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KAPITEL I

Einleitung

Seit der Entwicklung eines modernen Spektroskops durch Bunsen, Kirchhoff und von Stein-
heil in der 2. Hälfte des 19-ten Jahrhunderts hat sich die Spektroskopie in der Wissenschaft
und Technik als eine zentrale Methode zur Erfassung von Materialeigenschaften und Gewinnen
von Erkenntnissen etabliert [1, 2]. Prinzipiell wird bei einem spektrokopischen Verfahren eine
Probe elektromagnetischer Strahlung ausgesetzt, sodass die Probe eine Reaktion auf diese äuße-
re Störung zeigt. Die Probeneigenschaften werden ermittelt indem man jene Reaktion erfasst
und beurteilt. Aufgrund der Indirektheit bedeutender Messmethoden der Festkörperphysik und
Materialwissenschaften wie Röntgenstrahlanalyse, Photoelektronenspektroskopie oder Ellipso-
metrie ist man hierbei auf eine starke theoretische Basis angewiesen bzw. bedarf einer theo-
retischen Unterstützung zur Interpretation und Auswertung der Messdaten. Die Aussage- und
Vorhersagekraft der theoretischen Konzepte steigerte sich insbesondere seit der Entwicklung der
Dichtefunktionaltheorie (DFT) [3, 4]. Das erst in jüngerer Vergangenheit numerisch anwendbare
Quasiteilchen-Konzept (QP-Konzept) sowie die Bethe-Salpeter-Gleichung zur Berücksichtigung
exzitonischer Effekte zählen heutzutage in der Festkörpertheorie zu den Standard-Methoden zur
Berechnung vielfältiger spektroskopischer Eigenschaften.

Die angesprochenen theoretischen Konzepte wie die DFT und das QP-Konzept gehen von
grundlegenden Gesetzen der Quantenmechanik aus, sprich ab-initio, um das Vielteilchensys-
tem Festkörper oder Kristall zu charakterisieren. Da die Charakterisierung eines relativ kleinen
Vielteilchensystems, wie beispielsweise eines Sauerstoff-Moleküls, mit exakten quantenmecha-
nischen Methoden bereits an der notwendigen Menge an numerischer Leistung scheitert [5],
wird grundlegend das Vielteilchenproblem in ein effektives Einteilchenproblem transformiert.
Der Preis, den man für diese Umwandlung zu zahlen hat, ist die Genauigkeit der Beschreibung.
Mit anderen Worten: es sind Approximationen am ursprünglichen Problem vorzunehmen.

Eine quantenmechanische Wellenfunktion Ψ(~r1, .., ~rN) eines N -Teilchensystems, die zusam-
men mit der Energie E als Lösung des Problems

HΨ = EΨ, (1.1)

wobei H der Hamilton-Operator ist, gesucht wird, besitzt 3N Freiheitsgrade. Zusammen mit
der unerlässlichen Diskretisierung der Ortskoordinate steigt die notwendige Speicherkapazität
zur numerischen Auswertung rapide an. Einen Ansatz, um dieses Problem zu lösen, bietet
die DFT an. Von Hohenberg und Kohn wurde vorgeschlagen, anstelle der Wellenfunktion,
die Grundzustands-Dichte n(~r) als Variable zu betrachten und gezeigt, dass diese eindeutig
mit dem Hamilton-Operator verknüpft ist. Die gewonnene Reduktion der Freiheitsgrade von
3N auf 3 begleicht man mit einer Approximation der Austausch- und Korrelationsenergie.
Abhängig von der Qualität der Approximation, wobei häufig die Local Density Approximation
(LDA) und die Generalized Gradient Approximation (GGA) eingesetzt werden, lassen sich große
Systeme mit sehr hoher Präzision studieren. Insbesondere hinsichtlich der Charakterisierung des
Grundzustandes, wie Kristall-Geometrie oder Bindungsenergie, ist die DFT erheblich [6].
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Die DFT ist folglich per Formulierung eine Grundzustandstheorie. Der limitierende Aspekt
der DFT bezüglich der IR- und UV-Spektroskpie ist daher die unzureichende Beschreibung der
angeregten Zustände. Zusätzliche Ansätze müssen für Letzteres in Betracht gezogen werden.
Zum einen kommt hierbei die Hinzunahme der auf der Pauli-Abstoßung beruhenden Austausch-
Energie in Frage und zum anderen wird das Quasiteilchen-Konzept eingesetzt. Die von Slater
eingeführte Symmetrisierung der Wellenfunktion führt zu einer besseren Beschreibung der un-
besetzten Bänder und zu einer Vergrößerung der Bandlücke, die im Rahmen der DFT oftmals
unterschätzt wird. Im Vergleich zur einer DFT-Rechnung steigert sich hierbei allerdings auch
der Rechenaufwand um ein Vielfaches. Ebenso wird in vielen Fällen auch nur ein durch Pa-
rameter gesteuerter Anteil der Austausch-Energie beigemischt. Im Gegensatz dazu, lassen sich
mit Hilfe des Quasiteilchen-Konzepts angeregte Zustände parameterfrei studieren.

Die Grundlage des Quasiteilchen-Konzepts bildet wieder ein Perspektiv-Wechsel, bei dem
anstelle der vielen stark wechselwirkenden Teilchen in einem Festkörper nur wenige schwach
wechselwirkende (Quasi-) Teilchen betrachtet werden [7]. Insbesondere wird die kollektive An-
regung eines Festkörpers (d.h. die Anregung aller Teilchen des Festkörpers) durch eine geringe
Zahl von sog. Quasiteilchen beschrieben. Mathematisch wird die Dynamik dieser Quasiteilchen
beschrieben durch Ein- oder Vielteilchen-Green-Funktionen. Zur vollständigen Lösung des Qua-
siteilchenproblems werden allerdings noch die vier Operatoren jeweils der Selbstenergie Σ, der
abgeschirmtem Coulomb-Wechselwirkung W , der Polarisierbarkeit Π und der Vertex-Funktion
Γ eingeführt. Insbesondere in der Selbstenergie Σ ist die Wechselwirkung zwischen Quasiteil-
chen und dem restlichen System enthalten. Die insgesamt fünf benannten Größen sind nach
Hedin gekoppelt in einem Integro-Gleichungssystem, welches u.a. iterativ gelöst werden kann.

Der Quasiteilchenansatz mit der sog. GW-Näherung der Selbstenergie liefert eine sehr
gute Beschreibung der Bandstruktur im Vergleich zur Dichtefunktionaltheorie oder Hybrid-
Funktional-Ansätzen. Da allerdings die Selbstenergie im Gegensatz zum Austausch- und Kor-
relationspotential ein nichtlokales Potential ist, vergrößert sich auch der numerische Aufwand.
Häufig werden deshalb Quasiteilchenenergien nur störungstheoretisch auf der Basis der DFT-
Ergebnisse berechnet. Die Anwendung des QP-Konzepts ist demnach auf kleinere Systeme als
es DFT-Untersuchungen erlauben beschränkt.

Die Kenntnis über angeregte Zustände läßt die Berechnung einer Kopplung des Systems mit
elektromagnetischer Strahlung zu. Die Reaktion des Systems auf elektromagnetische Strahlung
kann durch die Polarisation P beschrieben werden. Eine Taylor-Entwicklung der Polarisation
nach Ordnungen des elektrischen Feldes Ei ergibt für die kartesischen Komponenten [8, 9, 10]

Pi = P 0
i + ε0χijEj + ε0χijkEjEk + .. (1.2)

P 0
i ist hierbei die spontane Polarisation, welche insbesondere in Ferroelektrika, wie sie auch im

Rahmen dieser Arbeit behandelt werden, einen nichtverschwindenden Beitrag darstellt. Der li-
neare Suszeptibilitäts-Tensor χij ist gekoppelt mit der frequenzabhängigen dielektrischen Funk-
tion ε(ω), welche wiederum alle Information über die linearen optischen Eigenschaften einer
Probe enthält. So können aus der dielektrischen Funktion unter anderem das Reflexions- und
Absorptionsspektrum abgeleitet werden.

Der nichtlineare Suszeptibilitäts-Tensor χijk charakterisiert die Amplitude eines Drei-
Photonen-Prozesses, bei dem durch zwei einfallende Photonen i.A. unterschiedlicher Frequenzen
in einem nichtlinearen Medium, welches als Verstärker dient, ein Photon mit entsprechender
linear-kombinierter Frequenz erzeugt wird. Der Einzug derartiger nichtlinearer optischer Pro-
zesse in die Wissenschaft wurde vor etwa 50 Jahren u. a. mit den Experimenten von Franken
et al. [11] eingeleitet.

Auch die Charakterisierung der optischen Eigenschaften kann auf verschiedenen Ge-
nauigkeitsebenen erfolgen. Die Anwendung der Unabhängige-(Quasi-)Teilchen-Näherungen
[IPA(IQA)] erfordert nur die Kenntnis der Bandenergien sowie der Wellenfunktionen. Eine
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genauere Beschreibung optischen Eigenschaften, bekannt als Bethe-Salpeter-Gleichung (BSE),
wird aus dem Hedin’schen Gleichungssystem hergeleitet. Hierbei werden sowohl die Lokalfeldef-
fekte als auch die Elektron-Loch-Wechselwirkung berücksichtigt. In den letzten Jahren hat sich
gezeigt, dass die Berücksichtigung der exzitonischen Effekte zusammen mit der Verwendung der
Quasiteilchen-Bandstruktur zur Berechnung qualitativ hochwertiger optischer Spektren führt
[12]. Der erforderliche numerische Aufwand zur Berücksichtigung von exzitonischen Effekten
in den optischen Eigenschaften ist die Folge eines Eigenwertproblems, auf welches die BSE
transformiert wird. Die Dimension der zugrunde liegenden Matrix Hexc berechnet sich aus dem
Produkt aus der Anzahl der zur numerischen Konvergenz notwendigen k-Punkte der Brillouin
Zone nk, sowie der besetzten no und unbesetzten Bänder nu: rg(Hexc) = nk × no × nu. Für
Festkörper und Kristalle entspricht dies einem Wert von 105..106, sodass üblicherweise eine di-
rekte Diagonalisierung der Matrix nicht ohne großen rechnerischen Aufwand möglich ist bzw.
generell nicht erwünscht ist. Aus methodischem Blickwinkel besteht die sog. Exzitonen-Matrix
aus einem resonanten und nichtresonanten Anteil, wobei seit den Studien von Albrecht et al.
[13] an Silizium der nichtresonante Teil vernachlässigt wurde. Neuere Arbeiten haben jedoch
gezeigt, dass die resonante - nichtresonante Kopplung insbesondere die optischen Eigenschaften
organischer Kristalle und Moleküle beeinflusst [14, 15, 16]. Ein Ziel und Bestandteil dieser Ar-
beit wird es demnach sein den Einfluss des nichtresonanten Anteils auf die optischen Spektren
zu charakterisieren. Dazu werden Aminopyrimidin-Kristalle und -Moleküle untersucht, welche
im Jahre 2009 durch Stoll et al. [17, 18] synthetisiert wurden. Diese neue Materialklasse weist
eine Bandlücke im optisch-sichtbaren Bereich auf und könnte deshalb technologisch interessant
sein. Experimentell wurden bereits die geometrischen und optischen Eigenschaften analysiert.
Mit den angesprochenen Methoden werden in dieser Arbeit die Eigenschaften der organischen
Materialien von theoretischer Seite untersucht.

Die zweite Materialklasse, welche im Rahmen dieser Arbeit behandelt wird, ist die Klasse
der Ferroelektrika, genauer gesagt, Lithiumniobat und Lithiumtantalat (LN und LT). Lithi-
umniobat wird bereits vielfältig in der Technik verwendet und besitzt im Bereich optischer,
insbesondere nichtlinearer Bauelemente den gleichen Stellenwert wie Silizium in der Elektronik
[19, 20]. Obwohl Lithiumniobat und Lithiumtantalat eine enorme Anzahl von Anwendungen
besitzen, sind die elektronischen und optischen Eigenschaften dieser Materialien eher mäßig
untersucht. Ein weiteres Element dieser Arbeit wird es daher sein die geometrischen, elektroni-
schen und optischen Eigenschaften von Lithiumniobat und Lithiumtantalat zu charakterisieren.
Ein Schwerpunkt wird dabei die Berechnung und Untersuchung der Zweiten Harmonischen sein,
welche mit dem Suszeptibilitäts-Tensor χijk verbunden ist.

Die Arbeit ist wie folgt gegliedert: die theoretischen Methoden, welche in dieser Arbeit
verwendet werden, werden in Kapitel II Grundlagen vorgestellt. In Kapitel III werden die Un-
tersuchungen und Ergebnisse hinsichtlich der organischen Moleküle und Halbleiter diskutiert.
Kapitel IV präsentiert die Studie der elektronischen und optischen Eigenschaften der Ferroelek-
trika LN und LT sowie der LN-LT-Mischkristalle. Abschließend wird eine Zusammenfassung
bereitgestellt.
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KAPITEL II

Grundlagen

Entsprechend einer ab-initio Untersuchung wird ausgegangen vom grundlegenden Vielelek-
tronenproblem in einem Festkörper (Abschnitt 2.1). Vorgestellt wird anschließend der For-
malismus der Zweiten Quantisierung, welcher eine elegante Formulierung der Vielteilchen-
Quantenmechanik erlaubt. Im Abschnitt Dichtefunktionaltheorie 2.3 werden die Hohenberg-
Kohn Theoreme und die Kohn-Sham-Gleichung ausgearbeitet. Es folgen zwei kurze Abschnitte
zu den Hellmann-Feynman-Kräften sowie den Hybrid-Funktionalen. Das Quasiteilchen-Konzept
wird in der darauffolgenden Passage thematisiert. Anschließend folgt eine Abhandlung hinsicht-
lich der Berechnung der optischen Eigenschaften. Es folgt eine kurze Zusammenfassung der Ei-
genschaften von Festkörpern und Kristallen sowie der eingesetzten Pseudo-Potential-Methode.
Im vorletzten Abschnitt werden Details zur numerischen Implementierung der Theorie angege-
ben. Abgeschlossen wird das Kapitel mit einem Ausblick.

2.1 Das Vielelektronenproblem

Die Atome in einem Festkörper werden im Rahmen dieser Arbeit in die Elektronen und
Kerne (bzw. Ionen) aufgeteilt. Die Elektronen tragen die Ladung −e und die Kerne die Ladung
ZKe, wobei ZK die Anzahl der Protonen eines Kerns angibt. Nach Ref. [21] kann das System
durch den nichtrelativistischen Hamilton-Operator beschrieben werden:

ĤFK = (T̂ion + V̂ion-ion) + (T̂ + Û) + V̂ . (2.1)

Die in Gl. (2.1) vorkommenden Operatoren haben die folgenden Bedeutungen:

T̂ion −Operator der kinetischen Energie der Ionen (2.2)

V̂ion-ion −Operator der potentiellen Energie der Ionen (2.3)

T̂ −Operator der kinetischen Energie der Elektronen (2.4)

Û −Operator der Elektron-Elektron-Wechselwirkung (2.5)

V̂ −Operator der Elektron-Ion-Wechselwirkung. (2.6)

Wie 1924 von Born und Oppenheimer [22] gezeigt, kann das Gesamtproblem ĤFKΨ = EΨ durch
ein von der Gitterdynamik entkoppeltes Problem mit beweglichen Elektronen, die sich im Feld
fixierter Kerne befinden, approximiert werden. Der Grund dafür ist der große Massenunterschied
zwischen der Protonenmasse mp und der Elektronenmasse m mit einem Verhältnis von mp

m
=

1836. Bei leichten Elementen kann man zudem von Spineffekten absehen, sodass insgesamt die
Beschreibung der Elektronen-Dynamik im Feld fixierter Kerne durch den folgenden Hamilton-
Operator erfolgt [23]:

Ĥ = T̂ + V̂ + Û . (2.7)

5



Die Elektron-Elektron-Wechselwirkung, ausgedrückt durch den Operator Û , wird weiterhin
reduziert auf die Coulomb-Wechselwirkung, da der Erwartungswert der Stromdichte im hier
vorausgesetzten thermodynamischen Gleichgewicht verschwindet.

2.2 Die zweite Quantisierung

Die Anzahl der Atome in einem Festkörper liegt in der Größenordnung der Avogadrozahl
1023 und der Abstand der Teilchen ist kleiner als die Fermi-Wellenlänge, sodass quantenme-
chanische Effekte berücksichtigt werden müssen. Zur Charakterisierung des Systems eignet sich
der Formalismus der Zweiten Quantisierung aufgrund der Vereinfachung der Beschreibung von
Mehrteilchensystemen im Rahmen der Vielteilchen-Quantenmechanik. Der Formalismus der
Zweiten Quantisierung wird in vielen Büchern dargestellt. Der aktuelle Abschnitt orientiert
sich an den Refs. [21] und [24].

Eingeführt werden die Erzeugungs- und Vernichtungsoperatoren

a+
x , ax, (2.8)

mit dem Index x, der einen Satz von Quantenzahlen eines Einteilchenzustandes repräsentiert.
Falls die vorliegenden Teilchen identische Fermionen sind, unterliegen die Operatoren Gl.(2.8)
den fundamentalen Anti-Vertauschungsrelationen:

[ax, a
+
x′ ]+ = axa

+
x′ + a+

x′ax = δxx′ (2.9)

[ax, ax′ ]+ = [a+
x , a

+
x′ ]+ = 0. (2.10)

Durch die Definition des Vakuum-Zustands |0〉 ist es möglich N -Teilchenzustände durch suk-
zessive Anwendung der Erzeugungsoperatoren a+

x zu konstruieren:

|φx1φx2 ..φxN 〉
(A) = a+

x1
a+
x2
..a+

xN
|0〉 mit 〈φx1φx2 ..φxN |

(A) |φx1φx2 ..φxN 〉
(A) = 1. (2.11)

Die Einteilchenzustände {|φx〉} in Gl. (2.11) sind nichtentartete orthonormierte Eigenzustände
eines hermiteschen Operators φ̂x. Der antisymmetrische fermionische N -Teilchen-Zustand Gl.
(2.11) kann auch durch eine Slaterdeterminante eines Produktzustandes dargestellt werden:

|φx1φx2 ..φxN 〉
(A) =

1√
N !

∑
P

(−1)sgn(P)P{|φx1〉 ⊗ |φx2〉 ⊗ ..⊗ |φxN 〉} (2.12)

=
1√
N !

∑
P

(−1)sgn(P)P |φx1φx2 ..φxN 〉 (2.13)

(2.14)

Die {|φx1φx2 ..φxN 〉
(A)} formen eine Basis des N -Fermionen-Hilbertraumes HN . Bei einem kon-

tinuierlichen Spektrum des Operators φ̂x lautet die Vollständigkeitsrelation

IN =

∫
dx1

∫
dx2..

∫
dxN |φx1φx2 ..φxN 〉

(A) 〈φx1φx2 ..φxN |
(A) . (2.15)

Von praktischem Nutzen ist die Einführung der Feldoperatoren:

Ψ(+)(y) =
∑
x

φ(∗)
x (y)a(+)

x , mit y ∈ {{(~r, σ, t)}, {(~r, σ)}, {~r}} und (2.16)∫
dy φ∗x(y)φ∗x′(y) = δxx′ und

∫
dxφ∗x(y)φ∗x(y

′) = δyy′ . (2.17)
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Die Eigenkets {|~r〉} des Einteilchen-Ortsoperators ~̂r lassen sich mit Hilfe der Feldoperatoren
darstellen (mit y ∈ {(~r)}):

|~r〉 = Ψ+(~r) |0〉 mit 〈~r | ~r′〉 = δ(~r − ~r′). (2.18)

Mit Hilfe von Gl. (2.18) erhält man eine nützliche Darstellung des Identitätsoperators:

IN =

∫
d3r1

∫
d3r2..

∫
d3rN |~r1, ~r2, .., ~rN〉 〈~r1, ~r2, .., ~rN | , (2.19)

wobei1

〈~r1, ~r2, .., ~rN | ~r′1, ~r′2, .., ~r′N〉 = δ(~r1 − ~r′1)δ(~r2 − ~r′2)..δ(~rN − ~r′N). (2.20)

Aus der Verwendung von Gln. (2.11) und (2.19) geht hervor:

|φx1φx2 ..φxN 〉
(A) =

∫
d3r1

∫
d3r2..

∫
d3rN Φ(A)(~r1, ~r2, .., ~rN) |~r1, ~r2, .., ~rN〉 , (2.21)

wobei Φ(A)(~r1, ~r2, .., ~rN) eine antisymmetrisierte N -Teilchen-Wellenfunktion ist (Hartree-Fock-
Wellenfunktion). Da dies einer Slater-Determinante det{φxj(~ri)} entspricht, gilt auch:

Φ(A)(~r1, ~r2, .., ~rN) =
1√
N

N∑
j=1

(−1)1+jφxj(~r1)Φ(A)(~r2, .., ~rN) (2.22)

In der Besetzungszahldarstellung können Ein- und Zweiteilchenoperatoren Â(1) und Â(2) wie
folgt dargestellt werden:

A(1),occ =

∫
dx1

∫
dx2A

(1)
x1x2

a+
x1
ax2 (2.23)

A(2),occ =
1

2

∫
dx1..

∫
dx4A

(2)
x1x2x3x4

a+
x2
a+
x1
ax3ax4 . (2.24)

Für die Matrixelemente A
(1)
x1x2 und A

(2)
x1x2x3x4 gilt unter Verwendung der Ortsraum-Basis:

A(1)
x1x2

=

∫
d3r1

∫
d3r2φ

∗
x1

(~r1) 〈~r1| Â(1) |~r2〉φx2(~r2) (2.25)

A(2)
x1x2x3x4

=

∫
d3r1..

∫
d3r4φ

∗
x1

(~r1)φ∗x2(~r2) 〈~r1~r2| Â(2) |~r3~r4〉φx3(~r3)φx4(~r4). (2.26)

Insbesondere lassen sich die Ortsraum-Matrixelemente der lokalen Einteilchenoperatoren T̂ und
V̂ [Gln. (2.4) und (2.6)] sowie des Zweiteilchenoperators Û [Gl. (2.5)] angeben:

〈~r1| T̂ |~r2〉 = δ(~r1 − ~r2)

[
− ~2

2m
∆~r

]
=: δ(~r1 − ~r2)T (~r1) (2.27)

〈~r1| V̂ |~r2〉 = δ(~r1 − ~r2)

[
− 1

4πε0

∑
s

Zse
2

|~r − ~Rs|

]
=: δ(~r1 − ~r2) v(~r) (2.28)

〈~r1~r2| Û |~r3~r4〉 = δ(~r1 − ~r3)δ(~r2 − ~r4)

[
1

4πε0

e2

|~r1 − ~r2|

]
=: δ(~r1 − ~r3)δ(~r2 − ~r4)u(~r1, ~r2). (2.29)

In den Gln. (2.27) - (2.29) geben Zs und ~Rs die Ladung und Position des s-ten Kerns an.
Die Spinquantenzahl tritt hierbei nicht auf. Da in dieser Arbeit nichtmagnetische Systeme
bearbeitet werden, wird der Spinfreiheitsgrad entweder auf einen doppelten Entartungsgrad
der Einteilchenzustände reduziert oder durch Besetzungszahlen ausgedrückt. Eine detaillierte
Untersuchung des Effektes der Spinquantenzahl findet nur in einzelnen Fällen statt.

1Der Zustand |~r1, ~r2, .., ~rN 〉 ist antisymmetrisch.
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2.3 Dichtefunktionaltheorie

Die Dichtefunktionaltheorie (DFT) ist eine sehr erfolgreiche Methode um die Grundzu-
standseigenschaften von großen Systemen zu charakterisieren. Das Fundament der DFT bilden
die beiden Theoreme von Hohenberg und Kohn, welche die elektronische Grundzustandsdichte
als Variable festlegen und beweisen, dass diese mit dem Hamilton-Operator eindeutig verknüpft
ist. Die praktische Anwendung der DFT erfordert den Einsatz der Kohn-Sham-Gleichung, wel-
che auf einer Abbildung eines wechselwirkenden Systems auf ein wechselwirkungsfreies Elek-
tronengas aufgebaut ist. Die Abschnitte 2.3.1 und 2.3.2 basieren insbesondere auf Ref. [23].

2.3.1 Die Theoreme von Hohenberg und Kohn

Die Voraussetzung der Hohenberg-Kohn Theoreme ist das Vorhandensein eines Vielelektro-
nensystems, welches durch den Hamilton-Operator Gl. (2.7) charakterisiert wird. Zudem soll
das Potential V̂ des gegebenen Eigenwertproblems

Ĥ |Φ〉 = (T̂ + V̂ + Û) |Φ〉 = E |Φ〉 (2.30)

im einfachsten Fall so gewählt werden, dass die Lösung der obigen Schrödinger Gleichung einen
nichtentarteten Grundzustand |Φ〉 mit der Energie EΦ besitzt. Die Potentiale V̂ mit dieser
Eigenschaft werden zusammengefasst in einem Raum V . Durch die Lösung der Schrödinger
Gleichung Gl. (2.30) wird eine surjektive Abbildung C : V → P definiert, wobei P der Raum
aller Grundzustände |Φ〉 ist, welche eine (nichtentartete) Lösung von Gl. (2.30) zu einem be-
stimmten Potential V̂ sind. Eine weitere ebenfalls surjektive Abbildung D : P → N wird
festgelegt durch die Berechnung der Grundzustandsdichte n(~r) über

n(~r) = 〈Φ| n̂(~r) |Φ〉 = 〈Φ|Ψ+(~r)Ψ(~r) |Φ〉 . (2.31)

N bezeichnet den Raum aller Grundzustandsdichten, die auf diese Weise berechnet werden
können. Durch Hohenberg und Kohn wurde bewiesen, dass die surjektiven Abbildungen C und
D auch injektiv und folglich bijektiv sind. Durch das Vorhandensein der Umkehrabbildungen
(CD)−1, C−1 und D−1 lässt sich das erste Hohenberg-Kohn Theorem formulieren:

Theorem 1. Für ein Vielelektronensystem sind der Grundzustand |Φ〉 (und die Grundzustand-
senergie EΦ) sowie das Potential V̂ eindeutige Funktionale der Grundzustandsdichte n(~r).

Das zweite Hohenberg-Kohn Theorem betrifft das Minimierungsprinzip der Energie bei der
Variation nach der Grundzustandsdichte. In diesem Zusammenhang kann wegen der Existenz
der Umkehrabbildung D−1 das folgende Energiefunktional EV0 : N → R definiert werden:

EV0 [n] = 〈Φ[n]| T̂ + V̂0 + Û |Φ[n]〉 . (2.32)

Bei einem multiplikativen Operator V̂0, wie es nach Gl. (2.28) der Fall ist, lässt sich schreiben:

EV0 [n] = 〈Φ[n]| T̂ + Û |Φ[n]〉+

∫
dr3n(~r)v0(~r) =: F [n] +

∫
dr3n(~r)v0(~r), (2.33)

wobei das Universalfunktional F [n] eingeführt wurde. Die Universalität von F [n] wird legiti-
miert durch die Unabhängigkeit vom äußeren Potential v0(~r) und zieht eine identische Form
für alle Vielelektronensysteme wie Moleküle oder Festköper nach sich. Bezeichnet man die mit
dem Potential V̂0 über die Abbildung (CD) gekoppelte Grundzustandsdichte (und Energie) mit
n0(~r) (und E0), so hat das Energiefunktional EV0 [n] die Eigenschaft:

E0 < EV0 [n] für n 6= n0, n ∈ N (2.34)

E0 = EV0 [n0]. (2.35)
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Das zweite Hohenberg-Kohn Theorem lässt sich demnach wie folgt zusammenfassen:

Theorem 2. Bei der Variation des Energiefunktionals EV0 [n] nach der Grundzustandsdichte n
nimmt es sein Minimum an der zum Potential V̂0 gehörenden Grundzustandsdichte n0 an.

Die Hohenberg-Kohn Theoreme lassen sich auf entartete Grundzustände erweitern. Hierfür
werden die Räume

P =
⋃
V ∈V

PV und N =
⋃
V ∈V

NV (2.36)

als Vereinigung der Unterräume PV und NV definiert. Letztere enthalten die Grundzustände,
die über die Lösung der Schrödinger-Gleichung mit einem Potential V̂ erzeugt werden, und die
Grundzustandsdichten, welche über Gl. (2.31) aus |Φ〉 ∈ PV berechnet werden. Analog zum
Fall des nichtentarteten Grundzustandes kann man zeigen, dass C−1, D und (CD)−1 zulässige
Abbildungen sind. Insbesondere die Existenz von (CD)−1 koppelt an jede Grundzustandsdichte
n ein Potential V [n]. Da allerdings D nicht invertierbar ist, ist eine modifizierte Definition von
EV0 [n] und F [n] erforderlich: offensichtlich gilt für |Φ〉i ∈ PV :

〈Φi| T̂ + Û + V̂ [n] |Φi〉 = E, (2.37)

wodurch die Energie E durch die Dichte festgelegt ist. Folglich lassen sich

F [n] := E −
∫
d3rn(~r)v([n], ~r) und (2.38)

EV0 [n] := F [n] +

∫
d3rv0(~r)n(~r) (2.39)

als Funktionale der Grundzustandsdichte definieren und das Minimierungsprinzip anwenden.
Die beiden Theoreme von Hohenberg und Kohn beweisen also die Existenz der Funktionale

EV0 [n] und F [n]. Über die Form und Konstruktion der Funktionale werden allerdings keine
Aussagen gemacht. Erst durch geeignete Approximationen mit Hilfe des Kohn-Sham-Systems
und der Kohn-Sham-Gleichung kann die DFT für praktische Rechnungen eingesetzt werden.

