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Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung allgemeiner Techniken und Konzepte, die eine mathematisch fun-
dierte Symmetriereduktion von (Quanten-)Eichfeldtheorien erméglichen. Das Hauptaugenmerk liegt hier-
bei auf dem Gebiet der Schleifenquantengravitation, im Speziellen auf der Reduktion des Quantenkonfi-
gurationsraumes und der Konstruktion von normierten Radonmaflen auf den resultierenden reduzierten
Quantenrdumen. Fiir die Reduktion bieten sich hierbei prinzipiell zwei Moglichkeiten. Zum einen kann
man den reduzierten klassischen Konfigurationsraum quantisieren (RQ-Reduktion). Zum anderen kann
man versuchen, die Symmetrie (genauer: die Gruppenwirkung) vom klassischen auf den Quantenraum zu
heben, um dort die Reduktion direkt auf Quantenniveau durchzufithren (QR-Reduktion). Bislang wurde
in der Schleifenquantengravitation nur der RQ-Zugang verfolgt. Da uns der QR-Zugang aus physikalisch-
konzeptionellen Griinden jedoch als addquater erscheint, haben wir ihn in dieser Arbeit systematisch ent-
wickelt. Insbesondere haben wir die jeweiligen RQ- und QR-Konfigurationsriume miteinander verglichen.

Im ersten Teil dieser Arbeit legen wir die mathematischen Grundlagen fiir das QR-Reduktionsprinzip.
Hierfiir zentral ist die Fortsetzung von Gruppenwirkungen 6: G x X — X auf Mengen X zu Gruppen-
wirkungen ©: G x Spec(2) — Spec() auf Spektren von C*-Algebren 2 C B(X). In Analogie zur
klassischen Situation, in welcher der reduzierte Raum aus allen invarianten Zusammenhéingen A;.q auf
dem zugrundeliegenden Hauptfaserbiindel besteht, ist der quanten-reduzierte Konfigurationsraum definiert
durch

Area ={weA|O(g,w) =w VgeGaq},

wobei A den Quantenkonfigurationsraum der vollen Theorie bezeichnet. Dem gegeniiber steht die in der
Schleifenquantengravitation iibliche RQ-Strategie, bei der das Spektrum einer separierenden C*-Algebra
von beschrinkten Funktionen auf A,.q berechnet wird. Wir zeigen, dass der QR-Raum A,.q stets den
entsprechenden RQ-Raum enthélt und dass diese Inklusion iiblicherweise sogar echt ist. Insbesondere kom-
mutieren Reduktion und Quantisierung in diesem Kontext im Allgemeinen also nicht.

Im zweiten Teil dieser Arbeit konstruieren wir normierte Radonmafle sowohl auf den RQ- als auch auf
den QR-reduzierten Riaumen. Fiir letzteren Fall zeigen wir, dass der quanten-reduzierte Konfigurations-
raum unter recht milden Voraussetzungen in ein Produkt vier leichter handhabbarer Konfigurationsraume
zerfallt. Auf zweien dieser Rdume werden normierte Radonmafle konstruiert. Im Falle einer freien und ei-
gentlichen Gruppenwirkung (und der Strukturgruppe SU(2)) liefert dies sogar ein normiertes Radonmaf auf
dem vollen QR-Raum, da hier die iibrigen Faktoren nicht auftreten. Im Rahmen der urspriinglichen Reduk-
tion auf klassischem Niveau widmen wir uns dagegen dem Spezialfall der homogen-isotropen Schleifenquan-
tenkosmologie. Hier untersuchen wir die mafitheoretische Eigenschaften des kosmologischen Quantenkonfi-
gurationsraumes R U Rpony, der durch Quantisierung des reduzierten klassischen Konfigurationsraumes R,
entsteht. Wir zeigen, dass Invarianz unter der kanonischen Fortsetzung ¥: R X (RURBonr) = RURBon, der
additiven Gruppenwirkung ¥g: IR X IR — R bereits das Haarmaf auf dem Rpon-Anteil sowie das Nullmaf
auf dem R-Anteil fixiert. Damit erhalten wir denselben kinematischen Hilbertraum wie in der Standard-
schleifenquantenkosmologie. Im Anschluss konstruieren wir weitere normierte Radonmafle auf R LI Rpon,
und vergleichen die resultierenden L2-Hilbertrdume miteinander. Auf den in dieser Arbeit konstruierten
Hilbertrdumen sollen in weiterfithrenden Projekten entsprechend reduzierte Observablenalgebren darge-
stellt werden.

Im letzten Abschnitt beweisen wir ein allgemeines Charakterisierungstheorem fiir invariante Zusam-
menhénge auf Hauptfaserbiindeln. Dieses verallgemeinert die beiden klassischen Resultate von Wang sowie
Harnad, Shnider und Vinet. Die besondere Stérke dieser Verallgemeinerung liegt hierbei in ihrer breiten
Anwendbarkeit, die es sogar sehr oft erlaubt, Rdume invarianter Zusammenhéinge explizit zu bestimmen.
Dies ist zum einen wichtig fiir die Symmetriereduktion im urspriinglichen Sinne und zum anderen fiir die
Untersuchung der Inklusionsrelationen zwischen den jeweiligen quantisierten reduzierten bzw. reduzierten
quantisierten Konfigurationsraumen.



Abstract

The intention of this dissertation is to provide general tools and concepts that allow to perform a math-
ematically substantiated symmetry reduction in (quantum) gauge field theories. Here, the main focus is
on the framework of loop quantum gravity (LQG) where we concentrate on the reduction of the quantum
configuration space and the construction of normalized Radon measures on the reduced spaces. For the
reduction part, one basically has the following two possibilities. First, one can quantize the reduced clas-
sical configuration space (RQ reduction). Second, one can try to lift the symmetry (i.e., the group action)
from the classical to the quantum space in order to perform a symmetry reduction directly on quantum
level (QR reduction). Since in LQG only the first approach has been studied so far, we now systematically
develop the second approach. In course of that, we attack the important question whether in this context
quantization and reduction do commute or not.

In the first part of this thesis we develop the mathematical backbone of the QR-reduction concept. This
is based on the extension of group actions 6: G x X — X on sets X to group actions ©: G x Spec(2) —
Spec(2l) on spectra of C*-algebras 2 C B(X). The QR~configuration space then is formed by the set

Ara = {@eA|O(g.3) =7 VgeG)

with A the quantum configuration space of full LQG. This is in analogy to the classical situation where
the reduced classical space A,eq is formed by such smooth connections that are invariant under the whole
symmetry group. In contrast to that, within the traditional RQ approach one quantizes the space Aeq
by calculating the spectrum of a separating C*-algebra, of bounded functions thereon. We show that A,cq
always contains this quantized reduced classical space and that this inclusion is usually even proper. Hence,
in this context, quantization and reduction in general do not commute.

In the second part of this dissertation, we construct normalized Radon measures on both the RQ and
the QR configuration spaces. We show that, for sufficiently nice group actions, the space A,eq can be
written as a product of (at most) four QR configurations spaces, each corresponding to a certain symmetry
type of curves in the base manifold of the underlying bundle. We construct normalized Radon measures
on two of these spaces which, together, give rise to a normalized Radon measure on A,.q whenever the
action induced on the base manifold is proper and free. Within the traditional approach we concentrate on
homogeneous isotropic loop quantum cosmology. Here, we investigate the measure theoretical aspects of
the cosmological quantum configuration space RURpon,. This arises from quantizing the reduced classical
configuration space R, parametrizing the set of invariant smooth connections in this case. We show that
invariance under the canonical extension ¥: R x (R U Rpony) — R U Rponr of the additive group action
Yr: R xR — R already singles out the normalized Radon measure

o A]R U ABohr — NBohr(ABohr)

for Ar U Aponr € B(R) UB(Rponr) = B(R URponr) and pponr the Haar measure on Rpopy. This means,
we end up with the same kinematical Hilbert a space as we have in standard homogeneous isotropic LQC.
Finally, we construct further normalized Radon measures on R LI Rpon, and investigate the corresponding
L2?-Hilbert spaces. It is then part of future projects to establish representations of respective reduced
observable algebras on the kinematical Hilbert spaces constructed in this work.

In the last part, we prove a general characterization theorem for invariant connections on principal
fibre bundles which extends the classical result of Wang. We consider several special cases of the general
theorem including the result of Harnad, Shnider and Vinet. Our theorem turns out to be predestined for
calculating sets of invariant connections explicitly, and, thus, is an important tool for performing symmetry
reduction in the traditional way. In addition to that, also for the investigations of the inclusion relations
between quantized reduced classical and the respective quantum-reduced configuration space it is usually
crucial to determine the respective sets of invariant connections explicitly.
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1 Introduction

1.1 Quantum Gravity

One of the most challenging problems of modern physics is the embedding of quantum mechanics
and general relativity into a superordinated (and mathematically substantiated) physical theory.
Such a unified description is expected to play a role whenever massive objects are concentrated
on small spaces being the case, e.g., for big bang scenarios or black holes. There, one would wish
such a theory to resolve the singularities that appear when one describes these phenomena in the
classical framework of general relativity.

Serious difficulties in combining quantum mechanics with general relativity arise from the
conceptual differences of these two theories and from the lack of physical experiments hinting to
some kind of quantum gravity effects. Such effects, however, one would expect from a theory
unifying gravitational and quantum nature of matter. So, at this point, unification can only be
done on a purely theoretical level, and here one basically has the choice between the following
two strategies. First, one can try to construct a completely new theory which, in the appropriate
physical limits, reproduces general relativity and quantum mechanics. Second, one can try to
quantize general relativity directly, hoping to end up with a unified theory or, to be more realistic,
to get some hints on how such a theory should look like. Following these philosophies, promising
candidates are string theory, a pertubative approach to the construction of a superordinated
theory, and the loop quantum gravity approach we will follow in this thesis.

1.1.1 Loop Quantum Gravity

Being a non-pertubative and background independent approach, loop quantum gravity
[6,134] seems to be appropriate for understanding quantum gravity effects near classical singulari-
ties where curvature is by no means small. Indeed, within this context it was possible to derive the
Bekenstein-Hawking area law for a large class of black holes. [1,{14] Now, being a canonical quanti-
zation of gravity, LQG is based on a splitting of space-time into time and space, entailing that the
four-dimensional covariance of general relativity is no longer manifest. [32,34] In particular, the
4-dimensional diffeomorphism constraint splits up into a spatial and the Hamiltonian constraint,
the latter one defining the dynamics of LQG. Unfortunately, the quantization of the Hamiltonian
of the full theory turns out to be difficult and is, at this point, not completely understood. [33]
Here, symmetry reduced versions of LQG like loop quantum cosmology [10] can help to better
understand this quantization for the full theory. In addition to that, mathematical developments
like the reduction concept to be developed in this work carry over to a bigger class of gauge field
theories, so that LQG is not an isolated field of research but an approach to quantum gravity
whose developments enhance other areas of theoretical physics and even mathematics.

1.1.2 Challenges

Although symmetry reduced versions of loop quantum gravity exists, no conceptually satisfying
reduction concept has been developed so far. Indeed, to this point reduction has been done
on a rather intuitional level, so that the connection to the full theory was usually not manifest
but had to be established in a laborious way. Standard homogeneous isotropic loop quantum
cosmology may serve as a prime example for this. However, since symmetric situations
in nature occur, for a physical theory one would expect to have a reasonable reduction concept
which allows to get rid of superfluous degrees of freedom.



Now, being an Ashtekar approach to quantum field theories, LQG is based on functional
integrals. So, besides the definition of a reduced quantum configuration space, a reduction theory
here should include the construction of corresponding Radon measures which (as for the full
theory) allow to integrate over field configurations. In addition to that, appropriately reduced
holonomy-flux algebras (and Hamiltonians) have to be represented on the respective kinematical
Hilbert spaces of square integrable functions. Then, states on the reduced algebras have to be
embedded into respective symmetric sectors of LQG. [9] Once such a concept has been established,
the consideration of highly symmetric systems might allow to make verifiable predictions that can
help to advance the full theory.

1.2 Mathematical Context

The basic mathematical objects studied in this thesis are spaces of connections on principal fibre
bundles, spectra of C*-algebras of bounded functions and normalized Radon measures. Since we
are investigating the problem of symmetry reduction, also left actions of (Lie) groups will play an
important role.

1.2.1 Invariant and Generalized Connections

In its simplest form, the configuration spaceﬂ of a classical gauge field theory is formed by the set
A of smooth connections on a principal fibre bundle (P, m, M, S)E| Symmetries are realized by
Lie groups of automorphisms (G, ®), and symmetry reduction just means to calculate the set

Apeq i={w € A| @;w =w for all g € G} (1)

of smooth connections invariant under pullbacks by all symmetry group elements. [241[36]

Then, in the Ashtekar approach to quantum gauge field theories, the quantum configuration
space A of the full theory is formed by the spectrum of a separating C*-algebra B of bounded
functions on 4. Here, the C*-algebra of cylindrical functions 8 C B(.A) is generated by matrix
entriesﬂ of parallel transports along the elements of a fixed set P of curves in the base manifold
of P. Here, the main reason for switching from A to A is that (in contrast to .A) there exists
a natural measure on A, the Ashtekar-Lewandowski one. This measure allows to integrate over
field configurations and defines the L? Hilbert space on which the unique representation [22,27]
of the holonomy-flux algebra is realized. The separation property of 8 here guarantees that the
space A is canonically embeddedﬁ via

A A=A wes [f = f(w))]

Since t4(A) C A is even dense [29], the space A can be seen as some kind of compactification of
A (provided that the structure group is compact, as then B is unital).

Tndeed, actually the quotient A/G of A w.r.t. the set G of gauge transformations of P is considered as physically
relevant configuration space. However, to keep it simple, in this work we concentrate on the space A and its
quantum analogue A (see below). Here, the main reason is that we rather expect technical than conceptual
difficulties when carrying over the developments of this work to the “up to gauge”’-case, i.e., to the quotient .A/G
of A w.r.t. the compact group G of generalized gauge transformations. See, e.g., the outlook section for some more
details.

2In the LQG approach we usually have P = ¥ x SU(2) for a 3-dimensional Cauchy surface ¥ of a space-time M.

3With respect to some faithful matrix representation of the structure group S.

4As we have not chosen any topology on A, this just means that ¢4 is injective.



1.2.2 Symmetry Reduction

Traditionally, symmetry reduction in LQG has been done by calculating the spectrum of a C*-
algebra of the form 9’| 4., € B(Areq). This is just the closure of

%/Lﬁlred = {f‘Ared ‘ VS f’p/}

in B(Aeq), where P’ denotes the C*-algebra of cylindrical functions that corresponds to some
set P’ of curves in M. Choosing P # P’ then usually offers the problem that the reduced
space cannot be naturally embedded into A. Indeed, this is exactly the case for homogeneous
isotropic LQC (P = R? x SU(2)) where originally the set of linear curves was used for P’. [13] In
particular, in view of the embedding strategy for states proposed in |9] this is disadvantageous. To
fix this problem, in [20] the space Ayeq = Spec(P|4,.,) Was introduced. Indeed, A,eq is naturally
embedded in A, even homeomorphic to the closure of ¢ 4(Ayeq) in A.

Now, A..q arises from a quantization of the reduced classical space A,.q and not from a
reduction of the quantum space A. So, in this thesis we will follow the second, conceptual more
satisfying approach which has not been investigated so far. This means that we will perform a
symmetry reduction directly on the quantum level just by extending the left action §: G x A — A,
(g,w) — ®}_,w which determines

Aed ={w e A|b(g,w) =w Vg € G}

to a left action ©: G x A — A. This will provide us with the quantum-reduced configuration
space

Zred = {@6Z|@(g,w) =w Vge G}

which, as we will see, always contains the quantized reduced classical space A..q. In several
situations, this inclusion even turns out to be proper so that in our context quantization and
reduction usually do not commute. This is also the main reason why it is much easier to construct
measures on A,.q than on m Indeed, for Ayeq so-called modification techniques are available,
which only work with limitations for A,.q. This is just because they do not leave this space
invariant. To get a rough idea what modification of a generalized connection here means, it is
important to know that for compact and connected structure groups (the typical LQG case) one
can identify A with the space of homomorphisms Hom (7P, S). Such homomorphisms map curves
in P to structure group elements, and modification then just means to change the values of such
a map along some fixed curves in a specific way. The same techniques then will also allow to
construct normalized Radon measures by means of projective structures on Ayeq.

1.2.3 Projective Structures and Normalized Radon Measures

A practicable way to construct normalized Radon measures on compact Hausdorff spaces (and
the usual way to do it for quantum configuration spaces in LQG) is to identify the space X of
interest as a projective limit of a reasonable family of compact Hausdorff spaces { X, }acr. Here,
reasonable means that each of these spaces carries a natural normalized Radon measure, and that
all these measures are consistent in the way described below. Here, the basic idea is that for
X high-dimensional in a certain sense, each X, catches finitely many degrees of freedom of this
space.
Now, to be a projective limit basically means thatE]

SFor the case of homogeneous isotropic LQC we will construct measures on A,.q by hand, see Section
This definition differs slightly from the standard one [5], but is equivalent to it.

10



1) There exist continuous surjective projection maps m,: X — X, which separate the points
in X

2) For each two ay, a0 € I (I is a directed set) with a; < ao there exists a transition map
o2t Xa, = Xay With 152 0o 7, = 7q, -

A Riesz-Markov argument shows that the normalized Radon measures on X are in bijection with
the consistent families {/iq }aer of normalized Radon measures p, on X,. Here, consistency just
means that for oy, ae € I with a; < ag the equality 752 (ftay) = Ha, holds.

Then, for A = Hom(P,S) one usually chooses I to consist of certain finite tuples a =
(Y1, .- .,7k) of curves y1,...,7; € P, and defines

Ta(e) = (e(n), .., e(w)) € S*

for S* the k-fold product of the structure group. Choosing these tuples appropriately then
ensures that m, is surjective, and that the Haar measure on S can be used to define a respective
consistent family of normalized Radon measures. Now, we will see that under the identification
A = Hom(P, S) the quantum-reduced space A,.q C A corresponds to a subset Homq(P,S) C
Hom(P,S) of homomorphisms that fulfil certain invariance properties. These properties give
non-trivial restrictions to the images of the maps m,, so that we will be forced to adapt the
whole projective structure in order to obtain a non-trivial measure on Homyq(P,S). For the
spaces Ayeq the situation is even more difficult, just because the subsets 7, (@) C my (ﬁred) are
usually much more complicated.

1.3 Aims and Organization

Although this dissertation is rather motivated by the framework of LQG, its main goal is to
provide general tools and concepts that allow to perform a mathematically rigorous symmetry
reduction also in other (quantum) gauge field theories. Here, we will focus on the reduction of
the quantum configuration space and the definition of reasonable Radon measures thereon. We
also attack the question whether, in our context, quantization and reduction commute or not. In
course of this, we will prove a general characterization theorem for invariant smooth connections
on principal fibre bundles which generalizes the classical results of Wang [36] and Harnad, Shnider
and Vinet [24]. The definition of representations of respective reduced holonomy-flux algebras on
the constructed L?-Hilbert spaces is left as a future task.
This work is organized as follows:

e The preliminaries in Section [2]contain the notations, as well as the basic definitions, conventions
and facts concerning principal fibre bundles, projective structures and Radon measures.

e In the first part of Section [3] we present the LQC relevant cases which will serve as prime
examples during this work. In addition to that, we discuss the properties of SU(2) being
relevant for our later calculations. In the second part, we will collect the facts on spectra of C*-
algebras of bounded functions which build the mathematical backbone of the reduction concept
introduced in [20] and that one, we will develop in Section In the last part, we highlight
the most crucial properties of the Bohr compactification of a locally compact abelian group.
This is of relevance because the Bohr compactification R, of R plays a key role in standard
homogeneous isotropic LQC (see Section|[7]), and also in the constructions in Subsection We
close Section [3| with a characterization of the continuous abelian group structures on spectra
of certain unital C'*-algebras.

11



e In Section [4] we are going to lift Lie groups (G, ®) of automorphisms of principal fibre bundles
P to spectra A of C*-algebras of cylindrical functions 8 C B(A). Here, A denotes the set
of smooth connections on the respective bundle and B(A) the set of bounded functions on
A. This will provide us with the notion of an invariant generalized connection, the quantum
analogue of an invariant classical (smooth) one.

In the first step, we will use the concept of a C*-dynamical system in order to extend an action
[(: G x X — X (of a group G on a set X) to an action ©: G x Spec(2) — Spec(2) on the
spectrum of a C*-subalgebra 2 C B(X). Then, we adapt this to the case where X equals the
set of smooth connections on a principal fibre bundle. Here, it will be crucial that the set of
paths P, used for the definition of 3, is invariant in the sense that

yeP == pgoy€P VgeG

with ¢: G x M — M the action induced by ® on the base manifold M of P. Finally, we will
consider the case where the structure group S of P is compact, and where the set of curves has
the additional property of independencem In this situation, it will be possible to identify the
quantum-reduced configuration spaces A,.q with spaces of so-called invariant homomorphisms.
This will later be important for the investigations of the inclusion relations between A,.q and
Ased, as well as the construction of measures on A,eq. At the end of Section {4 we will show
that the spaces Aeq and Aeq are usually of measure zero w.r.t. the Ashtekar-Lewandowski
measure (LQG standard measure) on A.

e In Section 5| we will develop modification techniques for invariant homomorphisms in the event
that the induced action ¢ on M is analytic and pointwise proper. In the first part, we collect the
relevant facts and definitions concerning analytic and Lie algebra generated curves, whereby ~y
is called Lie algebra generated iff it is (up to parametrization) of the form ~: t — @, (exp(t-g))
for some x € M and § € g\g,. Here, g, denotes the Lie algebra of the ¢-stabilizer G, of x.

In Subsection [5.2] we will modify invariant homomorphisms along such Lie algebra generated
curves, and in Subsection we apply this in order to show that the inclusion Ayeq € Areq is
proper in several situations. In particular, we conclude that quantization and reduction do not
commute in (semi-)homogeneous LQC. For homogeneous isotropic LQC this will be shown in
Section [Tl

In the last part of Section 5], we will prove an analogue of the modification result from Subsection
but now for free curves. These are embedded analytic curves y containing a subcurve § (free
segment) for which ¢4 0 § = § holds whenever im[p, o §] Nim[d] is infinite for some g € G. We
will show that, under the condition that ¢ is analytic and pointwise proper, each free curve = is
discretely generated by the symmetry groupﬁ Moreover, we will see that if each -stabilizer is
even a normal subgroup and ¢ is in addition transitive or proper, then each embedded analytic
curve is either free or (up to parametrizations) Lie algebra generated. For instance, this is the
case in (semi-)homogeneous LQC, where it will us to construct a normalized Radon measure
on A.eq if the structure group is SU(2), see Section @

"This is the case, e.g. if P is the set of embedded analytic curves and S is connected.

8This means that we find a (maximal) free segment § of v such that v admits a decomposition into finitely many
subcurves, each being (up to parametrization) an initial or final segment of ¢4 0 § for some g € G. Here, each
of these subcurves which is not an initial or final segment of 7, then even equals (up to parametrization) the full
segment g o ¢ for the respective g € G.
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e In Section [6] we will construct normalized Radon measures on certain quantum-reduced con-
figuration spaces for the case that ¢ is analytic and pointwise proper. Here, the main idea is
to split up the set P,, of embedded analytic curves into suitable subsets P,, a € I, each being
closed under decomposition and inversion of its elements. In fact, then (Subsection 4.3.2])

Ared,w = H Ared,oz

ael

holds and, provided that we have constructed normalized Radon measures on each of the spaces
Zred’a, we obtain a normalized Radon measure on Zred,wa just by taking the Radon product one.
For instance, if ¢ is proper and free, we have Zred’w = Zred,g X Zred’p where Zred@ corresponds
to the set of Lie algebra generated and Zred’F to the set of the free curves. So, in this case
it suffices to construct normalized Radon measures on these two spaces, which is exactly the
content of Section [6l

In fact, in the first part of this section, we will construct a normalized Radon measure on
Zred’FN for the case that S is compact and connected. Here, Zred’FN corresponds to the set of
such free curves whose stabilizerﬂ is trivial, whereby in the above situation Xred,FN = jred’p
holds, just because there ¢ was assumed to be free.

In the second part of Section @ we will construct a normalized Radon measure jiy on Zred,gy
exemplarily, for the most LQC relevant case that S = SU(2) (and for each n-torus). Here,
we will require some additional conditions on the -stabilizers, which appear to hold, e.g. in
spherically symmetric, (semi-)homogeneous and homogeneous isotropic LQC. Then, if ¢ is in
addition transitive (such as in homogeneous and homogeneous isotropic LQC), we have the
reasonable kinematical Hilbert space LQ(Xred,g, tg). Indeed, in the transitive case Xg, hence
Zredg is a physically meaningful candidates for a quantum(-reduced) configuration space be-
cause there t: A — jg is injective as, in this situation, the cylindrical functions that correspond
to Py’ separate the points in A.

e In Section [7] we will focus on homogeneous isotropic LQC. We show that quantization and
reduction do not commute and investigate the measure theoretical aspects of the classically
reduced quantum configuration space A,.q. This space corresponds to the set of embedded
analytic curves in M = R? and is homeomorphic to the compact Hausdorff spacelﬂ R URBone-
[20] In contrast to the LQC standard approach (where the reduced quantum space is defined by
all linear curves in R? and is homeomorphic to the compact abelian group Rpohr) on RURBoh:
no Haar measure is available. This will be shown in the first part of Section [7} where we
prove that no continuous group structure can exist on this space. Then, changing the focus
from Haar to normalized Radon measures, we will show that ppen, is the unique normalized
Radon measure which is invariant under the canonical extension ¥': R X Rponr — Rponr of the
additive group action Zr: R X Aeq = Ared of R on Aeq = R. Moreover, we will prove that
the same invariance condition singles out a normalized Radon measure on A,.q = R U Rpop:-
This measure even defines the same kinematical Hilbert space LQ(IRBOhr, UBohr) as we have
in standard LQC, supporting this approach from the mathematical side. In the last part of
Section [7, we will use projective structures in order to construct further normalized Radon
measures on R U Rpep, and, finally, compare the respective Hilbert spaces of square integrable
functions thereon.

9As we will see, this is a well-behaving quantity if ¢ is analytic and pointwise proper.
10The topology on R U Rgon: is quite tricky. Details will be given in Section
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e In Section |8 we will prove a characterization theorem for invariant connection on principal fibre
bundles which generalizes the classical results of Wang [36] and Harnad, Shnider and Vinet [24].
We consider several special situations such as (almost) fibre transitivity (Case and ,
Lie groups of gauge transformations (Case , trivial bundles (Case and the gauge
fixing situation (Case . Along the way, we give applications to loop quantum gravity. In
particular, we will calculate the (semi-)homogeneous and spherically symmetric connections
already introduced in Example [3.3] and which we will use in Subsection [5.3] in order to show
that the inclusion A,eq C Ayeq is proper in (semi-)homogeneous and spherically symmetric
LQC. We also show that the set of invariant connections depends crucially on the explicit lift
of an action ¢: G x M — M to P, see Remark [8.27]

Each of the sections [4] — [8] closes with a short summary of its most relevant results.

2 Preliminaries

In this brief section we fix the notations and collect some facts and definitions which are more or
less standard, but crucial for this thesis.

2.1 Notations

Manifolds are always assumed to be smooth or analytic. If M, N are manifolds and f: M — N
a smooth map, then df: TM — TN denotes the differential map between their tangent bundles.
The map f is said to be an immersion iff for each € M the restriction d, f := df|ra: TeM —
Ty(y) N is injective. Elements of tangent spaces usually are written with arrows, such as v, € T, M.
Here, we subscript the base point & whenever it helps to clarify the calculations. In particular, in
Section [§] this will be helpful to keep the track of the calculations.

Let V be a finite dimensional vector space. A V-valued 1-form w on the manifold N is a
smooth map w: TN — V whose restriction wy := w|r,y is linear for all y € N. The pullback of
w by f is the V-valued 1-form f*w: TM — V, Uy — wy(y)(def(Uz)). If it is clear which tangent
space ¥ belongs to, we usually do not subscript w by the base point, e.g., we write w(%,) instead
of wy(Vy).

Let G be a Lie group and g its Lie algebra. For g € G we define the corresponding conjugation
map by [@g: G — G, h ghg™'. Tts differential deay: g — g at the unit element e € G is denoted
by Ady, and by @ we will denote the left action Ad: G x g — g.

Let ¥ be a (left) action of the Lie group G on the manifold M. For g € G and z € M we
define ¥,: M — M, y — ¥(g,y) and ¥,: G — M, h+— ¥(h,x), respectively. If it is clear which
action is meant, we will often write L4 instead of W, as well as g -  or gz instead of Wy (x). For
g€ gand xz € M the map

9(x) = g, Valexn(tg)) (2)

is called the fundamental vector field w.r.t. §. The Lie subgroup G, := {g eG | g-x= :1:} is
called the stabilizer of x € M (w.r.t. U), and its Lie algebra g, equals ker[d, V], see e.g. [15].
The orbit of x under G is the set Gz := im[¥,]. ¥ is said to be transitive iff Gx = M holds
for one (and then each) x € M. The action V is called proper at x iff for each net {ga}acr C G
the convergence of {¥(ga,x)}acr € M implies the existence of a convergent subnetlﬂ of {gatacr-

"'This is a net {hg}ges C G together with a map ¢: J — I such that hg = g,(s) for all B € J. Moreover, for each
a € I we find B € J such that +(8’) > « holds for all 3’ > 3.
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This is equivalent to require that ¢, '(K) C G is compact whenever K C M is compact, i.e., that
gy is a proper map. Then, ¢ is called pointwise proper iff it is proper at x for all x € M. Finally,
W is said to be proper iff the convergences of {V(ga,%a)}tac; € M and {x4}acr € M imply the
existence of a convergent subnet of {g,}aecr. Analogous conventions hold for right actions.

A curve is a continuous map v: D — M. Here D C R is an interval, i.e., a set of the form
(a,bl, [a,b) or [a,b] with a < b. The curve 7 is said to be of clasﬂ C* iff there is a C*-curve
(in the sense of C* maps between manifolds) 7/: I — M such that +'|p = ~. Here, I is an open
interval that contains D, and 7 is called an extension of v in this case. The same conventions
hold for diffeomorphisms p: D — D’ C R. The C*-curve v: D — M is called an embedding iff
we find an extension +': I — M which is an injective immersion and a homeomorphism onto its
image equipped with the relative topology. If kK = w, we say that 7 is an embedded analytic curve.
A curve 7 is called piecewise (embedded) CF or (embedded) C*-path iff there are real numbers
a =1y <...<T7k=bsuch that for each 0 <4 <k — 1 the restriction 7|, -, is an (embedded)
curve of class C*. For the case that y is C* for some k € N> or if ¢ is not contained in the interior
of D, we will define the tangent vector §(t) € T M in the canonical Wayﬁ In the following, I
and K will usually denote open and compact intervals, respectively, whereby I also will occur as
index set if it is not in conflict with our notations.

If Wisaset and U C W a subset, then U¢ = W\U denotes the complement of U in W. If W
is a topological space, by U we usually denote the closure of U in W. A different convention holds
for subsets B C B(Z) of C*-algebras of bounded functions. Here, B denotes the C*-subalgebra
of B(Z) which is generated by B, see also Convention

If Y is a locally compact Hausdorff space, then Cyp(Y) denotes the set of complex-valued,
continuous functions on Y that vanish at infinity. This is that for each f € Cyp(Y) and € > 0
there is a compact subset K. C Y such that |f| < e on Y\K,. If 2 is a Banach algebra, then
Spec(2l) denotes the set of all non-zero, multiplicative, C-valued functionals on 2. Then, by
G: A — Co(Spec(AN)), a [a: f— f(a)] we will denote the Gelfand transformation. Recall that
the Gelfand-Naimark theorem states that G is an isometric *-isomorphism if 2 is a C*-algebra.

2.2 Principal Fibre Bundles

Let m: P — M be a smooth map between the manifolds P and M, and denote by [F}]:= 7~ !(z) C
P the fibre over x € M in P. Moreover, let S be a Lie group that acts via R: P x.S — P from the

right on P. If there is an open covering {U, }aecr of M and a family {¢q }aer of diffeomorphisms
bo: T HUy) — Uy x S with

da(p-s) = (7r(p), [pry © ¢a](p) - s) Vpen YU,),Vs €S, (3)

then (P, 7, M, S)| is called principal fibre bundle with total space P, projection map m, base
manifold M and structure group S. Here, pry denotes the projection onto the second factor S. It

follows from that 7 is surjective, and that:

e Ry (F,) C F,forallz€ M and all s € S.

12We allow k € {N>1,00,w}, where w means analytic.

13Recall that there occur some technical difficulties if one just treats M as C*-manifold. This is because only for
k = oo the algebraic definition of a tangent vector coincides with the geometric one. So, for k # oo, i.e, if v is a
C*-curve in the smooth manifold M, we use some smooth chart (U, ) around ~(t) in order to obtain a smooth
curve § through ~(t) with <& (@0 d)(t) = 4 o (@07)(t). Then, we define the tangent vector of 7 at ¢ to be
the equivalence class [0] € T, (t)M. Now, for the case that ¢ is not contained in the interior of D, we just use an
extension of « in order to define 4(¢).
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o If z € M and p,p’ € F,, then p’ = p- s for a unique element s € S.

Then, for p,p’ € F, contained in the same fibre, we will denote by [Al(p, p’) € S the unique element
for which p’ = p - s holds.
The subspace T'v, P := ker[d,n] C T, P is called vertical tangent space at p € P and

s(p) == %‘tzop -exp(ts) € Tv,P VpeP
denotes the fundamental vector field of § w.r.t. the right action of S on P. Recall that the map

§ 3§ — 5(p) € Tv,P is a vector space isomorphism for all p € P.
Complementary to that, a (smooth) connection w is an s-valued 1-form on P with

o Riw=Ad,1owforallse s,
e wy(s(p)) =5forall 5€s.

The subspace Thy,P := kerjw,] C T,P is called the horizontal tangent space at p (w.r.t. w). We
have dRs(Thy,P) = Thy.sP for all s € S and one can show that T,P = Tv,P & Th,P holds for
all p € P. The set of smooth connections on P is denoted by [4]in the following.

2.2.1 Parallel Transports

Let 7: [a,b] — M be a C'-curve in M and w a connection on P. Then, for each p € F. () there
is a unique C'-curve v+ [a,b] — P with m o =, 7 (a) = p as well as 4,(t) € Thyw P, ie.,
ww (1) (Y (t)) = 0 for all ¢ € [a, b]. [26] This curve is called horizontal lift of v w.r.t. w in p and

P Fy@) = Fyw)
p = (b)

is called parallel transport along v w.r.t. w. The map P4 is a morphism, i.e., Py (p-s) = P(p) - s
holds for all p € Fy(, and all s € S. For a Cl-path 7 one defines the parallel transport by
Py = Py o...0o P  where v; are Cl-curves with ~; = Yiririga) for 0 < i < k-1 and
a =1 <...<T, = b Itis straightforward to see that this definition is independent of the

explicit decomposition of ~.

2.2.2 Automorphisms and Invariant Connections

A diffeomorphism k: P — P is said to be an automorphism iff k(p - s) = k(p) - s holds for all
p € P and all s € §. It is straightforward to see that an s-valued 1-form w on P is a connection
iff this is true for the pullback xk*w. A Lie group (G, ®)| of automorphisms of P is a Lie group G
together with a left action ® of G’ on P such that the map ®, is an automorphism for each g € G.
This is equivalent to say that ®(g,p-s) = ®(g,p) - s holds for all p € P, g € G and all s € S. In
this situation, we will often write gps instead of (¢-p)-s =g - (p-s). Each such left action ®
gives rise to three further important left actions:
e The action ¢ induced on the base manifold is defined by
B: GxM—=M
(g,m) = (70 ®)(g, pm)

(4)

where p,, € F), is arbitrary. Then, ¢ is smooth because for sg: Uy — P a smooth local
section with Uy € M open we have ¢|gxu, = (-, s0). Then, ® is called fibre transitive iff ¢
is transitive.
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e We equip [Q]= G x S with the canonical Lie group structure and define [36]

El: QxP—P
((gas)vp) = @ (gvp ' 5_1) :

e The action 6 induced on the set A of smooth connections is defined by

d: GxA—A
(9,w) = ) w.

Definition 2.1 (Invariant Connection)
A connection w is called ®-invariant iff ®3w = w holds for all g € G.

This definition is equivalent to require that for each p € P and g € G the differential d,, L4 induces
an isomorphism between the horizontal tangent spaces T'h, P and Thgy,P. In literature sometimes
this condition is used to define ®-invariance of connections.

We conclude this subsection with the following straightforward facts, see also [36]:

e Consider the representation [p: Q@ — Aut(s), (¢9,s) — Ads. Then it is straightforward to
see that each ®-invariant connection w is of type p, i.e., w is an s-valued 1-form on P with
Lyw = p(q) ow for all g € Q.

e An s-valued 1-form w on P with w(s(p)) = § for all § € s is a ®-invariant connection iff it is
of type p.

e Let |Q,| denote the stabilizer of p € P w.r.t. = and G, the stabilizer of 7(p) w.r.t. ¢. Then
Grp) =1h € G| Lyp: Fp — Fp} and we have the Lie group homomorphism

[0g): Grpy = S by requiring that  ®(h,p) =p-¢p(h) forall he Grp. (7)

If g, and gr(,) denote the Lie algebras of @, and Gy (), respectively, then
Q={(h&p(h)) |h € CGrip}  and gy ={(Rdetp(R)) |h € griry}-  (8)

2.3 Projective Structures and Radon Measures

In this subsection, we will collect the necessary facts on projective structures and Radon measures.
Here, our conventions concerning Radon measures are the same as in [16], see Definition We
start with the following non-standard definition of a projective limit:

Definition 2.2 (Projective Limit)

Let {X4}aer be a family of compact Hausdorff spaces where (I, <) is a directed set. Recall that
this means that < is a reflexive and transitive relation on I, and that for each two o, o’ € I we
find some o” € I with o,/ < o”. A compact Hausdorff space X is called projective limit of the
family { X, }aer iff

1) For each « € I there is a continuous, surjective map mq: X — X,,.
2) For oy, ag € I with ay < ag there is a continuous map mo?: Xa, — Xa, for which ng2 oy, =
T, holds.
(6%

It follows that each of these maps is surjective and that 7§
for ay, a0, a3 € 1.

2 as _ Qs 3
2omgd = mg? holds ifag <ag <as

17



3) If z,y € X with = # y, then there is some « € I with 74(x) # 7 (y).

It is proven in Lemma that the above definition of a projective limit is equivalent to the usual
definition [5] as a subset

5(: = {‘% = HaeIXa | ng(l'OQ) = Tay Voag > 041}

of the Tychonoff product [[,c; Xo. In particular, each two projective limits of a fixed family of
compact Hausdorfl spaces are homeomorphic if the same transition maps are used.

Anyhow, in this thesis the main reason for writing a compact Hausdorff X as a projective limit
is due to Lemma 2.4l This states that we obtain a normalized Radon measures on X if we define
a consistent family (see next definition) of normalized Radon measures on the spaces X,. Using
the standard Tychonoff product approach, here we always had to take care of the identification
of X with the space X. For this reason, Definition is much more convenient for the purpose
to construct normalized Radon measures on X.

Definition 2.3 (Borel, Radon Measures)
1) A Borel measure y on a Hausdorff space Y is a locally finitd'4| measure p: B(Y) — [0, ool
where B(Y') denotes the Borel o-algebra of Y. It is said to be normalized if ||| := p(Y)

2) A Borel measure p is called inner regular iff for each A € B(Y) we have

w(A) = sup{u(K) : K is compact and K C A}.

3) A Radon measure p is an inner regular Borel measure. It is called finite if p(Y) < oo holds.
Recall that each finite Radon measure is outer regular, i.e., for each A € B(Y") we have

pu(A) =inf{u(U) : U is open and A C U}.

4) Assume that we are in the situation of Definition and {fiq}aer is a family of Radon
measures fio: B(Xq) — [0,00]. Then, {pq}acr is called consistent iff p14, equals the push

forward measure 75?2 (u2) whenever a; < ag for ag,an € I.

Lemma 2.4
1) Let p be a finite Radon measure on X and f: X — 'Y a continuous map. Then, the push
forward measure f(u) is a finite Radon measure on'Y .

2) Let X and {X,}aer be as in Definition . Then, the normalized Radon measures on X
are in bijection with the consistent families of normalized Radon measures on {Xq}acr-

PrROOF: 1) Since p is finite, f(u) is a finite Borel measure. Then, inner regularity of f(u) is
straightforward from inner regularity of pu.

2) See Lemma [

In Subsection we will construct measures on Tychonoff products X = X7 X -+ x X} from
measures (i1, . . ., b on topological spaces X, ..., Xi that are not second countable. In this case,
the Borel o-algebra 9B(X) is usually larger than the product o-algebra B(X;) ® -+ @ B(Xy).
For this reason, we cannot use the standard product measure approach for o-finite measures (see,

14 This means that for each y € Y we find U C Y open with y € U and u(U) < oo.
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e.g., |16, Chap.V, §1]). Now, if the spaces X; are locally compact Hausdorff and p; are finite
Radon measures, then we have the notion of the Radon product measure, being defined on B(X).
Since such Radon product measures seem to occur in standard literature usually only by means of
existence statements without a concrete definition, we decided to provide such a definition at this
point. This is just to clarify what exactly we mean by Radon product measures in the following.

Lemma and Definition 2.5 (Radon Product Measure)
For a topological space Z we denote by C.(Z) the set of continuous functions having compact
support in Z.

1) Let p and v be normalized Radon measures on the locally compact Hausdorff spaces X and
Y, and denote by I and J the corresponding normalizeﬂ positive linear functionals on
Co(X) and C.(Y), respectively.

e By Theorem (13.2) in [25] we obtain a well-defined positive linear functional
IxTJ:Co(X xY)—=C
just by
ExINf)=Zx—=T(f(@ )] =Tly—=I(f(y)]  VfeC(XxY). (9)

In particular, this means that f,: x — Z(f(-,y)) € Ce(X) and fr:y — JT(f(z,")) €
C.(Y). Observe that T x J is normalized because:

> ||Z x J|| <1 since for each f € Co(X X Y) we have

(Z < T)(f )I@HIHIISUHJ(( Moo < IZIT N 59 £ (2, Moo < 11 lloe

> ||Z x J|| > 1—¢€ for each € € (0,1) since we find fi € Ce(X) and fo € Ce(Y) with
IZ(f)l = vV1I—e-[fillw as well as— |Z(f2)| 2 V1 —€- | f2l/o,
so that for f1 ® fa: (x,y) — fi(z) - f2(y) we have

@ x D)@ I BT - T 2 1= I filloe - I folloe = 11— el - [ ® follo:

e Let u X v denote the respective normalized Radon measure on B(X x Y) defined by the
Riesz-Markov theorem in the form 2.5 Satz in [16, Chap.VIII, §2]. Then, by (9) for all
f € C(X xY) Fubini’s formula holds

/Xxyfd(““ /(/fxyd” ) /</fxydu > ).

2) Fori=1,...,n let u; be a normalized Radon measure on the locally compact Hausdorff space
X, and let Z; denote the corresponding normalized positive linear functional on C.(X;).
Then, it is straightforward from Part that the linear functional

To(f) == Loy [To(1) = Zo) [ Totn1) = o) (Tom-1) — f(@1.. . 20)) -+ ]]  (10)

for f € Co(Xy x ... x Xy,) is well defined, normalized, positive and independent of o € S,,.
In particular, the corresponding Radon measure p, on B(X1 X ...x X)) is normalized, and
due to a respective Fubini’s formula holds.

5We have ||Z]| = w(X) =1 as well as || 7|| = u(Y) = 1 by 2.8 Satz in [16, Chap.VIII, §2].

19



3) Let {X,}.er be a family of compact Hausdorff spaces and {u,}.er a family of respective
normalized Radon measures. We consider the compact Hausdorff space X := [],c; X, and
define a normalized Radon measure ur on X as follows.

Let § denote the set of all finite tuples J = (t1,...,t;) of mutually different elements of I.
Define Xj:= X, x ... xX,,, g := [y, X ... X p, and the respective projection map by

my: X — X, H:I}Li—) (@pyy ey yy)-
el

We write J < J' for J,J' € J with J = (t1,...,u) and J = (1],..., 1)) iff there exists an
injection o {t1,...,u} = {},..., 1) }. Finally, we consider the transition maps

J".
T : Xy — Xy, ($L/1,...,$L;€,) — ($o(bl),...,xg(%)).

Obviously, (J,<) is a directed set, and X a projective limit of {Xj}jez. Moreover, it
is straightforward from that {py}sey is a respective consistent family of normalized
Radon measures. We define uy to be the corresponding normalized Radon measure on X
provided by Lemma[2./] %

Remark 2.6 (Fubini)

In the situation of Lemma and Definition assume that I = I U I for Iy, Iy # (). Moreover,
let pu; and p2 denote the corresponding Radon product measures on X7 = [],c 5, X, and Xo =
ILe 1, X4, respectively. Then, it is easy to see that u = p11 X pg holds.

In fact, by continuity of the corresponding linear functionals Z,7Z;,7Zs one only has to check
that Z = Z; x Zy holds on the dense *-subalgebra Cyl(X) C C(X) consisting of such continuous
function which can be written in the form f oy with f € C'(X;) for some J € J, see also proof
of Lemma This, however, is straightforward from the definitions.

3 Special Mathematical Background

This section essentially collects some background material we could not find in the standard
literature in this form.

In the first part, we will fix some conventions concerning certain symmetric situations that
appear in loop quantum gravity and will serve as prime examples during this work. In
particular, we will specify sets of invariant connections that belong to these situations. Since the
corresponding calculations are rather technical than illustrative, we have decided to shift them
to Section [§] and the Appendix, and only to provide the relevant information at this point. The
necessary techniques will be developed in Section 8] where we attack the characterization problem
of invariant connections in full generality. In the second part, we will prove some straightforward
facts on maps on spectra and then apply them to the case where the C*-algebra consists of certain
bounded functions on a set. This is important for the investigations in Section [f] where we consider
C*-subalgebras of bounded functions on sets of smooth connections. In the last part, we will give
a brief introduction into the Bohr compactification of a locally compact abelian group. This will
be used to characterize the abelian continuous group structures on spectra of C*-subalgebras of
bounded functions by families of quasi-characters, see Definition |3.10
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3.1 Loop Quantum Gravity Case

Usually, in loop quantum gravity (LQG) the structure group is SU(2), and the principal fibre
bundle is of the form P = ¥ x SU(2) for a 3-dimensional manifold (Cauchy surface) ¥. Although
the results of this dissertation apply to a much larger class of principal bundles and structure
groups, in the LQG relevant examples of this work the bundle will be just of the form R? x SU(2).
We now collect some facts, notations and conventions concerning the Lie group SU(2), the elements
of R™ and sets of curves in R3.

Convention 3.1
1) By @: SU(2) — SO(3) we denote the universal covering map. Then, for s € SU(2) we have

s(x) = o(s)(2) =5~ (Ads(3(2))) (11)

for the linear isomorphism [: R? — su(2), Y20, 2% — S20_| a7 with

0 -1 0 -1 -1 0
T ‘= (_1 0) T2 = (1 0> T3::(0 1)

Although this identification of R? with su(2) is standard, we decided to introduce the map
3 at this point. The main reason is that in our applications we will need this identification
permanently, as it simplifies the formulas and calculations drastically, see, e.g., ,
and the Appendices and The alternative would be to calculate in coordinates which

we want to avoid whenever it is possible.

Recall thaﬂ each s € SU(2) can be written in the form
s =cos(a/2) - 1 + sin(a/2) - 3(77) = exp (/2 - 3(7)) (12)

for some 7 € R? with ||7i|| = 1 and a € [0,27). In this case o(s) rotates a point x by the
angle a w.r.t. the axis 7.

2) In the sequel, R™ will occur as vector space (tangent space), as base manifold of a principal
fibre bundle, and as a symmetry group. In the first case we write its elements with arrows
such as ¥, and the same will be done if an element of R"™ occurs as a normal vector, rotation
axis or as the traversing direction of a linear curve, see next point. In the second case, i.e.,
if R™ is considered as a base manifold, we usually write x, and in the last case we will write
v. Nevertheless, in all three situations we will make free use of the vector space operations in
R". For instance, if G = R" acts via addition on M = R", we will write v +z. If G = R
acts via multiplication on M = R", we will write A - . In the same way, if n = 3, we also
apply the above map 3 to all these elements, i.e., 3(?), 3(z) and 3(v).

3) Whenever M = ¥ = R3, the sets P, P, Ply, Pe are defined as follows:

(a) According to the notations introduced in the previous point, by P; we will denote the
set of curves of the form z + v for z, v € R? with [|7]] = 1 and ~vz,;: [0,]] = R, ¢ — t7.
By Py~ we will denote the set of all linear curves, i.e., the set of all embedded analytic
curves with im[y] contained in a line through some fixed point z € R3. Then, P
consists of all embedded analytic curves v equivalent to an element of Py, i.e.,

vy=dop forsome J€P; and p:I — R an analytic diffeomorphism.

Observe that exp is surjective because SU(2) is compact and connected.
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Here, I denotes some open interval which contains dom|~].

Finally, by Py © P owe will denote the subset of all linear curves traversing through
the origin.

(b) Let P. consist of all circular curves, i.e., all curves of the form
Vg [0,7] — R?
t — x + cos(t) ¥+ sin(t) i x 7
for 7,7, € R? with ||7i|| = 1 as well as 0 < 7 < 2.

4) For 5 € su(2) and 7, z,v € R3 we define the corresponding maximal tori in SU(2) by

[Hi:= {exp(ts) |t e R}  [Hi:=Hyp  [Hil=Hy,y [Hl:= Hyw). (13)

Hence, we suppress the map 3 in the last three cases. O

In Section |§| we will be concerned with certain equivariant maps to SU(2). Inter alia, the next
lemma then will be essential for calculating spaces of such maps.

Lemma 3.2
1) If ss' = s's for s,s' € SU(2), then s,s' € Hy for some it € R3\{0}. This torus is uniquely
determined if s # +1 or s # +1.

2) Let s,s' € Hy be different from +1. If ' = ay(s) holds for some h € SU(2), then we have
the following two possibilities:
a) s=s and h € Hy
b) s = s and h = exp (% - 3()) for some m € R? orthogonal to it with ||m| =1 and
uniquely determined up to a sign.
In particular, ap(so) = sy holds for +1 # so € Hy iff (m, ') = 0.

PrRoOOF: 1) This follows by straightforward calculation involving , or from the general
theory of compact and connected Lie groups as {—1,1} are the irregular elements of SU(2).

2) We write s = exp(t - (7)) and s’ = exp(t'3(i7)) for unique reals ¢,t' € [0,27), cf. (12)). Then

exp (- 3(0() (7)) = an(s) = &' = exp(t3(i1)). (14)
If o(h)(7) = 7, then t = ¢ and s = &', hence, h € Hz by Part , so that case a) holds.
If o(h)(@) # it for ¥ := o(h)(7), then from (L4), and ||7]| = 1 we obtain

cos(t) - 1 +sin(t) - 3(¥) = cos(t') - 1 + sin(t') - 3(77).

Then cos(t) = cos(t'), hence sin(t) = +sin(t'), i.e., 7 = —¥ because ¥ # 7 and since
sin(t),sin(t') # 0 as s,s" # +1. Consequently, o(h) is a rotation by 7 around an axis m
orthogonal to 7. So, if sg € Hz with (m, ') = 0, then

an(so) = exp(to -5(g(h,)(fi’))) = exp(—to - 3(i)) = sal.

Finally, that this equality only holds for such so # +1 with sg € Hy for (m, ') = 0, is clear
from the fact that m is unique up to a sign. =
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The next example collects the most relevant loop quantum cosmology cases to be discussed
in this work. The proofs concerning invariant connections can be found in the Appendix and
Section [8] The reason for providing these results already at this point is that we will need them
during the following sections.

Example 3.3 (Loop Quantum Cosmology)
Let P =R? x SU(2). We consider the following symmetry groups and actions{'”
Ggl:= R’ x, SU(2) ®p((v,0), (x,5)) := (v+[@o)(x),05)
Ggsp|:=SU(2) bgp(o,(x,s)) = (o(o)(z),08)
Gl:= R? Oy (v, (z,5)) = (v+ 7, 5)

For each of these actions the corresponding induced action is pointwise proper. In the second
case, this is clear from compactness of SU(2), and in the last case this holds because ¢ is just
the addition in R3. In the first case ,we have Gg = P so that even ®f is (pointwise) proper as
topological groups always act properly on themselves.

Homogeneous Isotropic LQC:

The Lie group G resembles the Euclidean group R? x SO(3) in the sense that the action ¢
induced by ®z on R? gives rise to the same orbits as the canonical action of the euclidean group
does. The ®g-invariant connections are of the form

WUy, ) = c Adg-1[3(¥)] + s 15 V (U, 0s) € T(gs) P, (15)

where ¢ runs over R. This follows from Wang’s original theorem [36] and the explicit calculations
can be found in Appendix

Spherically Symmetric LQC:

It is proven in Example that the spherically symmetric connections, i.e., the ®gp-invariant
ones are of the form

W (T, Gs) = Ay [a(2) 3(T0) + b(@)[3(2), 5(T)] + (@) [ 3(x), [3(2),3(T)]] +s7F5  (16)

for (U,,05) € T(y,s)P. Here, a,b,c: R3 — R are rotation invariant maps that can be writ-
ten in the form a(z) = f(||lz[|?), b(z) = g(||z]?), c(z) = h(||z|?) for smooth functions
fyg,h: (—e,00) = R and some € > 0.

(Semi-) Homogeneous LQC:

This is a special case of Example where by semi-homogeneity we mean that G = Gggy
is a two-dimensional linear subspace of R? and the corresponding action is ®sg (v, (7,s)) =
(v+ z,s). Here, for W an algebraic complement of G in R?, the ®gp-invariant connections are
parametrized by the smooth maps ¢: g x TW — su(2) whose restrictions |qx7,w are linear
for all z € W, hence by the smooth maps ¢: R? x TR — su(2) whose restrictions ¢|gzy 7, are
linear for all ¢t € R.

In the homogeneous case, i.e., if Gy = R3, the ®y-invariant connections are in bijection
with the linear maps L: R? — su(2), see also Example %

"Observe that ®r(g,p) = g - p for -, the group multiplication in R® x, SU(2).
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3.2 Bounded Functions and Maps on Spectra

In the first part, we relate automorphisms of abelian C*-algebras with homeomorphisms of their
spectra. In the second part, we will apply this to C*-algebras of bounded functions, being the
relevant quantities in the framework of loop quantum gravity. We collect some basic facts on
denseness [20,[29] of a set X in the spectrum of a C*-subalgebra of bounded functions thereon as
well as on embeddability of the spectrum of a restriction C*-algebra into the spectrum of the full
one. In particular, this will provide us with the mathematical backbone of traditional reduction
approach in the framework of Loop Quantum Gravity. [20]

3.2.1 Maps on Spectra

Definition 3.4
For a Banach algebra 2, let ||-||o denote the corresponding norm. For a € 2 denote by ||-||q: A" —
R>g the seminorm || x|, := |x(a)| for 2" the topological dual of 2.

Lemma 3.5
1) If X: A — B is a homomorphism of abelian Banach algebras A and B, then the map

A: Spec(B) — Spec(2), x— xoA

is continuous if it is well defined. In particular, this is the case if A is surjective or unital@

2) If A is an abelian C*-algebra, then n: Aut(2A) — Homeo(Spec(A)), A — X is a group
antitzsomorphism.

PRrROOF: 1) The image of A consists of homomorphisms. So, the only case in which well-
definedness fails is when A(x) = 0 for some x € Spec(B). If ) is unital, then \(x)(1y) =
(x o A)(1g) = x(1s) = 1 # 0 for all x € Spec(B), so that X is well defined in this case. If
A is surjective and x € Spec(B), then x(b) # 0 for some b € B and we find a € 2 with
A(a) = b. Hence, \(x)(a) = x(b) # 0 for all x € Spec(B) also in this case. For continuity
let Spec(B) D {Xa}acr — x be a converging net. Then for a € 2 and € > 0 we find a, € T
such that ||xa — XH)\(a) < ¢ for all @ > a.. But for a > a, we have

[Axa) = A0, = IXa(A(a)) = x(A(@))] = [Ixa = XlIx@) < €

so that Spec(A) 2 {A(Xa)}aer — A(X) shows continuity of .

2) Each A € Aut(2) is a surjective homomorphism so that the image of 7 consists of well
defined and continuous maps. Then 7 is an antihomomorphism as

n(AoX)(x) = (xoA) o X =n\)(xoA) =n\)n(N) ().

Now, A~! € Aut(2) exists so that n(\)~' = n(A~!) is continuous as well. This means
that the image of n consists of homeomorphisms and shows well-definedness of this map.
To verify injectivity assume that n(A) = n(\') for A\, N € Aut(A). Then for a € A and
X € Spec(2l) we have

8More precisely, if 2 and B are unital and A\(1y) = 1.
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so that G(A(a)) = G(N(a)). Then injectivity of G implies A(a) = X (a) for all a € A, hence
A = X. For surjectivity of n define

7: Homeo(Spec(2)) — Aut(A)

h [a— G 1 [G(a)oh]]. an

This is well defined because G(a) o h € Co(Spec(2l)) for each a € 2 so that 7(h): A — A is
well defined for all A € Homeo(Spec(2l)). Moreover, 7(h) is a homomorphism since G and
G~ are. Finally,

[r(h ) o7(h)] (a) = 6 [G(r(h)(@)) 0 b~ = G [G(a) o hoh™] = a

so that 7(h) € Aut(2(). Then for y € Spec(2) and all a € A we have

n(r(h)(x)(a) = 7(h)(x)(a) = x(1(h)(a)) = x(G"[G(a) o h])
= [G(a) o h](x) = G(a)(h(x)) = h(x)(a),

hence 70 T = idgomeo(Spec(@)), Which shows surjectivity of 7. ™

3.2.2 Bounded Functions

For a set X let B(X) :={f: X — C|||f]lo < o0} denote the set of bounded, complex-valued
functions on X. Then, B(X) is an abelian C*-algebra w.r.t. the supremum norm || - ||s-

Convention 3.6
Let 2 C B(X) be some fixed C*-subalgebra and v: ¥ — X a map with Y some further set.

e Let Z be a set, B C B(Z) a subset and & the *-algebra generated by B. Then, by B we will
denote the closure of & in B(Z).

e The spectrum of 2l C B(X) is denoted by X in the following. This is motivated by the first
part of the next lemma. Since X is not assumed to carry any topology, this will not be in

conflict with the notation concerning closures of subsets of topological spaces introduced in
Subsection 2.11

e The pullback of 2 by v is the *-algebra v*(A) := {fov | f € A} C B(Y). The closure
Ry = v*(A) C B(Y) is called restriction of 20 w.r.t. v. Its spectrum is denoted by X" in the

followingH
e Let Xy denote the set of all x € X for which the map

rx): X — Hom(2, C)
x> [f e fz)]

is non-zero, i.e., Xgq ={zx € X |I f € A: f(x) # 0}. Hence, z € Xy iff 1x(x) € Spec(A).

911 view of the second point, it would be logical to denote Spec(M,) by Y. However, we will write X because the
set Y is already encoded in the map v. Moreover, our notation suggests that we are dealing with the spectrum of
a restriction C*-algebra. Then, if 2 is unital, we have X" = X, by Lemma where the latter space (defined
in the last point of this Convention ) is a closed subset of X. For this reason, it makes sense to use the letter
X for both spaces.
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e The set X, C X is defined to be the closure

X, = ux(XaNo(Y)) C Spec(2A)
of tx (Xa Nv(Y)) in Spec(2A). The third part of the next lemma then shows that
X, = X" = Spec(Ry)
holds if 2 is unital. O

The first part of the following lemma is a slight variation of Proposition 2.1 in |20] which, in turn,
originates from [29]. The second part can also be derived from Corollary 2.19 in [20].

Lemma 3.7
1) If X is a set and A C B(X) a C*-subalgebra, then tx(Xg) C Spec(U) is dense, i.e.,

X =1x(Xg). The map vx is injective iff A separates the points in Xy.

2) Let 2 be unital, Y a set andv:Y — X a map. Then, v*: XV — X is the unique continuous
map which extends v in the sense that the following diagram is commutative:

The map v* is an embedding[™]
3) In the situation of Part@) we have

im[07] = 07(XY) = ix (0(Y)) = X,

i.e., XV = X, by the embedding property of v*.
4) If p: X — X is a map, then A C p*(A) implies f(Xq) C Xy.

PROOF: 1) Assume there is x € U := Spec(2)\tx(Xy). Then U is an open neighbourhood
of x. Since the space Spec(2) is locally compact Hausdorff, by Urysohn’s lemma we find
a continuous function f: Spec(2) — [0, 1] such that f (x) =1 and f has compact support
contained in U. Then f € Co(Spec(2l)) so that f= G(f) for some f € 2. Consequently,
f(@) = ux(@)(f) = f(ex(z)) = 0 for all € Xy by construction, and f(z) = 0 for all
x € X\ Xy by definition of Xg. Consequently, f = 0 and f=¢ (f) = 0, which contradicts
f (x) = 1. The injectivity statement is immediate from the definitions.

2) Since A and R, are unital, we have Xo = X and Y, = Y. Then v*: A — R, is a
unital algebra homomorphism, so that by Lemma the map v*: Spec(R,) — Spec(2)
is continuous and well deﬁned@ Obviously, v* o1y = 1x ov so that uniqueness follows from
denseness of im[ty] in XV = Spec(R,) and continuity of v*.

