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Abstract

Recent Internet technology advancements enable and simplify the outsourc-
ing of corporate and private information technology to remote facilities. Or-
ganizing this as public services has become known as cloud computing. is
thesis investigates the prospective market development for cloud storage and
processing services (Infrastructure-as-a-Service). emain focus is to identify
important factors with a huge inĘuence on market form and pricing, which
should hence be considered in the choice and standardization of services and
in market regulation.

Different aspects of the cloud market are modeled and analyzed by means
of game theory. Pricing in a monopoly market is explored in regard to a pos-
sible combination of public cloud services with an own infrastructure (hybrid
cloud). For competitive markets, the existence of stable market situations and
how they are affected by complex tariff structures is investigated. Further, the
separation of processing and storage facilities in different locations can pro-
vide different locational advantages for service providers and their users.

Competing only in price turns out to be without much potential for a sus-
tainably stable market. In a monopoly, the possibility to build hybrid clouds
appears to be essential for a relatively small on-demand service price. Differ-
ences between providers in their facility location and production costs have
potential for stable market shares and prices. Legal frameworks and ĕnancial
interests can support storage-only data centers that also might be distributed
over the network in order to take part in future Internet technologies.
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Zusammenfassung

Der Ausbau des Internets ermöglicht und vereinfacht zunehmend die Aus-
lagerung informationstechnischer Aufgaben aus Unternehmen und Privat-
haushalten heraus an spezialisierte Dienstleister. Ist dies in Form von öffent-
lich verfügbaren Diensten organisiert, spricht man von Cloud Computing.
Diese Arbeit befasst sich mit dem Markt für Rechen- und Speicher-Dienste
der Cloud (Infrastructure-as-a-Service), dessen zukünige Entwicklung unter-
sucht wird. Im Fokus steht dabei die Identiĕzierung von Faktoren, die großen
EinĘuss auf Marktform und Preisbildung haben und daher bei der Standardi-
sierung oder Regulierung des Marktes berücksichtigt werden sollten.

Verschiedene Marktaspekte werden mit spieltheoretischen Methoden mo-
delliert und analysiert. Unter Berücksichtigung einer möglichen Kombinati-
on öffentlicher Dienste mit eigener Infrastruktur (Hybrid Clouds) wird die
Preisbildung in einem Monopol untersucht. Es wird geprü inwiefern sich
aus verschiedenen komplexen Preismodellen stabile Marktsituationen im
Anbieter-Wettbewerb ergeben. Außerdem wird die räumliche Trennung von
Rechen- und Speicherinfrastruktur und die Streuung der Gesamtkapazität
auf verschiedene Standorte erforscht, aus der sich verschiedene Standortvor-
teile für Anbieter und Nutzer ergeben können.

Es zeigt sich, dass der Wettbewerb über den Preis allein wenig Potenzial
für dauerhae Stabilität liefert. Im Monopol erweist sich die Möglichkeit der
Nutzung von öffentlichen Diensten in Hybrid Clouds als wesentliche Voraus-
setzung für vergleichsweise niedrige Nutzungsgebühren. Unterschiede bezüg-
lich Standort oder Produktionskosten ermöglichen stabileMarktanteile mehr-
erer Wettbewerber. Rechtliche Rahmenbedingungen und ökonomische Inter-
essen bieten das Potenzial von reinen Speicher-Datenzentren, die im Rahmen
neuer Internet-Technologien gegebenenfalls über die Netztopologie verteilt
werden sollten.
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”There are no rules of architecture

for a castle in the clouds”

– Gilbert K. Chesterton

1 Introduction

1.1 Motivation

M and more individuals and businesses seek to utilize the Inter-
net in order to optimize their Information Technology (IT). Under
the premise that clustering similar tasks results in their more effi-

cient accomplishment, information processing and storage tasksmay be better
outsourced to a remote provider that serves several clients. Such a provider
might also be located in a more appropriate location than client IT facilities.

e outsourcing of IT tasks to the Internet can be organized as paid public
services. is has become known as cloud computing (Section 2.1). An ap-
propriate service payment creates a win-win situation to provider and clients:
the cost-effectiveness of the provider allows a proĕtable service price that is
below the client’s production costs of this service. e difference of price and
production costs is oen considerable and can comprise orders of magnitude
in particular cases [23].

ere are important factors other than money, of course. Little capital ex-
penditure and high Ęexibility favor outsourcing, but other factors do not. e
protection of sensible information from unauthorized access is an issue when
such data is processed or stored in a public service and legal regulations have
to be considered in this context. Next to security, availability and fault liabil-
ity of a service might argue against cloud computing as well. Some might not
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2 1 Introduction

even consider the cloud due to these reasons while other ventures, especially
small start-ups, would not even be possible without it. A large number of
potential clients, though, can be expected to balance pros and cons of cloud
services against an own IT infrastructure and costs are especially important
to those clients with large processing and storage demand.

Cloud services are already used in substantial amount today. Gartner esti-
mates Infrastructure-as-a-Service (IaaS) revenue at about $6.2 billion in 2012
[39]. is is a relatively small amount compared to the global data center
hardware investments which are estimated at $106.4 billion [40]. Because of
the huge possible savings to clients, though, it is quite unlikely that cloud in-
frastructure utilization will remain a rare case in our competitive economic
system. Cloud computing has the potential to completely rearrange IT infras-
tructure.

1.2 Working Hypothesis & Approach

is thesis studies the potential development of the IaaS market. Economies
of scale create a cost advantage that makes cloud services favorable over in-
house services and large providers over smaller ones. is promotes a rede-
ployment of corporate IT as a whole in form of a monopolistic cloud provider.
eworking hypothesis is the existence of key factors and conditions that have
a huge inĘuence on this process and the prospective market form. Such as-
pects have to be taken into account when forming common cloud standards.
Knowledge of these key factors and their inĘuence is important for an edu-
cated and reĘected utilization of cloud services and – if applicable – market
regulation.
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1.3 Thesis Structure 3

e market development is determined by the interaction of different ac-
tors: service providers and clients. ere is need for a theoretical approach
that can provide solutions for such situations. Game theorymeets this require-
ment and is successfully used in manifold settings. Different market aspects
are explored throughout this thesis using game-theoretic models. ey shall
provide answers to the following questions: Is a mass-movement of IT infras-
tructure to the cloud realistic? Is it of mutual beneĕt to all involved parties?
How can this development be inĘuenced, e.g. for market regulation?

1.3 Thesis Structure

Basic information about cloud computing and game theory is provided in
Chapter 2. is deĕnes the object of research of this thesis and gives the neces-
sary methodological background in order to follow the subsequent chapters.
e research ĕndings from cloud market modeling are presented in Chapters
3 to 6, where each chapter focuses on a different market aspect. e dynam-
ics of cloud instance price and utilization in a monopoly is investigated in
Chapter 3, while Chapter 4 explores how this is affected by provider compe-
tition. Whether processing and storage facilities in separate locations can be
competitive against facilities that provide both resources is analyzed in Chap-
ter 5. While cloud computing is about to change the provision of IT resources,
the Internet as the enabling medium is about to change as well. New needs
require Internet architecture changes (oen referred to as the future Internet)
and key technologies that are up for debate oen require some formof caching.
Chapter 6 explores how this might inĘuence the development of IaaS. A com-
prehensive discussion of the ĕndings in Chapter 7 concludes this thesis.
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4 1 Introduction

1.4 Contributions

e following list outlines the main contributions of the individual research
chapters and related earlier publications.

Chapter 3: Pricing & Usage Dynamics e dynamics of on-demand pricing
and service usage are investigated in a two-stage game model for a
monopoly IaaS market. e possibility of hybrid clouds (clouds plus
own infrastructure) turns out to be essential in order that not only the
provider but also the clients have signiĕcant beneĕts from on-demand
services. Even if the client meets all demand in the public cloud, the
threat of building a hybrid cloud keeps the instance price low. is is
not the case when reserved instances are offered as well. Parameters
like load proĕles and economies of scale have a huge effect on likely
future pricing and on a cost-optimal split-up of client demand between
either a client’s own data center and a public cloud service or between
reserved and on-demand cloud instances. Parts of this chapter have
been published previously in [60] and [62].

Chapter 4: Provider Competition is chapter investigates how cloud provider
competition inĘuences instance pricing in an IaaS market. When re-
served instance pricing includes an on-demand payment in addition
to a reservation fee (two-part tariffs), several providers might offer dif-
ferent price combinations one of which might be preferable to a client
according to its load proĕle. We investigate a duopoly of providers and
analyze stable market prices in two-part tariffs. Further, we study offers
that allow a speciĕed amount of usage free of charge (three-part tar-
iffs). For symmetric providers, neither two-part nor three-part tariffs
produce an equilibrium market outcome other than a service pricing
that equals production cost, i.e. complex price structures do not signiĕ-
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1.4 Contributions 5

cantly affect the results from ordinary Bertrand competition. When the
providers have different production costs, there is an inĕnite number of
equilibria with two-part tariffs where usually both providers make pos-
itive proĕt. ree-part tariffs may increase the provider’s equilibrium
proĕts. is is collaborative work together with Sonja Brangewitz and
has been published previously in [59].

Chapter 5: Data Centers for Processing and Storage in Separate Locations

When processing and storage are obtained as Internet services, the
actual location of the providing facility is undetermined. is chap-
ter contributes a market model for separate processing and storage
facilities in comparison to a combined approach. It can be shown that
stable market constellations with separate service speciĕc facilities are
possible when certain conditions (market share, economies of scale
and location) are met. Large parts of this chapter have been published
previously in [61].

Chapter 6: Cloud Infrastructure and the Future Internet is chapter evaluates
a new business model where ISPs charge content providers (CPs) for a
caching service since they beneĕt from content distribution. Although
ISP caching is potentially not in equilibrium, it turns out to be Pareto op-
timal at the right pricing, which encourages cooperation between con-
tent providers and ISPs. Cloud storage providers have an incentive to
choose cache friendly physical locations for their facilities in order to
provide the necessary storage capacity to the ISPs. Further, we show
that ISP caching as a paid service can be in equilibrium when future
beneĕts are considered and when the ISP neutralizes caching-related
improvements of service quality for clients that do not pay for caching.
is is joint work together with Nan Zhang, João Soares and Kimmo
Berg that has been published previously in similar form in [64] and [63].
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“There is Nothing so Theoretical

as a GoodMethod.”

– Anthony G. Greenwald

2 Fundamentals

2.1 Cloud Computing

T  idea to outsource IT to the Internet is not a new one and has been
practiced in web applications for decades [18]. Nevertheless, the term
cloud computing became a popular new expression for such outsourc-

ing over the last years. It was coined by Ramnath Chellappa as a notion of
an economy-driven IT-paradigm [20]. What exactly cloud computing means
is not yet settled, though. Research with the intention to ĕnd a consensus in
prevalent deĕnitions found not a single aspect in agreement [102]. Hence, the
deĕnition of cloud computing remains as vague as the symbolic depiction of
arbitrary constituted networks, where the term presumably originates from
(Figure 2.1).

Figure 2.1: The cloud – a popular
symbol for networks
of arbitrary constitu-
tion; here for instance
in the depiction of a
örewall.

roughout the following sections, an intentionally broad deĕnition of
cloud computing is described. It is meant to show where the marketing buz-
zword ends and cloud computing as an expression for a novel approach in
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8 2 Fundamentals

computing is actually justiĕed. is deĕnition determines the object of re-
search for this thesis as far as required. It further gives an insight into the
scope of more restrictive future deĕnitions.

2.1.1 Service-Oriented Architecture

In order to grasp the basic idea of cloud IT, it is worthwhile to take a look
at an earlier concept that has oen been referred to in terms of web services:
Service-Oriented Architecture (SOA). is architectural paradigm, introduced
by Gartner in 1996 [91], describes the approach to encapsulate processing
tasks in discrete services. ese services feature a deĕned interface that allows
their utilization at appointed terms and conditions. e actual implementa-
tion and runtime environment remains hidden from the service user. Several
services can be orchestrated to more complex applications. Such an applica-
tion architecture allows systems based on different computer architecture or
operating system to work in the same application. It also enables the reuse of
implemented tasks in different contexts.

SOA is not a working technology with deĕned services and interfaces. It is
an abstract concept that sets a Ęexible, modular design against a traditional
monolithic structure. Web services can be regarded as a category for Internet-
accessible IT-services of any kind following the architectural paradigm of
SOA.

2.1.2 Cloud-Services and Economics

As mentioned in the previous section, the actual implementation of a service
remains invisible behind its interface. An application that makes use of a ser-
vice only has to know the interface. e actual implementation of the service
does not have to be available until it is actually used. is means that the ser-
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2.1 Cloud Computing 9

vice provider (responsible for the required implementation and resources in
order to comply with the speciĕed service) can remain undetermined when
the application is built and can be chosen and varied at runtime. Cloud com-
puting adds an economic component to this concept by introducing service
fees. e charged amount grows with the amount of service usage. So ĕrst of
all, cloud computing is a restructuring of sales and distribution: sell access to
a product instead of the product itself. is creates a market economy where
different implementations of the same service can compete in price and qual-
ity.

Although several services with a usage-based chargingmodel exist, themar-
ket is still very heterogenous. ere is no deĕned pattern at present into which
new providers can easily integrate. Instead, there are lots of different provider-
speciĕc standards for e.g. processing and storage instances. e cloud market
is stillmissing uniform standards for services of the samekind and an accepted
set of services with ĕelds of duties for each kind. ese would make the pres-
ence of several providers for the same service a lot more likely and give an
incentive for an (e.g. automatic) choice amongst competing providers at run-
time.

Apparently, there also is no accepted open marketplace where providers
and clients can bargain over cloud services, yet. But there is the perspective
of such a market-driven SOA implementation of IT services on the Internet.
And it is this prospect that makes cloud computing an expression for Internet
outsourcing not only of former unknown quantity but also quality: a “com-
puting paradigm where the boundaries of computing will be determined by
economic rationale rather than technical limits alone.” [20]. When consider-
ing that cloud services cover all areas of IT today, from application logic to
hardware, cloud computing ĕnally realizes a 50 year old idea:

“computation may someday be organized as a public utility”

– John McCarthy, 1961 [28]
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10 2 Fundamentals

2.1.3 The Cloud Stack

Protocol stacks are oen used to segment computer systems into deĕned ĕelds
of functions. ese stack patterns consist of several layers of different degree
of abstraction. e higher a layer is in the stack, the more general it is. Each
layer covers one of those ĕelds. e well-known Open Systems Interconnec-
tion (OSI) reference model, for instance, deĕnes seven layers in data transfer
over networks: from physical transmission to application-level tasks like ĕle
transfer [108]. Network protocols should cover one of these scopes. Such a
modular approach offers huge variety like many different network technolo-
gies for instance. At the same time, unnecessary redundancy on other levels
is avoided.

As long as the interfaces between the stack’s layers are compliedwith, a layer
can be implemented independently from the other layers. When developers
follow such a pattern and integrate their product in a stack, implementations
of the more general layer can make use of it. Growing acceptance of a stack
increases the potential user base. Implementations for competing stack mod-
els are incompatible and become less usable, the more established the incom-
patible stack becomes. It hence becomes more promising to integrate new
implementations into the most established stack. is works against a perma-
nent heterogeneity throughout the evolution of a system. While this focuses
implementation efforts, it unfortunately also makes it difficult to introduce a
different structure.

With protocol stacks in mind, a similar framework for cloud computing is
not far-fetched. Many contributions to a deĕnition of cloud computing intro-
duce such a cloud stack model. Most of these presentations suggest to present
a predominant model, but the different models are actually quite varied in
comparison (Figure 2.2).
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Software

Infrastructure

Hardware

Platform

HumansEverything-as-a-Service

Figure 2.2: The cloud stack – a
consistentmodel is
not established.

Usually, a stack model of three layers is discussed, similar to the service
models in the popular cloud computing deĕnition by the National Institute
for Standards and Technology (NIST) [73]. It differentiates tasks between hard-
ware and end-user application in three scopes: Soware-as-a-Service (SaaS),
Platform-as-a-Service (PaaS) and IaaS. According to this model, application
logic is executed by a runtime environment based on (virtualized) hardware.

Other models suggest a larger number of layers. ey add an additional
layer for even more abstract, human-solvable tasks to the stack or sub-divide
existing layers [15]. Infrastructure services, for instance, can be deĕned in a
layer that abstracts virtual hardware from a layer of physical hardware. Oc-
casionally, a less complex stack model is presented, where the PaaS-layer is
omitted [10]. Platforms – soware that is not geared to end users but provides
a foundation for end-user applications, e.g. in form of libraries – are just re-
garded as SaaS in this simpliĕed model. ey can be used by other soware
services, if feasible, but there is no separate layer from soware that targets
end users. What remains is the traditional distinction of soware and hard-
ware, which kind of calls the idea of a stackmodel into question. Nevertheless,
a provider-independent, uniform interface between these layers would be de-
sirable.
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Which stack model will prevail is hard to tell and the outcome of market
evolution. A feasible model cannot simply be developed at the drawing board
because proprietary solutions by large providers have a huge impact on what
application ranges and interfaces become common for services. Instead, it
is likely that the market agrees on one or a number of successful common
standards. Projects like openstack [79] and eucalyptus [33] already adopt suc-
cessful standards and make them available for self-service and to providers
other than the one that introduced the standard in the ĕrst place.

Considering the broad spectrum of soware and IT in general, a certain
variety is quite likely to persist, despite of what was said above. Special Service
Level Agreement (SLA)-requirements could promote the evolution of several
incompatible cloud stacks, where each stack model targets a certain compu-
tation milieu. Specialized products for certain areas are already pooled in
categories like High-Performance-Computing-as-a-Service (HPCaaS). ese
products might be too unattractive in different context to give incentive to
integrate them in a common standard. Something similar happened to the
above mentioned OSI model, which was not adopted in many areas in favor
of the four-layer model TCP/IP. It is also not settled whether it makes sense
to combine completely different infrastructure types like processing and stor-
age in the same layer. Specialized interfaces are quite likely in this area and
different hierarchical structures are also possible.

Cloud computing developed a typical naming scheme, as can be observed
in Figure 2.2 and in the above example of HPCaaS. is convention of nam-
ing services is called Everything-as-a-Service (XaaS) and distinguishes cloud
services from other implementations of the same type (that are not accessible
via web services) by annexing -as-a-Service aer the type’s name.

e research in this thesis focuses on cloud services for processing and stor-
age. Such services require physical hardware and are primary IT resources
of general purpose. Note that despite the use of the term IaaS, no speciĕc
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stack model deĕnition is assumed. Certain demarcation characteristics (like
a separation of processing and storage) are rather investigated in the following
chapters.

2.2 Game Theory

“In a game, each one tries to be smarter than the others. Game
theory investigates the outcome of everybody trying to do so.
And it treats the whole world as if it were a huge game.”

– Christian Rieck (translated from german) [88]

With these few words, the german economist Christian Rieck states the ba-
sic idea of game theory. e quote characterizes a domain that was started
in the 19th century in economics by Augustin Cournot [25], evolved to a
general theory until the middle of the 20th century especially by John von
Neumann’s work [76] and got adopted and further developed in many areas
since then. Because there are many books on the topic that introduce game
theory at great length, there is no need for another detailed portrayal. Never-
theless, the following sections provide an insight into concepts and terms of
non-cooperative game theory. e descriptions are not exhaustive and more
speciĕc concepts are described later wherever they are used. is chapter is of
appropriate brevity and meant to provide the necessary background to follow
this thesis without further research or qualiĕcation and relies on the expertise
of [87] where not indicated otherwise.

2.2.1 Basic Approach

e expression game usually names an activity where several players try to
reach a deĕned objective. is happens in a competitive way in most games.
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e game’s rules determine admitted actions and the sequence of moves.
Game theory formalizes games with the desire to understand decision mak-
ing by the players. Contrary to decision theory, scenarios in game theory are
multidimensional: a player’s decision is not only relevant for him- or herself,
but also for other players. is means that the environment of each player is
affected by the decisions of other players. Whenmaking a decision for amove,
this diverse situation has to be factored in. is can be done by anticipating
other player’s moves. In a game with a chronological order of the moves, deci-
sions are taken relating to a situation that is produced by the preceding move.
Hence, there is an indirect relation of a player’s move and the resulting game
situation. e choice of an action is strategic, as it is intended to cause others
to move in a helpful way.

“Game theory accordingly is a theory of social interaction”

– Christian Rieck (translated from german) [87]

Intending to understand real situations instead of board or card games, the
situations in question are formalized as a game. For this purpose, several fac-
tors of the situation are mapped into a set of rules: actors, their possible ac-
tions, sequence of moves, and so on. Some outcomes of the game are more
desirable to a player than others. is is represented by a utility value which
is determined for each player and each possible outcome of the game. e
higher the utility of a situation to a player, the more desirable it is to him or
her.

Several forms of gamedepiction are common, each one particularly suitable
for games of a certain complexity. Simple games are usually represented as
n-dimensional matrices that contrast the possible moves of each player with
one another. Each cell of the matrix represents a combination of all players’
moves, which is a possible game result. e different utilities such a situation
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2.2 Game Theory 15

offers to the players are stated in the cell. is is usually done in the form of a
vector. In this thesis, cells are instead split diagonally. is makes it easier to
comprehend which value belongs to which player.

e famous example of the prisoners’ dilemma [37] is given in Figure 2.3
in order to clarify the formalization of a situation and its representation in
normal form. e game models the case of two culprits who only can be fully
convicted for their crime if at least one of themmakes a confession. Both play-
ers move at the same time and can either  or . If both deny, they
are discharged. If only one confesses, he or she is rewarded as a key witness
and the other one is punished. If both confess, both receive an eased punish-
ment due to their cooperation. e cases of punishment are represented as
negative numbers, acquittal is zero and the reward is positive. It is also per-
fectly possible to just make use of positive values as long as a more desirable
outcome to the same player offers a higher utility value to him or her. In this
example, both players have the same possible actions and utilities. A game
like this is called symmetric. Nevertheless, if required by the situation, games
where players have different utilities or possible actions can be constructed in
the same fashion.

Prisoner 2

 

Prisoner 1


-1
-1

1
-2


-2

1
0

0
Figure 2.3: Prisoners’ dilemma

in strategic normal
form.

Solutions & Solution Concepts

Game theory provides concepts to solve game models. A player’s strategy is a
speciĕcation of all decisions that the player will take throughout the game. A
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game’s solution is a combination of each player’s strategy. e progression and
outcomeof the game is completely determined by such a strategy combination.
Solution concepts systematically reduce the set of all possible courses of the
game to a subset of solutions. Each solution is a suggestions on how a game
is best played.

Each player is regarded a homo oeconomicus who intends to maximize his
or her own utility. Because all players pursue this objective, a solution does
not necessarily include the strategy that belongs to the outcome that is of max-
imum utility to a speciĕc player. If the same situation is of low utility to an-
other player, he or she will anticipate the move and – if possible – choose a
strategy that avoids this situation. In anticipation of this other player’s behav-
ior, a player better pursues an outcome of suboptimal utility which can be
realistically reached.

A solution may turn out to be a strategy combination that results in a lower
utility to all players than what is offered by another game result. e prison-
ers’ dilemma, for example, offers a relatively good utility to both players in
case of an acquittal. is requires both culprits to deny. e reward gives
an incentive to confess if the other one denies. A confession would also ease
the penalty that a confession of the other culprit would cause. Hence, a con-
fession is always the better option than denial, no matter what the other one
does, C dominates D. Eliminating dominated strategies is maybe
the most simple solution concept in game theory. If applied on the prisoners’
dilemma, this leaves only one solution: both confess.

Players usually select the move that offers the biggest utility at a givenmove
by the others. A strategy that is not dominated by another one might or
might not be the best move, depending on what the other players do. In most
games, there are certain strategy combinations where the chosen strategy of
one player is the best response to the chosen strategies of all other players:
there is no incentive for a unilateral change. Such a strategy combination is
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2.2 Game Theory 17

in Nash equilibrium [74]. e identiĕcation of Nash equilibria is the essential
solution concept next to dominance. e concept can be exempliĕed by the
– quite stereotyping – example battle of the sexes [71]. It models a situation
of a couple’s evening plans. e situation is that they have a date, but nei-
ther of them remembers whether they decided on football or opera. Without
the ability to communicate, each one has to simply decide for one location.
As can be seen in Figure 2.4, the man has a higher utility from meeting the
woman at the football match compared to meeting her at the opera and vice
versa. If they happen to go to separate locations, this provides no utility to
anybody. ere are no dominant strategies in the game, but two Nash equi-
libria (in pure strategies): one where both choose  and one where
both choose .

Woman

 

Man


2
1

0
0


0

0
1

2
Figure 2.4: The battle of the sexes

features two Nash
equilibria.

Depending on the game, solution concepts like the Nash equilibrium may
produce a varying number of solutions. Most other existing solution concepts
are reĕnements of the Nash equilibrium that produce a more or less reduced
subset of Nash equilibria. By selecting a reasonable concept, one can attempt
to identify a single solution of the game that e.g. postulates how real players
would actually play the game. Within this thesis, normal form representations
and the Nash equilibrium concept are widely used e.g. in Chapters 4 and 6.
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Mixed and Continuous Strategies

In addition to the described solutions in pure strategies, where the moves of
each player are determined, there are solutions with so-calledmixed strategies.
A mixed strategy deĕnes a variety of possible moves each of which is played
with a speciĕed probability [77]. Not every game has a Nash equilibrium in
pure strategies, but all games feature an equilibrium in mixed strategies. It is
deĕned by the mixed strategy of each player that offers a constant utility to
other players (independent of their move). In the well-known game rock, scis-
sors, paper, for instance, there is a mixed Nash equilibrium when all players
follow the same strategy and play any possible move with a probability of 1

3 .
In an asymmetrical game, though, themixed strategies in equilibrium are usu-
ally not the same for each player. For instance, the battle of sexes (Figure 2.4)
features a third equilibrium in mixed strategies (next to the two equilibria in
pure strategies). While the man’s probability for football is 2

3 , the woman goes
there only with a probability of 1

3 .
It is sometimes hard to map all possible actions into the game model. A

price, for example, can be determined in virtually unlimited increments and
accordingly cannot be modeled by a ĕnite number of pure strategies. is
can be covered by continuous strategies, where a player chooses the value of
a decision variable (instead amongst a ĕnite number of explicitly modeled
discrete values). Continuous strategies are used in Chapters 3 and 4 to cover
instance price options.

Chronology

As long as possible actions at any given moment of the game can be deter-
mined and the utilities of possible game results stay unaltered throughout the
game, game theory can model a situation with a chronological sequence of
actions. e one-shot games presented above involve only one simultaneous
move of each player. If such a game is repeated, each player can change its
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2.2 Game Theory 19

decision between iterations and react on other players’ moves. Strategies for
repeated games, though, may be best given in form of abstract instructions
like tit for tat. Other circumstances may not include a recurring situation.
Sometimes, players have to move in speciĕc order and possible moves may
change because of earlier decisions. A player’s strategy deĕnes all moves of
this player at any moment (and any possible former moves by other players)
of the game. While all possible strategies could be represented in normal form
by a row or column each, it usually is better readable in extensive form [76], a
tree representation of the game.

e battle of the sexes (Figure 2.4) implies that no agreement can be made
during the game. Because both move simultaneously, the move of the other
person cannot be observed, either. If the game is modiĕed so that one moves
aer the other, the one who moves ĕrst (and this move is observed by the
other one) can factor in the behavior of the other one. Depending on who
moves ĕrst, there are two different solutions of the game (Figure 2.5). If the
woman begins, she will prefer  over , because the result of the
expected man’s move is of higher utility to her. If the man moves ĕrst, he can
choose  without hesitation, knowing that the woman will follow.
Both solutions can be identiĕed by the Nash equilibrium concept. e exam-
ple shows that the move order can be very important and has to be modeled
in order to identify the right solution.

