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Abstract

In this dissertation, we construct and study certain classes of infinite dimensional Lie
groups that are modelled on weighted function spaces. In particular, we continue the
investigation of the Lie group Diff),,(X) of diffeomorphisms introduced in [Wal06|, where
X is a Banach space and W a set of weights on X containing a constant weight. This
construction is now also extended to the case of diffeomorphism groups of manifolds.

We also construct certain types of “weighted mapping groups”. These are Lie groups
modelled on weighted function spaces of the form C,(U,L(G)), where G is a given
(finite- or infinite dimensional) Lie group and U an open subset of X. Both the weighted
diffeomorphism groups and the weighted mapping groups (when X is a vector space,
resp. G is a Banach Lie group) are shown to be regular Lie groups in Milnor’s sense.

Further, we discuss semidirect products of the former groups. We study the integrability
of Lie algebras of vector fields of the form Cy5(X, X) x L(G), where X is a Banach space
and G a Lie group acting smoothly on X.

Zusammenfassung

Gegenstand dieser Dissertation sind die Konstruktion und Untersuchung von unendlichdi-
mensionalen Liegruppen, die auf gewissen Rdumen von gewichteten Abbildungen model-
liert sind. Im Speziellen fahren wir mit der Untersuchung der Liegruppe Diffy,,(X) von
gewichteten Diffeomorphismen auf dem Banachraum X zu geeigneten Gewichtsfunktionen
W, die in der Diplomarbeit [Wal06] konstruiert wurde, fort. Wir verallgemeinern die
Konstruktion solcher Diffeomorphismengruppen auf Mannigfaltigkeiten.

Weiter werden einige ,,gewichtete Abbildungsgruppen® zu Liegruppen gemacht. Die
zugehdrigen Modellrdume sind gewichtete Funktionenrdume Cf, (U, L(G)), wobei G eine
(endlich- oder unendlichdimensionale) Liegruppe und U eine offene Teilmenge von X ist.
Wir weisen nach, dass beide Arten von Liegruppen regulédre Liegruppen im Sinne Milnors
sind (wenn X ein Vektorraum bzw. G eine Banach-Lie-Gruppe ist).

Wir studieren auch semidirekte Produkte solcher Liegruppen, und beweisen einige
Kriterien fiir die Integrabilitidt von Liealgebren der Form Cy (X, X) x L(G), wobei X ein
Banachraum und G eine glatt auf X operierende Liegruppe ist.



Contents

[1._Introduction

D Preliminan | onl

.....................................

[2.2. Difterential calculus of maps between locally convex spaces| . . . ... ..
[2.3. Fréchet differentiability] . . . . . ... ... ..o o000

[3. Weighted function spaces|
[3.1. Definition and examples| . . . . . . . . . ..o Lo
13.2. Topological and uniform structure| . . . . . ... .. .. ... ... ...
I;‘i,z,l, Rf:dll(:!i(ln lsz IQ&&S:I Qldsill .......................
[3.2.2. Projective limits and the topology of Cy5(U,Y )| . . . . . . ... ..
[3.2.3. A completeness criterion|. . . . . . .. ...
13.3. Composition on weighted functions and superposition operators| . . . . . .
[3.3.1.  Composition with a multilinear map| . . . . . . .. ... ... ...
[3.3.2.  Composition of weighted functions with bounded functions|
13.3.3. Composition of weighted functions with an analytic map|. . . . . .
[3.3.4.  Superposition with tunctions defined on a product| . . . .. . . ..
13.4. Weighted maps into locally convex spaces| . . . . . .. ... ... .. ...
[3.4.1.  Definition and topological structure] . . . . . . .. ... ... ...
13.4.2.  Weighted decreasing maps|. . . . . . . .. ... ... ... .....
[3.4.3. Composition and Superposition| . . . . . . . .. .. ... ... ...
[4. Lie groups of weighted diffeomorphisms on Banach spaces|

[4.1. Weighted diffeomorphisms and endomorphisms| . . . . . . ... ... ...
|4.1.1. Composition of weigthed endomorphisms in charts . . . . ... ..
|4.1.2. Smooth monoids of weighted endomorphisms| . . . . . . ... ...

4.2. Lie group structures on weighted diffeomorphisms|. . . . . . . . ... ...
[4.2.1. The Lie group structure of Diffy,,(X). . . . . ... ... ... ...
|4.2.2.  On decreasing weighted difteomorphisms and dense subgroups|. . .
4.2.3. On diffeomorphisms that are weighted endomorphisms| . . . . . . .

4.3. Regularity] . . . . . . . . . .
[4.3.1. The regularity differential equation of Diff),(X) . . ... ... ..
|4.3.2.  Conclusion and calculation of one-parameter groups| . . ... . ..

10

12
12
14
15
16
17

19
21
26
31
36
36
40
42



Contents

[5. Lie groups of weighted diffeomorphisms on Riemannian manifolds| 73
b.1. Weighted restricted products| . . . . . . . . .. .. ... ... 73
[.1.1. Restricted products for locally convex spaces with unitormly pa- |

[ rameterized SeMINOTMS|. . . . . . « « « . . e e e e e 74
[5.1.2.  Restricted products of weighted tunctions| . . . . . . . .. ... .. 77

[5.1.3.  Simultaneous superposition and multiplication| . . . . . .. .. .. 81

[5.1.4.  Simultaneous composition and inversion| . . . . . . ... ... ... 88

[5.2. Spaces of weighted vector fields on manifolds| . . . . . . .. ... ... .. 91
[5.2.1.  Definition and properties] . . . . . . . .. .. ... ... 91

15.2.2.  Simultaneous composition, inversion and superposition with Rie- |

| mannian exponential map and logarithm|. . . . . . .. ... .. .. 95
[5.2.3.  Construction of weights on manifolds|. . . . . . .. ... ... ... 100

[5.3. Difteomorphisms on Riemannian manifolds| . . . .. ... ... ... ... 103
[9.3.1.  Generating diffeomorphisms from vector fields|. . . . . . . . .. .. 103

[5.3.2.  Lie groups of weighted difteomorphisms| . . . . . . .. .. .. ... 105

[6. Tntegration of certain Lie algebras of vector fields| 112
[6.1. On the smoothness of the conjugation action on Diffy,(X)o| . . . . . . . . 112
[6.1.1. Bilinear action on weighted tunctions|. . . . . . . . . ... ... .. 114

[6.1.2.  Contravariant composition on weighted functions| . . . . . . . . .. 116

[6.2. Conclusion and Examples| . . . . . . .. .. ... ... ... ... 120

[7. Lie group structures on weighted mapping groups| 123
[7.1. Weighted maps into Banach Lie groups| . . ... ... ... ... ..... 123
[7.1.1. Construction of the Lie group|. . . . . . . .. ... ... ... ... 124

[7.1.2. Regularity|. . . . . .. . . . 128

[7.1.3. Semidirect products with weighted diffeomorphisms| . . . .. . .. 131

[7.2. Weighted maps into locally convex Lie groups| . . . . . . .. ... ... .. 133
[7.2.1. Construction of the Lie group|. . . . . . . . . ... ... ... ... 133

[7.2.2. A larger Lie group of weighted mappings] . . ... ... ... ... 136

|A. Differential calculus 153
|A.1. Difterential calculus of maps between locally convex spaces| . . ... ... 153
|A.1.1. Curves and integrals| . . . . . . . . . ... .. ... .. 153

|A.1.2. Difterentiable maps|. . . . . . . . . ..o oL 155

[A.2. Fréchet differentiability|] . . . . . . . .. .. oo oo 164
|A.2.1. The Lipschitz inverse function theorem| . . . . ... ... ... .. 168

[A.3. Relation between the differential calculil . . . . . ... ... ... ... .. 172
|[A.4. Some facts concerning ordinary differential equations| . . . . . . . . .. .. 175
[A.41. Maximal solutions of ODES . . . . . . . . ... ... ... ... .. 175

|A.4.2. Flows and dependence on parameters and initial values| . . . . . . 177

[B. Locally convex Lie groups and manifolds| 181
IB.1. Locally convex manifolds| . . . . ... ... ... ... ... ........ 181




Contents

IB.2. Liegroups| . . . . . . . . .. 182
IB.2.1. Generation of Lie groups| . . . .. ... ... ... ... ...... 183

IB.2.2. Regularity|. . . . . ... ... ... 183

IB.2.3. Group actions|. . . . . . . . . ... 185

[B.3. Riemannian geometry and manifolds| . . . . . .. ... ... 186
IB.3.1. Definitions and elementary results] . . . . ... ... .. ... ... 186

IB.3.2. Riemannian exponential tunction and logarithm on open subsets |

I of RY . o 187
[C. Quasi-inversion in algebras| 194
[C.1. Definition| . . . . . . . .« 194
|C.2. Topological monoids and algebras with continuous quasi-inversion| 195
Notation 200
[ndex| 205



1. Introduction

She tried hard to keep herself a stranger to her poor
old father’s slight income by the use of the finest
production of steel, whose blunt edge eyed the reely
covering with marked greed, and offered its sharp
dart to faultless fabrics of flaxen fineness.

(Amanda McKittrick Ros, Delina Delaney)
Diffeomorphism groups of compact manifolds, as well as groups C*(K, G) of Lie group-
valued mappings on compact manifolds are among the most important and well-studied
examples of infinite dimensional Lie groups (see for example [Les67], [Mil84], [Ham82|,
[Omo97|, [PS86] and [KM97]). While the diffeomorphism group Diff (K) of a compact
manifold is modelled on the Fréchet space C*°(K, TK) of smooth vector fields on K,
for a non-compact smooth manifold M, it is not possible to make Diff (M) a Lie group
modelled on the space of all smooth vector fields in a satisfying way (see [Mil82]). We
mention that the LF-space C2°(M, TM) of compactly supported smooth vector fields can
be used as the modelling space for a Lie group structure on Diff (M ). But the topology on
this Lie group is too fine for many purposes; the group of compactly supported
diffeomorphisms (those diffeomorphisms that coincide with the identity map outside
some compact set) is an open subgroup (see [Mic80] and [Mil82]). Likewise, it is no
problem to turn groups Cf(M , G) of compactly supported Lie group-valued maps into Lie
groups (cf. [Mil84], [AHM+93|, [G1602b]). However, only in special cases there exists a
Lie group structure on C*>°(M, G), equipped with its natural group topology, the smooth
compact-open topology (see [NWO0S]).

In view of these limitations, it is natural to look for Lie groups of diffeomorphisms
which are larger then Diff (M) and modelled on larger Lie algebras of vector fields than
C°(M,TM). In the same vain, one would like to find mapping groups modelled on
larger spaces than C¥(M, L(Q)).

In an earlier work [Wal06], the author already constructed such diffeomorphism groups
(modelled on weighted function spaces) when M is a finite-dimensional vector space, or
a Banach space. In this work, we continue the study of such diffeomorphism groups
(including a proof for their regularity) and extend the construction to the case where M
is a manifold. We also construct (and study) certain weighted mapping groups.

Diffeomorphims In the vector space case, most of the results are valid even when the
space X is a Banach space. The groups we consider are modelled on spaces of weighted
functions on X. For example, we discuss a Lie group structure on the group of
diffeomorphisms differing from idg~ by a rapidly decreasing R™-valued map. Considered
as a topological group, this group has been used in quantum physics (|Gol04]). For n =1,



1. Introduction

another construction of the Lie group structure (in the setting of convenient differential
calculus) has been given by P. Michor ([Mic06, §6.4]), and applied to the Burgers’ equation.
The general case was treated in the author’s unpublished diploma thesis [Wal06] and
published in [Wall2|. Results from the diploma thesis will not be reproduced here; we
shall only summarize what is needed and refer to [Wall3] for details (a slightly extended
preprint version of [WallQ])E After [Wall2| was published, an alternative construction of
the Lie group structure on Diff (R") and Diffy; 4(R") (within convenient differentiable
calculus) was given in [MM13].

To explain our results, let X and Y be Banach spaces, U C X open and nonempty,
k € N:=NU{oo}, W be a set of functions f on U taking values in the extended real
line R := R U {oo, —c0} called weights. As usual, we let C{ﬁv(U,Y) be the set of all
k-times continuously Fréchet-differentiable functions vy : U — Y such that f - |[D®]|,,
is bounded for all integers ¢ < k and all f € W. Then C{f\,(U, Y) is a locally convex
topological vector space in a natural way. We prove in [I'heorem 4.3.11|

Theorem. Let X be a Banach space and VW C RY with 1x € W. Consider the Lie
group Diffyy,(X) := {¢ € Diff (X) : ¢ —idx, ¢~ —idx € Cy(X, X)}, as constructed in
(Wal06]. Then Diffyy,(X) is a regular Lie group modelled on Cy3(X, X).

Replacing C§5(X, X) by the subspace of functions 7 such that f(z) - [|D©O~y(z)||ep — 0
as ||z|| — oo, we obtain a subgroup Diff),,(X)° of Diff),,(X) which also is a Lie group
(see |Proposition 4.2.14]).

To explain our results about diffeomorphisms on manifolds, let (M, g) be a Riemannian
manifold, and A an atlas for M that is adapted (see [Definition 5.3.2| for the precise

meaning) and “thin”. In|[Theorem 5.3.6, we prove:

Theorem. Let W C RY with 1y € W. Then there exists a Lie group Diﬁ'f\jB(M,g,w)
of weighted diffeomorphisms that is a subgroup of Diff (M) and modelled on the space
Cyove (M, TM) 4 of weighted vector fields with regard to A. Further, the Riemannian
logarithm provides a chart for Diff{f\}B(M,g,w). Here B denotes a suitable subatlas of
A, and W€ denotes a minimal saturated extension of WU {w}, where w is an adjusted
weight.

For the definition of a minimal saturated extension and adjusted weights, see [5.2.13]
The spaces Cy5. (M, TM) 4 are defined in [Subsection 5.2.11 They arise as closed vector
subspaces of weighted restricted products of the weighted functions spaces {C%N (U, RY)

(k: Ug — Uy) € A} used above; see for the technical details concerning these
products.
Further, we prove in |Prop0sition 5.3.10| that the groups Diff{flv’B(M ,g,w) contain at least
the identity component of Diff (M), provided that W consists of continuous weights.
Finally, we show in [Proposition 5.3.11| that if (M,g) = (R% (.,-)) and A consists of

1[Wal12] lacks the examination of topologies on spaces of multipliers on page [L15ff. Further, the preprint
contains a more general treatment of the inversion map of Diffy,,(X) in [Subsection 4.2.1| (which can
be used to investigate functions that are defined on a subset of X) which uses a Lipschitz inverse

function theorem (stated in [Subsection A.2.1)).
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identity mappings, then the connected components and the topology of DiffW(Rd) and
Diﬁ’{j‘\}B(Rd, (+,+), 1pa) coincide, giving us plenty of examples for this construction.

Mapping groups For mapping groups, we first consider mappings into Banach Lie

groups. In we show

Theorem. Let X be a normed space, U C X an open nonempty subset, VW C RY with
1y €W, k € N and G be a Banach Lie group. Then there exists a connected Lie group
Ck,(U,G) € GY modelled on Ci, (U, L(G)), and this Lie group is reqular.

Using the natural action of diffeomorphisms on functions, we can always form the
semidirect product Cy5(X, G) x Diffy,,(X) and make it a Lie group, see Theorem

In the case of finite-dimensional domains, we can even discuss mappings into arbitrary
Lie groups modelled on locally convex spaces. To this end, given a locally convex space
Y and an open subset U of a finite-dimensional vector space X we define a certain space
C{f\,(U ,Y)* of C*-maps which decay as we approach the boundary of U, together with
their derivatives (see [Definition 3.4.8| for details). We obtain the following result

Theorem. Let X be a finite-dimensional space, U C X an open nonempty subset,

W C RY with 1y €W, k€N and G be a locally convex Lie group. Then there exists a
connected Lie group C&,(U,G)* C GY modelled on C&,(U, L(G))*.

We also discuss certain larger subgroups of GU admitting Lie group structures that
make CJ,(U, G)® an open normal subgroup (see [Subsection 7.2.2).

Finally, we consider Lie groups G acting smoothly on a Banach space X. We investigate
when the G-action leaves the identity component Diff), (X )¢ of Diff), (X) invariant and
whether Diff),(X)o % G can be made a Lie group in this case. In particular, we show that
Diff g(R")o x GL(R") is a Lie group for each n (Example 6.2.4). By contrast, GL(R"™)
does not leave Diff; 1 (R") invariant (Example 6.2.5)).

We mention that certain weighted mapping groups on finite-dimensional spaces (con-
sisting of smooth mappings) have already been discussed in [BCR81, §4.2] assuming
additional hypotheses on the range group (cf. . Besides the added gen-
erality, we provide a more complete discussion of superposition operators on weighted
function spaces.

In the case where W = {1x}, our group Diff), (X)) also has a counterpart in the studies
of Jirgen Eichhorn and collaborators (|Eic96], [ES96], |Eic07]), who studied certain
diffeomorphism groups on non-compact manifolds with bounded geometry. While an
affine connection is used there to deal with higher derivatives, we are working exclusively
with derivatives in local charts.

Semidirect products of diffeomorphism groups and function spaces on compact manifolds
arise in Ideal Magnetohydrodynamics (see [KW09, p. I11.3.4]). Further, the group S(R™) x
Diff g(R™) and its continuous unitary representations are encountered in Quantum Physics
(see |Gol04]; cf. also [Ism96, §34] and the references therein).

Acknowledgement The research was supported by the German Research Foundation
(DFG), grant GL 357/4-1, and the University of Paderborn.



2. Preliminaries and notation

We give some notation and basic definitions. More details are provided in the appendix,
as is a list of symbols used in this work.

2.1. Notation

We write [R|:= R U {—o0, oo} = NU {oo}and [N*|:= N\ {0}. Further we denote norms
by 1.

Definition 2.1.1. Let A, B be subsets of the normed space X. As usual, the distance
of A and B is defined as

= inf{lla—b| :a € A,be B} €[0,00).

Thus dist(A, B) = cc iff A =0 or B = 0.
Further, for z € X and r € R we define

Bx (z,r)|:={y € X : |y -zl <r}

Occasionally, we just write instead of Bx (x,r). For the closed ball, we write
and the like.

Further, we define o
= B(0,1),

where [K| € {R, C}. No confusion will arise from this abuse of notation.

2.2. Differential calculus of maps between locally convex
spaces

We give basic definitions for the differential calculus for maps between locally convex
spaces that is known as Kellers C*-theory. More results can be found in [Section A.1

Definition 2.2.1 (Directional derivatives). Let X and Y be locally convex spaces,
U C X an open nonempty set, u € U, x € X and f: U — Y a map. The derivative of f
at u in the direction x is defined as

. u—+txr)— flu

ti L0 T p gy ) = d s ),

t—0 t
tekK*

whenever that limit exists.



2.3. Fréchet differentiability

Definition 2.2.2. Let X and Y be locally convex spaces, U C X an open nonempty set,
and f: U — Y be a map.

We call f a C-map or just Cf if f is continuous, the derivative df (u; x) exists for all
(u,z) € U x X and the map df : U x X — Y is continuous.

Inductively, for a k € N we call f a CE-map or just CE if f is a Ck-map and d' f := df :
UxX —Yisa Cﬂlé_l—map. In this case, the k-th iterated differential of f is defined by

d¥f = dldf) U x X2 Sy

If fisa Cﬁ%-map for each k € N, we call f a Cg°-map or just Cg° or smooth.
Further, for each k € N we define

CEUY):={f:U—=Y|fisCE}.
Often, we shall simply write C* and the like.

It is obvious from the definition of differentiability that iterated directional derivatives

exist and depend continuously on the directions. The converse of this assertion also
holds.

Proposition 2.2.3. Let f : U — Y be a continuous map and r € N. Then f € C"(U,Y)
iff forallu e U, k€ N with k <r and x1,...,x € X the iterated directional derivative

d(k)f(u; Tl ., 2k) = Dy, Dgy ) ()
exists and the map
Ux XF 5y (u,z1,...,28) — d(k)f(u;:nl,...,xk)

is continuous. We call the k-th derivative of f.

2.3. Fréchet differentiability

We give basic definitions for Fréchet differentiability for maps between normed spaces.
More results can be found in [Section A.2)

Definition 2.3.1 (Fréchet differentiability). Let X and Y be normed spaces and U an
open nonempty subset of X. We call a map v : U — Y Fréchet differentiable or FC' if it
is a C'-map and the map

Dy:U—LX,Y):z~— dy(z;-)

is continuous. Inductively, for k € N* we call v a FC*'-map if it is Fréchet differentiable
and D~ is a FCF-map. We denote the set of all k-times Fréchet differentiable maps from
U to Y with [FC"(U,Y)l Additionally, we define the smooth maps by

FCX(U,Y) = (| FCHU,Y)
keN*

10



2.3. Fréchet differentiability

and FC°(U,Y) := C%(U,Y). The map
D : FC*YU,Y) — FCH(U,L(X,Y)) : v — D~y
is called derivative operator.

Remark 2.3.2. Let X and Y be normed spaces, U an open nonempty subset of X, k € N*
and v € FC*¥(U,Y). Then for each £ € N* with ¢ < k there exists a continuous map

[DUA: U — 14X, V),

where Lf (X,Y) denotes the space of ¢-linear maps X ¢ Y, endowed with the operator
topology. The map D@~ can be described more explicitly. If v € FC* (U,Y), also
v € C*(U,Y) holds, and for each 2 € U we have the relation

D®y(z) = dP)y(x;-).

11



3. Weighted function spaces

In this chapter we give the definition of some locally convex vector spaces consisting of
weighted functions. The Lie groups that are constructed in this work will be modelled
on these spaces. We first discuss maps between normed spaces. In we will
also look at maps that take values in arbitrary locally convex spaces. The treatment of
the latter spaces requires some rather technical effort. Since these function spaces are

only needed in the reader may eventually skip this section.

3.1. Definition and examples

Definition 3.1.1. Let X and Y be normed spaces and U C X an open nonempty set.
For k € N and a map f : U — R we define the quasinorm

L) : FCHU,Y) = [0,00] = ¢ = sup{|f ()] [DW () op : x € U}
Furthermore, for any nonempty set W C RY and k € N we define the vector space

= {y e FC*(U,Y) : (Vf € W, L € N, L < k) ||l .0 < o0}

and notice that the seminorms ||-|| 7, induce a locally convex vector space topology on
CE(U,Y).

We call the elements of W weights and C{ﬁv(U, Y) a space of weighted maps or space of
weighted functions.

An important example is the space of bounded functions with bounded derivatives:

Example 3.1.2. Let k € N. We define

BT = ¢, (07),

Remark 3.1.3. Let U and V be nonempty open subsets of a normed space X and U C V.
For a set W C RV, we define

Wiy == {flv: f e W}.
Further we write with an abuse of notation

Ci(U,Y) i= Gy, (U, Y).

12



3.1. Definition and examples

Remark 3.1.4. As is clear, for any set T C 2"V with W = Uzer F we have

U Y)= () Chu.Y).
FeT
CEN 1<k
We define some subsets of Cji,(U,Y):

Definition 3.1.5. Let X and Y be normed spaces, U C X and V C Y open nonempty
sets and W C @U. For k € N we set

Chy(U,V) = {y € Chy(U,Y) : 7(U) C V}
and
= {y e C}y(U, V) : (3r > 0) 4(U) + By (0,r) C V}.

Obviously
CHr(U. V) C k(. V),

and if 1y € W, then Cf,)\’,k(U, V) is open in CJ,(U,Y). The set |[BCO*(U, V)| is defined
analogously.
If U C X is an open neighborhood of 0, we set

Coy(U,Y)o = {7 € Cy(U,Y) : 4(0) = 0}.

Analogously, we define C,(U, V)o, Ce\}k(U, V)o and [BC*(U, V)g| as the corresponding sets
of functions vanishing at 0.
Furthermore, we define the set of decreasing weighted maps as

Cyy (U, Y):={~ € C{f\;(U,Y) (Vfew LeNL<ke>0)(Tr> O)H’Y‘U\BT(O)

f.e < 8}.

Note that we are primarily interested in the spaces C{ﬁV(X ,Y)?, but for technical reasons
it is useful to have the spaces C,(U,Y)° available for U C X.

We show that C,(U,Y)° is closed.
Lemma 3.1.6. C},(U,Y)° is a closed vector subspace of C¥,(U,Y).

Proof. Tt is obvious from the definition of CJ,(U,Y)° that it is a vector subspace. It
remains to show that it is closed. To this end, let (v;);es be a net in Cfi, (U, Y)° that
converges to v € C,(U,Y) in the topology of C&,(U,Y). Let f € W, £ € N with £ < k

and € > 0. Then there exists an i, € I such that
S €
i2ic = Iyl <5

Further there exists an 7 > 0 such that

€
il B )l 7.6 < 5

Hence

IVl B, @l 1.e < IVl B, ©) = Vil @l 1, + Vel B, o) 7,6 < €,
and this finishes the proof. a

13



3.2. Topological and uniform structure

Examples involving finite-dimensional spaces Let K € {R,C} and n € N. In the
following, let U be an open nonempty subset of K®. For a map f : U — R and a
multiindex o € N with |a| < k we define

Il .0 : CE(U,Y) = [0, 00] = ¢ = sup{| f(2)| |0°¢(x)| : = € U}

We conclude from fidentity (A.3.5.1)|in [Proposition A.3.5[that for a set W of maps U — R
and k € N

Cr(UY)={p € CEUY): (Vf e W,a € NI, |a] k)[4l fa < o},

and the topology defined with the seminorms ||-|| ¢, coincides with the one defined
above using the seminorms ||-||s,. This characterization of Cli,(U, Y) allows us to recover
well-known spaces as special cases:

o If W is the space C°(U,R™) of all continuous functions, then

Cw(U,R™) = DU, R™) 5 (U, R™)
where [D(U, R™)| denotes the space of compactly supported smooth functions from U
to R™; it should be noticed that SS(U]RW)(U’ R™) is not endowed with the ordinary

inductive limit topology lim Dk (U,R™), but instead the (coarser) topology making
it the projective limit

lim (lim DY (U, B™)) = lim DP(U, R™),
peN K peEN
where DY (U, R™) denotes the CP-maps with support in the compact set K, endowed
with the topology of uniform convergence of derivatives up to order p; and DP(U, R™)

the compactly supported CP-maps endowed with the inductive limit topology of
the sets Dy (U, R™).

o The vector-valued Schwartz space S(R™,R™). Here U =Y =R", k = co and W is
the set of polynomial functions on R".

o The space BC*(U,K™) of all bounded C*-functions from U C K" to K™ whose
partial derivatives are bounded (for W = {117}); see [Example 3.1.2

o If W={lx,00-1x\y}, then the space CE,(X,Y) consists of BC*(X,Y) functions
that are defined on X and vanish on the complement of U.

3.2. Topological and uniform structure

We analyze the topology of the weighted function spaces defined above. In
we shall provide a method that greatly simplifies the treatment of the spaces;
it will be used throughout this work. We will also describe the spaces Cfi, (U, Y) as the
projective limits of suitable larger spaces. In particular, this will simplify the treatment
of the spaces Cyy;(U,Y'). Further we give a sufficient criterion on the set YW which ensures
that C,(U,Y) is complete.
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3.2. Topological and uniform structure

3.2.1. Reduction to lower order

For ¢ > 1, it is hard to estimate the seminorms ||| ¢, because in most cases the higher
order derivatives D(é)'y can not be computed. We develop a technique that allow us
to avoid the computation. First, we show that C,(U,Y) is endowed with the initial
topology of the derivative maps. Most of the content of this subsection was already
proved in the author’s diploma thesis [Wal06, §3.1.1]. We omit the proofs of the older
content and some technical lemmas. They also can be found in [Wall3, §3.2.1].

Lemma 3.2.1. Let X and Y be normed spaces, U C X an open nonempty set, k € N,
W CRY and v € FCHU,Y). Then

v eCh(U,Y) < (VLeN,t<k)DODye ) (U LIX,Y)),
and the map

Cy(U,Y) = [T WU LAX,Y) 1y = (D) senesk

¢eN
i<k

s a topological embedding.

The next lemma states a relation between the higher order derivatives of « and those
of D~.

Lemma 3.2.2. Let X and Y be normed spaces, U C X an open nonempty set, k € N
and vy € FC*TY(U,Y). Then

1D Dy(@)lop = DDy (@)lop (3.2.2.1)
for each x € U and £ < k. In particular, for each map f € @U, < k and subset V C U
Vvl e = 1OV - (3.2.2.2)
Proof. In the identity
Dy = &1 0 (DY Dy)

is proved, where & : L(X,LYX,Y)) — L+1(X,Y) is an isometric isomorphism (see
Lemma A.2.5). The asserted identities follow immediately. O

We can state the main tool for the treatment of weighted function spaces C’ﬁV(U L Y)
with k£ > 1. It is useful because it allows induction arguments of the following kind:
Suppose we want to show that v € C{f\;(U, Y). First, we have to show that v € Cev(U, Y).
Then, we suppose v € C)Z,V(U, Y') and show that D~ in Cf/v(U, L(X,Y)) by expressing it
in terms of . This finishes the induction argument.
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3.2. Topological and uniform structure

Proposition 3.2.3 (Reduction to lower order). Let X and Y be normed spaces, U C X
an open nonempty set, W C RU, keN and~y € FCY(U,Y). Then

v ECHHUY) < (Dv,7) € Gy(U,L(X,Y)) x Cy(U,Y).
Moreover, the map
W (U,Y) = Cy(UL(X, V) x Cuy(U,Y) s 7 = (D7)
is a topological embedding. In particular, the map
D:ChH(U,Y) — (U, L(X,Y))
18 continuous.

The same argument can be made for the vanishing weighted functions.

Corollary 3.2.4. Let X and Y be normed spaces, U C X an open nonempty set,
WCRY, keN and v € FCL(U,Y). Then

v € CENU,Y)° <= (Dv,7) € Cy(U,L(X,Y))° x Cy,(U,Y)°.

Proof. This is also an immediate consequence of [Proposition 3.2.3| and [identity (3.2.2.2)|

in Lemma 3.2.21 O

3.2.2. Projective limits and the topology of CJ5(U,Y)

Sometimes it is useful that C{fv(U, Y') can be written as the projective limit of larger
weighted functions spaces.

Proposition 3.2.5. Let X and Y be normed spaces, U C X an open nonempty set,
k€N and W C RY o nonempty set. Further let (F;)ier be a directed family of nonempty
subsets of W such that U;c; Fi = W. Consider I x {€ € N: ¢ <k} as a directed set via

((i1,41) < (i, 62)) <= i1 <o and ly < lo.
Then C&,(U,Y) is the projective limit of
{C5U,Y) : teNL<kiel}
in the category of topological (vector) spaces, with the inclusion maps as morphisms.

Proof. Since
oy(UY)= () CrUY),
el
LENI<k
the set C{ﬁv(U, Y) is the desired projective limit as a set, and hence also as a vector
space. Moreover, it is well known that the initial topology with respect to the limit
maps Cii,(U,Y) — C%,(U, Y') makes C,(U,Y) the projective limit as a topological space,
and also as a topological vector space. But it is clear from the definition that the given
topology on C{f\,(U, Y’) coincides with this initial topology. O
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3.2. Topological and uniform structure

Corollary 3.2.6. Let X and Y be normed spaces, U C X an open nonempty set and
w C RY. The space Cyy(U,Y) is endowed with the initial topology with respect to the
inclusion maps

Co(U,Y) — CE(UY).

Moreover, Cyy,(U,Y') is the projective limit of the spaces C{j\,(U, Y) with k € N, together
with the inclusion maps.

Proof. This is an immediate consequence of [Proposition 3.2.5| ]

3.2.3. A completeness criterion

We describe a condition on W that ensures that C,(U,Y) is complete, provided that
Y is a Banach space. Most of the content of this subsection was already proved in the
author’s diploma thesis [Wal06, §3.2], so we omit the proofs and various technical lemmas.
They can be also found in [Wall3| §3.2.3].

Proposition 3.2.7. Let X and Y be normed spaces, U C X an open nonempty set and
k € N. Further, let W C R such that for each compact line segment S C U there exists
fs € W with inf,cg|fs(x)| > 0. Then the image of C{f\fl(U, Y) under the embedding
described in [Proposition 3.2.5 is closed.

Corollary 3.2.8. Let X be a normed space, U C X an open nonempty set, Y a Banach
space and k € N. Further, let W C R such that for each compact set K C U there exists
fx € W with inf ek | fi (x)| > 0. Then C@V(U, Y) is complete.

Corollary 3.2.9. Let X be a normed space, U € X an open nonempty set, Y a Banach
space and k € N. Further, let W C R with 1y € W. Then C&,(U,Y) is complete; in
particular, BC*(U,Y) is complete.

An integrability criterion

The given completeness criterion entails a criterion for the existence of the weak integral
of a continuous curve to a space C{ﬁv(U, Y') where Y is not necessarily complete. Note
that assertion @ of the following lemma was already stated and proved in the authors
diploma thesis as part of [Wal06|, La. 3.3], so we omit the proof. It can also be found in
[Wall3| La. 3.2.13].

Lemma 3.2.10. Let X and Y be normed spaces, U C X a nonempty open set, k € N,
W C @U, I:[a,b] = CH(UY) a map and R € C,(U,Y).

(a) Assume that T' is weakly integrable and that for each x € U there exists f, € W
with fy(x) #0. Then

b b
/ [(s)ds = R <= (Vz € U) evy (/ T(s) ds> — R(x),
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3.3. Composition on weighted functions and superposition operators

and for each x € U we have

evy (/:I‘(s) ds) = /ab ev,(T'(s))ds. (%)

(b) Assume that for each compact set K C U, there exists fx € W with 1nf<|fK(:E)\ > 0,
zE

that T' is continuous and

/a " eva(T(s)) ds = eva(R) ()

holds for all x € U. Then I" is weakly integrable with
b
/ I'(s)ds = R.

Proof. Let Y be the completion of Y. Then CE,(U,Y) C Ch(U, Y), and we denote
the inclusion map by ¢. It is obvious that ¢ is a topological embedding. In the following,
we denote the evaluation of CK,(U,Y) at z € U with év,.

Since we proved in |C0rollary 3.2.8| that the condition on W ensures that Cli, (U, Y) is
complete, ¢ o I’ is weakly integrable. Since ev, ot = ev, for x € U, we conclude from @]

(using |(x)| and that

b
/a (toT)(s)ds = u(R).

This identity ensures the integrability of I': By the Hahn-Banach theorem, each A €
Ck,(U,Y) extends to a A € Cli,(U,Y)', that is Aot = . Hence

b b _ -
/a(/\o].“)(s)ds:/ (Xo1oT)(s)ds = Me(R)) = A(R),

a

which had to be proved. O

3.3. Composition on weighted functions and superposition
operators

In this subsection we discuss the behaviour of weighted functions when they are composed
with certain functions. In particular, we show that a continuous multilinear or a suitable
analytic map induce a superposition operator between weighted function spaces. Moreover,
we examine the composition between bounded functions and between bounded functions
mapping 0 to 0 and weighted functions.

18



3.3. Composition on weighted functions and superposition operators

3.3.1. Composition with a multilinear map

A slightly less general version of [Proposition 3.3.3| was already proved in the author’s
diploma thesis as [Wal06, Satz 3.15]. Its proof also included the content of [Definition 3.3.1|
and [Lemma 3.3.20 The proofs, which can be found in [Wall3, La. 3.3.2, Prop. 3.3.3], are
omitted.

We prove that a continuous multilinear map from a normed space Y7 X -+ X Y}, to a
normed space Z induces a continuous multilinear map from C¥, (U, Y1) x - - - x C}i, (U, Y;,) to
C{fv(U , Z). As a preparation, we calculate the differential of a composition of a multilinear
map and other differentiable maps. The following definition is quite useful to do that.

Definition 3.3.1. Let Y7,...,Y},, X and Z be normed spacesand b:Y; x---xY,,, = Z
a continuous m-linear map. For each i € {1,...,m} we define the m-linear continuous
map

b ¥y x - x Y X L(X,Y;) X Yigq X -+ X Yy, = L(X, Z)
(y17 s 7yi—1>T7 Yit1,--- aym) = (h = b(y17 s 7yi—17T : h/v Yit+1,- - - aym))
Lemma 3.3.2. Let Yi,...,Y,, and Z be normed spaces, U be an open nonempty subset
of the normed space X and k € N. Further let b: Y, x --- x Y,, = Z be a continuous
m-linear map and vy, € FCE(U,Y1),...,ym € FC¥(U,Y;,). Then
bo(v1,...,7m) € FCKU, 2)

with
D(b o (F)/la v 77m)) = Z b(Z) o (717 <oy Vi1, D7i77i+17 s 7'7m) (3321)
=1

Proposition 3.3.3. Let U be an open nonempty subset of the normed space X. Let
Y1,...,Y,, be normed spaces, k € N and W, Wy,..., W,, C RY nonempty sets such that

(VFeW)(Fgr1 € Wi, gpm € Wi [f] < lgpal--|gs.ml-

Further let Z be another normed space and b :Y; X --- X Y, = Z a continuous m-linear
map. Then

bo (Y1, 7m) € Coy(U, Z)
for all v, € C{ﬁvl(U, Yi),..o,vm € C{fvm(U, Yin). The map

My (b) : Chy (U Y1) X - x Chy (U, Ym) = Cop(U, Z) (71, -+, Ym) = b0 (71, Ym)
is m-linear and continuous.

We prove an analogous result for decreasing functions.
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3.3. Composition on weighted functions and superposition operators

Corollary 3.3.4. Let Y1,...,Y,, be normed spaces, U an open nonempty subset of the
normed space X, k € N and W, Wi, ..., Wy, C RY nonempty such that

(Yf eW)(3gr1 € Wiy, gfm € W) [f] < lgfa

“ g fml-

Further let Z be another normed space, b : Y| X --- X Yy, = Z a continuous m-linear map
and j € {1,...,m}. Then

bo (Y- sYjs - Ym) € Con(U, Z)° (1)
for all v; € C{fvi(U,Yi) (i #3j) and v; € C’,ﬁvj(U,Yj)o. Moreover, the map
My(b) : Gy, (U, Y1) X -+ x Gy (U, Y5)% % -+ x Gy, (U, Vi) = Cyy(U, Z)°
(VY Ym) b (Y1 Vs Ym)

is m-linear and continuous.

Proof. Using [Proposition 3.3.3|and [Lemma 3.1.6] we only have to prove that holds.
This is done by induction on k (which we may assume finite).

k=0: For f € W, 2z € U and v, € C{}VI(U,Yl),...,fyj € Cgvj(U,Y})",...,'ym €
Cyy, (U, Yp) we compute

[f @)oo (v ym) (@)

< |IBllop T Tlgzs (@)l ()l < (HbHop Hl!%llgf,i,O) 97,5 (@)] [l ().
i=1 i#j
With this estimate we easily see that bo (y1,...,%j,...,7m) € Cgvj (U, Z)°.
k — k + 1: From |Corollary 3.2.4] (together with the induction base) we know that for
€O U,y € Gl (U Y)), oy i € Co (U, o)

bo( Y1y s Vg vy Ym) EC{f\}H(U, Z)° <= Dbo(1,---3%js - Ym)) EC’;V(U,L(X, Z))°.

We know from [(3.3.2.1)| in [Lemma 3.3.2f that

b@ o (71, -- Vs e Viely DYiy Vi1, - - s Ym)

NE

D(bo(’}/l?v’y]a?’ym)):

— S

i=1
i
+b(J O(’yl,...,’ijl,D’Yj,’YjJrlv-”arym)'

Because v; € C{j‘vj(U,Y})o and Dv; € C{BVJ_(U,L(X,Y]-))O, we can apply the inductive

hypothesis to all b and the Ck-maps Y1, .-y Ym and Day, ..., Dv,, to see that this is
an element of C, (U, L(X, 2))°. O

We list some applications of [Proposition 3.3.3. In the following corollaries, k € N, U

is an open nonempty subset of the normed space X and W C rRY always contains the
constant map 1.
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3.3. Composition on weighted functions and superposition operators

Corollary 3.3.5. Let A be a normed algebra with the continuous multiplication x. Then
Ck, (U, A) is an algebra with the continuous multiplication

M (%) :Cy (U, A) x CE,(U, A) — Chi,(U, A)
M(*)(v,n)(z) = y(z) * n(x).

We shall often write x instead of M (x).

Corollary 3.3.6. If E, F and G are normed spaces, then the composition of linear
operators

L(F,G) x L(E,F) = L(E,G)
1s bilinear and continuous and therefore induces the continuous bilinear maps

M(-) :CE, (U, L(F,Q)) x C},(U, L(E, F)) — Ch,(U,L(E, G))
M()(y,n)(z) =~(x) - n(r)

and

Mpe(-) :Ch, (U, L(F, Q) x BC*(U,L(E, F)) — Ci(U,L(E, G))
Mpe(+) (v, ) (x) = ~v(z) - n(x).

We shall often denote M (-) just by -.
Corollary 3.3.7. Let E and F' be normed spaces. Then the evaluation of linear maps
LB, F)xE—-F:(Tw)w—T- -w

is bilinear und continuous (see|Lemma A.2.3) and hence induces the continuous bilinear
map

M(-) :CE, (U L(E, F)) x C,(U, E) — C},(U, F)
M@)(T,n)(z) =T(x) n(z).

Instead of M(-) we will often write -.

3.3.2. Composition of weighted functions with bounded functions

We explore the composition between spaces of bounded functions and spaces of weighted
functions. One case that is of particular interest is the composition between certain
subsets of the spaces BC*(U,Y).
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3.3. Composition on weighted functions and superposition operators

Composition of bounded functions

We discuss under which conditions the composition is continuous or differentiable. The
next lemma was already stated and proved in [Wal06, La. 3.20], in a slightly less general
version. We omit the proof, which also can be found in [Wall3, La. 3.3.8].

Lemma 3.3.8. Let X, Y and Z be normed spaces, U C X and V CY open nonempty
subsets and k € N. Then for v € BC¥*Y(V, Z) and n € BCP*(U, V)
yon e BCHU, Z),
and the map
BCHN(V, Z) x BCPF(U, V) = BCK(U, Z) : (v,n) = v on (%)
s continuous.

As a preparation for discussing the differentiable properties of the composition, we
prove a nice identity for its differential quotient.

Lemma 3.3.9. Let X, Y and Z be normed spaces and U C X, V CY be open subsets.
Further, let v € FCY(V, Z), ¥ € CO(V,Z), i1 € BCY(U,Y) and n € CO(U,V) such that
dist(n(U),0V) > 0. Then, for allx € U and t € R* with

dist(n(U),0V)

[t < T, ot

the identity

evy ((’YJFW)O(TLtﬁ)_WO") =evy(Jo(n+1tn))+ /01 evy((Dyo (n+sti)-7)ds (3.3.9.1)
holds, where ev,, denotes the evaluation at x.
Proof. For t as above the identity
(y+ty) o (n+tif) —yon=o(n+tiq) +tyo(n+tij) —yon

holds, and an application of the mean value theorem gives
1
eve(yo (n+1t) —yon) = /0 eve((Dyo (n+ sti)) - tij) ds.
Division by t leads to the desired result. O

So we are ready to discuss when the composition is differentiable.

Proposition 3.3.10. Let X, Y and Z be normed spaces, U C X and V C Y open
subsets and k € N, ¢ € N*. Then the continuous map

GEEST  BCM NV, Z) x BCOR(U, V) — BCH(U, Z) : (7,m) = yon

(cf. is a C*-map with

dggées (Y0, m03 1) = 9564 (1, 10) + I vz (D05 M0) - 1 (3.3.10.1)
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3.3. Composition on weighted functions and superposition operators

Proof. For k < oo, the proof is by induction on ¢ which we may assume finite because the
inclusion maps BC>®(V, Z) — BC**+1(V, Z) are continuous linear (and hence smooth).
¢ = 1: Let v9,y € BC*TY(V,Z), ny € BCP*(U,V) and n € BC¥(U,Y). From

Lemma 3.3.9and [Lemma 3.2.10{ we conclude that for ¢ € K with |¢| < W, the
U
integral
1
| (00 o+ stm)) - s

exists in BC¥(U, Z). Using fidentity (3.3.9.1)| we derive

k+e+1 kpe41 1

g (vo+tv,mo+tn)—g (vo:m0)

B,z \10 0 : sc.z (0.m0) 9@5{;1(%770 +tn) +/O ggJCFfL(Y,Z)(DrVO’nO + stn) -nds.

We use |Proposition A.1.8 and the continuity of g@é@“l, QII%ZL(Y 2) and - (cf. |Lemma 3.3.8

and [Corollary 3.3.7)) to see that the right hand side of this equation converges to

k+¢ k+¢
9565 (1 10) + Iy (Dyos o) - 1

in BC*(U, Z) as t — 0. Hence the gl’%@l is differentiable and its differential is given by
(3.3.10.1)| and thus continuous.
¢ —1 — £: The map g@é@l is Ct if dggggl is C~1. The latter follows easily from

(3.3.10.1)}, since the inductive hypothesis ensures that gf{é@'l and gg'gfL(K 7) are c1;

and - and D are smooth.

If k = oo, then in view of |Corollary 3.2.6(and |[Proposition A.1.12} gzt , is smooth as
a map to BC*(U, Z) iff it is smooth as a map to BC’(U, Z) for each j € N. This was
already proved in the case where k = j and ¢ = cc. O

Composition of weighted functions with bounded functions

Generally, we can not expect that the composition of a bounded function with a weighted
function is again a weighted function (to the same weights). As an example, the
composition of the constant 1 function and a Schwartz function is not a Schwartz
function. However, if we compose a bounded function mapping 0 to 0 with a weighted
function, we get good results.

Lemma 3.3.11. Let X, Y and Z be normed spaces, U C X and V CY open subsets
such that V is star-shaped with center 0, k € N and W C RY with 1y € W. Then for
~v € BCHN(V, Z)o and 1 € CoF (U, V)

yoneCyU,2),
and the composition map
BEMH(V, Z)0 x Cf (U, V) = CYy(U. Z) = (m) = v o (%)

1S continuous.
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3.3. Composition on weighted functions and superposition operators

Proof. We distinguish the cases k < oo and k = oc:
k < oo: To prove that for v € BC**1(V, Z)y and n € Ce\}k(U, V') the composition v o 7 is
in Ci,(U, Z), in view of [Proposition 3.2.3|it suffices to show that

yon € (U, Z) and for k > 0 also D(yon) € Cyy (U, L(X, Z)).

Similarly the continuity of the composition which is denoted by g in the remainder
of this proof, is equivalent to the continuity of ¢y o g and for k > 0 also of D o gj, where
Lo : C8,(U, Z) — C),(U, Z) denotes the inclusion map.

First we show v on € C,(U, Z). To this end, let f € W and x € U. Then

£@) )] = 7@ () -
) H / Dy(tn(a)) - n(a) dt| < DYoo

here we used that the line segment from 0 to n(z) is contained in V. So yon € C9,(U, Z).
To check the continuity of i o g, let v, ~v9 € BC*TY(V, Z)¢ and 1,19 € C]‘?\}k(U, V') such
that ||n — nol|l1,,0 < dist(no(U),0V), f € W and « € U. Then

[F @) (v on) (@) = (o ©no)(2)]]
=[f @) v ( ) = (no(x)) + v (no(x)) = vo(no(x))|l
<If @) v(n()) =~ + [ @) 1(v = 70) ()]
()

=15 | [ Prtent@) + (1 = o) - (o) (o)t
+ [F @) (v = 70)(n ())—(7—70)(0)!!
<17 @) 1Dy olln() — mo(@) | + 1£(2) )(em(z) - m(z) dt|
<@ 1Dy oln(e) = mle)] + @) DG = 20) by ol

From this, we easily see that ¢y o gi is continuous in (7o, 70).
For k > 0, v € BCKTY(V, Z)g and n € Ce\}k(U, V') we apply the chain rule to get

(Do gr)(v,n) = D(yon) = (Dyon) Dn= gioru.z(Dy.n) - Dn; (%)

here we used that n € BC¥(U,V) because 1y is in W. Since D € Ciy '(U,L(X,Y))
and ggcyL(sz)(D’y,n) € BC*Y(U,L(Y, Z)) hold, (see [Lemma 3.3.8)), (D o gx)(v,7) is in
Ci (U, L(Y, Z)) (see |Corollary 3.3.6[). Using that D, - and ggaL(Y’Z) are continuous
(see |[Proposition 3.2.3] |Corollary 3.3.6| and [Lemma 3.3.8| respectively), we deduce the
continuity of D o gy from |(x*)}

k = oo: From the assertions already established, we derive the commutative diagram

BC™(V, Z)o x Co2 (U, V) — 2= ¢o2°(U, 2)

BCmHH(V, Z)o x G (U, V) ————— Cp" (U, 2)
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3.3. Composition on weighted functions and superposition operators

for each n € N, where the vertical arrows represent the inclusion maps. With
we easily deduce the continuity of go, from the one of g,. O

Proposition 3.3.12. Let X, Y and Z be normed spaces, U C X and V C Y open

subsets such that V is star-shaped with center 0, k € N, £ € N and W C RY with
1y € W. Then the map

ghSTY BCREN(V, Z)0 x Cof(ULV) — CRy(U, 2) = (v,m) =5 701

whose ezistence was stated in|Lemma 3.8.11is a Ct-map with

dgyy 5 (30107, 1) = gy 5 (0, 10) + 95 vz (D0s m0) - 71 (3.3.12.1)

Proof. For k < 0o, the proof is by induction on ¢ which we may assume finite because the
inclusion maps BC®(V, Z)g — BC**1(V, Z)y are continuous linear (and hence smooth).

¢ = 1: Let v,y € BCH NV, Z)o, no € COF(U,V) and n € CE,(U,Y). From
dist(no(U),0V)

Lemma 3.3.9 and [Lemma 3.2.10| we conclude that for ¢ € K with [t] < il ot the
U
integral
1
/0 (Do o (1o + stn)) - nds

exists in CJy, (U, Z). Using fidentity (3.3.9.1)| we derive

kt+e+1 k4041 1

g (Yo+ty,mo+tn)—g (v0,m0)

Wz e = gy (vamo + tn) + /0 Iiov.z (D00 + sty) - ds.

We use [Proposition A.1.8 and the continuity of g{ﬁ\f?l, g’gCCZL(Y 2) and - (cf. [Lemma 3.3.11

[Lemma 3.3.8/and [Corollary 3.3.7)) to see that the right hand side of this equation converges
to

g{j\—}:[Z—i_l(% m0) + gf;c_fL(yz) (Dv0,m0) - 1

in C{ﬁv(U, Z) as t — 0. Hence the g)’j\}f ZZH is differentiable and its differential is given by
(3.3.12.1)| and thus continuous.

{ —1 — ¢: The map g{ﬁ\f’ EZH is Ct if dg%r’ EZH is C*~1. The latter follows easily from
(3.3.12.1)} since the inductive hypothesis respective |Proposition 3.3.10| ensure that g%f ZZH

and gBJcr'L(Y,Z) are C*~1; and - and D are smooth.

If k = oo, then in view of [Corollary 3.2.6 and [Proposition A.1.12} gyy , is smooth as a

map to Cyy(U, Z) iff it is smooth as a map to Cj,,(U, Z) for each j € N. This was already
proved in the case where k = j and ¢ = oo. O
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3.3. Composition on weighted functions and superposition operators

3.3.3. Composition of weighted functions with an analytic map

We discuss a sufficient criterion for an analytic map to operate on Ce\}k(U , V) through
(covariant) composition. First, we state a result about the superposition on weighted
functions that is a direct consequence of [Proposition 3.3.12| After that, we have to treat
real and complex analytic functions seperately. While the complex case is straightforward,
in the real case we have to deal with complexifications.

We begin with a lemma about star-shaped open sets.

Lemma 3.3.13. Let X be a normed space and V' C X an open set that is star-shaped with
center 0. Then for d := dist({0},dV), there exists an anti-monotone family (V;a)re]o’d[

such that
v=|J V.
d>r>0

Further, each VO is an open bounded set that is star-shaped with center 0 such that
dist(VP",0V) > 457 min(1,7?). (3.3.13.1)

Proof. If V.= X this is obviously true. Otherwise, OV # () and d € R. We set for
r €]0,d|
V7= [0,1]- ({y € V : dist({y},0V) > r} 1 B.(0)).

This set is obviously bounded and star-shaped with center 0. Further, it is open: It is the
union of an open set with {0}, and by the choice of r, it contains Bg_,(0). So it remains
to show that dist(V,2,0V) > 0. To this end, let z € V,?. We distinguish two cases.

First case: € B(0, %5"). Then B(z, %5") C V.

Otherwise, there exists z € {y € V : dist({y},0V) > r} N B1(0) and ¢ €]0,1] with
x = tz. We show that By.(z) C V, and use that obviously B, (z) CV.Soletve By ().
We set h:= % — z. Then ||h| < r, and hence v = t(z 4+ h) € V since V is star-shaped.
Further, we know that |[2|| < 1 and ||z| > 95. Hence

t d—
L tllel] = flaf) > 457

This implies that B(z, &57r?) C V.
We deduce that [estimate (3.3.13.1)| holds. O

The proof of the following lemma is somewhat similar to the proof of [Wal06, Folg.
3.24] in the author’s diploma thesis. Since it uses a different superposition operator and
works for more general weighted function spaces, it is presented here nonetheless.

Lemma 3.3.14. Let X, Y and Z be normed spaces, U C X and V CY open subsets
such that V is star-shaped with center 0, k € N, £ € N and W C RY with 1y e W.
Suppose further that ® : V — Z with ®(0) = 0 satisfies

W open in V', bounded and star-shaped with center 0, dist(W,0V) >0
— By € BCHHY(W, 2).

26



3.3. Composition on weighted functions and superposition operators

Then ® o~ € C&,(U, Z) for all v € Cl‘?\}k(U, V), and the map
Cg\}k(U, V)= Ch(U,Z) iy Doy
is CL.

Proof. We let (Vﬁ)re]ovd[ as in [Lemma 3.3.13, Then for each r, we know from
ftion 3.3.12] that

Ce\}k(U, Vra) — C%(U, Z):yr Pory

is defined and C* since ® € BC*+1 (V9. Z)y by our assumption. But

e (U, V) = | eyt (U, v2),
r>0

and 1y € W implies that each Ce\’,k(U ,V:9) is open in Ce\}k(U, V'), hence the assertion is
proved. ]

The following two lemmas are in the author’s diploma thesis as [Wal06, La. 3.22].
They are listed here so they can be cited, but their proofs are omitted. The full version
can also be found in [Wall3| Las. 3.3.15, 3.3.16].

Lemma 3.3.15. Let Y and Z be complex normed spaces, V. C'Y an open nonempty
subset and ® : V' — Z a complex analytic map. Further, let W C 'V with dist(W,0V) > 0
and r > 0 with r < dist(W,0V) such that <I>|W+§Y(07T) € BCY'(W + By (0,7),Z). Then
Q| € BC™®(W, Z). More explicitly, for each k € N we have

(2k)*

[l1yy 6 < rk | H1W+§y(0¢)’0.

(3.3.15.1)

Lemma 3.3.16. Let Y and Z be complex normed spaces, V. CY an open nonempty
subset and ® : V — Z a complex analytic map that satisfies the following condition:

W CV, W open in V, dist(W,0V) >0 = ®|y € BCO(W, Z). (3.3.16.1)

Then ®|w € BC®(W, Z) for all open subsets W C V with dist(W,0V) > 0.

