen lässt. Die Dimension einer Mannigfaltigkeit entspri
ht der Dimension einer

lokalen Karte und alle Karten haben die glei
he Dimension [Wik℄.

De�nition A.1 (Di�erenzierbare Mannigfaltigkeit)

Es sei S eine Menge. Eine Karte für S ist ein Paar (U, ϕ) mit den Eigens
haften,

dass

(i) U eine Teilmenge von S ist und

(ii) ϕ : U → R
n
eine injektive Abbildung ist, wobei ϕ(U) eine o�ene Teilmenge

des R
n
sei.

Sei r ∈ N ∪ {∞}, dann ist ein Cr
-Atlas für S eine Sammlung A = {(Ua, ϕa)}a∈A

von Karten mit der Eigens
haft, dass S =
⋃

a∈A Ua und für jede ni
ht leere

S
hnittmenge Ua ∩ Ub 6= ∅ muss gelten:

(i) ϕa(Ua ∩ Ub) und ϕb(Ua ∩ Ub) sind o�ene Teilmengen des R
n
und

(ii) die Überde
kungsabbildung ϕab := ϕb ◦ϕ
−1
a : ϕa(Ua ∩Ub) → ϕb(Ua ∩Ub) ist

ein Cr
-Di�eomorphismus

1

, siehe au
h Bild A-1-1.

Unters
hiedli
he Karten in einem Atlas mit den obigen Eigens
haften (i) und (ii)

heiÿen kompatibel.

Zwei Cr
-Atlanten A1 und A2 sind äquivalent, falls A1∩A2 ebenfalls ein C

r
-Atlas

ist.

M ist eine Cr
-di�erenzierbare Mannigfaltigkeit, oder einfa
h Cr

-Mannigfaltigkeit,

wenn folgendes gilt:

(i) M ist überde
kt mit einem Satz kompatibler Karten, d.h. jeder Punkt kann

in mindestens einer Karte dargestellt werden.

(ii) M hat einen Atlas.

Wenn jede Karte ihr Bild in einem n-dimensionalen Unterraum hat, dann wird

M eine n-dimensionale Mannigfaltigkeit genannt.

A.1.1 Abbildungen zwischen Mannigfaltigkeiten

Na
hdem die Eigens
haften einer Mannigfaltigkeit de�niert wurden, werden nun

Abbildungen zwis
hen Mannigfaltigkeiten de�niert, wie es für den euklidis
hen

1Ein Diffeomorphismus ist eine bijektive, stetig differenzierbare Abbildung, deren Umkehrab-
bildung auch stetig differenzierbar ist. Im Falle eines Cr-Diffeomorphismus ist die Abbildung
r-fach stetig differenzierbar



Mathematis
her Anhang 159

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

PSfrag repla
ements

Ua

Ub

M

R
n

R
n

ϕa

ϕb
ϕab

Bild A-1-1: Interpretation der Überde
kungsabbildung

Raum aus der Analysis folgt. Mit Hilfe des lokalen Vertreters einer Abbildung

können Eigens
haften von Abbildungen zwis
hen Mannigfaltigkeiten gekennzei
h-

net werden.

De�nition A.2 (Lokaler Vertreter einer Abbildung)

Für r ∈ N∪{∞} sei f :M → N eine Abbildung zwis
hen Cr
-Mannigfaltigkeiten

und für x ∈M sei (U, ϕ) eine Karte, wobei U eine Umgebung von x ist. Auÿerdem
sei (V, ψ) eine Karte, wobei V eine Umgebung von f(x) sei, mit der Annahme,
dass f(U) ⊂ V ist. Falls f stetig ist, kann U immer soweit verkleinert werden,

dass diese letzte Bedingung erfüllt ist. Dann ist der lokale Vertreter (siehe au
h

Bild A-1-2) von f bezügli
h der zwei Karten die Abbildung fϕψ : ϕ(U) → ψ(V )
und diese ist gegeben dur
h

fϕψ(y) = ψ ◦ f ◦ ϕ−1(y). (A-1-1)

De�nition A.3 (Cr
-Abbildung zwis
hen Mannigfaltigkeiten)

Es sei f :M → N eine stetige Abbildung zwis
hen Mannigfaltigkeiten.

(i) Es gilt, dass f :M → N von der Klasse Cr
(oder au
h f ∈ Cr(M ;N)) mit

r ∈ N ∪ {∞} ist, wenn für jeden Punkt x ∈ M Karten (U, ϕ) für M und

(V, ψ) für N wie in De�nition A.2 existieren und der lokale Vertreter fϕψ
von der Klasse Cr

, also r-mal stetig di�erenzierbar, ist.