20This means that v* is a homeomorphism to its image equipped with the relative topology.
21Observe that there is no ad hoc reason for v*(2) to be closed, i.e., v* is not necessarily surjective. For this reason
we are forced to assume unitality in order to guarantee well-definedness of v*.
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Now, assume that v*(x) = v*(x’) for x, X’ € Spec(R,). Then

X (f) = v 0)(f) = v (X)) =X (f)) Ve,
hence x|y = X'|v+(21)- Since v*(2A) C R, is dense and x, X’ are continuous, x = x’ follows.
Now, since XY is compact and im [F] is a Hausdorff space, the bijective continuous map
v*: XY = im [F] is a homeomorphism.
3) By [2) we have v*(1y (Y)) = tx(v(Y)), hence

() B (5 (7)) € 0 () = ix (w(V).

Here, for the inclusion in the third step we have used continuity of v*. This shows v*(X"V) C
tx(v(Y)). For the converse inclusion we calculate

) € (7)) B oF (xv).

hence vx(v(Y)) C v*(XV) since v*(X") is compact.

4) If © € Xy, then f(x) # 0 for some f € 2. Since by assumption we have f = g o p for some
g € 2, we obtain g(p(z)) # 0, hence p(z) € Xy. m

3.3 The Bohr Compactification

We start with some basic definitions and facts, cf. [30]. Then we show that the Bohr compactifi-
cation of a locally compact abelian group G equals the spectrum of the almost periodic functions
Cap(G) on G. Finally, we characterize the continuous abelian group structures on the spectrum
of a unital C*-subalgebra of the bounded functions on a set.

3.3.1 Basic Definitions

The statements not proven here can be found, e.g., in [30]:

If G is an LCA group, then the dual group I' of G is the set of continuous homomorphisms
x: G — S, for S' C € the unit circle, endowed with the group structure

(x *x)(9) == x(9) - X'(9), X" '(9) == x(9) Ip: g1 VgeG.

The elements of I' always separate the points in G and if G is compact, then fG x dug = 0 iff
I' 5 x # 1 for pup the Haar measure on G. The group I' becomes an LCA group when equipped
with the topology generated by the sets

Br.e(x) ={X €T ||x(9) —x'(9)] < eforall g K}.

Here K C G is compact, x € I' and € > 0. If T denotes the dual of I', Pontryagin duality states
that the map j: G — T, j(g): x = x(g) is an isomorphism and a homeomorphism.

Now, if we equip I' with the discrete topology, then we obtain a further LCA group I'y. The
Bohr compactification Gy, of G is defined to be the dual of I'y. G'ponr is compact since for duals
of discrete LCA groups this is always the case. Moreover, we have T C GRonr because Gpopr €quals
the set of all homomorphisms ¢: I' — S! whereas I' consists of the continuous (w.r.t. the topology
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on I', not w.r.t. the discrete topology on I'y) ones. One can show that the map ig: G — Gpohr,
defined as j above, is a continuous isomorphism to the dense subgroup ig(G) C Gpopny. Since 'y
is discrete, each compact set is finite. Consequently, the topology on Gpony is generated by the
sets

By (¥) :={¢' € Gonr | [¥(x) — ¥ (X)| < €} for e>0 and yeTly. (18)

Lemma 3.8
Let|Cap(G)|C B(G) denote the C*-algebra generated by the elements of I'. Then, the restriction
map t: Spec(Cap(G)) — GBonr; ¥ — Y|p is a homeomorphism.

PROOF: Obviously, v is well defined and continuous. Moreover, it is injective because Cap(G) is
generated by I'. So, the crucial part is to show surjectivity of t. For this, let 1) € Gpony and define
1 on the *-span & of I in Cap(G) by

()= 8 da)  for &3 f=F 8

This map is well defined and linear because I' C Cap(G) is a linearly independent subset. In fact,
let T'p denote the dual group of Gpenr and jr: I'y — I'p the canonical map jr(x): ¥ — ¥(x)
defined as the map j above. Then jr(I') € C(Gponr) is contained in the dual group of Gpopy, SO
that fGBohr Jr(x) dug = 0 iff x # 1 for ug the Haar measure on Gpony and x € I'. Now, it is
straightforward to see that

O(f - ) =0(f)-p(f) holds for all f, f e ®.

Then ¢ extends (by linearity and continuity) to a well-defined element??] of Spec(Cap(G)) if we

can show that 1 is continuous on &. For this, let & > f = Zle Bi - x; be as above and € > 0.
We choose g € G such that W(Xi) - iB(g)(Xi)’ < m for 1 <14 < k and obtain

W) < S8 8- [00a) —is(9) ()] | + | 8y Bi - is(9) ()]
< max(|B1, -, 1Be]) - it gmmemmy + 11l

hence |¢(f)] < ||flleo + € for all € > 0. This shows [¢(f)| < ||f]leo for all f € Cap(G), hence
continuity of . n

So, in the following we tacitly identify Ggopny with Spec(Cap(G)) where we carry over the group
structure and the corresponding Haar measure py from Gpopy to Spec(Cap(G)), i.e., we define

Y1+ =e T (o) He(¥n)) T =T (1(®) e=vTi(e) ppone = (im).

A more concrete description of this group structure is given in the proof of Proposition There
we show that abelian group structures on spectra of unital C*-subalgebras of bounded functions
can be encoded by families of quasi-characters on the underlying set, see Definition [3.10

Lemma and Convention 3.9 (Bohr Compactification of IR)
1) If G = R, then T consists exactly of the functions of the form x;: x +— '@ for 1 € R. [30)].
Since we do not consider Bohr compactifications of other locally compact abelian groups in
the following, by [upon] we will always denote the Haar measure on Rpony-

Multiplicativity on Cap(G) follows from continuity and multiplicativity on @.
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2) Let ¥ € Rponr, L = {la}acr € R a collection of Q-independent reals, and Lt CR a subset

3)

4)

for which LU L+ is a Q-base of R. Then, for {qa}acr € Q and {sa}acr € S' we find
' € Rponr with

V' (Xgota) =50 Ya €l — and /() =) VIEspang(Lh).
In fact, we choose {xq}acr € R such that xq, .1, (o) = Sa holds for all o € I, and define
C(Xgla) = Xgila(®a) if a €1 as well as C(xq1) :==v(xq1) if L € L+
for all g € Q. Then, forl € R arbitrary we have a unique representation of the form
l= Zle i la, + Zflzl q; Uj-

with I; € L+ and Gi,q; € Q for 1 <i <k, 1<j<Kk. Here, we define

' () =TTy C(Xaitay) - TT02y € (Xa 1)

as well as (1) := 1. Then, it is straightforward to see that ': T' — S' is a homomorphism
with the desired properties.

Let M denote the set of maps ¢: Rsg — [0, 27) with
d(1+1") = o)+ ¢(') mod 27 V1,I' € Rso.

Then Rponr = N.

In fact, if ¢ € N, then p: x; — e 5& O for 1 £ 0 and (1) := 1 is a well-defined element
of RBonr because

V(xi-xr) = eisign(I+1) o(1+1']) _ isign(l) o(|1]) oisign(l) ¢(1']) _ V(x1) - Y (x)-
Here, the second equality is clear for sign(l) = sign(l") and follows from
o)y =l =U+1")=0o(l-1")+ o) +2mn for 1>1'>0

in the other cases. Now, if 1 € Rponr, then ¥(x;) € SY, hence (x;) = €D for ¢/(1) €
[0,27) uniquely determined. This defines a map ¢': R — [0,27) whose restriction ¢ =
¢'|R~o has the desired properties.

In the following, by the Bohr compactiﬁcation of R we will understand both

o In Subsection the dual group of T'y (see Convention .

o In Sectz’on@ the spectrum of the C*-algebra Cap(R) generated by the set " of continuous
characters on R.

In both cases we will refer to the modifications result in Part[3 which obviously also applies

to the Spec(Cap(R)) case.
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3.3.2 Abelian Group Structures and Quasi-Characters

Definition 3.10 -
Let X be a set and 2 C B(X) some unital C*-subalgebra. A subset £ C 2 with?*| & = 2l is called
family of quasi-characters on X iff

1) im[f] C S! for all f € &.

3

)
2) R is closed under pointwise multiplication and complex conjugation.
) The elements of & are linearly independent.

)

4) For z,y € X there is a net {z4}aer € X such that f(z)f(y) = lim, f(z4) for all f € R
Moreover, there is a net {e, }acs such that lim, f(ey) = 1 for all f € &.
If X carries an abelian group structure, then f € 2l is said to be a character iff im[f] C S!, and
flaty)=fl@) - fly) aswellas  f(z7') = f(z)
holds for all x,y € X.

Proposition 3.11
1) Let X be a set and A C B(X) a unital C*-algebra. Then, the families of quasi-characters
are in bijection with the continuous abelian group structures on X.

2) If X carries an abelian group structure, then a continuous abelian group structure on X is
compatible in the sense that

x(@) +ex(y) = x(x +y) Va,ye Xy

iff the respective family K consists of characters.

The technical details of the proof can be found in Proposition

PrOOF: Each family of quasi-characters K gives rise to a continuous abelian group structure on
X just by

(U1 +2)(f) = Xy B (favo(far) () = Bin(fa))  e(f) =20 Bi

for 11, 19,7 € X and f := Yoy Bifa, with fo, € 8, B; € C for 1 <1i < n. Here, one has to show
that the above maps extend by continuity to 2l being the closure of the *-algebra generated by K.
Conversely, if X carries a continuous abelian group structure and I' denotes its dual group, then
£ := G YT) is the desired family of quasi-characters for G: 2 — C(X) the Gelfand transform. g

Of course, if G is a compact abelian group, then I' C Cap(G) is the family of (quasi-)characters
that corresponds to the continuous group structure on Gpony = Spec(Cap(G)).

ZRecall Convention for the closure of a subset of a C*-subalgebra of bounded functions.
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4 Spectral Extensions of Group Actions

In this section, we develop a reduction concept which, applied to the framework of loop quantum
gravity, allows to perform a symmetry reduction directly on the quantum level. We will consider
the general situation where the symmetry is represented by a Lie group of automorphisms of the
principal fibre bundle of interest. The basic idea then is to lift this symmetry to a left action on
the quantum configuration space of LQG. In analogy to the classical situation, where the reduced
configuration space is formed by the set A,oq of invariant connections on P, the quantum-reduced
configuration space then will be formed by such elements which are invariant under the whole
symmetry group. In contrast to that, reduction in LQG traditionally means to quantize the
reduced classical space A;.q, and we will see that the resulting space is always contained in our
quantum-reduced one. Moreover, in the next section we will show that this inclusion is even
proper in several situations, so that in this context quantization and reduction usually do not
commute.

In a first step, we will use the concept of a C*-dynamical system in order to extend a left
action #: G x X — X of a group G on a set X to the spectrum of a C*-subalgebra 2 C B(X).
Then, we adapt this to the case where X equals the set of smooth connections on a principal fibre
bundle, and where 2 is generated by parallel transports along a distinguished set of curves in its
base manifold. Finally, we consider the case where the structure group is compact, and where
the set of curves has an additional independence property. In this situation, it will be possible
to identify the quantum configuration space of LQG with a space of homomorphisms of paths.
The quantum-reduced configuration space then will be formed by the invariant ones. In the next
section, this will allow us to investigate the inclusion relations between quantized reduced classical
and respective quantum-reduced configuration spaces in much more detail.

We now start with some general statements concerning group actions on spectra of abelian
C*-algebras.

4.1 Group Actions on Spectra

Recall [28] that a C*-dynamical system is a triple (2, G,¥) consisting of a C*-algebra 2, a group
G and an antihomomorphism J: G — Aut(2). If G is a topological group, then ¥ is said to be
continuous iff for each a € 2 the map 9(:)(f): G — A, g — J(g)(a) is continuous. In [2§] it
is shown that each C*-dynamical system with G locally compac@ and ¢ continuous, gives rise
to a continuous action © of G on Spec(2). In the next lemma we discuss this assignment for
the abelian case. In the first part, we will drop the continuity assumptions and show that the
assignment ¢ — © is bijective. In the second part, we then investigate the continuity properties
of the respective maps. For instance, if 2l is unital, it turns out that © is continuous iff ¥ is. This
will provide us with a necessary condition for continuity of ©.

Lemma 4.1
Let A be an abelian C*-algebra.

1) The C*-dynamical systems (A, G, ) are in bijection with the left actions ©: G x Spec() —
Spec(2l) for which ©4 is continuous for all g € G.

2) If G is a topological group, then continuity of ¥ implies continuity of ©. The converse
implication holds if A is unital.

24The proof there also works if G is an arbitrary topological group.
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Recall that ©4: Spec(A) — Spec(2) is defined by ©,4(x) := O(g, X).

PrROOF: 1) Let ¢: G — Aut(2l) be given and define the corresponding left action by ©(g, x) :=

n(¥(g))(x). Then, O is well defined and continuous by Lemma Moreover, since 7
and v are antihomomorphisms, the left action property follows from

O(gh, x) = n(9(gh))(x) = n(I(h) o I(g))(x)
=1(3(g)) (n(W(h))(x)) = O(g,n(I(h))(x)) = O(g, O(h, X))

Conversely, if ©: G x Spec(2() — Spec(2) is a left action, then ©, € Homeo(Spec(2)) for
each g € G so that ¥(g) := 7(0,) is an element of Aut(2). Here, 7: Homeo(Spec(2)) —
Aut () denotes the map , which is just the inverse of 1. Since 1 is an antiisomorphism,
the same is true for 7 = 77!, so that

>

I(gh) = 7(Ogn) = 7(04 0 Oy) = 7(O4) 0 T(O4) = V¥(h) 0 ¥(g).

Assume that 9 is continuous and let G x Spec(2) D {(9ga, Xa)}aer = (g, x) € G X Spec(2)
be a converging net. Then {gq}acr — ¢ and {xa}acr — X are converging nets as well. By
continuity of ¥ for each a € 2 and each € > 0 we find a € I such that |¥(g)(a)—9(ga)(a)| < §
for all & > a,. Then, since ||xq|lop < 1 for all a € I, we obtain

Xa (9(9)(a) = 9(ga)(a))| < [9(9)(a) — V(ga)(a)| <

Moreover, since {Xa }acr —+ X, we find o € I with ||x — Xallg(g)@) < § for all @ > ag. Then
for v € I with a > a, al we have

16(9; x) = ©(9as Xa)lla = [1(9(9)) (x) = 1(P(ga)) (Xa)la
= x(9(9)(a)) = Xa(V(ga)(a))]
< Ix = Xallogg)@) + Ixa (9(9)(a) = ¥(ga)(a))| <€,

which shows the first part.

Now, let 2 be unital. For fixed a € 2 we consider the continuous function

h((9,%): (¢, x")) := (G(a) 0 ©)(g,x) — (G(a) 0 ©) (¢, X'),

where (g,%), (¢',X’) € G x Spec(2). Then h=(B.(0)) is open and contains ((g, %), (¢, X))
for all (g,x) € G x Spec(). Let g € G be fixed. Then for each x € Spec(2) we find open
neighbourhoods By C G, Uy, C Spec(2) of g and x, respectively, such that

B, x Uy x By x U, C h™1(B(0))
holds. By compactness of Spec(2) there are x1, ..., xn € Spec(2) such that the correspond-

ing sets Uy, cover Spec(2). Then By := By, N---N By, is an open neighbourhood of g and
we obtain

(G(a) ©©)(g,x) — (G(a) 0 O)(h,X)| <€  Vx € Spec(A),h € By.
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Consequently, [|G(a) 0 ©4 — G(a) 0 O], <€, so that
19(g)(a) = d(h)(a)lla = I7(Og)(a) — 7(On)(a)
=1197"[G(a) 0 ©4] — G7'[G(a) © O] |
= 197" [d(a) 0 O — G(a) © O]

= [|G(a) 0o ©y — G(a) 0 Opl|,
<e

for all h € By. This shows continuity of ¥(-)(a) at g € G. n
Definition 4.2 (®-Invariance)
Let 0 be a left action of the group G on the set X and 2 C B(X).

1) 2 is called f-invariant iff 67 () C 2 for all g € G, i.e., if (A, G,9) is a C*-dynamical system
with J(g)(f) := 0;(f) for all g € G and all f € A

2) We define the set
Xied:={z € X |0(g9,2) =z for all g € G}

of invariant elements, and denote the spectrum of the C*-algebra A|x, , by
3) We define [X g := tx (Xa N Xied) to be the closure of tx(Xg N Xpeq) in X.

Remark 4.3
Let YV := X,eq and v: Y — X the canonical inclusion map. Moreover, let X", X, denote the
corresponding spaces introduced in Convention [3.6] Then

° @:ﬁbecausemzmv :W7
* Xred = Xy because Xy, = tx (Xo N 0(Xrea)) = ex (Xot N Xiea)- O

Proposition 4.4
Let 6 be a left action of the group G on the set X andBRIC B(X) a 0-invariant C*-algebra.

1) There is a unique left action@: G x X — X such that:

(a) O4 is continuous for all g € G,
(b) © extends 6 in the sense that on Xg we have

Og01x =tx ol Vged. (19)

O s explicitly given by @(g,f) =7Zo0y.

2) If G is a topological group, then © is continuous if 05f: G — 2, g — f o8, is continuous
for each f € A. The converse implication holds if 2 is unital.

3) The set of invariant elements
Xied = {f IS Y‘ O(9,Z) =7 for all g € G}

is closed in X, and we have Xieq C Xyed-
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4) If A is unital, then Xieq = Xied via i&red: Xied = Xred € X. The following diagram is
commutative

ix - — R

red =

X red X red X red - X
A A A

tXred LX Lx

1R

N

inC .
Xred - X ed (Xred) X.

PrRoOF: 1) First observe that makes sense because 67 _, () C Aimplies A = 9;(9;,1 (2A)) C
05 (), hence 0,: Xo — Xy by Lemma For uniqueness, let © and © be two such
extensions of 6. Then, by we have O7 [, (xy) = Ogliy (x,) for all g € G so that ©) = O,
by (a) and denseness of ¢ x (Xg) in Spec(2). For existence, consider the C*-dynamical system
(&, G, 9) for ¥(g) := 0;. Then, Lemma provides us with a corresponding left action
©: G x Spec(A) — Spec(2A) such that O, is continuous for all ¢ € G. This action is given
by

©(9,7) = n(9(9))(T) = T o d(g) =T o b,

so that for x € Xy and all f € 2 we have
Og(ex (2))(f) = ex(x)(05f) = f(Oy(x)) = (vx © 0y)(x)(f).

2) We have 07 f = 9(-)(f), so that the continuity statement is clear from Lemma

3) Let Xyeq 2 {Tataer — T € X be a converging net. Then for all g € G it follows from con-
tinuity of ©,4 that O(g,7) = O (g,lim, To) = lim, O(g, To) = lim, To = T, hence closedness
of Yred- Moreover, LX(Xred N XQ[) - Yred by so that LX(Xred N Xg[) - Yred'

4) This follows from the parts , of Lemma if we define v :=1ix, . n

Remark 4.5
e In the following sections, we will see that the details of the inclusion relations between the
sets Xyeq and X ,eq usually are far from being trivial.

e If 2( is unital, then Part (1)) can also be derived from Corollary 2.19 in [20] by extending each
©;: A — 2 uniquely to a continuous map 6,: Spec(™A) — Spec(2). In fact, it follows from
the uniqueness property of these maps that ©,, = O, 0 O, holds for all g,h € G. Then,
©: (9,7) — O4(T) is a well-defined group action with the properties from Proposition

e In Subsection [4.2] we will use Proposition [£.4] in order to perform a symmetry reduction on
quantum level in the framework of LQG. Then, in Section [7} we will use this proposition in
order to derive some uniqueness statements concerning normalized Radon measures on cos-
mological quantum configuration spaces occurring in LQG, see Proposition [7.3]and Corollary

8
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4.2 Invariant and Generalized Connections

We now adapt the previous subsection to the situation where the action 6 comes from a Lie group
of automorphisms (G, ®) on a principal fibre bundle [(P, 7, M, S)l This means that 6 is given by
@, i.e., acts on the set A of smooth connections on P by

@B:GxA— A (g,w) ) iw.

Moreover, the C*-algebra Rl C B(A) is generated by parallel transports along suitable curves in
M in this case.

More precisely, let [P| be a fixed set of C*-paths in the base manifold M andm= {vy }zerr € P
a fixed family of elements with v, € F, for all x € M. By € we will denote the set of all bounded
functions on A which are of the form

hy:w e fol(vy ) [P3)(vy(a)) (20)

for v € P with dom[y] = [a,b] and f € Cy(S). Recall that PS: F, 4y — F, ) denotes the parallel
transport along v w.r.t. w as well as A(p,p’) € S the unique element with p’ = p - A(p,p’) for
p,p’ contained in the same fibre over M. The corresponding unital C*-algebra of cylindrical
functions is defined by fff]:= € C B(A). According to Convention here € denotes the closure
of the *-algebra generated by € in B(A). This definition is independent of the choice of v, as for
V' ={v.}rem C P another such family and P > ~: [a,b] — M we have

AV PY (V) = A0y va)) - Ay PS (7y(0)) - A (Vs (a)s Via))- (21)

Convention 4.6
e In the following, let [ip.|(p) := A(vs, p) for all p € F, and all z € M, and define

W) = A (130, P (y@)) = Yy (PY (0))  Vw € A.

e If S is compact, then there exists [12] a faithful matrix representation p: S — GL(n, C) of S,
which we will fix in the following. Then, since the matrix entries of p separate the points in
S, the functions

[h%)ij == pij o BT, (22)

together with the unit, generate 3.

e We will denote the spectrum of ¢ by If it is necessary to avoid confusion, we will write
with an index « referring to the involved set of curves The respective C*-algebra of
cylindrical functions then is denoted by

The elements w € A are called generalized connections and form the quantum configuration space
of LQG. Here, the main reason for replacing A by A is that the latter space is compact and can be
equipped with a normalized Radon measure in a canonical way, see Subsection Moreover,
in the relevant cases A is canonically embedded@ via the map ¢4 (see Convention as the next
lemma shows. More concretely, it suffices, e.g., that each tangent vector of M is realized as a final
tangent vector of a curve in P for which each final segment is an element of P as well. Thus, if
M = R3, it suffices that P contains all linear curves:

Z5Here, this just means that ¢4 is injective.
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Lemma 4.7
The map 14: A — A is injective if for each ¥ € TM there is v € P and s € dom[y] = [a, b], such
that 4(s) = v and 7|jqq € P for all t € (a,s] or y|y € P for all t € [s,b).

PRrOOF: This is a straightforward generalization of Appendix A in [20], see Lemma n
According to Definition we have

Mredl = {w € A|0(g,w) =w for all g € G} = {w € A| Pyw = w for all g € G},

so that A,eq equals the set of ®-invariant connections on P, see Definition Then, tradition-
ally, in LQG the space := Spec (‘Ba\ Ao d) (cf. Definition is used as reduced quantum
configuration space, see, e.g., [2]. Here, the index « hints to the fact that usually not the same
set of curves as for the full theory is used to define P,,.

To summarize, we have made the following specifications:

0 —  left action §: G x A = A, (g,w) = @, ww for (G, P)
a Lie group of automorphisms of P
A - C*-algebra B generated by the parallel transport functions hZ for v
contained in the fixed set of C*-paths P in M.
Xred - set A,.q of invariant connections on P.
Xied —  spectrum Ayed = Spec(Bla,.,)-
Xied - closure Ayeq = ta4(Agp N Ared) C A

Now, in order to perform a reduction on quantum level, i.e, to obtain a well-defined extension ©
of 6 to A providing us with the space A,eq of invariant generalized connections, we first have to
investigate under which assumptions the C*-algebra P is f-invariant. It turns out, to be sufficient
that P fulfils the following invariance property.

Definition 4.8
A set P of C*-paths in M is said to be ®-invariant iff @g0vy € P holds for all g € G and all v € P.
Here, [ denotes the left action induced by ® on M, see . O

Of course, if P is a collection of C*-paths in M and ¢ is of class C¥, the set (P) of all compositions
pg oy with g € G and v € P is ®-invariant and consists of Ck-paths as well.

Lemma 4.9
If P is ®-invariant, then B is O-invariant.

PROOF: This is just a straightforward consequence of the fact that if 7} is the horizontal lift of
v: [a,b] = M in p € F,4) w.r.t. the connection w, then ®, 0~} is the horizontal lift of ¢, oy
in the starting point ®4(p) w.r.t. the connection (g,w). The technical details can be found in

Lemma [C.2] [

We now are able transfer Proposition [£.4] to generalized connections, where we only consider
the case where S is compact, i.e., where B is unital. This is basically because for our further
considerations we will need that S is compact anyway. For instance, we will identify A with a
space of homomorphisms of paths, and for this compactness will be necessary. In addition to

that, the homeomorphism A;eq = Aeq which we have (see next corollary) if S is compact will be
crucial for the investigations of the inclusion relations between A,eq and Aeq.
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Corollary 4.10
Let P be ®-invariant and S be compact. Then

0:Gx A=A (9,0) = wo
1s the unique left action such that:

e O, is continuous for all g € G,

e O extends 0 in the sense that on A we have
Ogoty=14004 VgeQG.

The quantum-reduced space = {w eA ’ O(g,w) =w forall g € G} s compact and the fol-
lowing diagram is commutative:

Sk

A —_— - C
;“‘ = —
- A

g (23)

bAred LA LA

iArc . =
m(—d> lAred (Ared) C E’

Here, ij‘4red: Ared = Aied 18 a homeomorphism. The action © is continuous iff 05f: G — R,
g— fo 9!*],1 is continuous for all f of the form p;; o hY.

Proor: By Lemmawe have 07 () C*B for all g € G. Moreover, ' is unital and 05 f: G — B,
g + 05f, is continuous for all f € P iﬂm this is the case for all generators f = p;; o hZ.
Consequently, the claim follows from Proposition [4.4] n

Remark 4.11
The elements of A,.q are called invariant generalized connections and the space A,.q will be
equipped with its canonical subspace topology in the following..

The next example shows that the action © is usually not continuous in the standard cosmological
applications.

Example 4.12 (Discontinuous Spectral Action)

Let P =R3 x SU(2), Gg = R3 x, SU(2) and @ be as in Example define v := {(z, 1) },crs
and let P contain all linear curves in R3. The following arguments also apply to the homogeneous
case, i.e., where the group is Gg = R? and ®p is as in the same Example.

We show that for the linear curve vo: [0,1] — R3, ¢t ~— téy and f := priohs themap 65 f: G — B,
g~ f oty is not continuous at g = e € Gg. For this, we define

e smooth connections w” for r € R and

e group elements g\ € G for A € R with g\, - e € Gg for A = 0,

such that for each A > 0 we find r > 0 with |07 f(w") — (0;, f)(w")| =1, i.e., [|07f — (05, f)] > 1.
From this it is clear that 6} f: G — ‘B is not continuous at g = e € G g, so that © is not continuous

by Corollary
26For this, observe that 031 = 1 and that 0;[\f +7ig] = A 05 f + u0ig for \, u € C and f,g € P.
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(a) For r € R we define the connection w” by the right invariant geometric distribution specified
by the following smooth sections £: P — TP for 1 <¢ < 3:

—

El(w,8) := (€1,rz2 2 8) € Ty P for x = (21,29, 23) € R?
&l (z,5) := (&,0) for i=2,3.

Here, 1 - s := dy Rs(m2) € Ts,SU(2).

(b) Let ,: [0,1] — R? denote the linear curve that starts on the é-axis at y and traverses in
e1-direction with constant velocity €7, i.e., v, (t) = y - €2+t - €. Then, its horizontal lift
Y1 [0,1] = R?*xSU(2) w.r.t. w” in (y- &, 1) is given by 7 (t) = (v, (t), exp(try - 72)) because
T oy, =7y and

Yy (t) = (€1, ryme - exp(tryms)) = 1 (1 (1), exp(try - 72)) = E] (v, (1)) -
(¢) By the choice of v we have

h’;;y (W") = pryo fy;(l) = exp(ry - 72) = (Z?I?((:z; _C(ilsr(lf’;z)/)> '

Then, for g = (—\é, 1) we obtairm O3hY = h,, , hence

HGZ ['011 °© h’l;o] - 9; [Pll °© h’VYo] Hoo 2 (pll © h”,;o B 0; [Pll © h’l;o]) (wr)‘
T ) o)
= |1 — cos(Ar)|.

This expression equals 1 for r = 7/(2)) and implies discontinuity of the action © as we have
explained above. O

4.3 Homomorphisms of Paths and Invariance

To this point, we have seen that a Lie group of automorphisms (G, ®) on P and a set of C*-paths
P provides us with the quantized reduced classical spaces Ayeq = Areq- Under the condition that

P is ®-invariant, we even obtain the quantum-reduced configuration space A;eq.

In order to investigate the inclusion properties between the spaces Ayeq and Ayeq, and to
construct reasonable measures thereon, we now are going to identify the elements of A with ho-
momorphisms of paths, so-called generalized parallel transports. These are maps assigning to a
curve v € P an equivariant mapping F ) — F, ;) where dom[y] = [a,b]. This identification
will be possible under the assumption that S is compact and that the set P has some additional
independence property. Under this assignment A,.q then occurs as a subspace of homomorphisms
being invariant in a natural sense. The big advantage of considering A as a space of homomor-
phisms is the possibility to apply geometrical techniques like modification of (in this case invariant)
homomorphisms to be developed in Section [5, These modifications are crucial for investigations
concerning the inclusion relations between A,.q and Aeq (cf. Subsection . Indeed, they will
allow us to construct invariant elements that cannot be contained in A,.q or, more precisely, that

27See, e.g., proof of Lemma ie., (156) in Lemma where 7' = @ -1 0.
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cannot be approximated by classical (smooth) invariant connections. In addition to that, modi-
fication turns out to be a key tool for the construction of measures on Ayeq, cf. Remark or
Section [6l

For the rest of this section, let (P, m, M, S) be a principal fibre bundle with compact structure
group S, and v = {v;}renmr € P a family with v, € F, for all x € M. Finally, recall the map
Yz(p) = A(vg, p) for p € F, from Convention

4.3.1 Homomorphisms of Paths

We start our considerations with a short introduction into homomorphisms of paths, and then
highlight their relation to the space A.

Definition 4.13
1) Let v: [a,b] — M be a curve.
e The inverse of 7 is defined by v~ ': [a,b] >t +— y(b+a — t).
e A decomposition of v is a family of curves {7; }o<i<x—1 With v/, =qifor0<i<k-1
and real numbers a =19 < ... <7 = 0.

Tit1]

2) A set of C*-paths P is said to be stable under decomposition and inversion iff
e v € P implies v~ ! € P,
e for each decomposition {v;}}o<i<x—1 of v we have v; € P for all 0 < i < k — 1.

The space Hom (P, Morr) of homomorphisms of paths (generalized parallel transports) is defined
as follows.

Definition 4.14
e For x,2' € M let Mor(x,z’) denote the set of equivariant mappings ¢: F,, — F,/, and define

Morp := |_| Mor(z, ).
z,x’'eM

Of course, here equivariance means that ¢ o Ry = R o ¢ holds for all s € S.

e Define the equivalence relatio@ on P by v ~4 + iff Py = Py holds for all w € A.
Observe that by definition we have that v 4 +' if the start and end points of v and ' do
not coincide.

e Let [Hom(P, Morp)| denote the set of all maps €: P — Morp such that for v € P with
dom[y] = [a, b] we have:

(a) e(v) € Mor(vy(a),v(b)) and e(y) = idg, ,, if v is constant,

(b) e(v)

(c) e(v™
(d) e(v)

Remark 4.15

1) Obviously, e € Hom(P, Morr) mimics the algebraic properties of the map v — P35 forw € A.
Consequently, A can canonically be identified with a subset of Hom(P,Morg). Then, one

e(Yk—1) o ... 0e(0) if {vito<i<k—1 C P is a decomposition of v,

=g
= ()ﬁVNAV

284, and -2 are called holonomy equivalent in this case.
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may ask whether there is a natural topology on Hom(P, Mory) for which this subset is even
dense@ We will see that for compact S the above identification of A with a subset of
Hom(P, Morg) extends to the spectrum A in a canonical way, i.e., A can be identified with
a subset of Hom(P, Morp) as well. If the set P has the additional property of independence,
see Definition this identification even turns out to be bijective, so that in this case
A = Hom(P,Morp) holds. Hence, carrying over the topology on A to Hom(P, Morg), A
can be considered as a dense subset of Hom(P, Mory) just because ¢ 4(A) is dense in A. A
concrete description of this topology is given in Definition

2) Our definition of Hom(P,Morr) differs from the traditional one [4] in the following two
points:

Decompositions instead of concatenations:

We require ¢ to be compatible w.r.t. decompositions and not w.r.t. concatenations of paths.
This avoids unnecessary technicalities as, in the following sections, it will allow us to restrict
to embedded analytic curves instead of considering all the piecewise ones. For this observe
that both sets give rise to the same C*-algebra of cylindrical functions. Hence, define the
same quantum configuration space A. In particular, we get rid of unnecessary redundancies
such as the occurrence of curves v: [0,t] — M Withlﬂ

Vs ~a [’y|[075]]_1 for some s € (0, 1), (25)

i.e., of curves holonomy equivalent to the constant curve [0, 1] 3 ¢ — ~(0). Without going to
much into detail, we state that if P consists of embedded analytic curves and S is connected,

then (cf. Lemma [5.3|[3)):
Y1 ~ A 2 for v1,v2 € P with dom[vy;] = [a;, b;] for ¢ = 1,2 iff v1 ~ipy 2, i€,

im[y1] =im[y]  and  yi(a1) = y2(az), 11(b1) = 12(b2)

iff we find an analytic diffeomorphism p: dom[y;] — dom[ys] with v; = 2 0 p (we write
Y1[pary2 in this case).
In the piecewise embedded analytic situation things are more complicated as there ~ 4 and

~im cannot longer coincide. Indeed, let §: [0,1] — M be piecewise embedded analytic with
6(0) = 6(1) and Py # idp,, for some w € AE

We choose a curve v: [0,2] — M with ;g1 = [7][1,2]]_1 = ¢ and obviously have v ~jy 0,
but Py = idpy, # Pg. Moreover, even if we first identified piecewise embedded analytic
curves which only differ by an insertion or a rejection of a segment v fulfilling , we
also would need non-commutativity of the structure group if we want to replace ~4 by
some piecewise version of ~pa. Indeed, let § and &’ be piecewise embedded analytic as

*This means that for each ¢ € Hom(P, Morg) we find a net {wa }acr C A with (v) = lim, P¥™ for each v € P in
a reasonable sense.

30Tn other words, v is holonomical equivalent to a concatenation of a curve with its inverse.

31 Apply, e.g., Proposition A.1 in [21] in order to construct such a connection.
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sketched in the picture above. Then, for 7,72 piecewise embedded analytic such that ~;
first runs through 4§, then through ¢, and 79 does it the other way round, we cannot even
find a continuous map p: dom|[y;] — dom[ys] such that 43 = 2 o p holds. Consequently,
Y1 #par Y2, but we have v; ~ 4 72 for abelian S because then

Py =Ps oPsy =Ps oPy =P,
Values in Mory instead in the structure group S:

If v = {vy}rem is a choice of elements v, € F, as described in the beginning of this
subsection, then Hom(P, Morg) can be identified with the set Hom(P, S) of all maps e: P —
S that fulfil the algebraic properties (b) — (d) from Definition The corresponding
bijection

Q,: Hom(P,Morr) — Hom(P, S)
is just given by

Q,(e)V) = Wuyy 0 Wy(@)  for  dom[y] = [a, b]. (26)

Its inverse is
QO P) = vy €(1) Yy, () YD E Fya)

This identification is especially convenient if P is trivial, i.e., if P = M x S. indeed, then
we have the canonical choice v, := (z,e) for all z € M whereby 1, = pry. So, for such a
trivial bundle we define

0:=0Q, and have Hom(P, S) = Q(Hom(P,Mory)), (27)

Hence, Q(g)(y) = pra(e(7)(v(a),e)) for v € P with dom[y] = [a, b].

In the following, we only refer to the spaces Hom(P,S) in specific applications. This is
because the general formulas (and the proofs) are usually less technical if we work with the
spaces Hom(P, Morp)ﬂ In addition to that, we do not need to refer to any choice {vz }zens
in this case. O

We now come to the definitions we need to identify the spaces A and Hom(P, Morg).
Definition 4.16
1) We define the topology T on Hom(P, Morp) to be generated by the sets of the form

UPLPr(e) == {&’ € Hom(P,Mory) | €' (vi)(pi) € e(vi)(pi) - U V1<i<k}. (28)

Y15k

Here U denotes a neighbourhood of e € S, ¢ € Hom(P,Morp), £k € Nyy and P >
Vit [ai,bi] — M, p; € F%.(ai) for 1 <i<k.

2) We define independence of a set of curves P as follows.

32The reader who might not believe is encouraged to compare the formulas and . Moreover, he might write
down (and the respective proof) in terms of the space Hom(P,.S) for an arbitrary choice {vy}zcn, and then
does the same for the projection maps m, we will introduce in Lemma and Definition [6.7}/4]
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o A refinement of a finite subset {v1,...,v} C P is a finite collection {d1,...,d,} C P
such that for each path «; we find a decomposition {(7;):}1<i<k; such that each subcurve
(7v;)i is equivalent to one of the paths 6, or 6,1 for 1 <r < n.

e A family {d1,...,0,} C P issaid to be independenﬁ iff for each collection {s1,...,8,} C
S there is w € A such that (recall (20)) h§.(w) = s; for all 1 <4 < n. Due to this
definition does not depend on the explicit choice of v.

e P is said to be independent iff each finite collection {71,...,7} C P admits an indepen-
dent refinement P4

3) Let S be compact. For @ € A and v € P with dom[y] = [a, b] we let
Py (p) =lUmPy*(p)  VpE Fy (29)
for A O {wa}acr — @ an approximating net, and define

E: A — Hom (P, Mory)
W [’y — P,ﬂ .

Remark 4.17

Obviously, just means to define the generalized parallel transport function that corresponds
to w as a limit of the classical parallel transports w.r.t. the elements w, approximating w. This
is the coordinate free description of the map . A more concrete formula involving a choice of
{vz}zen as well as a choice of a faithful matrix representation p of S is provided in the next
lemma adapting the standard results [4] to our framework and shows that , hence is well
defined.

Lemma 4.18
Let S be compact and p a faithful matriz representation of S. Moreover, let {vy}rers € P be a
family of elements with v, € Fy for all x € M.

1) The map 1s well defined and injective. It is surjective if P is independent. Moreover,
the following formula holds for v € P with dom[y] = [a,b] and [h]ij = pij o hY as in :

H(@)(’y)(p) = Vy@®) - p_l ((w ([hml]))z]> ’ w'y(a) (p) Vpe ny(a)' (31)

2) If P is independent, then Ty is the unique topology making k a homeomorphism.

PROOF: 1) p is a homeomorphism to B := im[p] C GL(n,C) since S is compact and B is
Hausdorff. Then, by compactness of B we have

licryn ([/A<wa>([h'yy]ij))z‘j = (w([hZ)ij)ij € B

For this, observe that I is directed and that by the definition of the Gelfand topology on A
for each e > 0 and all 1 <4, j < n we find o;; € I with

@ ([h5]i5) — [RE]ij(wa)|| <€ Va > .

330ur notion of independence coincides with that of weakly independence introduced in [4].
34In particular, P cannot contain constant curves.
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1

So, using continuity of p~" and that of the right multiplication in the bundle P, we obtain

5(@)(p) = P (p) = lim P2 (p)
= lién Vn(b) * ¢7(b) (,Pf;)a (V'y(a))) ’ w’Y(a) (p)
= horén V’y(b) . h,’;(wa) . wfy(a) (p)

= lim Vry(b) ~,0_1 ((L_A(Wa) ([hi//]lj))u> 'wW(a)(p)

= vy P ((w([hmi]’))i]) “y(a) (D),

hence . In particular, this shows that the limit lim, P5* (p) exists and is independent
of the choice of the net {wq}aer. Using the same continuity arguments, we conclude that
k(w) € Hom(P, Moryp) from & (im[c4]) € Hom(P,Morg). Let € C P denote the dense unital
*-subalgebra of P} generated by the functions [h}];;. If k(w1) = K(w2) for Wy,W2 € Spec(P),
then @i |¢ = Wale by , hence w1 = w9 by continuity of this maps. This shows injectivity
of k.

Now, if P is independent and ¢ € Hom(P,Morr), we define the corresponding preimage
w. € A as follows. Let [h];; denote the complex conjugate of the function [h%];; and define

we(1) =1 We([P3lig) = pij © Yu, ) © (V) (Vy(a)) we([h5]55) = we([P5]0)-

For f € € choose a representation as a sum of products of the form

F=> Nl b
l

where \; € C and each hﬁc equals 1, a generator [h];; or the complex conjugate [hz];‘] of a
generator. We assign to f the value

De(F) =Y N @e(hug) - ey )
;

Obviously, @, is a *-homomorphism if it is well defined and, it extends (by linearity) to
an element of Spec(*P) if it is continuous. For well-definedness assume that Fy,Fy are two
representations of f, and denote by [y1],...,[ym] the equivalence (holonomy equivalence)
classes of the paths that occur in both expressions. Let {d1,...,d,} € P be a refinement of
{7+, ym}andw € A wit@ h§ (w) = thus ,,€(0r)(Vs,(0)) for 1 < r < m. Then it follows
from the algebraic properties of parallel transports and ¢ that

we(F1) = Fi(w) = f(w) = Fa(w) = We(F2).

This shows well-definedness, and continuity now follows from |@.(f)| = |f(w)| < || f|lco- By
construction we have k(w.) = €, which shows surjectivity of .

2) The space Hom(P, Mory) equipped with 7y is obviously Hausdorff. So, since A is compact
and k is bijective, we only have to show that & is continuous. For this, let A D {@Wy}aecr —

35For simplicity, assume that dom[s,] = [0,1] for 1 < r < n.
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w € A be a converging net, P > ~v: [a,b] = M, p € F. (@ and U C S a neighbourhood of

e € S. Then, by we have

) 3 5@)00) ' E sy 07 (@ (105]15)),) - ) ()

= vy 0 (@ (17209)),,) a0 () = K@) € Fyp,

so that {s(Wa)(7)(p)}aer converges in F, ) to (w)(7)(p) € Fyp). Consequently, we find

ag € I such that

(@a)(V)(p) € £@)(V)(P)- U Va=ao,

hence (W,) € UL (k(@w)) for all a > 9. Since UY A5 (e) = UV (e) N+~ NUYF(e) and T is

directed, the claim follows.

4.3.2 Invariant Homomorphisms

We now use the identification of A with Hom (7P, Morg) in order to obtain a more concrete de-

scription of the space Ayeq.

Definition 4.19 (Invariant Homomorphisms)

Let P be ®-invariant and independent. We define the space of ®-invariant homomorphisms by
[Hom,eq (P, Morg)|:= /i(jlred) and equip it with the subspace topology w.r.t. Hom(P, MorF)

Lemma 4.20

Let P be ®-invariant and independent and € € Hom(P,Morg). Then € € Homyeq(P, Morr) iff

e(pg o) (Py(p)) = Py(e(1)(p)) VgEGVYEP,VpE F (),
where dom[y] = [a, b].

PROOF: Observe that € € Homyeq (P, Mory) iff £(04(k71(c))) =€ for all g € G, i.e., iff

K(Oy(rHE))) (M) =c((p) Yy EP,VgeG.
So, let {wa }aer € A be a net with {t4(wa)}aer — x1(¢). Then from

a) continuity of ©4 by Corollary
b OLA—LAOG byCorollary-,

)
) ©
c) P ( ) =P, (Pw—l ((I)g—l(P))> for g~y := Pg—1 O’Y
)
)

d) continuity of ® and

e) the definition of &

36Since  is a homeomorphisms, this is just the topology carried over from A,eq by &, cf. Remark
37See, e.g., (I55) in the proof of Lemma
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we obtain that

5((0g 0 5~ 1)(@) (M) 2 5 (1im (8, 0 14) (wn) ) (1))
2 i (lim(ea o 0)(wa) ) (7)(p) 2 lim P57 p)
Llim (P2, (B41(p)) ) 2 B, (1m P22y (@41(p))

2 @y(<(s77) (2, )

(33)

Replacing g by g~1, we see that ¢ € Hom,eq(P, Mory) iff for all g € G, v € P and all p € F(a) we
have ®,4(e(7)(p)) = e(pg © 7)(Py(p))- n

In the following let P be ®-invariant and independent.

Remark 4.21 (Invariance up to Gauge Transformations)

1)

Instead of Ayeq = Homyeq(P, Morp), one also can consider the space Homyeq g(P, Morg) of
generalized connections that are invariant up to gauge transformations. This is the set of
elements ¢ € Hom(P, Mory) which fulfil that for each g € G there is a generalized gauge
transformationlﬁ o: P — P with ©4(¢) = 0*(¢), i.e.,

@9(2’5)(7)(])) = (U 08(7))(071(]))) V’}/ €eP,Vpe F’y(a)

with dom[y] = [a, b]. Obviously, Ayeq = Homyeq (P, Morg) € Homyeq g (P, Morr), and usually
Homyeq,g(P, Morp) would be seen as the more physical space. However, in this thesis we
want to concentrate on the spaces A,cq and A..q just because we rather expect technical than
conceptual difficulties when carrying over the current developments to the “up to gauge”
case.

In Remark we have seen that each family v = {v, },epr € P of elements with v, € F,
for all x € M allows to identify the spaces Hom(P, Morg) and Hom(P, S) via the bijection

Q,: Hom(P,Morp) — Hom(P,5)

defined by (26). Then, composing 2, with the bijection x: A — Hom(P,Morg) from
Definition we obtain from and that

(2 0 R)@)() = o~ (@([12):)) ) (34)

for p is a faithful matrix representation of S.

For P a trivial principal fibre bundle we extend to
Q:=Q, Hom(P,S)=Q(Hom(P,Morr)) Homyq(P,S5) :=Q(Homeq(P, Morg))
for v the canonical choice v, = (z,e) for all x € M. Recall that then (see Remark
0(e)(1) = proe((2(a), ) for v € P with dom[y] = [a,8] holds.  (35)

The spaces Homyeq (P, .S) will only occur in concrete examples in the following. O

38This just means that moo = m and o(p- s) = o(p) - s for all € S.
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Fixing v, one can always try to evaluate the invariance condition in terms of the spaces
Hom(P,S). However, if ® is too complicated, even an appropriate choice of v will give rise
to cumbersome conditions. This is one of the reasons why we prefer to deal with the space
Hom(P, Mory) instead of Hom(P, S) in this work. Nevertheless, the next example shows that in
our LQC prime examples (Example the action ® is simple enough to give rise to very natural
invariance conditions in terms of the space Hom(P,SU(2)). Basically, this is the case because for
each of the groups Gg, Ggp, G we have that pry(g - (z, 1)) does not depend on the base point
x, i.e., the effect of a group element on the fibres is constant in a certain sense.

Example 4.22 (Loop Quantum Cosmology)
Let P = R3xSU(2), and G := G, ® := ® be defined as in Example[3.3] Moreover, assume that
P is independent, ®g-invariant and closed under decomposition and inversion of its elements.

e We have g~! = (—o71(v),07}) for g = (v,0) € Gg. Moreover, if v € P with dom[y] = [a, b]

and £ € Homyeq (P, Morg), then and give

Q(e) (05 07) "2 Prale(py 0 1) ((2g(1(0), 1)) E (prz 0 @) () (241 ((95(1(a)). 1)))).

The left hand side equals Q(g)(v + o(7)) and for the right hand side we obtain

(pry © @) (£(1)(Rg-1((129(7(a)), 1)) = (pr2 0 @) (e(7) (((a),07))

=0 -pra(e(7)((v(a),07))
=0 -pry(e(7)((v(a), 1)) -0~
= a,(2(e)(7))-
It follows that € € Homyeq(P,SU(2)) iff
e(vto(y)=(awoe)(y) V(v,0)eGEVyeEP (36)

holds. In particular, this means that the value of € is independent of the starting point of the
path 7. In the same way, we see that for the spherically symmetric and (semi-)homogeneous
cases we have

Gsp: €(o(y)) = asoe(y) VoeSUQ2),VyeP,
Gp: e(v+7v) = el) VoeR3VyeP (37)
Gsmu: €e(L(v)+v) = €(7) VveR?CR3VyeP

for Gsp, Gy and Ggpg (semi-homogeneous) defined as in Example and L: R?2 — R3 an
injective linear map.

e It already follows from that for G we have e(x + ;) € Hy for all € € Hom,q(P,SU(2))
and the straight lines z + v5; € P;” defined as in Convention

In fact, obviously o(v;) = 7w, holds for each o0 € Hy just because o rotates around the
velocity vector ¥ of the linear curve ~yz;. Then, shows

(36) (36)
el +ym) = el +o(yw) = asoelyy) = agoelz+ym) Vo€ Hy,

so that, choosing o # +1, Lemma implies that e(x + v5;) € Hy. Obviously, then for
Ggp the same statement holds if x € spang (V). O
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The next remark collects some straightforward consequences of the case where P naturally de-
composes into independent, ®-invariant subsets being closed under decomposition and inversion
of their elements. For this, we will need

Convention 4.23
If the set of curves [P, carries the index «, then (in reference to Convention [4.6) we denote the

respective quantum spaces by

Moreover, we denote the corresponding bijection from Definition [£.16]3] by

Fal: Aq —[Hom(Py, Morgp)]  and define  [Homyeq(Pa, Morp)|:= Kq (Ared,a)-

Remark 4.24 (Restricting Homomorphisms)
Let P, C Py both be independent, ®-invariant and closed under decomposition and inversion.
Then we have the following commutative diagram:

i*
Ared

Spec (m) = Ared 0= Ared ,0 Hom(Py, Mory)

Va0 i t{)a ltaa T«
i*
A - -

Spec (‘Ba\Ared) = Areda %d) Ared,a — Ared,a = Za Hom(Pa7 MOTF)y

PN
(0]
QCL
o
|
N
(=]
|2

\
3
Q

IR

where we have omitted the indices 0 and « at the maps i%y . We have used the following maps:

Va0: Paldy — Pola,., — The canonical inclusion.
Tao: Aredo — Areda — The corresponding map from Lemma
o e — glp, — The restriction of the elements of Hom(Py, Morg) to Pj.

al 0 tpa O Ko I8 T, s continuous because kg is a homeomorphism by Lemma
and since to,, is continuous just by the definition of the topologies on Hom(Py, Morg) and
Hom(P,, Morg). Commutativity of the above diagram now follows from the definitions of ko and
K, , as well as the fact that Tag just assigns to ¢ € Ayeqg the restriction MW. Indeed,

red

/ R —
Moreover, t;, = K

the last two points give

Laoi L% ol and 1% Z g ol
A Ared — Ared Ared Area — Va0 Ared?

respectively, and then commutativity is easily checked on the dense subset ¢4, (Ared) € Aredo-
For this, let Py, 3 7: [a,b] = M and p € F,(,). Then, for w € Ayeq We have

(v00 0 r00 T, ) (0 @) D)

ko (% 0 ia,y) (@) (7)(P)
= ko (7%, 0 %) @) (D) =
(Kva o zA ed ° UO‘O) (L?L\red (w))(

g
E

P ) & ko (150 i,00) (@) D) ()
ka((i%,_, © Va0 © th,,,) (@) () (p)
)

p)-

Here, the superscripts 0 and « hint to the fact that L94 and (9 map into different spectra. %

x|

Remark provides us with the following
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Proposition 4.25

Assume that we have Py = | | ,c; Pa for non-empty sets Py, which are independent, ®-invariant
and closed under decomposition and inversion. Then, Homeq(Po, Morp) = [[,c; Homyeq (Po, Morr)
via the map

E?: Homyeq(Po, Morp) — H Homyeq(Pq, Morg),
acl

@ = [ r0a(@).

In particular, if each Homyeq(Po, Morp) carries a normalized Radon measures pi., then we obtain
a normalized Radon measure (1 on Homyeq(Po, Morg) just by

M= (E?)_l(nael fia)

for T],cr ta the Radon product measure on ], c; Homyeq(Po, Morg) from Lemma and Definition

(2313

Proor: The map E? is obviously continuous and injective. Moreover, it is surjective because if
€a € Homyeq(Py, Mory) for all o € I, then e(7y) := eg,(7) for v € P, is a well-defined element of
Homyeq(Po, Morp), just by the properties of the sets P,,. -

We close this section with some investigations concerning the measure theoretical aspects of the
reduced spaces Apeq and A,eq. The final remark then contains an outlook of the next sections.

Assume that M is analytic, ¢ is an analytic action, S is compact and connected and the
set of embedded analytic curves in M. Moreover, assume that P C P, is @-invarian@ and closed
under decomposition and inversion of its elements. As we will see in Lemma then P is
independent. We recall the Ashtekar-Lewandowski measur 5] on A being characterized
by the following property:

Let « = (y1,-.-,7) for 71,...,7 € P, be a finite subset such tha@ Vi ~o 7j holds for all
1 <i# j <k, and where dom[v;] = [a;,b;] for i = 1,... k. Then, the push forward of uar, by
the map

WQ:ZHSIC

W (¢71(51) (’i(w) (’71)(’/71 (al)))’ S () (K’(w) ('Yk)(y’we(ak)))) (%)

equals the Haar measure on S/°.
A closer look at the invariance property gives
Lemma 4.26

Ifdim[S] > 1 and v »o pg0v holds for somey € P, and g € G, then the Borel sets Areq, Area C A
are of measure zero w.r.t. JAL.

39Gince ¢ is analytic, one can always choose P = P,,.
*OThis will be a special case of the construction in Subsection 6.1} see Definition
“We write yr=any’ iff there are open intervals I C dom[y] and I’ C dom[y] such that y(I) = /(I’) holds, see

Definition
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PROOF: The subsets Aeq, Areq are Borel sets as they are compact by Corollary Since by
the same Corollary we have Ayeq C Apeq, it suffices to show that par,(Areq) = 0. Now,

HAL (Zred) < ,U/AL( (7Ta (-Ared) )) = fta(Ta (jred)) Vael,

and for o := (v, ¢4 07) we find d,b € S such that B := mq(Ared) = {(s,c-s-d) | s € S} holds.
In fact, for @ € Ayeq and ¢ := k(@) we have

T oy (W) = Yooy ((v)) (5(309 o 7)(Veog(7(a ))) . Yoy (4( (CI) © 5(7)((1)9—1(’/%(7(&)))))
= Ve, (1) (Pg (5 5)) Y ) (€N (V5 a))) - wa)(%il(u@g(wa» ), (39)
c d

which equals ¢ - 7 (@) - d.
Now, since dim[S] > 1, we find {sp, }nenx C S with s,, # sy, for n # m, hence

B-(e,;sp)NB-(e,8m) =10 for n # m.

Then, if po(B) > 0, o-additivity and translation invariance of p, would imply that

(S x9) Z,ua (e, sn) :ZMQ(B)ZOO

nelN nelN

holds. This, however, contradicts that p, is normalized. n

We conclude this section with the following remark, providing an outlook of the next sections.

Remark 4.27
1) If ¢ is analytic and pointwise proper, then Aved; Area € A are of measure zero w.r.t. par,
whenever dim[S] > 1 and G, # {e} for some = € M.

In fact, we will see in Lemma that for such an action ¢ and § € g\g, for x € M
we always find [ > 0 such that the restriction of the curve 0: t — @, (exp(t - g)) to [0,1] is
embedded analytic. Then, for g := exp(l/3-g) and v := §|(g,/3) the requirement v < g0y
of Corollary [£.26] is obviously fulfilled.

2) Corollary already shows that the invariance properties of the elements of A,eq give non-
trivial restrictions to the images of the projection maps m,. In particular, this is the case
if the curves forming the index oo = (71,...,7x) are related in the sense that g 0y; ~4 7;
holds for some g € G and some 1 < # j < k.

Now, non-trivial restrictions can also occur if we have a = «y for a single curve v € P, namely
if v is invariant under some symmetry group element g € G\{e}, i.e., ¢4 0y = . Indeed,
then by (39) we have 7, (W) = 7y, 0, (W) = ¢ 7, (W) - d, and for S compact and connected
and the case that ¢ = d~! # &1, such a relation can already restrict im[r,] to a maximal
torus as Lemma shows. So, when constructing measures on the spaces A;eq and A,cq
by means of such prOJectlon maps, one has to take these invariance properties into account.

3) As we will see in Subsection the inclusion Aeq C Ayeq is usually proper. Consequently,
there are further highly non-trivial restrictions to the image of 7, when restricting to Ayeq-
For this reason, it seems to be very hard to provide a general notion of a reduced measure
on these spaces. Anyhow, for the case of homogeneous isotropic LQC, in Section [7| we will
discuss the measure theoretical aspects of the space Ayeq in detail.

42Gee also the second point in Example
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4) For the space Aq we will investigate (next two sections) the case where P = P, holds
and where ¢ is analytic and pointwise proper. This will allow us to follow the lines of
Proposition [4.25] as, in this case, P, splits up into free and continuously generated curves.
We denote the respective sets by Pr and Pc. The set Pr consists of all v € P, which
contain a subcurve ¢ (free segment) such that

gpgodfvo(s for gGG - @god:&

and then Pc is just its complement in P,,. We will see in Proposition that each v € Pr
is discretely generated by the symmetry group, i.e., is build up finitely many translates of
initial and final segmentﬁ of one of its maximal free segments . Now,

e If o is transitive or proper and admits only stabilizers which are normal subgroups, then
Pc equals the set Py~ of Lie algebra generated curves, i.e., of embedded analytic curves
equivalent to a curve of the form [0,1] 3 t — @(exp(t - §),z) for some z € M, § € g\gx
and [ > 0. Then, in special situations (such as if ¢ acts free), we will be able to construct
a normalized Radon measure on Hom,.q (Pg ,Morp) for the case that S = SU(2). This

will be done in Subsection

e Let Ppxy € Pr denote the subset of non-symmetric curves, i.e., of curves for which
g0y # 7 holds for all g € G\{e}@ We will see in Subsection that Hom(Prn, Morr)
carries a natural normalized Radon measure whenever the structure group of the bundle
is compact and connected. This measure even specializes to the Ashtekar-Lewandowski
measure on Hom(P,,, Morp) if G = {e}. This is because, according to our definitions (see
Definition , then Ppy = P, holds.

e If ¢ is proper and free, then Pc = P;” and Pr = Ppn holds. Here, both sets are
independent, ®-invariant and closed under decomposition and inversion of their elements.
So, for S = SU(2) we will obtain a normalized Radon measure on

Homyeq (P, Morg) 2 Homyeq (P;,Morp) X Homyeq (Prn, Morg)

just by taking the Radon product of the measures from the first two points, cf. Proposition
4. 29

5) The set Py” will be of particular interest because:

e Lie algebra generated curves turn out to be very useful for investigations concerning the
inclusion relations between the spaces A,.q and A,eq, as they often allow to decide the
inclusion problem on the level of the Lie algebras of the symmetry and the structure
group, see Subsection [5.3

e Whenever ¢ acts transitively, the cylindrical functions that correspond to Py’ separate
the points in A, so that ¢: A — Ay is injective. This is clear from surjectivity of
der: g = T, M and Lemma So, in this case not only Xg = Hom(P;,MorF) but
also Apeq g = Homyeq (73; ,Morp) is a physically meaningful candidate for a (reduced)
quantum configuration space. Indeed, there are approaches to LQG which only use
linear curves to define A [18]. Moreover, originally only linear curves were used to define

43Here, translates of initial and final segments of § can only occur as initial and final segments of ~.
“1n other words, the stabilizer of v (a well-behaving and important quantity in the situation where ¢ is analytic
and pointwise proper) is trivial.
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the quantum configuration space of LQC and also in the reduction paper [11] only Lie
algebra generated curves were taken into accountﬁ

4.4 Summary

1) In the first part of this section we have seen that it is always possible to extend a left action
0:Gx X - X
of a group G on a set X uniquely to a left action
0:GxX =X

on the spectrum X of a C*-algebra 21 C B(X). The action © is always continuous in X,
and continuous if G 3 g — 67 f € A is continuous for all f € A. For 2 unital, here even the
iff statement holds.

Continuity of ©, and the extension property@
Og 0 tx|xy = tx 00g|xy Vge G
always imply that X,oq C X, eq holds. Here, X,oq denotes the closure in X of
Xrea N Xo ={z € Xo[0(g,2) =2 VgeG}

and X,oq = {Z € X |0(9,Z) =T Vg€ G} is the closed subset of O-invariant elements.

2) In the second part, we have applied the first one to the quantum gauge field situation where
X equals the set A of smooth connections on a principal fibre bundle (P, w, M, S), and 6
comes from a Lie group (G, ®) of automorphisms of P, i.e.,

0(g,w) = ;1w Vged.

In this situation 2 is the C*-algebra B of cylindrical functions that corresponds to any
set P of C*-paths in M which is invariant under pullbacks by the translations wg (P is
®-invariant). Here, ¢ denotes the action induced by ® on M. In particular, we have seen
that the set Aeq of quantized invariant (classical) connections is always contained in the
compact set A,q of invariant generalized (quantum) connections.

3) In the last part of this section, we have identified the quantum spaces A with spaces
Hom (P, Morp) of homomorphisms of paths. We have seen that this is always possible if
the set P is independentﬂ Under the further assumption that P is ®-invariant, this has al-
lowed us to identify A,eq with the subspace Hom,eq(P, Morg) € Hom(P, Morg) of invariant
homomorphisms.