On real analytic maps and good complexifications

The two previous lemmas would allow us to state the desired result concerning covariant
composition, but only for complex analytic maps. There are examples of real analytic
maps for which the assertion of is wrong. We define a class of real analytic
maps that is suited to our need. Before that, we state the following small result concerning
complexifications.

Lemma 3.3.17. Let X and Y be real normed spaces, U C X an open nonempty set,
kEeN and W C RY. Further let v: Y — Y denote the canonical inclusion into Y¢.
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3.3. Composition on weighted functions and superposition operators

(a) Then Cii,(U,Yc) is the complexification of Cy,(U,Y), and the canonical inclusion
map s given by
CE(UY) = CE, (U, Ye) iy = 1on.

(b) Let V. CY be an open nonempty set and V C Y¢ an open neighborhood of (V)
such that

(VM C V) dist(M,Y \ V) >0 = dist(«(M),Yc \ V) > 0. (3.3.17.1)

Then
Lo COF(U, V) C XU, V).

Proof. [(a)| It is a well known fact that Yo 2 Y x Y and «(y) = (y,0) for each y € Y.
Hence

Cr,(U, Ye) 2 CE,(UY xY) 2 Chy(U,Y) x Chy(U,Y)

by [Lemma 3.4.16| (and |Proposition 3.3.3), and

Loy =(7,0) € C},(U,Y) x C}(U,Y) = C},(U, Yc)

for v € Cli, (U, Y).
[(b)] This is an immediate consequence of [(a)| and [condition (3.3.17.1)] O

Definition 3.3.18. Let Y and Z be real normed spaces, V C Y an open nonempty set,
®:V — Z areal analytic map. We say that ® has a good complezification if there exists
a complexification ® : V C Y — Z¢ of ® which satisfies |cond1t10n (3.3.16. 1)| and whose
domain satisfies |cond1t10n (3.3.17.1)l In this case, we call ¢ a good complexification.

The following lemma states that good complexifications always exist at least locally. It
is not needed in the further discussion.

Lemma 3.3.19. Let Y and Z be real normed spaces, V CY an open nonempty set and
®:V — Z a real analytic map. Then for each x € V there exists an open neighborhood
W, CY of x such that ®|w, has a good complezification.

Proof. Let d:VC Yc — Z¢ be a complexification of ® and ¢ : V — V the canonical
inclusion. Then there exists an r > 0 such that By, (¢(x),r) C V and @ is bounded on
By (t(x),r). Then it is obvious that W, := 71 (By.((x),r)) = By (z,r) has the stated
property. ]

Power series We present a class of analytic maps which have good complexifications:
Absolutely convergent power series in Banach algebras. This lemma was in the author’s
diploma thesis as [Wal06, La. 3.23]. We omit its proof (which can be found in [Wall3,
La. 3.3.20]), but present it here so that we can cite it.
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3.3. Composition on weighted functions and superposition operators

Lemma 3.3.20. Let A be a Banach algebra and Y ;2 ar?’ a power series with ag € K
and the radius of convergence R €]0,00]. We define for x € A

P,:Ba(z,R) > A:y— Zag(y — )"
=0

Then the following assertions hold:

(a) The map P, is analytic.

(b) If K = C then P, satisfies|condition (3.3.16.1)|.

(¢) If K =R then P, has a good complexification.

Main Result

Finally, we state the desired result for complex analytic maps and real analytic maps
with good complexifications. The assertion is similar to the one of [Wal06| Folg. 3.24]
in the author’s diploma thesis, but we present it and the proof since the real case is
proved more generally, a wider class of weighted function spaces is treated, and a different
superposition operator is used.

Proposition 3.3.21. Let X, Y and Z be normed spaces, U C X and V C Y open
nonempty sets such that V is star-shaped with center 0, k € N and W C RY with ly e W.
Further, let ® : V — Z with ®(0) = 0 be either a complex analytic map that satisfies
|condition (3.3.16.1)| or a real analytic map that has a good complexification. Then for

each v € C,?\’,k(U, V)

Doye C{iv(U, Z),

and the map
o, : COFU,V) = C}p(U,Z) iy = Bony

s analytic.

Proof. If ® is complex analytic, this is an immediate consequence of and
Lemma 3.3.76l

If @ is real analytic, by our assumptions there exists a good complexification d:VC
Yo — Z. We know from the first part that ® induces a complex analytic map

O, : COF (U, V) — Chy(U, Zc) : v > Do .

Since Cg\}k(U, V) C C%)k(U, V) by [Lemma 3.3.17|and ®, coincides with the restriction of

®, to Cg\’,k(U, V), it follows that ®, is real analytic. O
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3.3. Composition on weighted functions and superposition operators

Quasi-inversion algebras of weighted functions

As an application, we see that for a set W of weights with 1y € W and a Banach
algebra A, the space C{fv(U, A) can be turned into a topological algebra with continuous
quasi-inversion. Details on algebras with quasi-inversion can be found in
It was proved as an amalgam of [Wal06, Prop. 3.26, Satz 3.27] in the author’s diploma
thesis. Since the technique used here is different, the proof is not omitted.

Lemma 3.3.22. Let A be a Banach algebra, X a normed space, U C X an open
nonempty subset, k € N and W C RY with 1y € W. Then the locally convex space
C{fv(U, A) endowed with the multiplication described in|Corollary 3.3.5 becomes a complete
topological algebra with continuous quasi-inversion in the sense of [Definition C.2.1. For
each v € C¥, (U, A)4

QIC\’jV(U,A) (V) =QILaon,
and
Cyy (U, Ba(0,1)) = {7 € Cfy(U, 4) : [l < 1} € Cu(U. A).
Proof. The relation QIC’;V (U,A) (7) = QI 407 is an immediate consequence of the definition

of the multiplication, so it only remains to show that C{f\,(U, A)? is open and QIC% (U,A)
is continuous. We proved in that it suffices to find a neighborhood of 0
that consists of quasi-invertible elements such that the restriction of QIC‘;;v (v,4) to it is

continuous. We show that C{?\’,k(U7 B4(0,1)) is such a neighborhood. The map
G:B1(0)—>A:m'—>2xi
i=1

is given by a power series and maps 0 to 0, hence we know from and
[Proposition 3.3.21| that the map

CoOF (U, Ba(0,1)) = Chy(U, A) : v = G oy

is defined and analytic. Since

0 .
Goy=)
i=1
for each v € Cl‘?\}k(U ,BA(0,1)), we conclude from [Lemma C.2.5/ that ~ is quasi-invertible
with
QIc{jv(U,A)(’Y) =—-Gon,
so the proof is complete. O

Example 3.3.23. Let Y be a Banach space, U C X an open nonempty subset, k € N
and W C RV with 1y € W. Then the locally convex space C¥,(U,L(Y)) endowed with
the multiplication described in [Corollary 3.3.6| becomes a complete topological algebra
with continuous quasi-inversion.
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3.3. Composition on weighted functions and superposition operators

3.3.4. Superposition with functions defined on a product

We examine whether a function = : U x V — Z induces a superposition operation
v — EZo (idy,y) on weighed functions. We show that this is the case if 0 € V', Z maps
U x {0} to 0, and if the size of the derivatives of Z can be covered with the weights, see

(3.3.26.4)| for the precise phrasing.
Estimates for higher derivatives

We give estimates for the higher derivatives of a function of two variables, provided it is
linear in its second argument. We also turn to more special cases of such functions.

Lemma 3.3.24. Let X, Y and Z be normed spaces, U C X an open nonempty set,
keN and 2 € FCF(U x Y, Z) a map that is linear in its second argument. Further, let
teNwith!<k,zeUandyeY.

(a) The map DgZ)E is linear in the second argument. Hence DgZ)E(U x {0}) = {0} and
(if £ < k)
d — - -
%h:oD%Z):(J: +thy,y + the) = DVVZ(x, hy) + DVTVE(z, y)=he. (1)

Here, for an (m+1)-linear map b : E1 X -+- X Eppy1 — F, for h € Ep, 1 we let b-h
denote the m-linear map E1 X -+- X Ep, — F 1 (x1,...,Zm) = b(x1,...,Zm, h).

(b) Suppose that £ > 1. Let h',... ,h* € X x Y with b/ = (h{,h%). Then the identity

Y/ —
—_ ) — l—1)— 1 1
DOZ(z,y) - (h,...,0") = D\VZ(w,y) - (b, ..., 05) + 3" DY V=(2, 1) - ]

j=1
holds, where h{ = (hi, ..., h{_l, h{“, ..,hY). In particular,
—_ l—1)— ) —
IDOZ (2, y)lop < £IDSE(, lop + IDVZ(, ) lopllyll- )

(c) Suppose that there exist a normed space X, amapg € FCk(U, )N() and a continuous
bilinear map b: X xY — Z such that = =bo (g x idy). Then

DVE(2,y) - (b1, .. he) = b(DOg(@) - (b1, ..., he),y),
for hy,...,hy € X. In particular,
) —
1D (2, Y lop < 16lopl DO g () lop (tt1)
and (if £ >1)

IDOZ(2, ) lop < [bllopl1 D Vg(@)lp + [Dlopllyll IDOg(@)op-  (3.3.24.1)
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3.3. Composition on weighted functions and superposition operators

Proof. We prove by induction on ¢ that dgg)E is linear in its second argument. For
£ = 0, this is true by our assumption.
¢ — £+ 1: Since for hy,...,hp11 € X,

_ d _
dgul):(iﬂ, yshi, .. heyr) = a\tzodgg):(ﬂﬁ +theyr,ys b, .o hy),

(4+1) =

and d( )= is linear in its second argument, also d; ' = is so.
We prove . We get using the linearity of D( )= in the second argument

d d
ﬁtzopgf)z(x +thi,y + thy) = lim D\VE (2 + thy, hy) + %\tzng)E(x +thi,y)
Since limy_o D\"Z(z + thy, hy) = D\Z(z, hy) and

d _ _
a\tZODge):(x+th1,y)-(vl,..., v) = DVVE (2, y) (01, ... ve, b)),

for vi1,...,vp € X, the desired identity follows.
We prove the identity for D®Z by induction on £.
¢ = 1: This follows directly from
¢ — £+ 1: We calculate the (¢ + 1)-th derivative of = using the inductive hypothesis

and

D<f+1> =(x,y) - (Y. BT

|t oDOE(x + thiT y + th5T) - (hY, ... B

Zahzng)E(:chth{*l,y%—thgﬂ) i, .. hb) +Z o DY V= th{T 1)) - h

14
£) — 4 —_ ,_, i
:D§ )a(x, hg“) (b, R + D§ +1)a(x,y) - (hi,.. h€+1 Z a x, hJ h{,

from which we derive the assertion.

The estimate |({1)| follows directly from this identity.

We first prove the identity by induction on ¢. The assertion obviously holds for
¢=0.

¢ — £+ 1: We use the inductive hypothesis to calculate

- d -
DY VE(,y) - (b, he) = @\t:OD@):(w + thet1,y) - (b, - he)
d
= —li=ob(Dg(x + theyr) - (ha - ha),y) = b(D Vg(@) - (ha, - hey) ),

so the assertion is established.
The estimate (T T T)|follows directly from this identity. Furthermore, we derive[(3.3.24.1)

from [(77) and [(11.1] -
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3.3. Composition on weighted functions and superposition operators

Lemma 3.3.25. Let E, F, X, Y and Z be normed spaces, U C X and V C Y
open nonempty sets, b : L(Y,Z) x E — F continuous bilinear with ||blop < 1 and
Ee€ FC®(U xV,Z). We define

B U XV x E— F:(2,y,¢) — b(DyE(x,y), ).
Then El(f)(U x V x {0}) = {0}, and for each £ € N*, we have
—(2 - -
IDYEP (.5, )llop < EIDOZ(@,9)op + el IDUHVE (@, ) o

Moreover, for each R > 0,

—(2 - -

H:Z() )H1U><V><BE(0,R)7€ S UElyyv e + BlIEl gy o1 (3.3.25.1)
Proof. We get from ((3.3.24.1)| that

—(2 —_ — —_
IDOZP (2, y,€)]lop < DD (DoZ)(,y) lop + lle]l [ DO (D2Z)(, y) lop-

Since
1D (D2Z) (,y)llop < | DO (DE) (@, y)llop = | DTVE(, y)lop
for all £ € N*, we obtain the first estimate. |(3.3.25.1)| follows. O]

The superposition operator

We prove the above assertion about the superposition, using notation from [Lemma 3.3.25

The hardest part of the proof will be the examination of the superposition with = ]3[ .

Proposition 3.3.26. Let X, Y and Z be normed spaces, U C X an open nonempty

subset, V- CY an open neighborhood of 0 that is star-shaped with center 0, W C RY with
ly € W and k € N. Further, let £ € FC>(U x V, Z) such that Z(U x {0}) = {0}.

(a) For maps v,n:U — V such that the line segment {ty+ (1 —t)n:t € [0,1]} C VY
and f € W, the estimate

I (id,7) ~ Eo (idy,m) 70 < |D2El1g wv-0lly — nll 70 (3.3.26.1)
holds. In particular, for n =0 we get
120 (idur. )70 < I1D2Z 1y 0l 0 (3.3.26.2)
(b) Let v € FCY(U,V). Then
D(Eo (idy,v)) = D1Zo (idy,v) + D2Eo (idy, ) - Dy.

The map D1Z maps U x {0} to 0, and for f € W, we have

120 (idu, Mlg1 < €l wv2llVllzo + D251y 0017 £1- (3.3.26.3)
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3.3. Composition on weighted functions and superposition operators

(c) Suppose that
(Vf eW,l e N) (39 € Winax) |1Ell1y v el f] < 19l (3.3.26.4)
Then the map
E.: COF (U V) = Ci(U, Z) - v = Zo (idy, v)
is defined and smooth with

dZ.(v; 1) = (d2E)« (v, 1) (3.3.26.5)

Proof. @ For each z € U, we calculate

(e 7(@)) ~ Bl (@)) = [ (o t7() + (1= D)) — n(e) .
Hence for each f € W, we have
[F@)E@, () = E(@,n(@)| < Doy ol f(@)] [v(x) = n(@)]-

From this estimate, we conclude that [(3.3.26.1)| holds.
[(b)] The identity for D(Zo (idy,~y)) follows from the Chain Rule. For z € U and h € X,

we have
Z(x + th,0) — =(z,0
DyE(,0) - h = dyS(a, 0; ) = lim = D ZE@0) _
t—0 t

whence D1E(x,0) = 0. We then get the estimate by applying |(3.3.26.2)| to the first
summand.
We first prove by induction on k that =, is defined and continuous.

k = 0: We see with [(3.3.26.2)| that =, is defined since
1E e (idv, Vo < IElpevallVllzo < [7llg0-

With a similar argument, we see using that =, continuous since each v €
CoX(U, V) has a convex neighborhood in Coy (U, V).

k — k+1: We use[Proposition 3.2.3| So all that remains to show is that D(Zo(idy,)) €
CE, (U, L(X, Z)) and v — D(Z o (idy, 7)) is continuous. We proved in that

D(E o (idy,)) = DiZ o (idy, ) + EY) o (idy, v, Dv),

see |[Lemma 3.3.25| for the definition of ES@) (here, M denotes the composition of linear
operators). We also proved in@that D,=(U x{0}) = {0}, and obviously || D1Z||1,,, ¢ <

|Ell1, «v,e+1 for all £ € N. Hence we can use the inductive hypothesis to see that

CHFT U, V) = (U, L(X, Z)) - v = DiZ o (idy,7)
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3.3. Composition on weighted functions and superposition operators

is defined and continuous. We examine EE\?. To this end, let R > 0. We see using

(3.3.25.1)| that for £ € N* and f € W,

—(2 —_
”‘:‘5\4)||1U><V><BL(X’Y)(O,R)7Z|f| < ﬁH\:Hlva,g

I+ RIEy v o411 ] < lgel + Rlgega]-

Here, g¢, gr+1 € Winax €xist by our assumptions. Hence in both cases, we can apply the

inductive hypothesis to ES\Q/[) and get (using [Lemma 3.4.16| implicitly) that the map
Oyt (U, V) x Cf (U, Biix ) (0, R)) = Cfy(U, L(X, 2)) : (7, T) = E} o (idys, 7, T)
is defined and continuous. Hence for each v € Ce\’,kH(U, V), the map

{n e CoF UV : Inlliga < Wl + 1} = Ciy(U,L(X, 2)) : n = Z5) o (ider, n, D)

is defined and continuous. Since 1y € W, the domain of this map is a neighborhood of ~.
This finishes the proof.

We pass on to prove the smoothness of Z,. To do this, we have to examine dy=.
Obviously do= = E.(2), where - denotes the evaluation of linear operators. Hence we can
use a similar argument as above when discussing Eg\? to see that

(daE)s : Oy (U, V) x Cp(U,Y) = Ch)(U, Z) « (v, 1) = d2Z 0 (idyr, 7, m)

is defined and continuous. Now let v € Cf,)\’,k(U, V) and v € Ci,(U,Y). Since C%}k(U, V) is
open, there exists an 7 > 0 such that {y+ sy : s € Bx(0,7)} C Ce\’,k(U, V). We calculate
for z € U and t € Bg(0,7) \ {0} (using [Lemma 3.4.16| implicitly) that

E(v+in)(@) —E(y)(@) _ E(z,7(z) +tn(r)) — E(z,7(x))

; t
__jﬁldQE(x,v(x)-%5t71@3%’h(x))d5

1
= /0 (d2Z)s(y + sty1,71)(x) ds.
Hence we can apply [Lemma 3.2.10| to see that
Ei(y+itm)— = Lo
*(’7 ’711;) *(’7) = A (dg:)*(’y + St'Yl,’Yl) ds.

Using [Proposition A.1.8, we derive that =, is C! and |(3.3.26.5)| holds.
We see with |(3.3.25.1)| (again, using that do= = E.(z)) that |(3.3.26.4)| holds for do=
on U x V x Br(0) for each R > 0. Since 1y € W, we have that CV\’,k(U,V xY) =

Ugr OC,?\}]C(U,V x Bgr(0)). So with an easy induction argument we conclude (using
ILemma 3.4.16) from |(3.3.26.5)| that Z, is C¢ for each £ € N and hence smooth. O

Corollary 3.3.27. Let the data be as in|Proposition 3.3.26| Suppose that D= € BC*(U x
V,L(X x Y, Z)). Then

E.: COF (U V) = Ch(U, Z) : v = Eo (idy,7)
1s defined and smooth.

Proof. This follows from [Proposition 3.3.26since [(3.3.26.4)|is obviously satisfied. O
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3.4. Weighted maps into locally convex spaces

3.4. Weighted maps into locally convex spaces

We define and examine weighted functions with values in arbitrary locally convex spaces.
In order to do this, we use tools and definitions that are provided in The material
of this section is only needed for latter discussions of weighted mapping groups with
values in arbitrary locally convex Lie groups in readers primarily interested
in diffeomorphism groups may want to skip this section.

3.4.1. Definition and topological structure

The definition of weighted function with values in locally convex spaces relies on the one
with values in normed spaces.

Definition 3.4.1. Let X be a normed space, U C X an open nonempty set, Y a locally
convex space, k € Nand W C RY nonempty. We define

w(U.Y)|:={y € CHU,Y) : (¥p e N(Y)) mp 07 € Cly (U )},
using notation as in [Definition A.1.29] For p € N(Y), f € W and ¢ € N with ¢ < k,
| llppd: C(UY) = Ry = [l 0l e

is a seminorm on C},(U,Y). We endow CF,(U,Y) with the locally convex vector space
topology that is generated by these seminorms.

We show that the structure of Cji,(U,Y) is already determined by {||||,sz:p € P, f €
W, ¢ € N with ¢ < k}, where P is just a generator of N (Y). This can be useful in some
cases.

Lemma 3.4.2. Let X be a normed space, U C X an open nonempty set, Y a locally
convex space, k € N, W C RrY nonempty and P C N(Y) a set that generates N(Y).
Then for v € CK(U,Y)

vy e Ci(UY) <= (VpeP)mpory € Chy(U,Y,),
and the map

C(U.Y) = [[ Gv(U.Yy) : v = (mp 0 9)pep ()
peEP

s a topological embedding.

Proof. Let ¢ € N(Y). Then there exist p1,...,p, € P and C > 0 such that

¢ <C- max p.
1= )

1,....,n

Further we know that for each f e Nwith /< kandxz € U, hy,...,hy € X

d(g)(ﬂ-q 0’7)(1‘;}1‘1’ .. '7hﬁ) = (7Tq Od(é)rY)(xahla .. '7hf)a
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3.4. Weighted maps into locally convex spaces

so for y € U we get

1d (mg 0 ) (@; b, - .. he) — dO (7 0 y) (s has - . ) g
<[ dOy(as ha, ... he) = dOy(ys ha, . ko)l
<C- max Hd(é)v(x; hi,... he) — d(é)'y(y; hi, ... he)llp;-

i=1,...,n

Since we assumed that 7,, oy € FCF(U,Y,,), from this estimate we conclude with
IProposition A.3.2| that Tqgo7y € FCRU, Y,) with

10O 0 )(@)llop < C - mase DO (mp, 7))l

=1,...

for all £ € N with £ < k and x € U. This implies that
il <€ max Il
for each f € W and ¢ € N with £ < k. Hence
g0 € Coy(U, Yy),

and |[|-||q,,¢ is continuous with respect to the initial topology induced by Since q was
arbitrary, the proof is complete. O

An integrability criterion We generalize the assertion of [Lemma 3.2.10

Lemma 3.4.3. Let X be a normed space, U C X a nonempty open set, Y a locally

convex space, k € N, W C RY such that for each compact set K C U, there exists an
frc € W with infyek|fr(x)] > 0. Further, let I' : [a,b] — Cii,(U,Y) a continuous curve
and R € C¥,(U,Y). Assume that

b
/a evy(T(s)) ds = eva(R) (%)

holds for all x € U. Then T" is weakly integrable with

/abl“(s) ds = R.

Proof. We derive from [Lemma 3.4.2) that the dual space of CJi,(U,Y") coincides with the
set of functionals {Aom, :p € N(Y),\ € C},(U,Y,)'}. Hence T is weakly integrable
with the integral R iff

b
/a A(mp o) (s) ds = A(mp o R)

holds for all p € N(Y) and A € C§,(U,Y,)’; this is clearly equivalent to the weak
integrability of 7, o I' with integral 7, o R for all p € N(Y). But we derive this assertion
from [identity () and [Lemma 3.2.10] O
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3.4. Weighted maps into locally convex spaces

Reduction to lower order

We prove a generalization of [Proposition 3.2.3] To this end, we need a locally convex
topology on L(X,Y’), where X is a normed and Y a locally convex space. We define such
a topology and show that it arises as the intial topology with respect to the embedding
L(X.Y) = e LIX. Yy),

Topology on linear operators

Definition 3.4.4 (Topology on linear operators). Let X be a normed space and Y a
locally convex space. For each p € N(Y) and T € L(X,Y), we set

| Tx||
1T Nlop,p| = £

= |lmp o T op-

This obviously defines a seminorm on L(X,Y"), and henceforth we endow L(X,Y") with
the locally convex topology that is generated by these seminorms. Further we define
L(Xv Y)OPJJ = L(Xv Y)

[Illop,p*

Lemma 3.4.5. Let X be a normed space, Y a locally convez space and p € N(Y'). Then
the map induced by

(M) : L(X,Y) 5 L(X,Y,) : T s mpo T

that makes

(7p)«

(L(Xa Y)v H'HOP:P)

Top,p -
L(X7 Y)op,p

a commutative diagram is an isometric isomorphism onto the image of (mp)«. The map

L(X,Y) = [] LX,Y): T+ (mp0T)peny)
peEN(Y)

s a topological embedding.

Proof. Since ||T||op,p = ||mp 0 T||op for each T' € L(X,Y"), the induced map is an isometry.
By the definition of the topology of L(X,Y),

L(X,Y)— H L(X,Y)opp : T (Topp © T)pen(v)
PeEN(Y)

is an embedding, so by the transitivity of initial topologies, the proof is finished. O
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3.4. Weighted maps into locally convex spaces

Weighted maps into spaces of linear operators and the main result Before we can
prove the main result, we have to take a look at the structure of C¥,(U, L(X,Y)).

Lemma 3.4.6. Let X be a normed space, Y a locally conver space, U C X an open
nonempty subset and k € N. Then for T' € C*(U,L(X,Y)), nonempty W C RY and
k € N the equivalence

T € Ch(UL(X,Y)) <= (¥pe N(Y)) (mp). 0T € Ch (U, L(X,Y,))

holds. More precisely, for £ € N with £ <k, f € RY and p € N(Y) we have

I lopps e = N (mp)s 0 Tl - (3.4.6.1)

This induces that the map

C{j\/(Uv L(Xv Y)) - H C{E\/(U¢L(X¢ Y;’)) L= ((ﬂ—p)* 0 I‘)pe/\f(Y)
pEN(Y)

s a topological embedding.

Proof. Note first that 7,y , 0T is FC* iff (). 0T is FC¥ as a consequence of [Lemma 3.4.5

and |[Proposition A.3.2l Using [Lemma 3.4.5| it is easy to see that [identity (3.4.6.1)|is
satisfied. This implies that for each p € N (Y) the equivalence

(Wp)* ol'e Clljv(U7L(X»Yp)) — Teppol € Clljv(UvL(XvY)op,p)

holds and that the isometry whose existence was stated in induces an
embedding
C(UL(X,Y )opp) = Ciy(U, L(X, Y))).

Further we proved in that

CyULX,Y) = [ GvULX,Y)epp) : T = (Topp)s 0 Dpep
pEN(Y)

is an embedding, so we are home. O

Proposition 3.4.7 (Reduction to lower order). Let X be a normed space, Y a locally

convexr space, U C X an open nonempty set, VW C RY nonempty and k € N. Let
v €CHU,Y). Then

veCHNUY) < (Dv,7) € C3y(U,L(X,Y)) x Cy(U,Y).
Furthermore, the map
CoH(UY) = Cy(U, L(X,Y)) x Cly(U,Y) sy = (D7, 7)

s a topological embedding.
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3.4. Weighted maps into locally convex spaces

Proof. The definition of C{f{f 1(U7 Y), |Proposition 3.2.3| and |Lemma 3.4.6| give the equiva-
lences

yEeCET(UY) <= (VpeN(Y))mpory e i (U,Y,)
= (Vp e N(Y))(D(mp07),mp07) € Cly(U, L(X, Yp)) x Cyy(U, Yy)
— (D7,7) € Gi(U,L(X,Y)) x Cp(U, Y).

Furthermore, we have the commutative diagram

Ch(U,Y) Chy(U,L(X,Y)) x CY(U,Y)

I

Mhenr) G (U Yp) ———— Tpenrv) Civ (U, L(X, Yp)) x GO (U, Y})

and since the maps represented by the three lower arrows are embeddings, so is the map
at the top. O

3.4.2. Weighted decreasing maps

We give another definition for weighted maps that decay at infinity. Here, the domain of
the maps is contained in a finite dimensional vector space.

Definition 3.4.8. Let Y be a normed space, U an open nonempty subset of the finite-
dimensional space X and W C RY nonempty. We define for k € N

Cry (U Y= {y € CE,(U,Y) : (Vf e W, L e N, L < k)
(Ve > 0)(3K C U compact)||y|on x|l < €}

For a locally convex space Y we set
C(UY)* = {y € C(U,Y) : (Vp € N(Y)) mp 0y € Cly(U, )}
For a subset V' C Y, we define
LU V)= {7 € v, Y)" (V) S V)
As in we can prove that C¥,(U,Y)* is closed in C},(U,Y).

Lemma 3.4.9. Let Y be a locally convex space, U an open monempty subset of the
finite-dimensional space X, W C RY nonempty and k € N. Then C{ﬁv(U, Y)® is a closed
vector subspace of Ci,(U,Y).

Proof. 1t is obvious from the definition of CJj,(U,Y)* that it is a vector subspace. It
remains to show that it is closed. To this end, let (v;);c; be a net in Ci,(U,Y)* that
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3.4. Weighted maps into locally convex spaces

converges to vy € C{ﬁv(U, Y) in the topology of C{iv(U,Y). Let pe N(Y), fe W, eN
with ¢ < k and € > 0. Then there exists an i. € I such that

. €
i >de = |7 —Yillp,se < bR

Further there exists a compact set K such that

3
Vil llp,fe < 5

Hence

IVleni llp.re < IVlong — Yiclong llp, 7.6 + Vel llp,r.e < €,

so v € Ch,(U,Y)". O
Further, we prove the following convexity criterion.

Lemma 3.4.10. Let X be a finite-dimensional space, U C X an open nonempty subset,
Y a locally convex space, VW C RY with gy eW, LN andV CY convex. Then the set
Coy (U, V)* is conver.

Proof. 1t is obvious that Cjy,(U, V') — whose definition is straightforward — is convex since
V' is so. But then
Cw(U,V)* = Cp(U.V) NCy(U,Y)*

is convex as intersection of convex sets. O

As in |Corollary 3.2.4) we prove a reduction to lower order for C,’j\f LU, v)e.

Proposition 3.4.11. Let X be a finite-dimensional space, Y a locally convex space,
U C X an open nonempty set, VW C rRY nonempty, k € N and v € C1(U,Y). Then

vy €N UY)® <= (Dv,7) € Ciy(U,L(X,Y))* x Cy(U,Y)*,
and the map
CH(U,Y)* = Ciy(U,L(X,Y))* x Cp(U,Y)* : 7 = (D, 7)

s a topological embedding.

Proof. Tt is a consequence of [identity (3.2.2.2)| in [Lemma 3.2.2| that for each p € N (Y)

Moy € CN(UY,)* <= (D(mpo07),mp07) € Cly(U,L(X,Y,))* x C(U,Y3)*.

Further it is a consequence of [identity (3.4.6.1)in [Lemma 3.4.6| that

Dy € Gy (U.L(X,Y))* <= (vp € N(Y))D(my07) € Cy(U, L(X, ¥;))",

so the equivalence is proved. The assertion on the embedding is a consequence of
[Proposition 3.4.7 and [Lemma 3.4.9] So the proof is finished. O
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3.4. Weighted maps into locally convex spaces

3.4.3. Composition and Superposition

As in we examine which kind of maps induce superposition operators on
C{}V(U, Y) or C{ﬁV(U ,Y)*. We show that continuous multilinear maps induce superposition
operators on both function spaces. For C{ﬁv(U ,Y)®, we can prove a much stronger result:
A smooth function mapping 0 on 0 induces a superposition operator between these spaces.

Composition with a multilinear map

The following definition and lemma are mostly the same as in [Subsection 3.3.1] but here
Z denotes a locally convex space.

Definition 3.4.12. Let X be a normed space, Y7,...,Y,, and Z locally convex spaces
and b: Y] x -+ xY,, = Z a continuous m-linear map. For each i € {1,...,m}, we define
the m-linear continuous map

b Yy x - x Yy x L(X,Y;) X Yig1 X -+ X Yy, = L(X, Z)
:(yla" . 7yifl7Ta yi+17"'7ym) — (h — b(yla' "7yi717T' h’a yz+17,ym))

Lemma 3.4.13. Let Y1,...,Yn and Z be locally convex spaces, U be an open nonempty
subset of the normed space X and k € N. Further letb : Yy X --- xXY,, > Z be a
continuous m-linear map and v, € CK(U,Y1),...,v%m € C*¥(U,Y;,). Then

bo(V1,---,Ym) € Ck(U,Z)

with

D(b % (’)/17 ‘e an)) = Zb(l) % (717 o 7’Yi—17D7i77i+17 cee 7’7771) (34131)
i=1

Proof. To calculate the derivative of bo (y1,...,7%m), we apply the chain rule and get

d(bo (v, ym))(@ih) = D _b((2),...,vim1(®), dyi(@; h), Yig1(2), - - -, Ym(2))

I

@
I
-

b(l) (71(‘73)7 s 771'—1(*73)7 DP)/Z(x% 7i+1(x)7 s 77m(x)) < h.

.

s
I
—

This implies |(3.4.13.1)] O]

Now we can prove the results about the multilinear superposition.

Proposition 3.4.14. Let U be an open nonempty subset of the normed space X. Let
Y1,...,Y,, be locally convex spaces, k € N and W, Wy, ..., Wy, C RY nonempty sets such
that

(YfeW)3gr1 € Wi, oo, 08m € W) IfI < lggal - gf,ml
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3.4. Weighted maps into locally convex spaces

Further let Z be another locally convex space and b : Y] X --- X Y, — Z a continuous
m-linear map. Then

bo(Vi,...,Ym) € C’;V(U, 7)
for all v1 € C}, (U, Y1),...,vm € Chy, (U,Ym). The map
b : Chy (U, Y1) x - x Chy, (U, Vi) = Cop(U, Z) = (71, -y Ym) = b0 (Y15, Yim)
1s m-linear and continuous.

Proof. Let p be a continuous seminorm on Z. Then there exist ¢1 € N(Y1),...,qm €
N (Y,,) such that for all y; € Y1, ..., ym € Yy,
16Cy, -+ ym)llp < Mlyillgs -~ [ymllgm-

Hence there exists an m-linear map b that makes

a commutative diagram. For v € C{fvl(U, Yi),.. ., vm € C{fvl(U, Y;,) we know from
[Proposition 3.3.3| that

bo (mg ©Vi,..., Mgy, ©Ym) € C{ﬁv(U, Zp)

and the map b, is continuous. Since

by o (g )x X =+ X (g )x) = (p)x © by

and the left hand side is continuous, we conclude using that b, is well-defined

and continuous since p was arbitrary. O

Corollary 3.4.15. Let Yi,...,Y,, be locally convexr spaces, U be an open nonempty
subset of the finite-dimensional space X, k € N and W, Wy,..., W, C rY nonempty
such that

(Vf € W)Bara € Wr, -, grm € W) [ < lgral -+ |g9sml-

Further let Z be another locally convex space, b: Y1 X -+ XYy, — Z a continuous m-linear
map, and j € {1,...,m}. Then

bo (Vs s Y5 Ym) € Cop(U, Z)* (1)
for all v; € C{ivi(U,Y;) (i #3j) and v; € C,’ﬁvj(U,Yj)’. The map
oy, (U, Y1) X -+ X Cy (U, Y)* % -+ x Oy (U, Yin) = Gy (U, 2)°
(V5o dm) o (s Vs Ym)

is m-linear and continuous.
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3.4. Weighted maps into locally convex spaces

Proof. Using |Proposition 3.4.14] and [Lemma 3.4.9) we only have to prove that holds.
This is done by induction on k.
k =0: Let p € N(Z). Then there exist ¢1 € N'(Y1),...,qm € N(Y;,) such that

1G5 ym)llp < [yallar - ym g

forallyy € Y1, ..., ym € Y. Sofor f € W, z € U and 71 € Cgvl(U,Yl),...,fyj €
Clgvj(U,Yj)ﬂ -»7m € Cy, (U,Yy,) we compute

[f @)oo (v vm) (@)l
< ngf, i) llg; < (HII%Hqugh, ) 1975 @) i (@) ;-

G

With this estimate we easily deduce that bo (vyi,...,7j,...,%m) € C%/j (U, Z)°.
k — k + 1: From [Proposition 3.4.11| (together with the induction base) we know that
for m € CRLH UYL,y € Rt (UL Y3)%, v € Ot (U, Vi)

bo(fyla sy Yy 7'7771) € Ck+1(U7 Z). — D(bo<717 sy Yo 77771)) € Cllﬁ\/(U; L(X7 Z)).
We know from |(3.4.13.1)[in [Lemma 3.4.13| that

D(bo (Y15 3%+ Tm)) Zb (Vs ooy Vg oo Yiels DVis Yig1s -+ -5 Ym)
Z#J
+b9) o (Vs Yj=1: DYy Vi 1y - - -5 Ym)-
Noticing that ~; € C{ivj (U,Y;)* and Dv; € C,’ﬁvj(U, L(X,Yj))®, we can apply the inductive
hypothesis to all b and the CF-maps 71,...,vm and Dv1,..., Dy,. Hence D(bo
(Vs s Yjs -+ m)) € Chy (U, L(X, Z))°. O

As an application, we prove that the space of weighted functions into a product is
canonicly isomorphic to the product of the weighted function spaces.

Lemma 3.4.16. Let X be a normed space, U C X an open nonempty set, (Y;)ier a family
of locally convex spaces, k € N and W C RY nonempty. Then for each v € C{ﬁv(U, [Licr Vi)
and j € 1

7Tj © ’Y E C%(U’}/})a
and the map

Cw(U [TY) = [T (U.Y) sy = (mi0Vies (1)
el el
s an isomorphism of locally convex topological vector spaces.
The same statement holds for C&, (U, T;c; Yi)®:

C(U JTY0) = I e (U Y2)® v = (mi o v)ier (1)

iel icl

s an isomorphism of locally convex topological vector spaces.
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Proof. We proved in [Proposition 3.4.14| that for v € C{ﬁv(U, [Lic;Yi)and j €I, mjoy €
Ck,(U,Y;) and the map |(f)|is linear and continuous. Since a function to a product is
determined by its components, the map is also injective. What remains to be shown
is the surjectivity, and the continuity of the inverse mapping. To this end, we notice that
for each j € I and p € N(Y;), the map

Pip: Y= R (wi)ier = llsllp
el

is a continuous seminorm, and the set {P;, : j € I,p € N(Y;)} generates N ([T;c; Yi)-
For each i € I, let ; € C&,(U,Y;). We define the map

v:U = [[Yiio = (%(@))ier-
il

Then 7 is a C*-map, and Pj,0v = po~y;. We see with IProposition A.3.2[that this implies
that mp, o~ is an FCF-map, and for each f € W and £ € N with ¢ < k we derive the
identity

I7p;, o Yllp; .10 = l7p 0 Yillp, 1,0-

We proved in [Lemma 3.4.2| that this identity implies that v € Cli,(U, [1;c; Yi). Further it

also proves that the inverse map of is continuous using that it is linear.
The assertions about |[({1)[ follow from [Corollary 3.4.15|and the assertions proved above

about O

Superposition with differentiable functions on weighted decreasing maps

We show that a smooth functions mapping 0 on 0 induces a superposition operator on
C{fv(U ,Y)*®, provided that 17 € W. The proof uses that the image of decreasing maps
is (almost) compact, and so the composition with the smooth map can be described in
terms of compositions with bounded maps taking values in normed spaces.

On the image of decreasing maps

Lemma 3.4.17. Let U be an open nonempty subset of the finite-dimensional space X,
Y a locally convex space, k € N, W C RY with ly € W, and v € C{ﬁv(U, Y)*. Then

v(U) u {0}

18 compact.

Proof. Since 1y e W, v € C?IU}(U, Y)®. By the definition of this space, v extends to a
continuous map 7 : U U {oo} — Y defined on the Alexandroff compactification of U by
setting 7 (o0) := 0. Hence

(U U{oc}) =~(U) U{0}

is compact. O
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We describe two easy consequences of the last lemma.

Lemma 3.4.18. Let U be an open nonempty subset of the finite-dimensional space X,

V' an open nonempty zero neighborhood of the normed space Y, W C RY with 1y e W,
and k € N. Then CJ, (U, V)* C CoF (U, V).

Proof. This is an immediate consequence of O

Lemma 3.4.19. Let U be an open nonempty subset of the finite-dimensional space X,

Y a normed space, V. CY an open zero neighborhood, k € N and VW C RY with 1y e W.
Then C},(U, V))* is open in C},(U,Y)*.

Proof. We proved in [Lemma 3.4.18| that Ci, (U, V)* C Ce\}k(U, V). Hence C},(U,V)® =

CoF (U, V)N CE,(U,Y)* is open in Ch, (U, Y)". O

Superposition with a bounded map As a preparation, we prove an analogous version

of [Lemma 3.3.11] for decreasing functions.

Lemma 3.4.20. Let U be an open nonempty subset of the finite-dimensional space X, Y
and Z normed spaces, V. CY open and star-shaped with center 0, k,f € N and WW C rY
with 1y € W. Further let ¢ € BC*H+Y(V, Z) with ¢(0) = 0. Then

¢ o Cly(U, V)" C Cly(U, Z)*,

and
CE (U V) = CE, (U, Z) :y > pony

is a Ct-map.

Proof. We proved in [Lemma 3.4.18|that C{E\,(U, V) C Ce\’,k(U, V). Hence we can apply
[Proposition 3.3.12 to see that

$oChy(U,V)®* CChy(U, Z)

and the map
Co(U V) = Cy(U,Z) :y = dpory
is C*; here we used that CJ,(U,V)* = C%,k(U, V)N Ch(U,Y)®. Because C&,(U,Y)* is
closed in C},(U,Y) by it only remains to show that for each v € Cli, (U, V)®,
we have ¢ oy € C},,(U, Z)*. This is done by induction on k:
k=0: Let f €W and x € U. Then

F@I 6@ = 7@ [66() - 60)]
o) H / DG(t1(2)) - 1(z)dt]| < [1D6llpcl )| 1 )

here we used that the line segment from 0 to v(z) is contained in V. From this estimate
we conclude that ¢ oy € C\),(U, Z)°.
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k — k 4 1: By the chain rule

D(¢po) = (Dgpory)-Dy.

Now D¢o~y € BCF1(U, L(Y, Z)) because of[Lemma 3.3.8] since v € BC*™1(U, V). Further
Dy € C&,(U,L(X,Y))®, so we conclude using [Corollary 3.4.15| that (D¢ o) - Dy €
Ck,(U,L(X, Z))*. By [Proposition 3.4.11] the case k + 1 follows from the inductive
hypothesis. O

We calculate the higher differentials of the superposition map on weighted functions
that is induced by a bounded function, see where a more general assertion
was proved. We will need this later to show that C*¥*#+2-functions induce a superposition
operator on the spaces C{E\,(U, V)*, and that this superposition operator is C*.

Lemma 3.4.21. Let X, Y and Z be normed spaces, U C X and V CY open subsets
such that V is star-shaped with center 0, k € N, m € N*, ¢ € BCKT™L(V, Z)q and

W C ﬁU with 1y € W. By|Lemma 3.3.11
e OO (UV) = CRy(U, Z) 1y doy
is defined and C™. For its (-th differential, the identity

d96.(vim, . v) = dBo (v, 71, 0)
holds (¢ < m).
Proof. Let x € U. Using the identity

Y

evZop, = poev)

(with self-explanatory notation for point evaluations), we calculate
(evZ 0dW ) (viy1, - - v) = d (v 0pu) (Vi1 - v0)

=dO(poev)) (v, ..., %) = (dD% 0 (ev))*) (v 7, m0)
=evZ(d%% o (v, 71, -, 0);

here we used [Lemma A.1.16l and [Lemma A.1.17 O

The main result Before we can prove the main result, we need the following facts
concerning compact and star-shaped sets in topological vector spaces.

Lemma 3.4.22. Let Z be a locally convex space and K C Z a compact set.
(a) The set [0,1] - K is compact and star-shaped with center 0.

(b) Let K be star-shaped and V' an open neighborhood of K. Then there exists an open
star-shaped set W such that K CW C V.
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Proof. @ [0,1] - K is compact since it is the image of a compact set under a continuous
map.

@ The set K x {0} is compact, hence using the continuity of the addition and the
Wallace lemma, we find an open 0-neighborhood U such that K + U C V. We may
assume w.l.o.g. that U is absolutely convex. Then K + U is open, star-shaped and
contained in V. 0

Proposition 3.4.23. Let U be an open nonempty subset of the finite-dimensional space
X, Y and Z locally convex spaces, V. CY open and star-shaped with center 0, k,m € N

and W € RY with 1y € W. Let ¢ € CFm+2(V, Z) with ¢(0) = 0. Then for v €
C{i\,(U, Ve,
$povyeCy(U,2)"
holds, and the map
bu: CHL (U V) = CR,(U, 2)* iy = oy
is C™ with
d(g)gb*(yv'.}/l) cee 7’7@) = dw)qb © (7a717 cee 7’7@)
for all £ < m.

Proof. Let 5 € C},,(U,V)*. By [Lemma 3.4.17| and [Lemma 3.4.22] the set
K:=[0,1]- (3(U) u{0})

is compact and star-shaped with center 0. Hence by for each p € N(Z)
there exists a ¢ € N'(Y) and an open set W O K w.r.t. ¢ such that ¢ € BC*™ (W, Z,).
In view of [Lemma 3.4.22] we may assume that W (and hence W,) is star-shaped with
center 0. We know from [Lemma 3.4.19| that Cli,(U, W,)® is a neighborhood of 7, 07 in

CE (U, Yy,)®. In|Lemma 3.4.20| we stated that
b Coy (U, W) — Ch(U, Z,)® =y = oy

is C™. The diagram

Cy (U, W)*

.
(Wpo(ﬁK /d’*
Cyy(U, Zy)®

Chy (U, Wy)®

is commutative. This implies that (7, o ¢). is C™ on Chy,(U, W)* since it is the compo-
sition of ¢, and the smooth map 7y, (see |Corollary 3.4.15[). Using |Lemma A.1.17| and
we can calculate its higher derivatives:

d(my 0 ¢)uler wwye (3715 70)

=d(¢o Wq)*!c%(U,W)-(V;’h, cye) = dDu(mg o yimg o, mg 0 )
= d“ o (mgov,mgom,...,mgov) =dD(Gomg) o (v, 71, -, 70)
=dO(mp0d)o (1, m,.. ., ) =mpodPo(v,m,...,7)
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3.4. Weighted maps into locally convex spaces

for £ € N with £ < m.
Since 4 and p were arbitrary, we conclude that the map

CyU V) = I CWU.Z,)* 7= (mp 0 d 07 )penz)
PeEN(2)

is C™. Since its image and all directional derivatives are contained in Cj,(U, Z)® (in the
sense of [Lemma 3.4.2), we conclude that it is C™ as a map to Cf,(U, Z)°. O
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4. Lie groups of weighted diffeomorphisms
on Banach spaces

In this chapter, we prove that for each Banach space X appropriate subgroups of the
diffeomorphism group Diff (X') can be turned into Lie groups that are modelled on some
weighted function space described earlier. Further, we show that these Lie groups are
regular. Here

Diff (X)|:= {¢ € FC®(X, X) : ¢ is bijective and ¢! € FC®(X, X)};

the chain rule ensures that Diff (X)) is actually a group with the composition and inversion
of maps as the group operations.

4.1. Weighted diffeomorphisms and endomorphisms

In this section, we define and examine sets of weighted endomorphisms Endyy(X) and
weighted diffeomorphisms Diff),,(X). We show that if 1x € W, then Endyy(X) is a
smooth monoid and Diffy,,(X) is its group of units that can be turned into a Lie group.
Further, we discuss certain subsets of these, the decreasing weighted diffeomorphisms
respective endomorphisms. Most of the results of this subsection were already proved in
the author’s diploma thesis [Wal06, §4.1, §4.2.1, §4.3.1], mostly in a less general form.
We omit some of the proofs and technical results. The results and definitions that follow
right now are fairly easy to show, and will remain.
For nonempty W C @X, we define

Diffy, (X)|:= {¢ € Diff (X) : ¢ —idx, ¢~! —idx € C55(X, X)}

and

Bady (X)) = {7 +idx : 7 € C(X, X)}.
The set Endyy(X) can be turned into a smooth manifold using the differentiable structure
generated by the bijective map

[in]: Gy (X, X) = Endyy(X) : v — v +idx . (4.1.0.1)

We clarify the relation between Endyy(X) and Diff),,(X). The following is obvious from
the definition:

Lemma 4.1.1. Let W C R™ and ¢ € Diff(X). Then

¢ € Diff,(X) <= ¢,¢ ' € Endyy(X).
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4.1. Weighted diffeomorphisms and endomorphisms

Furthermore, we have

Lemma 4.1.2. Let W C R such that Endw(X) is a monoid with respect to the
composition of maps. Then the group of units is given by

Endyy(X)* = Diffyy(X);
in particular Diffy,(X) is a subgroup of Diff (X).
Proof. Obviously
¢ € Endyy(X)* <= ¢ is bijective and ¢, ¢~ € Endyy(X).

Since Endyy(X) consists of smooth maps, the assertion follows from |[Lemma 4.1.1 O

In the rest of this section, we prove that Endyy(X) is a smooth monoid if 1x € W; thus

Diff),,(X) is a group by [Lemma 4.1.20 Further, we define the set of weighted decreasing
endomorphisms and show that it is a closed submonoid of Endyy(X). The main part is

to show that the monoid multiplication
o Endw(X) X Endw(X) — Endw(X)

is defined and smooth, so we elaborate on this.

4.1.1. Composition of weigthed endomorphisms in charts

We study how the composition looks like with respect to the global chart st (from
4.1.0.1)). For n, v € Cy5(X, X),

kw () 0 kw(n) = (v +idx) o (n+idx) =vo (n+idx) + n+idx . (4.1.2.1)

Obviously k() o kw(n) € Endy(X) if and only if v o (n +idx) € C3j(X, X); and the
smoothness of o is equivalent to that of

CF5(X X) x CRB(X. X) = CR(X, X) : (,m) = 7 0 (1 + idx)-

Important maps
For technical reasons we look at more general maps of the form
YV x VY YV (y,n) =y o (n+idy); (4.1.2.2)

here U, V,W C X are open nonempty subsets with V 4+ U C W and Y is a normed space.
These maps play an important role in further discussions.

o1



4.1. Weighted diffeomorphisms and endomorphisms

Continuity properties We discuss when the restriction of ¢ to weighted function spaces
has values in a weighted function space and is continuous. We start with the following
lemma whose assertion is used as the base case for A less general version
of both lemmas was implicitely proved in [Wal06, Las. 4.4, 4.5, Prop. 4.6]; there the
weights functions had to be defined on the whole vector space, not just open subsets.
Since the proofs are mostly unchanged, we omit them. They can also be found in [Wall3|
Las. 4.1.3,4.14 ].

Lemma 4.1.3. Let X and Y be normed spaces, U,V,W C X open nonempty subsets
such that V. +U C W and V is balanced, and VW C RW.

(a) Forvye FCY(W,Y), n:U =V, fe€W and x € U, the estimate
Lf@)] v o (n+idx)(@)]] < [fF@)] U1y somwy 1 @)+ Iv(@)[])  (4.1.3.1)
holds. In particular, if v € C,(W,Y) N BCY(W,Y) and n € CO,(U, V), then

iy, m) =vo (n+idx) € % (U, Y).

(b) Let v,70 € CO,(W,Y) N BCHW,Y) and n,m9 € C\),(U, V) such that
{tn(z) + (1 —t)no(x) : t € [0,1],x e U} C V.
Then for each f € W the estimate

ey, ) = €(v0, m0)ll 7.0 < [1Vllsw 2llm = m0ll 7,0 (4.1.3.2)
+ I =0l 2llmollz0 + 1y = 0l 0

holds. In particular, if lyy € W then the map

~Y,0 . »1 9,0 0 . ~

Gy W Y) x Gy (U, V) = C(U,Y) : (v,m) = €(v,m)
18 continuous.

Lemma 4.1.4. Let X and Y be normed spaces, U,V,W C X open nonempty subsets
such that V. +U C W and V is balanced, k € N and W C ﬁw with 1yy € W. Then

SR (WL Y) x Cy(U, V) C Cy(U,Y),
and the map
S CEY W, Y) X COE(U V) = Cly (U Y) < (7,m) = €(7,m)

which arises by restricting ¢ is continuous.
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4.1. Weighted diffeomorphisms and endomorphisms

Restriction to decreasing functions Finally, we study the restriction of E%k to decreas-
ing functions.

Lemma 4.1.5. Let X and Y be normed spaces, U,V,W C X open nonempty subsets
such that V. +U C W and V is balanced, k € N and W C RX with 1x € W. Then

(R W,Y)° % Cy(U, V) C Cly(U,Y)°.

Proof. The proof is by induction on k:

k = 0: We use [estimate (4.1.3.1)|in [Lemma 4.1.3}
Let f € W, v € Ci,,(W,Y)° and n € C),(U, V). Then for every € > 0 there exists r > 0
such that

g
17w B, )l f.0 < 3

and (as 1x € W)

g
VWA B, )|t < 57—
B OTWL = 970 + 1)

Since 1x € W, we have K := ||n|j1,,0 < co. Let R € R such that R > r + K. Then for
each z € U \ Bg(0), we have

z + Dn(z) C W\ B,(0),

so we conclude from lestimate (4.1.3.1)| that

3

F@IIEEG D@ < I 002 Ill0 + @ @] < 5 iz +

£
7]l 7.0 +

Thus Eg\}k(%n) €\, (U, Y)e.
k — k 4 1: We calculate using the chain rule that

(Do e ™ (v,m) = 55 (D, m) - (D +1d).

Since Dy € Cjif (W, L(X,Y))° (see |Corollary 3.2.4)),

S K (Dy ) € ey (U L(X,Y))°

by the inductive hypothesis. Further, Dy + Id € BC*(U,L(X)), so we conclude with
[Corollary 3.3.4] that

(D oty ™) (v, m) € Chy(U,L(X,Y)).

From this (and the base case k = 0) we see with [Corollary 3.2.4 that

oy () e CRL UL Y)Y,

so the proof is complete. O
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4.1. Weighted diffeomorphisms and endomorphisms

Differentiability properties We discuss whether restrictions of E%k to certain weighted
function spaces are differentiable. Before we do this, we give the following definitions.

Definition 4.1.6. Let X and Y be normed spaces, U, V,; W C X open nonempty subsets
such that V + U C W and V is balanced, W C R" with 1y € W and k,¢ € N. Then
the map

[ Clr WY ) X U, V) = Cy(U,Y) < (3,m) = 0 (n + idy)

is defined by [Lemma 4.1.4 Additionally, we set c]}//\}k = cz\’,]foo and c% = 513//\1020

The smoothness resp. differentiability was already proved in the author’s diploma
thesis [Wal06l §4.3.1], although in a slightly less general version; the weighted functions
were assumed to be smooth and defined on the whole vector space. Since the used
techniques are largely the same, we omit the proof and a technical lemma. They can also
be found in [Wall3, La. 4.1.7, Prop. 4.1.8].

Proposition 4.1.7. Let X andY be normed spaces, U, V,W C X open nonempty subsets
such that V. +U C W and V 1is balanced, VW C R with 1y € W and k,¢ € N. Then

cg\}ke is a Ct-map. If £ > 0, then it has the directional derivative

Yk L(X.Y)k Yk
dcw,e(% MY1,M) = CV\(J,E—l) (Dvy,m)-m + CW73(71,n). (4.1.7.1)

. Yk
In particular, c% and ¢y, are smooth.

Restriction to decreasing functions We examine the restriction of c};\’,k to decreasing
functions. We show that it takes values in the decreasing functions and is also smooth.

Corollary 4.1.8. Let X and Y be normed spaces, U, VW C X open nonempty subsets
such that V. +U C W and V' is balanced, VW C @W with 1yy € W and k € N. Then

O (CS(W,Y)° x Cy(U,V)°) C Chy (U, Y')°,

chUY)e ;
Y w(UY) is smooth.

and the restriction c,y, CE (WY )oxCh, (UV)°
Proof. We deduce this from [Lemma 4.1.5] the smoothness of the unrestricted map
(Proposition 4.1.7) and [Proposition A.1.12|that can be used because Cfi, (U, Y)° is closed

by [Lemma 3.1.6] O

4.1.2. Smooth monoids of weighted endomorphisms

We are able to prove that Endyy(X) and the set Endyy(X)° — which is defined below —
are smooth monoids, provided that 1x € WW. An analogous version of this corollary was
proved in the author’s diploma thesis in [Wal06, Folg. 4.8, 4.19]. Since the proof given
there wasn’t entirely correct, and we also treat decreasing weighted functions, the proof
is not omitted.
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4.2. Lie group structures on weighted diffeomorphisms

Corollary 4.1.9. For W C R™ with 1y € W, Endw(X) is a smooth monoid with the
group of units
Endyy (X)* = Diffy,,(X).

