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Chapter 1

Introduction

It is a well-accepted fact that doings and decisions of virtually every acting sub-

ject – whether it is an individual, an organization, or even an entire country –

do inevitably influence and connect to the actions of other subjects. Depending

on the context, these mutual interdependencies induce network-like relationships

which may take various forms. In daily life, for example, friendships and interper-

sonal relations between people span cohesive networks in which they communicate

and exchange information. Especially in recent times, these structures take concrete

shapes since more and more people are organizing themselves in social networks like

Facebook. But similar considerations also apply on institutional levels. Companies,

for instance, form reciprocal agreements which induce a high degree of collaboration

between them. This not only impacts competition but it also influences the prod-

uct variety obtainable in the market. Moreover, many countries enter bilateral or

even multilateral contracts which affect trade flows on a global level. Consequently,

for many years now, investigating economic networks has become a key element of

economic science and the number of publications dealing with this subject is contin-

uously increasing. In particular, the studies presented in this thesis also contribute

to this field of research.

Since network structures are characteristic for many settings and applications, the

corresponding analysis is divided into several (overlapping) branches. Among them

one could mention not only stability and efficiency of network structures but also

communication issues or public good provision, to name but a few. In addition to

this, many laboratory experiments and econometric studies have been conducted

in this context. As these examples already indicate, economic networks have been

approached in literature in manifold and highly heterogeneous ways. Thus, it is im-

6



possible to embed all of them in a general framework. Instead, the objective of this

thesis is to highlight cooperative as well as strategic games in network economics in

order to explore this aspect in more detail and to complement it by analyzing issues

which have not been covered so far.

Roughly speaking, the vast majority of research questions in network theory that

utilize game theoretic tools is addressed in three specific branches. The first one con-

centrates on allocation rules for network games, i.e., on the issue of cooperatively

allocating welfare among the members of a (given) network. The main objective of

the second one is, on the other hand, to study strategic network formation in order

to predict which networks are likely to occur. Last but not least, the third branch

uses game theoretic concepts for analyzing locational competition on networks. As

a consequence of this division, the main part of this thesis consists of three self-

contained chapters (i.e., each can be read independently of the others), and each

of them focuses on one of the aforementioned topics. Chapter 2 looks at allocation

rules for network games whereas Chapter 3 concentrates on non-cooperative network

formation and Chapter 4 on locational competition on networks. The main goal is

to model the economic problems addressed in these branches more realistically in

order to enlarge the field of possible applications. This is done by allowing for more

flexibility in the formal substructure of the standard approaches. In order to give a

more precise idea about the proceeding, each of the branches will be outlined briefly

in the remainder of this introduction by surveying the most important contributions

and highlighting the main research questions. However, each chapter also contains

a comprehensive introduction that leads more into the details of the corresponding

topic and discusses interdisciplinary literature as well.

1.1 Allocation Rules for Network Games

The origins of this branch date back to cooperative game theory. Traditionally,

cooperative games with transferable utility (TU games) focus on situations where

a group of individuals generates some welfare by cooperation. The goal is to find

appropriate ways for allocating the welfare among the members of the group. This

is, of course, far away from being a trivial issue. Nevertheless, there are many stud-

ies addressing this issue and providing a variety of possible solutions (also known as

allocation rules if the solution is single-valued) which are usually based on certain

stability or fairness requirements (see, e.g., Peleg and Sudholter, 2003).
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One of the most known allocation rules is the famous Shapley Value (Shapley, 1953)

which is remarkable for at least two reasons: On the one hand, it is surprisingly in-

tuitive and, on the other, it can be characterized by a combination of convincing

axioms (see, e.g., Roth, 1988). In fact, the Shapley Value is the unique solution

concept which is efficient (i.e., the entire welfare is allocated to the individuals),

symmetric (i.e., all individuals are treated equally), additive (i.e., if there are no

externalities between two TU games, the corresponding allocations are mutually

independent, too), and satisfies the dummy axiom (i.e., individuals who do not con-

tribute receive a payoff of zero).1 Ever since this solution concept was introduced,

it has inspired many researchers who have varied and extended Shapley’s idea in

several ways. Among them is also Myerson (1977) who was the first author who

explicitly took network relations between the individuals into account. He assumed

that the lines of cooperation are restricted by these relations and he adjusted the

Shapley Value accordingly. In fact, he has shown that there is a unique allocation

rule (by now known as the Myerson Value) which, on the one hand, allocates the

welfare generated by each component of the network only among the corresponding

members and, on the other, guarantees equal bargaining power in terms of that if a

link between two individuals is deleted, both are affected equally (he called this fea-

ture “fairness”). In Myerson (1980), he generalized this approach to more complex

network structures, namely to mathematical hypergraphs which he interpreted as

conference structures, and he also extended his solution by translating the axiom-

atization from his previous work to the more general setting. A further prominent

allocation rule which is based on the setup of Myerson (1977) is the well-known

Position Value (Borm et al., 1992). The main idea of Borm et al. (1992) was to

construct a two-stage allocation procedure where first each link obtains a share of

the welfare which then, subsequently, is split equally between the two corresponding

partners. Thereby the authors assumed that the payoff of each link is determined

according to a modification of the Shapley Value. For trees (i.e., for networks with-

out cycles) Borm et al. (1992) also provided an axiomatic characterization of the

Position Value but they were not able to find one for arbitrary networks. Moreover,

in the same year, van den Nouweland et al. (1992) extended this allocation rule to

conference structures, too.

Although the aforementioned papers included networks into the setting of TU games

in a reasonable way, they are still subject to at least one major limitation: The au-

1In his seminal contribution Shapley actually used slightly different axioms. But the characteriza-

tion mentioned here is more prominent (cf. Winter, 2002).
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thors incorporated network relations between the individuals just for restricting the

possible lines of cooperation, but the induced welfare did not depend on the network

directly. This assumption is maintained by many works built on Myerson’s model

(e.g., Albizuri et al., 2005; Hamiache, 1999; Herings et al., 2008). For an overview

see Slikker and van den Nouweland (2001). However, Jackson and Wolinsky (1996)

were the first to recognize that in several environments the limitation appears to be

implausible. In their seminal contribution, they therefore followed a different ap-

proach and considered a model in which the welfare of cooperation directly depends

on the network structure. Even though this step is straightforward and relatively

small from a technical point of view, it allowed for many interesting economic im-

plications and gave fresh momentum to the analysis of economic networks. In fact,

Jackson and Wolinsky (1996) not only extended the Myerson Value and its charac-

terization to the generalized setting but they also showed that using this allocation

rule induces a certain type of stability. Especially the latter point inspired many

papers dealing with network formation (cf. Section 1.2).

Later, Jackson (2005) challenged some fundamental aspects of the Myerson Value.

His main criticism was that it is appropriate only in situations where the network

describing the relations between the individuals is fixed, as this allocation rule does

not take into account that, for example, certain links might be added. Following this

idea, Jackson (2005) introduced alternative solutions and provided characterizations

by means of axioms which explicitly allowed for some flexibility in the underlying

network. In the same year, Slikker (2005a,b) also extended the Position Value to

the setting of Jackson and Wolinsky (1996). Since in this model the networks play

a more central role, the main motivation that first each link receives a share of the

welfare became even more explicit. In fact, due to the higher degree of flexibility,

van den Nouweland and Slikker (2012) were able to provide an characterization of

the Position Value which parallels the one of the Shapley Value. More specifically,

the Position Value is the unique allocation rule which is efficient (i.e., the entire

welfare generated by a given network is allocated among the individuals), additive

(i.e., if there are no externalities between two network games, the corresponding

allocations do not affect each other as well), link anonymous (i.e., if the welfare only

depends on the number of links, the same goes for the payoff of the individuals), and

satisfies the superfluous link property (i.e., if a link does not affect the generated

welfare, it does not influence the individuals’ payoffs either).

Two further prominent solution concepts not mentioned so far are the egalitarian

allocation rule and the component-wise egalitarian allocation rule (both were in-
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troduced in Jackson and Wolinsky (1996) but the authors named them differently).

The motivation of the first one is straightforward: The welfare is split equally among

all individuals. Under the component-wise egalitarian allocation rule, on the other

hand, the focus is on the components. That is, the welfare generated by each of them

is equally distributed only among the corresponding members (given that there are

no externalities between the components). Jackson and van den Nouweland (2005)

showed that the latter allocation rule allows for interesting stability implications.

The second chapter of this thesis is built on or is related to all the aforemen-

tioned publications and reconnects network theory to its foundations in coopera-

tive game theory. In fact, the main motivation is two-fold: First, the model of

Jackson and Wolinsky (1996) is extended even further in order to capture a class of

applications which is neither covered by network theory nor by cooperative game

theory. More specifically, almost all of the models dealing with economic networks

are limited by the implicit assumption that cooperation takes place only within pairs

of individuals. In real life, however, this appears to be unrealistic in many settings.

Indeed, cooperation usually takes place not only within pairs but also within larger

groups such as departments of an organization, for example, and generically these

groups may overlap. Therefore, Chapter 2 focuses on the more general framework

of overlapping group structures which extends not only network games but also TU

games.

The second goal is to provide a framework which allows analyzing two-stage allo-

cation procedures like the Position Value in a structured way. In the context of

overlapping group structures this can be done particularly tractably by exploiting

the existence of a unique dual game where individuals and links interchange roles.

Proceeding this way allows not only modeling two stages explicitly but also formu-

lating convincing properties for solution concepts which characterize them. Thereby

it will be shown, for example, that the Position Value and iteratively applying the

Myerson Value can be characterized by similar axiomatizations.

1.2 Strategic Network Formation

In most of the publications surveyed in the previous section, the authors designed

allocation rules for situations where some welfare already had been generated by

a given network. However, the authors usually did not discuss under which cir-

cumstances which structures will emerge. Since this is of fundamental interest,
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especially in recent years more and more attention has been devoted to the issue of

network formation and it has been examined from numerous angles. An intuitive

and straightforward approach is to focus on structures which are stable with respect

to certain deviations. In order to give a brief overview, the following passages sum-

marize the most groundbreaking and prominent contributions to this approach.

The first work which explicitly modeled network formation has been provided by

Aumann and Myerson (1988) who considered a model of sequential link formation.

Given a finite set of individuals and starting with the empty network (i.e., there are

no links at all), the individuals were allowed to progressively add links according to a

given (random) order. Thereby the authors assumed that it is not possible to delete

links after they had been formed and the final payoff was determined by the My-

erson Value (cf. Section 1.1). For solving this game, Aumann and Myerson (1988)

focused on a refinement of Nash equilibria (Nash, 1951), namely on subgame perfect

equilibria (Selten, 1965). In this specific setting, this basically means that no pair of

players wants to add a link even if the sequence does not start at the empty but at

a different network. In particular, subgame perfectness implies that when deciding

whether to form a link or not, the individuals also take into account which network

might emerge in the end. Although the authors introduced the setup formally, they

did not analyze it extensively but rather discussed particular examples in which

their approach induced more plausible results than coalition formation in coopera-

tive game theory. However, since the existence of an ordering which specifies which

links may be added to the network cannot be guaranteed generically, there are not

many economic problems to which the model has been applied. Some years later,

Myerson (1991) took an alternative and more convincing approach. He introduced

a link formation process in which the individuals simultaneously announce to whom

they want to be connected and if two individuals agree to being connected, a link

between them is formed. The final payoff of the individuals is thereby supposed to

directly depend on the structure of the resulting network. Although Myerson (1991)

only briefly mentioned this link formation process and did not develop it in detail,

some attention has been devoted to it in literature. Indeed, the process inspired

several authors who adopted and varied it in multiple ways (e.g., Arcaute et al.,

2013; Bala and Goyal, 2000; Dutta and Mutuswami, 1997; Gilles et al., 2012).

Since Myerson’s setup obviously induces a non-cooperative game (by now known as

consent game), it is natural to focus on Nash equilibria for finding stable structures.

However, although the basic idea of the approach is quite plausible and appeal-

ing, using this stability concept has a significant drawback in a network framework.
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Applying Nash equilibria is appropriate only in settings where the focus is on devi-

ations of single players. But in Myerson’s game, the consent of both corresponding

individuals is needed to establish a new link. A straightforward implication of this

coordination problem is that every network is always stable when nobody wants

to sever one of her connections (like in the empty network, for example). Thus,

in a sense, there are too many stable outcomes. The first stability concept which

overcame this inappropriateness and was broadly accepted in literature stems from

Jackson and Wolinsky (1996). In fact, their work not only gave fresh momentum to

the analysis of allocation rules (cf. Section 1.1) but it also was the initial point

of a new stream of literature addressing network formation. The main idea of

Jackson and Wolinsky (1996) was to focus on single links, i.e., they considered a

network to be “pairwise stable” if no single link is changed anymore. Thereby, they

assumed that deleting a connection can be done unilaterally, while establishing a

new one needs the consent of both corresponding individuals. Phrased differently, a

network is pairwise stable if, on the one hand, nobody benefits from severing one of

her links and, on the other, if someone would like to add a link, the corresponding

partner would suffer from this. In this context, Jackson and Wolinsky (1996) found

among other things that often there might be a tension between efficiency and sta-

bility, i.e., in many settings it might be the case that none of the networks which is

desirable from a social planner’s point of view is stable and vice versa.

Although the existence of pairwise stable networks is an issue generically (see, e.g.,

Hellman, 2013; Jackson and Watts, 2001), motivated by the simple but convincing

idea of the stability concept, many researchers applied the basic setup to a vari-

ety of applications. Goyal and Joshi (2003, 2006), for example, used the model for

analyzing the collaboration of firms and free-trade agreements between countries.

But in contrast to Jackson and Wolinsky (1996) they have shown that in these

more specific settings stability and efficiency are generically not mutually exclusive.

Further contributions, to name but a few, stem from Calvó-Armengol (2004) and

Bramoullé and Kranton (2007) who study, respectively, job contact networks and

risk sharing in networks.

However, even though the concept of pairwise stability is appealing in many ways,

in some settings it might be ineligible and, thus, it has been varied and refined in

several ways. The four most prominent modifications are pairwise stability with side

payments, pairwise Nash stability, strong stability, and farsighted stability.

As mentioned above, Jackson and Wolinsky (1996) implicitly assume that a link can
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be severed unilaterally, while establishing a new one needs just the consents of both

corresponding partners. In particular, since other individuals cannot influence these

decisions, cutting off a connection or establishing a new one might cause externalities

within the network. Taking this into account, Bloch and Jackson (2007) considered

a model variation in which side payments between the individuals are possible. In

fact, including compensations into the model allows to some extent to internalize

the externalities and to decrease the tension between efficiency and stability.

Another major criticism of pairwise stability is that this concept just focuses on al-

terations of single links. But in some situations, individuals might have an incentive

to change several connections at the same time. This aspect has been captured at

least partially by Calvó-Armengol and İlkılıç (2009) who combined the approaches

of Myerson (1991) and Jackson and Wolinsky (1996). In their paper, the authors

considered a network to be “pairwise Nash stable” if and only if it is pairwise sta-

ble from the perspective of Jackson and Wolinsky (1996) and Nash stable from the

perspective of Myerson (1991). This concept is appropriate in situations where the

individuals are able to unilaterally delete several of their connections at the same

time and where, if two individuals benefit from forming a link, there occurs no co-

ordination problem as in Myerson (1991). Hence, it is straightforward to show that

pairwise stability and pairwise Nash stability coincide if and only if in every pairwise

stable network, no player benefits from severing any set of her connections.

Some years earlier already, Jackson and van den Nouweland (2005) chose an even

more general approach and examined the “strong stability” of networks. The main

idea is that the members of a network might be able to coordinate themselves within

subgroups in order to conduct multiple changes at the same time. Consequently,

Jackson and van den Nouweland (2005) considered a network to be strongly stable if

there exists no subgroup of individuals where all of them could improve by changing

the network in such a way that they do not need the consent of individuals who are

not contained in the subgroup. In this context, the authors analyzed requirements

under which stable and socially optimal outcomes coincide, that is, they discussed

conditions guaranteeing that there is no tension between stability and efficiency.

Page et al. (2005) challenged a further shortcoming of pairwise stability. In fact,

the concept requires that the individuals are not forward-looking, meaning that

they only care about the immediate loss (or benefit) of changing a single link. Im-

plicitly, they are supposed to not take into account that this might cause further

changes of the network which finally might generate a higher (or lower) benefit. By

adopting the concepts of Chwe (1994) to network theory, Page et al. (2005) tried

13



to overcome this shortcoming and discussed the “farsighted stability” of networks.

The idea is, basically speaking, that the individuals are able to predict which struc-

ture might occur at the end of an arbitrarily long sequence of changes. Although

Page et al. (2005) did not define farsighted stability explicitly, according to their

main motivation a network is farsightedly stable if each deviation might lead to a

sequence of changes which finally makes the deviating individual(s) worse off. Note

that this is obviously closely related to strong stability. The main difference is that

here, the individuals behave less cooperatively. They do not coordinate directly

but they conduct non-cooperatively those changes which lead to further deviations

that finally provide them with a higher benefit. For further publications addressing

farsighted stability, see Page and Wooders (2009) or Herings et al. (2009), to name

but a few.

Another stream of literature which should not be neglected in this introduction

deals with dynamic network formation. The first publication addressing this issue

is from Bala and Goyal (2000). For specifically chosen payoff functions, the authors

studied the best response dynamic in the framework of Myerson’s consent game.

More precisely, they analyzed a repeated version of the game where the individuals

are supposed to play a best response against the strategies chosen in the previous

period. In addition to this, Bala and Goyal (2000) assumed that there is a certain

probability that the individuals stick to their previous strategy in order to escape

perpetual miscoordinations. Since these dynamics induce a Markov chain, the au-

thors focused on the question to which networks the process converges to. To this

end, they conducted several simulations and for small numbers of players, the out-

comes mostly coincided with the strict Nash equilibria of the one-shot game.

One year later, Watts (2001) followed a slightly different approach by considering

a random process in which in each period only one single link is picked randomly

with uniform probability. If the link is already contained in the network, then either

of the involved individuals is allowed to delete it. If the link is not contained in

the network, then the two corresponding individuals may decide to establish the

connection (both need to agree) and, at the same time, each of them may sever any

of her other connections. Thereby, the individuals are assumed to care only about

the immediate benefit, i.e., they are supposed to not be forward-looking. The main

insight of the paper was that the process converges to a socially optimal outcome

only under quite specific conditions.

In Jackson and Watts (2002), the authors modeled dynamic network formation in a
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similar way as Watts (2001) did. They also considered a random process in which in

each round exactly one link is picked randomly. However, there are two main differ-

ences to Watts (2001). First, inspired by pairwise stability the authors assume that

only the selected connection may be altered but the other links remain the same.

Second, after the involved individuals have decided whether to alter the connection

or not, with some small probability there might occur a mutation which reverses the

decision. That is, if the link is now contained in the network it is deleted and vice

versa. Given this Markov chain, Jackson and Watts (2002) considered a network

to be stochastically stable if it is in the support of the process as the probability

of the mutation converges to zero. In fact, they also provide a characterization of

these networks (by using “minimal resistance trees”) but this characterization is

relatively unintuitive and the economic interpretation is not obvious. Taking up

this subject, Tercieux and Vannetelbosch (2006) further elaborated on the setting

of Jackson and Watts (2002). In doing so, they characterized stochastically stable

networks by refining pairwise stability.

Another publication contributing to this stream of literature is Feri (2007). The

author analyzed stochastic stability in the framework of Bala and Goyal (2000) by

using a slightly varied payoff scheme but analyzing a random process which is sim-

ilar to the one from Jackson and Watts (2002). Thereby, he found that the set of

strict Nash networks from Bala and Goyal (2000) and the set of stochastically stable

networks almost coincide.

Similar to the aforementioned literature, the third chapter of this thesis also con-

centrates on network formation. It is a joint work with Ana Mauleon and Vincent

Vannetelbosch, whom I met when I was visiting the Center for Operations Research

and Econometrics (CORE) in Louvain-la-Neuve for six months. During my stay we

jointly worked out our research question in many fruitful and interesting discussions

and developed our model accordingly. Indeed, it complements the aforementioned

literature in at least two ways. First, it considers a more general notion of networks.

Our main objective is to analyze the formation of group structures where individuals

are allowed to engage in several groups at the same time. Formally this means that

each link in a network may contain not only two partners but an arbitrary number

of individuals. Second, the more distinguishing feature is the formal introduction

of constitutions. Each group or link is supposed to have a constitution governing

which members may join or leave it. Given these constitutional rules, a network is

considered to be stable if none of the groups is altered any more. This, in particu-
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lar, implies that the stability of a network depends on explicitly formalized rules of

network formation, and the analysis conducted in Chapter 3 is therefore two-fold:

It not only focuses on the issue of whether stable networks actually exist but also

on how the constitutions need to be designed in order to guarantee stability if the

individuals follow a “trial-and-error strategy”.

After having constructed the formal substructure, I undertook the analysis of the

model in order to derive the results presented in Chapter 3. The trial-and-error

behavior, for example, is formalized by means of a random process which is similar

to the one of Jackson and Watts (2002). Based on these preliminaries, we further

elaborated on the central theme in order to emphasize the main insights of our

model. For instance, we show that enhancing the blocking power of the individuals

does not necessarily lead to more stability and that a stable network is obtained for

sure if and only if there is a certain degree of consent about which feasible deviations

(according to the constitutions) are beneficial and which are not. Furthermore, by

embedding many-to-many matchings into our setting, we apply the model to job

markets with labor unions. To some extent the unions may provide job guarantees

and, thus, have influence on the stability of the job market.

1.3 Locational Competition on Networks

The large field of locational competition dates back to the pioneering work of

Hotelling (1929). He illustrated the competition between two firms operating in

a heterogeneous market by means of a simple but intriguingly intuitive two-stage

model. At the first stage, both competitors simultaneously choose a position in

the market which Hotelling (1929) modeled as a linear interval. The consumers are

supposed to be uniformly distributed along the interval and their utility is linearly

decreasing in the distance to the firm they buy from. At the second stage, each

competitor chooses a price for her good where the marginal costs are assumed to be

constant. Taking the prices and the locations into account, the consumers buy the

product which gives a higher benefit to them. Hotelling (1929) thereby assumed that

the total demand is totally inelastic. Given this setup, he found what has by now

become famous as the principle of minimal differentiation: In the unique subgame

perfect Nash equilibrium (cf. Section 1.2) both firms cluster in the middle of the

market and choose identical prices. By translating this result to daily life, Hotelling

(1929) tried to explain the increasing amount of standardization:
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“Buyers are confronted everywhere with an excessive sameness. [...]

there is an incentive to make the new product very much like the old,

applying some slight change which will seem an improvement to as many

buyers as possible without ever going far in this direction. [...] So general

is this tendency that it appears in the most diverse fields of competitive

activity, even quite apart from what is called economic life. In politics

it is strikingly exemplified.” (Hotelling, 1929, p. 54)

Due to its clear and convincing message, the model received a great deal of attention.

However, by showing that there actually exists no subgame perfect Nash equilibrium

in the model, d’Aspremont et al. (1979) proved about 50 years later that Hotelling

(1929) was wrong. Furthermore, the authors also reinforced the main message of

several other studies which had shown that Hotelling’s setup is extremely sensitive

with respect to the underlying assumptions (e.g., Downs, 1957; Eaton and Lipsey,

1975; Lerner and Singer, 1937). Even if the fundamentals of the model are relaxed

or varied only slightly, it might change the final outcome considerably. These in-

sights lead to a broad discussion about to which extent minimal differentiation is

caused by spatial competition since other publications like de Palma et al. (1985,

1990) or Rhee (1996), to name but a few, demonstrated that Hotelling’s main result

can be restored under certain conditions. Indeed, up to now there is no final answer

to this question and the discussion is not over yet (e.g., Hehenkamp and Wambach,

2010; Irmen and Thisse, 1998; Król, 2012; Meagher and Zauner, 2004).

The first three works which used networks for modeling the underlying market were

Hakimi (1964), Slater (1977) and Wendell and McKelvey (1981).2 Actually, the

main motivation of Hakimi (1964) was to study the problem of finding the best po-

sition of a single facility in a network (with respect to certain requirements) but he

did not study a competitive environment. However, he briefly mentioned that this

would be a reasonable extension. Following this idea, Slater (1977) deepened these

considerations. Since he developed his model independently from Hotelling (1929)

and as he was only interested in the location choices of the two competitors, he ab-

stracted from the second stage, i.e., he did not take price competition into account.

Moreover, he assumed that the two firms enter the market sequentially in order to

guarantee the existence of an equilibrium outcome. Nevertheless, although Slater’s

motivation was different to Hotelling’s, for the special class of tree networks he also

2In the context of spatial competition, networks are often denoted as graphs. This convention is

maintained in Chapter 4 as well.
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found that the firms minimally differentiate at the median (which he called centroid)

of the tree. For arbitrary networks he was only able to solve the model partially.

Independently of the two aforementioned works but motivated by Hotelling (1929)

and voting theory (e.g., Downs, 1957), Wendell and McKelvey (1981) tried to solve

the problem of finding a “Condorcet-winner” in a network. This issue can be shown

to be equivalent to finding a Nash equilibrium if there are two competitors. Since

the authors focused on voting theory, similarly to Slater (1977) they did not consider

a second stage with price competition. Indeed, they also found that given a tree

network, the median is the only Condorcet-winner.

Based on these works, the analysis of locational competition on networks continued

in several directions. Hakimi (1983) extended the model of Slater (1977) by con-

structing a more general setup in which both competitors were allowed to place more

than only one facility, i.e., they were allowed to occupy more than only one position

(but the number of positions was exogenously fixed). Analogously to Slater (1977),

he also focused on the location choices of the competitors and assumed that they

enter the market sequentially. This, in particular, implies that there always exists

equilibrium outcomes. However, Hakimi (1983) proved that, except for special cases,

finding these equilibria is very complex since the optimization problem of the leader

as well as of the follower generically is NP-hard and cannot be solved in polynomial

time. That is, although there exists an optimal solution for sure, finding it takes

much effort. These insights gave birth to a stream of literature which tries to find

efficient algorithms for solving the aforementioned issues or variations of them (e.g.,

Hansen and Labbé, 1988; Kress and Pesch, 2012; Spoerhase and Wirth, 2009). But

the vast majority of these contributions did not address the issue of minimal differ-

entiation.

While the studies mentioned in the previous passage focused on situations where

the competitors enter the market sequentially, a further stream of literature consid-

ered, in contrast to this, the case of simultaneous entry like Wendell and McKelvey

(1981) did. A work which is particularly in spirit with Hotelling (1929) stems from

Eiselt (1992). He considered a two-stage competition where the competitors first

occupy a position in a tree and then, at the second stage, choose their prices. This

is, on the one hand, obviously the most straightforward extension of Hotelling’s

model to a network setup. But, on the other hand, a consequence of proceed-

ing that way is that generically there exists no equilibrium. In order to avoid the

non-existence problem, Eiselt (1992) also analyzed a setup without price compe-

tition, i.e, he analyzed the case where prices of both competitors are fixed. This
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had already been discussed by Eiselt and Laporte (1991). As a by-product they

thereby confirmed the results of Slater (1977) and Wendell and McKelvey (1981):

Given that prices are identical, both competitors will minimally differentiate at the

median. Later, Eiselt and Laporte (1993) also analyzed the locational competition

between three players on a tree and derived similar results. However, if the analy-

sis is not restricted to trees, abstracting from price competition is not sufficient for

guaranteeing the existence of equilibria as has been shown by Knoblauch (1991) and

Dürr and Thang (2007). Moreover, even if equilibria exist, finding them is NP-hard.

Therefore, most authors who focused only on the first stage, i.e, only on locational

competition, needed to impose further requirements in order to generate significant

results. For example, de Palma et al. (1989) studied a framework in which the indi-

viduals’ utility not only depends on the distance to the closest competitor but also

randomly on other characteristics not captured by the underlying network. Further-

more, Eiselt and Bhadury (1998) elaborated on the existence of Nash equilibria if

the competitors have fixed but unequal prices and Gur et al. (2012) concentrated

on particular subclasses of networks like cacti, to name but a few.

In addition to the aforementioned publications, there are several other works which

do not abandon the second stage completely but vary it by considering other forms of

price competition or Cournot competition. For example, Lederer and Thisse (1990)

and Dorta-González et al. (2005) assumed “delivery pricing” instead of “mill pric-

ing”. This means, roughly speaking, that at the second stage, the firms do not charge

a single price which is the same for every buyer but instead they determine specific

prices for each of the nodes of the network. In fact, given some further relatively

mild assumptions, this not only guarantees the existence of equilibrium outcomes

but it also assures that these outcomes are socially optimal. In contrast to having

price competition at the second stage, some further works studied Cournot compe-

tition instead (e.g., Labbé and Hakimi, 1991; Sarkar et al., 1997). More specifically,

the firms are again supposed to choose their positions first but then, subsequently,

the basic assumption is that they compete in quantities but not in prices. Most of

the corresponding studies focus on providing sufficient conditions for assuring the

existence of equilibria since those do not necessarily exist in this model variation.

Although the fourth chapter of this thesis (which is a joint work with Berno Büchel

where both of us contributed equally) is about locational competition on networks,

the main question that is addressed is not restricted to networks and should also be

interesting in a more general context. Indeed, our main motivation is to challenge a
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fundamental aspect of Hotelling’s approach. Although the literature on locational

competition (not only with respect to networks) is rich and highly diversified, it has

been virtually always assumed that individuals who prefer the same position fully

agree upon the ranking of the other alternatives, i.e., they have identical preferences

or utility functions. This is, of course, hard to justify since it might well be that in

real life there are consumers with the same favorite brand but who disagree about

the ordering of two other brands. Therefore, in our study we scrutinize whether

given outcomes of locational competition rely on the questionable homogeneity re-

quirement or not. If it can be shown, that this assumption is not driving the results,

then the model is put on a solid foundation (at least with respect to this crucial

aspect).

To fix ideas: Given an underlying network, we consider an equilibrium outcome to

be “robust” if it does not depend on the aforementioned homogeneity requirement.

A key result of our analysis is the characterization of robust equilibria by four con-

ditions which are based on partitioning the underlying space into hinterlands and

competitive zones. Applying this result allows us first of all to judge which of the

standard results are robust. In fact, we find that several outcomes do not depend

on the homogeneity requirement, but some do. Furthermore, by discussing whether

the classical observations of minimal differentiation is a robust phenomenon, we find

strong support for an old conjecture that in equilibrium firms form local clusters.
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Spatial competition in networks under delivered pricing. Papers in Regional Sci-

ence, 84 (2), 271–280.

Downs, A. (1957). An economic theory of political action in a democracy. Journal

of Political Economy, 65 (2), 135–150.
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Chapter 2

Two-Stage Rules

2.1 Introduction

Ever since the beginnings of economic theory, finding appropriate as well as convinc-

ing ways for distributing welfare has been one of the fundamental problems. In the

context of cooperation between individuals, there are two branches, namely the The-

ory of Cooperative Games and, more recently, the Theory of Economic Networks,

that especially focus on this question and propose several solutions, which are called

values or allocation rules. This study relates to both approaches. More specifically,

the main purpose is to formalize and examine two-stage allocation procedures. To

gain an idea of this issue, consider situations where individuals cooperate in several

groups or coalitions which may overlap, like in departments of organizations, for

example. The main motivation of two-stage allocation procedures is that the gener-

ated welfare is not distributed to the individuals directly but first to the groups and

then, in a second step, within each group. In fact, for modeling this is it necessary

to extend the aforementioned approaches, Network Theory and Cooperative Game

Theory, to a more general model.

To understand the difference between Network Theory and Cooperative Game The-

ory it is necessary to analyze the view of cooperation in both branches. Coopera-

tive games with transferable utility (TU games) provide a theoretical framework for

modeling environments where the individuals are partitioned in coalition structures,

i.e., some individuals act together in groups to achieve a common goal but stan-

dardly it is assumed that nobody is a member of different groups at once (see, e.g.,

Aumann and Drèze, 1974). In Network Theory, on the other hand, coalitions are re-

27



placed by networks which represent bilateral relationships between individuals (see,

e.g., Jackson, 2008). Indeed, one of the most characteristic features of networks is

that they exhibit some overlapping structure. However, in these models, cooperation

generically takes place only within pairs of individuals, which is a limitation as well.

Consider, for example, the models from Radner (1993), Bolton and Dewatriopont

(1994), or Arenas et al. (2010). Here, the authors use networks for representing the

structure of organizations. Within each network, the information is shared along the

links: that is, the information is exchanged among pairs of individuals. In general,

however, employees also work together within larger groups, such as projects, de-

partments, or divisions, and in many environments these groups may overlap, which

neither could be depicted by using bilateral networks nor by using TU games.

A convenient tool for modeling overlapping coalition structures are mathematical

hypergraphs which can be interpreted as a kind of overlapping coalition struc-

ture. Up to now, there is no general notion for these structures. Depending on

the context they are called “conference structures” (e.g., Myerson, 1980), “affilia-

tion networks” (e.g., Wasserman and Faust, 1994), “overlapping coalitions” (e.g.,

Chalkiadakis et al., 2010), “clubs” (e.g., Fershtman and Persitz, 2012) or simply

“hypergraphs” (e.g., Jorzik, 2012; van den Nouweland et al., 1992). To stress both,

the origins from Network Theory as well as from Cooperative Game Theory, in this

paper they will be called coalitional networks.

Formalizing two-stage allocation procedures is in line with several other works from

literature (e.g., Aumann and Drèze, 1974; Borm et al., 1992; Hart and Kurz, 1983;

Owen, 1977). More specifically, in their publications the authors introduce and

discuss particular examples, like the Aumann-Drèze Value, Owen’s Value or the

Position Value. Another contribution stems from Winter (1989) who analyzes co-

operative games with exogenously-given hierarchical structures. In this context,

he extends the Aumann-Drèze Value and Owen’s Value to arbitrary numbers of

stages. However, these publications do not provide a general framework for dis-

cussing two-stage allocation procedures in a structured way. In the context of

coalitional networks, this can be done tractably by exploiting the existence of a

unique dual network which can be interpreted as some kind of dual game where

individuals and coalitions (or links, respectively) interchange roles. This allows not

only modeling two stages explicitly but also formulating convincing properties for

solution concepts which characterize them. Indeed, it is possible to integrate the

aforementioned examples into the extended setting presented here. As it shall be

proven in this study, these solution concepts can be characterized by using similar
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axiomatizations. In particular, the second part of the paper is strongly motivated

by van den Brink (2007). In his work the author shows that the Shapley Value

(Shapley, 1953) and Equal Division Solutions can be described by means of similar

axioms. This leitmotiv will be found twice in the present study: Not only by show-

ing that the aforementioned two-stage allocation procedures satisfy similar axioms,

but also by extending the characterizations from van den Brink (2007) to coalitional

networks.

