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Chapter 1

Introduction and Comprehensive

Summary

"It is a world of change in which we live, and a world of uncertainty.

We live only by knowing something about the future; while the problems

of life, or of conduct at least, arise from the fact that we know so little.

This is as true of business as of other spheres of activity."

Frank H. Knight (1921)

The �nancial crisis, which started in 2008, has shown that economic events of

great severity are di¢ cult to predict. Until then, the complete failure of banks had

not been likely and the �nancial market had been assumed to recover without massive

interference of governments. This opinion changed drastically after the bankruptcy

of the Lehman Brothers bank especially because many people and institutions were

hit by enormous losses. The resulting �nancial crisis has also shown that �nancial

institutions and investors were not able to judge the riskiness of their investments,

or at least, they were not able to manage it. Henceforward, economic agents wanted

to be better prepared for every contingency in order to react adequately, what in

turn increased the attention of professionals to reconsider investment behaviour in

an uncertain environment. In this context the following questions arise: What is
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uncertainty? Is uncertainty desirable? How can uncertainty be evaluated and in-

cluded in investment decisions? What are the e¤ects of uncertainty on investment

behaviour?

The concept of uncertainty is not new but even though it is something that

all of us face every day, it is di¢ cult to describe. Frank H. Knight (1921) was

one of the �rst to take a deeper look into this topic and to distinguish risk from

uncertainty. While risk describes a situation where the parameters of the probability

distribution of possible future outcomes can be determined, for describing uncertainty

no statements about probabilities can be issued. In other words, risk describes an

uncertain situation that can be converted into an e¤ective certainty. Real uncertainty,

instead, is intangible. Furthermore, Knight argues that the analysis of uncertainty

goes back to consciousness itself because the survival of humans depends on their

forward-looking character. Hence, humans have to adapt to a situation before it

happens. In order to do so, the presupposition that the world is made up of things,

which, under the same circumstances, always behave in the same way, is required

(see Knight, 1921). For instance, it is generally known that apples should be ripe by

the beginning of autumn. Depending on the weather and especially on how sunny

the summer was, the �nal date can vary. If a farmer wants to plant a new apple

tree and use the apples to produce juice, he cannot be exactly sure about when his

own apples will be ripe. But from the experience of other farmers he will expect

the harvest not before September. As we can see from this example, expectations

about future developments are formed based on their own past or based on the past

of similar things. This view does not, however, imply that everything is exactly

predictable, it only says that we can come close to it by assigning probabilities to

particular outcomes. Since the path-breaking work of Knight (1921) the distinction

between risk and uncertainty has been established in economics and �nance; however,
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uncertainty remained di¢ cult to account for.

Economic activity takes place in an uncertain environment where uncertainty

can have di¤erent forms. Figure 1�1 illustrates the path of the Standard and Poor�s

stock index of the 500 largest �rms in the US between 2005 and 2013. This index

is often used as a performance indicator of those �rms and the US economy. The

�gure shows that on the one hand the index has systematic and expected movements.

That is, it has a business cycle with economic booms and downturns as well as a

growth structure. Before the �nancial crisis in 2008 there was an increasing path

which started to decrease due to large losses su¤ered by the considered �rms during

the recession after 2008. The economy started to recover in 2009 even with a larger

volatility. In addition, Figure 1�1 shows a small but usual variability in the S&P

index due to changing economic activity, seasonal conditions etc. This variability

represents a form of uncertainty that can be measured either by the variance, if a

random variable at one point in time is considered, or by the volatility of a stochastic

process, if the focus lies on the evolution of a random variable. Even more striking is

the unexpected larger variability from one moment to the next that occurs as a con-

sequence of economic, political or ecological shocks. For instance, natural disasters

such as the hurricanes Katrina and Sandy caused a sudden and drastic downward

movement in the stock index and therewith a lower performance of the considered

�rms. A similar picture can be found after in�uential political events such as the

US presidential election in November 2008. At that time, the economic performance

of the US increased due to optimistic expectations, so the stock index experienced

a large upward movement. Large scale movements in the stock index can also result

from important news such as the Standard and Poor�s downgrade of the US from

AAA to AA+ on 8th August 2011. This day made history as the "Black Monday"

because the Dow Jones dropped by 5,5%, which is the 6th largest drop in the history
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of the index.

Figure 1�1: S&P 500 Stock Index from 01.01.2005 to 24.12.2013

From this discussion it can be concluded that uncertainty is a phenomenon that

is generated by random deviations from initially expected developments and that

uncertainty has two forms. On the one hand, there are marginal and in some sense

expected random shocks from one moment to the next due to usual variability in the

economy. On the other, there are non-marginal stochastic shocks as a consequence of

massive changes in economic, political and ecological conditions that refer to disasters

or opportunities.

As non-marginal stochastic events appear to determine the economic performance

of �rms and therewith of countries, they may determine investment decisions of

individuals as well. This doctoral thesis sheds further light into the mathematical

and economic modelling of large variability such as disasters and analyse their e¤ect
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on investment decisions. It is shown that large variability is an essential element

of investment decisions and must not be neglected in the evaluation of investment

projects. The next section will give a brief overview about how such stochastic

variability has been evaluated so far and lead over to the focus of this doctoral

thesis.

1.1 Evaluation of Variability

Every person reacts di¤erently in risky situations.1 Risk-loving people take every

opportunity to experience risk and they are willing to pay for it, even if their live

is in danger. For instance, a base-jumper risks his live to experience the ultimate

adrenaline rush. The utility function of such a risk-loving agent is always convex

because more risk is connected to a higher utility. Other people are more cautious

and try to avoid any risky situation. If those so-called risk-averse people have to

take a risk, they want to be rewarded somehow. For instance, a �ight attendant has

a risky job so that in addition to the wage he or she obtains a danger bonus, which

can be interpreted as a risk premium. In this case, the utility function is concave

because larger risk reduces the utility of a risk-averse agent. In contrast to both

groups mentioned, there are also people that are completely risk-neutral and have a

linear utility function. Hence, risk does not a¤ect their utility, so they neither pay

nor expect to be rewarded for their risky action. A measure of the degree of risk

aversion goes back to Arrow (1971) and Pratt (1966) who introduced the Arrow-

Pratt-coe¢ cient �

�(x) = �U
00(x)

U 0(x)
;

1See, e.g., Kruschwitz (2011), pp. 293.
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with U being a twice di¤erentiable, monotonically increasing utility function. For

a risk-neutral agent the Arrow-Pratt coe¢ cient � is 0; for a risk-averse agent it is

positive and for a risk-loving agent it is negative. � is a coe¢ cient which determines

the premium that an agent obtains or the payment that he or she pays for taking the

risk. Hence, it is a parameter that increases or decreases the return of an investment

project depending on the risk attitude of the agent. As a consequence, taking risk

and uncertainty indeed can be desirable because an investor can obtain additional

returns if risky investments are undertaken.

The next question of how uncertainty and risk can be evaluated for investment

decisions is not simple to answer. For the inclusion of risk, however, we need to know

what kind of investment decision is considered. The literature distinguishes static,

dynamic and sequential investment decisions that can be formed in discontinuous

or continuous time.2 Static optimization assumes that the investor only considers

the outcome and not when the outcome is obtained, while dynamic approaches dis-

count future returns in order to account for the rationality of the investor. Since

static approaches are not in the focus of this doctoral thesis, it is abstained from

further explanations. An often used example of a dynamic investment approach is

the Expected Net Present Value (ENPV) method, which also is a starting point of

this doctoral thesis. The second chapter introduces an extension of the ENPV to

account for the possibility of disasters. However, if the investment decision is irre-

versible, meaning that the costs of investment are sunk, then sequential decisions,

that allow the determination of an investment strategy over time, become relevant.

More precisely, at every point in time the investor decides about the best investment

opportunity: to invest, not to invest at all or to postpone the decision to a later date.

The set of those investment decisions refers to sequential investment decisions (see

2See, e.g., Kruschwitz (2011) and Dixit and Pindyck (1994).
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Kruschwitz, 2011, pp. 299). Besides obtaining the best investment strategy, sequen-

tial approaches can also make statements about the optimal time of investment.

These kinds of decisions are picked up in the third and fourth chapter, where a

decision rule, as well as the optimal timing of investment decisions, is determined

within a real option framework and dynamic programming. Furthermore, both chap-

ters allow for the �exibility to postpone the decision about the irreversible action to

a later date in order to collect more relevant information that may a¤ect the de-

sirability or the timing of investment. The inclusion of such �exibility is of major

importance because, as Dixit and Pindyck (1994) and Trigeorgis (1996) argue, ne-

glecting it can result in large losses. In any case, the investor decides about a set

of mutually exclusive investment opportunities. The optimal choice is then given by

the investment opportunity that maximizes the satisfaction of the decision maker,

while satisfaction is de�ned by a preference functional given by the utility or the

return on investment.

Risk can be included into the above approaches in various ways. The simplest

method is to account for the variability around an expected value by implementing

the variance of the respective random variable. In a static approach, investment

decisions are based on the expected return and the variance. Markowitz (1952) was

the �rst to apply the so-called Mean-Variance approach to the portfolio selection of

risk-averse agents and his contribution is considered as a major step in the theory

of modern �nance.3 During the following decades, the Mean-Variance approach has

been extended to capture Roy�s idea of loss aversion (Roy, 2001). That is, investors

are assumed to be less concerned about obtaining more, than about avoiding losses.

First attempts in the evaluation of losses were introduced by more sophisticated

concepts such as the semi-variance and its generalizations (see, e.g., Fabozzi and

3See, e.g., Fabozzi et al. (2007).
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Markowitz, 2002; Unser, 2002), and Value at Risk (Chow and Kritzman, 2002). One

major characteristic of these approaches is that they are all based on an ex-post

analysis of existing data. Hence, the evolution of the value in question is assumed to

be similar to the past. Furthermore, these approaches do not distinguish marginal

and non-marginal stochastic shocks. An alternative concept to the Mean-Variance

analysis was provided by the Stochastic Dominance principle (Hadar and Russels,

1969) where probability distributions of asset values are compared. Hence, an in-

vestor is in favour of the asset, that has a lower cumulative distribution function,

hence, where low values have a low probability.

In dynamic or sequential frameworks, where the evolution of a random variable is

of particular importance, the volatility of the stochastic process is considered. Most

notably, Black and Scholes (1973) use the geometric Brownian motion to describe the

evolution of an asset value and derive the price for its option. They also argue that

variability, measured by the volatility of the respective stochastic process, increases

the price of the option. Hence, taking a higher variability may be bene�cial for

the investor because a higher variability may increase the price of the asset and

therefore result in a larger price of the respective option. Since their very in�uential

contribution, this stochastic process became the workhorse process in �nance and

related �elds. Although the modelling introduced by Black and Scholes (1973) was a

benchmark for many following applications, Merton (1975) emphasizes the inability

of the Brownian motion to capture real characteristics of asset prices and instead

promotes the use of jump processes. He argues that most of the time an asset follows

a Brownian motion and, with a known probability, jumps by random amplitude.

With his argumentation, Merton motivated the reconsideration of the prevailing

evaluation methods, even beyond the option pricing theory. Hence, Merton was

the �rst to emphasize that a new view of variability is necessary and that not only
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marginal variability, as modelled by volatilities, should be considered. Based on this

argument, Cox et al. (1976, 1979) discuss di¤erent jump processes and distinguish

between discrete and continuous time where the jump probability is always known.

Almost 20 years later, Amin (1993) extends the discrete modelling of Cox et al.

(1979) by including simple jump di¤usion processes for American options. He �nds

that discrete time models converge to their corresponding continuous time models

and shows that jumps can signi�cantly alter the optimal exercise decision. A more

general model is proposed by Pham (1997), who considers a process that contains

a geometric Brownian motion and simultaneously an accumulation of jumps with

random jump amplitude, and compares the obtained option value of an American

option to an European option. In his approach, the jump amplitude and the time of

a jump are random. The importance of jump di¤usion processes is revisited by Kou

(2002). He argues that because of a higher peak, two heavier tails and a volatility

smile in asset prices, an evaluation model should allow for jumps. By assuming a

double exponential distribution for the jump amplitude in a general jump di¤usion

model, he derives the price for an European option. Kou and Wang (2003a) and

Bayraktar and Xing (2008) �nd an approximation for the American option price,

and Kou and Wang (2003b) solve optimal stopping problems including the �rst

passage time for American options. Abundo (2010) extends their model by a random

threshold determined by a transformed compound Poisson process.

However, especially after the increasing number of economic, political, and nat-

ural catastrophes the importance of the evaluation of disasters and their inclusion

in decision making has already been recognized by empirical investigations in di¤er-

ent contexts. For instance, Brancati (2007) and Berrebi and Oswald (2011) argue

that natural disasters, as a form of large and in�uential uncertainties, may lead to

more con�ict outbreaks in countries that have weak institutions. Gries and Meier-
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rieks (2013) show that �nancial crises, as an example of economic disasters, have

the identical consequence. A theoretical modelling of disasters is provided by Cox et

al. (2000, 2004) and Kousky et al. (2010), who argue that jump di¤usion processes

are useful for modelling catastrophes. Since this phenomenon is especially relevant

in insurance contexts, Yang and Zhang (2005) and Jang (2007) apply the model of

Cox et al. (2000, 2004) to derive optimal investments of insurance companies and

moments of losses. The inclusion of large variability in theoretical contributions can

also be found in some �nancial applications, e.g. by Wachter (2013), where a more

general view of risk and uncertainty is used to explain the equity premium puzzle.

Although the introduced literature is a �rst step to include large variability into

investment decisions, a transfer to general project evaluation and their consequences

for decision-making has not taken place yet.

1.2 Large Uncertainty and Risk in this Thesis

The following three chapters revisit and extend the evaluation of variability in eco-

nomic decision making and apply the developed approaches to di¤erent economic

problems. It is emphasized how marginal and non-marginal stochastic shocks have

an opposed e¤ect on investment decisions and that neglecting them may lead to huge

losses.

In a nutshell, the thesis starts with a dynamic approach and discusses the simplest

evaluation method, namely the Expected Net Present Value technique (ENPV). In

this case, an investment is undertaken if the expected present value of the project

is larger than its costs. The purpose of this procedure is to start with a simple

model and to show the consequences of large stochastic shocks for economic decision-

making. That is, such events, although being rare, are identi�ed to be important
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elements of economic and project reality but are not included in common evaluation

methods like in the ENPV. Furthermore, usually it cannot be stated when and with

which severity the next overthrowing event will occur. Therefore, a more complex

stochastics has to be implemented to account for them in investment decisions. In

order to capture those characteristics, the ENPV technique is extended by using

the Ito-Lévy Jump Di¤usion process that can model disasters occurring at uncer-

tain points in time with a large uncertain damage. It is shown that this extension

is necessary because only accounting for marginal shocks, such as modelled by the

geometric Brownian motion, may lead to non-pro�table investment decisions. This

type of modelling goes beyond simple statements about risky events, where proba-

bilities of events with a particular impact can be assigned, so that it comes closer to

Knight�s notion of uncertainty.

Later, this simple view is extended to sequential investments, where the timing

of an irreversible investment is the focus. Hence, we are not only interested in

whether to take the risk, rather in, when taking the risk. The optimal decision is

determined by comparing investment costs with bene�ts, that are obtained when

investing immediately, and with bene�ts, that may be obtained when investing later.

Hence, it is a decision about waiting and not waiting longer to invest. In the �rst

extension, large stochastic variability happens to occur only in the realization of the

project, while in the second, it is also present during the waiting period. The decision

problem is then divided into subproblems that are solved statically and recursively

with dynamic programming.

The next chapter, Investment under Threat of Disaster, is a joint work with

Thomas Gries and is a slightly revised version of the paper that was published as a

working paper No. 2014-04 in the CIE Working Paper Series. An earlier version of

the paper was presented at the Second World Congress of the Public Choice Societies
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(Miami, 2012). The chapter starts with a discussion of the relevant literature that

considers the evaluation of disasters and points out that the recent increased number

of economic and political disasters, such as the �nancial and economic crisis, and

terrorist attacks, motivated the revision of current evaluation methods. While some

attempts have been done after Merton�s critique (1975) on the geometric Brownian

motion, a transfer to simple evaluation methods of investment projects has not taken

place yet. Furthermore, this contribution departs from methods that use simple

probabilistic statements about risk. That is, an approach is proposed, which assumes

that the probability of the next disaster of a particular size is not known. Starting

with a simple model, this contribution provides an extension of the ENPV, because

it is a starting point of a number of more general evaluation methods which are for

instance used in the �eld of sequential optimization. It belongs to the class of dynamic

methods and discounts future returns of the investment project in order to account

for the fact that immediate returns are preferred rather than future returns. For the

modelling framework, an investor, that determines the pro�tability of a risky project,

is considered. The investor evaluates the project by calculating the expected value

of the future discounted returns and by comparing it with the investment costs. The

major goal of this contribution is to show that in a highly uncertain environment

where disasters are likely to occur, it is not su¢ cient to only consider marginal

stochastic shocks, e.g. modelled by the volatility of a geometric Brownian motion.

In other words, neglecting non-marginal stochastic shocks may even lead to non-

pro�table investment behaviour and enormous losses. In order to show these drastic

e¤ects, the ENPV is �rst derived for a project whose returns follow a geometric

Brownian motion. In the next step, the stochastic process is extended by accounting

for disasters that occur at an uncertain point in time with an uncertain e¤ect on

the project value. This so-called Ito-Lévy Jump Di¤usion process, which was also
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used in Pham (1997) and Kou and Wang (2003a,b), is a more general version of

the geometric Brownian motion. In particular, it extends the geometric Brownian

motion by adding a term for non-marginal downward jumps. The comparison of the

two ENPVs obtained with the two di¤erent stochastic processes shows that stochastic

variability has an opposed e¤ect: if the project value is calculated with the geometric

Brownian motion, the ENPV only contains a discount factor that depends on the

interest rate and the drift parameter. That is, the volatility, which is the measure

of the marginal stochastic shocks in the stochastic process, is not part of the ENPV

and therefore marginal variability does not determine the decision of the investor.

If not only marginal variability is considered but also a measure of non-marginal

stochastic shocks, the discount factor in the ENPV again depends on the interest rate

and the drift parameter. Beyond that, it also contains the frequency and severity

of disasters. Hence, these additional components, which include characteristics of

disasters, are part of the discount parameter that the investor obtains for su¤ering

from non-marginal stochastic shocks. This result implies the conclusion that agents

do not account for marginal shocks but they do for non-marginal disasters when using

ENPV as an evaluation method. In other words, the realization of the investment

project strongly depends on the degree and severity of the variability of the project

value. So far, the e¤ects of such variability have not been considered in the simple

ENPV technique. They occur only if we have large and non-marginal shocks.

In addition, this chapter provides a discussion of the di¤erent e¤ects of stochastic

variability on the investment decision, while the e¤ects are derived from the deriv-

atives of the ENPV with respect to the volatility and the disaster variable. It is

pointed out that a larger frequency of disasters lowers the project value while (mar-

ginal) volatility has no e¤ect. To illustrate the impact of disasters, an example is

simulated. In particular, parameters such as investment costs, interest and average
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growth rates are held constant and the jump parameters such as the intensity and

severity are doubled stepwise. The results show that doubling both parameters, fre-

quency and shock size, decreases the value of the project by more than 30 %, so that

the project value turns out to be even negative with a greater frequency and severity

of disasters. In contrast, increasing marginal risk does not change the project value.

To sum up, this contribution builds a starting point for the inclusion of disasters in

economic decision-making. Furthermore, it points out that in dynamic investment

models stochastic variability should not only be measured by marginal stochastic

shocks, rather, non-marginal shocks, such as disasters, should also be accounted for.

Disregarding this kind of variability results in misleading decision rules, in the sense

that non-bene�cial projects are treated as bene�cial. Hence, the decision maker is

likely to bear huge losses.

Chapter 3 is based on the paper Stay in School or Start Working? - The Hu-

man Capital Investment Decision under Uncertainty and Irreversibility, which was

published in 2012 in Labour Economics 19 (5), pp. 706-717. It is a joint work with

Thomas Gries and Margarethe Pilichowski, and earlier versions of it were presented

at several conferences such as at the Annual Conference of the Canadian Economic

Association (Quebec, 2010) or at the 25th Annual Congress of the European Eco-

nomic Association (Glasgow, 2010). This contribution adds to the literature in two

di¤erent ways. On the one hand, it provides a new view on the education decision

by modelling it as an irreversible investment project under large risk and therewith

explaining some important characteristics which will be explained later. On the

other, a methodological progress has been made by including large stochastic shocks

into the real option framework and determining the income threshold that education

needs to generate as well as the expected optimal time to leave school.

In particular, that chapter extends the contribution of Hogan and Walker (2007)
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and starts with building up a real option framework that includes the major compo-

nents of the education decision. First, education is a process that may take decades.

A student attends primary, secondary and probably tertiary education and pays for

every period some amount of money for teaching materials, tuition fees and private

lessons. These costs accumulate over time while during the schooling period the

student does not obtain any earnings from professional employment. Second, after

the student has left school, he or she enters the job market and obtains a reward for

his or her work e¤ort. His or her working life generates an individual earning pro�le,

with an entry-level wage and steepness determined by the years of schooling attended

and the degree obtained. That is, the entry-level wage, the �rst wage obtained after

entering the labour market, increases with the years of schooling. Beginning with

the insights of Mincer in the 1960s, it is a stylized fact that education increases the

productivity of a worker and this in turn increases his income. The evolution of

the complete earning pro�le is a¤ected by education as well because more education

involves a steeper and a more volatile income structure. For instance, a university

graduate might become an in�uential business manager with an annual income of

many million Euros, or he or she might work as a waiter and live below the poverty

line. The expected earning pro�le is assumed to be positively a¤ected by educa-

tion, especially when an education degree such as the A-levels or a university degree

are successfully completed. The additional income connected to the achievement

of a degree results in a non-marginal positive income premium, which is called a

sheepskin e¤ect. Yet, the income pro�le may also be negatively a¤ected by negative

events such as unemployment, disease or short time work, which was introduced in

many companies in Germany after the �nancial and economic crisis in 2008. Hence,

although the income pro�le is assumed to increase with education, there are major

uncertainties during working life, which have to be taken into account for the educa-
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tion decision. Third, further education has a value and staying in school for a little

while longer may be more bene�cial than irreversibly leaving the education system

and entering the labour market. For instance, leaving school after four years at a

university may already involve a high income pro�le but �nishing the degree may

lead to an extra premium that in turn may lead to an even higher income pro�le.

Accordingly, postponing the labour market entry may provide an additional value in

that all immediate and future potential expected income pro�les can be compared

and the best one can be chosen.