Further, the set
Endyw(X)7:= {7 +idx : 7 € C(X, X)°} (4.1.9.1)

is a closed submonoid of Endyy(X) that is a smooth monoid.

Proof. We first show that Endyy(X) is a monoid. Since idy € Endyy(X) is obviously
satisfied, it remains to show that it is closed under composition. Since every element of
Endyy(X) can uniquely be written as ¢ +idx with ¢ € Cy5(X, X), we have to show that
for arbitrary v,n € Cyy (X, X) the relation

rw(7) o kw(n) —idx € G (X, X)

holds. But we know from [identity (4.1.2.1)| that

rw(7) 0 kw(n) — idx = ey (v, 1) + 1,

which is in C3}(X, X) by [Proposition 4.1.7, hence Endyy(X) is a monoid. Further, from
this identity we easily conclude the smoothness of the composition from the one of cffv,
which was also proved in [Proposition 4.1.7]

Endyy(X)° is a closed subset of Endyy(X) since kyy is a homeomorphism and by
Lemma 3.1.6) Cpy(X, X)? is a closed vector subspace of C53(X, X). We know from
Corollary 4.1.8 and the fact that Cyj(X, X)° is a vector space that for v, € Cpp(X, X)°

rw () © k() —idx = ey (v, 1) +n € Cp(X, X)°.

Further, we proved there that the restriction of ¢},(v,n) to decreasing maps is smooth,
hence Endyy(X)° is a smooth submonoid of Endyy(X).

The relation Endyy(X)* = Diff), (X ) was proved in [Lemma 4.1.2 O

4.2. Lie group structures on weighted diffeomorphisms

In this section, we first prove that Diff,,(X) — which was already shown to be a group in
Corollary 4.1.9|— is in fact a Lie group. Also we define and discuss the set Diffy,,(X)° of
decreasing weighted diffeomorphisms. We show that it is a normal subgroup of Diffy,,(X)
that can be turned into a Lie group. Finally, we explain when diffeomorphisms that are
weighted endomorphisms are weighted diffeomorphisms.

4.2.1. The Lie group structure of Diff,, (X)

We show that Diffy,,(X) is an open subset of Endy(X) and the group inversion is
smooth, whence Diffy,,(X) is a Lie group. In order to do this, we have to examine the
inversion map on Diff (X') N Endyy(X). The results proved in the author’s diploma thesis
in [Wal06, §4.2.2] can be derived from the results of this subsection; the major change
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4.2. Lie group structures on weighted diffeomorphisms

is the treatment of functions that aren’t defined on the whole vector space. However,
in contrast to the results about the monoid structure it was necessary to turn to other
techniques, like the use of Lipschitz inverse function theorems. Some traces of the proofs
of [Wal06| 4.11-4.13] can still be found in 4.2.4-4.2.6, but they will not be omitted since
they are used in another context, and the results of this subsection are published here
for the first time. In particular, we do not omit the proof of [Iheorem 4.2.10] since it had
to be adapted to our more general considerations.

Definition 4.2.1. Let X be a normed space and U,V C X open nonempty subsets. We
define _
Quyv ={p€ XY :¢+idy injective,V C (¢ +idy)(U)}

and
I~V : QU,V - XV o (p+ idU)_1|V —idy . (4.2.1.1)

Further, for nonempty W C RY we set Ql(,]\’,v = QU’V NCys(U, X) and = fV|QU,v.
w

Lemma 4.2.2. Let X be a normed space, U,V C X open nonempty subsets and ¢ € QU,V-
Then

(Iv(¢) +1idv) o (¢ + iduv)|(stiay)-1 (v) = 1 (gtidy)-1 (1) (4.2.2.1)
(¢ +idyy) o (Iv (@) +idy) = idy, (4.2.2.2)
and the identities
Iy () o (¢ +1dv)|(iay) 2 (v) = —l(o+ide) (1) (4.2.2.3)
po(Iy(¢) +idv) = —Iv () (4.2.2.4)
hold.
Proof. This is obvious. O

On the range of the inversion map

We first discuss whether the range of I)Yv consists of weighted functions, under certain
assumptions on U and V.

Lemma 4.2.3. Let X be a normed space, U,V C X open nonempty subsets and ¢ € (NZU,V.
Then [|Iv (#)l[1y.0 < ¢l 0-

Proof. This is an immediate consequence of fidentity (4.2.2.4)| O

We provide a formula for D I},(¢).

Lemma 4.2.4. Let X be a Banach space, U,V C X open nonempty subsets, VW C RY
with 1y € W and ¢ € Q3.

(a) Let x € (¢ +idy)~Y(V) such that | Dé(x)||op < 1. Then
D(Iy(9))((¢ + idy)(2)) = Dé(x) - QI x)(—=Dé(x)) — D(x).
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4.2. Lie group structures on weighted diffeomorphisms

(b) Suppose that ||¢||1,1 < 1. Then
D Iy(¢) = (D¢ - QI(—D¢) — Dg) o (Iyy(¢) +idy ). (4.2.4.1)

Here QIy(x) and QI := QIC%(U,L(X)) denote the quasi-inversion (which is discussed in
Mppends 0).
Proof. [(a)| From [identity (4.2.2.3)] and the chain rule, we get

D Iyy(¢)((¢ +idy) (@) - (Dé(x) +idx) = —De(x).

Since [|[D¢(z)|lop < 1, the linear map D¢(x) + idx is bijective with

o0

(Dg(x) +idx) ™" = Y (—=D¢(x))* = QI (x)(~Do(x)) + idx;

k=0

(c.f. [Lemma C.2.6|). Using these two identities, we easily derive the one desired.
[(b)] Since [[¢]|1,,1 < 1, we see with [Lemma 3.3.22 that —D¢ is quasi-invertible in

C35(U, L(X)) with
QI(—D¢) = QIyx) o (—D¢).
Hence we get with @ that
D(Iyy(¢)) o (¢ +idy) = D¢ - QI(—D¢) — D¢

on (¢ +idy)~}(V). Composing both sides of this identity with I},(¢) +idy on the right
(see lidentity (4.2.2.2))) gives [identity (4.2.4.1)| O

Next, we discuss whether I,(¢) € C55(V, X).

Proposition 4.2.5. Let X be a Banach space, U,V C X open nonempty subsets such
that there exists r > 0 with V 4+ B,(0) C U. Further, let VW C RY with ly € W and
o€ Q}(/J\,}V such that ||¢||l1,1 < 1 and ||¢||1,,0 < r. Then I}y (¢) € C33(V, X). In particular,
forall f € W and x € V, we have the estimate

[f(@)] ll¢()]]
1= ¢llya

Proof. By the inverse function theorem, Il‘,/v(gzb) is smooth. We prove by induction that
Iy(¢) € Ci,(V, X) for all k € N.
k = 0: We compute for f € W and x € V using [identity (4.2.2.4)[and |(4.1.3.1)| that

[F @) (@) (@) = 1f (@) l¢ (D (6) () + )| < £ @)Dl ol D (9) (@)l + ll¢(@)]);
here we used that ||I}},(¢)|l1,.0 < r by From this we can derive |(4.2.5.1)

since || Do||1,.0 = [|9ll1,,1 < 1, and we see that I;,(¢) € C)),(V, X).
k — k + 1: Using [Proposition 3.2.3| (and the induction base), we see that

[f @) (@) (@) < (4.2.5.1)

Iyy(¢) € Gy H(V, X) <= D I(¢) € Ciy(V,L(X));
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4.2. Lie group structures on weighted diffeomorphisms

the second condition shall be verified now. Remember that we already provided an
identity for D I};,(¢) in |(4.2.4.1)} We use [Lemma 3.3.22 and [Corollary 3.3.6/to see that

D¢ - QI(—=D¢) € Cyy(U, L(X)).

Since we know from the induction hypothesis that I)},(¢) € Ci,(V, X), we derive from
lidentity (4.2.4.1)|and [Proposition 4.1.7 (applied on C53(U, X) x C&,(V, B,.(0))) that

D I() = &M (Dg - QI(~Dg) — D, Tiy(9)) € Cly(V, L(X)),

which finishes the proof. O

On the domain and the smoothness of the inversion map

We investigate the smoothness of I,‘//V. Later, we dicuss when Qg\}v is an open O-
neighborhood. Finally, we conclude that the inversion on Diff,,(X) is smooth.

Smoothness of the inversion map Here, we assume that Qg\}v contains a suitable open
set.

Proposition 4.2.6. Let X be a Banach space, U,V C X open nonempty subsets such
that V 4+ B.(0) C U for some r > 0. Further, let VW C RY with 1y e W. Let Gy C Q)(/J\,}V
be an open nonempty set such that for each ¢ € Gy, ||¢|l1,,0 <7 and ||¢|l1,1 < 1.

(a) Then for ¢, € Gyy, the following identity holds:
Ly($) = Iy(9) = 1d+Ty) " - (0 — ¥, (), (1)
where the inversion is the pointwise inversion in L(X), and
! L(X) \%4 \4
Ty = [ e (D, t35(0) + (1= OB()) di € C(V,L(X))
In particular, for f € W we have the estimate

150() = Bo(@ls0 < s (16 = Vlhoa B + e = ¢lr0) - (4.2.6.1)

(b) Gy — C(V, X) : ¢ = I})(¢) is continuous.

(c) Gw — Cu(V, X) : ¢ = I} () is smooth with

ALY (6 d1) = —S(QI(D) - é1 + b1, Io()). (4.2.6.2)

Proof. By [Proposition 4.2.5, I};,(Gw) C C55(V, X ), which we will use implicitly.
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4.2. Lie group structures on weighted diffeomorphisms

[(a)] Let ¢,¢ € Gyy. We compute for z € V with [identity (4.2.2.4)] the mean value
theorem (using that B,.(0) is convex) and by adding 0 = ¢(I)y,(¢)(z)+z) — (I} (4) (z)+x)
that

Ly () (x) — Iy (¢)(x)
=p(Iy(9)(x) + z) — V(L () (2) + 2) + d(Iyy(6) () + ) — (I (¢)(x) + )
/ Dy (thy(¢)(x) + (1 — )y () () + 2) - (Ly(6)(x) — Ly(¥)(x)) dt
+ (o — ¥, Iin(0)) (2);

note that the identity c\,(¢ — 1, Iy (4)) = (¢ — ¥) o (I}, (#) + idy) holds because of
Lemma 4.2.3|and the definition of r. From this identity we can derive note that the

integral defining Ty, 4 exists because Cyy;(V,L(X)) is complete. Further

1Ty,6(@)] < [[¥]l150 <1
for all € V, hence each idx +Ty 4(z) is invertible. Using the Neumann series, we get

1
o< ———.
o S T

So we see using [(4.1.3.1)| and |(4.2.5.1)| that [estimate (4.2.6.1)| holds.
By [Corollary 3.2.6] va is continuous iff the corresponding maps

I1(1d +T,6) |

Ip : Gy — Cipy(V, X)

are so for each ¢ € N. We shall verify this condition by induction on /.

£ =0: We use to see that Iy is continuous in ¢.

¢ — ¢ + 1: Because of [Proposition 3.2.3| (and the induction base) Iy, is continuous iff
Do Ipiq 2 Gy — Chy(V,L(X)) is so. Using [identity (4.2.4.1), we see that for ¢ € Gyy

(Do Is1)(@) = 55 (Do - QI(=Do) — Do, Li(9))
holds, where QI := QIC%(UL(X)). Since C%X)’K, D, -, QI and I, are continuous (see

[Proposition 4.1.7], [Proposition 3.2.3] [Corollary 3.3.6] [Lemma 3.3.22| and the inductive
hypothesis, respectively), we conclude that D o I is continuous.

We prove by induction that va is a C* map for all k € N.

k=1:Let ¢ € Gy, ¢1 € C(U, X) and t € K* such that ¢ + t¢y € Gyy. We use
to see that

Iy(+tdr) — Iin(9)
t

= (Id+Tps16,.0) " - (=1, Iy (9)).

Using [Proposition A.1.8| we see that

hm T¢+t¢1 6= CW (D¢7 IW(¢>)
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Further, by

(Id+Tp1191,9) " —1d+1d = QI (Tp414,,6) + 1d

where QI := Qlcs(v,1(x))- Using that QI and - are continuous by and

[Proposition 3.3.3] we therefore get

B0+ 161) — 1y (9)
t—0 t

— (QI(eyS (D, () +1d) - &5 (— 1, ()

— —(SF(QI(D), By () +1d) - (61, Ty ()
= —y(QI(D®) - p1 + b1, I ());

here we used that QI(®) = QIy,(x) o ®. Since we proved in that Iy\, is continuous,
we see from this that 1)}, is C! and |(4.2.6.2)| holds.

k — k + 1: Since Il‘//v is C*, we conclude from |(4.2.6ﬂ and the fact that D, -, c% and
QI are smooth (see [Proposition 3.2.3], [Corollary 3.3.7| (together with [Example A.1.15)),
|Proposition 4.1.7| and |Lemma 3.3.22|, respectively) that dl}‘,/v is C*. Hence Il‘//v is CF+1 by
definition. O

Q)[,]\’,V contains open sets We show that Q%V is a neighborhood of 0 if V' C U and
dist(V, X \ U) > 0. To this end, we need the following two technical lemmas.

Lemma 4.2.7. Let X be a Banach space, U a convex open nonempty subset and
¢ € FCY (U, X) such that ||p|l1,1 < 1. Then the map idy +¢ is injective.

Proof. Let z,y € U. Then

(idy +¢)(y) — (idy +¢)(z) =y — 2 + /01 Do(ty + (1 —t)x)(y — x) dt.

Since [|¢||1,,1 < 1, the norm of the integral is smaller then ||y — z||. We deduce with the
triangle inequality that for = # vy, (idy +¢)(y) # (idy +¢)(x). O

Lemma 4.2.8. Let X be a Banach space, U C X an open nonempty subset and r > 0.
Let ¢ € BCO(U, X) with ||¢||1,.0 < r. Further, let y € (idy +¢)(U) such that Ba,(y) C U.
Then for any ¢ € FC'(U,X) with [[¥[hya < 1 and ¢ = dlligo < 7(1 = [$lhg,1),
y € (idy +¥)(U).

Proof. There exists € U with « + ¢(x) = y. Then ||y — z| = ||¢(z)|| < r, and hence
B,(x) C U by the triangle inequality. Further, we derive from the Lipschitz inverse
function theorem (Corollary A.2.17) that By(i—|y|,,, ,)((idu +1)(2)) is contained in the
image of idy +1, and since

ly = (= + (@)l = ll¢(x) — (@) | < (1 = lllly0),

y is contained in the image of idy +. O
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Lemma 4.2.9. Let X be a Banach space, U,V C X open nonempty subsets such that U
is convex and there exists r > 0 with V + B.(0) C U. Further, let VW C RY with 1y € W
and ¢ € Qg\’,v such that ||¢|1,1 < 1 and ||¢]l1,0 < 5. Then for any € > 0 such that
”¢H1U71 +e<1,

. r
{0 e cHOX 110~ ol <= and [0 = 6lhp0 < G0 -~ 0l)}
is a neighborhood of ¢ that is contained in Q%V and whose tmage under I)‘//V s contained
in Cyp(V, X).

Proof. Let 1 be an element of the neighborhood. Then ||9|1,,,1 < 1, hence we can apply
to see that idy + is injective. Further, since

[ = @l < 51 === l9llay1) < 51 = [#llag):

we see with [Lemma 4.2.8that V' C (idy +v)(U); hence ¢ € Qg\’,v. Finally, we can apply
[Proposition 4.2.5| since

[Pl < lllipo+ 1% = dlhyo <
and see that I},(v) € C59(V, X). O

The Lie group Diff,,,(X)
We put it all together and see that Diff),(X) is a Lie group.

Theorem 4.2.10. Let X be a Banach space and VW C RY with 1x € W. Then
Diffyy,(X) is an open subset of Endw(X), and a Lie group when endowed with the
canonical differential structure.

Proof. We established in [Corollary 4.1.9| that Endyy(X) is a smooth monoid with the

unit group Diff), (X). By [Lemma C.2.3] Diff), (X) is open in Endyy(X) if there exists
an open neighborhood of idy in Endyy(X) that is contained in Diffy,,(X). Moreover, the

inversion is smooth if it is so on this neighborhood (The proof for the continuity is in

Lemma C.2.3] the smoothness can be derived from [Lemma B.2.5)). To this end, we set
Uw :={¢ € CH(X, X) : [[#ll1x1 <1}

Then for ¢ € Uy, we have that kyy(¢) € Diff), (X) since we can apply [Lemma 4.2.9
(0 € Q%) and see that ¢ € Q™ with (¢+idx) ' —idy = X (¢) € C33(X, X); enabling

us to use [Lemma 4.1.1} Further, we know from |Proposition 4.2.6| that I% is smooth on
Uyy. This implies that the inversion map is smooth on kyy(Uyy), see the commutative

diagram

Hw(Uw) ;1) DiﬁW(X)

rw nwll/
IX

Uy ———— (X, X).
This finishes the proof. O
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4.2.2. On decreasing weighted diffeomorphisms and dense subgroups

We define the set Diffy,,(X)° of decreasing weighted diffeomorphisms and show that it is a
closed normal subgroup of Diffy,,(X) which can be turned into a Lie group. Further, we
give sufficient conditions on W ensuring that the group Diff (X of compactly supported
diffeomorphisms is dense in Diffy,,(X)°.

Inversion on weighted diffeomorphisms First, we have to discuss the inversion map
restricted to weighted functions.

Lemma 4.2.11. Let X be a Banach space, U,V C X open nonempty subsets, ¢ €

QgVVﬂBCO(U X), 7> 0 withr > ||¢|l1,.0 and U C U and V C V open nonempty subsets
such that V + B,(0) C U.

UV
(a) Then ¢ € ;.

(b) In particular, if R > s > 0, U =V = X and ||¢|liy0 < R —s, then ¢ €
Q))/(V\ES(OLX\ER(O) .

Proof. @ Obviously ¢ + idy is injective on U so we just need to show that V C
(¢ + idy)(U). To this end, let y € V. Since ¢ € O DV and V C V, there exists z € U
with ¢(z) + x = y. This implies that ||y — z|| < ||<;5||1U70 < r, and hence

r=y+z—yeV+B(0)CU.

@ This is an easy application of @ since by the triangle inequality X \ Br(0) +
Br—s(0) € X \ Bs(0). O

Lemma 4.2.12. Let X be a Banach space, YW C RY with 1x € Wand ¢ € Q,‘)/{V’X N
Cv(X, X)°. Then there exists an R > 0 such that

IV)\(/(¢)‘X\§R(O) € Ciy(X \ Br(0), X)°.

Proof. Since ¢ € Cy(X, X)°, there exists an 7 > 0 such that sup,. 5 ) [1Do(2)]op <
1. We choose R > 0 such that ||¢|li1,0 + 7 < R. We see with [Lemma 4.2.11| that

¢ c Q@\Er (0) 7X\§R (0)

, and this allows the application of |Proposition 4.2.5|to see that

L0VPRO) () € ¢39(X \ Br(0), X). Further, by fidentity (4.2.2.4)

LVPrO(g) = —po (IO (¢) + i 5, 0) = S0~ T PO (9)),

hence an application of finishes the proof. O
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A normal Lie subgroup To derive the desired result, we need the following technical
lemma.

Lemma 4.2.13. Let X be a Banach space and VW C RY with 1x € W. Further, let
¢ € Endw(X)° and ¢ € Diffy,(X). Then 1) —1p o ¢ € Cj(X, X)°.

Proof. We calculate using [Lemma 3.2.10| and the mean value theorem that

1
Y—tpod= /0 Di(idy +1(¢ —idx)) - (6 — idy) dt.

Since Dy € BC*(X,L(X)), we conclude with [Proposition 4.1.7| that D (idx +t(¢ —
idy)) € BC™(X,L(X)). Since ¢ —idx € Cy5(X, X)?, the assertion follows from
lary 3.3.4) and the fact that Cj} (X, X) is closed in Cyy (X, X). O

Proposition 4.2.14. Let X be a Banach space and VW C RY with 1x € W. The set
Diffyy (X)°] = Diffyy (X) N Endyy (X)° = {6 € Diffyy(X) : 6 — idx € C55(X, X)°}

is a closed normal Lie subgroup of Diffy,,(X). We call its elements decreasing weighted
diffeomorpisms.

Proof. In |Corollary 4.1.9| it was proved that Endyy(X)° is a smooth submonoid of
Endyy(X) and a closed subset. Since Diffy,,(X) is open in Endyy(X), we conclude that
Diff),,(X)° is a smooth submonoid of Diff), (X) that is closed. Further, it is a direct
consequence of that the inverse function of an element of Diffy,,(X)° is in
Diff),,(X)°, whence using we see that the latter is a closed Lie subgroup of
Diff,,(X).

It remains to show that Diff),,(X)° is normal. To this end, let ¢ € Diff),(X)° and
¢ € Diffy),(X). Then

pogoyp™! —idx =¢ogop ! —gog logop Tl = (W —vog Hogoy!
so we derive the assertion from [Lemma. 4.2.13l and [Lemma 4.1.5l ]

On the density of compactly supported diffeomorphisms As promised, we give a
sufficient criterium on W that makes Diff .(X) a dense subgroup of Diff,,,(X).

Lemma 4.2.15. Let X and Y be finite-dimensional normed spaces and U C X an open
nonempty set. Further, let W C RY a set of weights such that
W C C*(U,[0,00])
e (VzeU)3feW)f(z) >
Vf1,..., fn € W)(szl,...,kn eN)3feWw,C >0)
[}
(Ve € U)|DH) fi(@)lop - - - [|1D fu(@)[lop < Cf ().

(4.2.15.1)

Then C(U,Y) is dense in C;,,(U,Y)°.
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4.2. Lie group structures on weighted diffeomorphisms

Proof. A proof can be found in [GDS73, §V, 19 b)]. O

Lemma 4.2.16. Let X be a finite-dimensional normed space, W C RX such that
1x € W and|(4.2.15.1)| is satisfied (where U = X ). Then the set of compactly supported
diffeomorphisms Diff .(X) is dense in Diff), (X)°.

Proof. The set My, = Ky, (Diffw( ) NCS(X, X)° = kyy (Diffyy(X)°) is open in
Cov (X, X)°, and hence M = C(X,X) N My, is dense in My, by m
But M. = x), (Diff (X)), from which the assertion follows.

4.2.3. On diffeomorphisms that are weighted endomorphisms

It is obvious that the relation
Diffy,(X) € Endyy(X) N Diff (X)

holds. We give a sufficient criterion on W that ensures that these two sets are identical,
provided that X is finite-dimensional. Further we show that Diff, ,(R) # End,;(R) N
Diff (X).

Proposition 4.2.17. LeAt X be a finite-dimensional Banach space and W C RX with
1x € W. If there exists f € W such that

(VR >0)3r >0)|z| >r = |f(z)| >R (4.2.17.1)
and if each function in W is bounded on bounded sets, then

Diff,,,(X) = Endyy(X) N Diff (X).

Proof. We have to show that
Endyy(X) N Diff (X) C Diff,,(X).
So let ¢ be in Endyy(X) N Diff (X). Then ¢ :=v¢ —idx € Q)V%X, and the equivalences
Y € Diffyy(X) <= ! € Endyy(X)
— ¢ —idx € GH(X,X) <= Ly(9) € Gy(X, X)

hold (see [Lemma 4.1.1{and the definition of I3}, in|(4.2.1.1)). The last statement clearly
holds iff

(3R> 0) B5(0) x50y € C¥(X \ Br(0), X) and L(9)] sy, 0) € G55 (Bror(0), X),

and this shall be proved now. Obviously I;%,(¢)|5,(0) € Cip(Br(0), X) for each R > 0
because each f € W is bounded on bounded sets, the maps D(Z)I%(gﬁ) are continuous
and each bounded subset of X is relatively compact (as X is finite-dimensional). It
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remains to show that there exists R > 0 such that Ii(v(‘b)‘X\ER(o) € Cyo(X \ Br(0), X).
We set Ky = H¢”f1 < oo and conclude from |(4.2.17.1)| that there exists an r, with

|zl >ry = |f(x)] > Ky + 1.

~

Since | f(z)| | Do(x)||op < Ky for each x € X, we see that

— ¢
Hqﬁ’X\B%(o)Hlx,I < Ky+1 <l

We choose Ry > 0 such that Ry > rg + [[¢]li,0. We see with [Lemma 4.2.11] that

X\Er(b (0)7X\§R¢ (0)

€, , so we can apply [Proposition 4.2.5|to see that
X\Br, (0) _
Ii(v(qu\é%(o) =1Ly 7 (¢) € CH(X \ Bg,(0),X),
and this finishes the proof. a

We give an affirmative example.

Example 4.2.18. The space Diff (R") satisfies |condition (4.2.17.1)l We just have to

~

set f(z1,...,2n) = 23 + - -+ + 22 which clearly is a polynomial function on R™.

As announced, we give a counterexample. As preparation, we prove the following
lemma.

Lemma 4.2.19. Let v € C*°(R,R) be a bounded map that satisfies

(Vx € R)~'(x) > —1. (%)
Then v + idg € Diff(R).
Proof. We conclude from |(x)| that (vy(z) +idr)'(xz) > 0 for all z € R, so v+ idg is strictly

monotone and hence injective. Since v is bounded, v + idg is unbounded above and
below and hence surjective (by the intermediate value theorem). O

Example 4.2.20. We give an example of a map v € BC*(R,R) with the property
that v + idg € Diff(R), but (y + idg)~! — idg & BC(R,R). To this end, let ¢ be an
antiderivative of the function x + 2 arctan(z) with ¢(0) = 0. Then sino ¢ and coso ¢
are in BC™ (R, R) by a simple induction since cos, sin, arctan € BC* (R, R),

(sino ¢) (z) = % arctan(z)(cos o ¢)(z), (%)

and an analogous formula holds for (coso ¢)’. We see with |(x)[that (sino ¢) () > —1 for

all z € R, so sino ¢ + idg € Diff(R) by [Lemma 4.2.19| But since

. 1
((sino ¢ +idg) ™ —idgr)'(z) = (sino ¢)((sino ¢ +idr)~1(x)) + 1 -

and there exists a sequence (¥, )nen in R with

lim 2 arctan(yy, )(coso @) (yn) = —1,

n—oo 71

((sino ¢ + idg)~! — idg)’ clearly is not bounded.
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4.3. Regularity

We prove that the Lie groups Diff,,(X) and Diff),,(X)° are regular. For the definition of
regularity, see [Subsection B.2.2

4.3.1. The regularity differential equation of Diff,, (X)

We examine the general (right) regularity differential equation (which is stated in
value problem (B.2.11.1))) and turn it into a differential equation on Cp};(X, X). To this
end, we first describe the group multiplication of the tangent group T Diff,,,(X) and the
right action of Diff,,,(X) on T Diff,),(X) with respect to the chart Tk, .

Lemma 4.3.1 (Tangent group of Diffy,,(X)). Let X be a Banach space and W C R¥
with 1x € W. In the following, we denote the multiplication on Diff), (X) with respect to

the chart /f;\,l by myy. Note that the tangent group T Diffy,,(X) is canonicly isomorphic
to Cyp(X, X) x Diffy,,(X).

(a) The group multiplication Tmyy on T Diff),(X) (with respect to Tk, ) is given by

Tmw ((v,71), (0,m1)) = (mw(y,m), Dy o (n+idx) -m + 1 0 (n+idx) +m).

(b) Let ¢ € Diffy,,(X). Then the right action Tpy of ¢ on T Difty,,(X) with respect to
Tﬁ;\} is given by

T (k3 © pg © k) (1,71) = (M (7, Ky (9)), 71 © @)

Proof. @ We have
mw(y,m) =vo (n+idx) +n

and the commutative diagram

Diffy,,(X) x Diff,,(X) 2 Diff,,,(X)
X KWy /f
"1 [

moyw (Diffyy (X)) x iy (Diffyy (X)) ——"— ) (Diffy (X))

The group multiplication on the tangent group is given by applying the tangent functor T
to the group multiplication on Diff),,(X), and therefore we obtain the group multiplication
on T Diff),,(X) in charts by applying T to myy (up to a permutation). Since

Tmw (v, m371,m) = (mw(v,m), Dy o (n+idx) -m +y10 (n+idx) +m)
by [(4.1.7.1)] the asserted identity holds.

Obviously (k) © ps © kw)(-) = mw(-, n%}(d))), so we derive the assertion if we
apply the identity proved in with n = /i;\,l(gb) and n; = 0. 0
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We aim to turn [(B.2.11.1)| into an ODE on a vector space. Before we can do this, a
definition is useful:

Definition 4.3.2. Let X be a normed space, W C RY with lx € W, ke€Nand F be a
subset of W with 1x € F. By |Proposition 4.1.7] the map

Frp:[0,1] x Ch(X, X) x €*°([0,1],C55(X, X)) — C&(X, X)
:(t,y,p) = p(t) o (v +idx)

is well-defined and smooth (since the evaluation of curves is smooth by [Lemma A.1.9).
For each parameter curve p € C*([0, 1],Cyy (X, X)), we consider the initial value problem

F/(t) = F]:,k(t? F(t)vp)
T'(0) = 0,

(4.3.2.1)
where ¢ € [0, 1].
Lemma 4.3.3. Let X be a Banach space and VW C RX with 1x € W.

(a) For v € C*([0,1], Tia, Diffyy (X)), the initial value problem

n'(t) =~(t) - n(t)
n(0) = idx

has a smooth solution

Evolfye (x(7) : [0,1] = Diffy(X)

iff the initial value problem |(4.3.2.1)| (in|Definition 4.3.2) with F =W, k = oo and
p= d/i;\} o~ has a smooth solution

T, 1 [0,1] = kyy (Diffyy (X)).

In this case,
EvolpDiHW(X)(v) = ryy o ).

(b) Let © C C*([0,1], Tia, Diff}, (X)) be an open set such that for each v € § there
exists a right evolution EvolpDiffW(X) (7). Then evolpDiHW(X)|Q is smooth iff the map

(dkyy 0 Q) — Cio(X, X) 1 p > Ty(1)

is so. As above, I'y, denotes a solution to|(4.3.2.1)| with respect to p.

Proof. This is an easy computation involving the previous results. O
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Solving the differential equation

We show that the regularity differential equation for Diff), (X) is solvable. In order to do
this, we use that Cj},(X, X) is a projective limit of Banach spaces, see [Proposition 3.2.5|
We solve the differential equation on each step of the projective limit, see that these
solutions are compatible with the bonding morphisms of the projective limit and thus
obtain a solution on the limit. Before we do this, we state the following obvious lemma.

Lemma 4.3.4. Let X be a Banach space and W C RY with 1x € W. Further, let
FCWwithly € F and k € N, p € C*([0,1],C55(X, X)) and T : I — CE(X,X) a
solution to|(4.3.2.1)| corresponding to p. ThenI' solves|(4.3.2.1)| also for all subsets G C F

containing 1x and £ € N with £ < k.

Proof. This is an easy calculation since the inclusion map C&(X,X) — C5(X, X) is
continuous linear. O

Solving the differential equation on the steps First, we solve on function
spaces that are Banach spaces. To this end, we need tools from the theory of ordinary
differential equations on Banach spaces. The required facts are described in
The hard part will be to show that the solutions are defined on the whole interval [0, 1].

The solution on C%(X, X) We start with the function space C%-(X, X), where 7 C W
is finite and contains 1y. Then the initial value problem |(4.3.2.1)| satisfies a global
Lipschitz condition and hence is globally solvable.

Lemma 4.3.5. Let X be a normed space, W C RY with lx e W, FCW with1lxy € F
and p € C*([0,1],C3(X, X)). Then there exists K > 0 such that for each f € F, all
t €[0,1] and v, € C%(X, X)

|Fro(t,v,p) — Fro(t,v.0)|lr0 < K- |7 —llf.0-

Proof. We have
Fro(t,7,p) — Frot,v0,p) = < °(p(t),7) — ¢’ (p(t), 70),

and deduce from [estimate (4.1.3.2)|in [Lemma 4.1.3| that

1EF,0(t,7,0) = FF0(t, 70,2l 1.0 < IOl =70l 1.0-
Since p([0, 1]) is a compact (and therefore bounded) subset of Cy5(X, X),

K = sup [[p(t)[|ix,1
t€[0,1]

is finite. This proves the assertion. O

Lemma 4.3.6. Let X be a Banach space, F, W C RY with lx e FCW and |F| < o0,
p € C>([0,1],C5(X, X)) and k = 0. Then the initial value problem |(4.3.2.1)| correspond-
ing to p has a unique solution which is defined on the whole interval [0, 1].
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Proof. We deduce from [Lemma 4.3.5 that we can find a norm on C%(X, X) such that
Fro(-,-,p) satisfies a global Lipschitz condition with respect to the second argument.

Since Cg_-(X , X ) is a Banach space, there exists a unique solution
r:[0,1] = CH(X,X)

of [(4.3.2.1)| which is defined on the whole interval [0, 1]; see |[Die60, §10.6.1] or
rem A.4.7 and [Lemma A.4.5 O

Solutions in spaces of differentiable functions On the spaces C%(X, X) with k > 1, it
is harder to show that the maximal solution is defined on the whole of [0,1]. To show
this, we first verify that the differential curve D o~ of a solution v : I — C&(X, X) to
is itself a solution to a linear ODE. We start with the following definition.

Definition 4.3.7. Let X be a Banach space and W C R™ with 1x € W. Further, let
F be a subset of W with 1y € F, k € Nand I': [0,1] — C&(X,X) and P : [0,1] —
Cyv(X,L(X)) be continuous curves. We define the continuous map
GFh 1 [0,1] x CH(X,L(X)) — CH(X, L(X))
H(t,y) = (P(2) o (D(1) +idx)) - (v +1d)

and consider the initial value problem
(1) = G (1, 2(1))
®(0) = 0.

Lemma 4.3.8. Let X be a Banach space and W C RY with 1x € W. Further, let F be
a finite subset of W with 1x € F, k € N and p € C>([0,1],C3(X, X)). If

(4.3.7.1)

T :[0,1] — CH(X,X) and Thyr:1C[0,1] = CEYX, X)

are solutions to|(4.3.2.1)| corresponding to p, then the curve D o Ty : I — Ch(X,L(X))
is a solution to the|initial value problem (4.3.7.1)| with T' =T and P = D o p.

Proof. We have
(DoTyt1) =Doly

and therefore for ¢t € I
(D oTht1)'(t) = D Fr 1 (t, Tisa (), p)
= (Dp(t) o (Tr41(t) +idx)) - (DTg4a(t) +1d).
= ((Dop)(t) o (Tt1(t) +idx)) - (D o Tyy1)(t) +1d)
= Gl;f;’gDoP(t (D oTyq1)(t)),
where we used that I'y|; = I'yy1 by |[Lemma 4.3.4] since Cé%(X, X) is a Banach space.

Obviously (D oT'41)(0) = 0, so the assertion is proved. O
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Now we use the embedding from [Proposition 3.2.3| to show that the maximal solution
to|(4.3.2.1)|is defined on |0, 1].

Lemma 4.3.9. Let X be a Banach space, VW C RY with 1x e W, F CW finite with
Ix € F, p e C®([0,1],C}(X, X)) and k € N. Then the initial value problem |(4.3.2.1
corresponding to p has a unique solution which is defined on the whole interval [0, 1].

Proof. This is proved by induction on k. The case k = 0 was treated in

k — k + 1: We denote the solutions for k and 0 with 'y and I'y, respectively. Since
the function F'r ;41 is smooth and Céé“(X , X)) is a Banach space, there exists a unique
mazimal solution I'yyy : I — Cﬁi_ﬂ (X, X) to |(4.3.2.1)| (see [Proposition A.4.2)). Using
we conclude that D oI'y;; is a solution to {4.3.7.1}|, where I' = I';, and
P = D o p; here we used that by the induction hypothesis, T'y, is defined on [0, 1]. Since
the latter ODE is linear, there exists a unique solution

S:[0,1] = Ch(X,L(X))

that is defined on the whole interval [0, 1] (see §10.6.3] or [Theorem A.4.7). Let

L CEH X, X) = CR(X, X) x Ch(X,L(X))

be the embedding from |[Proposition 3.2.3] By |[Lemma 4.3.4]) I'; 1 is a solution to|(4.3.2.1)
for the right hand side Fr, so I'y1.1 = I'g| since solutions to initial value problems in
Banach spaces are unique. Hence

PkJrl(I) - Lil(ro([ov 1]) X S([07 1]))

Further, 'o([0, 1]) x S([0, 1]) is compact and the image of ¢ is a closed subset of C%-(X, X) x
Cé%(X ,L(X)) (by [Proposition 3.2.7). Hence, because :~! is a homeomorphism, the image

of I'y41 is contained in a compact set. Since 'y1q is maximal, this implies that 'y
must be defined on the whole of [0, 1]; see |[Theorem A.4.7] O

Smooth dependence on the parameter and taking the solution to the limit We use
the constructed solutions on C5%(X, X) and show that there exists a solution to|(4.3.2.1)
on Cyy(X, X)), depending smoothly on the parameter curve.

Proposition 4.3.10. Let X be a Banach space and VW C @X with 1x € W. For each
p € C=([0,1],Cy5(X, X)) there exists a solution I'), to|(4.3.2.1)| defined on [0, 1] which
corresponds to p, W and co. The map

[0,1] x €*([0, 1], (X, X)) — G (X, X) = (¢, p) = T'p(t) (1)
18 smooth.

Proof. For p € C*([0,1],Cy5(X, X)), we denote the solution [0,1] — C?IX}(X,X) to

4.3.2.1)| corresponding to p, 0 and {1x} — which exists by [Lemma 4.3.9| - with I';,. By

mma 4.3.4] a solution I : [0,1] — C&(X, X) to|(4.3.2.1)| corresponding to p, a finite set
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F C W containing 1x and k € N — which exists by [Lemma 4.3.9[— also solves [(4.3.2.1)]

for p, 0 and {1x}. Hence, by the uniqueness of solutions to initial value problems for
Banach spaces, I', = I'. Since F and k were arbitrary, the image of I';, is contained in
Cyv(X, X), and we easily calculate that I', is a solution to corresponding to p,
W and oo.
It remains to show that the map is smooth. The space Cy};(X, X) is the projective
limit of
{CE(X,X): ke N,FCW,|F| < 0,1x € F}

by [Proposition 3.2.5| Hence using the universal property of the projective limit (see
[Proposition A.1.12)), we just have to show that the map

0,1] x C*([0,1],C35(X, X)) — CH(X, X) : (t,p) = Tp(t)

with a finite set F C W containing 1x and k € N is smooth. We deduce this from
|Corollary A.4.14] since the map C*°([0,1],C55(X, X)) — C&(X, X) : p + 0 is smooth.
Here, we used implicitely that the inclusion map C95(X, X) — Ch(X, X) is smooth. [J

4.3.2. Conclusion and calculation of one-parameter groups

We are ready to prove the regularity of Diff), (X) and Diff), (X)°. After that, we calculate

their one-parameter groups and show that these induce flows on certain weighted vector
fields.

Theorem 4.3.11. Let X be a Banach space and W C RY with 1x € W. Then the Lie
group Diffy,,(X) is regular.

Proof. We proved in [Proposition 4.3.10|that for each smooth curve p : [0,1] — Cy5(X, X)
the initial value problem |(4.3.2.1)[ has a solution I', : [0,1] — Cy5(X, X)) and that the
map

T [0,1] x €%([0,1], C38(X, X)) — C32(X, X) : (t,p) = Tp(t)

is smooth. Obviously, I" maps [0,1] x {0} to 0. Since x), (Diff},,(X)) is an open
neighborhood of 0 in C§(X, X) (see|Theorem 4.2.10)) and I' is continuous, a compactness
argument gives a neighborhood U of 0 such that

I'([0,1] x U) C kyy (Diffyy(X)).

We recorded in that this is equivalent to the existence of an open neighbor-
hood V of 0 € C*°([0, 1], Cy3 (X, X)) such that for each v € V, there exists a right evolution
Evol’]’jiﬁw(x) (v) and that evolpDiHW(X)]V is smooth. But we know from [Lemma B.2.10

that this entails the regularity of Diffy,,(X).

Corollary 4.3.12. Let X be a Banach space and W C RY with 1x € W. Then
Diffy,(X)° is a regular Lie group.
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4.3. Regularity

Proof. Let v € C*°(]0, 1], Tiq, Diff),(X)°). Since Tiq, Diffy,,(X)° C Tiq, Diffy,(X) and
Diffy,, (X)) is regular by [Theorem 4.3.11} there exists a right evolution Evol?(y) : [0, 1] —

Diff,)(X). We proved in [Lemma 4.3.3| that the curve I' := kyy o Evol?(v) is a solution
to the initial value problem |(4.3.2.1)] where F = W, k = oo and p = dky;, 0 7. So for

t €[0,1],

T(t) = /Ot T(s) ds = /Otp(s) o (T(s) + idy) ds.

Hence we see with [Lemma 4.1.5| and the fact that Cy5(X, X)? is closed in Cyj(X, X)
by |[Lemma 3.1.6| that Evol?(v) takes its values in Diff), (X) N Endyy(X)° = Diff,,(X)°.

From this and the smoothness of evolpDiffw (x) We easily conclude that evolpDiﬂrw (X)° is
smooth, and this finishes the proof.

On the one-parameter groups We calculate the one-parameter groups of Diff), (X)
(and hence for Diff), (X)°). As excepted, these arise as flows of vector fields.

Lemma 4.3.13. Let X be a Banach space and W C RY with 1x € W. Then for
v € Cy(X, X), the associated flow of the one-parameter subgroup of Diffy,,(X) with the
right logarithmic derivative Toryw () is the flow of v (as a vector field).

Proof. We proved in [Theorem 4.3.11| that Diff,,(X) is regular, hence the one-parameter
subgroup P of Diffy,,(X) with 0,(P)(t) = Torw(7) for all t € R exists. We have to show
that for any = € X, the curve R — X : ¢ — P(t)(z) is the solution to the ODE

V(1))
1(0) =z

Obviously, P(0)(z) = idx () = z. Further, P(t)(z) = (evy ok o Ky, o P)(t). It is an
easy computation to see that ev, okyy is C! with

~
~
—~
o~
S~—
I

d(evg orw)(13m) = eva(m1)-
By our assumptions, for t € R
P'(t) = Torw(y) - P(t) = Tppw (Torsw (7)) = T(pp) © £w)(0,7).
So by using the last two identities and we get

(evy oP)'(t) = (d(evs or) o Triyy ) (P'(t))
= d(evy orw) (Kyy (P(t));v 0 P(t)) = 7(P(1)(2)).

This proves that the curve R — X : ¢ — P(t)(z) is the integral curve of v to the initial
value z. O
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5. Lie groups of weighted diffeomorphisms
on Riemannian manifolds

As the title says, in this chapter we construct weighted diffeomorphisms on Riemannian
manifolds, and a Lie group structure on them. To do this, we need a suitable model space
of weighted vector fields and a locally convex vector space topology on it. In the first two
sections of this chapter, we turn our attention to this problem; in particular, we examine
under which conditions the local group operations are smooth. To this end, we need the
superposition result obtained in [Subsection 3.3.4] some knowledge about Riemannian
manifolds presented in and of course the results regarding the composition
and inversion maps presented in [Subsection 4.1.1] and [Subsection 4.2.1} respectively.

Since the local group operations are only smooth under certain conditions on the weights,
we have to examine if such weight sets exists. We present our results in [Subsection 5.2.3
Before the construction of weighted diffeomorphisms, we need criteria on vector fields X
which assure that the map exp,oX is a diffeomorphism. In [Subsection 5.3.1} we derive a
criterion that is astonishingly simple.

5.1. Weighted restricted products

In this section, we define and examine some kind of simultaneously weighted functions.
As a motivation, let M be a manifold, f: M — R a weight on M and X : M — TM a
vector field. There is no canonical way to express what it means that X is bounded with
respect to f. In contrast, for a chart x for M we perfectly understand what it means if
the function X, = dk o X o k7! is bounded with respect to the weight f o x™'. So we
may say that X is bounded with respect to f if all its localizations (with respect to an
atlas A) are so, and define seminorms with respect to f and an order of differentiation.
This leads to the definition of a topology on a subset of the product [[,c4Cyy (Us, R%)
that is finer than the ordinary product topology.

However, we take a more general approach. First, we define such a restricted product
for a family of locally convex spaces when there exists a set J such that each space has a
set of generating seminorms that can be indexed over J, and prove some results about
these kind of spaces. After that, we define weighted restricted products. These consist
of functions that are defined on the disjoint union of open subsets of arbitrary normed
spaces, and are bounded w.r.t. weights which also are defined on this union.

Of particular interest is the question of whether operations between these spaces that
are defined factorwise are continuous or smooth. We will see that many maps of this
type behave quite well.
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5.1. Weighted restricted products

5.1.1. Restricted products for locally convex spaces with uniformly
parameterized seminorms

Definition 5.1.1 (Restricted products). Let I and J be nonempty sets, (E;);cr be a
family of locally convex spaces such that for each i € I, there exists a family (p; ;j);jes of
seminorms on F; that defines its topology. For each j € J, we define the quasinorm

pi [ Bi = [0,00] : (wi)icr — sup pi ().
icl =

With these, we define

T ((Ey)icr)|i={z € HEl 1 (Vj e J)pj(z) < oo}
el

We shall use the same symbol, p;, for the restriction of p; to £5°((Es)icr). Endowed
with the seminorms {p; : j € J}, the latter is a locally convex space. Note that the
topology on (5 ((E;)icr) is finer than the ordinary product topology, and strictly finer if
{i € I: E; # {0}} is infinite.

On Lipschitz continuous functions to a restricted product

Since the topology of ¢5°((E;)icr) generally is finer than the product topology, a map
whose component maps are continuous is not necessarily continuous. But we can give a
sufficient criterion for Lipschitz continuity. First, we give the following definition.

Definition 5.1.2. Let X,Y be locally convex spaces, U C X open, ¢ : U — Y and
peN(Y), g€ N(X). Then we set

Lipy (¢)|:= inf{L € [0,00] : (Vz,y € U) |[¢(z) — ¢(y)|lp < Lllz — yllq}-
If Lip§(¢) < oo, then [|¢(x) — ¢(y)llp < Lipg(#)lx — yllq for all z,y € U.

Lemma 5.1.3. Let V' be a nonempty subset of the locally convexr space X. Let A:V —
(P ((Ei)icr) be a map such that

(Vj € J)(3 € N(X)) sup Lipy; (m; 0 A) < o0,
i€l

where fori € I, m; : [[ ;e Ej — E; denotes the canonical projection. Then A is continuous.
In fact, LipZ§ (A) < sup;e; Lipzi’j (mi o A) for each j € J.

Proof. Let z,y € V and j € J. We have
[A(z) — A(Y)llp; = sleljp\lm(A(x)) — mi(AW)lp:; < Sup Lip2s? (mi 0 A)||lz — y| -

pj

This finishes the proof. O
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5.1. Weighted restricted products

On the product of restricted products

We turn to the product 3 ((Ei)icr) x €3, ((Fi)icr) of two restricted products. If the
seminorms of both spaces are indexed over the same set, it is isomorphic to another
restricted product. As a preparation, we make the following remark.

Remark 5.1.4. For the following, note that if the locally convex spaces F¥ and F both
have a generating family (pf )jes and (pf )jes of seminorms indexed over J, then there
exists a generating family of seminorms for E x F' that is indexed over J. For example,
the family (max o(p]E X pf))jeJ generates the product topology on E x F.

Lemma 5.1.5. The sets (5 ((E; x Fy)ier) and (5 ((E;)ier) x £5°((Fi)ier) are isomorphic
as topological vector spaces. The canonical isomorphism is the map

P ((Bi x Fyier) = L7 ((Ei)ier) X €37 ((Fi)ier) « (€, fi)ier = ((ei)ier, (fi)ier),

and

(T ((Ei)ier) X L3 ((Fy)ier) = LT ((Ei % Fy)ier) = ((€i)ier, (fi)ier) — (s, fi)ier
its inverse.

Proof. We denote the maps defined above by A and B, respectively. Let j € J and k € 1.
Then

pkE,j((ﬂkOprloA)(ei, fi)ier) = PkE,j(ek) < maX(pﬁj(ek),ka,j(fk)) < max(ijxpf)(ei, fi)ier,

independent of k. This shows that pry o A takes values in ¢5°((E;)icr), and since it is
linear, we can use to see that it is continuous to this space. Since the same
argument can be made for the second factor, we see that A is continuous.

On the other hand, we have that

max o(py; % py ;) ((m © B)((ex)ier, (fi)ier)) = max(py(ex), pi.;(fi)
<pij(er) + i (fe) < pF(e)ier + pf (fi)ier.
Since pf opry —}—pf opr, is a continuous seminorm on £5°((E;)ier) X €5 ((Fi)ier), this shows

that B takes values in {5 ((E; x Fj)icr), and since it is linear, we can use [Lemma 5.1.3
to see that it is continuous to this space. Nw clearly B = A™!. O

On differentiable functions into a restricted product

We give a criterion when a function into a restricted product whose component maps
are C! is differentiable itself. In order to do this, we give a sufficient condition for the
completeness of a restricted product.
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5.1. Weighted restricted products

Completeness of a restricted product We prove that a restricted product is complete
if all factors are so.

Lemma 5.1.6 (Completeness). Let I and J be nonempty sets, (E;);cr be a family of
locally convex spaces and (p; j)jcs o family of generating seminorms for E;, for i € I.
Further assume that each E; is complete. Then {5 ((E;)icr) is complete.

Proof. Let (z4)aca be a Cauchy net in ¢5°((E;)ier). Then for each i € I, obviously
(m(a))aca is a Cauchy net in F;, and since E; is complete, it converges to some z; € E;.
We show that (z;)icr € €5°((E;i)ier) and that (24)aca converges to (z;);er. To this end,
let 7 € J. Since (z4)aca is a Cauchy net, for each € > 0 there exists £ € A such that

(Vo € A: 0, > 0) supllmiea) = mi(25) ., <<
1€

We fix o in this estimate, and for each i € I, we take m;(xg) to its limit. Then we get
that
(Va € A:a > () sup||mi(wa) — xillp, ; < e
iel

Hence
(@i)ierllp; < ll@ellp; + 1(zi)ier — @ellp; < 00

and thus (x;)icr € (T ((Ei)icr). Since € > 0 was arbitrary, we also see that (24)aca
converges to (z;)ier- O

Differentiability criterion The criterion we present is quite useful. The reason for this
is that often, we can compute the differentials in terms of the map itself and some
well-behaved operations.

Lemma 5.1.7. Let U be an open nonempty subset of the locally convex space E, I and
J nonempty sets, (F;)icr a family of locally convex spaces whose topologies are generated
by families of seminorms indexed over J. Let f : U — {3 ((F})icr) be a map such that
each component map f; : U — F; is C* and the map

(dfi)ier : U x E = L7 ((Fi)ier)
is defined and continuous. Then f is Cl.

Proof. Let x € U and h € E. Choose € > 0 so small that  + Bg(0,e)h C U. By our
assumptions, the map

BK(O,&‘) X [0, 1] — ESO((FZ)ZGI) : (t, 8) — (dfz(a: + Sth;h))ie[

is continuous. Hence we see with that for each ¢t € Bg(0,¢), fol(dfi(x +
sth; h));er ds exists in E?}O((E)iej), where F; denotes the completion of F;. Using the
mean value theorem, we conclude that the integral exists in £5°((F;);er) with the value
F(f(z+th) — f(x)), if t # 0. Hence we see with the continuity of parameter-dependent

integrals (Proposition A.1.8) that f is C' with df (x;h) = (dfi(z; h))icr. O
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5.1. Weighted restricted products

Remark 5.1.8. A similar assertion as in the previous lemma should hold if each component
map f; : U — F; is CF and the maps

(d9 f)ier : U x E* = (F((Fi)ier)

are defined and continuous for each ¢ € N with ¢ < k.

On the product of multilinear maps

The last result about the general restricted products is about the continuity of a product
of multilinear maps. It assures the continuity if the factors maps are kind of “uniformly
bounded” for each generating seminorm of the restricted product.

Lemma 5.1.9 (Multilinear maps). Let I and J be nonempty sets, m € N, E, ..., E, be
locally convex spaces and (F;)icr a family of locally convex spaces such that the topology
of each Fj is generated by a family (p;;)jes of seminorms. Further, for each i € I let
Bi: F1 X --- X E,, — F; be an m-linear map such that

(Vj e JJ)3p1 e N(EL),...,pm € N(En), C >0)
(Vi€ L,z € Er,...yxm € En) |Biz1, s 2m)llps; < Cllzllpy - 12mllp-

()

Then the map
(Bi)ier : E1 X ... X Eyy — L7 ((F)ier)

is defined, m-linear and continuous.

Proof. We conclude from that for j € J and @1 € Ey,..., 2y € Enp,

1Bi(z1s - zm)ierllp; < Cllztllps - |mllpn-

From this estimate, we conclude that (8;(z1,...,2m))icr € £7((F;)icr). Further, since
(Bi)icr is obviously m-linear, we see that it is continuous in 0 and hence continuous. [

5.1.2. Restricted products of weighted functions

We now turn our attention to special restricted products, where each factor is a weighted
function space of the kind examined in Since we know the topology of these
spaces and plenty of operations on and between them very well, we are able to derive
more results about them than in the general case. We give the definition and then adapt
some previous results about the topological and uniform structure.

Definition, topological and uniform structure

Definition 5.1.10. Let I be a nonempty set, (U;);c; a family such that each Uj is
an open nonempty set of a normed space X;, (Y;)ier another family of normed spaces,
W C RtV 5 nonempty family of weights defined on the disjoint union of (Uy)ier,
and k € N. For i € I and f € W, we set f; := f|y,, and further W; := {f; : f € W}.
Then the topology of each space C{ﬁVZ,(UZ-, Y;) is induced by a family of seminorms indexed
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5.1. Weighted restricted products

over Wx {{ e N: ¢ <k};foriel, wemap f €W and ¢ € Nwith ¢ <k to ||, We

define
Coy (Ui, Yi)iet|:= L35, 1oy ewx fnen: nekp (o, (Ui, Yi)ien)-

The seminorms that generate the topology on this space are of the form

|(04)ier

.4 = supl|dil 1, 05
el

where f € W and ¢ € N with ¢ < k.

Lemma 5.1.11. C)5(U;, Yi)icr is endowed with the initial topology of the inclusion maps
CR (U Yiier = Coy(Us, Yiier,

for k € N. Moreover, Cyy(U;, Y: )ier = I'LmkeN C%(UZ-,Y})ZE].

Proof. This is clear from the fact that the seminorms |[|-|| ¢, with f € W and ¢ < k define

the topology on the right hand side, while those with ¢ € N define the topology on the
left. O

Proposition 5.1.12. Let k € N. Then for (¢:)ier € [Lie; FC (Ui, Yi), we have

(Pi)ier € Ci (Ui, Yi)ier <= (¢i)ier € Cy(Us, Ya)ier and (D¢y)icr € Chy(Ui, L(X;, Vi) )ier-
The map

Co (UL Ya)ier — Coy(Us, Ya)ier x Cop(Us, L(X3, Vi) )ier = ((di)ier) = ((di)ier, (Déi)ier)

1s linear and a topological embedding.