Moreover, using invariance, we have shown that in the analytic (LQG) situation, i.e., M
and ¢ are analytic, ¢ is pointwise proper and P = P,, the sets A,eq and Aq are of

4°In this rather heuristic paper the author restricts to the transitive situation with G, = {e}, and quantizes
(unspecified) sets containing A,eqa by using parallel transport functions along Lie algebra generated curves.

46Recall that Xy just denotes the set of elements x € X for which 2 — C, f — f(z) is not the zero functional.

4"This is the case, e.g., if M is analytic, S is compact and connected, and P is the set P,, of embedded analytic

curves in M, cf. Lemma [5.3][6]
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measure zero w.r.t. the Ashtekar-Lewandowski measure pay, (standard measure in LQG)
on A provided that dim[S] > 1, G, # {e} holds for some z € M, and S is compact
and connected. Moreover, we have illustrated that defining a normalized Radon measures
on Ayeq = Homyeq (P, Morp) can be done by decomposing P,, into elements continuously,
and into elements discretely generated (see Remark by the symmetry group. This
decomposition will be discussed in much more detail in the next section.

5 DModification of Invariant Homomorphisms

Let (P, 7, M, S) be a principal fibre bundle and (G, ®) a Lie group of automorphisms thereon. In
the previous section, we have introduced the space A,eq of invariant generalized connections that
corresponds to a ®-invariant set P of C*-curves in M. For the case that P is in addition indepen-
dent and S is compact, we have identified A,.q with the subset Homeq (7, Morg) C Hom(P, Mory)
of homomorphisms having additional invariance properties . We now switch to the analytic sit-
uation, i.e., we consider embedded analytic curves and actions ® for which the induced action ¢
on M is analytic and pointwise proper. We will prove certain modification results for invariant
homomorphisms which are crucial for both our investigations of the inclusion relations between
Areq and Aeq, and the construction of normalized Radon measures on Apq in Section @ In
analogy to Lemma and Convention [3.9]2] modification here just means to change the value of a
given invariant homomorphism on some distinguished set of curves in a specific way.

In the following, P, will always denote the set of embedded analytic curves in M, and S is
assumed to be compact and connected. Recall that compactness of S guarantees well-definedness
of the map x: A — Hom(P, Morg), @ + [’y > Pﬂ Connectedness is crucial because:

e As we will see in Lemma 6l a subset P C P, closed under decomposition and inversion of
it elements is independent if S is connected. Recall that this ensures that x is bijective, i.e.,
a homeomorphism w.r.t. the topology Ti from Definition [4.16

o If dim[S] > 1, the equivalence relation ~ 4 equals the (elsewise coarser) equivalence relation
~par that will occur in the fundamental statements of this section. Here, v1 ~par 72 just
means that both curves coincide up to parametrization, i.e.,

g2 <= Y1 =720 Pldom[y] for p: I — R analytic diffeomorpism with p > 0.

In Subsection we will collect the relevant facts and definitions concerning analytic and Lie
algebra generated curves. In Subsection [5.2] we modify invariant homomorphisms along such Lie
algebra generated curves, and in Subsection [5.3| we will apply this in order to obtain some general
conditions which allow to decide whether the inclusion Ayeq C Ayeq is proper. Basically, this
will be done by constructing elements of A,.q that cannot be approximated by classical (smooth)
invariant connections. In particular, we conclude that quantization and reduction do not commute
in (semi-)homogeneous loop quantum cosmology. For homogeneous isotropic LQC, this will be
shown in Section [7] Finally, in the last part of this section, we will prove an analogue of the
modification result from Subsection [5.2] now for free curves, cf. Remark [£.27[4 We first show
that each analytic embedded curve which contains a free segment is discretely generated by the
symmetry group. Then, we use this in order to modify homomorphism along such free segments.
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5.1 Analytic and Lie Algebra Generated Curves

This subsection basically collects the properties of analytic and Lie algebra generated curves that
will be relevant for our later considerations. We will start with some elementary facts on analytic
curves. Then, we highlight the most important properties of the Lie algebra generated ones, in
particular, for the case that the induced action ¢ is analytic and pointwise proper.

5.1.1 Basic Properties of Analytic Curves
We start with a lemma collecting some standard properties of (embedded) analytic curves. For
this, we will need
Definition 5.1
Let v1,7v2 € P, with dom[y;] = [a;,b;] for i = 1,2. We define the equivalence relations ~,, and
~im on P, by
M2 <= 7 =720° pldom[y,] for p: I — R analytic diffeomorpism with p > 0.
Y ~im Y2 <= im[y] =im[y] and yi(a1) = v2(a2) as well as y1(b1) = y2(b2).
Recall that this means that I C R is open and that dom[y;] C I holds.

Convention 5.2
e In the sequel, by an accumulation point of a topological space X we will understand an
element x € X for which we find a net {xq}aer € X\{z} with lim, x4 = 2.

e According to the notations subsection, domains of curves are always assumed to be intervals
(non-empty interior).

e An analytic (immersive) curve v is called extendible iff we find an analytic (immersive) curve
¢ with open domain, such that v = 6[qom(,) holds and dom[y] € dom[d] is properly contained.
It is called maximal (or inextendible) iff no extension exists. The same conventions hold
for analytic diffcomorphisms p: I — RR. (Observe that the domain of a maximal analytic
(immersive) curve is necessarily open.)

Lemma 5.3
1) Let v;: (a;,b;) — M be an analytic embedding for i = 1,2 and x an accumulation point of
im[y1] Nim[ye] (w.r.t. the subspace topology inherited from M ). Then v1(I1) = v2(I2) for
open intervals I; C (a;, b;) with x € ~;(I;) fori=1,2.

2) Each (immersive) analytic curve has a mazimal extension.
3) We have

Y1 ~im Y2 < V1 ~par 72 = Y1 ~A V2
If dim[S] > 1, then
Y1 ~im Y2 = Y1 ~par V2 < Y1 ~AV2.
4) Let 6: [0,k] = M and 0": [0, k'] — M be analytic embeddings.

(a) If 6 and &' share an initial segment, i.e., 5
! / / (5
5‘[0,8] ~im d |[0,s’] fO’F s € (O) k]? s € (07 k ]7 ’_I'L)

then either
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® 0 ~par 5/|[0,t’} for t' e (0, k‘/] or
/
® dl[0, ~par O’ for t €(0,k). 0, 0

(b) If 6 and 6'' share an initial segment, i.e.,
)
) - for  se (s k], s €0,k), 4_2)

0,6 ~im [0']sr 4]

then either

hd 0 ~par [5/|[t’,k;’]]_1 for t' €0,k or ) i '
/
® o, ~par 0" for t €(0,k). )

5) Let ~;: [0,ki] — M be an analytic embedding for i = 1,2. Then, for i = 1,2 the set
;Y (im[y1] N im[ys]) is the disjoint union of finitely many isolated points and 0 < m < 2
disjoint compact intervals { LY} <p<m with vl\Lzl) ~im [72|L;2>]i1 for1<p<m.

If m =1, then either

o L =10,k;] for some i€ {1,2} or — 1
o L is of the form [l;, k;] or [0,;] with 0 <l; < k; fori=1,2. (7—](—)1
If m =2, then for i =1,2 we have
f\/l
LY =10,1"] and LI =[l],k;] for some IV #1!, 1<p+#q<2. @

6) If S is connected and P C P, is closed under decomposition and inversion of its elements,
then P is independent.

PrROOF: 1) Let x = 7;(7;) with 7; € (a4, b;) for i = 1,2. Moreover, let (U, ¢) be an analytic
submanifold chart of im[y;] which is centered at x and maps im[y;] N U into the z-axis.
Choose € > 0 such that y2(Bc(72)) € U and consider the analytic functions fj := ¢*oys| Be(r2)
for k = 2,3. Then 7 is an accumulation point of zeroes of f, so that fr = 0 by analyticity
of fi. This shows ¢(72(Be(m2)) € ¢(U Nim[y1]), hence y2(Be(2)) € im[y1]. The claim then
holds for IQ = B€(7'2> and Il = ’)/1_1(’}/2([2))

2) Let v: D — M be an analytic curve, denote by E the set of all extensions of v with open
domain and define its maximal extension

Yo: I := Usep dom[d] — M

by vo(z) := 0(z) for 6 € E with € dom[d]. Then, o is well defined because for §' € E
with x € dom[d’] we necessarily have ¢'(x) = d(z). In fact, since 6 and ¢’ coincide on D, by
analyticity they coincide on dom[d] Ndom[d’] 5 z. If ~y is in addition immersive, we restrict
~o to the maximal (necessarily open) interval containing D on which 7 is an immersion.

3) The implication ~par = ~ip is obvious and ~p,r = ~ 4 is clear because parallel transports
are invariant under reparametrization by orientation preserving diffeomorphisms.

Now, assume that 71 ~im Y2 and let 7/: (a}, b)) — R3 be an analytic embedding with
[ai, b] € (a;,b;) and ¥i|j,p,] = i for @ = 1,2. Then ~;(a;) and ~;(b;) are accumulation

— 2771

points of im[y{] Nim[+}], so that by Part [1)) we can arrange that N := im[y]] = im[+}] just
by shrinking the intervals (a;,b}) in a suitable way. Now, N is a real analytic submanifold
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in the topological sense and the maps v, are diffeomorphisms w.r.t. its analytic structure.
Consequently, p := 'yé_l o4 is the desired diffeomorphism.

Now, let S be connected and v = {v, },enr a choice of elements with v, € F, for all z € M.
If 41 ~4 2, then v1(a1) = y2(a2) and v1(b1) = Y2(b2) by definition, and we have to show
that im[y;] = im[y2]. Now, if this is not true, then we find 7 € (a1,b1) or 72 € (ag, bs) such
that 1 (m1) ¢ im[ys] or y2(72) ¢ im[y1], respectively. If ~;1(71) ¢ im[y2], by compactness of
im[y2] we find a neighbourhood U of 41 (71) in M with U Nim[ys] = 0. Let w € A be fixed
and s := h, (w). If we choose s’ # s, then by Proposition A.1 in [21] we find w’ € A such
that w’ equals w outside U and h% (') = s". But, h%, (w) = hZ, (w') since im[y2] € M\U, so
that

W, (W) = hY,(w) = s # s = hZ (W)

contradicts that y; ~4 2.
4) Tt suffices to show (a) because (b) follows from (a) if we replace &' by &'~!. Let

t:=sup{se0,k]|Is €0,k]: 8l0,s] ~im &'ljo,51 }-

By assumption we have t > 0, so that d[jy ~im ¢'[j,] for some ' € (0,'] by continuity,
hence 6](p 4 ~par 8'[jo,¢] Dy Part (3)).

o If t =k, then ¢ ~par ¢'[jp ] and we have done (the same for ¢’ = k).

o Ift <kandt <Kk, then d(t) = ¢'(t') is an accumulation point of

5((0,t +¢€)Nd((0,t' +€)) for €€ >0 suitable small.
Then, 8|(g,45) ~im &'[j0,¢1) for some 2o > ¢, t; > ¢’ by Part , contradicting the choice of t.

5) The statement is clear if T' := im[y;] N im[y2] is finite. In the other case there exists an
accumulation point of T, just by compactness of 7. Let 7.: (al,b}) — M be an extension

of ; for i = 1,2. Part |I)) shows that we find [s;,#;] C [0, k;] for i = 1,2 with v1(, 4,] ~im
[72|[52,t2]]i1- The claim now follows by repeated application of Part .

In fact, replacing one of the curves by its inverse if necessary, we can assume that 7 | [s1,t1] ~im
’)/2|[s27t2] holds. By Part j we can assumeﬁ that t1 = kq, i.e., 71|[sl,k1] ~im 72][82,132], and
then the same part shows that one of the following two cases holds:
Y1 ~im V2l for 0<r2<sy  or
71|[r1,k1} ~im 72|[0,t2} for 0<7ry <sj.
In the first case the claim is clear, and in the second one it is clear if 77 := 41([0,71]) N

v2([te, ko]) if finite. In the other case, 7" admits an accumulation point just by compactness.
Then, applying Part (1) we find [z1,y1] C [0,71) and [z2, y2] C (Lo, ko] with

A o
ilier ) ~im hQ’[:tmyzﬂil' 71(@ 2 71(l®

Combining Part {)) with injectivity of 71 and 72, we see that v1[(;, 4] ~im [72|[x2,y2]]_1 is not
possible, and that 71][0’7"/1] ~im 72|[t/27k2] for ] € (0,71) and t, € (t2, k2).

48The case ta = ks follows analogously.
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6) The full proof can be found in Lemma Basically, one applies Part in order to
show that each finite collection {71,...,7%} admits a refinement {di,...,dy} such that
im[d;] N im[d;] is finite for ¢ % j. The rest then follows from compactness of im[d;] and
Proposition A.1 in [21]. n

5.1.2 Basic Properties of Lie Algebra Generated Curves

In this subsection, we collect the relevant properties of Lie algebra generated curves. First, we
provide the basic definitions and highlight their most important properties. Then, we show that
for ¢ analytic and pointwise proper the set Pg” of Lie algebra generated curves as well as its
complement in P, both are closed under decomposition and inversion of their elements. This will
be extended to an decomposition of P, into four natural subsets (invariant under inversions and
decompositions as well) in Corollary Recall that, as we have shown in Proposition
such a decomposition gives rise to a respective factorization of the space ﬂred,w.

Definition 5.4
1) We say that the two curves 71,72 in the manifold M share an open segment and write
Yir=ary2 iff we find open intervals I; C dom[vy;] for i = 1,2 with 1 ([1) = y2(l2).

2) For z € M and g € g\g, we define the curve
i R—>M
t = p(exp(t - g), z).

3) Let z € M and §,§ € g\g.. We say that § and § are related and write grozg’ iff there is
some g € G for which VF ~o ¥g © 7y holds.

4) For x € M and § € g\g, we define the subgroup Gﬁ}] C G, by

G| = {h € Gz | Adn(9) € spang(9)}- (40)

Here, the brackets in the subscript [g] refer to the fact that Gy = Gz holds if Jg=XA7
for some A # 0, see also Remark and Definition [5.5

Remark and Definition 5.5
1) In the following, we will tacitly use that

gp(h ~exp(t-g) - h_l,x)
gp(exp (t . Adh(g')),$)
Vad, (5 (1)

on 0 7z(t)

for all t € R and all h € G.

2) Let denote the projective spacﬁ that corresponds to g, and let [Prg: g — Pg denote the
corresponding projection map. Moreover, for g € g\g. let [g] be the class of ¢ in pry(g\gz),

i.e., [g] := pry(g)-

“This is the set g\{0} modulo the equivalence relation § ~ § <= § € spang(7).
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Then, the subgroup G from Definition @@ can also be characterized as follows. Since
Ad(h) is linear for each h € G, the map

Ad: G x prg(e\as) = pro(e\gz),  (h, [d]) — [Adw(d)]

is a well-defined left action, and then g G, is just the stabilizer of [g] w.r.t. Ad’. The
relevance of this action and its orbits will be discussed in Remark B.13]

3) The importance of the group G‘[”g_] comes from the condition in the next Lemma which,

for the special case that V' = spang(§) is one-dimensional and ¢ is analytic, can more
naturally be written in the form (see Definition and Lemma and Remark 2)

,Y;_q [0,]] ~par ’Yi Adh(g’)’[o,l/] for heG, - h € Gﬁﬂ’ (41)

whereby 1,1" > 0 are such that both curves are embedded analyticﬂ As we will see in the
next subsection, this is the key condition (besides analyticity and pointwise properness of @)
which will make it possible to modify invariant homomorphisms along Lie algebra generated
curves that correspond to g € g\g,. Basically, this will be done by replacing the last factor
in the general parallel transport formula (42 (for invariant connections along Lie algebra
generated curves) by certain equivariant mappings ¥: spang(g) — S. The point here is
that if the invariant homomorphism comes from an invariant connection, the left hand side
of already implies that the value of this homomorphism on both curves coincide, just
because parallel transports are invariant under reparametrizations. In the purely algebraical
setting, however, we will need in order to guarantee this.

4) Observe that v;f is analytic if ¢ is analytic because the exponential map of G is analytic. Part
of the next lemma then states that if ¢ is in addition pointwise proper, each Lie algebra
generated curve 'yg is maximal in the following sense:

An analytic immersion 7 sharing an open segment with Vgs 1€, Y ~o V7 I8 already a subcurve
of 'yg’?.. This will be important for our modifications in Subsection and is usually not true
if ¢ is not pointwise proper:

Indeed, let p: Ryo x R — R™, (\,y) — Ay, 0 # x € R" and § = 1 € T1Rsg. Then
'y;f(t) = ¢! - x since the exponential map exp: g — Rsq is just given by A — e*. However,
obviously v: R — R, t + t-2 is an immersion with v ~ fyg but im [”y;f] = R~ -z is properly
contained in im[y] = R - . T
In addition to that, pointwise properness will guarantee that ~, even defines an equivalence
relation on g\g, as we will see in the last Part of the next lemma.

5) The second part of Lemmashows that Lie algebra generated curves are always immersions
and that for each g € g\g, there is a unique number 7; € R~ U 0o such that 7§I[a7a+l} is
embedded iff | < 7. It is a very useful observation that this already implies that Ady,(g) = &g
holds for each h € G‘[%} provided that ¢ is pointwise proper.

In fact, if A # £1, then A # 0 because Adj,-1 0 Ady, = idg. In particular, replacing h by h 1
we can assume that |[A| < 1 holds. Since Ady, is linear, scaling § if necessary, by the above
statements, we also can assume that y := p(exp(g), z) # x. Now, the sequence defined by

@(h",y) = p(h" - exp(§) - A", x) (h € Gz € Ga)
= p(exp(Adpn (), z) = p(exp(A" - ), z)

5°Due to Lemma such reals always exist, see also Part [5)) of this remark.
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has the same limit as {¢(h", x) }nen, namely x. Then, pointwise properness of ¢ implies that
g -1y = g -x holds for some g € G. Hence, y = x, which contradicts the choice of y. O

Lemma 5.6 (Lie Algebra Generated Curves)
Let x € M and G,7 € g\ga-

1) The horizontal lift of v := g © ’Yg|[0,l] w.r.t. the invariant connection w in the point p € Fy
is given by (recall that g denotes the fundamental vector field which corresponds to §)

() i= g - explt- ) - p-exp(—t-w(@p))  Vte[0,0] (42)

2) The curve 7 := fy;f 1S an tmmersion.
o If v is injective, then 7|y is embedded for all [a,b] with a < b.

o [f~ is not injective, then it is cyclic in the sense that there is T € R~ uniquely deter-
mined, such that

y(t) =~y(t) = t=t +nr for some n €.
Hence, the curves |, are embedded iff b € (a,a +7) for a,b € R.
3) Let V C g be an Adg, -invariant linear subspace with V N g, = {0}. Thenﬂ

Ve log] ~par h 0 Veloy for hE€Ge, §.G§EV — L3 =Ad,-1 (7).

o~

4) If § ~o G, then A\§ — Adp-1(§') € 9o for some h € G, and X € Ryy. In particular, if

G, = {e}, then § =, § whenever §, g are linearly independent.

5) Let ¢ be analytic and pointwise proper.

(a) If y: D — M is an analytic immersion with vy ~o g 0 fy;E, then v = @g4 0 fyg o p for some
analytic diffeomorphism p: I — R, (I open).

(b) If 6: K — M is an embedded analytic curve with § ~o g4 0 Vg then § ~par Pg O ’Vig“K
for K CR a compact interval.

6) If ¢ is analytic and pointwise proper, then ~, defines an equivalence relation on g\g.

Obviously, claim (b) in Part |5 is immediate from claim (a) in Part 5 and it also can be proven
by the techniques from Lemma We here decided to show the more general statement as it
makes some of our further proofs more elegant, and because the only additional notion which we
need is that of a maximal extension of an analytic (immersive) curve. At this point, the author
expresses his gratitude to Christian Fleischhack for advising him to introduce maximal extensions
in order to prove the more general statement.

Proor: 1) Let £ :=w(g(p)). Then, 7(Y(t)) = ¢4 o p(exp(tg), ) = v(t) and

w(G10) D 0 (([ARexp(16) © ALusp12) GP)) ) = @ (E(Rexp(re) (Dlexp(td), 1)) )
= (Adexp(tg) o w)(ﬁ(p)) —§= Adexp(t&) (f) -§=0,

where we have used ®-invariance of w in the first two steps.

51Here, ~par is defined as in the analytic case, whereby the respective diffeomorphism p is assumed to be smooth
instead of analytic.
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2) First observe that « is an immersion becausﬂ

V(t) = de@(p(exp(tg),x) (g) =0 <~ ge Yo(exp(tg),z) = Adexp(tﬁ) (gx)

— —

In fact, then 4(¢) = 0 implies § = Adeyp () (ﬁ) for some h € g, hence h = Adexp(—1)(9) = G,
which contradicts the choice of g.

If 7 is injective and [a,b] C R, then for € > 0 the curve v|jq_c 1 is an embedding just by
compactness of [a — €,b+ ¢€]. Of course, ¥|(q—c,q+¢) then is an embedding as well.

Now, assume that « is not injective and observe that
(') = y(t) = Y(t'+a) =~(t+a) for all a € R. (43)

Let 7 denote the infimum of {t € R~¢ | v(0) = v(¢)} € R. Then v(7) = v(0) by continuity
of 7, and 7 > 0 because 7 is locally injective as it is an immersion. So, if v(t') = ~(t) for
t,t' € R, then v(0) = v(t — ) by (43), and we have 0 < (t —t') + nt < 7 for some n € Z.
Then, minimality of 7 shows that ¢t — ¢’ +n7 € {0, 7}, hence t —t' = n’7 for some n’ € Z.

3) By assumption, we find a diffeomorphism p: I’ — R with 7;5,\[071,] = pno7;zo plio,r] where
p(0) =0 and p(I') = 1. Then

Gy 2> H(t) := exp(—t - Adj,-1(7)) - exp(p(t) - §) Vitelo,l]

and H(0) = e. Hence, g, 3 H(0) = p(0) - § — Ad,-1(§), so that by Adg,-invariance of V
and since g, 7 € V, V Ng, = {0}, we have

Ady-1(g) = p(0) - 7. (44)
Then H(t) = exp(—tp(0) - §) - exp(p(t) - §) = exp([p(t) — tp(0)] - ), hence
9z 3 ALy -1 H(t) = [p(t) — p(0)] - §.

This shows p(t) = p(0), hence p(t) = At for A = p(0). Then X = % because | = p(I') = A,
so that the rest is clear from (44).

4) By assumption, we find g € G and I, I’ C R open intervals with ¢g 0vZ(I) = v (). Since
both curves are embeddings, p: I’ — I defined by

p = (g075l,) " 0l
is a diffeomorphism for which we can assumﬂ that p > 0. Now,
Gy 3> exp(=t'g)-g-exp(p(t) g) Vel
and for t{, € I’ fixed we define G, > h := exp(—t(q’) - g - exp(p(t() §). Then, for
5(t") :=h""-exp(~t'g) -g-exp(p(t') §) Vi el
we have §(t,) = e, and a simple calculation shows that

0r 2 0(th) = A — Ady1(§)  for  X:=p(th) #0.

%20bserve that Ad,: g — g, is an isomorphism for y = ¢(g, ). In fact, if Ad,-1(g) € gz for § € g, then § = Ady(c)
for ¢ € gz, hence ¢(exp(tg),y) = @4 0 @(exp (té),m) =y forallt € R, ie., §€ gy
53In fact, elsewise we replace § by —g. For this, observe that 7§|[61” = Pexp(d) © V= 5l10.0-
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5) It suffices to consider the case where g = e because ¢ is analytic, and v and ¢4 o 7;5 share
an open segment iff ¢ -1 07, 'yg‘E do so. Then, substituting ¢ by —g if necessary we find an
analytic diffeomorphism p: I — R with v|; = fyj}f op and p > 0, see also Part . Let v be
maximal immersive and denote by p’: I’ — R the maximal immersive extension of p. Then
Y =750 p' because | and V3o p coincide on I. We now have to show that I’ = dom[y].
For this, let I' = (', s), dom[y] = (r, s) and assume that s’ < s.

We choose a monotonous increasing sequence {s), }nen C I’ with lim,, s, = s

e If limy, p(s},) = t exists, then y(s') is an accumulation point of im[y] N im[Z], so that
Lemma provides us with open intervals J' 3 s’ and J 5 ¢, and an analytic diffeo-
morphism pg: J' — J with v|p = 7 © po- Then, glueing together p' and po provides us
with a contradiction to maximality of p/.

o If lim, p(s],) = oo, leﬁ 0 < d < 77 and choose s), in such a way that
p(sp) =p(sp) +n-d  VneN>.

Then, for z1 1= Qeyp(s)-3)(); T2 = Pexp(a-g) (1) # 21 and gy := exp(nd - §) we have
lim @(gn, 1) = 7(s") = lim @(gn, z2)-

Hence, ¢(g,21) = ¢(g,x2) for some g € G by pointwise properness of . This implies
z1 = 2o and contradicts the choices.

Consequently, s’ = s, and in the same way we see that r =’ holds.
6) This is a straightforward consequence of Part 5| In fact, if § ~, ¢ and § ~, ¢’ with
Pg 0 VG ~o Vg as well as Vg ~o Pg O Vi,
then for K’ a compact interval by Part |5/ we find open intervals K and K” such that

X X X
¥Pg © 'Vig’|K ~par 'Yg’/|K’ ~par Pg'" © ’Vig’"|K”

holds, hence g ~, §". n

So, for the case that ¢ is analytic and pointwise proper, the above lemma provides us with the
following notions:

Definition 5.7
Let ¢ be analytic and pointwise proper.

1) For g € g\g., we denote by 7; € R~ LU oo the period of fy%f introduced in Lemma
where we define 75 := o0 if 77 is injective. Recall that ’yg][&b] is an embedding iff b —a < 75.

2) By |, we will denote the set (g\g.)/~, of equivalence classes w.r.t. ~y.

3) By [Py € P, we denote the set of all embedded analytic curves of the form ¢4 o 'y;£| K for
xeM,G§eg\gs, g€ Gand K CR compactﬂ

*"We define Tz := oo iff 47 is injective, see also next definition.
550f course, for K = [ko, k1] this means that k1 — ko < 74 for 75 the period of ’yg.

60



4) By C P,, we will denote the set of all curves equivalent (~par) to a curve in Py. By
the second part of Lemma this is exactly the set of all v € P, with v ~, § for some
0 € Py.

5) For x € M, g € G and y := p4(x), we define A—vdg: &, — 6y, [g] — [Adg(g)]. This map is
well defined because

GG = pgy 075 ~o g for some go € Gy
y Y
= Pggoat ©Vady(g) ~° TAdy (@)

—  Ady(G) ~y Ady(7).
Then, A\ag is even bijective as its inverse is just given by A\(Jigq 16, — 6.

We close our considerations by stating that in the analytic and pointwise proper case Py, Py’
and Pw\PgN are closed under decomposition and inversion of their elements. In particular, by
Proposition we have the splittin Zred’w = ﬁred,g X ﬁred’gc where the latter factor is the
quantum-reduced space which corresponds to the set Pw\PgN .

Corollary 5.8
Let ¢ be analytic and pointwise proper. Then, Pg, Pg” and PW\PQN are closed under decomposition
and inversion of their elements.

Proor: For Py and 77; the statement is clear from the definitions and

(g © V5 l[a,0]] =0 Vilap  for y=p(exp(la+]-g), ) (45)

Now, if 7 is not equivalent to an element of Py, i.e., if v € P,\Py’, then the same must be true
for y71, just because Py is closed under inversions and

7 ~par o < ’7_1 ~par 5_1~
Moreover, by Lemma there cannot exist a subcurve v/ = |k of v which is equivalent to an
element of Py, i.e., which is contained in Py”. Consequently, PM\PQN is closed under decompositions
and inversions as well. n

5.2 Modifications along Lie Algebra Generated Curves

In the sequel, let ¢ be always analytic and pointwise proper and dim[S] > 1@ Moreover, let
Py C Py, be a ®-invariant subset which is closed under decompositions and inversions and that
contains all Lie algebra generated curves, i.e., the set Py from Definition Then, according to
Convention m we will denote by Ay ;eq the respective quantized reduced classical configuration
space, and by [Hom,eq(Py/, Morg )| = Fg|( Ay red|) the respective quantum-reduced one.

We now are going to modify invariant homomorphisms, i.e., elements of Hom,eq(Py, Mory)
along Lie algebra generated curves. Here, we will make use of the fact that for each p € F,; the
action ® provides us with a canonical lift of 77, namely ¢ — Peypg) (p). Basically, then we will
mimic by replacing the last factor

Uy,: g exp(—w(g(p)))

56Provided, of course, that Py and P, \Pg" are not empty. Elsewise, the respective factor just has to be dropped.
57Recall that this ensures that the equivalence relations ~ 4 and ~pa; coincide, see Lemma
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by maps ¥: V — S (with V' a special linear subspace of g) having the correct equivariance
property. For this, observe that by invariance of w we have

v, o0Ady, = Qg (h) © v, Vhe Gw(p)
with @: Gr(p) — S the unique Lie group homomorphisms which fulfils (cf. )
®(h,p) =p-¢p(h)  VheGrp).

For instance, let V' C g be an Adg, -invariant linear subspace with V' N g, = {0}. Then, a linear
map L: V — s is called Ad, -equivariant iff

Ad¢p(h)OL:LOAdh Vhe Gy,

and in the second part of Proposition [5.14] we will modify invariant homomorphism by means
of such maps. This will be helpful, in particular, for our investigations concerning the inclusion
relations between the spaces Ay ;oq and Zg’,red in Subsection However, for our investigations
in Subsection (construction of measures), we will need a slightly different version of this:

Definition 5.9
A map VU: spang(g) — S with

U(A+p)-§)=TA-§) U(u-§) VApeR (46)

is said to be Ad%[ﬂ]—equivariant iff
g

Qg (h) © ¥ = Vo Ady, YVhe Gﬁ?‘] (47)
holds. %

Then, in order to obtain well-defined homomorphisms when modifying by means of such maps,
we will be forced to require § to have the additional property of stability. This generalizes
the condition in Lemma [5.6|3| which automatically holds for Adg, -invariant linear subspaces as
discussed above.

Definition 5.10 (Independent and Complete Families)
1) An element g € g\g, is called stable iff

Velog ~par Viag,@low) for heGe = heGh (48)

2) A family of stable elements {Ga}acr, € g\gz is said to be independent iff g =, Gg holds for
all a, 8 € I, with o # 8. It is called complete iff for each v € &, we have g, € t for some
ae I,

Lemma and Remark 5.11 (Stability)
1) It already follows from stability of G € g\g» (and analyticity) that

+Adn(9) =7 and I'=1 holds,

hence V5 =% Ady ()"

58Recall that &, denotes the classes in g\gz w.r.t. ~g.
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In fact, by Remark and Definition @ we have Ady(g) = q- g for ¢ € {—1,1}, hence
W§|[0,l] =445 ° pliog for p: [0,1] = [0,1'] a diffeomorphism with p > 0. Then,

H(t) := exp(—t- ) -exp(£qp(t) - §) € G  Vte0,1],
so that £q¢ =1 and p =1 because
9z D ALy H(t) = [£qp(t) —1]-§  Vte[0,1].

This shows + Ady(§) = £q- g = g as well as p(t) =t, hence I’ = p(l) = 1.

2) As already mentioned in Remark and Definition @ Condition generalizes the prop-
erty from Lemma[5.6[3 in a specific way.

More concretely, Go € g\gx is stable iff

x T o N [
’Yg/|[0,l'] "~par WAdh(g*)HO,l} for heG., §.7 € [Go] = ﬁg =Ad,-1(7).  (49)

In fact, obviously implies . Now, if holds for go, and if we have
725/\[0,14] ~~par '7/§dh(§)‘[0,k] for heGy, §,7 € [go], (50)

then §=q\-go, § = ¢\ - go for some A\, N >0 and q,q' € {—1,1}, hence

X X
T’ -go ‘ [0\ k] ~Par Vg-Ady (o) ‘ [0,Mk]"

Then, the group property of G%O] and show that h € G%O] if ¢ =1 or q=1. Moreover,

if ¢,q' = —1, by analyticity of the involved curves we have

7:760 | [0,r'] ~par Vidh(go) |[0,r}

for some r',r > 0, so that shows h € G[xgo] as well. Consequently,
Adp(§) =+G=X-¢ for some A#0,

and then the arguments from Pcmf applied to show the right hand side of .

3) It is clear from and Lemma @ that G is stable whenever spang(§) is contained in
an Adg, -invariant linear subspace V' of g with V N g, = {0}. For instance, this is always
true if G, = {e} holds.

4) Let L: V — s be an Ad%x-equivariant linear map and 0 # g € V. Then, it is an interesting
observation that]

W: spang(§) — S, g+ exp(—L(9))

18 Ad’ém—equivariant. Indeed, examples for such Ad’éz—equivariant linear maps L: g — s

are given by (P,w)|g for w a ®-invariant connection on P.

59Here, the minus sign is just to show the resemblance to 142).
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5)

6)

In Pmposition we will modify elements € € Homyeq(Py, Morr), first, by specifying their
values on the curves 'yg§0|[0,”. Second, by extending them to the curves pg4 o 7g§o|[0»l] mn such
a way that the resulting homomorphism €' is invariant. Then, in order to guarantee that &
is well defined, we will need condition , i.e., stability of §. This condition guarantees
that €' takes the same values on each two curves being related as on the left hand side of
(49). Basically, this is just because the equivariances of the involved maps then will cancel
out each other in the correct way, see .

The stability property of an element § € g\g, usually has to be checked by hand.

Indeed, in Subsection[6.9 (for the case that S = SU(2)) we will discuss the situation where
each p-orbit m admits an independent and complete family {Ga}acr, C 9\gz (of stable ele-
ments) for some © € m. We will show that then Homyeq (73;, Morp) is homeomorphic to a
Tychonoff product of compact Hausdorff spaces on each of which a natural Radon measure
exists. This will allow us to a define a normalized Radon measure on Homyeq (’PEN,MorF)
just by taking the Radon product one. In particular, this will be possible for the cases of
(semi)-homogeneous, spherically symmetric and homogeneous isotropic loop quantum cos-
mology as for these situations we will show by hand that such independent and complete
families of stable elements exist. %

The next lemma collects some elementary properties of independent and complete families that
will become relevant for our considerations in Subsection 6.2l Recall that there we use such

families in order to parametrize the space Hom,q (77; , Morp). The last point of the next lemma

then will show injectivity of this parametrization. The first two points are just to switch between
such different ones.

Lemma 5.12

Lety = pg(x) forx € M and g € G. Moreover, let {Ga}acr, € 8\8z and {gs}per,  g\gy both be

1)
2)

3)

independent and complete.

There is a unique bijection Tyy: I, — I wit Avdg([ga]) = [Groy ()] for all a € 1.

Let ﬂlg([gj) =[] for [g] € &, and [§'] € &,. Then, we find go € G and an analytic
diffeomorphism p: R — R with p(0) = 0 and p(7g) = 75, such that

Vg = Pgo © Vig O p- (51)
In particular, if § ~, § for §,§ € g\gz, then we find h € G, with
Vg = PhoVig0 P =Y Ad,(5) ° P (52)
The values of € € Hom,eq(Py, Morg) on the curves
©g 0 fy?gi/][07l/] forallge G, g €g\gy andl' € (0,77)

are completely determined by its values on the curves 7§a ’[o,l] foralla € I, andl € (0,75,).

Proor: 1) This is clear from bijectivity of Avdg.

69Recall Definition for the definition of Ad.
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2) Since Ady(g) ~z G, we find ¢’ € G with ’ﬁidg(g*) ~o Py O ’ng- Hence,

_ Y y y
¥g © ’YZ = Vad,(g) ~o Pg ° Vg = Pg=1g’ Vg ~o ’Y§
= Pg-14' O 7;1, =yigop (Lemma [5.6{5)
= Y =Pg-14°75500

for p: R — R an analytic diffeomorphism.
3) By (BI) we find a € I, with pg 07,

[0.1] ~par Pg-g0 © Vg, |[0.p(1)]> hence

Pg © ’ng‘/ [0,]] ~par Pg-go © ’Y:gga |[07P(l)] or
-1
%9 ° Vg0 ~par P90 © V25 l0,00] ~par Pgg0 © Pexp(=p(t)-50) © [V, l0001]
The claim now follows from the invariance and homomorphism properties of ¢. n

Before we come to the desired modification result, we want to show how the action

[Ad): G, x pry(e\az) = pro(o\ga), (b, [d]) — [Ads(9)]

introduced in Remark and Definition [5.5}2] can help to find independent and complete families as
discussed above.

Remark 5.13 (Ad’-Orbits)

Let &A= pry(g\gz)/Gz denote the set of Ad"-orbits in pry(g\g.) and choose o € A as well
as [g], [g'] € 0. Then, ¢ = A Ady(g) for some X # 0 and h € G,. Hence,

V5 = Vaadu(@) = Ph©Tag o Ph Oy (53)
which shows that § ~, §. So, in order to obtain a complete and independent family {gn}acr C
g\g, as in Definition one can proceed as follows:

~ First, one identifies two orbits 0,0’ € A4 iff there are [§] € 0 and [§'] € o/ with § ~, 7.

— Second, if possible, one chooses a stable element [g,] in each of the “remaining” orbits.

The first part of the next proposition shows, how one can modify invariant homomorphisms along
Lie algebra generated curves that correspond to stable elements § € g\g,. The second part is
adapted to the requirements of the next subsection, where we will use it in order to construct
invariant generalized connections that cannot be approximated by the classical (smooth) invariant
ones. Hence, cannot be contained in Ay req.

Proposition 5.14
Let ¢ be analytic and pointwise proper, assume that Homyeq(Py, Morg) # 0, fix p € P and define
x = 7(p).

1) Let {Ga}act, C g\gz be independent, and {V,}ac1, a family of Ad%[a ]-equivam’ant maps
Ja
U, : spang(ga) — S.
For a € I, we define

Yoo Fr 2 p O, (exp(£l - Ga)) - Va(El - Ga) - A(p,p'). (54)
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Then, for each & € Homyeq(Py, Morg) the map

6(7) N — {((I)g © Ti,a,l)(q)gfl(p/)) if v ~a pg © yi§a|[07l} for ae€l,, geG (55)

g(®) else

is a well-defined element of Hom,eq(Py, Morr).

2) Let {Vy}aer be non-trivial Adg, -invariant linear subspaces of g for which the sums Vy,, & gy
(for all « € I) and Vo, ® V3 @ g (for o # B) are direct. Moreover, for each o € I let
Ly : Vo — 5 be a non-trivial Adg, -equivariant linear map.

For g, € V,\{0}, let
Yi.0: Fo 20 — @p(exp(l- ga)) - exp (—1La(Ga)) - Alp, D). (56)

Then, for each & € Homyeq(Py, Mory) the map

(©g o Y5,) (g1 (p) if v ~aog0g g for G€ Va, g €G
5(’}’) (p/ = ) ,g )( g ( ) g ‘ [0,7] (e} (57)
@) else
is a well-defined element of Homeq(Py, Morr).
PrROOF: 1) The crucial part is well-definedness, the rest are just straightforward calculations.

For well-definedness, let v € Py, o, f € I, § = £da, § = g and g,¢' € G with
Y ~A Pg 0 Vgl and Y ~a @y Vg0

Then, SOgO’tho,l] ~A Py o’yg?-,|[0’l/], and we have to verify that z—:(gogoygffhoﬂ) =e(pg o5 l0,7)
holds. Applying the definitions, we see that this is equivalent to show that

e(7ljo,n) = eleg-14 2Vl j0,7)
holds. Since ¢'"'g € G, and V§/|[0,l'] ~APg-1g0 fy;f“o’l], it suffices to show that

Vgl ~A pn ozl for h € Gy = e(vzljo,n) = elen o Vlp,1)-

However, in the above situation we have g, ~; gg, hence o = 3 by independence of {Gq }aer, -
Then ¢,§ € [ga], so that by stability of g, and we have \g = Ad;,-1(g') for A = ZL/,
hence

~—

(en oG lon) (@) = @p(h - exp('AG)) - Call - g) - Alp, @1 (p'))

=®(h-h~ exp(l/g") h,p) - W, (l '_‘) ¢p( )_I'A(P,P/)
= ®(exp(l'd), p) - Vo (lAdL(G)) - A (58)
= ®(exp(l'7),p) - Call'g) - Alp, )

e(vg lo) (@)

Now, it is immediate from the definitions that e(y)(p'-s) = e(v)(p/) - s for all s € S and that

e(pg o) (Py(p)) = (@g0¢e)(v)(p) Vgeq.
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So, in order to show that e € Hom,eq(Py, Morg) it remains to show the homomorphism
properties of €. Here, it suffices to verify these properties for such curves that are equivalent
to one of the curves ¢4 o Vg Zljo for § = £Gn with a € I. In fact, if v is not equivalent
to one of these curves, then by Corollary [5.8] the same is true for its inverse and all its
subcurves v|gs for K’ C dom[y] so that the homomorphism properties here are clear from
e’ € Hom,eq(Py, Mory).

Now, since

—1
as well as [7§|[a7b]] ~ AV [=b—a)

P90 V5[] ~A Pgexplag) © VF

for v ~4 g0 ’7;3|[0,l] we have v~ ~ 4 Pg-exp(ig) © Vf§|[0,l}‘ Hence, for h := g - exp(l - §) and
g = t§, we obtain

e(v)(@) = (Pn 0 To,00)(Ph-1(q))
= @), 0 @) (exp(—L-§)) - V' (1) - Alp, (®-1(a)))-
Then, for ¢ := e(7)(p') = (Pg 0 T+ 0,4)(Py-1(p’)) we have
AP, ®p-1(q)) = A (s (Pexp(—1:5) © T,00) (P21 (D))
=A(pp-Vall-5)- Alp, 241 ()
=Uo(l-9) A (p, 2y (p)).-
Since ®p, 0 ), (exp(—1gG)) = P (g - exp(lg) - exp(—1g),p) = ®(g,p), we get
e(7) (M @)) = @y(p) - A (p, g1 (1))
=@ (9,0 A (p. 2y-1(1))) = 29, @(g~ ")) =¥,
hence (77 1) o g(y) = ide g, -
Finally, let 7 ~4 ¢g 0 7%|j0 with dom[y] = [a,b] and s € (a,b). We choose I" € (0,1) with
Y(s) = @g 0 'ygﬁ(l’) and define y1 := 7|(4 5 as well as v := 7|5 4. Then
Y1 ~A Pg Yl [0,0] and
Y2 ~A Py 0 VGl ~a P o Vi) for hi=g-exp(l'g).
Now, ®;-1(e(11) () = p - Va(l'g) - A(p, @y-1(p')) and
e(12)(q) = (®n o T ai—)(Pp-1(q))
= (g-exp(l'g) - exp([l = ]g),p) - Va([l = U]7) - Alp, Pp-1(a))
=@ (g-exp(l-§),p) - Yalll = V']) - Alp, @p-1(q)),
so that £(72) 0 e(1)(p) = (9 - exp(l - §),p) - Va(lg) - Alp, g1 (1)) = (1) (¥).
The crucial part is well-definedness, as the rest follows analogously to Part . Now, as in
Part [1)) it suffices to show that for g€ V,, § € Vs, h € G,
= (7o) = elen o Vlo,)-

Now, in the above situation we have o = 3 just by Lemma5.6][4 and the direct sum property
Vo ® Vg @ g,. By Part |3) of the same lemma we even have l,g = Adj,-1(g"), so that for

Uo(l- ) :=exp(—1Ly(9)) Vi>0,VgeVyand o el
the calculation shows the claim. -

Vg |10, ~A Pn o VG,
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5.3 Inclusion Relations

In this brief subsection, we will use the modification results from the previous part, in order to
derive some general conditions which allow to decide whether the inclusion Ay eq C jlgl,red is
proper. This will be done in Proposition where we construct elements of Homyeq (P, Morg) =2
Ay rea that cannot be approximated by the elements of t4(Ared) € Ay red, i-€., by classical
(smooth) invariant connections. In the first part of this proposition, we will provide a criterion
which can be applied whenever the set A;.q of invariant connections is explicitly know. Then, in
the last two parts of the same proposition, we will basically use that due to formula (and
linearity of the involved maps) the parallel transports along Lie algebra generated curves which
correspond to linearly dependent Lie algebra elements are related in a certain way. In particular,
this will allow us to show that quantization and reduction do not commute in (semi-)homogeneous
LQC as well.

In the following, we still assume that S is compact and connected with dim[S] > 1, and that ¢
is analytic and pointwise proper. We fix p € P, define z := 7(p), and let V, V1, V5, V3 be non-trivial
Adg, -invariant linear subspaces of g such that V; © V; @ g, is direct for all 1 <i # j < 3 and

Vg, ={0} Ving, ={0} Vong, ={0} Vang, ={0}.
Then, by L, L1, Lo, L3 # 0 we will denote respective non-trivial Adgz—equivariant linear mapsm

Proposition 5.15 B
If Homyeq(Pyr, Morg) # 0, then we have Ay yed © Ay red if:

1) We find g € g\go stable and V: spang(g) — S an Ad%[ﬂ]—equivariant map, such that
g

U(g) ¢ C for C:= |J exp(w(-de®(7))). (59)

WEArcd
2) We have V @ g, C g and S = S*.
3) We have S = SU(2) and there are g; € V; fori =1,2,3, such that L1(g1), L2(g2), L3(g3) are

linearly independent and gs € spang (§i, G2)-

PrROOF: 1) Define ¢ by for |I;] = 1, go = g and ¥, = W, and assume that ¢ €
Ky (Ag red).- Then, we find a net {wataer € Area With {ky(ta(wa))}taer — €, hence
e(7)(p) = limy Py (p) for v := ’Yg’[o,l}- Consequently,

®p(exp()) - W(g) = e(v)(p) = lim P (p)

IS

lig[n O, (exp(q)) - exp (wa(—g(p)))
=l @, (exp(5) - ex (a8, ())) € Py(exp(5) - C.

which contradicts the choice of g.
2) We here only sketch the proof. The details can be found in Appendix

(a) We choose 0 # gz € V, §1 € g\[V @ g.] and define g> := g3 + §1. Then, for i = 1,2,3
we let v; 1= 7;514“075] for some [ > 0 with | < 75,,75,, 75,

61Observe that each linear map L: V — s is Adgm—equivariant if S is commutative.
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(b) It follows that g5 ~, g1, ga, so that modifying (Proposition [5.14f2]) the homomorphism
e’ € Homyeq(Py, Mory) along V3,l[0.1) does not change its values on 77 [jp ) for i =1,2.

(c) Wefix e’ € Homyeq(Py, Morr) and define ¢, by Proposition |5.142|for | I,| = 1, g = g3,
Vo=V and L, := pL for p € R, i.e., we only modify along gs.

(d) We fix p € F,. Then, for w € A,oq the value

kg (ta(w))(7i)(p) = P75, (p)

is given by for i = 1,2,3. In particular, the value ry (t4(w))(73)(p) is related to
the values g (A(w)) (71) (p) and rig (14(«))(12)(p) just becanse G = g1 — G,

(e) Recall the open subsets and choose U := exp (i(—¢,€)) for € < 7. It follows that
there exists ;1 € R such tha@

Ry (ta(w)) € URD,(en) = Ry (taw)) ¢ U, (ep),

hence Ky (La(Area)) N UL 1o (ey) = 0. Then, e, ¢ ky (Area) = Ky (L_A(.Ared)), hence

Ared O H;(s#) ¢ Ayeq, which shows the claim.
3) We choose any € € Homeq(Py, Mory), being non-empty by assumption, and define ¢ €
Homyeq(Py, Morg) by w.r.t. I, ;== {1,2,3}. Moreover, we let ; := 7;52_][0’1] fori=1,2,3.

We choose a neighbourhood W of 0 in su(2) such that exp |y is a diffeomorphism. Then,
scaling the §;, we can assume that §; := L;(g;) € W for i = 1,2,3. We now show that &
cannot be approximated by the elements of kg (t.4(Ared)), i-€., by classical (smooth) invariant
connections.

For this, let || - ||; denote the euclidean norm on R? carried over to su(2) by 3: R — su(2),
and choose € > 0 such that

B.(5;) :={5€su(2) |5 —35|; <e} CW for i =1,2,3.
Then, exp(Be(5i)) is open in SU(2), and since £1 ¢ exp(B.(s;)), we have

Ul = exp H(exp(Be(5;))) = {5’—1— 27rnﬁ

by formula , i.e., by the periodicity property of the exponential map of SU(2). Since
B(3;) does not contain the origin (exp(0) = 1), there is « € (0, 27) such thaﬁ

§€ B(3;),n € Z}

Ul C L= {Fesu@) | £ (7(E).7N ) < a))

for C% the double cone in su(2) determined by the axis 5; and the opening angle a. Con-
versely, for each « € (0,27) we also find some () > 0 such that Uz(a) C C! holds.
Let U C SU(2) be an open neighbourhood of 1 with exp(—5;) - U C exp(B.(5;))~! for
i =1,2,3. Then, if ky(ta(w)) € ULZE 145 (€), by and the definition of ¢ we have

exp(~w(gi(p))) € exp(—Li(gi)) - U = exp(=5;) - U C exp(Be(5)) ™",

%2Here, it is important that U, (e,) = UL2,(¢') is the same neighbourhood for all u € R, just by point (b).

%3Here, £ (¥, W) means the minimum of the angles between @, @ and —#, 0, so that C?, is a double cone.
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i.e., exp(w(gi(p))) € exp(B.(5;)), hence w(gi(p)) € C:, for i = 1,2,3. Now, by the choice of

g3, we have w(gs(p)) € spang (w(g1(p)),w(g2(p))), being a subset of
Cl+ 02 :={v4w|vellweC?}.

We now show that, for « suitable small, [C} + C2] NC2 = {0} holds. This then contradicts

that w(gs(p)) € Ug’(a) C 03\{0} and shows the claim.

Since the (pre)image of a cone of the above form under a linear isomorphism contains a
cone of the above form, it suffices to consider the case where 7; = €; for i = 1,2,3. Here,
we have to show that the equation]

sy cos(6) rz cos(¢) x
Y + | rzsin(¢) | = | tzcos(n)
sy sin(6) z tz sin(n)

has no solution for 0 < r,s,t < € provided that € is suitable small. But, this is clear since
the determinant of

x -1 scos(f) rcos(@) x
y | — | —tcos(n) 1 rsin(¢) | - |y
z —tsin(n) ssin(0) 1 z
tends to —1 for € — 0. n

Corollary 5.16

Let (P, 7, M, S) be a principal fibre bundle and (G, ®) a Lie group of automorphisms of P. More-
over, let the induced action ¢ be analytic and pointwise proper. Then, in the following situations
we have Ay req © .,7lgf7red:

1) Let S = S' and dim[G] > 2:
e Homyoq(Py, Morg) # 0 and there is x € M such that dim[G] — dim[G,] > 2. In addition

to that, we find an Adg, -invariant vector § € g\g..
e  acts transitively and freeﬁ

2) Let S =SU(2), dim[G] > 2 and G, = {e} for some x € M:
e Homyeq(Py, Morg) # 0.

e  is transitive.

Proor: 1) If § € g\g, is Adg,-invariant, let V := spani(g) and L: A\g — A§ for some fixed
5 € s\{0}. This map is linear and, by commutativity of S?, Adgx—equivariant for each
p € 7 (z). Moreover, since dim[G] — dim[G,] > 2, we have V @ g, C g so that the claim
is clear from from Proposition [5.15

If G, = {e} and ¢ is transitive, then Wang’s theorem [36] (see also Case [8.25) shows
Ared = Homg(g,s), so that kg (ta(Ared)) € Homyeq(Py, Morg) # 0. Moreover, since each
g € g\g. is Adg,-invariant, the requirements of the first case are fulfilled.

54The single expressions parametrize the cones around the y-, z- and z-axis, respectively.
55Observe that ¢ then is automatically pointwise proper because M = G.
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2) We choose g1,go € g linearly independent and g3 € spang(gi, g2) neither contained in
Vi := spanp(g1) nor contained in Vo := spanpi(g2). Let V3 := spanp(gs) and §; = 7
for ¢+ = 1,2,3. Then the maps L;: Ag; — A§; are linear and Ad%l—equivariant for each
p € 7 1(z) so that the claim follows from Proposition The second part is clear. m

We close this subsection with an application of Corollary to loop quantum cosmology, by
showing that Ay req C Ajg’ red holds (quantization and reduction do not commute) in (semi-)homogeneous
LQC. In Subsection we will see that this is also true in the homogeneous isotropic case.

Example 5.17 ((Semi-)Homogeneous Loop Quantum|Cg¢smology)
Let P = R3 x SU(2) and ®p, Psy be defined as in Example (3.3l We claim that quantization and
reduction do not commute in (semi-)homogeneous loop quantum cosmology. In fact,

e In the homogeneous case (G, @) this follows from the second part of Corollary

e In the semi-homogeneous case (Gsm, Psr), the action ¢ is pointwise proper because @ is
proper and and each linear subspace of R? is closed. Since dim[Ggs] > 2, by the first part of
Corollary it suffices to show that Homeq(Py, Morg) # 0. But, this is clear because (as
already stated in Example the set A,eq is in bijection with the smooth maps ¢: RZxTR —
su(2) for which the restrictions t|g2, 7, g are linear for all x € R. O

5.4 Modifications along Free Segments

Complementary to our investigations of Lie algebra, i.e., continuously generated curves, we now
are going to study the set Pr of free curves in M. This is the set of all embedded analytic
curves that contain a segment which, in a certain sense, does not overlap with its translates by
the symmetry groupm We will show that each such curve is covered by finitely many translates
(of initial and final segments) of one of its maximal free segments. This will provide us with a
canonical decomposition of such free curves by means of the symmetry group. In course of this, we
will split up the set PM\PQN into three subsets Pcnr,, Prg and Py being closed under inversions
and decompositions as well. Recall that Proposition then provides us with a respective
factorization

Aredw = Ared,g X Ared,ONL X Ared FN X Ared Fs- (60)

Here, we always have Pr = Prs U PpnN, whereby Py consists of all free curves whose stabilizer is
trivialﬂ so that Prg consists of all free curves for which this is not the case.

Then, the second space jred,CNL is the least accessible one, just because the set Pcny, of
continuously but not Lie algebra generated curves is so. However, we will show that Py, = 0
holds, i.e., that we have P, = P;” U Pr whenever ¢ is transitive or proper and admits only
stabilizers which are normal subgroups of G. So, if ¢ is in addition free, we even have P, =
77; LI Pgn, hence Xred,w = jred,g X ﬂred’FN, so that in this case it suffices to define normalized
Radon measure on these two factors in order to define a normalized Radon measure on Xred,w.

Now, in the second part of Section [6] we will use Proposition in order to construct a
normalized Radon measure p4 on jred,ga e.g., for the case that ¢ is free and S equals SU(2) or
an n-torus. Moreover, in the last part of the present Section, we will prove an analogue of this

56The precise definition will given below, cf. also Remark
67See Definition m
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proposition for free curves, which we then use in Subsection [6.1]in order to construct a normalized
Radon measure ppn on Areq pn. So, together these two measures give rise to a normalized Radon
measure

Ug X UFN on Ared,w = Ared,g X -Ared,FN

whenever the respective requirements hold. This will be the case, e.g. in (semi-)homogeneous

LQC.

Definition 5.18
For v an analytic curve, we define the group

[Gi]:={9 € G|pgov=ropfor p: dom[y] = dom[y] an analytic diffeomorphism with p > 0}

as well as the equivalence relation [~-] on G by

grs g — g 'd €aq,.

Then,

e 7 is called symmetric iff G, # {e}.

e 7 is called a free segment iff

Vo pgoy for ge G - geG,.

e v is called free iff v|x is a free segment for some compact interval K C dom[v].

e For § an analytic curve let
H,:=1{9€G|pg006~c7} as well as Hy, 5= Hys5/~s .

The next lemma collects the relevant properties of the above quantities for the embedded analytic
case.

Lemma 5.19
Let ¢ be analytic and pointwise proper, and Py, > ~: [a,b] — M. Moreover, let P, > 6: L — M
be a free segment.

1) We have pp oy =+ for all h € G.. Hence,
(@) y~o g0y = pgoy=7
(b) G, = ﬂtedom[y] Gt 8 a closed subgroup of G,
(¢c) Gy, = Gy for each interval D C dom[y].

2) Assume that ~y is not free, and let t € [a,b]. Then, for each interval D C [a,b] with t € K
we find g € G\G ) with |k ~o 40 7|Kk-

3) Let v be free and {ha}aer € Hy s a family of representatives of H, 5. Then,
(a) Hyy g is finite.

58The group property is easily verified, and for v embedded analytic also clear from (a) in Lemma 5.19
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(b) There exists a unique decomposition a = ko < ki < --- < kp, = b of dom[v] into
compact intervals K; = [ki, ki+1] for 0 <i <n —1, such that either

YK, %o @h, 00 Vael or (61)
Y&, ~par Pha, © [5|Li]i1 for a; € I and L; C L uniquely determined.
Here, Ly = L = [l1,l3] if 1 <i <k —2 and Lo, L,—1 are both of the form
[m,la]  for m € [l1,l2) or [li,m]  for me (li,le). (62)
Lo
Lo T hag
Lo & hage’ hay's Ty (63)
[P — — —eees
I t t —t T t -.------.------) ’y
k‘o k‘l k’z k‘3 k?4 ks ]‘36
KO Ko K5

PrOOF: 1) The implications (a) and (b) are clear, and the implication (c¢) follows from the
analyticities of ¢y o+ and v just by

heGy, = (eno)lp =7Ip — Ypoy=".

Now, to show that ¢j oy = 7 holds for h € G, we assume that ¢, (y(tg)) # v(to) for
to € (a, b)@ Then, we have ¢p(v(to)) = v(t1) for some t1 € (a,b), and we may assume that
top < t holds. Let tg < sp < t1. Then o5 (v(s0)) = y(s1) for some t; < s1 because v~ Loy o07y
is a homeomorphism, hence monotonous. Applying ¢, inductively, we obtain sequences
{tn}nen, {sSn}nen C (a,b) with ¢, < s, < tpt1 < Sny1 as well as y(t,) = opn(7(to)) and
Y(sn) = @nn(y(so)) for all n € N. Obviously, lim,, s, = lim, ¢, € [a, b] exists, so that

lim @pn (y(t)) = limy(tn) = lim~y(s,) = lim pn (7(s0))-
Pointwise properness of ¢ now implies v(¢9) = 7(sp), which contradicts that tg # s and

injectivity of ~.

2) It suffices to show the claim for D = K compact. Moreover, we only consider the case where
t < b holds because the case a < t follows analogously. Then, switching from v to 4! and
reparametrizing if necessary, we can assume that K = [0,r] with 0 < ¢ < r.

Now, assume that the statement is wrong, i.e., that for each g € G\G,, with pg0vy|x ~o V|K
we have g € Gv(t)m Then, to derive a contradiction, it suffices to show that:

Claim: For t < ko < k < b we find g € G, ;) with ¢,(y(k)) = y(K') for t < k' < ko.
In fact, let ng > 1 with ¢ + n% < r. Then, for each n > ng we find g, € G,(;) such that

0g.(V(r) =(tn)  for  t <ty <t+ 1.

Consequently, lim, ¢4, (7(r)) = ~v(t) = lim, @4, (7(t)), hence y(r) = ~(t) by pointwise
properness of ¢. Since t # r, this contradicts injectivity of ~.

%90Observe that the end points of v are necessarily fixed by .
°Observe that we find such a group element since elsewise ~v|x would be a free segment.
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Proof of the Claim:
Since 7| (1 k] is not a free segment (7 is not free), we find g € G\G~, with g07|( ko] ~o Vl[t,ko]>
and by assumption we have g € G(;). The two possible configurations are

ko, P90 -wgov
and
t Q—L’ "y t & ’Y
k() kO

Then, by injectivity of v and Lemma [5.3][4] one of the following situations holds:

g C7 ko

t 0_)—zO'Y ©g 0y
or
r)/ kO 999 o f)/ t ")/
te > ko
ko
More precisely,
(a) In the first case, we have
Y t,50] ~par g © Vt,ke) for some so € (t, ko or

Vit ko] ~par Pg © Vljt,so) for some sg € (2, ko).

In both situations, for sg = kg we would have g € G, so that sy < ko holds just
because g ¢ G, by assumption. Moreover, replacing g by g~ ! if necessary, we can
assume that the first relation holds. Then ¢4 (v)(ko) = v(s0) for some t < sg < ko, and
applying ¢, once more, we find that ¢4(v(so)) = v(s1) for some ¢ < s1 < so just by
monotonicity of y~! o ¢y 0. Inductively, we obtain {s, }nex C (¢, ko) with 5,41 < s,
and y(sn) = @gn(7(s0)) for all n € N.

Let s := limy, s,. Then 7(s) = lim,, ¢4 (7(s0)), hence p4(v(s)) = v(s) by continuity
of 4. Consequently, lim, ggn(v(s)) = v(s) = imppgn(7y(so)), so that by pointwise
properness of ¢ we have y(s) = y(so). This, however contradicts s < sp and injectivity
of v, showing that case (a) cannot occur.

(b) In the second case, we have ¢4 0 7|(s ko] ~par [7|[5’7k61] ! for some ¢ < 5 < ko and some
t < s’ <k < ko. Then, Lemma and injectivity of ¢4 o v[j 5 show that
-1
Pg © Vsk] ~par [VIk k)]
holds for some t < k' < s' < k{ < ko, hence ¢4(v(k)) = v(K') for 1 < k' < ko.

