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Kurzfassung 

 

Die vorliegende Arbeit beschäftigt sich mit der durch Erdalkaliionen induzierten binären 

Aggregation zweier anionischer Azofarbstoffe in wässriger Lösung. Zur Untersuchung dieses 

Selbstaggregationsprozesses bedient sich die Arbeit hauptsächlich der zeitauflösenden 

statischen und dynamischen Lichtstreuung sowie der Röntgenkleinwinkelstreuung. Den 

Ausgangszustand für die Farbstoffaggregation bildet eine stöchiometrische Lösung der beiden 

Farbstoffe in Wasser. Bereits in einer solchen Lösung liegt ein kleiner Teil (< 10 %) der 

Farbstoffmoleküle in Form von Aggregaten mit einer Größe von etwa 50 nm vor, während 

der Großteil der Farbstoffmoleküle in oligomeren Strukturen organisiert ist oder als einzelne 

Farbstoffmonomere gelöst vorliegt. Wird eine solche Farbstofflösung mit einer wässrigen 

Lösung eines Erdalkalisalzes vermischt, so setzt ein Aggregationsprozess ein, der in 

Abhängigkeit von Art und Konzentration der Erdalkaliionen von wenigen Sekunden bis zu 

etwa einer Stunde lang andauern kann. Dieser Aggregationsprozess wird eingeleitet durch 

eine sehr kurze (< 1 s) Nukleierungsphase, die eine bestimmte Anzahl wachstumsfähiger 

Farbstoffaggregate (Nuklei) hervorbringt, welche sich nach Ablauf der Nukleierungsphase 

nicht mehr ändert. Gefolgt wird die Nukleierung durch eine Wachstumsphase, während der 

die Nuklei durch schrittweises Anlagern kleinerer Farbstoffbausteine zu faserförmigen 

Farbstoffaggregaten heranwachsen. Auf diese Weise erzeugte Farbstofffasern können aus 

deutlich über 10
5
 Farbstoffmolekülen aufgebaut sein und Längen von einigen Mikrometern 

erreichen. Sie haben eine Dicke in der Größenordnung von 10 nm. Bei höheren 

Farbstoffkonzentrationen bilden die faserförmigen Farbstoffaggregate zudem verzweigte 

Netzwerke, welche bei sehr hohen Farbstoffkonzentrationen gelartige Eigenschaften 

annehmen. Die Erdalkaliionen sind auf solche Weise in die Farbstoffaggregate eingebaut, 

dass die Anzahl ihrer positiven Ladungen in etwa der Anzahl der negativen Ladungen der 

eingebauten Farbstoffmoleküle entspricht. Die örtliche Verteilung von Erdalkaliionen entlang 

der Faseraggregate ist gleichförmig. Die beiden Farbstoffe liegen in einem stöchiometrischen 

Verhältnis von 1:1 im Aggregat vor, was ebenso wie der zwischen benachbarten 

Erdalkaliionen häufig auftretende Abstand von etwa 1,5 nm auf eine hohe Nahordnung der 

einzelnen Bausteine im Aggregat hinweist. Die Kinetik des Aggregationsprozesses wird gut 

durch eine Reaktion 2. Ordnung beschrieben, bei der die Aggregationsgeschwindigkeit 

proportional einer Wachstumsgeschwindigkeitskonstante sowie der Anzahl wachstumsfähiger 

Aggregate und der Anzahl nicht umgesetzter Farbstoffbausteine ist. Im Gegensatz zur 

Gesamtfarbstoffkonzentration haben die Art und die Konzentration der Erdalkaliionen einen 

deutlichen Einfluss auf die Wachstumsgeschwindigkeitskonstante, was auf einen 

Zusammenhang der Aktivität wachstumsfähiger Faserenden und/oder freier 

Farbstoffbausteine mit den Erdalkaliionen hinweist. 
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Abstract 

 

The present dissertation engages in the binary aggregation of two anionic azotic dyestuffs 

induced by alkaline earth ions in aqueous solution. The self-assembly process is investigated 

mainly by means of time-resolved static light scattering, dynamic light scattering and small-

angle x-ray scattering. The starting point of the dyestuff aggregation consists in a 

stoichiometric solution of the two dyestuffs in water. In such a solution, a minor part (< 10 %) 

of the dyestuff molecules is existent in the form of aggregates with a size of about 50 nm, 

whereas the major part of the dyestuff molecules is organized as oligomeric structures or 

dissolved as single dyestuff monomers. If such a dyestuff solution is mixed with an aqueous 

solution of an alkaline earth salt, an aggregation process sets in. This aggregation process can 

last for a few seconds or even up to an hour, depending on the type and concentration of the 

alkaline earth ions. The process is initiated by a very short (< 1 s) nucleation phase yielding a 

number of dyestuff aggregates capable of growing (so-called nuclei). After nucleation is 

terminated, the number of nuclei remains constant. The nucleation phase is followed by a 

growth period during which the initial nuclei grow to fibre-like dyestuff aggregates via a 

gradual addition of smaller dyestuff building units. The dyestuff fibres formed in this way 

may contain considerably more than 10
5
 dyestuff molecules and attain lengths of several 

microns. Their thickness is in the order of 10 nm. At higher dyestuff concentrations, the fibre-

like aggregates build branched networks which may even adopt gel-like properties. Within the 

aggregates, the negative charges carried by the dyestuff molecules balance the positive 

charges carried by the alkaline earth cations. The spatial distribution of the latter along the 

fibres is homogeneous. The stoichiometry of the two dyestuffs within the aggregates is 1:1. 

This stoichiometry, together with a distance of about 1.5 nm frequently occurring between 

alkaline earth ions, points to a distinct short-range order of the building units within the 

aggregates. The kinetics of the aggregation process can be adequately described by a 2
nd

 order 

reaction, where the rate of aggregation is proportional to a growth rate constant as well as to 

the numbers of growing aggregates and of unconsumed dyestuff building units, respectively. 

In contrast to the total dyestuff concentration, the type and concentration of alkaline earth ions 

have a strong impact on the growth rate constant. This suggests that the activity of fibre tails 

and/or of building units is closely related to the alkaline earth ions. 
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1. Introduction and Objective 

 

1.1. Introduction 

 

Various types of low-molecular compounds with natural or synthetic origin bear the ability to 

form complex supramolecular structures with interesting properties. Aggregates formed in 

such self-organization processes can be considered as “physical polymers” consisting of low-

molecular units, which correspond to the chemical monomers in a classical polymer. 

However, aggregates of low molecular compounds differ substantially from classical 

polymers in their interactions between neighbouring building units. In classical polymers, the 

monomers are interconnected by covalent bonds, whereas the building units in aggregates are 

held together by weaker attractions like van-der-Waals forces, π-π-stacking, hydrogen bonds 

or dipole interactions. Nature uses the reversibility of just these weaker interactions in order to 

create systems that are capable of sensitively responding to their environment. To give but an 

example, the reversible aggregation of cytoskeleton proteins is involved in many essential 

processes like the formation and degradation of intracellular transportation routes.
1
 Also a few 

classes of synthetic compounds, as for instance organic gelators, are designed to reversibly 

form supramolecular structures in dependence on their environment.
2-8

 Despite of the 

addressed differences in the binding strength between neighbouring building units, the 

comparison of aggregates and polymers reveals striking analogies concerning the underlying 

growth mechanisms as well as the morphology of the supramolecular structures. These 

analogies result from the oriented character of the above-mentioned interactions and suggest 

that experimental methods and models which are well established in macromolecular 

chemistry may be successfully adapted to the investigation of self-organizing systems. The 

great potential of such an approach has for instance been shown by the interpretation of in-situ 

scattering experiments on cytoskeleton proteins with the help of structural models from 

polymer physics.
9-11

  

A prominent class of organic gelators that form supramolecular structures in aqueous solution 

are ionic dyestuffs, which have been produced in an industrial scale since more than 100 

years. Dyestuffs have to fulfil two general yet conflicting requirements: (i) They have to be 

sufficiently water-soluble in order to make accessible aqueous dyeing liquor ready to expose 

it to substrates that are to be dyed (e.g. textile fibres) and (ii) they have to adhere on the 
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substrate, which in turn is impeded if water solubility is too good. Hence, the coexistence of 

ionic and/or polar groups on the one hand and neutral and/or non-polar patches on the other 

hand is obligatory. Many types of dyestuff molecules are equipped with expanded π-electron 

systems, which on the one hand grant them their macroscopic colour properties but on the 

other hand render certain patches within the molecules flat and inflexible. As a result of these 

structural elements, ionic dyestuffs bear remarkable analogies to proteins. These analogies 

consist in the capacity of both classes of substances to establish directed and reversible 

interactions to other molecules of the same type and manifest in the tendency to form 

aggregates. The formation of protein aggregates is usually influenced by the actual 

conformation of the proteins, as they may for instance generate inflexible, flat β-sheet 

structures or expose polar groups on their surface. In the case of the comparatively small 

dyestuff molecules, such conformational effects on the aggregation process can be neglected. 