If the game would be continued in a way where both players take turns
to redecide on their location, nobody would have an incentive to leave the
place (since both would loose their utility if the other stays). is is one of the
reasons why Nash equilibria are regarded to be good solutions: they render a
game static since nobody can improve its situation on their own terms. is is
indicated at the bottom of Figure 2.5. Chapter 3 uses an extensive form game
to model a monopoly market for cloud infrastructure.
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Woman

Man




2,1


0,0
.

Man

. 0,0


1,2
.

Figure 2.5: The battle of
the sexes in two
moves. Represen-
tation in extensive
form.

Man

Woman




1,2


0,0
.

Woman

. 0,0


. 2,1 . .

2.2.2 Applicability & Limits

e plot of many standard models may not sound very credible. e battle
of the sexes exempliĕes an oversimpliĕcation of a complex social situation in
an unrealistic game model. e purpose of these models is not to be a good
representation of a real-world situation, but to offer a simple example for a
standard situation in game-theoretic models. us, the situation that is sup-
posedly modeled should rather be regarded a cover story in order to make the
example more comprehensible and should not be taken too seriously. Stories
like the prisoners’ dilemma have become expressions for the game situation
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2.2 Game Theory 21

they illustrate. e models in Section 2.2.1 lack many conditions of the real
situation. In order to produce proper results, it is important to factor every-
thing of signiĕcant inĘuence on the actual decision into themodel. Otherwise,
utility assessments may be faulty or possible moves are not represented in the
game. Note that the concepts of dominance and Nash equilibrium (in pure
strategies) depend only on situation preference and hence abstract from dis-
crete values. It is relevant how utilities are related to each other, the amount
of the utility difference is not. Furthermore, only utility relations for the same
player matter. Hence, a game model can produce plausible results as long as
unaccounted inĘuences do not change the order of precedence of the game
results (Figure 2.6).

Prisoner 2

 

Prisoner 1


E
E

R
P


P

R
A

A

Figure 2.6: The prisoners’
dilemma condition:
P < E < A < R
(P)enalty, (E)ased penalty,
(A)cquittal, (R)eward

Rationality

When possible actions change over time, for instance in a chess game, things
soon get quite complicated. When a player decides on amove, he or she has to
anticipate what choices become available to the other player by each possible
own move. e player has to anticipate further what situations may emerge
from each possible move of the other, and so on. Ideally, a player has to antic-
ipate all possible game developments until the end in order to fully evaluate
a strategy. Practically, this is very challenging. While a computer might be
able to calculate a tree of possible game developments over a large number
of moves, human players soon reach the limits of either their capabilities or
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motivation. In repeated games, a player’s strategy can be based on experience
instead of rational thoughts, though.

Game theory requires rationality in a players choice of strategy in order
to ensure that decisions are comprehensible. Rationality is taken for granted
when players strive for maximal utility and e.g. do not randomly lower their
utility without an apparent reason. How much utility a situation offers to a
player, though, depends on the individual player’s goals and values. How these
can be assessed is the ĕeld of research of utility theory. In an economic context,
money is an important utility measure of course.

Evaluating the utility of a situation only by its current pros and cons can be
insufficient. e end result of a game might be the key factor in many games,
but sometimes intermediary situations are important as well. is especially
holds true for games that are played over signiĕcant time. A high average
salary usually is of higher utility than a top amount right before retirement.
Hence, there can be meta-level reasons for choosing a certain strategy that
one would call irrational. ese have to be factored into the utilities in order
to consider them in the model. is can be done, for example, by summing
up all utilities of preceding intermediary situations into the end result. If such
a reasonable utility calculation cannot be arranged, game theory reaches its
limits.

In addition, the use of tactics, meaning a willful attempt of taking inĘuence
of other players’ moves, cannot be covered by rationality in a game-theoretic
sense. Furthermore, game-theoretic research has to face the fact that – even
in well-controlled and seemingly easily modeled situations – human players
sometimes just don’t behave like the solution concepts suggest. An example
is the centipede game in Figure 2.7 (ĕrst introduced in [89]). Two players take
turns and have the choice to either increase their utility by one and the game
continues or to increase their utility by two and the game instantly ends. At
some point the game ends anyway, because the resource that is depleted for
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the utility is limited. In the penultimate possible move (the last one would

A

...
+1,+0

A

B

+1,+
0

A
+0,+1

+1,+0

+0,+2

+2,+0
+2,+0

Figure 2.7: Centipede
game.

completely exhaust the resource), the player better chooses a utility increase
of two. e alternative to take one and leave the last unit of the resource to
the other player would be irrational. In the preceding move, the other player
can anticipate this move and – as he or she will not have another go any-
way – better chooses a utility increase of two. Since this would again end
the game, the other player better ends the game in the move before, and so
on and so forth. is principle is called backwards induction: starting with an
outcome, the move sequence that leads to this outcome is anticipated move
by move. If the moving player has a higher utility when it deviates from the
path that leads to the observed outcome, the outcome is excluded as a solution
of the game. When repeated for all outcomes, this produces a set of so-called
subgame-perfectNash equilibria [92]. In a regularNash equilibrium, no player
has an incentive to change its strategy because the actions of the other play-
ers (according to their strategy) in the remaining part of the game would lead
to an unattractive outcome. Occasionally, aer one player changes its strat-
egy, other players also have an incentive to deviate from their original strat-
egy for the remaining subgame. e affected moves of the original strategy
are called incredible threats, since they are not actually played when the player
is confronted with the according decision. In a subgame-perfect Nash equilib-
rium, no player has an incentive to change its strategy at any point of the game.
While this produces plausible results in many cases, the only subgame-perfect
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equilibrium of the centipede game suggest that the ĕrst move ends the game.
In reality, though, players keep going until the end of the game is in sight.
At ĕrst glance, limited far-sightedness of the players could be an explanation.
However, knowledge about the gamemechanics by experience or explanation
does not change the ĕnding signiĕcantly. Apparently, both players keep the
game alive in silent agreement as they see a high potential beneĕt in it. e
risk of an uncooperative move by the other player seems to be low in the be-
ginning. But it increases as the game proceeds and the utility from ending the
game becomes signiĕcant in comparison to the remaining resources. Such
behavior is covered in repeated games, where the players also consider future
utilities of a later iteration of the game in their decision. Chapter 3 utilizes
the concept of subgame-perfect equilibria to investigate instance pricing. A
repeated game is used in Section 6.6.

Limits of Game-Theoretical Models

A proper modeling is necessary in order to obtain realistic game solutions.
When possible moves, information status and utilities are misjudged, reliable
conclusions for the modeled situation cannot be drawn. e game theoretic
analysis implies that these aspects are common knowledge, which means that
every player has the same understanding of the game. is also includes the
knowledge that the game rules are common knowledge.

edesign of game-theoreticmodels is not trivial. Howmuch thesemodels
simplify real-world scenarios, which usually are of high complexity, should
not be misjudjed. is limits the use of game theory to rather small inter-
actions. is holds also true because additional players add dimensions to
the game’s utility space. is makes the analysis more difficult. Nevertheless,
game theory has become an important and well-established area especially
in economics and sociology. e prisoners’ dilemma is an example of why
this theoretic approach is so successful: Game theory provides an explana-
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tion of behavior that appears to be unreasonable from an outside perspective.
Many interaction scenarios could not be described or comprehended before.
Game theory even unravels the ostensible conĘict of egoistic behavior –which
might have evolved socially or genetically – and the widespread phenomenon
of cooperation and supposed altruism: it can explain cooperation as a logical
consequence from the dynamics of egoistic actors [12].

Note that non-cooperative game theory does not imply that there cannot
be cooperation. e important part is that it is a result of a tacit understand-
ing in which the cooperative act is everybody’s best individual choice. is
does not include an active form of cooperation where several players make
an agreement on how they split up their combined utility. Such games are
investigated in their own domain of cooperative game theory.

2.2.3 Evolutionary Game Theory

e achievements of game theory have led to an adoption of this approach in
a wide range of disciplines. ey usually follow the rationale that has been de-
scribed so far. In biology, though, evolutionary game theory became a success-
ful variety since Charles Lewontin ĕrst adopted the concepts of game theory
for evolutionary dynamics [68].

Usually, game theory argues that players make rational choices based on
comprehension of the game. Evolutionary game theory, on the other hand,
tries to apply game theory on situations where the players lack the ability to
make such deliberate choices. e players of an evolutionary game are not
individuals, but there is one set of individuals that faces itself in a symmetric
game. is set is called population. e populationmay feature a variety of be-
haviors (strategies), but the behavior of each individual is ĕxed. According to
the composition of the population, it features a speciĕc behavior distribution.
is distribution is analog to a mixed strategy. It is not chosen, though, but
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can change only over generations with the composition of the population. In
biology, the term generation can be taken literally: evolutionary game theory
is applied to animal populations, where behavior is regarded to be genetically
determined. Some behavior may be more successful than some other and
the fraction of individuals that feature this better behavior is hence increasing
from one generation to another. Successful means anything that leads to in-
creased reproduction (e.g. a larger amount of offspring). Instead of speaking
of utility, evolutionary game theory uses the expression ĕtness. e ĕtness of
a strategy is never evaluated regarding a potential future outcome of the game.
Instead, it depends on the current population, which determines the compet-
itive environment of each individual. A certain instruction called replicator
dynamics deĕnes the transformation of a population from one generation to
another based on the current ĕtness values.

Over several generations, dominated strategies may vanish completely and
other strategies may reach stable shares in the population. A stable strategy
distribution is very similar to a Nash equilibrium. But Nash equilibria can
sometimes be upset by coincidental strategy changes (e.g. caused by muta-
tions or invading individuals). Evolutionary game theory hence deĕnes a
subset of Nash equilibria called the Evolutionarily Stable Strategies (ESSs) by
asking for an additional stability condition: Any strategy m other than the
equilibrium strategy n has to have a lower ĕtness than n in an environment
following strategy m [96]. is reĕnement sorts out equilibrium solutions
where some strategy distribution is able to supersede the equilibrium strategy
distribution. e higher ĕtness of an ESS prohibits a growing share of other
strategies in the population. As an example, Figure 2.8 shows the sex ratio of
a mammal population based on Fisher’s principle [35]. (e basic argument
was alreadymade in [26] and a ĕrst game-theoretic modeling of sex ratios can
be found in [46].)
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Population

♂ : ♀

Child

♂
0

0
1

1
2

2

:
1

1
2

2
1

1

♀
2

2
1

1
0

0

Figure 2.8: Another battle
of the sexes:
sex ratio in
evolution.

Supposed there is a genetic predisposition to produce children of a certain
sex. e predisposition can be to either have a higher probability of producing
male children or a higher probability to produce female children or to produce
either sex with equal probability. is is modeled in three strategies different
strategies that represent the child’s sex. When the child meets another indi-
vidual in the population, there is a certain chance that this individual features
the opposite sex and they can have children themselves. e ĕtness value rep-
resents the relative success of this reproduction. A couple that features a pref-
erence to produce a certain sex increases the share of this sex and the genetic
predisposition to produce this sex in the following generation.

Assuming an imbalance in sex ratio, individuals of the majority sex have a
lower chance to meet a partner of the minority sex and eventually have chil-
dren themselves. In consequence, the predisposition to produce the majority
sex has a lower ĕtness than the strategy to produce both sexes with the same
probability. Accordingly, the strategy of an equal sex ratio is an ESS. It is
restored aer a disturbance that causes an imbalance and also cannot be in-
vaded by any preference to produce a certain sex. Notice that the population
strategy of a 1:1 ratio can either be constituted by a pure strategy where all in-
dividuals of the population produce male and female children with the same



Tragedy
ofthe

Com
m
on

Cloud
|G

am
e
Theory

on
the

Infrastructure-as-a-Service
M
arket

28 2 Fundamentals

probability or by a mixed strategy where the preferences to produce male and
female children are present in equal shares.

In contrast to a simple Nash equilibrium, which can be regarded as stable
because nobody has an incentive to leave it, stability is a dynamic property
in evolutionary game theory. While the name of evolutionary game theory
and its terms may suggest that it can only be used in a biological context, this
is not true. It can also be applied in economic settings, for instance, where
the population represents market shares [48]. Economic success supersedes
reproduction success in this regard. Also, a generation is then better regarded
as the discrete strategy distribution of a population at a speciĕc point in time
of a continuous development. Chapter 5 uses evolutionary game theory in or-
der to investigate the competitiveness of physically separated processing and
storage facilities.
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”(...) replace up-front capital infrastructure

expenses with low variable costs (...)”

– Amazonwebsite

3 Pricing & Usage Dynamics

3.1 Introduction

W  a client considers cloud computing, a variety of factors like
privacy concerns and strategic decisions have to be reckonedwith
the particular case. In particular, costs are a key factor in the de-

cision process. Case studies that ask whether or not processing in the cloud is
feasible usually only regard current prices for cloud services. Since the cloud
market develops, assuming constant prices is insufficient for long-term deci-
sions. is chapter abstracts from current market prices and investigates the
interaction of cloud provider and clients froman analytical perspective. A gen-
eral understanding of how providers and clients potentially beneĕt ĕnancially
from IaaS can help clients to appraise price uncertainty in strategic resource
planning decisions. Providers gain insights on how pricing and chargingmod-
els affect service usage.

e analysis focuses especially on the combined use of cloud services and
an own data center, which offers a variety of possibilities how clients may split
up their processing demand. While cloud service prices are most likely con-
sidered in the resource allocation decision of a client, it is unknown how this
interrelation affects future cloud pricing.

Market dynamics depend on provider and client behavior. By contrasting
the possible actions of these market actors, game theory can identify stable
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market situations that suggest likely or advisable behavior. is chapter pro-
poses a game-theoretic model and determines its equilibria in order to esti-
mate future pricing and expected usage of IaaS in hybrid cloud scenarios. It
further discusses the impact of factors like load distribution and economies
of scale on the model. Also, the effects of a simultaneous offer of reserved
instances is explored.

is chapter is organized as follows. e contribution of this chapter is put
into relation to other research in Section 3.2. A market model for on-demand
cloud infrastructure is developed throughout Section 3.3. In Section 3.4, the
model is applied to an example case. Section 3.5 discusses the impact of a re-
served charging option on themarket. A general discussion of research results
is presented in Section 3.6, which also concludes the chapter.

3.2 RelatedWork

Several publications deal with the suitability of cloud services as a substitute
for on-site corporate IT. Guidelines for the decision process like [57, 65] usu-
ally include a ĕnancial comparison of feasible solutions. Calculation models
for Total Cost of Ownership (TCO) of a data center [23, 58] can be taken as a
basis for this. ere are also ready-to-use calculators [6] for a direct compar-
ison of expected costs based on speciĕed demand. A cost model speciĕcally
for hybrid clouds is provided by [54]. Contrary to such case-based compar-
isons from a client’s point of view, our approach allows to draw general con-
clusions on pricing and usage dynamics from a market model that considers
the provider’s perspective as well.

ere also is game-theoretic research on cloud computing. Many publica-
tions focus on algorithmic solutions in resource management, e.g. [70, 105].
Several recent papers also discuss cloud instance pricing, though. For mar-
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kets where providers compete in quality of service and price, the existence
of a Nash equilibrium solution has been shown for a duopoly [31] and for n
competitors [80]. In [9], an evolutionary approach is used to determine sta-
ble pricing. e authors in [51] study how the competition amongst clients
for resources affects pricing. Instead of exploring instance price in a competi-
tive environment, this chapter examines price and service utilization in hybrid
clouds when the provider is in a monopoly position.

e negotiation of cloud instance pricing is approached by [107] in a ‘one
provider – one customer’ bargaining problem. is chapter contributes a
model where one provider serves many customers and the price is not bar-
gained but ĕxed. Whether a provider should better provide instances on de-
mand and at a ĕxed price or offer them in a spot market is discussed in [1];
a combined approach is also explored. [104] explores the distribution of re-
sources on reserved, on-demand and spot market instances that maximizes
provider revenue. We contribute similar research by investigating whether a
provider should offer reserved instances, on-demand instances or both and
what prices for the different instance types maximize provider proĕt.

3.3 A Game-Theoretic Market Model

3.3.1 Setup

A game-theoretic model of an on-demand infrastructure cloud market is sug-
gested in the following; the goal is to estimate future pricing. e model is
set up as one player being a provider that offers an on-demand computation
instance. Such an instance provides capacity for processing and storage like
a physical server and fees apply only when the instance is in use. e other
player is a client that may utilizes the offered product. An extensive form game
(Section 2.2) is used since the provider makes an offer and subsequently the
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client is free to accept it or not. Figure 3.1 shows the proposed game model.
e provider chooses a price and subsequently the client is free to use the ser-
vice at these terms at any amount in combination with an own infrastructure
in order to meet its processing demand.

Provider

1 ct/h

Client

0% capacity in cloud

Utilities(price, cloud fraction)

100% capacity in cloud200 ct/h

Figure 3.1: Amarket model for IaaS using continuous strategies.

We assume that the provider tries to maximize proĕt and the client tries
to minimize expenses. Hence, utilities are based on client costs and provider
proĕt. How the model can be solved based on these utilities is discussed in
the following.

At a constant utilization of the cloud service, there is an incentive to raise
the instance price as this increases the proĕt of the provider. is incentive is
not given when a further price raise would result in lower proĕt. is can be
the case, for example, when the client stops using the cloud. e client may
follow the strategy to use the cloud when the price is lower than some pthreshold

and to build a data center when the price is higher than pthreshold. is client’s
strategy is in a Nash equilibrium (Section 2.2) with the provider’s choice of a
price that is just below pthreshold. A Nash equilibrium exists for any threshold
price pthreshold amongst many others.
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3.3 A Game-Theoretic Market Model 33

e client will accede to the agreement, though, whenever a price is offered
that actually causes lower costs in the cloud. As a consequence, any equilib-
rium where the client has an incentive to change its strategy during the game
can be considered a non-credible threat. For example, suppose a speciĕc cloud
service price at which the cloud solution is a lot cheaper than an own data cen-
ter to the client but the provider still makes positive proĕt. Further, the client
follows the strategy to use the cloud service up to this price and to use an own
data center if the cloud service is more expensive. en this client’s strategy
is in equilibrium with the provider’s strategy to offer exactly this price. Never-
theless, once the provider actually offers a higher price, the client might still
beneĕt from the cloud service and prefer it over the data center option. Since
the client will then change its strategy accordingly, the original equilibrium
strategy is non-credible. As a consequence, unilateral change (changing the
price) is safe for the provider when the client subsequently changes its strat-
egy as well. Non-credible equilibria can thus be safely ignored. ey can be
sorted out by asking for subgame perfection which means that strategies in
equilibrium have to remain best responses throughout all possible in-game
situations (Section 2.2).

Clients are expected to choose different amounts of cloud instances based
on the provider’s offer. What fraction of a client’s demand is met in the cloud
depends onwhat combination of cloud and own infrastructure causes the low-
est costs to the client at a given price. e price that offers the highest proĕt to
the provider is in a subgame-perfect Nash equilibriumwith the cloud fraction
that belongs to the cheapest solution to the client at any given price.

roughout the following sections, the utility functions of the game model
are developed. Section 3.3.7 presents the ĕnal utilities and a calculation of the
equilibrium solution.
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3.3.2 A Simple Cost Model

Several calculation models for comparing the cost structure of cloud services
and local data centers exist [6, 23, 58]. e cost models underlying these case
studies can be easily generalized into two linear relationships.

Let us consider data center costs as the product of a number of servers n
that is necessary to meet the maximum demand of a client and a constant c
that includes all annual amortization and operation costs for one server (Equa-
tion 3.1).

DCcosts(c, n) = c · n (3.1)

Let us further consider cloud service costs as also depending on a number of
servers n as a measure for the capacity that is used at a maximum. Unlike a
data center, on-demand cloud instances can be scaled according to demand.
We hence assume that the average number of instances in use correlates with
the average workload a (0 ≤ a ≤ 1), which is a fraction of the capacity that
is needed at a maximum. Factor e deĕnes how many instances are equivalent
to one server and p is the cloud instance price per hour. e annual costs
of a cloud service are hence calculated as a product of these factors and the
number of hours per year, as presented in Equation 3.2.Ƭ

Cloudcosts(p, e, n, a) = p · e · 24 · 365 · n · a (3.2)

3.3.3 PricingWithout Hybrid Clouds

When hybrid clouds are not possible, a client has to decide whether to utilize
the cloud or to build an own data center for its entire demand. Considering

ƬMore general cost models, e.g., a model where Cloudcosts(a, n) = c1an + c2a + c3n, are
easily conceived. We restrict the discussion in this chapter to a linearmodel; yet our approach
should carry over to such affine cost models as well.
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the deĕnitions of data center and cloud costs in Equations 3.1 and 3.2, we can
expect the demand to stay constant as long as cloud pricing results in lower
costs in the cloud compared to an own data center. For any average workload
a, there is a break-even price pbreak−even at which the cloud and an own data
center have equal costs. is can be expressed as a function pbreak−even(a) that
is decreasing over workload a when data center costs and instance equivalent
are considered constant (Equation 3.3).

Cloudcosts(pbreak−even(a), e, n, a) = DCcosts(c, n)

⇔ pbreak−even(a) =
c

e · 24 · 365 · a
(3.3)

A price higher than pbreak-even makes the cloud option ĕnancially unattractive
for a client with the given workload. us, pricing unsurprisingly affects sales
volume as well as proĕt margin. Long-term pricing will in all likelihood max-
imize the product of these factors, because providers want to maximize their
proĕt. Without hybrid clouds, a provider can max out pbreak-even and clients
are eventually le without any ĕnancial beneĕt from the cloud at all. e pro-
posed game-theoretic model explores how this is affected when the cloud and
own infrastructure can be combined and complex load situations apply. How
to determine the best price from a provider’s perspective in such a scenario is
discussed in the following sections.

3.3.4 Combining Cloud and Data Center

Projects like Eucalyptus [33] andOpenstack [79] provide implementations for
a local deployment of cloud services. A client might want to use such so-
ware to combine a private cloud (build an own data center providing cloud
services) and the public cloud (Internet cloud services) to meet its demand.
Such combinations are called hybrid clouds.
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Usually, some capacity is always in use (base load) and some capacity is not
used continually but only part-time (peak load). e necessary total process-
ing capacity at a maximum is called maximum demand in this chapter. e
demand that is produced by base load over time is referred to as base volume,
all exceeding demand is called peak volume. Accordingly, base volume and
peak volume sumup to the total processing demand of a client over time. Peak
volume is more expensive to self-provide than base volume, as costs are amor-
tized only over the time the necessary capacity is actually used. us, building
a smaller data center to meet base load and buy instances from the cloud to
meet peak load could be a sensible choice. is also means that higher prices
can be tolerated for public cloud instances.

From a client’s perspective, all options seem to be reasonable in their own
range of cloud pricing. Instead of a break-even price where meeting the en-
tire demand in the cloud is as expensive as an own data center (pbreak-even, Sec-
tion 3.3.3), there are two other break-even prices: First, a plow < pbreak-even

where the pure cloud solution costs the same as a hybrid cloud in which
an own infrastructure is catering only to base load. And second, a phigh >

pbreak-even where the hybrid cloud is cheaper than an own data center cover-
ing all demand. Complete outsourcing is most attractive when the service
is cheaper than plow, the hybrid cloud setup is the best option between plow

and phigh, and not using the cloud service at all is the cheapest option when
the instance price exceeds phigh. e more peak volume the client demands
(at constant maximum demand), the less do plow and phigh differ. Figure 3.2
shows an example where the different break-even prices are pointed out. e
client has an incentive to change the solution when plow or phigh is exceeded.
ese solution changes come along with a drop in demand and thus in the
associated proĕt to the provider. Hence, there are two pricing candidates for
proĕtmaximization, when hybrid clouds are regarded: the lower price is right
below plow, the higher price is right below phigh. e costs of cloud and hybrid
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cloud depend on the average workload a. Accordingly, phigh depends on the
load proĕle of the client, which is further discussed in Section 3.3.5. However,
this is not the case for plow, which depends only on data center costs of the
client and the relative capability of an instance (Equation 3.4). (is means
that although the straights for cloud and hybrid cloud change with the load
proĕle, they still intersect at the same price plow.)

DCcosts(c, n) = Cloudcosts(plow, e, n, 1)

⇔ plow =
c

24 · 365 · e
(3.4)

Revenue from covering all volume at plow might be higher or lower than rev-
enue from covering peak volume at phigh. e load proĕle determines break-
even costs of the cloud and the hybrid cloud solution (Figure 3.2) and hence
also determines which price is more appealing to offer.

3.3.5 Different Load Proöles

It is insufficient to limit hybrid clouds to the single combination where an
own infrastructure is used for base load and the public cloud is used for all
peak volume. Load proĕles can be described by aComplementary Cumulative
Distribution Function (CCDF). Function time(x), where x is some amount of
load, returns the amount of time where the data center is under a load of x or
more (Figure 3.3). Base load (here: 30%) is always in use, higher utilization
occurs more and more rarely. e example load proĕles feature 50% average
utilization of either all capacity (convex) or of all capacity exceeding base load
(even). A load curve can feature a smooth transition between peak and base
load. us, several capacities of a data center might be reasonable for a hybrid
cloud. Higher instance prices justify a larger data center when extra capacity is
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used cost-effective. is means that it would be more expensive to substitute
the extra capacity with public cloud instances.

All hybrid cloud possibilities are covered by the second continuum of the
game model in Section 3.3.1. It allows the client to choose any fraction of
overall capacity that is met by a data center (private cloud). is fraction is
called DCfrac in the following. It ranges from an exclusive use of an own data
center to the utilization of cloud instances for all demand; a value of 0.4, for in-
stance, means that an own data center is capable of meeting 40% ofmaximum
demand while public cloud instances are used to meet any further demand.
Cloud capacity for the load that exceeds DCfrac is never used for a higher frac-

w

Figure 3.2: An example for costs of data center, cloud and hybrid cloud over on-
demand instance price. From a client’s perspective, all options can be
reasonable.
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tion of time than time(DCfrac). Accordingly, the cost-optimal DCfrac for any
on-demand price is given when data center capacity costs the same as cloud
capacity that is only used for time(DCfrac). For example, when cloud capacity
is double the price as data center capacity, it is best used for capacity that is
only required half the time or less, i.e. time(DCfrac) = 0.5. e according
DCfrac can be calculated as presented in Equation 3.5. We deĕne the inverse
function time−1(z) as zero for any input value z ≥ 1 (occurs at instance
prices p ≤ plow where cloud is always cheaper than data center).