2.3.2 Die Kohn-Sham-Gleichung

Das Kohn-Sham-System ist ein System N wechselwirkungsfreier Elektronen, welches durch
den Hamilton-Operator

ĤKS = T̂ + V̂KS (2.40)

charakterisiert wird. Analog zu einem System wechselwirkender Elektronen existiert nach den
Hohenberg-Kohn Theoremen das Energiefunktional

EKS[n] = TKS[n] +

∫
d3rvKS(~r)n(~r) (2.41)

und die Einteilchenzustände, welche in Form einer Slater-Determinante nach Gl. (2.14) den
Grundzustand erzeugen, sind ebenfalls Funktionale der Grundzustandsdichte, d.h. |φi〉 =
|φi[n]〉. TKS[n] ist die kinetische Energie des Systems

TKS[n] =
∞∑
i=1

fi

∫
d3rφ∗i (~r)

(
− ~2

2m
∆

)
φi(~r), (2.42)

wobei für die Besetzungszahlen
∑∞

i=1 fi = N gilt und die energetisch niedrigsten Orbitale
{φi(~r)} besetzt sind. Die Grundzustandsdichte kann durch die Einteilchenwellenfunktionen aus-
gedrückt werden:

nKS(~r) =
∞∑
i=1

fi|φi(~r)|2. (2.43)
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Bei der Variation des Energiefunktionals (2.41) nach φ∗i unter Einhaltung der beiden Nebenbe-
dingungen ∫

d3rn(~r) = N ⇔µ
[∫

d3rn(~r)−N = 0

]
und (2.44)∫

d3r|φi(~r)|2 = 1⇔(εi − µ)

[∫
d3r|φi(~r)|2 − 1 = 0

]
(2.45)

durch die Lagrange’schen Multiplikatoren µ und (εi−µ) erhält man die Einteilchen-Schrödinger-
Gleichung [

− ~2

2m
∆ + vKS

]
φi(~r) = εiφi(~r). (2.46)

Aus Gl. (2.46) lassen sich die Orbitale und Einteilchenenergien ermitteln.
Nun wird das Kohn-Sham-System mit einem System wechselwirkender Elektronen durch die

Annahme gekoppelt, dass zu jeder Grundzustandsdichte n(~r) eines wechselwirkenden Systems
ein Potential vKS(~r) existiert, sodass gilt:

n(~r) = nKS(~r). (2.47)

Das gesuchte Potential vKS wird ermittelt indem man zunächst das Austausch- und Korrelati-
onsfunktional EXC [n] definiert:

EXC [n] := F [n]− 1

2

∫
d3r

∫
d3r′n(~r)u(~r, ~r′)n(~r′)− TKS[n]. (2.48)

Es enthält die Differenz zwischen der Energie eines (wechselwirkenden) Elektronengases F [n]
und der Hartree-Fock-Energie FHF (Korrelationsenergie)

EC := F [n]− FHF = 〈Φ| T̂ + Û |Φ〉 −
〈
Φ(A)

∣∣ T̂ + Û
∣∣Φ(A)

〉
(2.49)

sowie die Differenz zwischen der Hartree-Fock-Energie und der Hartree-Energie FH (Austau-
schenergie)

EX := FHF − FH =
〈
Φ(A)

∣∣ T̂ + Û
∣∣Φ(A)

〉
−
∑
i

fi 〈φi| T̂ + Û |φi〉 . (2.50)

Mit
∣∣Φ(A)

〉
wird die Slaterdeterminante nach Gl. (2.14) bezeichnet. Mit Hilfe des Austausch-

und Korrelationsfunktionals kann das Energiefunktional EV0 [n] [Gl. (2.33)] wie folgt geschrieben
werden:

EV0 [n] = TKS[n] +

∫
d3rv0(~r)n(~r) +

1

2

∫
d3r

∫
d3r′n(~r)u(~r, ~r′)n(~r′) + EXC [n]. (2.51)

Unter Verwendung der Stationarität des Energiefunktionals für kleine Variationen δn um die
zum Potential V0 entsprechende Grundzustandsdichte n0 erhält man für das gesuchte Potential
vKS:

vKS(~r) = v(~r) +

∫
d3ru(~r, ~r′)n0(~r′) + vXC([n0], ~r) (2.52)

mit dem XC-Potential

vXC([n0], ~r) =
δEXC
δn

∣∣
n=n0

. (2.53)

Insgesamt wird Gl. (2.46) mit dem Potential (2.52) Kohn-Sham-Gleichung genannt:[
− ~2

2m
∆ + v(~r) +

∫
d3r′u(~r, ~r′)n(~r′) + vXC([n], ~r)

]
φi(~r) = εiφi(~r). (2.54)
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Die Lagrange’schen Multiplikatoren {εi} = {εDFTi } werden Kohn-Sham-Energien genannt und
µ als höchstes besetztes Energieniveau lässt sich als Fermi-Energie identifizieren µ = εF . Die
Grundzustandsdichte ergibt sich nach Gl. (2.43), wobei die Besetzungszahlen näher spezifiziert
werden können:

fi =


1, εi < µ
0 ≤ fi ≤ 1, εi = µ
0, εi > µ

(2.55)

Durch die Eliminierung der kinetischen Energie TKS =
∑

i fiεi −
∫
d3rn(~r)vKS(~r) findet man

folgenden Ausdruck für die elektronische Grundzustandsenergie:

E[n] =
∞∑
i=1

fiεi −
1

2

∫
d3r

∫
d3r′n(~r)u(~r, ~r′)n(~r′) + EXC −

∫
d3rvXC([n], ~r)n(~r). (2.56)

Da zur Lösung der Kohn-Sham-Gleichung (2.54) die Lagrange’schen Multiplikatoren εi und
Orbitale φi zu ermitteln sind und der Hamilton-Operator selbst von den Orbitalen abhängt,
wird die Kohn-Sham-Gleichung in der Praxis selbstkonsistent gelöst.

2.3.3 Näherungen für den Austausch- und Korrelationsanteil

Der einzige unbekannte Ausdruck in der Kohn-Sham-Gleichung (2.54) bzw. in der elektro-
nischen Grundzustandsenergie Gl. (2.56) sind die Austausch- und Korrelationsbeiträge (XC-
Beiträge) vXC bzw. EXC . Um einen geeigneten (und approximierten) Ausdruck für die XC-
Beiträge zu finden, stützt man sich auf die Theorie eines homogenen Elektronengases. Im Rah-
men des Jellium-Modells lässt sich die Austausch- und Korrelationsenergie pro Elektron εXC
schreiben [25] als:

εXC(nhom) = εX(nhom) + εC(nhom) = − 0.9163

rs(nhom)
+ εC(nhom) (2.57)

mit dem Wigner-Radius rs = ( 3
4πnhoma3B

)
1
3 (aB - Bohrradius), welcher von der Dichte des ho-

mogenen Elektronengases nhom abhängt. Als Local Density Approximation (LDA) wird das Er-
setzen von nhom in Gl. (2.57) durch eine ortsabhängige Grundzustandsdichte n(~r) bezeichnet.
Infolgedessen kann die XC-Energie geschrieben werden als:

EXC ' ELDA
XC = ELDA

X + ELDA
C =

∫
d3rn(~r)εXC(n(~r)). (2.58)

Während die LDA-Austauschenergie ELDA
X eine Abhängigkeit von n

4
3 zeigt, existieren verschie-

dene Parametrisierungen der Korrelationsenergie ELDA
C . In der vorliegenden Arbeit wird die

Parametrisierung von Perdew und Zunger [26] verwendet, welche auf den durch Monte-Carlo-
Simulationen berechneten Korrelationsenergien von Ceperley und Alder [27] basiert.

Ursprünglich aus der Theorie des homogenen Elektronengases liefert die LDA erwartungs-
gemäß eine gute Beschreibung von Systemen mit geringen Dichteinhomogenitäten. Erfolgreich
ist die LDA allerdings auch bei Systemen mit größeren Dichtefluktuationen. Dies ist zurück-
zuführen auf die Eigenschaften des im Rahmen der LDA berechneten sog. XC-Lochs nXC(~r, ~r′),
welches eine Minderung der Ladungsdichte um ein bestimmtes Elektron aufgrund der Coulomb-
Abstoßung und des Pauli-Prinzips verursacht [28]. Dieses trägt nur im sphärischen Mittel zur
XC-Energie bei, sodass sich räumlich variierende Beiträge teilweise aufheben. Weiterhin erfüllt
es die Summenregel

∫
d3r′nXC(~r, ~r′) = −1. Die Eigenschaften des XC-Lochs sind zugleich der

Grund dafür, dass eine systematische Erweiterung der LDA (durch eine Taylor-Entwicklung)
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unter Berücksichtigung der Dichtegradienten ∇rn(~r), wie schon Hohenberg und Kohn [3] so-
wie Kohn und Sham [4] vorgeschlagen, zunächst nicht zu einer Verbesserung der Beschrei-
bung von Grundzustandseigenschaften führt. Wie von Langreth und Perdew [29, 30] gezeigt,
verletzt die sog. Gradient Expansion Approximation (GEA) die Summenregel. Erst durch die
Berücksichtigung abgeleiteter Regeln für das XC-Loch, einschließlich der Summenregel, wur-
den Dichtegradienten in die Berechnung der XC-Beiträge aufgenommen [31, 32, 33, 34]. Diese
sog. Generalized Gradient Approximation(s) (GGA) verbessern im Vergleich zur LDA bei vie-
len Systemen die Beschreibung von strukturellen und energetischen Eigenschaften [6]. Wichtige
Vertreter der GGAs, welche auch im Rahmen dieser Arbeit zur Anwendung kommen, sind das
PW91-Funktional [33, 35] und das PBE-Funktional [34, 36].

2.3.4 Bedeutung der Kohn-Sham-Energien und ∆SCF -Rechnungen

Bisher hatten die Kohn-Sham-Energien {εi} die Funktion von Lagrange’schen Multiplika-
toren. Die energetische Lage der besetzten Kohn-Sham-Zustände zeigt im Vergleich mit ex-
perimentell gemessenen Energieniveaus oder Bandstrukturen jedoch gute Übereinstimmung
[37]. Naheliegend ist es demnach auch die unbesetzten Zustände als angeregte Zustände zu
betrachten. In dieser Hinsicht wird die Schwäche der DFT als Grundzustandstheorie deut-
lich: viele Bandstrukturen und Energieniveaus oberhalb des Fermi-Levels werden schlecht be-
schrieben. Insbesondere wird in vielen Halbleitern und Isolatoren die fundamentale Bandlücke
unterschätzt. Dies ist zu einem Teil durch die Approximation des Austausch- und Korrelati-
onsfunktionals erklärt und zum anderem durch die konzeptionelle Kopplung eines wechselwir-
kenden Systems auf das wechselwirkungsfreie Kohn-Sham-System. Mit Hilfe der Einführung
eines erweiterten HK-Funktionals Ẽ[~φ, ~f ] mit ~φ = (φ1, φ2, ..) und ~f = (f1, f2, ..), indem be-

liebige Besetzungszahlen fi zugelassen werden, und dem Janak’schen Theorem [38] ∂Ẽ
∂fi

= εi
lässt sich die Beziehung zwischen der Bandlücke EGap eines Materials und dem entsprechenden
Kohn-Sham-Gap EGap,KS aufstellen [37]:

EGap − EGap,KS = ∆. (2.59)

EGap ergibt sich aus der Differenz der Ionisierungsenergie I und der Elektronenaffinität A,

EGap = I − A = (EN−1 − EN)− (EN − EN+1), (2.60)

und EGap,KS bezeichnet die Energiedifferenz zwischen dem (energetisch-) niedrigsten unbesetz-
ten Zustand [conduction band minimum (CBM)] und dem höchsten besetzten Zustand [valence
band maximum (VBM)]:

EGap,KS = εCBM − εV BM . (2.61)

Mit den Indizes N,N ± 1 sind in Gl. (2.60) Terme gekennzeichnet, die sich auf ein N,N ± 1 -
Elektronensystem beziehen. Die Differenz ∆ > 0 kann nach Sham und Schlüter [39] sowie nach
Godby et al. [40] einen beträchtlichen Anteil des Fehlers bei der Berechnung der Bandlücken
über Gl. (2.61) verursachen und ist nicht zwingend korreliert mit der Approximation des XC-
Funktionals.

Obgleich zunächst angenommen wurde, dass die tatsächliche Berechnung der Quasiteilchen-
Bandlücke nach Gl. (2.60) nur zweckmäßig für räumlich begrenzte Systeme ist [41], formulierten
Chan und Ceder [42] im Jahre 2010 eine Erweiterung dieser Methode auf periodisch-fortgesetzte
Systeme: Da bei einem Festkörper mit N Valenzzuständen (und N0 Valenzzuständen pro Ein-
heitszelle, vgl. Abschnitt 2.8) ein Elektron zu entfernen/hinzuzufügen äquivalent ist zur Ent-
fernung/Hinzufügung von n = N0

N
Elektronen pro Einheitszelle mit N0 besetzten Zuständen,

lassen sich Quasiteilchen-Bandlücken mit Hilfe der Energien E(N0), E(N0 + n) und E(N0 − n)
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berechnen. Obwohl in den meisten Fällen n ∈ R gilt, lässt sich Gl. (2.60) anwenden, sodass
folgt:

EGap,FK =
1

n
[E(N0 + n) + E(N0 − n)− 2E(N0)] (2.62)

Der Erfolg dieser Methode basiert auf der Tatsache, dass sich innerhalb der Ausdehnung des
XC-Lochs im Mittel die gleiche Anzahl an Elektronen aufhalten.

Bereits Gl. (2.60) zeigt, dass zentrale elektronische Größen durch eine Differenz von Grund-
zustandsenergien verschiedener Systeme berechnet werden können. Da in diesem Fall mehre-
re selbstkonsistente Rechnungen durchzuführen sind, wird dieses Verfahren als ∆SCF (SCF
- self-consistent field)-Rechnung bezeichnet. Die Realisierung von Vielteilchenzuständen, de-
ren Besetzung von der Grundzustandsbesetzung abweicht, erfolgt durch die Vorgabe fixierter
Besetzungszahlen ~f im Funktional Ẽ[~φ, ~f ]. Analog zur selbstkonsistenten Berechnung eines
(N + 1)-Grundzustandes durch die Festsetzung der Besetzungszahlen

~fN+1 =

{
fi = 1, i ≤ N + 1
fi = 0, i > N + 1,

(2.63)

kann eine Elektron-Loch-Anregung durch

~feh =


fi = 1, i ≤ N und i 6= h < N
fi = 0, i > N und i 6= e > N
fh = 0 und fe = 1

(2.64)

simuliert werden. Die Energiedifferenz

∆Eeh = Ẽ[~φeh, ~feh]− EN (2.65)

stellt eine Elektron-Loch-Anregungsenergie dar2. Einen Vergleichswert zu der Anregungsener-
gie Gl. (2.65) und mit dem Vorteil der Notwendigkeit nur einer selbstkonsistenten Rechnung
versehen liefert der Zustand entsprechend der Besetzung [23, 43]

~fT =


fi = 1, i ≤ N und i 6= h < N
fi = 0, i > N und i 6= e > N
fe = fh = 1

2

. (2.66)

Denn wegen
∆Eeh = E[~fT + ∆~feh]− E[~fT −∆~feh] (2.67)

mit

∆~feh =


fh = 1

2

fe = −1
2

fi = 0, i 6= e, h
(2.68)

kann durch eine Entwicklung von Gl. (2.67) um ~fT und mit Hilfe des Janak’schen Theorems
gezeigt werden, dass

∆Eeh = εe[~fT ]− εh[~fT ] +O((∆f)3). (2.69)

Studiert wurde die Elektron-Loch-Wechselwirkung mit ∆SCF-Methoden u.a. in der Arbei-
ten [44, 45, 46]. Es stellte sich heraus, dass die Gln. (2.65) und (2.69) die Elektron-Loch-
Wechselwirkung nur für räumlich begrenzte Systeme korrekt beschreiben.

An dieser Stelle sei die Berechnung des Stokes-Shifts erwähnt, da hierfür ebenfalls ∆SCF-
Methoden eingesetzt werden können. Die Fixierung der Besetzungszahlen entsprechend Gl.
(2.64) zusammen mit einer ionischen Relaxation, wie in Abschnitt 2.4 beschrieben, sodass

2Mit der Fixierung der Besetzungszahlen werden die Eigenfunktionen ~φ→ ~φeh in Gl. (2.65) modifiziert.
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die neue Gleichgewichtsgeometrie ~Reh entsteht, führt auf die niedrigste Emissionsenergie des
Systems:

∆E∗eh = Ẽ[~φeh, ~feh, ~Reh]− EN [~Reh]. (2.70)

Aus der Differenz
∆S = ∆Eeh −∆E∗eh (2.71)

ergibt sich der Stokes-Shift ∆S.

2.4 Ermittlung der Gleichgewichtsgeometrie

In Abschnitt 2.3 wurde eine feste Anordnung der Ionen vorausgesetzt um das elektroni-
sche Gleichgewicht im Rahmen DFT zu ermitteln. Das Auffinden der tatsächlichen ionischen
Gleichgewichtsgeometrie erfordert jedoch zusätzlich die Betrachtung bzw. das Verschwinden
der Kräfte auf die Ionen, die sich aus der Gesamtenergie Etot wie folgt berechnen lassen:

~Fs = −∇~Rs
Etot = 0, für alle s. (2.72)

Die Gesamtenergie ergibt sich im Rahmen der Born-Oppenheimer Näherung und unter Ver-
nachlässigung von Nullpunktsenergien aus der Summe der DFT-Grundzustandsenergie Gl.
(2.56) und dem Erwartungswert des Operators der potentiellen Energie der Ionen V̂ion-ion [Gl.
(2.3)]:

Etot = E[n, ~Rs] +
1

2

∑
s 6=s′

ZsZs′
e2

|~Rs − ~Rs′ |
, (2.73)

wobei die Abhängigkeit der DFT-Grundzustandsenergie von den Koordinaten der Ionen ~Rs

durch das Potential Gl. (2.28) gegeben ist. Weitere Bearbeitung von Gl. (2.72) unter der Be-

dingung, dass sich das System im elektronischen Gleichgewicht δE[n,~Rs]
δn

= 0 befindet, führt auf
die sog. Hellmann-Feynman-Kräfte (vgl. z.B. [47]):

~FHF
s = ~F ion

s + ~F el
s (2.74)

= e2Zs
∑
s′

Zs′
~Rs − ~Rs′

|~Rs − ~Rs′|3
−
∫
d3r
[
∇~Rs

v(~r, [~Rs])
]
n(~r) (2.75)

Das Verschwinden der Hellmann-Feynman-Kräfte ist demnach für das System die Vorausset-
zung für das Erreichen einer Gleichgewichtsgeometrie. Da hierbei das elektronische Gleichge-
wicht bereits vorhanden sein muss, ist in der Praxis die Gleichgewichtssuche mit Iterationen,
bestehend aus elektronischer Relaxation und der Verschiebung von Ionen zur Minimierung der
Hellmann-Feynman-Kräfte, verbunden.

2.5 Hybrid-Funktionale

Neben der DFT lassen sich auf Einteilchenlevel auch mit Hilfe der Hartree-Fock-Theorie
(HF-Theorie) die Eigenschaften von Festkörpern und Molekülen mit akzeptabler Genauigkeit
beschreiben bzw. vorhersagen. Ebenfalls im Rahmen der HF-Approximation existiert ein Ener-
giefunktional ähnlich dem HK-Funktional Gl. (2.39). Die Form des Energiefunktionals lässt
sich direkt bestimmen indem unter Berücksichtigung der Antisymmetrie der Wellenfunkti-
on [z.B. Gl. (2.22)] der Erwartungswert des Hamilton-Operators EHF[n] =

〈
Φ(A)

∣∣ Ĥ ∣∣Φ(A)
〉

ausgewertet wird. Die Existenz des Funktionals wird durch ein analoges Vorgehen, wie in
Abschnitt 2.3.1 gezeigt, gesichert (vgl. auch [23], S. 31). Für die Grundzustandsdichte gilt:
nHF (~r) =

∑
i∈occ |φi(~r)|2.

14



(a)

r2

r1

(b) 7.5e-1

1.0e-1

5.0e-2

1.0e-2

1.0e-3

Abbildung 2.1: Darstellung der Wahrscheinlichkeitsdichte |Φ(r1, r2)|2 gebildet auf unterschiedliche

Art- und Weise aus dem jeweiligen Radialanteil des 1s- bzw. 2s-Wasserstofforbitals (in a.u.): (a)

als Produktansatz Φ(P )(r1, r2) = φ1s(r1)φ2s(r2), (b) als symmetrische Wellenfunktion Φ(S)(r1, r2) =
1√
2
[φ1s(r1)φ2s(r2) + φ1s(r2)φ2s(r1)] und (c) als antisymmetrische Wellenfunktion Φ(A)(r1, r2) =

1√
2
[φ1s(r1)φ2s(r2) − φ1s(r2)φ2s(r1)]. Insbesondere in (c) wird deutlich, dass die Antisymmetrie der

Wellenfunktion eine Separation von Ladungswolken zur Folge hat: es gilt |Φ(A)(r, r)|2 = 0, während

|Φ(P/S)(r, r)|2 ≥ 0 .

Die Abb. 2.1 zeigt die jeweilige räumliche Verteilung der Wahrscheinlichkeitsdichte unter
Annahme einer Produktwellenfunktion (Hartree-Näherung), sowie einer symmetrischen bzw.
einer antisymmetrischen Wellenfunktion für ein System mit zwei Teilchen. Die Forderung nach
Antisymmetrie in der Wellenfunktion führt insbesondere zu einer räumlichen Trennung der
Ladungswolken der Elektronen und infolgedessen zu einer Absenkung der inter-elektronischen
Coulombenergie. Speziell wird im Vergleich zur Hartree-Approximation die Gesamtenergie um
den Beitrag

EX =
e2

8πε0

∑
i 6=j

∫
d3r1

∫
d3r2

φ∗j(~r1)φj(~r2)φ∗i (~r2)φi(~r1)

|~r1 − ~r2|
(2.76)

abgesenkt. Gemäß Gl. (2.50) in Abschnitt 2.3.2 wird diese Energie als Austauschenergie be-
zeichnet.

Obgleich durch die HF-Approximation, ähnlich wie durch die DFT, Grundzustandseigen-
schaften gut beschrieben werden, wird die Bandlücke, gerade umgekehrt zur Tendenz der DFT,
in dieser Näherung typischerweise deutlich überschätzt (z.B. [48, 49, 50]). Die Ursache für diese
Überschätzung der Bandlücke ist eine fehlende Reaktion der Elektronen im System auf das
Hinzufügen eines weiteren Elektrons bzw. auf die Ausbildung eines positiven Lochs bei Entfer-
nung eines Elektrons (vgl. [51], S.44). Erfahrungsgemäß kann die Bandlücke im Rahmen der
HFA um einen Faktor zwei größer sein als die tatsächliche Bandlücke.

Mit Hilfe der DFT und der HFA können demnach oft eine untere und obere Grenze für
die experimentelle Bandlücke abgeschätzt werden. Eine Vermischung dieser beiden Theorien,
die sich nur im Austauschterm unterscheiden, kann infolgedessen in einer erfolgreichen Be-
stimmung der tatsächlichen Bandlücke resultieren. Die entsprechende Methode ist in den sog.
Hybridfunktionalen verankert.

Die Vermischung der Austauschenergie der HF-Theorie mit der DFT-XC-Energie zu einem
Hybridfunktional kann nach Harris [52] bzw. Becke [53] auch mit Hilfe einer adiabatic connec-
tion zwischen einem wechselwirkungsfreien und einem wechselwirkenden System gerechtfertigt
werden. In der Arbeit von Perdew et al. [54] wurden störungstheoretisch die jeweiligen Anteile
in dem Hybridfunktional

Ehyb
XC = EDFT

XC + a(EHF
X − EDFT

X ) mit a =
1

4
(2.77)
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berechnet. EDFT
XC und EDFT

X bezeichnen dabei die jeweilige approximierte DFT-XC- und DFT-
Austauschenergie. Üblicherweise wird für den DFT-Anteil das PBE-Funktional [34, 36] ver-
wendet. Bekannt ist diese Komposition als PBE0-Funktional [55, 56]. Heyd et al. [57, 58, 59]
zerlegten das Coulomb-Potential zusätzlich in einen kurzreichweitigen und langreichweitigen
Anteil:

1

r
=

1− erf(ωr)

r
+

erf(ωr)

r
, (2.78)

wobei ω ein einstellbarer Parameter mit Werten zwischen 0.1 und 0.2 ist. Infolgedessen und
unter der Beachtung, dass sich die langreichweitigen Komponenten der HF- und der PBE-
Austauschenergie teilweise aufheben bzw. nur geringe Korrekturen verursachen, kann für das
Hybrid-Funktional wie folgt angesetzt werden:

EHSE
XC = aEHF,SR

X (ω) + (1− a)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C . (2.79)

Hybridfunktionale verbessern die Beschreibung der Bandlücken [58], allerdings wird der nume-
rische Aufwand im Vergleich zu einer reinen DFT-Rechnung deutlich größer. Der Grund ist
die notwendige Auswertung eines nichtlokalen Potentials, welches durch die Berücksichtigung
des exakten Austausches EHF

X ausgebildet wird. Mit Hilfe von Hybridfunktionalen lassen sich
demnach zur Zeit maximal Systeme mittlerer Grösse (d.h. Systeme einiger dutzend Atome)
studieren.

2.6 Das Konzept der Quasiteilchen

Der bevorstehende Abschnitt erläutert das Konzept der Quasiteilchen. Die Reaktion ei-
nes Systems auf spezielle äußere Störungenen kann als ein Quasiteilchen aufgefasst werden.
Der Kern des Konzepts ist die Betrachtung und Charakterisierung von einigen wenigen Qua-
siteilchen anstelle der Gesamtheit der Teilchen eines Festkörpers. Bei der Beschreibung von
Quasiteilchen wird demnach Wert darauf gelegt, dass diese nur schwach mit dem restlichen
System wechselwirken. Infolgedessen kann ein angeregter Zustand von Festkörpern deutlich
einfacher evaluiert werden. Innerhalb der Festkörperphysik haben sich verschiedene Quasiteil-
chen wie Exzitonen, Polaronen, Phononen oder Plasmonen als sehr erfolgreiche Modelle eta-
bliert. Der Schwerpunkt dieser Arbeit liegt auf der Beschreibung von Quasielektronen sowie den
Elektron-Loch-Paaren Exzitonen. Die Dynamik von Quasiteilchen wird mathematisch durch
Green-Funktionen formuliert. Die vollständige Lösung des Vielteilchenproblems erfordert aller-
dings noch die Einführung vier weiterer Größen: der Polarisierbarkeit3, der Vertex-Funktion,
des abgeschirmten Coulomb-Potentials sowie der Selbstenergie. Diese insgesamt fünf Größen
sind gekoppelt im Hedin’schen Gleichungssystem, welches durch einen geeigneten Ansatz ap-
proximativ gelößt werden kann.

2.6.1 Green-Funktionen

Die Dynamik von Quasielektronen wird formuliert durch die Einteilchen-Green-Funktion
G(~r, t;~r′, t′). Diese beschreibt für t′ < t die Bewegung eines Elektrons durch das Vielteilchen-
system nachdem es dem System bei der Raum-Zeit (~r′, t′) =: x′ zugefügt wurde und bevor es
dem System bei (~r, t) =: x entnommen wurde. Bei der Temperatur T = 0K wird die Einteichen-
Green-Funktion mit Hilfe der Feldoperatoren im Heisenberg-Bild

Ψ(~r, t) := eiĤt/~Ψ(~r)e−iĤt/~ und Ψ+(~r, t) := eiĤt/~Ψ+(~r)e−iĤt/~, (2.80)

3Übersetzung gemäß Strinati [51] eng.: polarizability
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dem Grundzustand |Φ〉 sowie dem Zeitordnungs-Operator T wie folgt definiert:

G(~r, t;~r′, t′) :=
1

i~
〈Φ|TΨ(~r, t)Ψ+(~r′, t′) |Φ〉 . (2.81)

Durch die zeitliche Unabhängigkeit des Hamilton-Operators Ĥ ist die Green-Funktion zeitlich
homogen:

G(~r, t;~r′, t′) = G(~r, ~r′, t− t′). (2.82)

Analog ist die Zweiteilchen-Green-Funktion durch

G(2)(1, 2, 1′, 2′) :=

(
1

i~

)2

〈Φ|TΨ(1)Ψ(2)Ψ+(2′)Ψ+(1′) |Φ〉 (2.83)

definiert, wobei die Abkürzungen

i↔ xi, für i = 1, 1′, 2, 2′, (2.84)

verwendet wurden. Die Zweiteilchen-Green-Funktion beschreibt die Propagation von zwei Teil-
chen. Aus der Betrachtung der Zeitentwicklung der Feldoperatoren (2.80)

~
i

d

dt
Ψ(1) = ĤΨ(1)−Ψ(1)Ĥ = [Ĥ,Ψ(1)] (2.85)

kann auf die Bewegungsgleichung der Einteilchen-Green-Funktion geschlussfolgert werden:[
i~∂t −

(
−~2∆

2m
+ v(~r)

)]
G(1, 2) + i~

∫
d3u(1, 3)G(2)(1, 3+, 2, 3++) = δ(1− 2), (2.86)

In Gl. (2.86) wurden das zeitabhängige Coulomb-Potential

u(1, 2) = u(~r1, ~r2)δ(t1 − t2) (2.87)

eingeführt und die Abkürzung

1+ ↔ (~r, t+ ε), mit ε > 0, ε→ 0 (2.88)

verwendet. Die Bewegungsgleichung (2.86) koppelt die Einteilchen-Green-Funktion mit der
Zweiteilchen-Green-Funktion. Analog führt die Aufstellung der Bewegungsgleichung für Green-
Funktionen höherer Ordnungen zu einer unendlichen Kette von Gleichungen, in denen jeweils
die Green-Funktionenen n-ter und (n+1)-ter Ordnungen gekoppelt sind.

2.6.2 Die Selbstenergie und das Hedin’sche Gleichungssystem

Zur Definition der Selbstenergie wird das zeitabhängige Hartree-Potential

uH(1) := −i~
∫
d3u(1, 3)G(3, 3+) (2.89)

sowie der Hartree-Anteil der Selbstenergie

ΣH(1, 2) := δ(1− 2)uH(1) = −i~δ(1− 2)

∫
d3u(1, 3)G(3, 3+) (2.90)

hinzugezogen. Die Selbstenergie wird implizit wie folgt definiert:∫
d3Σ(1, 3)G(3, 2) = −

∫
d3ΣH(1, 3)G(3, 2)− i~

∫
d3u(1, 3)G(2)(1, 3+, 2, 3++) (2.91)

= −uH(1)G(1, 2)− i~
∫
d3u(1, 3)G(2)(1, 3+, 2, 3++). (2.92)
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Gln. (2.91) und (2.92) erlauben eine Entkopplung der Green-Funktion 1.-ter Ordnung von der
Zweiteilchen-Green-Funktion in der Bewegungsgleichung Gl. (2.86). Bei diesem Schritt wird
Gl. (2.86) in die sog. Dysongleichung umgewandelt:

δ(1− 2) =

[
i~∂t −

(
−~2∆

2m
+ v(~r)

)]
G(1, 2)−

∫
d3ΣH(1, 3)G(3, 2)

−
∫
d3Σ(1, 3)G(3, 2) (2.93)

=

[
i~∂t −

(
−~2∆

2m
+ v(~r) + uH(1)

)]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2). (2.94)

Die physikalische Bedeutung der Selbstenergie wird deutlich, wenn die Green-Funktion G0,H

eines wechselwirkungsfreien Systems betrachtet wird (Hartree-Näherung). Es gilt im Frequenz-
raum [mit uH(~r) =

∫
d3r′u(~r, ~r′)n(~r′)]:

G−1
0,H(ω) = ~ω −

(
−~2∆

2m
+ v(~r)

)
− uH(~r) (2.95)

und folglich

G−1(ω) = G−1
0,H(ω)− Σ(ω). (2.96)

Da die Nullstellen von G−1 und G−1
0,H (bzw. die Pole von G und G0,H) Anregungsenergien

darstellen [60], stellt die Selbstenergie den Beitrag zu G−1
0,H dar, der aus der Wechselwirkung

der Teilchen resultiert.

Um im Weiteren das Hedin’sche Gleichungssystem abzuleiten, gibt es verschiedene Möglich-
keiten: (i) die Vernküpfung einer Bethe-Salpeter-Gleichung für die Streuamplitude mit der
Bewegungsgleichung für die Green-Funktion [61] oder (ii) der Einsatz eines Testpotentials
[51, 62, 63, 64] φ(~r, t), welches zum Hartree-Potential addiert wird uφ(1) := uH(1) + φ(1),
zusammen mit der Verwendung von Funktionalableitungen um Beziehungen zwischen den neu-
en Größen zu erhalten. Im Folgenden wird sich an Ref. [62] orientiert und von Methode (ii)
Gebrauch gemacht.