However, aggregates of both proteins and dyestuffs often exhibit elongated, rod- or worm-like 

shape with a certain degree of branching. This similarity in the morphologies of dyestuff and 

protein aggregates emphasizes the analogy between both classes. 

 

 
 

Figure 1.1. Chemical structures of two anionic azo dyestuffs (left-hand side, the 

coaggregation of YD and RD is the topic of the present dissertation) and an amyloid beta 1-42 

protein (right-hand side
12

; the colours denote the following atoms: white = hydrogen, grey = 

carbon, blue = nitrogen, red = oxygen, yellow = sulphur). The dyestuff like the protein tend to 

form worm-like aggregates. 

 

Various preceding works in the field of ionic dyestuff aggregation identified the following 

fundamental aspects. Usually, the tendency to form aggregates is enhanced by addition of an 

inert salt or a decrease of temperature, whereas an addition of hydrogen bond donors or 

acceptors like phenol or urea impedes aggregation.
13

 In various cases the aggregates grow 

over hours or even days, which is also observed for other types of gelators.
14

 Further studies 

have shown that anionic azo dyes in aqueous solution are capable of forming mesophases that 

consist of rod-like aggregates.
15,16

 Yet scattering methods have rarely been used for the 
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characterization of dyestuff aggregates. However, the great potential of light scattering for 

this purpose has already been demonstrated in a few articles.
17-21

  

Two of these publications report on mixtures of a red and a yellow anionic azo dyestuff (in 

the following denoted as RD and YD, see Figure 1.1), for which a binary self-assembly to 

fibre-like structures induced by the addition of magnesium ions has been identified.
17,18

 The 

focus of the present dissertation lies on this particular aggregation process. Therefore, 

references 16 and 17 can be considered as studies directly preceding the present dissertation. 

In these preceding studies, it could be demonstrated that the rate of aggregation in aqueous 

solutions containing RD and YD is accelerated by an increase of the Mg
2+

 concentration. 

Sinemus could identify another remarkable feature of this self-assembly process by showing 

that the molar ratio of RD and YD within full-grown dyestuff aggregates is 1:1.
22

 However, 

many interesting questions have not yet been answered. These questions concern for example 

a quantitative kinetic analysis, which might provide insight into mechanistic details of the 

aggregation process, and structural features like network formation or the development of the 

cross-sections of the presumably fibre-like dyestuff aggregates. Also, the aggregation of RD 

and YD in the presence of other metal species, like for instance the homologues of Mg
2+

, and 

their interaction with the dyestuff molecules have not yet been considered. 

The application of time-resolved in-situ scattering techniques
23

 and of the worm-like chain 

model
24

 show great promise for a further investigation of this aggregation process, which may 

not only contribute to optimize industrial dyestuff production but may also open up new ways 

for the generation of responsive materials. For example, a controlled alignment of metal ions 

within fibre-like dyestuff aggregates might eventually yield wire-like structures on the 

nanoscale. Moreover, the aggregation of RD and YD could serve as a comparative model for 

amyloid beta fibrillation (cf. Figure 1.1) since both processes yield supramolecular structures 

of similar morphologies.
18,25

 The identification of such analogies resulting from a comparison 

of selected dyestuff and protein aggregation processes may contribute to a better and more 

fundamental understanding of self-organization. 

The present dissertation is based on the application of in-situ scattering techniques using the 

best available instrumentation. With the help of a recently developed eight-detector combined 

static and dynamic light scattering instrument, static scattering curves and intensity 

correlation functions can be measured simultaneously as functions of the time and of the 

scattering angle. As a special feature of this instrument, its detectors are arranged on two 

levels, with each level respectively comprising four detectors. By this means, the distances 
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between neighbouring detection angles is decreased to 8°. Its relatively narrow arrangement 

of scattering angles renders the instrument in particular suitable for the observation of 

extended self-assembly processes during which aggregates grow up to several hundred 

nanometers. 

 

  

Figure 1.2. Left-hand side: The multi-angle combined static and dynamic light scattering 

instrument used in the present work. The primary beam impinges on the sample (yellow 

point) and a part of it is scattered. Eight detectors measure the scattered light (dashed lines) in 

a plane parallel to the primary beam. The whole array of detectors can be radially moved 

around the goniometer in order to vary the scattering angles. Right-hand side: The former 

HASYLAB B1 as an example for a small-angle x-ray scattering instrument. Within the 

present work, B1 was used for anomalous small-angle x-ray scattering measurements, but it 

could in principle also be used for time-resolved small angle x-ray scattering. The photons 

scattered by the sample (yellow point) pass a distance of several meters in a vacuum tube 

before being detected at scattering angles < 10° by an area detector. For isotropic samples, a 

radially symmetric scattering pattern is obtained. 

 

On the one hand, the angular dependent static scattering curve yields the molar mass of the 

scattering particles (e.g. the dyestuff aggregates) and their size in terms of the radius of 

gyration. Moreover, the static scattering curve contains valuable information on the 

morphology of the particles as soon as their radius of gyration gets close to 100 nm. From the 

angular dependency of the intensity correlation functions, on the other hand, the size 

distribution of the scattering particles and their average hydrodynamic radius can be extracted. 

The ratio of the hydrodynamic radius from dynamic light scattering and the radius of gyration 

from static light scattering yields a structure-sensitive coefficient, which again may provide 

valuable information on the shape of the scattering particles. Multi-angle combined static and 

dynamic light scattering is thus capable of providing a great deal of information concerning 

the mass, the size and the morphology of growing aggregates. If conducted in a time-resolved 
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way, it is an optimal tool to investigate self-assembly processes. Within the context of the 

present thesis, the first detailed analysis of an aggregation process based on the application of 

time-resolved simultaneous static and dynamic light scattering is presented. However, the 

time resolution of the method is restricted to about ten seconds, and the major part of 

information can be gathered for particles with sizes in between 50 and 500 nm only. 

Therefore, multi-angle combined static and dynamic light scattering is hardly suitable to 

investigate the first stages of self-assembly processes, i.e. nucleation. These stages might last 

no longer than a second and include the formation of species with sizes of 1 to 10 nm. A tool 

that is complementary to light scattering and suitable for the in-situ investigation of 

nucleation is time-resolved small-angle x-ray scattering. 3
rd

 generation synchrotrons like the 

European Synchrotron Radiation Facility provide x-ray photon fluxes large enough to achieve 

a time resolution in the regime of 0.01 to 1 seconds, depending on the x-ray scattering 

contrast and on the concentration of the sample. Due to the much smaller wavelength in 

comparison to visible light, x-ray photons can be used to probe structural details on length 

scales down to 1 nm. Eventually, the scattering capacity of x-rays increases with the square of 

the electron density of the sample, which makes x-ray photons in particular sensitive to heavy 

metal ions. 
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1.2. Objective 

 

The objective of the present dissertation is a detailed investigation of the aggregation of RD 

and YD in aqueous solution. Priority is given to a time-dependent quantification of structural 

parameters of the aggregates and to the interpretation of the aggregation process by means of 

suitable kinetic models. Besides, the composition of the formed aggregates shall be further 

investigated, and information on their branching behaviour and their tendency to form 

networks shall be obtained. The results are presented in terms of three consecutive articles 

which are based on each other. Each article represents a separate chapter of the dissertation. 

 

Chapter 4 first investigates aqueous solutions of RD and YD in the absence of alkaline earth 

ions. This serves as a reference state for alkaline earth induced aggregation. Subsequently, 

time-resolved multi-angle combined static and dynamic light scattering is applied for the first 

time to Mg
2+

-induced aggregation of RD and YD. With the help of this new technique, 

knowledge of the morphology of the formed aggregates suggested in the previous articles
16,17

 

is confirmed and extended. 

 

Chapter 5 focusses on the kinetics of the aggregation of RD and YD in the presence of 

magnesium ions. Besides, worm-like chain parameters of the aggregates are quantified and 

first hints on branching and on the temporal evolution of the polydispersity of growing 

dyestuff aggregates are provided. 