(ii) Die Menge der Klasse Cr
-Abbildungen von M na
h N wird mit Cr(M ;N)

bezei
hnet.
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Bild A-1-2: Der lokale Vertreter einer Abbildung f .

(iii) Falls f eine Bijektion der Klasse Cr
ist und falls f−1

au
h von der Klasse

Cr
ist, dann ist f ein Cr

-Di�eomorphismus.

A.1.2 Untermannigfaltigkeiten

Bei der Betra
htung von Vektorräumen entsteht der Begri� eines Unterraums,

wenn man eine Teilmenge des Vektorraums erhält, die bezügli
h der Struktur

des Vektorraums abges
hlossen ist. Für Mannigfaltigkeiten gibt es ein ähnli
hes

Konzept für Teilmengen, die die di�erenzierbare Struktur der Mannigfaltigkeiten

erhalten, in denen sie Teilmengen sind.

De�nition A.4 (Untermannigfaltigkeit)

Es sei r ∈ N ∪ {∞}. Eine Teilmenge S einer Cr
-Mannigfaltigkeit M ist eine Cr

-

Untermannigfaltigkeit, falls für jedes x ∈ S eine zulässige Karte (U, ϕ) für M mit

x ∈ U existiert, so dass

(i) ϕ in den Produktraum R
k × R

n−k
abbildet, und

(ii) ϕ(U ∩ S) = ϕ(U) ∩ (Rk × {0}) gilt.

Eine Karte mit diesen Eigens
haften heiÿt au
h Karte der Untermannigfaltigkeit

für S.

A.1.3 Tangentialbündel

Hier soll nun der Begri� des Tangentialbündels eingeführt werden. Man kann

sagen, dass das Tangentialbündel die Menge aller mögli
hen Ges
hwindigkeiten
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an allen Punkten der Mannigfaltigkeit M darstellt. Bemerkenswerterweise ist

aber das Tangentialbündel au
h selbst eine Mannigfaltigkeit, deren Dimension

doppelt so groÿ wie die von M ist. Im Konzept der Lagrange-Me
hanik heiÿt

dies, wenn die Menge der Positionen eines Systems eine Mannigfaltigkeit ist, dann

wird das Tangentialbündel dieser Mannigfaltigkeit als Menge der Positionen und

Ges
hwindigkeiten betra
htet. Daher ist die gesamte Zustandsmannigfaltigkeit

des Systems gerade das Tangentialbündel.

De�nition A.5 (Tangentialvektor, Tangentialraum und Tangentialbün-

del)

Gegeben sei eine Mannigfaltigkeit M . Eine Kurve an x ist eine Abbildung γ :
I → M , wobei I ein 0 im Innern enthaltendes Intervall ist und für wel
he gilt

γ(0) = x. Zwei Kurven γ1 und γ2 sind äquivalent in x, falls in einer Karte (U, ϕ)
mit x ∈ U die lokalen Vertreter von γ1 und γ2 die glei
he Ableitung in 0 besitzen.
Falls γ1 und γ2 äquivalent in x sind, wird dies dur
h γ1 ∼x γ2 dargestellt. Mit

dieser Äquivalenzrelation lässt si
h die Äquivalenzklasse von γ in x dur
h [γ]x
bes
hreiben.

Ein Tangentialvektor in x ist eine Äquivalenzklasse von Kurven unter der Äquiva-
lenzrelation ∼x. Die Menge aller Tangentialvektoren in x ist der Tangentialraum

in x und wird dur
h TxM bezei
hnet. Die disjunkte Vereinigung

TM =
◦⋃

x∈M

TxM (A-1-2)

von allen Tangentialräumen für alle x ∈M wird mit Tangentialbündel bezei
hnet.

De�nition A.6 (Tangentialabbildung)

Es sei f : M → N eine Abbildung zwis
hen zwei di�erenzierbaren Mannigfaltig-

keiten M und N . Es seien x ∈ M und [γ]x ∈ TxM . Dann ist f ◦ γ eine Kurve

an f(x) und wir de�nieren Tf([γ]x) = [f ◦ γ]f(x). Dies de�niert nun eine Abbil-

dung Tf : TM → TN , und diese wird als Tangentialabbildung bezei
hnet. Die

Eins
hränkung von Tf auf TxM wird mit Txf bezei
hnet. Man bea
hte, dass

Txf : TxM → Tf(x)N gilt.