Proof. This is proved in the same way as [Proposition 3.2.3and is a direct consequence

of Lemma 3.2.21 O

Lipschitz continuity This is an adaptation of

Lemma 5.1.13. Let V be an open nonempty subset of the locally convex space X. Let
AV = C’;V(Ui,Y;)ie[ be a map such that

(VfeW,LeN:L<k)(FpeNX)) ilel?Lip}f:i’g(m 0 A) < 0.

Then A is continuous. In fact, Lipg’E(A) < sup;e; Lippi’z(m o A).

Proof. This follows from ]
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5.1. Weighted restricted products

Adjusting weights and open subsets

Let I be an infinite set and (r;);cs a family of positive real numbers such that inf;c; r; = 0.
If W consists only of 1y,_,u,, then the set [[;c; C%(Ui, By (0,7;)) is not a neighborhood
of 0 in C%(Ui, Y;)icr. But since we later need to discuss such sets, and in particular want
functions that are defined on such sets to be differentiable (think of the Riemannian
exponential function), we must know under which conditions on W their interior is not
empty.

It turns out that if YV contains a weight w that is “large enough” on each U;, then the
set {(¢z)zel S C%(UZ, lfi)iel : H(‘bi)iEIHw,O < 1} is contained in Hie[ C%Z(UZ, Byi (0,77)) N
Cy (Ui, Yy)ier, so the latter is a neighborhood of 0. We will call w adjusting to the family
(r;)ier since w adjusts its smallness. We start with some definitions.

Definition 5.1.14. Let (U;);er and (7;);er be families such that each U; is an open
nonempty set of the normed space X;, and each r; €]0,00]. We say that w : U;e;U; — R
is an adjusting weight for (r;);er if for each i € I, we have that

sup |w;(z)] < oo and inf |w;(z)| > max (L, 1).
zeU; zeU; i

Notice that generally, w itself is not bounded.

Definition 5.1.15. Let (U;);er and (V;);e; be families such that each U; is an open
nonempty set of the normed space X; and each V; is an open nonempty subset of a
normed space Y;, W C @UiEIUi a nonempty set and k € N. Let w : U;erU; — R with
0 ¢ w(WicrU;). We set

Cy2 ™ (UL, Vi)ie|

= {(n)ier € (Ui, Yi)ier : (3r > 0)(Vi € I,z € Up) vi(x) + By, (0, 57) € Vil

In particular, we define

(1UiEIUi)87k

COk (U, Vi)ied|:= Cyy) (Us, Vi)ier.

Additionally, if each V; is star-shaped with center 0, then w is called an adjusting weight
for (V;)ier if it is an adjusting weight for (dist({0}, 9V;));er. If it is clear to which family
w adjusts, we may call w just an adjusting weight.

Remark 5.1.16. Let (U;)ier and (V;);er be families such that all U; and V; are open

nonempty subsets of the normed spaces X; respectively Y;, W C RtV nonempty set,
ke Nand w: UiesU; — R with 0 ¢ w(WierU;) such that sup,er;, [wi(z)| < oo for each
t € I. Then inf,cy, m > 0, and hence

Cy " (U, Vi)ier C HC%}k(Ui, Vi).
iel

To show that [[;c; C%, (Us, By;(0,7;)) contains a neighborhood of the constant 0 func-

%

tion, we estimate the ||-||1,,,0 seminorm with the [-|| ¢ seminorm.
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5.1. Weighted restricted products

Lemma 5.1.17. Let X and Y be normed spaces, U C X an open nonempty set, f :
U — R such that 0 ¢ f(U) and ¢,¢ : U =Y.

(a) For all x € U, we have ||¢p(x) —(z)|| < ||¢‘}ch‘)‘{’°.

(b) Assume that infycy|f(z)| > 0. Then |[¢ — ¥|l1,,0 < %

(¢) Suppose that infycp|f(z)| > max(3,1), where d > 0. Then

¢ = ¥ll1y0 < min(d, 1)]|¢ — 2| 10 (5.1.17.1)

Proof. @ This follows from |f(z)| ||¢(z) — ¥ (2)| < ||¢ — Y|l 10
This is an easy consequence of @
(c)

This follows from |(b)} where we use that —L— = min(d, 1). O

max(g,1)

Lemma 5.1.18. Let (U;);er and (V;);er be families such that each U; is an open nonempty
set of a normed space X; and each V; is an open nonempty subset of a normed space Y;,
keN, f:UieiUs — R with 0 ¢ f(Uie U;) and W C RV with f e W.

(a) C%’k(Ui,%)ig s open in C{fv(Ui,Yi)ieI. In fact, it is even open in C{f\;(Uz’,Yi)ieI
when this space is endowed with the topology of C?f}(Ui, Yi)ier-

(b) Assume that each V; is star-shaped with center O and f is an adjusting weight for
(Vi)ier- Then C{:@’k(Ui, Vi)ier is not empty. In particular, for T > 0 we have

{n € Chy(Ui,Yiicr : |nll o < 7} CCla™ (U7 - Viier. (5.1.18.1)
Proof. Let v € C{/cg’k(Ui, Vi)ier. Then there exists r > 0 such that

(Vl el,x e UZ) WZ(ZL‘) +Byi(0, |f(rx)|) cV.

‘We show that

{n € Chy(Us, Yier : In =0 < r} " (Ui, Viier.

To this end, let 7 be an element of set on the left hand side and s := r — || —~||r,0. Then

for i € I, x € U; and h € By;(0, U(ST)\)v we have with [Lemma 5.1.17] and the triangle

inequality

H’V—ﬂ f,0 s T
@l @l @l

[l7i(2) = vi(x) + Al <

Hence
ni(x) + h =~i(x) + ni(z) —vi(z) + h € V.

This shows that n € C{@’k(Ui, Vi)ier-
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5.1. Weighted restricted products

@ Let n be an element of the set on the left hand side of |(5.1.18.1 We set r =

T —||nllf0- Let i € I, 2 € U; and h € By;(0, ﬁ) Then we see with 55.1.17.1? that

() + bl < {lni(2) | + 1A]] < min(L, i) |7l 7,0 + min(1, di) (7 = |17l £,0),

where d; := dist({0}, 9V;). Hence ||n;(z) + h|| < 7d;, so ni(z) + h € 7 - V;. This finishes
the proof. ]

Remark 5.1.19. Let (U;);er be a family such that each U; is an open nonempty set of
the normed space X;. Further, let W C R”<'Y contain w with infep|w(z)| > 0 (in
particular, this holds if w is an adjusting weight) and ¥ € N. Then for each £ € N
with ¢ < k, we see with that the seminorm H‘HIUiGIUi ¢ is continuous on

Cry(Us, Y:)ier. In particular, C,(U;, Y;)ier = Clﬁvu{m.eﬂ.}(Uia Yi)ier-

5.1.3. Simultaneous superposition and multiplication

In this subsection, we discuss operations between restricted products of weighted functions
that consist of operations that are defined on a single factor. The most common operation
is the superposition with a family (¢;);e; of maps of certain characteristics, i.e. linear,
analytic etc. In contrast to former results, we often have to take a more quantitative
approach, and tailor our assumptions about the permitted weights to (¢;)ier.

Simultaneous multiplication

We begin with simultaneous multiplication. It is pretty straightforward, and |(5.1.20.1)
provides a good example of the assumptions on the weights that will be made in the
following.

Lemma 5.1.20. Let (U;)ier be a family such that each U; is an open nonempty set of

the normed space X;, and (Kl)ieb (}/;'2)1'61, (Zi)ier be families of normed spaces. Further,

for each i €I let M; : U; — YZ-1 be smooth, and B; : Yi1 X Yf — Z; a bilinear map such
that

sup{||Billop : # € I} < 0.

Assume that W C RV g nonempty and
(VfeW, L e N)(3g € Wiax) (Vi € I) ||Mi||lu,i,€|fi| < |gil. (5.1.20.1)
Then for k € N, the map
Cy (Ui, Y2)ier — Cop(Ui, Zidier + (i)ier = (Bi o (Mi, i) )ier

s defined and continuous linear.
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Proof. We prove this by induction on k.
k = 0: We calculate for i € I, © € Uy, (7V;)icr € C{f\,(Ui,Y-Q)Z-e[ and f € W that

1

|fi(@) [ 1(Bi o (M3, 7)) (@) < [Billop | fi(@) | 1M ()| [|7vi (@) | < 1 Billop [17illgi.0-
Hence

1(8 © (Mi, i))ietll 0 < S,ugllﬁi\\op 1(vi)iet llg,05
1€

which shows the assertion.

k — k + 1: Using the induction base and [Proposition 5.1.12] all we have to show is
that for (v;)ier € C{ﬁv(Ui,Yiz)ie], we have (D(b; o (M;,7;)))icr € C{f\,(Ui,L(Xi, Z;))ier and
that the map

Co (Ui Y ier = Oy (Ui, L(Xi, Zi))ier = (vidier = (D(bs o (Mi,7)))ier
is continuous. By for each i € I we have
D(Bi o (M. 7)) = ) o (DM;,7) + 5 o (M;., D)
(using notation as in [Definition 3.3.1)). Hence
(D(Bi o (Mi,3i))ier = (B o (DMi, 7))ier + (B o (My, Dyi))ier,

and we easily calculate that ||BZ-(1)||op, ||,6’i(2)||0p < ||Bil|op for each i € I. Since W and
(DM;);er satisfy |(5.1.20.1), we can apply the inductive hypothesis to both summands
and finish the proof. ]

Remark 5.1.21. The assertion of [Lemma 6.1.6] is similar to the one of [Lemma 5.1.20
There, we call maps (M;); for which [(5.1.20.1)| is satisfied (when #I = 1) multipliers.

Simultaneous superposition with multilinear maps

Here, we examine the superpositions with multilinear maps that are uniformly bounded.
It is very similar to [Proposition 3.3.3] but also involves a result for the more general
restricted products defined above.

Lemma 5.1.22. Let I be a nonempty set, (X;)ier, (Xi,k)(i,k)elx{l,,,,m} and (Y;)ier
families of normed spaces, and U; C X; an open nonempty subset for each ¢ € I. Let
Wi, oo o ;Wi W C R pe nonempty sets such that

(Vf eW)Eg" e Wi, g"" e Wn)(Vi € D) [fil < g+ 1g]"].

Further, for each i € I, let B; : X;1 % -+ x X;,, = Y; be a continuous n-linear map such
that the set

{UlBillop = 2 € I}
is bounded. Then the map
B Chy, (Ui, Xin)ier X -+ % Chy, (Ui, Xin)ier — Coy(Us, Yi)ier
(V15> Vin)ier = (Bio (Viy1s - -+, Vi) )iel

1s defined, n-linear and continuous.
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Proof. Using [Proposition 3.3.3, we have for each i € I and 7;1 € C{ﬁv(Ui,X@l), e
Vin € C{f\,(Ui,Xi’n) that 5 0 (Vi1,.--,%in) € C{f\,(Ui, Y;). Further, (8 is n-linear as map
to [Tier C{ﬁV(Ui, Y;). We prove by induction on k that [ takes values in C]@V(Ui, Y;)icr and
is continuous.

kE = 0: We compute for all i € I, f € W,; and ;1 € C{fvl(Ul-,Xi’l), R
Chy. (Ui, X;,5) that

Hﬁz o (’Yi,lv s Vi n)HfO < Hﬂz”op HH’YZ,]H fJ 0

7j=1

Since ¢ was arbitrary, we can apply to derive the assertion.
k — k —+ 1: Using the induction base and [Proposition 5.1.12] all we have to show is
that for (vi1)ier € Ciy (Ui, Xin)ier, -, (im)ier € Copt (Ui, Xim)ier,

(D(ﬁl o (’77;,17 cee )’Yi,n)))iGI S Cllj\}(Ula L(Xla Y;))iGI:
and that the map

C])j\—;tl(Uiin,l)ieI X e X C)]j\—;tll(Uiin,n)iEI — Ch (Ui, L(Xi, Y3))ier
(Yi,1s -5 Yin)ier = (D(Bio (Yis---»Yim)))icl

is continuous. By for each i € I we have

n
D(/@io(lyi,1>"'7fyln Z Z(J) ’71,17 '7D7i,j7"'77’i,’ﬂ)

(using notation as in [Definition 3.3.1) and hence

n
(D(Bio (Vids---sYim)))ier = ZBU (Vi1 DYiggs 5 Vi) )ier-
J:

—

Since we easily calculate that ||ﬁ§j)Hop < ||Billop for each i € I and j € {1,...,n}, we can
apply the inductive hypothesis to each summand and get the assertion. O

Simultaneous superposition with differentiable maps

We provide the simultaneous analogue of [Proposition 3.3.26] In the proof, we have to
use notation introduced in [Lemma 3.3.25| as we did in the proof of [3.3.26] Similarly,
the technically most challenging part will be the examination of the superposition with

( (ﬁl) ),6 7. Another novelty is the use of adjusting weights.

Proposition 5.1.23. Let (U;)icr and (V;)ier be families such that each U; is an open
nonempty set of the normed space X; and each V; is an open, star-shaped subset with
center 0 of a normed space Y;. Further, let (Z;)icr be another family of normed spaces
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5.1. Weighted restricted products
and W C RS contain an adjusting weight w. For each i € I, let B; € FC*(U; x Vi, Z;)
be a map such that B;(U; x {0}) = {0}. Further, assume that
(Vf S W,g (S N*)(Elg (S Wmax) (VZ S I) |’,6iH1Uini’g|fi| < |g,\ (5.1.23.1)
is satisfied. Then for k € N, the map

By = le)* : C;u\?’k(Ui,W)iej — C{j\}(U’iv Zi)ier + (Vi)ier = (Bi o (idu,, i) )ier
el

1s defined and smooth.

Proof. We see with [Proposition 3.3.26| (and |Remark 5.1.16|) that 3 is defined as a map to
[Licr C{fv(Ui, Z;). We first prove by induction on & that §, takes its values in C{f\,(Ui, Zi)iel
and is continuous.

k=0: Let f € W. Using|(3.3.26.2)| we see that for v € C;’j\?’k(Ui, Vi)ierand i € T

18 o (idws i)l 7.0 < 1D2Bill10, v 017l 0+

Since || D2fill1y, cv,,0 < [Bill1y, v, 1, there exists g € Winax such that

H(/B% © (idUi’%))iEIHfiﬂ < ||7”9i70'

Hence
(B; o (idu,, %))ier € Coy(Us, Zi)ier-

With the same reasoning, we see with |(3.3.26.1) that for n € C;J\?’k(Ui, Vi)ier in some
neighborhood of ~,

1(Bi o (idy,,vs) — Bi o (idu,, mi))ierllr0 < 17 — nllg,0-

So by [Lemma 5.1.13}, 8, is locally Lipschitz continuous and hence continuous.
k — k + 1: We use |[Proposition 5.1.12, For (v;)ier € C;‘/’\?’k(Ui,%)iej, we have by
[Proposition 3.3.26 using notation from [Lemma 3.3.25

(D(Bi o (idy,, i)))ier = (D1 o (idu;,vi) )ier + ((51')5\242 o (idy,, i, Dvi))ier-
(Here, M; denotes the composition of linear operators). For ¢ € I and ¢ € N*,
1D1Bill1y, v e < Billi, v, 6415
and from we get that
NS0t eyt < Byt RIBill g,
for each R > 0. Hence we can apply the inductive hypothesis to see that the maps

Co2 M (Ui, Vidier — Chy(Us, L(X4, Zi))ier = (i)ier — (D1fi o (idu,, %) )ier
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5.1. Weighted restricted products

and for R>1
Co2® (Ui, Vix Brix, vy (0, R))ier = Chy(Usy L(Xi, Zi)ier = (viier — ((81) 57 o (idu,, ) )iet

are continuous; here we used that w is an adjusting weight for (V; x By,x, v;)(0, R))ier
when the product is endowed with the maximum norm of the factor products (and also
for (Br(x,,v,)(0, R))ier) if R > 1. From the continuity of the latter map, we deduce using
[Lemma 3.4.16] [Lemma 5.1.22| and [Lemma 5.1.5| that

C;u\?’k(Uiy Vi)ier X C;u\?’k(Ui7 Brx,v) (0, R))ier — Cyy(Ui, L(Xi, Z) )iex
((vi)ier, Ti)ier) — ((/32')531) o (idy;, v, T'i))ier
is continuous. Hence for each v € C;j\?’kH(Ui, Vi)icr, the map

k
{n € Ui Vidier = [l o1 < V11,00 + 1} = (Ui L(Xi, Zi) ier
(mi)ier — ()} o (ider, mi, D)

is defined and continuous. In view of |Remark 5.1.19, the domain of this map is a
neighborhood of +. This finishes the inductive proof.

The case k = oo follows from the case k < co by means of [Lemma 5.1.11

Now we prove that (8, is smooth. More exactly, we show by induction on £ € N* that
it is C*.
¢ = 1: By |Proposition 3.3.26| for any ¢ € I the map
(Bi)s + Oy, (U Vi) = €y, (Ui, Z) v = B o (idy, )
is C1. We noted in |(3.3.26.5)| that its differential is given by
d(Bi)«(vim) = (d2Bi)« (7, m)-

Obviously dof3; = (ﬁi).@), where - denotes the evaluation of linear operators. We see with
the same reasoning as above that the map

Cy2 ™ (Ui, Vidier % Ciy (Ui, Yi)ier — Chy(Us, Zidier = (v,1m) — (B (i i) Jier

is defined and continuous. Hence we can apply |[Lemma 5.1.7| to see that S, is C! with
dBi = Tlier(d2Bi)«.

¢ — £+ 1: We see with the inductive hypothesis that [[;c;(d2f3;)« is C, and since
dBs« = [T;er(d2:)«, we deduce that B, is C*+1. O

For technical reasons, we show that for a family (¢;);c; of smooth maps for which
(5.1.20.1)| is satisfied for their Fréchet differentials (D¢;);cr, the family of their ordinary

differentials (d¢;)ier satisfies|(5.1.23.1), at least on bounded subsets.

Lemma 5.1.24. Let (U;);er be a family such that each U; is an open nonempty set of
a normed space X; and (Y;)ier a family of normed spaces. Further, for each i € I let
B; : Up — Y; be a smooth map and W C RYY such that i5.1.20.1i 1s satisfied for
(DBi)icr- Then for each R > 0, (dﬁ¢|UixBXi(07R))i€1 satisfies @
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Proof. Let i € I. Then we derive from [(3.3.24.1)| that for all £ € N*, x € U; and h € X,
IDYdsi(x, h)llop < 1DV DB;(@)llop + 12 DY DBi() 0p.

Hence
14Billry, 5 0.0, S EIDBill1s, e-1 + RIDBill1s, e,

and from this estimate we easily derive that|(5.1.23.1)|is satisfied when so is|(5.1.20.1)l I

Simultaneous superposition with uniformly bounded maps As a corollary, we prove a
superposition result that is more in the style of [Proposition 3.3.12} we examine functions
that are not necessarily defined on a product and assume that the norms of the derivatives
are uniformly bounded. First, state an obvious fact.

Lemma 5.1.25. Let (U;);er and (V;);er be families such that each U; is an open nonempty
subset of the normed space X; and each V; is an open nonempty subset of a normed space

Y;. Further, let (Z;)icr be another family of normed spaces and W C RUierli nonempty.
For each i € I, let B; € FC®(U; x Vi, Z;) be a map such that for each ¢ € N*,

Ky = sup{||Bill 1y, v 0} < 00
el
Then ((5.1.23.1)| is satisfied.
Proof. Let { € N*. For f € W and i € I, we have that

fil < Kdlfil.
Since K;f € Wiax, the assertion is proved. ]

||BZH1U2XV27K

We now prove the result. The main difficulty is that in order to use [Proposition 5.1.23]
we have to adapt its results for functions that are not necessarily defined on a product.

Corollary 5.1.26. Let (U;)ier and (V;)icr be families such that each U; is an open
nonempty subset of the normed space X; and each V; is an open subset of a normed

space Y; that is star-shaped with center 0. Further, let (Z;)ic; be another family of
UierUi

normed spaces and W C R contain an adjusting weight w. For each i € I, let
Bi € FC™(V;, Z;) be a map such that 5;(0) = 0. Further, assume that for each { € N*,
the set

{1Billry,.e:ie 1}
is bounded. Then for k € N, the map
Cy2 (Ui, Vidier — Chy(Ui, Zi)ier = (Vi)ier — (Bi o Vi)ier

1s defined and smooth.

Proof. For each i € I, we define Bi iU x V; = Z; (z,y) — Bi(y). We know from
|Lemma A.1.17| that DY, = prs o (D(g)ﬁi o Er2>’ where pry @ X; X Y; — Y; denotes the
projection onto the second component. So ||Bill1,. v ¢ < ||Bill1y. ¢ for all £ € N. Further
B; o (idy,,7vi) = Bi o y; for each map v; : U; — V;, and EZ(UZ x {0}) = {0}. Hence we
derive the assertion from |[Proposition 5.1.23| and [Lemma 5.1.25| O
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Simultaneous superposition with analytic maps We prove a result concerning the
superposition with analytic maps. As in [Corollary 5.1.26] the results derived here are in
the style of [Proposition 3.3.21]

We start with simultaneous “good” complexifications.

Lemma 5.1.27. Let (U;);er and (V;);er be families such that each U; is an open nonempty
set of the normed space X;, each V; is an open set of a real normed space Y; and (‘Z‘)iel
a family such that for each i € I, V; is an open neighborhood of ti(Vi) in (Yi)c, where
ti : Y; = (Y;)c denotes the canonical inclusion. Assume that

(Vi e I, M C V;) dist(M, Y; \ V;) < dist(i(M), (Yi)c \ V). (5.1.27.1)

Then

TT(e0)(CoF (Ui, Vidier) € COF (U, Viier
el

for each k € N and W C Rt containing ly, v, -

Proof. Note that [[;c;(¢i)« is defined by [Lemma 5.1.22| Let v € Cg\}k(Ui,V;)ief. By
definition, there exists r > 0 such that ~;(U;) + By;(0,7) C V; for all ¢ € I; in particular,

dist(7i(U3), Y; \ Vi) > r. By dist(1i(v:(U3)), (Yi)c \ Vi) > r and hence (1; o
%) (Us) + By;).(0,7) € V; for each i € I. Thus

[1Co)«(v) = (ti 0 yi)ier € Ce\}k(UhVi)ieI,
iel

which finishes the proof. O

We now prove the result. We assume that the domains of the superposition maps do
not become arbitrarily small, and that they are uniformly bounded on subsets that have
a uniform distance from the domain boundary. This, together with the Cauchy estimates,
will enable us to use [Proposition 5.1.23|

Corollary 5.1.28. Let (U;)ier and (Vi)ier be families such that each U; is an open
nonempty subset of a normed space X;, each V; is an open subset of a normed space Y;
that is star-shaped with center 0 such that inf;cr dist({0}, 0V;) > 0. Further, let (Z;)ier

be another family of normed spaces and VW C R with, lyje;u; € W. For each i €1,
let B; : Vi — Z; be a map with B;(0) = 0. Further, assume that either all 3; are complex
analytic with

(V(Wy)ier : Wi C Vi open and bounded, i]eaﬁdist(I/Vi,@Vi) > 0) sup||Billiy. 0 < 00;
v iel ‘

(5.1.28.1)
or that any B; is real analytic and has a complezification

Bi: Vi C (Yi)e — (Zi)c
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such that|(5.1.28.1)| is satisfied and whose domains V; are star-shaped with center 0 and
satisfy|(5.1.27.1) Then for k € N, the map

B : Ce\’;k(Uu Vidier — Chy (Ui, Zidier = (vi)ier = ((Bi)«(vi))ier = (Bi o Yi)ier
1s defined and analytic.

Proof. We first assume that all 5; are complex analytic. Let r €]0,d[, where d :=

inf;cr dist({0}, 9V;). We use to see that there exists a family (V;a’r)iel

such that each Via’r is open, bounded and star-shaped with center 0; and furthermore

infier dist(Via’T, ov;) > dET min(1,7?) and U, -4 Via’r = V; for each i € I. Hence we see

with [estimate (3.3.15.1)[ that for each ¢ € N, there exists 7 < 45" min(1,72) such that
(20)

/ ¢
) < —1|8;
||61||1Vi8m,f = (F)[ ||ﬁl|‘1vi6,r+§Yi(0,’;")’O

for all ¢ € I. Using|(5.1.28.1)] we conclude from this that
Wil 00 € 1)

is bounded, so we use [Corollary 5.1.26| to see that j, is defined and smooth (and hence

analytic) on Cg\’,k(Ui, Vid’r)ig. Since these sets are open in Ce\’,k(Ui, Vi)ier and
Cl(?\}k(Uh Vi)ier = U C?\}k(Uia %87T)iely
rel0,d|

we derive the assertion.
_ Now assume that all 3; are real analytic. We derive from the first part of the proof that
B« = I1;(Bi)« is defined and analytic. Obviously S, coincides with the restriction of fs

to HieI(Li)*(C%,k(Ui, Vi)ier) (which is contained in the domain of 3, by [Lemma 5.1.27)),

hence S, is real analytic. O

We provide an application.

Lemma 5.1.29. Let (U;)ier be a family such that each U; is an open nonempty subset of

the normed space X;, (Y;)ier a family of Banach spaces, W C RY Y yith Ly, €W

and k € N. Then the map

el (U, Brv;)(0,1))icr = Chy(Us, L(Y3))ier : v = (QTr(v;) © Vi)ier

s defined and analytic.

Proof. This is simply an application of |Corollary 5.1.28| since each Qv /B, (v;)(0,1) can
be written as a (the same) power series, and hence satisfies |(5.1.28.1), O

5.1.4. Simultaneous composition and inversion

We examine the simultaneous application of the composition and inversion operations,
respectively, that we studied in [Proposition 4.1.7] and |Proposition 4.2.6|
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Simultaneous composition We start with composition. Note that we need the adjusting
weight w to ensure that C"Ja’ (Ui, Vi)ier is open and not empty.

Proposition 5.1.30. Let (U;)icr, (Vi)ier and (W;)ier be families such that for eachi € I,
U;, V; and W; are open nonempty sets of the normed space X; with U; +V; C W;, and V;
is balanced. Further, let (Y;)ier be another family of normed spaces and W C R ierWi
contain an adjusting weight w for (V;)icr. Then for k,f € N, the map

k| “TI ik {C{j\jg+l(Wi7Yi)iel X C;J\?’k(Uu Vidier — Chy (Ui, Ya)ier
l il .
" " ((vi)ier, (mi)ier) = (vi © (; +idy,)ier

iel

is defined and C*.

Proof. We see with |Proposition 4.1.7| (and |Remark 5.1.16[) that c’v/\’,ke is defined as a
map to [[;cr C{EV(Ui, Y;). We first prove by induction on k that c%ko takes its values in

C{f\,(UZ, Yi)ier and is continuous.
k = 0: We see with |estimate (4.1.3.1)| that for f € W, v € CW(WZ,Y;)ZE[ and
6 Cwa? (Ula ‘/;)’LE[

ey %o (i) g0 < Iillag, 1 llmill g0 + 1ill 120

for each ¢ € I. So c)i//\’,oo is defined, taking |Remark 5.1. 19| into account. Further, we see

with the same reasoning — applied to |est1mate (4.1.3.2 |f and |Lernma 5.1. 13| that cW o is
locally Lipschitz continuous and hence continuous.

k — k+1: We use|Pr0position 5.1.12L For~ € C{f\fz(ﬂfi, Yi)icrandn € C;"\?’kﬂ(Ui, Vi)iers
for each i € I we have

D(yi 0 (mi +idu,)) = D © (1 +idy,) - (Dni +1d) = 05" (Di,mi) - (D +1d).
By the inductive hypothesis, the map cV\(,X )# i defined and continuous. Further, we

see (noting [Remark 5.1.19) that (Dn; + Id);er € C{1 }(Ul-7 L(X;))ier. Hence we can

apply [Lemma 5.1.22| to finish the proof.
The case k = oo follows from the case k < oo using |[Lemma 5.1.11

Now we prove by induction on ¢ € N* that c}V/\}kz is C.
£ =1: We know from |[Proposition 4.1.7] that

iy O (W, Vi) x O (Ui, Vi) — Chy, (U3, Y3) + (7,m) = v 0 (n +idy,)

is C! for each i € I, and we noted in fidentity (4.1.7.1)| that its differential is given by

i) L(X3,Y;
d ey (v, m571.m) = Cv\(/l (D) -+ e ().
Since we already proved that cy\(,’o’y)’ and ‘1}//\’/]?1 are continuous, we use [Lemma 5.1.22| to

see that

CEFAY Wi, Yi)ier x G2 (Ui, Vidier x CEFHY (W, Ya)ier x Chy(Us, Xi)ier — Coy(Us, Yiier

( (XHY) k

(77777717771) Cl/V -1 (D%ﬂh) 771 + CW K(% 7nl))i61
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is defined and continuous. Hence we can apply [Lemma 5.1.7| to see that cz//\’,kg is C! and

dcwfg is given by this map.

¢ — €+ 1: We apply the inductive hypothesis and [Lemma 5.1.22| to the identity for

dc?,/\’,]fgﬂ derived above to see that dc%]f€+1 is C¢, hence Cyy g1 18 ctt, O

Simultaneous inversion We treat inversion. Here an adjusting weight is given explicitly.

Proposition 5.1.31. Let (U;)ier and ((Nfi)ig be families such that U; and U; are open
nonempty sets of the Banach space X;. Further assume that there exists r > 0 such that
Ui+ Bx,(0,7) CU; foralli e I. Let W C RV with ly,e;us € W oand 7 €]0,1[. Then
the map

el

¢= [T 5% : D™ = Cp (Ui, Xi)ier = (d1)ier — (¢ + idv,) g, — idg, )ier
is defined and smooth, where

DT = {¢ € Cy(Ui, Xiier : |91,

o <7 and 8],

0 < 5(1—7)}.

Proof. We use [Lemma 4.2.9} applied to ¢ = 0, to see that I{/]\, is defined as a map to
[Licr Gy (Ui, Xi)icr- We prove by induction on k that it takes values in C{ﬁv(Ui,Xi)ie[
and is continuous.

k = 0: By |estimate (4.2.5.1) we have for f € W, (¢;)icr € D7 and each ¢ € I that

U;
1595, (6170 < il ro0 mpaie < =5 19ill 0
Ui

Since 7 < 1 and ¢ was arbitrary, I3, is defined. In the same manner, we can use
|estimate (4.2.6.1)| to see with [Lemma 5.1.13|that I{], is locally Lipschitz continuous and
hence continuous.

k — k + 1: We use [Proposition 5.1.12| By [identity (4.2.4.1), for ¢ € D7,

(D 15 (6))ier = (S5 (Des - QI(~Dgy) — Dby, 10 (6:)))ier-

Since (D¢ )icr € Ce\}k(Ui, Br,(x,)(0,1))ier, we can apply|Lemma 5.1.29(and then |Lemma 5.1.22

[Proposition 5.1.30 and the inductive hypothesis to finish the proof.

The case k = oo follows from the case k < co with

Now we prove that I{,]V is smooth. More exactly, we show by induction on ¢ € N* that
it is C*.

¢ = 1: By |Proposition 4.2.6| (and |[Lemma 4.2.9)), the map IVU\}'Z, is C! on 7;(D7) for each
i € I, and by [identity (4.2.6.2)|its differential is given by

a1 (656") = &5 (QI(Dg) - &' + 6, 18 (9)).
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We conclude using [Lemma 5.1.29} [Lemma 5.1.22|[Proposition 5.1.30] and the continuity of
I,(/]V that the map

D7 x Cy(Us, Xi)ier — Cy (Ui, Xidier = (6,0") = (6 (QI(Dy) - 6} + ¢z‘1,—7g\fi(¢i)))iel

is continuous. So we can apply [Lemma 5.1.7|to see that I{/JV is C! and its differential is

given by this map.

¢ — £+ 1: We apply the inductive hypothesis, [Lemma 5.1.29} [Lemma 5.1.22f and
Proposition 5.1.30| to the identity for dI{/]V derived above to see that dI,[/]v is C¢, hence I{/JV
is C*+1L. O

Remark 5.1.32. We implicitly used in this subsection that the operator norms of the
composition resp. evaluation of linear maps are uniformly bounded.

5.2. Spaces of weighted vector fields on manifolds

We define spaces C{jv (M, TM)4 of weighted vector fields on manifolds, where A is an
atlas for M. As discussed in the beginning of we do this in such a way
that the map C{j\,(M, TM)4 — C%A(Un,Rd)neA that sends a vector field to the family
of its localizations is an embedding. Of particular concern is when C’]fV(M ,TM)4 =
C{ﬁv(M , TM)p for another atlas 3. We derive a criterion on W ensuring this.

Further, we will discuss the simultaneous composition and inversion of weighted
functions that arise as simultaneous superposition with the localized exponential maps.
Again, this will be possible if the weights satisfy certain conditions.

After having made assumptions on the weights, we have to know if there exist weight
sets that satisfy them. In particular, we will prove that every set of weights has a
“minimal saturated extension”.

5.2.1. Definition and properties

We give the definition of weighted vector fields.

Definition 5.2.1 (Weighted vector fields and localizations). Let d € N*, M a d-

dimensional manifold, A = {x : U, — Uy} an atlas for M, W C rRY nonempty
and k € N. For f € W and ¢ € N with ¢ < k, we define

larg: TT €5 (U RY) = [0,00] = (1w)wea = supllyel fo-1,e-
HEA HGA

For X € X*(M), we define

1 X 4,16 = 1(Xn)nealla,re

and with that

Chy (M, TM) |:= {X € X*(M) : (Vf € WL €N, L < k) || X | az.0 < 00}
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5.2. Spaces of weighted vector fields on manifolds

Obviously C’;V(M ,TM) 4 is a vector space. We endow it with the locally convex topol-
ogy induced by the seminorms ||-[|4,r,. We call its elements weighted vector fields.
Furthermore, we set for f € W and k € A

::fom_l:UH%R and ::{fﬁ:fEW}.

Finally, we define

= Uneafe e RTA% and W= {fa: Fe Wl

Lemma 5.2.2. Let d € N*, M a d-dimensional manifold, A= {r : U — U} an atlas

for M,k € N and W C RY such that for each p € M, there exists f, € W with fy(p) # 0.
Then the map

[4]: Gy (M, M)A — (Ui R et & = (61)wen
s a linear topological embedding, with closed image.

Proof. That the map is defined and an embedding is obvious from the definition of
C{fv(M, TM) 4 and C’;VA(UH, R%),.c4. To see that the image is closed, let (X?);cr be a net
in CF,(M, TM) 4 such that (t5},(X?%));er converges to (Xy)xea. We have to show that for
K1, ko € A with ﬁm N ﬁﬁz #* 0,

= d(k1 0 k3 ") 0 (idy,,, Xx,) 0 2 0 k7|

X51|K1(5nlﬁﬁn2) KI(ﬁHIQﬁNQ). (T)

But since the stated assumption on W implies that (X:);c; converges pointwise to X,
for each x € A, and since holds for all X}, and X[ , we see that it also holds for X,

K2

and X,,. O

Comparison of weighted vector fields with regard to different atlases

We examine the relationship between spaces Cjy,(M, TM) 4 and Cli,(M, TM)g for atlases
A and B. To this end, we define some terminology for atlases.

Definition 5.2.3. Let d € N*, M a d-dimensional manifold, and A = {x : U, — Uy} an
atlas for M. We call A locally finite if (Ux)xea is a locally finite cover of M. Let B be
another atlas for M. We call B subordinate to A if for each chart x : V., — V,; of B there

exists & € A such that k = /%|¥“ Finally, we define

e B:={(r¢) € AxB:U,NTy # 0}

and

A= kg, g, (5, 0) € A2 B}

We state two easy results. First, we show that C{ﬁv(M, TM) 4 = C,’ﬁv(]\/[7 TM) 45, and
that Cf,(M, TM) 4 C Ch,(M, TM)g if B is subordinate to A.
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5.2. Spaces of weighted vector fields on manifolds

Lemma 5.2.4. Let d € N*, M a d-dimensional manifold, A and B atlases for M,
wcRY nonempty and k € N. Then Cfiy,(M, TM) o = C},(M, TM) 405.

Proof. This is obvious since for X € X*(M), f € W and £ € N with £ < k, the sets
{IF @) IDY X (w(@))llop : 5 € Az € Us}

and

{1f @) DO X (k(2)lop : (5, ¢) € A® B,z € Uy N Uy}
are the same. O
Lemma 5.2.5. Let d € N*, M a d-dimensional manifold, A = {k : U, — U} an atlas

for M, B ={k: Ve — Vi.} an atlas subordinate to A, W C RrY nonempty and k € N.
Then C{f\,(M7 TM)a C C{ﬁV(M, TM)g, and the inclusion map is continuous linear.

Proof. Let f € W and £ € N with £ < k. Since for each x € B there exists & € A with
K= m\g we have for X € X*(M) that

1 Xl e = sup [(f o s )@ I1DW(dr o X 0 &71)(@)]|op

< sup|(f o &™) ()| |IDY(dk 0 X 0 A7) (@)llop = || Xa

zeUy

Jarkt:

This shows the assertion. O

Weights with transition maps as multipliers We show the main result of this subsec-
tion. If for two atlases A, B, the differentials of the transition maps from B to A are
“simultaneous multipliers” for W (that is they satisfy |(5.1.20.1))), then C,(M, TM)g C
CE, (M, TM) 4os. If additionally B is subordinate to A, we have that Cjy,(M, TM)p =
CE, (M, TM) 4.

Proposition 5.2.6. Let d € N*, M a d-dimensional manifold, A = {k : U, — Uy} and
B={¢: 17(,5 — V} atlases for M and k € N. Further, let W C RY such that (5.1.20.1)
is satisfied for Wgna and (D(k o ¢_1)|¢(17m§¢))(“7¢)€“4®5 and there exists w € W with
|w| > 1. Then the following assertions hold:

(a) The map
I d(rop™). - C{?\;BM(¢(ﬁxﬂﬁ¢),Rd)(n,¢)eA®B - ClleBmA(¢(ﬁnﬂﬁ¢)aRd)(n,¢)eA®B
s
(1)
is continuous linear.
(b) The map
CYya (D(Ux N Ty), RY) (. p)cnB — CW (s (£(Ux N Uy), RY) (e, )c 408 )

(Vi) (.)€ A8 = (Vi © D0 K1) (10.6)c AB

is defined and continuous.
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5.2. Spaces of weighted vector fields on manifolds

(c) Ci,/(M,TM)p C C¥,(M,TM) 405, and the inclusion map is continuous linear.

Proof. Since |wy| > 1 = max(7,1) for each ¢ € B, we can apply |(5.1.17.1)| to see that
for (’7m,¢)(n,¢>)eA®B € C];VBM (¢(Ux N U<¢>)7 Rd)(n@)eA@Bv
(V(r,0) € A B) [[V(n,0) o0 < 1,09 lws0 < 1 (Vw,0)) (n,0) A28l 0-

Hence

-~ ok -~
C%BOA@(UH NUg), R (e.pyenss = | W (2(Us N Us), BR(0)) (r,0)c A28
R>1
and the sets on the right hand side are open subsets of the space on the left hand side.
Using our other assumption on W and we can apply [Proposition 5.1.23|
. a, ~—
to see that m is smooth on each set CWBmA (¢(Us NUg), BR(0))(x,4)c.A2B, and hence on

C’;VBM (p(U. N ﬁ¢), Rd)(n,cb)eA@B It is obviously linear since each d(x o ¢~ 1) is so in its
second argument.

@ We prove this with an induction on k.

k =0: Let f € W. For all (k,¢) € A® B, we have f, = fso¢or~!. Hence for
Vi, € C{ﬁvqb(gb(ffn N ﬁqs),Rd) and z € (U, N ﬁ¢), we have that

[fx (@) 1 (g 0 d 0 67D (@) = [(fp 0 b0 ™) (@) (v 0 @0 ™) (@) < sl 1.0-

Since |(T1)| is linear and (k, ¢) € A ® B was arbitrary, we see with this estimate that |({7)
is defined and continuous.
k — k + 1: We use [Proposition 5.1.12 We calculate that for (k,¢) € A® B,

D(ysgopor ) =Dycgodor ' -D(gor™).

We see using the inductive hypothesis that

(Dng 0 $0 k™) (wg)casn € Oy s (K(Ux N Ug), LRY) (5,6 a0+

and that the corresponding map is continuous. Finally, we get the assertion using

[Lemma 5.7.201
Let (k,¢) € A® B. On (U, NUy), we have the identity

Xy =droXow ' =moT(kog ')oTpoXog logor ! = (por ) (d(kod™")(Xy)).

Since k and ¢ were arbitrary, we can use that the maps|(t) and |({T)|are continuous linear
to derive estimates which ensure that Cfi,(M, TM)gna C C¥,(M, TM) 405, and that the
inclusion map is continuous. Since BT is subordinate to B, we derive the assertion using

[Lemma 5.2.5 O

Corollary 5.2.7. Let the data be as in|Proposition 5.2.6, and additionally assume that
B is subordinate to A. Then C{ﬁv(M, TM)g = C{ﬁv(M, TM) 4 as topological vector space.

Proof. We know from [Lemma 5.2.5( that Ci,(M,TM)a C C¥,(M,TM)g, and from
IProposition 5.2.6{and [Lemma 5.2.4] that C,(M, TM)g C Ch,(M, TM) 4. O
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5.2. Spaces of weighted vector fields on manifolds

5.2.2. Simultaneous composition, inversion and superposition with
Riemannian exponential map and logarithm

We study simultaneous composition and inversion (see [Proposition 5.1.30f and [Propo{
respectively) on families of functions that, roughly speaking, arise as the
simultaneous application of the superposition with the Riemannian exponential func-
tion; and the application of simultaneous superposition with the logarithm after these
operations. The result and the techniques we use here are basically those of
[tion 5.1.3] and [Subsection 5.1.4] although we also make use of the results presented in

] B30

Rephrasing some previous results We apply some results to the special case of functions
that are defined on the disjoint union of chart domains for a manifold. We start with the
simultaneous superposition with (slightly modified) Riemannian exponential maps and
logarithms.

Definition 5.2.8. Let d € N*, U C R? open, ¢ a Riemannian metric on U and V an
open, nonempty, relatively compact set such that V C U.

(a) Let & E]O,Rﬁ’g[. We set

: V x Bs(0) = U : (z,y) = expy(z,y) — .
(b) Let § €]0, R‘L/g[ We set

: V x Bs(0) = R%: (z,y) — lg,(z,2 +y)

Lemma 5.2.9. Let d € N*, M a d-dimensional manifold, g a Riemannian metric on
M, A={k: ﬁ,.i — Uy} an atlas for M, W C rY nonempty and k € N. Further,
for each k € A let V,. be an open, nonempty, relatively compact set such that V. C Uy,
B = {H‘Zil(vn) i k € A} is an atlas for M, and 6, > 0. Further, we assume that Wg

contains an adjusting weight w for (dx)keA-

(a) Assume that , < R%{’gﬁ, and that Wg satisfies |(5.1.23.1)|, where I = A and
Be =& s for k € A. Then the map
Vi s0k

E‘l;\/dg,g . H E‘lﬁ\/mg,i : {Cwa’ (VIMB(S ( ))HEA — C]%B(VﬁaRd)KEA
, KEA o ¢ (engK O(ide (bl'{) - idV,Q)ne.A

is defined and smooth.

(b) Assume that 6, < Rv’g“U , and that Wg satisfies |(5.1.23.1), where I = A and
B = ‘CVmén for k € A. Then the map

ngn . {Cwa, (VH7 Blsn (O))HEA — C%B(Vﬁa Rd)I{EA

LWByg _ L
H VN7 K . .
REA ¢ = (lgg, o(idv,, ¢ +idv,))xea

is defined and smooth.
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5.2. Spaces of weighted vector fields on manifolds

Proof. In both cases, we see that 8, maps V,; x {0} to {0}, for each x € A. Hence the
assertion follows from |[Proposition 5.1.23| O

We turn to composition and inversion.

Lemma 5.2.10. Let d € N*, M a d-dimensional manifold, A= {k : U, — Us} an atlas

for M, W C rY nonempty and k,¢ € N. Further, let r > 0 and for each k € A let
W, Vi. C Uy, be open nonempty sets such that Wy, + B,.(0) C Vi and (k= *(Wx))rea is a
cover of M. Then the map

Cot i (Vie, R e c&’; (Wi, Br(0)nea — Chyy (Wi, RY) e a

(’77 77) = (7/4 o (77/1 + idW,;))HE.A

ReE|. RIk
CWB,E = CWH,K :
KEA

is defined and C*, where B := {H’Zil(vﬁ) 1k € A}

Proof. This is a direct consequence of [Proposition 5.1.30, Note that 1., _,v, (eventually
multiplied with %) is an adjusting weight for (B, (0)).c4. O

Lemma 5.2.11. Let d € N*, M a d-dimensional manifold, A= {k : U, — Us} an atlas
for M, and VW C rY containing 1pr. Further, let r > 0 and for each k € A let V,, C Uy
be an open nonempty set such that Vi, + B.(0) C U, and (k= 1(Vi))xeAa s a cover of M.
Then for each T €]0,1[, the map

I,‘//VA =11 Il‘,/\jﬂ DT — CS@A(VR,Rd)HeA co = ((¢n +idy, ) My, —idy, )rea
KEA

1s defined and smooth, where

D7 = {6 € €%, (U RYea : 18]y _ ot <7 and |61y 0 < 5(1—7)}.

Proof. This is a direct consequence of [Proposition 5.1.31| O

Composing the operations We compose the maps that were introduced in this subsec-
tion. The main difficulty is keeping track of whether the simultaneous operations can be
applied.

Lemma 5.2.12. Let d € N*, M a d-dimensional manifold, g a Riemannian metric on
M, A={k: U, — Ux} an atlas for M and r > 0. For each k € A, let V,,W,, C Uy be
open, nonempty, relatively compact sets with W, + B,.(0) C V,. such that V,, C U, and
(k7Y (Wy))rea is a cover of M. We set B := {K|Z’il(v&) 1k € A}

For each k € A, let 6% €0, R‘%’Uﬁ[ and 6% €]0, RI%/N,UK[' Let W C RY such that Wi
contains an adjusting weight w® for

B 1 1
(mln(&w 14 CE’Z ) CE’(l) ) ) (T)
KE

Vm5§,g~ Vﬁ,ég,gﬁ
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5.2. Spaces of weighted vector fields on manifolds

and W' that is adjusting for (6X).e, and satisfies

1
(Ve € A) |wk| < X VR AR |lwE|. (5.2.12.1)
Cvfﬁvéfg]?glﬁ WK76£79N

Additionally, assume that Wg satisfies|(5.1.23.1)| for the families (E‘g/: sE)rea and (‘Clg/{;n SL)REA;

respectively.

(a) Then the map

w ) d w ) 14% ’ W ?
C%J :D1x Dy — R: (777]) = LWng(cﬂsz (EV7(5BE9(7)7EW§I§("7)) + E{/Vf;bg(n))

is defined and smooth. Here
Dy = {7 € C%, (Vi RN e : [11llu o < 3 and [V, vt < 3

Dy = {1 € C33, (Wi, R e« 11l o < min(F, )},

and
R:={¢ € Cy,(We. R pea : [|6lloz o < 1}.

Moreover, we have
ICEC Mlwro < A+ Illur o + I, n Dlloz o + [17lloz o (5.2.12:2)
For X,Y € X(M) such that (5,(X) € Dy and 5,(Y) € D, we have for r € A that

WK,? K d WK/? K WN? K WK/7 K
Lwﬁ,gn (CHSVH (Evﬁ,az (X&), EWK,(?H (Vi) + Ewﬁ,i (Ye))
= lg,, o(idw,, exp,, o(idy,, Xx) o exp,_o(idw,, Yx)).
(5.2.12.3)

(b) Additionally, let p €]0,1[. Then the map

W ) w )
151D, = Ryt 6 LyBE (I, (EVES(6))

is defined and smooth. Here

Dy i={¢ € 3%, (Vi R e : |6lle 0 < 152 min(p,r) and |61,

P
REAVN’I < 2}

and
Ry = {¢ € C53, (Wi, R e« |||y o < 2iRm)y,

Moreover, we have that

[16llz,0
(I¢llwzo + 1l 4vi 1)

For X € X(M) such that (5,(X) € D,, we have for k € A that

ITE (@)t < 7= (5.2.12.4)

Ly d (I (B 58 (X)) = 1y, olidw,, (expy, o(idv,, Xx)) ' lw,).  (5.2.12.5)
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5.2. Spaces of weighted vector fields on manifolds

Note that above we occasionally identified maps with their restriction.

Proof. By our previous elaborations, the map C’é is smooth if it is defined, so
we shall prove the latter. Let v € Dy and n € Dy. Since w” is an adjusting weight
for (6£)rea and ||y 20, Inll,zo < 1 by our assumptions, we see with |(5.1.18.1)| that
v E C%ZB’OO(VK, Bsp(0))sea and n € C%ZB’OO(W,{, B;sp(0))kea. Hence we can apply E)Y59

V,6E
to v and EVVI\/}SEI to n.

We see with [Lemma B.3.8| using that w® is adjusted to (and |(5.1.17.1)) that for
K€ A,

E,(1)
Wn; K K> EL K
HEWK,:?K (nn)le,wO < CZ,(f) . ||77n||wf,0 <T.
E
mels,.i sIK

This implies that we can apply c%g to (E%;V B9(5), Ell//vvg’g (n)). Further, we conclude from
[Lemma B.3.9| using |(5.1.17.1)| that for each x € A,

E,2
Wi, E2 SE
1By, 52" (ve)llen < Oy g Isll0 + Il 1 < Hé”fvzfi;” sllwz.0 + sy, -
K10k 9K

Using lestimate (4.1.3.1)] the last estimate, [Lemma B.3.8| (and the triangle inequality) we
see that for f € W and k € A,

Rd WKJ K WKJ K WN? ®
e, (V2 (), B0 () + B35 (1) 0
WK7 K WK& K Wﬁl7 K Wl‘i/’ K
<N B el a 1ER S5 () g0 + Y52 () o+ IEN 2 ()50 (%)

E,(1
<CP Sk o ((lluzo + Iyl 1+ Dlimell g0 + 1l 0)-

From this estimate we derive using |(5.2.12.1){and ||7x|,2 0, Vs ll1y, 1 < 1, 17|z 0 < 3
that

Rd WK7 K WI‘E: K WK7 K
5 (B2 (), B2 () + By 5.e) o o
E,(1)
Vﬁv(sEagK

E,(1
< Oy E o Clmllog o + 1ellug 0) < zmar252—(2lmellug.0 + [7ellug.0) < 1.

Vmé,‘?,gn Wﬁ76,%agﬁ,

We conclude with [(5.1.18.1) that we can apply Ll;v‘i%f to CHS\‘;B (E%E’g(y),E;,Vg;g(n)) +

Evvyg}f(n). Further, for each k € A we have (using [Lemma B.3.18 and |(5.2.12.1)|) that

L,(1)

W ’ K> IR
1y, 55 (@D)lloz o < coar = Gitn— I élluz,o

Vi v5,€ 9k Wi v5£‘ IRk

for suitable ¢. From this and we derive the assertion on the containment in R, and
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also that holds. It remains to prove To this end, let p € W,,. Then
Ly (5, (B3 (Xie), By (V) + By (Vo)) ()
=lg,, (p, S, (BV 7 (X), By (V) (p) + By (Y) () + p)
18, (0 BV 59 (X)) (expy, (9, Yu(p))) + expy, (p, Yi(p)))
1g,, (p, expy, (expy, (p, Yi(p)), Xk (expy, (p, Yi(p))))
Ig,,. (p, (expy, o(idv,, Xx))(exp,, (p, Yi(p))))
=1g,, (p, (expy, o(idy,, Xy) o expy, o(idw,, Yx))(p)).
This shows that holds.

(b)| By our previous elaborations, the map Ig is smooth if it is defined, so we shall prove
the latter. Let ¢ € D,. Since w” is an adjusting weight for (6F)xec4 and [|¢[|,z o < 1 by

our assumptions, we see with |(5.1.18.1)[that ¢ € C1\2°°(Vy, Bsz(0))xea. Hence we can
WB 5n

apply Eg;t/fég to ¢. We see with [Lemma B.3.8| using that w? is adjusting for |(1)| (and

(5.1.17.1))) that for each k € A,

E,(1)

W;m K K> E, K
1By, "5 (60) 1,0 < cEr= N 0llur o < 51— p).
VK/76§7QK/

Similarly, we conclude from [Lemma B.3.9 and |(5.1.17.1)| that for each k € A,

E2

Wi, E2 SF,
1By 58 (@)l < Cy s g 19l 0 + 10ully,1 < oo I dnllp o + léxliy, 1-
(%)

Vi 155 sIK
Hence we see using ||¢x |l 0, [|¢xll1y, 1 < § and the last two estimates that we can apply

I%B to E&fég(qb). Further, using |estimate (4.2.5.1)| [Lemma B.3.8/ and |(*)| we see that

for f € W and k € A,

IEYE 95 (60) 1 5,0 0 E,()

K WK:QK VN,BE Vn,éf»gn
I, (Evmé,‘? (@s)l 70 < L[| B 505 (6) gy, 1 < 1—(H¢ﬁllw§,0+ll¢nlllvﬁ,1)||¢”Hf~v°' (%)
From this, we conclude with |(5.2.12.1)} using [|¢s ||,z 0 < @ and ||¢xll1y, 1 < §, that
£,(1)
Wi Wﬁy K K E' K
1 (B3 (0 lut 0 < = —llbulluz o < §-
K9k (1 p)CVH,éE,gH

Since w’ is adjusting to 6%, we see from this estimate using |(5.1.18.1)| that we can apply

LII:VV’?LQ to ¢. Another application of [Lemma B.3.18| and |(*x)| shows that

WK,? K WK WKM K L7 ]' WH WN? K
1Ly g (TN (B2 () lup.o < Coag o IV (BY 58 (00) g0

L,(1) E,(1)
CWrwérl{ag/i CVKaér??gN

1= (lallwzo + l9nlliy, 1

Dl 0

<
1@xllwz 0 + D1y, 1)

)H(bfwa,%,O < 1— (
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So we derive the assertion on the containment in R,, and that |(5.2.12.4)| holds. To prove
(5.2.12.5)| let k € A and p € W,.. Then
WN? K K WKM K K WN? K
Ly 95 (I (By 597 (X)) (p) = 18, (0, Ty (B 57 (X)) () + p)
=g, (p, (B} 57" (X,) + idv,) " |, (p) = 18, (. (expy, o(idy, , X)) " w, (p))-
This shows that |(5.2.12.5)| holds. O]

5.2.3. Construction of weights on manifolds

We first define the terms saturated resp. adjusted sets of weights, and then show that
such weight sets exist.

Definition 5.2.13 (Saturated and adjusted sets of weights). Let d € N*, M a d-

dimensional manifold, W C EM, A={k: U, — U} an atlas for M and ,, > 0 for each
k€ A.

(a) We call w: M — R adjusted to (A, (0x)kea) if there exists K > 0 such that K -wy
is an adjusting weight for (d,)xea. We call W adjusted to (A, (dx)xea) if there
exists w € W that is adjusted to this pair.