The methodological novelties of this contribution are provided by the innova-

tive inclusion of large stochastic opportunities and threats to the career, which are

modelled as major uncertain events, and by the analytical solution to the opti-

mal expected time of schooling. The paper starts with introducing the real option

framework that includes all the components described before. In the next step, the

particular entry-level wage that is necessary for the student to enter the labour mar-

ket is determined. This is done by using the major advantage of the real option

framework: the sequential comparison of the net wealth of education (Expected Net

Present Value of human capital) and the value generated by the �exibility to post-

pone the labour market entry (value of waiting). The resulting so-called income

threshold is the wage that optimally compensates the student for paying the educa-

tion costs as well as the wage that makes education pro�table. Furthermore, it is

the optimal earning pro�le that the student can expect with his education. Please

note that as long as the threshold has not been reached it is better for the student

to gain more education and improve the expected income track.

After having determined the income threshold, the expected optimal time of

schooling is computed. This �rst hitting time can be interpreted as the point in time

at which the labour market entry is expected to happen. The labour market entry
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may be a¤ected by a set of variables. The paper argues that a larger volatility of the

earning pro�le and higher education costs per period increase the time of schooling,

while a larger drift of the income pro�le as well as a larger no-education income level

lead to less education.

The initial model of the human capital investment decision is extended by in-

troducing sheepskin e¤ects that shift the income pro�le to a higher level after a

particular education degree has been achieved. Formally speaking, sheepskin e¤ects

are uncertain income premiums that represent discontinuities in the earnings pro�le.

Other opportunities and threats connected to the career that lead to a non-marginal

jump in the earning pro�le are also included in this approach. In order to show

the decision mechanism of a student, a sequence of decisions is considered while

the earning pro�le is now described by an Ito-Lévy Jump Di¤usion process. In this

sense, two income thresholds for each education level are determined by backward

calculation. Besides the formal progress that has been made with the inclusion of

uncertain events causing a non-marginal jump in the income pro�le, the paper proofs

the strong relationship between sheepskin e¤ects and educational achievements. In

particular, it can be argued that larger income premiums extend schooling and lead

to a higher investment volume.

Although this paper is an improvement in human capital investment theory, it

also provides a methodological extension of the �rst paper of this doctoral thesis.

The paper Investment under Threat of Disaster was a �rst step to show the inter-

relationship of large variability and investment decisions with one of the simplest

evaluation methods. Therefore, it builds a starting point for the second one. In par-

ticular, a similar version of the obtained ENPV can be found in the second paper as

one of the building blocks of the sequential investment decision. A further extension

is that two periods are considered. The �rst period is characterized by accumulating
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education costs without any �nancial compensation, while the start of the second

period stops the investment process and leads over to an exclusive earning process.

Since education involves a decision process that takes place at each point in time,

education can be terminated immediately or extended for one more period in order

to postpone the decision to a later date. This sequence of decisions characterizes a

dynamic as well as sequential investment behaviour that is based on the option value

of waiting introduced by the real option framework. Hence, at each point in time, the

ENPV is compared to the value of waiting and an equilibrium can be found where the

two are equal. Furthermore, the required compensation to leave school, the optimal

time of market-entry as well as the total investment volume are determined. Finally,

this contribution provides a suggestion of how non-marginal stochastic shocks, such

as disasters or opportunities, can be included in an investment evaluation approach

where timing is of particular importance. As already seen in the �rst contribution,

the e¤ect of stochastic variability on the investment decision is two-fold. While the

expectation of a more volatile income pro�le extends the time of schooling, more op-

portunities provided by the labour market cause the student leave school earlier. For

this reason this paper can be used in many other investment problems of a similar

structure, such as investments in R&D or innovations.

Chapter 4 presents the last paper of this doctoral thesis, Uncertainty and Con�ict

Decision. This paper is a joint work with Thomas Gries which was published as a

working paper No. 2014-05 in the CIE Working Paper Series. Furthermore, it is

a revised version of the paper When to Attack an Oppressive Government, which

was published in the Conference Paper Series 2012 of the Verein für Socialpolitik

as "Beiträge zur Jahrestagung des Vereins für Socialpolitik 2012: Neue Wege und

Herausforderungen für den Arbeitsmarkt des 21. Jahrhunderts - Session: Con�ict

and Disputes, No. C20-V3". Earlier versions were presented at several conferences
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such as at the European Meeting of the Econometric Societies (Malaga, 2012), the

World Congress of the Public Choice Societies (Miami, 2012) or at the Australasian

Meeting of the Econometric Societies (Melbourne, 2012).

This paper applies the real option framework to the decision to start a social

con�ict, e.g. a terrorist attack, a riot or an assassination of a political leader. The

basic idea of the model is as follows: In a society a particular (minority) group is

discriminated by another group or by the government, so that the living conditions of

the a¤ected members are expected to worsen over time. For instance, the government

may discriminate those members by adopting repressing policies, arresting some

members or by refusing political, economic and social participation. The group

neither knows when the next repressive action will take place nor does it know how

it will be a¤ected. Individuals that belong to a group may become increasingly

frustrated by their situation so that they want to change their conditions somehow,

and if there is no other way even with launching an attack. We can think of many

examples in the past, where con�icts emerged as a consequence of government�s

repressive actions. For instance, the Arab spring, which started in 2010, aimed to

terminate discrimination and repression by the government as well as to increase

satisfaction among the people in those countries that did not belong to the rich

political elite.

A con�ict can be regarded as an investment in a better future and in a change of

the political, social and economic conditions. The major problem a rebel faces are

the decisions about whether it is bene�cial enough and if so when to attack. This

decision is made at every moment and is based on the comparison of uncertain future

bene�ts, costs and the value of postponing the decision to a later date. It is therefore

dynamic and sequential, so that it can be approached by the real option framework

and dynamic programming.
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Before and after attacking, the rebel has an expectation about the potential ben-

e�ts of con�ict, which are described by an Ito-Lévy Jump Di¤usion Process respec-

tively. The major advantage of such an approach is that unexpected non-marginal

stochastic shocks, e.g. generated by the government, as well as expected marginal

variations of the living conditions are included in the decision. The focus of this

contribution is, however, on uncertain events that occur before the con�ict because

we want to show how uncertain events may cause an investment.

Although this contribution has a similar methodological structure as the third

chapter of this doctoral thesis, it departs in that non-marginal stochastic shocks are

now present in both periods and not only in the second. The option value of a later

attack is included into the decision because waiting has a value. Before attacking, the

rebel can collect relevant information and postpone the irreversible action to a later

date. Furthermore, waiting may open up additional action alternatives indicating

that a later attack is even more bene�cial than an immediate one. Or while waiting,

the rebel may realize that the latent con�ict has resolved without violent means so

that an attack becomes useless. By comparing the option value of a later attack with

the ENPV of con�ict, a sequence of optimal decisions is determined. Furthermore,

the model provides an analytical solution to the minimal bene�t the con�ict has to

generate. At the same time, this value marks the threshold that triggers the optimal

outbreak of con�ict. In the next step, the expected time of attack is determined and

its sensitivity regarding various forms of variability during the non-violent period is

discussed. Besides the provision of the optimal solution to the con�ict decision, this

contribution shows that uncertainty has an ambiguous e¤ect. Similar to the third

chapter, marginal variability in the non-violent period extends waiting even if the

living conditions keep getting worse. Only the inclusion of non-marginal variability

and the distinction between positive and negative variability provides a more realistic



21

investment advice. In particular, if disasters are expected to occur more often without

the outbreak of con�ict, the rebel should attack earlier in order to enable a political,

social and economic change. He or she should not su¤er any longer because in

average, the situation is not expected to improve without violence.

As the name of this doctoral thesis implies, the aim was to investigate the evalua-

tion of large shocks of uncertain size occurring at an uncertain time. Furthermore, it

discusses their e¤ect on investment decisions and shows some applications. We can

see that large stochastic shocks are a major component of investment decisions and

investment behaviour in general. The most important conclusion that can be iden-

ti�ed from this dissertation is the fact that di¤erent types of stochastic variability

-namely marginal and non-marginal shocks- have opposed e¤ects and every of them

should be accounted for. While marginal variability does not matter for projects

that are evaluated with the ENPV, large stochastic shocks, e.g. modelled by the Ito-

Lévy Jump Di¤usion process a¤ect the project positively or negatively, depending

on whether opportunities are more likely than threats. Many stochastic disasters can

even make an initially bene�cial project to become worthless. This ambiguous e¤ect

of variability is also obtained in the context of sequential investment decisions where

the investor has the opportunity to postpone his or her investment decision to a

later date. That is, marginal stochastic variability, as the volatility in the geometric

Brownian motion, suggests to wait, collect more information and decide in a later

period, while non-marginal stochastic variability may suggest to invest earlier. The

reason for these results is that marginal stochastic shocks do not distinguish between

bene�cial and non-bene�cial variability.

This doctoral thesis adds to the literature in that it provides a more general

methodology that leads to more convincing investment rules: positive shocks (op-

portunities) have a di¤erent e¤ect than negative shocks. Furthermore, it emphasizes
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the non-pro�table consequences of neglecting either type of variability, especially of

only considering marginal variability, such as modelled in the geometric Brownian

motion. Hence, more general stochastic processes, such as the Ito-Lévy Jump Di¤u-

sion process, have to be implemented in economic decision making. The importance

of this result becomes especially clear when non-marginal stochastic shocks such as

disasters are considered. Large shocks, in contrast to marginal shocks, enter the ex-

pected value and therefore a¤ect the decision. In other words, the investor obtains a

discount parameter that is extended by a term stemming from the jump risk. With

this thesis, a concept is provided that approaches the phenomenon which Knight

calls uncertainty. That is, events which are not predictable in the sense of how se-

vere they will be and at which point in time they will occur, are included into the

analysis. For instance, we cannot state the probability of a certain disaster to hap-

pen during a speci�ed time period. Furthermore, this modelling is able to provide

analytical solutions to the total investment volume (if investment costs accumulate),

the required minimum compensation that the investment needs to generate, and the

expected optimal time of investment.

The consequences for particular investment projects are as follows: The example

of the human capital investment decision shows that it may be better to stay in school

for a while longer and gain even more bene�ts if waiting leads to more opportunities

in the future career. If the investment project is instead about changing the status

quo by investing in an action that prevents further disasters, then it may not be

bene�cial to wait and su¤er any longer. An example of such a setting is given by the

fourth chapter where investments in social con�icts are considered. Note that only

looking at variances and volatilities would have prevented us from obtaining these

insights.

The last chapter provides a general summary of the methodological progress that
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has been made in this doctoral thesis, as well as additional insights obtained by using

the new methodology. It also gives an outlook for further research and application.
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Chapter 2

Investment Under Threat of Disaster

This chapter is a joint work with Thomas Gries. It is a slightly revised version of the

working paper No. 2014-04 that was published in the CIE Working Paper Series.

2.1 Introduction

Disasters4 are an enormous hazard to economic activities and are de�ned as rare,

devastating ecological, political, technical or economic events that occur at unpre-

dictable points in time and with massive direct and threatening e¤ects. For instance,

shocks like the 9/11 terrorist attacks or political or even revolutionary riots such as

the Arab Spring do not occur often, however, they have a severe impact on economic

conditions. Similarly, in the economic dimension we have observed that events such

as the Lehman Brothers bankruptcy in 2008 and the subsequent �nancial crisis are

connected to the potential failure of large banks or even states. In the context of

technical or natural disasters, Figure (2�1) suggests that on a global scale, the num-

ber and severity of disasters has increased since the 1970s. Hence, disasters were and

will always be a signi�cant phenomenon in economic reality.

In spite of their low probability, such major stochastic shocks cause uncertainty for

the a¤ected individuals. That is, in contrast to other marginal variability, disasters

4For a more detailed description and classi�cation, see http://www.emdat.be/explanatory-notes.
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Figure 2�1: Natural Disasters reported in 1975-2010 in Numbers and
caused Damage (US$ billion)

may not only strongly a¤ect current conditions, they may even overthrow them. For

this reason disasters are a central element of future developments and hence have

to be included when evaluating projects. We show how the threat of disastrous

events a¤ects even simple evaluation methods, such as the Expected Net Present

Value (ENPV). More precisely, we distinguish between marginal and non-marginal

shocks by describing uncertain developments using more general stochastic processes

(Ito-Lévy Jump Di¤usion). For such a process we (i) con�rm the standard result

that the ENPV does not account for marginal variability. Furthermore, we (ii)

obtain an additional element in the discount factor that summarizes the e¤ects of

non-marginal stochastic shocks on the expected project value. In other words, this

parameter is an element of the discount factor in the evolution of the ENPV. Hence,

while marginal variability has no e¤ect on investment decision based on ENPV, non-
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marginal stochastic shocks do because, as we show, they may cause an apparently

bene�cial project to become worthless.

Hence, the questions we answer in this paper are: How can disasters be included

into investment decisions based on ENPV? How does the potential occurrence of

uncertain disasters a¤ect the decision to realize an investment project? How can

an investor cope with the uncertain timing and magnitude of the resulting e¤ect in

project evaluation and decision making?

During the last decade there have been attempts to include disasters into in-

vestment decisions, yet so far no consensus on how to do so appropriately has been

found. Zeckhauser (1996) was one of the �rst to treat disasters as economic events

and to de�ne their costs as the sum of losses caused and the costs incurred by ac-

tions to reduce those losses. Although the costs of catastrophes have increased over

time, reasons for neglecting disasters can still be found in the literature. Firstly, the

comparatively low probability of disasters leads to a lack of comprehension so that,

according to Kunreuther et al. (2001), individuals tend to ignore disasters and not

to demand protection. Secondly, Kunreuther and Kle¤ner (1992) and Kunreuther

(1996) �nd that agents often underestimate disaster probabilities and have high dis-

count rates for future bene�ts. Finally, Kunreuther and Pauly (2004) argue that

information costs for obtaining information about real probabilities are regarded as

too high compared to the expected loss generated by disasters.

In the years that followed, all three arguments for neglecting disasters in deci-

sion making were discussed. In the context of natural disasters, Smith et al. (2006)

emphasize that people indeed respond to natural disasters and that they do so in

three di¤erent ways: they may self-protect, buy insurance, or move away from hazard

prone areas. That is, households compare the costs and bene�ts of the three alter-

natives and make their choice by taking into account the harms caused by disasters,



27

with the chosen reaction depending only on their income level. The �rst economic

modelling of disasters and their inclusion into evaluation methods is provided by Sut-

ter and Poitras (2010), who use the expected utility approach to show that people

should account for disasters when deciding which type of house to build. They �nd

that people substitute from manufactured homes in risk-prone areas. While both

approaches �that of Smith et al. (2006) and Sutter and Poitras (2010) �are simi-

lar in that disasters matter to decision-making, neither addresses the problem that

disasters may be underestimated by agents. In response, Lave and Apt (2006) claim

that extreme natural events are more frequent than expected, and Viscusi (2009)

shows that people do not appropriately evaluate risks from terrorism, natural dis-

asters, and tra¢ c accidents. He �nds that death through terrorism is valued twice

as high as death due to natural disaster but valued equally to death by accident.

This paradoxical view of risks may explain decisions that are made in the context of

natural disasters. Born and Viscusi (2006) �nd that insurance companies also su¤er

from major catastrophes and face higher losses after a disaster. As a consequence

they raise insurance premiums in order to lower loss ratios in the following period.

This ex-post adjustment indicates an inadequate evaluation of disasters in the past.

The next question that arises is, how disasters have been included into the eval-

uation of investment projects. Starting with the Cost Bene�t Approach (CBA), we

can see that while CBA under certainty is well developed5 the issue of how to eval-

uate large uncertainty appropriately remains an unresolved puzzle. Graham (1981)

was one of the �rst to extend CBA and to include uncertain outcomes with known

probability. His simple expected utility approach makes it possible to determine an

action with the best outcome and a value of the corresponding option. Although

CBA is simple to apply, there are also major concerns that it is not capable of

5See, e.g., Prest and Turvey (1965), Sassone and Scha¤er (1978), Layard and Glaister (1994).
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adequately evaluating large uncertain events and disaster risk. For instance, Lave

and Apt (2006) use CBA to determine the optimal size of a dam as �ood protec-

tion and show that people refuse to buy insurance because of the above-mentioned

undervaluation reasons.

Disaster risk evaluation, however, has been a major issue in �nancial economics,

and more recently has also entered business cycle theory. Beginning with Merton

(1975), jump processes are used to model rare events that cause non-marginal move-

ments of values. He argues that most of the time an asset follows a Brownian motion

and, with a known probability, jumps by random amplitude. Based on this argu-

ment, di¤erent conclusions about option values and business cycles6 can be made

for a set of simple jump processes. The occurrence of disasters was �rst modelled

by simple downward jumps by Cox et al. (2000, 2004). As an extension, Yang and

Zhang (2005) and Jang (2007) use a jump di¤usion process to model the randomness

of disasters, that is, their unknown frequency and impact. More general jump di¤u-

sion models are considered by Pham (1997), Kou (2002) and Kou and Wang (2003

a, b). Speci�cally, Pham (1997) and Kou (2002) generalize the Black and Scholes

option pricing model in order to account for empirical phenomenons of asset prices

such as volatility smiles and jump risks.7 The recent generalization by Cai and Kou

(2011) shows that a mixed-exponential jump di¤usion model is able to approximate

any other distribution as closely as possible. Furthermore, they prove that analytical

solutions can be found for Laplace transforms of prices and sensitivity parameters

6More recently disasters have also been seen as important determinants of many other economic
variables that drive business cycles. For instance, Gourio (2012) emphasizes that disasters such
as Great Recessions depress employment, output, investment, stock prices, and interest rates, and
increase expected returns on risky assets. This approach is applied to human capital theory in
Bilkic et al. (2012).

7Kou and Wang (2003 a, b) also discuss various characteristics of jump processes, e.g. �rst
passage times when introducing the double exponential distribution, and derive respective option
prices.
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of path-dependent options. Jump models are also used to describe random waiting

periods between trades or hedging options. In this sense, Cartea and Meyer-Brandis

(2010) utilize, among others, compound Poisson processes for waiting periods that

are exponentially distributed and show an e¤ect on option prices, while Alexander

and Kaeck (2012) test di¤erent jump di¤usion models and their ability to model

hedging options. He shows that the inclusion of jumps is necessary to improve hedg-

ing performance. A further application of rare events in economic problems is shown

in the discussion of the equity premium puzzle. Mehra and Prescott (1985) were

the �rst to �nd high-risk premia in equities and thereby opened up a completely

new research �eld. One explanation of this phenomenon is given by Rietz (1998)

who claims that the possibility of an unlikely market crash is responsible for the

additional price di¤erence in equities. This explanation would not be taken up by

the economic research community for almost 20 years. Then, Barro (2006) picked

up Rietz�s idea and found empirical evidence of economic disasters leading to higher

risk premia. Since then this topic has been discussed in di¤erent variations. For

instance, Barro and Ursua (2008) investigate in an empirical approach how wars

can result in consumption disasters and thereby show a further application. As an

extension of Rietz (1998), Gabaix (2008, 2012) discusses disasters as a determinant

of ten macro-economic puzzles, such as the risk-free rate puzzle and excess volatility

puzzle. Using calibration methods he shows that disasters can explain some of the

economic phenomenons. A theoretical contribution in this context is provided by

Wachter (2013) who uses jump di¤usion processes to explain the equity premium

puzzle. Hence, by deriving the premiums for equities under disaster risk, she shows

that investors obtain large risk premiums when facing disaster risks compared to

investors that do not.8

8This result generalizes the �ndings of Jarrow and Zhao (2006), where portfolio choices, when
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The chapter is structured as follows. The �rst part of the next section discusses

the most commonly used process for modelling investment decisions under uncer-

tainty, namely the geometric Brownian motion, and shows its characteristics regard-

ing the evaluation of uncertainties. The next part extends the geometric Brownian

motion for disasters occurring at an uncertain point in time with an unpredictable

magnitude and analyses the e¤ects of the additional uncertainty component on the

investment decision. In order to illustrate the e¤ects, we use an example. The last

section concludes.

2.2 Investment Project Evaluation Using Stochastic Processes

Investment project evaluation takes place in an uncertain future environment and

hence requires a characterization of stochastic future outcomes. The simplest charac-

terization of stochastic outcomes is a static probability distribution of values. How-

ever, for dynamic evaluation methods such as the ENPV technique, investors look

at a full sequence of outcomes in each future period and try to come as close as

possible to a characterization of this sequence of periods. Hence, they would try to

characterize the full time path of stochastic realizations as well as possible. So far, in

continuous time, stochastic processes are the only broadly understood form of such

stochastic time paths. Therefore, applying stochastic processes, usually a geometric

Brownian motion, seems the most appropriate way of approaching this objective and

including the time dimension of future events.

Hence, as a �rst benchmark, we introduce the geometric Brownian motion and

show how this stochastic process enters the ENPV. In the next step we generalize

this simple stochastic process to evaluate uncertain events such as disasters occurring

downside loss-averse, depend on the presence of disasters.
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randomly and with an uncertain magnitude. Finally, we use an example to show that

going beyond marginal shocks and introducing stochastic non-marginal shocks a¤ects

investment decisions even for this simplest evaluation method.

2.2.1 Evaluation with Geometric Brownian Motion

Since Black and Scholes (1973), the geometric Brownian motion is one of the most fre-

quently used stochastic processes for modelling values of derivatives and investment

projects. The evolution of bene�ts ~P (t) 2 R can be characterized by a stochastic

di¤erential equation (SDE)

d ~P = ~�p ~Pdt+ ~�p ~Pd ~Wp; with ~P (0) = ~p0; (2.1)

where d ~Wp is the increment of the standard Wiener Process. Equation (2.1) de�nes

a stochastic process with continuous trajectories (see Figure 2�2) that have a trend

~�p 2 R and marginal �uctuations depicted by the volatility ~�p 2 R+.

Figure 2�2: Path of the Geometric Brownian Motion
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For ~�p > 0 the project bene�ts increase on average and have the expected value9

of

E ~P (t) = ~P (0)e~�pt:

Furthermore, the larger the constant volatility, ~�p, the more the project value �uc-

tuates around its expected value E ~P (t); regardless whether this deviation is positive

or negative. Note that for the geometric Brownian motion �uctuations are modeled

continuously so that only marginal di¤erences between one point in time and another

are described. With ~�p = 0 (2.1) simpli�es to an ordinary di¤erential equation with

solution ~P (t) = ~P (0)e~�pt:

Now suppose that an agent considers investing in an investment project with a

value that evolves according to (2.1) and has costs Ip 2 R+. To evaluate this project

with the ENPV technique he or she has to accumulate the discounted bene�ts per

period and reduce this by the project costs.

