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KAPITEL I

Einleitung

Seit der Entwicklung eines modernen Spektroskops durch Bunsen, Kirchhoff und von Stein-
heil in der 2. Halfte des 19-ten Jahrhunderts hat sich die Spektroskopie in der Wissenschaft
und Technik als eine zentrale Methode zur Erfassung von Materialeigenschaften und Gewinnen
von Erkenntnissen etabliert [1, 2]. Prinzipiell wird bei einem spektrokopischen Verfahren eine
Probe elektromagnetischer Strahlung ausgesetzt, sodass die Probe eine Reaktion auf diese aufle-
re Storung zeigt. Die Probeneigenschaften werden ermittelt indem man jene Reaktion erfasst
und beurteilt. Aufgrund der Indirektheit bedeutender Messmethoden der Festkorperphysik und
Materialwissenschaften wie Rontgenstrahlanalyse, Photoelektronenspektroskopie oder Ellipso-
metrie ist man hierbei auf eine starke theoretische Basis angewiesen bzw. bedarf einer theo-
retischen Unterstiitzung zur Interpretation und Auswertung der Messdaten. Die Aussage- und
Vorhersagekraft der theoretischen Konzepte steigerte sich insbesondere seit der Entwicklung der
Dichtefunktionaltheorie (DFT) [3, 4]. Das erst in jiingerer Vergangenheit numerisch anwendbare
Quasiteilchen-Konzept (QP-Konzept) sowie die Bethe-Salpeter-Gleichung zur Berticksichtigung
exzitonischer Effekte zahlen heutzutage in der Festkorpertheorie zu den Standard-Methoden zur
Berechnung vielfaltiger spektroskopischer Eigenschaften.

Die angesprochenen theoretischen Konzepte wie die DFT und das QP-Konzept gehen von
grundlegenden Gesetzen der Quantenmechanik aus, sprich ab-initio, um das Vielteilchensys-
tem Festkorper oder Kristall zu charakterisieren. Da die Charakterisierung eines relativ kleinen
Vielteilchensystems, wie beispielsweise eines Sauerstoff-Molekiils, mit exakten quantenmecha-
nischen Methoden bereits an der notwendigen Menge an numerischer Leistung scheitert [5],
wird grundlegend das Vielteilchenproblem in ein effektives Einteilchenproblem transformiert.
Der Preis, den man fiir diese Umwandlung zu zahlen hat, ist die Genauigkeit der Beschreibung.
Mit anderen Worten: es sind Approximationen am urspriinglichen Problem vorzunehmen.

Eine quantenmechanische Wellenfunktion W (77, .., 7x) eines N-Teilchensystems, die zusam-
men mit der Energie F als Losung des Problems

HV = E, (1.1)

wobei H der Hamilton-Operator ist, gesucht wird, besitzt 3N Freiheitsgrade. Zusammen mit
der unerlasslichen Diskretisierung der Ortskoordinate steigt die notwendige Speicherkapazitat
zur numerischen Auswertung rapide an. Einen Ansatz, um dieses Problem zu losen, bietet
die DFT an. Von Hohenberg und Kohn wurde vorgeschlagen, anstelle der Wellenfunktion,
die Grundzustands-Dichte n(7) als Variable zu betrachten und gezeigt, dass diese eindeutig
mit dem Hamilton-Operator verkniipft ist. Die gewonnene Reduktion der Freiheitsgrade von
3N auf 3 begleicht man mit einer Approximation der Austausch- und Korrelationsenergie.
Abhéngig von der Qualitdat der Approximation, wobei haufig die Local Density Approximation
(LDA) und die Generalized Gradient Approximation (GGA) eingesetzt werden, lassen sich grofie
Systeme mit sehr hoher Prazision studieren. Insbesondere hinsichtlich der Charakterisierung des
Grundzustandes, wie Kristall-Geometrie oder Bindungsenergie, ist die DFT erheblich [6].



Die DFT ist folglich per Formulierung eine Grundzustandstheorie. Der limitierende Aspekt
der DFT beziiglich der IR- und UV-Spektroskpie ist daher die unzureichende Beschreibung der
angeregten Zustéande. Zusatzliche Ansitze miissen fiir Letzteres in Betracht gezogen werden.
Zum einen kommt hierbei die Hinzunahme der auf der Pauli-Abstoflung beruhenden Austausch-
Energie in Frage und zum anderen wird das Quasiteilchen-Konzept eingesetzt. Die von Slater
eingefithrte Symmetrisierung der Wellenfunktion fithrt zu einer besseren Beschreibung der un-
besetzten Bander und zu einer Vergroflerung der Bandliicke, die im Rahmen der DFT oftmals
unterschatzt wird. Im Vergleich zur einer DF'T-Rechnung steigert sich hierbei allerdings auch
der Rechenaufwand um ein Vielfaches. Ebenso wird in vielen Féllen auch nur ein durch Pa-
rameter gesteuerter Anteil der Austausch-Energie beigemischt. Im Gegensatz dazu, lassen sich
mit Hilfe des Quasiteilchen-Konzepts angeregte Zustande parameterfrei studieren.

Die Grundlage des Quasiteilchen-Konzepts bildet wieder ein Perspektiv-Wechsel, bei dem
anstelle der vielen stark wechselwirkenden Teilchen in einem Festkorper nur wenige schwach
wechselwirkende (Quasi-) Teilchen betrachtet werden [7]. Insbesondere wird die kollektive An-
regung eines Festkorpers (d.h. die Anregung aller Teilchen des Festkorpers) durch eine geringe
Zahl von sog. Quasiteilchen beschrieben. Mathematisch wird die Dynamik dieser Quasiteilchen
beschrieben durch Ein- oder Vielteilchen-Green-Funktionen. Zur vollstandigen Losung des Qua-
siteilchenproblems werden allerdings noch die vier Operatoren jeweils der Selbstenergie ¥, der
abgeschirmtem Coulomb-Wechselwirkung W, der Polarisierbarkeit II und der Vertex-Funktion
I' eingefiihrt. Insbesondere in der Selbstenergie 3. ist die Wechselwirkung zwischen Quasiteil-
chen und dem restlichen System enthalten. Die insgesamt fiinf benannten Groflen sind nach
Hedin gekoppelt in einem Integro-Gleichungssystem, welches u.a. iterativ gelost werden kann.

Der Quasiteilchenansatz mit der sog. G'W-Naherung der Selbstenergie liefert eine sehr
gute Beschreibung der Bandstruktur im Vergleich zur Dichtefunktionaltheorie oder Hybrid-
Funktional-Anséitzen. Da allerdings die Selbstenergie im Gegensatz zum Austausch- und Kor-
relationspotential ein nichtlokales Potential ist, vergroffert sich auch der numerische Aufwand.
Héaufig werden deshalb Quasiteilchenenergien nur storungstheoretisch auf der Basis der DFT-
Ergebnisse berechnet. Die Anwendung des QP-Konzepts ist demnach auf kleinere Systeme als
es DFT-Untersuchungen erlauben beschrankt.

Die Kenntnis iiber angeregte Zusténde 1t die Berechnung einer Kopplung des Systems mit
elektromagnetischer Strahlung zu. Die Reaktion des Systems auf elektromagnetische Strahlung
kann durch die Polarisation P beschrieben werden. Eine Taylor-Entwicklung der Polarisation
nach Ordnungen des elektrischen Feldes E; ergibt fiir die kartesischen Komponenten [8, 9, 10]

F)i - F)io -+ EOXijEj -+ €0XijkEjEk + .. (12)

P? ist hierbei die spontane Polarisation, welche insbesondere in Ferroelektrika, wie sie auch im
Rahmen dieser Arbeit behandelt werden, einen nichtverschwindenden Beitrag darstellt. Der li-
neare Suszeptibilitats-Tensor x;; ist gekoppelt mit der frequenzabhéngigen dielektrischen Funk-
tion €(w), welche wiederum alle Information iiber die linearen optischen Eigenschaften einer
Probe enthalt. So konnen aus der dielektrischen Funktion unter anderem das Reflexions- und
Absorptionsspektrum abgeleitet werden.

Der nichtlineare Suszeptibilitats-Tensor x;;; charakterisiert die Amplitude eines Drei-
Photonen-Prozesses, bei dem durch zwei einfallende Photonen i.A. unterschiedlicher Frequenzen
in einem nichtlinearen Medium, welches als Verstarker dient, ein Photon mit entsprechender
linear-kombinierter Frequenz erzeugt wird. Der Einzug derartiger nichtlinearer optischer Pro-
zesse in die Wissenschaft wurde vor etwa 50 Jahren u. a. mit den Experimenten von Franken
et al. [11] eingeleitet.

Auch die Charakterisierung der optischen Eigenschaften kann auf verschiedenen Ge-
nauigkeitsebenen erfolgen. Die Anwendung der Unabhéngige-(Quasi-)Teilchen-Ndherungen
[IPA(IQA)] erfordert nur die Kenntnis der Bandenergien sowie der Wellenfunktionen. Eine



genauere Beschreibung optischen Eigenschaften, bekannt als Bethe-Salpeter-Gleichung (BSE),
wird aus dem Hedin’schen Gleichungssystem hergeleitet. Hierbei werden sowohl die Lokalfeldef-
fekte als auch die Elektron-Loch-Wechselwirkung berticksichtigt. In den letzten Jahren hat sich
gezeigt, dass die Berticksichtigung der exzitonischen Effekte zusammen mit der Verwendung der
Quasiteilchen-Bandstruktur zur Berechnung qualitativ hochwertiger optischer Spektren fiihrt
[12]. Der erforderliche numerische Aufwand zur Beriicksichtigung von exzitonischen Effekten
in den optischen Eigenschaften ist die Folge eines Eigenwertproblems, auf welches die BSE
transformiert wird. Die Dimension der zugrunde liegenden Matrix H*¢ berechnet sich aus dem
Produkt aus der Anzahl der zur numerischen Konvergenz notwendigen k-Punkte der Brillouin
Zone ny, sowie der besetzten n, und unbesetzten Bander n,: rg(H®¢) = ny x n, x n,. Fir
Festkorper und Kristalle entspricht dies einem Wert von 10°..10°%, sodass iiblicherweise eine di-
rekte Diagonalisierung der Matrix nicht ohne grofien rechnerischen Aufwand méglich ist bzw.
generell nicht erwiinscht ist. Aus methodischem Blickwinkel besteht die sog. Exzitonen-Matrix
aus einem resonanten und nichtresonanten Anteil, wobei seit den Studien von Albrecht et al.
[13] an Silizium der nichtresonante Teil vernachlassigt wurde. Neuere Arbeiten haben jedoch
gezeigt, dass die resonante - nichtresonante Kopplung insbesondere die optischen Eigenschaften
organischer Kristalle und Molekiile beeinflusst [14, 15, 16]. Ein Ziel und Bestandteil dieser Ar-
beit wird es demnach sein den Einfluss des nichtresonanten Anteils auf die optischen Spektren
zu charakterisieren. Dazu werden Aminopyrimidin-Kristalle und -Molekiile untersucht, welche
im Jahre 2009 durch Stoll et al. [17, 18] synthetisiert wurden. Diese neue Materialklasse weist
eine Bandliicke im optisch-sichtbaren Bereich auf und konnte deshalb technologisch interessant
sein. Experimentell wurden bereits die geometrischen und optischen Eigenschaften analysiert.
Mit den angesprochenen Methoden werden in dieser Arbeit die Figenschaften der organischen
Materialien von theoretischer Seite untersucht.

Die zweite Materialklasse, welche im Rahmen dieser Arbeit behandelt wird, ist die Klasse
der Ferroelektrika, genauer gesagt, Lithiumniobat und Lithiumtantalat (LN und LT). Lithi-
umniobat wird bereits vielfiltig in der Technik verwendet und besitzt im Bereich optischer,
insbesondere nichtlinearer Bauelemente den gleichen Stellenwert wie Silizium in der Elektronik
[19, 20]. Obwohl Lithiumniobat und Lithiumtantalat eine enorme Anzahl von Anwendungen
besitzen, sind die elektronischen und optischen Eigenschaften dieser Materialien eher mafig
untersucht. Ein weiteres Element dieser Arbeit wird es daher sein die geometrischen, elektroni-
schen und optischen Eigenschaften von Lithiumniobat und Lithiumtantalat zu charakterisieren.
Ein Schwerpunkt wird dabei die Berechnung und Untersuchung der Zweiten Harmonischen sein,
welche mit dem Suszeptibilitats-Tensor x;;; verbunden ist.

Die Arbeit ist wie folgt gegliedert: die theoretischen Methoden, welche in dieser Arbeit
verwendet werden, werden in Kapitel II Grundlagen vorgestellt. In Kapitel III werden die Un-
tersuchungen und Ergebnisse hinsichtlich der organischen Molekiile und Halbleiter diskutiert.
Kapitel IV prasentiert die Studie der elektronischen und optischen Eigenschaften der Ferroelek-
trika LN und LT sowie der LN-LT-Mischkristalle. Abschlielend wird eine Zusammenfassung
bereitgestellt.






KAPITEL II

Grundlagen

Entsprechend einer ab-initio Untersuchung wird ausgegangen vom grundlegenden Vielelek-
tronenproblem in einem Festkorper (Abschnitt 2.1). Vorgestellt wird anschlieBend der For-
malismus der Zweiten Quantisierung, welcher eine elegante Formulierung der Vielteilchen-
Quantenmechanik erlaubt. Im Abschnitt Dichtefunktionaltheorie 2.3 werden die Hohenberg-
Kohn Theoreme und die Kohn-Sham-Gleichung ausgearbeitet. Es folgen zwei kurze Abschnitte
zu den Hellmann-Feynman-Kréften sowie den Hybrid-Funktionalen. Das Quasiteilchen-Konzept
wird in der darauffolgenden Passage thematisiert. Anschliefend folgt eine Abhandlung hinsicht-
lich der Berechnung der optischen Eigenschaften. Es folgt eine kurze Zusammenfassung der Ei-
genschaften von Festkorpern und Kristallen sowie der eingesetzten Pseudo-Potential-Methode.
Im vorletzten Abschnitt werden Details zur numerischen Implementierung der Theorie angege-
ben. Abgeschlossen wird das Kapitel mit einem Ausblick.

2.1 Das Vielelektronenproblem

Die Atome in einem Festkorper werden im Rahmen dieser Arbeit in die Elektronen und
Kerne (bzw. Ionen) aufgeteilt. Die Elektronen tragen die Ladung —e und die Kerne die Ladung
Zke, wobei Zx die Anzahl der Protonen eines Kerns angibt. Nach Ref. [21] kann das System
durch den nichtrelativistischen Hamilton-Operator beschrieben werden:

[j[FK = (T‘ion + ‘Zon-ion) + (T + U) + V (21)
Die in Gl. (2.1) vorkommenden Operatoren haben die folgenden Bedeutungen:

Tion — Operator der kinetischen Energie der Ionen

Vion_ion — Operator der potentiellen Energie der Ionen

(2.2)
(2.3)
T — Operator der kinetischen Energie der Elektronen (2.4)
U — Operator der Elektron-Elektron-Wechselwirkung (2.5)

(2.6)

V- Operator der Elektron-Ion-Wechselwirkung.

Wie 1924 von Born und Oppenheimer [22] gezeigt, kann das Gesamtproblem Hpx¥ = EU durch
ein von der Gitterdynamik entkoppeltes Problem mit beweglichen Elektronen, die sich im Feld
fixierter Kerne befinden, approximiert werden. Der Grund dafiir ist der groflie Massenunterschied
zwischen der Protonenmasse m, und der Elektronenmasse m mit einem Verhéltnis von % =
1836. Bei leichten Elementen kann man zudem von Spineffekten absehen, sodass insgesamt die
Beschreibung der Elektronen-Dynamik im Feld fixierter Kerne durch den folgenden Hamilton-
Operator erfolgt [23]:

A

H=T+V+U. (2.7)



Die Elektron-Elektron-Wechselwirkung, ausgedriickt durch den Operator U, wird weiterhin
reduziert auf die Coulomb-Wechselwirkung, da der Erwartungswert der Stromdichte im hier
vorausgesetzten thermodynamischen Gleichgewicht verschwindet.

2.2 Die zweite Quantisierung

Die Anzahl der Atome in einem Festkorper liegt in der Groflenordnung der Avogadrozahl
10%® und der Abstand der Teilchen ist kleiner als die Fermi-Wellenldnge, sodass quantenme-
chanische Effekte beriicksichtigt werden miissen. Zur Charakterisierung des Systems eignet sich
der Formalismus der Zweiten Quantisierung aufgrund der Vereinfachung der Beschreibung von
Mehrteilchensystemen im Rahmen der Vielteilchen-Quantenmechanik. Der Formalismus der
Zweiten Quantisierung wird in vielen Biichern dargestellt. Der aktuelle Abschnitt orientiert
sich an den Refs. [21] und [24].

Eingefiihrt werden die Erzeugungs- und Vernichtungsoperatoren

g, o, (2.8)

mit dem Index x, der einen Satz von Quantenzahlen eines Einteilchenzustandes reprasentiert.
Falls die vorliegenden Teilchen identische Fermionen sind, unterliegen die Operatoren Gl.(2.8)
den fundamentalen Anti-Vertauschungsrelationen:

[az, al ]+ = azal, + ala, = Opp (2.9)
[z, az]+ = [a),at ]+ = 0. (2.10)

Durch die Definition des Vakuum-Zustands |0) ist es moglich N-Teilchenzustdnde durch suk-
zessive Anwendung der Erzeugungsoperatoren a;f zu konstruieren:

|Gy -G ) = 0 at |0) mit (B Dy Bun | |Gy Dy b)) = 1. (2.11)

Die Einteilchenzusténde {|¢,)} in Gl. (2.11) sind nichtentartete orthonormierte Eigenzusténde
eines hermiteschen Operators ¢,. Der antisymmetrische fermionische N-Teilchen-Zustand GI.
(2.11) kann auch durch eine Slaterdeterminante eines Produktzustandes dargestellt werden:

1
’¢w1¢w2"¢wN>(A) = = <_1)sgn(P)P{‘¢11> ® |¢962> ®.. Q& ’¢$N>} (212)
veipS

= \/% Z(_l)sgn(P)P ’¢x1¢x2"¢$1\1> (213)
TP
(2.14)

Die {|¢u, Guy..0y, )M} formen eine Basis des N-Fermionen-Hilbertraumes Hy. Bei einem kon-
tinuierlichen Spektrum des Operators ¢, lautet die Vollstandigkeitsrelation

Iy = /dxl/dxg../de|¢m1¢x2..¢xN>(A) (Goy Dy D |V (2.15)
Von praktischem Nutzen ist die Einfiihrung der Feldoperatoren:

Y (y) =Y o (y)al?, mit y € {{(F.o.t)}, {(F.0)}, {7}} und (2.16)

T

/ dy 6(4)6%(y) = b und / Az (1) 6y = By (2.17)



Die Eigenkets {|7)} des Einteilchen-Ortsoperators 7 lassen sich mit Hilfe der Feldoperatoren
darstellen (mit y € {(7)}):

|7 = U () |0) mit (7| 7)) =6(F—7). (2.18)
Mit Hilfe von GI. (2.18) erhélt man eine niitzliche Darstellung des Identitatsoperators:

]IN—/d3T1/d3T2 /d N |T’1,T2,.., ><F1,F2,..,FN|, (219)

wobeil
(FL, Ty s TN | T, Ty oy Ty = 0(7y — 71)0(Fo — ) ..0(Fy — Tly)- (2.20)

Aus der Verwendung von Gln. (2.11) und (2.19) geht hervor:

s s )Y /d3r1/d3r2 /d3rN<1> (Fos o s ) [P Tos s ) (2.21)

wobei ®W) (7,7, .., 7y) eine antisymmetrisierte N-Teilchen-Wellenfunktion ist (Hartree-Fock-
Wellenfunktion). Da dies einer Slater-Determinante det{¢,,(75)} entspricht, gilt auch:

— 1 — —
DN (7, 7, .. \/—N Z D¢, (7) W (7, .., 7y) (2.22)
7j=1

In der Besetzungszahldarstellung konnen Ein- und Zweiteilchenoperatoren AW und A® wie
folgt dargestellt werden:

A(l) occ /dl’l/dl'Q S x1a$2 (223)

A@oce — /d:vl /dx4 S sy Ot Uy O, (2.24)

Fiir die Matrixelemente A(wll)gg2 und Ammggw4 gilt unter Verwendung der Ortsraum-Basis:
A, = [ [ raon () I AV 72) 6.7 (2.25)
AR, e = [ Prie [ @i, (0L Rl AV 6 ()0 (7). (220

Insbesondere lassen sich die Ortsraum-Matrixelemente der lokalen Einteilchenoperatoren T und
V [Gln. (2.4) und (2.6)] sowie des Zweiteilchenoperators U [Gl. (2.5)] angeben:

(1T ) = 807 = 73) | 50 ] = 007~ ) T(7) (227
(P |V |ry) = 0(r) — 75) [_4;60 Z |TZ_86R‘ | = 0(r1 — 72) v(7) (2.28)

R N B o S,
<T17’2|U‘7"37’4> = 5(7’1 —7“3)(5( 9 — 4) [_ﬁ:| = (5(7“1 —T3>5<7"2 —7'4)'LL<7"1,7°2). (229)

In den Gln. (2.27) - (2.29) geben Z, und R, die Ladung und Position des s-ten Kerns an.
Die Spinquantenzahl tritt hierbei nicht auf. Da in dieser Arbeit nichtmagnetische Systeme
bearbeitet werden, wird der Spinfreiheitsgrad entweder auf einen doppelten Entartungsgrad
der Einteilchenzustande reduziert oder durch Besetzungszahlen ausgedriickt. Eine detaillierte
Untersuchung des Effektes der Spinquantenzahl findet nur in einzelnen Fallen statt.

Der Zustand |7y, 7%, .., 7x) ist antisymmetrisch.



2.3 Dichtefunktionaltheorie

Die Dichtefunktionaltheorie (DFT) ist eine sehr erfolgreiche Methode um die Grundzu-
standseigenschaften von groflen Systemen zu charakterisieren. Das Fundament der DFT bilden
die beiden Theoreme von Hohenberg und Kohn, welche die elektronische Grundzustandsdichte
als Variable festlegen und beweisen, dass diese mit dem Hamilton-Operator eindeutig verkntiipft
ist. Die praktische Anwendung der DF'T erfordert den Einsatz der Kohn-Sham-Gleichung, wel-
che auf einer Abbildung eines wechselwirkenden Systems auf ein wechselwirkungsfreies Elek-
tronengas aufgebaut ist. Die Abschnitte 2.3.1 und 2.3.2 basieren insbesondere auf Ref. [23].

2.3.1 Die Theoreme von Hohenberg und Kohn

Die Voraussetzung der Hohenberg-Kohn Theoreme ist das Vorhandensein eines Vielelektro-
nensystems, welches durch den Hamilton-Operator Gl. (2.7) charakterisiert wird. Zudem soll
das Potential V' des gegebenen Eigenwertproblems

H|®)=(T+V+U)|d) = E|d) (2.30)

im einfachsten Fall so gewéahlt werden, dass die Losung der obigen Schrodinger Gleichung einen
nichtentarteten Grundzustand |®) mit der Energie Eg besitzt. Die Potentiale V mit dieser
Eigenschaft werden zusammengefasst in einem Raum V. Durch die Losung der Schrodinger
Gleichung Gl. (2.30) wird eine surjektive Abbildung C' : V — P definiert, wobei P der Raum
aller Grundzusténde |®) ist, welche eine (nichtentartete) Losung von Gl. (2.30) zu einem be-
stimmten Potential V sind. Eine weitere ebenfalls surjektive Abbildung D : P — N wird
festgelegt durch die Berechnung der Grundzustandsdichte n(r) tiber

(i) = (2] a(r) |®) = (S] W (7) V() |©) . (2.31)

N bezeichnet den Raum aller Grundzustandsdichten, die auf diese Weise berechnet werden
konnen. Durch Hohenberg und Kohn wurde bewiesen, dass die surjektiven Abbildungen C' und
D auch injektiv und folglich bijektiv sind. Durch das Vorhandensein der Umkehrabbildungen
(CD)~', C~! und D! lasst sich das erste Hohenberg-Kohn Theorem formulieren:

Theorem 1. Fiir ein Vielelektronensystem sind der Grundzustand |®) (und die Grundzustand-
senergie Eg) sowie das Potential V' eindeutige Funktionale der Grundzustandsdichte n(r).

Das zweite Hohenberg-Kohn Theorem betrifft das Minimierungsprinzip der Energie bei der
Variation nach der Grundzustandsdichte. In diesem Zusammenhang kann wegen der Existenz
der Umkehrabbildung D~ das folgende Energiefunktional Ey, : N'— R definiert werden:

Evy[n] = (®[n]| T+ Vo + U |®[n]) (2.32)

Bei einem multiplikativen Operator VO, wie es nach Gl. (2.28) der Fall ist, lasst sich schreiben:
Evy[n] = (®[n]| T + U |®[n]) + / dr*n(F)vo(F) =: Fln] + / dr*n(7)vo(7), (2.33)

wobei das Universalfunktional F[n] eingefiihrt wurde. Die Universalitdt von F[n] wird legiti-
miert durch die Unabhéngigkeit vom &ufleren Potential v(7) und zieht eine identische Form
fiir alle Vielelektronensysteme wie Molekiile oder Festkoper nach sich. Bezeichnet man die mit
dem Potential V; iiber die Abbildung (C'D) gekoppelte Grundzustandsdichte (und Energie) mit
no(7) (und Ep), so hat das Energiefunktional Ey,[n] die Eigenschaft:

Ey < Ey,[n] fir n #ng,n e N (2.34)
Ey = Evy;[no). (2.35)



Das zweite Hohenberg-Kohn Theorem lasst sich demnach wie folgt zusammenfassen:

Theorem 2. Bei der Variation des Energiefunktionals Ey;[n] nach der Grundzustandsdichte n
nimmt es sein Minimum an der zum Potential V;; gehérenden Grundzustandsdichte ngy an.

Die Hohenberg-Kohn Theoreme lassen sich auf entartete Grundzustande erweitern. Hierfiir
werden die Raume

P=JPrumdN =M (2.36)

vey vev

als Vereinigung der Unterraume Py und Ny definiert. Letztere enthalten die Grundzustiande,
die tiber die Losung der Schrodinger-Gleichung mit einem Potential 1% erzeugt werden, und die
Grundzustandsdichten, welche iiber Gl. (2.31) aus |®) € Py berechnet werden. Analog zum
Fall des nichtentarteten Grundzustandes kann man zeigen, dass C~!, D und (C'D)~! zuléssige
Abbildungen sind. Insbesondere die Existenz von (C'D)~! koppelt an jede Grundzustandsdichte
n ein Potential V[n]. Da allerdings D nicht invertierbar ist, ist eine modifizierte Definition von
Ey,[n] und F[n| erforderlich: offensichtlich gilt fiir |®), € Py:

(| T+ U +Vn]|®,) = E, (2.37)

wodurch die Energie E durch die Dichte festgelegt ist. Folglich lassen sich
Fln]:=F — /d%n(f")v([n],f') und (2.38)
Ey,[n| :== Fn| + /d3rv0(F)n(F) (2.39)

als Funktionale der Grundzustandsdichte definieren und das Minimierungsprinzip anwenden.
Die beiden Theoreme von Hohenberg und Kohn beweisen also die Existenz der Funktionale
Ey,[n] und F[n]. Uber die Form und Konstruktion der Funktionale werden allerdings keine
Aussagen gemacht. Erst durch geeignete Approximationen mit Hilfe des Kohn-Sham-Systems
und der Kohn-Sham-Gleichung kann die DF'T fiir praktische Rechnungen eingesetzt werden.

2.3.2 Die Kohn-Sham-Gleichung

Das Kohn-Sham-System ist ein System N wechselwirkungsfreier Elektronen, welches durch
den Hamilton-Operator R o
Higs =T+ Vs (2.40)

charakterisiert wird. Analog zu einem System wechselwirkender Elektronen existiert nach den
Hohenberg-Kohn Theoremen das Energiefunktional

Exs[n] = Tks[n] + /d?’rvKg(F)n(F) (2.41)

und die Einteilchenzusténde, welche in Form einer Slater-Determinante nach Gl. (2.14) den
Grundzustand erzeugen, sind ebenfalls Funktionale der Grundzustandsdichte, d.h. |¢;) =
|p:[n]). Tks[n] ist die kinetische Energie des Systems

Tisln Zfz [ o (—ﬁA) &:(7). (2.42)

wobei fiir die Besetzungszahlen Y °, f; = N gilt und die energetisch niedrigsten Orbitale
{#i(7)} besetzt sind. Die Grundzustandsdichte kann durch die Einteilchenwellenfunktionen aus-
gedriickt werden:

nis(r) = Z Filga(P)|?. (2.43)



Bei der Variation des Energiefunktionals (2.41) nach ¢! unter Einhaltung der beiden Nebenbe-
dingungen

/d3rn(F) =N &u U dro(f) — N = 0] und (2.44)
[ o = 1o -0 | [ Eram? - 1-0) (2.45)

durch die Lagrange’schen Multiplikatoren p und (¢;—p) erhélt man die Einteilchen-Schrodinger-
Gleichung

{—%A + UKS} ¢i(F) = i (7). (2.46)

Aus Gl. (2.46) lassen sich die Orbitale und Einteilchenenergien ermitteln.

Nun wird das Kohn-Sham-System mit einem System wechselwirkender Elektronen durch die
Annahme gekoppelt, dass zu jeder Grundzustandsdichte n(7) eines wechselwirkenden Systems
ein Potential vy s(7) existiert, sodass gilt:

n(r) = nkgs(r). (2.47)

Das gesuchte Potential vig wird ermittelt indem man zunéchst das Austausch- und Korrelati-
onsfunktional Exc[n| definiert:

Excln] := F[n] — %/dgr/dg’r'n(??)u(ﬁ?ﬂ)n(?ﬂ) — Tks[nl. (2.48)

Es enthélt die Differenz zwischen der Energie eines (wechselwirkenden) Elektronengases F'[n]
und der Hartree-Fock-Energie Fyr (Korrelationsenergie)

Ec:=Fn] — Fyp = (®|T + U |®) — (dW|T + U |[2W) (2.49)

sowie die Differenz zwischen der Hartree-Fock-Energie und der Hartree-Energie Fy (Austau-
schenerygie)

Mit ‘<I>(A)> wird die Slaterdeterminante nach Gl. (2.14) bezeichnet. Mit Hilfe des Austausch-
und Korrelationsfunktionals kann das Energiefunktional Ey, [n] [Gl. (2.33)] wie folgt geschrieben
werden:

Ey,[n] = Tks[n] + /d?’rvo(f’)n(f’) + % /d37‘/d?’7”7"L(F')U(F7 7 )n(7) + Excn]. (2.51)

Unter Verwendung der Stationaritat des Energiefunktionals fiir kleine Variationen én um die
zum Potential V[ entsprechende Grundzustandsdichte ng erhalt man fiir das gesuchte Potential

Vs
ves(7) = () + / &ru(7, 7 )no(T) + vxe(lnol, 7) (2.52)
mit dem XC-Potential o
vxc([nol, 7) = 5 |n:n0. (2.53)
Insgesamt wird Gl. (2.46) mit dem Potential (2.52) Kohn-Sham-Gleichung genannt:
—%A +o(F) + /dgr’u(ﬁ () + vxe([n], 7) | ¢:i(F) = (7). (2.54)
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Die Lagrange’schen Multiplikatoren {¢;} = {eP*T} werden Kohn-Sham-Energien genannt und
1 als hochstes besetztes Energieniveau lasst sich als Fermi-Energie identifizieren y = €. Die
Grundzustandsdichte ergibt sich nach Gl. (2.43), wobei die Besetzungszahlen néher spezifiziert
werden konnen:

1, g < U
fi=4 05 fi <1, e5=np (2.55)
0, g > W

Durch die Eliminierung der kinetischen Energie Txs = Y, fie; — [ d*rn(F)vgs(F) findet man
folgenden Ausdruck fiir die elektronische Grundzustandsenergie:

Eln] = Z fiei — %/d?’r/dgr’n(ﬁu(ﬁf’)n(?) + Exc — /d?’rvxc([n], P)n(r). (2.56)

Da zur Losung der Kohn-Sham-Gleichung (2.54) die Lagrange’schen Multiplikatoren e; und
Orbitale ¢; zu ermitteln sind und der Hamilton-Operator selbst von den Orbitalen abhangt,
wird die Kohn-Sham-Gleichung in der Praxis selbstkonsistent gelost.