DCcosts(c, n) = Cloudcosts (p, e, n, time(DCfrac(p)))

⇔ DCfrac(p) = time−1

(
DCcosts(c, n)

Cloudcosts(p, e, n, 1)

) (3.5)

Since the client reduces the cloud share of its demand when the price is in-
creased, there is not just one break-even price phigh of a single speciĕc hybrid

Figure 3.3: Two example load proöles.



Tragedy
ofthe

Com
m
on

Cloud
|G

am
e
Theory

on
the

Infrastructure-as-a-Service
M
arket

40 3 Pricing & Usage Dynamics

cloud solution that is a credible price candidate. A different price causes a
different combination of the public cloud and own infrastructure to be the
cheapest for the client. e best price hence has to be determined by back-
wards induction, as presented in Section 3.3.7.

3.3.6 Provider Proöt

So far, only the revenue of the provider has been considered. Although ini-
tial growth might be a business objective, revenue as such is to no avail if the
business is not proĕtable in the end. us, it is important to include provider
costs into the model to have its utilities based on proĕt. e provider actually
has to build a data center itself to provide the service. In order to provide a
service of the same capabilities that a client’s local data center would feature,
the provider has to operate equivalent hardware. In consequence, data cen-
ter costs of the provider can be estimated like data center costs of a client in
general. Without some cost advantage in operation, a proĕtable offer at plow

would be impossible.
For a huge provider, there is a cost advantage due to economies of scale in

the ĕrst place. Advantages of location like cheaper power or building costs
might provide further beneĕts to the provider. On the other hand, renting
out instances on demand comes along with unpaid idle time. To compensate
for the investment, time under utilization would have to be more expensive
than plow.

Instances can be overbooked by statistical multiplexing, though. ere is
no need to operate the same amount of servers as a client would have to, but
only the amount to meet average demand (in the best case). By doing so, the
provider runs the risk of not fulĕlling the service level agreements; the prob-
ability depends on how much peaks are correlated in time. Several client’s
peaks may occur at the same time. Suppose the chance that a client actually
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demands an instance has a uniform distribution over time, then the larger
the number of clients, the less variation in overall average demand can be ex-
pected (law of large numbers). Demand correlation can be an issue, though
(Section 3.6.5).

e costs of the provider’s data center are called DCcostsPr. Following what
is said above, they are calculated as presented in Equation 3.6. Similar to what
a client would pay for its own infrastructure (Section 3.3.2), costs are based on
a number of serversn and data center costs per server c. e required capacity
is reduced to what is needed for average load a. ere has to be a reserve for
the variation in total demand the provider meets, though, which is deĕned by
a coefficient v. EoS deĕnes the provider’s costs savings due to economies of
scale. e factor is deĕned as the fraction of data center costs of the provider
in comparison to the costs of the client for a data center of the same capacity.

DCcostsPr(c, n, a,EoS, v) = DCcosts(c, n · a · v) · EoS (3.6)

As explained earlier, v goes to 1 when a provider serves a very large num-
ber of clients of huge diversity. Compared to a smaller provider with fewer
clients, a huge provider accordingly requires less reserve capacity to cope with
demand variation. e smaller provider has to pass on the cost of extra capac-
ity to actually sold instances. As a consequence, the huge provider can offer
it’s service at a relatively low price (e.g. plow) andmake a proĕt, while the same
price might not yield a proĕt for the smaller provider (plow becomes unprof-
itable when v > (1/EoS)).

3.3.7 Utilities & Subgame Perfect Nash Equilibrium

Based on the preliminary work of the preceding sections, the ĕnal utility func-
tions of the model are given in Equations 3.7 and 3.8. e utilities are based
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on revenue and expenses that apply at the chosen price and service usage:
Provider utility is it’s proĕt, client utility is the negative overall cost of meet-
ing processing demand. Again, n is the number of servers necessary to meet
maximum demand, e is the number of instances necessary to substitute one
server and c is data center costs per server. e move by the provider is to
choose an instance price p. e move by the client is to choose DCfrac, the
fraction of maximum demand that is handled on own infrastructure. e
average workload a of demand that is met in the cloud changes with DCfrac

since only the exceeding demand adds to the expected period of time that
a cloud instance is in use. e average workload is accordingly determined
by an integral over the load distribution on the interval [DCfrac, 1]. All other
assessments are presented in the preceding sections: DCcosts and Cloudcosts

are deĕned in Section 3.3.2, time(z) is a load distribution as described in Sec-
tion 3.3.5 and DCcostsPr can be found in Section 3.3.6.

Clientutility(p, c, e, n,DCfrac) =−DCcosts(c, n · DCfrac)

− Cloudcosts

(
p, e, n,

∫ 1

DCfrac

time(z)dz
)
(3.7)

Providerutility(p, c, e, n,DCfrac) = Cloudcosts

(
p, e, n,

∫ 1

DCfrac

time(z)dz
)

− DCcostsPr

(
c, n,

∫ 1

DCfrac

time(z)dz,EoS, v
)

(3.8)

e equilibrium solution of the game can be determined by backwards in-
duction: the proĕt at any possible price is determined respecting the expected
service usage by the client; the price that coincides withmaximumproĕt is the
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price in equilibrium. According to Equation 3.8, the provider utility depends
on the amount of usage that can be expected under this pricing (DCfrac). For
each price, a different DCfrac applies and can be determined with Equation 3.5.
We call the price where the provider’s utility is at its maximum pbest (Condi-
tion 3.9).

∂pProviderutility(pbest, c, e, n,DCfrac) = 0 and

∂2
pProviderutility(pbest, c, e, n,DCfrac) < 0

(3.9)

pbest might be equal to plow. e game features a subgame-perfectNash equilib-
rium within the combination of instance price pbest and the client combining
public and private cloud services in a cost-optimal split-up DCfrac(pbest). pbest

equals plow at a minimum.

3.3.8 Client Demand Aggregation

e former considerations are based on the demand of one client. To make a
statement on probable long-term pricing, the dynamics between provider and
all potential clients have to be considered. Since the proĕt maximizing price
of different clients usually differs, it is not possible to maximize proĕt from all
individual clients at the same time (assuming that the provider offers the same
price to all clients in the market). Instead, the provider has to consider the ex-
pected usage of the entire market (best responses of all individual clients) in
order to determine the proĕt maximizing price. To achieve this, the single
client of the presented model can be replaced by an aggregation of all poten-
tial clients: a meta-client with a distinct demand. e maximum demand of
the meta-client is the sum of all individual maximum demand.Its load can be
described by the antiderivative of the convolution of all individual load func-
tions’ derivatives. e result is a CDF for the entire market that needs to be
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subtracted from 1 to get a CCDF as it is used in Section 3.3.5. Now, the equi-
librium price does not maximize the proĕt that the provider yields from any
individual client, but pbest based on this new load curve is the best trade-off
that is possible with a single price for all clients. Research on the distribu-
tion of load proĕles and associated demand volume is needed to tell how the
overall demand of the market would look like. However, with the presented
aggregation of demand, what was said about the single-client-situation can be
generalized to the whole market.

3.4 Future Infrastructure Cloud Pricing

3.4.1 Case Study

e German IT magazine iX published a case study for a hypothetical com-
pany in which the TCO of a new data center was compared to the costs of a
co-location setup and the use of Amazon’s EC2 service [23]. In the study, costs
per year for an owned data center consist of investment cost amortization and
running costs. Investments are acquisition costs for server and network hard-
ware and operation system licenses (3 years write-off) as well as infrastruc-
ture and building costs (15 years write-off). Running costs are maintenance,
power, administration, and data transfer. is results in annual data center
costs of approximately e 7150 per server. e processing capability of one of
the considered servers is regarded as equivalent to two EC2 instances and the
study uses an instance price of e 0.22/h.

e underlying cost model and the client case of this study are of course
debatable. Nevertheless, we use it as an example application of our model
and conĕgure c = 7150, e = 2 and n = 180 for the numerical calcula-
tions in this section. e instance price is not derived from the case study, of
course, as it is chosen by the provider in our model. We also use load distri-
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butions according to Section 3.3.5. Further, a demand variation coefficient
of v = 1 is assumed, keeping in mind that this only represents the best case
for the provider. Despite the use of EC2 in this example, Cloudcosts should be
considered as a representative for all kinds of cloud offerings, not necessarily
restricted to the Amazon cloud as such.

To keep things simple, co-location (buy servers and lease facilities and ad-
ministration for operation) is not included as an option like it is in [23]. It
need not be regarded as essentially different from an owned data center (buy
servers and build facilities, employ administration personnel for operation)
and is brieĘy discussed in Section 3.6.

3.4.2 Provider Proöt Estimation

e proĕt margin of the provider depends not only on the load distribution,
but also on the economies of scale of the provider (Section 3.3.6). In the fol-
lowing, we try to estimate what scale economies are realistic based on the case
study’s cost model.

In [23], the following factors are considered. Network hardware is assessed
at 20% of server cost, annual maintenance at 10% of server and network hard-
ware costs. Power consumption of a server is estimated at 50% of its speciĕ-
cation, consumption of network gear at 44% of server consumption. For the
total data center consumption these values are multiplied by a PUE (Power
Usage Effectiveness) factor of 2.5 and assessed at e 0.1/kWh. e building
and infrastructure investments aremeasured ate 2024/m2 (2.84m2 per rack)
ande 16200 per kW hardware power consumption (referring to uptime insti-
tute [100]). Administration costs are set to e 73000 per administrator and
year. Each administrator is capable of covering 80 servers. Data transfer is
included at a Ęat rate of e 400/month.
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According to James Hamilton from Amazon Web Services, the PUE of a
large data center (50000+ servers) is between 1.2 and 1.5 and in comparison
to a mid-sized data center (∼1000 servers) admin costs can be reduced by
factor 7 due to automatization [45]. Compared to the case study’s calculation,
this reduces average costs per server by about 18%. A little over 20%would be
theoretically possible with full automatization (no admin costs) and an ideal
PUE of 1. is corresponds to EoS = 0.8 in our model.

3.4.3 Applying the Model to the Case Study

A client’s best response on certain pricing remains unaltered by different load
proĕles up to instance costs that – when continually paid – correspond to the
costs of a data center equivalent: plow. A higher price causes a drop in de-
mand because base load (lots of volume) is handled by owned data centers.
Outsourcing processing peaks generates decreasing demand over price. Fig-
ure 3.4 shows an example calculation where the model is applied to the case
study from Section 3.4.1. It shows the client’s cost for the best hybrid cloud
solution as well as provider revenue (public cloud share of hybrid cloud costs)
and proĕt (revenue minus production costs) over instance price. At plow ≈
e 0.40/h, the ĕrst peak appears, the later local maximum of provider proĕt
happens at pbest ≈ e 0.60/h.

How exactly the demand wears off over price depends on the load proĕle.
As a consequence, load deĕnes whether revenues at higher prices retain a vol-
ume which allows exceeding proĕt compared to plow. Proĕt at plow is gathered
frommass usage at a comparatively lowmargin. As discussed in Section 3.3.6,
the data center cost advantage is also determined by economies of scale and ex-
pected demand variation. e higher the pricing, the less important do these
factors become for the margin and thus a smaller economies of scale factor
makes a pricing at plow more likely (Figure 3.5).
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Client cost
Provider revenue
Provider profit

w best

Figure 3.4: Example calculation of client cost for the cheapest hybrid cloud solu-
tions over cloud instance price and associated provider revenue and
proöt (EoS = 0,8; v = 1).

Convex load,  EoS = 0.8 
Convex load,  EoS = 0.6 
Even load,      EoS = 0.6 

Profit

w best

Figure 3.5: Expected provider proöt at different economies of scale and load
(v = 1).



Tragedy
ofthe

Com
m
on

Cloud
|G

am
e
Theory

on
the

Infrastructure-as-a-Service
M
arket

48 3 Pricing & Usage Dynamics

Provided that the calculation assumptions of the case study are correct (es-
pecially that two EC2 instances are equivalent to one of the accounted servers),
the EC2 service is not cost-effective at the instance price of e 0.22/h that is
used in [23]. Instead, a price raise to e 0.40/h is likely in the future since
client-owned infrastructure is generally more expensive than the cloud up to
this price and the provider can hence increase the price without losing any
demand. Assuming an average load distribution in the market that equals the
convex load example (Figure 3.3), an even higher on-demand instance price
of over e 1/h is more proĕtable (Figure 3.5). It is therefore likely to be asked
once the provider should achieve a monopoly position. At this instance price,
a client that features even load would be best off building a hybrid cloud with
a private cloud share of 75 % (Equation 3.5).

3.5 Including Reserved Instances in the Model

3.5.1 On-Demand and Reserved Instances

e presented model considers pricing and usage of on-demand instances,
which means that they only have to be paid for the time in use. ey can
be a cost-saving substitute for a client’s data center because the number of
instances in use can be adapted to current demand. Due to statistical multi-
plexing, the hardware necessary to meet demand of all clients is fewer in a
cloud environment than when the clients run their own data centers. is is
the main beneĕt of the cloud next to economies of scale. ese beneĕts are
shared between client and provider. Section 3.3.4 shows that a provider may
offers a high instance price in order to meet peak load only and clients still
want to operate their own (but less capable) data centers in that case. Other-
wise, when the provider prefers to meet all demand, the possibility of a hybrid
cloud is a threat to the provider that ensures relatively low prices to the clients.
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is chapter explores how this is affected when instances are not rented out
on demand but where a different charging model is used: reserved instances.

On-demand and reserved instances feature the same technical speciĕca-
tion at a different charging model. Unlike on-demand instances, reserved in-
stances have to be paid formuch longer time periods irrespective of actual use.
On the other hand, the provider is liable for the availability of the instance dur-
ing the reservation period. While we consider this liability difference between
instance types from the provider’s perspective in the following, the availabil-
ity risk of on-demand instances to the clients is discussed later in 3.6.4. In
order to give an incentive to make use of reserved instances, they have to be
competitive with client-owned data centers. It is the cheapest option for the
client to completely substitute an owned data center when instances are priced
cheaper than their data center equivalent (plow, Section 3.3.4). Offering both
instance types at plow does not make any sense because the on-demand op-
tion is more attractive to the client and less proĕtable for the provider. When
on-demand instances are priced higher, though, it might be reasonable to of-
fer both options. Based on the results from Section 3.3, the straight-forward
solution appears to be to use pbest to target peak load and plow for reserved in-
stances: While this maximizes the proĕt from on-demand instances as before,
reserved instances are preferred over data center capacity for all remaining
demand, which yields additional proĕt to the provider.

3.5.2 Pricing On-Demand and Reserved Instances

Without reserved instances, clients keep more and more demand local as the
on-demand price rises. All associated proĕt is lost for the provider. When the
clients switch to reserved instances instead, the proĕt of these instances can
compensate for the losses on the on-demand side. Hence, there might be a
better on-demand instance price that exceeds pbest.
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e game from Section 3.3 is modiĕed in a way that the provider can now
choose a combination of two prices, p for on-demand instances and pres for
reserved instances. e client now chooses a combination of both instance
types. For the client, both instance types are interchangeable (availability pro-
vided) as they are technically equivalent. e higher the on-demand instance
price, the higher the amount of reserved instances the client uses. Between
both types exists a threshold T similar to DCfrac, which divides demand that
is better met by on-demand or reserved instances (Equation 3.10).

Cloudcosts(pres, e, n, 1) = Cloudcosts (p, e, n, time(T(pres, p)))

⇔ T(pres, p) = time−1

(
pres

p

) (3.10)

A downside of a high amount of reserved instances is a growing chance of
an overbooking conĘict (in case that the provider does not actually reserve
instances for a single paying client, i.e. a = 1 for DCcostsPr). Capacities are
rented out to several clients in the expectation that they are not used simulta-
neously. When the number of sold reserved instances (T · e · n) exceeds the
available hardware, there is a certain chance that there is more demand at the
same time than the provider can handle. e higher the amount of reserved
instances, the higher is the chance that this happens. Exceeding on-demand
instance demand can just be ignored. With reserved instances, on the other
hand, the provider is unable to provide an already paid service and has to pay
a contract penalty ĕne. Factor f is the annual ĕne that applies for one reserved
instance that is paid but not available. e total amount of penalties that the
provider has to pay is the product of this ĕne, the number of instances and the
probability that a reserved instance exceeds available hardware. As presented
in Section 3.3.6, this probability is zero in the best case (law of large numbers).
Let us assume the worst case of complete demand correlation in the following.
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Client and provider utilities from Equations 3.7 and 3.8 can be easily
adapted to include both instance types and the penalty, as presented in Equa-
tions 3.11 and 3.12. Instead of data center costs, the client has costs for re-
served instances, which on the other hand provide additional revenue to the
provider.ƭ

Clientutility2(pres, p, e, n, T ) = −Cloudcosts(pres, e, n, T )

− Cloudcosts

(
p, e, n,

∫ 1

T

time(z)dz
)

+ f · n · e ·
∫ T

∫ 1
0

time(z)dz·v
time(z)dz

(3.11)

Providerutility2(pres, p, c, e, n, T ) = Cloudcosts(pres, e, n, T )

+ Cloudcosts

(
p, e, n,

∫ 1

T

time(z)dz
)

− DCcostsPr

(
c, n,

∫ 1

0

time(z)dz,EoS, v
)

− f · n · e ·
∫ T

∫ 1
0

time(z)dz·v
time(z)dz

(3.12)

e on-demand option is a good choice for peak load from a client’s per-
spective. For the provider, though, offering this charging option next to re-
served instances lowers its revenue. In Section 3.3, a higher on-demand in-
stance price was providing a higher revenue but caused lower demand and

ƭNote that the model does not consider a client’s damage from unmet demand (Section 3.6.4).
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a trade-off between usage and price had to be determined. With reserved
instances as the preferable fall-back solution for the client (pres ≤ plow), all
demand is met by the public cloud anyway. Whenever the client chooses on-
demand over reserved instances because they are cheaper, the provider has to
meet the same demand for less revenue. Nevertheless, when demand is corre-
lated and there is some variance in demand, offering some capacity share on
demand can reduce overbooking conĘicts and contract penalty ĕnes.

3.5.3 Reserved Instances in the Case Study

Figure 3.6 shows the provider’s revenue and proĕt over on-demand instance
price in presence of a reserved instance option that is offered at price plow.
Provider proĕt is presented both with andwithout considering contract penal-
ties. Additionally, the proĕt in a market without reserved instances as pre-
sented in Section 3.4 is given for comparison. In the on-demand case there is
a drop in demand when the price exceeds plow. is is not observable when
reserved instances are offered as well: instead of a private cloud, reserved in-
stances are used for the base load. e more expensive on-demand instances
become, the more reserved instances are used by the client. When the share
of on-demand instances becomes too little, rising contract penalties may out-
grow the additional revenue and limit the reasonable on-demand pricing to
about e 1.20/h in this example. Whether this is the case depends on how
much demand is correlated, though. e curves for provider proĕt with and
without penalty give the worst and best case of what might actually happen.
Nonetheless, compared to an on-demand market, the best on-demand price
pbest can be a lot higher with an additional reserved instance option since this
does not drive clients out of the cloud. is may cause signiĕcantly higher
overall costs to the client.
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Revenue
Profit without penalty fines

Profit of on-demand only 
Profit considering penalty fines

best

Figure 3.6: Provider revenue and proöt in presence of a reserved instance option.
Overbooking conøicts of reserved instances can cause penalty önes
and reduce provider proöt, which limits a reasonable on-demand price.
(pres = plow; v = 1; f =e 1/h)

3.5.4 Two-Part Tariffs

Next to on-demand and reserved instances, intermediary options with a com-
bined charging model are also possible: two-part tariffs. Amazon currently
uses this charging model for their Light and Medium Utilization Reserved In-
stances, for example (while theHeavy variant is reserved-only) [7]. e client
pays a reduced charge for a long time period (similar to reserved instances)
plus an additional fee for the time the instance is in use (similar to on-demand
instances). is creates a whole spectrum of charging options. Starting at
a reserved-only charge, the reserved price component shrinks while the on-
demand price component rises until it ĕnally ends up in an on-demand charge
without a reservation fee. For n options, there are n− 1 thresholds that split
demand in capacities of shrinking utilization which are each best met by a
speciĕc charging option.
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Clients have better knowledge of their load proĕle than the provider. e
distribution of instances over available charging options that they choose
hence resembles an estimate of the actual utilization of the instances. is
helps the provider to assess the necessary data center capabilities and prevents
conĘicts in overbooked capacities. e provider thus has an incentive to of-
fer such a variety of charging options. Nevertheless, the additional options
reduce provider proĕt in favor of the client (Section 3.5.2). Due to the better
knowledge about the expected utilization, though, an on-demand charge be-
comes less important tomaintain a sufficient level of non-reserved capacity in
order to prevent conĘicting usage and can accordingly be priced higher. Re-
served instances with additional on-demand charges can encourage co-usage
of several instance types and a client-owned data center when their pricing
makes them the cheapest option for demand with a certain load. Two-part
tariffs are further investigated in Chapter 4.

3.6 Discussion & Conclusions

is section generally discusses the presented model and brieĘy addresses a
few questions that were raised earlier in the chapter. It also presents starting
points for further research.

3.6.1 Effects of Hybrid Clouds

Cloud services might be cheap today, but things could look different as soon
as cloud services are established and have to prove themselves as sustainably
proĕtable. eir likely future pricing can be estimated based on the presented
model and solid knowledge of the clients’ load distribution in themarket (load
of the meta-client in Section 3.3.8). is prospect of cloud pricing should be
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considered in today’s resource allocation decisions. Each client can determine
its individual, cost-optimal solution based on this price (Equation 3.5).

Not to use the public cloud service at all is never ĕnancially favorable to a
client according to the market model (although the suggested solution might
contain a very small on-demand public cloud share). In general, all clients
have an advantage from hybrid clouds, but those with higher-than-average
load gain less than the average client. e possibility of hybrid clouds only
provides a signiĕcant improvement to all clients if it does not have to be im-
plemented and instead all demand is met in the cloud: e provider has to re-
duce the price from pbreak-even to plow in order to counteract the threat that the
client operates a private cloud for base load. If the provider chooses to meet
only peak load, though, it depends on the client’s load distribution whether
there are huge savings in comparison to an own data center.

e possible revenue for the provider is lower with hybrid clouds than with-
out, where revenue can be as high as the costs of a client’s data center. In a
hybrid cloud scenario, the client operates own infrastructure for base load
when the cloud price is phigh. Expenses for the cloud service are hence capped
to the amount that necessary additional capacity would cost in order to meet
all demand. At a cloud price plow, all demand is met in the cloud. But as plow is
smaller than pbreak-even, this means less revenue for the provider than without
the possibility of hybrid clouds.

3.6.2 Effects of Reserved Instances

e existence of reserved instances in the market is primarily of advantage to
the provider. Demand for reserved instances is very robust up to plow, which
is determined by the data center costs per server of the clients’ hypothetical
data centers. While a provider may offers instances at plow in a on-demand
market, reserved instances cause plow to be a bad choice for on-demand in-
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stances. In a monopoly, a provider would hence choose to offer reserved in-
stances at a price plow and on-demand instances at a lot higher price. is
on-demand price is usually higher than pbest in a purely on demand-market.
With reserved instances, there is no credible threat that the client moves ca-
pacity away from the public cloud. Hence, on-demand pricing is only limited
by contract penalties for overbooking conĘicts that potentially occur because
of demand correlation (Section 3.5.2).

On-demand pricing that targets peak load instead of mass usage depends
on good market knowledge and is thus easily misapplied. With reserved in-
stances as an alternative, a higher on-demand price means higher revenue
from reserved instances and only becomes a problem when overbooking con-
Ęicts occur. Two-part tariffs as discussed in Section 3.5.4 help to gain knowl-
edge about the amount of utilization that can can be expected. From a ĕnan-
cial viewpoint, the provider has an interest to discourage on-demand usage
when peak load can be estimated well.

3.6.3 Effects of Economies of Scale and Market Form

Because plow depends on good economies of scale to a large extent, it is impor-
tant to understand which aspects are persistently cheaper on a larger scale. It
is quite possible that technologies which provide a better PUE become avail-
able to smaller centers in the future as well, for instance. If production costs
of instances become insigniĕcantly cheaper than plow, heavy utilized capacity
is likely to be le to private clouds. e offer of such cheap reserved-only in-
stances would be unattractive at such a low proĕt margin. Charging options
that combine an on-demand and a reserved price component, on the other
hand, can still be proĕtable.

An oligopoly appears to be the most preferable market form from a client’s
perspective. Undercutting competitors’ offers keeps margins low, while pro-
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duction costs are low due to the size of the providers. e whole aspect of
competition needs a more in-depth analysis, of course, which is conducted in
Chapter 4.

3.6.4 Availability Risk & Intangible Aspects

Section 3.5 pointed out that the availability of on-demand instances is not war-
ranted. Since the capacity of the provider is limited, there is the risk that not
enough on-demand instances necessary to meet a client’s demand are avail-
able. is is not considered in the model. However, it could be included as
an additional factor analog to the contract penalty ĕne to the provider: the
client utility is lowered in case that an instance is not available. Depending
on how crucial it is to a client that its demand is always met, it might prefer
reserved instances over on-demand instances even if they are more expensive
because the ĕne reimburses for the damage in that case or the change of an
available instance is higher. In consideration of the higher risk of on-demand
instances compared to reserved instances, it might occur counter-intuitive
that on-demand instances should be more expensive (Section 3.5.2). Note
that they can be a lot cheaper to a client despite their higher price when they
are only used for short time periods.

With all debates on cloud-related security and privacy, risk in general ob-
viously has a huge impact on decisions. e model does not account for any
non-ĕnancial aspects. ese aspects might be incorporated into the model
in form of additional factors that lower (client) utilities similar to the avail-
ability risk. Rational quantiĕcation of risk is a difficult task, though, and very
dependent on the individual case.
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3.6.5 Remarks on Ultimatum Game, Demand Correlation and

Colocation

It is important to easily combine instances from several sources (public and
private clouds) in order that both parties beneĕt from the cloud. For some
applications, data exchange between these sources might be an issue, though.
Also, standards in use might not support hybrid clouds, e.g. by ensuring in-
teroperability and migration. If a combination with arbitrary shares is not
granted by the service, the best pricing is right below pbreak-even (Section 3.3.3).
Although an exclusive use of the cloud minimizes overall idle time, which is
good for environmental reasons, the provider has all the beneĕt. It is note-
worthy, though, that the game setup (Section 3.3.1) is quite similar to the ul-
timatum game [41]. Results in experimental economics differ from theory
regarding these games: a price that does not provide enough beneĕt to the
client might be perceived as somehow inappropriate and is thus rejected.

Section 3.3.6 mentions that a smaller provider is more likely to have idle
times than a huge provider due to suboptimal overbooking. Another reason
might be that a huge share of clients might demand resources at the same time
(e.g. at daytime in a single timezone). When the provider has to operate re-
serve capacity, this diminishes the proĕt margin. If savings due to economies
of scale are exceeded by the additional costs, plow becomes unproĕtable. is
not only means that a very large provider with clients scattered all over the
globe can expect more beneĕts from the cloud than a small one serving re-
gional clients. It alsomakes it very hard to establish a competitor in themarket
as massive investments can be expected.