Some further publications should be mentioned in the context of this study. One

of the first authors theorizing overlapping coalition structures was Myerson (1980).

His study is motivated by TU games and the focus is on conference structures

which are modeled by means of hypergraphs. However, Myerson’s approach dif-

fers from the present work in at least one important aspect. He uses overlapping

coalition structures only for restricting the possible lines of cooperation between the

individuals, but the generated value or welfare, respectively, does not depend on

the underlying communication structure directly. This assumption is maintained

in most of the works built on Myerson’s publication (e.g., Albizuri et al., 2005;

van den Nouweland et al., 1992). In recent years, computer scientists also tended to

pay more and more attention to Cooperative Game Theory. They use TU games to

model the behavior of autonomous agents, and in this context they also investigate

overlapping coalition structures. However, most of the corresponding publications

(e.g., Chalkiadakis et al., 2010) focus on extensions of the core which, will not be

discussed here.

Although several notions and concepts used in this work are adopted from Network

Theory (e.g., from Jackson, 2005; Jackson and Wolinsky, 1996), overlapping coali-

tion structures have only been attempted by few scholars in this field. Among them

are Fershtman and Persitz (2012) who extend the Connections Model to the general-

ized framework and Jorzik (2012) who examines allocation rules for hypergraphs. A

further interesting work stems from Caulier et al. (2012) who study network forma-

tion for situations where the set of individuals is already partitioned into coalitions.

In this context, the authors examine the stability and efficiency of networks.

Moreover, from a technical point of view the model introduced here also relates to

many-to-many matchings (see, e.g., Sotomayor, 2004). In fact, there exists a canon-

ical bijection between many-to-many matchings and coalitional networks. However,

virtually all publications from this field do not address two-stage allocation rules

but have different objectives.

29



The remainder of the paper proceeds as follows: In the next section, the model will

be introduced formally. This includes the definition of coalitional networks as well

as the extension of value functions and characteristic functions to the framework

analyzed here. The objective of Section 2.3 is to formalize allocation rules and to

characterize two-stage allocation procedures in general. Section 2.4 is devoted to

particular examples, like the Position Value, for instance. Finally, Section 2.5 briefly

summarizes and presents an agenda for further research.

2.2 The Model

Let N = {i1, . . . , in} be a finite set of players or individuals who are able to generate

some value or profit by cooperation. The cooperation takes place within groups

which may overlap. For this, let a finite set M = {c1, . . . , cm} of connections or

coalitions be given. The elements of M are interpreted as projects or departments

of an organization, for example, and the players are members of these projects.

Definition 2.1. Let h ∶M Ð→ 2N be an arbitrary mapping, where 2N is the power

set of N . The tuple (N,M,h) is a coalitional network.

If a coalitional network represents the structure of an organization, for instance,

then the mapping h assigns to each project of the organization c ∈M the employees

h(c) ⊆ N that are working on it. In particular, from a mathematical point of view,

the coalitional network (N,M,h) is simply a hypergraph (see, e.g., Berge, 1989) and

the set of all coalitional networks is denoted by H. Note that ∣H∣ = 2nm. For ease

of handling, coalitional networks are also simply called networks in the following.

But it should be mentioned that in literature bilateral networks (i.e., each connection

contains exactly two players) are usually termed this way. Moreover, since N and M

are not altered most of the time, a coalitional network (N,M,h) will be frequently

identified with h only if no confusions can result.

Example 2.1. As an example let N = {i1, i2, i3} and M = {c1, . . . , c4}, i.e., there
are three players and four connections. Suppose all players are contained in c1, the

players i2 and i3 are moreover contained in c2 and c3, while c4 only contains i1.

A coalitional network (N,M,h) describing this situation formally would be given by

h(c) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{i1, i2, i3}, if c = c1
{i2, i3}, if c ∈ {c2, c3}
{i1}, if c = c4.
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c2

c3

c1

c4
b
i1

b
i2

b
i3

⎛⎜⎜⎝

c1 c2 c3 c4

i1 1 0 0 1

i2 1 1 1 0

i3 1 1 1 0

⎞⎟⎟⎠
Figure 2.1: The coalitional network in Example 2.1

The main difference to Myerson’s Communication Structures (Myerson, 1980) is

that here for c ∈M also ∣h(c)∣ = 1 is allowed: that is, it is possible that a connection

contains only one player. If c ∈M represents a project or the like and the players are

employees, then it is of course possible that an employee is working on the project

alone. Therefore, these structures are not excluded a priori.1 A further important

special case is ∣h(c)∣ = 0, i.e., it is also possible that a connection is empty or, in

other words, no worker is assigned to the project. The coalitional network h∅ with

h∅(c) = ∅ for all c ∈M is called empty network.

One of the most basic and important insights in Hypergraph Theory is the existence

of a unique dual hypergraph or dual network, respectively (see, e.g., Berge, 1989).

Definition 2.2. Let (N,M,h) ∈ H be a coalitional network. The corresponding

dual network (M,N,h∗) is given by h∗(i) = {m ∈M ∣ i ∈ h(m)}.

i1

i2

i3

b
c4

b
c2

b
c3

b
c1

⎛⎜⎜⎜⎜⎜⎝

i1 i2 i3

c1 1 1 1

c2 0 1 1

c3 0 1 1

c4 1 0 0

⎞⎟⎟⎟⎟⎟⎠
Figure 2.2: The dual network in Example 2.1

For given h ∈ H, the dual network assigns to each player the set of connections she is

contained in. As the name implies, it is a coalitional network, too, and similar to h it

1The main arguments for assuming that each link has to contain at least two players are often

based on communication issues, like that at least two players are needed to confer, for example.

However, in this case it is still possible to adjust the incentives for forming connections of size

one accordingly. For instance, by assuming that these connections or departments, respectively,

generate no or even negative profit (see Section 2.3 for a formal introduction of players’ payoffs).

For an extensive discussion of this issue see Aumann and Drèze (1974).

31



will be simply denoted by h∗ in the following. LetH∗ denote the set of dual networks.
Note that for all i ∈ N and c ∈ M , c ∈ h∗(i) if and only if i ∈ h(c). This implies

(h∗)∗ = h and, thus, the dual network is uniquely determined. Phrased differently,

the dual network is simply an alternative way of representing the network structure.

However, the salient point is that from an economic perspective the players and

connections interchange roles. In the dual network, the players link the connections

and vice versa.

The following notions and definitions are variations or straightforward extensions

from Network Theory (cf. Jackson, 2008). A network h ∈ H is a subnetwork of

h′ ∈ H (denoted by h ⊆ h′) if each connection in h is contained in the corresponding

connection of h′, i.e., h(c) ⊆ h′(c) for all c ∈ M . An important special case of

subnetworks is the restriction to a certain set of individuals. Given S ⊆ N , the

subnetwork h∣S is obtained from h by deleting in all connections all players who are

not contained in S. Formally: h∣S(c) = h(c) ∩ S for all c ∈M ∣h,S. Given h ∈ H, the
size ηh of the coalitional network is the aggregated cardinality of all connections: i.e.,

ηh ∶= ∑c∈M ∣h(c)∣. Two players i, j ∈ N are called neighbors or adjacent if there exists

c ∈M with i, j ∈ h(c). Furthermore, the degree degi(h) of the player is the number

of connections she is contained in: i.e., degi(h) = ∣{c ∈M ∣ i ∈ h(c)}∣. Note that the

aggregated degree equals exactly the size of the network, that is, ∑i∈N degi(h) = ηh.
If i ∈ N has a degree of zero, she is said to be isolated and a player who is not

isolated is active. The set of active players is N(h) = {i ∈ N ∣ degi(h) ≥ 1}.
For two players i, j ∈ N an i-j-walk in the coalitional network h ∈ H is a sequence

of players (i0, . . . , ik) with i = i0, j = ik and il is adjacent to il+1 for all 0 ≤ l < k. A

nonempty set of players S ⊆ N is said to be connected if for any pair i, j ∈ S there

exists a walk between them. Furthermore, S is called association if it is maximally

connected: i.e., it is connected and for all i, j with i ∈ S and j ∉ S there is no

i-j-walk in h. A nonempty network h̄ ∈ H is called component of h ∈ H if there

exists an association A ⊆ N with h̄ = h∣A. In the following, let A(h) be the set of

all associations and C(h) the set of all components. Note that an association may

consist of only one player who may have a degree of zero.

Definition 2.3. A value function is a mapping v ∶H Ð→ R assigning a real number

to each network h ∈ H, where v(h) is interpreted as the worth of the network.

Thereby it is assumed that each value function is normalized, i.e., v(h∅) = 0.
The worth of a network is the total value of cooperation. If h ∈ H represents the

structure of some organization or the like, v(h) might be the organization’s profit or
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budget. Let V denote the set of value functions. For each v ∈ V the corresponding

dual value function v∗ ∶ HN,2M Ð→ R is obtained by assigning to each dual network

h∗ the worth of its “primal” one: v∗(h∗) ∶= v ((h∗)∗) = v(h). This induces, in

particular, a bijection between V and the set of the dual value functions V∗. For

avoiding notational inconveniences, in the following V and V∗ will be identified with

each other. That is, no distinction will be made between the both sets and both of

them will just be denoted by V . Phrased differently, v ∈ V implies the value function

is the primal one if v is applied to a network h ∈H and it implies v is the dual value

function if v is applied to the dual network h∗ ∈H. However, because both networks

receive the same worth no confusions should arise.

A specific example are basic value functions (e.g., Jackson, 2005). Given h ∈H∖{h∅},
the corresponding basic value function 1h ∈ V is defined by

1h(h′) = ⎧⎪⎪⎨⎪⎪⎩
1, if h ⊆ h′
0, if h ⊈ h′.

The interpretation is that a coalitional network h′ ∈H generates a positive worth if

and only if it contains the specific structure h.

Let CA ⊆ V denote the special class of component-additive value functions. A

value function v ∈ CA is component-additive if ∑h̄∈C(h) v (h̄) = v(h) for all coalitional
networks h ∈ H. Here, the total productivity of a coalitional network is simply

the aggregated worth of all its components (cf. Jackson and Wolinsky, 1996). The

productivity of a component is therefore not exogenously influenced by the other

components.

Remark 2.1. Traditionally, a TU game is a pair (N,γ) consisting of the set of

players N and a characteristic function γ assigning a value to each coalition S ⊆
N , i.e., γ ∶ 2N Ð→ R (see, e.g., Roth, 1988). On the other hand, a (bilateral)

network game is a pair (N,w) where w assigns a value to each bilateral network,

i.e., w ∶ 2G Ð→ R with G = {S ⊆ N ∣ ∣S∣ = 2} (see, e.g., Jackson, 2008). The main

idea for combining both approaches within the extended framework considered here

is to exploit the fact that both domains, coalitions and bilateral networks, can be

embedded into the set of coalitional networks. For instance, if ∣M ∣ = 1, i.e., if there
is only one connection, this connection can be interpreted as a coalition and value

functions can be identified with characteristic functions. Thus, the model is indeed

an extension of TU games. Moreover, a network game (N,w) can also be represented
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in a canonical way: let M = G and for each g ∈ 2G define

hg({i, j}) = ⎧⎪⎪⎨⎪⎪⎩
{i, j}, if {i, j} ∈ g
∅, if {i, j} ∉ g.

That is, i and j are adjacent in hg if and only if they are linked in g. Note that

the value or worth, respectively, of each bilateral network only depends on whether

certain players are linked but not on in which way they are connected. Therefore,

if vw ∈ V satisfies not only vw(hg) = w(g) for all g ∈ 2G but also vw(hg ○ π) = vw(hg)
for each permutation π ∶M Ð→M , this value function de facto represents w.2

Remark 2.2. Basic value functions are a straightforward extension of unanimity

games (cf. Shapley, 1953). It is well-known from literature that these games form a

basis of the space of characteristic functions. Analogously it can be shown that the

set of basic value functions forms a basis of V . More precisely, each v ∈ V can be

written as

v = ∑
h∈H∖{h∅}

∆h(v)1h, where the ∆h(v) = ∑̄
h⊆h

(−1)ηh−ηh̄v(h̄)
are the Harsanyi coefficients (cf. Harsanyi, 1959). This representation of value func-

tions will be helpful in the proofs.

Remark 2.3. Note that CA = {v ∈ V ∣ v is component-additive} is a subspace of

V and 1h ∈ CA if and only if ∣C(h)∣ = 1 (cf. van den Nouweland and Slikker, 2012).

Moreover, since the operator ∗ ∶ V Ð→ V with v z→ v∗ is not only bijective but also

linear and ∣C(h)∣ = 1 is equivalent to ∣C(h∗)∣ = 1, v ∈ CA is component-additive if and

only if v∗ ∈ CA has this feature, too.

2.3 Allocation Rules

Given the productivity of cooperation, the next step is to allocate the worth among

the players. Therefore, the pair (N,M) is an allocation problem (note that V =
V(N,M) is uniquely determined by N and M). Most of the solutions analyzed in

Cooperative Game Theory or Network Theory distribute the worth in a player-based

way, i.e., the payoff is associated to players directly.

2As usual, ○ denotes the composition of the mappings hg and π.
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Definition 2.4. A player-based allocation rule X assigns to each allocation problem

(N,M) a tuple of mappings (Xi)i∈N with Xi ∶ V Ð→ V and ∑i∈N Xi(v) = v for all

v ∈ V .3
A player-based allocation rule X (or (Xi)i∈N , respectively) decomposes each value

function v ∈ V into individual payoff functions vXi ∶= Xi(v) ∈ V . Phrased differently,

given the total productivity v(h) of a network h, each player receives her share

of the payoff vXi (h) = (Xi(v)) (h). The central assumption in Definition 2.4 is

that allocation rules are balanced, i.e., ∑i∈N vXi (h) = v(h) for all h ∈ H and v ∈ V .
Thus, the value of cooperation is always distributed completely among the players.4

The sets of all player-based allocation rules will be denoted by X . Note that each

allocation rule Z ∈ X assigns payoff functions (vZc )c∈M to the dual problem (M,N),
too. This is due to the fact that in the dual network the connections are considered

as players and vice versa.

Example 2.2. A possible way to allocate the worth of a network is to distribute it

equally among all active players:

vED
i (h) = (EDi(v)) (h) ∶=

⎧⎪⎪⎨⎪⎪⎩
v(h)
∣N(h)∣ , if i ∈ N(h)
0, if i ∉ N(h),

where h ∈ HM,2N and v ∈ V. For instance, in Example 2.1 this yields vED
i (h) = v(h)

4

for all i ∈ N . Analogously, in the corresponding dual network h∗ each connection

c ∈ M receives vED
c (h∗) = v(h∗)

3
= v(h)

3
. The allocation rule ED ∈ X will be called

Equal Division Solution in the following.

Distributing the worth in two stages cannot be modeled explicitly by means of player-

based allocation rules since, as mentioned before, in this case it is first distributed

3In their seminal contribution, Jackson and Wolinsky (1996) introduce (player-based) allocation

rules in a slightly different way. They define an allocation rule A to be a mapping A ∶ H×V Ð→ R
n

with ∑i∈N Ai(h, v) = v(h) for all h ∈ H and v ∈ V. The interpretation is, of course, the same.

Given a network h ∈ H and a value function v ∈ V, Ai(h, v) is agent i’s share of the network’s

value v(h). Using the formulation introduced here is just for technical reasons and will be helpful

in the following.
4In contrast to efficiency from Cooperative Game Theory (an allocation rule is said to be ef-

ficient if it always distributes the value that could be reached by the grand coalition N (see,

e.g., van den Brink, 2007)), it is not implicitly assumed that the grand coalition or the com-

plete network, respectively, generically generates the highest value. Therefore, the assumption of

balancedness is less restrictive and more natural.
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among the connections and subsequently within each connection. Thus, it is not

associated to the players directly but, if the connections represent projects, for

example, each player receives her share of each project’s budget. Capturing this

aspect requires a refined concept of allocation rules.

Definition 2.5. A position is a pair ic ∶= (i, c) ∈ N ×M . A position-based allocation

rule Y assigns a family of functions Y = (Yic)ic∈N×M to each allocation problem

(N,M) with Yic ∶ V Ð→ V and ∑c∈M,i∈N Yic(v) = v for all v ∈ V . Moreover, given the

dual problem (M,N), each Y is assumed to satisfy (Yci(v∗))∗ = Yic(v) for all v ∈ V .

The interpretation is basically the same as the interpretation of player-based alloca-

tion rules. But in addition there is a further symmetry axiom imposed: it requires

that each position in the dual problem receives the same payoff as in the primal

one. The set of position-based allocation rules is Y . The salient point is that ev-

ery position-based allocation rule Y ∈ Y induces two player-based allocation rules

XY ∈ X and ZY ∈ X in a straightforward way. Given v ∈ V , each player/connection

receives the aggregated payoff of all her/its positions:

1. (XY
i )i∈N is given by vYi ∶=XY

i (v) = ∑c∈M Yic(v) and
2. (ZY

c )c∈M by vYc ∶= ZY
c (v) = ∑i∈N Yic (v).

2.3.1 A Specific Two-stage Procedure

Position-based allocation rules allow for more flexibility in tracking how the worth

of a network is distributed among the players. In particular, they allow modeling

two-stage allocation procedures explicitly. To fix ideas, let a pair of player-based

allocation rules (X,Z) ∈ X × X be given and for each allocation problem (N,M)
define Y ∈ Y via Yic ∶=Xi ○Zc for all ic ∈ N ×M . The interpretation is as follows:

1. The allocation rule Z specifies the payoff at the first stage. Given a network

h ∈H, the connections play a dual game in h∗ and they are paid according to

Z. That is, connection c ∈M receives vZc (h∗) = (Zc (v)) (h∗).
2. Then, in a second step, for each c ∈M the value vZc (h∗) is distributed among

the players according toX ∈ X . More specifically, player i’s share of connection

c is vYic(h) = (Xi(vZc ))(h) = (Xi (Zc(v))) (h) = ((Xi ○Zc) (v)) (h).
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Consequently, a position-based allocation rule Y ∈ YM,2N is said to be induced by

two player-based allocation rules if there exists a pair (X,Z) ∈ X × X with Yic ∶=
Xi ○ Zc for each allocation problem (N,M) and all ic ∈ N ×M . Let Y2ply ∶= {Y ∈
Y ∣Y is induced by two player-based allocation rules}. As will be shown later, this is

just a special case of a broader class of two-stage allocation procedures. Nevertheless,

it possesses striking and remarkable characteristics which are worth studying in more

detail.

Lemma 2.1. Let an allocation problem (N,M) be given. If a position-based al-

location rule Y ∈ Y2ply is induced by two player-based allocation rules X ∈ X and

Z ∈ X , then Zc = ZY
c for all c ∈M .

Proof. This is a straightforward implication of the balancedness assumption. In

particular, in the second step the players distribute exactly the first-stage value

among each other:

vYc = ∑
i∈N

Yic(v) = ∑
i∈N

(Xi (Zc(v))) = Zc(v) = vZc for all i ∈ N and v ∈ V .

Thus, if Y ∈ Y2ply is induced by two player-based allocation rules, the first-stage

allocation Z and the connections’ values determined by ZY do not differ. Generically,

this is not necessarily true for X and XY . Redistributing the value at the first stage

might have a significant impact on the payoff of the players. However, there is an

important class of allocation rules where both ways of allocating the worth coincide.

Definition 2.6. A player-based allocation rule X ∈ X is additive (ADD) if X(v +
v′) = X(v) + X(v′) for all (N,M) and v, v′ ∈ V . Additivity for position-based

allocation rules is defined analogously.

Additive allocation rules exhibit a non-externalities property. The payoff generated

by a value function v ∈ V is not influenced by other value functions.

Proposition 2.1. Let an allocation problem (N,M) be given and suppose Y ∈ Y2ply

is induced by two player-based allocation rules X ∈ X and Z ∈ X . If X is additive,

Xi =XY
i for all i ∈ N .

Proof. If X is additive, then

vYi = ∑
c∈M

Yic(v) = ∑
c∈M

(Xi (Zc(v))) =Xi ○ (∑
c∈M

Zc(v)) =Xi(v) = vXi
for all i ∈ N and v ∈ V .
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Proposition 2.1 shows that the final outcome obtained by integrating an additive

allocation rule X ∈ X into a two-stage allocation procedure as introduced above

does not differ from applying X in a player-based way. Moreover, this is completely

independent of the first-stage allocation rule Z ∈ X . It does not matter in which way

the value is redistributed at the first stage, the final outcome is always the same.

In particular, these considerations allow some interesting implications: Suppose a

coalitional network represents a complexly structured firm or organization and it is

more convenient to pay the players for each project separately instead of calculating

the payoff of all players as a function of the organization’s revenue. If an additive

allocation rule is chosen, the players’ payoff is not changed. This motivates the

following definition:

Definition 2.7. A player-based allocation rule X ∈ X is invariant under redistribu-

tion if for all allocation problems (N,M) and v ∈ V ,
Xi(v) = ∑

c∈M

Xi (Zc(v)) for all Z ∈ X . (2.1)

As it has been shown in Proposition 2.1, additive allocation rules satisfy this crite-

rion. It turns out that these are indeed the only ones. The proof of the following

result can be found in the appendix.

Proposition 2.2. A player-based allocation rule X ∈ X is invariant under redistri-

bution if and only if it is additive.

Although Proposition 2.2 might be slightly surprising at first sight, again it is just

a direct implication of the balancedness assumption. This together with additiv-

ity immediately implies Equation (2.1). However, even if Proposition 2.2 is not

very complicated from a mathematical point of view, in the context of coalitional

networks it gives rise to an alternative interpretation of additivity. It allows for

arbitrary redistributions of the worth without changing the final outcome of the

players. In fact, many allocation rules discussed in the literature are additive, such

as the Shapley Value, the Equal Division Solution or the Position Value, to name

but a few.

Before completing this subsection there remains a further question which requires

special attention. So far the discussion concentrated on properties of allocation rules

in Y2ply without explicitly characterizing this particular class. In other words: Which

position-based allocation rules are actually induced by two player-based allocation

rules? In order to approach this question, let Y ∈ Y and suppose there exist X ∈ X
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and Z ∈ X with Yic =Xi ○Zc for all allocation problems (N,M). This, in particular,

implies that each position’s value only depends on the corresponding connection’s

value generated at the first-stage but not on the connection itself. That is, if the

first-stage outcomes vXc and v̄Xc̄ of two connections c, c̄ ∈M for two allocation rules

v, v̄ ∈ V coincide, the payoff player i receives for both positions has to be the same as

well, i.e, Xi (vXc ) =Xi (v̄Xc̄ ). By applying Lemma 2.1 this independence property can

be restated as follows: If the values of two connections coincide, each player receives

the same payoff from both of them. In fact, this property is not only necessary but

also sufficient.

Proposition 2.3. A position-based allocation rule Y ∈ Y is induced by two player-

based allocation rules if and only if it satisfies the following independence property:

Given an allocation problem (N,M), if vYc = v̄Yc̄ for c, c̄ ∈ M and v, v̄ ∈ V , then
vYic = v̄Yic̄ for all i ∈ N .

The proof can be found in the appendix. A consequence of this independence prop-

erty is that players might receive payoff from connections they are not a member of.

Consider for example the Equal Division Solution ED ∈ X which is additive and let

an allocation problem (N,M) and a network h ∈H be given. If Z ∈ X is a first-stage

allocation rule, generically it is possible that ((EDi ○Zc) (v)) (h) ≠ 0 even if i ∉ h(c).
This is due to the fact that vZc depends on the whole network and not only on c. Of

course, in certain situations it is quite reasonable that players receive payoff from

connections they are not a member of, like in the case of externalities, for example.

However, in many environments it seems to be more convincing that the value of

a connection is distributed only among the corresponding members. This aspect is

not captured so far and it requires a higher degree of flexibility. That is, instead of

applying the same second-stage allocation rule X ∈ X for all c ∈M it is necessary to

use for each connection a specifically designed Xc ∈ X .
2.3.2 Reduced Allocation Problems

Consider a similar situation as before. Again, the connections first receive a certain

payoff, but now the players are supposed to face reduced problems of allocating the

value within each connection. The main idea is that the corresponding members take

the rest of the network as given and compare the prospects if only their connection

changes. To define this formally, assume that there is given a coalitional network

h ∈ H, a value function v ∈ V , and a first-stage allocation rule Z ∈ X . For each set
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of players S ⊆ N the network h∣c,S ∈ H is obtained from h by deleting all players in

h(c) that are not contained in S while the other links remain the same, i.e.,

h∣c,S(c′) =
⎧⎪⎪⎨⎪⎪⎩
h(c′), if c′ ≠ c
h(c) ∩ S, if c′ = c

for all c, c′ ∈ M . Furthermore, let h∣∗c,S denote the corresponding dual network.

This substructure allows designing a reduced allocation problem (N,{c}) within

connection c ∈M . Each subset of players S ⊆ N can be interpreted as a coalitional

network with only one connection (cf. Remark 2.1), and the corresponding value

function w
c,h

vZ
∈ V{c},2N of the reduced problem is given by w

c,h

vZ
(S) ∶= vZc (h∣∗c,S).

The players only take into account in which way the first-stage payoff changes if

deviations within c occur while the other connections remain the same. In order

to guarantee that w
c,h

vZ
∈ V{c},2N is well-defined, that is, to guarantee that w

c,h

vZ
is

normalized, in the following it will always be required that Z ∈ X satisfies the active

players axiom.

Definition 2.8. A player-based allocation rule X ∈ X satisfies the inactive players

axiom (IPLY) if for each allocation problem (N,M), i ∉ N(h) implies vXi (h) = 0 for

all h ∈H and v ∈ V .
If a player-based allocation rule satisfies this axiom, players who are not active get

zero payoff. In the dual game considered here, this means that empty connections

receive a worth of zero.

Now suppose Xre ∈ X is an allocation rule applied to the reduced problem (N,{c}).
This induces finally a second-stage allocation rule Xc ∈ X via (Xc

i (vZc ))(h) ∶=(Xre
i (wc,h

vZ
))(h(c)) for all i ∈ N .5 Note that although the main motivation was

to construct a position-based allocation rule which gives zero payoff to positions

not contained in the network, up to here it is not required that this condition is

indeed satisfied. However, assuming additionally for all connections c ∈M that the

allocation rule applied to (N,{c}) satisfies the inactive players axiom is sufficient to

achieve the desired effect.

Of course, the main idea of considering reduced problems of allocating the value

is similar to Subsection 2.3.1, but the main difference is that now the allocation

rules in the second step do not necessarily have to be the same for all connections.

Therefore, the corresponding two-stage procedure has the following form:

5For further allocation problems (N ′,M ′) ≠ (N,M) it would be possible to proceed analogously.
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1. Given a value function v ∈ V , the value of c ∈M is determined according to a

first-stage allocation rule Z ∈ X .
2. Then vZc is allocated according to Xc ∈ X for each c ∈M , i.e., player i receives

Xc
i (vZc ).

In the following, a position-based allocation rule Y ∈ Y is said to be implemented

in two stages if for each allocation problem (N,M) there exist Xc ∈ X for each

c ∈ M and Z ∈ X such that Yic = Xc
i ○ Zc for all i ∈ N and c ∈ M . Let Y2stg ⊆ Y

be the set of position-based allocation rules satisfying this criterion, i.e., Y2stg =
{Y ∈ Y ∣ Y is implemented in two stages} . Note that Y2ply ⊆ Y2stg.

Lemma 2.2. Let an allocation problem (N,M) be given and assume a position-

based allocation rule Y ∈ Y2stg is implemented in two stages, where Z ∈ X is the

first-stage allocation rule. Then Zc = ZY
c for all c ∈M .

Proof. The reasoning is completely analog to Lemma 2.1.

In particular, it does not matter whether for each connection a specifically designed

allocation rule is used or whether it is always the same one. The aggregated value

is the same in any case due to the balancedness assumption. Moreover, although

Y2stg is a broader class of allocation rules than Y2ply, it is possible to characterize it

by a similar independence property.

Proposition 2.4. A position-based allocation rule Y ∈ Y is implemented in two

stages if and only if it satisfies the following independence property: Given an

allocation problem (N,M), if vYc = v̄Yc for c ∈ M and v, v̄ ∈ V , then vYic = v̄Yic for all

i ∈ N .

The proof proceeds analogously to the one of Proposition 2.3 and the interpretation

is similar as well. The difference is that here, the payoff of each position has to be

independent only of how the connection’s value is generated but not of the connection

itself. This is, of course, due to the fact that the second-stage allocation rule now

may depend on c.

The main relevance of the previous proposition is that it characterizes all two-stage

allocation procedures in a natural way. Therefore, implicitly it also provides a tool

for checking whether position-based allocation rules belong to this class or not. The

remainder of this paper is devoted to the study of particular examples, like the

Position Value, for instance. It also includes a general discussion of properties of

allocation rules.
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2.4 Some Particular Allocation Rules

Before analyzing some specific two-stage allocation procedures, first the focus lies on

player-based allocation rules. The economic implications of this intermediate step

are actually just straight-forward extensions from Network Theory and Cooperative

Game Theory. Nevertheless, they strongly support the intuition of the two-stage

allocation procedures analyzed later in Subsection 2.4.2 and provide a technical

substructure for them.

2.4.1 Player-based Allocation Rules

One specific player-based allocation rule, the Equal Division Solution, has already

been introduced in Example 2.2. Another well-known example from literature is

the Myerson Value which has been established by Myerson (1977) and extended

to bilateral networks by Jackson and Wolinsky (1996). The main motivation of

this allocation rule is to pay each player her expected marginal contribution to a

(bilateral) network. Clearly, this idea can be adopted completely analogously to

the setting considered here. Formally this means that given an allocation problem

(N,M), for each h ∈ H and v ∈ V the Myerson Value (for coalitional networks)

MV X is defined by

vMV
i (h) = ∑

S⊆N∖{i}

∣S∣!(n − (∣S∣ + 1))!
n!

⋅ (v(h∣S+i) − v(h∣S)) for all i ∈ N.6

At first sight the Equal Division Solution and the Myerson Value seem to be quite

different and a priory it is not clear which one is appropriate for which situation.

To gain a better understanding, it is necessary to analyze which properties both

allocation rules have and in which way they differ.

Definition 2.9. Let an arbitrary allocation problem (N,M) be given. A player-

based allocation rule X ∈ X satisfies . . .

(CBAL) . . . component-balancedness if ∑i∈A vXi (h) = v(h∣A) for each network h ∈H,
every component-additive value function v ∈ CA, and all associations A ∈ A(h).

(SYM) . . . symmetry of active players if for i, j ∈ N(h), v(h∣S+i) = v(h∣S+j) for all
S ⊆ N(h) ∖ {i, j} always implies vXi (h) = vXj (h).

6The Myerson Value is, roughly speaking, an extension of the Shapley Value (Shapley, 1953). In

fact, if Φ denotes the Shapley Value, vMV
i (h) = Φi (wh

v ) where wh
v (S) ∶= v(h∣S) for all S ⊆ N .
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(NULI) . . . the nullifying player property if v(h∣S+i) = 0 for all S ⊆ N(h) ∖ {i}
implies vXi (h) = 0.

(NULL) . . . the null player property if v(h∣S+i)−v(h∣S) = 0 for all S ⊆ N(h) implies

vHi (h) = 0.
The previous notions are standard in the literature of Cooperative Game Theory

and Network Theory and therefore the interpretations do not change. Given a

component-additive value function, an allocation rule is component-balanced if it

distributes the value of each component only among its members. Symmetry of

active players requires that two players receive the same payoff whenever their con-

tributions to the network are equal. An allocation rule satisfies the nullifying player

property if a player receives no payoff whenever her presence in a network induces

a value of zero. Deegan and Packel (1978) call these individuals zero players. In

contrast to this, the null player property, also known as the dummy axiom, focuses

on the marginal contribution of a player to the network. The usual interpretation is

that a player has no bargaining power if her marginal contribution to the network

is always zero and, thus, she should receive no payoff. Note that this implies the

inactive players axiom.

In the context of Cooperative Game Theory, van den Brink (2007) proved that the

Shapley Value and the Equal Division Solution satisfy similar axioms. In fact, it is

possible to extend this insight to the more general setting considered here.

Proposition 2.5. X ∈ X satisfies (ADD), (SYM), (IPLY), and (NULI) if and only

if Y = ED.

For the proof (and also for the proofs of the following results) refer to the appendix.

In principle it proceeds in a standard fashion. More precisely, given an allocation

problem (N,M), due to additivity it is sufficient to focus on basic value functions

which form a basis of V (recall Remark 2.2).

Proposition 2.6. X ∈ X satisfies (ADD), (SYM), and (NULL) if and only if Y =
MV .

Since the Myerson Value is an extension of the Shapley Value (Shapley, 1953), it

can be characterized by similar axioms. Analogously to the characterization of the

Equal Division Solution, the proof of Proposition 2.6 also exploits additivity and

concentrates on basic value functions.
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The previous results show that if an allocation rule is supposed to satisfy additiv-

ity, symmetry of active players, and the inactive players axiom, the final outcome

strongly depends on the decision whether more importance is attached to nullifying

or to null players. In one case the Myerson Value and in the other the Equal Division

Solution is obtained.

In fact, in Cooperative Game Theory the null player property is often used to char-

acterize solutions. Besides the Myerson and the Shapley Value, also Owen’s Value

(Owen, 1977), for example, satisfies this axiom. It allows some noteworthy implica-

tions which should not be neglected here:

Lemma 2.3. If X ∈ X satisfies (ADD) and (NULL), it also satisfies (CBAL).

Proposition 2.6 and Lemma 2.3 immediately imply the following result.

Proposition 2.7. The Myerson Value is component-balanced.