Das Testpotential ist ein mathematisches Hilfsmittel um Gleichungen zu erzeugen, welche
auf die Bestimmung der Selbstenergie führen. Es kann auch als eine kurze äußere Störung
angesehen werden. Das Potential φ(1) verschwindet für t→ ±∞ und es soll stetig zugefügt und
entfernt werden, sodass der Zustand des Systems nach Abklingen der Störung in den originalen
Grundzustand zurückkehrt. Die Teilchen im System reagieren nicht nur auf die äußere Störung,
sondern auf die Änderung des gesamten Potentials δuφ(1) = δφ(1) +

∫
d3u(1, 3)δG(3, 3+). In

Analogie zur klassischen Elektrodynamik wird die Response-Funktion

ε−1(1, 2) =
δuφ(1)

δφ(2)
= δ(1− 2) +

∫
d3u(1, 3)

δG(3, 3+)

δφ(2)
(2.97)

eingeführt, welche mit der Polarisierbarkeit gekoppelt ist:

ε(1, 2) = δ(1− 2)−
∫
d3u(1, 3)Π(3, 2). (2.98)

Für die Polarisierbarkeit findet man:

Π(1, 2) = −i~
∫
d3

∫
d4G(1, 3)Γ(3, 4; 2)G(4, 1+), (2.99)
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wobei die Vertex-Funktion Γ(1, 2; 3) = − δG−1(1,2)
δuφ(3)

verwendet wurde:

Γ(1, 2; 3) = δ(1− 2)δ(1− 3)+∫
d4

∫
d5

∫
d6

∫
d7G(4, 6)G(7, 5)Γ(6, 7; 3)

δΣ(1, 2)

δG(4, 5)
. (2.100)

Der Effekt einer zusätzliche Ladung, die in ein System eingebracht wird, wird durch eine Aus-
richtung der übrigen Ladungsträger reduziert [65]. Demnach rentiert sich auch die Einführung
eines abgeschirmten Coulomb-Potentials:

W (1, 2) =

∫
d3 ε−1(1, 3)u(3, 2). (2.101)

Mit Hilfe der so definierten Größen ergibt sich für die Selbstenergie:

Σ(1, 2) = i~
∫
d3

∫
d4W (1, 4)G(1, 3)Γ(3, 2; 4). (2.102)

Zusammen mit Gln. (2.95) und (2.96) kann das Hedin’sche Gleichungssystem wie folgt
zusammengefasst werden [66, 67] (über doppelte Indizes mit i ≥ 3 wird integriert):

G(1, 2) = G0,H(1, 2) +G0,H(1, 3)Σ(3, 4)G(4, 2) (2.103)

W (1, 2) = u(1, 2) + u(1, 3)Π(3, 4)W (4, 2) (2.104)

Σ(1, 2) = i~Γ(3, 2; 4)G(1, 3+)W (1, 4) (2.105)

Π(1, 2) = −i~G(1, 3)Γ(3, 4; 2)G(4, 1+) (2.106)

Γ(1, 2; 3) = δ(1− 2)δ(1− 3) +G(4, 6)G(7, 5)Γ(6, 7; 3)
δΣ(1, 2)

δG(4, 5)
(2.107)

Durch eine Iteration lässt sich aus Gln. (2.103)-(2.107) eine Näherung für die Selbstenergie
finden. Man startet mit der Hartree-Näherung Gl. (2.95) der Green-Funktion G(0) = G0,H (mit
Σ(0) = 0). Das Einsetzen von Σ(0) = 0 in Gl. (2.107) und anschließend in (2.106) ergibt:

Γ(0)(1, 2; 3) = δ(1− 2)δ(1− 3) (2.108)

Π(0)(1, 2) = −i~G(0)(1, 2)G(0)(2, 1+). (2.109)

Die Abschirmung W (0) berechnet man aus Gl. (2.104). Von Gl. (2.104) gelangt man zu Gl.
(2.101), wobei die Response-Funktion

ε(1, 2) = δ(1− 2)− i~
∫
d3u(1, 3)G(0)(3, 2)G(0)(2, 3+) (2.110)

zu invertieren ist. Für die Selbstenergie folgt nach der ersten Iteration:

Σ(1)(1, 2) = i~G(0)(1, 2)W (0)(1, 2). (2.111)

Die Iteration kann weiter fortgesetzt werden. Allerdings führen weitere Schritte nicht notwen-
digerweise zu einer besseren Beschreibung der elektronischen Eigenschaften der studierten Sys-
teme [62, 68]. Häufig wird für die Selbstenergie daher die sog. GW-Approximation (GWA) Gl.
(2.111) verwendet.
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2.6.3 Die Quasiteilchen-Approximation

Der Operator der Selbstenergie ist i.A. nichthermitesch (und energieabhängig), sodass die bei-
den zugehörigen Eigenwertprobleme lauten [69]:(

−~2∆

2m
+ v(~r) + uH(1)

)
ψln(~r, ω) +

∫
Σ(~r, ~r′, ω)ψln(~r′, ω) = εQPn (ω)ψln(~r, ω) (2.112)(

−~2∆

2m
+ v(~r) + uH(1)

)
ψrn(~r, ω) +

∫
Σ(~r, ~r′, ω)∗ψrn(~r′, ω) = εQPn (ω)∗ψrn(~r, ω) (2.113)

mit den bi-orthogonalen Eigenzuständen
〈
ψln | ψrm

〉
= δnm. Die Green-Funktion wird aus den

Eigenzuständen ψln, ψ
r
n konstruiert:

G(~r, ~r′, ω) =
∑
n

ψln(~r, ω)[ψrn(~r′, ω)]∗

~ω − εQPn (ω)
. (2.114)

Vereinfacht wird Gl. (2.114) unter der Annahme, dass die Green-Funktion Pole bei ~ωn =
εQPn (ωn) besitzt [51, 64]. In dieser sog. Quasiteilchen-Approximation gilt für die Green-Funktion:

G(~r, ~r′, ω) '
∑
n

g(ωn)
ψln(~r, ωn)[ψrn(~r′, ωn)]∗

~ω − ~ωn
mit g(ωn) =

1

1− ∂~ωnε
QP
n (ωn)

(2.115)

Der Vorfaktor g(ωn) ist das Residuum von [~ω−εQPn (ω)]−1 am Pol ωn und gibt die Wahrschein-
lichkeit an, dass sich ein Teilchen im Quasi-Zustand ψn befindet und in jenem Zustand verweilt
[62]. Die Quasiteilchen-Approximation wird begründet im Zusammenhang mit der Darstellung
der Green-Funktion eines wechselwirkungsfreien Systems durch die Lösung des zugehörigen
Eigenwertproblems:

G0(~r, ~r′, ω) =
∑
n

φn(~r)φn(~r′)∗

~ω − εn
. (2.116)

Die Pole εn von G0 beschreiben die Einteilchenenergien und der Vorfaktor eins spiegelt einen
isolierten Zustand φn wieder. In der Quasiteilchen-Approximation hat die Green-Funktionen G
die gleiche Form wie G0.

Andererseits kann eine Spektraldarstellung der Green-Funktion durch das Einsetzen des
Identitätsoperators I =

∑
M |M〉 〈M | zwischen der Feldoperatoren in Gl. (2.81) gewonnen wer-

den [66]:

G(~r, ~r, ω) =

µ∫
−∞

dω′
A(~r, ~r′, ω′)

ω − ω′ − iη
+

∞∫
µ

dω′
A(~r, ~r′, ω′)

ω − ω′ + iη
, (2.117)

wobei die Spektralfunktion A(~r, ~r′, ω′) durch

A(~r, ~r′, ω) =
∑
i

ai,−(~r)a∗i,−(~r′)δ[ω − µ+ (EN−1,i − EN−1)]

+
∑
i

ai,+(~r)a∗i,+(~r′)δ[ω − µ− (EN+1,i − EN+1)] (2.118)

mit
ai,−(~r) = 〈N − 1, i| Ψ̂(~r) |N〉 und ai,+(~r) = 〈N + 1, i| Ψ̂+(~r) |N〉 (2.119)

gegeben ist. |N ± 1, i〉 und EN±1,i sind der i-te angeregte Eigenzustand und die zugehörige
angeregte Energie eines N±1-Elektronensystems. µ als chemisches Potential ist gegeben durch:

µ = EN+1 − EN = EN − EN−1 +O(1/N). (2.120)
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Nach Gln. (2.117) und (2.118) enthalten die Pole der Green-Funktion die Informationen über
die Anregungsenergien von N ± 1-Teilchen-Zuständen. Da Gln. (2.117) und (2.114) [bzw. Gl.
(2.115)] gleich sein müssen, können der Real- und Imaginärteil der i.A. komplexen Quasiteil-
chenenergien ~ωn als Energien und inverse Lebenszeiten von N ± 1-Teilchen-Zuständen ange-
sehen werden.

An dieser Stelle sei ein Blick auf Abschnitt 2.5 gewährleistet: gemäß Gln. (2.101) und
(2.111) gilt bei einer Wahl der Abschirmfunktion Gl. (2.97) von ε−1

HF := δ(1 − 2) für das abge-
schirmte Coulomb-Potential: WHF(1, 2) = v(1, 2). Die Quasiteilchen-Gleichung (2.112)/(2.113)
geht infolgedessen in die Hartree-Fock-Gleichung über. Da erfahrungsgemäß die HF-Theorie
die tatsächliche Bandlücke überschätzt, zeigt sich, dass die Abschirmung ε(1, 2) für eine gute
Beschreibung der Bandlücke ausschlaggebend ist.

2.6.4 Störungstheoretische Berechnung der Quasiteilchenenergien

Prinzipiell können Quasiteilchenenergien mit Hilfe der GW-Approximation Gl. (2.111) und den
Gln. (2.112) und (2.113) selbstkonsistent berechnet werden. Allerdings erfordert die Berech-
nung der Selbstenergie einen hohen numerischen Aufwand, da diese ein nichtlokales Potential
darstellt [vgl. Gl. (2.112)]. Zudem zeigte sich, dass die selbstkonsistente Berechnung der Quasi-
teilchenenergien oftmals die Beschreibung der Bandlücken nicht übermäßig verbessert [70, 71].
Auch haben sog. Vertex-Korrekturen, die aus dem zweiten Iterationsschritt der Hedin’schen
Gleichungen resultieren, nur geringfügigen Einfluss auf die Ergebnisse [72, 73, 74, 75]. Infol-
gedessen werden die Quasiteilchenenergien im Rahmen dieser Arbeit störungstheoretisch auf
Grundlage der Kohn-Sham Energien ermittelt. Die Implementierung ist beschrieben in der Ar-
beit von Shishkin und Kresse [76]. Für die Quasiteilchenenergien in 1. Ordnung Störungtheorie
gilt:

εQPn = εKS
n + <

(
Zn 〈φn|Σ(εKS

n )− vXC |φn〉
)

mit Zn =
1

〈φn| ∂εΣ(ε)|εKS
n
|φn〉

. (2.121)

Zn wird als Renormierungsfaktor bezeichnet [66]. Die Komponenten der Selbstenergie in GW-
Approximation werden aus den Kohn-Sham Eigenwerten und Eigenfunktionen konstruiert. Ins-
besondere zur Darstellung der Green-Funktion wird Gl. (2.116) verwendet. Die weiteren not-
wendigen Größen, wie die Abschirmung und das abgeschirmte Coulomb-Potential, können aus
Gln. (2.110) und (2.101) berechnet werden. Zu bemerken sei, dass die Abschirmung im Rahmen
einer Random-Phase Approximation (RPA) berechnet wird. Als Grundlage werden ebenfalls die
Kohn-Sham-Eigenfunktionen und -energien verwendet. Zusätzlich wird die Pseudo-Potential-
Methode partial augmented waves (PAW) eingesetzt (vgl. Abschnitt 2.9). Generell hat sich
bzgl. der Quasiteilchen-Störungstheorie auch eine Abhängigkeit von den Anfangspunktenergien
herausgestellt. Der Ansatz, Hybrid-Funktional-Ergebnisse anstelle der Kohn-Sham-Ergebnisse
zu verwenden, wies eine Verbesserung der Bandlücken-Resultate auf. Zur weiteren Diskussion
dieses Punktes sei auf die Arbeiten [77, 78, 79] verwiesen.

2.7 Optische Eigenschaften

Die Kenntnis der (Quasi)-Teilchen-Niveaus erlaubt die Charakterisierung der Wechselwir-
kung eines Elektronensystem mit elektromagnetischen Wellen. Der Einfall elektromagnetischer
Strahlung wird durch einen Störoperator Hext ausgedrückt. Die Abweichung der Erwartungs-
werte relevanter Operatoren von den Grundzustandswerten herbeigeführt durch die äußere
Störung wird als Response bezeichnet [80](S.173). Insbesondere interessant ist die Response
des Stromdichteoperators δ < ĵ >, da aus dieser die Eigenschaften (messbarer) makrosko-
pischer Größen gewonnen werden können. Dazu gehören sowohl die dielektrische Funktion
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ε(ω) als auch der Tensor der Erzeugung der zweiten Harmonischen (SHG) χαβγ(ω). Neben
dem Einfluss der vorgegebenen elektronischen Struktur eines Systems, hat sich in den letzten
Jahren auch herausgestellt, dass die optischen Eigenschaften von Festkörpern und Molekülen
massgeblich durch die sog. Lokalfeldeffekte und die Elektron-Loch-Wechselwirkung beeinflusst
werden. Lokalfeldeffekte, die nach Adler [81] und Wiser [82] die mikroskopischen Aspekte der
Response in Betracht ziehen, können zusammen mit der Elektron-Loch-Wechselwirkung im
Rahmen der Vielteilchentheorie bearbeitet werden. Die Elektron-Loch-Wechselwirkung bezeich-
net die Anziehung zwischen einem angeregten (Quasi-)Elektron und dem zurückbleibenden
Loch unterhalb der Fermi-Energie. Zur entgültigen Berechnung der beiden Effekte wird er-
neut vom Hedin’schen Gleichungssystem Gebrauch gemacht, wobei sich herausstellt, dass die
sog. Zweiteilchen-Korrelationsfunktion, als zentrale Grösse zur Berücksichtigung der Vielteil-
cheneffekte in den optischen Eigenschaften, eine Bethe-Salpeter-Gleichung (BSE) erfüllt. Im
Folgenden wird ausgehend vom Störoperator die Response der Stromdichte betrachtet. An-
schließend wird aus der Response die Verbindung zu den makroskopischen Größen hergestellt.
Es folgt die Einarbeitung der Vielteilcheneffekte.

2.7.1 Stromdichte-Response

Unter Verwendung der Coulomb-Eichung und mit der Wahl des externen skalaren Poten-
tials von φext(~r) = 0 lautet der Störoperator zur Beschreibung eines von außen angelegten
elektromagnetischen Feldes [21, 80, 83]

Ĥext = −
∫
d3r~̂j(~r, t) ~Aext(~r, t) +

e2

2m

∫
d3r ˆ̃n(~r, t)

[
~Aext(~r, t)

]2

, (2.122)

wobei ~Aext das externe Vektor-Potential und

~̂j =
e

2m
[Ψ+(~r, t)(~̂pΨ(~r, t))− (~̂pΨ+(~r, t))Ψ(~r, t)] (2.123)

sind. ~̂p ist in Gl. (2.123) der Impulsoperator. Wegen − δHext

δAext = ~jtot gilt für den Operator der
Gesamtstromdichte [21, 80] (S.22/S.455)4:

~̂jtot = ~̂j(~r, t)− e2

m
ˆ̃n(~r, t) ~Aext(~r, t). (2.124)

Für Isolatoren und Halbleiter bei der Temperatur T = 0K verschwinden wegen der Ladungser-

haltung aller Terme proportional zum Dichteoperator 5 ˆ̃n(~r, t), sodass im Folgenden ~̂jtot = ~̂j gilt.
Die Stromdichte-Response ergibt sich als Differenz der Erwartungswerte des jeweils gestörten
und ungestörten Systems:

δ < ĵα >= 〈Φ|
[
Û+(t)ĵαÛ(t)− ĵα

]
|Φ〉 , (2.125)

wobei

Û(t) = exp

−i t∫
−∞

dt′Ĥext(t′)/~

 (2.126)

der Zeitentwicklungsoperator im Wechselwirkungsbild ist. Analog zu Abschnitt 2.6.2 soll das
System bei t → −∞ ungestört sein. Die Verwendung der Reihendarstellung der Exponential-
funktion in Gl. (2.126) und die Betrachtung der Terme bis zur quadratischen Ordnung in Aext

4Orientierung an Fetter et al. [80]
5Der Dichteoperator ˆ̃n enthält hier auch die ionischen Beiträge.
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liefert für die Stromdichte-Response:

δ < ĵα(~r, t) > = δ < ĵ1
α(~r, t) > +δ < ĵ2

α(~r, t) > mit (2.127)

δ < ĵ1
α(~r, t) > = − i

~

∫
d3r′

t∫
−∞

dt′ <
[
ĵβ(~r′, t′), ĵα(~r, t)

]
> Aext

β (~r′, t′) und (2.128)

δ < ĵ2
α(~r, t) > = − i

~2

∫
d3r1

∫
d3r2

t∫
−∞

dt1

t∫
−∞

dt2

× <
[
ĵγ(~r2, t2),

[
ĵβ(~r1, t1), ĵα(~r, t)

]]
> Aext

γ (~r2, t2)Aext
β (~r1, t1) (2.129)

Wegen Eext = −1
c
∂tA

ext bei Verwendung der Coulomb-Eichung können die Gln. (2.127) - (2.129)
für nichtmagnetische Materialien mit den elektrischen Störfeldern Eext in Beziehung gesetzt wer-
den. Brauchbarer sind allerdings die Abhängigkeiten der Erwartungswerte vom gesamten elek-
trischen Feld ~E(~r, t), da dieses in den Maxwell-Gleichungen vorkommt. Wie in Ref. Leitsmann
et al. [83] und darin enthaltenen Referenzen erklärt, ist es dazu notwendig bei der Erwartungs-
wertbildung in den Gln. (2.127) - (2.129) nur die irreduziblen Graphen zu berücksichtigen. Es
gilt infolgedessen für die Stromdichte-Response:

δ < ĵ1
α(~r, t) > =

∫
d3r′

∫
dt′σ1

αβ(~r, ~r′, t− t′)Eβ(~r′, t′) und (2.130)

δ < ĵ2
α(~r, t) > =

∫
d3r1

∫
d3r2

∫
dt1

∫
dt2

× σ2
αβγ(~r, ~r1, ~r2, t− t1, t− t2)Eβ(~r1, t1)Eγ(~r2t2), (2.131)

wobei die Leitfähigkeits-Tensoren wie folgt gegeben sind:

σ1
αβ(~r, ~r′, t− t′) = Θ(t− t′) 1

i~

t′∫
t

dt2 <
[
ĵβ(~r2, t2), ĵα(~r, t)

]
>irr und (2.132)

σ2
αβγ(~r, ~r1, ~r2, t− t1, t− t2) = − 1

2~2

t∫
−∞

dt3

t3∫
−∞

dt4Θ(t4 − t1)Θ(t3 − t2)

×
{
<
[
ĵγ(~r1, t4),

[
ĵβ(~r2, t3), ĵα(~r, t)

]]
>irr +(β ↔ γ)

}
. (2.133)

2.7.2 Makroskopische Response-Funktionen

Nach den Maxwell-Gleichungen gilt für nichtmagnetische Materialien

δ < ĵα >= ∂tPα(t) bzw. Pα(ω) =
i

ω
δ < ĵα(ω) > . (2.134)

Andererseits lässt sich die Polarisation im Frequenzraum nach Ordnungen des elektrischen
Feldes entwickeln (vgl. Ref. [10]):

Pα(ω) = ε0 χ
(1)
αβ(ω)Eβ(ω)

+ ε0

∫
dω1

∫
dω2 δ[ω − (ω1 + ω2)]χ

(2)
αβγ(ω1, ω2)Eβ(ω1)Eγ(ω2) + .. (2.135)

χ
(1)
αβ ist in Gl. (2.135) die lineare Suszeptibilität, die mit der dielektrischen Funktion zusam-

menhängt:
εαβ(ω) = δαβ + χ

(1)
αβ(ω). (2.136)
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Die dielektrische Funktion enthält alle Informationen über die linearen optischen Eigenschaften
eines Festkörpers oder Moleküls. Dazu gehöheren u.a. die Absorptions- und Reflexionscharak-
teristiken.

χ
(2)
αβγ(ω1, ω2) wird als nichtlineare Suszeptibilität zweiter Ordnung bezeichnet. Die Wechsel-

wirkung von EM-Wellen der Frequenzen ω1 und ω2 in nichtlinearen Medien führt zur Erzeugung
von EM-Wellen mit Summen- ω = ω1 +ω2 oder Differenzfrequenzen ω = ±(ω1−ω2) [9]. Einen
Spezialfall bildet die Erzeugung der sog. zweiten Harmonischen, die im Folgenden Gegenstand
der Untersuchung sein wird. Für die Frequenzen der beiden einfallenden EM-Wellen gilt in die-
sem Fall: ω1 = ω2 = ω0. Generiert wird im nichtlinearem Medium eine EM-Welle der Frequenz
ω = 2ω0. Gemäß Gl. (2.135) und den intrinsischen Vertauschungssymmetrien hinsichtlich der
kartesischen Richtungen β und γ (vgl. Ref. [10], Gl. 2.54) läßt sich für die entsprechende zweite
Ordnung der Polarisation schreiben6:

P (2),SHG
α (ω) =

ε0
2
χ

(2)
αβγ(−2ω, ω, ω)Eβ(ω)Eγ(ω). (2.137)

χ
(2)
αβγ(−2ω, ω, ω) bildet in Gl. (2.137) folglich ein Maß für die Intensität der emittierten EM-

Welle beim Prozess der Erzeugung der zweiten Harmonischen.

Die Kombination von Gln. (2.134) und (2.135) zusammen mit Gln. (2.132) und (2.133) führt

jeweils auf einen Ausdruck für χ
(1)
αβ und χ

(2)
αβγ. Dazu werden σ1

αβ und σ2
αβγ Fourier-transformiert,

(vgl. Anhang A), wobei anschließend die Wellenvektorabhängigkeit vernachlässigt wird (d.h.
für die folgenden Schritte gilt: ~q, ~q′ → 0). Grund dafür ist der geringe Betrag des Photonen-
Wellenvektors im Vergleich zur Ausdehnung der Brillouin Zone (vgl. Abschnitt 2.8). Zusammen
mit der Darstellung der Feldoperatoren Ψ,Ψ+ durch die Vernichter- und Erzeugeroperatoren
âλ, â

+
λ

Ψ̂(+)(~r, t) =
∑
λ

φ
(∗)
λ (~r)â

(+)
λ (t) (2.138)

lässt sich weiterhin für den Operator des Stroms schreiben:

Ĵα(t) =

∫
d3rĵα(~r, t) =

e

m

∑
λ,λ′

pαλλ′ â
+
λ (t)âλ′(t). (2.139)

Infolgedessen gilt für die dielektrische Funktion:

εαβ(ω) = δαβ +
i

ε0ω
σ1
αβ(0, 0, ω) = δαβ +

i

ε0~ω2V

∞∫
0

dt eiωt < [Ĵα(0), Ĵβ(−t)] >irr (2.140)

= δαβ +
ie2

ε0~ω2V m2

∑
λ1,..,λ′2

∞∫
0

dt eiωtpαλ1λ′1p
β
λ2λ′2

< [â+
λ1

(t)âλ′1(t), â
+
λ2

(0)âλ′2(0)] >irr (2.141)

6Die Konvention wird gemäß Gl. (2.54) in Ref. [10] gewählt. Der Faktor 1/2 ist in anderen Arbeiten oftmals
in χ(2) eingeschlossen.
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Analog folgt für den Tensor der Erzeugung der zweiten Harmonischen:

χ
(2)
αβγ(−2ω, ω, ω) = i

σ(0, 0, 0, ω, ω)

2ε0ω
(2.142)

=
i

4ε0V ~2ω3

0∫
−∞

dt1

t1∫
−∞

dt2

{
e−iωt1e−iωt2 <

[
Ĵγ(t2),

[
Ĵβ(t1), Ĵα(0)

]]
>irr +(β ↔ γ)

}
(2.143)

=
ie3

4ε0~2m3ω3V

∑
λ1,..,λ′3

pαλ1λ′1p
β
λ2λ′2

pγλ3λ′3

0∫
−∞

dt1

t1∫
−∞

dt2{
e−iωt1e−iωt2 <

[
â+
λ1

(t2)âλ′1(t2),
[
â+
λ2

(t1)âλ′2(t1), â+
λ3

(0)âλ′3(0)
]]
>irr +(β ↔ γ)

}
(2.144)

Die Gln. (2.136), (2.141) und (2.144) bilden die Ausgangspunkte zur Berechnung der linearen
und nichtlinearen optischen Eigenschaften. Im Folgenden wird es das Ziel sein, Erwartungs-
werte wie < â+

λ1
(t1)..âλ′2(t

′
2) >irr und < â+

λ1
(t1)..âλ′3(t

′
3) >irr unter Verwendung verschiedener

Approximationen zu ermitteln.

2.7.3 Unabhängige (Quasi-) Teilchen Approximation

Im Falle wechselwirkungsfreier (Quasi-) Teilchen ist der Hamilton-Operator diagonal bzgl.

der {|λ〉}-Basis, sodass für die zeitabhängigen Erzeuger- und Vernichter-Operatoren â
(+)
λ (t) (im

Heisenberg-Bild) die explizite Zeitdarstellung verwendet werden kann (vgl. [21], S. 92):

â
(+)
λ (t) = exp[(−)(~/i)ελt] â(+)

λ (0) (2.145)

Infolgedessen lassen sich die Erwartungswerte < â+
λ1

(0)..âλ′
2/3

(0) >irr in den Gleichungen (2.141)

und (2.144) auswerten, sowie mit Hilfe eines konvergenzerzeugenden Faktors η > 0 die Zeitin-
tegrale

∫
dti.. berechnen. Unter Beachtung der Spinentartung der Einteilchenzustände findet

man für die dielektrische Funktion:

εαβ(ω) = δαβ +
2e2

ε0~m2V (ω + iη)2

∑
λλ′

fλλ′
pαλλ′p

β
λ′λ

(ελ′ − ελ)/~− (ω + iη)
(2.146)

Mit fλλ′ werden dabei die Besetzungszahldifferenzen zwischen den Zuständen |λ〉, |λ′〉 bezeich-
net. Ein analoges Vorgehen führt auf den Ausdruck für den SHG-Tensor:

χ
(2)
αβγ(−2ω, ω, ω) =

−ie3

ε0~2m3V (ω + iη)3

∑
λ1λ2λ3

1

(ελ2 − ελ1)/~− 2(ω + iη)
× (2.147)[

fλ1λ3p
α
λ1λ2
{pβλ2λ3p

γ
λ3λ1
}

(ελ3 − ελ1)/~− (ω + iη)
+

fλ2λ3p
α
λ1λ2
{pγλ2λ3p

β
λ3λ1
}

(ελ2 − ελ3)/~− (ω + iη)

]
, (2.148)

wobei abgekürzt wurde:

{pβmlp
γ
nl} =

1

2
[pβmlp

γ
nl + pγmlp

β
nl]. (2.149)

Die Formeln (2.146) und (2.148) für die IPA/IQA-Näherung der dielektrischen Funktion sowie
des SHG-Tensors enthalten noch Divergenzen 1/ω2 bzw. 1/ω3 für ω → 0. Durch eine Parti-
albruchzerlegung zusammen mit der Betrachtung der Symmetrien der Impulsmatrixelemente,
sowie der Besetzungszahl- und Energiedifferenzen bei der Summation

∑
λλ′ können diese

eliminiert werden. Wiedergegeben ist das Vorgehen ausführlich in den Arbeiten [84, 85, 86].
Unter Verwendung von Bloch-Zuständen |φλ〉 = |φn(~q)〉, die auch in Abschnitt 2.8.2 diskutiert
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werden, lautet das Endergebnis für die dielektrische Funktion und den SHG-Tensor:

εαβ(ω) = δαβ +
2e2

ε0~m2V

∑
~q

∑
nn′

fnn′(~q)
pαnn′(~q)p

β
n′n(~q)

[εn′n(~q)/~]2[εn′n(~q)/~− (ω + iη)]
(2.150)

χ
(2)
αβγ(−2ω, ω, ω) =

ie3

ε0~2m3V

(
χ(2),two(ω) + χ(2),three(ω)

)
mit (2.151)

χ(2),two(ω) = −
∑
~q

∑
nm

fnm(~q)pαnm(~q){∆β
mn(~q)pγmn(~q)}×

×
[

16

[εmn(~q)/~]4[εm(~q)/~− 2(ω + iη)]
− 1

[εmn(~q)/~]4[εmn(~q)/~− (ω + iη)]

]
(2.152)

χ(2),three(ω) = −
∑
~q

′∑
nml

pαnm(~q){pβml(~q)p
γ
ln(~q)}

[εln(~q)− εml(~q)]/~
×

×
[ 16fnm(~q)

[εmn(~q)/~]3[εmn(~q)/~− 2(ω + iη)]
+

fml(~q)

[εml(~q)/~]3[εml(~q)/~− (ω + iη)]
+

+
fln(~q)

[εln(~q)/~]3[εln(~q)/~− (ω + iη)]

]
. (2.153)

Mit εmn(~q) = εm(~q) − εn(~q) werden in der Gln. (2.150),(2.152) und (2.153) Energiedifferenzen
zwischen den Zuständen |φm(~q)〉 und |φn(~q)〉 bezeichnet. Die SHG-Gleichungen berücksichtigen
sowohl Interband- als auch Intrabandübergänge. Letztere sind enthalten in den Matrixelemen-
ten ∆β

mn := pβmm(~q)− pβnn(~q).

Der Übergang von der Unabhängigen-Teilchen-Näherung (IPA) zur Unabhängigen-
Quasiteilchen-Näherung (IQA) erfolgt durch das Ersetzen der Energiedifferenzen (ελ′ − ελ),
welche meistens durch die DFT-Energieeigenwerte gegeben sind, durch die zugehörigen Quasi-
teilchenwerte. Die Wellenfunktionen werden gemäß Abschnitt 2.6.4 nicht aktualisiert. In vielen
Fällen liefert auch eine Verschiebung der Energien der unbesetzten Zustände um einen konstan-
ten Beitrag ∆ eine gute Approximation der Quasiteilchenenergien. Der Operator, der diesem
Effekt erzeugt, wird Scissors-Operator genannt. Wie in den Arbeiten von Del Sole und Girlanda
[87] sowie Sipe und Ghaharamani [88] gezeigt, ist es hinsichtlich der Berechnung der optischen
Eigenschaften im Rahmen der IQA notwendig die Impulsmatrixelemente entsprechend der Vor-
schrift

pα,IQA
λλ′ =

εGW
λ − εGW

λ′

ελ − ελ′
pαλλ′ (2.154)

zu reskalieren. Zudem zeigte sich den Arbeiten von Cabellos et al. [84] und Nastos et al. [89]
zufolge, dass beim SHG-Tensor durch die Nichtlokalität des Scissors-Operators der Term

χ
(2),corr
αβγ =

e3

2ε0~2

∑
λ 6=λ′

fλ′λ
(εSλλ′/~)3

(
4
<[vΣ,α

λ′λ {F
βγ
λλ′}]

εSλλ′/~− 2(ω + iη)
+
<[{Fαβ

λ′λv
Σ,γ
λλ′ }]

εSλλ′/~− (ω + iη)

)
, (2.155)

wobei εSλλ′ die um den Scissor-Shift ∆ korrigierten Energien sind, berücksichtigt werden muss.
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Es gilt für vΣ,α
λ′λ und F βγ

λλ′ in Gl. (2.155) (vgl. Gln. (12), (13), (18) in Ref. [84]):

~vΣ
λ′λ = 〈λ′| ~̂vΣ |λ〉 = 〈λ′|

(
~̂p

m
− i

~
[~̂r, S(~̂r, ~̂p)]

)
|λ〉 und (2.156)

Fαβ
λ′λ = − i

~
〈λ′| [r̂α, [r̂β, S(~̂r, ~̂p)]] |λ〉 mit S(~̂r, ~̂p) - Scissors-Operator. (2.157)

Nach der Arbeit von Cabellos et al. [84] führt die Berücksichtigung des Ausdrucks Gl. (2.155)
zu einer leichten Intensitätserhöhung gegenüber unkorrigierten SHG-Spektren.