3) If I is finite, then (b) is clear from Lemma However, if I is infinite, then we find
{an, tien € I mutually different with | K, ~par 6*! for intervals K,, C K which mutually
can only share start and end points. Let k # k' be contained in K,, and define sequences
{zitien, {zi}ien C dom[y] by

Ti=y <cp(hani : h;io,fy(k:))) aswell as  z}:=~"1 (SD(hani : h;io,'y(k’))> :

By compactness of dom[y], we can assume that lim; z; = x € dom[y] exists. Then, since the
intervals K, can only share start and end points, it follows that lim; 2} = « holds.
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Tn Tn+1
Knl Km>n+1| Kn+1

[, (--------- )
T Be(z) T

/
n elx n+1

Hence, for g; := hy,,. - h;&o we have
1

lim g, (v(k)) = lim (i) = y(x) = limy(z}) = lim gy, (v(K)),

so that (k) = (k) by pointwise properness of ¢. This contradicts the choices and shows
that I is finite. |

Definition 5.20
1) By [Pgl C P. we will denote the set of all free embedded analytic curves.

2) We define the subsets Prg, Prn C Py, of free symmetric and free non-symmetric curves by

[Pesl:= {v € Pr | Gy # {e}} and Penl:= {v € Pr | Gy = {e}},
respectively.

3) The set of continuously generated curves is defined by [Pc| := P, \Pg. Then, by [Pcng) :=
PC\PEN we will denote the set of continuously but not Lie algebra generated curves.

Remark 5.21
It is immediate from the definition of a Lie algebra generated curve that Py" N Pr = (), hence
PQN C Pu\Pr = Pc holds. Consequently, we have Pc = 77; LI Pent, which shows that

P, = 73; L Pent U Prs U Pen (64)
holds. O

The first part of (the next) Proposition shows that for ¢ analytic and pointwise proper, a free
curve is discretely generated by the symmetry group. This means that for each free curve v we find
a free segment § such that v can be decomposed into subcurves, each being equivalent to a trans-
late of an initial or final segment of §. Here, each of these subcurves which is not an initial or final
segment of v then even equals the translate the full segment . This decomposition will be inalien-
able for the constructio of the normalized Radon measure on ]red,FN = Homyeq (PrN, Moryg) in
Subsection

The second part of Proposition shows that P, = Pg” U Pr holds whenever ¢ is transitive
and only admits stabilizers which are normal subgroups. Obviously, then we even have P, =
Py UPpN if ¢ is in addition free. Similarly, in the third part, we will prove that each continuously
generated curve is contained in a @-orbit if ¢ is proper. Then, as in the second part, we will show
that P, = Pg” U Pp holds if ¢ admits only normal stabilizers, hence P, = Pg” U Ppn if ¢ acts in
addition freely. So, for ¢ non-trivial we have:

© ‘ Py ‘ Peni ‘ PrN ‘ Prs
free many ? ? 0
transitive + normal stabilizers | many 0 ? ?
proper + normal stabilizers | many 0 ? ?

"'More precisely, for the separation property of the projective structure introduced there, as well as surjectivity of
the involved projection maps.
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Anyhow, before we come to the proofs, we first want to give some straightforward applications of
these results.

Example 5.22 (Free Curves in LQC)
We now apply the results from Proposition|5.23|to the (semi-)homogeneous, homogeneous isotropic
and spherically symmetric LQC case.

(Semi-)Homogeneous LQC:

In the homogeneous case, ¢ is transitive and free, so that P, = Py" L Ppn holds by Proposition
In the semi-homogeneous case (see Example  is proper because the additive action
of R? on R3 is proper and each linear subspace of R3 is closed. Since ¢ acts freely, Proposition
shows that P, = Py” U Prn holds as well.

Homogeneous Isotropic LQC:

Unfortunately, Go = SU(2) C R3x,SU(2) is not a normal subgroup, so that we cannot conclude
that Po = 0, ie., P, = 73; L Pr holds. However, we have P, = 73; L Pent, U Pen because
Prs = 0.

In fact, if v: [0, k] — R3 is symmetric, then we can assume that «(0) = 0 just by transitivity,
and because @.p,.4-1 0 (g 07) = pgo0 for e # h € G,. So, let ¥(0) = 0 and h € G,. Then
©r(7(0)) = v(0) shows h € SU(2), and since ¢p(y(k)) = (k) # 0, h corresponds to a rotation by
some angle a € (0, 27) around the axis (through 0) determined by (k). Since by Lemma [5.19
we have ¢ (v(t)) = v(t) for all ¢ € [0, k], im[y] is completely contained in this axis determined
by v(k). It is now obviouﬁ from Lemma that v € Py”. This shows Prs = 0.

Spherically Symmetric LQC:

By the same arguments as in the previous case, we see that a symmetric curve necessarily has
to be contained in an axis through the origin. Since in the spherically symmetric situation
linear curves are not Lie algebra generated, we have Ppg = Pﬁ)l Moreover, each continuously
generated curve has to be contained in a sphere by Proposition Unfortunately, we cannot
conclude that Pcnp, = 0 holds, i.e., that we have P, = Py UPpn U 7317) because for x # 0 the
stabilizer G, equals the maximal torus H, C SU(2) which is not a normal subgroup as well. ¢

We now come to the desired
Proposition 5.23
Let ¢ be analytic and pointwise proper.

1) If v: [a,b] — M is free, then we find a free segment §: L — M and points a = tg < ... <
t, = b such that

7‘[ti,ti+1} ~par Pg; © [5|Li]i1 for some g; € G Vo<i<n-—1.
Here Ly = L = [l1,1l3] for 1 <i <k —2 and Ly, L,—1 are both of the form

[m,la]  for m€ll,ls) or [l1,m] for me (I1,la].

Lo 77"
ke ] g1y v 92 934 494 A2 srssEassnnnnnn §")/
| T T T T H :
ko k1 ko k3 ka ks ke

"We have v ~o ’Y?x,o) if we consider x as vector in R?, i.e., (z,0) € R? x su(2).
"Recall (a) in Convention for the definition of Pry.
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2) If ¢ is transitive and Gy is a normal subgroup for (one and then each) x € M, then an
element of Py, is either free or contained in Py, v.e., Py = Py UPr. If ¢ acts even free,
then P, = Py UPpN holds.

3) If ¢ is proper, then each v € Pc is contained in a p-orbit. If G, is in addition a normal
subgroup for all x € M, then P, =Py UPp holds.

PROOF: 1) Basically, we have to show that a suitable choice of ¢ fills the gaps in .

Since 7 is free, we find K C [a,b] compact such that v|x is a free segment. Let K denote
the set of all such intervals and let 8 be ordered by inclusion. Then each chain £ in K has
an upper bound, namely the closure L of (J;,co L. In fact, of := [y is a free segment
because 07, ~o g 0 dr, implies y|rr ~o g 07| for some L' € £, hence y|pr ~o g 07| for
all £3 L"” > L'. Consequently, v|1» ~par pg © Y| for all L” > L', hence 7|1, ~im g ° V|L
by continuity. Then, 7| ~par ©g © 7|1 by Lemma so that L is an upper bound of £.
Consequently, by Zorn’s lemma the set R, C K of maximal elements is non-empty.

Let L =[l1,l2] € R, d :=7|p and a = kg < - -+ < ky, = b the respective decomposition from
Lemma Let {ha}acr C Hjy,5) be a family of representatives and 0 < iy < -+ <y, <
n— 1 the indices for which we find oy, € I with ¥[x; ~par ¢n,, ©[f] Lip]il holds, see Lemma
We now proceed in two steps:

A) We first show that each K;, can be assumed to be maximal, ie., K;, € Ry for all
I<p<m.
B) Then we show that under this assumption for each 1 < p < m we have:
i) a <k, = JaecI\{op}: (¢n, 09)(l;) = v(ki,) for some j € {1,2}.
ii.) ki1 <b = Jaecl\{ap}: (on, 09)(l;) = v(ki, 1) for some j € {1,2}.
Since B) implies that (i1,...,%,) = (1,...,n — 1), the claim then follows.

Part A: First observe that 7| K, is a free segment for 1 < p < m because

Pg © ’7|K¢p ~o ’Y|Kip = Qphg;.g.hap 0~ 0
— —1 cd=4
SOhozp'g'hozp
= pgovlKk, =K,

hence K;, € 8. Now, it may happen that K;, ¢ fn,.

‘phép Phay
g T
| ——" "> = replace L by L' := [k, t] € Ry
ko k1 ko ks t kq ks
L=Kj Kip:KZ Ky

In this case, let K;, C L' € Ry, and define ¢’ := 7|r/. Then,
6= ’Y‘L ~par SOh;; o 5/’Kip

so that maximality of L shows that either L = Kg or L = K, 1 holds. Assume that
L = Ky and let a = ky < --- < k!, = b be the decomposition of dom[y] w.r.t. ¢’. Then
K} =Ky= L # L, so that we can assume that L # K¢ from the beginning. By the same
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argument we also can assume that L # K, 1. Then, there cannot exist 1 < p < m with
K, ¢ R since this (as we have shown) would contradict that L # Ko, Ky, 1.

Part B: We only discuss the second case as the first one follows analogously. Moreover,
to simplify the notations, we assume that K;, = [k;,, ki,+1] = [0,k] and define K := K;,.

ip»

Recall that ¢’ := 7|k is a maximal free segment just because K € £, by Part A. Finally,
let ng € N with k + 5 L < p. Tt follows that K, := [O k 4+ ] ¢ R for each n > ng so that we

find g, € G\G,,, = G\G5/ (see (b) in Lemma [5.1911) with 7|k, ~o ¢g, © V|K,. We now

proceed in two steps:

I First, we show that the claim follows if there exists h € G\Gg with g, ~g h for infinitely
many n > ng.
IT Second, we show that such an element h exists.

Step I: We can assume that g, ~s h holds for all n > ng, hence

YK, ~o ¢n oYK, Vn > ng.

Then, we find sequences
Ky D {mm}me]N —kKeK and Ky D {ym}me]N -k eK

with y(zm) = ©r(¥(ym)) for all m € N, hence v(k') = o (v(k")). Moreover, since v(k') is
an accumulation point of v(Ko) N (¢ o) (Kp), for 4/ an extension of v by Lemma |5.3}{1| we
find open intervals I’, I’ C dom[y'] with k" € I') k" € I"" and

Y(I') = en(y'(I"). (65)

Then, k', k" € {0,k}, since elsewise we would have &' ~, ¢, o &', hence h € Gg which
contradicts the choice of h. However, we even can assume that k' and &” are not both zero.

In fact, since v|x o ¢n 0 Y|k, we can arrange that {2, }men C [k, k 4+ 1/no] (then k' = k)
or {Ym}men C [k, k+1/no] (then k” = k). Combining this with (65]), we see that there are
€,€ > 0 such that one of the following situations holds:

K\ k"=k  flip K'=k shift k'=0 shift
5 90}14 hGka) k=0 o A.goh.. 3 k' —k v@h o
0nnnnnns :(>: """" — > 7 @eeens — ): """"" ): w3 Y @ueeees — ): """" ):) oy Y
0 k—e k 0¢ k 0 k k+e
K, k" =k: Y[k, k+€) = (pnod)((k—¢€,k]) heH,s
K=k, K =0: vk, E+¢€) = (enod)(0,¢€)) heH,s
kK =0, k'=k: 8([0,€)) = (proy)([k,k+¢€)) h=le H, s

Hence, in the same order

Y(kip11) = v(k) = (pnod)(k) = (on hap 0d)(1) for some [ € [y, 9]
V(kierl) = (k) = (<Ph05/ 0) = (Sph-ha 5 (1) for some 1 € [Iy, 2]
Y(ki,11) = v(k) = (pp-108)(0) = (tpha.h% 0d)(l) for some [ € [l1,1s].
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Moreover, in the first two cases we have h € H, s, hence
h-ha, € Hys == h - he, ~5 ha, for some I > ay # ay.

For this, observe that o = «;, would imply that h € G5, as a straightforward calculation
shows. Then, by the same arguments we see that h~! - ha, ~s ha, for some I > oy # oy
in the third case. Consequently, B.ii.) follows if we show that even [ € {l1,l2} holds. This,
however, follows easily from the maximality of the interval K; that corresponds to ay.

Step II:

We assume that an element h € G\Gy as in Step I does not exist. Then, replacing {gn fnen
by a subsequence we can arrange that g, ~s g, whenever m > n. Moreover, we can assume
that g, ¢ H, s for all n > ng. In fact, if for each n > ng we find n > n with g5 € H, 5, then
finiteness of I shows that there must be h € H, s with the properties from Step I. Thus,
we can assume that

Yk, ~o Pgn © Vi kt1/n] Vn>ng as well as In 8" Gm Vn #m,

and we now show that this is impossible. For this, we Writdﬂ Y1 1 yo for v1,v2 € P, iff
7ls = v op for p: J — J' an analytic diffeomorphism with p > 0. Analogously, write
My if v1|s =720p for p: J — J' an analytic diffeomorphism with p < 0.

We proceed in two steps:

i.) Let v = @g, 0V|[k,k+1/n) for all n > ng and assume that v, [ ym. Then, it follows from
Lemma and g, »~5 gm that either

(Pgn oN(K) CA([k,k+1/m])  or (g, o7)(K) C~([k,k+1/n])  holds.

——— " = —t— or ———
1 1 1
k+= k0 k= k0 k+= k 0

In fact, elsewise we would have

g, 0K ~o 9gn 0k = F ~opy 08 = g lgm € Gy

=  gn ~§ 9m-

In particular, it cannot happen that for infinitely many n > ng we find n’ > n with
Yo 11 Yn- In fact, then for each € > 0 we would find n > ng and h,, € G with ¢y, (7(K)) C
~v([k,k + €)). Hence, we would find a sequence {n;},ex € N such that ¢y, (7(0)) and
Ph,, (7(k)) both converge to (k) so that y(0) = (k) by pointwise propernéss of p. Of
course, this contradicts injectivity of ~.

ii.) By assumption, we have

V] Kng 170 or V] Kng T

for infinitely many n > nyg.

" Basically, this just means that v, and 72 traverse into the same direction.
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e —— .y Y or PR —_t Y

Y/ 1 y/ 1

0k k+k 0 0k kil

k+i- L 1o k+t

e —— .y Y o p———=> |
........... =
0k ket 0 Fhtl ko0

Hence, v, 1| v, for all m,n > ng, which is impossible by i.). This shows that the
first case cannot occur. In the same way, we deduce that in the second case we have
~v(K) C imly,] for all n > ng, hence 7y, [y for all m,n > ng, contradicting i.) as well.

2) It is straightforward to see that 6 € P, is not free iff ¢4 0 ¢ is not free for all g € G.
Consequently, we can restrict to curves starting at a fixed point x € M in the following.
Moreover, since ¢ is transitive and G, is a closed normal subgroup, we can identify M with
the (analytic) Lie group G/G, via ¢: G/Gy — M, [g] = ¢z(g). Let L G/Gy — G /G,
[h] = [g- h] denote the left translation w.r.t. the group structure on G /G, and observe that
Liggo¢™ = ¢ oLy just because ¢ o L = Ly o ¢. We define v/ := ¢~ o7,

(a) Then, +' is analytic embedded. Moreover, +' is not free if this is the case for . For
this, assume that 7|k is a free segment for some K C dom[y]. Then @40 vy|x ~o Vi
implies

Lig oy |lxk =¢""oLgorlk ~ ¢ ovlk =k,
hence Ly 09| = 7'|k. Then ¢, 07|k = 7|k, showing that v is free as well.
(b) Assume there is g € G and an element ¢’ of the Lie algebra of G/G, such that

v ~o v L — G/G,
t— L[g] o exp(tg")

holds for L C R compact. Then, since the canonical projection 7: G — G/G, is a
submersion, we find § € g with d.7(¢) = ¢’. Hence, for all ¢ € dom[y] we have

")/ = ¢ O’y, ~o [L ) t — Lg o ¢(exp(tg4)>j|
=[L >t~ Ly o ¢(n(exp(ty)))]
=[L 3t~ Ly o .(exp(tq))]
because 7 is a Lie group homomorphism. In combination with Lemma this implies
ve Py

So, in order to show the claim, we only have to consider the situation where M = G and
g: [—a,a] — G is an embedded analytic curve with ¢(0) = e and a > 0. Here, it suffices to
show that there is an open interval I C [—a,a] and h: I — R smooth with

g(t) = h(t) - dLypa(0)  Vtel (66)
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In fact, then for tg € [i1,42] C I fixed and g := ¢(0), the uniquﬂ solution of with
g(to) = e is given by

t

o) =gt -exo (| [ wsaslg)  veer

to
so that g ~o Ly, © exp(- §)-
Now, to show let K, := [, 1] and choose g, € G\{e} with g|x, ~o Ly, o g|x, for

n’n
each n € Nsg. This is possible because g is not free. Then, lim,, g, = e as for each n € Ny
there is x,, € g(K,) with g, - =, € g(K},), hence

lim [gy, - ], limz, = g(0) =€ = limg, = limaz," =e.
n n n n

Since g is an embedding, we find a closed neighbourhood U of e in G and K C (—a,a)
compact with U Nim[g] = g(K). By continuitym of g and that of the group multiplication
in G, we find ng > 0 such that K,, C K and g, - g(K,) C U for all n > ny.

- -

U L AN g U e S g
I,’ @gnoglKn \\ Il' Sognog‘Kn \\
T .

| : —] |
K l VK !
\ g‘Kn / A glK" !
\ 4 N ’
N ’ s ’

Now, ¢|k, ~o Lg, o 9|k, implies g ~ Ly, o g|k, so that Lemma provides us with
compact intervals K’ C K, and K” C [—a,a] which are maximal w.r.t. the property that
g(K") = (L, 0g)(K') holds. Since g, -g(K,) C U and U Nim[g] = g(K), we have K" C K.
Then, K’ = K,, because K" neither contains a nor —a. This shows that the curve g, - 9|k,
is completely contained in g|x.

Consequently, we find open intervals J, C K and I, C K,, with 0 € I,,, as well as diffeo-
morphisms p,,: I, — J,, such that

Ly, 0oglr, =4glr,opn Y1 >mng. (67)

Then g, = gn - 9(0) = g(pn(0)), and since everything is smooth, for ¢, := p,(0) € K and
g := ¢(0) we obtain

dLg(t,)g = dLg, 9(0) =" pn(0) §(pn(0)) = pn(0) g(tn),

hence, dLg,)-1 §(tn) € spang(g) for all n € N5o. Let g: K — g, t = dLy;)-1 g(t) and
denote by s the supremum of ||g(¢)|| for t € K and || - || a fixed norm in g. Then, s is finite
because g is continuous.

"For to € I = (i1,42) define v: [0, min(1,i2 —to)] — g, t > h(t+to)- g and apply Satz 1.10 in [8] in order to obtain
g: [0,42 — to] — G uniquely determined by g(0) = e and g(t) = dLg(sh(t + to) - §. Then g(t) = g(to) 'g(t + to)
because shows that the right hand side fulfils these conditions. Consequently, g is uniquely determined by
(©9)-

"Let V C G be a neighbourhood of e with V2 C U and choose ng > 0 such that g, € V and ¢g(K,) C V for all
n > ng.
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Now, ¢ is even analytic and intersects the image of the analytic embedded curve

o: [=s/llgll,s/llgl] =g, t—t-g

in infinitely many points. Then, im[6] Nim[g] contains an accumulation point, and it follows
as in the proof of Lemma that we find an open interval I C K for which g(I) C spang (g)
holds. This shows that

dLyp-19(t) =gt)=h(t)-g Vtel

holds for some smooth map h: I — R, hence .

We fix t € (a,b) and choose compact neighbourhoods K C (a,b) of t and U C M of x := v(t)
with v(K) = im[y] N U. We first show that we find {¢},}nen C G\G, with ¢(g,,,x) € v(K)
and lim,, g, = e.

e Let ng € Nyg be such that K,, := [t — %,t + %] C K for all n > ng and use Lemma
5.192| in order to fix some g, € G\G, with g4, o v|k, ~o 7|k, for each n > ng. Then,
there exist t,, s, € K, with vy(t,) = ©(gn,v(sn)) for all n > ng, hence

lim ¢(gn, y(sn)) = limy(t,) = () = (68)

Then, by properness of ¢ we find a subnet of {gn}”ENZno which converges to an element
h € G, and since manifolds are first countable, we even can assume lim,, g, = h from the
beginning. So, by continuity of ¢ and we have

g@(h,l’) = Qo(hf)/(t)) = hrrln @(gna’Y(Sn)) =T = h € G,

where in the second step we have used that lim,, v(s,) = ().

e If we can prove that ¢(gn,x) € v(K) holds for infinitely many n > ng, we just have to
replace g, by gn-h~! in order to get the desired sequence {g/ }nen € G\Gz. To this end,
let V.C G and W C M be neighbourhoods of h and z, respectively, with ¢(V, W) C U.

We choose n{, > ng such that g, € V and v(K,) C W for all n > n{,. Then g,,-v(K,) CU
for all n > ng), and since ¢g, © Y|k, ~o 7|k, the same arguments as in Part [2| show that
(g, ©7)(Kn) € v(K), hence ¢(gy, z) € y(K) for all n > ng. f

Let g =go ® g, and U C go, V C g, be neighbourhoods of zero, such that
h:UxV =W, (u,v)— exp(u)-exp(v)

is a diffeomorphism to an open subset W C G. Since the differential def = degy |7y of
f = @z oexp|y is injective, shrinking U we can assume that f is an analytic embedding.

We define O := f(U) and choose an analytic submanifold chart (¢g,Up) of O around =z.
Then, we find I C dom[y] open with ¢ € I and v(I) C Up. Since lim, g}, = e, we find n’ € N
such that for each n > n’ we have g/, € W, hence g/, = h(ul,,v!,) for some (u,,v)) € U x V.
Consequently,

P(gn> ) = (0o 0 M) (up, v) = f(u,) €O Vn=n,

and since ¢(g,,,x) € v(K), by the embedding property of v we find n” > n’ such that
©o(gr,x) € ~v(I) holds for all n > n”. Consequently, ¢o(x) is an accumulation point of
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(poov)(L)Neo(ONUy) in ¢o(ONUp). Then, by analyticity of the components of ¢ oy we
find J C I open with ¢t € J and v(J) C O C Gz.

Now, if we choose an analytic embedding 7': [a — €,b + ¢] with 9/|jq3 = 7, then Part
shows that 7/ is not free as well. Then, the above arguments show that for each ¢ € [a, b] we
find an open interval J C [a —€,b+ €] with ¢ € J and 7/(J) C G~(¢). Since finitely many of
such intervals Ji, ..., Ji cover [a,b], and since orbits are disjoint, im[y] must be contained
in Gx. This shows the first part.

For the second part, let L C J be compact, such that (L) C O. Then,
7 i=moexpof oy

is an embedded analytic curve in G/G5 which is not free. In fact, for analyticity observe
that (V',¢') with V' := 7(exp(U)) and ¢ := (7 o exp|y)~! is an analytic chart of G/G,
around [e], and that f: U — O is an analytic diffecomorphism. Moreover, that 4’ is not free
follows by the same arguments as in the proof of Part , cf. (a). Consequently, 7' is Lie
algebra generated by Part , and since de7 is a submersion and a Lie group homomorphism,
we conclude that 7|z, hence ~, is Lie algebra generated as well, cf. (b) in Part . n

Using the first part of the above proposition, we now obtain that each of the sets Prs, Prn, Py’ and
Pcnt, are closed under decomposition and inversion of its elements, hence that the factorization

holds.

Corollary 5.24
The sets Prs, PrN, PQN and Pcnt, are closed under decomposition and inversion of their elements.

PROOF: By Lemma Pr is closed under inversions, and Proposition shows that it
is also closed under decompositions. Then, Part (b) Lemma shows that the sets Prn
and Ppg are closed under decomposition and inversion as well. Finally, by Corollary the set
Pw\PgN = Pent U Pr is invariant under decomposition and inversion, so that the inverse or a
subcurve of an element of Pony, must be contained in Pceny, U Pr. However, the inverse of a free
segment is a free segment, and freeness of a subcurve of v € Pcni, already would imply freeness

of . ]

We close this section with the following (discrete) analogue to Proposition There, we
modify invariant homomorphisms along free segment § by means of Gs-invariant maps:

Definition 5.25
Let 0: [k1, k2] — M be a free segment and p € Fj,). Then, by §,s we will denote the set of

all maps W: R — S which are invariant under G in the sense that ag ) o ¥ = W holds for all
h € Gg, and that fulfil

TA=N)=T\)-T\V)"t  vANER.

Remark 5.26

If Gs = {e}, examples for such invariant maps ¥: R — S are just given by ¥: X — exp(\ - §) for
§ € s. So, if S is compact and connected (exp is surjective), then for each s € S and for each
A # 0 we find ¥ € §, s with U(\) = s. However, if G5 is non-trivial, one has to decide from case
to case whether such non-trivial maps exist. O
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Proposition 5.27

Let P C P, be closed under decompositions and inversions, ¢ € Homyeq(P,Morg), S compact
and connected with dim[S] > 1,|Z| and 0: L = [l1,ls] = M a free segment. Moreover, let t € L,
pE F(S(t) and ¥ € S'pﬁ.

We define € € Homyeq(P, Morg) as follows. For [s1,s2] C L and s € L let

5‘[52,31] [5‘ 51,52]] as well as 5/(5’[5,5])(‘]) =q
and define

U (6]100) @) =€ (8]1r)) @) - Wb —a) - A(E'(8lr.a) 0),2)) VP € Fya.

Then, for v € P, we choose a family of representatives {hqa}acr of Hy, s and let ko < -+ < ky
denote the respective unique decomposition from Lemma @ of dom[y] = [ko, ky] into compact
intervals K; = [k, kit1] for 0 <i <n — 1. Recall that then either

YK, o ¢n, 00 Vael (we define a(i) := 0 ¢ I and hy;) = e in this case)

oﬁ VK, ~par Pho © [0]L, P holds for a(i) € I, p; € {—1,1} and L; C L uniquely determined.
Let

oy Ol if ali) =0,
£(vlk;) == {‘I’ham o U([0]L,]P) o (I)h;m if i) € I (69)

as well as e(y) = (y|r,)0...0e(V|Kk,_,). Then, € is a well-defined element of Homyeq(P, Morr).

PROOF: First assume that ¢ is well defined. Then e()(p’-s) = e(v)(p') - s for s € S is immediate
from the definitions. For invariance of ¢ let g € G. Then, for ¢4 o v we can use the same index
set and the same decomposition as for 7, provided that we define h!, :== g - h,, for all a € I. We
obtain

e(pg o) 0 By = Elpg 0lKy) 0 - - 0 &g 0 VlK, 1) 0 By
_ _
= ®;08(Y|K,) 0 Py10...0P 07|k, 1) 0 Py-1 0Py = Dyoe(y).

Now, multiplicativity of € is clear if 7 is splitted at some point contained in an interval K; with
a(i) = 0. For the other case, it suffices to show that ¥ ((5\[57,)}) oW (5][(175]) =V (5][,1,,,}) holds for
all s,a,b€ L witha<s<borb<s<a. Now,

{Ivl(éha,s]) (p/) = 6/(5|[t,s])(p) ’ \I/(S - CL) : A(5, (5|[t,a]) (p)vp,)
and W (0](51) (q) = €' (8i)(p) - ¥ (b — ) - A(€' (8]t,9)) (p), ), hence

U (8i5.7) (U(6l(as) (7)) = &' @Glie) (@) - U(b—5) - A (8]1,5)) (7). &' (l1,5) ()
- U(s —a) - A(' (Olit.a) (), 0)
= &'(6]iee)(p) - U(b—a) - Ae /(5\ta]) (p),p')
= (8]0 (P)-

""Recall that this ensures that the equivalence relations ~4 and ~par coincide, see Lemma |5.3]3}
"Recall that L; = L for 1 <i<n—2 and Lo, Ln—1 C L are of the form [l1,0] or [l,lz] for I <1 <lyorly <I<lq,
respectively.

84



For the inversion property observe that

e(v) =e(Dlk, ™) o o8] 7).

Then, e(y" 1} oe(y) = idp,,,, and e(y)oe(y7h = idp,,, are clear if we can show that for all
0<i<n-—1we have

e(Mlx]™) eeblx]) =idr,,,  and  E(llx]) oe(llx]™) =idE,,

i+1)”

respectively. Again, this is clear if a(i) = 0, and in the other case we have [8|j, ;] ™" = 6[p.q;
hence W ([0]j4,5]7") (0) = €'(6]j1.0))(P) - T(a = b) - A (£'(6]11) (), @)- Then

{17 ([&[a,b]]_l) (Ej (6|[a,b]) (p/» = 8,(6’[t,a]>(p) ' A(El(dl[t,a]) (p)ap/) = p,

as well as

U (8liap) (¥ (Bl ™) @) = €' (8l1.0) () - A(E'(8]1y) (), #) =P,

which shows that

U ([0ls) ) (¥ (Bliayl?) @) =p  and  C ([6]ap)?) (T ([6]wg) ™) @) =1

holds. From this, the inversion property is clear.

It remains to show that e is well defined. Obviously, e(v) = e(v') if ¥ ~4 ', so that we only
have to discuss what happens if we choose another family {h/ },c; of representatives of H [v,]-
Now, we can assume that I = I’, and that the decompositions of v into intervals K; w.r.t. both
families coincide. In fact, this is clear from h, ~s h., and the uniqueness of these decompositions.
Obviously, it suffices to show that

. o\Il([é\L]pL)o‘I)h : oW ([d]p,JF )o@, Yali) #0. (70)

= (I)h
< a(i)

(4) (%)

Since h := h;(lz)h’ @ € Gs we have p; = p}. Then, if we write [§|1,]"* = 6],y for a,b € R, we
obtain

(@n o W([0]2,J7) 0 @) 1) (1) = (Pn o &) (3]s)) () - U(b = a) - A( (Slp.ap) (P) P (0))
=&'(pn 0 dliey) ( n(p) - ¥ (b—a)- A((P 05,)(5|[ta]) (),p")
= &' (8]1t) (Pr(p)) - (b —a) - A(e' (pn 0 8lq)) (Pu(p)), )
6/(5‘[t,b])(p) p h) (b — )A( (M[ta) (p)- ¢ )717/)
= &' (0l1ea)) () - Sp(R) - W(b—a) - dp(h) ™" - A€ (O] ) (), )
=& (0l) ) - g,y (¥ (b —a)) - A< (5\[ta) p),p )
=&"(0]je7) () - ¥( b—a) A (0lit,a)) (), P)

= T(0], 7)),

hence . Here, in the second step, we have used for the first factor, as well as

- A(q, @ (p) =0 () = ®n(g)- A, @p(p)) =1’
= Ag, @p-1(p')) = A(Pn(q),P)
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with g, p" € Fy(,) for the last one. In the third step, we have used ¢, o d = d in the first factor
and in the last one. The fourth step is clear, and in the fifth one, we have use that

q-op(h)-Alg-dp(h),p) =0 = ¢p(h) - A(qg- dp(h),p') = Alg,p)
= Ag-¢p(h),p)) = ¢p(h)" - Alg, ).

Finally, in the seventh step, we have used the invariance property of ¥ € §, ;. n

5.5 Summary

In this Section, we basically have discussed the situation where the action ¢ induced by the sym-
metrylﬂ on the base manifold is analytic and pointwise proper. In the first part, we have modified
invariant homomorphisms along Lie algebra generated curves, and in the second one we have ap-
plied this to the LQG setting in order to show that quantization and reduction do not commute
in several situations. In particular, we have shown that this is the case in (semi-)homogeneous
LQC. In the last part, we have proven that free curves are discretely generated by the symmetry
group, and that we have the decomposition

P =Py UPent U Prn U Prs
of P, into subsets, each being closed under inversions and decomposition. Hence, the factorization
Ared,w = Ared,g X Ared,CNL X Ared,FN X Ared,FS

by Proposition Moreover, we have shown that even Pcni, = 0, hence P,, = PQN LI Pr holds if
o admits only normal stabilizers and is transitive or proper. Recall that Pr = Prg U Prn denotes
the set of free curves, whereby Ppn consists of such free curves whose stabilizer is trivial and Ppn
of those having a non-trivial one. Consequently,

Pw = P; U PFN - Ared,w = Ared,g X -Ared,FS

holds if ¢ is in addition free. This is the case, e.g., in (semi-)homogeneous LQC and also important
in view of the next section. There, we will construct normalized Radon measures on each of these
two factors, providing us with the respective Radon product measures on Xred,w in this case. For
the measure on Zredjs, there we will use the modification result for free segments which we have
proven in Proposition [5.27]

6 Measures on Quantum-Reduced Configuration Spaces

In the previous section, we have seen that P, = Pg" U Pont, U Prn U Prg holds if ¢ analytic and
pointwise proper, whereby each of the occurring sets is closed under decomposition and inversion
of its elements, henc

-Ared,w = Ared,g X Ared,CNL X Ared,FN X Ared,FS (71)

by Proposition m So, in order to define a normalized Radon measure on ﬁred,w, it suffices
to construct respective normalized Radon measures on each of the factors occurring on the right

"This means a Lie group of automorphisms on the principal fibre bundle (P, 7, M, S) under consideration.
80Tf one the sets of curves is empty, one just has to remove the respective factor in the product (71).
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hand side of . In this section, we will use the developments of the previous one in order to
provide general constructions for the spaces

Zred,g“’ = Homred (P;7 MOIF) and Zred,FN = Homred<PFNa MOI‘F).

Recall that these spaces correspond to the sets of Lie algebra generated and free non-symmetric
curves, respectively. So, in particular, our constructions will provide us with a normalized Radon
measure on ﬁred,w whenever S SU(2) and ¢ acts properly and free. Indeed, then we have
P, = Py U Prs, hence Abed,w Ared,g X Ared s and all requirements of Subsection are
fulfilled.

More precisely, in Subsection we will construct a normalized Radon measure on Zred,FN
for the general case that S is compact and connected. We will define a projective structure
on Ared rFN Wwhich generalizes that one, used for the construction of the Ashtekar-Lewandowski
measure on A,. Roughly speaking, the projection maps will be defined by ., whereby in the
respective indices now only free segments will occur. Proposition [5.23|[T] then guarantees that
jred,FN is separated by these maps, and their surjectivity will be established by Proposition
Then, as in the Ashtekar-Lewandowki case, the Haar measure on S can be used to define a
consistent family of normalized Radon measure, providing us with a normalized Radon measure
on Homyeq (PrN, Morg). In specific circumstances, the same construction can also be used to define
a normalized Radon measure on Zred’Fs. This will be demonstrated for the case of spherically
symmetric LQC where the set Prg just consists of all linear curves traversing through the origin.
There, the respective projection maps can be chosen in such a way that their images are just
products of maximal tori, each carrying a Haar measure by itself. However, there is no ad hoc
reason why there should be such a convenient choice in the general case. So, in specific situations
one has to investigate the sets Prg and ﬁred,FS explicitly if one wants to use the developed
techniques in order to construct a measures on jred’FS.

IIZ Il

Now, the mentioned restriction to the structure group comes from our constructions for the
space Zred,f (Subsection . These we will exemplarily do for the most LQG-relevant case
where S = SU(2). Analogous constructions appear to be possible also for other compact and
connected structure groups, in any case for the abelian ones (tori).

Indeed, for our considerations we will assume that each p-orbit m = [z,] € M with g\g,,, # 0
(we will denote the set of all such orbits by M) admits an independent and complete family
{ a}ae 1. € 9\, as in Definition Then, as we will show in the first part of Subsection
2 Ared g~ is homeomorphic to the Tychonoff product

Y= J] Yae

meM,a€

for Y o the set of AdPY ]—equlvarlant mappings ¥: spang(gn) — S (cf. Deﬁnition equipped
with a suitable topology Here, pn € Fy,, is a fixed choice for each m € M. The above homeomor-
phism is just a straightforward consequence of Proposition where, except for compactness
and connectedness, no further requirements on the structure group S have to be done. Then, it
is the non-trivial part to calculate these factors explicitly, to define reasonable measures thereon,
and, finally, to show that the measure on Ired,g“‘ 2 Y induced by the respective Radon product
measure on Y does not depend on any choices one has done. Then, following the arguments of

81Due to Lemma and Remark this is always the case, e.g., if ¢ is free.
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Subsection [6.2] one immediately sees that for S the n-torus, each of the above factors is either
homeomorphic to the n-fold product of Rponr by

[RBohr]n — Ym,a

(V1,5 %n) = [)\ “Gm,a (¢1(XA):--~ 7¢11(XA))]7

or consists of the trivial map ¥: A - g, — e. This is just because by Remark and commu-
tativity of S, equivariance of ¥ € Yy, , is either a trivial condition or reads ¥(g) = ¢(—g), hence
U(g) = e for all § € spang(gm,a). Then, in both cases we have a canonical Radon measure on
Yin,a, providing us with a respective Radon product measure on Y.

However, for SU(2) (and any other non-commutative structure group) equivariance gives more
complicated conditions which have to be investigated carefully. This is the content of the second
part of this section. In both subsections, we will discuss the (semi-)homogeneous, homogeneous
isotropic as well as the spherically symmetric LQC case.

6.1 The Reduced Ashtekar-Lewandowski Measure

As already mentioned above, we now are going to equip Zred,FN >~ Hom,eq(PrN, Morp) with
a projective structure, which we then use to construct a normalized Radon measure thereon.
This will be done in analogy to the construction of the Ashtekar-Lewandowski measure [5] on
A, = Hom(P,, Morg) which we even get back if G = {e} holds. This is just because due to our
definitions then Ppn = P,,, hence Homyeq(PrN, Morp) = Hom(P,,, Morg) holds.

In order to avoid trivialities, we will assume that Hom,eq(Prn, Morp) is not empty. Moreover,
we let v = {vg}zem C P be a fixed family with x € F, for all x € M and v¢,(p) := A(vy,p) for
all p € F, as in Convention [£.6] Finally, we will assume that S is compact and connected with
dim[S] > 1.

We start our investigations with the definition of the directed set:

e Let Ppn denote the set of all finite tuples (y1,...,7) with 71,...,7 € Ppn free segments
such that we have

Pg O Vi o Vj VgeG, 1<i#j<k.

e For (vi,---,7), (M, ---»7) € Pex write (y1,...,7%) < (71, --.,7,) iff each 7; admits a de-
composition {(v;);j}1<j<n; such that each restriction (;); is equivalent to one of the curves
g © 'y;. or its inverses for some g € G and 1 < j < p.

Lemma 6.1 (Directed Set)
The pair (PrN, <) is a directed set.

PROOF: Let (71,---,%%), (715 -+ -+ ) € Prn. We inductively construct an upper bound in Pry as
follows. For each 1 < j <pleta; =k} <--- < k‘%j = b; denote the decomposition from Lemma
of dom[vi] = [a;, bj] w.r.t. y1: [l1,l2] — M into intervals Kf = [k:f,kfﬂ] We first remove
all segments 'y;| K that are equivalent to a translate of v, or its inverse.

More precisely, let 7/, ... ,’y;mj denote the segments v}, of v} with

Yilgs %o pgom  VgEG
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and replace (], .. ., '71,1) by (7{71, .. ,'y{,ml, .. 771/9,1’ ... ,'y,’§7mk). Here, it may happen that 7;“1(0 ~A
©g0 [y1]]* or Vil Kny ~A Pg o [v1]z/]F! holds with L' = [iy,1] for [ < Iy or L' = [l,15] for 1 < L.

In this case, we split y; at these (at most 2p) points and obtain curves vi.1,...,V1n,-

We now apply the same procedure to y2 and (Y1 15« Vi Vet -+ Vem, )» a0d induc-
tively end up with finitely many free segments v1,1,...,Y1,q1s- - V1ps-- -1V, a0d VY, ..., 700,
that fulfil

©g © Vs o Yyt 0 fOr (1,8) # (r',s") because (71,...,7) € Prn as well as
Pg 0%y *o Yy for q#q because (71, ...,7,) € Prn

for all g € G\{e}. For this, observe that each of these curves is a subcurve of one of the free
segments Y1, ..., Yk, V1» - - - Vp- Moreover, by construction we have

Trs o pg0;  VgeG\{e}, 1<r <k 1<s<g,1<qg<m
as well as

(717"')7]{))7 (717 . 7’}/;)) S (’71,1,- . '7’}/17(11)'"771,[)'"aryl,qp,’yilv"‘vfyg)' ]

We now are able to define the projection and transition Maps:

Lemma and Definition 6.2 (Projection and Transition Maps)
1) For ~ € Ppn with dom[y] = [a, b] let

Ty (€) = Uy (£(7) (Vy(a))) Ve € Hom(Prx, Morr). (72)
Then, it is immediate to see that for each ¢ € Hom(Pgn, Morg) we have
Ty -1(g) = my(e)” as well as y(e) = Tyl (e) - Tl () Vte (a,b).

Moreover, for each g € G and € € Homyeq(Prn, Morg) we have (cf. )

g0y (€) = Yoy (v5)) (P (V51))) = Py (N (V@) ~ Yy(a) (Pt Wy (7)) - (73)
c d

2) For a = (71,...,7) € Prx with dom[y;] = [ai, b;] for i = 1,...,k we define the map
Tt Homred(,PFNyMorF> — Xa = S‘a| by

Ta(€) = (w71(b1) (5(71)(’/71(@1)))’ T ’¢7k(bk) (g(fyk)(yﬁ’k(ak))))' (74)

This map is surjective by (the next) Proposition [6.5]1]

3) Let o= (yi,...,%) < (V- ) =& and {(7i)j}1<j<n, be the corresponding decomposi-
tion of v; for 1 <1i < k.

o We find pij € {1,-1}, 1 <my; <k and g;; € G with

Here, for all 1 < i < k we have my; # m;j for 1 < j # j' < n; just by injectivity of ;.
In addition to that, we denote by c;; and d;; the structure group elements ¢ and d from
that correspond to the curve pg,; o /Y’I,’nij'
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Observe that the above quantities are even uniquely determined because if in addition
holds for pj; € {1,—1}, 1 <my; < k' and g;; € G, then

’ ;PP ’ /
~ — (e} e ~ — o
Vmij A ngijlgéj ’Ym;7 ’Ymij o ngijlg;j ’}/m;J
/
-1 7
== 9i5 9i5 = ¢
/
= Pij = Dij>
where the second step is clear from (7, ...,7;,) € Pen and the third one from freeness of

/ —
Ymg; and G% =e.

o We obtain a well-defined and continuous map Fg/: Xo = Xo if we define

ni ng
Wg/ (ml, e ,I‘k/) = < H (Clj . a:mlj . dlj)plj yoe ey H (ij . l‘mkj . dkj)pkj ) . (76)

J=1 J=1

In fact, 71'8/ 0 Ty = Ty 18 tmmediate from Part , and due to surjectivity of wo (proven
in Proposition ) this definition then cannot depend on any choices.

4) Let py, denote the Haar measure on S for k € N>y and define o = Mo for a € Ppx.
Observe that py, equals the k-fold product u* of the Haar measure uy on S (cf. Definition
@ as this normalized Radon measure is translation invariant. In fact, using a Riesz-
Markov argument, translation invariance is straightforward from Fubini’s formula.

The next proposition shows that Hom,eq(Prn, Morp) is indeed a projective limit of { X4 }aeppy
w.r.t. the above projection and transition maps. Moreover, it shows that {{ia }acpyy 1S @ respective
family of normalized Radon measures defining a normalized Radon measure on Homyeq(Prn, Morp).

Proposition 6.3
1) The maps mq: Homyeq(Prn, Morg) — Slal are surjective, and together they separate the

elements of Homyeq(PrN, Morg).

2) Homyeq(Prn, Morg) is a projective limit of {Xa}acppy w.T.t. the maps from Lemma and
Definition [6.9

3) {ltatacPpy @8 a consistent family of normalized Radon measures w.r.t. {Xa}acppy -

PROOF: 1) For surjectivity, let g € Homyeq(Prn, Morg) # 0, @ = (71,...,7%) € Ppn with

dom[y;] = [as,b;] and s} := ., 5,y (€0(7i) (Vys(as))) for 1 < i < k. Since S is compact and
connected, the exponential map of S is surjective. Hence, for (si,...,s;) € S* we find
§1,..., 8k € s such that s; = s, - exp([b; — a;] - §;) holds for all 1 <i < k.

Now, in the situation of Proposition let 6 := v, U:r — exp(r-51), t :== a; and
D = Uy, (ay)- Moreover, denote by €, the respective modified homomorphism. Then,

T (€1) = ¥y 1) (E1000) (V31 (@)
= Uy1(ba) (50(71)(’/71(111)) ~exp([by — (11]51)
= s} -exp([by — a1]51) = s1,
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and applying the same argument inductively, we obtain e, € Homyeq(Prn, Morp) with
7y (ex) = s; for 1 < @ < k, hence mo(ex) = (my, (€k)s .-, Ty, (k) = (51,...,5;). For
this observe that modifying ; along <;+1 does not change its values on the curves ; for
1 < j <4. This is clear because H,, | = () holds for 1 < i # j < k, so that surjectivity of
7o, follows.

Now, for the separation property let £,&’ € Homyeq(Prn, Morg) be different, i.e., e(y) # €'(y)
for some v € Ppn. By Proposition we find a maximal free segment 0 = v|g, a
decomposition ty < --- < t,, of dom[y] = [to, t,] and elements go, ..., gn—1 € G, such that

’Y|[ti7ti+1] ~A Pg; © 5! Vi<i<n-—2
as well as

Vitota] ~A Pgo 0 BlL)T and Al 4 4] ~A Pguy © 16!

holds for L, L’ both of the form [I,l5] with Iy < | < Iy or [l1,1] with [ < | < ls. Then,
splitting § at the respective (at most two) points (1), we obtain a decomposition of ¢ into
at most three subcurves which define an index « € Ppy for which 7, () # ma(e’) holds.

2) It remains to show continuity of the maps m,. Here, it suffices to consider the case where
the index a consists of one single free segment . Since the topology on Hom,.eq(Prn, Mory)
is the subspace topology inherited from Hom(Ppx;, Morp)@ 7 is continuous iff

Ty © KFN |chd,FN

is continuous w.r.t. to the subspace topology on A,cq pn inherited from Apx = Spec(Prn).
This, however, is the case if 7, o kpn is continuous w.r.t. the topology on Apy. Here,
krN: Apn — Hom(Prn, Morp) denotes the respective homeomorphism from Definition

However, 7 o kpn: Apn — S is continuous by (31]), just because [h,] i € BrN-

3) We have to show that 7%’ (j1a) = pe holds if @ < o/, and by the Riesz-Markov theorem it
suffices to verify that

/ fduaZ/ fdns () V€ C(Xa).
Xa Xa

Now, if g € C(Xy), x = (z1,...,21) € S and 1 < i < K/, Fubini’s formula reads

/X 9 dpar = /Sk,1 (/Sg(ﬂc) dm(m)) dpur -1 (), (77)

o/

where S¥ 1 5 2% := (x1,...,2i_1,%is1, ..., xw). Hence, for f € C(X,) we have
pas ) = [ (romt)ame = [ ([ (£ort") @) dmte) ) duna ),
Xa X, Ssk'-1 \Js
By the definition of Pgy, each of the variables x1,...,xp occurs in exactly one of the

products on the right hand side of . Consequently, the components [wg/]i of wg’ mutually

depend on different variables T; = (:rml 1re e Ty n(i)).

82Gee Definition m
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Then, by left-, right- and inversion invariance of p, for z € S¥ we have

=/Sf([7r

Then, applying the same argument inductively we obtain

SN

1@ (1] @het)s s ) gt (B ).

. fdﬂ' (ftar) / fxmnv” xmkl dpter (z / [ dpta,

where the last step follows inductively from and pup(S) = 1. n

Lemma and Remark 6.4 (Independence from the Choices)
By Proposition there is a unique normalized Radon measure 1 on Homyeq (PrN, Morg) which
corresponds to the family {fia}acPpn fOr pia the Haar measure on Slel. Now, we obtain different
projection maps w, if we choose another family V' = {v.}renr € P with v}, € F, for all z € M.
This family, however, gives rise to the same measure on Homyeq (PN, Morp) because:

It follows from that for each oo € Ppnx we find dy, by, ..., dg, by € S such that mo(e) =
(81,...,8k) implies 7. () = (dy - 81 - b1,...,dg - Sk - bg) for all (s1,...,sx) € Xo. Consequently,

= d Ta - b holds for d := (dy,...,d;) and b := (b1,...,bg), so that for B € B(X,) we have

cen7YB) < 7wl(e)eB <<= mu(e)ed ! -B-b!
— ceq(dt-B-bh,

Hence,

mo(1)(B) = p (75 '(B)) = p(m, ' (A7 B-b71)) = po (A7 B-b71) = pua(B)
by invariance of . O

Definition 6.5 (The Reduced Ashtekar-Lewandowski Measure)

The normalized Radon measure on Homyeq(Prn, Morg) that corresponds to the consistent family
of normalized Radon measures {jiq}acpyy 1S denoted by in the following. For the special
case that G = {e}, this measure is called Ashtekar-Lewandowski measure on Hom(P,,, Morr) and

is denoted by

Remark 6.6 (Loop Quantum Cosmology)

In the next subsection, we are going to define a normalized Radon measure jy on Zredg ~
Homyeq (PQN , MorF), in particular, for the case of (semi-)homogeneous, spherically symmetric and
homogeneous isotropic LQC. As already mentioned in Remark in the two transitive cases
(homogeneous isotropic and homogeneous LQC) the space ﬁredyg is already a reasonable quantum-
reduced configuration space by itself. So, there we have the reasonable kinematical Hilbert space

L2 (Zred,ga Mg) .

1) Anyhow, in (semi-)homogeneous LQC we even have the normalized Radon measure fiyeq 1=
fig X PEN ON Ared o = Homyeq (Py,, Morg) because P, = Py’ LI PrN, hence

Ared,w = «Ared,g X Ared,FN

holds by Example
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2) In the homogeneous isotropic and spherically symmetric case we unfortunately do not know
whether Pong, = 0 holds. In the homogeneous isotropic case, we elsewise could define
Hred = g X pEN as well, just because there Ppy = () holds by Example

In the spherically symmetric case, we additionally had to define a measure ppg on

Ared rs = Homyeq (Prs, Morg) = Homyeq (Pr, Morr)

for P, the set of linear curves in R3 traversing through the originﬁ This, however, is easy
as we can use the same techniques as for the construction of pupn:

e Instead of Ppn, we consider the set Py of tuples (vy1,...,7v,) with v; € P/ and im[y;] C
spang (€1) for 1 < i < k. Hence, we restrict to such elements of be which completely
traverse in the €j-axis. Obviously, each other curve in Prps = P}, can be obtained by
rotating such a curve around a suitable axis. ’

e We choose v, = (7, 1), i.e., 1, = pry: P 3 (z,5) — s € SU(2) for all x € R?, and define
the projection and transition maps exactly as in Lemma and Definition [6.2] Then,

Ty (e) = Yy (M Wa@)) = Dle)(7) = Qe)(y) = €(7) (78)

for dom[y] = [a, b] and € := Q(e). Since for 0 € Hz, = H,, we have v = o (), this gives

10(2) = T (€)= e(0(1) D s (e(7)) = a0 (my(2)).

Then, Lemma shows im[m,] C H, = S, and by Proposition we even have
im[m,] = S!°l. This follows by the same arguments as in the proof of Proposition
because W, : r — exp(r - [ - 71]) for p1 € R is contained in Fp for p = (y(a), 1). In fact,
this is clear from G, = H;, and that ¢,(c) = o holds for all o € G, as for p = (z, 1) we
have (see Example for the definiton of ®gp: SU(2) x P — P)

Sgp(o,p) = (x,0) == Sgp(o,p)=p-0o = ¢p(o) = 0.

Then, using the Haar measure on H,, = S! instead of SU(2), by the same arguments as
in the Ppy case, we obtain a normalized Radon measure pps on Homyeq (P}, Morr).

6.2 Lie Algebra Generated Configuration Spaces

In the previous part, we have constructed a normalized Radon measure on Homyeq(Ppn, Morg),
whereby we have used the developments of Subsection [5.4] In this part, we are going to write
the space Hom g (PQN , Morp) as a Tychonoff product of compact Hausdorff spaces which we de-
termine exemplarily for the most LQC relevant case that S = SU(2). Then, we define normalized
Radon measures on each of these spaces, providing us with a normalized Radon measures on
Hom,eq (P;,MorF).

For the first step, we will need that each ¢-orbit which contains some Lie algebra generated
curve admits an independent and complete family of stable Lie algebra elements. We show
that, under these circumstances, Homeq(Prn, Morg) can be written as a Tychonoff product of
compact Hausdorff spaces which are just given by the sets of equivariant maps that correspond

83See (a) in Convention for the definition of P as well as Example for the equality Prs = Pry.
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to the elements of the above independent and complete families. Here, we will only need that the
structure group is compact and connected.

In the second part, we will determine these sets of equivariant mappings explicitly for the case
that S = SU(2). We define normalized Radon measures on each of them and show that the corre-
sponding Radon product measure gives rise to a normalized Radon measure on Hom,.q(PrxN, Mory)
which does not depend on any choices we have madeﬁ As already sketched in the beginning
of this section, these constructions also work for the abelian case and are even easier there. For
non-abelian S one basically has to investigate to which maximal tori equivariance can restrict
the image of a map ¥: spanpi(§) — S having the homomorphism properties . Indeed, for
S compact and connected, multiplicativity already restricts such an image to a unique maximal
torus if W(\ - g) is regular for some X € ]Rﬁ and obviously this issue is trivial in the abelian case.
Finally, the set of occurring tori has to be equipped with a normalized Radon measure having
certain invariance properties which make the whole construction independent of any choices at
the end. Using general theory of compact and connected Lie groups, then one might obtain some
generalizations of the construction we will work out in detail for SU(2).

So, in the next part, the structure group will be compact and connected, as well as SU(2) in
the subsequent ones@ Moreover, as in the previous section, ¢ is always assumed to be analytic
and pointwise proper. By M we will denote the set of p-orbits m in M with g\g, # 0 for one
(and then each) z € m. We fix a family {pm}mem € P of elements with zy := 7(pm) € m € M for
all m € M, where for each such m we let {Gn a}acrn € 9\@z, be independent and complete. Of
course, we only will consider the situation where Hom,cq (PQN , Morp) ) holdsﬁ

6.2.1 Tychonoff Products

We now are going to write Hom,eq (73; , Morp) as a Tychonoff product of compact Hausdorff spaces
for the general case that S is compact and connected. The first step towards this is performed in
Lemma and Definition where the strategy is basically the following:

e In the Parts (1) and , for x € M and p € F,, we assign to ¢ € Homyeq(P,,, Morg) an Ad%x—
equivariant (in the first factor) map ¥: g\g, X Rsg — S just by

\Ij(g: l) = A((I)exp(l-§) (p)7 6(’75:’[0,”) (p)) . (79)

Recall that ¢ — ®(exp(t- §),p) is the canonical lift of 77 in p € F; which we already have used
in Proposition [5.14][T] for modifying invariant homomorphisms along such Lie algebra generated
curves 7z. Moreover, as usual, for p,p’ contained in the same fibre, here A(p,p’) denotes the
unique element s € S for which p’ = p - s holds.

e In Part , we will split up the map into several maps spang (Go) — S being equivariant
in the sense of Definition Here, o runs over some index set I, for {ga}acr, C g\gs an
independent and complete family of stable elements.

e Then, in Part , we will define the relevant topologies on the occurring spaces, and in the
last part we will provide the desired homeomorphism between Hom,.q (PQN ,Morp) and the
mentioned Tychonoff product..

84For instance, the above families of stable elements.

¥ This is because ¥(u - §) - ¥(A-§) = U([u+ A - §) = ¥(\-§) - ¥(u-g) for all u € R.

86 Anyhow, since it simplifies the notations, we often will write s instead of su(2).

87Observe that Homyeq (’PEN, Morp) = () already implies that Hom,eq (P, Morg) = () holds just because each element
of the latter space restricts to an element of the former one.
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Lemma and Definition 6.7
Let p € P, x := m(p) and assume that g\g, # 0 holds.

1) By we denote the set of Ad%z—equivam‘ant maps V: g\gz X Rso — S that fulﬁ@
T(N-G,01) =G, NN YAERL, [ >0 (80)
and
V(g1 +1")=V(g1)-v(g1") Vi, >0. (81)
Here, equivariance means that

W(Adh(g)a ) = g, (h) © qj(ﬁa ) Vhe Gx,V§€ g\gx

2) Recall the quantities we have considered in Subsection . Then, since we have G%] C Gy,
for each W € M, and each G € g\g, the map V¥;: spang(g) — S defined by

Uz(0):=1 and Us(A-g) :=V(X-g,1) for A€ Ry

18 Ad%[q]—equivarmnt in the sense of Definition . We will denote by ng the set of all such
g
Adg[ﬂ]-equivariant maps and define
g

tg: ‘)Jtp — }/g?’ U — \Ifg.
3) We equip M, with the topology generated by the sets
U () :={¥ e M, | ¥'(-5) € -G)-U}

for W e M,, U C S open, § € g\g and | > 0. Similarly, we equip the spaces Yg? with the
topologies generated by the sets

UA®) = (V' € Y7 |W'(\-5) € (A 4) U},

for ¥ € Yg?, U C S open and A € R. It is easy to see that t’gi is continuous w.r.t. these
topologies.

4) We define my: g\gz X Rso x Homyeq (P, Morp) — S by
(G, 1, €) == AP (), € (Vi loy) () VO<I<Ty
as well as
k
mp(@.1,¢) = [ mp@ i) for 0< i, le<ry with L=l1+ -+l
i=1

Then, straightforward calculations, cf. Appendiz[E1], similar to that in the proofs of Proposi-
tion and Proposition show that the map

Tp: Homeeq (P, Morg) — M, € my(-,-,€) (82)

88The reason for introducing the factor R will become clear in Part .

95



is well defined and continuous. Consequently, m, is well defined as well. In particular, the
topological space Ygf’ is compact. n fact, Homyeq (73;, Morp) 18 compact and tgofp 18 contin-
uwous, as well as surjective by the next corollary.

Obviously, we have T, = ap@y p) © Ty if T(p) = 7(p') holds. Moreover, if g € G, s € S,
geg\gy and h € Gy fory:=7(g-p), a straightforward calculation shows that we have, cf.

Appendix

A)

TgpsNAdR(7),1,8) = ag 1, (ny © Tp( Adg1 (), [AL, €)™ VA€ Ry, >0 (83)

This equation will be relevant for our considerations in the final part of this subsection. There,
we will show that the measure we construct on Homyeq (P;,Morp) does not depend on any
choices such as the independent and complete families we have fized in the beginning of this
subsection.

5) To simplify the notations, let

Yo = YE™ as well as tma 1= t§:a Vme M,Vac I.

gm,a
We equip Y := [ e acl,, Yma with the Tychonoff topology and define

IIy : Homred(PgN,Morp) —Y by IIy = H [tm oﬁpm]
meM

for the natural map tw = [[ ez, tma: Mpy = [laer, Yma-

The homeomorphism property of Ily is a straightforward consequence of Lemma and
Proposition as we now show in

Corollary 6.8
The map Iy : Homyeq (P;,Morp) — Y is a homeomorphism.

PRrROOF: Ily is continuous because the maps ty o © Tp,, are so. Moreover, Y is Hausdorff because
the spaces Yy o are Hausdorff. So, since Hom,eq (PQN , Morp) is compact, the claim follows if we
show that Ily is bijective. Now, Ily is injective by Lemma and

(tm,oz o fpm) (E)N - Gma) = Tpm (e)(A - Gmas 1)
=A (q)exp()vg’m,a) (pm): € (Vi%‘mﬂ ’[0,1]) (pm))
= A(Pexp(r o) Pm) (57 l0,01) ()

and surjective by Proposition In fact, if Uy o € Yino for all m € M and all a € Iy, then
for each m € M we can modify an element ¢/ € Hom,eq ('P;, Morp) w.r.t. the family {Un o }ocrn
in order to obtain ¢ € Hom,q (Pg“’ , MorF) with

(tmva °© ﬁpm) (8) = Ym,a Vae Im.

Since orbits are disjoint, i.e., im[epg o 7;5“‘] Nim[pg o fy;f,m'} = () if m # w’, it is clear that we can
apply Proposition simultaneously for all m € M. n
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6.2.2 Normalized Radon Measures

In the previous part, we have seen that Homyeq(P,, Morp) is homeomorphic to the Tychonoff
product of the compact Hausdorff spaces Yy o, each of them consisting of certain equivariant
maps. So, in order to define a normalized Radon measure on Hom,eq (P, Morp), it suffices to
define such measures on each of the factors Yy, o. For this, we now calculate these spaces explicitly
where we will restrict to the case where S = SU(2).

We start by recalling some facts and fixing some notations.

Convention 6.9
e By S! we denote the unit circle in €. This will not be in conflict with our notations as in the
sequel no products of the structure group S = SU(2) will occur.

e In the following, let I' denote the group of all characters on R, i.e., of all functions of the form
xi: « — e By the Bohr compactification Rpopy of R we will understand (cf. Lemma and
Convention the set of unital homomorphisms 1: I' — S! equipped with the topology
generated by the sets, cf.

Vi(¥) == {¢" € Rponr | ¥ (x1) € ¥(x1) - V'}

for 1 € Rpone, V. C S* open and [ > 0. Recall that Rpepy is a compact abelian group when
equipped with the group structure

W+ ) ) =v0a) ') 0 =v(x=)  leom(x) =1

for all [ € R. Moreover, as we have seen in Lemma and Convention [3.98] Rpop, is parametrized
the set 9 of all maps ¢: R~ — [0,27) with

(1 +1) =)+ (') mod 2r  VI,I' € Rsy.

e Let Ps|denote the projective spacelﬂ that corresponds to su(2) as well as the corresponding
projection map.

e Recall the map f: R® — su(2) from Convention and that Hg = {exp(t-3) |t € R}.

e In the following, we will consider Ps as an index set, and choose a fixed representative 53 with
B 1(55)|| = 1 in each equivalence class 3 € Ps.

e If 3 = [5] € Ps, we will always mean that |371(5)| = 1 holds and define Hg := Hj.