The intuition of Lemma 2.3 is straightforward. If a value function is component-

additive, the value of a component does not depend on the others. Therefore, the

marginal contribution of a player to other components is always zero. The result then

follows from the null player property and because the individual payoff functions can

be decomposed appropriately by additivity.7

2.4.2 Position-based Allocation Rules

All the properties introduced in the previous subsection focus on the players directly

but not on the positions. The marginal contribution, for instance, is determined only

for subnetworks where player i ∈ N completely drops out of the network. In this

case, she totally stops cooperating. In economic life, however, if the connections

represent projects or the like, it might happen that a player only leaves some of her

projects but not all of them. Translated to the model this would mean that she

stops cooperating only partially. To fix ideas, consider the position-based variations

of the properties introduced in the previous sections:

Definition 2.10. Let an arbitrary allocation problem (N,M) be given. A position-

based allocation rule Y ∈ Y satisfies . . .

7For bilateral networks Jackson and Wolinsky (1996), who refer to Myerson (1977), have already

established Proposition 2.7. Although they have shown it in a different context, and thus in a

different way, some elements of the proof of Lemma 2.3 are adopted from these works.
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(CBAL’) . . . component-balancedness if ∑i∈A∑c∶h(c)⊆A vYic(h) = v(h∣A) for all h ∈ H,
every component-additive value function v ∈ CA, and all associations A ∈ A(h).

(IPOS) . . . the inactive positions axiom if i ∉ h(c) implies vYic(h) = 0 for all v ∈ V .
(cwSYM) . . . symmetry of active players connection-wise if for each c ∈ M and

i, j ∈ h(c) from vYc (h∣∗c,S∪{i}) = vYc (h∣∗c,S∪{j}) for all S ⊆ h(c) ∖ {i, j} always

vYic(h) = vYjc(h) follows.
(cwNULI) . . . connection-wise the nullifying player property if for each c ∈M from

vYc (h∣∗c,S) = 0 for all S ⊆ N(h) ∖ {i} always vYic(h) = 0 follows.

(cwNULL) . . . connection-wise the null player property if for each c ∈ M from

vYc (h∣∗c,S∪{i}) = vYc (h∣∗c,S) for all S ⊆ h(c) ∖ {i} always vYic(h) = 0 follows.

Component-balancedness and the inactive positions axiom are analogously defined

as the axioms for player-based allocation rules and therefore the interpretations are

the same as well. However, here the focus lies on the positions but not on the

players. For example, (cwNULL) concentrates on the marginal contributions of the

players to single connections. Given this axiom, player i ∈ N receives nothing from

c ∈M if her marginal contribution to the connection is zero. Similar considerations

also apply if the position-based allocation rule satisfies connection-wise the nullifying

player property or symmetry of active players.

One of the most prominent two-stage allocation rules in Network Theory is the often-

studied Position Value (e.g., Borm et al., 1992). The main idea is to determine the

connections’ values according to the Myerson Value and then, in the second step, the

members of each connection apply the Equal Division Solution in order to share the

corresponding value equally. Of course, this motivation can be extended to the more

general setting considered here. Given an allocation problem (N,M), the Position

Value (for coalitional networks) PV ∈ Y is given explicitly by

vPV
ic (h) = (PVic(v)) (h) ∶=

⎧⎪⎪⎨⎪⎪⎩
1
∣h(c)∣ ⋅ v

MV
c (h∗) , if i ∈ h(c)

0, if i ∉ h(c)
for all i ∈ N and c ∈M . Note that each player i receives

vPV
i (h) = ∑

c∶i∈h(c)

1∣h(c)∣ ⋅ vMV
c (h∗)

45



and the value of each connection is indeed given by the Myerson Value: vPV
c = vMV

c

for all c ∈ M . Taking into account the characterizations established in Proposi-

tions 2.5 and 2.6, these considerations imply that the Position Value needs to sat-

isfy (ADD), (SYM), together with (NULL) at the first stage and (ADD), (IPOS),

(cwSYM), and (cwNULI) with respect to each connection. In fact:

Proposition 2.8. Suppose Y ∈ Y satisfies (ADD), (IPOS), (cwSYM), (cwNULI),

and assume ZY ∈ X satisfies (NULL) and (SYM). Then Y ∈ Y2stg and, furthermore,

Y = PV .8

Again, the proof can be found in the appendix. Showing Y ∈ Y2stg is based on

exploiting (cwNULI) and (ADD). By applying the latter axiom and Proposition 2.4,

it is sufficient to show that whenever a connection receives a value of zero in all

networks, the positions within this connection receive a payoff of zero, too. This is

given, obviously, by (cwNULI). Moreover, since the first-stage allocation rule is the

Myerson Value, component-balancedness also carries over to the Position Value.

Lemma 2.4. If Y ∈ Y is component-balanced both induced player-based allocation

rules XY ∈ X and ZY ∈ X have this property, too.

Proof. Let (N,M) be an allocation problem and v ∈ CA be component-additive.

Furthermore, let h ∈H and A ∈ A(h). Then:
∑
i∈A

vYi (h) = ∑
i∈A

∑
c∈M

vYic(h)´¹¹¹¹¸¹¹¹¹¶
=0, if i∉h(c)

= ∑
i∈A, c∶h(c)⊆A

vYic(h) = v (h∣A) .

Analogously for ZY
c = ∑i∈N Yci.

Lemma 2.5. Let Y ∈ Y satisfy (IPOS). Then ZY ∈ X is component-balanced if and

only if XY ∈ X is component-balanced.

Proof. For the proof just note that if Y satisfies the inactive positions axiom, the

proof of Lemma 2.4 works in both directions.

8Borm et al. (1992) introduce a characterization of the Position Value for a certain class of Myer-

son’s communication situations (cf. Myerson, 1977). Interestingly, they also interpret their “arc

game” as a “dual game”: “[The value] of an arc is measured by means of the Shapley Value of

a kind of ’dual’ game [. . . ]” (Borm et al., 1992, p. 306). Later, van den Nouweland and Slikker

(2012) extended this characterization to bilateral networks. However, it is not possible to extend

it further to coalitional networks in a straightforward way, because they use the “superfluous link

property”, which is not as restrictive here as in the bilateral setting.
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Proposition 2.9. Let Y ∈ Y satisfy (IPOS) and (ADD). If, furthermore, ZY ∈ X
satisfies (NULL), then XY ∈ X is component-balanced.

Proof. This is a direct implication of Lemmas 2.3 and 2.5.

Of course, Proposition 2.9 is also satisfied if XY and ZY interchange roles.

Proposition 2.10. The Position Value is component-balanced.

For bilateral networks, van den Nouweland and Slikker (2012) already established

Proposition 2.10. However, to show it, the authors used “component decomposabil-

ity” which is not needed here. In the context of coalitional networks, the result is a

direct implication of the characterization of the Position Value.

Although the Position Value possesses interesting and desirable features, in some

situations it might be inadequate. For example, using the Myerson Value first

and the Equal Division Solution in the second step violates consistency. Follow-

ing Hart and Kurz (1983), a two-stage allocation rule is consistent if the way of

distributing the value within each connection is the same as the one used for deter-

mining the values in the dual game. Of course, there are several ways to construct

consistent allocation rules, but in light of the preceding discussion, a canonical can-

didate is the iterated application of the Myerson Value. Therefore, consider again

a two-stage procedure where the first-stage allocation rule is MV ∈ X . Given an

allocation problem (N,M), for each h ∈ H and v ∈ V , the value function of the

reduced game within c ∈M is then given by w
c,h

vMV (S) = vMV
c (h∣∗c,S) for all S ⊆ N . In

contrast to the Position Value, suppose now that the second-stage allocation rules

are chosen in a consistent way: that is, the solutions of the reduced games are also

determined according to the Myerson Value MV ∈ X for all c ∈ M . This iterated

application of the Myerson Value will be denoted by IM ∈ Y and it is given by

vIMic (h) ∶= (MVi(wc,h

vMV ))(h(c)).
As already discussed in Section 2.3, the characterizations of the Equal Division So-

lution and the Myerson Value differ by only one axiom. Consequently, the same is

also true for the Position Value and the iterated application of the Myerson Value.

In fact, instead of the nullifying player property, IM satisfies connection-wise the

null player property.

Proposition 2.11. Let Y ∈ YM,2N satisfy (ADD), (cwSYM), (cwNULL), and assume

ZY ∈ X satisfies (SYM). Then Y ∈ Y2stg, ZY satisfies (NULL), and, furthermore,

Y = IM .
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Moreover, since in the first step the worth is distributed according to the Myerson

Value, Lemma 2.5 can be applied again.

Proposition 2.12. IM is component-balanced.

Applying the Myerson Value iteratively is in spirit with a prominent solution concept

from Cooperative Game Theory, namely with Owen’s Value (Owen, 1977). In his

seminal contribution, the author focused on cooperative games with a given coalition

structure, that is, the players are partitioned exogenously into coalitions which may

not overlap. Given this setting, Owen applied the Shapley Value iteratively, first

among the coalitions and then within each coalition. Loosely speaking, this approach

does not take the actual form of cooperation h ∈ H into account but instead it

focuses only on the induced associations A(h). To fix ideas, let (N,M) be an

allocation problem and let Ψ denote Owen’s Value. Moreover, for given v ∈ V , let
wh

v (S) ∶= v(h∣S) be the worth of h ∈H restricted to S ⊆ N . Then Owen’s Value can be

extended analogously to the Myerson Value via vOV
i (h) = Ψ (A(h), wh

v ). Note that Ψ
depends on the coalition structure A(h) but not on the network h directly. Consider

the special case where the network h ∈ H actually forms a coalition structure: that

is, assume ⋃c∈M h(c) = N and h(c) ∩ h(c′) ≠ ∅ only if c = c′ for all c, c′ ∈ M .

Phrased differently, each player is a member of exactly one connection. Here, the

only difference between iteratively applying the Myerson Value IM and Owen’s

Value OV is that the latter one focuses less on single positions. More specifically,

it is possible to show that OV satisfies the null player property only in a player-

based way but not connection-wise. However, if the total productivity is determined

by means of a component-additive value function, each player’s contribution to the

whole network is exactly what she contributes to her connection and therefore both

axioms are equivalent.

Proposition 2.13. Assume h ∈ H forms a coalition structure and v ∈ CA is a

component-additive value function. Then vIMi (h) = vOV
i (h) for all i ∈ N .9

The main idea of the proof is to translate the axiomatization given in Owen (1977)

to the setting considered here and to show that both allocation rules have the same

properties. The previous result immediately implies that the Position Value and

Owen’s Value differ by just one axiom under certain circumstances (i.e., if h ∈ H
forms a coalition structure and v ∈ V is component-additive). Moreover, given these

9The author is grateful to André Casajus for pointing out a mistake in a previous version of this

result.
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requirements, it is straightforward to show that component-balancedness is equiv-

alent to what Aumann and Drèze (1974) call “relative efficiency”: The aggregated

payoff of players within each connection equals exactly the connection’s value. For

this special case it is also possible to extend the Aumann-Drèze Value and it coin-

cides with iteratively applying the Myerson Value and with Owen’s Value.

2.5 Conclusion

The structures of many economical and social organizations are too complex to ana-

lyze them by means of Cooperative Game Theory or Bilateral Network Theory. The

model introduced here uses mathematical hypergraphs (which are called coalitional

networks in this study) to extend both approaches to a more general and richer

framework. This enlarges not only the field of possible applications but it also al-

lows to model them more realistically. In particular, the extended setting allows to

formalize and analyze two-stage allocation procedures in a convenient way. Although

these procedures already have been attempted in literature by some studies (e.g.,

Albizuri et al., 2005; Aumann and Drèze, 1974; Borm et al., 1992; Hart and Kurz,

1983; Owen, 1977) there has been no general framework for analyzing them in a

structured way. This study not only provides such a framework but it also extends

some particular examples of two-stage allocation rules well-known from Cooperative

Game Theory and Network Theory to coalitional networks. Moreover, characteriza-

tions of these allocation rules are discussed. Interestingly, under certain requirements

the Position Value and Owen’s Value satisfy almost the same axioms.

The analysis of coalitional networks could be extended in several ways. One of the

most interesting ones would be to investigate dynamic models of network formation.

In the study presented here, the coalitional network was always given exogenously.

Therefore, it seems to be crucial to know under which circumstances which struc-

tures will arise. To this end, suitable stability concepts and deviation rules would

need to be introduced. It would furthermore be reasonable to allow N and M to

be infinite and to work with finite carriers in order to have no exogenously given

limitation in the number of networks. Another natural extension is to apply the

extended model to applications not covered so far. Coalitional networks are richer

than coalition structures or bilateral networks, and they allow to study settings

where the players cooperate in quite complex structures. Examples of this are large

organizations or social clubs, to name but a few.
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2.6 Appendix: Proofs

Some of the proofs are based on only slightly varied but similar technical arguments.

For example, the characterizations of the allocation rules discussed in this paper are

all based on basic value functions and they all proceed in a similar way. In order to

not repeat the same arguments again and again, the following two lemmas will be

helpful.

Lemma 2.6. Let an allocation problem (N,M) be given. Assume the allocation

rule X ∈ X satisfies (ADD), (IPLY), and (SYM). Furthermore, let α ∈ R be a

constant and 1h ∈ V a basic value function with h ∈H ∖ {h∅}. Then:

(Xi (α1h)) (h′) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if i ∉ N(h′)
0, if i ∈ N(h′) and h ⊈ h′

α
∣N(h′)∣ , if i ∈ N(h′) and h = h′

Proof. Let X ∈ X satisfy (ADD), (IPLY), and (SYM). Furthermore, let α ∈ R,
1h ∈ V for h ∈ H ∖ {h∅}, and h′ ∈ H. First note that the inactive players axiom

implies (Xi (α1h)) (h′) = 0 for all i ∉ N(h′).
Case 1: h ⊈ h′.

This implies 1h(h′) = 0. Furthermore, α1h(h′∣S+i) = α1h(h′∣S+j) = 0 for all

i, j ∈ N(h′) and S ⊆ N(h′) ∖ {i, j}. Thus, by symmetry (Xi (α1h)) (h′) =(Xj (α1H)) (h′) for all i, j ∈ N(h′) and, because X is balanced by definition,

this implies that all players receive a payoff of 0.
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Case 2: h = h′.
This case proceeds analogously to the previous one. Again α1h(h′∣S+i) =
α1h(h′∣S+j) = 0 for all i, j ∈ N(h′) and S ⊆ N(h′) ∖ {i, j}. From this fol-

lows (Xi (α1h)) (h′) = (Xj (α1h)) (h′) for all i, j ∈ N(h′) by symmetry and,

thus, (Xi(α1h))(h′) = α
∣N(h′)∣ by balancedness.

Note that Lemma 2.6 makes no statement about h ⊊ h′. For this case, further

requirements are needed.

Lemma 2.7. Assume that the position-based allocation rule Y ∈ Y is additive. If

it additionally satisfies (cwNULI) or (cwNULL), then Y ∈ Y2stg.

Proof. Let (N,M) be an arbitrary allocation problem. If Y ∈ Y is additive, for

applying Proposition 2.3 it is sufficient to show that vYc = 0 for c ∈ M and v ∈ V
always implies vYic = 0 for all i ∈ N . Phrased differently, if the connection’s worth is

zero in all networks the corresponding positions receive this worth as well. Therefore,

suppose there is given a value function v ∈ V with vYc (h∗) = 0 for all h∗ ∈ H∗. By

applying either (cwNULI) or (cwNULL) this immediately implies vYic(h) = 0 for all

i ∈ N . Thus, Y ∈ Y2stg.

Proof of Proposition 2.2

This proposition is a direct implication of balancedness. Given an allocation problem

(N,M) and a player-based allocation rule Z ∈ X , each value function v ∈ V can be

decomposed via v = ∑c∈M vZc . Thus, an equivalent formulation of invariance under

redistribution for X ∈ X is

Xi (∑
c∈M

vZc ) = ∑
c∈M

Xi (vZc )
for all i ∈ N , h ∈ HM,2M and each sequence of payoff functions {vZc }c∈M , and this is

obviously equivalent to additivity.

Proof of Proposition 2.3

Let an allocation problem (N,M) be given. First assume Yic = Xi ○ Zc for two

player-based allocation rules X ∈ X and Z ∈ X . If vYc = v̄Yc̄ for c, c̄ ∈M and v, v̄ ∈ V ,
Lemma 2.1 implies

vYic =Xi (vZc ) =Xi (vYc ) =Xi (v̄Yc̄ ) =Xi (v̄Zc̄ ) = v̄Yic̄ for all i ∈ N.
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For the other direction let Y ∈ Y be given. According to Lemma 2.1 it is feasible

to choose Zc ∶= ZY
c for all c ∈M . Exploiting the condition given in the proposition

yields that

Xi(v′) ∶=
⎧⎪⎪⎨⎪⎪⎩
Yic(v), if there exist c ∈M and v ∈ V with v′ = Zc(v)
XY

i (v′), otherwise

is well-defined for all v′ ∈ V . Of course, it would also be possible to choose any other

X ′ ∈ X in the second case. Then balancedness is indeed satisfied because

∑
i∈N

Xi(v′) =
⎧⎪⎪⎨⎪⎪⎩
∑i∈N Yic(v), if there exist c ∈M and v ∈ V with v′ = Zc(v)
∑i∈N XY

i (v′), otherwise

= ⎧⎪⎪⎨⎪⎪⎩
ZY

c (v) = Zc(v) = v′, if there exist c ∈M and v ∈ V with v′ = Zc(v)
∑i∈N,c∈M Yic(v′) = v′, otherwise.

Furthermore, by construction also Yic =Xi ○Zc for all i ∈ N and c ∈M .

Proof of Proposition 2.4

The proof proceeds analogously to the one of Proposition 2.3.

Proof of Proposition 2.5

Let an allocation problem (N,M) be given. It is easy to verify that ED satisfies

all the axioms. For the other direction let α ∈ R and h ∈ H. Furthermore, assume

X ∈ X satisfies all the axioms. Let h′ ∈H be a further network. Applying Lemma 2.6

yields for h ⊈ h′ and h = h′ that (Xi (α1h)) (h′) is uniquely determined. Therefore,

suppose for the rest of the proof h ⊊ h′. Obviously, α1h = α∑h̄∶h⊆h̄ 1h̄, where 1h̄ is

called Standard Value Function (cf. van den Brink, 2007) and it is given by

1h̄(h′) =
⎧⎪⎪⎨⎪⎪⎩
1, if h̄ = h′
0, if h̄ ≠ h′.

If h̄ ≠ h′, player i ∈ N(h′) is a nullifying player with respect to α1h̄ if and only if

i ∉ N(h̄). This implies (Xi(1h̄)) (h′) = 0 for all i ∉ N(h̄). Furthermore, because of

symmetry and balancedness the other players receive a payoff of zero, too. Thus,

additivity implies

(Xi(α1h)) (h′) = ∑
h̄∶h⊆h̄

(Xi (α1h̄)) (h′)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, if h̄≠h′

= (Xi (α1h′)) (h′) .
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Analogously to case 2 in Lemma 2.6 it is possible to show that

(Xi (α1h′)) (h′) = (Xi(α1h′))(h′)
and, therefore, the payoff is uniquely determined.

Proof of Proposition 2.6

Let an allocation problem (N,M) be given. The proof proceeds in a similar way as

the one of Proposition 2.5. First note that the Myerson Value satisfies the axioms.

The easiest way for verifying this is by exploiting the properties of the Shapley Value

Φ (see, e.g., Roth, 1988) because vMV
i (h) = Φi(wv

h), where wv
h(S) = v(h∣S) for all

S ⊆ N . The rest of the proof proceeds in standard fashion. Because of additivity it

is sufficient to concentrate on basic value functions for showing uniqueness. To this

end let α ∈ R and h ∈ H ∖ {h∅}. Furthermore, assume X ∈ X satisfies the axioms

given in the proposition. Because the null player property implies the inactive

players axiom, Lemma 2.6 can be applied. That is, for h ⊈ h̄ and h = h̄ the payoff is

uniquely determined. For h ⊊ h̄ each player i ∉ N(h) is a null player and therefore

receives a payoff of 0. Because all players in N(h) are symmetric in h̄ and Y is

balanced, (Xi (α1h)) (h̄) = α
∣N(h)∣ for all i ∈ N(h). Thus, in this case the payoff is

uniquely determined as well.

Proof of Lemma 2.3

Let an allocation problem (N,M) be given and suppose X ∈ X satisfies additivity

and the null player property. Furthermore, let h ∈ H be a network and Ai ∈ A(h)
the association containing player i ∈ N . For each component-additive value function

v ∈ CA define the auxiliary function vAi
∶ H Ð→ R by vAi

(h̄) = v(h̄∣Ai
) for all h̄ ∈ H.

Then:

v(h∣S+i) − vAi
(h∣S+i) = ∑

A∈A(h)

v (h∣((S+i)∩A)) − v (h∣((S+i)∩Ai))
= ∑

A∈A(h)

v (h∣((S)∩A)) − v (h∣((S)∩Ai)) = v(h∣S) − vAi
(h∣S)

Therefore, player i is a null player with respect to v−vAi
in the network h. The null

player property implies 0 = (Xi (vAi
− v)) (h) and, thus, by additivity (Xi(v))(h) =(Xi(vAi

))(h) for all v ∈ CA. Obviously, each player j ∉ Ai is a null player with
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respect to vAi
. Hence,

∑
j∈Ai

(Xj(v)) (h) = ∑
j∈Ai

(Xj (vAi
)) (h)

= ∑
j∈N

(Xj (vAi
)) (h) = vAi

(h) = v(h∣Ai
).

Proof of Proposition 2.8

Let an arbitrary allocation problem (N,M) be given and assume Y ∈ Y satisfies all

of the axioms given in the proposition. In particular, Lemma 2.7 yields Y ∈ Y2stg.

In the following let Xc ∈ X for c ∈M and Z ∈ X be the player-based allocation rules

with Yic = Xc
i ○Xc for all i ∈ N and c ∈ M . Proposition 2.2 implies Zc = ZY

c for all

c ∈M . Moreover, since ZY satisfies additivity, symmetry of active players, and the

null player property by assumption, Proposition 2.6 implies that Z has to be the

Myerson Value.

The remainder of the proof proceeds in a similar way as the characterization of the

Equal Division Solution. In fact, as the axioms already indicate, it will be shown

that within each connection the players distribute their value equally. Because of

additivity it is sufficient to concentrate on basic value functions. To this end let

α ∈ R and h ∈H. Note that the inactive positions axiom implies (Yic (α1h)) (h′) = 0
for all h′ ∈H with i ∉ h′(c).
Case 1: h ⊈ h′.

Lemma 2.6 yields

(ZY
c (α1h))(h′∗) = (MVc(α1h))(h′∗) = 0

for all c ∈M . As all players i, j ∈ h′(c) are symmetric within c, all positions in

this connection receive the same payoff, i.e., (Yic (α1h)) (h′) = (Yjc (α1H)) (h′)
for all i, j ∈ h′(c). Consequently, (ZY

c (α1h))(h′∗) = 0 implies that this payoff

has to be zero for all players.

Case 2: h = h′.
Here, Lemma 2.6 can be applied again:

(ZY
c (α1h))(h′∗) = (MVc(α1h))(h′∗) =

⎧⎪⎪⎨⎪⎪⎩
α

∣M(h∗)∣ , if c ∈M (h∗)
0, if c ∉M (h∗)
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Similar to case 1, for all c ∈M all players within the connection are symmetric

and by (cwSYM) all positions in c get the same. Thus,

(Yic (α1h)) (h′) = α

∣h(c)∣ ∣M (h∗)∣ for all i ∈ h(c).
As already mentioned before, if i ∉ h(c) the corresponding position receives a

payoff of zero.

Case 3: h ⊊ h′.
Again, the connections’ values are given by

(ZY
c (α1h))(h′∗) = (MVc(α1h))(h′∗) =

⎧⎪⎪⎨⎪⎪⎩
α

∣M(h∗)∣ , if c ∈M (h∗)
0, if c ∉M (h∗) .

For c ∈ M(h′∗) ∖M (h∗) all players i, j ∈ h′(c) are symmetric within c and,

similar to case 1, applying (cwSYM) yields

(Yic(1h)) (h′) = (Yjc(1h)) (h′) = 0.
Therefore, suppose c ∈M (h∗). Furthermore, let again α1h = α∑h̄∶h⊆h′ 1h̄ where

the 1h′ are standard value functions (cf. the proof of Proposition 2.5). If there

exists no T ⊆ M with h̄ = h′∣T , then player i ∈ h′(c) is a nullifying player in

c with respect to α1h̄ if and only if i ∉ h̄(c). Thus, (Yic(α1h̄)) (h′) = 0 for all

i ∉ h′(c). Because each connection c′ ∈M is a null player in h′ with respect to

1h̄, the aggregated value (ZY
c (α1h̄)) (h′) = ∑i∈N (Yic(α1h̄)) (h′) of c also has

to be equal to zero and by (cwSYM) this implies (Yic(α1h̄)) (h′) = 0 for all

i ∈ N . Thus, (Yic(α1h̄)) (h′) ≠ 0 only if there exists T ⊆M with h̄ = h′∣T . Now
the value of position i ∈ h′(c) can be decomposed in the following way:

(Yic(α1h)) (h′) = ∑
h̄∶h⊆h̄

(Yic (α1h̄)) (h′)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, if ∄ T⊆M ∶ h̄=h′∣T

= ∑
T ∶M(h∗)⊆T⊆M(h′∗)

(Yic (α1h′∣T )) (h′) (2.2)

Note that c ∈ M (h∗) implies c ∈ T for all M (h∗) ⊆ T ⊆ M(h′∗) and, thus,
h′∣T (c) = h′(c). Therefore, all players in h′(c) are symmetric in c with respect

to 1h′∣T and (cwSYM) yields

(Yic (1h′∣T )) (h′) = (Z
Y
c (α1h′∣T ))(h′∗)∣h′(c)∣
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for all i ∈ h′(c). Now Equation (2.2) can be exploited again:

(Yic(α1h)) (h′) = ∑
T ∶M(h∗)⊆T⊆M(h′∗)

(Yic (α1h′∣T )) (h′)
= 1

∣h′(c)∣ ∑
T ∶M(h∗)⊆T⊆M(h′∗)

(ZY
c (α1h′∣T ))(h′∗)

= 1

∣h′(c)∣ ∑
h̄∶h⊆h̄

(ZY
c (α1h′∣T ))(h′∗)

= 1

∣h′(c)∣(ZY
c (α1h))(h′∗) = α

∣h′(c)∣∣M (h∗) ∣
From this it follows that within each connection the value is allocated equally

among all corresponding members.

Proof of Proposition 2.11

Let an arbitrary allocation problem (N,M) be given. Proposition 2.6 implies that

iteratively applying the Myerson Value satisfies the axioms. For the other direction

let Y ∈ Y . Moroever, assume Y satisfies all the axioms. By applying Lemma 2.7

this implies Y ∈ Y2stg. First note that because of additivity it is again sufficient to

concentrate on α1h, where α ∈ R and h ∈H.10 Furthermore, let h′ ∈H.
Case 1: h ⊈ h′.

Here, every player is a null player in each connection. Thus, (Yic(α1h)) (h′) = 0
for all i ∈ N and c ∈M .

Case 2: h ⊆ h′.
In this case, ic is a null position if and only if i ∉ h(c). From this follows

(ZY
c (α1h))(h′∗) = ∑

i∈N

(Yic(α1h)) (h′) = 0 for all c ∈M with ∣h′(c)∣ = 0
and, thus, symmetry of ZY implies (ZY

c (α1h))(h′∗) = α
∣M(h′)∣ for all c ∈M(h′).

Finally, exploiting (cwSYM) yields (Yic (α1h)) (h′) = α
∣h(c)∣∣M(h∗)∣ for all i ∈ N

and c ∈M with i ∈ h(c).
10Although Owen (1977) requires the null player property, the remainder of the proof in principle

proceeds completely analogously to the characterization of his value. Of course, (NULL) has to

be replaced by (cwNULL) but the line of argumentation is the same.

56



Therefore, Y equals iteratively applying the Myerson Value. In particular, according

to Proposition 2.6 this implies that the first-stage allocation rule satisfies (NULL).

Proof of Proposition 2.13

The main idea of the proof is to show that if a network forms a coalition structure

and moreover a component-additive value function is given, IM and OV satisfy

the same axioms. To this end, it is necessary to introduce some preliminaries from

Cooperative Game Theory. As already mentioned in Remark 2.1, a TU game is a

pair (N,γ) with γ ∶ 2N Ð→ R and γ(∅) = 0. If the set of players is decomposed into

a set of coalitions B = {B1, . . . ,Bk}, i.e., ⋃k
l=1Bl = N and Bl ≠ ∅ for all 1 ≤ l ≤ k,

this set B is called partition. Moreover, a (single-valued) solution Γ assigns a payoff

vector Γ(γ,B) ∈ Rn to each pair consisting of a TU game (N,γ) and a partition

B. Analogously to allocation rules it is possible to characterize solutions by means

of several axioms: Let two arbitrary TU games (N,γ) and (N,γ′) together with a

partition B be given. A solution Γ. . .

Efficiency . . . is efficient if ∑i∈N Γi(γ,B) = γ(N).
Additivity . . . is additive if Γ(γ + γ′,B) = Γ(γ,B) + Γ(γ′,B).
Null player property . . . satisfies the null player property if every null player i ∈ N

(i.e., γ(S ∪ {i})− γ(S) = 0 for all S ⊆ N ∖ {i}) always receives a payoff of zero:

Γi(v,B) = 0.
Symmetry within coalitions . . . satisfies symmetry within coalitions if two sym-

metric players i, j ∈ N (i.e., γ(S∪{i}) = γ(S∪{j}) for all S ⊆ N ∖{i, j}) always
receive the same payoff: Γi(v,B) = Γj(v,B).

Symmetry across coalitions . . . satisfies symmetry across coalitions if the aggre-

gated payoff of two symmetric coalitions Bl,Bl′ ∈ B (i.e., v(B′∪Bl) = v(B′∪Bl′)
for all B′ ⊆ B ∖ {Bl,Bl′}) is always the same: ∑i∈Bl

Γi(v,B) = ∑i∈Bl
Γi(v,B).

Owen (1977) has shown the following result:11

Theorem. Owen’s value Ψ is the unique solution satisfying efficiency, additivity, the

null player property, symmetry within coalitions, and symmetry across coalitions.

11Actually, Owen (1977) used slightly different but equivalent axioms in his work. The more

common variation of his axiomatization stated here can be found, for example, in Winter (2002).
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Now, let an allocation problem (N,M) and a component-additive allocation rule

v ∈ CA be given. Moreover, suppose the network h ∈ H forms a coalition structure.

Then, each player-based allocation rule X ∈ X can be interpreted as a position-based

allocation rule via

vXic (h) ∶=
⎧⎪⎪⎨⎪⎪⎩
vXi (h), for i ∈ h(c)
0, for i ∉ h(c).

According to Corollary 2.4 from Hart and Kurz (1983), (ZOV
c )c∈M equals the Myer-

son Value:

vOV
c (h∗) = ∑

i∈N

vOV
ic (h) = ∑

i∈h(c)

vOV
i (h) = ∑

i∈h(c)

Ψi (A(h), wh
v) HK= Φc (wh∗

v ) = vMV
c (h∗) ,

where, again, Φ denotes the Shapley Value and wh∗

v (T ) ∶= v(h∣∗T ) for all T ⊆M (cf.

Footnote 6). In particular, this implies (ZOV
c )c∈M satisfies symmetry. By applying

the characterization of Ψ it is straightforward to show that OV also satisfies addi-

tivity and the null player property (with respect to coalitional networks). Because

h is a coalition structure and v is component-additive, player i’s contribution to the

whole network is exactly what she contributes to her connection c ∈M :

v(h∣S∪{i}) − v(h∣S) = v(h∣h(c)∩(S∪{i})) − v(h∣h(c)∩S)
= vMV

c (h∣∗S∪{i}) − vMV
c (h∣∗S)

= vMV
c (h∣∗c,S∪{i}) − vMV

c (h∣∗c,S)
for all S ⊆ N . Thus, OV satisfies the null player property not only in a player-based

way but also connection-wise. Nevertheless, it should be mentioned that this is

true only under the requirements given here. By further exploiting the construction

of the Myerson Value and component additivity, it is possible to show that sym-

metry within coalitions corresponds to connection-wise symmetry (note that from

Lemma 2.7 it follows that OV ∈ Y2stg): Let i, j ∈ N such that there exists c ∈ M
with i, j ∈ h(c). Then:

v(h∣S∪{i}) = v(h∣S∪{j}) for all S ⊆ N ∖ {i, j}
⇔ ∑

c′∈M

v(h∣h(c′)∩(S∪{i})) = ∑
c′∈M

v(h∣h(c′)∩(S∪{j})) for all S ⊆ N ∖ {i, j}
⇔ v(h∣c,S′∪{i}) = v(h∣c,S′∪{j}) for all S′ ⊆ h(c) ∖ {i, j}
⇔ v(h∣∗c,S′∪{i}) = v(h∣∗c,S′∪{j}) for all S′ ⊆ h(c) ∖ {i, j}
⇔ vMV

c (h∣∗c,S′∪{i}) = vMV
c (h∣∗c,S′∪{j}) for all S′ ⊆ h(c) ∖ {i, j}

Therefore, OV and IM satisfy the same axioms.
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Chapter 3

Constitutions and Social Networks

3.1 Introduction

There are various situations in economic or daily life where individuals organize

themselves in groups, whether for cooperation, coordination, or otherwise. The goal

of this paper is to formalize and examine environments where individuals are al-

lowed to engage in several groups at the same time. These group structures are

interpreted as social networks in this study. Depending on the context, formation

of these networks occurs for manifold reasons and considering all of them seems to

be a virtually impossible venture. In order to be as general as possible, we abstract

from activities carried out within each group. That is, we suppose the individuals’

preferences to depend on the structure of the network directly. Given these prefer-

ences, there might be incentives for joining or leaving certain groups. The salient

point is, however, that individuals are generically not necessarily free to deviate.

Some members of a group might have certain property rights which allow them

to block new members or even give them the power to force existing members to

stay. We capture this aspect by means of introducing the notion of constitutions.

More precisely, each group is supposed to have specific rules governing, on the one

hand, which deviations are feasible and, on the other, who may decide about the

deviations. Therefore, the formation of social networks not only depends on the

preferences of the individuals but also on the property rights granted by the consti-

tutions.

The framework outlined above captivates with a wide spectrum of possible applica-

tions. A particular one that we are going to discuss in detail is job markets with

labor unions. But one could also mention research collaborations, immigration, or
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social clubs, for instance. These examples already indicate that the rules or con-

stitutions governing which members may join or leave a group may vary greatly.