Proposition 1 Let ~P be de�ned as in (2.1) and T 2 R+ being the time of invest-

ment. Then the Expected Net Present Value (ENPV1) of future bene�ts described by

~P is

ENPV1 = �Ip + E

0@ 1Z
T

~Pe�r(t�T )dt

1A = �Ip +
~P (T )

r � ~�p
; r > ~�p; (2.2)

with r being the risk-free interest rate and Ip being investment costs.

Proof. See Appendix A.1.

According to (2.2), the ENPV consists of the project value at time T discounted

by the di¤erence between the risk-free interest rate r and the drift ~�p; and reduced

9For a detailed derivation of the expected value, see Dixit and Pindyck (1994).
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by the investment costs Ip: Hence, the investor will carry out the project only if

ENPV1 � 0. The decision does not depend on the volatility ~�p; so that marginal

shocks have no e¤ect on the investment decision. In other words, using the ENPV

technique and taking the geometric Brownian motion for describing the stochastic

income path of an investment project, does not account for any shocks, not even for

marginal shocks from one moment to the next. This is consistent with the inter-

pretation of the ENPV method as a risk-neglecting approach. Although Black and

Scholes�approach was a benchmark in the evolution of evaluation theories, Merton

(1975) was the �rst to criticize this drawback of the geometric Brownian motion.

He points out that prices do not move according to the geometric Brownian motion,

nor does trade take place continuously. He argues that stock prices can never be

represented by continuous stochastic processes because uncertainty produced by in-

coming important news can lead to an immediate non-marginal upward or downward

movement in prices that may a¤ect investment decisions.

2.2.2 Evaluation with Jump Processes

To model disasters as large stochastic events that are non-marginal stochastic shocks

in the bene�t stream, we introduce the discontinuous counterpart of the geometric

Brownian motion. Speci�cally, this is a stochastic process that is constructed by

continuous and discontinuous Lévy processes.10 In this chapter, we follow the ap-

proach of Pham (1997) and Kou and Wang (2003a) and combine a jump process

with the geometric Brownian motion. The resulting geometric Ito-Lévy Jump Dif-

10A more detailed description of Lévy processes, especially of the prerequisites for de�nitions, can
be found in, e.g., Cont and Eberlein (2010), Oksendal and Sulem (2007), Andersen et al. (2009) or
Protter (1990).
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fusion process P 2 R is de�ned by the stochastic di¤erential equation

dP = P�pdt+ P�pdWp + P

Z
Up

zpNp(t; dzp); P (0) = p0; (2.3)

with �p, �p 2 R+ constant, and dWp denoting the increment of the Wiener process.

Np describes a Poisson process with intensity �p and the integral
R
Up

zpNp(t; dzp) it-

self describes a compound Poisson process. The intensity of the compound Poisson

process is given by the Lévy measure �p(dzp)dt = �php(dzp)dt; where hp is the distri-

bution of the jump step heights. Furthermore,
R
Up

zpNp(t; dzp) can be interpreted as

a stochastic process that models positive or negative reactions of bene�ts to o¤ered

opportunities and threats. The direction and magnitude of one jump is represented

by the step height4P (t) := zp = P (t)�P (t�) 2 Up; with Up � (�1; 0) being a Borel

set and Pp(t�) denoting the left limit of Pp in t.11 According to the representation of

the stochastic process in (2.3), the project value evolves like a geometric Brownian

motion and jumps upwards or downwards at random points in time. Figure 2�3 is

an example of a path of a geometric Ito-Lévy Jump Di¤usion process.

The Ito-Lévy Jump Di¤usion process has two variability components, �p for mar-

ginal shocks and
R
Up

zpNp(t; dzp) for non-marginal stochastic shocks. Non-marginal

shocks are characterized most generally. In particular, with this model non-marginal

jumps may happen at an uncertain time and have a large but uncertain magnitude.

That is, we do not know when and with what impact these large shocks occur. How-

ever, we may have information about the intensity �p and the distribution of jump

heights hp.

With this combination of continuous volatility and a jump process, we can now

11We have to assume Up having a lower boundary not lower than -1, because, as will be seen
later, the solution to the di¤erential equation dP has a solution only for zp > �1:
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Figure 2�3: Path of a Geometric Ito-Lévy Jump Di¤usion Process

describe the complete random path of income where marginal and non-marginal

shocks in the bene�t stream are present. As Knight (1921) argues, when future

outcomes are unknown, they can either be risky or uncertain. While for Knight, risk

implies that probability distributions can be stated, uncertainty describes a situation

where no such speci�cation can be made. With this modelling we try to move one

step towards Knight�s notion of uncertainty. We implement more complex stochastics

in this model, and hence introduce a degree of uncertainty and randomness that

cannot be covered by a simple probability distribution. We have no information on

the likelihood and timing of the next shock and the severity with which the next

shock will strike. That is, with this kind of stochastic modelling future developments

are so uncertain that it is impossible to know the probability that a disaster of size

x will occur at time t. Moreover, we cannot even state the probability of a certain

disaster happening during a speci�ed time period from now on. In other words, if an

engineer states that the probability of a just �nished dam collapsing during the next

100 years is 1�10�100 and hence negligible, he still uses a probabilistic model of risk.
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In contrast, using more complex stochastics like Ito-Lévy Jump Di¤usion processes,

this kind of statement would be impossible since we cannot even give a probability of

this disaster happening during the next 100 years. As a result, simple probabilistic

statements, in particular when considering large, sometimes even �overthrowing�

events, are a misleading and insu¢ cient description of the degree of randomness

under these circumstances.

As we illustrate, we can still evaluate this rather uncertain future development

using the simple ENPV technique. Again, we consider an agent who takes a decision

on a project with a bene�t stream P: In order to see how the two risk measures a¤ect

the investment decision, we can compute the ENPV of the project. For this we �rst

need the expected value of the process.

Proposition 2 Let P be de�ned as in (2.3), f�1p denoting the inverse function of

fp(zp) = ln(1 + zp) and up 2 C constant. Assume that the condition
R
Up

eupzp�(dzp) <

1 of �nite exponential moments holds, so that the moments of the stochastic process

in (2.3) are also �nite. Then the expected value of P is determined by

EP (t) = P (0) exp

264t
0B@�p + Z

f�1p (Up)

zp�p(dzp) +

Z
Up

ln(1 + zp)� zp�p(dzp)

1CA
375 (2.4)

= P (0) exp

264t
0B@�p + �p Z

f�1p (Up)

zphp(dzp) + �p

Z
Up

ln(1 + zp)� zphp(dzp)

1CA
375 :

Proof. See Appendix A.2.

In contrast to the geometric Brownian motion, the expected value in (2.4) does

not only depend on the drift but also on the direction and magnitude given by the

disasters in the bene�t stream. In particular, (2.4) is not automatically an increasing

function for �p > 0 since the average growth rate (also known as the overall drift) is
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determined by
R

f�1p (Up)

zp�p(dzp)+
R
Up

ln(1+zp)�zp�p(dzp); which can either be positive

or negative depending on whether more upward or more downward jumps occur.

Hence, if we consider disasters where only negative jumps occur,
R

f�1p (Up)

zp�p(dzp) +R
Up

ln(1 + zp)� zp�p(dzp) will be negative and we obtain a function P that increases

according to �p > 0 and jumps downward due to threatening events. In order to

simplify the notion we replace
R

f�1p (Up)

zphp(dzp)+
R
Up

ln(1+zp)�zphp(dzp) by a disaster

variable � < 0 from now on and write EP (t) = P (0) exp [t (�p + �p�)] :

In the next step we compute the ENPV for a project that evolves according to a

geometric Ito-Lévy Jump Di¤usion process.

Proposition 3 Let P be de�ned as in (2.3). Then the Expected Net Present Value

of future bene�ts described by P is

ENPV2 = �Ip + E
1Z
T

e�r(t�T )P (t)dt (2.5)

= �Ip +
P (T )

(r � �p� � �p)
;

for r > �p� + �p:

Proof. See Appendix A.2.

From (2.5) we can see that the disaster-facing investor evaluates disasters only

by looking at the Expected Net Present Value of the project. ENPV2 depends on

the bene�t value in T and the sum of the integrals �p�: Since �p� itself depends on

the intensity and step height of the jumps, more disasters mean more threats for the

investor, leading to a negative value of both integrals. In this case negative jumps act

as an additional element of the discount parameter that in turn decreases the ENPV.

As a result, the existence of disastrous threats, the frequency and extent to which
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they may occur, determine the evaluation of the expected project value. Marginal

shocks, in contrast, indicated by volatility �p, do not a¤ect the ENPV evaluation

framework.

2.2.3 E¤ects of Disasters on Expected Net Present Value

Having determined the ENPV of a project, we see that large uncertain shocks matter,

whereas volatility does not. In this section we look at the derivatives to analyse how

these large shocks a¤ect the investment decision.

By using the ENPV method, which allows for discontinuous project earnings

described by Ito-Lévy Jump Di¤usions, we are able to determine the e¤ect of an

increasing number of disasters and of an increasing volatility on investment projects.

Hence, the derivatives of the ENPV with respect to the jump intensity �p and to

volatility �p are12

@ENPV2
@�p

= � �P (T )

(r � �p� � �p)2
< 0;

@ENPV2
@�p

= 0:

An increasing frequency of disasters will lead to a positive numerator, making

the derivative of the Expected Net Present Value negative. Speci�cally, if the in-

vestment project is prone to more disasters so that disasters occur more often, the

ENPV will decrease and the project will lose in value. In other words, major damage

caused by natural, technological, or other disasters can happen so frequently that

the real investment project may not pay o¤ any longer. In contrast, small variations

in the project value have no e¤ect on the investment decision of the investor. As

a consequence, an investor would overestimate the project value if he or she insuf-

�ciently accounted for the possibility occurrence of disasters. He would not see the

12For a proof see Appendix A.3.
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potential loss that is connected to large uncertain shocks and would instead invest

in a potentially worthless project.

In order to show the e¤ect of an increasing number of disasters, we provide a

graphical illustration in addition to our general analytical �ndings. We assume that

the jump sizes zp have the double exponential distribution similar to Kou and Wang

(2003b)13

h(z) = mp�p1e
��p1zp1fzp�0g + np�p2e

�p2zp1fzp<0g;

wheremp is the probability of a positive jump and np of a negative jump, respectively,

withmp+np = 1. 1
�
p1

and 1
�
p2

denote the means of the two exponential distributions.

Each exponential distribution can be interpreted as a distribution of the waiting

period until a positive or a negative jump occurs. In other words, during this waiting

period the occurrence of fundamental opportunities and disasters a¤ects the decision

to invest.

To illustrate,14 we assume the investment cost Ip to be equal to 1; the risk free

interest rate r equal to 5% and the average growth rate �p of bene�ts equal to 2%:

Furthermore, the probability of a downward jump is assumed to be 100% compared

to a 0% probability of upward jumps as we want to analyse the e¤ect of disasters. In

a period we assume that at 1
�
p1

=1, the mean waiting period for an opportunity is

four times longer than for a threat with 1
�
p2

= 1
2
: Then we double the frequency and

impact of negative jumps stepwise while beginning with a 5% impact of a downward

jump and a mean arrival rate of 10%. Figure 2�4 shows that more negative jumps

with a higher devastating impact rapidly decrease the ENPV, compared to the dashed

line where no jumps occur. For instance, doubling zp and �p from 10% (in point A)

13A possible generalization is to use a mixed exponential distribution, provided in Cai and Kou
(2011).
14For the detailed computation results, see Table A.1 in Appendix A.3.
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to 20% (in point B) decreases the ENPV by 32% and then to a point when the

project value even turns negative (in point C). In this case, the threatening impact

of disasters on real investment projects outweighs their bene�ts so that in some cases

they should not be carried out.

Figure 2�4: E¤ects of an Increasing Frequency and Magnitude of
Disasters

As a general result, we obtain rules for how changes in these parameters translate

into project values in the ENPV approach. Fortunately, these rules are rather sim-

ple, appearing almost like rules of thumb, given that the occurrence and impact of

disasters can be described by systematic parameters such as frequency of occurrence

and extent of damage.

2.3 Conclusion

This paper addresses the impact of disasters on the value of investment projects.

As the number of disasters has signi�cantly increased during the last decades, their
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impact is a growing threat to long term investment projects. Disasters are large

events with a highly uncertain occurrence and impact. Within the most commonly

used methods of project evaluation there is no framework for evaluating e¤ects of

disasters. This paper provides a theoretical concept for evaluating disastrous uncer-

tain shocks using the simple ENPV approach. We argue that simple probabilistic

statements, in particular when considering large or even overthrowing events, are

misleading and an insu¢ cient description of the degree of randomness. Hence, we

implement a more complex stochastics using a stochastic Ito-Lévy Jump Di¤usion

process. With such a stochastic process we do not need to state the probability of a

certain disaster occurring during a speci�ed future time period. However, we can still

evaluate this rather uncertain future using the simple ENPV technique. We show

that in contrast to the well-known fact that marginal shocks, indicated by volatility,

do not a¤ect the ENPV, large stochastic shocks do. Parameters characterizing the

frequency and the size of these large shocks are elements of the discount factor. We

show that a higher frequency and impact of disasters rapidly decreases the value

of a project even to negative values. Disregarding potential disasters leads to an

overestimation of projects.
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Chapter 3

Stay in School or Start Working? - The

Human Capital Investment Decision

Under Uncertainty and Irreversibility

This chapter is a joint work with Thomas Gries and Margarethe Pilichowski. A

former version of it was published in 2012 in Labour Economics 19 (5), pp. 706-717.

3.1 Introduction

After the �rst contribution of this doctoral thesis has shown the e¤ect of a large

stochastic variability on investment decisions, the next contribution uses the previ-

ously developed ENPV for a sequential investment. That is, in a two period model,

the �rst phase is characterized by accumulating schooling costs and the second by a

highly uncertain earning stream. The investor makes a choice about when to end the

�rst and to begin the second by comparing the continuation value with the potential

ENPV of an immediate change and the decision is modelled by the real option ap-

proach. The model determines the required compensation that the investment needs

to generate as well as the expected optimal time to make the change. The developed

model is put in the context of the human capital investment decision where a student

decides about the optimal labour market entry.
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Education is obtained during a long process of the accumulation of knowledge

and abilities. Hence, formal schooling is a learning and investment process that

often lasts into one�s mid-twenties. When a young person makes plans for the future

one of the biggest problems is uncertainty.15 The success of a long education is as

uncertain as the process of earning income during a long working life. As time goes

on, students repeatedly consider whether to continue their education or enter the

labour market. During this sequential process of decision making each moment�s

conditions determine the eventual attainment level.

Recent literature shows that real option theory can be applied to take into account

uncertain time processes and irreversibility in schooling and human capital accumu-

lation decisions. While Weisbrod (1962) and more formally Comay et al. (1973)

suggested this way of thinking more than 30 years ago, a transfer of formal option

theory - as established by Dixit and Pindyck (1994) - was suggested only recently.

Hogan and Walker (2007) apply real option theory to human capital decisions. In

their model, at any time a student has the option to leave school to work for a wage

that re�ects the years spent in school. The decision to leave school is irreversible,

so once the student has �nished education he or she cannot return. They conclude

that high returns on education and increasing risk will cause students to stay in

school longer. They also analyse how progressive taxation and education subsidies

a¤ect schooling decisions and show that progressive taxes tend to reduce educational

attainment. Jacobs (2007) uses the real option approach as well. Unlike Hogan and

15The �rst analysis of investment in human capital under uncertainty was conducted by Levhari
and Weiss (1974). Later, e.g. Eaton and Rosen (1980) extended this framework. Williams (1978)
examined risky investments in education using a two-period, mean-variance portfolio model. Groot
and Oosterbeek (1992) discussed the e¤ects of uncertain future earnings and the probability of
unemployment on the duration of schooling, considering several sources of risk, and Hanchane et
al. (2006) developed a continuous time dynamic programming model which accounts for several
sources of uncertainty with regard to earnings and labor market conditions. They showed that the
global e¤ect of uncertainty is negative, except when a su¢ ciently high risk premium exists.



44

Walker (2007), he uses a discrete time approach and states that the decision to start

learning is irreversible. The option value stems from the fact that an individual

could wait to enrol and would only do so once the returns are su¢ ciently large to

compensate for the lost option value. The sunk cost of the investment consists of

tuition costs and foregone labour earnings.

More recent empirical literature on human capital investments suggests that the

functional form of the Mincer model (1974) no longer adequately describes labour

earnings for U.S. workers.16 Heckman et al. (2003, 2006) test and reject the assump-

tions for using the Mincer model to estimate the internal rate of return. Heckman

et al. (2008) emphasize that estimates should account for non-linearity and non-

separabilities in earnings functions, income taxes, and tuition. In line with these

�ndings is the idea of introducing risk and other non-pecuniary elements into the

empirical model.17 In addition, Heckman, Lochner, and Todd (2006) explain why

option values should be included in the decision, and show how option values in-

validate the internal rate of return as an investment choice criterion. "Our analysis

points to a need for more empirical studies that incorporate the sequential nature

of individual schooling decisions and uncertainty about education costs and future

earnings to help determine their importance. We report evidence on estimated option

values from the recent empirical literature using rich panel data sources that enable

analysts to answer questions that could not be answered with the cross section data

available to Mincer in the 1960s." [Heckman et al., 2006, p. 6]. All these �ndings

encourage a closer look at the impact of real option theory on human capital in-

vestment decision under uncertainty and generate a more comprehensive theoretical

framework.

16This development starts, e.g. with Katz and Autor (1999).
17See, e.g., Cunha et al. (2005), Carneiro et al. (2003), Belzil and Leonardi (2007a, b) or Hartog

et al. (2007).
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Departing from the model suggested by Hogan and Walker (2007), we discuss

how uncertain time processes determine the duration of schooling and - with the

timing decision to leave school - the accumulation of human capital. We extend

their framework by 1) adding accumulated education costs during schooling, 2) con-

sidering complete earnings pro�les including entry-level wage, sheepskin e¤ects and

earning dynamics, and 3) discussing the option value of schooling introducing po-

tential career opportunities or threats of unemployment modeled as major uncertain

events connected with particular education achievements.

In order to discuss these problems we proceed as follows. In section 3.2, we introduce

the real option base model to determine the expected time of leaving school for a

continuous process of schooling. In section 3.3, we solve the base model, and discuss

comparative statics. In section 3.4 we extend the model by introducing di¤erent levels

of formal quali�cation and discuss the implications for option values with respect to

sheepskin e¤ects and major random events connected to particular formal education

achievements. In section 3.5 we conclude.

3.2 Basic Model

The level of education a student attains is a result of a dynamic sequential decision

process. Even if an immediate labour market entry may have some bene�ts, it

is possible that staying in school is the better option. To model this uncertain

investment and timing decision problem, Hogan and Walker (2007) suggest the real

option approach in terms of a dynamic programming model from which we depart.

In our model the sequential timing decision has three elements: 1) accumulated

investment costs of schooling, 2) the earning pro�les, starting with the entry-level

wage when working life begins and developing as a dynamic income stream, and

3) the value of postponing the working life through longer education to potentially
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achieve a better income track, or the value of not to tie oneself to a speci�c uncertain

earnings stream. In section 3.4, we discuss that the option value of education can

account for sheepskin e¤ects, potential large opportunities or threats, and remaining

�exible. As this decision is repeated, we look at a multi-stage sequence of decisions

that add up to the entire duration of schooling and the eventual level of academic

achievement.

Investment Costs of Schooling In this model, the individual costs of a success-

fully completed year of schooling are de�ned by Ch 2 R and, from today�s perspective

(t = 0), accumulate each year until the end of the student�s education.18 The total

investment expenditure Ih(T ) is dynamic and increases with each year of schooling.

Hence, at time T 2 R+, the end of formal education, the current value of total

schooling costs19 is

Ih(T ) =

TZ
0

Che
r(T�t)dt+ �Ch; (3.1)

where r is the risk-free interest rate and �Ch are the given costs of successfully grad-

uating, �nding adequate employment and entering the market.

Earnings Pro�le Education not only generates costs, but also provides access to

di¤erent earnings pro�les. On the one hand, schooling generates a di¤erential in the

entry-level wage when entering the labour market; on the other, it may lead to a

change in the dynamics and risk of the income stream during working life.

18Recent empirical studies suggest that education costs are an important ingredient of the edu-
cation decision (see, e.g., Heckman, 2008). By including the annual accumulative cost of schooling,
we depart from Hogan and Walker (2007), who do not consider education costs.
19Education costs per period Ch could include accounting for in school utility. Hence Ch represent

"general costs" per period so that the willingness to pay for the "utility of schooling" could be
substracted and the costs could be regarded as net costs including utility bene�ts.
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Entry-level wage: The initial level of the income path, namely the entry-level

wage, is the �rst element of the earning pro�le. As it is linked to educational achieve-

ment, an additional (successful) year of schooling leads to a higher entry-level wage

and therefore to an increased level of the earnings stream.20 Many random elements

determine the wage when entering the labour market. Hence, we describe the devel-

opment of entry-level wages during formal education as a Brownian motion ~Y (t) 2 R

d ~Y = ~�h ~Y dt+ ~�h ~Y d ~Wh with ~Y (0) = ~y0; 0 < t < T; (3.2)

where ~�h 2 R+ and d ~Wh denote a constant volatility and the increments of a standard

Wiener process, respectively. ~�h 2 R+ is the expected marginal di¤erential in income

level with respect to marginal schooling time and educational improvement (expected

rate of market reward). This change in the level of the income path is part of the

total income reward generated by the schooling process.

Dynamics and value of the income stream: The second element of the earnings

pro�le is the dynamic development of the lifetime earnings stream. Because stylized

facts indicate that it is linked to educational attainment, we use a random process

with a trend and random elements. In general, individual income dynamics are

driven by a stochastic earning process described by the geometric Brownian motion

Y 2 R

dY = �hY dt+ �hY dWh with Y (0) = y0; T < t; (3.3)

with dWh denoting the increments of a standard Wiener process. Upon entering the

20Wang and Bai (2003) examine how variations in uncertainty in labor productivity a¤ect speci�c
human capital investment and wage. They �nd a positive correlation between wage and speci�c
human capital.
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market (t > T ), the student faces a stochastic revenue stream which is characterized

by an expected average growth rate �h 2 R+ and elements of uncertainty depicted by

a constant volatility �h 2 R+. To simplify the model, we assume �h to be constant,

whereas in the real world an earnings pro�le would not be linear but would decrease

at the end of one�s working life.21 Once working life begins, the earnings stream

follows a random process and other opportunities are ruled out. Hence, the future

income stream will specify the economic value of the achieved level of education.