 

Chapter 6 demonstrates that besides Mg
2+

, also its higher homologues Ca
2+

, Sr
2+

 and Ba
2+

 

induce aggregation of RD and YD, which facilitates to investigate the process by small angle 

x-ray scattering. The kinetics of aggregation processes induced with the four different types of 

alkaline earth ions is compared. Successively, lateral growth, branching and network 

formation during the aggregation process are further highlighted. Finally, the metal-to-dye 

ratio within full-grown dyestuff aggregates is investigated by means of anomalous small angle 

x-ray scattering. 
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2. Summarizing Discussion 

 

The conclusions from chapters 5, 6 and 7 are recapitulated in order to yield an overall picture 

of the dyestuff aggregation. References written in squared brackets address figures and tables 

from chapters 5, 6 and 7 demonstrating experimental results which support the conclusions 

addressed, respectively. However, the reader may easily comprehend the text without paying 

further attention to these references. 

 

2.1.  The Initial State 

 

Before starting the investigation of an aggregation process, a well-defined starting point from 

which aggregation can be efficiently initiated in a reproductive way had to be established. For 

the dyestuff aggregation under consideration, such a starting point consists in two separated 

aqueous solutions. One of these solutions contains an alkaline earth salt and the other one 

contains an equimolar mixture of RD and YD. All aggregation processes investigated in the 

framework of the present dissertation were initiated by mixing two of the described aqueous 

solutions. This initial mixing has mainly been performed with the help of stopped-flow 

devices. Their use resulted in aggregation processes that proceeded similarly to those 

achieved by hand mixing of the two components [cf. Chapter 6, Figure S1] and moreover 

granted a comparatively quick and highly reproductive initiation of the dyestuff aggregation.  

 

We have first established that equimolar solutions of RD and YD represent the condition of 

the RD and YD molecules right before they undergo alkaline earth induced aggregation. Such 

solutions contain dyestuff aggregates with a bimodal size distribution [cf. Chapter 4, Figure 

SI-2]. The slower diffusion mode corresponds to hydrodynamic radii of roughly 50 nm and 

comprises less than 10 % of the dyestuff molecules, whereas the faster mode corresponds to 

hydrodynamic radii of less than 10 nm and comprises more than 90 % of the dyestuff 

molecules [cf. Chapter 4, Figures 6 and 7-B]. The number of dyestuff molecules per aggregate 

lies in the order of 10
3
 for the slow diffusion mode and in the order of 10 for the fast diffusion 

mode [cf. Chapter 4, Figure 7-A]. The fast diffusion mode thus can be attributed to dyestuff 

monomers and oligomers. As inferred from SAXS, the latter exhibit rod-like shape [cf. 

Chapter 6, Figure 3-A and Table 2]. It is likely that these oligomers contain RD and YD in an 
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equimolar ratio [cf. Chapter 4, Figures 4 and 5] and that they act as “building units” which 

consecutively add to the growing dyestuff aggregates during alkaline earth induced 

aggregation. This view provides meaningful explanations for the “step growth” or “monomer 

addition” mechanism of the growth of alkaline earth induced dyestuff aggregates and for their 

1:1 stoichiometry in terms of RD and YD. Both are important findings and will therefore be 

readdressed in detail in sections 2.2. and 2.3. 

The large particles responsible for the slower diffusion mode vanish immediately after 

magnesium ions are added [cf. Chapter 4, Figure 11], suggesting that they are involved in the 

nucleation of alkaline earth induced aggregation. Their mass concentration increases with 

increasing total dyestuff concentration [cf. Chapter 4, Figure 6-B]. Since this is also typical 

for classical micelles, the large particles have been denoted as “micelle-like” within the 

present dissertation. However, the structure of these particles as well as a clear-cut critical 

micelle concentration (cmc) could not be identified unambiguously.  

 

2.2. Kinetics and Mechanism of the Dyestuff Aggregation 

 

Addition of alkaline earth ions in mixed equimolar RD and YD solutions induces an 

aggregation process which, depending on the type and concentration of alkaline earth ions, 

may be terminated after a few seconds or proceed for tens of minutes [cf. Chapter 6, Figure 2-

A]. Time-dependent molar mass data of the growing dyestuff aggregates can be modelled 

adequately with the irreversible nucleation-elongation (INE) model [cf. Chapter 5, 

Determination of Kinetic Parameters] and with the Lomakin model
26

 [cf. Chapter 5, 

Supporting Information]. The most characteristic feature of the INE model consists in the 

continuous formation of nuclei from monomers. However, the INE model matches the 

experimental data only if it is applied in its simplified form, i.e. by assuming a constant 

number of nuclei already existent at the beginning of the aggregation process. These nuclei 

then grow to aggregates by gradually adding monomers/building units. The weak point of the 

INE model in this most simple form is its incapability to explain the origin of the nuclei. 

Application of the more general form of the INE model including continuous nucleation until 

monomers are entirely consumed turned out unsuitable to describe the experimental data. The 

Lomakin model
26

, on the other hand, assumes nucleation from micellar species. Such a 

nucleation is limited in time since it terminates as soon as the monomer concentration falls 

short of the critical micelle concentration. Unlike the INE model, this provides a physically 
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meaningful explanation for the origin of the nuclei as well as for the limited duration of the 

nucleation phase. The growth reaction in the Lomakin model
26

 is assumed as a gradual 

addition of monomers/building units to the nuclei, in complete analogy to the INE model. 

The applications of both models consistently reveal that the alkaline earth induced dyestuff 

aggregation is initiated by a very short period of nucleation [cf. Chapter 5, Table 2 and 

Chapter 6, Table 1]. Whether nuclei are generated from larger, micelle-like particles similar to 

those which have been found in stoichiometrically mixed RD and YD solutions before the 

addition of alkaline earth ions, could not be unambiguously clarified since experimental data 

from the nucleation period were not available [cf. Chapter 5, Figures 3-5 and Table 2; Chapter 

6, Figures 4 and 5]. 

Nucleation is followed by a temporally extended growth period during which the now 

constant amount of existing aggregates grow further by the gradual addition of small building 

units. The view of such a “monomer addition mechanism” for the alkaline earth induced 

aggregation of RD and YD is mainly supported by two findings. First, in the light of a growth 

of worm-like aggregates, an exponent approaching 0.3 in a correlation of the radius of 

gyration and the molar mass [cf. Chapter 4, Figure 10] can be only explained by assuming a 

monomer addition mechanism.
27

 Again, such a mechanism is especially compatible with a 

rod-like or worm-like shape of the growing aggregates. Proof for these structures will be 

discussed in detail in section 2.3. Second, the rate constant describing the growth process 

(“rate constant of elongation”) is found to be independent of the dyestuff concentration [cf. 3, 

Figure 4 and Table 2; Chapter 6, Table 1], which likewise confirms the underlying monomer 

addition mechanism. 

On the other hand, there are two quantities on which the rate constant of elongation 

significantly depends. These are the atomic number of the added alkaline earth species and 

their concentration. A higher atomic number and/or a higher concentration of alkaline earth 

ions results in an increase of this rate constant [cf. Chapter 5, Figure 4 and Table 2; Chapter 6, 

Figure 2-B and Table 1]. In the light of the gradual growth mechanism suggested by both the 

INE and the Lomakin model
26

, these findings signify an interrelation of the activity of the 

growing sites of the aggregates and/or of the added building units with the alkaline earth ions. 

Likewise, the type and concentration of alkaline earth ions have an impact on the number of 

nuclei formed. A higher concentration and/or a higher atomic number of the alkaline earth 

ions lowers the number of growing particles generated during nucleation [cf. Chapter 5, 

Figure 4 and Table 2; Chapter 6, Table 1 and Figure 2]. There are various alternatives to 
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impact the final number concentration of nuclei. For instance, the nucleation threshold, the 

critical nucleus size and/or the rate constant of nucleation could directly be influenced by the 

type and/or the concentration of alkaline earth ions. All these possible influences are yet 

beyond the scope of the present work because the nucleation phase could not directly be 

accessed. Since a possible impact of the type of alkaline earth ion on the scattering contrast 

was not considered in the data evaluation, also a scattering contrast increasing with the atomic 

number of alkaline earth ions would cause an apparent decrease in nucleus concentration.  

Besides the Lomakin model
26

, which implicitly introduces a nucleation threshold by letting 

the nuclei being generated from micelles that exist as long as the monomer concentration is 

above the critical micelle concentration, other well-established models like the Classical 

Nucleation Theory
28-32

 (CNT) provide similar features. In CNT, the threshold above which 

nucleation takes place is given in terms of the critical size of an agglomeration of monomers 

that has to be exceeded in order to yield a nucleus, i.e. a stable particle capable of growing 

further. This critical nucleus size originates from the balance between excess free energy of a 

solute molecule in supersaturated solution with respect to the pure bulk phase and the surface 

energy needed for the creation of nucleus-solvent interfaces. The latter explains why 

supersaturation, i.e. the existence of a concentration of dissolved solute molecules above their 

actual solubility, is possible at all. The probability of forming an agglomeration of solute 

molecules larger than the critical nucleus size thus determines the rate of nucleation in CNT. 