For instance, in some groups it might be possible to dismiss members but in others

there might be a protection against this. Or, in some groups entry might be free

but in others it might require the consent of other members. Therefore, the consti-

tutional design may have a significant impact on the formation of social networks.

Consequently, two questions which we are going to address are: (i) what changes if

more blocking power is given to the individuals and, more general, (ii) under which

circumstances is it possible to find constitutions which guarantee a certain degree

of stability?

Since the formation of social groups is of fundamental interest, it has been examined

from numerous angles before. For instance, Ellickson et al. (1999, 2001) as well as

Allouch and Wooders (2008) analyze this issue in the framework of general equi-

librium theory, Acemoglu et al. (2012) provide a dynamic model for studying the

stability of societies, and Page and Wooders (2010) formalize club formation as a

non-cooperative game, to name but a few. In fact, providing a complete overview

over all publications dealing with group formation in a broader sense would exceed

the scope of nearly every paper due to the great complexity and diversification of

the field. Therefore, the following survey restricts on most closely related branches

and outlines which publications particularly influenced our work.

Analyzing group formation but abstracting from activities carried out within each

group obviously relates to hedonic coalition formation (e.g., Banerjee et al., 2001;

Bogomolnaia and Jackson, 2002). Moreover, studies dealing with economic net-

works (e.g., Jackson, 2008) or matching markets (e.g., Roth and Sotomayor, 1990)

can also be embedded into our setting. Thus, we contribute indirectly to a stream

of literature where the authors combine coalition formation and matching problems

(e.g., Cesco, 2012; Pycia, 2012). However, the way we model social networks and

preferences is closer to models from matching theory where the individuals are not

only concerned about which groups they belong to but also about who the other

members of the groups are (e.g., Dutta and Massó, 1997; Eichenique and Yenmez,

2007; Kominers, 2010).

One of the main contributions of this paper is formalizing constitutional rules

within a hedonic setting. This approach is in spirit with some other publica-

tions from literature, like Bala and Goyal (2000), Page and Wooders (2009), or

Jehiel and Scotchmer (2001), for example. These papers analyze which networks
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or coalition structures might be expected to emerge under several specific rules gov-

erning network or coalition formation, respectively. However, the aforementioned

works differ from ours in at least one important aspect: For analyzing which struc-

tures are likely to occur we focus on constitutionally stable networks, where a social

network is considered to be constitutionally stable if none of the groups is modified

any more. The salient point is that, in our framework, the stability of a network

depends on explicitly modeled constitutions. In the above-mentioned papers, on the

contrary, the constitutional rules are varied only implicitly by discussing different

stability concepts. For this reason, our approach not only achieves greater generality

but it also allows separating more clearly which influence constitutional rules have

on group formation.

The analysis conducted in this paper is two-fold: We not only focus on the question

whether constitutionally stable networks actually exist but we also discuss whether

they might be reached given that the players apply a “trial-and-error strategy”.

To this end, we follow Roth and Vande Vate (1990). In the context of marriage

problems (or two-sided one-to-one matchings, respectively), the authors introduced

a Markov process which always results in a stable matching with probability one,

even if the individuals act myopically. Later, this work has been extended and var-

ied in several ways (e.g., Chung, 2000; Diamantoudi et al., 2004; Klaus et al., 2010;

Kojima and Ünver, 2008). In our study, we use basically the same approach but

we adopt the terminology of Jackson and Watts (2001, 2002) who examined a sim-

ilar random process but focused on stochastic stability of economic networks. By

analyzing “improving paths” we formulate requirements on constitutions and pref-

erences guaranteeing that for every social network there always exists an improving

path leading to a stable network. It turns out, in fact, that this is equivalent to re-

quiring the existence of a specific version of a common ranking (cf. Banerjee et al.,

2001; Farrell and Scotchmer, 1988). We also find that giving more blocking power to

the individuals does not necessarily lead to more stability. Indeed, higher blocking

power might destroy the existence of the common ranking.

Although the main purpose of this paper is to discuss formation of social networks

in general, the last part is devoted to a particular application, namely to job mar-

kets with labor unions. Applying the general results obtained in the sections before

allows to judge for different levels of the unions’ strength, whether the job market

is likely to become stable or not. In doing so, we also find a variation of Roth’s

“polarization of interests” (cf. Roth, 1984) between employers and employees.
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The remainder of the paper proceeds as follows: The next section introduces the

model. This also includes formal definitions of social networks and of constitutions.

In Section 3.3, we discuss conditions for the existence of constitutionally stable net-

works and, in Section 3.4, we apply the corresponding results to our model of job

markets. Finally, Section 3.5 contains the conclusions.

3.2 The Model

In the following, let N = {i1, . . . , in} be a finite set of players and M = {c1, . . . , cm}
be a finite set of connections.

Definition 3.1. A social network h is a mapping h ∶ M Ð→ 2N assigning to each

c ∈M a subset of players (as usual, 2N is the power set of N).1

A social network h indicates which players are members of which connections. For

each i ∈ N let Mh(i) = {c ∈ M ∣ i ∈ h(c)} be the set of connections player i is

contained in. The set of all social networks is denoted by H and the cardinality of

H is ∣H∣ = 2mn. A particular special case is the empty social network h∅ ∈ H, with
h∅(c) = ∅ for all c ∈M . That is, no player is contained in any connection.

Example 3.1. Suppose there are three players and four connections, i.e., we have

N = {i1, i2, i3} and M = {c1, . . . , c4}. Consider the case where all players are con-

tained in c1, the players i2 and i3 are moreover contained in c2 and c3, while c4 only

contains i1. This is described formally by the following social network h:

h(c) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{i1, i2, i3}, if c = c1
{i2, i3}, if c ∈ {c2, c3}
{i1}, if c = c4.

c2

c3

c1

c4
b
i1

b
i2

b
i3

Figure 3.1: The social network h

3.2.1 Constitutions

Each player i ∈ N is supposed to have rational preferences ⪰i over H and the tuple

⪰ = (⪰i)i∈N is called a preference profile. Depending on the preferences, there might

1 Note that the tuple (N,M,h) is simply a mathematical hypergraph. Therefore, from a technical

point of view our definition of social networks also relates to the notions of conference structures

(e.g., Myerson, 1980) and many-to-many matchings (e.g., Roth, 1984).
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be incentives to alter some connection in a given network. For modeling this formally

we use the symmetric difference ± defined by D′ ±D = (D′ ∖D) ∪ (D ∖D′) for all
D′,D ⊆ N . Correspondingly, given a connection c ∈ M and a subset of players

D ⊆ N , let h±(c,D) be the social network that is obtained from h ∈H if c is altered

by the players in D. More specifically, players in D ∩ h(c) leave the connection and

players in D ∖ h(c) join it:2

(h ± (c,D))(c′) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h(c) ±D if c = c′
h(c′) if c ≠ c′ (3.1)

If D ∩ h(c) = ∅, we just write h + (c,D) instead of h ± (c,D) to stress the fact that

no player leaves the connection. Conversely, if D ⊆ h(c), we just write h − (c,D)
instead of h ± (c,D) to indicate that no player joins the connection.

The central assumption in our framework is that certain deviations might be pre-

cluded, even if all deviating players would benefit from altering the network. For

capturing this facet, we introduce constitutions which govern the exit of already

existing members and/or the arrival of new members. That is, the constitutions

describe, on the one hand, which modifications of a connection are feasible and, on

the other, the coalitions whose support is needed for the modifications to take place.

Definition 3.2. The constitution Cc = (Cch)h∈H of connection c ∈M is a collection of

pairs Cch = (Dc
h, S

c
h) where (i) Dc

h ⊆ 2N ∖{∅} describes the feasible deviations and (ii)

for each D ∈ Dc
h, S

c
h(D) ⊆ 2h(c) specifies a non-empty set of supporting coalitions.

For all c ∈M and h ∈H, Cch consists of two components. The first one, Dc
h, specifies

which changes (with respect to the deviations formalized in (3.1)) of c are possible.

Of course, it might be the case that Dc
h = 2N ∖{∅} and that there are no restrictions

on feasible deviations. In many applications, however, certain modifications of a

connection are not possible due to capacity constraints or legal requirements, for

example, and this is captured by Dc
h. Moreover, for deviating from h(c), each

deviating set of players D ∈ Dc
h needs the support of at least one supporting coalition

S ∈ Sc
h(D).3 If there exists no such S, the modification by D is blocked. Note that

2We use ± instead of the usual symbol ∆ for denoting the symmetric difference in order to emphasize

that it might be possible that at the same time new members enter a connection while other

members leave it.
3Our notions of feasible deviations and supporting coalitions relate in a way to “move arcs” and

“preference arcs”, respectively, from Page et al. (2005).
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∅ ∈ Sc
h(D) is allowed, too. In this case, the players in D ∈ Dc

h do not need the consent

of any member of the connection for deviating. Moreover, if S ∈ Sch(D) ∖ {∅}, we
assume S′ ∈ Sch(D) for all S′ ⊇ S. That is, if S is a supporting coalition for a certain

deviation, all coalitions containing S also have the power to support this deviation.

In the following, let C ∶= (Cc)c∈M . The tuple (N,M,⪰,C) is called a society.

Example 3.2. Let N = {i1, . . . , in} and M = {c1, c2, c3}. As an example consider

the following three specific constitutions:

(i) If Dc1
h = {D ⊆ N ∣ ∣h(c1) ±D∣ ≤ 9, D ≠ ∅} and Sc1h (D) = {S ⊆ h(c1) ∣2 ⋅ ∣S∣ >∣h(c1)∣} for all h ∈ H and D ∈ Dc1

h , the players have to respect a quota of nine

and decisions are taken by means of the majority rule.

(ii) Suppose Dc2
h = {D ⊆ N ∣ l ≥ 3 ∀ il ∈D, D ≠ ∅} and Sc2h (D) = {S ⊆ h(c2) ∣h(c2) ∩

D ⊆ S} for all h ∈ H and D ∈ Dc1
h . This reflects the case where deviations

require certain qualifications. In this specific example, players need an index

of at least three. Moreover, none of the members has property rights for the

connection. If a deviation is feasible, the corresponding players have the power

to support themselves, i.e., they are free to enter or exit.

(iii) Let Dc3
h = 2N ∖ {∅} and Sc3h (D) = {S ⊆ h(c3) ∣ il̄ ∈ S, where l̄ ≥ l∀ il ∈ h(c3)} for

all h ∈H and D ∈ Dc1
h . Here, all deviations are feasible and the player with the

highest index acts as a kind of dictator and has perfect property rights. That

is, she may decide about both, whether players may join the connection as well

as whether they may leave it.

3.2.2 Stability

For analyzing which social networks might be expected to emerge we propose a

notion of stability which requires that no single connection is altered any more.

Definition 3.3. Given the society (N,M,⪰,C), a social network h is constitutionally

stable with respect to the constitutions C if for all c ∈M and D ∈ Dc
h we have that:

(i) h ⪰i h ± (c,D) for at least one i ∈ D ∖ h(c) or (ii) in each supporting coalition

S ∈ Sch(D) there is a player j ∈ S with h ⪰j h ± (c,D).
Expressed in words, a social network h ∈H is constitutionally stable if and only if for

any connection c ∈M and any feasible modificationD ∈ Dc
h, at least one of the players

joining c does not strictly benefit from deviating or at least one of the members of
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every supporting coalition S ∈ Sch(D) is not strictly better off. Therefore, implicitly

we assume that moving from h ∈H to h±(c,D) does not necessarily need the consent

of players leaving c. The main idea is that some members of the connection might

have the power to force other members to leave c even when the excluded players

suffer from this deviation. On the other hand, a player who is not in c ∈M cannot be

forced to join the connection. Only if she strictly benefits will she agree to becoming

a member of it.

Remark 3.1. An alternative approach one might think about would be that a devi-

ation already takes place if only one ot the supporting or deviating players is strictly

better off and the others do not suffer from the deviation. This would be a direct

extension of “pairwise stability” from Network Theory (see Jackson and Wolinsky,

1996). However, in our model this variation causes strange curiosities which are not

plausible in real life. For example, consider the following situation: Suppose there

are three players N = {i1, i2, i3} and only one connectionM = {c}. Let h(c) = {i1, i2},
h′(c) = {i1, i3}, {i2, i3} ∈ Dc

h ∩ D
c
h, and {i1} ∈ Sch({i2, i3}) ∩ Sch′({i2, i3}). Moreover,

suppose the preferences with respect to these two networks are as follows: h ∼i1 h′,
h ≻i2 h′, and h′ ≻i3 h. Then, given the network h, if player i2 is replaced by i3,

the last-mentioned is strictly better off while i2 suffers from this deviation. Never-

theless, since i1 is indifferent between h and h′, she would support deviating from

h to h′ because she has no incentive for blocking this modification of the connec-

tion. However, in the next step, the same pattern recurs again. The only differ-

ence is that now i2 and i3 interchange roles. Thus, i1 would grant i2 access to

the connection although she evicted this player in the step before. In particular,

this skipping back and forth between the two networks the whole time implies an

inconsistency in the behavior of i1 which is quite counterintuitive. For excluding

situations like these, we require that players only deviate or support a deviation if

they are strictly better off. Note that this is in line with several other related sta-

bility concepts from literature, like the core stability of Bogomolnaia and Jackson

(2002) and Banerjee et al. (2001), the pairwise stability of Sotomayor (1999), or the

strong stability of Dutta and Mutuswami (1997), to name but a few.

In the following, let ST (C) denote the set of constitutionally stable networks with

respect to the constitutions C. Moreover, for each h ∈H, let
Ac

h(C) ∶= {D ∈ Dc
h ∣∃S ∈ Sch(D) such that h ± (c,D) ≻i h ∀ i ∈ (D ∖ h(c)) ∪ S}

be the set of all feasible deviations causing instabilities in c ∈ M . Note that if

D ⊆ h(c), D ∈ Dc
h, and ∅ ∈ Sch(D), then D causes an instability by definition
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although it might be that nobody benefits from this deviation. Therefore, in order

to exclude exogenous instabilities like these, we will assume ∅ ∉ Sch(D) if D ⊆ h(c).

3.3 General Results

Generically constitutionally stable social networks might fail to exist and this leads

to the question of how the design of constitutions affects the (non-)existence of

stable structures. For approaching this issue let us start with a straightforward

and plausible attempt: Suppose the constitutions grant the players a certain level

of blocking power. That is, the members of each connection might have certain

property rights allowing them to inhibit modifications of the connection which are

not conform to their own ideas.

Remark 3.2. Let two societies (N,M,⪰,C) and (N,M,⪰, C̄) be given and assume

C ⊆ C̄, i.e., Dc
h ⊆ D̄c

h and Sch(D) ⊆ S̄ch(D) for all h ∈ H, c ∈ M , and D ∈ Dc
h. Then:

ST (C̄) ⊆ ST (C).
The remark follows directly from the definition of constitutional stability. If the

sets of feasible deviations and supporting coalitions shrink, the blocking power of

each individual player increases and the set of constitutionally stable networks might

become larger. However, although the reasoning is very intuitive it might be mis-

leading. In fact, whether more blocking power really implies more stability, strongly

depends on the perspective of stability: On the one hand, there might be more

stable networks but, on the other, reaching them might not be possible any more.

For formalizing these thoughts we follow Jackson and Watts (2001, 2002) and use

the notion of improving paths: “An improving path is a sequence of networks that

can emerge when individuals [join or leave a connection] based on the improvement

the resulting network offers relative to the current network” (Jackson and Watts,

2002, p. 51). That is, each of the networks differs from its predecessor only in

that exactly one connection is modified by a deviating coalition. This requires, of

course, that every player joining the connection must strictly prefer the resulting

network to the current one. Moreover, the deviation should not be blocked and,

hence, there should be a supporting coalition where every member strictly benefits

from the modification.4 More formally:

4In improving paths the players are implicitly assumed to care only about the immediate benefit

of deviating to the next network but they do not forecast how others might react to their actions.

69



Definition 3.4. An improving path from h0 ∈H to hk ∈H is a sequence of networks

(h0, h1, . . . , hk) such that for all 0 ≤ l < k there is exactly one cl ∈ M with hl+1 =
hl ± (cl,Dl) for some Dl ∈ Acl

hl
(C).

If there exists an improving path from h ∈ H to h′ ∈ H, we write h ↦ h′. Moreover,

let I(h) = {h′ ∈ H ∣ h ↦ h′} be the set of networks that can be reached by an

improving path starting at h. Notice that h is constitutionally stable if and only if

I(h) = ∅. A set of networks H ⊆ H is closed if there is no improving path leading

out of it, i.e., I(h) ⊆H for all h ∈H. Moreover, a set of networks H ⊆H with ∣H ∣ ≥ 2
is a cycle if for any pair h,h′ ∈ H, there exists an improving path from h to h′ and

vice versa.

Lemma 3.1. Let the society (N,M,⪰,C) be given. There exists no closed cycle if

and only if, for each network h ∈ H that is not constitutionally stable, there exists

an improving path leading from this network to a constitutionally stable one.

Proof. We will show the reverse statement of Lemma 3.1. If there exists a closed

cycle H, by definition there exists no improving path from any h ∈H to a constitu-

tionally stable network. This already proves the first direction. Now suppose there

exists a network h ∈H such that there is no constitutionally stable network in I(h).
Therefore, this set must contain at least one cycle H1. Suppose H1 is a maximal

cycle, i.e., it is not a proper subset of any other cycle. Now, either H1 is closed and

we are done, or it has an improving path going out of it, leading to a new maximal

cycle H2. Note that H1 ∩H2 = ∅. If H2 is not closed, one can iterate the previous

steps and because I(h) is finite, we will finally reach a closed cycle.

Lemma 3.1 is a modification of Lemma 1 from Jackson and Watts (2002).5 The

non-existence of closed cycles not only implies existence of stable networks but it

also guarantees stability in case the agents follow a “trial-and-error” strategy and

care only about immediate benefits. In order to make the latter point more specific

consider the following random process which has been introduced for marriage prob-

lems by Roth and Vande Vate (1990): Start with an arbitrary network h0 ∈H. Each
This approach relates to myopic learning (e.g., Kandori et al., 1993; Kandori and Rob, 1995;

Monderer and Shapley, 1996) and is appropriate in relatively complex settings where it is difficult

to anticipate all possible changes. In the context of coalition or network formation some authors

have relaxed this assumption by analyzing “farsighted stability” (see, e.g., Page and Wooders,

2009; Page et al., 2005). Conducting similar studies in our framework is left for future work.
5The authors have shown in slightly different terms that it is possible to find “pairwise-stable”

networks if there exist no closed cycles.
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round r ∈ N≥0 a pair (cr,Dr) ∈M × 2N is drawn randomly with positive probability.

If Dr ∈ Acr
hr
(C), the process moves to hr+1 ∶= hr ± (cr,Dr). Otherwise it remains at

hr+1 ∶= hr.

Proposition 3.1. Given a society (N,M,⪰,C), the random process described above

always (i.e., for all h0 ∈H) converges with probability one to a constitutionally stable

network if and only if there are no closed cycles.

In the context of one-to-one matching problems, the previous result has been es-

tablished by Roth and Vande Vate (1990). Although in our model the reasoning is

the same, for sake of completeness we add the proof to the appendix. The intuition

is straightforward. As every feasible deviation is drawn with positive probability,

also every improving path has a positive probability. Therefore, if for every start-

ing point there is an improving path leading to a constitutionally stable network,

the random process converges to one of these for sure whenever it is not stopped

after finitely many steps. This is particularly remarkable as in our model, network

formation is not guided by a social planner or the like. Given the random process

introduced above, non-existence of closed cycles is sufficient for guaranteeing that

a society induces a constitutionally stable network with probability one even if the

players act myopically and the deviations are not organized in a centralized way.

Proposition 3.2. Let N , M , and ⪰ be given. Let C ⊆ C̄. Then, non-existence of

closed cycles under C̄ does not imply that there are no closed cycles under C.
Proof. In order to prove the proposition, it is sufficient to construct a suitable

example. The one we consider here is a variation of an example introduced in

Bogomolnaia and Jackson (2002) and revived in Diamantoudi et al. (2004). There

are three players N = {i1.i2, i3} and one connection M = {c}. Thus, ∣H∣ = 8. The

networks are given by

h1(c) h2(c) h3(c) h4(c) h5(c) h6(c) h7(c) h∅

c {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3} ∅

and the players’ preferences are

h4 ≻i1 h7 ≻i1 h5 ≻i1 h1 ≻i1 h2 ∼i1 h3 ∼i1 h6 ∼i1 h∅
h6 ≻i2 h7 ≻i2 h4 ≻i2 h2 ≻i2 h1 ∼i2 h3 ∼i2 h5 ∼i2 h∅
h5 ≻i3 h7 ≻i3 h6 ≻i3 h3 ≻i1 h1 ∼i3 h2 ∼i3 h4 ∼i3 h∅
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The setting is actually not completely the same as in Bogomolnaia and Jackson

(2002), because in their paper the authors study coalition formation (i.e., the set of

players is always decomposed into a partition) while we have just one connection

containing some of the players. However, “core stability” in their setting corresponds

to constitutional stability with respect to the following constitutions C = (D,S):
Dc

h = 2N ∖ {∅} and Sch(D) = {S ⊆ h(c) ∣ (h(c) ∖D) ⊆ S, S ≠ ∅} (3.2)

for all c ∈ M and h ≠ h∅. Given C, a priori all modifications of the connection

are feasible and a deviation D ≠ h(c) takes place if and only if all members of the

resulting network benefit from deviating, i.e, h± (c,D) ≻i h for all i ∈ h(c)±D. This

implies that players who are undesired can be dismissed if the other members agree

on this. For the (pathological) special case ofD = h(c), it is required that at least one

player has to approve the deviation in order to avoid exogenous instabilities. Now,

given the constitutions as defined in (3.2), Diamantoudi et al. (2004) already pointed

out that h7 is the unique constitutionally stable (or “core stable”, respectively)

network and H ∶= {h4, h5, h6} forms a closed cycle. In fact, once H is reached, there

is no improving path leading to h7 because the players act too myopically. However,

consider the following constitutions C̄ = (D̄, S̄): let
D̄c

h = 2N ∖ {∅} and S̄ch(D) =
⎧⎪⎪⎨⎪⎪⎩
{S ⊆ h(c) ∣ (h(c) ∖D) ⊆ S, S ≠ ∅} , if D ∩ h(c) ≠ ∅
{S ⊆ h(c) ∣S ≠ ∅} , if D ∩ h(c) = ∅

for all c ∈M and h ≠ h∅. Here, granting access to c just needs the support of only one

member of the connection. This obviously implies C ⊊ C̄ and, thus, the players have

less blocking power (but note that the sets of stable networks coincide). However,

in this case H, does not form a closed cycle any more because for all h ∈H there is

always one member of c who supports deviating from h to h7. Therefore, given C̄,

there exist no closed cycles.

Proposition 3.2 dissents Remark 3.2 in a way. In fact, concluding that more blocking

power leads to more stability is too simplistic. Even if the set of constitutionally

stable networks becomes larger, it could happen that all improving paths leading to

them are severed and closed cycles occur.

Consequently, instead of enhancing the blocking power of the players, it is necessary

to find alternative approaches for assuring that the society always induces a consti-

tutionally stable network. To this end, consider once again the example constructed

in the proof of Proposition 3.2. Examining it in detail yields that under C̄ we have
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h ↦ h7 for all networks h ≠ h7 but I(h7) = ∅. Therefore, for all h ∈ H there exists a

unique element in I(h) which is maximal with respect to “↦”. On the other hand,

this is not true under C because H = {h4, h5, h6} forms a closed cycle and, thus,

I(h) = H for all h ∈ H. Although these observations are limited to this specific

example, similar considerations also apply in general.

Definition 3.5. Given a society (N,M,⪰,C), a common ranking ⊵ is a complete

and transitive ordering over H such that D ∈ Ac
h(C) implies h ± (c,D) ⊵ h for all

h ∈H and c ∈M .

A common ranking ⊵ reflects a certain level of consensus between the players. The

main idea is that the set of networks can be decomposed into several equivalence

classes and once a higher class is reached, this will not be reversed afterwards.

Indeed, a deviation takes place only if the joining and supporting players agree that

the resulting network is not contained in a lower class than the current one. Note

that a priori this is not a restriction at all because it would be possible, for instance,

to choose ⊵ in such a way that all networks are equivalent (i.e., h ⊵ h′ as well as h′ ⊵ h
for all h,h′ ∈H). This immediately implies that a (not necessarily unique) common

ranking always exists. However, the more consensus about beneficial deviations

between the players, the stronger the restrictions that can be imposed by a common

ranking.

Proposition 3.3. Let a society (N,M,⪰,C) be given.

(i) There are no cycles if and only if there exists a common ranking ⊵ such that

for all H ⊆H there is a unique ⊵–maximal network ĥ ∈H.

(ii) There are no closed cycles if and only if there exists a common ranking ⊵ such
that for all closed H ⊆H there is a unique ⊵–maximal network ĥ ∈H.

For the proof refer to the appendix. The main advantage of Proposition 3.3 is that it

provides an alternative criterion for guaranteeing convergence to a constitutionally

stable network. Item (i) states that requiring the absence of cycles is equivalent

to requiring the existence of a special common ranking which identifies a unique

maximal element in every subset of networks.6 Moreover, according to (ii), having

6A common ranking meets this requirement if and only if it is strict. In this case, it is a variation

of “Generalized Ordinal Potentials” introduced by Monderer and Shapley (1996). In particular,

item (i) of Proposition 3.3 is closely related to Lemma 2.5 from their publication. Moreover, it

also relates to Theorem 1 in Jackson and Watts (2001).
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this feature only in particular subsets of H is still strong enough for excluding closed

cycles. Therefore, the society induces a constitutionally stable network for sure if and

only if the constitutions allow for a common ranking which is sufficiently restrictive.

That is, there must be a certain degree of consent about which feasible deviations

are beneficial and which are not.

3.3.1 Constitutional Rules and Players’ Preferences

The remainder of this section is devoted to requirements assuring the existence of

a common ranking which excludes closed cycles. In order to get more intuition for

this, let us consider a stylized example:

Example 3.3. Suppose there are three players N = {i1, i2, i3} and a unique con-

nection M = {c}. Analogously to the example in the proof of Proposition 3.2 let

h3(c) = {i3}, h5(c) = {i1, i3}, h6(c) = {i2, i3}, and h7(c) = {i1, i2, i3}. But here, the

corresponding feasible deviations are Dc
h3
= Dc

h5
= Dc

h6
= Dc

h7
= {{i1},{i2},{i3}},

while the supporting coalitions are given by Schl
(D) = {S ⊆ hl(c) ∣ i3 ∈ S} for all

D ∈ Dc
hl

where l ∈ {3,5,7} and Sch6
(D) = {S ⊆ h6(c) ∣ i2 ∈ S} for all D ∈ Dc

h6
. More-

over, the players’ preferences are supposed to be as follows:

h7 ≻i1 h5 ≻i1 h6 ∼i1 h3 ≻i1 . . .
h7 ≻i2 h6 ≻i2 h5 ∼i2 h3 ≻i2 . . .
h6 ≻i3 h3 ≻i3 h5 ≻i3 h7 ≻i3 . . .

It is not difficult to check that in this case the set H = {h6, h3, h5, h3} forms a closed

cycle because (h3, h6, h7, h5, h3) is an improving path (see Figure 3.2).

Inspecting this cycle in detail we can find a kind of irregularity in the constitutions:

In h3, h5, and h7, player i3 is the only one who may decide about deviations and

she even has the power to exclude the other players from the connection. But after

moving to h6, player i3 looses her strong property rights and i2 is able to grant

i1 access to the connection. Moreover, not only the constitutions exhibit a kind of

irregularity but the players also disagree about the optimal form of the connection.

First, as mentioned before, i3 can exclude i1 or i2 in h7 against their will. If either

this was not possible or the players agreed to being excluded and did not want to

join the connection again, the cycle would be splintered. Second, both players, i2

and i3, have the power to support a deviation of player i1. The salient point is that

both disagree about whether i1 should be a member of the connection or not. If there

would be a common agreement about this, one of the deviations would be blocked.
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h3 h6

h5 h7

h3 + (c,{i2})

h5 − (c,{i1}) h6 + (c,{i1})h7 − (c,{i1})

h7 − (c,{i2})
Figure 3.2: The cycle H

As the example illustrates, in general there are three main factors which support

the occurrence of closed cycles:

(i) constitutions might change strongly even if the network itself does not,

(ii) players might be forced to leave a connection against their will, and

(iii) there might be disagreement between the players who may decide about the

deviations.

In fact, for guaranteeing the existence of a common ranking which satisfies the

criterion formalized in Proposition 3.3(ii), it is necessary to control for all of these

factors. This implies that we not only have to find reasonable restrictions on players’

preferences but also consistency conditions on the constitutions.

Definition 3.6. Given a closed set H ⊆H, the constitutions C = (D,S) satisfy . . .

• . . . regularity with respect to H if for all h ∈H and c ∈M we have:

(i) If h̄(c) = h(c) ∪ D̄ for some h̄ ∈ H and D̄ ⊆ N ∖ h(c), then Dc
h = Dc

h̄
and

for all D ∈ Dc
h̄
and S̄ ∈ Sc

h̄
(D) there exists S ∈ Sch(D) with S ⊆ S̄ ⊆ S ∪ D̄.

(ii) If D ∈ Dc
h and S ∈ Sch(D) with S ⊈D, then h(c) ∖ (S ∪D) ∉ Sch(D).

• . . . protection against eviction with respect to H if for all h ∈ H and c ∈ M
always D ∩ h(c) ⊆ S for all D ∈ Dc

h and S ∈ Sch(D).
• . . . decomposability with respect to H if for all h ∈H and c ∈M , we have that

D ∈ Dc
h implies D′ ∈ Dc

h and Sch(D) = Sch(D′) for all D′ ⊆D.
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The main motivation of regularity is to exclude the possibility of skipping back and

forth between two networks the whole time: Condition (i) states that the feasible

deviations and corresponding supporting coalitions of each c ∈ M may not vary

extremely whenever c changes. If further players are added to the connection, the

feasible deviations are supposed to remain the same and supporting coalitions change

only as long as they might be complemented by new members. Thus, together with

(ii) this implies that if a coalition S ∈ Sch(D) has the authority to support a deviation

D ∈ Dc
h, this cannot be reversed by another coalition which is neither associated to

S nor to D.

If the constitutions satisfy protection against eviction, no player can be forced to

leave a connection c ∈M if she does not want to do it. Modifying c always requires

the consent of all deviating players (not only the consent of players who join the

connection).

Decomposable constitutions exhibit a kind of independence property. If the deviation

of a group of players is feasible, deviations of any subgroup of players are feasible as

well and the corresponding supporting coalitions do not change.

Definition 3.7. A preference profile ⪰ . . .
• . . . satisfies self-concern if h ∼i h̄ for all i ∈ N and each pair of networks h, h̄ ∈H
with Mh(i) =Mh̄(i) and h(c) = h̄(c) for all c ∈Mh(i).

• . . . is lexicographic if each agent i ∈ N has a preference ordering ⪰̄i over 2M

such that Mh(i) ⪰̄i Mh̄(i) implies h ⪰i h̄ for all h, h̄ ∈H with Mh(i) ≠Mh̄(i).
• . . . is uniform if for all i ∈ N , c ∈ M , and h, h̄ ∈ H with i ∈ h(c) = h̄(c),
h − (c,{k}) ≻j h implies h̄ − (c,{k}) ≻i h̄ and h ≻j h − (c,{k}) implies h̄ ≻i
h̄ − (c,{k}) for j ∈ h(c), k ∈ h(c) ∖ {i, j}.

• . . . is equable if for all i ∈ N , c ∈ M , and h, h̄ ∈ H with i ∈ h(c) = h̄(c),
h ≻j h − (c,{j}) for some j ∈ h(c) implies h̄ ≻i h̄ − (c,{i}) and h − (c,{j}) ≻j h
for some j ∈ h(c) implies h̄ − (c,{i}) ≻i h̄.

• . . . is separable if for all i ∈ N , c ∈M , and h, h̄ ∈H with i ∈ h(c) ⊆ h̄(c) the two

following conditions are satisfied:

(i) h̄ − (c,D) ≻i h̄ if and only if h − (c,D) ≻i h for all ∅ ≠D ⊆ h(c) ∖ {i}.
(ii) h̄ + (c,D) ≻i h̄ if and only if h + (c,D) ≻i h for all ∅ ≠D ⊆ N ∖ h̄(c).
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Self-concern is a kind of independence property. Player i neither benefits nor suffers

if the network changes in such a way that i is not affected directly.

The definition of lexicographic preferences is adapted from Dutta and Massó (1997).

Under this requirement, each player i ∈ N is mainly concerned about the connections

themselves where she is a member of and less about who the other members are.

Only if Mh(i) =Mh̄(i), might she care about the other players in her connections.

If the preferences of the players are uniform and a player leaves a connection, either

all remaining members benefit from this deviation or none of them. Note that this

is supposed to be independent of the form the other connections have.

Under equability player i ∈ N wants to stay in a connection c ∈M only if the other

members also want to stay. Suppose, for example, the connections generate a payoff

which is distributed equally among the members: Then, if a player has an incentive

to leave c, the same goes for i.

Separability as introduced here is a variation of the same-named concept from

Banerjee et al. (2001). The idea is that player i’s support for a certain leaving

or joining group D is independent of the form the connection actually has.

3.3.2 Non-existence of (Closed) Cycles

Now, combining the restrictions introduced in the previous subsection allows formu-

lating conditions which guarantee non-existence of (closed) cycles and thus lead to

convergence to a constitutionally stable network.

Proposition 3.4. Let a society (N,M,⪰,C) be given where all constitutions satisfy

protection against eviction with respect to a closed set H ⊆ H. If the players’

preferences satisfy equability and self-concern, there exist no cycles in H.

All proofs of this subsection can be found in the appendix. The requirements of

Proposition 3.4 reflect the three factors which might cause instabilities. Equability

and self-concern, for example, impose restrictions on the players’ preferences. Both

conditions together guarantee that there is only little disagreement about the opti-

mal form of each connection c ∈M . Complementing this, protection against eviction

with respect to H has two consequences: On the one hand, as the definition directly

implies, players cannot be forced to leave a connection if they do not agree to this.