2.3.3 Naherungen fiir den Austausch- und Korrelationsanteil

Der einzige unbekannte Ausdruck in der Kohn-Sham-Gleichung (2.54) bzw. in der elektro-
nischen Grundzustandsenergie Gl. (2.56) sind die Austausch- und Korrelationsbeitrige (XC-
Beitriage) vxc bzw. Exc. Um einen geeigneten (und approximierten) Ausdruck fiir die XC-
Beitrage zu finden, stiitzt man sich auf die Theorie eines homogenen Elektronengases. Im Rah-
men des Jellium-Modells lasst sich die Austausch- und Korrelationsenergie pro Elektron ex¢
schreiben [25] als:

0.9163

homy __ hom hom _
EXC(n ) = €X (n ) + Ec(n ) T.S(nhom)

ec(nhom) (2.57)

mit dem Wigner-Radius r; = (m)% (ap - Bohrradius), welcher von der Dichte des ho-
B

mogenen Elektronengases n'™ abhingt. Als Local Density Approzimation (LDA) wird das Er-
setzen von n"™ in Gl. (2.57) durch eine ortsabhingige Grundzustandsdichte n(7) bezeichnet.
Infolgedessen kann die XC-Energie geschrieben werden als:

Ex¢ ~ BEYRA = EiPA - EEPA = /d?’rn(F)eXC(n(F)). (2.58)

Wihrend die LDA-Austauschenergie EY¥P* eine Abhingigkeit von ns zeigt, existieren verschie-
dene Parametrisierungen der Korrelationsenergie EZP2. In der vorliegenden Arbeit wird die
Parametrisierung von Perdew und Zunger [26] verwendet, welche auf den durch Monte-Carlo-
Simulationen berechneten Korrelationsenergien von Ceperley und Alder [27] basiert.
Urspriinglich aus der Theorie des homogenen Elektronengases liefert die LDA erwartungs-
gemaf eine gute Beschreibung von Systemen mit geringen Dichteinhomogenitéaten. Erfolgreich
ist die LDA allerdings auch bei Systemen mit grofleren Dichtefluktuationen. Dies ist zuriick-
zufithren auf die Eigenschaften des im Rahmen der LDA berechneten sog. XC-Lochs nx (7, 1),
welches eine Minderung der Ladungsdichte um ein bestimmtes Elektron aufgrund der Coulomb-
Abstoflung und des Pauli-Prinzips verursacht [28]. Dieses tragt nur im sphérischen Mittel zur
XC-Energie bei, sodass sich raumlich variierende Beitrage teilweise aufheben. Weiterhin erfiillt
es die Summenregel [ d*r'nyc(7,7) = —1. Die Eigenschaften des XC-Lochs sind zugleich der
Grund dafiir, dass eine systematische Erweiterung der LDA (durch eine Taylor-Entwicklung)
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unter Beriicksichtigung der Dichtegradienten V,n(r), wie schon Hohenberg und Kohn [3] so-
wie Kohn und Sham [4] vorgeschlagen, zunéchst nicht zu einer Verbesserung der Beschrei-
bung von Grundzustandseigenschaften fiihrt. Wie von Langreth und Perdew [29, 30] gezeigt,
verletzt die sog. Gradient Expansion Approzimation (GEA) die Summenregel. Erst durch die
Berticksichtigung abgeleiteter Regeln fiir das XC-Loch, einschliellich der Summenregel, wur-
den Dichtegradienten in die Berechnung der XC-Beitriige aufgenommen [31, 32, 33, 34]. Diese
sog. Generalized Gradient Approzimation(s) (GGA) verbessern im Vergleich zur LDA bei vie-
len Systemen die Beschreibung von strukturellen und energetischen Eigenschaften [6]. Wichtige
Vertreter der GGAs, welche auch im Rahmen dieser Arbeit zur Anwendung kommen, sind das
PW91-Funktional [33, 35] und das PBE-Funktional [34, 36].

2.3.4 Bedeutung der Kohn-Sham-Energien und ASCF -Rechnungen

Bisher hatten die Kohn-Sham-Energien {¢;} die Funktion von Lagrange’schen Multiplika-
toren. Die energetische Lage der besetzten Kohn-Sham-Zustande zeigt im Vergleich mit ex-
perimentell gemessenen Energieniveaus oder Bandstrukturen jedoch gute Ubereinstimmung
[37]. Naheliegend ist es demnach auch die unbesetzten Zustiande als angeregte Zustinde zu
betrachten. In dieser Hinsicht wird die Schwache der DFT als Grundzustandstheorie deut-
lich: viele Bandstrukturen und Energieniveaus oberhalb des Fermi-Levels werden schlecht be-
schrieben. Insbesondere wird in vielen Halbleitern und Isolatoren die fundamentale Bandliicke
unterschatzt. Dies ist zu einem Teil durch die Approximation des Austausch- und Korrelati-
onsfunktionals erklart und zum anderem durch die konzeptionelle Kopplung eines wechselwir-
kenden Systems auf das wechselwirkungsfreie Kohn-Sham-System. Mit Hilfe der Einfiihrung

eines erweiterten HK-Funktionals E[qg,f] mit gz; = (¢1, P2, ..) und f = (f1, f2,..), indem be-
OF
ofi
lisst sich die Beziehung zwischen der Bandliicke ES* eines Materials und dem entsprechenden

Kohn-Sham-Gap E%*PES aufstellen [37]:

liebige Besetzungszahlen f; zugelassen werden, und dem Janak’schen Theorem [3§] =g

ECap _ pOGapKS — A (2.59)
E%2 ergibt sich aus der Differenz der Ionisierungsenergie I und der Elektronenaffinitit A,
E%P =] - A= (EN" - EY) —(EN - ENTY), (2.60)

und EGaPKS hegeichnet die Energiedifferenz zwischen dem (energetisch-) niedrigsten unbesetz-
ten Zustand [conduction band minimum (CBM)] und dem hochsten besetzten Zustand [valence

band mazimum (VBM)]:
EGapKS _ _OBM VBM (2.61)

€ —€
Mit den Indizes N, N £ 1 sind in Gl. (2.60) Terme gekennzeichnet, die sich auf ein N, N £+ 1 -
Elektronensystem beziehen. Die Differenz A > 0 kann nach Sham und Schliiter [39] sowie nach
Godby et al. [40] einen betrachtlichen Anteil des Fehlers bei der Berechnung der Bandliicken
tiber Gl. (2.61) verursachen und ist nicht zwingend korreliert mit der Approximation des XC-
Funktionals.

Obgleich zunachst angenommen wurde, dass die tatsachliche Berechnung der Quasiteilchen-
Bandliicke nach Gl. (2.60) nur zweckméfig fiir raumlich begrenzte Systeme ist [41], formulierten
Chan und Ceder [42] im Jahre 2010 eine Erweiterung dieser Methode auf periodisch-fortgesetzte
Systeme: Da bei einem Festkorper mit N Valenzzusténden (und Ny Valenzzustdnden pro Ein-
heitszelle, vgl. Abschnitt 2.8) ein Elektron zu entfernen/hinzuzufiigen dquivalent ist zur Ent-
fernung/Hinzufiigung von n = % Elektronen pro Einheitszelle mit Ny besetzten Zustanden,
lassen sich Quasiteilchen-Bandliicken mit Hilfe der Energien E(Ny), E(Ny+n) und E(Ny —n)
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berechnen. Obwohl in den meisten Fallen n € R gilt, lasst sich Gl. (2.60) anwenden, sodass
folgt:

EGapFK — %[E(NO +n) + E(Ng —n) — 2E(Ny)] (2.62)

Der Erfolg dieser Methode basiert auf der Tatsache, dass sich innerhalb der Ausdehnung des
XC-Lochs im Mittel die gleiche Anzahl an Elektronen aufhalten.

Bereits Gl. (2.60) zeigt, dass zentrale elektronische Gréfien durch eine Differenz von Grund-
zustandsenergien verschiedener Systeme berechnet werden konnen. Da in diesem Fall mehre-
re selbstkonsistente Rechnungen durchzufiihren sind, wird dieses Verfahren als ASCF (SCF
- self-consistent field)-Rechnung bezeichnet. Die Realisierung von Vielteilchenzusténden, de-
ren Besetzung von der Grundzustandsbesetzung abweicht, erfolgt durch die Vorgabe fixierter
Besetzungszahlen f im Funktional E[(E, f] Analog zur selbstkonsistenten Berechnung eines
(N + 1)-Grundzustandes durch die Festsetzung der Besetzungszahlen

(2.63)

N7 fi=0, i>N+1,

kann eine Elektron-Loch-Anregung durch

. fi=1, i<Nundi#h<N
fen=1< [i=0, i>Nundi#e>N (2.64)
fr=0 und f. =1

simuliert werden. Die Energiedifferenz
AE., = E(en, fon) — EV (2.65)

stellt eine Elektron-Loch-Anregungsenergie dar?. Einen Vergleichswert zu der Anregungsener-
gie Gl. (2.65) und mit dem Vorteil der Notwendigkeit nur einer selbstkonsistenten Rechnung
versehen liefert der Zustand entsprechend der Besetzung [23, 43]

. fi=1, i<Nundi#h<N
fr=< [i=0, it>Nundi#e>N . (2.66)
fe = fh = %
Denn wegen B - B B
AE., = Elfr + Afen] — Elfr — Afen] (2.67)
mit
([ he
Afen=14 fe=—3 (2.68)
fi=0, i#eh

kann durch eine Entwicklung von Gl. (2.67) um fT und mit Hilfe des Janak’schen Theorems
gezeigt werden, dass

AEq = elfr] - 2nlfi] + O((Af)?). (2.69)

Studiert wurde die Elektron-Loch-Wechselwirkung mit ASCF-Methoden u.a. in der Arbei-
ten [44, 45, 46]. Es stellte sich heraus, dass die Gln. (2.65) und (2.69) die Elektron-Loch-
Wechselwirkung nur fiir raumlich begrenzte Systeme korrekt beschreiben.

An dieser Stelle sei die Berechnung des Stokes-Shifts erwéhnt, da hierfiir ebenfalls ASCF-
Methoden eingesetzt werden konnen. Die Fixierung der Besetzungszahlen entsprechend GI.
(2.64) zusammen mit einer ionischen Relaxation, wie in Abschnitt 2.4 beschrieben, sodass

2Mit der Fixierung der Besetzungszahlen werden die Eigenfunktionen 5 — (Eeh in Gl. (2.65) modifiziert.
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die neue Gleichgewichtsgeometrie R, entsteht, fiihrt auf die niedrigste Emissionsenergie des
Systems: L )
AEY, = Elen, fen, Ben] — EV[Ren). (2.70)

Aus der Differenz
Ag = AE,, — AEY, (2.71)

ergibt sich der Stokes-Shift Ag.

2.4 Ermittlung der Gleichgewichtsgeometrie

In Abschnitt 2.3 wurde eine feste Anordnung der lonen vorausgesetzt um das elektroni-
sche Gleichgewicht im Rahmen DFT zu ermitteln. Das Auffinden der tatséichlichen ionischen
Gleichgewichtsgeometrie erfordert jedoch zusatzlich die Betrachtung bzw. das Verschwinden
der Kréfte auf die Tonen, die sich aus der Gesamtenergie E;, wie folgt berechnen lassen:

Fy = =V By = 0, fiir alle s, (2.72)

Die Gesamtenergie ergibt sich im Rahmen der Born-Oppenheimer Naherung und unter Ver-
nachlassigung von Nullpunktsenergien aus der Summe der DFT-Grundzustandsenergie Gl.
(2.56) und dem Erwartungswert des Operators der potentiellen Energie der Tonen Vigyion [GL.

(2.3)]:

By = E[n, Ry + = Z A — R| (2.73)

wobei die Abhéngigkeit der DFT-Grundzustandsenergie von den Koordinaten der Ionen R,
durch das Potential Gl. (2.28) gegeben ist. Weitere Bearbeitung von Gl. (2.72) unter der Be-

dingung, dass sich das System im elektronischen Gleichgewicht %ﬁs] = 0 befindet, fiihrt auf
die sog. Hellmann-Feynman-Krdfte (vgl. z.B. [47]):

FHE — pion | el (2.74)

=7, ZZ i% ]f) / dPr {vﬁsv(ﬁ [RJ))| n(7) (2.75)

| 3

Das Verschwinden der Hellmann-Feynman-Krafte ist demnach fiir das System die Vorausset-
zung fiir das Erreichen einer Gleichgewichtsgeometrie. Da hierbei das elektronische Gleichge-
wicht bereits vorhanden sein muss, ist in der Praxis die Gleichgewichtssuche mit Iterationen,
bestehend aus elektronischer Relaxation und der Verschiebung von Ionen zur Minimierung der
Hellmann-Feynman-Krafte, verbunden.

2.5 Hybrid-Funktionale

Neben der DFT lassen sich auf Einteilchenlevel auch mit Hilfe der Hartree-Fock-Theorie
(HF-Theorie) die Eigenschaften von Festkérpern und Molekiilen mit akzeptabler Genauigkeit
beschreiben bzw. vorhersagen. Ebenfalls im Rahmen der HF-Approximation existiert ein Ener-
giefunktional &hnlich dem HK-Funktional Gl. (2.39). Die Form des Energiefunktionals ldsst
sich direkt bestimmen indem unter Beriicksichtigung der Antisymmetrle der Wellenfunkti—

n [z.B. GL (2.22)] der Erwartungswert des Hamilton-Operators E"[n] = (@@ A
ausgewertet wird. Die Existenz des Funktionals wird durch ein analoges Vorgehen wie in
Abschnitt 2.3.1 gezeigt, gesichert (vgl. auch [23], S. 31). Fiir die Grundzustandsdichte gilt:

nHF<F) = Zieocc |¢1(F)|2
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(a) (b) (c) 7.5e-1

T” 1.0e-1

5.0e-2
1.0e-2

r2
— - 1.0e-3

Abbildung 2.1: Darstellung der Wahrscheinlichkeitsdichte |®(r1,72)|? gebildet auf unterschiedliche
Art- und Weise aus dem jeweiligen Radialanteil des 1s- bzw. 2s-Wasserstofforbitals (in a.u.): (a)
als Produktansatz <I>(P)(r1,r2) = ¢15(r1)pas(r2), (b) als symmetrische Wellenfunktion o) (ri,ra) =
%[cﬁls(rl)qﬁgs(m) + ¢15(r2)d2s(r1)] und (c) als antisymmetrische Wellenfunktion &) (7, r9) =

%[qﬁls(rl)gbgs(rz) — ¢15(r2)Pas(r1)]. Insbesondere in (c¢) wird deutlich, dass die Antisymmetrie der
|2

Wellenfunktion eine Separation von Ladungswolken zur Folge hat: es gilt |®(4)(r,7)|? = 0, withrend

]q)(P/S)(T,T)|2 >0.

Die Abb. 2.1 zeigt die jeweilige rdumliche Verteilung der Wahrscheinlichkeitsdichte unter
Annahme einer Produktwellenfunktion (Hartree-Ndherung), sowie einer symmetrischen bzw.
einer antisymmetrischen Wellenfunktion fiir ein System mit zwei Teilchen. Die Forderung nach
Antisymmetrie in der Wellenfunktion fithrt insbesondere zu einer rdumlichen Trennung der
Ladungswolken der Elektronen und infolgedessen zu einer Absenkung der inter-elektronischen
Coulombenergie. Speziell wird im Vergleich zur Hartree-Approximation die Gesamtenergie um
den Beitrag

— —

e o [ [ I

8meg |7 — 75|

abgesenkt. Geméaf Gl. (2.50) in Abschnitt 2.3.2 wird diese Energie als Austauschenergie be-
zeichnet.

Obgleich durch die HF-Approximation, dhnlich wie durch die DFT, Grundzustandseigen-
schaften gut beschrieben werden, wird die Bandliicke, gerade umgekehrt zur Tendenz der DFT,
in dieser Naherung typischerweise deutlich iiberschétzt (z.B. [48, 49, 50]). Die Ursache fiir diese
Uberschitzung der Bandliicke ist eine fehlende Reaktion der Elektronen im System auf das
Hinzufiigen eines weiteren Elektrons bzw. auf die Ausbildung eines positiven Lochs bei Entfer-
nung eines Elektrons (vgl. [51], S.44). Erfahrungsgeméf kann die Bandliicke im Rahmen der
HFA um einen Faktor zwei grofler sein als die tatséachliche Bandliicke.

Mit Hilfe der DFT und der HFA konnen demnach oft eine untere und obere Grenze fiir
die experimentelle Bandliicke abgeschatzt werden. Eine Vermischung dieser beiden Theorien,
die sich nur im Austauschterm unterscheiden, kann infolgedessen in einer erfolgreichen Be-
stimmung der tatsdchlichen Bandliicke resultieren. Die entsprechende Methode ist in den sog.
Hybridfunktionalen verankert.

Die Vermischung der Austauschenergie der HF-Theorie mit der DFT-XC-Energie zu einem
Hybridfunktional kann nach Harris [52] bzw. Becke [53] auch mit Hilfe einer adiabatic connec-
tion zwischen einem wechselwirkungsfreien und einem wechselwirkenden System gerechtfertigt
werden. In der Arbeit von Perdew et al. [54] wurden storungstheoretisch die jeweiligen Anteile
in dem Hybridfunktional

1
B¢ = Bxc' +a(EX" — EX™) mit a = 5 (2.77)
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berechnet. ERET und ERFT bezeichnen dabei die jeweilige approximierte DFT-XC- und DFT-
Austauschenergie. Ublicherweise wird fiir den DFT-Anteil das PBE-Funktional [34, 36] ver-
wendet. Bekannt ist diese Komposition als PBE(O-Funktional [55, 56]. Heyd et al. [57, 58, 59
zerlegten das Coulomb-Potential zusatzlich in einen kurzreichweitigen und langreichweitigen

Anteil:
1 1- erf(wr) N erf(wr), (2.78)

r r T

wobei w ein einstellbarer Parameter mit Werten zwischen 0.1 und 0.2 ist. Infolgedessen und
unter der Beachtung, dass sich die langreichweitigen Komponenten der HF- und der PBE-
Austauschenergie teilweise autheben bzw. nur geringe Korrekturen verursachen, kann fiir das
Hybrid-Funktional wie folgt angesetzt werden:

ESE — o BVNOSR(0) + (1 — a) EXPP R (W) + EYPP MR (w) + EEPE. (2.79)

Hybridfunktionale verbessern die Beschreibung der Bandliicken [58], allerdings wird der nume-
rische Aufwand im Vergleich zu einer reinen DFT-Rechnung deutlich groBler. Der Grund ist
die notwendige Auswertung eines nichtlokalen Potentials, welches durch die Beriicksichtigung
des exakten Austausches E'F ausgebildet wird. Mit Hilfe von Hybridfunktionalen lassen sich
demnach zur Zeit maximal Systeme mittlerer Grosse (d.h. Systeme einiger dutzend Atome)
studieren.

2.6 Das Konzept der Quasiteilchen

Der bevorstehende Abschnitt erlautert das Konzept der Quasiteilchen. Die Reaktion ei-
nes Systems auf spezielle auflere Storungenen kann als ein Quasiteilchen aufgefasst werden.
Der Kern des Konzepts ist die Betrachtung und Charakterisierung von einigen wenigen Qua-
siteilchen anstelle der Gesamtheit der Teilchen eines Festkorpers. Bei der Beschreibung von
Quasiteilchen wird demnach Wert darauf gelegt, dass diese nur schwach mit dem restlichen
System wechselwirken. Infolgedessen kann ein angeregter Zustand von Festkorpern deutlich
einfacher evaluiert werden. Innerhalb der Festkorperphysik haben sich verschiedene Quasiteil-
chen wie Exzitonen, Polaronen, Phononen oder Plasmonen als sehr erfolgreiche Modelle eta-
bliert. Der Schwerpunkt dieser Arbeit liegt auf der Beschreibung von Quasielektronen sowie den
Elektron-Loch-Paaren Exzitonen. Die Dynamik von Quasiteilchen wird mathematisch durch
Green-Funktionen formuliert. Die vollstandige Losung des Vielteilchenproblems erfordert aller-
dings noch die Einfiihrung vier weiterer Groflen: der Polarisierbarkeit®, der Vertex-Funktion,
des abgeschirmten Coulomb-Potentials sowie der Selbstenergie. Diese insgesamt fiinf Grofien
sind gekoppelt im Hedin’schen Gleichungssystem, welches durch einen geeigneten Ansatz ap-
proximativ gelofit werden kann.

2.6.1 Green-Funktionen

Die Dynamik von Quasielektronen wird formuliert durch die Einteilchen-Green-Funktion
G(r,t;7,t'). Diese beschreibt fiir ¢’ < ¢t die Bewegung eines Elektrons durch das Vielteilchen-
system nachdem es dem System bei der Raum-Zeit (i7,t') =: 2’ zugefiigt wurde und bevor es
dem System bei (7, t) =: x entnommen wurde. Bei der Temperatur 7" = 0K wird die Einteichen-
Green-Funktion mit Hilfe der Feldoperatoren im Heisenberg-Bild

(7, t) i= ey (R Hh und W (7, t) == T/ (7)e—HiN, (2.80)

3Ubersetzung gemif Strinati [51] eng.: polarizability
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dem Grundzustand |®) sowie dem Zeitordnungs-Operator 7" wie folgt definiert:

Gt 7 1) = lh (®| TU(F, )T+ (7, 1) | D) (2.81)
1

Durch die zeitliche Unabhangigkeit des Hamilton-Operators H ist die Green-Funktion zeitlich

homogen:
G(rt; 7, t") = G(F, 7t —t). (2.82)

Analog ist die Zweiteilchen-Green-Funktion durch

1\2
G?(1,2,1,2) = (—h) (| TW(1)T(2)TH(2)TT (1) D) (2.83)
7
definiert, wobei die Abkiirzungen
i, firi=1,1,22 (2.84)

verwendet wurden. Die Zweiteilchen-Green-Funktion beschreibt die Propagation von zwei Teil-
chen. Aus der Betrachtung der Zeitentwicklung der Feldoperatoren (2.80)

?%\m) = HU(1) - U(1)H = [H,¥(1)] (2.:85)

kann auf die Bewegungsgleichung der Einteilchen-Green-Funktion geschlussfolgert werden:
h2A
[ih(?t — (—% + U(F))] G(1,2) + ih/ d3u(1,3)G?(1,3%,2,37) = §(1 — 2), (2.86)
In Gl. (2.86) wurden das zeitabhéngige Coulomb-Potential
eingefiihrt und die Abkiirzung
17 < (Ft+¢€), mit € > 0,¢ — 0 (2.88)

verwendet. Die Bewegungsgleichung (2.86) koppelt die Einteilchen-Green-Funktion mit der
Zweiteilchen-Green-Funktion. Analog fithrt die Aufstellung der Bewegungsgleichung fiir Green-
Funktionen hoherer Ordnungen zu einer unendlichen Kette von Gleichungen, in denen jeweils
die Green-Funktionenen n-ter und (n+1)-ter Ordnungen gekoppelt sind.

2.6.2 Die Selbstenergie und das Hedin’sche Gleichungssystem

Zur Definition der Selbstenergie wird das zeitabhangige Hartree-Potential
ug (1) := —ih/d3u(1,3)G(3,3+) (2.89)
sowie der Hartree-Anteil der Selbstenergie
Si(1,2) = 6(1 — Qun(1) = —ikd(1— 2) /d3u(1, 3)G(3,3%) (2.90)
hinzugezogen. Die Selbstenergie wird implizit wie folgt definiert:
/d32(1,3)G(3,2) = —/dSEH(l,B)G(B,Z) —m/d3u(1,3)G<2>(1,3*,2,3**) (2.91)

= —un(1)G(1,2) —@'h/d3u(1,3)G(2>(1,3+,2,3++). (2.92)
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Gln. (2.91) und (2.92) erlauben eine Entkopplung der Green-Funktion 1.-ter Ordnung von der
Zweiteilchen-Green-Funktion in der Bewegungsgleichung Gl. (2.86). Bei diesem Schritt wird
Gl. (2.86) in die sog. Dysongleichung umgewandelt:

5(1—2) = -ih&g - <—7;2—$ +U(F))1 G(1,2) — /d3zH(1,3)G(3,2)
—/d32(1,3)G(3,2) (2.93)
= -@'hﬁt - (—7:;2—”? +o(7) + uH(1)>] G(1,2) — /d32(1,3)G(3,2). (2.94)

Die physikalische Bedeutung der Selbstenergie wird deutlich, wenn die Green-Funktion Gg g
eines wechselwirkungsfreien Systems betrachtet wird (Hartree-Néherung). Es gilt im Frequenz-
raum [mit ug (7) = [ Er'u(7, 7 )n()):

Gy p(w) = hw — (—% + v('F)) — ug(F) (2.95)
und folglich
G (w) = Gy p(w) — B(w). (2.96)

Da die Nullstellen von G~' und Gj 1 (bzw. die Pole von G und Gy ) Anregungsenergien
darstellen [60], stellt die Selbstenergie den Beitrag zu Gy, & dar, der aus der Wechselwirkung
der Teilchen resultiert.

Um im Weiteren das Hedin’sche Gleichungssystem abzuleiten, gibt es verschiedene Mo6glich-
keiten: (i) die Vernkiipfung einer Bethe-Salpeter-Gleichung fiir die Streuamplitude mit der
Bewegungsgleichung fiir die Green-Funktion [61] oder (ii) der Einsatz eines Testpotentials
[51, 62, 63, 64] ¢(7,t), welches zum Hartree-Potential addiert wird wue(1) = ug(l) + ¢(1),
zusammen mit der Verwendung von Funktionalableitungen um Beziehungen zwischen den neu-
en Grofen zu erhalten. Im Folgenden wird sich an Ref. [62] orientiert und von Methode (ii)
Gebrauch gemacht.

Das Testpotential ist ein mathematisches Hilfsmittel um Gleichungen zu erzeugen, welche
auf die Bestimmung der Selbstenergie fithren. Es kann auch als eine kurze auflere Storung
angesehen werden. Das Potential ¢(1) verschwindet fiir ¢ — 400 und es soll stetig zugefiigt und
entfernt werden, sodass der Zustand des Systems nach Abklingen der Storung in den originalen
Grundzustand zuriickkehrt. Die Teilchen im System reagieren nicht nur auf die auflere Storung,
sondern auf die Anderung des gesamten Potentials duy(1) = d¢(1) + [ d3u(1,3)6G(3,3%). In
Analogie zur klassischen Elektrodynamik wird die Response-Funktion

e1(1,2) = 5;;?((21)) =5(1-2)+ /d@ﬁﬁ)% (2.97)
eingefiihrt, welche mit der Polarisierbarkeit gekoppelt ist:
€(1,2) =6(1—-2) — /d3 u(1,3)I1(3,2). (2.98)
Fiir die Polarisierbarkeit findet man:
M(1,2) = —ih/dS/d4G(1,3)F(3,4; 2)G(4, 1%), (2.99)
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wobei die Vertex-Funktion I'(1,2;3) = —5G5u g 3 2 verwendet wurde:

I(1,2:3) = 6(1 — 2)6(1 — 3)+
/d4/d5/d6/d7G (4,6)G(7,5)I(6,T; 3);5281’3. (2.100)

Der Effekt einer zusétzliche Ladung, die in ein System eingebracht wird, wird durch eine Aus-
richtung der tibrigen Ladungstriger reduziert [65]. Demnach rentiert sich auch die Einfiihrung
eines abgeschirmten Coulomb-Potentials:

W(1,2) = /d3 e 1(1,3)u(3,2). (2.101)
Mit Hilfe der so definierten Groflen ergibt sich fiir die Selbstenergie:
2(1,2) —ih/d3/d4W(1,4)G(1,3)F(3,2;4). (2.102)

Zusammen mit Gln. (2.95) und (2.96) kann das Hedin’sche Gleichungssystem wie folgt
zusammengefasst werden [66, 67] (iber doppelte Indizes mit ¢ > 3 wird integriert):

G(1,2) = Gou(1,2) + Gou(1,3)5(3,4)G(4, 2) (2.103)

W(1,2) :u(l 2) + u(1, 3)I1(3,4)W (4, 2) (2.104)

$(1,2) = ikl (3,2;4)G(1,37)W (1, 4) (2.105)

1(1,2) = —th(1 3)0(3,4;2)G(4,17) (2.106)
55(1,2)

D(1,2:3) = 3(1 = 2)3(1 = 3) + G(LOG(T. 56,7 3) 575 (2.107)

Durch eine Iteration lédsst sich aus Gln. (2.103)-(2.107) eine Néherung fiir die Selbstenergie
finden. Man startet mit der Hartree-Niherung Gl. (2.95) der Green-Funktion G = Gy 5 (mit
¥ = 0). Das Einsetzen von £ = 0 in GI. (2.107) und anschlieBend in (2.106) ergibt:

r©1,2;3) = §(1 —2)s(1 — 3) (2.108)
9(1,2) = —inGO(1,2)G 02, 11). (2.109)

Die Abschirmung W berechnet man aus Gl. (2.104). Von Gl. (2.104) gelangt man zu Gl.
(2.101), wobei die Response-Funktion

€(1,2) =6(1—2) — z’h/d3 u(1,3)G9(3,2)G(2,3") (2.110)
zu invertieren ist. Fiir die Selbstenergie folgt nach der ersten Iteration:
»M(1,2) = kGO (1,2)W (1, 2). (2.111)

Die Iteration kann weiter fortgesetzt werden. Allerdings fiihren weitere Schritte nicht notwen-
digerweise zu einer besseren Beschreibung der elektronischen Eigenschaften der studierten Sys-
teme [62, 68]. Haufig wird fiir die Selbstenergie daher die sog. GW-Approximation (GWA) GI.
(2.111) verwendet.
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2.6.3 Die Quasiteilchen-Approximation

Der Operator der Selbstenergie ist i.A. nichthermitesch (und energieabhéngig), sodass die bei-
den zugehorigen Eigenwertprobleme lauten [69]:

(_7122_77? +v(7) + up(1 )) UL (Fw) + /Z(f’, 7wl (7, w) = 9 (W)l (7, w) (2.112)

(—Z—AH(F) +up(l )) Wﬁw)+/2(ﬁf’,w)*¢£(ﬁw> = QP (W)Y (Fw)  (2.113)

mit den bi-orthogonalen Eigenzustanden < L ¢QL> = Opm. Die Green-Funktion wird aus den
Eigenzustinden 1!, 9" konstruiert:

ZW W W(z ;")] . (2.114)

Vereinfacht wird Gl. (2.114) unter der Annahme, dass die Green-Funktion Pole bei fiw, =
e%P(w,) besitzt [51, 64]. In dieser sog. Quasiteilchen- Approximation gilt fiir die Green-Funktion:

l N r —*!7 » * . 1
Zg w 7, c];w)[whgn ) - glwn) = o (2.115)

Der Vorfaktor g(w,) ist das Residuum von [Aw —%F (w)]~1 am Pol w, und gibt die Wahrschein-
lichkeit an, dass sich ein Teilchen im Quasi-Zustand 1),, befindet und in jenem Zustand verweilt
[62]. Die Quasiteilchen-Approximation wird begriindet im Zusammenhang mit der Darstellung
der Green-Funktion eines wechselwirkungsfreien Systems durch die Losung des zugehorigen
Eigenwertproblems:

GolF, Z¢" (M ()" (2.116)

_gn

Die Pole ¢, von G beschreiben die Elntellchenenerglen und der Vorfaktor eins spiegelt einen
isolierten Zustand ¢, wieder. In der Quasiteilchen-Approximation hat die Green-Funktionen G
die gleiche Form wie Gy.