In the case study that is used in Section 3.4, co-location is discussed as an op-
tion. It was omitted as an option to the client in the presented market model
because it is quite similar to the data center option. A facility that houses
several client’s servers might be very large and in consequence there may be



Tr
ag

ed
y
of

th
e
Co

m
m
on

Cl
ou

d
|G

am
e
Th

eo
ry

on
th
e
In
fr
as
tr
uc

tu
re
-a
s-
a-
Se
rv
ic
e
M
ar
ke
t

3.6 Discussion & Conclusions 59

economies of scale in favor of a co-location provider. Overbooking is not pos-
sible, though, as the servers are reserved for a speciĕc client. Hence, the bene-
ĕt that is shared amongst provider and clients is much smaller in comparison
to cloud utilization. Providing inferior gain to both parties, the whole busi-
ness model of co-location is challenged by the existence of cloud computing.
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“We don’t have a monopoly.

We have market share.

There’s a difference.”

– Steve Ballmer4 Provider Competition

4.1 Introduction

C  services allow users to rent and use computer infrastructure
for processing and storage over the Internet. A common way to pay
for standardized cloud infrastructure instances, which offer a spe-

ciĕc processing and/or storage capacity, is to obtain them on-demand, which
means a client only pays for the time that the instance is used. Alternatively,
as the previous chapter already described, providers may rent out the same
instances as reserved instances. A reserved-only instance is an instance that
is rented out to a client for a longer period of time, like a year, at a ĕxed price.
In this case, the price does not depend on whether the client uses the instance
or not. But then, providers might as well offer two-part tariffs, where a re-
duced ĕxed price is paid for a long timespan and an additional on-demand
price applies for the actually utilized time. is can be reasonable because
some cost factors (e.g. energy) depend on whether an instance is in use or not
whereas other factors (e.g. building deprecation) occur in any case. A provider
alsomight overbook resources that are currently not in use, which yields addi-
tional revenue and allows a lower reserved price. In exchange for the reserved
price, the provider has to guarantee the availability of a reserved instance. An
even more complex price model could also include a certain amount of use
that is already covered by the ĕxed payment (comparable to inclusive minutes
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inmobile phone contracts). In such three-part tariffs, only instance utilization
that exceeds the included amount is charged the on-demand price (Figure 4.1).

Euro

Average load

two-part tariff

three-part tariff

Figure 4.1: Two-part and three-part tariffs.

e previous chapter showed that with an on-demand price model, clients
can have a ĕnancial beneĕt when they use a cloud service instead of building
their own data center. Reserved instances reduce this client beneĕt. Differ-
ent price combinations of two-part tariffs are differently attractive to clients
depending on their load proĕles. It is unclear, though, how this affects prices
in a market in which several providers are present. Extending the previous
results, we now investigate cloud instance pricing in the presence of provider
competition.

In a scenario with competing offers for an identical service, rational clients
are expected to choose the lowest price. Competition usually drives the price
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4.1 Introduction 63

lower than the monopoly price since every provider has an incentive to un-
dercut the competitors’ prices in order to attract their clients. But with a com-
bined price model like two- or three-part tariffs, whether one offer is cheaper
than another one depends on a client’s load proĕle, particularly the average
fraction of time over which a client uses its instances (average load). In order
to determine the cheapest offer for them, clients have to know their average
load; we assume precise knowledge about this value in the following. In such
a setup, different combinations of reserved price, included resources and on-
demand price might coexist.

is chapter explores a market where two providers maximize their proĕt
from clients with different average load and offer an otherwise identical ser-
vice at different price combinations. We assume that the providers know the
distribution of average loads of the clients in the market. On that basis, we in-
vestigate how provider competition inĘuences two- and three-part instance
pricing. Our question is whether ’stable’ constellations in such a market exist.
In our understanding, stability requires that the current pricing schemes max-
imize both providers’ proĕts given the competitor’s pricing. is means that
neither has an incentive to change its current pricing taking the competitor’s
behavior into account. Such a strategic interaction is analyzed here by means
of game-theoretic models.

e chapter is organized as follows. Section 4.2 relates our contribution to
other relevant literature. A game-theoretic approach to the problem is intro-
duced in Section 4.3. Monopoly and duopoly market structures are then pre-
sented from a game-theoretic perspective and analyzed in the following sec-
tions: Section 4.4 deals with two-part tariffs, while Section 4.5 analyzes three-
part tariffs. Asymmetric production costs of the two providers in a duopoly
are investigated in Section 4.6. Section 4.7 concludes this chapter.
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4.2 RelatedWork

Several studies in computer science explore provider competition in cloud
computing with varying focus. Most closely related to the research in this
chapter are those publications that also use a game-theoretic approach. Dy-
namics of service quality and pricing are covered in [31] and [80], where
the existence of stable market shares has been shown for a duopoly and for
n providers, respectively. We consider a duopoly where the providers offer
the same service quality but use a more complex pricing scheme. An evo-
lutionary approach on pricing cloud services is used in [9], which shows in
simulations that an oligopoly market converges to a stable state over time. In-
stead, we make use of game theory for an analytical approach. [51] studies
how cloud resource pricing is inĘuenced by client competition, in contrast
to our investigation of provider competition. e authors in [104] investi-
gate a revenue-maximizing split-up of provider resources into reserved, on-
demand and spot instances. is is similar to our research, where we deter-
mine the best on-demand and reserved price combination that is offered to
the clients. However, provider competition is not covered in [104] and re-
served and on-demand instances are separate offers that can be combined for
different demand portions but do not converge in one product. While these
pure on-demand and ĕxed price options can be considered as special cases of
our combined price model (one price component is zero), we do not include
an auction-based spot market.

In economics, combined pricing schemes are investigated independent of
a cloud context. Since fundamental work in the early seventies [78], such
two-part tariffs have been investigated with a focus onmonopolymarkets, but
more recently also for duopolymarkets. Formonopolies, [90] provides a good
survey. An interesting model for the duopoly case is proposed in [106] where
customers have different preferences over the providers. A very similarmodel
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4.3 A Game-Theoretic Approach 65

is used in [44], where users differ in utilization rate and hence have a natural
preference for one provider because of the prices. We use a slightly adapted
model in this contribution and apply it to cloud instance pricing. ere is
also interesting research on three-part tariffs [19]; clients are not considered
as a heterogenous group, though. We hence investigate three-part tariffs with
regard to varying load among clients, which is more realistic in a cloud com-
puting setting. We further contribute to the ĕeld by including two-part costs
into the modeling and by brieĘy considering the option of multiple offers by
each provider.

4.3 A Game-Theoretic Approach

4.3.1 Prices and Costs

We assume that a provider wants to maximize proĕt and each out of n clients
wants tominimize cost. Proĕt and cost depend on the cloud service price. We
now formalize two-part tariffs for cloud instances. A client i is characterized
by the number of reserved instances xi and a load factor ai (0 ≤ ai ≤ 1),
which is the fraction of time that an instance is in use on average. e resulting
price of one instance for one unit of time for a particular client, pinstance, is
determined using the reserved price of an instance, pres, and the price pod that
is charged on-demand for using the instance continuously for one unit of time
(Equation 4.1).

pinstance (pres, pod, ai) = pres + ai · pod (4.1)
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e total costs for a client are then the cost of one instance multiplied by the
number of demanded instances xi (Equation 4.2).

client cost (pres, pod, ai, xi) = xi · pinstance

= xi · (pres + ai · pod)
(4.2)

We assume that the reservation of one instance causes ĕxed production cost
cres and the use of the instance causes additional variable operation cost cod
to the cloud provider (Equation 4.3). Such on-demand cost might be due to,
e.g., an increased energy consumption of an instance under load.

cinstance (cres, cod, ai) = cres + ai · cod (4.3)

We further suppose there is a ĕnite number of n clients. Provider proĕt is
revenue minus production cost by all clients together (Equation 4.4).

provider proĕt (pres, pod, cres, cod, a1, . . . , an, x1, . . . , xn)

=
n∑

i=1

(xi · (pinstance − cinstance))

=

n∑
i=1

(xi · (pres − cres + ai · (pod − cod)))

(4.4)

4.3.2 Provider Monopoly

In the presence of a single monopolistic cloud provider, a simple two-stage
game can be used to determine the best reserved instance pricing from a
provider perspective [62]. In a ĕrst move, the monopolistic provider deter-
mines a price and in a secondmove, the clients choose an amount of instances
to use. e combined activity results in a speciĕc situation (a speciĕc price be-
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ing paid for a speciĕc amount of instances) with an according utility to both
the provider and the clients. By anticipating the clients’ move at each possible
instance pricing, the provider can easily choose the price combination that
maximizes its proĕt. is process is called backwards induction. When the
proĕt that is generated by the expected service usage is described as a func-
tion over instance pricing, the cloud provider takes the clients’ optimizing
behavior into account. is leaves a simple decision problem to the provider,
which only has to ĕnd the function’s maximum for the n clients in the market
in order to determine the best pricing. We denote the provider’s monopoly
proĕt from Equation 4.4 by profitM (pres, pod). (We omit the dependencies on
costs and client characteristics here and in the following for simplicity.)

4.3.3 Provider Duopoly

Now, we investigate a duopoly setting where two cloud providers offer the
same service in a market with a ĕnite number of clients. Both providers have
identical production costs. Unlike the monopoly case, each cloud provider
has to determine its optimal price not just with regard to the optimizing behav-
ior of the clients but also with regard to the competitor’s price choice. ere-
fore, each provider can expect to obtain only some fraction of the clients’
demand, depending on the prices that are offered by both cloud providers.
Since the expected demand accordingly does not only depend on the own
instance pricing but also on the other provider’s action, this decision prob-
lem can be modeled as a two-person non-cooperative game. e players are
the two cloud providers A and B. e possible actions of the players are
the possible price combinations at which they offer their service. We refer
to such a combination of pres and pod of one provider as a pricing. For two-
part tariffs, these pricings are

(
pAres, p

A
od
)

and
(
pBres, p

B
od
)
. Both players offer

their pricing at the same time. For each possible action proĕle (i.e. a combi-
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nation of pricings), we determine the utility (expected proĕt) of each player.
Contrary to the monopoly case, though, only the clients that prefer a partic-
ular provider have to be considered for this provider’s utility. erefore, the
sum in Equation 4.4 only has to be taken over these clients. is depends
on both offers and is further explained in Section 4.4.2. We denote the ac-
cording duopoly proĕt of providerA andB as profitA(pAres, pAod, pBres, pBod) and
profitB(pAres, pAod, pBres, pBod). ese are the utilities of the game (Figure 4.2).

Provider B


(
pBres, p

B
od
)

Provider A 
(
pAres, p

A
od
)

profitA(pAres, pAod, pBres, pBod)

profitB(pAres, pAod, pBres, pBod)

Figure 4.2: The non-cooperative duopoly game with two-part tariffs.

We examine three different pricing schemes in the following. Single two-
part, multiple two-part and single three-part tariffs per provider are covered in
separate sections (Table 4.1). Each section ĕrst presents the simplermonopoly
case as a benchmark and then analyzes the game-theoretic model for the
duopoly case.

Table 4.1:Overview of the different analysis cases.

# providers
offers

1, two-part k, two-part 1, three-part

1 Section 4.4.1
Section 4.4.3

Section 4.5.1

2 Section 4.4.2 Section 4.5.2
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4.4 Two-Part Tariffs

4.4.1 Two-Part Tariffs in a Monopoly

We assume that any client could operate a server in its own data center at cost
pserver. Under that assumption, a rational client is not willing to paymore than
this amount for the number of cloud instances e that is necessary tomatch the
server’s performance. Any price combination where Condition 4.5 does not
hold results in cloud cost that are higher than costs of an own data center to
clients that have an individual average load of at least ai.

e · pinstance ≤ pserver

⇔ e · (pres + ai · pod) ≤ pserver
(4.5)

Too high a pricing drives the affected clients out of the cloud. In case
of a reserved-only pricing with pod = 0, a client is willing to pay at most
pres =

pserver
e independent of its load characteristics. We observe that the high-

est possible pure reserved price pres =
pserver
e is more proĕtable than any pric-

ing with an on-demand price component pod > 0 that meets Condition 4.5
(pres ≤ pserver

e − amax · pod with amax = max(a1, . . . , an) as the maximum av-
erage load). is can be seen in Figure 4.3, which shows the instance price at
a pure on-demand and at an example two-part tariff as well as the provision
cost over the average load. e difference between cost and price is the proĕt
of the provider and hence shall be maximized. e proĕt that is lost with a
pricing that includes a positive on-demand price is indicated by the gray area
in Figure 4.3.Ƭ ere is a speciĕc load at which both pricings produce the same
instance price (straights intersect). Clients with a higher load than that do not
meet Condition 4.5 and hence do not buy the service.
ƬNote that in our discrete model this is technically not an area as there are ĕnitely many clients.
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Euro

Average load

amax 1

pserver
e pinstance(

pserver
e , 0, ai)

lost proĕt

cres

cinstance(cres, cod, ai)

pinstance(pres, pod, ai)

pres

lost proĕt lost proĕt

ai

pres + ai · pod

clients do not buy
in two-part tariff

Figure 4.3:Monopoly pricing with two-part tariffs.

Formally, the monopoly proĕt from a reserved-only pricing is given by
Equation 4.6. Including an on-demand price component pod and adjusting
the reserved price yields Equation 4.7. When we compare these two proĕts,
we immediately observe that the reserved-only pricing (Equation 4.6) yields
greater or equal proĕt compared to any other pricing (Equation 4.7) since In-
equality 4.8 is always true.ƭ

profitM
(pserver

e
, 0
)
=

n∑
i=1

(
xi ·

(pserver

e
− cres − ai · cod

))
(4.6)

ƭNote that there is no possibility for a monopolistic cloud provider to generate a higher proĕt
from not selling to the entire market since the formal argument also holds for any subgroup
of clients with its speciĕc maximal load.
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profitM
(pserver

e
− amax · pod, pod

)
=

n∑
i=1

(
xi ·

(pserver

e
− amax · pod − cres + ai · (pod − cod)

)) (4.7)

profitM
(pserver

e
, 0
)
− profitM

(pserver

e
− amax · pod, pod

)
≥ 0

⇔
n∑

i=1

xi · ai ≤
n∑

i=1

xi · amax

(4.8)

Usually, there are clients with different average loads in the population, mean-
ing that there exists an individual average load ai that is strictly smaller than
maximal average load amax. us, the above inequality is strict and hence the
monopolistic cloud provider obtains strictly higher proĕts with a reserved-
only pricing than with any other pricing including an on-demand price com-
ponent.

4.4.2 Two-Part Tariffs in a Duopoly

For now, we assume that both providers offer a service at a single two-part
pricing. Let us further assume a client population that features clients of vary-
ing average load ai.Ʈ In the following we analyze the equilibrium behavior of
the cloud providers.

Since each client tries to minimize its cost, it chooses the solution that is
cheaper for its load factor ai. For each action proĕle (pAres, p

A
od, p

B
res, p

B
od) of

the cloud providers A and B, the client population can be divided into three
groups: In the ĕrst two groups the clients use the service from exactly one

Ʈe abstract market model that is analyzed in [44] is very similar. We modify their solution to
ĕt our setting of a ĕnite number of clients and consider ĕxed and usage-based cost.
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Euro

Average load

amax 1

pserver
e

cinstance(cres, cod, ai)

pinstance(p
A
res, p

A
od, ai)

pinstance(p
B
res, p

B
od, ai)

cres

pAres

pBres

athreshold

A’s B’s
clients

clients with
an own data center

Figure 4.4: Duopoly pricing with two-part tariffs.

cloud provider (A or B) and in the third group they do not buy a service
at all (because Condition 4.5 does not hold). Figure 4.4 illustrates this case.
Formally, we distinguish the case of different on-demand prices and the spe-
cial case where they are equal. First, if the on-demand prices are different
(pAod ̸= pBod), we can deĕne a critical load athreshold where a client with this load
is indifferent between buying from provider A or B (Equation 4.9).⁴

pAres + pAod · athreshold = pBres + pBod · athreshold

⇔ athreshold =
pBres − pAres
pAod − pBod

(4.9)

⁴e load ai corresponds to the usage rate and athreshold is equivalent to the usage rate of the
marginal consumer in [44].
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For a threshold load athreshold > 0, clients with an average load that is lower
than athreshold prefer the offer with the lower reserved price. For instance,
clients with ai < athreshold prefer A’s offer when pAres < pBres. Accordingly,
if athreshold ∈ (0, 1), there are usually clients that prefer different offers and
the market is divided. Note that it is also possible that athreshold > 1 or
athreshold < 0, which means that the provider with the higher reserved price
is not able to sell any service. Now consider the special case where both
providers charge equal on-demand prices (pAod = pBod). If the reserved prices
are also identical (pAres = pBres), the market is equally divided. Otherwise, if
the reserved prices differ (pAres ̸= pBres), the provider with the higher reserved
price does not sell any service.

e proĕt of each provider is calculated based on the expected usage from
the group of clients to which its service is sold. As the clients compare the
offers from both providers, the pricing decision of one provider depends on
the pricing decision of the other provider and therefore has to be taken into
account. When provider A takes a speciĕc offer (pBres, pBod) of provider B as
given,A candetermine profitA(pAres, pAod, pBres, pBod) by usingEquation 4.4while
considering only those clients that prefer its service.

We now determine the Nash equilibria of the game. A Nash equilibrium
is an action proĕle at which both providers mutually choose a best response
(Section 2.2). A best response of a provider is its proĕt maximizing pricing
at the current pricing of the competitor. Since in a Nash equilibrium both
pricings are proĕt-maximizing, no provider has an incentive for a unilateral
change of its pricing.

ere is a unique Nash equilibrium. In this equilibrium, both providers
offer identical two-part tariffs equal to marginal costs, pAres = pBres = cres and
pAod = pBod = cod. e argument is the following: If the competitor sets prices
equal to marginal costs, then deviating with prices below marginal costs in-
duces a loss and choosing prices above marginal costs implies not selling any-
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thing. erefore, no provider has an incentive to deviate, as long as the other
provider offers prices equal to marginal costs. is shows the existence of the
above equilibrium. To show its uniqueness, we now verify that there are no
Nash equilibria with prices other than marginal costs.

Suppose provider B makes an offer non-equal to marginal costs:
(pBres, p

B
od) ̸= (cres, cod). Assume for simplicity that no client is running

an own data center (Condition 4.5). Any client with an average load that
meets Condition 4.10 prefers to use the service of providerA overB’s service
at the given pricings.

pAres + ai · pAod ≤ pBres + ai · pBod (4.10)

We distinguish three cases in order to show that B’s pricing is not part of an
equilibrium: ĕrst, where B makes positive proĕt; second, where B makes
zero proĕt; and third, where the proĕt is negative. In these cases, either B
itself has a more proĕtable option or A can attract some of B’s clients and
make positive proĕt and, subsequently, B has an incentive to deviate; hence
there is no equilibrium with prices that differ from costs.

Consider two-part tariffs (pAres, pAod, pBres, pBod)whereB makes positive proĕt.
When A offers the same pricing as B, the market is equally divided. When
A chooses to offer the same on-demand price as B and slightly undercuts
B’s reserved price, then provider A is able to serve the entire market since all
clients meet Condition 4.10 independent of their speciĕc average load. For-
mally, provider A either undercuts provider B, yielding a proĕt as in Equa-
tion 4.11, or A chooses the same pricing as B, obtaining the proĕt in Equa-
tion 4.12. Comparing these two proĕts yields Equation 4.13.
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profitA
(
pAres, p

A
od, p

B
res, p

B
od
)
=

n∑
i=1

(
xi ·

(
pAres − cres + ai ·

(
pAod − cod

)))
(4.11)

profitA
(
pBres, p

B
od, p

B
res, p

B
od
)
=

1

2

n∑
i=1

(
xi ·

(
pBres − cres + ai ·

(
pBod − cod

)))
(4.12)

profitA
(
pAres, p

A
od, p

B
res, p

B
od
)
− profitA

(
pBres, p

B
od, p

B
res, p

B
od
)

=
1

2
profitA

(
pAres, p

A
od, p

B
res, p

B
od
)
+

1

2

n∑
i=1

(
xi ·

(
pAres − pBres + ai ·

(
pAod − pBod

)))
(4.13)

is shows that as long as the proĕt from undercutting providerB (ĕrst term
in Equation 4.13) is large enough to compensate for the price deduction (sec-
ond term in Equation 4.13), which is chosen as small as possible, provider A
slightly undercuts provider B’s offer. When A undercuts B’s pricing, then A

serves the clients that were originally served plus B’s former clients. A client
that was previously attracted by A yields at least the same proĕt as before. If
this would not be the case and the client would beneĕt from the new pricing,
it would have chosen B’s offer originally. Since B made positive proĕt, the
new clients also yield positive proĕt for A. Accordingly, A cannot reduce its
proĕt from undercutting B’s pricing. Note that this is also true if A’s proĕt
was originally higher than (or equal to)B’s proĕt. Also note that while under-
cutting B’s reserved price is the better option compared to offering the same
as B, it is not necessarily A’s best response: A also has the option to set one
price higher and the other price lower than B. Nevertheless, the argument
is sufficient to show that an offer with at least one price over marginal cost
is not an equilibrium price. If provider A hereby sets prices above marginal
costs, the analog argument holds for providerB and therefore providerB has
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an incentive to slightly undercut provider A’s offer. Hence, as long as an offer
makes positive proĕt, the best response of a provider is to make the same offer
as the competitor but with a small discount to attract all clients.

Consider now two-part tariffs (pAres, pAod, pBres, pBod)whereB’s overall revenue
is equal to total instance production cost (zero proĕt). Provider A has no
incentive to undercut the pricing of provider B in both reserved and on-
demand price because this would lead to a negative proĕt and negative proĕts
can always be avoided by setting prices equal to marginal cost. Since the aver-
age price of an instance for a client usually depends on its average load ai, a
pricing where (pBres, pBod) ̸= (cres, cod)with zero overall proĕtmeans that some
clients are proĕtable for provider B while others incur proĕt losses. A client
with the load ai =

cres−pB
res

pB
od−cod

would generate exactly zero proĕts for providerB
(Equation 4.14).

pBres − cres +
cres − pBres
pBod − cod

(
pBod − cod

)
= 0 (4.14)

Positive proĕts can be generated by clients with a higher (or lower) aver-
age load, depending on how provider B’s pricing relates to its costs (Equa-
tion 4.15).

pBres − cres + ai
(
pBod − cod

)
> 0 (4.15)for ai > cres−pB

res
pB

od−cod
if pBres < cres and pBod > cod

for ai < cres−pB
res

pB
od−cod

if pBres > cres and pBod < cod
(4.16)

us, provider A can choose a pricing that attracts all proĕtable clients while
all unproĕtable clients still prefer the pricing provider B offers. Technically,
the idea is to choose a reserved price and an on-demand price (pAres, pAod) so
that the pricings of both providers and the costs have a common intersection
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point. is pricing is derived by substituting the average load factor that leads
to zero proĕt (for provider B) by the threshold average load (Equation 4.17).

0 = pBres − cres + athreshold ·
(
pBod − cod

)
= pBres − cres +

pBres − pAres
pAod − pBod

·
(
pBod − cod

)
⇔ pAod =

(
pBres − pAres

) (
pBod − cod

)
(cres − pBres)

+ pBod

(4.17)

Provider A has an incentive to offer a reserved price pBres < pAres < cres (or
pBres > pAres > cres) and an on-demand price according to Equation 4.17. Fig-
ure 4.5 illustrates this. As a consequence, provider B keeps only clients that
are unproĕtable at its current pricing and therefore makes a negative proĕt.
Hence, its pricing cannot be an equilibrium strategy and therefore no zero-
proĕt equilibrium with pricings different from marginal costs exists.

Finally, consider the third case where B’s proĕts are negative. In this case,
providerB itself has an incentive to change its pricing to meet marginal costs
and, accordingly, the pricing also cannot be an equilibrium strategy.

Summing up, no offer where the pricing does not equal production costs
in both price components can be an equilibrium strategy and hence the equi-
librium with pAres = pBres = cres and pAod = pBod = cod is unique. It is the
only pricing that does not lead to any proĕt from any client and is hence the
only pricing that does not offer an incentive to the competitor to aim for the
proĕtable clients.⁵

is is very similar to Bertrand competition, a simple model for price com-
petition where a good is offered by two competitors at a single price each and

⁵is is in accordance with the results in [44] where the equilibrium price equals the presumed
zero cost. We note that our solution complements this by explicitly modeling reserved and
on-demand costs. We emphasize that both price components have to be identical with the
corresponding cost components to be in equilibrium.
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Figure 4.5: Zero-proöt pricing is not necessarily an equilibrium strategy.

the only equilibrium is tomake zero proĕts by setting prices equal tomarginal
costs [72]. Although this is a drastic indication and the limitations of the
model have to be considered, it has to be noted that a two-part tariff as used
in this model does not affect the general result of such a game setup. Is is
important to notice, though, that neither different offers that are preferred by
different clients nor the same offer where the reserved/on-demand price does
not equal the reserved/on-demand cost can be an equilibrium strategy. Even
if the overall proĕt is zero, there is always a subset of proĕtable clients in these
cases.
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4.4.3 Multiple Two-Part Tariffs per Provider

e results from the preceding section are not affected by several simultane-
ous offers of each provider. First, consider the monopoly case. When the
provider makes several offers, each client chooses among them the offer that
is the cheapest for this particular client. As a consequence, a client population
with different average loads splits up among these different offers.⁶ Any offer
that is preferred by a client over another offer (because it lowers the client’s
cost) reduces provider proĕt accordingly. An additional offer can only in-
crease the overall proĕt in comparison to a single offer when that single of-
fer does not meet Condition 4.5 for all potential clients. ose clients would
not participate in the market because they have too high an average load to
accept the single offer. ey can be attracted with an additional offer, though,
when it has a lower on-demand price and hence meets Condition 4.5. Since
the second offer also meets Condition 4.5 for all those clients that still prefer
the ĕrst offer, the ĕrst offer then reduces provider proĕt and should be aban-
doned. But as mentioned above, Condition 4.5 holds for all potential clients
anyway when the provider makes its most proĕtable single offer, which does
not include an on-demand price. is means that a provider always reduces
its proĕt by offering several price options.

Now, consider the duopoly case. As before for a single competitor offer, no
proĕt that exceeds the proĕt of the competitor can be realized from any client.
It is hence the best option to undercut a competitor offer in order to achieve
a similar proĕt as the competitor from each client. Or, if not all clients are

⁶is is based upon the presumption that each client accepts the same offer for all of its demand.
In the case that clients can split up their demand over several offers, then instead of the total
demand of different clients, a different portion of every client’s demand is best assigned on
each offer. Accordingly, instead of xi instances that are associated with a client’s average load
ai, in a hybrid cloud scenario each load factor is associated with a total number of instances
in the market that features this average load. Such a setting is described in [62] and it has the
same main result.
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proĕtable, to attract the proĕtable ones. Analog to the monopoly case, no ad-
ditional offer can increase the provider’s proĕt. It is not sufficient to respond
to only one offer of the competitor when the competitor makes another of-
fer that is still cheaper for some clients. Responding to all competitor offers,
though, creates a situation where the demand of all proĕtable clients is met.
In consequence, the more proĕtable option of a provider is to make the same
number of offers as the competitor where each offer undercuts a counterpart
or attracts proĕtable clients of the competitor. e only offer that does not
provide the same incentive to the competitor again is a pricing that equals
production costs. us, there is no equilibrium that features several distinct
offers.

ere are other reasons in favor of several offers, though. ey can provide
better knowledge about how much the instances are going to be actually used,
for example, which can be of ĕnancial beneĕt since it eases overbooking of
available capacities.