On the other hand, indirectly it also ensures that the constitutions do not change

too strongly whenever a connection is altered. More specifically, S ∈ Sch(D) implies

h(c) ∖ S ∉ Sch(D) for all h ∈ H, c ∈M , and D ∈ Dc
h. The interpretation is similar to
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regularity: If S has the power to support a deviation of D, this cannot be reversed

by other supporting coalitions.

Proposition 3.5. Let a society (N,M,⪰,C) be given where all constitutions satisfy

protection against eviction with respect to a closed set H ⊆ H. If the players’

preferences are lexicographic, there exist no cycles in H.

The intuition of the previous result is similar to Proposition 3.4. Obviously, the

only difference is that the preferences are not supposed to satisfy equability and

self-concern but lexicography instead. Therefore, even if there is some disagreement

about the optimal form of the connections, it is relegated to a secondary role.

Both previous propositions exclude the existence of not only closed cycles but even

of cycles in general. To some extent this is caused by protection against eviction.

Indeed, it is not possible to drop or to relax this assumption without reinforcing the

requirements on players’ preferences.

Proposition 3.6. Let a society (N,M,⪰,C) be given. Assume all constitutions are

decomposable and regular with respect to a closed setH ⊆H. Moreover, suppose the

players’ preferences are separable, uniform, equable, and they satisfy self-concern.

Then, there exist no closed cycles in H.

As the definition directly implies, regularity inhibits the constitutions from varying

too extremely and, similar to Proposition 3.4, equability and self-concern guarantee

a certain degree of consent about the optimal form of the network. In addition to

this, due to separability and uniformity, in most networks the players are not forced

to leave their connections if they do not agree to this. If, for example, some player’s

entry is supported by a certain coalition, the corresponding members will not change

their minds, even if the connection is altered strongly. Thus, the player will only

leave again if she has an incentive for deviating.

Note that similar to Proposition 3.4, it is required that the preferences satisfy equa-

bility and self-concern together. Consequently, and analogously to above, it is pos-

sible to replace both assumptions in Proposition 3.6 by lexicography. The intuition

is the same: The optimal form of the connections is relegated to a secondary role.

Proposition 3.7. Let the society (N,M,⪰,C) be given. Assume all constitutions

are decomposable and regular with respect to a closed set H ⊆H. Moreover, suppose

the preferences of the players are separable, uniform and lexicographic. Then, there

exist no closed cycles in H.7

7Although the proof proceeds similarly as the one of Proposition 3.6, the main idea is partially
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3.4 Many-to-many Matching Markets

One of the most intriguing features of our model is a versatile applicability since

overlapping group structures are characteristic for many environments. Consider, for

example, many-to-many matching markets. The main primitives of these markets

are two finite sets of players E and F , where the members of E are usually interpreted

as employees (or workers) and the members of F as firms (see, e.g., Roth, 1984).

A (two-sided) many-to-many matching µ ⊆ E × F is then simply a collection of

worker-firm pairs indicating which employees are working for which firms. Both

sides of the market, i.e., all players in E as well as all players in F , are supposed to

have preferences over all possible matchings. Thereby, the employees are classically

assumed to care only about which firms they work for but not about who their

co-workers might be. The owners, on the other hand, are only concerned about the

employees working for their firm:

“This involves an assumption that workers are indifferent to who their

co-workers might be, and firms are indifferent to whether their employees

moonlight at other jobs.” (Roth, 1984, p. 51)

The setting outlined above can be embedded into our model in a straightforward

way: Let M ∶= F , i.e., each connection c ∈ M is interpreted as firm. Since in our

model the connections do not act as players, we suppose that each firm c has ex-

actly one owner oc ∈ O. That is, in the following we assume that the set of players

N ∶= E ∪O can be decomposed into two (disjoint) subsets, the employees E and the

owners O. Given these preliminaries, each matching µ ⊆ E × F can be represented

by the social network hµ ∈ H which is defined via hµ(c) = {i ∈ E ∣ (i, c) ∈ µ} ∪ {oc}
for all c ∈ M = F . In order to be in line with classical literature on many-to-many

matchings, we assume that each owner has no incentive for leaving her firm or for

joining any other firm, i.e., we are only interested in the case O ∩ h(c) = {oc} for

h ∈ H and c ∈ M .8 Nevertheless, since a priori we do not exclude certain network

structures, for technical reasons we also have to define preferences over networks

where this requirement is not met. To fix ideas, Roth’s assumptions on the players’

preferences imply that each employee i ∈ E is indifferent to all networks where she

is working for the same set of firms, i.e., h ∼i h̄ for all h, h̄ ∈ H with Mh(i) =Mh̄(i).
based on Section 5 of Sotomayor (1999).

8Thus, we do not consider the possibility of changing the owner. But from a technical point of

view it would not be difficult to include this feature into the model.
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Moreover, given c ∈ M and O ∩ h(c) = {oc}, the assumptions also imply h ∼oc h̄

whenever h(c) = h̄(c). For the (pathological) case of O ∩ h(c) ≠ {oc}, we assume

h ± ((O ∩ h(c)) ± {oc}) ≻oc h. Therefore, the preferences of all employees are lexico-

graphic; and restricted to the set H ∶= {h ∈ H ∣ O ∩ h(c) = {oc} ∀ c ∈ M} the same

goes for the owners, too.

Since our model is richer than the classical matching approach (in particular, social

networks as defined here might be interpreted as one-sided many-to-many match-

ings), it consequently enables us to model job markets more realistically. Comple-

menting this, our formalization of constitutions supports plausibility even further

as it allows studying different levels of authority of the owners in a flexible way.

For instance, in many countries (especially in Europe) employees are organized in

labor unions which represent the interests of their members. These unions may

guarantee a quite strong protection against dismissal to the employees and in the

short run the consent of a worker is needed if the owner wants her to leave the firm.

Many-to-many matching theory, however, usually concentrates on job markets with-

out strong protection against dismissal, like the US job market, for example, and

neglects the impact of labor unions. Due to its versatility, our model provides an

appropriate framework for examining and comparing these settings in a convenient

way. Therefore, the remainder of the paper is devoted to the study of different levels

of authority of the owners.

3.4.1 Protection against Dismissal

In the following, we always assume that the employees are allowed to accept as many

jobs as they want to. Moreover, the firms have unlimited capacity to hire workers,

i.e., given O ∩ h(c) = {oc} for h ∈ H and all c ∈ M , every possible deviation of the

employees is feasible. Nevertheless, quotas could be included easily by allowing only

for deviations which respect a maximal firm size. For sake of completeness, we also

have to consider the case where an owner is not part of her firm or other owners

are contained in it. Then, we assume that the only feasible deviation is to add the

owner and to delete all the others:

Dc
h =
⎧⎪⎪⎨⎪⎪⎩
2E, if O ∩ h(c) = {oc}
(O ∩ h(c)) ± {oc}, if O ∩ h(c) ≠ {oc} (3.3)

As mentioned before, in this subsection we suppose that the owner has no authority

to fire her employees if they do not agree with this. However, she is the only one
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who may decide about hiring new workers. On the other hand, each employee is

free to terminate her job if she has an incentive to do so. These considerations lead

to the following set of supporting coalitions:

Sch(D) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{S ⊆ h(c) ∣D ∩ h(c) ⊆ S and oc ∈ S}, if O ∩ h(c) = {oc} and D ⊈ h(c)
{S ⊆ h(c) ∣D ⊆ S}, if O ∩ h(c) = {oc} and D ⊆ h(c)
{∅}, if O ∩ h(c) ≠ {oc}

Note that for the case of O ∩ h(c) ≠ {oc}, we assume that the empty set is the only

supporting coalition and, thus, these networks are not stable by construction.

Corollary 3.1. There are no cycles in “Protection against Dismissal”.

Proof. This follows immediately from Proposition 3.5 because the players’ prefer-

ences are lexicographic and we also have protection against dismissal with respect

to the closed set H.

At first sight, the previous result might be slightly surprising because in many

studies about two-sided many-to-many matchings the existence of stable structures

is an issue (e.g., Sotomayor, 2004). This is mainly due to the fact that this literature

normally examines environments where the owners are free to fire a worker if they

benefit from it. Indeed, protection against dismissal is the driving force of the

previous result. Let ST PD denote the set of stable networks in Protection against

Dismissal. Note that this set also contains the worker-optimal networks which are

defined as follows: Suppose M̄ i ⊆ M is a set of firms which is mostly preferred by

i ∈ E. Then, if hwo is given by hwo(c) = {i ∈ E ∣ c ∈ M̄ i} ∪ {oc} for all c ∈M, every

employee is assigned to a set of firms she preferably wants to work for and, thus,

she obviously has no incentive for deviating.

3.4.2 Hire and Fire

Let us now focus on job markets without strong protection against dismissal. Trans-

lated to the model considered here, this means that the owners have the right to

fire employees even if these do not agree to leaving. This aspect can be captured by

considering the following supporting coalitions:

Sch(D) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{S ⊆ h(c) ∣ oc ∈ S}, if O ∩ h(c) = {oc},D ⊈ h(c)
{S ⊆ h(c) ∣D ⊆ S or oc ∈ S}, if O ∩ h(c) = {oc},D ⊆ h(c)
{∅}, if O ∩ h(c) ≠ {oc}
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Let ST HF be the set of stable networks in “Hire and Fire”. Note that Remark 3.2

implies ST HF ⊆ ST PD. However, it is well known that without further assumptions

existence of stable networks in Hire and Fire is not assured (as can be easily seen

by means of an example with two workers and two firms). Thus, in order to exclude

existence of closed cycles it is necessary to impose further restrictions on constitu-

tions or preferences. A straightforward approach would be to proceed similarly to

Proposition 3.7 since, as mentioned above, the preferences of the players are lexico-

graphic and, moreover, the constitutions in Hire and Fire are not only decomposable

but also regular with respect to H. However, due to the specific structure of the

setting considered here it is not necessary to impose such strong assumptions as in

Proposition 3.7. Since the owners are the only players who have the authority to

hire new employees and because they never leave their firm, uniformity is not needed

and it is sufficient to additionally assume that the owners’ preferences are separable.

Proposition 3.8. If the preferences of the owners are separable, there exist no

closed cycles in Hire and Fire.

Remark 3.3. This proposition is in line with several other well-known publications

from literature, like the papers from Roth and Vande Vate (1990), Chung (2000),

Diamantoudi et al. (2004), and especially Kojima and Ünver (2008). Similar to our

result, Kojima and Ünver (2008) have shown in the context of two-sided many-to-

many matchings that if employees and owners have, respectively, “substitutable”

(see Roth, 1984) and “responsive” (see Roth, 1985) preferences, there always exists

an improving path leading to a “pairwise stable” matching. In fact, the assumptions

we impose in Proposition 3.8 are less restrictive: Given preferences as defined at

the beginning of this section and if, in addition to this, only deviations of single

players are feasible, responsiveness of the owners’ preferences implies separability

which in turn implies substitutability (converse implications do not hold). Therefore,

Proposition 3.8 complements their findings.

Although we have ST HF ⊆ ST PD, the converse inclusion does not necessarily hold.

Therefore, there might exist networks which are stable in Protection against Dis-

missal but would be blocked if the owners’ level of authority is sufficiently high. In

particular, due to the characteristics of Hire and Fire, if h ∈ ST PD but h ∉ ST HF,

there is at least one owner who would like to fire some of her employees. This already

indicates that the interests of both sides of the market might be opposed in some

way. For deepening these considerations further we need to enhance separability:
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Definition 3.8. A preference profile ⪰ is strongly separable if for all i ∈ N , c ∈M ,

and h, h̄ ∈H with i ∈ h(c) ⊆ h̄(c), the two following conditions are satisfied:

(i) h̄ − (c,D) ≻i h̄ if and only if h − (c,D) ≻i h for all ∅ ≠D ⊆ h(c).
(ii) h̄ + (c,D) ≻i h̄ if and only if h + (c,D) ≻i h for all ∅ ≠D ⊆ N ∖ h̄(c).

As the name implies, strong separability is a stronger requirement than separability.

Again, player i’s support for a certain leaving or joining group is independent of the

form the connection actually has. But under strong separability this is also true if

i belongs to the deviating group, i.e., if i leaves the connection. Translated to Hire

and Fire, this basically means that i’s preference about whether to work for a firm

c ∈M or not is independent of the other firms she is working for.

Proposition 3.9. Assume the workers’ preferences are strongly separable and the

owners’ preferences are separable. Moreover, suppose the worker-optimal network

hwo is uniquely determined. Then, hwo ∈ ST HF if and only if ST PD = ST HF.

Proof. If ST PD = ST HF, then also hwo ∈ ST HF because hwo is always stable in

Protection against Dismissal and there remains nothing to show. For the other

direction, suppose the statement is not true, i.e., hwo ∈ ST HF but ST HF ⊊ ST PD.

Let h̄ ∈ ST PD
∖ ST

HF. Then, there must be an owner oc who would block h̄ if

her property rights are strong enough, i.e., there exists an employee i ∈ h̄(c) such
that h̄ − (c,{i}) ≻oc h̄. Because oc’s preferences are separable and hwo is stable, this

implies i ∉ hwo(c). Otherwise, the owner would also have an incentive to dismiss

the employee in hwo. Thus, uniqueness of hwo yields that i strictly prefers hwo to

hwo + (c,{i}). In particular, because her preferences are supposed to be separable,

she would also have a strict incentive for leaving c at h̄, but this contradicts stability

of this network.

Proposition 3.9 is in line with Roth (1984). Under the requirement that the pref-

erences of owners and employees are “substitutable”, the author finds a “conflict of

interest between agents on opposite sides [of the market]” (Roth (1984), p. 47). A

similar conflict also arises here: Given (strong) separability of the players’ prefer-

ences, the stable outcome which would be blocked first by the owners is the worker-

optimal network. In fact, this phenomenon is completely independent of specific

working conditions such as wages or the working environment, for example, because

we abstracted from factors like these. Moreover, as will be shown in the following,

the conflict becomes even stronger if the owners’ level of authority is raised higher.
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3.4.3 Slavery

Roughly speaking, “Slavery” is the counterposition of Protection against Dismissal.

Here, the owners not only have the power to decide about new employees but also

about whether workers may leave their firm or not:

Sch(D) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{S ⊆ h(c) ∣ oc ∈ S}, if O ∩ h(c) = {oc} and D ⊈ h(c)
{S ⊆ h(c) ∣ oc ∈ S}, if O ∩ h(c) = {oc} and D ⊆ h(c)
{∅}, if O ∩ h(c) ≠ {oc}

By applying Proposition 3.5 we get the following result:

Corollary 3.2. Every improving path in Slavery leads to a constitutionally stable

network.

Let ST SL be the corresponding set of stable networks.

Remark 3.4. It is easy to check that a network is stable in Hire and Fire if and only

if it is stable in Protection against Dismissal and Slavery, i.e., ST HF = ST PD
∩ST

SL.

But it might be the case that the intersection of the sets of stable networks is

empty. However, according to Corollary 3.1 and Corollary 3.2 there exist no cycles in

Protection against Dismissal and Slavery. Therefore, a simple algorithm for finding

stable networks in Hire and Fire (in case they exist) is to determine the sets of

maximal elements of all improving paths in the two other settings and to check

whether the intersection of these sets is non-empty.

Analogously to worker-optimal networks it is, of course, also possible to define firm-

optimal networks. Let Êc ⊆ E be a set of employees which is mostly preferred by

player oc and define hfo by hfo(c) = Êc∪{oc} for all c ∈M . Then, none of the owners

has an incentive for deviating and, thus, the network is stable in Slavery.

Proposition 3.10. Assume the workers’ preferences are strongly separable and the

owners’ preferences are separable. Moreover, suppose the firm-optimal network hfo

is uniquely determined. Then, hfo ∈ ST HF if and only if ST SL = ST HF.

Proof. Because Slavery is symmetric to Protection against Dismissal, the proof

proceeds analogously to the one of Proposition 3.9, just by reversing the role of

owners and employees.
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Proposition 3.10 has two implications: First, it shows that the owners can enforce

the network which is most beneficial for them if they have a high level of authority.

Second, this network would be the first network which is rejected by the employees.

In fact, this result extends and reinforces the interpretation of Proposition 3.9 in

a straightforward way: Each side of the market would be worse off if the other

side obtains more property rights. If, for example, labor unions narrow the owners’

level of authority, the employees would benefit from this and vice versa. Recall

once more that this insight does not directly depend on wages or the like, which

we do not consider explicitly in our model. In particular, this implies that Roth’s

“polarization of interests” seems to achieve great generality.

3.5 Conclusion

Even though there is an immense and rich body of literature on the stability of

networks (or group structures, respectively), in most of these studies, the stability

concepts the authors use are relatively rigid since they do not consider explicitly

the rules governing network formation. Indeed, the most distinctive feature of our

framework is the formal introduction of constitutions which enable modeling these

rules in a very flexible way. Using this approach we find that enhancing the blocking

power of the players does not necessarily lead to more stability. Moreover, we show

that the society induces a constitutionally stable network for sure if and only if there

is a certain degree of consent between the players about which feasible deviations

(according to the constitutions) are beneficial and which are not. In this context,

we also discuss conditions under which this criterion is satisfied. By applying our

model to job markets with labor unions we find a variation of Roth’s “polarization

of interests”: The workers generically suffer if the degree of authority of the owners

is raised and vice versa. In addition to this, we also show that the markets always

become stable if the property rights of one side of the market become sufficiently

strong.

Although the model we analyze in this paper expands well-established branches

like Network Theory or Matching Theory, for example, it is still subject to certain

limitations which narrow the field of possible applications. For instance, assuming

myopic behavior is reasonable for a start, but it is well-justified only in complex

settings where it is extremely difficult to anticipate all possible alterations. There-

fore, it might be worth analyzing which results could be obtained if the players act
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farsightedly. Another natural extension is to examine situations where it is possi-

ble to add new players or connections to the society. To incorporate this kind of

dynamics, it would be necessary to relax the assumption of fixed sets of players

and connections. Furthermore, under certain requirements common rankings relate

to ordinal potentials. Since there are numerous publications on potential functions

(e.g., Hart and Mas-Colell, 1989; Monderer and Shapley, 1996; Page and Wooders,

2010; Qin, 1996; Slikker, 2001), it seems interesting to study whether the corre-

sponding results also extend to the model introduced here.
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3.6 Appendix: Proofs

Proof of Proposition 3.1

Basically speaking, the proposition is an immediate implication of standard results

in Probability Theory. For a formal introduction see Grimmett and Stirzaker (2001),

for example. For each pair (c,D) ∈ M × 2N let pc,D > 0 denote the probability of

choosing (c,D). Then, given a network h ∈ H, the probability phh′ ∈ [0,1] of moving

from h to another network h′ ≠ h is

phh′ =
⎧⎪⎪⎨⎪⎪⎩
pc,D, if h′ = h ± (c,D) for some (c,D) ∈M × 2N and D ∈ Ac

h(C)
0, if either h′ ≠ h ± (c,D) for all (c,D) ∈M × 2N or D ∉ Ac

h(C).
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Moreover, we define phh ∈ [0,1] via phh = 1 − ∑h′∶h′≠h phh′ . Let X = (Xr)r∈N≥0 be

the (homogeneous) Markov Chain describing the random process introduced in Sec-

tion 3.3, i.e, the probability of moving from hr ∈ H to hr+1 ∈ H in round r ≥ 0 is

given by

P (Xr+1 = h′∣X0 = h0,X1 = h1, . . . ,Xr = hr) = P (Xr+1 = h′∣Xr = hr) = phrhr+1

for all h0, . . . , hr−1 ∈ H. Therefore, P(Xr+1 = h̄∣Xr = h̄) = 1 for all r ≥ 0 if and

only if h̄ is constitutionally stable. In particular, this implies that each constitu-

tionally stable network is persistent, where a network h ∈ H is said to be persis-

tent if P (Xr = h for some r ≥ 1∣X0 = h) = 1 (cf. Grimmett and Stirzaker, 2001). If

h is not persistent it is called transient. For each pair of networks h,h′ ∈ H, let
phh′(s) = P(Xr+s = h′∣Xr = h) be the probability of reaching h′ from h in s steps.

According to the Chapman-Kolmogorov equation, this probability does not depend

on r and so is well-defined indeed.

The definitions introduced in the preceding paragraph provide a basis for proving the

proposition formally. For the first direction let a closed cycle H be given. Thus, we

have phh′ = 0 for all h ∈ H and h′ ∉ H. Let (h0, h1, . . . , hk) be an arbitrary sequence

of networks with h0 ∈ H and hk ∈ ST (C). Note that we do not require that the

sequence is an improving path. Nevertheless, there has to be at least one 0 ≤ r < k
with hr ∈ H and hr+1 ∉ H and, thus, P(X1 = h1, . . . ,Xk = hk, . . . ,Xk = hk∣X0 = h0) =
P(X1 = h1∣X0 = h0) ⋅ . . . ⋅P(Xr+1 = hr+1∣Xr = hr) ⋅ . . . ⋅P(Xk = hk∣Xk−1 = hk−1) = 0. Since
the sequence was chosen arbitrarily, this implies ph0hk

(s) = 0 for all s ≥ 0. But from
this it immediately follows that the probability of converging to a constitutionally

stable network is equal to zero if the Markov Chain starts in H.

Now suppose there are no closed cycles and let h′ ∉ ST (C) be a non-stable network.

According to Lemma 3.1 there exists an improving path (h0, h1, . . . , hk) with h0 = h′
leading to a constitutionally stable network hk. Then:

P(Xr = h′∣X0 = h′) ≤ 1−P(X1 = h1, . . . ,Xk = hk, . . . ,Xr = hk,Xr+1 = hk∣X0 = h′)
= 1−P(X1 = h1∣X0 = h′) ⋅ . . . ⋅ P(Xk = hk∣Xk−1 = hk−1)

⋅ P(Xk+1 = hk∣Xk = hk) ⋅ . . . ⋅ P(Xr+1 = hk∣Xr = hk)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= 1−P(X1 = h1∣X0 = h′) ⋅ . . . ⋅ P(Xk = hk∣Xk−1 = hk−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

< 1
for all r ≥ 1. Therefore, a network h′ is transient if and only if h′ is not constitu-

tionally stable and this allows applying a well-known result in Probability Theory:
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Proposition (Cf. Grimmett and Stirzaker, 2001, p. 222). If h′ is transient then

phh′(s)→ 0 as s→∞ for all h ∈H.
Thus, for every starting network h, the probability of converging to a transient

network is equal to zero. Or, stated equivalently: the probability that the Markov

Chain introduced above converges to a constitutionally stable network (or persistent

network, respectively) is always one.

Proof of Proposition 3.3(i)

In order to show that the existence of ⊵ implies the non-existence of cycles, we will

consider the counter-position of this statement. Therefore, assume there is a cycle

H ⊆H. Since there exists a path from each network to every other network in H, if

⊵ is a common ranking, we must have h̄ ⊵ h̆ as well as h̆ ⊵ h̄ for all h̄, h̆ ∈ H. Thus,

there is no unique ⊵-maximal element in H.

For the other direction suppose there exist no cycles. The following algorithm pro-

ceeds in a similar way as the one in the proof of Theorem 1 in Jackson and Watts

(2001). We start with the binary relation ⊵1 where h ⊳1 h̄ if and only if there exists

an improving path from h̄ to h. Since there is no cycle, ⊵1 is strict. Moreover, for all

h ∈H, c ∈M , and D ∈ Dc
h, deviating from h to h±(c,D) always implies h±(c,D) ⊳1 h

by construction. However, ⊵1 is not necessarily complete. Let h̃, h̆ ∈ H with neither

h̃ ⊳1 h̆ nor h̆ ⊳1 h̃. We construct ⊵̄1 by adding h̃ ⊳̄ h̆ to ⊵1, i.e., h ⊵̄1 h̄ if and only

if h ⊵1 h̄ or h = h̃ and h̄ = h̆. Moreover, let ⊵2 be the transitive closure of ⊵̄1. We

will show that ⊵2 still represents the preference profile of the players, i.e., deviating

from h to h ± (c,D) always implies h ± (c,D) ⊳2 h for all c ∈ M and D ∈ Ac
h(C).

Suppose this is not true, that is, suppose there exist h′ ∈ H, c ∈ M , D ∈ Dc
h′ , and

S ∈ Sch′(D) with h′ ± (c,D) ≻i h′ for all i ∈ (D∖h′(c))∪S but h′ ⊵2 h′ ± (c,D). Thus,
there exists a sequence of networks (h0, h1, . . . , hk) with h0 = h′, hk = h′ ± (c,D) and
h0 ⊵̄1 h1 ⊵̄1 . . . ⊵̄1 hk. Assume the sequence is of minimal length. This implies that

hl = hl′ only if l = l′ for all l, l′ ∈ {0,1, . . . , k}. Suppose there exists an l ∈ {1, . . . , k}
with {hl−1, hl} = {h̆, h̃}. Because hl′ ≠ h̆, h̃ for all l′ ∉ {l − 1, l} this yields

hl ⊵1 hl+1 ⊵1 . . . ⊵1 hk = h′ ± (c,D) ⊵1 h′ = h0 ⊵1 . . . ⊵1 hl−1

and, thus, there exists an improving path from h̃ to h̆ or vice versa. This contradicts

the assumption that the two networks are not comparable under ⊵1. Therefore, there
exists no l ∈ {1, . . . , k} with {hl−1, hl} = {h̆, h̃}. From this follows h0 ⊵1 h1 ⊵1 . . . ⪰̄1 hk
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which contradicts the assumption that there is no cycle. Thus, ⊵2 still represents

the preferences of the players and by construction it is also transitive and strict. If it

is not complete, the previous steps can be iterated. As the set of networks is finite,

the iteration will stop after finitely many steps and we obtain a common ranking

⊵ which is strict. In particular, strictness implies that for each H ⊆ H there is a

unique ⊵-maximal network ĥ ∈H.

Proof of Proposition 3.3(ii)

The first direction proceeds analogously to the first direction of Part (i). Let a

common ranking ⊵ and a set of networks H ⊆H be given. If H forms a closed cycle,

we have I(h) = I(h′) = H and h ⊵ h′ as well as h′ ⊵ h for all h,h′ ∈ H. But this

would contradict that there is a unique ⊵-maximal network in H and, thus, there

cannot exist a closed cycle.

For the other direction suppose there exist no closed cycles. The first step of the

construction of the common ranking proceeds in the same way as the one of Part (i).

That is, we start with ⊵1 where h ⊵1 h̄ if and only if there exists an improving path

from h̄ to h. But note that here this binary relation is not necessarily strict. Since by

assumption there are no closed cycles, there exists at least one constitutionally stable

network h′ ∈ H. If this network is uniquely determined, according to Lemma 3.1 it

is contained in every closed subset H ⊆ H and ⊵1 can then obviously be extended

to a complete ranking where h′ is the unique maximal element. Therefore, in the

following, suppose there exists a further constitutionally stable network h′′ ∈ H. In

particular, this implies that neither h′ ⊵1 h′′ nor h′′ ⊵1 h′. Let h̃, h̆ ∈H be an arbitrary

pair of networks not comparable under ⊵1. Analogously to above, ⊵̄1 is constructed

by adding h̃ ⊳̄1 h̆ to ⊵1, i.e., h ⊵̄1 h̄ if and only if h ⊵1 h̄ or h = h̃ and h̄ = h̆. Again, let
⊵2 be the transitive closure of ⊵̄1. Note that by construction h′ ⊵2 h′′ would imply

h′ ⋭2 h′′ and vice versa. If ⊵2 is not complete, because of finiteness of H we can

iterate the previous steps until a complete ranking ⊵ is reached. We will show that

h′ and h′′ are still not equivalent under ⊵. This, in fact, has the following implication:

If ȟ is ⊵–maximal in a closed subset H ⊆ H, it has to be constitutionally stable by

construction and w.l.o.g. we may assume ȟ = h′. Then, for any other stable network

h′′ ∈H, we must have h′ ⊳ h′′ and, thus, h′ is the unique ⊵–maximal element in H.

In order to show that h′ and h′′ are still not equivalent under ⊵, let ⊵k be the binary

relation constructed in the k-th step of the algorithm described in the previous

passage. For k = 1,2 we already know that h′ ⊵k h′′ would imply h′ ⋭k h′′ and vice
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versa. We will show inductively that this is also satisfied for all other k. Therefore,

let k ≥ 3 and suppose that h′ and h′′ are not equivalent under ⊵k−1. Moreover,

assume this is not satisfied under ⊵k, i.e, we have h′ ⊵k h′′ as well as h′′ ⊵k h′. This
assumption will lead to a contradiction. Let h̃(k−1), h̆(k−1) ∈ H be the corresponding

pair of networks not comparable under ⊵k−1 which is added in the next step. We

will distinguish three cases:

Case 1: h′ ⊳k−1 h′′.
Because we assume that h′ and h′′ are not equivalent under ⊵k−1, this implies

that there exists a sequence of networks (h1, . . . , hl) with h1 = h′′, hl = h′,

and h1 ⊵̄k−1 . . . ⊵̄k−1 hl. Moreover, from this also follows that there exists

1 ≤ l′ ≤ l − 1 with {hl′ , hl′+1} = {h̃(k−1), h̆(k−1)}. But then
hl′+1 ⊵k−1 . . . ⊵k−1 h′ ⊳k−1 h′′ ⊵k−1 . . . ⊳k−1 hl′ ,

which contradicts that h̃(k−1) and h̆(k−1) are not comparable under ⊳k−1.
Case 2: h′′ ⊳k−1 h′.

This case proceeds analogously to the previous one by just reversing the roles

of h′ and h′′.

Case 3: h′ and h′′ are not comparable under ⊵k−1.
If h′ and h′′ are equivalent under ⊵k but not under ⊵k−1, there have to be two

sequences of networks (h1, . . . , hl) and (h̄1, . . . , h̄l̄) with h1 = h̄l̄ = h′, hl = h̄1 =
h′′, and

h1 ⊵̄k−1 . . . ⊵̄k−1 hl = h̄1 ⊵̄k−1 . . . ⊵̄k−1 h̄l̄.

Moreover, there exist 1 ≤ l′ ≤ l−1 and 1 ≤ l̄′ ≤ l̄−1 with {hl′ , hl′+1} = {h̄l̄′ , h̄l̄′+1} ={h̃(k−1), h̆(k−1)}. In particular, this yields

hl′ ⊵̄k−1 hl′+1 ⊵k−1 . . . ⊵k−1 h′′ ⊵k−1 . . . ⊵k−1 h̄l̄′ ⊵̄k−1 h̄l̄′+1

which could only be satisfied if h̃(k−1) and h̆(k−1) are comparable under ⊵k−1.
Proof of Proposition 3.4

Let (h0, . . . , hk) with h0, . . . , hk ∈ H be an improving path. Moreover, suppose

h0 = hk, that is, suppose {h0, . . . , hk} forms a cycle. By construction of improving

paths there exists c0 ∈M and D0 ∈ Dc0
h0

with h1 = h0 ± (c0,D0).
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Case 1: D0 ⊈ h0(c0), i.e., there exists i0 ∈D0 ∖ h0(c0).
Note that this implies h1 ≻i0 h0. Moreover, since all players are self-concerned,

we get

h1 ≻i0 h0 ∼i0 h0 ± (c0,D0 ∖ {i0}) = h1 − (c0,{i0}).
In other words, after joining the connection, player i0 has no incentive to leave

it unilaterally. By equability this is also true for all other i ∈ h1(c0). Let

D ∈ Dc0
h1

with D ∩ h1(c0) ≠ ∅ and let i ∈D ∩ h1(c0). Then:
h1 ≻i h1 − (c0,{i}) ∼i (h1 − (c0,{i})) ± (c0,D ∖ {i0}) = h1 ± (c0,D)

Since the constitutions satisfy protection against eviction by assumption, no

player can be forced to leave a connection against her will. Thus, all players in

h1(c0)∩D would block deviating from h1 to h1±(c0,D). It will be shown next

that the same is also true in h2. To this end, let c1 ∈ M and D1 ∈ Dc1
h1

with

h2 = h1 ± (c1,D1). If c1 = c0, the previous discussion implies D1 ∩ h1(c0) = ∅
and, by similar arguments as before, it can be shown that h2 ≻i h2±(c0,D) for
all i ∈ h2(c0) and D ∈ Dc0

h2
with i ∈D. However, if c1 ≠ c0, then h2(c0) = h1(c0).

Thus, by equability h2 ≻i h2 ± (c0,D) for all i ∈ h2(c0) and D ∈ Dc0
h2

with i ∈D.

Iterating these arguments implies

hl ≻i hl − (c0,D) for all 1 ≤ l ≤ k, i ∈ hl(c0), and D ∈ Dc0
hl

with i ∈D.

In particular, if h0 = hk, then h0 = hk ≻i0 hk − (c0,D0) = h1 and, thus, i0 would

have blocked deviating to the network h1.

Case 2: D0 ⊆ h0(c0), i.e., h1 = h0 − (c0,D0).
Thus, h1(c0) ⊊ h0(c0) and, moreover, h0 − (c0,D0) ≻i h0 for all i ∈ D0 by

protection against eviction. Let i0 ∈ D0. Since h0 = hk, there must be 1 ≤ k′ ≤
k − 1 and D ∈ Dc0

hk′
with hk′+1 = hk′ ± (c0,D) and i0 ∈D. Note that this implies

hk′+1 ≻i0 hk′ . Similar to Case 1, exploiting that all players are self-concerned

yields

hk′+1 ≻i0 hk′ ∼i0 hk′ ± (c0,D ∖ {i0}) = hk′ − (c0,{i0}).
Therefore, from equability follows hk′+1 ≻i hk′+1 − (c0,{i}) for all i ∈ hk′+1(c0).
Now, by advancing analog arguments as in Case 1 it is possible to show that

this also implies

hl ≻i hl − (c0,D) for all k′ + 1 ≤ l ≤ k, i ∈ hl(c0), and D ∈ Dc0
hl

with i ∈D.