De�nition A.7 (Di�erential, Kotangentialraum und Kotangentialbün-

del)

Es sei M eine n-dimensionale Mannigfaltigkeit und f : M → R eine glatte

Funktion, die an jedem Punkt x ∈ M di�erenziert werden kann, sodass si
h

die Abbildung Txf : TxM → Tf(x)R ergibt. Da der Tangentialraum von R in

jedem Punkt dur
h si
h selbst bestimmt ist, erhält man die lineare Abbildung

df(x) : TxM → R. Das heiÿt, df(x) ∈ T ∗
xM ist der Dualraum des Vektorraums
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TxM , und wird als Kotangentialraum bezei
hnet. In Koordinatendarstellung er-

gibt si
h

df(x) · v =

n∑

i=1

∂f

∂xi
vi,

wobei v ∈ TxM ist. df heiÿt Di�erential von f .
Unter Gebrau
h der Operatoren ∂/∂xi kann eine Basis von TxM dur
h

(e1, . . . , en) =

(
∂

∂x1
, . . . ,

∂

∂xn

)

angegeben werden, sodass v =
∑n

i=1 v
i∂/∂xi ist.

Wenn nun jeder Vektorraum TxM dur
h seinen Dualraum T ∗
xM ersetzt wird, er-

hält man eine neue 2n-dimensionale Mannigfaltigkeit, die als Kotangentialbündel

T ∗M bezei
hnet wird. Die duale Basis zu ∂/∂xi wird mit dxi bezei
hnet. Somit
erhält man die Formel

df(x) =

n∑

i=1

∂f

∂xi
dxi

für jede glatte Funktion f :M → R.

De�nition A.8 (regulärer Wert)

Für ein r ∈ N ∪ {∞} sei f ∈ Cr(M ;N). Ein regulärer Wert von f ist ein Punkt

y ∈ N mit der Eigens
haft, dass für jedes x ∈ f−1(y) die Tangentialabbildung
Txf surjektiv ist.

A.1.4 Vektorfelder

Ein weiteres Objekt der Di�erentialgeometrie ist das Vektorfeld. Es ordnet jedem

Punkt einer Mannigfaltigkeit einen Tangentialvektor zu.

De�nition A.9 (Vektorfeld)

Ein Vektorfeld V auf einer di�erenzierbaren Mannigfaltigkeit M ordnet jedem

Punkt p ∈ M einen Vektor V (p) ∈ TpM zu. V ist somit eine Abbildung von der

Mannigfaltigkeit M in das Tangentialbündel TM .

De�nition A.10 (Vektorfeld entlang einer Kurve)

Ein Vektorfeld V entlang einer Kurve γ : I → M ist eine di�erenzierbare Abbil-

dung, die jedem t ∈ I einen Tangentialvektor V (t) ∈ Tγ(t)M zuordnet.

A.2 Euler-Lagrange-Gleichungen und
Lagrange-d’Alembert-Prinzip

In diesem Abs
hnitt werden kurz die Herleitung der Euler-Lagrange-Glei
hungen

mit Hilfe der Variationsre
hnung und das Lagrange-d'Alembert-Prinzip vorge-
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stellt, die für die Herleitung der DMOC Methode notwendig sind. Dabei wird der

Darstellung aus [BL05℄ gefolgt.

Es sei Q eine di�erenzierbare Mannigfaltigkeit. Eine Lagrange-Funktion ist dann

eine Funktion L auf R × TQ, wel
he von der Zeit, den Positionen und den Ge-

s
hwindigkeiten des Systems abhängt. Eine Lagrange-Funktion L : R×TQ ist zeit-

unabhängig, wenn eine Funktion L0 : TQ→ R existiert, für die L(t, vq) = L0(vq)
gilt. In dieser Arbeit werden auss
hlieÿli
h zeitunabhängige Lagrange-Funktionen

betra
htet und diese werden dann ebenfalls mit L anstatt L0 bezei
hnet.

De�nition A.11 (Variation)

Es sei γ : [t0, tf ] → Q eine Kurve. Eine Variation von γ ist eine Abbildung

ϑ : [t0, tf ]× [−ǫ0, ǫ0] → Q mit den Eigens
haften

(i) ϑ(t, 0) = γ(t) für alle t ∈ [t0, tf ],

(ii) ϑ(t0, ǫ) = γ(t0) für alle ǫ ∈ [−ǫ0, ǫ0] und

(iii) ϑ(tf , ǫ) = γ(tf) für alle ǫ ∈ [−ǫ0, ǫ0].

