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Zusammenfassung

Seit der Weltpremiere von Cabri Géomètre 1988 hat sich die Software für Dynamische Geo-

metrie (DGS) als hilfreiches Werkzeug beim Treiben von Elementargeometrie etabliert. Von

Anfang an ging es selbstredend auch um das Lehren und Lernen von Geometrie mit DGS.

Hierbei hegte man hohe Erwartungen an das heuristische Potenzial beim Problemlösen, bei

der induktiven Satzfindung usw. In der vorliegenden Arbeit gehe ich zwei Forschungsfragen

nach: (i) Wie wirkt sich DGS auf das Beweisverständnis der Lernenden aus? (ii) Wie verwen-

den sie den Zugmodus, und welchen kognitiven Nutzen ziehen sie aus diesem? Bei meinen

Lernenden handelte es sich um Studierende des Grund- und des Hauptschullehramts an der

Universität Paderborn, deren Umgang mit der DGS ich im Rahmen eines teilstandardisierten

Interviews nach Mayring beobachtete, um anschließend die Transkripte mit der Methode der

Objektiven Hermeneutik nach Oevermann auszuwerten. Es ergaben sich folgende Befunde:

(i) Wer überhaupt ein unangemessenes Verständnis vom Wesen mathematischer Beweise hat,

neigt zum Glauben an eine - bekanntlich nicht vorhandene - Beweiskraft der DGS. (ii) Wer

im Umgang mit dem Zugmodus unerfahren ist, hat oft ausgeprägte handwerkliche kognitive

(!) Probleme mit diesem. Insgesamt werden entsprechende frühere Untersuchungen bestätigt,

nach denen das unbestritten vorhandene didaktische Potenzial der DGS sich beim Geometrie-

treiben keineswegs von selbst realisiert.



Abstract

Since the appearance of the computer geometry program Cabri Géomètre in 1988, Dynamic

Geometry Environments (DGE) have shown themselves to be useful tools for doing work in

elementary geometry. From the beginning, it has been clear that these were tools for the te-

aching and learning of geometry as well. Thus, high expectations surrounded their heuristic

potential to aid in problem solving, for inductive proofs, etc. In this thesis, I am investiga-

ting two research questions: (i) What are the effects of DGE on a learner’s understanding of

geometrical proofs? (ii) How do they use the drag mode and what cognitive benefit do they

obtain from their use of it? The learners for this study were mathematics teacher students

at the University of Paderborn. Their interaction with the DGE was observed and recorded

within the framework of semi-structured interviews according to Mayring; afterwards the

transcriptions from the interviews were evaluated based on the principles of Objective Herme-

neutics according to Oevermann. The results found were the following: (i) Those students

with an inappropriate understanding of the nature of a mathematical proof tend to believe

in an implicit ability of the DGE to prove statements - an ability which is known to be non-

existent. (ii) Those students with little or no experience with the drag mode display technical

cognitive (!) problems in using it. In general, the results of earlier studies have been confirmed,

according to which the undeniable didactic potential of DGE will in no way realize by itself.
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Kapitel 1

Einleitung

„Auch ist gerade dies für den Menschen am schwersten zu erkennen: das am meis-

ten Allgemeine; denn es liegt am entferntesten von den Sinneswahrnehmungen“

(Aristoteles 1995)

Die vorliegende Arbeit beschäftigt sich mit dem Einsatz von Dynamische Geometrie Soft-

ware in der Elementargeometrie, im weiteren abgekürzt als DGS. In der Literatur wird DGS

zum Teil auch mit „Dynamische Geometrie Systeme“ gleichgesetzt, beispielsweise bei Hischer

(2002). Im Grunde genommen sind beide Sprachgebräuche nicht ideal, da nicht die Software

oder das System dynamisch ist, sondern allenfalls die Geometrie. Und auch die Geometrie ist

nicht im eigentlichen Sinne dynamisch, weil keine physikalischen Kräfte wirken, sondern be-

weglich, so dass die korrekte Terminologie „Software für bewegliche Geometrie“ lauten müsste.

Wenn ich im weiteren Verlauf der Arbeit nur noch die Abkürzung „DGS“ verwende, wäre es

mir am liebsten, der Leser und die Leserin würde dies mit der letztgenannten Deutung ver-

binden.

Für die Untersuchung habe ich Studierende der Universität Paderborn, die das Fach Mathe-

matik auf das Lehramt Grund- bzw. Haupt-, Real- und Gesamtschule der entsprechenden

Jahrgangsstufen (G bzw. HRG) studieren, beim Bearbeiten von Geometrieaufgaben unter

Verwendung von DGS beobachtet und anschließend zu ihren Einschätzungen bezüglich des

Einsatzes des Programms befragt. Die in diesem Zusammenhang zentralen Fragestellungen

nehmen einerseits den Spannungsbogen zwischen dynamischer (eigentlich: beweglicher, s.o.)

Visualisierung, Beweisvorstellungen und Beweisbedürfnis in den Fokus, andererseits den Ein-

1



Kapitel 1. Einleitung

satz des Zugmodus, der ja eines der prägnantesten Merkmale einer DGS ist.

In den Kernlehrplänen des Landes Nordrhein-Westfalen für das Unterrichtsfach Mathema-

tik ist für die Schulformen Realschule, Gymnasium und Gesamtschule der Einsatz von DGS

vorgeschrieben. So wird beispielsweise im Kernlehrplan für die Realschule unter der prozessbe-

zogenen Kompetenz „Medien und Werkzeuge verwenden“ formuliert: „Sie [die Schülerinnen und

Schüler, G.W.] setzen situationsangemessen den Taschenrechner ein und nutzen Geometrie-

software, Tabellenkalkulation und Funktionenplotter zum Erkunden inner- und außermathe-

matischer Zusammenhänge“ (MSW 2004, S.14). Der Wortlaut im Kernlehrplan für Gymnasien

ist gleichlautend (MSW 2007, S.20). Lediglich im Kernlehrplan für die Hauptschule wird der

Einsatz nur fakultativ formuliert, und dies auch nur für den mittleren Scbulabschluss: „Die

Schülerinnen und Schüler sollen Dynamische-Geometrie-Software zur Bearbeitung mathema-

tischer Situationen nutzen können“ (MSW 2011, S.20).

An der Universität Paderborn wird die Erstsemesterveranstaltung „Elemente der Geometrie“,

die Pflichtveranstaltung für Studierende des Lehramts Grundschule und HRG ist, seit dem

Wintersemester 1998 mit Einsatz von DGS gelesen. Dabei kommt die Software Cinderella

1.4 sowohl in der wöchentlichen zweistündigen Vorlesung als auch im Übungsbetrieb, der im

Computerraum stattfindet, zum Einsatz (für einen Überblick über die im deutschsprachigen

Raum vorwiegend genutzen DGS siehe Hattermann & Sträßer (2006)). Aufgrund der

Forderungen der Kernlehrpläne sollte eigentlich davon ausgegangen werden können, dass die

Studierenden bereits Erfahrungen im Umgang mit DGS haben, eine Einschätzung, die bei-

spielsweise Haug (2012, S.55) teilt: „Der Einsatz dynamischer Geometriesysteme (DGS) im

Mathematikunterricht ist inzwischen weitgehend gebräuchlich.“ Bei den in meiner Studie be-

fragten Probanden ist dies allerdings nicht der Fall gewesen. Stattdessen gaben viele an, in

der genannten Vorlesung erstmals in Kontakt mit einer DGS getreten zu sein.

Die Forschungslage über den Einsatz von DGS im Unterricht ist recht gut. Als Beispiel hierfür

seien, um nur einige zu nennen, die Arbeiten von Laborde (1993), Hölzl (1994), Hölzl

(1999), Henn (2001) und Arzarello et al. (2002) genannt. Das Problem allerdings ist, dass

in den wissenschaftlich untersuchten Unterrichtssequenzen die DGS unter sehr unterschied-

lichen Voraussetzungen und Bedingungen eingesetzt wurde, wie ich in Kapitel 2.2.2 zeigen

werde, so dass auch die Konsequenzen aus dem Einsatz unterschiedlich ausfallen. Tendenziell

kommen die meisten Wissenschaftlerinnen und Wissenschaftler allerdings zu dem Fazit, dass

2



die alleinige Anwendung von Technologie noch keinen Mehrwert darstellt. Stattdessen scheint

trotz DGS immer noch der Ausspruch von Euklid zu gelten: „Es gibt keinen Königsweg zur

Geometrie.“ Auch Sträßer (2002, S.65) stellt fest, dass beim Einsatz von DGS immer noch

viel zu überlegen ist, um sie gewinnbringend im Unterricht einzusetzen: „A lot of analytic and

constructive work ist still to be done to make use auf DGS a success story in teaching and

learning mathematics, especially Geometry.“

Ein interessanter Aspekt meiner Untersuchung besteht unter anderem darin, dass die befrag-

ten Studierenden entweder gerade erst mit ihrem Studium begonnen hatten oder kurz vor dem

Examen standen. Die Erstsemesterstudierenden, die, wie erwähnt, in ihrer eigenen Schullauf-

bahn in der Regel keine Erfahrungen mit DGS gemacht haben, sind ganz klar als Lernende im

Hinblick auf das Programm anzusehen. Ist nun bei den Studierenden in Examensnähe ein Per-

spektivwechsel hin zur Rolle des Lehrenden erkennbar? Zumindest müssten diese Studierende

im Laufe ihres Studiums, besonders im didaktischen Bereich, schon Erklärungskompetenzen

u.a. erworben haben. Dies könnte und sollte sich bedeutsam auswirken, da offensichtlich nur

ein kritischer und reflektierter Umgang mit DGS gelehrt werden kann, wenn man in der Lage

ist, seine eigene Interaktion mit dem Programm auf einer Metaebene abzuwägen. Insofern

wäre es möglich, dass sich zwischen den beiden Gruppen Unterschiede bezüglich des Einsatzes

der DGS in dem Sinne zeigen, dass die Älteren mehr von der Technologie profitieren können.

Im Zentrum dieser Arbeit stehen zwei wesentliche Fragestellungen. Zunächst einmal geht es

darum, welche Beweisverständnisse sich bei den befragten Studierenden finden lassen und wel-

che Anforderungen sie vor diesem Hintergrund an einen Beweis stellen, oder anders formuliert,

auf welche Art für sie der Nachweis für eine mathematische Aussage erbracht werden kann,

die dann von ihnen als allgemeingültig akzeptiert wird. Vor dieser Folie wird dann die Rolle

der DGS betrachtet, die je nach Beweisvorstellung eine völlig unterschiedliche sein kann. Da

auch in der mathematischen Kommunität die Frage, was ein Beweis ist und welchen Anforde-

rungen er genügen muss, nicht eindeutig beantwortet wird, wird vor der Analyse der diversen

Fallstudien in einem theoretischen Abriss reflektiert, warum überhaupt bewiesen wird und

welche Alternativen zum streng deduktiven Vorgehen, zum einen aufgrund der grundsätzli-

chen Praktibilität, zum anderen, gerade im schulischen Kontext, aufgrund der vorhandenen

Vorkenntnisse und verfügbaren Möglichkeiten, entwickelt wurden. Anschließend werden eini-

ge wissenschaftliche Untersuchungen zum Thema „Beweisen“, die in der Mathematikdidaktik

3



Kapitel 1. Einleitung

Beachtung gefunden haben, vorgestellt und kritisch beleuchtet.

Die zweite zentrale Fragestellung besteht in der Prüfung, ob die Studierenden den Zugmodus

als das mächtige heuristische Werkzeug einsetzen, als das er vielerorts angesehen wird, z.B.

von Hattermann (2011, S.5) im Rahmen seiner Untersuchung von 3D-Systemen:

„Es ist unbestritten, dass der Zugmodus die entscheidende und bedeutendste

Funktion in dynamischen Geometriesystemen darstellt, da er die dynamische

Geometrie von der statisch geprägten Geometrie des Euklid unterscheidet. Die

verschiedenen Funktionen des Zugmodus und das Erlernen seiner Handhabung

ist jedoch bereits in 2D-Umgebungen alles andere als einfach.“

Auch in diesem Zusammenhang werde ich allgemein anerkannte mathematikdidaktische For-

schungsarbeiten vorstellen und kritisch hinterfragen.

Insgesamt ist ein Ziel dieser Arbeit, die „Risiken und Nebenwirkungen“ beim Einsatz von DGS

in der Elementargeometrie deutlich zu machen, um so ein Bewusstsein dafür zu schaffen, wel-

che Ansprüche, Erwartungshaltungen und Vorstellungen, insbesondere auch Fehlvorstellungen

bei Studierenden durch den Einsatz dieser Technologie entstehen können. Dies ist besonders

vor dem Hintergrund wichtig, dass es sich bei den befragten Personen um zukünftige Lehrer

und Lehrerinnen handelt, die in ihrem späteren eigenen Unterricht Schülerinnen und Schülern

einen reflektierten und angemessenen Umgang mit der Software eröffnen können sollen, dabei

allerdings sicher dazu neigen, ihre eigenen Ansprüche, Haltungen, Vorstellungen usw. offen

oder unterschwellig auf die Schülerinnen und Schüler zu übertragen.
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Kapitel 2

DGS und Beweis

2.1 Zur Rolle von Beweisen

„Befragt man Lehramtsstudiernde oder auch beliebige Erwachsene nach ihren

Assoziationen zum Beweisen im Mathematikunterricht, so wird man mit großer

Wahrscheinlichkeit eine in weiten Teilen übereinstimmende Reaktion zwischen

Skepsis und vehementer Abwehr erfahren. Begriff und Tätigkeit des Beweisens

schrecken - meist bedingt durch eine individuelle Lernbiografie - offenbar ab:

Beweise sind formal, Beweise kann man als Nicht-Mathematiker nicht verstehen.

Und gar im Umkehrschluss: Ein einsichtiger Argumentationsgang kann schon

deshalb kein Beweis sein, weil man ihn verstanden hat“ (Krauthausen 2001,

S.99).

Die gefühlsmäßige Aversion gegen das Wort „Beweis“ ist nicht unbekannt und führt beispiels-

weise dazu, dass Dozentinnen und Dozenten in ihren universitären Lehrveranstaltungen bei der

Aufgabenformulierung lieber das Wort „Begründung“ verwenden, obwohl damit meist dasselbe

gemeint ist. Bei den Studierenden werden nicht nur die fehlenden Fähigkeiten zur Durchfüh-

rung eines Beweises bemängelt, sondern zudem noch die oftmals völlig fehlende Einsicht in

die Notwendigkeit eines Beweises:

„Dem offensichtlich breiten Konsens über die Legitimität der Forderung, das Be-

weisbedürfnis zu wecken, steht nun aber die Tatsache gegenüber, dass es anschei-

nend nur sehr partiell gelingt, diese Forderung auch zu realisieren. Wir beobachten
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nämlich bei Studienanfängern durchgehend eine ganz unbefriedigend ausgebilde-

tet Fähigkeit, einen Satz aus dem unverzichtbaren Kernbereich des Schulstoffes

zu beweisen. [...] Die so bezeugte Beweisunfähigkeit scheint mir zugleich ein In-

diz für ein unterentwickeltes Beweisbedürfnis zu sein. Meine Erfahrungen gehen

jedenfalls dahin, dass der größere Teil der Studenten auch gegenüber Sätzen, die

keineswegs klar sind, nicht unbedingt auf allgemeinen Begründungen besteht“

(Winter 1983, S.60).

In dieser keineswegs neuen Situation kommt nun die DGS ins Spiel. Wie auch Elschenbroich

feststellt (siehe Elschenbroich 1997), gibt es durchaus skeptische Mathematiklehrerinnen

und Mathematiklehrer, die befürchten, dass das ohnehin nur spärlich vorhandene Beweisbe-

dürfnis durch den Einsatz dieses Mediums noch zusätzlich reduziert werden könnte. Dass das

Beweisen elementarer Bestandteil des Mathematikunterrichts ist, steht außer Frage (vgl. bei-

spielsweise Walsch 1975, Winter 1983, Bender 1989, Krauthausen 2001, Reiss et al.

2006). Die entscheidende Frage ist, inwieweit der Beweis auch als Mittel zum tieferen Ver-

ständnis erfahrbar gemacht werden kann und nicht nur als formales Anhängsel angesehen

wird, das keine neuen Erkenntnisse bringt. Vor allen Dingen dann, wenn in der Geometrie

Sachverhalte bewiesen werden „müssen“, die auch anschaulich völlig evident sind, besteht die

Gefahr, dass die Schülerinnen und Schüler keinerlei Notwendigkeit für einen Beweis sehen. Um

dem entgegenzusteuern, wird häufig mit negativ besetzten Praktiken gearbeitet: das Vertrau-

en der Lernenden in die eigene Wahrnehmung wird erschüttert, beispielsweise durch opitsche

Täuschungen, Messergebnisse werden als Näherungswerte entlarvt und somit als ungenau er-

kannt. Die Reihe ließe sich beliebig fortführen. Holland (1996b, S.51) lehnt solche Praktiken

entschieden ab:

„Die in Schulbüchern vielfach geübte Praxis, die Schüler durch Hinweis auf op-

tische Täuschungen in ihrem Evidenzerlebnis zu verunsichern, um dadurch ein

Beweisbedürfnis zu begründen, ist aus zweierlei Gründen ungeeignet:

- Erstens wird hier verkannt, daß es beim Beweis eines anschaulich evidenten

Satzes gar nicht um die Wahrheitssicherung geht.

- Zweitens müßte man nach dem Beweis eines solchen Satzes auch konsequenter-

weise die Wahrheit derjenigen Sätze in Zweifel ziehen, die zum Beweis benutzt

werden. Damit manövriert man sich aber in eine Position, welche eine Verifikation
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geometrischer Aussagen überhaupt nicht mehr zuläßt“.

Auch Winter (1983, S.65f) hält den von Wahrnehmung und Anschauung abgekoppelten

Beweis für problematisch und betont die Rolle der Intuition:

„Und drittens bedarf es bei der We i t e r e n t w i c k l u n g von Wissen stets

intuitiv gehaltener Vorausschauen und Vorwegnahmen. Schon bei der Durchfüh-

rung eines (strengen) Beweises geht man ja nicht mechanisch vor, sondern orien-

tiert sich an einer groben, unelaborierten Beweisskizze. Die anschaulich intuitive

Praxis befleckt eben nicht die reine Theorie [...].“

Die Spannung zwischen Anschauung und Beweis sollte nicht in der abwertenden Kontras-

tierung anschaulichen Beweisens gegenüber formalem Beweisen münden. Die Diskreditierung

des Anschaulichen als ungenau, nicht wissenschaftlich und nur von heuristischem Wert gegen-

über dem Formalen als präzise, streng und wissenschaftlich hat oftmals die fatale Folge, dass

Schülerinnen und Schüler genauso wie Studierende der Ansicht sind, dass allein eine formal

verdichtete Sprache einen Beweis ausmacht. „Vorrangiges Ziel ihrer „Beweise“ war offensichtlich

die Symbolik oder das „korrekte“ Schließen, nicht aber die Herleitung der Beweisaussage“ stellt

auch Beckmann (2001, S.22) fest. Zudem fällt auf, dass Schülerinnen und Schüler oftmals

kein Vertrauen in den eigenen Beweis haben, denn trotz erfolgreich vollzogenem Beweis wird

die Sachlage lieber noch „zur Sicherheit“ an einem Beispiel überprüft. „Der mathematische

Beweis und der innere Glaube an die Wahrheit eines (mathematischen!) Sachverhalts sind

zweierlei“ (Bender 1989, S.131).

Ein Fokus dieser Arbeit liegt in der Rolle, die eine DGS in diesem Kontext einnehmen kann.

Grundsätzlich sind durchaus verschiedene Aspekte vorstellbar: Bender (2005, S.49) beispiels-

weise stellt fest, dass DGSe den „Glauben an den Beweis“ vertiefen, „indem sie ihn plausibler

erscheinen lassen“. Genau dies kann die Gefahr beinhalten, dass der Anwender oder die An-

wenderin den Eindruck hat, alles verstanden und durchschaut zu haben, gerade weil es durch

die Visualisierung so plausibel und einleuchtend wirkt. Dabei könnte das Beweisbedürfnis

komplett entfallen oder gar der Eindruck entstehen, dass die DGS den Beweis eigenständig

liefern kann. In den meisten Fällen allerdings wird durch die DGS eben nur scheinbar die

Allgemeingültigkeit eines Satzes gezeigt und nur in den seltensten Fällen wirklich bewiesen!

Inwieweit der Einsatz von DGS dennoch beim Beweisen neue Impulse geben und Schwerpunkte
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setzen kann, indem das Prinzip des entdeckenden Lernens gefördert und ein Beweisbedürfnis

aufgrund natürlicher Neugier geweckt wird, gehört zu den Fragen dieser Arbeit. A priori ist

meines Erachtens nicht ausschließlich davon auszugehen, dass ein Einsatz von DGS das Be-

weisbedürfnis automatisch verringert. Vielmehr halte ich es für denkbar, dass sich die Art und

Weise der Beweise verändern wird.

„Die Mathematik-Didaktik“ ist da eigentlich ein Stück weiter als die verbreite-

te Schul-Praxis und sieht die Rolle des Beweisens [...] im Herstellen von Zu-

sammenhängen und deren Plausibel-Machen (durchaus auch in einer positiven

Gedanken-Disziplinierung). Der Beweis soll also in erster Linie klären, warum

ein Satz gilt und bestenfalls in zweiter Linie, dass er gilt“ (Bender 2005, S.48).

2.1.1 Was ist überhaupt ein Beweis?

In der zahlreichen Literatur, die es zum Thema „Beweisen“ gibt, finden sich Aussagen wie: „Be-

weise sind für Mathematikerinnen und Mathematiker essentieller Teil des Wissensbestandes

und der Fortentwicklung der Mathematik“ (Ufer et al. 2009, S.30), „Proof is an essential cha-

racteristic of mathematics and as such should be a key component in mathematics education“

(Hanna & Jahnke 1996, S.877) oder: „Die Mathematik unterscheidet sich von anderen Wis-

senschaften nicht ausschließlich, aber ganz wesentlich darin, dass sie eine beweisende Disziplin

ist“ (Reiss 2002, S.1). Die hier angeführten Zitate dienen alle dazu, den jeweils nachfolgenden

wissenschaftlichen Text einzuleiten und setzen damit faktisch stillschweigend voraus, dass den

Leserinnen und Lesern bekannt ist, was denn überhaupt unter einem Beweis zu verstehen ist.

Es finden sich allerdings auch Versuche, zunächst erst einmal den Begriff „Beweis“ zu charak-

terisieren. So leitet beispielsweise Schupp (2010, S.97) einen seiner Texte mit den Worten ein:

„“Beweisen“ heißt eine Warum-Frage vernünftig beantworten“; Knipping (2003, S.19) definiert:

„Unter einem Beweis soll in der vorliegenden Arbeit eine Folge von öffentlichen Geltungsan-

sprüchen verstanden werden, in der schrittweise die Gültigkeit von mathematischen Aussagen

begründet wird“; und Holland (1996b, S.9) stellt fest: „Unter dem Aspekt von Geometrie als

Lehre vom Anschauungsraum geht es beim Beweisen eines Satzes um die Wahrheitssicherung,

d.h., um den Nachweis der Allgemeingültigkeit des Satzes. Unter dem Aspekt von Geometrie

als deduktiver Theorie geht es beim Beweisen eines Satzes hingegen vordringlich um die De-

duzierbarkeit des Satzes aus schon akzeptierten Sätzen der Geometrie“.
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Die Zitate lassen das Problem erahnen, welches sich beim Versuch einer Charakterisierung

der Begriffe „Beweis“ und „Beweisen“ ergibt: externe Faktoren, wie inhaltliche, soziale, päd-

agogische, didaktische oder auch philosophische Voraussetzungen, sind entscheidend daran

beteiligt. Um an dieser Stelle Klarheit schaffen zu können, bedarf es zunächst einer Analyse

der externen Faktoren. Hier besteht bei jedem Lehrenden das Risiko, dieser Begriffsklärung

auszuweichen und den Begriff „Beweis“ zu verwenden, ohne sichergestellt zu haben, ob das

eigene Verständnis mit dem des Adressatenkreises überhaupt übereinstimmt! Dies ist beson-

ders in der Schule problematisch, da die Lehrerin und der Lehrer naturgemäß über eine ganz

anderen Einbindung in das theoretische System der Mathematik verfügen, als der Schüler und

die Schülerin. So stellt auch Jahnke (2009, S.26) fest:

„Vielen Lehrerinnen und Lehrern fällt es schwer, altersgemäß zu erklären, was ein

Beweis ist, welche Rolle das Beweisen in der Mathematik spielt und in welcher

Weise es zum Verständnis unserer Welt beiträgt. Häufig beschränken sie sich auf

Bemerkungen der Art, dass ein Beweis eine Aussage absolut sicher mache und

ihre Gültigkeit für alle Fälle garantiere, im Gegensatz zu Messungen, die sich nur

auf Einzelfälle beziehen. Die gegenwärtig auf dem Markt befindlichen Schulbücher

äußern sich ähnlich vage oder sagen zum Beweisen nichts“.

So stellen auch Hanna & Jahnke (1996, S.884) fest: „As discussed above, there has never

been a single set of universally accepted criteria for the validity of a mathematical proof.“

Klassisches Beispiel hierfür ist der Beweis des Vier-Farben-Satzes, der besagt, dass man in

der euklidischen Ebene eine Landkarte mit maximal vier Farben derart einfärben kann, dass

niemals zwei aneinander angrenzende Länder dieselbe Farbe haben. Der Satz, der erstmals

1853 von Francis Guthrie als Vermutung veröffentlicht wurde, konnte lange nicht bewiesen

werden, es konnte lediglich gezeigt werden, dass fünf Farben immer ausreichend sind. Schließ-

lich gelang es Apel und Haken im Jahr 1977, die Anzahl der zu untersuchenden Fälle auf 1936

Fälle zu reduzieren. Diese konnten dann anschließend einzeln mit dem Computer überprüft

werden, so dass der Nachweis erbracht worden war. Dennoch wurde der Beweis von einigen

Mathematikern nicht anerkannt, da er nur mit Einsatz von Computern geführt und nicht di-

rekt vom Menschen kontrolliert werden konnte bzw. wurde. Zudem wurde eingewandt, dass

das Risiko, dass Hardware oder Software fehlerhaft sein könnten, zwar minimiert, aber nicht

ausgeschlossen werden könne. Und schließlich überzeuge der „Beweis“ zwar davon, dass tat-

9



Kapitel 2. DGS und Beweis

sächlich vier Farben ausreichend seien, er helfe aber nicht zu verstehen, warum dies so sei,

womit wir bei den verschiedenen Funktionen sind, die ein Beweis hat und auf die ich in Kapitel

2.1.2 eingehen werde.

Eine weitere faszinierende Neuerung in der Mathematik, die ebenfalls illustriert, dass es keine

eindeutigen Kriterien für einen Beweis gibt, ist der sogenannte „Zero-knowledge-Beweis“ von

Goldwasser et al. (1985). Bei diesem interaktiven Beweis agieren zwei Parteien miteinan-

der; der „Beweiser“ und der „Verifizierer“. Dabei überzeugt der Beweiser sein Gegenüber davon,

dass er einen Beweis von einem Theorem kennt, ohne irgendwelche Informationen über die-

sen Beweis preiszugeben. Als Ergebnis ist der Verifizierer davon überzeugt, dass das Theorem

stimmt und der Beweiser in Kenntnis eines Beweises ist.

Ein klassisches Beispiel hierfür ist das Geheimnis von Ali Babas Höhle (s. Abbildung 2.1):

Ali Baba möchte uns zeigen, dass er die verschlossene Tür zwischen R und S öffnen kann,

ohne dass wir allerdings sehen können, wie er diese Tür öffnet. Dazu geht er in die Höhle,

R S

Q

P

Abbildung 2.1 – Ali Baba’s Höhle

während wir bei P warten, so dass wir nicht sehen können, auf welcher Seite der Tür er steht.

Danach gehen wir zu Q und entscheiden, ob Ali Baba von links oder von rechts zurückkom-

men soll. Wenn Ali Baba immer aus der gewünschten Richtung erscheint, sind wir überzeugt

davon, dass er die Tür öffnen kann. Wir sehen allerdings nicht, wie er es macht und können

auch keine dritte Person davon überzeugen, dass er tatsächlich das Geheimnis kennt, da ja die

Möglichkeit besteht, dass wir uns mit Ali Baba abgesprochen haben.

Obwohl man folglich davon überzeugt ist, dass ein Sachverhalt wahr ist und es auch einen Be-

weis dafür gibt, verfügt man nicht über die Möglichkeit, andere ebenfalls von der Richtigkeit

des Theorems zu überzeugen oder über den Beweis zu kommunizieren.

Dennoch stellt Hanna (2007) fest, dass diese Beweise immer noch ein Stück weit traditio-
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nell sind, da ihnen eine analytische Vorgehensweise inhärent ist. Demgegenüber aber gebe es

mittlerweile Mathematiker, die überhaupt nicht mehr deduktiv arbeiten würden:

„More and more mathematicians appear to be doing all their work outside the

bounds of deductive proof, however, confirming mathematical properties experi-

mentally. A case in point is the Geometry Center at the University of Minnesota,

where mathematicians use computer graphics to examine the properties of four-

dimensional hypercubes and other figures, or to study transformations such as

the twisting and smashing spheres“ (ebenda, S.6).

Sicherlich gibt es noch sehr viel mehr Beispiele, die davon zeugen, dass innerhalb der mathe-

matischen Gemeinschaft darüber gestritten wurde und wird, welche Regeln für einen Beweis

gelten und welche Art von Beweisen akzeptiert werden. „A proof becomes a proof only after

the social act of „accepting it as a proof.“ This is as true for mathematics as it is for physics,

linguistics or biology“(Manin 2010, S.45).

Dennoch wird allgemein anerkannt, dass es einen weitgehenden Konsens darüber gibt, welchen

Anforderungen dieses Regelwerk unterliegt. So urteilt beispielsweise Reiss (2002, S.2): „Auch

wenn gerade in diesem speziellen Fall [beim Beweis des Vierfarbenproblems, G.W.] die Dis-

kussion noch nicht als abgeschlossen bezeichnet werden kann, so kann man doch sagen, dass

die Mathematiker sich zumeist bemerkenswert schnell geeinigt haben, welche neuen Regeln

zu alten Regeln hinzugenommen werden und welchen Kriterien neues Wissen genügen muss“.

Und Ufer et al. (2009, S.31) folgern: „Grund für diesen breiten Konsens könnte die Orien-

tierung der Mathematiker am „Idealbild“ eines formalen Beweises sein“. Dieses Idealbild eines

formalen Beweises definiert Mac Lane (1981, S.465) wie folgt:

„Absolute Rigor. This use of deductive and axiomatic methods focuses attenti-

on on an extraordinary accomplishment of fundamental interest: the formulation

of an exact notion of absolute rigor. Such a notion rests on an explicit formulation

of the rules of logic and their consequential and meticulous use in deriving from

the axioms at issue all subsequent properties, as strictly formulated in theorems.

Moreover, each derivation can be tested and understood in its own terms, in-

dependent of any reference to examples of the activity or the reality for which

the axioms were designed. [...] This formal character of mathematics may serve
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to distinguish it from all other types of science. Once the axioms and the ru-

les are fully formulated, everything else is built up from them, without recourse

to the outside world, or to intuition, or to experiment. Examination of texts of

theoretical physics, biology, or other sciences clearly indicates a real difference in

this regard. Such texts do not hesitate to appeal at any time to experience or

intuition, while a mathematical proof stands or falls on its own, without outside

reference.“

Anschließend jedoch fährt er fort:

„An absolutely rigorous proof is rarely given explicitly. Most verbal or written

mathematical proofs are simply sketches which give enough detail to indicate

how a full rigorous proof might be constructed. Such sketches thus serve to convey

conviction - either the conviction that the result is correct or the conviction that

a rigorous proof could be constructed“ (ebenda. S.465).

Warum dieses so gehandhabt wird, macht de Villiers (1990, S.19) deutlich: „In addition, at-

tempts to construct rigourously complete proofs lead to such long complicated proofs that an

evaluative overview becomes impossible, while the probability of errors becomes dangerously

high at the same time“. Stattdessen wird auf einen sozial ausgehandelten Konsens darüber,

welche Schritte wie detailliert erfolgen müssen, zurückgegriffen, immer im Bewusstsein, dass

die dadurch entstehenden Lücken aus dem allen Beteiligten gemeinsamen Grundlagenwissen

gefüllt werden könnten. „It is the teacher who must judge when more careful proving might

be expected to promote the elusive but most important classroom goal of understanding“

(Hanna & Jahnke 1996, S.892).

Genau dieser Tatbestand macht, wie ich aus eigener Erfahrung aus der Leitung von studenti-

schen Übungsgruppen berichten kann, Studierenden große Probleme, da ihnen oftmals nicht

klar ist, welcher Detaillierungsgrad erforderlich ist und an welchen Stellen Aspekte explizit her-

ausgearbeitet werden müssen und wann sie implizit bleiben können. Dieses Phänomen wird im

Schulunterricht verstärkt auftreten, wie Jahnke (1978, S.212) herausstellt: „Das Problem der

[in der Schule, G.W.] fehlenden Axiomatik hängt genuin mit dem Problem der Entwicklungs-

dynamik des Wissens zusammen, denn die Tatsache, daß das Wissen beim Schüler sich entwi-

ckelt, macht es unmöglich, sich auf den Standpunkt eines abgeschlossenen Systems zu stellen.“
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Damit einhergehend wird der Aushandlungsprozess über die Detaillierung eines Beweises qua-

si unmöglich gemacht, da zwar die Lehrperson auf einer Metaebene über die diesbezüglichen

Anforderungen reflektieren kann, nicht aber die Schülerinnen und Schüler. Daher besteht die

Gefahr, dass diese sich an den potentiellen Erwartungen der Lehrerin oder des Lehrers als

einer externen Instanz orientieren, und keine inhaltlichen Überlegungen dazu anstellen.

Bei den Studierenden sollte zu irgendeinem Zeitpunkt der Wechsel vom Lernenden zum Leh-

renden erfolgen. Dabei müsste die genannte Metaebene erreicht werden. Inwieweit sich An-

zeichen für diesen Wechsel bereits bei den von mir befragten Studierenden erkennen lassen,

sollen die Analysen der von mir geführten Interviews zeigen.

2.1.2 Welche Funktionen erfüllen Beweise?

„Traditionally the function of proof has been seen almost exclusively in terms of

the verification (conviction or justification) of the correctness of mathematical

statements. The idea is that proof is used mainly to remove either personal doubt

and/or those of skeptics; an idea which has one-sidedly dominated teaching prac-

tice and most discussions and research on the teaching of proof“ (de Villiers

1990, S.17).

Über diese scheinbar dominierende Funktion des Beweisens hinaus zählt de Villiers weitere

auf und kommt zu folgender Liste (ebenda, S.18), die er später (de Villiers 2003, S.6) um

eine sechste (s.u. die letzte) Funktion ergänzt:

• verification (concerned with the truth of a statement)

• explanation (providing insight into why it is true)

• systematisation (The organisation of various results into a deductive system of axioms,

major concepts and theorems)

• discovery (the disovery or invention of new results)

• communication (the transmission of mathematical knowledge)

• intellectual challenge (the self-realization/fulfillment derived from constructing a proof)

Diese Funktionen möchte ich im Folgenden genauer analysieren.
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Der Beweis als Mittel zur Verifikation

Durch einen mathematischen Beweis kann sichergestellt werden, dass eine Aussage wahr ist,

wobei im allgemeinen die Vorstellung zugrunde liegt, dass ein „Beweis aus einer Kette deduk-

tiver Schlüsse bestehen [sollte, G.W.], die von den Voraussetzungen zur Behauptung führt und

dabei nur bekannte bzw. zuvor gezeigte Aussagen als Argumente in den deduktiven Schlüssen

verwendet“ (Ufer et al. 2009, S.32). Konsequent zu Ende gedacht, bedeutet dies, dass die

Wahrheit das Ergebnis einer Sequenz von logischen, durchweg nachvollziehbaren, Folgerungen

ist.

Die Realität des Beweisens auf universitärem Niveau allerdings stellt sich durchweg anders dar.

„Proof is not necessarily a prerequisite for conviction - to the contrary, conviction is probably

far more frequently a prerequisite for the finding of a proof“ (de Villiers 1990, S.18). Kaum

jemand würde Monate oder Jahre darauf verwenden, einen Beweis für eine bestimmte Vermu-

tung zu finden, wenn diese Person nicht bereits im Vorfeld von der Wahrheit dieser Vermutung

überzeugt sei. Ein populäres Beispiel hierfür ist der Beweis der Fermatschen Vermutung aus

dem 17. Jhdt., der Andrew Wiles 1993 nach jahrelanger mühevoller Arbeit gelang, wobei von

Anfang an die Überzeugung von der Richtigkeit der Fermatschen Aussage die entscheidende

Triebfeder war.

Der Beweis als Mittel zur Begründung

Obwohl die Vokabel „explanation“ originär eher mit „Erklärung“ zu übersetzen wäre und dies

beispielsweise auch von Wittmann (2009, S. 37) so gemacht wird (Kadunz & Strässer

(2009, S.73) verwenden die Begrifflichkeit „erläutern“, was im Duden mit „näher erklären“

gleichgesetzt wird), habe ich mich für die Begrifflichkeit „Begründung“ entschieden, da eine

Erklärung nicht unbedingt die Frage nach dem „Warum“ beantworten muss, eine Begründung

hingegen schon (man kann einem Dritten erklären, wie eine Ableitung formal berechnet wird,

so dass dieser dann eine derartige Handlungsanweisung ausführen kann, ohne jedoch zu ver-

stehen, warum man so vorgeht und was dabei passiert).

Eine der prominentesten Vertreterinnen in der Didaktik, die zwischen Beweis als Mittel zur Ve-

rifiktation und Beweis als Mittel zur Begründung unterscheidet, ist sicherlich Hanna (1989b,

S.47), die sagt:

„One can even establish the validity of many mathematical assertions by purely
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syntactic means. With such a syntactic proof one can demonstrate that a state-

ment is true without ever showing what mathematical property makes is true.

Thus I prefer to use the term explain only when the proof reveals and makes use

of the mathematical ideas which motivate it“.

Folglich ist nicht nur die Frage zu stellen, ob etwas gilt, sondern warum etwas gilt. Diese

Frage hält de Villiers (1990, S.20) gerade dann für besonders bedeutsam, wenn der Wahr-

heitsgehalt eines Sachverhalts sowieso schon anschaulich klar ist und deswegen auch kaum

angezweifelt wird: „Thus, in most cases when the results concerned are intuitively self-evident

and/or they are supported by convincing quasi-empirical evidence, the function of proof for

mathematicians is certainly not that of verification, but rather that of explanation“. Dar-

über hinaus hält De Villiers den Aspekt des Begründens sogar in den meisten Fällen für

wichtiger als den des Verifizierens: „Furthermore, for probably most mathematicians the cla-

rification/explanation aspect of proof is generally of greater importance than the aspect of

verification“ (de Villiers 1990, S.20).

Aus didaktischer Perspektive ist die begründende Funktion eines Beweises besonders bedeut-

sam, da es im Unterricht um Verstehensprozesse geht, bei denen Antworten auf Warum-Fragen

gesucht werden.

Der Beweis als Mittel zum Systematisieren

Mit einem Beweis kann neues Wissen mit altem Wissen in Bezug gesetzt und somit in das

bestehende Wissensnetz eingebunden werden. So sagt de Villiers (1990, S.20): „Proof is

therefore an indispensable tool in the systematisation of various known results into a deducti-

ve system of axioms, definitions and theorems“. Dabei unterscheidet Freudenthal (1973b)

zwischen globalem und lokalem Ordnen: beim globalen Ordnen wird ein Teilgebiet der Mathe-

matik derart dargestellt, dass alle Sätze, Schlüsse und Folgerungen vollständig aus dem zu-

grundeliegenden Axiomensystem deduziert sind. Beim lokalen Ordnen hingegen werden zwar

Beziehungen zwischen Sätzen untersucht und damit eine systematische Analyse gemacht, doch

werden die Sachverhalte oftmals nur auf für diesen Ordnungszusammenhang evidente Grund-

lagen zurückgeführt, die dann nicht weiter bewiesen werden. So werden auch Begriffe oftmals

nur mit Hilfe von Beispielen eingeführt. Diesen evidenten Grundlagen wird dann im Prinzip

der Status von Axiomen zugewiesen, so dass hierauf aufbauend durchaus in der formalen Art
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der Mathematik definiert und bewiesen werden kann (vgl. Stein 1986, Kap. 1.2.3). Grund-

sätzliches Ziel des lokalen Ordnens ist, die Zusammenhänge in einem kleineren Gebiet sichtbar

zu machen.

Freudenthal hält die Geometrie für kein geeignetes Feld, um in der Schule einen deduktiv-

axiomatischen Aufbau zu erlernen: „Es gibt zahlreiche Felder, in denen man Axiomatik lernen

kann. Die Geometrie gehört jedenfalls nicht zu ihnen“ (Freudenthal 1973b, S.420). Statt-

dessen hält er hier das lokale Ordnen für geeignet:

„Man analysiert die geometrischen Begriffe und Beziehungen bis zu einer recht

willkürlichen Grenze, sagen wir, bis zu dem Punkte, wo man von den Begriffen mit

dem bloßen Auge sieht, was sie bedeuten, und von den Sätzen, daß sie wahr sind.

So räsonniert man immer in der Geometrie unseres Lebenraumes; niemals aus

Axiomen, die viel zu weit weg liegen, sondern, nach einem verschwimmenden und

sich verschiebenden Horizont von Sätzen hin, die jeweils als wahr angenommen

werden. Das Feld wird auf kleine oder größere Strecken, aber nicht als Ganzes

geordnet“ (Freudenthal 1973a, S.142).

Häufiges Beispiel, welches in der mathematikdidaktischen Literatur für das lokale Ordnen

aufgeführt wird, sind die Winkelsätze im Dreieck (vgl. Abbildung 2.2).

Abbildung 2.2 –Winkelsätze im Dreieck als Beispiel für lokales Ordnen aus Weigand (2009,

S.29)
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de Villiers (1990) hält den systematisierenden Aspekt eines Beweises für herausragend, da

diese Funktion weder vom empirischen Testen noch von der reinen Intuition geleistet werden

kann. Beim Systematisieren könnten Inkonsistenzen, Zirkelschlüsse und versteckte Vorausset-

zungen sichtbar gemacht werden und es helfe dabei, Ergebnisse ökonomischer zu präsentieren.

Gerade auch bei anschaulich-evidenten Sachverhalten könne ein Beweis das Zusammenfügen

loser Fäden zu einem kohärenten und konsistenten Ganzen unterstützen. Dies solle gerade

auch in der Schule offengelegt werden:

„Thus, it is in reality a completely false perspective to say at school when proving

self-evident statements such as those found in introductory Euclidean geometry,

that one is „making sure“. In such cases, mathematicians are actually far less

concerned about their truth, than with their systematisation into a deductive

system“ (de Villiers 1990, S.21).

Der Beweis als Mittel zum Entdecken

Vielfach wird angenommen, dass ein Beweis zwar neues Wissen sichern, begründen und struk-

turieren, nicht aber einen Beitrag zum Entdecken von neuem Wissen leisten kann. Hintergrund

für diese Annahme ist die Vorstellung, dass Theoreme zunächst intuitiv oder empirisch ent-

deckt und erst anschließend deduziert werden, wie Hanna (1989a, S.22) es ausdrückt: „Ma-

thematical ideas are discovered through an act of creation in which formal logic is not directly

involved. They are not derived or deduced, but developed by a process in which their signifi-

cance for the existing body of mathematics and their potential for future yield are recognized

by informal intuition“. de Villiers (1990, S.23) widerspricht dem jedoch vehement.

„This view is however completely false, as there are numerous examples in the

history of mathematics where new results were discovered/invented in a purely

deductive manner; in fact, it is completely unlikely that some results (e.g. the

non-Euclidean geometries) could ever have been chanced upon merely by intuition

and/or only using quasi-empirical methods.“

Die Einschätzung „completely false“ erscheint mir zwar ein wenig übertrieben. Wohl verläuft

wahrscheinlich in den meisten Fällen ein Beweis genau nach dem Schema, erst eine Entdeckung

zu machen und diese anschließend zu beweisen. Dennoch kann es Fälle geben, in denen wirklich
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durch den Beweis eine Entdeckung gemacht wird. Als Beispiel hierfür führt de Villiers das

Seitenmittenviereck in einem symmetrischen Drachen an: dies scheint immer ein Rechteck zu

sein. Empirische Überprüfung kann die Überzeugung über den Wahrheitsgehalt der Aussage

stärken, aber keine Erklärung liefern. Der deduktive Beweis hingegen macht unmittelbar klar,

dass nicht die zwei Paar benachbarter Seitenlängen des Drachen das entscheidende Kriterium

für die Form des Seitenmittenvierecks sind, sondern die Orthogonalität der Diagonalen, so dass

auch allgemeinere Vierecke als ein symmetrischer Drachen ein Rechteck als Seitenmittenviereck

haben können. Somit folgert de Villiers (1990, S.21):

„In contrast, the general result is not at all suggested by the purely empirical

verification of the original hypothesis. Even a systematic empirical investigation

of various types of quadrilaterals would probably not have helped to discover the

general case, since such a person would probably have restricted his/her investi-

gation to the familiar quadrilaterals such as parallelograms, rectangles, rhombi,

squares and isosceles trapezia“.

Der Beweis als Mittel zur Kommunikation

Ein Beweis kann auch als Mittel zur Kommunikation angesehen werden, indem durch ihn

mathematische Ergebnisse sowohl transportiert als auch diskutiert werden. Dabei können bei-

spielsweise Beweisschritte auf Verständnis und Vollständigkeit hinterfragt oder mögliche Al-

ternativen ins Spiel gebracht werden. Zudem findet ein sozialer Aushandlungsprozess über die

Akzeptanz von Argumenten statt. So stellt auch de Villiers (1990, S.22) fest: „Proof as a

form of social interaction therefore also involves the subjective negotiation of not only the

meanings of concepts concerned, but implicitly also of the criteria for an acceptable argument“.

Diesen Diskurs über die Akzeptanz von Kriterien auf die Spitze getrieben hat Lakatos (1979),

der ein fiktives Unterrichtsgepräch über den Beweis zur Eulerschen Gleichung schildert. Darin

werden Beweise nicht als endgültige Wahrheiten dargestellt, sondern als fortlaufend Wissen

generierende Prozesse, in denen ständig Präzisierungen aufgrund von Gegenbeispielen und

Kontroversen erforderlich sind.
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Der Beweis als Mittel zur intellektuellen Herausforderung

„Doing proofs could also be compared to the physical challenge of completing an arduous

marathon or triathlon, and the satisfaction that comes afterward“ (de Villiers 2003, S.10).

Wer selbst schon mit kniffligen Problemen befasst war, der weiß, dass man oftmals keine Ruhe

findet, bevor sie endlich gelöst sind. Insofern werden Theoreme auch einfach aus dem Grund

bewiesen, dass es sie gibt und sie noch nicht bewiesen sind.

Diese verschiedenen Funktionen von Beweisen treten natürlich oftmals gemeinsam auf. Gewiss

kann man diese Auflistung noch erweitern, wie auch de Villiers einräumt. So schlagen

beispielsweise Hanna & Jahnke (1996, S.903) vor, sie um drei Funktionen zu ergänzen:

„One should add to this model the function of:

• construction of an empirical theory

• exploration of the meaning of a definition or the consequences of an assump-

tion

• incorporation of a well-known fact into a new framework and thus viewing

it from a fresh perspective“

Hanna und Jahnke (1996) stellen fest, dass sich eine derartig differenzierte Perspektive auf

das Beweisen natürlich erst als Ergebnis eines langen Prozesses herauskristallisiert hat, was

zugleich bedeutet, dass auch jedes Individuum, für das die Welt der Mathematik eine neue

ist, einen Verständnisprozess bezüglich der Funktionen von Beweisen durchlaufen muss.

Rolle der unterschiedlichen Beweisfunktionen in der Schule

de Villiers (2003) und auch viele andere vor ihm, wie beispielsweise Kirsch, halten es

für geboten, bei den Schülerinnen und Schülern unterschiedliche Funktionen von Beweisen zu

thematisieren und nicht nur einseitig zu vermitteln, dass ein Beweis zur Wahrheitssicherung

diene. Dies sei besonders wichtig, wenn man im Geometrieunterricht mit DGS arbeite, da sich

bei einer Reduktion auf die Funktion der Wahrheitssicherung hier durch die einfache Möglich-

keit des Messens und der empirischen Überprüfung ansonsten leicht die falsche Vorstellung

einstellen könne, dass ein Beweis obsolet sei.
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Da die verschiedenen Funktionen eines Beweises allerdings unterschiedlichen kognitiven An-

sprüchen unterlägen, schlägt de Villiers bei der Einführung eine bestimmte Reihenfolge vor,

die in Abbildung 2.3 graphisch dargestellt ist. Dabei rät er: „It seems meaningful to initially

introduce students to the various functions of proof more or less in the sequence given above,

although not in purely linear fashion as shown, but in a kind of spiral approach where the

other earlier introduced functions are revisited and expanded“ (de Villiers 2003, S.10).

Explanation

Discovery

Verification

Intellectual
challenge

Systematization

Abbildung 2.3 – Hierarchische Anordnung von Beweisfunktionen“ (de Villiers 2003, S.10)

Dabei wird seine Auffassung, die Funktion des Begründens an den Anfang zu stellen, von

Hanna & Jahnke (1996, S.903) unterstützt: „Such a process must start with fundamentals,

and the fundamental question that proof addresses is ’why?’“

Auch ist klar, dass die systematisierende Funktion erst relativ spät eine Rolle spielen kann,

da hierbei auf einer Art Metaebene über die zugrundeliegenden Zusammenhänge reflektiert

wird, was eine gewisse Distanz erfordert und bestimmte Erfahrungen voraussetzt. Es überzeugt

mich jedoch nicht, die Funktion des Entdeckens unbedingt vor diejenige des Verifizierens zu

setzen und die der intellektuellen Herausforderung dahinter. Vielmehr halte ich es für sinn-

voll, die beiden Funktionen eher parallel anzusiedeln, da beispielsweise je nach Aufgabentyp

auch bereits sehr früh und auf eine eher spielerische Art der Ehrgeiz von Schülerinnen und

Schülern geweckt werden kann und, um etwas entdecken zu können, möglicherweise ebenso
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wie beim Systematisieren bestimmte Erfahrungen erforderlich sein können. Meines Erachtens

ist die Reihenfolge, in der die unterschiedlichen Beweisfunktionen thematisiert werden, stark

vom jeweiligen inhaltlichen Kontext und von der konkreten Situation abhängig, so dass ich

weniger eine bestimmte Abfolge der Funktionen in den Fokus rücken würde, als vielmehr die

Tatsache, dass die unterschiedlichen Funktionen thematisiert werden.

Auch Fischer et al. (2009) fordern, dass in der Schule ein Beweis nicht ausschließlich als Mit-

tel zur Verifikation dargestellt werde, vor allen Dingen vor dem Hintergrund, dass aufgrund der

fehlenden Axiomatik in der Schulmathematik für die Schülerinnen und Schüler oftmals nicht

eindeutig zu erkennen sei, welche Sachverhalte zum gesicherten Wissen zählen und welche erst

noch bewiesen werden müssen: „Es liegt an dieser Stelle nahe, für den Bereich des Beweisens

weniger die Validierungsfunktion in den Vordergrund zu stellen, sondern für Beweise vor al-

lem deren erklärende Funktion und teilweise auch systematisierende Funktion hervorzuheben“

(ebenda, S. 251).

2.1.3 „Levels of thinking“ nach van Hiele

Der niederländische Mathematikdidaktiker Pierre van Hiele, der selbst lange Zeit als Leh-

rer an verschiedenen Schulen tätig war, musste die Erfahrung machen, dass er als Lehrer im

Geometrieunterricht oftmals nur geringe Erfolge zu verzeichnen hatte, obwohl er sich in Erin-

nerung an seine eigene Schulzeit vorgenommen hatte, besseren Unterricht zu machen, als er

ihn damals erlebt hatte.

„When I began my career as a teacher of mathematics, I very soon realized that it

was a difficult profession. There were parts of the subject matter that I could ex-

plain and explain, and still the pupils would not understand. I could see that they

really tried, but they did not succeed. Especially in the beginning of geometry,

when very simple things had to be proved, I could see they did their utmost, but

the subject matter seemed to be too difficult. But because I was an inexperienced

teacher, I also had to consider the possibility that I was a poor teacher. And this

last annoying possibility was affirmed by what came next: Suddenly it appeared

that they understood the subject matter: They could talk of it very sensibly. But

very often they said: „It isn’t so difficult, but why did you explain it to us with

so much difficulty?“ In the years that followed I changed my explanation many
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times, but the difficulties remained. It always seemed as though I were speaking

a different language. And by considering this idea I discovered the solution, the

different levels of thinking“ (Van Hiele 1986, S.39).

Diese Theorie, die van Hiele zusammen mit seiner Frau Dina van Hiele-Geldof entwi-

ckelt hat, geht davon aus, dass alle Schülerinnen und Schüler beim Erlernen von Geometrie

(und auch von anderen Inhalten, die nicht ausschließlich mathematischer Natur sein müssen) 5

Stufen (levels) in einer bestimmten Reihenfolge durchlaufen. Dabei ist es nicht möglich, Leis-

tungen auf einer Stufe zu erbringen, ohne die darunterliegenden Stufen erfolgreich bewältigt

zu haben. Die Vokabel „erfolgreich“ ist in diesem Zusammenhang so zu verstehen, dass ein

echtes Verständnis vorliegt und nicht nur nach bestimmten Algorithmen gehandelt wird.

Die Stufen, die in früheren Arbeiten van Hieles von 1 bis 4 durchnummeriert waren, werden

mittlerweile mit 1 bis 5 gekennzeichnet. Dies hängt damit zusammen, dass die erste Stufe erst

nachträglich hinzugekommen ist, da deren Bedeutung van Hiele nicht von vornherein klar

war: „In the article of 1955, what was spoken of as the first level is now spoken as the second

level. So in the continuation of the article, what was spoken of a second level, we now speak

of as a third level, and so on. The difference is caused by our not having seen the importan-

ce of the visual level (which is now called the first) at that time“ (Van Hiele 1986, S.41).

Außerdem führt er aus, dass man nach oben noch weitere Stufen hätte ergänzen können. Im

Zusammenhang mit Mathematikunterricht in der Schule hält er dies jedoch für entbehrlich,

da man hier schon über die vierte Stufe nicht hinauskäme: „You see that we did not try to

describe levels higher than the fourth. Those higher levels ar much more difficult to discern

than Levels 2, 3 and 4. [...] In school we have to deal with Levels 2, 3, and 4. If our pupils

do not understand us, it is these levels, not when we are speaking on the fifth or perhaps still

higher levels“ (Van Hiele 1986, vgl. S.47). In der folgenden Aufzählung sind die fünf Stufen

dargestellt (ebenda, S.53).

• First level: the visual level

• Second level: the descriptive level

• Third level: the theoretical level: with logical relations, geometry generated according

to Euclid

• Fourth level: formal logic; a study of the laws of logic
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• Fifth level: the nature of logical laws

Dabei werden auf der ersten Stufe Formen, beispielsweise ein Quadrat oder ein Rechteck,

einzig aufgrund ihrer visuellen Erscheinung erkannt. Die Formen können benannt und un-

terschieden, aber es können ihnen (noch) keine Eigenschaften zugeordnet werden. Auf der

zweiten Stufe werden einzelne oder mehrere Eigenschaften der geometrischen Form erkannt,

beispielsweise, dass bei einem Rechteck gegenüberliegende Seiten gleich lang sind oder dass

sie parallel sind. Dabei stehen diese Eigenschaften allerdings (noch) unverbunden nebenein-

ander. Auf der dritten Stufe wird erstmals eine theoretische Ebene erreicht, indem die zuvor

entdeckten Eigenschaften in Relation zueinander gesetzt werden, so dass nun auch Klassen

gebildet werden können. Auf dieser Stufe finden bereits einfache deduktive Schlüsse statt; in

Verbindung damit wird nun auch eine formale Sprache eingeführt und erlernt. Auf der vierten

Stufe wird die Bedeutung des deduktiven Schließens erkannt, es wird das Wesen notwendi-

ger und hinreichender Bedingungen verstanden, und die Schülerinnen und Schüler erkennen

die Bedeutung von Axiomen und Definitionen. Auf dieser Stufe können Aufgaben bearbeitet

werden, bei denen selbstständig entschieden werden muss, welche Argumente heranzuziehen

sind. Dies bedeutet, dass aus dem vorhandenen Wissens- und Methodennetzwerk angemessene

Problemlösestrategien generiert werden können. Auf der fünften Stufe schließlich können auf

einer Art Metaebene das erworbene Wissen und die Wissensstrukturen überblickt werden.

Symbole können nach den Regeln der formalen Logik manipuliert werden, ohne dass es eines

anschaulichen Hintergrunds hierfür bedarf. Dabei geht van Hiele allerdings davon aus, dass

die Schülerinnen und Schüler in der Regelschulzeit das Niveau der Stufe 5 im Allgemeinen

nicht erreichen.

Der Übergang von einer Stufe zur nächsthöheren stellt sich nicht als natürlicher Prozess dar,

wie beispielsweise bei den Phasen der kindlichen Entwicklung gemäß der Lehre Piagets, son-

dern verläuft in einem Lernprozess unter dem Einfluss der Lernumgebung und der Lehrperson.

Dabei ist es erforderlich, innerhalb des Prozesses eine neue Sprache zu erlernen. van Hiele

macht dies an einem Beispiel deutlich: Personen, die sich auf der ersten Stufe befinden, wer-

den zu Recht bestreiten, dass ein Quadrat eine Raute ist, da ihr Wissenshintergrund nur auf

visuellen Informationen basiert und ein Quadrat in der Regel nun einmal anders aussieht als

eine Raute. Auf dieser Stufe macht der Sprechakt: „Dieses Viereck ist keine Raute, weil es ein

Quadrat ist“ genausoviel Sinn wie der Sprechakt: „Dieses Viereck ist keine Raute, weil die vier
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Seiten nicht gleichlang sind“. Erst wenn die Personen auf der dritten Stufe angelangt sind,

können sie aufgrund der in Relation gesetzten Eigenschaften akzeptieren, dass ein Quadrat

eine Raute ist. Dabei stellt Van Hiele (1986, S.50) fest: „This acceptance must be voluntary;

it is not possible to force a network of relations on someone. If you want to convince them, you

can point out the difficulty of producing general statements about rhombuses that preclude

squares. But if the pupils do not yield to this argument, there is little to be done.“

An dieser Stelle ist ein Blick in die Historie interessant: So findet man in den Elementen des

Euklid folgende Definitionen:

„22. (30-34) Von den vierseitigen Figuren ist ein Quadrat jede, die gleichseitig

und rechtwinklig ist,

ein längliches Rechteck jede, die zwar rechtwinklig aber nicht gleichseitig ist,

ein Rhombus jede, die zwar gleichseitig aber nicht rechtwinklig ist,

ein Rhomboid jede, in der die gegenüberliegenden Seiten sowohl als Winkel

einander gleich sind und die dabei weder gleichseitig noch rechtwinklig ist;

die übrigen vierseitigen Figuren sollen Trapeze heißen“ (Euklid 2003, S.2).

Für Euklid ist, ebenso wie für Personen auf dem ersten van-Hiele-Level, ein Quadrat kei-

ne Raute, während die Mathematiker von heute ein Quadrat als (besondere) Raute ansehen.

Konsequenterweise muss es irgendwann einmal jemanden gegeben haben, der es erstmals für

sinnvoll hielt, eine Raute so zu definieren, dass ein Quadrat durch die Definition nicht ausge-

schlossen ist. Es wird aber auch sehr deutlich, dass es durchaus nicht alternativlos ist, derartig

vorzugehen, so dass die Kenntnis der historischen Entwicklung hier ein größeres Bewusstsein

für die Schwierigkeiten, die sich für Schülerinnen und Schüler an dieser Stelle ergeben können,

schaffen kann.

Eine Kosequenz, die sich für van Hiele hieraus ergibt, ist, dass eine Person, die sich auf einer

bestimmten Stufe befindet und auf dem sprachlichen Niveau dieser Stufe argumentiert, sich

nicht mit einer Person verständigen kann, die sich auf einer niedrigeren Stufe befindet. Oder

anders herum formuliert: eine Person, die sich auf einem niedrigeren Niveau befindet, kann

die Sprache des nächsthöheren Niveaus nicht verstehen. Gleichzeitig erfordert das Sprechen

über die Strukturen eines Niveaus, eine Art Metagespräch über dieses Niveau, die Sprache der

nächsthöheren Stufe.

Der Lernprozess, der den Aufstieg von einer Phase zur nächsthöheren ermöglicht, findet nach
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van Hiele in fünf Phasen statt. In der ersten Phase, die er „information“ (vgl. ebenda, S.52)

nennt, machen sich die Schülerinnen und Schüler mit dem neuen Thema vertraut. In der zwei-

ten Phase, der „guided orientation“, erkunden sie, eventuell durch die Lehrperson geführt,

anhand von Aufgaben Eigenschaften und Beziehungen, die für das neue Thema relevant sind.

In der dritten Phase, der „explicitation“, versuchen sie, die Beziehungen in Worte zu fassen,

so dass sie gleichzeitig die zugehörigen Fachwörter, d.h. die erforderliche Sprache, erlernen.

Damit wird zugleich ein Wissens- und Begriffsnetzwerk, bezogen auf den jeweiligen Inhalt,

aufgebaut. In der vierten Phase, der „free orientation“, lernen sie anhand von allgemeinen

Aufgaben, sich selbst in dem neu aufgebauten Netzwerk zurechtzufinden. In der fünften und

letzten Phase schließlich, der „integration“, erarbeiten sie sich einen Überblick über die neu

erlernten Dinge und integrieren sie in ihr gesamtes Wissensnetz.

Für die Lehrperson ergeben sich aus der Stufentheorie van Hieles mehrere Konsequenzen.

Zu wissen, auf welcher Stufe sich der jeweilige Schüler befindet, kann verhindern, dass dieser

inhaltlich dadurch „abgehängt“ wird, dass der Lehrer oder die Lehrerin die Sprache einer zu

hohen Stufe verwendet. Vor allen Dingen macht es nach van Hiele wenig Sinn, einen Geo-

metriekurs mit Axiomen und Definitionen zu beginnen (wie es in den Niederlanden zu seiner

Zeit üblich gewesen war), nicht nur, weil die Schülerinnen und Schüler dies nicht verstehen

können, sondern auch, weil die Rolle der Lehrperson nicht die eines Allwissenden sein sollte,

der Instruktionen gibt. Van Hiele hält es für besser, wenn die Lehrperson gemeinsam mit

den Schülerinnen und Schülern die Stufen durchläuft und sich selbst auf das Niveau dieser

Stufen begibt. Hierdurch wird eine gewisse Ebenbürtigkeit zu den Schülerinnen und Schülern

hergestellt, zumindest derart, dass deren Argumente ernst genommen werden.

„The task of the teacher should not be the impartation of knowledge. On the

contrary, each time a teacher has to make ideas clear he or she must be aware

of the necessity of defending these ideas again and again. The teacher should

treat pupils as dignified opponents, opponents capable of introducing new argu-

ments“(Van Hiele 1986, S.56).

Diese Auseinandersetzung, bei der die Lehrperson natürlich Anregungen zum Nachdenken und

Überdenken geben kann, ist erforderlich, zum einen, damit die Schülerinnen und Schüler die

erkannte Beziehungsstruktur in eigenen Worten beschreiben (können und) müssen, zum ande-

ren, um eine Art Versachlichung zu erreichen. An dieser Stelle angelangt, findet automatisch
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ein Aufstieg zur nächsthöheren Stufe statt. Und auf jeder höheren Stufe ist eine intensivere

Form formal-logischen Denkens erforderlich. So stellt sich das logische Denken als ein Er-

gebnis dieser Lernprozesse dar, was noch einmal deutlich macht, dass man die Schülerinnen

und Schüler nicht gleich zu Beginn des Geometrielernens mit dem deduktiv-formalen System

konfrontieren darf, denn hier befinden wir uns bereits auf der vierten Stufe. Und diese kann

nicht verstanden bzw. erfolgreich durchlaufen werden, ohne nicht die dritte Stufe bewältigt

zu haben. In diesem Zusammenhang erhebt Van Hiele (1986, S.57) den Vorwurf, dass die

mathematische Lehre aber genau dies oft ignoriert:

„The above-mentioned working method is not usual in mathematics, nor in other

sciences. It is customary to illustrate newly introduced technical language with

a few examples, but these examples for the most part are too poor in structure

to capture the point of the technical language. The error that is made is the

supposition that the technical language itself is able to express our meaning; in

reality the technical language only gets its meaning through the examples. If the

examples are deficient, the technical language will be deficient too. With such

poor language, all reasoning will be replaced by information giving in order to

clarify what is being presented; instead, reasoning shoud yield information that

follows from the given data: With such poor language, it is easy to come to an

uncritical acceptance of assertions and systems. Too great a confidence about ma-

thematical solving of problems is promoted by it. For by this method, one learns

to give attention to the laws of systems of signs and not to their signification. The

deductive presentation of subject matter generally neglects the importance of the

third stage, the stage of explicitation. Research on the foundations of knowledge

is highly obstructed by this circumstance.“

2.1.4 Phasen mathematischer Beweisprozesse im Schulunterricht

Das Führen eines mathematischen Beweises ist ein komplexer Prozess, bei dem regelmäßig

nicht geradlinig von der Voraussetzung zum Beweis hingearbeitet wird, sondern bei dem sich

unterschiedliche Phasen, sowohl heuristischer als auch deduktiver Art, abwechseln. Lediglich

die anschließende Dokumentation suggeriert meistens, dass der Beweis als linearer Prozess

abgelaufen sei. Beim Versuch des Nachvollziehens verbleiben für viele Schülerinnen und Schüler
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entscheidende Aspekte im Dunkeln, und sie verzweifeln, weil sie keine Beweisidee und keinen

Startpunkt entdecken können.

Boero (1999) analysiert, wie Experten einen Beweis durchführen, und unterscheidet dabei

sechs verschiedene Phasen innerhalb einer Beweisführung, die aufeinander aufbauen, aber nicht

unbedingt linear ablaufen müssen:

1. Entwicklung einer Behauptung : die Problemsituation wird untersucht, wichtige Infor-

mationen werden entnommen und Gesetzmäßigkeiten und Bedingungen, unter denen

diese auftreten, werden identifiziert. In dieser Phase wird aufgrund von empirischen

und induktiven Argumenten eine plausibel erscheinende Vermutung generiert.

2. Formulierung der Behauptung nach Erfordernissen der formalen Konvention: durch die

exakte Formulierung soll Klarheit bezüglich der Voraussetzungen der Aussage geschaffen

und gleichzeitig die Veröffentlichung des Textes vorbereitet werden.

3. Untersuchung der Behauptung : hier findet die eigentliche Hypothesenprüfung statt. Ar-

gumente, die die Behauptung stützen, aber auch solche, die ihr entgegen stehen können,

werden gesucht; der Anschluss an die Theorie soll erfolgen. In dieser Phase wird sowohl

induktiv als auch deduktiv gearbeitet. Zusammen mit den vorangegangenen Phasen

findet bis hier die wesentliche Exploration bezüglich des Beweises statt.

4. Bildung der Beweiskette: die zuvor eruierten Argumente werden zu einer deduktiven

Beweiskette verknüpft.

5. Verfassen eines Beweises, der den mathematischen Standards entspricht : je nach Art

der Publikation (beispielsweise in Schulbüchern oder im universitären Kontext) liegen

unterschiedliche Anforderungen zugrunde, die sich durchaus auch verändern können

(die Veröffentlichungen im 18. Jahrhundert waren formal anders aufbereitet als aktuelle

Publikationen).

6. Annäherung an einen formalen Beweis

Dabei ordnet Boero die ersten drei Phasen der „private side of mathematicians’ work“ zu,

während die letzten drei Phasen öffentlich kommuniziert werden.

Dies bedeutet, dass ganz wesentliche Aspkete, die beim Beweisen eine entscheidende Rolle
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spielen, wie zum Beispiel, überhaupt eine Beweisidee zu bekommen, nicht offengelegt werden.

Aber eine Dokumentation, die die „private side of mathematicians’ work“ übergeht, ist für

Schülerinnen und Schüler nicht wirklich hilfreich ist. Dies stellen auch Reiss et al. fest:

“Dieser Prozess [wie bei Boero dargelegt, G.W.], insbesondere die explorativen

Schritte, bleiben für manchen Mathematiklehrer und dementsprechend auch für

die Schüler weitgehend intransparent. Der Schüler sieht nur das (im Schulbuch

gegebene) Endergebnis im Sinne einer eindeutigen Schlussfolgerungskette mit de-

finiertem Anfangs- und Endzustand. Ein Einblick in das Problemlöseverhalten des

Experten mit seinen explorativen Komponenten und Irrwegen bleibt ihm hinge-

gen versagt. So gelangt der Schüler und oft schon der Lehrer zu einem idealisierten

mentalen Modell der Beweisführung, das letztendlich die Entwicklung geeigneter

Problemlöseheuristiken verhindert“ (Reiss et al. 2002, S.53).

Nach Reiss könnte Boeros Modell dennoch hilfreich beim Lernen von Beweisen sein, nämlich

wenn es gelänge, auch die ersten drei Phasen für die Schülerinnen und Schüler transparent zu

machen. „Boeros’s model describes an expert’s proving process, but it might also be adequate

as a model for learning to prove. The first four phases of the model are regarded particularly

important for learners as they describe the process of finding a solution and seeking evidence

that it is correct“ (Reiss et al. 2008, S.457).

Hilbert et al. (2008, vgl. S.55) schlagen daher vor, eine modifizierte Version von Boeros

Phasenmodell speziell für den Schulunterricht zu nutzen:

1. Aufstellen einer Vermutung : Untersuchung der Situation und Sammeln von (nützlichen)

Informationen. Beispielsweise kann geprüft werden, ob der vermutete Sachverhalt in

verschiedenen Beispielen zutrifft, wobei gleichzeitig nach Gründen dafür gesucht werden

soll.

2. Formulieren einer Behauptung : Eine präzise Formulierung der Vermutung nach den

zugrundeliegenden Konventionen soll als Grundlage für das weitere Vorgehen aufgestellt

werden.

3. Untersuchung der Behauptung : Angemessene Argumente, um die Behauptung zu vali-

dieren, werden gesucht.

28



2.1. Zur Rolle von Beweisen

4. Auswahl und Verknüpfung von angemessenen Argumenten zu einer Beweiskette: Die

Argumente werden nach Maßgabe der in der Klasse herrschenden Standards zu einem

Beweis zusammengefügt.

Hilbert et al. (2008, S.55) verzichten auf die fünfte und sechste Phase Boeros und begründen

dies wie folgt:

„First, we wanted to address the main deficits that Reiss et al. (2001) found in

their study (i.e., students’ difficulties in finding a starting point for a proof or in

identifying and using correct mathematical arguments) in a first step [Näheres zu

dieser Studie in Abschnitt 2.2, G.W.]. Second, the last two phases mainly apply to

formerly unsolved proofs that are to become accepted pieces of knowledge among

mathematicians. Proofs in the classroom, on the other hand, are not destined

for this degree of mathematical factuality and thus do not need to complete the

entire process.“

Auch die Unterteilung von Hilbert et al. ist nicht so zu verstehen, dass der Prozess line-

ar abläuft. Stattdessen soll sowohl die Komplexität eines Beweises herausgestellt werden, als

auch das Wechselspiel zwischen explorativen, induktiven und deduktiven Phasen. Hilbert et

al. halten es für erforderlich, Lernumgebungen zu schaffen, die diese unterschiedlichen Pha-

sen herausstellen und Unterstützung speziell auch für den heuristischen Aspekt des Beweisens

liefern. Eine Möglichkeit, dieses zu leisten, sehen sie im Einsatz von heuristischen Lösungsbei-

spielen (s. Abschnitt 2.2).

Sowohl bei Boero als auch bei Hilbert et al. lassen sich die dritte und vierte Phase unter

dem Titel „Beweisfindung“ zusammenfassen, und dieses Finden eines Beweises kann auch als

Problemlöseprozess angesehen werden. Hierzu hat Pólya (1949) in seinem berühmten Werk

„Schule des Denkens“ den Vorschlag gemacht, denselben in vier Phasen zu unterteilen:

1. Verstehen der Aufgabe

2. Ausdenken eines Plans

3. Ausführen des Plans

4. Rückschau
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Für die zweite und dritte Phase, die den Kern ausmachen, gibt er bestimmte heuristische Fra-

gestellungen an die Hand, die hilfreich sein können, wie zum Beispiel, den Beweis auf bereits

bekannte Probleme zurückzuführen, zunächst erst verwandte Aufgaben zu lösen oder das Pro-

blem zu vereinfachen. Er schägt allerdings keine spezielle Sequenz von aufeinanderabfolgenden

Schritten vor, die zu durchlaufen wären.

2.1.5 Alternativen zu streng-deduktiven Beweisen

„Die deduktive Struktur der traditionellen Geometrie ist nicht gerade immer ein

didaktischer Erfolg gewesen. Es gibt heute Leute, die glauben, es habe daran ge-

legen, daß sie nicht deduktiv genug war. Ich glaube vielmehr, der Grund war der,

daß diese Deduktivität nicht als Nacherfindung gelehrt wurde, wie Sokrates es tat,

sondern, daß man sie dem Schüler aufzwingen wollte. Jedenfalls wird heute von

manchen die Abschaffung der Geometrie gepredigt und vorgeführt, und unter de-

nen, die die Jugend dem Kulturerbe zuführen sollen, gibt es manche, die froh sind

daß sie nun diese lästige Geometrie der kulturellen Müllabfuhr anvertrauen dür-

fen. [...] Am gefährlichsten aber waren die, die die alte Geometrie glaubten retten

zu können, indem sie ihre deduktive Struktur verstärkten; es war ein ganz hoff-

nungsloses Unterfangen. Geometrie ist nicht nur Deduktivität“ (Freudenthal

1973b, S.376).

Die Frage danach, ob es Alternativen zum deduktiven Vorgehen gibt oder nicht, wird durchaus

kontrovers beantwortet. So konstatiert beispielsweise Walsch (1975, S.7), einer der führenden

Mathematikdidaktiker in der DDR: „In ihr [der Mathematik, G.W.] ist der deduktive Beweis

die einzig mögliche Form der Erkenntnissicherung.“ Diese Aussage muss natürlich vor dem

Hintergrund gesehen werden, dass in der DDR im Mathematikunterricht eine sehr viel stärke-

re Wissenschaftsorientierung als in der BRD vorherrschte, was sich beispielsweise im Gebrauch

der Fachterminologie und im Stellenwert von Logik und Beweisen widerspiegelt (vgl. hierzu

Griesel 2003). So wurden im Schulunterricht der DDR nur solche Begriffe verwendet, die

auch in der mathematischen Wissenschaft üblich waren, und dies bereits vom ersten Schul-

jahr an und es wurde sehr viel Wert auf Wenn-dann-Formulierungen gelegt, wie überhaupt

den korrekten Formulierungen von Anfang an große Bedeutung zugesprochen wurde. Auch
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in Bezug auf das Beweisen gab es Unterschiede: „Während in der ehemaligen DDR auch die

Reproduktion von Beweisen und das selbständige Finden von Beweisen von allen Schülern

verlangt wurde, begnügte man sich in der BRD in den Haupt- und Realschulen weithin nur

mit intuitiver Einsicht oder gar nur Plausibilitätsargumenten. In den Gymnasien wurden zwar

Beweise geführt, meist entstanden in einem gemeinsamen Unterrichtsgespräch. Sie führten

auch häufig zur Einsicht in die Gültigkeit des Satzes durch den Schüler. Eine Reproduktion

durch den Schüler wurde jedoch meist nicht verlangt und erst recht dann auch nicht Beweis-

aufgaben, in welchen der Schüler selbständig Beweise führen mußte“ (Griesel 2003, S.168).

Die großen Schwierigkeiten, die Schülerinnen und Schüler beim Beweisen haben, führt Walsch

allerdings nicht auf die Überforderung durch die formale Strenge zurück, sondern auf den dies-

bezüglich unzureichenden Mathematikunterricht: „Die Unklarheiten vieler Schüler hinsichtlich

der Methoden zur mathematischen Erkenntnissicherung waren nicht auf mangelnde geisti-

ge Voraussetzungen, sondern auf Versäumnisse des Mathematikunterrichts zurückzuführen“

(Walsch 1975, S.129). Durch einen geeigneten Unterricht, der die Schülerinnen und Schüler

von Klasse 1 an auf das Beweisen vorbereite, eine saubere Begriffsklärung trainiere (Unter-

scheidung von Begriffen, die eines Beweises bedürfen, also Sätzen, und von Begriffen, die nicht

beweisbedürftig sind, wie Definitionen, Terme, Aussageformen etc.) und ihnen die erforder-

lichen Schlussweisen zur Verfügung stelle, könne das Beweisen, und zwar formal-deduktiv,

erheblich verbessert werden. Dies sei auch im Hinblick darauf wichtig, den Abstand zur fach-

wissenschaftlichen Mathematik nicht zu groß werden zu lassen: „Es wäre schädlich, durch eine

zu starke Normierung der im Unterricht verwendeten Sprechweisen eine ungerechtfertigte Kluft

zwischen „Schulmathematik“ und mathematischer Wissenschaft zu schaffen“ (ebenda, S.145).

Demgegenüber ist in der Mathematikdidaktik allerdings auch viel Kritik an strengen, formal-

deduktiven Beweisen im Schulunterricht geübt worden. So legen beispielsweise Wittmann &

Müller (1988, S.240) an Beispielen dar, „wie hinderlich eine formalistische Beweisauffassung

für die Entwicklung eines für den jeweiligen sozialen Kontext angemessenen Beweisverständnis-

ses sein kann.“ Zudem stellt sich die Frage, inwieweit ausschließlich ein streng formalistischer

Beweis der von Manin (2010, S.49) aufgestellten Forderung gerecht werden kann: „A good

proof is one that makes us wiser.“

Aus dieser Haltung heraus entwickelten sich unterschiedliche Ansätze, alternative Arten von

Beweisen zu etablieren, die für Schülerinnen und Schüler angemessener sind, denn dass das
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Beweisen eine wichtige Tätigkeit des Mathematikunterrichts ist, ist unumstritten, wie auch

Schupp (2010, S.97) herausstellt: „Nicht näher eingehen werde ich auf die wohl unumstrittene

Tatsache, dass das Beweisen als fundamentale Idee der Mathematik und als typisch mathe-

matische Methode des kritischen Vernunftgebrauchs unverzichtbar ist.“

Ausgehend von der Kritik am formalistischen Beweisen sind in der Mathematikdidaktik un-

terschiedliche Konzepte für alternative Vorgehensweisen ausgearbeitet worden. Im Folgenden

möchte ich in Anlehnung an Elschenbroich (2005) eine kurze Übersicht über die in der

Literatur entwickelten Alternativen geben. Dabei wird sich zeigen, dass die verschiedenen Be-

zeichnungen nicht immer so eindeutig definiert sind, dass trennscharf zwischen den einzelnen

Beweisarten unterschieden werden kann. Zudem ist ein unterschiedlicher Grad an Strenge zu

konstatieren.

„Siehe“-Beweise

Eine wichtige Rolle in Verständnisprozessen spielt die Anschauung, die, obwohl sie durchaus

begrenzt sein kann (z.B. kann man sich die Vektorräume R2 und R3 noch gut vorstellen,

während dies beim Rn für n>3 wohl nur noch schwerlich gelingt), dennoch bedeutsam und

hilfreich ist.

„Für unsere Belange ist die Feststellung von Bedeutung, daß alle 3 Funktionen der

Anschauung [gemeint sind: erkenntnisbegründende, -begrenzende und -fördernde

Funktion, G.W.] eine produktive Komponente enthalten:

1. Anschauliche Konfigurationen können Fingerzeige, Hilfestellungen und sogar

substantielle Beiträge zur Begründung mathematischer Sachverhalte enthal-

ten.

2. Paradox erscheinende, die Anschauung offenbar übersteigende Situationen

können den Anstoß zu vertiefteren Erkundungen bilden und zu subtileren

Unterscheidungen führen.

3. Anschauliche Gegebenheiten können zu neuen Begriffsbildungen anregen

und die Gedanken bei der Lösung von Problemen leiten.

Ein Paradebeispiel für die begründende Funktion der Anschauung sind die be-

kannten „Siehe“-Beweise in der Geometrie, wie sie uns in etwa von Thales von
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Milet (624-546 v.Chr.) überliefert sind“ (Winter 1991, S.136).

A BM

C

A B M 

C 

D 

A B M 

C 

D 

Abbildung 2.4 – „Siehe“-Beweis zum Satz des Thales nach (Winter 1991, S.137)

In diesem Beweis ohne Worte wird anschaulich bewiesen, dass in jedem Dreieck, bei dem

eine Seite Durchmesser des zugehörigen Umkreises ist, der dieser Seite gegenüberliegende

Winkel ein rechter ist. Natürlich reicht bloßes Hinsehen nicht, sondern die Zeichnungen müssen

der Reihe nach interpretiert werden: In der ersten Zeichnung wird ein Dreieck ABC gezeigt,

dessen Seite AB Durchmesser des Umkreises ist. Dieses Dreieck kann zum punktsymmetrischen

Sehnenviereck ABCD ergänzt werden, indem man beispielsweise C an M spiegelt oder die

Gerade durch C und M zeichnet und deren zweiten Schnittpunkt mit dem Kreis D nennt

(s. zweite Zeichnung). Nun können in der letzten Zeichnung zwei Paare gleichschenkliger und

kongruenter Dreiecke gesehen werden und damit zweimal vier gleich große Winkel. Daraus

kann gefolgert werden, dass die Winkel des Vierecks ABCD alle kongruent zueinander sind

und damit jeweils 90 Grad groß, womit gezeigt ist, dass das Dreieck ABC rechtwinklig ist.

Winter (1991, S.137) resümiert wie folgt:

„Wenn auch alle diese Gedanken nicht explizit ausgesprochen werden oder zu wer-

den brauchen, so ist doch der anschauliche „Siehe“-Beweis nur insoweit ein Beweis,

als das Sehen mit Denken (einschließlich des Erinnerns an Vorwissen) durchsetzt

ist. Es muß zwar keine Deduktionskette (Berufung auf bewiesene Sätze/Axiome)

bewußt ausgesprochen oder niedergeschrieben werden - und hierin könnte even-

tuell auch eine Entlastung für den Lernenden liegen -, jedoch handelt es sich

gleichwohl um begründendes Denken. Freilich ist es ein Denken beim Sehen, und

man sollte ohne falsche Scham zugeben, daß es (auch) ein leibliches, physiologisch-

psychologisches Wahr-nehmen ist. Die Verachtung, die Plato und seine Anhänger
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bis heute den gezeichneten Figuren (als niedrigen Ersatzstücken der wahren Ide-

en), dem empirischen Messen und dem sinnlichen Wahrnehmen entgegenbringen,

ist sachlich nicht zu rechtfertigen und pädagogisch geradezu destruktiv.“

Das Besondere beim Siehe-Beweis ist somit, dass alle zum Beweis benötigten Informationen

bereits in der bzw. den Zeichnungen vorliegen und daraus abgelesen, gesehen und auch ein-

gesehen werden können. Die Leistung, aus diesen Informationen aktiv eine schlüssige Beweis-

kette zu bilden, bleibt dem Interpreten überlassen. Insgesamt gesehen liegt der vollständige

Beweis also bereits vor und soll dem Betrachter die zugrundeliegenden Zusammenhänge of-

fenbaren.

Plausibles Schließen

Pólya (1975) verwendet den Begriff des „Plausiblen Schließens“ im Kontrast zum Begiff des

„demonstrativen Schließens“, wobei letzterer für die übliche deduktive Vorgehensweise in der

Mathematik steht. Das „Plausible Schließen“ hingegen geht induktiv vor: durch bestimmte

Betrachtungen und Beobachtungen kann zwar nicht der Wahrheitsgehalt einer Aussage be-

stimmt werden, es kann aber eine erhöhte Sicherheit an die Glaubwürdigkeit der Aussage

erreicht werden.

Dazu gibt es nach Pólya unterschiedlich Vorgehensweisen. Eine ist die „Verifizierung einer

Konsequenz“ (ebenda, S. 13): habe ich eine Vermutung A und weiß, dass die Konsequenz B

aus A folgt, so wird A glaubwürdiger, wenn es mir gelingt zu zeigen, dass B wahr ist. (Beispiel:

Ich habe die Vermutung, dass bei jedem konvexen Polyeder die Anzahl der Flächen plus die

Anzahl der Ecken gleich der Anzahl der Kanten plus zwei ist (A). Daraus kann ich die Kon-

sequenz ziehen, dass dies auch für den Würfel so ist (B), und in der Tat gilt: 6 (Anzahl der

Flächen) + 8 (Anzahl der Ecken) = 14 = 12 (Anzahl der Kanten) + 2 (Verifikation von B).

Dadurch weiß ich zwar immer noch nicht, ob A stimmt, die Vermutung ist allerdings glaub-

würdiger geworden.)

Eine Steigerung kann erzielt werden durch die „Sukzessive Verifizierung mehrerer Kon-

sequenzen“ (ebenda, S. 15), dies umso besser, je verschiedener die Konsequenzen sind. Bei-

spielsweise kann ich versuchen, die Vermutung A im oben genannten Beispiel zu erhärten,

indem ich sie noch am Beispiel des Oktaeders oder eines anderen platonischen Körpers über-

prüfe. Dies wird mich zwar sicherer machen; eine wesentlich höhere Glaubwürdigkeit von A
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bekomme ich allerdings, wenn ich sie noch an weniger regelmäßigen Körpern überprüfe, wie

Pyramiden oder Körpern, bei denen Ecken abgestumpft sind (vgl. auch Pólya 1969). Daher

sieht Pólya (1975, S.19) auch den höchsten Zuwachs an Glaubwürdigkeit beim „Verifizieren

einer unwahrscheinlichen Konsequenz“.

Eine weitere Möglichkeit ist die „Folgerung auf Grund von Analogie“ (Pólya 1975, S.21):

finde ich eine Aussage B, die analog zur Vermutung A ist, und kann ich B verifizieren, so wird

die Vermutung A glaubwürdiger. In unserem oben genannten Beispiel ist das Analogon zum

Polyeder im Raum das Polygon in der Ebene. Gelingt es, eine Aussage B zu finden, die ana-

log zu A ist, sich aber auf Polygon und Ebene bezieht, und gelingt es, diese Aussage B zu

verifizieren, so wird A glaubwürdiger. Pólya (1969, S.77) bewerkstelligt dies, indem er die ur-

prüngliche Gleichung E + F = K + 2 umstellt und die Größen F, E und K in einer „natürlichen

Reihenfolge“ anordnet, nämlich nach Dimensionen. Damit kommt er bei den Polyedern auf

die Gleichung: E - K + F - 1 = 1, weil die Ecken null-dimensional, die Kanten ein-dimensional

und die Flächen zwei-dimensional sind. Die 1, die auf der linken Seite der Gleichung subtra-

hiert wird, steht für das einzige drei-dimensionale Element, das Polyeder selbst. Die analoge

Gleichung für Polygone lautet: E - K + 1 = 1 und kann leicht verifiziert werden.

Auch hier gibt es noch eine Steigerung, die Pólya (1975, S.23) „Vertiefung der Analogie“

nennt: „Es erscheint vernünftig, daß die Tragkraft eines Analogieschlusses gleichzeitig mit der

Tragweite der Analogie, auf die er sich gründet, zunimmt“ (Pólya 1975, S.26).

Pólya behauptet nicht, dass das plausible Schließen der Ersatz für einen Beweis ist. Er führt

aber gute Gründe an, um das plausible Schließen im Unterricht zu lehren, gerade auch, weil

die Schülerinnen und Schüler die rein deduktive Vorgehensweise oftmals nur als formales,

sinnentleertes Vorgehen verstehen, welches man für Prüfungen lernt und danach getrost wie-

der vergessen kann:

„Nun ist wohl das Resultat der schöpferischen Arbeit des Mathematikers demons-

tratives Schließen, ein Beweis, aber der Beweis wird durch plausibles Schließen,

durch Erraten, entdeckt.

Wenn es sich aber so verhält, dann sollte es im mathematischen Unterricht einen

Platz für Erraten geben. Der Unterricht sollte auf Erfindung vorbereiten, oder

doch wenigstens einen kleinen Begriff davon vermitteln. Auf keinen Fall sollte er

die Keime des Erfindens in den Schülern ersticken. [...] Ich habe nicht gesagt, daß
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wir das Beweisen vernachlässigen sollen. Im Gegenteil, man muß beides lehren,

beweisen und erraten, beide Arten des Schließens, die demonstrative und die plau-

sible. Es ist weniger wichtig, daß der Schüler in dem mathematischen Unterricht

spezielle Tatsachen oder Kunstgriffe, Sätze oder Techniken, als daß er die beiden

folgenden Dinge lernt:

Erstens, eine gültige Beweisführung von einem ungültigen Versuch, einen Beweis

von einer Vermutung zu unterscheiden.

Zweitens, eine vernünftigere Vermutung von einer weniger vernünftigen zu unter-

scheiden“ (Pólya 1975, S.241f.).

Folgt man Pólya, ist das plausible Schließen ein Mittel, nach Begründungszusammenhängen

zu suchen, und stellt darüber hinaus einen wichtigen Schritt beim lokalen Ordnen dar. Insofern

kann es durchaus als eine wichtige Vorstufe der Beweisfunktion des Systematisierens anerkannt

werden.

Anschauliche Beweise

In der mathematikdidaktikschen Forschung wird immer wieder die Feststellung gemacht, dass

Schülerinnen und Schüler zum einen große Probleme beim Führen eines Beweises haben und

zum anderen oftmals auch nicht die Notwendigkeit sehen, einen Beweis führen zu müssen.

Bender (1989, S.118) sieht hierfür folgende Gründe als zentral an:

„Die ursächlichen Faktoren seien noch einmal hervorgehoben:

- Besonders am Anfang des systematischen Aufbaus (wo zugleich mit dem

Beweisen begonnen wird) geht es um Aussagen, die anschaulich trivial sind

und deswegen als Axiome verwendet werden oder jedenfalls die Auswahl von

Axiomen so beeinflussen, daß sie leicht abgeleitet werden können.

- Wegen dieser Evidenz kommt kein Beweisbedürfnis auf.

- Es ist unklar, was alles als Prämissen in Frage kommt.

- Die Voraussetzungen wirken häufig nicht vorgängiger als die Behauptungen.

- Der Beweis liefert keine (zusätzliche) Einsicht.“
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Bender schlägt alternativ vor, in der Schule keine axiomatische Geometrie zu betreiben,

sondern stattdessen einige Axiome, wie Existenz-, Anordnungs- und Vollständigkeitsaxiome

gar nicht zu thematisieren, evidente Sätze wie Stufenwinkelsatz und Kongruenzsätze nicht

zu beweisen und andere (wie z.B. den Strahlensatz) rein qualitativ abzuhandeln (ebenda S.

119f.). Das weitere Vorgehen kann eng am Anschauungsraum, der als euklidisch angenommen

wird, erfolgen:

„Nach unserer Auffassung (s. Bender & Schreiber 1985) gehören zu einem geo-

metrischen Begriff seine Realisate (u.a. Zeichnungen) wesentlich mit dazu, und

diese, sowie der ganze reale Raum sind nicht bloße Modelle für eine ansonsten

autonome mathematische Theorie. Es stellt sich also gar nicht erst die Frage nach

Rechtfertigung, Zulässigkeit [...] oder prinzipieller Eignung der Objekte des An-

schauungsraums zur Modellierung geometrischer Begriffe; - es besteht da vielmehr

eine recht weit gehende (partielle) Identität“ (Bender 1989, S.100f.).

Auf dieser Grundlage können dann anschauliche Beweise geführt werden, die, wie der Name

bereits besagt, eng an die räumliche Anschauung angebunden sind. Dabei ist von Vorteil,

dass die Schülerinnen und Schüler anhand der zwei- oder dreidimensionalen konkreten Objek-

te eine sehr viel bessere Vorstellung entwickeln können als bei der bloßen Abarbeitung von

linear-sequentiellen Zeichenketten. Dieses wiederum kann genutzt werden, um die anfänglich

erkannte Problematik zu überwinden, bei Schülerinnen und Schülern überhaupt ein Beweis-

bedürfnis zu erzeugen: „Ein Mittel der Verallgemeinerung ist dann, mehrere Individuen zu be-

trachten und überhaupt die Aufmerksamkeit auf verschiedene Fälle, Sonderfälle, Einbettung

in den allgemeinen Fall, Entartungsfälle zu lenken. Da ist dann zu prüfen, ob der behauptete

Sachverhalt noch zutrifft, ab wann nicht mehr; und man stößt auf die Frage, woran es liegt,

wenn er nicht mehr zutrifft, man wird also zu deduktivem Schließen motiviert“ (ebenda, S.

109f.). Damit regen anschauliche Beweise zur Beweisfindung und damit stark zur Verifikation

eines mathematischen Sachverhalts an (anders als beispielsweise der Siehe-Beweis, bei dem

der komplette Beweis schon in der Zeichnung enthalten ist).

Ein Beispiel für einen anschaulichen Beweis, den auch Bender erwähnt, findet sich bei Hei-

denreich (1987), nämlich der sogenannte „Rotwein-Beweis“ bezüglich des Satzes, dass das

Kantenmittensechseck eines Würfels eben ist (vgl. Abbildung 2.5).
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Abbildung 2.5 – „Rotwein-Beweis“ aus (Heidenreich 1987, S.137)

Heidenreich schlägt vor, einen Würfel aus Plexiglas zu betrachten, welcher mit Hilfe eines

Ständers so auf eine Ecke gestellt wird, dass eine Raumdiagonale senkrecht zum Fußboden

steht. Dieser Würfel wird mit Rotwein gefüllt. Lässt man nun den Wein am Punkt A, an

dem sich ein Zapfhahn befindet, wieder abfließen, so fällt die Rotweinoberfläche und erreicht

zunächst gleichzeitig die Ecken C,F und H und später gleichzeitg die Punkte M1, ...,M6,

womit gezeigt ist, dass diese in einer Ebene liegen. Dabei spielen natürlich die Überlegungen,

dass der Würfel drehsymmetrisch bezüglich der Raumdiagonalen AG ist, damit die Kanten

GH, GF und GC die gleiche Neigung gegenüber AG haben und damit alle Kanten die gleiche

Neigung gegenüber AG (da die anderen Würfelkanten zu je einer der drei Kanten GH, GF

oder GC parallel sind), eine entscheidende Rolle.

Nach Heidenreich ist der Rotwein-Beweis ein vollwertiger Beweis:

„Im Rotwein-Beweis wäre ein tatsächlich durchgeführtes Experiment sicher hübsch

anzuschauen (von der Verwendung des dabei anfallenden Rotweins ganz zu schwei-

gen), aber das Experiment macht den Rotwein-Beweis nicht überzeugender. Für

den Rotwein-Beweis genügt das Gedankenexperiment. Man stellt sich den Plexi-

glaswürfel und den Rotwein vor, folgt dem Fallen des Rotweinspiegels mit den

entsprechenden Überlegungen und weiß zum Schluß, daß das Sechseck eben sein

muß, weil der Rotweinspiegel gleichzeitig die sechs Punkte M1, ...,M6 erreicht.

Das einzige Defizit (in meinen Augen ist es keines) des Rotwein-Beweises ist:
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Es fehlt die bei mathematischen Beweisen meist übliche formale Darstellung“

(Heidenreich 1987, S.138).

Der Rotwein-Beweis ist ein Beispiel für die Betrachtung von stetigen Bewegungen, die Ben-

der in diesem Zusammenhang als besonders hilfreich ansieht, da deren Visualisierungen in

besonders großem Maße anschaulich sind. Zudem können sie dabei helfen, eine Zeichnung als

Repräsentanten einer Figur zu deuten und damit den Variablencharakter der Zeichnung unter-

stützen, so dass man es, „besonders wenn man alle wesentlich verschiedenen Fälle durchlaufen

hat, nicht mehr weit bis zur Allgemeingültigkeit“ (Bender 1989, S.110) hat.

Diese Betrachtung von stetigen Bewegungen wird durch den Einsatz einer DGS natürlich sehr

viel einfacher, als es zu der Zeit war, als Bender den hier zitierten Aufsatz schrieb (Cabri-

géomètre als Vorreiter bei den DGS kam 1989 in Frankreich auf den Markt). Daher sind an

dieser Stelle noch einmal die Vorteile, die Bender (1989, S.129) herausarbeitet, aufgelistet:

„Folgende Funktionen stetiger Bewegungen bzw. Verformungen [lassen sich, G.W.]

bei elementargeometrischen Beweisen ausmachen:

A. Sie liefern den Beweis selbst (z.B. Existenznachweis mit Stetigkeitsargumen-

ten).