(b) Let A; and Ajs be atlases for M. We say W is saturated with respect to (A, As) if
(51201) is satisfied for WAlmAQ and (D(K} o ¢71)’(ﬁ(ﬁnmﬁd)))(h}’(ﬁ)EAl@AQ.

(¢) Let g be a Riemannian metric on M, and for each k € A let V, be a relatively
compact set with 7,{ C U, such that (17,4),@64 is a cover of M, §F E]O,R‘}ffﬁn[,
sE €lo, R{}f’g]n[ (where Vi, := x(V,)) and B := {/ﬂ]% : k€ A}, We say W is
saturated with respect to (A, B,g) if Wg satisfies for (5\%:755)&64 and
(ngz,éh% )rea respectively.

If both [(b)] and [(c)] hold, we call W saturated with respect to ((A1, A2), (A, B, g)). Occa-
sionally, we may just say that W is adjusted or saturated.

Construction of adjusted weights We show that for a locally finite atlas whose chart
domains are relatively compact, adjusted weights exist.

Lemma 5.2.14 (Construction of an adjusted weight). Let d € N*, M be a d-dimensional
manifold and A = {x : Uy — Uy} a locally finite atlas for M. For each r € A, let

gk > 0 and V,, C Uy be an open, nonempty, relatively compact set such that (Vi)xev is
a cover of M. Then there exists a weight w : M — R adjusted to (B, (€x)xea), where

B:= {n["ifiv'“) (k€ A}

Proof. For each kK € A, let f, : M — R be a function such that supp(fx) C U,
supgenr|frl(z) < oo and inf ¢ |fu|(z) = max(é, 1). For z € M, we set

w(z) = glg}\fn(fv)l;
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note that this definition is possible because each x € M is only contained in finitely many
sets Uy. Then |w|(z) > |fx|(x) > max(é, 1) for each k € A and z € V. Further, since
each V, is relatively compact, it has nonempty intersections with only finitely many sets
{Ux : k € A}. That implies that sup__; [w|(2) < oo. Hence wp is an adjusting weight

for (e4)keA- O

Saturating weights We not only show that saturated weight sets exist, but moreover
that each set of weights has a “minimal saturated extension”. We first prove a variation
of this assertion for a single weight.

Lemma 5.2.15. Let d € N*, M be a d-dimensional manifold, (Ux)rea a locally finite
cover of M, I a nonempty set, f : M — R and (Br.i) (riyeAx1 a family of nonnegative

real numbers. Then there exists a set My p C RM such that
(Ve € M)(3V € U(x))(Vg € Myp)(3K > 0) |glv] < K- |flv]

and

(Vi € 1)(3g € Myp)(¥x € A) Bey- | fl5 | < |olz |- (5.2.15.1)

The set My g is minimal in the sense that for any H C RY that also satisfies|(5.2.15.1)
we have

(Vg € My p)(3h € H)|g| < |h|. (5.2.15.2)
Proof. Let i € I and x € M. Then we define
gi(x) == max{B,; - f(z) : k€ A,z € U}

This definition makes sense since (Uy)xecp is locally finite. In particular, for each x € M
there exist k1,...,k, € Aand V € U(x) such that for k € A,

U NV #£D < rk€{r1,... 0n}
Hence
|gilv| <max(By, - Br,i)  |flv]
Further, for & € A such that x € [7,%, we have
Bii-|f(z)| <max{By;: k€ Az € Us}-|f(x)| = |gi(x)]-
So the set
Mf,B = {gZ 11 € I},

has the first two properties. To prove the minimality, let H C RrY satisfying [(5.2.15.1
Then for each i € I, there exists h € H such that B, ; - ’f|5 ‘ < ’h|[7 ‘ for all Kk € A. So

for x € M, we have N
(Ve € A:xz € U,) Byi|f(2)] < |h(z)].

Hence _
l9i(@)| = max{B,; - |f(z)| : k € A,z € Uy} < |h()],

which finishes the proof. O
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5.2. Spaces of weighted vector fields on manifolds

Remark 5.2.16. In the last lemma, we proved that |g|y| < K-|f|y| for every neighborhood
V' that has nonempty intersection with only finitely many cover sets.

Before we show that each weight set has a minimal saturated superset, we make the
following definition.

Definition 5.2.17. Let M be a topological space and f,g: M — R. We call g locally
f-bounded if
(Ve e M)(AU eU(z), K > 0)|glu| < K - |f|u]

Let Wi, Wy C EM. We call Ws locally Wi -bounded if for all g € W, there exists f € Wy
such that ¢ is locally f-bounded. As usual, we call f locally bounded if it us locally
1s-bounded.

In the next lemma, we need the definition of the maximal extension of weights, see
Defmion 613
Lemma 5.2.18 (Minimal saturated extension). Let d € N*, (M, g) a d-dimensional
Riemannian manifold, W C RY and A = {k : U, = U, A locally finite atlases

for M. For each k € A, let V. a relatively compact set such that V., C U, and B :=
{k|¥* : k € A} is an atlas for M (here, Vi, = k(Vy) for k € A), 6F G]O,R‘}g’gf} [ and
Ve r

Ky

Sk G]O,R{}fyfjn[. Then there exists W C RY that is locally W-bounded and saturated
wrt. ((A,B,g), (A A).

The set W€ is minimal in the sense that for any G C RY that is saturated to the same
data and contains W, we have W C Gax. We call W€ a minimal saturated extension

of W.
Proof. We define the following three families:
B': Ax N* = [0,00: (k,0) — HS‘g/:

K

B%: Ax N* = [0,00[: (k, £) = [|£2"

n,é%“lvﬁxBéL(O):e’
K

B?: A® Ax N = [0,00[: (5,6),0) = |D(s 06 |5 157, It 0, e

We inductively define Wy := W, and if W, is defined for k € N, we set

Witi= |J MymU (J MyppU | My ps;
JeEW JeEW JeEWK

we defined M pi in [Lemma 5.2.15] Finally, we set W := pcy Wi Since we can
show with an easy induction (using [Lemma 5.2.15| of course) that each W is locally
W-bounded, so is W¢€. Finally, we see with another application of that
and [(b)] in Definition 5.2.13| are satisfied.

We prove the minimality condition by induction. More precisely, we prove that
Wi € Gmax for all k € N. The case k = 0 is satisfied by the assumptions on G. Suppose
it holds for k € N, and let f € Wyi. Because G is saturated, it satisfies for f

and the B € {B7 : j =1,2,3}. Hence we derive from |(5.2.15.2)| that M p; C Gax for
j € {1,2,3}, so obviously Wk11 C Gax- O
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5.3. Diffeomorphisms on Riemannian manifolds

5.3. Diffeomorphisms on Riemannian manifolds

We construct weighted diffeomorphisms on Riemannian manifolds, and turn them into
a Lie group that is modelled on weighted vector fields. In order to do this, we prove
a criterion when the composition of the exponential function with a vector field is a
diffeomorphism. Then, we can use the local group operations treated in
to construct Lie group structures from local data. We state the main result concerning
these Lie groups in [['heorem 5.3.6] Finally, we compare these Lie groups with other
well-known Lie groups of diffeomorphisms.

5.3.1. Generating diffeomorphisms from vector fields

In |[Lemma B.3.10, we established under which conditions the map exp, oX, is a dif-
feomorphism, where & is a chart and X, a localized vector field. We show that similar
assumptions also allow the global behavior of exp, o X to be controlled.

Proposition 5.3.1. Let (M, g) be a Riemannian manifold and A = {x : Uy, — U,} an
atlas for M. For each k € A, letr, > 0 such that B, (0) C U, and {x~'(B,,(0)) : k € A}

is a cover of M, v G]O,Rg;gﬁ(o) vl and €. €]0, 3. Further let k € N with k > 1 and
X € X*(M) such that for each r € A,

X 3 ( ErTr [ )

H HHIB%(O)D < min 205;8()0),%,% y Vi 4(05;‘1(0)’%’%_&_ ) )

and || Xyll1p o)1 < 5. Then the following assertions hold:

(a) We have that im X C DgE, the map ¢x := exp, 0X maps each connected component
of M into itself, and for each k € A, Ko ¢x o /ﬁfl\Bm(O) is a C*-diffeomorphism
whose image contains B, (1_2,(0).

(b) For each y € M, #(exp, oX) y) < #A,, where A, :={reA:y€ UN}

In addition, assume that M is connected, {ﬁn ik € A} is a locally finite cover of M and
{71(B(0)) : & € A} is also a cover of M, where each 7 < (1 —ex)rx. Then

-
(¢) exp,oX is a proper map.

Assume that each T, < (1 — 2¢,)r,. Then
(d) expyoX is a covering map with finitely many sheets.

Finally, assume that there exists a point in M that is only contained in one U.. Then

(e) exp,oX is a diffeomorphism.
Proof. @ Since [[Xull15, )0 < & for each x € A, we see with [Remark B.3.5| that

Tr~((idy, , Xx)) (B, (0)) € Tx~ (DY) C DY.
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5.3. Diffeomorphisms on Riemannian manifolds

It is obvious from the definition of exp, that ¢x maps each connected component of
M into itself. By our assumptions, for each k € A we can apply [Lemma B.3.10] to
the function X, and the exponential function exp, to see that x| B,,.(0) 18 & Ck-
diffeomorphism whose image contains B, (1_o.,)(0) (here ¢x, := exp, o(idy,, Xx))
Since K o ¢px o ’fﬁl‘Bm(O) = ¢x,|B,,(0) by the assertion holds.

@ Let y € M. For k € A, we set Wy, := k" (B,,.(0)) and define

Axy i ={k € A: (Fz € Wy) ¢x(x) = y}.

Since the map ¢x|w, is injective for each k € Ax,, there exists at most one x, € W,
with ¢x (zx) = y. Further y = ¢x (zx) € ox (W) C U (since [ Xkll1, .0 < vx), hence
Axy CAy. The map Ax, — ¢ (y) : & — x is surjective because {W,, : k € A} is a
cover of M, so we derive the assertion.

Let K C M be a compact set. Since {(7H : k € A} is a locally finite cover, using a
straightforward compactness argument we can show that there exists a finite set F' C A
such that for k € A the equivalence

U.NK#) < keF

holds. We then define

This is a compact set and we prove that it contains qﬁ)_(l(K ). To this end, let y € qb)_(l (K).
Then there exists x € A such that y € Ii_l(Ba (0)), and by our assumptions on X, we

have that ¢x (y) € U, hence x € F. Further, using [Lemma B.3.8| we get

16(0x (1) = W)l = llPx. (k) — £ <

This implies that

ExTr
2

[e(ox W) < [[@) + [[r(ex (y) — kW) < 7w +
So we see that
k(y) = K(ex (W) + £y) — £(éx (Y)) € K(K) N By | e (0) + Beszs (0),

which shows that y € K.
¢x is surjective since the image of ¢x|,.-1(p,, (o)) contains K/il(B(l_QEK)TK(O)) by
(a)l and these sets cover M by assumption. Since we also proved in @ that ¢x is a local
homeomorphism and is a proper map by we can use [For81, Theorem 4.22] to see
that it is a covering map.

@ We showed in @ that ¢x is a local diffeomorphism, and by @ it is a covering
map. We see with the hypothesis of @ and the assertion of @ that it has only one
sheet, so it is a bijection and hence a diffeomorphism. O
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5.3. Diffeomorphisms on Riemannian manifolds

5.3.2. Lie groups of weighted diffeomorphisms

We show that on a Riemannian manifold, for each locally finite, adapted atlas A (we
will introduce this terminology soon) and each set W of weights containing 1,;, there
exists a Lie group of weighted diffeomorphisms. The Lie group is modelled on the space
Cyve (M, TM) 4 of weighted vector fields, where W is a minimal saturated extension of
WU {w}, where w is a suitable adjusted weight.

We then examine under which conditions the compactly supported diffeomorphisms
are a subset of the weighted diffeomorphisms, and see that if the manifold is R? with
the scalar product, the weighted diffeomorphisms constructed here are the same as in
[Wall3].

Lie groups modelled on weighted vector fields

We first transfer the results of to weighted vector fields. For the inversion,
before the introduction of [Proposition 5.3.1] this was not possible since we had only
developed criteria for local invertibility. Further, we use these results to construct a Lie
group modelled on weighted vector fields. Note that we assume the existence of suitable
weights, but even with it is not clear that adjusting weights that satisfy
exist.

Before we begin, we make the following definition.

Definition 5.3.2. Let d € N*, M a d-dimensional manifold, A = {x : U, — U,} an
atlas for M, (7x)rea, (€x)rea families of positive real numbers and R > 0. We call A
adapted to ((rx)rea; (Ex)rnea, R) if Br,+r(0) C Uy for all k € A, (k™ 1(B,,(0)))kea is a
cover of M and r, < (ﬁ — 1)R for all k € A. Note that this implies that each ¢, < %
Sometimes, we may call such an atlas A just adapted.

Remark 5.3.3. Note that on a manifold with a countable base every atlas is adapted, see
[Lan02, Theorem 3.3].

Lemma 5.3.4. Let d € N¥, (M, g) a d-dimensional connected Riemannian manifold,
A={k:U; = U} alocally finite atlas for M, R >0 and (ry)xea, (€x)rveca families of
positive real numbers such that A is adapted to ((r«)xed, (Ex)rea, R) and e := infc g6, >
0.

We then set V,, := By, +r(0), B := {H’:E(VH) tk €A} andC := {/@|Eﬁ’{§%l o) K€ A}

Further, for each k € A, let ¥ €0, Rg’g{}'i[ and 0% G]O,R‘L,;gf]n[. Let W C R contain

Ky

weights w?, w’ such that wg is an adjusting weight for

. FE min(exre,l " .
min (5R , E(‘,(l) ), Yo ) ; (1)
2C = 4(C g +1)
Vi ,01 9k Vi 01 9k KEA

wg is an adjusting weight for (6%) e, and|(5.2.12.1)|is satisfied for vt and w®. Further,
assume that Wg satisfies|(5.1.23.1)| for (519/:,65)H€A and (55‘2,5%)56,4, respectively.
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5.3. Diffeomorphisms on Riemannian manifolds

(a) Then the map
Cxm) DB x DE - RC: (X)Y) log, o(idar, (exp, 0X) o (exp, oY)
is defined and smooth, where
DF = {X € C(M, TM)s : | X|lgm g < & and [ X[l51,1 < 1}

and
DF = {X € C3(M, TM)p : || X||gr o < min(}, R)}

and
RC = {X S C%(Mv TM)C : ||X||C,wL,0 < 1}

Assume that there exists a point in M that is contained in only one U,.
(b) Then for each p €]0,1[, the map
Iy Df — Rg : X+ log, o(ida, (exp, oX)™h)
is defined and smooth, where
Dy = {X € CR(M, TM)5 : | X |pe0 < T2, |1 X] |11 < min(§, 5)}

and
min(R,
RS = {X € CH(M, TM)c : || X o < ™52},

We set
Dp = {expgoX X € D?ﬁngDEL

and assume that|(5.1.20.1)| is satisfied for Wers and (D(k o ¢*1)]¢(5 mﬁ¢))(ﬁ7¢)eg®c.

(c) Then there exists a Lie group structure on the subgroup of Diff (M) generated by
Dp N Dy
The restriction of the map
L:Dp — Cyy(M, TM)p : ¢ — log, o(idns, ¢)

is a chart for this set.

Proof. Using [Lemma 5.2.12| and |(5.2.12.3)| (together with [Lemma B.3.6)), we get the

commutative diagram

B B
DB x DB W™ . p D
1 X s 1 X Do
| |

Cx(nr) cL
4 .C 4
RC W R.
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In particular, im C% o (.5, x &) C im ), and the corestriction of CL o (5, x %)) to
im ¢§,, is smooth by [Proposition A.1.12|since we proved in 2| the vector fields

are a closed subset of the product. Since L%j/v is an embedding, this proves our assertion

that Cx(yr) is defined and smooth.

[(b)] We know from [Proposition 5.3.1] that for all X € Cy3(M, TM )¢ with || X |50 <1
and || X| 51,1 < §, the map exp, o X is a diffeomorphism. We can apply since
rx < (1—2¢e4)(rx +R) (that is shown with a short calculation), and using our assumptions
on w stated in together with
The rest of the proof follows along the same lines as

We calculate using [Lemma B.3.8[and [(5.2.12.1)[ that for all X € DF n D5 n Df
and Kk € A, we have

WK)y K
1Y 50 (X llwz 0 < 1 Xkllwz 0 < 1.

Since w’ is adjusting for 6%, we know from this estimate that we can apply log, to

(idas, exp, 0X), so L is well-defined.
At the next step, we show that Dp N Dp! = Dp N L7 (I, 3€(M) (L(Dp))). To this end,

let $ € Dp NDp'. Then there exists ¢ € Dp such that ¢~' = ¢, and X,Y € £L(Dp)
with ¢ = exp, 0X, ¢ = exp,oY. Then

Y =log, o(idas, ¥) = log, o(idas, (exp, 0X)™") = Iy (ap)(X).

Hence X € I_(M)(E(DD)) (note that we used that £(Dp) C Df - RS), and ¢ €
L1 (Ig(M)(E(DD))). On the other hand, if ¢ € Dp such that L(Dp) € I_( (L(Dp)),
then there exists X € L(Dp) with X = Iy (L(#)) = log, o(idas, ¢~ h. Hence ol =
exp, oX € Dp, s0 ¢ € DBl.

We show that £(Dp N Dp') is open in C35(M, TM)g. By the definition of adjusting
weights, [w”| > 1. Hence we can apply [Corollary 5.2.7| to see that CW(M TM)g =
Cov(M,TM)c. Hence L(Dp) is open in Cy5(M, TM)c, and by |(b)} so is Ix(M)(E(DD))
in Cyp(M, TM)p.

Since we proved in . (b)| that Iy ) is smooth on L(Dp N Dy, 1), the inversion map is

smooth on Dp N D} D , with respect to the manifold structure induced by L. Since this
set is symmetric and open, and we can deduce from the things we proved in @ that the
composition

(Dp NDp') x (Dp NDp') = exp, oRC N Diff (M)

is smooth, it is possible to apply the theorem about generation from local data[Lemma B.2.5]
to get the assertion. O

Restricting the domain of exp, We restrict the domain of the exponential function,
which allows us to show that adjustlng weights satisfying |(5.2.12. ] eX1st In order to do

this, we need the results of [Subsection B.3.2] in particular

Lemma 5.3.5. Let d € N*, (M,g) a d-dimensional Riemannian manifold, A = {x :
Uy, — Ux} an atlas for M and o €]0,1[. Further, for each k € A let V), be a relatively
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compact set with V, C Uy, 0, €]0, R*((/';,UQ%/";[ andw : M — R be adjusted to ((11:76)2 Ok )reA

such that |w| > 122 Then w® := L‘r—gw is adjusted to ((1—0)dx) ke, we have (1—0)d, <

R‘L/f{}ﬁ and the weights w, w” satisfy|(5.2.12.1)|

Proof. Let k € A. Then we have that

1 1 1
‘w/% = %|wf€| > i+ 2 = ’
- —
o ﬁ (1+C;) 5, (1 0)5,{
hence w” is adjusted to ((1—0)d,)xe.4 since we assumed that |w| > 12, Further, we know
L7 K E7(1) L’(l) 1
from |Lemma B.3.17| that (1 —0)d, < Ry, Cy5) <1+ 0 and OV (—0)5mge < T=5
Hence for k € A,
jwi| = 155 |wel < ; |wr
" e " Cgr;(ﬁér)mgnc‘?;(vt)lfa)émygn :
This finishes the proof. O

We are ready to prove the main result.

Theorem 5.3.6. Let d € N*, (M, g) a d-dimensional Riemannian manifold, W C rRY
with 1py € W and A = {k : U, — Uy} a locally finite atlas for M such that there exists a
point in M that is contained in only one [7,{. Further, for each k € A let €, €]0, %[ and
e > 0 such that € := infoc g6 > 0 and r := infcqgre > 0. Suppose that there exists
R > 0 such that A is adapted to ((7x)keA, (€x)rea, R).

Then there exists a subgroup Diff;j‘v’ (M, g,w) of Diff (M) that is generated by Dp ﬂDBl,
where

Dp = {Eng oX:X € C)?\O;e(M, TM)_A, ||X”B7w70, ||X||B}1M71 < O[}

with some suitable a > 0, B := {/{]fﬁﬁ?;(oimo))

(B, (gH)HGA)7 where

ik € A} and w € W€ that is adjusted to

s -— ] (1_0—)2 k.
o = (mm( o On qor? +1)>>56A

Vi, 0k, 9k

and each 6, €]0, Ry QY [ with some o €]0,1[. Further, W C R is locally W-bounded
and a minimal saturated extension of WU {w} with respect to ((A,B,g),(A, A)). The
map

Dp NDy" = Cyye (M, TM)p : ¢ — log, o(idas, ¢)

is a chart for Diﬁ’;‘\}B(M,g,w).

Proof. We use to construct a weight w : M — R that is adjusted to

(B, (0x)kea). Note that wg, after an eventual multiplication of w with a constant,

is also adjusting for (%)HG 4 since inficqgrce. > 0 by our assumption, and

Vi .0k, 9k

E

C’V’;%z on <1+ o by |Lemma B.3.17| Further, we see with |[Lemma 5.3.5|that there exists

an adjusted weight w” such that w and w” satisfy (5.2.12.1)| (we may assume w.l.o.g.
that |w| > 12). Since w is locally 1p/-bounded, W U {w} is locally W-bounded, and so
is the minimal saturated extension W€ of WU {w} w.r.t. ((A,B,g), (A,.A)) that was
constructed in We get the desired result by applying O
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Inclusion of compactly supported diffeomorphisms

We want to examine which assumptions on the weight set ¥V ensure that the group
Diff{;‘v’B (M, g,w) contains the identity component Diff (M )q of the group of compactly
supported diffeomorphisms. To this end, we need some tools to handle the topology on
the compactly supported vector fields, which are the modelling space of Diff (M)y.

Sums and the topology of C2°(M, TM) We use tools provided in the article [Gl604].

Remark 5.3.7. For a d-dimensional manifold M, the smooth vector fields with compact
support C°(M, TM) are usually endowed with the inductive limit topology of the
inclusion maps C(M,TM) — CX(M,TM). Here C3¥(M,TM) denotes the smooth
vector fields X with supp(X) C K, and is endowed with the topology of uniform smooth
convergence with respect to charts, see |Gl604, Def. F.14 and Def. F.7 & La. F.9] for
details.

By [Gl504, Prop. F.19], for a locally finite atlas A = { : U, — U} such that each U,
is relatively compact, the map

(M, TM) = P C*(Us, TUx) : X = (Xi)nea
KEA
is an embedding. The sum is endowed with the box topology, see [Gl604, 6.1-6.7 and Def.

F.7 & La. F9] for the definition of the sum respectively the topology of the summands;
We will use these seminorms.

For an easier argument, we relate the sums @,c; C*(U;,Y;) and @,c; BCY(Vi,Y7),
provided that V; C U; is relatively compact.

Lemma 5.3.8. Let I a nonempty set and { € N. For each i € I, let U;,V; be open
nonempty subsets of the locally conver space X; such that V; C U; and each V; is relatively
compact, and Y; a normed space. Then for each i € I, the map

CH (Ui, Vi) — BCH(Vi, Vi) s v = 7lw;

s defined and continuous, where each CZ(UZ-,Y;) is endowed with the compact open C*
topology. Consequently, the map

P iU, Y = P BCHViY:) : (vi)ier = (vilv,)ier

icl iel
s also defined and continuous.
Proof. According to |G1504, Rem. 6.7], the spaces @,c; C*(U;,Y;) are the direct sum in
the category of locally convex spaces, hence the second assertion follows if the first one
is proved. Since we assumed that each V; is locally compact, each restricted map (and

its derivatives) is bounded, and we see using standard compactness arguments that the
restriction is continuous. O

We show that function that is locally bounded induces continuous seminorms on the
sum @,.c 4 BC™ Uy, RY).
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Lemma 5.3.9. Let d € N, M be d-dimensional manifold, f : M — R locally bounded,
teNand A={k:U; — Uy} alocally finite atlas such that each Uy, is relatively compact.
Then ||||.4,1.¢ is a continuous seminorm on @, 4 BC®(U,,R?).

Proof. Sillce f is locally bounded, it is bounded on each compact set, and in consequence
on each Uy, which can be proved with a standard compactness argument. So for x € A
and v € BC™ (U, R%), we have that

1Yl e < M flloo 1Vl -

Hence ||-|| 4,f,¢ is continuous since it is so on each summand. O

Inclusion of compactly supported diffeomorphisms We are ready to prove the criterion.

Proposition 5.3.10. Let d € N*, (M, g) a d-dimensional Riemannian manifold and
A={k: U, — Ui} a locally finite atlas for M such that there exists a point in M
that is contained in only one U, and that is adapted to some ((re)kea, (Ex)rea, R) with
inficaen,infuears > 0. Further, let W C RM with 1)y € W such that each f € W is
bounded on all compact subsets of M. Then Diff .(M)o C Diff;‘\}B(M,g,w) for all B and
w as in [ LTheorem 5.3.6l

Proof. For relatively compact Vj; such that V,; C U, and B,_1g(0) C Vi, the map

Cgo(Ma TM) - @ COO(Vde) X = (XH)I'CE.A
KEA

is an embedding, see Since W€ is locally W-bounded and each weight in W
is locally bounded, each f € W¢€ is also locally bounded. Hence we can use
and to see that for f € W¢ and £ € N, ||||5,7,¢ is defined and continuous
on @,.c4C>®(Vi, R?) and hence on C°(M, TM). This, together with [Corollary 5.2.7]
implies that C°(M, TM) C Cyye (M, TM) 4, and that for each a > 0,

{(X e (M, TM) : [ X[l5w0, [ X[l5151 < a}

is open in C°(M, TM). We know from [Theorem 5.3.6| that Diff{f\}B(M,g, w) is modelled

on Cy%e (M, TM) 4, and for some a > 0, it contains the set
{expyo X : X € Cpe (M, TM) 4, [ X|Bw,0, 1 X811 < 0}

Hence Diff{jlv’B(M,g, w) contains an open identity neighborhood of Diff (M), and thus
Diff .(M)o. O

Comparison with the vector space case

We show that the connected components of the Lie groups Diff,“;‘\}B(Rd, (-, ), 1ga) that

were constructed in [Theorem 5.3.6, and of Diff,,(R?) as constructed in [Theorem 4.2.10|

coincide, if A consists of identity maps.

110



5.3. Diffeomorphisms on Riemannian manifolds

—__d
Proposition 5.3.11. Let d € N* and W C R with 1ga € W. Then Diffy,(R%), =
Diﬂ"{j‘\}B(Rd, (-,+), 1ga)o, where

A= {idp, (2): 7 € 2%} and B := {idp,, @) 1@ € 7%,

with 1 >y > ry > %, and R? is endowed with the supremum norm ||| .

Proof. Obviously, A is a locally finite atlas since Bj_,, (z) has nonempty intersection
with at most 2% chart domains, for all z € R%. Further, if we set R := £(r; — r3) and

choose ¢ €]0, %;i;:i [, A is adapted to (rg, e, R).

We have that Df.> = D<. y = R2¢ and further that exp(.y(z,y) = = +y and
log(. y(z,y) =y — x. Hence D® exp(.., = 0, and for z € 7% and o €]0,1],

e

E7<'7'> _ <7> _ _
stz,?(gc)ﬁr1 (z) = RBT2 (z),0 — "1 T2
and Eg;j(xm = 7o for all § €0, — ra[. For Ré’r(;(.a)x),Brl () We have

Ré»f;(’i)’Brl ) = ﬁ(rl )

and L{;) ) ;= s for all § €]0, J-(r1 — r2)[. For k,¢ € A with (k,0) € A@ A,
D(ko¢ 1) =1d.

We easily deduce that W is already saturated, and 1, is adjusted if we choose the same
6 < Jalri—m2) = Q) REY , for all charts. Further, for all f € W, £ € N and
X € X(R9),

lm2 0 Xl 7.0 = 1X|5.1.05
and hence C§9(RY, TRY)z = C5(RY, R?). Since the parameterization maps are also

compatible, we see that Diff{jl\}B(Rd, (-,-), 1ga) contains an open subset of Diff,, (R%), and
vice versa. Hence the assertion holds. O
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6. Integration of certain Lie algebras of
vector fields

The aim of this chapter is the integration of Lie algebras that arise as the semidirect
product of a weighted function space Cy};(X, X) and L(G), where G is a subgroup of
Diff (X') which is a Lie group with respect to composition and inversion of functions.

The canonical candidate for this purpose is the semidirect product of Diff),,(X) and G
— if it can be constructed. Hence we need criteria when

G x Diffy,(X) — Diff(X) : (T, ¢) = TopoT!

takes its image in Diff,,(X) and is smooth.

6.1. On the smoothness of the conjugation action on
Diff,,,(X)o

We slightly generalize our approach by allowing arbitrary Lie groups to act on Diff),,(X).
We need the following notation.

Definition 6.1.1. Let G be a group and w : G x M — M an action of G on the set M.
(a) For g € G, we denote the partial map w(g,-) : M — M by wy.

(b) Assume that G is a locally convex Lie group with the identity element e, M a
smooth manifold and w is smooth. We define the linear map

E: L(G) - x(M)

by
w(z)(m) = =Tew(-,m)(x).

Note that w takes its values in the smooth vector fields because w is smooth.

Now we can state a first criterion for smoothness of the conjugation action — however

only on the identity component Diff, (X)o| of Diff), (X).

Lemma 6.1.2. Let X be a Banach space, W C RY with 1x € W, G a Lie group and
w:Gx X — X a smooth action. We define the map

a : G x Diffyy,(X) — Diff (X) : (T, ¢) — wr o ¢ owp-1.

112



6.1. On the smoothness of the conjugation action on Diff),(X)o

Assume that there exists an open set Q € Ug(1) such that the maps
Cy(X, X) xQ—=Cp(X,X): (7,T) = youwr (6.1.2.1)

and
Cy(X, X) xQ—=Cy(X,X): (v,T) = Dwr - v (6.1.2.2)

are well-defined and smooth.

(a) Then for each open identity neighborhood Uyy C Diffy,(X) such that [¢,idx] :=
{to+ (1 —t)idx : t € [0,1]} C Diffy,(X) for each ¢ € Uy, the map

QN7 x Uy — Endw(X) : (T, ¢) = (T, ) ()
is well-defined and smooth.
(b) Suppose that Q = G. Then the map
G x Diffyy (X)o — Diffyy(X)o : (T, ¢) = (T, ¢) (1)

is well-defined and smooth.

Proof. |(a)| Using [Proposition 4.1.7} [Theorem 4.2.10| and the smoothness of [(6.1.2.1)| and
6.1.2.2

for each t € [0,1], T € QN Q! and ¢ € Uyy we see that
V7.6 = (Dwr - ((¢—idx) o (tp+ (1 —t)idx) ™)) o (top+ (1 —t)idx) owr' € Cyp(X, X),

and ¥y 14 is a smooth map. Further, using that t¢ + (1 —¢)idx is a diffeomorphism for
each ¢ € [0,1], we calculate

(wpogowp-1)(z)—x

=(wrogowr')(z) — (wrowp')(x)

= [ Dero o+ (1 - i) w7 (2) - (6 - idx) o () de

N /01<DWT (¢ —idx) o (to + (L = t)idx) ")) o (t6 + (1 — t) idx ) (wy ' () dt.

Hence wr o ¢powp1 —idy = fol Yeredt € Cy(X, X) by |Prop0sition A.1.8|, using that
we proved in |Corollary 3.2.9| that Cj} (X, X) is complete.

Since 9y 1,4 is smooth as a function of ¢, T" and ¢, we can use [Proposition A.1.19|to
see that is defined and smooth.

[(b)] Since Diffy,,(X) is locally convex, we find a symmetric open Uyy € U(idx) such that
[Uw,idx] C Diffy,)(X). Using the symmetry of Uy, and the results of [(a)} we see that
a(G x Uy) C Diffy)(X)o. Since Uyy generates Diffy,(X)o, we can apply [Lemma B.2.13]
to conclude that o(G x Diffy,(X)o) C Diff, (X)o. Further is smooth by [(a)| and
Lemma B.2.74 O
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6.1. On the smoothness of the conjugation action on Diff),(X)o

So all we need are criteria for the smoothness of the maps|(6.1.2.1){and [(6.1.2.2)l This
will be the topic of the next two subsections. Before we proceed, the following definition
is useful.

Definition 6.1.3. Let X be a normed space, U C X an open nonempty subset, and
h

W C RY a nonempty set of weights. We define the mazimal extension ax| C RY of
W as the set of functions f for which ||| 70 is a continuous seminorm on Ci,(U,Y), for

each normed space Y. Obviously W C Winax and by [Lemma 3.2.2} ||-||, is a continuous
seminorm on C{ﬁV(U, Y'), provided that f € Whax and ¢ < k.

6.1.1. Bilinear action on weighted functions

We first elaborate on the map To this end, we define a class of functions, the
multipliers. These have the property that for a multiplier M, a weighted function
and a continuous bilinear map b, the map bo (M,~) is a weighted function. Finally,
we provide a criterion ensuring that a topology on a set of multipliers makes the map
(M,~) — bo (M,~) continuous.

Multipliers

Definition 6.1.4. Let X be a normed space, U C X an open nonempty set and W C RY
a nonempty set of weights.

(a) A function g : U — R is called a multiplicative weight (for W) if

(vf € W)fg € Wmax‘

(b) Let Y be another normed space and k € N. A C¥-map M : U — Z is called a
k-multiplier (for W) if |D®Y M|, is a multiplicative weight for all £ € N with
¢ < k. An oo-multiplier is also called a multiplier.

Lemma 6.1.5. Let X and Y be normed spaces, U C X an open nonempty set, VW C rY
a nonempty set of weights and k € N.

(a) The set of k-multipliers from U to 'Y is a vector space.

(b) Amap M :U =Y is a (k+ 1)-multiplier iff M is a O-multiplier and DM : U —
L(X,Y) is a k-multiplier.

Proof. @ This is obvious from the definition.
(b)| This follows from the identity | D) (DM)||op = [ DYV M| ,p, see[Lemma 3.2.2, O

Lemma 6.1.6. Let X, Yy, Y5 and Z be normed spaces, U C X an open nonempty set,
W C RY 4 nonempty set of weights and k € N. Further, let b : Y1 x Yo — Z be a
continuous bilinear map, M : U — Y1 a k-multiplier and v € C{EV(U, Y2). Then

bo (M,~) € Ci(U, Z).
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6.1. On the smoothness of the conjugation action on Diff),(X)o

Moreover, the map
Ch(U, Ya) = Cly(U, Z) : v = bo (M, ) (1)

18 continuous linear and hence smooth.

Proof. For k < oo the proof is by induction on k:
k = 0: We calculate for z € U and f € W:

[f (@) [(bo (M, 7)) (@) < [Ibllop [f (@) 1M @) [y @) < [16llop 171]]51- 21110

and since || M| is a multiplicative weight, the right hand side is finite. Hence

160 (M)l .0 < [18lop 1715112110

entailing that bo (M,~) € C,(U, Z) and the linear map |(1)|is continuous.
k — k -+ 1: By [Proposition 3.2.3| we need to prove that D(bo (M,v)) € C&,(U,L(X, Z))
and that the map

Co (U, Y2) = Cly(U,L(X, 2)) : v = D(bo (M, 7))
is continuous. Using we get
D(bo (M,7)) = b o (DM, 7) + b o (M, Dv);

for the definition of the maps b see |[Subsection 3.3.1l So by applying the inductive
hypothesis to the maps b(!) o (DM, ~) and b3 o (M, Dv) (by DM is a k-
multiplier), we see that D(bo (M, 7)) is in C§,(U, L(X, Z)) and the map|(f)|is continuous.
k = oo: From the assertions already established, we derive the commutative diagram

b(M,")«,00 C%(U, Z)

C%(Ua Y2)

for each n € N, where the vertical arrows represent the inclusion maps. With
lary 3.2.6{ we easily deduce the continuity of b(M, ), ~ from the one of b(M, -).. O

Topologies on spaces of multipliers

Lemma 6.1.7. Let X, Y1, Yo and Z be normed spaces, U C X an open nonempty set,
W C RY a nonempty set of weights, k € N and b : Yy x Yo — Z a continuous bilinear
map. Further, let T be a topological space and (Mr)ret a family of k-multipliers such
that

VfeW,TeT,teN:L<k)(Ig € Whnax)

(Ve > 0)(3Q € Ur(T))VS € Q: |f] || DO (Mp — Mg)|| < £gl. (6.1.7.1)

Then the map
T % Cy(U, Ya) = Cy(U, Z) : (T, ) = bo (Mr,7) (1)

which is defined by is continuous.
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6.1. On the smoothness of the conjugation action on Diff),(X)o

Proof. For k < oo. the proof is by induction on k.
k=0: For S,T € T and v,n € CY,(U, Y2), we have

bo(Ms,n) —bo (Mr,y) =bo(Mg,n—")+bo(Msg— Mr,7).

We treat each summand separately. To this end, let f € W and x € U. Then we calculate
for first summand

[F @) [6(Ms (@), (v = m) @) < [[bllop £ (@) | Ms (@) | (v =) (2)]-

For the second summand we get

[f@)[bo (Ms — Mr, ) (@)|| < [|bllop| f ()] [(Ms — Mr)()] [ly()]-

Let ¢ € Whax as in [condition (6.1.7.1)} Given € > 0, let Q € Uy (T) be as in
tion (6.1.7.1)] For S € Q, we derive from the estimates above that

[f(@)[ (0o (Ms,n) = bo (Mr,y)) (@)l < [bllop(ly = nll £-a151,0 + €l g.0)-

As the right hand side can be made arbitrarily small, we see that is continuous.
k — k -+ 1: Using [Proposition 3.2.3} we just need to prove that for v € C{ﬁv(U, Ys) and
T € T, the map D(bo (Mr,7)) € Cy,(U,L(X, Z)) and that

T x o (U, Ya) = Cy(U,L(X, 2)) : 7 = D(bo (Mr, 7))

is continuous. Using we get
D(bo (Myz,7)) = b o (DMz,7) + 5@ o (My, D),

with b as in [Subsection 3.3.1] So by applying the inductive hypothesis to the maps
b o (DMy,v) and b3 o (Myr, D), we see that D(bo (Mr,~)) is in C¥, (U, L(X, Z)) and

the map is continuous.
k = oco: From the assertions already established, we derive the commutative diagram

T x CR(U, Ya) — = C33(U, Z)

|

T % Ciy(U, Yz) ———— C(U, 2)

for each n € N, where the vertical arrows represent the inclusion maps. With
ary 3.2.6| we easily deduce the continuity of b, o, from the one of b,. O

6.1.2. Contravariant composition on weighted functions

Here we prove sufficient conditions that make |(6.1.2.1)[smooth. Since the second factor of
the domain of this map in general is not contained in a vector space, we have to wrestle
with certain technical difficulties, leading to the definition of a notion of logarithmically
bounded identity neighborhoods in Lie groups.
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6.1. On the smoothness of the conjugation action on Diff),(X)o

Lemma 6.1.8. Let G be a Lie group and w : G x M — M a smooth action of G on the
smooth manifold M.

(a) For any g € G, the identity
Tw = Twy 0o Two (TAy-1 x idar)

holds, where Aj—1 : G — G denotes the left multiplication with gt

In the following, let S,T € G and W :[0,1] — G be a smooth curve with W(0) = S and
W(l) =T.

(b) Let N be another smooth manifold and v : M — N a C* —map. Then fort € [0,1]
and x € M, we have

T(yowo (W xidy))(t,1,02) = Ty o Twy ) (—w(de(W)(1)) (). (t)

(¢c) Let X andY be normed spaces. Assume that M is an open nonempty subset of X.
Then for v,n € CY(M,Y) and x € M, we have

(your)(z) - (nows)(a)
(6.1.8.1)
=((7 -~ owr)(w) ~ [ Daleowio (&) - Do (&) - (W) (1)) i

Proof. @ We calculate for h € G and m € M that
w(h,m) = w(gg™'h,m) = w(g,w(g™ h,m)) = wy(w(Ag-1 (h),m)).

Applying the tangent functor gives the assertion.

We calculate

T(yowo (W xidy))(t1,0,) = Ty o Tw(W(t),0,)
= Ty o Twyy(zy o Tw(W(t) ™" - W(t),05) = Ty 0 Twyypy (—0 (W ()" W' (1)) ().

Here we used @
By adding 0 = nowr — nowr, we get

(vowr)(@) — (nows)(z) = ((v —n) owr)(z) + (nowr)(z) — (nows)(z)
We elaborate on the second summand:
(nowr)(x) — (nows)(@) =n(w(W(1),z)) —n(w(W(0),z))
_/ D(nowo (W x idy))(t,2) - (1,0) dt

/ Do (o)() - Doy () - (e W)(1)) (x) di.

Here we used O

117



6.1. On the smoothness of the conjugation action on Diff),(X)o

Definition 6.1.9. Let G be a Lie group and U C G, V C L(G) sets. We call a path
W e Cl([0,1],G) V-logarithmically bounded if 5,(W)([0,1]) C V. The set U is called
V -logarithmically bounded if for all g, h € U there exists an V-logarithmically bounded
W e C>([0,1], V) with W(0) = g and W (1) = h.

Proposition 6.1.10. Let X and Y be normed spaces, U C X an open nonempty

set, k € N, W C RY nonempty set of weights, G a locally conver Lie group and
w:GxU — U a smooth action. Assume that there exists an open neighborhood € of 1
i G such that

(Vf €W, T € Q)3g € Wiax(Ve > 0)
3V € U )(0), Q2 € Ua(T) V-logarithmically bounded (6.1.10.1)

(VS € QueV):|f]- | Dws - w)| <elgowsl.

Further assume that YV o w§1 C Whax, and that for all m € N with m < k and normed
spaces Z, the map

Cw(UL(X,Z)) x Q= Cy(ULX,Z)) : (I,T) — I - Dwp (6.1.10.2)
1s defined and continuous.
(a) Then the map
CE (U, Y) x Q= Coy(U,Y) : (,T) = yowr
is well-defined and continuous.
(b) Let ¢ € N*. Additionally assume that the maps
Ch (U L(X,Y)) x Q = C(U,L(X,Y)) : (T,T) — T - Dwr (6.1.10.3)

and

Ch (U L(X,Y)) x L(G) = Ciy(U,Y) : (T,v) — T - &(v) (6.1.10.4)

are well-defined and C*='. Then the map
¢ CEFTL U Y)Y x Q= CE(UY) : (7,T) = yowr
is Ct with the derivative

de((7,9); (11, 51)) = —(Dy o ws) - Dwg - &(S™" - 51) + 71 o wg. (1)

Proof. @ For k < oo, this is proved by induction on k.
k = 0: Let v,n € C%/V(U,Y), T € Qand f € W. Let g € Wiax as in
tion (6.1.10.1), Given ¢ > 0, we find a neighborhood Q of T" and V' € Uy,(0) such

118



6.1. On the smoothness of the conjugation action on Diff),(X)o

that [condition (6.1.10.1)|is satisfied. Using fidentity (6.1.8.1), we calculate for S € , a
V-logarithmically bounded path W : [0, 1] — € connecting S and T', and x € U that

F@IG 0wr)@) (0 ws)(a)]
1
<I£@ (I = n) owr)@ + | [ Daterwio (@) - D (o) - 0:W)(0) ) |

1
<Y =1l oot 0 + /O [ @) [ 1D ww @) (@)llop - ([ Dww ) (x) - w(6e(W)(#)) ()| di

1
<y =l o0+ € | 190 )@ IDm(erwiey (@)
<y = 1l o= 0 + llllg 1

The continuity at (v,n) follows from this estimate.
k — k + 1: By |Proposition 3.2.3| and the inductive hypothesis, we just need to check
that the map

CW*(U,Y) x Q= Gy (U, L(X,Y)) : (7,T) = D(y o wr)
is well-defined and continuous. For v € C2(U,Y) and T € Q, we have
D(yowr) = (Dyowr) - Dwry.

Hence by the inductive hypothesis and the continuity of the induction is
finished.
k = oo: This is an easy consequence of the case k < oo and [Corollary 3.2.6]
@ We prove this by induction on ¢.
=1: Let v,m € Cif ™1 (U,Y), S € Q and S; € TsQ. Further, let T':]—6,5[— Q be
a smooth curve with I'(0) = S and I'(0) = S;. Then we calculate for a sufficiently small

t#0:

1 1
(v Ftm)owry —yows) = S(yowre — 7 ows) +710wr():

Using [identity (6.1.8.1)| we elaborate on the first summand:

1 1 1 .
T(vowry —vows)(z) = *;/O Dy (wrst) () - Dwrsty () - w(tde(T)(st))(x) ds.

Hence

1 ! :
T(yowry —youws) = —/0 (D o wr(st)) - Dwrse)y - w(3e(T')(st)) ds;
note that the integral on the right hand side exists by since the curve
[07 1] - Clle(Uv Y) B (D’7 © wF(st)) ’ DwF(st) ’ w(éf(r)(St))

is well-defined and continuous by [(a)] and the continuity of [(6.1.10.3)] and [(6.1.10.4)]
Hence by [Proposition A.1.8|

1 e
%g% Z((’Y +t71) owrp) — vows) = —(Dyows) - Dws - w(S 1.81) + 91 0ws,
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6.2. Conclusion and Examples

so the directional derivatives of ¢ exist, are of the form and depend continuously on
the directions by [(a)] and the continuity of [(6.1.10.3)] and [(6.1.10.4)]

¢ — £+ 1: Since|(6.1.10.3)| and |(6.1.10.4)| are C* by assumption, we conclude from
and the inductive hypothesis that dc is C*, whence ¢ is C**1. O

6.2. Conclusion and Examples

Finally, we prove a sufficient criterion for the smoothness of the conjugation action of a
Lie group G acting on X and Diffy,(X)o.

Theorem 6.2.1. Let X be a Banach space, G a Lie group, w : G x X — X a smooth
action and W C RS with 1x € W. Assume that {f owp : f € W, T € G} C Whax (we
defined Wnax in |Definition 6.1.5), {Dwyp : T € G} C BC>®(X,L(X)), the maps

D:G — BC®(X,L(X)): T+ Duwr ()

and|(6.1.10.4)| are well-defined and smooth and |condition (6.1.10.1)| is satisfied. Then the
map

G x Diffy,(X)o — Diffy(X)o : (T, 8) = wr o powp’

1s well-defined and smooth.

Proof. Since is well-defined and smooth, we can apply [Corollary 3.3.7| to see that
6.1.2.2)| is also well-defined and smooth. Similarly, using |Corollary 3.3.6, we see that
(6.1.10.2)] and [(6.1.10.3)| are well-defined and smooth. Hence [Proposition 6.1.10] shows

that |(6.1.2.1)[is smooth. The assertion follows from [Lemma 6.1.2 O

Finally, we give a positive and a negative example. The first example shows that we
can form the semidirect product Diff g(X ) X GL(X) with respect to the conjugation.

Lemma 6.2.2. Let X, Y and Z be normed spaces, U C X an open nonempty set,

w c RY nonempty such that for each f € W, f|l|| € Winax- Further, let k € N and
b:Y x X = Z a continuous bilinear map. Then

Cy(U,Y) x L(X) = Cy(U, 2) : (7, T) = bo (7, T) (1)
is well-defined and smooth.

Proof. The assertion holds for k = oo if it holds for all £ € N. For k # oo, the proof is
by induction on k.

k = 0: Since is bilinear, it is smooth iff it is continuous in 0. So we only prove that.
Let f €W, v €Chi,(U,Y), T € L(X) and x € U. Then

[F@)HIo(y (@), T@) < [[bllopl £ @) 1y @) 1T Hop < 110llopllvIl£11-1.0[1 T llop-

We conclude that bo (v, T) € C,(U, Z) and that [(1)|is continuous in 0.
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k — k+ 1: By |Lemma 3.3.2, we have for v € C}},(U,Y) and T € L(X) that

D(bo (v,T)) = bW o (Dv,T) + @ o (v, DT).

Since DT € BC*(X,L(X)), by [Proposition 3.3.3[b() o (v, DT) € C{f\fl(U,L(X, Z)) and
the map (v, T) — b o(v, DT) is smooth (here we use that L(X) — BC®(X,L(X)): T
DT is smooth). By the induction hypothesis, the same holds for (v, T) — b1 o (D~,T).
So using [Proposition 3.2.3| the proof is finished. ]

Lemma 6.2.3. Let X be a Banach space and G := GL(X). We define the action
w:GxX = X:(9,2) — g(x)
and set W :={xz > ||z||" : n € N}. Then

(a) The map|(6.1.10.4)| is smooth.

(b) The|condition (6.1.10.1)| is satisfied.

Proof. We easily see that w = —idy,x) (since L(G) = L(X)), and for each S € G and
€ X,wsg=Sand DS(z)=S. For we give two different proofs. The first one uses
the second uses a topology on the multiplier space L(X).

m First variant: Let Y be another normed space. Since for I' € C, (X, L(X,Y)) and
S e L(G), I'-w(S) = evx,y)o(I', =5) and evy,x,y) is bilinear and continuous, this is a
consequence of

Second variant: Obviously w(L(G)) = L(X) consists of multipliers. Further,

tion (6.1.7.1) is satisfied (where 7 = L(X) and the family of multipliers is given by
idp,(x)) since for A, B € L(X) and v € X
(A= B)(@)|| < [[A = Bllopllzll

and
|D(A = B)(z)| = [[A = Bllop

and |[D®) (A — B)|| = ||0]| = 0 for k > 1. Hence we can apply [Lemma 6.1.7| to see that

(6.1.10.4)| is smooth.
[(b)] Let f =] € W, T € G and € > 0. There exists an open convex U € Ug(T') such
that for all S € U,
« [S=Tlop <¢
o 1S Hlop < 20T op

 [[Sllop < 2[Tlop-
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Then the path W : [0,1] — G : t — tT 4+ (1 — ¢)S has the left logarithmic derivative
Se(W)(t) = W(t)"H(T — S), hence U is By, x)(0,2[|T | ope)-logarithmically bounded. We
calculate for z € X, S € U and A € By,x)(0,2[T[ope) that

|f (@) [1Dws(x) - w(A) @) = llz]*I(S o A) (@) < 1Sllopll Allopll "
< A|T5ellS™ S| " < e2m BTG, 1T~ I 1S ]|

Since z — 2" T2 [T H|2H 2|t € Winax, we see that [condition (6.1.10.1)| is
satisfied. d

Example 6.2.4. Let X, G, w and W be as in For each S € G and z € X,
DS(x) = S. Hence the map

D:G— BC*(X,L(X)):S+— DS

is smooth. By |Lemma 6.2.3} the assumptions of [Theorem 6.2.1{ hold (since Wo G C Wiax

is obviously true), hence the map
GL(X) x Diffy,(X)o — Diffyy(X)o : (T,¢) = TogoT!
is smooth. So using [Lemma B.2.15| we can form the semidirect product
Diffy,(X)o x GL(X)
with respect to the inner automorphisms on Diffy,,(X)o that are induced by GL(X).

Finally, we show that the the conjugation of GL(R) on Diff; ,(X)o, if it was defined,
could not be continuous.

Example 6.2.5. For each n € N, sin((1 + 5 )n7) = +1, but sin(nm) = 0. Hence
|Isin(ty,-) — SithR,o >1

for each n € N, where t, := 1+ % We see with [Lemma 4.2.9|that

1. . .
5 sin € H{ﬁR}(DIH{lR}(R)),

and obviously r1, (3 sin) € Diff ;4 (X)o. If the conjugation of GL(R) on Diff; ,(X)o
was defined and continuous, then the map

R\ {0} x BC®(R,R) — BC®(R,R) : (t,7) — t~1y(t)
would be continuous in (1, §sin). But it is not since for ¢t > 0 and = € R
|t~ sin(tz) — sin(z)| > ¢t~ |sin(tz) — sin(z)|| — ||t~ — 1) sin(z)|
>t~ Ysin(tz) — sin(z)|| — [t~ = 1|;
hence we can calculate that for sufficiently large n,

1
> 1

H lt 1 sm % sin
1r,0
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7. Lie group structures on weighted
mapping groups

In this chapter we will use the weighted function spaces discussed in for the
construction of locally convex Lie groups, the weighted mapping groups. These groups
arise as subgroups of GV, where G is a suitable Lie group and U is an open nonempty
subset of a normed space. First, we give some definitions that are used throughout this
chapter.

Definition 7.0.1. Let U be a nonempty set and GG be a group with the multiplication
map mg and the inversion map Ig. Then GY can be endowed with a group structure:
The multiplication is given by

((gu)uEU7 (hu)ueU) = (mG(gua hu))ueU =mgqgo ((gu)ueUa (hu)uEU)

and the inversion by

(guuev = (Ia(gu))uev = Ia © (gu)uev-
Further we call a set A C G symmetric if
A=1Ig(A).
Inductively, for n € N with n > 1 we define
AMT = mg (A" x A),
where A! := A.

Definition 7.0.2. Let G be a Lie group and ¢ : V' — L(G) a chart. We call the pair
(¢, V) centered around 1 or just centered if V' C G is an open identity neighborhood and

é(1) = 0.

7.1. Weighted maps into Banach Lie groups

In this section, we discuss certain subgroups of G, where G is a Banach Lie group and
U an open subset of a normed space X. We construct a subgroup C{j\,(U, G) consisting of
weighted mappings that can be turned into a (connected) Lie group. Its modelling space
is C&,(U,L(@)), where k € N and W is a set of weights on U containing 1;;. Later we
prove that these groups are regular Lie groups. Finally, we discuss the case when U = X.
Then Diffy,,(X) acts on Cy}(X, G), and this we can turn the semidirect product of these
groups into a Lie group.
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7.1. Weighted maps into Banach Lie groups

7.1.1. Construction of the Lie group

We construct the Lie group from local data using [Lemma B.2.5| For a chart (¢, V) of
G, we can endow the set ¢! o C%)k(U, #(V)) € GY with the manifold structure that
turns the superposition operator ¢, into a chart. We need to check whether the local
multiplication and inversion on this set are smooth with respect to this manifold structure.
The group operations on GV arise as the composition of the corresponding operations on
G with the mappings (see [Definition 7.0.1)). Since the group operations of Banach Lie
groups are analytic, we will use the results of [Subsection 3.3.3] as our main tools. The
use of this tools allows to construct C{fv(U, G) when G is an analytic Lie group modelled
on an arbitrary normed space.

Remark 7.1.1. We call a Lie group G normed if L(G) is a normable space. A normed
analytic Lie group is a normed Lie group which is an analytic Lie group.

Local multiplication The treatment of the group multiplication is a simple application
of [Proposition 3.3.21]

Lemma 7.1.2. Let X be a normed space, U C X an open nonempty subset, YW C RrY
with 1y € W, £ €N, G an normed analytic Lie group with the group multiplication mg
and (¢, V') a centered chart of G. Then there exists an open identity neighborhood W C V
such that the map

oyt (U, (W) x Cy (U, (W) = Co (U, (V) = (7,1m) = dpomao (¢ oy, ¢ on) (1)
is defined and analytic.