Andererseits kann eine Spektraldarstellung der Green-Funktion durch das Einsetzen des
Identitétsoperators I =", |M) (M| zwischen der Feldoperatoren in Gl. (2.81) gewonnen wer-
den [66]:

o 0
A(F 7. A(F 7.
G(r, 7 w) = /dw,—(r,'r’,w') +/dw,—('r,7°,w) (2.117)

w—w —1in w—w +in’

— 00 i

wobei die Spektralfunktion A(7, 7", w’) durch

A w) =) ai(May_(7F)dlw — p+ (BN — ENTY]
+ Y i (Mg (F)0[w — p — (BN — BN (2.118)

mit
a;_(F) = (N — 1,i| O(7) |N) und a; (7) = (N + 1,1 TF(7) |N) (2.119)

gegeben ist. |N & 1,i) und EV*1% sind der i-te angeregte Eigenzustand und die zugehorige
angeregte Energie eines N £ 1-Elektronensystems. p als chemisches Potential ist gegeben durch:

p=ENTL _EN = EN _ EN-1 L O(1/N). (2.120)
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Nach Gln. (2.117) und (2.118) enthalten die Pole der Green-Funktion die Informationen iiber
die Anregungsenergien von N + 1-Teilchen-Zustédnden. Da Gln. (2.117) und (2.114) [bzw. GI.
(2.115)] gleich sein miissen, kénnen der Real- und Imaginérteil der i.A. komplexen Quasiteil-
chenenergien hw, als Energien und inverse Lebenszeiten von N + 1-Teilchen-Zustanden ange-
sehen werden.

An dieser Stelle sei ein Blick auf Abschnitt 2.5 gewéhrleistet: gemafi Gln. (2.101) und
(2.111) gilt bei einer Wahl der Abschirmfunktion Gl. (2.97) von e;p := §(1 — 2) fiir das abge-
schirmte Coulomb-Potential: Wyp(1,2) = v(1,2). Die Quasiteilchen-Gleichung (2.112)/(2.113)
geht infolgedessen in die Hartree-Fock-Gleichung iiber. Da erfahrungsgemafl die HF-Theorie
die tatséchliche Bandliicke {iberschétzt, zeigt sich, dass die Abschirmung €(1,2) fiir eine gute
Beschreibung der Bandliicke ausschlaggebend ist.

2.6.4 Storungstheoretische Berechnung der Quasiteilchenenergien

Prinzipiell kénnen Quasiteilchenenergien mit Hilfe der G W-Approximation Gl. (2.111) und den
Gln. (2.112) und (2.113) selbstkonsistent berechnet werden. Allerdings erfordert die Berech-
nung der Selbstenergie einen hohen numerischen Aufwand, da diese ein nichtlokales Potential
darstellt [vgl. Gl. (2.112)]. Zudem zeigte sich, dass die selbstkonsistente Berechnung der Quasi-
teilchenenergien oftmals die Beschreibung der Bandliicken nicht tiberméBig verbessert [70, 71].
Auch haben sog. Vertex-Korrekturen, die aus dem zweiten Iterationsschritt der Hedin’schen
Gleichungen resultieren, nur geringfiigigen Einfluss auf die Ergebnisse [72, 73, 74, 75]. Infol-
gedessen werden die Quasiteilchenenergien im Rahmen dieser Arbeit storungstheoretisch auf
Grundlage der Kohn-Sham Energien ermittelt. Die Implementierung ist beschrieben in der Ar-
beit von Shishkin und Kresse [76]. Fiir die Quasiteilchenenergien in 1. Ordnung Stérungtheorie
gilt:

1
<¢n| 882(5”555 |¢n> ‘

Z, wird als Renormierungsfaktor bezeichnet [66]. Die Komponenten der Selbstenergie in GW-
Approximation werden aus den Kohn-Sham Eigenwerten und Eigenfunktionen konstruiert. Ins-
besondere zur Darstellung der Green-Funktion wird Gl. (2.116) verwendet. Die weiteren not-
wendigen Grofien, wie die Abschirmung und das abgeschirmte Coulomb-Potential, konnen aus
Gln. (2.110) und (2.101) berechnet werden. Zu bemerken sei, dass die Abschirmung im Rahmen
einer Random-Phase Approximation (RPA) berechnet wird. Als Grundlage werden ebenfalls die
Kohn-Sham-Eigenfunktionen und -energien verwendet. Zusatzlich wird die Pseudo-Potential-
Methode partial augmented waves (PAW) eingesetzt (vgl. Abschnitt 2.9). Generell hat sich
bzgl. der Quasiteilchen-Stérungstheorie auch eine Abhéngigkeit von den Anfangspunktenergien
herausgestellt. Der Ansatz, Hybrid-Funktional-Ergebnisse anstelle der Kohn-Sham-Ergebnisse
zu verwenden, wies eine Verbesserung der Bandliicken-Resultate auf. Zur weiteren Diskussion
dieses Punktes sei auf die Arbeiten [77, 78, 79] verwiesen.

&.QP = 558 + s (Zn <¢n| 2(558> — Uxc |¢n>) mit Zn =

n

(2.121)

2.7 Optische Eigenschaften

Die Kenntnis der (Quasi)-Teilchen-Niveaus erlaubt die Charakterisierung der Wechselwir-
kung eines Elektronensystem mit elektromagnetischen Wellen. Der Einfall elektromagnetischer
Strahlung wird durch einen Storoperator H®** ausgedriickt. Die Abweichung der Erwartungs-
werte relevanter Operatoren von den Grundzustandswerten herbeigefithrt durch die auflere
Storung wird als Response bezeichnet [80](S.173). Insbesondere interessant ist die Response
des Stromdichteoperators § < j >, da aus dieser die Eigenschaften (messbarer) makrosko-
pischer Groflen gewonnen werden konnen. Dazu gehoren sowohl die dielektrische Funktion
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€(w) als auch der Tensor der Erzeugung der zweiten Harmonischen (SHG) xap,(w). Neben
dem Einfluss der vorgegebenen elektronischen Struktur eines Systems, hat sich in den letzten
Jahren auch herausgestellt, dass die optischen Eigenschaften von Festkérpern und Molekiilen
massgeblich durch die sog. Lokalfeldeffekte und die Elektron-Loch-Wechselwirkung beeinflusst
werden. Lokalfeldeffekte, die nach Adler [81] und Wiser [82] die mikroskopischen Aspekte der
Response in Betracht ziehen, konnen zusammen mit der Elektron-Loch-Wechselwirkung im
Rahmen der Vielteilchentheorie bearbeitet werden. Die Elektron-Loch-Wechselwirkung bezeich-
net die Anziehung zwischen einem angeregten (Quasi-)Elektron und dem zuriickbleibenden
Loch unterhalb der Fermi-Energie. Zur entgiiltigen Berechnung der beiden Effekte wird er-
neut vom Hedin’schen Gleichungssystem Gebrauch gemacht, wobei sich herausstellt, dass die
sog. Zweiteilchen-Korrelationsfunktion, als zentrale Grosse zur Berticksichtigung der Vielteil-
cheneffekte in den optischen Eigenschaften, eine Bethe-Salpeter-Gleichung (BSE) erfiillt. Im
Folgenden wird ausgehend vom Storoperator die Response der Stromdichte betrachtet. An-
schlieend wird aus der Response die Verbindung zu den makroskopischen Groflen hergestellt.
Es folgt die Einarbeitung der Vielteilcheneffekte.

2.7.1 Stromdichte-Response

Unter Verwendung der Coulomb-Eichung und mit der Wahl des externen skalaren Poten-
tials von ¢***(7) = 0 lautet der Storoperator zur Beschreibung eines von aufien angelegten
elektromagnetischen Feldes [21, 80, 83|

2

i = [@rjE oo+ o [ e (A7) (2.122)

2m

wobei A%t das externe Vektor-Potential und

J = o (O, 1) — (U (1) (7 1) (2,123
sind. ﬁ ist in Gl. (2.123) der Impulsoperator. Wegen —‘;Z—:f = Juos gilt fiir den Operator der
Gesamtstromdichte [21, 80] (S.22/S.455)%:

> S 62 P rext
Jrot = J(751) — En( t) A7, 1), (2.124)

Fir Isolatoren und Halbleiter bei der Temperatur 7" = 0K verschwinden wegen der Ladungser-

haltung aller Terme proportional zum Dichteoperator ° ﬁ(F . 1), sodass im Folgenden ﬁot = jgilt.
Die Stromdichte-Response ergibt sich als Differenz der Erwartungswerte des jeweils gestorten
und ungestorten Systems:

6 < Jo >= (@] [U*(0]a0(1) — ju| 12, (2.125)
wobel
t
U(t) = exp | —i / At H (') /1 (2.126)

der Zeitentwicklungsoperator im Wechselwirkungsbild ist. Analog zu Abschnitt 2.6.2 soll das
System bei t — —oo ungestort sein. Die Verwendung der Reihendarstellung der Exponential-
funktion in Gl. (2.126) und die Betrachtung der Terme bis zur quadratischen Ordnung in A®**

4QOrientierung an Fetter et al. [80]
5Der Dichteoperator 7 enthélt hier auch die ionischen Beitrage.
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liefert fiir die Stromdichte-Response:

§ < ja(Ft) > =106 < j (7 t) > +0 < j2(Ft) > mit (2.127)
t
§<jiFt) > = —i/d?’r’ / dt’ < jﬁ(r”,t’),j’a(ﬁ t)} > A, ') und (2.128)
5<]a<7”t /d3T1/d3T2/dt1 /dtg
% < [, 1), [J'B(a,tl),ja(ﬁ 0] > A0t AR L) (2129)

Wegen E™* = —19, A°* bei Verwendung der Coulomb-Eichung kénnen die Gln. (2.127) - (2.129)
fiir nichtmagnetische Materialien mit den elektrischen Storfeldern E%* in Beziehung gesetzt wer-
den. Brauchbarer sind allerdings die Abhéngigkeiten der Erwartungswerte vom gesamten elek-
trischen Feld E (7,t), da dieses in den Maxwell-Gleichungen vorkommt. Wie in Ref. Leitsmann
et al. [83] und darin enthaltenen Referenzen erklirt, ist es dazu notwendig bei der Erwartungs-
wertbildung in den Gln. (2.127) - (2.129) nur die irreduziblen Graphen zu beriicksichtigen. Es
gilt infolgedessen fiir die Stromdichte-Response:

5 < jL(Ft) > = /d?’r'/dt'aiﬁ(ﬁf',t —t")Es(7,t') und (2.130)
(5<§§(F,t) > = /d37"1/d37'2/dt1/dt2
X O-iﬁ'y(F’ Fl, Fg,t — tl,t — tg)Eﬂ(Fl, tl)E/y(FQtQ), (2131)

wobei die Leitfahigkeits-Tensoren wie folgt gegeben sind:
t/

1 N A
ol = 1) = Ot 1) / dty < [jﬁ(fg,tz), NG t)} > und (2.132)
1
t
t

N 1
UiﬁA/(T’,Tl,’f’Q,t—tl,t—tQ) 252 dt3 / dt4 t4 —tl)@(tg —tg)

—00 —00

x < [ ), [Ja(os 1), Ja(70)] | > +(8 0 1)} (2.133)

2.7.2 Makroskopische Response-Funktionen
Nach den Maxwell-Gleichungen gilt fiir nichtmagnetische Materialien
§ < ju >= 0,Pa(t) baw. Pa(w) = —6 < ja(w) > . (2.134)
w

Andererseits lasst sich die Polarisation im Frequenzraum nach Ordnungen des elektrischen
Feldes entwickeln (vgl. Ref. [10]):

P (w) = €0 X\ (w) Es(w)
+ €9 / dwl /dbdg (5[0.) — (Wl + (,UQ)] Xfﬁ)y@*)lv ojg) Eﬁ(wl)E,y(UJQ) =+ .. (2135)

XS; ist in Gl. (2.135) die lineare Suszeptibilitét, die mit der dielektrischen Funktion zusam-

menhangt:
1
€as(w) = Gag + X (). (2.136)
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Die dielektrische Funktion enthalt alle Informationen tiber die linearen optischen Eigenschaften
eines Festkorpers oder Molekiils. Dazu gehoheren u.a. die Absorptions- und Reflexionscharak-
teristiken.

X&gv(wl, wy) wird als nichtlineare Suszeptibilitéit zweiter Ordnung bezeichnet. Die Wechsel-

wirkung von EM-Wellen der Frequenzen w; und ws in nichtlinearen Medien fiihrt zur Erzeugung
von EM-Wellen mit Summen- w = w; + wy oder Differenzfrequenzen w = +(w; — ws) [9]. Einen
Spezialfall bildet die Erzeugung der sog. zweiten Harmonischen, die im Folgenden Gegenstand
der Untersuchung sein wird. Fiir die Frequenzen der beiden einfallenden EM-Wellen gilt in die-
sem Fall: w; = wy = wy. Generiert wird im nichtlinearem Medium eine EM-Welle der Frequenz
w = 2wp. GeméB Gl. (2.135) und den intrinsischen Vertauschungssymmetrien hinsichtlich der
kartesischen Richtungen 5 und ~y (vgl. Ref. [10], Gl. 2.54) 148t sich fiir die entsprechende zweite
Ordnung der Polarisation schreiben®:

PD([2),SHG<M) _ %Xfﬁ)f\/(_Zw; w, (.U)Eﬁ((«U)E'y(W) (2137)

X2 (2w, w,w) bildet in G (2.137) folglich ein Mas fir die Intensitit der emittierten EM-
Welle beim Prozess der Erzeugung der zweiten Harmonischen.
Die Kombination von Gln. (2. 134) und (2 135) zusammen mit Gln. (2.132) und (2.133) fithrt

jeweils auf einen Ausdruck fir X( und X 7 Dazu werden aéﬁ und Ui,ﬁy Fourier-transformiert,
(vgl. Anhang A), wobei anschlieend die Wellenvektorabhéngigkeit vernachléssigt wird (d.h.
fir die folgenden Schritte gilt: ¢, ¢ — 0). Grund dafiir ist der geringe Betrag des Photonen-
Wellenvektors im Vergleich zur Ausdehnung der Brillouin Zone (vgl. Abschnitt 2.8). Zusammen

mit der Darstellung der Feldoperatoren W, U durch die Vernichter- und Erzeugeroperatoren

ANooAT
ay, a)\

=Y o @as (1) (2.138)
A
lasst sich weiterhin fiir den Operator des Stroms schreiben:

ja( ) /d3rja T t Zp)\)\/a)\ ay ) (2139)

)\)\’

Infolgedessen gilt fiir die dielektrische Funktion:

[e.9]

. 4 jwt T T

— _— = - — : 14
€ap(w) = dap + EMU 5(0,0,w) = dag + Eomgv/dt‘f < [Ja(0), Ja(=1)] >inr (2.140)
0

i@ wt, ~ ~ s
= 0ap + W Z /dte tpAl)\/p)\ N < [a)\l(t)axl(t),aj\;(())a,\é(())] > (2.141)

6Die Konvention wird gemif Gl. (2.54) in Ref. [10] gewiihlt. Der Faktor 1/2 ist in anderen Arbeiten oftmals
in x® eingeschlossen.
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Analog folgt fiir den Tensor der Erzeugung der zweiten Harmonischen:

(2) _.0(0,0,0,w,w)
Xay(—2w, 0, w) = i—— — "= (2.142)
) 0 11
1 A . . R .
- v / dt, / dty {7 e e < L), [Js(t), Ja0)] | > +(B 0 1)} (2143)

0 t
. 3 1

— e (o' 8 Y
= Tea 23ty Z p)\l)\/lp,\Q,\/ZpAg)\/g /dh /dtQ
A1y A _

123 00 —o0

{emiem™® < [af (t2)ax (t2), [a3, (tr)ax, (1), a3, (0)ax (0)]] >ie +(8 <> 7)) (2.144)

Die Gln. (2.136), (2.141) und (2.144) bilden die Ausgangspunkte zur Berechnung der linearen
und nichtlinearen optischen Eigenschaften. Im Folgenden wird es das Ziel sein, Erwartungs-
werte wie < ay (t1)..ax, (th) >in und < a3 (t1)..Gx (t3) >ix unter Verwendung verschiedener
Approximationen zu ermitteln.

2.7.3 Unabhéangige (Quasi-) Teilchen Approximation

Im Falle wechselwirkungsfreier (Quasi-) Teilchen ist der Hamilton-Operator diagonal bzgl.

der {|\)}-Basis, sodass fiir die zeitabhéngigen Erzeuger- und Vernichter-Operatoren dg\” (t) (im
Heisenberg-Bild) die explizite Zeitdarstellung verwendet werden kann (vgl. [21], S. 92):

a\" () = exp|(=)(h/i)ext] a5 (0) (2.145)

Infolgedessen lassen sich die Erwartungswerte < @y (0)..a Xy (0) >y in den Gleichungen (2.141)
und (2.144) auswerten, sowie mit Hilfe eines konvergenzerzeugenden Faktors n > 0 die Zeitin-
tegrale [ dt;.. berechnen. Unter Beachtung der Spinentartung der Einteilchenzustande findet
man fiir die dielektrische Funktion:

€ap(w) = dap + 2" > hw RV (2.146)
T hmdViw - in)? £ (ev — ) /h— (@ + ) |

Mit fan werden dabei die Besetzungszahldifferenzen zwischen den Zustédnden |A), |\') bezeich-
net. Ein analoges Vorgehen fithrt auf den Ausdruck fiir den SHG-Tensor:

-3
) (22w, w,w) = e ! X 2.147
Xaﬁ'y( [ ) €0h2m3V(w + 2'77)3 )\12)\2;3 (6>\2 _ E)\l)/h _ Q(OJ + Z-n) ( )
f/\l)\3p§\{1)\2 {pfz)\gp’)\yg,)\l} f/\2)\3p§\{1)\2 {p}\/z)\gpfg,)\l} (2148)
(6)\3 _EAI)/h_ (w_'_in) (6)\2 _€>\3)/h_ (W+i77) ’
wobei abgekiirzt wurde:
1
{pfqu;yn} = 5[195112921 + p%zpﬁz]- (2.149)

Die Formeln (2.146) und (2.148) fiir die IPA/IQA-Naherung der dielektrischen Funktion sowie
des SHG-Tensors enthalten noch Divergenzen 1/w? bzw. 1/w?® fiir w — 0. Durch eine Parti-
albruchzerlegung zusammen mit der Betrachtung der Symmetrien der Impulsmatrixelemente,
sowie der Besetzungszahl- und Energiedifferenzen bei der Summation ) ,,, konnen diese
eliminiert werden. Wiedergegeben ist das Vorgehen ausfiihrlich in den Arbeiten [84, 85, 86].
Unter Verwendung von Bloch-Zusténden |¢y) = |¢,(q)), die auch in Abschnitt 2.8.2 diskutiert
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werden, lautet das Endergebnis fiir die dielektrische Funktion und den SHG-Tensor:

P D50, (@
o) = ot QVZZf"" Ven@/iFew@in—wrm

@) ie?

-2 - @@
Xaﬁ'y( w,(A),(A)) thgmgv

Xy == 3 fam (@05 (DAL (@07 (D)} %

—

q

(X(2),two(w)_'_X(Q))three(w)) mlt, (2151)

16 1
§ [[emn(q‘)/h]“[em(q”)/h 2w+ )] [emn(@ /B emn(@)/h— (w + in)] (2.152)
(2),three pnm q_j{pml (Dpln(q)}
' - 2,,; 1@ — el )/
» [ 16fnm(c7) N Fout(@) .
[€mn (D) /B [€mn (D) /2 = 2(w +in)]  [€nu(@)/ PP [en() /P — (w + in)]
fln(@
T T @ Pl @ /A — (@ + z’n)]]’ (2.153)

Mit €, (7) = €m(q) — €,(7) werden in der Gln. (2.150),(2.152) und (2.153) Energiedifferenzen
zwischen den Zusténden |¢,,(¢)) und |¢, (7)) bezeichnet. Die SHG-Gleichungen berticksichtigen
sowohl Interband- als auch Intrabandiibergange. Letztere sind enthalten in den Matrixelemen-
ten AP, = P (@) — P (@)

Der Ubergang von der Unabhiingigen-Teilchen-Néiherung (IPA) zur Unabhéngigen-
Quasiteilchen-Naherung (IQA) erfolgt durch das Ersetzen der Energiedifferenzen (ey — €,),
welche meistens durch die DFT-Energieeigenwerte gegeben sind, durch die zugehorigen Quasi-
teilchenwerte. Die Wellenfunktionen werden geméfl Abschnitt 2.6.4 nicht aktualisiert. In vielen
Fallen liefert auch eine Verschiebung der Energien der unbesetzten Zustande um einen konstan-
ten Beitrag A eine gute Approximation der Quasiteilchenenergien. Der Operator, der diesem
Effekt erzeugt, wird Scissors-Operator genannt. Wie in den Arbeiten von Del Sole und Girlanda
[87] sowie Sipe und Ghaharamani [88] gezeigt, ist es hinsichtlich der Berechnung der optischen
Eigenschaften im Rahmen der IQA notwendig die Impulsmatrixelemente entsprechend der Vor-
schrift

aIQA SW - Eg\%w o
Do = — P (2.154)
€\ — €N

zu reskalieren. Zudem zeigte sich den Arbeiten von Cabellos et al. [84] und Nastos et al. [89]
zufolge, dass beim SHG-Tensor durch die Nichtlokalitat des Scissors-Operators der Term

By
(2),corr aa [UX,\ {Fyw}] R{E )\’)\U/\X VY
— + , 2.155
Xagn 2€oh2 A#ZX (5 /h)? ( Syv/h—2w+in) &, /h— (w+in) ( )

wobei €}, die um den Scissor-Shift A korrigierten Energien sind, beriicksichtigt werden muss.
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Es gilt fir v3,¢ und F in Gl (2.155) (vel. Gln. (12), (13), (18) in Ref. [84]):

1" P
Boa = N 07]A) = (V] el I 7]) [A) und (2.156)
Fffﬁ = _h ()\’| (7, [, S(F p)]] |A) mit S(7, p) - Scissors-Operator. (2.157)

Nach der Arbeit von Cabellos et al. [84] fithrt die Berticksichtigung des Ausdrucks Gl. (2.155)
zu einer leichten Intensitatserhéhung gegeniiber unkorrigierten SHG-Spektren.

2.7.4 Vielteilcheneffekte im optischen Spektrum

Das Einbeziehen von Vielteilcheneffekten, wie Lokalfeldeffekte und Elektron-Loch-
Wechselwirkung, im optischen Spektrum kann durch die Betrachtung der Zweiteilchen-Korre-
lationsfunktion [51]

L(L,72,7t) = =GP (L, 7 2,71%) + G(1,2)G1 (7L, 7). (2.158)

erfolgen. Die Zweiteilchen-Korrelationsfunktion erhalt man urspriinglich aus der Betrachtung
der Dynamik der 2-Teilchen-Green-Funktion. Die Argumente von L kénnen auf beliebige Fin-
trage (rt) verallgemeinert werden. Die Zweiteilchen-Korrelationsfunktion erfiillt die folgende
Bethe-Salpeter-Gleichung (BSE):

L(1,2;1,2) = G(1,2)G(2, 1)+ (2.159)

/d3456G(1, 3)G(4,1)Z'(3,5:4,6)L(6,2;5,2) (2.160)

wobei fiir den (vorldufigen) Kern =’ gilt:

§(3,4)

= 74,6) = —1 4 —.

(2.161)

Der erste Term in Gl. (2.161) identifiziert dabei die Lokalfeldeffekte und der zweite beriicksich-
tigt wegen
0%(1,2)

G (3,4)
die Elektron-Loch-Wechselwirkung. Der Operator des abgeschirmten Coulomb-Potentials W
wird haufig in der statischen Approximation verwendet:

= ihé(1,3)0(2, )W (17,2) (2.162)

W(1,2) = W(F, 7)3(t, — ta). (2.163)

Dies liefert fiir viele Systeme eine gute Beschreibung der optischen Eigenschaften und redu-
ziert den numerischen Aufwand. Eine weitere Approximation, die am abgeschirmten Coulomb-
Potential vorgenommen wird, wird in Abschnitt 2.10 erlautert.

Es kann eine Relation zwischen L und der Vertex-Funktion Gl. (2.100) gewonnen werden:

L(1,3;2,3%) = /d45G(1,4)G(5,2)F(4,5;3), (2.164)
sodass der Zusammenhang zum Hedin’schen Gleichungssystem gegeben ist. Weiterhin kann
gezeigt werden, dass die Polarisierbarkeit Il direkt aus der Zweiteilchen-Korrelationsfunktion

folgt:
I1(1,2) = —ihL(1,2;17,27). (2.165)
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Im Gegensatz zu den Groflen im Hedin’schen Gleichungssystem muss der Spinfreiheitsgrad in
der 2-Teilchen-Green-Funktion explizit berticksichtigt werden. Wie in den Arbeiten von Strinati
[51] (App. D) bzw. Rodl et al. [78] gezeigt, wird als Folge davon der auf Lokalfeldeffekte bezogene
Anteil des Kerns fiir Singulett-Anregungen modifiziert. Auch wird das Coulomb-Potential «
durch ein modifiziertes Coulomb-Potential u ersetzt. u ist wegen der Entfernung der k=0
Komponente regular im k-Raum und demnach um die langreichweitigen Beitrage im Ortsraum
verringert. Unter Berticksichtigung dieser Punkte lautet der Kern:

= = ‘ s _ 0%(3,4)

= — =(3,5;4,6) = —2iho(3,4)0(5,6)u(3,6) + —50(6, )" (2.166)
Im Folgenden soll es das Ziel sein, die BSE durch Umformung auf ein Eigenwertproblem zu
16sen. Das Vorgehen orientiert sich an Refs. [51, 90].

Zundcht wird in der BSE Gl. (2.160) die Paarung der Zeitkoordinaten wie in Gl. (2.165)

gewahlt. Infolgedessen kann die Zweiteilchen-Korrelationsfunktion hinsichtlich der Zeit fourier-
transformiert werden:

L(1,2;1/,2/) — L(Fl,FQ;’Fll,FQI;W) (2167)
Fiir das Produkt der Green-Funktionen L, := GG lasst sich angeben:
P S dw’ - o / - /
Lo(Tl,TQ; 7“1'77“2';00) = Q—G(hﬂ"g/,w +w )G(TQ, T, W ) (2.168)
T

Die BSE kann umgeformt werden zu dem symbolischen Ausdruck
Lo (w) = E(W)IL(w) =1, (2.169)

indem die Inverse von Lg auftaucht. Zur Berechnung von Ly ' wird die Darstellung von 4-Punkt-
Funktionen F' (7, ..,7,) als Linearkombination von (vollstandigen) Einteilchenwellenfunktionen
verwendet:

F(, 0 71) = Y F(Ahas Asha)dn, (71)da, (72) 83, (75) 03, (7). (2.170)

ALy

Mit Hilfe von Gl. (2.170) und durch die Darstellung der Einteilchen-Green-Funktion wie in Gln.
(2.116) bzw. (2.115) erhélt man zunéchst fiir Ly:
i f)\4 - f/\3

Lo()q)\z; /\3)\4) = ﬁe)\ e — hw
4 3

I Orors (2.171)

und anschliefend fiir fy, — f\, # 0 fiir Ly

Lo (s M) = DonsBan, (20 = €2 — ) (2.172)
? f>\4 - f)\g
Aus Gln. (2.170), (2.172) und (2.169) folgt:
(Fu = o) Y (Lo (Ardas Asds) — Z(AA2; Ase)] L(AsAs; Asha) =
56
h —
Z [E5A1A65A2A5(6A6 —€xs — Iw) — (fr, = Fra)2(MA2; AsAe) | L( A6 As; Adsha) =
A5A6

O xaOors (g — ) (2.173)

Die Zweiteilchen-Korrelationsfunktion stellt in Gl. (2.173) gewissermaflen eine Green-Funktion
zum effektiven exzitonischen Hamilton-Operator

i -
Hexc()\1>\2; >\5)\6) = (5,\1,\6(5)\2)\5 (E,\6 — 6)\5) - ﬁ<f)\1 — f/\2>~:()\1)\2; )\5/\6) (2174)
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dar. Aus den Eigenwerten und Eigenfunktionen des exzitonischen Hamilton-Operator lasst sich
die Zweiteilchen-Korrelationsfunktion konstruieren:

A)(
=> N;l, [4) (A - —J mit Nyy = (A | A, (2.175)
AN
wobei
J()\;[)\Q; )\3)\4) = 5,\1,\45)\2>\3(f>\4 — f>\5) und H™e |A> = EA |A> (2.176)

im allgemeinen Fall eines nichthermiteschen exzitonischen Hamilton-Operators’. Die Eigen-
werte und Eigenfunktion stellen die Anregungsenergien und Amplituden der wechselwirkenden
Elektron-Loch-Zustiande dar. Die Form des exzitonischen Hamilton-Operators wird ausfiihrlich
in Abschnitt 2.7.5 diskutiert. An dieser Stelle wird vereinfacht die Hermitizitat von H*¢ ange-
nommen (d. h. Nyp = 0aa/). Das lineare optische Spektrum kann nach Gln. (2.165) und (2.98)
direkt berechnet werden. Allerdings werden hier im Folgenden die Erwartungswerte in den Gln.
(2.141) und (2.144) berechnet, sodass sowohl der Ausdruck fiir die dielektrische Funktion als
auch fiir den SHG-Tensor unter Einfluss von Vielteilcheneffekten resultiert. Dazu wird von der
Vollstandigkeit der wechselwirkenden Paarzustinde Gebrauch gemacht:

I=) |A)(A] mit [A) =" Ay,a8 an, [P). (2.177)
A

A1A2

Die Koeffizienten Ay, stellen in Gl (2.177) die Amplituden der Paarzustdnde dar. Es gilt
weiterhin fiir die Zeitentwicklung der Paarzustande A:

iho, |A) = H™[A) mit [A(t — —00)) = [MAs) = al ay, |P) . (2.178)

Das Einsetzen des Identitdtsoperators Gl. (2.177) in die Erwartungswerte an den folgenden
Stellen

< &1_1 (tl)d)\’l (tll)]lfli_ (tl)&)\é (tlg) > in GL (2141) und (2179)

zusammen mit der Zeitabhéngigkeit von {A} ergibt bei Verwendung von Bloch-Zusténden (vgl.
Abschnitt 2.8.2) folgende Ausdriicke fiir die dielektrische Funktion:

2

) =+ s |
VDB AT @U@ | 9 WD AT DI @)
D) D I e O S T )
(2.181)

"Der Identititsoperator lautet fiir nichtorthogonale Eigenzustinde: T=Y",,, N1, |[A) (A’
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und den SHG-Tensor (bei Vernachléssigung der Intraband-Beitrége):

X () = g T 2 Do 2

_‘_‘!_‘Il AA/ cv C vl

Pl(DAY ()P (¢ NAG (@)
[Ep + A(w +in)][Ex + 2h(w + 277)]

<[ @A @A @)~ 3 B @A D) A @)

cic’'vi viv'cr

 R@DR@, @)
[Ep + h(w +in)|[Ex — En + 2h(w + “7)]

|: Z pqc —//)[Aclvl(—// Aj\/vl —//) Z pv Ul Aclvl(_ﬂ)]A?\l,v (—//)i|

cic'vy v1v'cr

- Poe(@) AR (T)p) 1 (DA Ik
[En = R(w +in)|[En — Ep — 27”1(&) +in)]

[ Z pqc —// Aclvl(—n cv1 Z pv vl Aclvl(_ﬁ)]A?\l/v ((jﬂ)}

ci1cvq v1v’c1

P @) AR (@)p (DAL (@)
[EA/ — h(w + Z’I])] [EA - 2h(w + Z?])]