In particular, this is true for h0 = hk, too. But this contradicts h0 − (c0,D0) =
h1 ≻i0 h0.
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Proof of Proposition 3.5

Let (h0, h1, . . . , hk) be an improving path in H. We will show by induction that

there is always at least one player i ∈ N with Mhk
(i) ≠Mh0

(i) and hk ≻i h0. Thus,

hk ≠ h0.

k = 1: According to the definition of an improving path and because all constitutions

satisfy protection against eviction, at least one of the deviating players strictly

benefits from moving to h1. Thus, there remains nothing to show.

k > 1: Suppose the statement is true for k − 1. Note that Mhk−1
(i) ≠ Mh0

(i) and
hk−1 ≻

i h0 implies Mhk−1
(i) ≻̄i Mh0

(i). Let ck−1 ∈ M be the connection and

Dk−1 ∈ D
ck−1
hk−1

be the subset of players with hk = hk−1±(ck−1,Dk−1). First consider
the case i ∈ Dk−1. By assumption every player j ∈ Dk−1 strictly benefits from

the deviation. Because preferences are lexicographic, this implies not only

hk ≻i h0 but also Mhk
(i) ≠ Mh0

(i). Next suppose i ∉ Dk−1. Then, of course,

Mhk
(i) =Mhk−1

(i) ≠Mh0
(i). But it might be possible that i suffers from this

deviation, i.e., hk−1 ≻i hk. Nevertheless, since Mhk
(i) =Mhk−1

(i) ≻̄i Mh0
(i), the

player still strictly prefers hk to h0.

Some of the following proofs use similar technical arguments and the following lemma

will serve as a convenient and useful tool. Recall that for each h ∈H,
Ac

h(C) = {D ∈ Dc
h ∣ ∃S ∈ Sch(D) such that h ± (c,D) ≻i h ∀i ∈ (D ∖ h(c)) ∪ S}

is the set of all feasible deviations causing an instability in c ∈ M . We say that a

network h ∈ H is exit-proof if D ∈ Ac
h(C) implies D ⊈ h(c) for all c ∈ M . That is,

given an exit-proof network, no group of players D ⊆ h(c) wants or is forced to leave

a connection.

Lemma 3.2. Let (N,M,⪰,C) be a society. Moreover, let h ∈ H be an arbitrary

network. Then there exists an exit-proof network h̄ ∈ I(h).
Proof. Let c ∈M such that there exists D ∈ Ac

h with D ⊆ h(c). If such a connection

does not exist, the network is exit-proof already and there remains nothing to show.

Consider h′ ∶= h − (c,D). If h′(c) is not exit-proof, further subsets of players can

be deleted from c until the connection is either empty or no coalition is supporting

these deviations any more. This proceeding can be repeated for all connections and

because N and M are finite, after finitely many steps an exit-proof network h̄ will

be reached.
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Note that by applying the previous result, Lemma 3.1 could be restated as follows:

There exists no closed cycle if and only if, for each exit-proof network h̄ ∈ H that

is not constitutionally stable, there exists an improving path leading from h̄ to a

constitutionally stable network.

Proof of Proposition 3.6

The main idea of the proof is to construct for every network in H an improving path

leading from this network to a stable network. By closedness, this stable network is

in H, too. Hence, there cannot be a closed cycle in H.

For constructing these paths, let us define, for each network h ∈H, the set

M̄h = {c ∈M ∣∃ j ∈ h(c) ∶ h ≻j h − (c,{j})}.
That is, a connection c ∈ M is contained in M̄h if and only if at least one of its

members does not want to leave c. In particular, if this is the case, due to equability

none of the members wants to leave the connection.

Let h1 ∈ H be an arbitrary network. By applying Lemma 3.2 we may assume that

h1 is exit-proof. In the following, we will establish that if h1 is not constitutionally

stable (if this would be the case, there would remain nothing to be shown), there

exists an improving path from h1 to another exit-proof network h2 such that either

M̄h1
⊊ M̄h2

, or M̄h1
= M̄h2

and h1 ⊊ h2. Then, if h2 is not constitutionally stable, it

is possible to iterate the previous step again and again. In particular, each time the

step is iterated, either there are more connections which the corresponding members

do not want to leave or the network strictly grows. Since both, the set of connections

and the set of players, are supposed to be finite, this procedure will end after finitely

many steps.

Case 1: There exists c ∈M ∖ M̄h1
with Ac

h1
≠ ∅.

Note that because h1 is exit-proof, D ∈ Ac
h1

if and only ifD ⊈ h1(c), i.e., there is
at least one player i1 ∈D∖h1(c) who joins the connection. Let h′1 ∶= h1±(c,D).
Since all players are self-concerned, this implies

h′1 ≻i1 h1 ∼i1 h1 ± (c,D ∖ {i1}) = h′1 − (c,{i1}).
In other words, after joining the connection, player i1 has no incentive to leave

it unilaterally. By equability this is also true for all i ∈ h′1(c) and, thus, c ∈ M̄h′
1
.

Now let c′ ∈ M̄h1
. Note that c ≠ c′ and h1(c′) = h′1(c′). Therefore, equability

93



implies that c′ ∈ M̄h′
1
, too. Moreover, assume there exists D′ ∈ Ac′

h′
1

with D′ ⊆
h′1(c′). That is, assume that c′ is not exit-proof any more. Let S′ ∈ Sc′

h′
1

(D′) be
the corresponding supporting coalition. From regularity it follows that there

is a player j ∈ S′ with h1 ⪰j h1 − (c′,D′) but h′1 − (c′,D′) ⪰j h′1. If j ∉ D′, this
would contradict separability because h1(c′) = h′1(c′). If j ∈ D′, this would

violate equability and self-concern. Therefore, the assumption cannot be true

or, in other words, transforming c does not affect exit-proofness of c′. Similar

considerations also apply if c′ ∈ M ∖ M̄h1
with c′ ≠ c. However, it might be

possible that c itself is not exit-proof any more. In this case, we can delete

(analogously to Lemma 3.2) all groups of players from the connection under

the conditions that (i) no player joins c and (ii) all deviations comply with the

constitutions, i.e., they are feasible and supported by a supporting coalition.

Let h2 be the network which is finally reached by means of this procedure. In

particular, by advancing the same arguments as before it can be shown that

the other connections are still exit-proof and, moreover, M̄h1
= M̄h2

∖{c} ⊈ M̄h2
.

Case 2: Ac
h1
= ∅ for all c ∈M ∖ M̄h1

.

Since h1 is not constitutionally stable, there exists c1 ∈ M̄h1
with Ac1

h1
≠ ∅.

Let D ∈ Ac1
h1

be of minimal size, i.e., D̃ ∉ Ac1
h1

for all D̃ ⊊ D. Moreover, let

S ∈ Sc1h1
(D) be the corresponding coalition which supports the deviation of D.

We will show first that D∩h1(c1) = ∅, that is, there are only players in D who

join the connection c. Assume this is not true, i.e., there exists i ∈D ∩ h1(c1).
Then, h1 ≻i h1 − (c1,{i}) ∼i h1 ± (c1,D) by self-concern and definition of M̄h1

.

From this, it follows that i would not support the deviation of D and, thus,

S∩D = ∅. Since all constitutions are supposed to be decomposable and regular,

we also have {i} ∈ Dc1
h1

and S ∈ Sc1h1
({i}). By construction of h1 the network is

exit-proof and, therefore, there exists a player j ∈ S with h1 ⪰j h1−(c1,{i}). In
particular, due to uniformity this is true for all members of S. But exploiting

separability then yields h1±(c1,D∖{i}) ⪰j h1±(c1,D) ≻j h1 for all j ∈ S which

contradicts minimality of D.

Define h2 ∶= h1 + (c1,D). As all i ∈ D agreed to joining c1 we must have

h2 ≻i h1 ∼i h2 − (c1,{i}) by self-concern. Therefore, from equability it follows

that no player in h2(c1) wants to leave the connection unilaterally. Moreover,

if D̄ ∈ Dc1
h2

with D̄ ∩ h2(c1) ≠ ∅, then
h2 ≻i h2 − (c1,{i}) ∼i h2 ± (c1, D̄) (3.4)
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for all i ∈ D̄ ∩ h2(c1), again by self-concern. In other words, all players who

would have to leave the connection would suffer from this deviation.

In the remainder of the proof we will show that h2 is indeed exit-proof. Let

c′ ∈M be an arbitrary connection and D′ ∈ Dc′

h2
with D′ ⊆ h2(c′). Recall that

Dc′

h2
= Dc′

h1
by regularity and, thus, D′ ∈ Dc′

h1
, too.

First consider the case c1 ≠ c′. Since the agents’ preferences are separable,

h2 ⪰j h2 − (c′,D′) if and only if h1 ⪰j h1 − (c′,D′) for all j ∈ h2(c′) ∖ D′.
Therefore, if j ∈ h2(c′) ∖D′ does not support the deviation of D′ in h1, the

same goes for h2, too. However, this is also true for all j ∈D′ due to equability

and self-concern. From this it follows that a coalition supports a deviation in

h2 if and only if it does the same in h1 (cf. Case 1). In particular, this implies

that the connection c′ is also exit-proof in h2.

Next consider c′ = c1. Here we have to distinguish two cases, S = ∅ and S ≠ ∅.
First consider S = ∅, that is, when deviating from h1 to h2, the agents in D

do not need the consent of other members for entering c. Assume there exists

D′ ∈ Ac1
h2

with D′ ⊆ h2(c1). Let S′ ∈ Sc1h2
(D′) be a coalition which supports

the deviation of D′, i.e., there is no j ∈ S′ with h2 ⪰j h2 − (c1,D′). From

Equation (3.4) we get D′ ∩ S′ = ∅. Moreover, regularity implies that there

exists ∅ ≠ S′′ ∈ Sc1h1
(D′) with S′′ ⊆ S′. Note that h2 − (c1,D′) = (h1 + (c1,D))−(c1,D′) = h1± (c1,D±D′). In particular, D′ ⊆ h1(c1) if and only if D∩D′ ≠ ∅.

However, this is not possible because this would contradict separability of

the players’ preferences. Therefore, D ∩ D′ ≠ ∅. But this is not possible,

too: by decomposability and regularity also D ∩ D′ ∈ Dc1
h2
⊆ Dc1

h1
and S′ ∈

S
c1
h2
(D ∩ D′). Since ∅ ∈ Sc1h1

(D ∩ D′), decomposability and regularity again

imply D ∩ D′ ⊆ S′ which contradicts Equation (3.4). Next consider S ≠ ∅.
We will show that ∣D∣ = 1. Let i ∈ D. If there would be no player j ∈ S with

h1 + (c,{i}) ≻j h1, decomposability together with separability would imply

h1 + (c,D ∖ {i}) ⪰j h1 + (c,D) = h2 ≻j h1 for all j ∈ S. In other words, S would

also support a deviation of D ∖ {i}. Moreover, from uniformity it follows that

h1 + (c,D ∖ {i}) ⪰j h1 + (c,D) = h2 ≻j h1 for all j ∈ h1(c) ∪ (D ∖ {i}). Thus,

the players in D ∖ {i} would agree to joining c without player i which would

contradict minimality of D. Therefore, given that each i ∈ D is supported by

at least one player in S, from uniformity it follows that this is also true for all

other members of h1(c1). That is, h1 + (c1,{i}) ≻j h1 for all j ∈ h1(c1). Thus,
h1 + (c1,{i}) ≻j h1 ≻j h1 − (c1,{j}) ∼j (h1 + (c1,{i})) − (c1,{j}) as c1 ∈ M̄h1

.

By equability this also holds for player i or, phrased differently, i has an
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incentive for joining c1 unilaterally. In fact, this implies D = {i} by minimality

of D. Moreover, due to uniformity all players in h1(c1) strictly benefit from

deviating from h1 to h2. Now let D′, S′, and S′′ be given as in the case S = ∅.
Then, as before we have D′∩D ≠ ∅ and, thus, i ∈D′. By decomposability also

(h1(c1)∩(D±D′)) = h1(c1)∩D′ ∈ Dc1
h1

and S′′ ∈ Sc1h1
(h1(c1)∩D′). Since we have

D̄ ∈ Ac1
h1

only if D̄ ⊈ h1(c1), there exists j ∈ S′′ with h1 ⪰j h1 − (c1, h1(c1)∩D′).
But this implies

h1 − (c1, h1(c1) ∩D′) = h2 − (c1,D′jh2 ≻j h1 ⪰j h1 − (c1, h1(c1) ∩D′)
which obviously is a contradiction. Thus, the assumption D′ ∈ Ac1

h1
with D′ ⊆

h2(c1) must be false and c1 is also exit-proof in h2.

Proof of Proposition 3.7

The proof proceeds in a similar way as the one of Proposition 3.6. As above we will

construct for every exit-proof network h1 ∈H an improving path leading to a stable

network.

Step 1: In this step we establish that if h1 is not constitutionally stable, there

exists an improving path to another exit-proof network h2 such that there is

D1 ⊆ N with h2 ≻i h1 and Mh1
(i) ≠Mh2

(i) for all i ∈D1. Note that this implies

h1 ≠ h2.

Therefore, suppose h1 is not constitutionally stable. Then there exists c1 ∈
M with Ac1

h1
≠ ∅. Let D1 ∈ Ac1

h1
be of minimal size, i.e., D̃ ∉ Ac

h1
for all

D̃ ⊊ D1. Moreover, let S ∈ Sch1
(D1) be the corresponding coalition which

supports the deviation of D1. We will show first that ∣D1∣ = 1. Note that

D1 ⊈ h1(c1) because h1 is exit-proof by assumption. Moreover, for all i ∈ D1

there is at least one j ∈ S with h1 + (c1,{i}) ≻j h1. If this would not be

satisfied, analogously to Case 2 in the proof of Proposition 3.6 we would have

D1 ∖ {i} ∈ Ac1
h1

since the constitutions are decomposable and the preferences

are separable and lexicographic. But this would contradict minimality of D1.

Therefore, given that each i ∈ D is supported by at least one player in S,

from uniformity it follows that this also goes for all other members of h1(c1)
and, thus, D1 = {i} by minimality of D1. Moreover, by applying uniformity

all members in h1(c1) are strictly better off if i enters the connection. Next

we show that c1 is also exit-proof in h̄ ∶= h1 + (c1,{i}). Assume this is not
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true, that is, assume there exists D′ ∈ Ac1
h̄

with D′ ⊆ h̄(c1). Analogously to

Case 2 in the proof of Proposition 3.6 we must have i ∈D′ because the players’
preferences are lexicographic and separable. Let S′ ∈ Sc1

h̄
(D′) be a coalition

which supports the deviation of D′. Moreover, let S′′ ∈ Sc1h1
(D′) with S′′ ⊆ S′

be defined as in Case 2 in the proof of Proposition 3.6. Then, by advancing

analog arguments as above we get

h1 − (c1, h1(c1) ∩D′) = h̄ − (c1,D′) ≻j h̄ ≻j h1 ⪰j h1 − (c1, h1(c1) ∩D′)
which obviously is a contradiction. Thus, the assumption D′ ⊆ h̄(c1) must be

false and c1 is also exit-proof in h̄.

Now, suppose there exists c′ ≠ c1 with D̄ ∈ Ac′

h̄
for some D̄ ⊆ h̄(c′) = h1(c′) and

let S̄ ∈ Sc1
h̄
(D̄) be the corresponding supporting coalition. Note that D̄∩ S̄ ≠ ∅

due to separability. Moreover, let i ∈ D̄∖S̄. By decomposability and regularity

also {i} ∈ Dc′

h̄
= Dc′

h1
and S̄ ∈ Sc′

h̄
({i}). Since h1 is exit-proof, there exists j ∈ S̄

with h1 ⪰j h1 − (c′,{i}) and, thus, also h̄ ⪰j h̄ − (c′,{i}). Therefore, since the

players’ preferences satisfy uniformity, h̄ ⪰j̄ h̄ − (c′,{i}) for all j̄ ∈ h̄(c′) ∖ {i}.
By exploiting separability this yields

h̄ − (c′, D̄ ∖ {i}) ⪰j̄ (h̄ − (c′, D̄ ∖ {i})) − (c′,{i}) = h̄ − (c′, D̄) ≻j̄ h̄
for all j̄ ∈ S̄. Iterating this argument implies D̄ ∩ S̄ ∈ Ac′

h̄
, too, and D̄ ∖ S̄ ∉ Ac′

h̄
.

Therefore, all players in D̄ ∩ S̄ ∈ Ac′

h̄
strictly benefit from this deviation. Note

that it might be the case that there exists j ∈ h̄(c′) ∩ D who is worse off

after this change of the connection. However, because the preferences are

lexicographic, this player still strictly prefers h̄− (c, D̄∩ S̄) to h1. By iterating

these arguments all subsets of members where all players agree to deviating

can be deleted from all connections. Let h2 be the network which is finally

reached by means of this procedure. In particular, because of separability and

uniformity, h2 is eviction-proof, too. Moreover, since no player has to leave a

connection against her will and preferences are lexicographic, all players who

deviated strictly prefer h2 to h1.

Step 2: In this step we show that if h2 is not stable, there exists

(i) a sequence of non-empty subsets D1,D2, . . . ,Dk−1, and

(ii) a sequence of exit-proof networks h1, h2, h3, . . . , hk such that there is an

improving path from hl−1 to hl for all 2 ≤ l ≤ k and the following two

conditions are satisfied:
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(a) hl ≻i hl′ for all 2 ≤ l ≤ k, 1 ≤ l′ ≤ l − 1, and i ∈Dl−1.

(b) if hl ⊁i hl−1, then Mhl
(i) =Mhl−1

(i).
In particular, (a) implies hk ≠ hl′ for all 1 ≤ l′ < k. Therefore, since there are

only finitely many exit-proof networks, this sequence will stop after finitely

many steps and, thus, the last one has to be stable.

We will show the existence of the sequence by means of induction. For k = 2
see Step 2. Consequently, let k ≥ 3 and assume there exist h3, . . . , hk and

D2, . . . ,Dk−1 as defined above. Moreover, suppose hk is not stable. Since this

network is exit-proof by assumption, there exists ck ∈ M with Ack
hk
≠ ∅ and

D ⊈ hk(ck) for all D ∈ Ack
hk
. Let Dk ∈ Ack

hk
be of minimal size and construct

hk+1 analogously to h2 in Step 2. Similar to above, players deviate only if

they have a strict incentive and hk+1 ≻i hk for all i ∈ Dk. First, this implies

Mhk
(i) = Mhk+1

(i) for all i ∈ N with hk+1 ⊁i hk. Second, if i ∈ Dk ∩ Dk−i,

then clearly hk+1 ≻i hl′ for all 1 ≤ l′ ≤ k due to transitivity. Therefore, let

i ∈Dk+1 ∖Dk. If Mhk
(i) =Mhl′

(i) for all 1 ≤ l′ ≤ k, we have hk+1 ≻i hl′ for each

of these networks because i’s preferences are lexicographic. On the other hand,

if Mhk
(i) ≠ Mh1

(i), let l1 ∶= min{2 ≤ l ≤ k ∣Mhl−1
(i) ≠Mhl

(i)}. Note that (ii)

implies hl1 ≻i hl1−1. Thus, from lexicography it follows that hl1 ≻i hl′ for all

1 ≤ l′ ≤ l1 − 1. Next consider l2 ∶= min{l1 + 1 ≤ l ≤ k ∣Mhl−1
(i) ≠Mhl

(i)}. By

advancing analog arguments as before we get hl2 ≻i hl′ for all 1 ≤ l′ ≤ l2−1 and,

thus, iterating the procedure yields hk+1 ≻i hl′ for all 1 ≤ l′ ≤ k.
Proof of Proposition 3.8

This proof proceeds similarly as the proofs of the two previous propositions. Again,

we construct for every network in H = {h ∈ H ∣ O ∩ h(c) = {oc} ∀ c ∈ M} an

improving path leading from this network to a stable network. Because H is closed,

this stable network has to be in H, too. Therefore, let h1 ∈ H be an arbitrary

network. Because of Lemma 3.2 we may assume that h1 is exit-proof. Moreover,

let c1 ∈ M be an arbitrary connection with Ac1
h1
≠ ∅. The construction of the path

proceeds in three steps:

Step 1: We establish that there exists B1 ∈ Ac1
h1

with Ac1
h1+(c1,B1)

= ∅.
The main idea of this step is to exploit separability of the owner’s preferences.

Define B1 ⊆ N via

B1 ∶= {i ∈ E ∖ h1(c1) ∣ h1 + (c1,{i}) ≻i h1 and h1 + (c1,{i}) ≻oc1 h1} .
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That is, B1 contains exactly those players who want to join c1 and would be

accepted by oc1 . Let i, j ∈ B1. Then, h1 + (c1,{i, j}) ≻oc1 h1 + (c1,{i}) ≻oc1
h1 by separability of oc1 ’s preferences. Iterating this argument implies h1 +(c1,B1) ≻oc1 h1. Moreover, since the workers’ preferences are lexicographic,

also h1+(c1,B1) ≻i h1 for all i ∈ B1. Indeed, this yields B1 ∈ Ac1
h1
. Now suppose

there exists a deviation D ∈ Ac1
h1+(c1,B1)

. If D ⊆ h1(c1)∪B1, the definition of B1

and exit-proofness of h1 imply h1 + (c1,B1) ⪰oc1 (h1 + (c1,B1)) − (c1, i) for all
i ∈ h1(c1)∪B1. Advancing the same arguments as before yields h1+(c1,B1) ⪰oc1(h1 + (c1,B1))−(c1,D), which implies that oc1 would not support the deviation.

Moreover, the workers in h1(c1) ∪B1 obviously do not want to leave the firm

and, thus, D ⊆ h1(c1) ∪B1 cannot be true. However, if D ⊈ h1(c1) ∪B1 and

there exists i ∈D∖h1(c1) with (h1 + (c1,B1))+(c1,{i}) ≻oc1 h1+(c1,B1), then
by construction of B1 and because i’s preferences are lexicographic, this worker

would not agree to joining c1. Therefore, Ac1
h1+(c1,B1)

must be empty.

Step 2: We construct an improving path leading from h′1 ∶= h1+(c1,B1) to another

exit-proof network h2 with h2 ≻i h1 for all i ∈ B1 and h2 ⪰i h1 for all i ∈ E ∖B1.

Let c′ ∈ M such that there exists B′ ⊆ h′1(c′) with B′ ∈ Ac′

h′
1

and choose B′

maximal with respect to “⊆”, i.e., there exists no B̄ ⊆ h′1(c′) with B̄ ∈ Ac′

h′
1

and B′ ⊊ B̄. Note that c′ ≠ c1 as Ac1
h′
1

= ∅. By assumption oc′ ’s preferences

are separable and, thus, h′1 ⪰oc′ h′1 − (c′,B′) by exit-proofness of h1. Therefore,

h′1−(c′,B′) ≻j h′1 for all j ∈ B′. Now suppose there exists i ∈ B′∖B1. Note that

i ∈ h1(c) if and only if i ∈ h′1(c) for all c ∈M . If i has a strict incentive for leaving

c′ in h′1, she would also have a strict incentive for leaving the connection in h1

because her preferences are lexicographic. But this contradicts exit-proofness

of h1 and, thus, B′ ⊆ B1. Moreover, by construction of B′ and separability of

oc′ ’s preferences, there exists no further set of workers B′′ ⊆ h′1(c′) ∖B′ with
B′′ ∈ Ac′

h′
1
−(c′,B′). By iterating the previous procedure, it is possible to reach an

exit-proof network h2 by deleting all workers from all connections they want

to leave without impairing the other workers in E ∖B1. In particular, for all

i ∈ E ∖B1 nothing changes and, therefore, they are indifferent between h2 and

h1. On the other hand, all i ∈ B1 strictly benefit from the deviations and, thus,

they strictly prefer h2 to h1.

Step 3: Iterating the procedure.

Given h2, if Ac
h2
= ∅ for all c ∈M , there remains nothing to show. Therefore,

assume there exists c2 ∈M with Ac2
h2
≠ ∅. By repeating Steps 2 and 3 it is pos-
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sible to find B2 ⊆ E∖h2(c2) with Ac2
h2+(c2,B2)

= ∅ and to construct an improving

path leading from h2 + (c2,B2) to an exit-proof network h3. Analogously, h2

will be Pareto dominated by h3 from the workers’ perspective. As H is finite,

there exist only finitely many exit-proof networks. Hence, this procedure will

end after finitely many steps.
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Chapter 4

Robust Equilibria in Location

Games

4.1 Introduction

In his classic example, Harold Hotelling illustrates competition in a heterogeneous

market by two firms that consider where to place their shop on a main street

(Hotelling, 1929). Ever since, this model of spatial competition has inspired a

tremendous amount of research in various disciplines. Starting with Downs (1957),

it is used to analyze the positioning of political candidates competing for voters

(e.g., Mueller, 2003; Roemer, 2001) and to analyze the positioning of products in

order to attract consumers (e.g., Carpenter, 1989; Salop, 1979). In the year 2013

alone, Hotelling has been cited more than 450 and Downs even more than 1100

times.1 Moreover, the model implication of minimal differentiation is known far

beyond scholarly circles. In this paper we want to challenge a fundamental aspect

of the Hotelling-Downs approach.

Throughout the literature (of spatial competition), it has been virtually always as-

sumed that consumers or voters who prefer the same position fully agree upon the

ranking of the other alternatives, i.e., they have identical preferences or utility func-

tions. This very strong homogeneity requirement can be considered as driven by the

assumption that all consumers/voters use the same distance measure since in the

standard Hotelling-Downs set-up (dis)utility is represented by the distance between

positions. In particular, if two people prefer the same option, in any spatial represen-

1Google Scholar, February 10, 2014.
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tation with homogeneous distances they necessarily rank all the other alternatives

in the same order. This is hard to justify when we think of voters of the same polit-

ical party who disagree about the second-best party, or of consumers with the same

favorite brand but disagreement about the ordering of two other brands. Even in

the case of geographic location choices the requirement appears to be challengeable

if distances represent travel time, for instance.2 As a matter of fact, these simple

cases already exceed the scope of almost any model of locational competition.

Consider, for example, a poll on a group of voters about their favorite tax rate. The

answers can be displayed as locations on a line. Location games that capture this

application consider classically two political candidates who strategically choose a

tax rate which they propose to the voters. Thereby it is standardly assumed that

(a) each voter casts his vote for the candidate that is closest to him and (b) all

voters asses the distances between the candidates homogeneously. In combination

these two assumptions are not at all innocuous. As indicated above, they hide the

homogeneity requirement that all voters who consider a tax rate of 10 percent, for

instance, as their favorite alternative, are supposed to rank any two tax rates, like 2

percent and 20 percent, for example, in exactly the same order. Since this require-

ment is unnaturally strong, the classical result that two vote maximizing candidates

choose the median location (Hotelling, 1929) stands apparently on highly question-

able grounds. A way to avoid this issue would be to ask the participants in the poll

not only about their favorite tax rate, but about a full ranking of the alternative

tax rates. Apart from practical problems, the downside of such an approach is the

informational requirement that political candidates know the full assessment of ev-

ery voter. That is, we have replaced a questionable requirement by another one. A

solution to this issue relates back to the seminal contribution of Black (1948). He ex-

amined single-peaked preferences on a line, which has the same effect as voters who

are allowed to asses the “distances” between different tax rates individually. Black’s

result that under single-peaked preferences the median voter wins in majority vot-

ing against any other alternative has the following implication for the situation of

spatial competition outlined above: In any location game that is consistent with

the poll, both candidates choose the median tax rate in equilibrium. In that sense

the classical result is robust.

2Indeed, it is possible that two individuals differ in their speed of walking uphill such that they

would not choose the same path although both easily agree that there is one short and steep path

and one longer and flatter path.
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The example on tax rates illustrates that in two-player location games on a line the

questionable requirement of homogeneous distance perceptions is not driving the fi-

nal outcome. However, for all other cases – in particular, for more than two players

and for multidimensional spaces – robustness of the results is an open problem. If

one can show that the model assumption is not driving the results, then the model

is put on a solid foundation. This issue, although fundamental, seems to have been

overlooked in the – rich and exciting – history of location games.

In this paper we want to scrutinize for given outcomes of spatial competition whether

they rely on homogeneous distance perceptions or not. To this end, we formalize

individual distance perceptions as individual edge lengths of a graph.3 A formal de-

scription of consumers/voters of this type leads to a non-cooperative game between

p players, which are interpreted as firms or political candidates. In this game, play-

ers simultaneously choose a location in order to maximize the number of agents (i.e.,

consumers/voters) they can attract. An equilibrium is then called robust if it is an

equilibrium for all possible distance perceptions that are based on the same under-

lying structure (a line, for example). In other words, our modeling approach boils

down to defining a stronger notion of equilibrium which we call robust equilibrium. It

is defined directly on the situation of spatial competition, i.e., the underlying space

and the distribution of agents (such as the poll on tax rates). Formally, several

of location games correspond to the same situation of spatial competition, one for

each setting of individual distance perceptions; and a robust equilibrium is a Nash

equilibrium in any of these games. In particular, it is also a Nash equilibrium in the

standard case of homogeneous distances.

A key result for our analysis is the characterization of robust equilibria by four con-

ditions which are jointly necessary and sufficient. It is based on partitioning the

underlying space into “hinterlands” and “competitive zones”. Applying this result

allows us first of all to judge which of the standard results are robust. In fact, we find

that several outcomes do not depend on the assumption of homogeneous distances,

but others do.

In the second part of the paper we examine general properties of robust equilibria.

3This can be shown to be equivalent to the assumption of single-peaked preferences on certain

domains. For example, if the underlying structure is a line graph, then this assumption is equiv-

alent to the standard notion of single-peakedness. An alternative model variation would keep

the assumption of homogenous distances but add a set of nodes (which we call “dummy nodes”)

to make the graph more flexible. However this model variation can be shown to undermine the

model’s explanatory power.
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Among them is the central issue of minimal differentiation (e.g., d’Aspremont et al.,

1979; de Palma et al., 1985, 1990; Eaton and Lipsey, 1975; Economides, 1986; Król,

2012; Meagher and Zauner, 2004). It turns out that robust equilibria satisfy a local

variant of minimal differentiation, i.e., they induce reduced games in which the cor-

responding players are minimally differentiated. This result provides strong support

for the “principle of minimal clustering” which has been proposed in the seminal

contribution of Eaton and Lipsey (1975). Indeed, for any number of players, any

underlying structure, and any distribution of agents, robust equilibria are charac-

terized by clusters of players. That is, the players are jointly located on what we

show to be the appropriately defined medians of local areas. Based on this result,

we discuss the welfare implications for consumers and observe that almost all ro-

bust equilibria are not Pareto efficient. Consumers would unambiguously improve if

some firm would be relocated appropriately. We finally, elaborate on the conditions

for the existence of robust equilibria. We analyze how the spatial structure and

the distribution of consumers/voters guarantee, admit, or preclude the existence of

robust equilibria. Interestingly, two very common assumptions in the literature –

(a) uniform distribution of consumers/voters and (b) one-dimensional space such as

cycle or line structures – are mutually exclusive in the sense that for higher numbers

of players robust equilibria require that one of them is not satisfied.

Related Literature

There is an immense body of literature on spatial competition. While the original

Hotelling-Downs framework is restricted to a one-dimensional space, a uniform dis-

tribution of agents, and only two players, many authors have attempted to relax

these restrictions. To do so, one branch of the literature has followed a continuous

modeling approach within the Euclidean space Rk (e.g., d’Aspremont et al., 1979;

Economides, 1986), while a second branch replaces the Euclidean space by a graph

(e.g., Labbé and Hakimi, 1991). Because the history of both branches is rich and

long, providing a summary which covers all of it would exceed the scope of our

paper. We restrict ourselves here to list several surveys on the topic and to discuss

the most closely related works.

A broad overview and taxonomy of literature on spatial competition can be found

in Eiselt et al. (1993). Based on five components (the underlying space, the number

of players, the pricing policy, the rules of the game, and the behavior of the agents)

the authors provide a bibliography for competitive location models. While this sum-
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mary is not limited to certain subbranches, more specific surveys have been written

on spatial models of consumer product spaces (Lancaster, 1990), on spatial com-

petition in continuous space (Gabszewicz and Thisse, 1992), on spatial models of

political competition (Mueller, 2003; Osborne, 1995), on competition in discrete

location models (Plastria, 2001), on sequential competition (Eiselt and Laporte,

1997; Kress and Pesch, 2012), and on one-stage competition in location models

(Eiselt and Marianov, 2011; ReVelle and Eiselt, 2005).

Although there are many variations and relaxations of spatial competition, virtually

all of the models rely on the assumption of homogeneous distance perceptions. For

instance, asymmetric transportation costs (e.g., Nilssen, 1997) do not alter the as-

sumption. In order to examine to which extent this standard simplification is driving

the results we will focus on the first stage of Hotelling’s game, i.e., we will investi-

gate the location choices of the players but we will not include additional variables

such as prices. Similar approaches have been used, for example, by Eaton and Lipsey

(1975), Denzau et al. (1985), and Braid (2005) who also concentrate on spatial com-

petition by assuming fixed (and equal) prices. Nevertheless, extending our approach

to a two-stage game would be a potential next step for further research. Integrat-

ing heterogeneous consumer behavior into a model of spatial competition has been

attempted by a few studies only. Among them are de Palma et al. (1985, 1990)

and Rhee (1996) who find that ambiguity about consumers’ (or voters’) behavior

may lead to minimal differentiation. More specifically, they show that if the con-

sumers’ preferences do not only depend on prices and distances but also on inherent

product characteristics and, furthermore, the firms have incomplete information

about consumers’ tastes, then Hotelling’s main result can be restored under cer-

tain conditions. This conclusion is not confirmed in closely related models where

the authors assume that the exact position of demand is unknown (e.g. Król, 2012;

Meagher and Zauner, 2004, 2005). Thus, the validity of minimal differentiation un-

der heterogeneous agents is still an open problem and the same holds true for the

main implications, like that spatial competition generically does not lead to socially

efficient outcomes, for example. However, the previously cited publications differ

from our work in at least two important aspects. First, in these works, players are

assumed to have a probability distribution for the behavior of agents. In our work,

uncertainty is not explicitly modeled but only enters implicitly as robust equilib-

ria do not depend on specification details about the agents’ behavior. Second, the

way we model and interpret heterogeneity differs from the approaches of the other

authors. In our setting, the agents apply individual distances to compare specific
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product variations but the preferences do not depend on inherent product charac-

teristics. To model this in a convenient way we use a graph-based approach. We

believe that our definitions are more intuitive in discrete spaces than in the plane

and that this approach helps to highlight the difference between homogeneous and

heterogeneous agents. However, the main questions of our work are not restricted to

graphs and thus our contribution should also be interesting in a more general con-

text. To the best of our knowledge, this is the first paper that assesses robustness

of equilibria in location games with respect to different distance perceptions.