2.7.4 Vielteilcheneffekte im optischen Spektrum

Das Einbeziehen von Vielteilcheneffekten, wie Lokalfeldeffekte und Elektron-Loch-
Wechselwirkung, im optischen Spektrum kann durch die Betrachtung der Zweiteilchen-Korre-
lationsfunktion [51]

L(1, ~r′t; 2, ~rt+) = −G(2)(1, ~r′t; 2, ~rt+) +G(1, 2)G1(~r′t, ~rt+). (2.158)

erfolgen. Die Zweiteilchen-Korrelationsfunktion erhält man ursprünglich aus der Betrachtung
der Dynamik der 2-Teilchen-Green-Funktion. Die Argumente von L können auf beliebige Ein-
träge (~rt) verallgemeinert werden. Die Zweiteilchen-Korrelationsfunktion erfüllt die folgende
Bethe-Salpeter-Gleichung (BSE):

L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′)+ (2.159)∫
d3456G(1, 3)G(4, 1′)Ξ′(3, 5; 4, 6)L(6, 2; 5, 2′) (2.160)

wobei für den (vorläufigen) Kern Ξ′ gilt:

Ξ′(3, 5; 4, 6) = −i~δ(3, 4)δ(5, 6)u(3, 6) +
δΣ(3, 4)

δG(6, 5)
. (2.161)

Der erste Term in Gl. (2.161) identifiziert dabei die Lokalfeldeffekte und der zweite berücksich-
tigt wegen

δΣ(1, 2)

δG(3, 4)
= i~δ(1, 3)δ(2, 4)W (1+, 2) (2.162)

die Elektron-Loch-Wechselwirkung. Der Operator des abgeschirmten Coulomb-Potentials W
wird häufig in der statischen Approximation verwendet:

W (1, 2) = W (~r1, ~r2)δ(t1 − t2). (2.163)

Dies liefert für viele Systeme eine gute Beschreibung der optischen Eigenschaften und redu-
ziert den numerischen Aufwand. Eine weitere Approximation, die am abgeschirmten Coulomb-
Potential vorgenommen wird, wird in Abschnitt 2.10 erläutert.

Es kann eine Relation zwischen L und der Vertex-Funktion Gl. (2.100) gewonnen werden:

L(1, 3; 2, 3+) =

∫
d45G(1, 4)G(5, 2)Γ(4, 5; 3), (2.164)

sodass der Zusammenhang zum Hedin’schen Gleichungssystem gegeben ist. Weiterhin kann
gezeigt werden, dass die Polarisierbarkeit Π direkt aus der Zweiteilchen-Korrelationsfunktion
folgt:

Π(1, 2) = −i~L(1, 2; 1+, 2+). (2.165)
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Im Gegensatz zu den Größen im Hedin’schen Gleichungssystem muss der Spinfreiheitsgrad in
der 2-Teilchen-Green-Funktion explizit berücksichtigt werden. Wie in den Arbeiten von Strinati
[51] (App. D) bzw. Rödl et al. [78] gezeigt, wird als Folge davon der auf Lokalfeldeffekte bezogene
Anteil des Kerns für Singulett-Anregungen modifiziert. Auch wird das Coulomb-Potential u
durch ein modifiziertes Coulomb-Potential u ersetzt. u ist wegen der Entfernung der ~k = 0
Komponente regulär im ~k-Raum und demnach um die langreichweitigen Beiträge im Ortsraum
verringert. Unter Berücksichtigung dieser Punkte lautet der Kern:

Ξ′ → Ξ(3, 5; 4, 6) = −2i~δ(3, 4)δ(5, 6)u(3, 6) +
δΣ(3, 4)

δG(6, 5)
. (2.166)

Im Folgenden soll es das Ziel sein, die BSE durch Umformung auf ein Eigenwertproblem zu
lösen. Das Vorgehen orientiert sich an Refs. [51, 90].

Zunächt wird in der BSE Gl. (2.160) die Paarung der Zeitkoordinaten wie in Gl. (2.165)
gewählt. Infolgedessen kann die Zweiteilchen-Korrelationsfunktion hinsichtlich der Zeit fourier-
transformiert werden:

L(1, 2; 1′, 2′)→ L(~r1, ~r2;~r1′ , ~r2′ ;ω) (2.167)

Für das Produkt der Green-Funktionen L0 := GG lässt sich angeben:

L0(~r1, ~r2;~r1′ , ~r2′ ;ω) =

∫
dω′

2π
G(~r1, ~r2′ , ω + ω′)G(~r2, ~r1′ , ω

′) (2.168)

Die BSE kann umgeformt werden zu dem symbolischen Ausdruck

[L−1
0 (ω)− Ξ(ω)]L(ω) = 1, (2.169)

indem die Inverse von L0 auftaucht. Zur Berechnung von L−1
0 wird die Darstellung von 4-Punkt-

Funktionen F (~r1, .., ~r4) als Linearkombination von (vollständigen) Einteilchenwellenfunktionen
verwendet:

F (~r1, .., ~r4) =
∑
λ1,..,λ4

F (λ1λ2;λ3λ4)φλ1(~r1)φλ2(~r2)φ∗λ3(~r3)φ∗λ4(~r4). (2.170)

Mit Hilfe von Gl. (2.170) und durch die Darstellung der Einteilchen-Green-Funktion wie in Gln.
(2.116) bzw. (2.115) erhält man zunächst für L0:

L0(λ1λ2;λ3λ4) =
i

~
fλ4 − fλ3

ελ4 − ελ3 − ~ω
δλ1λ4δλ2λ3 (2.171)

und anschließend für fλ4 − fλ3 6= 0 für L−1
0 :

L−1
0 (λ1λ2;λ3λ4) =

~
i
δλ1λ4δλ2λ3

(ελ4 − ελ3 − ~ω)

fλ4 − fλ3
(2.172)

Aus Gln. (2.170), (2.172) und (2.169) folgt:

(fλ1 − fλ2)
∑
λ5λ6

[
L−1

0 (λ1λ2;λ5λ6)− Ξ(λ1λ2;λ5λ6)
]
L(λ6λ5;λ3λ4) =

∑
λ5λ6

[~
i
δλ1λ6δλ2λ5(ελ6 − ελ5 − ~ω)− (fλ1 − fλ2)Ξ(λ1λ2;λ5λ6)

]
L(λ6λ5;λ3λ4) =

δλ1λ4δλ2λ3(fλ4 − fλ3) (2.173)

Die Zweiteilchen-Korrelationsfunktion stellt in Gl. (2.173) gewissermaßen eine Green-Funktion
zum effektiven exzitonischen Hamilton-Operator

Hexc(λ1λ2;λ5λ6) := δλ1λ6δλ2λ5(ελ6 − ελ5)−
i

~
(fλ1 − fλ2)Ξ(λ1λ2;λ5λ6) (2.174)
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dar. Aus den Eigenwerten und Eigenfunktionen des exzitonischen Hamilton-Operator lässt sich
die Zweiteilchen-Korrelationsfunktion konstruieren:

~
i
L(ω) =

∑
ΛΛ′

N−1
ΛΛ′
|Λ〉 〈Λ′|
EΛ − ~ω

J mit NΛΛ′ = 〈Λ | Λ′〉 , (2.175)

wobei

J(λ1λ2;λ3λ4) = δλ1λ4δλ2λ3(fλ4 − fλ3) und Hexc |Λ〉 = EΛ |Λ〉 (2.176)

im allgemeinen Fall eines nichthermiteschen exzitonischen Hamilton-Operators7. Die Eigen-
werte und Eigenfunktion stellen die Anregungsenergien und Amplituden der wechselwirkenden
Elektron-Loch-Zustände dar. Die Form des exzitonischen Hamilton-Operators wird ausführlich
in Abschnitt 2.7.5 diskutiert. An dieser Stelle wird vereinfacht die Hermitizität von Hexc ange-
nommen (d. h. NΛΛ′ = δΛΛ′). Das lineare optische Spektrum kann nach Gln. (2.165) und (2.98)
direkt berechnet werden. Allerdings werden hier im Folgenden die Erwartungswerte in den Gln.
(2.141) und (2.144) berechnet, sodass sowohl der Ausdruck für die dielektrische Funktion als
auch für den SHG-Tensor unter Einfluss von Vielteilcheneffekten resultiert. Dazu wird von der
Vollständigkeit der wechselwirkenden Paarzustände Gebrauch gemacht:

I =
∑

Λ

|Λ〉 〈Λ| mit |Λ〉 =
∑
λ1λ2

Aλ1λ2a
+
λ1
aλ2 |Φ〉 . (2.177)

Die Koeffizienten Aλ1λ2 stellen in Gl. (2.177) die Amplituden der Paarzustände dar. Es gilt
weiterhin für die Zeitentwicklung der Paarzustände Λ:

i~∂t |Λ〉 = Hexc |Λ〉 mit |Λ(t→ −∞)〉 = |λ1λ2〉 = a+
λ1
aλ2 |Φ〉 . (2.178)

Das Einsetzen des Identitätsoperators Gl. (2.177) in die Erwartungswerte an den folgenden
Stellen

< â+
λ1

(t1)âλ′1(t
′
1)Iâ+

λ1
(t1)âλ′2(t

′
2) >irr in Gl. (2.141) und (2.179)

< â+
λ1

(t1)âλ′1(t
′
1)Iâ+

λ1
(t2)âλ′1(t

′
2)Iâ+

λ1
(t3)âλ′1(t

′
3) >irr in Gl. (2.144) (2.180)

zusammen mit der Zeitabhängigkeit von {Λ} ergibt bei Verwendung von Bloch-Zuständen (vgl.
Abschnitt 2.8.2) folgende Ausdrücke für die dielektrische Funktion:

εexc
αβ (ω) = δαβ +

e2

ε0~ω2V m2
×
[

∑
Λ

∑
cv~q

∑
c′v′~q′

{pαvc(~q)pβc′v′(~q′)AcvΛ (~q)[Ac
′v′

Λ (~q′)]∗

EΛ/~− (ω + iη)
+
pαc′v′(~q

′)pβvc(~q)A
cv
Λ (~q)[Ac

′v′
Λ (~q′)]∗

EΛ/~ + (ω + iη)

}]
(2.181)

7Der Identitätsoperator lautet für nichtorthogonale Eigenzustände: I =
∑

ΛΛ′ N
−1
ΛΛ′ |Λ〉 〈Λ′|
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und den SHG-Tensor (bei Vernachlässigung der Intraband-Beiträge):

χ
(2),exc
αβγ (ω) = − ie3

2ε0m3V (ω + iη)3

∑
~q~q′~q′′

∑
ΛΛ′

∑
cv

∑
c′1v
′
1

{
×

pγvc(~q)A
cv
Λ (~q)pαc′1v′1

(~q′′)[A
c′1v
′
1

Λ′ (~q′′)]∗

[EΛ + ~(ω + iη)][EΛ′ + 2~(ω + iη)]
×

×
[ ∑
c1c′v1

pβc1c′(~q
′)[Ac1v1Λ (~q′)]∗Ac

′v1
Λ′ (~q′)−

∑
v1v′c1

pβv′v1(~q
′)[Ac1v1Λ (~q′)]∗Ac1v

′

Λ′ (~q′)
]

−
pγvc(~q)A

cv
Λ (~q)pβc′1v′1

(~q′)[A
c′1v
′
1

Λ′ (~q′)]∗

[EΛ + ~(ω + iη)][EΛ − EΛ′ + 2~(ω + iη)]
×

×
[ ∑
c1c′v1

pαc1c′(~q
′′)[Ac1v1Λ (~q′′)]∗Ac

′v1
Λ′ (~q′′)−

∑
v1v′c1

pαv′v1(~q
′′)[Ac1v1Λ (~q′′)]Ac1v

′

Λ′ (~q′′)
]

−
pβvc(~q

′)AcvΛ (~q′)pγc′1v′1
(~q)[A

c′1v
′
1

Λ′ (~q)]∗

[EΛ′ − ~(ω + iη)][EΛ′ − EΛ − 2~(ω + iη)]
×

×
[ ∑
c1c′v1

pαc1c′(~q
′′)[Ac1v1Λ (~q′′)]∗A

c′v′1
Λ′ (~q′′)−

∑
v1v′c1

pαv′v1(~q
′′)[Ac1v1Λ (~q′′)]Ac1v

′

Λ′ (~q′′)
]

+
pαvc(~q

′′)AcvΛ (~q′′)pγc′1v′1
(~q)[A

c′1v
′
1

Λ′ (~q)]∗

[EΛ′ − ~(ω + iη)][EΛ − 2~(ω + iη)]
×

×
[ ∑
c1c′v1

pβc1c′(~q
′)[Ac1v1Λ (~q′)]∗A

c′v′1
Λ′ (~q′)−

∑
v1v′c1

pβv′v1(~q
′)[Ac1v1Λ (~q′)]Ac1v

′

Λ′ (~q′)
]

+ (β ↔ γ)
}

(2.182)

Die Rechnungen sind ausführlich in Ref. [83] dargelegt.
Im Rahmen dieser Arbeit wird der SHG-Tensor maximal auf dem Niveau der unabhängigen

Quasiteilchen-Approximation ausgewertet, während die lineare Optik auch unter Berücksichti-
gung von exzitonischen Effekten und Lokalfeldeffekten studiert wird.

2.7.5 Die BSE-Matrix

Der aktuelle Abschnitt fasst die Eigenschaften der BSE-Matrix Gl. (2.174) zusammen. Ei-
ne nährere Betrachtung lohnt sich, da die Dimension der BSE-Matrix, wie gezeigt wird, eine
beachtliche Größe erreicht. Die Berechnung der optischen Eigenschaften profitiert jedoch stark
von den bestehenden Symmetrien der Matrix.

Aufgrund des Faktors fλ2 − fλ1 in L0 Gl. (2.171) gilt für die Zweiteilchen-Korrelations-
funktion:

~
i
L(λ1λ2;λ3λ4) = (fλ4 − fλ3) [Hexc − ~ω]−1 (λ1λ2;λ3λ4). (2.183)

Infolgedessen besitzt der relevante Teil der BSE-Matrix die folgende Form:

Hexc =

(
Hexc,res Hexc,cop

−[Hexc,cop]∗ −[Hexc,res]∗

)
=

(v′c′) (c′v′)
Hexc,res Hexc,cop (vc)
−[Hexc,cop]∗ −[Hexc,res]∗ (cv)

(2.184)

Die jeweiligen Indizes-Paare (λ1, λ2) und (λ3, λ4) werden zum Zeilen- bzw. Spaltenindex zu-
sammengefasst. Die Indizes-Paare können wegen des Vorkommens der Besetzungszahldifferen-
zen nur Kombinationen zwischen besetzen und unbesetzten Zuständen annehmen (λi, λj) =

30



(v, c), (c, v). Die BSE-Matrix ist i. A. nichthermitesch. Die Diagonalelemente enthalten nach
Gl. (2.174) die Energiedifferenzen zwischen unbesetzten und besetzten Einteilchenzuständen.
Für den Kern gilt ausführlich:

i

~
Ξ(λ1λ2;λ3λ4) = 2

∫
d3r1

∫
d3r2φλ1(~r1)φλ2(~r2)[φλ3(~r1)]∗[φλ4(~r2)]∗u(~r1, ~r2)

−
∫
d3r1

∫
d3r2φλ1(~r1)φλ2(~r2)[φλ3(~r2)]∗[φλ4(~r1)]∗W (~r1, ~r2). (2.185)

Der sog. resonante Anteil Hexc,res in der BSE-Matrix Gl. (2.184) ist hermitesch, während der
Coupling-Anteil Hexc,cop nur symmetrisch ist. Zum Berechnen eines konvergierten Spektrums
auf Grundlage der BSE-Matrix ist für Materialien mit kleinen Einheitszellen ein hohes k-Punkt-
Sampling der Brillouin-Zone (vgl. Abschnitt 2.8) und die Verwendung gepaarter Einteilchen-
zustände mit einer maximalen Energiedifferenz von ca. 20 eV notwendig, sodass z.B. für Si oder
GaAs die Dimension der vollen BSE-Matrix ca. 20×20×20××4×13×2 = 8×105 beträgt. Die
Größe der Matrix steigt auf über 1 TB. Zur tatsächlichen Berechnung des Spektrums wird daher
keine vollständige Diagonalisierung durchgeführt, sondern Zeitentwicklungsmethoden verwen-
det, wie in Abschnitt 2.7.6 beschrieben. Insbesondere für Silizium wurde durch Albrecht [13]
allerdings festgestellt, dass die Einträge im Coupling-Anteil deutlich kleiner sind, als die Ein-
träge im resonanten Anteil. Dies rechtfertigt die Approximation

Hexc '
(
Hexc,res 0

0 −[Hexc,res]∗

)
, (2.186)

welche als Tamm-Dancoff-Approximation (TDA) bezeichnet wird. Im Rahmen der TDA hal-
biert sich die Dimension der BSE-Matrix, da das Eigenwertproblem separat für die Untermatrix
Hexc,res gelöst werden kann, und die Eigenschaft der Hermitizität wird zusätzlich gewonnen.
Neuere Studien für organische Systeme stellen die universelle Gültigkeit der TDA jedoch in
Frage [14, 15, 16]. Im Rahmen dieser Arbeit wurden die BSE-Matrizen für unterschiedliche
Systeme untersucht.

2.7.6 Berechnung des BSE-Spektrums

Aufgrund der großen Dimension der BSE-Matrix wird zur endgültigen Berechnung des Spek-
trums eine Verallgemeinerung der Zeitentwicklungsmethode von Schmidt et al. [91] verwendet.
Hierbei wird ausgehend von Gl. (2.175) die Eigenzeitdarstellung von 1/(Hexc−~ω) ausgenutzt:

~
i
L(ω) =

1

Hexc − ~ω
J = lim

η→0

i

~

∞∫
0

dt exp[i(ω + iη)t] exp[−iHexct/~]J (2.187)

Die Polarisierbarkeit (oder Polarisation) und die dielektrische Funktion können mit Hilfe Gln.
(2.165) und (2.98) gewonnen werden. Dazu wird der Erwartungswert

~
i
〈λ1λ2|L(ω) |λ1λ2〉 = lim

η→0

i

~

∞∫
0

dt exp[i(ω + iη)t] 〈λ1λ2| exp[−iHexct/~]J |λ1λ2〉 (2.188)

benötigt. Der Zustand

|β1β2(t)〉 := exp[−iHexct/~]J |λ1λ2〉 = exp[−iHexct/~] |β1β2(0)〉 (2.189)

erfüllt die Schrödinger-ähnliche Gleichung

i~∂t |β1β2(t)〉 = Hexc |β1β2(t)〉 mit |β1β2(0)〉 = J |λ1λ2〉 . (2.190)
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Obgleich die Hamilton-Matrix Hexc nichthermitesch ist, können zur Berechnung der Zeit-
abhängigkeit von |β1β2(t)〉 nach Gl. (2.190) Zeitentwicklungsmethoden verwendet werden (vgl.
[92]). Der Aufwand zur Berechnung des BSE-Spektrums reduziert sich infolgedessen auf Vektor-
Vektor- und Vektor-Matrix-Multiplikationen und skaliert quadratisch mit der Dimension der
BSE-Matrix. Die exzitonischen Eigenwerte und Eigenfunktionen werden nur für kleine BSE-
Matrizen (wie bei Molekülen) oder nur für den Energiebereich nah an der Bandlücke berechnet.
Im letzten Fall kommt eine Conjugate-Gradient-Methode zur Anwendung [93]. Ausführlich ist
das Verfahren in der Arbeit von Fuchs et al. [77] beschrieben.

2.8 Eigenschaften von Kristallen und Festkörpern

Bisher wurde allgemein ein beliebiges Vielteilchensystem angenommen. Die vorliegende Ar-
beit studiert indessen insbesondere Kristalle und Festkörper. Die Eigenschaften dieser beson-
deren Vielteilchensysteme werden in diesem Abschnitt zusammengefasst.

2.8.1 Bravais-Gitter und reziprokes Gitter

Ein Kristall ist hauptsächlich dadurch gekennzeichnet, dass die Atomkerne in einem peri-
odischen Gitter, dem Bravais-Gitter BV, angeordnet sind:

BV = {~Rn | ~Rn =
3∑
i=1

~aini, mit ni ∈ Z} (2.191)

Die Vektoren {~a1,~a2,~a3} bezeichnen in (2.191) die primitiven Basisvektoren. Die Gleichge-
wichtspositionen der Atomkerne können mit Hilfe der BV-Basisvektoren und der primitiven
Basis angegeben werden:

~Rs = ~Rns + ~rs = ~Rn +
3∑
i=1

~aiαi, mit 0 < αi ≤ 1. (2.192)

Der Gültigkeitsbereich der Koordinaten αi trägt dazu bei, dass der Vektor ~rs sich innerhalb der
Elementarzelle befindet. Da für jede Gitter-periodische Funktion f(~r + ~Rn) = f(~r) gilt:

f(~r) =
∑
~G

f(~G) exp(i ~G~r) mit ~G =
3∑
i=1

~bimi, mi ∈ Z, (2.193)

wird aus der Menge aller Vektoren ~G das reziproke Gitter definiert. Für die reziproken Basis-
vektoren ~bi gilt:

(~bi)l =
2π

ΩEZ

εlmn(~aj)m(~ak)n mit ΩEZ = ~a1 · (~a2 × ~a3) und (ijk) zyklisch vertauschbar. (2.194)

ΩEZ bezeichnet hierbei das Volumen der Elementarzelle (EZ). Eingeführt wird im reziproken
Raum auch die (Erste) Brillouin Zone (BZ):

BZ = {~q | |~q| < |~q − ~G|, für alle ~G 6= 0}. (2.195)

Infolgedessen gilt für die Summation im reziproken Raum:∑
~k

f(~k) =
∑
~G~q

f(~G+ ~q). (2.196)
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2.8.2 Bloch-Theorem

In einem Kristall kann davon ausgegangen werden, dass die Elektronen sich in einem pe-
riodischen (effektiven) Potential bewegen. Die Dynamik wird daher beschrieben durch einen
effektiven Einteilchen-Hamilton-Operator der Form:

ĤBloch = T̂ + V̂eff mit Veff(~r) = Veff(~r + ~Rn). (2.197)

Gemäß dem Bloch-Theorem gilt für die Eigenzustände φλ und Eigenwerte ελ des Hamilton-
Operators:

ĤBloch φn,~q(~r) = εn,~q φn,~q(~r), d.h. λ = (n, ~q), ~q ∈ BZ (2.198)

φn,~q(~r) = exp(i~q~r)un,~q(~r) mit un,~q(~r) = un,~q(~r + ~Rn). (2.199)

Die Wellenfunktionen lassen sich demnach als Produkt aus einer ebenen Welle exp(i~q~r) und
einer Gitter-periodischen Funktion un,~q(~r) darstellen. Die Eigenwerte εn,~q werden für alle {n, ~q}
zur Bandstruktur des Festkörpers zusammengefasst.

2.8.3 Born-von Karman Randbedingungen

Die makroskopischen Grenzen des Systems werden im Rahmen der Born-von Karman Rand-
bedingungen behandelt. Hierbei wird für die Wellenfunktion festgelegt:

φn,~q(~r) = φn,~q(~r +Ni~ai) für i = 1, 2, 3. (2.200)

Mit Ni wird die Anzahl der Elementarzellen in i-Richtung bezeichnet, sodass N = N1N2N3

die Gesamtzahl der Elementarzellen angibt. Aufgrund des Bloch-Theorems Gl. (2.199) hat die
Forderung Gl. (2.200) als Konsequenz:

exp(iNi~q~ai) = 1 und ~q =
3∑
i=1

mi

Ni

~bi. (2.201)

Für das minimale Volumen-Element im reziproken Raum folgt:

∆k3 =
(2π)3

V
mit V = NΩEZ. (2.202)

Nützlich ist die daraus ableitbare Beziehung zwischen Integration und Summation im reziproken
Raum: ∑

~k

f(~k) =
V

(2π)3

∫
d3kf(~k). (2.203)

2.9 Die Projector Augmented Wave Pseudopotential-Methode

Die tatsächliche Bestimmung der Materialeigenschaften erfolgt numerisch. Dazu sind
Schrödinger-ähnliche Gleichungen wie die Kohn-Sham- oder die Quasiteilchen-Gleichung selbst-
konsistent zu lösen. Die zu bestimmenden Einteilchenwellenfunktionen besitzen jedoch in un-
terschiedlichen Bereichen der Elementarzelle besondere Eigenschaften, sodass zur Reduktion
des numerischen Aufwandes angebrachte Basisfunktionen gefunden werden können: (i) Einer-
seits weisen die Einteilchenwellenfunktionen in der Nähe der Kerne eine starke Knotenstruktur
bzw. starke Oszillationen auf und ändern ihre Form nur wenig bei Veränderung der chemi-
schen Umgebung. Daher können die Einteilchenwellenfunktionen in diesem Bereich gut durch
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Lösungen isolierter Atome approximiert werden. (ii) Auf der anderen Seite sind die Einteil-
chenwellenfunktionen in den Bindungsregionen, entfernt von den Kernen, numerisch gutartig
und reagieren empfindlich auf Änderungen der Umgebung, sodass hier eine Ebene-Wellen-Basis
gut geeignet ist. Eine präzise und effektive Methode, die diese Punkte berücksichtigt, ist die
Projector Augmented Wave (PAW) Pseudopotential-Methode [94].

Im Rahmen der PAW-Methode wird zwischen einer numerisch komfortablen Pseudo-
Wellenfunktion ψ̃ und der tatsächlichen Wellenfunktion ψ mittels einer linearen Operation
transformiert:

|ψ〉 = T
∣∣∣ψ̃〉 , mit T – linearer Operator. (2.204)

Die Pseudo-Wellenfunktion ψ̃ wird durch eine Ebene-Wellen-Basis dargestellt. Zur Bestimmung
des Operators T werden folgende Festlegungen getroffen:

1. In der Nähe eines Kerns bei ~Rs wird die Wellenfunktion ψ durch eine Linearkombination
von Partialwellen ϕi,s approximiert:

|ψ〉 =
∑
i

ci,s |ϕi,s〉 für |~r − ~Rs| < rk,s. (2.205)

Die Partialwellen ϕi,s sind die Lösungen der Schrödinger-Gleichung des isolierten Atoms

bei ~Rs. Der Radius rk,s ist ein justierbarer Parameter, der das entgültige Ergebnis jedoch
nicht beeinflussen soll. Energetisch sehr tiefe Zustände werden im Rahmen der Frozen
core approximation [95] behandelt, sodass die Partialwellen zusätzlich orthogonal zu den
Kernzuständen sein müssen.

2. Es werden Pseudo-Partialwellen ϕ̃i,s und Projektor-Funktionen pi,s konstruiert, sodass
gilt: ∣∣∣ψ̃〉 =

∑
i

|ϕ̃i,s〉
〈
pi,s | ψ̃

〉
für |~r − ~Rs| < rk,s. (2.206)

Dies impliziert die Bi-Orthogonalität zwischen pi,s und ϕ̃j,s:

〈pi,s | ϕ̃j,s〉 = δij für |~r − ~Rs| < rk,s. (2.207)

Die Projektor-Funktionen pi,s sind weiterhin nur innerhalb der Sphären mit |~r− ~Rs| < rk,s
definiert.

3. Schließlich setzt man in den Bindungsregionen voraus:

|ϕi,s〉 = |ϕ̃i,s〉 für |~r − ~Rs| > rk,s für alle s. (2.208)

Aus Gln. (2.205) – (2.208) folgt für T :

T = 1 +
∑
i,s

(|ϕi,s〉 − |ϕ̃i,s〉) 〈pi,s| . (2.209)

Mit Hilfe von Gl. (2.204) kann die Wellenfunktion zerlegt werden in:

ψ(~r) = ψ̃(~r) +
∑
i,s

[ϕi,s(~r)− ϕ̃i,s(~r)]
〈
pi,s | ψ̃

〉
=: ψ̃(~r) +

∑
s

[ψs(~r)− ψ̃s(~r)]. (2.210)

Aus dieser Darstellung wird deutlich, dass (i) in den kernnahen Bereichen wegen Gl. (2.206)
die Wellenfunktion die richtige Knotenstruktur besitzt und (ii) in den Bindungsregionen gilt:
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ψ(~r) = ψ̃(~r). Eine ähnliche Formulierung lässt sich insbesondere auch für Erwartungswerte
eines Operators Ô ∈ {Ĥ, p̂, Σ̂} angeben:

〈ψ| Ô |ψ〉 =
〈
ψ̃
∣∣∣ T +ÔT

∣∣∣ψ̃〉 = Õ +
∑
s

(Os − Õs). (2.211)

Den meisten Aufwand erfordert die numerische Berechnung des Beitrages Õ unter Verwendung
einer Ebene-Wellen-Basis. Der Basissatz wird durch einen maximalen Gittervektor ~2 ~G2

max =
350..700 eV nach oben begrenzt. Zu weiteren Einzelheiten zur PAW-Methode sei auf die Arbeit
von Blöchl [96] verwiesen.

2.10 Numerik

Die numerische Berechnung der elektronischen und optischen Eigenschaften läuft mit Hilfe
verschiedener Programmpakete ab. Besonders zur Berechnung des elektronischen Grundzustan-
des, des ionischen Gleichgewichts, sowie der Quasiteilchenenergien wird das Vienna Ab-Initio
Simulation Package (VASP) in den Versionen 5.2 und 4.6 eingesetzt. Der Ebene-Wellen Cutoff-
Wert bei Verwendung der PAW-Methode beträgt, sofern nicht anders angegeben, 400 eV. Das
k-Punkt-Sampling der Brillouin Zone orientiert sich an der Größe der Elementarzelle eines
Festkörpers und wird bei einem kx × ky × kz-Sampling der BZ zusätzlich reduziert durch Aus-
nutzen von Raumgruppen-Symmetrien. Beim Auffinden des ionischen Gleichgewichts werden
die Atome verschoben bis die HF-Kräfte kleiner sind als 0.02 eV/Å. Die Berechnung der Quasi-
teilchenenergien erfolgt nach der Methode von Shishkin und Kresse [76]. Hierbei kann vor allem
die Ermittlung und Lagerung der IPA-Response-Funktion

χSK(q, n)(~G, ~G′, ω) =

1

V

∑
n,n′,~q′

2ω~q′(fn′~q − fn~q′)
〈φn~q′| e−i(~q+ ~G)~r |φn′,~q′+~q〉 〈φn′~q′ | e−i(~q+ ~G)~r |φn,~q′+~q〉

εn′,~q+~q′ − εn~q′ − ~(ω + iη)
, (2.212)

wobei {ω~q′} die symmetriebedingten Gewichtungen der irreduziblen ~q-Punkte sind, an den

Punkten (~G, ~G′, ω) speicheraufwändig werden. Die Anzahl der Punkte wird durch einen GW -
Cutoff und die Anzahl der Frequenz-Punkte ω bestimmt. Der GW -Cutoff liegt üblicherweise bei
200 eV und die Anzahl der Frequenz-Punkte beträgt 200. Ein Konvergenzparameter ist auch die
Anzahl der Zustände bei der Summation

∑
n,n′ ... Ausreichend konvergierte Ergebnisse können

durch Einbeziehen von ca. 60 – 70 Zuständen pro Atom erreicht werden.
Zur Berechnung der optischen Eigenschaften werden die Impulsmatrixelemente pλ1λ2 und

die BSE-Matrix benötigt. Die Impulsmatrixelemente werden hierbei unter Verwendung des sog.
longitudinalen Grenzwertes nach Gajdoś et al. [97] evaluiert. Diese Methode ist implementiert
in der VASP-Version 5.1.39. Auch zur Berechnung der BSE-Matrix wird VASP (in der Version
4.4) eingesetzt. Zur Reduktion des numerischen Aufwandes wird hierbei zur Simulation der Ab-
schirmung des Coulomb-Potentials W von der Modell-dielektrischen Funktion nach Bechstedt
et al. [98] Gebrauch gemacht. Diese ist gegeben durch

εM(q, n) = 1 +

{
(ε∞ − 1)−1 +

[
q

qTF(n)

]2

+
3q4

4k2
F(n)q2

TF(n)

}−1

, (2.213)

wobei kF bzw. qTF den Fermi- bzw. Thomas-Fermi-Vektor bezeichnen. Die Modell-Abschirm-
funktion ist statisch, q-diagonal und hängt von der Elektronendichte n ab. Als Eingangspa-
rameter ist zudem die statische Dielektrizitätskonstante ε∞ erforderlich. Üblicherweise wird
diese durch die IPA-dielektrische Funktion bei verschwindender Frequenz ε∞ ' εIPA(ω = 0)
approximiert.
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Unter Verwendung einer Ebene-Welle-Basis lassen sich die BSE-Matrix-Elemente von
Hexc,res i.A. wie folgt berechnen:

Hexc,res
cvq,c′v′q′ = [εc(~q)− εv(~q)]δcc′δvv′δ~q~q′ +

2e2

ε0V

∑
~G6=0

1

|~G|2
Bc~q
v~q(

~G)[Bc′~q′

v′~q′(
~G)]∗

− e2

ε0V

∑
~G~G′

ε−1
~G~G′

(~q − ~q)

|~q − ~q′ − ~G||~q − ~q′ − ~G′|
Bc~q
c′~q′(

~G′)[Bv~q
v′~q(

~G′)]∗. (2.214)

Die sog. Bloch-Integrale [77, 92] sind dabei gegeben durch:

Bn~q
n′~q′(

~G) =
1

ΩEZ

∫
ΩEZ

d3r u∗n~q(~r)e
i ~G~run′~q′(~r) (2.215)

Die Summation über die ~G-Vektoren in Gl. (2.214) wird beschränkt durch den maximalen Wert

~2 ~G2
max = 200 eV (sofern nicht anders angegeben) und es wird nur der Ebene-Wellen-Anteil

der Wellenfunktion un~q bei der Berechnung der Bloch-Integrale verwertet. Im Gegensatz zu den
Grundzustandsrechnungen kann beim Berechnen der optischen Eigenschaften nicht von den
Symmetrien der BZ Gebrauch gemacht werden, sodass man auf das volle k-Punkt-Sampling
der BZ angewiesen ist.