[ @A @A @) — X @A @AY @]

ci1cvy v1v'eq

+ (8« 7)} (2.182)

Die Rechnungen sind ausfiihrlich in Ref. [83] dargelegt.

Im Rahmen dieser Arbeit wird der SHG-Tensor maximal auf dem Niveau der unabhangigen
Quasiteilchen-Approximation ausgewertet, wahrend die lineare Optik auch unter Beriicksichti-
gung von exzitonischen Effekten und Lokalfeldeffekten studiert wird.

2.7.5 Die BSE-Matrix

Der aktuelle Abschnitt fasst die Eigenschaften der BSE-Matrix Gl. (2.174) zusammen. Ei-
ne nahrere Betrachtung lohnt sich, da die Dimension der BSE-Matrix, wie gezeigt wird, eine
beachtliche Grofle erreicht. Die Berechnung der optischen Eigenschaften profitiert jedoch stark
von den bestehenden Symmetrien der Matrix.

Aufgrund des Faktors fy, — fy, in Lo Gl (2.171) gilt fiir die Zweiteilchen-Korrelations-
funktion:

h _
ZLO M) = (Fa = o) [H = Rl (Aado; Asha). (2.183)
Infolgedessen besitzt der relevante Teil der BSE-Matrix die folgende Form:
(U/C,) (c’v’) ‘
exc,res exc,cop
H™ = < _[Zexo,cop]* _‘[[—‘][_Iexc,res]* ) = Hexeres Hexecop (UC) (2184)
. [Hexc,cop]* _ [Hexc,res]* (CU)

Die jeweiligen Indizes-Paare (A;, A\2) und (A3, A4) werden zum Zeilen- bzw. Spaltenindex zu-
sammengefasst. Die Indizes-Paare konnen wegen des Vorkommens der Besetzungszahldifferen-
zen nur Kombinationen zwischen besetzen und unbesetzten Zustédnden annehmen (\;, \;) =
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(v,c¢), (c,v). Die BSE-Matrix ist i. A. nichthermitesch. Die Diagonalelemente enthalten nach
Gl (2.174) die Energiedifferenzen zwischen unbesetzten und besetzten Einteilchenzusténden.
Fiir den Kern gilt ausfiihrlich:
ir—\ hond ond hnd * g ke — g
7E(AAz; Asd) = 2/d37“1/d37“2</5m(7‘1)¢A2(7‘2)[¢A3(7‘1)] [02, (72)] (71, 72)
= [@n [ Erao o E@lon @ o EIWE R, (2189

Der sog. resonante Anteil H®%' in der BSE-Matrix Gl. (2.184) ist hermitesch, wahrend der
Coupling-Anteil H*““P nur symmetrisch ist. Zum Berechnen eines konvergierten Spektrums
auf Grundlage der BSE-Matrix ist fiir Materialien mit kleinen Einheitszellen ein hohes k-Punkt-
Sampling der Brillouin-Zone (vgl. Abschnitt 2.8) und die Verwendung gepaarter Einteilchen-
zustande mit einer maximalen Energiedifferenz von ca. 20 eV notwendig, sodass z.B. fiir Si oder
GaAs die Dimension der vollen BSE-Matrix ca. 20 x 20 x 20 X x4 x 13 x 2 = 8 x 10° betragt. Die
Grofle der Matrix steigt auf tiber 1 TB. Zur tatsachlichen Berechnung des Spektrums wird daher
keine vollstandige Diagonalisierung durchgefiihrt, sondern Zeitentwicklungsmethoden verwen-
det, wie in Abschnitt 2.7.6 beschrieben. Insbesondere fiir Silizium wurde durch Albrecht [13]
allerdings festgestellt, dass die Eintrage im Coupling-Anteil deutlich kleiner sind, als die Ein-
trage im resonanten Anteil. Dies rechtfertigt die Approximation

exc JFexcres 0
H - ( O _[Hexc,res]* ) ) (2186)

welche als Tamm-Dancoff-Approximation (TDA) bezeichnet wird. Im Rahmen der TDA hal-
biert sich die Dimension der BSE-Matrix, da das Eigenwertproblem separat fiir die Untermatrix
Hexores gelost werden kann, und die Eigenschaft der Hermitizitat wird zusétzlich gewonnen.
Neuere Studien fiir organische Systeme stellen die universelle Giiltigkeit der TDA jedoch in
Frage [14, 15, 16]. Im Rahmen dieser Arbeit wurden die BSE-Matrizen fiir unterschiedliche
Systeme untersucht.

2.7.6 Berechnung des BSE-Spektrums

Aufgrund der groffen Dimension der BSE-Matrix wird zur endgiiltigen Berechnung des Spek-
trums eine Verallgemeinerung der Zeitentwicklungsmethode von Schmidt et al. [91] verwendet.
Hierbei wird ausgehend von Gl. (2.175) die Eigenzeitdarstellung von 1/(H®*® — hw) ausgenutzt:

[e.9]

?L(w) ! J = lim 4 /dt expli(w + in)t] exp[—i H™t /)] (2.187)

:Hexc_hw Wﬁoh
0

Die Polarisierbarkeit (oder Polarisation) und die dielektrische Funktion kénnen mit Hilfe Gln.
(2.165) und (2.98) gewonnen werden. Dazu wird der Erwartungswert

h

l

(el L) o) = lim / dt expli(w + i)t o] expl—i H™t /)T M de)  (2.188)
0

benotigt. Der Zustand
|B152(t)) := exp[—iH™t/h|J |\ A2) = exp[—iH™t/h]|5152(0)) (2.189)
erfiillt die Schrodinger-ahnliche Gleichung
ihdy |51 B2(t)) = HT[B152(t)) mit |5152(0)) = T [AAz) . (2.190)
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Obgleich die Hamilton-Matrix H®*¢ nichthermitesch ist, konnen zur Berechnung der Zeit-
abhéngigkeit von | 52(t)) nach Gl. (2.190) Zeitentwicklungsmethoden verwendet werden (vgl.
[92]). Der Aufwand zur Berechnung des BSE-Spektrums reduziert sich infolgedessen auf Vektor-
Vektor- und Vektor-Matrix-Multiplikationen und skaliert quadratisch mit der Dimension der
BSE-Matrix. Die exzitonischen Eigenwerte und Eigenfunktionen werden nur fiir kleine BSE-
Matrizen (wie bei Molekiilen) oder nur fiir den Energiebereich nah an der Bandliicke berechnet.
Im letzten Fall kommt eine Conjugate-Gradient-Methode zur Anwendung [93]. Ausfiihrlich ist
das Verfahren in der Arbeit von Fuchs et al. [77] beschrieben.

2.8 Eigenschaften von Kristallen und Festkorpern

Bisher wurde allgemein ein beliebiges Vielteilchensystem angenommen. Die vorliegende Ar-
beit studiert indessen insbesondere Kristalle und Festkorper. Die Eigenschaften dieser beson-
deren Vielteilchensysteme werden in diesem Abschnitt zusammengefasst.

2.8.1 Bravais-Gitter und reziprokes Gitter

Ein Kristall ist hauptsachlich dadurch gekennzeichnet, dass die Atomkerne in einem peri-
odischen Gitter, dem Bravais-Gitter BV, angeordnet sind:

3
BV = {R, | R, = dm;, mit n; € Z} (2.191)
=1

Die Vektoren {d;,ds,ds} bezeichnen in (2.191) die primitiven Basisvektoren. Die Gleichge-
wichtspositionen der Atomkerne konnen mit Hilfe der BV-Basisvektoren und der primitiven
Basis angegeben werden:

3
Ry = Ry + 7= Ry + Y djoy, mit 0< oy < 1. (2.192)
=1

Der Giiltigkeitsbereich der Koordinaten «; tragt dazu bei, dass der Vektor s sich innerhalb der
Elementarzelle befindet. Da fiir jede Gitter-periodische Funktion f(7+ R,,) = f(7) gilt:

3
F(®) =" f(G)exp(iGF) mit G = > bim;, m; € Z, (2.193)
el i=1

wird aus der Menge aller Vektoren G das reziproke Gitter definiert. Fiir die reziproken Basis-
vektoren b; gilt:

- 2
(bi); = Q—Welmn(aj)m(é’k)n mit Qpy = a7 - (a2 X a3) und (ijk) zyklisch vertauschbar. (2.194)
EZ

Qgyz bezeichnet hierbei das Volumen der Elementarzelle (EZ). Eingefiihrt wird im reziproken
Raum auch die (Erste) Brillouin Zone (BZ):

BZ = {7]|ql < |¢— G|, fiir alle G # 0}. (2.195)

Infolgedessen gilt fiir die Summation im reziproken Raum:

S Fk) =D G+ (2.196)

Gq
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2.8.2 Bloch-Theorem

In einem Kristall kann davon ausgegangen werden, dass die Elektronen sich in einem pe-
riodischen (effektiven) Potential bewegen. Die Dynamik wird daher beschrieben durch einen
effektiven Einteilchen-Hamilton-Operator der Form:

Hgjon = T + Vig mit Vig(7) = Vig(F + R,.). (2.197)

Gemafl dem Bloch-Theorem gilt fiir die Eigenzustande ¢, und Eigenwerte ¢\ des Hamilton-
Operators:

Hpioch On.g(F) = €ngdng(7), dh. X = (n,q), ¢ € BZ (2.198)
D7) = exp(iq7) Un,g(F) Mit w, g(F) = 1, g(F + Ry). (2.199)

Die Wellenfunktionen lassen sich demnach als Produkt aus einer ebenen Welle exp(igr) und
einer Gitter-periodischen Funktion w,, #(7) darstellen. Die Eigenwerte €, ; werden fir alle {n, ¢}
zur Bandstruktur des Festkorpers zusammengefasst.

2.8.3 Born-von Karman Randbedingungen

Die makroskopischen Grenzen des Systems werden im Rahmen der Born-von Karman Rand-
bedingungen behandelt. Hierbei wird fiir die Wellenfunktion festgelegt:

Ong(T) = Gng(F+ N;a@;) fir i = 1,2, 3. (2.200)

Mit N; wird die Anzahl der Elementarzellen in z-Richtung bezeichnet, sodass N = N;NyN3
die Gesamtzahl der Elementarzellen angibt. Aufgrund des Bloch-Theorems Gl. (2.199) hat die
Forderung Gl. (2.200) als Konsequenz:

3
exp(iN;qa;) =1 und ¢ = Z @_‘z (2.201)
i=1
Fiir das minimale Volumen-Element im reziproken Raum folgt:
2 3
Ak = PV = NOgy. (2.202)

Niitzlich ist die daraus ableitbare Beziehung zwischen Integration und Summation im reziproken
Raum:

> fk) = (2‘;)3/d3kf(l§). (2.203)
i

2.9 Die Projector Augmented Wave Pseudopotential-Methode

Die tatsédchliche Bestimmung der Materialeigenschaften erfolgt numerisch. Dazu sind
Schrodinger-ahnliche Gleichungen wie die Kohn-Sham- oder die Quasiteilchen-Gleichung selbst-
konsistent zu losen. Die zu bestimmenden Einteilchenwellenfunktionen besitzen jedoch in un-
terschiedlichen Bereichen der Elementarzelle besondere Eigenschaften, sodass zur Reduktion
des numerischen Aufwandes angebrachte Basisfunktionen gefunden werden kénnen: (i) Einer-
seits weisen die Einteilchenwellenfunktionen in der Nahe der Kerne eine starke Knotenstruktur
bzw. starke Oszillationen auf und &dndern ihre Form nur wenig bei Veranderung der chemi-
schen Umgebung. Daher konnen die Einteilchenwellenfunktionen in diesem Bereich gut durch
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Losungen isolierter Atome approximiert werden. (ii) Auf der anderen Seite sind die Einteil-
chenwellenfunktionen in den Bindungsregionen, entfernt von den Kernen, numerisch gutartig
und reagieren empfindlich auf Anderungen der Umgebung, sodass hier eine Ebene-Wellen-Basis
gut geeignet ist. Eine préazise und effektive Methode, die diese Punkte berticksichtigt, ist die
Projector Augmented Wave (PAW) Pseudopotential-Methode [94].

Im Rahmen der PAW-Methode wird zwischen einer numerisch komfortablen Pseudo-
Wellenfunktion ¢ und der tatséchlichen Wellenfunktion v mittels einer linearen Operation
transformiert:

)y =T ’77/;> , mit 7 — linearer Operator. (2.204)

Die Pseudo-Wellenfunktion 1; wird durch eine Ebene-Wellen-Basis dargestellt. Zur Bestimmung
des Operators T werden folgende Festlegungen getroffen:

1. In der Nahe eines Kerns bei ﬁs wird die Wellenfunktion 1 durch eine Linearkombination
von Partialwellen ¢; ; approximiert:

= Z Cis |pis) fur |7 — ﬁs\ < Ths- (2.205)

Die Partialwellen ¢; s sind die Losungen der Schrodinger-Gleichung des isolierten Atoms

bei R,. Der Radius T),s ist ein justierbarer Parameter, der das entgiiltige Ergebnis jedoch
nicht beeinflussen soll. Energetisch sehr tiefe Zustinde werden im Rahmen der Frozen
core approzimation [95] behandelt, sodass die Partialwellen zusétzlich orthogonal zu den
Kernzustanden sein miissen.

2. Es werden Pseudo-Partialwellen ¢, s und Projektor-Funktionen p; ; konstruiert, sodass
gilt:

‘15> = Z |Bi,s) <p@-,s | 1ﬁ> fir |7 — ﬁs| < T s (2.206)
Dies impliziert die Bi-Orthogonalitat zwischen p; ; und @; :
(Dis | Grs) = 0y filr |7 = Ra| < 7. (2.207)

Die Projektor-Funktionen p; s sind weiterhin nur innerhalb der Sphéren mit |7'— P:S\ < Ths
definiert.

3. Schliefflich setzt man in den Bindungsregionen voraus:

pis) = |@is) fiir |[F— Ry| > s fiir alle s. (2.208)
Aus Gln. (2.205) — (2.208) folgt fiir T

=1+ Z (Ipis) = [Pis)) (Pis| - (2.209)

Mit Hilfe von Gl. (2.204) kann die Wellenfunktion zerlegt werden in:

9+ 2 loual) = 1) (pis | 0) = 0 + 3 [0(F) = 0] (2210)

Aus dieser Darstellung wird deutlich, dass (i) in den kernnahen Bereichen wegen Gl. (2.206)
die Wellenfunktion die richtige Knotenstruktur besitzt und (ii) in den Bindungsregionen gilt:
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W(r) = @ZJ( r'). Eine dhnliche Formulierung lésst sich insbesondere auch fiir Erwartungswerte
eines Operators O € {H D, E} angeben:

WO W) = (4| THOT |§) =0+ 3 (0, - 0,). (2.211)

Den meisten Aufwand erfordert die numerische Berechnung des Beitrages O unter Verwendung
einer Ebene-Wellen-Basis. Der Basissatz wird durch einen maximalen Gittervektor thfnax =

350..700 eV nach oben begrenzt. Zu weiteren Einzelheiten zur PAW-Methode sei auf die Arbeit
von Blochl [96] verwiesen.

2.10 Numerik

Die numerische Berechnung der elektronischen und optischen Eigenschaften lauft mit Hilfe
verschiedener Programmpakete ab. Besonders zur Berechnung des elektronischen Grundzustan-
des, des ionischen Gleichgewichts, sowie der Quasiteilchenenergien wird das Vienna Ab-Initio
Simulation Package (VASP) in den Versionen 5.2 und 4.6 eingesetzt. Der Ebene-Wellen Cutoff-
Wert bei Verwendung der PAW-Methode betréagt, sofern nicht anders angegeben, 400 eV. Das
k-Punkt-Sampling der Brillouin Zone orientiert sich an der Grofle der Elementarzelle eines
Festkorpers und wird bei einem k, x k, x k,-Sampling der BZ zusatzlich reduziert durch Aus-
nutzen von Raumgruppen-Symmetrien. Beim Auffinden des ionischen Gleichgewichts werden
die Atome verschoben bis die HF-Kriéfte kleiner sind als 0.02 eV/ A. Die Berechnung der Quasi-
teilchenenergien erfolgt nach der Methode von Shishkin und Kresse [76]. Hierbei kann vor allem
die Ermittlung und Lagerung der IPA-Response-Funktion

X(g,n)(G, G w) =

1 an” e—i((T—I—é)F ¢n/ q+q, an”’ e (T ar (bn
V Z 2w(j”(fn’¢j‘_ fm?)< q | | q +q> < q ‘ | q+q>
n,n',q

Entqrq — Eng — P(w +in)

. (2.212)

wobei {wgz} die symmetriebedingten Gewichtungen der irreduziblen ¢-Punkte sind, an den
Punkten (é, G ,w) speicheraufwindig werden. Die Anzahl der Punkte wird durch einen GW-
Cutoff und die Anzahl der Frequenz-Punkte w bestimmt. Der GW-Cutoff liegt iiblicherweise bei
200 eV und die Anzahl der Frequenz-Punkte betrigt 200. Ein Konvergenzparameter ist auch die
Anzahl der Zusténde bei der Summation ) . ... Ausreichend konvergierte Ergebnisse kénnen
durch Einbeziehen von ca. 60 — 70 Zustinden pro Atom erreicht werden.

Zur Berechnung der optischen Eigenschaften werden die Impulsmatrixelemente py,y, und
die BSE-Matrix benotigt. Die Impulsmatrixelemente werden hierbei unter Verwendung des sog.
longitudinalen Grenzwertes nach Gajdo$ et al. [97] evaluiert. Diese Methode ist implementiert
in der VASP-Version 5.1.39. Auch zur Berechnung der BSE-Matrix wird VASP (in der Version
4.4) eingesetzt. Zur Reduktion des numerischen Aufwandes wird hierbei zur Simulation der Ab-
schirmung des Coulomb-Potentials W von der Modell-dielektrischen Funktion nach Bechstedt
et al. [98] Gebrauch gemacht. Diese ist gegeben durch

eM(q,n) =1+ {(Eoo — 1)*1 + |:qTFL(n>‘| + m} , (2.213)

wobei kp bzw. grrp den Fermi- bzw. Thomas-Fermi-Vektor bezeichnen. Die Modell-Abschirm-
funktion ist statisch, ¢-diagonal und hangt von der Elektronendichte n ab. Als Eingangspa-
rameter ist zudem die statische Dielektrizititskonstante e, erforderlich. Ublicherweise wird
diese durch die TPA-dielektrische Funktion bei verschwindender Frequenz e, ~ ¢FA(w = 0)
approximiert.
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Unter Verwendung einer Ebene-Welle-Basis lassen sich die BSE-Matrix-Elemente von
Heeres 1A, wie folgt berechnen:

2¢? 1

HES, = [eo(@) — €0(D)]0ecOuwr bz + — > ——BUG)[BSL(G))*
cvg,c'v’q [6 (q_> € ((T)] qq + EOV £ ’GP vq( )[ v'q ( )]
62 Egjl"/ (q)_ q_> T /A Pal
- A BT (GN[BYLG). (2.214)
eov%|q_¢_a||q_¢_af| ’ q

BI(G) = =— | &ru(F)e' ung (7) (2.215)

Die Summation iiber die G-Vektoren in Gl. (2.214) wird beschrénkt durch den maximalen Wert
R2G2,. = 200 eV (sofern nicht anders angegeben) und es wird nur der Ebene-Wellen-Anteil
der Wellenfunktion u,g bei der Berechnung der Bloch-Integrale verwertet. Im Gegensatz zu den
Grundzustandsrechnungen kann beim Berechnen der optischen Eigenschaften nicht von den
Symmetrien der BZ Gebrauch gemacht werden, sodass man auf das volle k-Punkt-Sampling
der BZ angewiesen ist.

Sind nun alle Elemente vorhanden um die lineare IPA- bzw. BSE-Optik mit Hilfe von Gln.
(2.213) bzw. (2.214), (2.215) ausrechnen zu kénnen, so wird ein am Institut fiir Festkorpertheo-
rie und -optik, FSU Jena, in der Arbeitsgruppe von Prof. Bechstedt entwickeltes Programm-
Paket eingesetzt [77, 78, 91, 99]. Hierbei werden die berechneten Impulsmatrix- und BSE-
Matrix-Elemente eingelesen und mit Hilfe der Zeitentwicklungsmethode (vgl. Abschnitt 2.7.6)
das optische Spektrum berechnet. Zur Integration der partiellen Differentialgleichung (2.190)
wird ein spezielles leapfrog-Verfahren verwendet.

Zur Berechnung des SHG-Tensors wird ein von mir entwickelten Programm eingesetzt. Im-
plementiert sind hierbei die Gleichungen (2.152) und (2.153). Der Drei-Band-Beitrag fallt nu-
merisch insbesondere fiir Materialien mit grofen Elementarzellen aufgrund der 3-fachen Sum-
mation uber die Bander ins Gewicht, sodass dieser Teil zusétzlich parallelisiert wurde um die
Gesamtlaufzeit zu verringern. Die Intraband-Ubergénge im Zweiband-Beitrag werden mit Hilfe
der Dispersion der Energiebander berechnet:

m

Pn(@) = 7 04.€n(0). (2.216)

Hierbei wird der Zentrale-Differenzenquotient verwendet. Dies erfordert zusatzlich die Berech-
nung der Wellenfunktionen und Energiewerte in der Umgebung eines BZ k-Punktes.

2.11 Ausblick

Das gegenwartige Kapitel fasste die theoretischen und numerischen Methoden, die im Wei-
teren angewendet werden um einerseits organische Molekiilkristalle und Molekiile sowie ande-
rerseits Ferroelektrika zu untersuchen, zusammen. In beiden Fallen werden im Folgenden die
strukturellen Merkmale mit Hilfe der Dichtefunktionaltheorie und der Beriicksichtigung von
Hellman-Feynman-Kraften bestimmt und studiert. Die elektronischen und optischen Eigen-
schaften kénnen im Rahmen der Unabhangige-Teilchen-Approximation numerisch vergleichs-
weise giinstig ermittelt werden. Abhéngig von der Systemgrofle und aufbauend auf den IPA-
Resultaten werden Rechnungen auf dem Level der Unabhangige-Quasiteilchen- Approximation
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und unter Beriicksichtigung von Vielteilcheneffekten hoheren Grades durchgefiihrt. Die bei-
den Materialklassen, organische Kristalle und Ferroelektrika, unterliegen in den Studien unter-
schiedlichen Fragestellungen. Neben den bereits aufgezéahlten gemeinsamen Untersuchungsge-
genstianden, wird ein Hauptaugenmerk der Studie der organischen Materialien der Einfluss der
TDA auf die optischen Eigenschaften sein. Im Hinblick auf die Ferroelektrika ist dagegen das
Studium des Tensors der Erzeugung der zweiten Harmonischen SHG ein Kern dieser Arbeit. Es
ist offenkundig, dass die in diesem Kapitel vorgestellten und im Verlauf dieser Arbeit verwen-
deten Methoden durch unterschiedliche Forschungsgruppen verbessert und erweitert werden.
So konnen die Einsétze der ASCF-Methode nach Chan und Ceder [42] sowie selbstkonsistenter
GW-Rechnungen und storungstheoretischer GW-Rechnungen auf Basis von HSE-Ergebnissen
als geeignete Erweiterungen dieser Arbeit betrachtet werden. Auch das Studium der nichtlinea-
ren optischen Eigenschaften kann zum einen durch das Inbetrachtziehen der Korrektur nach
Cabellos et al. [84] und zum anderen durch die Auswertung des SHG-Tensors unter Beriick-
sichtigung von exzitonischen Effekten ausgedehnt werden. Insbesondere der letzte Punkt sowie
der Einsatz eines der beiden GW-Verfahren werden zukiinftig begiinstigt durch die fortlaufende
Steigerung der numerischen Kapazitaten.

37



KAPITEL III

2- Aminopyrimidin-Silber(I)-Halbleiter

Die chemische Industrie stellt eine der Sdulen der modernen Technologie dar [100]. Seit
etwas weniger als 200 Jahren, als die Moglichkeit erkannt wurde organische Verbindungen auf
kiinstlichem Weg herzustellen, stieg die Anzahl an organischen Verbindungen auf mehrere Mil-
lionen. Auch die Elektronik-Industrie erkannte frith das Potential organischer Materialien und
bereits seit mehreren Jahren werden organische Kristalle in einer Vielzahl von Bauelementen
und Anwendungen eingesetzt. Der Grund dafiir ist neben den relativ geringen Produktionskos-
ten auch die Moglichkeit physikalische Eigenschaften gezielt durch chemische Veranderungen
der Grundbausteine zu beeinflussen.

Die an dieser Stelle eingesetzten organischen Kristalle setzen sich aus Molekiilen zusam-
men [101], deren Geriist aus Kohlenstoffatomen besteht, wobei einige dieser Kohlenstoffatome
durch Nichtmetalle ersetzt werden konnen. Die verbleibenden Valenzen sind durch Liganden
gebunden.

Obwohl bereits seit den Publikationen der PRLs von Benedict et al. [102], Albrecht et al. [13]
sowie Rohlfing und Louie [103] im Jahr 1998 die optischen und elektronischen Eigenschaften von
(insbesondere anorganischen) Halbleitern und Isolatoren mit Hilfe des Quasiteilchen-Konzepts
und der BSE mit guter Vorhersagekraft aufgeklart werden konnen, wurden diese Methoden eher
vereinzelt auf organische Systeme angewendet. Bereits das Modellieren von einfachen Molekiil-
Kristallen wie Wasser-Eis kann sich als eine methodische und rechnerische Herausforderung
herausstellen [104, 105, 106]. Komplexere Molekiile und Molekiil-Kristalle wurden u.a. in den
Arbeiten [14, 15, 107, 108, 109, 110] untersucht. Aufgrund intermolekularer Wechselwirkun-
gen, wie Van-der-Waals- oder Wasserstoff-Briickenbindungen, konnen sich die optischen und
elektronischen Eigenschaften in diesen Fallen wesentlich von denen anorganischer Materialien
unterscheiden. Neben interessanten Aspekten hinsichtlich der elektronischen und optischen An-
regung von molekularen Systemen ist auch der Ubergang vom gasformigen (molekularen) zum
festen Zustand und die begleitenden Auswirkungen auf Elektronik und Optik ein physikalisch
interessanter Punkt.

In dieser Arbeit werden sog. 2-Aminopyrimidin-Silber(I)-Halbleiter und 2-Aminopyrimidin-
Molekiile mit Hilfe der Methoden, die in Kapitel II vorgestellt wurden, untersucht. Die 2-
Aminopyrimidin-Silber(I)-Halbleiter wurden 2009 an der Universitét Bielefeld durch Selbstas-
semblierung und Silber(I)-Komplexbildung synthetisiert [17]. Strukturell und optisch wurden
diese Verbindungen in der Arbeit von Stoll et al. [18] charakterisiert, wobei gefunden wurde,
dass insbesondere die optische Absorption des Halbleiters von der des urspriinglichen Molekiils
abweicht. Weiterhin konnte die optische Absorption durch Modifikation des Silber-Gegenions
oder durch eine Extrusion bzw. einen Austausch des Losungsmittels manipuliert werden. Fiir
einen diinnen Kristall-Film wurde zudem die elektrische Leitfahigkeit der Materialien nachge-
wiesen.
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AMP AgX+SOM Abkiirzung | Raumgruppe | N,, | N, | k-Punktsatz
FAP AgCO,CF3 FAP, P-1 2 60 3x3x2
AgNO, FAP, P21 /c 4 | 108 2x2x2
AgSO,CF3+EtOH | FAPs, C2/c 8 | 320 1x2x2
AgSO,CF3+iPrOH FAP3, P21/c 4 1172 2x2x2
OFAP AgCO,CF3 OFAP, Pbca 8 | 272 2x2x1
AgNO, OFAP, P21/c 4 | 124 | 2x2x3 (1x2x2)
AgSO,CF5+EtOH | OFAPs, C2/c 8 | 352 1x2x2
NFAP - NFAP, Fddd 16 | 480 Ix1x1
AgCO,CF}5 NFAP, C2/c 8 | 304 | 2x4x2 (1x2x1)
AgSO,CF,+EtOH | NFAP;, P21/c 4 | 192 21x2x1

Tabelle 3.1: Organische Halbleiter, die durch die Selbstassemblierung und Silber(I)-
Komplexbildung der drei Molekiile FAP, OFAP und NFAP synthetisiert worden sind, werden in
diesem Abschnitt untersucht. Enthalten sind Informationen zu den Silbersalzen und Losungs-
mittelmolekiilen (falls vorhanden), der Raumgruppensymmetrie, der Anzahl der Molekiile N,,
und Atome N, pro Einheitszelle, sowie zum k-Punkt-Sampling, welches zur Berechnung der
elektronischen und optischen (strukturellen) Eigenschaften verwendet wurde.