Proof. By [Lemma 3.4.16| the map is defined and analytic iff there exists an open
identity neighborhood W C G such that
($omao (67 x o71)e: O (U, 0(W) x §(W)) = Cyf (U, $(V))

is so. There exists an open bounded zero neighborhood W7L C L(G) such that VVL —I—VVL -
#(V). By the continuity of the multiplication m¢ there exists an open 1-neighborhood
W with mg(W x W) C ¢~1(W.). We may assume w.l.o.g. that ¢(WW) is star-shaped
with center 0. Then

(¢omgo (¢ x 67 (B(W) x 6(W)) C Wr.
Further the restriction of ¢ o mg o (¢~ x ¢71) to (W) x ¢(W) is analytic, takes (0,0)

to 0 and has bounded image, since ¢ is centered and Wy, is bounded. In the real case,

using [Lemma 3.3.19| we can choose ¢(W) sufficiently small such that the restriction
of pomgo (¢! x ¢71) to (W) has a good complexification. Hence we can apply

[Proposition 3.3.21] to see that
(9omgo (@' x ¢71) o CY (U, 6(W) x 6(W)) € Cyy(U, W)
and that the map (¢ omg o (¢~ x 1)), is analytic. But
Clu(U, W) € Gy (U, 6(V)

by the definition of V[,Z;, and this gives the assertion. O
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7.1. Weighted maps into Banach Lie groups

Local inversion The discussion of the inversion is more delicate. For a short explanation,
let (¢, ‘7) be a chart for G, V C Va symmetric open identity neighborhood and I the
inversion of G. Then the superposition of ¢ o I; 0 ¢! described in [Proposition 3.3.21
does not necessarily map C{?\’,E(U, #»(V)) into itself; hence we have to work to construct
symmetrical open subsets.

Lemma 7.1.3. Let G be a group, U C G a topological space and V C U a symmetric
subset with 1 € V° such that the inversion Ig : V — V is continuous. Then

VenlIg(Ve)
is a symmetric set that is open in U and contains 1.
Proof. Let W :=V°NIz(V°). Then 1 € W, and since
Wt =Ia(W) = Ic(V° N 1g(V°)) = Ic(V°) N Ic(Ig(V°)) = Ic(V°) N V° =W,

it is a symmetric set. Since I is a homeomorphism, I;(V°) is an open subset of V.
Hence W = I(V°) N V° is an open subset of V° and hence of U. O]

Lemma 7.1.4. Let X be a normed space, U C X an open nonempty subset, YW C RY
with 1y € W, £ € N, G an normed analytic Lie group with the group inversion Ig, (¢, V)
a centered chart of G such that ¢(V') is bounded and V is symmetric. Then the following
statements hold:

(a) The map
I :=¢olgog™ " : (V) = ¢(V)
is an analytic bijective involution. Hence for any open and star-shaped set W C ¢(V)
with center 0, the map

Co (U W) — Cly(U, ¢(V)) 1y = I 0y
is analytic, assuming in the real case that Ir|w has a good complezification.

(b) Let Q C C%,Z(U, #(V)). Then ¢~ o (2N IL0R) is a symmetric subset of GU.

(c) For any open zero neighborhood W C ¢(V') there exists an open convex zero
neighborhood W C W such that

CHH (U, W) C CoH (U, W) N I, o COL (U, W).
(d) There exists an open convex zero neighborhood W C ¢(V') and a zero neighborhood
CYy, C Ce\’f(U, o(V)) such that
Cyy (U, W) € (C)° N 110 (Ch)°,
p~to C’f;v is symmetric in GY, the map
C'f/v—>C’f/V:w—>IL0fy

is continuous and its restriction to (Cf;v)o is analytic. The set W can be chosen
independently of £ and W.
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7.1. Weighted maps into Banach Lie groups

Proof. The assertions concerning Iy, follow from the fact that V is symmetric and G
is an analytic Lie group.
The assertion on the superposition map of Iy, is a consequence of [Proposition 3.3.21] since
W is star-shaped with center 0 and ¢(V') is bounded.

@ This is an easy computation.

By the continuity of the addition, we find an open zero neighborhood H with
H + H C W. Since I, is continuous in 0 there exists an open convex zero neighborhood
W with Ir,(W) C H and W C W. Then

COL(U, W) C Cof (U, W)

and by @

I, 0 COL(U, W) C Ciy(U, H) C Cof (U, W).

The fact that I, o Iy, = idy(y) completes the argument.
[(d)] Let W5 C ¢(V) be an open convex zero neighborhood. Then by [(c)] we find open
convex zero neighborhoods Wi, Wy C ¢(V') such that

C%)Z(U, Wi) C C%(U, Wig1)NIpo C%;Z(U, Wit1)
fort=1,2. So
Chy = CoH (U, W3) N I, o Cof (U, W)

is a zero neighborhood, and by p 1o C’f/v is symmetric. Hence the superposition of I,
maps Cjy, into itself and is continuous on CY,, and analytic on (CY,,)° (see|(a)). Further

(CH)° NI o (Cy)° D CONU, Wa) N I, 0 COL (U, Wa) D Cof (U, W),
whence @ is established with W := Wj. (]

Construction of the Lie group structure After discussing the group operations locally,
we turn a subgroup of GV into a Lie group for each centered chart of G. We will also
show that the identity component of this group does not depend on the chart.

Lemma 7.1.5. Let X and Y be normed spaces, U C X an open nonempty subset,
w c RY with ly eW,LeN and V CY convez. Then the set Cg\’,e(U, V) is convez.

Proof. 1t is obvious that C},,(U, V) is convex since V is so. The set Ce\}e(U, V) is the
interior of Cf,,(U, V') with respect to the norm ||-||1,,,0, hence it is convex. O

Proposition 7.1.6. Let X be a normed space, U C X an open nonempty subset, VW C RrY
with 1y € W, £ € N, G an normed analytic Lie group and (¢, V) a centered chart. There
exist a subgroup (G, gb)%l of GY that can be turned into an analytic Lie group which is
modelled on Cjy,(U,L(G)); and an open 1-neighborhood W C V which is independent of
W and £ such that
O (U, 6(W)) = (G, @) v 67 oy

s an analytic embedding onto an open set. Moreover, for any convexr open zero neighbor-
hood W C ¢(W), the set ¢~ o C&E(U, W) generates the identity component of (G, gzﬁ)%j
as a group.
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7.1. Weighted maps into Banach Lie groups

Proof. Using we find an open 1-neighborhood W C V such that
Cyy (U, (W) x Cpyf (U, 6(W)) = C (U, (V) : (7,m) = om0 (67" 07,07 o)

is analytic. We may assume w.l.o.g. that W is symmetric. With [Lemma 7.1.4 @ and
Lemma 7.1.3] we find an open zero neighborhood H C C%,Z(U, #(W)) such that ¢=1 o H

is symmetric, the map
H—H:v—1Ipoy

is analytic and Ce\;e(U, »(W)) C H for some open 1-neighborhood W C V, which is
independent of W and ¢. We endow ¢! o H with the differential structure which turns
the bijection

gf)_loH—)H:’Yb—)(bo'y

into an analytic diffeomorphism. Then we can apply to construct an
analytic Lie group structure on the subgroup (G, gzﬁ)%’g of GY which is generated by
¢~ o H such that ¢! o H becomes an open subset of (G, (ﬁ)%’g.

Since we may assume w.l.o.g. that ¢(W) is convex, C)‘?\QE(U, »(W)) is open and convex

(see |Lemma 7.1.5)), hence the set
6 o G (U, (W)

is connected and open by the construction of the differential structure of (G, QS)%x.
Furthermore it obviously contains the unit element, whence it generates the identity
component,. (]

Lemma 7.1.7. Let X be a normed space, U C X an open nonempty subset, VW C RY with
1y €W, £ €N and G be an normed analytic Lie group. Then for centered charts (¢1, V1),
(¢2, Vo), the identity component of (G, qﬁl)%’e coincides with the one of (G, (ﬁg)%l, and
the identity map between them is an analytic diffeomorphism.

Proof. We may assume w.l.o.g. that ¢1(V1) and ¢2(V2) are bounded. Using
sition 7.1.6] we find open 1-neighborhoods W7 C Vi, Wy C V5 such that the identity
component of (G, ¢i)1(/]\;,g is generated by ¢; ! OCE\}K(U, di(W;)) for i € {1,2}. Since ¢ o¢;, "
is analytic, we find open zero neighborhoods W C ¢1(W1) and Wi C ¢(Ws) such that

(10651 )(WE) C W and W + W C ¢1(W7)

and WQL is convex. Then by [Proposition 7.1.6|, the identity component of (G, qbg)%j is

generated by ¢, ! o C%Z(U, WQL), and in the real case we may assume that ¢ o ¢y ' ’VT/ L
2

has a good complexification. By [Proposition 3.3.21| the map

Coyf (U W) = G (U, 61(W)) sy = dr 0637 0y
is defined and analytic, and this implies that

o3t o Co (U, W) C o7t 0 COY (U, 61 (Wh)).
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7.1. Weighted maps into Banach Lie groups

Hence the identity component of (G, (ﬁg)%l is contained in the one of (G, qﬁl)%’g, and
the inclusion map of the former into the latter is analytic.
Exchanging the roles of ¢1 and ¢9 in the preceding argument, we get the assertion. [J

Definition 7.1.8. Let X be a normed space, U C X an open nonempty subset, W C rY
with 1;7 € W, £ € N and G be an normed analytic Lie group. We write CWZ (U, G)| for the
connected Lie group that was constructed in [Proposition 7.1.6] There and in[Cemma 7.1.7]
it was proved that for any centered chart (¢, V) of G and W C V such that ¢(W) is
convex, the inverse map of

Coi (U, 6(W)) — Chp(U,G) : vy ¢~ oy

is a chart.

7.1.2. Regularity

We show that for a Banach Lie group G, the Lie group Cf/v(U, G) is regular.
Lemma 7.1.9. Let G, H be Lie groups and ¢ : G — H a Lie group morphism.
(a) For each g € G and v € T,G, we have Typ(v) = ¢(g) - L(¢) (g7 - v).
(b) Let v € C*([0,1],G). Then 6,(¢0~) = L(¢) 0 de(7).

Proof. The proof of @ being straightforward, we turn to @ We calculate the derivative
of ¢ oy using @ and the fact that ¢ is a Lie group morphism:

(0 09)(t) = T(¢oy)(t, 1) = Typnd(v (1) = ¢(v(1)) - L()(v(1) " -/ (1)).
From this we derive
Se(¢po)(t) = (oM (B) - (o) (t) = L(@)(v(t) ™" -7 (t)) = L()(5(7)(1)),
and the proof is finished. O

The following is well known from the theory of Banach Lie groups.

Lemma 7.1.10. Let G be a Banach Lie group and V € U(1). Then there exists a
balanced open W € Uy,)(0) such that

v e C%0,1],W) = Evola(y) € C°([0,1],V). (7.1.10.1)
Furthermore, the map evol : C°([0,1], W) — G is continuous.

We define some terminology needed for the proof.
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7.1. Weighted maps into Banach Lie groups

Definition 7.1.11. Let X be a normed space, U C X an open nonempty set, W C RY
with 17 € W, k € N and G be a Banach Lie group. Further, let F;, F» C W such that
1y € F1 C Fp and #1, 45 € N such that ¢; < l5 < k. We denote the inclusion

C2 (U L(G)) — C% (U, L(G)).
by L(L]_-Q 02),(F1 ) and the inclusion
C2 (U,G) = C% (U,G)

G L N G ._ G
by L t2)(Fu 1) Further, we define VEL 6 T W), (Fuub) and VLG T LN, (Frb)
Then for a suitable centered chart (¢, V) of G, the diagram

-1
2 (U, ¢(V)) —2—— C2 (U, G)

WL .G
(lezi(]'_lﬁﬁ) (-7"275231(}'1 1)

C3 (U, 6(V)) —— 3, (U,6)

commutes. Hence we derive the identity

L(t(r, ), (7)) = Todi ' 0 Tot(r, ) (71.01) © T10
Let 2 € U. We let ev$ resp. evl denote the maps
ev§  CENU,G) = Gy y(z)  evE 2 (UL(G)) = L(G) 1y = (x).
Obviously, the diagram

ot

CHI (U, ¢(V) ———C3, (U, G)
I, c
e\iz J T
(V) pm ¢

commutes, so we derive the identity
L(GVIG) = To(ﬁil oTy eV£ 0T .

Remark 7.1.12. In the following, if F is a locally convex vector space, we shall frequently
identity ToE = {0} x E with E in the obvious way. Then for a Banach Lie group G and
a centered chart (¢, V) of G such that d¢|yq) = idy(q), we can identify Ch (U, L(Q))
with L(Cllfv(U, G)) via Top; ' and Ti¢x, respectively.

Lemma 7.1.13. Let X be a normed space, U C X an open nonempty set, VW C rY
with 1y € W, k € N G a Banach Lie group and (¢,V) a centered chart for G such that
doluq) = idy(q). Further, let v € U and ' : [0,1] — CE (U, L(G)) a smooth curve whose
left evolution exists. Then evS oEvol’(To¢ ! oT) is the left evolution of evkol.
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7.1. Weighted maps into Banach Lie groups

Proof. Weset 11 := Evol(To¢; 'oI') and calculate using|Lemma 7.1.9{and [Definition 7.1.11]
that

So(evs on) = L(ev%) 0 64(n) = Topp ! o Toevl oT1¢, 0 Togp, L o = evl ol
This shows the assertion. O

Proposition 7.1.14. Let X be a normed space, U C X an open nonempty set, VW C RY
with 17 € W, k € N and G a Banach Lie group. Then the following assertions hold:

(a) C&,(U,G), endowed with the Lie group structure described in |Definition 7.1.8, is
reqular.

(b) The exponential function of C, (U, G) is given by
(U, L(G)) = Cy(U.G) : 7 = expg o7,
where we identify Ciy,(U,L(G)) with L(CY, (U, G)).
Proof. M Let (¢, ‘7) be a centered chart of G such that d¢|y,) = idy(q). We set
F:={FCW:1ly e F,|F| < xx}.
After shrinking 17, we may assume that the inverse map of

CHUV) = Co(U,G): T ¢~ ol

is a chart around the identity for 7 € F and ¢ € N with ¢ < k (see [Definition 7.1.8).

Let V C V an open 1-neighborhood such that ¢(V) + ¢(V) C ¢ V). We choose an
open zero neighborhood W C ¢(V) such that the implication |(7.1.10.1) holds. Let

r:[,1 — C,‘?\}k(U, W) be a smooth curve. Then I'ry := LJL:,E oI is smooth, and since
CfT(U, G) is a Banach Lie group, the curve To¢; ! o 'z, has a smooth left evolution
nre:[0,1] — Cé(U, G). Then, for each x € U, ev¢ onz . is the left evolution of evl o'z,

by [Lemma 7.1.13] Since we assumed that |(7.1.10.1) holds, we conclude that for each

t € [0, 1], the image of nr ¢(t) is contained in V.
Further, for Fy, F> € F such that /7 C F5 and ¢1,45 € N such that ¢; < ¢y <k,

6€<[’(G]:2,€2),(]:1,f1) o 77]'—2:ZQ) - L(L(%Eg,lg),(}'l,él)) ° 56(7]]'—2!2>
= Tod, " © Tot{r, 1).(Fr02) © T165 0 6e(NFs ) = Tod 0T im0y = Se(nFy0y)-

Hence ng, ¢, = LE;FQ,EQ),(J-H,&) O NFy 0 So the family (¢x o nr ¢) Fer <k is compatible with
the inclusion maps, hence using |[Proposition 3.2.5|and [Proposition A.1.12| we derive a
smooth curve 77 : [0,1] — Ce\}k(U, (V) such that for all F € F and ¢ € N with ¢ < k, we
have L%e on = ¢xonry Wesetn:= ¢71 o7. Then

To¢, 'oTo% 10T 1¢.00¢(n) = L(1E 1)0d¢(n) = 6¢(nre) = Tod, ol r e = Tog, 'ork 40T,
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7.1. Weighted maps into Banach Lie groups

and since F and ¢ were arbitrary, we conclude (using[Proposition 3.2.5)) that T1¢.0d.(n) =
I" and thus

5e(n) = Tog; ' oT.

It remains to show that the left evolution is smooth. To this end, we denote the left
evolution of C%(U, G) with evolr, and the one of C,(U, G) with evol. From our results
above and [Definition 7.1.11] we derive the commutative diagram

evoloTy (15*_1

([0, 1], €2 (U, W) ¢t o Oy (U, 6(V))

L‘ G
LFe be,z
v

c([0,1],C%" (U, W) 971 o C2A(U, (V)

evolfygoT()qS*_l
Since the three lower arrows represent smooth maps, the map

¢4 © L%g oevol o T0¢*_1 = L%e o ¢4 0 evol o T0¢*_1

is smooth on C*([0, 1],C5\}k(U, W)). Using |Proposition A.1.12| and |Subsection 3.2.2L we
conclude that ¢, o evol o Top; ! is smooth, and since ¢, and To¢; ! are diffeomorphisms,
using [Lemma B.2.10] we deduce that evol is smooth.

@ Let (¢,V) be a centered chart of G such that d¢|y,) = idyg). We denote the
exponential function of C,(U,G) by expy,. Let x € U and v € C},(U,L(G)). We
denote the constant, y-valued curve from [0, 1] to C¥,(U,L(G)) by I. We proved in
that evs oEvol’(¢; ! oT') is the left evolution of evl oI'. On the other hand,
since I is constant, the left evolution of evZ oI is the restriction of the 1-parameter group
R — G : t > expg(tevi(y)). Hence

expg(evh(y)) = (evs oEvol (¢, ! o T))(1) = evS oevol’ (¢, ! oT) = evS oexpyy (6! (7).

Thus expyy, (65 1(7))(z) = expe(y(x)), from which we conclude the assertion since x € U
was arbitrary. O

7.1.3. Semidirect products with weighted diffeomorphisms

In this subsection we discuss an action of the diffeomorphism group Diffy,,(X) on the Lie
group Cyy(X, G), where G is a Banach Lie group. This action can be used to construct
the semidirect product C3}(X, G) x Diff,,(X) and turn it into a Lie group. For technical
reasons, we first discuss the following action of Diff,(X) on G*¥.

Definition 7.1.15. Let X be a Banach space, G a Banach Lie group and W C RY with
1x € W. We define the map

& : Diffyy(X) x GX = GX = (¢,7) = yo L.

It is easy to see that @ is in fact a group action, and moreover that it is a group
morphism in its second argument:
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Lemma 7.1.16. (a) @ is a group action of Diff ), (X) on GX.
(b) For each ¢ € Difty,,(X) the partial map &(¢,-) is a group homomorphism.

Proof. These are easy computations. O

We show that this action leaves Cyy;(X, G) invariant. Since we proved in [Lemma 7.1.16

that @ is a group morphism in its second argument, it suffices to show that it maps a
generating set of Cyy(X, G) into this space.

Lemma 7.1.17. Let X be a Banach space, G a Banach Lie group, W C RY with
1x €W, (¢,V) a centered chart of G and V' an open identity neighborhood such that
o(V) is convex. Then

&(Diffyy (X) x (67 0 G (X, 6(V)))) C ¢~ 0 (X, 6(V)),
and the map
Diffyy, (X) x C° (X, (V) = C™(X, (V) : (1,7) = ¢ 0 &(v, 61 07)
is smooth. Moreover,
&(Diff,(X) x C59(X, G)) C C9(X, G).
Proof. Let ¢ be an element of Diffy,(X) and v € Co°(X, (V). Then
B, ¢ o) =¢ Lo (youh),

and using [Proposition 4.1.7] this identity proves the first and the second assertion. The
final assertion follows immediately from the first assertion since we proved in
that @ is a group morphism in its second argument, and in [Definition 7.1.8| that that
C9(X, G) is generated by ¢! o COF(X, ¢(V)). O

So by restricting w to Diff),,(X) x Cy5(X, G), we get a group action of Diffy,,(X) on
C33(X, G).

Definition 7.1.18. We define

w 1= Qpifr,, (x) ez (x.) ¢ Diffyy(X) X CR(X, G) = CH(X, G) = (¢,7) =y o
Finally, we are able to turn the semidirect product Cy} (X, G) %, Diff,,(X) into a Lie
group.
Theorem 7.1.19. Let X be a Banach space, G a Banach Lie group and VW C RY with

1x € W. Then C(X,G) %, Diffy,,(X) can be turned into a Lie group modelled on
Cv(X,L(G)) x Cop(X, X).

Proof. We proved in [Lemma 7.1.17| that w is smooth on a neighborhood of (idx, 1), and
since this neighborhood is the product of generators of Diff),,(X) resp. Ci} (X, G), we

can use to see that w is smooth. Hence we can apply and

are home. ]
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7.2. Weighted maps into locally convex Lie groups

In this section, we discuss certain subgroups of GV, where G is a Lie group and U an open
subset of a finite dimensional space X. We construct a subgroup C¥,(U, G)* consisting of
weighted decreasing mappings that can be turned into a (connected) Lie group. After
that, we extend this group to a Lie group C}, (U, G)3, which contains CJi, (U, G)* as an
open normal subgroup, and discuss its relation with “rapidly decreasing mappings”.
The modelling space of these groups is C¥,(U, L(G))®, where k € N and W is a set of

weights on U containing 1. These spaces are introduced in

7.2.1. Construction of the Lie group

We construct the Lie group from local data using [Lemma B.2.5| For a chart (¢, V) of G,
we can endow the set ¢~1oC}, (U, ¢(V))® C GY with the manifold structure that turns the
superposition operator ¢, into a chart. We then need to check whether the multiplication
and inversion on GV are smooth with respect to this manifold structure. The group
operations on GU arise as the composition of the corresponding group operations on G
with the mappings in GV (see [Definition 7.0.1). The main tool used in this subsection is
the superposition with smooth maps that we discussed in [Proposition 3.4.23|

Local group operations We first discuss the local multiplication.

Lemma 7.2.1. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y €W, L €N, G a locally conver Lie group with the group multiplication
mg and (¢, V) a centered chart of G. Then there exists an open identity neighborhood
W CV such that the map

Cop (U, ¢(W))* X Cyy (U, 6(W))* = Cy (U, 6(V))* = (7,1) = pomgo (¢~ oy, ¢~ on) (1)
is defined and smooth.

Proof. By |Lemma 3.4.16 the map is defined and smooth iff there exists an open
neighborhood W C G such that

(pomao (¢ x ¢ ). Cou(U, (W) x ¢(W))* — Ciy(U, 3(V))*

is so. By the continuity of the multiplication mg there exists an open subset W C V
such that mg(W x W) C V. We may assume that ¢(W) is star-shaped with center 0.
Since the map ¢ o mg o (¢! x ¢~1) is smooth and maps (0,0) to 0, we can apply
[Proposition 3.4.23| to see that

(¢omgo(@~! x 1) o Cy(U. (W) x 6(W))* C Cly(U, 6(V)*"
and that the map (¢ o mg o (¢~! x ¢~ 1)), is smooth. O]

Now, we turn to the local inversion.
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Lemma 7.2.2. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y €W, L €N, G a locally convex Lie group with the group inversion Ig
and (¢,V') a centered chart such that V is symmetric. Further let W CV be a symmetric
open 1-neighborhood such that there exists an open star-shaped set Wi, with center 0 and
(W) C Wi, C ¢(V). Then for each y € Cy (U, $(W))*,

(polgog™')oyeCy(UW)",
and the map
Cop(U, p(W))* = Coy(U, p(W))* sy = (¢poIgod™ ') oy
is smooth.

Proof. Since I, :== ¢oIgo ¢t : ¢(V) — (V) is smooth and I1(0) = 0, we conclude
with [Proposition 3.4.23| that

Co(U, WL)* = Coy(U, ¢(V))* 7y = I oy

is smooth. Since we proved in [Lemma 3.4.19| that Cf,,(U, #(W))® is an open subset of

Cf;v(U, Wr)®, the restriction of this map is also smooth, and since W is symmetric, it
takes values in this set. O

Conclusion We put everything together to obtain a Lie group for each centered chart
of G. We show that the identity component does not depend on the used chart.

Lemma 7.2.3. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y e W, L €N, G a locally convex Lie group and (¢, V) a centered chart.
Then there exists a subgroup (G, qb)%j of GY that can be turned into a Lie group. It

is modelled on C,(U,L(G))® in such a way that there exists an open 1-neighborhood
W CV such that

Cy(U, d(W))* — (G, d)ye: v ¢ Loy

becomes a smooth embedding and its image is open. Further, for any subset W C W such
that ¢(W) is an open convex zero neighborhood,

¢~ o Cly (U, 6(W))"
generates the identity component of (G, (ﬁ)%’g.
Proof. Using we find an open 1-neighborhood W C V such that
Clp (U, 5(W))* x Clyp(U, 5(W))* = Clp(U, 6(V))* : (v,m) = poma o (67 07,67 o)

is smooth. We may assume w.l.o.g. that W is symmetric and that there exists an open

convex set H such that ¢(W) C H C ¢(V'). We know from that the set
o oGy (U, 6(W))* € GY
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is symmetric and

Cw(U, o))" = Cly(U.¢(W))* sy dolgod' oy
is smooth. We endow ¢t o Cly,(U, ¢(W))*® with the differential structure which turns the
bijection

6~ o Cy(U,6(W))* = Cp (U, 6(W))* 1y 1= poy

into a smooth diffeomorphism. Then we can apply to construct a Lie group
structure on the subgroup (G, gb)%’e of GY which is generated by ¢! o Cf/V(U, p(W))*,
such that ¢! o Cf/v(U, ¢(W))® becomes an open subset.

Moreover, for each open 1-neighborhood W C W such that A(;/S(W) is convex, the set
Ciy (U, ¢(W))® is convex (Lemma 3.4.10). Hence ¢~!oC,,(U, ¢(W))*® is connected, and it
is open by the construction of the differential structure of (G, ¢)%,E' Further it obviously
contains the unit element, hence it generates the identity component. O

Lemma 7.2.4. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y € W, £ € N and G a locally convex Lie group. Then for centered
charts (¢1, V1) and (¢2, Va), the identity component of (G, ¢1)%7e coincides with the one
of (G, (ﬁg)%l, and the identity map between them is a smooth diffeomorphism.

Proof. Using we find open 1-neighborhoods Wy C Vq, Ws C V5 such that
the identity component of (G, qﬁi)g\,,e is generated by ¢; ! o C{,,(U, ¢;(W;))® for i € {1,2}.

Since ¢ 0 ¢ is smooth, we find an open convex zero neighborhood W2L C o (W1 NW3).
By [Proposition 3.4.23] the map

Cop(U, W)® = Chp(U, ¢1(W1))® sy — 10 ¢y oy
is defined and smooth. This implies that
63" 0 Cl(U,WH)® C 91" o Cly(U, 61 (W),

Hence the identity component of (G, ¢2)%7é is contained in the one of (G, qﬁl)gw, and
the inclusion map of the former into the latter is smooth.
Exchanging the roles of ¢1 and ¢ in the preceding argument, we get the assertion. [

Definition 7.2.5. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y €W, £ € N and G a locally convex Lie group. Henceforth, we write
Ci,(U,G)®| for the connected Lie group that was constructed in There
and in it was proved that for any centered chart (¢, V') of G there exists an
open 1-neighborhood W such that the inverse map of

Cw (U, 6(W))* = C(U,G) 1y 67 oy
is a chart, and that for any convex zero neighborhood W C ¢(W), the set
¢ o Ch (U, W)

generates Ciy, (U, G)°.
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7.2.2. A larger Lie group of weighted mappings

We extend the Lie group described in [Definition 7.2.5] Generally, it is possible using
to extend a Lie group G that is a subgroup of a larger group H by looking
at its “smooth normalizer”, that is all h € H that normalize G and for which the inner
automorphism, restricted to suitable 1-neighborhoods, is smooth. This approach has
the disadvantage that we do not really know which maps are contained in the smooth
normalizer. So in the following, we will define a subset of GV and show that it is a group
contained in the smooth normalizer of C},(U, G)*.

Further, we show that this bigger group contains certain groups of rapidly decreasing
mappings constructed in [BCR&1| as open subgroups.

A group of mappings
We define a set of mappings.

Definition 7.2.6. Let G be a locally convex Lie group, X a finite-dimensional vector

space, U C X a nonempty open subset, W C RY nonempty and k € N. Then for any
centered chart (¢, Vy) of G, compact set K C U and h € C°(U,R) with h = 1y on a
neighborhood of K we define M ((¢,Vy), K, h) as the set

{veC"(U,G):1(U\K) CVyand (1y = h) - (¢ 07|k € Cy(U \ K, L(G))*}.

Further we define

Chv(U,G)edi= U  M((6,Vy), K, h).
(¢,V¢),K,h

In the following, we show that CJ, (U, G), is a subgroup of GU. In order to do this,
we provide some technical tools. First, we show that we can use a cutoff technique to
shrink the domain of a decreasing function.

Lemma 7.2.7. Let X be a finite-dimensional space, U C X an open nonempty subset,
Y a locally convex space and VW C RY nonempty. Let k € N and v € CF(U,Y).

(a) Suppose that ~v € C{j\,(U, Y)*. Let A C U be a closed nonempty set such that
Ylena =0 and V- C U an open neighborhood of A. Then |y € Ch (V. Y)".

(b) Let K1 C Ky C U be closed sets such that v|in\k, € CE,(U\ K1,Y)® and h €
BC>(U,R) such that h =1 on a neighborhood of Ks. Then

1y = h) - Ylonk, € Cy(U\ Ka,Y)*.

Proof. It is obvious that 7|y € CJ,(V,Y). Let f € W and ¢ € N with ¢ < k. For
e > 0 and p € N(Y) there exists a compact set K C U such that ||v|p\xllp,re < €.

The set K := K N A is compact and contained in V. Further ||’7|V\[~(Hp7f7g < ¢ since
DO~ 4 = 0.
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[(b)] Let V' 2 K be open in U such that hly = 1. Then by [Corollary 3.4.15]

(lv = h) - Alonk, €U\ K1, Y)*.

Further (1 — h) - y|in@\v) = 0. Since U \ K3 is an open neighborhood of U \ V, an
application of @ finishes the proof. O

Now we examine CJ,(U, G)s,. We show that for a mapping in this set, we can change
the chart of GG, shrink the 1-neighborhood and enlarge the compact set.

Lemma 7.2.8. Let X be a finite-dimensional vector space, U C X an open nonempty
subset, G a locally convex Lie group, VW C RY with 1y € W and k € N. Further, let
v € M((6, V), K, ).

(a) Then for each 1-neighborhood V' C Vy, there exists a compact set Ky C U such
that for each map hy € C°(U,R) with hy =1 on a neighborhood of Ky, the map

vy e M((¢lv,V),Ky,hy).

(b) Let (1, Vy) be a centered chart. Then there exists a compact set Ky C U such that
v € M((¢,Vy), Ky, hy) for each hy € C°(U,R) with hy, =1 on a neighborhood of
Ky

(c) Let n € M((¢, V@,E, h). There exists a compact set L such that for each g €
C*(U,R) with g =1 on a neighborhood of L, we have v,n € M((¢,Vy), L, g).

Proof. Since (1y —h) - (po )|k € Ch(U\ K,L(@))®* and 1y € W, there exists a
compact set K C U such that
(ly = h) - (9o ((U\ K)\ K) S o(V).

We define the compact set Ky := K U supp(h) and choose hy € C°(U,R) with hy =1

on a neighborhood of Ky . Using [Lemma 7.2.7|and the fact that h =0 on U \ Ky, we
see that

(lv = hv) - (o Nlnky = (v = hv) Ly = h) - (@ 0Nl iy € Cp(U \ Ky, L(G))*.
Further we calculate using again that h =0 on U \ Ky:
(@oNUN\NKy) =1y —h)-(¢o7)(U\K)\ Ky) € (V).

@ There exists an open 1-neighborhood V' C V,, N'Vy, such that ¢(V) is star-shaped

with center 0. We know from @ that there exist a compact set K C U and a map
h € C(U,[0,1]) with h =1 on a neighborhood of K such that

v e M((¢lv,V), K, h).

We conclude with [Proposition 3.4.23| that

(oo ) o ((ly —h) - (do)ly 7z € CW(U \ K, L(G))".
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Let hy € C°(U,R) such that hy, = 1 on a neighborhood of Ky, where K, := K Usupp(h).
We conclude with [Lemma 7.2.7 that

(v =hy)- (oo™ o ((ly = h) - (do)lnk, € Cy(U\ Ky, L(G))".
Since (lU —h)=1gon U\ Ky, the proof is finished.
We set L := supp(h) U supp(h). Then
1UNL) Sy(UNK) C Vs,

and for g € C2°(U,R) with g = 1 on a neighborhood of L we conclude using [Lemma 7.2.7
that

(1o —g) (BoNlne=1v—g) Qv —h)-(poV)|nr € Cy(U\ L, L(G))".
Since the argument for n is the same, we are home. O

Now we are ready to show that Cfi, (U, G)8, is a group.

Lemma 7.2.9. Let X be a finite-dimensional vector space, U C X an open nonempty
subset, G a locally convex Lie group, W C RY with 1y €W and k € N. Then the set
CE(U,G)%, is a subgroup of GU.

Proof. Let (¢, Vy) be a centered chart for G and V' C Vy an open neighborhood of 1 such
that mg(V x Ig(V)) C V, and ¢(V) is star-shaped. We define the map

Hg:V XV = Vy: (2,y) = mg(a, Ia(y)).

Let v,n € C},(U, G)%. Using [Lemma 7.2.8 we find a compact set K C U and a map
h € C*(U,|0,1]) with h = 1y on K such that

v,n € M((¢lv,V), K, h).

We define Hy := ¢ o Hg o (p7! x ¢~ )|va and want to show that there exists a
compact set K and h € C(U,R) with L=1ona neighborhood of K such that
Hgo(v,m) € M((¢,Vy), K, h). 1t is obvious that

(Hg o (v,n)(U\K) € ma(V xIg(V)) € V.
Since we know with [Lemma 3.4.16] that
(ly = h)-(¢or,d0m) = ((ly = h) - ($o7), (lu —h) - (don)) € CY(U\ K, L(G) x L(G))*,
we conclude using [Proposition 3.4.23| that
Hgo ((1y —h) - (¢pov,00n)) € Cly(U \ K,L(G))".
Further, K := K Usupp(h) is a compact set, so by
(ly =h) - Hyo (ly = h) - (pov,¢0n)) € (U \ K, L(G))*
for any h e CP(U,R) withh=1ona neighborhood of K. Since (1y —h) =0 on U \ K,
(1~ 1) - (60 He o (v.0)]n € Chu(U \ K, L(G))* and henc

Hg o (7,m) € M((6,Vy), K, h).
The proof is complete. O
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Inclusion in the smooth normalizer

We show that CJi, (U, G)2 is contained in the smooth normalizer of C&,(U, G)*. To this
end, we show that each v € C{ﬁv(U, G)a, can be written as a product of a compactly
supported C*-map and a CF-map that takes values in a chosen chart domain. After that,
we show that these two classes of mappings are contained in the smooth normalizer of
CE (U, G)°.

We start with the following technical lemma about extending decreasing functions.

Lemma 7.2.10. Let X be a finite-dimensional space, U C X an open nonempty subset,
A C U a closed subset, Y a locally convex space, VW C RY with 1y €W, k €N and
v €CH(U\AY)®. Then the map

V(z) ifreU\A,
0 else

7:U—>Y:aﬂ—>{

is in C},(U,Y)*.

Proof. Obviously, the assertion holds on U \ A and A°, since 7 and its derivatives vanish
on A°. We show that 7 is C¥ on 9A and it and its derivatives also vanish there. Since
this is true iff for each p € N(Y'), the map 7, 07 is C¥ on A and it and its derivatives
vanish there, and the identity 7, oy = 7?1;\0/7 holds, we may assume w.l.o.g. that Y is
normable. o

Since 17 € W, for each £ € N with ¢ < k, the map D~ is continuous and hence

—_~—

DWW~y e CY,(U, LYX,Y))".

P

Using [Lemma 3.2.1} it remains to show that 7 is C* with D5 = D@~ for all £ € N
with £ < k. We show the assertion by an induction over /.

¢ =1: Let z € 9A and h € X. If there exists § > 0 such that z+]—0,0]h C A or
x+[0,6[h C A, then Dp¥(x) =0 = Dvy(x)h.
Otherwise, there exists a null sequence (¢, )nen in | — 00,0 or ]0, oo[ such that for each
n €N, z+t,h € U\ A. After replacing h by —h if necessary, we may assume w.l.o.g.
that all ¢,, are positive. Since 1y € W, D~y is continuous and D~(z) = 0, given £ > 0 we
find 6 > 0 such that for all s €]—4, ],

”B’JY(QU + 5h)lop < e.
We find an n € N such that ¢, €]—4, . Then we define
t:=inf{r > 0:]7,t,] CU\ A} > 0.

We calculate for 7 €]t,,]:

H y(z+tnh)—y(z+Th) H < H y(z+tnh)—y(x+Th) H
tn tn—T

<e|h].

1
/ Dy(z + (st + (1 — s)T)h) - 2=Zhds
O n
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But y(z + 7h) — 0 as 7 — ¢, and hence

H F(z+tnh) (@)

tn

F(z+tnh
_ Hv(xtn )H <el|hl.

Since € was arbitrary, we conclude that Dpy(z) =0 = lf)jy(a;)hN

¢ — 0+ 1: Using the inductive hypothesis, we conclude that D~ is FC’, and D(@l’?vy =
DO Dry. Hence 7 is FC'*!, so by [Lemma A.2.14) DUV = D(E+1)4, O

Proposition 7.2.11. Let X be a finite-dimensional space, U C X an open nonempty

subset, G a locally convex Lie group, VW C RY with 1y €W, k€N, (¢, Vs) a centered
chart of G and v € Ci,(U,G)%,. Then there exist maps n € M((¢,Vy),0,0y) and
X € C¥(U,G) such that

Y=n"X

Proof. Using [Lemma 7.2.8 we find a compact set K and h € C>°(U, [0, 1]) such that
v € M((¢,Vy), K, h). Using [Lemma 7.2.10| we see that

P

n:= ¢_1 © (1U - h) : (¢O’Y)’U\K € M((QZS, Vd))v@yOU)v
and it is obvious that n|i\supp(h) = Y|tn\supp(n)- Hence
x=n"'veCHUQG),
and obviously v =7 - . O

We now show that the weighted maps that take values in a suitable chart domain are
contained in the smooth normalizer.

Lemma 7.2.12. Let X be a finite-dimensional space, U C X an open nonempty subset,

G a locally convex Lie group, VW C RY with ly €W, k€N and (¢,V,) a centered chart
of G. Further let Wy C Vy be an open 1-neighborhood such that

Wy - W - Wit C Vg
and ¢(Wy) is star-shaped with center 0. Then for each n € M((¢,Wy),0,0r), the map
Oy (U, 6(Wy))* = Coy(U,6(Vy))* iy = do(n- (¢ or)-n7 )

18 smooth.

Proof. As a consequence of [Proposition 3.4.23] and [Lemma 3.4.16] the map

Coy(U, 6(Wy))® x Cyp(U, 6(Wy))® x Chy (U, 6(Wy))® — Cp(U, ¢(Vy))*
{(71,72,73) = o (0 o) (0 o) (67  os) )

is smooth. We easily deduce the desired assertion. O
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Normalization with compactly supported mappings While the treatment of C*-maps
with values in a suitable chart domain was straightforward, we need to develop other
tools to deal with the compactly supported mappings. The main problem is that a
compactly supported map may not take values in any chart domain. To get around
this problem, we need more technical machinery. As motivation for the following, let
X € CE(U,G) and (¢, V;) be a centered chart of G. Using that x(U) is compact, we can
find a symmetrical neighborhood O of x(U) and an open 1-neighborhood W, C Vy such
that O - Wy, - e Vy. Then we can define the “normalization map in charts”

N: 0% p(Wy) = &(Vy) : (g.9) = (g ¢ (y) - g7).
We can calculate that for v € ¢(W,)Y, we have the identity
po(x-v-x')=No(xx idgw,)) o (idu, 7).

In the following two lemmas, we will examine the properties of maps of the form
No(x xidgw, d))) and whether they induce a kind of superposition operator for decreasing
weighted functions.

Lemma 7.2.13. Let X, Y and Z be locally convex spaces, U C X,V CY and W C Z
open nonempty subsets, M a locally convexr manifold and k € N. Let T' € C*®(M x V,W)
and n € CK(U, M). Then the map

E=To(nxidy):UxV ->W
has the following properties:
(a) The second partial derivative of = is
do= = (mg 0 Tol') o (n X idy xy)
and if k > 1, the first partial derivative of Z is
d1ZE = (mg 0 T1T') o (T x idy) o S,

where wo denotes the projection W x Z — Z on the second component, and
S:UxVxX—-UxXxV:(x,y,h)— (z,h,y) denotes the swap map.

(b) For all x € U, the partial map E(x,-) : V. — W is smooth, and for all ¢ € N the

mapdgg)E:UxVxYE%Wika.

(c) Assume that X has finite dimension. Then for
AU xV - LX,Z): (z,y) — (h— d1E(z,y; h))
(which is only defined if k > 1) and
Ay : U XV xLX,)Y) = LX,2): (z,y,T) — (h— doZ(x,y; T - h)),

all partial maps Ai(x,-) and As(z,-) are smooth and all partial derivatives dg)Al
and ng)Ag are CF=1, respectively CF.
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Proof. @ We calculate for x € U, y € V and h € Y that

dQE(([L" y); h) — %g% w — %g% F('r](a:),y-l—t};)—f‘(n(w),y) — (7T2 o TQF) (n(l.)’ Y, h)

This shows the desired identity for do=. If & > 0, we get using the chain rule that
EoP=moTEo0P =m0Tlo(Ty xidyy),

where P: U X X xV xY — U xV x X xY permutes the middle arguments. Since
di1Z2((x,y); he) = d=2((x, y); (hg, 0)), we get the assertion for diE.

@ It is obvious that the partial maps are smooth. We prove the second assertion by
induction on /:

£ =0 : This is obvious.

¢ —/{¢+1:In @ we proved that de= is of the same form as =. By the inductive

hypothesis,

AN BE): UxV XY x (Y xY) > W

is a CF-map. But

dge+1)5($7 Y; hla h27 R 7h‘€+1) = dge) (dQE)(x7 Y, hl; (h27 0)7 R (hf+l7 O))a
so dYTV= is CF.
The partial maps A;(x,-) and As(z,-) are smooth and the maps d(QZ)Al and ng)AQ
are C*~! respective C* iff for each h € X, the maps A;(x,-) - h and As(x,-) - h have the
corresponding properties. By

Ai(z,y) - h =d1E(x,y;h) = (m3 0 T1T) o (T x idy) o S(z,y, h)
and
Ag(z,y,T) - h = doZ(x,y; T - h) = (mg 0 Tol') o (n X idyxy)(z,y, T - h)
= (mg0Tol'0 S1) o (n X evy x idy) o Sa(x,y,T).
Here S7 and S; denote the swap maps

MxY xV ->MxV XY,

and
UxVxLX,)Y) - UxLX,Y)xV

respectively. Since .S, S1 and Sy are restrictions of continuous linear maps, @ applies to
both Ay(z,-)-h and As(x,-) - h. O

Lemma 7.2.14. Let X be a finite-dimensional space, U C X an open nonempty subset,
Y and Z locally convex spaces, M a locally convexr manifold, V. C Y an open zero
neighborhood that is star-shaped with center 0, YW C RY with 1y € W and k € N. Further,
let '€ C°(M x V,Z), and § € C¥(U, M) such that the map

Fo(@xidy):UxV = Z

—_
— e
[ui

satisfies
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« E(U x{0}) = {0},
e There exists a compact set K C U such that Z2((U \ K) x V') = {0}.
Then for any v € Ci,(U,V)®
Eo (idUafy) € Cllj\/(Uv Z).v (T)

and the map
2. CH(U V) = Chy(U, 2)® : v Zo (idy, )

s smooth.

Proof. We first prove that Z, is defined and continuous, by induction on k:
k=0:Let v,n € C},(U,V)*® such that the line segment {ty+ (1 —t)n:t € [0,1]} C
C{ﬁv(U, V)*. We easily prove using |[Lemma 3.4.17| that the set

K = {ty(z) + (1 = t)n(z) : t € [0,1],z € U}

is relatively compact in V. Since daZ= is continuous by |[Lemma 7.2.13 @ and satisfies
do=Z(U x V x {0}) = {0}, we conclude using the Wallace Lemma that for each p € N'(Z),

there exists ¢ € N'(Y') such that
dyZ(K x K x By(0,1)) C By(0,1).
This relation implies that
Vee K,ye K,h e :|daZ(x,y;h)|, < |l

For each x € U, we calculate

E(x,y(x)) = E(z, n(z)) = /01 doB(x, ty(x) + (1 = t)n(z); y(x) —n(x)) dt.
Hence for each f € W, we have
|f @) [E(@,~v(2)) = E(z, n(x)[l, < |f @) [7(x) = n()]lq-
Taking n = 0, this estimate implies Further, since we proved in that

C{}V(U, V)*® is open, 7 has a convex neighborhood in C{iv(U ,V)®; hence the estimate also
implies the continuity of =, in ~.
k—k+1:ForeachzeU,he X and vy € C{f\}H(U, V)*, we calculate

E(x,y(z); h, Dy(z) - h)
12z, y(x); h) + doZ(z, y(2); Dy(x) - ).

d(Z o (idy,7))(x; h) = d
=d

Recall the maps A; and As defined in [Lemma 7.2.13(c)l We get the identity

D(Z o (idy,v))(z) = (A1 0 (idy, 7)) (x) + (A2 o (idy, v, D¥))(z).
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7.2. Weighted maps into locally convex Lie groups

We prove that A; and A, satisfy the same properties as = does: For x € U, y € V,
h € X, we have
E(x +th,0) — Z(x,0)

Ai(x,0) - h=d1E(z,0;h) = %g% ; =0,

whence Ai(z,0) =0. Let z € U \ K. Then

= . E(x+th,y) — E(x,
ety SO

=0

since U \ K is open, hence A;(z,y) = 0.
Asto Asg, forx € U, y € V and h € X we calculate

AQ(xay70) ~h= d25($7y70 : h’) =0,
whence As(z,y,0) =0. Let x € U\ K and T € L(X,Y). Then

= . E(x,y+tT - h) — Z(x,
Az(2,y,T) - h = do=(z,y; T~ h) = lim - t> oo

=0,

hence Az(x,y,T) = 0.
So we can apply the inductive hypothesis to A1 and Ay and conclude that

Ay o (idx,7), Az 0 (idx, v, Dy) € CJy(U, L(X, Z))*
and the maps Cjif (U, V)* — C§, (U, L(X, Z))*®
v+ Ay o (idx,v) and vy — Az o (idx, v, DY)

are continuous. In view of [Proposition 3.4.11] the continuity of =, is established.
We pass on to prove the smoothness of Z,. In order to do this, we have to examine

ds=. By |Lemma 7.2.13 @ doE = my 0 Tol' 0 (0 X idy «y ), and we easily see that
dZ(U x {0} x {0}) = dpZ((U \ K) x V x V) = {0}.

Hence by the results already established, the map
(d2Z)s : Chy(U,V X Y)® = CE,(U, 2)* - (7) = doZ o (idy, )

is defined and continuous. Now let v € Ci,(U, V)® and 1 € C},(U,Y)*. Since Ci (U, V)®
is open, there exists an r > 0 such that {y + sy1 : s € Bg(0,7)} C C},(U,V)*. We

calculate for x € U and t € Bg(0,7)[\{0} (using [Lemma 3.4.16| implicitly) that
v +im)(e) —E.(V)(x) _ E(z,y(2) + in(x) - E(x,y(x))

t t
= [ =A@ + st @) ds = [ @)+ st ) @) ds.
0 0

Hence by [Lemma 3.4.3| and [Proposition A.1.8} =, is C' with

dZ«(v;m) = (d2E)« (v, m)-

So using an easy induction argument we conclude from this identity that Z, is C* for
each ¢ € N and hence smooth. O
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7.2. Weighted maps into locally convex Lie groups

Now we are ready to deal with the inner automorphism induced by a compactly
supported map.

Lemma 7.2.15. Let X be a finite-dimensional space, U C X an open nonempty subset,
G a locally convex Lie group, YW C RY with ly e W, k€N and (¢,V,) a centered chart
for G. Let x € CE(U,G). Then there exists an open 1-neighborhood Wy C Vg such that
the map

Coy(U, p(Wy))® = Cly(U,L(G))* sy = po (x - (¢ 0q) - x ) (1)

1s defined and smooth.

Proof. Since x(U) is compact, we can find an open 1-neighborhood W, C V,, and an
open symmetrical neighborhood O of x(U) such that

O'W¢'0_IQV¢;

we may assume w.l.o.g. that ¢(Wy) is star-shaped with center 0. We define the smooth
map

N:Ox¢p(Wy) = L(G) : (gy) = (g0 (y)-97") —v.

Then it is easy to see that

No (X X id¢(W¢)) :U % ¢(W¢) — L(G)

satisfies the assumptions of and that for v € C§, (U, p(Wy))®
(N o (x x idgaw,))) o (idy,7) = ¢o(x- (¢ o) - x~") — 7.
Hence the map
CW(U,6(Wy))* = Clu(U,L(G)* :y = do (x - (67 07) X ™) =7

is smooth. Since the vector space addition is smooth, is defined and smooth. ]

Conclusion and the Lie group structure Finally, we put everything together and show
that CJi,(U, G)% is contained in the smooth normalizer of C&,(U,G)®. As mentioned

ex
above, we this allows the construction of a Lie group structure on Cii,(U, G)2,.

Lemma 7.2.16. Let X be a finite-dimensional space, U C X an open nonempty subset,

G a locally convex Lie group, VW C RY with ly e W, k€N and (¢, V) a centered chart
for G. Let 0 ¢ C{f\,(U, G)e,- Then there exists an open 1-neighborhood Wy C Vi such that
the map

Cv(U, 6(Wy))* = Cly(U, (Vy))® sy > ¢o (0 (¢ 0r)-071) ()

1s defined and smooth.
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7.2. Weighted maps into locally convex Lie groups

Proof. Let ‘7;) C Vy be an open 1-neighborhood such that

Vi VoV SV

and (b(f/(;) is star-shaped with center 0. According to |Proposition 7.2.11| there exist

n e M((o, ‘Z,),@,OU) and x € C¥(U,G) such that § = 7 - x. By |[Lemma 7.2.15|, there
exists an open 1-neighborhood Wy C V;, such that

Ch(U, $(Wy))* = Cly(U,&(V)" 17> o (x - (671 o) - x 7
is smooth, and by the map
C(U, ¢(Vp))® = Cly(U, ¢(Vi))" v > do (- (67 o) )
is also smooth. Composing these two maps, we obtain the assertion. ]

Theorem 7.2.17. Let X be a finite-dimensional space, U C X an open nonempty subset,
G a locally convex Lie group, W C RY with ly €W and k € N. Then C},(U, G)%, can
be made into a Lie group that contains C{B\,(U7 G)*® as an open normal subgroup.

Proof. We showed in [Definition 7.2.5that C}3,(U, G)® can be turned into a Lie group such
that there exists a centered chart (¢, Vy) for which

Chy(U, ¢(Vy))® = Cop(U,G)* v = ¢~ oy

is an embedding and its image generates C{i\,(U, G)*. Further, we proved in |Lemma 7.2.9
and [Lemma 7.2.16| that C}, (U, G)%, is a subgroup of GV and for each 0 € C},(U, G)%,
there exists an open 1-neighborhood W, C V, such that the conjugation operation

Cv(U, 6(Wy))* = Chy(U, p(Vy))® : vy > ¢o (0 (¢ 0r)-071)

is smooth. Hence [Lemma B.2.5| gives the assertion. O

Comparison with groups of rapidly decreasing mappings

In the book [BCR&81}, Section 4.2.1, pages 111-117], for weights that satisfy conditions
described below in [Definition 7.2.18| certain I'-rapidly decreasing functions with values
in locally convex spaces are defined and used to construct I'-rapidly decreasing mappings
that take values in Lie groups. We compare these function spaces with our weighted
decreasing functions and will see that they coincide. Further, we will show that the
I'-rapidly decreasing mappings are open subgroups of a certain C@V(U, G)e.

W-rapidly decreasing functions We give the definition of the W-rapidly decreasing
functions.

Definition 7.2.18 (BCR-weights). Let X be a finite-dimensional vector space and
W C [1,00]¥ such that
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7.2. Weighted maps into locally convex Lie groups

(W1) for all f,g € W, the sets f~!(co) and g~ !(00) =: M, coincide,
(W2) W is directed upwards and contains a smallest element fni, defined by

1 x& My

oo else,

Juin(z) = {

(W3) and for each f; € W there exists fo € W such that

(Ve >0)(Fn e N)|[z]| Znor fi(z) >n = fi(z) <e- fa(z).

Furthermore each f € W has to be continuous on the complement of M.

Definition 7.2.19 (W-rapidly decreasing functions). Let W be a set of weights as in
[Definition 7.2.18, U C R™ open and nonempty and Y a locally convex space. A smooth
function v : U — Y is called W-rapidly decreasing if for each f € W and g € N™ we
have 0°v|pnar. = 0, and the function

f-8%:U—=Y
is continuous and bounded, where co - 0 = 0. The set
S(U,Y; W) :={y€C*(U,Y) : v is W-rapidly decreasing}
endowed with the seminorms
Iyllg.s = sup{a(f - 8%y (x)) : @ € U, 8] < k}

(where ¢ € N(Y), k € N and f € W) becomes a locally convex space.

Comparison of S(U,Y ;W) and Cy5(U,Y) We show that these function spaces coin-
cide as topological vector spaces. To this end, we need the following technical lemma.

Lemma 7.2.20. Let W be a set of weights as in[Definition 7.2.18, U C R™ open and
nonempty, F a locally convex space, v: U — F a smooth function and € N™. Suppose
that 0°y|uaar.. = 0 and that for each f € W the function

f-0°:U—F
is bounded. Then for each f € W, the function f - 0%y is continuous.

Proof. Let f € Wand x € U. If x & MNU, f-0%y is continuous on a suitable
neighborhood of x since f is so.
Otherwise, 3°y(x) = 0 because 9°7 is continuous. If there exists V € U(x) such that f

is bounded on V' \ M, the map f - 9%y is continuous on V because for y € V' \ My, and
q € N(F)

17 )7 (y) = f(@)°v(@)llg = 1f @)1 W) llg < [l F v\ ar ol (W)l
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7.2. Weighted maps into locally convex Lie groups

and this estimate is valid for y € M.
Otherwise, we choose g € W such that (W3) holds. Let € > 0. There exists an n € N

such that
€

(VyeU). fly) =n = f(y) <

1
For g € N(F) there exists V € U(x) such that for y € V
5

1077 ()llq < -

Let y € V. If f(y) > n, we calculate
1F )07y W)llq = FW1073(w)llq < W I W)llg <e.
Otherwise
1F )07y ()llq < nll07y(y)lly < e

So the assertion holds in all cases. O

Lemma 7.2.21. Let W be a set of weights as in|[Definition 7.2.18, U C R™ open and
nonempty and F' a locally convex space. Then Cy(U,Y) = S(U,Y; W) as a topological
vector space.