From a technical point of view, the model from Eiselt and Laporte (1991, 1993) is

heavily related to ours. In these publications the authors show for homogeneous

agents that the two-player and three-player cases on trees always result in some

kind of minimal differentiation. We will check whether this is also true in our more

general context of more than two players and arbitrary graphs. More recently,

Shiode and Drezner (2003) studied the two-player case on trees under sequential

location choices and stochastic demand. Further recent contributions, to name but

a few, deal with terrorism (e.g., Berman and Gavious, 2007) or stem from computer

science (e.g., Godinho and Dias, 2010; Jiang et al., 2011; Mavronicolas et al., 2008).

Still, the issue of heterogeneous distances has not been addressed in any of these

publications.

Related Literature

There is an immense body of literature on spatial competition. While the original

Hotelling-Downs framework is restricted to a one-dimensional space, a uniform dis-

tribution of agents, and only two players, many authors have attempted to relax

these restrictions. To do so, one branch of the literature has followed a continuous

modeling approach within the Euclidean space Rk (e.g., d’Aspremont et al., 1979;

Economides, 1986), while a second branch replaces the Euclidean space by a graph

(e.g., Labbé and Hakimi, 1991). Because the history of both branches is rich and

long, providing a summary which covers all of it would exceed the scope of our

paper. We restrict ourselves here to list several surveys on the topic and to discuss

the most closely related works.

A broad overview and taxonomy of literature on spatial competition can be found

in Eiselt et al. (1993). Based on five components (the underlying space, the number

of players, the pricing policy, the rules of the game, and the behavior of the agents)

the authors provide a bibliography for competitive location models. While this sum-
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mary is not limited to certain subbranches, more specific surveys have been written

on spatial models of consumer product spaces (Lancaster, 1990), on spatial com-

petition in continuous space (Gabszewicz and Thisse, 1992), on spatial models of

political competition (Mueller, 2003; Osborne, 1995), on competition in discrete

location models (Plastria, 2001), on sequential competition (Eiselt and Laporte,

1997; Kress and Pesch, 2012), and on one-stage competition in location models

(Eiselt and Marianov, 2011; ReVelle and Eiselt, 2005).

Although there are many variations and relaxations of spatial competition, virtually

all of the models rely on the assumption of homogeneous distance perceptions. For

instance, asymmetric transportation costs (e.g., Nilssen, 1997) do not alter the as-

sumption. In order to examine to which extent this standard simplification is driving

the results we will focus on the first stage of Hotelling’s game, i.e., we will investi-

gate the location choices of the players but we will not include additional variables

such as prices. Similar approaches have been used, for example, by Eaton and Lipsey

(1975), Denzau et al. (1985), and Braid (2005) who also concentrate on spatial com-

petition by assuming fixed (and equal) prices. Nevertheless, extending our approach

to a two-stage game would be a potential next step for further research. Integrat-

ing heterogeneous consumer behavior into a model of spatial competition has been

attempted by a few studies only. Among them are de Palma et al. (1985, 1990) and

Rhee (1996) who find that ambiguity about consumers’ (or voters’) behavior may

lead to minimal differentiation. More specifically, they show that if the consumers’

preferences do not only depend on prices and distances but also on inherent prod-

uct characteristics and, furthermore, the firms have incomplete information about

consumers’ tastes, then Hotelling’s main result can be restored under certain con-

ditions. However, this conclusion is not confirmed in closely related models where

the authors assume that the exact position of demand is unknown (e.g. Król, 2012;

Meagher and Zauner, 2004, 2005). Thus, the validity of minimal differentiation un-

der heterogeneous agents is still an open problem and the same holds true for the

main implications, like that spatial competition generically does not lead to socially

efficient outcomes, for example. The previously cited publications differ from our

work in at least two important aspects. First, in these works, players are assumed

to have a probability distribution for the behavior of agents. In our work, uncer-

tainty is not explicitly modeled but only enters implicitly as robust equilibria do

not depend on specification details about the agents’ behavior. Second, the way we

model and interpret heterogeneity differs from the approaches of the other authors.

In our setting, the agents apply individual distances to compare specific product
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variations but the preferences do not depend on inherent product characteristics.

To model this in a convenient way we use a graph-based approach. We believe that

our definitions are more intuitive in discrete spaces than in the plane and that this

approach helps highlight the difference between homogeneous and heterogeneous

agents. However, the main questions of our work are not restricted to graphs and

thus our contribution should also be interesting in a more general context. To the

best of our knowledge, this is the first paper that assesses robustness of location

games with respect to different distance perceptions.

From a technical point of view, the model from Eiselt and Laporte (1991, 1993) is

heavily related to ours. In these publications the authors show for homogeneous

agents that the two-player and three-player cases on trees always result in some

kind of minimal differentiation. We will check whether this is also true in our more

general context of more than two players and arbitrary graphs. More recently,

Shiode and Drezner (2003) studied the two-player case on trees under sequential

location choices and stochastic demand. Further recent contributions also deal with

terrorism (e.g., Berman and Gavious, 2007) or stem from computer science (e.g.,

Godinho and Dias, 2010; Jiang et al., 2011; Mavronicolas et al., 2008). Still, the

issue of heterogeneous distances is not addressed in these publications.

4.2 The Model

Our modeling approach proceeds in two steps. First we consider, as usual, a non-

cooperative game between players (the firms/candidates) who are able to occupy a

position or object, respectively. The agents (consumers/voters) are still attracted

by the player(s) located closest to them but now their distance perceptions may be

assessed on an individual basis. More specifically, the agents agree on the underlying

space which is modeled by means of a graph (Subsection 4.2.1), but in our setting

they may individually measure the similarity between the objects (Subsection 4.2.2).

Then, in the second step, we study whether equilibria of the game are robust with

respect to perturbations of the distance perceptions. To this end, roughly speaking,

we fully abandon the distances. This means formally that an outcome is called robust

if it is an equilibrium for all possible edge lengths of the same underlying graph

(Subsection 4.2.3). If this is satisfied, the outcome is completely independent of

individual distance perceptions and then the standard case of homogeneous distances

is a well-justified simplification.
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4.2.1 Definitions of Graphs

An undirected graph (X,E) consists of a set of vertices or nodes X and a set of

edges E where each edge is a subset of the vertices of size two. Let X be a finite set

of size ξ ≥ 2. For brevity we write xy or yx for an edge {x, y} ∈ E. Given a graph

(X,E), we denote by Nx ∶= {y ∈ X ∣ xy ∈ E} the set of neighbors of a node x. The

number of edges/neighbors is its degree degx ∶= ∣Nx∣. Furthermore, Y ⊆ X ∖ {x} is
neighboring to x ∈X if there exists some y ∈ Y with xy ∈ E.

A path from x ∈ X to x′ ∈ X in (X,E) is a sequence of distinct nodes (x1, . . . , xT )
such that x1 = x, xT = x′, and xtxt+1 ∈ E for all t ∈ {1, . . . , T − 1}. A set of nodes

Y ⊆ X is said to be connected if for any pair y, y′ ∈ Y there exists a path between

the two nodes. A set of connected nodes is called a component if there is no path

to nodes outside of this set, i.e., C ⊆ X is a component of (X,E) if it is connected
and for all x, x′ such that x ∈ C and x′ ∈ X ∖ C there does not exist any path. A

graph that consists of only one component is called connected because then there is

a path between any two nodes. Throughout the paper, we will restrict attention to

connected graphs. An important class of such graphs is the class of trees. Trees are

connected with ξ−1 edges or, equivalently, in a tree each pair of vertices is connected

by a unique path.

A node-weighted graph is a triple (X,E,w), where w ∶= (wx)x∈X ∈ Rξ
+ is a vector

of weights. We write wx for the weight of node x ∈ X and w(Y ) = ∑y∈Y wy for the

weight of a set of nodes Y ⊆ X. The weight w will be determined later on by the

distribution of agents.

Now let (X,E,w) be given. An important operation in graphs is to delete a set

of nodes Y ⊆ X and all involved edges: (X,E) − Y ∶= (X ∖ Y,E∣X∖Y ) with E∣X∖Y ={xy ∈ E ∣ x, y ∈X ∖ Y }. This is illustrated in Figure 4.1.

The operation (X,E)−Y leads to a graph with potentially several components and

we denote them by CY
1 , C

Y
2 , . . . , C

Y
lY

such that w(CY
1 ) ≥ w(CY

2 ) ≥ . . . ≥ w (CY
lY
). If

lY > 1 and ∣Y ∣ = 1, say Y = {x}, the node is called a cut vertex (cf., e.g., Diestel,

2005) and we write Cx
k instead of C

{x}
k . In this case, for the number of components it

holds that it is not greater than the degree of x. A connected set of nodes B ⊆X is

called a block if there is no cut vertex in (X,E)−X∖B = (B,E∣B) and B is maximal

with respect to inclusion, i.e., B ⊊ B′ ⊆ X implies that there exists a cut vertex in

(B′,E∣B′). That is, a set of nodes is a block if the induced subgraph cannot be

decomposed into multiple components by deleting single nodes and it is not possible

to find a larger subgraph with this feature. Note that x ∈ X is contained in several
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Figure 4.1: Deletion of nodes.

blocks if and only if it is a cut vertex. The set of blocks of a given graph is denoted

by B and b ∶= ∣B∣ is the number of blocks.

4.2.2 Perceived Distances and Players’ Payoffs

In the following, the elements of X are called objects and are interpreted, according

to the three applications, as geographical locations, political platforms or product

specifications. Let N = {i1, . . . , in} be a finite set of agents who have a favorite object
x̂i ∈ X. As usual, the graph (X,E) is used to represent the relations between the

objects as they are perceived by the agents. 4 In order to be as general as possible we

impose no further requirements on the structure of the graph, but typical examples

from literature are lines, cycles or lattices, to name but a few. In contrast to previous

works, we assume that perceptions are subjective to some extent. Formally, for each

i ∈ N there are edge lengths (δie)e∈E > 0 that represent his individual estimation of

distances between the nodes, such that, for example, δie need not coincide with δ
j
e.5

Given δ ∶= (δie)i∈Ne∈E, agent i’s perceived distance di(x) to an object x ∈X is the length

of the shortest path(s) from the favorite object x̂i to x, where the length of a path

4Note that we do not allow for “dummy nodes,” that is, we do not consider the possibility of

adding further nodes to the graph which are not objects. This is due to the fact that dummy

nodes can be shown to undermine the explanatory power of the model.
5The interpretation for geographic locations is as follows: The agents agree on the underlying graph

(a road map, for example) but they are heterogeneous in terms of assessing or evaluating the edge

lengths (the travel time, for example). If the graph does not represent geographic distances, but

policy spaces or the perception of brands, it seems to be an even more unrealistic assumption

that all agents use the same distance measure, as motivated in the introduction.
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is the sum of its edge lengths:

di(x) ∶=min{T−1∑
t=1

δixtxt+1
∣ (x1, . . . , xT ) is a path from x̂i to x} .

We set di(x̂i) = 0 for all i ∈ N . Note that two agents with the same favorite object,

i.e., x̂i = x̂j, might have different perceptions about the distances to the other objects.

As usual, we will assume a “distance-based behavior”of the agents, i.e., agent i ∈ N
weakly prefers an object x ∈ X over y ∈ X if and only if di(x) ≤ di(y). In other

words: his utility is decreasing in distances. Thus, the preferences of agent i ∈ N
are completely determined by his favorite object x̂i and his individual edge lengths

(δie)e∈E.6 With the assumption that δie = δje for all i, j ∈ N and any e ∈ E, we obtain

the standard model, where distance perceptions are homogeneous.

In addition to the objects and agents, we consider a set of players P ∶= {c1, . . . , cp}
of finite size p ≥ 2. To ease the distinction between agents and players we will use

the male form for agents, while players are assumed to be female. Each c ∈ P is

supposed to occupy an object x ∈ X. Formally, the strategy set for each player

c ∈ P is Sc = X, such that a strategy is an object sc ∈ X. Let S = Sc1 × . . . × Scp .

Given a strategy profile s ∈ S, let px ∈ N be the number of players whose strategy

is x ∈ X. Furthermore, let Φi(s) be the set of players who are perceived as closest

by agent i ∈ N , i.e., Φi(s) = {c ∈ P ∣ di (sc) ≤ di (sc̄) ∀ c̄ ∈ P }. Note that we loosely

speak about the perceived distance to a player c ∈ P instead of the distance to the

player’s chosen object sc ∈X. We assume that each agent is allocated to the player

which is perceived as closest. If multiple players are perceived as closest by some

agent, then he is assumed to be uniformly distributed among these players. Thus,

given a strategy profile s ∈ S, player c’s payoff Φc(s) is the mass of agents who

perceive object sc as closest to their favorite object, i.e., the payoff of c ∈ P is given

by πc(s) = ∑i∶c∈Φi(s)
1

∣Φi(s)∣ . A profile of payoffs is denoted by πδ ∶= (πc
δ
)c∈P ∶= (πc)c∈P ,

where the subscript δ indicates that the payoffs depend on the individual edge

lengths δ = (δie)i∈Ne∈E.

6There is a justification for this type of preference which neither deals with differing edge lengths

nor with distance-based behavior. Agents can be assumed to have single-peaked preferences on

the graph as they were defined for lines (Black, 1948) or trees (Demange, 1982). Such preferences

find broad acceptance and play a crucial role in the literature on social choice (see, e.g., Moulin,

1980). The alternative formulation with single-peaked preferences is, in fact, equivalent to the

(quite different) formulation here. The proof for this claim can be requested from the authors.
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4.2.3 Equilibrium Notions

Fix a graph (X,E) and a set of agents N such that for each agent i ∈ N we have

a favorite object x̂i ∈ X and individually measured edge lengths (δie)e∈E. Then a

normal form game is given by Γδ = (P,S, πδ). The game is indexed by δ to emphasize

that the payoffs, and therefore the game depends on the individual edge lengths. The

main goal of our work is to examine to which extent this restriction determines the

outcome of the standard setting, which is the special case of homogeneous distances.

A Nash equilibrium of the game Γδ is also called a locational (Nash) equilibrium

(cf. Eiselt and Laporte, 1991, 1993). Thus, s ∈ S is a locational equilibrium if for all

c ∈ P and for all x ∈X we have πc(sc, s−c) ≥ πc(x, s−c).
Example 4.1. Consider a cycle graph (X,E) on six nodes, i.e., X = {x1, x2, . . . , x6}
and E = {x1x2, x2x3, . . . , x6x1}. Let N = {i1, i2, . . . , i12} be a set of twelve agents

with favorite objects (x̂1, x̂2, . . . , x̂12) = (x1, x1, x2, x2, . . . , x6, x6). We first assume

homogeneous edge lengths, i.e., for all i ∈ N we have δie = 1 for any e ∈ E. Together

with a set of three players P = {c1, c2, c3} this constitutes a game Γδ.
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Figure 4.2: Three players on a cycle graph.

The graph (X,E) is illustrated in Figure 4.2. The number within a node indicates

the number of agents who have this node as the favorite object. The edge lengths are

not represented. Finally, the three squares represent the strategy profile (s1, s2, s3) =
(x1, x3, x5). We will keep these conventions in the following figures.

For this game, results of Mavronicolas et al. (2008) imply that the depicted strategy

profile s is a locational equilibrium. A player cannot improve by relocating, because

115



her payoff either remains 4 (when deviating to a neighbor) or decreases. This result,

however, depends on the specific edge lengths. Consider the situation where one of

the twelve agents with favorite object on x2 assigns a different length to an edge

next to him, such as δ̃3x1x2
= 1 − ǫ for some ǫ > 0 and δ̃3e = 1 for all other edges.

The perceived distances of the other agents are assumed to stay the same. Then the

depicted strategy profile s is not a locational equilibrium. The player c3 ∈ P with

strategy x3 now has an incentive to deviate to x2 or x4 because in both cases she

would attract four agents instead of only 3.5. Thus, the strategy profile s ∈ S is a

locational equilibrium in the game Γδ but not in the perturbed game Γδ̃. In some

sense the profile is not “robust”.

The previous example motivates the following definition:

Definition 4.1 (Robust equilibrium). A strategy profile s∗ ∈ S is a robust equilib-

rium if it is a locational equilibrium for any collection of individual edge lengths. In

other words: s∗ ∈ S is a locational equilibrium in Γδ for any δ = (δie)i∈Ne∈E.

Certainly, robustness is a strong requirement. But it is a desirable property for at

least two reasons. First, a robust equilibrium is independent of the assumption of

homogeneous edge lengths but includes this as a special case. Indeed, a robust equi-

librium is also a locational equilibrium in the homogeneous case Γδ, where (δie)e∈E
is the same for all agents i ∈ N . Second, to determine the locational equilibrium

one has to specify for each agent her favorite object x̂i ∈ X as well as her list of

edge lengths (δie)e∈E together with a graph (X,E). On the other hand, to determine

robust equilibria it is sufficient to know the graph (X,E) and the distribution of

favorite objects (x̂i)i∈N . In fact, it is sufficient to have only information about the

node-weighted graph that is induced by (x̂i)i∈N , i.e., it is enough to know (X,E,w)
where wx ∶= ∣{i ∈ N ∣ x̂i = x}∣ is the number of agents having x as their favorite ob-

ject. We will interpret an exogenously given node-weighted graph (X,E,w) as a

situation of spatial competition.

4.3 Robustness

We will first give a characterization of robustness which applies to test whether

locational equilibria are robust. Then, we will turn to properties of robust equilibria,

in particular minimal differentiation and efficiency. Finally, we will reconsider the

existence of robust equilibria.
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4.3.1 Characterization

In this subsection we provide the necessary and sufficient conditions for a strategy

profile to be a robust equilibrium. For this purpose we need additional definitions.

Definition 4.2. Let (X,E) be a graph and fix a strategy profile s ∈ S. Furthermore,

let X̄ = ⋃p
c=1{sc} ⊆X be the set of occupied nodes in s.

• The hinterland Hx ⊆X of node x ∈ X̄ is the set of nodes that have x on every

path to any x′ ∈ X̄. In the special case where all players choose the same

strategy (i.e., ∣X̄ ∣ = 1), say X̄ = {x}, we define Hx ∶=X.

• An unoccupied zone Z ⊆ X is a component of (X,E) − X̄. The set of all

unoccupied zones is denoted by Z.
• An unoccupied zone Y ⊆ X is called a competitive zone if it is not contained

in any hinterland, i.e., Y ⊈ Hx for all x ∈ X̄. The set of all competitive zones

is Y .
• Two distinct objects x, x′ ∈ X̄ are indirectly neighboring if there exists a com-

petitive zone to which both nodes are neighboring.

• The neighboring area Ax ⊆ X of x ∈ X̄ is the unoccupied zone which would

be obtained when removing all players located on x. Formally, that is Ax =(⋃Z∈Zx
Z ∪ {x}), where Zx ∶= {Z ∈ Z ∣ Z neighboring to x}.
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Figure 4.3: Example for definitions: decomposition into competitive zones and hin-

terlands.

The notions of hinterland and competitive zone go back to Eiselt (1992) who has

defined them for the given positions of two players. The hinterland Hx ⊆X consists
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of the node itself and possibly several unoccupied zones that are adjacent to x ∈ X̄
but not to any other occupied node in X̄. Agents who have their favorite object

in Hx must be closer to player(s) on node x than to all other players, since any

path, and therefore also the shortest one(s), contain this object. This is different

for competitive zones. Players surrounding a competitive zone Y ∈ Y compete with

indirectly neighboring competitors over the agents who have their most favorite

object in Y . The definitions are illustrated in Figure 4.3, where there are two

occupied nodes x, x′ ∈ X̄, several unoccupied zones, where one of them (Y ) is a

competitive zone, and another one (Z) belongs to a hinterland. Furthermore, the

neighboring area Ax ⊆ X consists of the hinterland Hx and the competitive zone

Y , while the neighboring area Ax′ consists of the other hinterland Hx′ and the

competitive zone Y . Generally, each node either belongs to one hinterland or to one

competitive zone. This can be considered as a partition of X into l hinterlands (i.e.,

∣X̄ ∣ = l) and k competitive zones

Π(s) = {Hx1
, . . . ,Hxl

, Y1, . . . , Yk}. (4.1)

In fact, because every agent with favorite object in Hx ⊆ X is always closer to a

player on the corresponding node x than to any other occupied node, w(Hx)
px

is the

“worst-case payoff” that a player who chooses x receives. Conversely, the maximal

payoff of a player who chooses x is restricted by the neighboring area Ax ⊆ X, i.e.,

by w(Ax)
px

. These simple considerations lead to the following key proposition.

Proposition 4.1. Let s∗ ∈ S be a strategy profile on a node-weighted graph

(X,E,w) and let Π(s) be the corresponding partition as in (4.1). Furthermore,

let Ẑ ∈ argmaxZ∈Z w(Z) be a heaviest unoccupied zone. Then s∗ is a robust equi-

librium if and only if the following four conditions are satisfied for all x ∈ X̄:

(1.) w (Hx)
px

≥ w (Ẑ)
(2.) w (Hx)

px
≥ w(Ax′)

px′ + 1
∀ x′ ∈ X̄ ∖ {x}

Furthermore, if px = 1:
(3.) w(Y ) = 0 ∀ Y ∈ Y , Y ⊆ Ax

(4.) w (Hx) ≥ w(Ax′)
px′

∀ x′ ind. neighb. to x.
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The proof is relegated to the appendix. Proposition 4.1 formalizes the requirements

for a strategy profile to be a robust equilibrium. It consists of four straightforward

conditions. The first one formalizes that deviations into unoccupied zones are never

beneficial. Even if the players only receive their worst case payoff, i.e., the weight

of their hinterland, they never gain from relocating into any Z ∈ Z.7 Similarly,

Condition (2.) captures that deviations to already occupied nodes x′ ∈ X̄ are not

beneficial. The highest possible payoff a deviating player could get is w(Ax′)
px′+1

.8 These

two previous considerations must be strengthened when considering certain devia-

tions of an isolated player because her node becomes unoccupied then. Again, we

distinguish between deviations into a neighboring zone and deviations on occupied

nodes, which is reflected by Conditions (3.) and (4.). The main intuition is that for

some distance perceptions an isolated player would attract only her hinterland, but

by deviating she could receive her former hinterland and, in addition, the weight

of some competitive zone (Condition (3.)). By deviating on a neighboring occupied

node she can not only share the payoffs of the players on this node, but would also

regain some share of her former hinterland (Condition (4.)). For competitive zones

neighboring a singly occupied node this means that their weight must be zero. We

have already seen an example where this condition is violated. In Example 4.1 there

are several singly occupied nodes which are neighboring a non-trivial competitive

zone (cf. Figure 4.2).9 Thus, we can immediately conclude that the given strategy

profile is not a robust equilibrium.

The main importance of Proposition 4.1 is that it provides an efficient tool for veri-

fying whether a strategy profile s ∈ S (which might be a Nash equilibrium for specific

edge length, for example) constitutes a robust equilibrium or not. A straightforward

algorithm is simply to (i) determine the partition Π(s), (ii) compute the weights of

the hinterlands and competitive zones, and (iii) check if the four conditions charac-

terizing a robust equilibrium are satisfied. In particular, since the algorithm proceeds

in quadratic time, finding a robust equilibrium is as complex as finding a Nash equi-

librium for specific edge length. In the remainder of this subsection we will exemplify

this for some prominent results from the literature.

7This requirement also implies that the weight of unoccupied zones can never be higher than the

average payoff of the players, i.e., w(Z) ≤ n
p
for all Z ∈ Z.

8A simple implication of this requirement is that in robust equilibria the number of players on

occupied nodes is roughly proportional to the weights of the hinterlands: px

p
x
′+1
≤

w(Hx)
w(H

x
′)
≤

px+1
px

for all x,x′ ∈ X̄.
9We say that a competitive zone Y is trivial if no agent has his favorite object there, i.e., w(Y ) = 0.
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Hotelling’s main result for two players on a continuous line is that both cluster on

the so-called median. This finding is driven by the fact that both players tend to the

center of the line to steal agents from the other player. This is illustrated for a dis-

crete line in Figure 4.4 where we can observe the incentive to increase the hinterland

by moving to the discrete analogue of the median.
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Figure 4.4: A node-weighted line graph with two players.

Definition 4.3 (Median). A median of a node-weighted graph (X,E,w) is a node

q ∈ X that balances the node weights, i.e., w(Cq
1) ≤ w(X)

2
= n

2
, where C

q
1 ∈ Z is the

heaviest component of (X,E) − {q}.
In general, a median need not exist. For example, if we consider the complete graph

where all weights are equal to one, we have w(Cq
1) = n − 1 > n

2
. Nevertheless, one

can show that if (X,E) is a tree, a median always exists.10

The most direct way to extend Hotelling’s model to graphs is to consider trees. Al-

though this is only a special case of our set-up, much attention has been devoted to

this particular class in literature. Among others, Eiselt and Laporte (1991) exam-

ined this setting and they have shown that in the two-player case for homogeneous

distances both players will locate on the median of the tree. Thus, they came to the

same conclusion as Hotelling did. In fact, this result had already been established

by Wendell and McKelvey (1981) in slightly different terms. In their publication

the authors show that for homogeneous distances on a tree the median is always a

Condorcet winner.11 Since a Condorcet winner cannot be beaten in majority voting

(by definition), choosing the Condorcet winner constitutes a locational equilibrium

in the two-player game.

Now, let us apply Proposition 4.1 to test whether the two-player results men-

tioned in the previous paragraph are robust. If both players locate on the same

object, say q ∈ X, there is only one hinterland consisting of all the nodes, i.e.,

10Moreover, for trees a node q is a median if and only if q ∈ argmin{∑y∈X d(x, y)wy ∣ x ∈X} for

all δ (see Goldman, 1971), i.e., a median q is a minimizer of the weighted sum of graph distances

for all δ. On general graphs there are multiple conventions for the notion ‘median’: sometimes it

is defined (rather than characterized) as the minimizer of the weighted sum of graph distances.
11Later Hansen et al. (1986) extended this work.
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Π(s) = {X}. Therefore, only Condition (1.) of Proposition 4.1 applies and it sim-

plifies to n
2
≥ w(Ẑ) = w(Cq

1), which is exactly the definition of the median.12 Now

consider the setting where the players choose different positions, say x and x′ ∈ X.

Eiselt and Laporte (1991) show that this is a locational equilibrium only if the po-

sitions are either neighboring or the competitive zone between them has weight 0

and, furthermore, n
2
= w(Cx

1 ) = w(Cx′

1 ) holds. Applying conditions (3.) and (4.) of

Proposition 4.1 yields that this is robust, too.

In Eiselt and Laporte (1993) the authors examine the case of three players on a tree.

In their main result they distinguish four different cases: (i) type A equilibria (all

players cluster on the median q ∈ X), (ii) type B equilibria (two players locate on

the median q and one in the heaviest component Cq
1 ∈ Z on the node that is neigh-

boring to q), (iii) type C equilibria (all three players on different nodes), and (iv)

non-existence of equilibria. With the conditions given in Eiselt and Laporte (1993)

it is easy to check that type A and type B equilibria are indeed robust. However,

type C equilibria generically are not. They are robust only if the hinterland of all

players has the same weight because otherwise Condition (4.) of Proposition 4.1

would be violated.

Note that in the previous examples the equilibria are robust only if some kind of

minimal differentiation is satisfied and at least some players choose the median q.

Therefore these results raise some questions regarding the general form of robust

equilibria.

4.3.2 Minimal Differentiation

Minimal differentiation is one of the most controversial results and much atten-

tion has been devoted to its implications.13 In the framework of graphs, we define

minimal differentiation as follows.

12In fact, this has already been shown for the continuous line, although in very different terms, by

the seminal contribution of Black (1948). He proved that for single-peaked preferences on a line

the median is always a Condorcet winner. As already mentioned in Section 4.2, single-peaked

preferences on a line are is equivalent to our assumption of heterogeneous edge lengths on the

line graph.
13Some works show that generically it is not satisfied (see, e.g., d’Aspremont et al., 1979;

Eaton and Lipsey, 1975; Economides, 1986) but others support it for special cases (see, e.g.,

de Palma et al., 1985, 1990; Hehenkamp and Wambach, 2010). Similar considerations also ap-

ply to minimal differentiation on graphs.
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Definition 4.4. A strategy profile s ∈ S satisfies minimal differentiation if all players

locate on the same node, i.e., s = (x, x, . . . , x) for some x ∈X.

In the previous section there were already examples for robust equilibria satisfying

minimal differentiation for two or three players.14 These cases can be extended

to arbitrary numbers of players in a straightforward way. Consider the strategy

profile s ∶= (x, x, . . . , x) where all players locate on a node x ∈ X. We then have

only one hinterland consisting of all the nodes, i.e., Π(s) = {X}. By using the

same arguments as in the two-player case one can see that Conditions (2.), (3.), and

(4.) of Proposition 4.1 do not apply and, furthermore, Condition (1.) simplifies to
n
p
≥ w(Ẑ), where Ẑ is the heaviest unoccupied zone. Thus, we get the following

corollary.

Corollary 4.1. Let (X,E,w) be a node-weighted graph and q ∈ X. Furthermore,

let Cq
1 ∈ Z be a heaviest component of (X,E)−{q}. The strategy profile s = (q, . . . , q)

is a robust equilibrium if and only if the weight of any component of (X,E) − {q}
is not higher than the average payoff, i.e.,

w (Cq
1) ≤ n

p
.

Corollary 4.1 shows that it is easy to construct a robust equilibrium for any num-

ber of players. The result is also easy to prove without Proposition 4.1 since for

s = (q, . . . , q) every player earns the average payoff n
p
, while the most beneficial devi-

ation leads to the heaviest unoccupied zone C
q
1 . Phrased differently, if the heaviest

component of the graph without q ∈X is relatively light, then there exists a robust

equilibrium where all players locate on the same node. In particular, this also im-

plies that q has to be a median of the graph.

Note that in the robust equilibria discussed so far all players are located on or next

to the median. Therefore one might suspect that in any robust equilibrium the

median must be occupied (if it exists) and that the players cluster on or around it.

The following example is a counter-example to this conjecture.

Example 4.2. Let (X,E,w) be the weighted line graph depicted in Figure 4.5.

Furthermore assume that two players locate on each of the nodes with weight 33. As

it is easy to check, this strategy profile is a robust equilibrium. The median, however,

14Definition 4.4 captures minimal differentiation in a strong sense. A weaker version of minimal

differentiation would be the requirement that there is no unoccupied node between any pair of

occupied nodes or, equivalently, that there is no competitive zone.
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Figure 4.5: A robust equilibrium with no player on the median and without minimal

differentiation.

is the node with a weight of four and it belongs to a competitive zone. Thus, neither

minimal differentiation is satisfied, nor are players located on the median.

However, consider a reduced game where we remove the two nodes to the right and

we remove the two players in this area. In this reduced game, the unique robust equi-

librium is that the remaining two players both locate on the node with 33 agents such

as in the current strategy profile. Moreover, this node is the median of the reduced

graph. A similar observation can be made when reducing the game by removing “the

left part”.

Example 4.2 shows that in a robust equilibrium it need not be the case that players

minimally differentiate on the median. However, it seems that locally, in a kind of

reduced game, this is still true. To investigate this issue, let us formally define a

reduced game. Given a strategy profile s ∈ S, we define a reduced game for every

occupied node x ∈ X̄ by considering the objects and players in the neighboring area

Ax ⊆ X. Thus, the number of players in the reduced game is px and the graph

is restricted to (Ax,E∣Ax
). For the payoffs only those agents are considered whose

favorite object belongs to the neighboring area Ax such that the node weights of the

graph in the reduced game coincide to the node weights of the original game.

Corollary 4.2 (Reduced Games). Suppose s∗ ∈ S is a robust equilibrium for some

(X,E,w) and let x ∈ X̄ be an occupied position such that px ≥ 2. Then, x is the

median of the subgraph (Ax,E∣Ax
) and (x, x, . . . , x) is a robust equilibrium satisfying

minimal differentiation in the corresponding reduced game.

Proof. Let x ∈ X̄ be an occupied position in s∗ ∈ S with px ≥ 2. Applying Propo-

sition 4.1, Condition (1.) implies w(Ax)
px
≥ w(Hx)

px
≥ w(Z) for every unoccupied zone

surrounding x. But this is equivalent to the condition of Corollary 4.1, w(Cx
1 ) ≥ w(A)

px
,

which shows that the strategy profile (x, . . . , x) is a robust equilibrium in the reduced

game. Moreover, this condition implies that the weight of the heaviest component

of (Ax,E∣Ax
) − {x} is smaller than w(Ax)

2
which shows that x ∈ X̄ is the median of

the subgraph (Ax,E∣Ax
).
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Corollary 4.2 shows that in any robust equilibrium a local variant of minimal differ-

entiation is satisfied. This finding is fully in line with the “principle of local cluster-

ing” conjectured in the seminal work of Eaton and Lipsey (1975). Their principle,

however, also contains the aspect that players pair, i.e., do not locate away from

other firms. This aspect is also true in robust equilibria since it follows from Con-

dition (3.) of Proposition 4.1 that isolated players do not neighbor a non-trivial

competitive zone. This implies that singly occupied nodes must neighbor another

occupied node if node weights are strictly positive. Thus, any robust equilibrium

can be characterized as a few multiply occupied nodes which are possibly neighbored

by some singly occupied nodes. The final question on the extent of differentiation

is whether these local clusters can be at a large distance from each other.

In Example 4.2 only a small share of agents favor the object between the occupied

positions. In fact, it holds generally that the weight of competitive zones in robust

equilibria must be relatively light.

Proposition 4.2 (Competitive zones). Let (X,E,w) be a node-weighted graph.

Suppose s∗ ∈ S is a robust equilibrium and let Y be the set of competitive zones.

Then, ∑Y ∈Y w(Y ) ≤ n
5
.

The proof can be found in the appendix. By definition, a strategy profile satisfies

minimal differentiation only if there is no competitive zone. In this context, Propo-

sition 4.2 can be interpreted as a weaker form of a global minimal differentiation

result: competitive zones might exist in equilibrium, but their weight in sum is

bounded by n
5
, i.e., at most 20% of the agents can have their favorite object in some

competitive zone.

The requirement of robustness is crucial for each of the results on minimal differ-

entiation. Indeed, it is possible to find (non-robust) locational equilibria which do

not satisfy the properties specified by Corollary 4.1, Corollary 4.2, and Proposi-

tion 4.2. Whether robustness also leads to stronger results with respect to efficiency

is addressed next.