B. Sie vertiefen den Glauben an den Beweis, indem sie in plausibel bzw. plau-

sibler machen [...].

C. Sie unterstützen die Einsicht in die Allgemeingültigkeit einer Behauptung,

indem sie viele Fälle zeigen, Sonderfälle in allgemeine Fälle einbetten (und sie

so hervorheben) und überhaupt Übergänge zwischen Fällen demonstrieren.

D. Sie erzeugen Vermutungen, Sätze, Beweisideen, indem sie Veränderungen

und Invarianten zeigen [...].

E. Sie visualisieren den Ablauf eines Beweises und strukturieren ihn, indem sie

einzelne Beweis’stationen’ verbinden und die Umstrukturierungsoperationen

leiten (z.B. ’Scherungsbeweis’ des Kathetensatzes).

F. Sie stehen für Handlungen und machen die geometrischen Operationen da-

durch zugänglicher, plausibler.

G. Sie regen eine allgemeine Sichtweise geometrischer Figuren als beweglich
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bzw. veränderlich an, die grundsätzlich geometrischen und außergeometri-

schen Denkweisen förderlich ist.“

Der eigentliche Beweis werde nach Bender allerdings in der Regel nicht dynamisch, sondern

im Nachgang an einem statischen Bild geführt. In dieser Einschätzung unterscheidet er sich

deutlich von der weiter unten ausgeführten Einschätzung Elschenbroichs, der, im zeitlichen

Abstand von ca. 10 Jahren, den Begriff des „visuell-dynamischen Beweisens“ verwendet und

damit auf den sich anschließenden Beweis am statischen Bild verzichtet.

Tätigkeitsbeweise

Für viele Mathematikdidaktiker wie Wittmann, Kirsch oder Mormann nehmen Modelle

in der Mathematik eine herausragende Rolle ein.

„Das Wissen der wissenschaftlichen Mathematik wie das der Schulmathematik

ist ein Wissen, das sich in Modellen darstellt. Die Modelle des mathematischen

Wissens reichen vom abstrakten „Mengentheoriemodell“ der gesamten Mathema-

tik bis zum physikalischen Raum als Modell der euklidischen Geometrie und den

verschiedenen Urnenmodellen in der Wahrscheinlichkeitstheorie. [...] Modelle des

mathematischen Wissens besitzen ihren Modellcharakter nicht von sich aus, son-

dern gewinnen ihn erst dadurch, daß man in ihnen gewisse theoretisch bedeutsame

Tätigkeiten ausführt; sei es, daß man Zeichenreihen nach gewissen Regeln manipu-

liert, geometrische Konstruktionen durchführt oder Zufallsexperimente anstellt“

(Mormann 1981, S.81).

Das gemeinsame all dieser unterschiedlichen Modelle ist dabei, dass sie eine Beziehung zwi-

schen mathematischem Wissen und mathematischer Tätigkeit herstellen. Dabei liegt die Be-

deutsamkeit der Tätigkeit darin, das Wissen an die Anschauung anzubinden und somit in das

globale Wissensnetz zu integrieren (beispielsweise ist es etwas anderes, eine Grundvorstellung

vom Begriff „Variable“ zu haben, als einfach nach syntaktischen Regeln mit ihnen zu operie-

ren). Gleichwohl müsse man sich im klaren darüber sein, dass die Modelle durchaus Grenzen

bezüglich der Analyse des Gegenstandsbereich, den sie darstellen, haben. Daher muss der

Umgang mit dem Modell reflektiert sein und die vom Modell gelieferten Ergebnisse müssen

kritisch hinterfragt werden. Sollte ein Modell eine Aussage liefern, die nicht akzeptabel ist,
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muss es dementsprechend verworfen werden. Ein Beispiel für ein derartiges Modell, das den

Beweis für die Aussage „168 = 169“ zu liefern scheint, findet sich in Abbildung 2.6.

Abbildung 2.6 – Geometrischer Beweis der Aussage 168 = 169? aus (Mormann 1981, S.82)

Die Bedeutsamkeit von Tätigkeiten in Zusammenhang mit dem Einsatz von Modellen stellt

Mormann (1981, S.84) folgendermaßen dar:

“Modelle sind keine bloßen Abbilder oder Vertreter der Gegenstände, sondern

repräsentieren diese unter bestimmten Gesichtspunkten, die von den jeweiligen

Interessen der Modellbenutzer abhängen. Will man die Bedeutung eines Modells

verstehen, muß man es als einen Tätigkeitsbereich verstehen; die Modellhalftigkeit

eines Modells rührt wesentlich von der Aktivität eines modellierenden Subjekts

her. D.h., das Modell wird Modell erst durch die Tätigkeit des Modellbenut-

zers. Modelle eröffnen so eine theoretische Perspektive oder einen theoretischen

Rahmen, in den das einzelne Faktum eingeordnet wird. Modelle haben verallge-

meinernde Funktion.“

Diese verallgemeinernde Funktion zeigt sich darin, dass in einem guten Modell neue und

grundlegende Gesichtspunkte des modellierten Objektbereichs entdeckt werden können, die

dann im Modell durch eine der zahlreichen Handlungen, die darin möglich sind, bewiesen wer-

den können. Wichtig bei der Beziehung zwischen Modell und Realität ist, dass das Modell der

Realität von der globalen Struktur her ähnelt, wobei allerdings nicht alle Details realistisch

interpretiert werden können. Damit wird nach Mormann „den Modellen eine gewisse Auto-

nomie gegenüber der Realität“ (ebenda, S. 87) zugesprochen, was meistens nötig ist, um die
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Handlungen im Modell richtig zu verstehen.

Besonders geeignet zur Nutzung von mathematischen Modellen und Modellierungen ist nach

Mormann die euklidische Geometrie als Modell des Anschauungsraums. Hier können konkrete

Modelle von geometrischen Figuren erstellt und im Rahmen von Tätigkeitsbeweisen eingesetzt

werden. Als Beispiel führt Mormann den Tätigkeitsbeweis zum Satz: „Im gleichschenkligen

Trapez sind die Diagonalen gleich lang“ an (vgl. Abbildung 2.7):

„Ein Beweis durch Tätigkeit kann etwa folgendermaßen aussehen: Man schneidet

das Trapez „aus der Zeichenebene aus“, dreht es und setzt es dann „umgekehrt“

wieder ein. Ein solcher „Tätigkeitsbeweis“ trägt bereits alle wesentlichen Züge

eines echten mathematischen Beweises, weil er nämlich nicht auf den einzelnen

isolierten Gegenstand des speziellen Trapezes fixiert ist, sondern Bezug nimmt

auf eine allgemeine Tätigkeit des Subjekts (Drehung, Symmetrie usw.), wodurch

dieses Problem als ein Anwendungsfall ganz allgemeiner Tätigkeitskategorien des

Subjektes erscheint.“

A B

D C

Abbildung 2.7 – „Modell für den Tätigkeitsbeweis zum Satz: „Die Diagonalen im gleich-

schenkligen Trapez sind gleichlang“ nach (Mormann 1981, S.90)

An dieser Stelle zeigt sich die von mir zu Beginn dieses Kapitels genannte Unschärfe bezüglich

der Bezeichnungen, die für die einzelnen Beweisarten gewählt sind. Das hier angeführte Beispiel

könnte ebensogut eines für einen „Siehe“-Beweis darstellen, denn die Tätigkeit, auf die sich

Mormann bezieht, ist ja nur ein Modell für die Spiegelsymmetrie, die auch „gesehen“ werden

kann, und diese ist das entscheidende Argument. Damit sind die „Siehe“-Beweise so viel und

so wenig Modelle wie die „Tätigkeits“-Beweise und müssten eigentlich darunter subsumiert

werden.

Mormann misst der mathematischen Tätigkeit eine besondere Bedeutung zu, da sich seiner

Ansicht nach ein echtes mathematisches Beweisverständnis nur bei demjenigen entwickeln
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kann, der Tätigkeit und Wissen verknüpft und die Zusammenhänge zwischen beiden Aspekten

erkennt:

„Wissen ist jedoch nur dann wirklich entwickelt und allgemein, wenn es weit-

reichende operative Anwendungsmöglichkeiten eröffnet - Operationen haben nur

dann einen breiten Anwendungsbereich, wenn sie durch sehr allgemeine Konzepte

gesteuert werden. Beide oben geschilderten Fälle eines unzureichenden Beweisver-

ständnisses [ein ausschließlich rezeptives bzw. eines, bei dem zwar die Beweisidee

verstanden ist, diese aber nicht auf den konkreten Beweis angewandt werden kann,

G.W.] lassen sich als zwei Seiten eines Defizites beschreiben, des ungenügenden

Zusammenhanges von Wissen und Tätigkeit“ (Mormann 1981, S.144).

Eine Konsequenz aus dieser Feststellung ist für Mormann, die Schülerinnen und Schüler nicht

nur Beweise nachvollziehen zu lassen und auch nicht, ausschließlich über allgemeine mathe-

matische Konzepte zu reflektieren, sondern zusätzlich dazu konkrete Tätigkeiten im Kontext

des Beweisens durchzuführen.

Elschenbroich (2005), auf den ich mich im Wesentlichen bei der hier vorgenommen Aufzäh-

lung von alternativen Beweismethoden beziehe, bringt neben Mormann den Namen Malle

mit dem Terminus „Tätigkeitsbeweise“ in Zusammenhang, da dieser den Ansatz der Handlun-

gen im Modell verfolgt. Malle selbst verwendet allerdings nicht die Vokabel „Tätigkeitsbe-

weis“, sondern nutzt die Formulierung, dass man „durch Handeln an einer Zeichnung beweisen“

(Malle 1984, S.84) kann, wobei die Zeichnung Repräsentant eines Modelles ist. Bezogen auf

das Beispiel zum Beweis der gleichlangen Diagonalen im gleichschenkligen Trapez (vgl. Ab-

bildung 2.7) stellt Malle (1984, S.80) fest:

“Man erkennt an diesem Beispiel, daß der Allgemeinheitscharakter des visuellen

Beweises darin besteht, daß man sein Augenmerk von den konkreten O b j e k -

t e n der Zeichnung (Trapez, Ecken, Seiten, Diagonalen etc.) weglenkt und auf

die H a n d l u n g e n richtet, die man mit ihnen vornehmen kann. Die konkreten

Objekte sind bei jedem gleichschenkeligen Trapez andere, die Handlungen sind

aber im Prinzip stets dieselben. Man kann auch sagen: es ist einunddasselbe

H a n d l u n g s s c h e m a, das in allen Fällen angewendet wird. In dem Moment,

wo man diese Einsicht erlangt, erlangt man Einsicht in die Allgemeingültigkeit

der Argumentation.“
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Kritisch kann hierzu angemerkt werden, dass die Handlungen so viel und so wenig dieselben

sind, wie es die Objekte sind. Sie sind nur nicht so manifest wie die Zeichnungen, und des-

wegen sieht man leichter von den Unterschieden ab. Dem Handlungsschema entspricht die

Repräsentationseigenschaft der konkreten Zeichnung für den Begriff des Trapezes.

Die Tätigkeiten des Ausschneidens, Wendens und Einpassens liefern einen Hinweis auf die

Beweisidee und gehören so zur Funktion des Erklärens und des lokalen Ordnens.

Inhaltlich-anschauliche Beweise

Empirische Untersuchungen haben gezeigt, dass Lehrerinnen und Lehrer oftmals eine forma-

listische Auffassung von Beweisen haben (vgl. Wittmann & Müller 1988). Dass durch

diese Auffassung bei Schülerinnen und Schülern Schaden angerichtet werden kann, ist lange

bekannt. So stellt Branford (1913, S.328) fest:

„Ich glaube, es ist Tatsache, daß die große Mehrheit der Lehrer fest überzeugt ist,

daß sich die Mathematik von allen anderen Wissenschaften nicht so sehr durch

das Maß an Strenge unterscheidet, als vielmehr dadurch, daß der mathematische

Beweis a b s o l u t streng ist, während ein anderer Beweis nur a n g e n ä h e r t

ist.

Das Unheil, welches dieser Glaube auf allen Stufen des mathematischen Un-

terrichts angerichtet hat, ist, glaube ich, ganz unberechenbar. Daß die Strenge

des Beweises der Reife des Schülers angepaßt werden muß, ist ein pädagogischer

Grundsatz, der glücklicherweise langsam Boden gewinnt, obgleich er bis jetzt erst

durch wenige Lehrer anerkannt und durch noch wenigere angewandt wird.“

Diese Anpassung der Strenge des Beweises an das jeweilige schulische Niveau veranlasst Bran-

ford, zwischen drei Stufen von Beweisen zu unterscheiden: den experimentellen „Beweisen“,

den intuitiven Beweisen und den wissenschaftlichen Beweisen (ebenda, S. 100ff, S. 239ff). Da-

bei zieht er die Grenze zwischen dem, was als Beweis anerkannt wird und was nicht, zwischen

den experimentellen und den intuitiven Beweisen, also zwischen der ersten und der zwei-

ten Stufe: da der experimentelle „Beweis“, der sich überwiegend auf die Sinneswahrnehmung

stützt, nur einzelne, konkrete Fälle überprüft, kann er keine Allgemeingültigkeit sichern. Um

dies hervorzuheben, ist der Ausdruck kursiv und in Anführungszeichen gesetzt, doch ist die

Verwendung der Begrifflichkeit „Beweis“ in diesem Zusammenhang nicht unkritisch zu sehen.
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Der intuitive Beweis hingegen bezieht darüber hinaus auch das begriffliche Denken mit ein

und kann daher als Beweis anerkannt werden: „Diese Beweisstufe stellt allgemeine und streng

gültige Wahrheiten auf, beruft sich aber dabei, wenn es nötig wird, auf Postulate der sinnlichen

Erfahrung. Sie stellt die Wahrheit auf eine unabhängige Basis durch unmittelbare Berufung

auf erste Prinzipien“ (ebenda S. 103).

In Anlehnung an Branford treffen Wittmann & Müller (1988) die Unterscheidungen

zwischen experimentellen „Beweisen“, inhaltlich-anschaulichen Beweisen und formalen Bewei-

sen. Eine Beschreibung des Begriffs „inhaltlich-anschaulicher Beweis“ findet sich in Wittmann

(1987, S.50f): „Wir nehmen gewisse geometrische Beziehungen innerhalb bestimmter inhalt-

licher Zusammenhänge (Kontexte) als anschaulich gegeben hin und leiten aus ihnen durch

logische Schlüsse Sachverhalte ab, die uns als nicht evident erscheinen.“ Bei Blum & Kirsch

(1989, S.202), die sich wiederum auf Branford und Wittmann berufen, findet man die

damit übereinstimmende folgende Definition eines „inhaltlich-anschaulichen“ Beweises:

„Wir [wollen, G.W.] hier unter einem inhaltlich-anschaulichen Beweis eine Kette

von korrekten Schlüssen verstehen, die auf nicht-formale Prämissen zurückgrei-

fen, d.h. insbesondere auf inhaltlich-anwendungsbezogene Grundideen (wie z.B.

Ableitung als lokale Änderungsrate) oder auf intuitiv evidente, „allgemein ge-

teilte“, „psychologisch offenkundige“ Aussagen (letzteres nach Thom 1973). Die

Schlüsse sollen in ihrer „psychologisch natürlichen“ Ordnung aufeinanderfolgen.

Sie müssen vom konkreten, inhaltlich-anschaulich gegebenen Fall direkt verall-

gemeinerbar sein, wobei diese Übertragbarkeit auf den allgemeinen Fall intuitiv

erkennbar sein soll, und sie müssen bei Formalisierung der jeweiligen Prämissen

korrekten formal-mathematischen Argumenten entsprechen.“

Dabei ist es sowohl erlaubt, induktiv zu argumentieren (beispielsweise derart, dass man sich

klar macht, dass ein Verfahren beliebig oft fortgeführt werden könnte), als auch indirekt (bei-

spielsweise derart, dass man sich „Was wäre wenn“-Fragen stellt). Maßgeblich dabei ist, dass

der Bezug zu inhaltlich-anschaulichen Grundlagen hergestellt wird. „Was solch „inhaltlich-

anschauliche“, „offenkundige“ etc. Argumentations-Grundlagen sind, entscheiden die jeweils

betroffenen Individuen [...] auf der Basis ihres Wissens“ (Blum & Kirsch 1989, S.202). Diese

Wissensbasis ist abhängig von der jeweiligen Entwicklungsstufe der Schülerinnen und Schüler:

„But let us observe that despite recent progress in our technical civilisation, the
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stages of a young child’s development (physical or intellectual) have not been

altered. There is always a stage of necessary apprenticeship, genetic constraints

to respect, in order to learn to walk, to speak, to read, to write, and it does not

seem as if progress in psychology has been able to modify in any way the normal

calendar which governs the acquisition of such knowledge. This is why one can

legitimately ask whether the same kind of constraints are not operating in the

learning of mathematics. [...] I personally believe that these genetic constraints

do exist, that they form an integral part of pupil’s temperament and personality,

ant that, among many of the pupils [...] they will, by their nature, completely

prevent the understanding of mathematics at the level of the rudiments of the

differential calculus“ (Thom 1973, S.196).

Hier wird noch einmal der Bezug zur „psychologisch natürlichen Ordnung“ (s.o.) sichtbar, der

sich von den erst später in den Fokus gerückten sozialen Aushandlungsprozessen unterscheidet.

Für Wittmann (1987, S.51) ist es wichtig, dass eine logisch-deduktive Vorgehensweise zwar

an den inhaltlich-anschaulichen Beweis angeschlossen werden, diesen aber nicht substituieren

kann:

„Die inhaltlich-anschauliche Vorgehensweise ist auch in der heutigen Mathematik

völlig legitim. Die arbeitenden Mathematiker benutzen sie mit offensichtlichem

Erfolg in der Forschung und bei der informellen Kommunikation mit Kollegen.

Zugegeben, wesentliche Fortschritte der Mathematik beruhen auf weitergehenden

logischen Analysen anschaulicher Beweise und auf der axiomatischen Formulie-

rung inhaltlicher Theorien. Beweisanalyse und Axiomatik sind jedoch eigene ma-

thematische Methoden, die das inhaltlich-anschauliche Vorgehen wohl fortsetzen,

aber nicht ersetzen können.“

Ein Beispiel für einen inhaltlich-anschaulichen Beweis findet man im altindischen Beweis zum

Satz des Pythagoras, der auf dem Prinzip der Ergänzungsgleichheit beruht. Die vorliegende

Zeichnung habe ich Wittmann (2009) entnommen (vgl. Abb. 2.8).

Bei diesem Beweis werden im mittleren Bild vier kongruente rechtwinklige Dreiecke mit den

Katheten der Länge a und b und der Hypotenuse der Länge c, ein Qudrat mit der Seitenlänge
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2   Beweisen und Argumentieren im Unterricht 51 

entsprechen hierbei einem korrekten mathematischen Argument. Die Argu-
mentationskette erfolgt meist in direkter Weise, ausgehend von den Vorausset-
zungen hin zur Behauptung. Inhaltlich-anschauliche Beweise geben den „ma-
thematischen Kern“ des Sachverhalts korrekt wieder und lassen sich deshalb 
stets formalisieren und zu einem exakten Beweis weiterentwickeln (Beispiel 
7).  

Beispiel 7: Zerlegungsbeweis zum Satz von Pythagoras 

Das Prinzip der Flächenergänzung ist die Grundlage eines inhaltlich-an-
schaulichen Beweises. Das rechtwinklige Dreieck mit den Katheten der 
Länge a und b sowie der Hypotenuse der Länge c wird viermal aus Pappe 
ausgeschnitten, zudem je ein Quadrat der Seitenlänge a, b und c.  

a2

c2

b2

b 

c 
a

 

Ein passendes Zusammenlegen der Figuren zu einem Quadrat mit der Sei-
tenlänge  zeigt: Die beiden Quadrate mit den Seitenlängen a und b 
sind zusammen ergänzungsgleich zum Quadrat mit der Seitenlänge c, also 
folgt 

a b

2 2a b 2c  . Diese Überlegungen sind für jedes rechtwinklige Drei-
eck gültig und lassen sich in einen formalen Beweis überführen. So kann 
unter Rückgriff auf Winkel- und Längeneigenschaften gezeigt werden, 
dass die beim Zusammenfügen entstehenden Figuren jeweils wirklich ein 
Quadrat der Seitenlänge a + b bilden. 

Auch wenn in einem inhaltlich-anschaulichen Beweis mit einem Beispiel ge-
arbeitet wird, so lässt dieses Beispiel bereits die Übertragbarkeit auf jeden 
anderen Fall und damit seine Verallgemeinerbarkeit erkennen: Es handelt sich 
um ein paradigmatisches Beispiel, das bereits den allgemeinen Fall repräsen-
tiert (vgl. Fischer u. Malle 1985, S. 183 ff.). Diesbezüglich unterscheiden sich 
inhaltlich-anschauliche Beweise von einem bloßen Ausprobieren oder Nach-
messen (Beispiel 8). 

Nur zur Verwendung im Rahmen der Lehrveranstaltung „Didaktik der 
Elementargeometrie“ im Sommersemester 2009; nicht für die Weiter-
verbreitung zugelassen. 
 

Abbildung 2.8 – „Inhaltlich-anschaulicher Beweis zum Satz des Pythagoras“ nach

(Wittmann 2009, S.51)

a und ein Qudrat mit der Seitenlänge b zusammengelegt, im rechten Bild dieselben vier Dreie-

cke, diesmal aber mit einem Quadrat der Seitenlänge c . Erforderliche Überlegungen, dass das

Anlegen wirklich passt, münden in der Erkenntnis, dass sich beidesmal als Gesamtfläche ein

Quadrat der Seitenlänge a+b ergibt, womit gezeigt ist, dass a2 + b2 = c2 (im rechtwinkligen

Dreieck mit der Hypotenuse c) gilt.

Das von mir gewählte Beispiel beinhaltet bereits den komplette Beweis, so dass bei geeig-

neter Deutung die Begründungszusammenhänge offengelegt werden können und somit die

Fragen nach dem „Warum“ beantwortet werden. Meines Erachtens liegt dies aber mehr an

der ikonischen Darstellung des Beweises, als an der Zuordnung zur inhaltlich-anschaulichen

Kategorie, so dass ich nicht den Schluss, dass inhaltlich-anschauliche Beweise im Wesentli-

chen eine begründende Funktion einnehmen, ziehen möchte. Vielmehr bin ich der Ansicht,

dass inhaltlich-anschauliche Beweise genauso beim Verifizieren eines Sachverhalts eingesetzt

werden können.

Wittmann & Müller (1988) stellen die Forderung auf, dass das inhaltlich-anschauliche Be-

weisen besonders in der Schule, aber auch in der Lehramtsausbildung gepflegt werden sollte,

da nur so ein echtes Verständnis erzielt werden kann:

„Im sozialen Kontext ’Schule’ besteht für das Lehren und Lernen von Mathe-

matik eine andere Verstehensgrundlage und ein anderer Kommunikationsrahmen

als in der mathematischen Forschung. Eine sinngemäße Übertragung von Beweis-

aktivitäten in die schulischen Rahmenbedingungen erfordert daher eine Loslö-

sung von formalen, deduktiv durchorganisierten Darstellungen der für die Schule

relevanten elementarmathematischen Gebiete zugunsten inhaltlich-anschaulicher
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Darstellungen. Diese sind gekennzeichnet duch Einbettung in sinnvolle Kontex-

te, durch Entwicklung von Motivationen, durch ein Vorgehen gemäß heuristischen

Strategien, durch die Verwendung bedeutungshaltiger, präformaler Darstellungen

und durch entsprechende inhaltlich-anschauliche Beweise. „Rettet die Phänome-

ne!“ muß auch die Parole der Mathematikdidaktik sein“ (Wittmann & Müller

1988, S.254).

Handlungsbezogene Beweise

Aufbauend auf den drei verschiedenen Ebenen eines Beweises bei Branford (1913) ergänzen

Blum & Kirsch (1989) diese um eine vierte Ebene, den sogenannten „handlungsbezogenen

Beweis“. Dabei unterscheiden sie die vier Ebenen bzw. Stufen wie nachfolgend wiedergegeben

(vgl. ebenda S.203). In der Darstellung bedeutet die gestrichelte Linie die Trennlinie zwischen

dem, was als Beweis anerkannt wird und was nicht, wie beispielsweise die bloße Verifizierung

an einzelnen Fällen oder eine sonstige empirische Überprüfung.

Experimentelle „Beweise“

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Handlungsbezogene Beweise

Inhaltlich-anschauliche Beweise

Präformale Beweise

Formale Beweise

Den handlungsbezogenen Beweis, der in der Niveaustufe noch vor dem inhaltlich-anschaulichen

Beweis rangiert, definieren sie wie folgt (ebenda, S. 203):

„Ein solcher besteht [...] kurz gesagt aus gewissen konkreten Handlungen (zuerst

wirklich ausgeführt, dann nur vorgestellt), die korrekten mathematischen Argu-

menten entsprechen. Hierbei sind sowohl die Prämissen als auch die Schlüsse

enaktiv dargestellt, so daß man auch von einer enaktiven Repräsentation eines

formal-exakten Beweises sprechen kann.“

Ergänzend führt Kirsch (1979, S.261f) aus:

„Sie [die Handlungen, G.W.] müssen korrekten mathematischen Argumenten ent-

sprechen, die in ihrer psychologisch natürlichen Ordnung aufeinanderfolgen (also

nicht, wie oft bei formalen Beweisen, von hinten aufgezäumt sind).“
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Somit haben handlungsbezogene Beweise zwar einen konkreten Bezug zum Objekt, an dem

gehandelt wird, verwenden allerdings Malles Handlungsschema (s.o.), das unmittelbar verall-

gemeinerbar ist.

Ein Beispiel für einen handlungsbezogenen Beweis findet sich in Schönwald (1989, S.217)

zur Antwort auf die Frage, „warum 6 gleichseitige Dreiecke einen Vollwinkel bilden“ (vgl. Ab-

bildung 2.9), einen Beweis, der sich schon bei Martin Wagenschein findet:

Abbildung 2.9 – Handlungsorientierter Beweis aus Schönwald (1989)

Schönwald schlägt vor, eine „dreieckig gleichseitige Klinker-Platte auf einen polierten

Wohnzimmertisch“ (ebenda, S. 217) zu legen und dann genau um eine Seitenlänge parallel

zu einer ihrer Seiten zu verschieben. Damit liegt ein Eckpunkt dort, wo vorher ein ande-

rer lag. Aufgrund der Eigenschaften einer Verschiebung haben alle Punkte der Fliese einen

gleichlangen Weg zurück gelegt, insbesondere auch die dritte Fliesenecke, so dass die von der

Fliese überstrichene Fläche ein zur Klinker-Platte kongruentes Dreieck bildet. Durch Spiege-

lung ergeben sich drei weitere Dreiecke, und die sechs Dreiecke zusammen decken genau den

Vollwinkel ab.

In diesem Bespiel wird der Beweis gefunden und es werden Zusammenhänge offengelegt, so

dass sowohl eine Verifikation stattfindet, als auch eine Warum-Frage beantwortet wird.

Die Einschätzung, dass durch konkretes Handeln ein vollwertiger Beweis geführt werden kann,

ist durchaus nicht immer Konsens bei den Mathematikdidaktikern gewesen. So schreibt bei-

spielsweise Walsch (1975, S.67):

„Zunächst dürfte klar sein, daß die Stufe der materiellen Handlungen für das Ler-

nen des Beweisens nur mittelbar von Bedeutung ist. Sie spielt zwar eine wichtige
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Rolle beim Vertrautwerden der Schüler mit gewissen mathematischen Begriffen

und Operationen, die ihrerseits in Beweisführungen auftreten können, das Bewei-

sen selbst vollzieht sich aber nicht in der materiellen Ebene.“

Hier haben wir ein weiteres Beispiel dafür, dass die Akzeptanz eines Beweises einem sozialen

Aushandlungsprozess unterliegt und es dabei durchaus Kontroversen geben kann.

Visuell-dynamische „Beweise“

In Bezug auf den Einsatz von DGS redet Elschenbroich (1999) von „visuell-dynamischen

Beweisen“, die er in Anlehnung an das Stufenmodell von Blum & Kirsch (1989) zu den

„Präformalen Beweisen“ zählt. Diese gehen für ihn über rein experimentelle ’Beweise’ hinaus,

da sie nicht am Einzelbeispiel empirisch prüfen, sondern eine Figur als Repräsentanten einer

Klasse deuten. Elschenbroich resümiert:

„Sie [die visuell-dynamischen Beweise, G.W.] sind

• visuell : anschaulich, auf eine Zeichnung bezogen als Figur, Eigenschaften

und Bezeichnung,

• dynamisch: keine einzelne, starre Zeichnung, sondern eine ideale Zeichnung,

eine ganze Klasse von Figuren mit gleichen Eigenschaften, ermöglicht und

sichtbar gemacht durch den Zugmodus von DGS.

• Beweis: ein vollgültiger Beweis in dem Sinne, dass er nicht durch rationale

Argumentationen zu erschüttern ist und in dem Sinne, dass eine Antwort

auf die Frage nach dem ,Warum’ gegeben wird“ (ebenda S. 159).

Um seine These zu stützen, führt Elschenbroich (2002, S.57ff.) Beispiele für visuell-dynamische

Beweise an, wie dasjenige vom arithmetischen und geometrischen Mittel in Abbildung 2.10:

„Beim Vergleich von arithmetischem und geometrischem Mittel wird von Schülern oft verges-

sen, ob ein ≥ oder ein ≤ zu setzen ist. In der geometrischen Fassung ist offenkundig, welcher

der beiden Fälle zutrifft. Der Sonderfall der Gleichheit offenbart sich im Zugmodus auch sofort“

(ebenda S.57).

CM =
p+ q

2
≥ √pq = CF
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p q

A BM

C

F

Abbildung 2.10 – Arithmetisches und Geometrisches Mittel (nach Elschenbroich 2002,

S.57)

Hier wird tatsächlich durch das Ziehen sofort klar, dass die Höhe CF und die Seitenhalbie-

rende CM des Dreiecks ABC zusammenfallen müssen, wenn sie gleich lang sein sollen. Dies ist

nur dann der Fall, wenn das Dreieck ABC nicht nur rechtwinklig, sondern auch noch gleich-

schenklig ist, so dass dann p = q gilt.

Dies ist allerdings das einzige Beispiel, das Elschenbroich bringt, bei dem durch die Dyna-

mik der Visualierung die Frage nach dem „Warum“ beantwortet wird. Beim zweiten Beispiel,

der geometrischen Darstellung der 1. binomischen Formel, reicht dazu wie man weiß ein stati-

sches Bild, wie Elschenbroich (2002, S.57) auch einräumt: „Dies kann natürlich auch ohne

DGS erkannt werden. Im Zugmodus können dann noch a und b verändert und so auch auftre-

tende Randfälle und Sonderfälle betrachtet werden“. Ein eigentlicher Mehrgewinn wird durch

den Einsatz des Zugmodus aber meines Erachtens an dieser Stelle nicht erreicht.

Im dritten Beispiel betrachtet Elschenbroich den Schnittpunkt von Mittelsenkrechten im

Dreieck (ebenda, S.57): Statt den Satz (die drei Mittelsenkrechten eines Dreiecks schneiden

sich in einem Punkt) statisch zu betrachten könne man den Satz auch dynamisch sehen (beim

Dreieck liegt der Schnittpunkt zweier Mittelsenkrechten immer auf der dritten Mittelsenk-

rechten). In diesem Zusammenhang schlägt er vor, die Schülerinnen und Schüler nur den

Schnittpunkt zweier Mittelsenkrechten konstruieren zu lassen und dann anschließend an der

Ecke des Dreiecks zu ziehen, die der Seite ohne gezeichnete Mittelsenkrechte gegenüberliegt.

Dabei kann die Ortslinie des Schnittpunkts, bei der es sich natürlich um die dritte Mittel-

senkrechte handelt, beobachtet werden. Elschenbroich räumt ein, dass es sich hierbei noch

nicht um einen Beweis handelt:

„Für einen strengen Beweis fehlt hier natürlich noch eine Begründung, warum

die gezeichnete Ortslinie tatsächlich eine Gerade ist. Mit einem DGS wie Euklid-
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Dynageo ist es nur möglich, die vermutete Mittelsenkrechte zu konstruieren und

im Zugmodus zu überprüfen, dass Ortslinie und Gerade zusammenfallen (genau-

er: dass es so aussieht). Weiter entwickelte DGS wie Cabri II und Cinderella

bieten mit integriertem Eigenschafts-Check/stochastischem Beweiser die Mög-

lichkeit, abzufragen, ob der die Ortslinie erzeugende Punkt auch tatsächlich auf

der nachträglich konstruierten Linie liegt“ (ebenda, S.57).

Unabhängig davon, ob man akzeptiert, dass mit den neuen technischen Mitteln wirklich nach-

weisend gezeigt werden kann, oder ob es sich doch lediglich um ein darstellendes Zeigen han-

delt, ist allerdings in beiden Fällen keinesfalls die Frage danach zufriedenstellend beantwortet

worden, „warum“ die drei Mittelsenkrechten einen gemeinsamen Schnittpunkt haben. Hier

kann die DGS dem Lerner und der Lernerin nicht abnehmen, eigenständig nach Begründungs-

zusammenhängen zu suchen, und ich meine, dass dies in den allermeisten Fällen so ist. Zudem

verschwimmt in diesem Beispiel die Grenze zwischen empirischer Überprüfung und „Beweis“

derart, dass ich selbst an dieser Stelle eine solche dynamische Visualisierung nicht als Be-

weis anerkennen würde. Welche Rolle die DGS beim Beweisen spielen kann, wird im nächsten

Abschnitt dieser Arbeit thematisiert.

2.1.6 Die Funktion einer DGS beim Beweisen

In Abschnitt 2.1.4 habe ich dargestellt, in welche Phasen Boero, nachdem er Experten beim

Beweisführungen beobachtet hat, einen Beweis einteilt. Dieses sind: 1. Entwicklung einer Be-

hauptung, 2. Formulierung der Behauptung nach Erfordernissen der formalen Konvention; 3.

Untersuchung der Behauptung ; 4. Bildung der Beweiskette; 5. Verfassen eines Beweises, der

den mathematischen Standards entspricht ; 6. Annäherung an einen formalen Beweis.

Obwohl diese Phaseneinteilung nicht direkt in den Mathematikunterricht übertragen werden

kann (siehe die Diskussion in Abschnitt 2.1.4), stellt sie dennoch einen Orientierungsrahmen

für das Beweisen in der Schule dar. Auch wenn im Unterricht genauso wie in diversen Untersu-

chungen, die die Fähigkeiten der Schülerinnen und Schüler bezüglich des Beweisens abtesten

wollen, ofmals Aufgaben im Stil von: „Gegeben ist... Beweise, dass...“ verwendet werden (vgl.

Abschnitt 2.2), so dass die interessanten ersten beiden Phasen von Boero komplett entfallen,

gibt es ja daneben auch noch Aufgaben, in denen Schülerinnen und Schüler selbstständig etwas

zunächst entdecken sollen, bevor sie die entdeckten Zusammenhänge beweisen.
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Es ist unmittelbar klar, dass eine DGS in den unterschiedlichen Phasen unterschiedliche Rollen

spielt. So konnten viele Untersuchungen, wie beispielsweise die von Olivero (2002), Arza-

rello et al. (2002) oder Hölzl (1999) feststellen, dass die DGS sehr stark unterstützend

dabei wirkt, eine Behauptung aufzustellen und diese Behauptung anschließend zu untersu-

chen. Auch Weigand & Weth (2002, S.190) stellen fest: „Ein DGS eröffnet die Möglichkeit

eines experimentellen Zugangs zu Sätzen und Begriffsbildungen. Darin liegt eine der großen

Stärken dieses Werkzeugs.“ Dabei ist der Zugmodus von entscheidender Bedeutung (s. Kapitel

3).

Die DGS kann zwar nicht unmittelbar beim Aspekt „Formulierung der Behauptung nach Er-

fordernissen der formalen Konvention“ unterstützend wirken, dennoch kann nach Weigand

& Weth (2002) ein positiver Einfluss des Computers auf das Verbalisieren festgestellt werden.

Dabei fassen sie unter den Begriff „Verbalisieren“ die Aspekte:

• „die sprachliche Korrektheit und Verwendung der jeweiligen Fachsprache,

• die korrekte Reihenfolge von Argumentationsschritten,

• eine sinnvolle Schrittweite von Argumentationsschritten sowie

• die Vollständigkeit der Angaben“ (Weigand & Weth 2002, S.165).

Weigand & Weth sehen in Konstruktionsbeschreibungen eine Möglichkeit, das Verbalisieren

zu trainieren. Diese wären im herkömmlichen Unterricht ofmals unbeliebt, da die Schülerinnen

und Schüler ihre Notwendigkeit nicht einsähen und sie stattdessen als unnötigen zusätzlichen

Aufwand empfänden. Zudem wird eine hohe Genauigkeit eingefordert, die nicht eingesehen

wird und zu der sie dadurch bedingt nicht bereit sind. Mit diversen DGS hingegen, wie bei-

spielsweise Geolog, kann man sich nicht nur nach einer Konstruktion die Konstruktions-

beschreibung durch das Programm anzeigen lassen, sondern auch vorab eine Konstruktions-

beschreibung anfertigen, nach der der Rechner dann die Konstruktion erstellt. Hierbei ist es

natürlich ebenso erforderlich, die richtige Reihenfolge der Konstruktionsschritte einzuhalten,

als auch alle erforderlichen Konstruktionsschritte vorzunehmen. Damit wird den Schülerinnen

und Schülern sofort einsichtig gemacht, dass eine Konstruktionsbeschreibung sinnvoll ist. Zu-

dem wird der Fokus von unnötigen Ausschmückungen zu den wirklich notwendigen Angaben

verschoben.
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Ein besonders wichtiger Schritt auf dem Weg zu einem Beweis ist, überhaupt eine Beweisidee

zu entwickeln. Gerade wenn „trickreiche“ Beweise im Schulunterricht oder auch in Vorlesungen

vorgeführt werden, kommen häufig Äußerungen wie: „Da wäre ich ja nie drauf gekommen“,

begleitet mit der bangen Frage: „Wird von uns in der Klausur erwartet, dass wir auch auf

solche Sachen kommen?“

Ein Beispiel für einen derartig „trickreichen Beweis“ sehen Weigand & Weth (2002, S.196)

im Beweis zum Satz des Pythagoras aus den Elementen des Euklid (Abb. 2.11).

Abbildung 2.11 – Beweis des Pythagorassatzes aus (Euklid 2003, S.32)
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Solche Beweise bezeichnet Schopenhauer als „Mausefallenbeweis“.

„Auf die Anschauung beruft man also in der Geometrie sich eigentlich nur bei

den Axiomen. Alle übrigen Lehrsätze werden demonstrirt, d.h. man giebt einen

Erkenntnißgrund des Lehrsatzes an, welcher Jeden zwingt denselben als wahr an-

zunehmen: also man weist die logische, nicht die transscendentale Wahrheit des

Lehrsatzes nach. [...] Diese aber, welche im Grund des Seyns und nicht in dem des

Erkennens liegt, leuchtet nie ein, als nur mittelst der Anschauung. Daher kommt

es, daß man nach so einer geometrischen Demonstration zwar die Ueberzeugung

hat, daß der demonstrirte Satz wahr sei, aber keineswegs einsieht, warum was

er behauptet so ist, wie es ist: d.h. man hat den Seynsgrund nicht, sondern ge-

wöhnlich ist vielmehr erst jetzt ein Verlangen nach diesem entstanden. [...] Daher

kommt es, daß er [der Beweis, G.W.] gewöhnlich ein unangenehmes Gefühl hinter-

läßt [...] Die Empfindung dabei hat Aehnlichkeit mit der, die es uns giebt, wenn

man uns etwas aus der Tasche, oder in die Tasche, gespielt hat, und wir nicht

begreifen wie“ (Schopenhauer 1977, S.152f).

Habe man darüber hinaus durch die Anschauung eine Einsicht erlangt (die Schopenhauer

„cognitio“ im Gegensatz zu „convictio“ nennt), gebe dies Befriedigung, weil man das Gefühl

einer echten Erkenntnis habe, auf die man sich dann auch im Weiteren alleinig stützen würde

(ebenda, S.152f).

An dieser Stelle sehen Weigand & Weth den entscheidenden Vorteil bei der Durchführung

des Beweises mit Hilfe einer DGS. Hiermit könne man die zentrale Beweisidee verdeutlichen,

die darin besteht, das durch die Diagonale halbierte Kathetenquadrat zu betrachten, also nur

ein Dreieck. Ebenso wird nur das halbe Rechteck unter dem entsprechenden Hypotenusenab-

schnitt betrachtet, demzufolge ein weiteres Dreieck. Diese beiden Dreiecke können durch eine

flächeninhaltserhaltene Umformung, nämlich durch Scherung, in jeweils ein anderes Dreieck

umgewandelt werden, und von diesen letzten beiden Dreiecken kann gezeigt werden, dass sie

kongruent sind.

Auch wenn die verbale Beschreibung kompliziert klingt, können mit Hilfe einer DGS die einzel-

nen Schritte sehr schön anschaulich dargestellt werden (vgl. Abbildung 2.12). Damit können

die Schülerinnen und Schüler wahrscheinlich sehr viel leichter erkennen, warum die einzelnen

Schritte überhaupt gemacht werden. Dies ist ein wichtiger Schritt bei der von Schopenhauer
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geforderten Entwicklung von „cognitio“. Dennoch, und das stellen auch Weigand & Weth

(2002, S.200) fest, ist mit dieser dynamischen Visualisierung noch kein Beweis erfolgt: „Natür-

lich sind das „nur“ Visualisierungen von Beweisideen, die durch entsprechende Begründungen

und schließlich formale Beweise ergänzt werden müssen.“

Abbildung 2.12 – Dynamische Visualisierung des Beweises von Euklid

Eine weitere wichtige Rolle, die Weigand & Weth (2002) dem Computer im Zusammen-

hang mit Beweisen zugestehen, ist die „Erarbeitung von Beweisstrategien“ (ebenda, S.189).

Hierbei zielen sie darauf ab, dass es Aufgaben gibt, bei denen „ein Beweis zum konstitutionel-

len Bestandteil einer Konstruktion wird“ (ebenda, S.201). Gemeint sind sogenannte „Einpas-

sungsaufgaben“, bei denen bestimmte Figuren in einer bestimmten Art und Weise konstruiert

werden müssen, so dass sie eine zuvor festgelegte Lage haben, beispielsweise ein gleichseitiges

Dreieck derart, dass alle Eckpunkte auf drei bereits vorhandenen Geraden liegen. Hier können

bestimmte Strategien und Heuristiken hilfreich sein: im eben genannten Beispiel könnte man

zunächst ein gleichseitiges Dreieck konstruieren, bei dem nur zwei Eckpunkte die geforderte

Bedingung erfüllen. Betrachtet man dann unter Nutzung des Zugmodus die Ortslinie des drit-

ten Eckpunkts, kann es so gelingen, einen Hinweis auf die Lösung des Konstruktionsproblemes

zu erhalten. Auch hier ist es allerdings erforderlich, die Form der Ortslinie nicht nur visuell zu

beurteilen, sondern eine geometrische Begründung und damit einen Beweis zu führen.

So bleibt die Frage, ob man auch Beispiele finden kann, bei denen durch den Einsatz einer

DGS tatsächlich ein vollwertiger Beweis geführt werden kann, oder ob die Rolle auf das Un-

terstützen auf dem Weg dahin beschränkt bleibt. Eine Möglichkeit wäre bei Existenzbeweisen,

wie zum Beispiel beim Beweis dafür, dass jedes Dreieck einen Inkreis hat (dieses Beispiel ist
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dem Vorlesungsskript von Bender (2011) entnommen).

Abbildung 2.13 – Jedes Dreieck hat einen Inkreis

Alle Punkte auf der Winkelhalbierenden eines Dreiecks haben gleichen Abstand zu den ent-

sprechenden Schenkel; das bedeutet, dass ich einen Kreis zeichnen kann, dessen Mittelpunkt

auf der Winkelhalbierenden liegt und der die beiden Schenkel berührt. Vergrößere ich diesen

Kreis, indem ich den Mittelpunkt auf der Winkelhalbierenden bewege, so dass die Berührei-

genschaft erhalten bleibt, muss irgendwann eine Situation entstehen, in der der Kreis auch

die dritte Seite des Dreiecks berührt. Hier liegt allerdings als Argument ganz wesentlich die

Stetigkeit bei solchen Bewegungen zugrunde, eine Eigenschaft, die im Kontext der Geometrie

nicht expliziert wird. Demzufolge muss jedes Dreieck einen Inkreis haben. Die dynamische

Visualisierung kann folglich zeigen, dass ein Dreieck einen Inkreis hat. Wann dies der Fall

ist, also bei welchen Lagen des Kreismittelpunkts, wird durch die Visualisierung allerdings

nicht klar, sondern bedarf einer zusätzlichen Überlegung.
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2.2 Ausgewählte Ergebnisse von empirischen Studien zum Be-

weisen im Unterricht

Im Folgenden möchte ich einen Überblick über den aktuellen Forschungsstand zum Beweisen

im Schulunterricht skizzieren. Dabei werde ich zunächst auf Studien eingehen, die sich allge-

mein mit dem Thema des Beweisens im Unterricht befassen und anschließend auf solche, die

den Einsatz von DGS im Fokus haben.

2.2.1 Einstellungen von Schülerinnen und Schülern zu Beweisen

„To find the proof for a proposition we have to imagine all the propositions already

known from which it can be deduced and choose the one that is relevant. On

this method the most exact reasoner may be baffled if he is not inventive. The

consequence is that instead of making us find the proofs for ourselves, the teacher

dictates them to us; instead of teaching us to reason he reasons for us and only

exercises our memory“ (Rousseau zitiert nach (Boyd 1956)).

In vielen Studien ist bereits untersucht worden, welche Einstellungen Schülerinnen und Schüler

zu Beweisen haben, wie sie selbst Beweise durchführen und wie sie die Notwendigkeit derselben

einschätzen. Fischbein & Kedem (1982) beispielsweise stellten fest, dass Schülerinnen und

Schüler, obwohl sie einen mathematischen Sachverhalt im Vorfeld bewiesen hatten, dennoch

auf einer nachträglichen Überprüfung, beispielsweise durch Nachrechnen, bestanden, da sie

nicht an die Beweiskraft des Beweises glaubten.

Auch Healy & Hoyles versuchten, den Einstellungen von Schülerinnen und Schülern in ei-

ner breit angelegten Studie auf den Grund zu gehen (vgl. Healy & Hoyles 1999). Da sich

viele spätere Erhebungen auf diese Untersuchung stützen, und zwar sowohl im Unterricht mit

DGS-Einsatz, als auch im Unterricht ohne (beispielsweise Ufer et al. (2009), Kuntze (2006),

Vincent (2002), Heinze & Reiss (2004b), Reiss et al. (2002), Reiss et al. (2001)), werde

ich auf diese Arbeit im Folgenden näher eingehen.

In ihrem Projekt „Justifying and Proving in School Mathematics“, das Healy & Hoyles

1995 in Großbritannien starteten und zunächst an 182 Schülerinnen und Schüler der 10. Jahr-

gangsstufe pilotierten, befragten sie anschließend 2459 Schülerinnen und Schüler derselben

Jahrgangsstufe aus 94 Klassen und 90 Schulen zum Thema „Beweisen“. Übergeordnete Frage-
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stellung dabei war, wie Schülerinnen und Schüler selbst Beweise durchführen, aber auch, wie

sie vorgegebene Beweise bewerten und einschätzen und welchen Anspruch sie an einen Beweis

überhaupt haben.

Zunächst sollten Schülerinnen und Schüler die Frage: „What is proof for?“(Healy & Hoyles

1999, S.9) beantworten. Dabei wurde die offene Frage gestellt: „Before you start, write below

everything you know about proof in mathematics and what it is for“ (ebenda, Appendix 1), so

dass die Schülerinnen und Schüler frei antworten konnten und nicht durch vorgegebene Ant-

wortmöglichkeiten beeinflusst wurden. Hierfür wurden 5 Minuten Zeit eingeräumt. Danach

wurden die Schülerinnen und Schüler aufgefordert, mit der Bearbeitung des weiteren Frage-

bogens fortzufahren.

Zur Codierung der Antworten wurden zunächst die in Abbildung 2.14 dargestellten Kategori-

en gebildet, unter die die Antworten der Schülerinnen und Schüler subsumiert werden sollten.

Code

Not answered 0

Answers relating to verification/"truth" 1

Answers relating to explanations, reasons 2

Answers relating to providing evidence 3

Answers relating to communication to others 4

Answers relating to discovering new theories/ideas 5

Answers relating to ability/achievement 6

Answers relating to general validity, completeness 7

Answers including some reference to logical thinking 8

Other 9

Student response

Abbildung 2.14 – Codierungsanweisung zur Frage: „Wozu dient ein Beweis?“ (Healy &

Hoyles 1999, S.12)

Die zehn verschiedenen Kategorien wurden allerdings nach Auswertung der Antworten nicht

aufrecht erhalten, sondern unter die Kategorien „Wahrheit“, „Entdecken“, „Erklärung“ und

„Andere/Keine“ zusammengefasst, denn: „As some codes appeared very infrequently, initial
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coding of data was subsequently simplified into four categories: Truth (codes 1, 3, 7 and 8);

Discovery (code 5); Explanation (codes 2 and 4); Other/none (codes 0, 6 and 9)“ (ebenda,

S. 12). Dabei wurden Antworten, die mehreren Kategorien zuzuordnen waren, auch mehrfach

erfasst. Die Abbildung 2.15 stellt die Verteilung der Antworten dar:

Truth 1234
Explanation 895
Discovery 26
None/Other 700None/Other 700

1200

1400 1234
(50%)

600

800

1000 895
(35%)

700
(28%)

200

400

600

26
1%

0

Truth Explanation Discovery None/Other

1%

Abbildung 2.15 – Schülerantworten auf die Frage: „Wozu dient ein Beweis?“ (Healy &

Hoyles 1999, S.17)

Zusammenfassend wird die These formuliert, dass:

„Students are most likely to describe proof as about establishing the truth of a

mathematical statement, although a substantial minority ascribe it an explana-

tory function and a further large number have little or no idea of the meaning of

proof and what it is for“ (Healy & Hoyles 1999, S.18).

Von den in Abschnitt 2.1.2 dargestellten unterschiedlichen Funktionen, die ein Beweis haben

kann, sind für die Schülerinnen und Schülern also nur einige wenige bedeutsam. Dabei spielt

die verifizierende Funktion eines Beweises im Schulunterricht eine große Rolle.

Im nächsten Teil der Befragung wurden den Schülerinnen und Schülern Beweisaufgaben im

multiple-choice-Format vorgelegt, wobei die eine Hälfte aus dem Bereich der Algebra (A),
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die andere aus dem Bereich der Geometrie (G) stammte. Für jeden der beiden Aufgabenteile

wurde 30 Minuten Bearbeitungszeit eingeräumt. Nach Ablauf der ersten 30 Minuten wurden

die Schülerinnen und Schüler aufgefordert, mit der Bearbeitung des Fragebogens fortzufahren.

Nach Ablauf der zweiten 30 Minuten wurden sie gebeten, nun noch einmal alles anzuschauen

und bei eventuell ausgelassenen Anworten anzugeben, ob mangelnde Zeit oder mangelndes

Wissen hierfür verantwortlich sei. In den Aufgaben wurden zu einer jeweils zu beweisenden

Aussage „Lösungen“ vorgelegt, von denen einige korrekt und andere fehlerhaft waren und die

unterschiedlichen Beweistypen zugeordnet werden können. Die dabei verwendeten Bezeichnun-

gen gehen aus Abbildung 2.16 hervor, ebenso wie die Festlegung, ob der Beweis als zulässig

anerkannt wird, oder nicht.

Form of Proof Correctness in 
multiple‐choice

Empirical Unelaborated calculations or measurements Incorrect
Exhaustive All possible cases tested Correct 
Enactive Unelaborated description of actions  Incorrect

and observations
Naive Restatement of givens; statements  Incorrect

of unhelpful or wrong "facts"
Analytical Formal (correct) Logical argument in formal  Correct

mathematical language
Analytical Formal (incorrect) Incorrect, incomplete or illogical argument  Incorrect

in formal mathematical language
Analytical Narrative Logical argument, not in symbolic form Correct
Visual Diagram with visual clues showing the Correct

logic of the proof
Counter‐example Production of a counter‐example with Correct

no elaboration

Abbildung 2.16 – Klassifizierung und Akzeptanz der Beweistypen nach Healy & Hoyles

(1999, S.13)

Die Schülerinnen und Schüler sollten beim Setzen ihres Antwortkreuzes die Einschätzung

abgeben, ob die präsentierten „Beweise“ schlüssig sind und zulässig argumentiert wird, oder

ob Fehler oder Beweislücken auftreten. Zudem wurden sie aufgefordert zu erläutern, ob der

jeweilige „Beweis“ dafür geeignet ist, eine Begründung dafür zu liefern, warum die zu zeigende

Aussage Gültigkeit hat, oder einem unsicheren Mitschüler die Zusammenhänge verständlich

zu machen. Schließlich sollten die Schülerinnen und Schüler aus einem Pool von Lösungen

diejenige aussuchen, die ihrer eigenen Vorgehensweise beim Lösen der Aufgabe am meisten
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entspräche, und diejenige, von der sie glauben, dass sie in einer Klassenarbeit die meisten

Punkte bekommen würde. Exemplarisch zeigen die Abbildungen 2.17 und 2.18 die Frage G6

aus dem Bereich der Geometrie.

 46 

 

Figure 2-23. Question G6 [From Proof Questionnaire, Healy & Hoyles, 1999]. 

Table 2-5 shows the percentages of students choosing each of the four arguments. 

The majority of students obviously believed that a formal (deductive) proof would 

receive the best mark, even though not all of these students had chosen a formal 

proof for their own approach.  

Abbildung 2.17 – Frage G6 aus Proof Questionnaire (Healy & Hoyles 1999, Anhang 1)

62



2.2. Ausgewählte Ergebnisse von empirischen Studien zum Beweisen im Unterricht

Abbildung 2.18 – Frage G6 aus Proof Questionnaire (Healy & Hoyles 1999, Anhang 1)
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Den Schülerinnen und Schülern wurden demnach Lösungen vorgelegt, die sich auf empirische

Überprüfung berufen (Kobi), die formal korrekt argumentieren (Linda), die formal argumen-

tieren, dabei allerdings einen Zirkelschluss machen (Natalie) und die narrativ und korrekt

argumentieren (Marty). Bei der Auswertung der Antworten zeigte sich, dass die meisten Schü-

lerinnen und Schüler zwar glaubten, dass ein formaler (deduktiver) Beweis von der Lehrperson

am besten benotet werden würde, gleichzeitig aber selbst keinen formalen Beweis zur Lösung

der Aufgabe gewählt hätten (siehe Abbildung 2.19).

Own approach Best mark
Empirical (Kobi) 40 19
Formal incorrect (Natalie) 13 18
Formal correct (Linda) 21 48
Narrative correct (Marty) 26 15

Abbildung 2.19 – Prozentuale Verteilung der Antworten auf die Frage G6 (Healy & Hoy-

les 1999, S.19, Abbildung 5)

Bei den anderen Fragestellungen zeichnete sich ein ähnliches Bild ab: Es ordneten mehr Schü-

lerinnen und Schüler dem formalen, nicht-korrekten Beweis die beste Notenvergabe durch die

Lehrperson zu, als selbst diesen Weg zur Beweisführung gegangen wären. Dahingegen hätten

weniger Schülerinnen und Schüler dem empirischen oder narrativen Beweisgang die beste No-

te gegeben, als selbst diesen Lösungsweg gegangen wären, auch, wenn der narrative Beweis

korrekt war.

Grundsätzlich sehe ich in dieser Art der quantitativen Erhebung zwei Schwierigkeiten: In der

Aufgabe G6 (und auch bei den anderen Aufgaben) hebt sich die narrative Bweisführung deut-

lich von den anderen Lösungsvorschlägen ab, da sie mit Begründungen aus einem anderen

Kontext, nämlich dem der Abbildungsgeometrie, arbeitet. Auch wenn in England die Abbil-

dungsgeometrie eine fundamentale Rolle im Unterricht spielte, sticht die Argumentation damit

deutlich aus den vorgegebenen Lösungsvorschlägen heraus. Zudem gibt es keinen narrativen

Lösungsvorschlag, der fehlerhaft ist. Wenn sich Schülerinnen und Schüler folglich für oder ge-

gen die Lösung von Marty entscheiden, ist nicht erkennbar, ob deren narrative Darstellung

oder aber das inhaltliche Argument für diese Entscheidung ausschlaggebend ist. Zudem wurde

im Rahmen von empirischen Untersuchungen bereits sehr früh festgestellt, dass die Ablehnung
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oder Akzeptanz eines Beweises, die durch das Setzen eines Kreuzes in einer multiple-choice-

Umgebung abgefragt wird, noch keinerlei Aufschluss darüber gibt, ob die Kriterien für diese

Entscheidung auch zulässig sind.

So führte beispielsweise Walsch (1975, S.125ff) in den Jahren von 1964 bis 1966 Unter-

suchungen durch, bei denen Schülern „Beweise“ zu vier geometrischen Problemen vorgelegt

wurden. Dabei arbeitete der erste „Beweis“ mit einer Beweisskizze, griff allerdings auf empi-

rische Argumente zurück, während der zweite Beweis ebenfalls mit Hilfe einer Beweisskizze

arbeitete, im Unterschied zur ersten Lösung jedoch nur zulässige Schlüsse verwendete und

somit korrekt war. Der dritte Beweis, ebenfalls korrekt, war sehr formal dargestellt, während

sich der vierte „Beweis“ schließlich auf unvollständige Induktion stützte, so dass hier keine

Allgemeingültigkeit nachgewiesen wurde. Die richtige Einschätzung, ob der Beweis zulässig ist

oder nicht, gaben im ersten Fall 32 Prozent der Schülerinnen und Schüler, im zweiten Fall 79

Prozent, im dritten Fall 92 Prozent und im vierten Fall 27 Prozent. Walsch (1975, ebenda,

S. 126) deutet dies zunächst wie folgt:

„Wie man sieht, wurden die untauglichen „Beweise“ (1) und (4) von einer relativ

hohen Anzahl von Schülern nicht als unzulänglich erkannt. Das bedeutet, daß

nicht wenige der damals befragten Schüler die Nachprüfung allgemeiner Aussa-

gen an Einzelbeispielen für ausreichend hielten. Allgemein überwog eine recht un-

kritische Haltung der Schüler gegenüber Beweisführungen. Das wurde besonders

deutlich bei jenen Schülern (34%), die alle vier vorgeführten Beweise ausnahmslos

für richtig hielten.“

Im weiteren Verlauf seiner Untersuchung befragte Walsch die Schülerinnen und Schüler,

warum sie sich dafür entschieden hatten, den jeweiligen Beweis zu akzeptieren bzw. abzuleh-

nen. Dabei wurden interessante Aspekte deutlich. So wurde der erste Beweis nicht unbedingt

deshalb von den Schülerinnen und Schülern abgelehnt, (was bedeutet, dass diese ihr Kreuz

an der richtigen Stelle gesetzt hatten), weil in ihm empirisch argumentiert wurde, sondern

weil eine Beweisskizze verwendet wurde. Ebenso gab es Schülerinnen und Schüler, die sich

dafür entschieden, einen Beweis zu akzeptieren, weil am Ende der Beweisführung die jeweilige

Behauptung stand. Oder der Beweis wurde abgelehnt, weil die zu beweisende Behauptung gar

nicht verstanden worden war. Formal korrekte Beweise wurden abgelehnt, weil bei den Be-

weisschritten Sätze hinzugezogen wurden, die nach Auffassung der Schülerinnen und Schüler
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ebenfalls eines Beweises bedurft hätten.

An dieser Stelle gibt Walsch nicht an, wie viele Antworten der Schülerinnen und Schüler auf

einer adäquaten Begründung beruhten und wie viele auf einer fehlerhaften. Bei einer anderen

Befragung allerdings stellt er fest, dass von den richtigen Antworten nur 9 Prozent auf einer

angemessenen Begründung beruhten, was bedeutet, dass bei 91 Prozent der richtigen Kreuze

nicht auf das erforderliche Verständnis geschlossen werden kann! Ich denke, dass dies ein ein-

drucksvolles Beispiel dafür ist, dass Untersuchungen (im Umfeld von Beweisen, aber nicht nur

dort), die auf multiple-choice-Aufgaben beruhen, vorsichtig interpretiert werden müssen.

Auch Heinze & Reiss (2004b, S. 2f) konstatieren die Problematik, aus dem von einem Schü-

ler oder einer Schülerin gesetzten Kreuz tiefergehende Rückschlüsse zu ziehen: „We will show

later, that multiple choice items bear the risk to give only surface information and may not

allow a deeper analysis of a student’s problem solving process“, und: „As already mentioned

a multiple choice item is restricted to certain answers. There is hardly any information why

a student selects a specific answer. Moreover, it ist not clear whether students understand a

multiple choice item as expected by the researcher“ (ebenda, S. 5). Ich werte diese Einschät-

zung, die ich im übrigen teile, deshalb als erstaunlich, da besonders die Untersuchungen von

Reiss (beispielsweise in Reiss et al. (2006), Ufer et al. (2009)) genau das von ihr kritisierte

Design haben.

Man muss dazu sagen, dass auch Healy & Hoyles sich dieser Situation bewusst sind, denn

zusätzlich zur quantitativen Analyse führten sie bei einigen Schülerinnen und Schülern auch

eine qualitative Befragung durch, in der die Kreuze begründet werden sollten.

So favorisierte beispielsweise ein Schüler bei der Aufgabe G1, bei der es um den Beweis zur

Innenwinkelsumme im Dreieck geht (s. Abb. 2.20 und 2.21), eine Vorgehensweise wie Aman-

da, eingestuft als „Enactive: Unelaborated descripition of actions and observations“ (Healy

& Hoyles 1999, S.13). Als Lösung, die die beste Note erhalten hätte, nannte er die Antwort

von Cynthia, eingestuft als „formal correct“.

Er gab an, dass er Cynthias Antwort deshalb so gut eingeschätzt habe, weil „I wouldn’t be as

clever as Cynthia“ und „I just don‘t quite follow it“, was Healy & Hoyles folgendermaßen

interpretieren: „he chose Cynthias’s argument for best mark because he did not understand

it“ (Hoyles & Healy 2007, S.93). Der Grund, seine eigene Vorgehensweise an Amanda zu

orientieren, lag darin, dass dies für ihn der einfachste Weg zu sein schien.
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Abbildung 2.20 – Amandas Antwort Abbildung 2.21 – Cynthias Antwort

Ein anderer Schüler, der ebenfalls Cynthias Lösung als diejenige einschätzte, die die beste

Bewertung durch die Lehrperson bekäme, begründete dies damit, dass Cynthia in ihrer Lösung

die einzelnen Winkel mit Buchstaben bezeichnet habe. Eine weitere Schülerin, die Amandas

Lösung für sich gewählt hätte, gab als Begründung an, dass sie diese verständlich und überzeu-

gend fände. Darüber hinaus war sie sich durchaus bewusst, dass keine Allgemeingültigkeit für

jedes Dreieck gezeigt worden war, was aber für sie von untergeordneter Wichtigkeit war. Und

21 Prozent derjenigen, die meinten, dass Cynthias Lösung die beste Note bekommen würde,

glaubten nicht, dass hierdurch ein allgemeingültiger Beweis geführt, sondern dass die Aussage

nur für bestimmte Dreiecke gezeigt worden war. Dies macht deutlich, dass allein die Kenntnis

darüber, welche Entscheidung getroffen wurde, oftmals wenig aussagt, wenn man nicht weiß,

warum diese Entscheidung getroffen wurde.

Zum anderen muss festgestellt werden, dass die Bearbeitungszeit von 30 Minuten pro The-

menkomplex sehr kurz ist, auch wenn überwiegend „nur“ angekreuzt werden muss.

Ein interessantes Phänomen, dass Healy & Hoyles beobachten konnten, wird bei der eben-

falls durchgeführten Lehrerbefragung sichtbar. 25 Prozent der Befragten gaben an, dass sie

selbst so wie Amanda vorgegangen wären. Hoyles & Healy (2007, S.96f) interpretieren

diesen Befund so:

„This result may reflect a lack of familiarity with geometrical reasoning amongst

teachers, many of whom would have learnt rather little geometry themselves be-
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cause of the decline in geometry in the school curriculum since the 70s. It might

also stem from the importance teachers give to arguments that are felt to ex-

plain, with teachers believing Amanda’s actions to be a particularly good way of

thinking about the property being considered and valuing this over a deductive

argument.“

Dabei hätten 22 Prozent der Lehrerinnen und Lehrer erwartet, dass ihre Schülerinnen und

Schüler Amandas Weg die beste Note zugeordnet hätten, während es tatsächlich nur 5 Pro-

zent waren. „Teachers in this case were apparently „not in touch“ with the aspirations of their

students“ (ebenda, S.97).

In einem letzten Aufgabenteil der Studie sollten die Schülerinnen und Schüler schließlich selbst

Beweise durchführen. Hierbei wurde unterschieden zwischen Beweisaufgaben, die in ähnlicher

Art bereits in den multiple-choice-Aufgaben vorkamen, was bedeutet, dass die Schülerinnen

und Schüler die dort vorgeschlagenen Argumentationen hätten nutzen können, und solchen,

die eher neuartig waren. Healy & Hoyles räumen allerdings ein, dass es in der Aufgaben-

stellung keinen Hinweis darauf gab, dass ein Teil der Probleme bereits im Vorfeld thematisiert

worden war, und schließen daher nicht aus, dass dies übersehen worden sein könnte. Den Lö-

sungen der Schülerinnen und Schüler wurden anschließend ganzzahlige Werte zwischen Null

und Drei zugeordnet. Dabei legen Healy & Hoyles Wert darauf, dass die Bepunktung sich

nur auf die Schlüssigkeit der Argumentation und nicht auf die Präsentation bezog (vgl. Healy

& Hoyles 1999, S.2). Folgende Bewertungskriterien (vgl. Abbildung 2.22) wurden zugrunde

gelegt:

Proof classification Score
No basis for the construction of a correct proof. 0
No deducations but relevant informations presented 1
Partial proof, including all information needed but omitting some steps 2
of reasoning.
Complete proof. 3

Abbildung 2.22 – Kriterien für die Punkteverteilung bei Beweiskonstruktionen (Healy &

Hoyles 1999, S.13, Tabelle 3)
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Auch die hier durchzuführenden Beweise entstammten den Gebieten Algebra und Geometrie.

Die Aufgaben A4 und G4 waren dabei solche, zu denen Kenntnisse aus dem multiple-choice-

Test hätten herangezogen werden können, während die Aufgaben A7 und G7 die Schülerinnen

und Schüler mit unbekannten Problemstellungen konfrontierten (s. Abbildung 2.23).

 28 

In another large-scale research project, Justifying and Proving in School 

Mathematics (Healy & Hoyles, 1999), a survey was conducted with a sample of 

2459 high-achieving Year 10 students from 94 classes in 90 schools in England 

and Wales. The main aim of the survey was to examine “the impact of the [UK] 

National Curriculum on high-attaining Year 10 students’ views of and 

competencies in mathematical proof” (p. 1), in both algebra/arithmetic and 

geometry. The Proof Questionnaire that the students completed included four 

proof construction questions (see Figure 2-15): two for familiar conjectures 

(Questions A4 and G4 for the algebra and geometry sections respectively) and 

two for unfamiliar conjectures (Questions A7 and G7).  

 

 

 

 

Figure 2-15. Proof questions A4, A7, G4 and G7  

[From Proof Questionnaire, Healy & Hoyles, 1999]. 
Abbildung 2.23 – Beweisaufgaben A4, A7, G4 und G7 aus Healy & Hoyles (1999)

Wie nicht anders zu erwarten, wurden die Aufgaben A4 und G4 besser bearbeitet, wobei die

Aufgaben aus dem Gebiet der Algebra signifikant besser gelöst bzw. bearbeitet wurden als
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diejenigen aus dem Bereich der Geometrie (vgl. Abbildung 2.24).

Score Criteria for assigning scores
A4 G4 A7 G7

0 No basis for proof 14 24 35 62
1 Some basis, no deductions 46 52 56 28
2 Partial proof 18 5 6 5
3 Complete proof 22 19 3 5

Mean Score 1.5 1.2 0.8 0.5

Question

Abbildung 2.24 – Prozentuale Verteilung der erreichten Punkte zu den Aufgaben A4, A7,

G4 und G7 (Healy & Hoyles 1999, S.41-42)

Dabei war den Schülerinnen und Schülern wichtig, dass ein Beweis zum Verständnis des Sach-

verhalts beitragen sollte, - eine grundsätzlich vernünftige Einstellung. Dies konnte allerdings

das formal-deduktive Vorgehen in der Regel für sie nicht leisten, weshalb sie diesem zwar die

besten Noten zuwiesen, es für sich selbst aber nicht nutzten.

„What may well be different from responses in other countries is that students

who had followed our curriculum preferred to construct a proof to a familiar con-

jecture in a narrative style, and in the process frequently showed considerable

individuality and creativity. They rarely if ever acted out meaningless formal ri-

tuals when producing proofs, as reported in studies when students had followed

a more traditional curriculum. Rather, their proofs were the products of struggle

to mould their informal, even private, explanations into a more public commu-

nication of the lines of their arguments. The students displayed less creativity in

the face of unfamiliar conjectures in geometry: they wanted their own proofs to

satisfy the criterion of convincing and explaining but, unlike in the familiar case,

could not find ways to express these needs“ (Hoyles & Healy 2007, S.107).

Um wie auf S. 67 bereits erwähnt auch noch den Einfluss der jeweiligen Schule zu berücksich-

tigen, führten Healy & Hoyles zusätzlich Befragungen bei den Lehrpersonen durch. Diese

sollten beispielsweise dieselben Multiple-choice-Aufgaben bearbeiten und eine Einschätzung

abgeben, welcher Aufgabenlösung die beste Beurteilung durch den Lehrer oder die Lehrerin

zugewiesen werden würde. Abschließend mussten Healy & Hoyles allerdings feststellen,

dass durch die Studie der Einfluss der Lehrpersonen nicht eindeutig herausgearbeitet werden

konnte, sondern lediglich Tendenzen festgestellt werden konnten:
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„F54. Students’ responses are not influenced by their teacher’s sex, years of tea-

ching experience or qualifications, nor by their teachers’ responses to the ques-

tionnaire.

F17. Choices of proof in geometry are predominantly associated with student

rather than school, curriculum and teacher factors“ (Healy & Hoyles 1999,

S.67f).

Im Folgenden sind die für meine Arbeit interessantesten Ergebnisse, die Healy & Hoyles

herausgearbeitet haben, aufgelistet:

• Sowohl beim Durchführen als auch beim Evaluieren von Beweisen erbringen Schülerin-

nen und Schüler in Algebra bessere Leistungen als in Geometrie.

• Die Leistungen der Schülerinnen und Schüler im geometrischen Beweisen sind durchge-

hend schlecht und liefern großen Anlass zur Besorgnis.

• Die Entscheidung für eine bestimmte Vorgehensweise (narrativ, formal, etc.) ist ab-

hängig davon, ob der Beweis selbst durchgeführt werden oder eine Einschätzung zur

Bewertung durch die Lehrperson abgegeben werden soll.

• Schülerinnen und Schüler glauben, dass ein formal dargestellter Beweis die beste Note

bekommt.

• Die Entscheidung, ob eine Argumentation einen schlüssigen Beweis liefert, basiert we-

niger auf deren Korrektheit, als vielmehr auf der Ausprägung des Formalismus bei der

Notation und dem scheinbaren Grad an Allgemeingültigkeit. Letzteres führt dazu, dass

Argumentationen, die nicht allgemeingültig zu sein scheinen, wie z.B. Gegenbeispielen,

die Beweisfähigkeit abgesprochen wird.

• In Geometrie haben die äußeren Rahmenbedingungen wie Schule, Lehrplan und Lehr-

person kaum Einfluss darauf, für welche Art der Beweisform (narrativ, formal, etc.) sich

die Schülerinnen und Schüler entscheiden (vgl. Healy & Hoyles 1999, S.64ff).

Sie fassen zusammen:
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“The major finding of the project is that most high-attaining Year 10 students

after following the National Curriculum for 6 years are unable to distinguish and

describe mathematical properties relevant to a proof and use deductive reasoning

in their arguments. Most are inclined to rely upon empirical verification“ (Healy

& Hoyles 1999, S.6),

und erheben anschließend die folgende Forderung:

“Taken together the results of our study suggest that, in the forthcoming review

of the National Curriculum for mathematics, attention should be paid to the

coverage of geometry and more generally to the approach to proof. We suggest

that more explicit efforts should be made to engage students with proof while

discussing with them the idea of proof at a meta-level, in terms of its meaning,

generality and purposes. This would involve finding ways of balancing the need

to produce a coherent and logical argument with the need to provide one that ex-

plains, communicates and convinces. This implies that alongside the curriculum

emphases on measurement, calculation and the production of specific (usually

numerical) results, more consideration should be given to appreciating mathe-

matical structures and properties, the vocabulary to describe them, and simple

inferences that can be made from them. Our evidence suggests that students

could well respond positively to the challenge of attempting more rigorous and

formal proofs alongside informal argumentation, and that developing approaches

where this might be accomplished in the context of geometry as well as of algebra,

would be a useful way forward“ (Healy & Hoyles 1999, S.7).

Nachdem im Jahr 2000 in Großbritannien eine Reform des Curiculums stattgefunden hat-

te, wodurch geometrischen Begründungen und Beweisen ein höherer Stellenwert eingeräumt

wurde, führte Holyes zusammen mit Küchemann von 2002 bis 2005 eine neue Untersu-

chung durch. Dabei wurden zum Teil dieselben Aufgaben wie 1996 eingesetzt, unter anderem

die Aufgabe zur Winkelmaßsumme im Dreieck. Hoyles & Healy stellen vorsichtige Ver-

gleiche zwischen den beiden Untersuchungen an. Bei der Schülerbefragung ergaben sich zur

vorangegangenen Untersuchung nur marginale Abweichung. Die Antworten der Lehrpersonen

hingegen hatten sich verändert. Nunmehr gaben nur noch 10 Prozent an, Amandas Lösung
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entspreche der eigenen Vorgehensweise, und nur noch 6 Prozent glaubten, dass die Schülerin-

nen und Schüler für diese Lösung die beste Note erwarteten. Hoyles & Healy (2007, S.111)

geben eine mögliche Erklärung an: „It could be that, whereas the curriculum changes had not

yet motivated substantial changes in the mathematics classroom, the more explicit emphasis

on deductive reasoning in the programmes of study for geometry had some impact on how

teachers judged geometrical proofs.“

Auch bei der Durchführung von eigenen Beweisen durch die Schülerinnen und Schüler stellen

Hoyles & Healy (2007, S.113) Unterschiede fest:

“Despite the limitations in this comparative analysis because of the obvious pro-

blems in equivalence of samples of students and teachers, it does appear that the

process approach to proof that characterised the pre-2000 version of the curricu-

lum encouraged the production of empirical examples, which, though limited as

not necessarily giving any focus to analytical or deductive argument, did have the

advantage of affording to students some entry point into examining conjectures

in geometry. The comparison also points to some risks in simply giving increased

curriculum emphasis to geometrical reasoning, and leaves us with the challenge

of finding a curriculum approach that allows teachers to support students in ne-

gotiating the passage from evidence that illuminates geometrical conjectures to

reasoning which justifies them.“

Wie bereits eingangs erwähnt, greifen jüngere Studien auf das Aufgabenformat von Healy &

Hoyles zurück. So versuchen beispielsweise Ufer et al. (2009) herauszufinden, über welches

beweisspezifische Methodenwissen Schülerinnen und Schüler verfügen und wie sich der Zusam-

menhang zwischen diesem Methodenwissen und Beweiskompetenz darstellt. Dabei unterteilen

sie das Methodenwissen in Anlehnung an Heinze & Reiss (2004b) in die drei Bereiche:

1. Beweisschema (Proof scheme), 2. Beweisstruktur (Proof structure) und 3. Beweiskette

(Chain of conclusions), die ich im folgenden kurz erläutern möchte.

1. Beweisschema: Unter diesen Aspekt werden die Argumente bezüglich der einzelnen

Beweisschritte subsummiert. Dabei wird zwischen zulässigen (allgemeingültige dedukti-

ve Schlüsse) und unzulässigen (empirische Nachweise, Anschauung, Berufung auf höhere

Autoritäten) Argumenten unterschieden.
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2. Beweisstruktur: Der Beweis soll bei den Voraussetzungen anfangen und bei der Be-

hauptung enden. Eine Verletzung dieses logischen Aufbaus ist insbesondere in Zirkel-

schlüssen und Beweislücken zu sehen.

3. Beweiskette: Jeder Beweisschritt muss auf den vorangegangenen Beweisschritten auf-

bauen, falls erforderlich unter Bezugnahme auf zusätzliches gesichertes Wissen, so dass

eine logische Kette gebildet wird.

Dabei können die drei Bereiche in dem Sinn unabhängig voneinander betrachtet werden, dass

es möglich ist, dass Schülerinnen und Schüler zwar in dem einen Fehler machen, die anderen

aber korrekt abhandeln. Ufer et al. (2009, S.36) stellen die These auf, dass „das Wissen um

die genannten Kriterien für mathematische Beweise [...] Voraussetzung für die Kompetenz,

Beweise entsprechend dieser Kriterien zu beurteilen und zu konstruieren“ ist. Daher war ihre

Studie darauf ausgerichtet, den vermuteten Zusammenhang zwischen Methodenwissen und

Beweiskompetenz empirisch nachzuweisen und dabei gleichzeitig herauszufinden, in welchem

Themenfeld die besonderen Schwierigkeiten der Schülerinnen und Schüler liegen.

In Anlehnung an die Vorgehensweise von Healy & Hoyles (1999) sollten bei Ufer et al.

(2009) die Schülerinnen und Schülern bei vier vorgeblichen Schülerlösungen zu einer Beweis-

aufgabe angeben, ob sie sie für richtig oder falsch hielten. Dabei wurde im ersten Lösungs-

vorschlag mit empirischen Argumenten gearbeitet, so dass der Aspekt des Beweisschemas von

Bedeutung war, während im zweiten Lösungsvorschlag ein Zirkelschluss getätigt wurde, so

dass hier die Beweisstruktur eine Rolle spielte. Die beiden letzten Lösungsvorschläge waren

korrekt, wobei der eine eher formaler und der andere eher narrativer Art war.

Nur wenn die Schülerinnen und Schüler meinten, dass ein Beweis nicht korrekt sei, sollten sie

eine Begründung liefern, und zwar in freier Formulierung. Um quantitativ auswerten zu kön-

nen, wurden diesen Schülerantworten Punkte zugewiesen: Wurde ein korrekter Beweis (ohne

Begründung) als korrekt eingeschätzt, wurden 2 Punkte vergeben; wurde ein falscher Beweis

(ohne Begründung) als falsch erkannt, wurde 1 Punkt vergeben; wurde zusätzlich korrekt be-

gründet, warum der falsche Beweis nicht in Ordnung ist, gab es einen weiteren Punkt. Wurde

ein richtiger Beweis als falsch eingeschätzt bzw. ein falscher Beweis für richtig gehalten, gab

es keine Punkte. Abbildung 2.25 zeigt die in der Studie eingesetzte Aufgabe (Originalaufga-

benblätter im Anhang A.4 dieser Arbeit).
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Abbildung 2.25 – Aufgabe aus der Studie von Ufer et al. (2009)
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Die Antwort von Achim gründet sich auf exemplarischen Messungen, so dass hier ein Fehler in

der Kategorie „Beweisschema“ vorliegt, während die Antwort von Christian einen Zirkelschluss

enthält, so dass hier eine fehlerhafte „Beweisstruktur“ zu verzeichnen ist. Die Antworten von

Britta und Doro werden als korrekt akzeptiert, wobei Britta eher formal und Doro eher nar-

rativ argumentiert.

Meiner Einschätzung nach sind die vorgegebenen Aufgabenlösungen insgesamt nicht unpro-

blematisch.

• Die Antwort von Christian ist in den ersten zwei Zeilen wortgleich zur Antwort von

Britta. Dieses könnte von den Schülerinnen und Schülern, die ja aufgefordert sind, nach

Fehlern oder Lücken in der Beweisführung zu suchen, derart gedeutet werden, dass

dieser Teil der Lösungen unproblematisch ist, so dass sie ihre Einschätzung hier nicht

am Inhalt ausrichten.

• Christian, Britta und Doro argumentieren mit den Eigenschaften der Raute. Sie ma-

chen aber nicht explizit deutlich, mit welcher dieser Eigenschaften sie argumentieren.

Beispielsweise bezieht sich die Aussage, dass das Viereck ABCD die Geraden AC und

BD als Symmetrieachsen hat, auf die Eigenschaft der Diagonalen einer Raute, während

sich die Kongruenz der Strecken FH, CD, AD und EG auf die Eigenschaft bezieht,

dass alle Seiten einer Raute gleich lang sind. Hier könnten Schülerinnen und Schüler

zu einer falschen Einschätzung kommen, da ihnen nicht alle Eigenschaften einer Raute

präsent sind. Genauso besteht das Problem, dass hier die Beweisschritte als zu groß und

dadurch bedingt lückenhaft angesehen werden, eben weil der Bezug auf die konkrete Ei-

genschaft einer Raute fehlt. Diese Vermutung wird dadurch gestützt, dass von den 39

Schülerinnen und Schülern, die die Antwort von Britta als fehlerhaft ansahen, 15 einen

Fehler in der Beweiskette vermuteten: „Bei dem korrekten Argumentationsbeispiel im

formalen Stil vermuteten die meisten Schüler einen Fehler im Bereich Beweiskette, wenn

sie das Beispiel fehlerhaft evaluierten. Die einzelnen Begründungen weisen darauf hin,

dass die Schüler Probleme hatten, den Bezug zwischen einzelnen Schritten nachzuvoll-

ziehen. War ihnen dieser nicht eingängig, so wurde das Argumentationsbeispiel - mit

einer zum Aspekt Beweiskette gehörenden Begründung - kritisiert und als Beweis abge-

lehnt“ (Ufer et al. 2009, S.43). Das bedeutet, dass die Ablehung hier möglicherweise
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sogar positiv zu werten wäre, da die Schülerinnen und Schüler kleinere Beweisschritte

für erforderlich hielten. Auch Ufer et al. (2009) räumen dies ein, wenn sie ergänzen:

„Obwohl dies wegen der geringen Anzahl an Fällen vorsichtig zu bewerten ist, scheint

der Aspekt der Beweiskette einigen der hier untersuchten Schülern wenigstens implizit

bekannt gewesen zu sein“ (ebenda, S.43).

• Doro gibt keinerlei Begründung dafür, warum die ganze Figur punktsymmetrisch zu M

ist. Hier könnte sehr gut ein der Zeichnung entnommenes Anschauungsargument zu-

grundeliegen. Damit wäre der Beweis nicht als korrekt einzustufen, sondern wiese eine

Verletzung der Kategorie „Beweisschema“ auf. (Bei den 57 Personen, die den Beweis als

nicht korrekt einstufen, beziehen sich 21 auf Fehler im Beweisschema, wobei allerdings

nicht gesagt wird, ob und wie oft der Aspekt der Anschauung eine Rolle spielt.) Ge-

nausogut könnte man argumentieren, dass Doros Beweis eine Lücke in der Beweiskette

aufweist, da die Punktsymmetrie der ganzen Figur nicht aus vorangegangenen Beweis-

schritten geschlossen wird und auch nicht begründet als zusätzliches externes Wissen

eingeführt wird. (Allerdings begründen nur 3 Schülerinnen und Schüler, die diesen Be-

weis als nicht korrekt einstufen, dies mit Fehlern in der Beweiskette.)

• Während Christian (formal, Zirkelschluss) und Britta (formal, korrekt) nahezu diesel-

ben Argumente verwenden (natürlich bis auf den Unterschied, dass bei Christian die

Behauptung α = 90° als Voraussetzung erscheint, während sie bei Britta eine Folgerung

ist), verwendet Doro völlig andere Begründungen (Parallelverschiebung, Punktsymme-

trie). Dies könnte zur Folge haben, dass die Schülerinnen und Schüler ihre Einschätzung

an inhaltlichen Argumenten und nicht an der narrativen Form festmachen. In der Aus-

wertung der Daten ist zu sehen, dass von den 57 Personen, die diesen Beweis nicht als

korrekt eingeschätzt haben, 12 dieses fehlerhaft begründet haben, weil bei ihnen ein

Defizit im Begriffswissen erkennbar war. Zählt man die 14 Personen hinzu, die über-

haupt nicht begründet haben, warum sie Doros Antwort für falsch halten und die 2,

bei denen keine Zuordnung möglich war, so muss festgestellt werden, dass mindestens

bei 28 von 57 Personen nicht festzumachen ist, ob die Ablehnung an der narrativen

Darstellung liegt. Demgegenüber stehen 21 Schülerinnen und Schüler, die die Ablehung

daran festmachen, dass das Beweisschema verletzt ist. Darunter fällt die Kritik, dass
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keine Formeln benutzt werden bzw. dass Doro die Antwort in ganzen Sätzen formuliert.

Darunter würde allerdings ebenfalls die Kritik daran fallen, dass Doro ohne Begründung

behauptet, dass M das Symmetriezentrum der ganzen Figur ist.

Damit werden zwei prinzipielle Schwächen des Reiss-Ufer-Ansatzes deutlich (besonders bei

Doro):

1. Die Unterscheidung von Beweisschema und Beweiskette bleibt vom Grundsatz her un-

scharf.

2. Die Frage, was man warum voraussetzen oder auch nicht voraussetzen darf, bleibt un-

beantwortet.

Zudem bleibt natürlich die bereits im Zusammenhang mit der Studie von Healy & Hoyles

(1999) geübte Kritik bestehen, dass bei der Einschätzung einer Antwort als korrekten Beweis

überhaupt keine Begründung von den Schülerinnen und Schülern verlangt wird, so dass ins-

gesamt fraglich ist, ob die gewählte Aufgabe und die Vergabe der Punkte einen fundierten

Rückschluss von der Punktzahl auf die Qualität des vorhandenen Methodenwissens zulassen.

Immerhin können 6 von 8 Punkten allein durch das Setzen von Kreuzen, ohne jede explizite

Begründung, erreicht werden. Zudem wird die Erfassung des Methodenwissens an der Bear-

beitung einer einzigen Aufgabe festgemacht.

Um den Zusammenhang zwischen Methodenwissen und Beweiskompetenz nachweisen zu kön-

nen, versuchen Ufer et al. (2009), die Beweiskompetenz auch qualitativ zu erfassen. Hierzu

verwenden sie ein dreistufiges Kompetenzmodell des Beweisens (vgl. Reiss et al. 2002; Heinze

& Reiss 2004a; Reiss et al. 2006). „Sie [Reiss und Kollegen, G.W.] entwickelten Leistungs-

tests mit Aufgaben zu Basiskompetenzen und Argumentationsaufgaben, auf deren Grundlage

ein theoretisches Kompetenzmodell mit drei Niveaus validiert werden konnte“ (Ufer et al.

2009, S.34). Dabei werden bestimmten Aufgabentypen bestimmte Niveaustufen zugeordnet:

eine Aufgabe, bei der nur Basiswissen gebraucht, Regeln angewendet oder gerechnet werden

muss, wird der Niveaustufe I zugeordnet; eine Beweisaufgabe, die einen einschrittigen Argu-

mentationsschritt erfordert, der Niveaustufe II und eine Beweisaufgabe, die mehrschrittige Ar-

gumentatiosschritte erfordert, der Niveaustufe III. Dabei bedeutet ein Argumentationsschritt

die Anwendung eines mathematischen Satzes.

Die Entscheidung, sich auf Aufgaben mit zwei Beweisschritten und damit auf Aufgaben auf
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Niveaustufe III zu beschränken, wird damit begründet, dass bei Einsatz noch komplexerer

Beweise, anders als bei Übergang von Niveaustufe II zu Niveaustufe III, kein nennenswerter

qualitativer Unterschied mehr zu erwarten sei:

„Zwischen Beweisaufgaben der Niveaus II und III besteht ein qualitativer Kom-

plexitätsunterschied, da Beweise in der Regel nicht Schritt für Schritt konstruiert

werden, sondern zum Finden einer „Beweisidee“ bereits mehrere mögliche Ar-

gumente und deren Kombinationen gleichzeitig betrachtet werden müssen. Eine

weitere Erhöhung der Anzahl der Schritte über zwei hinaus erhöht zwar ebenfalls

die Komplexität des Beweises, ein ähnlicher qualitativer Unterschied im Bearbei-

tungsprozess wie zwischen ein- und zweischrittigen Beweisen ist jedoch nicht zu

erwarten“ (ebenda, S.34).

Untersuchungen in deutschen Gymnasien, bei denen über 2000 Schülerinnen und Schüler der

Jahrgangsstufen 7 und 8 getestet wurden, ergaben (natürlich?), dass die Aufgaben der Nive-

austufe I sehr viel besser gelöst wurden, als die Aufgaben der Stufen II und III. Dabei wurden

die Aufgaben der Niveaustufe II noch relativ gut bearbeitet, während die Aufgaben der Ni-

veaustufe III Probleme bereiteten (vgl. Heinze & Reiss 2004a; Reiss et al. 2006; Kuntze

2006; Ufer & Heinze 2008).

In der Befragung von Ufer et al. (2009) wurden elf Aufgaben eingesetzt, vier auf der Niveau-

stufe I, drei auf der Niveaustufe II und vier auf der Niveaustufe III. Diese Aufgaben werden

jedoch in dieser Arbeit von Ufer et al. nicht vorgestellt. Auch in den Artikeln, auf die in

diesem Zusammenhang verwiesen wird (vgl. Heinze & Reiss 2004a; Reiss et al. 2006) wer-

den die Aufgaben nicht veröffentlicht. Lediglich in Ufer & Heinze (2008) findet sich eine

Aufgabe auf Niveaustufe I und eine auf Niveaustufe III, wobei die Einstufung auf die Beweis-

kompetenz in Klasse 7 bezogen ist. (Die Aufgabe, die bezüglich Klasse 7 auf Stufe III landet,

ist eine sogenannte „Ankeraufgabe“, die sich auch im Testat der Klasse 9 wiederfindet. Hier

ist sie dann auf das Niveau II herabgestuft, da ein Argumentationsschritt, der bei Klasse 7

als Anwendung eines Satzes gewertet wurde, nunmehr nur noch als Abrufen von Basiswissen

gilt.) Die beiden Aufgaben habe ich in Abbildung 2.26 und Abbildung 2.27 dargestellt.
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value x will solve an item with difficulty x by a probability of 50%. Working with 
probabilities on the one hand makes it possible to cover also specific individual behaviour as 
described for example by Küchemann and Hoyles (2006). On the other hand a probabilistic 
description makes it difficult to interpret the competency of a specific student. Here, all 
reported results are related to the system level.  
For each grade we developed test items, such that all competency levels were covered by the 
test for this grade. The items for grade 7 and grade 8 were based on the corresponding 
curriculum in geometry. In grade 9 we only used test items related to the grade 7 and grade 8 
curriculums. To link the three tests we used anchor items for every pair of tests. The anchor 
items of the study together with the core sample allow direct comparison of students’ 
achievement at different times. As an example we will consider an anchor item that was 
administered in grade 7 and grade 9 (see figure 1). For grade 7 this item was assigned to 
competence level III because it consists of two steps. As a first step the angle between β and γ 
has to be identified as the vertical angle of α which has the same size. The second step uses 
the fact that angles at a straight line add up to 180°. 
A first analysis showed that about 10% of the students solved 
this item correctly in grade 7. This corresponds well to the 
assignment to competence level III. Nevertheless, in grade 9 
almost a third of the students succeeded on this item. As 
described in section 3 we assume that for 9th graders the 
cognitive representation of the problem situation includes 
already the first step, because the vertical angle figure is 

recognized and retrieved as 
factual knowledge from 
memory. Based on this 
theoretical assumption, this 
item is transformed to a one 
step proof item of competency 
level II. Similar reassignments 
were made for other anchor items. Based on a reanalysis of the 
item contents we adjusted four of the nine anchor items to 
lower competence levels for the grade 8 or grade 9 
measurements. 
 
Modelling the empirical data uni-dimensionally by the 
dichotomous Rasch model we obtained item and person 
parameters. The quality of the model fit was tested by checking 
item fit values for each item. For both procedures we got 
satisfying results, such that our test items are appropriate. 
The item difficulties3 span from 84.6 to 117.8, they 
corresponded to the assigned competence levels almost 
perfectly (see table 1). Those items assigned to different levels 
for different measurement points are located between the 
corresponding levels. Only item 11 turned out harder than 
expected for competence level I. This item is a calculation 
item, however, it requires an underlying argumentation with 
congruent triangles (see figure 2).  
 

                                                 
3 The values of the latent trait are normed such that 100 is the mean of item parameters and the standard 
deviation of person parameters is 10. 

Item Level Item 
Parameter 

10 1 84.6 
06 1 85.1 
02 1 85.9 
03 1 86.3 
01 1 87.4 
15a 1 88.5 
05a 2/1 91.2 
08a 2 93.3 
04 2 93.6 
13a 2 93.9 
11 1 96.6 
09 2 101.7 
17 2 103.5 

15b 3/2 103.9 
05b 3/2 104.5 
07 3/2 106.3 
08c 3 108.6 
12 3 110.3 

08b 3 112.4 
15c 3 113.0 
13b 3 114.5 
16 3 117.1 
14 3 117.8 

Tab. 1. Item Parameters 

Prove α + β + γ = 180°. 
 
 

 
 
 
 
 
 
 
 

Fig. 1. Anchor Item Grade 7/9 
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Abbildung 2.26 – Aufgabe auf

dem Niveau III für Klasse 7 aus

Ufer & Heinze (2008, S.4)
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The triangles ABC and A’B’C’ are congruent with 
|AB| = |A'B'|. The points A, A', B and B' are on the 
same line. Determine δ. Show all your work! 

Fig. 2. Item 11 which requires argumentation and 
calculation. 

Summarizing these results we can 
confirm that the model with three 
competency levels based on the item 
complexity is appropriate to develop test 
items for grades 7, 8 and 9. The proof 
complexity depends on the number of 
solution steps required by the proof 
problem in its cognitive representation. 
This means in particular that the 
question of proof complexity strongly 
depends on the individual (related to 
his/her knowledge). However, since 
there is a common basis of knowledge 
for students in the same grades (e.g. depending on the curriculum), in fact one can 
approximate possible cognitive representations of a proof problem and hence classify the 
complexity of proof items. At this point we want to mention that we benefit from the fact that 
our sample was recruited from German Gymnasiums, e.g. from the high attaining school track 
that is visited by about 40% of the students. We can assume that this sample is to some extent 
homogenous with respect to their mathematical knowledge such that an analysis of possible 
individual cognitive representations of proof problems is not too complicated.  

4.2 Development of geometric proof competency 
In this section we present findings about the development of geometric proof competency for 
the core sample (N = 196) from grade 7 to 9. The results presented here are based on the 
modelled empirical data. 

4.2.1 Geometric proof competency from grade 7 to 9 
 First of all we compared the mean values of the individual test scores of each grade. Since all 
item parameters and all person parameters are allocated on one common scale, a direct 
comparison of the test scores is possible. The individual development of proof competency 
was tested by an ANOVA for repeated measurements. A significant effect was found for the 
time of measurement (F(2,390) = 35.06, p < 0.001, η2 = 0.154). This indicates that the 
geometric proof competency significantly increased from grade 7 to grade 9. Absolute values 
and effect sizes are given in table 2. Since the overall mean value of the item difficulties was 
defined by 100, we can observe that the tests are 
somewhat to difficult for the sample (all mean 
values are below 100). However, for each grade 
we have no floor effect. The increase in proof 
competency for the first period between grades 
7 and 8 is larger than for the second period. We 
assume that this effect is based on the 
instruction in geometric proof at the beginning 
of grade 8 and on the fact that the grade 9 test 
was based on the geometry contents from 
grades 7 and 8. Overall the increase between two measurement points (as effect size d) is 
comparable to the growth of mathematics achievement within one school year in Germany as 
it was shown in a study supplementary to PISA 2003 (e.g., Prenzel et al., 2006). 

4.2.2 Geometric proof competency of different achievement groups 
From an educational point of view it is interesting to consider the development of the 
competency for different achievement groups. Although we can observe a significant increase 
of geometric proof competence from grade 7 to 9 for the whole sample, the question occurs if 

 M SD d p 

Grade 7 93.7 7.09 0.38 < 0.001 

Grade 8 96.3 7.22 

0.27 < 0.001 Grade 9 98.3 7.67 

Tab. 2. Development of proof competency

Abbildung 2.27 – Aufgabe auf dem Niveau I für

Klasse 7 aus Ufer & Heinze (2008, S.5)

Ufer & Heinze begründen ihre Kategorisierung wie folgt: „For grade 7 this item [bezieht

sich auf Abbildung 2.26, G.W.] was assigned to competence level III because it consists of two

steps. As a first step the angle between β und γ has to be identified as the vertical angle of α

which has the same size. The second step uses the fact that angles at a straight line add up

to 180°“ (ebenda. S. 4). Dahingegen wird die Aufgabe in Abbildung 2.27 unter die Kategorie

„Rechenaufgabe“ eingeordnet, was der Kategorie I entspricht, obwohl auch Ufer und Heinze

feststellen: „This item is a calculation item, however, it requires an underlying argumentation

with congruent triangles“ (ebenda, S. 4).