In order to determine the spaces Y2, we now have to investigate the images of the equivariant
maps these spaces consist of. Due to the first part of Lemma this means to identify the
maximal tori which such an equivariant map is allowed to map to. Indeed, there we show that
the subset of all non-trivial mapﬂ in Ygf which map to the same maximal torus is parametrized
by Rponr- This means that ng is either singleton or given by the product of Rpony with the set
off all occurring tori. The latter set will we determined in the second part of Lemmal6.11] There,
we show that the following situations can occur:

1) Ygf consists of one single element, namely the trivial map.

2) All elements of ng map into the same maximal torus.

89 This is the set 5u(2)\{0} modulo the equivalence relation 5 ~ & iff 5 € spang(5).
90bserve that if (A - §) = —1, then U(\/2-§) # +1.
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3) Each element of Y? maps into a maximal torus Hz with 7 contained in a fixed plain through
the origin. Moreover, each such torus occurs.

4) Each element of Yg? maps into some maximal torus, whereby all maximal tori occur.

The relevant notions are provided in

Definition 6.10
Let p € P, z := 7(p) and

J(G,p) = |J B(¥) C{0}uPs

P
\PeYﬁ

for the quantity S(¥) defined as follows:
o If U(N-g) =1 for all A € R, we let 5(V),53(V) :=0 € su(2).
e In the other case, it follows from
YA-g)-U(p-g) =V(A+pl-9)=¥(p-9)-¥(A-9) VipeR
and Lemma that im[W] C Hgy) holds for 8(¥) € Ps uniquely determined. O

Lemma 6.11
Letp € P, x :=m(p) and § € g\gz-

1) For each B € J(g,p) and ¢ € N we find V' € Y] with
U'(X-g) = exp(op(N) - §5) V> 0.

2) Ezactly one of the following cases holds:

1) J(g,p) = {0},

2) J(g,p) = {0,8} for B € Ps uniquely determined,

3) J(g,p) = {0} UlUzera\ (0} mmy=0 [3(7)] for some i € R*\{0},
4) J(3,p) = {0} UPs.

PROOF: 1) By assumption, we find ¥ € ng with B(¥) = 3. Now, let
(X §) := exp (sign(N)o(|A]) - 55) vVAeR.

Then, U’ fulfills (46)), just by the same arguments as in Lemma and Convention SO
that it remains to show . If U =1, then ¥ = 1, and we have nothing to show. In the
other case, we find A > 0 Wit]ﬂ V(N g) #+1. Let Adp(g) =p-gfor h e G%] and p € R.

Then, || =1 by Remark and Definition so that
A, (1) (T 7)) = WO ) = WA~ g, (84)

By Lemma we now have the following two possibilities:

Nf U(p-§) = —1, then U(|u|-§) = —1 and we choose \ := /2.
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1) p=1 = ¢p(h) € Hp —

) © U'(X- §) = g, n) 0 exp (sign(A)p(|A]) - 5) = exp (sign(A)p(|A]) - 53)
=U'(A-g) = (¥ o Ady)(A- 9).

2) p=-1 = g (ny(s) = 57! for all s € Hg =

1

)

ag, ) © V(A 9) = o, () © exp (sign(A\)@(|A]) - §5) = exp (sign(A)(|A]) - 55)
=V (=X §) = (¥ oAdy)(\- ).

2) Basically, this follows as in Part [1)) by repeated application of Lemma involving a
case differentiation. The details of the (not complicated but long) proof can be found in

Appendix n

We now are ready to determine the spaces Y2, and to define normalized Radon measures thereon.
Lemma and Definition [2.5/3| then provides us with a normalized Radon measure p4 on

Hom,eq (P;,Morp) XYy = H Yia;
meM, a€ln

which, in the final part of this subsection, we show to be independent of any choices. However,
before we come to this, we first will give some applications to loop quantum cosmology collected
in Example and Remark

Now, in the first part of (the next) Lemma and Definition we will define the four differ-
ent spaces which Ygf’ can be homeomorphic to. Except for the Hausdorff property of the defined
topologies, here no difficulties will arise. In the second and the third part, we define the corre-
sponding bijections and establish their homeomorphism properties. Here, the bijections are easily
defined, but for their homeomorphism property we will have some hard work to do. In the last
part, we provides the measures on the spaces defined in the first part.

Lemma and Definition 6.12
Letp € P, x :=m(p) and § € g\gz-

1) We define
{OBonr } if Case 1) holds for J(g,p) Type 1,
P . RBohr - if Case 2) holds for J(g,p) Type 2,
g Rponr X St if Case 3) holds for J(§,p) Type 3,
Rpone X S% if Case 4) holds for J(F,p) Type 4.

Here, S?> C R? denotes the unit sphere and S*' C C the unit circle. Moreover, the products
denote the quotient spaces

RBohr x S = [RBohr X Sl]/ ~
w.r.t. the equivalence relation ~ defined by

(1/}77)) ~ (7//:”/) — (1/}/77/) = (1#717 _U) or ¢7 W = OBohr

99



fori=1,2. In both cases, we will denote the respective projection map by pry.

We equip each of the above spaces with its natural topology. Hence, Rpony X S* with the
product topology and Rponr X S* with the respective quotient topology fori = 1,2. Obviously,
Rponr X S is compact for i = 1,2, and the Hausdorff property is proven below.

Remark: These definitions might seem quite artificial at a first sight. However, they have
the big advantage that the canonical Radon measures on Rgonr, S? and St (see Part) can
be used to define a normalized Radon measure on the above spaces in a straightforward way.
In addition to that, it should be intuitively clear already at this point that the trivial map will
be assigned to the class [(Oonr,v)], and that the factors S? and S* will label the occurring
mazimal tori in the respective cases. Here, we will need the identification of (1,v) with
(=1, —v) since, due to our further definitions, v and —v will refer to the same maximal
torus in SU(2).

2) For each plan@ [m] == {¥ € R3| (7,m) = 0} C R3, we fiz an angle—preservinﬂ map
(homeomorphism) Ly between the great circle on S?% cutted out by [m] and the unit circle
Sl C €. Then, if Case 3) holds for J(g,p), i.e., if

J(g,p)\{0} = U [3(7)]  for some 1 € R*\{0}, (85)

RERA\ {0} (7,1m)=0
then we define fg: J(g,p) — S* by (recall that due to C’Onvention 1571(53)|| = 1 holds)

piay . )0 if 8=0
§§(ﬁ) o {LW (5*1(5'/3)) else

for v} € St some fived element. Similarly, in Case 4), we define fg: J(g,p) — S? by

vy . ) U0 ifB=0
&)= {51(5’5) else

for v% € S? some fized element.
3) Using the above maps, we construct our bijection Tgi ng — Xg as follows:

e ForV ¢ Ygf’ with (V) # 0 we find ¢ € N uniquely determined by
U\ §) = exp ($(N) - Faw))  VAER,

and denote by v the corresponding element of Rpony from Lemma and Convention [3.93
o We define 7'5: Yg — ng by

OBohr if Case 1) holds for J(g,p),
Tg(\If) = if Case 2) holds for J(g,p),
[(w,fg(ﬁ(\ll)))] if Case 3) or Case 4) holds for J(g,p).

92This means m € R3\{0} and [m] = ['] if M’ = X\ - for X # 0.
®If Li), Liz are two such maps, then Lz o Lfﬁl]_l € 0(2).

]
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The map Tg is a well-defined homeomorphism which is independent of the explicit choice of
53 € B we have made in Convention . In fact, the independence is immediate from the
definitions, and the homeomorphism property is shown below.

4) We define normalized Radon measures ,u];l on the spaces Xg as follows. If Xg 1s of Type 1,
there is only one possibility. If Xg is of Type 2, we define ug ‘= UBohr- For Xg of Type 3
and Type 4 we proceed as follows:

a) We equip S* with the Haar measure py as well as S* with the canonical Radon measure
p2 induced by the Haar measure on SO(B)@ Observe that this measure is invariant
under the action of SO(3) on S?, i.e., uz(R3(A)) = u2(A) holds for all A € B(S?) and
all R € SO(3).

b) We equip Rponr X S L and Rpony X S? with the respective Radon product measures

Hix ‘= UBohr X M1 and H2x ‘= HBohr X H2

from Lemma and Definition [2.5]1]
c¢) We define the measures on Rpony x ST and Rpone X S? by the push forwards of p1x and
tax by the respective projection maps.

Proor: 1) For i = 1,2 we have:

o If ¢ # Ogonr and v € S% then an open neighbourhood of [(3,v)], e.g., is given by
pro(U x V) for U C Rponr an open neighbourhood of 4 with Ogen ¢ U and V C S* an
open neighbourhood of v. This is clear from

pry (pro(U x V) =UxV U U x —V. (86)

o If Uy C Rponr is @ symmetric open neighbourhood of Opopy, then prg(Up x Si) is an open
neighbourhood of [(0gonr, v)] in Rpen: X S?, just because

pral(prO(Uo x SY) Uy x S° (87)

is open.
e So, choosing Uy and U as above, such that in addition UynU*! = () holds, we can separate
[(0Bohr, v0)] and [(1, v)] for ¢ # Ogonr and v, v € S* by pry(Uy x S*) and pry(U x V). In

fact, by construction we even have
pry (pro(Uo x 1)) N pry  (pro(U x V)) = 0.

e The remaining cases follow from and the fact that for v,v’ # Oponr with @ #
Y as well as v,v’ € S% with v # v we find neighbourhoods U, U’ of 1,1’ as well as
neighbourhoods V, V'’ of v,v’, such that

D=UnU,UnULUNU LU0 tnU  as well as
p=vnV ,vn-v,v n-v,-vnVv’

holds, respectively.

9Let pur denote the Haar measure on SO(3) and Q: SO(3) x S? — S? the canonical left action. Let @ € S be
fixed and denote by G the Q-stabilizer of 7. Then, SO(3)/Gr = S? (by the map [g] — Q(g, 7)), and we equip
the quotient with the push forward of ur by the corresponding projection map. It is straightforward to see that
the measure yi» induced on S? by this diffeomorphism does not depend on the explicit choice of 7@ € S2.
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3) Obviously, Tg is well defined and injective, and its surjectivity follows from Lemma |
and Lemma and Convention So, since ng is compact and Xg is Hausdorff by Part ,
we only have to prove continuity of 7';3 in order to show its homeomorphism property.

Strategy: Basically, here the difficulty is to show that the convergence of a net ng D)
{U,}esg > Ve Ygf’ already implies the “convergence” of the corresponding “maximal tori”
B(¥,) to the “maximal torus” S(¥) of the limes map. This is clear if Yg? is of Type 2 (or

Type 1) as there 5(¥,) = B(¥) holds for all . € J. For Yg? of Type 3 or Type 4, we have
to consider such A > 0 for which U(\ - §) is regular, i.e., different from +1. here, we have
to use the local diffeomorphism property of the map

S [(0,7) U (m,2m)] 3 (v,t) = exp(t - 3(v)),

whose local inverses give back the two possible values (vy,ty) and (—vy, 27 —ty) in [0, 27]
for which

exp(ty - 3(va)) = V(A - §) = exp((2m — tx) - 3(—vr))
holds. T

> If X g is of Type 1, we have nothing to show because im [Tg] = OBonr holds in this case.

For the other types, let Yg 2 {¥,},e; — ¥ € Y? be a converging net. We choose ¢ € N,
{d.}hes CNaswell as f € {0} UPs, {B,}es C {90} LI Ps such that for each A > 0 we have

V(A g) =exp(p(N) - 53) as well as U, (X-G) =exp(p.(N)-55,) Veed  (88)

Let 1 € Rpone and {9, },e; € Rponr denote the elements of Rpop, from Lemma and Con-
vention that correspond to ¢ and {¢,},cs, respectively. Finally, define

f: 8% x[0,27) = SU(2)
(v,t) = exp(t - 3(v)),
ie., f(v,t) = cos(t) - 1 +sin(t) - 3(v) by (12).
> If Yg? is of Type 2, then 3, = 3 holds for all ¢ € J. Now, g: S — Hp, et — exp(t - s5)
is a homeomorphism, and for all A € R we have
P =97 o¥(A-g)  and  d(x) =g oW (NG Vied
Consequently, the convergence {¥,},c; — ¥ implies {1, },c;7 — % just by the definition
of the topologies on Y; and Rpohr.

> Let Yg? be of Type 3 or of Type 4.

We first assume that ¥ = 1, hence 5 = O:
— Then, lim, U,(A - §) = ¥(A-g) = 1 for all A € R, so that for each such \ and each
n € Nyg we find (g € J with
¢, (\) €10,1/n)U (27 — 1/n,27) V> . (89)

In fact, if C' :=[0,1/n) U (27 — 1/n,27) and U := f(S? x C), then (cf. formula (12)))
U = exp ([0,1/n) - 3(5?)) is an open neighbourhood of 1 in SU(2) provided that n is
suitable large. Since f~1(U) = 5% x C, the claim is clear from equation and the
definition of f.
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— Then, shows that
lim ¢, (x) = lim &5 3 S

hence lim, 1, = Ogonr. Consequently,

lim 72(®,) = [(Opohs, v))]

L
for i € {1,2} because each neighbourhood of [(Ogopr, vj)] in Rpon: X S° contains an open
neighbourhood of the form pr (Uo X Si) for Up an symmetric open neighbourhood of
OBohr in RBohr'
— In fact, by the definition of the quotient topology, W C Rpon, X S* with [(Oohr, vj)] € W

is an open neighbourhood of [(Oponr, vj)] iff pry 1(VV) is an open subset of Rponr X S?,
hence an open neighbourhood of (0gep,,v) for all v € S?. Then, we have

pral(W) o, 0" xvY

for open neighbourhoods U¥ C Rpenr Of Oponr as well as V¥ C S* open subsets with
St =J,V". Since S’ is compact, we even have S* = V"1 U--- U V" for finitely many
indices, so that by the statement holds for Uy = UNU~! with U := U N ---NU™.

We now assume that W(\ - §) # 1 holds for some A > 0, hence 8 # 0:

— We even can assume that W(A - §) # £1 since elsewise we replace A by A\/2. Then, for
v :=371(53) we find open neighbourhoods

VCS? withveV  JC(0,7)U(m,2r) with ¢(\) € J

as well as U C SU(2) with W(A-
In fact, since t := ¢(\) € (0,7) U
)

0 = dt0) f((At, Av)

g) € U such that f':= f|y« is a diffeomorphism to U.
(.2, i.c., sin(t) £ 0,

= At [—sin(t) - 1 + cos(t) - 3(v)] + sin(t) - 3(Av)

implies At = 0, hence Av = 0.
— Let 1o € J be such that ¥,()\) € U holds for all ¢ > 1. Then, for such ¢ > ¢y we have

Sa.=aq- (3o o fT)WA-9) 6N =2mp,+q - (prao f/7) (TN )

for ¢, € {—1,1} uniquely determined and p, = 0 for ¢, = 1 as well as p, =1 for ¢, = —1.
Since the occurring maps are continuous and

§3=(opriof ) (WA 7)) 6(N) = (pryo ') (T(A- 5)
holds, we have
5’/3 = h{n q, - gﬁb and P(N) = hfn qL¢L<)\) + 27p,.

Consequently, in the Type 3 case (analogously in the Type 4 case) with m as in ,
we obtain

E8(8) = Ly (37" (s5)) = Lpmy (5_1 (H{H q - S&))

) (90)
=limg, - Lz (57 (s5,)) = limq, - €(8,).
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Then, for each further X > 0 with W(\" - §) # £1 we have 53 = lim, ¢, - 53, for ¢, € {—1,1}
uniquely determined as well. So, since 53 = lim, ¢, - §3,, we find ¢ € J such that |¢, —¢|| < 2
holds for all ¢ > ¢, hence ¢; = ¢} for all ¢« > ¢y. Consequently,

w(X)\’) = ei¢(|)\/|) = eilimL[QLd)L(l)\/|)+27rpL]
(o1)

—1i i (g (|N)+2mp.] —1i iqup(I1N]) —1i ;)4
h{ne hfne h{nl/}L(X,\) .

Moreover, if U()\) = —1, then W(\'/2) # +1 and

: . 2 (91)
lim gy, (o)™ = [lim g, (x2)* ] D 0.
Finally, if ¥(\') = 1, then the same arguments as in the ¥ = 1 case show that lim, ¢, (\') =
1 = (X), hence lim, ¢, (\)% =1 = 1»(X) holds as well.

Consequently, ¥(xy) = lim, 9, (xn )% holds for all X > 0, so that by the definition of the
topology on Rponr, we have lim, 1/t = ). Hence,

li{n Tg(‘h) = li}n [(ﬂh,féj(@))} = li{n [( @ q, - 55—(@))}
= [tim (w0 €25))] © [ €29,

where in the third step we have used continuity of the projection map pry and in the second
one that (1,v) ~ (1=, —v) holds. n

To this point, we have identified the spaces Y2 with the spaces Xg, on each of which we have
defined normalized Radon measure with suitable invariance properties. So, we now are ready
to identify Hom,eq (77; ,MorF) with a respective Tychonoff product, and to define a normalized
Radon measure on this space. To this end, we simplify the notations by defining

. ,,Pm — Pm . Pm
Nm,oz L Mﬁm,a Xm’a T Xﬁm,a Tm’a T Tgmqa

for all m € M and all o € I;.

Definition 6.13 (The normalized Radon measure pg)
e We equip

X = H Xuna
meM,a€ln

with the Radon product (see Lemma and Definition [2.53]) of the normalized Radon measures
ftm,o from Lemma and Definition

e By we denote the normalized Radon measure on Hom,oq (PgN , Morp) carried over from X
by the homeomorphism

nx = EX o) HYI Homred(P;7M0rF) —- X

with
=x = H Tma' Y — X
meM,a€lyn
the product of the maps 7 o: Yo — Xm,o from Lemma and Definition O
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Before we come to the independence of ji4 from the choices we have made, we now calculate the
space Homyeq (73; , MorF) for our three standard LQC situations from Example

Example 6.14 (Loop Quantum Cosmology

Assume that we are in the situation of Example where P = R3 x SU(2). We now determine
the space X for the case of (semi-)homogeneous, spherically symmetric and homogeneous isotropic
LQC. We start with

(Semi)-Homogeneous LQC:

We even can assume that P is an arbitrary SU(2)-bundle and that ¢ acts transitively and free
in homogeneous case, or just free in the semi-homogeneous one.

e If we are in the homogeneous case, M is singleton and G, = {e} for all § € g. Consequently,
each such ¢ € g\g, is stable by Lemma and Remark Let [ := I, :=Pgand g, € «
for each o € I. Then, {gn }aer is obviously complete, and independent by Lemma (see
also Remark . It follows that

- [Pg
Homed (P, Morp) 2 Y = [ Yaa = X = []RBO}H % 52}
acel

because J(g,p) = {0}UPs holds for all p € P and all 0 # g € g. This is clear from Gy = {e}
since then U: A - §— exp(\ - §) is an element of Y; for all § € su(2).

e In the semi-homogeneous case, i.e., if ¢ acts not transitively but free, the same arguments
show that we have

- -~ ~ o] MxPg|
Homred (Pg ,MOI‘F) = |:1RBohr X } .

Spherically Symmetric LQC:

We now consider the second case in Example Here, M can be parametrized by the positive
z-axis A = {\-€1 |\ > 0} as we can ignore the origi °|because its stabilizer is the whole group,
ie. g\go = 0. Then, G, = H,, and g, = spang(r1) holds for all z € A. For each m € M
we denote by xy, € m the unique representative contained A i.e., the only element of m N A.
Finally, we let py := (2, e) for all m € M.

We claim that for each z € A the space &, is parametrized by the angles in (0,7/2]:
e For each g € g\g,, im ['ygﬂ is the circle in R3 which arises from rotating = around the axis
through the origin determined by 37!(§). In particular, if § € g\g, is a further element,
then we either have

im[’yg] = im[yg,] == J==7

or im [75] Nim [ng] consists of at most two points.

9This is in contrast to the classical (smooth) situation, where it usually makes a big difference whether one takes
singular orbits (such as here the origin) into account or not. Indeed, as we will see in Example m (where we
calculate the set of smooth spherically symmetric connections explicitly) this is exactly the case in spherically
symmetric LQC.
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e We consider the family {ga }ac(0,r) € 8\gz = 5u(2)\spang (1) of elements

—

Jo :=cos() -1 +sin(a) -1 for 0<a<m.
These elements are stable because by the first point v |jo ~par 7 Adh(ga)|[0,l’] already
implies that Adp(Ga) = £go holds.

e Since Ad: G, x g\g» — g\g for G, = H,, acts on g = su(2) = R? via rotations around the
T1-axis, the above family is complete. In fact, for each g € g\g, = su(2)\ spang (71) we find
€ (0,m), A # 0 and h € H;, such that § = AAdy(Ga), i-e., § ~z Go holds.

e The family {ga }ae(0,r) is not independent because

Adh(gﬂ'/Q-‘rE) = _gﬂ/Q—E = gﬂ/2+6 ~x g;r/2—e Vo<e< 7T/2
if h € H;, corresponds to a rotation by the angle 7.
e So, replacing the above family by {g*a}ae(o,,, /2] does not change completeness, and we even
have independence. In fact, if a, 5 € (0, 7/2] with g, ~; Gs, then Lemma shows

7;5&\[07” ~par Vi Adh(gg)’[o,l/] for some heGy.

Hence, g, = £ Adj(gs) by the first point, just because im h;ia] N im ['yi A dh(ﬁg)] is infinite.

So, since Ady, rotates in su(2) =2 R? around the 7y-axis, it is clear by construction that h = e
and g, = gz must hold.

It remains to determine the type of J(Ga,pm) for all a € (0,7/2] and all m € M. We will show
that J(ga,pm) is of Type 4 if a € (0,7/2), and of Type 3 if & = 7/2, so that

o R ~ 0,7/2)xR
Homred(,P;,MOI‘F) = |:IR'B0hr X S1:|| >ol X |:IR,BOhr % 52i|‘( /2)xR>o|

holds. In fact, let = € A be as above. Then, since the non-trivial elements h € G, = H,, rotate
Ja in su(2) = R3 w.r.t. to an angle in (0, 27) around the 71-axis, it is clear that Ady(g,) can
only be equal to +g, if h = e or

a=m/2 and h = +exp(51) with Adp(Grj2) = —Gr/2s
whereby h corresponds to a rotation by the angle w. Consequently,

e We have G | = {e} if a« € (0,7/2), so that in this case J(Ga,pm) is of Type 4 for all
m e M.

e We have G;[}W/Q} = {e,Texp(571)}. So, since the map ¢, : SU(2) — SU(2) equals idgy(a),

for each m € M and h = +exp(571) the equivariance of a map W: spang(gr/2) — SU(2)
just reads (for h = e equivariance gives no conditions on im|[¥])

- -1 - - .
U(A-Grj2) =N Adp(Gry2)) = @, (1) (T - Frj2)) = an(T(A-Grj2))  YAER.
So, by Lemma, it should be clear tha@

J@w/mpm) ={0}u UﬁeIR3\{O}: (7,81)=0 [3(77)]
is of Type 3 for all m € M.

%The maps s : A Gr /2 + exp(X-3(77)) for i € R*\{0} with (7, €1) = 0 are all non-trivial and Ad’é‘? ]_equivariant,

I /2
see e.g. Lemma @E}
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Homogeneous Isotropic LQC:
We now consider the first case in Example Since ¢ is transitive, M is singleton, and we

choose p = (0,1) so that x = 0 as well as {0} x SU(2) = G, C R? x,SU(2) holds. Observe that
for (7,5) € g =R? x su(2) and h = (0,0) € {0} x SU(2) = G, we have
Adn((#,8) = gl ,oon (19, xp(15)))

= ili=0(0,0) ¢ (0, exp(t5)) - (0,0) ™"

= dili—o(te(0)(D), 0 - exp(t - 5)) 4 (0,07) (92)

= &l (te(0)(7), ac(exp(t - )

= (0(0)(9), Ady (5))
for Ad, the differential of the conjugation by ¢ in SU(2).

We obtain an independent and complete family of elements of

g\gz = [R? x su(2)]\[{0} x su(2)] = [R*\{0}] x su(2)

as follows. We fix @, 77, € R3\{0} orthogonal to each other and normalized, and define 5y := 3(%)
as well as §| := 3(¥/1 ). Moreover, let

denote the upper and the positive upper half plane determined by 5y and 5, as well as Ey the
union of the positive upper half plane with the origin. It is shown in Appendix [E.3] that the
family {(?, 5)}sep, is independent and complete (and consists of stable elements).

We now calculate J((¥, §),p) for all § € Ey. For simplicity, here we will assume that ¢ = €] and
U] = €3 holds, hence sy =7 and §), = 7o.

e Let ¥: spanp((7,5)) — SU(2) be Ad’g;[(ﬁ ]—equivariant and

)
h=(0,0) € Gjjz5 € G2 ={0} x SU(2).
Then, since ¢,,: R3 x1, SU(2) — SU(2) is just given by Prgy(2), equivariance of ¥ reads
U(A- (2(0)(0),Ads(5))) = ¥(Adr(A-(7,5))) = ao(¥(A-(7,5))) VAeR.  (93)
e If §=0, then {0} x Hz C G0y because
Ad(@.0) " (e(0)(@),0) = (3,0) V= (0,0) € {0} x Hy,

Combining this with (93), we obtain ¥((7,0)) = a,(¥(7,0)) for all o € Hy, hence im[¥] C
Hj; by Lemma, This already shows that J((¥,0), p) is either of Type 1 or of Type 2.
However, J((¥,0),p) = {0, [3(0)]} = {0, [50]} is of Type 2 because ¥: \-(¥,0) — exp(A-3(V))
is Ad%[(ao)]-equivariant and non-trivial. In fact, if h = (0,0) € G"[C(U 0)] is arbitrary, then

(0(0)(@,0) @ Ady((5,0)) = (+7,0)
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by Remark and Definition so that o(o)(?¥) = £ holds. Consequently, for each A € R
we have

T(Ady(\ - (7,0))) = U((£A - 7,0)) = exp(\ -

e If §+# 0, then Gﬁﬁ,é')} = {e,xexp(573)}. In fact, by Remark and Definition for

we have Ady((7,5)) = +(v, §), whereby the positive case, i.e., o(c0)(¥) = ¢ can only occur if
o = e. This is because here we must have 0 € Hy = H,,, so that Ad, rotates in su(2) = R3
around the 71-axis. By the definition of the set E-, then it is clear that Ad,(5) = § can
only hold for o = e. Now, if Ad,((¥,35)) = —(7, ), then ay(exp(A - §)) = exp(A-Ady(5)) =
exp(X - 5)7! for all A € R, so that Lemma already shows that o = £ exp(§73) holds.
This is also in line with p(0)(¢) = —v, and as in the previous point it is now clear that

J((7,5),p) = {0} UUzera\ {0} (7,85)=0 [3(70)]
is of Type 3.

It follows that

N ~ |E> |
Homred (,Pg ,MOI“F) = ]RBohr X |:]RB0hr X Sl]

(94)
Here the first factor Rpop, corresponds to (#,0) € R3 x su(2) and determines the image of an
invariant homomorphism on the set of linear curves P;~. For this, recall that each such curve is
equivalent to g4 o fygcﬁ 0)][0,” for some [ > 0 and g € G. Then,

> Performing the constructions of this subsection for the set P/~ instead of Py’ provides us with
the homeomorphism

m: Homyeq(Pr”, Morr) — Rponr

for which (1) = ptBonr holds with py the respective Radon measure on Hom,cq(P”, Morg). In
particular, using Remark it is not hard to see that then j is the push forward of g by
the restriction map (see Remark |4.24))

Tl Homred(PgN,MorF) — Homyea(P, Morg), €+ &lp.

This has also consequences for standard homogeneous isotropic LQC being discussed in Remark
6.15 O

Remark 6.15 (Standard Homogeneous Isotropic LQC)

1) The standard quantum configuration space of homogeneous isotropic LQC [2] is given by
Aredl, i-e., the spectrum of the restriction C*-algebra Bi|4,.,- Here, P denotes the C*-
algebra of cylindrical functions that correspond to the set P~ of linear curves in R3. By
we have A,.q = R, and by Lemma the map t4: A — A is injective because the
functions in 9P| separate the points in .A. The latter statement means that 4, is a reasonable
quantum configuration space because A is naturally embedded therein. Now, P~ is obviously
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® p-invariant, so that by Corollary the quantum-reduced space Zred,l C A exists, is
homeomorphic to Homyeq (P, Morg), and is physically meaningful as well.

Now, we have Pi| 4., = Cap(R), hence Ayeq1 = Rponr- In fact, for g := (¢,0) € R? x su(2)

we have exp(t - g) = (¢t -0, 1), so that by the horizontal lift of v, := 7Z[j0y in p = (2, €)
w.r.t. w® is just given by

;?l(t) = CI)E((t : 177 ]1)7 (J}, H)) : exp(_t : wc( g((l’, H)))) (95)
=(z+1t-0,1)-exp(—ct-3(V)) = (x +1- T exp(—ct - 3(V))).
Consequently, for v the standard choice v, = (2, 1) for all z € M, we have
v e .\ (@ . o i
h(w®) = exp(—cl - 3(V)) B cosetljall) - 1 — sin(el]all) - 3(5/ 1), (96)

so that by the C*-algebra 3; is generated by the constant function 1 and the functions
t +— sin(lt), t — cos(lt) for all I # 0. Hence, by the characters y; for [ € R. Consequently,
P1 = Capr(R) and Aeq1 = Spec(Cap(R)) = Rpohr-

As we have seen in the end of Example Area = Hom,eq (Py, Morr) is homeomorphic to
Rponr as well. A straightforward calculation now shows that the composition

mokioiy : Rpohr = Ared1 — RBohr
is even the identity idgrg,,, on Rpohr-

ok

Ared

c — Kl
red,l Ared,l

~ ™m
Homred(Pl 7M0rF) ? ]RBohr-

i

]RBohr = -Aredl

1%

Here, % is the identification from and k) the respective homeomorphism from Sub-

section In particular, this means that Ayeq1 = Xred’l holds, i.e., that in the homogeneous
isotropic case quantization and reduction commutes if one restricts to linear curves. Since our
construction provide us with the Haar measure pugon: on Rponr, being used for the definition
of the standard LQC kinematical Hilbert space L?(RBohr, 4Bohr) [2], We have reproduced this
Hilbert space by performing a reduction on quantum level.

Finally, observe that we now can easily embed the traditional LQC configuration space

- (*)
Aredl = Ared,l = Homred(lea MOI‘F) = Homred(Ple SU(Q))

* 3k

into the quantum-reduced space Hom,eq (P, Morp) (%) Hom,eq(P.,, SU(2)) via the map
t1: Homyeq (P77, SU(2)) — Homyeq (P, SU(2)),
defined by
u(€@)(v) :=e(y) if yeP and  u(e)(y):=1 for v € P,\PT.

If we use the standard choice v, = (z, 1) for all z € R3 for the identifications () and (*x), on
the level of the spaces Homyeq (P, Morg) and Hom;eq(P.,, Morg) this just mean to assign to
£ € Homyeq (P, SU(2)) the element &’ € Homyeq(P.,, Morg) with €'(y) = e(y) for € P and

() ((v(a), s)) :== (y(b), s) VseSU®2) and P,\P 37: [a,b] = R3.
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So, following this approach, there are many ways to embed Aeq1 into Homyeq(Py,, Morg),
whereby (at least from the mathematical point of view) using the standard choice of v seems
to be the most natural one. Its physical relevance, however, might first become clear once
the dynamics of the quantum reduced theory has been successfully established.

3) Using the identification of Homyeq(P[~, Morg) with Hom,eq (P, SU(2)) from Remark via
the standard choice v, = (x,¢) for all z € R?, one finds that the continuous group structure

on Rponr = Hom,eq (P, SU(2)) corresponds to the group structure on Homy.eq(P;~, SU(2))
defined by

(e1 % €2)(7) = e1(7)e2(7) e () i=e()! e(y) =1

for all v € P;”. These operations are well defined because for each fixed o € R*\{0} we hav@
e(x + v51) € Hy for all € € Homyeq(P;7,SU(2)), i.e., [e1(7),€e2(y)] = 0 for all v € P/~ and all
€1, €2 € Homyeq(Py,SU(2)). This is clear from Lemma because

e(r +v51) = €(yw1) = €(o(va1)) = ao(e(vw1)) = aole(z +751)) Vo € Hy

by (7). However, [e1(7), e2(7)] =0 usuallylﬂ does not hold for all €1, €2 € Homyeq(Po, SU(2))
if v ¢ P[7, so that one cannot define the same group structure, e.g., on Hom,cq(P.,, SU(2)).

6.2.3 Independence from the Choices

In this final subsection, we show that the definition of the measure ;4 does not depend on any
choices we have made. We start with simplifying the notations.
We consider the index set I := {[m,a] |m € M, o € Iy} and define for each ¢ = [m,a] € I{"]

G, = Jm,a M, =M, Y, ;=Y X, = XE»

Im,« !]m,oz7

the measure p, 1= ,uzgi‘“ , as well as the maps
m,a

T, = Tpy 1 HOMyeq (PQN, Morp) — M,
v, = rg:’a: m, =Y,
T, = Tg:,a: Y, - X,
(if Y, of respective type) £ = 5;3:‘&: J(Gumcspm) — S° for i€ {1,2}
N :=T,0t,0m,: Homyg (PQN, Morp) — X,
and 1 = [],c;m: Hompeq (P;,Morp) — X = [[,e; X,. Moreover, as in Lemma and Definition

2.0llo]

e Let J denote the set of all finite tuples J = (¢1,...,tx) of mutually different elements of I.
e Define X;:= X, x ... x X,,, uy:=p, X...%xpu,, and the respective projection by

w3 X = X7, [Lerzo = (@, ., 2).

9For the definition of the curves vz, See (a) in Convention

%Choose, e.g., v = v for § = (7, 5) with § ¢ spang (3(7)) and use that J(, (0,1)) is of Type 3 in this case, see
third part of Example 6.14}

99 — ..
Recall Lemma and Definition as well as Lemma and Definition m
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o Write J < J' for J,J' € J with J = (v1,...,4) and J = (4],...,1},) iff there exists an
injection o: {v1,..., 0} = {¢},..., ¢}, and define the maps

Jl
Ty Xy — Xy, (zbll""’xL;C/) — (J:U(H)a"'vl'a(uﬂ))'

e Let p7 denote the corresponding normalized Radon measure from Lemma 2.4l on X.

Finally, let 77 := 7 on for J € J. Then, the measure g = n~'(ys) is uniquely determined by
the property that 7 ;(pq) = ps holds for all J € J.

We now choose a further selection {py, }men C P of elements with z, := m(p,) € m € M, as well
as {Gm.atacr, € 8\gz, a respective independent and complete family for each m € M. Moreover,
for each plane [m] in R? through 0 we choose a further map Lf | as in Lemma and Definition

0
Then,

e For each m € M we fix gn € G with 2}, = ©(gm, Tm).

e By Lemma we can assume that I}, = Iy as well as [y, o] = [Ady,, (in,a)] holds for all
m € M and all a € I,. We define g, := g for ¢ = [m, @] and denote by s, the unique element
s € SU(2) for which pl, = g, - pm - $ holds.

e Then, for I’ and g, defined as I and g, above, we can assume that I’ = I as well as [g]] =
[Ady, (g.)] holds for all ¢ € I.

e We define the corresponding spaces 9, Y/, X, X', X/, and maps 7, v, 7/,&,, 1,7, 7; exactly
as above, and denote the respective measures by p;, u; and puj.

Then, in order to show pg = pg, it suffices to verify that 7’ (ug) = 1/ holds for all J € J @ This,
however, follows if we prove that (this is done in Proposition 2)

W@ (E)) = ps(7;(E)) for 7(E) measurable, (97)
and that for £,&’ € Homyeq (PQN , Morp), ¢ € I the implication (done in Proposition )
n(e)=n(E) = ne)=mn() (98)
holds. In fact, then for E := 7, 1(A’) with A’ € B(X’;) we have
"AD = (7 97 ~ o~ ~
Wy (A) =y (73(E) = i (75(E)) = T(pg) (7(E)) (99)
= ug (75 (T1(E))) = pg(E) = 7 (11g) (4, (100)

where in the fifth step we have used that 7' (7,(E)) = E holds. Here, E C 7, (7,(E)) is clear,
and obviously we have ¢ € 7' (7s(E)) iff 7;(e) € Ty(E). So, if we can show that the latter
condition implies € € F, then %jl(%J(E)) = F follows. Now, 7;(¢) € 7;(E) means that we find
e’ € E with n,,(¢) = n,,(e") for all 1 <14 <k, hence

n,.(e) =, () for all 1<i<k (101)

1% This is immediate from the fact that by definition of uf, 7'~ '(uy) is the Radon product measure on X’ w.r.t.
the Radon measures u, on X,.
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by . Consequently,

#(e) = (hon)e) = (i, (€)1, (e)
= (), () = R € 7Y (E) = A,

hence ¢ € E. This shows (99), so that 7/ (1) = ; holds for all J € J, hence g = .
Thus, the following proposition establishes independence of y14 from any choices we have made.

(=
=]

Proposition 6.16
1) X, and X are of the same type for all v € 1. Moreover, for each such v we find a homeo-
morphism : Rpohr — RBohr with Q1 (UBohr) = KBonr, as well as Ry € O(2) or R3 € SO(3)
such that

1.(€) = OBohr if X, is of Typel,
(Qomn,)(e) if X, is of Type2,
[(Q¥), Ra(v))] if X, is of Type3 and n,(c) = [(¢,v)],
[(Q(¥), R3(v))] if X, is of Type4 and n,(¢) = [(¢,v)].

() = (102)

In the Type 3 and Type 4 case ) is an unital homomorphism, so that the respective
expressions are well defined. In particular, n,(e) = n,(e") for e, € Homred(PgN,MorF)
implies n,(¢) = n,(¢'), showing (98).

2) Condition @ holds, i.e., we have

1y (7y(E)) = (75 (E))
if 7, (E) or w;(E) is measurable for E C Homyeq (P;,Morp).

PrROOF:  2.) This is straightforward from Riesz-Markov theorem and Fubini’s formula if
we can show that the statement holds for J = ¢, i.e., that we have p,(n,(E)) = pl(n,(E)) if
n.(E) or n,(E) is measurable for E C Hom,eq (73;, Morp). For this, observe that by Part
n.(E) is measurable iff n](F) is so.

Now, using (102]), the statement is clear if X, is of Type 1 or of Type 2. In the Type 3
case we calculate

1. (E)) = pro(x) (n.(E)) = (Bone x 1) (pry " (nl(E)))
= (lpone x 1) (2 x Ra) 0 pry (n.(E)))

= (7' x RyY) (uohr % 1) (prg* (n.(E)))

= Pro((Q_l X Rgl)(MIX)) (n.(E)),

and similarly we obtain ) (n](E)) = pro((27! x R3")(p2x)) (n.(E)) in the Type 4 case.
Since Q7! (UBonr) = KBohr, R;l(ul) = p1 and Rg_l(ug) = pg, the Riesz-Markov theorem and
Fubini’s formula show that

(' x Ry (ax) = pax and (7" x Ry (p2x) = pax,

respectively, hence the claim.
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1.) We proceed in two steps.

Step 1: We first assume that §, = Ady, (g,), where we have

ﬁi(&‘)(ﬁia 1) Tp! @17 le) = 7TgL~pL-sL(AdgL (9.),1,¢)

Q -10 7, (G, 1, €) = o -1 o, ()(g.,,1)-

(103)

[

Consequently, (102) is clear if X, is of Type 1, as then 7,(¢)(g,,-) = 1 holds for all
e € Homyeq (Py’, Morr) so that the same is true for (g, -).

For the other types, let 7,(¢)(g,,:) # 1 for ¢ € Homyeq (73;, Morp) and write

T.(€)(Gi, 1) = exp (o(1) - 53(.)) Vi>0 (104)
for ¢ € M, and B(e) := B(V¥) the element from Definition that correspond to ¥ :=
t,(m,(¢)) € Y,. Then, (103) shows that

7, (e)(g),1) = exp (¢(l) : Adsjl(gﬂ(g))) vi>O0.

Now, since the definition of 7, does not depend on the choice of sg € 3 which we have made
in Convention (see also Lemma and Definition , we can assume that 7 is defined
by using the elements Ad, -1(5p) for 8 € Ps. Then Q = idgy,,, and since 3 'oAd,103isa
rotation in R3, it is clear that X, and X’ are of the same type. Then, the claim is obvious
in the Type 2 case, as there () is independent of € € Homyeq (73;, MorF). In the Type 4

case, let v := & (8(¢)) = 371 (55(c))- Then (102) is clear from
v = E([Ad -1 (Sa)]) = 371 (Ad,1(55()))
= ("o Ads;l 03)(37"(35(c))) = R3(v).

Finally, in the Type 3 case, let 7,7’ € R?*\{0} be vectors as in which correspond to
X, and X, respectively. Then, m’ = )\ (371 oAds, 03)(m) = R3(m ) for some A # 0, so that

for v := &,(8(€)) = L) (37 (5(c))) we have

t=E([Ad, 1 (83(0)]) = L (571 (Ad 1 (S30)))) = (Lign © Ra) (571 (5s(0))
= (Liy © Ly o Ly o Rz o Ly ])(L[m( “1(58()))) = Ra(v)

€0(2) €0(2)

o Rgo L__‘l

/
7] 7]

Step 2: To complete the proof, we have to treat the situation where pl, = pm, g, =€, s, = e
and x = y holds, in full generality. This means that we have to consider the case where we

have [§]] = [g,], i-e., §, ~+ g, but not necessarily gl = §,. Now, by Lemma we find
h € G, such that we have

for Rz := 37" 0 Ad,103€ O(3) and Ry = L € 0(2).

Vg = PhoVig, ©p
for p: R — R an analytic diffeomorphism with p(0) = 0 and p(75) = 75,. We define

sa(l) = A(Pp-1 0 Pexpr.gy) (Pr(Pm)) s Pexp(p(t)-4,) (Pm))
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as well as sg := ¢}, (h), and obtain for € € Homyeq (PQN, Morp)

~

TG D) = APy ()= (510 ) (o)
(Pexpr-g) (Pm) € (er 0 ¥E5 [0,00]) )
(Pexprg) (Pm): @roe (vig lo.pw)) (Pr-1(Pw)))
A(q)h 10 Popigr) (Pm) s € (Vi [0,00))) (Pr1(Pm)))
(Dh-1 0 Pespi.g) (Pn(Pm)) * by ()2 (Vg l0,p0)) (Pm) * Bp(B)1)  (105)

g, () © A) (P10 Pesp(igr) (P (pm)) s € (Vg l0.p00) (Pm))

(
= gy (sa(l) * A(Pexp(xp)5) (Pm) € (Vg l0,00)) (Pm)))
= g (sa(l)) - sy (Tu(€) (£., p(1)))

Qsg (5a(l)) - sy (7 <>(gb,p<z>))ﬂ

Case A: Assume that s, = 1 and write, see
7,(e)(g,,1) = exp (qb(l) . 55(5)) VIi>0
as in Step 1. Then, shows
T 1) = exp (Bp() - £ Ady (33)))  VO<L<Ty

Now, by the same arguments as in Step 1, we can assume that 7, is defined by using the
elements + Ady, (53) for 5 € Ps. Consequently,

Q(w)(Xl) = w<Xp(l)) V1 € Rponr, V0 <1 < Tg"

hence Q1) (x1) = Y(Xp1)+-tp@y)) Tl =1+ + 1 for 0 <ly,..., [ < 75. Then, Qis a
bijectivd" and unital homomorphism which is continuous because we have

HQ(w)sz = "¢"Xp(l1)+~-~+p(lk)

for the seminorm |||y, := ||¢¥(x:)||, by the definition of the topology on Rpoh,. Since the
normalized Radon measure Q(upon) is translation invariant, it equals ppony. Hence, the
same is true for Q7! (upon:). The rest now follows as in Step 1.

Case B: Assume that s, # 1 and let s/, := ag, 0 so. We choose €9 € Hom,eq (PN Morp)
with 7,(£0)(4.,-) = 1, hence s, = 7,(c0)(7},-) by (105). In particular, im[s,] C Hgi (., for
B'(g0) the element from Definition E 0] that correspond to ¥/ := ¢/ (7, (eg)) € Y, .

We claim that:
im[7,(e)(g,)] € Hg(zy) Ve € Homyeq (P, Morp),
hence im[7,(¢)(g,, )] C Oésal(Hﬁl(EO)) for all e € Hom;eq (77 , Morg) because im[s,] C Hgr(cy)-

Proof: In fact, elsewise we find g1 € Homred(PgN,MorF) with 0 # f'(e1) # B'(g9). We
choose +1 # 51,52 € Hgi(¢,) and 0 < ly,ly < 75 Z-independent with st (l;) = s; for i =1, 2.

101 This is because ploo, 5,) 18 bijective and ¢ € Rponr is uniquely determined by its values on each subset of I' of
the form {x; |l € ( ,7)} for 7 > 0.
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6.3

This is always possible because s, is continuous, s,,(0) = 1, and s, # 1 as s # 1 by
assumption.

Combining Proposition with Lemma and the Parts [2)), [B) of Lemma and Con-
Vention we find €] € Hom,eq (73;, Morp) with 3'(e]) = B'(e1) as well as

(NG, h) =1 and T (NG, l2) =: b # £1. (106)

_ o +1 . .
Let d; :== asa1(7rb(a’1)(gb,p(li))) (confer (105)) for ¢ = 1,2. Then (105]) yields

{i06) _ (105) _ .
1= 7D 1) = (1) - 0 (T(e)) (G p)) T =51 dy (51 € Hyeo)\{~1,13)

— d1 S Hﬁ’(eo)\{_]l’]]-}'

Hence, £1 # b = s9-dy € H B(e0) because di and dy are contained in the same maximal
torus, namely Hgr(.). This contradicts that b € Hg (. ;)\{—1, 1}. T

Thus, for § := [Adsgl(gﬂ’(so))] we have f(e) € {0, 3} for all &€ € Homyeq(Py’, Morg) with
B(g) defined as in Step 1. Similarly, we have 3’(g) € {0, 5’ (o)} for alle € Hom,eq (73;, Morp).
Now, Y, cannot be of Type 1 since this would imply that s/, = 1 holds. Moreover, if

L

Y, would be of Type 1, then (105) would give that 7 (£)(g],) = s, holds for all € €
Hom;eq (779“’ ,Morp), which is only possible if Y/ is of Type 1, just by Lemma and
Proposition Consequently, Y, and Y, are both of Type 2.

So, to finish the proof, we write

7, (c0)(Fl, 1) = exp (¢4(1) - p(cy))  for ¢ € MVO <<y
T, (e)(g,1) = exp (¢L(1) - §p(c)) for ¢LeMVO<I<Ty
T(€)(Gi 1) = exp (¢ (1) - 3))  for ¢ € MVO <<y

whereby 7, (e0)(g,,1) = s,,(1). Then, (105) and 5'(¢) = '(g¢) show that

exp (gf)é(l) . 5}3/(5)) = exp (¢6(Z) . 551(50) + ¢E(p(l)) . §5/(€)) Vo<i< Tg -

»

Hence,
Q) (1) = ') = ¢l 1o (DE<(p())]
= o0 H00 ) = g 0a) - ()T = o £ Q) (x),

where Q,(¢)(x1) = Q,Z)(Xp(l)) for all 0 < I < 75. Of course, here ¥ € Rponr denotes the
element that corresponds to ¢f, € M. The rest now follows as in Step 1 because ¢ — ¢+
is a homeomorphism which preserves ppony- n

Summary

1) In the first part of this section, we have defined the normalized Radon measure ppyn on

Area pn for the case that S is compact and connected. This measure specializes to the
Ashtekar-Lewandowski measure piar, on Apeqy if the symmetry group is trivial. In the
second part, we have constructed the normalized Radon measure piy on A;eq4 for the case
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that S = SU(2) and that each ¢-orbit m admits an independent and complete family
{Gm.a}actn € g\gs for some x € m. So, if in this situation additionally P, = Py U PeN
holds, we have the normalized Radon measure g X upn on

Ared,w = Ared,g X Ared,FNa

which defines a kinematical L2-Hilbert space for the corresponding reduced theory. In
particular, this is the case in (semi)-homogeneous LQC as we have discussed in Remark
Recall that for all of our constructions we have assumed that the action ¢ induced
on M is analytic and pointwise proper.

2) As already mentioned in the beginning of this subsection, the constructions there are also
possible in the abelian case (S is an n-torus) and are even easierFEl Then, for an arbitrary
compact and connected structure group S one has to equip the respective spaces Yg? of
equivariant maps W: spang(g) — S with suitable Radon measures. Here, suitable means
that these measure have to fulfil certain invariance properties which make the whole con-
struction independent of any choices one has to do. For this observe that we have used fixed
families of stable Lie algebra elements in order to parametrize the space Zred&. Using the
theory of compact and connected Lie groups, here one might obtain some generalizations of
the constructions we have worked out for SU(2).

3) In Example we have shown that the measure pg is also available in the spherically
symmetric and in the homogeneous isotropic case. Unfortunately, there we have no measure
on Zred,w at this point, just because we have not determined the set Pony, (of continuously
but not Lie algebra generated curves) so far.

More concretely, if this set were empty, in both cases we would have a normalized Radon
measure on Aeq, because:

e Then, Zred,w = Zred,g X ﬁred,FN would also hold in the homogeneous isotropic case,
since we have shown in Remark that the set (Ppg of free curves having non-trivial
stabilizer) is empty there.

e In the spherically symmetric case we would have
Ared,w = Ared,g X Ared,FN X Ared,FSv

where we already have constructed a normalized Radon measure on zred,FS by hand, see

Remark [6.6121

4) As already mentioned in Remark in the homogeneous isotropic case where ¢ is
transitive, Zred,g is a physically meaningful quantum-reduced configuration space by itself.
This is because the cylindrical functions that correspond to Py’ then separate the points in
A, so that A is canonically embedded via ¢t: A — ﬁg. Our constructions here provide us with
the reduced kinematical Hilbert space L? (jlred,g, ,ug), which even specializes to the standard
LQC kinematical Hilbert space L?(IRBohr, 4Bohr) if We apply the same constructions for the

subset Pi” C Py, see end of Example and Remark

More precisely, we have seen that each of the maps in

102The respective spaces Y} of Adg[d] -equivariant maps ¥: spang(g) — S are either {e} or [Rponr]"-
g
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ok
Ared —/—— < — Kl
11:{Bohr = «Ared 1 ;e > Ared,l Ared,l

~ m
Hom,eq (Pl , MOI”F) = RBohr

1R

is a homeomorphism and that their concatenation is just the identity on Rpen,. In par-
ticular, this means that Aeq) = jred’l holds, i.e., that quantization and reduction com-
mute in homogeneous isotropic LQC if one only uses linear curves in order to define
the reduced spaces. Moreover, in Remark we have seen that, due to this fact,

the standard quantum configuration space Areq1 = Hom,eq (P, Morg) can be embedded

into the full quantum-reduced space Ayedw = Homyeq(P., Morg) just by the simple map
u: Homyeq (P, Morg) — Homyed (P, Morg) defined by

u(e)(y) :=ely) if ye P and u(e)(y) =1 for v € PN\P.

7 Homogeneous Isotropic LQC

The traditional way to do symmetry reduction in LQC is to quantize the set A,oq of connections
invariant under the given symmetry group. In a first step, this means to calculate the spectrum
Ared o Of a separating C*-algebra of the form R = Py |a,., € B(Area) [2,20]. Here, B, denotes
the C*-algebra of cylindrical functions which is generated by some distinguished set P, of curves
in base manifold. Now, in [20] it was shown that A,eq, can be compatibly embedded into the
quantum configuration spac A, of LQG iff

mw |Arcd g ma |Arcd (107)

holds. Here, compatibly means that there exist an embedding of A,eqqo into A, which extends
the inclusion map A;.q < A in the sense of Lemma [3.7]

Now, in standard homogeneous isotropic LQC [2], see also Remark the set Py~ of linear
curves is used to define the reduced configuration space. It was shown in [13] that here does
not hold, i.e., that no compatible embedding of Aeq1 = RBonr into A, exists. In particular, for
the embedding strategy proposed for states in [9] this is disadvantageous. So, to fix this problem,
in [20] the reduced space Ayeq., was introduced. It was shown that Aeq., is compatibly embedded
into A,, via the map E (see, e.g., ), and that it is homeomorphic to the compact Hausdorff
space R U IRBOhrFEI

In order to define the dynamics of the reduced theory, it is reasonable to construct natural
measures on the reduced quantum configuration spaces. Indeed, such measures usually define
L?-Hilbert spaces on which representations of respective reduced holonomy-flux algebras can be
defined. Now, being a compact abelian group, A;eq1 = Rponr admits the Haar measure uponr,
which defines the standard kinematical Hilbert space LZ(RBOhr, [Bohr) Of homogeneous isotropic
LQC. However, for

R U RBohr g@ = »Aredw

the situation is much more difficult as there no Haar measure can exist. This will be shown in
Proposition [7.6| where we prove that it is impossible to equip R L Rponr with a group structure

103Recall that this is the spectrum of the C*-algebra of cylindrical functions that correspond to the set P, of
embedded analytic curves in R?.
104The topology on R L Rponr is quite tricky. Details will be given in Subsection
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continuous w.r.t. its Gelfand topology. Basically, this is because existence of such a structure
would imply that |[Rpon:| = |R| holds. This, however, contradicts that for the cardinality of Rpop,
we have |Rpone| > [28|. Then, changing the focus from Haar to normalized Radon measures, it
is a crucial observation that upep, is the unique normalized Radon measure p on Rpop, for which
the pullbacks

E;*: LQ(RBohra M) — L2(1RBohrwu) ) f = f ° E;’

are unitary operators (even form a strongly continuous one-parameter group), cf. Proposition
Here, ¥': R X Rponr — RBonr denotes the unique extension (cf. Proposition of the
additive group action Lr: R X Apeq — Areq of R on Aeq = R. This fact is important because
the exponentiated reduced fluxes (“momentum operators”) are represented in this way.

Indeed, one now might ask whether the same condition singles out a normalized Radon measure
on R URpep,. We will show that this is the case (Corollary , and that this measure is given
by pBonr as well. In particular, the respective kinematical Hilbert space equals the standard one.
At this point, it is important to know that the Borel o-algebra of R LI Rpon, is just given by
B(R) UDB(Rponr) (the topology on R U Rpepn, has not such an easy decomposition), so that

(A U Ag) := pponr(A2) for A € B(R) and Az € B(Rponr)

is a well-defined normalized Radon measure on R U Rpgpy, cf. Lemma In the last part, we
will equip this space with a projective structure in order to construct further normalized Radon
measures thereon. We then close this section with a brief discussion of the corresponding L?-
Hilbert spaces they define. On the way, we will show that quantization and reduction do not
commute in homogeneous isotropic LQC. As in Subsection this will be done by constructing
elements of ﬂred’w which cannot be contained in A;eqw = Aredw = R U Rpohr-

7.1 Setting

In the following, let P := R®x SU(2), G := Gg = R3x,SU(2) (g = R? xs5u(2)) and ® := g, see
Example [3.3] Moreover, let v, := (z,1) for all z € M and recall (see (15)) that the corresponding
set Ayeq of ®-invariant connections consists exactly of the elements of the form (c runs over R)

Wy (T, G) = €A1 [3(T0)] + 571GV (80, Gs) € Tig) P.

z,8

So, in the sequel we will always identify A,.q with R. In contrast to Subsection (see Convention
, by Rpon, in the following we will understand the spectrum of the C*-algebra Cap(IR). This
has just conceptual reasons and makes mathematically no difference as Lemma 3.8 shows. Finally,
R will always denote the C*-algebra (vector space direct sum)

R = Co(R) & Car(R) C B(R).

As shown in [20], this is exactly the restriction C*-algebra ‘Bu|a,., (under the identification
Ared = R), so that Apeq, = Spec(Cp(R) @ Cap(R)) holds.

7.2 Group Structures, Actions and some Measure Theoretical Aspects

In this subsection, we show that the Haar measure on Rpgny is the unique normalized Radon
measure which is invariant under the spectral extension ¥': R X Rponr — Rponr of the additive
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group action Xr: R X R — R, (v,t) — v + t. In particular, we will identify ppony as the unique
normalized Radon measure p on Rpey, for which the maps X" : L2(Rponr, ) — L?(RBohr, i),
f > foX! are unitary operators for all v € R, see Proposition In particular, we prove that the
one-parameter group {3/"},cr then is strongly continuous. We show that the same invariance
condition "] singles out a normalized Radon measure on R, which then even defines the same
Hilbert space LQ(IRBOhr, UBohr) as in the traditional approach. This reinforces the standard LQC
approach from the mathematical side. On the way, we verify that, in contrast to Rponr, there
exists no continuous group structure, hence no Haar measure on R.

Since the group structure on Rpop, canonically extend@ the additive group structure on R,
we might start by clarifying whether there is also such an extension of the additive group structure
on R to R = Spec(Cp(R) ® Cap(R)). Indeed, this would provide us with a Haar measure on R,
in particular, invariant under the action X: R x R — R, (v,Z) — tr(v) + Z. This is because X
would be the unique extension of £ in this case just because it fulfils the respective conditions
from Proposition However, already Proposition shows that such an extension of the
additive group structure on R cannot exist.

Corollary 7.1
There is no continuous group structure on R = Spec(R) which is compatible with the additive
group structure on R.

PROOF: Assume there is such a group structure. Then it is necessarily abelian as it is so on a dense
subset of Spec(R). So, by Proposition there is a set & C R of characters on R generating
M. Since R C R, these characters are continuous, hence contained in Cxyp(R). For this, recall
that Cap(R) is generated by all continuous characters on R. Since Cap(R) is closed, the C*-
subalgebra generated by K must be contained in Cap(R). This contradicts that 8 generates R
just because Cp(R) # {0}. n

Anyhow, using Proposition we obtain the following left actions on R and Rpep,-

Corollary 7.2

There are unique left actions A: Ry x R — R and £: R x R — R, separately continuous in R,
that extend the multiplication -: Rzg x R = R, (A, t) = X-t and the translation +: R xR — R,
(v,t) — v+t, respectively, in the sense of . The action X is continuous and A is not so. The
same statements hold for Rponr instead of R where we denote the respective actions by A’ and ¥’
in the following. For ¥’ we have

Y (v, ) =r(v)+v¢  VveR,VY € Rponr (108)
with LfR: R — Rponr the canonical embedding and + the addition in Rponr-

PROOF: Obviously, Co(IR) & Cap(R) is invariant under pullback by -y and +, for all A # 0 and all
v € R. This is obvious for Cp(R) and follows for Cap(R) from -5(x;) = x and +5(x;) = €l? - x;
for all [ € R. Consequently, Proposition [4.4][I] provides us with the unique left actions A and X.
Obviously -%: A+ [t — ¢] is not continuous (w.r.t. the supremum norm) for I # 0, so that
A is not continuous by unitality of R and Proposition In contrast to that, for each f € R

105N amely, that the translations w.r.t. the spectral extension 3: R x R — R of Sg: R x R — R act as unitary
operators. Here, it is equivalent to require that this measure is invariant under the translations X, for all v € RR.
106We have 1 () + tr(y) = tk(x + y) for tg : R — Rponr the canonical embedding from Subsection
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the map +%(f): v — [t — f(v+1)] is continuous, so that Proposition shows continuity of
Y. Here continuity is clear if f = y; for some [ € R because

I+ () =+l = [ = ], = [ =

It follows for f € Cy(R) from equicontinuity of f|x for each compact subset K C R, and that for
each € we find K C R compact with |f(t)| < €/2 for all t € R\K.

In fact, let K/ := K + [—4,0] for 6 > 0. Then for all t € R\K’ and all v € [-§,4] we have
t,v+t e R\K, hence

ilv 1lv’

Axilloe = le

1f(@) = flo+ )] < [fO] +[fv+1)] <e. (109)
Moreover, by equicontinuity of f|x we find W C R a neighbourhood of 0 € R, such that

If(t) — ft+v)| <e Vte K',YveW. (110)

So, combining (109)) and (110]) we obtain
lf(t) — ft+v)| <e VteR, YveWn[-4,4],

hence ||+ (f) — flloo < € for all v € W N [=4,6]. This show continuity of +} at v = 0. Then,
replacing f by +,(f), we deduce continuity of +7, for all v' € R.

Finally, holds because the left action R x Rponr = RBonr, (v,%) — t (v) + 1 fulfils the
condition from Proposition hence equals the unique left action X' n

At the end of this subsection, the action X will provide us with a uniqueness statement concerning
normalized Radon measures on R. The first step toward this is performed in the following

Proposition 7.3
1) If p is a normalized Radon measure on Rpony with X! (1) = p for allv € R, then p = pupohy-
In particular, pponr 4 the unique mormalized Radon measure p on Rpony for which the
translations E;*: LQ(]RBOhr, w) — LQ(RBOhr, w), f = foX! are unitary operators.

2) The one-parameter group {3, }oer of unitary operators

3, L*(Riohr, #Bokr) — L*(RBohr, fBotr) , [ — fo X,
is strongly continuous.