Since this critical size increases drastically as the supersaturation is decreased, the rate of 

nucleation already drops to zero significantly above the solubility and long before particle 

growth stops. After an initial burst of nucleation, the major part of the remaining 

supersaturation is consumed due to the addition of solute molecules to the already existing 

nuclei, i.e. due to growth processes, whereas only a minor part is consumed by henceforth rare 

nucleation events. 

Unfortunately, the lack of experimental data from the nucleation phase does not allow for a 

more significant interpretation of this period with respect to the dyestuff aggregation under 

present consideration. Indeed the experimental data presented in this thesis provide indirect 

information on the nucleation in terms of the number of nuclei formed. However, a direct 

insight into the period of nucleation highlighting detailed mechanistic features could not be 

gained due to the circumstance that this period is probably shorter than a second. Therefore, it 

is for instance not yet possible to determine whether nucleation in the case of the aggregation 

of RD and YD rather resembles the Lomakin model
26

 or the CNT. 
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2.3. Structure and Composition of Alkaline Earth Induced Dyestuff 

Aggregates 

 

Besides clarifying the state of the RD and YD molecules right before alkaline earth induced 

aggregation sets in and besides investigating the kinetic and mechanistic aspects of this 

dyestuff aggregation, the structure and composition of the formed dyestuff aggregates 

represent a third relevant topic. Regarding this topic, two noteworthy features had already 

been established prior to the present work and therefore served as a valuable background for 

this dissertation. Huber et al
17,18

 had provided evidence for a worm-like shape of binary RD 

and YD aggregates growing at dyestuff concentrations < 0.1 g/l in the presence of magnesium 

ions and Sinemus
22

 had proven the 1:1 stoichiometry of these aggregates. Based on these 

preliminary findings, the present dissertation reveals the structural features of the aggregation 

process at this stoichiometric ratio in more detail and sheds light on the number of alkaline 

earth ions per dyestuff molecule within the aggregates. 

In the present dissertation, the worm-like shape of aggregates growing at low dyestuff 

concentrations has been further verified by a couple of new achievements from scattering 

experiments. These are the trend of the structure-sensitive ratio Rg/Rh [cf. Chapter 5, Figure 

9], the interpretation of the correlation between the radii of gyration of growing aggregates 

and their contour lengths [cf. Chapter 5, Figure 7] and the modelling of scattering curves 

recorded from growing aggregates [cf. Chapter 5, Figure 9]. The latter two issues have been 

performed using the worm-like chain model. Its successful application revealed further 

evidence for the worm-like shape of the dyestuff aggregates and moreover provided 

information on the evolution of polydispersity and/or network formation. A decreasing 

relative polydispersity of growing worm-like aggregates [cf. Chapter 5, Figure 8] is in 

agreement with the view of a fast nucleation period being followed by an extended addition of 

small building units as addressed in section 2.2. In this regard, the adequate modelling of the 

growth process using a rate constant independent of the aggregate mass (cf. the Lomakin 

model
26

 and the INE model as described in Chapter 5) points to a constant number of growing 

sites per aggregate and therefore is best compatible with a preferably one-dimensional growth. 

This again supports a worm-like structure of the aggregates. 

The polydispersity of single aggregates can be established reliably as long as no significant 

network formation sets in, which seems to apply for low total dyestuff concentrations. In 

contrast to the light scattering experiments, comparatively high dyestuff concentrations were 
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used for SAXS and especially for ASAXS experiments [cf. Chapter 6, Figures 5 and 8]. Here, 

hints on a network formation by partial lateral alignment of worm-like dyestuff aggregates 

[cf. Chapter 6, Figures 6 and 7] could be identified. In such branched structures, which were 

also observed on electron micrographs [cf. Chapter 5, Figure 2], the branching density again 

seems to increase further with increasing total dyestuff concentration [cf. Chapter 6, Figure 

S7]. Also, the dimension of the diameter of the dyestuff aggregates could be established to be 

close to 10 nm. 

As could be concluded from ASAXS experiments, alkaline earth ions are homogeneously 

distributed along the dyestuff aggregates down to a scale of < 10 nm. At the same time, a 

recurring distance of approximately 1.5 nm between alkaline earth ions could be 

unambiguously identified [cf. Chapter 6, Figure 8]. In addition to the 1:1 molar stoichiometry 

of RD and YD established by UV/vis absorption measurements [cf. Chapter 4, Figure 2], the 

molar ratio of alkaline earth ions and dyestuff molecules within the aggregates could be 

estimated using a combination of ASAXS and XANES measurements [cf. Chapter 6, Figures 

8, S5 and S6]. The results [cf. Chapter 6, Table 3] provide evidence for a complete 

neutralization of anionic charges on dyestuff molecules by cationic charges from strontium 

ions within the dyestuff aggregates. All these features reveal a high degree of order of the 

dyestuff aggregates at the nanoscale that may be crucial to their structural and mechanical 

properties. 
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2.4. Open Questions 

 

This section focusses on questions that are not or only partially answered in the present thesis. 

These questions mainly concern (i) the nucleation phase of the dyestuff aggregation, (ii) the 

morphology of the building units and the mode of their addition to the dyestuff aggregates 

during alkaline earth induced growth processes and (iii) the transferability of results among 

samples with different dyestuff content and/or different type of alkaline earth ions. 

The present dissertation has indeed provided reliable insight into the stages right before and a 

few seconds after the addition of alkaline earth ions to stoichiometric mixtures of RD and YD 

in aqueous solution. However, the nucleation phase, which lies in between these two stages, 

was not directly accessible. Therefore, the initial interaction of the bimodal dyestuff species 

with the added alkaline earth ions and the exact role of the latter during nucleation could not 

be highlighted. A direct investigation of the nucleation phase thus represents a particular 

challenge for future research. It requires an exceptionally well defined initiation process 

possibly including the use of a stopped-flow device in combination with a time resolution of 

the measuring technique in the order of a millisecond. For a future application of time-

resolved SAXS, any possibilities to increase the scattering contrast and to slow down the 

nucleation phase should be reconsidered. 

The nucleation phase is followed by a growth period during which the existing aggregates 

grow further by a gradual addition of smaller building units. The current view suggests that 

these building units already exhibit a composition close to the one of the final aggregates, but 

their structure and especially their origin could not be thoroughly investigated within the 

limits of the present thesis. They might resemble the small cylindrical particles identified in 

stoichiometric solutions of RD and YD prior to the addition of alkaline earth ions [cf. Chapter 

4, Figures 6 and 7, Chapter 6, Figure 3]. Alternatively, the building units may feature 

similarities to so-called protofilaments and/or protofibrils, which are known to involve as 

intermediate states in biological fibre growth processes (cf. for instance the aggregation of 

amyloid beta
33,34

 or fibrin
35

 proteins). In the latter case, the “monomer addition” based fibre 

elongation as well as fibre branching would proceed via partial lateral alignment of 

protofibrils. The strongest argument for a fibril-like character of the building units is thus its 

capability of explaining such a “partial lateral alignment”, as it was found for high dyestuff 

concentrations [cf. Chapter 6, Figure 7]. The two possible ways of fibre growth including 

branching are illustrated in Figure 2.1. Eventually, a dependency of the size and the  



Chapter 2 

 

 

14 

 

Figure 2.1. Two possible ways of branched dyestuff fibre formation are shown. (A) The 

growth of dyestuff fibres via a continuous addition of small, stiff building units every now 

and then introduces structural defects in the growing fibre. Such a defect may lead to a new 

fibre branch. (B) Worm-like dyestuff protofibrils establish the “monomers” and aggregate via 

lateral alignment, which still corresponds to a “monomer addition” mechanism. Sometimes 
this lateral alignment occurs only partially, which allows the formation of a new fibre branch. 
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morphology of the building units on the type and/or concentration of alkaline earth ions 

and/or on the total dyestuff concentration cannot be excluded. 

Another issue that might be considered in possible future research is the transferability of 

results gained for a distinct sample to other samples with different type of alkaline earth ions 

and/or different dyestuff content. The impact of the dyestuff concentration on the aggregation 

process has been described only in a qualitative way. For example, it is yet unclear whether 

mature dyestuff fibres which undergo “partial lateral alignment” [cf. Chapter 6, Figure 7] at 

the fairly high dyestuff concentrations used for SAXS experiments originate from a growth 

process similar to the ones described for the lower dyestuff concentrations [cf. Chapters 2 and 

3]. Also, the stoichiometry of RD and YD has only been investigated for dyestuff aggregates 

which had grown in the presence of magnesium ions [cf. Chapter 4, Figure 2] and was not 

explicitly verified for the dyestuff aggregation with calcium, strontium and barium ions. 