Die Aufgabe in Abbildung 2.26 wird demnach dem Niveau III zugeordnet, weil zwei Sätze

angewandt werden müssen (der Scheitel- und der Nebenwinkelsatz). Reiss et al. (2002, S.57)

schreiben: „Auf dieser Stufe [Kompetenzsstufe III, G.W.] wird eigenständiges, zum Teil auch

kreatives Problemlösen und Argumentieren verlangt.“ Einen derartigen Anspruch kann ich bei

der Aufgabe aus Abbildung 2.26 nicht erkennen, selbst wenn man - mit gutem Willen - der

o.g. Einschätzung folgt, dass zwei Sätze angewandt werden müssen. In der zweiten Aufgabe

hingegen (vgl. 2.27), die der Niveaustufe I zugeordnet wird, muss sowohl mit Kongruenzen

(entsprechende Winkel sind gleich groß) als auch mit der Innenwinkelmaßsumme im Dreieck

argumentiert werden. Schaut man in die bayerischen Lehrpläne für die 7. Klasse des Gymnasi-

ums, so findet man unter dem Unterpunkt „Winkelbetrachtungen an Figuren“ die Stichpunkte
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„Scheitelwinkel“, „Nebenwinkel“ und „Innenwinkelsumme beim Dreieck“ (siehe Anhang B.1).

Diese Begriffe werden somit demselben Themenfeld zugeordnet, das nahelegt, sie auch zu-

sammen im Unterricht zu thematisieren. Dennoch werten Ufer & Heinze den Bezug auf

Scheitelwinkel und Nebenwinkel in Klasse 7 jeweils als Anwendung eines eigenständigen Sat-

zes, während sie den Bezug auf die Innenwinkelmaßsumme im Dreieck nicht so sehen.

Es ist nicht nachvollziehbar, wenn das Wissen über Scheitelwinkel in Klasse 9 dem Faktenwis-

sen hinzugerechnet und nun nicht mehr als Beweisschritt anerkannt wird („the vertical angle

figure is recognized and retrieved as factual knowledge from memory“ (ebenda, S. 4), während

das Wissen über Nebenwinkel nach wie vor als Beweisschritt gelten soll.

Die Probleme scheinen darin zu liegen, dass man, um operationalisieren zu können, durch

einfaches Aufsummieren von zu verwendenden Sätzen auf eine Niveaustufe schließt und dabei

zusätzlich nicht ausreichend begründete Unterscheidungen trifft, wann die Anwendung eines

Satzes als Beweisschritt zählt und wann sie zum Abrufen von Gedächtniswissen trivialisiert

wird. Dabei ist allerdings auch zu berücksichtigen, dass der Rückschluss durch die Analyse

einer einzigen Aufgabe dieses Typs wenig zufriedenstellend ist.

Trotz der spärlichen authentischen Information erscheint das Ergebnis, dass es einen Zusam-

menhang zwischen Methodenwissen und Beweiskompetenz gibt, durchaus plausibel: „Mit etwa

10% aufgeklärter Varianz an der Punktzahl der Beweisitems hat das Methodenwissen einen

Einfluss, der erwartungsgemäß nicht allzu groß, aber doch substanziell ist“ (Ufer et al. 2009,

S.45). Darüber hinaus wird die Vermutung aufgestellt, dass in allen Bereichen des Methoden-

wissens bei den Schülerinnen und Schülern Defizite zu verzeichnen sind, dass aber der Bereich

Beweisschema besser beherrscht wird als der Bereich Beweisstruktur. Hier halten Ufer et al.

(2009) eine Veränderung im Unterricht für angebracht:

„Für Fragen, die sich auf die Zusammenhänge zwischen den Beweisschritten be-

ziehen, wie beispielsweise der Beweisstruktur, scheint eine stärkere Berücksichti-

gung im Unterricht notwendig. Sie kann beispielsweise durch nachvollziehendes

Überprüfen erarbeiteter Beweise bzw. deren Beweisideen oder die Evaluation von

vorgegebenen (falschen und korrekten) Beweisen umgesetzt werden. Im Rahmen

solcher reflexiver Phasen könnte auch der Aspekt Beweiskette thematisiert wer-

den“ (ebenda, S. 47f).
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Dieser Forderung möchte ich mich durchaus anschließen. Zusätzlich ist anzumerken, dass im-

mer wieder deutlich wird, dass der soziale Aushandlungsprozess bezüglich der Akzeptanz zu-

lässiger Schlüsse von immenser Bedeutung ist. Hierzu gehört nicht nur die Art der zulässigen

Schlüsse, auf die in allen Studien verwiesen wird (keine Zirkelschlüsse, keine empirischen Ar-

gumente, keine anschaulichen Argumente), sondern vor allen Dingen auch die Transparenz

bezüglich der Granularität der einzelnen Beweisschritte (bezogen auf die Untersuchung von

Ufer et al. (2009): welche Schlüsse darf ich zulässig ziehen, wenn ich damit argumentiere, dass

ich eine Raute vorliegen habe. Reicht die Nennung des Worts, um alle oder einige (welche?)

ihrer Eigenschaften nutzen zu dürfen, oder muss man diese (welche?) explizit angeben?). Ich

bin überzeugt, dass für viele Schülerinnen und Schüler diese Fragen völlig ungeklärt sind und

diese Unklarheit eine wesentliche Ursache für ihre Unsicherheit ist, welche Schritte erlaubt

sind und welche nicht. Zudem kann das Nachvollziehen oder Evaluieren von Beweisen zwar

ein wichtiger Schritt zur Entwicklung von Beweiskompetenz sein, doch hinreichend sind diese

Maßnahmen nicht, wie eine Studie von Schoenfeld aus dem Jahr 1989 mit dem Titel: „Ex-

plorations of Students’ Mathematical Beliefs and Behaviour“ (Schoenfeld. 1989) zeigt.

Dieser Studie vorangegangen war zu Beginn der 1980er Jahre ein Seminar zur mathematischen

Kognition, das Schoenfeld an der Universität Rochester, New York, abgehalten hatte. Die

Seminarteilnehmer, die er als „mathematically and scientifically sophisticated“ (Schoenfeld

1989, S.338) einstuft, sollten zwei Probleme lösen, die in Abbildung 2.28 dargestellt sind:
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3. The center of the desired circle is the midpoint of the line segment between 
the two given lines that is perpendicular to the top line at P (Figure 3c). 

4. The center of the desired circle lies at the intersection of the perpendicular to 
the top line drawn at P and the bisector of vertex angle V (Figure 3d). 

The students argued for more than 10 minutes, on purely empirical grounds, about 
which conjecture was correct. (The student who made Conjecture 2, for example, 
argued his case on the grounds that the center of the circle had to be further left 
than it appeared to be in Conjecture 1.) Despite the fact that their two proofs were 
still on the board, their discussions concluded with the issue unresolved. 

This incident illustrates a curious but widespread phenomenon in which students 
give clear evidence of knowing certain mathematics but then proceed to act as if 

P 

eC V 

0 

The circle in the figure above is tangent to the two 
given lines at the points P and 0 

Problem 1: Prove that the line segments 
PV and QV are the same length 

Problem 2 Prove that the line segment CV 
bisects angle PVQ 

Figure 1. Proof problems 1 and 2. 

p 

Problem 3. 

You are given two intersecting straight lines and a point P 
marked on one of them. Show how to construct, using 
straightedge and compass, a circle that is tangent to both 
lines and that has the point P as the point of tangency to the 
top line. 

Figure 2. A construction problem. 

Abbildung 2.28 – Beweisprobleme 1 und 2 aus Schoenfeld (1989, S.339)
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Die Bearbeitung der Aufgabe bereitete den Studierenden keinerlei Probleme, in weniger als

drei Minuten erarbeiteten sie miteinander für beide Fragestellungen einen korrekten Beweis.

Der Beweis wurde an die Tafel geschrieben, direkt anchließend an diese Dokumentation wurde

das Plenum mit der nächsten Aufgabe, die sich unmittelbar auf die vorangegangene, offenbar

leicht zu lösende Aufgabe in Abb. 2.28 bezog, konfrontiert (vgl. Abb. 2.29).
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Problem 3. 

You are given two intersecting straight lines and a point P 
marked on one of them. Show how to construct, using 
straightedge and compass, a circle that is tangent to both 
lines and that has the point P as the point of tangency to the 
top line. 

Figure 2. A construction problem. 

Abbildung 2.29 – Ein Konstruktionsproblem (Schoenfeld 1989, S.339)

Daraufhin ergab sich eine mehr als 10-minütige Diskussion, wie das Problem wohl zu lösen

sei, und der chronologischen Reihenfolge nach wurden folgende vier Vermutungen entwickelt:

1. Sei V der Schnittpunkt der beiden Geraden und Q der Punkt auf der unteren Gerade,

so dass die Strecke PV genausolang ist, wie die Strecke QV. Dann ist der Mittelpunkt

der Strecke PQ der Mittelpunkt des gesuchten Kreises.340 Beliefs and Behavior 

a First Conjecture c Third Conjecture 

b Second Conjecture d Fourth Conjecture 

Figure 3. The students' conjectures. 

they are completely ignorant of it. In a series of interview studies of high school 
and college students conducted from 1979 through 1984 (Schoenfeld, 1983; 
Schoenfeld, 1985, chap. 5), more than 90% of the students asked to solve Problem 
3 did so by trial and error, testing their hypotheses by carrying out the constructions 
and accepting or rejecting them on empirical grounds. These students then 
demonstrated their knowledge of the relevant deductive mathematics by proving 
the theorems in Problems 1 and 2. In subsequent interviews conducted parallel with 
this study, 35 high school students were asked to work the proof problems before 
working the construction problem. Thirteen (37%), like the students in the incident 
described above, first produced correct proofs of the deductive results and then 
conjectured a solution to the construction problem that flatly violated the results 
they had just proven. 

Such behavioral inconsistencies are hardly limited to geometry. In discussing 
the secondary school mathematics data from the Third National Assessment of 
Educational Progress (NAEP), Carpenter, Lindquist, Matthews, and Silver (1983) 
made the following comments: 

[S]tudents felt very strongly that mathematics always gives a rule to follow to solve problems. 
Yet, they felt just as strongly that knowing how to solve a problem is as important as getting the 
solution and that knowing why an answer is correct is as important as getting the correct an- 
swer.... 

Despite the fact that almost half the students view mathematics as mostly memorizing, three 
fourths of them thought that mathematics helps a person to think logically, and more than three 
fifths thought that justifying the statements one makes is an extremely important part of mathe- 
matics. These latter attitudes may reflect the beliefs of their teachers or a more general social 
view rather than emerge from their own experience with school mathematics. (pp. 656-657) 

The present study is one of two closely tied studies designed to explore these and 
related issues. The companion study, reported in Schoenfeld (1988), consisted of 
a year's detailed observations of a year-long 10th-grade course in plane geometry. 
The author made periodic visits to geometry classes in two select high schools, each 
of which followed the New York State Regents' Geometry Curriculum. One par- 

Abbildung 2.30 – Erste Vermutung (Schoenfeld 1989, S.340)
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2. Sei V der Schnittpunkt der beiden Geraden. Zeichne einen Kreis um V mit dem Radius

VP und nenne den Schnittpunkt mit der unteren Geraden Q. Der Mittelpunkt des

Kreisbogens zwischen P und Q ist der Mittelpunkt des gesuchten Kreises.

340 Beliefs and Behavior 

a First Conjecture c Third Conjecture 

b Second Conjecture d Fourth Conjecture 

Figure 3. The students' conjectures. 
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demonstrated their knowledge of the relevant deductive mathematics by proving 
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working the construction problem. Thirteen (37%), like the students in the incident 
described above, first produced correct proofs of the deductive results and then 
conjectured a solution to the construction problem that flatly violated the results 
they had just proven. 
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the secondary school mathematics data from the Third National Assessment of 
Educational Progress (NAEP), Carpenter, Lindquist, Matthews, and Silver (1983) 
made the following comments: 
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a year's detailed observations of a year-long 10th-grade course in plane geometry. 
The author made periodic visits to geometry classes in two select high schools, each 
of which followed the New York State Regents' Geometry Curriculum. One par- 

Abbildung 2.31 – Zweite Vermutung (Schoenfeld 1989, S.340)

3. Errichte von P aus das Lot auf die obere Gerade, dieses schneidet die untere Gerade.

Der Mittelpunkt der so entstandenen Strecke ist der Mittelpunkt des gesuchten Kreises.

340 Beliefs and Behavior 

a First Conjecture c Third Conjecture 

b Second Conjecture d Fourth Conjecture 

Figure 3. The students' conjectures. 
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described above, first produced correct proofs of the deductive results and then 
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Abbildung 2.32 – Dritte Vermutung (Schoenfeld 1989, S.340)

4. Der Schnittpunkt des Lots durch P mit der Winkelhalbiernden des Winkels in V ist

der Schnittpunkt des gesuchten Kreises.

340 Beliefs and Behavior 

a First Conjecture c Third Conjecture 

b Second Conjecture d Fourth Conjecture 

Figure 3. The students' conjectures. 
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the theorems in Problems 1 and 2. In subsequent interviews conducted parallel with 
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working the construction problem. Thirteen (37%), like the students in the incident 
described above, first produced correct proofs of the deductive results and then 
conjectured a solution to the construction problem that flatly violated the results 
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Abbildung 2.33 – Vierte Vermutung (Schoenfeld 1989, S.340)
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Schoenfeld stellte fest, dass die Argumente der Studierenden dabei ausschließlich empiri-

scher Art waren. So begründete bespielsweise die Person, die die zweite Vermutung formuliert

hatte, ihre Vorgehensweise damit, dass der Mittelpunkt des gesuchten Kreises weiter links zu

liegen habe, als in Vermutung 1 dargestellt. Obwohl noch immer der Beweis zu den Problem-

stellungen 1 und 2 an der Tafel stand, endete die Diskussion damit, dass keine der Vermutungen

als Lösung für das Problem akzeptiert wurde, und die Studierenden räumten ein, die Aufgabe

nicht lösen zu können. Schoenfeld sieht hierin eine Bestätigung für das überraschende, aber

weitverbreitete Phänomen, dass Schülerinnen und Schüler zwar über mathematisches Wis-

sen verfügen, dieses aber dennoch zu bestimmten Problemlösungen nicht heranziehen können:

„This incident illustrates a curious but widespread phenomenon in which students give clear

evidence of knowing certain mathematics but then proceed to act as if they are completely

ignorant of it“ (Schoenfeld 1989, S.339f). Ebenso wurde die mangelnde Bereitschaft, sich

auch einmal längere Zeit mit einem Problem zu beschäftigen, deutlich. Um diesem Phänomen

weiter auf den Grund zu gehen, führte Schoenfeld bei 230 Schülerinnen und Schülern aus

drei verschiedenen, jeweils hochangesehenen Highschools im Großraum Rochester (Bundes-

staat New York) eine Befragung bezüglich ihrer Einstellungen zur Mathematik durch. Dabei

konnte er grundsätzlich feststellen, dass die Schülerinnen und Schüler in der Regel leistungs-

bereit und hoch motiviert sind. Ihre Motivation gründet sich darauf, dass sie Mathematik als

interessant empfinden und für hilfreich dabei halten, klar zu denken, und nicht auf extrinsi-

schen Motiven wie „Ansehen bei der Lehrperson“ oder „Angst, als dumm zu gelten“. Darüber

hinaus macht Schoenfeld eine eher erschreckende Feststellung:

“Virtually all the problems the students were asked to solve were bite-size exercises

designed to achieve subject matter mastery; the exceptions were clearly peripheral

tasks that the students found enjoyable but that they considered to be recreations

or rewards rather than the substance of what they were expected to learn. This

kind of experience, year after year, has predictable consequences. Students come

to expect typical homework and test problems to yield to their efforts in a minute

or two, and most of them come to believe that any problem that fails to yield

to their efforts in 12 minutes of work will turn out to be impossible. Despite

their claims that proofs and constructions are closely related, they behave on

construction problems as though their proof-related knowledge were nonexistent.
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Despite their assertions that mathematics helps one to think logically and that

one can be creative in mathematics, they claim that mathematics is best learned

by memorization - and in the case of memorization, they practice what they claim

to believe“ (Schoenfeld 1989, S.348f.).

Hier sieht Schoenfeld vor allen Dingen auch die Unterrichtskultur in die Pflicht genommen:

Ganz deutlich wurde, dass es für Schülerinnen und Schüler einen fundamentalen Unterschied

zwischen „Schulmathematik“ und „abstrakter Mathematik“ gibt. Während erstere das ist, was

sie im Klassenzimmer erleben, ist letztere „the discipline of creativity, problem solving, and

discovery, about which they are told but which they have not experienced“ (Schoenfeld

1989, S.349). Daher orientieren sich Schülerinnen und Schüler, oftmals sogar konträr zu ihren

erklärten Einstellungen zur Mathematik, an ihren durch die schulische Sozialisation erworbe-

nen Verhaltensweisen, die auf Auswendiglernen und Reproduzieren abzielen. Diese Diskrepanz

in einer neuen Unterrichtskultur zu beseitigen, ist daher für Schoenfeld eine der vorrangigs-

ten Aufgaben des Mathematikunterrichts.

Auch Heinze & Reiss (2004c) üben Kritik am vorherrschenden Mathematikunterricht, ob-

wohl sie einschränken, dass es bisher nur wenige Untersuchungen gibt, die die Besonderheiten

der jeweiligen Klasse berücksichtigen. Daher versuchen sie, in einer Video-Studie herauszu-

finden, wie Beweise im Mathematikunterricht konkret unterrichtet werden, welche Schritte

dabei von der Lehrperson betont werden und ob es Lücken gibt oder Beweisphasen, die zu

wenig berücksichtigt werden. Hierzu wurden 20 Unterrichtsstunden in insgesamt acht Klassen

der Jahrgangsstufe 8 von vier verschiedenen Gymnasien aufgezeichnet und ausgewertet. Dabei

wurden die Lehrerinnen und Lehrer aufgefordert, „normalen“ Unterricht abzuhalten, und die

Schülerinnen und Schüler anschließend befragt, ob die Stunde wirklich so gewesen sei, wie

sie üblicherweise ablaufe. Anschließend wurde der Unterricht dahingehend analysiert, welche

Beweisphasen vorkommen. Dabei bauen Heinze & Reiss auf den in Abschnitt 2.1.4 darge-

stellten Modell von Boero auf. Im wesentlichen entspricht ihre Einteilung der von Hilbert

et al. getätigten Modifizierung, mit der Einschränkung, dass sie die dortige Phase 4 (Auswahl

und Verknüpfung von angemessenen Argumenten zu einer Beweiskette) nochmals unterteilen

in: Auswahl geeigneter Argumente gemäß der Beweisidee zu einer Beweisskizze und Dokumen-

tation des Beweises in schriflicher Form gemäß der Klassenstandards, so dass sie insgesamt

fünf Phasen unterscheiden. Dabei wird in der letzten Phase Wert darauf gelegt, dass ein Rück-

87



Kapitel 2. DGS und Beweis

blick über den Beweisprozess gegeben wird.

Der folgende Unterrichtsverlauf wird von Heinze & Reiss (2004c, vgl. S.101) als typisch

identifiziert: die Schülerinnen und Schüler sollen zunächst eine Zeichnung anfertigen, Linien

und Winkel messen und vergleichen, sowie Beobachtungen äußern (Phase 1). Danach sollen

eine Vermutung aufgestellt (Phase 2), Begründungen, die diese Vermutung stützen, gesucht

(Phase 3) und diese anschließend zu einer Beweisidee verknüpft (Phase 4) werden. Heinze &

Reiss stellen fest:

„If the students are not able to generate the correct proof idea (i.e. the idea the

teacher has in his/her mind), then the teacher gives some hints. After that the

proof is organized step by step on the chalkboard. This takes place in a very

special form of classroom discourse, during which the teacher leads the students

through the proof by specific questions. In other words, the students have to

follow the proof the teacher has in his/her mind“ (ebenda, S.101).

Eine Retrospektive, wie in Phase 5 gefordert, findet in den wenigsten Fällen statt.

Insgesamt ziehen Heinze & Reiss ein ernüchterndes Fazit (ebenda, S.103). Obwohl sie auch

Unterricht beobachteten, der ihren Ansprüchen gemäß nahezu vorbildlich ist, muss bei dem

überwiegenden Teil kritisiert werden:

• Wichtige Phasen innerhalb des Beweisprozesse werden von Lehrerinnen und Lehrern

vernächlässigt.

• Den Schülerinnen und Schülern wird keine Zeit für tiefergehende Untersuchungen und

Überlegungen gelassen. Daher haben sie nahezu keine Chance, Probleme wirklich selbst-

ständig zu lösen.

• Für die Schülerinnen und Schüler entsteht der Eindruck, dass ein Beweis in kleine Teil-

schritte unterteilt werden kann, die erfolgreich gegangen oder zumindest nachvollzogen

werden können. Dies führt letztlich dazu, dass sie den Überblick über den komplexen

Beweisprozess verlieren.

• Viele Probleme bezüglich des Beweisens, die bei Schülerinnen und Schülern auftreten,

sind Konsequenzen aus dem Unterricht, den sie erlebt haben.
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Ein Versuch, den Beweisprozess und die dafür nützlichen Heuristiken für die Schülerinnen

und Schüler transparenter zu machen, besteht nach Auffassung einiger Mathematikdidaktike-

rinnen und -didaktiker darin, „heuristische Lösungsbeispiele“ im Unterricht einzusetzen (siehe

Reiss & Renkl 2002; Reiss et al. 2006; Hilbert et al. 2008; Reiss et al. 2008). Diese

„heuristischen Lösungsbeispiele“ bilden eine Kombination aus ausgearbeiteten Lösungen zu

Problemaufgaben, den sogenannten „worked-out examples“ (vgl. Reiss & Renkl 2002, S.30),

und heuristischen Elementen, die helfen sollen, Strategien zur Lösungsfindung zu generieren.

Nach Auffassung von Reiss & Renkl können so die Vorteile der „worked-out examples“

genutzt werden, ohne dass bei den Schülerinnen und Schülern der Eindruck entsteht, dass

es sich beim Beweisen um einen linearen Prozess handele, was bei ausschließlichem Einsatz

dieser Aufgabenformate passieren könne. Die Vorteile der „worked-out examples“ bestünden

darin, dass beim Agieren in neuen Kontexten keine Kapazitäten für das Erinnern der neuen

Sachverhalte gebraucht würden, dass die Schülerinnen und Schüler motivierter seien, weil sie

nicht dem Druck ausgesetzt sind, selbstständig ein Problem zu lösen, und schließlich, weil die

„worked-out examples“ sehr einfach in den üblichen Unterricht integriert werden könnten (vgl.

ebenda, S. 31).

Reiss et al. (2006, S.196f) resümieren: „Konkret geht es bei den heuristischen Lösungsbeispie-

len darum, von Boero (1999) postulierte Phasen des mathematischen Beweisens zu implemen-

tieren, soweit sie im Rahmen des Mathematikunterrichts eine Rolle spielen. Die Schülerinnen

und Schüler sollen dabei lernen, Vermutungen zu entwickeln und aufzustellen, geeignete von

weniger geeigneten Lösungsideen zu unterscheiden, eine Folge von Beweisschritten zu finden

und sie in logisch kohärenter Form aufzuschreiben.“

Ein Beispiel für ein „heuristisches Lösungsbeispiel“, das der Arbeit von Reiss & Renkl (2002)

entnommen ist, findet sich als Anhang A.3 in dieser Arbeit. Dabei geht es um die Feststellung,

dass die Winkelmaßsumme in jedem Dreieck 180° groß ist (ich selbst halte diesen Beweis eher

für ungeeignet für das Beweisenlernen, weil die Aussage fast als Axiom genommen werden

könnte). Reiss & Renkl (2002, S.32) sehen dieses Bespiel als repräsentativ für das Format

der „heuristischen Lösungsbeispiele an“, wenn sie sagen: „The following heuristic worked-out

example is intended to provide an overview of the most important aspects of this type of ex-

ample. This specific example is not only meant to prove that the interior angles in any triangle

add up to 180° but also helps demonstrate to students various aspects of proving in general.“
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Die Schülerinnen und Schüler werden aufgefordert, zunächst ein Dreieck zu zeichnen, die Win-

kel zu messen und die Summe der Winkelmaße zu bilden. (Es sollen drei Wiederholungen ge-

macht werden). Anschließend sollen sie ein Dreieck zeichnen, die Ecken abschneiden und diese

zu einem Winkel zusammenlegen (drei bis vier Wiederholungen). Als nächstes soll ein Dreieck

gezeichnet, ausgeschnitten und als Zeichenschablone genutzt werden, um so lauter kongruente

Dreiecke herzustellen. Diese sollen ausgeschnitten und so aneinandergelegt werden, dass sich

unten eine gerade Linie bildet. Dabei soll auffallen, dass sich auch oben eine gerade Linie

bildet, so dass jetzt auf dreifache Art und Weise in mehrfachen Wiederholungen die Hypothe-

se entstehen soll, dass die Winkelmaßsumme im Dreieck 180° beträgt. Anschließend soll der

Beweis geführt werden, indem zunächst alle mögliche Informationen über Winkel rekapituliert

werden, um schließlich den klassischen Beweis, bei dem eine Parallele zu AB durch C gezogen

wird, so dass mit Wechselwinkel argumentiert werden kann, anzuschließen.

Insgesamt kommen Reiss et al. (2006, S.205) zu dem Ergebniss, dass die „heuristischen Lö-

sungsbeispiele“ vor allen Dingen geeignet sind, die Leistungen bei Beweisaufgaben auf der

Niveaustufe III zu verbessern, und hier besonders bei den schwächeren Schülerinnen und Schü-

lern: „Die Ergebnisse der Studie deuten darauf hin, dass schwächere Schülerinnen und Schüler

von dieser Lernumgebung ganz besonders profitieren könenn und damit besser zurechtkommen

als mit den Angeboten in einem herkömmlichen Unterricht.“ Eine Erklärung hierfür finden sie

darin, dass die leistungsstärkeren Schülerinnen und Schülern bereits vor der Unterrichtseinheit

mit den „heuristischen Lösungsbeispielen“ über ein gutes Methodenwissen verfügten und somit

nicht mehr in dem Maße profitieren würden, wie diejenigen, die hier Schwierigkeiten hätten.

Somit lautet das Fazit von Reiss et al. (2006, S.205): „Die heuristischen Lösungsbeispiele

scheinen damit geeignet zu sein, Defizite des Unterrichts auszugleichen, indem sie Beweisver-

fahren transparent machen und dieses Methodenwissen damit auch schwächeren Schülerinnen

und Schülern zugänglich werden lassen.“

Dass diese Vorgehensweise allerdings keine Inovation ist, stellt Führer (2009, S.170) fest:

„Das hier geschilderte Vorgehen ist trotz des marktschreierischen Titels „self-explaining heu-

ristic worked-out example“ (Reiss u.a. 2008, S.457) keineswegs neu, sondern eher typisch für

Schrittfolgen in Schulbüchern. So findet es sich z.B. schon fast wörtlich 1939 im „Holzmüller-

von der Seipen“ und dort noch mit zwei bemerkenswerten Ergänzungen: Nach einer Tabelle

zum Arbeitsauftrag (a) wird als (b) erst noch das Messen abgesteckter Dreieckswinkel auf
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dem Schulhof verlangt, bevor es zum Eckenabreißen (c) und Aneinanderlegen (d) geht, und

in einer Fußnote vor dem „eigentlichen“ Beweis wird auf dessen Motiv hingewiesen, die Un-

zulänglichkeiten realen Messens durch „rein gedankliches Begründen“ zu übersteigen.“ (Die

Schulbuchaufgabe aus Holzmüller-von der Seipen, die als Kopie aus Reichmann (2008,

S.331) entnommen ist, findet sich als Anhang B.2 in dieser Arbeit.)

Führer (2009, S.168) kritisiert, dass solche Versuche, „wenn man Schüler am Nasenring in

Richtung eines klassischen Beweises zottelt“, von vornherein zum Scheitern verurteilt sein

müssen, da sie nichts dazu beitragen können, einen Sachverhalt auch begründen zu wollen.

Nachdem die Schülerinnen und Schüler auf verschiedene Arten immer wieder herausgefun-

den haben, dass die Winkelmaßsumme im Dreieck wohl 180° beträgt, kann ihnen ein Beweis

offenbar keine neue Erkenntnis mehr bringen. Dennoch ist es anscheinend erforderlich, ihn

zu führen, was lapidar mit: „Mathematical conjectures need to be proved“ (Reiss & Renkl

2002, S.33) begründet wird. An dieser - von Teilen der Mathematikdidaktik schon immer pro-

pagierten - Vorgehensweise übt schon Winter (1983, S.72f.) Kritik: „Wenn das Beweisen als

lediglich wissenssichernd angesehen wird - und das scheint leider verbreitet der Fall zu sein -, so

darf man sich über mangelnde Beweisfreudigkeit der Schüler nicht wundern. Beweise erschei-

nen dann nämlich als den eigentlichen, d.h. wissensvermehrenden Überlegungen nachgerückte

Prozeduren, die allenfalls der Form halber noch notwendig sind oder das (aus unerfindlichen

Gründen) schlechte Gewissen des Lehrers beruhigen.“

Zudem besteht in diesem Beispiel die bereits im einleitenden Kapitel 2.1 dargestellte Proble-

matik, dass der Beweis nur eine Rechtfertigung erhält, indem die zuvor durch das Messen,

Abreißen und Aneinanderlegen von Winkeln erfolgten Untersuchungen der Schülerinnen und

Schüler indirekt diskreditiert werden. Auch diese Vorgehensweise wurde schon von Winter

kritisiert:

„Damit wird die Weckung des Beweisbedürfnisses hauptsächlich negativ bestimmt:

Gewisse Argumentationsweisen soll der Schüler als unzulänglich verwerfen, sie

werden diskreditiert, so daß sozusagen nur noch das Deduzieren als allein stich-

haltige Begründungsweise übrig bleibt. Abgesehen davon, daß diese Methode zur

Weckung des Beweisbedürfnisses offensichtlich nur geringe Erfolge zeitigt, greift

sie zu kurz und sie k a n n daher auch gar nicht erfolgreich sein“ (ebenda, S.65).
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Winter begründet seine Kritik damit, dass es nicht möglich sei, Messen und Anschauung auf

der einen Seite herabzuwürdigen und auf der anderen Seite gleichzeitig das räumliche Denken

und die Anwendbarkeit der Mathematik hervorzuheben. Zudem sei die strikte Trennung von

Wissensentdeckung einerseits, bei der Anschauung, Analogisieren, Beobachten, Messen usw.

gefragt seien, und Wissenssicherung andererseits, bei der dies dann nicht mehr der Fall sei,

im Schuluntericht in den Sekundarstufen überhaupt nicht zu realisieren. Stattdessen plädiert

Winter dafür, das Spannungsverhältnis zwischen Anschauung und Deduktion fruchtbar zu

nutzen:

“Durch deduktives Ordnen, und dies besteht im wesentlichen in sprachlich gefaß-

ten (symbolhaften) Verallgemeinerungen, wird das anschaulich-intuitive Handeln

nicht abgeschafft oder überflüssig gemacht, sondern im Gegenteil verfeinert, er-

höht, sublimiert, das sinnliche Wahrnehmen wird strukturiert, vergeistigt, theore-

tisiert. Und umgekehrt erhalten deduktive Ableitungen erst Sinn und Bedeutung

durch das intuitiv gegebene Material, an dem es arbeitet. Insofern bedeutet Be-

weisen nicht Abkehr von der Empirie (Beobachten, Messen), sondern geradezu

eine verstärkte Zuwendung.

Demnach ist im Mathematikunterricht ein positives Verhältnis zum Wahrneh-

men, Messen, Testen, allgemein: zum anschaulich-empirischen Tun, aufzubauen“

(ebenda, S. 67).

Insgesamt scheint die o.a. Aufgabe folglich wenig geeignet, ein echtes Beweisbedürfnis bei den

Schülerinnen und Schülern zu wecken. Eine entscheidende Voraussetzung, um dies zu tun,

sieht Winter (1983, S.81) darin, genügend Zeit und Muße zu lassen, selbst tätig werden zu

können: „Denn nur wenn der Schüler auch die Möglichkeit hat, beim Lernen von Mathematik

selbst explorativ tätig zu sein, hier seine Neugier „auszuleben“, kann man erwarten, daß sich

theoretisches Interesse mit positiven Emotionen (Appetenzverhalten) besetzt, daß sich also

ein subjektives Beweisbedürfnis entwickelt. Es gehört zum Begriff der Neugier, daß man das

Verlangen hat, s e l b s t zu erkunden.“ Diese intrinsische Motivation und diesen Eigenan-

trieb gibt es in dem „heuristischen Lösungsbeispiel“ von Reiss & Renkl nicht. Daher betitelt

Führer die Aufgabe mit „Verordnete Beweiserei“ (Führer 2009, S.168), die nur die „übliche

Hierarchie suggeriert: vom Entdecken zum Vermuten, von dort zur empirischen Gewissheit

und schließlich (?) über irgendeinen formalen Beweis zur glanzvoll überirdisch-überzeitlichen
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Wahrheit“ (ebenda, S. 171).

Das Problem besteht letztlich in dem Dilemma, dass das Aufgabenformat „heuristisches Lö-

sungsbeispiel“ nicht geeignet ist, ein echtes Beweisbedürfnis zu wecken (was Grundvorausset-

zung dafür ist, die Notwendigkeit eines Beweises anzuerkennen und damit die Motivation zu

schaffen, einen Beweis trotz aller vorhandenen Schwierigkeiten durchzuführen), dass es aber

auch, nicht zuletzt aufgrund der vielen verschiedenen Beweismethoden, nicht möglich ist, einen

Algorithmus zum Beweisen zu lehren.

2.2.2 Einstellungen zu Beweisen im Zusammenhang mit DGS

In mehreren Studien ist untersucht worden, inwieweit DGS einen Einfluss auf das Beweisbe-

dürfniss von Schülerinnen und Schülern hat und ob die DGS einen Beitrag dazu leisten kann,

eine verbesserte Beweiskultur in Klassenzimmern zu installieren (beispielsweise Hölzl 1994,

Holland 1996a, Hölzl 1999, Olivero 2002, Vincent 2002, Kittel 2007). Dabei wird

im Allgemeinen davon ausgegangen, dass in den Schulen die fortschreitende Entwicklung des

„schlussfolgernden Denkens“ eine hierarchische ist, die, angefangen von empirischen Untersu-

chungen über induktives Schließen bis hin zum deduktiven Schließen reicht. Bewusst verwende

ich an dieser Stelle nicht die Terminologie „Beweis“, da in den unteren Jahrgangsstufen oft-

mals noch auf einer Vorstufe argumentiert wird. Das deduktive Schließen bleibt den höheren

Jahrgangsstufen vorbehalten. Healy & Hoyles (1999, S.1) konstatieren, dass das National

Curriculum in Großbritannien

„prescribes an approach to proving ... in which the introduction of formal proofs

is reserved for ’exceptional performance’, and thus delayed until after students

have progressed through early stages of reasoning empirically and explaining their

conjectures. Most of the requirements to explain and justify take place within

investigations driven by numerical data.“

Hoyles bedauert dies und fordert, dass „we must resist the temptation to assume that situati-

ons that engage students with proofmust follow a linear sequence from induction to deduction“

(Hoyles 1997, S.15). Dies ist vor allen Dingen im Zusammenhang mit der Kultivierung eines

angemessenen Beweisbedürfnisses entscheidend, denn wie soll der Bruch zwischen empirischen

Argumenten, die zunächst durchaus ausreichend zu sein scheinen, und einem deduktiven Be-
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weisanspruch, welcher auf einmal scheinbar vom Himmel fällt, erklärt werden? So stellt auch

Vincent fest, dass

„Students’ readiness for formal proof may depend, then, on the laying down of

appropriate foundations in the early years, where justifying goes beyond empirical

evidence to include simple steps of deductive reasoning“ (Vincent 2002, S.34).

und schließt an, dass Schülerinnen und Schüler „are likely to find difficulty appreciating the

role of proof if they do not experience a need for conviction“ (ebenda, S.35).

In den USA, in denen zeitweilig das Beweisen aus den Lehrplänen verschwunden war, was zu

erheblicher Kritik seitens vieler Mathematikdidaktiker geführt hatte, wurden mittlerweile die

Curricula korrigiert. Stattdessen soll sich nun das Beweisen wieder über alle Jahrgangsstufen

hinweg und in allen Themengebieten wiederfinden:

„Reasoning and proof cannot simply be taught in a single unit on logic, for ex-

ample, or by „doing proofs“ in geometry. [...] Reasoning and proof should be a

consistent part of students’ mathematical experience in prekindergarten through

grade 12. Reasoning mathematically is a habit of mind, and like all habits, it must

be developed through consistent use in many contexts“ (National Council of

Teachers of Mathematics 2000, S.56).

Um diese Geisteshaltung zu etablieren, wird vor allen Dingen die Rolle der Lehrperson in

den Fokus genommen, da deren Einstellung zu Beweisen naturgemäß in großen Teilen von

den Schülerinnen und Schülern adaptiert wird. Demzufolge ist auch der von der Lehrperson

vorgelebte Umgang mit einer DGS von entscheidender Bedeutung:

„In many classrooms it appears that visual and numerical feedback from drag-

ging screen drawings is usurping the role of proof as verification, with little or

no attempt by teachers to introduce students to deductive reasoning. There are

therefore conflicting viewpoints regarding the role of dynamic geometry software

in the teaching and learning of geometric proof“ (Vincent 2002, S.2).

Auch Olivero (2002, S.243) kommt in ihrer Untersuchung zu dem Schluss, dass die Rolle

der Lehrperson beim Einsatz mit DGS im Unterricht eine bedeutende Rolle spielt: „The role

of teacher emerges as important, showing that dynamic geometry per se does not guarantee a
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successful management of the relation between the spatio-graphical field and the theoretical

field“.

Kittel (2007) kommt bei seiner Untersuchung zum Einsatz von DGS in der Hauptschule

zwar zu dem Ergebnis, dass dieser auf jeden Fall empfehlenswert ist, beklagt aber, dass gerade

bei Hauptschullehrerinnen und -lehrern eine erhebliche Skepsis bezüglich der DGS besteht,

und sieht deshalb an dieser Stelle erheblichen Handlungsbedarf:

„Als wichtigste Konsequenz dieser Studie zeigt sich, dass der Einsatz von DGS

in der Hauptschule empfohlen werden kann. Die Lehrerinterviews haben jedoch

gezeigt, dass momentan keine große Bereitschaft bei Hauptschullehrkräften vor-

handen ist, solche Systeme im Unterricht einzusetzen. Dies liegt oftmals an der

Unkenntnis der Lehrer über die Möglichkeiten von DGS. Genau an diesem An-

satzpunkt müssen weitere Konsequenzen folgen. Ohne die Kenntnis von DGS ist

kein Einsatz im Schulunterricht möglich. Deshalb müssen Hauptschullehrer über

diese Systeme informiert und für den Einsatz im Unterricht geschult werden. Aus

diesem Grund ist es in naher Zukunft zwingend notwendig, massiv Lehrerfortbil-

dungen zu diesem Thema anzubieten“ (ebenda, S. 305f).

Ein zentrales Problem in diesem Kontext ist naturgemäß die Frage, wie trotz der empirschen

Überprüfungsmöglichkeiten einer DGS ein Beweisbedürfnis geweckt werden kann. Eine Mög-

lichkeit hierzu möchte Vincent in ihrer Studie „Mechanical linkages, dynamic geometry soft-

ware, and argumentation: Supporting a classroom culture of mathematical proof“ (Vincent

2002) aufzeigen, einer Arbeit, die im Rahmen des australischen „CAS-CAT-Programms“ statt-

gefunden hat, welches seit dem Jahr 2000 den Einsatz von Computertechnologie im Schulun-

terricht zum Thema hat. Da die CAS-CAT-Gruppe international einen großen Namen hat,

möchte ich auf diese Untersuchung etwas näher eigehen.

Vincent hat dabei Achtklässlerinnen und Achtklässler selbst unterrichtet und anschließend

bei einer ausgesuchten Auswahl deren Fortschritte beim geometrischen Beweisen evaluiert.

Bei den „mechanical linkages“ handelt es sich um: „systems of hinged rods that can rota-

te about each other or about fixed pivot points according to the geometry underlying their

construction“ (Vincent 2002, S.95). Übersetzt werden könnte die Begriffskonstruktion mit

„mechanische Verbindung“, im weiteren werde ich aber den Ausdruck „mechanical linkages“

weiter verwenden. Ein Sonderfall der „mechanical linkages“, der von Vincent eingesetzt wird,
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ist das sogenannte „Tschebycheff’s linkage“, ein überschlagenes Viereck ABCD mit den fixen

Punkte A und B, den mit fester Länge gleichlangen Seiten AC und BD und der festen Sei-

tenlänge CD. Bei diesem wird im wesentlichen beim Ziehen an C oder D der Mittelpunkt P

der Seite CD betrachtet (siehe Abb. 2.34):

A B

C

D
P

Abbildung 2.34 – Tchebycheff’s linkage Vincent (2002, S.105)

Im Mittelpunkt von Vincents Studie steht die Frage, ob in einer 8. Klasse durch Einsatz von

DGS und mechanical linkages eine Kultur des Beweisens in der Geometrie motiviert, etabliert

und unterstützt werden kann. Ein Mittel, um überhaupt Beweisbedürfnis zu erzeugen, ist

dabei für sie, Zweifel am Sehen bei den Schülerinnen und Schülern zu säen: „To establish a

need for proof I proposed to create a situation where visual evidence would mislead students

into a false conjecture“ (ebenda, S.119) (Kritik an dieser Methode in Kapitel 2.1). Dieses

„Misstrauen in die eigene Wahrnehmung“ wird durch den Einsatz von mechanical linkages

verstärkt, die weniger präzise als die DGS konstruieren:

„The use of Tchebycheff’s linkage, where visual evidence conflicted with the more

precise, although still empirical, feedback from Cabri, was designed therefore to

sow a seed of doubt in the student’s minds so that they could never be sure

whether visual evidence was to be trusted“ (ebenda. S.119).

Zum Zwecke der Auswahl der Probandinnen und Probanden mussten alle 29 Schülerinnen

und Schüler der Klasse zu den sechs geometrischen Themen „Quadrat“, „Rechtwinklige Dreie-

cke“, „Gleichschenklige Dreiecke“, „Parallele Geraden“, „Kongruenz“, „Ähnlichkeit“ und „Kreise“

einen van Hiele Test (siehe Anhang A.1) absolvieren. Dieser Test, der auf den „levels of thin-

king“ von van Hiele aufbaut (vgl. Abschnitt 2.1.3), stammt von Mayberry (1983). Darin
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werden zu unterschiedlichen Themengebieten (s.o.) Fragen gestellt, aufgrund deren Beantwor-

tung die Schülerinnen und Schüler dann einer bestimmten Niveaustufe zugewiesen werden.

Dabei ist zum einen möglich, dass eine Schülerin oder ein Schüler in dem einen Gebiet ein

besseres Niveau erreichen kann als in einem anderen Gebiet; zum anderen soll durch die Kon-

zeption der Fragen sichergestellt werden, dass bei Erreichen eines bestimmten Levels auch die

darunter liegenden beherrscht werden.

Vincent nahm in ihre Studie diejenigen zehn Schülerinnen und Schüler auf, die in mindestens

3 Kategorien Level 3 erreicht hatten. Zusätzlich wurden vier Weitere, die in den meisten Ka-

tegorien nur Level 1 oder 2 erreicht hatten, zur Kontrolle mit hinzugezogen. Zunächst wurde

der Proof Questionaire (vgl. Healy & Hoyles 1999, siehe Anhang A.2) zur Bearbeitung

vorgelegt. Anschließend fand der Unterricht im Klassenverband statt, wobei die Schülerinnen

und Schüler zunächst mit den „mechanical linkages“ vertraut gemacht wurden und danach

gemeinsam einige Beweisaufgaben durchführten. Dabei ging es zum einen um Aufgaben, bei

denen zunächst mit Einsatz eines „mechanical linkages“ die Spur eines Punktes beobachtet

werden sollte. Anschließend wurde den Schülerinnen und Schülern eine Datei zur Verfügung

gestellt, die dieselbe geometrische Situation darstellte. Nunmehr sollte die zuvor aufgestellte

Vermutung mit Hilfe der exakteren Software überprüft und verworfen oder aber bewiesen wer-

den. Des weiteren wurden auch Aufgaben gestellt, bei denen die „mechanical linkages“ nicht

zum Einsatz kamen. Um den Schülerinnen und Schülern ein Beispiel zu geben, wie ein solcher

Beweis ablaufen könnte, wurde exemplarisch ein Beweis zum Thema „Winkelmaßsumme im

Dreieck“ vorgeführt, der für das weitere Vorgehen als Muster dienen sollte (s. Abbildung 2.35).

Abbildung 2.35 – Modellhafter Beweis aus Vincent (2002, S.138)
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„The students were shown how a proof for the conjecture could be constructed by

using given and previously known information to deduce new relationships, and

how the statement, once proved, could be used to deduce other relationships. I

demonstrated one way writing a proof for the angle sum of a triangle [...], where

the statements are written in a logical order, with the reason for each statement in

brackets. This proof became the model for the students’ subsequent proof writing“

(Vincent 2002, S.137f).

Die Schülerinnen und Schüler wurden zudem mit einer Liste von geometrischen Definitionen

und zuvor bewiesenen Aussagen versorgt, damit sie diese dann in den durchzuführenden Be-

weisen verwenden konnten. Ein Beispiel für einen im Klassenverband gemeinsam erarbeiteten

Beweis ist in Abbildung 2.37 dargestellt.

Nach der Arbeit im Klassenverband wurden die ausgewählten Schülerinnen und Schüler se-

quentiell paarweise herausgezogen, um „Beweisaufgaben“ zu bearbeiten. Diese Bearbeitungen

wurden videographiert und ausgewertet. Dabei kamen dann auch Aufgaben mit „mechanical

linkages“ zum Tragen. Exemplarisch ist in Abbildung 2.36 das Beispiel des „Bügeltisches“ dar-

gestellt (dabei handelt es sich um einen Ausschnitt aus dem zweiseitigen Aufgabenblatt, die

komplette Aufgabe kann im Anhang A.5 dieser Arbeit eingesehen werden).
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Ironing table 
• The legs, AB and CD, of the ironing table are pivoted at their midpoints, O. 

• The top of the table, EF, is pivoted to CD at D. 

• C slides along the floor and B slides along EF. 

 

O 

B 

A C 

D F E 

 
•  ‘Fold’ the ironing table flat and raise it again by moving C. What do you 

notice about the top of the ironing table? Write your observation as a 

conjecture. 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

• Using a ruler and pencil, draw a careful diagram of the ironing table, 

representing each link as a single line. Label your diagram as shown above. 

• Mark any given information on your diagram. 

 

 

 

• Name the two triangles you can see in the diagram. 

……………………………………………………………………………… 

……………………………………………………………………………… 

Abbildung 2.36 – Beispiel für eine Aufgabe mit „mechanical linkages“ aus Vincent (2002,

S.487)
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 484 

Parallelogram proofs 
We define a parallelogram as a quadrilateral with both pairs of opposite sides 

parallel. 

Given:   AB ||DC, AD || BC 
 

 A 

D C 

B 

 
• Prove the following properties of parallelograms. Remember that each 

statement you make must be justified in terms of one of the following: 

��the given information  

��your previous geometry knowledge  

��something you have shown to be true in a previous step of your 

proof. 

1. The opposite angles of a parallelogram are equal, that is, ∠ABC = ∠ADC, 

∠DAB = ∠DCB 

Proof: ………………………………………………………………………… 

………………………………………………………………………………… 

………………………………………………………………………………… 

………………………………………………………………………………… 

………………………………………………………………………………… 

2. The opposite sides of a parallelogram are equal, that is, AB = DC and  

AD = BC. 

Proof:…………………………………………………………………………. 

………………………………………………………………………………….. 

………………………………………………………………………………….. 

…………………………………………………………………………………..

.…………………..……………………………………………………………... 

.…………………..……………………………………………………………... 

Abbildung 2.37 – Beweise im Parallelogramm aus Vincent (2002, S.484)
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Hierbei sollten die Schülerinnen und Schüler zunächst ein reales Modell aus „geo-strips“ (fes-

te Plastikstreifen bestimmter Länge, die an den Enden derart miteinander verbunden werden

können, dass der eingeschlossene Winkel in der Größe veränderbar ist) bauen und bestimmte

Beobachtungen machen. Auch ein reales Modell eines Bügeltisches befand sich im Klassen-

raum. Anschließend bekamen die Schülerinnen und Schüler eine Datei zur Verfügung gestellt,

in der die Situation in einer DGS programmiert war, so dass sie ihre zuvor aufgestellten Ver-

mutungen noch einmal überprüfen konnten (siehe Abbildung 2.38). Dabei wurden sie stark

angeleitet. So sollten sie beispielsweise den Bügeltisch abzeichnen, „representing each link as a

single line“ (Vincent 2002, S.487). Zudem sollten sie die zwei Dreiecke, die sie in der Zeich-

nung sahen, benennen, was schon ein sehr zielführender Hinweis ist, da der zu beobachtende

Sachverhalt (dass die „Tischplatte des Bügeltisches“ immer parallel zum Fußboden ist) über

die Kongruenz der Dreiecke ACO und DOB bewiesen werden kann.

 133

Table 4-4 

Mechanical Linkages and their associated Geometry 

Linkage Properties and associated geometry 

1. Tchebycheff’s linkage 

 

Given: 
AC = BD = 5units;  CD = 2 units; 
AB = 4 units. 
Properties: 
Midpoint, P, of CD is exactly 4 
units above AB when DC is 
horizontal or in either of its two 
vertical positions.  
Movement of P is approximately 
linear.  
Geometry: 
Pythagoras’ Theorem 

2. Expanding trellis 

    

Given: 
Links are equal in length 
Properties: 
Links remain parallel 
Intersections are collinear  
Geometry: 
Rhombus 

3. Car jack 

 

Given: 
AC = PC = BC 
Properties: 
∆ACP and ∆ACB are isosceles. 
∠BAP = 90o  
Geometry: 
Isosceles triangles 
Angle sum of triangle 
Right-angled triangles 

4. Folding table, ironing table 

 

Given: 
AO = OB, CO = OD 
Properties: 
∠AOC = ∠BOD  
∆AOC ≡ ∆BOD  
EF || AC  
Geometry: 
Congruent triangles 
Parallel lines 
 

Abbildung 2.38 – „Mecahnical Linkages and their associated Geometry“ (Vincent 2002,

S.133)

Zuletzt wurde den Schülerinnen und Schülern derselbe Proof Questionaire wie eingangs vor-

gelegt und ein modifizierter van Hiele-Test mit ihnen durchgeführt. Aus den Unterschieden

in den zwei Bearbeitungen der Proof Questionaires und der van Hiele-Tests wollte Vincent

dann den Erfolg ihrer Unterrichtssequenz ablesen.

Sie kommt zu den folgenden Ergebnissen:
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“The progress made by students in their understanding of proof and their ability

to construct geometric proofs is undeniable, and it would seem that the success

of the tasks was related to a number of factors: the establishment of a need for

proof, the motivating context provided by the linkages, the static and dynamic

imagery associated with the linkages and Cabri, the students’ engagement in

argumentation, and my intervention“ (Vincent 2002, S.423).

Dass die Schülerinnen und Schülern zum Ende der Studie hin Beweise besser konstruieren und

formulieren konnten als am Anfang, überrascht nicht weiter, da das Führen eines Beweises

in den Übungsstunden sehr stark anhand von Aufgaben trainiert wurde, die zwar aus unter-

schiedlichen Kontexten entstammen, aber alle dasselbe Muster aufweisen. Die vorgefertigten

Aufgabenblätter hatten bereits die Einträge „Given“, „Prove“ und „Proof“, und in vielen Fällen

waren die Voraussetzungen eingetragen und das zu Beweisende formuliert. Zudem wurden die

Schülerinnen und Schüler durch die Musterlösung und die zusätzlich gegebene Hilfsliste recht

eng durch die Lernumgebung geführt. Damit ist die gesamte Lernumgebung sicherlich dafür

geeignet, das Führen eines Beweise in verwandten Kontexten zu üben und hierbei Verbesse-

rungen zu erzielen. Zu Kritisieren ist allerdings, dass von den Schülerinnen und Schülern zu

wenig gefordert wurde, sich eigenständig zu überlegen, was denn überhaupt zu beweisen ist!

Der Fokus wurde sehr stark darauf gelegt, schlüssige Argumentationsketten zu liefern bezie-

hungsweise Fehler in Argumentationsketten aufzudecken. Auch im Proof Questionaire, mit

dem der Fortschritt der Schülerinnen und Schüler beim Beweisen überprüft werden sollte,

wurde ausschließlich damit gearbeitet, Behauptungen auf ihren Wahrheitsgehalt zu überprü-

fen und anzugeben, ob man bestimmten Äußerungen zustimmt, oder nicht, zum Beispiel:

„Prove whether the following statement ist true or false“ (G1, G4, G5, G6, G7), „For each of

the following circle whether you agree, don’t know or disagree“ (G1, G3, G6). Dadurch wer-

den zwar bestimmte Techniken trainiert, es wird aber weder das Erstellen eines kompletten

Beweises gelehrt und gelernt, noch ein Beweisbedürfnis geweckt. Als Beispiel kann die o.a.

Musterlösung zum Führen eines Beweises dienen: Hier bleibt völlig offen, ob die Schülerinnen

und Schüler überhaupt auf einem Beweis zur Winkelmaßsumme im Dreieck bestanden hätten,

oder ob für sie die empirische Überprüfung mit der DGS ausreichend gewesen wäre. Zwar

kommt Vincent zu dem Schluss, dass:

“In the case of the linkage tasks, experimentation with the physical and Cabri
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models led the students to their conjectures, but throughout the associated ar-

gumentations, static and dynamic feedback focused the students’ attention on

geometric porperties and relationships. All the elements of the proof were pre-

sent in the argumentation, and these gradually assumed an ordered form. Conse-

quently, when the students came to construct their written proofs, they already

had a sound understanding of the logical order of statements and the relevant

justifications. Rather than eliminating the need for proof, then, the convincing

evidence and the unique opportunities for exploration and discovery that the soft-

ware provided gave the students the confidence and desire to go ahead to prove

their conjectures. From the introduction of Tchebycheff’s linkage to the additio-

nal conjecturing-proving tasks, the mechanical linkages and dynamic geometry

software together provoked intense argumentation, and established a culture of

proving in this class of Year 8 students“ (Vincent 2002, S.424f).

Dennoch möchte ich an dieser Stelle bezweifeln, dass die Förderung des Beweisbedürfnisses

gelungen sein soll, denn auch in dieser Aussage Vincents wird sehr deutlich, dass lediglich

das formale Führen eines Beweises an exponierter Stelle steht. Dies wird unterstrichen da-

durch, dass die Schülerinnen und Schüler nicht versuchen mussten, die mechanical linkages in

die DGS zu übertragen, was natürlich nur funktionieren kann, wenn man die geometrischen

Zusammenhänge erkannt hat, sondern mit einer fertigen DGS-Konstruktion der mechanical

linkages versorgt wurden. Vincent begründet dies damit, dass: „Constructing mechanical lin-

kages in Cabri so that they simulate the behaviour of the actual linkage is not straigthforward“

(Vincent 2002, S.143), und führt fort: „It is important to note that the aim of the current

research was for students to explore the geometry of the linkages, rather than to be able to

construct the linkages“ (ebenda. S. 144). Auch hier die Frage, ob nicht gerade durch die Kon-

struktion der mechanical linkages deren Geometrie erforscht werden kann und ob man nicht,

wenn man die dahinter liegende Geometrie verstanden hat, auch in der Lage sein sollte, den

Sachverhalt in eine DGS zu übertragen?

Insgesamt stelle ich nach wie vor in Frage, ob die Schülerinnen und Schüler, die zweifelsohne

durch das intensive Training besser in der Lage sind, einzelne Argumentationsschritte schlüssig

zu formulieren und aufzuschreiben, dieses deshalb tun, weil sie die Notwendigkeit eines Be-

weises erkennen und ein echtes Beweisbedürfnis haben. Stattdesssen vermute ich, dass sie es

102



2.2. Ausgewählte Ergebnisse von empirischen Studien zum Beweisen im Unterricht

tun, weil es durch die Aufgabengestaltung vorgegeben ist und von der Lehrperson so verlangt

wird.

Olivero (2002), die ebenfalls die Rolle einer DGS untersucht hat, kommt zu dem Ergebnis,

dass die DGS zwar beim Führen eines Beweises unmittelbar keine so große Rolle spielt, denn

in ihrer Studie wurde der Beweis von allen Schülerinnen und Schüler am statischen Bild durch-

geführt. Einige zogen hierfür sogar eine Zeichung auf Papier der Bildschirmdarstellung vor.

Stattdessen spielt die Software im Vorfeld eine große Rolle: „Interpreting the proving process

as a focusing process may provide a theoretical explanation for how Cabri is useful for the

construction of proofs, even if it is not directly used in that phase [...]. The influence of Cabri

in the construction of the proof relies on the fact that it gives you the idea for the proof“

(ebenda, S.236). Damit wird bestätigt, was Bender bereits 1989 gesagt hat, dass die Soft-

ware in der Regel als Ideengeber fungiert, jedoch den Beweis in den wenigsten Fällen selbst

leisten kann.

In Oliveros Untersuchung trat bei einer Schülerin das Ereignis ein, dass sie durch die DGS

auf eine Vermutung kam und diese Vermutung auch beweisen konnte. Anschließend wollte

sie den Sachverhalt nochmals mit der DGS überprüfen, doch da ihre Figur nur hingezogen

und nicht echt konstruiert war, schien der Bildschirm ein Gegenbeispiel für die bewiesene

Vermutung zu zeigen. Hierdurch wurde die Schülerin verunsichert, und sie meinte: „So it’s all

wrong!“ (Olivero 2002, S.170). An dieser Stelle musste die Autorität des Lehrers eingesetzt

werden, um den Konflikt zu klären. Dies ist ein Indiz dafür, dass die Ausrichtung an äußeren

Autoritäten, zu der sowohl die Lehrperson, als auch die DGS zählen, so stark sein kann, dass

sie das Vertrauen in den eigenen Beweis erschüttern.

Ein weiteres Phänomen, das Olivero beobachten konnte, war die unterschiedliche Interaktion

und Kommunikation zwischen den Schülerinnen und Schülern, die zu zweit oder zu dritt die

Aufgabenstellung am Computer bearbeiteten. Dabei kam es vor, dass alle Beteiligten dieselbe

Idee verfolgten und dabei auch in der Vorgehensweise übereinstimmten und sozusagen in ihrer

Kommunikation „synchron“ waren. In dem Zusammenhang stellte Olivero (2002, S.229) fest:

„In fact it seems that if there is a synchrony between the students they understand each other

perfectly through the external space (mainly Cabri) without finding the need of developing

a well-formed logical language. This can be seen and understood in Cabri, without any need

for explicit logic and Cabri becomes part of students’ interactions.“ An dieser Stelle besteht
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das Risiko, dass die Schülerinnen und Schüler scheitern, wenn sie den Sachverhalt, der mit

Hilfe der dynamischen Visualisierung so einfach und vermeintlich durchschaubar dargestellt

werden kann, verbal oder schriftlich vernünftig begründet ausdrücken sollen. Zudem könnte es

passieren, dass die Notwendigkeit dieser verbalen oder schriflichen Begründung nicht erkannt

wird, sondern diese nur als zusätzliche, scheinbar überflüssige Schwierigkeit eingeschätzt wird.

Insgesamt lässt sich festhalten, dass die Autorinnen und Autoren empirischer Arbeiten zum

Einsatz von DGS in Bezug auf das Beweisen diesen Einsatz positiv einschätzen; meines Er-

achtens etwas zu positiv, weil sie die möglichen Schwierigkeiten, die ich ja an einigen Stellen

aufgezeigt habe, oft etwas bagatellisieren oder ignorieren (wenn sie sich ihrer überhaupt be-

wusst werden).
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Der Zugmodus

3.1 Beweglichkeit durch den Zugmodus

Ein zentrales Element, welches die DGS von der Geometrie mit Bleistift und Papier unter-

scheidet, ist die Beweglichkeit des Systems, die unter „dynamisch“ firmierend namensgebend

für die Software ist. Unter Einsatz des Zugmodus können Zeichnungen verändert werden, oh-

ne dass konstruktionsspezifische Eigenschaften dabei verloren gehen, so dass ganz ohne Mühe

nicht nur ein einzelnes spezifisches Beispiel konstruiert werden kann, sondern man gleich eine

ganze Klasse von Zeichnungen erhält. Henn (2001, S.95) nennt dies den „Übergang von der

Zeichnung zur Figur“. Die Differenzierung zwischen „Zeichnung“ und „Figur“ wurde zuvor be-

reits von anderen, beispielsweise Parzysz (1988) oder auch Laborde (1993) vorgenommen.

Dabei wird der Zeichnung eine konkrete, materiale Entität zugesprochen, während die Figur

sich auf das theoretische Objekt bezieht. Man könnte auch formulieren, dass die Zeichnung die

konkrete Verwirklichung einer Konstruktionsvorschrift ist, während die Figur die Vorschrift ist

und damit die Menge aller möglichen Verwirklichungen dieser Vorschrift repräsentiert. Daher

gehen Talmon & Yerushalmy (2006, S.241) sogar noch weiter, und unterscheiden zwischen

„figure-image“ und „figure“: „We use figure-image to describe the total cognitive structure that

is associated with the figure. We refer to figure-image as the mental images that the user holds

based on previous experience with the figure and with dragging.“

Die Unterscheidung zwischen sichtbaren Figuren und den mentalen Objekten, die dahinter

stehen, ist bereits sehr alt und findet sich in Platons Ideenlehre, in der er zwischen dem

„wahrhaft Seiendem“ und dem „Nichtseiendem“ unterscheidet. Zwischen diesen beiden Polen
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befinden sich die sinnlich wahrnehmbaren Dinge, die ihr wahres Sein durch die Teilhabe an

der ihnen zugrundeliegenden Idee haben. So kann man bezogen auf die Geometrie im sechsten

Buch der Politeia lesen:

„Sie [„die Leute, die sich mit Geometrie, Rechnen und ähnlichem beschäftigen“,

G.W.] behelfen sich mit sichtbaren Figuren und untersuchen sie, denken aber

dabei nicht an die Figuren, sondern an die Urbilder, denen sie gleichen; so unter-

suchen sie das Viereck an sich und seine Diagonale, aber nicht die gezeichnete,

und ähnlich bei allem andern; die Gebilde, die sie formen und zeichnen, von de-

nen es wieder Schatten und Abbilder im Wasser gibt, diese gebrauchen sie nur

als Abbilder und suchen die Urbilder an sich zu erkennnen, die man nur durch

das reine Denken erkennt“ (Platon 1958, S.311f).

Wird folglich eine Zeichnung mit bestimmten Eigenschaften einer Figur konstruiert, beispiels-

weise ein Viereck mit vier gleichlangen Seiten (Raute), wird durch den Zugmodus nur die

konkrete Zeichnung variiert, nicht aber die Figur (Raute). Auf diese Weise ist es einfach mög-

lich, sich einen Überblick über die Gesamtsituation zu verschaffen, Sonder- und Randfälle zu

betrachten und Vermutungen bezüglich Veränderungen und Invarianten aufzustellen. Durch

die empirische Überprüfung dieser Annahmen kann deren Richtigkeit untermauert werden,

wobei im Fall der Falsifikation sogar Beweiskraft gegeben ist. Im Fall der Bestätigung kön-

nen durch die Beobachtung zumindest Beweisideen entstehen, die dann anschließend in einen

Beweis gegossen werden können und müssen. Dies entspricht der klassischen Methode des heu-

ristischen Arbeitens.

Die Unterscheidung zwischen konkreter Zeichnung und allgemeiner Figur kann allerdings bei

Schülerinnen und Schülern auch große Probleme hervorrufen. Yerushalmy & Chazan (1993,

S.25) unterteilen die Schwierigkeiten, die sich ergeben können, in verschiedene Kategorien:

„These obstacles can be grouped around three themes: diagrams are particular; common usa-

ge confuses certain standard diagrams with the classes of objects to which they belong; and a

single diagram is often viewed in different ways.“ Die erste Schwierigkeit bedeutet, dass eine

konkrete Zeichnung immer auch individuelle Eigenschaften hat, selbst wenn sie repräsenta-

tiv für eine allgemeine Figur stehen soll. Soll beispielsweise zu der Anweisung: ’Gegeben sei

das Dreieck ABC ’ eine Zeichnung gemacht werden, wird man versuchen, ein allgemeines, d.h.

kein besonderes Dreieck zu zeichnen. Dennoch muss man sich entscheiden, ob man ein spitz-
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winkliges oder ein stumpfwinkliges Dreieck zeichnet. Es ist nicht möglich, eine Zeichnung zu

erstellen, die beide Eigenschaften umfasst, so dass die Zeichnung nicht die gesamte Klasse aller

Dreiecke repräsentieren kann. Hierin birgt sich die Gefahr, dass die Besonderheit der konkre-

ten Zeichnung mit den Eigenschaften der Figur identifiziert wird. Die nächste Schwierigkeit

liegt darin, dass häufig gewisse Prototypen als Repräsentanten einer Figur genutzt werden.

So werden beispielsweise gleichschenklige Dreiecke oftmals auf der Basis stehend abgebildet.

Dies führt dazu, dass ein solches Dreieck in dieser Lage sehr viel schneller erkannt wird, als

wenn es eine andere Lage hat. Die dritte Schwierigkeit schließlich liegt darin, in einer Figur

sowohl das Ganze als auch einen Teil zu sehen. Wird beispielsweise in einem rechtwinkligen

Dreieck die zur Hypotenuse gehörige Höhe gezeichnet, haben Schülerinnen und Schüler nicht

selten Schwierigkeiten, in der Zeichnung nun drei Dreiecke zu sehen und die Höhe auch als

Seite eines Dreiecks zu erkennen. „These three obstacles are part of the impetus to create The

Geometric Supposer (Schwartz und Yerushalmy, 1985 - 1988), which attempts to reduce stu-

dents’ dependence on single diagrams presented in their geometry texts as models for classes

of diagrams“ (Yerushalmy & Chazan 1993, S.28f). Beim Geometric Supposer handelt es

sich um einen Vorläufer von DGS, der allerdings noch nicht über den Zugmodus verfügt.

Mariotti (2000, S.27f) konstatiert aufgrund der „intrinsischen Logik“, die ursächlich für den

Erhalt der Eigenschaften einer Figur beim Ziehen ist, eine unmittelbare Beziehung zwischen

DGS und der Theorie der euklidischen Geometrie: „Because of the intrinsic relation to Euclide-

an geometry, it is possible to interpret the control ’by dragging’ as corresponding to theoretical

control - ’by proof and definition’ - within the system of Euclidean Geometry. In other words,

it is possible to state a correspondence between the world of Cabri constructions and the

theoretical world of Euclidean Geometry.“

Auch Hölzl sieht den Zugmodus, wie seiner richtungsweisenden Arbeit aus dem Jahre 1999

mit dem Titel „Qualitative Unterrichtsstudien zur Verwendung dynamischer Geometrie-Software“

zu entnehmen ist, als zentrales Element einer DGS an:

„In ihm bündeln sich all die Aspekte, die im Zuge dieser Arbeit sowohl in den Sach-

analysen als auch den Unterrichtsstudien mit wechselnden Gewichten betrach-

tet wurden: epistemologische, kognitive, heuristische und methodische Aspekte“

(Hölzl 1999, S.295).
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Zugleich aber stellt er die berechtigte Frage, ob in „gewöhnlichem“ Unterricht - soweit er

in Publikationen der Öffentlichkeit zugänglich gemacht wurde - dieses Potential überhaupt

genutzt wird:

„Hinterfragt man dagegen kritisch die heuristische Rolle, die einer DGS in man-

cherlei publizierten Beispielen zugewiesen wird, so ist die Skepsis angebracht, ob

die Software darin wirklich heuristisch, also den planmäßigen Erwerb von Wis-

sen unterstützend, verwendet wird. Oftmals wir die DGS nur verifizierend einge-

setzt, in dem Sinne, dass ein mehr oder weniger explizit vorgegebener Sachverhalt

von den Lernenden am Computer zu variieren und empirisch zu bestätigen ist“

(Hölzl 1999, S.21).

Hölzl sieht vielmehr das Potential der Software darin, Besonderheiten von geometrischen

Zusammenhängen erkennbar zu machen und einen geeigneten heuristischen Kontext zu schaf-

fen, in dem diese Zusammenhänge nicht isoliert, sondern in enger Verknüpfung zu anderen

gesehen und gedeutet werden können. Am Beispiel der Schnittpunkteigenschaften der Mittel-

senkrechten im Dreieck macht Hölzl seinen Standpunkt deutlich: In der Literatur wird als

Beispiel für eine „interaktive generalisierende Satzfindung“ die Aufgabe genannt, ausgehend

vom gleichseitigen Dreieck und dessen Schnittpunkt der Mittelsenkrechten ein allgemeines

Dreieck zu betrachten und dabei die Schnittpunkteigenschaften der Mittelsenkrechten zu be-

obachten. Hölzl bezweifelt, ob dabei wirklich die gewünschte Erkenntnis erlangt wird, und

stellt vielmehr in Frage, ob für die Schülerinnen und Schüler überhaupt eine Besonderheit

vorliege, wenn sich drei Geraden offensichtlich immer in einem Punkt schneiden. Besser sei,

einen Kontrast zu schaffen, der deutlich macht, dass es durchaus nicht immer einen gemeinsa-

men Schnittpunkt der Mittelsenkrechten geben muss! Beispielsweise sei der Zugang über das

Viereck möglich, bei dem sich alle Mittelsenkrechten in einem Punkt schneiden können, aber

nicht müssen. Hier werde eine geometrische Deutung verlangt, und dabei könne das heuristi-

sche Potential der Software zum Tragen kommen.

Auch Olivero (2002, S.243) kommt in ihrer Untersuchung zu dem Ergebnis, dass der Einsatz

von DGS kein Selbstläufer ist: „From the above discussion, the role of the teacher emerges as

important, showing that dynamic geometry per se does not guarantee a successful manage-

ment of the relationship between the spatio-graphical field and the theoretical field, as shown

in the case studies analysed.“ Ebenso wie Hölzl kommt sie zu dem Resümee, dass von der

108



3.2. Klassifikationen des Zugmodus

Lehrperson sorgfältig ein angemessener Kontext für den Einsatz einer DGS gesucht werden

muss, wie dies beispielsweise bei offenen Problemstellungen der Fall sein kann.

3.2 Klassifikationen des Zugmodus

Die Verwendung des Zugmodus kann aus unterschiedlichen Motivationen und mit unterschied-

licher Zielsetzung erfolgen. So stellt Hölzl grundlegend fest, dass es zunächst zwei prinzipiell

verschiedene Einsatzfunktionen des Zugmodus gibt (Hölzl 1999, S.296f): „Sie [die Funktion

des Zugmodus, G.W.] kann in zweierlei Hinsicht in Anspruch genommen werden:

1. der Zugmodus als Testmodus;

2. der Zugmodus als Suchmodus.“

Während im ersten Fall eine Überprüfung von bestimmten Annahmen stattfindet und somit

schon eine gewissen Erwartungshaltung vorliegt, die durch den Einsatz des Zugmodus bestätigt

werden kann oder verworfen werden muss, sollen im zweiten Fall erst einmal Vermutungen

aufgestellt oder Merkmale gefunden werden. Dies geschieht über das Erkennen der Invarianten

innerhalb der Figur, also gerade über das, was sich durch das Ziehen nicht verändert. Dass die

gezielte, nutzbringende Anwendung des Zugmodus erst erlernt werden muss und ein tieferes

Verständnis erfordert, liegt auf der Hand. Daher differenziere ich bei der Datenanalyse in

meiner Arbeit danach, ob die Probanden viel oder wenig Erfahrung im Umgang mit einer

DGS haben.

Laborde (1993, S.66f) siedelt jede der beiden Hölzlschen Funktionen des Zugmodus mit

diversen Wesensmerkmalen auf den ersten drei Stufen der „Levels of thinking“ von van Hiele

(vgl. Abschnitt 2.1.3) an, dem visual level, descriptive level und theoretical level :

„It appears that in exploration phases as well as in validation phases, visualization

plays a role related to the conceptual status of the notion of figure for the student.

One can recognize the Van Hiele levels in the use of the variations of the drawing.

At a low level the figure is viewed as an entity but not analysed into parts or

elements: all parts of the drawing must move together under the drag mode. At

an intermediate level the figure is viewed as a shape which can be distinguished

from other shapes, the drawings are instances of the shape but not yet analysed.
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At a higher level the figure is made of elements linked by relations which remain

invariant when dragging the drawing.“

Auch Hölzl unterscheidet drei Niveaustufen beim Zugmodus. Allerdings rückt er dabei nicht

so sehr den kognitiven, als viel mehr den phänomenologischen Aspekt in den Vordergrund:

“Auf einer elementaren Stufe sehen Lernende im Zugmodus eine Art Zeichen-

werkzeug, mit dem sich das Aussehen einer DGS-Figur auch nachträglich noch

verändern lässt [...]. Auf einer mittleren Stufe verwenden Lernende den Zugmo-

dus auch ohne äußeren Anstoß, um in einer problemhaltigen, geometrischen Si-

tuation eine Vermutung zu überprüfen - und nicht nur, um die Richtigkeit der

Konstruktion abschließend zu testen. Der Zugmodus wird als Testmodus begrif-

fen, ohne dass jedoch sein Gebrauch in dieser Hinsicht schon gefestigt wäre[...].

Erst auf einer dritten Stufe wird die betrachtete geometrische Situation variabel

erfasst. Eine Zeichnung, die variiert wird, ist nicht mehr nur eine Zeichnung, die

sich bewegt und verformt, sondern eine Folge unterschiedlicher Zeichnungen mit

gemeinsamen Eigenschaften“ (Hölzl 1999, S.296f).

Deutlich erkennt man hier die Hierarchie im Problemverständnis, die sich durch die unter-

schiedlich motivierte Nutzung des Zugmodus offenbart. Auf der elementaren Stufe dient die

DGS zunächst lediglich als Ersatz für Zirkel und Lineal, dann aber auch darüber hinaus dafür,

die „Echtheit einer Konstruktion“ zu überprüfen, beispielsweise, ob eine Tangente eine „echt

konstruierte“ Tangente ist oder lediglich eine „herangezogene Gerade“, die wie eine Tangente

aussieht. Diese Nutzung des Zugmdodus kann in vielerlei Hinsicht sinnvoll sein und ist daher

selbstverständlich legitim. Beispielsweise kann eine derartige Überprüfung, ob die Konstrukti-

on tatsächlich den Aufgabenbedingungen genügt, vor Fehlschlüssen bewahren. Dennoch muss

konstatiert werden, dass eine Reduktion des Zugmodus auf Kontrollfunktionen kaum Perspek-

tiven für neue Erkenntnisse eröffnet.

Einen Übergang von der elementaren zur mittleren Stufe stellt das nachträgliche Abwandeln

von Zeichnungen dar. Es ist gar nicht so leicht, beispielsweise ein „allgemeines“ Dreieck zu

zeichnen. Oftmals ähnelt die Konstruktion stark einem gleichschenkligen oder einem recht-

winkligen Dreieck. Dies birgt die Gefahr, von vornherein Eigenschaften zu vermuten, die nur

im jeweiligen Sonderfall gelten. Hier kann der Zugmodus eingesetzt werden, um eine allge-

meinere Situation zu schaffen. Vom rein rückwärts gerichteten Einsatz des Zugmodus auf der
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ersten Stufe kommt hier eine weitere, vorwärts gerichtete Motivation ins Spiel: ist die erstellte

Konstruktion überhaupt geeignet, die mathematischen Zusammenhänge darzustellen?

Auf der mittleren Stufe wird untersucht, an welchen Punkten gezogen werden kann bzw. welche

Parameter verändert werden können und welche nicht. Außerdem wird versucht, hier Zusam-

menhänge zwischen möglichen Veränderungen zu erkennen, so dass nun auch ein funktionaler

Aspekt zum Tragen kommt.

Auf der dritten Stufe schließlich wird der Transfer von der Zeichnung zur Figur vollzogen,

Invarianten und Allgemeingültigkeiten werden erkannt. Der Zugmodus wird als Hilfsmittel ge-

nutzt, um Sätze zu finden und Beweisideen zu generieren. Diese Stufe kann allerdings nur nach

intensiver Auseinandersetzung mit dem Medium und den mathematischen Inhalten erreicht

werden:

„Ein dauerhaftes handlungswirksames Verständnis des Zugmodus lässt sich in der

Einführungsphase kaum erzielen, notwendig erscheinen systematische wiederho-

lende Bezüge auf seine Wirkungs- und Verwendungsweisen“ (Hölzl 1999, S.300).

Den Ansatz von Hölzl nimmt die „Mathematics Education Research Group“ in Turin, zu der

unter anderem Arzarello und Olivero gehören, zum Anlass, bei ihren eigenen Untersu-

chungen differenzierter herauszuarbeiten, wie und zu welchem Zweck Schülerinnen und Schüler

den Zugmodus einsetzen, um nicht nur auf der phänomenologischen Ebene zu verbleiben: „This

review [Darstellung der Stufen bei Hölzl, G.W.] shows a phenomenological analysis of drag-

ging, that is an analysis of dragging as such, from the outside, without taking into account how

the subject who is using dragging interprets it“ (Olivero 2002, S.60). Stattdessen möchte

die Forschungsgruppe darüber hinaus nicht nur darstellen, welche Optionen durch den Ein-

satz des Zugmodus ermöglicht werden, sondern auch, wie das Zusammenspiel des Einsatzes

auf den verschiedenen Ebenen mit den Ebenen der Argumentationsprozesse der Schülerinnen

und Schüler korrespondiert. „A classification of different dragging modalities students might

use in solving a problem in Cabri was produced and the cognitive counterpart of dragging

investigated“ (Olivero 2002, S.66).

Die folgenden sieben Einsatzarten werden herausgestellt (vgl. Arzarello et al. 2002, 67):

• Wandering dragging : Hierbei werden Basispunkte ohne weiteren Plan gezogen, um in-

teressante Konfigurationen oder Regelmäßigkeiten in der Zeichnung zu entdecken.
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• Bound dragging : Ein halbfreier Punkt wird auf dem Objekt, an das er gebunden ist,

bewegt.

• Guided dragging : Eine Figur wird in eine bestimmte Form gezogen, z.B. ein Viereck zu

einem Quadrat.

• Dummy locus dragging, auch lieu muet dragging : Ein Punkt wird so gezogen, dass

die Konstruktion eine bestimme Eigenschaft behält. Notwendigerweise bewegt sich der

Punkt dabei auf einer bestimmten Bahn, die allerdings weder sichtbar wird noch im Be-

wusstsein des Akteurs ist. (In der überwiegenden Literatur wird die englische Begrifflich-

keit „dummy locus“ (wörtlich übersetzt: blinder Ort) verwendet, einige, wie Olivero

verwenden die französische Bezeichnung „lieu muet“, die wörtlich übersetzt „stiller Ort“

bedeutet. Die beiden Begriffen werden im selben Sinne eingesetzt.)

• Line dragging : Es werden neue Punkte zur Zeichnung hinzugefügt, die auf einer be-

stimmten Bahn liegen, so dass die Figur ihre Eigenschaft behält.

• Linked dragging : Ein Punkt wird an ein Objekt gebunden und dann auf diesem gezogen.

• Dragging test : Ein Test, ob die Figur zugmodus-“resistent“ ist. Auf diese Art wird über-

prüft, ob die Konstruktion wirklich die gewünschten Eigenschaften besitzt.

Dabei ist offensichtlich, dass die verschiedenen Einsatzarten des Zugmodus zum Teil aufeinan-

der aufbauen. Ich möchte dies am Beispiel des Thalessatzes erläutern: Wenn ich ein beliebiges

Dreieck dahingehend untersuche, wo der Eckpunkt C liegen kann, damit in ihm ein rechter

Winkel entsteht, könnte ich diesen, unter ständiger Messung des Winkels, zunächst so weit

ziehen, bis das Winkelmaß 90 Grad beträgt. Diese Aktion fällt unter die Kategorie „Guided

dragging“. Im Anschluss daran könnte ich versuchen, die Ecke C so zu verziehen, dass sie eine

andere Lage bekommt, der rechte Winkel aber erhalten bleibt („Dummy locus dragging“, Ab-

bildung 3.1 links). Um eine Idee davon zu bekommen, auf welcher Bahn sich C bewegt, könnte

ich einige potentielle Lagen von C mit einem zusätzlichen Punkt versehen („Line dragging“,

Abbildung 3.1 Mitte). Hierdurch kann die Idee entstehen, dass die Ortslinie von C ein Kreis

ist, der AB als Durchmesser hat. Um dies zu überprüfen, zeichne ich den entsprechenden Kreis

um AB, lege einen Punkt C auf diesen, und prüfe, ob der Winkel immer 90 Grad groß ist

(„Linked dragging“, Abbildung 3.1 rechts).

112



3.2. Klassifikationen des Zugmodus

Abbildung 3.1 – Dummy locus dragging, Line dragging, Linked dragging

Die Forschungsgruppe verfolgt in diesem Zusammenhang den Grundgedanken, dass beim

Bearbeiten von Aufgaben ein ständiges Wechselspiel von Wahrnehmen und Beobachten auf

der einen und Ideenentwicklung und Theoriebezug auf der anderen Seite stattfindet. Dieses

Wechselspiel ist äußerst komplex und in der Regel schwer festzumachen, da es sich im wesent-

lichen in den Köpfen der Schülerinnen und Schüler abspielt, und sich höchstens durch Mimik,

Gestik, Sprache und ähnliches bemerkbar macht. Um hier Zugänge zu finden, wurde zunächst

in einer Vorstudie beobachtet, wie „Experten“, nämlich Mathematiklehrerinnen und -lehrer an

Highschools und Universitäten, geometrische Probleme lösen, wobei diese laut denken sollten.

Die Vorstudie mündete in ein theoretisches Modell, das beschreibt, wie Expertinnen und Ex-

perten Vermutungen aufstellen und diese dann beweisen und wie sich der Übergang von dem

einen zum anderen Modus vollzieht. Dabei werden die Gedankengänge und Vorgehensweisen

jeweils als einer von zwei gegenläufigen Prozessen aufgefasst, nämlich entweder als „ascending

process“ oder als „descending process“:

“ascending processes, from drawings to theory, in order to explore freely a situa-

tion, looking for regularities, invariants, etc.

descending processes from theory to drawings, in order to validate or refute con-

jectures, to check properties, etc.“ (Arzarello et al. 2002, S.67).

Den Übergang vom „Auf“- zum „Absteigen“ leistet in diesem Zusammenhang das „abduktive

Schließen“. Diese Begrifflichkeit stammt von dem amerikanischen Philosophen Charles Sanders

Peirce (1839-1914) in Unterscheidung von den geläufigen Formen der Erkenntnisgewinnung

Deduktion und Induktion. Ganz kurz gefasst geht es um Folgendes: Deduktiv wird von einer

gegebenen Regel und einer Fallaussage auf ein bestimmtes Resultat geschlossen, induktiv von

einer Fallaussage und einem vorliegenden Resultat auf eine Regel, und abduktiv von einer
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Regel und einem bestimmten Resultat auf eine Fallaussage.

Formallogisch bedeutet dies für die Deduktion:

• Aus p folgt q (Regel). Beispiel: Wenn die Kugel aus dieser Urne stammt, ist sie grün.

• p gilt (Fallaussage). Im Beispiel: Diese Kugeln stammen aus dieser Urne.

• Schließe, dass q gilt (Resultat). Im Beispiel: Diese Kugeln sind grün.

Die Deduktion führt zwar zu sicheren Resultaten, was besonders in der Mathematik wich-

tig ist, letzlich aber nicht zu neuen Resultaten, „da das Resultat eines deduktiven Schlusses

bereits in allgemeiner Form im Gesetz enthalten ist“ (Meyer 2007, S.33). Hier liegt ein er-

kenntnistheoretisches Grundproblem der Mathematik vor.

Bei der Induktion hingegen ist die Schlussweise folgendermaßen:

• p gilt (Fallaussage). Beispiel: Diese Kugeln stammen aus dieser Urne.

• q gilt (Resultat). Im Beispiel: Diese Kugeln sind grün.

• Schließe: aus p folgt q (Regel). Im Beispiel: Wenn die Kugel aus dieser Urne stammt,

ist sie grün.

Die Induktion ist kein sicherer Schluss, da eine Gesetzmäßigkeit zwar unterstellt, aber nicht

bewiesen wird. Es könnte auch ein Zufall sein, dass ausgerechnet nur grüne Kugeln aus der

Urne gezogen wurden. „Mit einer Induktion beweist man daher nicht, dass etwas auf eine

bestimmte Weise sein muss, sondern dass etwas ein wahrscheinliches Faktum hinsichtlich der

vom Schluss unterstellten Regelmäßigkeit ist“ (Meyer 2007, S.35).

Bei der Abduktion zu guter Letzt wird folgendermaßen geschlossen:

• Aus p folgt q (Regel). Beispiel: Wenn die Kugel aus dieser Urne stammt, ist sie grün.

• q gilt (Resultat). Im Beispiel: Diese Kugeln sind grün.

• Schließe, dass p gilt (Fallaussage). Im Beispiel: Diese Kugeln stammen aus dieser Urne.

Auch dieses ist offensichtlich formallogisch kein zulässiger Schluss. Dennoch hat das abduktive

Schließen einen großen Wert und eine große Berechtigung, vor allen Dingen, wenn es gelingt,

andere Alternativerklärungen auszuschließen. Ein Bereich, in dem sehr oft abduktiv geschlos-

sen wird, ist die Medizin: der Arzt oder die Ärztin kennt die Symptome einer bestimmten
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Krankheit, beobachtet diese an einem Patienten und schließt daraus, dass der Patient unter

der besagten Krankheit leidet. Es wird folglich ein Schluss über einen konkreten Fall gezogen.

In der Mathematik kann die Abduktion damit einen Beitrag leisten, plausible Hypothesen zu

generieren:

„The surprising fact, C, is observerd;

But if A were true, C would be a matter of course,

Hence, there is reason to suspect that A is true“ (Peirce 1963, 5.189).

Sofort wird natürlich die Schwierigkeit deutlich: es könnte sowohl sein, dass die Regel falsch

ist, als auch, dass sie zwar wahr, aber dennoch nicht Grundlage der Fallaussage ist. Gleichwohl

sieht Peirce (1963, 5.171) in ihr die einzige der vorgestellten Schlussformen, die in der Lage

ist, auf der Generierung von plausiblen Hypothesen basierend neue Theorien zu entwickeln:

„Abduction is the process of forming an explanatory hypothesis. It is the only

logical operation which introduces any new idea; for induction does nothing but

determine a value, and deduction merely evolves the necessary consequences of a

pure hypothesis.

Deduction proves that something must be; Induction shows that something ac-

tually is operative; Abduction merely suggests that something may be.

Its only justification is that from its suggestion deduction can draw a prediction

which can be tested by induction, and that, if we are ever to learn anything or to

understand phenomena at all, it must be by abduction that this is to be brought

about.“

Wird also mit einem abduktiven Schluss versucht, von einem gegebenen Fall auf eine erklä-

rende Gesetzmäßigkeit zu schließen, um so den Fall begründen zu können, bedeutet dies für

das konkrete Beispiel der Aufgabenbearbeitung durch die Expertinnen und Experten, dass

diese ihr geometrisches Wissen auf einen Sachverhalt hin durchforsten, der einen Zugang zur

Problemlösung liefern kann:

„In the model, abduction means choosing ’which rule this is the case of’, that is

the subject browses his theoretical knowledge in order to find the piece of theorey

that suits this particular situation“ (Olivero 1999, S.4).
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Nach Arzarello und Olivero findet zwar sowohl in der klassischen Papier- und Bleistift-

Geometrie, als auch in der DGS-Geometrie abduktives Schließen statt. Während dieses aber

klassisch der Intuition und dem Einfallsreichtum der Geometrie-Treibenden zu verdanken war,

ermöglicht nun das neue Medium mit seinem Zugmodus auch dem „Normalbürger“ solche

Schlüsse.

„In both [Geometrie mit Papier und Bleistift und Computergeometrie, G.W.]

the transition is ruled by abduction; but while in the former the abductions are

produced because of the ingenuity of the subjects, in Cabri the dragging process

can mediate them. [...] Moreover, such a repeated switching supports the evolution

from perceptions towards a more theoretical frame: this evolution is marked by a

kind of rhythm from ascending to descending modalities and back“ (Arzarello

et al. 2002, S.67).

Darüber hinaus lässt die Differenzierung des Zugmodus in unterschiedliche Nutzungsniveaus

sogar einen Rückschluss auf den kognitiven Prozess, in dem sich ein Problemlöser aktuell

befindet, zu: „[...] dragging in Cabri seems to show at a perceptive level what the students’

cognitive processes are“ (Arzarello et al. 2002, S.68).

In Abbildung 3.2 findet sich noch einmal eine strukturierte Darstellung des Zusammenhangs

zwischen den Einsatzarten des Zugmodus im Sinne von Azarello, u.a. ihren auf- und ab-

steigenden Denkprozessen (sog. kognitiven Modalitäten) und der Rolle, die sie der Erkennt-

nisgewinnungsform des abduktiven Schließens dabei zuweisen.

Wandering, bound und guided dragging werden eingesetzt, um Dinge auszuprobieren und be-

stimmte Sachverhalte zu untersuchen; hier liegt ein ascending process vor. Beim Dummy locus

dragging befindet man sich zwar immer noch in der Versuchsphase, arbeitet aber bereits et-

was stärker zielorientiert, da man bestimmte Eigenschaften einer Figur beim Ziehen konstant

erhalten will. Hierbei kann das heuristische Potential des Zugmodus zum Tragen kommen,

da unterschwellig bereits die Bildung von Hypothesen abläuft, denn das Konstanthalten der

jeweiligen Eigenschaften kann nur erreicht werden, wenn der gezogene Punkt auf einer be-

stimmten Bahn bewegt wird. Einen weiteren Schritt in diese Richtung stellt das line dragging

dar, bei dem nun die Bahn des bewegten Punktes sichtbar gemacht wird. Das linked dragging

erlaubt, Vermutungen zu überprüfen: wenn die Bahn eines Punktes durch die DGS konstruiert

und der Punkt an diese Bahn gebunden werden kann, muss bei korrekter Vermutung die ent-

116



3.2. Klassifikationen des Zugmodus

Wandering
dragging

ASCENDING

Line dragging

 
DESCENDINGLinked draggingDragging test

Dummy locus
dragging

Bound dragging

Guided dragging

ABDUCTION:
shift from
ascending 

to descending 
control

Abbildung 3.2 – Kognitive Modalitäten nach Arzarello et al. (2002, S.69)

deckte Eigenschaft der Figur erhalten bleiben, wenn der Punkt auf ebendieser Bahn bewegt

wird. Auch diesen Überprüfungsvorgang ordnen Arzarello und Olivero dem descending pro-

cess zu. Der dragging test schließlich ist für sie ein Mittel zur Validierung von Vermutungen,

hat also eine Kontrollfunktion, und stellt daher einen descending process dar. Arzarello

et al. (2002, S.68) folgern daraus, dass ein Rückschluss vom Einsatz des Zugmodus auf die

kognitiven Modalitäten zulässig ist:

„At the end of this analysis, it is clear that the transition from one dragging moda-

lity to another shows a ’genesis’ which is connected with the cognitive ascending

/ descending modalities described above: for example wandering dragging is ty-

pical of an ascending modality, while a test dragging is typical of a descending

modality“.

Diese Genese verläuft allerdings nicht zwangsläufig in der geschilderten idealtypischen Abfol-

ge, insbesondere werden nicht alle Problemlöser auch alle Zugmodusvarianten einsetzen. Diese

Beobachtung hat z.B. Kittel bei seiner Studie in der Hauptschule gemacht hat: „Dieser kom-

plette Prozess konnte in der Untersuchung selten beobachtet werden“ (Kittel 2007, S.284).

Selbst wenn der Prozess aber komplett durchlaufen wird, stellt sich die Frage, inwieweit damit

den Ansprüchen an die Begründbarkeit schon Genüge getan ist. Arzarello et al. drücken
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sich in diesem Zusammenhang sehr vage aus; bei Schülerinnen und Schülern, die den dragging

test einsetzen, um ihre Vermutung zu überprüfen, konstatieren sie: „At the end they check

their conjecture. Now they are using the dragging test and their actions show descending con-

trol“ (Arzarello et al. 2002, S.70). Ob sie dies für ausreichend halten, bleibt zunächst offen.

Die Zusammenfassung am Ende ihrer Ausführungen spricht allerdings dafür:

„For example, dragging in Cabri allows students to validate their conjectures;

therefore the function of convincing (themselves, a friend or an enemy) proof has

in mathematics is no longer useful. The work in Cabri is enough for the students

to be convinced of the validity of their conjectures. [...] However, if the teacher

makes explicit the role of proof in justifying, then students will be motivated to

prove why a certain proposition ist true (within a theory), after they know that

it is true (within the Cabri environment)“ (Arzarello et al. 2002, S.71).

Die Tatsache, dass etwas gilt, kann demnach für Arzarello et al. durchaus mit Hilfe einer

DGS gezeigt werden, auch wenn sie abschließend diese Aussage wieder relativieren:

“If the teacher does not motivate students to find out why a conjecture (propositi-

on) is true, then the justifications given by students may remain at a perceptive-

empirical level: the proposition ist true because the property observed on the

Cabri figure stays the same when dragging the drawing, given the hypotheses

do not change. When such a belief is shared in the classroom, then Cabri might

become an obstacle in the transition from empirical to theoretical thinking, as it

allows validating a proposition without the need to use a theory“ (Arzarello

et al. 2002, S.71).

Die Frage, wie die Lehrerin bzw. der Lehrer einen zusätzlichen Beweis einfordern oder moti-

vieren soll, wenn doch der DGS die Fähigkeit zugesprochen wird, Vermutungen zu „checken“,

wird nicht beantwortet. Auch Olivero argumentiert auf einem ähnlichen Niveau: nach einer

Aufgabenbearbeitung, bei der die Schülerinnen und Schüler durch Einsatz des Zugmodus eine

Hypothesenbildung vollziehen konnten, wird als letzter Schritt die konstruktive Überprüfung

der Hypothese vollzogen: „At the end, they check their conjecture. Now they are using the

dragging test and their actions show descending control“ (Olivero 1999, S.12). Damit

endet die Beschreibung der Unterrichtsepisode, und es bleibt offen, ob sich nunmehr ein echter
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Beweis des Sachverhalts anschließt oder zumindest thematisiert wird, dass an dieser Stelle

noch kein Beweis im mathematischen Sinne erbracht worden ist.

Diesen Aspekt, den ich für äußerst problematisch halte, diskutiere ich ausführlich in dem

Kapitel zum Thema „Beweisen und DGS“.
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Kapitel 4

Untersuchungsmethode und -design

4.1 Konzeptionelle Rahmenbedingungen

Die Untersuchung steht im engen Zusammenhang mit der Vorlesung „Elemente der Geometrie“

für Erstsemesterstudierende der Mathematik für die Lehrämter Grund-, Haupt-, Realschule

sowie die entsprechenden Jahrgangsstufen der Gesamtschule, die an der Universität Paderborn

regelmäßig im Wintersemester gelesen und in der seit 1998 die DGS „Cinderella“ eingesetzt

wird. Während zu Beginn die Vorlesung von Prof. Dr. Hans-Dieter Rinkens konzipiert und

gehalten wurde, wird sie seit dem Wintersemester 02/03 kontinuierlich von Prof. Dr. Peter

Bender gelesen und weiterentwickelt. Schon in der zweistündigen Vorlesung wird konsequent

die DGS verwendet, der Übungsbetrieb findet im Computerraum statt und auch die Ab-

schlussklausur, eine Leistung im Rahmen der Zwischenprüfung, wird am Rechner absolviert.

Die Organisation dieser Klausur mit bis zu 450 Teilnehmerinnen und Teilnehmern ist - auch

an der Paderborner Universität der Informationsgesellschaft - eine logistische Herausforderung

ersten Ranges.