Die 2-Aminopyrimidin-Silber(I)-Halbleiter setzen sich aus den folgenden drei Bestandteilen zu-
sammen: (i) einem Aminopyrimidin-Molekiil AMP, (ii) einem Silbersalz AgX mit X=CO,CFj,
NO3 und SO3CF3 und (iii) evntl. einem Losungmittel SOM. Als Aminopyrimidin-Molekiile
treten hier in erster Linie die Molekiile 5 - (Pentafluorphenyl)-pyrimidin-2-amin (FAP), &5 -
(4-Methozy-2,3,5,6-tetrafluorphenyl)-pyrimidin-2-amin (OFAP) und 5 - (4 - (Dimethylamino)
-2,8,5,6-tetrafluorphenyl)-pyrimidin-2-amin (NFAP) auf. Die Abb. 3.1 zeigt die drei Mo-
lekiile. Diese bestehen aus 22 (FAP), 26 (OFAP) und 30 Atomen (NFAP), die zu einem 2-
Aminopyrimidin-Ring (Atome 1 — 8) und zu einem perfluoriertem Phenylring (Atome 12 —
17) geformt sind. Angehéngt sind im Fall des FAP-Molekiils auch das Flouratom F;. Im Falle
des OFAP- bzw. NFAP-Molekiils befindet sich an dieser Stelle jeweils eine Methoxy- bzw. eine
Amino-Gruppe.

Abhéngig vom beteiligten Silbersalz kristallisieren die AMP-Molekiile unter Formierung
eindimensionaler Polymer-Strange. Zusammengefasst sind die zugehorigen Raumgruppen und
Gitterparameter in Tabelle 3.1. Die Zusammensetzung des Aminopyrimidin-Molekiils mit
den Silbersalzen AgCO5;CF3 und AgNOj fithrt zu einer Einheitszelle, die ein Vielfaches des
AMP+AgX-Paares enthéllt. Im Falle des AgSO3CF3-Salzes befindet sich innerhalb der Zelle
zusétzlich noch ein Molekiil des Losungsmittels, entweder Ethanol (EtOH) oder Iso-Propanol
(iPrOH). Die Anzahl der AMP + AgX + (SOM)-Einheiten innerhalb einer Einheitszelle liegt
bei 2 — 8, sodass die Anzahl der Atome pro Zelle 60 — 352 betragt. Exemplarisch sind die
Strukturen FAP + AgCO,CF3 und OFAP + AgSO3CF3 + EtOH in Abb. 3.2 gezeigt. Eine Un-
tersuchung des Einflusses der Silber-Salze auf die Anregungseigenschaften wird dariiber hinaus
unterstiitzt durch das Studium des Kristalls NFAP,, welcher eher durch Fluorenstapelung und
Wasserstoff-Bindungen gebunden ist als durch Silbersalz-Bildung. Der Kristall besitzt eine Ein-
heitszelle mit 480 Atomen. Weitere Information zu den strukturellen Daten aller untersuchten
Kristalle lassen sich in Ref. [111] finden.

Im Folgenden werden zuerst die Eigenschaften der Aminopyrimidin-Molekiile studiert. Vor-
gestellt werden der Reihenfolge nach die Resultate zu den strukturellen, elektronischen und
optischen Eigenschaften. Im zweiten Abschnitt folgen die Untersuchungsergebnisse zu den 2-
Aminopyrimidin-Silber(I)-Halbleitern.
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Abbildung 3.1: Schematische
Darstellung der &5 - (Penta-
fluorphenyl)-pyrimidin-2-amin-
(FAP), 5 - (4-Methoxy-2,3,5,6-
tetrafluorphenyl)-pyrimidin-2-
amin- (OFAP) und 5 - (4 -
(Dimethylamino)  -2,8,5,6-tetra-
fluorphenyl)-pyrimidin-2-amin-
Molekiile (NFAP) [(a) — (¢)]. Rote,
gelbe, graue, hellgraue und kleine
Kugeln kennzeichnen jeweils O-,
C-, N-, F- und H-Atome.

Abbildung 3.2: Eindimensionale
Polymer-Strange in
FAP+AgCO2CF3 [FAPl, (a)]
und OFAP+AgSO;CF3+EtOH
[OFAPs3,, (b)]. WeiBe und grofie
gelbe Kugeln kennzeichnen Ag-
und S-Atome. Die restlichen
Farben sind im Einklang mit Abb.
3.1 gewahlt.
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labels FAP HAP OFAP NFAP
1-2 1.011 0.880 1.011 1.012
2-4 1.355 1.346 1.356 1.360
4-5 1.352 £0.001 1.350 1.352 1.351
5-6 1.329 1.333 £0.004 || 1.330 £0.001 || 1.330 £0.001
6-7 1.093 0.950 1.093 1.093
6-8 1.406 1.389 £0.007 1.405 1.405
8-12 1.474 1.477 1.473 1.472
12-13 1.405 1.400 £0.003 || 1.402 £0.002 || 1.402 +0.001
13-14 1.354 0.950 1.356 1.357
17 - F 1.344 - - -
17 - Os - - 1.355 -
17 - Nj - - - 1.389
1-2-4 119.38 £0.09 120.00 119.31 +£0.07 || 118.55 £0.15
2-4-5 116.91 +£0.11 | 117.37 £0.19 || 116.87 £0.03 || 116.87 £0.16
4-5-6 116.02 £0.02 | 116.00 £0.07 || 115.95 £0.06 || 115.97 £0.01
6-8-12 | 122.53 £0.14 | 122.76 £0.22 || 122.51 +£0.68 || 122.55 +0.38
8§-12-13 || 122.18 £0.09 | 120.86 £0.22 || 122.46 £0.22 || 122.74 £0.03
12 - 13 -15 || 122.80 £0.01 | 120.65 £0.19 || 122.91 £0.05 || 123.01 £=0.11

Tabelle 3.2: Bindungslingen (in A) und -winkel, berechnet fiir FAP, OFAP und NFAP. Die
Bezeichnungen der Atome beziehen sich auf Abb. 3.1. Der Vergleich zu experimentellen HAP-
Daten ist gezeigt [17]. Néheres ist im Text zu finden.

3.1 Die FAP-, OFAP-, und NFAP-Molekiile

3.1.1 Strukturelle Relaxation

Die strukturelle Relaxation wurde in einer 14 x 15 x 20 A Superzelle unter Verwendung des
I'-Punktes der BZ durchgefiihrt. In der Superzelle wurden die Molekiile so platziert, dass die la-
teralen Wechselwirkungen minimiert werden. Die Abhéngigkeit der Grundzustandsenergie von
der (kubischen) Zellgrofe ist in Abb. 3.3 dargestellt. Die Variation betrigt ca. 0.03 eV. Tabelle
3.2 fasst die berechneten interatomaren Abstande und Winkel der Molekiile zusammen und
zeigt den Vergleich zu experimentellen HAP-Daten. Die Gegeniiberstellung der berechneten
Daten der drei AMP-Molekiile FAP, OFAP und NFAP macht deutlich, dass die funktionelle
Gruppe nur gering die Geometrie des 2-Aminopyrimidin-Rings und des perfluorierten Phenyl-
rings beeinflufit. Die Abweichungen im Vergleich zu den experimentellen Daten sind ebenfalls
niedrig. Nur fiir Wasserstoff-Bindungen sind die Differenzen gréBer als 0.2 A. Vergleichbare ab-
initio Studien basierend auf der Mgller-Plesset-Storungstheorie fiir ein 2-AMP-Molekiil wurden
u.a. von Golovacheva et al. [112] durchgefiihrt. Gegeniiber diesen Resultaten findet man Un-
terschiede in Hohe von 0.02 A und 3° fiir Abstinde und Winkel.

3.1.2 Elektronische Eigenschaften

Basierend auf den Struktur-Daten aus Tabelle 3.2 wurden verschiedene elektronische Grofien
fiir die Molekiile FAP, OFAP und NFAP berechnet. Diese sind in Tabelle 3.3 dargestellt und
werden im Folgenden erlautert. Die Energiedifferenzen zwischen dem niedrigsten unbesetzten
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Abbildung 3.3: Abhéngigkeit der berechneten Energien E(N+1), E(N —1), der Grundzustandsenegie
und der niedrigsten exzitonischen Anregungsenergie F., nach Gl. (2.65) von der Kantenldnge L der
kubischen Zelle [(a) — (d)]. Als Referenzenergie ist die Grundzustandsenergie fiir L = 18 A verwendet
worden. Rote Punkte markieren Resultate unter Einsatz von Dipolkorrekturen.

Tabelle 3.3: Bandliicken und weitere elektronische Grofien, FAP | OFAP | NFAP
die fiir die Molekiile FAP, OFAP und NFAP ermittelt wur- | EI'9' | 3.46 | 3.35 3.00
den. Details sind im Text zu finden. EHSE0G | 453 | 455 4.21

EggGoWo <r7| <r4 | <11
EQ” [ 736 | 7.06 | 6.47
E.. | 351 346 | 3.21
EJ. 1350 | 346 | 3.22
E., | 208 | 197 | 1.98
As | 143 | 149 | 1.23

molekularen Zustand (lowest unoccupied molecular orbital, LUMO) und dem hochsten besetz-
ten molekularen Zustand (highest occupied molekular orbital, HOMO) wurden jeweils unter
Verwendung des GGA-PW91-, HSE06-Funktionals (siehe Abschnitt 2.5) oder mit Hilfe der
Quasiteilchen-Storungstheorie (siehe Abschnitt 2.6.4) berechnet. EWo! = e, —epy, £S5 oder
ESoWo sind die entsprechenden HOMO-LUMO-Bandliicken. Die ASCF-Bandliicke E2" wurde
nach Gl (2.60) ermittelt. Zur Berechnung der ASCF-Bandliicke und auch der Quasiteilchen-
Bandliicke mussten, wie spater erklart wird, zusatzlich die Parameter der Superzelle variiert
werden. Unter Hinzunahme von Gln. (2.65), (2.69) und (2.70) wurden die niedrigste exzitoni-
sche Anregungsenergie E., bzw. E/ und die niedrigste Emissionsenergie E.,, evaluiert. Aus
der Differenz zwischen den Letzteren wurde der Stokes-Shift Ag [Gl. (2.71)] bestimmt.

Aus Tabelle 3.3 geht hervor, dass die PW91-Bandliicke £;"! fiir FAP am gréBten ist und
der Reihenfolge nach fiir OFAP und NFAP reduziert wird. Die Reduzierung der Bandliicke
erfolgt demnach mit wachsenden Elektronendonoreigenschaften. Die energetische Lage der
elektronischen Zustdnde ist auch in Abb. 3.5 dargestellt. Im Vergleich zu den GGA-DFT-
Ergebnissen weist die HSEO6-Rechnung eine veranderte Hierarchie zwischen den Bandliicken
von FAP und OFAP auf, obgleich beide Werte dicht beieinander liegen. Die GGA-DFT-Tendenz
findet man jedoch bei den Quasiteilchen-Bandliicken ES°"° und E2" wieder.
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Abbildung 3.4: Abhéngigkeit der Quasiteilchen- Eg P and GoWo-Bandliicken EEOWO von der Zellgrofie
L. Die gefiillten/gestreiften Symbole bezeichnen Rechnungen mit einem Cutoff von 60/40 eV fiir die
Responsefunktion [siehe Text und Gl. (2.212)]. Die eingefiigte Abbildung zeigt die Differenz zwischen
dem LUMO+1 und dem HOMO.
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Abbildung 3.5: Energien der molekularen Zustédnde berechnet auf DFT-PW91-Basis und mit Hilfe
der GoWo-Methode fiir kubische Zellen mit L = 22 A (links) und L = 24 A (rechts). Der Einfluss
der Selbstenergiekorrektur und Zellgrofle ist durch verschiedene Farben hervorgehoben. Dicke Balken
kennzeichnen die Energien des HOMO, LUMO und LUMO+1 in der PW91-Rechnung. Die Bandliicken
sind gelb hinterlegt. Man beachte die unterschiedliche Energieskala der besetzten und unbesetzten
Zustande.
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Abbildung 3.6: Graphische Darstellung der Orbitale der Zustande HOMO (a)—(c) und LUMO (d)—(f)
der Molekiile FAP, OFAP und NFAP.

Zur Bestimmung der ASCF-Bandliicke E@" nach Gl (2.60) sind die Energien E(N =+ 1)
geladener Molekiile mit V41 Elektronen notwendig. Aufgrund der zuséatzlichen Ladung +e pro
Superzelle sind die lateralen Wechselwirkungen der Molekiile mit ihren periodisch-fortgesetzten
Abbildern nicht vernachlassigbar. Um kiinstlich den Effekt der Periodizitdt zu minimieren,
wurde die Ausdehnung der Superzelle vergroflert. Die Abb. 3.3 zeigt die Abhéngigkeit der
Energien E(N + 1) von der ZellgroBe. Insbesondere die Energie E(N — 1) variiert fiir eine
kubische Zelle mit der Kantenlinge L = 18,..,30 A um ca. 0.5 ¢V und die Bandbreite wird
gering durch Dipol-Korrekturen [113, 114] verbessert. Da allerdings die Energien E(N + 1)
eine lineare Abhéngigkeit von 1/L aufweisen, lassen sich die Quasiteilchen-Bandliicken durch
eine Extrapolation fiir L — oo ermitteln. Details sind in Abb. 3.4 gezeigt. In Tab. 3.3 sind die
extrapolierten Bandliicken eingetragen und betragen 7.36, 7.06 und 6.47 eV fir FAP, OFAP
und NFAP.

Wie aus Abb. 3.4 erkennbar, sind die GoWy-Bandliicken ebenfalls abhéangig von der Grofie
der Superzelle. Akkurate Untersuchungen zur GW-Methode zusammen mit der Verwendung der
Superzellen-Approximation wurden (fiir zwei-dimensionale Systeme) in Ref. [115] durchgefiihrt.
Die Abhangigkeit der GoWy-Bandliicken von den Abmessungen der Superzelle ist folglich nicht
iiberraschend. Bei den untersuchten Molekiilen zeigte sich jedoch, dass die Konvergenz der
GoWy-Methode insbesondere durch Limitierungen des verfiigharen Speichers und der verfiigba-
ren Rechenzeit nicht erreicht werden konnte. Die Selbstenergie in GW-Approximation wurde
fiir kubische Superzellen mit einer Kantenlidnge von L = 18 —20 A (22 —24 A) bei Verwendung
eines GW-Cutoffs von 60 eV (40 eV), 90 Frequenzpunkten und einer maximalen Energie von
15 — 16 eV (bezogen auf das HOMO) fiir Zustédnde bei der Summation in Gl. (2.212) berech-
net. Eingeschlossen wurden hierbei bis zu 1056 Zustande. Obwohl der numerische Aufwand
vergleichbar ist mit ahnlichen Arbeiten (z.B. Ref. [116]), zeigen Abb. 3.4 und Abb. 3.5, dass
die Quasiteilchen-Korrekturen mit diesen Parametern nicht konvergiert sind: in Abb. 3.4 zei-
gen die Bandliicken Abhangigkeiten von verschiedenen Parametern in Hohe von 0.1 — 0.2 eV.
Die Parameter liegen zugleich unterhalb der zur numerischen Konvergenz notwendigen Wer-
te (vgl. Abschnitt 2.10). Auch Abb. 3.5 macht deutlich, dass sich die energetische Ordnung
der unbesetzten Zustande mit der Variation der numerischen Parameter verandert. Der Ur-
sprung des Problems ist insbesondere die hohe Anzahl der Gittervektoren, die durch den GW-
Cutoff reguliert wird und kubisch mit der Gréfe der Superzelle skaliert. Infolgedessen wird der
Speicherbedart fiir groffe Superzellen sehr hoch. Nichtsdestotrotz, wie spater zu sehen sein wird,
verbessert die zustandsabhangige Quasiteilchen-Korrektur, die auch die energetische Ordnung
der DFT-Rechnung modifiziert, die ﬂbereinstimmung mit gemessenen optischen Daten.

Nach Abb. 3.4 nehmen die GoWy-Bandliicken mit der Vergrolerung des Volumens der Su-
perzelle ab. Folglich sind die Werte in Tab. 3.3 als obere Grenzen der tatsachlichen Bandliicken
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zu betrachten. Im Vergleich zu den ASCF-Bandliicken der drei Molekiile liegen die GoW,-
Werte energetisch jeweils etwa 0.5 eV héher. Die HSE06-Werte liegen, wie auch in den Arbeiten
[77, 78, 79] festgestellt, zwischen den DFT- und den Quasiteilchen-Ergebnissen.

Wie aus der Betrachtung der untersten exzitonischen Anregungsenergien E,, bzw. E7
hervorgeht, heben sich die Quasiteilchen-Effekte und die Elektron-Loch-Wechselwirkung na-
hezu auf: die untersten exzitonischen Anregungsenergien sind mit 3.5 bis 3.2 eV energetisch
auffallig nah der DFT-Bandliicken. Die Tatsache deutet an, dass die Unabhangige-Teilchen-
Approximation eine gute Beschreibung der optischen Eigenschaften liefern kann.

Die Berechnung der untersten exzitonischen Anregungsenergie ist numerisch stabil: Die Dif-
ferenz zwischen den beiden Methoden Gl. (2.65) und (2.69) betrdgt nur 10 meV. Zusammen
mit den niedrigsten Emissionsenergien von 2.08, 1.97 und 1.98 eV betragen die Stokes-Shifts
1.43, 1.49 und 1.23 eV fiir die Molekiile FAP, OFAP und NFAP. Die Emissionsenergien fiir
OFAP und NFAP sind demnach fast gleich, wahrend OFAP den grofiten Stokes-Shift aufweist.
Die berechneten Werte sind in akzeptabler Ubereinstimmung mit verfiigharen experimentellen
Daten: Fiir FAP, gel6ft in Ethanol, wurde durch Stoll et al. [18] ein Stokes-Shift von 1.28
eV gemessen. Angesichts der Tatsache, dass die Losung zuséatzlich die optischen Eigenschaften
beeinflult, bestatigen die Daten die Aussagekraft der durchgefiihrten Studien und erzielten
Resultate.

3.1.3 Optische Eigenschaften

Aus den Eigenenergien und Impulsmatrixelementen, die auf Basis der DFT ermittelt wurden,
lasst sich direkt die dielektrische Funktion in Unabhangiger-Teilchen-Approximation berechnen.
Abb. 3.7 zeigt die ermittelten Spektren fiir FAP, OFAP und NFAP. In allen drei Fallen liegt die
Absorptionskante energetisch héher als die Bandliicke E)V?!, da die Ubergangswahrscheinlich-
keit zwischen dem LUMO und dem HOMO verschwindend gering ist. Die drei Spektren weisen
weitere Gemeinsamkeiten auf. Besonders im Falle von FAP und OFAP stimmen die Positionen
und Formen der Maxima I — IV gréftenteils iiberein (siehe Tab. 3.4). Da sich die dielektrische
Funktion in Unabhéngiger-Teilchen-Naherung aus Ubergéngen zwischen besetzten und unbe-
setzten Zustdnden zusammensetzt, sind die Spektren leicht aufzulosen. Beispielsweise stellt sich
im Fall von FAP heraus, dass der HOMO — LUMO+1 Ubergang fiir 86% der Intensitéit des
ersten Absorptionsmaximums verantwortlich ist.

Um die Analyse der Spektren zu systematisieren, wird die Wellenfunktion eines Zustan-
des A geméaf ihrer Lokalisation charakterisiert. Dazu wird die Projektion des entsprechenden

Zustandes auf sphéarische Funktionen Y} , die an einem Atom s lokalisiert sind, berechnet,

Ash = Z | <¢>\ | }/ﬁn> |27 (3'1)
lm

und anschliefend iiber alle Atome summiert, die entweder dem Aminopyrimidin- bzw. dem
Pentafluorophenylring (M) oder dem angehéngten Fluoratom, der Methoxy- bzw. der Amino-
gruppe (R) angehéoren:

QM/RN = Z Q) - (3-2)

seEM/R

Die Bestimmung der Gréflen ajsy, und agy erlaubt die Aufklarung der Herkunft der wichtigs-
ten Absorptionsstrukturen in den Spektren von FAP, OFAP und NFAP. Insbesondere zeigt
sich, dass der jeweilige HOMO — LUMO+1 Ubergang wesentlich das erste Absorptionsmaxi-
mum verursacht. Aus den Daten geht zudem hervor, dass die Wellenfunktionen der beteiligten
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Tabelle 3.4: Beitrage der Einteilchenzustande FAP

von FAP, OFAP und NFAP zu den am starks- peak I Ir [ 1ar | 1v | v
ten ausgepragten Absorptionsmaxima, die in | Energy (eV) | 3.47 | 4.22 | 4.85 | 5.82 | 7.05
Abb. 3.7 hervorgehoben sind. Niheres ist im | Intensity (%) | 86 | 70 | 76 | 63 | 70

Text zu finden. HOMO 0 2 -2 | 5] D
QLA 0.58 | 0.62 | 0.62 | 0.57 | 0.57
QR 0.01 | 0.00 | 0.00 | 0.00 | 0.00

LUMO +1 +1 +3 0 +4
QLA 0.53 | 0.53 | 0.59 | 0.53 | 0.53
QR 0.02 | 0.02 | 0.00 | 0.00 | 0.01

OFAP
peak I II III I\ A\

Energy (eV) | 3.49 | 4.19 | 488 | 5.81 | 7.05
Intensity (%) | 94 | 53 | 73 | 75 | 68

HOMO 0 -2 -2 -6 -6
O M 0.54 | 0.62 | 0.62 | 0.57 | 0.57
QR 0.06 | 0.00 | 0.00 | 0.00 | 0.00

LUMO +1 | +1 | +3 0 +4
QM 0.52 | 0.52 | 0.54 | 0.53 | 0.51
QR 0.03 | 0.03 | 0.00 | 0.00 | 0.02

NFAP
peak I IT Inr | 1v \Y%

Energy (eV) | 3.14 | 4.13 | 4.90 | 5.82 | 7.06
Intensity (%) | 97 | 69 | 65 | 68 | 61

HOMO 0 -3 -3 -6 -6
O M 0.33 | 0.62 | 0.62 | 0.57 | 0.57
QR 0.28 | 0.00 | 0.00 | 0.00 | 0.00

LUMO +1 | +1 | +3 0 +4
O M 0.50 | 0.50 | 0.48 | 0.53 | 0.48
QR 0.04 | 0.04 | 0.01 | 0.00 | 0.02

Zustande an den gemeinsamen Aminopyrimidin- oder Pentafluorophenyl-Ring lokalisiert sind
(vgl. Abb. 3.6). Dies erklirt die Ahnlichkeit der Spektren der drei Molekiile. Eine Ausnahme
bildet allerdings das erste Absorptionsmaximum von NFAP. In diesem Fall besitzt der HOMO
starke Beitrige, die der Aminogruppe zuzurechnen sind [vgl. Tab. 3.4 und Abb. 3.6(c)] und of-
fenbar mit der leichten Rotverschiebung des ersten Maximums im Vergleich zu FAP und OFAP
korreliert sind. Dagegen ist der Einfluss des Fluoratoms F; bzw. der Methoxygruppe auf das
jeweilige erste Maximum, obgleich vorhanden, eher gering (vgl. Tab. 3.4).

Abb. 3.8 zeigt die dielektrische Funktion unter Beriicksichtigung von Vielteilcheneffekten.
Spektren, die nur DFT-Eigenenergien als Grundlage haben, wurden unter Beachtung von
Valenz- und Leitungsbandzustanden mit ¢, — €, < 6 €V berechnet. Sofern GW-Eigenenergien
eingesetzt wurden, wurden aus den untersten 96 Zustinden Zustandspaare mit der Eigenschaft
€. — €, < 10 eV zugelassen. Die Rechnungen wurden unter Verwendung sowohl der vollen
BSE-Matrix als auch der Tamm-Dancoff-Approximation durchgefiihrt. Die Korrektur der auf
DFT beruhenden Elektronenenergien wurde entweder durch einen Scissors-Operator, der die
ASCF-Bandliicken erzeugt, oder durch den Einsatz der GoWy-Eigenenergien realisiert.

Die im IPA-Spektrum beobachtete Rotverschiebung des ersten Maximums im Fall des
NFAP-Molekiils wird auch in den BSE-Spektren wiedergefunden. Der Effekt wird zusétzlich
durch den grofleren Unterschied in der ASCF- bzw. GoWy-Bandliicke verglichen mit FAP und
OFAP verstarkt. Fiir die drei Molekiile betragt die Abweichung der energetischen Lagen des
ersten Absorptionsmaximums berechnet im Rahmen der IPA bzw. BSE ca. 1 eV. Die Tatsa-
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FAP | OFAP | NFAP | Tabelle 3.5: Beitrage der elektronischen
IPA Zustande HOMO und LUMO+1 zum ersten
Energy (eV) 347 | 3.49 3.14 | Absorptionsmaximum des IPA-Spetkrum
Intensity (%) 86 94 97 und zum exzitonischen Zustand |I) der
QM (HOMO) 0.58 | 0.54 0.33 BSE/BSE-TDA-Rechnung, die entweder
QL R(HOMO) 0.01 | 0.06 0.28 auf der durch den Scissors-Operator mo-
QM(LUMO+1) 0.53 | 0.52 0.50 difizierten elektronischen Struktur oder
QR(LUMO+1) 0.02 | 0.03 0.04 den GoWy-Eigenenergien basiert (vgl. Abb.
BSE-TDA (PW91+A) 3.8). Gezeigt sind auch die Projektionen
Energy (eV) 3.70 | 3.51 3.02 ayypy fiir jeweils den HOMO und den
Ar(HOMO) 57 57 71 LUMO-+1.
Ar(LUMO+1) 69 57 67
BSE (PW91+A)
Energy (eV) 3.65 | 346 | 297
A (HOMO) 65 59 7
Ar(LUMO+1) 75 62 74
BSE(GoW))
Energy (eV) 448 | 4.36 4.05
A;(HOMO) 65 65 76
Ar(LUMO+1) 75 75 71

che weist auf das teilweise Aufheben der Quasiteilchen- und der exzitonischen Effekte hin, wie
bereits anhand Tab. 3.3 geschlussfolgert.

Wie bereits im Fall der IPA lassen sich auch im Rahmen der BSE durch eine systematische
Analyse Zustinde identifizieren, die zu den Absorptionsmaxima beitragen. Zu diesem Zweck
werden die Groflen

Ap(c) = Z |Ax(cv)|? und Ap(v) = Z | Ap(cv)|? (3.3)

betrachtet. Ax(cv) sind in Gl. (3.3) die Eigenvektoren zu positiven Eigenwerten Ej > 0 der
BSE-Matrix. Die Groflen A (M) wurden fiir exzitonische Zustédnde |A) berechnet, welche die
grofiten Intensitéten besitzen (vgl. Abb. 3.8). Wie sich herausstellt, tragen auch hier der HOMO
und der LUMO+1 grofitenteils zum ersten Absorptionsmaximum bei (vgl. Tab. 3.5).

Aus der Gegentiberstellung der Spektren, berechnet aus der vollen BSE-Matrix und unter
Verwendung der TDA, kénnen folgende Unterschiede abgelesen werden: (i) Der Ubergang von
der TDA zur vollen BSE-Matrix wird begleitet durch eine Rotverschiebung der exzitonischen
Eigenwerte. Ein dhnliches Resultat wurde auch in den Arbeiten [14, 15] gefunden. (ii) Starke
Modifikationen des Spektrums treten fiir Energien oberhalb 4.5 eV (fiir FAP und OFAP) oder
4.0 eV (fiir NFAP) auf. Die TDA beeinflusst demnach deutlich das Absorptionsspektrum der
Molekiile. Zusammen mit der Beriicksichtigung der optischen Eigenschaften der kristallinen
Systeme wird der Einfluss der TDA ausfiihrlicher in Abschnitt 3.2.2 diskutiert.

Obgleich die TDA das Spektrum fiir hohere Energien modifiziert, wird insbesondere die Lage
und Form der ersten Absorptionsmaximums starker durch die eingesetzten Elektronenenergien
bestimmt. Das Spektrum basierend auf den GoWy-Eigenwerten zeigt auch in anderen Regionen
betrachtliche Abweichungen vom Spektrum berechnet unter Einsatz des Scissors-Operators.
Dies ist eine Konsequenz der zustandsabhéngigen Korrektur der PW91-Eigenwerte durch die
Berechnung der Selbstenergie, die zu einer energetischen Umordnung der Zustande fiihrt und
in einer deutlichen Blauverschiebung des Spektrums resultiert.

Messungen fiir FAP geloit in Ethanol zeigen eine Absorptionskante bei 4.72 eV. Die Mes-
sungen beschranken sich auf einen Energiebereich von 2.3 — 5.7 eV. Mit einem Wert von 4.48 eV
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FAP, | FAP, | FAP;, | FAPs,
dT(Ag-N) | 222 | 222 | 2262.27 | 2.24-2.25
dexpl(Ag- ) | 224 | 224 2.28 2.26
d2(Ag-N) | 228 | 2.23-224 | 2.28 2.32
dexp2(Ag- ) | 230 | 225 2.29 2.32
N-Ag-N (calc) | 129 160 127-129 | 123-124
N-Ag-N (exp) | 128 157 126 122

Tabelle 3.6: Gemessene (Ref. [18]) und berechnete minimale und maximale Ag-N -
Bindungsldangen (in A) und N-Ag-N — Bindungswinkel der auf FAP basierenden 2-
Aminopyrimidine-Silber(I)-Halbleiter.

fiir das erste Absorptionsmaximum liegt das Spektrum basierend auf den GoWj-Eigenenergien
in bester Ubereinstimmung mit dem Experiment. Die Unsicherheit der Positionen der Absorp-
tionsstrukturen in der BSE-Rechnung betragt allerdings mehrere Zehntel eV. Zum einen wird
diese Tatsache aus Tab. 3.3 und der Diskussion in Abschnitt 3.1.2 verstandlich. Zum ande-
ren erfordert auch die Verwendung der Modell-Abschirmung nach Bechstedt et al. zusatzliche
Uberlegungen: durch die Abhéngigkeit der Modell-Abschirmung vor statischen Dielektrizitéts-
konstante €., und der mittleren Elektronendichte, wird das Spektrum auch durch das Volumen
der Superzelle beeinfluit. In der vorliegenden Arbeit wurde der Wert €., = 1 verwendet, welcher
die untere Grenze der Abschirmung markiert. Der Wert liegt nah an den Dielektrizitatskonstan-
ten, die sich direkt aus den IPA-Rechnungen bei Verwendung von Superzellen mit L = 18, ..,24
A ergeben. Beispielsweise erhilt man bei einem effektiven Volumen von Vig = 18 A3 einen
Wert von €., = 1.05. Die Folge ist eine Blauverschiebung der exzitonischen Eigenwerte um 0.3
eV. Zusatzlich zur numerischen Unsicherheit wird der Vergleich von Theorie und Experiment
auch erschwert durch den unbekannten Einfluss der Losungs-Molekiile auf die optische Absorp-
tion. Infolgedessen ist eine Abweichung von ca. 0.3 eV zwischen Theorie und Experiment nicht
iiberraschend.

An dieser Stelle sei darauf hingewiesen, dass u.a. in der Arbeit von Ruini et al. [110]
ein Ausweg aus der Superzellenabhéngigkeit der Modell-Abschirmung angegeben ist: die De-
finition eines effektiven Volumens des studierten Molekiils, wie in jenem Fall von Poly-para-
phenylenevinylen, kann die Beschreibung der Abschirmung und demnach der optischen Eigen-
schaften deutlich verbessern.