Sind nun alle Elemente vorhanden um die lineare IPA- bzw. BSE-Optik mit Hilfe von Gln.
(2.213) bzw. (2.214), (2.215) ausrechnen zu können, so wird ein am Institut für Festkörpertheo-
rie und -optik, FSU Jena, in der Arbeitsgruppe von Prof. Bechstedt entwickeltes Programm-
Paket eingesetzt [77, 78, 91, 99]. Hierbei werden die berechneten Impulsmatrix- und BSE-
Matrix-Elemente eingelesen und mit Hilfe der Zeitentwicklungsmethode (vgl. Abschnitt 2.7.6)
das optische Spektrum berechnet. Zur Integration der partiellen Differentialgleichung (2.190)
wird ein spezielles leapfrog-Verfahren verwendet.

Zur Berechnung des SHG-Tensors wird ein von mir entwickelten Programm eingesetzt. Im-
plementiert sind hierbei die Gleichungen (2.152) und (2.153). Der Drei-Band-Beitrag fällt nu-
merisch insbesondere für Materialien mit großen Elementarzellen aufgrund der 3-fachen Sum-
mation über die Bänder ins Gewicht, sodass dieser Teil zusätzlich parallelisiert wurde um die
Gesamtlaufzeit zu verringern. Die Intraband-Übergänge im Zweiband-Beitrag werden mit Hilfe
der Dispersion der Energiebänder berechnet:

pαnn(~q) =
m

~
∂qαεn(~q). (2.216)

Hierbei wird der Zentrale-Differenzenquotient verwendet. Dies erfordert zusätzlich die Berech-
nung der Wellenfunktionen und Energiewerte in der Umgebung eines BZ k-Punktes.

2.11 Ausblick

Das gegenwärtige Kapitel fasste die theoretischen und numerischen Methoden, die im Wei-
teren angewendet werden um einerseits organische Molekülkristalle und Moleküle sowie ande-
rerseits Ferroelektrika zu untersuchen, zusammen. In beiden Fällen werden im Folgenden die
strukturellen Merkmale mit Hilfe der Dichtefunktionaltheorie und der Berücksichtigung von
Hellman-Feynman-Kräften bestimmt und studiert. Die elektronischen und optischen Eigen-
schaften können im Rahmen der Unabhängige-Teilchen-Approximation numerisch vergleichs-
weise günstig ermittelt werden. Abhängig von der Systemgröße und aufbauend auf den IPA-
Resultaten werden Rechnungen auf dem Level der Unabhängige-Quasiteilchen-Approximation
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und unter Berücksichtigung von Vielteilcheneffekten höheren Grades durchgeführt. Die bei-
den Materialklassen, organische Kristalle und Ferroelektrika, unterliegen in den Studien unter-
schiedlichen Fragestellungen. Neben den bereits aufgezählten gemeinsamen Untersuchungsge-
genständen, wird ein Hauptaugenmerk der Studie der organischen Materialien der Einfluss der
TDA auf die optischen Eigenschaften sein. Im Hinblick auf die Ferroelektrika ist dagegen das
Studium des Tensors der Erzeugung der zweiten Harmonischen SHG ein Kern dieser Arbeit. Es
ist offenkundig, dass die in diesem Kapitel vorgestellten und im Verlauf dieser Arbeit verwen-
deten Methoden durch unterschiedliche Forschungsgruppen verbessert und erweitert werden.
So können die Einsätze der ∆SCF-Methode nach Chan und Ceder [42] sowie selbstkonsistenter
GW -Rechnungen und störungstheoretischer GW -Rechnungen auf Basis von HSE-Ergebnissen
als geeignete Erweiterungen dieser Arbeit betrachtet werden. Auch das Studium der nichtlinea-
ren optischen Eigenschaften kann zum einen durch das Inbetrachtziehen der Korrektur nach
Cabellos et al. [84] und zum anderen durch die Auswertung des SHG-Tensors unter Berück-
sichtigung von exzitonischen Effekten ausgedehnt werden. Insbesondere der letzte Punkt sowie
der Einsatz eines der beiden GW -Verfahren werden zukünftig begünstigt durch die fortlaufende
Steigerung der numerischen Kapazitäten.

37



KAPITEL III

2-Aminopyrimidin-Silber(I)-Halbleiter

Die chemische Industrie stellt eine der Säulen der modernen Technologie dar [100]. Seit
etwas weniger als 200 Jahren, als die Möglichkeit erkannt wurde organische Verbindungen auf
künstlichem Weg herzustellen, stieg die Anzahl an organischen Verbindungen auf mehrere Mil-
lionen. Auch die Elektronik-Industrie erkannte früh das Potential organischer Materialien und
bereits seit mehreren Jahren werden organische Kristalle in einer Vielzahl von Bauelementen
und Anwendungen eingesetzt. Der Grund dafür ist neben den relativ geringen Produktionskos-
ten auch die Möglichkeit physikalische Eigenschaften gezielt durch chemische Veränderungen
der Grundbausteine zu beeinflussen.

Die an dieser Stelle eingesetzten organischen Kristalle setzen sich aus Molekülen zusam-
men [101], deren Gerüst aus Kohlenstoffatomen besteht, wobei einige dieser Kohlenstoffatome
durch Nichtmetalle ersetzt werden können. Die verbleibenden Valenzen sind durch Liganden
gebunden.

Obwohl bereits seit den Publikationen der PRLs von Benedict et al. [102], Albrecht et al. [13]
sowie Rohlfing und Louie [103] im Jahr 1998 die optischen und elektronischen Eigenschaften von
(insbesondere anorganischen) Halbleitern und Isolatoren mit Hilfe des Quasiteilchen-Konzepts
und der BSE mit guter Vorhersagekraft aufgeklärt werden können, wurden diese Methoden eher
vereinzelt auf organische Systeme angewendet. Bereits das Modellieren von einfachen Molekül-
Kristallen wie Wasser-Eis kann sich als eine methodische und rechnerische Herausforderung
herausstellen [104, 105, 106]. Komplexere Moleküle und Molekül-Kristalle wurden u.a. in den
Arbeiten [14, 15, 107, 108, 109, 110] untersucht. Aufgrund intermolekularer Wechselwirkun-
gen, wie Van-der-Waals- oder Wasserstoff-Brückenbindungen, können sich die optischen und
elektronischen Eigenschaften in diesen Fällen wesentlich von denen anorganischer Materialien
unterscheiden. Neben interessanten Aspekten hinsichtlich der elektronischen und optischen An-
regung von molekularen Systemen ist auch der Übergang vom gasförmigen (molekularen) zum
festen Zustand und die begleitenden Auswirkungen auf Elektronik und Optik ein physikalisch
interessanter Punkt.

In dieser Arbeit werden sog. 2-Aminopyrimidin-Silber(I)-Halbleiter und 2-Aminopyrimidin-
Moleküle mit Hilfe der Methoden, die in Kapitel II vorgestellt wurden, untersucht. Die 2-
Aminopyrimidin-Silber(I)-Halbleiter wurden 2009 an der Universität Bielefeld durch Selbstas-
semblierung und Silber(I)-Komplexbildung synthetisiert [17]. Strukturell und optisch wurden
diese Verbindungen in der Arbeit von Stoll et al. [18] charakterisiert, wobei gefunden wurde,
dass insbesondere die optische Absorption des Halbleiters von der des ursprünglichen Moleküls
abweicht. Weiterhin konnte die optische Absorption durch Modifikation des Silber-Gegenions
oder durch eine Extrusion bzw. einen Austausch des Lösungsmittels manipuliert werden. Für
einen dünnen Kristall-Film wurde zudem die elektrische Leitfähigkeit der Materialien nachge-
wiesen.
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AMP AgX+SOM Abkürzung Raumgruppe Nm Na k-Punktsatz
FAP AgCO2CF3 FAP1 P-1 2 60 3x3x2

AgNO3 FAP2 P21/c 4 108 2x2x2
AgSO3CF3+EtOH FAP3a C2/c 8 320 1x2x2
AgSO3CF3+iPrOH FAP3b P21/c 4 172 2x2x2

OFAP AgCO2CF3 OFAP1 Pbca 8 272 2x2x1
AgNO3 OFAP2 P21/c 4 124 2x2x3 (1x2x2)

AgSO3CF3+EtOH OFAP3a C2/c 8 352 1x2x2
NFAP - NFAPs Fddd 16 480 1x1x1

AgCO2CF3 NFAP1 C2/c 8 304 2x4x2 (1x2x1)
AgSO3CF3+EtOH NFAP3a P21/c 4 192 2x2x1

Tabelle 3.1: Organische Halbleiter, die durch die Selbstassemblierung und Silber(I)-
Komplexbildung der drei Moleküle FAP, OFAP und NFAP synthetisiert worden sind, werden in
diesem Abschnitt untersucht. Enthalten sind Informationen zu den Silbersalzen und Lösungs-
mittelmolekülen (falls vorhanden), der Raumgruppensymmetrie, der Anzahl der Moleküle Nm

und Atome Na pro Einheitszelle, sowie zum k-Punkt-Sampling, welches zur Berechnung der
elektronischen und optischen (strukturellen) Eigenschaften verwendet wurde.

Die 2-Aminopyrimidin-Silber(I)-Halbleiter setzen sich aus den folgenden drei Bestandteilen zu-
sammen: (i) einem Aminopyrimidin-Molekül AMP, (ii) einem Silbersalz AgX mit X=CO2CF3,
NO3 und SO3CF3 und (iii) evntl. einem Lösungmittel SOM. Als Aminopyrimidin-Moleküle
treten hier in erster Linie die Moleküle 5 - (Pentafluorphenyl)-pyrimidin-2-amin (FAP), 5 -
(4-Methoxy-2,3,5,6-tetrafluorphenyl)-pyrimidin-2-amin (OFAP) und 5 - (4 - (Dimethylamino)
-2,3,5,6-tetrafluorphenyl)-pyrimidin-2-amin (NFAP) auf. Die Abb. 3.1 zeigt die drei Mo-
leküle. Diese bestehen aus 22 (FAP), 26 (OFAP) und 30 Atomen (NFAP), die zu einem 2-
Aminopyrimidin-Ring (Atome 1 – 8) und zu einem perfluoriertem Phenylring (Atome 12 –
17) geformt sind. Angehängt sind im Fall des FAP-Moleküls auch das Flouratom F1. Im Falle
des OFAP- bzw. NFAP-Moleküls befindet sich an dieser Stelle jeweils eine Methoxy- bzw. eine
Amino-Gruppe.

Abhängig vom beteiligten Silbersalz kristallisieren die AMP-Moleküle unter Formierung
eindimensionaler Polymer-Stränge. Zusammengefasst sind die zugehörigen Raumgruppen und
Gitterparameter in Tabelle 3.1. Die Zusammensetzung des Aminopyrimidin-Moleküls mit
den Silbersalzen AgCO2CF3 und AgNO3 führt zu einer Einheitszelle, die ein Vielfaches des
AMP+AgX-Paares enthällt. Im Falle des AgSO3CF3-Salzes befindet sich innerhalb der Zelle
zusätzlich noch ein Molekül des Lösungsmittels, entweder Ethanol (EtOH) oder Iso-Propanol
(iPrOH). Die Anzahl der AMP + AgX + (SOM)-Einheiten innerhalb einer Einheitszelle liegt
bei 2 – 8, sodass die Anzahl der Atome pro Zelle 60 – 352 beträgt. Exemplarisch sind die
Strukturen FAP + AgCO2CF3 und OFAP + AgSO3CF3 + EtOH in Abb. 3.2 gezeigt. Eine Un-
tersuchung des Einflusses der Silber-Salze auf die Anregungseigenschaften wird darüber hinaus
unterstützt durch das Studium des Kristalls NFAPs, welcher eher durch Fluorenstapelung und
Wasserstoff-Bindungen gebunden ist als durch Silbersalz-Bildung. Der Kristall besitzt eine Ein-
heitszelle mit 480 Atomen. Weitere Information zu den strukturellen Daten aller untersuchten
Kristalle lassen sich in Ref. [111] finden.

Im Folgenden werden zuerst die Eigenschaften der Aminopyrimidin-Moleküle studiert. Vor-
gestellt werden der Reihenfolge nach die Resultate zu den strukturellen, elektronischen und
optischen Eigenschaften. Im zweiten Abschnitt folgen die Untersuchungsergebnisse zu den 2-
Aminopyrimidin-Silber(I)-Halbleitern.
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Abbildung 3.1: Schematische

Darstellung der 5 - (Penta-

fluorphenyl)-pyrimidin-2-amin-

(FAP), 5 - (4-Methoxy-2,3,5,6-

tetrafluorphenyl)-pyrimidin-2-

amin- (OFAP) und 5 - (4 -

(Dimethylamino) -2,3,5,6-tetra-

fluorphenyl)-pyrimidin-2-amin-

Moleküle (NFAP) [(a) – (c)]. Rote,

gelbe, graue, hellgraue und kleine

Kugeln kennzeichnen jeweils O-,

C-, N-, F- und H-Atome.

Abbildung 3.2: Eindimensionale

Polymer-Stränge in

FAP+AgCO2CF3 [FAP1, (a)]

und OFAP+AgSO3CF3+EtOH

[OFAP3a, (b)]. Weiße und große

gelbe Kugeln kennzeichnen Ag-

und S-Atome. Die restlichen

Farben sind im Einklang mit Abb.

3.1 gewählt.
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labels FAP HAP OFAP NFAP
1 - 2 1.011 0.880 1.011 1.012
2 - 4 1.355 1.346 1.356 1.360
4 - 5 1.352 ±0.001 1.350 1.352 1.351
5 - 6 1.329 1.333 ±0.004 1.330 ±0.001 1.330 ±0.001
6 - 7 1.093 0.950 1.093 1.093
6 - 8 1.406 1.389 ±0.007 1.405 1.405
8 - 12 1.474 1.477 1.473 1.472
12 - 13 1.405 1.400 ±0.003 1.402 ±0.002 1.402 ±0.001
13 - 14 1.354 0.950 1.356 1.357
17 - F1 1.344 - - -
17 - O2 - - 1.355 -
17 - N3 - - - 1.389
1 - 2 - 4 119.38 ±0.09 120.00 119.31 ±0.07 118.55 ±0.15
2 - 4 - 5 116.91 ±0.11 117.37 ±0.19 116.87 ±0.03 116.87 ±0.16
4 - 5 - 6 116.02 ±0.02 116.00 ±0.07 115.95 ±0.06 115.97 ±0.01
6 - 8 - 12 122.53 ±0.14 122.76 ±0.22 122.51 ±0.68 122.55 ±0.38
8 - 12 - 13 122.18 ±0.09 120.86 ±0.22 122.46 ±0.22 122.74 ±0.03
12 - 13 -15 122.80 ±0.01 120.65 ±0.19 122.91 ±0.05 123.01 ±0.11

Tabelle 3.2: Bindungslängen (in Å) und -winkel, berechnet für FAP, OFAP und NFAP. Die
Bezeichnungen der Atome beziehen sich auf Abb. 3.1. Der Vergleich zu experimentellen HAP-
Daten ist gezeigt [17]. Näheres ist im Text zu finden.

3.1 Die FAP-, OFAP-, und NFAP-Moleküle

3.1.1 Strukturelle Relaxation

Die strukturelle Relaxation wurde in einer 14 × 15 × 20 Å3 Superzelle unter Verwendung des
Γ-Punktes der BZ durchgeführt. In der Superzelle wurden die Moleküle so platziert, dass die la-
teralen Wechselwirkungen minimiert werden. Die Abhängigkeit der Grundzustandsenergie von
der (kubischen) Zellgröße ist in Abb. 3.3 dargestellt. Die Variation beträgt ca. 0.03 eV. Tabelle
3.2 fasst die berechneten interatomaren Abstände und Winkel der Moleküle zusammen und
zeigt den Vergleich zu experimentellen HAP-Daten. Die Gegenüberstellung der berechneten
Daten der drei AMP-Moleküle FAP, OFAP und NFAP macht deutlich, dass die funktionelle
Gruppe nur gering die Geometrie des 2-Aminopyrimidin-Rings und des perfluorierten Phenyl-
rings beeinflußt. Die Abweichungen im Vergleich zu den experimentellen Daten sind ebenfalls
niedrig. Nur für Wasserstoff-Bindungen sind die Differenzen größer als 0.2 Å. Vergleichbare ab-
initio Studien basierend auf der Møller-Plesset-Störungstheorie für ein 2-AMP-Molekül wurden
u.a. von Golovacheva et al. [112] durchgeführt. Gegenüber diesen Resultaten findet man Un-
terschiede in Höhe von 0.02 Å und 3◦ für Abstände und Winkel.

3.1.2 Elektronische Eigenschaften

Basierend auf den Struktur-Daten aus Tabelle 3.2 wurden verschiedene elektronische Größen
für die Moleküle FAP, OFAP und NFAP berechnet. Diese sind in Tabelle 3.3 dargestellt und
werden im Folgenden erläutert. Die Energiedifferenzen zwischen dem niedrigsten unbesetzten
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Abbildung 3.3: Abhängigkeit der berechneten Energien E(N+1), E(N−1), der Grundzustandsenegie

und der niedrigsten exzitonischen Anregungsenergie Eex nach Gl. (2.65) von der Kantenlänge L der

kubischen Zelle [(a) – (d)]. Als Referenzenergie ist die Grundzustandsenergie für L = 18 Å verwendet

worden. Rote Punkte markieren Resultate unter Einsatz von Dipolkorrekturen.

Tabelle 3.3: Bandlücken und weitere elektronische Größen,
die für die Moleküle FAP, OFAP und NFAP ermittelt wur-
den. Details sind im Text zu finden.

FAP OFAP NFAP
EPW91
g 3.46 3.35 3.00

EHSE06
g 4.53 4.55 4.21

EG0W0
g .7.7 .7.4 .7.1

EQP
g 7.36 7.06 6.47

Eex 3.51 3.46 3.21
EJ
ex 3.50 3.46 3.22

Eem 2.08 1.97 1.98
∆S 1.43 1.49 1.23

molekularen Zustand (lowest unoccupied molecular orbital, LUMO) und dem höchsten besetz-
ten molekularen Zustand (highest occupied molekular orbital, HOMO) wurden jeweils unter
Verwendung des GGA-PW91-, HSE06-Funktionals (siehe Abschnitt 2.5) oder mit Hilfe der
Quasiteilchen-Störungstheorie (siehe Abschnitt 2.6.4) berechnet. EPW91

g = εL− εH , EHSE06
g oder

EG0W0
g sind die entsprechenden HOMO-LUMO-Bandlücken. Die ∆SCF-Bandlücke EQP

g wurde
nach Gl. (2.60) ermittelt. Zur Berechnung der ∆SCF-Bandlücke und auch der Quasiteilchen-
Bandlücke mussten, wie später erklärt wird, zusätzlich die Parameter der Superzelle variiert
werden. Unter Hinzunahme von Gln. (2.65), (2.69) und (2.70) wurden die niedrigste exzitoni-
sche Anregungsenergie Eex bzw. EJ

ex und die niedrigste Emissionsenergie Eem evaluiert. Aus
der Differenz zwischen den Letzteren wurde der Stokes-Shift ∆S [Gl. (2.71)] bestimmt.

Aus Tabelle 3.3 geht hervor, dass die PW91-Bandlücke EPW91
g für FAP am größten ist und

der Reihenfolge nach für OFAP und NFAP reduziert wird. Die Reduzierung der Bandlücke
erfolgt demnach mit wachsenden Elektronendonoreigenschaften. Die energetische Lage der
elektronischen Zustände ist auch in Abb. 3.5 dargestellt. Im Vergleich zu den GGA-DFT-
Ergebnissen weist die HSE06-Rechnung eine veränderte Hierarchie zwischen den Bandlücken
von FAP und OFAP auf, obgleich beide Werte dicht beieinander liegen. Die GGA-DFT-Tendenz
findet man jedoch bei den Quasiteilchen-Bandlücken EG0W0

g und EQP
g wieder.
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dem LUMO+1 und dem HOMO.
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Abbildung 3.5: Energien der molekularen Zustände berechnet auf DFT-PW91-Basis und mit Hilfe

der G0W0-Methode für kubische Zellen mit L = 22 Å (links) und L = 24 Å (rechts). Der Einfluss

der Selbstenergiekorrektur und Zellgröße ist durch verschiedene Farben hervorgehoben. Dicke Balken

kennzeichnen die Energien des HOMO, LUMO und LUMO+1 in der PW91-Rechnung. Die Bandlücken

sind gelb hinterlegt. Man beachte die unterschiedliche Energieskala der besetzten und unbesetzten

Zustände.
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Abbildung 3.6: Graphische Darstellung der Orbitale der Zustände HOMO (a)–(c) und LUMO (d)–(f)

der Moleküle FAP, OFAP und NFAP.

Zur Bestimmung der ∆SCF-Bandlücke EQP
g nach Gl. (2.60) sind die Energien E(N ± 1)

geladener Moleküle mit N±1 Elektronen notwendig. Aufgrund der zusätzlichen Ladung ±e pro
Superzelle sind die lateralen Wechselwirkungen der Moleküle mit ihren periodisch-fortgesetzten
Abbildern nicht vernachlässigbar. Um künstlich den Effekt der Periodizität zu minimieren,
wurde die Ausdehnung der Superzelle vergrößert. Die Abb. 3.3 zeigt die Abhängigkeit der
Energien E(N ± 1) von der Zellgröße. Insbesondere die Energie E(N − 1) variiert für eine
kubische Zelle mit der Kantenlänge L = 18, .., 30 Å um ca. 0.5 eV und die Bandbreite wird
gering durch Dipol-Korrekturen [113, 114] verbessert. Da allerdings die Energien E(N ± 1)
eine lineare Abhängigkeit von 1/L aufweisen, lassen sich die Quasiteilchen-Bandlücken durch
eine Extrapolation für L→∞ ermitteln. Details sind in Abb. 3.4 gezeigt. In Tab. 3.3 sind die
extrapolierten Bandlücken eingetragen und betragen 7.36, 7.06 und 6.47 eV für FAP, OFAP
und NFAP.

Wie aus Abb. 3.4 erkennbar, sind die G0W0-Bandlücken ebenfalls abhängig von der Größe
der Superzelle. Akkurate Untersuchungen zur GW -Methode zusammen mit der Verwendung der
Superzellen-Approximation wurden (für zwei-dimensionale Systeme) in Ref. [115] durchgeführt.
Die Abhängigkeit der G0W0-Bandlücken von den Abmessungen der Superzelle ist folglich nicht
überraschend. Bei den untersuchten Molekülen zeigte sich jedoch, dass die Konvergenz der
G0W0-Methode insbesondere durch Limitierungen des verfügbaren Speichers und der verfügba-
ren Rechenzeit nicht erreicht werden konnte. Die Selbstenergie in GW -Approximation wurde
für kubische Superzellen mit einer Kantenlänge von L = 18−20 Å (22−24 Å) bei Verwendung
eines GW -Cutoffs von 60 eV (40 eV), 90 Frequenzpunkten und einer maximalen Energie von
15 – 16 eV (bezogen auf das HOMO) für Zustände bei der Summation in Gl. (2.212) berech-
net. Eingeschlossen wurden hierbei bis zu 1056 Zustände. Obwohl der numerische Aufwand
vergleichbar ist mit ähnlichen Arbeiten (z.B. Ref. [116]), zeigen Abb. 3.4 und Abb. 3.5, dass
die Quasiteilchen-Korrekturen mit diesen Parametern nicht konvergiert sind: in Abb. 3.4 zei-
gen die Bandlücken Abhängigkeiten von verschiedenen Parametern in Höhe von 0.1 – 0.2 eV.
Die Parameter liegen zugleich unterhalb der zur numerischen Konvergenz notwendigen Wer-
te (vgl. Abschnitt 2.10). Auch Abb. 3.5 macht deutlich, dass sich die energetische Ordnung
der unbesetzten Zustände mit der Variation der numerischen Parameter verändert. Der Ur-
sprung des Problems ist insbesondere die hohe Anzahl der Gittervektoren, die durch den GW -
Cutoff reguliert wird und kubisch mit der Größe der Superzelle skaliert. Infolgedessen wird der
Speicherbedarf für große Superzellen sehr hoch. Nichtsdestotrotz, wie später zu sehen sein wird,
verbessert die zustandsabhängige Quasiteilchen-Korrektur, die auch die energetische Ordnung
der DFT-Rechnung modifiziert, die Übereinstimmung mit gemessenen optischen Daten.

Nach Abb. 3.4 nehmen die G0W0-Bandlücken mit der Vergrößerung des Volumens der Su-
perzelle ab. Folglich sind die Werte in Tab. 3.3 als obere Grenzen der tatsächlichen Bandlücken
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zu betrachten. Im Vergleich zu den ∆SCF-Bandlücken der drei Moleküle liegen die G0W0-
Werte energetisch jeweils etwa 0.5 eV höher. Die HSE06-Werte liegen, wie auch in den Arbeiten
[77, 78, 79] festgestellt, zwischen den DFT- und den Quasiteilchen-Ergebnissen.

Wie aus der Betrachtung der untersten exzitonischen Anregungsenergien Eex bzw. EJ
ex

hervorgeht, heben sich die Quasiteilchen-Effekte und die Elektron-Loch-Wechselwirkung na-
hezu auf: die untersten exzitonischen Anregungsenergien sind mit 3.5 bis 3.2 eV energetisch
auffällig nah der DFT-Bandlücken. Die Tatsache deutet an, dass die Unabhängige-Teilchen-
Approximation eine gute Beschreibung der optischen Eigenschaften liefern kann.

Die Berechnung der untersten exzitonischen Anregungsenergie ist numerisch stabil: Die Dif-
ferenz zwischen den beiden Methoden Gl. (2.65) und (2.69) beträgt nur 10 meV. Zusammen
mit den niedrigsten Emissionsenergien von 2.08, 1.97 und 1.98 eV betragen die Stokes-Shifts
1.43, 1.49 und 1.23 eV für die Moleküle FAP, OFAP und NFAP. Die Emissionsenergien für
OFAP und NFAP sind demnach fast gleich, während OFAP den größten Stokes-Shift aufweist.
Die berechneten Werte sind in akzeptabler Übereinstimmung mit verfügbaren experimentellen
Daten: Für FAP, gelößt in Ethanol, wurde durch Stoll et al. [18] ein Stokes-Shift von 1.28
eV gemessen. Angesichts der Tatsache, dass die Lösung zusätzlich die optischen Eigenschaften
beeinflußt, bestätigen die Daten die Aussagekraft der durchgeführten Studien und erzielten
Resultate.

3.1.3 Optische Eigenschaften

Aus den Eigenenergien und Impulsmatrixelementen, die auf Basis der DFT ermittelt wurden,
lässt sich direkt die dielektrische Funktion in Unabhängiger-Teilchen-Approximation berechnen.
Abb. 3.7 zeigt die ermittelten Spektren für FAP, OFAP und NFAP. In allen drei Fällen liegt die
Absorptionskante energetisch höher als die Bandlücke EPW91

g , da die Übergangswahrscheinlich-
keit zwischen dem LUMO und dem HOMO verschwindend gering ist. Die drei Spektren weisen
weitere Gemeinsamkeiten auf. Besonders im Falle von FAP und OFAP stimmen die Positionen
und Formen der Maxima I – IV größtenteils überein (siehe Tab. 3.4). Da sich die dielektrische
Funktion in Unabhängiger-Teilchen-Näherung aus Übergängen zwischen besetzten und unbe-
setzten Zuständen zusammensetzt, sind die Spektren leicht aufzulösen. Beispielsweise stellt sich
im Fall von FAP heraus, dass der HOMO – LUMO+1 Übergang für 86% der Intensität des
ersten Absorptionsmaximums verantwortlich ist.

Um die Analyse der Spektren zu systematisieren, wird die Wellenfunktion eines Zustan-
des λ gemäß ihrer Lokalisation charakterisiert. Dazu wird die Projektion des entsprechenden
Zustandes auf sphärische Funktionen Y s

lm, die an einem Atom s lokalisiert sind, berechnet,

αsλ =
∑
lm

| 〈φλ | Y s
lm〉 |2, (3.1)

und anschließend über alle Atome summiert, die entweder dem Aminopyrimidin- bzw. dem
Pentafluorophenylring (M) oder dem angehängten Fluoratom, der Methoxy- bzw. der Amino-
gruppe (R) angehören:

αM/Rλ =
∑

s∈M/R

αsλ. (3.2)

Die Bestimmung der Größen αMλ und αRλ erlaubt die Aufklärung der Herkunft der wichtigs-
ten Absorptionsstrukturen in den Spektren von FAP, OFAP und NFAP. Insbesondere zeigt
sich, dass der jeweilige HOMO – LUMO+1 Übergang wesentlich das erste Absorptionsmaxi-
mum verursacht. Aus den Daten geht zudem hervor, dass die Wellenfunktionen der beteiligten
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Tabelle 3.4: Beiträge der Einteilchenzustände
von FAP, OFAP und NFAP zu den am stärks-
ten ausgeprägten Absorptionsmaxima, die in
Abb. 3.7 hervorgehoben sind. Näheres ist im
Text zu finden.

FAP

peak I II III IV V

Energy (eV) 3.47 4.22 4.85 5.82 7.05

Intensity (%) 86 70 76 63 70

HOMO 0 -2 -2 -5 -5
αMλ 0.58 0.62 0.62 0.57 0.57
αRλ 0.01 0.00 0.00 0.00 0.00

LUMO +1 +1 +3 0 +4
αMλ 0.53 0.53 0.59 0.53 0.53
αRλ 0.02 0.02 0.00 0.00 0.01

OFAP

peak I II III IV V

Energy (eV) 3.49 4.19 4.88 5.81 7.05

Intensity (%) 94 53 73 75 68

HOMO 0 -2 -2 -6 -6
αMλ 0.54 0.62 0.62 0.57 0.57
αRλ 0.06 0.00 0.00 0.00 0.00

LUMO +1 +1 +3 0 +4
αMλ 0.52 0.52 0.54 0.53 0.51
αRλ 0.03 0.03 0.00 0.00 0.02

NFAP

peak I II III IV V

Energy (eV) 3.14 4.13 4.90 5.82 7.06

Intensity (%) 97 69 65 68 61

HOMO 0 -3 -3 -6 -6
αMλ 0.33 0.62 0.62 0.57 0.57
αRλ 0.28 0.00 0.00 0.00 0.00

LUMO +1 +1 +3 0 +4
αMλ 0.50 0.50 0.48 0.53 0.48
αRλ 0.04 0.04 0.01 0.00 0.02

Zustände an den gemeinsamen Aminopyrimidin- oder Pentafluorophenyl-Ring lokalisiert sind
(vgl. Abb. 3.6). Dies erklärt die Ähnlichkeit der Spektren der drei Moleküle. Eine Ausnahme
bildet allerdings das erste Absorptionsmaximum von NFAP. In diesem Fall besitzt der HOMO
starke Beiträge, die der Aminogruppe zuzurechnen sind [vgl. Tab. 3.4 und Abb. 3.6(c)] und of-
fenbar mit der leichten Rotverschiebung des ersten Maximums im Vergleich zu FAP und OFAP
korreliert sind. Dagegen ist der Einfluss des Fluoratoms F1 bzw. der Methoxygruppe auf das
jeweilige erste Maximum, obgleich vorhanden, eher gering (vgl. Tab. 3.4).