For a risk neutral individual, the gross value of human capital (education wealth)

V grossh is given by the expected present value of the earnings stream fYh(t)g. For

simplicity, the individual has an in�nite lifespan. To determine the ENPV of human

capital (net wealth of education), the expected gross value (3.4) has to be adjusted

for individual education costs Ih(T ) accumulated during the time of schooling (3.1)22

V grossh = E

0@ 1Z
T

Yhe
�r(t�T )dt

1A =
Yh(T )

r � �h
; r > �h. (3.4)

Vh = V
gross
h � Ih(T ):

Option Value of Waiting Apart from a¤ecting the earning pro�le, the duration

of education corresponds to the value of the option of deferring market entry so as not

to be tied to a lifetime earnings pro�le with the corresponding risk and irreversibility.

Dixit (1989) as well as Dixit and Pindyck (1994) demonstrate that waiting has a value

in the context of a �rm�s investment decision. In line with this approach, further

21For simplicity, we stay with a geometric Brownian motion even though we could replace it
by an arithmetic Ornstein-Uhlenbeck process, as also suggested by Hogan and Walker (2007), and
derive similar results plus an additional constant. At this point, we also assume identical a-levels no
matter how many years of schooling were completed, and we do not distinguish between di¤erent
formal educational levels such as primary, secondary or tertiary education. Later in this paper,
we distinguish between di¤erent earnings pro�les determined by the attained formal quali�cation
including sheepskin e¤ects.
22See Appendix B.2.1.
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education could open up additional information and unforeseen opportunities and

therefore lead to a higher earnings pro�le. In reality, the decision to complete one�s

education with a certain degree is surely not as strict as suggested by the expression

"irreversible". Returning to the education system can be modeled by exit options,

which we leave for a future extension to the present model. According to Dixit and

Pindyck (1994), for the option value Fh for the Brownian motion (3.2), the Hamilton-

Jacobi-Bellman (H-J-B) equation holds23

rFhdt = E(dFh):

Decision Problem The education decision is a timing problem concerning the

entry into working life. We need to compare the net value of education Vh (for any

educational achievement) with the option value Fh of further education and a better

income pro�le. Once the net value of education and the option value of waiting have

been determined, the question of whether or not to wait for another period will be

answered by the solution to

max fVh(T ); Fh(T )g :

The student will decide in favour of another year of school if the option value of

waiting is higher than the ENPV of the earning stream. Solving this continuous

decision problem determines the time of entry into the labour market.

23See Appendix B.2.2.
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3.3 Solving for Expected Time of Leaving School

The expected time of entering the labour market can be obtained in three steps. First,

we determine the threshold Y �(T ), which represents the entry-level wage required

to make one�s education pro�table. Beyond the threshold, the value of the earning

stream becomes higher than the option value of waiting and the student enters the

labour market. Second, the student simultaneously observes the development of the

relevant entry-level wage ~Y (T ) in the market, compares the threshold for his or her

academic attainment with the corresponding current entry-level wage, and veri�es if

the threshold has already been reached. Third, if he or she decides to stay at school

he or she will predict the expected duration of schooling.

Entry Threshold In order to determine the income value that triggers the switch,

we need to consider the standard conditions of a stochastic dynamic programming

problem. In addition to the H-J-B equation for the option value Fh and applying

Ito�s Lemma to dFh; we have to use the well-known boundary conditions, namely

(3:5), the value matching condition (3:6), and the smooth pasting condition (3:7)

Fh (0) = 0; (3.5)

Fh (Y
�) = V grossh (Y �)� Ih(T ); (3.6)

dFh (Y
�)

dY
=

d(V grossh (Y �)� Ih(T ))
dY

(3.7)

to solve for the income threshold Y �. Once this threshold is reached the student

decides to enter the labour market.

Proposition 4 For an accumulation of constant costs per year of successful school-

ing (3:1), a sequence of increasing earning levels through schooling described by (3:2),

and an earning dynamics after market entry following (3:3) the threshold Y �(T ) that
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triggers the start of the earning/working process is

Y �(T ) =
�h

�h � 1
(r � �h)

�
Ch
r

�
erT � 1

�
+ �Ch

�
(3.8)

=
�h

�h � 1
(r � �h)Ih(T );

with �h =
1

2
� ~�h
~�2h
+

s�
1

2
� ~�h
~�2h

�2
+
2r

~�2h
; (3.9)

and r > �h:

Proof. For a proof see Appendix B.2.3.

Each additional year of schooling dynamically adds to the total costs of education,

so the investment costs increase over time. The threshold changes with the duration

of schooling, i.e. it is a continuous function of time. A student would only complete

an additional year if he or she is rewarded by a higher entry-level income.

Expected First-Time Realization of Entry-Level Wages If the random entry-

level wage observable in the market matches the threshold, the education process

terminates. The point in time when we expect this match for the �rst time, is called

the "�rst passage time", which is determined analytically in the next section.

We �rst consider an instrument that we will call the expected �rst-time realization

of entry-level wages. For the random process ~Y (see (3.2)) we derive the expected

time of �rst realizing a certain entry-level wage ~yi 2 [~y0;1) (given today�s value ~y0).

By using the Girsanov theorem we determine the probability density function24 of

~Ti which is sometimes referred to as the Inverse Gaussian Distribution.25 Hence, we

24An extensive discussion is o¤ered by Karatzas and Shreve (1991, p. 196) and Karlin and Taylor
(1975, p. 363).
25The term �inverse Gaussian distribution� stems from the inverse relationship between the

cumulative generating functions of these distributions and those of the Gaussian distributions. For
a detailed discussion of the inverse Gaussian distribution see Johnson et al. Dixit (1993).
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can write the expected �rst-time realization as a function of ~yi=~y0

Proposition 5 For the Brownian motion (3.2), the expected time of �rst realizing

E ~Th of each entry-level wage ~y 2 [~y0;1) is a function of ~y=~y0. Hence, the expected

time until any entry-level wage ~y is reached for the �rst time is

E ~Th =
1

~�h � 1
2
~�2h
ln

�
~y

~y0

�
. (3.10)

Proof. For a proof see Appendix B.3.

This expected time of �rst realizing E ~Th for all values of entry-level wages can be

drawn as the E ~Th curve in Figure 3�1.

Expected Time of Leaving School When planning his or her career, a student

has to simultaneously observe the entry-level wages and the income threshold that

will trigger market entry. In order to �nd the �rst passage time we use two types

of information available. First, the student knows the threshold Y �(T ) that triggers

market entry for each duration of schooling T . Second, from the properties of the

Brownian motion (3.2) the expected �rst-time realization of all initial income values,

that is, the time when a certain entry-level wage ~Y is expected to be reached for the

�rst time E ~Th; is known as well.

Hence, if the entry-level wage ~y in question is expected to be reached for the

�rst time at E ~Th and if ~y matches the value of Y �(T ) at this particular time (for

T = E ~Th), we obtain the �rst passage time T � (intersect of the expected �rst-time

realization of initial income and the threshold in Figure 3�1). Hence, as long as the

�rst passage time has not been reached, the option value Fh is greater than the net

value of current human capital Vh.26

26As in Dixit and Pindyck (1994, p. 160) the curves Fh; Vh have an upward slope. However,
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Figure 3�1: Earning Pro�le, Entry-Level Wage and Dynamics of In-
come

Proposition 6 a) With the threshold Y �(T ) from (3:8), the expected �rst-time real-

ization of initial income levels E ~Th from. (3:10), and conditions27

�h
�h � 1

(r � �h) �Ch > ~y0; (3.11)

and

�Chr > �Ch(~�h �
1

2
~�2h) > Ch; (3.12)

under certain conditions they can also decrease because in this model costs are accumulated.
27Condition (3.12) seems restrictive. However, this su¢ cient condition re�ects the simplifying

assumption that schooling costs are constant for each year of schooling and the dynamics of the
income process (3.3) do not change with more years of schooling. If income dynamics were positively
related to the duration of schooling (�(T ); �0 > 0), this condition could be substituted by a more
general simple condition. The explicit discussion of this condition and the implications are left for
future research.
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there is an expected time of leaving school and entering working life T � = E(Th) > 0

(�rst passage time). b) For each vector (�h; r; T �; Ch; ~y0; ~�h; �Ch) that ful�ls a) there

is a marginal environment such that T � is an implicit function of �h; Ch; ~y0; ~�h; �Ch

and r

T � = T �(�h; ~�h; Ch; ~y0; ~�h; �Ch; r):

Proof. For a proof see Appendix B.3.2.

In Figure 3�1, a threshold that is higher than the expected entry-level wage re�ects

that learning costs during the education phase (before T �) are not yet su¢ ciently

compensated by the present entry-level wage, so the student prefers to stay in the

educational system. In addition, condition (3.11) is important to understand the

logic of the decision problem. The decision in favour of a given education level will

only be positive if the minimum wage (no-education income ~y0) is su¢ ciently small

compared to education costs (3.11).28 Further, the expected time of market entry

(T �) is just an indicator of what is expected to happen in future. Future development

is partly random and therefore an unexpected exit from schooling can easily happen

any time.

Determinants of Timing Decision In this section, we examine the most impor-

tant and most frequently discussed determinants of the market entry decision. In

particular, we look at the e¤ects of risk, costs of schooling, and no-education income.

Proposition 7 A larger risk �h, higher periodic education costs Ch; a �atter income

pro�le and a lower no-education income level will lead to an increase in the expected

28Both conditions are required for the existence of a solution to the problem. (3.11) is needed for
the threshold curve in Figure 3�1 to start above the entry-level wage curve.
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duration of schooling T �

@T �

@�h
> 0;

@T �

@�h
< 0;

@T �

@~y0
< 0;

@T �

@Ch
> 0:

Proof. For a proof see Appendix B.4.

The in�uence of rising risk - measured by the volatility of revenues - on the time

of market entry can be expected and is consistent with Hogan and Walker (2007),

but deviates from the results of Groot and Oosterbeek (1992) and Hanchane et al.

(2006). An increasing income risk will devalue the earning stream and hence will

require higher compensation re�ected by an increased threshold. As long as the

additional net rewards of longer education can compensate for the rising threshold,

students will stay in school.

Declining general income growth a¤ects the bene�ts of education. Lower earnings

growth will decrease the expected present value of schooling. Lower growth and

hence less attractive earning track dynamics will only pay o¤ if entry-level wages

increase. With a su¢ cient marginal reward �h; the required threshold can still

be reached after more years of schooling. This new earning pro�le, characterized

by a higher entry-level wage to compensate for less rapid income growth, justi�es

an even longer education. The e¤ects of increasing �h can also be described by

another intuitively plausible story. If �h increases, the ENPV of human capital

increases as well (Figure 3�1a). As it is now easier to obtain the same value with

lower investments, investments can be reduced.

The minimum wage level ~y0 represents the no-education wage level when the

schooling decision is made at t = 0. If the agent did not obtain any schooling he

or she could start working for this entry-level wage ~y0. In case of an increasing

no education wage level, educational attainment will decrease (Figure 3�1b). This
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�nding is intuitively expected. A rise in ~y0 indicates (all else being equal) that no-

education leads to higher income. The higher the no-education wage path, the less

attractive a long education and the more attractive an early market entry will be.

As Ch denotes the �ow of investment costs of schooling, the reaction dT �

dCh
> 0

is not expected. In the standard approach, higher investment expenditure would

increase the opportunity costs of education and would hence make education less

pro�table. Educational attainment would decline as a result. Therefore, this out-

come can be regarded as a "tuition paradox". In this approach, the decision problem

is di¤erent. As the costs of schooling increase, the student needs compensation from

the market to stay in the system. As long as the market rewards the outcome of

additional schooling su¢ ciently (~�h is su¢ ciently high), both curves would still in-

tersect at a later time. In other words, the new earning pro�le promises a su¢ ciently

higher earnings path to compensate for the increase in costs and justify even more

education. According to empirical results provided by Heckman et al. (2008), in-

creasing costs could be partially compensated by higher investment in schooling and

a corresponding rise in entry-level wages. Higher costs may lead to longer education

as long as the rewards are su¢ cient. The proposition is derived from comparative

statics for marginal variations in a marginal environment around the solution.29 If

costs are too high and the market cannot su¢ ciently compensate, there is no inter-

sect of the two curves in Figure 3�1. In this case, students would not decide to remain

in school. Hence, the intuitively expected outcome of cutting short one�s education

when costs become too high can be also obtained as soon as the non-linear expansion

of the threshold no longer allows for an intersection. This is one way to unravel the

mystery of the tuition paradox.

29Hence, we remain in the inner solution of the model.
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3.4 Sheepskin E¤ects and Large Shocks

"For two reasons, the dynamic nature of schooling suggests that the returns to ed-

ucation may include an option value. First, the return to one year of school may

include the potential for larger returns associated with higher levels of formal qual-

i�cation when the returns to school are not constant across all formal quali�cation

levels. For example, �nishing high school provides access to college, and attending

college is a necessary �rst step for obtaining a college degree. [...]" [Heckman et al.,

2006, p. 37].30 Heckman et al. (2006) point to the multi-stage character of the

process. The successful completion of one stage is necessary for proceeding to the

next, and completing one formal education level results in an extra income premium.

This so-called "sheepskin e¤ect" shifts the income pro�le to a higher level. In partic-

ular, the sheepskin e¤ect seems to be increasingly important in the recent empirical

discussion, since recent �ndings support the hypothesis of nonlinearity in incomes

which occur especially with high school and college completion.31 Therefore, this sec-

tion will model these additional elements of the education decision by extending the

previous model and discussing discontinuities and nonlinearity in earning pro�les.

Earning Pro�les and Formal Quali�cation Levels For simplicity, we examine

two levels of formal quali�cation.32 For each level, both years of schooling and the

achieved formal quali�cation determine the earnings pro�le. As the above model can

30The second reason to implement option theory in the human capital decision is already discussed
in the above model: "[...] Second, when there is uncertainty about college costs or future earnings
and when each additional year of schooling reveals new information about those costs or earnings,
the full returns to schooling will include the expected value of newly revealed information that can
be acted on." [Heckman et al., 2006, p. 37].
31See, e.g., Heckman (1995); Heckman et al. (2006, 2008); Denny and Harmon (2001); Skalli

(2007); Ferrer and Riddell (2008); Silles (2008).
32Altonji (1993) examines education choice as a sequential choice that is made under uncertainy.

Using a simple two-period model he estimates how variables that in�uence, e.g. tastes for school,
payo¤s to college, a¤ect the expected return to a year of school.
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be regarded as a model for only one level of formal quali�cation, we can consider more

levels by simply symmetrically adding additional earning pro�les. Speci�cally, for

each level of formal quali�cation i = 1; 2; we assume speci�c costs Ihi 2 R depending

on Chi 2 R and a speci�c earning pro�le determined by entry-level wages ~Yi(t) 2 R

and wage earnings Yi(t) 2 R.

A student observes that for each formal quali�cation level i a year of additional

schooling will increase his or her entry-level wage ~Yi according to the geometric

Brownian motion33

d ~Yi = ~�hi
~Yi + ~�hi

~Yid ~Whi ; for t < Ti;

where Ti denotes the years of schooling required to attain the formal quali�cation

level i (e.g. a secondary education program may last for four years, hence T2 = 4).

Note that each level of formal quali�cation has its own drift ~�hi and volatility ~�hi,

which are positive and constant.

The dynamic development of income Yi during working life for each level of formal

quali�cation i is highly uncertain. Uncertain fundamental events like the threat of

unemployment or disease, or opportunities like sudden promotions or job o¤ers that

fundamentally a¤ect a career, are important and speci�c elements of an income

pro�le. These events often trigger large downward or upward leaps in income. In

order to account for these large random impacts, we distinguish marginal risk and

large random events that result in a stochastic shock. On the one hand, there are

marginal �uctuations in income growth, usually known as the marginal risks. In real

life these may be random changes in wage growth such as 3% in one year and 2% in

the other. On the other, new jobs and opportunities may lead to strong upward shifts

33Each level of formal quali�cation is modeled symmetrically based on the referencing model
above. Therefore, see also (3.2) for only one level of formal quali�cation.
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in income, or sudden dramatic and non-marginal threats such as unemployment or

an illness can trigger large downward shifts in income. These opportunities and

threats are often related to the formal education achievement. Typically, university

graduates do not just learn more and become more productive due to the content of

their education. They are more likely to meet in�uential people, to enter powerful

networks, and to develop the personality that is necessary to match the sophisticated

requirements for a leading position in a company. Further, low-skilled labour does not

have to be less productive. Workers with lower skills can be more easily substituted,

they are more likely to lose their job during an economic downturn, and may even

be more at risk of illness due to working conditions. However, such opportunities or

threats have an economic value and a¤ect the value of a formal quali�cation, even

if the realization of such income jumps remain random. Positive and negative jumps

as elements of a random income dynamics are best described as stochastic shocks.

So far, there is no literature that analyses the e¤ects of such large stochastic shocks

and fundamental threats and opportunities related to the education decision.

The appearance of these large opportunities and threats can be described by an-

other stochastic process. For the present case, we describe the development of income

for each formal education level i = 1; 2 as an Ito-Lévy Jump Di¤usion process34

dYi
Yi

= �hidt+ �hidWhi +

Z
Uhi

zhiNhi(t; dzhi) for Ti < t:

While in the real world an earnings pro�le would not be linear and decrease

at the end of a working life, we keep matters simple and assume �hi 2 R+ to be

34A more general formulation of this process can be found in Oksendal and Sulem (2007). They
describe under which conditions a solution to these SDE exists and discuss some characteristics.
For our purpose we assume that the existence conditions are ful�lled. A further discussion of Lévy
processes and their characteristics can be found in, e.g. Applebaum (2009) and Cont and Tankov
(2004).
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constant. The �rst part of the stochastic process is a geometric Brownian motion

with a constant marginal risk represented by volatility �hi, followed by a jump partR
Uhi

zhiNhi(t; dzhi): Nhi(t; dzhi) denoting the Poisson process with intensity �hi. Hence,

non-marginal jumps which occur at a random time with an uncertain step height out

of Uhi are accumulated. Uhi � (�1; 0)\(0;1) itself is a Borel set whose closure does

not contain 0.35

Once working life begins earning pro�les are determined within the limits of the

random process related to each achieved formal quali�cation. The Expected Net

Present Values of human capital Vhi when leaving school in T are given by
36

Vh1 =
Y1(T )0@r � R

f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
�

TZ
0

Ch1e
r(T�t)dt� �Ch1

and

Vh2 =
Y2(T )0@r � R

f�1h (Uh2 )

zh2�h2(dzh2)�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1A
�

TZ
T1

Ch2e
r(T�t)dt� �Ch2 :

fh denotes the function fh(zh) = ln(1 + zh) and �hi refers to the Lévy measure of

the Poisson process Nhi :

35We have to assume Uhi having a lower boundary not lower than -1, because, as will be seen
later, the solution to the di¤erential equation dYi has a solution only for zhi > �1:
36See Appendix B.5.2.
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Option Value of Completing a Formal Quali�cation Entering a higher edu-

cation program often requires the prior successful completion of a lower educational

level. For instance, if a student wants to start a college degree, he or she needs to

graduate from high school beforehand. Furthermore, �nishing each formal education

level provides an income premium, the sheepskin e¤ect. We can even keep thinking

about this e¤ect when we account for the academic reputation of di¤erent schools.

Hence, looking at a sequential decision problem, not only the option value of com-

pleting another year of schooling but also the option of a sheepskin e¤ect should be

included in the decision.

"Our �ndings suggest that part of the economic return to �nishing high school or

attending college includes the potential for completing college and securing the high

rewards associated with a college degree. Both sequential resolution of uncertainty

and non-linearity in returns to schooling can contribute to sizeable option values."

[Heckman et al., 2006, p. 7].

In our model we have only two formal education levels. Hence, as the second level

is the highest to be considered, the option value, Fh2 ; includes the sheepskin e¤ect S2

of successfully graduating from this level. This sheepskin e¤ect pushes up the entry-

level wage as a reward for graduation and consists of all income e¤ects provided by

the new earning pro�le connected to graduation. For simplicity, we assume that the

sheepskin e¤ect is discounted linearly, so that the time e¤ect, which is the derivative

of Fh2 with respect to t, has a value of
@Fh2
@t

= rS2: Applying Ito�s Lemma and the

Bellman equation results in

rS2 + ~�h2 ~Y2
@Fh2
@ ~Y2

+
1

2
~�2h2
~Y 22
@2Fh2
@ ~Y2@ ~Y2

� rFh2 = 0:

This is a second-order inhomogeneous di¤erential equation with a free boundary and
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has the solution37

Fh2 = Kh2
~Y
�h2
2 + S2;

with Kh2 2 R constant. Hence, for the exponent we obtain �h2 =
1
2
� ~�h2

~�2h2
+r�

1
2
� ~�h2

~�2h2

�2
+ 2r

~�2h2
; which is similar to (3.9).

Knowing the option value of secondary education, we are able to derive the option

value of primary education Fh1. For each t 2[T1; T2] Fh1 includes the discounted

option value Fh2 and the discounted sheepskin e¤ect S1. Hence, the time e¤ect of

these two components is
@Fh1
@t

= r(S1+Fh2): Applying Ito�s Lemma and the Bellman

equation results in

r
�
S1 + S2 +Kh2Y

��h2
2

�
+ ~�h1 ~Y1

@Fh1
@ ~Y1

+
1

2
~�2h1
~Y 21
@2Fh1
@ ~Y1@ ~Y1

� rFh1 = 0:

This is the so-called inhomogeneous Euler di¤erential equation which has the solu-

tion38

Fh1 = Kh1Y
�h1 + r

�
S1 + S2 +Kh2Y

��h2
2

�
; (3.13)

where the respective positive and negative roots obtained for the homogenous dif-

ferential equation are �1h1 =
1
2
� ~�h1

~�2h1
+

r�
1
2
� ~�h1

~�2h1

�2
+ 2r

~�2h1
> 1 and �2h1 =

1
2
� ~�h1

~�2h1
�r�

1
2
� ~�h1

~�2h1

�2
+ 2r

~�2h1
< 0: Note that (3.13) entails components of Fh2 , namelyKh2 and

�h2, the threshold of the second formal education level and both sheepskin e¤ects S1

and S2:

37See Appendix B.5.2.
38In order to obtain the solution transform the inhomogenous di¤erential equation in an inho-

mogenous linear di¤erential equation with constant coe¢ cients. This can be done with ~Y = exp(t):
Next, �nd a solution to this equation by means of the characteristic polynomial and variation of
constants. Finally, transform the solution back to the original variable.
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Entry Thresholds of Formal Quali�cations In order to derive the entry thresh-

old for each education level, we proceed according to the simple case of one education

level. Hence, we use the net values of human capital and by comparing them with

the option values we determine the threshold curves Y �i (T ). Finally, the boundary

conditions lead us to the threshold for the second education level Y �2 :

Proposition 8 For education costs Ih2, a sequence of increasing earning levels through

schooling, described by the geometric Brownian motion ~Y2; and an earning dynamics

after market entry Y2; described by a Ito-Lévy Jump Di¤usion, the threshold Y �2 (T )

that triggers the start of the earning process is

Y �2 (T ) =

0BBB@
r �

R
f�1h (Uh2 )

zh2�h2(dzh2)

�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1CCCA �h2
�h2 � 1

(Ih2 + S2) ;

with r >

Z
f�1h (Uh2 )

zh2�h2(dzh2) +

Z
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2) + �h2 :

Proof. For a proof see Appendix B.5.3.