3.2 Die Molekul-Kristalle

3.2.1 DFT-Ergebnisse

Basierend auf den experimentellen Rontgendaten wurde eine Relaxation der atomaren Posi-
tionen unter Fixierung der Parameter der Einheitszelle durchgefithrt (vgl. Ref. [111]). Insgesamt
werden nur geringe Anderungen der atomaren Positionen im Vergleich zum Experiment beob-
achtet. Tab. 3.6 vergleicht die berechneten Bindungslangen und Winkel mit experimentellen
Daten fiir FAP. Maximale Abweichungen betragen 0.02 A und 3°.

Durch die Selbstassemblierung der Molekiile zu Kristallen entwickeln sich aus den diskreten
Energiezustanden der Molekiile Energiebander. Die Abb. 3.9 zeigt die Bandstrukturen berech-
net auf GGA-PW91-Basis fiir kristalline FAP-Systeme. Die Bandliicke der organischen Halblei-
ter ist im Vergleich zur HOMO-LUMO-Differenz der urspriinglichen Molekiile jeweils kleiner.
Dies ist nicht nur eine Folge der Dispersion der ehemals diskreten Energiezustande, sondern
hangt auch mit den entstandenen Ag-N — Bindungen zusammen. Dies geht aus den Abb. 3.10 -
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Abbildung 3.7: Imaginarteil der dielektrischen Funktion berechnet unter Einsatz der Unabhéngige-
Teilchen-Approximation fiir FAP, OFAP und NFAP. Eine Verbreiterung von n = 0.10 eV wurde
verwendet.
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Abbildung 3.8: Imaginarteil der BSE-dielektrischen Funktion basierend auf der GoWy-Rechnung oder
unter Verwendung eines Scissors-Shifts, der die ASCF-Bandliicken reproduziert. Die durchgezogenen
(gestrichelten) /gepunkteten Linien und Balken kennzeichnen die Spektren und Oszillarstérken der ent-
sprechenden Eigenwerte im Rahmen der BSE (BSE-TDA) auf Grundlage der korrigierten PW91/Go W
elektronischen Struktur. Der zum ersten Maximum beitragende exzitonische Eigenzustand |I) ist her-
vorgehoben. Das stiarkste Absorptionsmaximum von FAP geloft in Ethanol ist durch die gestrichelte
Vertikale markiert.
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Abbildung 3.9: Vergleich der energetischen Niveaus von FAP (a) mit den Bandstrukturen von FAP,
(b), FAPs (c), FAP3, (d) und FAPg, (e). Die fundamentale Bandliicke ist gelb hinterlegt.

3.12, in denen die elektronische Zustandsdichte (DOS) und ihre Projektion auf die Silberatome
gezeigt werden, hervor. Besonders in der Nahe des VBM findet man viele silberartige Zusténde.

Die Abb. 3.13, 3.14 und 3.15 stellen die dielektrischen Funktionen der Molekiilkristalle
und die der entsprechenden Molekiile gegeniiber. In allen drei Fallen treten die molekula-
ren Signaturen in den Spektren der Kristalle in Erscheinung. Insbesondere gilt das fiir FAP-
Molekiilkristalle, wo der erste Absorptionspeak im Vergleich zur Position im molekularen Spek-
trum kaum verschoben ist. Das berechnete Spektrum fiir NFAP,, welches nicht durch Silber(I)-
Komplexbildung gebunden ist, verglichen mit dem von NFAP; und NFAPj3, weist darauf hin,
dass der Beitrag silberartiger Zusténde, obgleich vorhanden (vgl. weiter unten im Text), eher
gering ist. Ein direkter Einfluss der Molekiile des Losungsmittels auf die optische Absorption
konnte hingegen nicht festgestellt werden. Es sind hauptsachlich zwei Unterschiede zwischen
den Spektren der kristallinen und molekularen Systemen festzustellen: (i) die Absorptionss-
trukturen in den Halbleiterspektren sind im Vergleich zu den molekularen Spektren aufgrund
der Dispersion der Bander verbreitert und, (ii) die optische Absorption beginnt unterhalb der
Absorptionskante der Molekiile. Der Grund ist der Einfluss silberartiger Zustéinde, wie aus der
Projektion aagy [siche Gln. (3.1) und (3.2)] zu entnehmen ist. Diese kann fiir die an der Absorp-
tion beteiligten Valenzzustande A bis zu 0.5 betragen. Das Spektrum im Fall von NFAP weicht
allerdings deutlich mehr vom entsprechenden molekularen ab. Insbesondere ist das erste Ab-
sorptionsmaximum rotverschoben. Dies ist zuriickzufiihren auf das isolierte Segment unterhalb
des VBM, welches der Amino-Gruppe zuzuordnen ist (vgl. Abb. 3.12).

3.2.2 Der Einfluss von Vielteilcheneffekten

Die optischen Spektren basierend auf der Unabhéangige-Teilchen-Approximation sind gut
dazu geeignet, chemische Tendenzen zu identifizieren und zu klassifizieren, doch kann sich der
Vergleich mit experimentellen Messungen aufgrund des Einflusses von Vielteilcheneffekten als
schwierig erweisen. Zur Berticksichtigung Letzterer in der Bandstruktur wurden Rechnungen fiir
FAP; unter Verwendung des HSE06-Funktionals durchgefiihrt. Die berechnete indirekte (bzw.
direkte) Bandliicke von 3.86 (bzw. 3.91) eV ist in guter Ubereinstimmung mit dem experimentel-
len Wert von 3.50 eV, welcher aus Anregungsmessungen ermittelt wurde. Das HSEO6-Funktional
liefert demnach fiir den Kristall FAP; eine bessere Beschreibung der Bandliicke als fiir das ent-
sprechende Molekiil FAP (vgl. Abschnitt 3.1.2). Im Vergleich zur indirekten PW91-Bandliicke
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Abbildung 3.10: Elektronische Zustandsdichte (DOS, weile Bereiche) der FAP-Molekiilkristalle. Ag-
/F1-Beitréige sind durch gepunktete/schwarze Bereiche gekennzeichnet.
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Abbildung 3.11: Elektronische Zustandsdichte der OFAP-Molekiilkristalle. Die Beitridge der Methoxy-
Gruppe sind durch schwarze Bereiche gekennzeichnet. Weitere Notationen sind im Einklang mit Abb.
3.10.
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Abbildung 3.12: Elektronische Zustandsdichte der NFAP-Molekiilkristalle. Die Beitrage der Amino-
Gruppe sind durch schwarze Bereiche gekennzeichnet. Weitere Notationen sind im Einklang mit Abb.
3.10.
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Abbildung 3.13: Imaginarteil der
dielektrischen Funktion berechnet
im Rahmen der Unabhangige-
Teilchen-Approximation von
FAP-Molekiilkristallen im Ver-
gleich zum molekularen Spektrum
(durchgezogene Linie). Eine Ver-
breiterung von n = 0.10 eV wurde
verwendet. Gezeigt sind auch das
experimentelle  Absorptionsspek-
trum (gestrichelte rote Linie) und
der Absorptionskeoffizient nach
Gl. (3.4) (gepunktete Linie).

Abbildung 3.14: Imaginarteil der
dielektrischen Funktion berechnet
im Rahmen der Unabhangige-
Teilchen-Approximation von
OFAP-Molekiilkristallen im Ver-
gleich zum molekularen Spektrum.
Die Daten stehen im Einklang mit

Abb. 3.13.

Abbildung 3.15: Imaginérteil der
dielektrischen Funktion berechnet
im Rahmen der Unabhangige-
Teilchen-Approximation von
NFAP-Molekiilkristallen im Ver-
gleich zum molekularen Spektrum.
Die Daten stehen im Einklang mit
Abb. 3.13.
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des organischen Halbleiters zieht der Einsatz des Hybrid-Funktionals eine Gap-Aufweitung von
1.21 eV nach sich.

Fiir FAP; wurden weitere Rechnungen durchgefiihrt um den Einfluss der Elektron-Elektron-
Wechselwirkung, der Elektron-Loch-Anzichung sowie der Lokalfeldeffekte auf die optische Ab-
sorption zu untersuchen. Da es sich hierbei um eine 60-atomige Einheitszelle handelt, ist der
notwendige numerische Aufwand akzeptabel. Basierend auf den PW91-Wellenfunktionen ist die
dielektrische Funktion in Abb. 3.16 auf verschiedenen Approximationsstufen dargestellt. Neben
dem Studium der Elektron-Loch-Anziehung und der Lokalfeldeffekte ist auch die Auswirkung
der Tamm-Dancoff-Approximation tiberpriift worden. Folgendes kann anhand der Vergleiche
beobachtet werden: (i) Die Lokalfeldeffekte verursachen eine Blauverschiebung von ca. 1 eV,
wie auch in Ref. [16] festgestellt, (ii) eine Rotverschiebung von ca. 2 ¢V aufgrund exzitonischer
Effekte wird beobachtet und (iii) es wird eine Modifikation der Form und Lage der Strukturen im
Spektrum durch die Beriicksichtigung der nichtresonanten Teile der BSE-Matrix sichtbar. Auf
unterschiedliche Polarisationsrichtungen ist die Wirkung der Vielteilcheneffekte unterschiedlich
stark, wie die Abb. 3.16(a), (d) und (e) zeigen.

Waéhrend die Beeinflussung des Spektrums durch exzitonische Effekte schon langer be-
kannt ist, treten die starken Auswirkungen der Lokalfeldeffekte und der Tamm-Dancoff-
Approximation erst fiir organische Systeme in Erscheinung [14, 15, 16]. Zum Vergleich wurden
Rechnungen nach dem Schema von Abb. 3.16 fir Silizium unternommen (vgl. Abb. 3.17). Aus
diesen geht der geringe Einfluss der Lokalfeldeffekte! und der Tamm-Dancoff-Approximation
hervor und verifiziert die Aussagen aus der Arbeit von Albrecht et al. [13]. Zur weiteren Auf-
klarung der unterschiedlich starken Wirkung der resonanten-nichtresonanten Kopplung auf an-
organische und organische Systeme, wurden die BSE-Matrizen von FAP, FAP; und Silizium
grafisch dargestellt (vgl. Abbn. 3.18, 3.19 und 3.20). Es wurden die Absolutbetrige der Ma-
trixeintrage studiert. Um eine handhabbare Dimension zur grafischen Darstellung zu erhalten,
wurde im Fall von FAP; und Silizium das Maximum aus Untermatrizen der Grofe ~ 103 x 103
ausgegeben. Folgendes ist dem Vergleich der drei BSE-Matrizen zu entnehmen: (i) im Fall von
Silizium sind die Nebendiagonaleintrage ca. 2-3 Grofenordnungen kleiner als die Diagonalein-
trage, wobei die Eintrage im nichtresonanten Teil noch eine Groflenordnung kleiner sind als
die groften im resonanten Teil. (ii) In der BSE-Matrix von FAP; und FAP sind die Neben-
diagonaleintrige zwei Grofenordnungen hoher als im Fall von Silizium und (iii) insbesondere
fiir FAP sind vereinzelte Nebendiagonaleintrige in der gleichen Groflenordnung wie die Dia-
gonaleintrage. Da die nichtresonanten Untermatrizen nur im Fall kleiner Matrix-Eintrage ver-
nachlassigt werden konnen, geht aus den Abbn. 3.18, 3.19 und 3.20 hervor, dass die Bedingung
fiir die Giiltigkeit der TDA nur fiir Silizium gegeben ist. Da weiterhin die Matrix-Eintrage nach
Gl. (2.185) berechnet werden, lasst sich schlussfolgern, dass eine hohe Uberlappung der Wel-
lenfunktionen der Einteilchenzustédnde in begrenzten Bereichen des Raumes ausschlaggebend
ist fiir das Versagen der TDA. Diese Eigenschaft der Orbitale ist eine Voraussetzung fiir das
Aufkommen der betrachtlichen Nebendiagonaleintrage der BSE-Matrix und ist eine material-
spezifische Eigenschaft der Wellenfunktionen. An dieser Stelle sei zugleich hervorgehoben, dass
zur Ableitung verallgemeinerter Aussagen hinsichtlich der Ursache fiir die unterschiedlichen
Formen der BSE-Matrizen weitere Untersuchungen notwendig sind.

'Wie aus Abb. 3.17 hervorgeht ist der Einfluss der Lokalfeldkorrekturen, obgleich gering, jedoch im Fall von
Silizium sichtbar. Andere ionische Materialien zeigen hingegen einen noch geringeren Einfluss von Lokalfeldkor-
rekturen (vgl. [92]).
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Abbildung 3.16: Vergleich der berechneten Spektren von FAP; unter Einsatz verschiedener Appro-
ximationen. Die Spektren wurden auf Grundlage der PW91-Bandstruktur und -Wellenfunktionen be-
rechnet. Ein Scissors-Shift von 1.21 eV und eine Verbreiterung von 0.2 eV wurden verwendet. Gezeigt
sind auch die drei Polarisationsrichtungen €, (w), €,y (w) und €,.(w) (gestrichelte blaue, gepunktete
rote und griine Linie).
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Abbildung 3.17: Vergleich der berechneten Spektren von Silizium unter Einsatz verschiedener Ap-

proximationen. Die Abb. folgt dem Schema von Abb. 3.16. Spektren, in denen Lokalfeldeffekte ver-
nachlassigt wurden, sind durch gestrichelte Linien dargestellt.
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Abbildung 3.18: Maximaler
Absolutbetrag  |H Oua)( M) |
aus den Untermatrizen (Dimen-
sion: ca. 103 x 10%) der BSE-
Matrix von Si. Die Aufteilung
in Untermatrizen ist notwendig
um eine angemessene Dimension
zur graphischen Darstellung zu
erhalten. Fiir den resonanten
und  nicht-resonanten  Anteil
gilt: ()\gl),)\g)) = (,v")) und
("), e)). Man beachte die
logarithmische Skalierung der
Absolutbetrige.

Abbildung 3.19: Maximaler
Absolutbetrag  |H Oaa)i( M) |
aus den Untermatrizen (Di-
mension ca. 10% x 103%) der
BSE-Matrix von FAP;. Man
beachte auch die Hinweise zu

Abb. 3.18.

Abbildung 3.20:
Absolutbetrige [H(x, x,),(\ M)l
der BSE-Matrix von FAP. Man

beachte auch die Hinweise zu
Abb. 3.18.
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3.2.3 Vergleich mit experimentellen Befunden

Experimentelle Intensitdtsmessungen i,(hw) = I(hw)/Iy der optischen Absorption wurden
fir FAP; — FAP3,, OFAP; und OFAP;, vorgenommen [18]. Es handelte sich hierbei um pul-
verformige Proben. Zum Vergleich der Messungen mit den Rechnungen wurde aus dem Real-
Fe(w) und Imaginérteil Se(w) der dielektrischen Funktion der rdumlich gemittelte Absorpti-
onskoeffizient gebildet:

a(hw) o hw\/[\/%e(hw)z + Se(hw)? — %e(hw)]. (3.4)

In den Abb. 3.13, 3.14 und 3.21 sind die experimentellen und berechneten Daten gegeniiber-
gestellt. Man stellt in den experimentellen Spektren eine Abweichung der energetischen Lage
der Absorptionskante und insbesondere im Fall von FAP; — FAP3, und OFAP3, Unterschiede
in der Kurvenform verglichen mit den Unabhéangige-Teilchen-Rechnungen fest. Das Absorpti-
onsspektrum von FAP; basierend auf den PW91-Wellenfunktionen und -Eigenenergien ist in
akzeptabler Ubereinstimmung mit dem Experiment, obgleich ein zusétzliches Absorptionsma-
ximun bei ca. 5 eV vorhanden ist. Dagegen iiberschatzen die Rechnungen unter Verwendung
des Hybridfunktionals HSE06 die experimentelle Absorptionskante deutlich (vgl. Abb. 3.21).
Die letzten beiden Beobachtungen lassen erneut die Schlussfolgerung zu, dass sich elektronische
Selbstenergieeffekte und exzitonische Effekte teilweise autheben.

Zusatzlich zu den Unabhéngige-Teilchen-Rechnungen ist in Abb. 3.21 auch die BSE-TDA-
Optik auf Grundlage der PW91- oder HSE06-Wellenfunktionen und -Eigenenergien mit dem
experimentellen Spektrum verglichen. In bester ﬂbereinstimmung mit dem Experiment liegt
der Absorptionskoeffizient basierend auf der elektronischen Struktur der Hybridfunktional-
Rechnung. Gleichzeitig ergibt der Einsatz der numerisch gilinstigeren PW91-Bandstruktur mit
einem Scissors-Shift von A = 1.21 eV, der die Bandliickendifferenz zwischen HSE06 und PW91
korrigiert, einen dhnlichen Grad an Uberelnstlmmung Dies ist auf den eher geringen Unter-
schied in der Banddispersion der HSE06- und PW91-Rechnung zuriickzufiihren.

Die gute Beschreibung der optischen Eigenschaften durch die Hinzunahme von Selbstener-
gieeffekten (bzw. eines Hybridfunktionals) und exzitonischen Effekten ist aufgrund der Er-
kenntnisse zu anorganischen Systemen nicht iiberraschend, lasst sich allerdings aufgrund des
numerischen Aufwandes nur fiir Kristalle mit kleinen Einheitszellen durchfiihren. Weiterhin
sei nochmals erwahnt, dass der Vergleich zwischen Experiment und Theorie von der Annahme
ausgeht, dass die experimentellen Daten eine gute Approximation des Mittelwertes der drei
Komponenten €., €,, und €., liefern.
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3.3 Zusammenfassung

Der aktuelle Abschnitt stellt eine Analyse der elektronischen und optischen Eigenschaf-
ten von 2-Aminopyrimidin-Silber(I)-gestiitzten organischen Halbleitern und der entsprechen-
den Ausgangsmolekiile dar. Die Untersuchungen wurden mit Hilfe von Dichtefunktionaltheorie-
und Vielteilchen-Storungstheorie-Rechnungen durchgefiihrt. Die Ergebnisse prognostizieren
Bandliicken in Hohe von ca. 7 eV fir die Molekiile FAP, OFAP und NFAP. Die untersten
optischen Anregungsenergien sind dagegen bedeutend kleiner. Vielmehr zeigt sich sogar, dass
sich Selbstenergieeffekte und exzitonische Effekte in der optischen Anregung der Molekiile na-
hezu aufheben. Aus der Gegeniiberstellung der elektronischen und optischen Eigenschaften der
drei Molekiile wird aulerdem deutlich, dass die optische Anregung insbesondere unter Einfluf3
des Aminopryimidin- und des Pentafluorophenyl-Rings stattfindet. Modifikationen der Wellen-
funktionen durch die unterschiedlichen Funktionellen Gruppen werden im optischen Spektrum
nur teilweise sichtbar.

Die Molekiilkristalle, die durch Selbstassemblierung und Silber(I)-Komplexbildung gebil-
det wurden, weichen hinsichtlich ihrer elektronischen Eigenschaften deutlich von denen der
urspriinglichen Molekiile ab. Die diskreten Energiezustande der Molekiile werden zu Ener-
giebandern umgewandelt, die in ihrer Gesamtheit eine um ca. 1 eV kleinere Bandliicke auf-
weisen als die Ausgangsmolekiile. Zusétzlich sind in der Nahe des VBM silberartige Zusténde
vorhanden. Diese allerdings sind nur méafig an der optischen Absorption beteiligt, sodass sich
die molekularen Fingerabdriicke insbesondere im Fall von FAP und OFAP in den entspre-
chenden Spektren wiedererkennen lassen. Finen Sonderfall stellt jedoch NFAP dar, da die Ab-
sorptionskante des kristallinen optischen Spektrums hierbei aufgrund von Ubergéingen, die der
Aminogruppe zugerechnet werden, ein wenig rotverschoben ist.

Obgleich Rechnungen basierend auf der Unabhéngige-Teilchen-Approximation experimen-
tell gemessene Merkmale reproduzieren, ist fiir einen quantitativen Vergleich zwischen Theo-
rie und Experiment die Beriicksichtigung von Vielteilcheneffekten notwendig. Zusatzlich zum
EinfluB der Elektron-Loch-Anziehung, der fiir eine gute Ubereinstimmung der theoretischen
Ergebnisse mit den experimentellen betrachtlich ist, wurde beobachtet, dass auch Lokalfeld-
effekte das Spektrum bedeutend formen. Bemerkenswerterweise wurde fiir die untersuchten
organischen Halbleiter auch festgestellt, dass die nichtresonanten Elemente der BSE-Matrix,
die im Fall anorganischer Materialien vernachlassigt werden, sichtlich die Positionen und In-
tensitaten von Absorptionsstrukturen modifizieren. Eine Gegeniiberstellung der zugrunde lie-
genden BSE-Matrizen fiir FAP, FAP; und Silizium liefl weiterhin Anzeichen offenlegen, dass
die unterschiedliche Wirkung der TDA durch die Wellenfunktionen der jeweiligen Systeme ver-
ursacht wird. Weitere Untersuchungen hinsichtlich der TDA zur vollstandigen Aufklarung der
Ursache werden dennoch empfohlen.
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KAPITEL IV

Die Ferroelektrika Lithiumniobat (LIN), Lithiumtantalat
(LN) und LN-LT-Mischkristalle

Das gegenwértige Kapitel befasst sich mit den linearen und nichtlinearen optischen Ei-
genschaften der beiden Ferroelektrika Lithiumniobat (LN, LiNbO3) und Lithiumtantalat (LT,
LiTaO3), sowie der Legierung aus den genannten. Beide Materialien besitzen eine zehn-atomige
Elementarzelle. Der jeweilige Grundzustand ist fiir Temperaturen unter 1415 K bzw. 880 K (fiir
LN und LT) ferroelektrisch und weist die Raumgruppensymmetrie R3c auf. Insbesondere im
Fall von Lithiumniobat werden die zusétzlich vorhandenen elektro-optischen, photorefraktiven
und nichtlinearen optischen Eigenschaften in einer Vielzahl von Bereichen und Bauelementen
eingesetzt. Dazu gehohren typischerweise optische Modulatoren, akustooptische Geréte, opti-
sche Schalter fiir Frequenzen im Gigahertz-Bereich, Laser-Frequenz-Verdoppler, Pockels-Zellen,
optische parametrische Oszillatoren oder Giiteschalter (Q-Switch) fiir Laser [20, 117].

Obgleich das Anwendungsgebiet von LN sehr breit ist, sind die elektronischen und optischen
Eigenschaften des Ferroelektrikums bisher eher méflig untersucht worden. Beispielsweise liegen
unserem Wissen nach keine Messungen der Bandstruktur vor. Die experimentell gemessenen
und in der Literatur angegebenen direkten und indirekten Bandliicken, die bei 3.78 eV [118] und
3.28 —4.3 €V [119, 120, 121] liegen, wurden aus Messungen der optischen Absorption abgeleitet.
Da ein unbekannter Beitrag der Elektron-Loch-Anziehung und der Lokalfeldeffekte in der opti-
schen Absorption enthalten ist, ist ein Vergleich dieser Daten mit der tatsachlichen Bandliicke,
als Differenz zwischen der lonisierungsenergie und Elektronenaffinitét [vgl. Gl. (2.60)], jedoch
schwierig. Bestatigt wird diese Aussage auch durch die deutlich hoheren theoretischen Angaben
der Bandliicke, welche modernen Arbeiten zufolge bei 4.7 — 6.5 eV liegt [122, 123]. Des Weiteren
besitzen die genannten Absorptionsexperimente zusammen mit anderen Arbeiten wie Ref. [124]
als Hauptaugenmerk die Absorptionskante. Messungen des optischen Spektrums fiir einen aus-
gedehnten Energiebereich sind unserem Wissen nach nur durch Mamedov et al. [125] und Wie-
sendanger et al. [126] durchgefithrt worden. Hinsichtlich Messungen und Daten des Spektrums
der Zweiten Harmonischen sieht die Lage dhnlich aus: in mehreren Arbeiten werden SHG-Daten
fiir einzelne fundamentale Frequenzen angegeben [127, 128, 129, 130, 131, 132, 133, 134, 135] ,
jedoch sind Messungen, die einen breiten spektralen Bereich abdecken, ebenfalls nicht bekannt.

Von theoretischer Seite aus wurden in den letzten Jahren mehrere ab-initio Studien aufge-
nommen, die insbesondere auf die strukturellen Attribute und Schwingungseigenschaften von
LN zielen [122, 136, 137, 138]. Atomistische Simulationen diesbeziiglich wurden ebenso fiir LN-
Oberflachen durchgefiihrt [139, 140, 141]. Auch der Phaseniibergang vom paraelektrischen zum
ferroelektrischen LN wurde mit Hilfe molekular-dynamischer Simulationen untersucht [142].
Im Vergleich dazu sind wenig Publikationen erschienen, welche die elektronischen und opti-
schen Eigenschaften zum Gegenstand haben. Ab-initio Rechnungen der Bandstruktur von Veit-
hen et al. [138] und Kityk et al. [143] basieren auf der Unabhéngige-Teilchen-Approximation
und vernachlassigen Quasiteilcheneffekte, die einen betréchtlichen Anteil zur Verbreiterung der
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Bandliicke liefern. Die Notwendigkeit der Beriicksichtigung von Selbstenergie-Effekten zeigt
bereits eine frithe Studie von Ching et al. [144]: basierend auf dem approximativen Sterne-
Inkson-Modell [144] wurden Selbstenergie-Korrekturen in Hohe von einem eV vorausgesagt.
Demgegentiber stand allerdings eine Einteilchen-Bandliicke von 2.62 eV, die deutlich kleiner ist
als von Veithen et al. (3.48 eV) und Kityk et al. (3.69 eV) vorhergesagt.

Beim Studium der elektronischen und optischen Eigenschaften von LN fanden 2008 Schmidt
et al. [122] Anzeichen fiir einen substantiellen Einfluss der Elektron-Loch-Wechselwirkung und
der Lokalfeldeffekte auf die Absorption. Obgleich die wesentlichen Merkmale im optischen Spek-
trum von LN durch die Rechnungen in Ref. [122] gut wiedergegeben werden, ist insbesondere die
Vorhersagekraft der Bandstruktur-Ergebnisse eingeschrénkt, da die Modell-Abschirmung [145]
fiir das abgeschirmte Coulomb-Potential W in der GW-Approximation der Selbstenergie einge-
setzt wurde. Auch konnte in Ref. [122] der Einfluss der Gitterpolarisation auf die elektronischen
und optischen Eigenschaften nicht ausreichend geklart werden.

Das Spektrum der zweiten Harmonischen wurde fiir LN bereits entweder durch einen app-
roximativ-analyitschen Ansatz [146] oder durch eine Unabhéngige-Teilchen-Rechnung auf DFT-
Basis [147] berechnet. Der Einfluss von Quasiteilcheneffekten auf die nichtlinearen optischen
Eigenschaften wurde unserem Wissen nach jedoch noch nicht untersucht.

Im ersten Teil dieses Kapitels wird es das Ziel sein die elektronischen und optischen Ei-
genschaften des stochiometrischen LN zu berechnen und zu untersuchen. Dabei wird Wert
auf eine hohe Prézision der Studie gelegt. Dies spiegelt sich u.a. in der Verwendung einer
RPA-Abschirmung zur Berechnung der abgeschirmten Coulomb-Potentials in der Selbstenergie
wieder (siehe Abschnitt 2.6.4 und Ref. [76]). Qualitativ hochwertiges lineares optisches Spek-
trum wird, wie bereits in Kapitel 111 angewendet und in Abschnitt 2.7 erlautert, mit Hilfe der
BSE berechnet. Da ab-initio Berechnungen des SHG-Tensors bisher prinzipiell selten sind, wird
das dafiir geschriebene Programmpaket auch zur Berechnung der nichtlinearen optischen Eigen-
schaften anderer Halbleiter und Isolatoren, wie GaAs, AlAs und AIN (in der Wurtzit-Struktur),
eingesetzt, um durch Vergleich mit entsprechenden Arbeiten [83, 148, 149] die Genauigkeit der
Implementierung einschatzen zu konnen. Der SHG-Tensor fiir stochiometrisches LN wird an-
schlieBend berechnet und studiert.

Wihrend im ersten Teil folglich die grundlegenden Eigenschaften von stochiometrischen
LN (SLN) studiert werden, wird die Untersuchung im zweiten Abschnitt des Kapitels auf das
kongruente LN (CLN) erweitert. Die meisten der oben genannten Anwendungen von LN ver-
wenden kongruente Kristalle, die durch die Czochralski-Methode geziichtet werden. Tatséachlich
sind realistische LN-Kristalle in der Regel nicht stochiometrisch sondern kongruent, oder mit
anderen Worten: Li-defizitar. Wie sich zeigt, hdngen viele physikalische Eigenschaften, wie die
Curie-Temperatur, von der Existenz von Punkt-Defekten ab, die entweder mit einer Dotierung
von LN oder mit dem Li-Defizit im Zusammenhang stehen [150]. Ebenfalls existieren Anzei-
chen, dass sich die optischen Eigenschaften von SLN und CLN merklich unterschiedlich sind
[151, 152]. Die Simulation von CLN orientiert sich an zwei anerkannten Modellen, die Super-
zellen der Grole mehrerer hundert Atome erfordern. Die Tendenzen und Resultate werden in
diesem Fall demnach auf Basis der DFT-Unabhéangige-Teilchen-Approximation gewonnen.

Der dritte Teil dieses Kapitels wird sich mit Lithiumtantalat und LN-LT-Mischkristallen
auseinandersetzen. Aufgrund des Isomorphismus’ zwischen LN und LT zeigen die beiden Fer-
roelektrika eine Vielzahl dhnlicher Eigenschaften. Wahrend LN in den vielen angesprochenen
Anwendungen eingesetzt wird, wird LT als Ersatzmaterial fiir LN bei Applikationen verwendet,
die geringere Wellenlangen erfordern. Das kiirzlich aufgekommene starke Interesse an LN-LT-
Mischkristallen (LiNb;_,Ta, O3, LNT) hat als Ursache den Wunsch physikalische Eigenschaften
durch Manipulation der Stéchiometrie zu regulieren. Obgleich LNT zu den einfachsten ferro-
elektrischen Mischkristallen gehort, zeigt es einige sonderliche Eigenschaften: beispielsweise ver-
schwindet bei einer bestimmten Komposition die Eigenschaft der Doppelbrechung bei Zimmer-
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temperatur. Unserem Wissen nach ist es eine einzigartige Figenschaft eines Ferroelektrikums.
Der Mischkristall ist infolgedessen elektrisch polar und trotzdem optisch isotrop [19, 153].
Wiéhrend demnach das technologische Potential von LNT enorm ist und ungeachtet der
bereits breiten Verwendung von LN und LT fiir verschiedene elektrooptische und akustoop-
tische Baulemente, sind Information zu den elektronischen und optischen Eigenschaften der
Mischkristalle kaum vorhanden [154]. Die Schwierigkeit homogene Kristalle mit Hilfe traditio-
neller Wachstumsmethoden, wie das Czochralski-Verfahren, zu ziichten ist ein moglicher Grund
fiir die geringe Kenntnis der Materialparameter. Insbesondere erschwert dabei der grofie Ab-
stand der fliissig-fest-Kurven im LN-LT-Phasendiagram das Wachstum der Mischkristalle iiber
die gesamte Kompositionsbreite hinweg [19, 155]. Nichtsdestotrotz konnten homogene LNT-
Kristalle zuletzt angefertigt werden [19]. Das Ziel der dritten Teils wird es demnach sein, mit

Hilfe von ab-initio Methoden zu einem besseren Verstdndnis der Materialeigenschaften von
LN-LT-Mischkristallen beizutragen.