Furthermore, the number ratio of metal ions and dyestuff molecules within the aggregates has 

only been investigated for strontium induced aggregation processes at comparatively high 

dyestuff contents [cf. Chapter 6, Figure 8 and Table 3]. Whether these findings also apply to 

aggregation processes observed under different conditions is not evident. Yet, the strongest 

support for close similarity among dyestuff aggregation processes proceeding under different 

conditions is provided by the fact that all processes investigated by means of time-resolved 

light scattering could be comprehensively described with the same kinetic model [cf. Chapter 

6 Figure 2 and Table 1]. 
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3.2. Table of Symbols 

 

Symbol Signification 

 

[A] number concentration of unconsumed building units 

[A]tot total number concentration of building units (unconsumed + consumed) 

[A]
*
 number concentration of unconsumed building units above which micellation 

occurs (also “critical micelle concentration”) 

[Bi]  number concentration of an aggregate consisting of i building units 

[B]
[k]

  k
th

 moment of an ensemble of aggregates 

b scattering length 

c  mass concentration of a solute ۄ�ۃ଴ limit of the z-averaged translational diffusion coefficient at zero q ۄ�ۃ�ሺݍሻ z-averaged translational diffusion coefficient 

δ Kronecker delta 

E photon energy 

f’ and f’’ real part and imaginary part of an anomalous scattering factor 

 volume fraction 

g1(Ĳ)  field correlation function obtained from dynamic light scattering 

Γ(q)  mean inverse relaxation time, 1
st
 cumulant in dynamic light scattering 

Ș dynamic viscosity 

K  contrast factor in a light scattering experiment 

kb Boltzmann constant 

ke rate constant of elongation or growth 

kn rate constant of nucleation 

L  contour length of a worm-like chain or length of a cylindrical particle 

Lw  weight-averaged contour length of an ensemble of worm-like chains 

lp  persistence length of a worm-like chain 

Ȝ  photon wavelength 

[M]  number concentration of micelles 

MA Molar mass of a building unit 

ML  molar mass per unit length 

Mn number- averaged molar mass 



Chapter 3 

 

 

19 

Symbol Signification 

 

Mw weight-averaged molar mass 

ȝ2/Γ2
 normalized variance of the intensity-weighted distribution of diffusion 

coefficients, 2
nd

 cumulant in dynamic light scattering 

n  refractive index of a solvent 

NA  Avogadro constant 

dn/dc  refractive index increment in a light scattering experiment 

PD  polydispersity (≥ 1) 

P(q)  form factor 

pM  number-averaged degree of polymerization of micelles 

pn  number-averaged degree of polymerization of nuclei 

p0  number-averaged degree of polymerization of seeds 

Q Porod invariant 

q  scattering vector (also: momentum transfer) in a scattering experiment 

ș  scattering angle in a scattering experiment 

R  radius of a cylinder or of the cross-section of a worm-like chain 

Rg square root of the z-averaged square radius of gyration ۃ��ଶۄ�  z-averaged square radius of gyration 

Rh mean effective hydrodynamic radius 

R(q) Rayleigh Ratio obtained from static light scattering 

rel scattering length of an electron 

Δρ excess scattering density 

S raw signal in static light scattering 

Sres pure resonant scattering function 

dΣ/dΩ differential scattering cross section obtained from small-angle scattering 

experiments 

T temperature 

t  time 

Ĳ relaxation time (also: correlation time) in dynamic light scattering 

V  volume 

Z atomic number 

z  polydispersity parameter of a Schulz-Zimm distribution 
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4. Coaggregation of Two Anionic Azo Dyestuffs at a Well-

Defined Stoichiometry 
 

Reproduced with permission from J. Phys. Chem. B, 2013, 117, 8611-8619. 

Copyright 2013 American Chemical Society. 
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SUPPORTING INFORMATION. UV-spectra of pure dyestuffs in the presence of Mg

2+
 cations; 

CONTIN-analysis of DLS data from dyestuff mixtures in the absence of Mg
2+

 cations; Zimm-

plot of yellow dyestuff in the absence of Mg
2+

 cations; outline of data evaluation from 

combined time-resolved DLS/SLS analysis of Mg
2+

-induced aggregation; LILBID-MS 

spectra from. This material is available free of charge via the Internet at http://pubs.acs.org. 

http://pubs.acs.org/
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Figure SI-1. Absorption spectra of the pure RD (---) and pure YD (∙∙∙). 
 

 
Table SI-1. Extinction coefficients of the RD and YD in aqueous solutions containing Mg

2+
 

measured at a wavelength of 633 nm. 

dyestuff [Mg
2+

] / mM ext. coef. / m
2
 mol

-1
 

RD 6.4 4179 

RD 12.8 4393 

YD 6.4 5255 

YD 12.8 5077 
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Figure SI-2. Size distributions of dyestuff particles in the absence of Mg

2+
. The distributions 

have been calculated by means of the CONTIN analysis
1
 of the corresponding intensity 

correlation functions obtained by DLS. Figure A shows the results for a solution of 0.066 g/l 

of mixed RD and YD at a ratio of 1:1; Figure B shows the results for a solution of 0.132 g/l of 

mixed RD and YD at a ratio of 1:1. The dashed lines stem from correlation functions 

measured at a scattering angle of ș = 60°, the dotted lines stem from measurements at ș = 20°. 
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Figure SI-3. Zimm plot

2
 measured with solutions of pure YD in the absence of magnesium 

ions. The second virial coefficient is close to zero for the YD aggregates. 
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Figure SI-4. Evaluation of data from time-resolved combined static and dynamic light 

scattering exemplified with three selected curves. Inverse Rayleigh Ratios (A) and z-averaged 

diffusion coefficients (B) have been extrapolated towards zero momentum transfer q by 

means of 2
nd

 order polynomials (straight lines). The sample contained 0.066 g/l 

stoichiometrically mixed RD and YD and 1.63 mM MgSO4. Symbols indicate different times 

after the addition of Mg
2+

 to the mixed dyestuff solution, corresponding to 100 s (), 350 s 

() and 1200 s ().  
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Figure SI-5. LILBID-MS spectra of aqueous solutions containing 0.132 g/l (~ 0.08 mM) 

stoichiometrically mixed RD and YD in the presence of Mg
2+

. The spectra shown in Figures 

(A) and (B) were measured with a sample containing 0.08 mM MgSO4 and the spectra were 

recorded 7 minutes (A) and 26 minutes (B) after the aggregation process had been initiated by 

adding the MgSO4 solution to the mixed dye solution. In Figure (C), the solution contained 

0.4 mM MgSO4 and the spectrum was recorded 12 minutes after initiation of the aggregation. 

The intensity of the broad peak located at 5000 < m/z < 10000 in Figures (A) and (B) changes 

over time with respect to the sharper peaks at m/z < 4000, thereby suggesting the 

consumption of small dyestuff oligomers in favor of larger ones. Figure (C) illustrates that for 

the dyestuff aggregation under consideration, no significant peaks are detected at Mg
2+

 

contents of 0.4 mM or higher.  
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5. Kinetic and Structural Features of a Dyestuff Coaggregation 

Studied by Time-Resolved Static Light Scattering 
 

Reproduced with permission from J. Phys. Chem. B 2013, 117, 15165-15175. 

Copyright 2013 American Chemical Society. 
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Outline of Kinetic Equations in Order to Calculate Mw(t) for the Lomakin Model
1
 

 

The fundamental reaction steps of the Lomakin model are summarized in Figure 1 of 

Reference 1. Within the time regime 0 ≤ t < T, micelles M consisting of pM monomers are 

present and in fast equilibrium with free monomers, and the monomer concentration 

constantly remains at the critical micelle concentration [A]
*
. The micelles are capable of 

generating nuclei (kn = rate constant of nucleation) that consist of pn monomers. In addition to 

these nuclei, monodisperse “seeds” that consist of p0 monomers, respectively, may be present 

already at t = 0. According to our denotation, these seeds would correspond to the “number of 
nuclei at t = 0”, [B]t=0

(0)
, with [B]t=0

(1)
 = p0[B]t=0

(0)
 and [B]t=0

(2)
 = p0

2
PDt=0[B]t=0

(0)
 (cf. eq(27) in 

the main article). The seeds as well as the generated nuclei grow by successive addition of 

“monomers” A (rate constant of elongation ke). At t ≥ T, the micelles are entirely consumed 

(number concentration of micelles [M] = 0). This terminates nucleation and the concentration 

of free monomers from t = T on decreases solely due to chain elongation.  