For the �rst education level i = 1 we obtain a non-linear problem, so that the

solution to the threshold can only be obtained as an implicit function.

Proposition 9 For education costs Ih1, a sequence of increasing earning levels through

schooling, described by the geometric Brownian motion ~Y1; and an earning dynam-

ics after market entry Y1; that follows an Ito-Lévy Jump Di¤usion, the set of points

Z = (r; zh1 ; �h1 ; ~�h1 ; ~�h2 ; ~�h1 ; ~�h2 ; S1; S2; Ch1 ; �Ch1 ; �h1) forms a submanifold of the R13

with dimension 12.

Proof. See Milnor (1997), p. 11.
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Using Proposition 9, we can show that there is an implicit function for the thresh-

old Y �1 which depends on Z, i.e., all parameters determining the net present and

option value.

Proposition 10 For each vector

Z0 = (r0; zh10 ; �h10 ; ~�h10 ; ~�h20 ; ~�h10 ; ~�h20 ; S10; S20; Ch10 ; �Ch10 ; �h10);

that ful�ls

H : =
�1h1 � 1
�1h1

Y �10@r � R
f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
�r
�
S1 + S2 +Kh2Y

��h2
2

�
� Ih1 = 0;

there is a marginal environment around this vector such that Y �1 is an implicit

function of Z

Y �1 = Y
�
1 (Z): (3.14)

Proof. For a proof see Appendix B.5.2.

As we can see from (3.14), the threshold depends on both sheepskin e¤ects, the

frequency and direction of opportunities and threats and several other parameters

that stem from the two option values Fh1 and Fh2 :

Impact of Sheepskin E¤ects and Long-Term Incentives In the previous sec-

tion, we determined the two thresholds that trigger the end of schooling for each level

of formal quali�cation. In particular, we are able to show that risk, irreversibility
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and discontinuous elements like sheepskin e¤ects are an important ingredient of the

decision problem. In this section, we examine the impact of changes in sheepskin

e¤ects at both levels of education. In particular, we show how sheepskin e¤ects pro-

vide a kind of long distance incentive for the today�s education decision. Even if this

added bonus is in the future, its expected realization is part of the option value and

hence a¤ects today�s education decision. We can �nd these e¤ects even during the

�rst formal education level by looking at the respective threshold.

Proposition 11 An increase in the sheepskin e¤ects S1 and S2 of both formal qual-

i�cation levels increases the threshold to leave the �rst formal quali�cation level

@Y �1
@S1

> 0 and
@Y �1
@S2

> 0:

Proof. For a proof see Appendix B.5.4.

A larger sheepskin e¤ect means that �nishing the respective formal education

level has a greater value. Leaving school, however, requires a higher entry threshold

due to increased opportunity costs of leaving school. Hence, the decision to stay in

the �rst education period (high school, for instance) is not only determined by the

value of obtaining the �rst formal quali�cation but also includes the opportunity to

start and �nish the second formal education level. The student knows that once he or

she �nishes the second formal level (college, for instance) he or she can expect to earn

an additional, possibly even greater sheepskin e¤ect. Both components represented

by the sheepskin e¤ects S1 and S2 increase the option value of additional education

and hence the value of staying in school. Even if the length of time until the decision

has to be taken is long, the e¤ect remains a component of the decision. The sheepskin

e¤ect of a college degree is an incentive to complete high school.
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Impact of Marginal Risk and Stochastic Shocks Marginal risk covers mar-

ginal �uctuations in income growth, usually depicted by ~�i. Stochastic shocks are

strong (more than marginal) upward or downward shifts in income. An upward shift

may be an unexpected opportunity that a¤ects the related income pro�le. A college

graduate typically is more likely to get a high-paid job than a high school gradu-

ate. Someone with lower formal quali�cation may be unemployed more frequently

and hence faces a more severe threat of downward income jumps. These positive

and negative jumps as elements of income dynamics are best described as stochastic

shocks. Here we analyse the e¤ects of an increasing frequency of these jumps on the

education decision. We start with the e¤ects of marginal risk and without loss of

additional insights, only look at the second level of formal quali�cation.

Proposition 12 (i) An increase in marginal risk ~�h2 of the second formal quali�-

cation level increases the threshold Y �2 . Hence,

@Y �2
@~�h2

> 0:

(ii) An increase in the frequency of jumps �h2 reduces the threshold to leave the

second formal quali�cation level, under the condition that positive jumps outweigh

the negative ones, so that
R

f�1h (Uh2 )

zh2gh2(dzh2) +
R
Uh2

[ln(1 + zh2)� zh2 ] gh2(dzh2) > 0

with gh2 being the probability distribution of jump heights. Hence,

@Y �2
@�h2

< 0:

Proof. For a proof see Appendix B.5.4.

Looking at (i), the e¤ect of marginal risk, we can see that an increasing volatility

of the motion of the entry-level wage leads to a larger required threshold to leave
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school. For a simpler model this result was already derived in Proposition 7 and in

Hogan and Walker (2007). In (ii), for the condition �positive jumps outweigh the

negative ones�, the random process o¤ers more opportunities than threats.39 In this

case, a higher frequency of jumps implies that promotions, job o¤ers and other events

leading to non-marginal upward income shifts, become more likely once a person is

in the market. Therefore, with a higher frequency of chances o¤ered by the market,

staying at school becomes less attractive. Improved market opportunities cannot be

realized as long as a student stays at school. Mark Zuckerberg and Steve Jobs are

well-known examples. They saw huge opportunities that they could only seize once

they had left school and entered the market. These enormous opportunities acted

as an incentive for them to start working. Leaving school was expected to be more

pro�table than continuing education. If such opportunities are a characteristic of a

formal quali�cation and hence elements of a sheepskin-reward, they become part of

the option value and make completion of formal quali�cation more valuable.

3.5 Conclusion

Education is a multi-stage investment and the realization of the various stages takes

time. We consider two phases, a pure investment phase followed by a second earning

phase. While in the investment phase each period�s investment improves the outcome

of the project, it is uncertain how long a student will have to invest and how much he

or she will have to accumulate in order to maximize the education value. Hence, the

question we answer is, how long (�rst passage time) and how much we can expect to

invest during this kind of multi-stage sequential education process.

Recent literature shows that real option theory can be applied to these ques-

39This condition may be related to one�s individual education or personality, or it may be related
to general changes in business conditions such as an economic upswing or downturn.
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tions in order to take into account uncertain time processes and irreversibility in

human capital accumulation decisions. Based on the modelling suggested by Hogan

and Walker (2007), we extend their framework by (1) adding accumulated education

costs and determining the expected duration of schooling, (2) considering complete

earnings pro�les including entry-level wage, sheepskin e¤ects and earning dynamics,

and (3) discussing the option value of schooling introducing potential career oppor-

tunities or threats of unemployment modeled as major uncertain events connected

with a particular education achievement. Marginal risk covers marginal �uctuations

in income growth, usually depicted by the variance. Stochastic shocks are strong

(more than marginal) upward or downward shifts in income. As these kind of large

sudden events are an important ingredient of income pro�les connected to quali�-

cation levels, we account for this phenomenon by extending the standard version of

the model by an Ito-Lévy Jump Di¤usion process.

From comparative statics, we obtain: (i) With an increase in education costs

the student may stay in the system as long as the increasing costs of schooling are

compensated su¢ ciently by the market. (ii) A sheepskin e¤ect may produce an

extra income premium, and completion of a formal education is often a necessary

precondition for moving to the next level. Both facts describe a discontinuous jump in

rewards once a student achieves a formal quali�cation. This leap increases the option

value of additional education and hence the value of staying in school. Sheepskin

e¤ects, even for future levels of quali�cation and even if the time to completion is

long, remain an encouraging component in the decision to remain in school longer.

(iii) With respect to the e¤ects of stochastic major events that we analyse, staying

in school becomes less attractive if the frequency of such uncertain events o¤ered by

the market increases and if there are more overall opportunities than threats. In this

case, the uncertainty in the market is positive and students will want to seize these
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positive opportunities. If fewer threats and increasing opportunities go along with

an increasing formal level of quali�cation, the option value of achieving higher levels

of education increases.
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Chapter 4

Uncertainty and Con�ict Decision

This chapter is a joint work with Thomas Gries which was published as a working

paper No. 2014-05 in the CIE Working Paper Series. It is a slightly revised ver-

sion of the paper that was published in the Conference Paper Series "Beiträge zur

Jahrestagung des Vereins für Socialpolitik 2012: Neue Wege und Herausforderungen

für den Arbeitsmarkt des 21. Jahrhunderts", Session: Con�ict and Disputes, No.

C20-V3.

4.1 Introduction

The last contribution of this doctoral thesis extends the previous by allowing for a

large stochastic variability during the waiting period. In the context of social con-

�icts, a rebel decides about whether and when to attack the oppressive government

in order to change the status quo. This decision is particularly determined by large

stochastic events generated by, e.g. the government. Hence, the focus of this contri-

bution lies on the e¤ect of non-marginal stochastic events during the latent con�ict

phase, where the outbreak of con�ict has not taken place yet. Similar to the pre-

vious chapter, a real option model is used to determine the required bene�t that

the con�ict needs to generate, and the optimal time of attack. The results show

that stochastic shocks have an ambiguous e¤ect, depending on whether marginal or
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non-marginal. That is, marginal stochastic variability may extend the non-violent

period while non-marginal stochastic variability leads to an earlier attack.

Almost no decision problem bears more dramatic and large uncertainties than

the decision to launch a violent con�ict. While empirical studies on the causes

and consequences of social con�icts are manifold, consistent closed formal theories

addressing uncertainties in the decision to launch a con�ict remain rather limited,40

on both the macro and the micro level.41 Hence, in this paper we ask how uncertainty

a¤ects the decision to launch a con�ict. Using option theory, we can distinguish two

types of uncertainty. For a rebel, an increase in marginal uncertainty which can be

connected to typical �uctuations in the economy may give hope and lead him or

her to postpone the violent action. In contrast, an increase in massive threats and

major uncertain events, such as extensive oppressive government actions, will have

the opposite e¤ect and encourage an earlier outbreak of con�ict. The implications

are straightforward: conditions, whether exogenous or deliberately provoked that

generate large uncertainties a¤ect con�ict decisions and the duration of a non-violent

period that could be used to �nd a long-term solution to the con�ict.

In the literature, it is well recognized that turning to violence can be a rational

choice for, e.g. an oppressed group.42 In particular, discrimination, repressive gov-

40See the survey by Sandler and Enders (2004) and Blattman and Miguel (2010).
41For the case of con�icts with strategically interacting groups such as well-organized rebel groups

�ghting to overthrow the government, game theory approaches show that con�icts can have eco-
nomic roots and may be the result of strategic interactions between con�ict partners. In particular,
con�icts between two competing agents occur due to a lack of property rights (Skaperdas, 1992), in-
complete and insu¢ cient information about the other party�s relative military power (Fearon, 1995;
Yared, 2010), or due to the agent�s inability to estimate the opponent�s ability to win (Powell, 2002,
2006). These scenarios seem suitable for explaining certain kinds of social con�ict, yet they shed
light only on explicit bilateral interaction with mutual strategic behavior of clearly de�ned and
strictly controlled con�ict parties, such as a well-organized, homogeneous group of rebels engaged
in a game with the government. In this case, both parties know the possible set of actions before
the opponent turns to violence, and take them into account.
42Empirical investigations assess that attacking in the context of terrorism is a rational choice.

See, e.g., Anderton and Carter (2005), Finkel and Muller (1998), and Weede and Muller (1998).
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ernment actions, waves of political persecution, arbitrary detention, torture of group

members, and bad living conditions may cause frustration and lead to violent action

of all kinds. Launching a violent con�ict may become an instrument for improving

conditions for the rebel or his or her social group (Tornell, 1998; Gould and Klor,

2010), or to maintain or acquire power (Besley and Persson, 2011). As Blomberg et

al. (2004) and Caplan (2006) claim, such con�icts may even be a rational outcome if

there is no other way to bring about drastic institutional change. Even if the decision

to attack is based on a comparison of the perceived bene�ts and costs of rebellion

(Collier and Hö­ er, 1998), and even if the goal of maximizing income or welfare

prevails (Grossman, 1991), it is highly uncertain whether keeping the peace for a

while longer may also improve conditions. Similarly, it is highly uncertain whether

turning to violence will improve conditions for the attacking group in the aftermath.

Uncertainty can trigger violence, just as it can encourage the group to wait for an

ad-hoc improvement in conditions.

First thoughts about uncertainty in theoretical modelling in this context come

from Morrow (1985), who claims that war decisions are based on the actors�utility

of uncertain outcomes. This approach is extended by Collier and Hö­ er (1998)

and Besley and Persson (2011). The role of uncertainty in formal con�ict theory

is rather rudimentary, even if nothing is more likely to trigger a con�ict than an

unforeseeable major event, and nothing is more uncertain than the outcome of a

con�ict once it is triggered.43 Empirical approaches, however, have started to assess

how large - not only government-induced - uncertainties, such as disasters, a¤ect

e.g. terrorist activities. Major shocks cause additional uncertainty and may strongly

a¤ect or even help to overthrow existing conditions. They impact the motivation

43For instance, in the aftermath of a con�ict rebels may become heroes, or they are just as likely
to be killed or their families exposed to even more severe repression.
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to become violent and can lead to an outbreak or the escalation of social con�ict.

For instance, Brancati (2007) shows that earthquakes may be a driving force for

intrastate con�icts, in that they increase competition for scarce basic resources. He

also concludes that the e¤ect is greater for higher-magnitude earthquakes that strike

more densely populated areas of countries with lower gross domestic products and

pre-existing con�icts. Berrebi and Ostwald (2011) extend this approach by taking

into account both earthquakes and hurricanes and show that terrorism may be a

consequence of natural disasters. Besides the e¤ect of natural disasters, economic

disasters such as the �nancial crisis may encourage terrorist activities due to their

destabilizing e¤ects (Gries and Meierrieks, 2013).

Hence, in this theoretical contribution we analyse how variability created, e.g. by

governments, natural disasters, or economic crises a¤ect the assessment of con�ict

bene�ts and hence the outbreak of a con�ict. In line with Blomberg et al. (2004),

we illustrate our discussion using the example of uncertain government repressions

that may lead to frustration and �nally to the outbreak of con�ict. In particular, the

government may increase the intensity and severity of discriminating and repressing

activities against a particular social group. Here, variability created by the govern-

ment is taken as given by the rebel, and we analyse its e¤ect on the rebel�s reaction.

Is higher variability a driving force for con�ict escalation, or does it encourage rebels

to remain peaceful? Does, e.g. a higher frequency of oppressive policies or more se-

vere government action deter the rebel group, or does it encourage it to take action

and change conditions through violent means?

To analyse the e¤ect of variability on the decision to turn to violence we choose

a real option approach because it considers the value of (peacefully) waiting until

(violent) action is taken. Since uncertainty is evaluated in the course of time we are

able to �nd an optimal timing decision. We can distinguish two types of variability,
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namely marginal stochastic shocks that indicate the variability of general living con-

ditions (which are sometimes better, sometimes worse), and non-marginal stochastic

shocks for sudden major threats (more repressive actions).44 More importantly, we

show that these two types of uncertainty lead to opposite e¤ects on the outbreak of

con�ict.

Why is this important to know? Because we can now evaluate how government

actions, such as increasing threats, will stabilize or destabilize a latent con�ict. While

conventional option modelling45 suggests that higher marginal stochastic variability,

with the interpretation of more economic variations, encourages the rebel to remain

peaceful for longer, stochastic large threats created by the government bring the

attack forward. Hence, the decision of whether and when to attack strongly depends

on the frequency and size of uncertain events. More threats will abbreviate the

expected peace period and reduce the chance of a peaceful long-term solution to the

con�ict.

4.2 Model

4.2.1 Model Idea

Many attacks are individual or small-group violent actions by agents. Irrespective of

group dynamics or psychological, ethnic, or sociological reasons, we focus on the idea

that starting a con�ict can be regarded as an investment in a better but uncertain

future.46 An attack is not something that unexpectedly enters the mind of a decision-

44More precisely, as we use an Ito-Levy jump di¤usion process that extends the geometric Brown-
ian motion by a jump component, we can analyse (i) marginal stochastic shocks that refers to the
variance in standard modelling of the Brownian motion, and (ii) non-marginal stochastic shocks
caused by a frequency of jumps of unknown size.
45Here "conventional" means modelling using a Brownian motion.
46Besides the economic analysis of social con�icts there is an extensive discussion on psychological

and sociological reasons for, e.g. terrorist attacks. See, e.g., Muller and Opp (1986), and Victoro¤
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making individual. Rather, it is the result of a dynamic process in which the current

path of development of the economic and social situation (status quo) is evaluated

and compared to the expected path of development after a potential attack, including

con�ict costs and all potential threats and opportunities (Grossman, 1991). If current

conditions are dissatisfying, a latent con�ict exists and violence may be considered.

One of the potential outcomes of such a situation is an attack. For instance, a rebel

who plans a terrorist attack will only carry out the plan if he or she expects to have

an overall positive e¤ect. If the assassination is successful, repression may stop and

reforms could lead to more political participation or economic improvements. As

rebels never know when and how strong repression will be, they take the uncertain

environment created by the government as given and decide whether, and if so,

when it is optimal to attack. Even if an immediate attack may have some bene�ts,

it is possible that a non-violent strategy comprising a potential later attack is the

better option. Rebels act rationally (Caplan, 2006); they decide whether to invest

immediately and pay the price by launching the con�ict (attack), or to maintain

the status quo, at least for a while. Since conditions are highly uncertain and may

change even without an attack, sometimes a simple waiting period may be more

bene�cial. Hence, the hope of non-violent change or the expectation that a later

attack (by someone else) is more bene�cial may postpone the attack. As time goes

on, rebels repeatedly consider their living conditions, which in bad times become

worse, and they repeatedly decide whether to arrest this process of deterioration by

violent means. As each moment�s conditions determine this decision, it is a sequential

decision in time. The decision is also irreversible �once the attack is carried out,

there is no turning back. All consequences have to be accepted, and the freedom

and �exibility to choose more moderate strategies to solve the con�ict are no longer

(2005).
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present. Hence, with sequential decisions, high uncertainty, and irreversibility as

major components of the decision problem, real option theory is an appropriate

methodology. In order to capture large uncertain shocks, we extend the conventional

(Brownian motion) model by using an Ito-Lévy Jump Di¤usion process.47 Unlike the

Brownian motion, which is the �workhorse process�in real option theory, this more

general process allows for evaluating parameters characterizing the frequency and

the scale of major events as well as the regular risk measure which is the volatility

of the geometric Brownian motion. With an Ito-Lévy Jump Di¤usion process, we

are therefore able to analyse substantially di¤erent risk components of a stochastic

process and we can show that they have opposite e¤ects on the decision to turn

violent. In this model, the rebel maximizes his or her present discounted net value

of the bene�t of an attack (including the value of �exibility) by deriving a con�ict

threshold that determines the bene�t level required to trigger the violent outbreak.

Randomly reaching this threshold represents the straw that breaks the camel�s back.

The decision is determined by a sequential comparison of the net present value of the

bene�ts of a potential attack with the value of postponing an attack to a later date.

Having established this triggering threshold, we can also determine the �rst passage

time, that is, the expected time of attack. Even if our sequential process identi�es an

expected time of con�ict outbreak, the model is also able to suggest that a sudden

random change in conditions may also lead to an unexpected attack at any moment.

4.2.2 Bene�ts of Con�ict

As the attack is expected to change the social, economic, and political conditions

created by the oppressing government, there are potentially two periods in con�ict

47The importance of jump di¤usions was �rst recognized in �nancial economics. For instance,
Merton (1975) derived a price for an European option similar to the Black Scholes formula. In the
course of time some extensions of the Merton approach followed.
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evaluation with two sets of conditions: �rst, the current period with a set of current

conditions associated with a path of non-violent but dissatisfying development; and

second, a new set of conditions in the period after the attack that are expected to

generate a better path of development. Both elements determine the evaluation of

total bene�ts of the con�ict and eventually, the decision to launch it in order to

generate a structural break in living conditions of the rebel or his or her group.

Current Conditions and Path of Development In this model, current condi-

tions lead to a time path that is not satisfying for a certain social group. A harsh set

of conditions for this group provokes resistance and a start of a latent con�ict between

an oppressive government and rebels. Increasing repression, worsening economic re-

strictions or discrimination, growing inequality of opportunities, and an increasing

threat of persecution may lead to greater frustration in the face of deteriorating

opportunities, and will eventually increase the propensity to turn violent. Further,

with each additional moment of waiting and not attacking, the worsening welfare of

the rebels may generate an increasing current bene�t of con�ict by rate ~�s 2 R+.

In other words, as the attack is a potential action, deteriorating living conditions

increase the bene�ts of an attack. The expectation of a deteriorating current time

path of welfare produces a su¢ ciently bleak outlook as to make an attack increas-

ingly bene�cial. However, there are marginal �uctuations due to small variations in

the economic and political situation that are described by the volatility ~�s 2 R+:

In addition, government�s repressive actions are highly uncertain to the rebel and

may lead to a dramatic and non-marginal change in conditions from one moment

to the next. These non-marginal stochastic shocks have an intensity ~�s > 0 and

increase the bene�ts of con�ict by a random amount us 2 ~Us � (0;1). In partic-

ular, major disastrous events have negative e¤ects on rebel�s welfare and prospects,
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so that the current bene�t of con�ict may suddenly increase signi�cantly. In order

to consider these fundamental threats or great opportunities, we describe the devel-

opment of current bene�ts of a potential attack during the period before the con�ict

is launched as an Ito-Lévy Jump Di¤usion process.48

De�nition 13 Let ~Us � (0;1) be a Borel set whose closure does not contain 0.