Abb. 3.8 zeigt die dielektrische Funktion unter Berücksichtigung von Vielteilcheneffekten.
Spektren, die nur DFT-Eigenenergien als Grundlage haben, wurden unter Beachtung von
Valenz- und Leitungsbandzuständen mit εc − εv < 6 eV berechnet. Sofern GW -Eigenenergien
eingesetzt wurden, wurden aus den untersten 96 Zuständen Zustandspaare mit der Eigenschaft
εc − εv < 10 eV zugelassen. Die Rechnungen wurden unter Verwendung sowohl der vollen
BSE-Matrix als auch der Tamm-Dancoff-Approximation durchgeführt. Die Korrektur der auf
DFT beruhenden Elektronenenergien wurde entweder durch einen Scissors-Operator, der die
∆SCF-Bandlücken erzeugt, oder durch den Einsatz der G0W0-Eigenenergien realisiert.

Die im IPA-Spektrum beobachtete Rotverschiebung des ersten Maximums im Fall des
NFAP-Moleküls wird auch in den BSE-Spektren wiedergefunden. Der Effekt wird zusätzlich
durch den größeren Unterschied in der ∆SCF- bzw. G0W0-Bandlücke verglichen mit FAP und
OFAP verstärkt. Für die drei Moleküle beträgt die Abweichung der energetischen Lagen des
ersten Absorptionsmaximums berechnet im Rahmen der IPA bzw. BSE ca. 1 eV. Die Tatsa-
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FAP OFAP NFAP
IPA

Energy (eV) 3.47 3.49 3.14
Intensity (%) 86 94 97
αM(HOMO) 0.58 0.54 0.33
αR(HOMO) 0.01 0.06 0.28
αM(LUMO+1) 0.53 0.52 0.50
αR(LUMO+1) 0.02 0.03 0.04

BSE-TDA (PW91+∆)
Energy (eV) 3.70 3.51 3.02
AI(HOMO) 57 57 71
AI(LUMO+1) 69 57 67

BSE (PW91+∆)
Energy (eV) 3.65 3.46 2.97
AI(HOMO) 65 59 77
AI(LUMO+1) 75 62 74
BSE(G0W0)
Energy (eV) 4.48 4.36 4.05
AI(HOMO) 65 65 76
AI(LUMO+1) 75 75 71

Tabelle 3.5: Beiträge der elektronischen
Zustände HOMO und LUMO+1 zum ersten
Absorptionsmaximum des IPA-Spetkrum
und zum exzitonischen Zustand |I〉 der
BSE/BSE-TDA-Rechnung, die entweder
auf der durch den Scissors-Operator mo-
difizierten elektronischen Struktur oder
den G0W0-Eigenenergien basiert (vgl. Abb.
3.8). Gezeigt sind auch die Projektionen
αM/Rλ für jeweils den HOMO und den
LUMO+1.

che weist auf das teilweise Aufheben der Quasiteilchen- und der exzitonischen Effekte hin, wie
bereits anhand Tab. 3.3 geschlussfolgert.

Wie bereits im Fall der IPA lassen sich auch im Rahmen der BSE durch eine systematische
Analyse Zustände identifizieren, die zu den Absorptionsmaxima beitragen. Zu diesem Zweck
werden die Größen

AΛ(c) =
∑
v

|AΛ(cv)|2 und AΛ(v) =
∑
c

|AΛ(cv)|2 (3.3)

betrachtet. AΛ(cv) sind in Gl. (3.3) die Eigenvektoren zu positiven Eigenwerten EΛ > 0 der
BSE-Matrix. Die Größen AΛ(λ) wurden für exzitonische Zustände |Λ〉 berechnet, welche die
größten Intensitäten besitzen (vgl. Abb. 3.8). Wie sich herausstellt, tragen auch hier der HOMO
und der LUMO+1 größtenteils zum ersten Absorptionsmaximum bei (vgl. Tab. 3.5).

Aus der Gegenüberstellung der Spektren, berechnet aus der vollen BSE-Matrix und unter
Verwendung der TDA, können folgende Unterschiede abgelesen werden: (i) Der Übergang von
der TDA zur vollen BSE-Matrix wird begleitet durch eine Rotverschiebung der exzitonischen
Eigenwerte. Ein ähnliches Resultat wurde auch in den Arbeiten [14, 15] gefunden. (ii) Starke
Modifikationen des Spektrums treten für Energien oberhalb 4.5 eV (für FAP und OFAP) oder
4.0 eV (für NFAP) auf. Die TDA beeinflusst demnach deutlich das Absorptionsspektrum der
Moleküle. Zusammen mit der Berücksichtigung der optischen Eigenschaften der kristallinen
Systeme wird der Einfluss der TDA ausführlicher in Abschnitt 3.2.2 diskutiert.

Obgleich die TDA das Spektrum für höhere Energien modifiziert, wird insbesondere die Lage
und Form der ersten Absorptionsmaximums stärker durch die eingesetzten Elektronenenergien
bestimmt. Das Spektrum basierend auf den G0W0-Eigenwerten zeigt auch in anderen Regionen
beträchtliche Abweichungen vom Spektrum berechnet unter Einsatz des Scissors-Operators.
Dies ist eine Konsequenz der zustandsabhängigen Korrektur der PW91-Eigenwerte durch die
Berechnung der Selbstenergie, die zu einer energetischen Umordnung der Zustände führt und
in einer deutlichen Blauverschiebung des Spektrums resultiert.

Messungen für FAP gelößt in Ethanol zeigen eine Absorptionskante bei 4.72 eV. Die Mes-
sungen beschränken sich auf einen Energiebereich von 2.3 – 5.7 eV. Mit einem Wert von 4.48 eV
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FAP1 FAP2 FAP3a FAP3b

dcalc,1(Ag-N) 2.22 2.22 2.26-2.27 2.24-2.25
dexp,1(Ag-N) 2.24 2.24 2.28 2.26
dcalc,2(Ag-N) 2.28 2.23-2.24 2.28 2.32
dexp,2(Ag-N) 2.30 2.25 2.29 2.32

N-Ag-N (calc) 129 160 127-129 123-124
N-Ag-N (exp) 128 157 126 122

Tabelle 3.6: Gemessene (Ref. [18]) und berechnete minimale und maximale Ag-N –
Bindungslängen (in Å) und N-Ag-N – Bindungswinkel der auf FAP basierenden 2-
Aminopyrimidine-Silber(I)-Halbleiter.

für das erste Absorptionsmaximum liegt das Spektrum basierend auf den G0W0-Eigenenergien
in bester Übereinstimmung mit dem Experiment. Die Unsicherheit der Positionen der Absorp-
tionsstrukturen in der BSE-Rechnung beträgt allerdings mehrere Zehntel eV. Zum einen wird
diese Tatsache aus Tab. 3.3 und der Diskussion in Abschnitt 3.1.2 verständlich. Zum ande-
ren erfordert auch die Verwendung der Modell-Abschirmung nach Bechstedt et al. zusätzliche
Überlegungen: durch die Abhängigkeit der Modell-Abschirmung vor statischen Dielektrizitäts-
konstante ε∞ und der mittleren Elektronendichte, wird das Spektrum auch durch das Volumen
der Superzelle beeinflußt. In der vorliegenden Arbeit wurde der Wert ε∞ = 1 verwendet, welcher
die untere Grenze der Abschirmung markiert. Der Wert liegt nah an den Dielektrizitätskonstan-
ten, die sich direkt aus den IPA-Rechnungen bei Verwendung von Superzellen mit L = 18, .., 24
Å ergeben. Beispielsweise erhält man bei einem effektiven Volumen von Veff = 183 Å3 einen
Wert von ε∞ = 1.05. Die Folge ist eine Blauverschiebung der exzitonischen Eigenwerte um 0.3
eV. Zusätzlich zur numerischen Unsicherheit wird der Vergleich von Theorie und Experiment
auch erschwert durch den unbekannten Einfluss der Lösungs-Moleküle auf die optische Absorp-
tion. Infolgedessen ist eine Abweichung von ca. 0.3 eV zwischen Theorie und Experiment nicht
überraschend.

An dieser Stelle sei darauf hingewiesen, dass u.a. in der Arbeit von Ruini et al. [110]
ein Ausweg aus der Superzellenabhängigkeit der Modell-Abschirmung angegeben ist: die De-
finition eines effektiven Volumens des studierten Moleküls, wie in jenem Fall von Poly-para-
phenylenevinylen, kann die Beschreibung der Abschirmung und demnach der optischen Eigen-
schaften deutlich verbessern.

3.2 Die Molekül-Kristalle

3.2.1 DFT-Ergebnisse

Basierend auf den experimentellen Röntgendaten wurde eine Relaxation der atomaren Posi-
tionen unter Fixierung der Parameter der Einheitszelle durchgeführt (vgl. Ref. [111]). Insgesamt
werden nur geringe Änderungen der atomaren Positionen im Vergleich zum Experiment beob-
achtet. Tab. 3.6 vergleicht die berechneten Bindungslängen und Winkel mit experimentellen
Daten für FAP. Maximale Abweichungen betragen 0.02 Å und 3◦.

Durch die Selbstassemblierung der Moleküle zu Kristallen entwickeln sich aus den diskreten
Energiezuständen der Moleküle Energiebänder. Die Abb. 3.9 zeigt die Bandstrukturen berech-
net auf GGA-PW91-Basis für kristalline FAP-Systeme. Die Bandlücke der organischen Halblei-
ter ist im Vergleich zur HOMO-LUMO-Differenz der ursprünglichen Moleküle jeweils kleiner.
Dies ist nicht nur eine Folge der Dispersion der ehemals diskreten Energiezustände, sondern
hängt auch mit den entstandenen Ag-N – Bindungen zusammen. Dies geht aus den Abb. 3.10 -
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Vertikale markiert.
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(b), FAP2 (c), FAP3a (d) und FAP3b (e). Die fundamentale Bandlücke ist gelb hinterlegt.

3.12, in denen die elektronische Zustandsdichte (DOS) und ihre Projektion auf die Silberatome
gezeigt werden, hervor. Besonders in der Nähe des VBM findet man viele silberartige Zustände.

Die Abb. 3.13, 3.14 und 3.15 stellen die dielektrischen Funktionen der Molekülkristalle
und die der entsprechenden Moleküle gegenüber. In allen drei Fällen treten die molekula-
ren Signaturen in den Spektren der Kristalle in Erscheinung. Insbesondere gilt das für FAP-
Molekülkristalle, wo der erste Absorptionspeak im Vergleich zur Position im molekularen Spek-
trum kaum verschoben ist. Das berechnete Spektrum für NFAPs, welches nicht durch Silber(I)-
Komplexbildung gebunden ist, verglichen mit dem von NFAP1 und NFAP3a weist darauf hin,
dass der Beitrag silberartiger Zustände, obgleich vorhanden (vgl. weiter unten im Text), eher
gering ist. Ein direkter Einfluss der Moleküle des Lösungsmittels auf die optische Absorption
konnte hingegen nicht festgestellt werden. Es sind hauptsächlich zwei Unterschiede zwischen
den Spektren der kristallinen und molekularen Systemen festzustellen: (i) die Absorptionss-
trukturen in den Halbleiterspektren sind im Vergleich zu den molekularen Spektren aufgrund
der Dispersion der Bänder verbreitert und, (ii) die optische Absorption beginnt unterhalb der
Absorptionskante der Moleküle. Der Grund ist der Einfluss silberartiger Zustände, wie aus der
Projektion αAgλ [siehe Gln. (3.1) und (3.2)] zu entnehmen ist. Diese kann für die an der Absorp-
tion beteiligten Valenzzustände λ bis zu 0.5 betragen. Das Spektrum im Fall von NFAP weicht
allerdings deutlich mehr vom entsprechenden molekularen ab. Insbesondere ist das erste Ab-
sorptionsmaximum rotverschoben. Dies ist zurückzuführen auf das isolierte Segment unterhalb
des VBM, welches der Amino-Gruppe zuzuordnen ist (vgl. Abb. 3.12).

3.2.2 Der Einfluss von Vielteilcheneffekten

Die optischen Spektren basierend auf der Unabhängige-Teilchen-Approximation sind gut
dazu geeignet, chemische Tendenzen zu identifizieren und zu klassifizieren, doch kann sich der
Vergleich mit experimentellen Messungen aufgrund des Einflusses von Vielteilcheneffekten als
schwierig erweisen. Zur Berücksichtigung Letzterer in der Bandstruktur wurden Rechnungen für
FAP1 unter Verwendung des HSE06-Funktionals durchgeführt. Die berechnete indirekte (bzw.
direkte) Bandlücke von 3.86 (bzw. 3.91) eV ist in guter Übereinstimmung mit dem experimentel-
len Wert von 3.50 eV, welcher aus Anregungsmessungen ermittelt wurde. Das HSE06-Funktional
liefert demnach für den Kristall FAP1 eine bessere Beschreibung der Bandlücke als für das ent-
sprechende Molekül FAP (vgl. Abschnitt 3.1.2). Im Vergleich zur indirekten PW91-Bandlücke
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Abbildung 3.13: Imaginärteil der

dielektrischen Funktion berechnet

im Rahmen der Unabhängige-

Teilchen-Approximation von

FAP-Molekülkristallen im Ver-

gleich zum molekularen Spektrum

(durchgezogene Linie). Eine Ver-

breiterung von η = 0.10 eV wurde

verwendet. Gezeigt sind auch das

experimentelle Absorptionsspek-

trum (gestrichelte rote Linie) und

der Absorptionskeoffizient nach

Gl. (3.4) (gepunktete Linie).
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Abbildung 3.14: Imaginärteil der

dielektrischen Funktion berechnet

im Rahmen der Unabhängige-

Teilchen-Approximation von

OFAP-Molekülkristallen im Ver-

gleich zum molekularen Spektrum.

Die Daten stehen im Einklang mit

Abb. 3.13.
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des organischen Halbleiters zieht der Einsatz des Hybrid-Funktionals eine Gap-Aufweitung von
1.21 eV nach sich.

Für FAP1 wurden weitere Rechnungen durchgeführt um den Einfluss der Elektron-Elektron-
Wechselwirkung, der Elektron-Loch-Anziehung sowie der Lokalfeldeffekte auf die optische Ab-
sorption zu untersuchen. Da es sich hierbei um eine 60-atomige Einheitszelle handelt, ist der
notwendige numerische Aufwand akzeptabel. Basierend auf den PW91-Wellenfunktionen ist die
dielektrische Funktion in Abb. 3.16 auf verschiedenen Approximationsstufen dargestellt. Neben
dem Studium der Elektron-Loch-Anziehung und der Lokalfeldeffekte ist auch die Auswirkung
der Tamm-Dancoff-Approximation überprüft worden. Folgendes kann anhand der Vergleiche
beobachtet werden: (i) Die Lokalfeldeffekte verursachen eine Blauverschiebung von ca. 1 eV,
wie auch in Ref. [16] festgestellt, (ii) eine Rotverschiebung von ca. 2 eV aufgrund exzitonischer
Effekte wird beobachtet und (iii) es wird eine Modifikation der Form und Lage der Strukturen im
Spektrum durch die Berücksichtigung der nichtresonanten Teile der BSE-Matrix sichtbar. Auf
unterschiedliche Polarisationsrichtungen ist die Wirkung der Vielteilcheneffekte unterschiedlich
stark, wie die Abb. 3.16(a), (d) und (e) zeigen.

Während die Beeinflussung des Spektrums durch exzitonische Effekte schon länger be-
kannt ist, treten die starken Auswirkungen der Lokalfeldeffekte und der Tamm-Dancoff-
Approximation erst für organische Systeme in Erscheinung [14, 15, 16]. Zum Vergleich wurden
Rechnungen nach dem Schema von Abb. 3.16 für Silizium unternommen (vgl. Abb. 3.17). Aus
diesen geht der geringe Einfluss der Lokalfeldeffekte1 und der Tamm-Dancoff-Approximation
hervor und verifiziert die Aussagen aus der Arbeit von Albrecht et al. [13]. Zur weiteren Auf-
klärung der unterschiedlich starken Wirkung der resonanten-nichtresonanten Kopplung auf an-
organische und organische Systeme, wurden die BSE-Matrizen von FAP, FAP1 und Silizium
grafisch dargestellt (vgl. Abbn. 3.18, 3.19 und 3.20). Es wurden die Absolutbeträge der Ma-
trixeinträge studiert. Um eine handhabbare Dimension zur grafischen Darstellung zu erhalten,
wurde im Fall von FAP1 und Silizium das Maximum aus Untermatrizen der Größe ≈ 103× 103

ausgegeben. Folgendes ist dem Vergleich der drei BSE-Matrizen zu entnehmen: (i) im Fall von
Silizium sind die Nebendiagonaleinträge ca. 2-3 Größenordnungen kleiner als die Diagonalein-
träge, wobei die Einträge im nichtresonanten Teil noch eine Größenordnung kleiner sind als
die größten im resonanten Teil. (ii) In der BSE-Matrix von FAP1 und FAP sind die Neben-
diagonaleinträge zwei Größenordnungen höher als im Fall von Silizium und (iii) insbesondere
für FAP sind vereinzelte Nebendiagonaleinträge in der gleichen Größenordnung wie die Dia-
gonaleinträge. Da die nichtresonanten Untermatrizen nur im Fall kleiner Matrix-Einträge ver-
nachlässigt werden können, geht aus den Abbn. 3.18, 3.19 und 3.20 hervor, dass die Bedingung
für die Gültigkeit der TDA nur für Silizium gegeben ist. Da weiterhin die Matrix-Einträge nach
Gl. (2.185) berechnet werden, lässt sich schlussfolgern, dass eine hohe Überlappung der Wel-
lenfunktionen der Einteilchenzustände in begrenzten Bereichen des Raumes ausschlaggebend
ist für das Versagen der TDA. Diese Eigenschaft der Orbitale ist eine Voraussetzung für das
Aufkommen der beträchtlichen Nebendiagonaleinträge der BSE-Matrix und ist eine material-
spezifische Eigenschaft der Wellenfunktionen. An dieser Stelle sei zugleich hervorgehoben, dass
zur Ableitung verallgemeinerter Aussagen hinsichtlich der Ursache für die unterschiedlichen
Formen der BSE-Matrizen weitere Untersuchungen notwendig sind.

1Wie aus Abb. 3.17 hervorgeht ist der Einfluss der Lokalfeldkorrekturen, obgleich gering, jedoch im Fall von
Silizium sichtbar. Andere ionische Materialien zeigen hingegen einen noch geringeren Einfluss von Lokalfeldkor-
rekturen (vgl. [92]).
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Abbildung 3.18: Maximaler

Absolutbetrag |Hmax
(λ1,λ2),(λ′1,λ

′
2)|

aus den Untermatrizen (Dimen-

sion: ca. 103 × 103) der BSE-

Matrix von Si. Die Aufteilung

in Untermatrizen ist notwendig

um eine angemessene Dimension

zur graphischen Darstellung zu

erhalten. Für den resonanten

und nicht-resonanten Anteil

gilt: (λ
(′)
1 , λ

(′)
2 ) = (c(′), v(′)) und

(v(′), c(′)). Man beachte die

logarithmische Skalierung der

Absolutbeträge.

Abbildung 3.19: Maximaler

Absolutbetrag |Hmax
(λ1,λ2),(λ′1,λ

′
2)|

aus den Untermatrizen (Di-

mension ca. 103 × 103) der

BSE-Matrix von FAP1. Man

beachte auch die Hinweise zu

Abb. 3.18.

Abbildung 3.20:
Absolutbeträge |H(λ1,λ2),(λ′1,λ

′
2)|

der BSE-Matrix von FAP. Man

beachte auch die Hinweise zu

Abb. 3.18.
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Abbildung 3.21: Absorptions-

spektrum von FAP1 im Rah-

men der Unabhängige-Teilchen-

Approximation und aus der

Lösung der BSE unter Einsatz

der TDA (BSE-TDA) verglichen

mit den experimentellen Daten

von Stoll et al.[18]. Man be-

achte, dass diverse Funktionale

(PW91, HSE06) verwendet wer-

den und der Absorptionskoeffi-

zient Gl. (3.4) mit dem Experi-

ment verglichen wird.
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3.2.3 Vergleich mit experimentellen Befunden

Experimentelle Intensitätsmessungen ia(~ω) = I(~ω)/I0 der optischen Absorption wurden
für FAP1 – FAP3b, OFAP1 und OFAP3a vorgenommen [18]. Es handelte sich hierbei um pul-
verförmige Proben. Zum Vergleich der Messungen mit den Rechnungen wurde aus dem Real-
<ε(ω) und Imaginärteil =ε(ω) der dielektrischen Funktion der räumlich gemittelte Absorpti-
onskoeffizient gebildet:

α(~ω) ∝ ~ω
√[√

<ε(~ω)2 + =ε(~ω)2 −<ε(~ω)
]
. (3.4)

In den Abb. 3.13, 3.14 und 3.21 sind die experimentellen und berechneten Daten gegenüber-
gestellt. Man stellt in den experimentellen Spektren eine Abweichung der energetischen Lage
der Absorptionskante und insbesondere im Fall von FAP2 – FAP3b und OFAP3a Unterschiede
in der Kurvenform verglichen mit den Unabhängige-Teilchen-Rechnungen fest. Das Absorpti-
onsspektrum von FAP1 basierend auf den PW91-Wellenfunktionen und -Eigenenergien ist in
akzeptabler Übereinstimmung mit dem Experiment, obgleich ein zusätzliches Absorptionsma-
ximun bei ca. 5 eV vorhanden ist. Dagegen überschätzen die Rechnungen unter Verwendung
des Hybridfunktionals HSE06 die experimentelle Absorptionskante deutlich (vgl. Abb. 3.21).
Die letzten beiden Beobachtungen lassen erneut die Schlussfolgerung zu, dass sich elektronische
Selbstenergieeffekte und exzitonische Effekte teilweise aufheben.

Zusätzlich zu den Unabhängige-Teilchen-Rechnungen ist in Abb. 3.21 auch die BSE-TDA-
Optik auf Grundlage der PW91- oder HSE06-Wellenfunktionen und -Eigenenergien mit dem
experimentellen Spektrum verglichen. In bester Übereinstimmung mit dem Experiment liegt
der Absorptionskoeffizient basierend auf der elektronischen Struktur der Hybridfunktional-
Rechnung. Gleichzeitig ergibt der Einsatz der numerisch günstigeren PW91-Bandstruktur mit
einem Scissors-Shift von ∆ = 1.21 eV, der die Bandlückendifferenz zwischen HSE06 und PW91
korrigiert, einen ähnlichen Grad an Übereinstimmung. Dies ist auf den eher geringen Unter-
schied in der Banddispersion der HSE06- und PW91-Rechnung zurückzuführen.

Die gute Beschreibung der optischen Eigenschaften durch die Hinzunahme von Selbstener-
gieeffekten (bzw. eines Hybridfunktionals) und exzitonischen Effekten ist aufgrund der Er-
kenntnisse zu anorganischen Systemen nicht überraschend, lässt sich allerdings aufgrund des
numerischen Aufwandes nur für Kristalle mit kleinen Einheitszellen durchführen. Weiterhin
sei nochmals erwähnt, dass der Vergleich zwischen Experiment und Theorie von der Annahme
ausgeht, dass die experimentellen Daten eine gute Approximation des Mittelwertes der drei
Komponenten εxx, εyy und εzz liefern.
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3.3 Zusammenfassung

Der aktuelle Abschnitt stellt eine Analyse der elektronischen und optischen Eigenschaf-
ten von 2-Aminopyrimidin-Silber(I)-gestützten organischen Halbleitern und der entsprechen-
den Ausgangsmoleküle dar. Die Untersuchungen wurden mit Hilfe von Dichtefunktionaltheorie-
und Vielteilchen-Störungstheorie-Rechnungen durchgeführt. Die Ergebnisse prognostizieren
Bandlücken in Höhe von ca. 7 eV für die Moleküle FAP, OFAP und NFAP. Die untersten
optischen Anregungsenergien sind dagegen bedeutend kleiner. Vielmehr zeigt sich sogar, dass
sich Selbstenergieeffekte und exzitonische Effekte in der optischen Anregung der Moleküle na-
hezu aufheben. Aus der Gegenüberstellung der elektronischen und optischen Eigenschaften der
drei Moleküle wird außerdem deutlich, dass die optische Anregung insbesondere unter Einfluß
des Aminopryimidin- und des Pentafluorophenyl-Rings stattfindet. Modifikationen der Wellen-
funktionen durch die unterschiedlichen Funktionellen Gruppen werden im optischen Spektrum
nur teilweise sichtbar.

Die Molekülkristalle, die durch Selbstassemblierung und Silber(I)-Komplexbildung gebil-
det wurden, weichen hinsichtlich ihrer elektronischen Eigenschaften deutlich von denen der
ursprünglichen Moleküle ab. Die diskreten Energiezustände der Moleküle werden zu Ener-
giebändern umgewandelt, die in ihrer Gesamtheit eine um ca. 1 eV kleinere Bandlücke auf-
weisen als die Ausgangsmoleküle. Zusätzlich sind in der Nähe des VBM silberartige Zustände
vorhanden. Diese allerdings sind nur mäßig an der optischen Absorption beteiligt, sodass sich
die molekularen Fingerabdrücke insbesondere im Fall von FAP und OFAP in den entspre-
chenden Spektren wiedererkennen lassen. Einen Sonderfall stellt jedoch NFAP dar, da die Ab-
sorptionskante des kristallinen optischen Spektrums hierbei aufgrund von Übergängen, die der
Aminogruppe zugerechnet werden, ein wenig rotverschoben ist.

Obgleich Rechnungen basierend auf der Unabhängige-Teilchen-Approximation experimen-
tell gemessene Merkmale reproduzieren, ist für einen quantitativen Vergleich zwischen Theo-
rie und Experiment die Berücksichtigung von Vielteilcheneffekten notwendig. Zusätzlich zum
Einfluß der Elektron-Loch-Anziehung, der für eine gute Übereinstimmung der theoretischen
Ergebnisse mit den experimentellen beträchtlich ist, wurde beobachtet, dass auch Lokalfeld-
effekte das Spektrum bedeutend formen. Bemerkenswerterweise wurde für die untersuchten
organischen Halbleiter auch festgestellt, dass die nichtresonanten Elemente der BSE-Matrix,
die im Fall anorganischer Materialien vernachlässigt werden, sichtlich die Positionen und In-
tensitäten von Absorptionsstrukturen modifizieren. Eine Gegenüberstellung der zugrunde lie-
genden BSE-Matrizen für FAP, FAP1 und Silizium ließ weiterhin Anzeichen offenlegen, dass
die unterschiedliche Wirkung der TDA durch die Wellenfunktionen der jeweiligen Systeme ver-
ursacht wird. Weitere Untersuchungen hinsichtlich der TDA zur vollständigen Aufklärung der
Ursache werden dennoch empfohlen.

57



KAPITEL IV

Die Ferroelektrika Lithiumniobat (LN), Lithiumtantalat

(LN) und LN-LT-Mischkristalle

Das gegenwärtige Kapitel befasst sich mit den linearen und nichtlinearen optischen Ei-
genschaften der beiden Ferroelektrika Lithiumniobat (LN, LiNbO3) und Lithiumtantalat (LT,
LiTaO3), sowie der Legierung aus den genannten. Beide Materialien besitzen eine zehn-atomige
Elementarzelle. Der jeweilige Grundzustand ist für Temperaturen unter 1415 K bzw. 880 K (für
LN und LT) ferroelektrisch und weist die Raumgruppensymmetrie R3c auf. Insbesondere im
Fall von Lithiumniobat werden die zusätzlich vorhandenen elektro-optischen, photorefraktiven
und nichtlinearen optischen Eigenschaften in einer Vielzahl von Bereichen und Bauelementen
eingesetzt. Dazu gehöhren typischerweise optische Modulatoren, akustooptische Geräte, opti-
sche Schalter für Frequenzen im Gigahertz-Bereich, Laser-Frequenz-Verdoppler, Pockels-Zellen,
optische parametrische Oszillatoren oder Güteschalter (Q-Switch) für Laser [20, 117].

Obgleich das Anwendungsgebiet von LN sehr breit ist, sind die elektronischen und optischen
Eigenschaften des Ferroelektrikums bisher eher mäßig untersucht worden. Beispielsweise liegen
unserem Wissen nach keine Messungen der Bandstruktur vor. Die experimentell gemessenen
und in der Literatur angegebenen direkten und indirekten Bandlücken, die bei 3.78 eV [118] und
3.28 – 4.3 eV [119, 120, 121] liegen, wurden aus Messungen der optischen Absorption abgeleitet.
Da ein unbekannter Beitrag der Elektron-Loch-Anziehung und der Lokalfeldeffekte in der opti-
schen Absorption enthalten ist, ist ein Vergleich dieser Daten mit der tatsächlichen Bandlücke,
als Differenz zwischen der Ionisierungsenergie und Elektronenaffinität [vgl. Gl. (2.60)], jedoch
schwierig. Bestätigt wird diese Aussage auch durch die deutlich höheren theoretischen Angaben
der Bandlücke, welche modernen Arbeiten zufolge bei 4.7 – 6.5 eV liegt [122, 123]. Des Weiteren
besitzen die genannten Absorptionsexperimente zusammen mit anderen Arbeiten wie Ref. [124]
als Hauptaugenmerk die Absorptionskante. Messungen des optischen Spektrums für einen aus-
gedehnten Energiebereich sind unserem Wissen nach nur durch Mamedov et al. [125] und Wie-
sendanger et al. [126] durchgeführt worden. Hinsichtlich Messungen und Daten des Spektrums
der Zweiten Harmonischen sieht die Lage ähnlich aus: in mehreren Arbeiten werden SHG-Daten
für einzelne fundamentale Frequenzen angegeben [127, 128, 129, 130, 131, 132, 133, 134, 135] ,
jedoch sind Messungen, die einen breiten spektralen Bereich abdecken, ebenfalls nicht bekannt.

Von theoretischer Seite aus wurden in den letzten Jahren mehrere ab-initio Studien aufge-
nommen, die insbesondere auf die strukturellen Attribute und Schwingungseigenschaften von
LN zielen [122, 136, 137, 138]. Atomistische Simulationen diesbezüglich wurden ebenso für LN-
Oberflächen durchgeführt [139, 140, 141]. Auch der Phasenübergang vom paraelektrischen zum
ferroelektrischen LN wurde mit Hilfe molekular-dynamischer Simulationen untersucht [142].
Im Vergleich dazu sind wenig Publikationen erschienen, welche die elektronischen und opti-
schen Eigenschaften zum Gegenstand haben. Ab-initio Rechnungen der Bandstruktur von Veit-
hen et al. [138] und Kityk et al. [143] basieren auf der Unabhängige-Teilchen-Approximation
und vernachlässigen Quasiteilcheneffekte, die einen beträchtlichen Anteil zur Verbreiterung der
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Bandlücke liefern. Die Notwendigkeit der Berücksichtigung von Selbstenergie-Effekten zeigt
bereits eine frühe Studie von Ching et al. [144]: basierend auf dem approximativen Sterne-
Inkson-Modell [144] wurden Selbstenergie-Korrekturen in Höhe von einem eV vorausgesagt.
Demgegenüber stand allerdings eine Einteilchen-Bandlücke von 2.62 eV, die deutlich kleiner ist
als von Veithen et al. (3.48 eV) und Kityk et al. (3.69 eV) vorhergesagt.