4.5 Three-Part Tariffs

4.5.1 Three-Part Tariffs in a Monopoly

Let us now consider that a reserved instance allows a certain amount of use
without an on-demand charge. Accordingly, the tariff not only consists of a
reserved and an on-demand price component, pres and pod, but also a third
component r (0 ≤ r ≤ 1) that speciĕes the included usage, which is an
average load over the reservation period (a fraction of time, analog to ai) that
is already covered with the reservation. When the actual average load of a
client exceeds the included usage, the on-demand fee applies for the exceeding
demand portion. e production costs remain two-part. Equation 4.18 states
the provider proĕt for such a three-part pricing in a monopoly.
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profitM (pres, pod, r) =
n∑

i=1

(xi · (pres − cres + max (ai − r, 0) · pod − ai · cod))

(4.18)

e included amount of usage means that all clients that have an average
load of ai ≤ r have the same instance cost. For clients with an ai > r, there is
a linear increase of instance cost over load ai. is is illustrated in Figure 4.6.
Similar to the case of two-part pricing, a provider has no incentive to make an
offer with a positive on-demand price in a monopoly. Compared to the high-
est possible reserved-only pricing, also with three-part tariffs an on-demand
charge means that the provider has lower proĕt from clients that have a lower
average load ai than the client with the highest average load amax.

Euro

Average load

amax 1

pinstance(
pserver
e , 0, 1, ai)

pserver
e

cinstance(cres, cod, ai)

pinstance(pres, pod, r, ai)

cres

pres

r ai

pres + max(ai − r, 0) · pod

Figure 4.6:Monopoly pricing with three-part tariffs.
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With three-part tariffs, a reserved-only pricing can be modeled either by
including a sufficient amount of usage (amax ≤ r ≤ 1) or by setting the
on-demand price to zero (Equation 4.19). When the included usage exceeds
the highest average load (r ≥ amax), the pricing may feature an arbitrary
on-demand price since it is never charged. In Equation 4.20, the highest
possible reserved price that attracts all clients again depends on a chosen
on-demand price and is substituted accordingly. e reserved-only pricing
(Equation 4.19) yields greater or equal proĕt compared to any other pricing
(Equation 4.20) since Inequality 4.21 is true for all r < amax and when clients
differ in their average load.

profitM
(pserver

e
, 0, 1

)
=

n∑
i=1

(
xi ·

(pserver

e
− cres − ai · cod

))
(4.19)

profitM
(pserver

e
− max (amax − r, 0) · pod, pod, r

)
=

∑n
i=1

(
xi ·

( pserver
e

− max (amax − r, 0) · pod − cres + max (ai − r, 0) · pod − ai · cod
))

(4.20)
n∑

i=1

xi · max (amax − r, 0) ≥
n∑

i=1

xi · max (ai − r, 0) (4.21)

4.5.2 Three-Part Tariffs in a Duopoly

When two competing providers offer three-part tariffs, the result is similar
to the outcome for two-part pricing, even if the analysis itself becomes more
complex. A client i is indifferent between the offer from provider A and the
offer from provider B if Equation 4.22 holds.

pAres + max
(
ai − rA, 0

)
· pAod = pBres + max

(
ai − rB , 0

)
· pBod (4.22)
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Contrary to the two-part tariff case, there can be no, one, two or inĕnitely
many loadswhere a client is indifferent between the providers (Equation 4.22).
As a consequence, with three-part tariffs there are now two different possibili-
ties for a threshold load that separates the clients that prefer one offer over the
other. First, like in the two-part case, different on-demand pricesmay lead to a
threshold load aod

threshold. Here, both providers charge on-demand prices since
the included usage is exceeded. Second, an intersection might occur at a load
where one provider offers a higher amount of included usage while the other
provider already charges an on-demand price, which leads to a threshold
load ar

threshold. We compute both thresholds, aod
threshold and ar

threshold, in Equa-
tion 4.23. Note that aod

threshold is required to be in the interval [max(rA, rB), 1].

aod
threshold =

pBres − pBod · rB − pAres + pAod · rA

pAod − pBod
given pAod ̸= pBod

arthreshold =


pA

res−pB
res

pB
od

+ rB if rA > rB and pAres − pBres < pAod ·
(
rA − rB

)
pB

res−pA
res

pA
od

+ rA if rB > rA and pBres − pAres < pBod ·
(
rB − rA

)
(4.23)

Two pricings might intersect in none, both or either of these thresholds. Fig-
ures 4.7 and 4.8 illustrate this with some examples. In Example 1, provider
B serves the whole market and in Examples 2 and 3, the two providers serve
different market segments. Example 4 shows one possibility for a whole inter-
val of load factors that satisĕes Equation 4.22 (additionally an aod

threshold exists).
Here, both offers have identical reserved prices and strictly positive included
usage. Since all clients with a corresponding load are indifferent between both
offers, we assume that they are equally divided between provider A and B.
A second possibility to obtain such an interval is that the offers have iden-
tical on-demand prices (pAod = pBod) and the other price components fulĕll
pAres − pBres = pAod · (rA − rB).
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Figure 4.7: Duopoly pricing with three-part tariffs.
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Figure 4.8: Duopoly pricing with three-part tariffs (cont.).
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Despite the greater freedom in pricing compared to two-part tariffs, there
also exists only one unique Nash equilibrium. In this equilibrium, both
providers offer identical three-part pricings equal to marginal costs, pAres =

pBres = cres, pAod = pBod = cod and no included usage rA = rB = 0.
e argument for existence is analogous to the case of two-part tariffs. De-
viating with prices below marginal costs induces a loss and choosing prices
above marginal costs implies not selling anything. Including any usage free
of charge also results in a loss. erefore, no provider has an incentive to de-
viate, which shows the existence of the equilibrium. For its uniqueness, we
now verify that there are no Nash equilibria with prices other than marginal
cost. Similar to two-part tariffs, we assume there is another Nash equilibrium
with (pBres, p

B
od, r

B) ̸= (cres, cod, 0). We distinguish three cases: ĕrst, where B
makes positive proĕt; second, where B makes zero proĕt; and third, where
the proĕt is negative. Either B itself has an incentive to deviate to a more
proĕtable option or A can deviate from its offer in order to attract some of
B’s clients and make positive proĕt and, subsequently, B has an incentive to
deviate. Accordingly, there is no such equilibrium.

Consider three-part tariffs (pAres, pAod, rA, pBres, pBod, rB) where B makes pos-
itive proĕt. Provider A either undercuts provider B in at least the reserved
price in order to serve the entire market (Equation 4.24) or A chooses the
same pricing as B and subsequently serves half the market (Equation 4.25).
Comparing these two proĕts yields Equation 4.26, which is positive when the
price difference is sufficiently small. is implies that provider A has indeed
an incentive to undercut provider B. With the same argument as in the two-
part case, A always increases its proĕt from undercutting B’s pricing.

profitA
(
pAres, p

A
od, r

A, pBres, p
B
od, r

B
)

=

n∑
i=1

(
xi ·

(
pAres − cAres + max

(
ai − rA, 0

)
· pAod − ai · cod

)) (4.24)
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profitA
(
pBres, p

B
od, r

B , pBres, p
B
od, r

B
)

=
1

2

n∑
i=1

(
xi ·

(
pBres − cBres + max

(
ai − rB, 0

)
· pBod − ai · cod

)) (4.25)

profitA
(
pAres, p

A
od, r

A, pBres, p
B
od, r

B
)
− profitA

(
pBres, p

B
od, r

B, pBres, p
B
od, r

B
)

=
1

2
· profitA

(
pAres, p

A
od, r

A, pBres, p
B
od, r

B
)

+
1

2

n∑
i=1

(
xi ·

(
pAres − pBres + max

(
ai − rA, 0

)
· pAod − max

(
ai − rB , 0

)
· pBod

))
(4.26)

Consider three-part tariffs (pAres, pAod, rA, pBres, pBod, rB)whereB makes zero
proĕt. When (pBres, p

B
od, r

B) ̸= (cres, cod, 0), some clients are proĕtable while
others are not andA has an incentive to attract the proĕtable ones. At a given
pricing of B and given production costs, an appropriate pricing by A inter-
sects B’s pricing at the same average load as B’s pricing intersects B’s cost
(B makes zero proĕt). In that case, the resulting thresholds not only sepa-
rate clients that prefer A’s or B’s pricing, but also proĕtable and unproĕtable
clients. Unlike two-part tariffs we now may have two intersection points of
provider B’s pricing and its costs. At these intersection points clients would
generate exactly zero proĕts for provider B (Equation 4.27). In order for B
to make zero proĕt, at least one of them necessarily exists.

pBres − cres + max
(
ai − rB , 0

)
· pBod − ai · cod = 0 (4.27)

Such a client has a load of either a′i =
pB

res−cres
cod

or a′′i =
pB

res−cres−rBpB
od

cod−pB
od

. A client

with load ai = rB is proĕtable if and only if pB
res−cres
cod

> rB , which means that
pBod < cod is required for the existence of the on-demand intersection point
(and vice versa). en, clients with a lower (respectively higher) average load
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than a′′i are proĕtable. A reserved intersection point may exist only when a
client with load ai = rB is unproĕtable. However, clients with a load ai < a′i
might not exist (in which case an on-demand intersection point exists). Note
that proĕtable clients with a load ai < a′i and proĕtable clients with a load
ai > a′′i may coexist. Formally, provider B generates positive proĕts from
the clients described by Inequality 4.28.⁷

pBres − cres + max
(
ai − rB, 0

)
· pBod − ai · cod > 0

for ai > pB
res−cres−rBpB

od
cod−pB

od
and pB

res−cres
cod

< rB and pBod > cod

for ai < pB
res−cres−rBpB

od
cod−pB

od
and pB

res−cres
cod

> rB and pBod < cod

for ai < pB
res−cres
cod

and pB
res−cres
cod

≤ rB

(4.28)

Provider A can choose a pricing that attracts at least a subset of these prof-
itable clients, while all unproĕtable clients still prefer the pricing of provider
B. To determine an according pricing ofA, we replace the average load factor
in the proĕt function for one instance by the threshold average loads, aod

threshold
and arthreshold. For instance, for a chosen on-demand price and a chosen in-
cluded usage, the reserved price that creates an aodthreshold calculates according
to Equation 4.29 (Figure 4.9, Example 5). When instead the on-demand and
the reserved price are chosen, the included usage that creates an ar

threshold then
calculates as presented in Equation 4.30 (Figure 4.9, Example 6).

⁷ If pBod > cod and pBres−cres
cod

> rB , then provider B makes positive proĕt with all clients (a
client with load ai = rB is proĕtable and no on-demand intersection point exists). is
contradicts the assumption that provider B makes zero proĕt.
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0 = pBres − cres + max
(
aod
threshold − rB , 0

)
· pBod − aod

threshold · cod

⇔ pAres = pBres + rA · pAod − rB · pBod +
(
pBres − cres − rB · pBod

)
·
(
pAod − pBod

)(
pBod − cod

)
(4.29)

0 = pBres − cres + max
(
ar
threshold − rB, 0

)
· pBod − ar

threshold · cod

⇔ rA =
pBres − cres

cod
− pBres − pAres

pAod

(4.30)

At least one of the following three possibilities yields strictly positive proĕt for
provider A by attracting proĕtable clients from Inequality 4.28.

If pBod > cod and
pB

res−cres
cod

< rB : e on-demand price of B is under-
cut while the amount of included usage is set the same as B’s(
pBod > pAod > cod, r

A = rB
)
. en the reserved price is determined

using Equation 4.29 (Figure 4.9, Example 5).

If pBod < cod and
pB

res−cres
cod

> rB : e on-demand price of B is over-
cut while the amount of included usage is set the same as B’s(
pBod < pAod < cod, r

A = rB
)
. en the reserved price is determined

using Equation 4.29.

If pB
res−cres
cod

< rB : e reserved price of B is undercut while the on-demand
price is set at marginal cost

(
pBres > pAres > cres, p

A
od = cod

)
. en the

according amount of included usage is determined using Equation 4.30
(Figure 4.9, Example 6).
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Figure 4.9: ProviderA takes proötable clients with low average load.
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Note that while this is sufficient to show that B’s zero-proĕt pricing cannot
be an equilibrium strategy when (pBres, p

B
od, r

B) ̸= (cres, cod, 0), the three pos-
sibilities do not necessarily maximize A’s proĕt.⁸

Finally, ifB’s proĕts are negative, providerB itself has an incentive to devi-
ate to marginal cost pricing.

In consequence, the equilibrium with pAres = pBres = cres, pAod = pBod = cod

and rA = rB = 0 is unique and analogous to the two-part tariff case. While
the included usage in the tariff structure changes how a market can be split up
between providers, a positive amount of included utilization time is not part
of an equilibrium pricing.

4.6 Two-Part Tariffs with Asymmetric Production Costs

We now investigate two-part tariffs for the case where the production costs
of both providers are different,

(
cAres, c

A
od
)
̸=

(
cBres, c

B
od
)
. Suppose provider A

offers a different on-demand and reserved price thanB. One of the following
two cases always applies since the roles of A and B are interchangeable.

First, if one or both cost components of provider A are smaller than the
corresponding price component of B, then A can attract the whole market
and obtain a positive proĕt with prices betweenA’s costs andB’s prices.⁹ Such
a pricing

(
pAres, p

A
od
)
of provider A is given in Inequality 4.31.

cAres < pAres < pBres, c
A
od ≤ pAod ≤ pBod if cAres < pBres and cAod ≤ pBod

cAres ≤ pAres ≤ pBres, c
A
od < pAod < pBod if cAres ≤ pBres and cAod < pBod

(4.31)

⁸is can be easily observed, e.g. in Example 5, where the ĕrst possibility attracts all proĕtable
clients of B, but only those with ai < arthreshold are proĕtable at A’s pricing, and it would
be better to choose a higher on-demand price that does not attract as many clients but those
who are attracted yield some proĕt.

⁹e argument is similar to the case in symmetric costs where providerB makes positive proĕt.
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Example 7 in Figure 4.10 illustrates this for the case that B offers its costs.
Second, suppose that one cost component ofA is higher and the other cost

component is lower than the corresponding price components ofB. In order
to determine an offer that attracts all proĕtable clients, A can choose its pric-
ing so that it has a common intersection point with A’s costs and B’s pricing
(Equation 4.32). Like this, the threshold load that separates clients that prefer
A’s offer over B’s offer also separates the clients that are proĕtable to A from
those that are not.Ƭ⁰ We obtain such an intersection point by substituting the
load where B’s pricing and A’s costs are identical by threshold load athreshold,
which is the intersection of both pricings (Equation 4.32).

0 = pBres − cAres + athreshold ·
(
pBod − cAod

)
= pBres − cAres +

pBres − pAres
pAod − pBod

·
(
pBod − cAod

)
⇔ pAod = pBod −

(
pBres − pAres

)
·
(
pBod − cAod

)
pBres − cAres

(4.32)

If provider A offers a reserved price between A’s reserved cost and B’s re-
served price (Inequality 4.33) and determines its on-demandprice using Equa-
tion 4.32, then A attracts exactly those clients that yield positive proĕt for A
whereas the remaining clients continue to buy their service from B.

cAres < pAres < pBres if cAod > pBod and cAres < pBres

cAres > pAres > pBres if cAod < pBod and cAres > pBres
(4.33)

Figure 4.10, Example 8 illustrates this for the case that B offers its costs.

Ƭ⁰e argument is similar to the case in symmetric costs where providerB makes zero proĕt but
its prices do not equal production costs. Here we use A’s speciĕc costs.
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Figure 4.10:WhenB offers its costs,A can make positive proöt.
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In consequence, no Nash equilibria exist with different prices. Since
the above arguments hold for

(
pAres, p

A
od
)

=
(
cAres, c

A
od
)

and
(
pBres, p

B
od
)

=(
pBres, p

B
od
)
=

(
cBres, c

B
od
)
, and in contrast to symmetric costs, offering pricings

equal to marginal costs is not a Nash equilibrium with asymmetric costs.

e above cases show that provider A has an incentive to attract clients
fromB that are proĕtable forA. Again, consider the (second) case where one
cost component is higher and the other cost component is lower than the cor-
responding cost of the competitor. Suppose thatB makes an offer andA takes
the proĕtable clients. en the providers offer a similar pricing but only serve
clients that feature a load at which the providers have a lower production cost
than their competitor. No provider has an incentive to attract clients from
their competitor since these clients would be unproĕtable to them at an offer
that is attractive to the clients. Instead, both providers have an incentive to
increase revenue from their own clients only. When they make the same offer
as the competitor, though, they loose half their clients to the competitor (and
also attract half the unproĕtable competitor clients). Deviating to an offer
with prices between the current prices as described above, though, increases
revenue while the market shares are maintained. e closer the pricing is to
the competitor’s offer, the higher are revenue and proĕt. Since it is (theoreti-
cally) always possible to ĕnd an offer that is even closer to (but never the same
as) the competitor’s offer, there is no best response to such an offer and hence
no Nash equilibrium exists.

e nonexistence of Nash equilibria is caused by amathematical singularity
due to the assumption of an equally divided market in case of identical offers.
In reality, such a singularity probably does not exist. e smaller the price
difference, the more important other factors may be, which are not explicitly
considered in ourmodel. It is also practically impossible to differentiate prices
by arbitrarily small amounts. Accordingly, the result that no equilibria exist
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4.6 Two-Part Tariffs with Asymmetric Production Costs 95

is a rather theoretic result. e fact that the providers try to push their offers
towards their competitor’s offer nevertheless is an interesting observation.

A slight modiĕcation of the equilibrium concept allows us to recover the
existence of equilibria. We use ε-equilibria to show that there are conditions
where no provider has a signiĕcant incentive to deviate, which seems to be
a realistic candidate for a stable market situation. In contrast to usual Nash
equilibria, an outcome is an ε-equilibrium when neither party can increase
its utility by ε or more by deviating to another strategy. We have shown that
both providers beneĕt only from deviating to an offer that is closer to the com-
petitor’s offer: If A deviates, the proĕt from any offer that is obtained using
Equation 4.32 and that has on-demand and reserved prices between A’s and
B’s offer is higher than the proĕt fromA’s original offer. emarket shares are
maintained. e proĕt at the competitor’s offer from the same market share
hence represents an upper bound. An action proĕle (pAres, pAod, pBres, pBod) is an
ε-Nash equilibriumwhen the difference between the current proĕt and the up-
per bound for possible proĕts is smaller than ε. is means that providerA is
unable to sufficiently increase its proĕt at the current offer byB and vice versa.
More precisely, the pricings (p̄Ares, p̄Aod, p̄Bres, p̄Bod) constitute a ε-Nash equilib-
rium if Equation 4.34 applies.

profitA(p̄Ares, p̄Aod, p̄Bres, p̄Bod)− profitA(pAres, pAod, p̄Bres, p̄Bod) < ε for all (pAres, pAod)

profitB(p̄Ares, p̄Aod, p̄Bres, p̄Bod)− profitB(p̄Ares, p̄Aod, pBres, pBod) < ε for all (pBres, pBod)
(4.34)

Accordingly, while there are no regularNash equilibria when production costs
of the twoproviders are asymmetric, there is an inĕnite amount of ε-equilibria.
In these equilibria, usually both providers have positive proĕt. In themarginal
cases where one provider offers its production costs, this provider has zero
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proĕt while the other one makes positive proĕt. We observe that the individ-
ual proĕt that a provider can yield from its market share at an equilibrium
pricing can be as high as the cost difference between both providers. How-
ever, the total proĕt of the two providers is limited in all equilibria because
this maximum cannot be reached by both providers at the same time: When
one provider maximizes its proĕt from clients for which the provider features
lower production cost, its pricing also creates an upper bound for the com-
petitor’s pricing (Figure 4.11, Example 9). With three-part tariffs, this is not
necessarily the case. For example, suppose that provider B wants to attract
clients with a higher average load than aod

threshold. Instead of a two-part offer,
B may offer an included usage up to the threshold load. If the reserved price
is chosen accordingly, then B itself has the same utility as in the two-part
equilibrium pricing since the proĕts from its market share remain the same
(Figure 4.11, Example 10). Nevertheless, this usually allows a higher pricing
for A. As long as A’s prices do not exceed B’s costs, B has no incentive to de-
viate. Similarly, A might prefer to include a signiĕcant amount of usage at a
profitable reserved price and combine it with a high on-demand price, which
is not charged from A’s clients anyway since their average load is too small.
is raises the upper bound for B’s pricing in B’s market share. Although A

usually is not able to utilize the full potential proĕt (difference in costs) like
this, depending onB’s pricing this is also true for two-part offers inmost cases
and, accordingly, such a three-part can be the better option.

While we refrain from calculating all equilibria in three-part tariffs with
asymmetric costs or from providing formal proof for their existence, we note
that such equilibria very likely exist. However, three-part tariffs provide an
interesting potential for cooperation since the providers can signiĕcantly in-
crease their proĕts in comparison to two-part offers (Figure 4.11).
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Figure 4.11: Three-part tariffs can increase the equilibrium proöt.
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4.7 Conclusion and Implications on the IaaS Market

We showed that in a duopoly market for cloud infrastructure services, neither
two-part or three-part offers result in equilibria where symmetric providers
have positive proĕt. For asymmetric production costs, on the other hand,
there exists an inĕnite number of ε-equilibria with two-part tariffs in which
usually both providers have positive proĕt. ree-part tariffs may increase
this proĕt for both providers.

However, there are some limitations of our market model that may be ad-
dressed in future research. For instance, we assume that the clients only differ
in the average utilization rate (and the number) of reserved instances. Since
clients do not participate in the market if their cost for own infrastructure is
lower than the cost of cloud infrastructure, an upper price bound exists. is
upper bound is based on the per-server cost of a data center and is assumed
to be constant for all clients. At a given pricing, the average instance price of
different clients depends on their average load via the on-demand price. In
consequence, an offer with an on-demand price of zero is lower or higher than
data center cost for all clients at the same time. While most data center cost
factors can be regarded similar for different clients, building a data center is a
huge investment. So is paying a reservation fee for a long time in advance. De-
pending on the ĕnancial standing of a client, some may not be able to afford
such an investment. In addition, land, buildings or part of the infrastructure
might already exist in some cases. is affects the cost of data center capacity.
While differentiated costs for an own data center inĘuence themonopoly pric-
ing, the equilibrium pricing in a duopoly does not change because it is linked
to the production costs and is therefore usually lower than the hypothetical
data center cost anyway. Some clients, on the other hand, might not be able
to raise enough money to invest in an own data center or have a low planning
reliability and cannot be certain about their future amount of infrastructure
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use. In these cases, pure on-demand services may be the only option and the
providers might want to make such an offer in order to meet the demand of
such clients. Clients with a low average load (in comparison to their peak de-
mand) pay a lot less in a tariff without a reserved price. In consequence, the
provider can be expected to ask a very high on-demand price in order to avoid
that many of these clients also deviate to the pure on-demand tariff.

Although themodel not only assumes symmetric providers but also consid-
ers different production costs, it does not regard limits of available capacity
or marketing factors other than pricing. ese model constraints also exist in
classic Bertrand competition and it is obvious that the unaccounted factors are
important in reality. What can be derived from the model is the fact that com-
petition in a duopoly is potentially sufficient to keep prices low. is does not
change with two-part or three-part tariffs for reserved cloud instances. Since
no provider makes positive proĕt at the equilibrium pricing, it is likely that
they take actions to reduce the competitive pressure. In this regard, asymme-
tries of the providers become important, which can lead to strictly positive
proĕt of one or both providers as was shown in Section 4.6. Additionally,
asymmetries might enable a provider to strive for a monopoly position by de-
structive competition or constitute a signiĕcantmarket entry barrier. Possible
asymmetries other than different production costs are e.g. available resources
or service quality. e providers accordingly have an incentive to differentiate
themselves from their competitor in this regard.

An option to make proĕt without the need of asymmetries is that the
providers refuse to compete and mutually agree to maintain arranged mar-
ket shares on a very high price level with accordingly high proĕts. is is
especially likely to happen when capacities are limited and the demand in the
market is larger than what the providers could possibly meet altogether. e
providers have an incentive to develop their capacities as long as it generates
enough proĕt to make up for the investment. When the available capacity
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exceeds overall demand, the providers compete for market shares. In order
to split the market, providers can target different customer groups with their
marketing. e combined price model for cloud instances offers an easy way
to split up the market among several providers based on the clients’ average
utilization time of reserved instances. A provider just has to combine a higher
on-demand price component with a lower reserved price component com-
pared to a competitor in order to attract a different group of clients. Such
mutually proĕtable pricing agreements between providers may raise the opin-
ion that oligopolies require some form of regulation. Especially on a global
and fast-developing market like the IaaS market, it appears challenging to re-
veal such collusive behavior. It seems to be an even greater challenge to ĕnd
a common jurisdiction to enforce market regulation on a global level.
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”Location, location, location.”

– Real estate aphorism

5 Data Centers for Processing and

Storage in Separate Locations

5.1 Introduction

A  cloud services are eventually based on processing and storage.
ese can in turn be obtained in form of services and such hardware-
bound services are referred to as Infrastructure-as-a-Service (IaaS)

(Chapter 2). In addition to an abstraction of the actual hardware that is run-
ning underneath, transparency of IaaS also means an undetermined location
of this hardware. IaaS providers are free to place data centers at any place with
network access.

Clustering the provision of services is interesting for providers due to econo-
mies of scale. Local conditions like cheap power or a cool climate can lower
operating costs even further. In practice, these possibilities are limited by tech-
nical restrictions, risk awareness and law.

Restrictions and savings potential are not necessarily the same for all service
types. is chapter explores the possibility of separate processing and storage
centers and their ability to compete with centers that combine those resources
in one location. It takes into account that storage and processing, though dif-
ferent service types, affect each other: Both might handle the same data. Mar-
ket dynamics in our model are not determined by different service qualities
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as in related work (Section 5.2) but by scale and location of provider facilities.
is work contributes a new perspective on the future market for cloud in-
frastructure and its geographical development. e question is whether and
under what conditions several facility types can coexist in a stable market sit-
uation.

Considerations for storage and data center placement regarding their rel-
ative as well as their geographical location are discussed in Section 5.3. A
game-theoretic market model that combines these factors is given and ana-
lyzed throughout Section 5.4. is model is extended in Section 5.5 in order
to better consider client diversity. Section 5.6 states implications on the actual
cloud that can be derived from these theoretic observations. A discussion of
further aspects of the model and perspectives for future work are presented
in Section 5.7.

5.2 RelatedWork

Cloud provider competition is the subject of some game-theoretic work re-
garding service quality and pricing. e existence of stable market shares in a
duopoly [31] and recently also for n competitors [80] has already been shown.
is chapter proposes a model for different but dependent service markets
(different service types instead of service qualities) and analyses stable states
in this set of markets.

Optimal placement of data centers is extensively discussed in [5]. Climate
as a factor is speciĕcally addressed in [38], but there seems to be a lack of sci-
entiĕc material that evaluates the effects of climate on data center economics.
We discuss possible economies of location with a focus on their different im-
pact on storage and processing facilities and provide an analytical perspective
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on the question whether separately located facilities can exist in a stable mar-
ket situation.