Proof. We first prove that Cy5(U,Y) = S(U,Y; W) as set. To this end, let v € C)5(U,Y),
feWand B € N™. We set k := |3]. We know that for p € N(Y), the map D®)(r, 0 7)
vanishes on M., and

f-DW(ry07): U= LFR™,Y,)
is bounded. Since the evaluation L¥(R™, Y,) = Y, at a fixed point is continuous linear,
the map f-0°%(m,07) = mpo(f-0°y) : U — Y, is also bounded. Hence f-3%y is bounded,
so an application of [Lemma 7.2.20] gives v € S(U,Y; W).
On the other hand, let v € S(U,Y; W) and k € N. For each p € N (Y), we get with
identity (A.3.5.1)|

D®) (7, 0) Z Se - 0%(mp 07y) Z Se - (mp 0 0%y)

aeN™ aEN™
loo|=k |o|=k
Hence for f e W
k
Vlp e < V15 £+ D 1Sallop < oo 0
aeN™
la|=k

Sovy e Cy(UY).

We see from that for each p € N(Y), f € W and k € N the seminorm ||[|, s
is continuous on S(U,Y;W). Since the seminorms HH’; s are obviously continuous on
Cywv(U,Y'), the spaces are the same as topological vector spaces. ]

Remark 7.2.22. Let W be a set of weights as in [Definition 7.2.18] Then 1y € W <=
Mo = 0. But obviously C}i,(U,Y) = CWU{1 }(U,Y) and CE(UY)® CWU{IU}(U7 Y)*
as topological vector spaces.
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7.2. Weighted maps into locally convex Lie groups

Rapidly decreasing mappings In [BCRS81|, Section 4.2.1, page 117-118], the set of
[-rapidly decreasing mappings is defined. We will show that these mappings are open
subgroups of Cy5(R™, G)?

ex”*

Definition 7.2.23 (W-rapidly decreasing mappings). Let m € N, G a locally convex
Lie group and W a set of weights as in [Definition 7.2.18f We define S(R™, G; W) as the
set of smooth functions v : R™ — G such that

e y(z) =1 for each x € My, and y(z) — 1 if ||z| — oo.

o For any centered chart (¢, ‘7) of G and each open 1-neighborhood V with V C ‘7,
¢ovly-1vy € S(YH(V), LG W).

In the next lemmas, we provide tools needed for the further discussion. First, we
show that for weights as in [Definition 7.2.18| the product of a weighted function with an
suitable cutoff function is a weighted decreasing function. We use this result to prove a
superposition lemma for the spaces C,(U,Y).

Lemma 7.2.24. Let K be a compact subset of the finite-dimensional vector space X, Y
a locally convex space, k € N, W a set of weights as in |Definition 7.2.18, v € C{j\,(U, Y)
(where U := X \ K ) and h € C°(X,R) such that h =1 on a neighborhood V' of K. Then

(1= h)y -7 €U, Y)"

Proof. We prove this by induction on k.
k=0:Let fe W, pe N(Y) and € > 0. We use (W3) to see that there exists a n € N

such that
15

B < ——m.
||'7|U\Bn(0)||p7f70 1+ |1 - Al

Further, the set

A= {xGX:|(1—h)(az) }ﬂBn(O)

| >
[7llp,r0 +1

is compact and contained in U since (1 —h) = 0 on V. Using this two estimates, we
easily calculate that |[(1 — h) - v|pn allp.f0 < &
k — k+1: We have

D((1=h)ly-~v) = (1 =h)|y - Dy — Dhly - ~.

By the inductive hypothesis, (1 — h)|y - Dy € C&,(U,L(X,Y))®, and since Dh|y €
C°(U,L(X,R)), we use |Corollary 3.4.15 and [Proposition 3.4.11|to finish the proof. [

Lemma 7.2.25. Let m € N, k € N, W a set of weights as in|Definition 7.2.18, Y and Z
locally convex spaces, @ CY open and balanced, ¢ : Q@ — Z a smooth map with ¢$(0) =0
and U C R™ open and nonempty such that R™ \ U is compact and Mo, C U. Further,
let v € Cii,(U,Y) such that v(U) C 2. Then there exists an open set V. C U such that
R™\ V is compact, Mes C 'V and ¢ o|y € C&,(V, Z).
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7.2. Weighted maps into locally convex Lie groups

Proof. By our assumptions, there exists h € C2°(R™, [0, 1]) with & = 1 on a neighborhood
of R™\U and h = 0 on a neighborhood of M. Using|Lemma 7.2.24/and [Proposition 3.4.23|
we see that

do((1—h)-7) €U, 2)",
so ¢ orly € C&,(V,Z), where V := R™ \ supp(h). Further, R™\ V is compact and
My, €V, so the proof is finished. O

To complete our preparations, we prove a kind of extension lemma for weighted
functions.

Lemma 7.2.26. Let m € N, k € N, W a set of weights as in |Definition 7.2.18, Y a
locally convex space, V- C U open and nonempty subsets of R™ such that R™ \ 'V is
compact and M, C V. Further, let v € CK(U,Y) such that |y € Cii,(V,Y). Then for
any open set W with W C U, the map v|w is in C{ﬁv(VV, Y).

Proof. Obviously W\ V C W N (R™\ V), hence W \ V is compact and does not meet
M. So for each f € W and ¢ € N with ¢ < k, the map f - D@~ is bounded on W \V
since f is continuous on this set. But f - D®W~ is bounded on V by our assumption.
Hence f - D®~ is bounded on all of W and the proof is finished. O

Now we are able to prove the main results.

Proposition 7.2.27. Let m € N, G a locally convex Lie group and W a set of weights
as in[Definition 7.2.18. Then the following assertions hold:

(a) S(R™, G;W) is a group.

(b) C35(R™, G)* C S(R™, G; W).

(c) S(R™ G;W) C CR(R™, G)S,.
Proof. Let v1,72 € S(R™, G;W). We set v :=; - 75 *. Then for 2 € M, we have
y(z) =1 (z) -y, ' (z) = 1, and it is easy to see that y(x) — 1 if [|z| — oo.

Let (¢,V) be a centered chart of G and V C V an open 1-neighborhood with V' C V.
There exist centered charts (¢1, V1) and (¢a, Vo) such that ¢; o y; € S(v; 1 (Vi), L(G); W),

where ¢ € {1,2}; we may assume w.l.o.g. that V; - V2_1 CV,Va CV and ¢1(V7) and
¢2(V2) are balanced. We define W := ey 9y 771 (Vi). Then by [Lemma 3.4.16 and
Lemma 7.2.21

(P10 Mlw, P2 0 y2lw) € Cop(W, ¢1(V1) x ¢2(V2)).

Further R™ \ W is compact, and since there exist closed A; € Ugz(1) with A; C V;
(i € {1,2}), we have Mo C Nic(1,2 71 (4;) € W. We now apply [Lemma 7.2.25| to
(1 0 71|lw, 2 © Y2lw) and the map

pomao (ot x ¢3t) : p1(V1) x ¢2(Va) — L(G)
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(where m¢g denotes the map G'x G — G : (g,h) — g-h~') and find an open set W/ C W
such that Mo, € W', R™\ W’ is compact and ¢ o y|y € Cjp(W', L(G)). Applying
Lemma 7.2.26| with the open sets W/ C y~1(V) and v~ 1(V) C v~ 1(V), we obtain

¢ o1y € CH(THV),L(G)) = S(GTHV), LG)W).

@ Since we proved that S(R™, G; W) is a group, we just have to show that it contains
a generating set of Cj5(R™,G)®. We know from [Definition 7.2.5 that Cj(R™,G)® is
generated by ¢! o C5(R™, W)®, where (¢, W) is a centered chart of G and W C ¢(W)
is an open convex zero neighborhood. Let v € Coy(R™, W)®. Then |y, = 0, hence
¢~ toy|p., = 1. Further, since 1gm € W, y(z) — 0if ||z| — oo, and thus (¢~ Loy)(z) — 1
if ||z|| = co. Now let (¢, V) be a centered chart of G:and V C V an open 1-neighborhood
with V C V. There exists an open balanced set @ C W such that ¢_1(Q) CV. We set
U :=~"5Q). Then v|y € CS(U,L(G)), R™ \ U is compact, and M., C v~ 1({0}) C U.
Hence we can apply [Lemma 7.2.25| to 7|y and v o ¢~ !|q to see that ¢ o ¢~ L oy|y €
C5(U,L(G)) Applying [Lemma 7.2.26| with the open sets U C (¢ 0 ¢! o)~ (V) and
(09 07)" (V) C (06 Tom) 1(V), we obtain

Y09~ Y| (og-10y)-1(v) € Cp (Yo~ 07) TH(V), L(G)) = S(($o™ o) TH(V), L(G); W).

Let v € S(R™, G; W), (¢, V) be a centered chart of G and V an open 1-neighbor-
hood with V' C V. Then the set K := R™\ (V) is closed and bounded, hence compact,
and

¢orm\k € S(R™\ K, L(G); W) = Oy (R™\ K, L(G));

the last identity is by [Lemma 7.2.21 Let h € C°(R™,R) such that h = 1 on a
neighborhood of K. Then by

(1Rm - h) . (Zﬁ @) ’}/‘Rm\K S C%(Rm \ K,L(G)).
Hence v € Cy5(R™, G)e O

ex:
We characterize when Cy5(R™, G2, consists entirely of W-rapidly decreasing mappings.

Lemma 7.2.28. Let m € N, G a locally convezr Lie group and W a set of weights as in
[Definttion 7.2.18. The following equivalence holds:
Cr(R™ G)e, = SR™,G;W) <= My = 0.

er

Proof. Suppose that My = 0. Let v € Co5(R™, G)2., (1, 17) a centered chart of G and
V a 1-neighborhood with V C V. By there exist a compact set K CR™
and h € C2°(R™,R) with A = 1 on a neighborhood of K such that v(R™ \ K) C V
and (1 —h) - (¥ oy)|rm\k € Cjy(R™\ K,L(G))®. Since 1gm € W and K and supp(h)
are compact, (¢ oy)(x) — 0 if ||z|| — oo, hence y(z) — 1 if ||z]] — oo. Further
Y o Y|rRm\supp(h) € Cyy(R™ \ supp(h), L(G)), so we apply with the open sets
R™ \supp(h) € v~ (V) and y~1(V)) € y~1(V) and get ¢ oy],-1) € C5(vH(V), L(G)).
Hence v € S(R™, G; W), so in view of |Proposition 7.2.27], the implication holds.

Now let My # 0. By definition, C°(R™,G) C CyH(R™,G)2,, so there exists a

ex)

v € Gy (R™, G)2, such that v # 1 on My,. Then v & S(R™,G;W). O
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Remark 7.2.29. In the book [BCR81], the groups S(R™, G;W) are only defined if G is a
so-called LE-Lie group. Since we do not need this concept, we do not discuss it further.
In [Proposition 7.2.27| we proved that S(R™,G;W) is an open subgroup of Cy5(R™, G)2,
and hence a Lie group. Further, for a set W of weights as in [Definition 7.2.18| obviously
Cv(R™ L(G))* = Cyy(R™, L(G)), whence the results derived by concerning the
Lie group structure of S(R™, G; W) are special cases of our more general construction.
It should be noted that the proof of Lemma 4.2.1.9] (whose assertion resembles
[Proposition 3.4.23) is not really complete: The boundedness of v-9%(go f), where |3 > 0,
is hardly discussed. In the finite-dimensional case, compactness arguments simular to
the one in and the Faa di Bruno-formula should save the day, but the

infinite-dimensional case requires more work.
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A. Differential calculus

In this chapter, we present the tools of Michal-Bastiani and Fréchet differential calculus
used in this work. For proofs of the assertions, we refer the reader to [Mil84], [Ham82|,
or [Mic80]. Further, we state some facts about ordinary differential equations.

In the following, let X, Y and Z denote locally convex topological vector spaces over
the same field K € {R, C}.

A.1. Differential calculus of maps between locally convex
spaces
A.1.1. Curves and integrals

Definition A.1.1 (Curves). A continuous map v : I — X that is defined on a proper
interval I C R is called a C%-curve. A C°-Kurve v : I — X is called a C'-curve if the limit

) oy o 1 V(s +1) —(s)
7 (s) = lim t

exists for all s € I and the map vV : I — X is a C%-curve.

Inductively, for k € N a map v : I — X is called a C*-curve if it is a C'-curve and the
map 71 is a C¥~1-curve. We then define v(#) := (fy(l))(k_l).

If v is a C*-curve for each k € N, we call v a C*®- or smooth curve.

Definition A.1.2 (Weak integral). Let v : [a,b] — X be a map. If there exists v € X
such that

b
)\(:E):/ (Aoy)(t)dt  forall A € X',
we call v weakly integrable with the weak integral x and write
b
/ ~y(t) dt == x.

Definition A.1.3 (Line integral). Let 7 : [a,b] — X be a Cl-curve and f : y([a,b]) = Y
a continuous map. We define the line integral of f on v by

b
[rydc= [ 60) -1V dt
Y a

if the weak integral on the right hand side exists.

We record some properties of weak integrals.

153



A.1. Differential calculus of maps between locally convex spaces

Lemma A.1.4. Let v : [a,b] — X be a weakly integrable curve and A : X — Y a
continuous linear map. Then the map A oy is weakly integrable with the integral

/ab(Aoy)(t) dt = A (/abv(t) dt> .

Proposition A.1.5 (Fundamental theorem of calculus). Let v : [a,b] — X be a C-curve.
Then vV is weakly integrable with the integral

[ 400t =0) - 2@

Lemma A.1.6. If X is sequentially complete, each continuous curve in X is weakly
integrable.

Lemma A.1.7. We endow the set of weakly integrable continuous curves from |a,b] to X
with the topology of uniform convergence. The weak integral defines a continuous linear
map between this space and X . In particular, for each continuous seminorm p: X — R
and each weakly integrable continuous curve v : [a,b] — X

/a ) dt

b
< [l
p a

where we define ||-||p = p.

Proposition A.1.8 (Continuity of parameter-dependent integrals). Let P be a topological
space, I C R a proper interval and a,b € I. Further, let f: P x I — X be a continuous
map such that the weak integral

/ab f(p,t)dt =: g(p)

exists for all p € P. Then the map g : P — X is continuous.

Evaluation of curves We prove that the (simultaneous) evaluation of smooth curves is
smooth.

Lemma A.1.9. Let Y be a locally convex topological vector space and m € N. Then the
evaluation function

ev:C™([0,1],Y) x [0,1] = Y : (I',t) — T'(¢)
1s a C"™-map. For m > 1, we have
dev((T,t); (T'1,8)) = s-ev(l',t) +ev(I'1,t) (1)

(using the same symbol, ev, for the evaluation of C"™ '-curves).
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Pmof. The proof is by induction:
=0: Let I € C°([0,1],Y) and t € [0,1]. For a continuous seminorm |-|| on ¥ and
€ > O let U be a neighborhood of T' in C°([0,1],Y) such that for all ® € U

€
where |||/ is defined by

C([0,1],Y) = R : ® — sup ||B(t)]|.
t€(0,1]

By the continuity of T, there exists § > 0 such that for all s € [0,1] with |s —¢| < § the
estimate

In(s) —T@)ll < 5
holds. Then
lev(D.#) = ev(®,8)[| < [T(t) = T(s) | + [D(s) — B(s)]] < e,

whence ev is continuous in (T, ?).
m = 1: Let T',Ty € C'([0,1],Y), t €]0,1[, h € R* and s € R such that ¢ + hs € [0, 1].

Then
ev((I',t) + h(ly,s)) —ev(I,¢) _ D(t+hs) —T(2)
h N h
and because I is differentiable and ev is continuous, this term converges to

+ eV(Fl, t+ hs),

s-ev(l',t) +ev(Ty,t)

for h — 0. Since this term has an obvious continuous extension to C*([0,1],Y) x [0, 1] x
C1([0,1],Y) xR, ev is differentiable with the directional derivative which is continuous.
m — m + 1: The map

C™([0,1),Y) — €™([0,1],Y) : T+ T”
is continuous linear and thus smooth. Using the inductive hypothesis, we therefore deduce
from |(1)| that dev is C™. Hence ev is C™*1. O
A.1.2. Differentiable maps

We give a short introduction on a differential calculus for maps between locally convex
spaces. It was first developed by A. Bastiani in the work [Bas64] and is also known as
Keller’s C*-theory.

Recall the definitions given in In the following, let X and Y be locally
convex spaces and U C X an open nonempty set.

Proposition A.1.10 (Mean value theorem). Let f € C*(U,Y) and v,u € U such that
the line segment {tu + (1 —t)v : t € [0,1]} is contained in U. Then

1
f(v)—f(u):/o df (u+t(v — u);v — u) dt.
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Proposition A.1.11 (Chain rule). Let k € N, f € CK(U,Y) and g € C¥(V, Z) such that
f(U) C V. Then the composition go f : U — Z is a C*-map with

d(go f)(u;x) = dg(f(u);df (u;x)) for all (u,z) e U x X.

Proposition A.1.12. Let X and Y be locally convex spaces, U C X be open and
nonempty and k € N.

(a) A map
f=ier: U=V
iel

to a direct product of locally convex spaces ist C* iff each component f; is C*.

(b) A map f:U — Y with values in a closed vector subspace Z is C* iff f|? :U — Z
is CF.

(c) If Y is the projective limit of locally convex spaces {Y; : i € I} with limit maps
7Y =Y, thenamap f:U =Y isCF iffmyof:U — Y is C* for alli € I.

Characterization of differentiability of higher order In [Proposition 2.2.3| we stated
that a map is C* iff all iterated directional derivatives up to order k exist and depend
continuously on the directions. Here, we present some facts about the iterated directional

derivatives.

Remark A.1.13. We give a more explicit formula for the k-th derivative. Obviously,
dW f(u; x1) = df (u; 1) and

o dE D fu tegs e, meey) — dRFY flus g, L 2
d(k)f(uwh---,xk):gré f( ki T1 k;) Fluyay 1)

The Schwarz theorem extends to the present situation:

Proposition A.1.14 (Schwarz’ theorem). Let r € N, f € Ck(U,Y), k € N with k <r
and uw € U. The map

d(k)f(u;-) cXE Sy (X1,...,x) — d(k)f(u;xl,...,xk)

is continuous, symmetric and k-linear (over the field K).

Examples We give some examples of C¥-maps and calculate the higher-order differentials
of some maps.

Example A.1.15. (a) Amap~y: [ — X isaCF-curveiff it is a Ck-map, and dy(z; h) =
bW ().

(b) A continuous linear map A : X — Y is smooth with dA(z;h) = A - h.
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(c) More general, a k-linear continuous map b: X7 X -+ x X} — Y is smooth with

k

db(xl, e ,xk;hl, - .,hk) = Zb(xl, v 7$i—17hi7$i+17 v ,a:k).
=1

We can calculate higher differentials of f o g if one of the maps is linear.

Lemma A.1.16. Let X, Y and Z be locally convex topological vector spaces, U C X
an open nonempty set, k € N and A : Y — Z a continuous linear map. Then for
v e CrHU,Y)

Ao~y eCHU, 2Z).

Moreover, for each £ € N with ¢ <k
dO(Aory) = AodDs. (1)

Proof. This is proved by induction on ¢:
The chain rule (Proposition A.1.11)) assures A o~ € C*(U, Z) and

d(Aox)(x;h) = dA(y(x); dy(x; h)) = A(dy(z; b))

for z € U and h € X, hence is satisfied for £ = 1.
If we assume that holds for an £ € N, we conclude for x € U and hy,...,hg, hpy1 € X

A (Ao y) (w5 ha,. . e heyr)
dO(Aoy)(x + they; .. he) = dO(A o) (s, .. he)

=lim

t—0 t
i A @ thei b, he) = Ay (x by )
T 50 t
(1 DO A thersha, . he) = O (b, )
o t—0 t

:(A o d(£+1)’)’)(l’, ha, ..., he, thrl)v
SO holds for ¢ 4+ 1 as well. O

Lemma A.1.17. Let X, Y and Z be locally convex topological vector spaces, k € N and
A: X =Y a continuous linear map. Then for v € CK(Y, Z)

yoAeCH(X, Z).
Moreover, for each £ € N with £ < k

{+1

=
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Proof. This is proved by induction on ¢:
The chain rule (Proposition A.1.11) assures yo A € C*(U, Z) and

d(yo A)(x;h) = dy(A(x); dA(z; h)) = dy(A(x); A(h))

for x € X and h € X, hence is satisfied for £ = 1.
If we assume that holds for an arbitrary ¢ € N, we conclude that for x € X and
hiy. .o hehept € X
A (v o A) (@i ha, ..., by, heg)
dO(y o A)(x + theyr; hi, .. hy) —dO(y o A)(w; ha, ..., hy)

= lim
t—0 t

_i dO~N(A(x + thyp); A by, ..., A-hy) —dO~y(A(x); A-hy, ..., A hy)
20 t

1 1
=lim — Ay (A(z) + stA(hpg1); A-hy, ..., A-hy, tA - hepq)ds

0
:d(€+1)7(‘4($)a A-hyyooyAhg, A hf+1)
o) holds for ¢ + 1 as well. O

Another example for the computation of directional derivatives follows.

Lemma A.1.18. Let X, Y and Z be locally convex spaces, V CY an open nonempty
set, k€N, v:V — Z a map and A € L(X,Y) surjective such that

yoAeCHU, Z),

where U := A=Y(V). Then all directional derivatives of v up to order k exist and satisfy

the identity

{41
dO~ o ﬁ A=d9(yo A)
=1

for all £ € N with £ < k.

Proof. This is proved by induction on /:

¢ = 0: This is obvious.

{—0+1: Let y € Vand hy,...,he,hey1 € Y. By the surjectivity of A there exist
xeUandwvy,...,vvep1 € X with A-z=yand A-v; =h; fori=1,...,£,/+ 1. Then
for all suitable t # 0

dOy(y + thei; by he) — dO(y; ha, ... )

lim
t—0 t
— lim d(g)’y(A(x +tvgpr); Ao, A ) — d(e)’y(A sz A vy, Al oyg)
150 t
(@070 T At ) — (@070 T Ao, )
150 t
=d D (y o A)(z;01, ..., v v041),
and this completes the proof. O
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We give a specialization of [Proposition A.1.§

Proposition A.1.19 (Differentiability of parameter-dependent integrals). Let P be an
open subset of a locally convex space, I C R a proper interval, a,b € I and k € N. Further,
let f: P x1I— X beaCF-map such that the weak integral

[ 1.1yt = gt0)

exists for all p € P. Then the map g : P — X is C*.

Analytic maps

Complex analytic maps will be defined as maps which can locally be approximated by
polynomials. Real analytic maps are maps that have a complezification.

Polynomials and symmetric multilinear maps For the definition of complex analytic
maps we need to define polynomials.

Definition A.1.20. Let kK € N. A homogenous polynomial of degree k from X to Y is a
map for which there exists a k-linear map 8 : X* — Y such that

p(z) =B(z,..., )
k
for all x € X. In particular, a homogenous polynomial of degree 0 is a constant map.

A polynomial of degree < k is a sum of homogenous polynomials of degree < k.

There is a bijection between the set of homogenous polynomials and that of symmetric
multilinear maps. In this article, we just need that one can reconstruct a symmetric
multilinear map from its homogenous polynomial.

Proposition A.1.21 (Polarization formula). Let §: X* — Y be a symmetric k-linear

map, p: X =Y 12— B(x,...,x) its homogenous polynomial and xo € X. Then
1 1
Bla,. . ow) = Yoo (0 tp (g +egmy + - )
€108 =0
forall xq,...,21 € X.

Complex analytic maps Now we can define complex analytic maps.

Definition A.1.22 (Complex analytic maps). Let X, Y be complex locally convex
topological vector spaces and U C X an open nonempty set. A map f:U — Y is called
complex analytic if it is continuous and, for each x € U there exists a sequence (pg)ren of
continuous homogenous polynomials p; : X — Y of degree k such that

flx4+v) = Zpk(v)
k=0

for all v in some zero neighborhood V such that x +V C U.
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Definition A.1.23. Let X, Y be complex locally convex topological vector spaces and
U C X an open nonempty set. A map f : U — Y is called Gateaux analytic if its
restriction on each affine line is complex analytic; that is, for each z € U and v € X the
map

{zeC:iz+2veU} =Y : 2 f(z+ 20)

is complex analytic.

Theorem A.1.24. Let X, Y be complex locally convex topological vector spaces and
U C X an open nonempty set. Then for a map f:U — Y the following assertions are
equivalent:

(a) [ is C&,
(b) f is complex analytic,
(c) f is continuous and Gateaux analytic.

We state a few results concerning analytic curves. These share many properties with
holomorphic functions. Using [[heorem A.1.24] we see that some of these properties carry
over to general analytic functions.

Definition A.1.25. Let Y be a complex locally convex topological vector space and
U C C an open nonempty set. A continuous map f : U — Y is called a C(g-curve. A
Cl-curve f: U — Y is called a C¢-curve if for all z € U the limit

f(l)(z) — lim f(z+w) - f(Z)

w—0 w

exists and the curve f() : U = X is a Cg—curve.

Inductively, for kK € N a curve f is called a C(’é—curve if it is a C(l:—curve and fM) is a
C(k:_l—curve. In this case, we define f*) .= (f()(k=1),
If fisa C(’é—curve for all kK € N, f is called a C&°-curve.

Lemma A.1.26 (Cauchy integral formula). Let Y be a complex locally convex topological
vector space, U C C an open nonempty set and f: U —Y a map. Then

fis a CE-curve <= f € CE(U,Y)

and furthermore

d® f(zshy, . o hy) =hy - hy, - f8) ().

A CZ-curve is complex analytic, and for each x € U, k € Ny and r > 0 with B,(z) CU
the Cauchy integral formula

By - kL f(©)
) /c—zw (¢ — =)kt @

27

holds, where z € B,(x).
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The Cauchy integral formula implies the Cauchy estimates.

Corollary A.1.27. Let Y be a complex locally convex topological vector space, U C C
an open nonempty set, f : U — Y a complex analytic map, x € U, r > 0 such that
B,(z) CU, o €]0,1] and p a continuous seminorm on Y. Then for each k € N and
z € By(x) with |z — x| = or, we get the estimate

k!

Real analytic maps

Definition A.1.28 (Real analytic maps). Let X, Y be real locally convex topological
vector spaces and U C X an open nonempty set. Let X¢ resp. Y¢ denote the complexifi-
cations of X resp. Y. A map f:U — Y is called real analytic if there is an extension
f: V' — Yc of f to an open neighborhood V of U in X¢ that is complex analytic. Such
a map fwill be refered to as a complezification of f.

Lipschitz continuous maps between locally convex spaces and induced maps on
normed spaces

We define and discuss Lipschitz continuous maps between locally convex spaces. To this
end, we define some terms concerning seminorms and the quotient maps they induce.

Definition A.1.29. Let X be a locally convex space and p : X — R a continuous
seminorm. We denote the Hausdorff space X/p~1(0) with and the quotient map with
: X — X,. More general, for any subset A C X we set A, := m,(A).

Further, we let denote the set of continuous seminorms on X.

Let p € N(X). We call U C X open with respect to p if for each x € U there exists r > 0
such that {y € X : [y —z[|, <r} C U.

Remark A.1.30. For any locally convex space X and each p € N (X), the norm induced
by p on X, will also be denoted by p. Note that this leads to the identity p = m, o p, in
particular p is a norm and generates the topology on X,,. No confusion will arise.

Definition A.1.31 (Lipschitz continuous maps). Let X and Y be locally convex spaces,
U C X an open nonempty set, k € N, p € N(Y) and ¢ € N(X). Wecally:U =Y
Lipschitz up to order k with respect to p and q if v € C*(U,Y),

l
14Oy (ys o, ) = dOy (s, ko)l < Hly = 2 lg [Tl (A.131.1)
=1
and '
i=1

for all € Nwith ¢/ <k, z,y € U and hq,...,hy € X. We write £C§7P(U, Y') for the set
of maps that are Lipschitz up to order & with respect to p and q.
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As for differentiable maps between normed spaces, differentiable maps always are at
least locally Lipschitz.

Lemma A.1.32. Let X,Y be locally convex spaces, U C X an open nonempty set,

keN,yeCHY(U,Y) and ¢ € N with £ < k. Then for each p € N(Y) and xo € U there
exist ¢ € N(X) and a convex neighborhood Uy, C U of x with respect to q such that
YNo, € LC ,(Uz,, Y).

Proof. Since d¥~ and d“*Y~ are continuous in (z,0,...,0) and multilinear in their
last ¢ resp. £+ 1 arguments, for each p € N(Y') there exist ¢ € N (X) and an open ball
Uszy = By(zo,7) C U such that

1= sup{|[d“TVy(ys b hen)lp sy € Bo(wo, r)s hallgs - [ hesllg < 1)

and
1> sup{[|dy(y; b1, ..., he)llp : y € By(zo. 1), [allgs - - - [1hellg < 1}

This implies that for each y € By(xo,7) and hq,...,hy, € X

[ (s b, )l < 1= Tl M
=1

where n € {¢,{ + 1}; this proves [estimate (A.1.31.2)|
To prove festimate (A.1.31.1), we see that for z,y € By(zo,7) and hy,..., hep1 € X

1
d(e)f)/(ya h17 R} hf) - d(e)’Y(‘II% h17 RN h@) = / d(£+1)7<ty + (]' - t).’IZ‘, h17 s 7hfay - JI) dt.
0

We apply [Lemma A.1.7|to the right hand side and get using with n = ¢+ 1.
14O (s s he) = dOy(as b o Bl < [l el - 1y = g
which finishes the proof. O

We show that each Lipschitz map induces another Lipschitz map between the respective
(normed) quotient spaces.

Lemma A.1.33. Let X and Y be locally convex spaces, U C X an open nonempty
set, k € N, p e N(Y), ¢ € N(X) and v € EC’;,p(U,Y). Then there exists a map
y € EC’lj,p(Uq, Yy) that makes the diagram

A
o, T
Ugy—Y

commutative (using notation as in|Definition A.1.29).
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Proof. Let £ € N with £ < k. Since v € ECZP(U, Y'), the map
Tp © d(g)fy (U, q) x (X, q)e —Y,

is continuous. Hence by the universal property of the separation there exists a continuous
map ¢ such that the diagram

©
U x X* e Y
N \ J
H 7Tq a ‘/
Uy, ><XE \

commutes, where we denote 7|y with m,. The diagram for ¢ = 0 implies that 4 o7y =

Tp Oy € kU, Y,), where 4 := 49. We proved in [Lemma A.1.18|that the ¢-th directional

derivative of 4 exists and satisfies the identity

{41 {41
d95 o H Tg = = qt )(’y 0mg) = d(z)(ﬁp 0y) =mpo d9y =70 .1}1 -

Since 1'[Z 1 mq is surjective, this implies that d(z)ﬁ = 4y, so the former is continuous. From
this we conclude that 4 € C*(Uy,Y,) and that the estimates |(A.1.31.1)| and |(A.1.31.2)|
are satisfied by 7. O

Finally, we prove that for each compact set, each C¥*'-map defined on it and each
seminorm on the image there exists a seminorm on the domain such that the quotient
map, and its differentials, are bounded. For that, we need to use a lemma about the
relationship between differentiability and Fréchet differentiability that is proved later in

ection A.2)

Lemma A.1.34. Let X and Y be locally convex spaces, U C X an open nonempty
set, k € N, v € CHY(U,Y), p € N(Y) and K a compact subset of U. Then there
exists a seminorm q € N(X) and an open set V w.r.t. q such that K CV C U and
q e BCk(Vq, Y,) (For the definition of 7 see|Lemma A.1.35).

Proof. Using|Lemma A.1.32|and standard compactness arguments, we find ¢ € N'(X) and
a neighborhood V w.r.t. ¢ of K in U such that jestimate (A.1.31.1) and |estimate (A.1.31.2)|

hold for v on V and all £ € N with ¢ < k. We proved in [Lemma A.1.33|that this implies
that 4 € EC (VZZ, Y,), and with |Prop031t10n A3 2| we can conclude that 7 € FC* (Vq, Y,).
Further, since D)5 A(Kq) is compact for all £ < k, there exists a neighborhood V; of K,
such that 4 and all its derivatives up to degree k£ are bounded on V. D
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A.2. Fréchet differentiability

For maps between normed spaces, there is the classical notion of Fréchet differentiability.
This concept relies on the existence of a well-behaved topology on the space of (k-)linear
maps between normed spaces.

Spaces of multilinear maps between normed spaces We provide the details about the
norm topology of multilinear operators.

Definition A.2.1. Let X, Y be normed spaces. For each k € N* we define
= {Z: X¥ 5 Y : Zis k-linear and continuous}.
For k =1 we define
L(X,Y):=LYX,Y) and L(X) := L}(X, X),

and furthermore
LY(X,Y):=Y.

The set of multilinear continuous maps can be turned into a normed vector space:

Proposition A.2.2. Let X, Y be normed spaces and k € N*. A k-linear map Z : X* —
Y is continuous iff

[T = sup{lE(v, -, : ol o < 13 < oo.

|IZ||op is called the operator norm of . ||-||op is @ norm on L*(X,Y). The space LF(X,Y),
endowed with this norm, is complete if Y is so.

Proof. The (elementary) proof can be found in [Die60, Chapter V, §7]. O

Lemma A.2.3. Let X, Y be normed spaces and k € N*. Then the evaluation map
LE(X,Y) x X*: (Z,01,...,00) = E(v1, ..., 01)

is (k + 1)-linear and continuous.

Proof. This is trivial. O

Lemma A.2.4. Let X and Y be normed spaces, k € N*, E € LF(X,Y) and hq, ..., hg,
v1,...,0; € X. Then

k
IE(hs - ) = E(v1, )| < D ONE - 0im1, By = i higas - hy) -
i=1

Proof. This estimate is derived by an iterated application of the triangle inequality. [J

The following lemma helps to deal with higher derivatives of Fréchet-differentiable
maps.
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Lemma A.2.5. Let X, Y be normed spaces and n,k € N*. Then the map
Ekm: LM(X,LM(X,Y)) — LF(X,Y)
Ek:m(E)(hla ey hn,’Ul, . ,Uk) = E(’Ul, e ,Uk)(hl, ceey hn)
is an isometric isomorphism. In some cases, we will denote &, by S,Xn.

Proof. Obviously &, is linear and injective. Furthermore
1€k (BE) (1, .oy by vi, v = (1201, oy o) (R - )|
n k n
<=1, o)llop [T < IElop TTIvsll TTNR1I,
i=1 i=1 i=1

and hence
1€k, (E)]lop < NIE]lop-

On the other hand, for ||vi|[,...,||vkll, |hil];---,[|hn]] <1 we have

1ECv1, - ve) (has o hn) | < 1€k () op-

Hence
1E(v1, - vr)llop < 1€k, (E) [lop,
which leads to
1Ellop < 1€k, (E) llop,

so &y is an isometry. It remains to show that &, is surjective. To this end, for a
M € L*(X,Y) we define the map M € L*(X,L"(X,Y)) by

M(v1,..,vp)(hi, ..o hy) = M(hy, ..o By, 1,0, Ug).
Clearly, & ,,(M) = M. Since M was arbitrary, &, is surjective. O
Lemma A.2.6. Let X, Y and Z be normed spaces and k € N. Then the map
LE(X,Y x Z) = LM X,Y) x LF(X,Z) : 2+ (ny 0 2,77 0 E), (A.2.6.1)

where Ty respective my denotes the canonical projection from'Y X Z to'Y respective Z,
s an isomorphism of topological vector spaces.

Proof. The map inis linear since its component maps = +— my oZ and = +— mzo=
are so. The injectivity of is clear, and the surjectivity can also be shown by an
easy computation.

To see that is an isomorphism we denote it by i and compute for x1,..., 2 € X

((mrxyy 0 HDEN @1, -+ 2k), (Trr(x,2) © D (E) (@1, - -+, T%))
= (<7TY o E)(;L’h ce ,xk), (7TZ o E)(a:l, PN ,l'k)) = E(.’L’l, e ,[Bk).

From this one can easily derive that i and its inverse are continuous since depending on
the norm we chose on the products, i is an isometry. O
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The calculus In the following, let X, Y and Z denote normed spaces and U be an
open nonempty subset of X. Recall the definition of Fréchet differentiability given in
Defimtion 23]

We give some examples of Fréchet differentiable maps.

Example A.2.7. (a) A continuous linear map A : X — Y is smooth with DA(z) = A.

(b) More generally, a continuous k-linear map b: X; X --- x X — Y is smooth with
k
Db(wl, ce ,.Zk)(hl, ey hk) = Zb(l‘l, ey Lj—1, hi,l'i+1, PN ,:ITk).
i=1

We prove the Chain Rule and the Mean Value Theorem for Fréchet differentiable maps.
Beforehand, we need the following

Lemma A.2.8. Let X, Y and Z be normed spaces, U C X an open nonempty set, k € N
and A:Y — Z a continuous linear map. Then for v € FC*(U,Y)

Aoy e FCHU, Z).

Proof. We prove this by induction over k. The assertion is obviously true for k = 0. If
k =1, then Ao~ is C' by [Proposition A.1.11| with

d(Ao)(z;-) = dA(y(x);") - dy(z;-) = Aody(x;-).

Since the composition of linear maps is continuous, we conclude that A o~ is FC! with
D(Aovy)= Ao D~.

k — k4 1: The map D~ is FC*, hence by the induction hypothesis, so is A o Dy =
D(Ao~). Hence Ao~ is FC*!, which finishes the induction. O

Lemma A.2.9. Let k € N, n € FC¥(U,Y) and v € FC*(U, Z). Then the map

() : U =Y xZ:z— (y(x),n(x))
is contained in FC*(U,Y x Z).
Proof. For k = 0 the assertion is obviously true. If kK = 1, we easily calculate that (v, n)
is C! with
d(v,n)(x; h) = (dy(z; h), dn(a; ).
Hence
d(y, m)(w;-) = i (dy(as ), d(a; ),

where i denotes the isomorphism [(A.2.6.1) from [Lemma A.2.6f We conclude that (v, n)
is FCt.
For k > 1, the assertion is proved with an easy induction using [Lemma A.2.8| O
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A.2. Fréchet differentiability

Proposition A.2.10 (Chain Rule). Let k € N, € FC¥(U,Y) and v € FC¥(V, Z) such
that n(U) C V. Then yon € FC*(U, Z) and

D(yomn)(u) = (Dyon)(u) - Dn(u) (*)
forallueU.

Proof. The proof is by induction on k:
k = 1: We apply the chain rule for C'-maps (Proposition A.1.11)) to see that vy on is C!,
and for (u,z) € U x X we have

d(y on)(u; ) = dy(n(u); dn(u; z)).

From this identity we conclude that holds. Finally we obtain the continuity of D(yon)
from the one of -, Dy, Dn and 7.

k — k + 1 : By the inductive hypothesis, the maps D~y and Dn are FC*. We already
proved in the case k = 1 that holds. By the inductive hypothesis, Dy on € FCF.

Since - is smooth (see [Example A.2.7), we conclude using [Lemma A.2.9/and the inductive
hypothesis that D(y o) is FC*. Hence v o n is FCFFL, O

Proposition A.2.11 (Mean Value Theorem). Let f € FC(U,Y). Then

1
1@ =S = [ Dftu+tw—u) - (0w

for all v,u € U such that the line segment {tu + (1 —t)v : t € [0,1]} is contained in U.
In particular

1f(v) = f)ll < sup [|Df(u+t(v —u))llopllv — ul|-
te(0,1]

Proof. The identity is a reformulation of [Proposition A.1.10] hence the estimate is a

direct consequence of O

The isomorphisms provided by can be used to characterize Fréchet
differentiability of higher order.

Remark A.2.12. We define inductively

Ly ==Y and L} = L(X, L% y).

Definition A.2.13 (Higher derivatives). Let n € N. For each k£ € N with £ < n we
define a linear map

D® . FC(U,Y) — FC" (U, LF(X,Y))
by DO :=idgen(ryy for k=0, DU := D for k=1 and for 1 < k < n by

k—3 k—2
Km0 ogkxy § glxy
DWWy =& 110-0&7 7 0& 77 o (Do---0D)(y).

k times
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A.2. Fréchet differentiability

Here we used the notations introduced in [Remark A.2.12] Note that the image of
e Ik

D) is contained in FC"*(U,L¥(X,Y)) because the maps EX 11 e, Ezf’y, &1
are continuous linear maps and hence smooth (see [Example A.2.7)); so the chain rule
(Proposition A.2.10|) gives the result.

We call D) the k-th derivative operator.

The (k + 1)-st derivative of a map =y is closely related to the k-th derivative of D~:
Lemma A.2.14. Let n € N, y € FC(U,Y) and k € N with k < n. Then
D+ — gl o (DW (D))

Proof. This follows directly from the definition of D®*+1). O

A.2.1. The Lipschitz inverse function theorem

We discuss an inverse function theorem for functions of the sort T' + n, where T is a
linear Operator and 7 is a “small” perturbation map. We derive an estimate for the
Lipschitz constant of (T + )™, and consequently another for the size of the image of
T + n. Further we discuss families of such functions to derive a parametrized inverse
function theorem. The next lemma discusses a special case. The main tool for proving
it is a parameterized version of the Banach fixed point theorem which can be found in
[Irw80, Appendix C|

Lemma A.2.15. Let X be a normed space, T € 1(X) a linear homeomorphism, D C X

a nonempty set, and 1 : D — X Lipschitz with a constant L such that L|T7!||,, < 1.
(a) The map T + n is injective.

Suppose that D = B,(0) with r > 0 and n(0) = 0. Further, we set r' := r(%)

op

(b) The map
H : B,(0) x B,/(0) = B,(0) : (z,y) = T ' (y — n(x))

is defined and a contraction in the first argument. For y € B,/(0) and © € D, we
have
y=T+n)(z) < z=H(z,y).

Suppose that X is a Banach space.

(¢) Then im (T +n) = B,.(0), and (T +n)~! is Lipschitz with constant % In
particular, B,.(0) C (T + n)(B,(0)).

(d) Additionally, let Y be a normed space, U CY an open nonempty set and k € N.
Further, let 2 € FC*(U x D, X) such that Z(U x {0}) = {0} and for each p € U,
the map 2, := Z(p,-) : D — X is L-Lipschitz. Then

U x By(0) = B.(0) : (p,y) — (T +E,) " () (t)
is FCF.

168



A.2. Fréchet differentiability

Proof. [(a)| Let z,y € D such that (T + n)(z) = (T + 1)(y). Then

lz =yl = 1T~ (n(y) = n@@)Il < 1T~ epLlly — |-

Since ||TY|opL < 1, we conclude that ||z — y|| < 0, and hence x = y.
@ Let z € B,(0) and y € B,(0). We calculate

1T~y = n@) < NT ™ oplly = n(@) | < 1T~ ep(llyll + In(z) = n(0)1)

_ _ 1L T~ o
<7 op(lyll + Llizl) < 71T~ op(S il + L) = .

Thus H is defined. We show that H is a contraction in the first argument. To this end,
let x,2 € B,(0) and y € B,+(0). Then

1 (2, y) = H(z, )| = 1T~ (n(2) = n(@)|| < |1 T lop L1z = .

Hence the map H(-,y) : B,(0) — B,(0) is a contraction. The stated characterization is
proved by an easy calculation.
Since B,.(0) is complete, by the Banach Fixed Point Theorem H (-, y) has a fixed

point g(y). We can use [Irw80, Theorem (C.7), p. 241-242] to see that g is continuous,
1T lop

and moreover, we see that ¢ is Lipschitz with a constant not greater then LT,
op

since for y, 2 € B,»(0) and x € B,.(0),
1H (z,y) — H(z,2)|| = [Ty = 2)| < [T loplly — 2II-

(Notice that the Lipschitz constant of the fixed point map is implicitly calculated in the
proof of [Irw80, Theorem (C.7)]). Furthermore, we calculate for y € B,/(0) that

9(y) =H(g(y),y) =T (y —nlgy))),

and hence y = (T 4+ 1)(g(y)). This shows that (7" + 77)%1(0)
T + 7 is injective. To prove the last assertion, let y € B,+(0). Then

= g since we proved that

1T~ ep

la@)ll = llg(y) = 9(O)ll = 7 v <.

— LIT lop

Hence B,(0) € (T" + n)(B:(0)).
@ The map is defined by and we see with @ that it arises as the restriction
of the fixed point map for

H : B,(0) x Bp(0) x U = B,.(0) : (x,y,p) = T~y — E(p, 2)).
Hence we derive the assertion from [Irw80, Theorem (C.7)]. O

We use this lemma to prove two theorems on inverse functions that are better suited
for citation.
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A.2. Fréchet differentiability

Theorem A.2.16 (Parameterized Lipschitz inverse function theorem). Let X be a
Banach space, Y a normed space, T € L(X) invertible, U C X and V C Y open
nonempty sets, k € N and = € FCk(V x U, X) such that for each p € V, the map
Ep = Z(p,-) : U — X is L-Lipschitz, where L||T~!||,p < 1. Then for eachp € V, T+ZE,
is a homeomorphism on its image, which is an open subset of X. More precisely, for each

z €U and r > 0 such that B,(x) C U, we have that B (T +Z,)(x)) C (T +Z,)(Br(x)),

1-L|T, —\—1 o
W) Further, (T +Z,) 7" |B ,(14+5,)(x)) 8 Lipschitz with constant

7./

where r' == r(
1T~ op

LT 1oy and the map
U {p} x Bu((T +Ep) () = Br(x) : (p,y) = (T +5p) ' (y)
peV

is FCF.

Proof. By |Lemma A.2.15| for each p € V the map T + Z, is injective. To prove the
other assertions, let « € U and r > 0 such that B,(x) C U. Since each Z, is uniformly
continuous, it can be extended to B,(0); and the extension also is L-Lipschitz. Then we

can apply to T and the map

Ep: B, (0) = X:y—ZE(z+y)—Ep(z) = (T_Ep(x) ono1y)(y).

We derive that T'+ =7 is a homeomorphism, B,(0) C (T + =7)(B,(0)), and its inverse
1T~ op

map is Lipschitz with constant LT,
op

. Thus using the identity

(T + Eg)_l =T ,0 (T + Ep)_l O T(Z,+T)(x)»
we derive all assertions. O

Corollary A.2.17 (Lipschitz inverse function theorem). Let X be a Banach space,
T € L(X) invertible, U C X an open nonempty set, and n : U — X Lipschitz with
constant L such that L| T,y < 1. Then T + n is a homeomorphism on its image,
which is an open subset of X. If n is FCF, so is (T +n)~t. More precisely, for each

x €U and r >0 such that By(z) C U, we have that B ((T +n)(z)) C (T + n)(B,(z)),

_ —1

where v’ 1= r(%) Further, (T + 77)71’BT,((T+n)(x)) is Lipschitz with constant
1T lop

1=L[[T~ lop

Proof. The assertions follow immediately from [Theorem A.2.16| O

Application to the classical case

We apply the Lipschitz inverse function theorems we derived to a more familiar case, and
derive a quantitative version of the classic inverse function theorem, and a parameterized
version.
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A.2. Fréchet differentiability

Theorem A.2.18 (Quantitative version of the inverse function theorem). Let X be a Ba-
nach space, U C X open and convez, k € N*, g € FC¥*(U, X) and = € U such that Dg(x)

is invertible. Further, let sup,c/||Dg(y) — Dg()llop < § with § < m. Then g is

a homeomorphism of U onto an open subset of X, and g~ is FC*. Further, if U contains

the ball By(x'), then g(U) contains the ball B,/ (g(z')), where 1’ := T(lﬂ%la%g)H_;HOp)-
[1Dg(x)~ [lop

Further, g_1|Br,(g(I/)) 18 m—mpschiw

Proof. Weset n:U — X 1y g(y) — Dg(z) - y. Then n is Lipschitz with constant §
since

n(y)—n(z) = g(y) —g(z) —Dg(z)-(y—2) = /01 Dg(ty+(1—t)z)-(y—z)dt—Dg(z)-(y—2)

and hence
In(y) —n(2)| < dlly —=|.
So we derive the assertion from |Corollary A.2.17, applied to Dg(z) and 7. O

Proposition A.2.19 (Parameterized quantitative version of the inverse function the-
orem). Let X be a normed space, Y a Banach space, U C X open and V C'Y open
and convez, k e N*, g € FCH(U x V,Y) and (xz,y0) € U x V such that Dag(xo,yo) is
invertible. Further, let

sup ||D29((E,y) - DQQ(xO7yO)Hop <0
(z,y)eUXV

. 1 L A . .
with § < D29@0w0) " Ton Then for eachx € U, g, := g(x,-) : V = Y is a homeomorphism

onto an open subset of Y. Further,

By (y,r) CV = B.(9:(y)) € g(By (y,7)),

. r(1=8-|D2g(z0,y0) " llop) ~1 I D2g(@o.0) o : :
where 1’ := HD29(217071J3)_01H0;0 . Further, g5 B, (g(e.y)) 1_5.”2[)29%%07%)_11"‘01) -Lipschitz,
and the map

U {1’} X B’I"(g(x7y)) — BY(yar) : (x,z) = ga?l(z)
zelU
is FCk.

Proof. We define
n:UXV =Y (2,y) = g(z,y) — D2g(xo,%0) - -
Then for each = € U, the map n, := n(z,-) is Lipschitz with constant § since
12(y) = 12(2) = g(2,y) — 9(x, 2) — Dag(x0,90) - (y — 2)
= /01 Dag(z,ty + (1 —t)2) - (y — 2) dt — D2g(x0,%0) - (y — 2)

and hence
112 (y) — e (2)|| < 6lly — =]
So we derive the assertion from [Theorem A.2.16 applied to Dag(xo,yo) and 7. O
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A.3. Relation between the differential calculi

We show that the two calculi presented are closely related. First we prove that each
FCF-map is a C¥-map and that the higher differentials are in a close relation.

Lemma A.3.1. Let k € N* and v € FC*(U,Y). Then ~ is a C*-map (in the sense of
, and for each x € U we have

DWy(z) = d¥ (1)

Proof. We prove this by induction.
k = 1: Tt follows directly from [Definition 2.3.1|that 7 is a C! map and that the identity

DWy(z) = Dy(x) = dy(w;-) = dV(x;-)
holds.
k—k+1: Let € U and hy, ..., hyp1 € X. We know from [Lemma A.2.14] that
(DEIY) (@) (ha, - hgg)
(&1 0 (DP DY) (@) (b, i)
=(DW Dy (2)(ha, ..., 1)) - .
The inductive hypothesis gives
=(d® Dy (3 ha, . .. hiy1)) - ha
< d*D(Dy)(x + thigasha, - - h) — d*D(Dy) (w; by, .. ., hk)) h
— . 1.
t—0

lim
t

Another application of the inductive hypothesis, together with the continuity of the
evaluation of linear maps (Lemma A.2.3) and [Lemma A.2.14] gives

DE=D(Dy)(x + thgs1)(ho, ..., hy) - by — DE=D(D~)(x)(ha, ... hi) - b

=lim
t—0 t
i (Ek—1.1 0 DED(DY))(x + this1) (b1, - s hi) — (Ex—11 0 DED(DY))(2)(h1, ..., hi)
T 50 t
~lim DWr(z + thyy1)(h, ... hi) = DWy() (R, ... ,hk)‘
t—0 t

Another application of the inductive hypothesis finally gives
d(k),)/(x + thk-‘rl; hla ) hk‘) - d(k)rY(xa hla ) hk‘)

=lim .
t—0 t

Hence d*+1)~ exists and satisfies the identity
d Dy (@5 by, hr) = DD (@) (o Byg).

Since DD~ and the evalution of multilinear maps are continuous (see |Lemma A.2.3),

d*+D~ is so. In [Proposition 2.2.3| we stated that this (and the inductive hypothesis)
assure that v is a C*™! map. O
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The preceding can be used to give a characterization of Fréchet differentiable maps.

Proposition A.3.2. Let v : U — Y be a continuous map. Then ~v € FCF(U,Y) iff v is
a C*-map and the map
U—LYX,Y):z dDy(z;) (*&)

1s continuous for each £ € N with £ < k.

Proof. For v € FCH(U,Y) we stated in that v € C*(U,Y) and
Ay (z;-) = DVy(x)

for each 2 € U and ¢ € N with ¢ < k. Since D®)~ is continuous by its definition (A.2.13)),
is satisfied.

We have to prove the other direction. This is done by induction on k:

= 1: This follows directly from the definition of FC*(U,Y).
k — k 4+ 1: We have to show that v € FC**1(U,Y), and this is clearly the case if Dy €
FCF(U,L(X,Y)). By the inductive hypothesis this is the case if Dy € C*(U,L(X,Y))
and it satisfies Since v € FCF (U,Y) by the inductive hypothesis and hence
Dy e FC*Y(U,L(X,Y)), we just have to show that D~ is C* and

U — LMX,L(X,Y)) : x = d*)(Dv)(;)

is continuous. To this end, let x € U, h,v1,...,v5_1,v; € X and t € K such that the
line segment {x + stvy : s € [0,1]} C U. We calculate using [Lemma A.2.14] the mean

value theorem and two applications of

(d(k_l)(D*y)(x + tog; U1y, V1) — d(k_l)(Dv)(x; Vi, ... ,vk_1)> b

t
_d(k)’y(x + tog; hy v, ., Up—1) — d(k)fy(x; hyvi, ..., vk-1)
t
1
:/ d(k+1)7(x + stvg; hyv1, ..., Vp—1, V) dS.
0

Since z — d#*+D~(x;-) is continuous by hypothesis, the left hand side of this identity
converges for ¢ — 0 with respect to the topology of uniform convergence on bounded sets
to the linear map

h— d(k+1)7(:1:; hyv1, ..., Vk—1,Vk).

Hence D is C* with
d(k) (D’y)(l‘, U155 Vk—1, vk) = 5;;11(d(k+1)7(93’ '))(Ula <oy Uk—1, vk)a

and since x — d**tDy(z;.) and Ek_ll are continuous (by hypothesis resp. [Lemma A.2.5)),
z— d®) (D) (x;-) is so, too. O

We show that a C*+! map is FCK(U,Y).
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Lemma A.3.3. Let f: U — Y be a C**' map. Then f € FC*(U,Y).

Proof. We stated in [Proposition A.3.2| that f is in FC*(U,Y) iff for each ¢ € N with
¢ < k the map

U—LY(X,Y): 2w d9f(x)

is continuous; but this is a direct consequence of [Lemma A.1.32|since it implies that
lestimate (A.1.31.1) holds. O

Differential calculus on finite-dimensional spaces We show that the three definitions
of differentiability for maps that are defined on a finite-dimensional space (Fréchet-
differentiability, Kellers C* theory and continuous partial differentiability) are equivalent.

Definition A.3.4. Let n,k € N* and o € Nj a multiindex with |o| = k. We set

I o= {(i1, . ig) €{1,...,n}" - (Ve {1,....n}) ap = |{j : i5 = €}|}
and use this set to define the continuous k-linear map

Sat (KMF = K (he,oo i) = D0 hagy by,

(3150 ik ) Ela
where hj = (hj1,...,hj,) for j=1,... k.

Proposition A.3.5. Let U C K" be open and nonempty and v : U — Y a map. Then
the following conditions are equivalent:

(a) v € FCHU,Y)
(b) v €CHU,Y)
(¢) ~v is k-times continuously partially differentiable.