PrOOF: 1) We have to show that u(¢ + A) = p(A) holds for all ¢ € Rpon, and all A €
B(Rponr). Then, by inner regularity, it suffices to show the case were A is compact.

So, let K C Rponr be compact. Since p is finite, it is outer regular. Hence, for each n € N+
we find Uy, € Rpony open with K C U, and u(U,,) —pu(K) < L. By continuity of the addition
in Rpopr, for each ¢’ € K the preimage +1(U,,) contains a set V' x W’ with V', W’ C Rpohr
open, Ogonr € V' and ¥’ € W' C U,. By compactness of K there are finitely many such
quantities Ogonr € V{,...,V{ € Rponr, W1,..., W] C U, with K C W{U---UW] = W'
and V/ + W/ C U, for 1 <i < k.

Let V! C V/N---NV/ be a neighbourhood of Opony. By denseness of ¢z (R) in Rpon, we
find 2/ € R with ¢ — ¢ (2') € V'. Then, ¢ — /(2') + K C V' + W' C U,, so that for each
n € N5 we obtain from (108)) that

(W + K) — () B (4 — i (2) + K) — u(K) < p(Un) — p(K) < 1,
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hence u(K) > p(y+K). Then, applying the same argument to the compact set K’ := ¢+ K
and ¢’ := —1, we see that u(¢ + K) = u(K') > p(y' + K') = p(K).

For the last statement assume that E;* is unitary for each v € R. Then, for K C Rponr
compact, xx the characteristic function of K and v € R we have

W(K) = / i du = / e du = o xie) = (20 (e)s 20 (o)
IRBohr Bohr

= /]R Xut ()4 P dps = / Xet )+ = p (iR (v) + K).
Bohr

RBohr

By the first part this already implies the translation invariance of p.

We have to show that w.r.t. the L?-norm || - || we have

lim Eéf(f) = f vf € L2<]RBohra,uBohr)a Vv eR.

v'—=v

Since pon: is regular, C(Rpop;) is dense in L?(Rponr, 4Bohr ). Moreover, since 0% (f) () =
f(g(v) + 1), for each f € C(Rpohr) and each € > 0 we find § > 0 such that

120 () = (Nllee <€ Vo' € Bs(v).
In fact, by 3.8 Satz in [16], for € > 0 we find a neighbourhood U of Opony € Rponr with

b=y elU = |f(Y)-f¥)l<e

Now, for § > 0 suitable small we have ¢ (Bs(0)) € U. This is just because 3 is continuous
as Cap(RR) consists of continuous functions on R, see Proposition 2.1 in [20]. Thus, for all
v' € Bs(v) we have ¢z (v) — U (V') = tg (v —v') € U, hence

1557 () = 2 (Nl = S [f (@ +r(v) — f@+ () <e
because ¢ + 1 (v) — ¥ + 1 (V) = 1y (v) — g (V') € U.

So, let f € L?(RBonr, Bohr) and v € R be fixed. Then, for € > 0 by denseness of C(Rpor)
in L?(RBonr, 4Bohr) We find f. € C(Rpon:) with ||f — fell2 < $. Moreover, by the above ar-
guments we find 6 > 0 such that |2} (fe) = X" (fe)[loe < § for all v’ € Bs(v). Consequently,
by translation invariance of pgop, for all such v’ we have

I1S5°(F) = 0 (Hll2 < 127 = B (fllz + 125 (fe) = B (fo)ll2 + 1257 (f) — S0 ()12
= [If = fella + 11%5 (fo) = =" (fll2 + 1 fe = fll2 < e n

Although Corollary [7.1]states that no extension of the addition in R to R exists, one should clarify

whether there is any other continuous group structure on this space. Indeed, such a structure
would provide us with a canonical measure on R. In addition to that we want to prove an analogue
to Proposition For this and the considerations in the last subsection, it is comfortable to use
the following description of R proven in |20].
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Lemma and Definition 7.4
Let 0 #Y C R be open and Cyy (R) the set of continuous function vanishing at infinity and
outside Y. Then Corollary B.2 in [20] shows Cyy (R)NCap(R) = {0} and that Ay := Cpy(R) P
Cap(R) C B(R) is closed. Moreover, if we equip Y U Rpon, with the topology generated by the
sets of the following types: [20]

Type 1: Vuao with open V CY
Type 2: K¢ U Rpohr with compact K CY
Type 3:  f~HU) U G(f)"1(U)  with open U C C and f € Cap(R),

then Proposition 3.4 in [20] states that Spec(y) = Y U Rpone holds via the homeomorphism
€: Y URBonr — Spec(y) defined by

(111)

£(z) = f= f(@) ifzeyY
| fo® fap = T(far) i T € Rpohr-

Here, fo € Co(R) and fap € Cap(R). It is straightforward to see that the subspace topologies
of Y and Rpenr w.r.t. the above topology coincide with their usual ones. In abuse of notatio@
we define Ry := Y U Rponr as well as Rl := R U Rponr, and equip these spaces with the above
topology. [ ]

Except for Proposition where we show that the spaces Ry cannot be equipped with group
structures continuous w.r.t. the above topologies, we will only deal with the space R in the sequel.
Observe that it is immediate from the above definitions that R is a dense open subset of R.

Lemma and Remark 7.5
1) In contrast to the standard LQC case, for R the canonical embedding tr: R — R does not
map R into the Rpony part, but canonically onto the R part, i.e.,

W ur(z)) =z € RCR. (112)

This is because £(E7 (ur(2)))(f) = f(z) = &(x)(f) for all f € R.

2) Since £ is a homeomorphism, the action ¥ from C’orollary transfers via & to an action
Y:RxR—RonR,ie., X(v,7) := 1 (Z(v,f(f))). Then, for allv e R andz € RC R

we have

S0, 2) 22 (S0, im(2)) = € (r(v+ 7)) =mv+2) eRCR. (113)
So, for T € Rponr C€ R and {Ta}acr C R C R a net with lim, x4 = E we have

) 13

Y(v,7) = lim X (v, 74 lim g (v + 7o) = tg (v) + 7 € Rponr C R. (114)
(0% (0%

Here, L%R: R — Rponr denotes the canonical embedding of R into Rponr, so that in the last
term by + we mean the addition in Rpenr- The last step follows from

107Indeed, in order to be in line with the notations in we rather should define R := Ared,w and introduce
another symbol for R U Rponr. However, in the following we will rather deal with the space R U Rponr, so that
it is much more convenient to use the memorable symbol R for this space. Besides this, the spaces R LI Rponr,
Ared w and Ayed ., are homeomorphic, and using R for R U Rponr our notations are in line with [20].

108 ere we mean the limit in R
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Claim 1: {tgr(v 4+ 2a)}tacr and {3 (v) + (g (@a)tacr (considered as nets in R) have the

same limit in R, i.e.,

liCIYn IR(V + o) = ligl (tr(v) + tr(za)). (115)

In fact, using Claim 1, Equation is clear from limg v (zo) = T. This, in turn,
holds because by the definition of the topology on R for each | € R and each open subset
U C C with (x;) € U we find ag € I such that zo € x; (U) for all @ > ap, hence
Us(za) € Glxt)"H(U) for all @ > ap. This shows limy Vg (2a) = T because the Gelfand
topology on Rponr equals the initial topology w.r.t. the Gelfand transforms of the functions
xi for 1 € R, see e.g. Subsection 2.8 in [(20).

Proof of Claim 1:

e For each compact K C R we find ag € I such that x, € [—v+ K]¢, hence v+x, € K€ for
all « > ag. This is clear from lim, 1o = T because T € Rpone C€ R and [—v+ K] URBonr
is an open neighbourhood of T.

e Hence, since we know that {tr(v + 7o) }aes converges to some element of R, it must

converge to some Z € Rponr C R.

e In order to show R D {/5(v) + tg(za)}aer — Z € R, it suffices to verify that we find
ap € I with Ui (v) + g (wa) € GOxi)"H(U) for all a > ag. Herel € R and U C C is open
with Z(x;) € U. In fact, then the above net converges in Rponr to Z € Rponr, hence in R
because the subspace topology of Rpenr w.r.t. the topology on R equals its usual one.

e Now,

= (R +R(za)) ) €U
= x) xza) €U

= r(v+a)€x; (U),

1R (0) + gk (za) € GOx) ()

and we find ag € I such that tr (v +z4) € x; ' (U) for all a > ag. The last statement is
clear from limy, g (v + zo) = Z and that a base of neighbourhoods of Z in R is formed by
finite intersections of sets of Type 2 and Type 3. T

3) Observe that £(T)(xi) = 1 for alll € R iff T € {Or,Oponr}- In fact, of course we have
E@)(xi) =1 for T € {OR, Oponr }- Conversely, if &(T)(xi) =1 for alll e R and T =y € R,
then y = 0 because &(T)(Xr/2y) = 1 if y # 0. Similarly, if T € Rponr, then T(x;) = 1 =
OBonr(Xr) for alll € R. Hence, T = Oponr as the functions x; generate Cap(R). O

The next proposition shows that R = R cannot be equipped with a group structure continuous
w.r.t. its canonical Gelfand topology.

Proposition 7.6
There is no continuous group structure on Ry .

PROOF: Assume there is such a group structure with multiplication x and unit element e. In a
first step we show that there is some T € Ry for which the continuou restriction *[Z, - ||Rg,p,
takes at least one value in Y. So, assume that this is not the case. Then *[Z, Rponr] € Rpohr

109Recall that the relative topology of Rponr w.r.t. that on Ry equals its usual one.

123



for each T € Ry so that for 1 € Rpone # ) we obtain e = *[w_l,z/}] € Rponr- It follows that
Ry = *ﬁy, e] C Rponr, which is impossible. Consequently, we find Z € Ry and 1 € Rpone such
that T« € Y. Then, the preimage U of Y under the continuous map (7, - ||r,,,, 1 & non-empty
open subset of Rpopr. Since Rpepr is compact, finitely many translates of the form v + U cover
RBohr, so that for the cardinality of Rpon, we obtain

n
Uwi+U
i=0
But, this is impossible because |Rpon:| > |R|. In fact, by Lemma Rponr = Spec(Cap(R)) is
in bijection with the set Rj,, . of all (not necessarily continuous) unital homomorphisms I' — S!
for I the dua@ group of R. Consequently, it suffices to show that |Ry,,,.| > |R].

For this, let {7o}acs C R be a Q-base of R, ther['"]|7| = |R| and we obtain an injective map
v: 21 — Rpp, as follows. For J C I let

n

| |U

=0

n

|_|*[T, U]

1=0

<

<n[R| = |R].

’RBohr‘ -

0 ifaeld
5‘](0‘)::{ o ifagJ

Ta

and define ¥(J): T — St by ¥(J)(x0) := 1 as well as

n l
(J) (xr) == qui.mi (05(a;)) for = Zqi Ta, With q1,...,q € Q.
i=1 i=1
Then ¢: J +— 1(J) is injective because ¥(J)(xqr,) = 1 for all ¢ € Q iff & € J, hence |Rpon| =
Rl > 2] = 2] > [R]. .

So, since it is not possible to equip R, i.e., R with a canonical Haar measure, we now concentrate
on some general properties of normalized Radon measures on R.
Lemma 7.7

Let B(R), B(R) and B(Rpen:) denote the Borel o-algebras of the topological spaces R, R and
Rponr, Tespectively.

1) We have B(R) = B(R) U B(RBowr)-

2) If i is a finite Radon measure on B(R), then so are plem) and pilg(rg,,,)- Conversely, if
w1, pe are finite Radon measures on B(R) and B(Rpon), respectively, then

w(A) == p1 (ANB(R)) + p2(ANB(Rponr)) for A€ B(R) (116)
is a finite Radon measure on B(R).

PrROOF: 1) First observe that the right hand side is a o-algebra and remember that the relative
topologies on R and Ry, w.r.t. the topology on R coincide with their usual ones. So, if
U C R is open, then U NR, U N Ry are open in R and Rpepy, respectively. Hence,
U= (U N IR) (] (U N RBohr) - %(R) (] %(RBohr)v showing that %(ﬁ) - %(R) (] %(]R'Bohr)‘
Conversely, if U C R is open, then U is open in R, hence B(R) C B(R). Finally, if
A C Rpop, is closed, then A is compact in Rpop,. This implies compactness of A in R, so
that A € B(R) for each closed A C Rpop,. Since B(Rponr) is generated by all such closed
subsets, we have B(Rpon:) € B(R) as well.

19The set of all continuous characters on R, i.e., v = {x: |l € R}.
HIR equals the set F of all finite subsets of @ x I. Then |F| = |Q x I| since @ x I is infinite. Similarly, one has
|Q x I| = |I] because I is infinite.
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2) The measures plgr)y and plpwg,,,) are well-defined by (1)) and obviously finite. So, it
remains to show their inner regularity. But inner regularity is clear because a subset of R
or Rponr is compact iff it is so w.r.t. topology on R. For the second statement, let u be
defined by . Then p is a finite Borel measure by (1) and its inner regularity follows by
a simple €/2 argument from the inner regularities of p; and po. n

So, by the above lemma each normalized Radon measure on R can be written in the form
p(A) =t p(ANR) + (1 —t) p2(ANRponr) VA€ B(R) (117)

for t € [0,1] and normalizeleEI Radon measures pq and po on B(R) and B(Rpenr), respectively.
So, the crucial step is to fix the measures uq, uo and the parameter t.

For the dependence of the induced Hilbert space structure on the parameter ¢ observe that
for p1, pe fixed, t1,t2 € (0,1) and py,, pe, the respective measures defined by , the spaces
L2(E, Mtl) and LQ(E, ,ut2) are isometrically isomorphic. In fact, for A € B(R) let x4 denote the
respective characteristic function and define the map

¢: L* (R,um —>L2 ]RﬂtQ

fH\/>x f+

Then, ¢ is an isometric isomorphism just by the general transformation formula, so that the
parameter ¢ gives rise to at most 3 different (not canonically isomorphic) Hilbert space structures,
see also Lemma [T.T9

Anyhow, the next corollary to Proposition [7.3] and Lemma and Remark shows that
invariance of ;v under the translations ¥,: R — R already forces t = 0 and 12 = fiBohr-

XRBohr :

Corollary 7.8
1) If u is a normalized Radon measure on R with $,(1) = p for all v € R, then p = [iBohr,
i.e., t = 0. In particular, if one wants EZ: LQ(E, ,u) — LQ(E, ,u), f = foX, to be unitary
for each v € R, then t has necessarily to be zero and po has to equal ppoh:-

2) The one-parameter group {i;k)}ve]R of unitary operators

i:: LQ(E7 ,uBohr) — L2(E7 ,uBohr) ) f = f © iv
is strongly continuousm

PROOF: 1) Assume that ¢ > 0 and that p; is finite. If p(K) > 0 for K C R compact, then
1 (R) = oo just by o-additivity and (113). Consequently, 41 (K) = 0 for all compact subsets
K C R, hence p1 = 0. Now shows that po fulfils the requirements of Proposition
so that puo = pponr follows. Finally, unitality of the maps X, implies u(X(v, K)) = p(K)
for each compact subset K C R and each v € R, hence ¥,(1) = u for each v € R by inner
regularity. Consequently, the last part is clear from the first one.

H20f course, if t = 0 or t = 1, it doesn’t matter which normalized Radon measure we choose on R or Rponr,
respectively. So, in these cases we allow ;1 = 0 and ps = 0, respectively.
H30f course, here we mean UBohr (A) := Bohr (A N Rponr) for all A € B(R U Rponr)-
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2) This is clear from Proposition since by (113) and (114)) we have
1Z260F) = Zor(Dllo = 15 (Flwpon) = B0 (flmpo )z Vf € LR o) - m

Even if Corollary singles out the measure pupony (and support the standard LQC approach
from the mathematical side), in the following subsections (except for the next short one), we will
be concerned with the construction of a projective structure and consistent families of normalized
Radon measures on R. Basically, this will be done in analogy to the construction in [39] for the
standard LQC configuration space Rpony, and we will end up with singling out the measures of
the form

u(A) =t p(N(ANR) + (1 = 1) pBone(A N Rporr) VA € B(R) (118)

for t € [0,1]. Here, p(\) denotes the push forward of the restriction of the Lebesgue measure to
B((0,1)) by a homeomorphism p: (0,1) — R. At least the Rpon, part of these measures then is
in line with the above Corollary. The main intention for our investigations is rather to provide a
mathematically satisfying derivation of these choices than a physically justification for this.

However, before we start constructing measures, we first investigate the inclusion relations
between the spaces A, and Ared o = Aredw = R = R.

7.3 Quantization vs. Reduction

As we have seen in Remark Ared1 = jred’l holds, i.e., quantization and reduction commute
if one only uses linear curves for both the full quantum configuration space 4, and the quantized
reduced classical space A;eq1. In this short subsection we show that this is no longer true if one
takes all embedded analytic curves into account. We start with the following diagram sketching
the relevant spaces and their relations

— £ ilre c a Q
R—R ?(; -Ared,w - -Ared,w 4;> Homred(Pwy MOI‘F) = Homred(Pwa SU(2))

LRT bAred T

R—— Ared »

R

Embedding: ¢:=Qorody of: R = Homyeq(Pu, SU(2))
and denote the concatenation of all these maps by ¢: R — Homyeq(Py, Morg). Here, Q = €, for

v the canonical choice v, = (z,1) for all z € M, cf. last two parts of Remark To better
understand what this map ¢ actually does, observe that:

a) For p the standard representation of SU(2), we obtain from that

Qor@) () = @([H)),; VvEPw VEEA

b) Applying the definitions, we find that

ity @) ([R5)ig) = 2, ([h5]i) = 2([A5)ij 0 ia) = z([PY)iflA)  YZ ER.
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c¢) For a linear curve «v: [0,1] — R3, ¢t + ¢ - ¥ for v € R? with ||7] = 1 we have

[h]ij (W) = (pr2 o Pﬁjc) (7(0),1) = exp(—cl - 3(7)) cos(—cl) - 1 + sin(—cl) - 3(7).

Here, the first step is clear from the definitions, and for the second step one might apply
to the fact that v(t) = p(exp(t¥),0) is Lie algebra generated (cf. Definition [5.412)), i.e.,
v =120, for 0 € R* and 7 € R? x su(2) the Lie algebra of Gg = R? x, SU(2).

Using this, we obtain the following Corollary to Lemma and Definition

Corollary 7.9

If s(z)(y) = 1 for all v € P, then T € {OBohr; OR }-

PRrROOF: It suffices to show the claim for curves as in ¢) with ¢ = €; and [ > 0. Then
1= (@)(3) = (2o ) (7, (@) ()

2 ((Fale@) (121), 2 (€@ (B)1aa),

©) ({(:U)(c — cos(—lc)) 1&€(T)(c > sin(— lc)))
1€(Z)(c > sin(—lc)) &(T)(c > cos(—lc)) )’

hence £(Z)(x;) = 1 for all [ € R. So, the claim is clear from Lemma and Definition n

Proposition 7.10
We have Aredw © Ared w-

=

8 \

PROOF: Let €: R5¢ x (0,27) — R be a function with
é(ryx+y) =é(r,z) + €é(r,y) mod 27

whenever r € Ry and x,y,z + y € (0,27). Then, we obtain an element € € Homyeq(P,,, SU(2))
if we define (cf. (b) in Convention for the definition of P, and v2'%)

Ewy_{mp(wn m)3() iy ~a v € Pe

1 else.

Here, well-definedness follows from analyticity and Lemma Moreover, invariance is
straightforward to see. Here, Or corresponds to the choice € = 0 (wg is the trivial connec-
tion) but the homomorphism that corresponds to Opep; is not so easy to compute. However,
it is easily checked that choosing different maps € we obtain more than two different invariant
homomorphisms with e(y) = 1 for all v € P. Since by Corollary [7.9] that cannot all come from
an element of R = Aeq ., the claim follows. =

For the rest of this section we will be concerned with the construction of a projective structure
(and consistent families of normalized Radon measures) on the space R = R. The next subsection
(except for Lemma then serves as a motivation for our later constructions. Basically, there
we discuss which problems occur if one tries to use projection maps involving the identification
of R with a subset of Hom,eq(P,, Morp). However, some of the investigations are quite technical
and exhausting, and the reader not so interested in these difficulties may just take a look at the
second part of Lemma in order to proceed with Subsection

n,r

H40bserve that v5'7 ~par @ —|—7(0 5(n))| [0,7/2] for 7 considered as point in R?® and (0, 3(7) € R> x su(2) = g, see also
beginning of the next subsection.

127



7.4 Motivation of the Construction

Recall that the C*-algebra | = Cp(R) ® Cap(R) is already generated by parallel transports
along linear and circular curves [20], i.e., that the C*-algebras R = P |4,., and Ric = Pic|a,.,
coincide. Here, B, denotes the C*-algebra of cylindrical functions that corresponds to the set of
curves P. = Py U P, for P, and P, defined as in Convention This means that an element
of R is completely determined by its values on the generators of Py, i.e., on the matrix entries
of the parallel transport functions R 3 ¢ Pifc for v € P.. It follows that, using the natural
identification of R with a subset of Homeq(P,,, Morg) via ¢’

Sk

Ared —/—— C  —
B ? Ared,w - Ared,w 4;> Homred (Pwy MOI"F),
Embedding: ¢':=ro0i% R < Homeq (P, Mory)

the values of the homomorphism ¢’(z) that corresponds to z € R are completely determined by
its values on the elements of P.. Moreover, due to the invariance of ¢’(z) it suffices to consider
elements of P, which are of the form

V= Ye VIi>0 and Yrp = o7 Vr>0,V71e(0,2r), (119)

75377“51

i.e., we can fix a traversing direction for linear curves, and a midpoint together with a traversing
plain for the circular ones.
Now, since all these curves are Lie algebra generated, it makes sense to use the maps m, (see

also b) below) from Lemma and Definition which we have introduced Subsection in order
to investigate the space Hom,qq (PQN , MorF). For this observe that

a) The elements of Py, are Lie algebra generated because
T+ Y51 = V(70 | 0] and ’Yng; ~par T+ ’Yg),;,(ﬁ))‘[o,f/z} (120)
where the second equivalence is clear from the explanations to in Convention
b) For p € P, x = 7(p) and § € g\g, we have
(7,1, €) = A(Pexpus)(P) e (Vo) () VI< 75

Hence, m,(g,1,-): Homyeq(P,Morp) — SU(2) assigns to € € Homyeq(P, Mory) the difference
in F’yg(l) between @y, ;7 (p) and 5(75\[07”)(1))). Obviously, m,(g, 1, -) is continuous.

c) The big advantage of using the maps m, is that for § € g\g, and ¢ € Homeq(P, Mory) fixed,
im[m,(g, -, €)] is contained in a maximal torus in SU(2). This is clear from Lemma and

(combine with (82))
(G, L+ 1 e) =my(g, 1) - mp(G, 1, €) for LI, I +1' < G-
It follows that R is separated by the maps

T — ﬂ(071)((€1,0)7l’g’<£)) VIi>0 (121)
Ty &> 71'(7«.51,]1)((0,7'3), %,c’@)) Vr>0,V71 e (0,2n).
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Here, m; and 7, correspond to the choices, see (119) and (120))

M =000 = (0,1) and Vo = Vfgig)l[o,f/z}, p=(r-é,1),

respectively.
The question whether we can use these projection maps in order to define reasonable measures
on R then depends crucially on in which way the maximal tori (see c)) the maps

Te(2): Rso — SU(2), I — m(z) and Ter(z): (0,2m) = SU(2), 7 = mrr(2)
are mapping to depend on x € R.
e For 7, this question is immediately answered since a straightforward calculation shows that

v, e [cos(lc) isin(le)) _
m(tr(c)) = hy, (W) = <isin(lc) cos(le) ) = exp(—lcr) € Hr, Vee R,VI>0 (122)
for tg: Areq = R — R the canonical embedding of R into Spec(Cap(R) @ Cp(R)). Since
im[tr] is dense in R, since 7 is continuous and since H, is closed, we even have m(R) = H,
for all [ > 0. So, using 7; as projection maps, we could take the Haar measure on H,, = S! in

order to define a respective consistent family of normalized Radon measures.

e For 7, , this dependence is more complicated. Here, a straightforward calculation shows that

T r(tr(C)) = exp (%Tg)il -hY (W) = exp (= Z-[2rc- 12+ 7)) (123)

holds for all ¢ € R, 7 > 0 and all 7 € (0,27). Hence, 77, (¢r(c)) € Hiope.rytry) for all T € (0, 27),
and we will see in Lemma that 7, (R\im[tr]) = H, holds for all 7 € (0,27) and all
r > 0. Further details of the set im[m,,] are provided in Lemma

Then, applying to (123) we immediately see that for 3, := 1/c?r? + 1 we have

@) [ cos(BeT) + % sin(f.7) C—: sin(f.7)
mrr(im(e) = ( e sn(Br)  cos(Ber) — ok smmcﬂ) B

From this, we conclude the third part of the following

Lemma 7.11
1) Let f € Co(R) vanishes nowhere. Then, the functions {f} U {xitier generate a dense *-
subalgebra of Co(R) @ Cap(R). If f is in addition injectivem then f generates a dense
*-subalgebra of Cp(R).

2) Each nowhere vanishing injective f € Cy(R) is a homeomorphism onto its image.

3) The matriz entries of parallel transports along all linear curves (with some fized traversing
direction) and one single circular curve already generate Co(R) @ Cap(R). In particular,
the projection maps {m };>0 and mr, for some fized reals T, > 0 separate the points in R.

5Recall that im[f] C C.
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PrROOF: 1) Since f(z) # 0 for all z € R, the *-algebra & generated by {f - x;}ier € Co(R)
separates the points in R and vanishes nowhere. Consequently, & is dense in Cy(IR) by the
complex Stone-Weierstrass theorem for locally compact Hausdorff spaces. Since Cap(R) is
generated by the functions {x;};cr, the first claim follows. If f is in addition injective, then
the *-algebra generated by f is dense in Cy(RR) because f separates the points in R and
vanishes nowhere.

2) Let R U {cc} denote the one point compactification of R. Then f: R L {oco} defined by
f(c0) :=0and f|g := f is continuous and mJectlve hence a homeomorphism onto its image

im [f ] = im[f] U {0}. Consequently, f~! = ]im[f is continuous as well.

3) If I = 7r, then and show that
f(e) == [mrr(tr(c))] 11— [mer(e))]y; = cos(Bet) + ﬁ sin(f.7) — cos(crr) (125)

for all ¢ € R, hence f € Cy(R). Now, if f(c) is zero, then sin(5.7) must be 0, hence cos(5.7)
must be +1. Then cos(crr) must be +1 as well, showing that ¢ = T2 for some n € Z\{0}.
In fact, n = 0 means sin(7/2) = 0, which contradicts that 7 € (0,27). Then

cos(f3.T) = cos <7Tm/1 + 4W2n2> )

but ny/1+ ; n2 ¢ 7 because 0 < 7 < 2mw. Consequently, cos(f.7) # 1, which contradicts
that cos(ﬂcT) — cos(ert) = 0. This shows that f vanishes nowhere. Now, since

v o @@ , @@
hy, (W) = m(r(c)) as well as i, (W) exp(573) - Trr(tr(C)),

f is also contained in the *-algebra generated by the parallel transports along v;, and
{11}1>0- Since by (122) this algebra also contains all characters x;, the first statement
follows from Part .

Now, applying the definitions we find that
m(z) = (2 (7 )il 4wa) )55
Trp(z) = exp( ) h (&([h:ﬂr]ijLAred))’ij'

So, since we have shown that the functions {[h% ]| 4,., }1>0 and [RY_ ]ij| .., generate Co(R)®
Cap(R), and since z € Spec(Cy(R) ® C’AP(R)) the claim follows. n

(126)

Remark and Definition 7.12
1) In the following, for k£ € N>; by S* we understand k-fold product of the unit circle S, i.e

Sk .= (Sl)k. Since in the beginning of this section we have fixed the structure group of our
principal fibre bundle to be SU(2), this will not be in conflict with our notations.

2) As already stated in Remark |6 ﬂ, in standard homogeneous isotropic LQC the quantum
configuration space is given by Rpopr and homeomorphic to Homyeq (P, SU(2 E There,
a projective structure and a consistent family of normalized Radon measures can be defined
as follows: [39]

116The homeomorphism was basically due to the fact that invariance restricts the value of € € Homyea (P7, SU(2))
on a linear curve traversing into the direction ¥ to the maximal torus Hy in SU(2).
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e One considers the set I of all Z-independent tuples L = (I1,...,l;) with [1...,l; € R,
and defines (I ...,1l;) <z (I ..., 1},) iff l; € spany (I} ...,1},) forall 1 <i < k.

e One defines the projection maps by 77 : Rponr — SIH =: X7, ¢ — W(xn), - ¥v(x))
as well as the transition maps by

/ /
7k ST gt

k' ; 1% )
(Sl, ey Sk;’) — (Hizl S;lzl’ N '7Hi:1 S?lk> :

where [; = z;“l:l n;;l; for 1 <4 < k. Surjectivity of 77 then is clear from Lemma
and Convention [3.9/2 and continuity is immediate from the definitions of the Gelfand
topology on Rpen:- The remaining properties of a projective limit then are easily verified.

e One fixes the Haar measures | on S ILl = X. This gives rise to a consistent family of
normalized Radon measures which exactly corresponds to the Haar measure on Rpgy,,

i.e., mL(1Bohr) = 1|, €€, €.g., proof of Lemma
Equivalent to this is to define the projection maps (cf. for the definition of Hg,)
7+ Homyea (P, SU(2)) — [Hy ) =: X1
€ (5(’761,l1)’ e 75(751711@))

(and respective transition maps), and p; the Haar measure on [Hg, ]!/l = SIFL O

The third part of Lemma shows that for the separation property from Definition [2.2][3] it
suffices to consider the projection maps m; for all [ > 0 and 7, for some fixed reals 7,7 > 0. Let

n] i =mof and 7T./,.’T =Ty 0€&.

Then, for L € I as above and

iy L

7 R — [Hg |V

— [y ! =

T — (Wll(a?), . ,ﬂ'lk(l'))
we also have im[7}] = [Hgl]w So, using the projection maps 7} we can use the Haar measure
on [H51]|L|, and the crucial question then is whether such a canonical measure also exists on the

image of 77’77,,“ In addition to that, a suitable directed set and corresponding transition maps have
to be defined. For these reasons we now investigate the image of 7, . in more detail.

Lemma 7.13
Let 7,7 > 0 be fixed.

1) @, . (R) is of measure zero w.r.t. the Haar measure on SU(2).
2) There is no proper Lie subgroup H C SU(2) that contains 7/, (R).
3) We have 7. .(R) = @, .(R) U Hr, with

7, +(RBohr) = Hr, and 7 (R) N 7, (Rpohr) = {£1}.

T,T

H7We even have 7} (RBohr) = [Hgl]lL‘ (for Reonr € R=RU Rionr). This follows from Lemma and Convention

B3
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4) Let ay, ::w M—%fornEZﬂ) and

T2
Ay = (a-1,a1) Ay = (an,apt1) for n>1 Ay = (ap—1,ayn) for n < —1.

Then, w is ingective for all n € 7,

ol An

7 (an) =1 iff |n| is even 7 (an) = =1 iff |n| is odd

as well as w_, (Ap) N7l . (An) =0 for all m,n € Z with m # n. For increasing |n|, the sets

By, = [agn, agny1)] for n>1 B, = [agm-1),azn] for n < -1
merge to H, in the following sense. For each ¢ > 0 we find ne € N> such that for |n| > ne
we have
Vse€B,:3s € Hy,i|ls—5lop <e
PROOF: The proof can be found in Appendix [F.1] n

The first and the second part of the above lemma already show that it is hard to equip im[n7. ]

with a reasonable measure. In addition to that, it is difficult to define a reasonable ordering, i.e.,

a directed set labeling the projection spaces. Indeed, the first thing one might try is to define

m, < m or m < m . However, then one has to define reasonable transition maps between
| and im[n}], i.e., maps

lm [TrT T

Ty im[n; ] — im[m] or Ty: im[m] — im[n ]
with 770 Ty = 7} . or 7. o Ty = 7, respectively. This, however, is difficult and even impossible
if rr=1:

e Let 0,2F e RC R, ice., 0= ¢ 1(tr(0) and 2F = ¢ (ur (%)), cf. (T12). Then

71(0) = m(m(0) B 1=m(Z)  bue m«()! p(—37) £ o (31).

Here, the inequality on the right hand side is clear because by Lemma [7.13/l4] we have that
v r(x) =7 . (y) for  # y enforces 7} .(x) = £1. Consequently, there cannot exist a transition

ﬂ-T,T’
map Ty : im [7rl] — im[n’ ] as then

T’I’]

77 (0) = (T2 0 m))(0) = (T2 0 m)) (3F) = 7., (%)
would hold.
e We have 7/ ,.(ag,) = 1 for all n € Zg, so that for a transition map Ty: im[m] — im[n’ ] we
would have
T(1) = (Ty 07, ) (azn) = 7 (az,) Vn € Ziy.
Then, for € > 0 we find ne € N>g such tha@ lagn — lag(nq1y € Be(2m)\{27} for all n > n..

But, m(azn) = m)(agm+1)) implies lag(, 1) — lazn, = kp27 for some k,, € Z, so that we get a
contradiction if we choose € < 2.

81t is clear that limp[lazn — 27n] = 0, and that lim,[laz, — lasmi1)) = 27 Hence, we have to show
that we find no € N»; such that laz, — lagmt1y # 27 for all n > no. Now, lazn — lagmyr) =

2nm [\/1 — W — \/1 — m] +2m4/1 — W, where the first summand tends to zero for n — oo

and is negative. Since the second summand is smaller than 27, the whole expression is smaller than 27 for n
suitable large.
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However, by Lemma @@ it suffices to take one fixed circular curve 7., into account. So, we
can circumvent the above transition map problem by sticking to the directed set I from Remark
and Definition More precisely, we can incorporate the map 7T;_’r into each of the projection
maps as follows:

1) For I 5 L= (ly,...,lx) we can define

) R — SU(2)F!

T (m, (T),...,m, (T), 7 (T)).
But, then im[7} ] crucially depends on the Z-independence of Iy, ..., I, r7, as, e.g., we have
7 (RBohr) = [Hg)F x Hgz, in the Z-independent case and 77, (Rpon) = S if I1,..., 1k, 77

are multiples of the same real number. For this, observe that we cannot restrict to inde-
pendent tuples without adapting <. This is because for (I’,r7), (I”,r7) independent and
(I1,...,lg) € I an upper bound of L' := ', L := 1" the tuple (l1,...,l,r7) does not need
to be independent as well. In fact, for I’ = [ — r7 this cannot be true for any such L. All
this makes it difficult to find transition maps and suitable consistent families of measures
for these spaces.

2) Basically, Lemma is due to the fact that the Cp(R)-part of the function a: R >
¢ = (7, ,(c)11 (given by the (125))) vanishes nowhere. Now, we can try to find some
analytic curve v and a projection map 7,: R — SU(2) such that for one of the entries
(my(+))ijs 1 < 4,5 < 2 the Cap(R)-part is zero and the Cy(IR)-part vanishes nowhere and
is injective. Then, condition from Definition would hold for the projection maps
7 R — im[m,] U [Hg ]*

N
(@)= M@ HTER (127)
77 (%) if T € Rpohr

and we could define the transition maps and measures on im[r,] and [Hz]* separately.
However, even if such a curve v exists, it is not to be expected that it is easier to find
reasonable measures on im[r,] than on im[n/ .

In the next subsection we will follow the philosophy of the second approach. Here, we use distin-
guished generators of Co(R) @ Cap(R) in order to define projective structures on R in a more
direct way. This will allow us to circumvent the image problem we have for the projection maps
77’7,7" and 7. So, the crucial part will not be to define the projective structure, but to determine
the respective consistent families of normalized Radon measures. Here, the main difficulties will
arise from determining the Borel o-algebras of the projection spaces.

7.5 Projective Structures on R

In this subsection, we will use the characters {x;};cr and an injective nowhere vanishing f €
Co(R) in order to define a projective structure on R. This will be done in analogy to the definition
of the projective structure on Rpep, presented in Remark and Definition cf. [39]. In the last
part, we will use this construction in order to fix the normalized Radon measures .

We start with the following definitions, resetting (and collecting) some of the notations we
have introduced in the previous subsection.

Definition 7.14
Assume that f € Cy(R) is injective and f(x) # 0 for all x € R.
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1) Let I denote the set of all finite tuples L = (I3,...,lx) consisting of Z-independent real
numbers lq, ..., l;. Moreover, let |L| denote the length k of the tuple L.

2) For L, L' € I define L <z L' iff |; € spany(l},...,1},) for all 1 <i < k.
3) For L € I and k := |L| define 77: R — im[f] U SIF =: X by
{f(x) ifzeR

(@00, F0uy)) i T € R (128)

7w (T) ==

and equip Xy with the final topology 7 w.r.t. this map. Recall that here and in the
following S* just denotes the k-fold product of the unit circle S*.

4) For L, L' € I with L <z L' define nt': X1, — X1 by ¥ (y) :=y if y € im[f] and

K K

k/
T (s1,... 80 = <Hsi"i,...,Hsi";> if :Zn;l; (129)
i=1

i=1 i=1

Withnéeror1§j§k2|L|, 1<i<Kk =|L|and (s1,...,s1r) € SVl

We now show that R is indeed a projective limit of { X }c;. Moreover, we determine the Borel o-
algebras of the spaces X. This will lead to an analogous decomposition of finite Radon measures

as

for the space R. Here, the crucial point is to show that the subspace topologies of im[f] and

SIEl w.r.t. the final topology on X are just their canonical ones. For this, we will need the
following definitions and facts:

Let Ty and 77, denote the standard topologies on im[f] and S LI, respectively, i.e., the subspace
topology on im[f] inherited from R and the product topology on S/

For L € I let 71 Rpone — SE denote the restriction of 77, to Rpops-
For L,L' € I with L <y L' let 7?5: SIE'I — SILI denote the restriction of 7T£/ to SIL.
For ¢ € Qo define x;,4 := x;/q as well as X := G(x;) for I € R.

Since each L € I consists of Q-independent reals, we find (and fix) a subset L+ C R for which
L := L ULt is a Q-base of R. It is clear that, together with the constant function 1 = o,
the functions {Xl,n}(l n)eLxNs, denerate a dense *-subalgebra of Car(R).

For p € N>j and A C St let p: ST — St s+ sP and define
VA:={scS'|s"ecA} as well as AP = {sP|s € A}.

If © C S'is open, then OP and VO = p~1(O) are open as well. This is because p is open
(inverse function theorem) and continuous.

For A C S* and m € Z\{0} we define

Asign(m) — A ifm >0
{Zz]|z€ A} ifm<O.

The next lemma highlights the relevant properties of the maps 7y,.

Lemma 7.15
Let L = (ll,...,lk) el.

134



1) Let v € Rponr; ¢ € Q and s; € S for 1 <i<k. Then we find ¢’ € Rpone with

V(X)) =80 V1<i<k and () =v(x) VIeE spanQ(LJ‘).
2) Letl € R, m; € Z\{0} and O; C S* open for 1 <i <n. Then, for m:=|my-...-my| and
pi = ||, we have
~ o1 () = ~ ~—1 %/, sign(m;)\ _ ~—1 ) 130
Xl,mi( Z) = Xi,m [ z] = le( ) ( )
i=1 i=1

for the open subset O = [”\1/(’)1 ]Sign(ml) n---N [’”(7 On }Sign(mn) C st

3) Let A;, B CS' for1<i<k,1<j<gq, with By, ..., By # 0. Moreover, let hy,...,hg € R
such that Iy, ... lg, hi,..., hy are Z-independent. For my,...,mg,ni,...,ng € Z\{0} let

~—1 o—1 o—1 -—1
W im Ry (AD) Q- AR5 (A0 N Rk (B NNk (B) . (131)
U U’
Then 7, (W) = A" x -+ x A",
4) The map Tp, is surjective, continuous and open.

ProOOF: 1) This is clear from Lemma and Convention
2) Obviously, O is open, and since the second equality in (130]) is clear, it suffices to show that

Rim(A) =%y (A=)

holds for A C S, 1 € R, p € N>; and m € Z\{0}. To show the inclusion D, let ¢ €
~—1 sign(m)
X1 || ([{/Z] ) Then

Y (Xtpml) € [W]Sign(m) = D (Xtm) = [ (Xt.p-fm))?] sienm) ¢ g,

For the converse inclusion let ¢ € ¥} (A). Then

[¢(Xl,p.|m|)1?] sign(m) _ Y(xim) € A — (Xt pim|) € [W}Slgn(m).
3) We proceed in two steps:

o We show that 7, (W) = 7 (U). For this, it suffices to verify that 7.(U) C 7 (W)
because the converse inclusion is clear from W C U. So, for ¥ € U we have to show
that 77 (¢) € 7 (W). Since B;j # (), we find z; € Bj for all 1 < j < ¢. By [l) we find
Y" € Rpohr With ¢'(X1;.m;) = ¥ (X1;m;) € Ai for all 1 <i < k and ¥'(xn,n,) = 2j € Bj
for all 1 < j < g. This shows ¢/ € UNU’' = W, hence 71(¢') € 7,(W). Consequently,

%L(w) = (1/}<Xl1,7m)a ) w(Xlzmmk)) = (w,(Xth)v v 71/}/(Xlk,mk)) = %L(wl) € %\L(W)

e We show 7. (U) = AT™ x --- x A", For this, it suffices to verify the inclusion D as
the opposite inclusion is clear from the definitions. To this end, fix 1) € Rpenr and let
s; € A" for 1 < i < k be chosen freely. Then, we find z; € A; with 2" = s;, and
provides us with some 9" € Rpohy With ¢ (x1;,m,;) = 2z € A; for 1 <i < k. Then ¢/ € U
and ¢ (x;,) = 2] =s; € A" forall 1 <i < k.
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4) Continuity of 7, is clear from
(AL LA =X (AN (A VAL A C ST

and surjectivity is clear from Part |3)) if we choose Ay, ..., A, = S*.

For openness observe that the *-algebra generated by 1 and {x;mn} (1m)ETXZ)\ {0} is dense in
Cap(R) as it equals the *-algebra generated by the all characters x;. Then, the subsets of
the form anll((’)) with O C S' open and (I,m) € L x Z\{0} provide a subbasis for the
topology of RBohrE So, a base of this topology is given by all finite intersections of such
subsets. Then Part shows that, in order to obtain a base for the topology of Rponr, it
suffices to consider intersections of the form (131) with Ay,..., A, Bi,..., B, open in S'.

For this, observe that since 5(\1_711(51) = Rponr, we can assume that all I1,...,[; occur in
each of these intersections. Then, since A]" is open if A; is open, Part |3|) shows that 7, is

aln open map. ]

The next lemma highlights the crucial properties of the final topology of the spaces Xr. In
addition to that, the Borel o-algebras of these spaces are determined.

Lemma 7.16
Let L= (l,...,lx) € 1.
1) The subspace topologies of im[f] and S'*I w.r.t. the final topology Ty on X1, are given by T;
and Ty, respectively. For a subset U C im[f] we have U € Ty iff U is open in Xp.
2) X1, is a compact Hausdorff space.
8) We have B(X1) = B(im[f]) U B(SH) and

(a) If p is a finite Radon measure on B(X1), then plpim(s) and u|%(S\L|) are finite Radon
measures as well.

(b) If puy: B(im[f]) — [0,00) and ps: B(SIH) — [0,00) are finite Radon measures, then
p(A) == pp(ANim[f]) 4+ ps (A n SIE) VAeB(Xy) (132)
s a finite Radon measure on %(XL).

PrROOF: 1) We first collect the following facts we have already proven during this section:

W C R is open in Riff W is open in R.
If B C Rponr is open, then there is U C im[f] such that f~!(U) U B is open in E
(e) f: R — im][f] is a homeomorphism.

)

b) U € Tp iff W;l(U) is open in R.
)
)

19T his is because the Gelfand topology on Rpon: equals the initial topology w.r.t. the Gelfand transforms of the
elements of each subset B C Cap(R) that generates a dense subset € of Cap(R), see e.g. Subsection 2.3 in [20].
Consequently, the Gelfand topology on Rponr equals the initial topology w.r.t. the functions 1 and xi,m for
(I,m) € L x Z\{0}. Since the preimage of a subset of C under G(1) is either empty or Rponr, the claim is clear.

120By (e) this is equivalent to show that we find an open subset W C R such that W U B is open in R. But, this
is clear if B = X; ' (O) for some open subset O C S* and | € R (see Type 3 sets defined in Lemma and Remark
. Since the sets of the form 5{1_1((9) provide a subbasis for the topology on Rgonr, the claim follows.
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(f) 7r: Ronr — SIEl is continuous and open.
We start with the statements concerning the subspace topologies:

im[f]: Let U C im[f]. Then:
U is open w.r.t. the topology inherited from X,

<— JV C S such that U UV is open in X7,

<= 3V C St such that 7, (U LUV) is open in R (b)
<= 3V C Sl such that f~H(U)UR; (V) is open in R

<= f71(U) is open in R (c)
— UeTy (e)

Sl Let V C Sl Then:
V' is open w.r.t. the topology inherited from Xp,

<= 3 U Cim[f] such that U UV is open in Xy,

<= 33U Cim[f] such that 7, (U LUV) is open in R (b)
<= 3U Cim[f] such that f~1(U) U7, (V) is open in R

<= 7 1(V) is open in Rponr (a),(d)
— VeT, (f)

Finally, observe that im[f] is open in X; because 7 '(im[f]) = R is open in R. Then
U C im[f] is open in X, iff U is open w.r.t. the topology on im[f] inherited from X. Since
this topology equals 7T, the claim follows.

The spaces X1, are compact by compactness of R and continuity of 77,. For the Hausdorff
property observe that Tr contains all sets of the following types:

Type 1’: fOvVyu o with open V C R,
Type 2°: f(Ke) u SHE with compact K C R,
Type 3’: f(Xlzl(O)) U pr;I(O) with O C S! open and 1 < i < k.

Here pr;: SIEl 5 st (s1,...,8k) — s; denotes the canonical projection. In fact, the preim-
age of a set of Type m’ under 77, is a subset of R of Type m, cf. Lemma and Remark
Then, by injectivity of f the elements of im[f] are separated by sets of Type 1°.
Moreover, if € im[f] and (si,...,s;) € S, then we can choose a relatively compact
neighbourhood W of f~!(z) in R and define U := f(W) and V := f(W°) U SIEl. Finally,
if (51,...,8%),(5},...,5}) € SIEI are different elements, then s; # s, for some 1 < i < k.
Then, for open neighbourhoods O, 0’ C S of s; and s, respectively, with O N O’" = ) we
have [f(xl:_l((’))) Upr; H(O)] N [f(xlzl(O’)) Upr; (O] = 0.

We repeat the arguments from the proof of Lemma

If U C X is open, then U Nim[f] € 7; and U N S¥ € T, by Part [1). This shows
U e B(m[f]) UB(SIH), ie., B(XL) C B(im[f]) UB(SI*) as the right hand side is a
o-algebra. For the converse inclusion recall that U € T; iff U is open in X7, again by the
first part, hence B(im[f]) € B(Xy). Finally, if A C S/ is closed, then A is compact w.r.t.
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Tr. This means that A is compact w.r.t. subspace topology inherited from X, implying
that A is compact as a subset of X;. Then A is closed by the Hausdorff property of X, so
that A € B(X[), hence B(SI*) € B(X,). Now,

(a) The measures M|%(im[f]) and u|;3( glLly are well defined and obviously finite. Their inner

regularities follow from the fact that subsets of im[f] and S ILl are compact w.r.t. Tr
and Tr,, respectively, iff they are so w.r.t. the topology on Xy, just by by Part .

(b) If w is defined by (132)), then p is a finite Borel measure and its inner regularity follows
by a simple €/2 argument from the inner regularities of ps and pg. n

Combining the Lemmata and we obtain

Proposition 7.17
1) R is a projective limit of {X1}rer-

2) A family {ur}rer of measures ur on Xy, is a consistent family of normalized Radon mea-
sures w.r.t. {Xp}rer iff the following holds:

(a) There ist € [0,1] such that for each L € I and A € B(X1) we have
pr(A) =t pp(Anim[f]) + (1 =) ps,r(An SIH)

for py and pg normalize Radon measure on im[f] and SIEL respectively.
(b) For all L,L' € I with L <z L' we have 7% (us.1/) = ps.z.

PrROOF: 1) The spaces X, are compact and Hausdorff by Lemma Moreover, each 7p,
is surjective by Lemma If L,L' € I with L <z L', then continuity of the maps 7TI€/ is
clear from 7r£/ omy = my, which, in turn, is immediate from multiplicativity of the functions
x;. Finally, condition (3) from Definition follows from injectivity of f and the fact that
the functions {x;};cr generate Cap(R).

2) Let {ur}rer be a consistent family of normalized Radon measures w.r.t. {X}rer. Then
Lemma shows that for each L € I we have

pr(A) = i L(Anim(f]) + s (AN SIE) VA e B(Xy)

for fif, and pig r, finite Radon measures on im[f] and S Ll respectively. Then, consistency
forces that fif,, = iy, for all L, L' € I. In fact, by Lemmathere is a unique normalized
Radon measure p on R for which puy = 7y (u) holds for all L € I. Consequently, for each
A € B(im[f]) and all L € I we have

A (A) = pr(A) = mr(p)(A) = u(F71(A)) =: fip(A).

By the same arguments, (b) follows from consistency of the measures {ur}rer. Finally, if
t := fig(im[f]) € (0,1), then (a) holds for pus := iy and pgy = sy for L € 1. If
t =0, we define pugy := pg, for all L € I and if £ = 1, we define puy := py.

1217f ¢ equals 0 or 1, we allow py =0 or pus 1 =0, respectively.
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For the converse implication let {/J,L} rer be a family of measures py, on Xy, such that (a)
and (b) hold. Then, Lemma [7.16/13| shows that each py is a finite Radon measure, and
obviously we have pr(Xy) = 1. Fmally, from (b) for A € B(X},) we obtain
Flup)(A) = A
nr () (A) = po (7)) (A)
=tpuy ((wf’)_l(A) N im[f ) (1—1t) ps, ((Wf’)‘l(A) N SIL’I)

]
=ty (Anim[f]) + (1 t)usy((f) (AnsiH))

=t py (ANim[f]) + (1 — ) 7] (ps.r) (AN SIH)

~ g (AN mlf]) + (1~ ) s (A SIH)

= pr(A). n

7.6 Radon Measures on R

In this final subsection we use the results of the previous part in order to fix normalized Radon
measures on IR. Due to Proposition this can be done as follows:

1 Determine a family of normalized Radon measures {51} r.e; on S!*I that fulfil condition (b).

2 Fix an injective and nowhere vanishing element f € Cy(RR) with suitable image together with
a normalized Radon measure ;y on im[f].

3 Adjust t € [0,1].
In the following let A denote the Lebesgue measure on B(R). Moreover, for B € B(R) and
7: B — R measurable let n(\) := 77()\\%(3)).

Step 1

We choose pg 1, to be the Haar measure p | on SIE because:

e This is canonical from the mathematical point of view, and these measures fulfil the required
compatibility conditions as the next lemma shows.

e This is in analogy to the case Rpop, [39], where this choice results in the usual Haar measure
on this space, see Remark and Definition [7.12

e These measures will suggest a natural choice of f and py in Step 2.

Lemma 7.18
Let pg: B(im[f]) — [0,1] be a normalized Radon measure and t € [0,1]. For each L € I let

pr(A) =t pp(ANim[f]) + (1 = t) pr (AN SIH) VA€ B(Xy).

Then {ur}rer is a consistent family of normalized Radon measures and the corresponding nor-
malized Radon measure p on R is given by

wA) =t 7 ) (ANR) + (1= 1) pBonr(ANRpon) VA€ B(R). (133)
PRrROOF: Let L € I, A € B(X) and p be defined by (133]). Then

mr()(A) = ¢ 7 (ug) (F (AN Lf)) + (1) ppon (77 (AN SIF1))
=t pp(ANm[f]) + (1 1) T (ppon) (A 0 SIEI).
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So, if we know that 71 (1Bonr) = | holds for all L € I, the claim follows. In fact, consistency
of {pr}rer then is automatically fulfilled because p is a well-defined normalized Radon measure.
Now, in order to show 77, (uBonr) = WL it suffices to show translation invariance of the normalized
Radon measure 7 (upony). For this, let 7 € S ILI. Then, by surjectivity of 77, we find 1 € Rponr
with 7 (¢)) = 7. Since 77, is a homomorphism w.r.t. the group structur on Ry, for A C SIE
we have

R (4 ALNA) = Fo() A (FrH(A) = 7 A

Applying 7?21 to both sides gives 9 + %EI(A) - ﬁZI(T - A). For the opposite inclusion let
"e 7741 - A). Then ¢/ — ¢ € 77 1(A) because 71, (v — ) = 771 - 71 (¢') € A. Consequently,
L L

e+ %ZI(A), hence %ZI(T CA)CY+ %ZI(A), ie., ¥+ %EI(A) = %21(7' - A). Then

71 (1Bohr) (T - A) = pBonr (7, (T - A)) = piBonr (¥ + 7' (A))
= HBohr (%ZI(A)) = 7L (KBohr) (A)

for all A c %(S |L‘). This shows that 77, (uponr) is translation invariant. =

Step 2

If £, f" € Cy(R) both are injective and vanish nowhere, then the respective projective structures
from Definition are equivalent in the sense that the corresponding spaces X, X} are home-
omorphic via the maps Qp: X — X} defined by Qp|giz := idgi) and Qplimg = f' o f i
Moreover, if 17 is a normalized Radon measure on im[f], then ps = (f'o f~')(py) is a normal-
ized Radon measure on im[f’], and it is clear from that the corresponding Radon measures
w, 1/ on R from Lemma coincide. All this makes sense because, in contrast to Cap(IR) where
we have the canonical generators {x;};er, in Co(R) there is no distinguished nowhere vanishing,
injective generator f € Cp(R). But, this also means that we can restrict to functions with a
reasonable image such as the “shifted” circle S := 1+ S'"\{—1} C C. In fact, here the analogy
to SIZl suggests to use the Haar measure p1 on S'. So, in the following we will restrict to the
elements of the subset

F:={f € Co(R) |iml[f] = S;},
where for each f € F we define pip := pus: B(SI) — [0,1]. Here,
ps(A) = p(A=1) = +1(m) YV AeB(S)
with 4+1: SI\{-1} 2 2+ 2z + 1 € S.. It follows that
{FHup) | f €F} ={p\)|pecH} (134)

for [H| the set of homeomorphisms p: (0,1) — R.

Proof of (I34): We consider the function h: (0,1] 3 t + e27=1/2l € §1 Then py = BN 1)
and for f € F we have f~(juy) = p(X) for H 3> p:= f~! o+ 0h|(g1). Conversely, if p € H, then
p()\):ffl(,us) for F > f:= +lohop*1, -

122Confer Subsection
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So, if we restrict to projective structures arising from elements f € F, then Lemma and ([134)
select the normalized Radon measures of the form

ppt(A) =t p(A)(ANR) + (1 = t) pBohr(ANRponr) VA € B(R) (135)

for p: (0,1) = R a homeomorphism and ¢ € [0, 1].

Step 3
To adjust the parameter ¢ € [0, 1] we now take a look at the Hilbert spaces H,; := L? (E, Mp,t)-

Lemma 7.19
For A € B(R) let x4 denote the corresponding characteristic function.

1) If p1,p2: (0,1) = R are homeomorphisms and t1,t2 € (0,1), then
w: LQ(E7 lupl,tl) - Lz(ﬁ7 HP27t2)

(s \/E(XR%/J)O (p1opyt) + (1:t1) XRpone * ¥
to 2)

is an isometric isomorphism. The same is true for

(2 le,l — Hpg,la w — (X]R : Ip) © (pl Op2_1)7
©: 7‘[;;170 — 7‘[,;27(), w —> w

2) If t =1, then H,1 = L*(R,p()\)) = L*(RR, ) for each p € H. Here = means canonically
isometrically isomorphic.

ProOOF: 1) This is immediate from the general transformation formula.

2) The first isomorphism is just because f1y0(RBonr) = 0. Then, by the first part it suffices to
specify the second isomorphism for the case that p is a diffeomorphism. But, in this case
we have p(\) = ﬁ)\, so that for the isomorphism
2 2 1

we obtain

(p(h1), p(P2))r = /]R%wz ‘ll)‘dA = /]R?/Jl% dp(A) = (Y1, 92) () - n

7.7 Summary

1) In Subsection we have shown that quantization and reduction do not commute in ho-
mogeneous isotropic LQC, i.e., that the inclusion Ayedw = Aredw & Aredw is indeed proper
in this case, see also Example [5.17

=
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2)

In Proposition we have seen that the Haar measure on Rpgp, is uniquely determined by
the condition that the translations w.r.t. the spectral extension ¥': R X Rpohr — RBohr Of
the additive action =g : R xR — R, (v,t) — v+t act as unitary operators on the respective
Hilbert space of square integrable functions. In addition to that, we have shown that the one-
parameter group {¥."},er of unitary operators X" : L2(RBonr; #Bohr) — L?(RBohr, HBohr)
is strongly continuous. Corollary then states that the same unitality condition forces
[ = UBohr also for the space RURBowy = R = R = Areqw, and that the respective family of
unitary operators is strongly continuous as well. Consequently, if one wants to represent the
exponentiated reduced fluxes (“momentum” operators) by translations w.r.t. the respective
spectral extension ¥: R xR — R of Sr: R x R — R, there is only the measure gy, which
can be used. So, following these lines, one ends up with the same kinematical Hilbert space
as used in standard homogeneous isotropic LQC approach, namely L?(RBohr, #Bokr)-

In the last three subsections we have established a projective structure on R =2 R = Ayeq o in
order to construct further normalized Radon measures thereon. Here, using Haar measures
on tori we have derived the normalized Radon measures, cf. (135))

pipt(A) ==t p(M(ANR) 4+ (1 —t) ponr(ANRponr) VA€ B(R),

with ¢ € [0,1], p: (0,1) — R a homeomorphism and A the restriction of the Lebesgue mea-
sure to B((0,1)). Then, Lemma shows that up to canonical isometrical isomorphisms
the parameters p and t give rise to the following three Hilbert spaces:

1) Hp1 = L2(R, ) 2 L3R, p(\)) for all p €[Hl (Lemma |7.19)12)
2) Mo = L*(R, prpo,1o) for all p € H, t € (0,1) (Lemma [7.19}f1)
3) Mp0 = L*(RBohr, #Bohr) for all p € H (R is of measure zero)

Here, the Hilbert spaces in 2) and 3) are isometrically isomorphic just because their Hilbert
space dimensions coincide. In contrast to that, the cases 1) and 3) cannot be isometrically
isomorphic because L?(IR, \) is separable and L?(Rpohr, #Bohr) iS Dot 0.

Anyhow, even if L? (E, up,t) fort € (0,1) and L?(RBohr, #Bohr) are isometrically isomorphic,
there may exist representations of the reduced holonomy-flux algebra (reduced algebra of
observables) on the former space being not unitarily equivalent to the standard representa-
tion [2] on L?(RBohr, #Bohr)- SO, the next step towards physics might be to construct such
representations on LQ(E, ,up,t).

In the previous sections we have discussed the problem of symmetry reduction in quantum gauge
field theories, in particular, in the framework of loop quantum gravity. The problem of determining
respective sets of invariant classical connections forming the reduced configuration spaces of the
corresponding classical theories has been left open so far. This is the content of the final Section
Bl There we prove a general characterization theorem for invariant connections on principal fibre
bundles and, in particular, calculate the sets of invariant connections used in Subsection [5.3| in
order to show that (in the situations discussed there) quantization and reduction do not commute.

8 A Characterization of Invariant Connections

The set of connections on a principal fibre bundle (P, 7, M, S) is closed under pullback by auto-
morphisms, and it is natural to search for connections that do not change under this operation.
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Especially, connections invariant under a Lie group (G, ®) of automorphisms are of particular
interest as they reflect the symmetry of the whole group and, for this reason, find their applica-
tions in the symmetry reduction of (quantum) gauge field theories. [2,20] The first classification
theorem for such connections was given by Wang [36], cf. Case This applies to the situation
where the induced action ¢ acts transitively on the base manifold and states that each point in the
bundle gives rise to a bijection between the set of ®-invariant connections and certain linear maps
¥: g — 5. In [24] the authors generalize this to the situation where ¢ admits only one orbit type.
More precisely, they discuss a variatior@ of the case where the bundle admits a submanifold P
with 7(FPp) intersecting each g-orbit in a unique point, see Case and Example Here,
the ®-invariant connections are in bijection with such smooth maps ¥ : g x Py — s for which the
restrictions 1| gxTpy Py AT€ linear for all pg € Py and that fulfil additional consistency conditions.

Now, in the general case we consider ®-coverings of P. These are families { P, }qes of immersed
submanifolds{rfl P, of P such that each g-orbit has non-empty intersection with | J,c; 7(Pa) and
for which

T,P = T,Ps + de®,(g) + T, P

holds whenever p € P, for some o € I. Here, Tw,P C T, P denotes the vertical tangent space at
p € P and e the identity in G. Observe that the intersection properties of the sets (P, ) with
the @-orbits in the base manifold need not to be convenient in any sense. Here one might think
of situations in which ¢ admits dense orbits, or of the almost fibre transitive case, cf. Case [8:22]
Let Z: (G x S) x P — P be defined by ((g,5),p) = ®(g,p) - s~ for (G, ®) a Lie group of
automorphisms of (P, m, M, S). Then, the main result of this section can be stated as follows:

Theorem

FEach ®-covering {Py}acr of P give rise to a bijection between the ®-invariant connections on P
and the families {1a}acr of smooth maps 1o : g X TPy — 5 such that Va|gxT,, P, 15 linear for all
Pa € Py and that fulfil the following two (generalized Wang) conditions:

L g(pﬁ) + u_jpg - g(pﬁ) = quu_;pa = @Z’ﬁ(@ wp@) - §:(q) © wa (697U7pa)7

L4 ¢B(Adq(§)v 610,5) = p(Q) © ¢a(ga 6pa)'
Here, ¢ € G X S, pa € Po, pg € Pg with pg = q - po and Wy, € Tp, P, Wy, € Tp,Pg. Moreover,
g and s denote the fundamental vector fields that correspond to the elements § € g and § € s,
respectively, p is the map from Deﬁnition and Ady(g) := Ady(g) for q = (g,s) € Q.