When focusing on data center location, data protection directives are im-
portant as storage of personal data might be regulated. e European data
protection supervisor talks about the role of cloud providers and EU law im-
plications [50]; US law is discussed in [42]. Apart from legal reasons, widely
discussed privacy and security concerns (e.g. [55, 82]) might make customers
more sensitive to storage location. While these factors can motivate a separa-
tion of storage and processing, they are hard to assess. Ourmodel explores the
existence of stable markets with separate facilities with a focus on economic
factors.

Effects of cloud virtualization and remote data access on I/O performance
are explored in [93, 14]. ese practical ĕndings are important when storage
and processing are separated in different services and locations as is discussed
in this chapter.

5.3 Placing Storage and Processing Infrastructure Sites

5.3.1 Separating Storage and Processing as Products

Local separation of storage and processing might appear impractical at ĕrst
glance: Both services are associated with each other as processing generally
involves data. While separate storage services make sense for archival pur-
poses, exclusive processing usually cannot be utilized on its own. Combining
both resources in one product thus appears to be a more sensible choice. Ac-
cordingly, processing usually is provided together with a certain amount of
instance storage in today’s infrastructure cloud market. Stand-alone storage
is common practice, though.
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Whenever data has to be shared between several processing instances, us-
ing instance storage is problematic as it is inaccessible from other instances.
When instances are booted and shut down to Ęexibly adapt to actual process-
ing demand, a lot of data management becomes necessary as the temporary
instance storage is abandoned together with the instance. A separate shared
storage like a distributed ĕle system on block storage instances is far more
handy. It can be accessed by independent processing instances which do not
have to provide any disk storage. Such a setup is a lot more Ęexible for clients,
who can scale storage and processing independently and also can combine
services of different providers. It thus makes sense to provide storage and
processing resources in separate products. Providers gain the possibility of
separate facilities for resource types and can specialize on just storage or pro-
cessing services.

Separating processing and storage in different products does not imply that
corresponding hardware is placed in different locations. As a lot of traffic
between the services can be expected, latency and traffic cost rather suggest
to keep both resources close together. Providing both resources from the same
facility can offer performance similar to that of instance storage and does not
cause Internet traffic. ere are some reasons in favor of a separation of both
resources in different locations, though.

5.3.2 Separating Storage and Processing Locations

Most data center operating costs are caused by administration and energy. Au-
tomatization can reduce the average administration cost in larger data centers,
which usually also have a better power usage effectiveness. Energy cost is not
only affected by size, but also a lot by a data center’s location. From a world-
wide perspective, energy prices vary a lot. Cooler climate in some areas al-
lows free-air cooling, which keeps both energy consumption and investments
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in cooling equipment down. From an economic point of view, combining
economies of scale and a locational advantage by operating huge data centers
in cool areas with cheap power supply appears to be the only sensible choice.
On the other hand, this may not be a good idea due to the following reasons.

Loss of data can be considered a lot worse than failure of processing as the
latter should only be a temporary effect inmost cases. As a consequence, safety
from natural disasters might have more weight than e.g. climate during the
selection of storage center locations. By building two separate facilities, both
can gain from better location.

Regulation of private data is another issue that can drive storage and pro-
cessing facilities apart. Imposed by European privacy law, such data has to be
kept on European territory or areas of comparable protection [50]. ese le-
gal boundaries fragment the Internet in several zones that limit the technical
freedom of storage deployment. Personal data might be processed in other
zones, though, in an anonymized or pseudonymized form.

Data that is stored in the cloud is beyond clients’ control as internal activ-
ities of the provider are hidden. Data recovery is doubtful in case that the
service shuts down e.g. due to legal issues or bankruptcy. It also might be
deleted in case a client cannot pay for the service. In consequence, clients may
refrain from cloud storage options and keep vital data in their own storage fa-
cilities while they beneĕt from cheap and Ęexible cloud processing services at
the same time.

5.4 Game-Theoretic Model

5.4.1 Setup

A simple evolutionary game-theoretic model (Section 2.2) is hereby proposed
to identify stable market shares of separate facilities for storage and process-
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ing services. Required conditions are determined regarding economic factors.
Risk and law are considered later in Section 5.6.2.

e model distinguishes the two service types storage and processing and
the three different facility strategies p (process), s (store) and c (combine).
While c means operation of storage and processing in one facility, the strate-
gies p and s stand for an exclusive operation of one service type in the facil-
ity. Any parameter or function that is deĕned speciĕcally for a service type
is indexed accordingly while facility strategies are speciĕed as a function pa-
rameter. (is has to be distinguished because e.g. cost for storage may differs
between the storage-only and the combined facility.) Variable x denotes the
market (x ∈ processing, storage) and y denotes a facility strategy (y ∈ p, s, c)
when indicated.

An IaaS provider has to choose a facility strategy and passes on data cen-
ter operation and investment costs to the clients. Constant Rx stands for
reference amortization costs of a single unit of service type x. Some cost-
determining factors are inĘuenced by data center size, others by its location.
For the moment, these factors are merged into and addressed as EoS (Econo-
mies of Scale) and EoL (Economies of Location). EoS and EoL express the
inĘuence of size and location on production costs. Both depend on the fa-
cility’s strategy. ey are zero when neither size nor location have any effect.
EoL(y) = 0.2 means that costs of a facility with strategy y are reduced by
20% due to local effects (e.g. cheaper energy) in comparison to Rx. EoS is
also increasing with facility size. Only one facility per strategy is assumed for
now and a facility can only follow one strategy. EoS(y) hence increases over
market share of strategy y. e production costs of both service types in the
facility with strategy y are deĕned according to Equation 5.1.

Cprocessing(y) = Rprocessing · (1− EoS(y)) · (1− EoL(y))

Cstorage(y) = Rstorage · (1− EoS(y)) · (1− EoL(y))
(5.1)
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Different service types x are reckoned as different markets (dependencies
between them are explained in Section 5.4.2). e market share of a facility
strategy y in the market of service type x is deĕned as Sx(y). A market share
cannot be negative. For our two markets (storage and processing) it hence
holds according to Equation 5.2.

Sprocessing(p) + Sprocessing(c) = 1 Sprocessing(s) = 0

Sstorage(s) + Sstorage(c) = 1 Sstorage(p) = 0
(5.2)

Demand is modeled analog to market shares as presented in Equation 5.3.

Dprocessing(p) +Dprocessing(c) = 1 Dprocessing(s) = 0

Dstorage(s) +Dstorage(c) = 1 Dstorage(p) = 0
(5.3)

Although the demand types match themodeled strategy types, the demand of
a certain type does not necessarily have to bemet by a facility of the same type:
Combined processing and storage demand can be met by independent p and
s while a facility with strategy cmight also meet independent processing and
storage demand (Figure 5.1).

Processing marketStorage market

Facility strategy     s Facility strategy      c Facility strategy  p

A

Providers

Clients

B

Clients choose provider

Figure 5.1: Clients are free to choose a provider for their storage and processing
demand independently.
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Accordingly, Dstorage(c) is the share of storage demand that is used together
withDprocessing(c), regardless of where this demand is actually met. Sstorage(c),
on the other hand, is the storagemarket share of combined facilities, nomatter
how it is used. e whole provisioning is not completely arbitrary, though, as
facility competitiveness differs: While separate locations might feature better
EoS or EoL, remote data access when combining p and s means additional
transfer charges and also affects performance. We deĕne combined demand
for each market in order to be able to differentiate between demand that is
affected by these disadvantages and demand that is not. Client B in Figure 5.1,
for example, can choose tomeet its storage andprocessing demand in different
facilities. If the demand is combined demand, though, it can beneĕt from
choosing c over s and p.

5.4.2 Fitness Functions

e ĕtness of each facility strategy reĘects its relative commercial success in
this context. Lower production costs yield more proĕt or allow lower prices
which is more attractive for potential clients. Since the relative production
costCx(y) of service x in a facility that follows strategy y was already deĕned,
the ĕtness function for s and p in themarket of servicex can simply be deĕned
as 1 divided by cost (Equation 5.4).

Fprocessing(p) =
1

Cprocessing(p)
Fprocessing(s) = 0

Fstorage(s) =
1

Cstorage(s)
Fstorage(p) = 0

(5.4)

Unlike the strategies s and p, the ĕtness of strategy c is potentially raised by
the savings of transfer cost or performance gains in comparison to the other
strategies. is only affects demand that beneĕts from colocated services but



Tr
ag

ed
y
of

th
e
Co

m
m
on

Cl
ou

d
|G

am
e
Th

eo
ry

on
th
e
In
fr
as
tr
uc

tu
re
-a
s-
a-
Se
rv
ic
e
M
ar
ke
t
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is not met by c (Equation 5.5). e constant Gx (gain) indicates the amount
that a user saves by using one unit of service x in a combined center over
combining separate services.

Fprocessing(c) =

 1
Cprocessing(c)−Gprocessing

when Sprocessing(c) ≤ Dprocessing(c)

1
Cprocessing(c)

else

Fstorage(c) =


1

Cstorage(c)−Gstorage
when Sstorage(c) ≤ Dstorage(c)

1
Cstorage(c)

else
(5.5)

e overall gain G that a client has when it chooses a combined facility over
separate service-speciĕc facilities is split up between both markets (G =

Gprocessing + Gstorage). Accordingly, both market speciĕc gains are between
zero and G but cannot be appraised individually since only G as a whole is
experienced. Further, because the gain only applies when a user obtains all
services from c, an equal (or higher) fraction Sx(c)

Dx(c)
is required in the other

market x for the ĕrst case in Equation 5.5 to apply. If the market share of c is
too low in the other market, its share has to be raised in that market as well
in order to gain from colocation. Client B in Figure 5.1 for example has to
choose c for both storage and processing or it does not gain from colocation.
Hence, the individual markets depend on each other.

5.4.3 Analysis

Following the approach of replicator dynamics [83], we consider the facility
population as the player of an evolutionary game. emixed strategy that this
player pursues corresponds to the strategy distribution throughout the popu-
lation (e.g. facility size), i.e. their market shares. e ĕtness of each facility
strategy depends on the current strategy distribution. e ĕtness of a mixed
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strategy is the weighted average of these facility strategy ĕtnesses. e mixed
strategies in which the share of market x maximally differs by some ε of the
corresponding share in a strategy m are called m’s neighborhood in that mar-
ket. e mixed strategy of a market is oen referred to as a market situation
in the following.

A mixed strategym that has a higher ĕtness than any other mixed strategy
n has under m’s market shares is an evolutionarily stable strategy (ESS) [96].
A mixed strategy m is dynamically stableƬ, when there exists a neighborhood
for m so that all strategies n in m’s neighborhood feature a lower ĕtness than
m under n’s market shares [83]. An ESS is also dynamically stable.

e number of market situations that can be dynamically stable is limited.
When there are economies of scale, the ĕtness of each facility strategy in-
creases with its market share. is means that the facility strategy with the
highest ĕtness still has the highest ĕtness when its market share increases. Ac-
cordingly, a mixed strategy n that features a higher share of this strategy than
a mixed strategy m also has a higher ĕtness at n’s market shares. In conse-
quence, no mixed strategy can be dynamically stable and only the pure strate-
gies where one of the facility strategies has a market share of 1 remain. e
only exception can occur when the share of the combined facility c is identical
to its demand. Although c can have a higher ĕtness than s or p at a lower mar-
ket share, the lost colocation gain when c’s market share exceeds combined
demand reduces c’s ĕtness signiĕcantly. is means that the above argument
does not apply here and thismixed strategy can be dynamically stable. Accord-
ingly, there are up to two ESSs and potentially one other dynamically stable
strategy that is not an ESS for each market. e following list presents these
three potentially stable states.

ƬDynamically stable states are oen called evolutionarily stable states (state not strategy, e.g.
[97]), but dynamically stable is easier to distinguish from ESS and hence preferred here.
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ESS 1 All demand is met by the colocated data center.
Sprocessing(c) = 1 or Sstorage(c) = 1

ESS 2 All demand is met by the locally separate facility.
Sprocessing(p) = 1 or Sstorage(s) = 1

DSS Combined demand is met by the colocated facility and independent de-
mand is met by the locally separate facility.
Sprocessing(c) = Dprocessing(c) or Sstorage(c) = Dstorage(c)

Which dynamically stable strategies actually exist depends on themagnitudes
of scale/location economies and colocation gain. A mixed strategy’s ĕtness
improves with a higher share of a strategy that has a better ĕtness. It hence
is sufficient to compare the ĕtnesses of pure strategies in order to determine
whether there is amixed strategy that features a higher ĕtness than the current
mixed market strategy at the present market shares.

ESS 1 exists when in a situationwhere c serves the entiremarketx (Sx(c) =

1), the ĕtness of c is higher than the ĕtness of s or p (depending on the mar-
ket). Since a higher market share increases the ĕtness of the colocated facility,
this is the case when the ĕtness of c is the highest for some market share of
c that exceeds colocation demand Sx(c) > Dx(c). Inequality 5.6 shows the
according conditions for an ESS 1 in the processing and the storage market.

Fprocessing(c) > Fprocessing(p) ⇔ Cprocessing(c) < Cprocessing(p)

Fstorage(c) > Fstorage(s) ⇔ Cstorage(c) < Cstorage(s)
(5.6)

ESS 2 exists when the ĕtness of c is the lower than the ĕtness of s or p in a
situation where c has no market share (Sx(c) = 0). With the same argument
as above, this is the case when it holds for some positivemarket shareSx(c) <

Dx(c). e conditions for both markets are presented in Inequality 5.7.
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Fprocessing(c) < Fprocessing(p) ⇔ Gprocessing < (Cprocessing(c)− Cprocessing(p))

Fstorage(c) < Fstorage(s) ⇔ Gstorage < (Cstorage(c)− Cstorage(s))

(5.7)

As stated in Section 5.4.1, the market-speciĕc colocation gain Gx cannot be
evaluated individually. Because of the interdependence of themarkets, amore
general condition for ESS 2 has to be formulated (Inequality 5.8).

G < Cprocessing(c)− Cprocessing(p) + Cstorage(c)− Cstorage(s) (5.8)

DSS exists is market x when the according condition (depending on the
market) in Inequality 5.9 holds for some situation where c has a market share
Sx(c) > Dx(c) and when additionally Condition 5.10 holds for some market
share Sx(c) < Dx(c). Note that while these conditions are the opposites of
the ESS conditions, the corresponding ESS and DSS conditions are not mutu-
ally exclusive since both might hold in different market situations (different
Sxc). Further, note that Condition 5.10 again depends on the other market.

Fprocessing(c) < Fprocessing(p) ⇔ Gprocessing < (Cprocessing(c)− Cprocessing(p))

Fstorage(c) < Fstorage(s) ⇔ Gstorage < (Cstorage(c)− Cstorage(s))

(5.9)

G > Cprocessing(c)− Cprocessing(p) + Cstorage(c)− Cstorage(s) (5.10)

To illustrate the dynamical stability of DSS, suppose the storage market in a
situation where c has a lower market share than there is colocated storage
demand (Sstorage(c) < Dstorage(c)) and additionally c has a higher ĕtness
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than s. e market share of c increases due to its higher ĕtness and its ĕt-
ness remains higher than s’s ĕtness up to a share that equals combined de-
mand (Sstorage(c) = Dstorage(c)). e higher ĕtness of c violates the con-
ditions for an ESS (since it leads to a further increase of Sstorage(c) above
Dstorage(c)). In a market situation where c’s share exceeds combined demand
(Sstorage(c) > Dstorage(c)), on the other hand, the reduced ĕtness of c may
cause it to be lower than s’s ĕtness and in that case decreases c’s market share
until it equals combined demand. Sx(c) = Dx(c) is then dynamically stable.
is is further explained in Section 5.4.4. A dynamically stable strategym has
a neighborhood of strategies in which the market shares converge to m.

Since EoS(c) depends on Sx(c) in other markets, the whole IaaS market
is only stable when all individual markets are in a stable state. Next to the
situation where both markets are in ESS 1, ESS 2 or DSS at the same time,
the overall IaaS market can also be in a state where the storage respectively
processing market is in ESS 1 and the other one is in ESS 2. A market can
only be in DSS when Sx(c) ≥ Dx(c) is true for all markets (Section 5.4.1).
us, ESS 1 and DSS might coexist in different markets, while ESS 2 and DSS
cannot.

5.4.4 Development over Time

A modiĕcation of strategy shares does not necessarily require rational choice.
In a growing market, a facility with a more successful strategy features faster
growth than its competitors and thus also a growing market share. Although
the mixed strategy of the population changes, this cannot be considered an
intentional move: success is not a matter of choice. Such dynamics can be
simulated by consistently changing strategy shares based on their relative ĕt-
ness. Doing so, different initial market shares can lead to different stable states.
e market in Figure 5.2 for example converges to DSS when a separate stor-
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age facility meets a relatively low share of storage demand (le). It converges
to ESS 2 when the separate storage facility has a higher initial market share
(right).

Time

0.25

0.5

0.75

1

Storage market share

Store
Combine

Time

0.25

0.5

0.75

1

Storage market share

Store
Combine

Figure 5.2: Different initial market shares result in different stable states.

EoS grows with a facility’s market share, which again raises the facility’s
ĕtness. A strategy with initially better ĕtness enters a positive feedback loop
that ultimately ends in either ESS 1 or ESS 2 in most cases. A higher ĕtness of
strategy s respectively p results in the exclusive use of these separated facilities
and a higher ĕtness of strategy c results in a market where cmeets all demand.

ere might be the case, though, that initially better ĕtness of the sepa-
rated facility (s or p, depending on the market) reduces with growing market
share despite this feedback loop. is happens when the separated facility has
lower production costs than c but users that demand combined services have a
higher gain from switching to c than there is a ĕtness difference that is caused
by production costs. e ĕtness of c is raised and outperforms competition
as soon as Sx(c) drops below Dx(c). As the ĕtness of c shrinks again when
its share outgrows combined demand, the market is stuck in DSS or oscillates
around it.
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As costs depend on EoS and thus on market share, the cost advantage of
s or p might exceed the colocation gain at very low market shares of c. e
market converges to ESS 2 despite the existence of DSS in that case.

e mixed strategies at which the facility strategies (to combine or to spe-
cialize on one service) have the same ĕtness create thresholds betweenmarket
shares that result in different stable states (Equations 5.11 and 5.12).

Cprocessing(c) = Cprocessing(p) when Sprocessing(c) ≤ Dprocessing(c)

Cstorage(c) = Cstorage(s) when Sstorage(c) ≤ Dstorage(c)
(5.11)

G = Cprocessing(c)− Cprocessing(p) + Cstorage(c)− Cstorage(s) (5.12)

If all three dynamically stable states exist for the market, both thresholds exist.
Shares resulting in ESS 1 and DSS are separated by the threshold deĕned by
Equation 5.11, Equation 5.12 separates shares leading to ESS 2 andDSS. IfDSS
does not exist, Equation 5.11 is never true and the second threshold separates
shares that result in ESS 1 or 2. As the markets are linked, the thresholds in
one market depend on the shares in the other markets.

All possible IaaS market shares can be represented in an 2-dimensional
space (n-dimensional for nmarkets). Each dimension states themarket share
of a separated facility strategy, which leaves the rest of bothmarkets to the colo-
cated strategy. e stated thresholds divide the space in fragments that end
up in a speciĕc ESS over time (Figure 5.3). e threshold by Equation 5.11
is market-speciĕc while the threshold by Equation 5.12 is the same for both
markets. Note that Figure 5.3 only shows the thresholds for the storage mar-
ket for simplicity; for the processing market, the dashed threshold would be
vertical. reshold market shares are in an equilibrium but not dynamically
stable and thus very prone to disturbance, which makes them unlikely to exist
long.
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5

5

G

Figure 5.3:Mapping of IaaSmarket shares and resulting stable state in the storage
market. The dotted lines indicate themarket share of s after themarket
reaches a speciöc stable state.

ehigher the colocation gain is compared tomaximumeconomies of scale
and location, the smaller becomes the area of shares resulting in ESS 2. e
area regarding ESS 1 grows with shrinking EoL(s) as the colocation strategy
needs lower EoS to compensate. When the threshold would exceed Ds(c)

(identical with the dotted line marking DSS) there is no DSS.

5.5 Colocation Gain Distribution

5.5.1 Gain Distribution Extension of the Model

e game model that is presented in Section 5.4 assumes a customer base
that is formed by two groups: customers that gain from colocated services op-
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posed to those who do not gain. While this is very likely true, the assumption
that all those who beneĕt from a colocation of processing and storage actually
have a gain of the same value is rather strong and probably too simple to ade-
quately reĘect reality. is section seeks to make the model more realistic by
introducing a colocation gain distribution that can map beneĕts of different
magnitude amongst the clients.

e colocation gain distribution amongst potential clients can be described
by a CCDF (complementary cumulative distribution function). Any market
share of the colocated facility strategy is associated with a number of clients
that have a certain colocation gain as aminimum. Wedeĕne a decreasing func-
tion Gmin that maps an IaaS market situation (with a certain market share of
c for both markets: Sprocessing(c), Sstorage(c)) to a speciĕc colocation gain. All
demand that is not served by the colocated facility would gain from switching
to the colocated facility by the function value or more.

Although the model now regards the different client beneĕts of colocated
services via the colocation gain distribution, this does not affect the general
game setup. Each client still has to decide between the different providers
and this affects the ĕtness of different facility types. In a situation of speciĕc
economies of scale and location to c, s and p (and accordingly different prices
for the processing and storage services), the individual colocation gain of a
client determineswhether a colocated facility is the better option for this client.
Accordingly, any situation has a threshold colocation gain that splits all poten-
tial clients into two groups: clients that are better off with a colocated facility
and thosewho better decide for the separate facilities because their gainwould
be too low to compensate for the higher price of the colocated services. e
threshold gain (Equation 5.13) is identical to the deĕnition in Equation 5.12,
although it separates different clients instead of market situations in this con-
text. e inverse function of Gmin determines the according share of overall
demand that belongs to these two client groups.
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Gthreshold = Cprocessing(c)− Cprocessing(p) + Cstorage(c)− Cstorage(s) (5.13)

For any market situation, the current market shares determine economies
of scale which in turn determine the demand share of clients who have a po-
tential beneĕt from using colocated services instead of separate facilities. e
ĕtness of the different facility strategies can be calculated based on this poten-
tial by assigning the said demand share to Dx(c). When the market share is
smaller than the demand share of clients that have an incentive to switch to
colocated facilities (Sx(c) < Dx(c)), the ĕtness of the colocated strategy is
raised in the same way as deĕned in Equation 5.5. e gain value Gx that im-
proves the ĕtness can be deĕned as the average gain of all clients that would
beneĕt from colocation but are not obtaining the services by the colocated
facility. Most important is the fact that the actual gain is larger than the mini-
mum gain that is given by the distribution function (Gx > Gmin).

5.5.2 Colocation Gain Dynamics and Stable States

e threshold colocation gain and the according demand share are subject to
change with economies of scale and hence depend on current market shares.
In consequence, the ĕtness of the colocated strategy changes over time and
this has an impact on the stable states of the model.

e existence condition of ESS 1, where all demand is met by colocated
facilities, is independent from the colocation gain and it is hence not affected
by the assumption of a colocation gain distribution (Inequality 5.6).

For ESS 2, however, the colocation gain distribution has to be considered.
Whenever there are no clients that have a higher gain from colocation than
from the cheaper prices of the separate services, the ĕtness of the separate
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facility strategy is higher than the colocation strategy. e threshold gain is
deĕned as the minimum gain that causes a higher ĕtness of the colocation
strategy in comparison to the separated strategy. Since both the threshold gain
as well as the gain distribution depend on the market situation, the existence
condition of ESS 2 has to be met for zero market share of c, i.e. the market
situation ESS 2 itself). is implies that Condition 5.7 has to hold for the
maximum colocation gain of the distribution.

e DSS case is a bit more complicated since there is not a single combined
demand share as a potential stable state. An increased market share of the
colocation strategy lowers its difference in EoS compared to the separate facil-
ities. As a consequence, the threshold colocation gain is also reduced, which
eventually rises the demand of the colocated service. Nevertheless, a situation
where Sx(c) = Dx(c) is possible (e.g. this can happen when a higher market
share causes an insufficient increase of demand). No client that uses sepa-
rate facilities would gain enough from colocation in order to justify a switch
to colocated services. In such a situation, the function value of the coloca-
tion gain CCDF is identical to the threshold colocation gain at the current
market shares. Figure 5.4 shows an example for the development of Gthreshold

and Gmin over the market share in one market (at a ĕxed market share in
the other market). e intersection of both curves marks a situation where
Sx(c) = Dx(c), which might meets DSS conditions. In intervals over market
share where the value of the colocation gain CCDF is higher than the thresh-
old gain, there are clients that prefer colocation over the cheaper separated
facilities. (Formally, Gmin > Gthreshold implies Dx(c) > Sx(c).) Since the
ĕtness of the colocation strategy is improved by a valueGx that is larger than
Gmin, Condition 5.10 always holds in such a situation. In intervals where the
threshold gain is larger than the CCDF, there are no clients that would gain
enough from colocation (Gmin < Gthreshold implies Dx(c) < Sx(c)). e
ĕtness of the colocation strategy depends on production cost alone in such



Tragedy
ofthe

Com
m
on

Cloud
|G

am
e
Theory

on
the

Infrastructure-as-a-Service
M
arket

120 5 Data Centers for Processing and Storage in Separate Locations

a situation and Condition 5.9 applies. It holds where the threshold gain is
positive. In consequence, there are dynamically stable states wherever Gmin

equals Gthreshold and when there is a neighborhood where Gmin > Gthreshold

holds for smaller market shares and bothGmin < Gthreshold and Condition 5.9,
hold for larger market shares. (is is true for the intersection in Figure 5.4,
which hence is DSS.)

x x

Figure 5.4: Colocation gain distribution function and threshold gain over coloca-
tion market share. The intersection marks a potential DSS.

5.6 Implications on IaaS Clouds

5.6.1 Possible Economies of Scale and Location

As discussed in Section 3.4, economies of scale of almost 20% are realistic
for a processing facility by scaling up from 1 000 servers to over 50 000. is
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can be achieved bymajor reductions of administration effort and better power
usage effectiveness. ose savings get close to optimality and only marginal
further improvements can be expected. Scale economies of storage seem to
be a lot better with large-scale commodity storage solutions being about six
times cheaper (perGB) than storage area networks in small facilities [45]. is
means possible storage EoS of over 80%.

Potential economies of location are less complex infrastructure (e.g. cool-
ing, uninterrupted power supply) and cheaper operating costs regarding en-
ergy consumption (infrastructure) and price in the ĕrst place. In the total
cost of ownership example in [60], infrastructure cost is about 7.5%, electric-
ity cost about 15% (e 0.1 per kWh) of yearly costs of a processing facility. In
a place with a free and reliable power supply and a climate that allows passive
cooling (no infrastructure and energy costs), location economies of a little
over 20% would be possible. is means that the theoretic maximum of EoL
is about the same as EoS. Unlike the latter, EoLs close to optimality are un-
realistic. International industry energy pricing suggests that cutting costs in
half is possible, so processing EoL of about 10% might be realistic for a cool
country with cheap energy. Storage EoL are negligible due to the small impact
of energy and cooling on storage costs.

ere alsomight be other economies of location that evolve from the future
Internet development. For instance, the location of cloud storage facilities can
be important for their use in content distribution. Such a scenario is explored
in Chapter 6.