If one of these conditions is satisfied, then

DWy(z)(ha,... . k) = > Salha, ..., hg) - 0%y(x) (A.3.5.1)
a€eNg
|ael=k

forallz € U and hy,..., hy € K",

Proof. The assertion @ — @ is a consequence of [Lemma A.3.1} and since

Py

A AR ( N |
8;132-1 . 81-% (IIZ’) d f)/('rﬂ €igy- et 7621)

and d®)~ is continuous (IProposition 2.2.3[), the implication @ = also holds.
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It remains to show that = @ It is well known from calculus that Dyy =

A hig—;. Hence d©~(x; hy, ..., hy) exists and is given by
d9y(z;hi,. .. he) = [T —
7('%'7 1, ’ 5) Z 1,41 Lyig 8.757;1 . '8xi[

i1=1,....ip=1

= Z( > hl,il"'he,u) - 0%y(x)

OJENEL (il ..... ie)efa

From this identity we derive the continuity of z — d®~(z;-), and can conclude using
[Proposition A.3.2that v € FC*(U,Y) and |(A.3.5.1)|is satisfied. O

A.4. Some facts concerning ordinary differential equations

We state some facts about the global solvabilty of initial value problems and the depen-
dence of solution on parameters.

A.4.1. Maximal solutions of ODEs

In the following, we let J C R be a nondegenerate interval and U an open subset of
the Banach space X. For a continuous function f: J x U — X, g € U and tg € J we
consider the initial value problem

Y (t) = f(t, (1))
~(to) = xo. (A.4.0.2)

We state the famous theorem of Picard and Lindelof:

Theorem A.4.1. Let f satisfy a local Lipschitz condition with respect to the second
argument, that is, for each (to,xo) € J x U there exist a neighborhood W of (to,xo) in
J x U and an K € R such that for all (t,x),(t,z) € W

1f(t, ) = ft, D) < K|z — .

Then, for each (to,xo) € J x U there exists a neighborhood I of ty in J such that the
initial value problem|(A.4.0.2)| corresponding to ty and x¢ has a unique solution that is
defined on I.

It is well-known that the local theorem of Picard and Lindeldf can be used to ensure
that there exists a maximal solution.

Proposition A.4.2. Let f satisfy a local Lipschitz condition with respect to the second
argument and let (to, o) € J x U. Then there exists an interval I C J and a function
¢ I — U that is a mazimal solution to|(A.4.0.2); that is, if v : D(vy) — U is a solution

to|(A.4.0.2)| defined an a connected set, D(y) C I and v = ¢[p()-
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A criterion on global solvabilty

Linearly bounded vector fields One class of ODEs that can be globally solved is that
of linear vector fields. This solvabilty property can be generalized to linearly bounded
vector fields.

Definition A.4.3. We call f linearly bounded if there exist continuous functions a,b :
J — R such that

1 (&, 2)|| < a(t)]lx]| + b(t)
for all (t,z) e J x U.

To prove that this condition on f ensures globally defined solutions, we first need to
prove some lemmas.

Lemma A.4.4. Let f be a linearly bounded map that satisfies a local Lipschitz condition
with respect to the second argument. Let ¢ : I — U be an integral curve of f. Then the
following assertions hold:

(a) If ¢ is bounded, I C J and I is compact, then f is bounded on the graph of ¢.
(b) If B :==supl # sup J, then ¢ is bounded on [ty, 5[ for each ty € J. The analogous
result for inf I also holds.
Proof. @ Let t € I. Then

1F(E d@)I < a®)l@(B)]] + b(¢)

since f is linearly bounded. Because a and b are continuous and defined on I, they are
clearly bounded on I.
[(b)] For each ¢ € [to, B we have

ot) = (t0) + [ F(s,6(s)) ds,

to
and from this we deduce using that f is linearly bounded:

o < ot + | [ (s o) as

<l + | [ a(e)o(o)] + bls) ds

t
< lalgolloe | [ 1961 ds| + 160 + [Vl 0218 ~ tl
0

The assertion is proved with an application of Groenwall’s lemma. O

Lemma A.4.5. Assume that f satisfies a global Lipschitz condition with respect to the
second argument. Then f is linearly bounded.

Proof. Let (t,x) € J x U and x¢ € U. Then

(& 2) || < [1f (8 x) = f(Ezo)ll + [[f (£ o)l
< Lljw = aol| + |f (, zo)[| < Lll2[ + Liloll + [Lf (£, zo) |
Defining a(t) := L and b(t) := Lljzo|| + || f(¢,x0)| gives the assertion. O
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The criterion We give a sufficent condition on when an integral curve is uniformly
continuous. This can be used to extend solutions to larger domains of definition.

Lemma A.4.6. Let f satisfy a local Lipschitz condition with respect to the second
argument and let ¢ : I — U be an integral curve of f such that f is bounded on the graph
of . Then ¢ is Lipschitz continuous and hence uniformly continuous.

Proof. Let t1,t3 € I. Then

* F(s, 0(s)) ds

t1

? @' (s)ds

t1

l6(t2) — o) = ] - < Klts — ti],

where K := sup, ;|| £(s, 6(s))]| < co. =

Theorem A.4.7. Assume that f satisfies a local Lipschitz condition with respect to the
second argument. Let ¢ : I — U be a maximal integral curve of f. Assume further that

(a) The image of ¢ is contained in a compact subset of U or
(b) f is linearly bounded.
Then ¢ is a global solution, that is I = J.

Proof. We prove this by contradiction. To this end, we may assume w.l.o.g. that
B :=supl # supJ. We choose ty € I. In both cases, f is bounded on the graph of
Blio,5: If the image of ¢ is contained in a compact set, we easily see that the graph of
¢‘[t0,ﬁ[ is contained in a compact subset. If f is linearly bounded, we use [Lemma A.4.4

We apply [Lemma A.4.6| to see that ¢, g is uniformly continuous, and thus has a

continuous extension ¢ to [to, 5]. We easily calculate that ¢ is a solution to |(A.4.0.2
using the integral represention of an ODE. Since ¢ extends ¢, we get a contradiction to
the maximality of ¢. O

A.4.2. Flows and dependence on parameters and initial values
For the purpose of full generality, we need a definition.

Definition A.4.8. Let X be a locally convex space. We call P C X a locally convex
subset with dense interior if for each € P, there exists a convex neighborhood U C P
of z and if P C P°.

In the following, we let J C R be a nondegenerate interval, U an open subset of the
Banach space X, P be a locally convex subset with dense interior of a locally convex
space and k € N with k& > 1. Further, let f be in C*(J x U x P, X). We consider the
initial value problem

Y'(t) = f(t,7(t),p)

Y(to) = o (A.4.8.1)

fortge J, zg € U and p € P.
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Definition A.4.9. Let Q C J x J x U x P. We call a map
p: QA —=U
a flow for f if for all tg € J, zp € U and p € P the set
Qty.z0p = {t € J : (o, t,z0,p) € N}
is connected and the partial map
é(to, -, 20,p) : Qg z0p —+ U

is a solution to [(A.4.8.1)| corresponding to the initial values to, xo and p.
A flow is called maximal if each other flow is a restriction of it.

Remark A.4.10. In [Gl606, Theorem 10.3] it was stated that for each tg € J, xg € U
and pg € P there exist neighborhoods Jy of tg, Uy of xg and Py of py such that for every
s € Jy, z € Uy and p € Py the corresponding initial value problem has a unique
solution I's ;. ,, : Jo — U and the map

T:Jox Jox Uy x Py—U:(s,t,2,p) = Tapplt)

is C*. Therefore Ck-flows exist.

The following lemma shows that two related flows can be glued together:

Lemma A.4.11. Let I C J be a connected set with nonempty interior and v:1 — U a
solution to |(A.4.8.1)| corresponding to t., € J, x, € U and py € P. Further let

¢po:JoxIpxUyx Phy—=Uand ¢y : [ x I xUy x P —-U
be Ck-flows for f such that Uy is open in X and
I=1)0UIL,IoNnL #0,py € PBoN Py, (ty,24) € Jo x Uy and v(I1) C Uj.
Then there exist neighborhoods J of ty, U, of x~, Py of py and a Ck-flow
¢:JyxIxUyx Py —U

for f.

Proof. We choose t; € Iy N I;. Since ¢¢ is continuous in (-, t1, 2, py) and
G0ty t1,zy,py) = (t1) € U,

there exist neighborhoods J, of t, in Jy, U, of x4 in Uy and P, € Py N P, of p, such that
¢o(Jy x {t1} x U, x P,) C Uy.

Then the map

oo(to,t, o, p) if t € Iy

¢1(t1,t, polto, t1,z0,p),p) iftel

is well defined since the curves ¢g(to, -, xo,p) and ¢1(t1, -, ¢o(to,t1,zo,p),p) are both
solutions to the ODE |(A.4.8.1)| that coincide in ¢; and hence on Iy N I;. Since both ¢g
and ¢, are CF-flows for f, so is ¢. O

¢:J7xIxU7xP7—>U:(to,xo,p,t)»—>{
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Lemma A.4.12. Let I C J be a connected set with nonempty interior, t1 € I and
v: I —= U a solution to corresponding to t, € J, x4 € U and py, € P. Then
there exist neighborhoods J of ty, U, of x~, Py of py, an interval I C I with ty,t1 € I
such that I is a neighborhood of t1 in I, and a C*-flow

¢: Iy x I x Uy x Py = U

for f.

Proof. We use |Gl606, Theorem 10.3] to see that for each s € I there exist neighborhoods
Js of sin J, U, of y(s) in U, P, of py in P and a C*-flow

Gs:Js X Jg x Ug x P = U

for f; we may assume w.l.o.g. that v(Js) C Us since « is continuous and that Js is open
in /. Since I is connected and {Js}ser is an open cover of I, there exist finitely many sets
Js1s. .., Js, such that ty € Jg,, t1 € Js, and J,,, N Js, # 0 <= |m —{| < 1. Applying
[Lemma A.4.11|to ¢,, and ¢,, we find neighborhoods I; of t,, V1 of z, P of p, and a
Ck-flow

(Z)12[1X(J51UJ52)><V1XP1—>U
for f. Likewise, ¢ and ¢, lead to ¢2, and iterating the argument, we find a C*-flow

Gn—1:In—1 X U Jop X Vpmi X Py — U
k=1

for f. O
Concerning maximal flows, we can state the following
Theorem A.4.13. For each ODE' there exists a mazximal flow
¢:JJxJIxUxP2OQ—U.

Q is an open subset of J x J x U x P and ¢ is a C*-map.

Proof. The existence of a maximal flow is a direct consequence of the existence of maximal
solutions to ODEs without parameters, see [Proposition A.4.2l Now let (o, t, zo,p) € §2
and v : I C J — U the maximal solution corresponding to g, zg and p. Then to,t € I,

and according to [Lemma A.4.12] there exists a C*-flow

F:JnyNxUﬂ,xPﬂ,—>U

for f that is defined on a neighborhood of (t¢, t, xo,p). Since ¢ is maximal,
vafovxPVQQ
and

d)|.].,><f><U’y><P.Y =T
This gives the assertion. O
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We examine the situation that an initial time is fixed and the initial values depend on
the parameters.

Corollary A.4.14. Let o : P — U be a Ck-map. Further, let I C J be a nonempty
interval and tg € I such that for every p € P there exists a solution

Yp: I —=U

to the initial value problem |(A.4.8.1)| corresponding to p, ty and the initial value a(p).
Then the map
I':IxP—U:(tp)— ()

is CF.
Proof. We consider a maximal flow ¢ : 2 — U for f. Since ¢ is maximal,
{to} x I x {(a(p),p) :p€ P} CQ,

and for each p € P
(Z)(tO: K a(p),p) = Tp-

Hence I is the composition of ¢ and the C*-map
IxP—JxIxUxP:(tp)— (to,t,a(p),p),

and this gives the assertion. O
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B. Locally convex Lie groups and manifolds

The goal of this appendix mainly is to fix our conventions and notation concerning
manifolds and Lie groups modelled on locally convex spaces. For further information see
the articles [Mil84], [Nee0O6] and [BGNO4].

B.1. Locally convex manifolds

Locally convex manifolds are essentially like finite-dimensional ones, replacing the finite-
dimensional modelling space by a locally convex space.

Definition B.1.1 (Locally convex manifolds). Let M be a Hausdorff topological space,
k € N and X a locally convex space. A C*-atlas for M is a set A of homeomorphisms
¢ : U — V from an open subset U C M onto an open set V' C X whose domains cover M
and which are C¥-compatible in the sense that ¢ o p~1 is C* for all ¢,1 € A. A maximal
CF-atlas A on M is called a differentiable structure of class C*. In this case, the pair
(M, A) is called (locally convex) C*-manifold modelled on X.

Direct products of locally convex C¥-manifolds are defined as expected.

Definition B.1.2 (Tangent space and tangent bundle). Let (M,.A) be a C*-manifold
modelled on X, where kK > 1. Given z € M, let A, be the set of all charts around =z
(i.e. whose domain contains x). A tangent vector of M at x is a family y = (y¢)pc., of
vectors ys € X such that yy = d(1 0 ¢71)(¢(x); yp) for all ¢, ¢ € A,

The tangent space of M at x is the set of all tangent vectors of M at z. It has
a unique structure of locally convex space such that the map di|r a : ToM — X :
(Yo)pe A, — Yy is an isomorphism of topological vector spaces for any ¢ € A,.

The tangent bundle of M is the union of the (disjoint) tangent spaces T, M for
all z € M. It admits a unique structure as a C¥~'-manifold modelled on X x X such
that T¢ := (¢, d¢) is chart for each ¢ € A. We let mpy : TM — M be the map taking
tangent vectors at x to x for any x € M.

Definition B.1.3. A continuous map f : M — N between C*-manifolds is called C* if
the map 1) o f o ¢! is so for all charts ¥ of N and ¢ of M.
If k£ > 1, then we define the tangent map of f as the C*~!-map : TM — TN
determined by di)o T f o (T¢)™! =d(¢p o f o ¢~ 1) for all charts ¥ of N and ¢ of M.
Given z € M, we deﬁne:: Tf| T NTeM : ToM — Ty N.

Definition B.1.4. Let k£ > 0, M, N and P be C*-manifolds, and f : M x N — P a
Ck-map. We define

[Tif]: TM x N — TP : (v,n) — T (v,0,)
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and
Tof : M Xx TN — TP : (m,v) — TT(0,v).

Definition B.1.5 (Submanifolds). Let M be a C*-manifold modelled on the locally
convex space X and Y C X be a sequentially closed vector subspace. A submanifold
of M modelled on'Y is a subset N C M such that for each z € N, there exists a chart
¢ : U — V around z such that p(UNN) =V NY. It is easy to see that a submanifold is
also a C*-manifold.

The following lemma states that submanifolds are initial:

Lemma B.1.6. Let M be a C¥-manifold and N a submanifold of M. Then the inclusion
v: N — M is C*. Moreover, a map f : P — N from a C*-manifold is C* iff the map
tof:P — M is so.

Definition B.1.7 (Vector fields). A vector field on a manifold M is a map £ : M — TM
such that 7y o & = idy;. We denote the set of C* vector fields on M by and set
X2 (M) :

A vector field £ is determined by its local representations £, := dg o § o oLV X
for each chart ¢ : U — V of M. Given vector fields £ and n on M, there is a unique
vector field [£,7] on M such that [, 7]y = dny o (idv, &g) — d&y o (idy, ng) for all charts
¢:U—V of M.

Remark B.1.8 (Analytic manifolds). The definition of analytic manifolds and analytic
maps between them is literally the same as above, except that the term C¥-map has to
be replaced by analytic map.

B.2. Lie groups

Definition B.2.1 (Lie groups). A (locally convex) Lie group is a group G equipped
with a smooth manifold structure turning the group operations into smooth maps.

An analytic Lie group is a group G equipped with an analytic manifold structure
turning the group operations into analytic maps.

Lemma B.2.2 (Tangent group, action of group on TG). Let G be a Lie group with
the group multiplication m and the inversion i. Then TG is a Lie group with the group
multiplication

Tm: T(G x G) 2 TG x TG — TG

and the inversion Ti. Identifying G with the zero section of TG, we obtain a smooth
right action
TG x G — TG : (v,g9) = v.g := Tm(v,04)

and a smooth left action

G x TG — TG : (g,v) = g.v:=Tm(04,v).
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Definition B.2.3 (Left invariant vector fields). A vector field V' on a Lie group G is
called left invariant if .V (h) = V(gh) for all g,h € G. The set X(G), of left invariant
vector fields is a Lie algebra under the bracket of vector fields defined above.

Definition B.2.4 (Lie algebra functor). Let G and H be Lie groups. Using the iso-
morphism X(G)y — T1G : V — V(1) we transport the Lie algebra structure on
X(G)e to L(G) := T1G. If ¢ : G — H is a smooth homomorphism, then the map
: L(G) — L(H) defined as T¢|y,g) is a Lie algebra homomorphism.

B.2.1. Generation of Lie groups

We need the following result concerning the construction of Lie groups from local data
(compare [Bou89, Chapter III, §1.9, Proposition 18] for the case of Banach Lie groups;
the general proof follows the same pattern).

Lemma B.2.5 (Local description of Lie groups). Let G be a group, U C G a subset
which is equipped with a smooth manifold structure, and V- C U an open symmetric subset
such that 1 €V and V -V C U. Consider the conditions

(a) The group inversion restricts to a smooth self map of V.
(b) The group multiplication restricts to a smooth map V. xV — U.

(c) For each g € G, there exists an open 1-neighborhood W C U such that g-W-g~' C U,

and the map

WoU:w—g-w-g !

is smooth.

If (a)—(c) hold, then there exists a unique smooth manifold structure on G which makes
G a Lie group such that V is an open submanifold of G. If (a) and (b) hold, then there
exists a unique smooth manifold structure on the subgroup (V') generated by V which
makes (V') a Lie group such that V is an open submanifold of (V).

B.2.2. Regularity

We recall the notion of regularity (see [Mil84] for further information). To this end, we
define left evolutions of smooth curves. As a tool, we use the group multiplication on the
tangent bundle TG of a Lie group G.

Definition B.2.6 (Left logarithmic derivative). Let G be a Lie group, & € N and
n:10,1] = G a C**l-curve. We define the left logarithmic derivative of 1 as

5e(n): [0,1] = L(G) : t — n(t) ™t -7/ (2).

The curve 6;(n) is obviously C*.
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Definition B.2.7 (Left evolutions). Let G be a Lie group and « : [0,1] — L(G) a
smooth curve. A smooth curve 7 : [0,1] — G is called a left evolution of v and denoted

by if 0¢(n) = v and n(0) = 1. One can show that in case of its existence, a left

evolution is uniquely determined.

The existence of a left evolution is equivalent to the existence of a solution to a certain
initial value problem:

Lemma B.2.8. Let G be a Lie group and «y : [0,1] — L(G) a smooth curve. Then there
exists a left evolution Evol’(G)y : [0,1] — G iff the initial value problem

(B.2.8.1)

has a solution n. In this case, n = Evol& (7).
Now we give the definition of regularity:

Definition B.2.9 (Regularity). A Lie group G is called regular if for each smooth curve
v :[0,1] — L(G) there exists a left evolution and the map

:C([0,1],L(G)) = G : v — Evolg(7)(1)
is smooth.

Lemma B.2.10. Let G be a Lie group. Suppose there exists a zero meighborhood
Q C C*®([0,1],L(G)) such that for each v € Q the left evolution Evols(y) exists and the
map

Q — G : v Evolg(7)(1)

is smooth. Then G is regular.

Remark B.2.11. We can define right logarithmic derivatives and right evolutions in the
analogous way as we did above for the left ones. We denote the right logarithmic
derivative by @, the right evolution map by and the endpoint of the right evolution
by One can show that a Lie group is left-regular iff it is right-regular. Also the

equivalent of [Lemma B.2.10| holds. In particular, [initial value problem (B.2.8.1)[ becomes

(B.2.11.1)

Definition B.2.12. Let G be a Lie group. A smooth map [expg]: L(G) — G is called
an exponential map for G if T expg = idy,g) and expg((s + t)v) = expg(sv) - expg(tv)
for all s,t € R and v € L(G).
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B.2.3. Group actions

Lemma B.2.13. Let G and H be groups and o : G x H — H a group action that is
a group morphism in its second argument. Further, let H be a subgroup of H that is
generated by U. Then

a(Gx H)CH < o(GxU)CH.
Proof. By our assumption, H = Unen(U U U™, So we calculate

a(Gx H)=aGx |JOuU™H =] aGx UUU™)

neN neN
=lJaGx@WuU™)"=J(aGxU)ua(GxU)"H" C H.
neN neN
That’s it. O

Lemma B.2.14. Let G and H be Lie groups and oo : G x H — H a group action that is
a group morphism in its second argument. Then « is smooth iff the following assertions

hold:

(a) it is smooth on U x V, where U and V are open unit neighborhoods, respectively.

(b) for each h € H, there exists an open unit neighborhood W such that the map
a(-,h) : W — H is smooth.

(c¢) for each g € G the map a(g,-) : H — H is smooth.
If U generates G, follows from . If V generates H, follows from .

Proof. We first show that by our assumptions, « is smooth. To this end, let (g,h) € Gx H.
Choose W as in Then U :=UNW € Ug(1). We show that |,y <y is smooth.
Since the map U’ x V — gU’ x Vh : (u,v) — (gu,vh) is a smooth diffeomorphism, we
only need to show that the map

U xV — H: (u,v) —~ a(gu, hv)
is smooth. But
giu, o) = arg(au, b)) = aglax(u, V)i, ) = agla(u, v)a (),

where we denote a(-, h) by o and a(g,-) by ag4. Since the right hand side is obviously
smooth, we are home.

Now we prove the other two assertions. We suppose that @ holds. We let S C H be
the set of all h € H such that @ holds. Then V C S; and since o~ (g) = a”(g)~! and
o (g) = al'(g)a" (g) for all g € G and h,h' € H, we easily see that S is a subgroup of
H. Since V is a generator, S = H.

Since U generates G, for each g € G we find g¢1,...,9, € UUU! such that

Qg = Qg, 0"+ 0 Qg

Further, for ¢ € G and h € H, ay-1(h) = ag(h)™!, so each ay, is smooth by our
assumption. Hence a is smooth. ]
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Lemma B.2.15. Let G and H be Lie groups and w : G x H — H a smooth group action
that is a group morphism in its second argument. Then the semidirect product H %, G
can be turned into a Lie group that is modelled on L(H) x L(G).

Proof. The semidirect product H %, G is endowed with the multiplication
(HxG)x (HxG)— HxG:((h1,q1),(h2,92)) — (h1-w(g1,h2),91 - 92)
and the inversion
HxG—HxG:(hg)— (wgtnrt),g™h,

so the smoothness of the group operations follows from the one of w. O

B.3. Riemannian geometry and manifolds

We introduce notation and prove some results involving Riemannian geometry.

B.3.1. Definitions and elementary results
We need the following, well-known facts about Riemannian geometry:

Definition B.3.1 (Riemannian exponential function). Let d € N* and (M, g) be a
d-dimensional Riemannian manifold. Then the (maximal) domain of the Riemannian
exponential map : Df — M is an open subset of TM. Df is an open neighborhood
of the zero section in TM, and for each € M, we have [0,1].(DENT, M) C DFnT, M.

For each # € M, we define exp,, as exp, |1, yn DE- If M is an open subset of R%, then

for each x € M and v, w € R%, we have the identity
dexp,(z,0;v,w) = v+ w. (B.3.1.1)
In order to define the logarithm, we need the following definition.

Definition B.3.2. Let d € N* and (M, g) a Riemannian manifold. For x and h € T, M,

we define
[1Allg, == \/g(h,h).

Obviously, each ||-||4, is a norm on T, M. We also define
By(0) := Biroas,,) (0:7)-
If M is an open subset of R%, we set for h € R?
12llg. == \/9((x; k), (2, h)).
Obviously, each |||, is a norm on RY. In particular, we define

By (0) = Bra, |}, (0,7)-
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Definition B.3.3 (Riemannian logarithm map). Let d € N* and (M,g) be a d-
dimensional Riemannian manifold. For all z € M there exists an open neighborhood
Vy € T, M of 0, such that exp, |y, is a diffeomorphism onto its image, which is an open
subset of M. So the Riemannian logarithm map : Dé — TM can be defined, where

= | {2} x exp, (B (0)) € M?

zeM

and log,(7,y) = exp, |E¢;’§f (0); here 7, := sup{r > 0 : exp, | s (0) 18 injective}. Further,
for x € M we set log,(y) = log,(z,y) for y € M such that (x,y) € D;.

Let M be an open subset of R4, We define = mg o log,, where 7 : R2d — R
denotes the projection on the second factor. For each z € M and v,w € R%, the identity

dlg,(z,r;v,w) = w — v holds. This is an immediate consequence of [(B.3.1.1)| and the
chain rule since log, and (1, exp,) are inverse functions.

Definition B.3.4 (Localizations). Let M be a d-dimensional manifold, £ : U — V a
chart of M, k € Nand X € ¥*(U). Then we set [X, :=dko X or 1 :V >R Ifgisa
metric on M, we set|g. := go (Tk1 @ Tk 1)l

Remark B.3.5. Let (M, g) be a Riemannian manifold and x : U — V a chart of M. Then
T/f’l(DfN) - Df, and exp,, = Kk 0 exp, oT/@’lquE . Further, (k=1 x /f’l)(Dgﬁ) - DgL,

and loggﬁ =Tko logg O(/f1 X Ffl)‘DgL .

Lemma B.3.6. Let (M, g) be a Riemannian manifold and k : U, — Uy, o : 17;) — Uy
charts for M such that U, N Uy # 0. Then the following identities hold:

1

(a) On DgEK _, we have ¢ o K~

B o exp,, = exp,, oT(¢o k1.
K(UsNUy)

(b) On Di‘ __, we have T(por1)olog, = log,, o(¢o k1 x gor™h).

N(UNHU¢>
Let X € X°(M).
—1 . (s o —1
(¢c) T(por™')o (1dn(ﬁ;mﬁ;)’ X.) = (1d¢(UmU¢),X¢) oporL.
Additionally, let V- C U, such that im (Tk o X|y) C Di.
(d) Then koexp,oX o k= expy, o(ide(vy, Xix) on K(V).

Proof. These are easy computations involving [Remark B.3.5 O

B.3.2. Riemannian exponential function and logarithm on open subsets of
Rd

We examine functions that arise as the composition of the second component lg, of the
Riemannian logarithm or the exponential map exp, with functions of the form (id, X).
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Of particular interest are estimates for the function values and the values of the first
derivatives of such functions.

We also derive a sufficient criterion on a vector field X that ensures that exp, o X is
injective, and gives a lower bound for the size of its image. Further, we use that lg  is the
fiberwise inverse function to exp,, and apply the parameterized inverse function theorem
[Proposition A.2.19] We will get estimates for the domain and the first partial derivative
of lg, in terms of those numbers for exp,.

For open nonempty U C R¢, we will tacitly identify TU with U x R¢ and, for z € U,
T,U with R%.

Superposition with the Riemannian exponential map

We start with the exponential map.

Estimates for function values and the first derivatives We derive estimates for the
function values and first derivatives of exp, o(id, X). This is mostly done using the mean
value theorem and the triangle inequality.

Definition B.3.7. Let d € N*, U C R? an open nonempty subset, g a Riemannian metric
on U and K C U a relatively compact set. Using standard compactness arguments,
we see that there exists 7 > 0 such that K x B;(0) C DgE (note that this implies

exp, (K x B(0)) C U). We denote the supremum of such 7 by If the metric
discussed is obvious, we may omit it and write R?{,U- Now let 0 < § < R[E(’U. We define

E(1)].
Crisg|= supllexpy iy 1= D2 expyllie o o
rzeK
and
£2 . _
CK,&Q '_ HengHl?xE;(o)’z'
As above, if the metric discussed is clear, we may omit it and just write Cﬁ’gl) or Cg’g,
respectively. Note that [[expy|l1, — 02 relates to the norm |[(v,w)| = max(||v|, |w]|)
5

on R4,

Lemma B.3.8. Let d € N*, U C R? an open nonempty subset, g a Riemannian metric
on U, K CU a relatively compact set and 0 < § < RJIEQU'

(a) Then for all x € K and y € Bs(0) the following estimate holds:
E,(1
lexpy(2.9) — ]l < Oyl

(b) Let X : K — R% with || X|l1,.0 < 6. Then for all v € K, the following estimate
holds:
. . E,(1
|(exp, o(ide, X)) (@) ~idxe ()] < Cief” | X ()]
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Proof. @ We calculate using the mean value theorem
1
expg(a?,y) —T= expg(a:,y) - eng(CC,O) = /0 Dexpx(ty) : ydt

From this and the definition of Cﬁ’gl), we easily derive the assertion.

)

@ This is an easy consequence of @ O

Lemma B.3.9. Let d € N*, U C R% an open nonempty subset and g a Riemannian
metric on U. Further, let W C U be an open, nonempty, relatively compact subset and
) G]O,R%U[. Then for each X € CY(W,RY) with || X |1,,.0 < 6, we have

[ D((expy o(idw, X)) — idw)(z) - v]|

< llexpgyll1 2[(0, X (2)) || |(v, DX (z) - v)[| + | DX (z) - v]]

W xBg(0)’

for x € W and v € R In particular, if we endow R?? with the norm ||(v,w)| =
max(|[v]|, |w]]) and assume that || X||1,,1 < 1, we get the estimate

| D((expg oidw, X)) — idw)(@) |op < Cii |1 X (@)]| + | DX () [op-
Proof. Let z € W and v € R%. Then we calculate using that v = Dexpy(z,0) - (v,0) =
Dexp,(z,0) - (0,v) and 0 = D exp,(z,0) - (DX () -v,—DX(z) - v)
D(exp, o(idw, X) —idw)(z) - v
—Dexp, (2, X(2)) - (v, DX (x) - v) — Dexp, (#,0) - (v,0)
+ Dexp,y(z,0) - (DX(x) - v, -DX(x) - v)
=Dexpy(z, X(z)) - (v, DX(x) - v) — Dexpy(z,0) - (v, DX(x) - v) + DX(x) - v.
For the difference we derive using the mean value theorem
(D expg(va(:C)) - Deng(fE,O)) ’ (Ua DX(:L‘) ’ U)
1
= / D(D exp,)(x,tX(z)) - (0, X(x))dt - (v, DX(x) - v).
0

From this, the assertion follows. ]

On invertibility and the size of the image Having established the estimates, we can
give a criterion on when exp, o (id, X) is injective, and how large its image is. The main
tool used is a quantitative, parameterized version of the inverse function theorem that is
provided in [Theorem A.2.18|

Lemma B.3.10. Let d € N*, U C R? open, g a Riemannian metric on U, 7 > 0 such
that B;(0) C U and k € N with k > 1. PFurther, let ¢ €]0, 5[, v €0, RE o [ and
d >0 with 6 < min(Qcéglo))V?l/, 4(05;2(2)#4_1)). Then for X € C*(B,(0),RY) such that
[ X 15,000 <6 and [[X|l15 o1 < §, the map expy o(idp, o), X) is a CF-diffeomorphism

onto its image, which is an open subset of R% and contains Bi(1-25)(0).
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Proof. By [Lemma B.3.8 for a function X with || X[[1, 0 < min(v, ﬁ), we have

Br(0),v
er
Jexp, (0, X(0)) < (t
We set W := B,.(0). Since || X1, .0 < m and || X1, 1 < § <1, we see

Br(0),v

with [Lemma B.3.9| that |lexp, o(idw, X) —idw |15 )1 < 5. This implies that
1D (expg o(idw, X))(y) — D(expy o(idw, X)) (@)lop < €
for all z,y € B,(0), and that D(exp,o(idw, X))(0) is invertible with

IDexp, oG X)O) oy < 775 (i)

1
exp, o(idw,X))(0) " Hlop
[Theorem A.2.18|to see that exp, o(idw, X) is a diffeomorphism onto its image and that

1
xpy oG, X))(0) op E)‘ From
this we deduce using and the triangle inequality (where we need € < %) that the
image of exp, o(idy, X) contains B, (1_2.)(0). O

Since € < %, we conclude that e <1 -5 < D0 . Hence we can apply

the image contains B, (exp,(0, X (0))), where r’ =r (HD(

Superposition with the Riemannian logarithm

We examine lg,. In particular, we use that lg, is the fiberwise inverse function to exp,,.
We show that its domain Dug is a neighborhood of the diagonal, and that we can quantify
what is contained in it; and we give estimates for its first derivative.

Further, we examine maps that arise as the composition of lg, with maps of the form
(id, X +id). Of particular interest are estimates for the function values and the derivatives
of these maps.

Uniform estimates for Riemannian norms We start by establishing estimates for the
Riemannian norms and a given norm on RY.

Lemma B.3.11. Let d € N*, U C R? open, g a Riemannian metric on U. Then for
each x € U, there exist V € U°(z) and ¢,C > 0 such that

el < I-lg, < ClI-|

forallyeV.

Proof. In the proof, for x € U we let G, denote the matrix (g((x,e;), (z,€;5)))1<i,j<d-

There exists C > 0 such that |-||;, < C||-||. Further, for ¢ > 0 there exists V € U°(z)
such that

Gy — Gzllop < €
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for all y € V.. Hence for y € V and h € R¢,

1115, = (B, Gy-h) = (b, Gu-h)+(h, Go-h) = (h, (Gy—Ga)-h)+ ||, < e||bl*+C?|[h]]*.

gz —

From this, we easily deduce the first estimate.
For the second estimate, we have for y € U and h € R¢ that

I, = . Gy ) = (Ay o Ay B = 1Ay BB = 1B
where A, = /G,,. Since the map y — Hw/GyilHOp is continuous, and there exists ¢ > 0
such that ||-||2 > ¢||-||, we see that the assertion holds. O

Definition B.3.12. Let d € N*, U C R% an open nonempty subset, ¢ a Riemannian
metric on U and K C U a relatively compact set. We define

sup{c > 0: (Vo € K) || < |[llg.}
inf{C >0: (Vo € K)|[|[lg. < C|-II}

Note that because of |[Lemma B.3.11 Q% €]0, 1].

QU=

Applying the parametrized inverse function theorem We use [Proposition A.2.19|to
derive estimates for the domain and the first derivatives of lg,, under a certain condition

on the partial differentials of exp,. Further, we show that DgL is a neighborhood of the
diagonal.

Definition B.3.13. Let d € N*, U C R? open, (U, g) a Riemannian manifold, V a
nonempty relatively compact set with V' C U and o €]0,1[. We define

Ry, ,|:= sup{r €]0, R{;’U[: (Vz € V) |lexp, — ide||1§r(D),1 <o}

If the metric can not be confused, we may omit it in the notation and just write Ry .
Note that Ry, > 0 as one can prove using compactness arguments and |(B.3.1.1),

Lemma B.3.14. Let d € N*, U C R? open, g a Riemannian metric on U, V C U an
open, nonempty, relatively compact set, o €]0,1[ and 7 €]0, R}, [. Then the following
assertions hold:

(a) O <1+o0.
Let x € V. Then
(b) exp, |B.(0) s a diffeomorphism onto its image,

(¢) Ba—o)r(z) C exp,(B(0)) for all r € [0,7], and

(d) (exp, ’731(0)”3(1,0%(&;) is lio -Lipschitz.

Finally, assume that T < Q%R&U. Then

191



B.3. Riemannian geometry and manifolds

(e) Upev{z} x exp,(B-(0)) C DgL.

Proof. The assertion about C T( ) follows from a simple application of the triangle
inequality to || Dg exp, £ idga|lep. To prove.. let z,y € V. Then for each z € B,(0),
we have

| D2 exp,(x, 2) — Daexp,y(x,0)|op = [ D2 exp,y(w, 2) — idgallop < o

Further, 0 < 1 = . So we can apply |Proposition A.2.19|to derive the

1
(D2 expy (2,0) ~Hlop X
assertions about exp, |g, (o) and (exp, ET(O))|B(170>T(96)‘

@ We see using [Lemma B.3.11{and standard compactness arguments that for each
zeV,

B-(0) € BJ(0) € B (0);

Qg

7
here C' denotes the denominator in the definition of Q.. Since QT—% < R‘gﬂ , by our
assumption, we see with that each map exp, | B%,(0) is injective, and can conclude
that {z} x exp,(B-(0)) C Dy O

Estimates for function values and first derivatives Before we establish the estimates,
we make the following definitions.

Definition B.3.15. Let X be a normed space, S C X and 7 > 0. We set

= J{e} x By(z) and  S*7:= |J{z} x B:(x).

€S xeS

Definition B.3.16. Let d € N*, U C R% an open nonempty subset, ¢ a Riemannian
metric on U and K C U a relatively compact set. By [Lemma B.3.14| (more precisely, |(c)|

and , there exists 7 > 0 such that K~ C DgL . We denote the supremum of such 7 by
i

f the metric discussed is obvious, we may omit it and just write R%(,U'
Now let 0 < 6 < Rk K- We define

Kb, = SupHTr2 Ologz’HlB 5@k = || D2 lggul ><57
z€K

and

L2].
CK,(S,g = nggulfytgﬂ'

As above, if the metric discussed is clear, we may omit it in the notation and just

write CI]:(’E;I) or C’[L(%, respectively. Note that ||-[1__, o relates to the norm ||(v, w)|| =
b b ?

max([[v]], [lw]]) on R,

We rephrase some results of
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Lemma B.3.17. Let d € N*, U C R? open, g a Riemannian metric on U, W C U an

open, nonempty, relatively compact set, o €]0,1[ and T €]0, R%v,oQ%V[- Then Cf‘,z(Tl) <

l4+o,(1-0)T< RI%,?U and Cé}((ll)_U)T < L.

Proof. The assertions follow from O
Now we prove the estimates.

Lemma B.3.18. Let d € N*, U C R% an open nonempty subset, g a Riemannian metric
on U, K CU a relatively compact set and § €0, R%(,U{-

(a) Then for all x € K and y € Bs(z) the following estimate holds:
L,
ligy(x.y -+ 2)[ < Cg .

(b) Let X : K — R® with | X |10 < 8. Then for all x € K, the following estimate
holds: L
g, oidse, X +idse)) ()] < g 1X ()]

Proof. @ We calculate using the mean value theorem and lg,(z,z) = 0:
1

From this and the definition of CIL{’E;), we easily derive the assertion.
This is an easy consequence of @ O

Lemma B.3.19. Let d € N*, U C R? open, g a Riemannian metric on U, W C U an
open, nonempty, relatively compact set, T €]0, R%V’U[ and X € CY(W, B;(0)). Then for
zeW

. . L,(1
|D(g, ofidw, X +idw))(@)]lop < CF2 IX @) + CROIDX (@)l (B.3.19.1)

Proof. We get with the Chain Rule that

D(lg, o(idw, X +idw))(x) = Dlg,o(idw, X +idw)(z) - (Id, DX (x) + Id)
= Dlg,o(idw, X +idw)(2) - (Id,1d) + D2 lg, o(idw, X +idw)(z) - DX (z).

We get the desired estimate for the second summand, and now treat the first. To this
end, let v € R%. Then we get, using that Dlg(z,z) - (v,v) =v—v=0:

Dlg,o(x, X(z) + ) - (v,v) — Dlgy(x,z) - (v,v)

_ /01 D(Dlg,)(w,z + X (x)) - (0, X (2)) dt - (v,v).

From this, we also get the desired estimate. O
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C. Quasi-inversion in algebras

We give a short introduction to the concept of quasi-inversion. It is a useful tool for the
treatment of algebras without a unit, where it serves as a replacement for the ordinary
inversion. Many of the algebras we treat are without a unit. Unless the contrary is stated,
all algebras are assumed associative.

C.1. Definition

Definition C.1.1 (Quasi-Inversion). Let A denote a K-algebra with the multiplication
. An x € A is called quasi-invertible if there exists a y € A such that

r+y—zrzxy=y+x—yxx=0.

In this case, we call [QI4)z) := y the quasi-inverse of z. The set that consists of all
quasi-invertible elements of A is denoted by The map A9 — A?: z — QI4(x) is
called the quasi-inversion of A. Often we will denote Q14 just by Q1.

An interesting characterization of quasi-inversion is

Lemma C.1.2. Let A be a K-Algebra with the multiplication x. Then A, endowed with
the operation
AxXxA—A:(rv,y)—»xoy:=x+y—x*y,

is a monoid with the unit 0 and the unit group AY. The inversion map is given by QI 4.
Proof. This is shown by an easy computation. O
In unital algebras there is a close relationship between inversion and quasi-inversion.

Lemma C.1.3. Let A be an algebra with multiplication * and unit e. Then x € A is
quasi-invertible iff x — e is invertible. In this case

Qla(z) = (x—e) ' +e
Proof. One easily computes that
(A,0) = (Ayx) iz~ e—x

is an isomorphism of monoids (¢ was introduced in [Lemma C.1.2)), and from this we

easily deduce the assertion. O
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C.2. Topological monoids and algebras with continuous
quasi-inversion

In this section, we examine algebras that are endowed with a topology. For technical
reasons we also examine monoids.

Definition C.2.1. An algebra A is called a topological algebra if it is a topological vector
space and the multiplication is continuous.

A topological algebra A is called algebra with continuous quasi-inversion if the set A4
is open and the quasi-inversion QI is continuous.

A monoid, endowed with a topology, is called a topological monoid if the monoid
multiplication is continuous.

A monoid, endowed with a differential structure, is called a smooth monoid if the
monoid multiplication is smooth.

Remark C.2.2. If A is an algebra with continuous quasi-inversion, then QI is not only
continuous, but automatically analytic, see [Gl602a).

In topological monoids the unit group is open and the inversion continuous if they are
so near the unit element:

Lemma C.2.3. Let M be a topological monoid with unit e and the multiplication *.
Then the unit group M™* is open iff there exists a neighborhood of e that consists of
invertible elements. The inversion map

I:M* = M*:zw !
s continuous iff it is so in e.

Proof. Let U be a neighborhood of e that consists of invertible elements and m € M*.
Since the map
by : M — M :z—mx*zx

is a homeomorphism, ¢,,(U) is open; and it is clear that ¢,,(U) C M*. Hence M* =
Umerrx&m (U) is open.

Let I be continuous in e. We show it is so in x € M*. For m € M*, we have
-1

1 1

Im)=m 7t =m T sxrxa =@ sm) el =(pp10l0l,1)(m), (1)

where p,-1 denotes the right multiplication by 2~!. Since I is continuous in e and

l,-1(x) = e, we can derive the continuity of I in = from O

For algebras with a continuous multiplication we can deduce

Lemma C.2.4. Let A be an algebra with the continuous multiplication x. Then A1
is open if there exists a neighborhood of 0 that consists of invertible elements. The
quasi-inversion QI 4 is continuous if it is so in 0.

Proof. Since the map
AxXA—=A:(zyy) »x+y—xxy

is continuous, we derive the assertions from [Lemma C.1.2| and [Lemma C.2.3] O

195



C.2. Topological monoids and algebras with continuous quasi-inversion

A criterion for quasi-invertibility We give an criterion that ensures that an element
of an algebra is quasi-invertible. It turns out that it is quite useful in certain algebras,
namely Banach algebras.

Lemma C.2.5. Let A be a topological algebra and v € A. If 352, a° exists, then x is
quasi-invertible with

Qls(x) =— Z ',
i=1

Proof. We just compute that x is quasi-invertible:
T+ (—sz> — % (—Zm’) = —Zm’—}—ZxZ =0.
i=1 i=1 i=2 i=2

The identity (— 352, 2) + 2 — (= 3.5°, 2%) * z = 0 is computed in the same way. So the
quasi-invertibility of x follows direct from the definition. O

Quasi-inversion in Banach algebras

Lemma C.2.6. Let A be a Banach algebra. Then B1(0) C A%. Moreover, for x € B1(0)
> .
Qls(x) = — Z x'.
i=1

Proof. For x € B1(0) the series .3°, x* exists since it is absolutely convergent and A is

complete. So the assertion follows from [Lemma C.2.5] O

Lemma C.2.7. Let A be a Banach algebra. Then A? is open in A and the quasi-inversion
Q14 is continuous.

Proof. This is an immediate consequence of [Lemma C.2.6] and [Lemma C.2.4] since

0 .
T Z:U’
i=1

is analytic (see [Bou67, §3.2.9]) and hence continuous. O
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Notation

The following list contains the symbols that are used on several occasions, together with
a short explanation of their meaning and the page number where the respective symbol is
defined. For better overview, the entries are arranged into the categories basic notation,
spaces of weighted functions, Lie groups and manifolds, groups and monoids of functions
and further notation.

d®) ¢
D)y

D

dist(A, B)
WierUs

K

Lipf(¢)

N
N*
R

BCF(U,Y)
BCo*(U, V)
BCH(U,V)o
C(U,V)
Ck,(UY)

CoF (U, V)
Ch(U,Y)°

Basic notation
Open ball with radius r around x
Like B, (m)}, here with indication of the space X
Closed ball with radius » around x
The set of all k times differentiable functions from U to Y
The set of all k times Fréchet differentiable functions from U to
Y
k-th iterated derivative of f
k-th Fréchet derivative of ~
The closed unit disk in R or C
Distance between A and B
The disjoint union J;c;{i} x U;
The field R or C
The Lipschitz constant for a map ¢ with respect to the seminorms

b, q
NU{oo} = {00,0,1,...}
N\ {0}

R U {—00, 00}

Spaces of weighted functions, and related notation
The set of k-times differentiable functions from U to Y that and
whose derivatives| are bounded
The functions v € BC*(U,Y )| such that [dist(y(U),Y \ V)|> 0
The subset of functions in |[BC* (U, Y")| mapping 0 to 0
The compactly supported smooth functions defined on U taking
values in V'
The set of k-times differentiable functions from U to Y that and
whose derivatives| are V-bounded
The functions v € Cy;,(U, Y )| such that [dist(v(U),Y \ V)|> 0
The set of functions in [Cy,(U, Y)| whose seminorms decay outside
of bounded sets
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cE(UY)®

cE (U, V)®
Y,k
‘Wi

D(U,V)

11 .

QU,V

Whnax

Yk
‘w.e

CE (Ui, Yi)ier

Notation

The set of functions in|C}), (U, Y')|whose seminorms decay outside

of compact sets
The set of functions in |Cyy, (U, Y)®| taking values in V'

The map (v,n) — 7o (n+ id), restricted to certain [weighted
lfunction spaces|

See|C(U, V)

The map ¢ — (¢ +idy)~! — idy, defined on QW[’

Supremum of the of the [k-th Fréchet derivative

multiplied with f. These quasinorms define the spaces |f7113V(U ,Y)

The maps ¢ g Cyy (U, X)| for which ¢ + idy is injective, and its

image contains V'

For W , the set of functions f : U — R such that is
continuous on |Cyy, (U, Y)| for each normed space Y. Called the

maximal extension of W.

Lie groups and manifolds
The left evolution
The endpoint of the left evolution
The right evolution
The endpoint of the right evolution
The exponential function of the Lie group G
For a group action w, this denotes some kind of “derivation” at
the unital element
The Lie algebra functor
The left logarithmic derivative
The right logarithmic derivative
The tangent bundle of the manifold M
For a differentiable map f : M — N between the manifolds M
and N, this denotes the tangent map [TM]— TN

The restriction of to and T, N, respectively
For a C'-map f defined on a product M x N, these denote the

partial ffangent maps

The tangent space at the point x of the manifold M
The set of smooth vector fields of the manifold M

Restricted products
Has two meanings. If Y = (Y;);es is a family and the weights in
W have their domain in a disjoint union (also indexed over I),
this is the product [];c; C}//\l}fz : (Yismi)ier = (yio (i +1id))ier
For families (U;)ier, (Yi)ier of open sets resp. normed spaces and
W C I'\’M the space 30((61’3\/2-((]2’7 Y:))ier)l Here J consists of

the seminorms [[[-[7.
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Col (Ui, Yiier
CE (M, TM) 4
Cy ™ (Ui, Vi)ier
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AHB
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Notation

This is Ci\l,UiEIUi)‘yk(Ui, Vi)ier
The subspace of |Cyy, , (Ux, R?) e A| that consists of vector fields
The functions in Cﬁz(Ui, Y;)ic1| which not only take their values
in (V;)ier, but whose image also has a distance from (Y; \ V;)ier
which is adjusted by w (which must not take 0 as value)

The inclusion map from |C{§V (M, TM)A| to |61’ij (U, Rd),.gefd
Has two meanings. If V' = (V;);cs is a family and the weights
in W have their domain in a disjoint union (also indexed over
I), this is the product [];c; 11‘//\31_ (di)ier = (¢ +1idy,) v, —
idy; )ier, where each U; is a certain superset of V;

For a family (E;);cs of locally convex spaces such that for each
space there exists a family (pz) jeg of generating seminorms, the

subset of [[;,c; E; to the seminorms (supielpg o Ti)jet

e :
Thequasmorm on [;er Gy (U3, Y;) for f € R and / € N
with ¢ < k. Defines |Cy,(U;, Y:)ier
Has two meanings. The first is as the for

[L.ca CF (U, RY) (where U, is the image of k and £ < k). The
second is as quasinorm on vector fields, which is defined by the
applying the quasinorm to the family (X )xea of localizations.
With its second meaning, defines the space CW5 (M, TM)4

EVsl

LVs

(Simultaneous) Superposition with

(Simultaneous) Superposition with

Riemannian geometry and manifolds
For two atlases A, B for the manifold M, this is the atlas that
consists of the charts of A whose domains have been intersected
with the chart domains of B. Can be indexed over
For two atlases A, B for the manifold M, this denotes the subset
of the product A x B where the two chart domains have nonempty
intersection
Certain “localizations” for objects defined on a manifold and
a chart k for the manifold. Defined for vector fields, metrics,
functions

For f € RY and an atlas A for M , this is the family of localiza-

tions KEA

For W C R and a chart & for M , this is the set of localizations
{f: feW)

For W C RY and an atlas A for M, this is the set : few}
of localized families

For a relative compact subset K C U C R and a Riemannian
metric g on U, this term compares a given norm on R¢ with the
norms defined by g
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Notation

The exponential function to the Riemannian metric g. Defined
on

The maximal domain for the [Riemannian exponential function| @
to the Riemannian metric g

The logarithmic function to the Riemannian metric g. Defined |187
on

The domain for the [Riemannian logarithm|to the Riemannian (187
metric g

For a Riemannian manifold (U, g), where U C R? is open, this [187]

s

Further notation involving Riemannian exponential function and logarithm

E.g
RK,U

Kw
Cyy (U, G)

—
0.]
0

tively compact K C U and ¢ this is the number

HD?GngHlXXEé(oyO

For a Riemannian manifold (U, g) with U C R? open, rela-
RKi?]l?

For a Riemannian manifold (U, g) with U C R? open, rela-
RK’?JL

—
09]
(0.9]

tively compact K C U and § this is the number
llexpy 1

For a Riemannian manifold (U, g) with U C R open, relatively
compact K C U and § leng, the number || Dz lg,[|1

fx§5(0)72

—
Ne}
| \)

_ =550
K><6’

—
e}
[\)

For a Riemannian manifold (U, g) with U C R open, relatively
compact K C U and § RII}’gU, the number |[lg |1

2

%5
For a Riemannian manifold (U, g) with U C R¢ opeg, relatively
compact K C U and ¢ , the function K x Bs(0) — U :
(l’,y) (l‘,y) -z

For a Riemannian manifold (U, g) with U C R¢ open, relatively
compact K C U and 9 , the function K x Bs(0) — R :
(z,y) =gz, z +y)

For a Riemannian manifold (U, g) with U C R? open and rel-
atively compact K C U, the supremum of all 7 such that
K x B.(0)

For a Riemannian manifold (U, g), where U C R? is open, rela-

tively compact K C U and o €]0, 1], this is the supremum of all
T < Rf(’,gU such that ||exp, — idga] 1<oforzekK

& [E

—
Q0
029]

—
Ne)
[y

15 )
For a Riemannian manifold (U, g) with U C R? open and rel- (19
atively compact K C U, the supremum of 7 > 0 such that
U,crele} x Br(x) DY

Groups and monoids of functions
The inverse of the canonical chart for [Endyy(X)|and [Diff,, (X)|
Lie group of weighted mappings that take values in a Banach |12

Lie group, modelled on Cj,,(U, L(G))

[\)

B

[079)
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Coy(U, G)*
Ciy(U, )2
Diff (X))
Diff (M)
Diff 5 (R")
Diffy,, (X)
Diffy,, (X)°
Diff (X )o
Endyy(X)

Endyy(X)°

L*(X,Y)

”7 p,f.k

I[lo
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Notation

Lie group of decaying weighted mappings that take values in a
Lie group, modelled on [C (U, Y)*

Lie group normalizing (C),, (U, G)*®

The set of all diffeomorphisms of the Banach space X

The diffeomorphisms of a manifold M that coincide with the
identity outside some compact set

The set of diffeomorphisms of R™ differing from idr~ by a rapidly
decreasing R"™-valued map

The set of weighted diffeomorphisms of the Banach space X to
the weights W. Is a Lie group modelled on

IDiffyy, (X)[ Endyy (X)°|

The identity component of Diff,,(X)

The set of weighted endomorphisms of the Banach space X to
the weights W

The functions ¢ € Endyy(X)|such that ¢ —idx g CyH(X, X)°

Further notation
Space of k-linear maps from the normed space X to the normed
space Y, endowed with the topology induced by the

For a locally convex space X, this denotes the set of continuous
seminorms on X

For a locally convex space X and p this denotes the
quotient space X/p~1(0)

For a locally convex space X and p this denotes the
quotient map X

For a suitable map v taking values in the locally convex space
Y and p this is: fk

The operator norm of a k-linear map between normed spaces
The of the linear operator T : X where X
is a normed space and Y a locally convex space, with respect to
p

Quasi-Inversion map — A7 of the algebra A

The set of quasi-invertible elements of the algebra A
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Index

minimal saturated extension, {102

analytic maps, [159
superposition, see superposition with
an analytic map
atlas
adapted to,
locally finite,
subordinate to, 02]

bounded maps,
composition of,

centered chart,
compactly supported diffeomorphisms, [6]
density in Diffy,,(X)°,
inclusion of, [T10]
complexification
good,
simultaneous,
of maps, [161
of power series,
composition
of bounded maps, see bounded maps,
composition of
of bounded maps and weighted maps,
of weighted maps,
simultanuous,
of weighted maps und certain subsets
of Lie groups,
construction of
an adjusted weight,
saturated weights, [102]

diffeomorphisms,

205

compactly supported, see compactly
supported diffeomorphisms
groups of, [6]
semidirect product with, see semidi-
rect product

on manifolds, [T03]
weighted, see weighted diffeomorphisms

good complexification, see complexifica-
tion, good

localization
of metrics, [187]
of vector fields,
of weights, [92]
locally bounded,

mapping groups
with values in a Banach Lie group,
2
with values in a locally convex Lie
group, [135}, [146} [T50]
multipliers,

simultanuous,
quasi-inversion, [194]

regularity,
of C}, (U, @),
of Diffyyy (X),
of Diffyyy(X)°,

semidirect product,
of Cy5(X, G) and Diffy,,(X), [132
of Diff),,(X)o and a Lie group acting
on X,
smooth monoid, [195]

smooth normalizer, [136



Index

superposition
simultaneous
with analytic maps,
with bounded maps, [86]
with differentiable maps,
with multilinear maps, [82]
with a bounded map,
with a differentiable map, [34]
with a multilinear map,
with an analytic map, 29]

weight
adjusted to,
construction, see construction of
an adjusted weight
adjusting for,
locally bounded,
weighted diffeomorphisms,
decreasing, [63]
easier description, [64]
weighted maps
decreasing, [13] [40]
into Banach Lie groups, [12§]
into locally convex Lie groups, [135
[L36} [140]
into locally convex spaces,
into normed spaces,
weighted vector fields, [92]
weights,
minimal saturated extension, [102]
locally bounded,
maximal extension, [I14]
multiplicative,
saturated, [L00]
construction, see construction of
saturated weights
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