Eine in�nitesimale Variation zu der Variation ϑ ist das Vektorfeld entlang γ,
gegeben dur
h

δϑ(t) =
d

dǫ

∣
∣
∣
∣
ǫ=0

ϑ(t, ǫ) ∈ Tγ(t)Q.

Eine Variation von γ ist somit eine �Störung� von γ und eine zugehörige in�nite-

simale Variation ist ein Maÿ der Störung für kleine Störparameter. Man bea
hte,

dass die Endpunkte einer Variation stationär bleiben, sodass die in�nitesimale

Variation an den Endpunkten vers
hwindet (siehe hierzu au
h Bild A-2-3).

PSfrag repla
ements

γ(t)

γ(t)

ϑ(t, ǫ)
δϑ(t)

Bild A-2-3: Eine Variation (links) und eine in�nitesimale Variation (re
hts)

Es sei Q eine di�erenzierbare Mannigfaltigkeit, [t0, tf ] ein Intervall mit t0, tf ∈ R

und q0, qf ∈ Q. Man erhält dur
h

C2([t0, tf ], q0, qf) ={γ : [t0, tf ] → Q |γ(t0) = q0, γ(tf) = qf ,

γ zweimal stetig di�erenzierbar }
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eine Familie von zweimal stetig di�erenzierbaren Kurven, die auf [t0, tf ] de�-
niert sind, in q0 beginnen und in qf enden. Es wird nun angenommen, dass eine

Lagrange-Funktion auf der MannigfaltigkeitQ existiert, und dazu wird eine Funk-

tion J : C2([t0, tf ], q0, qf) → R dur
h

J(γ) =

∫ tf

t0

L(γ′(t))dt

de�niert. Die Abbildung t → γ′(t) ist hier das Tangentialvektorfeld entlang γ.
Die Funktion J wird Gütefunktion oder au
h Kostenfunktion genannt.

Die zentrale Fragestellung in der Variationsre
hnung ist es nun, diejenige Kurve

γ∗ ∈ C2([t0, tf ], q0, qf) zu �nden, für die J(γ
∗) ≤ J(γ) für alle γ ∈ C2([t0, tf ], q0, qf)

gilt. Gesu
ht ist also die Kurve, die das Gütemaÿ J minimiert. Eine direkte Be-

re
hnung dieser minimierenden Funktion ist ni
ht mögli
h, da für jede Kurve

γ ∈ C2([t0, tf ], q0, qf ) die Bedingung J(γ∗) ≤ J(γ) ausgetestet werden müsste.

Daher soll nun zumindest eine notwendige Bedingung dafür aufgestellt werden,

dass eine Kurve γ das Gütemaÿ minimiert. Alle Kurven γ ∈ C2([t0, tf ], q0, qf),
die diese Bedingung ni
ht erfüllen, können dann ausges
hlossen werden.

Eine notwendige Bedingung sind die sogenannten Euler-Lagrange-Glei
hungen.

Satz A.12 (Notwendige Bedingung für die Minimierung)

Wenn eine Kurve γ ∈ C2([t0, tf ], q0, qf) das Gütemaÿ J minimiert, dann müs-

sen die Zustandsvariablen des Systems auf der Mannigfaltigkeit an jedem Punkt

(t, q(t), q̇(t)) auf der Kurve γ die Glei
hungen

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= 0, i ∈ {1, . . . , n} (A-2-3)

erfüllen. Die Glei
hungen (A-2-3) werden Euler-Lagrange-Glei
hungen zu der

Lagran-ge-Funktion L genannt.

Beweis. Ein Beweis dieses Satzes kann in [BL05℄ gefunden werden.

Um im Weiteren die Steuertheorie eines me
hanis
hen Systems zu betra
hten,

soll die Lagrange-Funktion für ein sol
hes System bes
hrieben werden.