Furthermore, let ~Ws be a standard Wiener process, ~Ns a Poisson process with in-

tensity ~�s and constants ~�s; ~�s 2 R+: Then the Ito-Lévy Jump Di¤usion process ~B,

indicating the bene�ts of a potential attack at time t during the period before the

con�ict at T , is de�ned by the following SDE for ~B(t) 2 R

d ~B = ~�s ~Bdt+ ~�s ~Bd ~Ws + ~B

Z
~Us

us ~Ns(t; dus) (4.1)

for 0 < t < T and ~B(0) = ~b0:

This stochastic process includes a continuous and a discontinuous part through

a combination of a geometric Brownian motion and a compound Poisson process,

which models exceptional stochastic events through the integral
R
~Us

us ~Ns(t; dus) > 0.

The integrand us denotes the step height of jumps which is uncertain but limited by

~Us:
49 Note that during calm periods where the government does not undertake any

large repressive actions the rebel�s welfare slowly becomes worse due to structural

conditions which will lead to a continuous increase in the bene�ts of an attack. Should

the government threaten the rebel or his or her group signi�cantly, the bene�ts of

con�ict will increase by a random and non-marginal amount.

48The Ito-Lévy Jump Di¤usion process is a special case of geometric Lévy processes. For further
information about Lévy processes see, e.g., Oksendal and Sulem (2007) or Applebaum (2009).
49For a graphical illustration of Jump Di¤usions, see, e.g., Cont and Tankov (2004), pp. 71.
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Con�ict Bene�ts in the Aftermath Since con�ict is assumed to pay o¤ some-

how, an attack generates a structural break with a new set of better economic, social,

or political conditions afterwards. The rebel�s increasingly dissatisfying current sit-

uation increases the bene�ts of con�ict so that once the attack has been carried

out, the rebel�s living conditions are expected to improve by rate �s 2 R+; so that

the resulting bene�ts of con�ict can be realized in the aftermath. Returning to our

example, successfully assassinating an oppressive leader may lead to political and

economic reforms that, in the next step, improve the welfare of the rebel. Hence,

even if high uncertainty is involved, carrying out an attack is expected to lead to a

satisfactory improvement in the rebel�s social environment.

The path of future bene�ts of con�ict is highly uncertain. A new process of

uncertain developments begins, and although living conditions may be expected to

improve on average, changes due to usual economic �uctuations that are captured

by a volatility �s 2 R+ and unforeseen repressing events caused by the government

with intensity �s > 0 and size zs 2 Us � (�1; 0) may take place and must be

considered when evaluating the bene�ts of an attack. For instance, the government

may become even more oppressive, the rebel may be caught or even tortured, and

reforms, counterattacks, or military coups may fail. Since developments of future

bene�ts in the aftermath of an attack incorporate fundamental threats, we model

them as another Ito-Lévy Jump Di¤usion process.

De�nition 14 Let Us � (�1; 0) be a Borel set whose closure does not contain 0.

Furthermore, let Ws be a standard Wiener process, Ns a Poisson process with in-

tensity �s and constants �s; �s 2 R+: Then the Ito-Lévy Jump Di¤usion process

B(t) 2 R, indicating the future bene�ts in the aftermath of an attack, is de�ned by

means of the following SDE
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dB = �sBdt+ �sBdWs +B

Z
Us

zsNs(t; dzs) (4.2)

for T < t and B(0) = b0:

We have to assume a lower boundary to be -1 because, as will be seen later, the

solution for dB only exists for zs > �1:

While the �rst part of the stochastic process is again an increasing geometric

Brownian motion, the second part,
R
Us

zsNs(t; dzs) < 0; allows for fundamental re-

pressing and unpredictable events in the aftermath of the con�ict.

4.2.3 Value of Con�ict and Option Value of Peacekeeping

Net Present Value of Con�ict As con�icts may lead to an improvement in

living conditions, an attack enables the realization of potential bene�ts of con�ict.

Once the attack is carried out, the dynamic development of bene�ts is given within

the limits of a random process. The economic value of con�ict consists solely of its

future bene�t stream. Each dynamic development of bene�ts generates its own value

of con�ict. For an investor the gross and net value of con�ict V gross is determined

by the expected present value of the bene�t stream in the aftermath.50

Proposition 15 Let B be the bene�t stream after the con�ict described by Ito-Lévy

Jump Di¤usion process in (4.2), �s2 the Lévy measure and r the risk-free interest

50A detailed solution to the SDE and the derivation of the expected value of the Ito-Lévy Jump
Di¤usion process, which is used for determining the gross value of con�ict is presented in Appendix
C.1.
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rate. Furthermore, assume

r > as +

Z
f�1s (Us)

zs�s(dzs) +

Z
Us

[ln(1 + zs)� zs] �s(dzs);

where fs(zs) = ln(1 + zs): Then the gross value of bene�ts is

V grosss (T ) =
B(T ) 

r �
R

f�1s (Us)

zs�s2(dzs)�
R
Us

[ln(1 + zs)� zs] �s(dzs)� as

! :

Hence, with con�ict costs Is 2 R the ENPV of con�ict is

Vs(T ) = V
gross
s (T )� Is:

Proof. For a proof see Appendix C.2.

Note that, for simplicity, the rebel has an in�nite lifespan. In our example, an

attack would enable long term political participation of a particular social group.

Furthermore, we can see that the net present value depends on the sum of repression

undertaken by the government after the con�ict,

Z
f�1s (Us)

zs�s2(dzs)�
Z
Us

[ln(1 + zs)� zs] �s(dzs) < 0:

This additional component acts as an element of the discount parameter that occurs

only after accounting for large and non-marginal risk. If we had used the geometric

Brownian motion to describe the bene�ts of con�ict, we would not obtain this para-

meter. This result is particularly convincing for our problem. The more repressive a

government remains in the aftermath of the con�ict, the lower the net present value
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of con�ict and the less bene�cial an attack.

Option Value of Peacekeeping As it has been suggested in the introductory

section, not attacking and waiting has its own value, because additional opportunities

that could otherwise not have been foreseen and realized may open up. This value

of waiting may indicate that a later con�ict could be bene�cial. Not attacking

also protects rebels from the irreversible costs of an attack. Having the freedom to

choose between alternative policies has an extra value that is particularly obvious

when talking about violent con�icts. A violent attack lifts the con�ict to another

level. It removes any opportunity to resolve problems with peaceful measures. With

a violent or even deadly attack, such as an assassination of a state representative,

there is no turning back; the attackers cannot say, "Sorry, we didn�t mean it!". Once

the attack is carried out, rebels cannot turn back - they are tied to the expected

bene�t track they have chosen. This logically corresponds to a �rm�s investment

decision (Dixit and Pindyck, 1994), where the option value of the freedom of choice

is a measure of opportunities that may open up in the future when an agent does

not irreversibly embark on a particular bene�t stream.

Accounting for the option value Fs for the Ito-Lévy Jump Di¤usion Process (4.1),

we apply dynamic programming to obtain the Hamilton-Jacobi-Bellman equation51

rFsdt = E(dFs):

4.2.4 Decision to Attack

The decision to attack straight away is a sequential decision where the rebel repeat-

edly considers his or her living conditions and evaluates if a con�ict at this point in

51For a detailed discussion of the option value see Appendix C.2.



83

time is the best strategy. In order to solve the decision problem of launching the

attack, the rebel compares the bene�t of immediate con�ict V with the option value

of a later attack Fs. Therefore, the problem is solved by the solution to

max fV grosss (T )� Is; Fs(T )g : (4.3)

At any time during the non-violent waiting period, the rebel will compare the

ENPV of bene�t of con�ict with the option value of an uncertain non-violent devel-

opment with the freedom to attack later. If the net value of con�ict is greater than

the option value (V grosss (T )� Is � Fs(T )), the rebel will carry out the attack. By

contrast, if the option value of postponing the attack exists and is greater than the

net bene�t of attacking straight away, he or she will not initiate the con�ict and wait.

Solving this continuous sequential decision problem (4.3) also allows us to determine

the expected time of the attack.

4.3 Solving for the Expected Time of Con�ict

Identifying the conditions that eventually trigger the attack and also determining

the expected time of attack involves two steps.

First, for each non-violent period during which deteriorating living conditions

generate increasing bene�ts of the attack, we need to determine the bene�t value of

con�ict in the current period (B� threshold) that would trigger the outbreak. This

threshold is the required current bene�t level that would make the attack preferable.

It marks the boundary at which conditions become so bad that a con�ict becomes

unavoidable for the rebel. Then, the expected value of con�ict exceeds the option

value of peace and hence the attack becomes more pro�table. Peaceful waiting, even

if uncertain positive events are still possible, is no longer rational.
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Second, as the threshold indicates the start of the con�ict, rebels simultane-

ously observe the development of the current period�s bene�t ~B. Under worsening

conditions during the waiting period, they compare the threshold B� with the cor-

responding current period�s bene�t level of con�ict ~B and verify if the threshold has

already been reached. Even if the hope for events improving living conditions allow

the rebel remain peaceful, the expected end of the peaceful period can be predicted.

Hence, understanding this mechanism allows for an extension of peaceful episodes in

latent con�icts and may help to generate more time to look for peaceful solutions.

4.3.1 Con�ict Threshold

In order to determine the bene�t value that triggers the con�ict, we need to consider

the standard conditions of a stochastic dynamic programming problem. In addition

to the Hamilton-Jacobi-Bellman equation for the option value Fs and applying Ito�s

lemma for jump di¤usions to dFs; we have to use the well-known boundary conditions,

namely (4:4), the value matching condition (4:5) and the smooth pasting condition

(4:6)

Fs (0) = 0; (4.4)

Fs (B
�) = V grosss (B�)� Is; (4.5)

dFs (B
�)

dB
=

d(V grosss (B�)� Is)
dB

; (4.6)

to solve for the threshold bene�t B�. The setting of the decision problem im-

plies that the net bene�ts of con�ict must be su¢ ciently large to launch the attack.

Reaching this threshold triggers a change in strategy from peace to con�ict. There-

fore, determining this threshold is the �rst part of a solution to the expected timing

of attack.
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Proposition 16 Let Is be the constant costs of con�ict, (4:1) a sequence of increas-

ing current bene�t levels while remaining peaceful, and (4:2) future bene�t develop-

ments after the attack. Further, let �s be an implicit function resulting from the

di¤erential equation rFsdt = E(dFs) with solution F = Ks
~B�s and Ks 2 R being

constant. Then the threshold B� that would trigger a con�ict is

B� =
�s

�s � 1
(r �

Z
f�1s (Us)

zs�s(dzs)�
Z
Us

[ln(1 + zs)� zs] �s(dzs)� as)Is: (4.7)

Proof. For a proof see Appendix C.3.

The threshold is the current bene�t that an attack needs to generate as a min-

imum if all positive values of peaceful waiting are accounted for. It is the ultimate

limit to what one can bear in terms of discrimination, oppression, or persecution.

As long as this threshold is not reached, the latent con�ict is not triggered and the

rebel will somehow tolerate the conditions in the hope of improvement. The situa-

tion remains calm. However, it is a calm before the storm. Even if the rebel does

not attack straight away, his or her expectations about the future suggest that there

will be a point in time when the attack is bene�cial enough to be launched. That

is, knowing the value of the threshold and the random process of living conditions

during the peaceful period, the expected time of attack becomes predictable.

4.3.2 Expected Time of Con�ict

Once the rebel knows from the threshold at which current bene�t level he or she

should attack, the question is when he or she can expect to obtain this bene�t for

the �rst time. This time is referred to as the �rst passage time.

As we consider jump di¤usion processes, a potential overshooting has to be taken

into account. This means that the horizontal boundary marking the potential start
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of con�ict does not have to be hit exactly, but it may be overshot. In our model,

we are particularly interested in the e¤ect of repressive actions by the government

that are modelled by stochastic events occurring at a random point in time with an

unpredictable size. In such a context, we can use the exponential distribution for

which an analytical solution for the �rst passage time exists. Similar to Kou and

Wang (2003b) the exponential distribution is given by

hs(zs) = �se
��szs ;

where 1
�s
denotes the mean of the exponential distribution. This parameter can be

interpreted as the mean waiting time until the next jump occurs. By using the

Girsanov theorem, we can derive the probability density function of T �;52 which is

sometimes referred to as the Inverse Gaussian Distribution.53

Proposition 17 Let ~B be an Ito-Lévy Jump Di¤usion process in (4.1), B� a con-

stant threshold from (4.7) and hs(zs) = �se
��szs be the density function of the double

exponential distribution. Then the �rst hitting time of B� is

E(T �s ) =
1

�us

�
B� +

��s � �s
�s�

�
s

(1� e�B���s)
�
;

with �us = ~as + ~�s
1
�s
denoting the overall drift. ��s is de�ned as the unique root of

G(��s) = 0 with G(x) := x~as +
1
2
x2~�2s +

~�s

�
�s
�s�x

� 1
�
and 0 < �s < �

�
s <1.

Proof. For a proof see Appendix C.3.

52An extensive discussion is o¤ered by Karatzas and Shreve (1991, p.196), and Karlin and Taylor
(1975, p. 363).
53The term �Inverse Gaussian Distribution� stems from the inverse relationship between the

cumulant generating functions of these distributions and those of the Gaussian distributions. For
a detailed discussion of the inverse Gaussian distribution see Johnson et al. (1995) or Dixit (1993).
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E(T �s ) is the result of a sequential optimization and hence the solution to a

timing problem. Furthermore, it is the time when the rebel expects to carry out

the terrorist attack in order to end repression and discrimination. It is the time

that introduces new and improved living conditions. This point in time is just an

expected value. In the course of time, a major event can trigger an attack at any,

even an unexpected, moment.

4.4 Determinants of the Expected Time of Attack

In this section, we examine how economic conditions or government policies a¤ect

stochastic variability and hence the decision of rebels. In general, we could look

at both, conditions during the time of a latent con�ict which is still non-violent,

and changes in expectations about the aftermath of an outbreak. We focus on the

conditions during the �rst, the peace period, where we can already identify a latent

con�ict but the rebels have not yet turned to violence, and analyse how variability-

describing parameters may shorten this peaceful episode.

We start with the e¤ect of usual stochastic economic variations that are described

by the volatility of the geometric Brownian motion that as a part of the Ito-Lévy

Jump Di¤usion process. How does an increase in volatility a¤ect the rebel�s decision

to attack?

Proposition 18 An increase in economic variation indicated by the variance of the

Brownian motion leads to a later attack

@E(T �s )

@~�s
> 0:

Proof. For a proof see Appendix C.4.
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According to Proposition 18, larger variations in the economic, social, or political

conditions of the rebel increase the peaceful period. Greater volatility implies both

unexpected improved conditions as well as their deterioration. Hence, with this

increase in marginal stochastic shocks, the rebel expands the time he or she is willing

to hope and wait for the con�ict to resolve itself without any violent means.

What happens if there are non-marginal stochastic threats, e.g. if the government

steps up the �ght against the discriminated group and takes severe oppressive action

such as the persecution of group members, waves of detention, or assassination of

rebel leaders?

Proposition 19 An increase in the frequency ~�s of large scale repressive government

actions during the latent con�ict leads to an earlier attack

@E(T �s )

@~�s
< 0:

Similarly an increase in the magnitude of large scale repressive government actions

shortens the peaceful period
@E(T �s )

@us
< 0:

Proof. For a proof see Appendix C.4.

In general, large non-marginal stochastic shocks, indicated by ~�s and us, a¤ect

the outbreak of con�ict. Even more, these e¤ects are di¤erent than the e¤ects of

marginal shocks, indicated by ~�s.

An increase in ~�s implies that more fundamental events are occurring that im-

ply non-marginal changes in the expected path of bene�ts associated with the at-

tack. Deteriorations in welfare conditions like unfavourable regime changes, increas-

ing number of oppressive government actions, or even external disasters occur more
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often. The political implications are straight. In a latent con�ict, signals pointing to

randomly deteriorating fundamental welfare conditions for rebels would escalate the

situation. An earlier attack can be expected. In contrast, a policy that promises sig-

ni�cant opportunities for the group represented by the rebels may not terminate the

con�ict but postpone the attack and give more time for a peaceful con�ict resolution.

Furthermore, an increase in us means that threats by the government become

larger. Hence, a greater bene�t of the attack is created. The rebel group faces more

severe threats when following the current welfare path. For instance, torture instead

of detention, or expropriation instead of taxation during the non-violent period, will

make the attack more bene�cial since an uprising could lead to a new regime that is

more bene�cial for the rebels, so we can expect the attack to be carried out sooner.

4.5 Conclusion

There is hardly any decision problem that bears more dramatic and large uncer-

tainties than the decision to launch a violent con�ict. In this model the decision

to turn to violence is based on the idea that an attack is a form of investment in

a change of conditions. The major focus of this paper is on the impact of large

(non-marginal) stochastic shocks - such as fundamental threats often created by an

oppressive government - on the decision to launch a con�ict. In order to capture

these major stochastic events, we suggest a real option decision model in the context

of social con�icts that predicts the expected outbreak of a con�ict. To model such

discontinuous large stochastic shocks we introduce a more general stochastic process

than the often used geometric Brownian motion, namely an Ito-Lévy Jump Di¤usion

process. With this stochastic modelling we can show that large stochastic shocks

have opposite e¤ects on the decision to launch a con�ict than what we usually refer

to as risk indicated by the marginal variability, or volatility, included in the geometric
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Brownian motion.

In more detail, under dynamic conditions an attack is the result of an evalua-

tion of highly uncertain developments in economic, social, and political conditions.

Rebels compare the current conditions with an expected path of development after

a potential attack, including con�ict costs. If current conditions are expected to de-

velop su¢ ciently badly, turning violent can be considered and a latent con�ict can be

identi�ed. During the non-violent period of this latent con�ict the bene�ts of attack

are still not su¢ ciently high, so rebels will remain peaceful and wait until the attack

is capable of paying o¤. The decision to attack is a sequential decision in the course

of time that is irreversible. Since we are not interested in the interaction between the

government and the rebel but rather in the rebel�s reaction on a given but uncertain

set of conditions, we suggest that real option theory is an appropriate methodology

in this context to evaluate the timing of and make a prediction about a con�ict�s

outbreak. In order to include discontinuities and large stochastic events in our model,

we need to extend current methods in real option theory by introducing an Ito-Lévy

Jump Di¤usion process. For this discontinuous modelling we analytically derive the

threshold that triggers the attack, and we determine the time this is expected to

happen. Because we propose an "option to attack decision" for formal modelling in

con�ict theory, we can show that large uncertain shocks have opposite e¤ects than

the so far considered volatility. While marginal variability, often modelled by the

volatility of a geometric Brownian motion and associated with usual economic or

social variation, prolongs the peaceful period, major stochastic shocks, modelled by

a jump process and associated with major oppressive government actions, make an

early attack more likely. Hence, these large uncertain shocks should be considered

more carefully when policy is designed.

The political implication is straight. Even if latent con�icts are not immediately
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solved, prospects of signi�cant improvements are able to extend the peaceful period

and provide more time to �nd a solution to the con�ict. In contrast, more uncertain

threats, often meant to awe the oppressed group may provoke an early attack if the

threat is strong enough.
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Chapter 5

Summary and Conclusion

The recently increased number of social con�icts, natural disasters and economic

turbulences has shown that many stochastic events are rare but have a devastating

impact on economic activity. Many economic agents su¤ered from huge losses, which

increased the attention of professional interest to develop new evaluation methods

of investment projects. As the literature discussion of this thesis emphasizes, for

a long time disasters were not regarded as an essential element of investment de-

cisions and only their recent impact changed this practice. The central question

that arises in this context is how decision makers can account for large variability.

This doctoral thesis sheds further light onto this question by developing methods

for evaluating marginal and non-marginal stochastic shocks for non-sequential and

sequential investment decisions. Furthermore, it provides an analysis of their e¤ects

on investment behaviour as well as statements about optimal investment decisions.

The thesis starts with a brief introduction to the distinction between risk and

uncertainty, which was motivated by Knight (1921), and their inclusion into eco-

nomic decision making. After showing some shortcomings of the evaluation methods

provided by the literature, the aim of this thesis is to include both types of stochastic

variability, namely marginal and non-marginal, and to show their ambiguous e¤ects

on investment decisions. Hence, the core of this thesis consists of three research

papers that contribute to approaching this goal economically and mathematically.
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Methodologically, the three papers are built on each other by extending and gener-

alizing the previous evaluation method.

The �rst paper, Investment under Threat of Disaster, introduces an extension of

the Expected Net Present Value, which is the simplest and most often used dynamic

evaluation method. At the same time, the ENPV builds the starting point of this

thesis. In particular, the Ito-Lévy Jump Di¤usion process, which is a geometric

Brownian motion with accumulated random jumps, is implemented and compared

to the workhorse stochastic process, the geometric Brownian motion. Even with

this simple method it can be shown that disastrous events strongly a¤ect current

conditions so that they may even overthrow them. It is con�rmed that the ENPV

does not account for marginal variability but it does for non-marginal variability. An

additional element in the discount factor that summarizes the e¤ects of non-marginal

stochastic shocks on the expected project value is obtained. For an investment

project, this additional parameter may cause an apparently bene�cial project to

become worthless. Hence, disregarding potential disasters leads to an overestimation

of projects. From this analysis a conclusion can be formed: Simple probabilistic

statements, in particular when considering large or even �overthrowing�events, are

misleading and an insu¢ cient description of the degree of randomness. With the

developed method it is not necessary to state the probability that a certain disaster

will happen during a speci�ed future time period and we can still evaluate the rather

uncertain future using the simple ENPV.

The second paper, Stay in school or start working? - The Human Capital Invest-

ment Decision Under Uncertainty and Irreversibility, uses the previously developed

ENPV and implements it to a sequential real option model in the frame of a human

capital investment decision. Two periods are considered, namely the pure investment

phase, which improves the outcome of the project, and the stochastic earning phase.
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The investor does not know how long he or she has to invest and how much he or

she will have to accumulate in order to maximize the education value. The decision

is based on a real option model that accounts for accumulated education costs, the

complete earnings pro�les including entry-level wage, sheepskin e¤ects and earning

dynamics, as well as the option value of schooling introducing potential career oppor-

tunities or threats. Hence, in this paper, uncertainty again is a major component of

the schooling decision, so that an Ito-Lévy Jump Di¤usion process is used to model

marginal and non-marginal stochastic shocks during the career. The model provides

a solution to the problem of minimal compensation that schooling needs to generate

as well as the optimal time to leave school. Furthermore, the analysis shows that

an increase in education costs causes the student stay in the system as long as the

increasing costs of schooling are su¢ ciently compensated by the market. Sheepskin

e¤ects may produce such an extra income premium. Staying at school becomes less

attractive if the frequency of opportunities o¤ered by the market occur more often

than threats.