In order to derive the 2
nd

 moment of the ensemble of aggregates according to the kinetic 

model introduced by Lomakin et al, we start from eq(5) of Ref 1. In our denotation, it writes 

as 

 ௗ[஻]ሺ�ሻௗ� = ݇୬݌୬௞[ܯ] + [ܣ]ୣ݇ ∑ (݆݇) ሺ௝ሻ௞−ଵ௝=଴[ܤ] ,      (SI-1) 

 

where  

ሺ௞ሻ[ܤ]  = ∑ ݅௞[ܤ௜]௜          (SI-2) 

 

is the k
th

 moment of the ensemble of growing particles. We first consider the regime 0 ≤ t < T. 

Here, the monomer concentration remains constant at [A] = [A]
*
. According to eq(SI-1), the 

changes of the 0
th

 and the 1
st
 moment of the ensemble of growing particles are given by  

 ௗ[஻]ሺబሻௗ� = ݇୬[ܯ]ሺ�ሻ,              (SI-3)  ௗ[஻]ሺభሻௗ� = ݇୬݌୬[ܯ]ሺ�ሻ +   ሺ଴ሻሺ�ሻ.                  (SI-4)[ܤ]ୣ݇∗[ܣ]

 

The overall concentration of monomers is 

୲୭୲[ܣ]  = ∗[ܣ] + ሺ�ሻ[ܯ]M݌ +  ሺଵሻሺ�ሻ.      (SI-5)[ܤ]

 

From eq(SI-3), eq(SI-4) and eq(SI-5), [B]
(1)

 and [M]
(0)

 as well as their derivatives can be 

eliminated in favor of [B]
(0)

. 

 ௗమ[஻]ሺబሻௗ�మ + ௞౤௣౤௣M ௗ[஻]ሺబሻௗ� + ௞౤௞౛[஺]∗௣M ሺ଴ሻ[ܤ] = Ͳ      (SI-6) 

 

Lomakin et al. gave the solution for [B]
(0)

 neglecting the first derivative with time. A general 

solution of eq(SI-6) including also the first derivative term may be written as 

ሺ଴ሻሺ�ሻ[ܤ]  = ܿ଺ expሺܿ଻�ሻ + ଼ܿexp⁡ሺܿଽ�ሻ      (SI-7) 

 

with 
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ܿ଺ = ଴ሺ଴ሻ=�[ܤ] − ଼ܿ = ௞౤ቀ[஺]t౥t−[஺]∗−௣బ[஻]�=బሺబሻ ቁ−௖వ௣M[஻]�=బሺబሻ௣Mሺ௖ళ−௖వሻ  ,     

ܿ଻ = − ௣౤௞౤−√௣౤మ௞౤మ−ସ௞౤௞౛௣M[஺]∗ଶ௣M  ,          

ܿଽ = − ௣౤௞౤+√௣౤మ௞౤మ−ସ௞౤௞౛௣M[஺]∗ଶ௣M  .        

        

Reinserting the solution for [B]
(0)

 into eq(SI-3) and eq(SI-5) enables the calculation of [B]
(1)

 

and [M]. 

ሺଵሻሺ�ሻ[ܤ]  = ୲୭୲[ܣ] − ∗[ܣ] − ௣M௞౤ ሺܿ଺ܿ଻ expሺܿ଻�ሻ + ଼ܿܿଽexp⁡ሺܿଽ�ሻሻ      (SI-8) [ܯ]ሺ�ሻ = ቀ[ܣ]୲୭୲ − ∗[ܣ] − ሺଵሻሺ�ሻቁ[ܤ]  M         (SI-9)݌/

 

The change of the 2
nd

 moment is 

 ௗ[஻]ሺమሻௗ� = ݇୬݌୬ଶ[ܯ]ሺ�ሻ + ୣ݇∗[ܣ] ቀ[ܤ]ሺ଴ሻሺ�ሻ +  . ሺଵሻሺ�ሻቁ[ܤ]ʹ

 

The solution thereof can be written as 

ሺଶሻሺ�ሻ[ܤ]      = ଴ሺ଴ሻ=�[ܤ]଴ଶ݌ ���=଴ + ∫ {݇୬݌୬ଶ[ܯ]ሺ�ሻ�଴       

∗[ܣ]ୣ݇+   ቀ[ܤ]ሺ଴ሻሺ�ሻ + {ሺଵሻሺ�ሻቁ[ܤ]ʹ ݀�.     (SI-10) ܤሺଶሻሺ�ሻ = ଴ሺ଴ሻ=�[ܤ]଴ଶ݌ ���=଴ + ܿଵ଴� + ܿ଺ሺexpሺܿ଻�ሻ − ͳሻ ቀܿଵଵ + ௞౛[஺]∗௖ళ ቁ    

  +଼ܿሺexpሺܿଽ�ሻ − ͳሻ ቀܿଵଵ + ௞౛[஺]∗௖వ ቁ     (SI-11) 

 

with 

 ܿଵ଴ = ୲୭୲[ܣ]ሺ∗[ܣ]ୣ݇ʹ − ሻ ,        ܿଵଵ∗[ܣ] = ୬ଶ݌ − ଶ௞౛[஺]∗௣M௞౤  .          

 

The time T by which all micelles are consumed can be determined with eq(SI-9) by 

considering [M](t=T) = 0  

 � = l୬⁡ቀ−�ల�ళ�ఴ�వቁ௖వ−௖ళ  .         (SI-12)  

 

For t ≥ T, nucleation is terminated since there are no more micelles. In this regime, the 

monomer concentration [A](t) = [A]tot – B
(1)

(t). The first three moments evolve as 

�ሺ଴ሻሺܤ  ൒ �ሻ = ሺ଴ሻ�=�[ܤ]
 ,       (SI-13) ܤሺଵሻሺ� ൒ �ሻ = ୲୭୲[ܣ] + ቀ[ܤ]�=�ሺଵሻ − ሺ଴ሻ�=�[ܤ]୲୭୲ቁexpቀ݇ୣ[ܣ] ሺ� − �ሻቁ ,   (SI-14) 
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�ሺଶሻሺܤ ൒ �ሻ = ܿଵଶ + ܿଵଷ expቀ݇ୣ[ܤ]�=�ሺ଴ሻ ሺ� − �ሻቁ + ܿଵସ expቀʹ݇ୣ[ܤ]�=�ሺ଴ሻ ሺ� − �ሻቁ  (SI-15) 

 

with 

 ܿଵଶ = ሺଶሻ�=�[ܤ] + [஺]t౥t−[஻]�=�ሺభሻ[஻]�=�ሺబሻ ቀ[ܣ]୲୭୲ + ሺ଴ሻ�=�[ܤ] + ሺଵሻ�=�[ܤ] ቁ ,     ܿଵଷ = [஻]�=�ሺభሻ −[஺]t౥t[஻]�=�ሺబሻ ቀʹ[ܣ]୲୭୲ + ሺ଴ሻ�=�[ܤ] ቁ ,       

ܿଵସ = ቀ[஺]t౥t−[஻]�=�ሺభሻ ቁమ[஻]�=�ሺబሻ  ,          

 

where [B]t=T
(0)

, [B]t=T
(1)

 and [B]t=T
(2)

 can be calculated by setting t = T in eq(SI-7), eq(SI-8) and 

eq(SI-11), respectively. The weight-averaged molar mass of the whole ensemble, including 

monomers, micelles and growing aggregates, can then be calculated as 

wሺ�ሻܯ  = { ெA[஺]t౥t ∗[ܣ]) + Mଶ݌ ሺ�ሻ[ܯ] + ሺଶሻሺ�ሻ)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡Ͳ[ܤ] ൑ � < �ெA[஺]t౥t ሺ�ሻ[ܣ]) + �⁡ሺଶሻሺ�ሻ)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for[ܤ] ൑ �  . (SI-16) 

 

The Lomakin model can be applied to the results obtained from static light scattering in terms 

of eq(SI-16). In its most general form, the model allocates 9 independent fitting parameters 

provided that [A]tot is known: 

 

p0  number-averaged degree of polymerization of initial aggregates (“seeds”) 
pM  number of monomers within a micelle 

pn  number of monomers within a nucleus 

kn  rate constant of nucleation (first order) 

ke  rate constant of chain elongation (second order) 

[A]
*
  critical micelle concentration 

MA  molar mass of a monomeric unit 

PDt=0  polydispersity of the initial aggregates 

Bt=0
(0)

  number concentration of initial aggregates 
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Table SI-1. Symbols denoting the samples that were investigated within the present work. 

The symbols of the experiments used within the Supporting Information are the same as in the 

main article.  