4.1 Lithiumniobat: Elektronische und optische Eigenschaften

Zur Simulation von ferroelektrischem stochiometrischem LN wird von der Beschreibung
durch die rhomboedrische Elementarzelle, die 10 Atome enthalt, Gebrauch gemacht. Die Struk-
turdaten aus Ref. [122], die in hervorragender Ubereinstimmug mit experimentellen Befun-
den stehen, bildeten die Basis zur Berechnung der elektronischen Eigenschaften. Ein k-Punkt-
Sampling der BZ von 6 x6x6 und ein PAW-Ebene-Wellen-Cutoff von 400 eV wurden verwendet.
Als Austausch- und Korrelationsfunktional wurde das PW91-Funktional eingesetzt. Die Qua-
siteilchenenergien wurden nach der Methode von Shishkin und Kresse (Ref. [76] und Abschnitt
2.6.4) berechnet. 608 Elektronische Zustédnde wurden eingebunden um die Selbstenergie ¥ in
GoWy-Naherung zu ermitteln.

Die elektronische Bandstruktur und Zustandsdichte ist in Abb. 4.1 gezeigt. Diese wurde mit
Hilfe der DFT und im Rahmen der GWA berechnet. Aus den Rechnungen geht hervor, dass LN
ein indirekter Halbleiter ist, wobei das VBM leicht seitlich des I'-Punktes liegt. Allerdings zeigt
die Abb. 4.1 auch, dass die Banddispersion des obersten Valenzbandes sehr klein ist, sodass
der Unterschied zwischen der direkten und indirekten Bandliicke weniger als 0.1 eV betragt.
Der Wert 3.39 eV der direkten Bandliicke am I'-Punkt ist auf DFT-Level in Ubereinstimmung
mit vorangegangen Rechnungen [122, 138, 143], die sich auf dem selben Approximationslevel
befinden. Beim Vergleich des aktuellen GoWy-Wertes von 5.42 eV mit den Resultaten fritherer
Arbeiten ist Nachfolgendes zu beachten. Die Autoren von Ref. [122] verwendeten eine Modell-
Abschirmung um die abgeschirmte Wechselwirkung zu beschreiben. Obgleich dies die Genau-
igkeit der Rechnungen beeinflusst, ermdglicht es teilweise auch einen Zugang um den Einfluss
der Gitterpolarisation auf die Quasiteilchenenergien zu priifen [156]. Abhéngig davon, ob man
annimmt, dass die Gitterpolarisation die Abschirmung beeinflusst oder nicht, wurde in Ref.
[122] eine Bandliicke von ca. 6.5 eV und 5.4 eV vorhergesagt. Die im Rahmen dieser Arbeit
durchgefithrten GoWg-Rechnungen berticksichtigen Gitterpolarisationseffekte nicht, sodass das
aktuelle Ergebnis mit dem Wert 6.5 ¢V aus der Arbeit [122] verglichen werden sollte. Die Ab-
weichung von ca. 1 eV deutet an, dass die Abschirmung in dem hier stark-ionischen Material
nicht ausreichend durch die Modell-Abschirmfunktion beschrieben wird.

Auf der anderen Seite fithren GW-Rechnungen mit Hilfe der full-potential linearized aug-
mented plane-wave-Methode (FLAPW-Methode) auf eine Bandliicke von 4.7 eV [123]. Der grofe
Unterschied von 0.7 eV ist in diesem Fall iberraschend. Neben dem Einfluss der verschiede-
nen eingesetzten Pseudo-Potential-Methoden ist eine mogliche Ursache fiir diese Abweichung
auch das geringere k-Punkt-Sampling der BZ in Ref. [123]: bei der Berechnung der GoW-
Eigenenergien von Thierfelder et al. wurde ein 2 x 2 x 2-Sampling der BZ verwendet. Dem-
ungeachtet, wie spater gezeigt wird, geht aus dem Vergleich der gemessenen und berechneten
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Abbildung 4.1: (a) Elektronische Bandstruktur (die Notation der Hochsymmetrie-Punkte ist in Ref.
[122] erlautert) und (b) elektronische Zustandsdichte (DOS) [in 1/eV pro Formeleinheit Lithiumniobat
(FU)] von stochiometrischem ferroelektrischem LN berechnet mit Hilfe DET-PW91 (schwarze Linien
und Bereiche) und GoWy-Stérungstheorie (rote Punkte und gepunktete Bereiche). Gepunktete rote
Linien verbessern die Darstellung. Der Bereich der Bandliicke ist grau hinterlegt. In (b) sind auch
Nb4d- und O2p-Beitrage im Rahmen der DFT-PW91-Rechnung eingezeichnet.

optischen Daten hervor, dass der aktuelle Wert von 5.4 eV dicht beim tatsachlichen Wert der
Bandliicke liegen muss.

Auf Grundlage der Bandstrukturen, die in Abb. 4.1 dargestellt sind, wurden Berechnun-
gen des linearen optischen Spektrums vollzogen. Konvergenzuntersuchungen hinsichtlich des
k-Punkt-Samplings zeigen, dass das Spektrum mit einem Sampling von 6x6x6 konvergiert ist
(vgl. Abb. 4.2). In Abb. 4.3 ist die dielektrische Funktion von ferroelektrischem LN auf den
drei Approximationsstufen IPA (DFT), IQA (GWA) und BSE(-TDA) gezeigt. Zur Berechnung
des BSE-Spektrums wurde eine Dielektrizitatskonstante von e,, = 6.13 eingesetzt. Das Spek-
trum, ermittelt im Rahmen der Unabhangige-Teilchen-Naherung, stimmt schatzungsweise mit
fritheren Resultaten auf dem gleichen Level der Theorie iiberein [143, 144]. Im IPA-Spektrum
befinden sich zwei wesentliche Absorptionsstrukturen bei ca. 5 eV bzw. 8 eV, die von O2p- und
Nb4d-Ubergiingen bzw. drei Bandern, die am T-Punkt bei 7.4 €V liegen, stammen [vgl. Abb.
4.1(b) und Ref. [122]]. Die Beriicksichtigung von Vielteilcheneffekten in der Bandstruktur (IQA)
resultiert in einer fast konstanten Blau-Verschiebung des Spektrums in Hohe von ca. 2 eV. Die
Elektron-Loch-Wechselwirkung, die durch die Losung der BSE angerechnet wird, modifiziert
einigermaflen die Kurvenform. Die erste Absorptionsstruktur tritt deutlicher hervor und das
gesamte Spektrum ist verglichen mit dem [QA-Spektrum um ca. 1 eV rotverschoben. Die nie-
derenergetische Absorptionsstruktur befindet sich nun bei jeweils 5.5 eV und 5.6 eV fiir €, und
€||- Auch die Intensitét der ehemals breiten (= 2 eV) hochenergetischen Absorptionsstruktur
wird korrigiert, sodass die Struktur zu einem Peak bei ca. 9.3 eV (fiir ¢, und ¢) komprimiert
wird. Basierend auf dem orbitalen Charakter der elektronischen Zustinde, die zu den beiden
hauptséchlichen Absorptionsstrukturen beitragen [vgl. Abb. 4.1(b)], ist es wahrscheinlich, dass
die starke Lokalisation der Zustéande zu den starken exzitonischen Effekten fiithrt. Da allerdings
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Abbildung 4.2: Imaginérteil der dielektrischen Funktion fiir die ordentliche (senkrecht zur c-
Achse, ¢, durchgezogene Linien) und auflerordentliche (parallel zu c-Achse, €|, gepunktete Lini-
en) Polarisationsrichtung von stéchiometrischem ferroelektrischem LN berechnet im Rahmen der Un-
abhéngige-Teilchen-Approximation (IPA) unter Verwendung eines 6x6x6- (schwarz), 8 x8x8- (rot)
und 10x10x10-k-Punktsamplings. Eine Verbreiterung von n = 0.15 eV wurde verwendet.
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Abbildung 4.3: Imaginarteil der dielektrischen Funktion fiir (a) die ordentliche (¢;) und (b) auBer-
ordentliche (¢)) Polarisationsrichtung von stéchiometrischem ferroelektrischem LN berechnet im Rah-
men der Unabhéngige-Teilchen-Approximation (IPA, gepunktete Linien), Unabhéngige-Quasiteilchen-
Approximation (IQA, gemischte Linien) und der BSE (gestrichelte Linien) im Vergleich zu gemessenen
Spektren[126] (durchgezoge Linien).
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keine Diagonalisierung der BSE-Matrix durchgefiihrt wurde, kann der Ursprung der entspre-
chenden exzitonischen Figenzustande nicht vollstandig geklart werden.

Der Vergleich der berechneten Spektren mit experimentellen Daten fiir kongruentes LN, in
denen Absorptionsstrukturen bei 5.3 — 6.0 eV und 9.2 — 10.0 eV gesichtet werden kénnen [vgl.
Refs. [125, 126] und Abb. 4.3], zeigt, dass die Beriicksichtigung von Selbstenergie- und exzitoni-
schen Effekten wesentlich die theoretische Beschreibung der optischen Eigenschaften verbessert.
Dies betrifft sowohl die energetische Lage als auch die Kurvenform der Absorptionsstrukturen.
Dementsprechend wird auch die experimentelle Beobachtung hinsichtlich der gréferen Breite
der ersten Absorptionsbande in € verglichen mit €, erst in den Rechnungen wiedergefunden,
welche die gesamten Vielteilcheneffekte berticksichtigen. Beim Vergleich der Absorptionskanten
der berechneten und der gemessenen Spektren stellt sich eine Blauverschiebung von ca. 0.2 eV
im BSE-Spektrum heraus. Die Kurvenform der aktuellen Rechnungen stimmt besser mit dem
Experiment iiberein als die Resultate aus Ref. [122]. Dies kann auf die bessere Beschreibung
der Selbstenergieeffekte in der GW-Rechnung zurtickgefiihrt werden. Die nichtsdestoweniger
vorhandenen Abweichungen zwischen Theorie und Experiment konnen auf die nachfolgenden
drei Punkte zuriickgefithrt werden. (i) Das Einbinden von Gitterpolarisationseffekten, die hier
vernachlassigt wurden, sollte zu einer Rotverschiebung der Absorptionsstrukturen in der be-
rechneten dielektrischen Funktion fithren [122]. Die aktuellen Befunde weisen demnach darauf
hin, dass die Gitterpolarisation in gewissem Mafle die Ein- und Zweiteilchenzustande in fer-
roelektrischem LN beeinflusst. (ii) Die numerische Auswertung von Vielteilchentechniken ist
verbunden mit intrinsischen Unsicherheiten genau in der Groflenordnung der vorliegenden Ab-
weichungen. (iii) Wie spéter in Abschnitt 4.2 im Zusammenhang mit kongruentem LN diskutiert
wird, hat auch die Nicht-Stochiometrie in den experimentellen Proben Einfluss auf die optischen
Eigenschaften.

Um die grundsatzlichen Eigenschaften nichtlinearer Spektren zu untersuchen wurde das
dafiir entwickelte Programm-Paket zundchst auf die bindaren Halbleiter GaAs, AlAs und AIN
(in der Wurtzit-Struktur, AIN-wz) angewendet. Konvergenztests fiir GaAs zeigen dabei, dass
in den Féllen kleiner Elementarzellen (und demnach grofier BZ’s) das Spektrum erst fiir hohe
k-Punktsitze konvergiert ist [vgl. Abb. 4.4]. Die Abhéngigkeit vom Cutoff bzgl. der eingebunde-
nen Zusténde ist in diesem Fall gering. Abb. 4.4(c) zeigt auch, dass im Gegensatz zum linearen
Spektrum eine Anwendung des Scissors-Operators mit einer Intensitdtsreduktion verbunden
ist. Letzteres kann auch aus Gl. (2.153) abgelesen werden. Der Vergleich des aktuellen SHG-
Spektrums von GaAs mit den Resultaten von Leitsmann et al. [83] zeigt eine Uberschétzung
der Intensitdat um den Faktor zwei! [vgl. Abb. 4.5(a)]. Die Kurvenform stimmt dagegen sehr
gut iiberein. Ahnliches gilt auch fiir die Ergebnisse hinsichtlich des nichtlinearen Spektrums
von AlAs. Die Gegeniiberstellung der Resultate von Luppi et al. [148] und des hier berechne-
ten Spektrum ist in Abb. 4.5(b) dargestellt und verdeutlicht die gute Ubereinstimmung der
Kurvenform, obgleich das aktuelle Spektrum die Intensitidt der SHG-Daten aus Ref. [148] um
einen Faktor 1.4 iiberschatzt. Die Rechnungen fiir AIN-wz zeigen ebenfalls eine Uberschéitzung
der Intensitét verglichen mit den Resultaten von Gavrilenko et al. [149] [ vgl. Abb. 4.5(c)]. In
der Summe zeigt sich demnach eine gute Ubereinstimmung der Kurvenform der SHG-Spektren
verglichen mit anderen Arbeiten, wenngleich hinsichtlich der Intensitét eine Uberschiitzung vor-
liegt. Die Ursache fiir die Intensitatsiiberschatzung kann hier nicht aufgeklart werden. Einer-
seits besteht die Moglichkeit, dass unterschiedliche Konventionen hinsichtlich Xfﬁ)y verwendet
werden (die sich exakt um einen Faktor zwei unterscheiden). Andererseits kann ein gewisser
Intensitatsunterschied auch beim Vergleich von Spektren basierend auf PAW- und FLAPW-
Pseudo-Potentialen, wie in Ref. [149] verwendet, erwartet werden. Nichtsdestotrotz legen die
Vergleiche klar, dass mit dem Programm-Paket zuverlassige SHG-Spektren der studierten Fer-

Tm Gegensatz dazu sind die Ergebnisse in guter Ubereinstimmung mit den Rechnungen von Chang et al.
[157]
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roelektrika vorausgesagt werden kénnen.
LN besitzt aufgrund der Punktgruppensymmetrie 3m (C3,) vier unabhéngige nichtver-
schwindende SHG-Koeffizienten ngw die namentlich lauten: afy = 211 = —222 = 112,

223 = 131, 311 = 322 und 333. Ublicherweise fasst man diese jeweils zu den Doppelindi-
zes 21 = —22 = 16, 24 = 15, 31 = 32 und 33 zusammen. Die Konvergenztests fiir die vier
Koeffizienten zeigen eine schwache Abhéngigkeit vom k-Punktsatz: dhnlich wie beim linearen
Spektrum ist das SHG-Spektrum mit 6x6x6 k-Punkten bereits konvergiert (vgl. Abb. 4.6). Die
Abhangigkeit von der Anzahl der eingebundenen Zustande ist dagegen komplizierter. Wéahrend
die Rechnungen fiir Cutoffs von ca. 25 eV fiir die unbesetzten Zustande im Wesentlichen kon-
vergiert sind, weisen die Spektren Oszillationen unter Einbindung von Valenzbandzustéanden
verschiedener energetischer Regionen auf. Wie die Abb. 4.7 und 4.8 zeigen, gilt dies insbeson-
dere fiir die 31- und 33-Komponente des SHG-Tensors bei Einschluss der energetisch niedrigen
O2s- und Nb4dp-Zusténde (bei -16 eV und -30.5 eV, siehe auch Abb. 4.11). Ubergéinge zwischen
Nb4p- und Nb4d-Orbitalen verursachen fiir diese Komponenten sichtbare Modifikationen der
Intensitat des nichtlinearen Spektrums. Fiir eine gute Konvergenz der 21- und 24-Komponente
reicht dagegen nur die Beriicksichtigung der O2p/Nb4d- und O2s-Zusténde (d.h. der Ausschluss
der Nbdp-Zustinde ist akzeptabel). Untersucht wurde auch der Einfluss energetisch niedriger
Nb4s-Orbitale (bei -51 eV) auf die nichtlinearen optischen Eigenschaften, wobei keine Wirkung
festgestellt werden konnte. Die Abhangigkeit der Intensitdat des SHG-Spektrums von der Anzahl
der beriicksichtigten Bénder steht im Einklang mit den Befunden anderer Arbeiten [158, 159].
Allgemein wurde auch gefunden, dass der wesentliche Beitrag zum SHG-Spektrum aus den
Dreiband-Beitragen stammt. Die Zweiband-Beitrage sind demnach vernachlassigbar klein.

In Abb. 4.9 ist die 333-Komponente des SHG-Tensors von ferroelektrischem LN dargestellt.
Berechnet wurde das Spektrum im Rahmen der TPA sowie der IQA (und unter Ausschluss von
O2s- und Nb4p-Valenzbéandern). Gezeigt ist der Real- und Imaginérteil sowie der Absolutbetrag
von X333 bis 6 eV. Auf IPA-Niveau weisen die Berechnungen zwei Hauptmerkmale zwischen 1.5
— 3.0 eV sowie 3.8 — 4.4 eV auf. Erwartungsgemafl verursacht die Beriicksichtigung von Vielteil-
cheneffekten in der Bandstruktur (IQA) eine Blauverschiebung des Spektrums. Entsprechend
Gl (2.153) und den Untersuchungen zu den bindren Halbleitern weicht das Ausmaf der Ver-
schiebung jedoch von der Grofle der Bandliicken-Korrektur ab und wird begleitet durch eine
Intensitatsminderung. Ins Detail gehend betragt die Blauverschiebung ca. 1 eV. Experimentelle
Messungen ergeben Absolutwerte fiir die 333-Komponente zwischen 0.2 — 0.4 A /V fiir Photonen-
energien von ca. 1 eV [160]. Aus der Betrachtung dieser Daten geht hervor, dass die Rechnungen
im Rahmen der IPA die experimentellen Resultate tiberschatzen, wahrend die IQA-Ergebnisse
(ohne Einbindung von O2s- und Nb4p-Valenzzustédnden) in guter Ubereinstimmung mit dem
Experiment stehen. Der Vergleich zwischen Theorie und Experiment erweist hier allerdings als
schwierig, da experimentelle Datenpunkte nur fiir fundamentale Wellenlangen vorhanden sind.
Weiterhin ist, wie in Abschnitt 4.2 gezeigt wird, der Einfluss der Nicht-Stochiometrie zu be-
achten. Auch exzitonische Effekte, die hier vernachlassigt wurden, konnen einen wesentlichen
Beitrag zum nichtlinearen Spektrum liefern [148].

Den Abschnitt zusammenfassend, zeigt die ab-initio Studie der linearen und nichtlinearen
optischen Eigenschaften von ferroelektrischem stochiometrischem LN, dass insbesondere die di-
elektrische Funktion ermittelt unter Berticksichtigung der Elektron-Loch-Wechselwirkung, der
Lokalfeld- und der Selbstenergieeffekte in sehr guter Ubereinstimmung mit experimentellen Da-
ten steht. Die Selbstenergieeffekte verursachen eine Bandliicken-Vergroflerung von ca. 2 eV ver-
glichen mit Einteilchenrechnungen, die auch im linearen Spektrum sichtbar wird. Hinzu kommen
exzitonische Bindungsenergien in Hohe von 1 eV, die zu einer Rotverschiebung des Spektrums
fithren. Die leichte Uberschitzung der Absorptionskante kann entweder auf die Auswirkung
der Gitterpolarisation auf Ein- und Zweiteilchenzustinde oder den Einfluss der modifizierten
Stochiometrie in den experimentellen Proben zuriickgefiihrt werden. Im Spektrum der Zweiten
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Abbildung 4.4: Konvergenzverhalten des SHG-Spektrums von GaAs. Dargestellt sind %X%)?,(w),

(2)

Jx195(w) und \X%)?)(w)] fiir verschiedene k-Punktsitze (a), Cutoff-Energien (b) und auch Scissors-

Shifts A (c).
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Abbildung 4.5: Vergleich der berechneten SHG-Spektren (rote Linien) fiir die bindren Halbleiter (a)
GaAs, (b) AlAs und (c¢) AIN (in der Wurtzit-Struktur) mit den Resultaten der Arbeiten [83, 148,
149] (schwarze Linien). Im Fall von (a) und (c) ist 33x(® den Resultaten von Refs. [83] und [149]
gegeniibergestellt. Fiir AlAs (b) ist | x| dargestellt. Die gestrichelten Kurven stellen Resultate unter

Verwendung eines Scissors-Shifts von A = 0.9 eV dar.
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Abbildung 4.6: Konvergenzverhalten des SHG-Spektrums von stochiometrischem ferroelektrischem
LN in Bezug auf den verwendeten k-Punktsatz. Schwarze, rote und griine Kurven geben Rechnungen
von 'y mit 6x6x6, 8x8x8 und 10x10x 10 k-Punkten wieder.
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Abbildung 4.7: Abhéngigkeit der Intensitdt der vier Komponenten (a) 21, (b) 24, (¢) 31 und (d)
33 des SHG-Tensors Xgﬁ)v(l.l&z‘/) von stochiometrischem ferroelektrischem LN vom Leitungsband-
Cutoff (CB-Cutoff) und Valenzband-Cutoff. Bei der Untersuchung des Einflusses des Valenzband-
Cutoffs wurden schrittweise O2p- (schwarze durchgezogene Linien), O2s- (rote gestrichelte Linien)

und Nbdp-Zusténde (griine gemischte Linien) in den Rechnungen beriicksichtigt.
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Harmonischen befinden sich die Hauptkennzeichen oberhalb von 1.5 eV. Auch in Fall des SHG-
Tensors wurde eine Verbesserung der Ubereinstimmung der Rechnungen mit experimentellen
Daten bei Einbeziehen von Selbstenergieeffekten festgestellt.

4.2 Einfluss modifizierter Stochiometrie auf die optische Response:
Kongruentes Lithiumniobat

Kongruentes LN (CLN) ist bekannt dafiir, stark Lithium-defizitdr zu sein. Das iibliche
[Li] /[Nb]-Verhéltnis betragt 0.94 [161]. Prinzipiell lasst sich eine Struktur mit diesem Verhalt-
nis durch eine 2x2x2-Wiederholung der rhomboedrischen Elementarzelle von SLN [siehe Abb.
4.10(a)] konstruieren. Die Superzelle wiirde insgesamt 79 Atome enthalten, was 16 Formelein-
heiten LiNbOj3 entspricht, wobei ein Lithium-Atom entfernt wurde. Mit diesem Ansatz gelangt
man zu einem [Li]/[Nb]-Verhéltnis von 0.9375. Allerdings erfordert die Simulation von CLN
noch die Betrachtungen zusatzlicher Nebenbedingungen, die durch experimentelle Befunde auf-
gestellt wurden. Verschiedene experimentelle Studien [162, 163] haben das Vorhandensein von
Sauerstoff-Vakanzen Vo ausgeschlossen, die das Kennzeichen vieler Oxide sind, und stattdes-
sen die Prisenz grofer Mengen an Nbj! Antisite-Defekten aufgedeckt [164] [vgl. Abb. 4.10(b)].
Der entsprechende Ladungsiiberschuss kann auf unterschiedliche Art und Weise entweder durch
Nb- oder Li-Vakanzen ausgeglichen werden. Genau genommen kénnen im Rahmen eines auf Nb-
Vakanzen bezogenen Modells, dem sog. Nb site vacancy model, vier V;Ié Vakanzen fiinf Nbf4
Antisite-Defekte kompensieren. Ahnlich verhélt es sich mit dem sog. Li site vacancy model. In
diesem auf Li-Vakanzen bezogenen Modell wird ein Nb;! Antisite-Defekt durch vier V;;' Va-
kanzen kompensiert. Heutzutage ist insbesondere das Li site vacancy model, das im Folgenden
mit CLN(Li) bezeichnet wird, weitgehend akzeptiert und wird verwendet um die Materialei-
genschaften von LN zu interpretieren. Ubereinstimmend mit diesem Modell wird CLN durch
ungeladene Superzellen mit 360 Atomen simuliert. Die Konstruktion wird ermoglicht durch die
Verwendung einer 3x3x4-Fortsetzung der primitiven Elementarzelle von LN. Die Superzelle
enthiilt ein Nb/ Antisite-Defekt und vier Li-Vakanzen Vi!, sodass das [Li]/[Nb]-Verhéltnis
0.92 betragt. Zum Vergleich wurden auch Rechnungen im Rahmen des Nb site vacany model
[im Folgenden abgekiirzt mit CLN(Nb)] durchgefiihrt. Im diesem Fall wird eine Superzelle der
gleichen GroBe verwendet, die allerdings fiinf Nb;* Antisite-Defekte und vier Nb-Vakanzen Vi
enthélt. Das dazugehorige [Li]/[Nb]-Verhéltnis betrégt ebenfalls 0.92.

Um die strukturellen Eigenschaften von CLN mit hoher Genauigkeit zu bestimmen, wurde
fiir die kleine BZ der 360-atomigen Superzelle ein 4x4x4-k-Punkt-Sampling gewahlt. Durch-
gefithrt wurde an dieser Stelle auch eine Relaxation der Positionen der Atome in der Néahe
der Defekte. Zum berechnen der elektronischen und optischen Eigenschaften von CLN wurde
dagegen ein 2x2x2-Gitter verwendet, da es naherungsweise dem 6x6x6-Sampling der BZ der
Elementarzelle von SLN entspricht.

Wie bereits im vorangegangen Abschnitt 4.1 diskutiert, ist das BSE-Spektrum von SLN
in sehr guter Ubereinstimmung mit experimentellen Messungen, in denen CLN-Proben stu-
diert wurden. Jedoch konnten auch Unterschiede hinsichtlich quantitativer Details festgestellt
werden. Dies betrifft zum einen die Verschiebung der Absorptionskante um 0.2 eV und zum
anderen das Auftreten einer Peakstruktur bei ca. 5.5 eV im Spektrum von SLN. Letzteres
tritt insbesondere in ¢ hervor und kann in den experimentellen Daten nicht beobachtet wer-
den. Mehrere Griinde wurden in Abschnitt 4.1 angegeben, die diese Abweichungen verursachen
konnen. U.a. wurde auch der Einfluss der modifizierten Stochiometrie genannt. Im Folgen-
den wird an dieser Stelle angekniipft und die optischen und elektronischen Eigenschaften von
SLN und CLN verglichen um auf diese Weise zu einer Aufklarung der Unterschiede beizutra-
gen. Die Absorptionsspektren von CLN(Li) und CLN(Nb) sind in Abb. 4.13 dargestellt. Auf
IPA-Niveau sind diese mit dem Spektrum von SLN verglichen. Da die zur Simulation not-
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Abbildung 4.8: Absolutbetrag der Komponenten des SHG-Tensors ’X((x2,6)"y| von stochiometrischem
ferroelektrischem LN berechnet mit einem Leitungsband-Cutoff von 25 eV und unter schrittweiser
Beriicksichtigung der besetzten O2p- (schwarze durchgezogene Kurven), O2s- (rote gestrichelte Kur-
ven) und Nbdp-Zustinde (griine gemischte Kurven).
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Abbildung 4.9: Realteil, Imaginérteil und Absolutbetrag der 333-Komponente des SHG-Tensors
X%)g von stochiometrischem ferroelektrischem LN berechnet im Rahmen der Unabhéngige-
Teilchen-Approximation (IPA, schwarze durchgezogene Kurven) und Unabhéngige-Quasiteilchen-
Approximation (IQA, rote gestrichelte Kurven). Rauten und Dreiecke kennzeichnen experimentelle

Werte aus den Tabellen 2 und 4 in Ref. [160].
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(a) (b) (c) (d)
Abbildung 4.10: Schematische Darstellung von stéchiometrischem ferroelektrischem LN [SLN, (a)]
und den Defekten, die in den CLN-Modellen beriicksichtigt werden: (b) Nbj:* Antisite-Defekt, (c)

Lithium-Vakanz Vi; und (d) Niob-Vakanz V5. Sauerstoff-, Lithium- und Niobatome sind als rote,
schwarze und weifle Kugel dargestellt. Die Nb-Oktaeder sind griin unterlegt. Eingezeichnet sind die
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Abbildung 4.11: Elektronische Bandstruktur von SLN berechnet im Rahmen der DFT-PW91 zusam-
men mit den Zustandsdichten von SLN (durchgezogene Linien), CLN(Li) (gestrichelte Linien) und
CLN(Nb) (gemischte Linien). Die Notation der k-Punkte folgt Ref. [122]. Auch die O2s-, O2p-, Nb4p-
und Nb4d-projezierten Zustandsdichten sind eingezeichnet.
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Abbildung 4.12: (a) Kombinierte
Zustandsdichte (JDOS) im Vergleich
zum Imaginarteil der Dielektrischen
Funktion fiir SLN, CLN(Li) und
CLN(Nb) (durchgezogene, gestrichel-
te und gemischte Linien) und (b) je-

weilige Oszillatorstiarken gemaf GI.
(4.2) (ausgefiillte, gestrichelte und ge-
punktete Balken).
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wendigen Superzellen 360 Atome enthalten, konnen (die Rechnungen und) Vergleiche nur auf
IPA-Niveau durchgefiihrt werden. Die Abb. 4.13 macht deutlich, dass die Unterschiede im li-
nearen optischen Spektrum von SLN und CLN(Li) gering sind. Etwas grofler sind dagegen die
Abweichungen im Fall von CLN(Nb). Unabhéngig vom zu Grunde liegenden Modell werden fol-
gende Tendenzen festgestellt: Die Absorptionskante in der dielektrischen Funktion von CLN ist,
insbesondere fiir €|, gegeniiber SLN um 0.2 eV rotverschoben, und die Peakstruktur im ersten
Absorptionsmaximum ist fiir CLN deutlich geglattet. Letzteres wird besonders fiir €, deutlich.
Die Beobachtungen lassen den Schluss zu, dass die Abweichungen in der optischen Absorpti-
on zwischen dem berechneten SLN-Spektrum und den experimentellen Messungen basierend
auf kongruenten Proben auf stochiometrische Modifikationen zuriickgefiihrt werden koénnen.
Oder mit anderen Worten gesagt: die quantitativen Details im LN-Spektrum werden durch die
Verwendung von CLN-Modellen besser beschrieben. An dieser Stelle darf jedoch nicht verges-
sen werden, dass die Unterschiede in der optischen Absorption zwischen SLN und CLN durch
Vielteilcheneffekte ebenfalls beeinflusst werden und infolgedessen auf BSE-Level ein anderes
Verhalten aufweisen konnen. Beispielsweise konnen hohe exzitonische Bindungsenergien von
lokalisierten Defektzustanden die optische Rotverschiebung in CLN verglichen mit SLN weiter
erhhen [165].