Using this theorem, the calculation of invariant connections reduces to identifying a ®-covering
that makes the above conditions as easy as possible. Here, one has to find the balance between
quantity and complexity of these conditions. Of course, the more submanifolds there are, the
more conditions we have, so that usually it is convenient to use as few of them as possible. For
instance, in the situation where ¢ is transitive it suggests itself to choose a ®-covering that consists
of one single point, which, in turn, has to be chosen appropriately. Also if there is some m € M
contained in the closure of each (-orbit, one single submanifold is sufficient, see Case and
Example The same example shows that sometimes pointwisd 27| evaluation of the above
conditions proves non-existence of ®-invariant connections.

123 Amongst others, they assume the @-stabilizer of 7(po) to be the same for all py € Py.

124 At the moment assume that P, C P is a subset which, at the same time, is a manifold such that the inclusion
map to: Po — P is an immersion. Here, we tacitly identify T}, Po with im[dp,, ta]. Note that we do not require
P, to be an embedded submanifold of P. Details will be given in Convention

125Here pointwise means to consider such elements ¢ € G x S that are contained in the Z-stabilizer of some fixed
pa € P, for some o € 1.
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In any case, one can use the inverse function theorem to construct a ®-covering {P,}qer of
P such that the submanifolds P, have minimal dimension in a certain sense, see Lemma [8:8 and
Corollary This reproduces the description of connections by means of local 1-forms on M
provided that G acts trivially or, more generally, via gauge transformations on P, see Case [8.20]

Finally, since orbit structures can depend very sensitively on the action or the group, one
cannot expect to have a general concept for finding the ®-covering optimal for calculations. Indeed,
sometimes these calculations become easier if one uses coverings that seem less optimal at a first
sight (as, e.g., if they have no minimal dimension, cf. calculations in Appendix .

In the first part, we will introduce the notion of a ®-covering, the central object of this section.
In the second part, we prove the main theorem and deduce a slightly more general version of the
result from [24]. In the last part, we will show how to construct ®-coverings to be used in special
situations. In particular, we consider the (almost) fibre transitive case, trivial principal fibre
bundles and Lie groups of gauge transformations. Along the way we give applications to loop
quantum gravity.

8.1 &-Coverings
We will start this subsection with some facts and conventions concerning submanifolds. Then, we
provide the definition of a ®-covering and discuss some its properties.
Convention 8.2
Let M be a manifold.
1) A pair (N, 7n) consisting of a manifold N and an injective immersion 7: N — M is called
submanifold of M.
2) If (N, 7y) is a submanifold of M, we tacitly identify N and T'N with their images 7v(N) C M
and d7y (T N) C T'M, respectively. In particular, this means:
e If M’ is a manifold and x: M — M’ a smooth map, then for x € N and 7 € TN we write
k(z) and dk(¥) instead of k(7n(z)) and dk(d7 (7)), respectively.
o If U: G x M — M is a left action of the Lie group G and (H,7y) a submanifold of G,
then the restriction of ¥ to H x N is defined by

Ulgxn(h,x) := VY (rg(h), v (x)) vV (h,z) € H x N.
o Ifw: TM — V is a V-valued 1-form on M, then
(W) ooy (7, 8) = (Vw)(m,dr(¥)) V¥ (,5) € TG x TN.
e We will not explicitly refer to the maps 7 and 7y in the following.

3) Open subsets U C M are equipped with the canonical manifold structure making the inclu-
sion map an embedding.

4) If L is a submanifold of N and N is a submanifold of M, we consider L as a submanifold of
M in the canonical way. O

Definition 8.3

A submanifold N C M is called W-patch iff for each € N there is an open neighbourhood N C N
of  and a submanifold H of G through e such that the restriction ¥|gyy N is a diffeomorphism
to an open subset U C M.
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Remark 8.4
1) It follows from the inverse function theorem and!26
ey V(g X TeN) = deWy(g) + dp Ve (T N) = deWe(g) + TN VeeN

that N is a W-patch iff for each x € N we have T,M = d.¥,(g) + TxNE

2) Open subsets U C M are always W-patches. They are of maximal dimension, which, for
instance, is necessary if there is a point in U whose stabilizer equals G, see Lemma [8.5 1.

3) We allow zero-dimensional patches, i.e., N = {z} for x € M. Necessarily, then d.V,(g) =
T, M and V|g«n = ¥, |y for each submanifold H of G. O

The second part of the next elementary lemma equals Lemma 2.1.1 in [15].

Lemma 8.5
Let (G, %) be a Lie group that acts on the manifold M and let x € M.

1) If N is a U-patch with x € N, then dim[N] > dim[M] — dim[G] + dim[G,].
2) Let V and W be algebraic complements of deW,(g) in T, M and of g, in g, respectively.

Then, there are submanifolds N of M through x and H of G through e such that T,N =V
and TeH = W. In particular, N is a ¥-patch and dim|[N] = dim[M] — dim[G] 4+ dim[G].

PrOOF: 1) By Remark [8.4/1 and since ker[d.¥,] = g, we have

dim[M] < dim[d.¥.(g)] + dim[T; N] = dim[G] — dim[G]| + dim[N]. (136)

2) Of course, we find submanifolds N’ of M through xz and H’ of G through e such that
T,N'=Vand T.H' = W. So,if § € gand ¥, € T, N', then 0 = d(, )V (g, V) = deWs(g)+0s
implies de¥,(g) = 0 and ¢, = 0. Hence, § € ker[deV,] = g, so tha@ d(e,x)\II|T8H/XTeN/
is injective. It is immediate from the definitions that this map is surjective so that by the
inverse function theorem we find open neighbourhoods N C N’ of x and H C G of e such
that |« is a diffeomorphism to an open subset U C M. Then N is a U-patch and since
in (136]) equality holds, also the last claim is clear. n

Definition 8.6

Let (G, ®) be a Lie group of automorphisms of the principal fibre bundle P and recall the actions
@ and = defined by and , respectively. A family of Z-patches {P,}qcr is said to be a
d-covering of P iff each ¢-orbit intersects at least one of the sets 7(Py,).

Remark 8.7
1) If O C P is a Z-patch, then Lemma|8.5/1 and yield

dim[O] > dim[P] — dim[Q] + dim[Q)] = dim[M] — dim[G] + dim[G ]

126The sums are not necessarily direct.

127In fact, let V C d.W.(g) be an algebraic complement of T, N in T, M and V' C g a linear subspace with
dim[V’] = dim[V] and de¥,(V’) = V. Then, we find a submanifold H of G through e with T.H = V', so that
de,s)¥: TeH x T N — T, M is bijective.

128Recall that d(e,x)\PlTeH’xTeN’ : (ﬁ,ﬁz) = d(e,x)\IJ(deTH(ﬁ),dITN(ﬁz))~
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2) It follows from Remark 8.4l1 and d.Z,(q) = de®p(g) + Tv, P that O is a E-patch iff
T,P = T,0 + d.®,(g) + Tv,P  Vpe€O. (137)
As a consequence

e cach ®-patch is a =Z-patch,

e P is always a ®-covering by itself, and if P = M x S is trivial, then M x {e} is a
P-covering.

3) If N is a p-patch and sp: N — P a smooth section, i.e., w0 sg = idy, then O := 5¢p(N) is a
E-patch by Lemma [8.8]2. O

Lemma 8.8
Let (G, ®) be a Lie group of automorphisms of the principal fibre bundle (P,m, M, S).

1) If O C P is a Z-patch, then for each p € O and q € Q the differential d(;,)Z: T4Q x T,0 —
Ty.pP is surjective.

2) If N is a p-patch and so: N — P a smooth section, then O := so(N) is a E-patch.

PrROOF: 1) Since O is a Z-patch, the claim is clear for ¢ = e. If ¢ is arbitrary, then for each
mq € T5Q we find some ¢ € q such that m, = dL,q. Consequently, for w, € T,P we have
d(gp)Z (g, Tp) = d(g)Z(ALgd, Wp) = dpLy (d(e)=(T, ) -

So, since left translation w.r.t. = is a diffeomorphism, d, L, is surjective.

2) First observe that O is a submanifold of P because s is an injective immersion. By Remark
[R712 it suffices to show that

dim [Ty, ()0 + de®yy (1) (8) + T05 (1) P] > dim[Ty (,)P]  Va € N.
For this, let x € N and V' C g be a linear subspace such that T, M = T, N ®dcp.(V'). Then
Tso(x)O D de(bso(x) (V/) &) Tvso(:c)P because if szO(Ux) +d (I)so(x)( ) + v, =0 for v, € T, N,
g' € V' and ¥, € Ty (5P, then

0= dso(:p) (d SO(USC) +d (I)so(:p)( ) + vv) = Uy + de@x( )

so that ¥, = 0 and g’ = 0 by assumption, hence ¢, = 0. In particular, this shows

dim[de®,, (1) (7)) = 0 iff ' = 0, hence dim[d. P (5)(V")] > dim[dep.(V")], and we obtain

dim [T () O + de® (2 (8) + T050 () P

> dim [Ty(2)0 ® de®@y (o) (V') © Ty () P

= dim([T;, N| 4 dim[de Py, () (V)] + dim[S]

> dim[T, N] + dim[de, (V)] + dim[9]

= dim[P]. n
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8.2 Characterization of Invariant Connections

In this subsection, we will use ®-coverings { P, }aecr of the bundle P in order to characterize the
set of ®-invariant connections by families {14 }acr of smooth maps v¢,: g x TP, — s whose
restrictions wa|9><Tpa p,, are linear and that fulfil two additional compatibility conditions. Here,
we follow the lines of Wang’s original approach, which basically means that we will generalize
the proofs from [36] to the non-transitive case. We will proceed in two steps, the first one being
performed in the next subsection. There, we show that a ®-invariant connection gives rise to
a consistent family {1 }aer of smooth maps as described above. We also discuss the situation
in [24] in order to make the two conditions more intuitive. Then, in Subsection we will
verify that such families {14 }aer glue together to a ®-invariant connection on P.

8.2.1 Reduction of Invariant Connections

In the following, let {P,}aer be a fixed ®-covering of P and w a ®-invariant connection on P.
We define wq := (E*w)|rgxrp, and o = walgxTP,, and for ¢ € Q we let ay: Q X P — Q x P
denote the map oy (q,p) := (aq/(q),p) for g : @ — @ the conjugation map w.r.t. ¢’. Finally, we
let Adgy(g) := Adgy(g) for ¢ = (g,5) € Q and g € g in the sequel.

Lemma 8.9
Let g € Q, po € Po, pg € P wit {129 Pg = q - pa and Wy, € Ty, P,. Then
1) ws(i7) = p(q) © wa(Oq, Wy, ) for all 7 € TQ x TPs with d=(i7 ) = dL,,,,
2) (aiws) (m,ﬁpﬁ) = p(q) o wa (1, 6pa) for allm € TQ.
PROOF: 1) Let ij € TyQ x T,P3 for ¢ € Q. Then, sinc@ Lyw = p(q) ow for each ¢ € @ and
¢ *p=qpa=ps, we have
wa(1) = wep(d(g p)E(7)) = wpy (ALgWp,) = (Lgw)po (Wp,, )
= p(q) © wpa (u_jpa) =p q) © wpa (d(e,pa)E(qupa))
= p(g) © wa (0g, @y, ).

2) For my € TyQ let v: (—¢,€) = Q be smooth with 4(0) = my. Then

—

(O‘ZWB)(q/,pﬁ) (g, Opy) = W (aq(q')ps) (Adg(mmy), 6%)
= Weq'q 1 ¢-pa (%L:qu(t)q_lq Pa)
= (Lgw) g, (il g7 () - Pa)
= p(q) © Wy'-p, (d(gp)E (igr))

= p(‘]) © Wa(q' pa) (mQ’v Pa)

(=T b

Corollary 8.10
Let g € Q, pa € Pu, pp € Pg with pg = q - pa and Wy, € Ty, Po. Then for Wy, € Tp, Pz, G € ¢
and § € s we have

1290\ [ore precisely, Trys (Pg) = q - TP, (Pa) by Convention
1398ee end of Subsection
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i) g(pﬁ)+wpﬂ _g(pﬁ) :quwpa - iﬁg(g,wpﬁ)—gzp(q)0¢a(6g,wpa),
ii.) 15 ( Adg(9), 0ps) = p(9) © ¥ (8, Opa)-
PROOF:  i.) In general, for @, € T,P, § € g and § € s we have
d(ep)E((F, 5), Wp) = d(ep) (g, Wp) — 5(p) = g(p) + Wp — 5(p) (138)
and, since w is a connection, for ((g, §),w,,) € q x TP, we obtain
wa((g’ g)a lejpoz) = w(d(e,pa)q)(g ) - g(pa))
= w(d(epo)®(F, Wp,)) — & (139)
= Wa <§7U7pa) - S = 1/}01 (g7 u_jpa) - g
Now, assume that de®,,(g) + @y, — 5(p) = dLgwy,. Then dp\Z((F, 5), Wp,) = dLgip,
by ([138) so that wg((g, 5‘), Wps) = p(q) © Wa (69, Wy, ) by Lemma m 1. Consequently,
05 (5 T,) = 52 5((3,9), 1)
S (m@39) S
= p(Q) O Wy (quwpa) = p(Q) ° Yy (Oga wpa)-
i.) Lemma [8.9]2 yields
V5 (Adg(9):0py) = (w5) (e pg) (. 0y )
= p(‘]) o (wa)(e,pa) (ga Gpa) = P(Q) © @Da(ga Gpa)- [ ]

Definition 8.11
A family {4 }aer of smooth maps 9, : g x TP, — s which are linear in the sense that ¥ |gx1,, P,

is linear for all p, € P, is called reduced connection w.r.t. { P, }qer iff it fulfils the conditions i.)
and ii.) from Corollary

Remark 8.12
1) In particular, Corollary [8.10{4.) encodes the following condition

a.) For all g € I, (g,5) € q and iy, € T, Pg we have
d(pp) + W, —3(ps) =0 = Pp(g,dp,) —5=0.

2) Assume that a.) is true and let ¢ € @, po € Pa, pg € PB with P38 = q " Pa- Moreover, assume
that we find elements ), € Tp, Po and ((g, 5), Wp,) € q X T, Pg such that

d(e,pﬁ)E((ga §>7wa) = qu’wpa and 1/’5(@ "Epﬁ) - 8= p(Q) © @Z}a(ﬁ’gawpa)
holds. Then g (g",'zf)']’%) — 5" =plq) o wa(ﬁg,u_ipa) holds for each elemen (g, 3w _’;ﬂ) €
q X Tp, Pg with d(c )= ((g §"), 1, ) = dL,Wp,,. In fact, we have
de eps) = ((g g,5—3"), Wy, —wpﬁ) =0,
so that by (138) condition a.) gives
0% (g - §' W, — W) — (5= 7)) = [p(g,wp,) — 51— [(7’,d,) — 5]
= p(q) © wa(ongpa) - [7/’,8(57/715;)[3) - gl]

1310bserve that due to surjectivity of d(e,ps) P such elements always exist.
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3) Assume that dL,, € T, P holds for all ¢ € Q, pa € Pa, pg € Pg with pg = q - p, and all
Wy, € Tp, P Then, d(cp, = (dLgp, ) = dLgWy,, so that it follows from 2) that in this case
we can substitute i.) by a.) and condition

b.) Let ¢ € Q, pa € Po, pg € Pg with pg = q - po. Then
g (0g, dLqtiip, ) = p(q) © Ya Oy, W, ) YV @y, € Tp, Pa-

Now, b.) looks similar to 4.) and makes it plausible that the conditions 4.) and #.) from
Corollary together encode the p-invariance of the corresponding connection w. However,
usually there is no reason for dLqu,, to be an element of T), P3. Even for p, = pg and
q € QQp,, this is usually not true. So, typically there is no way to split up 4.) into parts whose
meaning is more intuitive. O

Remark immediately proves

Case 8.13 (Gauge Fixing)

Let Py be a E-patch of the bundle P such that m(Fp) intersects each ¢-orbit in a unique point
and dL,(T,Py) C T, for all p € Py and all ¢ € Q,. Then, a corresponding reduced connection
consists of one single smooth map ¢ : g x TPy — s, and we have p = q-p’ for ¢ € Q, p,p’ € Py iff
p=p and ¢ € Qp. So, by Remark the two conditions from Corollary are equivalent to:

Let p € Py, ¢ = (h,¢p(h)) € Qp, Wy € T, P and § € g, §€ 5. Then

i) Glp) + @, —3(p) =0 = (§,d,) —5=0,
ii’.) (0, dLy5,) = p(q) o ¥ (0g, W),
iii’.) ) (Adn(9),0,) = Adg,ny 0 (7, 0p). u

The next example is a slight generalization of Theorem 2 in [24]. There the authors assume
that ¢ admits only one orbit type so that dim[G,] = [ for all x € M. Then, they restrict
to the situation where one finds a triple (Up, 70, Sp) consisting of an open subset Uy C RF* for
k = dim[M] — [dim[G] — [], an embedding 79: Up — M and a smooth map so: Uy — P with
mo sy = 1o and the addition property that @, is the same for all p € im[sg]. More precisely,
they assume that G, and the structure group of the bundle are compact. Then they show the
non-trivial fact that sy can be modified in such a way that in addition @, is the same for all
p € im[sg].

Observe that the authors forgot to require that im[d,7o] + im [decpm(x)] = T;y(@)M holds for
all x € Uy, i.e., that 79(Up) is a ¢-patch (so that sg(Up) is a E-patch). Indeed, Example 2
shows that this additional condition is crucial. The next example is a slight modification of the
result [24] in the sense that we do not assume G, and the structure group to be compact, but
make the ad hoc requirement that @), is the same for all p € F.

Example 8.14 (Harnad, Shnider, Vinet)

Let Py be a =-patch of the bundle P such that 7(F) intersects each ¢-orbit in a unique point.
Moreover, assume that the =-stabilizer L := @, is the same for all p € Fy. Then, it is clear from
that H := Gy, and ¢ := ¢,: H — 5 are independent of the choice of p € F%. Finally, we
require that

dim[Py] = dim[M] — [dim[G] — dim[H]] = dim[P] — [dim[Q] — dim[H]] (140)
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holds. Now, let p € Py and g = (h, ¢(h)) € Qp. Then, for w, € T),P) we have

dLg@p = § o ®(h,v(1) - 65 (h) = §l,o[v(2) - 6500y (W] - &, ()
= Silimo(®) - @p(R)] - 6, (h) = T,

where v: (—€,€) = Py is some smooth curve with 4(0) = ,. Consequently, dL,(T,P) C T, so

that we are in the situation of Case Here, 7i’.) now reads w(ﬁg, dip) = Adgp © w(ﬁg, u‘;’p) for

all h € H and #i”.) does not change. For i’.), observe that the Lie algebra [ of L is contained in

the kernel of d(, ,,)=. But dp,)E is surjective since Fy is a Z-patch (cf. Lemma 1), so that
dim [ker[d(, =] ] = dim[Q] + dim[Py] — dim[P) & dim[m),

whereby dc )= means the differential of the restriction of = to @ x Fy. This shows ker[d (. ,)Z] = |
for all p € Py. Altogether, it follows that a reduced connection w.r.t. Py is a smooth, linea
map ¥: g x TPy — s which fulfils the following three conditions:

i”.) ¥(h,0,) = deo(hr) VhenhVpe P, (use (138))
ii”.) (0, ) = Adyy o ¢ (0, @) VheHVweTH,
iti”.) ¥ (Adp(F),0,) = Adg © ¥(F,0,) VjegVhe HVpcE R,

Then, p := ¢|rp, and Ay, (g) := ¢(g, 6p0) are the maps that are used for the characterization in
Theorem 2 in [24]. O
8.2.2 Reconstruction of Invariant Connections

Let { P, }aer be a ®-covering of P. We now show that each respective reduced connection {94 }aecr
gives rise to a unique ®-invariant connection on P. To this end, for each a € I we define the
maps Ao: q X TP, — 5, ((g,5), W) — 1a(d, W) — § and

Wa: TQXTP, — s
(ﬁiq, u‘)’pa) — p(q) © Ao (qufm_iq, u‘)’pa),
where m, € T;Q and w,, € 1), P,.

Lemma 8.15
Let g € Q, pa € Pu, pg € Pg with pg = q - po and Wy, € Ty, Py. Then

1) Xg(i7) = p(q) © Aa(Og, @p,, ) for all ij € q X Ty, P with dZ, ) (if ) = dLgilp,,
2) A3(Adg(7),0p,) = p(q) © Xa(4,0p,) for all G € q.
For all o« € I we have

3) ker [)\a|qupapa] C ker [d(e,pa)E] for all po, € Py,

4) the map w,, is the unique s-valued 1-form on @ x P, that extends A\, and for which we have
Liwa = p(q) o wa for all g € Q.

13211 the sense that 1/J|ngpp0 is linear for all p € Po.
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Proor: 1) Write 17 = ((g, ), wp,) for § € g, € 5 and w, € Ty, Ps. Then

~ @33
5(pg) d=

g(pﬁ) + u_ipﬁ - ~(e,pg)(ﬁ) = quwpa

so that from condition i.) in Corollary we obtain
As(7T) = ¥5(3.Wp,) — 5= p(a) © Ya (0, Tpa) = p(9) © Ao (0, T, )-
2) Let ¢=(g,5) for g€ g and § € s. Then by Corollary ii.) we have

Mg (Ady (@), 0,) = 15 (Adg(), 0p,) — Ady(3)
= p(q) © [¥a(7.0p.) — 5] = p(q) 0 \a(, 0, )-

3) This follows from the first part for @ = 3, ¢ = e and @, = 6pa.

4) By definition we have wa|qupa = A, and for the pullback property we calculate

(L;’wa)(q,pa) (17, Wp,) = Wa(g/gpa) (ALg/TTg, Dp,)
=p (q/q) o )\a (qu—lq/—l qu/mq, wpa)
=p (q/) o P(Q) © )\Oé (qu—lmqapr)

=p (q/) © w“(‘]vpa)(mq’wpa)’

where ¢, ¢ € Q and m, € T,Q. For uniqueness let w be another s-valued 1-form on @ x P,
whose restriction to q x TP, is Ao and that fulfils Ljw = p(q) ow for all ¢ € Q. Then

w(qapa) (mq’wpa) = ( Do) (dL © dL 1mq7u_jpa) ( ;k] ) ,Pa) (quflmqvaa)
=p(q) o w(e,pa)(qu*mw u_jpa) p(q) o (quqﬁiq, U_jpa)

= Wa(dL,-11g, Wp, ).

Finally, smoothness of w, is an easy consequence of smoothness of the maps p, Ay and
p: TQ — q, mqg — dL,1m, with m, € TyQ. For this, observe that y = dr o s for
T:QXxQ—Q, (¢,¢)—~ g and k: TQ — TQ x TQ, My (ﬁq,rﬁq) for my € T,Q. =

So far, we have shown that each reduced connection {%}aer gives rise to uniquely determined
maps {Aq }aer and {wq faer. In the final step, we will construct a unique ®-invariant connection w
out of the data {(Py, \a) }acs. Here, uniqueness and smoothness of w will follow from uniqueness
and smoothness of the maps wy,.

Proposition 8.16
There is one and only one s-valued 1-form w on P with we = (E*w)|roxTpP, for all o € I. This
1-form w is a ®-invariant connection on P.

PROOF: For uniqueness, we have to show that the values of such an w are uniquely determined
by the maps w,. To this end, let p € P, a € I and p, € P, such that p = ¢q - p, for some ¢q € Q.
By Lemma El for w, € T, P we find some 77 € T,Q x T, Py with ), = d(4,,)=(77), so that
uniqueness follows from

qPa)=

wp(Wp) = Wy-p, (d(q,pa)E(ﬁ)) = (E*w)(q,pa)(ﬁ) = wa (7).
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For existence, let a € I and p, € P,. Due to surjectivity of d(., )= and Lemma @3 there is a
(unique) map Xpa : Ty, P — s with

Ape© diep)Z = Ao

oloxt, p, (141)

€,Pa

Let Aq: Up.cp, Tpo P — s denote the (unique) map whose restriction to T, P is /):pa for each

Pa € Py. Then A\, = Xa o d=|qx7p, and we construct the connection w as follows. For p € P we
choose some « € I and (q,p,) € Q X P, such that ¢ - p, = p and define

wp () = p(q) 0 Ao (L1 (@) V@, € TP, (142)

We have to show that this depends neither on o € I nor on the choice of (¢,p,) € Q x P,. For
this, let po € Py, pg € Pg and g € Q with pg = q-p. Then for @ € T, P we have @ = d=(q, @, )
for some (q,y,) € q X Tj, Pa, and since dLgwp, € T, P, there is 77 € q x Tp,Ps such that

d(epg)E(7) = ALy, . It follows from the conditions 1) and 2) in Lemma that
Xﬁ(quw) = X((ALq 0 AZ)(T, @) = Ag((ALg 0 AE)(7, 0, )) + Ag (ALyil, )
=) X5 0 d=(Ady(q), 0, ) + Ag 0 dE(7)
B 35 (Ady(@).0,,) + As(i7) (143)
p(@) © 2a (@, 0p,) + p(a) © Aa(0g, )
Pa) © X, ) = p(0) © Ao 0 AZ(T, Fp) = pla) © Ao (),
where for the third equality we have used that
(dLg 0 dZ) (7,0p,) = £|,_o a- (exp(t7) - pa) (144)
= il o @a(exp(tq)) - ps = AE(Ady(7), Oy, )-
Consequently, if - ps = p with (¢,pg) € Q x Ps for some 3 € I, then pg = (¢7*q)~! - p, and

well-definedness follows from
p(@) 0 Ag (dLg—1(5,)) = p(q) 0 p(q7' ) © Ag (dL(g-15)-1 (ALg-117}))
= p(q) 0 Ao (dLy-11Tp),

where the last step is due to (143) with @ = dL 1w, € Tj,, P. Next, we show that w fulfils the
pullback property. For this let (7, W, ) € T,Q x Tp, Po. Then

e e o e o @ ~ o
(E*w) (11g, Wp,, ) = Wyp, (AE(172g, Wp,)) =" p(q) © Aa (qu—ldE(mqawpa))

= 0(4) 0 2 0 dE (ALy-1771, T ) B2 p(q) © A (AL 1770g, T )
= Wa(1ig, Wy, )-

In the third step we have used that L,-1 0 Z = Z(L,-1(-),-). Finally, we have to verify that w is
a ®-invariant, smooth connection. For this let p € P and (¢, pa) € Q X P, with p = ¢ - po. Then
for ¢ € Q and W), € T, P we have

(Lgw), (Wp) = wp (dLgthp) = Wigg).p, (dLqgtlp)
= p(4) 0 p (@) © X (dLg1Ty) = p(a) 0 wy(@y),
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hence
Riw = Lz‘e78_1)w =p((e, sil)) ow = Ad,;1 ow,
Lgw =L, ow = p((g,€)) ow = w.

So, it remains to show smoothness of w and that w,(s(p)) = 5 holds for all p € P and all § € s.
For the second property, let p = ¢ - py for (¢,pa) € Q X P,. Then g = (g, s) for some g € G and
s € S and we obtain

wp(3(p)) = p(g) 0 Xa (ALy-13(q - pa))

= p(@) © Ao (&],_y Pa - (51 (exp(t3)))
Aa(d
Ao

= ( ] (Ads 1 Opa))
~ Adyo e (Adu (). pa) — Ad,oAd,1(5) = &

«

For smoothness let p, € P, and choose a submanifold @’ of Q through e, an open neighbour-
hood P(; C P, of p, and an open subset U C P such that the restriction = := E]Q/X P is a
diffeomorphism to U. Then p, € U because e € Q’, hence

—1*
.

S 1% [:*
i =
==

= w] = éfl* [(E*w)‘TQXTPa] =

[y

w]U

Since wy is smooth and Z is a diffeomorphism, w|y is smooth as well. Finally, if p = ¢ - p,, for
q € @, then Ly(U) is an open neighbourhood of p and

wlz, @y = (Lgr (Lgw)) |1, @) = P(@) © (Lgaw) |1, 0y = (@) 0 Ly (wlv)
is smooth because w|y and L,-1 are smooth. n

Corollary and Proposition [8.16| now prove

Theorem 8.17

Let G be a Lie group of automorphisms of the principal fibre bundle P. Then for each ®-covering
{Ps}acr of P there is a bijection between the corresponding set of reduced connections and the
®-invariant connections on P.

PROOF: Corollary [8.10] and Proposition [8.16| n

As already mentioned in the preliminary remarks to Example the second part of the next
example shows the importance of the transversality condition

im[dz’]'o] +im [de(pro(:c)] = TTo(x)M Va el

for the formulation in [24].

Example 8.18 ((Semi-)homogeneous Connections)
1) Let P = X x S for an n-dimensional R-vector space X and an arbitrary structure group S.
Moreover, let G C X be a linear subspace of dimension 1 < k£ < n acting via

®:GxP—P, (g9,(x,0)— (9+z,0).

Let W be an algebraic complement of G in X and Py := W x {eg} C P. Then, P is a ®-
covering because Z: (G x S)x Py — P is a diffeomorphism and each ¢-orbit intersects W in a
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unique point. Consequently, identifying G with its Lie algebra g, the ®-invariant connections
on P are in bijection with the smooth maps ¢: G x TW — s such that 1, := ¢¥|gx1,w 1S
linear for all w € W. This is because the conditions i.) and éi.) from Corollary give no
further restrictions in this case. It is straightforward to see that the ®-invariant connection
that corresponds to % is explicitly given by

wl/’(f)’m, ds) = Adg-10 LN— (prG(ﬁm), prw(ﬁz)) +dL,-1(0%) (145)
for (1755, 55) S T(%S)P.

2) In the situation of Part 1), let X = R2, G = spang (€1), W = spang (€) and Py = W x {e}.
We fix 0 # § € 5 and define ¥: g x TPy — s by

wy(A‘€17M'€2) :uf(y)§ for (A‘€17M'€2) EgXT’(y-é’Q,e)PO?

where f(0) := 0 and f(y) := 1/¢y for y # 0. Then, w? defined by (14F) is smooth on
P’ =7 x S for Z := [ X\ spang(€1)], but not smooth at ((x,0),e) because

sz(m’y)’e)((d 52)765) = wy (67 é;2) = f(y) -5 VyeR.

In addition to that, there cannot exist any smooth invariant connection w on P which
coincides on P’ with w?, just because limy 0 f(y) - 5 does not exist.

Now, let Uy = R, 79: Uy — R?, t — (t,t3) and sg: t — (19(t),e). Then (Uy, 19, so) fulfils the
conditions in [24], but we have im[dg7o] +im[de<pm(0)] = spang (€1) # ToX = TyR? = Rﬂﬂ

As a consequence, 1: g x TUy — s defined by 1, := (®*w?)|gx7y0, is smooth because for
t#0and r € T;Uy = R we have
P (Ne,r) = (@*ww) ()\é'l, r- @ + 3t%r - 52) = wzzzt’tg)’e) (()\ +7r)-e1+ 3t2r - 52)
= ((A+7)-€1,3t%r - &) = 3tr - 3,

as well as 9y(\é1,7) = 0 if t = 0. For the first step, keep in mind that
(‘I)*Ww)’ngtUo(gar) = (‘I)*W¢)(§7 dtso(r))

by Convention @2. Then, the maps p := 9|7y, and Ay, (§) = %(g, 6,50) fulfil the conditions
in Theorem 2 in |24] because ¢ fulfils the three algebraic conditions in Example being
trivial in this case because H = {e}.

Now, Theorem 2 in [24] states that 1 can also be obtained by pullbacking and restricting
(w.r.t. so) a unique smooth invariant connection w on P (instead of pullbacking and re-
stricting w¥). However, such a connection cannot exist as it necessarily has to coincide on
P’ with w?.

In fact, let U) := Ry and 79: U) = Z, t — (t,t3) as well as s{,: t — (7)(t), e) be defined
as above. Then, (U], s;) is a Z-patch as we have removed the point 0 € Uy for which
transversality fails. Thus, the restriction of ¢ to g x Uj, corresponds to a unique smooth
invariant connection w’ on P’. This connection must be given by the restriction of w?¥ to P’
because pullbacking and restricting w?¥ w.r.t. sq gives rise to the restriction mEIXTU(’)’ just

because s{, = so|v, holds. However, the same is true for w, so that both connections coincide
on P. O

133 Then im[doso] + im[de®@s, (2)] + Tsy0) P = spang (€1) ® Tv(g,e) P # R?&® Tv(o,eyP = T(o,e)P so that (Uo, s0) is
not a E-patch as it fails the transversality condition (137) from Remark 2.
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8.3 Particular Cases and Applications

In the first part of this Subsection we consider ®-coverings of P that arise from the induced action
o on the base manifold M of P. Then we discuss the case where ® acts via gauge transformations
on P. This leads to a straightforward generalization of the description of connections by consistent
families of local 1-forms on M. In the second part we discuss the (almost) fibre transitive case
and deduce Wang’s original theorem [36] from Theorem Finally, we consider the situation
where P is trivial and give examples in loop quantum gravity.

8.3.1 ®-Coverings and the Induced Action

Let (G, ®) be a Lie group of automorphisms of the principal fibre bundle P. According to Lemma
for each x € M there is a ¢-patch (with minimal dimension) M, with z € M. Consequently,
there is an open neighbourhood M, C M, of x and a local section s,: U — P such that M, C U
for an open neighbourhood U C M. Let I C M be a subset such tha@ each p-orbit intersects at
least one of the sets M. Then it is immediate from Lemma[8.82 that {s,(M})}sec; is a ®-covering
of P. More generally, we have

Corollary 8.19

Let (P,m, M, S) be a principal fibre bundle and (G, ®) a Lie group of automorphisms of P. Denote
by (My, Sa)act a family consisting of a collection of p-patches {My}ocr and smooth sectz’on@
Sq: My — P. Then the sets P, := so(My) are E-patches. They provide a ®-covering of P iff
each @-orbit intersects at least one patch M,,.

PROOF: This is immediate from Lemma [8.8]2. n

We now consider the case where (G, ®) is a Lie group of gauge transformations of P, i.e., ¢, = idy
for all g € G. Here, we show that Theorem [8.17] can be seen as a generalization of the description
of smooth connections by consistent families of local 1-forms on the base manifold M. For this,
let {Uy}acr be an open covering of M and {sq}aer @ family of smooth sections s,: U, — P.
We define U,g := U,y N Ug and consider the smooth maps dog: G x Uyg — S determined by
sg(x) = ®(g, sa(x)) - dap(g, ), and for which we have d,5(g, z) = qﬁ;al(r) (9) - 0ap(e, ). Finally, let
Hap(g, Uy) == dLJ;BI(g,x) 0 dgz0a8(9g, ) (Uz) for vy € TpUyp and g € G. Then we have

Case 8.20 (Lie Groups of Gauge Transformations)

Let (G,®) be a Lie group of gauge transformations of the principal fibre bundle (P, M,S5).
Then, the ®-invariant connections on P are in bijection with the families {xq}acs of s-valued
1-forms x: Uy — s for which we have

Xa(T) = (Ad(;aﬁ(w) o Xa) (Ta) + pap(g, Be) V0, € TolUag,V g € G. (146)

Proor: By Corollary {50 (Ua)}aer is a ®-covering of P. So, let {1 }acr be a reduced
connection w.r.t. this covering. We first show that condition i.) from Corollary implies

¥3(7,0p) =detp(§)  VGegVpessU). (147)

13414 i always possible to choose I = M.
135This is that 7 o s = idaz, .
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For this observe that condition a.) from Remark means that for all § € I, p € s3(Up),
Wy € Tpsp(U) and g € g, § € s we have

de®p () +Wp —s(p) =0 = Ys(g,w,) —5=0.
Now, T),s(Ug) is complementary to Tv,P and im[d.®,] C ker[d,n] so that a.) is the same as
a’.) de®,(5) =3(p) = 3(7,0,) =5 for Geg,5€5 andall p € Py.

But, since G, = G for all x € M, this just mean Vg (g, 6p) = dcpp(g) for all g € g and already
implies condition #.) from Corollary as ¢p is a Lie group homomorphism. Consequently, we
can ignore this condition in the following. Now, we have pg = q - p, for ¢ € Q, po € Pu, g € P3
iff m(pa) = m(pg) = € Uyp and q = (g, 5;51 (9, IL‘)) Consequently, the left hand side of condition

i.) from Corollary reads
g(sp(x)) + dasp(Us) — s(sp(x)) = (dLg 0 dRs_ () © dzsa) (Ua),

where vy, Ug € T, M and g € G. This is true for v, = Vg = U, § = 0 and § = p4s(g, ¥), which
follows from

dass(Ts) = dy [Lg o Rs,y(0.) © sa} (%)
= Ly [duy o) R (dabap (9, )(52) + ARy, (5.0 ()]
3(s5(2)) = §li—oLo © Roos(g.)exp(ts) (5a(@))
= Ly [du o) R (L5, ,00.0(5) ) | = ALy [de o R (dadas (g, ) ()]
Consequently, by Corollary i. ) and for
(o 0 dusa)(Tz) = Va (O, dusa(Tr)) V¥, € Tulag.
we have
5 (Og, dusp () = (Ads, (0.0 © Yo © dusia) (Br) + tag(g, T) (148)

for all g € G and all v, € T, U,g. Due to part 2.) in Remark the condition .) from Corollary
now gives no further restrictions, so that for xz := ¥z o dsg we have

VG, desp(Vz)) = dedsy(2) (9) + x8(0:) VG €V, € TLM,Va € Up.

Then, g is uniquely determined by xg for each 8 € I, so that (148) yields the consistency
condition ([146|) for the maps {xa}acr- =

Example 8.21 (Trivial Action)
If G acts trivially, then for each z € U,g we have
5aﬁ(g7x) = (bs_al(gc) (g) ’ 501,3(67‘7:) = 5&5(6)'/17)‘

Hence, 0,4 is independent of g € G so that here Case just reproduces the description of
smooth connections by means of consistent families of local 1-forms on the base manifold M. ¢

190de®,(g) — 5(p) = 0 iff (7, 5) € qp iff 5= dedp(9).
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8.3.2 (Almost) Fibre Transitivity

In this subsection, we discuss the situation where M admits an element which is contained in the
closure of each w-orbit. For instance, this holds for all x € M if each @-orbit is dense in M and,
in particular, is true for fibre transitive actions.

Case 8.22 (Almost Fibre Transitivity)

Let x € M be contained in the closure of each p-orbit and let p € F,.. Then, each Z-patch Py C P
with p € Py is a ®-covering of P. Hence, the ®-invariant connections on P are in bijection with
the smooth maps 1): g x TPy — s for which 1|47, p, is linear for all p € Py and that fulfil the
two conditions from Corollary

PrOOF: It suffices to show that 7 (Pp) intersects each @-orbit [0]. Since Py is a E-patch, there
is an open neighbourhood P’ C Py of p and a submanifold Q" of @ through (eg,es) such that
Elg'xpr is a diffeomorphism to an open subset U C P. Then 7(U) is an open neighbourhood of
7(p) and by assumption we have [o] N7 (U) # 0 for each [o] € M/G. Consequently, for [o] € M /G
we find p € U with w(p) € [o]. Let p =Z=((¢, §'),p') for ((¢,s),p") € @ x P’. Then

o] > 7(p) =7 (2(g,9) - &) = w(g', 7(p)) € [x(p)]
shows that [o] = [7(p')], hence 7 (Py) N [o] # 0. n

The next example to Case shows that evaluating the conditions i.) and 4.) from Corollary
8.10| at one single point can be sufficient to verify non-existence of invariant connections.

Example 8.23 (General linear group)

e Let P:=GL(n,R) and G =S = B C GL(n,R) the subgroup of upper triangular matrices.
Moreover, let S,, € GL(n,IR) be the group of permutation matrices. Then P is a principal
fibre bundle with base manifold M := P/S, structure group S and projection map w: P — M,
p +— [p]. Moreover, G acts via automorphisms on P by ®(g,p) := ¢g-p and we have the Bruhat
decomposition

GL(n,R) = | | BwB.
’wESn

Then M = | |,cq, G- m(w), G - 7w(e) = 7(e) and 7(e) € G- m(w) for all w € S,. Now,
im[d.Z.] = g, since d.Z.(g) = ¢ for all § € g. Moreover, g = spang{E;; |1 <i < j < n} so
that V :=spang{FE;; |1 < j < i < n} is an algebraic complement of g in T, P = gl(n,R). By
Lemma [8.5]2 we find a patch H C P through e with T.H = V and due to Case this is a
P-covering.

e A closer look at the point e € P shows that there cannot exist any ®-invariant connection on
GL(n,R). In fact, if ¢0: g x TH — s is a reduced connection w.r.t. H, then for @ := 0, and
g = § we have

Gle) +@ —3(e) = G+w—5=0.

So, condition i.) from Corollary gives 1/1(5‘]’, 66) — g =0, hence zp(g, 66) =g forall §geg.
Now q-e=ceiff ¢ = (b,b) for some b € B. Let

Voh:=FEy B>b:=1+E;, g5§:=FE—Ei,—En.
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Then, §(e) +h =G+ h=bhb~! = quﬁ, so that condition i.) yields
(7, 7) = pla) o & (Tg, 1) = Ady o) (0g, h),

hence §+ [id — Ady) o w(()g,h) =0. But (¢)11 =1 and

=

(4T, h) — Ady 0 3(0, = (00, )11 — (¥(Tg, ), =0

so that ¢ cannot exist. O

Corollary 8.24
If @ is fibre transitive, then {p} is a ®-covering for all p € P.

PROOF: It suffices to show that {m(p)} is a ¢-patch, since then {p} is a E-patch by Corollary [3.19]
and a ®-covering by Case This, however, is clear from Remark 1. In fact, if x := 7w(p),
then by general theory we know that M is diffeomorphic to G/G, via ¢: [g] — ¢(g,z) and that
for each [¢g] € G/G, we find an open neighbourhood U C G/G, of [g] and a smooth section
s: U — G. Then surjectivity of dey is clear from surjectivity of dj¢¢ and

depz 0 djeys = di)(pz 0 8) = di(s(-), ©) = di 9,
showing that T, M = dc.p.(g). [ |

Let ¢ be transitive and p € P. Then {p} is a ®-covering by Corollary and Tp{p} is the
zero vector space. Moreover, we have p, = q - pg iff po, = pg = p and ¢ € Q). It follows that a
reduced connection w.r.t. {p} can be seen as a linear map ¢: g — s that fulfils the following two
conditions.

e d5y(7,8) =0 = ¢(g)=7 for geg,5€s,
o ¥(Ady(9)) = plq) o ¥(q) Vge @y VicEs.

Since ker[d.=)] = qp, we have shown

Case 8.25 (Hsien-Chung Wang, [36])
Let (G, ®) be a fibre transitive Lie group of automorphisms of P. Then for each p € P there is a
bijection between the ®-invariant connections on P and the linear maps ¢ : g — s that fulfil

a) () =dedp(h) VR E grip):
b) ¥ o Ady = Ad¢p(h) o Vhe Gﬂ(p).

This bijection is explicitly given by w — ®jw. ]

Example 8.26

¢ Homogeneous Connections
In the situation of Example let K =n and X = R™. Then ® is fibre transitive and for
p = (0,e) we have G,y = e and gr(,) = {0}. Consequently, the reduced connections w.r.t.
{p} are just the linear maps ¥ : R™ — s, and the corresponding homogeneous connections are
given by

w¥ Uy, Gs) = Ady—1 0 Y (Ty) + dLg-1(s) YV (U, 6s) € Tip ) P.
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¢ Homogeneous Isotropic Connections
As already stated in Example the ®p-invariant connections are of the form

WUy, Gy) = cAdg-1[3(00)] + 5105V (U, 05) € Tia )P,
where ¢ runs over R. O

We close this subsection with a remark concerning the relations between sets of invariant con-
nections that correspond to different lifts of the same Lie group action on the base manifold of a
principal fibre bundle.

Remark 8.27

Let P be a principal fibre bundle and ®,®": G x P — P be two Lie groups of automorphisms with
¢ = ¢'. Then the respective sets of invariant connections can differ significantly. In fact, in the
situation of the second part of Example [8.26]let ®'((v,0), (2, s)) := (v+ o(0)(z),s). Then ¢’ = ¢
and Appendix shows that wo(y,d's) := s~ 1 for (U, 7s) € T(y,s)P is the only ®’-invariant
connection on P. O

8.3.3 Trivial Bundles — Applications to LQG

In this final Subsection we determine the set of spherically symmetric connections on R3 x SU(2),
to be used for the description of spherically symmetric gravitational systems in the framework of
loop quantum gravity. To this end, we reformulate Theorem for trivial bundles.

The spherically symmetric connections on P = R3 x SU(2) are such connections, invariant
under the action ®: SU(2) x P — P, (o, (x,s)) — (o(z),o0s). Since ® is not fibre transitive, we
cannot use Case for the necessary calculations. Moreover, it is not possible to apply the
results from [24] (see Example because the ¢-stabilizer of x = 0 equals SU(2) whereas that
of each z € R3\{0} is given by the maximal torus H, = {exp(t3(z) |t € R)} C SU(2). Of course,
we could ignore the origin and consider the bundle R?\{0} x SU(2) together with the ®-covering
{\-é | A € Rso}. This, however, is a different situation because an invariant connection on
R3\{0} x SU(2) is not necessarily extendible to an invariant connection on R? x SU(2). This is
illustrated in (see also remarks following Example

Example 8.28
e Let S be a Lie group and P = R™ x S. We consider the action ®: R>ox P — P, (), (x,s)) —
(Az, s) and claim that the only ®-invariant connection is given by

wo(Ux, 5’;) = d5L371(5’5) A (Ux,gs) S T(x,e)P-

In fact, Py := R™ x {e} is a ®-covering of P by Corollary and it is straightforward to
see that condition 4.) from Corollary is equivalent to the conditions a.) and b.) from
Remark Let ¢: g x TPy be a reduced connection w.r.t. Py and define 1), := ngT(“)-

Since the exponential map exp: g — Rsq is just given by u +— e* for A € R = g, we have
g((w,e)) = G- € Ty e)Poo for g € g. Then for i := —g -z € T, o) P from a.) we obtain

2 (7,0) = ¥2 (05, §-2)  VFegVoeR" (149)

In particular, g (g’,6) = 0, and since Q) = R0 x {e}, for ¢ = (A, e) condition b.) yields

N 1o (0O, ) = 100 (0, M) 2 000 (0 8) YA > 0,Y45 € Tg.e) Poc,
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hence 19 = 0. Analogously, for z # 0, W € T{y,e)Poo, A > 0 and ¢ = (A, €) we obtain

=
~

Al/})\x (697 U_j) = 1/})\95 (697 qu(w)) p(‘]) o % (697 U_j) = % (697 w)a

ie., Y (69,16) = % Yy (6g,u7). Here, in the second step, we have used the canonical iden-
tification of the linear spaces T(; ) Poc and Ty, ¢)P. Using the same identification, from
continuity (smoothness) of ¢ and 1y = 0 we obtain

. = 1 S n oy o
0= )1\11}1%)1/1)\1(09,10) = ;IE%X sz(Og,w) Ve e R", VW € T, )P

so that 1, (69, ) = 0 for all x € R"™, hence ¥ = 0 by (149). Finally, it is straightforward to
see that (®*wo)|gx1P. =¥ = 0 holds.

e Let P/ =R"\{0} x S and ® be defined as above. Then K x {e}, for the unit-sphere K :=
{z € R"|||z|| = 1}, is a ®-covering of P’ with the properties from Example Evaluating
the corresponding conditions 7”.), ii”.), #i”.) immediately shows that the set of ®-invariant
connections on P’ is in bijection with the smooth maps ¢: R x TK — s for which ¢|rx7, Kk
is linear for all £k € K. The corresponding invariant connections are given by

W (B, 3s) = (ﬁpr”(ﬁm),prl(ﬁm)) +57G, Y (T,6s) € Tl P

Here, pr|| denotes the projection onto the axis defined by z € R" and pr; the projection onto
the corresponding orthogonal complement in R™. O

Also in the spherically symmetric case the p-stabilizer of the origin has full dimension, and it
turns out to be convenient (cf. Appendix to use the ®-covering R? x {e} in this situation as
well. Since the choice Py, := M X {e} is always reasonable (cf. Lemma [8.5/1) if there is a point in
the base manifold M (of the trivial bundle M x S) whose stabilizer is the whole group, we now
adapt Theorem to this situation. For this, we identify T, M with T\, .y Px for each 2 € M in
the sequel.

Case 8.29 (Trivial Principal Fibre Bundles)

Let (G, ®) be a Lie group of automorphisms of the trivial principal fibre bundle P = M x S.
Then the ®-invariant connections are in bijection with the smooth maps ©: g x TM — s for
which |gx7, s is linear for all € M and that fulfil the following properties.

Let o* (§,9,,5) = ¥ (§,v,) + § for ((§,5),9,) € q x Ty,M. Then for ¢ € Q, x € M with
q-(z,e)=(y,e) € M x {e} and all ((§,5), ) € q x T, M we have

i) glx,e)+ v, —5=0 = ¢ (§,7,5) =0,

ii.) ¥ (dLgT) = p(q) 0 ¥(0y, T) Vi, € T,M,
iii.) ¥(Ady(4),0y) = p(q) 0 ¥ (g, 0) Vgeag.
PROOF: The elementary proof can be found in Appendix n

Example 8.30 (Spherically Symmetric Systems in LQG)
Let o: SU(2) — SO(3) be the universal covering map and o(x) := o(c)(z) for z € R3. Moreover,
let g: R — su(2) be defined as in Convention We consider the action of G = SU(2) on
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P = R? x SU(2) defined by ®(o, (x,s)) := (o(c)(x),0s). It is shown in Appendix that the

corresponding invariant connections are of the form

Py, ) = Adgr [a(2)3(T2) + () [3(2), 5(80)] + e(@)[3(2), [3(2), 3(T)]]] +57'F  (150)

for (Uy,05) € T(4,P and with rotation invariant maps a, b, c: R3 — R for which the whole
expression is a smooth connection. We claim that the functions a,b,c can be assumed to be
smooth as well. More precisely, we show that we can assume that

a(z) = f(|l) b(z) = g([l=]*) c(x) = h(]z]?)
holds for smooth functions f,g,h: (—€,00) — R with € > 0. Then, each pullback of such a
spherically symmetric connection by the global section x +— (z,e) can be written in the form
(T = f(I12)%) 3(T) + o' (I2]?) 32 x To) + 1 (l2]1) 5 (2 x (x % T))
for smooth functions f/,¢',h/: (—e,00) — R with € > 0.

Proof of the Claim.
1) Smoothness of w® implies smoothness of the real functions

w

ap(A) :=a(Mi)  bz()\) := Ab(\i) #(A) = A2c(Mi)  VAER

ci(
for each 77 € R3\{0}. In fact, az(\) - 3(77) = w?}\’ze () i

and cj is immediate from smoothness of A\ — w?fgl o) (€3).

is smooth, so that smoothness of b5

2) Let 7 be fixed. Then az is even so that az(\) = f(A?) for a smooth function f: (—e1,00) —
R, see [38]. Moreover, bz is smooth and odd so that bz(A) = A g(/\2) for some smooth
function g: (—e2,00) — R, again by [38]. Similarly, c5(A\) = I(A?) for a smooth function
l: (—e3,00) — R. Since A+ [(A2) is even and 1(0) = 0, for s € N+ Taylor’s formula yields

l(:p2) = a12% + - + asz? + 22T g(2)
=a2%(ar + - + ax® % + 2% ¢(2)) = 2°L(z)
with remainder term ¢(z) := (2s+1) e [y (@—1)1@+(t) dt for 2 # 0 and ¢(0) := 125+2)(0).
Now, ¢ is continuous by Theorem 1 in [37] so that L is continuous as well. But x +— 22L(x)
is smooth so that Corollary 1 in [37] shows that L is smooth as well. Now, L is even, hence
L(z) = h(z?) for some smooth function h: (—e4,00) = R. Then cz(\) = [(A?) = A?h()\?)
and for x # 0 we get

x 1
b<x>=ux\b<uxuw)w = (el = » g (l=IP).

= (| 2C 1 = T 2 .
(z) = |z <H ol H) o =z (lol) o = A (lof?)

Moreover, for x = 0 we have

b(@)[3(2),3(:)] = 0 = g(|l=[*) [5(x), 5(7)],
c(@)[3(2), [3(2),5(%)] =0 = h(2)[3(2), [5(2),5()]]
so that we can assume a(z) = f(||z|?), b(z) = g(||=]|*) and c(x) = h(||z||*) for the smooth
functions f,g,h: (—min(ey,...,€4),00) — R.
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In particular, there are spherically symmetric connections on R3\{0} x SU(2) which cannot be
extended to those on P. For instance, if b = ¢ = 0 and a(z) := 1/||z|| for € R*\{0}, then w*
cannot be extended smoothly to an invariant connection on R3 x SU(2) since elsewise az could
be extended to a continuous (smooth) function on R. O

8.4 Summary

We conclude with a short review of the particular cases that follow from Theorem For this
let (G, ®) be a Lie group of automorphisms of the principal fibre bundle (P, 7, M, S) and ¢ the
induced action on M.

o If P =M x S is trivial, then M x {e} is a ®-covering of P. As we have demonstrated in the
spherically symmetric and scale invariant case (cf. Examples and [8.30]), this choice can
be useful for calculations if there is a point in M whose @-stabilizer is the whole group G.

e If there is an element © € M which is contained in the closure of each @-orbit, then each
Z-patch that contains some p € 7~ 1(x) is a ®-covering of P, see Example If ¢ acts
transitively on M, then for each p € P the zero-dimensional submanifold {p} is a ®-covering
of P giving back Wang’s original theorem, see Case and Example [8.26

e Let @ act via gauge transformations on P. In this case, each open covering {Uy}aer of M
together with smooth sections sy : U, — P provides the ®-covering {s4(Uy)}acr of P. If
G acts trivially, this specializes to the usual description of smooth connections by means of
consistent families of local 1-forms on the base manifold M.

o If we find a E-patch Py such that 7(Fp) intersects each ¢-orbit in a unique point, then Py is
a ®-covering. If in addition the stabilizer (), does not depend on p € P, then we are in the
situation of [24], see Example

e Assume that there is a collection of @-orbits forming an open subset U C M. Then O :=
7~ 1(U) is a principal fibre bundle and each ®-invariant connection on P restricts to a ®-
invariant connection on O. Conversely, if U is in addition dense in M, then one can ask
the question whether a ®-invariant connection on O extends to a ®-invariant connection on
P. Since such an extension is necessarily unique (continuity), @-orbits not contained in U
can be seen as sources of obstructions for the extendibility of invariant connections on O to
P. Indeed, as the examples in Subsection [8.3.3] show, smoothness of these extension gives
crucial restrictions. Moreover, by Example taking one additional orbit into account can
shrink the number of invariant connections to zero. Of particular interest, in this context,
is the case where G is compact as then the orbits of principal type always form a dense
and open subset U of M on which the situation of [24] always holds locally |31]. This gives
rise to a canonical ®-covering of O consisting of convenient patches. So, using the present
characterization theorem, there is a realistic chance to get some general classification results
in the compact case. These can be used, e.g., to extend the framework of the foundational
LQG reduction paper [9].

As Corollary shows, in the general situation one can always construct ®-coverings of P from
families of ¢-patches in M. In particular, the first three cases arise in this way.
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9 Conclusions and Outlook

e In Subsection [5.4] we have considered the situation where the action ¢ induced on the base
manifold M is analytic and pointwise proper. We have shown that then the following decom-
position of the set P, (of embedded analytic curves in M) holds

P, =Py U Pcent, U Pen U Prs,

and that each of these subsets is invariant under decomposition and inversion of its elements.
So, by Proposition 4.25| we have

Zred,w = Zred,g X jred,CNL X Zred,FN X jred,FS
provided, of course, that each of the above sets of curves is non—emptyF_Wl Recall that

> Pp = Prn U Prg is the set of embedded analytic curves that contain a segment § for which
g 09 = ¢ holds whenever im[p, 0 §] Nim[d] is infinite. Here, Prn consists of all such curves
whose stabilizer (a well-defined quantity in this context) is trivial, so that Prg denotes the
set of all free curves for which this is not the case. Obviously, Prps = () holds if ¢ is free.

> Pc = Py UPenL (set of continuously generated curves) consists of all embedded analytic
curves which are not free. Here, Py” consists of such curves which are generated by the Lie
algebra of symmetry group and Pcnr, is just its complement in Pg. At this point, it is the
set Pcnt, which makes it hard to define measures on the full space A,. However, as we
have seen in the last two parts of Proposition Pent, = 0 holds if ¢ admits only normal
stabilizers and is transitive or proper.

So, for ¢ non-trivial we have:

® ‘ Py ‘ Peni ‘ PrN ‘ Prs
free many ? ? 0
transitive + normal stabilizers | many 0 ? ?
proper + normal stabilizers | many 0 ? ?

Thus, if ¢ is proper and free such as in (semi-)homogeneous LQC (see Example , even
P =Py UPrN, hence Ared o = Ared,g X Ared,pN holds.

In Section |§|, we have constructed normalized Radon measures jg and ppn on Zred,g (for
S = SU(2)) and Ayeq px (for S compact and connected), respectively. This means that we have
the normalized Radon measure ji4 X gpN on jred,w = Xredg X jred,FN whenever P, = 73; UPrN
holds and S = SU(2). In particular, this provides us with a normalized Radon measure on
Asedw in (semi-)homogeneous LQC.

Unfortunately, in homogeneous isotropic and spherically symmetric LQC the ¢-stabilizers are
not normal subgroups. So, we do not know whether Pcny, = 0 holds in these cases. More
precisely, there we have

137Elsewise, we just remove the respective factor in the above product.
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LQC Py~ | Poni | Prn Prs

homogeneous many 0 many 0

semi-homogeneous many 0 many 0

homogeneous isotropic | many ? many 0
7

spherically symmetric | many many | linear curves through origin.

Hence, in order to obtain a normalized Radon measure on Zred,w, in the last two cases we first
had to calculate the set Pconr by hand. For this observe that in the spherically symmetric
case it is possible to construct a measure on Zred,FS by hand, see Remark Consequently,
there is still some serious demand for concepts allowing to determine the set Pcnr, also in the
general case.

e Since we have constructed normalized Radon measures on quantum-reduced configuration
spaces in LQG, we now can start to reduce the holonomy-flux algebra and try to define rea-
sonable representations on the respective Hilbert spaces of square integrable functions. Then,
aiming at some uniqueness results for these representations similar to that one has for the full
theory [22,27], we should investigate the invariance properties of the constructed measures
in detail. Here, the case of (semi-)homogeneous LQC, where we have the Radon measure
g X prN on the full quantum-reduced configuration space Zred,w = ﬁred,g X ﬁred’FN, may serve
as a working example for this. In addition to that, one also should search for such representa-
tions on the Hilbert spaces we have constructed in Section [7| for the space R LI Rpon. These
representations then can be compared (w.r.t. unitary equivalence) with the standard represen-
tation on the standard kinematical Hilbert space L?(Rpohr, #Bohr) Of homogeneous isotropic
LQC. Complementary to that, here one might use Proposition and Corollary in order
to prove some kind of uniqueness statement for this standard representation.

e Even if the characterization theorem looks quite technical at a first sight, its flexibility
makes it a powerful tool for explicit calculations. It simplifies significantly in several situa-
tions and provides us, e.g., with the Cases [8.13] [8.20] [8.22] [8.25] and [8.29] Aiming at some
classification results, here the next step will be to investigate such special situations in more
detail. Predestinated for this is the case where G is compact as there the orbits of principal
type always form a dense open subset of U of M, defining a dense open subbundle O of P
for which the situation of [24] always holds locally [31]. This provides us with a ®-covering of
O which consists of very convenient patches. So, using the present characterization theorem
there is a realistic chance to get some general classification results which can be used to extend
the framework of the foundational LQG reduction paper [9).

e In gauge field theories, instead of A usually the quotient A/G is considered as the physically
relevant configuration space. Here, G denotes the set of gauge transformationsizgl on the
underlying principal fibre bundle and we have w ~g w’ for w,w’ € A iff there is ¢ € G such
that w’ = o*w holds.