The last paper, Uncertainty and Con�ict Decision, extends the previous one by

also allowing for non-marginal stochastic shocks during the waiting period. With

this approach, the e¤ect of such stochastic events on the outbreak of con�ict, hence,

an investment into a change of the status quo, is analysed. The decision is sequential

and irreversible in nature so that a real option model is applied. Discontinuous

large stochastic shocks, again modelled by Ito-Lévy Jump Di¤usion processes, may

be generated by the government so that they may cause or prevent the outbreak.

With this stochastic modelling, the threshold that triggers the attack and the time

when this is expected to happen is determined. Furthermore, it can be shown that

uncertain shocks have opposite e¤ects on the decision to launch a con�ict than what

we usually refer to as risk indicated by the marginal variability, or volatility, included
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in the geometric Brownian motion. In more detail, marginal variability associated

with usual economic or social variation, prolongs the peaceful period while major

uncertain shocks associated with major oppressive government actions, make an

early attack more likely.

To sum up, this thesis shows that for investment decisions it is important to

consider not only marginal variability but also non-marginal stochastic shocks. Both

can have opposed e¤ects on investment projects. That is, marginal variability, which

is usually depicted by the volatility of the geometric Brownian motion, may not a¤ect

the decision of the investor if the ENPV rule is used. If instead, the investment

decision is determined sequentially, then the project value may be a¤ected positively

by marginal variation. The contrary result, however, is obtained if the investor

includes the possibility of large uncertain events, such as non-marginal stochastic

shocks that occur at an uncertain point in time with an uncertain impact. These

large shocks may be so severe that they may make an initially pro�table project

to become worthless. Although this thesis provides three di¤erent approaches for

the evaluation of stochastic variability, especially of non-marginal stochastic shocks,

it can only be seen as a starting point for a new research �eld. This thesis shows

how important it is to account for both types of variability in economic decision

making and that disregarding either type of variability may result in non-pro�table

economic decisions. For this reason, there is a need to reconsider the general view

of the evaluation of risk and uncertainty. One can begin with the classical Expected

Utility Approach in order to show how large uncertainty enters the utility evaluation

of agents and then change over to more sophisticated techniques.
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Appendix A

Investment under Threat of Disaster

A.1 Geometric Brownian Motion

Let ~P (t) be a geometric Brownian motion de�ned by the following stochastic di¤er-

ential equation

d ~P (t) = ~ap ~P (t)dt+ ~�p ~P (t)d ~Wp; with ~P (0) = ~p0;

where ~ap, ~�p 2 R+ are non-negative constants. d ~Wp describes the increment of the

standard Wiener Process. From Dixit and Pindyck (1994) and Oksendal (2004) we

know that it has the expected value

E ~P (t) = E ~P (0)e~apt:
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Proof of Proposition 1. The Expected Net Present Value of the future bene�t

stream ~P is

ENPV1 = �Ip + E

0@ 1Z
T

~P (t)e�r(t�T )dt

1A
= �Ip +

�
1

~ap � r
e�r(t�T )e~�pt ~P (t)

�1
T

= �Ip +
~P (T )

r � ~�p
; r > ~ap:

A.2 Ito-Lévy Jump Di¤usion Process

Let P be an Ito-Lévy Jump Di¤usion Process which is de�ned by the following

stochastic di¤erential equation

dP = Papdt+ P�PdWP + P

Z
UP

zpNp(t; dzP ); P (0) = p0;

with ap, �P 2 R+ and constant. dWP denotes the increment of the Wiener process

and Np stands for the Poisson process with intensity �p. A more general formulation

of this process can be found in Oksendal and Sulem (2007). They describe under

which conditions a solution to this SDE exists and discuss some characteristics. For

our purpose we assume that the existence conditions are ful�lled. A further discussion

of Lévy processes and their characteristics can be found in, e.g. Applebaum (2009)

and in Cont and Tankov (2004).
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A.2.1 Solution to the SDE

Similar to the geometric Brownian motion, de�ne Xp(t) := lnP (t) and use Ito�s

Lemma for jump processes in order to �nd the solution to the SDE.54 The solution

is

P (t) = P (0) exp

26664
�
ap � 1

2
�2P
�
t+ �PWp(t) +

tR
0

R
UP

[ln(1 + zp)� zp] �p(dzp)ds

+
tR
0

R
UP

ln(1 + zp)Np(ds; dzp)

37775 :

Note that the function P (t) is only de�ned for zp > �1.

A.2.2 Expected Value

Proof of Proposition 2. Since the Wiener and the Poisson processes are inde-

pendent, we can obtain the expected value of P by separating the components

EP (t) = P (0) � Ee(ap�
1
2
�2P )t+�PWp(t)| {z }

(1)

� E

264exp
0B@ tZ

0

Z
Up

ln(1 + zp)Np(ds; dzp)

1CA
375

| {z }
(2)

�E

24exp
0@ tZ

0

Z
UP

[ln(1 + zp)� zp] �p(dzp)ds

1A35
| {z }

(3)

:

We know that the expected value of (1) is the same as for the geometric Brownian

motion P (0)eapt: For (2) we use that

tZ
0

Z
Up

ln(1 + zp)Np(ds; dzp)

54See also Oksendal and Sulem (2007).
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is compound Poisson distributed and has the characteristic function55

E

264exp
0B@iup tZ

0

Z
Up

ln(1 + zp)Np(ds; dzp)

1CA
375 = exp

0B@tZ
Up

�
eiupzp � 1

�
�pf (dzp)

1CA ;
with �pf = �p � f�1p , fp = ln(1 + zp) and up 2 C constant. By choosing up = �i we

obtain

E

264exp
0B@ tZ

0

Z
Up

ln(1 + zp)Np(ds; dzp)

1CA
375 = exp

0B@tZ
Up

(ezp � 1) �pf (dzp)

1CA
= exp

0B@tZ
Up

(ezp � 1)
�
�(dzp) � f�1p

�1CA
= exp

0B@t Z
f�1p (Up)

[(ezp � 1) � ln(1 + zp)] �p(dzp)

1CA
= exp

0B@t Z
f�1p (Up)

zp�p(dzp)

1CA :
In order to ensure the existence of the expected value, we have to assume that all

moments are �nite. For (3) we obtain

E

24exp
0@ tZ

0

Z
UP

ln(1 + zp)� zp�p(dzp)ds

1A35 = E

264exp
0B@tZ

Up

ln(1 + zp)� zp�p(dzp)

1CA
375

= exp

0B@tZ
Up

ln(1 + zp)� zp�p(dzp)

1CA :
55See Theorem 2.3.7 (i) in Applebaum (2009).
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Therefore, the expected value of P is

EP (t) = P (0)eapt � exp

0B@t Z
f�1p (Up)

zp�p(dzp)

1CA � exp
0B@tZ

Up

ln(1 + zp)� zp�p(dzp)

1CA
= P (0) exp

264t
0B@ap + Z

f�1p (Up)

zp�p(dzp) +

Z
Up

ln(1 + zp)� zp�p(dzp)

1CA
375

= P (0) exp

264t
0B@ap + �p Z

f�1p (Up)

zphp(dzp) + �p

Z
Up

ln(1 + zp)� zphp(dzp)

1CA
375 ;

with hp being the distribution of jump sizes.

Proof of Proposition 3. The Expected Net Present Value using P is determined

as

ENPV2 = �Ip + E
1Z
T

e�r(t�T )P (t)dt

= �Ip +
1Z
T

e�r(t�T )P (T ) exp

26664(t� T )
0BBB@

ap +
R

f�1p (Up)

zp�p(dzp)

+
R
Up

ln(1 + zp)� zp�p(dzp)

1CCCA
37775 dt

= �Ip +
P (T ) 

r � �p
R

f�1p (Up)

zphp(dzp)� �p
R
Up

ln(1 + zp)� zphp(dzp)� ap

! ;

with

r > �p

Z
f�1p (Up)

zphp(dzp) + �p

Z
Up

ln(1 + zp)� zphp(dzp) + ap:

This condition is necessary because otherwise the ENPV would be in�nite.
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A.3 E¤ects of Disasters on the ENPV

The derivative of ENPV2 with respect to �p is

@ENPV2
@�p

= 0:

The derivative of ENPV2 with respect to �p is

@ENPV2
@�p

= �� P (T )

(r � �p� � ap)2
< 0:
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Appendix B

Stay in School or Start Working? - The

Human capital Investment Decision

Under Uncertainty and Irreversibility

B.1 Solution and Expected Value of the SDE

In order to �nd the solution of the geometric Brownian motion ~Y ; de�ne ~X(t) =

ln ~Y (t) and use Ito�s Lemma. In line with Oksendal (2004) the solution to the SDE

is ~Y (t) = ~y0e((~ah�
1
2
~�2h)t+~�h

~Wh): The expected value can be found in Dixit and Pindyck

(1994) which is E ~Y (t) = ~Y (0)e~�ht. For the solution of the SDE for Y; replace ~Y by

Y:

B.2 Decision Components

B.2.1 Expected Net Present Value of the Earning Streams

The value of the earnings stream is determined by

V grossh = E

1Z
T

e�r(t�T )Y (t)dt =
Y (T )

r � ah

for r > ah:
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For the net value of the earnings stream, reduce V grossh by the education costs.

B.2.2 Option Value of Further Education

For the option value Fh; the Hamilton-Jacobi-Bellman equation in Dixit and Pindyck

(1994) holds. Using Ito�s Lemma and E(d ~Wh) = 0 we obtain a second-order ho-

mogenous ordinary di¤erential equation with a free boundary which has the general

solution F = Kh
~Y �h. After inserting this solution, we obtain

�h =
1

2
� ~ah
~�2h
+

s�
1

2
� ~ah
~�2h

�2
+
2r

~�2h
> 1 see (3.9)

For the derivative of �h with respect to ~�h we obtain

d�h
d~�h

=

2~ah

��
1
2
� ~ah

~�2h

�2
+ 2r

~�2h

�� 1
2

~�3h

24"�1
2
� ~ah
~�2h

�2
+
2r

~�2h

# 1
2

+
1

2
� ~ah
~�2h
� r

~�h

35 < 0:
B.2.3 Entry Threshold

Proof of Proposition 4. According to the value matching condition (3.6), at the

investment trigger point Y � the value of the option must equal the net value obtained

by exercising it (value of the active project minus sunk cost of the investment). The

smooth-pasting condition (3.7) requires that the two value functions meet tangen-

tially. Both conditions can be found in Dixit and Pindyck (1994). Hence, by using

these two conditions, the threshold Y � is

Y �(T ) =
�h

�h � 1
(r � ah)Ih(T ):
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B.3 Deriving the Expected First Time Realization of Entry-

Level Wages

B.3.1 Expected Time before Market Entry

Proof of Proposition 5. We can determine the expected time E( ~Ti) needed

to reach a certain income level ~y for the �rst time given the present value ~y0. By

using the Girsanov theorem, we derive the probability density function of ~Th:56 With

the Laplace transform57 of ~Th we determine the expected time before market entry,

which is

E( ~Th) =
ln( ~y

~y0
)

~ah � 1
2
~�2h
:

For each ~yh we can determine each expected time E( ~Th) when this entry-level wage

is reached for the �rst time. Hence, for a continuous variation of ~y > ~y0; ~y 2 R we

can write E( ~Ti) as a function of any potential entry-level wage ~y. Later we discuss

the existence of the expected time T � of market entry for the threshold Y �(T ) (�rst

passage time for the threshold Y � (see 3.8)). Therefore, for each existing E ~Th = T;

we rewrite (3.10) as a continuous function f of time T

~y0e
T (~ah� 1

2
~�2h) =: f(T ):

ln f(T ) is a linear function in T

ln f(T ) = ln ~y0 + T (~ah �
1

2
~�2h):

56An extensive discussion is o¤ered by Karatzas and Shreve (1991, p.196), and by Karlin and
Taylor (1975, p.363).
57See Ross (1996), Proposition 8.4.1.
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Figure B�1: Value and Distance Function

B.3.2 Existence of and Solution to T �

Proof of Proposition 6. In general we look for the conditions described in

Figure B�1. The threshold starts above the entry-level wage curve. For positive T

the threshold will have a unique intersection with the expected �rst-time realization

of the entry-level wage curve from below at A. Hence, at the time of expected

market entry denoted by T � the two curves Y �(T ) and f(T ) intersect, so that G :=

Y �(T )�f(T ) = 0: G has to have a negative slope dG
dT
< 0.Further, at T � the threshold

Y �(T = 0) must start above f(T ); and G > 0 during the pre-market entry period

(0 < t < T �). Otherwise the market entry would have taken place.
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Negative Slope of G

@G

@T �
=

�h
�h � 1

(r � ah)CherT
� � ~y0eT

�(~ah� 1
2
~�2h) < 0:

Before market entry, f(T ) must grow faster than the threshold curve. Only with

a negative slope, G can approach and eventually reach zero. @G
@T
< 0 is ful�lled if

condition �Ch >
Ch
r
(condition 3.12) holds.

Existence of an Intersection Point

a) With condition (3.12) the function lnY �(T ) is convex. The function ln f(T )

is linear, so that there are at most two intersections. We are interested only in

intersections at T > 0. An intersection for positive values of both functions exists if

conditions (3.11) and (3.12) hold, and if G = 0 for positive values of T �.

b) Further, in Figure B�1, the condition for an intersection and a negative slope

have to hold simultaneously at T �. We need to show that there is a T �; where both

dG
dT
< 0 and G = 0 hold. That is, we can �nd a minimum level for ~Y (0) in order

to ensure an intersection and a negative slope. Finally, ~Y (0) has to lie in the open

interval

0B@ �h
�h�1

(r � ah) �Ch ; �h
�h�1

(r � ah) �Ch

 
Ch

~ah�
1
2 ~�

2
h

�Ch
r

�Ch
r
+ �Ch

! (~ah�
1
2 ~�

2
h)

r

1CA :
T � as an Implicit Function

If

(i) condition (3.11) holds,

(ii) the derivative @G
@T
is negative for each vector (ah; r; T �; Ch; ~y0; ~ah; ~�h; �Ch) and

(iii) the partial derivatives of G with respect to ah; T �; Ch; ~y0; ~ah; ~�h; �Ch and r

are continuous (vide infra), we can apply the implicit function theorem. Hence,

for a marginal environment of any vector (ah; r; Ch; ~y0; ~ah; ~�h; �Ch); T � is an implicit
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function with

T � = T �(ah; r; Ch; ~y0; ~ah; ~�h; �Ch):

B.4 Partial Derivatives of T �

To apply comparative statics for the implicit function T � = T �(ah; r; Ch; ~y0; ~ah; ~�h; �Ch);

we need to consider

@G

@T
=

�h
�h � 1

(r � ah)CherT � (~ah �
1

2
~�2h)~y0e

(~ah� 1
2
~�2h)T ? 0:

We are only interested in values of T � described by point A in Figure B�1, con-

ditions (3.11) and @G
@T � < 0. Then at T

� we obtain

a)
dT �

d~�h
= � ~�hT

�~y0e
(~�h� 1

2
~�2h)T

�

�h
�h�1

(r � �h)CherT � � (~�h � 1
2
~�2h)~y0e

(~�h� 1
2
~�2h)T

� > 0;

b)
dT �

d�h
=

[erT
� � 1 + �Chr

Ch
]�

erT � (~�h� 1
2
~�2h)(�h�1)

(r��h)�h
~y0
Ch
e(~�h�

1
2
~�2h)T

� 1

(r � �h)r
< 0;

c)
dT �

d~y0
=

1
�h
�h�1

(r � �h)Che(r�~�h+
1
2
�2)T � � (~�h � 1

2
~�2h)~y0

< 0;

d)
dT �

dCh
=

�[erT � � 1]�
erT � (~�h� 1

2
~�2h)(�h�1)

(r��h)�h
~y0
Ch
e(~�h�

1
2
~�2h)T

�
rCh

> 0:
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B.5 Sheepskin E¤ects and Large Events

The earnings streams before entering the market are described by a geometric Brown-

ian motion d ~Yi = ~�hi
~Yi + ~�hi

~Yid ~Whi : Since we distinguish two di¤erent education

levels i = 1; 2 we assume two processes starting at di¤erent levels.58 For the �rst

development of education levels that start at t = 0 we assume

~Y1(0) = 0:

The second education level can only be started after �nishing the �rst stage and after

obtaining the sheepskin e¤ect S1: Therefore, after transforming the decision problem

to t = 0;59 we obtain

~Y2(0) = ~Y1(T1) + S1:

The earning streams Y1; Y2 after market entry follow an Ito-Lévy Jump Di¤usion

process dYi
Yi
= �hidt+�hidWh+

R
Uhi

zhiNhi(t; dzhi): A more general formulation of this

process can be found in Oksendal and Sulem (2007). They describe under which

conditions a solution to these SDE exists and discuss some characteristics. For our

purpose, we assume that the existence conditions are ful�lled. A further discussion

of Lévy processes and their characteristics can be found in, e.g. Applebaum (2009)

and in Cont and Tankov (2004).

58Since we would like to show that there is a general relationship between sheepskin e¤ects and
the decision to enter the labour market, we keep the mathematical formulation as simple as possible.
However, the more realistical model would assume that after �nishing the �rst education level the
earning stream before market entry in the second stage evolves according to the jump process
Y1 described below.
59In reality the transition takes place at t = T1:
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B.5.1 Solution to the SDE for Yi(t)

Similar to the simple geometric Brownian motion case, de�ne Xi(t) = lnYi(t) and

use Ito�s Lemma for jump processes in order to �nd the solution to the SDE.60 The

solution is

Yi(t) = Yi(0) exp

26664
�
�hi � 1

2
�2hi
�
t+ �hiWhi(t) +

tR
0

R
Uhi

h
ln(1 + z

hi
)� zhi

i
�hi(dzhi)ds

+
tR
0

R
Uhi

ln(1 + zhi)Nhi(ds; dzhi)

37775 :

B.5.2 ENPV and Option Value of Yi(t)

Under the assumption that the Lévy processes included in the SDE, namely the

Wiener and the compound Poisson process, are independent, the expected value of

Yi can be decomposed into

EYi(t) = Yi(0) � Ee
�
�hi�

1
2
�2hi

�
t+�hiWhi

(t)| {z }
(1)

� E

264exp
0B@ tZ

0

Z
Uhi

ln(1 + zhi)Nhi(ds; dzhi)

1CA
375

| {z }
(2)

�E

264exp
0B@ tZ

0

Z
Uhi

h
ln(1 + z

hi
)� zhi

i
�hi(dzhi)ds

1CA
375

| {z }
(3)

;

so that we can compute the respective values for all three components individually.

� The expected value (1) is the same as for the geometric Brownian motion.

� In order to derive the expected value (2), we use Theorem 2.3.7 (i) in Ap-

plebaum (2009).
tR
0

R
Uhi

ln(1 + zhi)Nhi(ds; dzhi) is compound Poisson distributed

60See also Oksendal and Sulem (2007).
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with the characteristic function

E

264exp
0B@iuh tZ

0

Z
Uhi

ln(1 + zhi)Nhi(ds; dzhi)

1CA
375 = exp

0B@tZ
Uhi

�
ejuhzhi � 1

�
�ifh(dzhi)

1CA ;
with uh 2 C: It follows from �ifh = �i � f�1h , fh = ln(1 + zhi) and uh = �j

(imaginary unit)

E

264exp
0B@ tZ

0

Z
Uhi

ln(1 + zhi)Nhi(ds; dzhi)

1CA
375 = exp

0B@t Z
f�1h (Uhi )

zhi�hi(dzhi)

1CA :

This result only holds for
R
Uhi

euhzhi�hi(dzhi) <1:

� As the expected value (3) is given by

E

264exp
0B@ tZ

0

Z
Uhi

[ln(1 + zhi)� zhi ] �hi(dzhi)ds

1CA
375

= exp

0B@tZ
Uhi

[ln(1 + zhi)� zhi ] �hi(dzhi)

1CA
the resulting expected value for Yi is

EYi(t) = Yi(0) exp

264t
0B@�i + Z

f�1(Uhi )

zhi�hi(dzhi) +

Z
Uhi

[ln(1 + zhi)� zhi ] �hi(dzhi)

1CA
375 :
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EYi(t) is an increasing function for

�hi +

Z
f�1h (Uhi )

zhi�hi(dzhi) +

Z
Uhi

[ln(1 + zhi)� zhi ] �hi(dzhi) > 0;

otherwise it decreases with t.