4.1.1 Auswahl der Untersuchungspersonen

Da die „Elemente der Geometrie“ bis zur kürzlichen Umstrukturierung des Lehramtsstudiums

in NRW eine Pflichtveranstaltung für alle Lehramtsstudierenden der genannten Schulformen

war, konnte ich gezielt zwei Gruppen von Studierenden in meine Untersuchung einbeziehen:

Studierende in Examensnähe, bei denen der Besuch der Vorlesung schon einige Zeit zurück-

liegt, und die im Laufe ihres Studiums eine Reihe von Kompetenzen erworben und diverse
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Strategien ausgebildet haben sollten, und Erstsemesterstudierende, die aktuell den Umgang

mit DGS in Vorlesung und Übung erleben bzw. praktizieren und sozusagen in „medias res“

sind. Ich erwartete, dass die erste Gruppe über ein höheres Maß an fachlichen Kompetenzen,

ein breiteres Spektrum an Problemlösestrategien und Techniken der Beweisführung verfügen

und vor allen Dingen über mehr Sicherheit in der Einschätzung der Korrekheit eines Bewei-

ses verfügen würde. Gleichzeitig kann geprüft werden, in wieweit sich der aktuelle Einfluss

des Dozenten auf die Erstsemester auswirkt, ob sich bestimmte Vorgehensweisen und Argu-

mentationsstrukturen unter dem unmittelbarem Eindruck von Vorlesungs- und Übungsbetrieb

vermehrt bemerkbar machen und im weiteren Verlauf verlieren.

Die Kandidaten für die erste Gruppe akquirierte ich in den Fach- und Didaktikseminaren des

Wintersemesters 08/09. Um mich zu vergewissern, dass sich nicht nur „gute“ Studierende in

meiner Stichprobe eingefunden haben, überprüfte ich bei allen 24 Probandinnen und Proban-

den das Ergebnis ihrer Abschlussklausur in Geometrie.

5 Personen hatten die Klausur erst im zweiten Anlauf mit „ausreichend“ bestanden. 4 Proban-

den waren noch gar nicht erfolgreich, d.h. dass sie bislang keinen Leistungsnachweis erbracht

haben, sondern nur Grundkenntnisse (entspricht „mangelhaft“ und ist besser als „ungenügend“)

oder gar nichts. Von 5 Studierenden war die Klausur zwar im ersten Anlauf, aber sehr knapp

bestanden, weitere 9 hatten befriedigende und 6 gute bis sehr gute Leistungen erbracht. Zur

Vereinfachung habe ich drei Leistungsdrittel gebildet und jeden Studierenden in eines einge-

ordnet, wobei der prozentuale Anteil der erreichten Klausurpunkte maßgebend war. Insgesamt

konnte ich mich somit davon überzeugen, dass ein breites Leistungspektrum abgedeckt worden

ist.

Bei der Gruppe der Erstsemester konnte ich nicht auf Klausurdaten zurückgreifen, da die

Befragung vor dem Klausurtermin erfolgte. Die Überprüfung im Nachhinein ergab, dass sich

bei den 27 von mir ausgewählten Studierenden 8 im unteren, 13 im mittleren und 6 im oberen

Leistungsdrittel befanden, so dass auch hier das gesamte Spektrum abgedeckt wurde.

4.1.2 Interviewsituation

Die Interviews fanden jeweils in einem Zweiergespräch statt und wurden von mir selbst durch-

geführt. Dabei arbeitete die Probandin bzw. der Proband am Rechner, an den ein zusätzlicher

externer Bildschirm angeschlossen war, so dass ich die Bildschirmaktivitäten verfolgen konn-
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te, obwohl wir uns gegenüber saßen. Durch eine Videokamera, die auf das Gesicht der oder

des Studierenden gerichtet war, wurde das Gespräch aufgezeichnet. Während in der Pilotie-

rungsphase eine zweite Videokamera auf den Monitor gerichtet war, um das Arbeiten mit

der DGS zu dokumentieren, stellte ich das Verfahren für die Erhebung dahingehend um, dass

die Software „Screencorder 5.0“ im Hintergrund lief, die die zweite Videokamera in folgender

Weise ersetzte: Durch die Software wurden pro Sekunde 8 Screenshots erstellt, so dass die

Konstruktion am Bildschirm quasi gefilmt wurde. Dadurch konnte nicht nur auf die zweite

Videokamera verzichtet werden, zudem wurde auch die Qualität der Aufzeichnung erheblich

gesteigert.

D

B
C

F

E

A

Abbildung 4.1 – schematische Interview-Situation

A Interviewter

B Monitor I

C Papier

D Monitor II

E Interviewerin

F Kamera

Die Aufzeichnungen der Videokamera, die auf Mini DV erfolgten, wurden anschließend di-

gitalisiert, die von Screencorder 5.0 aufgezeichneten Daten konnten direkt in das Transkripti-

onsprogramm Elan 3.7.1 eingelesen und weiterverarbeitet werden.
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4.2 Ablauf der Interviews

Das Interview teilte sich in zwei Teilsegmente. Zunächst sollte die Probandin oder der Pro-

band eine Aufgabe bearbeiten, wobei ausdrücklich darauf hingewiesen wurde, dass nicht so

sehr eine erfolgreiche Lösung der Problemstellung, als vielmehr der Einsatz des Programms,

die Möglichkeiten, die hierdurch induziert werden und das subjektive Empfinden im Hinblick

auf den Grad der Unterstützung durch das Programm im Fokus des Interesses stehen. Ziel

hierbei war, das Arbeiten mit der DGS beobachten und Fragen hierzu stellen zu können. Im

anschließenden zweiten Teil fand dann die Befragung nach einem vorbereiteten Interviewleit-

faden statt.

4.2.1 Aufgabenpool

Zu Beginn des Interviews bearbeiteten die Studierenden in der Regel eine (wenn die Zeit noch

nicht zu weit fortgeschritten war, auch schon einmal zwei) zufällig ausgewählte Aufgabe aus

einem Aufgabenpool, der insgesamt 4 Aufgaben umfasst. Die Motivation für den Einsatz meh-

rerer verschiedener Aufgaben lag schlicht in der Zielvorstellung, die Studierenden mit einer

unbekannten Problemstellung zu konfrontieren. Mit dem Aufgabenpool wollte ich die Gefahr

reduzieren, dass die Studierenden sich bereits im Vorfeld auf eine Aufgabe einstellten, die

ihnen vielleicht von vorher interviewten Studierenden bekannt gemacht worden war. Diese

Vorsichtsmaßnahme erwies sich im Wesentlichen als überflüssig, denn ich hatte nach Beendi-

gung der Interviews darum gebeten, über die Aufgabe(n) Stillschweigen zu bewahren und nach

den Rückmeldungen der Studierenden gehe ich auch davon aus, dass ihre jeweiligen Vorgänger

sich an die Absprache gehalten haben. Im Folgenden möchte ich die Aufgaben kurz vorstellen

und darlegen, warum sie mir für eine Bearbeitung mit DGS geeignet erscheinen.
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Aufgabe 1)

Zeichne zunächst ein Dreieck mit rechtem Winkel in C und ein Quadrat

über der Hypotenuse c.

• Konstruiere dann die Winkelhalbierende des rechten Winkels: diese

zerlegt das Hypotenusenquadrat in zwei Teilflächen.

• Fällt dir irgendetwas auf, wenn du diese beiden Teilflächen betrach-

test?

Abbildung 4.2 – Die Winkelhalbierende in C zerlegt das Hypotenusenquadrat

Bei dieser Aufgabe erwartete ich, dass noch nicht unmittelbar nach Erstellung der Konstruk-

tion eine Vermutung über die Teilflächen geäußert wird, sondern dass zunächst an C gezogen

und die Veränderung der Teilflächen dabei qualitativ bewertet wird. Es sollte auffallen, dass

durch die Zerlegung zwei kongruente Vierecke zu entstehen scheinen (vgl. Abbildung 4.2).

Besonders deutlich könnte diese Vermutung werden, wenn C fast bis auf A oder bis auf B ge-

zogen wird. Die Winkelhalbierende, die ihre Lage verändert, wenn an C gezogen wird, scheint

sich um einen Punkt im Inneren des Hypotenusenquadrats zu drehen, und es sollte die Fra-

ge aufkommen, ob das wirklich so ist und gegebenenfalls das Drehzentrum näher bestimmt

werden kann. Dabei kann auch hier wieder die Strategie, Sonderfälle zu betrachten, hilfreich

sein, zumal das Programm zulässt, den Punkt C auf A oder auf B zu ziehen, ohne dass die
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Winkelhalbierende des nunmehr entarteten Winkel verschwindet: die Winkelhalbierende fällt

mit der jeweiligen Diagonalen des Hypotenusenquadrats zusammen. Von den Diagonalen des

Quadrats aber wissen wir, dass sie sich im Mittelpunkt schneiden. Somit liegt die Hypothese

nahe, dass die Winkelhalbierende durch den Mittelpunkt des Hypotenusenquadrats geht, und

zwar immer, unabhängig von der Lage vom Punkt C.

Bei ausschließlicher Betrachtung eines statischen Bildes wäre diese Vermutung wahrscheinlich

weniger offensichtlich. Durch Einsatz des Zugmodus allerdings kann diese Beobachtung be-

sonders dann gut gemacht werden, wenn zur Konstruktion des rechtwinkligen Dreiecks der

Thaleskreis genutzt wurde, da auch dieser durch den Mittelpunkt des Hypotenusenquadrats

geht. Damit hätten Winkelhalbierende und Thaleskreis einen Schnittpunkt, der bei Lagever-

änderung von C fest bleibt. Gelingt es, die Idee zu verifizieren, ist eine Beweisführung der

Zerlegung in kongruente Vierecke über Symmetrie oder Kongruenz möglich.

Eine mögliche Vorgehensweise:

Ich verändere die Lage von C und beobachte, dass der Schnittpunkt M der Winkelhalbie-

renden mit dem Umkreis des Dreiecks ABC invariant bleibt. Ein Argument hierfür liefert

der Umfangswinkelsatz bezogen auf den Winkel MCA über der Kreissehne AM : Der Winkel

ändert seine Größe durch Ziehen an C nicht, folglich bleibt auch die Länge der Sehne AM

konstant, und da A fest ist, bleibt auch M fest. Es bietet sich an, M mit einer Sonderlage von

C zu bestimmen:

Wähle C so, dass | CA |=| CB |. Dann liegt C auf der Mittelsenkrechten von AB, und da

im gleichschenkligen Dreieck ACB die Mittelsenkrechte von AB und die Winkelhalbierende

in C übereinstimmen, liegt M auf dieser Mittelsenkrechten. Dies bedeutet, dass M gleich-

weit entfernt von A und B ist und damit den gleichen Abstand zu AD wie zu BE hat. Da

M außerdem nach Voraussetzung auf dem Kreis um ABC liegt, dessen Radius halb so lang

ist wie die Seite des Hypotenusenquadrats, hat M zudem den gleichen Abstand von AB wie

von DE. (Die bisher angestellten Überlegungen waren Thema einer Übungsaufgabe im Rah-

men der Veranstaltung, so dass hier die Studierenden das vermeintlich neue Problem auf ein

bereits bekanntes hätten zurückführen können.) M ist also der Mittelpunkt des Hypotenusen-

quadrats. In diesem Sonderfall ist klar, dass die Winkelhalbierende das Hypotenusenquadrat

in zwei gleichgroße Teilflächen (Rechtecke) teilt. (vgl. Abbildung 4.3).

Eine andere, möglicherweise nicht ganz so nahe liegende Möglichkeit, zu zeigen, dass die Win-
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kelhalbierende den Thaleskreis tatsächlich im Mittelpunkt des Hypotenusenquadrats schneidet

besteht in der Zerlegung in gleichschenklige Dreiecke (vgl. Abbildung 4.4). Ich verbinde M mit

C und zeige, indem ich die Winkel in Teildreiecken betrachte, dass der Winkel MCA unabhän-

gig von der Lage von C immer 45° groß ist und damit MC tatsächlich die Winkelhalbierende

des Winkels BCA.

Abbildung 4.3 – Betrachte die Son-

derlage von C

Abbildung 4.4 – Betrachte gleich-

schenklige Dreiecke

Wenn ich gezeigt habe, dass M der Mittelpunkt des Hypotenusenquadrats ist, steht mir das

Argument der Symmetrie zur Verfügung, das besagt, dass die beiden Teilflächen gleich groß

sein müssen, da das Quadrat in Bezug auf den Mittelpunkt punktsymmetrisch ist. Oder aber

ich argumentiere über Kongruenz und zeige, dass die von Mittelsenkrechte und Winkelhal-

bierende gebildeten Dreiecke im Hypotenusenquadrat kongruent sind und damit die beiden

Teilflächen des Hypotenusenquadrats unabhängig von der Lage von C flächeninhaltsgleich

(vgl. Abbildung 4.5).
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Abbildung 4.5 – Verallgemeinere dann

Die Aufgabe ist nicht trivial und erfordert je nach Lösungsweg Kenntnisse über den Um-

fangswinkelsatz und dessen Umkehrung, Kongruenzen, gleichschenklige Dreiecke, Symmetrien,

Winkelsummensatz und andere. Die DGS kann als Suchmodus eingesetzt werden, um zunächst

eine Vermutung zu bekommen und diese dann empirisch zu überprüfen. Dabei ist sowohl zu

beobachten, was sich beim Ziehen verändert (ziehe ich beispielsweise nach rechts, wird die

Seite des linken Teilvierecks von A in Richtung B länger, die dazu parallele vom Eckpunkt

D aus kürzer), als auch nach Invarianten zu suchen, wie zum Beispiel dem Schnittpunkt der

Winkelhalbierenden mit dem Thaleskreis. Die durch die DGS initiierten Ideen können dann

anschließend am festen Bild geometrisch begründet werden, so dass im Idealfall die Beweisidee

beweglich, der Beweis selbst statisch fundiert ist.
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Aufgabe 2)

Zeichne die Strecke AB und einen Kreis um A mit beliebigem, aber festem

Radius. Auf diesen Kreis lege einen Punkt P und zeichne die Gerade AP.

Fälle von B aus das Lot auf AP, nenne den Schnittpunkt mit der Geraden

C.

• Versuche nun, dir folgendes vorzustellen: Wo würde C liegen, wenn

du eine andere Lage von P auf dem Kreis gewählt hättest?

• Kannst du dir für jede Lage von P (auf dem Kreis) die Lage des

zugehörigen C vorstellen? Versuche, deine Vermutung zu begründen.

• Nutze nun den Zugmodus, und betrachte die Bahn von C. Scheint

sich deine Vermutung zu bestätigen?

• Erzeuge nun die Ortslinie von C mit dem Ortslinienbutton. Hat sich

deine Vermutung bestätigt? Wenn nein, wo war dein Denkfehler?

Kannst du nun Gründe für den Verlauf der Ortslinie erkennen?

Erste Lösungsmöglichkeit ist, sich tatsächlich die Bahn von C vorzustellen. In der Situation

in Abbildung 4.6 ist der Winkel PAB spitz und C liegt daher in der Halbebene oberhalb von

AB. Unterteilt man darüber hinaus die Ebene mit Hilfe der beiden Lote auf gAB durch A und

durch D in drei Bereiche, nämlich den Bereich zwischen A und B, den Bereich jenseits von

A und den Breich jenseits von B, so kann man sich klarmachen, dass C immer im Bereich

zwischen A und B liegt. Begründung hierfür ist, dass der Winkel in C ein rechter ist, damit

im Dreieck ABC der größte, und im Dreieck aufgrund der Seiten-Winkel-Korrespondenz der

größere Winkel immer der größeren Seite gegenüberliegt, womit AB immer länger als AC und

BC ist.

Lässt man P auf dem Kreis entgegen dem Uhrzeigersinn laufen, wird der Winkel PAB größer,

bis er schließlich 90° erreicht und C auf A liegt. Wandert P weiter auf dem Kreis wird der

Winkel PAB stumpf, der Nebenwinkel unterhalb von AB folglich spitz und da BC den Ab-

stand zur Gerade AP darstellt, muss C unterhalb von AB und wiederum im Bereich zwischen
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Abbildung 4.6 – Auf welcher Ortslinie läuft C?

A und B liegen. Lässt man P soweit wandern, dass der Winkel in A gestreckt ist, fällt C auf

B, da B nun ein Punkt auf der Geraden AP ist. Befindet sich P in der Halbebene unterhalb

von AB, findet analog dieselbe Bewegung von C statt. Die Ortslinie von C ist folglich eine

geschlossene Kurve, die durch A und B geht und von C zweimal durchlaufen wird, während

P einmal den Kreis durchläuft.

Interessanterweise macht man es sich durch diesen Visualisierungsversuch eigentlich nur un-

nötig schwer: Gehe ich sofort von der Tatsache aus, dass der Winkel BCA nach Konstrukti-

onsvorschrift ein rechter ist und völlig unabhängig davon, wo P auf dem Kreis und sogar in

der gesamten Ebene liegt, immer ein rechter Winkel bleibt, so ist natürlich völlig klar, dass

die Ortslinie von C ein Kreis ist, und zwar der Thaleskreis über der Strecke AB.

Erste Fragestellung bei dieser Aufgabenbearbeitung ist, inwieweit es den Studierenden gelingt,

sich die Bahn von C vorzustellen. Zweiter und noch interessanterer Aspekt ist, inwieweit diese

Vorstellung mit der von Cinderella erzeugten Ortslinie korrespondiert und wie sich die Vi-

sualisierung mit Hilfe der DGS auswirkt: Wie wird mit eventuell vorhandenen Diskrepanzen

zwischen der im Kopf und der mit der DGS erzeugten Ortslinie umgegangen? Wird die eigene

Vorstellung sofort zugunsten des Programms verworfen? Wird die Ortslinie des Computers

sofort als Kreis akzeptiert oder zumindest die Einschränkung gemacht, dass sie wie ein Kreis

aussieht? Wird nach Gründen für die Form gesucht, oder ist die Visualisierung durch das

Programm für die Studierenden eine hinreichende Begründung?

Hierbei wird also der kritische Umgang mit dem Programm hinterfragt, insbesondere, wie
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bereitwillig die Studierenden dem Computer die eigentliche Problemlösung überlassen. Wird

dem Computer möglicherweise sogar zugestanden, mit der Visualisierung der Ortslinie auch

die Zusammenhänge deutlich zu machen, und entsteht überhaupt noch das Bedürfnis nach

Durchdringen dieser Zusammenhänge und letztendlich nach der Begründung für den Sachver-

halt? Oder löst das „Sehen“ allein bereits die Überzeugung aus, den geometrischen Kontext

durchschaut zu haben?

Aufgabe 3)

Zeichne ein Dreieck ABC und dessen Umkreis, die Winkelhalbierende vom

Winkel in C und die Mittelsenkrechte von AB.

• Fällt dir etwas auf?

Wird der Schnittpunkt E der Winkelhalbierenden mit der Mittelsenkrechten wie in Abbil-

dung 4.7 als Punkt markiert, wird offensichtlich, dass durch diesen Punkt noch eine dritte

Linie geht, nämlich der Umkreis des Dreiecks ABC. Wird der Punkt nicht eingezeichnet, liegt

das Phänomen nicht mehr ganz so klar auf der Hand. Hierbei spielt auch die gewählte Lage

von C eine Rolle, da sich die Geraden auch unter einem sehr spitzen Winkel schleifend schnei-

den können, so dass die Lage des eigentlichen Schnittpunkts gar nicht so gut auszumachen ist.

Intendierte Aufgabenbearbeitung in diesem Fall ist, dass die Studierenden auf die Vermutung

kommen, dass sich in E drei Linien schneiden, diese Vermutung durch Einsatz des Zugmodus

erhärten und sie anschließend begründen.

Hierfür könnte man den Umfangswinkelsatz heranziehen: Betrachte zunächst nur den Schnitt-

punkt der Winkelhalbierenden mit dem Umkreis des Dreiecks ABC, nenne ihn E. Da die Win-

kel ECA und BCE nach Voraussetzung gleich groß sind, besagt der Umfangswinkelsatz, dass

die Sehnen AE und EB gleich lang sind. Damit ist E genausoweit von A wie von B entfernt

und liegt demzufolge auf der Mittelsenkrechten von AB. Dasselbe Argument steht natürlich

zur Verfügung, wenn ich zunächst voraussetze, dass E der Schnittpunkt der Mittelsenkrechten

und des Umkreises ist, und anschließend zeige, dass E auch auf der Winkelhalbierenden des
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A

B
MAB

C

E

Abbildung 4.7 – Gibt es eine Besonderheit in dieser Konstruktion?

Winkels in C liegen muss, da die Sehnen AE und BE gleich lang sind.

Das Augenmerk bei dieser Aufgabenbearbeitung liegt zunächst darauf, ob die Studierenden

den Schnittpunkt dreier sich in einem Punkt schneidenden Linien erkennen und ob sie dieses

Phänomen als etwas Besonderes ansehen und damit für begründenswert erachten. Inwieweit

wird dabei von den Studierenden die Konstruktion durch das Programm kritisch hinterfragt?

Auf welchen Niveaustufen bewegt sich die Argumentation? Wird die Schnittpunkteigenschaft

sofort akzeptiert, oder wird zumindest versucht, sie empirisch zu überprüfen? Werden mögli-

cherweise auch andere, der Software inhärenten Überprüfungskriterien herangezogen, um zu

zeigen, dass drei Punkte aufeinanderfallen? Oder wird nach den geometrischen Zusammen-

hängen gesucht, um unabhängig von der Konstruktion und der Darstelllung im DGS auch

allgemeingültige Gründe für den Sachverhalt benennen zu können?
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Aufgabe 4)

Gegeben ist das spitzwinklige Dreieck ABC, dessen Höhenschnittpunkt H

und der Umkreismittelpunkt M.

• Gibt es eine Situation, in der die Punkte A, B, H und M auf einem

Kreisbogen liegen?

• (Kannst du dann eine Aussage über das Dreieck ABC machen?)

Die Zusatzfrage steht in Klammern, da sie nicht sofort bei Aufgabenstellung formuliert wurde,

um nicht zu suggerieren, dass es auf jeden Fall möglich ist.

Mit der Voraussetzung der Spitzwinkligkeit wurde dafür gesorgt, dass H innerhalb des Dreiecks

liegt und nicht zu viele Fallunterscheidungen gemacht werden müssen (vgl. Abbildung 4.8).

A
B

C

M

H

Abbildung 4.8 – Können A, B, H und M auf einem Kreis liegen?

Intendiert ist, dass die Studierenden zunächst einen Kreis durch drei der vier Punkte legen

und anschließend den Zugmodus einsetzen, um zu überprüfen, ob auch der vierte Punkt unter

Einhaltung der Aufgabenbedingungen auf den Kreis gezogen werden kann. Wenn auf diese Art

und Weise eine Vermutung getroffen werden kann, ob es möglich ist, oder eben nicht, soll im

ersten Fall versucht werden, eine Aussage über das Dreieck ABC zu treffen, im zweiten Fall zu

begründen, warum es nicht sein kann. In der Tat können die vier Punkte A, B, H und M auf
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einem Kreis liegen, und zwar genau dann, wenn der Winkel in C 60° groß ist (vgl. Abbildung

4.9). Da diese Bedingung als solche beim Ziehen mit der DGS wohl weniger auffällt, könnte

die DGS in geringerem Maße als bei anderen Phänomenen das Aufstellen einer Vermutung

befördern.

<)ab= 60°

A B

C

M

F

G
H

Abbildung 4.9 – Der Winkel in C muss 60° betragen

Eine Beweisidee könnte wie folgt aussehen: Wenn die vier Punkte A, B, H und M auf einem

Kreis liegen, dann kann ich die Winkel BMA und BHA als Umfangswinkel im selben Kreis-

bogen über der Sehne AB auffassen, was bedeutet, dass beide Winkel gleich groß sind. Der

Winkel BMA ist als Mittelpunktswinkel doppelt so groß wie der Winkel BCA als Umfangs-

winkel. Der Winkel BHA ist Scheitelwinkel zum Winkel FHG (mit den Höhenfußpunkten F

und G) und damit so groß wie dieser. Im Viereck FHGC gilt:

W (FHG) + W(GFC ) = 360° - W(CFH ) - W(HGC ) = 180°, und wegen

W(FHG) = 2 · W(GCF ) folgt W(GCF ) = 60°.

Auch bei dieser Aufgabenbearbeitung kann die heuristische Strategie, zunächst Sonderfälle

zu betrachten, hilfreich sein: Solange drei Punkte nicht kollinear sind, kann ich einen Kreis

hindurch konstruieren. Gelingt es mir folglich, das Dreieck so zu konstruieren, dass zwei der

betrachteten Punkte aufeinander fallen, so könnte dies zur Problemlösung führen. H kann

nicht auf A oder B zu liegen kommen, weil dann in A oder B ein rechter Winkel vorläge, im

Widerspruch zur Spitzwinkligkeit. Also probiert man es mit H = M. Dann sind die Höhen

zugleich die Mittelsenkrechten, und das Dreieck ist gleichseitig (vgl. Abbildung 4.10).
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Abbildung 4.10 – Betrachte den Sonderfall

In diesem Fall ist klar, dass der Winkel in C (Umfangswinkel auf dem Umkreis des Dreiecks

als Fasskreis über der Sehne AB) 60° und BMA als der zugehörige Mittelpunktswinkel 120°

ist. Soll aber auch in anderen Fällen H auf dem Kreis durch A, M und B liegen, so muss BHA

aufgrund der Umkehrung des Umfangswinkelsatzes (zum Kreis durch A, H, B) immer 120°

groß bleiben und damit der Winkel in C im Viereck FHGC (mit den beiden rechten Winkeln

in F und G) 60° groß. Ich kann folglich die Lage von C auf dem Fasskreis über der Sehne AB

verändern und trotzdem alle in der Aufgabe genannten Bedingungen einhalten, solange ich

gewährleiste, dass die Winkel in A bzw. B nicht 90° oder größer werden.

Zur Aufgabenlösung habe ich Kenntnisse über den Umfangswinkelsatz, den Mittelpunkts-

winkel, gleichseitige Dreiecke und Sehnenvierecke herangezogen. Hierbei handelt es sich um

Inhalte, die in Vorlesung und Übung intensiv behandelt worden waren. Da aber kein Ziel der

Befragung war, den gesamten Inhalt der Veranstaltung abzudecken, ist unproblematisch, dass

die Aufgaben sich zum Teil ähneln. Eine große Schwierigkeit beim Bearbeiten ist vermutlich,

die jeweiligen Figuren überhaupt in die Aufgabe hineinzusehen. Aber auch solche Dinge, wie

beispielsweise Sehnenvierecke zu erkennen, sehen, dass Winkel Umfangswinkel über derselben

Sehne und damit gleich groß sind, besondere Dreiecke erkennen u.a. wurde in Vorlesung und

Übung intensiv behandelt.

Allen Aufgaben gemein ist die Intention, dass durch den Einsatz der Dynamik des Programms

Sachverhalte beobachtet werden sollen und können und so Ideen zur Problemlösung generiert
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werden. Da die eigentliche Begründung oder Beweisführung durchaus anspruchsvoll ist, war

klar, dass die Studierenden die Lösung nicht sofort parat haben würden. Daher wurden sie zu

Beginn darauf hingewiesen, dass nicht geometrisches Wissen abgeprüft werden sollte, sondern

es darum ging, wie sie das Programm einsetzen und ob sie diesen Einsatz als hilfreich und

erleichternd, oder aber als verwirrend und komplizierend empfinden. Desgleichen wurden die

Studierenden aufgefordert, erforderlichenfalls Fragen zu geometrischen Sachverhalten zu stel-

len und selbst einzuschätzen, ob ihre Begründungen und Beweisführungen ausreichend und

schlüssig oder noch lückenhaft und unzureichend waren.

Da sich im Nachhinein herausstellte, dass die Bearbeitung der unterschiedlichen Aufgaben un-

terschiedlich ergiebig war, kommen die Aufgaben in der Auswertung unterschiedlich oft vor.

So war die Bearbeitung von Aufgabe 2, die in der Regel nicht sehr viel Zeit beanspruchte,

weshalb sie meist als Zusatzaufgabe genutzt wurde, nicht sehr aufschlussreich, so dass ich

mich dafür entschieden habe, keine Analyse dieser Aufgabe niederzuschreiben.

4.2.2 Das Leitfadeninterview

Im Anschluss an die Aufgabenbearbeitung stellte ich den Probanden Fragen entlang eines

vorbereiteten Interviewleitfaden. Diese Methode wird in der qualitativen Sozialforschung den

teilstandardisierten Interviews zugerechnet (vgl. beispielsweise Flick et al. 1995; Mayring

1999).

Beim standardisierten Interview werden die Reihenfolge und der Wortlaut der Fragen genau

festgelegt, bei Verständnisproblemen wird auf Erklärungen verzichtet und stattdessen die Fra-

ge im gleichen Wortlaut wiederholt, mit dem Ziel, Vollständigkeit und Vergleichbarkeit der

Antworten in hohem Maße zu garantieren. Häufig werden auch Antwortvorgaben gemacht,

aus denen die oder der Interviewte dann die für sie oder ihn passende auswählen kann bzw.

muss. Vielfach geht es dabei darum, die Ergebnisse zu quantifizieren und statistischen Auswer-

tungsverfahren zugänglich zu machen. Demgegenüber ist das freie Interview ungelenkt. Das

Leitfadeninterview liegt irgendwo zwischen diesen beiden Prototypen, indem ein Fragenkatalog

vorhanden ist, aber keine Antwortauswahlen vorgegeben sind und die Reihenfolge der Fragen

nicht zwingend eingehalten werden muss. Zudem ist es dem Interviewer jederzeit gestattet,

nach eigenem Ermessen Nachfragen zu stellen oder auf bedeutsam erscheinende Aspekte, die

vom Interviewten selbst eingebracht wurden, näher einzugehen. Dies unterstreicht die Bedeu-
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tung, die Sprache und Kommunikation für die qualitative Forschung einnehmen. So formuliert

Mayring (1999, S.49): „Subjektive Bedeutungen lassen sich nur schwer aus Beobachtungen

ableiten. Man muß hier die Subjekte selbst zur Sprache kommen lassen; sie selbst sind zunächst

die Experten für ihre eigenen Bedeutungsgehalte.“

4.3 Auswertung der Interviews

4.3.1 Transkriptionsregeln

Im Anschluss an die Interviews wurden die Audioaufzeichnungen transkribiert. Dabei wurden

als erstes die Klarnamen gegen Pseudonyme ausgetauscht, so dass bereits während des Tran-

skribierens nicht mehr offensichtlich war, wessen Äußerungen gerade dokumentiert wurden. Die

Äußerungen wurden, der deutschen Grammatik entsprechend, mit Satzzeichen versehen, d.h.

Kommata eingesetzt und Betonungen am Satzende in einem Punkt, einem Fragezeichen oder

auch einem Ausrufezeichen fixiert. Einflüsse von vorhandenen Dialekten wurden nicht beach-

tet (wenn beispielsweise ein Proband ein „g“ wie „ch“ ausspricht, was häufiger in Ostwestfalen

zu hören ist, wurde dies nicht mit transkribiert. Statt des gesprochenen „der Schnittpunkt ist

wech“ ist im Transkript „der Schnittpunkt ist weg“ zu lesen).

Im Folgenden werden die in den Transkripten verwendeten Kennzeichnungen dargestellt:

(.) Pause von einer Sekunde Dauer

(..) Pause von zwei Sekunden Dauer

(...) Pause von drei Sekunden Dauer

6 Sek. Pause Pause mit längerer Dauer als drei Sekunden

sehen betontes Wort

(lacht) Beschreibung einer Handlung, Geste oder ähnlichem

? Stimme hebt sich

! resolute Äußerung

. Stimme senkt sich
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4.3.2 Die Interpretationstechnik der Objektiven Hermeneutik

Anschließend wurden die Transkripte in Anlehnung an die Objektive Hermeneutik interpre-

tiert. In diesem Abschnitt möchte ich einige kurze Ausführungen zur Methodologie, den Prin-

zipien und der Praktischen Durchführung der Objektiven Hermeneutik machen.

Methodologie

Diese Interpretationstechnik, die wesentlich auf Ulrich Oevermann zurückgeht, ist nach

Wernet (2009, S.11) „ein Verfahren der Textinterpretation mit dem Anspruch, die Geltung

der Interpretation an intersubjektive Überprüfbarkeit zu binden“. Dabei spielen Texte als

„Protokolle der Wirklichkeit“ (Wernet 2009, S.12) eine entscheidende Rolle:

„Die Objetkive Hermeneutik geht davon aus, dass sich die sinnstrukturierte Welt

durch Sprache konstituiert und in Texten materialisiert. Der Gegenstand der sinn-

verstehenden Wissenschaften bildet sich erst durch die Sprache und tritt in Tex-

ten in Erscheinung. Die soziale Wirklichkeit ist textförmig. Diese Annahme der

Textförmigkeit sozialer Wirklichkeit markiert zugleich den methodischen Zugang.

Eine verstehende, methodisch kontrollierte Wirklichkeitserforschung ist Texter-

forschung. Wirklichkeitswissenschaft ist Textwissenschaft“ (ebenda, S. 11f).

„Dabei handelt es sich bei der schriftlichen Fixierung nicht um eine Neuschaffung, sondern

um das Festhalten einer immer schon textförmig strukturierten Welt“ (Wagner 2001, S.87).

Da sich soziales Handeln regelgeleitet konstituiert, können die Texte als Protokolle dieses

Handelns unter Kenntnis dieses Regelwissens interpretiert werden, wodurch die Interpretation

eine gewisse Verbindlichkeit erlangt, so dass verschiedene Interpretinnen und Interpreten ein

und desselben Textes, wenn sie keine groben Fehler begehen, prinzipiell zum selben Ergebnis

kommen sollten.

Ein wesentliches Element der Objektiven Hermeneutik ist die Rekonstruktion der Fallstruktur:

“Die Objektive Hermeneutik geht davon aus, dass die Handlungsoptionen einer je

konkreten Lebenspraxis durch Regeln formuliert sind. Welche Möglichkeiten vor-

liegen und welche Folgen welche Möglichkeiten zeitigen, darüber befindet nicht

die Handlungspraxis, sondern darüber hat die Welt der sozialen Regeln schon

138



4.3. Auswertung der Interviews

vorgängig befunden. Welche der durch Regeln eröffneten Handlungsoptionen rea-

lisiert wird; das entscheiden nicht die Regeln, sondern die Fallstruktur“ (Wernet

2009, S.15).

Wernet macht dies am Beispiel eines Versprechens deutlich: Durch unser Regelwissen kön-

nen wir eindeutig sagen, was ein Versprechen ist. Die Regeln garantieren aber nicht, dass ein

Versprechen auch eingelöst wird, sondern eröffnen zugleich die Handlungsoptionen des Ein-

lösens und des Nichteinlösens. Die Wahl, die dann vom Subjekt getroffen wird, unterliegt

nicht mehr den Regularien, sondern ihm. Kann bei dieser Wahl des Individuums eine gewisse

Systematik entdeckt werden, spricht man von der Fallstruktur : „Der Strukturbegriff verweist

darauf, dass die Selektionen, die eine Lebenspraxis vornimmt, nicht beliebig sind und nicht

zufällig variieren. [...] Die objektiv-hermeneutische Textinterpretation zielt auf die Rekonstruk-

tion der Strukturiertheit der Selektivität einer protokollierten Lebenspraxis“ (Wernet 2009,

S.15). Und Oevermann (1993, S.115 f) führt aus: „So wie die Einzelhandlung schon immer

eine Abstraktion von der Praxis der sozialen Kooperation darstellt, so gilt der objektiven

Hermeneutik der subjektiv gemeinte Sinn als Derivat des schon immer objektiv gegebenen

Sinns einer immer schon durch Regeln der Bedeutungsgenerierung koordinierten Sequenz von

Einzelhandlungen, einer sequenzierten sozialen Kooperation also.“

Bei der Rekonstruktion der Fallstruktur geht die Objektive Hermeneutik davon aus, „dass

ein Text Bedeutungsstrukturen generiert, die jenseits des Selbstverständnisses und Selbstbildes

einer sozialen Praxis liegen und die sich nicht in den Meinungen, Intentionen oder Wertorien-

tierungen dieser Praxis erschöpfen“ (Wernet 2009, S.18). Dies hat zur Folge, dass die Texte

nicht im Hinblick darauf interpretiert werden, was Motive und Intentionen der Beteiligten

gewesen sein könnten. Beim Interpretieren wird also nicht der Versuch unternommen, sich in

die sprechende Person hineinzuversetzen und daraus Deutungen für die Äußerungen zu ge-

nerieren. Stattdessen wird versucht, neben der manifesten auch die latente Sinnstruktur des

Textes unter Anwendung des vorhandenen Regelwissens zu ergründen.

“Zentraler Gegenstand der Methodologie der objektiven Hermeneutik sind die la-

tenten Sinnstrukturen und objektiven Bedeutungsstrukturen von Ausdrucksgestalten,

in denen sich uns die psychische, soziale und kulturelle Erfahrungswelt präsentiert.

Latente Sinnstrukturen und objektive Bedeutungsstrukturen sind jene abstrak-
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ten, d.h. sinnlich nicht wahrnehmbaren Gebilde, die wir alle mehr oder weniger

gut und genau „verstehen“, wenn wir uns verständigen, Texte lesen, Bilder und

Bewegungsabläufe sehen, Ton- und Klangsequenzen hören, und die durch bedeu-

tungsgenerierende Regeln erzeugt werden und unabhängig von unserer je subjek-

tiven Interpretation objektiv gelten. Die objektive Hermeneutik ist ein Verfahren,

diese objektiv geltenden Sinnstrukturen intersubjektiv überprüfbar je konkret an

der les-, hör- und sichtbaren Ausdrucksgestalt zu entziffern“ (Oevermann 1996,

S.1).

Als Beispiel für eine Verwerfung zwischen latenter und manifester Textstruktur sei das folgen-

de Gespräch zwischen Lehrer und Schüler wiedergegeben, das Wernet (2009, S.47ff) anführt

und interpretiert:

S: Wann geben Sie uns die Klassenarbeiten wieder?

L: Nächste Woche.

S: Oh, Sie haben sie doch schon 3 Wochen.

L: Und wenn ich sie 5 Wochen hätte.

S: Meine Mutter denkt schon, ich hätt die weggeschmissen.

Auf der latenten Ebene liegt diesem Dialog ein Problem zugrunde, welches sich in der mani-

festen Ebene nicht zeigt. Dennoch können wir als Mitglieder ein und derselben Sprachgemein-

schaft und der daraus resultierenden Kenntnis des Regelwissens den Konflikt erkennen und

interpretieren und den Sinn des Dialoges deuten. Dieses Verstehen wird nach Meyerhöfer

(2005) zwar nicht ausschließlich von der Objektiven Hermeneutik geleistet, gleichwohl:

„Objektive Hermeneutik ermöglicht aber eine systematische Dechiffrierung auch

der latenten Textebene und damit auch des Zusammenspiels von manifester und

latenter Textebene, also der objektiven Bedeutungsstruktur des Textes. Sie er-

möglicht außerdem eine methodische Kontrolle und damit eine intersubjektive

Überprüfung dieser Dechiffrierung“ (ebenda, S. 67).
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Prinzipien der Objektiven Hermeneutik

Zu den Prinzpien der Objektiven Hermeneutik gehören:

(1) Kontextfreiheit, (2) Wörtlichkeit, (3) Sequenzialität, (4) Extensivität und (5) Sparsamkeit.

Nachfolgend möchte ich die Begriffe in aller Kürze vorstellen.

Kontextfreiheit

Wie gesagt, werden in der Objektiven Hermeneutik Texte als Protokolle der Wirklichkeit

aufgefasst. Es ist ein wichtiges Prinzip der Textinterpretation im Sinne der Objektiven Her-

meneutik, den Text zunächst kontextfrei zu interpretieren, so dass er damit quasi als „eigen-

ständiges Wirklichkeitsgebilde“ (Wernet 2009, S.22) gewürdigt wird. Zugleich soll damit der

Gefahr begegnet werden, dass der Text ausschließlich im Zusammenhang mit dem Kontext

gesehen und dass dadurch bedingt das damit einhergehende Vorwissen einbezogen wird und

somit keine Textanalyse, sondern eine Kontextanalyse stattfindet. Erst nach einer kontextfrei-

er Interpretation des Textes wird der Zusammenhang zum Kontext wieder hergestellt. „Die

Kontextuierung ist der kontextfreien Bedeutungsexplikation systematisch nachgeordnet. Erst

durch diese Nachordnung werden die beiden Dimensionen analytisch unabhängig“ (ebenda, S.

21f). Denn wenn die Interpretation durch das Vorwissen beeinflusst werden würde, könnten

dadurch Zirkelschlüsse entstehen oder Besonderheiten übersehen werden. „Wenn die Interpre-

tation von dem Vorverständnis lebt und abhängig ist, dann ist sie in dessen Belieben gestellt.

Diese Beliebigkeit gilt es zu vermeiden. Aus dieser Perspektive besteht der Sinn der kontextfrei-

en Interpretation darin, gegenüber einem nicht-wissenschaftlich gewonnenen Vorverständnis

größtmögliche Unabhängigkeit zu wahren“ (ebenda. S. 23).

Wörtlichkeit

„Das Prinzip der Wörtlichkeit besagt, dass die Bedeutungsrekonstruktion den tatsächlich ar-

tikulierten Text in seiner protokolliert vorliegenden Gestalt nicht ignorieren darf, auch und

gerade dann nicht, wenn innertextliche Widersprüch auftreten“ (Wernet 2009, S.23). Dies

bedeutet, dass man nicht einfach Textpassagen außer Aucht lassen oder Korrekturen, bei-

spielsweise, wenn ein Versprecher vorliegt, vornehmen darf, da man durch diese Eignriffe „den

Text als wissenschaftliche Datenbasis missachten“ (ebenda, S. 24) würde.

In der Regel kommt das Prinzip der Wörtlichkeit nur dann zum Tragen, wenn es einen Bruch
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zwischen intendiertem und tatsächlich gesprochenen Text gibt. Denn an dieser Stelle kann

ein Bruch zwischen manifester und latenter Sinnstruktur des Textes vorliegen. Würde nur

der intendierte Text interpretiert, ginge die latente Bedeutung der Äußerung verloren, was

im Widerspruch zur Zielsetzung der Objektiven Hermeneutik steht: „Die methodologische

Grundausrichtung der Objektiven Hermeneutik als Verfahren der Rekonstruktion latenter

Sinnstrukturen, vor allem in Abgrenzung zu einer inhaltsparaphrasierenden und auf Aussage-

und Sprecherintention orientierten Text- und Sinninterpretation, findet im Prinzip der Wört-

lichkeit seinen methodentechnischen Niederschlag. Wer den Text beim Wort nimmt, hat schon

durch diese einfache Operation den entscheidenden Schritt getan, die Beschränkungen einer

intentional-deskriptiven Interpretation zu überwinden“ (ebenda, S. 26). Somit wirkt das Prin-

zip der Wörtlichkeit unterstützend bei dem Ziel, die erforderliche Distanz zum Text dadurch zu

wahren, dass nicht die eigenes Lebenswelt und Blickweise mit in die Interpretation einfließen.

Sequenzialität

Das Prinzip der Sequenzialität ist für die Objektive Hermeneutik derart bedeutsam, dass die

Vokabel „Sequenzanalyse“ von Oevermann häufig verwendet wird, um diese zu beschreiben

(vgl. Wernet 2009). In der Praxis bedeutet das Prinzip schlicht, dass die Interpretation ei-

nes Textes streng dem Ablauf desselben folgt. Was sich zunächst trivial anhört, hat eine tiefer

gehende Bedeutung: unzulässig ist so nämlich, für die Erklärung von Textpassagen den nachfol-

genden Text zur Deutung heranzuziehen. Diese Versuchung entsteht beim Interpretieren eines

Textes häufiger, als man denkt, gerade dann, wenn sich der Text sperrig gibt. Wenn man dieser

Versuchung nachgibt, begeht man einen eklatanten Regelverstoß: „Damit verlässt man aber

die methodisch kontrollierte Interpretation. Die eigene Interpretationsschwierigkeit delegiert

man an die Interpretationsvorschläge, die der Text selbst ausspricht. Statt die Strukturlogik

des Falls zu rekonstruieren, setzt man die Selbsteinschätzung des Falls als Interpretationser-

gebnis“ (Wernet 2009, S.29).

Die Forderung nach Sequenzialität wird verständlich, wenn man sich noch einmal die Grund-

annahme der Objektiven Hermeneutik vor Augen führt, dass ein Text Bedeutungsstrukturen

geneniert (siehe Abschnitt Methodologie). Ein Sprecher entscheidet sich an jeder Sequenz-

stelle eines Textes für eine Möglichkeit, diesen fortzuführen, (und damit gegen viele andere

Möglichkeiten), und gibt damit dem Text eine ganz bestimmte Bedeutungsstruktur. Diese
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besteht bereits, bevor der nachfolgende Text gesprochen wird und könnte bei dessen vorzeiti-

ger Betrachtung anders, schlimmstenfalls verfälscht analysiert werden. Wernet (2009, S.28f)

macht dies an einem einfachen Beispiel klar: Bei einem aus Frage und darauf folgender Ant-

wort bestehendem Dialog ist es wichtig, zunächst die Frage, ohne Blick auf die Antwort, zu

interpretieren. Die Interpretation der Antwort hingegen macht nur Sinn, „wenn die Bedeutung

der vorausgegangenen Frage geklärt ist.“

In den Worten Meyerhöfers (2005, S.68f):

„Nichtsequentiell arbeitende Hermeneutiken verzichten auf die konsequente Aus-

deutung einer Knotenentscheidung, sie generieren aus einer Textstelle eine Hypo-

these und suchen dann im Text nach Beleg- oder Widerlegungsstellen für diese

Hypothese. Sie benutzen den Text also als eine Art Selbstbedienungsladen oder

Steinbruch für Argumente für oder gegen ihre Hypothese. Forschungspsycholo-

gisch birgt das die Gefahr eines auf die Hypothese verengten Blicks in sich: Von

der Selbstkritikfähigkeit des Forschers hängt ab, ob der Text noch eine Chance

hat, sich gegen die Hypothese durchzusetzen. Schwerer wiegt, dass auf diese Weise

manifeste Textelemente eher wahrgenommen werden als latente, dass die Chance

auf eine konsequente, detaillierte und erkenntnisreiche Feinanalyse der Knoten-

entscheidung verspielt wird und dass keine Strukturgesetzlichkeit erarbeitet wird

- dass also die Erkenntnishaltigkeit einer solchen Erarbeitung nicht genutzt wird.“

Extensivität

Mit der Methode der Objektiven Hermeneutik werden in der Regel nur kurze Textpassagen,

diese aber sehr penibel interpretiert. Diese Vorgehensweise rechfertigt sich durch die bereits

beschriebenen Strukturvorstellungen und die Grundannahme, dass es „keine Äußerungsform

eines sozialen Gebildes“ gibt, „das die Sinnstrukturiertheit verlassen könnte“ (Wernet 2009,

S.32). Damit findet sich diese Struktur prinzipiell in allen Äußerungen eines Individuums

wieder und kann auch prinzipiell an einer beliebigen Äußerung des Individuums herausgear-

beitet werden. „Die Rekonstruktion der Strukturlogik beansprucht, das Ganze des Gebildes im

Sinne der dieses Gebilde hervorbringenden Strukturprinzipien zu rekonstruieren. Diese struk-

turrekonstruktive Operation lässt sich an geringen Datenmengen vollständig durchführen. Die

Triftigkeit und Aussagekraft der extensiven Feinanalyse bemisst sich an der Qualität der In-
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terpretation, nicht an der Quantität des einbezogenen Datenmaterials“ (ebenda, S.33).

Zur Qualität der Interpretation, die das Extensivitätsprinzip verlangt, gehört aber nicht nur

das Vollständigkeitsgebot, d.h. das Prinzip, alles zu interpretieren, sondern dies auch in aller

Ausführlichkeit zu tun. Dies bedeutet, alle möglichen Lesarten für eine Sequenz in Betracht

zu ziehen. Wernet (2009, S.34) unterstreicht dies in aller Schärfe: „Eine Textsequenz nicht

auszuinterpretieren führt regelmäßig dazu, dass die sequenzanalytische Feinanalyse misslingt.“

Sparsamkeit

Das Prinzip, alle möglichen Lesarten für eine Textsequenz zu betrachten, wird jedoch durch das

Prinzip der Sparsamkeit dahingehend eingeschränkt, „dass nur solche Lesarten gebildet werden

dürfen, die ohne weitere Zusatzannahmen über den Fall von dem zu interpretierenden Text

erzwungen sind“ (Wernet 2009, S.35). Dies bedeutet, dass eine Lesart nicht zulässig ist, wenn

sie nur unter einer bestimmten Vorannahme Sinn macht, auf die die Textsequenz aber keinen

Hinweis gibt. Wernet (2009, S.35f) erläutert dies am Beispiel des oben wiedergegebenen

Dialogs von Schüler und Lehrer. Darin stellt der Schüler zu Beginn die Frage: „Wann geben

Sie uns die Klassenarbeiten wieder?“ Hierbei ist es unzulässig, dies derart zu deuten, dass der

Schüler diese Frage nur stellt, um den Lehrer zu ärgern und ihn vom eigentlichen Unterricht

abzulenken, denn die Frage als solche gibt keinerlei Hinweis darauf, dass dies der Fall ist. Damit

ist das Prinzip der Sparsamkeit ein Regulativ gegenüber den zuvor beschriebenen Prinzipien.

„Aus forschungspsychologischer Perspektive stehen sich die Prinzipien der Wört-

lichkeit, Kontextfreiheit und Extensivität einerseits und der Sparsamkeit anderer-

seits eigentümlich entgegen. Insbesondere das Wörtlichkeitsprinzip ist dort von

besonderer Bedeutung, wo der Interpret dazu neigt, „Fünfe-gerade-sein-zu-lassen“

und fordert ihn dazu auf, die tatsächliche Gestalt des Textes reichhaltig auszudeu-

ten. Es ermutigt zu weitreichenden Schlussfolgerungen. Das Sparsamkeitsprinzip

dagegen wendet sich gegen die Tendenz, weitreichende Schlussfolgerungen unbe-

gründet und voreilig zu ziehen. Die alltagsweltlichen Gewissheiten neigen dazu,

sich dem Datenmaterial überzustülpen. Das Sparsamkeitsprinzip arbeitet dieser

Tendenz entgegen“(Wernet 2009, S.37).
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Der Dreischritt bei der Objektiv-Hermeneutischen Interpretation

Die praktische Durchführung einer Objektiv-Hermeneutischen Textinterpretation gliedert sich

in drei Schritte: (1) Geschichten erzählen, (2) Lesarten bilden und (3) Konfrontation der Les-

arten mit dem Kontext. Diese Schritte sollen im Folgenden kurz erläutert werden.

(1) Geschichten erzählen

Zu einer vorliegenden Textsequenz werden Geschichten erzählt, in denen diese Textsequenz

sinnhaft vorkommen könnte. Natürlich werden dabei die zuvor genannten Prinzipien der Ob-

jektiven Hermeneutik berücksichtigt. An die Geschichten werden dabei zwei Forderungen ge-

stellt, nämlich:

1. Sie spielen sich in einem anderen Kontext als die zu interpretierende Textsequenz ab.

2. Die Textsequenz fügt sich sprachlich wohlgeformt in die jeweiligen Geschichten ein.

Auf diese Weise kann man viel über die Bedeutung der Textsequenz erfahren, ohne dass die

durch den Kontext möglicherweise getätigten Vorannahmen einen Einfluss nehmen könnten.

(2) Lesarten bilden

Ist man dem Prinzip der Extensivität gerecht geworden und hat alle möglichen Geschichten

gefunden, stellt man fest, welches ihre gemeinsame Struktur ist. Dabei kann es vorkommen,

dass es keine Unterschiede innerhalb der Struktur gibt, es also nur ein Muster gibt. Es kann

aber auch sein, dass es mehrere Strukturen gibt. Nach Wernet (2009, S.39) gibt es häufig

zwei oder drei Bedeutungstypen, aber selten mehr. Auf diese Art und Weise wird die Bedeu-

tung der Textsequenz unabhängig vom konkreten Fall und Kontext herausgearbeitet.

(3) Konfrontation mit dem Kontext

Zum Schluss werden die gefundenen Lesarten „mit dem tatsächlichen Äußerungskontext und

der darin eingelassenen Aussageintention des Textes“ (Wernet 2009, S.40) konfrontiert. Hier-

durch erhellt sich die Besonderheit des Falls, und eine Fallstrukturhypothese kann generiert

werden.

Im weiteren Verlauf der Interpretation werden die jeweils nachfolgenden Textsequenzen dann

dahingehend interpretiert, ob die gefundene Fallstrukturhypothese bestätigt werden kann oder

modifiziert oder gar falsifiziert werden muss. Im letzteren Fall ist dann eine neue Fallstruk-

turhypothese zu entwickeln, die selbstverständlich wieder am Text überprüft werden muss.

Der besseren Lesbarkeit von Objektiv-Hermeneutischen Interpretationen willen wird im all-
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gemeinen auf die schriftliche Darstellung der erzählten Geschichten verzichtet. Dies halte ich

im Folgenden genauso.
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Fallstudien zu „DGS und Beweis“

Eine zentrale Fragestellung der Arbeit ist, inwieweit der Einsatz einer DGS das Beweisver-

ständnis und/oder das Beweisbedürfnis der Studierenden beeinflusst oder verändert. In den

Interviews wurde deshalb die Frage gestellt, ob eine dynamische Visualisierung durch eine

DGS einen formalen Beweis ersetzen kann, wobei Bezug auf das Beispiel des Thalessatzes

genommen wurde. Konkret wurde die Frage gestellt, ob man einen Beweis des Satzes dadurch

führen kann, dass man ein rechtwinkliges Dreieck ABC mit rechtem Winkel in C mit einer

DGS konstruiert und anschließend den Punkt C auf dem Umkreis wandern lässt, während

man beständig den Winkel in C misst.

Genau dieses Beispiel behandelt auch Schupp (2010, S.111).

„Dazu zweierlei. Erstens ist ein derart erreichter Kenntnisstand (ich habe alle bzw.

mir als alle erscheinenden Fälle überprüft, bin jetzt selbst überzeugt und kann

auch andere davon überzeugen, dass es so ist) keineswegs als gering zu erachten

und jedenfalls einem Induktionsschluss aus wenigen Fällen überlegen. Zweitens

aber besteht durch den anschließenden Beweis, hier über die Zerlegung des recht-

winkligen Dreiecks in zwei gleichschenklige, die Chance, aufzuzeigen, warum es

so sein muss. Dieser Übergang vom Assertorischen ins Apodiktische, dieser „dau-

ernde Gedanke“ sollte im Geometrieunterricht der Sek I immer wieder versucht

werden. Er muss es eigentlich schon deshalb, weil unsere Schüler in unterschiedli-

chem Maße und zu unterschiedlicher Zeit von seiner sinnstiftenden Notwendigkeit

(eigentlich besser: „Scheinwendigkeit“) überzeugt werden. Nur so lässt sich übri-

gens auch rechtfertigen, dass wir zuweilen Mehrfachbeweise machen.“
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Für Schupp stellt sich demnach überhaupt nicht die Frage, den anschließenden Beweis weg-

zulassen. Stattdessen liefert dieser für ihn andere Erkenntnisse als die Visualisierung. Die

Überzeugung, dass der Sachverhalt stimmt, wird auch ohne formalen Beweis gewonnen, die

Frage nach dem „Warum?“ und den Zusammenhängen hingegen wird von diesem, und nur

von diesem geklärt. In diesem Zusammenhang regt Schupp an, zusätzlich Winkel in Punkten

zu betrachten, die außerhalb des Thaleskreises liegen und immer spitz zu sein scheinen. Hier

könne die Nutzung des Zugmodus, wie in Abbildung 5.1 dargestellt ist, einen wichtigen Schritt

hin zum Beweis liefern: „Geeignetes Ziehen von C bringt die Lösung. 4 CDB ist rechtwink-

lig und daher ∠ CDB spitz. Dynamisieren kann also durchaus auch zum Beweis hinführen“

(Schupp 2010, S.111)

<)= 57° <)= 57°

A B

D

A B 

C 

D 

C

Abbildung 5.1 – Hinführung zum Beweis durch Dynamisieren aus (Schupp 2010)

5.1 Ausgewählte Interpretationen

Im Folgenden führe ich an einigen ausgewählten Interviewsequenzen Interpretationen im Sinne

der Objektiven Hermeneutik durch, um den Vorstellungen der Studierenden zum Beweisbe-

griff im Zusammenhang mit DGS auf den Grund zu gehen. Insbesondere steht dabei auch auf

dem Prüfstand, inwieweit sich die Studierenden die o.a. optimistische Überzeugung Schupps

zu eigen gemacht haben. Zunächst möchte ich aber auf meine konkrete Fragestellung und

mögliche damit verbundene unterschwellige Prämissen eingehen.

Die Eingangsfrage lautet: „Kann die dynamische Visualisierung des Satzes des Thales für dich

einen Beweis ersetzen?“ Dabei wird offen gelassen, welche Funktion ein Beweis hat und was

überhaupt ein Beweis ist. Demzufolge ist auch der Anspruch, dem eine dynamische Visualisie-
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rung genügen müsste, um einen Beweis ersetzen zu können, nicht eindeutig festgelegt. Daher ist

es zunächst erst einmal grundsätzlich möglich, dass eine Person, für die ein Beweis ausschließ-

lich ein Mittel zur Verifikation darstellt, diese Frage anders beantwortet, als eine Person, für

die ein Beweis erklären soll, warum etwas gilt, oder die sich durch den Beweis einen Überblick

über den Sachverhalt im Sinne des lokalen Ordnens verschaffen will. Der Zusatz „für dich“

unterstreicht, dass eine persönliche Einschätzung der interviewten Person gefragt ist, und im-

pliziert damit zugleich, dass verschiedene Antworten möglich sind. Hierdurch sollen sich die

Probanden unbefangen äußern können, wobei natürlich eingeräumt werden muss, dass die In-

terviewten doch versuchen könnten, die Antwort an der potenziellen Erwartungshaltung der

Interviewerin auszurichten. Durch die Methode des leitfadenzentrierten Interviews soll dies

minimiert werden, da in dieser Nachfragen jederzeit möglich sind, so dass, falls ein solcher

Eindruck entstünde, auf diese Art und Weise Klärung erreicht werden könnte.

Gleichzeitig wird durch die Formulierung der Frage eine Hierarchie zwischen Beweis und dyna-

mischer Visualisierung aufgebaut: Die „Qualität“ des zu Ersetzenden (des formalen Beweises)

ist über jeden Zweifel erhaben, die „Qualität“ des Ersatzes (der dynamischen Visualisierung)

möglicherweise noch nicht so eindeutig zu verorten. Übersetzt in den inhaltlichen Kontext be-

deutet dies, dass der Stellenwert eines Beweises aus fachmathematischer Sicht, bezogen auf die

klassischen Sätze der Geometrie, unstrittig ist. Der Stellenwert der dynamischen Visualisie-

rung jedoch könnte in diesem Zusammenhang für die Studierenden nicht so klar einzuschätzen

sein. Die Interviewten werden folglich bereits durch die Formulierung der Frage latent damit

konfrontiert, dass die Interviewerin dem Beweis Wertschätzung entgegenbringt, während die

Würdigung, die sie einer dynamischen Visualisierung zuteil werden lässt, nicht eindeutig ein-

geschätzt werden kann.
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5.1.1 Fallstudie „Charlotte“

Der folgende Interviewauszug entstammt dem Interview mit Charlotte, einer Studierenden im

dritten Semester, die zum Zeitpunkt des Interviews die Vorlesung „Elemente der Geometrie“

zum zweiten Mal belegt, da sie die zugehörige Zwischenprüfungsklausur beim ersten Mal nicht

bestanden hat.

I: Kann die dynamische Visualisierung des Satz des Thales für dich

einen Beweis ersetzen?

1

2

Ch: (...) Mmm (8 sec Pause). Also im ersten Moment würde ich „Ja“

sagen,

3

4

I: Ja.5

Ch: weil man es eben (.) direkt vor sich hat,6

I: Hmh. Ja.7

Ch: Aber (..) wenn man sich das genauer überlegt, und, wie ich eben

auch schon gesagt hatte, wenn man einfach irgendetwas hinzieht,

dann kann das ja auch ungenau sein, dann müsste man, glaube ich,

das nochmal speziell beweisen.

8

9

10

11

I: Hmh. Hättest du denn, wenn du es jetzt so siehst, auf dem Thales-

kreis, es bleibt immer 90 Grad, noch Zweifel daran, dass es so

ist?

12

13

14

Ch: (..) Mm. (.) Das ist schwierig zu sagen. Ehm, man ist da, glaube

ich, auch so’n bisschen so, ja, wenn man’s sieht, dann wird es

wohl schon so sein. Und, ehm, ja, vielleicht ist man da auch

ein bisschen bequem und vertraut einfach auf das Programm und

sagt sich dann: Ja, das stimmt schon, (..) aber ich (.) würde mal

vermuten, wenn man (.) sich nochmal (.) das genauer hinterfragt,

wär das schon besser.

15

16

17

18

19

20

21

I: Was würd das noch zusätzlich bringen?22

Ch: Ja, dann, da hätte man ne (.) Gewissheit, eben, dass das (.)

wirklich so ist. Also man, wie ich schon sagte, man hat diese

(.) mathematischen Sätze vorgegeben, und bestimmte (.) Regeln und

das ist so und das ist so, und, wenn man das dann damit nochmal

beweisen kann, (.) dann denke ich mal, dass das dann auch 100-pro-

zentig so ist.

23

24

25

26

27

28

I: Hmh. Also nur das Sehen würd dir jetzt nicht reichen?29
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Ch: Im ersten Moment schon, aber dann denke ich mal nicht, ne.30

Charlotte zögert lange, bevor sie eine Antwort gibt. Schließlich erwidert sie:

Ch: (...) Mmm (8 sec Pause). Also im ersten Moment würde ich „Ja“

sagen,

3

4

Charlottes Äußerung lässt den Schluss zu, dass sie sich mit einer neuen inhaltlichen Über-

legung konfrontiert sieht, wobei dieses Neue anscheinend überraschend von außen an sie her-

angetragen wird. Bei der Überraschtheit kann es sich grundsätzlich um eine zeitliche oder um

eine inhaltliche handeln, was bemerkenswert ist, da Charlotte weder zeitlich noch inhaltlich

von der Frage überrascht sein sollte: Zeitlich nicht, da sie vor ihrer Teilnahme an der Studie

über die inhaltliche Ausrichtung der Interviews informiert worden ist, inhaltlich nicht, da die

„Beweiskraft“ einer dynamischen Visualisierung in der von ihr besuchten Vorlesung an ver-

schiedenen Stellen thematisiert worden ist.

Trotz ihrer, für ein Zwiegespräch sehr langen, Pause von 8 Sekunden sieht Charlotte sich nicht

in der Lage, die Situation angemessen zu analysieren, sondern scheint das Gefühl zu haben,

spontan oder zumindest zeitnah eine Einschätzung der Situation abgeben zu müssen, ohne

diese einer sachlichen Untersuchung unterziehen zu können, sei es mangels Hilfsmittel oder

fehlender zusätzlicher Informationen von außen. Die alternativen Aussagen: „Oh, lass uns mal

überlegen, was ein Beweis ist“, oder etwas lapidar: „Ja, die DGS kann einen Beweis ersetzen“,

zieht sie nicht in Betracht. Stattdessen gibt sie zu verstehen, dass sie mit der Antwort über-

fordert ist und keine fundierte Überlegung anstellen kann, sondern lediglich eine unsichere,

bezüglich der Begründung nicht durchdachte Einschätzung, bei der deutlich die Ahnung mit-

schwingt, dass diese sich im Nachhinein als unangemessen erweisen kann. Die Nutzung des

Konjunktivs („würde sagen“) signalisiert eine Distanzierung zum eigenen Sagen, hier zum „Ja“-

Sagen. Dies spiegelt die Unsicherheit Charlottes bezüglich der Sache wider. Schon hier deutet

sich die Existenz einer äußeren Instanz an, die in ihren weiteren Aussagen noch deutlicher her-

vortritt und die bei ihrer Entscheidung eine Rolle zu spielen scheint, ohne dass diese jedoch

näher benannt wird. Denkbar wären beispielsweise der Professor aus Charlottes Lehrveran-

staltung oder die „Community“ der Mathematikdidaktiker und -didaktikerinnen. Es kann auch
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nicht ausgeschlossen werden, dass Charlotte der Erwartungshaltung der Interviewerin an dieser

Stelle gerecht werden will, deren Wertschätzung gegenüber der dynamischen Visualisierung,

wie eingangs herausgearbeitet, nicht klar bestimmt werden kann. Deutlich wird jedenfalls,

dass Charlotte sich selbst nicht in der Lage sieht, zu entscheiden, welchen Anforderungen ein

Beweis genügen muss, sie ist hier auf eine Vorgabe von außen angewiesen.

Ch: weil man es eben (.) direkt vor sich hat,6

Das „weil“ verweist darauf, dass Charlotte davon ausgeht, ihre Einschätzung begründen zu

müssen. Dabei fußt ihre Begründung auf dem direkten und umittelbarem Zugang, der durch

die dynamische Visualisierung möglich ist. Dieser derart direkte Zugang bedarf demzufolge

keines Mittlers, ist somit quasi „un-vermittelt“. Dabei hat die Wortwahl „eben“ in diesem Kon-

text einen bekräftigenden und abschließenden Charakter: ein Sachverhalt ist „eben“ so, was

hinzunehmen ist und keine weitere Hinterfragung erforderlich macht. Für Charlotte scheint

durch die Visualisierung das Handlungsobjekt in seiner Gesamtheit direkt vor ihr zu liegen,

ist dadurch nach Belieben verfügbar und lässt keine weiteren Fragen mehr offen, so dass der

„un-vermittelte“ Zugang für sie bereits der Beweis ist.

Im Folgenden fasse ich das bisherige Ergebnis der Interpretation zur „Fallstrukturhypothese

Charlotte“ zusammen.

Fallstrukturhypothese „Charlotte“

Die Einforderung einer eigenen Stellungnahme zum Verhältnis von DGS und Be-

weis lässt deutlich Charlottes fachliche Unfähigkeit zu einer sachlichen Analyse zu

Tage treten. Dabei ist ihre Haltung geprägt von Distanz zum eigenen Sagen. Gleich-

wohl zeigen sich in ihren Äußerungen Andeutungen des Bewusstseins um eine äußere

Instanz, deren Ansprüchen ein Beweis unterliegt. In pseudo-bewusster Abgrenzung

zu diesen Ansprüchen spricht sie der geometrischen Darstellung der Situation mit

einer DGS aufgrund des un-vermittelten Zugangs abschließend die Qualtität eines

Beweises zu.
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Überprüfung der Fallstrukturhypothese in den weiteren Textsequenzen

Die Fallstrukturhypothese wird nun mit den weiteren Äußerungen, die Charlotte im Verlauf

der Interviewsequenz macht, abgeglichen, gegebenenfalls differenziert und auf Falsifikations-

stellen hin überprüft.

Ch: Aber (..) wenn man sich das genauer überlegt, und, wie ich eben

auch schon gesagt hatte, wenn man einfach irgendetwas hinzieht,

dann kann das ja auch ungenau sein, dann müsste man, glaube ich,

das nochmal speziell beweisen.

8

9

10

11

Zunächst relativiert Charlotte ihre Ansicht dahingehend, dass sie nun eine „genauere Überle-

gung“ (Z.8) in Betracht zieht, durch die ihre Eingangsabschätzung revidiert werden könnte. Die

Formulierung „glaube ich“ (Z.10) ist eine weitere Bestätigung für die Unsicherheit, die Char-

lotte damit hat, einzuschätzen, ob ein Beweis logisch schlüssig bzw. gültig ist. Die Wendung

„dann müsste man“ (Z.10) verdeutlicht ihre Orientierung an einer äußeren Instanz, wobei sie

deren Anspruch an einen Beweis allerdings nur erahnt. Denn dass Ansprüche an einen Beweis

durchaus unterschiedlicher Natur sein und höheren oder geringeren Forderungen unterliegen

können, wird durch ihre Rede vom „speziell beweisen“ (Z.11) offenbar. Hier eröffnet sich ein

erweiterter Blick auf Charlottes Verständnis des Begriffs „Beweis“ (vgl. Abbildung 5.2).

irgendetwas
hinziehen

Gradueller Beweisbegriff

mathematische 
Sätze und Regeln

Gewissheit
100-prozentigungenau

sehen überlegen
genauer
überlegen

nochmal speziell
beweisen

Charlottes Anspruch Externer Anspruch

Abbildung 5.2 – Rekonstruktion von Charlottes graduellem Beweisverständnis
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Das Beweisverständnis von Charlotte ist nicht dichotom in dem Sinne, dass eine Abfolge von

Argumenten Beweiskraft oder keine Beweiskraft hat, sondern für sie existiert eine graduelle

Abstufung zwischen diesen beiden Polen, indem es „Beweise“ unterschiedlicher „Genauigkeit“

gibt, abhängig vom jeweilig erforderlichen Bestätigungsgrad und vom jeweiligen Beweisbedürf-

nis.

I: Hmh. Hättest du denn, wenn du es jetzt so siehst, auf dem Thales-

kreis, es bleibt immer 90 Grad, noch Zweifel daran, dass es so

ist?

12

13

14

Ch: (..) Mm. (.) Das ist schwierig zu sagen. Ehm, man ist da, glaube

ich, auch so’n bisschen so, ja, wenn man’s sieht, dann wird es

wohl schon so sein. Und, ehm, ja, vielleicht ist man da auch ein

bisschen bequem und vertraut einfach auf das Programm und sagt

sich dann: Ja, das stimmt schon, (..) aber ich (.) würde mal

15

16

17

18

19

vermuten, wenn man (.) sich nochmal (.) das genauer hinterfragt,

wär das schon besser.

20

21

Durch die Antwort: „Das ist schwierig zu sagen“ (Z.15) wird die Konfliktsituation, in der

Charlotte sich befindet, deutlich. Wieder ist sie nicht in der Lage, die Frage mit „Ja“ oder

„Nein“ zu beantworten, obwohl sie mit „wenn man’s sieht“ (Z.16) auf den direkten Zugang

verweisen kann. Stattdessen weicht sie einer Festlegung durch Formulierungen wie „glaube

ich“, „so’n bisschen so“, „wird es wohl schon so sein“ und „vielleicht“ (Z.15-17) aus. Durch

den mehrfachen Wechsel von der Ich-Form auf das unpersonale „man“ zeigt sich wiederum

ihre Orientierung an einer äußeren Instanz. Schließlich ringt sie sich zu der Antwort „wär das

schon besser “ (Z.18-21) durch. Dies ist sehr aufschlussreich in Bezug auf Charlottes ausgepräg-

te Passivität: Das genauere Hinterfragen „wäre“ zwar „schon besser“, aber es wird deutlich,

dass Charlotte keinen aktuellen Bedarf hat, dies dann auch tatsächlich umzusetzen, was durch

die Nutzung des Konjunktivs noch unterstrichen wird. Die für sie fehlende Notwendigkeit einer

„genaueren Hinterfragung“ bestätigt, dass für Charlotte durch das Sehen ein Status erreicht

wird, der die Zweifel bezüglich der Rechtfertigung, dass der Winkel immer 90 Grad groß ist,

ausräumt. Der Sachverhalt ist also für sie auch ohne „genaueres Hinterfragen“ bewiesen, so

dass sich Charlottes Begriffsverständnis von Beweisen, wie es bereits in den vorangegange-
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nen Aussagen angeklungen ist, an dieser Stelle bestätigt. In diesem Begriffsverständnis gibt es

„Beweise“ unterschiedlicher Genauigkeit und unterschiedlicher „Beweis“kraft, die unterschiedli-

chen Ansprüchen genügen können, je nach dem, wie „genau“ man einen Beweis haben möchte.

Die Formulierung: „aber ich würde mal vermuten“ (Z.18-19) weist darauf hin, dass dabei die

„höhere Genauigkeit“ nicht von Charlotte selbst eingefordert wird, sondern dass sie die Erfah-

rung gemacht hat, dass in der „mathematischen Welt“, in der sie sich bewegt (Vorlesungen,

Übungen, Klausuren) diese Forderung von außen an sie herangetragen wird. So zeigt sich auch

an dieser Stelle bei Charlotte ein Bewusstsein um eine äußere Instanz, die die Autorität hat,

einen bestimmten Grad an Genauigkeit einzufordern. Hier könnte es möglicherweise die Person

der Interviewerin sein, der Charlotte unterstellt, einen höheren Anspruch an einen Beweis zu

haben. Um dieser Instanz Genüge zu tun, „wäre das schon besser, das genauer zu hinterfragen“

(Z.20-21).

I: Was würd das noch zusätzlich bringen?22

Ch: Ja, dann, da hätte man ne (.) Gewissheit, eben, dass das (.)23

wirklich so ist. Also man, wie ich schon sagte, man hat diese

(.) mathematischen Sätze vorgegeben, und bestimmte (.) Regeln und

das ist so und das ist so, und, wenn man das dann damit nochmal

beweisen kann, (.) dann denke ich mal, dass das dann auch 100-pro-

zentig so ist.

24

25

26

27

28

Auch hier zeigt sich wieder eine entfremdete und distanzierte Wahrnehmung von mathemati-

schen Sätzen und Regeln. Diese sind von außen „vorgegeben“ (Z.25) und sollen dafür verwendet

werden, „nochmal“ (Z.25) einen Beweis zu führen. Damit zeigt sich zum einen, dass Charlotte

sich außerhalb dieser mathematischen Welt der Sätze und Regeln verortet: es wird von ihr ver-

langt, eine bestimmte Vorgehensweise an den Tag zu legen, ohne dass eine Sinnhaftigkeit dieser

Vorgehensweise für sie deutlich wird. Stattdessen scheint Charlotte sich diesem Regelwerk bloß

zu unterwerfen. Zum anderen wird zum wiederholten Mal das graduelle Beweisverständnis von

Charlotte deutlich, in dem der erhöhte Anspruch gewisser Personen oder Autoritäten akzep-

tiert wird. Ebenso deutlich wird aber auch, dass Charlotte sich diesen höheren Anspruch nicht

zu eigen macht, wodurch letztlich dessen Sinn für sie in Frage steht.

Auf die abschließende Frage, ob nur das Sehen jetzt nicht reichen würde, wählt Charlotte
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dieselben Worte wie eingangs: „Im ersten Moment schon“ (Z.30), und schließt dann an: „aber

dann denke ich mal nicht, ne“ (Z.30). Die Erkenntnis, dass die Visualisierung allein nicht

ausreichend sein wird, wird nicht von Charlottes innerer Überzeugung getragen, sondern von

ihren Erfahrungen mit der „Mathematikwelt“, in der es einen höheren Anspruch als ihren ei-

genen gibt.

Modifizierte Fallstrukturhypothese „Charlotte“

Die Einforderung einer eigenen Stellungnahme zum Verhältnis von dynamischer Vi-

sualisierung und Beweis lässt offenkundig Charlottes fachliche Unfähigkeit zu einer

sachlichen Analyse zu Tage treten. Dabei ist ihre Haltung geprägt von Passivität und

Distanz zum eigenen Sagen. Deutlich zeigt sich in ihren Äußerungen, dass sie um eine

etablierte äußere Instanz und deren Ansprüche weiß. In pseudo-bewusster Abgren-

zung zu diesen Ansprüchen spricht sie der geometrischen Darstellung der Situation

in einer DGS aufgrund des un-vermittelten Zugangs abschließend die Qualtität ei-

nes Beweises zu. Dabei gibt es in ihrer Vorstellung ein Spektrum von „Beweisen“

unterschiedlicher Genauigkeit und unterschiedlicher „Beweis“kraft. Während ihr ei-

gener Anspruch an einen Beweis durch das „Sehen“, dem sie eine geringe Genauigkeit

attestiert, befriedigt wird, ist ihr bewusst, dass in der „mathematischen Welt“ ein

höherer Anspruch besteht. Die Existenz dieses höheren Anspruchs erkennt Charlotte

an, ohne diesen sich selbst zu eigen zu machen.
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5.1.2 Fallstudie „Diana“

Zum Zeitpunkt des Interviews studiert Diana auf das Grundschullehramt im zweiten Semester

und besucht damit die Veranstaltung „Elemente der Geometrie“ zum ersten Mal. In der Klau-

sur, die erst einige Wochen nach der Durchführung des Interviews geschrieben wurde, hat sie,

gemessen am besten Klausurteilnehmer, nur ein Drittel der Punkte erzielt. Sie hat weder die

Zwischenprüfung bestanden noch Grundkenntnisse nachgewiesen.

I: Kann diese dynamische Visualisierung für dich einen Beweis

ersetzen?

1

2

D: Ja! Weil ich, äh, dadurch dass ich das sehe, ähäm, also zum

Beispiel in der Vorlesung ...

3

4

I: Ja.5

D: ...wurde das nochmal viel deutlicher als zum Beispiel, wir hatten

das ja auch in der Schule. Aber da war das halt so, dass der

Lehrer das (.) mit Kreide an die Tafel gemalt hat und dann halt

seinen (.) Zirkel da hatte und sein Geodreieck, und (.) da konnte

man sich halt diese Verschiebung nicht so vorstellen. Also zum

6

7

8

9

10

Beispiel: Satz des Thales ist das ja, wie du eben gesagt hast,

äh, wenn man den jetzt auf diesem, auf diesem Kreis bewegt, dass

der Winkel sich nicht verändert, halt nur die Seitenlängen sich

verändern.

11

12

13

14

I: Hhmm hhmm.15

D: Und das konnte man sich halt damals an der Tafel nicht vorstellen,

da hat man, manchmal hat er es in die linke Ecke gezeichnet, den

rechten Winkel, und dann war das halt schon immer schwieriger

vorzustellen wenn man das (.) jetzt auf die andere Seite (.)

ziehen sollte. Also ich find, da ist das Programm natürlich sehr

sehr vorteilhaft, weil man sich das viel besser (..), weil man das

dadurch viel einfacher versteht und auch sich besser vorstellen

kann, wenn man halt diesen Punkt (.) sehen kann.

16

17

18

19

20

21

22

23

I: Ja ja. Ähm (.) Also im Prinzip, wenn man das jetzt macht mit dem

Programm, man guckt und lässt den Punkt da (.) den ganzen Kreis

lang laufen, und sieht tatsächlich: ja, der Winkel bleibt immer 90

24

25

26
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Grad, dann ist das im Prinzip27

D: (unterbricht) Ein Beweis, dass der Satz des Thales anwendbar28

I: Ja?29

D: ist.30

I: Ja. Und jetzt haben wir das in der Vorlesung gemacht, und wir

haben aber trotzdem noch so’n formalen Beweis angeschlossen.

Bringt das dann noch was an zusätzlicher Information oder hat

das noch irgend..

31

32

33

34

D: Ja also ich find, also es gibt bestimmt Leute, die, ähäm, den Satz

des Thales, sich also, die das dann nicht vorstellen können, aber

die natürlich dann noch (.) mehr Informationen dazu brauchen. Also

bei den Meisten, die haben dann diesen Aha- Effekt dann gleich,

wenn die das da so sehen

35

36

37

38

39

I: Hmh (bejahend)40

D: aber halt dieses, eh, (..) manche brauchen halt nochmal (.) nen

extra (.) Anstoß oder (.) diesen extra Beweis, damit sie das

nachvollziehen können. (...)

41

42

43

I: Weil sie hier damit noch nicht so, so zurecht kommen, oder?44

D: Ja, und weil die einfach, ähä, das nicht umsetzen können,

vielleicht? Also, ich weiß nicht, also, ob die das vielleicht, eh,

nochmal als (.) Formel oder ich weiß nicht was brauchen, um das,

also wirklich (.) später auch mal in einer Aufgabe anzuwenden.

45

46

47

48

Die Frage, ob die dynamische Visualisierung einen Beweis ersetzen kann, wird von Diana

ohne zu zögern und sehr nachdrücklich mit „Ja! “ (Z.3) beantwortet. Zur Begründung führt

sie an, dass durch das „Sehen“ (Z.3) „das nochmal viel deutlicher “ (Z.6) wird.

Bevor ich jedoch versuche, Dianas Verständnis von einem Beweis herauszuarbeiten, möchte

ich zunächst analysieren, was Diana überhaupt unter dem Satz des Thales versteht. Hierzu

äußert sie sich in den Zeilen 11 bis 14:

D: [...] Satz des Thales ist das ja, wie du eben gesagt hast,

äh, wenn man den jetzt auf diesem, auf diesem Kreis bewegt, dass

der Winkel sich nicht verändert, halt nur die Seitenlängen sich

verändern.

11

12

13

14
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Diana bezieht sich in Zeile 11 auf eine Äußerung der Interviewerin (“wie du eben gesagt

hast“), die vor dem hier abgedruckten Interviewauszug gefallen ist und in der die Aussage des

Thalessatzes formuliert wurde. Diese greift Diana auf und gibt ergänzend einen Hinweis auf die

Seitenlängen des Dreiecks. Für sie gehören demnach nicht nur die Konstanz des Winkels in C

(vgl. Abb. 5.3) zum Thalessatz dazu, sondern auch die anliegenden Seiten, deren „Längen sich

verändern“, die folglich je nach Lage von C länger oder kürzer werden. Hierdurch wird ganz

deutlich, dass für Diana ein deskriptives Moment stark im Vordergrund steht. Sie identifiziert

den gesamten Komplex des Konstruierens, die Lageveränderung von C und das Beobachten der

Winkelgröße und der Seitenlängen mit dem Satz des Thales. Damit bezieht sie Überlegungen,

Beobachtungen und auch Heuristiken mit ein, die angewandt werden können, um überhaupt

auf die Idee zu kommen, dass der Winkel in C konstant bleibt. Ihre Vorstellung geht damit

über die rein inhaltliche Aussage des Thalessatzes „In einem Kreis sind alle Winkel über dem

Durchmesser rechte.“ hinaus und ist deutlich dynamisch geprägt.

Diana erinnert sich daran, dass es ihr in der Schule schwergefallen ist, sich diese komplexe

Situation vorzustellen. Dabei hat sich ihr eingeprägt, dass die Lehrperson, die in der Schule

einen Thaleskreis mit Zirkel und Geodreieck an die Tafel gezeichnet hat, „es manchmal in

die linke Ecke gezeichnet hat“. Anscheinend bezieht sich Diana hier auf ein ihr verhaftetes

Tafelbild, das prototypisch die „Thalessituation“ darstellt (vgl. Abb. 5.3).

A B

C .

Abbildung 5.3 – Prototypische Darstellung zum Satz des Thales

In der damaligen Schulsituation hatte Diana Schwierigkeiten, sich eine andere Lage von C

vorzustellen. In ihrer Erinnerung war sie damit konfrontiert, verschiedene Lagen von C „sehen“

zu sollen, wie ihre Bemerkung, dass sie „das jetzt auf die andere Seite ziehen sollte“ (Z.19-20)

zeigt. Es kann zwar nicht ausgeschlossen werden, dass der Sprachgebrauch des „Ziehens“ im

damaligen Unterricht tatsächlich vorkam, doch ist zu vermuten, dass sie hier die Terminologie

der computerbasierten Geometrie, die sie aktuell betreibt, auf die damalige Lernumgebung
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projiziert. Wie der nachfolgende Transkriptauszug zeigt, ist in dieser Situation für Diana das

„Programm“ sehr hilfreich. Aus der Gegenüberstellung der schulischen Erfahrung mit der aktu-

ellen Situation (Vorlesung und Übungsbetrieb mit Einsatz von DGS) kann geschlossen werden,

dass sie an dieser Stelle das Programm mit der dynamischen Visualisierung gleichsetzt: Durch

diese können die Veränderungen, die sie sich nicht vorstellen kann, gesehen werden.

D: [...] Also ich find, da ist das Programm natürlich sehr

sehr vorteilhaft, weil man sich das viel besser (..), weil man das

dadurch viel einfacher versteht und auch sich besser vorstellen

kann, wenn man halt diesen Punkt (.) sehen kann.

20

21

22

23

Aber es ist nicht nur die „Vorstellung“ (Z.22), die Diana durch die Visualisierung ermöglicht

wird. Darüber hinaus ist es für sie auch noch das „Verstehen“, das mit Hilfe des Mediums

„viel einfacher “ (Z.22) erfolgen kann. Beides wird durch das „Sehen“ (Z.3) ermöglicht. Dabei

deute ich ihre Aufzählung derart, dass für sie der Schwerpunkt auf dem „einfacheren Verstehen“

liegt, während das „bessere Vorstellenkönnen“ auch eintritt, aber eher als Nebenprodukt. Somit

gelten für Diana die Implikationen:

„Wenn ich sehe, dann wird es deutlicher, und wenn es deutlicher wird, dann kann ich es

einfacher verstehen und mir auch besser vorstellen.“

Diese Implikationen sind in der nachfolgenden Graphik strukturell dargestellt:

besser
vorstellen
können

einfacher
verstehen

deutlicher
werdensehen

Abbildung 5.4 – Rekonstruktion von Dianas Beweisverständnis

Die urspüngliche Frage, ob die dynamische Visualisierung einen Beweis ersetzen kann, wird

von Diana mit „Ja! “ beantwortet. Dabei führt sie als Begründung an, dass durch die Vi-
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sualisierung die obige Implikationskette durchlaufen werden kann, was in einem „einfacheren

Verstehen“ und „besserem Vorstellenkönnen“ resultiert.

Bender (1991) analyisert in seinen Ausführungen zur Ausbildung von Grundvorstellungen

und Grundverständnissen (GVV) die Bedeutungen der Begrifflichkeiten „Vorstellungen“ und

„Verständnisse“ und stellt zunächst fest, dass sie „unterschiedlich verstanden“ werden und „sich

einer verbindlichen, einigermaßen scharfen Definition“ (ebenda, S.52) entziehen. In seinem

Konzept der GVV sind sie jedoch fest miteinander verknüpft.

„Mit ‚Vorstellungen‘ bezeichnet man traditionell (innere) anschauliche Repräsen-

tationen eines Objekts, einer Situation, einer Handlung usw., deren sensorische

Grundlagen im Langzeitgedächtnis gespeichert sind und die in bewußten Prozes-

sen aktiviert werden. Dabei wird ein solcher Prozeß auf einen bestimmten Sinn hin

organisiert, den der Vorstellende schon als Ziel mit einbringt [...]. Dieser konstitu-

ierende Beitrag von Sinn weist bereits darauf hin, daß Vorstellen ohne Verstehen

(!) unmöglich ist“ (ebenda, S. 52).

Eine Vorstellung ist folglich von einem Subjekt gebildet und verinnerlicht und kann, falls er-

forderlich, aktiv ins Gedächtnis gerufen werden, um einen Verstehensprozess voranzubringen.

Der Begriff des „Verstehens“ ist begrifflich diffuser, da er je nach Kontext unterschiedlich ge-

deutet werden kann. Bender (1991) unterscheidet vier verschiedene Gegenstandsbereiche, die

in diesem Zusammenhang bedeutsam werden: (1) Menschen, Handlungen, Situationen verste-

hen, (2) Äußerungen medial verstehen, (3) Äußerungen inhaltlich verstehen und (4) einen

Sachverhalt verstehen (vgl. ebenda, S.53f). Für das Konzept der GVV ist dabei (4) von rele-

vanter Bedeutung, doch natürlich dürfen auch in den anderen Kategorien keine Dissonanzen

auftreten, um Verständnis zu erzielen.

Seiler (1984, S.57) trifft drei Unterscheidungen hinsichtlich des Verstehens, indem er zwischen

Verstehen von „Worten“, von „Ereignissen“ und „Sachverhalten“ differenziert. Das Verstehen

von Worten durch den Hörer bedeutet hier, die Absicht des Sprechers zu erkennen und stellt

damit „die gelingende und bewußt registrierte Einordnung eines Wortes oder der sprachlichen

Äußerung eines Redenden in den begrifflichen Wissenskontext eines hörenden Subjektes“ dar

(ebenda, S. 57). Gleichzeitig finden der Kontext der Äußerung und die umgebende Rahmen-
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situation Eingang in die Interpretation durch den Hörer, ebenso, wie eine Wertung bezüglich

der Angemessenheit der Äußerung, also der Konformität mit hergebrachten Erfahrungskate-

gorien, erfolgt.

Beim Verstehen von Ereignissen hingegen „rekonstruieren, beschreiben, ordnen oder erklären

[wir, G.W.] Phänomene begrifflich. Das trifft insbesondere zu, wenn wir bisher unverbundene

Ereignisse in einen Zusammenhang bringen, indem wir entweder ein Erklärungsgefüge in sie

hineininterpretieren oder aber einen weitergehenden Sinnzusammenhang herstellen“ (Seiler

1984, S.57). Die beobachteten Ereignisse werden demzufolge in das bestehende Begriffsnetz

eingeordnet und eingebunden. Seiler stellt die individuelle Komponente hinsichtlich des Ver-

stehens von Ereignissen besonders heraus: „Es handelt sich um die subjektive Seite eines als

Problemlösungsprozeß objektivierten Geschehens, das von einem kognitiven Konflikt begleitet

und bedingt war“ (ebenda, S. 58).

Beim Verstehen eines Sachverhaltes schließlich treffen Verstehen von Worten und Verstehen

von Ereignissen aufeinander. Der Sachverhalt wird „als Beispielfall einer allgemeineren be-

grifflichen Kategorie oder Beziehung erkannt und eingeordnet [..]. Hier handelt es sich um

Subsumptionen, d.h. um Verstehensakte eher logischer Art, die auf extensionalen Beziehun-

gen beruhen und hierarchische Ordnungen konstituieren“ (ebenda, S. 58).

Seiler ist wichtig, die Gemeinsamkeiten der drei Bedeutungen des Wortes „Verstehen“ her-

auszustellen:

„Erstens handelt es sich bei jeder Art des Verstehens um ein subjektives Ge-

schehen. Wir bezeichnen damit einmalige, in ihrer situativen Bedingtheit nicht

wiederholbare Akte eines individuellen Subjektes.

Zweitens schreiben wir diesem Akt einen wenigstens minimalen Bewußtseinsanteil

zu. Von Verstehen sprechen wir nur, wenn dem verstehenden Subjekt beim ge-

danklichen Begreifen, beim handelnden Problemlösen oder beim Verstehen sprach-

licher Äußerungen sein eigenes begriffliches Bemühen und Handeln und wenigs-

tens einige der zentralen Komponenten, auf die sich sein Verstehen stützt, bewußt

sind. Noch anders: Der Verstehende registriert auf einer anderen Ebene, mit an-

deren Begriffen, wenigstens die Tatsache, daß sein Handeln Erfolg hat oder daß

ihm eine begriffliche Einordnung gelingt“ (ebenda, S. 58f).
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Das „Verstehen“, das für Diana durch den Einsatz einer dynamischen Geometriesoftware ver-

einfacht wird, ist für sie die epistemologische Grundlage dafür, die Visualisierung als Beweis zu

akzeptieren. Demnach scheint sie einen Beweis mit dem Erzielen von „Verstehen“ gewisserma-

ßen gleichzusetzen. Doch die Frage, warum die Winkel im Halbkreis immer rechte sind, stellt

sich für sie anscheinend nicht, denn darauf geht sie an keiner Stelle ein. Verstehen bedeutet

demnach für sie nicht, zu wissen, warum eine Aussage gilt oder wie ein Sachverhalt in die

bereits vorhandene Wissensstruktur eingebunden werden kann. Stattdessen bedeutet für sie,

„zu verstehen“, eine Vorstellung davon im Kopf zu haben, welche Komponenten des Dreiecks

sich verändern und welche invariant sind. Dies ist sicherlich auch durch ihre deskriptive Sicht

auf den Sachverhalt „Thalessatz“ bedingt. Der Beweis ist nach den obigen Ausführungen ins-

gesamt für Diana ein Zugang, der das Nachvollziehen dieser Veränderungen, Invarianten und

Zusammenhänge ermöglicht. Dieses „Nachvollziehen“ allerdings schließt nicht ein, sich bewusst

zu machen und zu begreifen, welche Veränderungen an welcher Stelle und aus welchen Grün-

den erfolgen, sondern spielt sich ausschließlich auf der Ebene der visuellen Reproduktion ab,

die nicht über die bloße Beobachtung und Beschreibung hinausgeht. Damit entspricht mei-

ner Auffassung nach das, was Diana selbst als „Verstehen“ bezeichnet, nicht den von Seiler

aufgestellten Forderungen.

Fallstrukturhpyothese „Diana“

Dianas Vorstellungen zum Satz des Thales schließen neben der Kernaussage „In ei-

nem Kreis sind alle Winkel über dem Durchmesser rechte“ auch Beobachtungen und

Beschreibungen mit ein, die zunächst zur Aufstellung der Vermutung und im weite-

ren auf dem Weg zur Formulierung des Satzes erforderlich sind. Unter einem Beweis

versteht sie die Eröffnung eines Zugangs, diese Beobachtungen und Beschreibungen

nachzuvollziehen und somit eine bessere Vorstellung zu entwickeln. Diese bessere

Vorstellung entwickelt sich allerdings lediglich auf der deskriptiven Ebene, so dass

nicht von „besserem Verstehen“ gesprochen werden kann, obwohl dies ihrer eigenen

Wortwahl entspräche.
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Auf die Nachfrage, ob ein formaler Beweis noch zusätzliche Informationen bringe, antwortet

Diana:

D: Ja also ich find, also es gibt bestimmt Leute, die, ähäm, den Satz

des Thales, sich also, die das dann nicht vorstellen können, aber

die natürlich dann noch (.) mehr Informationen dazu brauchen.

35

36

37

Für Diana scheint sich überhaupt nicht die Frage zu stellen, ob sie selbst durch einen for-

malen Beweis einen Mehrgewinn haben könnte. Stattdessen sucht sie nach Gründen, warum

andere Personen einen formalen Beweis benötigen und nicht mit der dynamischen Visuali-

sierung hinreichend zufrieden gestellt werden könnten. Dieses erklärt sie sich damit, dass bei

den anderen noch keine angemessene Vorstellung des Satz des Thales durch die Visualisierung

erzeugt werden konnte. Dabei rekurriert sie mit der Formulierung „das dann“ (Z.36) auf ihre

subjektive Vorstellung, die sie vom Satz des Thales hat. Hier zeigt sich erneut, dass in Dianas

Vorstellung dem Thalessatz ein deskriptives Moment inhärent ist und ein Beweis dazu dient,

dieses deskriptive Moment nachvollziehen zu können, wobei sich das Nachvollziehen auf das

Beobachtenkönnen und das darauf aufbauende Beschreibenkönnen der Phänomene reduziert.

Für diejenigen, die hier nur durch das Beobachten noch Probleme haben, kann dann der for-

male Beweis ein Mittel sein, um Abhilfe zu schaffen. Demnach liefert ein formaler Beweis für

Diana „mehr “ (Z.37) Informationen als die dynamische Visualisierung, wobei das „mehr “ an-

scheinend für zusätzliche oder andere Informationen steht. Diese zusätzlichen Informationen

sind aber nicht unbedingt erforderlich, um eine angemessene Vorstellung aufbauen zu können.

D: bei den Meisten, die haben dann diesen Aha- Effekt dann gleich,

wenn die das da so sehen

38

39

I: Hmh (bejahend)40

D: aber halt dieses, eh, (..) manche brauchen halt nochmal (.) nen

extra (.) Anstoß oder (.) diesen extra Beweis, damit sie das

nachvollziehen können. (...)

41

42

43
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Bei den „Meisten“ (Z.38), zu denen Diana sich selbst auch zählt, tritt „gleich“ (Z.38) durch

das Sehen der „Aha-Effekt“ (Z.38) ein. Ein Aha-Effekt kann sicherlich als Schlüsselerlebnis oder

Initiator eines Erkenntnisgewinns gedeutet werden, der durchaus plötzlich und nach vorheri-

gem Ringen, als Auflösung eines Konfliktes erfolgen kann. Die „Meisten“ benötigen folglich

keine weiteren Informationen mehr. Bei den „Manchen“ (Z.41), die dieses Schlüsselerlebnis

noch nicht haben, ist allerdings noch ein „extra Anstoß “ oder ein „extra Beweis“ (Z.42) erfor-

derlich, wobei Diana diese zusätzlichen Erfordernisse mit dem „formalen Beweis“ (Z.32) aus

der Nachfrage der Interviewerin identifiziert.