Um die Glattung der Peakstruktur in €, und die leichte Rotverschiebung der Absorpti-
onskante beim Ubergang von stéchiometrischem zu kongruentem LN zu verstehen, wurde eine
Analyse der kombinierten Zustandsdichte (JDOS)

Dy(w) =Y 6[hw — (emk — €n)] (4.1)
nk,mk
sowie der Oszillatorstarken
€T lg 2
S(w) = M, mit Aw = 0.1eV (4.2)
(Eck - evk)

(Eck 76vk)€ [w7w+Aw}

der fiir den Bereich 3.5 — 5.5 eV relevanten Ubergénge unternommen. Wie die Abb. 4.12 zeigt,
sind die JDOS’ fiir SLN und CLN prinzipiell sehr dhnlich. Es kann jedoch auch eine Abnahme
der Bandliicke und eine gleichmaflige Intensitatsreduktion oberhalb 4.5 eV fiir CLN beobachtet
werden. Die um ca. 0.2 — 0.3 eV verkleinerte Bandliicke ist auch im Einklang mit den Ergebnis-
sen der berechneten Zustandsdichten fiir CLN, die in Abb. 4.11 dargestellt sind. Die Feinstruk-
tur des ersten Absorptionsmaximums wird allerdings eher durch die Oszillatorstarken S(w) als
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durch die kombinierte Zustandsdichte erzeugt. Abb. 4.12(b) verdeutlicht, dass die Peakstruk-
tur beim Ubergang von SLN zu CLN durch reduzierte Impulsmatrixelemente zwischen O2p-
Valenzband- und Nb4d-Leitungsbandzusténden verflacht bzw. verschwindet. Zusammengefasst
wird demnach die Rotverschiebung der Absorptionskante durch Modifikationenen in der Zu-
standsdichte verursacht, wihrend sich die Glattung der Feinstruktur aus den Anderungen der
Impulsmatrixelemente ableitet.

In Abb. 4.14 sind die 21-, 24-, 31- und 33-Komponenten des SHG-Tensors von CLN und SLN
dargestellt. Das nichtlineare Spektrum von SLN im Rahmen der IQA ist ebenfalls eingetragen.
Dabei wurde ein Scissors-Operator mit A = 2.03 eV verwendet, der die GW-Bandliicke er-
zeugt. Eine gute Naherung fur die zustandsabhangige Selbstenergiekorrektur liefert der Scissors-
Operator, da sich die Banddispersion in LN beim Ubergang von IPA zu GWA nur geringfiigig
dndert. Dies wird sowohl beim Betrachten der GW-Bandstruktur (vgl. Abb. 4.1) als auch der
dielektrischen Funktion im Rahmen der GWA und mit einem Scissors-Shift deutlich. Man findet
im Rahmen der IQA fiir alle vier Komponenten des SHG-Tensors von SLN eine Blauverschie-
bung von Strukturen im Spektrum und eine begleitende Intensitatsreduktion. Auch ist in Abb.
4.14 die Wirkung von Nb4dp-Zustanden auf das gesamte Spektrum gezeigt. Insbesondere wird
durch die Beriicksichtigung der Nb4p-Zustande die Intensitat 31- und 33-Komponenten beein-
flusst (vgl. auch Abschnitt 4.1).

Mehrere experimentelle Datenpunkte sind in der Literatur [127, 129, 130, 131, 132, 133,
134, 135, 166, 167] angegeben. Die Daten sind durch verschiedene Symbole in Abb. 4.14 mar-
kiert. Auch Messungen von |y(? (w)| sind eingeschlossen und werden verwendet um den Realteil
von y® (w) zu représentieren, da der Imaginérteil in der entsprechenden Energieregion klein
ist. Aus der Gegentiberstellung der Messwerte und der berechneten SLN-Daten auf IPA- und
IQA-Niveau lasst sich schlussfolgern, dass, wiahrend die 33-Komponente im Rahmen der IQA
die experimentelle Intensitat gut trifft [vgl. auch Abschnitt 4.1 und Abb. 4.3], die 21-, 24- und
31-Komponente (unter Einbinden von Nb4p-Zustdnden) die experimentell gemessenen Inten-
sitaten liberschatzten. Mit Bezug darauf, ist fiir CLN auf IPA-Niveau eine Verminderung des
SHG-Signals zu beobachten. Dies kommt insbesondere fiir CLN(Nb) zum Vorschein. Auch ist
fiir das auf Nb-Vakanzen bezogenene Modell eine Glattung des nichtlinearen Spektrums festzu-
stellen. Im Fall der 33-Komponente jedoch, findet man auch eine Verstarkung des SHG-Signals
im Bereich von 1 — 2 eV. Wie bereits fiir das lineare Spektrum festgestellt, werden folglich quan-
titative Feinheiten im SHG-Spektrum auf IPA-Niveau durch die Verwendung der CLN-Modelle
insgesamt besser charakterisiert.

Wiederum sei gesagt, dass beim Vergleich zwischen Theorie und Experiment einige Er-
schwernisse hinzunehmen sind. Zum einen befinden sich die experimentellen Datenpunkte bei
ca. 1 eV klar im nichtresonanten Energiebereich (d.h. unterhalb Energie der halben Bandliicke)
und sind zudem, wie im Fall der 21-, 24- und 31-Komponente, von geringer Gréfenordnung.
Beispielsweise ist das SHG-Signal von GaAs in diesem Bereich zwei Grolenordnungen hoher.
Zum anderen kénnen Lokalfeldeffekte, wie von Luppi et al. [148] festgestellt, je nach Material
und Energiebereich das SHG-Signal um bis zu 30% reduzieren. Von exzitonischen Effekten wird
dagegen eine einheitliche aber spiirbare Erhchung der Intensitiat erwartet [83, 148].

In diesem Abschnitt wurde ein Anlauf unternommen die elektronischen und optischen Ei-
genschaften von kongruentem Lithiumniobat zu modellieren. Die linearen und nichtlinearen
optischen Eigenschaften berechnet fiir ein auf Li-Vakanzen bezogenes Modell (Li site vacancy
model) sowie fiir ein auf Nb-Vakanzen bezogenes Modell (das Nb site vacancy model) beschrei-
ben quantitative Feinheiten im LN-Spektrum besser als die entsprechenden Rechnungen fiir
stochiometrisches LN: Verglichen mit SLN-Ergebnissen, werden in den CLN-Simulationen ei-
ne rotverschobene Absorptionskante, eine Glattung von Peakstrukturen und ein verringertes
SHG-Signal gefunden. Insbesondere gilt das fir CLN(Nb). Nichtsdestotrotz werden weitere
Untersuchungen notwendig sein um den Einfluss von Defekten und Kristallmangel auf die op-
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Abbildung 4.13: Imaginérteil der ordentlichen (a) und auBerordentlichen (b) dielektrischen Funktion
von SLN, CLN(Li) und CLN(Nb). Fiir SLN ist &hnlich wie in Abb. 4.3 die dielektrische Funktion
unter Beriicksichtigung von Selbstenergieeffekten (GWA) [oder mit einem Scissors-Shift (Sci)] sowie
aus der Losung der Bethe-Salpeter-Gleichung (BSE) dargestellt. Fiir CLN sind die Resultate der
Unabhéngige-Teilchen-Néherungen (IPA) wiedergegeben. Experimentelle Daten aus den Refs. [126]
und [125] (durchgezogene und gestrichelte Kurven) sind ebenfalls eingezeichnet.
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Abbildung 4.14: Komponenten des SHG-Tensors x(? (w) von SLN und CLN, berechnet im Rahmen
der Unabhéngige-Teilchen-Néherung (IPA, griin) und unter Hinzunahme eines Scissors-Shifts (Sci,
blau), verglichen mit experimentellen Werten aus den Refs. [127, 129, 130, 131, 132, 133, 134, 135, 166]
(Rauten; Quadrate; Kreuze; +-Zeichen; nach links, rechts, unten, oben gerichtete Dreiecke; Sternzei-
chen). Die Notation der Achsen von LN orientiert sich an Ref. [167] und die Skalierung der experimen-
tellen Werte wird in Ref. [129] erldutert. Sci(w/o Nb4p) bezeichnet Resultate, in denen Nb4p-Zustande
aus den Berechnungen ausgeschlossen wurden.
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tischen Eigenschaften von LN vollstandig aufzuklaren. Auf der einen Seite miissen eine Viel-
zahl von Defektkonfigurationen und Defektkomplexen [vgl. Ref. [168]] studiert werden. In die-
sem Zusammenhang kann die vorliegende Untersuchung weiter durch die Beriicksichtigung von
Cluster-Phéanomenen [169] verfeinert werden, da momentan die Defekte auf zuféllig ausgewéhl-
ten Gitterplatzen platziert sind. Auf der anderen Seite wird erwartet, dass Vielteilcheneffekte,
die bereits einen starken Einfluss auf die elektronischen und optischen Eigenschaften von SLN
gezeigt haben, ebenfalls die CLN-Eigenschaften beeinflussen.

4.3 Elektronische und optische Eigenschaften von Lithiumniobat-
Lithiumtantalat-Mischkristallen

Im gegenwartigen Abschnitt werden die optischen und elektronischen Eigenschaften von
Lithiumniobat-Lithiumtantalat-Mischkristallen (LNT) durch eine ab-initio Studie analysiert.
Durch die Verwendung einer 1x1x2-Fortsetzung der primitiven Elementarzelle von LN, werden
LiNb,_,Ta,O3-Mischkristalle mit den Kompositionen z = 0, %, %, % und 1 realisiert. Die Super-
zellen enthalten folglich 20 Atome, unter denen sich 0 — 4 Nb- bzw. Ta-Atome befinden [vgl.
Abb. 4.15]. Die Gleichgewichtsgitterkonstanten und -Positionen der Atome wurden ermittelt, in-
dem die mit Hilfe von VASP berechneten Gesamtenergien an die Murnaghan-Zustandsgleichung
[170] interpoliert wurden. Die Abb. 4.16 zeigt das Verhalten der Gesamtenergien in Abhéngig-
keit von Volumen. Ausfiihrlich sind die Ergebnisse der strukturellen Untersuchungen in der
Arbeit von Sanna et al. [171] diskutiert.

Wie bereits in den Abschnitten zuvor wurden fiir Rechnungen auf DFT-GGA-Basis das
PW91-Funktional und ein Ebene-Wellen-Cutoff von 400 eV eingesetzt. Die BZ wurde mit
4x4x4-k-Punkten gerastert. Zur Berechnung der Selbstenergie > in GW-Approximation wur-
den 1404 Zusténde (702 pro primitive LN/LT-Elementarzelle) eingebunden. Der Reflexionsko-
effizient n(fuw) zum Vergleich der berechneten Werte mit den experimentellen Daten von Wood
et al. [153] wird aus der dielektrischen Funktion im Rahmen der BSE und unter Verwendung
der GW-Eigenwerte mit Hilfe von

n(hw) = \/% [ﬂ?e(ﬁw) + /Re(hw)? + Je(hw)? (4.3)

berechnet. Theoretische SHG-Daten werden auf IQA-Niveau prasentiert.

Rechnungen zu den vier Moglichkeiten eine Komposition von = = % mit Hilfe der aktuel-
len Superzelle zu erzeugen wurden durchgefithrt, um den Fehlerbalken der Simulationen, der
durch den Einfluss lokaler stchiometrischer Fluktuationen und Unordnung entsteht [172, 173],
einschétzen zu konnen. Aus diesen Rechnungen lassen sich maximale Schwankungen von 0.1
eV fiir Bandliicken und 0.01 fiir die Doppelbrechung schlussfolgern.

Die Abb. 4.17 stellt die berechneten gemittelten Dielektriztitskonstanten €, ~ e(w = 0)
und PW91- sowie GoWjy-Bandliicken in Abhangigkeit von der Komposition = dar. Hinsichtlich
der Bandliicken sind sowohl die Werte am Punkt I' als auch die fundamentalen Bandliicken
angegeben. Aus den berechneten Daten geht hervor, dass sich die Dielektrizitatskonstante li-
near mit der Komposition x verringert. Die beiden Randwerte fiir LN und LT lauten 6.01 und
5.33. Im Gegensatz dazu weisen die Bandliicken einen parabelformigen Verlauf auf. Die funda-
mentale Bandliicke reicht von 5.41 eV fiir LN bis 5.65 eV fiir LT. Die bowing-Parameter? fiir
die PW91- und GoWy-Daten betragen jeweils -0.6 und -0.3. Unabhangig von der Komposition
x der LNT-Mischkristalle hat das Berticksichtigen von Selbstenergieeffekten eine Bandliicken-
Aufweitung von ca. 2 eV als Konsequenz. In diesem Zusammenhang sind die Bandstrukturen

2Zum Berechnen der bowing-Parameter ¢ wurden die Daten aus Fig. 4.17 an die Gleichung Ey(z) =a+bx+
cx(l — x) gefittet.
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Abbildung 4.15: Schematische Dar-
stellung der 1x1x2-Superzelle, die
zur Simulation von LiNbj_,Ta,Os-
Kristallen mit den Kompositionen x =
0, i, %, %, 1 verwendet wird. Weifle,
graue, blaue und rote Kugeln kenn-
zeichnen Lithium-, Niob-, Tantal- und

Sauerstoffatome.
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Abbildung 4.16: Gitterparameter von LiNb; _,Ta,O3s-Kristallen: (a) Berechnung des Gleichgewichts-
volumens unter Verwendung der Murnaghan-Zustandsgleichung und (b) Abhéngigkeit des Gleichge-
wichtsvolumens der 1x1x2-Superzelle von der Nb-Konzentration. In (b) wird ein nahezu linearer
Verlauf festgestellt. Die Abbildungen wurden der Arbeit von Sanna und Schmidt [171] entnommen.
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von LN und LT, berechnet auf DF'T-Niveau und im Rahmen der GW-Approximation der Selbs-
tenergie, in Abb. 4.18 dargestellt. Aufgrund des strukturellen Isomorphismus zwischen LN und
LT sind die wesentlichen Merkmale der Energiebander ahnlich, obgleich die Banddispersion der
elektronischen Zustande von LT etwas ausgepragter ist.

Die berechneten Daten fiir LN simuliert durch die 1x1x2-Superzelle zeigen leichte Abwei-
chungen gegeniiber den Resultaten aus Abschnitt 4.1. Erklart ist dies insbesondere durch die
unterschiedlichen Gitterparameter (sieche dazu Ref. [171]) und leichte Unterschiede in den nu-
merischen Parametern. In Abschnitt 4.1 wurden auch Vergleiche zu verfiigharen Rechnungen
und experimentellen Ergebnissen fiir LN diskutiert. Hinsichtlich LT zeigt eine vergleichbare
ab-initio Studie [174] auf DFT-Niveau eine direkte Bandliicke von 3.49 eV, die in guter Uber-
einstimmung mit dem PW91-Wert von 3.72 eV steht. Allerdings wird in derselben Arbeit im
Gegensatz zur aktuellen Studie eine kleinere LN-Bandliicke von 3.08 eV angegeben. Die eben-
falls bestimmten Dielektritzitatskonstanten e, von 6.68/6.58 und 4.94/4.88 fiir die ordentliche
und auBlerordentliche Polarisationsrichtung von LN und LT weichen um max. 20% von den
[PA-Ergebnissen ab (6.22/5.57 und 5.35/5.29, vgl. auch Fig. 4.17).Weitere theoretische Werte
liefern die Arbeiten von Wang et al. [175] und Inbar et al. [176]. In Ref. [175] werden DFT-
PBE- und GW-Bandliicken von 3.93 und 5.58 eV angefiihrt. Insbesondere der Wert berechnet
mit Hilfe der Vielteilchen-Storungstheorie deckt sich mit dem aktuellen Ergebnis von 5.65 eV,
obgleich die PBE-Ausgangsbandliicke etwas hoher liegt. Die DET-Studie von Inbar et al. liegt
in Ubereinstimmung mit der aktuellen Anordnung der Bandliicken von LN und LT. Werte von
3.1 eV und 4.1 eV fir LN und LT werden angegeben.

Experimentell befinden sich die Bandliicken fiir L'T in einem Bereich von 3.985 eV und 5.06
eV, wobei in den Refs. [177, 178, 179] Absorptionsmessungen als Grundlage zur Bestimmung
dienten. Per Anregungsmessung wurden von Wiegel et al. [180] Bandliicken von 4.51 eV und 5.06
eV fir LN und LT gemessen. Auch in den Messungen von Cabuk et al. [177] korrespondiert
die Anordnung der Bandliicken, obgleich die Werte selbst mit 4.1 eV und 3.1 eV deutlich
kleiner sind als die GW-Werte, mit den aktuellen Resultaten. Vergleichbare theoretische oder
experimentelle Arbeiten beziiglich der elektronischen Eigenschaften von LNT-Mischkristallen
wurden nicht gefunden.

Der Absorptionsindex n(fw) basierend auf der dielektrischen Funktion, die tiber die Losung
der BSE unter Verwendung der GoWy-Eigenenergien ermittelt wurde, ist fiir LNT in Abb. 4.19
dargestellt. Das Spektrum wird dominiert durch zwei Merkmale zwischen 5 — 8 eV und 9 — 11
eV. Die Strukturen werden mit steigendem Tantal-Anteil blauverschoben. Dies ist hauptséchlich
eine Folge der sich 6ffnenden Bandliicke. Die optische Doppelbrechung An = n. — n,, wobei
ne bzw. n, den Absorptionsindex parallel bzw. senkrecht zur c-Richtung kennzeichnen, erweist
sich als nahezu konstant fiir Photonenenergien unterhalb 5 eV. Die Abhangigkeit der Doppel-
brechung von der Komposition x ist fiir A = 632.8 nm (hw = 1.96 €V) in Abb. 4.20(a) gezeigt.
Es wird ein nahezu linearer Verlauf festgestellt, wobei die Doppelbrechung ihr Vorzeichen mit
steigendem Tantal-Anteil von negativ zu positiv andert. Insbesondere ist der LNT-Mischkristall
bei einem LN/LT-Verhéltnis von 0.2/0.8 optisch isotrop. Die Gegeniiberstellung der berechne-
ten Daten mit den Messungen von Wood et al. [153], die bei Zimmertemperatur durchgefiihrt
wurden, zeigt eine gute Ubereinstimmung.

Letztendlich werden in Abb. 4.20(b) die nichtlinearen Koeffizienten X%)S, X:(s21)1 und X%)z, die
im Rahmen der IQA ermittelt wurden, fiir die Wellenlange A = 1. 064 wm (hw = 1.17 eV) mit
semi-empirischen Resultaten von Xue et al. [154] verglichen. Fiir X333 und X222 zeigen die auf
IQA-Basis berechneten Daten eine lineare Abnahme der (absoluten) Intensitdt mit steigendem
Tantal-Anteil. Schwankungen der 311-Komponente fir die verschiedenen Kompositionen z sind
dagegen gering. In guter Ubereinstimmung mit den Daten aus Ref. [153] sind insbesondere die
Rechnungen zur 333- und 311-Komponente in denen Nb4p- bzw. Tadp-Zustande ausgeschlossen
wurden (vgl. dazu auch Abschnitt 4.1). Die 222-Komponente hingegen weicht, wie bereits in
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Abbildung 4.17: (a) Dielektrizitatskonstanten e, ~ ¢(w = 0), ermittelt im Rahmen der Unabhéngige-
Teilchen-Néherung (IPA), und (b) indirekte und direkte Bandliicken (am I'-Punkt) berechnet mit Hilfe
von DFT-PW91 und GoWj (rote und schwarze Symbole) fiir LiNb;_,Ta,Os-Kristalle.
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Abbildung 4.18: Elektronische Bandstruktur (die Notation der Hochsymmetrie-Punkte ist in Ref.
[122] erldutert) von (a) LN und (b) LT berechnet mit Hilfe DFT-PW91 (schwarze Linien) und GoWy-
Storungstheorie (rote Punkte). Gepunktete rote Linien verbessern die Darstellung. Der Bereich der

Bandliicke ist orange hinterlegt.
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Abbildung 4.19: Absorptionsindex ermittelt gemafl Gl. (4.3) aus der dielektrischen Funktion, die
durch die Losung der BSE berechnet wurde, fir LiNb;_,Ta,Os-Kristalle mit den Kompositionen
z =0, 3,1 fiir die ordentliche (durchgezogen schwarze Kurven) und auBerordentliche (gestrichelte rote
Kurven) Polarisationsrichtung.
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Abbildung 4.20: (a) Optische Doppelbrechung An (ausgefiillte Symbole) fiir LiNb;_, Ta, O3-Kristalle
fiir eine Wellenlédnge von A = 632.8nm (1.96 eV) im Vergleich zu experimentellen Werten von Wood et
al.[153] (hohle Symbole). (b) Realteil der Komponenten xg??), Xi(fl)l, X§22)2 des SHG-Tensors (in pm/V,
ausgefiillte Dreiecke, Quadrate und Kreise) fiir eine Wellenldnge von A = 1.074um (1.17 eV) ver-
glichen mit Resultaten der semi-empirischen Rechnungen von Xue et al. [154] (hohle Symbole). Ge-
punktete Linien verbessern die Darstellung. Die SHG-Resultate wurden im Rahmen der Unabhéngige-
Quasiteilchen-Approximation (IQA) gewonnen, wobei Nb4p-Zustédnde ausgeschlossen wurden.
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Abschnitt 4.2 beim Vergleich mit experimentellen Daten fiir LN festgestellt, sowohl hinsichtlich
Intensitat als auch Vorzeichen von den semi-empirischen Daten aus Ref. [153] ab.

Obgleich Erweiterungen zu den aktuellen Simulationen von LNT-Mischkristallen durch bei-
spielsweise das Einsetzen von Cluster-Expansionsmethoden (eng.: cluster expansion methods)
[172, 173] moglich sind, liefert die Studie niitzliche Informationen um die Untersuchungen von
LNT voranzutreiben. Insbesondere da bewéahrte Techniken zum Einsatz kamen, konnten zu-
verlassige Aussagen angegeben werden.
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KAPITEL V

Zusammenfassung

Unter Einsatz von akkuraten und zeitgemafien ab-initio Methoden wurden die elektronischen
und optischen Eigenschaften von Materialien zweier verschiedener Klassen untersucht. Im All-
gemeinen, wurden schrittweise die geometrischen, elektronischen und optischen Eigenschaften
von 2-Aminopyrimidin-Silber(I)-Halbleitern und Ferroelektrika unter Verwendung numerischer
Hilfsmittel bestimmt. Die Dichtefunktionaltheorie (DFT) stellte die Grundlage zur Ermittlung
von Bindungslangen und -winkel der Molekiile und Kristalle. Auch konnten anhand der DFT
qualitative und richtungsweisende Merkmale hinsichtlich der Elektronik und Optik der Systeme
gewonnen werden. Zur Durchfiihrung von quantitativen Untersuchungen wurden, sofern dies die
Systemgrofie zuliefl, das Quasiteilchen-Konzept sowie die Bethe-Salpeter-Gleichung eingesetzt.
Vielteilcheneffekte, wie Selbstenergie- und exzitonische Effekte, die an dieser Stelle in Betracht
gezogen werden, liefen auch einen geeigneten Vergleich der Rechnungen mit experimentellen
Resultaten zu. Spezielle Fragestellungen hinsichtlich der beiden Materialklassen wurden zudem
untersucht.

Im Rahmen des Studiums der 2-Aminopyrimidin-Silber(I)-Halbleiter wurden zunéichst die
Ausgangsmolekiile, hier als FAP, OFAP und NFAP bezeichnet, mit Hilfe der dargelegten Me-
thoden analysiert. Es zeigte sich, dass die Molekiile fundamentale Bandliicken in Hohe von ca. 7
eV besitzen. Die tatsachliche optische Absorption beginnt aufgrund exzitonischer Effekte aller-
dings schon bei niedrigeren Energien. Die zusatzliche Berticksichtigung der DFT-Ergebnisse, lief3
sogar den Schluss zu, dass sich Selbstenergieeffekte und exzitonische Effekte zu einem betracht-
lichen Maf} aufheben. Weitere Untersuchungen erlaubten auch eine Zuordnung von Strukturen
in der optischen Absorption zu den speziellen Bausteinen der Molekiile. Im Ergebnis tragen die
gemeinsamen Aminopyrimidin- und Phenylringe zu groflem Teil zur optischen Absorption bei,
sodass viele Analogien in den molekularen Spektren festgestellt wurden.

Die entsprechenden abgeleiteten 2-Aminopyrimidin-Silber(I)-Halbleiter zeigen den Studien
zufolge hinsichtlich ihrer elektronischen und optischen Eigenschaften sichtbare Abweichungen
im Vergleich zu den molekularen Merkmalen. DF'T-Untersuchungen zeigen eine um 1 eV redu-
zierte fundamentale Bandliicke. Der Bereich der fundamentalen Bandliicke ist zusétzlich durch
die Prasenz der Silber-Liganden gekennzeichnet. Die scharfen Maxima in den molekularen Spek-
tren sind durch die Selbstassemblierung verbreitert. Allerdings lassen sich den Rechnungen zu-
folge in der kristallinen optischen Absorption die molekularen Fingerabdriicke wiedererkennen.

Quantitative Vergleiche zwischen Theorie und Experiment konnten unter Beriicksichtigung
von Vielteilcheneffekten durchgefiihrt werden. Da die GW-Approximation der Selbstenergie
aufgrund der Systemgrofle nicht eingesetzt werden konnte, wurde durch ein Hybridfunktional
die Verbesserung der Beschreibung der elektronischen Eigenschaften erreicht. Zusammen mit
der Losung der BSE wurde eine gute Ubereinstimmung der berechneten optischen Spektren
mit experimentellen Messungen festgestellt. Die Studien hinsichtlich exzitonischer und Lokal-
feldeffekte wurden an dieser Stelle intensiviert. Der Einfluss der héufig eingesetzten Tamm-
Dancoff-Approximation (TDA) der BSE-Matrix war ein wichtiger Aspekt der Studien. Durch
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ein spezielles Verfahren zur Darstellung und Auswertung der zugrunde liegenden BSE-Matrizen
konnten qualitative Unterschiede zwischen den BSE-Matrizen von Systemen unterschiedlicher
Bindungsarten festgestellt werden. Studiert wurden dafiir neben den BSE-Matrizen der orga-
nischen Molekiile und Halbleiter auch die BSE-Matrix von kovalent-gebundenem Silizium. Es
wurden Anzeichen gefunden, dass die unterschiedliche Wirkung der TDA in diesen Féllen auf die
intrinsischen Figenschaften der materialspezifischen Einteilchenwellenfunktionen zuriickgefiihrt
werden kann.

Der zweite Teil dieser Arbeit befasste sich mit den linearen und nichtlinearen optischen
Eigenschaften der Ferroelektrika Lithiumniobat (LN) und Lithiumtantalat (LT) sowie LN-LT-
Mischkristallen. Die in der Literatur oftmals diskutierte fundamentale Bandliicke von LN konnte
bei 5.4 eV gefunden werden. Wesentlicher Beitrag zu diesem guten Ergebnis wird dem Einsatz
einer gegentiber fritheren LN-Studien verbesserten Abschirmung in der G W-Approximation
der Selbstenergie zugerechnet. Festgestellt wurde auch, dass exzitonische Effekte die Absorp-
tionskante um ca. 1 eV zu niedrigeren Energien verschieben. Die Rechnungen zeigten im Be-
reich der linearen optischen Eigenschaften fiir stochoimetrisches LN unter Beriicksichtigung von
Selbstenergie- und exzitonischen Effekten gute Ubereinstimmung mit experimentell ermittel-
ten Spektren, obgleich auch abweichende Feinheiten festgestellt werden konnten. Ein dhnlicher
Schluss lief} sich anhand der Studien hinsichtlich der nichtlinearen optischen Eigenschaften zie-
hen: das Inbetrachtziehen von Selbstenergieeffekten erhéht die Qualitat der Beschreibung und
demnach die Ubereinstimmung mit bisher vorhandenen einzelnen experimentellen Datenpunk-
ten.

Die Studie wurde auf kongruentes Lithiumniobat (CLN) ausgedehnt. Eingesetzt wurden zur
Simulation von CLN jeweils ein auf Li- sowie ein auf Nb-Vakanzen bezogenes Modell, das sog. Li
site vacancy model sowie das Nb site vacancy model. Die Studien wurden aufgrund notwendig
grofler Superzellen auf dem Level der DFT bzw. einer Unabhangige-Teilchen-Approximation
(IPA) durchgefiihrt. Im Rahmen der IPA zeigte sich, dass die in den Rechnungen verwendete
modifizierte Stochiometrie quantitative Feinheiten in den linearen und nichtlinearen optischen
Spektren verbessert beschreibt. Die Ursache fiir die Abweichungen zwischen dem qualitativ
hohen BSE-Spektrum von stochiometrischem LN und den experimetell-ermittelten Spektren
konnen demnach stochiometrische Modifikationen in den experimentellen Proben sein.

Im Rahmen der Untersuchungen zu LN-LT-Mischkristallen wurden bei Variation des LN-
Anteils Bandliicken in Hohe von 5.4 — 5.7 eV festgestellt. Aus der Studie der optischen Dop-
pelbrechung ging hervor, dass bei einem LN/LT-Verhéltnis von 1:4 der Mischkristall fiir einen
ausgedehnten Frequenzbereich optisch isotrop ist. Die Ergebnisse sind in guter Ubereinstim-
mung mit experimentellen und theoretischen Befunden verschiedener Arbeitsgruppen.
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ANHANG A

Fourier-Transformation

A.1 Ortsraum-Impulsraum Fourier-Transformation

Im Rahmen dieser Arbeit wird die wie folgt erklarte Fourier-Transformation fiir eine Funktion
im Ortsraum f(7) und Impulsraum f(k) verwendet. Fiir eine auf R? definierte Funktion f(7),
die zusatzlich die notwendigen Konvergenzeigenschaften aufweist, gilt:

10 = [ s B it 1(8) = [ s, (A1)

3 - g g
sodass /%eik'r = 6(7) und /d?’relk'r = (2m)*6(k). (A.2)
m

Beim Vorliegen von periodischen Randbedingungen gilt:
f(7+ La€y) = f(7), fir a = z,v, 2, (A.3)

wobei L, die Kantenlédnge des Quaders in Richtung « ist. Gln. (A.1) und (A.2) gehen in eine
diskrete Fourier-Transformation tiber:

- - 2mn,
-\ ik-T . _ o _
f(7) = v Zf(k;)e mit k, = LN = 0,41, 42, .. und (A.4)
i
f(E) = /d?’rf(F)e_iE"?. (A.5)
v

sowie )

/d3r6_“” = Vg, und v Z ek = §(7), (A.6)

wobei V' = L, L, L, das Volumen des Quaders ist.
Eine Funktion f(7,7") heifit translationsinvariant, wenn der Funktionswert nur von der Dif-
ferenz (7" — ) abhéngt. Fiir die Fourier-Transformation folgt:

f7) = -7 = | élﬁl; / éjf);f(%, F)ett ettt (A7)
/ Ek ;oo )
— Wf(kj)e (A.8)

Aus dem Vergleich von Gln. (A.7) und (A.8) geht hervor:

Flk, K = 2m)%6(k + k') f (k). (A.9)
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A.2 Zeit-Frequenz Fourier-Transformation

Sei t eine Zeitkoordinate und f(t) eine auf R definierte Funktion, die zusétzlich die notwen-
digen Konvergenzeigenschaften aufweist, dann gilt:

f(t) = ;l—i:f(w)e_m und f(w) = /dtf(t)eim, (A.10)

sodass /;Z—wem = 4(t) und /dtei“t = 27m6(w). (A.11)
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