5.6.2 Stable Markets in IaaS

Section 5.4.3 presents potential stable market situations. eir existence un-
der the EoS and EoL estimations from Section 5.6.1 is evaluated in the follow-
ing.
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As the data center location is important for the cost of processing but not
for storage, only facilities following strategy p or c have an incentive to choose
an economically interesting location. Due to legal circumstances and clients’
risk awareness, an exclusive storage facility probably prefers a location that is
close to the client instead. Other intangible criterions like political stability
or a lower risk of natural disasters can also be considered without tradeoff
against cost-reducing factors. Strategy c either chooses the location of p with
high EoL for processing (Scenario 1) or the location of s in order to beneĕt
from the intangible assets (Scenario 2). is is illustrated in Figure 5.5.

Scenario 1

p

s

c

p

c

s

Scenario 2

Figure 5.5: Two possible scenarios for facility placement. The colocated facility lo-
cation can either optimize operation cost (e.g. by choosing a cool loca-
tion) or have intangible assets like a higher security level.

Under the assumption that there are no synergetic scale economies, EoS
and EoL of strategy c can be deĕned market independent. In Scenario 1, c
has the same EoS and EoL as the separate facility (s or p, depending on the
market) when both have the same market share. When c has the higher share,
Inequality 5.6 is true and hence ESS 1 exists. In Scenario 2, there are no EoL
of c in the processing market. ESS 1 exists nevertheless, because the possible
EoS-difference of 20% is larger than EoL(p) of 10%.
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An existence of ESS 2 requires the highest colocation gain to be smaller than
all possible savings by EoS and EoL of the separate services (Section 5.5.2).
is means that in Figure 5.4, the gain distribution function has to be smaller
than the threshold gain at zero market share. e savings due to scale and
location can be quite signiĕcant at very low shares of c with up to 30% for
processing and 80% for storage in both scenarios. Clientsmostly beneĕt from
colocated services because they have better performance and there are no traf-
ĕc charges. Data rates between Amazon S3 and EC2 within the same region
are about 10 MB/s [49], whereas moving data from one S3 region to another
is reported to be a mere 1 MB/s. Although this is more of an example than a
proper evaluation and not all applications need a lot of bandwidth, it shows
how massive the colocation gain can be. Latencies can also be expected to be
a lot higher over some distance than in a facility’s local network. us, ESS 2
is a possible outcome only for very small shares of c, but even its existence is
quite unlikely.

In contrast, the DSS conditions are much more likely met since. It is not
very probable that the savings from separate services are always higher than
the colocation gain of their users. On the other hand, there are applications
that do not require different services to work together (e.g. an archive) which
means no or very little colocation gain for the corresponding demand share.
We can therefore assume that a state exists where Sx(c) = Dx(c) and where
Condition 5.10 holds (Section 5.5.2). When additionally EoS and EoL of c are
lower than those of s or p (Condition 5.9), themarket situation is dynamically
stable. Like in the case of ESS 1, the strategy with the larger share features
lower costs in Scenario 1, thus DSS can only exist with a share of Sx(c) < 0.5.
In Scenario 2, the worse location economies of c make the existence of DSS a
lot more likely for processing: It exists when Sp(c) < 0.75 (assuming linear
growing scale economies).
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It is important to notice that DSS and ESS 2 are notmutually exclusive since
the threshold gain can exceed the distribution function at zero market share
but fall below it at higher shares. Also, depending on the gain distribution
in the market and how economies of scale develop over market share, several
DSS are theoretically possible.

If DSS exists, the market reaches it at initial shares of Sx(c) < 0.5 (respec-
tively Sprocessing(c) < 0.75 in Scenario 2). If the market shares are higher
or DSS does not exist, the market reaches ESS 1. At very low shares of c, a
potentially existing ESS 2 could also be reached.

5.6.3 Conclusions

A market where all demand is met by colocated facilities (ESS 1) is in a stable
constellation and there are no circumstances that challenge this stability.

For DSS, a demand share of Dx(c) < 0.5 with zero or low colocation gain
might be realistic for storage, where lots of data just sits around, but process-
ing of more than half of the available quantities without much data I/O can
hardly be expected. When combined facilities consider risk-aware customers
or those with legal restrictions in their site selection (Scenario 2), DSS exis-
tence requires a lower share of processing without much data access. Never-
theless, also this lower share – a quarter of the demand – is not very likely.
is is reĘected in the poor range of pure processing services today. In con-
clusion, the coexistence of storage centers and combined facilities (DSS) is a
possibility while the persistence of exclusive processing centers is unrealistic
(but could become an option in a very large market, see Section 5.7). Sepa-
rate storage services exist in today’s market with object storage like Amazon
S3, which is reported to store over a trillion objects [8]. It is difficult to esti-
mate the amount of actual storage demand, but assuming an average size of
100 kilobytes per object, this sums up to 100 petabytes. Each of the suspected
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450 000 blade servers in use for EC2 [69] would require an average of 240 GB
of disk space to generate the same amount of combined storage demand. is
means that separate storage demand appears to be high enough in order that
corresponding storage facilities are large enough to be competitive in separate
locations. It depends on the amount of separate storage which actually takes
place in separate facilities today, whether the market converges to a situation
where these separate facilities (still) exist.

With respect to the large shares of combined services like Amazon EC2 in
the current market, the possibility of a market where processing and storage
takes place in completely separate facilities (ESS 2) is a rather academic option.
It also requires massive improvements of latencies and bandwidth for data
access over the Internet for such a stable market situation to exist.

5.7 Discussion of the Model

is section discusses further aspects of the presented model for clariĕcation
and starting points for future research.

5.7.1 Preference of Combined Demand

e ĕtness function of colocated facilities suggests that any demand such a
facility provides is preferably combined demand. In theory, it could provide
clients with independent storage and processing demands while some com-
bined demand is still met in separate facilities. Limiting the inĘuence of a
colocation gain to Dx(c) > Sx(c) underestimates the ĕtness of strategy c in
such a case. But separated facilities feature better EoL and can offer lower
charges whenever the colocated strategy does not feature better EoS of the
same magnitude. As clients with independent demand do not beneĕt from
a colocation of services, they are expected to generally prefer separated facili-
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ties if they can offer lower prices. If the EoS advantage of colocated facilities
is higher than the competitor’s EoL advantage, this results in higher ĕtness of
c anyways.

5.7.2 Several Facilities per Strategy

As described in Section 5.4, the mixed strategy of the player reĘects market
shares of the pure facility strategies. ose shares can be formed either by
providers that exclusively follow one pure strategy (as modeled previously)
or by providers that follow a mixed strategy. For instance, there might be
one provider that operates both facilities s and p and another provider that
operates facility c. is hardly affects the model presented so far. Another
option, though, is the existence of several facilities of the same type that pro-
vide the share of a strategy together. In comparison to a single huge facility,
this results in smaller EoS for each facility, which means a lower average ĕt-
ness of this strategy. is affects the constraints that lead to speciĕc stable
state and especially reduces the likelihood that highly segmented strategies
are successful. e model currently does not include unbalanced scattering
of the strategies’ market shares. Such scattering would affect the gradient of
EoS over market share and thus alter the thresholds in Section 5.4.4. Possible
EoS (Section 5.6.1)might not be reachedwhenmany facilities follow the same
strategy as the market is of limited size. is could also affect the existence of
the stable states.

5.7.3 Very Large Facilites

Economies of scale appear to reach a maximum at today’s facility sizes (Sec-
tion 3.4). In an even larger market, this results in an initial strong increase of
EoS that more and more Ęats out over facility size (market share): e larger
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the market gets, the less important do scale economies become compared to
locational gains. ismeans for the processingmarket thatDSS exists for even
higherDp(c) and is reached at accordingly low shares of p. Assuming the ini-
tial market entry barrier of reaching this share can be taken, locally separate
processing becomes more likely in the future.

5.7.4 Applications Other than IaaS

While the proposed market model is applied to IaaS in this chapter, it ap-
proaches specialized vs. diversiĕed product strategies in general. Its adapta-
tion to similar problems, which also may involve more than two service types,
should be possible without much difficulty.
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”Prediction is very difficult,

especially about the future.”

– Niels Bohr

6 Cloud Infrastructure and the

Future Internet

6.1 Introduction

I traffic has increased over the last years not only because of a
growing user base, but also because data-intensive services (e.g. video
streaming) have become more common [24]. e delivery of such con-

tent causes a lot of data transfer in the Internet backbone. is traffic can
be reduced by caching technologies, which prevent repeated transport of the
same data over long distances and also provide a better user experience due
to lower latencies. While caching is of beneĕt to both the Internet Service
Provider (ISP) and the Content Provider (CP), they utilize caching indepen-
dently. ISPs may cache for internal optimization and many CPs make use
of specialized Content Distribution Networks (CDNs) to improve user experi-
ence.

is chapter analyzes a business model for a cooperative caching solution
where ISP and CPs share the caching cost and in consequence the ISP caches
more data. is reduces traffic and hence cost of the ISP’s network and in-
creases the distribution of content at the same time. e question is whether
or not such a business model can prevail in the market and under what condi-
tions it may exist.
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Our studies are of high importance in a cloud context. While today cloud
computing relies on the power of big data centers, several studies have already
pointed out the beneĕts of having distributed clouds, e.g. [98]. In such envi-
ronments, ISP caching and CDNs can be Ęexibly managed according to de-
mand by making use of cloud storage facilities.

We propose game-theoretic models for both the feasibility of the business
models as well as the potential resource allocation in the cloud. Further, we
investigate the long-term incentives of such a paid ISP caching service in a
third, repeated game.

e remainder of this chapter is organized as follows. Similar research is
presented in Section 6.2. Section 6.3 gives important background informa-
tion about caching today and describes the considered business models. Two
game-theoretic models are set up in Section 6.4 in order to analyze the fea-
sibility of the business models as well as the resource allocation in the cloud.
Section 6.5 investigates Nash equilibrium and Pareto optimality conditions
in these two games. e long-term incentive of CPs to pay for ISP caching is
discussed in Section 6.6 and Section 6.7 concludes the chapter.

6.2 RelatedWork

e importance of the ISPs’ involvement in cache deployment is becoming
evident as CPs like NetĘix, who have been using CDNs for a long time, are
now deploying their own caches within the ISPs’ networks [75]. Some state-
of-the-art research studies the ISPs’ involvement in the caching process; most
however neglect the business aspects and target the study more from a re-
source perspective. For instance, a technical solution for ISP-driven caching
that takes the role of a CDN is presented in [22], for instance. Although the
system implies a business model similar to the one that we investigate in this
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chapter, only the efficient use of network resources is evaluated. A similar
approach is taken in [53], where the placement, size and number of caches is
analyzed in an ISP-operated CDN.

Several papers study possible cooperations between ISPs and CPs at a con-
trol level. e authors in [52] look into different approaches that an ISP can
take in managing traffic engineering and server selection, ranging from run-
ning the two systems independently to designing a joint system. e surpris-
ing conclusion from this work is that in the case of two independent systems,
extra visibility between the two systems results in a less efficient outcome.
Server selection and traffic engineering is also studied in [30]. Although these
publications study the cooperation between ISPs and CPs, it is important to
highlight that their focus is on cooperation from a control perspective, while
ours is on a cooperation in cost of the caching system.

ere is also important research that investigates other interactions in the
market. Reference [32] studies how the cooperation between ISPs can in-
Ęuence transit traffic costs with respect to the cached content in a scenario
where ISPs have caching capabilities. Two game-theoretic models for coop-
erative caching are put forward: one where the ISPs follow a selĕsh strategy
and another where the interests of the neighboring ISPs are also taken into
account. e results show that by cooperating, ISPs can achieve considerable
gains, even if they follow a selĕsh strategy. e gains can further increase
when also taking the neighboring ISPs’ interests into consideration. e au-
thors in [56] also aim at a more efficient routing by the combination of a non-
uniform bandwidth pricing by the ISP with a CDN-side cost-aware routing.
Other work focuses on the self-interaction within ISPs or CPs themselves, e.g.
[94], [66] and [95].
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6.3 Background

emain beneĕt of caching lies in the reduction of redundant traffic, which is
caused by repeated requests and delivery of the same data. Especially for the
ISPs, cachingmeans less transit or peering costs due to reduced traffic volumes
Ęowing outside their networks. In this chapter, traffic Ęowing outside an ISP’s
network is deĕned as distant traffic, whereas traffic within the ISP’s network
is considered as local traffic. In addition, caching may also reduce local traffic,
however, due to its minor signiĕcance compared to distant traffic costs, this
chapter ignores this effect.

From a CP’s perspective, caching may reduce latency for its end users due
to the proximity of the cache servers to the end users. Similarly, the end user
perceives the ISP’s service quality to improve with caching.

As a consequence of the increasing importance of caching, different exist-
ing caching technologies are operating in parallel. In addition, new technolo-
gies that utilize caching are being developed. is section gives a brief intro-
duction to the caching technologies and explains the assumptions adopted in
this chapter.

6.3.1 Caching Technologies

Web Caching

Web caching can be considered as the ĕrst caching technology in the market.
e demand for web caching became evident over a decade ago [13] when the
usage of the World Wide Web increased dramatically. e idea is to temporar-
ily cache web sites in the proxy servers or in end users’ browsers to more effi-
ciently serve the subsequent requests. In addition to the ISP controlled proxy
caching, web caches can also be deployed by the content providers closer to
the content servers to offer origin server load balancing. e difference com-
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pared to CDNs and cloud storage lies in the web caching being limited to web
pages, as well as the temporary nature of the cache storage. Furthermore, web
caching is done in a transparent manner, which means that the ISPs cache
web pages without any agreements with the CPs.

Content Delivery Networks

A CDN [29] operates as an overlay to the basic Internet and divides the end-
to-end connection into two pieces: one between the CP and the CDN servers,
the other between the CDN servers and the end users. e CDN provider
co-locates its data centers into the ISP’s network and caches the CP’s content
based on the contract type: either the content is cached aer it is requested
for the ĕrst time or the CP can push certain content into the cache before it is
requested [29].

Due to the traditionally high prices of CDNs, CPs typically use CDNs to
serve only the heavy or time-sensitive content, whereas other content is served
by the ISP from the origin server. However, the situation is changing as the
CDN prices are dropping [86]. In addition, the proportion of data that is
not served by the CDNs is negligible compared to the heavy content that is
delivered through the CDNs. us, this chapter assumes that when CDNs are
used, all content is served from the CDN servers.

Traditionally, CDNs [101] are operated by third-party CDN providers,
which are here called pure-play CDNs. In addition, CDNs used to have
settlement-free peering agreements with smaller ISPs for co-locating the data
centers [34]. However, the relationships are changing and ISPs are increas-
ingly charging CDN providers for the co-location service [67][103]. Other
changes are also taking place today: for example, ISPs andCPs are increasingly
building their own CDN networks [99][11][43][36]. As a response, the pure-
play CDN providers are offering CDN licenses to ISPs [85]. In addition, the
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CDN providers are working towards interconnectivity between themselves
through initiatives such as CDNi [84].

Cloud Storage

Cloud computing [102] is a paradigm for better and easier hardware and so-
waremanagement. Clouds are pools of virtualized resources, such as soware,
hardware and services, that can be easily accessed. e idea of the cloud is to
move the infrastructure to the network, which reduces the costs of resource
management and offers better scalability and Ęexibility.

e cloud paradigm offers mainly three service categories: IaaS, platform
as a service (PaaS) and soware as a service (SaaS). In the caching case, only
IaaS is relevant, where a Cloud Storage Provider (CSP) virtualizes its resources
so that they can be split and assigned dynamically to the customers. Typically,
the customer is charged only for the actually used storage and the service level
agreements (SLAs) guarantee the quality of service.

In-network Caching

Furthermore, in-network caching schemes, such as ISP-driven caching and
information-centric networking [3], are widely researched. With in-network
caching, the content is cached in the network elements, e.g. routers and
servers, when it passes through.

In ISP-driven caching, the ISPs place cache servers or caching enabled
routers into their own network and cache the content either transparently or
according to agreements with CPs. In addition, the ISP can choose to uti-
lize a third-party storage provider (e.g. a CSP) or build their own caching
infrastructure. Information-centric networking operates with a similar con-
cept. However, in information-centric networking, routing is done based on
content names instead of host addresses [3].
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6.3.2 Assumptions

is chapter assumes a simpliĕed content delivery ecosystem with only CPs,
ISPs, CDNs, CSPs and end users, the value network of which is illustrated
in Figure 6.1. e value network shows the exchanges between each of the
stakeholders divided into 1) content transfer, 2) monetary transfer and 3) in-
tangible beneĕts. e two caching schemes considered in this chapter are ISP-
driven caching and pure-play CDNs due to their high impact in the current
content delivery market.

Content provider Consumer

Content transfer
Monetary transfer
Intangible benefits

ISP

CDN

Cloud storage

Cache

Information

Figure 6.1: Value network.

From an ISP’s perspective, it has two strategic decisions regarding caching.
First, it has to decide whether to cache or not. If the ISP decides to cache, it
has to decide how to price the caching service. e third decision relates to
whether to buy caching services from a third party or build their own caching
infrastructure. e ĕrst two decisions combine into three business models: 1)
Basic service, 2) ISP internal network optimization and 3) ISP-driven caching
service. e three business models are brieĘy explained here.
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Business Model 1 – Basic service: e ĕrst business model represents a situa-
tion in which the ISP decides not to deploy caching and stays in its
traditional market: access provision and traffic transmission. In this
business model, the ISP charges the CPs only for the network access
and offers a best-effort service. If the CP wishes to improve theQuality
of Experience (QoE) to its end users, it can either deploy its own caching
system or buy the service from a CDN. For example, Google is a con-
tent provider that has its own caching system [43] and MTV Networks
uses Akamai’s services [4].

Business Model 2 – ISP-internal network optimization: Business Model 1 does
not fully complywith the current situation of the network, becausemost
ISPs employ caching at some level, e.g. web caching. us, the second
business model explains a situation in which the ISP caches content
but does not charge CPs for the caching service. e incentive for the
ISP is in reducing costs through optimizing its own network and reduc-
ing transit traffic volume. In this situation, the CP pays the ISP for the
network access and the traffic volume in the traditional way. e dif-
ference compared to Business Model 1 is that the CP does not have a
direct relationship with the CDNs, though the actual caching could also
be outsourced to CDNs or CSPs.

Business Model 3 – ISP-driven caching service: In the third business model,
ISPs are offering caching services to the CPs for an extra fee. e CPs
can be charged based on the amount of cached data, the traffic volume
generated by the caches or the combination of the two. In all three
charging models, the CP contracts only with the ISP. However, the
actual caching could be done by a third party as explained above. We
assume that the ISP charges by bandwidth since the ISP pays for the
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bandwidth required for transit as well and ISPs are trying to save in
transit costs by caching the content.

We assume the existence of peering or transit agreements between multiple
ISPs, which allow one ISP to offer caching services that go beyond its network.
us, the CP has a business relation with only one ISP, which we can assume
to be its local one. In addition, this chapter assumes that the ISPs do not have
existing caching infrastructure and need to build the caching service before
offering it to the CPs.

6.4 Game-Theoretical Setup

is section provides two separate gamemodels that represent the interaction
of ISPs and CPs regarding the different business models and the resource al-
location interaction between ISPs and CSPs.

6.4.1 Business Model Game

In the following, we want to identify conditions under which the business
models that are presented in Section 6.3 can exist as an equilibrium in amarket
situation.

A simple two-player-game with ISP and CP as the players is set up to com-
pare the different payment models. e ISP can choose to either route all
data requests to the CP or to install caches and meet requests from there. (We
neglect the time that is needed to deploy the caching service for now and ad-
dress this issue in Section 6.6.) e CP can choose between a traditional In-
ternet service (Business Models 1 and 2), a service that involves a payment
for caching (Business Model 3) and the utilization of a CDN (ISP’s competi-
tion for caching). e resulting situation depends on the decisions of both
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parties. Each decision combination features a speciĕc utility for each player
as a measure of how valuable the resulting situation is (higher is better).

Figure 6.2 depicts the normal form of the game setup. e upper le corner
represents Business Model 1, the upper right represents Business Model 2. In
themiddle le, the CP is willing to pay for caching but the ISP does not decide
to cache. Business Model 3 can be found in the middle right. U and V denote
CP’s and ISP’s utilities.

ISP

Don’t Cache Cache

CP

Traditional
U1

V1

U2

V2

Pay for Caching
U3

V3

U4

V4

CDN
U5

V5

U6

V6

Figure 6.2: Utility matrix of the payment model game. Each decision combination
results in a situation of speciöc value to CP and ISP.

All utilities depend on billing: the ISP prefers a higher payment by the CP
while for the CP a lower payment is more valuable. e ISP’s utility is reduced
by any operational expenses. In the following, the utility functions for the
different outcomes of the game model are presented.

e traditional Internet service payment depends on the required band-
width b. We assume this bandwidth to consist of a short routing distance com-
ponent blocal and a long routing distance component bdistant (b = blocal+bdistant).
Both blocal and bdistant cause costs in the local network (clocal), while bdistant also
causes additional transit costs (cdistant).
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When the ISP is caching, all distant demand can bemet without transit traf-
ĕc by a nearby cache. In reality, some amount of data is most likely delivered
over the full distance until it is cached. We consider this amount of traffic as
negligible compared to the overall traffic. Hence, in the case of caching, the
requests that are otherwise associated with bdistant never reach the CP but are
entirely served from a local cache.

e ISP charges pisp as a price for bandwidth. In Business Model 1, this
utility is decreased by costs in the local network and long-distance transfer
(Equation 6.1). In Business Model 2, the ISP has to pay for storage instead of
long-distance transfer, cstorage is the cost of data hosting (Equation 6.2). e
CP only pays for blocal and beneĕts from better QoE. QoE+ is the value of this
improvement to the CP.

U1 = −b · pisp

V1 = b · (pisp − clocal)− bdistant · cdistant
(6.1)

U2 = −blocal · pisp + QoE+

V2 = blocal · pisp − b · clocal − cstorage
(6.2)

e CDN option comes with a service fee for bandwidth pcdn and storage
pcdn−storage. We assume that all data requests (including local requests) are
met by the CDN and the CP does not obtain any bandwidth from the ISP di-
rectly. Similar to ISP caching, all demand can bemet from a local CDN server
without the long-distance transfer. is provides a good user experience irre-
spective of the ISP’s action. We further assume the QoE to be the same as
with ISP caching. e ISP saves long-distance transfer costs and we assume
that it charges the same bandwidth price from the CDN as it usually charges
from the CP (Equation 6.3). Caching when the content is already distributed
over the network obviously only causes costs to the ISP without any beneĕt
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for either parties (Equation 6.4).

U5 = −b · pcdn − pcdn−storage + QoE+

V5 = b · (pisp − clocal)
(6.3)

U6 = U5

V6 = V5 − cstorage
(6.4)

When the service stipulates a caching payment, this does not imply that the
ISP actually decides to cache. As the payment is usage-based, no caching fees
have to be paid when the ISP is not caching. In this case, the utilities for the
service are the same as those of the traditional service when we assume the
same bandwidth price (Equations 6.5).

In Business Model 3, where caching actually takes place, utilities are based
on the service fee for cache bandwidth pcaching that the ISP charges the CP.

U3 = U1

V3 = V1

(6.5)

U4 = U2 − bdistant · pcaching

V4 = V2 + bdistant · pcaching
(6.6)

6.4.2 Resource Allocation Game

When an ISP adopts caching, it can either build its own caching infrastructure
or buy the caching capability from third parties. ese third parties include
traditional hosting service providers andCSPs. is section investigates using
game theory whether the utilization of third-party hosting or the operation of
own caching facilities is more feasible.
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e basic idea is that third parties can offer storage cheaper due to better
economies of scale, especially compared with smaller ISPs, but the ISPs may
have to compromise on the cache location. Storage providers, on the other
hand, might consider this possibility in their data center site selection in or-
der to gain ISPs as their customers. However, in this chapter, despite the re-
duced Ęexibility in location choices, the caching system from a third party is
assumed to offer the same QoE for end users as an ISP’s own caching system.
(Section 6.5.6 discusses the impact on the analysis results when this assump-
tion is not made.) In addition, if the third party is cheap enough and savings
over an own caching facility exceed extra traffic costs, the ISP has an incen-
tive to use the third-party storage provider. Both the ISP and the third-party
provider have to beneĕt from a situation, where the third party is involved in
ISP caching or this is not likely to happen.

Another two-player-game with ISP and a third-party CSP as the players is
set up. As discussed in Section 6.3, the ISP might operate own storage equip-
ment or utilize third-party facilities (e.g. a cloud storage service). eCSP can
either optimize economies of scale or partition its facilities in order to place
them in several locations within the ISP’s network that are more appropriate
for caching. Figure 6.3 shows the normal form of the game. W denotes the
CSP’s utility.

e utilities depend on the price that is asked for some amount of storage,
storage costs and the amount of stored data. e model distinguishes the data
that the CSP stores for other clients dtp and the amount of data that the ISP
caches disp. Storage in its own facilities costs the ISP an amount of cstorage. e
CSP asks ptp-storage for storage and the production cost of CSP storage is de-
noted by ctp-storage. When the location is chosen for best size, the production
costs of the CSP are reduced due to economies of scale. e cost reduction
compared to the location that is best for caching is represented by the coeffi-
cient EoS. For instance, EoS = 0.9means a 10 percent decrease of production
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ISP

Own Infrastructure Third Party

CSP

Best Size
W7

V7

W8

V8

Best Location
W9

V9

W10

V10

Figure 6.3: Utility matrix of the cache hosting game.

cost, EoS = 1means that no economies of scale apply. Accordingly, the CSP’s
utility varies with the location of its facilities, while the ISP’s utility is not af-
fected as long as the ISP uses its own storage facilities (Equations 6.7 and 6.8).

W7 = dtp · (ptp-storage − ctp-storage · EoS)

V7 = −disp · cstorage
(6.7)

W9 = dtp · (ptp-storage − ctp-storage)

V9 = −disp · cstorage
(6.8)

When the CSP serves the ISP for caching, the additional demand increases
the CSP’s revenue (Equations 6.9 and 6.10).

W8 = (dtp + disp) · (ptp-storage − ctp-storage · EoS)

V8 = −disp · ptp-storage − bdistant · ctp-transfer
(6.9)

W10 = (dtp + disp) · (ptp-storage − ctp-storage)

V10 = −disp · ptp-storage
(6.10)
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Instead of the cost for own equipment, the ISP pays a service fee. e ISP has
additional network transfer cost ctp-transfer when the CSP chooses to optimize
economies of scale and places facilities in a relatively remote location. is
affects all distant data requests, which is bdistant. We assume that the CSP’s fa-
cility is still close enough, though, to have no signiĕcant impact on the quality
of experience to the end user. We also assume that the ISP does not charge
the CSP for cache-related traffic.

6.5 Game Analysis

Section 6.4 presented two game-theoretic models regarding ISP-driven
caching. is section identiĕes the conditions for Nash equilibria and
Pareto-efficient outcomes in these games.