De�nition A.13 (Lagrange-Funktion eines me
hanis
hen Systems)

Die Lagrange-Funktion eines me
hanis
hen Systems wird dur
h

L : TQ→ R, L(q, q̇) = T (q, q̇)− V (q) (A-2-4)

bes
hrieben, wobei T : TQ → R die kinetis
he Energie und V : Q → R die

potentielle Energie des Systems darstellen.
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In Kapitel 3 wurde dargelegt, wie man optimale Steuerungen u∗ für ein System

bestimmen kann. Es wird nun die Steuerung eines me
hanis
hen Systems dur
h

Kräfte f betra
htet. Diese sind von nun an die Parameter, die zu optimieren

sind. Innerhalb der Lagrange-Me
hanik, wie sie bisher betra
htet wurde, können

Kräfte wie folgt de�niert werden:

De�nition A.14 (Kraft)

Es sei Q eine di�erenzierbare Mannigfaltigkeit und I ∈ R ein Intervall. Dann ist

eine Kraft eine Abbildung f : I×TQ → T ∗Q, wel
he stetig von der Zeit abhängt,
und für die f(t, vq) ∈ T ∗

qQ für jedes (t, vq) ∈ R× TQ gilt.

Eine Kraft entlang einer Kurve γ ist dann de�niert dur
h t 7→ f(t, γ′(t)).

Mit dem folgenden Lagrange-d'Alembert-Prinzip lassen si
h die Euler-Lagrange-

Glei
hungen mit Kräften herleiten.

De�nition A.15 (Das Lagrange-d'Alembert-Prinzip)

Es sei L eine Lagrange-Funktion auf der di�erenzierbaren Mannigfaltigkeit Q
und sei f eine Kraft. Eine zweimal di�erenzierbare Kurve γ : [t0, tf ] → Q erfüllt

das Lagrange-d'Alembert-Prinzip für die Kraft f und die Lagrange-Funktion L
entlang γ, falls für jede Variation ϑ : [t0, tf ]× [−ǫ0, ǫ0] → Q von γ gilt

d

dǫ

∣
∣
∣
∣
ǫ=0

∫ tf

t0

L(t,
d

dt
ϑ(t, ǫ))dt +

∫ tf

t0

f(t, γ′(t)) · δϑ(t)dt = 0.

Mit dem Lagrange-d'Alembert-Prinzip lassen si
h die Euler-Lagrange-Glei
hungen

mit Kräften aufstellen:

Satz A.16 (Euler-Lagrange-Glei
hungen mit Kräften)

Es sei L eine Lagrange-Funktion und f eine Kraft auf Q. Eine zweimal di�eren-
zierbare Kurve γ : [t0, tf ] → Q erfüllt das Lagrange-d'Alembert-Prinzip für die

Kraft f und die Lagrange-Funktion L genau dann, wenn die Zustandsvariablen

des Systems zu jedem Zeitpunkt t ∈ [t0, tf ] die Glei
hungen

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= fi, i ∈ {1, . . . , n} (A-2-5)

erfüllen, wobei f1, . . . , fn die Komponenten von f sind. Die Glei
hungen (A-2-5)

werden Euler-Lagrange-Glei
hungen mit Kräften genannt.

Beweis. Siehe [BL05℄.

A.3 Diskrete Gleichungen mittels DMOC

In diesem Teil des Anhangs werden die Bestimmung der diskreten Euler-Lagrange-

Glei
hungen und der diskreten Randbedingungen genauer betra
htet, um zu zei-
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gen, wie diese im Optimierungsalgorithmus bei Verwendung der DMOC Methode

umgesetzt werden können.

A.3.1 Diskrete Euler-Lagrange-Gleichungen

Zu bestimmen sind die Glei
hungen

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0, k = 1, . . . , N − 1,

wie sie z. B. in (3-24b) für das Optimalsteuerungsproblem des Doppelpendels

auf einem Wagen dargestellt sind. Dabei ist D1 die Ableitung na
h der ersten

Komponente und D2 die Ableitung na
h der zweiten Komponente der diskreten

Lagrange-Funktion. In diesem Fall ergibt si
h somit zweimal die Ableitung na
h

qk:

∂

∂qk
Ld(qk−1, qk) +

∂

∂qk
Ld(qk, qk+1) + f+

k−1 + f−
k = 0, k = 1, . . . , N − 1.

Wie au
h s
hon in Abs
hnitt 3.3.4 bes
hrieben, wird eine Approximation der

Zustände dur
h die Mittelpunktregel dur
hgeführt. Für die folgenden Re
hnungen

werden dabei die Abkürzungen

qmk =
qk + qk−1

2
und q̇mk =

qk − qk−1

h
, für k = 1, . . . , N

benötigt. Dadur
h ergibt si
h die diskrete Lagrange-Funktion

Ld(qk−1, qk) = hL

(
qk + qk−1

2
,
qk − qk−1

h

)

= hL(qmk , q̇
m
k ) = hT (qmk , q̇

m
k )− hV (qmk ),

wobei T und V der kinetis
hen bzw. der potentiellen Energie entspre
hen, wie

sie in Abs
hnitt 2.3.1 für das Doppelpendel auf einem Wagen de�niert wurden.