Der formale Beweis stellt folglich neben der dynamischen Visualisierung einen anderen Weg

dar, um zum Erkenntnisgewinn zu kommen, einen anderen Weg, um den Sachverhalt „nach-

vollziehen“ (Z.43) zu können. Dieser Weg muss allerdings nicht zwingend gegangen werden,

vielmehr bedeutet er eigentlich einen „Umweg“, da der Erkenntnisgewinn auch ohne den for-

malen Beweis erzielt werden kann. Für diejenigen, die dennoch allein mit der dynamischen

Visualisierung Schwierigkeiten beim Nachvollziehen haben, kann der formale Beweis allerdings

als eine Art Initiator dienen, dennoch „zum Ziel zu kommen“. Der formale Beweis hat also für

Diana eine gewisse Funktionalität, ohne dass jedoch eine inhaltliche Klärung stattfindet, was

genau bei einem formalen Beweis stattfindet und wie dieser zur Vorstellungserzeugung bei-

tragen kann. Der in der ersten Fallstrukturhypothese erarbeitete Aspekt, dass ein Beweis ein

Mittel zum „Verstehen“ ist, spielt in diesem Teil des Interviews keine Rolle mehr. Stattdessen

wird der Aspekt des „Vorstellenkönnens“ gestärkt.

besser
vorstellen
können

einfacher
verstehen

deutlicher
werdensehen

formaler
Beweis

Abbildung 5.5 – Implikationen der dynamischen Visualisierung für Diana
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Es bestätigt sich, dass in Dianas Vorstellung ein Beweis einen Zugang zum Nachvollziehen

eines Sachverhalts darstellt. Dies bedeutet zum einen, dass die dynamische Visualisierung für

sie ein Beweis ist, da sie dies leistet, zum anderen, dass ein formaler Beweis lediglich einen

alternativen Zugang darstellt. Dieser alternative Zugang kann gewählt werden, wenn die

dynamische Visualierung, aus welchen Gründen auch immer, nicht ausreichend sein sollte,

muss aber nicht zwingend genutzt werden. Letztendlich ist das Ziel und damit der Wissens-

stand, bei dem man ankommt, beiden Zugängen gemeinsam.

Modifizierte Fallstrukturhpyothese „Diana“

Dianas Vorstellungen zum Satz des Thales schließen neben der Kernaussage „In ei-

nem Kreis sind alle Winkel über dem Durchmesser rechte“ auch Beobachtungen und

Beschreibungen mit ein, die zunächst zur Aufstellung der Vermutung und im weite-

ren auf dem Weg zur Formulierung des Satzes erforderlich sind. Unter einem Beweis

versteht sie die Eröffnung eines Zugangs, diese Beobachtungen und Beschreibungen

nachvollziehen zu können, mit dem Ziel eines besseren Vorstellenkönnens, wobei sie

allerdings auf der deskriptiven Ebene stehen bleibt. Die dynamische Visualisierung

leistet es, diesen Zugang zu eröffnen, und wird deshalb von Diana als Beweis ak-

zeptiert. Dem formalen Beweis weist Diana die Rolle eines alternativen Zugangs zu,

der von anderen gewählt werden kann, die das Vorstellenkönnen allein mit der DGS

nicht realisieren können.
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5.1.3 Fallstudie „Joachim“

Joachim studiert Lehramt für Haupt-, Real- und Gesamtschulen und steht kurz vor dem Ex-

amen. In der Klausur zur Veranstaltung „Elemente der Geometrie“ hat er in seinem ersten

Studiensemester als einer der Besten abgeschnitten.

I: Kann diese dynamische Visualisierung für dich einen Beweis

ersetzen? Was für einen Wert hat es, wenn man es so visualisiert

hat, den Beweis noch anzuschließen. Oder ist es (..) wirklich noch

zwingend erforderlich, den Beweis dann anzuschließen?

1

2

3

4

J: Ja, natürlich. Wie gesagt,5

I: Ja.6

J: Hier bei Cinderella ist eine Ungenauigkeit drin. Einmal bei den

Linien, durch die, durch die Generierung dieser, durch die Technik

der Pixel usw. Es kann ja sein, dass die wirklich, in Wirklichkeit

gar nicht aneinanderliegen.

7

8

9

10

I: Hmhm.11

J: Wenn ich jetzt zum Beispiel, ich nehme jetzt mal nicht Cinderella,

jetzt nicht Geometrie, sondern ich habe jetzt irgendein anderes

Programm, was mir ne Funktion dargibt, 1 durch x.

12

13

14

I: Ja.15

J: So. Die schmiegt sich asymptotisch an die x-Achse an. Irgendwann

brauche ich ja, Bender sein Funktionenmikroskop.

16

17

I: Ja, ok.18

J: Irgendwann liegen die (.) auf dem Bildschirm (.) aufeinander,

weil, weil einfach die Auflösung nicht mehr da ist. So, aber wenn

ich’s mir in der Realität angucke, liegen die nicht aufeinander.

19

20

21

I: Hmhm (zustimmend).22

J: Genau wie ich jetzt eben erzählte, dass, man kann vielleicht zwei

Winkel, die nie gleich sind, so hinziehen, dass sie für Cinderella

so nah beieinander liegen, dass er runden muss. (..) Also kann ich

dem eigentlich so erst mal nicht trauen.

23

24

25

26

I: Hmhm (zustimmend).27
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J: Irgendwas nachmessen ist schon mal ein schlechter Ansatz. Und

eigentlich, in der Geometrie brauche ich ja auch groß keine Maße,

außer bei Verhältnisse: das ist doppelt so lang, wie das andere.

28

29

30

I: Ja.31

J: Und ich finde schon wichtig, dass man (.) eh, eigentlich ohne

Maßangaben arbeitet. Und dann brauche ich halt ’nen Beweis.

32

33

Für Joachim ist es selbstverständlich, dass sich an die Visualisierung ein Beweis anschließen

muss, denn er antwortet auf die entsprechende Frage spontan und ohne zu zögern mit: „Ja,

natürlich“ (Z.5). Er begründet seine Antwort damit, dass die Computerdarstellung einer geo-

metrischen Zeichnung aufgrund der inhärenten Technik (Pixel, Auflösung) immer „ungenau“

(Z.7) ist. Gerade auch beim Messen von Winkeln könnten aufgrund von Rundungen Ergeb-

nisse auftreten, die suggerieren, dass zwei Winkel gleich groß sind, obwohl dies nicht der Fall

ist (Z.23-25). Das Fazit von Joachim lautet demzufolge, dass er „dem eigentlich so erst mal

nicht trauen“ (Z.26) kann. (Anmerkung von G.W.: Im Rahmen der Veranstaltung „Elemen-

te der Geometrie“ gab es eine Aufgabe, bei der in einem gleichschenkligen Dreieck die Basis

gedrittelt wurde. Anschließend wurden die dadurch entstandenen Punkte mit der Spitze des

Dreiecks verbunden. Inhalt der Aufgabe war es, zu beweisen, dass die drei Teilwinkel an der

Spitze nie gleich groß sind. Die Messfunktion der DGS hingegen zeigte durchaus gleich große

Winkelmaße an, wenn die Winkel nur genügend klein gezogen wurden. Möglicherweise bezieht

sich Joachims Äußerung hierauf.)

Um seine Einschätzung zu verdeutlichen, gibt Joachim als weiteres Beispiel für eine ungenü-

gende Computerdarstellung den Graph der Funktion 1
x an. Bei dieser Funktion, die als eine

Asymptote y = 0 hat, ist die Auflösung der Computergrafik irgendwann nicht mehr hoch

genug, um erkennbar darzustellen, dass die x-Achse sich dem Graphen zwar beliebig annä-

hert, ihn aber nie berührt. Stattdessen scheint die Darstellung zu suggerieren, dass Graph und

x-Achse irgendwann „aufeinander liegen“ (Z.19). Interessanterweise macht Joachim in seinen

Ausführungen den Gegensatz zwischen „Anschauen im Programm bwz. auf dem Bildschirm“

(Z.19-20) und „Angucken in der Realität“ (Z.20-21) auf. Was auch immer Letzteres für ihn

sein mag, die Visualisierung jedenfalls ist es nicht. Damit kann diese kein adäquates Abbild

der „Realität“ liefern. Demzufolge sind alle Messungen, die in der Visualisierung vorgenommen
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werden, potenziell unzuverlässig und können somit nicht dazu herangezogen werden, Allge-

meingültigkeit nachzuweisen. Diese kann nur ein Beweis liefern, der den Aussagen Joachims

nach eine ausschließlich verifizerende Funktion hat.

Fallstrukturhypothese „Joachim“

Ein Beweis hat für Joachim ausschließlich verifizierenden Charakter; durch ihn soll

die Allgemeingültigkeit eines Sachverhalts belegt werden. Die dynamische Visuali-

sierung kann für ihn keinen Beweis ersetzen, da die DGS aufgrund der inhärenten

Technologie die „Realtität“ nur ungenau wiedergeben kann. Daher ist die suggerierte

empirische Überprüfbarkeit nicht hinreichend, um die geforderte Allgemeingültigkeit

zu zeigen.
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5.1.4 Fallstudie „Melanie“

Zum Zeitpunkt des Interviews ist Melanie im 5. Semester. Die Veranstaltung „Elemente der

Geometrie“ hat sie in ihrem ersten Semester besucht und mit einer sehr guten Klausur abge-

schlossen. Mittlerweile hat sie fast alle erforderlichen Veranstaltungen ihres Mathematikstu-

diums erfolgreich besucht, so dass sie in Kürze ihr Examen machen möchte.

I: Also kann diese dynamische Visualisierung einen Beweis ersetzen?

(..) Also, wie siehst du das?

1

2

M: (...) Ehm, also ich glaube, (...) also ich denke, dass es schon

eine Art Beweis ist.

3

4

I: Hhmm5

M: Äh, (..) ja durch diese dymnamische Verschiebung, also es wird

mir schon klarer, dass der (.) rechte Winkel dann immer (.) gleich

bleibt, über dem Durchmesser. Ähäm und ich denke, ähm wenn man es

anders beweisen (.) wollte, müsste man ja, zum Beispiel mit Stift

6

7

8

9

und Papier,10

I: Hhmm11

M: dann müsste man ja, äh ganz viele Dreiecke zeichnen,12

I: Ja?13

M: Ähm die, (.) ähäm über diesen Kreisbogen, äh an verschiedenen

Stellen liegen.

14

15

I: Ja.16

M: Also die Punkte im, (.) also ich meine jetzt den Punkt, wo der

rechte Winkel ist, so. (lacht)

17

18

I: Ja ja, hhmm.19

M: Ja und ehm, dann würde man sich ja viel Mühe machen und äh (..)

hätte viele Dreiecke gezeichnet und es wäre dann eben immer

dasselbe rausgekommen, dass der rechte Winkel (..) trotzdem immer

90 Grad ist. Und mit der, ehm, (..) mit der Software

20

21

22

23

I: Ja?24

M: kann ich das ja einfach, indem ich das bewege, so zeigen,25

I: Ja.26

M: dass der Winkel immer gleich bleibt und ich finde das ist erstmal27
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(.) Zeitersparnis und ehm, (.) ah, ja auch, und auch einleuchtend,

also, es ist ja so, also.

28

29

I: Hhm... Wenn du jetzt auf dem Papier zeichnen würdest, wieviele

Dreiecke (..) meinst du, müsstest du zeichnen, damit es (...) klar

ist?

30

31

32

M: (...) Hmmmm, mindestens (.) drei? (lacht)33

I: Ok (...) und ehm (...) hier (...) bei dem Programm wäre das dann

(.) einfacher?

34

35

M: (..) Ja also, ehm, wenn man sich (.) schon länger mit dem Programm

auskennt, das schnell zeichnen kann,

36

37

I: Ja.38

M: (...) denke ich, ist das einfacher.39

I: Ja. Und ehm bräuchtest du dann noch einen zusätzlichen Beweis,

oder wäre das dann für dich so ok?

40

41

M: (..) Klar, man kann ja noch den klassischen Beweis machen (..),

eh, wie in der Schule,

42

43

I: Ja.44

M: wie man den da gelernt hat.45

I: Ja46

M: (...) Den könnte man ja, also, also man sollte sowieso die

klassischen Beweise nicht außer Acht lassen, oder? In der Schule?

Sollte ja jeder ihn gehört haben, auch.

47

48

49

I: Ja. (..) Aber wäre es noch nötig? Würde das noch zusätzlich was

bringen, oder?

50

51

M: Es bringt ja eigentlich die gleiche Erkenntnis.52

I: Hhmm53

M: Also man könnte (...) ehm (...) also klar, man könnte es noch

zusätzlich machen, aber ich denke, Cinderella eh veranschaulicht

das schon ganz gut und (...) ehm, es müsste nicht gemacht werden,

weil es wird ja dadurch auch gezeigt.

54

55

56

57

Melanie antwortet auf die Eingangsfrage zunächst relativ vorsichtig, indem sie, nach nur kur-

zer Überlegung, in ihrer Antwort die Formulierung wählt: „also ich glaube, also ich denke, dass

es schon eine Art Beweis ist“ (Z.3-4). Mit der Wortwahl „eine Art Beweis“ (Z.4) scheint hier
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zunächst eine Einschränkung vorzuliegen, so als sei die dynamische Visualisierung etwas, das

in der Sprachgemeinschaft, der sich auch Melanie zugehörig fühlt, nicht voll den etablierten

Kriterien an einen Beweis genügt. Doch es ist möglich, diese Kriterien in einem vertretbaren

Maße derart aufzuweichen, dass die dynamische Visualisierung dann unter diese so erweiterte

Beweiskategorie gefasst werden kann. Damit wird der dynamischen Visualisierung von Melanie

letztlich Beweiskraft zugesprochen. Durch ihre einleitenden Phrasen: „Also ich glaube, also ich

denke“ (Z.3) schafft sie aber bereits vorab eine Distanzierung zu eben dieser Kategorisierung

als Beweis und schwächt damit ihre Aussage sofort wieder ab. Weder das Verb „glauben“ noch

das Verb „denken“ kann mit „wissen“ gleichgesetzt werden, da beiden nicht die Sicherheit des

Wissens inhärent ist. Wenn eine Person allerdings sagt, dass sie einen Sachverhalt „glaubt“, ist

diese Aussage sehr viel stärker von einer subjektiven Haltung durchtränkt und der Person sehr

viel näher, als wenn sie nur „denkt“, dass ein Sachverhalt gilt. Dem „Denken“ hingegen wird

mehr Rationalität unterstellt. (Vergleiche hierzu auch die Differenzierung zwischen „glauben“,

„wissen“ und „erkennen“, die in der Erkenntnistheorie, beispielsweise bei von Kutschera

(1982), getroffen wird). Dabei scheint der Wechsel in Melanies Wortwahl nicht zufällig zu sein,

da sie immerhin eine Pause von 3 Sekunden zwischen der Formulierung „glauben“ und „den-

ken“ macht.

Die nächste Äußerung „Es wird mir schon klarer, dass der rechte Winkel dann immer gleich

bleibt“ (Z.6-8), gibt Aufschluss über Melanies Beweisverständnis: Melanie begründet ihre Ent-

scheidung, die Visualisierung der erweiterten Kategorie „Beweis“ zuzuordnen, damit, dass die

Gültigkeit eines Sachverhalts (hier: Konstanz des rechten Winkels) „klarer “ wird, was einen

Beweis als verifizierend klassifiziert. Dabei deutet der Komparativ „klarer“ auf einen prozess-

haften Verlauf hin. Wenn etwas „klarer“ wird, heißt das nicht, dass auf einer von „unklar“ bis

„klar“ reichenden Skala bereits der Zustand „klar“ erreicht ist, es ist lediglich ein Schritt hin in

diese Richtung. Damit kann an dieser Stelle wohl nur von einem Wachsen der Überzeugung die

Rede sein und nicht von einer endgültigen Sicherheit, so dass die absolute Klarheit, die laut

Melanies Aussage nur mit der Verifiaktion gleichgesetzt werden kann, durch die Darstellung

mittels DGS allerdings nicht erreicht werden kann.
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Fallstrukturhpyothese „Melanie“

Melanie identifiziert die dynamische Visualisierung mit einer DGS mit der Gültigkeit

des zugrundeliegenden mathematischen Sachverhalts. Damit hat ein Beweis für sie

eine verifizierende Funktion und soll belegen, dass eine mathematische Aussage gilt,

wobei dies auch als ein erster Schritt im Verifikationsprozess verstanden werden kann.

Im Folgenden stellt Melanie dem DGS-Beweis einem „anderen Beweis“ (Z.9), nämlich dem

mit Stift und Papier gegenüber. Bei letzterem hält sie es allerdings für erforderlich, „ganz viele

Dreiecke“ (Z.12) zu zeichnen. Sie nennt nicht die Variante, anhand eines statischen, möglichst

allgemeinen Bildes einen formalen Beweis zu führen.

M: Ja und ehm, dann würde man sich ja viel Mühe machen und äh (..)

hätte viele Dreiecke gezeichnet und es wäre dann eben immer

dasselbe rausgekommen, dass der rechte Winkel (..) trotzdem immer

90 Grad ist.

20

21

22

23

Melanie äußert sich nicht dazu, wie „rauskommt“ (Z.22), dass der Winkel konstant 90 Grad

groß bleibt, so dass der Hintergrund ihrer Überlegungen an dieser Stelle nicht geklärt wer-

den kann. Es wird aber deutlich, dass der „Beweis mit Papier und Bleistift“ und der „Beweis

mit der dynamischen Visualisierung“ letztlich zum selben Ergebnis führen werden, nämlich

zum Ergebnis, „dass der Winkel immer gleich bleibt“ (Z.27). Dabei ist der Beweis mit Papier

und Bleistift aufwändig, mit „viel Mühe“ (Z.20) verbunden und bringt „trotzdem“ (Z.22) nicht

mehr Erkenntnis als der Beweis mit der DGS. Dieser ist deutlich bequemer und effizienter

und bringt eine „Zeitersparnis“ (Z.28) mit sich, denn man kann „das ja einfach, indem ich das

bewege, so zeigen.“ (Z.25).

Es stellt sich an dieser Stelle die Frage, welche Bedeutung Melanie dem Begriff „zeigen“ zukom-

men lässt. Im vorliegenden Kontext sind grundsätzlich zunächst die Verwendungen in Hinsicht

auf „darstellendes Zeigen“ und „nachweisendes Zeigen“ im mathematischen Sinne möglich.

Zunächst bringt Melanie das „Zeigen“ mit dem „Bewegen“ in Zusammenhang: durch das „Be-
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wegen“ kann sie „zeigen“. Dies deutet darauf hin, dass sie sich auf der darstellenden Ebene

befindet: der Einsatz des Zugmodus erlaubt ihr, auf dem Pixelbild des Monitors die Konstanz

des Winkels zu beobachten. Doch in ihren weiteren Ausführungen geht Melanie darauf ein,

was das Ergebnis der dynamischen Visualisierung für sie ist:

also, es ist ja so, also.29

Melanie beschreibt eine Kette von Ursache und Wirkung, an deren Ende das „sein“ steht.

Indem sie „bewegt“ (Ursache) kann sie „einfach zeigen“ (Wirkung), dass der Winkel immer

gleich bleibt. Der Sachverhalt erscheint „einleuchtend “ (Z.28) und lässt den Schluss zu, dass es

„so ist“. Der Aspekt des Zeigens, der zunächst einen darstellenden Charakter zu haben schien,

erhält so für sie einen nachweisenden Aspekt und lässt den Schluss zu, dass der Sachverhalt

allgemeingültig „gezeigt“ und damit nachgewiesen ist.

...Ausgangssituation
bewegen

"immer
gleich
bleibt"

zeigen

"und auch einleuchtend"
"es ist 
ja so" "also"

Abbildung 5.6 – Vom darstellenden zum nachweisenden Zeigen

Die Nachfrage, ob denn nun noch ein „zusätzlicher Beweis“ (Z.40) erforderlich sei, setzt

Melanie sofort mit dem „klassischen Beweis“ (Z.42) in Bezug, wie man „den in der Schule

gelernt hat“ (Z.43-45). Dabei redet sie bemerkenswerterweise nicht davon, dass sie „gelernt hat,

zu beweisen“, sondern von „gelernten Beweisen“. Hier bestätigt sich die zu Beginn aufgestellte
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These, dass es für Melanie althergebrachte, „gelernte“ Beweise entlang der strengen Kriterien

der Mathematiker gibt und solche, die den aufgeweichten Kriterien genügen. Während in

der Schule klassische Beweise, sicherlich mit tradierten Medien und Dokumentationsformen,

geführt wurden, ergeben sich nun darüber hinaus mittels neuer Medien andere Möglichkeiten.

Für Melanie scheinen die „klassischen Beweise“ eine Art „Kulturgut“ zu sein, das jeder im

Rahmen einer guten Allgemeinbildung kennen sollte (Z.48-49). Wirklich erforderlich aber sind

sie nicht, denn ein formaler Beweis „müsste nicht gemacht werden, weil es wird ja dadurch

[durch Cinderella, G.W.] auch gezeigt“ (Z.56-57). An dieser Stelle hat das „Zeigen“ für Melanie

endgültig den Sprung vom darstellenden Zeigen zum nachweisenden Zeigen gemacht: durch

das darstellende Zeigen wird „es“ nachweisend gezeigt und damit bewiesen.

Modifizierte Fallstrukturhpyothese „Melanie“

Die Hypothese, dass ein Beweis für Melanie eine verifizierende Funktion hat, hat

sich erhärtet. Sie setzt die DGS im Rahmen einer Ursache-Wirkungs-Kette zur voll-

ständigen Verifikation ein, indem sie die Dynamik der Visualierung dafür nutzt, das

darstellende Zeigen in ein nachweisendes Zeigen zu überführen. Damit ist für Melanie

der Schluss zulässig, dass ein Sachverhalt gilt. Zudem kann die dynamische Visua-

lisierung im Kontext des Thalessatzes schnell und effektiv zeigen, dass der rechte

Winkel immer erhalten bleibt. Somit ist diese dem formalen Beweis, der nur mit

Aufwand und Mühe geführt werden kann, stark überlegen.
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5.1.5 Fallstudie „Kira“

Zum Zeitpunkt des Interviews ist Kira in ihrem zweiten Studiensemester. Sie besucht die

Veranstaltung „Elemente der Geometrie“ zum ersten Mal. In der Klausur, die zeitlich nach

dem Interview geschrieben wurde, schneidet sie sehr gut ab und besteht somit ohne Probleme

diesen Teil der Zwischenprüfung.

I: Kann diese Visualisierung für dich den Beweis des Satzes ersetzen?1

K: (...) Also, dass ich, wenn ich jetzt in diesem Beispiel C bewegen

würde, außerhalb oder innerhalb des Kreises,

2

3

I: Ja.4

K: dass ich dann quasi der Meinung bin, ich müsste es dann nicht mehr

beweisen?

5

6

I: Ja.7

K: Nee! ’Hm’hm (Verneinend). Also ich bin schon der Meinung, dass man

beweisen sollte, warum da ein 90 Grad Winkel entsteht und nicht

nur sagen braucht, ehm, wenn C auf dem Kreisbogen liegt, ist es 90

Grad und außerhalb ist er kleiner, der Winkel in C, oder innerhalb

größer. Würde für mich nicht reichen, nein.

8

9

10

11

12

I: Was, was hättest du da noch zusätzlich für Informationen durch den

Beweis? (..) Oder warum würdest du Wert auf den Beweis legen?

13

14

K: Ich glaube, um mir erstens bewusst zu machen, dass es eben

immer nur dann so ist, wenn der, ehm, wenn die Sehne auch der

Durchmesser des Kreises ist. Also ich finde, das würde ich

jetzt nicht unbedingt so, oder ich weiß nicht, oder ist das

Voraussetzung, wenn man die Konstruktion hat?

15

16

17

18

19

I: Wir können das ruhig so konstruieren, dass wir den Durchmesser,

(..) also die Sehne (.) als Durchmesser des Kreises nehmen.

20

21

K: Hhmm.22

I: Das können wir ruhig sagen, das konstruieren wir so, das wissen

wir, dass es so ist.

23

24

K: (..) Also ich glaube, ich würde schon beweisen wollen, warum es

ausgerechnet dann 90 Grad ist. Warum das nicht so ist, dass der,

ehm, dass der 60 Grad ist, oder ehm nur 50 Grad, und dann größer

25

26

27
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oder kleiner innerhalb und außerhalb des Kreises.28

I: Hmh. Also die Frage nach dem „Warum“ wird für dich durch das Sehen

nicht beantwortet?

29

30

K: Nee, nicht unbedingt. Also dann, dann sehe ich zwar, dass es ne

Tatsache ist, aber warum diese Tatsache (..) auch gilt, also wäre

für mich nicht unbedingt beantwortet.

31

32

33

I: Ok. (...) Aber hättest du denn, wenn du es jetzt siehst, ohne dass

es bewiesen ist, na gut, du wüsstest jetzt nicht, warum es so ist.

Aber hättest du, wenn du es siehst, ohne Beweis, noch Zweifel,

dass es so ist?

34

35

36

37

K: Unterbricht. Nee, ne, das nicht, aber (lacht), ich glaub, ich

würde trotzdem wissen wollen, warum. Nee, Zweifel hätte ich keine,

aber, ehm ja.

38

39

40

Durch ihre Rückfrage vergewissert sich Kira zunächst, ob sie die Frage dahingehend richtig

verstanden hat, ob durch das Ziehen und Beobachten ein Beweis unnötig werde. Als ihr bestä-

tigt wird, dass genau danach gefragt wird, verneint sie die Frage vehement. Als Begründung

führt sie an, dass ein Beweis zeigen sollte, „warum da ein 90 Grad Winkel entsteht“ (Z.9).

Nicht ausreichend ist für Kira, auf der ausschließlich deskriptiven Ebene stehen zu bleiben

und lediglich die Beobachtungen zu machen, wie sich der Winkel in C bei verschiedenen La-

gen von C verändert.

Auf die Nachfrage, was ein Beweis an zusätzlichen Informationen über die dynamische Visu-

salisierung hinaus bringen würde und warum sie Wert darauf legt, antwortet Kira, dass sie

sich dadurch „bewusst macht“ (Z. 15), dass „es eben immer nur dann so ist, wenn [ ] die Sehne

auch der Durchmesser des Kreises ist“ (Z. 15-17). Schlägt man im Duden die Bedeutung von

„sich bewusst werden“ nach, so erhält man die Einträge: a) sich klar werden; Klarheit, Gewiss-

heit erlangen und b) begreifen, verstehen. Dieses „Begreifen“ und „Verstehen, das für Kira zu

einem Beweis dazu gehört, kann sie durch das bloße Sehen, das die dynamische Visualisierung

ermöglicht, nicht erlangen:
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K: [...] Also dann, dann sehe ich zwar, dass es ne31

Tatsache ist, aber warum diese Tatsache (..) auch gilt, also wäre

für mich nicht unbedingt beantwortet.

32

33

Im Fokus von Kiras Interesse liegt demzufolge nicht nur die Frage, ob ein Sachverhalt gilt,

sondern außerdem, warum ein Sachverhalt gilt. Die erste Frage kann für sie zwar durch die

dynamische Visusalisierung beantwortet werden, die zweite allerdings nicht. So bestätigt sie,

dass das Sehen ihre Zweifel ausräumt, dass ein Sachverhalt gilt (vgl. Z.39). Dennoch ist für sie

dieser Sachverhalt noch nicht bewiesen, weil die Frage, warum er gilt, noch nicht beantwortet

ist. Damit verhält sich Kiras Einstellung gegenüber einer DGS im Kontext des Beweisens

genau so, wie Schupp es in seiner eingangs gemachten Einschätzung dargestellt hat: Die

DGS leistet für Kira einen Beitrag, an die Gültigkeit eines Sachverhalts zu glauben, ohne sich

damit zufrieden zu geben, sondern unmittelbar im Anschluss nach den Zusammenhängen und

Gründen für diesen Sachverhalt zu fragen.

Fallstrukturhypothese „Kira“

Ein Beweis beantwortet für Kira die Frage, warum ein Sachverhalt gilt. Diese Frage

kann für sie die dynamische Visualisierung nicht beantworten. Die Tatsache hingegen,

dass ein Sachverhalt gilt, wird von Kira nicht mehr angezweifelt. Dennoch ist ihr dies

für einen Beweis nicht ausreichend, so dass sie die dynamische Visualisierung nicht

als Beweis akzeptiert.
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5.1.6 Fallstudie „Verena“

Zum Zeitpunkt des Interviews ist Verena in Mathematik in ihrem 5. Fachsemester. Das Grund-

studium und die Fachvorlesungen des Hauptstudiums hat sie bereits erfolgreich absolviert.

Sollte die Teilnahme an den beiden Didaktikvorlesungen, die sie aktuell hört, erfolgreich sein,

hätte sie damit alle erforderlichen Studienleistungen in 5 Semestern erbracht. Auch zur Vorle-

sung „Elemente der Geometrie“ hat Verena die Zwischenprüfung mit einer sehr guten Klausur

bestanden, so dass sie wohl dem oberen Leistungsdrittel zugeordnet werden kann.

I: Kann die dynamische Visualisierung für dich einen Beweis ersetzen?1

V: Ist für mich kein Beweis.2

I: Was ist das dann für dich?3

V: Das ist für mich ein Beispiel. Das ist für mich, (.) oder eine

Veranschaulichung, ne Anwendung

4

5

I: Ja.6

V: des Beweises.7

I: Ja.8

V: Aber ein Beweis ist das nicht (..). Für mich ist der Beweis der

Umfangswinkelsatz.

9

10

I: Ja.11

V: Dass ich halt sage, der Mittelpunktswinkel ist hier 180 Grad12

I: Hhmm13

V: und ehm, der, ich weiß, dass der ehm Umfangswinkel halb so groß

ist. Und da gab es ja auch einen Beweis zu, wenn ich den jetzt

gerade spontan wüsste, wäre es ganz toll. Ehm, das wäre für mich

ein Beweis und der Thaleskreis ist ja einfach nur ne, ehm, ist ja

im Grunde das gleiche, nur dass wir die Besonderheit haben, mit 90

und 180 Grad.

14

15

16

17

18

19

I: Hhmm hhmm (zustimmend). Aber wenn ich doch jetzt die Lage von C

verändere auf dem Kreisbogen. Dann habe ich doch nicht nur ein

Beispiel, ich kann doch ganz, ganz viele Beispiele betrachten.

20

21

22

V: Ja, das hilft mir auch zum Verständnis des Satzes, aber das ist

trotzdem kein Beweis.

23

24

I: Aha.25
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V: Für mich.26

I: Aha, ok?27

V: Findest du, das ist ein Beweis?28

I: Ich werd ja hier nicht befragt (lacht).29

V: Für mich ist das kein Beweis. Es zeigt mir, es ist überall so,

und es kann auch so, aber nur weil es überall so ist, heißt

das nicht, dass es immer so, also gut, ok, das war ein bisschen

blöd ausgedrückt. Aber nur weil das auf den Punkten, wo ich es

gerade ausprobiert hab, so ist, heißt das nicht, dass es immer so

sein muss.

30

31

32

33

34

35

I: Aha. Ok ok.36

V: Das muss immer so sein, weil wir das ja mit dem Umfangswinkelsatz,

eh, bewiesen haben.

37

38

I: Hhmm ok.39

Verena antwortet ohne zu zögern, dass die dynamische Visualisierung für sie kein Beweis ist.

Stattdessen ist es für sie ein „Beispiel “ beziehungsweise eine „Veranschaulichung“ oder eine

„Anwendung“ (Z. 4-5). Der Beweis ist für Verena die Kenntnis und der Beweis des Umfangs-

winkelsatzes: Weil sie weiß, dass der Mittelpunktswinkel doppelt so groß wie der zugehörige

Umfangswinkel ist, folgt für sie, dass zu einem gestreckten Mittelpunktswinkel ein Umfangs-

winkel von 90 Grad gehört (vgl. Z. 14-19).

Auf den Einwand der Interviewerin, dass mit Hilfe der dynamischen Visualisierung aber nicht

nur ein einzelnes, sondern ganz viele Beispiele betrachtet werden können, erwidert Verena, dass

ihr dies auch zum „Verständnis des Satzes“ helfe, aber „trotzdem kein Beweis“ sei (Z.23-24).

Dies stimmt mit ihrer Auffassung überein, die Visualisierung als „Beispiel“ und „ Veranschau-

lichung“ einzustufen.

Als die Interviewerin nur mit „Aha“ (Z.25) antwortet, schiebt Verena zunächst einschränkend

ein: „Für mich“ (Z.26) hinterher, und als auch hierauf nur ein weiteres „Aha, ok “ (Z.27) als

Reaktion folgt, stellt Verena die Gegenfrage, ob es denn für die Interviewerin ein Beweis sei.

Durch die ausbleibende Bestätigung ihrer Einschätzung lässt sich Verena zumindest an die-

ser Stelle durchaus verunsichern. Möglicherweise waren die Bemühungen, eine Atmosphäre

zu schaffen, in der man sich unbefangen äußern konnte, an dieser Stelle bei Verena nicht so

erfolgreich, so dass sie eine Hierarchie und keine Gleichberechtigung zwischen den Gesprächs-
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partnern empfindet. Dennoch hält Verena an ihrer Einschätzung fest und versucht, diese mit

neuen Argumenten zu stützen. Dass sie dabei zunächst eine etwas wirre Formulierung: „aber

nur, weil es überall so ist, heißt das nicht, dass es immer so ...“ (Z.30-31) wählt, ist ein weiteres

Indiz dafür, dass die mangelnde Zustimmung sie in gewisser Weise verunsichert. Im zweiten

Anlauf aber ist ihre Argumentation dann schlüssig, indem sie sagt:

V: [..] Aber nur weil das auf den Punkten, wo ich es33

gerade ausprobiert hab, so ist, heißt das nicht, dass es immer so

sein muss.

34

35

Im Lichte dieser Aussage kann nun auch die vorangegangene Textpassage verstanden wer-

den: das „überall “ (Z.31), sind all die „Punkte, wo ich es gerade ausprobiert hab“ (Z.33-34),

also alle Punkte auf dem Kreisbogen der vorliegenden Zeichnung, bei denen Cinderella das

Messergebnis für das Winkelmaß geliefert hat. Das „immer“ (Z.32) hingegen ist als „immer“

im logischen Sinn zu verstehen, was bedeutet, als Nachweis von Allgemeingültigkeit.

Für Verena geht das Ziehen mit dem Programm folglich nicht über den Status des „Ausprobie-

rens“ hinaus. Ihre weitere Äußerung, „dass es immer so sein muss“ (Z.34-35), macht deutlich,

dass ein Beweis für Verena in jedem Fall eine verifizierende Funktion hat, denn sie stellt sich ja

die Frage, ob ein Sachverhalt immer gilt. Diese Frage kann für sie die dynamische Visualisie-

rung nicht beantworten, denn das Ausprobieren findet nur an endlich vielen Punkten statt, so

dass, auch wenn das Ergebnis des Ausprobierens ist, dass der Winkel 90° groß ist, für Verena

nicht der Schluss gezogen werden kann, dass dies immer der Fall sein muss. Dieser Schluss ist

für sie nur durch die Kenntnis des Umfangswinkelsatzes zulässig, denn sie führt weiter aus:

V: Das muss immer so sein, weil wir das ja mit dem Umfangswinkelsatz,

eh, bewiesen haben.

37

38

Auch wenn Verena das Wort „warum“ nicht explizit in den Mund nimmt, ist meines Erachtens

die Interpretation zulässig, dass der Beweis des Umfangswinkelsatzes, den sie einfordert, die

Zusammenhänge offenlegt und damit die Frage nach dem Warum klärt. Damit geht Verenas

Anspruch an einen Beweis über eine rein verifizierende Funktion hinaus, indem sie ihm auch

eine begründende Funktion zuweist. Darüber hinaus setzt Verena den Thalessatz, indem sie
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ihn als Sonderfall des Umfangswinkelsatzes versteht, in einen größeren Gesamtkontext, so

dass hier durchaus zusätzlich Aspekte des lokalen Ordnens zu erkennen sind. Dadurch, dass

der Umfangswinkelsatz allgemein (für alle möglichen Winkelmaße) bewiesen wurde, ist gezeigt,

dass alle Punkte, von denen aus ich eine Strecke unter einem bestimmten Blickwinkel sehe, auf

einem Kreisbogen liegen. Damit ist natürlich insbesondere gezeigt, dass dies für ein Winkelmaß

von 90° gilt, so dass hier gar kein zusätzlicher Beweis mehr erforderlich ist. Wie gesagt ordnet

Verena den in der Fragestellung betrachteten Fall in einen größeren Kontext ein und kann somit

für sich sowohl die Frage beantworten, ob der Sachverhalt gilt, als auch die Frage, warum er

gilt. Überdies lassen sich bei ihr, über die verifizierende und die begründende Funktion eines

Beweises hinaus, auch Ansätze des Systematisierens finden.

Fallstrukturhypothese „Verena“

Für Verena hat ein Beweis sowohl eine verifizierende als auch eine begründende

Funktion. Dabei ist für sie der Satz des Thales nur ein Sonderfall des Umfangswin-

kelsatzes, so dass zudem auch die Tätigkeit des Systematisierens in Ansätzen bei ihr

zu erkennen ist.
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5.2 Beweis als Mittel zur Verifikation

Erwartungsgemäß spielt die Rolle der Verifikation beim Beweisen auch bei den Studierenden

eine wichtige Rolle. Für viele ist dies die wichtigste, für manche auch - zumindest im Kontext

der konkreten Fragestellung - die einzige Funktion eines Beweises.

Im Folgenden werde ich die Studierenden, für die dieser Aspekt am wichtigsten ist, die „Wahr-

heitssicherer“ nennen. Diese Gruppe allerdings ist in sich nicht homogen, sondern trennt sich

in zwei Lager, die einander diametral gegenüberstehen. Für das kleinere Lager der „Wahr-

heitssicherer“ nimmt die DGS keine Beweisfunktion ein, weil sie dem Anspruch an Allgemein-

gültigkeit, den diese Gruppe einfordert, nicht gerecht werden kann. Bei meinen ausgewählten

Interpretationen stellt Joachim einen Repräsentanten dieser Position dar. Für ihn kann die

DGS keine Allgemeingültigkeit nachweisen, da in der Pixelgeometrie der Computerdarstellung

immer nur endlich viele Fälle überprüft werden können und damit niemals alle. Eine ähnliche

Position vertritt Lara, eine Studentin in Examensnähe, die dem oberen Leistungsdrittel zuge-

ordnet werden kann, wenn sie sagt:

La: (..). Ja, man kann ja trotzdem nicht (.) jeden Fall wirklich

durchspielen, so, den es gibt. Man kann sich nur ganz, ganz viele

Fälle aussuchen, aber das ist ja immer noch kein Beweis dafür,

dann.

30

31

32

33

Dabei hat Lara allerdings nicht so sehr die endliche Menge der Pixel der Computerdarstellung

vor Augen, als vielmehr die Tatsache, dass man unendlich viele Strecken AB als Durchmesser

des Kreises und damit auch unendlich viele Kreise zur Verfügung hätte, so dass man niemals

an allen Fällen nachmessen könnte, ob der Winkel wirklich immer 90° groß ist.

Auch die Einschätzung von Samuel, einem Erstsemesterstudierenden aus dem oberen Leis-

tungsdrittel, geht in diese Richtung:

S: Nen, Beweis, nee! Also das ist ja nur ne, eh, ne Skizze und (.)

rein theoretisch könnte es passieren, dass da irgendwo ’nen Punkt

sein kann, weil man ja nicht genau ziehen kann. Und dann könnte es

sein, dass irgendwo unterhalb der Geraden, dann irgendwo ein Punkt

ist, auf dem Kreis, der dann nicht unbedingt 90° ist. D.h.,

3

4

5

6

7

183



Kapitel 5. Fallstudien zu „DGS und Beweis“

das ist nur ’ne Skizze oder ’ne Zeichnung, mit der kann man es

veranschaulichen, aber niemals beweisen.

8

9

Im Wesentlichen sind bei den Äußerungen der Studierenden zwei Argumente bedeutsam.

Das erste bezieht sich auf die potenzielle Überprüfung aller Fälle. Diese Möglichkeit wird auf-

grund der Technik (nur endlich viele Pixel) oder aufgrund der Tatsache, dass das Winkelmaß

an unendlich vielen Kreisen gemessen werden müsste, ausgeschlossen. Das zweite Argument

bezieht sich auf die Darstellung innerhalb der DGS, die immer ungenau ist und bei der immer

idealisiert werden muss. So werden Punkte durchaus mit einer relativ großen Fläche darge-

stellt, Geraden haben einen treppenförmigen Verlauf, und bei Messungen von Strecken oder

auch Winkeln muss i.A. gerundet werden, so dass das Ergebnis im Allgemeinen nicht exakt ist.

Aufgrund eines oder beider Argumente gibt es daher Studierende, die der DGS die Möglichkeit

absprechen, einen Sachverhalt zu verifizieren. Der Anteil dieser Studierenden an allen, die von

mir interviewt wurden, ist allerdings klein.

Diesem steht das zweite Teillager der „Wahrheitssicherer“ gegenüber, die der DGS eindeutig

eine Beweisfunktion zusprechen. Als Repräsentantin für diese Gruppe steht in meinen ausge-

wählten Interpretationen Melanie, die die Auffassung vertritt, dass man mit einer DGS sehr

leicht, mit wenig Aufwand und daher viel effizienter als mit einem formalen Beweis alle mögli-

chen Fälle überprüfen kann. Damit ist ihrem Anspruch, einen Sachverhalt durch einen Beweis

zu verifizieren, Genüge getan, so dass die dynamische Visualisierung von ihr als Beweis akzep-

tiert wird.

Besonders deutlich wird die Auffassung, mit einer DGS alle Fälle überprüfen und damit All-

gemeingültigkeit nachweisen zu können, bei Juliane, einer Studentin in Examensnähe, die im

unteren Leistungsdrittel ist, wenn sie sagt:

Ju: Also man hat ja auch die schöne Funktion, dass man ehm die

Winkelgrößen messen kann,

5

6

I: Hhmm.7

Ju: und wenn man die einstellen würde, und dann wirklich jeden Punkt

(.) so einzeln abgehen würde, vom Kreis, so ganz langsam Schritt

nach Schritt, würde man ja sehen, dass sich der Winkel nicht

ändert.

8

9

10

11
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I: Hhmm.12

Ju: Und dann würd mir das reichen.13

Der Äußerung von Juliane kann entnommen werden, dass sie es für möglich hält, mit dem

Programm alle Punkte des gezeichneten Kreises zu überprüfen. Dabei weist der Ausdruck

„ganz langsam“ (Z.9) auf besondere Sorgfalt und Konzentration bei dieser Prüfung hin. Eine

Deutungsoption der Äußerung, dass es bei diesem Prozess möglich ist, „jeden einzelnen Punkt

abzugehen“ (Z.8-9) wäre diejenige, dass sie dem Kreis nur eine endliche Anzahl von Punk-

ten zuspricht. Beim „abgehen“, „so ganz langsam Schritt nach Schritt“ (Z.9-10) würde dabei

jeder Punkt erreicht und insgesamt der ganze Kreis durchlaufen, um schließlich „am Ende an-

zukommen“. Dieses Vorgehen, welches zwar theoretisch, nicht aber praktisch realisierbar wäre,

stellt für jemanden, in dessen Grundvorstellung ein Kreis nur endlich viele Punkte hat, eine

echte Verifikation dar, da alle möglichen Fälle überprüft werden können. Die Vorstellung der

endlich vielen Punkte könnte durch die Pixeldarstellung des Computers begünstigt werden.

Es kann aber auch nicht völlig ausgeschlossen werden, dass für Juliane eine unendlich Anzahl

von Schritten nötig sind, um den Kreis zu durchlaufen. In diesem Falle wäre ein Durchlaufen

des Kreises und ein Ankommen an einem Endpunkt weder theoretisch noch praktisch reali-

sierbar, so dass eine derartige Vorstellung nicht wirklich zu den anderen Äußerungen Julianes

passt, die auf konkret durchführbare Handlungen rekurrieren. Letztlich ist aber irrelevant, ob

an einer endlichen oder unendlichen Anzahl von Punkten das Messergebnis des Programmes

abgelesen wird: entscheidend ist, dass für Juliane nach Durchführung der Messung, was durch

das zeitlich nachgeordnete „dann“ (Z. 13) erkennbar wird, kein weiteres Beweisbedürfnis mehr

besteht.

Auch Marietta, eine Erstsemesterstudierende aus dem mittleren Leistungsdrittel, akzeptiert

die dynamische Visualisierung als Beweis, weil sie damit Allgemeingültigkeit nachweisen kann:

Ma: Also ich beweise ja damit, dass es überall, überall auf dem

Kreisbogen, dass der 90° ist.

7

8

Zuletzt möchte ich noch die Äußerung von Rebecca anführen, einer Studierenden im höheren

Semester, die die Zwischenprüfungsklausur zwar erst im zweiten Anlauf bestanden, dabei aber

gut abgeschnitten hat und bezüglich dieser Leistung dem oberen Leistungsdrittel zuzuordnen
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ist.

R: Ja. Weil, wenn ich hier dran ziehe, dann sehe ich ja, dass das

immer so bleibt. Das wär ja bei ner richtigen Zeichnung nicht.

3

4

I: Was ist jetzt ne richtige Zeichnung?5

R: Ja, wenn ich es auf Papier so zeichne , dann könnte ich ja

gar nicht sehen, wie das (.), also klar, ich könnte mehrere

Zeichnungen machen, aber so ist das ja viel bequemer und ich kann

es wirklich (..) sonst wo hinziehen und sehe das es wirklich (.)

immer so bleibt.

6

7

8

9

10

Während nur wenige Studierende, die einen Beweis als ausschließliches Mittel zur Verifikation

ansehen, einer DGS die Beweiskraft absprechen, ist der Anteil derjenigen, die ihr Beweiskraft

zusprechen, sehr viel höher. Wenn es keine Zweifel mehr an einem Sachverhalt gibt und es

bei einem Beweis nur darauf ankommt, die Allgemeingültigkeit dieses Sachverhalts zu zeigen,

ist für viele Studierende die dynamische Visualisierung ein Beweis. Ganz deutlich wird dies

noch einmal in der Äußerung von Arne, einem Studierenden in Examensnähe im unteren

Leistungsdrittel:

A: Und wenn ich das jetzt so sehe und das bewege, ehm, (..) wenn man

das sieht, (..) man schätzt es ja meist schon als rechten Winkel

ein. Da würde ich dann einfach auch (...), würde ich dann schon

davon ausgehen, dass das dann auch überall der rechte Winkel ist.

19

20

21

22

I: Hhm23

A: Und würd das dann auch, aufgrund dass es die Tatsache ist, dass

es ja im Programm so funktioniert, dann auch annehmen, dass es

richtig ist. Dann müsste ich den Beweis jetzt nicht mehr (.)

machen.

24

25

26

27

Auf die Nachfrage der Interviewerin, ob ein formaler Beweis denn überhaupt keinen Mehrwert

mehr erbringen würde, ergänzt Arne:

A: Ich hab’s gesehen und ich weiß, dass es so ist, fertig. Und

der Beweis bringt mir auch nichts anderes. Da muss ich auch nur

akzeptieren, dass es so ist, und fertig.

30

31

32
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Hier wird noch einmal ganz deutlich, dass die dynamische Visualisierung für Arne Beweiskraft

hat. Sowohl die Visualisierung als auch ein Beweis haben als Ergebnis die Wahrheitssicherung;

die Erkenntnis, dass ein Sachverhalt gilt. Während man jedoch beim Einsatz einer DGS „sieht“

und damit „weiß, dass es so ist“, muss es beim formalen Beweis „akzeptiert“ werden, „dass es so

ist“. Damit geht die Visualisierung für Arne sogar über einen formalen Beweis hinaus: durch

diese kann er wirklich „Wissen“ generieren. Der Beweis hingegen wird nur „akzeptiert“, was

bestenfalls als „angenommen“, im Kontext aber sehr viel mehr als „hingenommen“ gedeutet

werden kann. In jedem Fall wird der formale Beweis von außen an Arne herangetragen und

nicht von ihm eigenständig erarbeitet.

5.3 Beweis als Mittel zur Begründung

Neben den Studierenden, die einen Beweis als Mittel zur Verifiaktion ansehen, gibt es andere,

die darüber hinaus den Anspruch an einen Beweis haben, dass dieser eine Begründung dafür

liefern soll, warum ein Sachverhalt gilt. Diese Studierenden sind in der Regel nicht damit

zufrieden, einen Sachverhalt lediglich zu visualisieren. Eine Repräsentantin dieser Gruppe

wird in meinen ausgewählten Interpretationen von Kira verkörpert. Für sie ist nicht nur von

Interesse, dass der Winkel immer 90° groß ist (was sie nach der Visualisierung nicht mehr

anzweifelt), sondern auch die Frage nach den Zusammenhängen.

Ebenso urteilt Cornelia, eine Studierende in Examensnähe aus dem oberen Leistungsdrittel:

C: Ja, also, ich hab ja schon die ganze Zeit eh so gesagt, dass

mir das (.) nicht (.) richtig ehm (..). Klar, ich seh das jetzt,

dass es so ist. Ich seh jetzt auch, dass es der Thaleskreis ist,

hab ich beim ersten (.), ehm, da war, das war ja noch irgendwas

anderes? Aber, ehm, also, das ist für mich kein Beweis. Also, wenn

ich, wenn ich das sehe.

4

5

6

7

8

9

I: Hhmm?10

C: Gut, dann ist es halt so, aber, aber warum das alles so ist, wird

ja dadurch eigentlich (..) nicht ersichtlich, also.

11

12

Und auch Leo, ein Student in Examensnähe aus dem oberen Leistungsdrittel, argumentiert
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in dieselbe Richtung:

Le: (6 sec) Ähäm na gut, man sieht das ja hier, dass das halt so ist.

Ich meine, was soll, ich glaube nicht, dass dann, dass man dann

zweifeln würde, (..) dass das halt nicht so ist.

34

35

36

I: Hhmm37

Le: Man sieht ja, da ändert sich nichts.38

I: Hhmm39

Le: Und bleibt so (..), aber (.) damit (.) ist halt wie gesagt, nicht

erklärt, noch lang nicht erklärt, (..) warum das halt so ist.

40

41

Für die meisten Studierenden, für die ein Beweis eine Antwort auf eine „Warum-Frage“ ge-

ben soll, kann eine DGS demnach keine Beweisfunktion übernehmen. Darüber hinaus gibt

es aber auch Studierende, die zusätzlich zu einem Beweis noch großen Wert auf das „Sehen“

in einer DGS legen. So stellt beispielsweise Franziska, eine Erstsemesterstudierende aus dem

oberen Leistungsdrittel durchaus die Frage nach dem „Warum“, die für sie nicht durch die

ausschließliche Visualisierung beantwortet werden kann. Dennoch ist die Visualisierung für sie

sehr wichtig, so dass sie auf diese auch nicht verzichten möchte:

F: Also, ich wär’ schon davon überzeugt, dass das immer 90 Grad sind,

aber ich würd’ dann wieder gerne die Begründung haben, warum das

so ist. Ja.

1

2

3

I: Ja, okay. Und, ehm, die Begründung würde der Beweis dann liefern?4

F: Ja.5

I: Hmhm. Und wenn du jetzt nur den Beweis hättest, ohne die, die

Anschaulichmachung, sage ich jetzt mal, in dem Programm, würde dir

das dann auch reichen?

6

7

8

F: (... ) Nee, dann will ich es natürlich auch noch mal sehen

(lacht). Mit meinen eigenen Augen.

9

10

Es wird deutlich, dass Franziska der Visualisierung eine hohe Überzeugungskraft attestiert.

Und obwohl der formale Beweis die Antwort auf die Warum-Frage geben kann, ist dieser allein

für sie nicht hinreichend, denn dieser kann das „mit den eigenen Augen sehen“ (Z.9-10), dass

für sie unabdingbar ist, nicht leisten.
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Bemerkenswert ist ebenso die Einschätzung von Thilo, einem Studenten im mittleren bis

unteren Leistungsdrittel, der zwar feststellt, dass eine Begründung durch die Visualisierung

nicht geliefert wird, diese aber dennoch als Beweis anerkennt. Auf die Frage, ob die dynamische

Visualierung einen Beweis ersetzen kann, antwortet er:

T: (9 Sek. Pause) Für mich persönlich vielleicht schon. Aber, es muss

ja wieder begründet sein, es reicht ja wieder nicht aus, wenn ich

nur sage, dass ich, dass ich es sehe oder nachvollziehen kann,

denn ich muss ja schon den Beweis liefern. Die Begründung.

2

3

4

5

Thilo setzt einen Beweis mit dem Liefern einer Begründung gleich. Das Begründungsbedürf-

nis allerdings scheint allerdings eher von außen eingefordert sein, als seinem eigenen inneren

Bedürfnis zu entspringen. Für ihn selbst ist die Visusalisierung und das dadurch möglich ge-

machte Sehen und Nachvollziehen erst einmal in Ordnung. Es stößt dann auf Defizite, wenn

der Sachverhalt gegenüber einem Dritten kommuniziert oder gerechtfertigt werden muss.

Und auch Henriette, eine Erstsemesterstudierende aus dem unteren Leistungsdrittel, stellt fest,

dass die Frage nach der Begründung noch nicht beantwortet ist. Nachdem sie die dynamische

Visualisierung für sich als Beweis akzeptiert hat, weil sie damit alle Fälle überprüfen kann,

antwortet sie auf die Nachfrage der Interviewerin, ob denn dann noch etwas fehle, mit:

He: Weiß ich nicht. Eigentlich soll man ja alles begründen. Deswegen

denke ich mal, müsste man es schon [begründen, G.W.].

10

11

Auf die Nachfrage, ob dies dann noch einen Mehrwert bringt, antwortet sie allerdings:

He: Nee! Eigentlich nicht. Eigentlich sieht man da ja, dass da ein 90°

Winkel ist.

13

14

Und Sophie, eine Studentin in Examensnähe aus dem oberen Leistungsdrittel, äußert sich:

So: Das ist eher so die (...) Zeichnung, dies ist halt das Praktische

eher dazu, wie es funktioniert, ehm, man kann’s ausprobieren, man

sieht, wie es ist, und (..) bei einem Beweis, da müsste man halt

genau sagen, warum ist da jetzt ein 90° Winkel, [..], das Warum

eher, das dann erklären.

21

22

23

24

25
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Auf die Nachfrage der Interviewerin, ob die Frage nach dem Warum denn in dieser Situation

wichtig sei, antwortet Sophie:

So: Also ich seh das jetzt schon ein, dass das hier ein 90° Winkel

sein muss, damit der Punkt da drauf [auf dem Kreisbogen, G.W.]

liegt. Mir würd’s persönlich jetzt reichen, aber ich weiß ganz

genau, dass das den Dozenten in den Vorlesungen nicht reichen

würde (lacht). Und so etwas merkt man sich dann eher, wenn man es

halt selbst ausprobiert hat, und dadurch, eh, ja, habe ich jetzt

festgestellt, dass es dann halt nur klappt, mit 90° und dann sehe

ich das auch eher ein. Dann verstehe ich, ist es verständlicher.

Würd ich jetzt sagen.

30

31

32

33

34

35

36

37

38

Sowohl Thilo, als auch Henriette und Sophie ist foglich klar, dass bei einem Beweis nicht

nur die Frage nach der Gültigkeit eines Sachverhalts gestellt werden kann, sondern auch die

Frage nach den Begründungszusammenhängen. Dieses hält sie allerdings nicht davon ab, die

Aussage nach durchgeführter dynamischer Visualisierung zu akzeptieren und für sich selbst

dadurch auch zufriedengestellt zu sein. Darüber hinaus schwingt sowohl bei Henriette als

auch bei Sophie deutlich die Orientierung an einer äußeren Autorität mit, die das Stellen

der „Warum-Frage“ oktroyiert. Es liegen keine Hinweise vor, dass diese Fragestellung bei den

beiden intrinsisch motiviert ist. Ganz im Gegenteil gibt Henriette offen zu, dass sie für sich

selbst keinen Mehrwert in deren Beantwortung sieht. Sophie hingegen hat für sich sogar das

Gefühl, dass sie explizit durch die Visualisierung die Zusammenhänge versteht. Sie kann alles

„selbst ausprobieren“ (Z.35) und dabei beobachten, dass der Winkel in C nur 90° groß ist, wenn

der Punkt C auf dem Thaleskreis über AB liegt. Dieses Ausprobieren und Selbst-Erfahren

hat für Sophie den Stellenwert, den Sachverhalt nun „eher einzusehen“ und ihn zu „verstehen“

(Z.36-37). Wenn man impliziert, dass eine Antwort auf eine „Warum-Frage“ genau dies liefert,

nämlich Einsicht und Verständnis, so hat Sophie das Gefühl, genau dieses durch die dynamische

Visualisierung zu bekommen, und zwar mehr, als durch einen formalen Beweis.

Das Gefühl, durch das Ziehen und Beobachten mit einer DGS auch eine Antwort auf die Frage

nach dem „Warum“ zu erhalten, ist durchaus häufiger zu finden. So antwortet beispielsweise

Helena, eine Erstsemesterstudierende aus dem mittleren Leistungsdrittel auf die Frage, ob sich

auch das Warum durch das Sehen mit dem Programm erklärt, wie folgt:
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H: (5 sec Pause) Ja irgendwie schon. (Lacht) Irgendwo schon. Weil,

wenn man das zum Beispiel dann (.), man kann das ja alles so

markieren, ähäm wie groß zum Beispiel der Winkel ist und der

andere Winkel und dann, (.) wenn man das jetzt zieht, dann

verändern sich ja auch die Winkel und, ja, dann kann man ja das

dann auch schon (.) sehen.

83

84

85

86

87

88

Helena argumentiert hier ähnlich wie Diana in meinen Interpretationen. Diese hat im Kontext

„Thalessatz“ das dynamische Bild vor Augen, wie sich beim Ziehen die Winkelmaße verän-

dern, bestimmte Winkel größer oder kleiner werden. Auch Helena scheint ein ähnliches Bild

vor Augen zu haben, denn ihre Äußerung „man kann das ja alles so markieren“ (Z.85-86) weist

darauf hin, dass sie die Winkelmaße vom Programm anzeigen lässt und dann deren Verände-

rung beim Ziehen beobachtet. Dadurch stellt sich bei ihr das Gefühl ein, die Zusammenhänge

durchschaut zu haben. In der Tat ist es ja auch, bezogen auf die klassische Thaleskreissitua-

tion, wie in Abbildung 5.3 dargestellt, so, dass die Veränderungen der Winkelmaße in A und

in B anschaulich evident sind: bewege ich den Punkt C auf dem Halbkreis ausgehend von B

in Richtung A, so ist aufgrund der Enthaltenseineigenschaft klar, dass der Winkel in A größer

und der in B kleiner wird. Nicht klar allerdings ist, dass der Winkel in C gleich groß bleibt.

Dies ist jedoch weder Helena noch Diana bewusst, denn beide haben das Gefühl, sich die

komplexen Zusammenhänge durch die Visualisierung besser vorstellen zu können und damit

auch durchschaut zu haben.

Insgesamt lässt sich sagen, dass somit zwar für die meisten Studierenden, für die ein Beweis

die Frage nach dem „Warum“ beantworten soll, die Antwort nicht durch die dynamische Vi-

sualisierung gefunden werden kann, dass es aber auch hier wieder Ausnahmen gibt. Einige

Studierende haben sogar das Gefühl, durch die Visualisierung sehr viel mehr Verständnis zu

erlangen als durch einen formalen Beweis.

5.4 Beweis als Mittel zum Systematisieren

In meinen ausgewählten Interpretationen wurden bei Verena Ansätze deutlich, einem Beweis

die Funktion des Systematisierens zuzuweisen. Auch bei Hannes, einem Erstsemesterstudenten
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aus dem mittleren Leistungsdrittel, werden Spuren dieser Beweisfunktion sichtbar. Auf die

Frage, ob eine dynamische Visualierung einen Beweis ersetzen kann, antwortet er:

Ha: Also für mich ist der Beweis immer noch (.) dann die Tatsache,

dass ein (..) über den Mittelpunktswinkel geht.

3

4

I: Ja5

Ha: Also für mich ist entscheidend, wenn der Mittelpunktswinkel, (.)

der ist ja fest, der ist einfach fest, ein fester Wert, der bleibt

immer 120 Grad oder der bleibt halt immer 180 Grad, wenn er genau

auf dieser (.) Geraden von A nach B aufliegt, ehm, dann weiß

ich, dass alle anderen Punkte auf dem Kreisbogen für mich 90 Grad

haben.

6

7

8

9

10

11

I: Hhmm12

Ha: Aber, darauf dann zu schließen, wenn ich nur vorher erst die Bögen

sehe und weiß, da, an dem Punkt ist das, an dem Punkt ist das, an

dem Punkt ist das, das sind einfach dann zu viele Fakten. Also,

für mich ist der Beweis dann viel wichtiger, dass wenn ich da 120

Grad habe, dann sind alle anderen so. Also dann brauche ich mir

die anderen ja gar nicht mehr betrachten. Ich brauche ja nur, nur

eine Ur-, ich muss ja nur eine Ursprungssituation kontrollieren.

Ist da 180 Grad? Ja, dann ist alles andere 90 Grad.

13

14

15

16

17

18

19

20

Für Hannes ist der Thalessatz, ebenso wie für Verena, nur ein Sonderfall des Umfangswin-

kelsatzes. Durch den Beweis, dass der Mittelpunktswinkel immer doppelt so groß wie der

zugehörige Umfangswinkel ist, weiß er für alle möglichen Winkelmaße, dass bei konstantem

Mittelpunktswinkel auch der Umfangswinkel gleich groß bleibt. Darüber hinaus sieht Han-

nes im Beweis eine entscheidende Strukturierungshilfe: müsste er, bei Einsatz der DGS, an

allen möglichen Punkten das Winkelmaß überprüfen, um dann doch nur viele Einzelfakten

zu kennen, erlaubt ihm der Beweis des Umfangswinkelsatzes, „nur eine Ursprungssituation

kontrollieren zu müssen“ (Z.21-22). Auf diese Weise kann Hannes einem Beweis einen un-

mittelbaren Nutzen abgewinnen, indem er damit eine zunächst sehr komplex erscheinende

Situation auf einen einzigen Fall reduzieren kann. Daher kann er für sich auch aus einem Be-

weis sehr viel mehr Gewinn ziehen, als dies aus der dynamischen Visualisierung möglich wäre:

zum einen kann er, bezogen auf den Kontext „Thalessatz“, anhand einer einzigen Situation
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Allgemeingültigkeit nachweisen, zum anderen ist dieser Nachweis nicht nur der Beweis des

Sonderfalls, in dem der Mittelpunktswinkel 180° groß ist, sondern sogar der Beweis für alle

anderen Winkelmaße auch. Somit gehen Hannes’ Überlegungen bezüglich eines Beweises über

den konkreten Fall des Thalessatzes hinaus und setzen den vorliegenden Sachverhalt in einen

größeren Kontext. Damit können in Hannes’ Äußerungen durchaus Aspekte des lokalen Ord-

nens und Systematisierens gesehen werden.

Insgesamt gesehen kamen bei den von mir befragten Studierenden Bezüge zur Beweisfunktion

des Systematisierens selten vor. Die überwiegende Mehrheit der Interviewten nahm mit ihrer

Antwort unmittelbar Bezug auf den Thalessatz, ohne diesen in einen größeren Kontext zu

setzen. Allerdings wurde ja in der Frage auch nur der Thalessatz thematisiert. Möglicherweise

hätte sich bei einer etwas anderen Fragestellung auch das Ergebnis etwas anders dargestellt.

Dennoch erscheint es mir im Gesamtkontext einleuchtend, dass für die Studierenden andere

Beweisfunktionen deutlich im Vordergrund stehen.

5.5 Beweis als Mittel zur Kommunikation

Auch die Beweisfunktion der Kommunikation wird in den Interviews wiederholt sichtbar, z.B.

bei Thilo (s. Abschnitt 5.3). Thilo erkennt für sich die dynamische Visualisierung als Beweis

an, hält aber dennoch einen anschließenden formalen Beweis für erforderlich. Auf die Bitte

der Interviewerin, dieses zu begründen, antwortet er:

T: (...) Ja, man weiß dann, dass man es richtig verstanden hat (..)

und andere können (.), ja, können es nachvollziehen (.), wie man

darauf kommt.

19

20

21

Thilo sieht in einem formalen Beweis für sich selbst den Gewinn, dass er nun überprüfen kann,

ob er „es richtig verstanden hat“ (Z.5), denn nur dann wird er in der Lage sein, den formalen

Beweis überhaupt führen zu können. Zudem wird dadurch die zugrundeliegende Argumen-

tation für andere transparent gemacht. Damit spiegelt Thilo die Argumente, einem Beweis

eine Kommunikationsfunktion zuzuweisen, fast vollständig wieder. Diese waren der Transport

und die Diskussion von mathematischen Ergebnissen, die Hinterfragung von einzelnen Beweis-
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schritten auf Verständnis und Vollständigkeit und ein sozialer Aushandlungsprozess über die

Akzeptanz von Argumenten. Also lässt sich feststellen, dass die Überlegungen in der Theorie

wirklich in der Vorstellung von Individuen zu finden sind (zumindest bei Thilo).

Allerdings werden auch andere Motive, einem Beweis Kommunikationsfunktion zuzuweisen,

als die eben genannten, in den Interviews deutlich. Hierzu die Darlegungen von Elke, einer

Erstsemesterstudierenden aus dem unteren Leistungsdrittel:

E: Nein. Also der Beweis, das ist für mich in der Hinsicht wichtig,

dass ich, ehm, das halt so beweisstrukturmäßig sehen kann, sonst

sehe ich es ja nur. Ich kann’s ja sonst, wie gesagt, wieder nur

optisch sagen: es ist so. Und durch diesen formalen Beweis, den

wir da dann gemacht haben, kann ich sagen: Ja, so kann ich es aber

wirklich schriftlich auch irgendwie beweisen. (...) Weil, ich kann

ja nicht sagen, in der Klausur, ja das ist so, weil, wenn ich das

so verschiebe, ist das halt so, ne. (..) Das ist so eigentlich

so mein Problem einfach, immer wenn ich, ehm, ich seh das hier

so, und das ist auch für mich logisch, aber ich kann es niemals

wirklich so auf’s Papier bringen, sagen, das ist deswegen so.

Sondern nur, weil ich es halt sehe. [...] Ja, also, ich finde

es einfach immer schwierig, das, was ich sehe und auch weiß,

dass es so ist, auf’s Papier zu bringen, faktisch gesehen. Diese

Bewegung festzuhalten. Weil ich ja nicht zeigen kann, z.B. ja,

wenn ich das bewege, ist das so, und, eh, das muss ich ja dann

auch irgendwie beweisen und festhalten. Und für mich ist es dann

einfach, einfacher, wenn ich sage: Ja, hier, schau mal, und so ist

das, und deswegen ist das so, ja.
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Es wird deutlich, dass Elke sich in einem Konflikt befindet. Dass die dynamische Visuali-

sierung ein Beweis ist, steht für sie außer Zweifel und wird von ihr auch ohne Zögern bejaht

(gleich als erste Antwort auf die Frage, in einem Teil des Interviews, der hier nicht abgedruckt

ist). Auch in dem oben angeführten Zitat wird dies noch einmal bestätigt, beispielsweise in

der Äußerung: „das, was ich sehe und auch weiß, dass es so ist“ (Z.29-30). Dabei unterschei-

det Elke allerdings zwischen „optisch sagen“ (Z.20) und „schriftlich auch irgendwie beweisen“

(Z.22). Das „optische Sagen“, was durch die DGS erfolgt, endet eindeutig in der Aussage: „es
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ist so“ (Z.20). Damit ist Elke auch zufrieden, und es sind für sie keine Fragen mehr offen,

wie ihre Äußerung „und das ist auch für mich logisch“ (Z.26) deutlich macht. Für sie selbst

ergibt sich folglich nach der dynamischen Visualisierung kein Bedürfnis mehr nach weiteren

Ergänzungen, wie dies ein formaler Beweis wäre. Durch die äußeren Umstände jedoch wird sie

gezwungen, diesen dennoch zu führen, da es beispielsweise in der Klausur schlichtweg nicht

möglich ist, die Visualisierung derart zu dokumentieren, dass auch der Korrektor auf den glei-

chen Wissensstand gebracht werden kann, den Elke durch den Einsatz der DGS - vermeintlich

- erreicht hat. Ausschließlich das statische Bild, das Elke ihren Aufzeichnungen in der Klausur

beifügen kann, kann nicht das leisten, was für sie die dynamische Visualisierung leistet, näm-

lich klar zu machen: „schau mal, und so ist das, und deswegen ist das so, ja.“ (Z.34-35).

An dieser Stelle werden zwei Gesichtspunkte deutlich: Zum einen hat Elke durch den Einsatz

der DGS das Gefühl, die Zusammenhänge zu verstehen und zu sehen, „deswegen ist das so“

(Z.35). Dennoch ist sie „niemals“ (Z.26) in der Lage, schriftlich zu dokumentieren, „das ist

deswegen so“ (Z.27). Elke ist sich folglich bewusst, das hier eine Diskrepanz offenbar wird. Sie

weiß, dass ihr einziges Argument für die Richtigkeit der Aussage ist, zu sagen: „nur, weil ich

es halt sehe“ (Z.28). Daher unterscheidet sie auch zwischen „optisch sagen: es ist so“ (Z.20)

und „schriftlich auch irgendwie beweisen“ (Z.22). Obwohl die Beobachtungen, die sie mit Hilfe

des Programms machen kann, „ logisch“ (Z.26) für sie sind, kann sie sie nicht außerhalb des

visuellen Kontextes schildern und begründen. Diese Unzulänglichkeit allerdings mündet für sie

nicht in der Einsicht, dass die dynamische Visualisierung vielleicht doch nicht so ganz erklärt,

warum ein Sachverhalt gilt. Stattdessen ist es für sie „einfacher “ (Z.34), die DGS einzusetzen

und in ihrer Äußerung schwingt ein Bedauern mit, dass dies in bestimmten Situationen nicht

möglich ist. Damit wird zum anderen deutlich, dass für Elke der formale Beweis nur aufgrund

äußerer Rahmenbedingungen, genauer, aufgrund der Erfordernis der Kommunikation mit an-

deren, erforderlich ist. Sie selbst findet es „immer schwierig“ (Z.29), diesen durchzuführen

und sieht für sich selbst offensichtlich auch keine Notwendigkeit, dies zu tun, denn sie weiß ja

bereits durch das Sehen, „dass es so ist“ (Z.30).

Ähnliche Äußerungen finden sich auch bei Carla wieder, einer Erstsemesterstudierenden, die

ihr Mathematikstudium mittlerweile abgebrochen und auch nie die Klausur in der Veran-

staltung „Elemente der Geometrie“ mitgeschrieben hat. Sie antwortet auf die Frage, ob eine

dynamische Visualisierung einen Beweis ersetzen könne, mit „teilweise schon“, so dass die
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Nachfrage, ob sie ein Beispiel dafür benennen könne, erfolgt. Darauf antwortet sie:

Ca: (..) Also ein konkretes Beispiel jetzt nicht. Ich weiß nur, bei

den Hausaufgaben halt, stand da halt, begründe oder beweise, und

so, und wir haben das halt schon in der, ehm, in der Zeichnung

gehabt, und wussten gar nicht, wie wir das (.) zusätzlich

begründen sollten, weil man das halt sehen kann und (.) deswegen

finde ich schon, dass man das (.) dadurch beweisen konnte.

4

5

6

7

8

9

Auch hier wird deutlich, dass die „zusätzliche Begründung“ (Z.7-8) für Carla selbst nicht

notwendig ist und nur der Kommunikation mit den Tutoren der Veranstaltung geschuldet ist.

Insgesamt lässt sich feststellen, dass somit zwar die Kommunikationsfunktion eines Beweises

durchaus im Bewusstsein einiger Studierenden ist, dass aber nicht alle diese Funktion als

Bereicherung und damit als hilfreich und notwendig ansehen, sondern in einigen Fällen auch

als lästig und für den eigenen Erkenntnisgewinn nicht bedeutsam.

5.6 Rolle der DGS bei der Beweisfindung

In Kapitel 2.1.6 wurde die Rolle einer DGS beim Beweisen analysiert. Dies waren im Wesent-

lichen:

1. Eine Behauptung aufstellen und anschließend untersuchen

2. Eine Beweisidee entwickeln

3. Zentrale Beweisideen verdeutlichen

4. Das Erarbeiten von Beweisstrategien

Inwieweit die von mir befragten Studierenden in der Lage sind, die DGS für sich diesbezüg-

lich gewinnbringend einzusetzen, wird in erster Linie bei der Untersuchung des Einsatzes des

Zugmodus in Kapitel 6 herausgearbeitet. Doch auch bei der Fragestellung, inwieweit eine dy-

namische Visualierung einen Beweis ersetzen kann, kamen einge interessante Aspekte zu Tage,
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die ich hier kurz anführen möchte.

Diejenigen Studierenden, die nicht durch die Visualisierung in ihrem Beweisbedürfnis befrie-

digt waren, sondern noch einen formalen Beweis für notwendig erachteten, haben in der Regel

im Einsatz der DGS eine Möglichkeit für sich gesehen, durch das Sehen eine Vermutung über

einen Sachverhalt zu bekommen, um ihn dann anschließend zu beweisen. Als Beispiel hierfür

sei Natalie genannt, eine Studentin in Examensnähe im mittleren Leistungsdrittel.

Auf die Frage nach der Ersetzbarkeit des Beweises durch die dynamische Visualisierung ant-

wortet sie:

N: Ähäm es ist ja gut, dass ich erstmal das sehe, und vieles, was man

sieht, dann nimmt man das erstmal an.

8

9

I: Hhmm.10

N: Aber ja (..) vollkommend ausreichend (..) würde ich das jetzt auch

nicht so sehen. Also da würde ich (.), da würd’ man schon (.)

11

12

I: Was würd dir fehlen?13

N: (...) Ja (...), ’ne Begründung, warum das so ist.14

I: Hhmm.15

N: Würd’ mir fehlen. Ja, mir würd’ auch der Beweis fehlen (..), weil,

man will ja auch irgendwie beweisen (...), man will ja nicht nur

alles glauben, was man sieht.

16

17

18

I: Hhmm.19

N: Aber ich glaube, dass es grundlegend erstmal gut ist, wenn man es

dann sieht, und dann kann man an den Schritt Beweis gehen.

20

21

Für Natalie ist die Visualisierung der Einstieg in den Beweis: sie hat dadurch etwas gesehen,

was sie nicht nur „glauben will “ (Z.17-18), sondern auch beweisen, und das bedeutet für sie,

nach Begründungszusammenhängen suchen zu wollen.

Bei Helena allerdings, die ich bereits in Abschnitt 5.3 vorgestellt habe, wird eine Denkweise

sichtbar, die der Auffassung von Natalie nahezu diametral gegenübersteht. Auf die Frage, ob

die dynamische Visualisierung einen Beweis des Thalessatzes ersetzen kann, antwortet sie:
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H: (unterbricht) Ja es hilft mir auf jeden Fall, wenn ich das (.),

also, vielleicht (..), wenn echt so’n Satz da steht. Eh, (.) ja

immer ein rechter Winkel, dann, vielleicht denkt man dann, das

kann doch gar nicht sein. Da gibt es bestimmt irgendwo ’nen Punkt,

wo es anders ist.

3

4

5

6

7

I: Aha.8

H: Und wenn man das dann (.) echt mit dem Computer oder hier mit

dem Programm sieht, dann (.) ok, dann glaubt man das doch, dass

sich dann (.) vielleicht irgendwo anders der Winkel verändert,

eh kleiner oder größer wird, und dann oben immer dieser 90 Grad

Winkel (.) entsteht. Also doch, das hilft einem dann natürlich

schon, ehm (.). Also dann (.) werden die anderen Gedanken

quasi ausgelöscht, dass es eh, (.) eh, vielleicht irgendwo eine

Möglichkeit gibt, wo der nicht 90 Grad ist.

9

10

11

12

13

14

15

16

[...]

H: Also das kann ich dann (.) ja besser behalten, wenn ich das, wenn

ich, eh, quasi, wenn meine Zweifel, ja ausgelöscht werden (lacht).

33

34

I: Hhmm.35

H: Und ich das echt sehen kann.36

Ich denke, man kann Helenas Äußerung: „Wenn echt so’n Satz da steht. Ja immer ein rech-

ter Winkel “ (Z.4-5) mit dem Wortlaut des Thalessatzes gleichsetzen. Allerdings wird in ihrer

Erläuterung nicht deutlich, ob sie ausschließlich die Formulierung des Thalessatzes, oder zu-

sätzlich einen formalen Beweis dafür vorliegen hat. Jedenfalls ist sie zunächst kritisch und

meldet Zweifel an, ob der Sachverhalt denn wirklich allgemeingültig sei, oder ob es nicht doch

„irgendwo ’nen Punkt, wo es anders ist“ (Z.6-7) gibt. Diese, für den Fall, dass kein formaler

Beweis des Thalessatzes vorliegt, grundsätzlich berechtigten Zweifel werden für Helena dann

allerdings durch die dynamische Visualisierung vollständig „ausgelöscht“ (Z.15), so dass sie

nun von der Gültigkeit des Sachverhalts überzeugt ist.

Dieses - singuläre - Phänomen ist konträr zur originären Intention des Einsatzes einer DGS.

Hierbei wird im Idealfall immer davon ausgegangen, dass ein interessantes Phänomen beob-

achtet wird und sich die Frage nach dem „Warum“ dadurch nahezu aufdrängt (vgl. das Zitat

von Heinz Schumann in der Einleitung zu diesem Kapitel). Für Helena ist es genau umge-
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kehrt: Sie nutzt die DGS, und alle „Zweifel “ (Z.34) und „anderen Gedanken“ (Z.14) werden

dadurch vollständig ausgeräumt.

Lehrende, die DGS in ihrem Unterricht einsetzen, sollten darum wissen, dass eine solche Ein-

stellung durch den Einsatz von DGS erzeugt werden kann.

5.7 Orientierung an externen Autoritäten

Es besteht die Gefahr, dass für die Akzeptanz eines Beweises keine inhaltlichen Kriterien her-

angezogen werden, sondern eine Orientierung an einer äußeren Autorität stattfindet.

Dieser Aspekt tritt bei Charlotte deutlich zu Tage: sie erkennt an, dass es in der „mathe-

matischen Welt“ einen höheren Anspruch an einen Beweis gibt, als sie selbst ihn hat. Dies

akzeptiert sie zwar, doch sie macht sich diesen höheren Anspruch nicht zu eigen. Damit sieht

sie sich quasi außerhalb dieser „mathematischen Welt“ verortet. Auch Thilo, Henriette und

Sophie (s. Abschnitt 5.3) orientieren sich stark an äußeren Vorgaben und räumen freimütig

ein, dass ihre eigenen Ansprüche durchaus von diesen abweichen.

Ebenso trifft Lara (s. Abschnitt 5.2) eine Unterscheidung zwischen „Mathematik“ und „Alltag“:

La: Also, als Mathematikerin würd’ mich der Beweis natürlich, eh,

mehr überzeugen, aber so (..) allgemein überzeugt es mich mehr,

wenn ich sehe, dass es so ist. Weil es mir dann mehr vergegen-,

vergegenwärtigt, weil, der Beweis, das sind dann ja Zahlen und so,

und da rechnet man ’rum und (.) der ist nicht so anschaulich. Und

(..), ja, natürlich weiß ich, wenn ich das beweise, dass es mir

das deutlicher machen sollte, aber, ehm (.) ja eigentlich ist es,

ist das Anschauliche (.) doch wichtiger, dann (lacht).

52

53

54

55

56

57

58

59

Hier wird deutlich, dass Lara eine deutliche Distanz zum Beweisen hat. Für sie verkörpert

ein Beweis das „Rumrechnen mit Zahlen“ (Z.56), was auf ein wenig zielgerichtetes Vorgehen

hindeutet und zudem wenig mit Geometrie zu tun hat. Obwohl ihre Äußerung: „wenn ich

das beweise“ (Z.57) nahe legt, dass sie wohl dazu in der Lage ist, einen Beweis technisch

durchzuführen, kann sie den Nutzen, „dass es mir das deutlicher machen sollte (Z.57-58),

nicht daraus ziehen. Damit wird auch hier die Orientierung an externen Faktoren sichtbar:
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Lara kann einen Beweis führen und macht dies auch, eben wenn es von ihr verlangt wird. Für

sie selbst ist die Anschauung durch die dynamische Visualisierung wichtiger.

Besonders deutlich wird diese Orientierung an externen Autoritäten bei Juliane (s. Abschnitt

5.2):

Ju: (Lacht) Also, also ich stehe ja mit Beweisen generell auf

Kriegsfuß (lacht). Also ich finde das anschaulich, alles

konstruieren, immer sehr schön, und beim Beweisen tue ich mich

selber auch immer sehr schwer. Wo ich mir dann denke, warum machen

wir das? Ich sehe es hier doch, und wir sehen es alle (..) und

dann wissen es eigentlich auch alle.

26

27

28

29

30

31

I: Hhmm.32

Ju: Aber für mich. Beweise gehören klar (..), gehören dazu, aber (.)33

ich könnte auch gut ohne leben (lacht).34

Auf die Nachfrage der Interviewerin, warum denn Beweise dazu gehören würden, antwortet

Juliane, immer noch lachend:

Ju: (...) (Lachend) Es ist so! Das hat Herr Bender drei Semester lang

gepredigt (beide lachen). Ich hoffe, wenn er das liest: „Schöne

Grüße, (..) war sehr schön!“ (beide lachen)

36

37

38

I: Das ist ein guter Satz.39

Ju: (lacht) Und es gibt immer die meisten Punkte in der Klausur!

(lacht)

40

41

Trotz der fröhlichen Atmosphäre meint Juliane ihre Worte durchaus ernst: „Sehen“ bedeutet

für sie „Wissen“, und ein allgemeingültiger Beweis wird von ihr nicht nur als mühsam, son-

dern als unnötig empfunden. Juliane findet keinerlei inhaltliche Gründe oder eigene Motive für

einen Beweis, sondern fühlt sich ausschließlich durch äußere Faktoren wie Dozent und Klau-

surpunkte dazu verpflichtet, einen Beweis zu führen. Im Vergleich mit Charlotte (und auch

Lara) stellt dies noch eine deutliche Steigerung dar, denn Charlotte erkennt immerhin an, dass

es in bestimmten Kontexten und für bestimmte Personen sinnvoll erscheinen mag, eine höhere

Genauigkeit und einen größeren Bestätigungsgrad einzuforden. In Julianes Äußerungen lässt

sich diese Anerkennung nicht finden.
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An dieser Stelle möchte ich noch eine etwas längere Ausführung von Greta, einer Studierenden

aus dem oberen Leistungsdrittel, vorstellen. Auf die Frage, ob eine dynamische Visualisierung

einen Beweis ersetzen kann, antwortet sie:

G: Ich würde sagen, es ist anschaulich klar [durch die dynamische

Visualisierung, G.W.], aber, ehm, das reicht, meistens reicht

es ja nicht, in der Mathematik, dass etwas anschaulich klar ist.

Ich denke, dass ist die erste Idee, die man hat, dass man erstmal

guckt, ist es denn immer so, wenn ich jetzt hier irgendwas bewege?

Ja, es ist immer so. Und dann müsste ich aber trotzdem jetzt

weiterfragen: warum ist das immer so?

3

4

5

6

7

8

9

I: Ja. (...) Ehm,10

G: (unterbricht) Also zumindest, es ging ja auch immer so, in den

Geometriehausaufgaben war es nun ja auch immer so, es ist ja

anschaulich klar, aber warum ist das so? Welcher mathematische

Hintergrund hat das Ganze? Also da wurde man schon eher auch immer

in die Richtung getrieben, dass man das so und so machen müsste.

11

12

13

14

15

Auf die Nachfrage der Interviewerin, was das für Greta persönlich zusätzlich bringe und ob

sie es dadurch besser verstanden habe, antwortet diese:

G: Eh, ich glaub, ich bin persönlich eher so’n Mensch, dass es mir,

mir auf jeden Fall schon mal wichtig ist, dass es mir anschaulich

klar ist, und wenn es mir anschaulich klar ist, dann bin ich

eigentlich auch schon, eh, relativ (..) davon überzeugt. Also

klar, um diese hundertprozentige Sicherheit zu haben, müsste man

das dann nochmal thematisch machen, aber (..) ich bin oft, oft

schon zufrieden, dass es, wenn es anschaulich klar ist, auch wenn

es manchmal halt, eigentlich doch nicht ausreichend wäre.

19

20

21

22

23

24

25

26

Auf die erneute Nachfrage der Interviewerin, ob es ihr denn dann noch einen eigenen Mehr-

wert bringen würde, antwortet Greta mit der Gegenfrage:

G: Wenn ich das jetzt mathematisch bewiesen habe, noch?33
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Als die Interviewerin dies bestätigt, anwortet Greta mit:

G: Würd ich jetzt nicht sagen, ne.35

Die Äußerungen von Greta sind zunächst so, wie man sie sich wünscht: Man bekommt durch

die dynamische Visualisierung eine Idee, überlegt, ob das immer so ist, erhält durch den

Einsatz des Zugmodus die Bestätigung, dass es wohl so zu sein scheint, und macht sich dann

an die Klärung der Frage, warum das wohl immer so ist. Im weiteren Verlauf des Gesprächs

aber wird deutlich, dass Greta zwar verinnerlicht hat, dass dies eine typische Vorgehensweise

in der Mathematik ist, doch ihre Wortwahl zeigt deutlich, dass dabei eine starke Orientierung

an externen Autoritäten vorliegt.

Schließlich noch ein Zitat von Helena (s. Abschnitte 5.3 und 5.6).

H: (...) Also, meinetwegen könnten wir den Beweis auch weglassen

(lacht). Nein.

53

54

I: Also ja, nee, ich meine im Prinzip ist es doch, wenn man es sieht

und wirklich ausprobieren kann,

55

56

H: Ja.57

I: sagtest du ja gerade, dass dann doch die Zweifel eigentlich

ausgeräumt sind. Oder?

58

59

H: Ja ähä, ich weiß jetzt auch nicht, (.) warum man den Beweis dann

noch macht? (Lacht) (...) Ja, vielleicht, noch mal mathematischer

an die Sache ran zu gehen, als wenn man das so einfach (..) zieht,

also sich zurecht zieht, oder ich (.), weiß ich nicht (lacht).

60

61

62

63

I: Hhmm. Aber würde es dir persönlich noch irgendwas bringen, diesen

formalen Beweis da anzuschließen?

64

65

H: Ich wüsste jetzt echt keinen Grund, so schnell (lacht) (..), also.66

Für Helena ist der einzige Grund, der ihr für einen formalen Beweis einfällt, an die Sache

„mathematischer ran zu gehen“ (Z.61-62) als durch die Nutzung des Zugmodus. Was genau

dieses „mathematischer “ bedeutet, führt sie nicht aus, sie kontrastiert es lediglich mit dem sich

„zurecht ziehen“ (Z.63), was offenbar für sie weniger mathematisch ist. Dennoch erkennt sie

das Ziehen und Beobachten mit einer DGS als Beweis an. Auch hier sind wieder Parallelen zu
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Charlotte zu erkennen, in deren Vorstellung es ein Spektrum von Beweisen unterschiedlicher

Genauigkeit gibt (s. Abschnitt 5.2). Ebenso wie für Charlotte gibt es für Helena Beweise, die

mehr oder weniger mathematisch sind, wobei sie sich selbst mit den weniger mathematischen

zufrieden gibt. Gründe für einen höheren Anspruch kann Helena „so schnell “ (Z.66) nicht fin-

den, was zeigt, dass ihr die unterschiedlichen Funktionen eines Beweises nicht bewusst sind.

Zusammenfassend lässt sich feststellen, dass viele Studierende keine klare Vorstellung davon

haben, warum Beweise in der Mathematik geführt werden. Im Umkehrschluss ist zu vermuten,

dass diese Studierenden auch nicht wissen, wann ein Sachverhalt bewiesen ist. Sie selbst sind

in der Regel damit zufrieden, wenn es ihnen, wie Greta sagt, „anschaulich klar“ ist. Darüber

hinaus ist ihnen jedoch durchaus bewusst, dass dies in der „mathematischen Welt“ nicht hin-

reichend ist. Diese höheren Ansprüche werden mehr oder weniger akezeptiert, sich aber nicht

selbst zu eigen gemacht.

5.8 Den Glauben an einen Beweis vertiefen

Bender (1989, S.129) führt, damals noch ohne Berücksichtigung von DGS, als mögliche di-

daktische Funktion von stetigen Bewegungen bzw. Verformungen für Beweise unter anderem

den Aspekt an: „Sie vertiefen den Glauben an den Beweis, indem sie ihn plausibel bzw. plau-

sibler machen [...]“ (ebenda, S.129).

Eine Studierende, bei der dieser Aspekt, nun auf DGS bezogen, besonders deutlich wird, ist

Silke. Auf die Frage, ob die dynamische Visualisierung den Beweis ersetzen kann, äußert sie:

S: (.) Ersetzen nicht, aber vielleicht noch mal verdeutlichen, für

einige, die es sich nicht bildhaft vorstellen können, ist so ne

Konstruktion (.) nochmal vor sich zu sehen, auf jeden Fall nochmal

3

4

5

besser. Um zu sehen, dass der Winkel immer 90 Grad bleibt.6

I: Ja?7

S: Also zur Verdeutlichung auf jeden Fall. Aber den Beweis richtig

ersetzen (..) würde ich sagen, nicht.

8

9

I: Was, was ist der Vorteil, wenn man es jetzt mit Cinderella zeigen

kann?

10

11
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S: Das man auch sieht, dass der Satz des Thales stimmt. Dass, dass

man noch mal einen Beweis hat. (..) Dass das stimmt.

12

13

Zunächst stellt Silke fest, dass die dynamische Visualierung einen Beweis nicht ersetzen kann.

Dennoch sieht sie Vorteile in ihr, nämlich unter anderem den der „Verdeutlichung“ (Z. 8). Die-

se Verdeutlichung geht soweit, dass sie „sieht, dass der Satz des Thales stimmt“ und damit

„noch mal einen Beweis“ (Z.12-13) vorliegen hat.

Obwohl also der Hinweis auf einen nochmaligen Beweis durch die dynamische Visualierung

nahelegt, dass diese Beweischarakter für sie hat, wird letzteres von Silke abgelehnt: Für sie

kann die DGS keinen formalen Beweis ersetzen. Stattdessen aber kann sie ihr helfen, An-

knüpfungspunkte zwischen formalem, kalkülhaftem Beweis und der Vorstellung oder auch der

Anschauung zu finden. Damit setzt Silke die Aspekte „formaler Beweis“ und „materiale Vor-

stellung“ einander gegenüber: dem formalen Beweis ist die Beweiskraft inhärent, doch die Er-

zeugung einer geeigneten, dazu passenden Vorstellung, ist nicht unbedingt gewährleistet. Die

dynamische Visualierung hingegen hat keine Beweiskraft, wie Silke am Ende des Interviews

ergänzt:

S: Aber alleine das Bild (.) würde für mich persönlich nicht (.)

reichen. Weil, man kann es ja auch einfach nur gezeichnet haben.

Man weiß ja gar nicht, ob es wirklich so (.) stimmt.

47

48

49

Und auf die Nachfrage, ob sie denn für sich nur den formalen Beweis, nur die dynamische

Visualisierung, oder beides durchführen würde, antwortet Silke:

S: Wenn dann beides, zusammen.51

Auf diese Art und Weise versucht Silke, eine angemessene Vorstellung über den formalen

Beweis hinaus aufzubauen, um diesen dadurch noch besser verstehen zu können. Damit inter-

pretiert sie den Einsatz der DGS genau in der von der Mathematikdidaktik intendierten und

erhofften Art und Weise.

Jasmin, eine Erstsemesterstudierende aus dem mittleren Leistungsdrittel, argumentiert ähn-

lich wie Silke. Auf die Frage, ob die dynamische Visualisierung einen Beweis ersetzen kann,
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antwortet sie ohne zu zögern:

Ja: Nein! (lacht) Das ist ja wie eben, also, das ist ja schön und gut,

wenn ich es so und so hinziehe, und es ist so, aber (.) warum das

so ist, habe ich ja trotzdem nicht gesagt.

4

5

6

I: Aha. Ehm, wir haben ja in der Vorlesung dann auch noch den Beweis

angeschlossen, wir haben ja beides gemacht.

7

8

Ja: Ja.9

I: Ehm. Ist für dich auch beides wichtig, oder hättest du gesagt:

“Mir hätte auch der Beweis gereicht, ich hätte das gar nicht mehr

(..) sehen müssen?“

10

11

12

Ja: Doch, also ich finde es immer ganz wichtig, dass man das sieht.

Irgendwie, weil man das sonst (..) ist das alles für mich immer,

alles nicht so (.) greifbar,

13

14

15

I: Hhmm16

Ja: also, das ist (..) schon wichtig, dass man das dann auch wirklich

sieht, dass es immer so ist. Ich meine,

17

18

I: Hmh19

Ja: Man kann uns ja viel erzählen (lacht).20

I: Also dann glaubst du dem Beweis nicht, oder was?21

Ja: Doch, definitiv, klar, aber es ist halt schon anschaulicher

einfach. Wenn du es da, ehm, (..) ja da (.) mit dem Programm hast.

22

23

Auch für Jasmin stellt die dynamische Visualisierung keinen Beweisersatz dar, da die Frage

nach dem „Warum“ durch das Ziehen für sie nicht beantwortet wird. Dennoch ist die Visuali-

sierung für sie wichtig, da ohne diese „alles nicht so greifbar “ (Z. 15) wäre.

Für Jasmin ist, ähnlich wie für Silke, eine tragfähige Vorstellung sehr wichtig: der formale

Beweis scheint zunächst noch außerhalb ihrer eigenen Anschauung zu liegen, noch nicht in ihr

eigenes Wissensnetz eingebunden. Dies entnehme ich ihrer Äußerung: „Man kann uns ja viel

erzählen“ (Z. 20), die eine deutliche Distanz zum formalen Beweis sichtbar werden lässt. Die

Visualisierung stellt für Jasmin eine Brücke von der formalen zur materialen Darstellung dar,

so dass sie nun auch ein Bild, eine Vorstellung vor Augen hat. Dadurch kann sie noch einmal

„wirklich sehen, dass es immer so ist“ (Z. 17-18). Damit liegt hier genau der Fall vor, dass der

„Glauben an den Beweis vertieft wird, weil er plausibler erscheint“.
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Silke und Jasmin stellen durchaus keine Einzelfälle dar. Bei den von mir befragten Studieren-

den kam mehrfach die Aussage, dass formaler Beweis und dynamische Visualisierung jeweils

für sich alleine nicht ausreichend seien, um sowohl der Wahrheitssicherung, der Begründung

als auch einer adäquaten Vorstellung Genüge zu tun. (Inwieweit dabei die Einforderung eines

formalen Beweises wirklich dem eigenen Anspruch oder dem externer Autoritäten geschuldet

ist, steht, wie gesagt, dahin.)
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5.9 Zusammenfassung und Konsequenzen

„Proof is not merely to support conviction, nor to respond to a distrustful nature

or self-doubt, nor to be done as a part of an obsessive ritual. Proof serves to pro-

vide explanation, and therefore is a central technique in research. [...] In real life,

both in and out of mathematics, the distinction between empirical and theoretical

investigations breaks down: We must move back and forth between „doing stuff“

and understanding what we have done. Seen in this way, proof (or at least the

precursors to proof) is a natural step in satisfying curiosity to understand what

we have observed“ (Goldenberg et al. 1998, S.41f).

In diesem Kapitel habe ich versucht, die Beweisvorstellung bzw. das Beweisverständnis der

befragten Studierenden herauszuarbeiten, wobei dieser Aspekt logisch losgelöst vom Einsatz

einer DGS zu sehen ist. Dabei hat sich gezeigt, dass hier ein breites Spektrum aufgespannt

wird. Es geht im Prinzip um die Frage, warum ein Beweis geführt wird, und die jeweiligen

Antworten, die auf diese Frage möglich sind.

Während einige der Studierenden einem Beweis eindeutig die Funktion des Verifizierens oder

auch die Funktion des Begründens zuweisen und die demzufolge entscheiden können, ob ein

Sachverhalt durch eine bestimmte Vorgehensweise bewiesen ist, haben demgegenüber andere

ein eher diffuses Beweisverständnis. Für diese Studierende ist oftmals nicht klar, aus welcher

Motivation heraus überhaupt irgendetwas bewiesen wird. Damit einhergehend besteht häufig

kein eigenes, intrinsisch motivitiertes Beweisbedürfnis, sondern vielmehr die Auffassung, dass

Beweisen eine lästige Pflichtaufgabe ist. Goldenberg et al. (1998, S.41) sehen eine Ursache

hierfür in den vorhandenen Schulcurricula:

„Conventional curricula may (or may not) emphasize that mathematicians „prove

things“, but rarely make clear to students why precise justification - the thing

that separates mathematics from almost every other discipline - is so central to

mathematical thinking. In fact, the lack of an apparent rationale - when proof is

included at all, it tends to be treated as a kind of post hoc ritual - is one source

of the popular calls to deemphasize or totally remove proof from the curriculum.“
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Auch wenn das „diffuse“ Beweisverständnis bei Erstsemesterstudierenden stärker vertreten ist,

gibt es bei diesen durchaus auch solche, die einen Beweis für sinnvoll erachten, weil sie durch

ihn die Zusammenhänge besser verstehen können, und ihn deshalb für wichtig halten. Um-

gekehrt gibt es auch unter den Studierenden in Examensnähe etliche, die Beweise eher als

unnötig empfinden und im wesentlichen als von außen eingefordert ansehen. Dies bedeutet,

dass, unabhängig davon, inwieweit in der schulischen Laufbahn ein Beweisbedürfnis erzeugt

und aufrechterhalten wurde, es auch der mathematischen Ausbildung in der Universität nicht

gelingt, die verschiedenen Funktionen eines Beweises derart zu thematisieren, dass ein echtes

Einsehen in die Notwendigkeit von und ein aus innerer Überzeugung heraus motiviertes Be-

dürfnis nach Beweisen erzeugt wird.