Beim Studium der elektronischen und optischen Eigenschaften von LN fanden 2008 Schmidt
et al. [122] Anzeichen für einen substantiellen Einfluss der Elektron-Loch-Wechselwirkung und
der Lokalfeldeffekte auf die Absorption. Obgleich die wesentlichen Merkmale im optischen Spek-
trum von LN durch die Rechnungen in Ref. [122] gut wiedergegeben werden, ist insbesondere die
Vorhersagekraft der Bandstruktur-Ergebnisse eingeschränkt, da die Modell-Abschirmung [145]
für das abgeschirmte Coulomb-Potential W in der GW -Approximation der Selbstenergie einge-
setzt wurde. Auch konnte in Ref. [122] der Einfluss der Gitterpolarisation auf die elektronischen
und optischen Eigenschaften nicht ausreichend geklärt werden.

Das Spektrum der zweiten Harmonischen wurde für LN bereits entweder durch einen app-
roximativ-analyitschen Ansatz [146] oder durch eine Unabhängige-Teilchen-Rechnung auf DFT-
Basis [147] berechnet. Der Einfluss von Quasiteilcheneffekten auf die nichtlinearen optischen
Eigenschaften wurde unserem Wissen nach jedoch noch nicht untersucht.

Im ersten Teil dieses Kapitels wird es das Ziel sein die elektronischen und optischen Ei-
genschaften des stöchiometrischen LN zu berechnen und zu untersuchen. Dabei wird Wert
auf eine hohe Präzision der Studie gelegt. Dies spiegelt sich u.a. in der Verwendung einer
RPA-Abschirmung zur Berechnung der abgeschirmten Coulomb-Potentials in der Selbstenergie
wieder (siehe Abschnitt 2.6.4 und Ref. [76]). Qualitativ hochwertiges lineares optisches Spek-
trum wird, wie bereits in Kapitel III angewendet und in Abschnitt 2.7 erläutert, mit Hilfe der
BSE berechnet. Da ab-initio Berechnungen des SHG-Tensors bisher prinzipiell selten sind, wird
das dafür geschriebene Programmpaket auch zur Berechnung der nichtlinearen optischen Eigen-
schaften anderer Halbleiter und Isolatoren, wie GaAs, AlAs und AlN (in der Wurtzit-Struktur),
eingesetzt, um durch Vergleich mit entsprechenden Arbeiten [83, 148, 149] die Genauigkeit der
Implementierung einschätzen zu können. Der SHG-Tensor für stöchiometrisches LN wird an-
schließend berechnet und studiert.

Während im ersten Teil folglich die grundlegenden Eigenschaften von stöchiometrischen
LN (SLN) studiert werden, wird die Untersuchung im zweiten Abschnitt des Kapitels auf das
kongruente LN (CLN) erweitert. Die meisten der oben genannten Anwendungen von LN ver-
wenden kongruente Kristalle, die durch die Czochralski-Methode gezüchtet werden. Tatsächlich
sind realistische LN-Kristalle in der Regel nicht stöchiometrisch sondern kongruent, oder mit
anderen Worten: Li-defizitär. Wie sich zeigt, hängen viele physikalische Eigenschaften, wie die
Curie-Temperatur, von der Existenz von Punkt-Defekten ab, die entweder mit einer Dotierung
von LN oder mit dem Li-Defizit im Zusammenhang stehen [150]. Ebenfalls existieren Anzei-
chen, dass sich die optischen Eigenschaften von SLN und CLN merklich unterschiedlich sind
[151, 152]. Die Simulation von CLN orientiert sich an zwei anerkannten Modellen, die Super-
zellen der Größe mehrerer hundert Atome erfordern. Die Tendenzen und Resultate werden in
diesem Fall demnach auf Basis der DFT-Unabhängige-Teilchen-Approximation gewonnen.

Der dritte Teil dieses Kapitels wird sich mit Lithiumtantalat und LN-LT-Mischkristallen
auseinandersetzen. Aufgrund des Isomorphismus’ zwischen LN und LT zeigen die beiden Fer-
roelektrika eine Vielzahl ähnlicher Eigenschaften. Während LN in den vielen angesprochenen
Anwendungen eingesetzt wird, wird LT als Ersatzmaterial für LN bei Applikationen verwendet,
die geringere Wellenlängen erfordern. Das kürzlich aufgekommene starke Interesse an LN-LT-
Mischkristallen (LiNb1−xTaxO3, LNT) hat als Ursache den Wunsch physikalische Eigenschaften
durch Manipulation der Stöchiometrie zu regulieren. Obgleich LNT zu den einfachsten ferro-
elektrischen Mischkristallen gehört, zeigt es einige sonderliche Eigenschaften: beispielsweise ver-
schwindet bei einer bestimmten Komposition die Eigenschaft der Doppelbrechung bei Zimmer-
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temperatur. Unserem Wissen nach ist es eine einzigartige Eigenschaft eines Ferroelektrikums.
Der Mischkristall ist infolgedessen elektrisch polar und trotzdem optisch isotrop [19, 153].

Während demnach das technologische Potential von LNT enorm ist und ungeachtet der
bereits breiten Verwendung von LN und LT für verschiedene elektrooptische und akustoop-
tische Baulemente, sind Information zu den elektronischen und optischen Eigenschaften der
Mischkristalle kaum vorhanden [154]. Die Schwierigkeit homogene Kristalle mit Hilfe traditio-
neller Wachstumsmethoden, wie das Czochralski-Verfahren, zu züchten ist ein möglicher Grund
für die geringe Kenntnis der Materialparameter. Insbesondere erschwert dabei der große Ab-
stand der flüssig-fest-Kurven im LN-LT-Phasendiagram das Wachstum der Mischkristalle über
die gesamte Kompositionsbreite hinweg [19, 155]. Nichtsdestotrotz konnten homogene LNT-
Kristalle zuletzt angefertigt werden [19]. Das Ziel der dritten Teils wird es demnach sein, mit
Hilfe von ab-initio Methoden zu einem besseren Verständnis der Materialeigenschaften von
LN-LT-Mischkristallen beizutragen.

4.1 Lithiumniobat: Elektronische und optische Eigenschaften

Zur Simulation von ferroelektrischem stöchiometrischem LN wird von der Beschreibung
durch die rhomboedrische Elementarzelle, die 10 Atome enthält, Gebrauch gemacht. Die Struk-
turdaten aus Ref. [122], die in hervorragender Übereinstimmug mit experimentellen Befun-
den stehen, bildeten die Basis zur Berechnung der elektronischen Eigenschaften. Ein k-Punkt-
Sampling der BZ von 6×6×6 und ein PAW-Ebene-Wellen-Cutoff von 400 eV wurden verwendet.
Als Austausch- und Korrelationsfunktional wurde das PW91-Funktional eingesetzt. Die Qua-
siteilchenenergien wurden nach der Methode von Shishkin und Kresse (Ref. [76] und Abschnitt
2.6.4) berechnet. 608 Elektronische Zustände wurden eingebunden um die Selbstenergie Σ in
G0W0-Näherung zu ermitteln.

Die elektronische Bandstruktur und Zustandsdichte ist in Abb. 4.1 gezeigt. Diese wurde mit
Hilfe der DFT und im Rahmen der GWA berechnet. Aus den Rechnungen geht hervor, dass LN
ein indirekter Halbleiter ist, wobei das VBM leicht seitlich des Γ-Punktes liegt. Allerdings zeigt
die Abb. 4.1 auch, dass die Banddispersion des obersten Valenzbandes sehr klein ist, sodass
der Unterschied zwischen der direkten und indirekten Bandlücke weniger als 0.1 eV beträgt.
Der Wert 3.39 eV der direkten Bandlücke am Γ-Punkt ist auf DFT-Level in Übereinstimmung
mit vorangegangen Rechnungen [122, 138, 143], die sich auf dem selben Approximationslevel
befinden. Beim Vergleich des aktuellen G0W0-Wertes von 5.42 eV mit den Resultaten früherer
Arbeiten ist Nachfolgendes zu beachten. Die Autoren von Ref. [122] verwendeten eine Modell-
Abschirmung um die abgeschirmte Wechselwirkung zu beschreiben. Obgleich dies die Genau-
igkeit der Rechnungen beeinflusst, ermöglicht es teilweise auch einen Zugang um den Einfluss
der Gitterpolarisation auf die Quasiteilchenenergien zu prüfen [156]. Abhängig davon, ob man
annimmt, dass die Gitterpolarisation die Abschirmung beeinflusst oder nicht, wurde in Ref.
[122] eine Bandlücke von ca. 6.5 eV und 5.4 eV vorhergesagt. Die im Rahmen dieser Arbeit
durchgeführten G0W0-Rechnungen berücksichtigen Gitterpolarisationseffekte nicht, sodass das
aktuelle Ergebnis mit dem Wert 6.5 eV aus der Arbeit [122] verglichen werden sollte. Die Ab-
weichung von ca. 1 eV deutet an, dass die Abschirmung in dem hier stark-ionischen Material
nicht ausreichend durch die Modell-Abschirmfunktion beschrieben wird.

Auf der anderen Seite führen GW -Rechnungen mit Hilfe der full-potential linearized aug-
mented plane-wave-Methode (FLAPW-Methode) auf eine Bandlücke von 4.7 eV [123]. Der große
Unterschied von 0.7 eV ist in diesem Fall überraschend. Neben dem Einfluss der verschiede-
nen eingesetzten Pseudo-Potential-Methoden ist eine mögliche Ursache für diese Abweichung
auch das geringere k-Punkt-Sampling der BZ in Ref. [123]: bei der Berechnung der G0W0-
Eigenenergien von Thierfelder et al. wurde ein 2 × 2 × 2-Sampling der BZ verwendet. Dem-
ungeachtet, wie später gezeigt wird, geht aus dem Vergleich der gemessenen und berechneten
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Abbildung 4.1: (a) Elektronische Bandstruktur (die Notation der Hochsymmetrie-Punkte ist in Ref.

[122] erläutert) und (b) elektronische Zustandsdichte (DOS) [in 1/eV pro Formeleinheit Lithiumniobat

(FU)] von stöchiometrischem ferroelektrischem LN berechnet mit Hilfe DFT-PW91 (schwarze Linien

und Bereiche) und G0W0-Störungstheorie (rote Punkte und gepunktete Bereiche). Gepunktete rote

Linien verbessern die Darstellung. Der Bereich der Bandlücke ist grau hinterlegt. In (b) sind auch

Nb4d- und O2p-Beiträge im Rahmen der DFT-PW91-Rechnung eingezeichnet.

optischen Daten hervor, dass der aktuelle Wert von 5.4 eV dicht beim tatsächlichen Wert der
Bandlücke liegen muss.

Auf Grundlage der Bandstrukturen, die in Abb. 4.1 dargestellt sind, wurden Berechnun-
gen des linearen optischen Spektrums vollzogen. Konvergenzuntersuchungen hinsichtlich des
k-Punkt-Samplings zeigen, dass das Spektrum mit einem Sampling von 6×6×6 konvergiert ist
(vgl. Abb. 4.2). In Abb. 4.3 ist die dielektrische Funktion von ferroelektrischem LN auf den
drei Approximationsstufen IPA (DFT), IQA (GWA) und BSE(-TDA) gezeigt. Zur Berechnung
des BSE-Spektrums wurde eine Dielektrizitätskonstante von ε∞ = 6.13 eingesetzt. Das Spek-
trum, ermittelt im Rahmen der Unabhängige-Teilchen-Näherung, stimmt schätzungsweise mit
früheren Resultaten auf dem gleichen Level der Theorie überein [143, 144]. Im IPA-Spektrum
befinden sich zwei wesentliche Absorptionsstrukturen bei ca. 5 eV bzw. 8 eV, die von O2p- und
Nb4d-Übergängen bzw. drei Bändern, die am Γ-Punkt bei 7.4 eV liegen, stammen [vgl. Abb.
4.1(b) und Ref. [122]]. Die Berücksichtigung von Vielteilcheneffekten in der Bandstruktur (IQA)
resultiert in einer fast konstanten Blau-Verschiebung des Spektrums in Höhe von ca. 2 eV. Die
Elektron-Loch-Wechselwirkung, die durch die Lösung der BSE angerechnet wird, modifiziert
einigermaßen die Kurvenform. Die erste Absorptionsstruktur tritt deutlicher hervor und das
gesamte Spektrum ist verglichen mit dem IQA-Spektrum um ca. 1 eV rotverschoben. Die nie-
derenergetische Absorptionsstruktur befindet sich nun bei jeweils 5.5 eV und 5.6 eV für ε⊥ und
ε||. Auch die Intensität der ehemals breiten (≈ 2 eV) hochenergetischen Absorptionsstruktur
wird korrigiert, sodass die Struktur zu einem Peak bei ca. 9.3 eV (für ε⊥ und ε||) komprimiert
wird. Basierend auf dem orbitalen Charakter der elektronischen Zustände, die zu den beiden
hauptsächlichen Absorptionsstrukturen beitragen [vgl. Abb. 4.1(b)], ist es wahrscheinlich, dass
die starke Lokalisation der Zustände zu den starken exzitonischen Effekten führt. Da allerdings
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Abbildung 4.3: Imaginärteil der dielektrischen Funktion für (a) die ordentliche (ε⊥) und (b) außer-

ordentliche (ε||) Polarisationsrichtung von stöchiometrischem ferroelektrischem LN berechnet im Rah-

men der Unabhängige-Teilchen-Approximation (IPA, gepunktete Linien), Unabhängige-Quasiteilchen-

Approximation (IQA, gemischte Linien) und der BSE (gestrichelte Linien) im Vergleich zu gemessenen

Spektren[126] (durchgezoge Linien).
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keine Diagonalisierung der BSE-Matrix durchgeführt wurde, kann der Ursprung der entspre-
chenden exzitonischen Eigenzustände nicht vollständig geklärt werden.

Der Vergleich der berechneten Spektren mit experimentellen Daten für kongruentes LN, in
denen Absorptionsstrukturen bei 5.3 – 6.0 eV und 9.2 – 10.0 eV gesichtet werden können [vgl.
Refs. [125, 126] und Abb. 4.3], zeigt, dass die Berücksichtigung von Selbstenergie- und exzitoni-
schen Effekten wesentlich die theoretische Beschreibung der optischen Eigenschaften verbessert.
Dies betrifft sowohl die energetische Lage als auch die Kurvenform der Absorptionsstrukturen.
Dementsprechend wird auch die experimentelle Beobachtung hinsichtlich der größeren Breite
der ersten Absorptionsbande in ε|| verglichen mit ε⊥ erst in den Rechnungen wiedergefunden,
welche die gesamten Vielteilcheneffekte berücksichtigen. Beim Vergleich der Absorptionskanten
der berechneten und der gemessenen Spektren stellt sich eine Blauverschiebung von ca. 0.2 eV
im BSE-Spektrum heraus. Die Kurvenform der aktuellen Rechnungen stimmt besser mit dem
Experiment überein als die Resultate aus Ref. [122]. Dies kann auf die bessere Beschreibung
der Selbstenergieeffekte in der GW-Rechnung zurückgeführt werden. Die nichtsdestoweniger
vorhandenen Abweichungen zwischen Theorie und Experiment können auf die nachfolgenden
drei Punkte zurückgeführt werden. (i) Das Einbinden von Gitterpolarisationseffekten, die hier
vernachlässigt wurden, sollte zu einer Rotverschiebung der Absorptionsstrukturen in der be-
rechneten dielektrischen Funktion führen [122]. Die aktuellen Befunde weisen demnach darauf
hin, dass die Gitterpolarisation in gewissem Maße die Ein- und Zweiteilchenzustände in fer-
roelektrischem LN beeinflusst. (ii) Die numerische Auswertung von Vielteilchentechniken ist
verbunden mit intrinsischen Unsicherheiten genau in der Größenordnung der vorliegenden Ab-
weichungen. (iii) Wie später in Abschnitt 4.2 im Zusammenhang mit kongruentem LN diskutiert
wird, hat auch die Nicht-Stöchiometrie in den experimentellen Proben Einfluss auf die optischen
Eigenschaften.

Um die grundsätzlichen Eigenschaften nichtlinearer Spektren zu untersuchen wurde das
dafür entwickelte Programm-Paket zunächst auf die binären Halbleiter GaAs, AlAs und AlN
(in der Wurtzit-Struktur, AlN-wz) angewendet. Konvergenztests für GaAs zeigen dabei, dass
in den Fällen kleiner Elementarzellen (und demnach großer BZ’s) das Spektrum erst für hohe
k-Punktsätze konvergiert ist [vgl. Abb. 4.4]. Die Abhängigkeit vom Cutoff bzgl. der eingebunde-
nen Zustände ist in diesem Fall gering. Abb. 4.4(c) zeigt auch, dass im Gegensatz zum linearen
Spektrum eine Anwendung des Scissors-Operators mit einer Intensitätsreduktion verbunden
ist. Letzteres kann auch aus Gl. (2.153) abgelesen werden. Der Vergleich des aktuellen SHG-
Spektrums von GaAs mit den Resultaten von Leitsmann et al. [83] zeigt eine Überschätzung
der Intensität um den Faktor zwei1 [vgl. Abb. 4.5(a)]. Die Kurvenform stimmt dagegen sehr
gut überein. Ähnliches gilt auch für die Ergebnisse hinsichtlich des nichtlinearen Spektrums
von AlAs. Die Gegenüberstellung der Resultate von Luppi et al. [148] und des hier berechne-
ten Spektrum ist in Abb. 4.5(b) dargestellt und verdeutlicht die gute Übereinstimmung der
Kurvenform, obgleich das aktuelle Spektrum die Intensität der SHG-Daten aus Ref. [148] um
einen Faktor 1.4 überschätzt. Die Rechnungen für AlN-wz zeigen ebenfalls eine Überschätzung
der Intensität verglichen mit den Resultaten von Gavrilenko et al. [149] [ vgl. Abb. 4.5(c)]. In
der Summe zeigt sich demnach eine gute Übereinstimmung der Kurvenform der SHG-Spektren
verglichen mit anderen Arbeiten, wenngleich hinsichtlich der Intensität eine Überschätzung vor-
liegt. Die Ursache für die Intensitätsüberschätzung kann hier nicht aufgeklärt werden. Einer-
seits besteht die Möglichkeit, dass unterschiedliche Konventionen hinsichtlich χ

(2)
αβγ verwendet

werden (die sich exakt um einen Faktor zwei unterscheiden). Andererseits kann ein gewisser
Intensitätsunterschied auch beim Vergleich von Spektren basierend auf PAW- und FLAPW-
Pseudo-Potentialen, wie in Ref. [149] verwendet, erwartet werden. Nichtsdestotrotz legen die
Vergleiche klar, dass mit dem Programm-Paket zuverlässige SHG-Spektren der studierten Fer-

1Im Gegensatz dazu sind die Ergebnisse in guter Übereinstimmung mit den Rechnungen von Chang et al.
[157]
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roelektrika vorausgesagt werden können.

LN besitzt aufgrund der Punktgruppensymmetrie 3m (C3v) vier unabhängige nichtver-

schwindende SHG-Koeffizienten χ
(2)
αβγ, die namentlich lauten: αβγ = 211 = −222 = 112,

223 = 131, 311 = 322 und 333. Üblicherweise fasst man diese jeweils zu den Doppelindi-
zes 21 = −22 = 16, 24 = 15, 31 = 32 und 33 zusammen. Die Konvergenztests für die vier
Koeffizienten zeigen eine schwache Abhängigkeit vom k-Punktsatz: ähnlich wie beim linearen
Spektrum ist das SHG-Spektrum mit 6×6×6 k-Punkten bereits konvergiert (vgl. Abb. 4.6). Die
Abhängigkeit von der Anzahl der eingebundenen Zustände ist dagegen komplizierter. Während
die Rechnungen für Cutoffs von ca. 25 eV für die unbesetzten Zustände im Wesentlichen kon-
vergiert sind, weisen die Spektren Oszillationen unter Einbindung von Valenzbandzuständen
verschiedener energetischer Regionen auf. Wie die Abb. 4.7 und 4.8 zeigen, gilt dies insbeson-
dere für die 31- und 33-Komponente des SHG-Tensors bei Einschluss der energetisch niedrigen
O2s- und Nb4p-Zustände (bei -16 eV und -30.5 eV, siehe auch Abb. 4.11). Übergänge zwischen
Nb4p- und Nb4d-Orbitalen verursachen für diese Komponenten sichtbare Modifikationen der
Intensität des nichtlinearen Spektrums. Für eine gute Konvergenz der 21- und 24-Komponente
reicht dagegen nur die Berücksichtigung der O2p/Nb4d- und O2s-Zustände (d.h. der Ausschluss
der Nb4p-Zustände ist akzeptabel). Untersucht wurde auch der Einfluss energetisch niedriger
Nb4s-Orbitale (bei -51 eV) auf die nichtlinearen optischen Eigenschaften, wobei keine Wirkung
festgestellt werden konnte. Die Abhängigkeit der Intensität des SHG-Spektrums von der Anzahl
der berücksichtigten Bänder steht im Einklang mit den Befunden anderer Arbeiten [158, 159].
Allgemein wurde auch gefunden, dass der wesentliche Beitrag zum SHG-Spektrum aus den
Dreiband-Beiträgen stammt. Die Zweiband-Beiträge sind demnach vernachlässigbar klein.

In Abb. 4.9 ist die 333-Komponente des SHG-Tensors von ferroelektrischem LN dargestellt.
Berechnet wurde das Spektrum im Rahmen der IPA sowie der IQA (und unter Ausschluss von
O2s- und Nb4p-Valenzbändern). Gezeigt ist der Real- und Imaginärteil sowie der Absolutbetrag

von χ
(2)
333 bis 6 eV. Auf IPA-Niveau weisen die Berechnungen zwei Hauptmerkmale zwischen 1.5

– 3.0 eV sowie 3.8 – 4.4 eV auf. Erwartungsgemäß verursacht die Berücksichtigung von Vielteil-
cheneffekten in der Bandstruktur (IQA) eine Blauverschiebung des Spektrums. Entsprechend
Gl. (2.153) und den Untersuchungen zu den binären Halbleitern weicht das Ausmaß der Ver-
schiebung jedoch von der Größe der Bandlücken-Korrektur ab und wird begleitet durch eine
Intensitätsminderung. Ins Detail gehend beträgt die Blauverschiebung ca. 1 eV. Experimentelle
Messungen ergeben Absolutwerte für die 333-Komponente zwischen 0.2 – 0.4 Å/V für Photonen-
energien von ca. 1 eV [160]. Aus der Betrachtung dieser Daten geht hervor, dass die Rechnungen
im Rahmen der IPA die experimentellen Resultate überschätzen, während die IQA-Ergebnisse
(ohne Einbindung von O2s- und Nb4p-Valenzzuständen) in guter Übereinstimmung mit dem
Experiment stehen. Der Vergleich zwischen Theorie und Experiment erweist hier allerdings als
schwierig, da experimentelle Datenpunkte nur für fundamentale Wellenlängen vorhanden sind.
Weiterhin ist, wie in Abschnitt 4.2 gezeigt wird, der Einfluss der Nicht-Stöchiometrie zu be-
achten. Auch exzitonische Effekte, die hier vernachlässigt wurden, können einen wesentlichen
Beitrag zum nichtlinearen Spektrum liefern [148].

Den Abschnitt zusammenfassend, zeigt die ab-initio Studie der linearen und nichtlinearen
optischen Eigenschaften von ferroelektrischem stöchiometrischem LN, dass insbesondere die di-
elektrische Funktion ermittelt unter Berücksichtigung der Elektron-Loch-Wechselwirkung, der
Lokalfeld- und der Selbstenergieeffekte in sehr guter Übereinstimmung mit experimentellen Da-
ten steht. Die Selbstenergieeffekte verursachen eine Bandlücken-Vergrößerung von ca. 2 eV ver-
glichen mit Einteilchenrechnungen, die auch im linearen Spektrum sichtbar wird. Hinzu kommen
exzitonische Bindungsenergien in Höhe von 1 eV, die zu einer Rotverschiebung des Spektrums
führen. Die leichte Überschätzung der Absorptionskante kann entweder auf die Auswirkung
der Gitterpolarisation auf Ein- und Zweiteilchenzustände oder den Einfluss der modifizierten
Stöchiometrie in den experimentellen Proben zurückgeführt werden. Im Spektrum der Zweiten
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GaAs, (b) AlAs und (c) AlN (in der Wurtzit-Struktur) mit den Resultaten der Arbeiten [83, 148,

149] (schwarze Linien). Im Fall von (a) und (c) ist 1
2=χ

(2) den Resultaten von Refs. [83] und [149]
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33 des SHG-Tensors χ
(2)
αβγ(1.18eV ) von stöchiometrischem ferroelektrischem LN vom Leitungsband-

Cutoff (CB-Cutoff) und Valenzband-Cutoff. Bei der Untersuchung des Einflusses des Valenzband-

Cutoffs wurden schrittweise O2p- (schwarze durchgezogene Linien), O2s- (rote gestrichelte Linien)

und Nb4p-Zustände (grüne gemischte Linien) in den Rechnungen berücksichtigt.
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Harmonischen befinden sich die Hauptkennzeichen oberhalb von 1.5 eV. Auch in Fall des SHG-
Tensors wurde eine Verbesserung der Übereinstimmung der Rechnungen mit experimentellen
Daten bei Einbeziehen von Selbstenergieeffekten festgestellt.

4.2 Einfluss modifizierter Stöchiometrie auf die optische Response:
Kongruentes Lithiumniobat

Kongruentes LN (CLN) ist bekannt dafür, stark Lithium-defizitär zu sein. Das übliche
[Li]/[Nb]-Verhältnis beträgt 0.94 [161]. Prinzipiell lässt sich eine Struktur mit diesem Verhält-
nis durch eine 2×2×2-Wiederholung der rhomboedrischen Elementarzelle von SLN [siehe Abb.
4.10(a)] konstruieren. Die Superzelle würde insgesamt 79 Atome enthalten, was 16 Formelein-
heiten LiNbO3 entspricht, wobei ein Lithium-Atom entfernt wurde. Mit diesem Ansatz gelangt
man zu einem [Li]/[Nb]-Verhältnis von 0.9375. Allerdings erfordert die Simulation von CLN
noch die Betrachtungen zusätzlicher Nebenbedingungen, die durch experimentelle Befunde auf-
gestellt wurden. Verschiedene experimentelle Studien [162, 163] haben das Vorhandensein von
Sauerstoff-Vakanzen VO ausgeschlossen, die das Kennzeichen vieler Oxide sind, und stattdes-
sen die Präsenz großer Mengen an Nb+4

Li Antisite-Defekten aufgedeckt [164] [vgl. Abb. 4.10(b)].
Der entsprechende Ladungsüberschuss kann auf unterschiedliche Art und Weise entweder durch
Nb- oder Li-Vakanzen ausgeglichen werden. Genau genommen können im Rahmen eines auf Nb-
Vakanzen bezogenen Modells, dem sog. Nb site vacancy model, vier V−1

Nb Vakanzen fünf Nb+4
Li

Antisite-Defekte kompensieren. Ähnlich verhält es sich mit dem sog. Li site vacancy model. In
diesem auf Li-Vakanzen bezogenen Modell wird ein Nb+4

Li Antisite-Defekt durch vier V−1
Li Va-

kanzen kompensiert. Heutzutage ist insbesondere das Li site vacancy model, das im Folgenden
mit CLN(Li) bezeichnet wird, weitgehend akzeptiert und wird verwendet um die Materialei-
genschaften von LN zu interpretieren. Übereinstimmend mit diesem Modell wird CLN durch
ungeladene Superzellen mit 360 Atomen simuliert. Die Konstruktion wird ermöglicht durch die
Verwendung einer 3×3×4-Fortsetzung der primitiven Elementarzelle von LN. Die Superzelle
enthält ein Nb+4

Li Antisite-Defekt und vier Li-Vakanzen V−1
Li , sodass das [Li]/[Nb]-Verhältnis

0.92 beträgt. Zum Vergleich wurden auch Rechnungen im Rahmen des Nb site vacany model
[im Folgenden abgekürzt mit CLN(Nb)] durchgeführt. Im diesem Fall wird eine Superzelle der
gleichen Größe verwendet, die allerdings fünf Nb+4

Li Antisite-Defekte und vier Nb-Vakanzen V−1
Nb

enthält. Das dazugehörige [Li]/[Nb]-Verhältnis beträgt ebenfalls 0.92.
Um die strukturellen Eigenschaften von CLN mit hoher Genauigkeit zu bestimmen, wurde

für die kleine BZ der 360-atomigen Superzelle ein 4×4×4-k-Punkt-Sampling gewählt. Durch-
geführt wurde an dieser Stelle auch eine Relaxation der Positionen der Atome in der Nähe
der Defekte. Zum berechnen der elektronischen und optischen Eigenschaften von CLN wurde
dagegen ein 2×2×2-Gitter verwendet, da es näherungsweise dem 6×6×6-Sampling der BZ der
Elementarzelle von SLN entspricht.

Wie bereits im vorangegangen Abschnitt 4.1 diskutiert, ist das BSE-Spektrum von SLN
in sehr guter Übereinstimmung mit experimentellen Messungen, in denen CLN-Proben stu-
diert wurden. Jedoch konnten auch Unterschiede hinsichtlich quantitativer Details festgestellt
werden. Dies betrifft zum einen die Verschiebung der Absorptionskante um 0.2 eV und zum
anderen das Auftreten einer Peakstruktur bei ca. 5.5 eV im Spektrum von SLN. Letzteres
tritt insbesondere in ε|| hervor und kann in den experimentellen Daten nicht beobachtet wer-
den. Mehrere Gründe wurden in Abschnitt 4.1 angegeben, die diese Abweichungen verursachen
können. U.a. wurde auch der Einfluss der modifizierten Stöchiometrie genannt. Im Folgen-
den wird an dieser Stelle angeknüpft und die optischen und elektronischen Eigenschaften von
SLN und CLN verglichen um auf diese Weise zu einer Aufklärung der Unterschiede beizutra-
gen. Die Absorptionsspektren von CLN(Li) und CLN(Nb) sind in Abb. 4.13 dargestellt. Auf
IPA-Niveau sind diese mit dem Spektrum von SLN verglichen. Da die zur Simulation not-
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Abbildung 4.9: Realteil, Imaginärteil und Absolutbetrag der 333-Komponente des SHG-Tensors

χ
(2)
333 von stöchiometrischem ferroelektrischem LN berechnet im Rahmen der Unabhängige-

Teilchen-Approximation (IPA, schwarze durchgezogene Kurven) und Unabhängige-Quasiteilchen-

Approximation (IQA, rote gestrichelte Kurven). Rauten und Dreiecke kennzeichnen experimentelle

Werte aus den Tabellen 2 und 4 in Ref. [160].
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Abbildung 4.10: Schematische Darstellung von stöchiometrischem ferroelektrischem LN [SLN, (a)]

und den Defekten, die in den CLN-Modellen berücksichtigt werden: (b) Nb+4
Li Antisite-Defekt, (c)

Lithium-Vakanz V−Li und (d) Niob-Vakanz V−5
Nb. Sauerstoff-, Lithium- und Niobatome sind als rote,

schwarze und weiße Kugel dargestellt. Die Nb-Oktaeder sind grün unterlegt. Eingezeichnet sind die

z-Achse und die Polarisationsrichtung.
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Abbildung 4.11: Elektronische Bandstruktur von SLN berechnet im Rahmen der DFT-PW91 zusam-

men mit den Zustandsdichten von SLN (durchgezogene Linien), CLN(Li) (gestrichelte Linien) und

CLN(Nb) (gemischte Linien). Die Notation der k-Punkte folgt Ref. [122]. Auch die O2s-, O2p-, Nb4p-

und Nb4d-projezierten Zustandsdichten sind eingezeichnet.
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Abbildung 4.12: (a) Kombinierte

Zustandsdichte (JDOS) im Vergleich

zum Imaginärteil der Dielektrischen

Funktion für SLN, CLN(Li) und

CLN(Nb) (durchgezogene, gestrichel-

te und gemischte Linien) und (b) je-

weilige Oszillatorstärken gemäß Gl.