Diese Glei
hungen können wie folgt ausgewertet werden

d

dqk
hL

(
qk + qk−1

2
,
qk − qk−1

h

)

+
d

dqk
hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)

= h

(

Tqm
k

(
qk + qk−1

2
,
qk − qk−1

h

)

·
1

2
+ Tq̇m

k

(
qk + qk−1

2
,
qk − qk−1

h

)

·
1

h

−Vqm
k

(
qk + qk−1

2

)

·
1

2

)

+ h

(

Tqm
k+1

(
qk+1 + qk

2
,
qk+1 − qk

h

)

·
1

2
− Tq̇m

k+1

(
qk+1 + qk

2
,
qk+1 − qk

h

)

·
1

h

−Vqm
k+1

(
qk+1 + qk

2

)

·
1

2

)
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= −Tq̇m
k+1

(qmk+1, q̇
m
k+1) + Tq̇m

k
(qmk , q̇

m
k ) + 0.5h

(

Tqm
k+1

(qmk+1, q̇
m
k+1) + Tqm

k
(qmk , q̇

m
k )
)

− 0.5h
(

Vqm
k+1

(qmk+1) + Vqm
k
(qmk )

)

= 0,

und dienen dann mit den folgenden Ableitungen als Grundlage für die Implemen-

tierung:

Tq̇m
k
=





(J1 + a21m1 + l21m2)ϕ̇
m
1,k − (l1m2 + a1m1)ẏ

m
k cos(ϕm1,k) + a2l1m2ϕ̇

m
2,k cos(ϕ

m
1,k − ϕm2,k)

(J2 + a22m2)ϕ̇
m
2,k − a2m2ẏ

m
k cos(ϕm2,k) + a2l1m2ϕ̇

m
1,k cos(ϕ

m
1,k − ϕm2,k)

(m1 +m2 +mc)ẏ
m
k − (a1m1 + l1m2)ϕ̇

m
1,k cos(ϕ

m
1,k)− a2m2ϕ̇

m
2,k cos(ϕ

m
2,k)





Tqm
k
=





(a1m1 + l1m2)ϕ̇
m
1,kẏ

m
k sin(ϕm1,k)− a2l1m2ϕ̇

m
1,kϕ̇

m
2,k sin(ϕ

m
1,k − ϕm2,k)

a2m2ϕ̇
m
2,k(ẏ

m
k sin(ϕm2,k + l1ϕ̇

m
1,k sin(ϕ

m
1,k)− ϕm2,k))

0





Vqm
k
=





−g sinϕm1,k(a1m1 + l1m2)
−a2gm2 sin(ϕ

m
2,k)

0



 .

Dabei steht z. B. Tqm
k
für die Ableitung der kinetis
hen Energie na
h dem Term

qmk :

Tqm
k
=

∂T

∂qmk
(qmk , q̇

m
k ).

Die obigen Glei
hungen gelten für alle me
hanis
hen Systeme, deren Dynamik

mit Hilfe einer Lagrange-Funktion, bestehend aus kinetis
her und potentieller

Energie, bestimmt werden kann. Es müssen dann nur die entspre
henden Ablei-

tungen neu bestimmt werden. Dur
h diese Struktur ist eine Neuimplementierung

des Optimierungsalgorithmus e�zient mögli
h.

A.3.2 Diskrete Randbedingungen

Zusätzli
h müssen no
h die diskreten Glei
hungen für den Anfangs- und Endim-

puls bestimmt werden, damit alle Randbedingungen erfüllt sind. Diese Glei
hun-

gen können ni
ht auf Grundlage der Ges
hwindigkeiten ausgewertet werden, da

diese an den Rändern dur
h den Di�erenzenquotienten ni
ht de�niert sind. Da-

her wird mit der diskreten Legendre-Transformation (siehe Abs
hnitt 3.3.2) eine

Transformation auf den Impuls p = ∂L
∂q̇
(q, q̇) dur
hgeführt.