Eine erste Folgerung, die sich demnach aus den beobachteten Befunden ergibt, ist die konse-

quente Offenlegung der Motivation und Funktion von Beweisen. Wenn ein Beweis geführt wird,

sollte immer auch die Frage im Raum stehen, warum dieser Beweis jetzt erforderlich ist. Zu-

gleich sollte klar sein, dass je nach Kontext, diese Frage durchaus unterschiedlich beantwortet

werden kann oder dass unterschiedliche Begründungen für das Führen des jeweiligen Beweises

möglich sind. Nur so können die verschiedenen Funktionen eines Beweises deutlich und ein-

sichtig gemacht werden, was ich für sehr wichtig halte. Denn nur, wenn die hier vorliegende

Vielschichtigkeit transparent wird, kann echtes Verständnis generiert werden. Bekanntermaßen

ist es immer noch die Rolle der Verifikation, die für viele Studierende im Vordergrund steht.

Dies kann dann zum Problem werden, wenn sich diese Dominanz in einer Ausschließlichkeit

manifestiert, da ein echter Zweifel an den vorliegenden Sachverhalten in den wenigsten Fällen

besteht, so dass dann der Beweis wirklich die oben von Goldenberg et al. formulierte Be-

deutung des „post hoc rituals“ einnehmen würde.

Eine weiteres Problem für viele Studierende ist die Frage, was ein Beweis überhaupt ist bzw.

was als Beweis akzeptiert wird. Allerdings spiegelt sich hier wieder: In der Schulmathematik

ist oft unklar, was als Beweis gilt, zumal dies immer auch einem sozialen Aushandlungsprozess

unterliegt. Z.B. stellt Mormann (1981, S.167) in diesem Zusammenhang fest:

„Ein Beweis wird ein Beweis erst dadurch, daß er als Beweis anerkannt wird. Die

Kriterien, wann ein Beweis als akzeptabel gelten kann, sind in gewissen Grenzen

veränderlich. Es ist eine wichtige Aufgabe der Didaktik des Beweisens, Kriterien

208



5.9. Zusammenfassung und Konsequenzen

dieser Art für Beweise der Schulmathematik zu entwickeln.“

Viele der von mir befragten Studierenden haben an dieser Stelle noch keine Möglichkeit ge-

funden, autark zu entscheiden, ob ein Sachverhalt bewiesen ist oder nicht. Stattdessen fin-

det immer noch sehr häufig die Orientierung an den Anforderungen des Dozenten oder der

Übungsleiterinnen statt. Dies ist nicht nur bei den Erstsemesterstudierenden, sondern auch

bei Studierenden in Examensnähe noch zu beobachten, so dass man feststellen muss, dass

das Studium sie in dieser Hinsicht nicht wesentlich vorangebracht hat. Man muss natürlich

auch konstatieren, dass an der Universität Paderborn das geometrische Beweisen außerhalb

der Veranstaltung „Elemente der Geometrie“ höchstens vereinzelt (in Seminaren oder ausge-

wählten Aufgaben) dran kommt. Demnach wäre eine weitere Konsequenz aus der vorliegenden

Studie, beim Führen eines Beweises immer wieder auch die einzelnen Beweisschritte auf ih-

re Akzeptanz hin zu beleuchten. Im Prinzip wäre angebracht, bei jeder einzelnen Folgerung,

die beim Beweisen gezogen wird, eine Art Rechtfertigung für die Legitimität derselben anzu-

bringen. Gleichzeitig müsste kritisch überlegt werden, ob diese Rechtfertigung einen Dritten

überzeugen würde, so dass damit zugleich das Problem der Kommunikation ins Spiel gebracht

würde. Denn ein durchaus nicht kleiner Teil der Studierenden sieht sich mit der Schwierigkeit

konfrontiert, einen Sachverhalt, der durch die dynamische Visualisierung klar geworden zu sein

scheint, einer dritten Person, sei es bei den Hausaufgaben, sei es in der Klausur, kommunizie-

ren zu müssen. Diese Kommunikation wird zum einen als unnötig empfunden, da durch das

Sehen mit dem Programm alles so offensichtlich zu sein scheint. Zum anderen aber wissen diese

Studierenden in der Regel nicht, wie sie überhaupt eine derartige Kommunikation aufbauen

können. Die soeben beschriebene Vorgehensweise könnte hier vielleicht eine Hilfestellung sein.

In Abschnitt 2.1.5 habe ich einige Alternativen zu streng-deduktiven Beweisen vorgestellt.

Dabei wurde deutlich, dass hier eine Vielzahl von Begrifflichkeiten kursieren, die durchaus

ähnlich klingen und auch nicht immer trennscharf voneinander zu unterscheiden sind, wie bei-

spielsweise Tätigkeitsbeweise und handlungsbezogene Beweise, oder anschauliche Beweise und

inhaltlich-anschauliche Beweise, wobei erschwerend hinzukommt, dass die von mir vorgenom-

mene Aufzählung keinen Anspruch auf Vollständigkeit erheben kann. Daher stellt sich mir

an dieser Stelle die Frage, ob diese Vielzahl von Begriffen, die natürlich historisch gewachsen

ist, sinnhaft ist. Bei den von mir befragten Studierenden konnte ich durchaus an der ein oder
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anderen Stelle beobachten, dass die dynamische Visualisierung als „anschaulicher“ Beweis ti-

tuliert worden ist. Dabei wurde das Adjektiv „anschaulich“ allerdings klar alltagssprachlich

verwandt, in dem Sinne, dass man etwas „sehen“ kann und es damit im wahrsten Sinne des

Wortes „anschaulich“ ist, und nicht vor der Folie eines theoriegeleiteten wissenschaftlichen

Begriffs. Dass dieses alleinige Sehen durch die DGS nicht den Kriterien eines anschaulichen

Beweises genügt, ist klar. Auch hier kann ich nur die Forderung wiederholen, immer wieder

zu problematisieren, ob eine Vorgehensweise als Beweis akzeptiert wird, oder nicht, und in

letzterem Fall immer wieder zu klären, warum nicht.

Insgesamt gesehen hat sich bestätigt, dass das Thema „Beweis“ immer noch ein sehr schwie-

riges ist. Aber selbst bei Erfüllung aller oben genannten Forderungen und Kosequenzen kann

nicht garantiert werden, dass ein Zugang zum Beweisen entstehen muss, da alle genannten

Aspekte sich nur auf die Verhaltensweisen von Lehrkräften und Dozenten beziehen und die

Eigeninitiative und Eigenleistung des Lernenden außer Acht lassen. Dass dieses unverzichtbar

ist, hat schon Mormann (1981, S.34) festgestellt:

„Ein Beweis ist aber erst dann verstanden, wenn er ein bestimmendes Moment

der mathematischen Eigentätigkeit der Schüler geworden ist. Einen Beweis bloß

kontemplativ zu wiederholen, hat wenig Sinn, es kommt darauf an, mit ihm zu

arbeiten.“

Und noch eine Äußerung Mormann (1981, S.144), die im selben Kontext zu sehen ist:

„Weder wird man darauf vertrauen dürfen, daß sich allein durch das häufige Nach-

vollziehen von Beweisen, die der Lehrer (vor)geführt hat, so etwas wie ein „hö-

heres“ Verständnis von selbst einstellt, noch kann ein bloßes Reflektieren über

allgemeine mathematische Konzepte das konkrete Operieren mit ihnen ersetzen.“

Damit ist der Lernende, hier der Studierende, immer auch selbst in die Pflicht genommen. Die

Lehrperson kann zwar versuchen, durch ein hohes Maß an Transparenz und Reflexion so viele

Dinge wie möglich offen zu legen; die Entwicklung eines adäquaten Beweisverständnisses und

die Fähigkeit, über die Angemessenheit einzelner Beweisschritte zu urteilen, muss jeder und
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jede für sich selbst erarbeiten. Dies soll nicht bedeuten, dass die Rolle der Lehrperson damit

auf eine passive reduziert wird. Vielmehr schließe ich mich Hanna & Jahnke (1996, S.887)

an, die sagen:

„Yet the constructivist theory of learning has been translated into classroom stra-

tegies which are inimical to the teaching of proof. As mentioned, recent studies

confirm that it is crucial for the teacher to take an active part in helping students

understand why a proof is needed and when it is valid. A passive role for the tea-

cher also means that students are denied access to available methods of proving.

It would seem unrealistic to expect students to rediscover sophisticated mathe-

matical methods or even the accepted modes of argumentation. [...] We need to

ensure that students develop the ability to assess each step in a proof and make

an informed judgment on the validity of a mathematical argument as a whole.

It would seem unwise to avoid methods that promise to help do this effectively,

simply because they require active intervention by the teacher.“

Es leuchtet ein, dass die Situation nicht einfacher wird, wenn zu einem diffusem Beweisver-

ständnis nun eine DGS mit den ihr zur Verfügung stehenden Visualisierungsmitteln hinzu-

kommt. Damit möchte ich auch zum Ausdruck bringen, dass die Schwierigkeiten nicht in

erster Linie durch die DGS initiiert, sondern sichtbar gemacht werden. Denn die Beweisvor-

stellung des Anwenders und der Anwenderin ist ja bereits in einer gewissen Weise ausgeprägt,

wenn die DGS ins Spiel kommt, und es ist kaum vorstellbar, dass sie in der Lage wäre, hier

eine angemessene Vorstellung zu zerstören oder negativ zu beeinflussen. Dazu sagt Hölzl

(1999, S.33): „Doch ist die auf Fachtagungen durchaus häufig anzutreffende Einschätzung, der

Computer verschlimmere einen ohnehin schon problematischen Zustand, noch zu allgemein,

als dass sich damit wirklich etwas anfangen ließe. Denn ob das Beweisbedürfnis erschwert wird

oder nicht, hängt weniger vom Computer ab, als vielmehr vom unterrichtlichen Kontext, in

dem sowohl das Beweisen wie der Computereinsatz stattfindet.“

Gerade auch im Hinblick auf den Einsatz von DGS ist es wichtig, die verschiedenen Beweis-

funktionen zu kennen und einen Beweis nicht ausschließlich auf die Verifikation zu reduzieren.

Die meisten der von mir Befragten, die durch den Beweis ausschließlich die Richtigkeit eines
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Sachverhaltes überprüfen wollen, können dies ihrer Ansicht nach mit der dynamischen Vi-

sualisierung realisieren und sehen demnach keine Notwendigkeit, noch einen formalen Beweis

anzuschließen. Nur in wenigen Fällen wurde hier der DGS aufgrund der Tatsache, dass nur

endlich viele Fälle überprüft werden können oder die Zeichnung infolge der Pixelgröße nicht

genau ist, die Beweiskraft abgesprochen.

Damit zeigt sich erneut, wie wichtig die Auseinandersetzung mit den Fragen: „Was ist ein

Beweis?“, „Was akzeptieren wir als Beweis?“, „Warum beweisen wir?“ ist. Eine sehr schöne

Definition, die all dies zusammenfasst, findet sich bei Mormann (1981, S.171):

„Beweisen könnte man also - bildhaft gesprochen - als die Tätigkeit bezeichnen,

die Anzahl gedanklicher Brücken in bekannten Begriffsgefügen zu vermehren, was

eine bessere Begehbarkeit des gesamten Systems zur Folge hat.“
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Kapitel 6

Fallstudien zum „Zugmodus“

Neben der Analyse des Beweisverständnisses der Studierenden ist die zweite zentrale Frage-

stellung meiner Arbeit, wie der Zugmodus eingesetzt wird. Dabei liegt das Hauptaugenmerk

darauf, ob die Studierenden es schaffen, das heuristische Potenzial der DGS für sich zu nutzen,

so einzusetzen, dass ihnen die Bearbeitung von Aufgaben leichter als mit Papier und Bleistift

fällt. Auch das jeweilige Beweisverständnis wird immer wieder eine Rolle spielen und ich werde

stets Bezüge zu Kapitel 5 herstellen.

6.1 Ausgewählte Interpretationen

Vor der Durchführung des Interviews mit den Studierenden wurden diese gebeten, eine Aufga-

be zu bearbeiten. Zunächst möchte ich bei einigen Probanden relativ detailliert darstellen, wie

diese den Zugmodus einsetzen. Dabei orientiere ich mich an den in Kapitel 3.2 vorgestellten

Klassifizierungen nach Arzarello et al. (2002).

Bei allem, was in dieser tabellarischen Form dargestellt und nicht andersartig gekennzeich-

net ist, handelt es sich um eine Äußerung oder Handlung des/der Interviewten. Zudem sind

wichtige und symptomatische Äußerungen wörtlich transkribiert. Die Transkripte sind fort-

laufend zeilenmäßig nummeriert, auch wenn es zwischendurch Gesprächspassagen gibt, die
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nicht wörtlich wiedergegeben sind. Um diese Lücken deutlich zu machen, sind alle Zitate mit

Zeitangaben versehen.
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6.1. Ausgewählte Interpretationen

6.1.1 Fallstudie „Hannes“

Für Hannes (s. Kapitel 5.4) hat ein Beweis eine ordnende und strukturierende Funktion, indem

dieser einen konkreten Fall in einen größeren Kontext einbettet.

Zu Beginn bearbeitet Hannes Aufgabe 4, bei der es um die Frage geht, ob in einem spitzwink-

ligen Dreieck die beiden Eckpunkte A und B, der Höhenschnittpunkt H und der Umkreismit-

telpunkt M auf einem Kreisbogen liegen können.

Zeit Zugmodus Aktivität

1:39 - 3:20 Konstruiert spitzwinkliges Dreieck, H und M.

3:35 - 3:50 Behauptung: Wenn H = M geht es, weil Kreis durch

3 Punkte immer möglich ist.

3:51 - 4:01 Guided Zieht an C, um H auf A zu ziehen. M wandert weg in

Richtung Seitemitte von BC (Abb. 6.1a)).

4:01 - 4:08 Guided Zieht an C, um H auf B zu ziehen. M wandert weg in

Richtung Seitenmitte von AC (Abb. 6.1b)).

4:08 - 4:11 Behauptung: Einzige Möglichkeit, wenn H = M.

A B

C

H

D EM

A B

C

H

D EM

a) b)

Abbildung 6.1 – Ziehe H zu A bzw. zu B

Gleich zu Beginn meint Hannes ohne weitere Überlegung, dass die Aufgabe nur lösbar ist,

wenn Umfangsmittelpunkt und Höhenschnittpunkt zusammenfallen. Dann muss ja nur noch

ein Kreis durch drei Punkte gezeichnet werden, und das ist seiner Aussage nach immer mög-

lich. Das Erfordernis, dass die drei Punkte dabei nicht auf einer Geraden liegen dürfen, lässt
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er allerdings außer Acht, und es wird nicht deutlich, ob er diese Konstellation einfach vergisst

oder aber sich darüber im Klaren ist, dass nur im gleichseitigen Dreieck H = M gilt und die

Kolinearität der besagten drei Punkte somit eh unmöglich ist.

Das von Hannes zunächst konstruierte Dreieck ist fast gleichschenklig mit Basis AB gewor-

den, so dass der Umkreismittelpunkt M fast auf der Höhe von C liegt. Ausgehend von dieser

Situation zieht Hannes nun an C, und zwar zunächst so, dass H zu A, und dann, dass H zu B

wandert (siehe Abbildung 6.1). In beiden Situationen beurteilt er nach Augenmaß, ob nun die

vier Punkte A, B, H und M auf einem Kreis liegen, und kommt zu dem Schluss, dass dies nicht

der Fall ist. Damit fühlt er sich in seiner anfänglichen Vermutung bestätigt und wiederholt

diese nun als gefestigte: Höhenschnittpunkt und Umkreismittelpunkt müssen zusammenfallen.

Damit verfolgt Hannes eine relativ simple Strategie: Ausgehend von der Ursprungssituation,

in der, wie bereits beschrieben, M und C beide nahezu mittig über AB liegen, zieht Hannes

so, dass H, ohne aus dem Dreieck hinauszuwandern, möglichst weit links bzw. rechts zu liegen

kommt. Da beide Fälle keine Lösung des Problems darstellen, er aber auch nicht weiter nach

rechts bzw. links ziehen könnte, ohne dass das Dreieck recht- oder stumpfwinklig würde, ist

für ihn somit klar, dass er die einzige Lösung bereits gefunden hat. Hinzu kommt, dass diese

Ergebnisse des Ziehens komplett seiner Erwartungshaltung entsprechen.

Zeit Zugmodus Aktivität

4:11 - 4:14 Guided Zieht an C, so dass H auf M (Abb. 6.2a)). Interviewerin

bittet um Begründung.

4:15 - 4:33 Begründung: H = M, wenn Höhen identisch mit Mit-

telsenkrechten, dann kann Kreis durch 3 Punkte gelegt

werden.

4:34 - 4:36 Wandering Zieht an C, stoppt, als HMAB wie Trapez aussieht.

4:37 - 4:46 Guided Zieht an A, versucht HMAB zum Trapez zu ziehen (Abb.

6.2b)).

4:47 - 4:56 Behauptung: Einzige Möglichkeit, wenn H = M.
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4:57 - 5:06 Zeichnet Kreis durch A, H und M : B liegt nicht auf

Kreisbogen (Abb. 6.2c)). Sieht seine Vermutung bestä-

tigt. Löscht Kreis wieder.

A B

C

H
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M
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C
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H
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a) b) c)

Abbildung 6.2 – Beginnend von H = M (a) zieht Hannes das Viereck ABHM zum Trapez

(b) und prüft: B liegt nicht auf dem Kreis (c)

Auf Nachfrage, ob er wirklich sicher sei, dass es nur die eine Lösung gebe, wenn H und M

aufeinanderfallen, zieht Hannes erneut, so dass es aussieht, als sei das Viereck ABHM ein

Trapez (vgl. Abbildung 6.2b)). Er führt aus, dass er in dieser Situation beim vorangehenden

Ziehen unsicher gewesen sei, doch nach optischer Beurteilung scheine kein Kreis durch die vier

Punkte zu gehen. Zur Überprüfung konstruiert er den Kreis durch A, M und H und sieht

seine Vermutung bestätigt, als dieser nicht durch B geht.

Zeit Zugmodus Aktivität

5:07 - 5:14 Nachfrage, ob Dreieck besonders, wenn H = M.

5:15 - 5:25 Guided Zieht an C, so dass H = M.

5:27 - 6:06 Begründung: Wenn H = M, dann Dreieck gleichseitig.

Behauptung: Einzige Lösung.

6:07 - 6:24 Nachfrage: Warum ist es die einzige Lösung?

6:25 - 6:32 Wandering Zieht an C. Urteilt nach Augenmaß, dass die vier Punkte

nicht auf einem Kreis liegen.
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6:32 - 6:34 Guided Zieht an C, so dass Dreieck gleichschenklig mit Basis AB.

6:35 - 6:48 Begründung: H und M liegen beide auf MS zu AB,

also kein Kreis möglich.

6:49 - 6:59 Guided Zieht an C, so dass H nach B wandert: Nicht möglich,

weil Kreis durch B, H undM Rechtskurve machen müss-

te und nach A Linkskurve.

7:01 - 7:02 Guided Zieht an C, so dass H und M dicht beieinander (HMAB

sieht aus wie Trapez).

7:03 -7:16 Zweifel, ob es in diesem Fall nicht doch geht. Vermu-

tung: eher nicht.

7:17 - 7:22 Konstruiert Kreis durch M, H und B, dieser geht nicht

durch A.

7:23 - 7:31 Wandering Behauptung: keine andere Lösung.

Hannes kann problemlos begründen, dass im Fall H = M das Dreieck gleichseitig ist, da

dann die Höhen mit den Mittelsenkrechten zusammenfallen. Auf die Nachfrage, warum dies

die einzige Lösung sei, führt Hannes nahezu eine Kopie seiner vorangegangenen Zugmodusakti-

vitäten durch und rekapituliert die Fälle, die er betrachtet hat. Dabei begründet er, warum sie

keine Lösung darstellen. Beginnend damit, dass er das Dreieck so zieht, dass es gleichschenklig

mit Basis AB ist, legt er dar, warum nun kein Kreis durch die geforderten vier Punkte gehen

kann. Anschließend zieht er so, dass H fast mit B zusammenfällt. Auch in dieser Situation

begründet er, warum es keine Lösung gibt. Danach zieht er so, dass ABMH wie ein Trapez

aussieht. Der Kreis durch M, H und B geht nicht durch A, also ist dies auch keine Lösung.

Zeit Zugmodus Aktivität

7:32 - 7:33 Wandering Zieht eher planlos (dieses Mal, ohne den Kreis zu lö-

schen). Kreis geht durch A, B, H und M.

7:34 - 8:05 Hannes äußert seine Überraschung, kann keine Beson-

derheit am Dreieck ABC erkennen.
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Während er bereits formuliert, dass seine Behauptung, es gebe nur eine Lösung, richtig sei,

zieht er noch einmal, eher planlos an C, und völlig überraschend geht der zuvor gezeichnete

und beim Ziehen nicht wieder gelöschte Kreis durch die gewünschten vier Punkte.

Damit ist Hannes klar, dass seine ursprüngliche Behauptung nicht weiter haltbar ist. Aus

seinen Äußerungen wird deutlich, dass nicht nur die Tatsache, dass es eine weitere Lösung

gibt, für ihn überraschend ist, sondern vor allen Dingen auch, dass er dem Dreieck ABC keine

Besonderheit ansehen kann: das Dreieck ist nach optischer Beurteilung weder gleichschenk-

lig noch rechtwinklig noch sonst wie auffällig. Möglicherweise ist dies darauf zurückzuführen,

dass in vielen Aufgabenstellungen naturgemäß Betrachtungen der Art: „Wenn das Dreieck

ABC gleichschenklig, dann... „ oder „Wenn das Viereck ABCD eine Raute, dann...“ angestellt

werden und ja auch dieser Aufgabe eine derartige Beziehung unterliegt, die nur nicht so offen-

sichtlich ist.

Auch nachdem Hannes eine andere Situation hinzieht, in der M und H auf dem Kreis liegen,

kann er keine Besonderheit am Dreieck erkennen. Daher richtet er nun seine Aufmerksamkeit

auf das Viereck ABMH, dessen Eigenschaften als Sehnenviereck möglicherweise einen Hinweis

auf die zugrundeliegenden Zusammenhänge liefern können.

Zeit Zugmodus Aktivität

8:06 - 8:20 Guided Zieht nochmals Sonderfall, dass H =M. Zieht dann, dass

H ungleich M und M auf Kreis.

8:20 - 9:10 Beurteilt Seitenlänge und Winkelgröße nach Augenmaß,

sieht keine Besonderheit im Dreieck.

9:11 - 9:30 Reflexion: Wenn ABHM Sehnenviereck, dann ergänzen

sich gegenüberliegende Winkel zu 180°.

9:31 - 11:43 Zeichnet das Viereck ABHM ein. Misst nach Aufforde-

rung Winkel und Seiten des Dreiecks.

Da Hannes an dieser Stelle nicht weiterzukommen scheint, gebe ich den Tipp, einmal die Sei-

ten und Winkel des Dreiecks zu messen. Hannes befolgt diesen Tipp und nutzt anschließend

erneut den Zugmodus. An dieser Stelle ergibt sich ein kleiner Nebenschauplatz (11:44 - 12:26),
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denn als Hannes nun wieder den Sonderfall H = M hinzieht, geht der Kreis nicht wie erwartet

durch A. Dies hat seine Ursache darin, dass Hannes den Kreis durch die Punkte M, H und B

konstruiert hat. Als nun H und M zusammenfallen, hat der Kreis nur noch zwei Bezugspunkte

und ändert je nach Ziehen sowohl Größe als auch Lage. Hannes erkennt diese Zusammenhänge

problemlos, sucht aber den Ausweg darin, mit Hilfe des Buttons „Kegelschnitt“ einen Kreis

durch vier Punkte konstruieren zu wollen. Der anschließende Test durch den Zugmodus of-

fenbart aber schnell, dass dies nicht geklappt hat. Nachdem Hannes zunächst überlegt, wie

man denn wohl einen Kreis durch vier Punkte konstruieren könne, kommt er schließlich zur

Einsicht, dass dies wohl nicht geht, sein Problem aber dadurch zu lösen ist, dass er einen Kreis

durch A, H und B konstruiert.

Zeit Zugmodus Aktivität

11:44 - 11:58 Guided Zieht an C, so dass H = M, aber Kreis geht nicht durch

A.

11:59 - 12:03 Begründung: Kreis ist nur durch M, H und B konstru-

iert, nicht durch A.

12:04 - 12:06 Wandering Zieht kurz an C, so dass H ungleich M.

12:07 - 12:20 Versucht mit Button „Kegelschnitt“ Kreis durch 4 Punk-

te zu konstruieren.

12:21 - 12:26 Test Zieht an C, um zu sehen, ob der Kreis nun an 4 Punkte

gebunden ist. Dies ist nicht der Fall. Weiß nicht, wie er

einen Kreis durch 4 Punkte konstruieren soll.

12:27 - 13:02 Wandering Zieht an C, so dass H ungleich M.

13:03 - 13:09 Konstruiert Kreis durch A, H und B.

13:10 - 13:20 Guided Zieht an C, so dass H = M (Abb. 6.3a)). (Kreis geht

durch A, B, H und M ).

13:21 - 13:44 Guided Zieht an C, so dass H und M auf Kreis, aber H ungleich

M (Abb. 6.3b)).

13:45 - 14:04 Guided Zieht an C, so dass H und M auf Kreis, aber anders als

vorher (Abb. 6.3c)).
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14:05 - 14:20 Guided Zieht an C, so dass H und M auf Kreis, aber anders als

vorher.

<)cb= 60,1°

<)ca= 59,8° <)ba= 60°

|CB|= 9,65

|CA|= 9,67

|AB|= 9,68
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M

<)cb= 59,7°

<)ca= 72° <)ba= 48,3°

|CB|= 10,66

|CA|= 8,37

|AB|= 9,68
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Abbildung 6.3 – Hannes prüft verschiedene Situationen, in denen H und M auf dem Kreis

liegen

Zeit Zugmodus Aktivität

14:21 - 14:23 Vermutung: Der Winkel in C muss 60° groß sein.

14:24 - 14:33 Dummy locus Versucht so an C zu ziehen, dassM auf dem Kreis bleibt.

14:34 - 14:55 Behauptung: der Winkel in C muss 60° groß sein, die

anderen Winkel können beliebig groß sein.

16:11 - 24:30 Versuch der Begründung am statischen Bild mit Um-

fangswinkelsatz und Eigenschaften von Sehnenvierecken.

Hannes schildert seine Überlegungen, die er dabei angestellt hat, wie folgt:

(15:20 - 16:00)

Ha: Vorher war es Zufall für mich, dass der eine 60 hatte, und dass

die beiden anderen, ja halt, irgendwelche willkürlichen Werte

haben, aber dann später bei der zweiten (.) Mal, wo ich dann

versucht habe, zu konstruieren, war’s auf einmal wieder 60, dass

der obere so war, und dass es nur bei 60 war, das hab’ ich dann

halt noch mal getestet, indem ich C in ’nen ganz anderen Punkt

1

2

3

4

5

6
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schiebe, ob es dann wirklich auch nur bei 60 Grad ist. Und es war

halt nur bei 60 Grad, auf einmal, dass die, eh, dass der Kreis auf

einmal durch die beiden durchgeht. Aber (..), also jetzt würde ich

sagen, ich hab’ jetzt dreimal getestet, in drei Fällen war es 60

Grad, und damit wäre es für mich (..) ausschlaggebend, dass es bei

den anderen auch 60 Grad (.) sein, sein sollte.

7

8

9

10

11

12

An dieser Stelle kann Hannes die DGS hilfreich für sich einsetzen: Auch wenn er nicht aus

eigenem Antrieb heraus die Messfunktion bezüglich Winkelgrößen und Seitenlängen aktiviert

hat, nutzt er nun das Dummy locus dragging, um nicht nur punktuell, sondern dynamisch und

stetig die Größe des Winkels in C zu überprüfen. Dabei irritiert es ihn auch nicht, dass die

gemessenen Werte durchaus zwischen 59,7 und 60,4 Grad schwanken, obwohl es so aussieht, als

liege M auf dem Kreis. Auf die Aufforderung, seine Sicherheit bezüglich des Zusammenhangs

von Winkelgröße in C und der Lage der vier Punkte auf einem Kreisbogen auf einer Skala

von 1 bis 10 zu verorten, gibt er den Wert 7 bis 8. an. Die Stufe 10 könne nur durch einen

formalen Beweis erreicht werden. Hierzu führt er Überlegungen zum Umfangswinkelsatz, zum

zugehörigen Mittelpunktswinkel und zu Eigenschaften des Sehnenvierecks an, ohne dass sich

jedoch bereits eine konkrete Beweisidee abzeichnet.

Da es in diesem Teil der Befragung weniger um das Durchführen eines Beweises, als vielmehr

um den Einsatz des Zugmodus ging, wurde die Aufgabenbearbeitung an dieser Stelle schließ-

lich abgebrochen und Hannes erläuterte sein Vorgehen.

(32:46 - 33:25)

Ha: Also für mich war die Konstruktion am Anfang (.) da wo ich

wirklich gesagt hätte, es kann niemals sein, dass diese Punkte

’nen Viereck, eh, dass das ein Kreis ergibt. Nur aus diesem

optischen heraus, eh, dass ich es halt so gesehen habe. Und als

ich dann hin- und hergezogen habe, war es immer noch so, dass

halt (..), ja, (...) es war immer noch sch..., noch, noch, ich

hatte halt durch Zufall bin ich ja dann darauf gekommen, dass es

auf einmal irgendwann gepasst hat, und dass ich überhaupt in die

Nähe kam. Hätte ich immer irgendwelche anderen Konstruktionen,

irgendwelche anderen Dreiecke gehabt, wo H und M immer so (.)
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schräg zueinander stünden, dass man schon, dass es gar nicht

möglich gewesen wäre, dann wäre ich wahrscheinlich immer noch

überzeugt davon, dass es gar nicht ginge.

23

24

25

An dieser Stelle treffen zwei Problematiken aufeinander: Zum einen ist es sicherlich schwerer,

ergebnisoffen eine Situation mit dem Zugmodus zu untersuchen, wenn man bereits eine feste

Überzeugung bezüglich des Ergebnisses hat. Zum anderen hat Hannes für sich keine heuris-

tische Strategie entwickelt, wie man sie beispielsweise bei Pólya (1949) findet (s. Abschnitt

2.1.5). Er ist er nicht in der Lage, den Zugmodus so einzusetzen, dass er anschließend die

Gewissheit haben kann, alle möglichen Fälle überprüft zu haben. Damit kann er natürlich

auch nicht das heuristische Potenzial einer DGS für sich nutzbar machen.

Zuletzt wurde die Frage gestellt, ob ein formaler Beweis an der Stelle, an der durch das Ziehen

die Sicherheit von 7 bis 8 erreicht wurde, noch erforderlich sei.

(35:17 - 36:50)

Ha: Ja klar, weil ich könnte es ja jetzt noch nicht beweisen, dass,

wenn jetzt in (.), bei mir jetzt in C 60 Grad sind, dass ich dann

aus dem (..), ehm, (.) aus H und M (.) mit den beiden anderen

Eckpunkten des Dreiecks ’nen (.) Kreis bilden könnte, könnte

ich nicht beweisen. Ich wüsste jetzt zwar, okay, bei 60 Grad ist

es so, aber wie ich da halt jetzt ’nen logischen Beweis drauf

aufbaue, würde ich nicht hinkriegen.

26
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I: Also würde dir da noch was fehlen, jetzt?33

Ha: Ja. Ja, also es würde auf jeden Fall noch fehlen.34

I: Und ehm, aber das würde nicht mehr, deine Überzeugung würde es

jetzt nicht mehr (..)

35

36

Ha: verändern?37

I: verändern (.) können, oder jetzt doch38

Ha: (unterbricht) Also ich glaube, wenn ich, wenn ich jetzt auf einmal

noch irgendetwas Anderes sehen würde, dann (.), dann würde das,

würde schon meine Überzeugung ins Wanken kommen, weil am Anfang

war ich ja auch fest davon überzeugt, dass es (.) gar nicht

möglich ist, weil bis da halt, alle Anhaltspunkte waren für

39

40
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43

223



Kapitel 6. Fallstudien zum „Zugmodus“

mich so gegeben, dass es nicht möglich ist. Ich hatte halt drei

verschiedene Konstruktionen mir so gemacht, wo es jeweils nicht

möglich war, und (.) dann neige ich halt immer schnell dazu, wenn

ich drei Sachen (.) gesehen habe, dass, dass ich dann immer auf

andere Sachen schließe. Als dann auf einmal (.) der Kreis doch

möglich war, dann war dadurch dieses ganze Konstrukt zum Wanken

(.) so mit der Behauptung, (.) dass es gar nicht möglich ist. Also

musste ich mir ’ne andere Erklärung suchen, erst mal (...). Weil

es mich halt schon überrascht hat, dass es halt doch möglich ist.

44

45
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Die Episode passt zu dem oben herausgearbeiteten Beweisverständnis von Hannes. Auch

wenn er durch den Einsatz der DGS letztendlich relativ sicher sein kann, dass die Größe des

Winkels in C entscheidend ist, fehlt ihm der formale Beweis, da er ohne diesen die Zusam-

menhänge nicht erfassen kann.

Für seine zunächst aufgestellte Vermutung kann Hannes problemlos eine Begründung anfüh-

ren, die diese in seine vorhandene Ordnungsstruktur integriert: Wenn das Dreieck gleichseitig

ist, fallen Höhen und Mittelsenkrechten zusammen, damit auch Hund M, so dass nur noch ein

Kreis durch drei Punkte gelegt werden muss. Für die durch Zufall erlangte Erkenntnis, dass

es auch in anderen Situationen eine Lösung gibt, kann er hingegen keine Begründung anfüh-

ren. Hinzu kommt, dass diese Erkenntnis eben nur durch Zufall gewonnen wurde. Damit kann

Hannes für sich nicht ausschließen, dass auch noch gänzlich andere Lösungen des Problems

möglich wären: „Wenn ich jetzt auf einmal noch irgendetwas Anderes sehen würde, dann [...]

würde schon meine Überzeugung ins Wanken kommen“ (Z.39-41).

Zusammenfassend lassen sich bei Hannes nur Ansätze der Nutzung der DGS als heuristisches

Werkzeug verzeichnen. Am Anfang verfolgt er vielmehr die Strategie, die möglicherweise auch

bei der Bearbeitung mit Papier und Bleistift zum Tragen käme, drei verschiedene Fälle zu

überprüfen und dann zu einer Entscheidung zu gelangen (Z.44-48). Obwohl der Versuch zu

erkennen ist, sich durch die Betrachtung der drei Fälle einen generellen Überblick zu verschaf-

fen, schafft Hannes es nicht, das Ziehen wirklich so systematisch durchzuführen, dass er mit

einiger Sicherheit andere Lösungen ausschließen kann.

Auch den zur Überprüfung einer konkreten Situation konstruierten Kreis löscht Hannes sofort

wieder. Er kommt zunächst nicht auf die Idee, bei konstruiertem Kreis den Zugmodus ein-
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zusetzen. Auch als er den Kreis ein weiteres Mal konstruiert, dann doch zieht, und während

dieser Aktion plötzlich auf eine weitere Lösung stößt, kann nicht von einem absichtsvollen

Vorgehen die Rede sein: während des Wandering draggings war der Kreis einfach zufällig noch

da.

Mögliche Besonderheiten des Dreiecks ABC versucht Hannes nach Augenmaß zu beurteilen,

er kommt nicht eigenständig auf die Idee, die Winkelgrößen und Seitenlängen vom Programm

anzeigen zu lassen. Erst nachdem er zum Messen aufgefordert wurde und wieder an drei ver-

schiedenen statischen Bildern die Idee bekommen hat, dass die Winkelgröße in C entscheidend

ist, kann Hannes einen echten Nutzen aus dem Zugmodus ziehen: Mit Dummy locus dragging

versucht er so zu ziehen, dass M dabei auf dem Kreis bleibt.

Hannes nutzt den Zugmodus im Wesentlichen für das Guided dragging, indem er versucht,

das Dreieck ABC oder das Viereck ABMH in eine bestimme Form zu ziehen. Darüber hinaus

kommt ansonsten noch das Wandering dragging zum Einsatz. Den Dragging Test verwendet

Hannes nur an einer einzigen, eher unbedeutenden Stelle, indem er überprüft, ob ein von ihm

konstruierter Kreis durch vier Punkte geht. Auch das Dummy locus dragging nutzt er nur ein

einziges Mal, dann allerdings zielführend zur Stärkung der These, dass der Winkel in C 60

Grad groß sein muss. Die anderen Zugmodusfunktionen, wie line dragging oder linked dragging

kommen nicht zum Einsatz.

Damit wendet Hannes fast auschließlich Zugmodusfunktionen an, die Arzarello et al. (2002)

dem ascending process zuordnen. Dies entspricht seiner Vorgehensweise, den Beweis für die

gefundene Vermutung ausschließlich am statischen Bild zu führen. Damit verhält sich Hannes

so, wie bereits Laborde (2001, S.306) bei ihren Probanden beobachten konnte:

„The most obvious contribution of Cabri is the possibility of dynamic visualisation

of geometrical relations preserved by the drag mode. Teachers (even the novice

in using technology) immediately exploited this possibility by asking students to

conjecture properties from what they could see. However, when students were

asked to justify, the teachers did not mention the possibility of using Cabri to

find a reason or to elaborate a proof. It is as if there was no interaction between

visualisation and proving. Technology was used in these tasks, as facilitating the

formulation of conjectures but its role did not go beyond that.“
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6.1.2 Fallstudie „Melanie“

Im Folgenden wird die Aufgabenbearbeitung von Melanie beschrieben, die einem Beweis im

wesentlichen verifizierenden Charakter zuspricht (s. Abschnitt 5.1.4). Diese Verifizierung kann

ihrer Auffassung nach durch die DGS effektiver erfolgen als durch einen formalen Beweis.

Melanie bearbeitet ebenso wie Hannes Aufgabe 4, bei der es um die Frage geht, ob in einem

spitzwinkligen Dreieck ABC die Eckpunkte A und B, der Höhenschnittpunkt H und der Um-

kreismittelpunkt M auf einem Kreisbogen liegen können.

Zeit Zugmodus Aktivität

13:56 - 15:19 Konstruktion des Dreiecks ABC, der Höhen, der Mittel-

senkrechten und der Schnittpunkte H und M.

15:20 - 15:36 Formulierung der Fragestellung durch I

15:37 - 15:45 Nachdenken über das Problem

15:46 - 15:50 Wandering Zieht an C, stoppt, als H auf Mittelsenkrechte von AB

(Abb. 6.4a)).

15:51 - 15:55 Guided Zieht an C, so dass H auf M (Abb. 6.4b)).

15:56 - 16:20 Überlegt, dass dies Lösung sein könnte, verwirft dies

aber, da FA ungleich FM (F ist Seitenmittelpunkt von

AB, Abb. 6.4b)).

A B

C

D E

F

M

H

A B

C

D E

F

MH

a) b)

Abbildung 6.4 – H liegt auf MS (a), dann auf M (b), aber FA ungleich FM
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Zeit Zugmodus Aktivität

16:23 - 16:41 Wandering Zieht an C, so dass H ungleich M. Überlegt, dass Radius

zur Konstruktion des Kreises erforderlich ist. Behaup-

tung: F ist der Mittelpunkt des gesuchten Kreises.

16:28 - 16:32 Erkennt, dass die Behauptung falsch ist.

16:33 - 16:41 Guided Zieht an C, so dass H auf M (Abb. 6.4b)).

16:42 - 16:51 Zeigt mit Cursor den Kreis durch die drei Punkte, ver-

ortet M weiter unterhalb auf der MS von AB.

16:51 - 16.55 Wandering Will nach weiteren Lösungen suchen, aber I bittet, noch

einmal zum Fall H = M zurückzukehren.

16:56 - 17:16 Guided Zieht an A, versucht, (lange vergeblich) H auf M zu

ziehen, bis es gelingt.

17:17 - 17:34 Frage, ob ein besonderes Dreieck vorliegt.

17:35 - 18:35 Behauptung: Dreieck ist gleichseitig

Melanie überlegt erst eine Weile, bevor sie sehr bedächtig anfängt zu ziehen. Dabei erklärt

sie, dass sie versuche, zwei Punkte aufeinander zu ziehen. Nachdem sie so gezogen hat, dass H

auf M liegt, meint sie, dass dies eine Lösung sein könne. Insgesamt wirkt sie aber nicht sehr

überzeugt und verwirft ihren Vorschlag gleich wieder. Grund hierfür ist ihre fälschliche An-

nahme, dass der Seitenmittelpunkt F von AB der Mittelpunkt dieses Kreises sein müsse (vgl.

Abb. 6.4b)). Auf den Hinweis, dass F nur die Seitenmitte von AB sei und sonst keine Rolle

spiele, erkennt sie relativ rasch, dass in der gerade vorliegenden Situation der Mittelpunkt des

gesuchten Kreises irgendwo unterhalb von AB liegen müsse. Daraufhin wird die Nachfrage

gestellt, ob im Fall H = M ein besonderes Dreieck vorliege.

(17:35 - 18:35)

M: Ja. Das ist (.) gleichseitig. Ehm, D, E und F stellen ja die

Seitenmitten dar, eh (..), also der, der und der (zeigt auf die

entsprechenden Punkte), und weil das immer die Mittelsenkrechten

sind, (.) also es muss ja (.), da müssen die Seiten ja gleich sein
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(7 Sek. Pause).5

I: Das habe ich jetzt, glaube ich, noch nicht ganz verstanden.6

M: (unterbricht) Also das ist ja der Mittelpunkt von AC (zeigt auf

D ),

7

8

I: Ja.9

M: das ist der Mittelpunkt von CB (zeigt auf E )10

I: Ja.11

M: und das von AB (zeigt auf F ). Und das sind ja alles die

Mittelpunkte

12

13

I: Ja14

M: der Seiten,15

I: Ja.16

M: und die schneiden sich ja auch hier in dem Punkt (zeigt auf M ),

und (..) ehm, (6 Sek. Pause), ja (lacht), also ich finde, das

sieht jetzt grad gleich, gleichseitig aus, also.

17

18

19

Melanie erkennt sofort, dass das vorliegende Dreieck gleichseitig ist. Eine stichhaltige Be-

gründung hierfür kann sie allerdings nicht anführen, da sie von der Tatsache, dass die Mit-

telsenkrechten durch die Seitenmitten gehen (Z.1-3) auf die gleiche Länge der Seiten schließt

(Z.4). Als sie aufgrund der langen Pause und der ausbleibenden Bestätigung merkt, dass ihre

Begründung von der Interviewerin noch nicht akzeptiert wird, rettet sie sich in das optische

Element: „Also ich finde, das sieht jetzt grad gleichseitig aus“ (Z.18-19).

Die Episode passt zu dem in Abschnitt 5.1.4 herausgearbeiteten Beweisverständnis von Mela-

nie. Dabei attestiert sie dem „Sehen“ eine nachweisende Funktion. Auch hier „sieht“ sie, dass

das Dreieck gleichseitig ist. Damit sind für Melanie keine Zweifel mehr vorhanden.

Zeit Zugmodus Aktivität

18:36 - 18:43 Aufforderung, nach weiteren Lösungen zu schauen.

18:44 - 18:50 Guided Zieht an A, so dass H = A (Abb. 6.5a)).

18:51 - 19:09 Behauptung: Dreieck ist rechtwinklig gleichschenklig.

19:10 - 19:19 Guided Zieht an B, so dass H = B (Abb. 6.5b)).

19:20 - 19:24 Behauptung: Dreieck ist rechtwinklig gleichschenklig.

228



6.1. Ausgewählte Interpretationen

19:25 - 20:00 Guided Versucht, durch Ziehen an B, C und A, auch M auf

einen der Eckpunkte zu ziehen. Merkt, dass dies nicht

geht. Feststellung: Wenn M auf den Seitenmitten des

Dreiecks liegt, dann ist dieses rechtwinklig.

A

B
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F

M

H
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F
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H

a) b)

Abbildung 6.5 – Ziehe H auf A (a) und dann auf B (b)

Die Beurteilung nach optischen Kriterien wiederholt sich, als Melanie nach weiteren Lösun-

gen sucht. Wieder verfolgt sie die Strategie, aus vier Punkten drei zu machen, indem sie eine

Situation schafft, in der zwei Punkte aufeinanderfallen. Zunächst zieht sie so, dass H auf A zu

liegen kommt. Über das Dreieck macht sie ihn diesem Fall die Aussage, dass es rechtwinklig

und gleichschenklig sei, wobei es sich bei AB und AC um die gleichlangen Schenkel handelt

(vgl. Abb. 6.5a)). Obwohl dies in diesem Fall wirklich zuzutreffen scheint, da die Höhe von

A mit der Mittelsenkrechte zu CB zusammenfällt, bezweifle ich, dass ihr dieses Argument

bewusst ist. Denn im nächsten Fall, in dem H auf B zu liegen kommt, fallen Mittelsenkrechte

und Höhe nicht zusammen (vgl. Abb. 6.5b)). Dennoch erklärt Melanie, dass hier derselbe Fall

vorliege. Offenbar beruhen ihre Äußerungen, die sie sehr sicher und ohne irgendwelche Zweifel

macht, ausschließlich auf einem optischen Eindruck.

Nachdem Melanie nacheinander so gezogen hat, dass H jeweils mit einem der drei Punkte

A, M undB zusammengefallen ist, versucht sie nun, auch M auf einen der Eckpunkte zu

ziehen. Als dies nicht gelingt, zieht sie alternativ M auf eine Seitenmitte und erklärt, dass
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auf diese Art und Weise wieder ein rechtwinkliges Dreieck entstehe. Dabei zeigt sie mit dem

Cursor auf den rechten Winkel, so dass wohl auch hier ein optische Beurteilung zugrunde liegt.

Zeit Zugmodus Aktivität

20:01 - 20:09 Wandering Zieht an A.

20:10 - 20:14 I erinnert an Fragestellung.

20:15 - 20:29 Wandering Zieht an A.

20:30 - 20:33 Guided Zieht an B, so dass H auf B zu liegen kommt (Abb.

6.5b)).

20:34 - 20:48 Zeigt mit Cursor den Kreis und die Radien von F aus

zu den einzelnen Punkten.

20:49 - 21:21 Behautpung: Wenn FA = FM = FB, kann der Kreis

gezeichnet werden.

Da die Überlegung, dass ein Dreieck rechtwinklig ist, wenn der Umkreismittelpunkt auf einer

seiner Seiten liegt, nichts mehr mit der ursprünglichen Aufgabenstellung zu tun hat, erinnere

ich noch einmal an die Ausgangsfrage, die Melanie durchaus noch präsent ist, denn sie unter-

bricht mich und führt meinen angefangenen Satz zu Ende. Anschließend zieht sie so, dass H

auf B zu liegen kommt (vgl. Abb. 6.5b)). Mit dem Cursor zeigt sie den Kreis, der durch A,

M und H = B gehen würde. Dabei zeigt sie von F ausgehend die Radien zu A, M und B

und stellt die Behauptung auf, dass der Kreis möglich sei, wenn diese gleichlang sind. Wieder

kommt sie folglich zu ihrer bereits zuvor aufgestellten, dann aber verworfenen Vermutung zu-

rück, dass F der Mittelpunkt des gesuchten Kreises sei.

Dies ist natürlich nur dann der Fall, wenn das Dreieck ABC rechtwinklig gleichschenklig ist,

so dass dann entsprechende Höhe und Mittelsenkrechte zusammenfallen. Diese Behauptung

hatte Melanie ja auch im Vorfeld aufgestellt: für sie scheint das Dreieck immer gleichschenklig

zu sein, wenn H = B gilt. Zudem scheinen die durch die Konstruktion entstanden Punkte eine

besondere Rolle für sie zu spielen. Obwohl mehrfach darauf hingewiesen wurde, dass F einfach

nur die Seitenmitte von AB ist und Melanie dies in ihren Äußerungen auch selbst dargelegt

hat, verfällt sie immer wieder darauf, F darüber hinaus die Rolle des gesuchten Kreismit-
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telpunkts zuzuweisen, wie bereits im Sonderfall des gleichseitigen Dreiecks ABC. Es scheint

genauso schwierig für Melanie zu sein, Punkte in die Zeichnung hineinzusehen, die noch nicht

konstruiert worden sind, wie vorhandene Punkte als irrelevant für die weitere Problemstellung

zu akzeptieren.

Melanie begründet ihre Einschätzung, dass im vorliegenden Fall ein Kreis durch A, M und

H = B gezeichnet werden kann, indem sie zugleich die ihres Erachtens gleichen Längen der

Strecken AF, MF und BF zeigt. Damit ist ihr Entscheidungskriterium, ob ein Kreis möglich

ist, oder nicht, rein visueller Natur. Melanie versucht nicht, innergeometrisch zu argumentieren.

Zeit Zugmodus Aktivität

21:22 - 21:38 Hinweis von I, dass im Fall H = B das Dreieck nicht

mehr spitzwinklig ist.

21:39 - 21:52 Wandering Zieht nacheinander an A, B und C.

21:53 - 22:01 Guided Zieht an C, so dass H = M. Behauptung: ABC spitz-

winklig.

22:02 - 22:11 Zeigt Kreis mit Cursor. Zur Konstruktion wird der Mit-

telpunkt benötigt. Fragt, ob sie den Mittelpunkt kon-

struieren soll, was bejaht wird.

22:12 - 22:48 Überlegt (vergeblich), wie Umkreismittelpunkt zu kon-

struieren ist.

22:49 - 22:55 Einfall, den Button „Kreis durch drei Punkte“ zu nutzen.

22:56 - 23:31 Konstruktion des Kreises mit Hilfe des Buttons, Feststel-

lung, dass Lösung, wenn H = M.

Auf den Hinweis, dass beim Zusammenfallen des Höhenschnittpunkts mit einem Eckpunkt

das Dreieck nicht mehr spitzwinklig ist, zieht Melanie das Dreieck wieder so hin, dass H und

M zusammenfallen. Anschließend versucht sie, den Mittelpunkt des Kreises durch A, M und

B zu zeichnen. An dieser Stelle fällt sie folglich nicht mehr auf ihre Fehlvorstellung zurück,

dass die Seitenmitte F der Mittelpunkt des gesuchten Kreises sein müsse. Allerdings hat sie

anscheinend auch keine Idee, wie der Mittelpunkt des gesuchten Kreises konstruiert werden
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könnte, denn sie überlegt sehr lange, was zu tun sei. Schließlich zeigt sie mit dem Cursor

die ungefähren Radien und die ungefähre Lage des gesuchten Mittelpunktes, kann aber noch

keine Möglichkeit benennen, diesen auch zu konstruieren. Als Ausweg fällt ihr ein, dass es im

Programm einen Button gibt (Kreis durch drei Punkte), der diese Aufgabe für sie lösen kann.

Anschließend setzt sie erneut den Zugmodus ein.

Zeit Zugmodus Aktivität

23:32 - 23:48 Guided Idee, zu überprüfen, was mit dem Kreis beim Ziehen pas-

siert. Zieht an A, so dass (fast) H = C, aber Kreis geht

nicht durch die vier Punkte (Abb. 6.6a)). Zieht an A,

so dass H = A. Kreis geht durch die vier Punkte, aber

Dreieck ist rechtwinklig.

23:49 - 24:13 Wandering Zieht an A. Stoppt, als H und M beide auf Kreis lie-

gen, aber bemerkt nicht, dass dies eine Lösung ist (Abb.

6.6b)). Zieht weiter an A.

24:14 - 24:48 Guided Zieht abwechselnd an A und B, bis H = M. Behaup-

tung: Dies ist die einzige Lösung.

A

B

C
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E
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H
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a) b)

Abbildung 6.6 – H liegt fast auf C (a), beim Ziehen liegen H und M auf dem Kreis (b)
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(24:26 - 18:35)

M: Ich denke, dass halt, wenn das (.) ehm, hach, jetzt kriege ich sie

gerade wieder nicht aufeinander (versucht, lange vergeblich, H auf

M zu ziehen), wenn das Dreieck, ehm, gleichseitig ist, dann ist

das (..), also, dann würde ich es jetzt hinkriegen. Aber ich wüßte

jetzt keine andere Lösung, eh, wenn die nicht aufeinanderliegen

würden.

22

23

24

25

26

27

Als der Kreis durch A, M und B gezeichnet ist, kommt Melanie die Idee, nun wiederum

zu ziehen und dabei zu beobachten, was mit dem Kreis passiert. Sie versucht an A und B

zu ziehen, was aber nicht gelingt, da sie den Zugmodus nicht aktiviert hat. Dies bemerkt sie

allerdings nicht, sondern vermutet nun, dass sie, durch die nachträgliche Konstruktion des

Kreises bedingt, nicht mehr an den Punkten ziehen kann. Damit wird deutlich, dass ihr an

dieser Stelle nicht klar ist, wann an einem Punkt gezogen werden kann, und wann nicht, und

welchen Einfluss die Reihenfolge von Konstruktionsschritten hat. Dies zeigt sich auch daran,

dass sie mehrfach versucht, an Schnittpunkten, wie dem Umkreismittelpunkt M oder der Sei-

tenmitte von AC zu ziehen. Damit ist natürlich die Möglichkeit, sich das Potential einer DGS

nutzbar zu machen, stark eingeschränkt, und Melanie scheint weniger eine aktive, als vielmehr

eine sehr passive Rolle im Umgang mit der DGS einzunehmen. Melanie bemerkt ihren Fehler

erst, als ihr der Hinweis gegeben wird, dass der Zugmodus nicht aktiviert ist.

Beim Ziehen verfolgt sie dann ein weiteres Mal ihre Strategie, H auf einen der Eckpunkte des

Dreiecks zu ziehen. Im Fall H = C geht der Kreis nicht durch die geforderten vier Punkte;

im Fall H = A ist das Dreieck nicht mehr spitzwinklig. Obwohl bei ihrem Ziehen im Rahmen

der Versuche, H auf die Eckpunkte des Dreiecks zu ziehen, der Kreis mindestens sieben Mal

durch diesen Punkt geht und sie einmal sogar stoppt, als dies der Fall ist (vgl. Abb. 6.6b)),

um an einem anderen Punkt weiterzuziehen, so dass die Situation wirklich statisch vorliegt,

registriert Melanie nicht, dass hier andere Lösungen vorliegen. Stattdessen kommt sie zu dem

Schluss, dass es nur eine einzige Lösung im Fall M = H gibt.

Ebenso wie Hannes verfällt Melanie sehr schnell auf die Lösung „gleichseitiges Dreieck“. Anders

als bei Hannes, der noch prüft, ob es weitere Lösungsmöglichkeiten gibt, ist die „Punktreduzie-

rungsstrategie“ Melanies einzige Vorgehensweise. Auch wenn sie sehr langsam zieht und in der
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Regel auch lange Zeit benötigt, um ihr gewünschtes Ergebnis „hingezogen“ zu haben, nimmt

sie die Zustände zwischen Anfang und Ende der Zugaktivität nicht in den Blick. Lediglich das

statische Bild am Ende des Ziehens wird von ihr in dieser Hinsicht untersucht. Die Bewegun-

gen des Cursors machen dabei deutlich, wie sie versucht, sich den Kreis vorzustellen.

Die Prüfung in dieser Form, ob vier Punkte auf einem Kreisbogen liegen, kann kaum während

des Ziehens erfolgen, weil kaum jemand sich simultan die Veränderung des Kreises vorstellen

und gleichzeitig entscheiden kann, ob dieser nun durch alle vier Punkte geht. Doch genau an

dieser Stelle kann die DGS diese Vorstellungsleistung erheblich reduzieren, indem ganz ein-

fach der Kreis durch drei Punkte gezeichnet und dann gezogen wird sowie schließlich nur noch

beobachtet werden muss. Doch auch als Melanie endlich auf die Idee kommt, mit eingezeich-

netem Kreis zu ziehen, hilft ihr dies nicht weiter. Die Zustände innerhalb des Ziehens scheinen

für sie nicht relevant zu sein, sondern lediglich das Endprodukt.

Deswegen kann Melanie das Potenzial der Software für sich nicht nutzen. Zudem sind ihre

Zugmodusaktivitäten sehr eingeschränkt und beschränken sich ausschließlich auf Wandering

und Guided dragging. Darüber hinaus versucht Melanie immer wieder auch an Schnittpunkten

zu ziehen, ohne zu bemerken, dass dies nicht funktionieren kann.

Melanies Zugmodusaktivitäten machen einen unbeholfenen und unsystematischen Eindruck.

Hinzu kommt, und darin unterscheidet sie sich deutlich von Hannes, dass auch ihr fachliches

Wissen lückenhaft ist. Daher fällt es ihr schwer, Zusammenhänge begründet darzustellen, und

sie verlegt sich stattdessen auf visuelle Eindrücke.

Melanie gehört zu den Studierenden in Examensnähe, und es ist bereits vier Semester her,

dass sie die Vorlesung „Elemente der Geometrie“ gehört hat. Sie hat allerdings auch nach Be-

such der Vorlesung das Programm noch genutzt, um nicht zu vergessen, wie es funktioniert.

Trotzdem sind einige Unsicherheiten bestimmt auch auf mangelnde Übung zurückzuführen.

Hier wären beispielsweise ihre Versuche zu nennen, zwei Punkte zur Deckung zu bringen, wo-

für sie sehr viel mehr Zeit als Hannes benötigt: „Hach, jetzt kriege ich sie gerade wieder nicht

aufeinander “ (Z.20-21). Insgesamt hat sich Melanies Studienerfahrung offenbar nicht in Form

einer Nutzung des Potenzials der DGS ausgewirkt.
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6.1.3 Fallstudie „Diana“

Für Diana, deren Beweisverständnis ich im Kapitel 5.1.2 ausführlich analysiert habe, liegt

ein „Sich-besser-vorstellen-können“ im Zentrum des Interesses, dies allerdings auf einer rein

deskriptiven Ebene. Im Folgenden bearbeitet sie die Aufgabe 4, bei der es darum geht, ob in

einem spitzwinkligen Dreieck zwei Eckpunkte, der Höhenschnittpunkt H und der Umkreis-

mittelpunkt M auf einem Kreisbogen liegen können.

Zunächst versucht Diana, die Grundkonstruktion (spitzwinkliges Dreieck, Höhenschnittpunkt,

Umkreismittelpunkt) zu erstellen. Dazu braucht sie 3,5 Minuten, mehr als doppelt so lang wie

Hannes und Melanie, die beide ungefähr 1,5 Minuten für diese Konstruktion benötigen. Dies ist

im Wesentlichen auf rein handwerkliche Probleme zurückzuführen: so benötigt Diana mehrere

Anläufe, um die Höhen zu erstellen. Dies versucht sie unter Nutzung des Buttons „Senkrechte“,

bei dem man zunächst eine Gerade anklicken muss. Die dabei entstehende Senkrechte muss

dann derart in die richtige Position gezogen werden, dass ein auf ihr liegender Punkt auf einen

bereits vorhandenen gezogen wird und dort einrastet. Diana hingegen versucht immer wieder,

zunächst auf einen Punkt zu klicken und von dort auf die Gerade zu ziehen. Dabei hat sie keine

Erklärung dafür, warum ihr Vorgehen nicht funktioniert. Als ich ihr den Hinweis gebe, dass

zunächst die Gerade angeklickt werden muss, versäumt sie, den dabei entstehenden Punkt mit

einem geeigneten zur Deckung zu bringen. Als ich ihr auch diesbezüglich den Hinweis gebe,

versucht sie, diesem zu folgen, weiß aber nicht, welcher Punkt geeignet ist. So erstellt sie die

Senkrechte zur Seite AC, versucht aber zunächst, den Punkt mit C zur Deckung zu bringen

(vgl. Abbildung 6.7a)). Beim nächsten Versuch, den sie nach dem Hinweis unternimmt, dass

B der geeignete Punkt sei, lässt sie die Maus zu früh los, so dass ein neuer, unnötiger Punkt D

entsteht und die Senkrechte nicht durch den gewünschten Eckpunkt B geht (vgl. Abbildung

6.7b)). Diana möchte die Situation retten, indem sie den Punkt D nachträglich auf den Punkt

B zieht. Dies ist insofern problematisch, als eine derartig hingezogene Konstellation natürlich

nicht zugmodusresistent ist, da die Punkte nicht durch einen Konstruktionsschritt aneinander

gebunden sind. Statt allerdings den Button „Elemente bewegen“ zu aktivieren, klickt sie den

danebenliegenden Button „Punkt hinzufügen“ an, so dass sie nun einen weiteren, unnötigen

Punkt erhält. Natürlich können solche Fehler auch einem routinierten Anwender unterlaufen,

und möglicherweise trägt auch die Nervosität in der Interviewsitutation zu solchen Missgeschi-
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cken bei. Bemerkenswert bei Diana sind jedoch die hohe Zahl von Fehlern, die ihr unterlaufen,

sowie ihre Hilflosigkeit in solchen Situationen.

Diana kommentiert ihr eigenes Vorgehen mit den Worten: „Oh Gott! (Seufzt) Ich bin, eh,

(wedelt heftig mit der Hand, die vorher die Maus bedient hat). Ich freue mich schon auf die

Klausur, ich merk das schon (lacht)“.

B C

A

B C

A

D

a) b)

Abbildung 6.7 – Mehrfacher Versuch, die Höhe zu AC durch B zu konstruieren

Da ich zu diesem Zeitpunkt eher daran interessiert bin, endlich zum Kern der Aufgabe

vorzudringen, gebe ich Diana den Hinweis, wie sie mit Hilfe des Buttons „Kegelschnittmittel-

punkt definieren“ den Umkreismittelpunkt erzeugen kann. Dabei ist festzustellen, dass Dianas

Dreieck nahezu gleichschenklig ist, da der Umkreismittelpunkt auf der Höhe von A zu liegen

scheint.

Zeit Zugmodus Aktivität

5:30 - 5:50 Frage: Können H, B, C und M auf einem Kreis liegen?

5:50 - 6:04 Wenn das Dreieck rechtwinklig ist und H auf A liegt, ist

es möglich.

6:05 - 6:12 Guided Zieht an B, so dass H = A.

6:13 - 6:20 Hinweis, dass das Dreieck nicht mehr spitzwinklig ist.

6:21 - 6:34 Guided Zieht an B, so dass Dreieck wieder spitzwinklig ist (Abb.

6.8a)).

6:35 - 6:39 Frage: Gibt es eine Lösung im spitzwinkligen Dreieck?
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6:40 - 6:50 Überlegt lange. Behauptung: nein.

6:50 - 6:55 Funktionale Betrachtung: „Wenn ich B nach C bewege,

geht H weiter runter “ (Abb. 6.8a)).

6:55 - 7:00 Wandering Zieht an B, sieht Vermutung bestätigt. „Dann entsteht

wieder ein rechter Winkel.“ (Abb. 6.8b))

B
C

A

H

M

B

C

A

H
M

a) b)

Abbildung 6.8 – Wenn ich B nach C bewege, geht H weiter runter

An dieser Stelle ist eine interessante Beobachtung zu machen: anders, als viele andere Stu-

dierende, beobachtet Diana nicht, was beim Ziehen passiert und beschreibt dieses dann an-

schließend. Stattdessen führt sie gewisse funktionale Überlegungen durch, bevor sie sich diese

durch den Zugmodus bestätigen lässt.

Zieht man B weit genug in Richtung C, entsteht zwangsläufig die Situation, dass H und C

zusammenfallen, da durch dieses Ziehen das Dreieck irgendwann stumpfwinklig mit stump-

fem Winkel in C wird und der Höhenschnittpunkt über C aus dem Dreieck hinausläuft. Dies

geschieht auch durch Dianas Ziehen. Ihren Äußerungen ist nicht zu entnehmen, dass sie diese

Situation erwartet hat. Da aber bereits thematisiert worden war, dass dieser Fall die Voraus-

setzung der Spitzwinkligkeit verletzt, kommt ihr der Fall zumindest nicht ungelegen, denn sie

nutzt ihn als Bestätigigung für ihre Behauptung, dass die Aufgabenstellung keine Lösung hat.

Da an dieser Stelle die Aufgabenbearbeitung für Diana abgeschlossen zu sein scheint, gebe

ich den Hinweis, dass ihre bisherige Strategie, aus vier Punkten drei zu machen, sich immer
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nur auf den Höhenschnittpunkt H und einen der Eckpunkte des Dreiecks bezogen habe und

schließe die Frage an, ob dies nicht auch auf H und M übertragbar sei.

(8:00 - 10:09)

D: Aber ich glaube, das verändert auch wieder das Dreieck. Dass es

dann, eh, oder?

1

2

I: Was, was meinst du, was verändert3

D: (unterbricht) Also, wenn ich das (zeigt mit der Maus auf H )

runterziehe, dann verändere ich ja wieder die Winkel vom (..)

Dreieck, dann wird das ein, ehm (..) gleichseitiges Dreieck? Ja,

dann wird es ein gleichseitiges Dreieck. Aber das ist ja dann doch

noch spitzwinklig (..). Ja stimmt, dann doch (lacht).

4

5

6

7

8

I: Ja. Kannst du mal einfach machen?9

D: Ja. (Versucht an H zu ziehen. Kontrolliert, als dies nicht geht,

ob Zugmodus aktiviert ist. Dies ist der Fall.) Ne, das geht

nicht. (Zeigt dann mit der Maus auf A.) Dann müsste ich eh (4

Sek. Pause), ehm, (flüstert) oh Gott, wie geht denn das jetzt noch

mal? (Zieht an A, so dass die Höhe von A durch M geht).

10

11

12

13

14

I: Was versuchst du denn jetzt gerade?15

D: (5 Sek. Pause) Doch, das müsste ja eigentlich (.) wenn das (..),

Quatsch, da müsste ich ja den gleichen Abstand haben zu (5 Sek.

Pause). Ne! (..) Ne, aber eigentlich geht das doch. Also jetzt ist

es ja fast (.) gleichseitig, glaube ich, oder auf jeden Fall ein

gleichschenkliges Dreieck.

16

17

18

19

20

I: Gleichschenklig sieht es aus, weil H auf der Mittelsenkrechten

liegt, ja.

21

22

D: Ja. Aber wenn ich das jetzt, eh, (..), wenn ich jetzt zum Beispiel

B oder C bewegen würde, dann würde das ja wieder das Dreieck

verändern und H würde wieder von der (.), es muss ja einfach auf

der Linie liegen, von dem Kreismittelpunkt. Aber dann würde das ja

wieder die Mit-, diese Senkrechte verlassen. Also ich glaub, (..).

23

24

25

26

27

I: Ja. Klar. Ja, nein, du hast völlig recht, wenn du jetzt einen

Schenkel länger machst, dann ist es natürlich nicht mehr

28

29

gleichschenklig und H geht wieder runter.30
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D: (unterbricht) Und es wird auch nicht gleichseitig dadurch, wenn

ich das jetzt, eh (zieht an B, so dass AB länger wird), oder?

(Zieht an C ) Weil, wenn ich jetzt hier die (zieht C schnell

mehrfach hin und her. H und M kommen nicht zur Deckung). Ne,

das treff ich nicht. Weil da ein Halbkreis ist.

31

32

33

34

35

I: Huch, so schnell kann ich jetzt nicht gucken.36

D: Also wenn ich jetzt (...). Ich weiß gar nicht, wie ich das gerade

machen soll.

37

38

Wieder stellt Diana vor dem Ziehen funktionale Betrachtungen an: „wenn ich das runterziehe,

dann verändere ich ja wieder die Winkel vom Dreieck “ (Z.4 - 6). Erst als diese Überlegungen

zu dem Ergebnis kommen: „das ist ja dann doch noch spitzwinklig“ (Z.7-8), fängt sie an zu

ziehen.

Als Diana schließlich den Zugmodus einsetzt, versucht sie zunächst wieder, direkt an H zu zie-

hen, obwohl H als Schnittpunkt der Höhen ein unfreier Punkt ist. Als sie schließlich erkennt,

dass sie die Lage von H nur verändern kann, indem sie an einem Eckpunkt des Dreiecks zieht,

sieht sie ihre Behauptung bestätigt, dass H die Mittelsenkrechte verlässt (die Zeichnung, in

der die Mittelsenkrechte gar nicht visualisiert ist, würde eher die Feststellung nahelegen, dass

M die Höhe verlässt, was aber letztlich beides als Konsequenz hat, dass das Dreieck nicht

mehr gleichschenklig ist).

B C

A

H

M

B
C

A

HM

a) b)

Abbildung 6.9 – Wenn ich B bewegen würde, würde H die Senkrechte verlassen

239



Kapitel 6. Fallstudien zum „Zugmodus“

Diana stellt immer wieder durchaus richtige Überlegungen an, beispielsweise, dass sie, um H

und M zur Deckung zu bringen, gleichen Abstand zu den drei Eckpunkten des Dreiecks benö-

tigt (Z. 17). Sie weiß allerdings nicht, wie diese theoretischen Überlegungen in ihre konkrete

Aufgabenbearbeitung mit dem Programm einfließen können. Auch als sie schließlich mehrfach

sehr schnell und heftig am Eckpunkt C des Dreiecks zieht, hat Diana keinen Erfolg.

Da es Diana nicht gelingt, durch simplen Einsatz des Zugmodus ein gleichseitiges Dreieck hin-

zuziehen, ist es an dieser Stelle konsequent von ihr, nun eine andere Strategie auszuprobieren.

Diese Strategie liegt darin, den Winkel in B derart zu manipulieren, dass er auch beim Einsatz

des Zugmodus die Größe von 60 Grad behält, da dies das Winkelmaß im gleichseitigen Dreieck

ist.

Zeit Zugmodus Aktivität

10:10 - 10:22 Es müsste gehen, wenn ich in B einen festen Winkel von

60 Grad einstelle.

10:22 - 11:07 Versucht dreimal vergeblich, in B einen Winkel von 60

Grad abzutragen.

11:07 - 11:17 Erläutert auf Nachfrage, dass sie damit den Winkel in B

nachträglich fixieren will.

11:17 - 12:13 Weiß nicht, wie sie das Problem lösen soll.

Diana weiß, dass das Innenwinkelmaß im gleichseitigen Dreieck 60 Grad beträgt. Sie steht

nun allerdings vor dem Problem, ein Dreieck mit beweglichen Seitenlängen und Winkelmaßen

konstruiert zu haben, bei dem es ihr nicht gelingt, durch Ziehen Gleichseitigkeit zu erzeugen.

Im weiteren Verlauf des Interviews gibt Diana mehrfach an, bei einer Aufgabenbearbeitung

nicht sofort mit der DGS zu arbeiten. Stattdessen würde sie sich zunächst anhand einer Skiz-

ze überlegen, wie sie die Konstruktion mit Papier und Bleistift durchführen würde, um dann

anschließend die angestellten Überlegungen in das Programm zu übertragen: „ Ich musste erst

einmal überlegen, was ein gleichseitiges Dreieck ausmacht und wie man das, wie ich das auf

dem Papier machen würde. Also, wenn ich eins zeichnen sollte. Wie ich da rangehen würde.“

(16:48 - 17:00). Nun ist natürlich bei einer Konstruktion mit Papier und Bleistift das Winkel-
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maß eines Winkels im nachhinein nicht mehr veränderbar, so dass man, sollte man ein falsches

Maß gewählt haben, nur noch radieren und neu konstruieren kann. Das scheinbar Paradoxe

ist, dass in einer DGS, in der man noch im Nachhinein Maße verändern und hinziehen kann,

ein beim Ziehen festes Winkelmaß in der Regel auch nur durch eine komplett neue Konstruk-

tion erreicht werden kann, und kaum durch nachträgliche Manipulation. Dies scheint Diana

allerdings nicht klar zu sein. Stattdessen versucht sie, nun nachträglich in B das feste Winkel-

maß von 60 Grad abzutragen. Abgesehen davon, dass ihr dies aufgrund der bereits eingangs

beschriebenen handwerklichen Mängel im Umgang mit der DGS auch nach drei Versuchen

nicht gelingt, wären damit die Punkte H und M natürlich überhaupt nicht mehr an die neue

Konstruktion gebunden. Dieser Umstand ist auch Diana klar, denn sie bemerkt auf den Hin-

weis, mit welchem Button man in Cinderella einen festen Winkel konstruieren kann: „Aber

dann habe ich ja eine andere (..) Gerade eingezeichnet“ (11:40).

Da die Aufgabenbearbeitung in eine Sackgasse geraten zu sein scheint und Diana sehr hilflos

wirkt, gebe ich den Hinweis, doch die Winkel einfach einmal durch das Programm messen zu

lassen, um so vielleicht doch noch mit Einsatz des Zugmodus zum Erfolg zu kommen.

Zeit Zugmodus Aktivität

12:13 - 12:26 Aufforderung, den Winkel zu messen.

12:27 - 12:32 Misst den Winkel in B, Winkelmaß beträgt 66 Grad.

12:33 - 13:00 Guided Zieht an B und an A, um Winkelmaß 60 Grad zu errei-

chen.

13:00 - 13:45 Dummy locus Optische Beurteilung: Winkel in C ist kleiner als 60

Grad. Zieht an C, um Winkelmaß zu verändern, ohne

dass sich Winkelmaß in B verändert. Klappt nicht. Zieht

an C, so dass Winkelmaß in B wieder 60 Grad.

13:45 - 14:00 Misst den Winkel in A, um zu sehen, um wieviel der

Winkel in C zu klein ist (Abb. 6.10a)).
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14:00 - 14:14 Dummy locus Zieht an C, um den 60 Grad Winkel in B zu erhalten

und gleichzeitig die Winkel in A und C auf 60 Grad zu

ziehen. Es klappt nicht, da der Winkel in B ebenfalls

seine Größe verändert. Zieht wieder so, dass der Winkel

in B 60 Grad groß ist und stoppt dann.

<)ca= 60°

<)cb= 72,1°A

B

C

M

H

<)ca= 60°

<)cb= 72,1°A

B

C

M

H

E

a) b)

Abbildung 6.10 – Der Winkel in A ist zu groß. Die Höhe von A muss durch die Seitenmitte

von BC gehen.

Auch unter Nutzung der Messfunktion gelingt es Diana zunächst nicht, ein gleichseitiges

Dreieck hinzuziehen. Sie weiß zwar nun, welche Winkel um wieviel zu groß bzw. klein sind,

doch durch Änderung eines Winkels in die „richtige Richtung“ ändert sich leider ein anderes

Winkelmaß in die „falsche Richtung“. Daher kommt Diana an dieser Stelle durch ausschließ-

liches Ziehen nicht weiter. Erst die theoretische Überlegung, dass beim gleichseitigen Dreieck

die Höhe auch durch die Seitenmitte der entsprechenden Seite geht, hilft ihr weiter. Im An-

schluss an die Aufgabenbearbeitung gibt Diana wiederum an, sich in diesem Kontext an ihrer

Vorgehensweise mit Papier und Bleistift orientiert zu haben:
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(17:06 - 18:05)

D: Also, ich mache auch bei den Hausaufgaben, mache ich z.B., mache

ich erst immer eine Skizze, um zu gucken, ob das überhaupt so

hinkommt, wie ich mir das vorstelle. Weil ich sonst bei der

(.) Konstruktionsbeschreibung (..) habe ich schon öfter erlebt,

dass ich was geschrieben habe, was am Ende sich als falsch

herausstellte, und wo ich dann viel Zeit verloren habe.

39

40

41

42

43

44

I: Also im Prinzip hilft dir die Arbeit auf Papier schon, um dich

hierfür zu sortieren?

45

46

D: Ja. Also ich muss mich vorher (.), die Idee, die ich im Kopf habe,

wenn ich die Übung, also die Aufgabe durchlese, die habe ich dann

im Kopf, aber um die umzusetzen richtig, mache ich mir meistens

so eine Skizze auf Papier. Um zu sehen, ob das so überhaupt

hinkommen würde, bevor ich mich dann an Cinderelle setze und

das dann (..) so mache. Weil, ich weiß nicht, mit den Buttons,

total durcheinander bin, und weil das dann doch nicht so hinkommt,

wie ich es mir vorgestellt habe. Und weil ich dann wieder alles

wegstreiche, was ich bis dahin hingeschrieben habe.

47

48

49

50

51

52

53

54

55

Die Überlegung, dass die Höhe von A durch die Seitenmitte von BC gehen muss, gibt Diana

eine neue Idee für ihre Vorgehensweise, nachdem das vorherige Ziehen zu keinem befriedigen-

den Ergebnis geführt hat.

Zeit Zugmodus Aktivität

14:15 - 14:46 Die Höhe (von A) muss in der Mitte zwischen B und

C liegen. Konstruiert die Seitenmitte E von AB (Abb.

6.10b)).

14:46 - 14:50 Guided Zieht an A, so dass die Höhe durch E geht (6.11a)).
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14:50 - 15:17 Dummy locus Zieht an A, so dass die Höhe weiter durch E geht. Achtet

dabei auf die Winkelgröße in B. Der Winkel in A wird

immer größer (Abb. 6.11b)). Stoppt. Zieht an A, so dass

der Winkel in A kleiner wird. Stoppt, als H = M. Be-

hauptung: Sonderfall des gleichseitigen Dreiecks ist die

einzige Lösung.

Nachdem Diana zunächst so gezogen hat, dass die Höhe von A durch die Seitenmitte E von

BC geht, versucht sie nun so zu ziehen, dass auch die Winkel das richtige Maß bekommen.

Dabei richtet sie ihr Augenmerk allerdings zunächst nur auf den Winkel in B. Während sie

versucht, diesen auf das richtige Maß zu bekommen, bemerkt sie nicht, dass der Winkel in A

sich dabei in die falsche Richtung verändert, da dieser noch größer wird, obwohl er bereits zu

groß ist.

<)ca= 54,4°

<)cb= 70,9°A

B

C

M

H

E
<)ca= 49,7°

<)cb= 80,3°A

B

C

M

H

E

a) b)

Abbildung 6.11 – Die Höhe muss durch E gehen, die Winkel müssen 60 Grad groß sein.

Da sich auch der Winkel in B nicht auf 60 Grad ziehen lässt, sondern immer kleiner wird,

ändert Diana ihre Zugrichtung. Dabei zieht sie immer so, dass die Höhe von A weiterhin durch

E geht. Auf diese Art und Weise gelingt ihr schließlich, ein gleichseitiges Dreieck hinzuziehen.

Dianas Kommentar: „So. Das heißt, die sind jetzt alle 60 Grad. Nach hundert Jahren habe ich

es geschafft. Und jetzt liegt auch D auf H “ (15:34 - 15:38).
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Mit dem Hinziehen des Sonderfalls „gleichseitiges Dreieck“ ist für Diana die Aufgabenbearbei-

tung abgeschlossen. Sie scheint erleichtert, eine den Aufgabenvoraussetzungen entsprechende

und der Interviewerin gefallende Lösung präsentieren zu können. Damit muss festgestellt wer-

den, dass Diana zum intendierten Kern der Aufgabe überhaupt nicht vordringt.

Bei Diana zeigen sich wiederholt große, rein handwerkliche Defizite im Umgang mit der DGS.

Hier wird deutlich, dass dieser Aspekt, der vielleicht aufgrund des vermeintlich leicht zu er-

lernenden Umgangs mit einer DGS in den Hintergrund gerückt ist, nicht unterschätzt werden

darf. Immerhin findet das Interview kurz vor Ende des Semesters statt, so dass Diana seit gut

3 Monaten wöchentlich in Vorlesung und Übung mit dem Programm konfrontiert wird und

nur noch 2 Wochen bis zur Klausur bleiben. Dazu kommt, dass Diana ihre theoretischen und

durchaus richtigen Überlegungen nicht dazu nutzen kann, die DGS hilfreich für sich einzuset-

zen. Stattdessen scheint sie durch die scheinbare Diskrepanz zwischen Theorie und konkretem

Agieren mit dem Programm geradezu behindert zu werden. Wohl kann ein Anwender mit

einer DGS an einem Dreieck so ziehen, dass Höhenschnittpunkt und Umkreismittelpunkt zu-

sammenfallen, ohne dass dieser Anwender irgendeine Kenntnis über sonstige Besonderheiten

eines solchen Dreiecks besitzt. Diana hingegen, die solche theoretischen Kenntnisse hat, ge-

lingt dieses Zusammenziehen der beiden Punkte nur unter großen Mühen. Dabei erweist sich

gerade ihr Denken in funktionalen Zusammenhängen: „was passiert an jener Stelle, wenn ich

an dieser eine Änderung vornehme“ als ein großes Hindernis. Dies ist um so frappierender, als

das Befördern des funktionalen Denkens gemeinhin als einer der größten Vorzüge einer DGS

angesehen wird.

In diesem Zusammenhang möchte ich noch einmal an Dianas Beweisverständnis anknüpfen.

Diana hatte festgestellt, dass ihr die DGS helfe, sich Dinge besser vorstellen zu können. Kon-

kretisiert hat sie dies am Beispiel des Thalessatzes, bei dem sie dank der DGS ein genaues

Bild vor Augen hat, wie sich die Seiten des Dreiecks verändern, während der Winkel auf dem

Halbkreis konstant bleibt. Dieses „Sich-besser-Vorstellenkönnen“ scheint zunächst mit ihren

Schwierigkeiten beim Umgang mit der DGS in einem Konflikt zu stehen, denn sie kann ja ge-

rade nicht mit Hilfe der DGS bewusst mit Veränderungen und Invarianten spielen, um daraus

einen Mehrwert zu ziehen. Bei genauerem Hinsehen fällt jedoch auf, dass das „Sich-Vorstellen-

Können“ im Kontext der konkreten Aufgabe zum Satz des Thales auf einer rein rezipierenden

und deskriptiven Ebene stattfindet. Da die Bahn des Punktes C nicht mehr frei wählbar, son-
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dern bereits eindeutig festgelegt ist, kann Diana sich in die Rolle einer passiven Konsumentin

zurückziehen, die zwar aktiv den Zugmodus einsetzt, dabei aber keinerlei Gestaltungsmöglich-

keiten hat. Daher treten die Konflikte, die im Rahmen der Aufgabenbearbeitung entstehen,

naturgemäß überhaupt nicht auf und Diana kann für sich das Gefühl haben, vom Einsatz

der DGS zu profitieren. Sobald allerdings die Konsumentinnenrolle zugunsten einer Agentin-

nenrolle aufgegeben werden muss, kann Diana keinen Mehrwert mehr aus der Nutzung des

Programms für sich ziehen. Stattdessen wählt sie den Weg, sich die Dinge statisch mit Papier

und Bleistift zu erarbeiten und anschließend einen Transfer in die DGS zu versuchen.
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6.1.4 Fallstudie „Verena“

Für Verena hat ein Beweis sowohl eine verifizierende, als auch eine begründende, in Ansätzen

sogar systematisierende Funktion (s. Abschnitt 5.1.6). Verena bearbeitet im Folgenden die

Aufgabe 4, bei der es um die Fragestellung geht, ob in einem spitzwinkligen Dreieck der Hö-

henschnittpunkt H, der Umkreismittelpunkt M und zwei Eckpunkte auf einem gemeinsamen

Kreis liegen können. Da die gesamte Aufgabenbearbeitung 34 Minuten gedauert hat, werde

ich mich bei der Analyse auf Schlüsselstellen beschränken.

Die Bearbeitung der Aufgabe fand zwischen 3:23 und 37:28 statt. Nach Anfertigung der Grund-

konstruktion stellt Verena ihre erste Behauptung auf:

Zeit Zugmodus Aktivität

5:30 - 5:50 Behauptung: Durch 3 Punkte kann ein Kreis gezeich-

net werden. Konstruiert Kreis durch A, M und B.

5:50 - 6:25 Behauptung: Es kann keine Lösung geben, da das Vier-

eck ABHM ein Trapez sein müsste.

6:25 - 6:49 Guided Zieht an C, so dass H auf A bzw. auf B zu liegen kommt.

Feststellung: dies ist eine Lösung.

6:49 - 6:57 Guided Zieht an C, um H auf M zu ziehen. Dabei kommt H auf

dem Kreis zu liegen. Feststellung: Dies ist auch eine

Lösung.

6:58 - 7:45 Guided Zieht an C, so dass H = M. Feststellung: Das Dreieck

ist nun gleichseitig. Die Problemlösung liegt darin, aus

vier Punkten 3 zu machen.

Verena führt sehr souverän die Grundkonstruktion aus. Nachdem sie zunächst die erstellte

Konstruktion beurteilt, in der H nicht auf dem Kreis durch A, B und M liegt und sie die

(falsche) Vermutung aufstellt, dass es keine Lösung gibt, da das Viereck ABHM ein Trapez

sein müsse, um einen Umkreis zu haben, verfolgt sie zügig die Strategie, aus vier Punkten drei

zu machen, indem sie das Dreieck so verzieht, dass H auf A, B bzw. M zu liegen kommt. Dabei

stellt sie fest, dass das Dreieck in den ersten Fällen rechtwinklig, im letzten gleichseitig ist, und
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begründet dies auch. Während des Ziehens geht der Kreis auch durch H (Abb. 6.12a)), und

Verena erkennt sofort, dass auch dies eine Lösung des gestellten Problems ist. Dabei bemerkt

sie, dass ihre zunächst aufgestellte Vermutung, das Viereck ABHM müsse ein Trapez sein,

dadurch widerlegt ist. Lange überlegt sie am statischen Bild, ob das Dreieck in dieser Situation

eine Besonderheit hat. Als ihr nichts auffällt, misst sie die Winkel und die Seitenlängen. Als

ihr immer noch keine Besonderheit auffällt, frage ich nach, ob H auch noch andere Lagen auf

dem Kreis einnehmen könne. Daraufhin überlegt Verena, dass sie so an C ziehen müsse, dass

H auf dem Kreis bleibt (Dummy locus dragging). Nachdem sie dies ausgeführt hat, kommt sie

zu der These: „Kann es sein, dass der Umfangswinkel in C immer gleich bleiben soll? “ (11:31

- 11:35) (Abb. 6.12b)).

A B

C

H

D

E

M
|CA|= 7,44 |CB|= 8,39

|BA|= 7,96

<)cb= 60,1°

<)ca= 65,9°
<)ab= 54°

A B

C

H

D

E

M

a) b)

Abbildung 6.12 – Welche Besonderheit liegt vor? Ist der Umfangswinkel in C immer gleich

groß?

Nach wie vor macht Verenas Bearbeitung einen souveränen Eindruck. Während sie zunächst

zügig ihre Strategie, aus vier Punkten drei zu machen, in allen möglichen Fällen durchführt,

ergibt sich zufällig auch eine andere Lösung (Abb. 6.12a)), die von ihr sofort als solche identi-

fiziert wird. Diese Lösungsvariante war Verena bis dato nicht präsent, wie sie selbst einräumt.

Der Zugmodus hat ihr also wirklich genützt, zumal sie die hingezogene Konfiguration auch

sofort als Gegenbeispiel für ihre zunächst aufgestellte „Trapez“-These erkennt.

Es ist naheliegend, in einer derartigen Situation eine Besonderheit des Dreiecks, wie beispiels-

weise Gleichschenkligkeit, zu suchen. Da Verena allerdings auch nach Nutzung der Messfunk-

tionen des Programms nicht fündig wird (siehe Abb. 6.12b)), probiert sie nun, durch Ziehen
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noch weitere Lösungen zu erhalten. Dabei muss sie den Punkt C auf einem Kreis bewegen

(Dummy locus dragging). Dies gelingt ihr sehr gut, wenn sie auch anmerkt, dass es schwierig

ist, gleichzeitig zu ziehen und die Veränderung der Winkel- und Seitenmaße im Auge zu be-

halten. Dabei geht sie sehr systematisch vor: Zunächst zieht sie an C derart, dass H auf B zu

liegen kommt, und damit in der vorliegenden Konstruktion soweit rechts wie möglich. Dann

zieht Verena langsam, so dass H auf dem Kreisbogen in Richtung M wandert. „Man müsste

das ja so ziehen, dass H auf dem Kreisbogen läuft“ (11:15 - 11:21). Bereits nach kurzer Zeit

generiert Verena die Vermutung, dass der Winkel in C gleich groß bleiben müsse, damit H

auf dem Kreis liegen kann. Damit wäre die Bahn von C ebenfalls ein Kreis.

Zunächst vermutet Verena, dass in diesem Fall der Abstand von H zu C konstant sein müs-

se. Allerdings verwirft sie aufgrund der sich ständig ändernden Kreisgröße diese Behauptung

schon nach kurzem Ziehen wieder. Ihre Behauptung lautet schließlich: „Auf jeden Fall, wenn

ich C (.) auch in ’nem Kreisbogen nach links ziehe, dann würde H (.) auf diesem Kreisbogen

verlaufen. (..) Über der Sehne AB “ (12:47 - 12:57).

Verena steht vor dem Problem, dass der Winkel in C beim Ziehen die Größe verändert, was ihr

das Beobachten schwer macht. Daher sucht sie nach einer Möglichkeit, den Winkel nachträg-

lich zu fixieren. Nachdem sie zunächst in die vorhandene Konstruktion einen festen Winkel

in C einträgt, bemerkt sie beim Ziehen sehr schnell, dass ihr dies nicht weiterhilft, da der

neu konstruierte Schenkel keinen Bezug zum eigentlichen Dreieck aufweist und zudem der zu

beobachtende Winkel in C nach wie vor seine Größe verändert. Daher kommt sie auf die neue

Idee, einen Kreis durch A, B und C zu konstruieren, um dann C auf diesem Kreis zu ziehen

(linked dragging). Da der Kreis durch C gelegt wurde und nicht C auf den Kreis, verändert

dieser beim Ziehen natürlich mehr oder weniger stark die Größe. Dennoch sieht Verena ih-

re Behauptung bestätigt, dass H auf einem Kreis läuft, wenn C auf einem Kreis läuft (vgl.

Abb. 6.13a)). Damit ist Verena der Lösung des Problems bereits sehr nah gekommen. Auf

die Frage, ob sie nun auch bestimmt sagen könne, auf welchem Fasskreis bezüglich welchen

Umfangswinkels C nun laufe, zeichnet Verena den Winkel AHB ein und misst dessen Größe

(vgl. Abb. 6.13b)). Dabei stellt sie fest: „Dann würde ich halt sagen, dass H halt auch einen

Mittelpunktswinkel sozusagen beschreibt. Der muss ja doppelt so groß sein, wie der Winkel in

C, der gesuchte Umfangswinkel “ (15:46 - 15:55).

Das Programm zeigt an dieser Stelle für den Winkel in H ein Winkelmaß von 120,2 Grad
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und für den Winkel in C ein Maß von 59,8 Grad an und ich stelle die Frage, ob man dem

Programm nun soweit glauben könne, um zu sagen, wenn der Winkel in C 59,8 Grad betrage,

läge H auf dem Kreis durch A, B und M.

|CA|= 6,94 |CB|= 8,72

|BA|= 7,96

<)cb= 59,8°

<)ba= 49°

<)ca= 71,2°A B

C

H

D

E

M
|CA|= 6,94 |CB|= 8,72

|BA|= 7,96

<)cb= 59,8°

<)ba= 49°

<)ca= 71,2°
<)lm= 120,2°

A B

C

H

D

E

M

a) b)

Abbildung 6.13 – Wenn C auf einem Kreis läuft, dann läuft auch H auf einem Kreis

(17:10 - 18:00)

V: Ich würde dem das, glaube ich, jetzt schon (.) glauben, aber,

ich würd’ halt jetzt (..) gerne C (.) weiter so ziehen, dass ich

das auch wirklich öfter sehe, und das kriege ich jetzt gerade

irgendwie nicht hin, weil, sobald ich an C ziehe, verändert sich

ja wieder der Winkel, und (zieht sehr weit an C. Dabei verändert

der Kreis sehr stark die Größe. Die Bahn von H ist während dieser

Zugaktion offensichtlich kein Kreis (vgl. Abb. 6.14a)).) Das ist

gar kein Kreis, auf dem H liegt. Sehe ich gerade. (6 Sek. Pause,

während Verena zieht). Sehe ich jetzt. Ich hab’ den immer nur so

betrachtet (zieht, dass H innerhalb des Dreiecks bleibt), und

deswegen dachte ich, das wäre. Hmh, ist ’ne Parabel. Sehe ich

jetzt erst. Ich hab’ den nicht weiter, ich hab’ C nicht weiter

gezogen. Okay, H liegt auf ’ner Parabel. Ist auch gut zu wissen

(..). Dann kann (.) der Kreisbogen ja gar nicht mit (..). Ich

trau’ mich nicht mehr, was zu sagen.
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Bis zu dieser Stelle hat Verena eine kluge Aufgabenbearbeitung präsentiert. Dabei musste sie

durchaus einige Vermutungen verwerfen, wobei ihr der Zugmodus stark geholfen hat. Durch

diesen konnte sie auch die Vermutung generieren, dass der Winkel in C sein Winkelmaß behält,

wenn H auf dem Kreis durch A, B und M liegen soll. Dabei lässt sie ihre theoretischen

Kenntnisse über Umfangswinkel und Mittelpunktswinkel einfließen, so dass sie fundiert sagen

kann, dass der Winkel in H so groß wie der Winkel in M sein muss, beide doppelt so groß wie

der Winkel in C, und die Bahn von C ein Kreis. Damit hat Verena im Prinzip alle wichtigen

Informationen zur Verfügung, um nun noch die letzte Lücke schließen zu können, nämlich

eine Aussage über die konkrete Größe des Winkels in C zu treffen, da sie ja ebenfalls bereits

erläutert hat, dass im Sonderfall H = M das Dreieck ABC gleichseitig ist. Doch dieser letzte

Schritt in der Beweiskette ist Verena noch nicht klar, wobei allerdings ihr bisheriges Vorgehen

vermuten lässt, dass sie diesen Schritt durchaus noch erarbeiten könnte. Aktuell lässt sie

sich jedoch durch den Einsatz des Zugmodus derart verunsichern, dass sie ihre bisherigen

Überlegungen komplett verwirft, obwohl sie diese alle theoretisch fundieren konnte.

|CA|= 4,61
|CB|= 10,63

|BA|= 7,96

<)cb= 43,7°

<)ba= 23,6°

<)ca= 112,6°
<)lm= 136,3°
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C

H

D

E

M

|CA|= 8,98

|CB|= 2,78

|BA|= 7,96

<)cb= 59,9°

<)lm= 120,1°

A B

C

D

E

M

H

a) b)

Abbildung 6.14 – Läuft H auf einer Parabel oder einem Kreis?

An dieser Stelle kommt ihr die Idee, die Ortslinie von H zu erzeugen. Versehentlich aktiviert

sie dabei nicht den üblichen Button, sondern die animierte Variante. Als die Animation startet,

kann beobachtet werden, wie sowohl C als auch H jeweils auf einem Kreis laufen (vgl. Abb.

6.14b)). Verenas Kommentar: „Für mich läuft H jetzt nicht mehr auf einer Parabel “ (19:58).

Zudem sieht sie ihre Vermutung, dass der Abstand zwischen C und H konstant ist, bestä-

tigt. Den Konflikt hingegen zwischen der Animation und der zuvor gemachten Beobachtung,
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dass H auf einer Parabel läuft, kann Verena so schnell nicht lösen, so dass sie hier um Hilfe

bittet: „Aber warum läuft H nicht mehr auf ’ner Parabel? Habe ich an ’nem anderen Punkt

gezogen? “ (20:20 - 20:27). Tatsächlich ist es fast unmöglich, C auf einem Kreis, dessen Größe

nicht fixiert ist, so zu bewegen, dass H ebenfalls auf einem Kreis läuft, da man leicht zu weit

nach rechts bzw. links zieht. Diese Erklärung leuchtet Verena ein und sie fasst ihre bisherigen

Erkenntnisse noch einmal zusammen: Wenn H und M auf demselben Kreis liegen, können die

Winkel AHB und AMB als Umfangswinkel über derselben Sehne aufgefasst werden, und sie

sind daher gleich groß. Da der Winkel in M als Mittelpunktswinkel doppelt so groß wie der

Winkel in C ist, muss auch AHB doppelt so groß wie der Winkel in C sein.

Damit ist allerdings immer noch nicht die Frage geklärt, ob eine Angabe zu den Winkel-

maßen gemacht werden kann. Um hier weiterzukommen, nutzt Verena die Messfunktion des

Programms, um den Mittelpunktswinkel in M zu messen. Dabei stellt sie fest, dass das an-

gezeigte Winkelmaß für diesen Winkel nicht mit dem des Winkels in H übereinstimmt. Diese

Tatsache verwirrt Verena wieder sehr, so dass sie erneut sehr stark an ihren bisherigen Über-

legungen zweifelt.

(27:39 - 28:36)

V: Mich verwirren jetzt ehm, diese ganzen Striche, ja, und ich müsste

es ja wissen. Also ich traue mir nicht mehr, weil mich, um ehrlich

zu sein, das jetzt gerade verwirrt, weil, ehm,(.) weiß ich nicht,

vielleicht verwirrt mich aber auch die Situation, also.