4.3.3 (In-)Efficiency

Traditionally, welfare is measured by aggregating the players’ and the agents’ sur-

plus. However, from the players’ perspective, in our setting (i.e., without consider-

ing price competition) any strategy profile yields the same aggregated surplus as we
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study a constant-sum game. Therefore, efficiency will be discussed from the view-

point of the agents which are interpreted as consumers in this subsection.15 The

standard result of two firms choosing the median of a line is known to be inefficient

since minimal differentiation leads to unnecessarily high distances for the consumers.

In his paper, Hotelling complains about this inefficiency:

“Buyers are confronted everywhere with an excessive sameness [. . . ]”

and “[. . . ] competing sellers tend to become too much alike.”

(Hotelling, 1929, p. 54)

This result, however, does not simply generalize. Reconsider Example 4.1 where

some agents are uniformly distributed along a cycle graph with equal edge lengths.

The (non-robust) locational equilibrium depicted in Figure 4.2 is efficient with re-

spect to different criteria. For instance, it minimizes the sum of distances (of each

consumer to a closest player) as well as the sum of squared distances, which are the

most common cardinal criteria.16 However, the cardinal approach does not seem to

be fully justified in our context as we have individual distance perceptions which

need not be comparable across consumers. A well-known ordinal criterion is Pareto

efficiency. The locational equilibrium in Example 4.1 satisfies this criterion as well,

i.e., there does not exist another strategy profile such that any consumer is at least as

well off and at least one consumer is strictly better off (where better off here means

that the perceived distance to the closest player becomes shorter). Note that this is

a weak requirement which is satisfied by plenty of strategy profiles. The existence of

locational equilibria that are efficient therefore raises the question of whether robust

equilibria can be efficient as well. Under generic conditions, the answer is no.

Proposition 4.3 (Pareto efficiency). Let (X,E,w) be a node-weighted graph. Sup-

pose that the number of agents n is not divisible by the number of players p and that

there are at least p nodes with positive weight wx > 0. Then any robust equilibrium

is Pareto dominated (for the consumers).

Proposition 4.3 shows that under mild conditions robust equilibria are not Pareto

efficient. This statement of inefficiency with respect to an ordinal criterion precludes

15These might be inhabitants that visit a facility or consumers who buy a product. Because we

have not specified a second stage like government formation in our model, the discussion of

efficiency does not apply to the context of voting.
16The sum of squared distances as an efficiency criterion has been used, for example, by

Meagher and Zauner (2004) and Król (2012) who find different effects of uncertainty on effi-

ciency.
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inefficiency with respect to cardinal criteria as well since no Pareto dominated strat-

egy profile can minimize the sum of (squared) distances. The proof of Proposition 4.3

is relegated to the appendix. Its intuition is simple. Generically, in every robust

equilibrium there are two firms that choose the same location, while the consumers

would benefit if one of them located at a different position. In fact, as we have a

constant-sum game between the players, a social planner could relocate them and

provide transfer payments to keep their payoffs constant. Thus, a socially optimal

outcome from the consumers’ point of view would be possible without changing the

payoffs of the players.17 This shows that, in a much more general form, Hotelling’s

inefficiency persists when robustness is required.

4.3.4 (Non-)Existence of Robust Equilibria

So far we analyzed properties of robust equilibria without explicitly examining under

which conditions they exist. In Subsection 4.3.1 we have shown for small numbers

of players on tree graphs that most of the sufficient conditions from the literature

indeed induce robust equilibria. Moreover, Corollary 4.1 provides a condition which

is sufficient for existence. Intuitively, it is satisfied either if the weight is concen-

trated on the median or if we have a star-like structure under a more equal weight

distribution. Although this condition is necessary and sufficient only for robust

equilibria with minimal differentiation, similar considerations also apply in general.

Corollary 4.1 is based on Proposition 4.1 which characterizes the underlying strat-

egy profiles of robust equilibria.18 In particular, Condition (1.) states that the

hinterland Hx ⊆X of every occupied node x ∈ X̄ must be heavy enough to carry px

players. If this weight is not directly on the node x, then it must be on other nodes

in its hinterland. Considering the “arms” in the hinterland, i.e., the components in

the graph (Hx,E∣Hx
)−{x}, each of them is an unoccupied zone. However, for unoc-

cupied zones the weight is bounded, again by Proposition 4.1 Condition (1.). Thus,

in order to be heavy enough, an occupied node x ∈ X̄ must either have sufficiently

17However, this result also depends on the abstraction from price competition. If firms do not

cluster, i.e., if they have a local monopoly, they might have an incentive to raise prices.
18Proposition 4.1 provides the necessary and sufficient conditions for existence in the sense that a

robust equilibrium exists if and only if there is a strategy profile that satisfies these conditions.

Thus, this result transforms the problem of finding a strategy profile that is a robust equilibrium

into finding a strategy profile that satisfies the conditions of Proposition 4.1, but it is not a

result on the exogenously given situation of spatial competition, i.e., on the node-weighted graph

(X,E,w).
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many arms in its hinterland (which are heavy in sum) or it must have a relatively

high weight itself. This intuition is formalized in Corollary 4.3.

Corollary 4.3. For some node-weighted graph (X,E,w), let s∗ ∈ S be a robust

equilibrium with heaviest unoccupied zone Ẑ ∈ Z (and w(Ẑ) > 0). Let x ∈ X̄ be

occupied by 0 < px < p players. Denote by ax ∈ N the number of arms (i.e., the

number of components in the hinterland for (Hx,E∣Hx
) − {x}) of x. Then

wx

w(Ẑ) + ax ≥ px.
Proof. Let Ẑx ∈ Z be the heaviest unoccupied zone in the hinterland of x ∈ X̄. The

result then follows from Proposition 4.1 Condition (1.):

w(Hx) ≥ pxw(Ẑ) ⇒ wx + axw(Ẑx) ≥ pxw(Ẑ)
⇒ wx

w(Ẑ) + ax ⋅
w(Ẑx)
w(Ẑ) ≥ px ⇒ wx

w(Ẑ) + ax ≥ px

Corollary 4.3 shows that in a robust equilibrium the relative weight of an occupied

node plus its number of arms must exceed the number of players on it. This result

is illustrated in Figure 4.6 with two occupied nodes x and x′ ∈ X̄.

rsrsrsrsbc bc bc bc
bc bc bc

bc
bc
bc
bc

x x′

Figure 4.6: Four players on two nodes. If this is a robust equilibrium, then node

x must have high weight. This is not necessarily true for x′ because it has a high

degree (which leads to several arms in its hinterland).

While x has only one arm in its hinterland, x′ has four of them. Therefore, for node

x we have wx

w(Ẑ)
+1 ≥ 2, which is equivalent to wx ≥ w(Ẑ), i.e., the weight of the node
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must exceed the weight of the heaviest unoccupied zone. Note that this implies an

inequality of weights if there are unoccupied zones with many nodes. In contrast to

this, x′ needs not be as heavy as x, but in order to have four arms it must be a cut

vertex and have a degree larger than five. Thus, one interpretation for Corollary 4.3

is that the weight of occupied nodes and their degree can be interpreted as some

kind of substitutes: at least one of them has to be high enough in order to carry px

players in equilibrium.

This gives a requirement for robust equilibria on the level of single nodes. On

the graph level this requirement will translate into (a) structural features of the

graph and in (b) conditions on the distribution of weights. To assess the weight

distribution, we consider the inequality of weights measured by the variance. In

our case it is given by Var(w) = ∑x∈X (wx −
n
ξ
)2 = 1

ξ ∑x∈X w2
x −

n2

ξ2
. The variance is

the quadratic distance from the uniform distribution. In particular, Var(w) = 0 if

and only if wx = n
ξ
for all x ∈ X, i.e., if and only if w is uniformly distributed (a

special case that is predominantly discussed in the literature). To assess structural

requirements of a graph we consider its connectedness which is measured by the

number of blocks b (cf. Diestel, 2005). If this number is smaller than the number of

players p, then it is still impossible to have Corollary 4.3 trivially satisfied (such as

for node x′ in Figure 4.6). For these graphs Corollary 4.3 has implications on the

weight distribution because there must be an occupied node that is similar to node

x in Figure 4.6. As a consequence we have that graphs with a high connectivity

(i.e., a relatively small number of blocks) only admit robust equilibria if the weight

distribution is far from uniform.

Proposition 4.4. Let (X,E,w) be a node-weighted graph with ξ > 3p. Suppose

that the number of blocks is smaller than the number of players, i.e., b < p. Then

there exists some ν > 0 such that Var(w) < ν implies that a robust equilibrium does

not exist.

The interpretation of this result is as follows: Suppose the graph is not too small

(ξ > 3p) and the distribution of agents is sufficiently close to the uniform distri-

bution. Then the existence of robust equilibria requires a low connectivity of the

underlying graph in terms of that there must be more blocks than players.

Proposition 4.4 obviously applies to all graphs with just one block (i.e., b = 1) like
grids, for instance. Those graphs are known as two-connected and they are charac-

terized by not containing any cut vertex (see, e.g., Diestel, 2005). Indeed, in this

case we have ax = 0 for any occupied node x ∈ X̄ (and for any s ∈ S). Thus, if

128



a two-connected graph is sufficiently large, it always satisfies the requirements of

Proposition 4.4 and therefore it does not admit robust equilibria if the weight dis-

tribution is too close to uniformity.19 A particular example of this class of graphs

are cycle graphs (as illustrated in Figure 4.2) which have been studied extensively

by Mavronicolas et al. (2008). Given a uniform distribution of agents (and edge

lengths), the authors have shown that there always exists a Nash equilibrium for

ξ > 3p. However, Proposition 4.4 immediately implies that these equilibria are not

robust.

For tree graphs Proposition 4.4 does not apply since trees consist of many blocks.

However, for this special class the number of arms is also restricted by some struc-

tural property. Since there are no cycles in a tree, each arm in any hinterland leads

to a node of degree 1, a so-called loose end. Therefore, completely analogous to

Proposition 4.4 we can show the following.

Proposition 4.5. Let (X,E) be a node-weighted tree with ξ > 3p. Suppose that

e < p, where e is the number of loose ends. Then there exists some ν > 0 such that

Var(w) < ν implies that no robust equilibrium exists.

The number of loose ends is a structural feature that is related with the equality

of the degree distribution of the graph. The lowest number of loose ends in a tree

is attained in the line graph (which has a highly equal degree distribution), while

the highest number is attained in the star graph (which has a highly unequal degree

distribution). In that sense, Proposition 4.5 shows that the existence of a robust

equilibrium on a tree requires either an unequal distribution of weight or an unequal

distribution of degree.

To sum it up, robust equilibria certainly exist for structures that are similar to a

star graph (Corollary 4.1) or have a highly concentrated distribution of weights.

However, for graphs with few cut vertices (i.e., graphs with a low number of blocks)

and for tree graphs, robust equilibria can exist only if the weight distribution is not

close to uniform. To consider a numerical example for the required inequality: for

trees that satisfy the condition e < p of Proposition 4.5 and for cycle graphs (which

always satisfy the condition b < p of Proposition 4.4) we can show that there only

19The result that two-connected graphs require a sufficient inequality of node weights can also be

derived from Proposition 4.2. Since in two-connected graphs any unoccupied node belongs to a

competitive zone, Proposition 4.2 implies that we have w(X̄) ≥ 4

5
n in robust equilibria. Thus,

there must be at least one node x with wx ≥
4

5

n
p
. That is, to reach an average payoff n

p
it is

almost enough to attract all agents with favorite object x.
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exists a robust equilibrium of three or more players if there is a node x ∈ X that is

at least ξ

p
− 1 times heavier than some other node x′ ∈ X. Thus, if the number of

nodes strongly exceeds the number of players in the game (i.e., ξ ≫ p), those one-

dimensional structures do not admit robust equilibria if the weights are uniformly

distributed.

4.4 Discussion

Models of spatial competition predominantly deal with three specific applications:

(i) firms that strategically locate facilities (e.g., Eiselt and Laporte, 1993), (ii) polit-

ical candidates who strategically choose a political platform (e.g., de Palma et al.,

1990), and (iii) firms that strategically choose a product specification (e.g., Eaton

and Lipsey, 1975). In any of the model variations it has been standardly as-

sumed that agents are heterogeneous with respect to their ideal point (i.e., loca-

tion/policy/product), but homogeneous with respect to the perception of distances.

In particular, it must hold that two agents with the same ideal point agree on the

ranking of all the other alternatives. In this paper we have introduced a way to

relax this strong homogeneity requirement by considering individual distance per-

ceptions. We assess whether model predictions are robust in the sense that they

are independent of the perceived distances. Thereby, we confirm robustness of the

equilibria found for two and three players on a tree graph by Eiselt and Laporte

(1991, 1993). And we find strong support for a conjecture of the “principle of local

clustering” articulated by Eaton and Lipsey (1975, p. 46) who further explain that

“[t]he principle of minimum differentiation is a special case of the principle of local

clustering when the number of firms in the market is restricted to two.” In fact, we

have shown that all robust equilibria satisfy local clustering in the sense that we have

minimal differentiation in each reduced game. An implication of this result is that

robust locational choices are not Pareto efficient, which is in line with Hotelling’s

conjecture. On the other hand, not all results from models of spatial competition

are robust with respect to heterogeneous distance perceptions. Especially in graphs

without cut vertices the existence of robust equilibria is highly restricted. We il-

lustrate this in an example of uniform distribution of agents along a cycle graph

(analyzed by Mavronicolas et al., 2008). Indeed, by discussing general structural

conditions for the existence of robust equilibria, we have shown that the existence

generically requires a highly unequal distribution of agents. This also raises the ques-
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tion whether there are robust outcomes in the three main applications mentioned

at the beginning of this section. For example, Proposition 4.2 implies that at most

20% of the agents may have their favorite object “between” the players. Interest-

ingly, some empirical data on the geographical distribution of inhabitants suggests

that the necessary inequality requirements might just be satisfied. According to the

United Nations report from 2012 the rate of urbanization in more developed regions

was about 78% in 2011 and it is still increasing.20 In the US it was even higher

than 82%, for example. Thus, the popoulation in more developed regions is quite

unequally distributed and this suggests that if firms serve only the major cities this

might well be a robust equilibrium, despite the inefficiency for consumers who live

outside these cities. In the case of product or policy spaces, the exact distribution

of consumers is still an open question. But if it should not meet the requirements of

robust equilibria, this would lead again to our main motivation that the assumption

of homogeneous distances can have a strong impact on the results. In this case, the

use of models of spatial competition in these applications has to be reconsidered

carefully.

Although we have focused in this paper on just one – yet crucial – aspect of robust-

ness, several other model specifications can be challenged as well. Some of them

do not substantially influence our results. For instance, if the assumption that the

players do not locate on the edges of the graph was relaxed, then for any robust

equilibrium in this more general set-up there exists another one where the players

only locate on the vertices and each of them attracts the same set of agents. More-

over, these additional equilibria exist only under very restrictive conditions. Another

aspect that could be relaxed is the assumption that ties are broken equally in the

case of equal distances. Although it would then be necessary to adapt the formu-

lations of the results, their substance would not change. The reason is that robust

equilibria are independent of the perceived distances and, thus, the tie-breaking rule

is relevant only if two players locate at the same position.

On the other hand, however, there are also further assumptions which might well

play an important role. In particular, we study a simultaneous move game, while

models of sequential moves lead to quite different predictions about minimal differ-

entiation (e.g., Loertscher and Muehlheusser, 2011; Prescott and Visscher, 1977),

when more than two players are involved.21 A further major modeling decision is

20United Nations, DESA (2012). World urbanization prospects: The 2011 revision.
21Also in the literature on sequential location choices the questionable homogeneity assumption is

standard. When relaxing this assumption one can find simple three-player examples where the
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whether continuous or discrete space is considered. We have contributed to bridging

the two corresponding literatures, but it is left for future research to clarify the role

of this modeling assumption; for instance, by approximating a continuous space by

a discrete space of shrinking steps.
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4.5 Appendix: Proofs

Proof of Proposition 4.1

Necessity: Assume s∗ ∈ S is a robust equilibrium and let X̄ = {x1, . . . , xl} be the

set of occupied nodes.

First consider the case px = 1 where x ∈ X̄. Let c ∈ P be the player with

sc = x. We will establish that x is not neighboring a non-trivial competitive

zone, i.e., w(Y ) = 0 for all Y ∈ Y neighboring to x. To see this suppose

the opposite is true. Fix some arbitrary object y ∈ Y . Because Ax ⊆ X is

connected, it is possible to find edge lengths (δ̄ie)e∈E for all i ∈ N with x̂i ∈ Ax∖Y

such that di (y) < di (x′) for any occupied position x′ ∈ X̄ neighboring to Ax.

This implies di (x) < di (y) because every path in Ax from x̂i to y passes

through x. Furthermore, for all j ∈ N with favorite object in Y one can choose

edge lengths (δ̄i)
e∈E

such that dj (y) < dj (x′′) < dj (x), where x ≠ x′′ ∈ X̄ is

some occupied position also neighboring to Y . Then the payoff of player c is

πc
δ̄
(s∗) = w(Ax) −w(Y ) < w(Ax) = πc

δ̄
(y, s∗−c). Since she can now beneficially

equilibria are not robust.
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deviate, s∗ is not a robust equilibrium.

Furthermore, if s∗ ∈ S is robust, an isolated player c ∈ P may never have an

incentive to deviate to an indirectly neighboring position x′ ∈ X̄. Because the

weight of all competitive zones surrounding x equals 0, πc(s∗) = w (Hx(s∗)) =
w(Ax) for all perceptions of distances. Suppose c relocates to x′. Similar as

before, it is possible to construct individual distances (δ̄ie)e∈E for all i ∈ N such

that every agent with favorite object in Ax′ or Ax strictly prefers x′ to any

other occupied position, i.e., πc
δ̄
(x′, s∗−c) = w(Ax′)+w(Ax)

px′+1
. But this implies

πc(s∗) = w (Hx) ≥ w(Ax′) +w(Hx)
px′ + 1

∀ x′ indirectly neighboring to x.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
highest possible payoff at occupied and indirectly neighboring nodes

⇔ w(Hx) ≥ w(Ax′)
px′

∀ x′ indirectly neighboring to x.

(4.2)

Now let px ≥ 1. Because s∗ ∈ S is supposed to be a robust equilibrium, it is

not possible to perturb distances in such a way that a player can increase her

payoff. This implies that the payoff she can attain at least has to be greater

than the highest possible gain she can reach if she deviates. With similar

arguments as in the case px = 1 this yields

w (Hx)
px´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

worst case payoff at x

≥ w(Ẑ)²
best case payoff at unoccupied nodes

,

where Ẑ ∈ Z is the heaviest unoccupied zone, and

w (Hx)
px

≥ w(Ax′)
px′ + 1

∀ x′ ∈ X̄ ∖ {x}.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

best case payoff at already occupied nodes

(4.3)

If px = 1, (4.2) already implies (4.3) for indirectly neighboring objects.

Sufficiency: Now assume the requirements from the proposition are satisfied. We

have to show that the strategies where px players locate at x ∈ X̄ constitute

robust equilibria. First consider the case px = 1, i.e., a singly occupied node.

Conditions (3.) and (4.)make sure that the player cannot improve by deviating

to a neighboring competitive zone or by deviating to a directly or indirectly
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neighboring occupied node. Condition (1.) assures that she cannot improve

by deviating to any other unoccupied zone and by Condition (2.) she cannot

improve by deviating to any other occupied node. Now, let px > 1. For a

player located on x ∈ X̄, Condition (1.) assures that he cannot improve by

deviating to any other unoccupied zone and Condition (2.) assures that he

cannot improve by deviating to any other occupied node.

Proof of Proposition 4.2

Let s∗ ∈ S be a robust equilibrium and x ∈ X̄ be the position with lowest worst-case

payoff, i.e.,
w(Hx)

px
≤

w(Hx)
px

for all x ∈ X̄. Then Proposition 4.1 Condition (2.) implies

w(Hx) ≥ px

px + 1
w(Ax) = px

px + 1
(w(Hx) + ∑

Y ∈Y, Y ⊆Ax

w(Y ))
≥ px

px + 1
w(Hx) + px

px + 1
∑

Y ∈Y, Y ⊆Ax

w(Y ).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶w(Yx)

and, consequently, w(Hx) ≥ pxw(Yx) for all x ∈ X̄ ∖ {x}, where w(Yx) is the aggre-

gated weight of competitive zones surrounding x ∈ X̄.

Case 1: px = 1
Here, Proposition 4.1 Condition (3.) implies w(Y ) = 0 for all Y ⊆ Ax and,

thus, w(Hx) ≥ pxw(Yx) = 0. Then:
n = ∑

x∈X̄

w(Hx) + ∑
Y ∈Y

w(Y ) ≥ ∑
x∈X̄

px ⋅
w(Hx)
px

+ ∑
Y ∈Y

w(Y )
≥ ∑

x∈X̄

px w(Yx)´¹¹¹¹¹¸¹¹¹¹¹¹¶
=0, if px=1

+ ∑
Y ∈Y

w(Y )
≥ 2∑

x∈X̄

w(Yx) + ∑
Y ∈Y

w(Y )
≥ 2(2 ∑

Y ∈Y

w(Y )) + ∑
Y ∈Y

w(Y ) = 5 ∑
Y ∈Y

w(Y ),
where the last inequality is due to the fact that by definition of competitive

zones each Y ∈ Y is neighboring to at least two occupied positions.

Case 2: px ≥ 2
If px = 1 for all x ∈ X̄ ∖ {x}, again Condition (3.) from Proposition 4.1 implies
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w(Yx) = 0 for all x ∈ X̄ ∖ {x} and there remains nothing to show. Therefore

assume that there exists at least one x′ ∈ X̄ ∖ {x} with px′ ≥ 2. Again one can

exploit Proposition 4.1 Condition (2.):

w(Hx) ≥ px

px′ + 1
w(Ax′) ⇔ w(Hx) ≥ pxw(Ax′) − px′w(Hx)

⇔ w(Hx) ≥ pxw(Hx′) − px′w(Hx) + pxw(Yx′)
and, analogously,

w(Hx′) ≥ px′

px + 1
w(Ax) ⇔ w(Hx′) ≥ px′w(Hx) − pxw(Hx′) + px′w(Yx).

Now the rest of the proof proceeds similarly to Case 1. According to (4.1) we

can again decompose the graph in hinterlands and competitive zones and by

using w(Hx) ≥ pxw(Yx) for all x ∈ X̄ ∖ {x} one gets

n = w(Hx) +w(Hx′) + ∑
x∈X̄∖{x,x′}

w(Hx) + ∑
Y ∈Y

w(Y )
≥ pxw(Hx′) − px′w(Hx) + pxw(Yx′) + px′w(Hx) − pxw(Hx′) + px′w(Yx)
+ ∑

x∈X̄∖{x,x′}

px ⋅
w(Hx)
px

+ ∑
Y ∈Y

w(Y )
≥ pxw(Yx′) + px′w(Yx) + ∑

x∈X̄∖{x,x′}

px w(Yx)´¹¹¹¹¹¸¹¹¹¹¹¹¶
=0, if px=1

+ ∑
Y ∈Y

w(Y )
≥ 2∑

x∈X̄

w(Yx) + ∑
Y ∈Y

w(Y )
≥ 2(2 ∑

Y ∈Y

w(Y )) + ∑
Y ∈Y

w(Y ) = 5 ∑
Y ∈Y

w(Y )
Again, the last inequality holds because each Y ∈ Y is neighboring to at least

two occupied positions.

Proof of Proposition 4.3

Let (X,E,w) be a node-weighted graph and suppose n
p
∉ N. We first show that in

any robust equilibrium s∗ ∈ S there is at least one node multiply occupied.

Suppose the opposite is true: There is a robust equilibrium s ∈ S with only singly

occupied nodes, i.e., px = 1 for all x ∈ X̄. Consider two occupied nodes x, x′ ∈ X̄
which are directly or indirectly neighboring. Condition (4.) of Proposition 4.1 then
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reads w (Hx) ≥ w(Ax′)
1
≥ w(Hx′)

1
and w (Hx′) ≥ w(Ax)

1
≥ w(Hx)

1
which implies that

w (Hx) = w(Hx′). Since the graph (X,E) is connected, any occupied node x ∈ X̄
is a direct or indirect neighbor of at least one other occupied node and the relation

of being a (direct or indirect) neighbor connects all occupied nodes. Therefore, we

have w (Hx) = w(Hx′) for all x, x′ ∈ X̄. Moreover, Condition (3.) of Proposition 4.1

implies that all competitive zones must have a weight of zero (because they have

a singly occupied node as a neighbor) such that ∑x∈X̄ w(Hx) = n. Taken together,

this yields w (Hx) = n
p
for any x ∈ X̄. However, since the weight of each hinterland

is determined by a number of agents, we must have w (Hx) ∈ N, which contradicts

our assumption that n
p
∉ N.

Thus, in every robust equilibrium there needs to be a multiply occupied node, say

x ∈ X̄. Since at least p nodes have a positive weight, there exists an unoccupied

node, say x̃ ∈X ∖X̄, with wx̃ > 0. Changing the strategy of one player with sc = x to

s̃c = x̃ is a Pareto improvement because all consumers with x̂i = x̃ are better off.

Proof of Proposition 4.4

To show the proposition, assume the opposite is true: that is, assume there exists

a robust equilibrium s∗ ∈ S. Let Ẑ ∈ Z be the heaviest unoccupied zone with

respect to s∗. Given the requirements of the proposition, we will show that in each

robust equilibrium there exists an occupied node which is heavier than Ẑ. But if

the variance becomes small this leads to a contradiction. The proof proceeds in five

steps:

Step 1: The ǫ-νǫ-criterion.

Consider the mapping ∥ ⋅ ∥1 ∶ Rξ Ð→ R with ∥w∥1 = ∑x∈X ∣wx∣, also known as

the Manhattan norm. It is well-know that ∥ ⋅ ∥1 is continuous. Thus, for all

ǫ > 0 there exists some νǫ > 0 such that ∥w −w′∥2 < νǫ implies ∥w −w′∥1 < ǫ for
all w,w′ ∈ Rξ, where ∥w −w′∥2 = √∑x∈X(wx −w′x)2 is, as usual, the Euclidean

norm. Let ǫ ∶= 2p

5(p+1) ⋅
n
ξ
. Furthermore, in the following let w′ be the uniform

distribution w′x ∶= n
ξ
for all x ∈ X.22 Having specified these variables, the ǫ-

νǫ-criterion from above implies that there exists some ν ∶= ν2
ǫ > 0 such that

from
√
Var(w) = ∥w − w′∥2 < √ν always ∑x∈X ∣wx −

n
ξ
∣ < ǫ = 2p

5(p+1) ⋅
n
ξ
follows.

Correspondingly, for the rest of the proof it is assumed that there is given a

tupel of node weights (wx)x∈X (i.e., w ≥ 0 and ∑x∈X wx = n) with Var(w) < ν.
22Because the fraction n

ξ
need not be an integer, the uniform distribution cannot always be induced

by allocating n agents to nodes. Still, it is possible to study the node-weighted graph (X,E,w′).
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Step 2: We establish that ∣w(X̂) − ∣X̂ ∣n
ξ
∣ < ǫ for all X̂ ⊆X.

If Var(w) < ν, Step 1 implies for all subsets X̂ ⊆X,

∣w(X̂) − ∣X̂ ∣n
ξ
∣ = RRRRRRRRRRR∑x∈X̂ (wx −

n

ξ
)RRRRRRRRRRR ≤ ∑x∈X̂ ∣wx −

n

ξ
∣ ≤ ∑

x∈X

∣wx −
n

ξ
∣ < ǫ.

Step 3: We establish that ∑x∈X̄ ax ≤ b.
The main intuition of this step is that all unoccupied zones can be covered by

blocks of the graph and we will show that minimal covers of different zones have

to be disjoint. Let Zx ≠ Z ′x′ be two unoccupied zones in the hinterland of x and

x′, respectively, where x, x′ ∈ X̄. Note that x = x′ is allowed but, nevertheless,

the two zones may not be equal. If it is not possible to find such two zones,

∑x∈X̄ ax ≤ 1 and there remains nothing to show. According to Section 4.2

let B be the set of blocks. Obviously X = ⋃B∈BB holds. Therefore there

exist BZx ,BZx′ ⊆ B with Zx ⊆ ⋃B∈BZx B and Zx′ ⊆ ⋃B∈BZ
x′
B such that both

sets are minimal with respect to inclusion, i.e., B̂ ⊊ BZx implies Zx ⊈ ⋃B∈B̂B

(analogously for B̂ ⊊ BZx′ ). Given the construction of blocks, the two sets BZx

and BZx′ must be disjoint because otherwise there would be a path from Zx to

Z ′x′ not passing through x and x′, which is not possible due to the definition

of hinterlands. Thus:

∑
x∈X̄

ax = ∑
x∈X̄

∑
Zx∈Z, Zx⊆Hx

1 ≤ ∑
x∈X̄

∑
Zx∈Z, Zx⊆Hx

∣BZx ∣ ≤ ∣B∣ = b
Step 4: We establish that wx′ ≥ w(Ẑ) for some x′ ∈ X̄.

As already has been shown in Step 3, the number of hinterlands is bounded by

b and, thus, ∑x∈X̄ ax ≤ b < p = ∑x∈X̄ px. Therefore there exists some x′ ∈ X̄ with

ax′ ≤ px′ − 1 and by applying Corollary 4.3 this yields wx ≥ w(Ẑ). In words:

there necessarily exists an occupied node which is heavier than the heaviest

unoccupied zone.

Step 5: The final contradiction.

Since the number of hinterlands is smaller than the number of players and be-

cause of Proposition 4.2, the average weight of unoccupied zones in hinterlands

needs to be relatively high:

w(Ẑ) ≥ ∑x∈X̄ w(Hx) −w(X̄)∑x∈X̄ ax´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
average weight of unoccupied zones in hinterlands

>

4
5
n −w(X̄)

p
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Moreover, according to Step 4 this implies that x′ must be relatively heavy as

well, wx′ >
4

5
n−w(X̄)

p
. But then from Step 2 it follows that

n

ξ
+ ǫ >

4
5
ξ n
ξ
− (∣X̄ ∣n

ξ
+ ǫ)

p
≥ 12

5
pn
ξ
− pn

ξ
− ǫ

p
= 7n

5ξ
−
ǫ

p

which contradicts ǫ = 2p

5(p+1) ⋅
n
ξ
. Therefore, s∗ cannot be a robust equilibrium.

References

Berman, O. and Gavious, A. (2007). Location of terror response facilities: A

game between state and terrorist. European Journal of Operational Research,

177 (2), 1113–1133.

Black, D. (1948). On the rationale of group decision-making. Journal of Political

Economy, 56 (1), 23–34.

Braid, R. M. (2005). The equilibrium locations of three stores with different se-

lections of differentiated products. Economics Letters, 93, 31–36.

Carpenter, G. S. (1989). Perceptual position and competitive brand strategy in

a two-dimensional two-brand market. Management Science, 35 (9), 1029–1044.

d’Aspremont, C., Gabszewicz, J. J. and Thisse, J.-F. (1979). On hotelling’s

”stability in competition”. Econometrica, 47 (5), 1145–50.

de Palma, A., Ginsburgh, V., Papageorgiou, V. V. and Thisse, J.-F.

(1985). The principle of minimum differentiation holds under sufficient hetero-

geneity. Econometrica, 53 (4), 767–781.

—, Hong, G.-S. and Thisse, J.-F. (1990). Equilibria in multi-party competition

under uncertainty. Social Choice and Welfare, 7 (3), 247–259.

Demange, G. (1982). Single-peaked orders on a tree.Mathematical Social Sciences,

3 (4), 389–396.

Denzau, A., Kats, A. and Slutsky, S. (1985). Multi-agent equilibria with mar-

ket share and ranking objectives. Social Choice and Welfare, 2 (2), 95–117.

138



Diestel, R. (2005). Graph Theory (Graduate Texts in Mathematics). Springer.

Downs, A. (1957). An economic theory of political action in a democracy. Journal

of Political Economy, 65 (2), 135–150.

Eaton, B. C. and Lipsey, R. G. (1975). The principle of minimum differentiation

reconsidered: Some new developments in the theory of spatial competition. The

Review of Economic Studies, 42 (1), 27–49.

Economides, N. (1986). Minimal and maximal product differentiation in

hotelling’s duopoly. Economics Letters, 21 (1), 67–71.

Eiselt, H. A. (1992). Hotelling’s duopoly on a tree. Annals of Operations Research,

40 (1), 195–207.

— and Laporte, G. (1991). Locational equilibrium of two facilities on a tree.

RAIRO, 25 (1), 5–18.

— and — (1993). The existence of equilibria in the 3-facility hotelling model in a

tree. Transportation Science, 27 (1), 39–43.

— and — (1997). Sequential location problems. European Journal of Operational

Research, 96 (2), 217–231.

—, — and Thisse, J.-F. (1993). Competitive location models: A framework and

bibliography. Transportation, 27 (21), 44–54.

— and Marianov, V. (eds.) (2011). Foundations of Location Analysis, New York:

Springer.

Gabszewicz, J. J. and Thisse, J.-F. (1992). Location. In R. Aumann and S. Hart

(eds.), Handbook of Game Theory with Economic Applications, Handbook of Game

Theory with Economic Applications, vol. 1, 9, Elsevier, pp. 281–304.

Godinho, P. andDias, J. (2010). A two-player competitive discrete location model

with simultaneous decisions. European Journal of Operational Research, 207 (3),

1419–1432.

Goldman, A. J. (1971). Optimal center location in simple networks. Transporta-

tion Science, 5 (2), 212–221.

139



Hansen, P., Thisse, J. F. and Wendell, R. E. (1986). Equivalence of solutions

to network location problems. Mathematics of Opeations Research, 11, 672–678.

Hehenkamp, B. and Wambach, A. (2010). Survival at the center–the stability of

minimum differentiation. Journal of Economic Behavior & Organization, 76 (3),

853–858.

Hotelling, H. (1929). Stability in competition. The Economic Journal, 39 (153),

41–57.

Jiang, A. X., Leyton-Brown, K. andBhat, N. A. (2011). Action-graph games.

Games and Economic Behavior, 71 (1), 141–173.

Kress, D. and Pesch, E. (2012). Sequential competitive location on networks.

European Journal of Operational Research, 217 (3), 483–499.

Król, M. (2012). Product differentiation decisions under ambiguous consumer de-

mand and pessimistic expectations. International Journal of Industrial Organiza-

tion, to appear.
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