Zunä
hst wird gezeigt, dass die De�nition der diskreten Legendre-Transformation

konsistent zu den diskreten Euler-Lagrange-Glei
hungen ist. Dazu wird gefordert,

dass der diskrete Impuls an einem Knotenpunkt qk sowohl dur
h die Bere
hnung
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PSfrag repla
ements

qk−1

qk

qk+1

p+k p−k

Bild A-3-4: Bere
hnung des diskreten Impulses aus zwei bena
hbarten Intervallen

aus dem Knotenpaar (qk−1, qk) als au
h aus dem Knotenpaar (qk, qk+1) glei
h ist,

siehe au
h Bild A-3-4. Somit soll

p+k = p−k (A-3-6)

am Knoten qk gelten. Dabei ist p
+
k aus (qk−1, qk) mittels F

f+Ld(qk−1, qk) mit

p+k = D2Ld(qk−1, qk) + f+
d (qk−1, qk, uk−1)

und p−k aus (qk, qk+1) mittels F
f−Ld(qk, qk+1) mit

p−k = −D1Ld(qk, qk+1)− f−
d (qk, qk+1, uk)

bestimmt. Aus (A-3-6) folgt dann

D2Ld(qk−1, qk) + f+
d (qk−1, qk, uk−1) (A-3-7)

=−D1Ld(qk, qk+1)− f−
d (qk, qk+1, uk) (A-3-8)

was den diskreten Euler-Lagrange-Glei
hungen entspri
ht.

Für die Randbedingungen ergibt si
h dann die folgende Umformung:

D2Ld(qk−1, qk) + f+
k−1

︸ ︷︷ ︸

pk

+D1Ld(qk, qk+1) + f−
k = 0,

⇒ pk +D1Ld(qk, qk+1) + f−
k = 0.

Für die Bestimmung des diskreten Impulses pk wird nun die kontinuierli
he

Legendre-Transformation zusätzli
h angewendet. Diese lautet: FL : TQ → T ∗Q,
FL : (q, q̇) 7→ (q, p) = (q,D2L(q, q̇)). Dadur
h folgt die Approximation des dis-

kreten Impulses dur
h pk ≈ p(kh) = D2L(q(kh), q̇(kh)) und es ergibt si
h die

folgenden Anfangsbedingung:

D2L(q0, q̇0) +D1Ld(q0, q1) + f−
0 = 0.

Eine Endbedingung ergibt si
h analog zu dem eben gezeigten Vorgehen:

−D2L(qN , q̇N) +D2Ld(qN−1, qN) + f+
N−1 = 0.
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Entspre
hend dieser Herleitung lassen si
h die folgenden Glei
hungen für die

Randbedingungen (3-24a) und (3-24
) bestimmen:

D2L(q0, q̇0) +D1Ld(q0, q1) + f−
0

=
∂

∂q̇0
T (q0, q̇0)−

∂

∂q̇0
V (q0, q̇0) +

d

dq0
hL

(
q1 + q0

2
,
q1 − q0
h

)

=





(J1 + a21m1 + l21m2)ϕ̇
0
1 − (l1m2 + a1m1)ẏ

0 cos(ϕ0
1) + a2l1m2ϕ̇

0
2 cos(ϕ

0
1 − ϕ0

2)
(J2 + a22m2)ϕ̇

0
2 − a2m2ẏ

0 cos(ϕ0
2) + a2l1m2ϕ̇

0
1 cos(ϕ

0
1 − ϕ0

2)
(m1 +m2 +mc)ẏ

0 − (a1m1 + l1m2)ϕ̇
0
1 cos(ϕ

0
1)− a2m2ϕ̇

0
2 cos(ϕ

0
2)





−Tq̇m
0
+ 0.5h(Tqm

0
− Vqm

0
) + f−

0

=0

und

−D2L(qN , q̇N) +D2Ld(qN−1, qN) + f+
N−1

=
∂

∂q̇N
T (qN , q̇N)−

∂

∂q̇N
V (qN , q̇N) +

d

dqN
hL

(
qN + qN−1

2
,
qN − qN−1

h

)

= −





(J1 + a21m1 + l21m2)ϕ̇
N
1 − (l1m2 + a1m1)ẏ

N cos(ϕN1 ) + a2l1m2ϕ̇
N
2 cos(ϕN1 − ϕN2 )

(J2 + a22m2)ϕ̇
N
2 − a2m2ẏ

N cos(ϕN2 ) + a2l1m2ϕ̇
N
1 cos(ϕN1 − ϕN2 )

(m1 +m2 +mc)ẏ
N − (a1m1 + l1m2)ϕ̇

N
1 cos(ϕN1 )− a2m2ϕ̇

N
2 cos(ϕN2 )





−Tq̇m
N
+ 0.5h(Tqm

N
− Vqm

N
) + f+

N−1

=0.