16

17

18

19

I: Was, was verwirrt dich denn, dass das Programm20

V: (unterbricht) Das ich mir nicht sicher sein kann, ob die Winkel

AHB und AMB gleich sind, weil da steht: 120,1 und 119,8.

Verstehst du, das können natürlich auch Ziehfehler sein, weil ich

H ja da drauf gezogen habe, dass sie deswegen nicht genau gleich

sind, oder es könnte halt, dass meine Theorie falsch ist und nur

zufällig (.). Aber (fängt an zu ziehen) die schwanken ja ungefähr

immer um 120. Verstehst du, jetzt zum Beispiel sieht es ja so aus,

als würde H auf dem Kreisbogen liegen, aber die beiden Winkel sind

nicht gleich. Und das weiß ich jetzt nicht, ob es ein Messfehler

ist, oder nicht.
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Wieder ist eine Situation entstanden, in der Verenas Überlegungen der Visualisierung durch

das Programm zu widersprechen scheinen. Und obwohl Verena viele Kenntnisse aus dem Be-

reich des Umfangswinkelsatzes hat, ist sie bereit, daraufhin ihre Theorie zu verwerfen. Auch

später bemerkt sie noch einmal, dass sie durch so etwas stark irritiert wird: „Ja, die Messfeh-

ler, oder die Ziehfehler, die verwirren einen wirklich“ (29:48 - 29:53).

Es wird deutlich, dass Verena dem Programm eine große Verbindlichkeit zuschreibt. An Stel-

len, wo dieses falschen Überlegungen widerspricht, gereicht ihr dies zum Vorteil, z.B. wenn sie

„sieht“, dass es außer (vermeintlich) Trapezen noch andere Vierecke gibt, die einen Umkreis

haben. An Stellen hingegen, an denen sie richtige Überlegungen angestellt hat, lässt sie sich

durch das Programm stark verunsichern. Dies geht so weit, dass sie sogar bereit ist, ihre The-

sen zu revidieren, selbst wenn diese auf geometrischen Sätzen basieren.

Damit hat der Einsatz von Cinderella für Verena zwei gegenläufige Effekte: sie profitiert, indem

sie auf neue Ideen kommt, wird aber gleichzeitig stark verunsichert, wenn optische Eindrücke

scheinbar konträr zu ihren Theorien stehen. Hier hat sie noch nicht die nötige Souveränität,

die Visualisierung durch das Programm auch kritisch zu hinterfragen. Dies ist Verena, wie aus

ihren Äußerungen zu entnehmen ist, auch durchaus bewusst. Sie selbst zieht dennoch ein sehr

positives Fazit bezüglich des Einsatzes des Programms:

(36:06 - 36:58)

V: Also, ich bin schon zufrieden mit dem Programm, auch wenn mich

das gerade verwirrt hat, das hat damit nichts zu tun. Aber, ich

ehm, man hätte es ja so gar nicht sehen können, was (.) ist, wenn

ich (.) das ehm, also man hätte ein extra neues Dreieck zeichnen

müssen, mit dem 120-Grad-Winkel, und dann gucken müssen, liegt das

immer noch da drauf, und mit dem Zirkel abmessen und so. Und das

geht ja so viel schneller, weil man ja theoretisch nur an C ziehen

braucht.

31

32

33

34

35

36

37

38

I: Aber das hättest du doch hier auch gerade machen können, du

hättest doch einfach

39

40

V: (unterbricht) Hätte ich.41

I: mal sagen können, ich zeichne mal eins mit 120 Grad

Mittelpunktswinkel

42

43

V: (unterbricht) Ja, ich hätte eh, ja gut, ich hätte (.), ich bin ja44
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dadurch schon erst da d’rauf gekommen. Also, es ist ja schwierig,

so was ’rauszufinden, wenn man das auf dem Papier macht, und

noch gar nicht weiß, was man überhaupt sucht. Man kommt, man

kommt ja schon auf viele Lösungen, indem man daran zieht, und

sieht, oh, jetzt habe ich ’nen (..) rechtwinkliges Dreieck, jetzt

liegt H zufällig auf A. Oder, das merkt man wirklich nur durch

Ausprobieren, bei einigen Sachen.

45

46

47

48

49

50

51

Verena zieht durchaus großen Nutzen aus dem Einsatz des Programms. Sie selbst sieht den

Vorteil im Wesentlichen darin, auf Lösungsideen zu kommen, auf die sie beim Arbeiten mit Pa-

pier und Bleistift kaum gestoßen wäre. Zunächst setzt sie stark das guided dragging ein, indem

sie das Dreieck in bestimmte Formen zieht, um damit aus vier Punkten drei zu machen. Diese

„Punktereduzierungsstrategie“ ist ein Lösungsansatz, der Verena unmittelbar einfällt und aus-

schließlich auf theoretischen Überlegungen, nicht auf Ausprobieren beruht. Dabei ergibt sich

eine weitere Lösung, die Verena so noch nicht im Sinn hatte. Um diese Lösung näher zu unter-

suchen, verwendet Verena das Dummy locus dragging. Hierdurch generiert sie die Vermutung,

dass H auf dem Kreis durch A, B und M liegt, wenn C auf einem Kreis läuft und damit der

Winkel in C konstant bleibt.

Diese Vermutung versucht Verena zu stützen, indem sie einen Kreis durch A, B und C kon-

struiert, um C nun auf dieser Bahn bewegen zu können. Durch dieses linked dragging sieht

sie zunächst ihre These gestützt, bis sie diese aufgrund der oben geschilderten Irritationen

komplett verwirft. Da als Ursache für das Dilemma die frei bewegliche Konstruktion erkannt

werden kann, bei der beim Ziehen der ständig in der Größe variierende Kreis ein Beobachten

stark erschwert, wählt Verena als Lösung die automatische Animation des Programms, die

diese Schwierigkeit umgeht. Hierdurch sieht sie ihre Vermutung erneut bestätigt.

Damit durchläuft Verena den von Arzarello et al. (2002, S.69) dargestellten Prozess von

ascending zu descending control in nahezu idealtypischer Weise (siehe Kapitel 3.2). Die DGS

nimmt für sie die Rolle der Impulsgeberin ein, und durch das Ziehen entwickelt sie die Idee,

dass die Konstanz des Winkels in C eine entscheidende Rolle spielt. Gleichzeitig verfügt Ver-

ena über das erforderliche geometrische Wissen, um die Beobachtungen in einen angemessenen

fachinhaltlichen Kontext einzubinden. Insgesamt ist dieser Aspekt von Verenas Aufgabenbe-

arbeitung kohärent mit ihrem in Abschnitt 5.1.6 herausgearbeiteten Beweisverständnis.
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Gleichzeitig allerdings schreibt Verena dem Programm eine recht große Autorität zu, da sie

aufgrund ihrer Beobachtungen beim Ziehen sehr schnell bereit ist, ihre eigenen, durchaus

wohlbegründeten Theorien zu revidieren. Natürlich muss an dieser Stelle die Besonderheit der

Interviewsituation berücksichtigt werden. Dennoch bleibt festzustellen, dass Verena an die-

ser Stelle dem Programm nicht kritisch genug gegenübersteht. Besonders die starke Irritation

durch das Messen der Winkel wäre bei einer Studentin mit einem derart fundiertem Fachwissen

nicht zu erwarten gewesen, da sowohl in der Vorlesung, als auch in den Übungen wiederholt

die Deutung von Messergebnissen hinterfragt wurde. Gleichwohl verdeutlicht die geschilderte

Episode, dass die Bereitschaft, der DGS eine gewisse Autorität zuzugestehen, nicht nur bei

fachlich schwächeren Studierenden zu finden ist. Diese Problematik sollte beim Einsatz eines

solchen Programmes nicht unterschätzt werden.
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6.1.5 Fallstudie „Sophie“

Für Sophie hat ein Beweis durchaus auch eine begründende Funktion (s. Abschnitt 5.3), die

allerdings eher den Anforderungen von außen geschuldet ist, als dem eigenen Interesse. Daher

ist Sophie mit der Visualisierung als Beweis durchaus zufrieden.

Auch sie bearbeitet Aufgabe 4, bei der es darum geht, ob in einem spitzwinkligen Dreieck die

Eckpunkte A und B, der Höhenschnittpunkt H und der Umkreismittelpunkt M auf einem

Kreis liegen können.

Nach Erstellen der Grundkonfiguration zieht Sophie zunächst an C (Wandering dragging). Da-

bei ergibt sich nach einiger Zeit die Situation, dass H auf A zu liegen kommt. Sophie stoppt

und überlegt, ob dies eine Lösung sein könne, da sie ja nun nur noch drei Punkte zu betrach-

ten habe. „Kann ich das auch so machen? Dann müsste ich ja nur das halb Punkte finden.

Das geht ja“ (8:23 - 8:30). Recht schnell fällt ihr allerdings auf, dass nun die Voraussetzung

der Spitzwinkligkeit verletzt ist. Sie nutzt aber die Idee, die ihr offensichtlich erst durch den

Einsatz des Zugmodus gekommen ist, für eine analoge Situation, die diese Voraussetzung nicht

verletzt, nämlich für den Fall, dass H undM zusammenfallen, und zieht das Dreieck so, dass es

gleichseitig wird (guided dragging). Anschließend konstruiert sie mit Hilfe des Buttons „Kreis

durch 3 Punkte“ einen Kreis durch A, B und H und stellt fest, dass dies eine Lösung der

Aufgabenstellung ist. Damit hat sie das Programm in dieser Situation nutzbringend einsetzen

können.

Da Sophie den Kreis in einer Situation konstruiert hat, in der H auf M liegt, stelle ich die

Nachfrage, welcher der beiden Punkte für die Konstruktion genutzt worden sei. Da Sophie

dies selbst nicht mehr so genau weiß, zieht sie an C, damit die beiden Punkte wieder ausein-

anderfallen, und stellt fest, dass der Kreis durch H geht. Gleichzeitig liegt M nun nicht mehr

auf dem Kreis. Daher überlegt Sophie, wie man auch M an den Kreis binden könnte. Dazu

aktiviert sie den Button „Kegelschnitt“, um so einen Kreis durch vier Punkte zu konstruieren.

Anschließend markiert sie die vier Punkte A, B, H und M. Da der Button „Kegelschnitt“ al-

lerdings die Markierung von fünf Punkten erfordert, bevor der Kegelschnitt als sichtbare Linie

erscheint, passiert nach Markierung von nur vier Punkten gar nichts. Sophie versucht nicht,

die Situation inhaltlich zu analysieren, sondern stellt fest: „Kriegt man jetzt keinen Kreis?

Das geht nicht, okay. Dann nicht. (..) Aber ich würde sagen, das geht nur, glaube ich, wenn
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man das so macht, oder? Wenn der Mittelpunkt des Umkreises (.) gleich der Schnittpunkt der

Höhen ist“ (10:45 - 11:03).

Anschließend versucht Sophie erneut, einen Kreis durch A, H und B zu konstruieren, dieses

Mal unter Nutzung des Button „Kreis durch drei Punkte“. Da das Programm dabei allerdings

gleichzeitig H und M erfasst, die beide übereinander liegen, erscheint der Kreis bereits, nach-

dem A und H markiert wurden. Zudem geht der so entstandene Kreis nicht durch B. Auch an

dieser Stelle versucht Sophie nicht, das Problem inhaltlich zu analysieren. Stattdessen macht

sie ihre Aktion rückgängig und versucht mehrfach erneut, die Konstruktion auf dieselbe Art

durchzuführen.

Da Sophie nicht erkennt, dass das Aufeinanderliegen der beiden Punkte die Ursache des Pro-

blems ist, gebe ich einen entsprechenden Hinweis. Daraufhin zieht Sophie an C, so dass H

und M nicht mehr aufeinanderliegen, konstruiert den Kreis durch A, H und B und zieht

anschließend an C, um H und M wieder zur Deckung zu bringen. Dabei wiederholt sie ihre

Behauptung, dass dies die einzige Lösung des Problems sei. Während des Ziehens allerdings

entsteht die Situation, dass wieder alle vier Punkte auf dem Kreisbogen liegen, dieses Mal aber

H ungleich M ist. Sofort erkennt Sophie, dass hier eine weitere Lösung vorliegt. Schließlich

versucht sie, C so zu ziehen, dass M bei dieser Aktivität auf dem Kreis bleibt (dummy locus

dragging). Da dieses gelingt, stellt Sophie die Behauptung auf, dass es unendlich viele Lösun-

gen des Problems gibt. Die einzige Bedingung sei, dass sie nicht so weit ziehen dürfe, dass H

auf einen der Eckpunkte oder gar außerhalb des Dreiecks zu liegen komme, da das Dreieck in

diesen Fällen die Eigenschaft der Spitzwinkligkeit verliere (vgl. Abb. 6.15 a) und b)).

C

A

BH

M

C

A

B

H

M

a) b)

Abbildung 6.15 – So würde es gehen und so auch
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Damit hat Sophie viele Lösungen gefunden. Das einzige Problem, das sich ihr in dieser Si-

tuation noch stellt, ist, dass M beim Ziehen immer wieder den Kreis verlässt: „Ich weiß jetzt

nicht, wie man das hinkriegt, dass der auch noch fest da drauf ist. Auf dem Kreis (13:04 -

13:08).

Auf die Nachfrage, ob in diesen Fällen eine besondere Eigenschaft des Dreiecks ABC vorliege,

zieht Sophie erneut an C, so dass H und M zusammenfallen. In diesem Fall sei das Dreieck

gleichseitig oder zumindest gleichschenklig. Anschließend verzieht sie das Dreieck erneut, so

dass H und M wieder auseinanderfallen, und stellt die folgenden Überlegungen an.

(14:26 - 15:40)

So: Aber wenn ich das jetzt so verschiebe, wären jetzt ja auch beide

drauf.

1

2

I: Ja.3

So: Ja ungefähr sind die Winkel, hier im mittleren Bereich (zieht an

C, so dass H ungefähr mittig zwischen A und B liegt), ungefähr

ja alle gleich. Und hier (zieht an C, so dass H fast auf B zu

liegen kommt) wird der hier unten in A immer spitzer (zeigt mit

dem Finger auf den Winkel CAB ), und ehm, in B wird der immer

größer. Und hier ist es genau anders herum (zieht an C, so dass H

näher an A zu liegen kommt). Da wird der in B immer spitzer. Das

ist ja wie so’n (5 Sek. Pause).

4

5

6

7

8

9

10

11

I: Okay, du hast jetzt die Winkel in A und in B betrachtet. Und

jetzt gebe ich mal einen Hinweis, und was ist

12

13

So: (unterbricht) in C.14

I: mit dem Winkel in C ?15

So: Das gucken wir jetzt mal. (Aktiviert den Button „Winkel messen“.)

Ich glaube, der bleibt immer gleich. (Misst den Winkel in C.) 66

Grad hat der. (Zieht an C.)

16

17

18

I: Ja, aber im Moment liegt dein, ehm, M nicht auf dem Kreisbogen.19

So: Ah so, ja, stimmt. (Zieht an C, so dass M wieder auf dem

Kreisbogen zu liegen kommt.) So, ungefähr 60 Grad. (Zieht an C,

so dass M an einer anderen Stelle auf dem Kreisbogen zu liegen

kommt.) Gucken wir hier noch mal. Auch ungefähr 60. Der hat immer

60 Grad, würde ich sagen.

20

21

22

23

24
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Durch den Einsatz des Programms gelangt Sophie zu der These der Konstanz des Winkels

in C. Allerdings bewegt sie sich dabei ausschließlich auf der deskriptiven Ebene. Die auftre-

tenden Schwierigkeiten, nämlich dass M beim Ziehen immer wieder den Kreis verlässt bzw.

der Winkel in C seine Größe ändert, versucht sie auszuräumen, indem sie nachträglich das

Winkelmaß in C auf 60 Grad fixieren möchte. Allerdings weiß sie nicht, wie. Daher gebe ich

den Hinweis, dass ein Winkel in Cinderella nur von vornherein fest konstruiert werden könne

und die nachträgliche Fixierung nicht möglich sei. Dies bringt Sophie auf die Idee, die gesamte

Konstruktion erneut durchzuführen und diesmal das Winkelmaß in C mit 60 Grad vorzuge-

ben. Als sie das Dreieck mit Höhenschnittpunkt H und Umkreismittelpunkt M konstruiert

hat, überlegt sie zunächst sehr lange, und stellt dann die Frage: „Kann man einen Kreis durch

vier Punkte, geht nicht, oder?“ (18:33 - 18:35). Anschließend konstruiert sie den Kreis durch

A, B und H, der natürlich auch durch M geht. Auch beim Ziehen an A bzw. an B bleibt M

auf dem Kreisbogen, so dass Sophie feststellt: „Jetzt liegt er immer drauf. So sieht man das

besser “ (18:55 - 18:59).

Auf die Bitte, noch einmal das Ergebnis der Aufgabe zusammenzufassen, formuliert Sophie:

„Also, so lange oben in C der 60 Grad Winkel ist, und ehm, die Punkte [gemeint sind H und

M, G.W.] im Dreieck liegen. Dann bleibt es spitzwinklig, und die Punkte liegen alle auf dem

Kreis“ (20:50 - 21:04). Auf die Nachfrage, ob die Aufgabe mit diesem Fazit nun zufriedenstel-

lend und ausreichend bearbeitet worden sei, stellt Sophie fest: „Für mich wäre das jetzt fertig“

(22:09 - 22:10).

Sophies Aufgabenbearbeitung weist mehrere interessante Aspekte auf. Zunächst versteht sie

es sehr gut, den Zugmodus dafür einzusetzen, Vermutungen aufzustellen und Thesen zu gene-

rieren. So wird zu Beginn der Aufgabenbearbeitung deutlich, dass ihr die Idee der Reduktion

von vier auf drei Punkte erst kommt, als sie zufällig eine derartige Situation hingezogen hat.

Allerdings ist sie auch sehr schnell bereit, die Behauptung aufzustellen, dass damit die einzige

Lösung gefunden sei. Als jedoch beim weiteren Ziehen eine andere Lösungskonstellation ent-

steht, erkennt Sophie diese (im Gegensatz z.B. zu Melanie) sofort, so dass sie ihre Behauptung

direkt wieder verwirft. Auch die Konstanz des Winkels in C fällt Sophie ausschließlich durch

das Beobachten beim Ziehen auf. Allerdings versucht sie so gut wie gar nicht, mit Ausnahme

des Sonderfalls H = M, irgendwelche geometrischen Begründungen oder Zusammenhänge für

die von ihr beobachteten Phänomene zu finden. Stattdessen möchte sie ihre Behauptungen
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ausschließlich durch das Programm stützen. So kommt sie auf die durchaus sinnvolle Idee, ein

Dreieck mit einem Winkel von 60 Grad zu konstruieren, in dem dann ja die vier besagten

Punkte auf einem Kreis liegen müssen, wenn sich ihre Vermutung als richtig erweisen sollte.

Doch statt nun nach inhaltlichen Zusammenhängen zu fragen, akzeptiert Sophie die visuelle

Überprüfung als hinreichenden Nachweis.

Auch während der Bearbeitung kommt es immer wieder zu Situationen, in denen Sophie dem

Programm die Entscheidung überlässt, ob irgendetwas möglich oder nicht möglich ist. Als Bei-

spiel seien ihre wiederholten Versuche genannt, einen Kreis durch vier Punkte zu konstruieren.

Dies gelingt ihr natürlich nicht, aber sie begreift nicht, warum. Sogar nach der Zeichnung des

Dreiecks mit einem 60°-Winkel in C stellt sie erneut die Überlegung an, wie nun der Kreis

durch die vier Punkte zu konstruieren sei. An dieser Stelle ist ihre Vorgehensweise in sich nicht

ganz stimmig, denn eigentlich müsste der Kreis ja nun automatisch durch den vierten Punkt

gehen, wenn ihre Überlegung, die sie ja auf diese Art und Weise überprüfen möchte, richtig

ist.

Sophie schreibt dem Programm eine relativ große Autorität zu und unterwirft sich dieser

vergleichsweise unkritisch. Dies ist kohärent mit ihrem in Abschnitt 5.7 herausgearbeitetem

Beweisverständnis, bei dem sich zeigte, dass sie zwar um die Frage nach Begründungszusam-

menhängen weiß, diese aber eher externen Autoritäten geschuldet sieht, weshalb sie sich selbst

durchaus mit der dynamischen Visualisierung als Beweis zufrieden gibt. In Übereinstimmung

hiermit stellt Sophie während der gesamten Aufgabenbearbeitung nicht einmal die Frage,

warum eine bestimmte Größe des Winkels in C das entscheidende Kriterium für die Lage der

zu beobachtenden Punkte zu sein scheint.
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6.1.6 Fallstudie „Thilo“

Thilo wurde bereits kurz in Abschnitt 5.3 vorgestellt. Obwohl er sich selbst mit der dynami-

schen Visualisierung als Beweis zufrieden gibt, erkennt er an, dass auch die Frage nach den

Begründungszusammenhängen ihre Berechtigung hat, allerdings durch die DGS nicht beant-

wortet werden kann.

Auch Thilo bearbeitet die Aufgabe 4, bei der es um die Fragestellung geht, ob in einem

spitzwinkligen Dreieck die Eckpunkte A und B, der Höhenschnittpunkt H und der Umkreis-

mittelpunkt M auf einem Kreis liegen können.

Nachdem er die Grundkonstruktion erstellt hat, überlegt Thilo lange am statischen Bild, be-

vor er schließlich am Punkt A zieht, so dass H auf B zu liegen kommt (guided dragging).

Anschließend zieht er den Punkt A über die Ebene von links nach rechts und wieder zurück

(wandering dragging), um nach seinen eigenen Worten zu beobachten, „wie die Punkte ver-

laufen“ (Abb. 6.16 a) und b)). Dies kann er allerdings, ebenfalls nach seiner eigenen Aussage,

nicht erkennen, so dass er nach 20 Sekunden zu dem Schluss kommt, dass die vier genannten

Punkte nicht auf einem Kreis liegen können.

A
B

C

H

M

A

B

C

H
M

a) b)

Abbildung 6.16 – Wie verlaufen die Punkte?

Daher gebe ich den Hinweis, doch einfach einmal einen Kreis durch drei der genannten

Punkte zu zeichnen, um dann zu versuchen, das Dreieck so zu verziehen, dass auch der vierte

Punkt auf dem Kreis zu liegen kommt. Daraufhin konstruiert Thilo einen Kreis durch die

Punkte A, B und H, stellt dann aber fest, dass an M als unfreiem Punkt nicht direkt gezogen
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werden kann. Daher löscht er diesen Kreis wieder und konstruiert nun den durch A, H und M.

Anschließend zieht er an B, so dass H auf B zu liegen kommt, eine Situation, die er bereits bei

seinen anfänglichen Versuchen erzeugt, aber nicht als Lösung erkannt hatte (vgl. Abb. 6.17a)).

Diesmal jedoch benennt er die Konfiguration sofort als Lösung und erläutert, dass es sich um

ein rechtwinkliges Dreieck handelt. Anschließend zieht Thilo mehrfach recht schnell an B, so

dass B innerhalb oder weit außerhalb des Kreises liegt. Er zieht dabei so, dass, sobald B auf

dem Kreis liegt, die Situation H = B entsteht. Auf die Nachfrage, ob dies die einzige Lösung

der Problemstellung sei, überlegt Thilo: „Man könnte ja (...) drei andere Punkte nehmen, und

dann gucken, ob sich da irgendwas ändert“ (7:46 - 7:56). Er erstellt daraufhin mit Hilfe des

Buttons „Kreis durch drei Punkte“ den Kreis durch B, H und M und zieht anschließend an

A, so dass H auf A liegt, so dass der Kreis nun natürlich wieder durch alle vier geforderten

Punkte geht (vgl. Abb. 6.17b)). Thilo erkennt direkt, dass derselbe Sachverhalt wie zuvor

vorliegt, lediglich bezüglich eines anderen Eckpunkts des Dreiecks.

A
B

C

H

M

A
B

C

H

M

a) b)

Abbildung 6.17 – Mache aus vier Punkten drei

Nachdem Thilo das rechtwinklige Dreieck ABC mit rechtem Winkel in A als zweite Lö-

sungsmöglichkeit benannt hat, zieht er, genauso wie zuvor am Punkt B, nun sehr heftig am

Punkt A hin und her. Dabei liegt A mehrfach innerhalb und außerhalb des Kreises. Jedesmal

jedoch, wenn A dabei den Kreis passiert, entsteht die Situation A = H. Dies ist in der Tat

unvermeidlich, wenn man A auf einer Geraden zu H hin und von H weg zieht. Um A so auf

den Kreisbogen zu ziehen, dass A ungleich H ist, müsste man in einem Bogen ziehen. Thilo
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jedoch gelingt es an dieser Stelle nicht, das heuristische Potenzial des Zugmodus zu nutzen.

Auf die weitere Nachfrage, ob nun alle Lösungen vorlägen, erwidert Thilo, dass seine Strategie

noch weiter fortgeführt werden könne, indem ein Kreis durch A, B und M gezeichnet werde.

Dies sei allerdings nicht so günstig, da an H als Schnittpunkt der Höhen nicht direkt gezogen

werden könne. Statt dessen müsse an A oder B gezogen werden. Hierzu stellt Thilo fest: „Aber

dann kommt ja das gleiche ’raus, wie wir das gerade schon hatten“ (9:16 - 9:20). Dabei zieht

er an A bzw. B, so dass H auf A bzw. B zu liegen kommt.

Insgesamt gesehen setzt Thilo den Zugmodus kaum so ein, dass er auf diese Weise neue Ver-

mutungen generieren kann. Zu Beginn stellt er sehr schnell die These auf, dass keine Lösung

möglich sei, obwohl er nur kurz hin und her zieht. Als er schließlich nach Aufforderung den

Kreis konstruiert und danach den Zugmodus einsetzt, gelingt es ihm auch auf diese Weise

nicht, echte Lösungen hinzuziehen, denn rechtwinklige Dreiecke sind durch die Aufgabenvor-

aussetzungen ausgeschlossen. Auch die Möglichkeit, ein gleichseitiges Dreieck zu betrachten,

was ja der „Punktreduzierungsstrategie„ entspräche, fällt Thilo nicht ein.
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6.1.7 Fallstudie „Charlotte“

Charlotte, in deren Vorstellung es ein Spektrum von „Beweisen“ unterschiedlicher Genauig-

keit und unterschiedlichen Bestätigungsgrades gibt, je nachdem, für wen ein Beweis geführt

wird (vgl. Kapitel 5.2), bearbeitet die Aufgabe 3, bei der es darum geht, einen gemeinsamen

Schnittpunkt von drei Linien zu erkennen.

Zeit Zugmodus Aktivität

0:47 - 1:35 Konstruktion des Dreiecks, des Umkreises, der Mittel-

senkrechten (MS) und der Winkelhalbierenden (WH).

1:36 - 1:48 Frage nach Auffälligkeiten

1:49 - 2:17 Guided Zieht an C, so dass MS = WH. Feststellung: Beide

Linien können zusammenfallen. Behauptung: Dann ist

das Dreieck gleichschenklig.

2:18 - 2:24 Wandering Zieht an C, so dass MS ungleich WH.

2:25 - 2:39 Behauptung: MS und WH schneiden sich auf dem

Kreis.

2:40 - 2:53 Nachfrage: Ist das selbstverständlich?

2:54 - 2:59 Test Zieht an C nach links (Abb. 6.18a)) und nach rechts

(Abb. 6.18b)), um zu prüfen, ob Schnittpunkt erhalten

bleibt.

A B

C

D
A B

C

D

a) b)

Abbildung 6.18 – Ziehe nach links und nach rechts, um die Schnittpunkteigenschaft zu

überprüfen

264



6.1. Ausgewählte Interpretationen

Charlotte stellt sehr schnell die Behauptung auf, dass es einen gemeinsamen Schnittpunkt

der drei Linien Kreis, Winkelhalbierende und Mittelsenkrechten gibt. Zuvor betrachtet sie

den Sonderfall des gleichschenkligen Dreiecks, in dem die beiden Geraden Winkelhalbieren-

de und Mittelsenkrechte zusammenfallen. Anschließend zieht sie an C, so dass das Dreieck

wieder „allgemein“ wird. Da nach einer Besonderheit in der Zeichnung gefragt wurde, gibt

sie an, dass Winkelhalbierende, Mittelsenkrechte und Kreis einen gemeinsamen Schnittpunkt

haben, wobei ihre Äußerung allerdings so klingt, als ob dies nichts wirklich Besonderes sei.

Erst durch die Nachfrage, ob dies den selbstverständlich sei, setzt sie den Zugmodus ein, um

ihre Vermutung zu überprüfen, indem sie C erst nach links und dann nach rechts zieht. Da

die Schnittpunkteigenschaft beim Ziehen erhalten bleibt, gibt sie an, sehr sicher („9“ auf einer

Skala von 1 bis 10) zu sein, dass dies immer der Fall ist.

Zeit Zugmodus Aktivität

3:00 - 3:35 Behauptung: Es gibt immer einen gemeinsamen

Schnittpunkt. Sicherheit, dass die Behauptung stimmt,

wird auf Skala von 1 bis 10 bei 9 verortet.

3:36 - 5:30 Nachfrage, was benötigt wird, um auf Sicherheit 10 zu

kommen inklusive Antwort (siehe Transkript).

Auf die Nachfrage, wie ihre Sicherheit denn absolut werden könne, ergibt sich der folgende

Wortwechsel:

(3:36 - 5:30)

I: Was würdest du jetzt noch brauchen, damit du bei der 10 ankommst?1

Ch: (..) Hmm. (4 sec. Pause). Ja erst mal wissen (.) ’nen genauen

Beweis dafür, also, warum ich das jetzt so vermute.

2

3

I: Ja?4

Ch: Und, ehm, (..) ja eigentlich kann man ja mit Cinderella ’nen

Punkt da hinziehen, und wenn er sich, wenn dann die drei Sachen

aufleuchten, dann weiß man ja (.), dass die (.) in einem Punkt

sich schneiden.

5

6

7

8
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I: Ja? Kannst du ja vielleicht mal machen?9

Ch: Also ich würd’ jetzt hier (fügt den Schnittpunkt E hinzu), und

dann sieht man eben, dass sich die Winkelhalbierende, also, dass

es aufleuchtet, mit der Mittelsenkrechten und dem Kreis, und dann

weiß ich, dass sich das da unten schneidet.

10

11

12

13

I: Hmhm. Also im Prinzip...14

Ch: Ist es jetzt sicher.15

I: Ist es jetzt sicher. Bräuchtest du jetzt immer noch den Beweis?

Wo du vorhin ja überlegt hattest, du müsstest gucken, ob du es

irgendwie beweisen kannst?

16

17

18

Ch: Hmm (.). Ich glaub, aus mathematischer Sicht schon (lacht), aber,

eh (.) wenn ich jetzt nur das Programm (..), ich glaube, dann ist

das (.) eh, schon sehr sicher, dass es sich da unten schneidet.

19

20

21

I: Hmh. Du sagtest jetzt gerade, aus mathematischer Sicht schon. Was

ist jetzt das Besondere an der mathematischen Sicht, oder?

22

23

Ch: Ja, es gibt ja immer (...) ehm, ja, so Sätze, oder so was, mit

denen man das beweisen kann, und, ich glaube, wenn ich, ehm, in

der Klausur schreiben würde, ja, weil der Punkt jetzt da, (..)

weil das aufleuchtet, würde das nicht ausreichen, deswegen.

24

25

26

27

I: Und jetzt nur für dich selbst? Wäre es denn für dich ausreichend,

oder wolltest du jetzt für dich auch noch den Beweis haben?

28

29

Ch: Ehm. Eigentlich wäre es für mich ausreichend (lacht).30

Charlottes Äußerungen, wie sie absolute Sicherheit über die Wahrheit ihrer Behauptung

erreichen, also einen echten Beweis führen kann, bestätigen in beeindruckender Weise ihre

Vorstellungen zum Beweis, die in Kapitel 5.2 herausgearbeitet wurden. Wieder stellt sie einen

Beweis in der „mathematischen Welt“, in der man mit „Sätze[n], oder so was“ (Z.24) Dinge

zeigen kann, ihrem eigenen Anspruch gegenüber, der auch durch die Visualisierung durch die

DGS befriedigt wird: „dann sieht man eben, [...] dass es aufleuchtet, [...] und dann weiß ich,

dass sich das da unten schneidet“ (Z.11-13). Dabei wird meines Erachtens durch den Ausdruck

„so Sätze“ (Z.24) und die fast schon abfällig wirkende Art und Weise, wie sie diesen betont,

ihre eigene Distanz zur „mathematischen Welt“ deutlich. Zu dieser Einstellung passt, wenn

Charlotte wieder zwischen dem, was für sie selbst als Beweis ausreichend ist, und dem, was

von außen eingefordert wird, unterscheidet: „Ich glaube, wenn ich in der Klausur schreiben
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würde, ja, weil der Punkt jetzt da [...] aufleuchtet, würde das nicht ausreichen“ (Z.25-27).

Damit wäre die Aufgabe an dieser Stelle für Charlotte praktisch schon beendet gewesen. Sie

hat für sich mit Hilfe des Programms den Nachweis erbracht, dass es einen gemeinsamen

Schnittpunkt von Kreis, Mittelsenkrechten und Winkelhalbierenden gibt, denn als sie einen

Punkt E auf die entsprechende Stelle setzt, haben alle drei Linien aufgeleuchtet. Damit ist alles

klar, und die weiteren Ausführungen ergeben sich nur aufgrund der hartnäckigen Nachfragen

der Interviewerin.

Zeit Zugmodus Aktivität

5:30 - 5:36 Nachfrage, ob Beweis noch zusätzliche Informationen

bringt.

5:37 - 6:00 Schweigt, überlegt.

6:01 - 6:55 Test Zieht an C. E bleibt auf MS, ist aber nicht mehr Schnitt-

punkt mit WH. Verwirft die Behauptung, dass es

immer gemeinsamen Schnittpunkt gibt (Abb. 6.19b)).

A B

C

D

E
A B

C

D

E

a) b)

Abbildung 6.19 – Beim Ziehen bleibt E nicht Schnittpunkt von WH, MS und Kreis

Auf die Nachfrage, ob ein Beweis noch Informationen über die Visualisierung hinaus erbrin-

gen kann, hat Charlotte keine Antwort. Sie schweigt, grübelt sehr lange und setzt dann, als das

Schweigen langsam unangenehm wird, erneut den Zugmodus ein. Dabei muss sie feststellen,

dass E nicht als Schnittpunkt der drei Linien erhalten bleibt. Charlotte erkennt nicht, dass es

nun einen anderen gemeinsamen Schnittpunkt der drei Linien gibt. Stattdessen unterscheidet
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sie zwischen Schnittpunkt von Winkelhalbierenden und Kreis und dem Punkt E, den sie der

Mittelsenkrechten zuordnet.

Charlotte bemerkt nicht, dass das Programm den Punkt E nicht als Schnittpunkt identifiziert

hat. Dieses hätte sie sofort erkennen können, da E hellrot eingefärbt ist, eine Eigenschaft, die

nur freie oder halbfreie Punkte in Cinderella haben, während alle Schnittpunkte und damit

unfreien Punkte automatisch dunkelrot eingefärbt sind. Auf diesen Sachverhalt wird bereits

in dem obligatorischen Einführungskurs zu Beginn der Veranstaltung „Elemente der Geome-

trie“ hingewiesen, und alle, die über ein wenig Erfahrung mit Cinderella verfügen, sollten um

die Problematik der Markierung von Schnittpunkten dreier Linien wissen. Charlotte hingegen

zieht nicht in Erwägung, dass der Fehler an ihrem Umgang mit dem Programm liegen könnte,

sondern wertet ihn als Falsifikation ihrer Behauptung.

(6:01 - 6:55)

Ch: Moment! (...) Mmh. Wenn ich jetzt dran ziehe, ist es ja gar nicht

mehr so.

31

32

I: Wie, ist es nicht mehr so?33

Ch: (unterbricht) Also, der Kreis bewegt sich ja jetzt davon weg.

Der Punkt E liegt jetzt zwar (..) da auf der Geraden, auf der

Mittelsenkrechten, aber der Schnittpunkt ist nicht mehr gegeben.

34

35

36

I: Ja.37

Ch: Obwohl die aufgeleuchtet haben.38

I: Ja.39

Ch: (...) Hmh. Ja. Also ist es doch nicht so sicher, anscheinend. (8

Sek. Pause)

40

41

I: Bist du jetzt wieder verunsichert, ob es wirklich so ist, oder?42

Ch: Hmhm (bejahend). Ja, bin ich.43

Charlottes Überzeugung von der Korrektheit ihrer Behauptung beruht ausschließlich auf der

Visualisierung durch das Programm. An dieser Stelle hat sie noch keinen Versuch unternom-

men, die Behauptung auch mit fachinhaltlichen Argumenten zu stützen, und so ist es nur

konsequent, nicht die Visualisierung anzuzweifeln, sondern die Behauptung zu verwerfen.

Bemerkenswerterweise fängt Charlotte nun an, nach geometrischen Gründen dafür zu suchen,
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dass der gemeinsame Schnittpunkt von Winkelhalbierenden, Mittelsenkrechten und Kreis beim

Ziehen nicht erhalten bleibt. Dabei führt sie durchaus richtige Argumente an, beispielsweise,

dass sich die Lage der Mittelsenkrechten nicht verändert, wenn die Punkte A und B fest blei-

ben. An einer Stelle (scheinbar ohne es zu bemerken) widerspricht sie sich zwar selbst, indem

sie zuerst bemerkt, dass beim Ziehen die Teilwinkel in C ihre Größe verändern, da sich die

Größe des Kreises beim Ziehen ebenfalls verändert, danach aber behauptet, dass die Winkel

beim Ziehen gleich groß bleiben, da die Sehne AB konstant bleibt. Dennoch sind ihre geome-

trischen Überlegungen tendenziell durchaus korrekt. Allerdings kann sie diese nicht so zu einer

Beweiskette verknüpfen, dass sie anschließend Gewissheit über die Existenz, oder auch Nicht-

Existenz, eines gemeinsamen Schnittpunktes hat. Stattdessen mündet die Zusammenfassung

ihrer Analyse in der Behauptung, dass es einen gemeinsamen Schnittpunkt geben kann, aber

nicht muss. Angaben dazu, wann es diesen gemeinsamen Schnittpunkt gibt, kann Charlotte

nicht machen.

Zeit Zugmodus Aktivität

6:56 - 7:35 Wandering Versuch der Begründung: Kreis verändert beim Zie-

hen an C seine Größe, damit auch die Teilwinkel in C,

während MS fest bleibt, da A und B fest bleiben. E

bleibt als Punkt auf MS fest, ist aber nicht mehr Schnitt-

punkt mit WH und Kreis.

7:36 - 7:38 Nachfrage, wie dies zu erklären ist.

7:39 - 8:50 Wandering Versuch der Begründung: Kreisradius verändert sich,

der Winkel in C nicht, weil die Sehne AB konstant

bleibt. Die WH schneidet den Kreis immer in einem

Punkt, dieser Punkt kann auch E sein (Abb. 6.19a)).

Stellt sich die Frage, wann letzteres der Fall ist.

8:51 - 9:06 Aufforderung, die bisherigen Ergebnisse zusammenzufas-

sen.
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9:07 - 9:17 Guided Zieht an C, so dass E Schnittpunkt von MS, WH und

Kreis. Behauptung: Es gibt einen Punkt, in dem sich

die drei Linien schneiden 6.19a)).

9:18 - 10:02 Wandering Dies muss aber nicht immer sein: Wenn man an C zieht,

kann der Schnittpunkt von Kreis und WH auch ober-

halb bzw. unterhalb von E sein (Abb.6.20). Aber der

Schnittpunkt ist immer auf MS.

A B

C

D

E

A B

C

D

E

a) b)

Abbildung 6.20 – Der Schnittpunkt wandert weiter nach oben (a) oder nach unten (b)

Zeit Zugmodus Aktivität

10:03 - 10:06 Nachfrage: Welche Rolle spielt E?

10:07 - 10:12 Guided Zieht an C, so dass E Schnittpunkt von MS, WH und

Kreis.

10:13 - 10:54 Test Behauptung: E ist nur einer von beliebig vielen

Schnittpunkten von MS, WH und Kreis.

(9:07 - 10:54)

Ch: Es gibt einen (..) Punkt, wo sich, ehm, einmal Kreis,

Mittelsenkrechte und die Winkelhalbierende schneiden. Wenn man

44

45
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aber jetzt C bewegt und den Kreisradius verändert, dann muss,

ist das nicht unbedingt gegeben. Also, man sieht ja jetzt auch

(zieht), ehm, je spitzer ich den Winkel in C mache, desto weiter

wandert der Schnittpunkt von der Winkelhalbierenden und dem Kreis

weiter nach oben. Und ist nicht mehr in E. Ja, und je stumpfer

ich das mache (zieht), desto weiter nach unten wandert der

Schnittpunkt, aber er bewegt sich immer auf der Mittelsenkrechten.

Von AB.

46

47

48

49

50

51

52

53

I: Ja. Und was für ’ne Funktion hat jetzt noch mal E ?54

Ch: (..) Ehm, E ist der Punkt wo (zieht), ehm (...) stimmt. (5 Sek.

Pause, zieht). Eigentlich ist es nur ein beliebiger Schnittpunkt.

55

56

I: Von was jetzt?57

Ch: Von der Mittelsenkrechten, dem Kreis und der Winkelhalbierenden.58

Erst auf die gezielte Nachfrage, welche Rolle der Punkt E spielt, fällt Charlotte ihr Irrtum

auf, und sie entdeckt, dass es immer einen Schnittpunkt der drei Linien gibt, dieser aber beim

Ziehen die Lage verändert. Einen weiteren Nachweis für diesen Sachverhalt benötigt Charlotte

nicht, da sie nun, nachdem sie ihr Augenmerk von E gelöst hat, beim weiteren Ziehen diesen

gemeinsamen Schnittpunkt immer „erkennen“ kann.

Zeit Zugmodus Aktivität

10:55 - 11:02 Guided Zieht an C, so dass E Schnittpunkt von MS, WH und

Kreis.

11:03 - 11:25 Nachfrage, ob es immer einen gemeinsamen Schnitt-

punkt von MS, WH und Kreis gibt.

11:26 - 11:45 Wandering Behauptung: Es gibt immer einen gemeinsamen

Schnittpunkt, der beim Ziehen aber nicht fest bleibt.

11:46 - 11:53 Feststellung von I, dass Überprüfung mit dem Programm

nicht geklappt hat.

11:54 - 12:13 Behauptung: Nur in statischer Lage gibt es einen festen

Punkt, beim Ziehen verändert sich die Lage des Punktes.
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12:14 - 12:26 Nachfrage: Ist nun der Nachweis erbracht, dass sich die

drei Linien immer in einem Punkt schneiden?

12:27 - 12:50 Schweigt, überlegt.

12:51 - 13:22 Wandering Es ist gezeigt, weil man es immer erkennen kann.

Es wird deutlich, wie sehr Charlotte die Aufgabe des „Nachweisens“ an das Programm dele-

giert und welch bedeutsame Rolle sie diesem dadurch zuweist. Dabei wirkt Charlottes eigene

Rolle extrem passiv: als das Programm einen gemeinsamen Schnittpunkt dreier Linien anzeigt,

ist sie überzeugt davon, dass dies richtig ist; als der Schnittpunkt beim Ziehen nicht erhalten

bleibt, verwirft sie die Behauptung und ist zunächst nicht mehr in der Lage, zu „sehen“, dass

es doch einen gemeinsamen Schnittpunkt gibt. Als sich schließlich der Irrtum auflöst, verlässt

Charlotte sich wieder einzig auf das Programm: die Frage, aus welchen Gründen es immer

einen gemeinsamen Schnittpunkt gibt und damit nach den geometrischen Zusammenhängen,

stellt sich ihr nicht. Stattdessen ist für sie allein durch die Visualisierung der ausreichende

Nachweis diesbezüglich erbracht.

Wie bereits weiter oben erwähnt, bin ich überzeugt, dass Charlotte viele ihrer Aktivitäten nicht

aus eigener Motivation heraus betrieben hat. Für sie selbst wäre es sicherlich ausreichend ge-

wesen, den gemeinsamen Schnittpunkt zu sehen. Dabei hätte womöglich bereits das zuerst

konstruierte statische Bild genügt, spätestens aber das einmalige Ziehen nach links und nach

rechts. Nur das hartnäckige Nachfragen der Interviewerin veranlasst Charlotte überhaupt, den

Versuch der Verifizierung durch das Programm (einen Punkt auf die Stelle zu setzten, in der

sich die drei Linien schneiden) zu unternehmen. Auch ihr anschließender, erneuter Einsatz des

Zugmodus ist wohl weniger dem eigenen Antrieb geschuldet, als vielmehr als Reaktion auf die

Nachfrage nach dem Mehrwert eines Beweises, die sie so erst einmal nicht beantworten kann.

Erst als ihre Behauptung, von der sie absolut überzeugt ist, durch das Ziehen vermeintlich

widerlegt wird, beginnt Charlotte aus einer gewissen Eigenmotivation heraus zu ziehen, um

Beobachtungen bezüglich Veränderungen und Invarianten zu machen. Es scheint so zu sein,

als sei sie nun mehr oder weniger gezwungen, dies zu tun, da sich das Programm als unzu-

verlässig erwiesen hat. Sobald aber dieses Missverständnis aufgeklärt ist und dem Programm

seine Verlässlichkeit wieder zuerkannt werden kann, ist die innergeometrische Argumentation
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für Charlotte aufs Neue obsolet, so dass die Notwendigkeit, einen Nachweis zu erbringen, in

ihren Augen getrost der DGS übertragen werden kann.
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6.1.8 Fallstudie „Franziska“

Franziska ist zwar durch die Visualisierung von der Richtigkeit eines Sachverhaltes überzeugt,

möchte aber darüber hinaus wissen, warum dieser Sachverhalt gilt. Diese Frage kann für sie

nur ein Beweis beantworten. Im Folgenden bearbeitet Franziska die Aufgabe 3, bei der es

darum geht, zu entscheiden, ob sich drei Linien in einem Punkt schneiden.

Zeit Zugmodus Aktivität

2:24 - 3:08 Konstruktion des Dreiecks, des Umkreises, der Mittel-

senkrechten (MS) und der Winkelhalbierenden (WH)

nach Vorgabe (Abb. 6.21a)).

3:09 - 3:19 Frage nach Auffälligkeiten.

3:20 - 3:37 Behauptung: Es gibt einen gemeinsamen Schnittpunkt

von WH, MS und Kreis.

3:38 - 3:44 Nachfrage: Ist dies Zufall, oder immer so?

3:45 - 4:03 Idee, dies zu überprüfen.

4:04 - 4:43 Konstruktion von MS und WH an den anderen Ecken

bzw. Seiten (Abb. 6.21b) und c)). Behauptung: Es gibt

immer einen gemeinsamen Schnittpunkt von WH, MS

und Kreis.

A B

C

D
A B

C

D

E

A B

C

D

EF

a) b) c)

Abbildung 6.21 – Überprüfung der Behauptung duch wiederholtes Durchführen der Kon-

struktion
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Franziska gibt ohne zu zögern als Besonderheit an, dass sich die drei Linien Winkelhalbieren-

de, Mittelsenkrechte und Kreis in einem Punkt schneiden. Auf die Nachfrage, ob dies immer

so sei oder auch ein Zufall sein könne, überlegt sie kurz und kommt dann auf die Idee, ei-

ne Überprüfung durchzuführen. Ihre Überprüfung liegt darin, dieselben Konstruktionsschritte

zusätzlich noch an den anderen beiden Seiten des Dreiecks durchzuführen. Durch das Ergebnis

dieser Konstruktionen sieht Franziska ihre Vermutung gestützt. Schon nach Einzeichnen der

zweiten Mittelsenkrechten bzw. Winkelhalbierenden gibt Franziska an, dass man nun erken-

nen könne, dass kein Zufall vorliege. Nach Konstruktion der dritten Mittelsenkrechten bzw.

Winkelhalbierenden macht sie die Aussage, dass sie nun sicher sei. Diese Sicherheit verortet

sie auf einer Skala von 1 bis 10 beim Wert 10.

Die Beschreibung zeigt, dass Franziska in dieser Situation so arbeitet, wie man wohl auch in

der herkömmlichen Geometrie mit Papier und Bleistift vorgegangen wäre. Dies bedeutet, dass

sie die DGS in dieser Situation auf ein Zeichenwerkzeug reduziert.

Zeit Zugmodus Aktivität

4:44 - 5:08 Nachfrage: Ist es nun allgemeingültig gezeigt?

5:09 - 5:30 Ein Beweis ist erforderlich.

5:31 - 6:09 Setzt Punkt G auf den Schnittpunkt (Programm erfasst

G nicht als Schnittpunkt). Versuch der Begründung

über Betrachtung des Dreiecks ABG, das wegen G auf

MS gleichschenklig ist (Abb. 6.22a))

6:10 - 6:12 Nachfrage: Ist Beweis noch erforderlich?

6:13 - 6:49 Beweis gibt absolute Sicherheit für alle Dreiecke. Drei-

maliges Überprüfen in einem speziellen Dreieck könnte

immer noch Zufall sein.

Auf Nachfrage gibt Franziska an, dass ein zusätzlicher Beweis erforderlich sei. Eine Erklä-

rung, welche Funktion dieser Beweis denn haben würde (4:44), wo sie doch schon absolut sicher

sei, kann sie zunächst nicht geben. Stattdessen führt sie Überlegungen an, dass das Dreieck

ABG gleichschenklig sein müsse und dass ein Beweis möglicherweise auf dieser Eigenschaft
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aufbauen könne. Auf die wiederholte Nachfrage, ob dieser Beweis denn wirklich erforderlich

sei (6:10), antwortet sie: „Also wie gesagt, ich bin davon schon überzeugt, dass das halt immer

so ist, aber vielleicht dass man halt doch noch mal was richtig Handfestes hat.“ Was sie dabei

unter dem Begriff „was richtig Handfestes“ versteht, zeigen die folgenden Ausführungen:

(6:13 - 7:24)

F: Na ja, es könnte ja natürlich jetzt immer noch ein Zufall sein,

dreimal hintereinander, wer weiß?

1

2

I: Ja.3

F: Also ich bin schon überzeugt (.), dass das halt4

I: Ja?5

F. immer so ist.6

I: Ja.7

F: Aber vielleicht doch noch ’mal ’ne Absicherung. Weil, Cinderella

macht manchmal komische Sachen (lacht).

8

9

I: Also, wenn du (..), du bist schon überzeugt10

F: (unterbricht) Ja.11

I: aber du würdest (..), wenn du den Beweis machst, irgendwie noch

sicherer werden

12

13

F: (unterbricht) Ja. Das wär’ für mich noch mal so’n, so’n Häkchen,

noch mal.

14

15

I: So’n Sahnehäubchen obendrauf.16

F: Ja, genau.17

I: Aha.18

F: Also, dass ich das jetzt nicht nur für das Dreieck, für das

Dreieck (zeigt auf die Zeichnung) ist, sondern dass es, weiß ich

nicht, für jedes x-beliebige Dreieck funktioniert.

19

20

21

I: Ja.22

F: Denn jetzt habe ich ja irgendein spezielles Dreieck.23

Die Aussagen von Franziska stehen in gewissem Widerspruch zueinander. Zwar gibt sie wie-

derholt an, von der Richtigkeit der Aussage absolut überzeugt zu sein, dennoch meint sie, ein

Beweis sei noch angebracht. Dafür kann sie allerdings keine überzeugende Begründung liefern.

Stattdessen verwendet sie die Ausdrücke „Handfestes“ und „Häkchen noch mal“ und führt aus,
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dass „Cinderella manchmal komische Sachen mache“ (Z.8-9). All dies wären Argumente dafür,

dass noch keine Sicherheit bezüglich der Richtigkeit einer Aussage erreicht ist. Zugleich erklärt

sie, dass sie an der Tatsache des gemeinsamen Schnittpunkts keine Zweifel mehr hat. Es muss

folglich etwas anderes sein, das Franziska den Beweis einfordern lässt, und ihr Ausweichen

bezüglich dieser Frage verstehe ich so, dass ihr selbst in jenem Moment nicht klar ist, was dies

denn ist.

Ihre Überlegungen, dass sie bisher zwar drei Fälle überprüft hat, dies aber nur in einem spe-

ziellen Dreieck, veranlassen Franziska dazu, nun erstmals den Zugmodus einzusetzen, um den

Sachverhalt auch an anderen Dreiecke zu überprüfen. Das Ziehen kommentiert sie mit den

Worten: „Ja, aber wie man sieht, bleibt es halt doch immer noch, so wie es vorher war, also

würde ich schon daraus schließen, dass es für jedes x-beliebige Dreieck gilt. Also ein Beweis

wäre nicht schlecht“ (7:38 - 7:47).

Zeit Zugmodus Aktivität

7:24 - 7:48 Wandering Zieht an C, um Schnittpunkteigenschaft zu überprüfen.

(G bleibt nicht Schnittpunkt (Abb. 6.22b)), was kei-

ne Irritation hervorruft.) Sicherheit, dass Behautpung

stimmt, ist groß, aber Beweis ist dennoch erforderlich.

A B

C

D

EF

G

A B

C

D

EF

G

a) b)

Abbildung 6.22 – Begründungsversuch durch geometrische Argumente (a)), Überprüfung

duch Einsatz des Zugmodus (b))
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Zeit Zugmodus Aktivität

7:49 - 7:53 Nachfrage: Ist Ziehen effektiver als drei statische Über-

prüfungen?

7:54 - 8:15 Wandering,

Guided

Es können verschiedene Dreiecke überprüft werden, auch

Sonderfälle wie gleichschenklige oder gleichseitige.

8:16 - 8:18 Nachfrage: Ist ein Beweis trotzdem erforderlich?

8:19 - 8:40 Die Visualisierung überzeugt, aber nur der Beweis kann

die Frage nach dem „Warum“ erklären.

(8:15 - 9:11)

I: Und warum brauchst du jetzt trotzdem noch den Beweis?24

F: (..) Sahnehäubchen (lacht). Ja (.) also es ist schon sehr

überzeugend, auf jeden Fall.

25

26

I: Ja?27

F: Also für mich selber wäre das schöner, um sich das, also durch

einen Beweis könnte ich mir das halt erklären. Aber das wär halt

nur für mich selber nochmal so (...) um das Nachvollziehen zu

können, dass das auch so ist.

28

29

30

31

I: Hmh. (..) Lege ich dir jetzt was in den Mund, wenn ich sage, dass

du durch dieses Programm zwar überzeugt bist, aber dass du nicht

weißt, warum das so ist?

32

33

34

F: (..) Ne, das stimmt. Also das ist so: also ich bin davon

überzeugt, aber würd’ gerne noch mal genau wissen, warum das so

ist. Und das würde ich ja dann, irgendwie auch durch den Beweis

(..), da würde ich ja dann daran kommen. So, dass ich mir dass

selber irgendwie erklären könnte. Das muss ja jetzt irgendwie, das

ist ja jetzt nicht irgendwie so’n Phänomen, oder so. Kann man sich

bestimmt irgendwie erklären.

35

36

37

38

39

40

41

Es wird deutlich, dass Franziska mit dem ausschließlichen „Sehen, dass ein Sachverhalt gilt“,

nicht zufrieden ist. Dabei spielt allerdings an dieser Stelle der Einsatz des Zugmodus zur Über-
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prüfung von vielen verschiedenen Fällen für Franziska eine eher untergeordnete Funktion: es

ist nicht unwahrscheinlich, dass sie ohne die schon penetrant wirkenden Nachfragen, warum

ein Beweis erforderlich sei, gar nicht auf die Idee gekommen wäre, überhaupt den Zugmodus

einzusetzen. Denn letztlich hat sich für sie die Situation durch den Einsatz des Zugmodus nicht

verändert: bereits vorher war sie überzeugt, dass es immer einen gemeinsamen Schnittpunkt

der drei betrachteten Linien gibt. Und bereits vorher war der diffuse Wunsch nach einem Be-

weis vorhanden.

An dieser Stelle ergibt sich ein interessanter Bezug zum Fall „Charlotte“. Diese spricht der

dynamischen Visualisierung Beweiskraft zu, hat aber verinnerlicht, dass es unterschiedliche

Anforderungen unterschiedlicher Personen an einen Beweis gibt, was dazu führt, dass die dy-

namische Visualisierung für sie selbst zwar ausreichend ist, für andere hingegen eventuell nicht.

Auch Franziska spricht der Visualisierung in gewisser Weise Beweiskraft zu, denn sie fordert

den Beweis nicht allgemein, sondern nur für sich selbst ein. Dies wird in Äußerungen deutlich

wie: „Das wär für mich noch mal so’n Häkchen“ (Z.14) oder „Also für mich selbst wäre das

schöner “ (Z.28) bzw. „Aber das wär halt nur für mich selbst nochmal so“ (Z.29-30). Damit

verhält es sich bei ihr genau umgekehrt wie bei Charlotte: andere können mit der Visualisie-

rung zufrieden sein, sie selbst ist es nicht.

Die zusätzlichen Informationen, die ein Beweis für Franziska liefert, zielen alle auf das Of-

fenlegen von Zusammenhängen und Begründungen ab. Dennoch sagt sie selbst nicht explizit,

dass ein Beweis für sie eine Antwort auf die Frage nach dem Warum liefert. Erst als ich die-

se Begrifflichkeit ins Spiel bringe, bestätigt Franziska, dass sie dieser Aussage zustimmt. Dies

deute ich als Hinweis darauf, dass Franziska die verschiedenen Funktionen eines Beweises nicht

oder nur ansatzweise bewusst sind. In diesem Zusammenhang ist die Information bedeutsam,

dass die gerade beschriebene Aufgabenbearbeitung zeitlich vor der Frage, ob eine dynamische

Visualisierung einen Beweis ersetzen kann, gestellt wurde und damit sicherlich einen Einfluss

auf das in diesem Zusammenhang erarbeitetete Beweisverständnis von Franziska hat.

Ebenso wie Charlotte markiert Franziska den Schnittpunkt der drei Linien, indem sie einen

Punkt darauf setzt, und ebenso wie bei Charlotte wird dieser Punkt vom Programm nicht als

Schnittpunkt erkannt, so dass er beim Ziehen nicht an die drei Linien gebunden bleibt. Anders

als Charlotte hat sie den Punkt allerdings nicht unmittelbar zur Verifikation ihrer Behauptung

eingesetzt, sondern lediglich, um leichter inhaltlich-geometrisch am gleichschenkligen Dreieck
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ABG argumentieren zu können. Daher können Franziskas grundsätzliche Überlegungen durch

das Ziehen auch nicht derart erschüttert werden, wie dies bei Charlotte der Fall war. So lässt

Franziska sich dadurch, dass G beim Ziehen nicht auf dem Kreisbogen bleibt, auch nicht ir-

ritieren, sondern merkt lediglich an, dass sie den Kreis derart konstruiert habe, dass er beim

Ziehen die Größe verändere. Den Sachverhalt, dass sich die drei Linien in einem Punkt schnei-

den, sieht sie nach wie vor durch das Programm bestätigt.

Insgesamt gesehen profitiert Franziska bei der vorliegenden Aufgabenstellung nicht sonderlich

vom Einsatz einer DGS. Die Überzeugung, dass sich die drei Linien in einem Punkt schneiden,

erlangt sie auch ohne Nutzung des Zugmodus; den Beweis versucht sie mittels geometrischer

Argumente am statischen Bild.
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6.1.9 Kein Einsatz des Zugmodus

Kira, für die ein Beweis die Frage nach dem „Warum“ beantwortet (vgl. Abschnitt 5.1.5), eine

Frage, die ihr die DGS nicht beantworten kann, bearbeitet Aufgabe 1, bei der es darum geht,

zu zeigen, dass in einem rechtwinkligen Dreieck die Winkelhalbierende des rechten Winkels

das Hypotenusenquadrat in zwei kongruente Vierecke zerlegt. Dabei setzt sie den Zugmodus

überhaupt nicht ein, sondern argumentiert ausschließlich am statischen Bild. Nachdem sie

die Zeichnung erstellt hat und nach Besonderheiten der beiden Vierecke gefragt wird, äußert

sie recht spontan die Vermutung, dass diese kongruent sein müssten. Nach einer Begründung

gefragt räumt sie freimütig ein, dass sich ihre Vermutung nur auf das Sehen stützt. Da sie

im Moment noch keine Beweisidee habe, könne sie auch noch nicht wirklich sicher sein. Auf

einer Skala von 1 bis 10 verortet sie ihre Sicherheit bei 6 bis 7. Es ist kein Weg für Kira, diese

Sicherheit durch Einsatz des Zugmodus und Nutzen der Messfunktion zu erhöhen. Stattdes-

sen überlegt sie, wie sie, analog zu den Kongruenzsätzen bei Dreiecken, die Kongruenz der

Vierecke durch Nachweis von gleichgroßen Winkeln und gleichlangen Seiten zeigen kann. Da

ihr aber nicht bekannt ist, was genau gezeigt werden muss, ist sie an dieser Stelle unsicher.

Kiras Umgang mit der DGS passt zu ihrem Beweisverständnis, wie ich es in Abschnitt 5.1.5

herausgearbeitet habe. Die Vermutung, dass die beiden o.a. Vierecke kongruent sind, stellt

sie bereits ohne Einsatz des Zugmodus auf. Den Nachweis, dass ihre Vermutung richtig ist,

kann ihrem Verständnis nach ohnehin nicht die DGS erbringen, da diese keinen Beweis liefern

kann, der die Frage nach dem „Warum“ beantwortet. Dies kann nach Kiras Auffassung nur

ein formaler Beweis, den sie mit Hilfe von Kongruenzsätzen zu führen versucht. Daher macht

konsequenterweise der Zugmodus an dieser Stelle für sie keinen Sinn.

Auch Jasmin, die in Abschnitt 5.8 vorgestellt wurde, und die ebenfalls Aufgabe 1 bearbeitet,

setzt den Zugmodus nicht ein. Stattdessen macht sie sofort nach Erstellung der Grundkonfi-

guration die Aussage, dass das Hypotenusenquadrat durch die Winkelhalbierende in zwei kon-

gruente Vierecke zerlegt wird, ohne Zweifel zu äußeren oder dieses Phänomen als Besonderheit

zu sehen. Erst auf Nachfrage, ob dies denn trivial sei, räumt sie ein, dass es wahrscheinlich

nicht selbstverständlich sei und versucht durch Messen von Winkeln und Seitenlängen die Kon-

gruenz der beiden Vierecke zu belegen. Hingegen versucht sie nicht, mit Hilfe des Einsatzes

des Zugmodus noch mehr Sicherheit zu erlangen, was vermutlich auch darauf zurückzuführen
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ist, dass Jasmin auch nicht ansatzweise irgendwelche Zweifel hegt.

Ähnliches ist auch bei Rebekka (s. Abschnitt 5.2) zu verzeichnen. Auch sie bemerkt sofort,

dass die beiden Teilvierecke gleich groß sind, und versucht, dieses durch Messen von Seiten-

längen und Winkeln zu zeigen. Genauso wie Jasmin versucht sie nicht, ihre Behauptung durch

den Zugmodus zu stützen.

Da auch Greta und Joachim, die dieselbe Aufgabe bearbeiten, den Zugmodus nicht einset-

zen und ausschließlich am statischen Bild argumentieren, muss insgesamt festgestellt werden,

dass die Annahmen, wie der Zugmodus sinnvoll bei der Bearbeitung von Aufgabe 1 eingesetzt

werden kann, nicht eingetroffen sind. Anscheinend ist die Kongruenz der beiden Teilvierecke

visuell so klar, dass kein Bedarf am Zugmodus besteht. Allerdings wurde damit auch die Chan-

ce zu erkennen, dass die Winkelhalbierende immer durch den Mittelpunkt des Quadrats geht,

nicht genutzt, so dass dieses Argument bei der Aufgabenbearbeitung in der Regel nicht zur

Verfügung stand und diejenigen, die die Aufgabe bearbeitet haben, oftmals keinen gangbaren

Lösungsansatz aufzeigen konnten.
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6.1.10 Einen „Nachweis“ führen mit Hilfe des Programms

Wiederholt vertraten Studierende die Ansicht, allein durch den Zugmodus den Nachweis für

einen bestimmte Sachverhalt erbracht zu haben.

Als Beispiel sei Juliane erwähnt, die in Kapitel 5 kurz vorgestellt wurde. Dabei konnte ich her-

ausarbeiten, dass zum einen für Juliane ein Beweis eine rein verifizierende Funktion hat, und

dass zum anderen diese Verifikation vollständig von der DGS übernommen werden kann, so

dass jede weitere Begründung darüber hinaus ausschließlich externen Autoritäten geschuldet

ist.

Juliane bearbeitet die Aufgabe 3, bei der es um die Fragestellung geht, ob sich drei Linien

in einem Punkt schneiden. Allein durch den Einsatz des Zugmodus ist Juliane fest davon

überzeugt, dass diese Frage mit einem eindeutigen „Ja“ beantwortet werden kann. Auf die

Nachfrage, ob ihr nach Visualisierung durch das Programm noch ein Beweis fehlen würde,

antwortet sie:

Ju: Also mir nicht, weil, ich sehe das, und, also mir reicht das, um

mich (.) davon zu überzeugen, aber später, ich möchte Lehrerin

werden, dann. Ich denke mal, den Schülern reicht es vielleicht

auch anfangs, dass (.), dass die das sehen, aber irgendwann sind

halt auch Beweise erforderlich. Weil, wenn man nicht mit dem

Computer arbeiten kann, dann muss man das ja alles handschriftlich

machen, und ich schätze, dann ist es vielleicht einfacher, das

(.) zu beweisen. Und wenn man nicht diese Möglichkeit hat, es

anschaulich zu sehen und halt auch zu sehen, dass, wenn man den

Winkel hier laufen lässt (zieht an C ), oder der Kreis kleiner und

größer wird, dass das sich dann schneidet.

1

2

3

4

5

6

7

8

9

10

11

I: Okay, aber wir haben ja jetzt hier dieses Medium. Wir haben ja

das Programm, und wir müssten ja jetzt nicht ganz viel Aufwand

betreiben, um ganz viele Zeichnungen zu machen. Würde für uns

jetzt der Beweis noch was bringen? An zusätzlicher Information

oder an, an (..) mehr Glauben, oder mehr Wissen, oder ...

12

13

14

15

16

Ju: Man könnte jetzt ja sagen, mein Kreis ist ja jetzt (..). Obwohl,

wenn ich jetzt, ich kann ihn ja auch größer ziehen (zieht an C,

17

18
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so dass der Umkreis größer wird). Mein Dreieck größer ziehen. Ich

kann ja hier wirklich (.) alle (.) Möglichkeiten sozusagen (.)

darstellen.

19

20

21

I: Ja?22

Ju: Und dann würde ich schon sagen, dass das für uns reicht. Weil,

ich hab ja nicht nur einen Kreis und ein Dreieck, ich kann ja (.)

ganz viele Fälle, ich kann (.). Klar, meine Grundseite AB ist

immer gleich (hat während der gesamte Zeit ständig an C gezogen).

Aber, ich könnte ja auch mal hier ziehen (zieht jetzt an A, so

dass die Seite AB in der Länge variiert) und dann wär’ das ja

trotzdem so. Also dadurch, das ich halt (.) meine ganz, meine

Seiten, die Längen alle verändern kann (zeigt nacheinander auf die

drei Dreiecksseiten) würd’ ich sagen (zieht an B ) reicht es auf

jeden Fall, weil ich das ja nicht nur an einem speziellen Dreieck

mache, sondern, ich kann ja jetzt jedes beliebige Dreick damit

darstellen. Und deswegen reicht das.

23

24

25

26

27

28

29

30

31

32

33

34

Die Episode bestätigt in eindrucksvoller Weise Julianes Verständnis, dass ein Sachverhalt

dadurch nachgewiesen ist, dass er für alle Fälle überprüft worden ist. Durch die DGS ist es

möglich, alle Seitenlängen und Winkelmaße des Dreiecks beliebig zu verändern, so dass nach

Julianes Auffassung dieser Nachweis durch das Ziehen erbracht werden kann. Damit kann sie

sicher sein, dass sich die drei Linien Winkelhalbierende, Mittelsenkrechte und Umkreis immer

in einem Punkt schneiden. Fragen nach dem Begründungszusammenhang stellen sich ihr nicht.

Daher entsteht für sie auch nicht das Erfordernis, die DGS als heuristisches Werkzeug einzuset-

zen, um Vermutungen zu generieren oder Thesen zu überprüfen. Dazu passt, dass Juliane als

einzige Zugmoduskategorie das wandering dragging einsetzt. Einen Mehrwert eines formalen

Beweises gegenüber der Visualisierung durch das Programm kann Juliane nicht erkennen.
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6.2 Zusammenfassung und Konsequenzen

Die vorangegangenen Ausführungen haben gezeigt, dass der Zugmodus von den einzelnen Stu-

dierenden auf sehr unterschiedliche Weise und zu unterschiedlichen Zwecken eingesetzt wird.

• Thesengenerierung durch Überprüfung „aller möglichen“ Fälle

Viele Studierende setzen den Zugmodus ein, um „alle mögliche Fälle“ zu überprüfen. Dabei gibt

es diejenigen, wie beispielsweise Juliane, die explizit der Auffassung sind, hierdurch wirklich

einen allgemeingültigen Nachweis erbracht zu haben, so dass kein weiterer Beweis erforderlich

ist. Andere hingegen versuchen, durch diese Strategie eine fundierte These aufzustellen, die

dann allerdings einer weiteren Überprüfung bedarf, wie beispielsweise Verena. Je nach Aufga-

benstellung ist für das Überprüfen „aller möglichen Fälle“ jedoch mehr oder weniger planvolles

Vorgehen erforderlich. Während dies in Aufgabe 3 durch Verändern des Winkelmaßes in C und

der Länge der Seite AB relativ problemlos flächendeckend durchgeführt werden kann, muss

bei Aufgabe 4 hier mehr Sorgfalt an den Tag gelegt werden. So versucht beispielsweise Hannes

zwar, alle möglichen Fälle zu visualisieren, entwickelt aber hierfür keine geeignete Strategie

und kommt aufgrund des Zugmodus zu einer falschen Behauptung. Erst durch Zufall ergibt

sich ein Gegenbeispiel, so dass Hannes einräumen muss, durch das Ziehen noch keine verläss-

liche These generiert zu haben.

Probleme können also in zweierlei Hinsicht entstehen: zum einen muss immer wieder deutlich

gemacht werden, dass das Überprüfen mit dem Zugmodus nichts beweist. Zum anderen kann

nicht davon ausgegangen werden, dass sich planvolles Ziehen von allein einstellt. Stattdessen

sollten am Ende nicht nur die fachinhaltlichen Ergebnisse thematisiert werdem, sondern es

sollte auch immer wieder bewusst der Einsatz des Zugmodus reflektiert werden: wie konnten

Thesen generiert werden, welche Vorgehensweise wurde beim Ziehen verfolgt, und an welchen

Stellen ergaben sich unerwartete Schwierigkeiten oder konnten überraschende Beobachtungen

gemacht werden. An dieser Stelle könnte möglicherweise auch die in Paderborn kürzlich erfolgte

Umstellung der Studienordnung auf den Bachelor-Master-Studiengang eine Hilfe sein. Waren

in der alten Studienordnung die Veranstaltungen „Elemente der Geometrie“ und „Didaktik der
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Geometrie“ zwei eigenständige Vorlesungen, so sind es nun zwei Komponenten eines Moduls,

die zeitlich unmittelbar aufeinanderfolgen. Dies könnte, ganz im Sinne eines hermeneutischen

Zirkels, dazu genutzt werden, vertieft über die Art und Weise des Zugmoduseinsatzes zu re-

flektieren.

• „Sehen“ von Gegenbeispielen

Wenn auf der Basis des Zugmodus Thesen generiert werden, muss bei einer hingezogenen

Konstruktion natürlich geprüft werden, ob sie ein Gegenbeispiel für eine Behauptung dar-

stellt. Hierbei ist nun wirklich das echte und kritische „Sehen“ gefordert. Während Hannes

und Sophie, die beide im Rahmen von Aufgabe 4 zunächst die These aufstellen, dass nur das

gleichseitige Dreieck eine Lösung darstellt, sofort erkennen, dass sich beim Ziehen ein Ge-

genbeispiel ergeben hat, „sieht“ Melanie nicht, dass sie mehrere Lösungen des vorgegebenen

Problems einfach hingezogen hat: obwohl während des Einsatzes des Zugmodus mehrfach die

geforderten vier Punkte auf einem gemeinsamen Kreis liegen, und obwohl Melanie einmal so-

gar genau in einer derartigen Situation aufhört zu ziehen und das statische Bild betrachtet,

„sieht“ sie nicht, dass sie hier eine Lösung vor sich hat und damit ihre Behauptung widerlegt

ist, dass die einzige Lösung der Fall des gleichseitigen Dreiecks mit H = M sei. Bei Melanie

könnte in diesem Zusammenhang eine Rolle spielen, dass ihre Zeichnung im Vergleich zu de-

nen von Hannes und Sophie nicht mehr ganz so übersichtlich ist. Denn auch das geeignete

Formatieren spielt selbstverständlich im Zusammenhang mit Sehen-Können eine entscheide-

ne Rolle. Die Studierenden zeigen diesbezüglich unterschiedliche Verhaltensweisen: Während

einige Studierende sofort darauf geachtet haben, Konstruktionselemente unsichtbar zu ma-

chen oder auch hervorzuheben, waren die Zeichnungen bei anderen relativ unübersichtlich,

weil hierauf verzichtet wurde. Zur Illustration hierzu siehe die Zeichnungen von Emil und

Philipp in Abbildung 6.23 zur selben Aufgabenstellung. Obwohl Philipp durch die Vielzahl

der eingeblendeten Messergebnisse noch mehr Textinformation in der Zeichnung hat als Emil,

ist seine Zeichnung durch den Einsatz von Farben und Linienstärken wesentlich übersichtlicher.
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|FB|= 3,64

|DG|= 3,64

|AF|= 4,98

|GE|= 4,98

A

C

B

D

E

F

G

N

|B|= 209,33

|C|= -209,33

|CG|= 7,9

|FD|= 7,9

|EF|= 12,56

|GB|= 12,56

|EC|= 20,46

|DB|= 20,46

a

b

c

d

e

f

k

l

A B

C

D

E

F

G
R

S

a) b)

Abbildung 6.23 – Zeichung zur Aufgabe 1 von Emil (a) und Philipp (b)

Auch das Ziehen selbst wurde sehr unterschiedlich durchgeführt. Während beispielsweise

Thilo so schnell hin- und hergezogen hat, dass ich dabei keine vernünftige Beobachtung hätte

tätigen können, zieht Melanie sehr langsam und bedächtig (wobei sie allerdings trotzdem das

Entscheidende nicht sieht).

• Entwickeln einer geeigneten Problemlösestrategie

Ein weiterer Aspekt ist das Entwickeln einer geeigneten Problemlösestrategie. In Aufgabe 4

könnte diese darin bestehen, aus den vier Punkten zunächst drei zu machen, indem man zwei

Punkte zusammenfallen lässt. Um diese Strategie erfolgreich einsetzen zu können, muss natür-

lich beachtet werden, dass die Punkte aufgrund ihres Entstehens während der Konstruktion

einen unterschiedlichen Status haben: es gibt freie Punkte, an denen gezogen werden kann,

und Schnittpunkte, an denen nicht gezogen werden kann. Bei der Analyse der Bearbeitungen

zeigte sich, dass dies durchaus ein Problem darstellen kann: Studierende, wie beispielsweise

Melanie, versuchen eine Idee zu verfolgen, für die sie die Lage eines Schnittpunkts verändern

müssten. Da sie aber nicht unmittelbar an diesem Punkt ziehen können und nicht wissen,

wie man die Lage des Punktes trotzdem verändern kann, sehen sie von diesem Vorhaben aus

rein handwerklichen Gründen ab. Aber auch das Entwickeln von Problemlösestrategien über-
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haupt muss erst erlernt werden und sollte daher bei der Aufgabenpräsentation immer wieder

offengelegt werden.

• Erstellen einer zum Ziehen geeigneten Konstruktion

Ein weiteres Phänomen ist zu beobachten, wenn Studierende eine bestimmte Idee überprüfen

möchten, z.B. ganz simpel die Frage, ob beim Ziehen ein Winkelmaß erhalten bleibt, z.B. Ver-

enas Überprüfung ihrer Vermutung, ob der Punkt H auf dem Kreis bleibt, wenn der Winkel

in C konstant bleibt. Die Schwierigkeit bei dieser grundsätzlich guten Idee liegt darin, dass

der Kreis beim Ziehen ständig die Größe verändert, so dass Verena zuviele Parameter gleich-

zeitig im Blick haben muss. Auch bei Sophie ergibt sich bei derselben Aufgabe eine ähnliche

Problematik. In solchen Situationen fällt es den Studierenden in der Regel sehr schwer, ihre

bisherigen Erkenntnisse und daraus resultierenden Vermutungen so zu reflektieren, dass sie

eine Modifizierung finden, die besser zum Ziel führt. Stattdessen werden oftmals Auswege ge-

sucht, die offensichtlich nicht funktionieren können, wie einen Kreis gleich durch vier Punkte

zu konstruieren oder das frei gewählte Winkelmaß nachträglich zu fixieren. Offenbar wird zu

wenig über die Reihenfolge von Konstruktionsschritten und -hierarchien nachgedacht. Gera-

de die Analyse von Zeichnungen, die letztlich aufgrund ihrer Anlage nicht zum gewünschten

Ziel führen, könnte hilfreich sein. Das Repertoire der von mir beobachteten Studierenden war

hier im allgemeinen nicht sehr reichhaltig, denn auch diejenigen, die fachlich sehr gut sind und

durchaus auch durch den Einsatz von DGS profitiert haben, stießen immer wieder an Grenzen.

• Relevanz der Konstruktionselemente erkennen

Die Bedeutung von einzelnen Punkten in einer Konstruktion ist noch in anderer Hinsicht inter-

essant. So können Punkte im Verlauf einer Zeichnung entstehen, die zwar für einen bestimmten

Konstruktionsschritt bedeutsam sind, im weiteren aber keine besondere Rolle mehr spielen,

wie beispielsweise die Seitenmitten der Dreiecksseiten, die zur Errichtung der Mittelsenkrech-

ten eingezeichnet wurden. Melanie z.B. fiel immer wieder in die Fehlvorstellung zurück, dass

eine Seitenmitte zugleich Mittelpunkt des gesuchten Kreises sein müsste. Dieser Aspekt steht
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in engem Zusammenhang mit einer vernünftigen Formatierung der Zeichnung. Hierbei muss

entschieden werden, ob bestimmte Elemente nur Mittel zum Zweck der Konstruktion und im

weiteren nicht mehr von Interesse sind, oder ob sie wesentlich für bestimmte Zusammenhän-

ge sind. So sind Kreise, die nur dazu genutzt werden, bestimmte Streckenlängen abzutragen,

danach oftmals überflüssig, während Kreise, die im Zusammenhang mit dem Umfangswinkel-

satz stehen, oftmals entscheidend für die weitere Argumentation sind. Ein verwandter Aspekt

ist das Einzeichnen geeigneter Hilfslinien: auch dies fiel einigen Studierenden sehr schwer. So

wurde die naheliegende Idee, wenn vier Punkte auf einem Kreis liegen sollen, einfach den Kreis

durch drei Punkte zu zeichnen und dann zu beobachten, was beim Ziehen passiert, längst nicht

immer gefunden.

• Beurteilung nach ausschließlich visuellen Kriterien

Oftmals ungenügend ist auch die ausschließlich optische Beurteilung einer Konstruktion. Dieses

findet sich beispielsweise bei Melanie, die nur aufgrund des visuellen Eindruck darauf schließt,

dass das vorliegende Dreieck gleichseitig sein müsse. Auch die Vermutungen von Hannes und

Verena, dass die vier Punkte A, B H und M auf einem Kreis liegen, wenn das Viereck ABHM

ein Trapez ist, scheinen auf einer ausschließlich optischen Beurteilung zu beruhen. Hier bestä-

tigt sich eine Erfahrung, die auch Haug (2012, S.172) in seinen Untersuchungen gemacht hat:

„Bei interaktiven Lernumgebungen dagegen, die ausschließlich den Computer als zu bearbei-

tendes Medium einsetzen, besteht die Gefahr, dass mathematische Inhalte nur oberflächlich

wahrgenommen werden. Eine Auseinandersetzung mit den zu erlernenden Inhalten würde in

solch einer Lernumgebung fast nur auf der visuellen Ebene stattfinden.“ Eine auf Basis des

visuellen Eindrucks generierte Vermutung kann zum einen natürlich falsch sein (z. B. die Ver-

mutung, dass ein allgemeines Trapez einen Umkreis hat) und somit in eine Sackgasse führen.

Zum anderen wird nicht das Defizitäre des visuellen Eindrucks erkannt.

• Handwerkliche Schwierigkeiten

Bei einigen Studierenden sind die Defizite im handwerklichen Umgang mit dem Programm so

groß, dass sie überhaupt keine Chance haben, die Software gewinnbringend einzusetzen. Am
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Kapitel 6. Fallstudien zum „Zugmodus“

stärksten fiel dies bei Diana auf, die beispielsweise große Schwierigkeiten hat, mit Hilfe der

geeigneten Buttons die Höhen im Dreieck zu konstruieren. Aber auch wenn das Programm

z.B. nicht erkennen kann, welches von zwei übereinanderliegenden Elementen gemeint ist und

entweder eine Fehlermeldung „zuviele Elemente markiert“ generiert oder die Konstruktion auf

das falsche Element anwendet, waren die Studierenden oftmals schwer irritiert. Die Datenlage

gibt leider keinen weiteren Aufschluss darüber, ob die Studierenden wirklich ernsthaft und

regelmäßig über ein Semester hinweg mit dem Programm gearbeitet haben und dennoch die

beschriebenen Schwierigkeiten nicht überwinden konnten, oder ob einfach mangelhafte Übung

ursächlich hierfür sind. Vielleicht muss man sich doch von der allgemein geteilten Einschätzung

verabschieden, dass das Programm ein sehr simples Handling hätte und der Umgang damit

mühelos und selbstständig erlernt werden könne.

• Nutzen des heuristischen Potenzials

Neben diesen eher negativen Beispielen gab es auch viele Episoden, bei denen der Zugmodus

einen echten Beitrag zur Problemlösung lieferte. Sowohl Hannes als auch Verena, die beide

Aufgabe 4 bearbeiten, kommen durch das Ziehen auf die richtige Idee, dass nur die Größe des

Winkels in C dafür verantwortlich ist, ob die vier Punkte A, B, H und M auf einem Kreis

liegen oder nicht. Bei beiden war entscheidend die Idee vorausgegangen, mit Hilfe des dummy

locus dragging den Punkt C so zu verziehen, dass die vier genannten Punkte auf dem Kreis-

bogen verbleiben. Während des Ziehens konnten die beiden beobachten, dass der Winkel in C

dabei seine Größe nicht verändert. Anschließend wurde von beiden versucht, innergeometrische

Gründe für die Konstanz des Winkels zu finden. Auch Sophie kommt durch den Einsatz des

Zugmodus auf die Idee, dass die Winkelgröße in C entscheidend für die Lösung des Problems

ist, gibt sich aber, anders als Hannes und Verena, mit der ausschließlichen Visualisierung und

Messung zufrieden. (An dieser Stelle noch einmal die Erinnerung an das Beweisverständnis

der drei Personen: Für Sophie hat ein Beweis durchaus eine begründende Funktion, allerdings

eher, weil dies extern so eingefordert wird, und nicht so sehr, weil sie selbst Wert auf eine

Begründung legen würde. Hannes attestiert einem Beweis eine ordnende und strukturierende

Funktion, denn dieser kann für ihn einen konkreten Fall in einen größeren Kontext einbetten.

Auch für Verena hat ein Beweis neben der verifizierenden eine begründende, im Ansatz auch
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6.2. Zusammenfassung und Konsequenzen

systematisierende Funktion. Damit enspricht die Rolle der DGS beim Bearbeiten der Aufgabe

ziemlich genau dem jeweiligen Beweisverständnis.)

• DGS als Autorität

Immer wieder fiel auf, dass die Studierenden der DGS ein hohes Maß an Autorität zuschrieben

und folglich Beobachtungen und Messergebnisse nicht kritisch genug hinterfragen. Besonders

stark fällt dies bei Verena auf, die ihre fachinhaltlichen Begründungen für die Kreisform der

Ortslinie von H bei Konstanz des Winkelmaßes verwirft, als das Programm die Bahn von H

scheinbar als Parabel darstellt. Auch Messergebnisse, die nicht mit theoretischen Überlegun-

gen übereinstimmen, verunsichern manche Studierende stark.

Einige Studierende gehen noch weiter und wollen dem Programm den kompletten Nachweis

einer Vermutung überlassen, so Charlotte, wenn sie das simultane Schneiden dreier Linien da-

durch prüfen will, dass alle drei Linien aufleuchten, wenn sie einen Punkt auf die inkriminierte

Stelle setzt. Viele Studierende sind dem Programm gegenüber nicht kritisch genug, und zwar

keineswegs nur die Schwächeren.

Meine Studie hat insgesamt die bereist 1999 von Hölzl getroffene Aussage bestätigt: „Dy-

namik per se liefert keinen didaktischen Vorsprung gegenüber den traditionellen Werkzeugen

der Geometrie“ (Hölzl 1999, S.301). Viele der Studierenden konnten den Zugmodus nicht

so einsetzen, dass sie davon profitiert hätten. Dabei konnte ich keinen Unterschied feststel-

len zwischen Studierenden in Examensnähe und Studierenden, die noch am Anfang stehen.

Auch wenn aufgrund der kleinen Teilnehmerzahl keine quantitavien Aussagen getroffen wer-

den können, ist dennoch auffällig, dass diejenigen, die den Zugmodus gewinnbringend einsetzen

konnten, sich durchweg im oberen Leistungsdrittels befinden.
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Anhang A

Aufgaben aus empirischen Studien

A.1 Van Hiele Test
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Appendix 1: Van Hiele Test 

[From Christine Lawrie, personal communication, 1/5/1997] 

Geometry Test  Number  ........... 

Do not open this test booklet until you are told to do so. 

This test contains 48 questions. It is not expected that you know everything on 

this test. 

When you are told to begin: 

1. Read each question carefully.

2. Answer each question carefully in the spaces provided in the

question booklet.

3. If you want to change an answer, completely erase the first answer.

4. You will have 2 × 50 minutes for this test.
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1. This figure is which of the following?

2. 

Are all of these figures triangles?  YES NO 

Explain:.......................................................................................................... 

........................................................................................................................ 

Do they appear to be a special kind of triangle?  If so, what kind? 

........................................................................................................................ 

3. 

These appear to be what kind of triangles?   ............................................................. 

4. 

Suppose these two lines never meet, no matter how far we draw them. 

What word describes this?   ............................................................. 

A. triangle 

B. quadrilateral 

C. square 

D. parallelogram 

E. rectangle 
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Which of these figures are squares?   ............................................................ 

Which of these appear to be right-angled triangles? ............................……. 

Which of these figures appear(s)  to be isosceles triangles?  ............................... 

A B 
C 

D E 

F 

A 
B 

C 

D 

E 
F 

A 

B C 

D 

6. 

7. 

5.
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 8. 

Which pair(s) of lines appear to be parallel?   .............................................. 

9. Draw a square

What must be true about the sides?  .............................................................. 

What must be true about the angles?  ............................................................ 

10. 

A DCB

What is true of A and B?  What is true of C and D?  ……………………………… 

What word describes this?    

…………………………………………… 

Are these figures alike in any way?  YES  NO 

What word describes this?  

…………………………………………………………………………… 

A B 

C 
D 

11.
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A B DC

Which figure appears to be similar to A ?  …………………………….. 

A DB C

Which figure appears to be congruent to A?  …………………….. 

14. What can you tell me about the sides of an isosceles triangle?

 ............................................................................................................................... 

 What can you tell me about the angles of an isosceles triangle? 

 ............................................................................................................................... 

15. Does a right-angled triangle always have a longest side?  ............................

If so, which one?  .......................................................................................... 

 Does a right-angled triangle always have a largest angle?   .......................... 

 If so, which one?  ..................................................................................... 

16. 

 

If  d1 =  d2    what can be said about the lines l1  and   l2    ?  ......................... 

If  d1 ≠  d2    what is true about the lines l1   and   l2   ?    ............................... 

d1 

d2 l1 

l2 

12. 

13.
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B

A

C

D

ABCD is a square and BD is a diagonal. 

(a) Name an angle equal to ∠ABD    ........................................................... 

(b) How do you know? …………………………………………………… 

……………………………………………………………………………………… 

60o

A

E

DC F

B

8cm

6cm12cm

Triangle ABC is similar to triangle DEF. 

How long is ED?  ………………………………  

How do you know?  ……………………………………………………………… 

What is the size of ∠EDF?  …………………..  

How do you know?  ……………………………………………………………… 

A

C

D

B

Y

XW

Z

These are congruent figures. 

What is true about their sides?  …………………………………………………. 

AD = ………… 

What is true about their angles?  ………………………………………………... 

∠B = ………… 

17. 

18. 

19.
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20. Circle the smallest combination of the following which guarantees a figure

to be a square. 

A. It is a parallelogram 

B. It is a rectangle 

C. It has right angles 

D. Opposite sides are parallel 

E. Adjacent sides are equal in length 

F. Opposite sides are equal in length 

21. (a) Name some ways in which squares and rectangles are alike. 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

(b) Are all squares also rectangles? Why? 

.................................................................................................................................... 

.................................................................................................................................... 

22. Circle any of the following which would guarantee a triangle to be a right-

angled  triangle. 

A. It has two acute angles 

B. The measures of the angles add up to 1800 

C. An altitude is also a side 

D. The measures of two angles add up to 900 

23. QAB is a triangle.

(a)   Suppose angle Q is a right angle. Does that tell you anything about

angles A and B? If so, what?  .................................................................................... 

(b)   Suppose angle Q is less than 900. Could the triangle be a right-angled 

triangle? Why?........................................................................................................... 

......................................................................................................................………. 

(c)   Suppose angle Q is more than 900. Could the triangle be a right-

angled triangle. Why?................................................................................................ 

......................................................................................................................……….
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24. Circle the smallest combination of the following which guarantees a

triangle to be isosceles. 

A. It has two equal angles 

B. It has two equal sides 

C. An altitude bisects the opposite side 

D. The measures of the angles add up to 1800 

25. Suppose all we know about  ∆MNP is that ∠M is the same size as ∠N.

(a) What do you know about sides MP and NP?  .................................. 

Suppose ∠M is larger than ∠N.

(b) What do you know about MP and NP?  ............................................ 

(c) Could  ∆MNP be isosceles?  ............................................................. 

.................................................................................................................................... 

.................................................................................................................................... 

26. State whether each of these is true or false. Give reasons.

(a) All isosceles triangles are right-angled triangles.

.................................................................................................................................... 

.................................................................................................................................... 

(b) Some right-angled triangles are isosceles triangles. 

.................................................................................................................................... 

.................................................................................................................................... 

27. 

A B

l2
l1

 Suppose ∠A and ∠B are equal. What does this tell you about lines l1 and l2 ? 

........................................................................................................................ 

 Suppose ∠A is larger than ∠B.  What does this tell you about lines l1 and l2 ? 

 ......................................................................................................................….. 
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28. (a) Triangle DEF has three equal sides. Is it an isosceles triangle? 

Why or why not? .......................................................................................….. 

(b)  Is the following true or false? 

All equilateral triangles are isosceles. 

...................................................……. 

29. Decide whether each of the following pairs of lines or line segments are

parallel 

always 

sometimes 

never 

Give reasons for each answer. 

(a) Two lines which do not intersect  ..................................................... 

Reason:....................................................................................................................... 

.................................................................................................................................... 

(b) Two lines which are perpendicular to the same line     ................................. 

Reason:....................................................................................................................... 

.................................................................................................................................... 

(c) Two line segments in a square  ....................................................... 

Reason:....................................................................................................................... 

.................…............................................................................................................... 

(d) Two line segments in a triangle  ....................................................... 

Reason:....................................................................................................................... 

.................................................................................................................................... 

(e) Two line segments which do not intersect 

...................................………… 

Reason:....................................................................................................................... 

.................................................................................................................................... 

30. What does it mean to say that two figures are similar?

……………………………………………………………………………………… 

……………………………………………………………………………………… 
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31. How do you recognise that lines are parallel?

........................................................................................................................ 

........................................................................................................................ 

32. Triangle ABC is similar to triangle DEF (in that order).

Are the following  (a)  certain ,   (b)  possible,    or (c)  impossible?

Give reasons for your answers.

(a) AB = DE  …………………………………………………………………… 

(b) AB > DE  …………………………………………………………………… 

(c) ∠A = ∠E  …………………………………………………………………… 

(d) ∠A > ∠E  …………………………………………………………………… 

(e)  AB = EF   …………………………………………………………………… 

(f) ∠A > ∠D  …………………………………………………………………… 

33. Will figures A and B be similar

I - always II - sometimes       or   III – never  ? 

Figure A Figure B 

(a)    a square (a) a square …………………. 

(b)   an isosceles triangle (b)   an isosceles triangle ………………… 

(c)   a triangle congruent to B (c)   a triangle congruent to A ………………… 

(d)   a rectangle (d)   a square ………………… 

(e)   a rectangle (e)   a triangle ………………… 

34. ∆ABC is congruent to ∆DEF (in that order).

Are the following  (a)  certain,  (b)  possible,    or   (c)  impossible ? 

Give reasons for your answers. 

(a) AB = DE  ………………………………………………………………… 

(b) ∠A = ∠E  ………………………………………………………………… 

(c) ∠A < ∠D  ………………………………………………………………… 

(d) AB = EF  ………………………………………………………………… 
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A

C

B
D

ABC is a triangle. ∆ADC ≡  ∆BDC. 

What kind of triangle is ∆ABC?  Why? 

.................................................................................................................................... 

.................................................................................................................................... 

36. Circle the smallest combination of the following which guarantee that two

lines are parallel. 

A. They are everywhere the same distance apart 

B. They have no points in common 

C. They are in the same plane 

D. They never meet 

37. Will figures A and B be congruent

I-always II-sometimes  III-never? 

Figure A Figure B 

(a)    a square (b) a triangle ……………… 

(b)   a square with a 10cm side (b)   a square with a 10cm 

side 

……………… 

(c) a right-angled triangle with a 

10cm hypotenuse 

(c)   a right-angled triangle      

       with a 10cm hypotenuse 

……………… 

(d)   a triangle similar to B (d)   a triangle similar to A ……………… 

(e) an isosceles triangle with 

two 10 cm sides 

(e) an isosceles triangle with 

two 10 cm sides 

……………… 

35.
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38. 

 

These circles with centres O and P intersect at M and N. 

Prove: ∆OMP ≡  ∆ONP. 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

39. Figure C  is a circle.  O is the centre.

Prove that  ∆ AOB is isosceles. 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

40. ABCD is a four-sided figure.  Suppose we know that opposite sides are

parallel.   

What are the fewest facts necessary to prove that ABCD is a square? 

.................................................................................................................................... 

.................................................................................................................................... 

O 

M 

N 

P 

O 

A 

C 

B 
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A

C RQ

P

B

Figures ABC and PQR are right-angled isosceles triangles with angles B and Q 

being right angles.   

Prove that ∠A = ∠P and ∠C = ∠R. 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

X

A B

Y

Z

AB is the line segment with A and B the midpoints of the equal sides of the 

isosceles triangle XYZ.  

AY = BY and ∆AYB is similar to ∆XYZ so ∠A = ∠X and AB is parallel to XZ. 

What have we proved? 

.................................................................................................................................... 

.................................................................................................................................... 

41. 

42.
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43. 

CD is perpendicular to AB. ∠ACB is a right angle. 

If you measure  ∠ACD and ∠B, you find that they have the same measure. 

Would this equality be true for all right triangles?  Why or why not?   

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

C

A B

21 3
l

Line l  is parallel to AB. 

Because of properties of parallel lines we can prove that ∠1 = ∠A and ∠3 = ∠B. 

Now, l is a straight angle (180o). 

What have we proved? 

.................................................................................................................................... 

.................................................................................................................................... 

l1
l2 l3

Line l1 is parallel to line l 2 and line l 2 is parallel to line l 3. What have we 

proved? 

.................................................................................................................................... 

.................................................................................................................................... 

A B 

C 

D 

44. 

45.
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46. 

In this figure AB and CB are the same length.  AD and CD are the same length. 

Will ∠A and ∠C be the same size? Why or why not? 

.................................................................................................................................... 

.................................................................................................................................... 

47. Prove that the perpendicular from a point not on the line to the line is the

shortest line segment that can be drawn from the point to the line. 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

48. Figure ABCD is a parallelogram, AB ≡  BC and ∠ ABC is a right angle.  Is

ABCD a square? Prove your answer. 

.................................................................................................................................... 

.................................................................................................................................... 

................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

.................................................................................................................................... 

A 

B 

C 

D 
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Anhang

A.2 Proof Questionnaire, Healy und Holyes (1999)
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.— .,— ,.,, ., ~

You are going to complete a survey that is all about proof.

Before you start, write below everything you know about proof in mathematics
and what it is for.