         [Mg] / mM 

 

cdye / g l
-1

 

1.63 2.44 3.25 5.20 

0.044  ()   

0.066 () (,) () () 

0.088  ()   

0.124  ()   

 

0.00 0.05 0.10 0.15

1

2
0 1 2 3 4 5 6

Mg
2+ / mmol l

-1
 (,,,)

 

B
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)

t=
0
 /

 
B
(0

)

t=


dye / g l
-1
 (,,,)

 
Figure SI-1. Factor by which the number concentration of aggregates represented by [B]t=0

(0)
 

increases for the INE model due to nucleation at t > 0 if both nucleation at t > 0 according to 

eq(6) in the main article and initial aggregates are enabled, corresponding to eq(20) and (23) 

together with eq(19) from the main article. The factors hardly differ from unity, indicating 

that the major part of the nuclei form right in the beginning of the aggregation process. This 

suggests the application of the INE model without considering continuous nucleation, 

corresponding to eq(28) and eq(29) together with eq(19) from the main article. 
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Figure SI-2. Evolution of the weight-averaged molar mass at variable Mg

2+
 content (top) and 

at variable dye concentration (bottom). Error bars are not shown for the sake of clarity. The 

denotations of the symbols are given by Table SI-1. Since the results obtained for different 

dye concentrations lie close to each other, the curves with symbols (), () and () are 

shifted by factors of 2, 4 and 8, respectively, in order to visually set them apart from each 

other. The continuous lines represent fits with to the INE model based on eq(19) in 

combination with eq(28) and eq(29), which restricts nucleation to time t = 0. The logarithmic 

scale of the ordinate highlights the deviations of the fits from the experimental data at low 

molar masses. 
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Figure SI-3. Evolution of the weight-averaged molar mass at variable Mg

2+
 content (top) and 

at variable dye concentration (bottom). Error bars are not shown for the sake of clarity. The 

denotations of the symbols are given by Table SI-1. Since the results obtained for different 

dye concentrations lie close to each other, the curves with symbols (), () and () are 

shifted by factors of 2, 4 and 8, respectively, in order to visually set them apart from each 

other. The continuous lines represent fits with to the Lomakin model
19

 based on eq(SI-16) of 

the Supporting Information without allowing for initial aggregates, i.e. assuming [B]t=0
(0)

 = 0. 

The logarithmic scale of the ordinate highlights the deviations of the fits from the 

experimental data at low molar masses. 
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Table SI-2. Linear mass densities ML and persistence lengths lp evaluated by modeling the 

correlation of Rg and Mw,ag, obtained from eq(5) and eq(33), respectively, with eq(34). 

Corresponding fits are shown in Figure 5 in the manuscript. 

 

parameter: ML lp   

 
[g mol

-1
 nm

-1
] [nm]   

symbol 
  

[Mg]
2+

 / mM cdye / g l
-1

 

() 41000 230 1.63 0.066 

() 98000 180 2.44 0.066 

() 140000 190 3.25 0.066 

() 130000 230 5.20 0.066 

   
  

() 71000 150 2.44 0.044 

() 98000 180 2.44 0.066 

() 48000 180 2.44 0.088 

() 65000 180 2.44 0.124 
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6. Coaggregation of Two Anionic Azo Dyestuffs: A Combined 

Static Light Scattering and Small Angle X-Ray Scattering 

Study 
 

Reproduced with permission from J. Phys. Chem. B 2014, 118, 7618-7629. 

Copyright 2014 American Chemical Society. 
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Reproducibility of Aggregation Experiments 

 

The reproducibility of dyestuff aggregation experiments is exemplified in Figures S1 and S2. 

Figure S1 demonstrates that an initiation by hand mixing and an initiation by using a stopped-

flow device lead to growth processes that are not distinguishable from each other. In Figure 

S2, two features are demonstrated. First, different shots with the stopped-flow device lead to 

growth processes that are equal within the uncertainty of the SAXS data. Second, data sets 

that are recorded at equal times after initiation but at different sample-to-detector distances 

exhibit equal intensities within their overlapping q regime and thus can be merged without 

difficulty. 
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Figure S1. The evolution of the weight-averaged molar mass Mw is compared for two mixing 

cycles during which equal volumes of an aqueous magnesium chloride solution and an 

aqueous solution of RD and YD with a molar ratio of 1:1 were combined at time t = 0. Both 

mixing cycles resulted in a final dyestuff concentration of 0.066 g l
-1

 (0.042 mM) and a final 

Mg
2+

 concentration of 1.63 mM. Symbols () represent an experiment where the dyestuff 

aggregation has been initiated by hand mixing of the two components, whereas symbols () 

represent an experiment where the components were mixed by means of an SF-20 stopped-

flow device. 
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Figure S2. Scattering curves from shots with the SF-400 stopped flow device. All shots were 

performed with equal dyestuff and alkaline earth concentrations (cdye = 0.33 g l
-1

, [Ba
2+

] = 1.6 

mM) but at different detector distances of 1 m (symbols ,) and of 10 m (symbols ,). 

Graph (A) shows scattering curves which were calculated by averaging three single curves 

recorded at t = 25, 55 and 85 ms, respectively, thus representing an averaged time after 

initiation of t = 55 ms. Graph (B) shows scattering curves which were calculated by averaging 

20 single curves recorded in between t = 1,5 s and t = 2,1 s, respectively, thus representing an 

averaged time after initiation of t = 1,8 s. The results illustrate (i) a good reproducibility of the 

shots achieved with the SF-400 stopped-flow instrument and (ii) justify the combination of 

time-resolved averaged scattering recorded at different detector distances. 
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Modeling of Small-Angle Scattering Data by Means of the Cylinder Model 

 

The scattering from samples was interpreted by means of the cylinder model. The form factor 

of a homogeneous cylinder with length L and cross section radius R is given by
1
: �ୡylሺݍ, ,ܮ �ሻ = ୢ�/ୢ�ሺ௤ሻౙ౯lୢ�/ୢ�ሺ௤=଴ሻౙ౯l = ∫ [ଶ௃భሺ௤�⁡ୱ୧୬ሺ�ሻሻ௤�⁡ୱ୧୬ሺ�ሻ ୱ୧୬⁡ሺ௤௅⁡ୡ୭ୱሺ�ሻ/ଶሻ௤௅⁡ୡ୭ୱሺ�ሻ/ଶ ]ଶ sin⁡ሺ�ሻ݀��/ଶ଴   (SI-1) 

In the present work, we added a polydispersity to the cylinder cross-section in terms of a 

Gaussian distribution of the radius R’ around its mean value R with absolute standard 

deviation ı and relative standard deviation ı/R. Moreover, a q independent background 

scattering was included into the model. Accordingly, model scattering intensities of cylinders 

with polydisperse cross-sections were calculated as �୮୭lyሺݍ, ,ܮ �, �ሻ = ூబ√ଶ��మ ∫ exp (− (�′−�)మଶ�మ )�ୡylሺݍ, ,ܮ �′ሻ ݀�′�′ + ܾ�    ,   (SI-2) 

where I0 represents the scattering intensity at zero momentum transfer and bg is the 

background scattering. 

 

Cylinder Radii Obtained from Guinier Fits 

 

The scattering intensity of cylindrical structures with length L and radius R is proportional to 

q
-1

 within the regime qL > 1 and qR < 1. This can be utilized to determine R by means of a 

Guinier
1
 like approximation: 

ݍ  · ୢ�ୢ� ሺݍሻ|௤�<ଵ ≈ ܣ · exp⁡ቀ− ௤మ�మ଺ ቁ  .      (SI-3) 

 

Besides modeling the experimental data with cylinder form factors (eq SI-2), eq SI-3 

represents an alternative for the determination of R. As indicated in Figure S3-B, the values 

resulting for R from both of these alternative methods do not deviate significantly. 
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Figure S3. (A) Plots of the product of the scattering vector q with the SAXS of aqueous 

solutions containing 0.66 g l
-1

 (), 0.33 g l
-1

 (), 0.17 g l
-1

 () and 0.08 g l
-1

 () mixed RD 

and YD in stoichiometric ratio (cf. Figure 3A in the manuscript). The continuous lines 

represent Guinier like fits according to eq SI-3. For these fits, only the q regime in between 

the red dashed lines was considered. For the sake of clarity, the curves are separated from 

each other by a factor of 2, respectively. (B) Comparison of the R values resulting from 

cylinder fits (eq SI-2, cf. Table 2 in the manuscript) with the R values resulting from Guinier 

like fits (eq SI-3). 
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Parameter Distortion Based on an Interpretation of the Scattering of a Mixture of Small 

and Large Cylinders by Means of the Form Factors of the Large Cylinders 

 