Similarly, if (G, ®) is a Lie group of automorphisms of P, instead of A,.q also the set
Aredg ={w € A[VgeG Joe§G: dpw=0c"w}

of connections invariant up to gauge transformations is considered as reduced configuration
space. However, in contrast to the set Ayeq, for Acq,g no general characterization theorems

138These are all automorphisms o of P with 7o o = 7.
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seem to exist so far, so that it is potentially harder to compute this space. So, instead of
quantizing A,eq,¢ (which would also be a classical reduction) one can use the lifted action ©
in order to define “invariance up to gauge” directly on the quantum level. Hence, instead of
the space Ayeq = Homyeq(P, Morg) one can consider the space Hom,eq (P, Morg) consisting
of all elements € € Hom(P, Mory) for which we have that for each g € G there is a generalized
gauge transformatiorfigl o: P — P with ©4(¢) = o(¢), ie.,

Oy(e)N(p) = (Goec()@™(p)) VY EPVPE Fy

for dom[y] = [a,b]. Then, Homeq(P, Morp) C Hom,eqg(P, Morg) holds and the concepts of
the Sections [5] and [6] seem adaptable to the “up to gauge”-case. Indeed, we rather expect
technical than conceptual difficulties at this point.

e An alternative construction of the Ashtekar-Lewandowski measure has been presented in [35].
There, the author uses a so-called nicely shrinking net of open neighbourhoods (thicken-
ings) of the closed subset Hom(P,Morp) C Maps(P, Morg) in order to define the Ashtekar-
Lewandowski measure on Hom(P,Morp)@ Here, the space Maps(P,Morp) (of all maps
P — Mory), equipped with the topology defined in analogy to that one in Definition
is homeomorphic to the Tychonoff product SPI.

More generally, for X a compact Hausdorff space carrying a normalized Radon measure p
and C' C X a closed subspace, one can define a positive and continuous linear functional
Z:C(C)— C,ie., a finite Radon measure on C' as follows: (see also [35])

i) Let {C)}xen be a net of neighbourhoods of C' such that for each neighbourhood U of C
we find \g € A with C), C U for all A > Ag. Such a net is called nicely shrinking.

ii) For each f € C(C) let f € C(X) be an extension (apply Tietze extension theorem) for
which HfHoo = || f]loo holds, and define

1

fdu  VA€EA.
w(Cx) Je,

=

> Now, choose {C)}xea in such a way that Z(f) := lim) f) exists for all f contained in a
suitable dense subset ® C C(C). It is straightforward to see [35] that then Z(f) does not
depend on the explicit extension f of f. Moreover, it follows that Z: ©® — C is positive and
bounded by 1, hence extends by continuity to a positive (and continuous) linear functional

on C'(X).

Now, the measure used in [35] for SI”| is just the Radon product (cf. Lemma and Definition
of copies of the Haar measure on S, and the net {C)} ea is constructed in a very
natural way. In particular, in view of the complications (non-trivial restrictions to the images
of the projection maps) arising from the invariance and inclusion properties of the reduced
spaces discussed in this work, the above “thickening approach” seems to be predestinated
for providing a general notion of a reduced Ashtekar-Lewandowski measure on these spaces.
Indeed, it even might help to drop the restriction to the structure group SU(2) (and tori) we

139This just means that 7 oo =7 and o(p - s) = o(p) - s holds for all € S.

140The author considers the situation where S is compact, connected and semisimple. Moreover, he assumes that
P consists of piecewise smooth and immersive loops with fixed base point, i.e., piecewise smooth and immersive
curves whose end points equal a fixed point in the base manifold. The arguments, however, also go through if
P =P, and S is just compact and connected.
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have made in Subsection in order to define the measure on jred’g. The developments of this
thesis then should help to find the correct definitions, e.g., by requiring that, when restricting
to the set Prn, we get back the measure constructed in Subsection Moreover, the net
of thickenings constructed in [35] for Hom (P, Morg) even seems generalizable to the spacd 1|
Homyeq,g(Pw, Morg). This is basically because this space (under mild assumptions) seems to
admit sufficiently many elements in order to make the relevant maps surjective.

Appendix

A Appendix to Preliminaries

A.1 Projective Structures and Radon Measures

In this section we adapt the standard facts on projective structures to our definitions from Sub-
section

Lemma A.1
Let X be a projective limit of {Xa}acr w.r.t. the maps mo: X — Xo for a € I and 7321 Xo, —
Xoy for ar,as € I with ag > o1. Then X is homeomorphic to

X = {."Z“EHXQ

equipped with the subspace topology inherited from the Tychonoff topology on [],c; Xa-

Tas (Taz) = Tay Vo2 2 041} (151)

PrROOF: The map n: X — X, z {7a(x)}aer is well-defined by Definition Moreover,
n is continuous as it is so as a map from X to [[,.; Xo. This is because pr, o n = 7, is
continuous for all projection maps pr,: [[,c; Xa — Xa just by Definition Then, n is a
homeomorphism if it is bijective because X is compact and X is Hausdorff. Injectivity of n is
immediate from Definition For surjectivity, assume that {za}ee; = & € X with & ¢ im[y],
i.e., NaerTa ' (za) = n~1(2) = 0. By continuity of 7o, the sets m;!(z4) € X are closed, hence
compact by compactness of X. Consequently, there are finitely many «q,...,ar € I such that
Tt (Ta,) N ... N7 (#a,) = 0. By directedness of I, we find some a € I such that a; < a for all
1 <7 <k, hence

{70} = (ng o7 (13t (za)) = Ta, (m3(z0)) forall 1<j<k. (152)

because 7 !(x,) is non-empty (7, is surjective) and To,; (Ta) = @q, for all 1 < j < k. Applying
7Ta_j1 to both sides of (152) gives ﬂgjl (Ta,) 2 7o' () for all 1 < j < k, which contradicts that
Top (Tay) NNyl (24,) = 0 holds. n
Lemma A.2

Let X and {Xa}aer be as in Definition |2.2. Then the normalized Radon measures on X are in
bijection with the consistent families of normalized Radon measures on { Xy }acr-

PRrROOF: If 11 is a normalized Radon measure on X, then it is straightforward to see that {7, (1) faer
is a consistent family of normalized Radon measures on {X,}.cr. For the converse statement

11This space is indeed closed as one easily deduces from compactness of the structure group S.
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define Cyl(X) := U, m4(C(Xy)) € C(X). Then, Cyl(X) is closed under involution, separates
the points in X and vanishes nowhere. Moreover, Cyl(X) is closed under addition, since

foma, +goma, = (fomi?)ome, + (g0m52) 0 may € Cyl(X), (153)

where a1, a9, a3 € I with aj,as < a3. It follows in the same way that Cyl(X) is closed under
multiplication. By Stone-Weierstrass theorem Cyl(X) is a dense *-subalgebra of C'(X) and the
map Z: Cyl(X) = C, fomy — | x,, | dpta is well-defined, linear and continuous w.r.t. supremum
norm on C(X). In fact, if f o7ma, = g o My, then (f o7q?) o may = (g0 7E3) 0 Moy if 1, a2 < 0.

Hence, fomg? = gomg? by surjectivity of ma4 so that the transformation formula yields

a1

I(foﬂ'oq) _/ [ dpta, _/ foﬂ'gf dftas
Xy Xog

:/ goﬂ-gg d:ua;a = / gd:uaz = I(goﬂ-oe)
X

ag Xaz

showing well-definedness of Z. Linearity follows from (153|) and for continuity observe that

IZ(f o)l < [ flloo = IIf © Talloos

by surjectivity of m,. Since Z is linear and continuous, it extends to a continuous functional on
C(X) which, by Riesz-Markov theorem (see, e.g., 2.5 Satz in |16, Chap.VIII, §2]), defines a finite
Radon measure p on B(X). Then pu(X)=7Z(1) =1 and for each f € C(X,) we have

Xafd(ﬂilu)Z/X(fom)duzl(fowa)Z/Xafdua

so that iy = pa, again by Riesz-Markov theorem. Finally, if u/ is a further finite Radon
measure with 7u = po for all @ € I, then 7/: C(X) — C, f — fo dy’ is continuous and
Tlcyi(x) = Z'|cyix) by transformation formula. Consequently, Z = 7' by denseness of Cyl(X) in
C(X) so that p = . n

B Appendix to Special Mathematical Background

B.1 Homogeneous Isotropic Connections

Assume that we are in the situation of Example ie, P =R3?xSU(?2) and G := Gg =
R? %, SU(2). We show that the connections of the form

w(cx,s) (77!137 ES) =c Ad(s_l)b(ﬁz)] + 8_10_38 (Ux70_:3) € T(x,s)P

are exactly the ®pg-invariant ones. To verify their ® g-invariance let (z,s) € P, (v,0) € G and
(U, 0s) € T(g,5)P- Then d o)Ly ) (U, 0s) = (0(Us),005) so that

C

(Lo, ) (,5) (U, Os) = Wyt o(2),08) (A(@,5) L(w,0) Tz Ts))
=cAd(sto D [joo(T)]+s o toa,
= c Ad(s7 1) o Ad(c71) 0 Ad(0) 0 3(7,) + s~ 1s
= ¢ Ad(s™") [3()] + 5710

= W(m7s) (1733, 5:3)
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It remains to show that each ®pg-invariant connection equals w® for some ¢ € R. For this we
compute ®¥w® for p = (0,e) and show that there are no other linear maps 1: R? x su(2) — su(2)
that fulfil the two conditions in Wang’s theorem [36], see Case For the first step we calculate

Ve(T,§) = (@’{076)000) (U,5) = wy (%|t:0¢> ((t7,exp(t5)), (0,¢€)))
=uwp (%’t:o(ta’ exp(t5))) = c3(7) + 5.
For the second one observe that 7(p) = 0 and Gy = {0} x SU(2). Then for j = (0,0) € G we have
j-p=1(0,0)(0,e) = (0,0) = p- o, hence ¢,(j) = 0. Consequently, if 1: R? x su(2) — su(2) is a
linear map as in Wang’s theorem, then, together with condition 1. ), this gives ¥(5) = dc¢p(5) = 5.
So, it remains to show that (%)) = ¢ 3(¥) for some ¢ € R and each & € R®. Due to condition . ),
we have () = Ad(c1) 09 o Ad(0)(¥) for each o € SU(2). Moreover,
Ad(o—)(ﬁ) = %‘tzo(ov U) g (tﬁv 6) K (Oa 0—)71 = %‘tZO(U(tU),U) K (Oa 0—71)
= &ilimo (0 (t9),0071) = (0(2),0),
hence (%) = Ad(c) o1 o o~ 1(¥) for all # € R? and all ¢ € SU(2). Then for o; := exp(t3) with
§ € su(2) it follows from linearity of ¢ that
0= 3|, (@) = $|,_,Ad(o; ") 0 h(04(D))
= Sliooi Woes™) (003(8) 0, ") 0
lin. N . _ o s N -
= —59(0) + (Y os") (53(7) — 5(9) ) + ¥(7) 5.
This is [3,9(7)] = (Y o371) ([5,3(7)]) for all 7 € R3 and all § € su(2) so that for 1 <i,5,k < 3 we
obtain
(i, 0 (€3)] = (v 05~ ) ([, 75]) = 2eiu(¥ 0 371) (1) = 2€5utp(6h)-

This forces ¥(¥) = ¢ 3(¥) for some ¢ € R and all ¥ € R3, hence
(0, 8) = (V) + 9(5) = c3(V) + § = (0, 5).

B.2 Abelian Group Structures and Quasi-Characters

Proposition B.1 (Proof of Proposition )
1) Let X be a set and A C B(X) a unital C*-algebra. Then, the families of quasi-characters
are in bijection with the continuous abelian group structures on X.

2) If X carries an abelian group structure, then a continuous abelian group structure on X is
compatible in the sense that

tx(z) +ix(y) = wx(z+y) Va,ye Xy
iff the respective family R consists of characters.

PROOF: e First, assume that X = Spec(2l) carries an abelian group structure continuous w.r.t.
the Gelfand topology and let T’ denote the dual of X. Since the elements of £ :=I' C C(X)
separate the point in X, we have & = C(X) by the Stone-Weierstrass theorem. Moreover,
the elements of Ky are linearly independent because fyX dpg = 0 iff x # 1. Since the Gelfand
transform is an isometric *-isomorphism, we have
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— R:= G !(Ry) is closed under pointwise multiplication and complex conjugation,
S R=w
— the elements of R are linearly independent.

Moreover, if f € & and z € X, then f(z) = tx(2)(f) = G(f)(tx(x)) € S', so that it remains
to show the property |4)) from Definition For this, let z,y € X and f € K Then we have

f(@) - fly) =G(f)ex (@) - G()ex(y) = G()(ex (@) + ex(y)) = (ex(2) +ex(y))(f), (154)

whereby the third step is due to G(f) € I'. Since tx(X) C X is dense, we find a net {4 }aer
with tx () = (tx(x) + tx(y)) so that

F@)- 1) B tim e (2a)(f) = lim £ ().
Moreover, there is a net {¢tx(€a)}acs — € € X, hence
lim f(eq) = limG(f)(ex(ea)) = G(f)(e) =1

because G(f) € I'. If X is an abelian group with tx(z +y) = tx(x) + tx(y) for all z,y € X,
then

flz+y) =wx(e+y)(f) = G(NHx (@ +y)) = G(Fx W) + G()ex(y) = f(2) - fy)-

Let & = {fa}taer = 2 be a set of quasi-characters. We define the group structure on X as
follows. Let 1)1, 12,9 € X and & the *-algebra generated by & For f:=> " Bifs, € & we
define

(W1 +¥2)(f) =0y B (fa o (for) () = Bii(fa)  e(f) =200 Bie

These maps are well defined and linear just because the elements {f,}aer are linearly inde-
pendent. Moreover, they are multiplicative because f,fs € R1if fa, f3 € & and since 1, Y2,
are multiplicative. It follows from f,f, = 1 that ¢ +1~! = e, and it is straightforward to see
that 4+ is associative.

The crucial part now is to extend vy + 19, ¥~ and e to . Since these maps are linear, for
this it suffices to show their continuities. The algebraic properties of these maps then also hold
on 2 just by continuity. By denseness of 1x(X) C X, for each € > 0 we find z,y. € X such
that for i = 1,...,n and C := 2 -n-max(|f1],...,|Bn|) we have

[Y1(for) = ex (@) (fa,)| <€¢/Caswellas [¥a(fo;) = tx(ye) (fa,)| < €/C.

It follows that [(11 + 12) (Z?:l Bi foi)l < A+ |Z?:1 Bi tx(xe)(fai)ix (Ye)(fa;)| for
B

A= ’Z?:1 Bi [¢1 (fa)2(fa;) — LX(xf)(fai)LX(yE)(fai)] |
< 2 1Bl [ (fa) 2 (far) — ex (We) (fa)| + lex (we) (fa) | 191 (fa;) — ex (o) (fa,)]
= 2im1 1Bil [W2(far) — ex (W) (fa)l + 22521 1Bil [¥1 (far) — ex (o) (fai) | < e,

169



where the second last step is clear from im[f,,] € S! for i = 1,...,n. For the summand B
observe that we find a sequence {z, }nen € X with

fai(xe)fai(y€) = hinfai(zk) Vi<:< k‘,
so that this summand reads
B = [2in Biex () (far)ex (ye) (fa) | = 122550 Bi limy fa, (20)] = M 325 Bi fai (2i)] < 1/ oo

This shows |(¥1 4+ ¥2)(f)| < ||f]leo + € for each € > 0, hence |(¢1 + ¥2)(f)| < ||flloo. Conse-
quently, 11 + 1) is continuous on &. For )~! we choose z, as above, but now for fai instead
of fa,;, and conclude in the same way that [y ~1(f)| < ||f||leo for f € &. For continuity of e, we
choose a sequence {e}tren € X with limy fo,(ex) =1 for all 1 <4 <n. Then

eI = 120 Bil = 105 i limy fo, (ex))| = lim 325, i fau(er)] < [1f 1l

showing continuity of e.

It remains to show continuity of the group structure. For this, keep in mind that a map into X
is continuous iff its composition with each f, € K is continuous. This is because 2l is generated
by these elements. So, let {¢%,¥5}ics — (¥1,12) be a converging net. Then {¢f}.cs — i
for i = 1,2, and for f, € £ fixed we find k. € J such that ||1); — ¢}||;, < § for i = 1,2 and all
Kk > Ko. Hence,
[1 + b2 = OF + U5 7, = [¥1(fa)b2(fa) — ¢1 (fa)¥5 (fa)l
< [1(fa)l [2(fa) = ¥a (fa)l + [¥5 (fa)| [¥1(fa) — ¥1 (fo)l
= |¢2(foz) - ¢2 (fa)| + |wl(fa) - wf(fa)| < €.

Continuity of inversion is straightforward now.

If X is an abelian group such that the elements in K are characters, then

(ex (@) +ex (W) (fa) = ex (@) (fo)ex W) (fa) = falz +y) = wx(z+y)(fa),
hence tx(x) + tx(y) = tx(z +y) as & C A is dense.
We have to show that the established correspondence is one-to-one:

Let £ be a set of quasi-characters that corresponds to a continuous group structure (+,~!) on
X. Then, for (+’,_1/) the continuous abelian group structure induced by R, and f, € R, we
have

(1 4+ 2)(fa) = V1(fa)b2(fa) = G(fa) (1) (fa) (W2) = G(fa) (1 + 2) = (Y1 + P2)(fa)

because g(fa) € T by construction. As above, here ' denotes the dual of X (w.r.t. (+,71)).

Since "' (fa) = ¥(fa) = G(fa) (¥) = G(fa) (V") the group structures (+,~) and (+,7")
coincide. Here, the last equality is due to the fact that G(f,) is a character w.r.t. (4,7 1).

Let & be the family of quasi-characters that corresponds to the group structure on X induced
by the family of quasi-characters 8. Then, by definition, G(&/) = T is the dual group of X.
Obviously, G(R) C T, and since & = 2, for x € T'\G(8) we find a sequence & D {h,}nen — X
with & the *-algebra generated by G(8). Then

1:/1d,qulim/X-hnduH:lim():O
X nJX n

shows G(8) =T = G(R'), hence R = & [
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C Appendix to Spectral Extensions of Group Actions

C.1 Invariant Generalized Connections

Lemma C.1

The map 14: A — A is injective if for each ¥ € TM there is v € P and s € dom[y] = [a, b], such
that 4(s) = ' and 7|jqq € P for all t € (a,s] or y|y € P for allt € [s,b).

Proor: By Lemma it suffices to show that the respective cylindrical functions separate the
points in 4. Since p is injective, it suffices to show that a connection w is uniquely determined by
the values {h%(w)}ep for v = {vy}yen C P fixed with v, € F), for all y € M. Moreover, since w
is a connection, it even suffices to show that W\Tuy p is uniquely determined by this family for all
y € M. Now, w]TUUy p is determined by the connection property of w. Thus, we only have to show
that for x € M fixed and p := v, there is an algebraic complement H,, of T'v, P in T}, P such that
w|m, is determined by the values {h%(w)},ep, or, due to (1)), by any other family {hzl (W) }yer
with v/ = {1 }yens C P another collection with v, € F, for all y € M. For this, let (Uo, ¢o) be a
bundle chart of P with ¢g(p) = (x,e), and define (observe that v, = v, = p)

g ¢t ye) ify el
v Vy if y ¢ U.

Then, Hy, := d; ¢, YT, Up) is an algebraic complement of T vp P in T}, P for which we have to show
that w|y, is determined by the values {hzl (W) }yep-

For this, fix ¥ € Hy, and choose v € P with §(s) = dp¢o(0). Moreover, leta =719 < ... <7, =b
be a decomposition of v such that v; := 7|, -, ] is of class C*.

e First, assume that s € (a,b] with |, € P for all t € (a,s]. We find 0 < i < k — 1 with
s € (i, Ti+1] and denote by &; the horizontal lift of v; w.r.t. w in ¢ € F(,). Then, for each
t € (73, Ti+1] the restriction 6¢'[(, 4 is the horizontal lift of |, 4 w.r.t w in ¢. It follows from
horizontality of d; and the connection properties of w that

%}t:s[prz © Qb()] (6?])(t)) = _dR[PrQOfﬁO}(ﬁ‘;(s)) ow (%‘t:s(ﬁal(fyi(t)’ 6)) :

Consequently, for v := 7|4 and ¢ :=P5_ o...0P5 (V:/(a)) we have

% ’t:sh”;: (w) = % ‘t:s[pr2 © Qbo] (&;(t))
—1
= —dR o0p)(5(s)) O W ($lis0 (it),€))
= —dRy () o w(v),

so that w(?) = _%‘t:shZ; (w) - hg; (w)~! is completely determined by the family {hg’ (W) }yep-
e Second, if s € [a,b) with |y € P for all ¢ € [s,b), by the first part we have

. d / / _
w(~0) = ~&| ¥ (@) Y (@) .
for 7 the inverse of v and u := b+a — s so that F(u) = v(s) and ¥(u) = —%(s). Thus, the claim
is clear because the occurring parallel transports are determined by that along the curves 7| [t.8]
for t > s. This is clear from the homomorphism properties of parallel transports and that, up
to parametrization, 7, is the inverse of some curve 7|y 5 for some t'>s.
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Lemma C.2
If P is ®-invariant, then B is O-invariant.

PrOOF: Let P > 7: [a,b] = M, w € A and g € G. Moreover, denote by v, the horizontal lift of
v w.r.t. win p € F,(4) and define
Yi=pgoy, 7y =%g0qy, w:i=0(g,w), p:=2(gp)
Then 7} (a) = p, mo 3 (t) = 70 ®(g,7; (t)) = ¢(g,7(t)) = 7(t) and
G0 (75 (£)) = (@)1w)s0y (35 (1)) = wrg ) (35 (1)) = 0.

This shows that 7,;(t) is the horizontal lift of ¥ w.r.t. @ in p, hence

PL(p) = 7y (b) = @4 (P ().

Then, if we substitute p by p’ = ®,-1(p) and v by 7' := ¢, -1 0, this gives

P5 (p) = g (P (1)) (155)

Now, let v = {v,}penr € P with v, € F), for all z € M and define 9,(p) := A(v,,p). Then for
P 1= Vy(q) and ~" as above we obtain from the morphism properties of the maps Pﬁ;’,, @, 1, that

(0575) (w) = hy(0(g,w)) = [ty) ©
= [typ) 0 ©g 0 PY] (@,

7]( (@)
-1(v,
:[¢7( oq) o’P ]( )
) (

a))
w 0 (2g-1(V5(a)))

=Py [Pg(Vyrp) - ¥ %J( @) Vy(0) (Pg-1 (V) (156)

= Ps(b) ( ( )) wv (b) ( ;J( )) Yy (a)(q) 1(’/7(&)))

= Uty (Pg(vyr))) - iy (w) - g ( 1 (V) -

(51 52

Consequently, for the generators f o h of P with f € C(S) we have

9; (foh:/) = (fOL51 OR52)Oh’Vy’ € B,

hence 0;(¢) C P for € C P the dense unital *-subalgebra generated by the functions f o hZ. For
this, observe that 671 =1 for all g € G. Finally, for f € P let € 2 {f,}nen — f be a converging
sequence. Then 67 f, — 67 f, since 0 is an isometry, hence 67 f € . n

D Appendix to Modification of Invariant Homomorphisms

D.1 Analytic and Lie Algebra Generated Curves

Lemma D.1
1) Let;: (ai,b;) — M be analytic embeddings and x an accumulation point of im[y1] Nim[yz].
Then v1(11) = v2(I2) for open intervals I; C (a;,b;) with x € v;(I;) fori=1,2.

2) If dim[S] > 1, then y1 ~4 Y2 <= 71 ~m Y2 <= Y1 ~par V2
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3) Let S be connected. If P C P, is closed under decomposition and inversion, then P is
independent.

PrROOF: 1) See Lemma
2) See Lemma

3) It follows from Proposition A.1 in [21] that a set {d1,...,d,} C P, is independent if im[d;] N

im[d;] is finite for all 1 < ¢ # j < n. Consequently, it suffices to show that each collection
of the form {v,01,...,0;} C P, where im[o;] Nim[o;] is finite for all 1 <14 # j < n, admits
a refinement {61,...,0,} C P such that im[6;] Nim[§;] is finite for all 1 <i # j < n as well.
In fact, if {71,...,74} is given, we can apply this to 7 := y; and o1 = 72 in order to obtain a
refinement of {71,72} with the above intersection property. We now argue by induction. For
this, let 1 <! < d and {61,...,0,} be a refinement of {v1,...,v} such that im[d;] N im[J;]
is finite for all 1 <4 # j < n. By assumption, for v := v;41 and 0; ;== d; fori = 1,...,n
there is a refinement {07, ...,d,,} of {7141,01,...0,} such that im[5]] Nim[d}] is finite for all
1<i#j<n'. Using , it is clear that {07,...0/,} is a refinement of {y;411,71,...,} as
well.
Now, if {v,01,...,01} € P is as above, for each pair (v,04) we denote by {L§}1<p<m, and
{J§}1<p<m, the corresponding overlapping intervals from Lemma in dom[y] = [a, ]
and dom[o,] for ¢ = 1,...,1, respectively. We find a = 79 < ... < 7, = b such that each L}
occurs exactly once as an interval [Ti(qm), Ti(q7p)+1]. For this, observe that

AL =0 if g=q¢ and p#p,

and only can contain start and end points if ¢ # ¢/. This is because im[o;] N im[o;] was
assumed to be finite for 1 <1 7 j <. Then, ¥[zp ~im [0q|Jg]i1 so that for

I={0<i<n—-1|i#i(q,p)foralll <¢g<Il,1<p<my}

the families {7[i, -, bier and {og|r}1<p<m, for 1 < ¢ < I provide a refinement in P of
{7,01,...,01} which has the desired intersection properties. n

D.2 Inclusion Relations
Proof of Proposition [5.15

By assumption, we find an Adg, -invariant linear subspace V' # {0} of g with V @& g, C g,
and a non-trivial Adg, -equivariant linear map L: V — 5. We choose g3 € V'\ ker[L],
g1 € g\ [V @ g, and define go := G + g1. Then, Go € g\g, by definition, and we have
g3 ~, g1, go. In fact, we even have

g e gi.Ga Vg eV (157)
since elsewise it would follow from Lemma [5.614] that
A1+ AdR(F) €. or Az +G1) + Adn(F) € g0

for some A # 0 and h € G,. Then, by Adg, -invariance of V', in both cases we would have
that g3 € V @ g,, which contradicts the choice of gj.
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Now, for 4 € R let €, denote the map from Proposition that corresponds to
the linear map pL and arises by modifying some ¢’ along g3. Recall the open subsets ,
and define v; := ’V§i|[0,l} for i = 1,2 as well as v3 = 7;53\[0’” for some fixed [ > 0 with
I <75, T, Tgs-

We are going to show that there is 4 € R and U C S open such that

Ry (taW)) € URP,(en) = rg(a(w)) € U, (en), (158)

hence Ky (ta(Ared)) NUYEE 5 (e,) = 0. From this, it follows that
Ep ¢ Rg! (-Ared) = Ry <LA('Ared)>7

hence Ayeq 2 Iﬁ;l(e’iu) ¢ Ayeq, which shows the claim. Observe that the neighbourhood

ULP., (e,) on the left hand side of (158) does not depend on u € R just because the values
€u(i) for i = 1,2 do not so.

Step 1:
Let U be a neighbourhood of e in § and a; € S for ¢ = 1,2 the unique element with
£ (7i)(p) = ®p(exp(lgi)) - a;. Then, for w € Aseq we have

Ky (ta(w)) € URE (eu) = exp(—ilw(gi(p))) € a; - U for i =1,2. (159)

In fact, since €,(7;) = €'(7;) for i = 1,2, we have
foA@) EUTPL(6) = rpliate)) € UE2,()

Consequently, kg (t4(w)) € ULP,, (e,) implies

Oy (exp(1gi)) - exp(—1lw(gi(p))) = kg (ta(w))(vi)(p) € €'(i)(p) - U fori=1,2.

This is equivalent to exp(—ilw(gi(p))) € a; - U for i = 1,2.

Step 2:
Let U := exp(i(—¢,¢)) for e < T, and ¢; € [0,27) such that a; = exp(it;) for i = 1,2. Then,
from (159) and g3 = g1 — Ga, we see that kg (t4(w)) € ULP,, (e,) implies

w(G(p) = ~1w(@(p) — [~lw(@m)] € || 2mn + [t — 2] + (~2¢,20),
neZ

just because exp(—ilw (g1 (p)) — [—ilw(G2(p))]) € exp(i2rn+i[t; —ta]) - exp(i(—2€, 2¢)). Now,
Ky (La(w))(73)(p) = Pp(exp(lg)) - exp(—ilw(g(p)))
by ([#2)), hence
kg (ta(w))(713)(p) € Pp(exp(lg)) - exp(iltz — t1]) - exp(i(—2€, 2¢)).
Since L(g) € s = R, for u = 2= we have just by definition of £, that

1L(g)

en(v3)(p) - U P, (exp(1g)) - exp(ita — t1 + 7)) - exp(i(—e, €)),

hence kg (1a(w)) ¢ Uk, (g,) by the choice of e. n
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E Appendix to Lie Algebra Generated Configuration Spaces

E.1 Lemma and Definition

Well-definedness of : We have to show that 7,(¢) € M, for each € € Hom,eq (PQN, Morp).
For this, let § € g\g, be fixed. We first show that , hold for such A\ # 0, [ > 0 with
|A|[l < 77 and such 1,1’ > 0 with [,I',] +1' < 77 as well as equivariance for all 0 < [ < 7;. Then, an
easy refinement argument shows that the value

(G, 1, €) : prg,zz,s for 0<Uly,....lp<7 with lj+---41 =1

does not depend on the decomposition of [. From this, then it is immediate that , as
well as equivariance also hold in the general case. For instance, if A # 0, we have
Tp(e)(A- Gy li 4+ le) = mp(e)(A- G, li) - Tp(e)(A- 7. 11)
= p(e)(F, I/\Ilk)Sig““)- () (G, A1) 7B
=p(e)(G. Ml + -+ J)Slgn( 2

Now, let g := exp(lg), ¢’ := exp(l'g) an =exp([l +1'] - ). Then we have
Tp(E) (1 +1) = A (Pexy (l+l/)g p),e(73 1) ()

= A (@n(p),e (v lw.1+1) (€ (5l01) ()
= A (P (%xp(l' °¥5l0a) (€ (0Flon) (0))
=A ( g °(5loa) (‘I’g/—l o (vlp.1) (10)))
= A(24(p), (’Vgl[ou)(P A(p, @y-1 02 (v5l0.) ()
= A(2y(p),e(v5110.0) (P)) - AP, @1 0 € (v]10.7) (1)
=7p(e) (G, 1) - A(®yr (p),e (Vi l0,)) ()
=Tp(e)(9:1) - Tp(e)(4,1)

For equivariance, let ¢’ :== Ady(g). Then 2’ := p-1(z) = x, so that A(p-s,p’-s) = a,-1(A(p,p'))
shows

7(2) (Ad(@). 1) = A (Shexpan- (0):€ (0095 Lo ) @)
= A(®hexpin (2 5 (7)) @10 (12l10) (@41 (p))

= Qg,(h) © A(‘I)h 0 Deypig) (P), Proe (’Yg , ) (p)>
= Qg (h) © A(‘Pexp(lg) (p),e (75\[0,1}) (p)>
= ag, ) ©Tp(€)(g,1).

Finally, if A > 0, then fyfg.][o,l] ~A 75"[&”}’ and we obtain

fp(g)(A : §7 l) =A ((I)exp(klﬁ) (p)> 5(’7§§‘|[0,l]) (p))
= A (Pexp(nig) (p)75(79£|[0,,\11)(17)) = mp(e)(g, Al)-

175



. -1
Moreover, since Pexp(lg) © Vf~|[0,l ~A ['Ygl[o,l]] , we have

Tp(e A (Pesp(—15) ()£ (125l 10.0) ()
=A ( exp(—1g) (%xp( 1g) © [7§|[O,l}]_l>(p))
=A <‘I>exp Pexp(—1g) © 5([7;5\[0,1}] 71) (Pexpig) (p)))
=A <p,6( ’Ygl[o 1 1>(<I>exp(lg)( ))) ~

Then,
5([7;“0,1}]_1) (‘Pexp(lﬁ)(p)) Wp(galae) - 5( r}/g|[0 ] ) exp lg) 7Tp(9,l,€))
(’Yg![ou ) e(Vgloa) () =p

shows 7, (¢)(—g,1) - Tp(€)(g,1) = 1, hence 7,p(e)(—g,1) = Tp(e) (g, 1) .

For the continuity statement let Hom,eq(Pg, Morp) O {e,},cr — € € Homyeq(Py, Morg) be a

converging net, U C SU(2) open, §1,...,0x € g\gz and l1,...,lx > 0. Let v; := VG, 0.4 for
i=1,...,k. By Lemma [L.I§2) we find ¢¢ € I such that for all ¢ > ¢ we have
e, €Ut (5)

= {8 € Hom,edq(Pg, Morp) | €' (i) (p) € 8(%)( )-U  fori=1,. k}

= {&’' € Homyeq(Py, Morp) | A (e(v:)(p), €' () (p)) € fori=1,. k:}

= {&’ € Homyeq(Py, Morp) | 7p(e )(gZ7 Z) Tp(€)(Gi, ,) . fori=1,...,k}

— {&' € Hom(Py, More) | 73(€") € U, (7p(e)) 1+~ N Ui, (7))}

where the third step is due to

A(e()(p),€' (1) (p)) = A(e(3)(P), Pexp(ig) (D)) - A(Pexpig) (P), € (7:) ()

= ﬁp@)(ﬁi,lz’)_l (e (Fis i)

This shows 7,(e,) — Tp(€), hence continuity of 7. [

Proof of : The claim follows from
Tgps(Adp(9),1,¢) = A(‘I’exp(mdh(g))(q’g(p)) s), (vjifff )‘[01) (p)'s))
= Qz-10 A<(I>hexp(l§’)h*1(g 'p)7€<<ﬂh oy \[0 z1> P (p))>
= Q-1 0 A(% 0 Perp1z) (9 D) - Dgp(h) !, P 0 6( (w)\ ) h-1(9 p)))
Q51 () OA(‘I’ © Dexp(1ad, - (g*»(P)aE(‘Pg OVAdgfl(a’)\[o,l]) (9 ‘p))
2loa) @)

(¢ <
(s—Lgg.p(h)) © A(q)exp lAd,—1( ( )75(7?&(19_1@)}[07[]) (p))
= (194, () © Tp( Adg-1(9), L)

(510 © A (@0 © Perpaaa, 1 @) #): B9 02 (v,

for0<l<7'§. [ ]
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E.2 Lemma [6.117]
Proof of Lemma [6. 1112k

We always have 0 € J(g,p) because U(A - g) := 1 is a well-defined element of M,. Now,
assume that the first two cases do not hold and choose Vg, ¥y € Y; with

0 # Bo := B(W¥o) # B1 = B(¥1) # 0.
Let ¢ € 91 denote the uniqu@ element with
To(A- ) = exp(¢(N) - 53,) VA >0,

and choose \g, A1 > 0 such that ¥o(Ag - §), ¥1(A\1 - §) # £1 holds. Then, for h € Gfg] we
find p € {—1,1} with

ag ) © Yo(A-g) =To(X-§* VAIeR.

Evaluating this for A = \g and using Lemma we see that one of the following situations
holds:

1.) p=1and ¢p,(h) € Hg,,

2.)) p=—1and ¢,(h) =exp (gg,(ﬁi)) for some 1 € R3 orthogonal to 371(53,) with ||| = 1
and uniquely determined up to a sign.
In particular, ay,(s) = s~1 holds for +1 # s € Hy iff (i, 7') = 0.

We now distinguish between the following two cases:

Case A: For each h € G Situation 1.) holds. Then,

g, (m) © Y1(A1 - §) = V1(A1 - Adp(G)) = P1(A1 - 9)
shows ¢p,(h) € Hg, N Hg, = {—1,1}, so that for each § € Ps the map
V(A ) = exp(sign(No(A) - 55)  YAER (160)
is obviously equivariant, hence contained in Yé’. This shows that J(g,p) is of Type 4).

Case B: We find h € G5 such that Situation 2.) holds, hence Ady(§) = —g and h # £1.

Using equivariance, we obtain
ag,n) © V1M1 - §) = U1(A1 - Adp(d) = ¥1(A1 - §) 1,
hence (371(53,),m) = 0 because W1 ()1 - §) # £1 just by the choice of A;. Thus,
J(G,p) € {0} UlUsers\(0}: (amy=0 [3(7)]-

so that it remains to show that even equality holds:

142This follows by the arguments as in the proof of Lemma and Convention
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o Let h #1 € Gfg_] be a further element for which Situation 2.) holds. Then, the above

arguments show
J(g,p)\{0} € U [3(@)] N U [3(71)];

AER3\{0}: (7,17)=0 AER3\{0}: (7,7/)=0

so that J(g,p) would be of Type 2) if m and m' were linearly independent. Since this
contradicts the assumption, we have ¢p(h') = £ exp (53(111)).

o Let h £k € G%i be an element for which Situation 1.) holds. Then, as in Case A, we
conclude that ¢,(h') € Hg, N Hg, = {1, —1}.

Now, to show that J(g,p) is of Type 3), let @ € R3\{0} with (7i,7) = 0 and 3 := [3(77)] €
Ps. We define ¥’ by . This map is equivariant because for each hg € Gﬁﬂ we either
have ¢p(ho) = £1 and Adyy(F) = G or ¢p(ho) = texp (§m) Adyy () = —g. In fact, let
A € R. Then, in the first case we have

Qg (ho) © U'(\-g) = Qg (ho) © exp(sign()\)qb(|)\|) . 55) = exp(sign()\)qb(|)\|) . 5’5)
— V(A 5) = (¥ o Ad)(A- ),

and in the second one

gy (o) © ¥'(N - §) = g, (hg) © exp (sign(N) (| A]) - §5) = exp(sign(N)o(|A]) - 55)
=V'(=A-g) = (Y oAdy)()9)

holds. [}

E.3 Completeness and Independence of the Family in Example [6.14

— —

Recall that x = 0, that ¥, ¢, are orthogonal, 5y = 3(¢), 51 = 3(¢1), and that
Es :={\5 + X251 | A1 € R, A2 > 0}.
Then, for each § € g\g, = [R*\{0}] x su(2) we find
§e€ Esg h=1(0,0) € Gy = {0} x SU(2) A#0,
such that § = A - Ad,((7, 5)) holds, hence {t} x E> is complete by (53)).

e In fact, since Ad ) ((7,5)) = (o(0)(v), Ads(5)) holds for all ¢ € SU(2), running over o € Hy
generates the set {0} x su(2).

e Thus, running over SU(2) gives S? x su(2) as ||7]| = 1, and since each element of [R3\{0}] x su(2)

equals, up to some non-zero factor, some element of S? x su(2), the statement is clear.

We now have to show that replacing E'> by Ejy does not change this fact, that Ey consists of
stable elements, and that it is independent. For this, we first have to determine the Lie algebra
generated curves. To this end,
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a.) We take a closer look at the group G :=R3 x SO(3) whose exponential map is given b
oxp((3,7) = (A()(@),exp(7)  for  A(F):= 332, 7"
with (7,7) € R? x s0(3) and exp(#) the matrix exponential in SO(3). We let
o((v,R),x) :=v + R(x) Y (v,R) € R? x SO(3), z € R?
and define 3: G — G, (v,0) = (v,0(0)). Then, g is a Lie group homomorphism and
py=@y00 VyeM=R’ (161)

holds for ¢, the induced action that corresponds to the action of R? x, SU(2) on P. Thus,
for exp the exponential map in R3 x SU(2) and 7 := d.o(5), we have

Vgﬁﬁ,?) (t) = (9096 © @)((t ' 777 - 5)) (&CE 0 eXp) (deg(t ' 777 t- §>)
= (FzoeD)((t-T,t-deo(5))) = Alt-7)(¢-T) = Y5, 47 *17,

hence "ygcﬁg)(t) = exp(t - 7)(¥). In particular, since deo(A - 8p)(¥) =0, shows that

(162)

Torin®) =t-0  VAER,

hence that {#} x Ej is complete as well.

b.) Let 8,5 € su(2) and o € SU(2) be such that (we write o(¥) instead of o(¢)(¥) in the following)

(163)

Vfa,s-) o) = ﬁ(a(ﬁ),y)
holds for some diffeomorphism p with p > 0. Then, o(¢) = +0, as well as §
5,8 € spang (5)).

In fact, combining {5 (t) = exp(t - 7) (V) (7= deo(8)) with (163), for 7 :=d.0(5") we obtain

= 45 or

exp(t - 7)(T) = 4t 5 (1) = B(1) - AL o)1 (p(1)) = exp(Ep(t) - 7) (£4(0) - o(7)).

Since ||7]| = 1 and || exp(t - 7)(¥)]]| = 1 for all ¢ € [0,1], we have p = 1, hence p(t) =t for all
t € [0,!]. Evaluating this for ¢ = 0, we see that o(¢) = £¢ holds, hence

exp(t - 7) (V) = exp(&t - 7)(7) VteR. (164)
Since the images of the maps on both hand sides of (164)) are circles which traverse through

U in the planes orthogonal to 7 and 77, respectively, we conclude that one of the following
situations holds:

spang, (v) = 5,5 € spang(5o)

30ne easily verifies that < |t:55>\<f)(t (0,7)) = dLegp(s-(5,7) (¥, 7) holds.

179



In the second case, we have done. In the first case, we deduce that ¥ = &7, hence § = £3
holds because the tangent vectors of the above curves at ¢ = 0 have to coincide, and are given
by 7 x ¥ and 7" x ¥, respectively. This is because

7% || = |7 - |U]] - [sin(@)]  and || x & = 7] - |U]] - | sin(6")],
whereby the angles # and 6’ between the respective vectors coincide modulo 7. t

Now, for stability, let (I63) hold for & = Ad, () with & € Ey. Then, b.) showq ™|

Ad(O,cr)((Q_}: §‘)) = (U(U)a Add(g)) = i(Uv §'),
hence (0,0) € G5 This shows stability of (U, 5).

For independence, assume that (¥, ) ~, (¥,5") holds for 8,5’ € Ey. Then, by in Lemma
the equation (163) holds for 8§ = Ad,(s"”) for some o € SU(2). Hence, (0(?),5) =
+(¥,Ad,(5")) by b.) because §,Ad,(5") € spanp(5)) already implies that both elements are
Z€ro.

o If 0(U) = ¥, then 0 € Hy = Hg, so that § = Ad,(5") implies § = §” just because 3,5 € Ej.

o If 0(¥) = =0, then 0 = £exp(F3(m)) for ||7i|| = 1 with m L ¥. Since 5= 0 iff 5 = 0, we can
assume that 5, 5” # 0 holds because elsewise the statement is clear. Then, the claim follows if
we can show that either ¥, = 4 holds or that ¥, and m are orthogonal.

In fact, if ¥, and m are orthogonal, then we have
Ad,(5") = -3" = —§=Ad,(5") = -5" = =75

Moreover, if ¥, = +m holds, then Ad,(5") € Ep, hence § = 0 since elsewise Ad,(5") = —5 ¢ E
would give a contradiction as well.

Now, to show that one of the above cases holds, let @ := 37(5) and denote by D(n) the
rotation in R3 by 7 around . Since 0 # § € Ey, we have @ = \ - ¥ + p - ¥, for some p > 0.

Then, D(m)(w) must be contained in spang (v, 7)) because Ad,(§") = —§ and § € Ej holds.
Then, since D(m)(wW) = =X - ¥+ p- D(m)(¥L), the element D(m)(¥} ) must be contained in
spang (0,7 ) as well. However, 0| = (T, m) - m + (0,0 x m) - ¥ x m, so that
D(m) (V) = (T, m) -m — (U, 0 x m) -7 xm
can only be contained in spang (7,7 ) if
0= (D(m)(V1), (Vx UL))
—<UL,T7L> (T?L 17><_l> UL, T _‘X_l>

summand. The above equality now shows that either ¥, = 4 holds or that m is orthogonal
to U .

14 0bserve that 5 € spang (35) already means that 5= 0, hence 5 = 0 holds.
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F Appendix to Homogeneous Isotropic LQC

F.1

Proof of the Lemma in Subsection [7.4]

Proof of Lemma [T.13}

It suffices to show the claim for R C R. Now, Trr O LR is continuous by , so that
7 (R) = (mr 0 ¢)(R) € SU(2) is connected. Since each proper Lie subalgebra of su(2)
is of dimension 1 and since SU(2) is connected, each proper Lie subgroup of SU(2) is of
dimension 1 as well. Let H C SU(2) be such a proper Lie subgroup with «/ (R) C H.
Then h = spang (5) for some 0 # § € su(2). Then Hg is the unique connected Lie subgroup
of H with Lie algebra b, i.e., the component of 1 in H. But 1 = 7} ,(0r) € 7} (R) N H,
hence 77 .(R) € Hy by connectedness of 7, ,(R). This, however, cannot be true as
shows.

Let T € Rpopy € R. Then

(126) -1

W;',r(f) ) (é-(f)([h’,;-ryr]ij‘f‘red))ij = (5(5) ([exp (%7—3)71 ) h’VY-r,r]ij‘-Ared))ij
£(7) (c s cos(BeT) + ﬁsin(ﬁg}) £() (c > & sin(fer ))
£(T) (c = — g sin(fBer )) ¢(T) (c — cos(f.T) — 2—60 sm(,BCT))

_ < &) (c— COS(CTT)) &) (e~ sin(ch)))
&(Z) (¢~ —sin(ert)) &(T) (¢ cos(erT))
= (f(c — exp(—crt - Tz)ij))ij € Hy,,

exp (%Tg)

where the second step is due to multiplicativity of £(Z) and the third one follows from ((124)).
The fourth step is due to the fact that the (unique) decompositions of the matrix entries

a: ¢ cos(fB.t) + ﬁ sin(B.7) and b: ¢ 5 sin(fer) (165)

in into direct sums of the form Cy(R) @ Cpap(R) are given by
a(c) = (cos(ﬁcT) + ﬁ sin(B.1) — cos(cm‘)) + cos(crr) (166)
b(c) = (% sin(B.7) — sin(cm-)) + sin(err). (167)

The last step is due to closedness of H;, and that we find a net {c4}aer € R such that for
each 1 <14,j < 2 we have

Z(c > exp(ert - 12)ij) = lién exp(CarT - 7'2)2.]..

Obviously, W’T’T\RBohr: Rponr — Hy, is surjective. For the intersection statement observe
that by (124]) and we have s € 7, (R)N Ho, iff sin(8.7) = 0, hence cos(B8.7) = *1, i.e.,
s = =*1.

Let 4o denote the Haar measure on SU(2). By |3 ' we have po (), (R)) = po(m,(R)) +
10 (HTQ) and ([124) shows that 7, IR is an immersion. In fact, the derivatives of the functlons

(165) are given by
ale) = —C’;CT in(B.7) + % [cos(ﬁcT)T — i sin(ﬂcT)}
b(c) = 7 sin(Ber) — 53 sm(ﬁc )+ nggT cos(B.1),
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so that we have b(0) = 2r sin(Z) # 0 because 0 < 7 < 27 and a(c) # 0 if ¢ # 0. Conse-
quently, 7r’77,, (R) can be decomposed into countably many 1-dimensional embedded subman-
ifolds each of measure zero w.r.t. the Haar measure on SU(2). Hence, pio(7; ,.(R)) = 0 and,
obviously we have pg (HTZ) =0 as well.

4) Let x # y with 7/ (x) = 7/ .(y). If 2 = —y, a closer look at the entry ()12 (b in (165))
shows that sin(8,7) = 0 = sin(8,7) holds, hence = a,, and y = a_,, for some n € Z,y. If
|z| # |y|, then B, # By, so that a closer look at the entry (7;,)11 (@ in (165)) shows *°|that
either 76,, 76, € {2mn|n € N1} or 76,76, € {(2n — 1)m |n € N>} holds. Thus, z = a,
and y = a,, for some m,n € Zq, from which the first part follows. The merging property

is immediate from the formulas (166) and (167). [ |

G Appendix to A Characterization of Invariant Connections

G.1 The Proof of the Case in Subsection [8.3.3

Proof of Case m The only patch is M x {e} so that a reduced connection is a smooth
map ¥: g X TM — s with the claimed linearity property and that fulfils the two conditions
from Corollary Obviously, #.) and iii.) are equivalent. Moreover, i.) follows from i.) for
Pa = pg = (v,¢€), ¢ = (e,€), Wy, = U, and Wy, = 6(w’e), see also a.) in Remark To obtain
ii.) let v, € T,M, g € Q and ¢ - (z,e) = (y,e). Then dL,U, = (¥, —5) for elements v, € T,M
and 5 € s so that

WH(ALyT,) = v (5, —5) = ¥ (05, 7,) — 52 p(g) 0 (Tg, ).

It remains to show that i.) and ii.) imply 4.). To this end, let (y,e) = ¢ - (z,e) for z,y € M and
q € Q. Then i.) reads

g(yae)'i‘gy_g:dl/qu - ¢7(§, Z77;75‘) ZP(Q)Oiﬂ(Ggﬁx),

where v, € T,M,0, € TyM, §€ s and § € g. Let dLy0, = (¥y, —5) be as above. If ii.) is true,
then it is clear from

(5, 8) = 0 (ALe) = plg) 0 (T, )
that i.) is true for ((69,5),17y), ie.,
Op + Uy —§=dLyty, = (04,,) — 5= p(q) o ¥(0g, 7).

Due to i) and the linearity properties of 1, the condition i.) then is also true for each other

pd Bl

element ((g',5"),77,) € q x T,M with ¢'(y,e) + ¥}, — & = dL,0,. [

G.2 A Result used in the End of Section [8.3

We consider the fibre transitive action ®': Gg x P — P that is defined by ®'((v,0), (x,s)) :=
(v+o(x),s) and claim that the connection

wo Ty, Fs) = 515, V (U, 3s) € Ty P

15Consider the graph of the curve R>o 3 f + cos(87)e1 + ﬁ sin(87)& € R2 Then, compare its self intersection

points with the zeroes of the function b: ¢ — = sin(8c7).
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is the only ®’-invariant one. For this, observe that the stabilizer of x = 0 w.r.t. ¢’ is given by
SU(2) and ¢/(0,e)(0) = e for all o € SU(2). We apply Wang’s theorem to p = (0, e). Then condition
a) yields ¢(§) = 0 for all § € su(2) and b) now reads o Ad, = 9 for all o € SU(2). Consequently,
for 7 € R? C ¢ = R3 x su(2) we obtain

0= dt‘t Ow (V) = dt‘t owOAdexp t57( v)
=9 (§],_o0(exp(t9)) () = ¢ 037 ([5,3(7)])

for all § € su(2) just by linearity of ¢. This gives

0= ([m,3E)) =¥ ([r 75]) = €0 (E),
hence ¢ = 0 = @ wp.

G.3 Spherically Symmetric Connections

We consider the action ® of SU(2) on P defined by ®(o, (z,s)) := (o(z),0s) and show that the
corresponding invariant connections are given by (see (150) in Example [8.30)

Py, 35) = Adgr [a(2)3(T2) + (@) [3(2), 5(82)] + e(@)[3(x), [3(2), 3(T)]]] + 57"

with rotation invariant maps a, b, c: R3 — R for which the whole expression is a smooth connec-
tion. Now, a straightforward calculation shows that each w®¢ is ®-invariant so that it remains
to verify that each ®-invariant connection is of the upper form. To this end, we reduce the con-
nections w®¢ w.r.t. P, = R3 x {e} and show that each map 1 as in Case can be obtained
in this way. For this, let § € g, p = (x,e) € Py and 7,: (—€,¢) — M be a smooth curve with
Y2(0) = U, € T, M C T,Ps. Then

W

d(e,p)q)(g, Uy) = (%}tzog—l (exp(tﬁ)a(vm(t)) eXp(tg’)_l) ,exp(tg’))
= (37 ([g.3(2)]) + T, 7) -

This equals 5 iff § = 5 and 7, = 37 *([3(2), g]). Consequently, for the reduced connection ¢ that
corresponds to w®® we obtain

VG, B) =(@7w ™) e )@ Ta)
=wp (57 ( )] +35(%)) . 9)
= a() [[§,3(2)] + 3(7)] + b(@) [[3(2),

+ (@) [l3(x ) [( ) 7,311 + [3(2), (). 53] + 7.

Now, assume that v is as in Case Then for ¢ € Q and p € Py we have q - p € Py iff
q = (0,0) for some o € SU(2) and p = (z,e) for some = € M. Consequently, ¢-p = (o(z),e) as
well as dLy (V) = o (V) for all v, € T, M so that ii.) gives

(0, 0(02)) = ¥ (dLy(T,)) = Ady 0 9 (T, 7o),

(168)

hence

¥ (0g, 7z) = Adg-109(0q,0(,)) V&, € T, M. (169)
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If x # 0, then for o, := exp(t3(x)) we have oy(z) = x and oy(¥,) € T, M for all t € R. Then
linearity of v, := w]ng(x o Poo yields

0¢(097 V) B i o Ady 0 1 (0g, 04 (7))
(W05t (00 3(T) 0y ) o
—5(2) ¥ (0g, 7o) + (o 0371) [3(2)3(T) — 35(8)3(2)] + ¢ (0, T)3(2),

hence [3(%),ww(6g,ﬁw)] = (Y0371 ([3(),3(T2)]). For z = A&t # 0 and k; := w(ﬁg,ﬁw) with
Uy = €} this reads

(11, k5] = (Yo 037 ) ([r1,75]) = (Y 037) (2e107h) = 261500 (Og, €) = 215k k.

From these relations it follows that

0=&l,
tli=o
d

||_E'

R1 :T(A) T1 /QQZS()\) T2+t()\> T3 ngs()\) Tg—t()\) T2
for real constants 7(\), s(A), t(A\) depending on A € R\{0}. Then for x = A&} and

r(A) = s(\)

a(Aey) :=1r(N) b(\éy) := ——= c(Aey) := e

linearity of v, yields that

(0, ) = a()3(5) + b(2)[3(2), 3(7)] + c(@)[3(2), [3(2), 3(T)]]-
Now, if x # 0 is arbitrary, then x = o(Aé1) for some o € SU(2) and A > 0. So, (0,0) - (Aé1,€) =
(z,e) and if we consider o~ !(7,) as an element of T\ ¢)Pso, then ii.) yields
V(0. %) = 0™ (T) = 0 (AL (07 (7))
Y Ady 0 gt (071 (7)) = Ady 0 (0, 0 (5,)
= a(A1)3(Uz) +b(Ae1) [3(2), 3(02)] + c(Ae1)[3(x), [3(x), 5(Vx)]]-

For x = 0 we have o(z) = z for all ¢ € SU(2) and analogous to the case  # 0 but now for
o := exp(tg) with § € g we obtain from (169)) that

[3,%0(0g,70)] = (Y0 037") ([7,3(%0)]) Vg esu(2),Vi e ToM.

This gives [Tiﬂ/)() (6,3,%)} = 2€;10 (Gg,ék) and forces 1o (7)) = a(0)3(vp) for all vy € T0,e) P
where a(0) € R is some constant. Together, this shows

$(0g, Tr) = a(x)3(T,) + b(x)[3(2),5(T:)] + c(2)[3(2), [3(), 3(F)]

with functions a,b,c that depend on ||z|| in such a way that the whole expression is smooth.
Finally, to determine (7,0;) for § € su(2) = g, we consider 37'([3(2),g]) as an element of
T(s,¢)Pso- Then by (168) we obtain from i.) that (7,3 *([3(x),4])) — § = 0, hence

1/1(97 6:6) :g 3 ([ ( )75]))
=g§—a(x )[( ), G = b(x)[3(2), [3(2), 9] — e(x)[3(2), [3(), [3(2), 41]]
a(z)[7,3(x)] + b(2)[3(2), [7,3(x)]] + c(@)[3(2), [3(z), [5(2), g]]] + .
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Symbols

Principal Fibre Bundles:
Principal fibre bundle with total space P, base manifold M and

(P,m,M,S)
F,

14

A

Yz

structure group S.

Fibre 771(x) over x € M in P.

Fixed family {v,}sensr € P with v, € Fy, for all z € M.
Difference of two points in the same fibre of a principal fibre
bundle.

The map P — S, p— A(vg, p) for {vg}ren a fixed family with

vy, € F, forall x € M.
Homomorphisms ¢,: G
h € Gﬂ(p).

Set of smooth connections on the principal fibre bundle P.

7(p)

Parallel transport P5: Fy(,) — Fy() along v: [a,b] — M w.r.t.

w.

Groups and Actions:

(G, ®)
Ared

QO 11 QQQ

p

€

Projective Spaces

Pg
Ps
pTy
pry

Ad
Ad’

Gl
mp

Lie group of automorphism of (P, 7, M, S).

Set of ®-invariant connections.

Conjugation in G by g € G.

The Lie group G x S.

Action E: ((g,5),p) — ®(g,p) - s of Q on P.

The stabilizer of QQ w.r.t. =.

In Section |8 the representation p: @Q — Aut(s), (g,s) — Ads.
Action induced by ® on the base manifold M.

In the bundle context, action induced by ® on the set A of
smooth connections.

and Actions on Lie Algebras:

Projective space that corresponds to g.
Projective space that corresponds to su(2).
Projection g — Pg.

Projection su(2) — Ps.

The left action Ad: G x g — g, (9,9) — Ady(9).
For x € M fixed, the left action

Ad': Gy x pry(g\gz) — pry(g\gz) induced by Ad.
Stabilizer Gy C G of [7] w.r.t. Ad'.

For p € P the set of Ad’éﬁ(p)—equivariant morphisms
v g\gﬂ'(p) X Rsg — 5.

Special Symmetry Groups and Maps:

1%

The universal covering map p: SU(2) — SO(3).
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— S with ®(h,p) =p- ¢p(h) for all
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The semi direct product R? x, SU(2).

SU(2) acting on R3 x SU(2) via (o, (z,5)) — (o(0)(z),0 - ).
R3 acting via translations in the first factor of the principal
bundle R? x SU(2).

Canonical identification 3: R® — su(2), & + 7; for i = 1,2, 3.
The maximal torus in SU(2) given by Hgz = {exp(t5) |t € R}.
The maximal torus in SU(2) given by Hz = {exp(t3(¥)) |t € R}.
The maximal torus in SU(2) given by H, = {exp(t3(x)) |t € R}.
The maximal torus in SU(2) given by H, = {exp(t3(v)) |t € R}.

Set of C*-paths in the base manifold M.

Indexed set of C*-paths in the base manifold M.

Set of embedded analytic curves in M.

Set of Lie algebra generated curves.

Set of curves equivalent to some Lie algebra generated curve.
Set of continuously but not Lie algebra generated curves.

Set of continuously generated curves. Pc = Pg” U PonL

Set of free non-symmetric curves.

Set of free symmetric curves.

Set of free curves. Pp = Ppn U Prs

Y1 ~o Y2 iff 3 open intervals I; C dom][y;] for ¢ = 1,2 such that
71(11) = 72(12).

g~ g for g, € g\g, iff there is g € G such that

Pg 0 Vg ~o Vg

Equivalence classes in g\g, w.r.t. ~.

Y1 ~par 72 iff 71 = 72 © plaom[y,] for p an analytic
diffeomorphism with p > 0.

y~ay iff Py =Pz forallw € A

Elements g of G for which v ~ ¢4 0§ holds.

Stabilizer of the curve v € P, i.e., Gy = {g € G| 407 ~par 7}
h ~y K for h,h/ € G and § € P, iff ™11 € G,,.

Extension of Group Actions:

15'¢

0
G}

X red

Canonical inclusion tx: X < Hom(, C), z — [f — f(z)] for
2A C B(X) a C*-subalgebra.

In the general context, a left action : G x X — X.

Extension of 8: G x X — X to the spectrum of a C*-algebra of
the bounded functions on X.

Set of invariant (classical) elements, i.e.,

Xred ={z € X |0(g9,2) =z for all g € G}.

f-invariant C*-subalgebra of the bounded functions on some set
X.
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X red

X red

Spectrum of the restriction C*-algebra R = 2A|x, , € B(Xied)-
Closure of tx (Xg N Xpeq) in X.

Quantum Configuration Spaces:

=

PSRN~

«

red

=

=

red o

red

SRS

red,a
red

-Ared,a

=

Ag/,red

C*-algebra of cylindrical functions that correspond to the set of
curves P.

C*-algebra of cylindrical functions that corresponds to P,.
Spectrum of 3. Space of generalized connections.

The quantum space that corresponds to P,.

The space X;eq for Xieq = Areq and A = 1.

The quantized reduced classical space that corresponds to P,.
The space X,eq for X = A and 2 = .

Closure of im[4] in A.

The space X eq for X = A and A = P.

The quantum-reduced configuration space that corresponds to
Po-

The quantum-reduced configuration space that corresponds to

Pg’ .

Homomorphisms of Paths:

Hom (P, Mory)
Hom(P,, Morp)
K

Ra

Kyl

Homyeq (P, Mory)
Homyeq(Pu, Morg)

Hom,eq(Py, Morp)

Homomorphisms of paths in P.

Homomorphisms of paths in P,.

The map x: A — Hom(P, Morr). Bijection if P is independent.
The map k from Definition 4.16J§| that corresponds to P,.

The map r from Definition [4.163| that corresponds to Py

For P independent the set of invariant homomorphisms, i.e.,
H(Ared)-

For P, independent the set of invariant homomorphisms, i.e.,
Ra (-Ared) .

The set of invariant homomorphisms in Py, i.e., Ky (Zred).

Normalized Radon Measures:

HAL
HEN

Hg

Ashtekar-Lewandowski measure on Hom(P,,, Morp).
Reduced Ashtekar-Lewandowski measure on
Homred (PFN, MOI“F).

Normalized Radon measure on Hom,eq (PgN , Morp).

Standard Homogeneous Isotropic LQC:

Almost periodic functions on the LCA group G.
The Bohr compactification of R. (homeomorphic to
Spec(Cap(R)))

Haar measure on Rpgpy-

The classically reduced space A;eq -

The space R LI Rpone homeomorphic to R.

The set of homeomorphisms p: (0,1) — R.
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Abbreviations:

LQGC
LQC

Loop Quantum Gravity.
Loop Quantum Cosmology.
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