6.5.1 Equilibria in the Business Model Game

A Nash equilibrium describes a situation where no player can unilaterally de-
viate to any better outcome (Section 2.2). Now, we examine which outcomes
can be equilibria in the business model game and under which conditions.

(CDN, Don’t Cache) is an equilibrium if U5 ≥ U1 = U3 (CP should not
deviate) and if V5 ≥ V6 (ISP should not deviate). e second is always true
because caching facilities do have a cost, i.e. cstorage ≥ 0. e ĕrst condition
requires that the CP values the QoE improvement more than the additional
costs incurred to the CDN compared to the traditional service (Inequality
6.11).

U5 ≥ U1

⇔ QoE+ ≥ b · (pcdn − pisp) + pcdn−storage
(6.11)
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Business Model 1 (traditional service without caching) is an equilibrium if
U1 = U3 ≥ U5 and V1 ≥ V2. e ĕrst condition is exactly the opposite as
before; it holds when Inequality 6.11 is false). Second, the caching of a data
object by the ISP is more expensive than the difference between transfer costs
of associated bandwidth and the loss of sales of this bandwidth (Inequality
6.12).

V1 ≥ V2

⇔ cstorage ≥ bdistant · (cdistant − pisp)
(6.12)

Business Model 2 (caching without charging) is an equilibrium if U2 ≥ U4,
U2 ≥ U6 and V2 ≥ V1. e last condition is again the opposite of what we
had before, and it is satisĕed when 6.12 does not hold. e ĕrst condition is
satisĕed trivially since the price of caching is positive, i.e. pcaching ≥ 0. e
second condition requires that the ISP’s price for local bandwidth is smaller
than the overall price for the CDN (Inequality 6.13).

U2 ≥ U6

⇔ b · pcdn + pcdn−storage ≥ blocal · pisp
(6.13)

We expect this to always hold since we assumed that the CDN provider has to
pay the ISP’s bandwidth price. If the CDN provider were to set the prices so
low that Inequality 6.13 holds, then its service would not be proĕtable.

Business Model 3 is an equilibrium if U4 ≥ U2, U4 ≥ U6 and V4 ≥ V3.
e ĕrst condition never holds and thus Business Model 3 cannot be an equi-
librium. However, the last condition is satisĕed when the proĕt that the ISP
might have from charging the CP directly for the bandwidth is smaller than
the proĕt from caching. is is the case when the cost for storage is lower than
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the increase in revenue (Inequality 6.14).

V3 = V1 ≤ V4

⇔ cstorage ≤ bdistant · (cdistant − pisp + pcaching)
(6.14)

Finally, (Pay for Caching, Don’t Cache) can be an equilibrium if U3 ≥ U5

(Condition 6.11 does not hold) and V3 ≥ V4 (Condition 6.14 does not hold).
is happens when the ISP prefers not to cache over Business Model 3 and
the CP prefers the ISP services over the CDN. is outcome is equivalent to
Business Model 1 when considering the utilities and the caching situation, al-
though it is maybe better regarded as a failed Business Model 3 since the CP
apparently intents to beneĕt from caching but caching does not take place.

We can make the following observations. Whenever the ISP prefers Busi-
nessModel 2 over 1 (Inequality 6.12 is notmet), it also prefers BusinessModel
3 over (Caching, Don’t Cache) (Inequality 6.14). Whenever the ISP prefers
(Caching, Don’t Cache) over Business Model 3 (Inequality 6.14 is not met), it
prefers Business Model 1 over 2 (Inequality 6.12). Business Models 1 and 3
can be preferred by the ISP at the same time (at different CP actions), which
is maybe the most interesting case (see 6.5.5).

6.5.2 Pareto Optimality in the Business Model Game

An outcome is called Pareto-optimal or Pareto-efficient when no other out-
come can be found that would improve one player’s utility withoutmaking the
others worse off [81]. We examine under which conditions Business Model 3
is Pareto-optimal.

Pareto optimality requires that there is no (Ui, Vi) such that Ui ≥ U4 and
Vi ≥ V4 and at least one of the inequalities should be strict. A sufficient
condition is that Ui < U4 or Vi < V4 for all i ̸= 4. Since V2 < V4 and (CDN,
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Don’t Cache) Pareto-dominates (CDN, Cache) (sinceU5 = U6 and V5 ≥ V6),
we do not need to consider cases when i = 2 or i = 6. We also do not need
to consider case i = 3 since the utilities are the same as when i = 1. us,
Business Model 3 is Pareto-optimal when Business Model 1 and (CDN, Don’t
Cache) offer a lower utility than Business Model 3 to either party: (U1 < U4

or V1 < V4) and (U5 < U4 or V5 < U4).

e condition for V1 < V4 was presented in Inequality 6.14. U1 < U4

holds when the improved user experience is more valuable to the CP than
the difference of caching and Internet service price (Inequality 6.15). is
depends on the individual case and someCPsmaymeet this condition at given
prices while others do not value user experience enough.

U1 < U4

⇔ QoE+ > bdistant · (pcaching − pisp)
(6.15)

For V5 < V4, the difference in revenue from caching and Internet service
has to exceed the caching cost (Inequality 6.16).

V5 < V4

⇔ cstorage < bdistant · (pcaching − pisp)
(6.16)

U5 < U4 holds when the charges by the ISP are lower than those of the
CDN (Inequality 6.17). With the bandwidth payment model, this requires
the CDN’s price for storage to be at least as high as the difference between the
bandwidth prices of the ISP and the CDN.

U5 < U4

⇔ bdistant · (pcaching − pcdn)− blocal · (pcdn − pisp) < pcdn−storage
(6.17)
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Business Model 3 is Pareto-optimal when either Condition 6.14 or Condi-
tion 6.15 holds and additionally either Condition 6.16 or Condition 6.17 is
met. is can be achieved with an appropriate pricing for ISP caching. For
instance, under the assumption that the CDN charges more for bandwidth
than the ISP charges for its Internet service (pisp ≤ pcdn), Condition 6.17 al-
ways holds when the ISP charges no more for cache bandwidth than the CDN
(pcaching ≤ pcdn) and at that price Condition 6.14 holds for CPs that require a
distant bandwidth sufficiently high. Some CPs with a lower bandwidth may
instead value user experience enough to meet Condition 6.15. Further, note
that when Condition 6.16 is met, Condition 6.14 is also met.

6.5.3 Equilibria in the Resource Allocation Game

Now,we determine equilibriumoutcomes and their conditions in the resource
allocation game from Section 6.4.2.

(Best Size, Own Infrastructure) is in equilibrium when W7 ≥ W9 and
V7 ≥ V8. e ĕrst conditions holds when there actually are economies of
scale compared to the location that is best for caching (Inequality 6.18). e
second condition is met when the additional transfer cost of cached data is
higher than the savings from cheaper storage (Inequality 6.19).

W7 ≥ W9

⇔ EoS ≤ 1
(6.18)

V7 ≥ V8

⇔ bdistant · ctp-transfer ≥ disp · (cstorage − ptp-storage)
(6.19)

An equilibrium in (Best Location, ird Party) requires W10 ≥ W8 and
V10 ≥ V9. For the ĕrst condition, there must be no economies of scale to the
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CSP (Inequality 6.20). Second, the price for CSP’s storage has to be cheaper
than own storage facilities (Inequality 6.21).

W10 ≥ W8

⇔ EoS ≥ 1
(6.20)

V10 ≥ V9

⇔ cstorage ≥ ptp-storage
(6.21)

(Best Size, ird Party) is in equilibrium when V8 ≥ V7 and W8 ≥ W10.
ese conditions are the opposites of Conditions 6.19 and 6.20.

(Best Location, Own Infrastructure) is in equilibrium when V9 ≥ V10 and
W9 ≥ W7, which are the opposites of Conditions 6.21 and 6.18.

Under the assumption that there are economies of scale to the CSP, Con-
dition 6.18 always holds and Condition 6.20 never holds, which means that
the best size strategy dominates the best cache location strategy of the CSP.
Accordingly, which of the two resulting outcomes is in equilibrium solely de-
pends on whether the CSP service is cheap enough to outweigh the additional
transfer costs (whether Condition 6.19 holds or not).

6.5.4 Pareto Optimality in the Resource Allocation Game

Section 6.5.3 presented that there cannot be an equilibrium where the CSP
chooses cache-appropriate facility locations. We now investigate whether
(Best Location, ird Party) can be Pareto-optimal (as introduced in Section
6.5.2).

Pareto optimality requiresWi < W10 orVi < V10 for all i ̸= 10. Unilateral
changes away from (Best Location, ird Party) cause lower utilities to either
the ISP or the CSP by deĕnition: W8 < W10 holds since the ISP’s utility
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is reduced by additional network transfer cost and V9 < V10 holds because
when the ISP does not use the CSP’s service, the CSP has less revenue.

Accordingly, (Best Location, ird Party) is Pareto-optimal when W7 <

W10 or V7 < V10. For the ĕrst condition, the proĕt from the service us-
age by the ISP has to be higher than the additional costs due to the sacriĕced
economies of scale (Inequality 6.22). e second condition is met, when the
price for CSP storage is cheaper than own storage facilities (Inequality 6.23).

W7 < W10

⇔ disp · (ptp-storage − ctp-storage) > dtp · ctp-storage · (EoS − 1)
(6.22)

V7 < V10

⇔ cstorage > ptp-storage
(6.23)

Since the CSP’s service price is the only common factor of these conditions,
the outcome can be Pareto-optimal whenever the other factors allow a price
that fulĕlls both conditions. Such a price exists whenever caching data in ISP
facilities over CSP facilities causes extra cost that is larger than the extra cost
the CSP has, when is stores all data of other customers at the lower economies
of scale of a caching-friendly location (Inequality 6.24).

disp · (cstorage − ctp-storage) > dtp · ctp-storage · (EoS − 1) (6.24)

is condition holds if the amount of cached data disp is sufficiently high.

6.5.5 Discussion of the Business Model Game

e analysis of the business model game shows that ISP caching where CPs
participate in costs (Business Model 3) cannot be in equilibrium, which dis-
courages the business model of selling ISP-operated caching. On the other
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hand, there are possible equilibria in most other outcomes with different con-
ditions for costs, prices and the ratio of local-to-distant bandwidth. When
these conditions are met, Business Model 3 appears even less likely.

Suppose that the CP prefers Business Model 1 over the CDN. When the
ISPs would offer a lower bandwidth price pisp for the service that includes
a cache payment, this gives CPs an incentive to switch to this service. Ac-
cordingly, Business Model 1 cannot be an equilibrium. Suppose that the ISP
prefers Business Model 3 over not to cache and Business Model 1 over Busi-
ness Model 2 (caching is only reasonable when CP pays). en either the CP
or the ISP has an incentive to switch strategies in the four upper market out-
comes in Table 6.2 (counter-clockwise loop), which means that none of these
states is in equilibrium.

Another possibility to encourage CPs to pay for caching could be the com-
plete abolition of the traditional service. CPs would have to change their ISP
in order to make a contract where they are not charged for caching. Since the
CPswould thereby loose the beneĕts from the caching service, this would also
prevent the incentive to deviate from Business Model 3. On the other hand,
not offering the traditional service option could drive away many CPs. Sec-
tion 6.6 investigates how Business Model 3 can be supported while holding
onto both contract options.

Unstable market conditions where the ISP is not constantly caching cre-
ate Ęuctuating QoE and cache payment. Assuming that CPs and ISPs want
to avoid such discontinuities, they will likely agree on a convenient outcome.
When it is Pareto-optimal, Business Model 3 can be reasonable despite not
being in equilibrium since it prevents any temporary market situations at the
expense of either party. Even in case of other equilibria, e.g. in favor of the
CDN, the improved utility that the Pareto-optimal outcome might offer to
both ISPs and CPs would encourage such a cooperation. Note, however, that
maybe not all CPs meet the Pareto-optimality conditions at the same time.
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6.5.6 Discussion of the Resource Allocation Game

Although (Best Location, ird Party) cannot be an equilibrium of the re-
source allocation game, it can be Pareto-optimal (Section 6.5.4). erefore,
the use of third-party storage for ISP-operated caching is an option that might
inĘuence the placement of these storage facilities within the ISP network.

e CSP has no incentive to switch its facility location when it expects the
ISP to anyways utilize a remote CSP’s service, i.e. (Best Size, ird Party). In
(Best Location, Own Infrastructure), on the other hand, the ISP possibly has
an incentive to switch to the CSP’s service. Accordingly, the CSP is in charge
to induce the desired situation. Since storage facilities cause huge capital ex-
penditures and actually switching back and forth can be very expensive, agree-
ments (e.g. long-term contracts) foregoing accomplished facts are advisable.

We assumed that the third party location has no effect on end-user ex-
perience. However, it possibly suffers to some extent when a remote, size-
optimized CSP’s facility is used for caching. A noticeable QoE decrease could
negatively inĘuence the ISP’s utility in Inequality 6.9 because it weakens the
ISP’s selling point of a service with caching. is changes the equilibrium con-
ditions and (Best Size, Own Infrastructure) becomes increasingly preferable
over (Best Size, ird Party) for the ISP the worse QoE become. In contrast,
the Pareto optimality of the cache-friendly location strategy is not negatively
inĘuenced by such a utility change.

e investment in storage facilities is an especially important factor regard-
ing the assumption that ISPs build the caching service on-demand. In case
of an own infrastructure, the deployment and modiĕcations of e.g. capacity
take some time during which the CPs would have to wait for the service to be
operational. is is further discussed in Section 6.6.
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6.6 After Cache Deployment

6.6.1 Storage Elasticity and Problem Description

e resource allocation game introduced in Section 6.4 investigates whether
an ISP should use third-party storage or build its own facilities for caching.
ese two possibilities not only differ in price and location but also in Ęexi-
bility. is has some important consequences once the caches are installed,
which are investigated in this section.

When the ISP uses elastic cloud storage, the amount of cache storage can
be scaled according to the demand. Most important, caches can be abolished
once a CP stops paying for them. (e third party can then use the free capac-
ity for other clients.) When the ISP invests in its own caching facilities, though,
the ISP has an incentive to use all the installed capacity irrespective the pay-
ment by the CP since they reduce the network cost. is becomes apparent
when we change the the business model game in Section 6.4 to cover a setting
where the ISP has already set up its own caching infrastructure. In that case,
cstorage also applies in V1, which causes V2 > V1 when cdistand > pisp. Hence,
the threat that the ISP gives up caching when the CP stops paying for it is not
credible anymore when the ISP already operates own caching infrastructure
and in consequence Business Model 2 is a Nash equilibrium.

is change of the setting aer own infrastructure is deployed is not repre-
sented in the game. It could eventually provide free caching to CPs, though,
when there are not enough other paying CPs present. In consequence, the ISP
cannot safely build up a working service and then offer it to the CP. Instead,
the CP would have to give an incentive to the ISP to invest in caching equip-
ment by committing to a service that is not yet working and by agreeing to a
long-term payment. Although this would be preferable over the status quo, it
might be unrealistic since the CPs very likely cannot or do not want to wait
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for the service to be deployed aer the agreement is made – or to make such
a binding contract for a service of unknown real-life performance in the ĕrst
place.

6.6.2 Incentives in a Repeated Game

e results of Section 6.5 suggest that Business Model 3 is not an equilibrium,
since the CP has no incentive to make the payment if the ISP deploys caching.
However, this outcome is Pareto-efficient if the conditions in Section 6.5.2
are met. Now, it is an interesting question whether there is a way to support
Business Model 3 as an equilibrium by changing the game setting such that
the CP has an incentive to pay for the caching solution aer the system is set
up. is would support the ISP’s decision of deploying caching.

e problem with the current game model is that the ISP and the CP make
their decisions independently at the same time and these are one-time choices.
e game model could be improved in many ways to make it more realistic.
For example, the deployment of caching services takes some time, and thus
the ISP ĕrst decides whether or not to deploy caching and aer the caching
system is up and running, the CP decides whether or not to pay for it. is
could be modeled as a two-stage game but it would not change the fact that
the CP has no incentive to pay for caching.

We propose the following solution that gives an incentive to the CP. In the
ĕrst stage, the ISP decides whether or not to deploy caching. If caching is
deployed then they play a repeated game, shown in Table 6.4, where the CP
decideswhether or not to pay and the ISP decideswhether or not to punish the
CP (for not paying). We assume that the ISP can reduce the quality of service
byQoE− such that the CP’s utility gets lower but the ISP still gets the beneĕts
of caching. We also assume that the quality of service cannot go below the
level without caching, i.e. QoE− ≤ QoE+, because a worse service might
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not be acceptable for the CPs and also out of net neutrality considerations
(although any punishment at all could turn out problematic in this regard).
e other utilities are as before, e.g. V4 = V2 + bdistant · pcaching.

ISP

Punish No Punishment

CP

No Payment
U2 −QoE−

V2

U2

V2

Pay
U4 −QoE−

V4

U4

V4

Figure 6.4: Utility matrix of the punishment game.

Now, the outcome with caching and paying can be sustained as an equilib-
rium if the players interact for several periods and they are patient enough,
i.e. they value future utilities enough. e supporting mechanism could, for
example, be a simple trigger strategy. e players are supposed to choose
paying and not punishing unless the other party deviates, which triggers a
punishment. e ISP’s punishment is to degrade the quality of service for the
following periods if the CP did not pay, and similarly the CP can punish the
ISP by not paying if the ISP did not offer a good caching service. We note that
the CP has no incentive to make the cache payment if the payment is higher
than the value of the increase in service quality. erefore, we need to assume
that bdistant · pcaching ≤ QoE+.

Let us now calculate the required level of patience for the CP. For simplic-
ity, we assume that the game is repeated inĕnitely many times and the players
discount the future utilities with a discount factor δ, where 0 < δ < 1. Play-
ing (Pay, No Punishment) inĕnitely many times is a subgame-perfect equilib-
rium if the players should not deviate from the path of play when a deviation
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is followed by the extreme punishment, i.e. playing (No Payment, Punish) in-
ĕnitely many times [2, 16, 17]. So, the path of play should give higher utility
than the best possible deviation, i.e,U4 ≥ (1−δ) ·U2+δ ·(U2−QoE−). e
right term means that utility U2 is received one time and then U2 − QoE−

aer that. From this condition, we can solve the required discount factor
δreq = (U2 − U4)/QoE−. us, the CP should pay for caching if δ ≥ δreq ,
i.e. if the CP is patient enough.

We note that there are also other mechanisms for supporting the (Pay for
Caching, Cache) outcome of the businessmodel game. For example, we could
model the situation as a cooperative game where the ISP promises to deploy
the caching system if the CP pays for it and both negotiate a suitable contract.
However, this means that the ISP would have to negotiate with multiple CPs
for a payment scheme, and it would be more complicated than negotiating
with only one party. It might actually bemore convenient for the ISP to raise a
fund and promise to deploy caching if it can collect enough money from CPs,
e.g. onetime payments or some usage-based contracts. But as pointed out
before, these options require a huge upfront commitment by the CPs. A long-
term incentive to pay for caching may also exist when several CPs compete in
service quality and the ISP’s caching system has a capacity too limited to serve
them all: since the caches of a CP will be replaced by data of another client
when the payment stops, the CP has no incentive to stop paying.

6.7 Conclusions

is chapter contributes a business perspective on ISPs in a caching environ-
ment. We showed that a market where CPs contribute to the cost of ISP
caching (Business Model 3) is potentially unstable: Since the service without
a caching payment is always better for the CP in the case of caching (Busi-
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ness Model 2), there is an incentive to switch the contract once the caches
are installed. However, Business Model 3 can be Pareto-optimal, which gives
ISPs and CPs the incentive to cooperate and establish ISP caching with long-
term contracts and an appropriate pricing. Further, we have shown how ISP
caching can be stabilized in order to work without an upfront commitment
by the CP. Our solution encourages that ISPs willfully annihilate the positive
effects of ISP caching for those clients that do not pay for the system in order
to encourage CPs to pay their share.

Additionally, ISP caching may use cloud services to obtain the required re-
sources. According to our research, it is ĕnancially reasonable that providers
of cloud storage choose an appropriate physical location to encourage this.

Aer our demonstration that ISP caching is a conclusive business model
with mutual beneĕts to both ISP and CPs, further studies have to show
whether content distribution via ISP caching is better from a technical per-
spective than the current practice with CDNs. For instance, a different num-
ber and location of caches could be better for different content (e.g. [21] de-
scribes an optimization regarding client latency and server capacity). Since
ISPs have a higher degree of freedom in cache placement and can co-locate
caching infrastructure with existing network infrastructure much easier than
CDNs, ISPs do not have to compromise as much on the number and place-
ment of caches. Also, because ISPs are in charge of routing, they might cache
more efficiently than CDNs. A combination of strategic cache locations and
clever routing can disperse network capacity utilization and hence keep infras-
tructure costs down for the ISP.

Future studies also have to address caching between networks of several
ISPs. We assume in our business model game that the ISP of a CP takes care
of this, for instance by peering with other ISPs (Section 6.3). While peering
agreements are a possibility for cooperation between ISPs of the same size and
cache utilization, compensation policies in case of unbalanced use of caches
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have to be discussed. Agreements also have to be made in case that individual
ISPs do not participate in caching. Service level agreements and violation
penalties can help to ensure a certain quality of the service between different
ISPs and between ISP and CP as well.
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”The law, always behind the times, requires

elaborate stitching and ötting to adapt it to this

newly perceived aspect of the commons.”

– Garrett Hardin7 Discussion

7.1 Introduction

D  aspects of the IaaS cloud market have been modeled and
analyzed in game-theoretic models throughout this thesis. is last
chapter seeks to piece important results together in order to get the

whole picture of the prospective market development. Section 7.2 derives the
most likely market outcome from the research in this work. It presents key
factors that are signiĕcantly involved in the market forming process. It fur-
ther shows how these crucial points affect who eventually beneĕts from cloud
infrastructure and hence may provide an opportunity for market regulation.
Section 7.3 brieĘy addresses differentmarket forms and Section 7.4 concludes
this thesis.

7.2 A Prospect on the Future of Cloud Infrastructure

Chapter 2 pointed out that the cloud market is quite diverse, today. Despite
that, there is substantial research on how and on what basis computing re-
sources can be allocated from different available services. Recently, the trade
of cloud capacities in a wholesale exchange platform was announced [27].
Such projects require comparable cloud products and similar services can be
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expected to converge to the same standards in order to make them compara-
ble.

According to Chapter 4, a market where two providers offer an identical
service is unstable. Bertrand competition is an established economic model
that shows that a good is sold at marginal cost in a duopoly (Chapter 4). Al-
though themarket can be stable at such a lowprice level, the necessary assump-
tion of identical providers is unrealistic. Differences in size or the ĕnancial
situation of the competitors affect their production cost and lead to destruc-
tive competition. Complex pricing schemes like reserved instances with an
additional on-demand payment are not sufficient to signiĕcantly change the
general outcome of Bertrand competition. is backs the hypothesis of an
emerging monopoly. However, with a two-part cost structure where costs are
different but one provider cannot provide cheaper in general, both providers
can yield positive proĕt in an equilibrium. Two-part and three-part prices
become important in that case.

Furthermore, different applications have different requirements of techni-
cal speciĕcations and a certain variety of different service types is likely. ere
is research that shows that different service qualities of an otherwise identical
service can coexist in a stablemarket [31, 80]. ese different qualities may be
provided by different companies and the existence of established competitors
that may start to offer other service qualities could provide a threat that pre-
vents high prices. Different services that specialize on low latencies or high
memory or something similar can provide the same market segmentation.

Regarding separate processing and storage services, there are good reasons
for exclusive storage and processing services. Nevertheless, only locally sepa-
rated storage facilities appear to be likely for certain applications. Risk aware-
ness or legal restrictions regarding the physical location of data may also pro-
mote the existence of separate processing facilities, though, when storage is
provided from safer but otherwise less attractive locations (Scenario 2 inChap-
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ter 5). Different data center types may be owned by different companies,
which would very likely prevent extortionate prices.

Additionally, future Internet technologies and business models for ISP
caching could also be a reason for several smaller facilities opposed to a con-
centration in a single location. e storage demand of the ISP gives an incen-
tive to the cloud providers to give up economies of scale in order to serve ISPs
in locations that are appropriate for caching (Chapter 6). Lower economies
of scale also reduce the chance of destructive competition as well as the mar-
ket entrance barrier since a smaller provider is able to compete with a larger
provider who runs more of these small facilities.

7.3 Cloud Beneöciaries in Different Market Forms

Unsurprisingly, a monopoly appears not to be a good thing from a client’s
perspective. In a monopoly market where instances are only rented out on-
demand, though, the possibility of hybrid clouds has a huge effect on pricing
(Chapter 3). When the cloud provider rents out instances for a reservation
price over longer durations, the clients most likely cannot reduce their overall
costs by using a hybrid cloud setup at high public cloud prices. Without this
threat, the monopoly on-demand price turns out very high.

In contrast, in a duopoly (or oligopoly) market, the prices presumably are
so low that the client beneĕt exceeds the provider beneĕt by far. On the other
hand, the competing providers may settle with the current market shares at a
high price level. ey can control the market shares quite easily by an accord-
ing pricing (Chapter 4). When the pricing becomes extortionate, this could
require antitrust regulation.



Tragedy
ofthe

Com
m
on

Cloud
|G

am
e
Theory

on
the

Infrastructure-as-a-Service
M
arket

162 7 Discussion

Amarket situation that is advantageous for both sides, clients and providers,
appears to be an oligopoly where each provider specializes in a different ser-
vice (Section 7.2).

7.4 The Tragedy of the Common Cloud

e title of this thesis refers to the Tragedy of the Commons, a famous paper by
GarrettHardin [47]. e core statement is that it is inevitable that limited com-
mon goods are ruined by the selĕsh (rational) behavior of its users because an
abuse by the individual creates a higher beneĕt to the individual than it looses
due to the impairment of the good. Accordingly, games that model such situ-
ations have no inherent solution, which needs to be recognized and corrected
by mutual coercion. e idea of cloud computing is to create a public utility.
e actual cloud resources are not a common property, of course, and it is not
my intention to stress the analogy. Nevertheless, one could consider a brisk
competitive market as a common good to the clients and this market turns
into a monopoly when it is ruined. ere is the need to discuss whether the
concept of cloud computing works for everybody on its own or if we have to
make it work. is thesis is meant as a contribution to this discussion and it
indicates that the market will not regulate itself if one provider becomes pre-
vailing, but this is not inevitable since several different vendors may establish
for the various reasons presented earlier.

Decisions in a cloud context may be inĘuenced by better knowledge of the
market dynamics. Although game theory claims to model real-life decisions,
it is may better regarded as a tool to make these decisions. Economic research
like this thesis provides knowledge that constitutes a basis for sound decisions.
A similar increase of every party’s beneĕt in the cloud market may be unreal-
istic in real life. But at least all involved parties can work towards a fair market
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situation and rules that promote such a situationmay be established bymarket
design.

In the light of the above remarks, this work has shown that there are design
decisions for the emerging common cloud standards that should be carefully
considered, especially regarding an efficient combined use of resources from
different sources. Although providers might promote a de facto standard that
is in their interest, clients can go against this by their demand: Foresighted
clients should consider the combination of separate storage and processing
services and prefer on-demand services that support an operation in hybrid
clouds even if such a setup is not planned at the moment. In addition, the use
of services by providers other than the market leader is encouraged in order
to keep several companies in the market.
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