The scattering of matured dyestuff fibres is modeled by means of form factors of cylinders 

with a length of L = 200 nm and variable scale (I0) and radius (R). This interpretation does not 

consider possible smaller species with a size in the regime of 10 nm (e.g. unconsumed 

building units) that might coexist with the large aggregates. Whereas the presence of such 

species hardly affects the low q regime of the total scattering, it may influence significantly 

the scattering intensity in the q regime of the cylinder cross section and thus distort the values 

of the fitting parameter R. In order to scrutinize such an influence, we calculated theoretical 

scattering curves of a bimodal system consisting of large cylinders with lengths of L1 = 200 

nm and small cylinders with length L2 = 10 nm and radius R2 = 0.5 nm. Initially the large 

cylinders have a radius of R2 = 4 nm and the ratio of total volume occupied by small cylinders 

to the total volume occupied by large ones is V2/V1 = 4:1 (Figure S4, lower left). Then the 

large cylinders grow laterally by incorporation of the small ones until the volume ratio has 

reduced to V2/V1 = 1:4 (Figure S4, upper right). In the course of the incorporation of small 

cylinders into large ones, the total volume of the latter has thus increased by a factor of 4, 

corresponding to an increase of the radius of the latter from R2 = 4 to R2 = 8 nm (Note that L2 

remains unaffected). Theoretical scattering curves Itheor of several intermediate states in the 

range of 4:1 ≥ V2/V1 ≥ 1:4  were calculated using the cylinder form factor1
 Pcyl as given by eq 

SI-1: 

 �୲୦ୣ୭୰ = �ଵ�ଵଶܮଵ�ୡylሺ�ଵ, ଵሻܮ + �ଶ�ଶଶܮଶ�ୡylሺ�ଶ,  ଶሻ      (SI-4)ܮ

 

For all calculations, a polydispersity of cylinder cross-sections of ı/R = 0.33 has been 

included in terms of eq SI-2. Subsequently, the theoretical scattering curves have been fitted 

by means of eq SI-2, i.e. by excluding the small cylinders from the fitting function. During 

fitting, L2 = 200 nm and ı/R2 = 0.33 were kept constant and R2 and I0 were adjusted. For each 

fitted curve, a quantity proportional to the product of mass concentration and mass per unit 

length of the cylinders has been established (see eq SI-2) and plotted versus the corresponding 

fitted cylinder radius. The resulting correlation is compared with the exact correlation in 

Figure S4. 
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Figure S4. The theoretical correlation of the product of mass concentration c and mass per 

unit length ML of a cylinder with its Radius R is represented by the continuous line (cML ~ 

R
4
). The symbols () illustrate values of cML and R obtained by the fit procedure described 

above. The graph illustrates that the deviations of the fitted values from the correct ones 

represented by the continuous line are negligible. 

 

Estimation of the Dyestuff Concentration within Centrifuged Dyestuff Gels 

 

Figure S5 exemplifies a sample used for ASAXS and x-ray absorption measurements. In 

order to estimate the metal-to-dye stoichiometry of the formed aggregates situated in the gel 

phase at the bottom of the capillary, both the Sr
2+

 concentration within the gel, [Sr
2+

]b, and the 

concentration of Sr
2+

 ions that bind specifically to the dye within the gel, [Sr
2+

]spec, have to be 

determined. It is important to note that the latter may be significantly smaller than [Sr
2+

]b, 

since a large fraction of the gel phase might consist of aqueous Sr
2+

 solution, i.e. the gel might 

contain many Sr
2+

 ions that do not contribute to [Sr
2+

]spec. Whereas [Sr
2+

]b is accessible by 

absorption measurements, [Sr
2+

]spec ≤ [Sr2+
]b can only be determined by measuring ASAXS at 

the bottom position of the capillary (see ref. 2 and manuscript). Once [Sr
2+

]spec is determined, 

only the dyestuff concentration at the bottom position, cdye-b, is needed in order to establish 

the desired metal-to-dye stoichiometry of the formed aggregates. cdye-b can be estimated if the 

following two prerequisites are fulfilled: (i) the entire dyestuff has to be located at the bottom 

domain and (ii) the Sr
2+

 concentrations within the two domains of the capillary have to be 
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homogeneous in z-direction. Condition (i) is adequately fulfilled since the top domain is 

colorless. Besides, the obvious stability of the gel-like phase is in support of its homogeneity: 

After a short period of centrifugation, positions, shapes and colors of the bottom domains 

became invariant to further mechanical stress. 

 

 

 
 

Figure S5. Schematic of a quartz capillary containing RD and YD in a 1:1 molar ratio as well 

as an excess of SrCl2. The excess of Sr
2+

 ions causes an immediate aggregation process by 

which the entire ensemble of RD and YD molecules is consumed. The formed aggregates can 

be separated from the remaining solution by centrifugation such that they form a gel-like 

domain located at the bottom of the capillary. The remaining solution thereby becomes 

colorless, indicating that the dyestuff concentration within the supernatant is close to zero. 

Provided that the Sr
2+

 concentrations within the gel, [Sr
2+

]b, and within the supernatant, 

[Sr
2+

]t, do not change with the z-coordinate, respectively, they can be determined by 

measuring x-ray absorption spectra at the top and the bottom position of the capillary. 

 

We denote the total dyestuff and total Sr
2+

 concentrations within the sample as cdye and [Sr
2+

], 

respectively, and use the denotations given in Figure S5 for the respective concentrations at 

top (t) and bottom (b) position. Successively we can write ܿୢyୣ = ܿୢyୣ−ୠ �−�t� ,  therefore  ܿୢyୣ−ୠ = ܿୢyୣ ��−�t ,    (SI-5) 

where V is the total sample volume. The volume of the top domain, Vt, can be expressed 

considering 
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[Srଶ+]� = [Srଶ+]୲�୲ + [Srଶ+]ୠሺ� − �୲ሻ,  therefore    �୲ = � [S୰మ+]−[S୰మ+]ౘ[S୰మ+]t−[S୰మ+]ౘ   .  (SI-1) 

Introducing eq SI-1 into eq SI-5 cancels the total sample volume V and yields the following 

expression for the desired dyestuff concentration within the bottom domain. ܿୢyୣ−ୠ = ܿୢyୣ [S୰మ+]ౘ−[S୰మ+]t[S୰మ+]−[S୰మ+]t          (SI-2) 

 

Calculation of Sr
2+

 Concentrations from X-Ray Absorption Spectra 

 

The strontium-K-edge at ~16105 eV was used to quantify the Sr
2+

 concentrations [Sr
2+

]t and 

[Sr
2+

]b at the top and the bottom positions of the ASAXS samples, respectively. The mass 

density ρ of the absorbing species can be written as the derivative of the absorption coefficient 

ȝ with respect to the specific absorption cross-section ı. 

 � = ୢ�ୢ� ≈ Δ�Δ� = Δሺ�∙ௗሻௗ∙Δ�           (SI-4) 

 

In eq SI-4, d is the sample thickness. An example of an x-ray absorption spectrum is given in 

Figure S6. X-ray absorption spectroscopy yields the product ȝd as a function of the photon 

energy E. The product ȝd = ln(I0/I) is calculated from the intensities of the primary beam (I0) 

and of the beam after transmitting the sample (I). As illustrated in Figure S6, the difference 

Δ(ȝd) can be determined by fitting a spline to the pre-edge data and to the post-edge data, 

respectively. We chose a function of the empirical form
2
 a/E

3
 for the pre-edge spline, where a 

is a constant. The post-edge data was then fitted with the same spline plus Δ(ȝd), where Δ(ȝd) 

was chosen such that the areas A1 and A2 caused by the near-edge fine structure became equal. 

The edge difference in specific absorption cross-section, Δı, was estimated by choosing a pre-

edge data pair (ı1, E1) and a post-edge data pair (ı2, E2) from tabulated
3
 values. 

 Δ� ≈ �మ�మయ−�భ�భయ�౛ౚg౛య           (SI-5) 

 

With Δ(ȝd) from the experimental data and Δı from eq SI-5, the mass density ρ 

corresponding to the mass concentration of Sr
2+

 is accessible via eq SI-4. The molar 

concentrations of Sr
2+

 is then calculated as [Sr
2+

] = ρ/MSr, where MSr is the molar mass of 

strontium. 
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Figure S6. Illustration of an x-ray absorption spectrum used to determine the jump in 

absorption at the strontium-K-edge (Eedge = 16105 eV). The machine energy displayed by the 

abscissa deviates by about 8 eV from the real photon energy due to uncertainties of the 

monochromator control. 
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Direct Comparison of the SAXS from Samples Used for SAXS and ASAXS Experiments 
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Figure S7. Comparison of the SAXS from a dyestuff gel ( and continuous line at high q) 

containing approximately 11.3 g l
-1

 dyestuff (see Table 3 in the manuscript) with the 

scattering from a sample containing 0.33 g l
-1

 dyestuff (). Both samples contain an excess of 

Sr
2+

 ions with respect to the anionic dyestuff charges and represent a temporally stable state of 

matured dyestuff aggregates. 
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