Hierbei muss auf die zwei unters
hiedli
hen Terme der kontinuierli
hen und der

diskreten Lagrange-Funktion gea
htet werden, da hier die Ableitungen einmal

bezügli
h des letzten Diskretisierungspunktes qN bzw. q̇N und einmal bezügli
h

des letzten Terms der Mittelpunktregel qmN bzw. q̇mN bestimmt werden. Die Werte

(ϕ0
1, ϕ

0
2, y

0, ϕ̇0
1, ϕ̇

0
2, ẏ

0) und (ϕN1 , ϕ
N
2 , y

N , ϕ̇N1 , ϕ̇
N
2 , ẏ

N) sind dabei die Anfangs- bzw.

Endwerte des Optimalsteuerungsproblems, die in die Glei
hungen eingesetzt wer-

den müssen.

A.3.3 Bestimmung der exakten Geschwindigkeiten

Eine mittels DMOC bere
hnete optimale Steuerungstrajektorie besteht aus den

Kon�gurationen q0, . . . , qN und den optimalen Steuerungen f0, . . . , fN . Für die
Approximation der Ges
hwindigkeiten kann dann z. B. der Di�erenzenquotient

verwendet werden. Es gibt aber au
h eine Mögli
hkeit, die Ges
hwindigkeiten

aus den diskreten Kon�gurationen exakt zu bere
hnen. Dies geht dur
h die Ver-

wendung des Impulses p, der dur
h die Glei
hung

q̇ =M−1(q, q̇)p =M−1(q, q̇)
∂L

∂q̇
(q, q̇)



170 Kapitel A

bes
hrieben werden kann.

Im Falle der diskreten optimalen Trajektorie muss entspre
hend der diskrete

Impuls dur
h die Anwendung der diskreten Legendre-Transformation verwendet

werden. Es wird dabei deutli
h, dass - wie gewüns
ht - der Impuls nur von der

Kon�guration abhängt:

p0 = −D1Ld(q0, q1)− f−
0 ,

p−k−1 = −D1Ld(qk−1, qk)− f−
k−1,

p+k = D2Ld(qk−1, qk) + f+
k−1,

pN = D2Ld(qN−1, qN) + f+
N−1.

Um den Impuls an allen beliebigen Knotenpunkten k = 0, . . . , N bere
hnen

zu können, muss sowohl die positive als au
h die negative diskrete Legendre-

Transformation verwendet werden. Damit lässt si
h q̇k =M−1
k (qk, q̇k)pk als exakte

Ges
hwindigkeit am diskreten Knotenpunkt k bere
hnen. Für die Anfangsbedin-
gung lässt si
h folgern, dass

p0 = −D1Ld(q0, q1)− f−
0

= −
d

dq0
hL

(
q0 + q1

2
,
q1 − q0
h

)

− f−
0

= −h
d

dq0

(

T

(
q0 + q1

2
,
q1 − q0
h

)

− V

(
q0 + q1

2

))

− f−
0

= −h

(
1

2
·
∂T

∂qm0
−

1

h
·
∂T

∂q̇m0
−

1

2
·
∂V

∂qm0

)

− f−
0

= −
1

2
hTqm

0
(qm0 , q̇

m
0 ) + Tq̇m

0
(qm0 , q̇

m
0 ) +

1

2
hVqm

0
(qm0 )− f−

0

gilt. Eine ähnli
he Formel lässt si
h als Endbedingung formulieren

pN = D2Ld(qN−1, qN ) + f+
N−1

= h
d

dqN

(

T

(
qN + qN−1

2
,
qN − qN−1

h

)

− V

(
qN + qN−1

2

))

+ f+
N−1

=
1

2
hTqm

N
(qmN , q̇

m
N ) + Tq̇m

N
(qmN , q̇

m
N ) +

1

2
hVqm

N
(qmN )− f+

N−1.

Dabei ist die diskrete Legendre-Transformation wie in (3-18)-(3-21) bestimmt.

Auf den 0-ten Knoten ist daher die Transformation F
f−Ld anzuwenden und auf

den N-ten Knoten dementspre
hend die Transformation F
f+Ld.
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