(4.2) (ausgefüllte, gestrichelte und ge-

punktete Balken).
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wendigen Superzellen 360 Atome enthalten, können (die Rechnungen und) Vergleiche nur auf
IPA-Niveau durchgeführt werden. Die Abb. 4.13 macht deutlich, dass die Unterschiede im li-
nearen optischen Spektrum von SLN und CLN(Li) gering sind. Etwas größer sind dagegen die
Abweichungen im Fall von CLN(Nb). Unabhängig vom zu Grunde liegenden Modell werden fol-
gende Tendenzen festgestellt: Die Absorptionskante in der dielektrischen Funktion von CLN ist,
insbesondere für ε||, gegenüber SLN um 0.2 eV rotverschoben, und die Peakstruktur im ersten
Absorptionsmaximum ist für CLN deutlich geglättet. Letzteres wird besonders für ε⊥ deutlich.
Die Beobachtungen lassen den Schluss zu, dass die Abweichungen in der optischen Absorpti-
on zwischen dem berechneten SLN-Spektrum und den experimentellen Messungen basierend
auf kongruenten Proben auf stöchiometrische Modifikationen zurückgeführt werden können.
Oder mit anderen Worten gesagt: die quantitativen Details im LN-Spektrum werden durch die
Verwendung von CLN-Modellen besser beschrieben. An dieser Stelle darf jedoch nicht verges-
sen werden, dass die Unterschiede in der optischen Absorption zwischen SLN und CLN durch
Vielteilcheneffekte ebenfalls beeinflusst werden und infolgedessen auf BSE-Level ein anderes
Verhalten aufweisen können. Beispielsweise können hohe exzitonische Bindungsenergien von
lokalisierten Defektzuständen die optische Rotverschiebung in CLN verglichen mit SLN weiter
erhöhen [165].

Um die Glättung der Peakstruktur in ε⊥ und die leichte Rotverschiebung der Absorpti-
onskante beim Übergang von stöchiometrischem zu kongruentem LN zu verstehen, wurde eine
Analyse der kombinierten Zustandsdichte (JDOS)

DJ(ω) :=
∑
nk,mk

δ[~ω − (εmk − εnk)] (4.1)

sowie der Oszillatorstärken

S(ω) :=
∑

(εck−εvk)∈[ω,ω+∆ω]

|pxcv(~k)|2

(εck − εvk)2
, mit ∆ω = 0.1eV (4.2)

der für den Bereich 3.5 – 5.5 eV relevanten Übergänge unternommen. Wie die Abb. 4.12 zeigt,
sind die JDOS’ für SLN und CLN prinzipiell sehr ähnlich. Es kann jedoch auch eine Abnahme
der Bandlücke und eine gleichmäßige Intensitätsreduktion oberhalb 4.5 eV für CLN beobachtet
werden. Die um ca. 0.2 – 0.3 eV verkleinerte Bandlücke ist auch im Einklang mit den Ergebnis-
sen der berechneten Zustandsdichten für CLN, die in Abb. 4.11 dargestellt sind. Die Feinstruk-
tur des ersten Absorptionsmaximums wird allerdings eher durch die Oszillatorstärken S(ω) als
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durch die kombinierte Zustandsdichte erzeugt. Abb. 4.12(b) verdeutlicht, dass die Peakstruk-
tur beim Übergang von SLN zu CLN durch reduzierte Impulsmatrixelemente zwischen O2p-
Valenzband- und Nb4d-Leitungsbandzuständen verflacht bzw. verschwindet. Zusammengefasst
wird demnach die Rotverschiebung der Absorptionskante durch Modifikationenen in der Zu-
standsdichte verursacht, während sich die Glättung der Feinstruktur aus den Änderungen der
Impulsmatrixelemente ableitet.

In Abb. 4.14 sind die 21-, 24-, 31- und 33-Komponenten des SHG-Tensors von CLN und SLN
dargestellt. Das nichtlineare Spektrum von SLN im Rahmen der IQA ist ebenfalls eingetragen.
Dabei wurde ein Scissors-Operator mit ∆ = 2.03 eV verwendet, der die GW -Bandlücke er-
zeugt. Eine gute Näherung für die zustandsabhängige Selbstenergiekorrektur liefert der Scissors-
Operator, da sich die Banddispersion in LN beim Übergang von IPA zu GWA nur geringfügig
ändert. Dies wird sowohl beim Betrachten der GW -Bandstruktur (vgl. Abb. 4.1) als auch der
dielektrischen Funktion im Rahmen der GWA und mit einem Scissors-Shift deutlich. Man findet
im Rahmen der IQA für alle vier Komponenten des SHG-Tensors von SLN eine Blauverschie-
bung von Strukturen im Spektrum und eine begleitende Intensitätsreduktion. Auch ist in Abb.
4.14 die Wirkung von Nb4p-Zuständen auf das gesamte Spektrum gezeigt. Insbesondere wird
durch die Berücksichtigung der Nb4p-Zustände die Intensität 31- und 33-Komponenten beein-
flusst (vgl. auch Abschnitt 4.1).

Mehrere experimentelle Datenpunkte sind in der Literatur [127, 129, 130, 131, 132, 133,
134, 135, 166, 167] angegeben. Die Daten sind durch verschiedene Symbole in Abb. 4.14 mar-
kiert. Auch Messungen von |χ(2)(ω)| sind eingeschlossen und werden verwendet um den Realteil
von χ(2)(ω) zu repräsentieren, da der Imaginärteil in der entsprechenden Energieregion klein
ist. Aus der Gegenüberstellung der Messwerte und der berechneten SLN-Daten auf IPA- und
IQA-Niveau lässt sich schlussfolgern, dass, während die 33-Komponente im Rahmen der IQA
die experimentelle Intensität gut trifft [vgl. auch Abschnitt 4.1 und Abb. 4.3], die 21-, 24- und
31-Komponente (unter Einbinden von Nb4p-Zuständen) die experimentell gemessenen Inten-
sitäten überschätzten. Mit Bezug darauf, ist für CLN auf IPA-Niveau eine Verminderung des
SHG-Signals zu beobachten. Dies kommt insbesondere für CLN(Nb) zum Vorschein. Auch ist
für das auf Nb-Vakanzen bezogenene Modell eine Glättung des nichtlinearen Spektrums festzu-
stellen. Im Fall der 33-Komponente jedoch, findet man auch eine Verstärkung des SHG-Signals
im Bereich von 1 – 2 eV. Wie bereits für das lineare Spektrum festgestellt, werden folglich quan-
titative Feinheiten im SHG-Spektrum auf IPA-Niveau durch die Verwendung der CLN-Modelle
insgesamt besser charakterisiert.

Wiederum sei gesagt, dass beim Vergleich zwischen Theorie und Experiment einige Er-
schwernisse hinzunehmen sind. Zum einen befinden sich die experimentellen Datenpunkte bei
ca. 1 eV klar im nichtresonanten Energiebereich (d.h. unterhalb Energie der halben Bandlücke)
und sind zudem, wie im Fall der 21-, 24- und 31-Komponente, von geringer Größenordnung.
Beispielsweise ist das SHG-Signal von GaAs in diesem Bereich zwei Größenordnungen höher.
Zum anderen können Lokalfeldeffekte, wie von Luppi et al. [148] festgestellt, je nach Material
und Energiebereich das SHG-Signal um bis zu 30% reduzieren. Von exzitonischen Effekten wird
dagegen eine einheitliche aber spürbare Erhöhung der Intensität erwartet [83, 148].

In diesem Abschnitt wurde ein Anlauf unternommen die elektronischen und optischen Ei-
genschaften von kongruentem Lithiumniobat zu modellieren. Die linearen und nichtlinearen
optischen Eigenschaften berechnet für ein auf Li-Vakanzen bezogenes Modell (Li site vacancy
model) sowie für ein auf Nb-Vakanzen bezogenes Modell (das Nb site vacancy model) beschrei-
ben quantitative Feinheiten im LN-Spektrum besser als die entsprechenden Rechnungen für
stöchiometrisches LN: Verglichen mit SLN-Ergebnissen, werden in den CLN-Simulationen ei-
ne rotverschobene Absorptionskante, eine Glättung von Peakstrukturen und ein verringertes
SHG-Signal gefunden. Insbesondere gilt das für CLN(Nb). Nichtsdestotrotz werden weitere
Untersuchungen notwendig sein um den Einfluss von Defekten und Kristallmängel auf die op-
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aus den Berechnungen ausgeschlossen wurden.
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tischen Eigenschaften von LN vollständig aufzuklären. Auf der einen Seite müssen eine Viel-
zahl von Defektkonfigurationen und Defektkomplexen [vgl. Ref. [168]] studiert werden. In die-
sem Zusammenhang kann die vorliegende Untersuchung weiter durch die Berücksichtigung von
Cluster-Phänomenen [169] verfeinert werden, da momentan die Defekte auf zufällig ausgewähl-
ten Gitterplätzen platziert sind. Auf der anderen Seite wird erwartet, dass Vielteilcheneffekte,
die bereits einen starken Einfluss auf die elektronischen und optischen Eigenschaften von SLN
gezeigt haben, ebenfalls die CLN-Eigenschaften beeinflussen.

4.3 Elektronische und optische Eigenschaften von Lithiumniobat-
Lithiumtantalat-Mischkristallen

Im gegenwärtigen Abschnitt werden die optischen und elektronischen Eigenschaften von
Lithiumniobat-Lithiumtantalat-Mischkristallen (LNT) durch eine ab-initio Studie analysiert.
Durch die Verwendung einer 1×1×2-Fortsetzung der primitiven Elementarzelle von LN, werden
LiNb1−xTaxO3-Mischkristalle mit den Kompositionen x = 0, 1

4
, 1

2
, 3

4
und 1 realisiert. Die Super-

zellen enthalten folglich 20 Atome, unter denen sich 0 – 4 Nb- bzw. Ta-Atome befinden [vgl.
Abb. 4.15]. Die Gleichgewichtsgitterkonstanten und -Positionen der Atome wurden ermittelt, in-
dem die mit Hilfe von VASP berechneten Gesamtenergien an die Murnaghan-Zustandsgleichung
[170] interpoliert wurden. Die Abb. 4.16 zeigt das Verhalten der Gesamtenergien in Abhängig-
keit von Volumen. Ausführlich sind die Ergebnisse der strukturellen Untersuchungen in der
Arbeit von Sanna et al. [171] diskutiert.

Wie bereits in den Abschnitten zuvor wurden für Rechnungen auf DFT-GGA-Basis das
PW91-Funktional und ein Ebene-Wellen-Cutoff von 400 eV eingesetzt. Die BZ wurde mit
4×4×4-k-Punkten gerastert. Zur Berechnung der Selbstenergie Σ in GW -Approximation wur-
den 1404 Zustände (702 pro primitive LN/LT-Elementarzelle) eingebunden. Der Reflexionsko-
effizient n(~ω) zum Vergleich der berechneten Werte mit den experimentellen Daten von Wood
et al. [153] wird aus der dielektrischen Funktion im Rahmen der BSE und unter Verwendung
der GW -Eigenwerte mit Hilfe von

n(~ω) =

√
1

2

[
<ε(~ω) +

√
<ε(~ω)2 + =ε(~ω)2

]
(4.3)

berechnet. Theoretische SHG-Daten werden auf IQA-Niveau präsentiert.
Rechnungen zu den vier Möglichkeiten eine Komposition von x = 1

2
mit Hilfe der aktuel-

len Superzelle zu erzeugen wurden durchgeführt, um den Fehlerbalken der Simulationen, der
durch den Einfluss lokaler stöchiometrischer Fluktuationen und Unordnung entsteht [172, 173],
einschätzen zu können. Aus diesen Rechnungen lassen sich maximale Schwankungen von 0.1
eV für Bandlücken und 0.01 für die Doppelbrechung schlussfolgern.

Die Abb. 4.17 stellt die berechneten gemittelten Dielektriztätskonstanten ε∞ ' ε(ω = 0)
und PW91- sowie G0W0-Bandlücken in Abhängigkeit von der Komposition x dar. Hinsichtlich
der Bandlücken sind sowohl die Werte am Punkt Γ als auch die fundamentalen Bandlücken
angegeben. Aus den berechneten Daten geht hervor, dass sich die Dielektrizitätskonstante li-
near mit der Komposition x verringert. Die beiden Randwerte für LN und LT lauten 6.01 und
5.33. Im Gegensatz dazu weisen die Bandlücken einen parabelförmigen Verlauf auf. Die funda-
mentale Bandlücke reicht von 5.41 eV für LN bis 5.65 eV für LT. Die bowing-Parameter2 für
die PW91- und G0W0-Daten betragen jeweils -0.6 und -0.3. Unabhängig von der Komposition
x der LNT-Mischkristalle hat das Berücksichtigen von Selbstenergieeffekten eine Bandlücken-
Aufweitung von ca. 2 eV als Konsequenz. In diesem Zusammenhang sind die Bandstrukturen

2Zum Berechnen der bowing-Parameter c wurden die Daten aus Fig. 4.17 an die Gleichung Eg(x) = a+ bx+
cx(1− x) gefittet.
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Abbildung 4.15: Schematische Dar-

stellung der 1×1×2-Superzelle, die

zur Simulation von LiNb1−xTaxO3-

Kristallen mit den Kompositionen x =

0, 1
4 ,

1
2 ,

3
4 , 1 verwendet wird. Weiße,

graue, blaue und rote Kugeln kenn-

zeichnen Lithium-, Niob-, Tantal- und

Sauerstoffatome.

190 200 210 220 230 240 250 260
Volume (Å

3
)

-158.5

-158

-157.5

-157

-156.5

E
ne

rg
y 

(e
V

)

x=1.00
x=0.75
x=0.50
x=0.25
x=0.00

0 20 40 60 80 100
Niobanteil in %

217

218

219

220

221

222

223

Z
el

lv
ol

um
en

 (
Å3 )

LiTaO
3

LiNbO
3

Abbildung 4.16: Gitterparameter von LiNb1−xTaxO3-Kristallen: (a) Berechnung des Gleichgewichts-

volumens unter Verwendung der Murnaghan-Zustandsgleichung und (b) Abhängigkeit des Gleichge-

wichtsvolumens der 1×1×2-Superzelle von der Nb-Konzentration. In (b) wird ein nahezu linearer

Verlauf festgestellt. Die Abbildungen wurden der Arbeit von Sanna und Schmidt [171] entnommen.
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von LN und LT, berechnet auf DFT-Niveau und im Rahmen der GW -Approximation der Selbs-
tenergie, in Abb. 4.18 dargestellt. Aufgrund des strukturellen Isomorphismus zwischen LN und
LT sind die wesentlichen Merkmale der Energiebänder ähnlich, obgleich die Banddispersion der
elektronischen Zustände von LT etwas ausgeprägter ist.

Die berechneten Daten für LN simuliert durch die 1×1×2-Superzelle zeigen leichte Abwei-
chungen gegenüber den Resultaten aus Abschnitt 4.1. Erklärt ist dies insbesondere durch die
unterschiedlichen Gitterparameter (siehe dazu Ref. [171]) und leichte Unterschiede in den nu-
merischen Parametern. In Abschnitt 4.1 wurden auch Vergleiche zu verfügbaren Rechnungen
und experimentellen Ergebnissen für LN diskutiert. Hinsichtlich LT zeigt eine vergleichbare
ab-initio Studie [174] auf DFT-Niveau eine direkte Bandlücke von 3.49 eV, die in guter Über-
einstimmung mit dem PW91-Wert von 3.72 eV steht. Allerdings wird in derselben Arbeit im
Gegensatz zur aktuellen Studie eine kleinere LN-Bandlücke von 3.08 eV angegeben. Die eben-
falls bestimmten Dielektritzitätskonstanten ε∞ von 6.68/6.58 und 4.94/4.88 für die ordentliche
und außerordentliche Polarisationsrichtung von LN und LT weichen um max. 20% von den
IPA-Ergebnissen ab (6.22/5.57 und 5.35/5.29, vgl. auch Fig. 4.17).Weitere theoretische Werte
liefern die Arbeiten von Wang et al. [175] und Inbar et al. [176]. In Ref. [175] werden DFT-
PBE- und GW -Bandlücken von 3.93 und 5.58 eV angeführt. Insbesondere der Wert berechnet
mit Hilfe der Vielteilchen-Störungstheorie deckt sich mit dem aktuellen Ergebnis von 5.65 eV,
obgleich die PBE-Ausgangsbandlücke etwas höher liegt. Die DFT-Studie von Inbar et al. liegt
in Übereinstimmung mit der aktuellen Anordnung der Bandlücken von LN und LT. Werte von
3.1 eV und 4.1 eV für LN und LT werden angegeben.

Experimentell befinden sich die Bandlücken für LT in einem Bereich von 3.985 eV und 5.06
eV, wobei in den Refs. [177, 178, 179] Absorptionsmessungen als Grundlage zur Bestimmung
dienten. Per Anregungsmessung wurden von Wiegel et al. [180] Bandlücken von 4.51 eV und 5.06
eV für LN und LT gemessen. Auch in den Messungen von Cabuk et al. [177] korrespondiert
die Anordnung der Bandlücken, obgleich die Werte selbst mit 4.1 eV und 3.1 eV deutlich
kleiner sind als die GW -Werte, mit den aktuellen Resultaten. Vergleichbare theoretische oder
experimentelle Arbeiten bezüglich der elektronischen Eigenschaften von LNT-Mischkristallen
wurden nicht gefunden.

Der Absorptionsindex n(~ω) basierend auf der dielektrischen Funktion, die über die Lösung
der BSE unter Verwendung der G0W0-Eigenenergien ermittelt wurde, ist für LNT in Abb. 4.19
dargestellt. Das Spektrum wird dominiert durch zwei Merkmale zwischen 5 – 8 eV und 9 – 11
eV. Die Strukturen werden mit steigendem Tantal-Anteil blauverschoben. Dies ist hauptsächlich
eine Folge der sich öffnenden Bandlücke. Die optische Doppelbrechung ∆n = ne − no, wobei
ne bzw. no den Absorptionsindex parallel bzw. senkrecht zur c-Richtung kennzeichnen, erweist
sich als nahezu konstant für Photonenenergien unterhalb 5 eV. Die Abhängigkeit der Doppel-
brechung von der Komposition x ist für λ = 632.8 nm (~ω = 1.96 eV) in Abb. 4.20(a) gezeigt.
Es wird ein nahezu linearer Verlauf festgestellt, wobei die Doppelbrechung ihr Vorzeichen mit
steigendem Tantal-Anteil von negativ zu positiv ändert. Insbesondere ist der LNT-Mischkristall
bei einem LN/LT-Verhältnis von 0.2/0.8 optisch isotrop. Die Gegenüberstellung der berechne-
ten Daten mit den Messungen von Wood et al. [153], die bei Zimmertemperatur durchgeführt
wurden, zeigt eine gute Übereinstimmung.

Letztendlich werden in Abb. 4.20(b) die nichtlinearen Koeffizienten χ
(2)
333, χ

(2)
311 und χ

(2)
222, die

im Rahmen der IQA ermittelt wurden, für die Wellenlänge λ = 1.064µm (~ω = 1.17 eV) mit

semi-empirischen Resultaten von Xue et al. [154] verglichen. Für χ
(2)
333 und χ

(2)
222 zeigen die auf

IQA-Basis berechneten Daten eine lineare Abnahme der (absoluten) Intensität mit steigendem
Tantal-Anteil. Schwankungen der 311-Komponente für die verschiedenen Kompositionen x sind
dagegen gering. In guter Übereinstimmung mit den Daten aus Ref. [153] sind insbesondere die
Rechnungen zur 333- und 311-Komponente in denen Nb4p- bzw. Ta4p-Zustände ausgeschlossen
wurden (vgl. dazu auch Abschnitt 4.1). Die 222-Komponente hingegen weicht, wie bereits in
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333, χ
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(2)
222 des SHG-Tensors (in pm/V,

ausgefüllte Dreiecke, Quadrate und Kreise) für eine Wellenlänge von λ = 1.074µm (1.17 eV) ver-

glichen mit Resultaten der semi-empirischen Rechnungen von Xue et al. [154] (hohle Symbole). Ge-

punktete Linien verbessern die Darstellung. Die SHG-Resultate wurden im Rahmen der Unabhängige-

Quasiteilchen-Approximation (IQA) gewonnen, wobei Nb4p-Zustände ausgeschlossen wurden.
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Abschnitt 4.2 beim Vergleich mit experimentellen Daten für LN festgestellt, sowohl hinsichtlich
Intensität als auch Vorzeichen von den semi-empirischen Daten aus Ref. [153] ab.

Obgleich Erweiterungen zu den aktuellen Simulationen von LNT-Mischkristallen durch bei-
spielsweise das Einsetzen von Cluster-Expansionsmethoden (eng.: cluster expansion methods)
[172, 173] möglich sind, liefert die Studie nützliche Informationen um die Untersuchungen von
LNT voranzutreiben. Insbesondere da bewährte Techniken zum Einsatz kamen, konnten zu-
verlässige Aussagen angegeben werden.
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KAPITEL V

Zusammenfassung

Unter Einsatz von akkuraten und zeitgemäßen ab-initio Methoden wurden die elektronischen
und optischen Eigenschaften von Materialien zweier verschiedener Klassen untersucht. Im All-
gemeinen, wurden schrittweise die geometrischen, elektronischen und optischen Eigenschaften
von 2-Aminopyrimidin-Silber(I)-Halbleitern und Ferroelektrika unter Verwendung numerischer
Hilfsmittel bestimmt. Die Dichtefunktionaltheorie (DFT) stellte die Grundlage zur Ermittlung
von Bindungslängen und -winkel der Moleküle und Kristalle. Auch konnten anhand der DFT
qualitative und richtungsweisende Merkmale hinsichtlich der Elektronik und Optik der Systeme
gewonnen werden. Zur Durchführung von quantitativen Untersuchungen wurden, sofern dies die
Systemgröße zuließ, das Quasiteilchen-Konzept sowie die Bethe-Salpeter-Gleichung eingesetzt.
Vielteilcheneffekte, wie Selbstenergie- und exzitonische Effekte, die an dieser Stelle in Betracht
gezogen werden, ließen auch einen geeigneten Vergleich der Rechnungen mit experimentellen
Resultaten zu. Spezielle Fragestellungen hinsichtlich der beiden Materialklassen wurden zudem
untersucht.

Im Rahmen des Studiums der 2-Aminopyrimidin-Silber(I)-Halbleiter wurden zunächst die
Ausgangsmoleküle, hier als FAP, OFAP und NFAP bezeichnet, mit Hilfe der dargelegten Me-
thoden analysiert. Es zeigte sich, dass die Moleküle fundamentale Bandlücken in Höhe von ca. 7
eV besitzen. Die tatsächliche optische Absorption beginnt aufgrund exzitonischer Effekte aller-
dings schon bei niedrigeren Energien. Die zusätzliche Berücksichtigung der DFT-Ergebnisse, ließ
sogar den Schluss zu, dass sich Selbstenergieeffekte und exzitonische Effekte zu einem beträcht-
lichen Maß aufheben. Weitere Untersuchungen erlaubten auch eine Zuordnung von Strukturen
in der optischen Absorption zu den speziellen Bausteinen der Moleküle. Im Ergebnis tragen die
gemeinsamen Aminopyrimidin- und Phenylringe zu großem Teil zur optischen Absorption bei,
sodass viele Analogien in den molekularen Spektren festgestellt wurden.

Die entsprechenden abgeleiteten 2-Aminopyrimidin-Silber(I)-Halbleiter zeigen den Studien
zufolge hinsichtlich ihrer elektronischen und optischen Eigenschaften sichtbare Abweichungen
im Vergleich zu den molekularen Merkmalen. DFT-Untersuchungen zeigen eine um 1 eV redu-
zierte fundamentale Bandlücke. Der Bereich der fundamentalen Bandlücke ist zusätzlich durch
die Präsenz der Silber-Liganden gekennzeichnet. Die scharfen Maxima in den molekularen Spek-
tren sind durch die Selbstassemblierung verbreitert. Allerdings lassen sich den Rechnungen zu-
folge in der kristallinen optischen Absorption die molekularen Fingerabdrücke wiedererkennen.

Quantitative Vergleiche zwischen Theorie und Experiment konnten unter Berücksichtigung
von Vielteilcheneffekten durchgeführt werden. Da die GW -Approximation der Selbstenergie
aufgrund der Systemgröße nicht eingesetzt werden konnte, wurde durch ein Hybridfunktional
die Verbesserung der Beschreibung der elektronischen Eigenschaften erreicht. Zusammen mit
der Lösung der BSE wurde eine gute Übereinstimmung der berechneten optischen Spektren
mit experimentellen Messungen festgestellt. Die Studien hinsichtlich exzitonischer und Lokal-
feldeffekte wurden an dieser Stelle intensiviert. Der Einfluss der häufig eingesetzten Tamm-
Dancoff-Approximation (TDA) der BSE-Matrix war ein wichtiger Aspekt der Studien. Durch
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ein spezielles Verfahren zur Darstellung und Auswertung der zugrunde liegenden BSE-Matrizen
konnten qualitative Unterschiede zwischen den BSE-Matrizen von Systemen unterschiedlicher
Bindungsarten festgestellt werden. Studiert wurden dafür neben den BSE-Matrizen der orga-
nischen Moleküle und Halbleiter auch die BSE-Matrix von kovalent-gebundenem Silizium. Es
wurden Anzeichen gefunden, dass die unterschiedliche Wirkung der TDA in diesen Fällen auf die
intrinsischen Eigenschaften der materialspezifischen Einteilchenwellenfunktionen zurückgeführt
werden kann.

Der zweite Teil dieser Arbeit befasste sich mit den linearen und nichtlinearen optischen
Eigenschaften der Ferroelektrika Lithiumniobat (LN) und Lithiumtantalat (LT) sowie LN-LT-
Mischkristallen. Die in der Literatur oftmals diskutierte fundamentale Bandlücke von LN konnte
bei 5.4 eV gefunden werden. Wesentlicher Beitrag zu diesem guten Ergebnis wird dem Einsatz
einer gegenüber früheren LN-Studien verbesserten Abschirmung in der GW-Approximation
der Selbstenergie zugerechnet. Festgestellt wurde auch, dass exzitonische Effekte die Absorp-
tionskante um ca. 1 eV zu niedrigeren Energien verschieben. Die Rechnungen zeigten im Be-
reich der linearen optischen Eigenschaften für stöchoimetrisches LN unter Berücksichtigung von
Selbstenergie- und exzitonischen Effekten gute Übereinstimmung mit experimentell ermittel-
ten Spektren, obgleich auch abweichende Feinheiten festgestellt werden konnten. Ein ähnlicher
Schluss ließ sich anhand der Studien hinsichtlich der nichtlinearen optischen Eigenschaften zie-
hen: das Inbetrachtziehen von Selbstenergieeffekten erhöht die Qualität der Beschreibung und
demnach die Übereinstimmung mit bisher vorhandenen einzelnen experimentellen Datenpunk-
ten.

Die Studie wurde auf kongruentes Lithiumniobat (CLN) ausgedehnt. Eingesetzt wurden zur
Simulation von CLN jeweils ein auf Li- sowie ein auf Nb-Vakanzen bezogenes Modell, das sog. Li
site vacancy model sowie das Nb site vacancy model. Die Studien wurden aufgrund notwendig
großer Superzellen auf dem Level der DFT bzw. einer Unabhängige-Teilchen-Approximation
(IPA) durchgeführt. Im Rahmen der IPA zeigte sich, dass die in den Rechnungen verwendete
modifizierte Stöchiometrie quantitative Feinheiten in den linearen und nichtlinearen optischen
Spektren verbessert beschreibt. Die Ursache für die Abweichungen zwischen dem qualitativ
hohen BSE-Spektrum von stöchiometrischem LN und den experimetell-ermittelten Spektren
können demnach stöchiometrische Modifikationen in den experimentellen Proben sein.

Im Rahmen der Untersuchungen zu LN-LT-Mischkristallen wurden bei Variation des LN-
Anteils Bandlücken in Höhe von 5.4 – 5.7 eV festgestellt. Aus der Studie der optischen Dop-
pelbrechung ging hervor, dass bei einem LN/LT-Verhältnis von 1:4 der Mischkristall für einen
ausgedehnten Frequenzbereich optisch isotrop ist. Die Ergebnisse sind in guter Übereinstim-
mung mit experimentellen und theoretischen Befunden verschiedener Arbeitsgruppen.
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ANHANG A

Fourier-Transformation

A.1 Ortsraum-Impulsraum Fourier-Transformation

Im Rahmen dieser Arbeit wird die wie folgt erklärte Fourier-Transformation für eine Funktion
im Ortsraum f(~r) und Impulsraum f(~k) verwendet. Für eine auf R3 definierte Funktion f(~r),
die zusätzlich die notwendigen Konvergenzeigenschaften aufweist, gilt:

f(~r) =

∫
d3k

(2π)3
f(~k)ei

~k·~r mit f(~k) =

∫
d3rf(~r)e−i

~k·~r, (A.1)

sodass

∫
d3k

(2π)3
ei
~k·~r = δ(~r) und

∫
d3re−i

~k·~r = (2π)3δ(~k). (A.2)

Beim Vorliegen von periodischen Randbedingungen gilt:

f(~r + Lα~eα) = f(~r), für α = x, y, z, (A.3)

wobei Lα die Kantenlänge des Quaders in Richtung α ist. Gln. (A.1) und (A.2) gehen in eine
diskrete Fourier-Transformation über:

f(~r) =
1

V

∑
~k

f(~k)ei
~k·~r mit ~kα =

2πnα
Lα

, nα = 0,±1,±2, .. und (A.4)

f(~k) =

∫
V

d3rf(~r)e−i
~k·~r. (A.5)

sowie ∫
d3re−i

~k·~r = V δ~k,0 und
1

V

∑
~k

ei
~k·~r = δ(~r), (A.6)

wobei V = LxLyLz das Volumen des Quaders ist.
Eine Funktion f(~r, ~r′) heißt translationsinvariant, wenn der Funktionswert nur von der Dif-

ferenz (~r − ~r′) abhängt. Für die Fourier-Transformation folgt:

f(~r, ~r′) = f(~r − ~r′) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
f(~k,~k′)ei

~k·(~r−~r′)ei(
~k′+~k)·~r′ (A.7)

=

∫
d3k

(2π)3
f̃(~k)ei

~k·(~r−~r′) (A.8)

Aus dem Vergleich von Gln. (A.7) und (A.8) geht hervor:

f(~k,~k′) = (2π)3δ(~k + ~k′)f̃(~k). (A.9)
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A.2 Zeit-Frequenz Fourier-Transformation

Sei t eine Zeitkoordinate und f(t) eine auf R definierte Funktion, die zusätzlich die notwen-
digen Konvergenzeigenschaften aufweist, dann gilt:

f(t) =

∫
dω

2π
f(ω)e−iωt und f(ω) =

∫
dtf(t)eiωt, (A.10)

sodass

∫
dω

2π
e−iωt = δ(t) und

∫
dteiωt = 2πδ(ω). (A.11)
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chael M. Resch, editors, High Performance Computing in Science and Engineering ’11 ,
pages 131–139. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-23868-0.
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[40] R. W. Godby, M. Schlüter, and L. J. Sham. Accurate Exchange-Correlation
Potential for Silicon and Its Discontinuity on Addition of an Electron. Phys.
Rev. Lett., 56:2415–2418, Jun 1986. doi: 10.1103/PhysRevLett.56.2415. URL
http://link.aps.org/doi/10.1103/PhysRevLett.56.2415.

[41] John P. Perdew and Mel Levy. Physical Content of the Exact Kohn-
Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys.
Rev. Lett., 51:1884–1887, Nov 1983. doi: 10.1103/PhysRevLett.51.1884. URL
http://link.aps.org/doi/10.1103/PhysRevLett.51.1884.

[42] M. K. Y. Chan and G. Ceder. Efficient Band Gap Prediction for Solids. Phys.
Rev. Lett., 105:196403, Nov 2010. doi: 10.1103/PhysRevLett.105.196403. URL
http://link.aps.org/doi/10.1103/PhysRevLett.105.196403.

[43] J.C. Slater. The self-consistent field for molecules and solids. Number Bd. 4 in Quan-
tum theory of molecules and solids. McGraw-Hill, 1974. ISBN 9780070580381. URL
http://books.google.de/books?id=RXYfAQAAMAAJ.
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[96] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–17979, Dec
1994. doi: 10.1103/PhysRevB.50.17953.
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