Fza5i71
me i. this
.

A

B

c

D

E

F

G

H

1

@J.stifyi.g and Proving in Schcel Mmhmuxics
Prmf Questionnaire
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Algebra
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M. Arthur, Bonnie, Ceri, Duncan and Eric were trving to urove whether the
following statement is true or false:

.-.

When you add any 2 even numbers, your anawer is aIways even.

Arthur’s answer

a is any whole number

b is any whole number

2a and 2b sre any two even numbers

2a+2b=2(a+b)

So Arthur say~ it’s true.

Ceri’s answer

Even numbers are numbers that can be
divided by 2. When you add numbers with a

common factor, 2 in this case, the answer
will have the same common factor.

So Ceri savs if’s true.

Bonnie’s answer

2+2=4 4+2=6

2+4=6 4+4=8

2+6=8 4+6=10

So Bonnie says it’s true.

Duncan’s answer

Even numbers end inO24 6 or 8.
When you add any two of these the
answer will still end inO24 6 or 8.

So Duncan says it’s true.

Eric’s answer

Let x = any whole number, y = any whole number

X+y=z

~–~=y

z–y’=~

z+z–(x+y)=x+y=2z

From the above answers, choose one which would be closest to what you would
do if you were asked to answer this question.

ease do not
rite in this
IWX

la

2D

5A

6E

‘rC
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For each of the following, circle whether YOUagree, don’t know or disagree,

Tbe statement is:

When you add any 2 even numbers, your answer is aiways even.

Arihur ’s answer:

Hasa mistake in it

Shows that the statement is afwaystrue
Only shows that & statement is tme for someevennmnbem

Shows you whythe statement is tme

Is an easy way to exphia to someone in your class who is unsure

Bonnie’s answer:

Hasa mistake in it

Shows that the statement is alwaystrue

Only shows that the statement is true for some even numbers

Shows you why the statement is tme

1s an easy way to explain to someone in your class who is unsure

Ceri’s answer:

Hass mistakeia it
Shows that the statement is ahvays true

OnIy shows that the statement is tme for someeven numbers

Shows you why thestatement is tme

k an easy way to explaia to someone in your class who is unsure

Duncan’s answer:

Hasa mistake in it

Shows that the statement is always true

Only shows that the statement is true for some even numbers

Shows you why the statement is hue

Is an easy way to explain to someone in your class who is unsure

En”c’s answer:

Hasa mistakein it

Shows that the statement is always true

Only shows that the statement is true for someeven numbers

Shows you why the statement is tme

la an easy way to exphin to someone in your class who is unsure

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

don,tkm. disagree

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

@Justifyingand Pmting in Schml Mathematics Proof Questionmire
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A2.

Suppose it has now been proved that:

When you add any 2 even numbers, your answer fa always even.

Zach asks what needs to be done to prove whether

When you add 2 even numbers that are square, your answer is always
even.

Tick either A or B.

(A) Zach doesn’t need to do anything, the fmt statement has afready proved this.

o

c1(B) Zach needs to constmct a new proof.

@Justifying and Proving in School Mathematics Pmef Questiomaire
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A3.

,.. ,:

Yvonne drew the following picture for her answer to question Al:

Yvonne’s answer

● 0000
+

● 000
● 0000 ● 000

—

● 00000000
● 00000000

So Yvonnesays it’s true.

Would you choose Yvome’s answer instead of your previous choice as the one
closest to what you would do?

yesCl

Would you choose Yvonne’s answer instead of your previous choice as the one
your teacher would give the best mark?

yes~ noO

For each of the following circle whether you agree, don’t krrow or disagree.

i’.onne’sanswer: w= dm,l know kap

Has a mistake in it 1 2 3

Showsthatthestatementis alwaystrue 1 2 3

Only shows that the statement is fxue for some even numbers 1 ?. 3

Shows you why the statement is true 1 2 . 3

Is an easy way to explsii to someone in your class who is unsure 1 2 3

W

.

Y

N

Y

N

I

@Justifying and Prnving in Schnnl Matkmatics Prmf Questiomaire
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A4. Prove whether the following statement is true or false. Write down your
answer in the way that would get you the best mark you can.

When you add any 2 odd numbers, your answer is always even.

0

1

2

3

4

5

6

7

8

9

N

M

c

~Ju@ying and Proving in SchWl Mathematics Prcof Questionnaire

Anhang

317



,.
i!f!. ;

AS. Farhanz Gary, Hamble, Iris and Julie weretrying to prove whether the
following statement is true or false:

When you add any 3 consecutive numbers, your answer is always even.

E
Farhana’samwer

x is sny whole nmnber.

x+(x+1)+(x+2)=3x+3

3+3=6

6 is divisible by 2

So Farhana sqys it’s true.

Hamble’s am-wer

3+4+5=12
11+12+13=36

35+36+37=108
107+108+109=324

Gary’s answer
1

If the fmt number is even, then tbe second
must be ndd and the third must be even. TM
combination will stways addup to be odd.

So Gary says it’s fake. I

2+3+4=9 I

Iulie’sanswer

Suppose first number is even, say 2x.

2x+(2x+1)+(2x+2)=6x+3

5x is even

~. 61 + 3 is odd

SOJulie says it’sfalse

From the above answers,choose one whichwouldbe closest to what you would
do if you were asked to answer this question.

From the above answers, choose the one to which your teacher would give the
best mark.

~.

~
itci. W
KS

IH

s
6F

7G

91

lH

51
6P
7G

I-2L

@Justifying and Proving in Schcol Mathematics PrunfQuestiOmaire
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A6. Kate, Leon, Maria and Nisha were asked to prove whetier the follow~g W 0”0
statement is true or f~se:

l“-
WntemIJus
we

Ix71. a.. . .. .. -..,.!-,-..-. - I. . ~.~ yVUUN.UUPIy anys consecutive numbers, your artswer is alway!
multiple of 6.

Kate’sanswer

A multiple of 6 must have factors of 3 and 2.
ff you have three consecutive numbers, one will be a multiple of 3 as
every third number is in the three rimes table.
Also, at least one number will be even and sI1 even numbers are
multinles of 2.
ff yo; multiply the three consecutive numbers together the answer mus(
have at least one factor of 3 and one factor of 2.

So Kate saysit’s true.

E
Leon’s answer

1x2x3=6

2x3x4=24

4x5x6=120

6x7x8=336

.$0 f.eon says it’s true.

kfati’s aJ7SWer

x is Sny whole number

XX(X+I) X(X+2)=(X*+2)X(X+2)

=X3+X2+2X2+2X

Canceling the x’s gives 1 + 1 + 2 + 2 = 6

SOI?4ria say it’s true.

i?ih’s answer

Of the three consecutive numbers, the fmt number is either
EVEN which can be written Z (a is any whole number) or,
ODD which can be written 2b -1 (b is any whole number).

If EVEN
2a X (2a +1)X (2a+ 2) is a multiple of 2.

and either a is a muhiple of 3 DONE
or a is not a multiple of 3

... 2a is nota nmltipleof3
“ Either (2a+ 1) is a multiple of 3 or (2a+ 2) is a multiple of 3 DONE

If ODD . .
(2b -1)x 2b x (2b + 1) is a multiple of 2

~d either b is a multiple of 3 DONE
or b is nota multipleof 3

... 2b isnota mukipkof3
... Either (2b – 1) k amultiple of 3 or (2b + 1) is a multiple of 3

DONE

SONisha says it’s true,

From the above answers, choose one which would be closest to what you wod
do if you were asked to answer this question.

From the above answers, choose the one to which your teacher would @e the
best mark.

I
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For each of the following,circle whetheryou agree, don’t fcnowor disagree.

The statement is:

When you multiply any 3 consecutive numbers, your answer is always a
multiple of 6.

Kate’sanswer:

Hasa mistake in it

Shows that the statement is always true

Onfy shows the statement is true for some consecutive nmnbers

Shows you why the statement is true

Is an easy way to explain to someone in your class who is unsure

Leon’s answer:

Hasa mistake in it

Shows that the statement is afways true

OnJy shows the statement is hue for some consecutive numbers

Shows you why the statement is true

Is an easy way to explaiu to someone in your class who is unsure

Maria’s answer:

Has a mistake in it

Shows that the statement is always tme

Only shows the statement is true for sume consecutive numbers

Shows you why thestatement is true

Is an easy way to explain to someone in your class who is unsure

Nisha ’s answer:

Has a mistake in it

Shows that the statement is always true

Onfy shows the statement is hwe forsomeconsecutive numbers

Shows you why thestatement is tme

Is an easy way to explain to someone in your class who is unsurs

am

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
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A7. Prove whether the following statement is true or false. Write your answer M*,.&’
in a way that would get you the best miuk you can. rSpc

Ifp and q are any two odd numbers, (p+ q) x (p - q) fs always a multiple
of 4.

I
flyanswer

I

o

1

2

3

4

5

6

7

8

9

N

M

c
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G1. Amsnda, Barry Cynthi% Dylan, and Ewan were trying to prove whether
the following statement is true or false:

When you add the interior angles of any triangle, your answer is always 180°

Anrart&’s answer

1to= the angles up and put them together.

~~ v

, ‘Wafi:
@

~m
....

[t came to a siraight line which is 180°, I
tried for an equilateral snd an isosceles ss
well and the same thing happened.

So Arnarr&says it’s rue. I

?yrrthia’s wwer

[ drew a line parallel to the base of the triangle

P
,

~kitements Reasons

= s .... .... ........ .... ..... Alternate angles between
two parallel lines are equal

= r.. ..... ....... ........... Alternate angles between
two parallel lines are equal

+ g + r= 1800 ...... .. Angles on a straight line

“. s+r+r=180°

~oCynthia saysit’s true.

Ewan ’sAnswer

lany ’s answer
n

6!3I drewanisosceles ~
mangle,with c
eqlld to 65”. cb

katemems Reasons
I = 18rY. 2c ....... Base angIes in isosceles

triangle equal

(= 5W .... ........... 18tY - 131Y

I = 65” ............... 180” -(a+ c)

~= 6.,.......... ...... Base angles in isosceles
triangle equal

“.a+ b+c=180°

JOBarry says it’s rrue.

DylarI’s answer

I measured the angles of all sorts of
triangles accurately and made a table.

a b rota!
110 34 ~6 180
95 43 42 180
35 72 73 1s0
10 27 143 1so

They all added up to 180°.

So Dylan says it’s tree.

If youwalkalltheway around the rdge of the

triangle, you end up facing the way you began.

%

,;5.

You must have turned a total of 360°.

You can see that each exterior angle when added to
the interior angle must give 180° because they
make a straight Iine. This makes a total of 540”.
540°-360” = 180°.

So Ewan says irk rrue.

From the above answers, choose one which would be closest to what you would
do if you were asked to answer this question. ~

From the above answers, choose the one to which your teacher would give the
best mark.

7E

@Jwtifying and proving in School Mathematics Prcof Questionnaire
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For each of the following, circle whether you agree, don’t know or disagree.

The statement is:

When you add the interior angla of any trianglq your artswer is always 180°

Amanaiz’sanswer:

Hasa mistake in it

Shows that the statement is afways true

Only shows that tie statement is tme for some triangles

Shows you why thestatement is true

Is aneasyway to explain to someone in your class who is unsure

Barry’s answer:

Hasa mistake in it

Shows that the statement is atways true

Onfy shows that the statement is true for some h-iangles

Shows you why thestatement is hue

1s an easy way to exptain to someone in your class who is unsure

Cynthia’s answer:

Hasa mistakein it
Shows that the statement is afways true

Onty shows that the statement is mue for some triangles

Shows you why theststement is true

Is an easy way to eqiain tosomeone in your class who is unsure

Dylan’s answer:

Hasa mistake in it

Shows that the statement is afways true
Ontyshows that the statement is true for some tiangles

Shows you why thestateme”cis tie
Is aneasy waymexpkaiuto someone in your class who is unsure

Ewan ’s answer:

Hasa mistake in it

Shows that the statement is atways tme

Onfy shows that the statement is hue for some mangles

Shows you why the statement is true

Js an easy way to explain to someone in your class who is unsure

a-

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
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G2. Suppose it has now been proved that

When you add the interior angles of any trianglq your answer is afways 180°.

Zoe asks what needs to be done to prove whethec

When yon add the interior angks of any right-angled triangle, your answer is
always 180°.

Tick either A or B:

(A) Zoe doesn’t need to do anything, the fwst statement has already proved this.

c1

(B) Zoe needs to construct a new proof.

L1

@J.stifyinS and Proving in School Mathematics Proof Questionnaire
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G3. Yorath gave the foflowinganswerto question G1:

Yorath’s answer

drew a tessellation of trianglesandmarkedalltheequal angles,

knowthat the angles rounda pointaddup to 36JY.

Would you choose Yorath’s answer instead of your previous choice as the one
closest to what you would do ?

rlocl

Would you choose Yorath’s answer instead of your previous choice as the one
your teacher would give the best mark?

yes Q notl

For each of the followirig circle whether you agree, don’t know or disagree

Yorath’s answer:
.= dm,[kn.w disagra

Hasa mistake init 1 2 3
Showsthatthestatementis afwaystrue 1 2 3
Ontyshowsthatthestatementis trueforsome triangles 1 2 3
Shows you why the statement is me 1 2 3
Is MI easy way to esplain tosomeone in your class who is unsure

1 2 3

~
tile i“ this
P-u

-f

N

Y

N
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~. Prove whether the following statement is true or false. Write your answer WW.ti~
in a way that would get you the best mark you can.

rv=

If you add the interior angles of any quadrilateral, your answer is always
360°.

I
4y answer

o

1

2

3

4

5

6

7

8

9

N

M

c
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G5. Frank, Gail, Harriet, Irene and Jacob were trying to prove whether the
following statement is true or false:

The shortest d~tance between any point P and a line segment AB is the
line joining P to C, where C is the midpoint of AB.

Frank’s answer

E k mrypointon BC

‘c h’

andD is any pointon

AD

Statement Rsason
4C= EC..................... Cis the midpoint
CI# + P& . P&...... Pythagoras theorem

CD2 + P& = PD2..... Pythagoras theorem

PC< Pi? .................. CE is greater than O

PC s PD ................... CD k greater thanO

.‘. PC k Ihe shortest &LWIce

SOFrank xqvs it’s true.

I Gail’s answer

I drewanarcwithmycompassusingP as
the centre and so Ihat tbe arc just touched
the line AB. The line from P to C crossed
the circle showing that PC was not the
shortest line.

So Gail says it’s false.

So Irene says it’sfalse, 1

IHarriet’s answer I

A straight line is always the
shortest distance between two
points.

S0 Ham’et says it’s true.

ob’s answer

E is any point on BC
and D is any pint on
AC. A&

DCE
B

mrent Reason
mgle PCE >90”
mgle PEC < 900................. Sum of angles in a triangle= 180°
md PE > PC ....................... Longest side of triangle is opposite Imgest angle
t if angle PCE >90°
urglePCD < 900................. Sum of angles on a straight line= 180°
mgle PDC can be> 90....... Sum of angles in a &isngIe = 180°
‘D can be < PC.................. Longest side of triangle is opposite largest angle
PC is not always the shonest dkmce.

Jacob says it’s false.

From the above answers, choose one which would be closest to what you would
do if you were asked to answer this question. 1—[

From the above answers, choose the one to which your teacher would give the
best mark.

4H

5J

6F

7G

91

4H
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6F

7G

91
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G6.

/4
c C is any point on the perpendicular bisector of

AB. Kobi, Linda, M~ and Natalie were frying
to prove whether the following statement is hue
or false:

/ / \ Tri..gleABC iaalwaysiaosceks.

~obi’sanswer

c

,- moved C to different places on the

Pvn~culm bisector and measured AC ad
BC They were atways fhe same so the triangles
were atl isosceles.

So Kobi says it’s trne.

Vafdie’s answer

Statement

4DC=90”.., .....................

BDC = 900,.......................

Angle CAB = angle CBD.

.“.AC = BC.

Lid’s answer
Statement Reason

AD = BD................ Bisector

ADC= 900 ............. Perpendicular tine

BDC = 900............. Perpendicular line

DC= DC ................ Same line

WC= ABDC ..... Two sides and include<
angle the same,

.“.AC=BC.

So Linda saw it’s true.

1

Reason

Perpendicular tine

Perpendicular line

Base angles of an
isosceles mangle equal

So Natalie says it’s true. I

rMarty’s answer

Because CD bisects AB at right angles,

B is a reflection of A, So you could
think of ABC as made up of two right ~

angle triangles which are reflections of

each other. This means the sides AC
and BC will be the smrre length.

So Marty says it’s true.

From the above answers, choose one which would be closest to what you wotdc
do if you were asked to answer this question.

v (

From the above answers, choose the one to which your teacher would give the
best mark.

riaiGr
,, ,“ this
.
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For each of the following circle whether you agree, don’t know or disagree.

The statement is:

Triangle ABC is always isosceles.

Kobi’s answer:

Haaa mistake in it

Shows that the statement is afways true

Only shows that the statement is true for some positions of C

Shows you why the statementis true

Is anesayway to expkain to someone in YOUIclass who is unsure

Linda ‘s answer:

Hasa mistake in it

Shows that the srstement is afways trme

Otdy shows that the statement is true for some positions of C

Shows you why the statement is true

IS an easy way to eXpf&t to someone in your class who is unsure

Marry’s answer:

Hasa mistake in it

Shows that the statement is afways true

Only shows that the statement is tme for some positions of C

Shows you why thestatementis me

Is aneaayway to expfain to someone in your class who is unsure

Natalie>sanswer:

Ha.sa mistakeinit

Shows that the statement is afways true

Only shows that the statementis tme for some positions of C

Shows you why the smtement iS tie

Is an easy way to explain to someone in your claas who k unsure

@Jusri&imgandprovingi“SchcelMxlmnatics
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G7.

A is the centre of a circle and AB is a radius. C is a point on the circumference
where the perpendicular bisector of AB crosses the circle. Prove whether the
following statement is true or false. Write your answer in a way that would get
you the best mark you can.

Triangle ABC is always equilateral.

Iy answer

1-da not
rite i“ h,
we

o

1

2

3

4

5

6

7

8

9

N

M

c

@Justifying and Proving in School Mathematics Prcc.f Questiomaire

Anhang

331



Anhang

A.3 Heuristisches Lösungsbeispiel von Reiss und Renkl (2002)
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A.4 Aufgaben aus Ufer (2009)
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Ironing table 
• The legs, AB and CD, of the ironing table are pivoted at their midpoints, O. 

• The top of the table, EF, is pivoted to CD at D. 

• C slides along the floor and B slides along EF. 

 

O 

B 

A C 

D F E 

 
•  ‘Fold’ the ironing table flat and raise it again by moving C. What do you 

notice about the top of the ironing table? Write your observation as a 

conjecture. 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

• Using a ruler and pencil, draw a careful diagram of the ironing table, 

representing each link as a single line. Label your diagram as shown above. 

• Mark any given information on your diagram. 

 

 

 

• Name the two triangles you can see in the diagram. 

……………………………………………………………………………… 

……………………………………………………………………………… 
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 488 

• Now open the Cabri file Ironing table. Drag point C. Are you still satisfied 

with your conjecture? 

……………………………………………………………………………… 

……………………………………………………………………………… 

• Can you use your geometry knowledge to give an explanation of why you 
think this conjecture is true? 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

• Now write out your explanation carefully in the form of a geometric proof. 

Each statement you make must be justified in terms of one of the following: 

��the given information  

��your previous geometry knowledge  

��something you have shown to be true in a previous step of your 

proof. 

Given: …………………………………………………………………………. 

Prove: …………………………………………………………………………. 

Proof: ………………………………………………………………………….. 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 
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Anhang B

Lehrpläne und Schulbücher

B.1 Bayerischer Lehrplan Mathematik, Klasse 7

341



206

Jahrgangsstufe 07

Mathematik1

M

                      7    Mathematik    (4) 

    In Jahrgangsstufe 7 wird an früher behandelte Themen angeknüpft; diese werden auf höherem Abstraktionsniveau 
weitergeführt, wobei das Begründen von Zusammenhängen an Bedeutung gewinnt und das analytische Denken der 
Schüler stärker gefordert wird. Methodenvielfalt und Förderung selbständigen Arbeitens kommen den Jugendlichen 
in ihrer Persönlichkeitsentwicklung entgegen und unterstützen gleichzeitig das Erreichen der fachlichen Ziele. Von An-
fang an wird großer Wert auf die kritische Überprüfung von Ergebnissen z. B. durch Überschlagsrechnung gelegt.
  In den Jahrgangsstufen 5 und 6 wurden wesentliche Aspekte der Arithmetik erarbeitet. Diese wird nun vertieft und in 
der stärker formalisierenden Algebra weitergeführt. Die Schüler erwerben beim Umgang mit Termen und Gleichungen 
grundlegende algebraische Kenntnisse, wobei die eingehende Beschäftigung mit Termen gleichzeitig der Funktions-
propädeutik dient. Anknüpfend an ihr Vorwissen entdecken sie Zusammenhänge in der Figurengeometrie, wobei sie 
Freude an der Geometrie gewinnen und ästhetisches Empfi nden entwickeln sollen. Das neu hinzukommende Kon-
struieren fordert Sorgfalt und Genauigkeit. Die Schüler lernen, bei der Planung bzw. Beschreibung von Konstruktionen 
[> D 7.1, D 6.2 Beschreiben von Vorgängen; NT 7.2.3 Algorithmen] auf Schlüssigkeit, Vollständigkeit und Eindeu-
tigkeit zu achten. Im Bereich der Stochastik festigen sie ihre Vorkenntnisse und beschäftigen sich dabei nochmals 
intensiv mit der Prozentrechnung. 

        

 In der Jahrgangsstufe 7 erwerben die Schüler folgendes Grundwissen: 
  Sie rechnen sicher mit rationalen Zahlen und beherrschen die Grundlagen der Prozentrechnung. • 
  Sie können Terme aufstellen und analysieren sowie elementare Termumformungen ausführen. • 
  Sie sind in der Lage, lineare Gleichungen auch im Anwendungszusammenhang aufzustellen und zu lösen. • 
  Sie können Daten rechnerisch und graphisch auswerten. • 
  Sie beschreiben mit grundlegenden Begriffen (u. a. Kongruenz) Zusammenhänge an geometrischen Figuren und • 
wenden geometrische Sätze (u. a. Satz von Thales) bei Konstruktionen und Begründungen an. 
 Sie sind in der Lage, im  algebraischen  bzw.  geometrischen Kontext zu argumentieren .• 

M 7.1  Figurengeometrie: vom Zeichnen und Beschreiben zum Konstruieren und Begründen 
  Bei der Erzeugung symmetrischer Figuren lernen die Schüler das mathematisch wie kulturhistorisch bedeutsame Prin-
zip der Konstruktion mit Zirkel und Lineal kennen. Sie lernen, geometrische Phänomene allmählich differenzierter zu 
analysieren sowie folgerichtig zu argumentieren und zu begründen. Eine abstraktere Denkweise ergänzt nach und 
nach ihren bisher anschaulich und intuitiv geprägten Wissenserwerb. 

  M 7.1.1  Achsen- und punktsymmetrische Figuren  (ca. 12 Std.) 
  Anhand von Figuren aus ihrer Erfahrungswelt erkennen die Schüler die Achsen- und Punktsymmetrie als natürliches 
Gestaltungsprinzip.  Sie verwenden aus der Anschauung gewonnene Fundamentalsätze zur Begründung der ersten 
Grundkonstruktionen.  Anhand der Vielfalt der Vierecke erschließt sich ihnen die Symmetrie als ein Ordnungsprinzip. 

   Achsensymmetrie: Eigenschaften,  Konstruktion  von Spiegelpunkt und Achse • 
  Mittelsenkrechte, Lot; Winkelhalbierende • 
  Punktsymmetrie: Eigenschaften,  Konstruktion  von Spiegelpunkt und Zentrum • 
  Übersicht über symmetrische Vierecke • 

   M 7.1.2  Winkelbetrachtungen an Figuren  (ca. 8 Std.) 
  Die Schüler entdecken die wesentlichen Zusammenhänge an Geradenkreuzungen bzw. Doppelkreuzungen mit par-
allelen Geraden und beschäftigen sich mit Winkelsummensätzen.  Dabei wird ihnen auch der Unterschied zwischen 
Fundamentalsätzen und daraus abgeleiteten Sätzen deutlich gemacht.

    Geradenkreuzung: Scheitel- und Nebenwinkel; Doppelkreuzung: Stufen- und Wechselwinkel • 
   Innenwinkelsumme beim Dreieck und beim Viereck • 
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   M 7.5  Figurengeometrie: das Dreieck als Grundfi gur 
  Häufi g lassen sich reale Objekte gut mit geradlinig begrenzten geometrischen Figuren darstellen, deren Untersuchung 
unmittelbar auf Dreiecke als Grundbausteine führt. Daher beschäftigen sich die Schüler unter verschiedenen Gesichts-
punkten weiter mit der Grundfi gur Dreieck. Um geometrische Zusammenhänge auch experimentell zu erschließen, 
nutzen die Schüler  dynamische Geometriesoftware  als interaktives Werkzeug und knüpfen dabei an die aus Natur und 
Technik (Schwerpunkt Informatik) bekannte objektorientierte Sichtweise an [> NT 6.2, NT 7.2] . 

  M 7.5.1  Kongruenz  (ca. 6 Std.) 
  Die Frage, wann zwei Dreiecke deckungsgleich sind, führt die Schüler zur eindeutigen Konstruierbarkeit eines Drei-
ecks aus gegebenen Seiten oder Winkeln.  Sie lernen davon ausgehend die Kongruenzsätze kennen, die als Funda-
mentalsätze verwendet werden.     

Begriff der Kongruenz von Figuren • 
  Kongruenzsätze für Dreiecke und  grundlegende Konstruktionen • 

     M 7.5.2  Besondere Dreiecke   (ca. 14 Std.) 
  Durch Kongruenz- oder Symmetrieüberlegungen erfassen die Schüler die Eigenschaften des gleichschenkligen 
und des gleichseitigen Dreiecks. Am Beispiel des Satzes von Thales können sie erfahren, wie es  dynamische Geo-
metriesoftware  erleichtern kann, Vermutungen aufzustellen. Sie verstehen den Beweis des Satzes von Thales sowie 
den seiner Umkehrung. Sie erkennen, dass sich  neue Möglichkeiten für Konstruktionen  eröffnen.

   gleichschenkliges und gleichseitiges Dreieck • 
  rechtwinkliges Dreieck, Satz des Thales; Konstruktion von Kreistangenten• 

   M 7.5.3  Konstruktionen  (ca. 12 Std.) 
  Beim Konstruieren von Dreiecken und Vierecken werden Einfallsreichtum und geistige Wendigkeit der Schüler entwi-
ckelt. Wesentliches Ziel ist außerdem die Fähigkeit, Konstruktionsabläufe zu planen und zu dokumentieren. Fragen 
der Konstruierbarkeit und Lösungsvielfalt bei Variation der Bestimmungsstücke untersuchen die Schüler z. B. mithilfe 
von  dynamischer Geometriesoftware . Zur Abrundung ihrer Geometriekenntnisse setzen sie ihre erworbenen Fähigkei-
ten bei anwendungsbezogenen Aufgabenstellungen ein.

    Wiederholung von Höhe, Winkelhalbierender und Mittelsenkrechter ; Umkreis • 
   Konstruktion von Dreiecken und Vierecken  auch in Sachzusammenhängen• 

   M 7.6  Vertiefen der Algebra  (ca. 12 Std.) 
  Die Schüler mathematisieren erneut Sachzusammenhänge durch Terme oder Gleichungen. Dabei wählen sie die der 
jeweiligen Problemstellung angemessene Strategie, erkennen Sinn und Nutzen der bereits erlernten Techniken und 
vertiefen diese in vielfältigen Anwendungen. Um fl exibel einsetzbare Grundlagen zu entwickeln, steht vor allem die 
Verknüpfung der verschiedenen erlernten Kenntnisse und Methoden im Vordergrund. Die Schüler verbessern ihre 
Fähigkeit, mithilfe von Termen zu argumentieren und Zusammenhänge zu verbalisieren. Dabei wiederholen und ver-
tiefen sie gezielt den Umgang mit den bisher bekannten Größen und deren Einheiten [ > NT 7.1].
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B.2 Holzmüller, Raum- und Zahlenlehre für die Mittelstufe
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Anhang C

Transkripte

C.1 Arne

I: Wenn du sowas machst jetzt, so mit dem Programm jetzt im Prinzip

diese Überprüfung. Wie wichtig ist dann für dich noch ein Beweis,

dass das wirklich an jeder Stelle 90 Grad ist?

1

2

3

A: ..(lacht) Also ich würde auf den Beweis auch verzichten. Bin ich

ganz ehrlich.

4

5

I: Ja, ich will ja ehrliche Antworten, klar.6

A: Ehm, wenn ich das gesehen hab und wenn ich das dann hier gemessen

hab. Wenn ich einfach hier son paar (..) [versucht an C zu ziehen,

doch C ist als Schnittpunkt zweier Geraden fest]

7

8

9

I: Ne, jetzt den (.) kannst du jetzt nicht ziehen, weil der10

A: (unterbricht) Ja, richtig, richtig. Wenn ich jetzt, ehm, das hier

und man sieht ja irgendwo den rechten Winkel. Man kennt es ja,

dass es ein rechter Winkel ist und man kriegt da ja auch einen

Blick für.

11

12

13

14

I: Ja15

A: Wenn man ein Dreieck zeichnet, zeichnet man automatisch ein

rechtwinkliges oder ein gleichschenkliges, zumindest annähernd.

16

17

I: Ja18
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A: Und wenn ich das jetzt so sehe und das bewege, ehm, (..) wenn man

das sieht, (..) man schätzt es ja meist schon als rechten Winkel

19

20

ein. Da würde ich dann einfach auch (...), würde ich dann schon

davon ausgehen, dass das dann auch überall der rechte Winkel ist.

21

22

I: Hhm23

A: Und würd das dann auch, aufgrund dass es die Tatsache ist, dass

es ja im Programm so funktioniert, dann auch annehmen, dass es

richtig ist. Dann müsste ich den Beweis jetzt nicht mehr (.)

machen.

24

25

26

27

I: Also würde der dir jetzt keinen Mehrwert bringen? Also man könnte

es zwar formal machen, aber für dich würde (..), also

28

29

A: Ich habs gesehen und ich weiß das es so ist, fertig. Und der

Beweis bringt mir auch nichts anderes. Da muss ich auch nur

akzeptieren, dass es so ist und fertig.

30

31

32
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C.2 Carla

I: Kann so eine dynamische Visualisierung einen Beweis ersetzen?1

Ca: (5 Sek. Pause) Teilweise schon, ja.2

I: Kannst du da auch ein Beispiel für nennen?3

Ca: (..) Also ein konkretes Beispiel jetzt nicht. Ich weiß nur, bei

den Hausaufgaben halt, stand da halt, begründe oder beweise, und

so, und wir haben das halt schon in der, ehm, in der Zeichnung

gehabt, und wussten gar nicht, wie wir das (.) zusätzlich

begründen sollten, weil man das halt sehen kann und (.) deswegen

finde ich schon, dass man das (.) dadurch beweisen konnte.

4

5

6

7

8

9

I: Wir hatten ja beispielsweise mal, ehm, Thaleskreis, also (...)

jeder Winkel über dem Durchmesser eines Kreises ist ein rechter.

Also wenn der Punkt auf dem Kreisbogen liegt. Und dann haben

wir ja auch die Situation gemacht, wir haben das gezeichnet, wir

haben halt einen Kreis gezeichnet, mit dem Durchmesser, haben dann

einen weiteren Punkt auf den Kreis gesetzt, das zu einem Dreieck

verbunden, und haben dann gesehen: Aha, völlig egal, wo jetzt mein

dritter Punkt C auf dem Kreis liegt, der Winkel ist immer 90 Grad

groß. (..) Ist sowas für dich (.) dann ein vollwertiger Beweis?

Wenn du es wirklich siehst, du ziehst an C und du misst und es

bleibt wirklich immer (.) 90 Grad groß.

10

11

12

13

14

15

16

17

18

19

20

Ca: Ja.21

I: Macht es dann Sinn, trotzdem formal noch so ’nen Beweis

anzuschließen? Bringt das noch irgendwas zusätzlich?

22

23

Ca: Ja, vielleicht kurz und knapp, aber so, ganz kurz und knapp nur,

aber ich find das eigentlich (.) nicht so. (..) Also wir haben

Schwierigkeiten immer, das schriftlich dann noch zu beweisen. Weil

wir das ja halt sehen und (.) dann nicht genau wissen, wir könnten

jetzt aufschreiben, wie wir das gemacht haben, und wenn man halt

den Punkt bewegt, dass es immer 90 Grad ist, aber (.) richtig

beweisen können wir das dann nicht. Also finden wir schwer.

24

25

26

27

28

29

30

I: Hmhm. Aber würde es dir persönlich (.) überhaupt was bringen?

Jetzt es zusätzlich noch einmal richtig zu beweisen?

31

32

Ca: Eher nicht, nein.33
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C.3 Charlotte

I: Kann die dynamische Visualisierung des Satz des Thales für dich

einen Beweis ersetzen?

1

2

Ch: (...) Mmm (8 sec Pause). Also im ersten Moment würde ich „Ja“

sagen,

3

4

I: Ja.5

Ch: weil man es eben (.) direkt vor sich hat,6

I: Hmh. Ja.7

Ch: Aber (..) wenn man sich das genauer überlegt, und, wie ich eben

auch schon gesagt hatte, wenn man einfach irgendetwas hinzieht,

dann kann das ja auch ungenau sein, dann müsste man, glaube ich,

das nochmal speziell beweisen.

8

9

10

11

I: Hmh. Hättest du denn, wenn du es jetzt so siehst, auf dem Thales-

kreis, es bleibt immer 90 Grad, noch Zweifel daran, dass es so

ist?

12

13

14

Ch: (..) Mm. (.) Das ist schwierig zu sagen. Ehm, man ist da, glaube

ich, auch so’n bisschen so, ja, wenn man’s sieht, dann wird es

wohl schon so sein. Und, ehm, ja, vielleicht ist man da auch

ein bisschen bequem und vertraut einfach auf das Programm und

sagt sich dann: Ja, das stimmt schon, (..) aber ich (.) würde mal

vermuten, wenn man (.) sich nochmal (.) das genauer hinterfragt,

wär das schon besser.

15

16

17

18

19

20

21

I: Was würd das noch zusätzlich bringen?22

Ch: Ja, dann, da hätte man ne (.) Gewissheit, eben, dass das (.)

wirklich so ist. Also man, wie ich schon sagte, man hat diese

(.) mathematischen Sätze vorgegeben, und bestimmte (.) Regeln und

das ist so und das ist so, und, wenn man das dann damit nochmal

beweisen kann, (.) dann denke ich mal, dass das dann auch 100-pro-

zentig so ist.

23

24

25

26

27

28

I: Hmh. Also nur das Sehen würd dir jetzt nicht reichen?29

Ch: Im ersten Moment schon, aber dann denke ich mal nicht, ne.30
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C.4 Cornelia

I: Wie siehst du das mit der Beweiskraft? Hat das für dich..diese

Visualisierung eine Beweiskraft? Oder fehlt dir da noch was? Oder

würdest du daran noch einen Beweis anschließen wollen?

1

2

3

C: Ja, also, ich hab ja schon die ganze Zeit eh so gesagt, dass mir

das (.) nicht (.) richtig ehm (..). Klar, ich seh das jetzt, dass

es so ist. Ich seh jetzt auch, dass es der Thales Kreis ist,

hab ich beim ersten (.), ehm, da war, das war ja noch irgendwas

anderes? Aber, ehm, also, das ist für mich kein Beweis. Also, wenn

ich, wenn ich das sehe.

4

5

6

7

8

9

I: Hhmm?10

C: Gut, dann ist es halt so, aber, aber warum das alles so ist, wird

ja dadurch eigentlich (..) nicht ersichtlich, also.

11

12

I: Hhmm.13

C: Wenn ich, wenn wir, wenn wir das nicht noch mal gesagt hätten, mit

dem Thales Kreis, (.). Ich meine, klar, man kann das hier sehen.

Aber, ehm, ich weiß nicht, ob das so (.), ob das für alle so(..),

so schlüssig ist, dass das hier 90 Grad sind.

14

15

16

17

I: Hhmm.18

C: Weiß ich nicht.19

I: Also würde für dich der Beweis das, das Warum erklären? Habe ich

das richtig verstanden?

20

21

C: Ähä (.) ja genau. Aber, nicht die Zeichnung, sondern eben der

Beweis, der dann noch kommen würde. Ja genau, ja.

22

23
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C.5 Diana

I: Kann diese dynamische Visualisierung für dich einen Beweis

ersetzen?

1

2

D: Ja! Weil ich, äh, dadurch das ich das sehe, ähäm, also zum

Beispiel in der Vorlesung ...

3

4

I: Ja.5

D: ...wurde das nochmal viel deutlicher als zum Beispiel, wir hatten

das ja auch in der Schule. Aber da war das halt so, dass der

Lehrer das (.) mit Kreide an die Tafel gemalt hat und dann halt

seinen (.) Zirkel da hatte und sein Geodreieck, und (.) da konnte

man sich halt diese Verschiebung nicht so vorstellen. Also zum

Beispiel: Satz des Thales ist das ja, wie du eben gesagt hast,

äh, wenn man den jetzt auf diesem, auf diesem Kreis bewegt, dass

der Winkel sich nicht verändert, halt nur die Seitenlängen sich

verändern.

6

7

8

9

10

11

12

13

14

I: Hhmm Hhmm15

D: Und das konnte man sich halt damals an der Tafel nicht vorstellen,

da hat man, manchmal hat er es in die linke Ecke gezeichnet, den

rechten Winkel, und dann war das halt schon immer schwieriger

vorzustellen wenn man das (.) jetzt auf die andere Seite (.)

ziehen sollte. Also ich find, da ist das Programm natürlich sehr

sehr vorteilhaft, weil man sich das viel besser (..), weil man das

dadurch viel einfacher versteht und auch sich besser vorstellen

kann, wenn man halt diesen Punkt (.) sehen kann.

16

17

18

19

20

21

22

23

I: Ja ja. Ähm (.) Also im Prinzip wenn man das jetzt macht mit dem

Programm, man guckt und lässt den Punkt da (.) den ganzen Kreis

lang laufen, und sieht tatsächlich: ja, der Winkel bleibt immer 90

Grad, dann ist das im Prinzip

24

25

26

27

D: (unterbricht) Ein Beweis, dass der Satz des Thales anwendbar28

I: Ja29

D: ist.30

I: Ja. Und jetzt haben wir das in der Vorlesung gemacht, und wir

haben aber trotzdem noch son formalen Beweis angeschlossen. Bringt

das dann noch was an zusätzlicher Information oder hat das noch

irgend..

31

32

33

34
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D: Ja also ich find, also es gibt bestimmt Leute, die, ähäm, den Satz

des Thales, sich also, die das dann nicht vorstellen können, aber

die natürlich dann noch (.) mehr Informationen dazu brauchen. Also

bei den Meisten, die haben dann diesen Aha- Effekt dann gleich,

wenn die das da so sehen

35

36

37

38

39

I: Hmh (bejahend)40

D: aber halt dieses, eh, (..) manche brauchen halt nochmal (.) nen

extra (.) Anstoß oder (.) diesen extra Beiweis, damit sie das

nachvollziehen können. (...)

41

42

43

I: Weil sie hier damit noch nicht so, so zurecht kommen, oder?44

D: Ja, und weil die einfach, ähä, das nicht umsetzen können,

vielleicht? Also, ich weiß nicht, also, ob die das vielleicht, eh,

nochmal als (.) Formel oder ich weiß nicht was brauchen, um das,

also wirklich (.) später auch mal in einer Aufgabe anzuwenden.

(...)

45

46

47

48

49
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C.6 Elke

I: Kann so eine dynamische Visualisierung für dich den Beweis des

Satzes ersetzen? (..) Dass der Satz des Thales gilt?

1

2

E: (...) Dieses Verschieben?3

I: Ja, dieses Überprüfen an allen möglichen Fällen.4

E: Doch, auf jeden Fall. Ja.5

I: Und wenn du jetzt so ziehst, und guckst und misst und überprüfst,

und es ist immer wirklich 90 Grad, hast du dann noch irgendwelche

Zweifel, dass das 90 Grad sind?

6

7

8

E: Nein, nicht.9

I: Jetzt haben wir natürlich in der Vorlesung dann trotzdem diesen

formalen Beweis gemacht.

10

11

E: Ja.12

I: Ehm, bringt das für dich noch was zusätzlich?13

E: Der Beweis?14

I: Ja. Hat das dann noch einen Mehrwert? Als vorher, du hast es ja

jezt schon gesehen?

15

16

E: Nein. Also der Beweis, das ist für mich in der Hinsicht wichtig,

dass ich, ehm, das halt so beweisstrukturmäßig sehen kann, sonst

sehe ich es ja nur. Ich kann’s ja sonst, wie gesagt, wieder nur

optisch sagen: es ist so. Und durch diesen formalen Beweis, den

wir da dann gemacht haben, kann ich sagen: Ja, so kann ich es aber

wirklich schriftlich auch irgendwie beweisen. (...) Weil, ich kann

ja nicht sagen, in der Klausur, ja das ist so, weil, wenn ich das

so verschiebe, ist das halt so, ne. (..) Das ist so eigentlich

so mein Problem einfach, immer wenn ich, ehm, ich seh das hier

so, und das ist auch für mich logisch, aber ich kann es niemals

wirklich so auf’s Papier bringen, sagen, das ist deswegen so.

Sondern nur, weil ich es halt sehe. [...] Ja, also, ich finde es

einfach immer schwierig, das, was ich sehe und auch weiß, dass es

so ist, auf’s Papier zu bringen, faktisch gesehen. Diese Bewegung

festzuhalten. Weil ich ja nicht zeigen kann, z.B. ja, wenn ich das

bewege, ist das so, und, eh, das muss ich ja dann auch irgendwie

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
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beweisen und festhalten. Und für mich ist es dann einfach,

einfacher, wenn ich sage: Ja, hier, schau mal, und so ist das,

und deswegen ist das so, ja.

33

34

35

I: Wenn du jetzt diese Situation gezeichnet hättest, du hättest

halt diesen Thaleskreis, und Winkel und würdest messen, und dann

zeigen: Hier, guck mal, ich bewege jetzt C und der Winkel bleibt

immer recht. Ehm, ich weiß nicht, was hattest du jetzt gerade für

’ne Formulierung? Dann könnte ich zeigen, schau mal, das ist so?

36

37

38

39

40

E: Ja. Das ist so, auch wenn ich, weil wenn ich das dann runter

ziehen würde, würde er ja größer werden, wenn ich ihn hochziehe,

würde er spitzer werden. Das könnte man ja alles so sehen, und

(..) ja.

41

42

43

44

I: Und wenn du diese Möglichkeit hättest, es so darzustellen, dann45

E: (unterbricht) wäre es einfacher für mich, das zu erklären, ja. Und

den Fall zu begründen.

46

47
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C.7 Greta

I: Kann diese dynamische Visualisierung den Beweis des Thalessatzes

ersetzen?

1

2

G: Ich würde sagen, es ist anschaulich klar [durch die dynamische

Visualisierung, G.W.], aber, ehm, das reicht, meistens reicht

es ja nicht, in der Mathematik, dass etwas anschaulich klar ist.

Ich denke, dass ist die erste Idee, die man hat, dass man erstmal

guckt, ist es denn immer so, wenn ich jetzt hier irgendwas bewege?

Ja, es ist immer so. Und dann müsste ich aber trotzdem jetzt

weiterfragen: warum ist das immer so?

3

4

5

6

7

8

9

I: Ja. (...) Ehm,10

G: (unterbricht) Also zumindest, es ging ja auch immer so, in den

Geometriehausaufgaben war es nun ja auch immer so, es ist ja

anschaulich klar, aber warum ist das so? Welcher mathematische

Hintergrund hat das Ganze? Also da wurde man schon eher auch immer

in die Richtung getrieben, dass man das so und so machen müsste.

11

12

13

14

15

I: Und, aber für dich persönlich, würde das dann noch etwas

zusätzlich bringen, diesen Beweis hinterherzuschieben? Hättest

du dann das Gefühl, du hättest es besser verstanden?

16

17

18

G: Eh, ich glaub, ich bin persönlich eher so’n Mensch, dass es mir,

mir auf jeden Fall schon mal wichtig ist, dass es mir anschaulich

klar ist, und wenn es mir anschaulich klar ist, dann bin ich

eigentlich auch schon, eh, relativ (..) davon überzeugt. Also

klar, um diese hundertprozentige Sicherheit zu haben, müsste man

das dann nochmal thematisch machen, aber (..) ich bin oft, oft

schon zufrieden, dass es, wenn es anschaulich klar ist, auch wenn

es manchmal halt, eigentlich doch nicht ausreichend wäre.

19

20

21

22

23

24

25

26

I: Hmhm (zustimmend). (..) Aber mit diesen Vokabeln, die du gerade

benutzt hast:

27

28

G: Ja.29

I: getrieben, und so, heißt ja, dass man im Prinzip schon denkt:

na ja, die erwarten da was, aber eigentlich (...). Es bringt dir

persönlich jetzt keinen Mehrwert?

30

31

32

G: Wenn ich das jetzt mathematisch bewiesen habe, noch?33
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I: Ja.34

G: Würd ich jetzt nicht sagen, ne.35
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C.8 Hannes

I: Kann die dynamische Visualisierung für dich einen Beweis ersetzen?

Wenn du es siehst? Es bleibt immer 90 Grad?

1

2

Ha: Also für mich ist der Beweis immer noch (.) dann die Tatsache,

dass ein (..) über den Mittelpunktswinkel geht.

3

4

I: Ja5

Ha: Also für mich ist entscheidend, wenn der Mittelpunktswinkel,

(.) der ist ja fest, der ist einfach fest, ein fester Wert, der

bleibt immer 120 Grad oder der bleibt halt immer 180 Grad, wenn er

genau auf dieser (.) Geraden von A nach B aufliegt, ehm, dann weiß

ich, dass alle anderen Punkte auf dem Kreisbogen für mich 90 Grad

haben.

6

7

8

9

10

11

I: Hhmm12

Ha: Aber, darauf dann zu schließen, wenn ich nur vorher erst die Bögen

sehe und weiß, da, an dem Punkt ist das, an dem Punkt ist ,das,

an dem Punkt ist das, das sind einfach dann zu viele Fakten. Also,

für mich ist der Beweis dann viel wichtiger, dass wenn ich da 120

Grad habe, dann sind alle anderen so. Also dann brauche ich mir

die anderen ja gar nicht mehr betrachten. Ich brauche ja nur, nur

eine Ur, ich muss ja nur eine Ursprungssituation kontrollieren.

Ist da 180 Grad? Ja , dann ist alles andere 90 Grad.

13

14

15

16

17

18

19

20

I: Jaha21

Ha: .. und dieses ziehen, was er da vorher gemacht hat, war dann halt

(.) son bisschen Neugierde wecken.

22

23

I: Ja24

Ha: Also, das er dann halt die Gerade hatte, das Dreieck und dann

gesagt hat: „Ok, ich ziehe jetzt so, das sind jetzt überall grob

90 Grad, und woran erinnert euch diese Form? Hhmm ja, an einen

Kreis oder an einen Bogen vielmehr“. Und das war halt so zum

Neugierde wecken. Aber der wirklich schlüssige Beweis kam dann

für mich erst durch den (.) Mittelpunktswinkel.

25

26

27

28

29

30
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C.9 Helena

I: Kann diese Visualisierung für dich einen Beweis ersetzen? (...)

Oder hätte es für dich

1

2

H: (unterbricht) Ja es hilft mir auf jeden Fall, wenn ich das (.),

also, vielleicht (..), wenn echt so’n Satz da steht. Eh, (.) ja

immer ein rechter Winkel, dann, vielleicht denkt man dann, das

kann doch gar nicht sein. Da gibt es bestimmt irgendwo ’nen Punkt,

wo es anders ist.

3

4

5

6

7

I: Aha.8

H: Und wenn man das dann (.) echt mit dem Computer oder hier mit

dem Programm sieht, dann (.) ok, dann glaubt man das doch, dass

sich dann (.) vielleicht irgendwo anders der Winkel verändert,

eh kleiner oder größer wird, und dann oben immer dieser 90 Grad

Winkel (.) entsteht. Also doch, das hilft einem dann natürlich

schon, ehm (.). Also dann (.) werden die anderen Gedanken

quasi ausgelöscht, dass es eh, (.) eh, vielleicht irgendwo eine

Möglichkeit gibt, wo der nicht 90 Grad ist.

9

10

11

12

13

14

15

16

I: Ja.17

H: Also wenn man da (.)18

I: Ja?19

H: dran denkt so, oder der aller, der allererste Gedanke, dass es

vielleicht irgendwo einen Punkt gibt (lacht), wo es kein rechten

Winkel gibt.

20

21

22

I: Ja.23

H: Doch das hilft schon.24

I: Also für dich wird der, der Glauben an diesen Satz dadurch25

H: (unterbricht) Genau!26

I: verstärkt.27

H: Ja. Oder dann kann ich, kann ich also dann, kann ich mir den Satz

auch besser einprägen, so. Oder der wird dann natürlich auch

verständlicher, wenn da steht: eh, immer (.), ja eh nen rechten

Winkel? (lacht)

28

29

30

31

I: Ja.32

H: Also das kann ich dann (.) ja besser behalten, wenn ich das, wenn33
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ich, eh, quasi, wenn meine Zweifel, ja ausgelöscht werden (lacht).34

I: Hhmm.35

H: Und ich das echt sehen kann.36

I: Hhmm. Also das unterstützt für dich den Beweis?37

H: Ja!38

I: Das verleiht ihm39

H: (unterbricht) Ja.40

I: noch mehr41

H: Glaubhaftigkeit, (lacht), ja.42

I: Ehm, macht es für dich dann trotzdem Sinn, diesen formalen Beweis

da noch anzuschließen? Wenn, wenn man jetzt beispielsweise es erst

sieht

43

44

45

H: (lacht)46

I: und dann (.) den formalen Beweis hinterher schiebt? Oder (..).

Also bringt dir das dann noch irgendwas?

47

48

H: (..) Hmhm (.) ja (sehr leise), (lacht) (.) ja doch, eigentlich

schon.

49

50

I: Was denn?51

H: Vielleicht noch mehr Sicherheit? Ich weiß es nicht (lacht) oder,

dass ich mich dann noch mehr mit auseinander (.) setze und befasse

(...) Also, meinetwegen könnten wir den Beweis auch weglassen

(lacht). Nein.

52

53

54

55

I: Also ja, nee, ich meine im Prinzip ist es doch, wenn man es sieht

und wirklich ausprobieren kann,

56

57

H: Ja.58

I: sagtest du ja gerade, dass dann doch die Zweifel eigentlich

ausgeräumt sind. Oder?

59

60

H: Ja ähä, ich weiß jetzt auch nicht, (.) warum man den Beweis dann

noch macht? (Lacht) (...) Ja, vielleicht, noch mal mathematischer

an die Sache ran zu gehen, als wenn man das so einfach (..) zieht,

also sich zurecht zieht, oder ich (.), weiß ich nicht (lacht).

61

62

63

64

I: Hhmm. Aber würde es dir persönlich noch irgendwas bringen, diesen

formalen Beweis da anzuschließen?

65

66

H: Ich wüsste jetzt echt keinen Grund, so schnell (lacht) (..), also.67

I: Hhmm (bejahend).68
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H: Ja, (.) höchstens, wie gesagt, noch mal (.) ja diesen

mathemathischen Hindergrund (.) eh, ja, nach, also zu, eh, durch,

nachzufragen, warum das jetzt genau so ist.

69

70

71

I: Ja.72

H: Das würde mir vielleicht noch mal etwas bringen, aber (..) also

mir würd es schon reichen, oder ich glaube das dann schon, wenn

ich das so sehe, auf dem Bildschirm.

73

74

75

I: Ja, ja.76

H: Aber wie gesagt, den mathematischen Hintergrund vielleicht noch

mal ein bißchen zu hinterfragen.

77

78

I: Warum das so ist?79

H: Ja.80

I: (..) Erklärt sich das Warum auch durch das Sehen jetzt hier mit

dem Programm?

81

82

H: (5 sec Pause) Ja irgendwie schon. (Lacht) Irgendwo schon. Weil,

wenn man das zum Beispiel dann (.), man kann das ja alles so

markieren, ähäm wie groß zum Beispiel der Winkel ist und der

andere Winkel und dann, (.) wenn man das jetzt zieht, dann

verändern sich ja auch die Winkel und, ja, dann kann man ja das

dann auch schon (.) sehen.

83

84

85

86

87

88

361



Anhang

C.10 Henriette

I: Kann diese dynamische Visualisierung für dich den Beweis des

Thalessatzes ersetzen?

1

2

He: Man kann’s ja, wenn mann jetzt, wenn jetzt bei P beispielsweise

ein rechter Winkel liegen würde, dann (.) wenn man das verschieben

würde, könnte man das ja (.) in sämtlichen Situationen sehen, dass

es 90 Grad sind.

3

4

5

6

I: Ja.7

He: Von daher, theoretisch würd nichts fehlen.8

I: Hmhm. Und praktisch? (Lacht) Wenn du so theoretisch sagst?9

He: Weiß ich nicht. Eigentlich soll man ja alles begründen. Deswegen

denke ich mal, müsste man es schon [begründen, G.W.].

10

11

I: Ja, aber die Frage ist doch: bringt das noch was?12

He: Nee! Eigentlich nicht. Eigentlich sieht man da ja, dass da ein 90°

Winkel ist.

13

14
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C.11 Jasmin

I: Ist das für dich gleichwertig mit einem Beweis (..) des Satzes?1

Ja: (..) Wenn ich sehe, dass es immer so ist?2

I: Ja.3

Ja: Nein! (lacht) Das ist ja wie eben, also, das ist ja schön und gut,

wenn ich so und so hinziehe und es ist so, aber (.) warum das so

ist, habe ich ja trotzdem nicht gesagt.

4

5

6

I: Aha. Ehm, wir haben ja in der Vorlesung dann auch noch den Beweis

angeschlossen, wir haben ja beides gemacht.

7

8

Ja: Ja.9

I: Ehm. Ist für dich auch beides wichtig, oder hättest du gesagt:

“Mir hätte auch der Beweis gereicht, ich hätte das gar nicht mehr

(..) sehen müssen“?

10

11

12

Ja: Doch, also ich finde es immer ganz wichtig, dass man das sieht.

Irgendwie, weil man das sonst (..) ist das alles für mich immer

alles nicht so (.) greifbar,

13

14

15

I: Hhmm16

Ja: also, das (..) schon wichtig, dass man das dann auch wirklich

sieht, dass es immer so ist. Ich meine,

17

18

I: Hmh19

Ja: Man kann uns ja viel erzählen ( lacht)20

I: Also dann glaubst du dem Beweis nicht, oder was?21

Ja: Doch ,definitiv, klar, aber es ist halt schon anschaulicher

einfach. Wenn du es da, ehm, (..) ja da (.) mit dem Programm hast.

22

23

I: Also ist für dich beides wichtig?24

Ja: Ja25

I: Es spielt beides eine wichtige Rolle?26

Ja: Ja27
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C.12 Joachim

I: Was für einen Wert hat es, wenn man es so visualisiert hat, den

Beweis noch anzuschließen. Oder ist es (..) wirklich noch zwingend

erforderlich, den Beweis dann anzuschließen?

1

2

3

J: Ja, natürlich. Wie gesagt,4

I: Ja.5

J: Hier bei Cinderella ist eine Ungenauigkeit drin. Einmal bei den

Linien, durch die, durch die Generierung dieser, durch die Technik

der Pixel usw. Es kann ja sein, dass die wirklich, in Wirklichkeit

gar nicht aneinanderliegen.

6

7

8

9

I: Hmhm.10

J: Wenn ich jetzt zum Beispiel, ich nehme jetzt mal nicht Cinderella,

jetzt nicht Geometrie, sondern ich habe jetzt irgendein anderes

Programm, was mir ne Funktion dargibt, eins durch x.

11

12

13

I: Ja.14

J: So. Die schmiegt sich asymptotisch an die x-Achse an. Irgendwann

brauche ich ja, Bender sein Funktionenmikroskop.

15

16

I: Ja, ok.17

J: Irgendwann liegen die (.) auf dem Bildschirm (.) aufeinander,

weil, weil einfach die Auflösung nicht mehr da ist. So, aber wenn

ich’s mir in der Realität angucke, liegen die nicht aufeinander.

18

19

20

I: Hmhm (zustimmend).21

J: Genau wie ich jetzt eben erzählte, dass, man kann vielleicht zwei

Winkel, die nie gleich sind, so hinziehen, dass sie für Cinderella

so nah beieinander liegen, dass er runden muss. (.. ) Also kann

ich dem eigentlich so erst mal nicht trauen.

22

23

24

25

I: Hmhm (zustimmend).26

J: Und das versuche ich auch eigentlich in den Übungen immer zu

sagen, wenn die irgendwas nachmessen, ist schon mal ein schlechter

Ansatz. Und eigentlich, in der Geometrie brauche ich ja auch groß

keine Maße, außer bei Verhältnisse: das ist doppelt so lang, wie

das andere.

27

28

29

30

31

I: Ja.32

J: Und ich finde schon wichtig, dass man (.) eh, eigentlich ohne33
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Maßangaben arbeitet. Und dann brauche ich halt ’nen Beweis.34

I: Aber man könnte ja durch das Messen einfach auch so auf (.)

Ideensuche gehen.

35

36

J: Ja, ja. Auch, auch dieser Zugmodus, erst mal gucken, eh, fällt mir

irgendwas auf, bleiben irgendwelche Punkte gleich, eh, verdoppelt

sich irgendwo immer was, oder sonst irgendwas. Also das finde ich

schon sinnvoll. Dass man da erst mal auf ’ne Idee kommt, und sich

dann natürlich nochmal das (.) durch ’nen Beweis stützt.

37

38

39

40

41
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C.13 Juliane

I: Wenn du jetzt siehst, dass alle Dreiecke in einem Kreis

rechtwinklig sind. Ist das dann für dich ok oder fehlt dir da noch

was? Würdest du da jetzt noch einen Beweis anschließen wollen?..

Oder sagst du nee, ich hab ja jetzt hier gesehen, dass das so ist.

1

2

3

4

Ju: Also man hat ja auch die schöne Funktion, dass man ehm die

Winkelgrößen messen kann,

5

6

I: Hhmm.7

Ju: und wenn man die einstellen würde, und dann wirklich jeden Punkt

(.) so einzeln abgehen würde, vom Kreis, so ganz langsam Schritt

nach Schritt, würde man ja sehen, dass sich der Winkel nicht

ändert.

8

9

10

11

I: Hhmm.12

Ju: Und dann würd mir das reichen.13

I: Hhmm.14

Ju: Aber dafür, finde ich, müsste halt dann die, (..) die Funkti

[bricht ab], müsste halt die Winkelgröße angegeben sein, dass

man auch sieht, dass die sich nicht ändert.

15

16

17

I: Hhmm. Aber das kann man ja (.) ziemlich einfach machen, ne?18

Ju: Ja.19

I: Jetzt haben wir ja in der Vorlesung trotzdem den Satz des Thales

noch mal bewiesen.

20

21

Ju: Hhhm (bejahend).22

I: Was macht das für nen Sinn, dass dann noch mal extra zu beweisen,

obwohl es doch eigentlich schon klar ist, dass es so ist? Oder

macht das überhaupt nen Sinn?

23

24

25

Ju: (Lacht) Also, also ich stehe ja mit Beweisen generell auf

Kriegsfuß (lacht). Also ich finde das anschaulich, alles

konstruieren, immer sehr schön, und beim Beweisen tue ich mich

selber auch immer sehr schwer. Wo ich mir dann denke, warum machen

wir das? Ich sehe es hier doch, und wir sehen es alle (..) und

dann wissen es eigentlich auch alle.

26

27

28

29

30

31

I: Hhmm.32

Ju: Aber für mich. Beweise gehören klar (..), gehören dazu, aber (.)33
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ich könnte auch gut ohne leben (lacht).34

I: Hhmm ok, und warum sagst du, sie gehören trotzdem dazu?35

Ju (...) (Lachend) Es ist so! Das hat Herr Bender drei Semester lang

gepredigt (beide lachen). Ich hoffe, wenn er das liest: „Schöne

Grüße, (..), war sehr schön!“ (beide lachen)

36

37

38

I: Das ist ein guter Satz.39

Ju: (lacht) Und es gibt immer die meisten Punkte in der Klausur!

(lacht)

40

41
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C.14 Kira

I: Kann diese Visualisierung für dich den Beweis des Satzes ersetzen?1

K: (...) Also, dass ich, wenn ich jetzt in diesem Beispiel C bewegen

würde, außerhalb oder innerhalb des Kreises,

2

3

I: Ja.4

K: dass ich dann quasi der Meinung bin, ich müsste es dann nicht mehr

beweisen?

5

6

I: Ja.7

K: Nee! Mm (Verneinend). Also ich bin schon der Meinung, dass man

beweisen sollte, warum da ein 90 Grad Winkel entsteht und nicht

nur sagen braucht, ehm, wenn C auf dem Kreisbogen liegt, ist es 90

Grad und außerhalb ist er kleiner, der Winkel in C, oder innerhalb

größer. Würde für mich nicht reichen, nein.

8

9

10

11

12

I: Was, was hättest du da noch zusätzlich für Informationen durch den

Beweis? (..) Oder warum würdest du Wert auf den Beweis legen?

13

14

K: Ich glaube, um mir erstens bewusst zu machen, dass es eben

immer nur dann so ist, wenn der, ehm, wenn die Sehne auch der

Durchmesser des Kreises ist. Also ich finde, das würde ich

jetzt nicht unbedingt so, oder ich weiß nicht, oder ist das

Voraussetzung, wenn man die Konstruktion hat?

15

16

17

18

19

I: Wir können das ruhig so konstruieren, dass wir den Durchmesser,

(..) also die Sehne (.) als Durchmesser des Kreises nehmen.

20

21

K: Hhmm.22

I: Das können wir ruhig sagen, das konstruieren wir so, das wissen

wir, dass es so ist.

23

24

K: (..) Also ich glaube, ich würde schon beweisen wollen, warum es

ausgerechnet dann 90 Grad ist. Warum das nicht so ist, dass der,

ehm, dass der 60 Grad ist, oder ehm nur 50 Grad, und dann größer

oder kleiner innerhalb und außerhalb des Kreises.

25

26

27

28

I: Hmh. Also die Frage nach dem „Warum“ wird für dich durch das Sehen

nicht beantwortet?

29

30

K: Nee, nicht unbedingt. Also dann, dann sehe ich zwar, dass es ne

Tatsache ist, aber warum diese Tatsache (..) auch gilt, also wäre

für mich nicht unbedingt beantwortet.

31

32

33

368



Anhang

I: Ok. (...) Aber hättest du denn, wenn du es jetzt siehst, ohne dass

es bewiesen ist, na gut, du wüsstest jetzt nicht, warum es so ist.

Aber hättest du, wenn du es siehst, ohne Beweis, noch Zweifel,

dass es so ist?

34

35

36

37

K: Unterbricht. Nee, ne, das nicht, aber (lacht), ich glaub, ich

würde trotzdem wissen wollen, warum. Nee, Zweifel hätte ich keine,

aber, ehm ja.

38

39

40
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C.15 Lara

I: Kann diese dynamische Visualisierung für dich den Beweis ersetzen?

Oder ist es damit noch zweifelhaft, dass es so ist?

1

2

La: (5 Sek. Pause) Hmhm. Nee, wenn ich das ehm so sehe, und weiß, dass

es richtig konstruiert ist,

3

4

I: Hmhm.5

La; Dann (.) bin ich mir auch sicher, dass es so ist. Wirklich.6

I: Würdest du dann (.) für dich noch (.) so anschließend (.) diesen,

diesen Beweis vom Satz des Thales (.) einfordern? Würd’ dir das

noch irgendwas an Mehrwert bringen? (..) Oder ist es eigentlich

auch ohne (.) jetzt schon völlig klar? Durch, dadurch, dass man

halt da alle Fälle (..) betrachten kann?

7

8

9

10

11

La: Ja, wenn ich den, ehm, Beweis nicht kenne, (5 Sek. Pause) dann

wüsste ich ja nicht genau, wie ich es konstruieren müsste (...).

12

13

I: Aber ich könnte doch einfach ’ne Strecke (.) konstruieren, und

dann ’nen Kreis, wo die Strecke Durchmesser ist, und ’nen Punkt

auf den Kreis setzen. Das ist doch ’ne echte Konstruktion. (...)

Solange ich garantiere, dass dieser, die Strecke wirklich der

Durchmesser von dem Kreis ist.

14

15

16

17

18

La: Doch, aber ich glaube, das würd’ mich schon interessieren, warum,

warum es dann so ist.

19

20

I: Also das wird durch die Visualisierung nicht klar?21

La: (...) Nee. (...)22

I: Aber zweifelst23

La: (unterbricht) Also, dass es so ist,24

I: Ja?25

La: das würde ich dann (...) nicht unbedingt anzweifeln, weil man ja

alle Fälle quasi (..) durch (.) spielen kann.

26

27

I: Ja.28

La: Aber der Beweis gehört schon trotzdem noch (..) dazu, um es

(..). Ja, man kann ja trotzdem nicht (.) jeden Fall wirklich

durchspielen, so, den es gibt. Man kann sich nur ganz, ganz viele

Fälle aussuchen, aber das ist ja immer noch kein Beweis dafür,

dann.

29

30

31

32

33
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I: Also im Prinzip, dass es so ist, wäre für dich (.) aber nicht (.)

da, wo du Zweifel hättest?

34

35

La: Nee, also, für mich ist das schon so, wenn ich bei ganz, ganz,

ganz vielen Fällen festgestellt habe, dass es so ist, und (.)

ich kein Gegenbeispiel gefunden habe, dann (.) bin ich mir schon

ziemlich sicher, dass es so ist, wirklich auch. Aber, ehm, ein

Beweis sichert das Ganze natürlich erst ab.

36

37

38

39

40

I: Hmhm. Und du sagtest gerade auch, warum das so ist. (...) Kann der

Beweis sagen, oder habe ich das falsch verstanden?

41

42

La: Ehm, ja, genau. Der Beweis kann mir erklären, warum dass dann so

funktioniert, wie es da funktioniert.

43

44

I: Aha. (6 Sek. Pause) Was (.) überzeugt dich denn jetzt mehr, wenn

du jetzt. Man kann ja den Satz des Thales (.) einfach statisch

beweisen. An einem Beispiel kann ich ’nen Beweis führen und sagen:

Zack, und jetzt habe ich bewiesen, dass das so ist. Das ist ja

eine Möglichkeit. Und die andere Möglichkeit ist wirlich (...)

hier alle möglichen oder viele mögliche Fälle zu betrachten und zu

sehen, dass es so ist. (..) Was überzeugt denn mehr, letztendlich?

45

46

47

48

49

50

51

La: Also, als Mathematikerin würd’ mich der Beweis natürlich, eh,

mehr überzeugen, aber so (..) allgemein überzeugt es mich mehr,

wenn ich sehe, dass es so ist. Weil es mir dann mehr vergegen-,

vergegenwärtigt, weil, der Beweis, das sind dann ja Zahlen und so,

und da rechnet man ’rum und (.) der ist nicht so anschaulich. Und

(..), ja, natürlich weiß ich, wenn ich das beweise, dass es mir

das deutlicher machen sollte, aber, ehm (.) ja eigentlich ist es,

ist das Anschauliche (.) doch wichtiger, dann (lacht).

52

53

54

55

56

57

58

59
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C.16 Leo

I: Kann diese Visualisierung für dich den Beweis des Satzes ersetzen?1

Le: Ehm. Nein. Also ich brauche doch den Beweis. Man, man könnte das

ja auch genauso auf dem Papier

2

3

I: Ja4

Le: beweisen.5

I: Ja.6

Le: Dass das wirklich da oben dann immer 90 Grad sind.7

I: Hmh (bejahend).8

Le: Eh, Cinderella bestätigt das nur, dass es dann wirklich so ist,

wenn wir es dann halt bewegen, dass es dann halt immer noch diese

90 Grad hat.

9

10

11

I: Ja12

Le: Also sonst, ähäm, ein Beweis ist das für mich nicht.13

I: Hhmm14

Le: Für mich bestätigt das nur in diesem Fall.15

I: Ja. (..) Ehm, wenn du jetzt in der Situation wärest, dass du den

Thales Satz in irgendeiner Form (...) vorstellen solltest, also

vor Schülern oder so, ihr macht den Satz des Thales. Wie würdest

du das denn machen? Würdest du (.) dann wirklich nur den formalen

Beweis machen? Oder würdest du das mit dem Programm machen? Oder

würdest du beides machen?

16

17

18

19

20

21

Le: Also ich würde schon, eh, eh, beides machen.22

I: Ja?23

Le: Also, man kann ja vorher sagen, sozusagen die Grundlagen

erarbeiten. Dass das dann auch so ist, mit den 90 Grad.

24

25

I: Hhmm.26

Le: Und dann, um das noch mal zu festigen, könnte man das Programm

halt dafür einsetzen, zu zeigen, dass das halt so ist.

27

28

I: Hhmm29

Le: Wenn man dann eh, einen Punkt auf diesem (.) Kreis dann bewegt.30

I: Hhmm. Wenn du jetzt nur die Visualisierung machst, ohne den

formalen Beweis, hättest du dann denn noch Zweifel an dem

Sachverhalt, dass es so ist?

31

32

33
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Le: (6 sec) Ähäm na gut, man sieht das ja hier, dass das halt so ist.

Ich meine, was soll, ich glaube nicht, dass dann, dass man dann

34

35

zweifeln würde, (..) dass das halt nicht so ist.36

I: Hhmm37

Le: Man sieht ja, da ändert sich nichts.38

I: Hhmm39

Le: Und bleibt so (..), aber (.) damit (.) ist halt wie gesagt, nicht

erklärt, noch lang nicht erklärt, (..) warum das halt so ist.

40

41
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C.17 Lutz

I: Kann diese dynamische Visualisierung einen Beweis ersetzen?1

L: (Lacht, anscheinend ironisch gemeint) (...) Ehm.2

I: (redet dazwischen) Ne blöde Frage, ne?3

L: Da gibt es ja auch ganz interessante (.) Sachen in der Mathematik,

die anscheinend ja sehr viel(..) berechnen, und es dann irgendwann

4

5

meinen, zu glauben, aber (.) für mich (.) nicht, also in der

Geometrie gibt es ja auch ganz einfache Methoden, Sachen zu

beweisen.

6

7

8

I: Beispiel?9

L: (Geste zum Bildschirm) Was wir gerade gemacht haben. Das war ja

nicht(.) so schwer.(lacht)

10

11

I: Naja.(lacht)12

L: Ich meine, ich kann das ja hier auf dem Kreis hin und her ziehen

und kann dann auch, wenn ich wirklich viel Zeit habe, jeden

einzelnen Pixel abfahren, dann kann ich ja auch schon sagen, ja,

auf dem Computer, in dieser Situation, ist das gerade auch wahr

13

14

15

16

I: (fällt ins Wort) Ja, aber wenn ich...17

L: (unterbricht) Aber es gibt ja nur endlich viele Positionen, wie18

ich C hinschieben kann.19

I: Wenn ich, weiß gar nicht ob es so was gibt? Nen Computer nehmen

würde, der eine höhere Anzahl an Pixeln hat, wäre es nicht mehr

wahr dann müsste ich´s noch mal neu...

20

21

22

L: (L fällt ins Wort) Auf dem Rechner (.) wenn ich nicht weiß, also

wie die Auflösung von Cinderella insgesamt ist, aber (...) man

hat ja auch nicht beliebig viele Punkte, aber (..), es gibt ja nur

endlich viele Punkte, die man hier berechnen kann, und

23

24

25

26

I: Ja27

L: Ehm, da wir da aber mehr als endliche viele Positionen für C

haben, auf unserem Kreis,

28

29

I: Ja30

L: und generell auch, um überhaupt A und B zu wählen, und dadurch

den, die Größe des rechtwinkligen Dreiecks, das kann man ja

niemals mit nem Computerprogramm abdecken.

31

32

33
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I: Das ist auch ein interessanter Aspekt, ja, hab ich mir noch gar

nicht so klar gemacht. (...)

34

35

L: Aber, für mich, nein!36
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C.18 Marietta

I: Kann diese dynamische Visualisierung für dich den Beweis ersetzen?1

Ma: (5 sec. Pause) Ehm, das es überall so ist, dass, dass der Winkel

90 Grad ist?

2

3

I: Ja, genau.4

Ma: Ja, würde ich eigentlich schon machen.5

I: Hmhm (zustimmend).6

Ma: Also ich beweise ja damit, dass es überall, überall auf dem

Kreisbogen, dass der 90° ist.

7

8

I: Hmhm (zustimmend). Wir haben ja dann in der Vorlesung (.) trotzdem

noch so ’nen formalen Beweis gemacht, ich weiß jetzt gar nicht

mehr, wie, ist ja auch jetzt egal. Hat das für dich dann noch ’nen

(.) ’nen Mehrwert, diesen formalen Beweis anzuschließen? Oder (.)

sagst du: Ja, kann man machen, muss man aber nicht?

9

10

11

12

13

Ma: Also für mich hat eigentlich, ehm, ehm, dieser Beweis mehr Wert,

weil das ist ja das, was ich mir letztendlich, (.) was ich mir so

merke. Was ich mir besser einprägen kann, wenn ich mir das (.) so

vorstelle, so’n (..) schriftlicher Beweis, irgendwie

14

15

16

17

I: Hmhm?18

Ma: den mache ich eigentlich nur dann, wenn er gefordert ist, aber

es ist jetzt nicht das, was jetzt irgendwo in meinem Kopf jetzt

zurückbleibt, wenn ich in zwei Jahren noch an die Geometrie oder

an die Vorlesung denke.

19

20

21

22

I: Hmhm (zustimmend).23

Ma: Sondern es ist einfach das: (..) ja, ich hab’ das gesehen, ich

hab’, ich hab’ mir das gemerkt, das konnte ich so auch für mich

auf diese Art und Weise beweisen, dass es so ist.

24

25

26

I: Hmhm. Also, (...) wie ist jetzt das Wort? Es bleibt länger hängen?27

Ma: Ja.28

I: Ja. Würdest du denn dann, ehm, (...) sagen, ja, (.) es war (..)

trotzdem okay, beides zu machen, oder hätte das erste, hier dieses

hier, eigentlich auch ausgereicht?

29

30

31

Ma: Also, ehm, (..), also mir hätte das jetzt ausgereicht, hier diesen

Beweis (zeigt auf den Bildschirm) zu machen, aber ich finde auch

32

33
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nicht, dass es jetzt schadet, wenn man mal so, sich so an formale

Beweise einfach mal herantraut, also.

34

35

I: Okay, aber wenn man es jetzt nur auf dem formalen Weg gemacht

hätte, ohne (..) die Visualisierung, wärst du dann denn auch

zufrieden gewesen?

36

37

38

Ma: Ich denke mal, dass ich es vielleicht zu Hause einfach noch

mal nachgezeichnet hätte. Wenn ich dies Programm jetzt nicht

hätte, dann einfach mit, mit ’nem Zirkel, und hätte dass mal

nachgemessen.

39

40

41

42

I: Hmhm.43

Ma: Natürlich, wenn wir jetzt einen formalen Beweis führen, dann

glaube ich schon, dass das so ist. Wenn ich den nachvollziehen

kann, klar, dann ist das ’ne klare Sache für mich dann.

44

45

46

I: Aber dies ist dann halt einfach einprägsamer, dann?47

Ma. Ja.48
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C.19 Melanie

I: Also kann diese dynamische Visualisierung einen Beweis ersetzen?

Brauch ich noch mehr? Warum brauch ich noch mehr? Warum brauch ich

nicht noch mehr? Also wie siehst du das?

1

2

3

M: ... Ehm, also ich glaube, (...) also ich denke, dass es schon eine

Art Beweis ist.

4

5

I: Hhmm6

M: Äh, (..) ja durch diese dymnamische Verschiebung, also es wird

mir schon klarer, dass der (.) rechte Winkel dann immer (.) gleich

bleibt, über dem Durchmesser. Ähäm und ich denke, ähm wenn man es

anders beweisen (.) wollte, müsste man ja, zum Beispiel mit Stift

und Papier,

7

8

9

10

11

I: Hhmm12

M: dann müsste man ja, äh ganz viele Dreiecke zeichnen,13

I: Ja?14

M: Ähm die, (.) ähäm über diesen Kreisbogen, äh an verschiedenen

Stellen liegen.

15

16

I: Ja.17

M: Also die Punkte im, (.) also ich meine jetzt den Punkt, wo der

rechte Winkel ist, so. (lacht)

18

19

I: Ja ja, hhmm.20

M: Ja und ehm, dann würde man sich ja viel Mühe machen und äh (..]

hätte viele Dreiecke gezeichnet und es wäre dann eben immer

dasselbe rausgekommen, dass der rechte Winkel (..) trotzdem immer

90 Grad ist. Und mit der, ehm, (..) mit derSoftware

21

22

23

24

I: Ja?25

M: kann ich das ja einfach, indem ich das bewege, so zeigen,26

I: Ja27

M: dass der Winkel immer gleich bleibt und ich finde das ist erstmal

(.) Zeitersparnis und ehm, (.) ah, ja auch, auch einleuchtend,

also, es ist ja so, also.

28

29

30

I: Hhm... Wenn du jetzt auf dem Papier zeichnen würdest, wieviele

Dreiecke (..) meinst du, müsstest du zeichnen, damit es (...) klar

ist?

31

32

33
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M: (...) Hmmmm, mindestens drei? (lacht)34

I: Ok (...) und ehm (...) hier (...) bei dem Programm wäre das dann35

einfacher?36

M: (..) Ja also, ehm, wenn man sich (.) schon länger mit dem Programm

auskennt, das schnell zeichnen kann,

37

38

I: Ja.39

M: (...) denke ich, ist das einfacher.40

I: Ja. Und ehm bräuchtest du dann noch einen zusätzlichen Beweis,

oder wäre das dann für dich so ok?

41

42

M: (..) Klar, man kann ja noch den klassischen Beweis machen (..),

eh, wie in der Schule,

43

44

I: Ja.45

M: wie man den da gelernt hat.46

I: Ja47

M: (...) Den könnte man ja, also, also man sollte sowieso die

klassischen Beweise nicht ausser Acht lassen, oder? In der Schule

sollte ja jeder ihn gehört haben, auch.

48

49

50

I: Ja. (..) Aber wäre es noch nötig? Würde das noch zusätzlich was

bringen, oder?

51

52

M: Es bringt ja eigentlich die gleiche Erkenntnis.53

I: Hhmm54

M: Also man könnte (...) ehm (...) also klar, man könnte es noch

zusätzlich machen, aber ich denke, Cinderella eh veranschaulicht

das schon ganz gut und (...) ehm, es müsste nicht gemacht werden,

weil es wird ja dadurch auch gezeigt.

55

56

57

58

I: hhmm ok.59
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C.20 Natalie

I: Das ist ja auch so ’ne dynamische Visualisierung (...) ehm, ist

das dann jetzt ausreichend, um zu sagen (.. hier, guck’s dir

an, ich zeig es dir? Wir haben die Situation, und völlig egal,

woran oder (..) wohin ich C lege, das ist jetzt immer ein rechter

Winkel. Ist das für’s Verständnis (...) gut?

1

2

3

4

5

N: Ähä. Gut ist es bestimmt, aber vielleicht auch nicht ausreichend.6

I: Hhmm.7

N: Ähäm es ist ja gut, dass ich erstmal das sehe, und vieles, was man

sieht, dann nimmt man das erstmal an.

8

9

I: Hhmm.10

N: Aber ja (..) vollkommend ausreichend (..) würde ich das jetzt auch

nicht so sehen. Also da würde ich (.), da würd’ man schon (.)

11

12

I: Was würd dir fehlen?13

N: (...) Ja (...), ’ne Begründung, warum das so ist.14

I: Hhmm.15

N: Würd’ mir fehlen. Ja, mir würd’ auch der Beweis fehlen (..), weil,

man will ja auch irgendwie beweisen (...), man will ja nicht nur

alles glauben, was man sieht.

16

17

18

I: Hhmm.19

N: Aber ich glaube, dass es grundlegend erstmal gut ist, wenn man es

dann sieht, und dann kann man an den Schritt Beweis gehen.

20

21
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C.21 Rebekka

I: Kann so eine Visualisierung für dich einen Beweis ersetzen? Also

dass das jetzt so gilt, der Satz des Thales?

1

2

R: Ja. Weil, wenn ich hier dran ziehe, dann sehe ich ja, dass das

immer so bleibt. Das wär ja bei ner richtigen Zeichnung nicht.

3

4

I: Was ist jetzt ne richtige Zeichnung?5

R: Ja, wenn ich es auf Papier so zeichne , dann könnte ich ja

gar nicht sehen, wie das (.), also klar, ich könnte mehrere

Zeichnungen machen, aber so ist das ja viel bequemer und ich kann

es wirklich (..) sonst wo hinziehen und sehe das es wirklich (.)

immer so bleibt.

6

7

8

9

10

I: Ja, also du siehst das es wirklich immer so bleibt, das heißt,

dass ist im Prinzip auch (.) ein vollwertiger Beweis, dann?

11

12

R: Für mich schon, ja.13

I: Hhhmm. Ehm, wenn man dann noch so einen formalen Beweis

trotzdem anschließt, was bringt, bringt das dann noch was(..)

an zusätzlichen (.) Dingen oder hat das noch nen Sinn?

14

15

16

R: Mmm (...)17

I: Oder könnte man sich das auch sparen, dann?18

R: (...) Ja man hat ja (.) jetzt nicht immer die, eh, also das

Programm da, dass man das vielleicht auch (.) anderen Leuten

(..) so klar machen kann, aber für mich persönlich hab ich es

ja gesehen.

19

20

21

22

I: Also im Prinzip ehm, wenn man die Möglichkeit nicht hat es zu

zeigen, wäre das ein anderer Weg?

23

24

R: Ja25

I: Aber wenn man die Möglichkeit hat es zu zeigen, ist es im Prinzip

(...) nicht mehr nötig? Nicht mehr erforderlich?

26

27

R: (..) Mmmm. Es ist vielleicht interessant aber, (.) für mich ist es

schon bewiesen.

28

29

I: Aha (..) ok.30
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C.22 Samuel

I: Kann für dich diese Visualisierung den Beweis des Thalessatzes

ersetzen?

1

2

S: Nen, Beweis, nee! Also das ist ja nur ne, eh, ne Skizze und (.)

rein theoretisch könnte es passieren, dass da irgendwo nen Punkt

sein kann, weil man ja nicht genau ziehen kann. Und dann könnte

es sein, dass irgendwo unterhalb der Geraden, dann irgendwo

ein Punkt ist, auf dem Kreis, der dann nicht unbedingt 90° ist.

D.h., das ist nur ’ne Skizze oder ’ne Zeichnung, mit der kann

man es veranschaulichen, aber niemals beweisen. Ein Beweis ist

für mich immer noch wesentlich genauer, weil man dann halt mit

einer gewissen Formel ran geht, und mit gewissen mathematischen

Gesetzen, und solange da nicht bewiesen wird, dass die falsch

sind, diese Gesetze, kann man da auf jeden Fall sicher sagen,

dass ist so. Wenn man, wenn AB durch den Mittelpunkt geht, ist der

Winkel (.) oberhalb und unterhalb genau 90 Grad. Punkt.

3

4

5

6

7

8

9

10

11

12

13

14

15

I: Und wenn du es jetzt aber zeichnest, mit dem Programm, und du

beguckst es, beobachtest, ziehst, misst, hättest du denn dann noch

Zweifel, würdest du wirklich glauben, da könnte ja ein Punkt sein,

wo es

16

17

18

19

S: (unterbricht) Wahrscheinlich nicht. Aber (..) das wäre halt nur

’ne Vermutung. Die müsste ich erst noch belegen.

20

21
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C.23 Silke

I: Kann diese dynamische Visualisierung mit Cinderella den Beweis des

Satzes ersetzen?

1

2

S: (.) Ersetzen nicht, aber vielleicht noch mal verdeutlichen, für

einige, die es sich nicht bildhaft vorstellen können, ist so ne

Konstruktion (.) nochmal vor sich zu sehen, auf jeden Fall nochmal

besser. Um zu sehen, dass der Winkel immer 90 Grad bleibt.

3

4

5

6

I: Ja?7

S: Also zur Verdeutlichung auf jeden Fall. Aber den Beweis richtig

ersetzen (..) würde ich sagen, nicht.

8

9

I: Was, was ist der Vorteil, wenn man es jetzt mit Cinderella zeigen

kann?

10

11

S: Das man auch sieht, dass der Satz des Thales stimmt. Dass, dass

man noch mal einen Beweis hat. (..) Dass das stimmt.

12

13

I: Also meinst du, wenn man es sieht, glaubt man es mehr,14

S: (unterbricht) Als wenn man es nur hört, ja.15

I: Als wenn man nur den Satz hört.16

S: Hhmm (bejahend). Man hat ja gleich noch mal den Beweis (.) vor

Augen, dass der Satz des Thales stimmt, und wenn man es dann

gleich (.) hat, in Cinderellea, dann (.).

17

18

19

I: Aber, wenn, wenn du jetzt sagst, man hat dadurch den Beweis noch

mal vor Augen,

20

21

S: Hmh (bejahend).22

I: dann ist es doch ein Beweis, wenn ich es hier zeige?23

S: Ja. Ja.24

I: Oder nicht?25

S: Stimmt.26

I: Und würdest du dann trotzdem noch (.) Wert legen auf diesen

formalen Beweis? (5 sec Pause) Oder was, würde der dir noch

irgendwas zusätzlich bringen?

27

28

29

S: Es nochmal aufgeschrieben zu haben (.) auch, auf jeden Fall. Wie

man, wenn ich jetzt nur die Zeichnung habe und gar nicht weiß, wie

ich an dieses Ergebnis komme, bringt mich ja auch nicht weiter.

Ich muss ja auch wissen, wie (..) ich (.) dahin komme.

30

31

32

33
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I: Hhmm.34

S: Also an sich bringt dieses Aufgeschriebene auch was. Wie, wie man35

zum, (.) darauf kommt, dass der Winkel immer 90 Grad ist.36

I: Hhmm37

S: Wenn man nur das Endprodukt vor Augen hat, dann (...) würd ich

sagen, also mir würde es nicht so viel bringen, wenn ich jetzt nur

die Zeichnung hab. Ich müsste auch wissen, wie ich dahin komme.

38

39

40

I: Ja. (..) Aber du würdest es schon nicht mehr anzweifeln, wenn du

es sehen würdest?

41

42

S: Genau!43

I: Oder doch noch?44

S: Nee, dann nicht mehr! Weil dann hab ich ja wirklich, dass was ich

gerade gelesen hab, nochmal bildlich vor Augen, und sehe, dass das

stimmt.

45

46

47

I: Hhhmm.48

S: Aber alleine das Bild (.) würde für mich persönlich nicht (.)

reichen. Weil, man kann es ja auch einfach nur gezeichnet haben.

Man weiß ja gar nicht, ob es wirklich so (.) stimmt.

49

50

51

I: Ja ja. Aber alleine der Beweis würde auch nicht reichen, ne?52

S: Nee, also nein. Für mich auch nicht. Wenn dann beides, zusammen.53

I: Aha. Ok54
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C.24 Sophie

I: Kann diese dynamische Visualisierung mit Cinderella einen Beweis

ersetzen? (...) Für dich, jetzt?

1

2

So: (...) Hmhm. (..) Was auf jeden Fall, (..) ich denke mal, schon,

aber vielleicht teilweise mit ’ner Erklärung dabei, dass man das

Bild plus ’ne Erklärung hat. Oder plus ’nen kleinen Beweis noch.

Ich glaube, das ist eher, dass man es erst einmal sieht, wie ist

es,

3

4

5

6

7

I: Ja?8

So: aber wenn man einen rein formalen Beweis nochmal machen möchte,

dann müsste man das, glaube ich, aufschreiben.

9

10

I: Also, habe ich das jetzt richtig verstanden, dass du meinst11

So: (unterbricht) Zum Teil. Zum Teil ist es der Beweis. (..) Mit da

so drin, würde ich sagen. (...) Weil, hier hatten wir ja keine

90 Grad, und darum hat es nicht geklappt [dass der Punkt auf dem

Kreisbogen ist, G.W.]. Und hier haben wir jetzt, habe ich den ja

festgemacht, den 90° Winkel, und da hat es funktioniert.

12

13

14

15

16

I: Ja. Ja, und das ist dann okay? Soweit? Oder fehlt da jetzt dann

immer noch was?

17

18

So: (...) Für ’nen formalen Beweis fehlt da bestimmt noch was.19

I: (lacht) Was wäre jetzt formaler Beweis, und was wäre dies hier?20

So: Das ist eher so die (...) Zeichnung, dies ist halt das Praktische

eher dazu, wie es funktioniert, ehm, man kann’s ausprobieren, man

sieht, wie es ist, und (..) bei einem Beweis, da müsste man halt

genau sagen, warum ist da jetzt ein 90° Winkel, [..], das warum

eher, das dann erklären.

21

22

23

24

25

I: Und wäre dieses Warum, ist das jetzt so für dich jetzt in der

Situation noch wichtig gewesen, oder ist es für dich so okay: du

hast es ausprobiert mit nicht 90 Grad, da funktioniert es nicht,

und du hast es ausprobiert mit 90 Grad, da funktioniert es.

26

27

28

29

So: Also ich seh das jetzt schon ein, dass das hier ein 90° Winkel

sein muss, damit der Punkt da drauf [auf dem Kreisbogen, G.W.]

liegt. Mir würd’s persönlich jetzt reichen, aber ich weiß ganz

genau, dass das den Dozenten in den Vorlesungen nicht reichen

30

31

32

33
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würde (lacht). Und so etwas merkt man sich dann eher, wenn man es

halt selbst ausprobiert hat, und dadurch, eh, ja, habe ich jetzt

festgestellt, dass es dann halt nur klappt, mit 90° und dann sehe

ich das auch eher ein. Dann verstehe ich, ist es verständlicher.

Würd ich jetzt sagen.

34

35

36

37

38
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C.25 Thilo

I: Kann diese Visualisierung für dich den Beweis des Satzes ersetzen?1

T: (9 Sek. Pause) Für mich persönlich vielleicht schon. Aber, es muss

ja wieder begründet sein, es reicht ja wieder nicht aus, wenn ich

nur sage, dass ich, dass ich es sehe oder nachvollziehen kann,

denn ich muss ja schon den Beweis liefern. Die Begründung.

2

3

4

5

I: Ja. Ehm, wieso sagst du, für dich persönlich schon? Heißt das,

dass du eigentlich keine Zweifel daran hast, dass es wirklich so

ist?

6

7

8

T: Richtig. Weil manche Sachen kann man ja wohl nachvollziehen.9

I: Ja?10

T: Und weiß, dass es richtig ist, muss aber trotzdem noch die

Begründung dafür finden.

11

12

I: Ja. (..) Und dies ist so ’ne Sache, wo du weißt, dass es richtig

ist?

13

14

T: Wo ich davon ausgehe, ja.15

I: Ja. Und, ehm, warum macht man denn, obwohl man weiß, dass es

richtig ist, trotzdem noch den Beweis? Bringt das noch irgendwas

(..) an Zusatzinformationen?

16

17

18

T: (...) Ja, man weiß dann, dass man es richtig verstanden hat (..)

und andere können (.), ja, können es nachvollziehen (.), wie man

darauf kommt.

19

20

21

I: Aha?22

T: Würd’ ich jetzt mal so sagen.23

I: Aha. Nur mit der Zeichnung, ist dass dann noch nicht

nachvollziehbar?

24

25

T: (6 Sek. Pause) Ja, für manche vielleicht schon, aber es reicht

halt nicht aus.

26

27

387



Anhang

C.26 Verena

I: Kann die dynamische Visualisierung für dich einen Beweis ersetzen?1

V: Ist für mich kein Beweis.2

I: Was ist das dann für dich?3

V: Das ist für mich ein Beispiel. Das ist für mich, (.) oder eine

Veranschaulichung, ne Anwendung

4

5

I: Ja.6

V: des Beweises.7

I: Ja.8

V: Aber ein Beweis ist das nicht (..). Für mich ist der Beweis der

Umfangswinkelsatz.

9

10

I: Ja.11

V: Dass ich halt sage, der Mittelpunktswinkel ist hier 180 Grad12

I: Hhmm13

V: und ehm, der, ich weiß, dass der ehm Umfangswinkel halb so groß

ist. Und da gab es ja auch einen Beweis zu, wenn ich den jetzt

gerade spontan wüsste, wäre es ganz toll. Ehm, das wäre für mich

ein Beweis und der Thaleskreis ist ja einfach nur ne, ehm, ist ja

im Grunde das gleiche, nur dass wir die Besonderheit haben, mit 90

und 180 Grad.

14

15

16

17

18

19

I: Hhmm hhmm (zustimmend). Aber wenn ich doch jetzt die Lage von C

verändere auf dem Kreisbogen. Dann habe ich doch nicht nur ein

Beispiel, ich kann doch ganz, ganz viele Beispiele betrachten.

20

21

22

V: Ja, das hilft mir auch zum Verständnis des Satzes, aber das ist

trotzdem kein Beweis.

23

24

I: Aha25

V: Für mich26

I: Aha, ok.27

V: Findest du, das ist ein Beweis?28

I: Ich werd ja hier nicht befragt (lacht)29

V: Für mich ist das kein Beweis. Es zeigt mir, es ist überall so, und

es kann auch so, aber nur weil es überall so ist, heißt das nicht,

dass es immer so, also ok, das war ein bisschen blöd ausgedrückt.

Aber nur weil das auf den Punkten so ist, wo ich es

30

31

32

33
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gerade ausprobiert hab, heißt das nicht, dass es immer so sein

muss.

34

35

I: Aha ok ok36

V: Das muss immer so sein, weil wir das ja mit dem Umfangswinkelsatz,

eh, bewiesen haben.

37

38

I: Hhmm ok39
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Leitfadeninterview

1. Vorname, Semesterzahl und Studiengang

2. Wann hast du die Veranstaltung Elemente der Geometrie besucht?

3. Hast du bereits vorher mit dem Programm Cinderella oder einer anderen dynamischen

Geometriesoftware gearbeitet?

4. Falls der Besuch der ElGeo bereits länger her ist: Hast du nach Besuch der Veranstaltung

das Programm Cinderella weiterhin genutzt, wenn ja, wofür, wenn nein, warum nicht?

5. Welche anderen Mathe-Veranstaltungen hast du bereits gehört?

6. Arbeitest du mit dem Computer eher allein oder mit anderen zusammen?

7. Hast du die Hausaufgaben für die Elemente der Geometrie in der Gruppe erarbeitet,

oder habt ihr nur eure Ergebnisse zusammengetragen?

8. Welche Rolle hat Cinderella beim Bearbeiten der Aufgabe vorhin für dich gespielt? Wie

hast du das Programm eingesetzt?

9. Wie hättest du die Aufgabe mit Bleistift und Papier gelöst?

10. Welche Vorteile/Nachteile siehst du darin, dass die Figuren gegenüber der Papierzeich-

nung beweglich sind?
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11. Wann und wozu benutzt du den Zugmodus?

12. Gibt es Beispiele, wo du mit Hilfe des Ziehens eine Erkenntnis gewonnen hast?

13. Erkläre den Unterschied zwischen einer Konstruktion, die mit Cinderella hingezogen

wurde und einer echten Cinderella-Konstruktion. Kannst du ein Beispiel geben?

14. Kann die dynamische Visualisierung mit Cinderella einen Beweis ersetzen? Warum bzw.

warum nicht?

15. Welches sind aus deiner Sicht die Vor- und Nachteile der DGS beim Einsatz im der

Geometrie?

16. Wann arbeitest du mit DGS, wann eher mit Papier und Bleistift?

17. Mit Cinderella sind keine Falschannahmen möglich (z.B. ich kann nicht annehmen, dass

eine Gerade nicht durch einen Punkt geht, wenn sie durch den Punkt geht). Ist dies für

dich ein Problem?

18. Wie würdest du jemandem erklären, was eine Ortslinie ist? Könntest du eine Definition

für den Begriff Ortslinie geben?

19. Wir reden viel von wandernden Punkten oder sagen: der Punkt bewegt sich oder er

läuft auf einer Bahn. Was hältst du von diesen Formulierungen?

20. Nenne Gründe, warum du selbst später in deinem Unterricht DGS einsetzen oder auch

nicht einsetzen würdest.

21. Bist du mit einer Veröffentlichung von Video-Ausschnitten im Rahmen von Vorträgen

auf Fach-Tagungen und unter Mathematik-Didaktikern einverstanden?

Anmerkung: Das Leitfaden-Interview ist eine überarbeitete Version des bereits von Bender

& Maczey (2004) verwendeten Instruments. Die Fragen, die im wesentlichen dieser Arbeit

entnommen sind, sind kursiv gedruckt.
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