Expected Net Present Value

The Expected Net Present Values of the earnings streams for i = 1; 2 after assuming

that r > �hi+
R

f�1h (Uhi )

zhi�hi(dzhi)+
R
Uhi

[ln(1 + zhi)� zhi ] �hi(dzhi); are determined by

Vhi =
Yh1(T )0@r � R

f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
�

TZ
0

Ch1e
r(T�t)dt� �Ch1

and

Vh2 =
Yh2(T )0@r � R

f�1h (Uh2 )

zh2�h2(dzh2)�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1A
�

TZ
T1

Ch2e
r(T�t)dt� �Ch2 :

Option Value of a Later Market Entry

Similar to the simple geometric Brownian motion case, the Hamilton-Jacobi-Bellman

equation holds for the option value Fhi and i = 1; 2 .
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As a �rst step, we derive the option value for i = 2: We assume that the second

education period starts at T1 and ends at T2. At T2; the student obtains a premium for

�nishing this education level, the so-called sheepskin e¤ect S2: For any t 2 (T1; T2] ;

the sheepskin e¤ect S2 has a discounted value61 of (1 � rT2 + rt)S2: Therefore the

time e¤ect of the sheepskin e¤ect on the option value is
@Fh2
@t

= rS2:

Hence, after applying Ito�s Lemma and using this time e¤ect, we obtain

rS2 + ~�h2 ~Y2
@Fh2
@ ~Y2

+
1

2
~�2h2
~Y 22
@2Fh2
@ ~Y2@ ~Y2

� rFh2 = 0:

This is a second-order inhomogeneous di¤erential equation with a free boundary and

has the solution

Fh2 = Kh2
~Y
�h2
2 + S2:

Hence, after inserting this solution, we obtain �h2 =
1
2
� ~�h2

~�2h2
+

r�
1
2
� ~�h2

~�2h2

�2
+ 2r

~�2h2
;

which is similar to (3.9). The derivative with respect to ~�2 is

d�h2
d~�2h2

=

2~�h2

��
1
2
� ~�h2

~�2h2

�2
+ 2r

~�2h2

�� 1
2

~�3h2

2664
��

1
2
� ~�h2

~�2h2

�2
+ 2r

~�2h2

� 1
2

+1
2
� ~�h2

~�2h2
� r

~�h2

3775 < 0:
In the next step, we derive the option value for i = 1: The �rst education period

starts at 0 and ends at T1: Staying in the education system until T1 o¤ers the sheep-

skin e¤ect S1 which for all t 2 [0; T1] has the discounted value of (1 � rT1 + rt)S1:

Furthermore, it enables the student to start and �nish the second education level as

well. Therefore, the option value of the �rst education period F1 has to include the

option value of the second education level Fh2 : Hence, the time e¤ect of the option

value is determined by
@Fh1
@t

= r (S1 + Fh2) : The respective second-order inhomoge-

61The discounted value of the sheepskin e¤ect is obtained by using continuous discounting. The
exponential function is approximated by its Taylor expansion of the �rst degree.
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neous di¤erential equation with a free boundary becomes

r
�
S1 + S2 +Kh2Y

��h2
2

�
+ ~�h1 ~Y1

Fh1
@ ~Y1

+
1

2
~�2h1
~Y 21
@2Fh1
@ ~Y1@ ~Y1

� rFh1 = 0:

This is the so-called inhomogeneous Euler di¤erential equation which has the solu-

tion62 F1 = Kh1Y
�h1 + r

�
S1 + S2 +Kh2Y

��h2
2

�
where the respective positive and

negative roots obtained for the homogenous di¤erential equation �1;2h1 =
1
2
� ~�h1

~�2h1
�r

(1
2
� ~�h1

~�2h1
)2 + 2r

~�2h1
with �1h1 > 1 and �

2
h1
< 0: Furthermore, Y

��h2
2 is a constant ob-

tained from the optimization problem for the second formal education level. The

derivatives with respect to ~�2h1 and ~�
2
h1
are

@�1h1
@~�2h1

=

2~�h1

��
1
2
� ~�h1

~�2h1

�2
+ 2r

~�2h1

�� 1
2

~�3h1

24"�1
2
� ~�h1
~�2h1

�2
+
2r

~�2h1

# 1
2

+
1

2
� ~�h1
~�2h1

� r

~�h1

35 < 0;

@�2h1
@~�2h1

=

2~�h1

��
1
2
� ~�h1

~�2h1

�2
+ 2r

~�2h1

�� 1
2

~�3h1

24"�1
2
� ~�h1
~�2h1

�2
+
2r

~�2h1

# 1
2

� 1
2
+
~�h1
~�2h1

+
r

~�h1

35
< 0 for r > ~�h1 :

B.5.3 Entry Thresholds Y �1 and Y
�
2

Proof of Proposition 8. With the same method to obtain the threshold for the

simple geometric Brownian motion case, we compute the threshold for the second

62In order to obtain the solution, transform the inhomogenous di¤erential equation in an inho-
mogenous linear di¤erential equation with constant coe¢ cients. This can be done with �Y = exp(t):
Next, �nd a solution to this equation by means of the characteristic polynomial and variation of
constants. Finally, transform the solution back to the original variable.
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education level i = 2: Now we obtain the threshold Y �2 for i = 2

Y �2 =

0BBB@
r �

R
f�1h (Uh2 )

zh2�h2(dzh2)

�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1CCCA �h2
�h2 � 1

(Ih2 + S2) :

Proof of Proposition 9. For the �rst education level i = 1; we obtain

�1h1 � 1
�1h1

Y �10@r � R
f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
= r

�
S1 + S2 +Kh2Y

��h2
2

�
� Ih1 :

Since this is a non-linear equation, the solution can be found by using the implicit

function theorem after de�ning

H : =
�1h1 � 1
�1h1

Y �10@r � R
f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
�r
�
S1 + S2 +Kh2Y

��h2
2

�
� Ih1 :

Derivative with respect to Y �1

In a �rst step, we show that the function H has a non-zero slope according to Y �1
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@H(Y �1 )

@Y �1
=

�1h1 � 1
�1h1

10@r � R
f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
> 0:

The derivative is positive due to �1h1 > 1 and

r �
Z

f�1h (Uh1 )

zh1�h1(dzh1)�
Z
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1 > 0;

that is, it is not equal to zero.

Regular Value

Now we need the notion "regular value". A di¤erentiable function f has the regular

value y if for all x 2 f�1(y) the derivative Df(x) has a full rank. As the derivative

of H with respect to Y �1 is non-zero, 0 is a regular value of H : R13 ! R and the set

of points H�1(0) is a manifold of dimension 12 (see Milnor, 1997, p. 11).

Implicit Function

As H�1(0) is a manifold and as for each vector

(Y �1 ; r; zh1 ; �h1 ; ~�h1 ; ~�h2 ; ~�h1 ; ~�h2 ; S1; S2; Ch1 ;
�Ch1 ; �h1)

the derivative

@H(Y �1 )

@Y �1
(Y �10; r0; zh10 ; �h10 ; ~�h10 ; ~�h20 ; ~�h10 ; ~�h20 ; S10; S20; Ch10 ; �Ch10 ; �h10)
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is non-negative and the partial derivatives according

Y �1 ; r; zh1 ; �h1 ; ~�h1 ; ~�h2 ; ~�h1 ; ~�h2 ; S1; S2; Ch1 ;
�Ch1 ; �h1

are continuous, we can apply the implicit function theorem. Hence, for a marginal

environment of any vector

(Y �10; r0; zh10 ; �h10 ; ~�h10 ; ~�h20 ; ~�h10 ; ~�h20 ; S10; S20; Ch10 ;
�Ch10 ; �h10);

Y �1 is an implicit function of (r; zh1 ; �h1 ; ~�h1 ; ~�h2 ; ~�h1 ; ~�h2 ; S1; S2; Ch1 ; �Ch1):

B.5.4 Derivatives of Y �1 and Y
�
2

Proof of Proposition 11.

@Y �1
@S1

= � �r
�1h1 � 1
�1h1

10@r � R
f�1h (Uh1 )

zh1�h1(dzh1)�
R
Uh1

[ln(1 + zh1)� zh1 ] �h1(dzh1)� �h1

1A
| {z }

(+)

> 0;

@Y �1
@S2

= �

�r

266641 +
0BBB@

r �
R

f�1h (Uh2 )

zh2�h2(dzh2)

�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1CCCA �h1
�h1�1

37775
�1h1

�1
�1h1

10B@r� R
f�1
h

(Uh1
)

zh1�h1 (dzh1 )�
R
Uh1

[ln(1+zh1 )�zh1 ]�h1 (dzh1 )��h1

1CA
> 0:
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Proof of Proposition 12.

@Y �2
@~�2

= �

0BBB@
r �

R
f�1h (Uh2 )

zh2�h2(dzh2)

�
R
Uh2

[ln(1 + zh2)� zh2 ] �h2(dzh2)� �h2

1CCCA
@�h1
@~�h2�

�h1 � 1
�2 (I2 + S2) > 0;

@Y �2
@�h2

= �

0BBB@
R

f�1h (Uh2 )

zh2gh2(dzh2)

+
R
Uh2

[ln(1 + zh2)� zh2 ] gh2(dzh2)

1CCCA �h1
�h1 � 1

(I2 + S2) :

Note that the derivative has been computed after replacing �h2 through �h2gh2 : �h2

is the jump intensity of Nh2 and gh2 denotes the distribution of jump sizes. The

sign of the derivative depends on whether opportunities overweigh threats so thatR
f�1h (Uh2 )

zh2gh2(dzh2) +
R
Uh2

[ln(1 + zh2)� zh2 ] gh2(dzh2) > 0: In this case the sign is

negative and otherwise positive.



131

Appendix C

Uncertainty and Con�ict Decision

C.1 Solution to and Expected Value of the SDE

In this section, we determine the solution of the SDE for B and derive the expected

value. In order to obtain the respective results for ~B; replace B by ~B:

C.1.1 Solution to the SDE for B

The Ito-Lévy Jump Di¤usion process described by the SDE

dB = �sBdt+ �sBdWs +B

Z
Us

zsNs(t; dzs) for T < t;

has the solution

B(t) = B(0) exp

26664
�
�s � 1

2
�2s
�
t+ �sWs(t) +

tR
0

R
Us

[ln(1 + zs)� zs] �s(dzs)ds

+
tR
0

R
Us

ln(1 + zs)Ns(dt; dzs)

37775 :

This can be derived by de�ning X(t) := lnB(t) and using Ito�s Lemma for jump

processes to obtain the solution to the SDE. A similar procedure can be found in

Oksendal and Sulem (2007).
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C.1.2 Expected Value of B

Let B be an Ito-Lévy Jump Di¤usion process. The expected value of B is

EB(t) = B(0) exp

264t
0B@�s + Z

f�1s (Us)

zs�s(dzs) +

Z
Us

[ln(1 + zs)� zs] �s(dzs)

1CA
375 :

To show this, assume that the Wiener and the compound Poisson process are

independent. Then the expected value of B can be decomposed into

EB(t) = B(0) � Ee(�s�
1
2
�2s)t+�sWs(t)| {z }

(1)

� E

24exp
0@ tZ

0

Z
Us

ln(1 + zs)Ns(ds; dzs)

1A35
| {z }

(2)

�E

24exp
0@ tZ

0

Z
Us

[ln(1 + zs)� zs] �s(dzs)ds

1A35
| {z }

(3)

:

In this case compute the respective values for all three components.

The expectation value (1) is the same as for the geometric Brownian motion,

which can be found in Dixit and Pindyck (1994). It is

B(0)e�st:

In order to compute the expected value (2), we use Theorem 2.3.7 (i) in Apple-

baum (2009). As
tR
0

R
Us

ln(1+ zs)Ns(ds; dzs) is compound Poisson distributed with the

characteristic function

E

24exp
0@id tZ

0

Z
Us

ln(1 + zs)Ns(ds; dzs)

1A35 = exp
0@tZ

Us

�
eidzs � 1

�
�sf (dzs)

1A ;
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with d 2 C, �sf = �s � f�1s , fs = ln(1 + zs) and d = �i:

E

24exp
0@ tZ

0

Z
Us

ln(1 + zs)Ns(ds; dzs)

1A35 = exp
0B@t Z

f�1(Us)

zs�s(dzs)

1CA :
This result only holds for

R
Us

edzs�s(dzs) <1:

As the expected value (3) is given by

E

24exp
0@ tZ

0

Z
Us

[ln(1 + zs)� zs] �s(dzs)ds

1A35 = exp
0@tZ

Us

[ln(1 + zs)� zs] �s(dzs)

1A :
Accordingly, the resulting expected value for B is

EB(t) = B(0) exp

264t
0B@�s + Z

f�1(Us)

zs�s(dzs) +

Z
Us

[ln(1 + zs)� zs] �s(dzs)

1CA
375 :

EB(t) is an increasing function for �s+
R

f�1(Us)

zs�s(dzs)+
R
Us

[ln(1 + zs)� zs] �s(dzs) >

0, otherwise it decreases with t.

C.2 Value of Con�ict and Option Value of Peacekeeping

In order to determine the optimal investment in rebellion, the value of con�ict and

the option value of waiting to attack are optimized for each period.

Proof of Proposition 15. For the value of con�ict, all bene�ts per period are

summarized through an integral. Similar to Dixit and Pindyck (1994) we obtain

V grosss = E

1Z
T

Be�r(t�T )dt:
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Under the assumption r > �s+
R

f�1s (Us)

zs�s(dzs)+
R
Us

[ln(1 + zs)� zs] �s(dzs) we obtain

the result.

Corollary 20 Let ~B be an Ito-Lévy Jump Di¤usion process. Then the Hamilton-

Jacobi-Bellman equation de�ned in Dixit and Pindyck (1994)

rFs =
1

dt
E(dFs)

has the solution Fs = Ks
~B� where � is de�ned implicitly.

Proof. From Ito�s Lemma we know

dFs = (
@Fs
@t

+ ~�s ~B
@Fs

@ ~B
+
1

2
~�2s
~B2
@2Fs

@ ~B@ ~B
)dt+ ~�s ~B

@Fs

@ ~B
d ~Ws

+

Z
~Us

�
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))�

@Fs

@ ~B
us ~B(t

�)

�
~�s(dus)dt

+

Z
~Us

h
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))

i
~Ns(dt; dus);

with ~B(t�) denoting the left limit of ~B in t: In order to determine E(dFs); we use

Theorem 2.3.7 (ii) in Applebaum (2009). For the expectation value of

Z
~Us

h
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))

i
~Ns(dt; dus)

we obtain

E

Z
~Us

h
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))

i
~Ns(dt; dus)

= t

Z
~Us

h
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))

i
~�s(dus):
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and with E(d ~Ws) = 0; this leads us to

) E(dFs) = (
@Fs
@t

+ ~�s ~B
@Fs

@ ~B
+
1

2
~�2s
~B2
@2Fs

@ ~B@ ~B
)dt

+2

Z
~Us

�
Fs( ~B(t

�) + us ~B(t
�))� Fs( ~B(t�))�

1

2

@Fs

@ ~B
us ~B(t

�)

�
~�s(dus)dt:

From the Bellman and the last equation, we obtain the following di¤erential equation

~�s ~B
@Fs

@ ~B
+
1

2
~�2s
~B2
@2Fs

@ ~B@ ~B
+2

Z
~Us

24 Fs( ~B(t�) + us ~B(t�))� Fs( ~B(t�))
�1
2
@Fs
@ ~B
us ~B(t

�)

35 ~�s(dus)�rFs = 0:
This is a second-order homogenous ordinary di¤erential equation with a free bound-

ary. A general solution to this di¤erential equation is of the form

Fs = Ks
~B�s .

Hence,

~�s�s +
1

2
~�2s�s(�s � 1) + 2

Z
~Us

�
(1 + us)

�s � (1 + 1
2
�sus)

�
~�s(dus)� r = 0:

If we de�ne

g(�s) := ~�s�s +
1

2
~�2s�s(�s � 1) + 2

Z
~Us

�
(1 + us)

�s � (1 + 1
2
�sus)

�
~�s(dus)� r;
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then it follows

g(1) = ~�s +

Z
~Us

us~�s(dus)� r;

lim
�!1

g(�) = 1:

Accordingly, we can assume that r > ~�s +
R
~Us

us~�s(dus) leading to g(1) < 0 : With

the intermediate value theorem we �nd �s 2 (1; r
~�s+

R
~Us

us~�s(dus)
); such that g(�s) = 0:

It follows immediately that �s is a function of r, ~�s and
R
~Us

us~�s(dus); which was

determined as the implicit function of g(�s) = 0, and �s > 1:

Corollary 21 The derivatives of �s with respect to ~�s; ~�s and us are

@�s
@~�s

= � ~�s�s(�s � 1)
~�s � 1

2
~�2s + 2

~�s
R
~Us

�
ln(1 + us)(1 + us)�s � 1

2
us
�
~�s(dus)

< 0;

@�s

@~�s
=

2
R
~Us

h
� (1 + us)�s + (1 + 1

2
�sus)

i
hs(dus)

~�s � 1
2
~�2s + 2

~�s
R
~Us

�
ln(1 + us)(1 + us)�s � 1

2
us
�
hs(dus)

and

@�s
@us

= �
2�s
R
~Us

h
(1 + us)

�s�1 � 1
2

i
~�s(dus)

~�s � 1
2
~�2s + 2

~�s
R
~Us

�
ln(1 + us)(1 + us)�s � 1

2
us
�
~�s(dus)

;

with hs denoting the distribution of jump sizes.

Proof. Apply the rules

@�s
@~�s

= �
@g
@~�s
@g
@�s

;
@�s1
@~�s

= �
@g
@�
@g
@�s

and
@�s
@us

= �
@g
@us
@g
@�s
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to obtain the derivatives. Their sign is obtained by discussing the jump integral.

The numerator of @�s
@~�s

contains a measure integral

Z
U

�
� (1 + us)�s + (1 +

1

2
�sus)

�
h(dus);

with a measurable function

f(us) := � (1 + us)�s + (1 +
1

2
�sus)

and a measure h: If the negative jumps outweigh the positive jumps, the sign of the

integral will be negative and otherwise positive. In our case, where we have repressive

actions that lead to a positive jump in the bene�ts, the integral is positive as well.

In the denominator, we have

~�s �
1

2
~�2s + 2

~�s

Z
~Us

ln(1 + us)(1 + us)hs(dus)� ~�s
Z
~Us

ushs(dus);

consisting of

~�s �
1

2
~�2s > 0

and a jump component

2~�s

Z
~Us

ln(1 + us)(1 + us)hs(dus)� ~�s
Z
~Us

ushs(dus);

where the logarithm is only de�ned for us > �1: Again, in our case, positive jumps

lead to a positive integral. Assuming the denominator and numerator are positive,

the derivative with respect to ~�s becomes negative. With the same argumentation

the derivative with respect to us becomes positive.
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C.3 Investment Threshold and Expected Time of Con�ict

Proof of Proposition 16. Apply the boundary conditions

Fs (0) = 0;

Fs (B
�) = V grosss (B�)� Is;

dFs (B
�)

dB
=

d(V grosss (B�)� Is)
dB

and solve the equation system for B�:

Proof of Proposition 17. For the jump di¤usion case the �rst passage problem

can be solved analytically if we assume an explicit distribution of the jump sizes.

According to Kou and Wang (2003b), the moment-generating function for ~B(t) with

� 2 (0; �s) is

�(�; t) := E(e�
~B(t)) = exp(G(�)t);

where the function G is de�ned as

G(x) := x~�s +
1

2
x2~�2s +

~�s

�
�s

�s � x
� 1
�
:

For jump di¤usion processes, the study of �rst passage times has to consider the

exact hit of a constant boundary as well as an overshoot. Accordingly, two cases

have to be distinguished. The Laplace transform of the �rst hitting time, when ~B(t)

hits the boundary B� exactly63is

E(e�"
~Tsi1f ~B( ~Tsi )=B�g) =

�s � �s1;"
�s2;" � �s1;"

e�B
��1;" +

�s2;" � �s
�s2;" � �s1;"

e
�B��s2;" ;

with �s1;" and �s2;" being the only positive roots of G(�) � " and 0 < �1;" < �s <

63See Kou and Wang (2003a), Theorem 3.1.
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�2;" <1: For every overshoot ~B( ~Ts)�B�; the Laplace transform is

E(e�"
~Tsi1f ~B( ~Ti)�B�>yg) = e��sy

�
�s � �s1;"

��
�s2;" � �s

�
�s

�
�s2;" � �s1;"

� �
e
�B��s1;" � e�B

��s2;"

�
for all y � 0:

The expectation of the �rst passage time is �nite, i.e., E(T �s ) <1, if and only if the

overall drift of the jump di¤usion process is positive. Hence,

E(T �) <1, �us = ~�s + ~�s
1

�s
> 0:

Now for �us > 0 we determine the �rst passage time as

E(T �) =
1

�us

�
B� +

��2 � �s
�s�

�
s2

(1� e�B��s2 )
�
;

where ��s2 is de�ned as the unique root of G(�
�
s2
) = 0 with 0 < �s < �

�
s2
<1:

C.4 Determinants of the Expected Time of Con�ict

Proof of Proposition 18. In order to determine the derivative of E(T �); we �rst

have to �nd out the sign of @B
�

@~�s
and @��2

@~�s
:

@B�

@~�s
=

@�s
@~�s
(�s � 1)�

@�s
@~�s
�

(�s � 1)
2

0BB@
r �

R
f�1s (Us)

zs�s(dzs)

�
R
Us

[ln(1 + zs)� zs] �s(dzs)� as

1CCA Is

= �
@�s
@~�s

(�s � 1)
2

0BB@
r �

R
f�1s (Us)

zs�s(dzs)

�
R
Us

[ln(1 + zs)� zs] �s(dzs)� as

1CCA Is > 0:
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Now, de�ne G := x~�s + 1
2
x2~�2s + �s

�
�s
�s�x

� 1
�
and determine

@��2
@~�s

=
@x

@~�s
= �

@G
@~�s
@G
@x

= � x2~�s

~�s + x~�
2
s +

~�s
�s

(�s�x)2
< 0:

With these results we can now determine

@E(T �)

@~�s
=

1

�us

@B�

@~�s
+
1

�us

�
@B�

@~�s
��s2 +B

�@�
�
s2

@~�s

�
��s2 � �s
�s�

�
s2

e�B
���2

+

@��s2
@�
�s�

�
s2
� @��s2

@�
�s�

�
s2�

�s�
�
s2

�2 (1� e�B���s2 )

=
1

�us

@B�

@~�s|{z}
(+)

+
1

�us

0BBB@@B�@~�s|{z}
(+)

��s2 +B
�@�

�
s2

@~�s| {z }
(�)

1CCCA ��s2 � �s
�s�

�
s2

e�B
���s2 > 0;

with B�
@��s2
@~�s| {z }
(�)

su¢ ciently small.

Proof of Proposition 19.

@E(T �)

@~�s
= �

1
�sh

~�s + ~�s
1
�s

i2
| {z }

(1)

�
B� +

��s2 � �s
�s�

�
s2

(1� e�B���s2 )
�

| {z }
(2)

+
1

~�s + ~�s
1
�s| {z }

(3)

26664
�

@�s1
@~�s

(�s1�1)
2 (r �

R
f�1s (Us)

zs�s(dzs)

�
R
Us

[ln(1 + zs)� zs] �s(dzs)� as)Is

37775
| {z }

(4)

(1�
��s2 � �s
�s

e�B
���s2 )| {z }

(5)

:
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For the �rst term (1) and term (3); we obtain

1
�sh

~�s + ~�s
1
�s

i2 > 0
and

1

~�s + ~�s
1
�s

> 0:

For the second term (2); it holds that

B�|{z}
>0

+
��s2 � �s
�s�

�
s2| {z }

>0

(1� e�B���s2 )| {z }
�0

> 0:

The sign of the fourth term (4) depends on whether
@�s1
@~�s

is positive or negative.

Assuming
@�s1
@~�s

< 0; then term (4) becomes

�
@�s1
@~�s�

�s1 � 1
�2 (r � Z

f�1s (Us)

zs�s(dzs)�
Z
Us

[ln(1 + zs)� zs] �s(dzs)� as)

| {z }
>0

Is|{z}
>0

> 0:

The last term (5)

1� �
�
2 � �s
�s

e�B
���s2

is negative if

1 <
��s2 � �s
�s

e�B
���s2 :

Summarizing all conditions leads to @E(T �)

@~�s
< 0:
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Proof.

@E(T �)

@us
=

1

~�s + ~�s
1
�s| {z }

(1)

26664
�

@�s1
@us

(�s1�1)
2 (r �

R
f�1s (Us)

zs�s(dzs)

�
R
Us

[ln(1 + zs)� zs] �s(dzs)� �s)Is

37775
| {z }

(2)

�(1�
��s2 � �s
�s

e�B
���s2 )| {z }

(3)

:

Similar to the last proof, the term (1) is positive. Accordingly, the last component

(3) is negative for 1 <
��s2��s
�s

e�B
���s2 : The sign of (2) depends on whether

@�s1
@us

? 0:

Assuming that
@�s1
@us

< 0 it follows that @E(
~T )

@us
< 0:


