lL‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

MAPE-K4SEM -

Selbst-adaptive Software-
Engineering-Methoden

Silke Geisen
sgeisen@s-lab.upb.de

Dissertation

zur Erlangung des Grades “Doktor der Naturwissenschaften” (Dr. rer. nat.)

Erster Gutachter: Prof. Dr. Gregor Engels
Zweiter Gutachter: Prof. Dr. Jiirgen Ebert

Fakultat fur Elektrotechnik, Informatik und Mathematik
Universitat Paderborn

Zukunftsmeile 1
D-33102 Paderborn

Paderborn, November 2014

Danksagung

Auch wenn das Erarbeiten und Schreiben einer Dissertation eine eigenstén-
dige Leistung ist, wire sie ohne die Unterstlitzung von anderen Personen
kaum moglich. An dieser Stelle mochte ich mich bei all jenen bedanken, die
mich iiber die ganzen Jahre unterstiitzt und immer wieder motiviert haben,
diese Arbeit fertig zu stellen.

Mein grofter Dank geht hier an meinen Doktorvater und Mentor Prof. Dr.
Gregor Engels. Durch seine Unterstlitzung, konstruktive Kritik und sein
Vertrauen in mich ist diese Arbeit erst moglich gewesen. Gerade an Tief-
punkten konntest Du mich immer wieder motivieren, so dass ich heute an
dieser Stelle stehe. Danke!

Neben Gregor Engels geht mein Dank an Dr. Stefan Sauer. Nicht nur, dass
er mir die Ehre erweist, ein Mitglied meiner Promotionskommission zu sein,
sondern dass er mir zusammen mit Gregor die Mdglichkeit gegeben hat, im
s-lab anzufangen, obwohl ich in meinem Vorstellungsgesprich von einem
meiner heutigen Spezialgebiete, den Agilen Methoden und insbesondere
Scrum, noch keine Ahnung hatte. Ich konnte gerade auch durch die ver-
schiedenen Projekte im s-lab viel Neues lernen und sie haben mir die Mog-
lichkeit gegeben, mich immer weiter zu entwickeln.

Bedanken mochte ich mich auch bei meinem Zweitgutachter Prof. Dr. Jiir-
gen Ebert, durch sein konstruktives Feedback schon wihrend des Doktoran-
densymposiums auf der SE 2012 in Berlin. Ebenso mdchte ich mich bei
meinen weiteren Mitgliedern der Promotionskommission Prof. Dr. Wilhelm
Schéfer und Prof. Dr. Franz J. Rammig bedanken, dass sie diesen ,,letzten
Schritt* gemeinsam mit mir gegangen sind.

Fiir die vielen fruchtbaren Diskussionen und die Unterstiitzung geht ein wei-
teres Dankesschon an meine Arbeitskollegen, dabei insbesondere meinen
Biirokollegen Holger Fischer fiir das Lesen von Teilen meiner Arbeit und
unsere regelméfBigen Diskussionen, Baris Giildali den ich immer wieder um
Rat fragen konnte und wir gerade im Testbereich in Verbindung mit Agilen
Methoden glaub ich einiges auf die Beine gestellt haben, sowie meinen
ehemaligen Biirokollegen Frank Briiseke und Simon Oberthiir, der mir ge-
rade in der ,heilen Endphase* den Riicken im Projekt freigehalten hat.
Nicht vergessen mochte ich an dieser Stelle die ,,guten Seelen* der AG En-
gels Friedhelm Wegener, Beatrix Wiechers und Sonja Saage, die einem bei
all den kleineren und groBeren Problemchen mit Rat und Tat zur Seite stan-
den.

Bedanken mochte ich mich auch bei meinem ehemaligen Projektkollegen
Dietmar Koch, der sich bereit erklart hat, meine Arbeit Korrektur zu lesen.
Dabei geht ein weiteres grofles Dankeschon an meine ,,persénliche Deutsch-
lehrerin®, meine Schwester Stefanie Miiser, die ihre Herbstferien geopfert
hat, um meine Arbeit Korrektur zu lesen. Durch ihre teils witzigen Kom-
mentare hat sie dafiir gesorgt, dass ich ,,meine Fehler” gern zur Kenntnis
genommen habe, insbesondere wenn meine Grammatik mal wieder wie bei
Yoda gewesen ist. Auch ist sie mit zustdndig fiir mein Maskottchen, den
Scrum-Wusel®“; ich hoffe, er streift nicht mehr allzu sehr durch deine
Traume.

Als letztes mochte ich mich bei meinen Eltern Gisela und Hans Branden-
burg bedanken. Ohne eure Unterstlitzung und Motivation wiirde ich heute
nicht hier stehen, denn ihr habt mich immer wieder ermutigt, meinen Weg
zu gehen und ihr habt mir erst mein Studium und meine wissenschaftliche
Laufbahn ermdglicht.

Zusammenfassung

Damit die erfolgreiche Entwicklung einer Software und somit der Erfolg
eines Projektes gewihrleistet sind, wird héufig eine Software-Engineering-
Methode (SEM) zu Beginn auf die Projektsituation abgestimmt. Dennoch
scheitern teilweise bis zu 75% von Projekten im IT-Umfeld und {iberschrei-
ten ihr Budget oder konnen Deadlines nicht einhalten. Gerade wéhrend der
Durchfiihrung der Software-Engineering-Methode konnen Anderungen an
der Projektsituation oder mangelnde Qualitdt den Projekterfolg gefdhrden.
Doch eine kontinuierliche Uberwachung wihrend der Nutzung der SEM
und speziell die zeitliche Komponente sind kritische Faktoren. Sie machen
es schwierig, eine Software-Engineering-Methode entsprechend zur Lauf-
zeit anzupassen. Diese Situationen und insbesondere der Faktor Zeit machen
eine dynamische und moglichst eigenstindige Anpassung der SEM erfor-
derlich.

Bekannte Verbesserungs- und Anpassungsverfahren wie das Situational
Method Engineering, Six Sigma oder der PDCA-Zyklus, auch Deming-
Zyklus genannt, sind aufgrund ihrer langen Durchfiihrungsdauer kaum fiir
eine solche Anpassung geeignet. Ferner finden diese entweder zu Beginn
des Projektes oder erst wenn bereits Probleme aufgetreten sind und das Pro-
jekt bereits ,,vor die Wand gelaufen* ist, statt. Das Projektcontrolling oder
die Agilen Methode bieten zwar erste Ansitze fiir eine Anpassung zur Lauf-
zeit, sind jedoch fiir eine eigenstdndige Anpassung nicht einsetzbar, da
ihnen insbesondere Moglichkeiten zur Automatisierung fehlen.

Im Gegensatz zu Six Sigma, dem Deming-Cycle oder auch den Agilen Me-
thoden beobachten Ansitze aus den selbst-adaptiven Systemen zur Laufzeit
automatisch das gegebene System iiber sogenannte Feedbackschleifen und
passen das System gegebenenfalls eigenstindig an. Das bekannteste Modell
ist dabei die Feedbackschleife MAPE-K. Diese Arbeit stellt mit MAPE-
K4SEM ecinen Ansatz vor, wie sich diese MAPE-K-Feedbackschleife auf
die Anpassung von einer SEM iibertragen ldsst und somit eine selbst-
adaptive Software-Engineering-Methode ermoglicht.

Abstract

For the successful development of software and thus the success of a pro-
ject, a software engineering methodod (SEM) is first tailored to the project
situation. Despite that up to 75% of projects in the IT enviroment fail during
their enactment. Deadlines are exceeded as well as the budget of the project.
The implementation of the software engineering method, changes to the
project situation or lack of quality endanger the success of the project. Espe-
cially time is a critical factor to detect problems and adapt a SEM in time.
A continous monitoring of the software engineering method is needed as
well as a dynamic and autonomous adaptation.

Approaches as Situational Method Engineering, Six Sigma or the PDCA-
Cycle, also known as Deming Cycle, are well-known for the improvement
and adaptation of software engineering methods. However, due to their long
implementation duration they are hardly suitable for such an adjustment.
Furthermore, these procedures are typically performed before or after prob-
lems are detected and the project has failed. Though agile methods like
Scrum or project controlling use first approaches for inspection and adapta-
tion of a running project, they are not usable for an autonomous adaptation
due to lack of automating possibilities.

Unlike Six Sigma, the Deming Cycle or the Agile Methods, approaches
from the self-adaptive systems domain observe systems automatically at
runtime using feedback loops and adapt the system autonomously if neces-
sary. The best-known model is called the MAPE-K loop. This PhD thesis
presents with MAPE-K4SEM an approach that uses the MAPE-K loop for a
continous monitoring and automatic adaption of software engineering me-
thod and thus makes a self-adaptive software engineering method possible.

Inhaltsverzeichnis

KAPITEL 1 EINLEITUNG 14
1.1 MOTIVATION 14
1.2 PROBLEMSTELLUNG UND FORSCHUNGSFRAGE 16
1.3 ZIELSETZUNG UND LOSUNGSANSATZ 20
1.4 AUFBAU DER ARBEIT 23

KAPITEL 2 GRUNDLAGEN UND VERWANDTE ARBEITEN 25

2.1 SOFTWARE-ENGINEERING-METHODEN 26
2.1.1 BESTANDTEILE EINES PROJEKTES UND EINER SOFTWARE-ENGINEERING-
METHODE 27
2.1.2 MODELLIERUNG VON SOFTWARE-ENGINEERING-METHODEN 31
2.1.3 ARTEN VON SOFTWARE-ENGINEERING-METHODEN 32
2.2 PROJEKTMANAGEMENT UND -KONTROLLE 36
2.2.1 PROJEKTMANAGEMENT 36
2.2.2 PROJEKTKONTROLLE 39
2.2.3 RESILIENZ IN PROJEKTEN — ADAPTIVE PROJEKTE 42
2.3 CHANGE MANAGEMENT AUF UNTERNEHMENSEBENE 45
2.4 ANPASSUNGEN VON SEM 50
2.4.1 ERSTE GROBE ANFORDERUNGEN AN DIE ANPASSUNG EINER SOFTWARE-
ENGINEERING-METHODE 50
2.4.2 ANPASSUNGEN VON SEM — VORGELAGERTE ANSATZE 51
2.4.3 ANPASSUNGEN VON SEM IM LAUFENDEN PROJEKT DURCH AGILE
METHODEN 54
2.4.4 ANPASSUNGEN VON SEM — KONTINUIERLICHE
VERBESSERUNGSPROZESSE 55
2.5 BEWERTUNG UND SCHWACHSTELLEN DER ANSATZE 60
2.5.1 PROBLEME UND BEWERTUNG DER VERSCHIEDENEN ANSATZE 60
2.5.2 GESAMTBEWERTUNG DER ANSATZE 68
KAPITEL 3 —- BESCHREIBUNG DES LOSUNGSANSATZES 72

3.1 ANALYSE DER ANSATZE UND ERWEITERUNG DER ANFORDERUNGEN 73
3.1.1 ANALYSE DER GEMEINSAMKEITEN DER ANSATZE UND WEITERE

HERAUSFORDERUNGEN 73
3.1.2 ANPASSUNGS-ARTEN 77
3.1.3 BEISPIELE FUR ANPASSUNGEN 79
3.1.4 KONKRETISIERUNG DER ANFORDERUNGEN UND ABGRENZUNG 82

10

3.2 FEEDBACKSCHLEIFEN AUS DEN SELBST-ADAPTIVEN SYSTEMEN
3.2.1 SELBST-ADAPTIVE SYSTEME UND SELBST-ADAPTIVE SOFTWARE
3.2.2 ALLGEMEINE BESCHREIBUNG VON FEEDBACKSCHLEIFEN

3.2.3 DIE FEEDBACKSCHLEIFE MAPE-K

3.3 BESCHREIBUNG DER KONZEPTION EINES SE METHOD MANAGERS

3.3.1. AUFBAU UND BESCHREIBUNG DES SE METHOD MANAGER

85
85
87
89
93
95

3.3.2 DURCHSPIELEN DES SE METHOD MANAGERS ANHAND EINES BEISPIELS

97
3.3.3 MOGLICHKEITEN ZUR AUTOMATISIERUNG 99
3.4 ERSTES FAZIT UND WEITERE HERAUSFORDERUNGEN 100
3.4.1 ERSTES FAZIT BEZUGLICH DES ANSATZES 100
3.4.2 WEITERE HERAUSFORDERUNGEN (,, TRIGGER-PROBLEME®) 102
KAPITEL 4 DER ANSATZ MAPE-K4SEM 105
4.1 ZIELORIENTIERTES VORGEHEN 105
4.2 BorTOM-UP VS. TOP-DOWN 107
4.3 MAPE-K4SEM — DIE 10 SCHRITTE 109
4.3.1 PRE-WORK — SCHRITTE 1 BIS 6 110
4.3.2 MAPE-K — SCHRITTE 7 BIS 10 111
4.3.3 SCHALEN-MODELL UND ABLEITUNGSBAUM 113
4.4 SCHRITT-TYPEN UND FRAMEWORK ZUR CHARAKTERISIERUNG 114
4.4.1 SCHRITT-TYPEN 115
4.4.2 FRAMEWORK ZUR CHARAKTERISIERUNG 116
4.5 VERTIEFUNG MESSEN, MONITOR- UND ANALYSE-PHASE 118
KAPITEL 5 PRE-WORK 119
5.1 SCHRITT 1 — DEFINITION DER ZIELE 119
5.2 SCHRITT 2 — PRIORISIERUNG DER ZIELE 123
5.3 ABLEITUNG DER WEITEREN SCHRITTE 125
5.4 SCHRITT 3 — ABLEITUNG VON ANALYSEREGELN 130
5.5 SCHRITT 4 — ABLEITUNG VON PLANUNGSMOGLICHKEITEN 132
5.5.1 HERLEITUNG 133
5.5.2 VARIANTENBESTIMMUNG 137
5.5.3 KONFLIKTPOTENTIAL 138
5.5.4 KOMBINATIONSMOGLICHKEITEN 139
5.6 SCHRITT 5 — ABLEITUNG VON METRIKEN 140
5.7 SCHRITT 6 —ABLEITUNG VON AUSFUHRUNGSREGELN UND
BENACHRICHTIGUNGEN 142
5.8 MOGLICHKEITEN ZUR WIEDERVERWENDUNG DER PRE-WORK —
ABLEITUNGSBLOCK 144

11

KAPITEL 6 MAPE-K 147
6.1 DER SPEZIAL-BAUSTEIN IM SE METHOD MANAGER — DIE

KNOWLEDGE BASE 148
6.2 SCHRITT 7 — WERTE MESSEN UND AUFBEREITEN 152
6.2.1 MESSEN ANHAND VON SENSOREN 152
6.2.2 DIE MONITOR-PHASE — WERTE AUFBEREITEN 153
6.3 SCHRITT 8 — WERTE ANALYSIEREN UND BEWERTEN 155
6.3.1 DIE ANALYSE-PHASE 155
6.3.2 ARCHITEKTURMOGLICHKEITEN FUR DIE ANALYSE 158
6.4 SCHRITT 9 — ANPASSUNG PLANEN 160
6.4.1 DAS PLANEN EINER ANPASSUNG 162

6.4.2 ZWISCHEN PLANUNG & AUSFUHRUNG — DER ANPASSUNGSZEITPUNKT

164
6.5 SCHRITT 10 — ANPASSUNG AUSFUHREN 167
6.6 AUTOMATISIERUNGEN 169
KAPITEL 7 EVALUIERUNG 172
7.1 EVALUIERUNG AN EINEM PRAXISNAHEN BEISPIEL 173
7.1.1 EVALUIERUNG AM PRAXISNAHEN BEISPIEL — BEGRUNDUNG 173
7.1.2 BESCHREIBUNG DES BEISPIELS 174
7.1.3 DURCHSPIELEN DES BEISPIELS 177
7.2 VERGLEICH UND FAZIT 206
7.2.1 VERGLEICH MIT DEN URSPRUNGLICHEN PRAXIS-PROJEKTEN 207
7.2.2 FAZIT DER EVALUIERUNG 212
KAPITEL 8§ ZUSAMMENFASSUNG UND AUSBLICK 215
8.1 ZUSAMMENFASSUNG 215
8.2 AUSBLICK 220
8.2.1 VERKNUPFUNG REQUIREMENTS ENGINEERING UND PRE-WORK 221
8.2.2 PLANEN OHNE PLANUNGSMOGLICHKEITEN 221
8.2.3 KOMBINATION VON ANPASSUNGEN 222

8.2.4 ANALYSE VON KONFLIKTEN UND AUSWIRKUNG AUF GESAMT-SEM 223

8.2.5 UBERTRAGUNG DES ANSATZES AUF ANDERE BEREICHE 224
LITERATURVERZEICHNIS 226
ABBILDUNGSVERZEICHNIS 232

12

13

Kapitel 1 Einleitung

1.1 Motivation

Effiziente, effektive und qualitativ hochwertige Softwareentwicklung wird
in der heutigen Zeit immer wichtiger. Dennoch scheitern nach Voller bis zu
75% der Projekte im IT-Umfeld [Vo13]. Als Griinde und mogliche Faktoren
nennt Voller hierfiir u.a. undefinierte Ziele, fehlende Unterstiitzung des Ma-
nagements, unzureichend definierte Rollen und Verantwortlichkeiten, aber
auch ungeniigende Kommunikation, das Ignorieren von Warnzeichen im
Projekt sowie nicht geniigende Beachtung von Storeinfliissen.

Um ein Projekt zum Erfolg zu fiihren und eine Software erfolgreich zu ent-
wickeln, gibt es die verschiedensten Vorgehensmodelle bzw. Softwareent-
wicklungsprozesse und die neuen Agilen Methoden. In dieser Arbeit wird
der Begriff Software-Engineering-Methode [ES10] verwendet. Als eine
Software-Engineering-Methode (SEM) wird die relevante Menge an Ele-
menten verstanden, welche bendtigt wird, um ein Software-Projekt in allen
wichtigen Aspekten zu beschreiben. Die SEM beinhaltet also nicht nur den
Softwareentwicklungsprozess an sich und seine Aktivititen, sondern zusitz-
lich alle Artefakte, Rollen und Aufgaben die durchgefiihrt werden miissen
um die Meilensteine zu erreichen, sowie die Werkzeuge und Techniken die
fiir die Umsetzung der SEM benotigt werden [GLE12].

Doch auch wenn eine Software-Engineering-Methode im Projekt verwendet
wird, so gibt es nicht die eine Software-Engineering-Methode, welche fiir
jedes Projekt passt, die ,,one-size-fits-all“ Methode [Br96]. Typischerweise
wird eine SEM vor Beginn des Projektes entweder entsprechend zugeschnit-
ten (Tailoring [LL10]) oder eine Software-Engineering-Methode wird ei-
gens fiir die Situation im Projekt entwickelt. Um eine solche situationsbezo-
gene SEM fiir unternehmensinterne Zwecke zu entwickeln, wird das Situa-
tional Method Engineering [Br96, HSR10] angewendet.

Auch wenn eine Software-Engineering-Methode eigens fiir ein Projekt ent-
wickelt worden ist, kann es dennoch in der Praxis zu Problemen kommen,
so dass die Projekte am Ende scheitern und zum Misserfolg fithren. Neben
den oben genannten Faktoren konnen folgende weitere Beispiele aus Projek-
ten des s-lab — Software Quality Labs' in Paderborn genannt werden:

e In dem Scrum-Projekt ,,Quasi-Scrum*“ [EG09] wurden nicht-
funktionale Anforderungen durch fehlende Eintrdge im Product-
Backlog nicht betrachtet. Beim Kunden traten anschliefend Perfor-
manz-Probleme auf. Um die Betrachtung der nicht-funktionalen An-

" http://s-lab.upb.de

14

forderungen in einem Entwicklungsprozess friihzeitig sicherzustel-
len, musste die SEM angepasst werden.

Wihrend eines groBen und langlaufenden Projektes wichst die
Teamgrofle. Die Verwaltungsstrukturen zur Unterstiitzung fiir bei-
spielsweise Dokumente und Tools miissen im laufenden Projekt ein-
gefiihrt oder angepasst werden.

Projektressourcen dndern sich beispielsweise durch eine Fusion oder
eine Umstrukturierung. Das betrifft auch laufende Projekte, sofern
diese nicht abgebrochen oder neu gestartet werden konnen.

Gerade in agilen Projekten bekommt das Testen zwar eine wichtige
Rolle zugeschrieben. Aber schaut man sich die Original-Literatur an,
wie beispielsweise den Scrum Guide [SS13], wird das Testen nur
sehr oberflachlich oder gar nicht beschrieben. Es werden hiufig nur
die Aufgaben wie beispielsweise Product Backlog Eintrdge in Scrum
selbst getestet und nicht der groe Zusammenhang. Ein Relase- oder
End-To-End-Test ist insbesondere in der bekanntesten agilen Me-
thode Scrum gar nicht erst vorgesehen [GG12]. Durch dieses eher
unstrukturierte Testen bzw. Weglassen eines End-To-End- oder auch
vollstindigen System-Tests kann es passieren, dass nur ungeniigend
oder einige Funktionen gar nicht getestet werden.

In Projekten sollen Standards und Normen eingehalten werden. An-
dern sich diese kann es passieren, dass ebenfalls die Software-
Engineering-Methode angepasst werden muss.

Die Erfahrung in einem weiteren s-lab-Projekt fiir ein groBes Tele-
kommunikationsunternehmen mit verteilten Teams zeigte, dass ein
unstrukturiertes Vorgehen gerade im Projektcontrolling und in der
Ausfiihrung zu grof8en Problemen fiihrte. Deadlines konnten nicht
eingehalten werden, die Software zeigte sowohl in den Tests als
auch im produktiven Betrieb teilweise schwerwiegende Fehler, was
zu hohen Kosten fiihrte. Es war klar, dass die Software-Engineering-
Methode angepasst werden musste, doch es war zum einen nicht
deutlich, wie die genaue Anpassung aussehen sollte. Zum anderen
war nicht ersichtlich, wie die Software-Engineering-Methode im lau-
fenden Betrieb iiberwacht und analysiert werden kann. Das grof3te
Problem war, wie der Projektleiter mitteilte, dass die Anpassung
zwar notwendig sei, doch das weder wirklich Zeit noch Ressourcen
fiir eine aufwendige Anpassung vorhanden waren. Somit blieb es am
Ende bei kleinen und nicht strukturierten ad-hoc Anwendungen, die
teils im Team, teils aber auch vom Projektleiter ,,aus dem Bauch

15

heraus* entschieden wurden. Die Probleme wurden dadurch wenig
oder gar nicht gelost.

e In dem Projekt wurde ebenfalls deutlich, dass bei Anderungen gera-
de iiber ein verteiltes Team hinweg, (neue) Verantwortlichkeiten
nicht klar gewesen sind. Die Teammitglieder haben Anpassungen
bzw. Anderungen zwar befiirwortet, doch hitten sie sich eine kon-
krete Zuteilung von Verantwortlichkeiten gewiinscht und vor allem
eine Benachrichtigung, dass sich etwas gedndert hat. Dies wurde nur
unzureichend oder gar nicht vorgenommen.

e FEine weitere Erfahrung aus zwei Scrum-Projekten war, dass die
Teams zeitweise recht gro3 gewesen sind, teilweise bis zu 15 Perso-
nen. In Scrum ist vorgesehen, dass ab einer Gréf3e von mehr als neun
Personen das Team geteilt wird und ein Scrum of Scrums eingefiihrt
werden sollte. Dies ist den Personen zwar bekannt gewesen, doch
der Aufwand fiir die Anpassung, also das Aufteilen des Teams, Zu-
weisung der neuen Aufgaben, Einfiihren eines neuen Meetings, war
den Mitgliedern zu aufwendig. Durch die héhere Anzahl von Perso-
nen gab es regelmiBig Kommunikationsschwierigkeiten, beispiels-
weise dass nicht jeder wusste, woran der andere gerade arbeitete. Es
kam sowohl zu Uberschneidungen, als auch zu Konflikten, z.B. dass
eine Aufgabe, welche flir die Weiterarbeit eines Teammitglieds
wichtig gewesen ist, noch gar nicht angefangen war. Dadurch ist es
vorgekommen, dass Aufgaben nicht pilinktlich beendet werden konn-
ten.

Diese Beispiele und die oben genannten Faktoren zeigen, dass es zwar not-
wendig ist, eine Software-Engineering-Methode im laufenden Projekt dy-
namisch anzupassen, doch in der Praxis ist dies — wenn iiberhaupt — nur
unstrukturiert und ad hoc der Fall. Es ist wichtig, dass unmittelbar auf prob-
lematische Situationen reagiert werden kann, um den Erfolg sowie die Qua-
litdit des Projektes weiterhin gewdihrleisten zu konnen. Doch gerade die
Uberwachung wihrend der Nutzung der SEM und speziell die zeitliche
Komponente sind kritische Faktoren. Diese machen es schwierig, eine
Software-Engineering-Methode entsprechend zur Laufzeit anzupassen.

1.2 Problemstellung und Forschungsfrage

Wie die genannten Beispiele im vorherigen Abschnitt zeigen, ist es notwen-
dig, eine Software-Engineering-Methode im laufenden Projekt zu iiberwa-
chen, aber insbesondere sie zeitnah anzupassen. Ein Projekt besitzt auf der
einen Seite eine Software-Engineering-Methode fiir die Durchfiihrung, auf
der anderen Seite wird das Projekt wie in Abbildung 1 zu sehen vom Pro-
jektmanagement und hauptsichlich von der Projektkontrolle iiberwacht.

16

/ o \

Projekt- Software-
management und Engineering-

Projektkontrolle (PK) -kontrolle I Methoden (SEM) SEM-Anderung durch
durch Projektmanager: | z . J Methoden-Engineer:
* Dynamisch : Situational Method + statisch

PK betrachtet andere i Engineering & + strukturiert

Faktoren als SEM an I Tailoriig einer SEM + Lange Dauer

sich . ' * Unflexibel im

CM nicht SEM- Change - Agile Methoden Projekt

bezogen Management

Schnelle ad-hoc \ (em)

Reaktionen nétig Kontinuierlicher

Verbesserungs- €
prozess

© Weng/gwnichtmitcnanderverabotl |
Abbildung 1 Projektmanagement, Projektkontrolle und SEM sind kaum miteinander verzahnt

Projekte sind allgemein eine komplexe Angelegenheit und konnen von lan-
ger Dauer sein. Dabei ist es wichtig, dass die Verantwortlichen zu jeder Zeit
einen umfassenden Uberblick iiber das gesamte Projekt haben. Im Detail
umfasst das Projektmanagement somit alle Elemente eines Projektes, die
wichtigsten sind dabei u.a. die Planung, die Kontrolle, die Organisation und
die Personalfiihrung [Sc13, Fil0]. Im Projektmanagement dreht es sich im-
mer um eine bestimmte Klasse von Zielen, welche das ,,Magische Dreieck*
bilden [Sn05]. Bei dem Dreieck handelt es sich auch um die Abhingigkeiten
zwischen der Dauer des Projektes, den Kosten und dem Aufwand des Pro-
jektes, sowie der Qualitdt bzw. des gelieferten Leistungsumfangs.

Die Projektkontrolle unterstiitzt dabei hauptsdchlich das Projektmanagement
bei der Planung, Uberwachung und Steuerung des Projektes. Wichtig ist
dabei basierend auf [F10], [Sc13] und [BK12], dass die Rahmenbedingun-
gen eingehalten und die definierten Projektziele erreicht werden. Allerdings
heilt die Erreichung der Projektziele, dass es sich bei der Projektkontrolle
um Ziele im Rahmen des Umfangs des Projektes, den Projektkosten, den
Terminen, der Qualitdt und auch der Ressourcen handelt. Es geht weniger
direkt um die eigentliche Software-Engineering-Methode. Der Fortschritt
des Projektes wird allgemein anhand der Einhaltung der Kosten, der Einhal-
tung von Terminen sowie der Erfiillung der Qualitdtsvorgaben kontrolliert.
Die Kontrolle findet somit auf einer anderen Ebene als eine Uberwachung
der genutzten Software-Engineering-Methode statt. Zusammenfassend ist zu
sagen, dass die Projektkontrolle zwar dynamisch ist, doch sie betrachtet an-
dere Faktoren als fiir die Software-Engineering-Methode notig wéren.

Das Change Management, zu Deutsch Anderungs- oder auch Verinde-

rungsmanagement, beschiftigt sich zwar mit Anderungen, aber typischer-
weise mit denen auf der Unternehmensebene. Das Hauptaugenmerk des

17

Change Managements liegt dabei mehr auf Personen und allgemeinem
Wandel im Unternehmen, weniger auf der konkreten Software-Engineering-
Methode. Die Verdnderungen konnen sich zwar auf die SEM auswirken und
somit eine Ursache sein, dass diese ebenfalls gedndert werden muss. Aller-
dings ist dies hochstens ein Baustein im Gesamtkontext des Veridnderungs-
projektes, aber nicht primir. Doch die enge Verwandtschaft mit dem Pro-
jektmanagement und der zu Grunde liegende Prozess fiir die Durchfiihrung
eines Verinderungsprojektes konnen in eine Anderung an einer Software-
Engineering-Methode mit einflieBen.

Nach [SH13] findet Verdnderungsmanagement in drei Phasen statt:
e Planung, wo die Vision erstellt, der aktuelle Status analysiert und
MaBnahmen geplant werden;
e Umsetzung, wo die erstellten Mallnahmen und Losungen umgesetzt
werden;
e Evaluierung, wo die entsprechenden Maflnahmen {iiberpriift werden,
ob sie den gewiinschten Effekt geliefert haben.

Schaut man sich nun in Abbildung 1 die rechte Seite die Software-
Engineering-Methode an, so gibt diese dem Projekt eine strukturierte Vor-
gehensweise zur eigentlichen Durchfiihrung, ldasst aber Komponenten des
Projektmanagements wie die Personalfiihrung, die eigentliche Kontrolle
selbst usw., aullen vor. Es gibt auf dieser Seite verschiedene Moglichkeiten,
die Software-Engineering-Methode anzupassen, was durch einen Methoden-
Engineer erfolgt. Dieser kann eine Software-Engineering-Methode fiir das
Projekt spezifisch mit Hilfe von Situational Method Engineering [HSR10]
zusammensetzen oder sie flir das Projekt ,,zuschneiden* (Tailoring). Neben
diesen beiden vorgelagerten Ansidtzen gibt es noch weitere im Rahmen des
Kontinuierlichen Verbesserungsprozesses wie Six Sigma [KA06] oder dem
PDCA-Zyklus [De86]. Diese beschiftigen sich ebenfalls mit Verdnderungen
und Verbesserungen im Projekt.

Auch wenn die Vorgehensweisen alle Ansétze zur Verbesserung zeigen, so
liegt, bis auf bei den vorgelagerten Ansitzen, der Fokus allgemein mehr auf
dem gesamten Projekt, als auf der genutzten Software-Engineering-
Methode. In den vorgelagerten Ansitzen wird zwar eine Anpassung vorge-
nommen, jedoch ist diese statisch, das heif3it sie wird nur einmal vor Beginn
des Projektes durchgefiihrt. Fiir die weitere Anpassung im Projekt sind diese
Ansitze sehr unflexibel.

Bei den Ansétzen zum kontinuierlichen Verbesserungsprozess kommt hin-

zu, dass sie von langer Dauer sind, das heil}t sie konnen unter Umstinden
mehrere Wochen und ldnger dauern. Wie sich in den Beispielen im vorheri-

18

gen Abschnitt zeigte, ist aber gerade die Zeit ein wichtiger und kritischer
Faktor. Eine verzogerungsfreie und dynamische Anderung wihrend des
laufenden Projektes ist mit diesen Verfahren nur schwer oder gar nicht mog-
lich.

Einen weiteren Ansatz zur Verbesserung und Anpassung einer Software-
Engineering-Methode bieten die Agilen Methoden [Co02] und dabei insbe-
sondere Scrum [SBO02]. Diese benutzen verschiedene Inspektionspunkte um
mogliche unerwiinschte Abweichungen (Produkt- und Entwicklungspro-
zessabweichungen) zu entdecken [SS13].

Wenn eine Abweichung festgestellt wird, die aullerhalb der akzeptablen
Grenze liegt, dann sollen Arbeitsgegenstand oder Prozess so schnell wie
moglich angepasst werden. Interessant ist dabei die Retrospektive. Sie ist
eine Gelegenheit fiir das Scrum Team, ,,Sich selbst zu Gberprifen, und einen
Verbesserungsplan fiir den kommenden Sprint zu erstellen* [SS13, S. 12].
Damit ist die Retrospektive das wichtigste Ereignis innerhalb von Scrum,
welches auf Inspektion und Adaption des gesamten Entwicklungsprozesses
fokussiert ist.

Doch auch wenn die Agilen Methoden bereits Ansdtze zur Verbesserung
liefern, liegt ihr Fokus zunéchst nur zum Teil auf der Software-Engineering-
Methode, der Hauptfokus liegt auf dem zu entwickelnden Produkt. Durch
bestimmte Techniken wie tégliche Meetings, eine Retrospektive, Fort-
schrittsanalysen usw. kann zwar eine regelmiBige Uberwachung gegeben
sein, diese ist aber typischerweise beziiglich der SEM eher informell und
nicht strukturiert. Gerade in der Planung einer Anpassung hat der Ansatz
hier Schwiichen. Ferner sind die Uberwachungen nur punktuell und weniger
kontinuierlich. Ebenfalls wird bei den gesamten Ansédtzen der Faktor Zeit
nicht mit betrachtet. Um die Dauer der Uberwachung und Durchfiihrung der
Anpassung zu verkiirzen, wéren Automatisierungsmoglichkeiten wichtig,
doch diese sind alle in den Ansétzen nicht gegeben.

Aus der Betrachtung der verschiedenen Ansdtze und der Notwendigkeit
einer Uberwachung und Anpassung einer Software-Engineering-Methode
im laufenden Projekt stellt sich die Frage:

Wie kann eine Software-Engineering-Methode wahrend der Nutzung au-
tomatisch und somit eigenstandig Uberwacht, hinsichtlich Abweichungen
analysiert sowie anschlielend selbststandig und automatisch angepasst
werden?

19

1.3 Zielsetzung und Losungsansatz

Fiir die Beantwortung der im vorherigen Abschnitt gestellten Frage sollen
die Vorteile aus den Ansitzen und aus der Projektkontrolle, die drei genann-
ten Phasen aus dem Change Management und die Software-Engineering-
Methode zusammengebracht und miteinander ,,verzahnt* werden. Das Ziel
ist es, einen Ansatz zu entwickeln, der eine Software-Engineering-Methode
moglichst selbststdndig, also adaptiv anpasst.

/ . \

Projekt- 1 | Software-
= managementund i Engineering- —
Projektkontrolle (PK) -kontrolle Methoden (SEM))

SEM-Anderung durch
Methoden-Engineer:

durch Projektmanager:
. statisch

]

I
Dynamisch : " Situational Method (J
: Engineering &

PK betrachtet andere I strukturiert
Faktoren als SEM an i\ Jailoring einer SEM) —= Lange Dauer
~ ' Unflexibel im
. Change I
EM nicht SEM- Managefnent i Agile Methoden Projekt
ezogen I
I

Schnelle ad-hoc IFMI

Reaktionen notig

| Kontinuierlicher

prozess

I
|
|
|
sich I
|
|
|
I
|

| :

| Adaptives
| Projekt
I

| (o o e > Selbstadaptive | __ ________ __ |
SEM |

Abbildung 2 Verbindung von Projektmanagement/ Projektkontrolle und SEM zu einer selbst-
adaptiven Software-Engineering-Methode

Die Software-Engineering-Methode soll wéahrend ihrer Nutzung auf der In-
stanz-Ebene kontinuierlich tiberwacht, der aktuelle Status hinsichtlich einer
notigen Anpassung ausgewertet, darauf aufbauend eine Anpassung auf Typ-
Ebene geplant und diese soll anschlieBend dynamisch und mdglichst auto-
matisiert wihrend der Laufzeit durchgefiihrt und in das Projekt zuriick {iber-
fithrt werden.

Daraus und nach [Gel2] und [GLE12] ergeben sich folgende erste Anforde-
rungen flir einen eigenen Ansatz zur selbst-adaptiven Anpassung einer
Software-Engineering-Methode:

Al. Der Fokus der Anpassung liegt auf der genutzten Software-
Engineering-Methode.

A2. Der Anpassungszeitpunkt ist zur Laufzeit und die Dauer der gesam-
ten Anpassung soll moglichst kurz sein.

20

A3. Die SEM soll kontinuierlich und méglichst eigenstidndig wéhrend
ihrer Ausfithrung in Hinblick auf notwendige Abweichungen und An-
passungen auf der Instanz-Ebene beobachtet werden.

A4. Die beobachteten Werte und der aktuelle Status miissen zur Lauf-
zeit analysiert und schnell beurteilt werden kdnnen.

A5. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitits-
zielen geplant und durchgefiihrt werden koénnen.

A6. Die Anpassung soll schnellstmdglich und zeitnah sowie moglichst
automatisch erfolgen.

Um eine Software-Engineering-Methode zur Laufzeit eigenstindig zu
iiberwachen und hinsichtlich ihres aktuellen Status analysieren zu kdnnen,
ist es wichtig, ein kontinuierliches Feedback von der SEM zu bekommen.
Das Feedback muss ausgewertet, die SEM gegebenenfalls angepasst und
anschlieBend muss die SEM wieder beobachtet werden, vor allem ob die
Qualitdt weiterhin oder wieder gegeben ist [GLE12]. Dies entspricht dem
Verhalten einer sogenannten Feedbackschleife. Aufgrund der Beurteilung
soll eine weitere Planung fiir die Anpassung der SEM auf Typ-Ebene fol-
gen, welche anschliefend zuriick in das aktuelle Projekt {iberfiihrt werden
muss. Diese Anpassung und Uberfiihrung sollen nicht nur wihrend des Pro-
jektes selbst stattfinden, sondern so schnell wie es geht, wenn mdglich sogar
automatisiert.

Die Idee einer Feedbackschleife und der Auswertung des Feedbacks inner-
halb eines laufenden Systems ist nicht neu. Diese Feedbackschleifen, engl.
Feedback-Loops [Do06, Br09], kommen heute insbesondere im Bereich
Autonomic Computing [KCO03] zum Einsatz. Eine der bekanntesten Feed-
backschleifen in diesem Bereich ist die MAPE-K-Feedbackschleife [IBO6,
KCO03]. ,,MAPE* steht dabei fiir die verschiedenen Phasen Monitor — Analy-
se — Plan — Execute. Das ,,K* bezeichnet dabei eine Wissensbasis die Know-
ledge Base, auf der die vier MAPE-Phasen agieren.

Uber einen sogenannten ,,Autonomic Manager wird ein ,,Managed Ele-
ment®, welches ein laufendes System abbildet, kontinuierlich zur Laufzeit
durch Sensoren liberwacht. Diese Daten werden aufbereitet, anschlie3end
analysiert und wenn diese nicht den definierten Werten entsprechen, wird
eine Anpassung geplant und iiber Effektoren ausgefiihrt. Fiir die Durchfiih-
rung der verschiedenen Phasen wird das ,,Wissen* aus der Wissensbasis
genutzt. Diese kann durch hinzugewonnenes Wissen fortlaufend erweitert
werden.

21

Die Idee ist nun, den Ablauf des MAPE-K auf die Anpassung einer Soft-
ware-Engineering-Methode zu tibertragen. Eine der entscheidenden Fragen
ist dabei, wie die Anpassung einer Software-Engineering-Methode mit dem
MAPE-K kombiniert werden kann; ist es moglich alles auf die entsprechen-
den Phasen abzubilden und wie miissten diese dann aussehen?

Der Beitrag dieser Arbeit ist die Vorstellung des Ansatzes MAPE-K4SEM,
welcher MAPE-K als Kern enthédlt und eine selbst-adaptive Software-
Engineering-Methode ermoglicht. Mit dem analog zum Autonomic Mana-
ger entwickelten SE Method Manager ist es moglich, eine Software-
Engineering-Methode automatisch und somit eigenstindige sowie kontinu-
ierlich zu {iberwachen, den aktuellen Status der SEM bzgl. moglicher Ab-
weichungen zu analysieren, eine ndtige Anpassung zu planen und diese an-
schlieBend schnellstmoglich auszufiihren. Um die ,,richtigen® Werte in der
SEM zu messen und diese entsprechend anhand von Analyseregeln auszu-
werten und eine Anpassung bzgl. vordefinierter Ziele zu planen, wurde der
SE Method Manager um eine Pre-Work erweitert. Beide Teile zusammen,
die Pre-Work und der SE Method Manger (MAPE-K) ergeben den MAPE-
K4SEM-Ansatz, welcher durch einen Ablauf in 10 Schritten charakterisiert
1st.

Neben der zeitnahen und eigenstdndigen Anpassung einer Software-
Engineering-Methode zur Laufzeit ist ein weiterer Beitrag der Arbeit, dass
der Ansatz MAPE-K4SEM verschiedene Themengebiete wie Projektma-
nagement und —kontrolle sowie das Software Engineering nun miteinander
verbindet.

22

1.4 Aufbau der Arbeit

Kapitel 2: Grundlagen und verwandte Arbeiten

Software-Engineering-Methoden | Anpassungenvon SEM - Ansétze | Schwachstellen

Kapitel 3: Beschreibung des Lésungsansatzes
Anpassungsarten | Selbst-Adaptive SEM | Weitere Herausforderungen

Kapitel 4: Zielorientiertes Vorgehen — der Ansatz MAPE-K4SEM
Bottum-Up vs. Top-Down | Pre-Work + MAPE-K | Schritt-Typen & Framework

Kapitel 5: Pre-Work Kapitel 6: MAPE-K
Schritte 1-6| Ableitung der Schritte | Schritte 7-10| Knowledge Base|
Wiederverwendung der Pre-Work Automatisierungsmoglichkeiten

Kapitel 7: Evaluierung an einem praxisnahen Beispiel
Erlauterung des Beispiels| Durchfiihrung & Vergleich | Fazit Evaluierung

Kapitel 8: Zusammenfassung & Ausblick

Problem | Was wurde geleistet | Ausblick

Abbildung 3 Aufbau der Arbeit

Nach dieser Einleitung besteht die Arbeit aus drei Blocken mit insgesamt
sieben weiteren Kapiteln. Der erste Block besteht aus dem zweiten Kapitel
und behandelt die Grundlagen, welche fiir die Arbeit benotigt werden, sowie
verwandte Arbeiten. Dabei wird vor allem auf die Software-Engineering-
Methoden, die Projektkontrolle und das Change Management eingegangen.
Bei den verwandten Arbeiten werden verschiedene Ansétze dargestellt, wel-
che sich mit der Anpassung einer Software-Engineering-Methode beschifti-
gen, sowohl vor Beginn eines Projektes als auch Ansétze zur kontinuierli-
chen Verbesserung. Das Kapitel schlieft mit den Schwachstellen der be-
kannten Ansétze und den ersten Anforderungen an den eigenen Ansatz.

Der Hauptblock besteht aus vier Kapiteln, beginnend mit Kapitel 3, dem
Beschreiben des Losungsansatzes. Das Kapitel startet aufbauend auf den
Schwachstellen aus Kapitel 2 mit einer genauen Problem-Analyse und —
Beschreibung. Nach einer Beschreibung verschiedener Anpassungs-Arten
von Software-Engineering-Methoden und dem Konkretisieren der Anforde-
rungen wird die Konzeption eines sogenannten SE Method Managers vorge-
stellt. Dieser ist an die bekannte Feedbackschleife MAPE-K aus den selbst-
adaptiven Systemen angelehnt. Nach einem kurzen Zwischenfazit wird der
Ansatz tiefergehend analysiert und weitere Herausforderungen werden her-
ausgearbeitet.

23

Das Kapitel 4 erweitert den Losungsansatz um ein zielorientiertes Vorge-
hen, um den Herausforderungen zu begegnen. Nach der Diskussion, ob ein
Bottom-Up oder Top-Down-Ansatz gewéhlt werden sollte, wird eine Kom-
bination der beiden Ansdtze, der MAPE-K4SEM, mit einem 10-Schritte-
Ablauf entwickelt. Dieser Ansatz besteht aus einer ,,Pre-Work® und dem
spateren MAPE-K. Das Kapitel schlie8t mit der Beschreibung verschiedener
Schritt-Typen, welche der MAPE-K4SEM-Ansatz beinhaltet und einem
Framework, wie diese Schritte in Kurzform beschrieben werden konnen.

Die Kapitel 5 und 6 beschreiben die jeweiligen Schritte in der Tiefe, wobei
Kapitel 5 die ,,Pre-Work* erldutert und Kapitel 6 die spitere Ausfithrung,
den MAPE-K. Neben den einzelnen Schritten wird in Kapitel 5 insbesonde-
re darauf eingegangen, wie sich die einzelnen Schritte, Regeln und Werte in
der Pre-Work herleiten lassen. Zusédtzlich wird ein Ansatz vorgestellt, wie
diese wiederverwendet werden konnen. Kapitel 6 beschreibt zusétzlich zu
den Schritten zundchst den Baustein der Wissensbasis (Knowledge Base),
welcher fiir das Gelingen des MAPE-K essentiell ist. Das Kapitel schlief3t
mit Moglichkeiten zur Automatisierung der einzelnen Schritte.

Der dritte Block der Arbeit behandelt zundchst mit Kapitel 7 die Evaluie-
rung anhand eines praxisnahen Beispiels, anhand dessen die Funktionsweise
des Ansatzes exemplarisch durchgefiihrt und iiberpriift wird. Dieses Beispiel
ist im Kern an das im ersten Abschnitt erwdhnte Praxisprojekt Quasi-Scrum
[EG09] angelehnt. Das Projekt wurde vom s-lab durchgefiihrt und wird im
Laufe der Arbeit neben dem Beispiel der TeamgrdoBe in Scrum, welche nicht
mehr als 9 und nicht weniger als 3 Personen betragen darf, in dieser Arbeit
mehrfach erwdhnt werden. Im Projekt Quasi-Scrum wurde eine Kreditkal-
kulationssoftware entwickelt. Dafiir wurde die eine angepasste Form der
Agilen Methode Scrum eingesetzt. Dieses Beispiel wird um einige Kompo-
nenten aus der eigenen Erfahrung sowie aus einem anderen Praxisprojekt,
welches in einem groflen Telekommunikationsunternehmen durchgefiihrt
wurde, erweitert. Die Dissertation schliefit in Kapitel 8 mit einer Zusam-
menfassung der geleisteten Arbeit und gibt einen Ausblick iiber zukiinftige
Aufgaben.

24

Kapitel 2 Grundlagen und verwandte Arbei-

Projekt ;
\ i)
/ | \
Projekt- : I i Software-
Abschnitt 2.2 management I Engineering- Abschnitt 2.1
und -kontrolle | Methoden (SEM) |
-S.i'tuati;ma.l Method ‘_I
4 Engineering &
" Tailoring einer SEM
\ " .
Abschnitt 2.3 Change Agile Methoden Abschnitt2.4
Management X
Kontinuierlicher

I Verbesserungs- S —
| prozess

Adaptives

Projeks Abschnitt 2.5 (Ziel)
I => Kapitel 3 Lésungsansatz
Selbst-adaptive
SEM

Abbildung 4 Aufbau Kapitel 2 und Ubergang zu Kapitel 3

In diesem Kapitel werden beginnend mit der Beschreibung und Definition
einer Software-Engineering-Methode die Grundlagen fiir die spiteren Kapi-
tel sowie verwandte Arbeiten beschrieben. Zunichst wird erldutert, was al-
les zu einem Software-Projekt und im Speziellen einer Software-
Engineering-Methode gehdrt. Daran kniipfen die Modellierung und die Vor-
stellung verschiedener Arten von Software-Engineering-Methoden an. Im
néchsten Abschnitt werden das Projektmanagement und dessen Inhalte er-
lautert. Insbesondere wird dabei auf die Projektkontrolle eingegangen, wel-
che sich mit der Uberwachung von Projekten und bei Bedarf regelnden
Malnahmen beschéftigt. Da sich diese Arbeit mit der Anpassung von Soft-
ware-Engineering-Methoden beschiftigt, also der Anderung dieser Metho-
den, soll in Abschnitt 2.3 auf das Change Management eingegangen werden.
Dies beschiftigt sich zwar mit Anderungen auf Unternehmensebene, aber
sowohl die Anderungen auf dieser Ebene koénnen die Software-Engineering-
Methoden beeinflussen als auch die Anderung von Software-Engineering-
Methoden konnen sich unter Umstidnden auf das Unternehmen auswirken.
Im folgenden Abschnitt werden verwandte Ansdtze und Arbeiten vorge-
stellt, welche sich mit der Anpassung von Software-Engineering-Methoden
zu verschiedenen Zeitpunkten beschéftigen, zum Beispiel vor Beginn des
Projektes. Das Kapitel wird mit einer Analyse der Schwachpunkte der An-
sdtze und Anforderungen an den eigenen Ansatz abgeschlossen.

25

2.1 Software-Engineering-Methoden

Abstrakte
Beschreibung zur
Durchfiihrung eines

Projektes
Vorgehensmodell
4
Software-
Prozessmodell | -------= > Entwicklungs- Methode
Prozess

TS e

Software-
Engineering-
Methode

Abbildung 5 Begriffsentwicklung Software-Engineering-Methode (SEM)

Um Software heutzutage erfolgreich zu entwickeln, wird in einem soge-
nannten ,,Softwareprojekt®, kurz Projekt, eine konkrete Folge von Schritten
ausgefiihrt, die ein konkretes Ergebnis haben. Diese Abfolge kann zunéchst
durch eine abstrakte Beschreibung zur Durchfiihrung des Projektes erfol-
gen. Dabei kann diese abstrakte Beschreibung eine Reihenfolge der Schritte
beschreiben, welche zur Durchfiihrung des Projektes ndtig sind. Alle Be-
standteile, die zu einem Projekt und einer Software-Engineering-Methode
gehoren, werden in Abschnitt 2.1.1 erldutert.

Abstrakte Beschreibungen zur Durchfithrung eines Projektes sind zwar hilf-
reich, doch héufig in ihrer Ausfiihrung nicht konkret genug, was in der
Durchfiihrung zu Missverstdndnissen fiihren kann. Im schlimmsten Fall
fiihren diese Missverstindnisse zum Misserfolg des Projektes. Die Vorge-
hensweise in einem Projekt kann konkret iiber ein Vorgehensmodell be-
schrieben werden. Es beschreibt auf abstrakte Weise, wie und welcher Rei-
henfolge die verschiedenen Aktivitidten durchgefiihrt werden und es werden
die zu erzielenden Ergebnisse festgelegt [GIAK]. Das Vorgehensmodell
beschreibt dabei ein optimales Vorgehen, welches typischerweise fiir jedes
Softwareprojekt angepasst werden sollte, denn jedes Projekt ist anders.

Ein Softwareentwicklungsprozess beschreibt nach [GIAK, LL10] den Hand-
lungsablauf zur Entwicklung einer Software, welcher durch das Vorge-
hensmodell geformt ist. Einem Softwareentwicklungsprozess liegt dabei ein

26

Prozessmodell zu Grunde, welches eine Menge von Tétigkeiten beschreibt,
die in einer bestimmten Handlungsabfolge ausgefiihrt werden, damit ein
Produkt entsteht oder weiterentwickelt wird [So07, GIAK]. Ludewig und
Lichter gehen in ihrer Definition des Prozessmodells noch weiter: Fiir sie
beinhaltet ein Prozessmodell nicht nur das Vorgehensmodell sondern zu-
satzlich Aussagen liber die personelle Organisation, die Gliederung der Do-
kumentation sowie die Verantwortlichkeiten fiir Aktivitdten und Dokumente
[LL10]. Da wie bereits beschrieben jedes Projekt anders ist, gibt es ver-
schiedene Auspragungen dieser Prozessmodelle, es konnen keine oder nur
sehr schwer allgemeingiiltigen Aussagen getroffen werden.

Ein weiterer Begriff, der fiir die Beschreibung der Ausfiihrung eines Projek-
tes genutzt wird, ist der Begriff Methode. Eine Methode beinhaltet absolut
alles, was fiir die Entwicklung gebraucht wird, das hei3t beispielsweise so-
genannte Artefakte, Rollen und ausgefiihrte Tatigkeiten, aber auch in wel-
cher Reihenfolge und zu welchem Zeitpunkt was ausgefiihrt wird [HSR10].

Engels und Sauer [ES10] gehen in ihrer Beschreibung noch ein Stiick weiter
und fithren den Begriff Software-Engineering-Methode ecin. Dieser bringt
den Softwareentwicklungsprozess bzw. das Prozessmodell und eine Metho-
de zusammen. Eine Software- Engineering-Methode ist das vollstdndige Set
an Elementen (z.B. Rollen, Artefakte und Tétigkeiten) welches bendtigt
wird, um ein Projekt in allen relevanten Aspekten zu beschreiben. Diese
Beschreibung beinhaltet, dhnlich wie bei der Beschreibung des Prozessmo-
dells nach [LL10], nicht nur ein Vorgehensmodell an sich und seine Aktivi-
taten, sondern zusétzlich alle Artefakte und Aktivitdten die durchgefiihrt
werden miissen um gesetzte Ziele — die Meilensteine — zu erreichen. Zusitz-
lich beinhaltet eine Software-Engineering-Methode die Rollen, Werkzeuge
und Techniken die gebraucht werden, ebenso wie alle Abhéngigkeiten zwi-
schen den Konzepten. Dies kann ebenfalls die Organisationsstrukturen, die
Vorgaben fiir das Projektmanagement, sowie die Qualitdtssicherung, die
Dokumentation und die Konfigurationsverwaltung mit beinhalten, also alles
was zu einem Software-Projekt mit dazugehort.

Aufgrund dieser ausfiihrlichen Definition soll der Begriff Software-
Engineering-Methode (SEM), in der vorliegenden Arbeit verwendet werden.

2.1.1 Bestandteile eines Projektes und einer Software-
Engineering-Methode

Software wird typischerweise in Unternehmen entwickelt. Je nach Grofie
und Spezialisierung des Unternehmens kann es wie in Abbildung 6 zu se-
hen, ein oder mehrere Projekte zur Entwicklung oder Verbesserung von
Software besitzen. Um die Software erfolgreich zu entwickeln, wird das
Projekt mit Hilfe einer Software-Engineering-Methode durchgefiihrt. Doch

27

jedes Projekt besitzt nicht nur eine Software-Engineering-Methode, sondern
hat noch weitere Merkmale, u.a. nach [LL10]:

Projektteam

Personen

Unternehmen |

]

1..m

Projekt-
Umgebung

1.0 Projekt

1...n

Qualifikationen
(Skills)

Projektziele

Software-

Engineering-
ME : hOde
1

0..n
1.0

Projektkosten

1..n

0.0 1{ Waorkflow | 1 1.0

[Meilensteine Aktivitaten }- { Meeting ‘

=Dy

1

1...n == n {n i

1.0 /

7 / Technik

el /
0.0\ 1.

Verantwortlich-
keit

LI

Guidance W

Inkrement '

Abbildung 6 Begriffe basierend auf [BK13], [OMGO08], [LIL.10]

e Jedes Projekt hat eine Laufzeit, das heifit es lduft {iber einen be-
stimmten, teilweise begrenzten, Zeitraum mit einem Start- und ei-
nem oder mehreren End- bzw. Zwischenendpunkten.

e Dic Personen, welche das Projekt durchfiihren, sind das Projekt-
team, kurz das Team. Dabei kann dieses Team noch in weitere
Teams unterteilt werden, z.B. Entwickler-Team, Test-Team etc. Je-
des Team besitzt dabei eine (optimale) TeamgroRe, welche mit Hilfe
der Software-Engineering-Methode beschrieben wird.

e Ein Team besteht aus natiirlichen Personen, welche bestimmte Qua-
lifikationen (Skills) besitzen miissen, um die verschiedenen Aktivité-
ten zur Durchfiihrung des Projektes meistern zu kénnen.

e Die Personen im Team nehmen bestimmte Rollen ein, beispiclswei-
se Projektleiter, Entwickler, Software-Architekt, Tester u.a. Dabei
kann ein Teammitglied eine oder mehrere Rollen innehaben.

e Ein Projekt hat verschiedene Projekiziele. Diese werden zu Beginn
des Projektes zusammen mit allen Beteiligten definiert. Projektziele
bewegen sich meistens im Rahmen der Qualitit des Endproduktes,
welcher Leistungsumfang fiir die Erstellung des Endproduktes ge-
braucht wird, aber auch welche Zeit (s. Laufzeit) das Projekt zur Fer-

28

tigstellung braucht und was das Projekt kostet (s. Projektkosten).
Néhere Erlduterungen dazu stehen in Abschnitt 2.2.1. Projektma-
nagement. Ein Projekt ist erfolgreich, wenn die (Teil-) Ziele erreicht
sind.

Ein Projekt hat ein konkretes Budget, welches aus den errechneten
Projektkosten resultiert. Die Projektkosten errechnen sich u.a. aus
den Aufwinden, um die Software zu erstellen, aus der Laufzeit usw.
Ein Ziel im Projekt ist es, die Projektkosten einzuhalten oder sie,
wenn moglich, zu reduzieren und zu optimieren.

Jedes Projekt befindet sich in einer Projektumgebung und hat ein ei-
genes Projektumfeld. Dazu zéhlen unter anderem die Rahmenbedin-
gungen, die nicht direkt etwas mit dem Projekt selbst zu tun haben.
Diese Rahmenbedingungen beinhalten beispielsweise das Unter-
nehmen selbst, wie die Gro3e (z.B. Mittelstand oder GroBunterneh-
men), wie das Unternehmen strukturiert und organisiert (z.B. flache
Hierarchien) ist oder auch die Unternehmenspolitik. Hierzu zdhlt
auch das kulturelle Umfeld, sei es die Unternehmenskultur oder die
Kultur der einzelnen Personen im Zusammenspiel. Gibt es Anderun-
gen im Projektumfeld, so konnen diese das durchzufiihrende Projekt
und somit die Software-Engineering-Methode beeinflussen.

Die verschiedenen Bestandteile eines Projektes konnen Auswirkung auf die
gewihlte Software-Engineering-Methode haben. Im Folgenden sollen die
Bestandteile einer Software-Engineering-Methode beschrieben werden, u.a.
nach [BK13], [LL10] und [OMGO8]:

Eine Software-Engineering-Methode wird durch eine oder mehrere
voneinander abhéngigen Reihenfolge von zu erledigenden Schritten
beschrieben. Diese Reihenfolge wird Workflow genannt. Dieser
Workflow beschreibt, wie die einzelnen Elemente in der Software-
Engineering-Methode miteinander zusammenhidngen und zu wel-
chem Zeitpunkt welches Element von wem ausgefiihrt wird.
Einzelne Abschnitte im Workflow konnen sogenannte Meilensteine
beinhalten. Meilensteine bezeichnen einen Zeitpunkt oder Abschluss
im Workflow, wo beispielsweise Elemente fertiggestellt sein miis-
sen. Diese Meilensteine und deren Inhalt sowie ihr Zeitpunkt werden
im Vorfeld anhand von Kriterien definiert und festgelegt. Der Ab-
schnitt des Workflows ist erfolgreich beendet, wenn die im Vorfeld
definierten Kriterien des Meilensteins zum entsprechenden Zeit-
punkt erfiillt sind.

Ein Workflow setzt sich aus einzelnen Aktivitdten zusammen. Eine
Aktivitit bezeichnet eine bestimmte Aufgabe oder Tétigkeit, welche

29

im Rahmen der Software-Engineering-Methode durchgefiihrt wird.
Viele Aktivitdten werden durchgefiihrt, um Artefakte zu entwickeln.

o Artefakte in einer Software-Engineering-Methode haben verschiede-
ne Auspriagungen. Ein wichtiges Artefakt sind die sogenannten In-
kremente der zu erstellenden Software. Je nach Software-
Engineering-Methode sind dies die vollstindige Software am Ende
des Projektes oder einzelne Bestandteile auf dem Weg zum Endpro-
dukt. Des Weiteren sind Artefakte einzelne Dokumente o0.4., welche
fiir den Erfolg der Software-Engineering-Methode wichtig sind. Dies
konnen Anforderungsspezifikationen, (Test-)Reporte oder andere
Ergebnisse sein. Ein weiteres Artefakt sind sogenannte Guidances,
Anleitungen oder Hilfestellungen fiir die Durchfithrung der einzel-
nen Aktivitéiten.

e Die einzelnen Aktivititen benotigten Artefakte sowohl als Input,
damit die Aktivitdt durchgefiihrt werde kann, als auch dass sie Arte-
fakte als Output fiir weitere Aktivititen generieren. Der Zusammen-
hang zwischen Artefakten und Aktivititen wird ebenfalls vom
Workflow festgelegt.

e Die einzelnen Aktivititen werden wie in Abbildung 6 zu sehen von
einzelnen oder mehreren Rollen durchgefiihrt. Eine Rolle wird durch
eine konkrete Person im Team ausgefiillt, welche die entsprechenden
Qualifikationen fiir diese Rolle besitzt.

e Eine Rolle kann Verantwortung fiir ein Artefakt oder eine Aktivitét
beinhalten, muss dies aber nicht. Wichtig ist, dass jede Aktivitit und
jedes Artefakt mindestens einen Verantwortlichen besitzen.

e Um bestimmte Aktivitdten zu erfiillen oder um ein bestimmtes Arte-
fakt zu erzeugen, konnen verschiedene Techniken und auch Werk-
zeuge (engl. Tools) eingesetzt werden. Diese unterstiitzen die durch-
fiihrenden Personen, um die Aktivitit erfolgreich durchzufiihren.

e Damit ein Projekt funktioniert, ist es wichtig, dass eine gesunde
Kommunikationskultur gepflegt wird. Das ,,Hauptinstrument* dafiir
ist eine Spezialform einer Aktivitit, das Meeting. Meetings konnen
im unterschiedlichen Mafle in Projekten eingesetzt werden. Einer-
seits konnen sie als kurze Informations-Meetings dienen, anderer-
seits aber auch zur Entscheidungsféillung. Dabei muss der ,,richtige®
Mittelweg gefunden werden, damit der zeitliche Aufwand nicht fiir
ergebnislose Meetings {iberhandnimmt und dass ausreichend Zeit fiir
die eigentliche Durchfiihrung bleibt.

Die verschiedenen Bestandteile einer Software-Engineering-Methode sind
wichtig zu wissen, da anhand dieser Bestandteile eine Software-
Engineering-Methode im Endeffekt angepasst wird, indem beispielsweise

30

eine Aktivitit hinzugefiigt oder geldscht oder der Workflow geéndert wird.
Um Software-Engineering-Methoden auszufiihren und spéter entsprechend
anpassen zu konnen, sollten sie anhand eines Modells dargestellt werden.
Durch ein Modell wird ersichtlich, wie die einzelnen Komponenten zusam-
menhéngen und an welcher Stelle etwas entsprechend angepasst werden
kann.

2.1.2 Modellierung von Software-Engineering-Methoden

Um eine Software-Engineering-Methode zu modellieren, werden die Be-
standteile entsprechend definiert und alle Rollen, ihre Verantwortlichkeiten,
Artefakte, Aktivitdten usw. miteinander verkniipft. Ebenso wird tliber die
Abhingigkeiten die Reihenfolge der Aktivititen festgelegt und dargestellt.
Zusétzlich wird dadurch visualisiert, welche Artefakte als In- und Output fiir
eine Aktivitdt notig sind, welche Rolle daran beteiligt ist oder die Verant-
wortlichkeit dafiir besitzt. Zusétzlich konnen Regeln definiert werden, wel-
che bei der Ausfithrung einer Software-Engineering-Methode einzuhalten
sind oder den einzelnen Tétigkeiten werden Techniken zugeordnet. Ein Mo-
dell dient nicht nur der Visualisierung zur Verstindlichkeit, sondern ein
automatisches Ausfiihren hilft den Personen bei der Umsetzung und dem
Entwickeln eines Produktes.

Ein Modell ist ebenfalls wichtig, damit die Software-Engineering-Methode
angepasst werden kann. Dadurch wird ersichtlich, an welcher Stelle sich ein
Element der SEM befindet und welche Abhéngigkeiten bestehen. Soll ein
solches Element spiter ausgetauscht oder geloscht werden, miissen diese
Abhingigkeiten ebenfalls mit in Betracht gezogen werden, um die Konsis-
tenz und Gesamtfunktionalitit der Methode weiterhin zu gewihrleisten.
Wird spéter ein Element hinzugefiigt, kann im Modell gepriift werden, an
welcher Stelle dies eingefiigt werden soll.

Fiir die Modellierung von Software-Engineering-Methoden gibt es bereits
verschiedene Modelle und Methoden. Die bekannteste und am meisten ein-
gesetzte ist das Software and Systems Process Engineering Meta-Modell,
kurz SPEM, der OMG [OMGOS]. Dieses ist ein Meta-Modell und ebenfalls
ein UML-Profil zur Spezifikation von Software-Engineering-Methoden. Das
Modell der konkreten Software-Engineering-Methode, welches spiter im
Projekt genutzt wird, befindet sich auf der sogenannten ,, Typ-Ebene*. Auf
der darunterliegenden ,,Instanz-Ebene‘ befinden sich die konkreten und in-
stanziierten Werte aus dem eigentlichen Projekt, beispielsweise welche
konkrete Person eine Rolle ausfiillt.

SPEM unterscheidet in seinem Modell zwischen den Methodeninhalten wie
Artefakte, Aktivititen bzw. Aufgaben, Rollen usw. und den Prozessen. Da-
bei konnen verschiedene Prozesse iiber ein Set von Methodeninhalten spezi-

31

V-Model (XT)

fiziert werden. Uber Plugins ist es moglich, SPEM-Spezifikationen zu vari-
ieren, das heilit es wird eine Basismethodik fiir einen Prozess oder Teil-
Prozess definiert und anschlieend projektspezifisch angepasst.

Ein weiteres bekanntes Modell ist die ISO 24744 [ISO07], welches auf ei-
nem anderen Prinzip als SPEM beruht. Dieses Modell wird zusétzlich im
Buch von Cesar Gonzales-Perez und Brian Henderson-Sellers[GPHSO0S]
beschrieben, welche an der Entwicklung der ISO 24744 mitgewirkt haben.
Dieses Model integriert Prozesse, Produkte und Rollen (,,Producer®) in ei-
nem einzigen Paket einer Methodenspezifikation.

Bei Sauer und Engels [ES10] wird mit MetaME ebenfalls eine Meta-
Methode zur Modellierung von Software-Engineering-Methoden vorge-
stellt. Diese baut auf einem Meta-Model des Software Engineering auf und
kombiniert Ideen des Meta-Modelling mit denen des Method-Engineering.
MetaME beschreibt weniger, wie eine Methode angepasst werden koénnte,
sondern mehr, wie eine Methode entsprechend anhand eines Meta-Modells
erstellt werden kann.

Fiir den spéteren Ansatz dieser Arbeit ist es egal, ob das Modell mit Hilfe
von SPEM, ISO 24744, MetaMe, einer Variante oder einer Vereinfachung
davon erstellt wurde. Wichtig ist zum einen, dass alle Artefakte, Rollen,
Aktivitidten, Techniken und der Workflow sowie die Abhéngigkeiten unter-
einander modelliert sind. Zum anderen sollte konstant dieselbe Methode zur
Modellierung bei der Nutzung des Ansatzes verwendet werden.

2.1.3 Arten von Software-Engineering-Methoden

Software-
Engineering-

Methode (SEM)

7 Y

Situations-

) ile SEM i
Klassische SEM Agile Hybride SEM spezifische SEM

V-Modell +
Scrum

RUP Scrumban

Wasserfall Andere

Extreme

: Andere XBreed Andere
Programming

Abbildung 7 Verschiedene Arten von Software-Engineering-Methoden

Projekte unterscheiden sich gerade in den Feinheiten von anderen Projekten.
Wenn ein bestimmtes Vorgehen fiir das eine Projekt erfolgreich ist, kann es
beim néchsten schon zum Misserfolg fiihren. Es gibt nicht die Software-

32

Engineering-Methode, welche fiir alles und jedes Projekt passt, eine one-
size-fits-all* Methode (vgl. auch [HS06], [C002]).

Von daher gibt es die verschiedensten Arten von Software-Engineering-
Methoden, um ein Projekt zum Erfolg zu fithren. In Abbildung 7 sind diese
mit einigen Vertretern exemplarisch dargestellt. Dabei wird hauptsidchlich
zwischen den ,klassischen* Software-Engineering-Methoden und den soge-
nannten ,,Agilen Software-Engineering-Methoden®, auch Agile Methoden
genannt, unterschieden. Zusétzlich zu diesen beiden Gruppen gibt es ,,hyb-
ride* Software-Engineering-Methoden, welche sich sowohl aus klassischen
und Agilen SEM zusammensetzen konnen als auch beispielsweise rein aus
verschiedenen Agilen Methoden. Die letzte Gruppe bilden die situationsspe-
zifischen Software-Engineering-Methoden. Diese Methoden zeichnen sich
dadurch aus, dass sie aus verschiedenen Bausteinen, den ,,Method Ele-
ments®, eine Software-Engineering-Methode speziell fiir ein Projektsituati-
on zusammenbauen. Die einzelnen Arten sollen im Folgenden ndher erldu-
tert werden.

2.1.3.1 Klassische Software-Engineering-Methoden

Die traditionellen oder klassischen Software-Engineering-Methoden sind im
Gegensatz zu den Agilen Methoden besser strukturiert (formalisiert). Sie
besitzen mehr Vorgaben und Dokumentation und sind deshalb schwerge-
wichtiger. Hingegen werden Agile Methoden gern als leichtgewichtig be-
zeichnet. Ferner sind in traditionellen Methoden insbesondere die Anforde-
rungen stabiler und dndern sich im Laufe der Zeit eher weniger. Bekannte
Vertreter sind hier das V-Modell [DW99] bzw. V-Modell XT [RB07], das
Wasserfallmodell [Bo81] oder der Rational Unified Process (RUP) [Kr03,
Kr98], wobei der RUP ein besonderer Fall ist. Er kann sowohl schwerge-
wichtig, als auch leichtgewichtig implementiert werden. Eine agile Variante
ist beispielsweise der Agile Unified Process (AUP) von Scott Ambler
[AmO6].

2.1.3.2 Agile Methoden

In den letzten Jahren hat die Popularitdt von sogenannten ,,leichtgewichti-
gen* Vorgehensmodellen zugenommen. Erstmals wurde ein solches Modell
von Kent Beck mit Extreme Programming (XP) vorgestellt [Be0O]. Heute
sind diese Modelle als Agile Software-Engineering-Methoden, kurz Agile
Methoden bekannt. Scrum [BS02, Gl08], Feature Driven Development
(FDD) [DCL99] und Crystal [Co02] sind nur einige weitere Beispiele, die
im Laufe der Zeit entstanden sind.

Die Bezeichnung ,,agil“ (lat. agilis: flink; beweglich) wurde auf einer Kon-
ferenz 2001 in Utah ausgewdhlt, wo ebenfalls das ,,Agile Manifest [AMO1]
entstand. Dies stellt das Fundament fiir die agile Softwareentwicklung dar.

33

Eine Hauptcharakteristik Agiler Methoden ist die Vorgehensweise in itera-
tiven Zyklen. Das Ziel eines jeden iterativen Zyklus ist es, sowohl funktio-
nierende Software als auch neue Funktionalititen flir eine (bestehende)
Software zu liefern. In den verschiedenen Vorgehensmodellen gibt es be-
stimmte Rollen, die fest verteilt sind. Dabei liegt der Hauptfokus auf dem
Team, welches am besten interdisziplindr zusammengesetzt ist. Agile Me-
thoden sind dabei kommunikationsintensiv und legen Wert auf den Einzel-
nen selbst sowie auf Selbstverantwortung. Ein Team soll sich selbst organi-
sieren und alles kommunizieren, was zu einer Verminderung von aufwéndi-
ger Dokumentation fiihren soll.

Ziel der Prozesse ist es, durch kurze iterative Zyklen schnellstmoglich Soft-
ware mit neuer Funktionalitit zu liefern [DNZ07]. Dabei ist es schwierig,
wenn nicht unmdglich, in Projekten alle Anforderungen vorher festzulegen.
Mit den Agilen Methoden soll die Moglichkeit gegeben werden, zeitnah auf
neue Anforderungen und Anderungen reagieren zu kdnnen.

2.1.3.3 Hybride Software-Engineering-Methoden

Unter hybriden Software-Engineering-Methoden versteht man die Kombi-
nation von zwei Methoden miteinander. Die bekannteste Kombination im
agilen Bereich ist die Kombination von Scrum und Extreme Programming.
Eine typische Kombination ist die Verwendung von Scrum als Hiille mit der
Anreicherung von XP-Techniken, beispielsweise dem Pair Programming,
Test Driven Development usw. Ein bekannter Vertreter, welcher beide Agi-
le Methoden miteinander verkniipft ist xp@Scrum [MS02, Vr03]. Ein neue-
rer Vertreter unter den agilen Hybriden ist ,,Scrumban® welches 2008 von
Ladas [LA09] vorgestellt wurde und Scrum mit Kanban kombiniert.

Der Agile Unified Process ist weniger ein Hybrid als die Kombination von
RUP mit den agilen Prinzipien. Es ist eine agile Ausprigung des RUP. Dies
ist mit ein Grund, warum teilweise dariiber diskutiert wird, ob RUP nun zu
den agilen oder zu den klassischen Methoden gehort.

Seit einiger Zeit gibt es zusitzlich zu den agil-hybriden Methoden, die ers-
ten Kombinationen von klassischen mit agilen Methoden. Die bekannteste
Kombination ist hier die des V-Modells mit Scrum. Da das V-Modell hiufig
im Dienstleistungssektor eingesetzt wird, wollten agile Anbieter moglichst
ebenfalls an Ausschreibungen fiir Projekte teilnehmen, obwohl das V-
Modell Voraussetzung war. Die Idee war nun, das V-Modell als duflere Hiil-
le zu nutzen, mit den entsprechenden Meilensteinen usw. aber die innere
Entwicklung wurde in Form von Scrum genauer in Sprints durchgefiihrt.

Diese Beispiele zeigen gut, dass es moglich ist, Software-Engineering-
Methoden oder Methodenelemente miteinander zu kombinieren und somit
SEMs fiir den Zweck des Projektes anzupassen. Wie es mdglich ist, eine

34

Software-Engineering-Methode vollstindig aus Methodenelementen zu-
sammenzusetzen, wird in der Unterdisziplin des Method Engineering im
Situational Method Engineering behandelt.

2.1.3.4 Situationsspezifische Software-Engineering-Methoden
Method Engineering (ME) beschéftigt sich mit dem Design und der Kon-
struktion von Methoden, insbesondere fiir ,,information systems develop-
ment™“ [HS06]. Sie wihlen wiederverwendbare Methoden-Komponenten,
auch Method Fragments oder Method Chunks genannt, aus einer Methoden-
Basis (engl. Method Base) aus und setzen sie zu einer Methode zusammen.
Niitzlich und aussagekriftig ist hier die Definition von Sjaak Brinkkemper
[Broe6, S. 276]:*“Method engineering is the engineering discipline to design,
construct and adapt methods, techniques and tools for the development of
information systems*‘.

Nach Sjaak Brinkkemper ist Method Engineering also eine (ingenieur-)
wissenschaftliche Disziplin fiir das Designen, Konstruieren und Anpassen
von Methoden, Techniken und Tools fiir die Entwicklung vor allem von
Informationssystemen. Dabei wird der Begriff Methode im Sinne von Vor-
gehensmodell oder Softwareentwicklungs-Prozess genutzt. Nach Brinkk-
emper ist eine Methode ein Ansatz, um ein Software- oder System-
Entwicklungsprojekt durchzufiihren. Diese Methoden basieren auf einem
Ansatz, welcher aus verschiedenen Regeln und moglichen Richtungen fiir
die Entwicklung besteht. Die Methoden sind dabei systematisch strukturiert
in ihren Entwicklungsaktivititen und den entsprechenden Artefakten, die
dabei entstehen. Brinkkemper spricht in seiner Definition allerdings nur von
Informations-Systemen.

Diese Definition wurde von [HSR10] insofern angepasst, dass sie ,,informa-
tion systems® durch ,,system development* zur Verallgemeinerung ausge-
tauscht haben.

Wenn die Methode nun genau auf ein Projekt oder eine Situation abge-
stimmt ist und sie wird fiir diesen Kontext aus den verschiedenen Metho-
den-Komponenten zusammengebaut, dann wird von Situational Method
Engineering (SME) [RRO1,HS06] gesprochen. Neue Methoden werden
konstruiert, indem Methoden-Elemente von verschiedenen Methoden aus-
gewidhlt werden, welche fiir die Situation am besten geeignet sind.

[HSR10] beschreiben in ihrem State-of-the-Art Review des SME, dass die
optimistischste Art, eine situationsspezifische Methode zu erstellen, die Me-
thoden-Konstruktion unterstiitzt durch Tailoring/Customization einer Me-
thode sei.

35

Diverse Ansdtze und Arbeiten haben sich mit Situational Method Enginee-
ring beschéftigt; viele von ihnen werden gut im State-of-the-Art Review von
Henderson-Sellers und Ralyt¢ [HSR10] zusammengefasst. Zusétzlich wird
abschliefend ein Ausblick gegeben, welche Forschungsrichtungen auf die-
sem Gebiet in den nichsten Jahren interessant sein konnten und wo es noch
Probleme gibt. Beispiele dafiir sind, wie die Qualitdt von einer solchen Me-
thode beurteilt werden kann oder wie es moglich ist sicherzustellen, dass die
Konfiguration der ausgewidhlten Methoden-Elemente vollstindig, korrekt
und konsistent ist.

2.2 Projektmanagement und -kontrolle

Ein Projekt ist im Allgemeinen eine sehr komplexe Angelegenheit und ein
Unternehmen ist von den Erfolgen seiner Projekte abhingig. Damit Projekte
erfolgreich sind, miissen sie zum einen gut verwaltet und zum anderen mit
entsprechenden Mechanismen kontrolliert und iiberwacht werden. Das Pro-
jektmanagement ist fiir die Verwaltung der Projekte zustindig, ein wichti-
ges Element ist dabei die Projektkontrolle bzw. das Projektcontrolling. In
den folgenden Abschnitten soll das Projektmanagement und insbesondere
die Projektkontrolle vorgestellt werden. Diese ist nicht nur mit der Uberwa-
chung eines Projektes betraut, sondern greift bei Bedarf aktiv ein und fiihrt
soweit mdglich Anderungen durch.

2.2.1 Projektmanagement
Projekte sind komplex in der Durchfiihrung und kénnen von langer Dauer
sein. Die Verantwortlichen miissen zu jeder Zeit einen umfassenden Uber-
blick iiber das Projekt haben und sich nach [Fi10] bei der Durchfiihrung von
Projekten in regelmiBigen Abstinden verschiedenen Fragen stellen, wie
beispielsweise:
e Wie viele Mitarbeiter werden fiir das Projekt benotigt, welche Quali-
fikationen miissen sie dafiir besitzen?
e Wie werden Projektleiter und die Mitarbeiter fiir das Projekt ausge-
wihlt?
e Sind genug Ressourcen fiir das Projekt; was ist, wenn ein Engpass
im Projekt auftritt?
e Wie teuer wird das Projekt, welche Kosten konnen anfallen?
e Wie lang soll das Projekt dauern, was ist der konkrete Zeitraum fiir
die Durchfiihrung?
e Was passiert bei Terminverzégerungen im Projekt, wie wirken sich
diese aus?
Die Grundlage, um all diese Fragen zu beantworten, der Komplexitit Herr
zu werden und zu jeder Zeit den Uberblick zu behalten, bildet das Projekt-
management. Nach der DIN 69901 beschreibt Projektmanagement die ,,Ge-

36

samtheit von Fihrungsaufgaben, -organisation, -Techniken und -mittel flr
die Abwicklung eines Projektes.

Genauer umfasst Projektmanagement somit alle Elemente eines Projektes,
die wichtigsten sind dabei nach der klassischen Managementlehre u.a. die
Planung, die Kontrolle, die Organisation und die Personalfiihrung [Sc13,
Fi10]. Zusitzlich beschreibt das Projektmanagement, wer alles am Projekt
beteiligt ist und wie mit welchen Instrumenten, Techniken und Vorgehens-
weisen ein Projekt durchgefiihrt wird [Fi10].

Leistungsumfang/ Qualitét

Zeit/ Dauer Kosten/ Aufwand

Abbildung 8 Das magische Dreieck im Projektmanagement nach [Sn05]

Im Projektmanagement dreht es sich typischerweise um eine bestimmte
Klasse von Zielen, welche das ,,Magische Dreieck® in Abbildung 8 nach
Sneed [Sn05] verdeutlicht. Es stellt dabei ebenfalls die Abhéngigkeiten zwi-
schen Dauer des Projektes, Kosten und Aufwand des Projektes, sowie die
Qualitdt und dem durch das Projekt gelieferte Leistungsumfang dar. Es wird
ein bestimmter Leistungsumfang, sogenannte Sachziele definiert, welche die
Qualitdt und gewiinschte Leistung widerspiegeln. Es werden Termine als
Ziel festgelegt, welche das Projektende, aber auch Liefertermine zwischen-
durch beschreiben. Ferner wird der Aufwand fiir das Projekt geschétzt und
in welchem Kostenrahmen sich das Projekt bewegen soll [Fi10, BK13]. Alle
drei Aspekte sind voneinander abhdngig. Denn werden ein oder zwei im
Laufe des Projektes angepasst und wird versucht, sie zu optimieren, geht
dies immer zu Lasten des dritten Aspektes. Von daher muss zu Beginn fest-
gelegt werden, wo die Priorititen im Projekt liegen, welche Ziele am wich-
tigsten sind und zu Lasten welchen Aspektes eine Anpassung erfolgen darf.

Das Projektmanagement besteht aus verschiedenen Elementen, die relevan-
testen sind in Abbildung 9 zu sehen.

37

Kulturelles Vorgehens- &
Umfeld Prozessmodelle

Projekt-
kontrolle

Projekt-
psychologie

Werkzeuge Projekt-
organisation

Abbildung 9 Elemente des Projektmanagements basierend auf [Fi110, AE13]
Basierend auf [AE13, Fi10] sind dies:

Vorgehens- und Prozessmodelle: Projekte werden typischerweise anhand
eines definierten Prozesses durchgefiihrt. Vorgehensmodelle und im Soft-
warebereich Software-Engineering-Methoden dienen dabei als Vorlage,
welche dem Unternehmen helfen, das Projekt optimal abzuwickeln. Dabei
miissen diese Modelle fiir die Projektsituation entsprechend angepasst wer-
den.

Projektkontrolle: Die Projektkontrolle bietet Mechanismen, um alle Pha-
sen des Projektes im Blick zu behalten und bei Anderungen gegebenenfalls
gegensteuern zu konnen.

Projektorganisation: Am Projekt und auch am Projektmanagement selbst
sind mehrere Personen beteiligt. Dies konnen verschiedene Rollen, Teams,
aber auch Gremien oder andere Bereiche im Unternehmen sein. All diese
Personen miissen verschiedene Aufgaben erledigen und haben entsprechen-
de Verantwortlichkeiten, die definiert und zugewiesen werden miissen.

Werkzeuge: Softwaregestiitzte Werkzeuge unterstiitzen komplexe Projekte,
da diese ab einer bestimmten Grofle nur noch schwer von einzelnen Perso-
nen bewiltigt werden konnen. Mit Hilfe dieser Werkzeuge werden Projekte
iibersichtlicher und konnen einfacher abgewickelt werden.

Projektpsychologie: Projekte und Projektmanagement werden von Perso-
nen durchgefiihrt, die sich je nach Individuum und Situation anders verhal-
ten. Beispielsweise sind die Kommunikation, die Akzeptanz bestimmter
Vorgehensweisen und Werkzeuge, aber auch ein Team gekonnt zu motivie-
ren, von enormer Wichtigkeit.

38

Kulturelles Umfeld: Ebenso wie die Psychologie in einem Projekt ist auch
das kulturelle Umfeld sowohl vom Unternehmen als auch von jeder einzel-
nen Person sehr wichtig zu erachten. Sie beeinflussen das Handeln und
Denken einer Person.

Auch wenn alle Elemente fiir das Projektmanagement wichtig sind, ist fiir
diese Arbeit insbesondere die Projektkontrolle wichtig, da diese sich mit der
Uberwachung und gegebenenfalls mit Anderungen im Projekt beschiftigt.
Sie bezieht ebenso das Element der Modelle als auch die der Organisation
mit ein. Gerade die letzten beiden Elemente werden in dieser Arbeit nicht
betrachtet. Im folgenden Abschnitt soll von daher die Projektkontrolle nun
ausfiihrlicher beschrieben werden.

2.2.2 Projektkontrolle

Die Projektkontrolle, auch Projektcontrolling oder kurz Controlling genannt,
unterstiitzt das Projektmanagement hauptsichlich bei der Planung, Uberwa-
chung und Steuerung des Projektes. Wichtig ist dabei auf der Basis von
[F10], [Sc13] und [BK12], dass die Rahmenbedingungen eingehalten und
die definierten Projektziele erreicht werden. Es muss somit darauf geachtet
werden, dass geregelt ist, welche Pléne basierend auf den Zielen zu erstellen
sind und wie diese kontrolliert werden. Zusétzlich ist zu beachten, wer wo-
fir verantwortlich ist, wie Termine und Kosten kontrolliert werden und ob
genug Ressourcen vorhanden sind usw.

Der Grundprozess im Controlling besteht nach [GA02] aus den vier ver-
schiedenen Schritten Zielfindung, Planung, Uberwachung und Steuerung,
die in Abbildung 10 zu sehen sind.

Im ersten Schritt werden die Ziele definiert, welche durch das Projekt er-
reich werden sollen. Im zweiten Schritt wird geplant, wie diese Ziele im
Projekt erreicht werden konnen. Im Projekt wird laufend tiberwacht, ob die
Pline eingehalten werden. Bei Anderungen wird wenn nétig dadurch ge-
gengesteuert, dass die Pldne angepasst werden.

39

Uberwachung

Abbildung 10 Allgemeiner Controlling-Ablauf nach [GA02]

In der DIN 69901 wird ein solcher Regelkreis als ,,Sicherung des Errei-
chens der Projektziele durch:

Soll-1st-Vergleich, Feststellung der Abweichungen, Bewerten der Konse-
qguenzen und Vorschlagen von KorrekturmaBnahmen, Mitwirkung bei der
MalRnahmenplanung und Kontrolle der Durchfiihrung* beschrieben.

Zielvorgaben erfiillt

Ziel nicht planbar MaBnahme abgeschlossen

W

Plan Prolelrluberwamung Aktueller
Zielfindung festgelegt ijektplanung aufgestellt [Verglelch Ist/ Soll) Projekt-

status

Soll !=Ist
Plan

angepasst

Planvorgaben

A

Ziel nicht nicht erreichbar L~
erreichbar (Projektsteuerung)

Abbildung 11 Der Regelkreis des Controlling basierend auf [GA02]

Zusammengefasst ergeben sich basierend auf der Definition und [GAO02]
der folgende Ablauf, welcher in Abbildung 11 zu sehen ist:

Nachdem die Ziele festgelegt sind, wird ein Plan zur Erreichung der Ziele
aufgestellt. Wihrend der Uberwachung werden regelmiBig Statusmeldun-
gen aufgenommen und der Soll-Zustand mit dem Ist-Zustand verglichen.
Werden Abweichungen festgestellt, werden diese an die Projektsteuerung

40

iibergeben, wo mogliche Konsequenzen bewertet und Korrekturmafnahmen
geplant werden. Der Plan wird wenn mdglich angepasst und die Uberwa-
chung wird weiter durchgefiihrt. Kann entweder der Plan oder kdnnen sogar
die Ziele nicht erfiillt werden, miissen diese jeweils entsprechend angepasst
werden.

Um diesen Regelkreis entsprechend durchfithren zu konnen, besteht ein
Controlling-System neben dem Grundprozess aus weiteren Komponenten,
welche beruhend auf [GA02] in Abbildung 12 dargestellt sind.

nutzt Ergebnis als Instrument zur Verbesserung

Rolle

erzeugt

— Zielfindung I Konzept
Ist zuge-
ordnet
— Projektplanung “rzeyg,
Controlling kg besteht Projektplan Erge.bnis{
Grundprozess aus Ergebnisbericht
- 0
' || Projekt- ‘“oa\\“‘e

steuerung

Aktivitat Projekt- erzeugt Uberwachungs-
iiberwachung bericht

Priizisiert

durch

PM-Methode

Abbildung 12 Komponenten Controlling-System beruhend auf [GA02]

Der Grundprozess wird von Personen durchgefiihrt, welche entsprechende
Rollen ausfiillen, zum Beispiel die von einem Projektmanager. Der Grund-
prozess setzt sich aus verschiedenen Aktivititen zusammen, denen eine
Vorgehensweise zugrunde liegt. Das Vorgehen wird mit Hilfe von Projekt-
management-Methoden prézisiert.

Der bereits beschriebene Grundprozess erzeugt verschiedene Artefakte, die
Zielfindung erzeugt zunichst das Konzept, in dem die Projektziele festge-
halten sind. In der Projektplanung wird anschlieend ein Projektplan er-
zeugt, welcher bei Bedarf von der Projektsteuerung modifiziert wird. Bei
der Projektiiberwachung wird ein Uberwachungsbericht erzeugt. Diese drei
Artefakte werden zu einem Ergebnisbericht zusammengefasst, welcher zur
Verbesserung des Grundprozesses herangezogen wird. Durch diese Mecha-
nismen wird der Prozess immer weiter optimiert.

Wichtig ist es an dieser Stelle zu erwédhnen, dass die Erreichung der Projekt-
ziele bedeutet, dass es sich hier um Ziele im Rahmen von Umfang des Pro-
jektes, den Projektkosten, den Terminen, der Qualitdt und auch der Ressour-
cen handelt und es weniger um eine Software-Engineering-Methode geht.

41

Beispielsweise geht es bei dem Ziel der Aufrechthaltung der Rahmenbedin-
gungen hauptsiachlich darum, dass ein Projektteam arbeitsfahig bleibt, ohne
iiberbelastet zu werden [BK13]. Der Fortschritt des Projektes wird anhand
der Einhaltung der Kosten, der Einhaltung von Terminen sowie der Erfiil-
lung der Qualitdtsvorgaben kontrolliert. Kontrollmechanismen sind dafiir
u.a. regelmiBige Fortschrittsberichte, Projektbesprechungen oder die Uber-
priifung der Ergebnisse in der Qualititskontrolle. Die Kontrolle findet somit
auf einer anderen Ebene als einer Uberwachung der eigentlichen Software-
Engineering-Methode statt. Ferner sind die genannten Uberwachungsme-
chanismen zwar wichtig, finden aber in groen Abstdnden statt und stiitzen
sich, zumindest teilweise, auf Berichte.

Nach [BK13] ist es zwar wichtig, Kennzahlen fiir die Uberwachung zu er-
fassen, wie beispielsweise den erbrachten Leistungsumfang, welche Res-
sourcen eingesetzt worden sind und der Vergleich des Ist- und Soll-
Zustandes der Pldne. Aber es ist schwierig, dafiir entsprechende Messdaten
zu erfassen. Zwar konnen mit modernen Werkzeugen Arbeitsdaten und Er-
stellung von Berichten beziiglich der Software wie Build-, Fehler- und Test-
Statistiken unterstiitzt werden. Doch die Festlegung dieser Messwerte, ge-
nannt Metriken sowie deren Auswertung und Prisentation stellen eine grof3e
Herausforderung dar.

Auch fiir das Zusammenstellen aller wichtigen Projektinformationen ist es
essentiell, wie im Rahmen des Projektmanagements beispielsweise Termin-,
Arbeits- und Ressource-Pline festgelegt werden. Ebenso wichtig ist die
Identifikation von Problemen und das Festlegen von Maflnahmen usw. Da-
bei die Ubersicht zu behalten und adiquat zu reagieren ist auch mit Soft-
wareunterstiitzung nicht einfach. Aber gerade auftretende Abweichungen
von den Plidnen miissen moglichst frith erkannt werden, damit rechtzeitig
gegengesteuert werden kann. Der Plan muss dafiir stindig aktualisiert wer-
den.

Die Frage ist also, wie sich diese Bereiche der Projektkontrolle auf die
Software-Engineering-Methode auswirken. Wie kénnen MaBnahmen ver-
bessert und besser mit dem Uberwachen einer Software-Engineering-
Methode verzahnt und somit optimiert werden? Wird eine Software-
Engineering-Methode im Projekt optimiert, so konnen auch die Ziele des
Projektmanagements besser eingehalten werden.

2.2.3 Resilienz in Projekten - Adaptive Projekte

Um die sich stindig dndernden Bedingungen, Umgebungen und Faktoren in
einem Projekt und somit einer Software-Engineering-Methode begegnen zu
konnen, wurden bei [Bo13] die Resilienz in Projekten und adaptive Projekte
thematisiert.

42

Resilienz bezieht sich zunédchst auf den Menschen und umfasst seine Fahig-
keit, dynamisch mit widrigen Umstidnden und sich dndernden Situationen
umgehen zu konnen. Dafiir nutzt er verschiedene Faktoren wie Optimismus,
Losungsorientierung etc. Diese ermdglichen es dem Menschen mit Krisen
umzugehen. Betrachtet man nun Resilienz im Sinne der Systemtheorie, so
sagt diese aus, dass Systeme ihren Zustand auch bei Stérungen und Einfluss
sowohl von innen als auch von auflen ausgleichen konnen. Somit behalten
sie thre Systemintegritdt [Bol3]. Ein System versucht also immer wieder
einen stabilen Zustand zu erreichen. Alles, was diese Stabilitdt gefdhrden
kann, wird nach der Definition der statischen Resilienz ausgeblendet oder
gleich verhindert.

Doch ein Projekt ist immer im Wandel und kann diese Zustdnde auch nicht
ausblenden. Es sollte darauf entsprechend reagieren kdnnen. Von daher ist
fiir Projekte und somit auch Software-Engineering-Methoden die Definition
der 6kologischen Resilienz sinnvoll. Danach existieren mehrere Systemzu-
stinde, welche tolerierbar sind. Die Einfliisse von innen und auflen sorgen
dafiir, dass bei bestimmten Abweichungen in einen anderen Zustand ge-
wechselt werden kann [Bol3]. Somit wird die Systemintegritit gewahrt.

Projektausrichtung

Projektwissen

Projektumfeld

Projektteaming

Projektsensitivitat

Projektgestaltung

Abbildung 13 Das H.A.P.-Modell nach Bogert [Bol3] mit seinen sechs Dimensionen

Mit Hilfe des H.A.P.-Modells (Hoch Adaptives Projekt) in Abbildung 13
nach Bogert [Bol3] werden mit den sechs Dimensionen die Eigenschaften
und Fihigkeiten eines adaptiven Projektes beschrieben. Ein Projekt befindet
sich nach Bogert immer innerhalb dieser Dimensionen. Es gibt kein Projekt,
welches nicht adaptiv ist, einige sind nur adaptiver als andere. Mit Hilfe des
Modells und den verschiedenen Dimensionen lassen sich die Potentiale von
einem System und somit auch von einem Projekt aufzeigen, welche zur An-

43

passung und Verdanderungen besonders geeignet sind. Neben den Personen
ist hier auch der Kontext zu betrachten.

Die sechs Dimensionen des H.A.P.-Modells sind:

1. Projektausrichtung (rot): Hier geht es sowohl um den Faktor Zeit,
als auch wie die Personen die Zukunft des Projektes betrachten und
wie sie es angehen wollen. Wichtig ist dabei die Vorausschau. Das
heiit es wird betrachtet, welche Szenarien eintreten konnten und wie
darauf entsprechend reagiert werden kann, damit das System bzw.
das Projekt seine Integritit wahrt. Dabei sollte sich immer an den
Zielen orientiert werden, denn nach Bogert sind adaptive Projekte
zielorientiert.

2. Projektumfeld (blau): Das Projektumfeld bei der Adaptivitit von
Projekten wird hier im Sinne von Beziehungen, insbesondere in Hin-
sicht auf Personen betrachtet, welche sie untereinander, aber auch
mit der Umwelt haben. Um tragfdhige Beziehungen zu erreichen, ist
ganz besonders das Feedback wichtig. Dynamische Systeme und in
diesem Fall Projekte konnen ohne Feedback nicht erfolgreich sein.
Sie brauchen die Riickkopplung, um Anderungen und Korrekturen
vornehmen zu kdnnen.

3. Projektsensitivitiit (griin): Bei der Projektsensitivitdt geht es haupt-
sdchlich um die Achtsamkeit der Projektmitglieder in Bezug auf das
Projekt. Damit sind hier unter anderem die Aufmerksam des Einzel-
nen, aber auch die eigenen Erwartungen, Denkweisen, Interpretati-
onsmdglichkeiten und Bewertungen gemeint. Dabei ist es wichtig,
Details aus dem Projektumfeld wahrzunehmen und herauszufinden,
ob es Turbulenzen und Probleme geben konnte, um gegebenenfalls
gegensteuern zu konnen.

4. Projektgestaltung (orange): Bei der Projektgestaltung geht es in
erster Linie um die kulturellen Aspekte. Dabei kommt die Projektge-
staltung im Wesentlichen vom Management und soll von ihm ent-
sprechend ausgefiillt werden. Wesentliche Aspekte sind dabei eine
gute Fehlerkultur, Redundanzen, Entscheidungskompetenzen und
Flexibilitdt der einzelnen Teammitglieder.

5. Projektteaming (violett): Ein zentraler Aspekt von einem Projekt
ist das Projektteam mit seinen Personen, ihren Fahigkeiten und ver-
schiedenen Personlichkeiten. Beim Teaming geht es darum, ein op-
timales und flexibles Team zu finden.

6. Projektwissen (grau): Die letzte Dimension beschéftigt sich mit
dem Wissen und den Erfahrungen der einzelnen Projektmitglieder.
Wichtig ist dabei vor allem, wie alle Mitglieder (voneinander) lernen
konnen, um die Erfahrungen zu nutzen, umzusetzen und sich zu ver-
bessern.

44

Das adaptive Projekt und H.A.P.-Modell von Bogert ist relativ abstrakt. Es
bezieht sich groftenteils auf die Personen in einem Projekt und wie diese
einerseits adaptiv mit dem Projekt umgehen, andererseits aber auch auf Kri-
sensituationen reagieren. Personen sind ein wichtiger Faktor im Projekt und
notig, um eine Software-Engineering-Methode durchzufiithren. Auch wenn
der Fokus nicht auf der Software-Engineering-Methode liegt, ist zu {iberle-
gen, wie diese Aspekte von einem adaptiven Projekt genutzt werden kon-
nen, um eine adaptive Software-Engineering-Methode zu entwickeln.

Ein Bereich, welcher sich ebenfalls mit Verdnderungen beschiftigt und sich
auf Projekte und gegebenenfalls auf die Software-Engineering-Methode
auswirken kann, ist das Change Management. Dieses wird im nidchsten Ab-
schnitt ndher erlautert wird.

2.3 Change Management auf Unternehmensebene

Change Management, zu Deutsch Anderungs- oder auch Verinderungsma-
nagement, beschiftigt sich mit den Anderungen hauptsichlich auf den Un-
ternehmensebenen. Es beinhaltet dabei insbesondere ,,die speziellen Ma-
nagementtechniken, die zur Steuerung der Prozesse im Rahmen von Wandel
selbst erforderlich sind* [Lal0, S. 3]. Wandel oder Verdnderungen in einem
Unternehmen konnen die unterschiedlichsten Ursachen haben, ein wichtiger
Einflussfaktor ist dabei die Umwelt. Haufig ist es notig, dass Unternehmen
auf die unterschiedlichen Anforderungen im Markt reagieren und sich an-
passen miissen. Die Anforderungen konnen ganz verschieden sein und desto
unterschiedlicher sind auch die Anderungsprozesse, die im Unternehmen
angestoflen werden konnen. Denn jeder Verdnderungsprozess kann auf einer
anderen Ebene wirken und bildet einen anderen Schwerpunkt [SH13].

Das Change Management setzt dabei auf den Prozess selbst, um vom aktu-
ellen Ausgangspunkt ein definiertes Ziel zu erreichen. Dabei liegt nach
[Lal0] der Fokus weniger auf dem Ziel bzw. dessen Definition selbst, son-
dern auf der Gestaltung des Weges, also des Anderungsprozesses, um das
Ziel zu erreichen. Change Management hat von daher nach Abbildung 14
verschiedene Ansatzpunkte, welche sich nach ,,innen richten“. Diese gehen
dabei primir auf die Personen im Unternehmen [Lal0] ein.

45

Verdnderungen in der

Unternehmens- -
Aufbauorganisation

Struktur

+ Strukturen/ Hierarchien
* Reorganisation
* Fusionen

* Strategie
* Aufbauorganisation

* Ablauforganisation
* Prozesse k —
+ Aktivititen

* Ressourcen

Verdnderungen in der
Ablauforganisation

Unternehmens- * Prozesse
Kultur * Rollen und Zustindigkeiten
Ansatzpunkte + Aktivititen
im Chp;nge * Symbole * Technologien und Ressourcen)
* Werte
Management * Normen

* Grundvorstellungen
* Annahmen

Veranderungen im sozialen Gefiige &
personlichen Arbeitsverhalten

Personen im + Werte & derz beit
Unternehmen * Fiihrungsinstrumente
* Aufgaben
* Fdhigkeiten (Skills) + Verhalten
* Rollen
* Verhalten
* Aufgaben

* Zustindigkeiten

Ebenen, auf die Verdnderungen wirken

Abbildung 14 Ansatzpunkte des Change Managements und Ebenen, auf die Verinderungen
wirken, basierend auf [SH13, La10]

Ohne Personen wire in einem Unternehmen nichts mdglich, denn ohne ihre
Mitarbeit wiirde weder das Unternehmen iiberleben, noch wire eine Verin-
derung im Unternehmen mdglich. Dabei geht es sowohl um die Fahigkeiten
der Personen selbst, den Wandel durchzufiihren und sich anzupassen, als
auch um ihre Rollen im Gesamtgefiige. Beispiele sind wie sich Personen
anderen gegeniiber und im Projekt verhalten oder auch welche Aufgabe mit
entsprechenden Zusténdigkeiten sie besitzen und ausfiihren.

Ein weiterer Ansatzpunkt sind die Strukturen im Unternehmen. Dabei geht
es sowohl um die Hierarchie im Unternechmen, als auch darum, wie die Or-
ganisation an sich aufgebaut ist. Des Weiteren ist es wichtig, wie die Ablau-
fe organisiert sind, welche Strategien im Unternechmen gefahren werden,
welche Ressourcen und Technologien vorhanden sind usw. Gerade die Pro-
jekte im Unternehmen leben von den, teilweise informellen, Prozessen und
Abléaufen. Diese entstehen manchmal evolutiondr und auch iiber Jahre hin-
weg.

Ebenso wie an den Strukturen im Unternehmen kann eine Anderung der
Unternehmenskultur wichtig sein. Diese lebt dabei zum einen von der Kul-
tur der Mitarbeiter selbst. Zum anderen lebt sie aber auch davon, welche
Werte, Annahmen und Grundvorstellungen im Unternehmen selbst herr-
schen. Auch wenn es verschiedene Ansatzpunkte fiir Verdnderung im Un-
ternehmen gibt, so sollten doch immer die anderen Punkte mit in den Ande-
rungsprozess einbezogen werden. Eine Anderung auf der Strukturebene

46

ohne die Personen oder auch die ganze Kultur im Unternehmen mit zu be-
riicksichtigen ist meistens nur schwer moglich oder wird komplett scheitern
[Lal0].

Diese verschiedenen Ansatzpunkte im Change Management fithren zu Ver-
dnderungen auf drei verschiedenen Ebenen: Verdnderungen in der Aufbau-
organisation, in der Ablauforganisation und Verdnderungen im sozialen
Gefiige sowie im personlichen Arbeitsverhalten [SH13]. Auch wenn die
Anderung an den Werten, Fiihrungsinstrumenten und Verhalten der einzel-
nen Personen im Unternehmen sehr wichtig sein kann, ist fiir diese Arbeit
der Ansatzpunkt der Unternechmens-Struktur und von daher Verdanderungen
an der Aufbau- und Ablauforganisation von groerem Interesse.

Anderungen auf der Ebene der Aufbauorganisation kénnen sich auf Projekte
und damit auch auf deren Software-Engineering-Methode auswirken. Vor
allem Reorganisationen und Fusionen konnen es dringend notig machen,
dass die Abldufe und somit die Software-Engineering-Methode angepasst
werden muss. Gerade aber auch die Ebene der Ablauforganisation kann sich
direkt auf die Anderung eines Projektes und somit der Software-
Engineering-Methode auswirken. Im Change Management wird aber bei der
Ablauforganisation nicht die genutzte Software-Engineering-Methode selbst
angepasst, sondern die Prozesse oder Geschiftsprozesse auf Unternehmens-
ebene.

Fiir den Veridnderungsprozess wird typischerweise ein eigenes Verinde-
rungsprojekt ins Leben gerufen. An diesem konnen verschiedene Personen
beteiligt sein, beispielsweise Personen aus der Fiihrungsebene, aus dem Pro-
jektmanagement und Qualititsmanagement, aus dem Betriebsrat und dem
Projektcontrolling usw. Fiir die Durchfiihrung des Verdnderungsprojektes
wird ein Kernteam zusammengestellt. Dieses plant sowohl das Projekt als
auch den Verdnderungsprozess und fiihrt sie anschlieBend durch [Nol4].

Der eigentliche Veranderungsprozess wird vorher genau geplant und ent-
worfen. Dabei werden die Verdnderungen sowohl ,,Top-Down* als auch
,Bottom-Up* durchgefiihrt. Das bedeutet zum einen, die Rahmenbedingun-
gen und die Vorgehensweise werden von oben vorgegeben (top-down for
targets). Zum anderen bedeutet es, dass die spétere konkrete und inhaltliche
Umsetzung ,,von unten* mit Hilfe der Betroffenen umgesetzt wird (bottom-
up for how to do it). [No14]

Fiir die Vorgehensweise heil3t dies konkret, dass das Team die Verdnderun-

gen plant, in dem es sich zunéchst auf allen Ebenen den aktuellen Stand, die
aktuellen Ablidufe sowie Prozesse anschaut und diese beziiglich Verbesse-

47

rungspotentials analysiert. Daraus konnen Zielsetzungen und Losungen ab-
geleitet und erstellt werden. Diese werden in konkrete Mallnahmen {iber-
setzt und anschlieBend im eigentlichen Verdnderungsprozess durchgefiihrt
[SH13]. Die Ergebnisse des Verdnderungsprozesses werden abschlieSend
evaluiert.

Faktor

Evolution
Mensch

Projektorganisation

Betroffene

qualifizieren Kommunikation

Betroffene
Integration | beteiligen

Abbildung 15 Kernthemen und Faktoren des Change Management basierend auf [La10, SH13]

Damit das Verdnderungsprojekt und somit das Verdnderungsmanagement
zum Erfolg fiihren, gibt es wie in Abbildung 15 zu sehen verschiedene
Kernthemen und Erfolgsfaktoren [Lal0, SH13].

Ein Faktor sind dabei zum einen die Personen die im Unternehmen arbeiten
und am Wandel mitwirken miissen. Zum anderen kann dies eine (Fiihrungs-
) Person sein, welche den Wandel anstoft und mit begleitet. Ohne diesen
Faktor Mensch wire eine Verdnderung iiberhaupt nicht moglich.

Um nun eine Anderung im Unternehmen durchzufiihren, muss zunichst
eine Vision entwickelt werden, welche das Unternehmen verbessern soll.
Diese kann auch als verschiedene Ziele definiert werden, welche die Betei-
ligten motiviert, eine Verdnderung umzusetzen. Wichtig ist es, wihrend des
Verdnderungsprozesses alle davon Betroffenen mit am Prozess aktiv zu be-
teiligen sowie die Kommunikation zwischen den Betroffenen selbst und den
Durchfiihrenden zu stidrken. So werden alle Personen sofort mitgenommen
und es kommt im Laufe des Prozesses nicht zu Missverstdndnissen. Ferner
ist damit eine hohere Akzeptanz an der Verdnderung bei den Betroffenen
gewahrleistet. Durch eine gute Kommunikation wird zusétzlich die Integra-
tion gestirkt. Unterschiede, zum Beispiel in der Kultur, kdnnen somit ein-
facher iiberwunden werden.

48

Wichtig ist nach [LalO, SH13] die anschlieBende (Weiter-)Qualifizierung
aller Beteiligten. Durch die Verdanderungen werden die Personen weiter
entwickelt, dabei speziell in ihrem Wissen und Koénnen. Aber auch ihr Ver-
halten und ihre Einstellungen konnen sich dadurch wandeln und zum Erfolg
der Verdnderungen beitragen.

AbschlieBend sind noch die Themen der Projektorganisation und der spéite-
ren Evolution wichtig. Verdnderungsprojekte konnen durch die vielen ver-
schiedenen Themen und Faktoren sehr komplex werden. Sie erfordern von
daher eine strukturierte und geplante Projektvorbereitung, Projektdurchfiih-
rung und Projektiiberwachung. Deshalb sind das Projektmanagement und
das Change Management stark verwandt, nur das sich Change Management
auf Unternehmensebene bezieht und Projektmanagement auf die Projekt-
ebene. Es ist aber nicht nur der aktuelle Verdnderungsprozess wichtig son-
dern es sollte ein fortlaufender Prozess sein. Verdnderung und Wandel soll
kontinuierlich initiiert werden, damit sich ein Unternehmen stetig weiter
entwickeln kann [Lal0].

Wie an den verschiedenen Themen und Erfolgsfaktoren zu erkennen ist,
liegt ein Hauptaugenmerk des Change Managements auf Personen und all-
gemeinem Wandel im Unternehmen, weniger auf der konkreten Software-
Engineering-Methode. Wie bereits erwihnt, konnen sich Veranderungen auf
die SEM auswirken und somit eine Ursache sein, dass diese ebenfalls gedn-
dert werden muss. Dies ist hochstens ein Baustein im Gesamtkontext bzw.
im Verdnderungsprojekt, aber nicht primér. Doch die enge Verwandtschaft
mit dem Projektmanagement und der zu Grunde liegende Prozess fiir die
Durchfiihrung eines Verinderungsprojektes konnen in eine Anderung an
einer Software-Engineering-Methode mit einflieen.

Dabei findet nach [SH13] Veridnderungsmanagement in drei Phasen statt:
e Planung, wo die Vision erstellt, der aktuelle Status analysiert und
Malnahmen geplant werden;
e Umsetzung, wo die erstellten Maflnahmen und Losungen umgesetzt
werden;
e Evaluierung, wo die entsprechenden MaBBnahmen iiberpriift werden,
ob sie den gewiinschten Effekt geliefert haben.

Diese ,,Phasen* konnen fiir die Anderung bzw. Anpassung einer Software-
Engineering-Methode ebenfalls betrachtet werden, dhnlich wie die Mecha-
nismen der Projektkontrolle. Es muss iiberpriift werden, wie sehr einzelne
Mechanismen aus dem Change Management und der Projektkontrolle be-
reits fiir die Anpassung von Software-Engineering-Methode zur Laufzeit bei
eingesetzt werden und wie effektiv diese sind. Ferner kann auch betrachtet

49

werden, ob bestehende Ansitze eher ,,Bottom-Up*, ,,Top-Down* oder wie
im Change Management beides sind.

Bestehende Ansétze fiir Anpassungen von einer Software-Engineering-
Methode werden im nidchsten Abschnitt vorgestellt und diskutiert.

2.4 Anpassungen von SEM

Fiir die Verbesserung von Projekten, allgemeinen Prozessen oder Software-
Engineering-Methoden gibt es verschiedene Modelle und Vorgehensweisen.
Doch zunéchst werden erste Anforderungen, welche an die mdglichst eigen-
stindige Anpassung einer genutzten Software-Engineering-Methode zur
Laufzeit gestellt werden, definiert und erldutert.

2.4.1 Erste grobe Anforderungen an die Anpassung einer Software-
Engineering-Methode

Damit eine Software-Engineering-Methode wihrend eines laufenden Pro-
jektes erfolgreich angepasst werden kann, sollen dafiir die Vorteile und
Konzepte vom Projektcontrolling, aber auch des Change Managements in-
tegriert sein. Gerade die drei im vorherigen Abschnitt erwidhnten Phasen
nach [SH13] sollen sich bei der Anpassung einer Software-Engineering-
Methode wiederfinden. Ferner ist zu betrachten, inwiefern die Konzepte des
adaptiven Projektes genutzt werden konnen. Aus den bereits beschriebenen
Abschnitten und aus der eigenen Erfahrung mit Projekten ergeben sich so-
mit folgende erste grobe Anforderungen an die Anpassung einer Software-
Engineering-Methode zur Laufzeit:

1. Der Fokus der Anpassung soll auf der genutzten Software-
Engineering-Methode liegen und nicht auf dem gesamten Pro-
jekt, auch wenn dieses nicht auer Acht gelassen werden darf.

2. Die Anpassung der Software-Engineering-Methode soll zur
Laufzeit des Projektes erfolgen.

3. Die Anpassung der Software-Engineering-Methode soll schnell
und moglichst eigenstindig erfolgen sowie nicht von langer
Dauer sein und beispielsweise mehrere Tage oder ldnger in An-
spruch nehmen. Gerade die Erfahrung auch in eigenen Projekten
hat gezeigt, dass Zeit im Projekt ein kritischer Faktor ist und
nicht viel davon fiir die Anpassung in Anspruch genommen wer-
den kann.

4. Die Anpassungen sollen nicht einmalig zu bestimmten Zeitpunk-
ten, sondern kontinuierlich und regelméaBig erfolgen. Eine An-
passung soll insbesondere dann erfolgen, wenn es ndtigt ist und
die Gefahr besteht, dass die Software-Engineering-Methode und
somit der Erfolg des Projektes in Gefahr sind.

5. Sowohl im Change Management als auch im adaptiven Projekt
und im Projektcontrolling wird erwéhnt, dass die Vordefinition

50

von Zielen und Rahmenwerten und damit die Vorausschau wich-
tig sind, um mogliche Abweichungen zu erkennen und darauf
angemessen reagieren zu konnen.

6. Die genutzte Software-Engineering-Methode und das Umfeld
sollen kontinuierlich wihrend der Laufzeit und Durchfiihrung
iiberwacht werden. Das heif3t wie Abschnitt 2.2.3 erwéhnt ist re-
gelmiBig Feedback bzw. Riickkopplung zum aktuellen Status
sehr wichtig.

7. Wie bereits beim Change Management erwahnt, soll dieser aktu-
elle Status regelmiBig analysiert und ausgewertet werden, ob
Abweichungen vorhanden sind und MaBnahmen geplant und
eingeleitet werden miissen.

8. Die nétigen Mallnahmen oder Anpassungen miissen entspre-
chend geplant und zeitnah umgesetzt werden.

9. Wie in der dritten Phase des Change Management soll die erfolg-
te Anpassung in der Software-Engineering-Methode evaluiert
werden. Dies kann {iber eine weitere Uberwachung der Nutzung
der SEM und entsprechendes Feedback im laufenden Projekt er-
folgen.

10. Ergebnisse von erfolgten Anpassungen und/ oder Planungen sol-
len fiir spétere Zeitpunkte und andere Projekte wiederverwendet
werden konnen.

11. Da die Zeit und somit die Ausfithrung der Anpassung ein kriti-
scher Faktor ist, soll alles moglichst automatisiert erfolgen.

Nachdem nun die ersten Anforderungen an eine Anpassung einer Software-
Engineering-Methode definiert wurden, werden verschiedene bereits vor-
handene Ansétze vorgestellt. Diese sind nach dem Kriterium des Zeitpunkts
der Anpassung sortiert. Dabei wird zuerst auf die Ansdtze eingegangen,
durch welche die Software-Engineering-Methode vor der Durchfiihrung
angepasst wird. AnschlieBend wird der ,,Spezialfall“ der Agilen Methoden
erldutert, welche erste Ansitze zur Anpassung wihrend der Durchfiihrung
aufzeigen. Abgeschlossen wird mit Ansétzen, welche im Rahmen des Kon-
tinuierlichen Verbesserungsprozesses anzusiedeln sind.

2.4.2 Anpassungen von SEM - Vorgelagerte Ansitze

In einem ersten Ansatz, um die passende Software-Engineering-Methode fiir
ein Projekt anzupassen, kann zum einen das Zuschneiden einer SE-Methode
sein. Dies nennt sich Tailoring. Zum anderen kann eine Software-
Engineering-Methode an sich aus verschiedenen Bausteinen mit Hilfe von
Situational Method Engineering neu erstellt werden.

51

2.4.2.1 Tailoring von Software-Engineering-Methoden

Beim Tailoring, zu Deutsch zuschneiden, wird eine gegebene Software-
Engineering-Methode an das Projekt angepasst, indem sie dafiir entspre-
chend zugeschnitten wird. Das Zuschneiden beinhaltet dabei Anpassungen
bzw. Anderungen im Projekt, welche aber mit dem Grundsatz der Software-
Engineering-Methode konform sind. Da es keine ,one-size-fits-all*-
Methode gibt und nicht jede gleich gut fiir ein Projekt geeignet ist, ist dies
eine hdufige Art der Anpassung. Zum Beispiel hat ein Projekt weniger
Budget und ist kleiner angelegt als ein anderes Projekt in demselben Unter-
nehmen. Das Projekt soll aber dieselbe Software-Engineering-Methode be-
nutzen. Es kann dann nétig sein, dass nicht alle Aktivititen durchgefiihrt
und nicht alle Artefakte, welche in der generellen Software-Engineering-
Methode definiert sind, erzeugt werden [Sall]. Doch auch beim Tailoring
muss beachtet werden, dass ein Zuschneiden einer Methode immer Konse-
quenzen fiir andere Artefakte oder Aktivititen etc. beinhaltet. Es muss da-
rauf geachtet werden, dass die Konsistenz der Abhéngigkeiten gewahrleistet
ist. Beispielsweise entscheidet ein Projektleiter, dass eine neue Software
nicht mit sogenannten ,,Use Cases* spezifiziert werden soll. Anstatt der Use
Cases soll eine Kombination von Businessprozessen, Business-Regeln usw.
genutzt werden. Diese Anderung hat einen groBen Einfluss auf eben solche
Artefakte, welche typischerweise in Relation zu Use Cases stehen [Sall].

Obwohl das Tailoring eine gute Methode ist, um Software-Engineering-
Methoden auf die Projektsituation anzupassen, muss zum einen bereits eine
Methode gegeben sein und zum anderen geschieht die Anpassung nur vor
Projektbeginn. Eine weitere Betrachtung der erfolgten Anpassung sowie
weitere mogliche Anpassung wihrend der Nutzung der SEM im laufenden
Projekt ist hier nicht weiter vorgesehen

2.4.2.2 Anpassung durch Situational Method Engineering

Situational Method Engineering (SME) beschiftigt sich wie in Abschnitt
2.1.3.4 beschrieben mit dem Design und der Konstruktion von situations-
spezifischen Software-Engineering-Methoden. Normalerweise wird die
SEM allerdings zu Beginn, also vor dem Start des Projektes, erstellt und
wiahrend der Laufzeit nicht weiter betrachtet. Im Situational Method Engi-
neering muss zunichst eine Methoden-Basis mit Methoden-Elementen auf-
gebaut werden. Zusitzlich miissen die Projektumgebung sowie das Projekt
selbst charakterisiert werden. Eines der wichtigsten Elemente im SME ist
dabei die Auswahl geeigneter Methoden-Elemente, auch Method Fragments
oder Method Chunks genannt, sowie das spdtere Zusammensetzen dieser
Methoden-Elemente zu einer entsprechenden Software-Engineering-
Methode.

52

Projektumgebung

Prajelarakson Administration der

b <

Methode

Projektcharakterisierung
Update/ Hinzufiigen
Von Methoden-Fragmenten

Charakterisierung A Validierung

Auswahl der Methoden- | Methoden-Fragmente
Fragmente i

Methoden-Basis

F
Selektion Anfrage neue Fragmente
W

Zusammenbauder
Methoden-Fragmente

Situations- T

Anfrage Anpassun
spezifische SEM| ge Anp. g

Performanz des
Projektes

Einbringen gemachter Erfahrung

Abbildung 16 Konfigurationsprozess fiir situationsspezifische Methoden nach [Br96]

Sjaak Brinkkemper [Br96] hat 1996 einen Konfigurationsprozess fiir situa-
tionsspezifische Software-Engineering-Methoden vorgestellt, welcher in
Abbildung 16 zu sehen ist. Dabei werden zunéchst das Projekt und dessen
Umgebung charakterisiert. Aufgrund dieser Spezifikation werden anschlie-
Bend Methoden-Elemente aus der Methoden-Basis ausgewéhlt und ebenfalls
gegen die Charakterisierung validiert. Diese Methoden-Elemente werden
anschlieBend zu einer situationsspezifischen SEM zusammengesetzt. Ab-
schlieBend soll diese Software-Engineering-Methode im Projekt durchge-
fithrt werden.

Brinkkemper erldutert, dass es wéhrend der Ausfiihrung einer Software-
Engineering-Methode zu drastischen Anderungen im Projektumfeld kom-
men kann, was zu einer Anpassung SEM durch z.B. das Austauschen von
Methoden-Elementen fiihren kann. Er erwdhnt allerdings nur, dass dieses
moglich sein soll, aber nicht wie dieses moglich ist. Ferner wird bei Brink-
kemper nicht erldutert, wie die auszutauschenden Elemente bestimmt wer-
den. Ferner wird im Prozess zwar erwéhnt, dass das Projekt und dessen
Umgebung charakterisiert werden (miissen). Es wird aber nicht erwdhnt, wo
diese Informationen abgelegt werden, um sie spéter zu nutzen, beispielswei-
se um die Methoden-Elemente gegen diese validieren zu kdnnen.

Im State-of-the-Art Review von Jolita Ralyté und Brian Henderson-Sellers
von 2010 [HSR10] wird u.a. darauf eingegangen, wie Methoden-Elemente
fiir eine Methoden-Basis identifiziert und wie aus diesen eine Software-
Engineering-Methode konstruiert werden kann. Inwiefern sich nun dies und
das Situational Method Engineering fiir die selbst-adaptive Anpassung einer

53

Software-Engineering-Methode eignet, wird in Abschnitt 2.5 anhand einer
genauen Analyse gegeniiber den definierten Anforderungen beschrieben.

2.4.3 Anpassungen von SEM im laufenden Projekt durch Agile Me-
thoden

Die Agilen Methoden beschiftigen sich mit der Entwicklung von Software
in Iterationen und einer ndheren Kundenanbindung, um schnell qualitative
hochwertige Software zu liefern. Die Iterationen in den Agilen Methoden
folgen meist dem Schema in Abbildung 17. Es wird zunéchst eine Vision
erstellt und in Anforderungen herunter gebrochen. Diese miissen zunéchst
nur grob sein und werden im Laufe der Zeit verfeinert. Das geschieht vor
jeder Iteration im zweiten Schritt der Planung. Die Planungsschritte oder
eine Teilmenge davon, werden im dritten Schritt ausgefiihrt. Nach der Aus-
fiihrung wird am funk-
tionsfahigen Inkrement
festgestellt, was ange-
passt werden muss. An
dieser Stelle kann zwar
auch tiberpriift werden,
ob die Software-
Engineering-Methode
angepasst werden
miisste, aber im All-
gemeinen bezieht sich
das Anpassen an dieser

Vision etablieren

Anpassen

Ausfiihren

Stelle auf die Software Abbildung 17 Vorgehen von Agilen Methoden angelehnt an [ITA134]
und auf die Anforde-

rungen an die Software.

Néhere Ansatzpunkte flir die Anpassung einer Software-Engineering-
Methode zur Laufzeit mit Hilfe von Agilen Methoden, liefert jedoch Scrum
[SS10],[Gl08]. Scrum ist ein (Management-) Framework, das sowohl
Kommunikation in Form von Meetings einbindet als auch mit der Retro-
spektiven einen Mechanismus liefert, um das eigene Vorgehen und die ei-
gene SEM zu reflektieren und gegebenenfalls anzupassen.

Die Retrospektive ist dabei ein internes Meeting der Teammitglieder. In
diesem Meeting wird die vorherige Iteration, der sogenannte Sprint, genau
besprochen, zum Beispiel was gut und was schlecht gelaufen ist. Anschlie-
Bend wird beraten, wie das Vorgehen im nichsten Sprint verbessert werden
kann.

Diese Meetings sind sehr gut als ,,Check-Points*, welche innerhalb der SEM
durchgefiihrt werden. Dadurch kann gegebenenfalls innerhalb der Software-

54

Engineering-Methode gegengesteuert werden, falls etwas schlecht lauft.
Nach jedem Sprint ist es ebenfalls moglich, dass neue Teammitglieder, also
auch neue Rollen, hinzukommen oder auch wegfallen.

Allerdings ist Scrum, wie allgemein Agile Methoden, recht generisch und
ungenau gehalten. Es wird nicht beschrieben wie festgestellt wird, was
schief 1auft, auler der subjektive Eindruck oder ein evtl. nicht eingehaltenes
Ziel des Sprints (Sprint-Ziel). Des Weiteren wird auch nur im Team bespro-
chen, wie das eigene Vorgehen anzupassen ist. Die genutzte SEM an sich,
Aufgaben des sogenannte Product Owners oder andere Rahmenbedingungen
im Unternehmen sind nicht von Interesse.

Scrum-Teams sind meist recht klein und sollten nicht mehr als 9 Personen
betragen. Gibt es mehrere Scrum-Teams die an einem Projekt arbeiten,
miisste es eine allgemeine Retrospektive geben und Abhéngigkeiten unter
einander miissten gerade im Falle von Anpassungen betrachtet werden. Dies
wird aber genau beschrieben noch betrachtet.

2.4.4 Anpassungen von SEM - Kontinuierliche Verbesserungspro-
zesse

Gerade im Bereich des Qualitdtsmanagements gibt es verschiedene Metho-
diken und Prozesse, um die Qualitdt zu verbessern. Dabei soll sich hier nicht
auf die Verbesserung von Software-Engineering-Methoden beschrinkt, son-
dern allgemein vorgestellt werden, welche Mdoglichkeiten es gibt und auch
fiir das Software Engineering genutzt werden konnen. Typischerweise wer-
den diese Prozesse zwar kontinuierlich durchgefiihrt, jedoch nachdem ein
Problem bereits aufgetreten ist, sind diese Prozesse sehr langwierig und
konnen als eigene Projekte angesehen werden. Durch ihren hohen Arbeits-
aufwand mit meist mehreren Beteiligten ist damit ein hoher Zeit- und Kos-
tenaufwand verbunden. Zwei bekannte Vertreter des Kontinuierlichen Ver-
besserungsprozesses sind das CMMI (CapabilityMaturityModel Integration)
[Wa07], eine Familie von Referenz-Modellen, und SPICE (Software Pro-
cess Improvement and Capability Determination/ ISO 15504) [Wa07]. Die-
se beiden sollen allerdings hier nicht weiter betrachtet werden, da sie mehr
den Reifegrad von Software-Engineering-Methoden bestimmen und weni-
ger ihre eigentliche Anpassung.

2.4.4.1 PDCA-Zyklus

Als Grundlage fiir einen Kontinuierlichen Verbesserungsprozess (KVP)
dient der bekannte PDCA-Zyklus. Dieser Zyklus ist nicht eingeschrankt auf
die Verbesserung von Prozessen, sondern auch von Strukturen, Produkten,
Leistungen usw. Er hat seine Urspriinge in der Qualitdtssicherung bzw. im
Qualititsmanagement. Der PDCA gehort mittlerweile in Industrieunterneh-
men zum Standard und er ist Bestandteil der Norm ISO9001 [ISO08].

55

Die Systematik der kontinuierlichen Verbesserung und dem spiteren
PDCA-Zyklus geht auf den Qualititsexperten Deming zuriick. Er wird des-
halb manchmal auch Deming-Zyklus (Deming-Cycle) oder ,,.Deming-
Wheel*“ genannt [MNO06]. Der Deming-Zyklus wurde in den 50er-Jahren
von den Japanern iibernommen und zum PDCA-Zyklus weiter entwickelt
[MNO06]. Der PDCA-Zyklus definiert vier Grundschritte, welche zyklisch
wiederholt werden sollen, um eine kontinuierliche Verbesserung zu errei-
chen. Der Zyklus wird mittlerweile in verschiedensten Situationen und Pro-
jekten eingesetzt. Jeder der Buchstaben im PDCA-Zyklus bezeichnet dabei
eine Phase bzw. einen der Grundschritte [De86, ISO08,MNO06], welche in
Abbildung 18 zu sehen sind:

e P — Plan (Planen): In der Planungsphase werden zunéchst die Ziele,
Prozesse sowie die MaBnahmen entwickelt und festgelegt, welche
zur Qualititsverbesserung dienen sollen. Diese werden zusdtzlich
mit allen Beteiligten, z.B. Kunden und ihren Anforderungen, der
Kultur im Unternehmen, dem Management etc. abgestimmt.

e D — Do (Durchfiihren): Die geplanten MaBBnahmen und entwickel-
ten Prozesse werden durchgefiihrt und im gesamten Unternehmen
umgesetzt.

e C — Check (Priifen): Die umgesetzten MaBBnahmen und Prozesse
sowie Produkte werden iiberwacht und anhand der festgelegten Ziele
kontrolliert.

e A — Act (Handeln): Das Ergebnis des Checks wird genutzt um
eventuell ndtige Anpassungen einzuleiten.

56

Die KorrekturmaBBnahmen der letzten Phase bilden wiederum den Aus-
gangspunkt fiir ein erneutes Durchlaufen des Zyklus.

Verbessern
(Act)

Ausfiihren
(Do)

Uberpriifen
(Check)

Abbildung 18 Der PDCA-Zyklus nach [De86, MNO06]

Der PDCA-Zyklus wirkt auf das gesamte Unternehmen und ist daher vom
Management anzustoBen. Er dient zum einen zur Problemldsung, aber auch
um Prozesse, Produkte etc. im Allgemeinen zu iiberwachen und zu verbes-
sern. Der Zyklus wird dabei typischerweise nicht auf ein Projekt angewen-
det, hochstens um Probleme im Nachhinein zu erortern. Ferner ist der
PDCA-Zyklus als allgemeiner angelegter Qualititsprozess im Unternehmen
anzusehen, welcher z.T. einen hohen Aufwand und hohe Kosten beinhaltet.
Gerade die vierte Phase, in der die Maflnahmen als Standard definiert und
regelmdBig auf Einhaltung tiberpriift werden sollen, kann zu einem hohen
Organisations- und Arbeitsaufwand fiihren.

2.4.4.2 Design for Six Sigma und DMAIC-Zyklus

Bei Design for Six Sigma, kurz Six Sigma genannt, handelt es sich um eine
Methode zum Qualitdtsmanagement, Diese wird haufig in der Wirtschaft
angewandt [KA06]. Besonders der DMAIC-Zyklus, welcher im Prinzip der
Kernprozess von Six Sigma ist, dient zur Messbarkeit von bereits bestehen-
den Prozessen und um sie nachhaltig zu verbessern.

Dabei handelt es sich um einen Projekt- und Regelkreis-Ansatz. Wie in Ab-
bildung 19 zu sehen, besteht dieser aus den fiinf Phasen Define — Measure —
Analyze — Improve — Control (= Definieren — Messen — Analysieren — Ver-
bessern — Steuern) woraus sich der Name ,,DMAIC* ableitet.

57

2. Measure

5. Control

DMAIC-Zyklus

3. Analyze

4. Improve

Abbildung 19 Der DMAIC-ZyKklus, das Phasenmodell von Six Sigma basierend auf [KA06]

1. Define (D) — In der Define-Phase werden die Anforderungen und Erwar-
tungen des Kunden definiert, ebenso wie Projektgrenzen. Zusitzlich wird
das Problem im identifizierten Prozess beschrieben, hdufig in Form einer
Projektcharta.

2. Measure (M) — In dieser Phase geht es darum festzustellen, wie gut der
Prozess wirklich die bestehenden Kundenanforderungen erfiillt. Dies bein-
haltet eine Prozessfdhigkeitsuntersuchung fiir jedes relevante Qualitéts-
merkmal.

3. Analyse (A) — Ziel der Analysephase ist es, die Ursachen dafiir herauszu-
finden, warum der Prozess die Kundenanforderungen heute noch nicht im
gewlinschten Umfang erfiillt. Dazu werden Prozessanalysen durchgefiihrt.

4. Improve (I) — Nachdem verstanden wurde, wie der Prozess funktioniert,
wird nun die Verbesserung geplant, getestet und schlieBlich eingefiihrt. Ein
zusitzliches Ziel ist, dass der Prozess Variationen beseitigt und kreative
Alternativen beispielsweise zur Kosteneinsparung entwickelt.

5. Control (C) — Der neue Prozess wird mit statistischen Methoden tiber-
wacht.

Der Aufwand bei der Durchfiihrung eines solchen DMAIC-Zyklus ist in
Six Sigma hoch. Die Durchfiihrung eines solchen Prozesses dauert ebenfalls
sehr lang, teilweise 90-120 Tage [KAO06]. Ferner geht es bei Six Sigma
mehr darum, bestehende Prozesse im Allgemeinen zu verbessern und diese
neu zu implementieren. Es geht bei dem Ansatz nicht um die Anpassung
einer laufenden Software-Engineering-Methode, dafiir wiren die Durchfiih-
rungszeiten zu lang.

58

2.4.4.3 8D-Methodik

Ahnlich Six Sigma und auch dem PDCA-Zyklus ist die 8D-Methodik
[JSW11] zur Problemlésung, welche auch im Reklamations- und
Beschwerdemanagement eingesetzt wird. Es handelt sich um eine nachgela-
gerte Methode, da Fehler zu diesem Zeitpunkt bereits aufgetreten sind und
behoben werden miissen. Dadurch enthdlt die Methode zum einen So-
fortmafBnahmen, um schnell handeln zu kénnen. Zum anderen enthélt sie
Schritte fiir eine nachhaltige Entwicklung, um diesen Problemen durch an-
haltende Korrekturmafnahmen im weiteren Verlauf vorzubeugen. Die 8D-
Methodik beinhaltet folgende acht Schritte, auch Disziplinen genannt
[JSW11]:

Schritt 1- Team bilden: Sobald ein Problem erkannt wurde, wird ein
Teamleiter festgelegt. Dieser ist sowohl fiir die Zusammenstellung des
Teams als auch fiir die korrekte Einhaltung der acht Schritte verantwortlich.

Schritt 2 — Problembeschreibung: Die Aufgabe des Teams ist es, dass
aufgetretene Problem vollstindig zu beschreiben und genau abzugrenzen. Es
miissen die Abweichungen, also der Unterschied vom Ist- zum Soll-Zustand
genau definiert werden. Als Hilfe dazu dienen beispielsweise Spezifika-
tionen, getroffene Vereinbarungen mit dem Kunden, Anforderungen usw.
Ferner muss das Team die Auswirkungen der Abweichung abschitzen, ob
beispielsweise MaBnahmen nétig sind oder nicht.

Schritt 3 — Sofortmafinahmen: In diesem Schritt muss das Team Entschei-
dungen fiir Sofortmafnahmen treffen, um den Kunden vor schwerwieg-
enden Auswirkungen zu schiitzen. Im produzierenden Gewerbe heifit dies,
dass fehlerhafte Teile aus dem Umlauf genommen werden miissen, aber die
Lieferfahigkeit sichergestellt sein muss, beispielsweise durch Nacharbeiten
bei fehlerhaften Stiicken.

Schritt 4 — Fehlerursachen: Nachdem die SofortmaBnahmen eingeleitet
wurden, wird im Team untersucht, welche Ursachen es fiir den Fehler gibt.
Dies kann mit Hilfe von Tests, Experimenten oder auch durch einen Ver-
gleich erfolgen. Zur Hilfe kdnnen dabei beispielsweise die 5-Why-Methode
oder ein Ishikawa-Diagramm herangezogen werden. Am Ende ist die Grun-
dursache gefunden und genau beschrieben.

Schritt 5 — Planen von Korrekturmafinahmen: Ist die Grundursache ge-
funden, werden anschlieBend die KorrekturmaBBnahmen vom Team geplant,
welche vor allem die Grundursache nachhaltig beseitigen sollen. Die besten
MaBnahmen werden am Ende ausgewéhlt, beispielsweise mit Hilfe von
Versuchen und Tests, welche tberpriifen, dass das Problem effektiv
beseitigt wurde.

59

Schritt 6 — Maflnahmenumsetzung und Priifung der Wirksamkeit: Sind
die Maflnahmen vom Team definiert, werden diese anschlieffend in den
Prozess eingefiihrt und entsprechend mit den Produktionsdaten umgesetzt.
Zusitzlich wird iiberpriift, ob die MaBnahmen greifen und das Problem
komplett behoben wurde. Ist dies der Fall, konnen die Sofortmafnahmen
aufgehoben werden.

Schritt 7 — VorbeugungsmaBinahmen: Ist das Problem beseitigt, muss das
Team Vorbeugungsmafinahmen treffen, damit dieser oder dhnliche Fehler
nicht wieder auftreten.

Schritt 8 — Abschluss und Wiirdigung der Teamleistung: Sind alle Auf-
gaben des Teams erledigt, wird die Leistung des Teams zum Abschluss ge-
wiirdigt und Erfahrungen, die im Laufe des Prozesses gesammelt wurden,
werden ausgetauscht und fiir die Zukunft festgehalten.

Wie an den acht Schritten zu erkennen ist, sind sich die 8D-Methodik und
Six Sigma sehr dhnlich und tiberschneiden sich teilweise in den Kernprozes-
sen. Ebenso wie Six Sigma ist die 8D-Methodik aufwendig und von lénge-
rer Dauer. Deshalb sollte zu Beginn immer iiberlegt werden, ob die Anwen-
dung der Methodik nétig ist oder ob andere Vorgehensweisen zur Behebung
kleinerer Fehler angewendet werden konnen.

2.5 Bewertung und Schwachstellen der Ansitze

Auch wenn in den einzelnen Abschnitten der Ansitze jeweils eine kurze
Einschitzung beziiglich der gestellten Anforderungen vorgenommen wurde,
sollen in diesem Abschnitt die verschiedenen Ansédtze nochmals im Detail
tiberpriift und bewertet werden. Den beschriebenen Anséitzen wird zusitz-
lich das Projektcontrolling gegeniibergestellt, da dieses sich mit der Uber-
wachung von Projekten beschiftigt.

2.5.1 Probleme und Bewertung der verschiedenen Ansitze

Fir die Bewertung der einzelnen Ansdtze wurden verschiedene Bewer-
tungskriterien in Anlehnung an die bereits definierten Anforderungen er-
stellt. Die Kriterien werden im Folgenden aufgelistet. Anschlieend werden
die einzelnen Kriterien genauer erkldrt und die Ansdtze sowie das Projekt-
controlling werden entsprechend in Bezug auf das Kriterium bewertet. Die
Bewertung entspricht dabei einer Zahl zwischen 0 und 5, wobei 0 bedeutet,
dass das Kriterium gar nicht erfiillt und 5 bedeutet, dass das Kriterium im
vollsten Mal3e erfiillt ist. Die Gesamtbewertung ist der gemittelte Wert aus
allen Kriterien. Eine Ubersicht der Bewertung ist in der untenstehenden Ta-
belle dargestellt.

Die einzelnen Bewertungskriterien, die in die Bewertung der Ansitze ein-
gingen sind:

60

Fokus der Anpassung (Fokus)
Anpassungszeitpunkt (AZP)
Dauer der Anpassung (Dauer)
Kontinuitit und Haufigkeit der Anpassung (KH)
Uberwachung der genutzten SEM zur Laufzeit (UW)
Analyse und Auswertung des aktuellen Status (AA)
Planung von MaBnahmen (PM)
Evaluierung der Ergebnisse (EE)
. Vorausschau (VS)

10. Wiederverwendung von Ergebnissen (WVE)

11. Automatisierungen (Auto)
Die Abkiirzungen in den Klammern entsprechen denen in der Tabelle. Die
einzelnen Ansétze werden folgendermallen abgekiirzt:

S R N

e Situational Method Engineering (SME)

e Tailoring von Software-Engineering-Methoden (Tailoring)
e Agile Methoden (AM)

e PDCA-Zyklus (PDCA)

e Six Sigma (SiSi)

e 8D-Methodik (8D)

e Projektcontrolling (PC)

SME | Tailoring | AM PDCA | SiSi 8D PC
Fokus |5 5 4 2 2 0 2
AZP 2 2 4 3 3 2 4
Dauer |3 3 4 3 1 3 3
KH 1 1 4 4 2 3 5
ow 0 0 4 4 2 2 5
AA 1 1 4 4 4 4 5
PM 0 0 2 3 5 5 3
EE 1 0 4 3 4 3 4
VS 3 3 2 5 3 1 5
Auto 1 0 0 0 0 0 1
WVE 3 3 3 3 3 3 3
Gesamt | O 1.8 |0 1.6 032 |31 D245 024 |0D3.6

Tabelle 1 Ubersicht der Bewertung der einzelnen Ansitze und des Projektcontrollings
Fokus der Anpassung

Bei diesem Kriterium wurde bewertet, welchen Fokus die einzelnen Ansétze
insbesondere beziiglich einer Anpassung oder einer Verbesserung besitzen.
Dabei ist festzustellen, dass nur bei den beiden vorgelagerten Ansétzen der

61

Fokus direkt auf der Software-Engineering-Methode liegt. Deswegen haben
beide Ansdtze hier die hdchste Bewertung erhalten.

Bei den Agilen Methoden liegt der Fokus nur indirekt auf der Software-
Engineering-Methode selbst, der Hauptfokus liegt zunéchst auf der zu ent-
wickelnden Software. Doch wird beispielsweise durch die Technik der Ret-
rospektive auch die Software-Engineering-Methode selbst hinterfragt. Des
halb erhalten die Agilen Methoden die zweithdchste Bewertung

Bei den weiteren Ansitzen liegt der Fokus mehr auf den Projekten, als auf
der genutzten Software-Engineering-Methode. Die 8D-Methodik wird eher
im produzierenden Gewerbe als in der Softwareentwicklung eingesetzt,
weswegen sie bei diesem Kriterium mit 0 bewertet wurde.

Anpassungszeitpunkt (AZP)

Das Kriterium des Anpassungszeitpunktes beschreibt hier, wann eine Soft-
ware-Engineering-Methode oder ein Projekt angepasst wird. Das heif3t, ob
sie vor Beginn der Durchfiihrung angepasst werden, wéhrend der Laufzeit
oder erst nach der Durchfiihrung. Der gewlinschte Zeitpunkt war hier laut
den Anforderungen eine Anpassung zur Laufzeit.

Die beiden ersten Ansétze passen zwar eine Software-Engineering-Methode
an, aber dies geschieht vor der eigentlichen Durchfiihrung. Deswegen haben
sie zusammen mit der 8D-Methode die geringste Punktzahl erhalten. Die
8D-Methodik passt den Prozess erst an, wenn schon ein Fehler passiert ist.
Der PDCA-Zyklus und Six Sigma werden zwar dem kontinuierlichen Ver-
besserungsprozess zugeordnet, sie iiberpriifen aber ein Projekt erst gegen
Ende der Laufzeit oder wenn das Projekt schon abgeschlossen ist, bei-
spielsweise wenn ein Projekt bereits ,,vor die Wand gelaufen* ist. Die Un-
tersuchungen flieen gerade bei Six Sigma mehr in die spiteren Projekte als
in das aktuelle Projekt mit ein.

Die Agilen Methoden betrachten regelmifig liber Feedback, beispielsweise
durch eine Retrospektive oder tdgliche Meetings, den Fortschritt des Projek-
tes und somit der Software-Engineering-Methode. Somit kann bei Bedarf
gegengesteuert werden, allerdings typischerweise ohne die genutzte Agile
Methode an sich zu @ndern. Das Projektcontrolling geht dhnlich vor, in dem
es das Projekt mit Hilfe von definierten Zielen wihrend der Durchfiihrung
tiberwacht. Deswegen haben diese beiden die Bewertung von 4 erhalten.

Dauer der Anpassungen

Mit dem Kriterium Dauer wird tiberpriift, wie lange eine Anpassung beim
jeweiligen Ansatz dauert. Das heif}t, wieviel Zeit vergeht, bis die Anpassung
in die aktuelle Software-Engineering-Methode, entsprechend in das Projekt

62

oder in den Prozess tiberfiihrt wird. Da Zeit in vielen Projekten ein kritischer
Faktor ist, soll wie in der entsprechenden Anforderung beschrieben die An-
passung schnellstmoglich erfolgen.

Design for Six Sigma ist ein Ansatz, der wie beschrieben sehr lange dauern
kann, teilweise 90-120 Tage [KAO06], weswegen dieser Ansatz eine niedrige
Bewertung von 1 erhalten hat. Auch die vorgelagerten Ansitze konnen eine
lingere Zeit in Anspruch nehmen, bis eine Software-Engineering-Methode
erstellt oder entsprechend zugeschnitten ist. Da dies aber vor dem Projekt
geschieht, wird dies nicht ganz so zeitkritisch angesehen, wie wihrend der
Laufzeit, weswegen sie die Bewertung 3 erhalten haben.

Der PDCA-Zyklus, die 8D-Methode und das Projektcontrolling haben eben-
falls eine Bewertung von 3 erhalten. Diese nehmen auch eine gewisse Zeit
bis zur Anpassung und Durchfiihrung der geplanten MaBnahmen in An-
spruch. Diese konnen aber normalerweise innerhalb von einigen Tagen bis
wenigen Wochen durchgefiihrt werden.

Die Agilen Methoden schneiden in Bezug auf dieses Kriterium am besten
ab, da sie mit Hilfe der Techniken von regelmifBigen Meetings relativ
schnell reagieren konnen. Meistens greifen die Anderungen zur nichsten
Iterationsschleife. Je nachdem wie der Rhythmus gewdhlt ist, kann dies in-
nerhalb von 2-4 Wochen erfolgen. Kleine Anderungen sind innerhalb von
einem Tag mit Hilfe von tdglichen Meetings moglich.

Kontinuitit und Hiufigkeit der Anpassungen (KH)

Mit diesem Kriterium wird untersucht, wie kontinuierlich und haufig der
Ansatz eine entsprechende Anpassung iiberpriift und durchfiihrt, beispiels-
weise ob dies zu jedem Zeitpunkt untersucht und durchgefiihrt wird, nur
punktuell oder sogar nur zu einem einzigen Zeitpunkt. Entsprechend der
Anforderung ist gewiinscht, dass der Ansatz die Software-Engineering-
Methode kontinuierlich wahrend der Nutzung und nicht nur punktuell auf
eine Anpassung hin tiberpriift und diese bei Bedarf durchfiihrt.

Die beiden vorgelagerten Ansdtze passen die Software-Engineering-
Methode nur zu genau einem Zeitpunkt an, vor Beginn der Durchfiihrung.
Deswegen haben sie die niedrigste Bewertung erhalten. Six Sigma fiihrt
zwar eine umfassende Untersuchung und Anpassung durch, welche auch an
mehreren Punkte greifen kann, doch auch diese findet typischerweise nur
am Ende des Projektes statt. Es wird gegebenenfalls noch einmal justiert,
falls die MaBnahmen die Vorgaben nicht optimal erfiillen. Deswegen hat
dieser Ansatz eine Bewertung von 2 erhalten

63

Zwar ist die 8D-Methodik dem Six Sigma recht dhnlich, jedoch iiberpriift
und passt sie in der Hinsicht den Prozess héufiger an, je nachdem wie hiufig
entsprechende Probleme und Fehler auftauchen. Aufgrund der etwas haufi-
geren Untersuchung erhilt dieser Ansatz die Bewertung 3.

Durch die RegelmiBigkeit der Uberpriifung anhand eines kontinuierlichen
Prozesses (PDCA-Zyklus) bzw. mit Hilfe von regelmifligem Feedback und
Meetings (Agile Methoden) erhalten der PDCA-Zyklus und die Agilen Me-
thoden die Bewertung 4. Die hochste Bewertung erhilt das Projektcontrol-
ling aus dem Grund, da es ein Projekt wesentlich differenzierter und bei-
spielsweise nicht punktuell durch Meetings betrachtet.

Uberwachung der genutzten SEM zur Laufzeit (UW)

Dieses Kriterium ist eng mit dem vorherigen der kontinuierlichen Anpas-
sung verkniipft. Denn ohne eine fortwihrende Uberwachung einer Software-
Engineering-Methode wéhrend der Laufzeit wére eine entsprechende An-
passung nicht moglich. Hier wird untersucht, ob der Ansatz iiberhaupt die
genutzte SEM zur Laufzeit liberwacht, wie kontinuierlich er das Projekt
oder die SEM {iiberwacht und wie sehr dabei das Feedback bzw. die Riick-
kopplung aus der Umgebung mit betrachtet wird. Wichtig wére, wie in der
Anforderung beschrieben, dass der Ansatz die SEM oder das Projekt wéh-
rend der Laufzeit kontinuierlich tiberwacht und dabei die Umgebung und
deren Feedback mit einbezieht.

Die beiden vorgelagerten Ansidtze werden mit 0 bewertet, da sie die Soft-
ware-Engineering-Methode nicht zur Laufzeit iiberwachen. Wie schon im
vorherigen Kriterium erwidhnt fiihrt Six Sigma zwar grofle Untersuchungen
und Analysen durch, iiberwacht dabei aber das Projekt nicht kontinuierlich.
Da es aber in der Analyse das Feedback der Umgebung mit einbezieht, er-
hélt der Ansatz wie im vorherigen Kriterium die Bewertung 2. Dieselbe
Bewertung erhilt die 8D-Methode, da diese ebenfalls den Prozess nicht kon-
tinuierlich tiberwacht, aber die Umgebung in das Feedback mit einbezieht.

Die Agilen Methoden erhalten wiederum eine Bewertung von 4, da sie ren-
gelméBig den Fortschritt des Projektes und somit der SEM kontrolliere. Zu-
sitzlich ist bei ihnen das Einbeziehen der Umgebung besonders wichtig,
denn das Feedback hat hier einen hohen Stellenwert. Dennoch bekommt der
Ansatz nicht die Hochstbewertung in diesem Kriterium, da die Uberwa-
chung noch zu punktuell ist.

Der PDCA-Zyklus erhélt ebenfalls wieder die Bewertung 4. Dieser besitzt
zwar ebenfalls einen kontinuierlichen Zyklus, jedoch dauert entweder die
Durchfiihrung der Uberwachung aber sehr lange oder es werden nur die

64

eingesetzten Maflnahmen beobachtet. Allerdings wird hier ebenfalls die
Umgebung in die Uberwachung mit einbezogen.

Das Projektcontrolling erhilt hier die Hochstbewertung. Es wird mit ver-
schiedenen Mitteln versucht zu iiberwachen, ob die vordefinierten Ziele
wiéhrend der Projektlaufzeit eingehalten werden. Falls Abweichungen bei
der Uberwachung auffallen, wird versucht entsprechend gegenzusteuern.
Dabei wird auch die Umgebung in die Betrachtungen mit einbezogen.

Analyse und Auswertung des aktuellen Status (AA)

Bei diesem Kriterium wird untersucht, ob der aktuelle Status der Software-
Engineering-Methode oder des Projektes regelméBig analysiert und beziig-
lich moglicher Abweichungen ausgewertet wird. Fiir das Erkennen von
Abweichungen werden entsprechende Kennzahlen und Messdaten bendtigt,
die vorher ermittelt werden miissen.

Die beiden vorgelagerten Ansdtze bekommen beide die geringste Bewer-
tung, da sie den aktuellen Status nicht wahrend der Laufzeit analysieren. Sie
bekommen dennoch eine Bewertung mit dem Wert 1, da beide Ansitze zu-
mindest vorher die Situation des Projektes analysieren und entsprechend die
Software-Engineering-Methode erstellen oder zuschneiden.

Alle weiteren Ansétze analysieren den aktuellen Status in der einen oder
anderen Ausprigung und werten diesen anschlieend aus. Die Agilen Me-
thoden betrachten in Meetings regelmiflig den aktuellen Fortschritt. Es gibt
allerdings auler den Anforderungen an die Software, welche im Projekt zu
entwickeln ist, keine Kennzahlen oder Messdaten. Der PDCA-Zyklus {iber-
priift in der Phase ,,Check® den aktuellen Status und kontrolliert die umge-
setzten Mallnahmen. Als Kennzahlen dienen hier wiederum nur die Ziele
und Anforderungen.

Six Sigma und die 8D-Methodik {iberpriifen ebenfalls in ldngeren und de-
taillierten Untersuchungen den Status des Projektes bzw. Prozesses. Dafiir
werden Kennzahlen definiert, um die entsprechenden Werte zu ermitteln.
Allerdings findet die Uberpriifung des aktuellen Status nur zu genau diesem
Zeitpunkt statt und noch ein weiteres Mal, um die umgesetzten MaBBnahmen
zu iiberpriifen.

Das Projektcontrolling erhilt hier die hochste Bewertung, da der aktuelle
Status des Projektes regelmdBig kontrolliert, analysiert und auf mdogliche
Abweichungen ausgewertet wird. Als Kennzahlen dienen dabei unter ande-
rem die definierten Ziele. Es kdnnen aber auch weitere Metriken und Kenn-
zahlen ermittelt werden.

65

Planung von Mallnahmen (Anpassung) (PM)

Das Kriterium zur Planung von MaBnahmen soll die eigentliche Anpassung
oder ihre Planung im zur Laufzeit beinhalten. Dafiir miissen die Ist- und
Soll-Werte bekannt sein und ob eine Anpassung iiberhaupt notig ist.

Die beiden vorgelagerten Ansdtze erhalten wiederum die Bewertung von 0,
da sie in dem Sinne keine Planung von Maflnahmen enthalten und diese vor
allem nicht wiahrend des Projektes durchfiihren.

Die Agilen Methoden planen zwar jede Iteration und was dort umgesetzt
werden kann, dies bezieht sich aber typischerweise auf die Anforderungen
und m.E. im seltensten Fall auf die Software-Engineering-Methode. Inner-
halb einer Retrospektive konnen Mallnahmen angesprochen und auch ge-
plant werden. Dies ist aber kein fester Bestandteil der Retrospektive und die
Planungen sind nicht strukturiert. Von daher bekommen sie die Bewertung
2.

Der PDCA-Zyklus und das Projektcontrolling beinhalten beide eine Plan-
Phase. Diese Planungen, welche auch MaBBlnahmen beinhalten konnen, be-
ziehen sich allerdings auf vorher definierte Ziele, welche spéter kontrolliert
werden sollen. Falls diese nicht eingehalten werden, muss der Plan entspre-
chend geédndert werden. Sie beziehen sich deswegen maximal indirekt auf
die Planung einer eigentlichen Anpassung und bekommen von daher eine
mittlere Bewertung.

Six Sigma und die 8D-Methodik planen konkret die Malnahmen bzw. die
Anpassung, nachdem die Ist- und Soll-Werte (Six Sigma) verglichen oder
die Fehlerursachen identifiziert und Korrekturmafnahmen (8D-Methode)
ndtig sind. Deshalb bekommen beide die hochste Bewertung.

Evaluierung der Ergebnisse (EE)

Hier wird bewertet, ob wie im Change Management angeregt, die Ergebnis-
se der Anpassungen bei der weiteren Durchfiihrung der Software-
Engineering-Methode iiberpriift werden. Dies ist ndtig um festzustellen,
dass die korrigierte Software-Engineering-Methode oder die Projekte auch
den gewiinschten Erfolg bringen und ein gewlinschtes Ziel erfiillen.

Das Tailoring erhilt wiederum die Bewertung von 0, da die zugeschnittene
Software-Engineering-Methode nicht {iberpriift wird, ob sie wihrend der
Durchfiihrung ihren Zweck erfiillt. Das Situational Method Engineering
bekommt aus dem Grund die Bewertung 1, da es zumindest in Ansdtzen
iiberpriift, ob die Software-Engineering-Methode im spateren Gebrauch per-

66

formant ist. Falls nicht werden neue Bausteine ausgewéhlt, damit sie auf die
Projektsituation passt.

Der PDCA-Zyklus bekommt eine mittlere Bewertung. Er tiberpriift indirekt,
ob die Ergebnisse den gewlinschten Erfolg haben. Im PDCA-Zyklus erfolgt
dies nur, wenn dieser von neuem beginnt. Die 8D-Methode erhilt ebenfalls
die mittlere Bewertung. In Schritt 6 werden zwar die MalBnahmen theore-
tisch auf ihre Wirksamkeit liberpriift, aber nicht in der eigentlichen Durch-
fiihrung.

Das Projektcontrolling beinhaltet die Uberwachung von mdglichen Ergeb-
nissen mit in der allgemeinen Uberwachung und bekommt von daher die
Bewertung von 4. Dieselbe Bewertung bekommen ebenfalls Six Sigma und
die Agilen Methoden. Six Sigma tiberpriift die Malnahmen nicht in der ei-
gentlichen Durchfiihrung, sondern spiter mit statistischen Methoden. Die
Agilen Methoden tiiberpriifen insofern regelméfig die MaBnahmen, in dem
sie regelmiBig Feedback von den Beteiligten sammeln, beispielsweise durch
Meetings.

Vordefinition von Zielen und Rahmenwerte (Vorausschau) (VZR)

Bei diesem Kriterium wird iiberpriift, ob im Vorfeld Ziele und Rahmenwer-
te definiert werden, die es einzuhalten gilt und ob diese hinsichtlich Anpas-
sungen oder Maflnahmen ausgewertet und liberpriift werden kdnnen. Wie in
Anforderung 5 erwihnt ist dies wichtig, weil die Vordefinition von Zielen
und Rahmenwerten, die Vorausschau erst ermoglicht, um eventuelle Ab-
weichungen zu erkennen und darauf angemessen reagieren zu konnen.

Die 8D-Methodik erhilt hier die Bewertung 1. Es werden an keiner Stelle
direkt die Ziele oder Rahmenbedingungen definiert. Sie miissen zumindest
indirekt bekannt sein, damit den Problemen entsprechend begegnet werden
kann.

Die Agilen Methoden erhalten eine Bewertung von 2, da Ziele typischer-
weise die Anforderungen sind, welche erfiillt werden miissen. Doch wird zu
Beginn des Projektes eine Vision festgelegt, welche die ersten Ziele enthélt
und damit eine Richtung vorgibt, wie das Endprodukt aussehen sollte. Dies
bezieht sich aber in den seltensten Fillen auf die Agile Methode selbst.

Die beiden vorgelagerten Ansdtze bekommen hier eine mittlere Bewertung.
Sie analysieren beide die Projektumgebung und sehen im Prinzip voraus,
welches die besten Anpassungen in der Software-Engineering-Methode
sind, damit die Rahmenwerte, welche durch die Projektumgebung gegeben
sind, eingehalten werden. Six Sigma erhélt ebenfalls eine Bewertung von 3,
da in der ersten Phase zwar Anforderungen und Erwartungen definiert wer-

67

den, was auch Zielen und Rahmenbedingungen entsprechen kann, dies aber
nur indirekt etwas mit der gewiinschten Vorausschau zu tun hat.

Der PDCA-Zyklus und das Projektcontrolling erhalten die hochste Bewer-
tung. In beiden Ansétzen werden zu Beginn Ziele definiert, auf denen die
spateren und weiteren Planungen von MafBlnahmen und Anpassungen beru-
hen.

Automatisierungen (Auto)

Bei diesem Kriterium geht es darum, ob die Anséitze Automatisierung bei
der Anpassung einsetzen oder zumindest Mdoglichkeiten dafiir bieten. Au-
tomatisierung bietet gerade beim wichtigen Faktor Zeit einen entscheiden-
den Vorteil, da sie Vorgédnge, die sonst manuell durchgefiihrt werden, we-
sentlich beschleunigen kénnen.

Betrachtet man allerdings die gegebenen Ansétze so setzt keiner der Ansét-
ze bisher Automatisierung zur Anpassung ein. Das Projektcontrolling kann
an einigen Stellen zwar durch Software unterstiitzt werden, es wird aber
weniger oder gar nicht zur Anpassung eingesetzt. Auch das Situational Me-
thod Engineering bietet zwar Ansitze zur Automatisierung, um beispiels-
weise Methoden-Elemente miteinander zu verbinden etc., aber diese befin-
den sich groftenteils noch in der Forschung.

Wiederverwendung von Ergebnissen (WVE)

Das Kriterium untersucht, inwiefern die Ergebnisse, wie beispielsweise Pla-
nungen von und durchgefiihrte Malnahmen oder Anpassungen etc., fiir wei-
tere Software-Engineering-Methoden und/ oder Projekte wiederverwendet
werden konnen.

Alle Ansitze erhalten hier die mittlere Bewertung. Es wird nicht direkt er-
wihnt, wie bzw. dass die Ergebnisse wiederverwendet werden. Es ist jedoch
von jedem Ansatz vorstellbar, dass Teile wiederverwendet werden konnen.
Dafiir miissen die Ergebnisse allerdings entsprechend dokumentiert und
unter Umstdnden aufbereitet werden. Beispielsweise muss die Situation, in
der es eine Abweichung gegeben hat, notiert und mit der entsprechenden
Anpassung versehen werden. Die vorgelagerten Ansitze miissten die Pro-
jektsituation und die dazu entsprechend zusammengebaute oder zugeschnit-
tene Software-Engineering-Methode mit einer entsprechenden Begriindung
dokumentieren. Teile konnten dann in dhnlichen Situationen verwendet
werden.

2.5.2 Gesamtbewertung der Ansitze
Wie in der Tabelle an den jeweiligen Gesamtergebnissen zu sehen ist, erfiillt
keiner der Ansétze und auch das Projektcontrolling die Anforderungen an

68

die adaptive Anpassung einer Software-Engineering-Methode zur Laufzeit
vollstandig.

Gerade die vorgelagerten Ansdtze Situational Method Engineering und Tai-
loring haben ein niedriges Ergebnis. Dies liegt daran, dass die Anpassung
der Software-Engineering-Methode nur vor dem Start des Projektes erfolgt.
Im Gegensatz dazu sind sie allerdings die beiden Ansétze, deren Fokus auf
der Software-Engineering-Methode und deren Anpassung selbst liegt. Dies
ist bei den anderen Ansdtzen und auch beim Projektcontrolling nicht der
Fall. Der Fokus liegt hier auf dem Projekt.

Die Ansitze Six Sigma und die 8D-Methode haben eine durchschnittliche
Bewertung von 2.45 und 2.4 erhalten. Ein groBBes Manko ist hier zum einen
der Fokus der Anpassungen, welche nicht auf der Software-Engineering-
Methode liegen. Des Weiteren ist der wichtige Faktor Zeit insbesondere bei
Six Sigma sehr gering ausgeprigt, da die Anpassungszeiten teilweise bis zu
90 Tage und ldnger dauern. Auch der Anpassungszeitpunkt liegt hier eher
nach dem Projekt bzw. wenn das Projekt, oder bei der 8D-Methodik der
Prozess, bereits ,,vor die Wand gefahren* ist. Die Ergebnisse flieen bei Six
Sigma eher in das gesamte Unternehmen und zukiinftige Projekte als in das
aktuelle Projekt. Daraus folgt, dass es keine kontinuierliche und hiufigere
Anpassung gibt sowie keine oder nur wenig Uberwachung zur Laufzeit. Im
Analysieren und Auswerten des Status, der eigentlichen Probleme und der
Planung von entsprechenden MafBlnahmen sind beide Ansétze hingegen
stark.

Der PDCA-Zyklus und die Agilen Methoden haben eine gute mittlere Be-
wertung erhalten. Sie besitzen bereits viele Ansétze, welche die Anforde-
rungen zum Teil erfiillen. Doch gerade beim PDCA-Zyklus liegt der Fokus
wiederum nicht auf der Software-Engineering-Methode und auch die Dauer
ist hier wesentlich hoher. Auch die Planungen von Mallnahmen beziehen
sich hier nicht auf den analysierten Status, sondern werden im Voraus ge-
plant und sind an die Ziele angelehnt. Dadurch ist der Ansatz in der Voraus-
schau wiederum sehr stark.

Bei den Agilen Methoden liegt der Fokus zum Teil auf der Software-
Engineering-Methode, aber der Hauptfokus liegt auf dem zu entwickelnden
Produkt. Doch durch bestimmte Techniken wie tdgliche Meetings, eine Ret-
rospektive, Fortschrittsanalysen usw. kann eine regelmiBige Uberwachung
zur Laufzeit gegeben sein. Diese ist aber typischerweise beziiglich der SEM
eher informell und nicht strukturiert. Gerade in der Planung von Malnah-
men und der Vorausschau hat der Ansatz Schwéchen.

Das Projektcontrolling hat die hochste Bewertung der Ansétze erzielt, doch
auch hier gibt es Schwiéchen. Der Fokus liegt bei diesem Ansatz auf dem

69

Projekt selbst und betrachtet die Software-Engineering-Methode dadurch
hochstens indirekt. Auch die Dauer der Anpassung und der Anpassungszeit-
punkt selbst haben hier Abstriche bekommen. Das Projekt selbst wird zwar
kontinuierlich {iberwacht, aber beispielsweise die Planungen von Malinah-
men bzw. Anpassungen beziehen sich dabei dhnlich wie im PDCA-Zyklus
auf solche Planungen, die vor dem analysierten Status erfolgt sind. Auch
wenn das Projektcontrolling in der Vorausschau ebenfalls stark ist, beziehen
sich die Ziele und Rahmenbedingungen auf ,,eine andere Ebene®, wie bei-
spielsweise die Zeit oder das Budget des Projektes und weniger auf die
Software-Engineering-Methode.

Ein weiteres Manko aller Ansitze beziiglich der Anforderungen ist, dass
keiner der Ansédtze Moglichkeiten zur Automatisierung bietet. Gerade im
Projektcontrolling gibt es zwar Werkzeuge als technische Unterstiitzung,
diese haben aber weniger mit einer automatischen Anpassung zu tun. Gera-
de um den wichtigen Faktor Zeit mit einzubeziehen und die Dauer der
Uberwachung sowie Durchfiihrung der Anpassung zu verkiirzen, wiren
Automatisierungsmoglichkeiten wichtig.

Aus der Betrachtung der verschiedenen Ansédtze und unter Einbezug der
vorher genannten Anforderungen sowie den daraus abgeleiteten Bewer-
tungskriterien hat sich ergeben, dass es wichtig ist, einen Kreislauf zu nut-
zen. Dieser soll die genutzte Software-Engineering-Methode kontinuierlich
und moglichst eigenstindig wihrend der Ausfithrung tiberwachen, auf Ab-
weichungen hin analysieren, eine Anpassung entsprechend planen und die
Anpassung soweit moglich automatisiert durchfithren. Aus den Ergebnissen
der Bewertung und nach [Gel2] und [GLE12] lassen sich die erstellten An-
forderungen in folgende konkrete Anforderungen fiir einen Ansatz zur
selbst-adaptiven Anpassung einer Software-Engineering-Methode zusam-
menfassen:

Al. Der Fokus der Anpassung liegt auf der genutzten Software-
Engineering-Methode.

A2. Der Anpassungszeitpunkt ist zur Laufzeit, und die Dauer der ge-
samten Anpassung soll mdglichst kurz sein.

A3. Die SEM soll kontinuierlich und mdglichst eigenstindig wéhrend
ihrer Ausfithrung in Hinblick auf notwendige Abweichungen und An-
passungen auf der Instanz-Ebene beobachtet werden.

A4. Die beobachteten Werte sowie der aktuelle Status miissen analy-
siert und schnell beurteilt werden kénnen.

70

AS. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitéts-
zielen auf der Typ-Ebene geplant und durchgefiihrt werden konnen.

A6. Die Anpassung soll schnellstmdglich, zeitnah sowie moglichst au-
tomatisch erfolgen.

Das Ziel ist es nun, einen Ansatz zu entwickeln, der es einer Software-
Engineering-Methode ermdglicht, sich wéhrend ihrer Durchfiihrung grof3-
tenteils selbststindig zu iliberwachen und selbst-adaptiv anzupassen. Das
heiB3t konkreter, ein solcher Ansatz soll eine Software-Engineering-Methode
kontinuierlich und mdglichst eigenstindig zur Laufzeit iiberwachen und
ihren aktuellen Status hinsichtlich einer ntigen Anpassung auswerten. Auf-
bauend auf dieser Auswertung wird wenn notig eine Anpassung der SEM
auf Typ-Ebene geplant und diese wird anschlieBend moglichst automatisiert
wihrend der Laufzeit durchfiihrt und zuriick in die SEM auf Instanz-Ebene
ibertragen.

Anhand einer kontinuierlichen Uberwachung und der Anpassung zur Lauf-
zeit konnen die Ergebnisse der Anpassung aullerdem direkt evaluiert wer-
den. Ferner soll mit in Betracht gezogen werden, wie die Ergebnisse, z.B.
Anpassungs- und Auswertungsmoglichkeiten etc. in Zukunft wieder ver-
wendet werden konnen. Fiir die Erarbeitung des Ansatzes werden die Vor-
teile der bereits bestehenden Ansdtze genutzt. Dabei sollen hauptsichlich
deren Kreisldufe verwendet und weiter entwickelt werden. Die genauere
Analyse dieser Kreisldufe erfolgt nun im nichsten Kapitel ,,Beschreibung
des Losungsansatzes*

71

Kapitel 3 - Beschreibung des Losungsansat-
zZes

Aus Kapitel 2:

Herausforderungen
Beschreibung SEM & Projekt

' Abschnitt 3.1: Analyse Ansitze & |""Abschnitt 3.2: Feedbackschleifen aus
Konkretisierung Anforderungen i den selbst-adaptiven Systemen ‘

Analyse Ansdtze & Herausforderungen —_— Selbst-adaptive Systerne
Anpassungs-Arten ‘

P 45 Feedbackschleifen
Beispiele fir Anpassungen

; MAPE-K
\Erweiterung Anforderungen & Abgrenzung,-
Anforderungen Mapping auf MAPE-K
;) v _
[Abschnitt 3.4: Zwischenfazit & weitere | [Abschnitt 3.3: Beschreibung Konzeption |
Herausforderungen |SE Method Manager |
| |
Zwischenfazit € Aufbauund Beschreibung
Diskussion im Detail Fallbeispiel
Weitere Herausforderungen | Automatisierungsmaoglichkeiten

..-/:

Weiter Kapitel 4:

Losungsansatz verfeinern =>
zielorientiertes Vorgehen &
MAPE-K4SEM

Abbildung 20 Aufbau Kapitel 3

Um einen moglichen Lésungsansatz zu beschreiben, soll in diesem Kapitel
zundchst sowohl die Gemeinsamkeiten als auch die Schwachstellen der bis-
herigen Ansétze analysiert werden. Nach dieser Analyse von Gemeinsam-
keiten werden zusétzlich weitere Herausforderungen bei der selbst-
adaptiven Anpassung einer Software-Engineering-Methode untersucht. Da-
fiir werden zundchst die Probleme aus dem vorherigen Kapitel aufgegriffen
und anschlieBend wird geklirt, welche Moglichkeiten zur Anpassung in
einer Software-Engineering-Methode alle existieren konnen, u.a. mit Hilfe
von zwei komplexen Beispielen. Nach der Konkretisierung der Anforderun-
gen werden allgemein die Feedbackschleifen der selbst-adaptiven Systeme
und die MAPE-K-Schleife im Besonderen vorgestellt, da diese die Grundla-
ge fiir den Losungsansatz bilden.

Darauf basierend wird die Konzeption eines SE Method Managers vorge-
stellt, welcher als Framework fiir die selbst-adaptive Anpassung von Soft-
ware-Engineering-Methoden dient. Nach einem kurzen Zwischenfazit wer-
den weitere Details und Herausforderungen vorgestellt und diskutiert.

72

3.1 Analyse der Ansatze und Erweiterung der Anforde-

rungen

In Abschnitt 2.4 wurden verschiedene Vorgehensweisen zur Anpassung von
Software-Engineering-Methoden vorgestellt und in Abschnitt 2.5 wurden
diese Ansitze in Bezug auf die gestellten Ansitze analysiert und bewertet.
Es hat sich gezeigt, dass keiner der Ansitze alle Anforderungen ausreichend
erfillt. Doch um einen eigenen Ansatz zu entwickeln, sollen die Vorteile
und Gemeinsamkeiten, welche die Ansétze besitzen, herausgefunden und
genutzt werden. Des Weiteren soll genauer herausgefunden werden, welche
weiteren Probleme und Herausforderung bei der adaptiven Anpassung einer
Software-Engineering-Methode bestehen und mit einem eigenen Ansatz
gelost werden miissen. Im Anschluss werden die verschiedenen Moglichkei-
ten von Anpassungen erldutert, um im spiteren Verlauf die sechs aufgestell-
ten Anforderungen an einen Ansatz zur Anpassung von Software-
Engineering-Methoden im laufenden Projekt zu erweitern und zu prézisie-
ren sowie gegeniiber dem Projektcontrolling abzugrenzen.

3.1.1 Analyse der Gemeinsamkeiten der Ansitze und weitere Her-
ausforderungen

Wie sich in Abschnitt 2.4 und 2.5 gezeigt hat, ist eine der Schwichen der
Ansitze, dass der Fokus zum einen nicht auf der Software-Engineering-
Methode liegt. Zum anderen ist eine weitere Schwiche, dass die Dauer der
Anpassung viel zu lang und sie somit ungeeignet ist. Ferner bieten die An-
sdtze keine oder nur wenige Moglichkeiten zur Automatisierung, um die
Dauer der Anpassung zu verkiirzen und eine selbst-adaptive Anpassung zu
ermdglichen. Ferner passen zwei Ansidtze eine Software-Engineering-
Methode nur vor der Laufzeit an. Ansédtze wie Six Sigma und die 8D-
Methodik werden erst eingesetzt, wenn bereits Probleme aufgetreten sind.
Gerade bei Six Sigma greifen Anpassungen hdufig erst in anderen Projek-
ten.

73

/ Zietindung \) / : 1.nerine.. ~—.

2. Measure |

Projekt- ." Projekt- '. ' 5. control) - .
{ S‘N]:m“ fontmllm: Zyklus Pla::.m; __' ~ /' DMAIC-Zyklus)
\. \ (3. Analyze ._
Projekt- 4. Improve | \ ;

Uberwaclluns e pr—
/__) vision etablleren _\
\ Agile Methoden-
Zyklus

Planen
(Plan)

Verbessern .' Lat = N Anpassen
(Act) PDCA-Zyklus Mslf;:;-n

k.. Uberpriffen ‘_/ k P ./

(Check)

Planen

Abbildung 21 Die verschiedene Zyklen im Uberblick

Doch wenn man sich gerade die Agilen Methoden, den urspriinglichen Con-
trolling-Prozess und den kontinuierlichen Verbesserungsprozess anschaut,
so féllt auf, dass diese Ansétze und auch Six Sigma groftenteils nach dem-
selben Prinzip vorgehen und ein dhnliches Kernvorgehen besitzen. Diese
vier Ansétze folgen alle wie in Abbildung 21 zu sehen einem Zyklus, der
sich wiederholt oder bei Bedarf wiederholen kann (Six Sigma). Diese Zyk-
len folgen einerseits einem &hnlichen Schema, andererseits haben sie aber
auch Unterschiede.

Thnen ist gemeinsam, dass sie Ziele oder eine Vision entwickeln, um daran
angelehnt die mdglichen Anderungen zu planen. Im PDCA-Zyklus ist dies
in der Phase ,,Planen* und in Six Sigma in der Phase ,,Define* enthalten. Es
macht Sinn, Ziele und Rahmenbedingungen im Vorfeld zu definieren, um
spater eine Software-Engineering-Methode auf mogliche Abweichungen
beziiglich dieser hin zu analysieren. Doch in den beschriebenen Ansétzen
bezieht sich die Zielfindung auf ein Projekt, die Anforderungen an die
Software (Agile Methoden) oder Erwartungen und Anforderungen des Kun-
den an das Projekt (Six Sigma). Es muss also herausgefunden werden, wie
Ziele, Eigenschaften oder Erwartungen an eine Software-Engineering-
Methode herausgefunden und beschrieben werden konnen.

Eine weitere Gemeinsamkeit der Ansédtze ist, dass jeder Zyklus die Planung
von Mallnahmen bzw. einer Anpassung besitzt, welche sich bis auf Six
Sigma auf die Ziele bezieht. Zum einen ist es gut, dass mogliche Situationen

74

vorausgeplant werden. Doch zum anderen ist das Problem, dass die eigentli-
che Planung von Mafinahmen sich nicht auf den aktuellen Status bezieht. Es
wire somit sinnvoll, dass zunichst der aktuelle Status der Software-
Engineering-Methode zur Laufzeit hinsichtlich einer moglichen Anpassung
gepriift wird und anschlieBend eine Planung erfolgt, welche genau dieses
Problem 16st.

Bis auf den Agilen Methoden ist den Ansétzen ebenfalls allen gemeinsam,
dass das Projekt oder Ergebnisse iiberpriift werden miissen. Im PDCA-
Zyklus allerdings erfolgt dies zu einem spéteren Zeitpunkt als in den ande-
ren beiden Zyklen. Es ist also sinnvoll, dass es im neuen Ansatz ebenfalls
moglich ist, die erfolgte Anpassung entsprechend iiberpriifen zu kdnnen.

Allen Zyklen ist ebenfalls eine Anpassungs- oder Verbesserungs-Phase ge-
meinsam, im Controlling-Zyklus befindet sich dies in der Steuerungs-Phase.
Ebenso gibt es eine Ausfithrungs-Phase, beim PDCA-Zyklus im ,,Improve*
enthalten, im Controlling-Zyklus allerdings nur implizit. Die Ausfiihrung
befindet sich meistens nach der Planung und vor der Uberwachung. Das
heillt, dass die Planung ausgefiihrt und dann iiberpriift wird, bevor Mal3-
nahmen zur Anderungen ergriffen werden.

Die Gemeinsamkeiten der Ansidtze zeigen, dass es Sinn macht, ebenfalls
einen Zyklus einzusetzen. Dieser iiberwacht kontinuierlich die Software-
Engineering-Methode wihrend der Durchfiihrung, analysiert den aktuellen
Status, plant Anpassungen und fiihrt diese entsprechend aus. Die Frage ist
hier, was die optimale Anordnung der verschiedenen Phasen in einem sol-
chen Feedback-Zyklus wire, denn bisher unterscheiden sich die verschiede-
nen Ansitze.

Ferner muss neben der Software-Engineering-Methode selbst auch die Pro-
jektumgebung mit betrachtet werden. Diese kann sich ebenfalls auf die
Software-Engineering-Umgebung auswirken und Abweichungen erzeugen.
Es ist allgemein zu entscheiden, ob und wann welche (Teil-) Prozesse der
SEM geédndert werden miissen.

Auch wenn Abweichungen einer Software-Engineering-Methode bekannt
sind und eine Anpassung nétig ist, ist zu entscheiden, ob Methoden-
Elemente ausgetauscht, geloscht oder neue hinzugefiigt werden miissen.
Wie beispielsweise Method Engineering fiir existierende Projekte eingesetzt
werden konnte, um u.a. diese Fragestellungen zu beantworten, steht als ein
offenes Feld im State-of-the-Art Review [HSR10, S. 465]: ,,How to use me-
thod engineering in the context of existing (legacy) methods (most of the
SME literature assumes greenfield projects)*

75

Wenn herausgearbeitet wurde, was und an welcher Stelle der Software-
Engineering-Methode geéndert werden muss, ist zu kldren, wie und welche
Methoden-Elemente ausgewidhlt werden miissen. Eine weitere Frage, die
geklart werden muss ist, wo diese Elemente herkommen und/oder ob diese
im Ansatz bereits bekannt sind. Hier kann eine Technik aus dem Ansatz des
Situational Method Engineering eingesetzt werden, die Methoden-Basis.
Diese kann im Ansatz enthalten sein und entsprechende Elemente fiir die
SEM bereithalten.

Damit eine Software-Engineering-Methode {iberhaupt untersucht werden
kann, soll diese in einem Modell vorliegen (Typ-Ebene). Dabei ist es egal,
ob das Modell mit Hilfe von SPEM, ISO 24744, MetaMe, einer Variante
oder einer Vereinfachung davon erstellt wurde. Wichtig ist, dass konstant
dieselbe Methode zur Modellierung bei der Nutzung des Ansatzes verwen-
det wird. Jedoch ist es moglich, das zwei verschiedene Unternehmen jeweils
eine andere Moglichkeit zur Modellierung nutzen, diese anschlieBend aber
bei der Durchfiihrung konsequent nutzen.

Ebenso ist es ndtig, dass neben dem urspriinglichen Modell der SEM eine
aktuelle Instanz des Modells vorliegt (Instanz-Ebene). Dieses bildet den
aktuellen Status der Software-Engineering-Methode wéhrend der Durchfiih-
rung ab. Dies ist wichtig, um den aktuellen Status analysieren und spéter die
Anpassung zur Laufzeit durchfithren zu kdnnen. Zusétzlich miissen die Pro-
jekteigenschaften und das Umfeld bekannt sein, sowie die Anderungen, die
geschehen sind. Eine Frage, die dabei zu kldren wire, ist, wo diese Elemen-
te abgelegt werden.

Sind Methoden-Elemente ausgewéhlt, miissen sie noch mit der alten Soft-
ware-Engineering-Methode zu einer neuen verschmolzen werden. Dies
spielt sich sowohl auf der Typ-Ebene (neues Modell) als auf der Instanz-
Ebene (weitere Durchfithrung der neuen SEM) ab. Es gibt verschiedene
Techniken im (Situational) Method Engineering, wie eine Software-
Engineering-Methode zusammengesetzt wird. Doch bevor dies erfolgt, soll-
ten folgende Fragen betrachtet und beantwortet werden: Wie wirkt sich die-
se Anderung auf die gesamte Software-Engineering-Methode (Gesamt-
SEM) aus? Wie sind die Abhingigkeiten zu anderen Methoden-Elementen
wihrend der Anderung, kommt es durch die Anderung an einer anderen
Stelle zu Problemen? In Bezug auf die Methoden-Elemente selbst, sehen
[HSR10, S.465] dies ebenfalls als eine noch offene Forschungsfrage an:
,,How to ensure that the configuration of these selected method fragments is
consistent and complete?*

Um einen Ansatz entwickeln und die genannten Punkte und Anforderungen
aus Abschnitt 2.5 erfiillen zu konnen, ist es wichtig zu wissen, wie eine

76

Software-Engineering-Methode iiberhaupt angepasst werden kann. Es muss
bekannt sein, welche Elemente angepasst werden konnen und wie diese mit-
einander zusammenhéingen. Diese verschiedenen Mdoglichkeiten zur Anpas-
sung sollen im nédchsten Abschnitt ndher untersucht und erlautert werden.

3.1.2 Anpassungs-Arten

Um eine Software-Engineering-Methode anzupassen, gibt es verschiedene
Moglichkeiten. Die Anpassungen finden typischerweise auf der Typ-Ebene
statt, also am Modell der konkreten Software-Engineering-Methode selbst.
Um mogliche Arten einer Anpassung herauszufinden ist es wichtig zu wis-
sen, was die Bestandteile von einer Software-Engineering-Methode sind.
Die mdglichen Bestandteile sowohl von einem Projekt als auch von einer
Software-Engineering-Methode wurden bereits in Abschnitt 2.1.1 beschrie-
ben und in Abbildung 6 dargestellt. Dazu gehdren u.a. Artefakte (Dokumen-
te, Inkremente, Guidances), Aktivitidten, Rollen und ihre Verantwortlichkei-
ten, Techniken, Werkzeuge sowie die Reihenfolge von Aktivitdten, der
Workflow. Dies sind alles Elemente, welche in einer Software-Engineering-
Methode angepasst werden konnen. Nun wird im Folgenden beschrieben,
wie und in welcher Art diese angepasst werden kann.

3.1.2.1 Einer Software-Engineering-Methode ein Element hinzufii-
gen

Eine Moglichkeit, eine Software-Engineering-Methode anzupassen, ist es,
ihr etwas hinzuzufiigen. Dies konnen verschiedene Elemente sein, z.B.:

eine neue Aktivitit bzw. Aufgabe,

eine neue Rolle,

ein neues Artefakt,

eine neue Technik,

ein neues Werkzeug,

eine neue oder weitere Verantwortlichkeit fiir eine der oben genann-
ten Elemente,

g. eine zusitzliche Reihenfolge.

o Ao o

Des Weiteren kann es moglich sein, dass nicht nur ein neues oder ein weite-
res Element der Software-Engineering-Methode hinzugefiigt wird, sondern
mehrere. Dies heillt genauer, dass eine Kombination von Elementen hinzu-
kommt, zum Beispiel eine neue Aktivitit, welche von einer neuen Rolle
durchgefiihrt wird und/oder mit einer neuen Technik. Beispiele, wie die An-
passung durch das Hinzufiigen ein oder mehrerer neuer Elemente aussehen
kann, werden in Abschnitt 3.1.3 beschrieben.

77

3.1.2.2 In einer Software-Engineering-Methode ein Element 16-
schen

Das Gegenteil der Anpassung einer Software-Engineering-Methode durch
Hinzufiigen eines Elements ist das Loschen eines Elements in der SEM.
Beim mdglichen Ldoschen handelt es sich um dieselben Elemente wie im
vorherigen Abschnitt 3.1.2.1

Es kann ebenfalls eine Kombination von Elementen geloscht werden, bei-
spielsweise eine Aktivitdt mit den zugehdrigen Rollen und Techniken. So-
wohl beim Loschen von Elementen, als auch beim Hinzufiigen von neuen
Elementen ist es wichtig, die Abhéngigkeiten zwischen den einzelnen Ele-
menten zu kennen. Dadurch muss sichergestellt werden, dass die Anpassung
einer Software-Engineering-Methode nicht den Gesamtfluss der vollsténdi-
gen SEM stort. Ferner kann so herausgefunden werden, ob nur ein einzelnes
Element oder eine Kombination von Elementen geldscht bzw. hinzugefiigt
werden muss.

3.1.2.3 In einer Software-Engineering-Methode ein Element erset-
zen oder dndern

Im Gegensatz zum Hinzufiigen oder Loschen von Elementen in einer Soft-
ware-Engineering-Methode kann es sein, dass ein Element ersetzt oder ge-
andert werden muss. Dies kann primér bei folgenden Elementen der Fall
sein:

a. Eine Rolle wird durch eine andere ersetzt oder die Rolle wird
weiter spezialisiert. Dabei ist speziell zu beachten, dass in diesem
Fall nicht nur die Person auf der Instanz-Ebene wechselt, z.B.
aufgrund von Krankheit, sondern dass die Rolle selbst gedndert
wird. Beispiele konnen sein, dass die Rolle des Kunden durch ei-
nen ,,Kunden-Tester* spezialisiert, oder dass die reine Rolle
.Softwareentwickler” durch die Rolle ,, Tester fiir eine Aktivitét
ersetzt wird.

b. Eine Aktivitdt dndert sich zum Beispiel vom Entwickeln eines
Artefakts hin zum Testen eines Artefakts.

c. Eine Technik wird ausgetauscht: Hat z.B. das Schitzen von
Aufwand nach der MuSCoW-Methode nicht den gewiinschten
Erfolg gebracht, dann wird sie durch eine andere Schéatzmethode
ersetzt. Oder einfaches Testen wird durch die Technik ,,Pair-
Testing* ersetzt oder erweitert.

d. Ein Artefakt kann durch ein anderes ersetzt werden.

Typischerweise bleiben beim Ersetzen oder Andern eines Elementes die
Abhéngigkeiten und vor allem die Reihenfolge der Elemente bestehen.
Trotzdem sollte liberpriift werden, wenn beispielsweise eine Aktivitit gedn-

78

dert wird, ob die zugeordneten Rollen noch in der Lage sind, diese Aktivitit
auszufiihren. Das heif3t es gilt zu priifen, ob die Rollen weiterhin die richti-
gen fiir die Aktivitét sind oder ob sie ebenfalls gedndert werden miissen. Ein
Beispiel konnte sein, dass sich die Aktivitdt von ,,Entwickeln® zu ,, Testen*
dndert. Dann miissten die Rolle ,,Entwickler eventuell zu ,,Tester* geéndert
werden.

3.1.2.4 Die Reihenfolge - der Workflow - von Elementen wird ver-
andert

Des Weiteren kann es moglich sein, dass wihrend einer Anpassung einer
Software-Engineering-Methode die Reihenfolge von Elementen gedndert
werden muss. Dies kann insbesondere der Fall sein bei:

a. der Erstellung von Artefakten,
b. der Durchfiihrung von Aktivitéten,
c. der Kombination von a. und b.

Auch in diesen Féllen muss darauf geachtet werden, dass die Abhédngigkei-
ten betrachtet und der Gesamtfluss der Software-Engineering-Methode
durch die Anderung der Reihenfolge nicht gestdrt wird.

Im ndchsten Abschnitt werden zwei komplexe Beispiele fiir Anpassungs-
Arten genannt und kurz erldutert.

3.1.3 Beispiele fiir Anpassungen

Um in den beiden folgenden Beispiele besser verdeutlichen zu kénnen, wa-
rum eine solche Anpassung nétig ist und wie diese erfolgen konnte, miissen
einige Punkte und Fragen bei den Beispielen beachtet und beantwortet wer-
den. Folgende Punkte und Fragen sind wichtig:

1. Damit eine Software-Engineering-Methode angepasst werden soll, muss
ein Problem auftreten, welches bei Nicht-Behandlung (fatale) Folgen fiir
den Erfolg des Projektes haben kann. Die Frage, die bei den Beispielen
nun dahinter steht ist: Was konnte ein Problem sein, damit z.B. etwas ei-
ner SEM hinzugefugt werden muss und wie konnte sich das Problem &u-
Rern?

2. Der nédchste Punkt, welcher sich direkt an den ersten anschlief3t ist die
Frage, warum das Problem {iiberhaupt ein Problem fiir die SEM, die
Teammitglieder, den Erfolg des Projektes usw. ist. Was hat es fir Aus-
wirkungen, wenn dieses Problem NICHT gel6st wird? Auswirkungen
konnten unter anderem hohe Kosten sein, da das Einhalten von Dead-
lines nicht mehr moglich ist oder im schlimmsten Fall 1duft das Projekt
,,vor die Wand“.

3. Eine weitere zu beantwortende Frage kann sein, welche Eigenschaften
der SEM erfiillt sein miissen oder welche Ziele von ihr erfiillt sein miis-

79

sen, die mit dem Problem verletzt sein wiirden. Genauer wiirde die
zweigeteilte Frage lauten: Welche Eigenschaft bzw. welches Ziel der
SEM soll sichergestellt werden und wiirde mit dem auftretenden Prob-
lem verletzt?

4. Nachdem das Problem genau gekldrt ist im Beispiel, muss aber das
Problem auch fiir die Anpassung moglichst frith (im Vorfeld) gefunden
werden. Die ebenfalls zweigeteilte Frage lautet dann: Was musste an
Regeln oder Grenzen eingehalten werden, damit das Ziel oder die Ei-
genschaft nicht verletzt wird? Wie kann dies im Vorfeld herausgefunden
werden, beispielsweise anhand einer Messung (was misste gemessen
werden)?

5. Sind die vorhergehenden Fragen beantwortet und durchgespielt, muss
im Beispiel geklirt werden, wie eine Losung fiir das Problem aussieht,
das heif3t: Wie musste eine Anpassung im Beispiel aussehen?

6. Abschliefend muss die fertige Anpassung in das Projekt tibertragen und
vor allem miissen alle Beteiligten benachrichtigt werden. Die Frage lau-
tet also: Wer muss bei der Anpassung alles benachrichtig werden?

3.1.3.1 Beispiel ,,Quasi-Scrum*

Ein erstes Beispiel fiir die Anpassung einer Software-Engineering-Methode
ist das Projekt ,,Quasi-Scrum* [EG09]. In diesem Projekt aus dem s-lab —
Software Quality Lab wurde eine Kreditkalkulationssoftware entwickelt mit
Hilfe der Agilen Methode Scrum. Scrum wurde fiir das Projekt im Vorfeld
bereits angepasst. Es gab beispielsweise keine tdglichen Stand-Up-
Meetings, sondern nur zwei- bis dreimal die Woche halbstiindige Teammee-
tings. Ferner gab es keinen einzelnen Product Owner sondern einen Len-
kungskreis. Die Review-Meetings waren keine Informationsmeetings, son-
dern Abnahmemeetings durch den Lenkungskreis und es war nie das ganze
Team anwesend.

Das Problem in diesem Projekt war, dass die nicht-funktionalen Anforde-
rungen und hier besonders die Performanz gro3e Schwierigkeiten bereiteten.
Dies duBlerte sich zum einen dadurch, dass die Software unter hoher Last
lange Antwortzeiten besa3. Zum anderen war der Kunde sehr unzufrieden
und es gab viele Fehlermeldungen (Frage 1). Die Auswirkungen des Prob-
lems (Frage 2) waren einerseits, dass viele und schwerwiegenden Fehlern
sowie ein Ausfall der Software auftraten. Andererseits wurde das Produkt
durch den Kunden nicht abgenommen und ein ,,Reparatur-Sprint” musste
durchgefiihrt werden, dessen Kosten beim Anbieter lagen. Zwar wurden die
Deadlines immer gehalten, aber unter Umstdnden war das Inkrement nicht
vollstdndig und wie vorher beschrieben performancetechnisch fehlerhaft.

Es war somit wichtig, dass die Optimierung der Performanz der Software
sichergestellt wird. Auf Scrum genau iibertragen hiel3 das, dass die nicht-

80

funktionalen Eigenschaften der Software im Artefakt Product Backlog ste-
hen mussten (Frage 3), was hier im Projekt zunichst nicht der Fall war. Die
Betrachtung der nicht-funktionalen Eigenschaften ist hdufig ein Problem in
den Agilen Methoden, gerade auch bei Scrum. Der Fokus liegt typischer-
weise auf den Funktionalititen einer Software.

Damit dies vorher hitte auffallen konnen, hitte zum einen das Product
Backlog iiberwacht werden miissen, z.B. anhand einer Uberpriifung auf Per-
formanz- oder Optimierungs-Eintrdge. Zum anderen hitte der Kunde stéirker
im Vorfeld mit eingebunden werden miissen, beispielsweise anhand von
durch ihn durchgefiihrter Tests. Ferner hétten zum Erkennen des Problems
die Fehlereintrige des Kunden und somit seine Zufriedenheit (anhand der
Fehler oder eingetragener Kommentare) liberpriift oder gemessen werden
konnen (Frage 4).

Die Losung des Problems war in diesem Projekt die Einfithrung einer neuen
Aktivitdt und neuer Rollen (Frage 5). Es wurden 1-3 sogenannte ,,Kunden-
Test-Tage™ eingefiihrt, welche nach den Entwicklungstagen im Sprint und
vor dem Review-Meeting lagen. Zusétzlich wurde als neue Rolle das ,,Kun-
den-Test-Team* eingefiihrt, welches aus ,,Kunden-Tester* bestand. Diese
fiihrten spezielle Tests durch, wodurch der Kunde zum einen mehr mit ein-
gebunden wurde. Zum anderen wurden ihm die nicht-funktionalen Eigen-
schaften wesentlich bewusster und diese wurden regelmdfig ins Product
Backlog eingetragen.

Die neue Aktivitit wurde in einem neuen Sprint das erste Mal durchgefiihrt.
Wihrend des vorherigen Sprints wurden sowohl die neuen Kunden-Tester
als auch das aktuelle Team iiber die Anderung informiert (Frage 6).

Dieses Beispiel kann auch analog fiir die nicht-funktionale Eigenschaft
Usability iibernommen werden. An den Kunden-Test-Tagen koénnen hier
Usability-Tests mit eingeplant werden.

3.1.3.2 Beispiel ,Test-Sprint in Scrum*“

In den Agilen Methoden bekommt das Testen zwar eine wichtige Rolle zu-
geschrieben, wird aber in der Originalliteratur wie beispielsweise dem
ScrumGuide [SS13] nur sehr oberflachlich oder gar nicht beschrieben. Wird
die Aktivitdt Testen beschrieben, ist das Vorgehen nur vage und nicht unbe-
dingt strukturiert. Ferner soll das Testen von den Entwicklern selbst durch-
geflihrt werden; die Rolle eines expliziten Testers in Scrum-Teams ist im
Original nicht vorgesehen, streng genommen ist dies sogar verboten [SS13].

Auch wenn viel Wert auf Unit-Tests, kontinuierliche Integration und soge-
nannte User-Acceptance Tests [Glo11] gelegt wird, kann es durch das un-
strukturierte Testen passieren, dass nicht ausreichend getestet wird oder ei-

81

nige Funktionen gar nicht getestet werden. Die Product Backlog Eintrige
haben evtl. einen Eintrag fiir einen Testfall oder einen Unit-Test, aber durch
das Fehlen eines systematischen Vorgehens kann es zu einer fehlerhaften
Software kommen, welche erst im Betrieb durch den Kunden entdeckt wird.
Zwar sollen gerade die Agilen Methoden dies verhindern, aber so etwas wie
Release- oder gar End-to-End-Tests sind in Scrum nicht vorgesehen (Frage

).

Unsystematische Tests oder nicht durchgefiihrte, fehlende Tests kdnnen
somit zu mehr Kosten aufgrund einer héheren Fehlerrate fithren. Falls Feh-
ler erst im Betrieb auftauchen, kann es passieren, dass durch die Bereini-
gung der Fehler aufgrund der Zeit Deadlines nicht eingehalten werden kon-
nen. Zusitzlich kann die Bereinigung der Fehler weitere Kosten verursachen
(Frage 2).

Es miisste somit tiberpriift werden, ob entweder zu jedem Backlog Eintrag
verschiedene Testarten (nicht nur der Unit-Test) vorhanden sind, oder ob es
eigene Test Backlog Eintridge, wie in [GG12] vorgeschlagen, gibt. Ferner
kann die Liste mit den Mengen an Fehlermeldungen und deren Kritikalitét
als Indikator genutzt werden, ob ausreichend Tests vorhanden sind (Frage 3
+ 4).

Um dieses Problem nun zu 16sen, kann wie in [GG12] vorgeschlagen, eine
neue Aktivitét, insbesondere fiir ein vollstindiges Release, ein sogenannter
Release-Sprint eingefiihrt werden. Zusétzlich zu diesem neuen Sprint, wel-
cher sich gut in die Scrum-Methodik einbetten ldsst, miissten entsprechende
neue Artefakt definiert und der Software-Engineering-Methode hinzugefiigt
werden, zum Beispiel ein Test Backlog. Die sogenannten Daily Tasks im
normalen Sprint, also die tdglichen Aufgaben, werden durch entsprechende
Test Tasks ersetzt und die tdglichen Ergebnisse (Daily Results) werden
durch einen tiglichen Test Report in diesem Sprint ersetzt. Dieser Sprint
wird von denselben Personen durchgefiihrt, allerdings diesmal in der Rolle
der ,,Tester”. Unter Umsténden ist es nétig, flir diesen Sprint einen Testex-
perten/Test-Designer o0.4. mit einzubringen (Frage 5).

Bevor dieser neue Sprint durchgefiihrt wird, werden alle Teammitglieder
und gegebenenfalls neue Tester oder Testexperten benachrichtigt (Frage 6).

3.1.4 Konkretisierung der Anforderungen und Abgrenzung

Die beschriebenen Anpassungsarten zeigen, wie komplex eine Anpassung
im laufenden Projekt sein kann und welche verschiedenen Moglichkeiten es
gibt. Die beiden komplexen Beispiele und besonders die vorher diskutierten
Gemeinsamkeiten und Schwiéchen der Ansdtze sowie zusétzlich definierte
Herausforderungen zeigen, was alles bei der Anpassung selbst und ebenfalls
im Vorfeld zu beachten ist. Zusédtzlich mit den Bewertungskriterien aus Ka-

82

pitel 2.4 und diesen neuen Erkenntnissen wurden die vorherigen sechs An-
forderungen an den eigenen Ansatz um sieben weitere Anforderungen er-
weitert. Die konkreten Anforderungen lauten somit:

Al. Der Fokus der Anpassung liegt auf der genutzten Software-
Engineering-Methode.

A2. Der Ansatz soll dhnlich wie die bereits beschriebenen Ansétze ei-
nem kontinuierlichen Zyklus folgen und das Feedback der Umgebung
mit einbinden.

A3. Der Anpassungszeitpunkt ist zur Laufzeit und die Dauer der gesam-
ten Anpassung soll moglichst kurz sein.

A4. Die SEM soll kontinuierlich und mdglichst eigenstindig in Hin-
blick auf notwendige Abweichungen und Anpassungen auf der Instanz-
Ebene beobachtet werden.

AS. Fiir diese kontinuierliche Beobachtung miissen sowohl die Umge-
bung als auch die aktuelle Software-Engineering-Methode selbst iiber-
wacht werden koénnen. Das heilit, es miissten konkrete Daten, welche
fiir die Uberwachung notwendig sind, gemessen werden.

A6. Die beobachteten Werte, also der aktuelle Status, muss analysiert
und schnell beurteilt werden koénnen.

A7. Die Werte, aber auch das Modell der Software-Engineering-
Methode, miissen an einem zentralen Ort abgelegt und es muss darauf
zugegriffen werden konnen.

A8. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitéts-
zielen geplant werden konnen.

A9. Es muss entschieden werden, wie die Anpassung erfolgt: ob ein
Element ausgetauscht wird, ein Element geloscht wird usw. Es muss
ferner mit betrachtet werden, ob die Anpassung eine Auswirkung auf
die Gesamtmethode hat. Die Anpassung muss anschlieBend am Modell
auf der Typ-Ebene entsprechend durchgefiihrt werden.

A10. Die Anpassung muss von der Typ-Ebene in das laufende Projekt,
also auf die Instanz-Ebene, zuriickiibertragen werden konnen.

All. Die Anpassung soll schnellstméglich und zeitnah, sowie mog-
lichst automatisch und somit eigenstindig erfolgen.

A12. Die Anpassung muss im laufenden Projekt evaluiert werden kon-
nen.

A13. Die Ergebnisse der Anpassung sollen fiir weitere Projekte wieder-
verwendet werden kdnnen.

&3

Der zu entwickelnde Ansatz zur Anpassung einer Software-Engineering-
Methode weist Ahnlichkeiten zu den bestehenden Ansitzen und vorwiegend
zum Projektcontrolling auf. Doch das Projektcontrolling selbst hat, wie
schon in Abschnitt 2.4 und 2.5 beschrieben, einen ganz anderen Fokus — das
Projekt selbst.

Im Projektcontrolling werden im Gegensatz zum entwickelnden Ansatz
hauptsdchlich die Facetten Einhaltung des Budgets, Einhaltung des Zeit-
plans und Einhaltung der (Sach-)Ziele betrachtet und iiberwacht. Dabei wird
weniger genau auf die Software-Engineering-Methode selbst geschaut, was
hier besonders wichtig ist. Es kann unter Umstinden vorkommen, dass et-
was an der Software-Engineering-Methode geéndert wird, doch dies ist eher
ad hoc und unstrukturiert.

Im zu entwickelnden Ansatz sollen zwar die im Projektcontrolling {iber-
wachten Ziele enthalten sein, aber es sollen vor allem die eigentlichen Ziele,
Eigenschaften und Elemente der Software-Engineering-Methode betrachtet
werden. Die Anpassung erfolgt zeitnah, strukturiert und wird im Modell der
Software-Engineering-Methode abgebildet. Ferner ist die Anpassung durch
den zu entwickelnden Ansatz von kiirzerer Dauer und soll wenn moglich
automatisiert und selbst-adaptiv durchgefiihrt werden.

Es ist sowohl dem Team als insbesondere auch dem Projektmanager mit
Hilfe des Ansatzes moglich, Probleme innerhalb der Software-Engineering-
Methode rechtzeitig zu erkennen und diesen rechtzeitig entgegen zu steuern.
Mit dieser Unterstiitzung konnen die Ziele des Projektmanagements und
somit des Projektcontrollings eingehalten werden.

Fiir die Entwicklung des Ansatzes wurde nach einem weiteren, dhnlichen
Zyklus gesucht, welcher die Anforderungen abbildet. Der Zyklus bzw. die
Zyklen, welche die Anforderungen und die Gemeinsamkeiten der bestehen-
den Ansitze ebenfalls abbilden, sind die Feedbackschleifen aus den selbst-
adaptiven Systemen, welche im ndchsten Abschnitt ndher vorgestellt wer-
den.

84

3.2 Feedbackschleifen aus den selbst-adaptiven Syste-

men

Wie in Abschnitt 3.1 beschrieben, wird fiir Anpassungen, Verdnderungen
oder Verbesserungen immer wieder ein Zyklus in verschiedenen Auspri-
gungen verwendet. Am Ende des Abschnitts wurden Anforderungen defi-
niert, welche ein Zyklus zur Anpassung im Projekt erfiillen muss. Durch
diese Anforderungen wurde eine weitere Reihenfolge fiir den Ablauf des
Zyklus vorgeschlagen.

In den selbst-adaptiven Systemen werden zur Uberwachung und Anpassung
von Systemen ebenfalls Zyklen verwendet, die sogenannten Feedback-
schleifen. Diese iiberwachen automatisch ein gegebenes System und geben
entsprechend Feedback, ob ein System moglicherweise angepasst werden
muss oder nicht. Diese Feedbackschleifen sollen neben selbst-adaptiven
Systemen im Folgenden vorgestellt werden, dabei speziell die bekannte
Feedbackschleife MAPE-K, welche den gestellten Anforderungen sehr nahe
kommt.

3.2.1 Selbst-adaptive Systeme und selbst-adaptive Software

Um mit der immer groBer werdenden Komplexitdt von Software-Systemen
umgehen zu kénnen und Herr tiber die sich stindig dndernde Umgebung zu
werden, haben Softwareentwickler und -techniker angefangen, sich mit
Selbst-Adaptivitidt von Systemen zu beschiftigen [Br09]. Dabei haben sie
sich in anderen verwandten Gebieten umgeschaut, beispielsweise in der Ro-
botik oder der Kiinstlicher Intelligenz, um neue Wege fiir das Design von
Systemen und Software zu finden. Selbst-adaptive Systeme kdnnen auf eine
sich dndernde Umgebung und neue Anforderungen reagieren, welche zum
Zeitpunkt des Designs noch nicht bekannt waren. ,,Selbst* (engl. self) heilit
in diesem Kontext, dass das System oder die Software selbststindig, also
autonom und ohne oder nur mit minimalen (menschlichen) Einfluss von
auBen entscheiden kann, ob und wie auf Anderungen in der Umgebung rea-
gieren und sich gegebenenfalls anpassen kann [Ch09].

Aus einem dhnlichen Grund sind die Agilen Methoden in Bezug auf Soft-
ware-Engineering-Methoden bzw. die Entwicklung von Software(-
Produkten) entstanden. Sie sollen ebenfalls auf sich d&ndernde Anforderun-
gen an die Software zeitnah reagieren konnen, da nicht alle Anforderungen
zu Beginn bekannt sind oder der Kunde plotzlich eine Anderung haben
mochte.

Wissenschaftler und Entwickler haben sich viele Gedanken dariiber ge-
macht, wie selbst-adaptive Systeme aussehen sollten, um eine gro3e Band-
breite bei der Anpassung abdecken zu kdnnen, unter anderem die Perfor-
manz oder Sicherheit von Systemen. Gerade die Sicherheit ist bei sicher-

85

heitskritischen Systemen besonders wichtig. Aber auch das Fehlermanage-
ment kann mit selbst-adaptiven Systemen gut adressiert werden [KCO03].

Normalerweise befinden sich Software-Systeme wie beschrieben in einer
sich andauernd dndernden Umgebung. Sie bendtigen Personen, die sich mit
moglichst allen Faktoren auseinandersetzen und alle Moglichkeiten ,,vorher-
sehen®, die passieren konnen. Ferner miissen diese Personen Anderungen
bemerken und rechtzeitig agieren, damit die Systeme einwandfrei weiterlau-
fen. Doch gerade diese Aufgaben sind nicht nur kostspielig und sehr zeit-
aufwendig, sondern kdnnen kaum addquat von Personen abgedeckt werden
[STO9].

Gerade ein immer groferes Verlangen nach weiteren Automatisierungen,
nach Robustheit oder Qualitdtssicherung innerhalb des Budgets und inner-
halb einer bestimmten Zeit konnte bis dato kaum erfiillt werden. Die selbst-
adaptiven Systeme aber auch selbst-adaptive Software, welche nach dem-
selben Prinzip funktioniert, waren die Antwort auf diese Probleme.

Die Losungen sind sogenannte ,,Closed-Loop-Systeme®, die eine Feedback-
schleife enthalten mit dem Ziel, Verdnderungen rechtzeitig zu erkennen und
sich selbststindig anzupassen. Diese Verdnderungen konnen durch die
Software oder das System selbst intern ausgelost werden oder aber auch
durch den Kontext, in dem sie sich befinden, z.B. durch externe Events wie
mehr User Regests [ST09]. Um das Ziel zu erfiillen, miissen sich die Syste-
me oder die Software und ihre Umgebung selbststindig iiberwachen, signi-
fikante Anderungen entdecken, entscheiden kénnen, wie sie reagieren sollen
und diese Entscheidungen entsprechend ausfiihren. Dies erfolgt alles auto-
matisch zur Laufzeit.

Was selbst-adaptive Systeme und Software somit alle gemeinsam haben ist,
dass die Anderungen und die Entscheidungen, wie reagiert werden soll alle
automatisch und zur Laufzeit durchgefiihrt werden miissen. Dafiir muss
ithnen ihr aktueller Zustand, aber auch der Zustand ihrer Umgebung bekannt
sein. Dies fiihrt zu den vier Schliissel-Aktivititen im Feedback-Prozess
[KCO03, BR09, CH09,ST09]:

1. Sammeln (Collect)

2. Analysieren (Analyze)

3. Entscheiden (Decide) und

4. Handeln bzw. Ausfiihren (Act)

Diese Schliissel-Elemente finden sich typischerweise in den Feedback-
schleifen wieder, welche im folgenden Abschnitt ndher beschrieben werden.

86

3.2.2 Allgemeine Beschreibung von Feedbackschleifen

Um das dynamische, sich immer &ndernde Verhalten von selbst-adaptiven
Systemen ansatzweise kontrollieren zu konnen, miissen sie stindig eine
Riickmeldung vom aktuellen Stand des Systems und seiner Umgebung be-
kommen. Die Systeme brauchen dies Wissen um herauszufinden, ob und
welche Entscheidungen zu einem bestimmten Zeitpunkt getroffen werden
miissen.

Daten sammeln
(Collect)

Entscheidung
ausfiithren
(Act)

Daten analysieren
(Analyze)

Uber
Systemanpassung
entscheiden
(Decide)

Abbildung 22 Schliisselfaktoren der allgemeinen Feedbackschleife basierend auf [Do06, Ch09,
Br09]]

Eine bewdhrte Moglichkeit flir ein solches Feedback mit entsprechender
Reaktion sind die sogenannten Feedbackschleifen (engl. Feedback-Loops).
Die vier Schliisselfaktoren fiir eine allgemeine Feedback-Loop sind wie in
Abbildung 22 zu sehen und bereits im vorherigen Abschnitt beschrieben
[Br09, Ch09, Do06]

e das Sammeln von Daten iiber das System und den Kontext (,,Coll-
ect®),

o das Analysieren dieser Daten (,,Analyze®),

o das Entscheiden, ob das System oder die Software angepasst werden
soll (,,Decide*),

o das Handeln bzw. Ausfiihren der Entscheidung (,,Act).

Mit der Zeit haben sich neben der allgemeinen Feedbackschleife verschie-
dene Ausprigungen entwickelt, u.a. das Rainbow-Framework von [GCS03]
in 2003 und spiter in 2007 die Shaw-Feedback-Loop [MPS0S].

Das Rainbow-Framework unterteilt dabei wie in Abbildung 23 zu sehen in
das zu liberwachende System auf der einen und einem iiberwachenden Ar-
chitektur-Manager auf der anderen Seite. Anhand von Monitoring-

87

Architektur Manager

Repair | N
Handler [€ > Analyzer
A A
\ 4
API L Modell &
Interpreter |~ API
A 4 i
Uberwachungs-
Ubersetzer Mechanismen
(Monitoring)
N
Runtime
Manager

Abbildung 23 Rainbow-Framework basierend auf [GCS03]

Mechanismen wird das System iiberwacht und diese Daten in den ,,Archi-
tektur Manager* iibertragen, wo sich das Modell des Systems und die API
befinden. Anhand der iibertragenen Daten und des Modells werden die Da-
ten auf Abweichungen hin im Analyzer analysiert und falls nétig wird im
,Repair Handler* eine Anpassung geplant. Diese wird iiber den ,,API Inter-
preter und den ,,Ubersetzer* zuriick in das System iibertragen, in diesem
Fall dem ,,Runtime Manager*.

Auch in der Shaw-Feedback-Loop nach [MPS08] werden wie in Abbildung
24 zu sehen das ausfithrende System sowie die Betriebsumgebung von der
eigentlichen Feedbackschleife abgekapselt. Daten-Stichproben werden so-
wohl von der Umgebung als auf vom System selbst gemessen und an die
Feedbackschleife iibertragen. Zusétzlich werden Prognosen gesammelt, wie
sich alles voraussichtlich weiter entwickelt. Ahnlich wie im Rainbow-
Framework werden die Daten anhand eines aktuellen und eines mit den be-
kannten Daten erstellten zukiinftigen System-Modells analysiert und mitei-
nander verglichen.

In diesen Vergleich flieBen fiir die Entscheidung, ob Korrekturen notwendig
sind, zusitzlich die Zielvorstellungen, welche anfangs erstellt worden sind,
mit ein. Diese werden anschlieBend in einem néchsten Schritt geplant und
die Korrekturen werden mit Hilfe von Kommandos in das System zuriick
iiberfiihrt.

88

Ver-

gleich Zielvorstellungen

[Korrekturen planen

System-Modell
(aktuell & zukiinftig)

A

Korrekturen
ausfiihren

uaqeIdyRs

Betriebsumgebung

Abbildung 24 Shaw-Feedback-Loop basierend auf [MPS08]

Ahnlich diesen beiden Modellen hat sich eine der bekanntesten Feedback-
schleifen, die MAPE-K-Feedbackschleife [Br09] entwickelt, welche mitt-
lerweile groftenteils bei selbst-adaptiven Systemen eingesetzt wird. Diese
wurde von Kephart und Chess [KC03] entwickelt und durch IBM populér
[IBMO06] gemacht. Die Feedbackschleife besteht aus vier Phasen, welche die
vier Schliisselfaktoren abbildet und diese wie in der Shaw-Feedback-Loop
um eine Planung erweitert: Monitor (Collect), Analyse (Analyze + Decide),
Plan und Execute (Act). Zusétzlich gibt es eine Wissensbasis, die ,,Know-
ledge Base®, wo beispielsweise die Modelle dhnlich wie im Rainbow-
Framework und in der Shaw-Feedback-Loop gespeichert werden. Die An-
fangsbuchstaben der Phasen und der Knowledge Base fiihren letztendlich zu
dem Namen ,,MAPE-K*. Ebenfalls sind die Phasen des MAPE-K vom Sys-
tem abgekapselt und werden ,,Autonomic Element” genannt. Diese Feed-
backschleife wird im folgenden Abschnitt genauer unter die Lupe genom-
men.

3.2.3 Die Feedbackschleife MAPE-K

Das “Autonomic Element”, oder auch Kontroll- bzw. Feedbackschleife ge-
nannt, wurde von Kephart und Chess [KCO03] als weitere Architektur fiir
selbst-adaptive System mit einer expliziten Feedback-Loop vorgestellt. Die-
se Architektur, MAPE-K genannt, wurde populédr durch den ‘“Architectural
blueprint for autonomic computing” von IBM [IBMO06].

89

/ Autonomic Manager \

Sensors Effectors

— e

Managed Element

Abbildung 25 Autonomic element - MAPE-K feedback loop nach [KCO03]

Das Autonomic Element besteht wie in Abbildung 25 zu sehen aus einem
Element (dem System), welches gemanagt wird und aus dem ,,Autonomic
Manager selbst, dessen Kern die Feedbackschleife ist. Damit eine System-
Komponente sich nun selbst managen kann, muss sie eine (automatisierte)
Methode haben [IBMO06], welche

e Details sammelt, die sie vom System und seiner Umgebung braucht,

e diese Details analysiert um zu entscheiden, ob etwas gedndert wer-
den muss,

e cinen Plan oder eine Reihe von Aktionen erstellt, welche die noti-
gen Anderungen spezifiziert und

e um diese Aktionen auszufiihren.

Eine solche Methode ist die Implementierung des Autonomic Managers.
Diese besteht wie in Abbildung 25 zu sehen aus vier Teilen, dem Monitor
(M) oder Monitor-Phase, einem Analyzer (A) oder der Analyse-Phase, ei-
nem Planer (P) der sogenannten der Plan-Phase und einem Executer (E), der
Execute-Phase. Alle vier Phasen teilen sich eine gemeinsame Wissensbasis
(Knowledge Base, K) [Br09, IBM06]. Zusitzlich besitzt der Autonomic
Manager noch zwei Schnittstellen. Zum einen die Sensoren, welche die ent-
sprechenden Daten sammeln und zum anderen die Effektoren oder auch
Aktuatoren, welche die Aktionen am Ende ausfithren. Der ,,Architectural
blueprint von IBM bietet ausfiihrliche Beschreibungen an, wie die vier
Phasen, die Wissens-Basis, die Sensoren und Effektoren/Aktuatoren imple-
mentiert werden konnen [IBMO06, Br09].

90

In der Monitor-Phase sammelt der Monitor verschiedene Daten {iber das
System, den Prozess, in dem es sich befindet, sowie {liber dessen Kontext
und Umgebung. Diese Sensordaten werden gefiltert und akkumuliert, wofiir
es verschiedene Methoden und Moglichkeiten gibt. AbschlieBend werden
die Daten und relevante Ereignisse in der Wissensbasis fiir die Zukunft ge-
speichert.

Der Analyzer vergleicht in der Analyse-Phase die Daten der Ereignisse mit
verschiedenen Mustern aus der Wissensbasis und/oder modelliert komplexe
Situationen, um mdgliche Situationen in der Zukunft vorhersagen zu kon-
nen.

Der Planer interpretiert in der Planungsphase die Daten und Situationen. Er
erstellt mogliche Aktionen, die ausgefiihrt werden, um einen bestimmten
Status oder gesetzte Ziele des Systems erreichen zu konnen. Dieser Plan
wird wie beschrieben in der Execute-Phase durch den Executer und iiber die
Effektoren ausgefiihrt.

Auch wenn es durch den Autonomic Manager moglich ist, die verschiede-
nen Phasen der Feedbackschleife zu automatisieren, mochten professionelle
IT’ler manchmal nur einige Teile der potentiell automatisierten Phasen an
ihn delegieren [IBMO06]. In Abbildung 26 sind die vier verschiedenen Profi-
le (Monitor, Analyse, Plan und Execute) des Autnomic Managers zu sehen.
Ein Administrator mochte beispielsweise nur die Monitor-Phase automati-
sieren und durch den Autonomic Manager ausfiihren lassen. Das Ergebnis
der Monitor-Phase, die gesammelten und vielleicht schon gefilterten und
akkumulierten Daten mochte er dann lieber an andere Konsolen oder auch
Menschen delegieren, als sie zu automatisieren, z.B. aufgrund von Erfah-
rungswerten etc. Natiirlich kénnen auch andere Teile zusétzlich automati-
siert werden. Durch diese Aufsplittung der Phasen sind die verschiedensten
Kombinationen moglich.

91

Automatisierung

KB

Abbildung 26 Aufsplittung der Automatisierung der einzelnen Phasen im MAPE-K nach
[IBMO06]

Wie vorher beschrieben, finden die vier Phasen iiber einer Wissensbasis
statt. Diese Wissensbasis kann eine Implementierung einer Registrierung,
eines Worterbuchs, einer Datenbank oder eines Repositories sein oder eine
Kombination aus allem. Zumindest stellt er den Zugriff auf ,,Wissen* sicher,
abhéngig von den Interfaces der Architektur [IBMO06]. In autonomen Sys-
temen, besteht das Wissen aus bestimmten Typen von ,,management data“
mit einer bestimmten Syntax und Semantik, wie beispielsweise Symptome,
Policies, Anfragen zur Anderung (Requests of Change) und Anderungspli-
ne. Die gespeicherten Daten werden von den verschiedenen Phasen im Au-
tonomic Manager genutzt. Zusitzlich kann die Wissensbasis Daten wie In-
formationen iiber und durch Topologien enthalten, als auch historische Logs
oder verschiedene Metriken [IBMO6].

Der Autonomic Manager und seine Feedbackschleife MAPE-K sind (bisher)
fiir autonome Systeme und Systemkomponenten beschrieben. Doch bei ge-
nauer Betrachtung erfiillt diese Feedbackschleife genau die Anforderungen
an unseren Ansatz fiir die Anpassung von Software-Engineering-Methoden.

Wie wiirde es nun aussehen, wenn das System durch eine Software- Engi-
neering-Methode ersetzt wiirde? Ist es mdglich, diese Feedbackschleife fiir
eine selbst-adaptive Anpassung von einer SEM zur Laufzeit zu nutzen? Zu-
nichst miisste iiberpriift werden, ob und wie sich die einzelnen Phasen und
Funktionen darauf abbilden lassen und was sowohl die verschiedenen Pha-
sen als auch die Wissensbasis, Sensoren und Effektoren enthalten miissten.

92

3.3 Beschreibung der Konzeption eines SE Method Mana-

gers
Eine Software-Engineering-Methode soll zur Laufzeit kontinuierlich {iber-
wacht und sich moglichst automatisch anpassen. Im hier vorgestellten An-
satz soll dazu der Ablauf des MAPE-K auf Software-Engineering-Methoden
ibertragen werden. Eine der entscheidenden Fragen ist dabei, wie die An-
passung einer Software-Engineering-Methode mit dem MAPE-K kombi-
niert werden kann; ist es mdglich alles auf die entsprechenden Phasen abzu-
bilden und wie miissten diese dann aussehen?

Um eine Software-Engineering-Methode mit Hilfe des MAPE-K iiberwa-
chen zu konnen ist es wichtig zu bestimmen, was genau auf der Instanz-
Ebene gemessen werden kann. Mit Hilfe der Sensoren ist es moglich, ,,har-
te* Faktoren der Software-Engineering-Methode zu messen. Damit sind
solche Faktoren gemeint, die sich direkt in Listen, in Tabellen, im Code, in
Algorithmen, in Modellen usw. erfassen und auswerten lassen. Diese kon-
nen mit Hilfe von Metriken die zu messenden Werte bestimmen und sie
anschlieBend mit Hilfe von Sensoren fiir die weitere Verarbeitung erfassen.

Schwierig wird es bei den ,,weichen* Faktoren. Damit ist beispielsweise
gemeint, wenn sich zwei Personen im Team nicht verstehen, die Kommuni-
kation untereinander nicht funktioniert, Missverstindnisse entstechen usw.
Dies sind Faktoren auf der psychologischen, kulturellen und zwischen-
menschlichen Ebene, welche zwar Auswirkungen auf die Software-
Engineering-Methode und somit auf den Erfolg des Projektes haben. Wei-
che Faktoren lassen sich jedoch nur schwierig bestimmen. Es lassen sich
maximal die Auswirkungen solcher Faktoren beobachten und messen, wenn
diese sich in den harten und somit messbaren Faktoren niederschlagen.

Auch das Projektcontrolling sagt nach [Hel3], dass ein Projektmanager sol-
che strukturellen Konflikte zwar nicht grundsitzlich verhindern kann, aber
er kann im Voraus versuchen diese zu reduzieren. Dies ist beispielsweise
moglich, in dem er Projektrollen so definiert, dass dabei mdglichst wenige
Personen im selben Fachgebiet arbeiten oder dass jede Person in mdglichst
wenigen Fachgebieten arbeitet. Diese Aspekte konnen wiederum in Mess-
werte umgewandelt werden, zum Beispiel anhand der Qualifikationen und
Zugehorigkeiten der Personen und Rollen, welche in einem Dokument fest-
gelegt sind.

Wenn nun entsprechend die weichen Faktoren soweit wie moglich in harte
Faktoren umgewandelt werden, ist eine weitere wichtige Frage, wie sicher-
gestellt wird, dass das Richtige gemessen wird. Das heil3t, dass die korrek-
ten Werte erfasst und ausgewertet werden. Wie dies im Ansatz sichergestellt
wird, beschreiben Abschnitt 4.3 und ausfiihrlicher Abschnitt 5.3.

93

Um nun die Software-Engineering-Methode beobachten zu konnen und ent-
sprechende Messwerte zur Auswertung zu erhalten, muss die Software-
Engineering-Methode und ihre Instanziierung mit den entsprechenden Wer-
ten im Projekt zunéchst selbst abgebildet werden. Dies kann hier tiber das
Managed Element erfolgen, welches sonst das zu verwaltende System dar-
stellt. Die resultierende ,,Managed SE-Methode* muss somit alle aktuellen
Daten der instanziierten Software-Engineering-Methode beinhalten, welche
kontinuierlich gemessen und tiberwacht werden kénnen. Daten konnen da-
bei u.a. die aktuell erstellten Artefakte, die durchgefiihrten Aktivitdten, die
konkret ausfiillten Rollen, eingesetzte Techniken, durchgefiihrte Meetings
usw. sein.

Anhand der Sensoren werden nun die entsprechenden Daten gemessen und
in der Monitor-Phase anschlieend aufgezeichnet, fiir die Analyse aufberei-
tet sowie zusétzlich in die Wissensbasis geschrieben. Anhand der Sensoren
und der Monitor-Phase wére somit sichergestellt, dass die Software-
Engineering-Methode aber auch ihre Umgebung kontinuierlich iiberwacht
werden, wie in der Anforderung A5 gefordert.

In der Analyse-Phase werden die gemessenen und aufbereiteten Daten aus-
gewertet. Die Daten spiegeln den aktuellen Status der Software-
Engineering-Methode wider, den Ist-Zustand. Dieser wird mit vorher defi-
nierten Werten, also einem Soll-Zustand, verglichen. Falls die gemessenen
Daten den Soll-Zustand nicht erfiillen, das heif3t von den im Vorfeld defi-
nierten Werten beispielsweise durch Uber- oder Unterschreiten abweichen,
wird die Plan-Phase angestoflen, um eine Anpassung zu planen. Die Aus-
wertung und Analyse des aktuellen Zustandes erfolgt dabei mit Hilfe der
Wissensbasis.

Hat die Analyse-Phase nun ergeben, dass die Software-Engineering-
Methode angepasst werden muss, werden in der Plan-Phase eine Anpassung
und mogliche Varianten geplant. Dafiir konnen verschiedene Methoden-
Elemente aus einer Methoden-Basis ausgewdhlt werden. Diese Elemente
konnen gegen Elemente in der aktuellen Software-Engineering-Methode
ausgetauscht, geloscht oder ihr hinzugefiigt werden. Anschlieend soll die
Konsistenz der Anpassung in Hinblick auf die gesamte SEM {iberpriift wer-
den, vor allem ob diese Anpassung an einer anderen Stelle Konflikte aus-
16st. Ist dies der Fall, muss eine Alternative geplant werden.

Als letztes wird die Anpassung in der Execute-Phase tiber Effektoren ausge-
fithrt, das heil3t die angepasste SEM wird in das aktuelle Projekt iibertragen
und alle Beteiligte miissen entsprechend benachrichtig werden. Mit einer
solchen Anpassung wire zum einen erfiillt, dass die Anpassung wéhrend des
laufenden Projektes stattfindet (Anforderung A3). Zum anderen erfolgt die

94

Anpassung nicht nur wihrend des Projektes, sondern zeitnah und immer
dann, wenn ein Problem auftritt. Letztgenanntes sollte modglichst automa-
tisch geschehen (Anforderung A11).

3.3.1. Aufbau und Beschreibung des SE Method Manager

Nachdem erortert wurde, dass eine Abbildung auf den MAPE-K mdglich
ist, wird in Abbildung 27 eine detailliertere Ausarbeitung fiir einen solchen
,»SE Method Manager* gezeigt.

/ SE Method Manager
Analysieren:

Projektdaten : Planen:
gerandert & Ziele P'al'l Anpassungsalterna-
werden eingehalten? s tivenvergleichen
Beurteilen: 5 Methodenanpassung
Methodenanpassung - festlegen
notwendig? / -

. Ausfiihren:

Methodeninstanz
anpassen &
. Benachrichtigung

Beobachten:
Projektdaten fiir die
Analyse aufbereiten

o

L/

Sensoren messen Effektoren passen
Projektdaten Projekt ziigig an
Sensoren
))
Ziele sind mit
Anfangswerten Projektdaten und Projektbeteiligte
definiert Dateneingabe
Managed SE-Methode

Abbildung 27 Aufbau des SE Method Managers

Das bisherige Managed Element ist hier wie bereits beschrieben nicht ein
System, sondern die Software-Engineering-Methode selbst. Dieses Element,
die ,,Managed SE-Methode* besteht aus dem aktuellen Projekt mit den ak-
tuellen Projektdaten sowie allen Projektbeteiligten und {iber das Managed
Element erfolgt die Dateneingabe. Hier wird die aktuelle Software-
Engineering-Methode ausgefiihrt und die Projektbeteiligten geben bei-
spielsweise Daten ein, erzeugen Artefakte, dokumentieren Meetings usw.

Die beschriebene Wissensbasis beinhaltet eine Informationsbasis mit allen
Informationen, die fiir eine Anpassung der Software-Engineering-Methode
notwendig sind. Dies sind definierten Ziele, Aufbereitungsregeln, welche in
der Monitor-Phase genutzt werden, sowie Regeln zu ihrer Anpassung. Au-
Berdem enthilt die Wissensbasis eine Methoden-Basis mit verschiedenen
Bausteinen fiir eine Software-Engineering-Methode. Dies konnen sowohl
Bausteine fiir eine agile als auch eine klassische SEM sein. Abschliefend

enthélt die Wissensbasis ein Modell der aktuellen Software-Engineering-
Methode selbst.

Das Modell ist sehr wichtig, denn an diesem werden die Anderungen durch-
gefiihrt, beispielsweise das Hinzufiigen eines Artefakts, die Anderung von
Rollen, das Austauschen einer Technik usw. Die Modellierung einer SEM
kann beispielsweise iiber SPEM oder MetaME erfolgen, aber auch eine ein-
fache Form eines Modells kann gegeben sein. Wichtig ist, dass alle Artefak-
te, Rollen, Aktivititen, Techniken und der Workflow sowie die Abhingig-
keiten untereinander modelliert sind. Nur so kann eine Anpassung vorge-
nommen werden. Die verschiedenen Elemente der Wissensbasis sollten vor
der Projektdurchfiihrung erstellt werden. Durch das vorherige Erstellen
vermindert sich der Aufwand wihrend der Durchfiihrung.

Ahnlich wie die Modelle sind die Sensoren, welche u.a. automatisch je nach
Phase anhand von Regeln ausgewéhlt werden konnen, bereits vorher vor-
handen. Diese Sensoren erfassen bestimmte Werte iiber beispielsweise das
Eintragen in Programme oder Listen durch die Projektmitarbeiter. Das Ein-
tragen der Werte wiirde nur einen geringen Mehraufwand fiir die Mitarbei-
ter bedeuten, da dies in ihren geregelten Tagesablauf mit eingebettet ist.

In der Monitor-Phase werden nun wie vorher beschrieben die eingegebenen
Daten beobachtet und fiir die Analyse aufbereitet. Dies erfolgt iiber vorher
definierte Aufbereitungsregeln mit Hilfe der Wissensbasis. Zum Beispiel ist
fiir eine bestimmte Auswertung die TeamgroBe wichtig. Die Sensoren mes-
sen kontinuierlich die Anzahl der Personen pro Team. In der Monitorphase
wird dies insofern aufbereitet, als dass die Anzahl der Personen pro Team
gleich der Teamgrofle gesetzt wird.

In der Analyse-Phase wird zu Beginn ausgewertet, ob sich Projektdaten ge-
dndert haben. Im positiven Fall, wird iiberpriift, ob vorher gesetzte Ziele und
Grenzwerte fiir diese Projektdaten weiterhin eingehalten werden. Ist dies der
Fall, wird die Software-Engineering-Methode weiter fortgefiihrt und die
Phase Plan wird nicht aufgerufen. Werden die Werte iiber- oder unterschrit-
ten, soll die SEM angepasst werden und die Plan-Phase wird mit den zu
dndernden Daten aufgerufen.

In der Plan-Phase wird nun die Anderung der Software-Engineering-
Methode geplant. Wie in 3.1.2. kann es mehrere Mdglichkeiten fiir die An-
passung einer Methode geben. Je nach Anderungsbedarf wird ein Element
hinzugefiigt, ausgetauscht oder geldscht. In Betracht kommt auch die Ande-
rung des Ablaufs. Die Planung kann {iber vorhandene Erfahrungswerte aber
auch iiber Planungs-Algorithmen erfolgen. Bevor die geplante Anderung
umgesetzt wird sollte liberpriift werden, ob und wie sich diese auf die ge-
samte Software-Engineering-Methode auswirkt. Die Frage ist, ob diese An-

96

derung an dieser Stelle die SEM verbessert, oder ob sie an einer anderen
Stelle dadurch weitere Probleme erzeugt. Fiir den Fall, dass die gesamte
SEM an einer anderen Stelle stark gestort wird, muss eine Alternative ge-
plant und mit der Gesamt-SEM sowie der anderen Planungsvariante abge-
glichen werden. Ist dies erfolgt, wird die endgiiltige Planung festgelegt und
die Execute-Phase wird aufgerufen.

Die Execute-Phase passt nun sowohl das Modell als auch die Instanz der
aktuellen SEM mit der geplanten Anderung an und ermittelt, wer alles an-
hand von Benachrichtigungen (Notifications) iiber die Anderung informiert
werden muss. Dies konnen sowohl Betroffene der Anderung sein als auch
Programme oder Systemteile.

Abschliefend greifen nun die Effektoren in das aktuelle Projekt und somit
in die aktuelle Software-Engineering-Methode ein und setzen die Anpas-
sung entsprechend um. Bei den Effektoren handelt es sich um ein generi-
sches Konzept. Effektoren konnen sowohl Projektpléne als auch Projektpa-
rameter anpassen. Sie konnen ebenfalls Modelle automatisch dndern und
Benachrichtigungen verschicken. Effektoren miissen ferner fiir die Nach-
vollziehbarkeit der Anderungen sorgen, z.B. iiber einen Mechanismus, um
Anderungen in ein Log der Wissensbasis zu schreiben.

Eine selbst-adaptive Anpassung einer Software-Engineering-Methode wire
mit Hilfe von einem SE Method Manager also theoretisch mdglich. Dies
soll im nichsten Abschnitt mit Hilfe von einem einfachen Beispiel verdeut-
licht werden.

3.3.2 Durchspielen des SE Method Managers anhand eines Bei-
spiels

Fiir das Durchspielen des SE Method Managers wird das einfache Beispiel
der Teamgrofe in Scrum verwendet. In Scrum ist die Teamgrof3e des Ent-
wicklungsteams ein wichtiger Bestandteil. Ein Team sollte nach [SS13]
nicht groBer als 9 und nicht kleiner als 3 Personen sein. Wiirden weniger als
3 Personen im Entwicklungsteam arbeiten so besteht die Gefahr, dass diese
kein funktionierendes Produkt-Inkrement liefern, weil sie beispielsweise
nicht iiber die notigen Skills verfiigen. Sind mehr als 9 Personen im Ent-
wicklungsteam so erfordert dies nach Schwaber und Sutherland zu viel Ko-
ordination. Das zu grof3e Entwicklungsteam erzeugt eine zu hohe Komplexi-
tidt um erfolgreich durch Scrum verwaltet zu werden [SS13]. Neben der Ko-
ordination leidet zusétzlich die Kommunikation.

Auch wenn Scrum fiir beide Moglichkeiten Losungsansitze vorsieht, bei-
spielweise bei einem zu groflen Team das Team zu splitten und das zusétzli-
che Team-Meeting Scrum of Scrums einzufiihren, so wird dies in der Praxis
nicht unbedingt umgesetzt. Die Erfahrung, dass ein zu groBBes Team nicht

97

entsprechend geteilt wurde, wurde auch in einem Praxis-Projekt im s-lab
gemacht. Wie eine eigenstindige Anpassung schnell und einfach mit dem
SE Method Manager dafiir aussieht, wird im folgenden Beispiel gezeigt.

/ SE Method Manager \
Planen:

Plane Scrum mit TeamgréBe = 12

Phn' Team-Split: 2 Teams a 6 Personen =>
1EEL Teile Mitglieder & Product Backlog

~ nach Skills auf die Teams auf .
. Zusétzliches Scrum of Scrums nach

Daily Scrum

Analysiere neue Werte:
3 <= Teamgrofe in
Scrum<= 97

Nein => Anpassen

Ausfiihren:

Schreibe neue Methode
in die KB

Setze Termin fiir Scrum of
Scrums nach Daily Scrum
Informiere per E-Mail

Teammitglieder j

Effektoren passen
Projekt ziigig an

Beobachten:
Projektdaten
aufbereiten: Setze
neue TeamgroBe = 12

\

Sensoren messen:
TeamgriBe hat sich
geandert

Sensoren

| ——) |

Ziel: Fiihre Original

Serum durch Dateneingabe Anzahl Teammitglieder
Anfangswert +5
TeamgroBe =7

Managed SE-Methode: Scrum

Abbildung 28 Anpassung bei einem zu grofien Team mit dem SE Method Manager

Die Managed SE-Methode hier im Beispiel ist wie in Abbildung 28 zu se-
hen die Agile Methode Scrum im Original. Das definierte Ziel lautet hier,
dass das originale Scrum durchgefiihrt wird und somit die optimale Team-
groBe verwendet werden soll. Das Entwicklungsteam, hier einfach mit Team
bezeichnet, besteht zu Anfang aus 7 Personen. Da beispielsweise gerade ein
komplexer Sprint ansteht, werden dem Team 5 Mitglieder hinzugefiigt. Die
zusitzliche Anzahl der Mitglieder wird ein einer Liste festgehalten.

Uber die Sensoren wird nun gemessen, dass sich die TeamgroBe gedndert
hat. In der Monitor-Phase werden die neuen Projektdaten aufbereitet, die
Regel fiir die Teamgrofle besagt, dass die Anzahl der Teammitglieder = der
TeamgrofBe ist. Die neue Teamgrofe betrdgt nun die Zahl 12. Das Team ist
somit zu grof.

In der Analyse-Phase wird analysiert, ob das Team kleiner als drei oder gro-
Ber als neun Personen ist. Die Analyse ergibt in diesem Beispiel also ein
negatives Ergebnis und die Beurteilung lautet, dass die Software-
Engineering-Methode angepasst werden muss.

In der Plan-Phase wird die Anpassung fiir das zu gro3e Team mit 12 Perso-
nen geplant. Der Plan ist, dass ein Team-Split durchgefiihrt und zwei Teams
mit sechs Personen entstehen. Die Personen werden gemél3 ihrer Skills den

98

Teams zugeordnet, ebenso wie die Aufgaben aus dem Product Backlog.
Zusétzlich wird geplant, dass ein Scrum of Scrums nach dem Daily Scrum
durchgefiihrt wird. Dies ist dhnlich wie das Daily Scrum ein Informations-
meeting, wo sich Vertreter der beiden Teams treffen und entsprechend aus-
tauschen.

In der Execute-Phase wird die geplante Software-Engineering-Methode ent-
sprechend in die Wissensbasis geschrieben und der Termin fiir das Scrum of
Scrums wird nach dem Daily Scrum gesetzt. AbschlieBend werden alle Be-
teiligten iiber die Anderungen informiert und wann diese Anderungen in
Kraft treten. Uber die Effektoren werden die Anderungen in das aktuelle
Projekt iibertragen und die Benachrichtigungen versendet. Die Software-
Engineering-Methode ist somit angepasst.

3.3.3 Moglichkeiten zur Automatisierung

Beim urspriingliche Autonomic Manager ist es moglich, alle vier Phasen zu
automatisieren. Trotzdem wird wie in Abschnitt 3.2.2 beschrieben dies nicht
immer durchgefiihrt. Manchmal werden nur einzelne Phasen automatisiert
oder Kombinationen von einzelnen Phasen. Das Ziel des SE Method Mana-
gers sollte ebenfalls sein, dass MAPE-K vollstindig automatisiert werden
kann. Insbesondere das Messen der Daten iiber Sensoren, die Monitor-Phase
mit der Aufbereitung der Daten filir die Analyse-Phase sowie die Analyse-
Phase selbst bieten sich fiir eine Automatisierung an. Die Auswertung der
Daten kann automatisch iiber Regeln erfolgen, welche vorher definiert und
in der Wissensbasis abgelegt wurden. Ahnliches kann bei der Aufbereitung
der Daten in der Monitor-Phase erfolgen. Spezielle Aufbereitungsregeln
werden definiert, in der Wissensbasis abgelegt und spéter in der Monitor-
Phase automatisch angewendet.

Auch wenn der Ubergang zwischen der Analyse-Phase und der Plan-Phase
automatisch erfolgen kann, beispielsweise hat die Auswertung ergeben, dass
die Software-Engineering-Methode an einer bestimmten Stelle angepasst
werden muss, macht es an dieser Stelle Sinn, den Menschen mit einzubin-
den. Ein Methoden-Engineer und/oder der Projektleiter sollten die Software-
Engineering-Methode darauthin priifen, ob an dieser Stelle wirklich eine
Anpassung notig oder ob sie noch im Rahmen der SEM erlaubt ist.

AnschlieBend konnen sie die Freigabe fiir die Anpassung erteilen und den
Ubergang zu der Plan-Phase einliuten. Oder sie lehnen die Anpassung ab
und MAPE-K wird in der Monitor-Phase weiter fortgesetzt. An dieser Stelle
sollten dann die Rahmenbedingungen und die Regeln entsprechend ange-
passt werden. Ansonsten werden der vermeintliche Fehler und seine Anpas-
sung im nichsten Schritt moglicherweise erneut erfolgen.

99

Mit den Ubergiingen von der Plan-Phase zur Execute-Phase sowie der end-
giiltigen Ausfiihrung verhélt es sich dhnlich. Die Phasen an sich sollten au-
tomatisiert durchgefiihrt werden und auch ein automatischer Ubergang ist
moglich. Doch an beiden Stellen macht es Sinn, dass ein erfahrener Metho-
den-Engineer sich die geplante Anpassung anschaut, sie aufgrund seiner
Erfahrung einschitzt und anschlieend zur Durchfiihrung freigibt. Zusitz-
lich kann sich am Ende der Execute-Phase vor der endgiiltigen Durchfiih-
rung der Anpassung, der Projektleiter unter Umstinden zusammen mit dem
Methoden-Engineer, die ndtige Anpassung ansehen und das endgiiltige
Okay geben. Diese menschlichen Zwischenschritte nutzen die Erfahrung der
Personen und erhéhen das Vertrauen in eine angepasste Methode.

3.4 Erstes Fazit und weitere Herausforderungen

In dem vorherigen Abschnitt wurde mit Hilfe des SE Method Managers
basierend auf MAPE-K, ein Ansatz vorgestellt, welcher es grundlegend
moglich macht, die Anpassung einer Software-Engineering-Methode selbst-
adaptiv durchzufiihren. In den folgenden Abschnitten wird nach einem kur-
zen Fazit beziiglich des Ansatzes dieser tiefergehend betrachtet und zusitz-
lich erdrtert, welche weiteren Probleme sich im Detail ergeben.

3.4.1 Erstes Fazit beziiglich des Ansatzes

Nach einem ersten Betrachten und Durchspielen des SE Method Managers
zeigt sich, dass die automatisierte Uberwachung einer im Vorfeld festgeleg-
ten Software-Engineering-Methode und deren zeitnahe, selbst-adaptive und
automatische Anpassung zur Laufzeit mit Hilfe von MAPE-K grundsitzlich
moglich sind. Die vier Phasen des MAPE-K Monitor, Analyse, Plan und
Execute, erfiillen weitestgehend die Anforderungen A1 bis A13.

Der Fokus liegt wie in Al gefordert auf der Software-Engineering-Methode,
welche das zu iiberwachende Element darstellt (Managed SE-Methode). Die
MAPE-K-Feedbackschleife folgt einem kontinuierlichen Zyklus dhnlich den
der bereits vorhandenen Ansétze und bindet Feedback mit Hilfe von Senso-
ren ein. Damit ist Anforderung A2 ebenfalls erfiillt. Mit Hilfe des Zyklus,
der wie im vorherigen Abschnitt beschrieben teils automatisch durchgefiihrt
werden kann, kann die Dauer der Analyse, Anpassung und insbesondere
Ausflihrung relativ kurz gehalten werden, womit Anforderung A3 erfiillt
wire.

Die Sensoren messen die Projektdaten und die Monitor-Phase bereitet sie
entsprechend fiir die weitere Auswertung auf. Dadurch ist nicht nur eine
kontinuierliche Messung der SEM auf Instanz-Ebene, sondern auch eine
durchgehende Beobachtung der SEM gewiéhrleistet. Damit wiren Anforde-
rung A4 und durch das Messen mit Hilfe von Sensoren wire Anforderung
AS erfillt.

100

Die Analyse-Phase analysiert anhand der gemessenen Daten entsprechend
den aktuellen Status und beurteilt, ob ein Anpassungsbedarf der verwende-
ten Software-Engineering-Methode notig ist oder nicht. Dadurch ist Anfor-
derung A6 erfiillt.

In der Plan-Phase wird eine entsprechende Anpassung auf der Typ-Ebene
geplant, indem Methoden-Bestandteile hinzugefiigt, geloscht oder ausge-
tauscht werden. Dies erfiillt grundlegend die Herausforderung A8 und teil-
weise A9 (Beurteilung, welche Elemente hinzugefiigt, gel6scht oder ausge-
tauscht werden).

AbschlieBend wird mit Hilfe der Execute-Phase und der Effektoren die
Software-Engineering-Methode zeitnah angepasst, das heiflt die Anpassung
wird von der Typ-Ebene auf die Instanz-Ebene und somit in das laufende
Projekt iibertragen. Dadurch ist Anforderung A10 erfiillt. Da dies grundle-
gend automatisch, schnell und eigenstindig moglich sein sollte, wére vo-
raussichtlich auch die Anforderung A11 erfiillt.

Damit die vier Phasen in der Feedbackschleife durchgefiihrt werden kdnnen,
sind die wichtigen Daten, welche fiir die einzelne Schritte bendtigt werden,
in der Wissensbasis zentral gespeichert und es kann darauf zugegriffen wer-
den. Damit ist auch Anforderung A7 erfiillt.

Da die MAPE-K-Feedbackbackschleife im Projekt auch nach einer Anpas-
sung kontinuierlich mit den neuen Werten der Anpassung weiterlduft, wer-
den somit automatisch die Ergebnisse der Anpassung mitbetrachtet und eva-
luiert, ob sie die Ziele entsprechend einhalten. Deswegen ist auch Anforde-
rung A12 erfiillt.

Ferner ist es moglich, die bestehenden Daten in der Wissensbasis weiterzu-
verwenden und in neuen Projekten einzusetzen. Dadurch wiirde die Erfah-
rung erhalten bleiben. Allerdings kann die Wissensbasis nur in Teilen ver-
wendet werden, da jedes Projekt eine andere Software-Engineering-
Methode besitzt. Es ist also zu iiberlegen, wie und welche Elemente in ein
neues Projekt eingesetzt werden konnten. Dann wére Anforderung Al3
ebenfalls erfiillt.

Der SE Method Manager mit MAPE-K als Kern eignet sich somit als Lo-
sung zur selbst-adaptiven Anpassung einer Software-Engineering-Methode.
Es ist noch zu iiberlegen, wie der zweite Teil der Anforderung A9 — die
Auswirkung auf die Gesamt-SEM - erfiillt werden kann. Dies wére zum
Beispiel moglich, wenn innerhalb der Plan-Phase die geplante Anpassung in
Bezug auf die Gesamt-SEM analysiert wird. Dies kdnnte beispielsweise mit
Hilfe einer Simulation erfolgen. Dann wire auch die Anforderung A9 voll-
standig erfiillt.

101

Im nédchsten Abschnitt wird nun nach der ersten Eignung des SE Method
Managers der Ansatz in der Tiefe betrachtet und herausgearbeitet, welche
weiteren Herausforderungen sich ergeben.

3.4.2 Weitere Herausforderungen (, Trigger-Probleme*)

Auch wenn der SE Method Manager sich nach dem ersten Fazit im vorheri-
gen Abschnitt gut eignet, um eine Software-Engineering-Methode wihrend
eines laufenden Projektes schnell und zeitnah anzupassen, muss der Ansatz
dennoch im tieferen Detail betrachtet werden.

Im Gegensatz zu dem urspriinglichen MAPE-K muss man bedenken, dass es
sich wihrend der Anpassung um eine Software-Engineering-Methode und
nicht um ein System handelt. Schaut man sich den Ablauf in Abbildung 29
an, beginnt dieser korrekterweise mit der Dateneingabe. Sobald neue Daten
im Projekt vorhanden sind, werden diese aufbereitet, gespeichert und analy-
siert.

Die erste Frage die dabei aufkommt ist, welche Daten iiberhaupt alle erfasst
werden miissen. Was zdhlt alles als Dateneingabe, damit die MAPE-K-
Feedbackschleife durchgefiihrt wird? Die Frage ist, ob ein neues Artefakt
bloB durch sein Vorhandensein, beim Anlegen und Loschen die MAPE-K-
Feedbackschleife anstoBt (,triggert™) oder ob allein ein Andern des Arte-
fakts die Feedbackschleife auslost. Daran wiirde sich die Frage anschlief3en,
welche Anderungen an dem Artefakt zum Ausldsen der Monitor-Phase fiih-
ren wiirden; jede Anderung oder spezielle Anderungen? Oder auch, ob ein
implementierter Code zur Dateneingabe zéhlen wiirde.

@ Projektende

4
[hﬁnde
Projekt] [fishre Projekt durch]
Projektstart
. [fiihre Projekt _ / Proj il und Neue Daten sind
urc

\ Dateneingabe [Daten eingeben] wvorhanden

[bereite Daten

[Vergleich positiv, El auf]
keine Ang ﬂ

Daten] feoeich
Datenanalyse it " \ Daten in k8] @

[lese Daten aus KB]

[vergleiche Dates
(1st, Sall)]

[Vergleich negativ, filhre

[Anpassung ok,
TPS
plane Anpassung] [priife Anp 1] i
ﬁ
Myphnunx { Anpassungsiiberpriifung Anpassungsausfiihrung
\—(_,
(A nicht

ok, plane
[lese Daten aus KB] Alternative] m [lese Daten aus KB]

Abbildung 29 State-Chart des SE Method Managers und die ,,Trigger-Probleme"

Datenvergleich

102

Da sich dieses und die folgenden Probleme darauf beziehen, wann die
MAPE-K-Feedbackschleife und ihre Phasen getriggert werden und sich die-
ses Anfangsproblem weiter durchzieht, werden die Herausforderungen, die
sich dadurch fiir den Ansatz ergeben, im Folgenden auch ,,Trigger-
Probleme* genannt. Wie sich Folgeprobleme und zusitzliche Herausforde-
rungen aus dem ersten Triggern ergeben wird nun weiter erldutert. Doch
zunéchst lautet die Kernfrage fiir Triggerproblem 1:

TP1: Granularitit der Dateneingabe: Wie granular miissen die Daten
fiir die Dateneingabe sein, damit die Monitor-Phase angestofien wird?

Aus der fehlenden Granularitdt der Daten leitet sich direkt Triggerproblem 2
ab. Denn auch wenn bekannt ist, wie granular die Daten sein miissen, ist die
Frage, ob bei allen neuen Daten getriggert werden muss. Werden alle einge-
gebenen Daten aufbereitet und ausgewertet? Es muss die Frage beantwortet
werden, wie die relevanten Daten fiir die Aufbereitung und Auswertung
bestimmt und von den anderen Daten herausgefiltert werden.

Triggerproblem TP2: Wie werden die relevanten Daten fiir die Aufbe-
reitung und Auswertung anhand einer Datenfilterung bestimmt?

Auch wenn bekannt ist, welche Daten gemessen und aufbereitet werden
miissen, ist das Folgeproblem, welches sich aus den ersten beiden ergibt,
dass bei der Eingabe von vielen Daten gleichzeitig nicht bekannt ist, wann
getriggert wird. Die vielen Daten konnten zur Folge haben, dass eine ,,Dau-
ertriggerung® erfolgt. Auf den ersten Blick erscheint dies nicht schlimm,
aber wie wird entschieden, was wann und in welcher Reihenfolge abgear-
beitet wird? Es muss geklirt werden, ob Daten gleichzeitig oder kurz nach-
einander verarbeitet werden konnen. Bei einer Software-Engineering-
Methode ist es eher sinnvoll, Daten und insbesondere eine spétere Anpas-
sung sequentiell zu verarbeiten. Es muss also eine Vorgehensweise gefun-
den werden, eine Reihenfolge festzulegen, wann welche Daten ausgewertet
und weiter verarbeitet werden. Dafiir miissten Prioritidten vergeben werden.
Jedoch ist es aktuell schwer zu entscheiden, welche gemessenen Daten eine
hohere Prioritét hitten als andere.

Triggerproblem TP3: Wie konnen Priorititen fiir zu messende Daten,
deren Aufbereitung und Auswertung vergeben werden, damit eine se-
quentielle Bearbeitung moglich ist?

Auch wenn Prioritdten vergeben sind und eine Reihenfolge fiir die Bearbei-
tung festgelegt ist, ist ein weiteres Problem, dass nicht bekannt ist, ob sich
die bereits getriggerten Anpassungen gegenseitig beeinflussen. Das heifit, es
muss mdglich sein zu iiberpriifen, ob mogliche Anpassungen in Konflikt
zueinander stehen. Dafiir miisste zum einen bekannt sein, welche Anpas-

103

sung und welche Daten bearbeitet werden. Zum anderen wire es sinnvoll zu
wissen, welche Daten potentiell zueinander in Konflikt stehen, um dies
eventuell im Vorfeld abzufangen und eine Anpassung entsprechend zu pla-
nen.

Triggerproblem TP4: Wie kann maoglichst friih iiberpriift werden, ob
getriggerte Daten und somit eine mogliche Anpassungen zueinander in
Konflikt stehen?

Ein letzter zu betrachtender Punkt ist der Anpassungszeitpunkt. Ein System
kann problemlos jederzeit und kurz hintereinander angepasst werden. Doch
bei einer Software-Engineering-Methode ist es nicht mdglich, sie beispiels-
weise stlindlich oder tiglich anzupassen. Dies wiirde vermutlich mehr Cha-
os auslosen, als wirklich zu helfen. Eine Anpassung einer Software-
Engineering-Methode kann von daher nur in bestimmten zeitlichen Abstidn-
den vorgenommen werden. Es muss geklart werden, wie schnell hinterei-
nander Anpassungen zeitlich erfolgen kdnnen. Da somit eine Anpassung
nicht jederzeit erfolgen kann, muss klar sein was passiert, wenn mehrere
Anpassungen bis zum Anpassungszeitpunkt auflaufen. Wie konnen diese
miteinander kombiniert werden? Eine weitere wichtige Frage in diesem Zu-
sammenhang ist, was mit Daten passiert, die zum Anpassungszeitpunkt be-
reits getriggert sind und die sich somit in der Planung befinden.

Triggerproblem TP5: Wie kann der Anpassungszeitpunkt fiir eine
Software-Engineering-Methode bestimmt werden und wie kann zu die-
sem Zeitpunkt eine kombinierte Anpassung erfolgen?

Diese weiteren Herausforderungen gilt es zu untersuchen und vor allem her-
auszufinden, wie sich diese 16sen lassen. Wie ein zielorientiertes Vorgehen
genutzt werden kann, um den Ansatz zu erweitern und sowohl den weiteren
Herausforderungen zu begegnen als auch weiterhin die Anforderungen Al —
A13 zu erfiillen, wird im nichsten Kapitel erldutert.

104

Kapitel 4 Der Ansatz MAPE-K4SEM

Aus Kapitel 3:

Weitere Herausforderungen
Beschreibung SE Method
Manager

g'hhschnitt 4.1: Zielorientiertes Vorgehen | gjlhschnit‘l 4.2:

EBottom—Up
9 —1t-3¥
| Top-Down
l Ansatze kombiniert
:';Abschnitt 4.4: Schritt-Typen + Framework| [Abschnitt 4.3: MAPE-K4SEM

Abschnitt 4.5.Vertiefung s ‘
e € Die 10 Schritte:
| e Pre-Work + MAPE-K

Weiter Kapitel 5 & 6:
Pre-Work = Schritte 1 bis 6

MAPE-K — Schritte 7 bis 10

Abbildung 30 Aufbau Kapitel 4

In Kapitel 3 wurde ein Losungsansatz vorgestellt, wie es grundsétzlich mog-
lich ist, Software-Engineering-Methoden zur Laufzeit anzupassen. Dafiir
wurde der Ansatz des MAPE-K aus den selbst-adaptiven Systemen gewdéhlt,
damit sich eine SEM ebenfalls moglichst selbst-adaptiv anpassen kann. Im
letzten Teil wurden weitere Herausforderungen diskutiert, die Triggerpro-
bleme, welche bei einer detaillierten Betrachtung auftreten konnen. Wie
diese mit Hilfe eines zielorientierten Vorgehens und des selbstentwickelten
MAPE-K4SEM-Ansatzes angegangen werden konnen, wird in diesem Ka-
pitel vorgestellt.

4.1 Zielorientiertes Vorgehen

Schon [Bol3, S. 54] behauptet: ,,Adaptive Projekte sind zielorientiert®.
Um nun den Triggerproblemen zu begegnen, muss iiberlegt werden, wie
eine ausreichende Granularitit und darauf aufbauend eine geeignete Daten-
filterung sichergestellt werden kann. Um herauszufinden, welche Daten ge-
filtert werden sollen, muss man wissen, welche Daten nur fiir die Datenana-
lyse und die spétere Planphase gebraucht werden. Um zu wissen, welche
Daten fiir die Analyse benétigt werden ist es ndtig herauszufinden, wo ge-
gen analysiert wird, dhnlich wie beim Testen. Es miissen also die Anforde-
rungen, Eigenschaften und Ziele bekannt sein, welche die Software-
Engineering-Methode erfiillen muss. Dies kann angelehnt an die obige
Aussage von [Bol] iiber ein zielorientiertes Vorgehen erfolgen.

105

In diesem zielorientierten Vorgehen miissen also als erstes die Ziele und
Eigenschaften der Software-Engineering-Methode definiert werden. Sind
die Ziele bekannt, kann im nichsten Schritt iiberlegt werden, was zum einen
dafiir notig ist, damit diese Ziele erfiillt werden. Zum anderen ist es notig
herauszufinden, in welchen Grenzen diese Erfiillung liegt, das heif3t was ist
mindestens ndtig, damit dieses Ziel erfiillt wird und was ist maximal notig.

Sind diese Dinge bekannt, konnen daraus Regeln entwickelt werden, welche
fiir die Analyse genutzt werden konnen. Liegt die Erfiillung des Ziels in den
definierten Grenzen, muss nichts getan werden. Ist aber die Erfiillung des
Ziels in Gefahr, das hei3t der analysierte Wert liegt au8erhalb der Grenzen,
muss eine Anpassung der Software-Engineering-Methode vorgenommen
werden. Doch durch die vorherige Definition ist bereits bekannt, um wel-
ches Ziel es sich handelt und welche Grenze iiber- bzw. unterschritten wur-
de. Da die Regeln vom vorher definierten Ziel hergeleitet wurden ist es zum
Teil ebenfalls moglich. im Vorfeld zu iiberlegen, mit welchen Strategien
dieses Ziel erreicht werden kann. Diese Strategien konnen vordefinierte An-
passungen fiir die Planung ergeben.

Ein Vorteil dieses Vorgehens ist, dass durch die definierten Regeln gut die
zu messenden Werte — die Metriken — fiir die Sensoren und fiir die Monitor-
Phase bestimmt werden konnen. Es ist bekannt, was fiir die Analyse ge-
braucht wird. Aus dieser Regel werden die Analysewerte extrahiert. Die
Analysewerte sind die Werte, welche die Aufbereitung in der Monitor-
Phase als Endergebnis haben muss. Aus diesen Werten kann ermittelt wer-
den, welche Daten fiir die Aufbereitung gemessen werden miissen. In einfa-
chen Fillen konnen die gemessenen Daten gleich den aufbereiteten Werten
sein. Damit ist sowohl die ndtige Granularitit der Werte bekannt, die ge-
messen werden miissen, als auch ein Datenfilter gesetzt.

Im weiteren Vorgehen der MAPE-K-Schleife ist es nun moglich, genau zu
bestimmen, was in der Analyse- und was in der Plan-Phase getriggert wird.
Ein abstraktes Beispiel: zu den Zielen x, y und z gehoren jeweils die Regeln
X, ry und rz sowie die zu messenden Metriken mx, my und mz. Wird nun
die Metrik my gemessen, wird nur dieser Wert aufbereitet und automatisch
wird Regel ry getriggert und mit den gemssenen Werten ausgewertet. Ande-
re Werte werden im Prinzip gar nicht beachtet und triggern nicht die
MAPE-K-Schleife.

Da die Ziele bekannt sind, ist es mdglich, diesen Zielen Priorititen zuzuord-
nen. Diese Prioritidten konnen sowohl an die Analyse- als auch an die Pla-
nungsmoglichkeiten usw. vererbt werden. Anhand einer geeigneten Priorité-
tenvergabe kann nun eine Reihenfolge fiir die Abarbeitung der Daten erstellt
werden. Auf das Beispiel iibertragen hitte Ziel x die Prioritdt 1, Ziel y die

106

Prioritit 2 und Ziel z die Prioritdt 3. Wiirden nun die Metriken mx, my und
mz gemessen, wirde als erstes die Regel rx ausgewertet und im Falle der
Grenziiber- bzw. unterschreitung wiirden diese Werte als erstes geplant und
angepasst, da sie die geerbte Prioritdt 1 haben. AnschlieBend wiirde Regel ry
mit Prioritdt 2 und abschlieBend Regel rz mit Prioritdt 3 weiter verarbeitet.
Damit wire auch Triggerproblem TP3 gelost.

Da die Ziele bekannt sind und teilweise die Planungsmdglichkeiten und
Analyseregeln im Vorfeld bestimmt werden konnen, ist es ebenfalls mog-
lich, die Ziele auf mogliches Konfliktpotential zu untersuchen. Es sind am
Ende sowohl die Metriken als auch die Analyseregeln und mdgliche Anpas-
sungen (zum Teil) bekannt. Diese konnen miteinander abgeglichen und auf
Konflikte hin analysiert werden. Besteht Konfliktpotential, konnen im Vor-
feld bereits Losungen und Planungsalternativen erstellt werden, falls die
Anpassungen im gleichen Anpassungszyklus, das heiflit vom einen Anpas-
sungszeitpunkt bis zum nédchsten, gemessen werden. Damit wire es mog-
lich, Triggerproblem TP4 im Vorfeld zu begegnen.

Ahnlich wie das Konfliktpotential kénnen im Vorfeld auch Kombinations-
moglichkeiten fiir einzelne Ziele bestimmt werden. Dazu wére es wichtig,
fiir die Planungsmdglichkeiten der verschiedenen Ziele jeweils Kombinati-
onspunkte zu ermitteln. Mit Kombinationspunkten ist gemeint, an welcher
Stelle ist es moglich, bei einer geplanten Anpassung anzukniipfen, z.B. kon-
nen bei der Erstellung eines Artefaktes verschiedene Techniken angewandt
werden. Dabei wire die Technik ein Kombinationspunkt. Damit wire Trig-
gerproblem TP 5 ebenfalls groBtenteils gelost. Es ist zusdtzlich notig, fiir die
Software-Engineering-Methode einen geeigneten Anpassungszeitpunkt fest-
zulegen. Dieser kann beispielsweise anhand der Eigenschaften festgelegt
werden.

4.2 Bottom-Up vs. Top-Down

Fiir die Analyse von Prozessen aber auch im Bereich der Programmentwick-
lung und im Software Engineering gibt es zwei Ansitze, die genau gegen-
sitzlich aufgebaut sind. Diese beiden Ansétze, ,,Top-Down‘ und ,,Bottom-
Up* genannt, werden in vielen Bereichen eingesetzt, neben der Software-
entwicklung beispielsweise auch in der Konzeption von Algorithmen
[CGLOS5].

Der Top-Down-Ansatz (engl. von oben nach unten) startet dabei mit der
Beschreibung von etwas Abstrakten bzw. Allgemeinen und spezifiziert ab-
wirts immer weitere Details. Dies wird auch Deduktion genannt. In Multi-
Agenten-Systemen startet der Ansatz beispielsweise damit, globale Anfor-
derungen fiir die Agenten zu spezifizieren, um diese nachher im Detail auf
die einzelnen Eigenschaften der Agenten hinunterzubrechen [CGLO05]. Wird

107

der Ansatz in der Algorithmik eingesetzt so heif3t dies, dass ein Algorithmus
zundchst sehr allgemein und umgangssprachlich definiert wird. Im weiteren
Verlauf wird er immer detaillierter spezifiziert und in zusitzliche Einheiten
aufgeteilt, bis am Ende der fertige Algorithmus steht.

Der Bottom-Up-Ansatz (engl. von unten nach oben) arbeitet genau gegen-
sdtzlich. Hier werden zunichst einzelne Details spezifiziert, in Agentensys-
temen beispielsweise die einzelnen Eigenschaften der Agenten oder in der
Algorithmik einzelne Funktionen und Bestandteile eines Algorithmus. Beim
weiteren Vorgehen wird ein immer komplexeres und allgemeineres Ganzes
spezifiziert. Dieser Vorgang wird auch Induktion genannt.

Diese beiden Ansitze werden ebenfalls in der Prozessverbesserung einge-
setzt. Der Top-Down-Ansatz vergleicht dabei den eigentlichen Prozess, z.B.
der Organisation, mit bereits vorhandenen oder generellen Standards im
Unternehmen. Wihrend des Verbesserungsprozesses werden anschlieend
die Unterschiede zwischen beiden herausgearbeitet. Die Annahme ist hier,
dass, sobald der Prozess im Detail gedndert wurde, automatisch die erzeug-
ten Produkte ebenfalls verbessert werden [Thomas in TM94].

Der Bottom-Up-Ansatz geht hier hingegen davon aus, dass die Anderung
und Verbesserung eines Prozesses von folgenden Elementen ausgehen soll-
te: den allgemeinen Organisationszielen, ihren Charakteristiken, den Pro-
dukten und ihren Attributen sowie von der vorhandenen Erfahrung. Die
Verdnderung sollte sich auf der lokalen Ebene abspielen anstatt allgemeine
und universelle Elemente zu nutzen. [McGarry in TM94].

Doch bei beiden Ansétzen geht es hauptsdchlich darum, das Produkt zu ver-
bessern, wobei jeweils davon ausgegangen wird, dass sich bei einer Pro-
zessverbesserung auch das Produkt verbessert.

Die Frage ist nun, wie sich diese Ansitze auf die Anpassung einer Software-
Engineering-Methode iibertragen lassen und welcher Ansatz verwendet
werden sollte. Schaut man sich die Vorgehensweise von MAPE-K an, so
verwendet dieser eine Art Bottom-Up-Ansatz. Das System bzw. im SE Me-
thod Manager ist die Software-Engineering-Methode bekannt. Um diese
anzupassen, werden alle detaillierten Daten der Software-Engineering-
Methode gemessen, analysiert und ausgewertet um zu bestimmen, ob die
SEM angepasst werden soll oder nicht. Hier werden also die detaillierten
Daten genommen um auf das allgemeinere Modell und deren Anpassung zu
schlieBen. Sie werden also genutzt, um eine Anpassung an dem Modell und
somit an der Software-Engineering-Methode selbst vorzunehmen.

108

Am Ende von Kapitel 3 in Abschnitt 3.4 hat sich gezeigt, dass diese Vorge-
hensweise einige neue Herausforderungen mit sich bringt. Vor allem ist
nicht klar, wie detailliert die Datenmessung sein soll, in welcher Reihenfol-
ge analysiert oder was analysiert wird usw. Im vorherigen Abschnitt wurde
ein zielorientiertes Vorgehen vorgestellt, welches diese Herausforderungen
bewiltigen soll. Dies wiirde einen Top-Down-Ansatz darstellen, da zunichst
die allgemeinen Ziele und Eigenschaften der Software-Engineering-
Methode definiert und beschrieben werden, um diese dann in detailliertere
Regeln und abschliefende Metriken aufzubrechen. Doch wie kann nun die-
ser Top-Down-Ansatz genutzt werden, um die Software-Engineering-
Methode anzupassen?

Die Idee ist, die beiden Ansdtze miteinander zu kombinieren. Wie schon in
Abschnitt 2.3 ,,Change Management* und von [Nol4] erwéhnt, sollten die
Verdnderungen im Change Management sowohl Top-Down als auch Bot-
tom-Up geplant und durchgefiihrt werden. Das heilit, dass die Rahmenbe-
dingungen und die Vorgehensweise werden von oben vorgegeben (top-
down for targets) werden. Die spétere konkrete und inhaltliche Umsetzung
wird von unten mit Hilfe der Betroffenen umgesetzt (bottom-up for how to
do it). Dies kann ebenfalls fiir den Ansatz zur selbst-adaptiven Anpassung
einer Software-Engineering-Methode verwendet werden.

Dafiir sollten wie in Abschnitt 4.1 beschrieben zunédchst Top-Down die Zie-
le und Eigenschaften definiert und in Regeln, Mdglichkeiten zur Planung
und Metriken weiter verfeinert werden. Sobald dies vorhanden ist, kann die
konkrete und inhaltliche Umsetzung ,bottom-up-méBig* mit Hilfe von
MAPE-K umgesetzt werden. Dies erfolgt, indem die eigentliche MAPE-K-
Feedbackschleife durchgefiihrt wird, beginnend mit der Messung der Daten,
diesmal allerdings anhand der konkreten Metriken.

Der Top-Down-Ansatz leistet sozusagen die Vorarbeiten, damit MAPE-K,
also der Bottom-Up-Ansatz, spiter mit den konkreten Werten erfolgreich
durchgefiihrt werden kann. Wie dies genau aussehen kann, wurde in einem
10-Schritte-Ablauf erarbeitet, dem MAPE-K4SEM-Ansatz, welcher im
néchsten Abschnitt vorgestellt wird.

4.3 MAPE-K4SEM - die 10 Schritte

Fiir das beschriebene zielorientierte Vorgehen wurde der Ansatz MAPE-
K4SEM entwickelt, ein Ablauf in 10 Schritten. Dieser stellt auflerdem
sicher, dass nicht nur die richtigen Werte am Ende gemessen, sondern
zusitzlich die bendtigten Werte fiir die Durchfiihrung des MAPE-K korrekt
ermittelt werden.

109

Der Ansatz gliedert sich dabei in zwei Teile, in die zu Beginn erforderlichen
Schritte — der ,,Pre-Work™ — und dem danach folgenden MAPE-K. In der
Pre-Work werden alle Schritte durchgefiihrt, um die in Abschnitt 3.4.4 be-
schriebenen Elemente wie Ziele, Analyseregeln, Metriken usw. herzuleiten.
Sind diese Dinge bekannt, kann der MAPE-K darauf aufbauend durchge-
fiihrt werden. Mit der Kombination dieser beiden Teile ist am Ende eine
selbst-adaptive Anpassung und somit eine ,selbst-adaptive Software-
Engineering-Methode* moglich. Im Folgenden werden die 10 Schritte des
MAPE-K4SEM kurz vorgestellt.

4.3.1 Pre-Work - Schritte 1 bis 6

Die Pre-Work beinhaltet die Schritte fiir die Vorarbeiten, also um alle beno-
tigten Daten wie Regeln, Metriken usw. anhand der Ziele flir die Durchfiih-
rung des MAPE-K zu ermitteln. Bevor die Daten allerdings hergeleitet wer-
den kdénnen, miissen erst die Ziele definiert und priorisiert werden.

4.3.1.1 Schritt 1: Definition der Ziele

In Schritt 1 werden wie der Name schon sagt, die Ziele der Software-
Engineering-Methode definiert. Dies sind insbesondere die Eigenschaften
und teilweise Regeln, welche die SEM erfiillen muss um erfolgreich zu sein.
In diese Ziele flieBen auch die Umgebung, in welcher das Projekt und somit
die SEM durchgefiihrt werden, mit ein. Dazu zéhlen das Unternechmen und
seine Kultur selbst sowie der Kontext, in dem das Projekt durchgefiihrt
wird. In Scrum sind beispielsweise verschiedene Aktivitdten vorgegeben,
welche eingehalten werden sollen, wie etwa ein Sprint Planning-Meeting
oder das Review-Meeting. Auch gibt es fiir jede Iteration ein ,,Sprint-Goal*
welches erreicht werden soll.

4.3.1.2 Schritt 2: Priorisierung der Ziele

Nachdem die Ziele definiert sind, ist es nun wichtig, diesen verschiedene
Prioritdten zu geben. Dabei sollte darauf geachtet werden, dass die Priorité-
ten nicht zu grobgranular gewéhlt werden. Dies kann ansonsten dazu fiihren,
dass es schwierig wird, eine Reihenfolge fiir die Auswertung von Daten zu
erstellen. Sind sowohl die Ziele definiert als auch priorisiert, konnen nun die
weiteren Daten und Regeln ermittelt werden. Dabei konnen die néchsten
beiden Schritte parallel durchgefiihrt werden.

4.3.1.3 Schritt 3: Ableitung von Analyseregeln

In Schritt 3 werden nun aus den priorisierten Zielen die Grenzwerte ermittelt
und in Analyseregeln iiberfiihrt. Eine erste Idee ist dabei, die Regeln in der
Form ,,Wenn..., dann...” zu formulieren, beispielsweise ,,Wenn Wert x
Grenze iiber- oder unterschreitet, dann Planung mit Aktion y sonst Projekt-
durchfiihrung*.

110

4.3.1.4 Schritt 4: Ableitung von Planungsmoglichkeiten

Auf der einen Seite werden die Analyseregeln abgeleitet, auf der anderen
Seite konnen durch die SEM-Beschreibung und durch das vorhandene Mo-
dell mogliche Planungen fiir eine Anpassung hergeleitet werden. Die Gren-
zen sind bekannt und in einigen Féllen gibt es schon Vorschldge, was getan
werden soll, wenn diese Grenzen iiber- oder unterschritten werden. Daraus
konnen nicht nur mogliche Anpassungen sondern auch zusétzliche Varian-
ten bestimmt werden, falls eine bestimmte Anpassung nicht moglich ist.

Zusitzlich kann in diesem Zuge das mdgliche Konfliktpotential der einzel-
nen Ziele ermittelt und es konnen gleich entsprechende Losungen geplant
werden, falls dieser Konflikt auftritt. Ein dritter denkbarer Unterschritt ist
die Bestimmung von Kombinationsmoglichkeiten und Kombinationspunk-
ten, was mit Hilfe des Modelles moglich ist.

4.3.1.5 Schritt 5: Ableitung von Metriken

Nachdem Schritt 3 und Schritt 4 durchgefiihrt wurden, kann nun im Folgen-
den bestimmt werden, welche Metriken fiir die Analyseregeln gemessen,
aufbereitet und ausgewertet werden miissen. Die Metrik wird dabei im abs-
trakten Beispiel aus Schritt 3 im Prinzip durch ,,Wert x* bestimmt. Zur Ver-
deutlichung wird wieder das der TeamgroBe in Scrum aufgegriffen. Hier
durfte das Team nicht groBer als neun und nicht kleiner als drei Personen
sein. Es miisste nun also die Teamgro3e ausgewertet werden. Die zu mes-
sende Metrik wire somit die ,,Anzahl der Personen pro Team*.

4.3.1.6 Schritt 6: Ableitung von Ausfithrungsregeln und Benach-
richtigungen

Auf der anderen Seite sind nun die Planungsmdglichkeiten aus Schritt 4
bekannt und somit, welche Art von Anpassung durchgefiihrt werden soll. Es
wird zum Beispiel an einer Stelle im Modell etwas hinzugefiigt, geloscht
oder ausgetauscht. Zusétzlich ist bekannt, wer alles liber die Anpassung in-
formiert werden muss anhand der Rollen und den Verantwortlichkeiten, die
zu dem entsprechenden Element im Modell gehdren. Aus der geplanten An-
passung und der Information, wer Bescheid wissen muss, konnen dann ent-
sprechende Ausfiihrungsregeln und Benachrichtigungen hergeleitet werden.

Mit diesen sechs Schritten sind die Vorarbeiten und somit die Pre-Work
abschlossen. Die Ziele, Regeln und hergeleiteten Daten werden entspre-
chend in der Wissensbasis gespeichert, damit sie in dem folgenden MAPE-
K-Teil verwendet werden kdnnen.

4.3.2 MAPE-K - Schritte 7 bis 10

Die Pre-Work ist an dieser Stelle abgeschlossen und alle Daten, um MAPE-
K erfolgreich zur Anpassung einer Software-Engineering-Methode einzu-
setzen, sind gewonnen und in der Wissensbasis gespeichert. Im Folgenden

111

werden kurz die vier weiteren Schritte vorgestellt, welche bei der Durchfiih-
rung ausgefiihrt werden und was sie beinhalten sollten.

4.3.2.1 Schritt 7: Werte messen und aufbereiten

MAPE-K beginnt in Schritt 7 mit der Messung der Metriken iiber entspre-
chende Sensoren. Diese gemessenen Werte werden in der Monitor-Phase
anschlieBend aufbereitet und in die Wissensbasis geschrieben, damit sie in
der Analyse-Phase ausgewertet konnen. Am Beispiel der Teamgrofle wiirde
nun also die Anzahl der Personen iiber Sensoren gemessen und in der Moni-
tor-Phase wiirde der Wert insofern aufbereitet, als dass die Anzahl der Per-
sonen gleich der Teamgrofe gesetzt werden wiirde (Anzahl Personen/Team
= Teamgrofie).

4.3.2.2 Schritt 8: Werte analysieren und bewerten

Sind die Werte gemessen und aufbereitet, werden sie anschlieBend in der
Analyse-Phase entsprechend ihren Regeln analysiert und ausgewertet. Liegt
der Wert innerhalb der Grenzen, wird das Projekt weiter durchgefiihrt (es
passiert nichts). Liegt der Wert auBlerhalb, wird die Plan-Phase mit den ent-
sprechenden Werten iiber den Dann-Teil getriggert. Auch wenn dies auto-
matisch moglich ist, kann es an dieser Stelle sinnvoll sein, dass der Projekt-
leiter oder ein Methoden-Engineer sich die Auswertung anschaut und das
endgiiltige Okay fiir eine Anpassung gibt. Oder er beschlieBt, dass mit die-
sen Werten die SEM weiter durchgefiihrt werden kann. Dann sollten aller-
dings die entsprechenden Regeln und Grenzen angepasst werden.

4.3.2.3 Schritt 9: Anpassung planen

Die Auswertung in Schritt 8 hat ergeben, dass eine Anpassung notig ist. Der
Dann-Teil hat die entsprechenden Daten geliefert, zum Beispiel, welche
Planungsmdglichkeit oder Planungsvariante genutzt werden soll.

Zusitzlich muss nach der geplanten Anpassung in einem zweiten Teil dieses
Schrittes tiberpriift werden, ob der Anpassungszeitpunkt bereits erreicht ist.
Ist dies der Fall, kann die Anpassung sofort {iber die Execute-Phase ausge-
filhrt werden. Ist dies nicht der Fall, muss die Anpassung in einem ,,Anpas-
sungs-Pool“ gespeichert werden. Ist der Zeitpunkt anschlieBend erreicht,
muss der Pool iiberpriift und gegebenenfalls miissen geplante Anpassungen
zu einer Anpassung erst kombiniert, bevor sie ausgefiihrt werden.

4.3.2.4 Schritt 10: Anpassung ausfiihren

Im finalen Schritt ist die Anpassung fiir die Software-Engineering-Methode
nun bekannt und kann automatisch iiber die Effektoren mit Hilfe der Aus-
fithrungsregeln und Benachrichtigungen ausgefiihrt werden. Eine Anpas-
sung ist nach diesem Schritt abgeschlossen und die Schritte 7 bis 10 werden
entsprechend wiederholt, beginnend mit der Messung der Daten iiber die
Sensoren.

112

4.3.3 Schalen-Modell und Ableitungsbaum

Schaut man sich die Schritte ndher an, ist zu erkennen, dass sich diese auf
verschiedenen Ebenen bewegen und somit verschiedenen ,,Schalen® zuge-
ordnet werden konnen. Die oberste Schale enthdlt wie in Abbildung 31 zu
sehen, dass Unternehmen mit seiner Kultur und all seinen Gegebenheiten
sowie den Kontext, in dem es sich bewegt. Die Schale darunter beinhaltet
dann konkreter den Projektkontext, welcher sich aus dem {ibergeordneten
Kontext ableitet. Dieser Projektkontext und das Unternehmen selbst werden
bendtigt, um eine konkrete Software-Engineering-Methode fiir das durchzu-
filhrende Projekt spezifisch zu erstellen oder eine Software-Engineering-
Methode vor Projektbeginn entsprechend zuzuschneiden. Das konkrete Mo-
dell der SEM wird anschlieend in der Wissensbasis abgelegt, um es fiir die
Schritte 7 bis 10 zu nutzen. Diese beiden Schalen bilden im Schalenmodell
die ,,Kontext-Schicht.

SEM oI Projekt-

{Model) Kontext

S1&S2:Z+Pr

durchgefiihrtes
Projekt/ SEM

L A | J
1 1
Kontext Pre-Work MAPE K-Schicht

Abbildung 31 Das Schalenmodell inklusive des Ableitungsbaumes

Insbesondere der Projektkontext und die Software-Engineering-Methode
werden nun wie in Abschnitt 3.4.5.1 beschrieben dazu genutzt, zunédchst die
Ziele (Z) zu definieren und anschlieBend die Prioritdten (Pr) zu vergeben.
Diese Ziele werden ebenfalls in der Wissensbasis — Knowledge Base — (K)
hinterlegt. Die niachste Schale beinhaltet die néchsten vier Schritte der Pre-
Work, denn diese Schritte lassen sich jeweils von priorisierten Zielen her
ableiten.

Auf der linken Seite sind dies zundchst wie beschrieben die Analyseregeln
(R), woraus sich die Metriken (Me) ableiten lassen. Auf der rechten Seite
werden aus den Zielen die Planungsmoglichkeiten (PM) abgeleitet. Diese
wirken sich auf die Regeln aus, da sie den spéteren Dann-Teil in den Analy-

113

seregeln bestimmen. Dies wird ausfiihrlich erldutert in Kapitel 5. Im letzten
Schritt werden in dieser Schale auf der rechten Seite die Ausfiihrungsregeln
und Benachrichtigungen (AB) abgeleitet. Die beschriebenen beiden Schalen
bilden damit die ,,Pre-Work-Schicht®. Wie nun auch schon zu erkennen ist,
bilden die einzelnen Schritte sowie die Schalen dariiber einen Ableitungs-
baum, wie sich die verschiedenen Daten gewinnen lassen, von der obersten
Schale hinunter bis zur letzten Schale der Pre-Work.

Vor allem die gewonnen Daten aus der letzten Schale der Pre-Work (S3-S6)
wirken sich jeweils auf die darunterliegende Schale aus. Diese Schale bein-
haltet die Schritte der MAPE-K-Feedbackschleife und bildet damit zugleich
die MAPE-Schicht. Dabei werden die Daten von S5 (Me) in S7 (M) genutzt,
von S3 (R) in S8 (A), von S4 (PM) in S9 (P) und zu guter Letzt die Daten
aus S6 (AB) in S10 (E). Dies wird im Schalenmodell durch die gestrichelten
Pfeile verdeutlicht. Die Pfeile in der MAPE-Schale verdeutlichen dabei die
genaue Reihenfolge, in welcher die einzelnen Schritte innerhalb von
MAPE-K durchgefiihrt werden.

Die unterste Schale und zugleich unterste Schicht beinhaltet das durchge-
fiihrte Projekt und somit die durchgefiihrte Software-Engineering-Methode
(SEM) auf der Instanz-Ebene. Diese wirkt sich sowohl in die dariiber lie-
gende Schale aus, indem die Daten in der Monitor-Phase bzw. Schritt 7 ge-
nutzt werden. Und die dariiber liegende Schale wirkt sich umgekehrt iiber
Schritt 10 auf die SEM aus, durch die durchgefiihrte Anpassung.

Zuletzt gibt es noch eine dahinterliegende Schicht, welche in griin gekenn-
zeichnet ist. Dies ist die ,,K-Schicht* und enthilt die Wissensbasis (K). Die
Daten aus der Pre-Work-Schicht werden alle in der Wissensbasis hinterlegt,
damit sie von der darunter liegenden MAPE-Schicht genutzt werden kon-
nen. Die oberste Schicht und zweitoberste Schale greifen nur insofern auf
die K-Schicht zu, in dem das erstellte Modell der Software-Engineering-
Methode dort ebenfalls abgelegt wird. Die Kontextinformationen werden
zunidchst nicht in der K-Schicht abgelegt und gebraucht.

Die genaue Nutzung des Ableitungsbaumes der ersten vier Schalen wird
ausfiihrlich in Kapitel 5 erldutert, wie sich die einzelnen Schritte und die
entsprechenden Daten mit seiner Hilfe herleiten lassen.

4.4 Schritt-Typen und Framework zur Charakterisierung
Bevor in den néchsten beiden Kapiteln die einzelnen Schritte des MAPE-
K4SEM detaillierter erldutert werden, wird zunichst erdrtert, welche ver-
schiedenen Typen von Schritten es gibt. AnschlieBend wird ein kurzes
Framework erarbeitet, welches jeden Schritt zu Beginn gleichermallen be-
schreibt und kurz erldutert, was dieser Schritt beinhaltet.

114

4.4.1 Schritt-Typen

Jeder der 10 Schritte im MAPE-K4SEM-Ansatz hat einen bestimmten
»1yp*“. Der Typ eines jeden Schrittes beschreibt, was den Schritt ausmacht
und was seine genaue Aufgabe ist. Im Software Engineering gibt es ver-
schiedene Bereiche, wo die Beschreibung anhand eines Typs wichtig ist und
Sinn macht. In der Programmierung hat beispielsweise jede Funktion einen
Typ wie boolean, int, double oder String. Diese Typen sagen aus, um was
fiir eine Art von Funktion es sich handelt, was ihr Riickgabewert ist und
wozu sich dieser verwenden ldsst. Auch Fehler lassen sich anhand eines
Typs klassifizieren, der aussagt, wie kritisch ein Fehler ist. Beispiele sind
hier Blocker, kritischer Fehler oder leichte Fehler wie ,,Schonheitsfehler.

Die 10 Schritte im MAPE-K4SEM erfiillen alle eine bestimmte Funktion.
Diese werden entsprechend anhand des Typs charakterisiert und beschrei-
ben, wozu der jeweilige Schritt verwendet werden kann. Dies kann bei-
spielsweise wichtig fiir die spdtere Wiederverwendung der einzelnen Schrit-
te werden. Sollte der 10-Schritte-Ablauf des MAPE-K4SEM einmal ange-
passt, erweitert oder nur Teile daraus in einem anderen Kontext wiederver-
wendet werden, so ist es moglich, anhand der Schritt-Typen zu erkennen,
wo diese sich einsetzen lassen und wie sie verwendet werden konnen.

Betrachtet man nun die 10 Schritte genauer, ist zum einen festzustellen, dass
es nicht zehn verschiedene Schritt-Typen gibt, sondern dass einige Schritte
einen gleichen oder dhnlichen Schritt-Typ enthalten. Zum anderen kann ein
Schritt durch mehr als einen Schritt-Typ charakterisiert werden. Dies ist bei
den spiteren MAPE-K-Schritten der Fall. Diese besitzen einen ,,Haupt-
Typen* und zum Teil einen ,,Sub-Typ®, welcher die Subschritte beschreibt.
Dies wird ausfiihrlicher erldutert in Kapitel 6.

Werden die Schritte des MAPE-K4SEM aus Kapitel 4 betrachtet, ergeben
sich die folgenden verschiedenen Typen:

1. Erstellen — Im Schritt dieses Typs wird etwas fiir die weitere Verwen-
dung erstellt und festgelegt, z.B. die Ziele und Eigenschaften einer
SEM.

2. Ableiten — Im Schritt dieses Typs wird etwas fiir die weitere Verwen-
dung abgeleitet, z.B. Metriken. Insbesondere von diesem Typen gibt es
weitere Sub-Typen.

3. Priorisieren — Im Schritt dieses Typs wird etwas flir die weitere Ver-
wendung priorisiert, z.B. die Ziele der SEM aus Schritt 1.

4. Messen — Im Schritt dieses Typs werden Werte fiir die weitere Verwen-
dung gemessen, z.B. Messwerte der Metriken.

115

5. Analysieren — Im Schritt dieses Typs wird etwas flir die weitere Ver-
wendung analysiert, z.B. die gemessenen Werte der SEM.

6. Planen — Im Schritt dieses Typs wird etwas fiir die weitere Verwendung
geplant, z.B. die Anpassung fiir eine SEM.

7. Ausfiihren — Im Schritt dieses Typs wird etwas fiir die weitere Verwen-
dung ausgefiihrt, z.B. die geplanten Anderungen.

Wie bereits im zweiten Punkt erwédhnt, kann man bei genauer Betrachtung
des MAPE-K4SEM, den Typ ,,Ableiten in weitere Sub-Typen unterteilen,
je nachdem, WAS abgeleitet wird. Dann ergeben sich folgende Sub-Typen:

Regeln,

Metriken,

Planungsmdglichkeiten,

Konflikte und Konfliktldsungsmoglichkeiten,
Ausfiihrungen und Benachrichtigungen.

o /a0 oPp

Fiir den hier vorgestellten Ansatz sind die Typen vollstindig, da sie alle
Schritte des MAPE-K4SEM abdecken und beschreiben. Fiir andere Be-
schreibungen, welche ebenfalls mit Ableitungen oder Schritten arbeiten,
koénnen sich weitere Schritte mit anderen Typen ergeben. Ubertriigt man die
Typen beispielsweise auf den GQM-Ansatz (Goal — Question — Metric), auf
welchen in Kapitel 5 noch ndher eingegangen wird, so kdnnen hier zwei der
Schritte entsprechend wiederverwendet werden. Die Definition der Ziele
(Goal) lieBe sich mit dem Typ ,,Erstellen” abdecken und das Ableiten der
Metriken (Metric) mit dem Schritt Ableiten und dem Subtyp ,,Metriken®.
Fiir den Schritt des Ableitens der Fragen (Question) kann ebenfalls der Typ
»Ableiten® verwendet werden, aber es gebe hier einen neuen Subtypen,
,Fragen.

Um die einzelnen Schritte sowohl ndher als auch auf einen Blick zu be-
schreiben und diese genauer zu charakterisieren wurde nicht nur das Prinzip
der Typen eingefiihrt, sondern es wurde ein Framework erarbeitet, in wel-
chem u.a. die Schritt-Typen verwendet werden. Dieses wird im néchsten
Abschnitt erlautert.

4.4.2 Framework zur Charakterisierung

Um die einzelnen Schritte ndher zu charakterisieren, wurde ein kurzes
Framework erarbeitet. Dieses Framework gibt in zusammengefasster Form
verschiedene Elemente, welche den Schritt beschreiben, wieder. Das
Framework charakterisiert den Schritt kurz anhand seiner Aufgabe, seines
Typs, den enthaltenen Subschritten, welche zur Durchfithrung des Schrittes
ndtig sind, sowie welchen Input der Schritt zur Ausfiihrung bendtigt und

116

was das Ergebnis — der Output — des Schrittes ist. Zusétzlich wird aufge-
fihrt, welcher Stakeholder, das heil3t, welche Verantwortlichen fiir den
Schritt nétig sind.

Ahnlich wie die verschiedenen Typen der Schritte, kann dieses Framework
nicht nur in diesem Ansatz, sondern auch in anderen Kontexten, welche
ebenfalls mit Schritten arbeiten, wieder verwendet werden. Beispielsweise
kann das Framework ebenfalls verwendet werden, um einzelne Schritte oder
auch Aktivititen innerhalb einer Software-Engineering-Methode zu be-
schreiben. Es kann auf einen Blick erfasst werden, was die Aufgabe des
Schrittes ist, wie er charakterisiert ist (Typ), was mogliche Schritte inner-
halb des Schrittes oder der Aktivitit sind, was als Input benotigt wird, was
der Output dieses Schrittes und wer dafiir verantwortlich ist.

Schrittnummer + Schrittname

Aufgabe Die Aufgabe des Schrittes wird kurz und knapp be-
schrieben

Typ Typ des Schrittes und moglicher Sub-Typ

Subschritte Die einzelnen Subschritte, welche innerhalb des

Schrittes durchzufiihren sind, werden beschrieben

Input des Schrittes | Dokumente oder anderer Input, welcher benétigt
wird, damit der Schritt ausgefiihrt werden kann

Output des Schrit- | Ergebnisse, z.B. Dokumente, welcher der Schritt als

tes Output beispielsweise fiir andere Schritte liefert
Maogliche Stake- Stakeholder bzw. Personen, welche am Schritt betei-
holder ligt und/oder fiir ihn verantwortlich sind

Abbildung 32 Framework zur Charakterisierung

Das Framework kann ebenfalls wenn der Kontext es erfordert um weitere
Kategorien erweitert werden. In manchen Féllen kann es Sinn machen, ein
einfaches Beispiel hinzuzufiigen, um auf einen Blick zu erldutern, was hier
gemeint ist. Des Weiteren kann es an manchen Stellen Sinn machen, anzu-
geben, mit welchem Schritt oder welchen Schritten der beschriebene Schritt
zusammenhidngt, z.B. wer sein Vorganger oder sein Nachfolger ist. Da die
Schritte in diesem Ansatz groftenteils sequentiell aufeinander aufbauen,
wurde hier auf diese Kategorie verzichtet.

Wenn das Framework fiir eine Software-Engineering-Methode genutzt wiir-
de, dann wiirde das Finfiigen der Kategorie Vorgédnger/Nachfolger wiede-

117

rum mehr Sinn machen, um die Zusammenhinge im Uberblick zu behalten.
Ferner kann es bei einer SEM beispielsweise Sinn machen, eine Kategorie
»Werkzeuge“ oder ,,Technik® mit hinzuzufiigen, wenn diese fiir einen
Schritt verwendet werden sollen. Anhand dieser Beispiele ist zu sehen, dass
eine Wiederverwendung und Ubertragbarkeit des Frameworks gegeben ist.

In Kapitel 5 und Kapitel 6 findet das Framework seine Anwendung und es
wird beschrieben, wie der jeweilige Schritt und seine Subschritte im Detail
aussehen, ebenso wie der Input genutzt und der Output im Laufe des Schrit-
tes erzeugt wird.

4.5 Vertiefung Messen, Monitor- und Analyse-Phase

In den folgenden Kapiteln 5 und 6 soll der vorgestellte Ansatz MAPE-
K4SEM mit seinen zehn Schritten vertieft dargestellt werden. Da der Ansatz
des SE Method Managers und die verschiedenen Phasen sehr komplex sind,
sollen in dieser Arbeit insbesondere die Schritte der Pre-Work und die ers-
ten beiden Phasen des MAPE-K, die Monitor- und die Analyse-Phase, ver-
tiefend dargestellt werden.

Das Hauptaugenmerk liegt hierbei auf dem Messen der Daten und welche
Daten fiir das Gelingen des MAPE-K gewonnen werden konnen. Gerade das
Messen der Daten ist besonders wichtig, denn ohne die entsprechenden
Werte kann die Feedbackschleife des MAPE-K nicht durchgefiihrt werden.
Dabei ist zunédchst wichtig zu wissen, was spéter iiberhaupt mit den entspre-
chenden Sensoren an Daten gemessen werden kann. Um dies herauszufin-
den, sind ebenfalls die Schritte 1-3 und 5 besonders wichtig und werden in
Kapitel 5 vertiefend behandelt.

Auch wenn die anderen Schritte erldutert werden, liegt zusétzlich neben
dem Messen das weitere Augenmerk auf den ersten beiden Phasen Monitor
und Analyse, da diese eng verkniipft sind mit der Gewinnung der Daten.
Ohne das Aufbereiten der gewonnenen Daten und einer korrekten Analyse
mit den entsprechenden Regeln, kann eine automatische und somit selbst-
adaptive Anpassung einer Software-Engineering-Methode nicht funktionie-
ren.

In diesem Kapitel wurde ein zielorientiertes Vorgehen und im Speziellen
der Ansatz MAPE-K4SEM, bestehend aus der Kombination der Pre-Work
und dem anschlieBenden MAPE-K, vorgestellt, um insbesondere den in Ab-
schnitt 3.4 definierten Herausforderungen TP1 bis TP5 zu begegnen. Ferner
wurden Schritt-Typen definiert und ein Framework zur Charakterisierung
der einzelnen Schritte erarbeitet. Wie die genauen Schritte der Pre-Work
und der MAPE-K-Feedbackschleife im Detail aussehen, wird in den Kapi-
teln 5 (Pre-Work) und 6 (MAPE-K) nun néher vorgestellt.

118

Kapitel 5 Pre-Work

Aus Kapitel 4: Abschnitt 5.1:
MAPE-K4SEM Schritt 1 — Definition der
Framework & Schritt-Typen Ziele

Abschnitt 5.3: Abschnitt 5.2:
Ableitung der weiteren -——— Schritt 2 — Priorisierung der
Schritte Ziele
[

~ s ~
Abschnitt 5.4: Abschnitt 5.5:
—>| Schritt 3 - Ableitung von Schritt 4 — Ableitung von
Analyseregeln Planungsmoglichkeiten
A vy A
Y L4
4 ™
Abschnitt 5.6: (" Abschnitt 5.7:)
Schritt 5 — Ableitung von Schritt 6 — Ableitung von
L Metriken) Ausfiihrungsregeln &
Benachrichtigungen
{ \ 4
| Abschnitt 5.8: Méglichkeiten zur Wiederverwendung I—) SHerKapielts
Schritte 7-10

Abbildung 33 Aufbau Kapitel 5

Im vorherigen Kapitel wurde der MAPE-K4SEM-Ansatz mit seinen 10
Schritten vorgestellt. Diese Schritte beschreiben, wie sich die ndtigen Inhal-
te fiir die MAPE-K-Feedbackschleife herleiten und anschlieBend verwenden
lassen, um den beschriebenen Herausforderungen am Ende von Kapitel 3 zu
begegnen. In diesem Kapitel werden nun die sechs Schritte der Pre-Work im
Detail beschrieben sowie eine Moglichkeit zu ihrer Wiederverwendung vor-
gestellt. Zu Beginn jeden Schrittes werden sowohl das Framework als auch
die Schritt-Typen aus dem vorherigen Kapitel verwendet, um den jeweiligen
Schritt auf einen Blick in Kurzform darzustellen.

5.1 Schritt 1 - Definition der Ziele

Schritt 1: Definition der Ziele

Aufgabe Die einzelnen Ziele und Eigenschaften der Software-
Engineering-Methode werden definiert

Typ Erstellen — Die Ziele werden erstellt

Subschritte 1. Methode, Eigenschaften und Regeln der
Software-Engineering-Methode als Ziele de-
finieren (Hauptziel und Subziele)

2. Weitere Ziele/Anforderungen aus Kontext de-

119

finieren (falls nétig)
3. Zeitpunkte der Schritte definieren
4. Bereiche fiir Abweichungen definieren

Input des Schrittes

Genutzte Software-Engineering-Methode (z.B.
Scrum in der Originalversion oder Scrum mit Anpas-
sungen etc.)

Output des Schrit-
tes

Die definierten Ziele

Mogliche Stake-
holder

Methoden-Engineer, aber auch Kunde, Management,
Team usw.; alle, welche die Ziele mitdefinieren

Einer der wichtigsten Schritte zur Ableitung der verschiedenen Regeln und
Metriken, damit die MAPE-K-Feedbackschleife anschlieBend eingesetzt
werden kann, ist der erste Schritt — die Definition der Ziele. Die Ziele geben
an, welche Vorgaben die Software-Engineering-Methode erfiillen muss,
damit das Projekt erfolgreich und die damit zu entwickelnde Software von
guter Qualitit ist. Diese Vorgaben oder auch Regeln beschreiben die Eigen-
schaften der Software-Engineering-Methode, welche im weiteren Verlauf
ebenfalls als Ziele definiert sind.

Zusitzlich zu den Eigenschaften der SEM soll noch der Kontext oder besser
sollen die Eigenschaften des Kontextes in Bezug auf das Projekt mit be-
trachtet und als Ziele hergeleitet werden.

UN Kontext

\ /

____ Projekt-
(SM‘EJ“\)/I < Kontext

/

Schritt 1: Definition Ziele

Abbildung 34 Herleitung und Definition der Ziele anhand der SEM und des Kontextes

Somit wirken auf die Definition der Ziele verschiedene Faktoren ein, auf der
einen Seite die Softaware-Engineering- Methode selbst und auf der anderen

Seite der Kontext.

120

Wie in Abbildung 34 zu sehen, hingt die Software-Engineering-Methode
unter anderem vom Unternehmen ab. Jedes Unternehmen hat seine eigene
SEM, diese kann jedoch von Projekt zu Projekt unterschiedlich sein. Des
Weiteren kann sich der Kontext des Projektes auf die Software-Engineering-
Methode auswirken. Ein gegebenes Modell einer SEM kann einmal fiir den
Projektkontext anhand von Situational Method Engineering erstellt worden
sein, oder es wurde fiir das Projekt zugeschnitten (Tailoring).

Im ersten Subschritt werden zunichst das konkrete Modell und die Be-
schreibung der Software-Engineering-Methode selbst betrachtet. Diese
bringt Regeln, Eigenschaften, Vorgehensmethode etc. mit, welche fiir den
Erfolg der SEM wichtig sind. Diese sollen von einem Methoden-Engineer
oder einer anderen entsprechend geeigneten Person extrahiert und als Ziele
erfasst werden. Ein kleines Beispiel ist, dass als Software-Engineering-
Methode Scrum genutzt wird. Eine bereits erwédhnte Regel von Scrum ist
die Teamgrofle, welche mindestens drei aber nicht mehr als neun Personen
betragen darf, damit ein Team gut arbeiten und das Projekt Erfolg hat. Als
Ziel definiert wére dies nun: Die Teamgrdofle soll eingehalten werden und
darf nicht mehr als 9 oder weniger als 3 Personen betragen.

So kdnnen im ersten Schritt die verschiedenen Ziele festgelegt und mit wei-
teren Verantwortlichen, welche fiir den Erfolg des Projektes wichtig sind,
abgesprochen werden, so dass am Ende eine finale Version der Ziele steht.
Dieser Schritt ist nicht nur der wichtigste, sondern er kann auch am lingsten
dauern. Die Definition und Abstimmung der Ziele nimmt einige Zeit in An-
spruch, dhnlich wie bei dem Erstellen von Anforderungen. Die Ziele konnen
auch als die Anforderungen an die Software-Engineering-Methode angese-
hen werden, damit die SEM am Ende von Erfolg gekront ist.

Jedoch dhnlich wie bei der Definition von Anforderungen kann die Anzahl
der definierten Ziele je nach Komplexitit der gewdihlten Software-
Engineering-Methode relativ hoch sein. In diesem Schritt ist deswegen da-
rauf zu achten, die Ziele nicht zu feingranular zu fassen. Die weitere Verfei-
nerung erfolgt spiter anhand der Regeln, Planungsmoglichkeiten, Metriken
usw. Eine Moglichkeit, die Anzahl zu reduzieren wére beipsielsweise falls
Ziele einen gleichen Aspekt behandeln ist zu tliberlegen und zu diskutieren,
ob diese zu einem Ziel zusammengefasst werden konnen. Dies kann bei-
spielsweise iiber ein ,,Hauptziel“ und ,,Subziele* erfolgen. In Schritt 2 wer-
den anschlieBend nur die Hauptziele priorisiert.

Ein Beispiel wire, dass in Scrum verschiedene Meetings, beispielsweise das
tagliche Daily Scrum-Meeting oder am Ende das Review-Meeting, durchge-
fiihrt werden sollen. Das Hauptziel wiirde heiflen: Es sollen alle Meetings
entsprechend ihrer Reihenfolge durchgefiihrt werden. Das Subziel konnte

121

dann lauten: Es soll tiglich ein Daily Scrum-Meeting von 15 Minuten Dauer
immer zur selben Zeit durchgefiihrt werden.

Im néchsten Subschritt wird nun die rechte Seite aus Abbildung 34 betrach-
tet und falls nétig werden weitere Ziele und Anforderungen aus dem Kon-
text heraus definiert. Auch hier sind der Methoden-Engineer und bei Bedarf
weitere Verantwortliche noétig. Da jedes Projekt in einem anderen Kontext
stattfindet, gibt es andere Voraussetzungen, unter denen die Software-
Engineering-Methode funktionieren muss. Einen Einfluss konnen bei-
spielsweise verschiedene Standards und Normen haben, welche ein Unter-
nehmen einsetzen mochte oder sogar muss. Ein Beispiel kann sein, dass das
Unternehmen einen Standard oder eine Norm beziiglich der Gewinnung von
Testdaten nutzen mochte. Das Ziele ware dann: Nutze den aktuellen Stan-
dard beziiglich der Gewinnung von Testdaten.

Ferner kann es vorkommen, dass Ziele nur zu bestimmten Zeitpunkten, bei-
spielsweise in einer bestimmten Phase, greifen. Somit kann bestimmt wer-
den, wann ein Ziel ,,aktiv*“ wird, d.h. dass die spiter abgeleiteten Metriken
nur zu diesem Zeitpunkt gemessen werden. Neben den Zielen zu bestimm-
ten Zeitpunkten kann es welche geben, die immer greifen sollen, beispiels-
weise das Standards eingehalten werden miissen. Fiir das Review-Meeting
oder Planungsmeeting in Scrum wiirden Ziele beispielsweise nur zu Beginn
eines Sprints (Planung) oder am Ende (Review) aktiv werden. Die verschie-
denen Zeitpunkte sollen bei der Priorisierung mit beachtet werden.

Ein anderes Beispiel wire die Einbeziehung des Kunden, &hnlich dem Bei-
spiel ,,Quasi-Scrum* aus Kapitel 3.1.3.1. Dort hat sich am Ende herausge-
stellt, dass es wichtig ist, den Kunden mehr mit einzubeziehen (durch eigene
Aufgaben) als vorgegeben. Dies hatte sich iiber die Kundenzufriedenheit
oder besser die Kundenunzufriedenheit anhand vieler (Fehler-) Meldungen
herausgestellt. Das Hauptziel wiirde hier lauten: Die Kundenzufriedenheit
im Projekt soll hoch sein. Ein Subziel kénnte dann heiflen: Es darf nur eine
bestimmte Anzahl, welche entsprechend vorher definiert werden muss, von
negativen Meldungen oder Fehlermeldungen vom Kunden vorhanden sein.
Dafiir muss natiirlich sichergestellt sein, dass der Kunde regelmdBig die
Software begutachten und Fehlermeldungen verfassen darf. Dies kann in
Scrum gut realisiert werden und wurde teilweise bereits realisiert. Je nach-
dem, ob der Kunde nur nach der Auslieferung des Inkrements oder die gan-
ze Zeit liber Meldungen verfassen darf, wird das Ziel immer oder nur nach
dem Sprint geschaltet.

Sind die Ziele sowohl aus der Beschreibung der Software-Engineering-
Methode selbst extrahiert als auch anhand des Kontextes erfasst, erfolgt ein
dritter Subschritt. In diesem Schritt werden, soweit dies bei dem Ziel mog-

122

lich ist, die Grenzen, in denen sich das Ziel bewegen darf, definiert. Diese
konnen bei der Beschreibung der Software-Engineering-Methode bereits
vorgegeben sein oder konnen entsprechend wihrend der Besprechung und
dem Erstellen der Ziele definiert oder gedndert werden.

Im ersten Beispiel beziiglich der Teamgrofle in Scrum sind die Grenzen zum
einen vorgegeben, die Teamgréfle muss sich zwischen mind. 3 und max. 9
Personen bewegen. Diese Grenzen konnen zum anderen aber auch ange-
passt werden, bei der TeamgroBe konnen beispielsweise beide Grenzen auf
4 (untere Grenzen) oder auf 10 (obere Grenze) angehoben werden.

5.2 Schritt 2 - Priorisierung der Ziele

Schritt 2: Priorisierung der Ziele

Aufgabe Fiir die einzelnen Ziele werden Priorititen vergeben,
z.B. Wichtigkeit des Ziels und/oder Kritikalitdt des
Ziels (dhnlich einer Fehlerpriorisierung)

Typ Priorisieren

Subschritte Keine Subschritte vorhanden

Input des Schrittes | Konkrete Ziele aus Schritt 1

Output des Schrit- | Priorisierte Ziele

tes
Maogliche Stake- Kunde, Management, Team; alle, welche die Ziele
holder mitpriorisieren

Sobald die Ziele der Software-Engineering-Methode festgelegt sind, miissen
diese nun im zweiten Schritt priorisiert werden. Dieser Schritt ist besonders
wichtig fiir die spétere Durchfiihrung der Analyse und Planung von gemes-
senen Werten, um eine mogliche Reihenfolge dafiir festzulegen. Wie in Ka-
pitel 3.4.2. beschrieben, hilft dieser Schritt vor allem dabei, das Trigger-
problem TP3 zu I6sen.

Dabei miissen die Verantwortlichen bei der Priorisierung des Ziels betrach-
ten, wie wichtig das Ziel fiir den Erfolg des Projektes und somit fiir den Er-
folg der Software-Engineering-Methode ist. Die Wichtigkeit des Ziels be-
stimmt, unter Einhaltung von bestimmten Grenzen (siche Schritt 1), spater
die Sortierung fiir die Analyse, die Planungsdurchfithrung und zum Teil
auch fiir die Anpassungsausfiihrung.

123

Fiir die Priorisierung eines Zieles anhand seiner Wichtigkeit gibt es ver-
schiedene Mdglichkeiten. Eine einfache Moglichkeit wére dabei, den Zielen
Zahlen zuzuordnen, welche die Prioritdt darstellen. Ein Beispiel wéren hier
Schulnoten, wobei 1 die hochste Prioritit widerspiegelt und 6 die niedrigste
Prioritdt. Umgekehrt wére es moglich, den Zielen eine Zahl von beispiels-
weise 1 bis 10 zuzuordnen, wobei 10 (= hohe Zahl) die hochste Prioritit ist
und 1 die niedrigste.

Eine andere bekannte Methode, welche héufig in den agilen Methoden wie
beispielsweise Scrum zur Priorisierung des Product Backlogs eingesetzt
wird, ist die sogenannte MusCoW-Methode [GI08]. MuSCoW ist dabei die
Abkiirzung fiir ,,Must®, ,,Should®, ,,Could“ und ,,Would not*. Must bedeutet
dabei, dass eine Anforderung oder ein Ziel ein Muss ist. Wird dieses Ziel
verletzt oder diese Anforderung nicht umgesetzt, funktioniert die ganze
Software nicht und der Erfolg des Projektes ist hochgefdahrdet. Should ist in
diesem Zusammenhang zweitrangig, das heiflt, die Anforderung bzw. das
Ziel sollte umgesetzt werden. Wird das Ziel nicht umgesetzt, ist der Erfolg
gefdhrdet, aber nicht so stark wie bei Must. Could bedeutet hier, dass es
schon wire, wenn das Ziel umgesetzt wird (nice to have). Wird dies nicht
umgesetzt, ist der Erfolg wenig gefdhrdet. Interessant ist bei der MuSCoW-
Methode das Would not. Hier wird zusétzlich definiert, was NICHT umge-
setzt werden soll. Bei der urspriinglichen Methode wird damit definiert,
welche Anforderungen auf keinen Fall umgesetzt werden sollen. Auf Ziele
einer Software-Engineering-Methode umgemiinzt hiee dies, welche Ziele
und Eigenschaften der Methode zum Misserfolg des Projektes fithren wiir-
den, wenn sie umgesetzt sind. Von der Wichtigkeit kann das Would not in
diesem Fall zwischen Must und Should angesiedelt werden. Ubersetzt man
die MuSCoW-Methode in Zahlen, wiren dies Prioritdten von 1 bis 4, wobei
Must die Prioritdt 1, Would not die Prioritit 2, Should die Prioritdt 3 und
Could die Prioritdt 4 erhalten wiirde.

Eine andere Moglichkeit wire es, die Ziele der Software-Engineering-
Methode anhand ihrer Kritikalitit zu beurteilen, dhnlich einer Fehlerpriori-
sierung beim Testen. In Testprojekten, z.B. bei Nutzung der Tools JIRA
[At14] oder HP Quality Center Enterprise [HP14], konnen die Fehler be-
wertet werden und bekommen Attribute wie beispielsweise Blocker oder
leichter Fehler wie Schonheitsfehler. Dabei bekommt ein blockierender Feh-
ler in der Software die hochste Prioritét, denn dies heifit, wenn dieser Fehler
nicht (sofort) behoben wird, blockiert die ganze Software und stiirzt im
schlimmsten Fall ab. Der Fehler muss schnellstmdglich behoben werden.
Ein Schonheitsfehler besitzt hier die niedrigste Prioritdt und ist beispiels-
weise beim Testen von Software bei der Realisierung der GUI zu finden,
z.B. dass eine Farbe falsch gesetzt ist oder ein Feld nicht korrekt dargestellt
wird. Dieser Fehler sollte behoben werden, aber die Software funktioniert

124

auch ohne die Behebung einwandfrei. Zwischen diesen Kategorien kann es
verschiedene Abstufungen geben, beispielsweise insgesamt fiinf Stufen oder
mehr.

Um die spitere Erstellung der Reihenfolge fiir die Analyse zu vereinfachen,
sollte die Priorisierung aus einer Zahlenfolge bestehen. Dabei kénnen so-
wohl die MuSCoW-Methode als auch die Methode zur Fehlerpriorisierung
helfen, diese Reihenfolge anhand von Priorititen zu erstellen.

Wichtig ist es darauf zu achten, die Abstufungen nicht zu feingranular (zu
viele Abstufungen zu wéhlen) aber auch nicht zu grobgranular (zu wenig
Abstufungen). Ist die Abstufung zu grobgranular, kann dies dazu fiihren,
dass keine Reihenfolge wihrend der Analyse erstellt wird, da die Ziele die-
selben Priorititen haben. Ist die Abstufung zu feingranular gewéhlt bedeutet
dies einen sehr hohen Aufwand, wenn die Menge der Ziele sehr hoch ist.
Von daher muss die Abstufung in Abhéngigkeit von der Anzahl der Ziele
gewidhlt werden. Zusétzlich sollte mit betrachtet werden, wann das Ziel ak-
tiv sein wird. Greift beispielsweise zwei Ziele zu vollig unterschiedlichen
Zeitpunkten, konnen sie dieselbe Prioritdt erhalten.

Sollte es dennoch vorkommen, dass zwei Ziele gleichzeitig gemessen UND
dieselbe Prioritit besitzen, muss der Methoden-Engineer oder der Projektlei-
ter eingreifen und beurteilen, welches Ziel zuerst analysiert wird. Ansonsten
kann die Durchfithrung automatisiert ohne das Eingreifen von Verantwortli-
chen erfolgen.

5.3 Ableitung der weiteren Schritte

Die Ziele der Software-Engineering-Methode sind nun definiert und wurden
priorisiert. In den folgenden Schritten geht es jetzt darum, aus diesen Zielen
zunidchst wie in Kapitel 4.3.2. im Ableitungs- und Schalenmodel zu sehen,
die Regeln fiir die Analyse, die moglichen Planungsmdglichkeiten und dar-
aus jeweils Metriken und Ausfiithrungsregeln und Benachrichtigungen wei-
ter ab- und herzuleiten.

Mit Hilfe der Ableitungsschritte wird, ausgehend von den Zielen, die Frage
beantwortet, was gemessen werden muss und wie die zu messenden Werte
gefunden werden konnen. Die Werte ergeben am Ende in Schritt 5 die Met-
riken. Diese sind die Grundlage fiir die anschlieBenden Sensoren im spite-
ren MAPE-K, welche die entsprechenden Werte fiir die Metriken messen.

Dies ist aber, wie auch im Ableitungsbaum zu sehen, nur die eine Seite
(links). Auf der anderen Seite steht die Frage, was angepasst wird und was
geplant werden kann. Dies erfolgt ebenfalls mit Hilfe der Ableitung ausge-
hend von den Zielen. Sobald die Planungsmoglichkeiten bekannt sind, kann

125

mit ihrer Hilfe bestimmt werden, welche ,,Anpassungs- und Benachrichti-
gungs-Metriken* ausgefiihrt werden.

Z Ausflhrungsregeln/
Benachrichtigungen
.Modifikations-“Werte

PM — AB

Regeln ,Wenn-" Teil

e Planungsmdglich-

keiten
.Dann-"Teil
(Planung

M ausflhren) +

e Konflikte +
Metriken Kombination
Messwerte”

Abbildung 35 Weitere Ableitungen

Die Ableitungsreihenfolge, welche ebenfalls im Ableitungsbaum in Kapitel
4.3.2. zu finden ist, wird noch einmal konkret fiir die Pre-Work in Abbil-
dung 35 dargestellt. Aus den priorisierten Zielen werden die Regeln fiir die
Analyse und daraus die Metriken fiir die Messwerte hergeleitet. Auf der
anderen Seite werden die Planungsmoglichkeiten sowie mogliche Konflikte
und Kombinationen fiir Anpassungen hergeleitet. Aus diesen ergeben sich
anschlieBend wie beschrieben die genauen Ausfiihrungsregeln und Benach-
richtigungen, genauer die Metriken und Werte zur Modifikation.

Wie ist es nun moglich, aus den priorisierten Zielen die entsprechenden
Punkte herzuleiten? Nach [BCR94] ist es ndtig, die Herleitung nach einem
Top-Down-Ansatz vorzunehmen und sie sollte sich dabei auf spezifische
Ziele oder auch Modelle fokussieren. Um messbare Ziele zu definieren und
entsprechende Metriken herleiten zu kdnnen, ist ein Ansatz das bekannte
GQM-Model, wobei GQM fiir ,,Goal“, Question* ,,Metric* steht [BCR94,
SB99].

Fiir diesen Ansatz ist ebenfalls die Idee, einen Teil des GQM-Modells an-
zuwenden, um aus den priorisierten Zielen Regeln und Metriken herzulei-
ten. Das Modell wird typischerweise als eine Verfahrensweise verwendet,
um ein Qualitidtsmodell zu erstellen. Dieses ist hierarchisch aufgebaut und
besteht am Ende aus Metriken sowie einem spezifischen Set an Regeln,
welche fiir die Interpretation der gemessenen Daten wichtig sind. Das Mo-
dell enthélt nachher drei verschiedene Ebenen [BCR94]:

1. Die Konzeptions-Ebene — die Ziele (Goals) — welche fiir ein be-
stimmtes Objekt mit verschiedenen Sichtweisen definiert sind. Dies
konnen in der Softwareentwicklung verschiedene Arten sein. Bei-
spiele sind das Produkt (Artefakte, Inkremente etc.), die Prozesse

126

oder Phasen im Entwicklungsprozess (Spezifikation, Design, Test
usw.) oder auch fiir die Ressourcen, welche fiir die Entwicklung ge-
nutzt werden.

Die Operations-Ebene (Question), in der eine Anzahl von Fragen er-
arbeitet wird. Diese Fragen charakterisieren, wie ein bestimmtes Ziel
erreicht oder gemessen wird.

Die Quantitative-Ebene (Metric), in der eine Anzahl von Daten erar-
beitet wird, um die Fragen in einer quantitativen Form zu beantwor-
ten. Dies kann sowohl in objektiver (z.B. Versionsnummer von Do-
kumenten, Aufwand fiir Aktivitdten, Lines of Codes usw.) als auch
in subjektiver Form (z.B. Zufriedenheit der Benutzer, Lesbarkeit ei-
nes Textes usw.) geschehen.

Diese drei Ebenen konnen in drei Fragen umgewandelt werden, die es zu
beantworten gilt. Sie werden genutzt, um das Modell zu erstellen:

1.
2.

Welches Ziel soll durch die Messung erreicht werden? (Goal)

Was soll gemessen werden; welche Fragen soll die Messung beant-
worten? (Question)

Welche Metrik(en) sind in der Lage, die notwendigen Eigenschaften
zu beschreiben? (Metric)

Priorisierte Ziele (Goals)

l

Welche Faktoren beeinflussen In welchen Bereichen/ Grenzen
das Ziel? bewegen sich die Faktoren?

Me R

Metriken Regeln
.Messwerte” (Auswertungsregeln)

Abbildung 36 Ableitung GQM-Variante linke Seite

Genau diese Fragen sollen in dhnlicher Weise durch die Pre-Work sowohl
fiir die linke, als auch die rechte Seite des Ableitungsbaums beantwortet und
konnen diesem somit zugrunde gelegt werden. Allerdings miissen die Fra-
gen dann jeweils umformuliert werden. Als oberstes bleiben wie in Abbil-
dung 36 zu sehen, immer noch die Ziele erhalten. Um die jeweils weiteren

127

Schritte und Ergebnisse zu erhalten, werden zunichst entsprechende Fragen
gestellt, um anschlieBend fiir die linke Seite erst die Regeln und dann die
Metriken herzuleiten:

1.

Welches Ziel oder welche Eigenschaft soll bei der Software-
Engineering-Methode erhalten bleiben und kann durch eine Messung
sowie Analyse liberpriift werden? (Goal, Schritt 1 + 2)

Was soll dafiir analysiert und welche Grenzen konnen dafiir einge-
halten werden? Welche Fragen muss ich fiir diese Analyse beant-
worten um die Regeln zu erhalten? (Questions)

Welche Metriken sind in der Lage, die ndtigen Werte fiir die Analy-
se der Regeln zu liefern? Welche Faktoren beeinflussen das
Ziel?(Regeln, Schritt 3, Metric Schritt 5)

Mogliche Fragen konnen hier sein:

a.

Wie stelle ich das Ziel sicher, was ist dafiir notig?

b. Zu welchem Zeitpunkt greift das Ziel?

Welche Faktoren beeinflussen das Ziel und miissen beobachtet wer-
den?

In welchen Bereichen/Grenzen bewegen sich diese Faktoren damit
das Ziel erreicht wird und erhalten bleibt?

Wie in Abbildung 36 zu sehen ergibt hierbei die Leitfrage c) die spéteren
Metriken und Leitfrage d), ergibt anschlieBend die Regel fiir die Auswer-
tung. Beide Leitfragen konnen durch weitere Fragen verfeinert werden.
Wichtige Fragen, um eine Software-Engineering-Methode anzupassen und
um mogliche Schwichen oder Abweichungen festzustellen, konnten aufler-
dem noch sein:

Welche Abhéngigkeiten in der Software-Engineering-Methode sind
kritisch?

Welche Verdnderungen am Projekt konnen Einfluss auf die Soft-
ware-Engineering-Methode nehmen?

Wie wird sichergestellt, dass alle Beteiligten iiber eine Anpassung
und somit eine Verdnderung in der SEM informiert sind?

Wie werden neue Risiken und Gefahren fiir die Software-
Engineering-Methode erfasst und in MAPE-K integriert?

Welche Ubergiinge im adaptiven Zyklus lassen sich wie managen?

Ein dhnliches Vorgehen kann fiir die Schritte der rechten Seite vorgenom-
men werden, welche in Abbildung 37 zu sehen sind. Dabei bleibt der erste
Punkt gleich und anschlieBend werden mit Hilfe der Fragen zunéchst die
Planungsmoglichkeiten und dann die Ausfiihrungs- und Benachrichtigungs-
Metriken hergeleitet:

128

1. Welches Ziel soll bei der Software-Engineering-Methode erhalten
bleiben und kann durch eine Messung und Analyse iiberpriift wer-
den? (Goal, Schritt 1 + 2)

2. Was muss unter bestimmten Voraussetzungen geplant werden, damit
das Ziel weiter eingehalten wird. Welche Fragen muss ich stellen,
damit eine Anpassung geplant werden kann, um das Ziel weiter ein-
zuhalten? (Questions)

3. Welche Anpassungsschritte sind notig; an welchen Stellen muss die
Software-Engineering-Methode angepasst und wer muss benachrich-
tig werden? Wie sehen diese ,,Anpassungs-Metriken* aus? (Pla-
nungsmoglichkeiten Schritt 4, Metric, Schritt 6)

Priorisierte Ziele (Goals)

An welchen Stellen und wie l Wie kann die Methode mit

muss die SEM angepasst gegebenen Werten angepasst
werden? werden, um das Ziel weiter

Wer muss benachrichtig einzuhalten?

werden? / \tajche Varianten gibt es dabei?

AB —PM

Metriken Planungsméglichkeiten
+Ausfihrungs- und
Benachrichtigungsmetriken”

Abbildung 37 Ableitung GQM-Variante rechte Seite
Mogliche Fragen konnen hier sein:

a. Wie stelle ich das Ziel sicher, was ist dafiir notig?

b. An welchen Stellen kann eine SEM angepasst werden und wie kann
eine SEM angepasst werden (sieche dazu Kapitel 3.1.2.)?

c. Wer muss bei einer Anpassung alles benachrichtig werden?

d. Wie kann die gegebene SEM mit den gemessenen und analysierten
angepasst werden, damit das Ziel weiter eingehalten wird?

e. Welche Varianten gibt es dabei?

f. Welche Konflikte konnen bei den jeweiligen Zielen entstehen?
Wie konnen Anpassungen kombiniert werden, gibt es bestimmte
Kombinationspunkte?

Die Leitfragen b) und c) ergeben mit Hilfe der Planungsmdoglichkeiten die
Ausfiihrung-Metriken. Die Beantwortung der restlichen Leitfragen ergibt
mit moglichen Verfeinerungsfragen die Planungsmdglichkeiten.

129

Wie genau die weiteren Ableitungen und somit die Schritte im Detail ausse-
hen, wird in den Abschnitten 5.4. bis 5.7. beschrieben.

5.4 Schritt 3 - Ableitung von Analyseregeln

Schritt 3: Ableitung von Analyseregeln

Aufgabe Fiir die Analyse-Phase werden anhand der Ziele
mogliche (Auswertungs-)Regeln abgeleitet

Typ Ableiten
Sub-Typ: Regeln

Subschritte 1. Auswertungsteil ableiten (Wenn-Teil)
2. Aktionsteil ableiten (Dann-Teil)

Input des Schrittes | Priorisierte Ziele aus Schritt 2 und Grenzwerte

Output des Schrit- | Regeln fiir die Analyse
tes

Mogliche Stake- Methoden-Engineer, evtl. Projektmanagement
holder

Nachdem die Ziele nun priorisiert sind, ist der ndchste Schritt, die Analyse-
regeln fiir die spatere Analyse-Phase zur Durchfiihrung des MAPE-K abzu-
leiten. Wie im vorherigen Abschnitt beschrieben, wird dazu eine Form des
GQM-Modells verwendet. In Schritt 1 wurden die Ziele definiert u.a. durch
die Eigenschaften der Software-Engineering-Methode, welche wihrend der
Durchfiihrung der SEM eingehalten werden sollen. Zusétzlich wurden Tole-
ranzbereiche und mogliche Abweichungen angegeben, in denen sich die
Ziele zur Einhaltung bewegen diirfen. Diese Angaben miissen nun mit Hilfe
der Leitfrage ,,In welchen Bereichen/Grenzen bewegen sich diese Faktoren
damit das Ziel erreicht wird und erhalten bleibt?* in eine Regel-Form {iber-
fithrt werden.

Die Analyseregeln bestehen spéter aus zwei Teilen, aus einem Auswer-
tungsteil, dem Wenn-Teil und einem Aktionsteil, dem Dann-Teil. In diesem
Schritt geht es hauptsdchlich um den Auswertungsteil, welcher aus den Zie-
len abgeleitet wird. Er ist dafiir zustédndig zu {iberpriifen, ob ein bestimmtes
Ziel sich noch innerhalb der gesetzten Grenzen befindet und ob es noch
erflillt wird oder nicht. Je nach Ergebnis der Auswertung, beschreibt der
Aktionsteil was entsprechend zu tun ist.

Der Aktionsteil ist eng mit Schritt 4 verkniipft, der Ableitung von Pla-
nungsmoglichkeiten und deren Alternativen. Durch den Dann-Teil wird

130

beschrieben, welche Planungsmoglichkeit oder Alternative aufgerufen wird.
Falls eine bestimmte Voraussetzung, welche durch den Wenn-Teil ausge-
wertet wird, erfiillt ist, wird eine entsprechende Anpassung der Software-
Engineering-Methode aufgerufen. Es kann allerdings Situationen geben, wo
die Analyseregel ergibt, dass sich das Erfiillen des Ziels nicht mehr in sei-
nen Grenzen befindet, aber auch keine Planungsmoglichkeit vorhanden ist.
Die Anpassung muss dann wihrend der Planphase bestimmt werden.

Daraus ergeben sich drei mogliche Regel-Formen, welche u.a. davon ab-
hingen, ob es eine Planungsmoglichkeit gibt oder nicht

1. Wenn ,,Angabe/ Ziel nicht erfiillt” dann ,,Planungsmdglich-
keit mit Werten aus Monitor

2. Wenn ,,Angabe/ Ziel nicht erfiillt* dann ,,Neue Planung mit
Werten aus Monitor + Ziel*

3. Wenn ,,Angabe/ Ziel erfiillt dann Schritt 7 (Monitor-Phase)

Hier soll noch einmal das in Abschnitt 3.3.2 eingefiihrte Beispiel der Team-
grofe in Scrum verwendet werden. Ist das Team zu groB, ist die Regel, dass
das Team gesplittet und ein Scrum of Scrums durchgefiihrt wird (Pla-
nungsmoglichkeit Variante 1). Ist das Team zu klein, muss eine weitere Per-
son mit entsprechenden Skills gesucht und dem Team hinzugefiigt werden
(Planungsmoglichkeit Variante 2). Daraus ergeben sich nach erstens und
drittens folgende Regeln:

a. Wenn Teamgrofle > 9 dann Planungsmoglichkeit Variante 1 (Team
zu grof}, aktuelle Teamgrofe x)

b. Wenn Teamgrofle < 3 dann Planungsmdglichkeit Variante 2 (Team
zu klein, aktuelle TeamgroBe y)

c. Wenn TeamgroBe 3 <= Teamgrofle <= 9 dann Schritt 7 (Monitor-
Phase)

Wie in 4.1. und genauer in 4.3.1.4 beschrieben sind typischerweise die Pla-
nungsmoglichkeiten bereits vorhanden. Es gibt einige Situationen, in denen
der Kontext eine Planung ohne vorherige Planungsmoglichkeiten triggern
kann. Ein Beispiel dafiir ist, dass das Ziel ist, dass die SEM bestimmte
Normen und Standards einhalten soll, z.B. den aktuellen Standard zum Tes-
ten. Wenn sich dieser nun dndert, ist es notig, die Software-Engineering-
Methode darauf abzustimmen. Die Regel wiirde nach zweitens dafiir lauten:

e Wenn aktuelle Norm/aktueller Standard != aktuell genutzte Norm/
Standard, dann Neue Planung mit neuer Norm/ Standard (auslesen
aus Datenbank) else Schritt 7 (Monitor-Phase)

131

Damit diese Regel funktioniert, muss zunichst an einer Stelle, z.B. in der
Wissensbasis, immer bekannt sein, welche Norm/ welcher Standard aktuell
verwendet wird. Zum anderen muss es entweder mdglich sein, den Kontext,
in diesem Fall beispielsweise eine entsprechende Seite im Internet, zu scan-
nen und auf eine mogliche neue Norm oder einen neuen Standard hin zu
iiberpriifen. Im einfacheren Fall wird regelméfig von einem Teammitglied
oder einem Mitarbeiter des Unternehmens iiberpriift, ob es neue Normen
oder Standards gibt. Diese werden dann in eine entsprechende Datenbank
eingetragen.

5.5 Schritt 4 - Ableitung von Planungsmoglichkeiten

Schritt 4: Ableitung von Planungsmoglichkeiten

Aufgabe Aus den priorisierten Zielen (und der SEM) werden,
soweit moglich, Planungsmdglichkeiten abgeleitet

Typ Ableiten
Sub-Typ: Planungsmdglichkeiten

Subschritte 1. Ab- bzw. Herleitung von Planungsmdoglichkei-
ten

2. Variantenbestimmung

3. Bestimmung von Konfliktpotential (und mog-
liche Losungen)

4. Kombinationsmoglichkeiten und -punkte

Input des Schrit- | Priorisierte Ziele und Software-Engineering-Methode
tes

Output des Schrit- | Moglichkeiten fiir die Planung
tes

Maogliche Stake- Methoden-Engineer
holder

Ahnlich wie aus der vorgegebenen Software-Engineering-Methode, den
Projektzielen und einem Toleranzbereich, Regeln abgeleitet werden konnen,
konnen im Vorfeld Anpassungs- bzw. Planungsmdglichkeiten bereits herge-
leitet werden. Die Herleitung der Planungsmoglichkeiten ist fiir die meisten,
aber fiir einige Ziele wie das Einhalten eines Standards, nicht moglich.

Wie in Abschnitt 5.3 beschrieben, sind zundchst die einzelnen Ziele und
Eigenschaften zu betrachten, fiir welche bereits im die Regeln und Tole-
ranzbereiche bestimmt wurden. Nun ist zu iiberlegen, was getan werden
muss, wenn diese Toleranzbereiche liber- oder unterschritten werden und
somit die Gefahr besteht, dass das Ziel nicht mehr eingehalten wird. Es ist

132

nun die Leitfrage zu beantworten, was geplant werden muss, damit das Ziel
weiter eingehalten werden kann und somit die SEM weiter Erfolg hat
(Schritt ,,Q* aus GQM).

5.5.1 Herleitung

Da durch das Ziel, den Regeln und dem Toleranzbereich genau bekannt ist,
an welcher Stelle in der SEM ich mich gerade befinde, miissen verschiedene
Dinge betrachtet werden. Zunéchst lautet jeweils die Frage, was genau an-
gepasst werden soll, wenn die Regel nicht eingehalten wird. Es muss dafiir
genauer Uberlegt werden,

a. Wo muss im Modell der Software-Engineering-Methode an-
gepasst werden?

b. Was kann an dieser Stelle angepasst werden, z.B. ein Arte-
fakt, eine Rolle, eine Aktivitit, eine Kombination daraus
usw.?

c. Wie muss an dieser Stelle angepasst werden, damit das Ziel
weiter sichergestellt wird, z.B. muss etwas hinzugefiigt, et-
was ausgetauscht, etwas geldscht werden usw.?

d. Welche Verbindungen miissen dabei neu gesetzt werden und
welche bleiben erhalten, z.B. welche Rollen gehdren zu wel-
chen Aktivititen, bleibt der Workflow erhalten oder muss er
neu gestaltet werden (neue Verbindungen setzen) usw.?

e. Wer muss alles iiber die Anderungen benachrichtigt werden,
z.B. welche neuen und alten Teammitglieder bekommen eine
Benachrichtigung? Oder erhélt das System eine Nachricht,
wenn etwas automatisch durchgefiihrt werden kann usw.?

Auch wenn durch die Ziele und Regeln bekannt ist, an welcher Stelle ange-
passt werden muss, ist das gegebene Modell der Software-Engineering-
Methode wichtig um die Stelle des Ziels und der Regeln im Modell genau
zu definieren, also wo genau ich mich befinde (Punkt a). Nur anhand des
Modells und durch das Bekanntsein der Stelle, wo ich mich nun im Modell
befinde, ist es moglich herauszufinden, was an dieser Stelle angepasst wer-
den kann. Denn durch das Modell sind die Elemente, welche sich an der
anzupassenden Stelle befinden, genau definiert.

133

Meilensteine

Software-
Engineering-

Methode Werkzeuge
7
0..n
1...n I1 n
w1 Workflow 1 Lanl Aktivititen fe Meeting
Tl — /10
1.n_—" Ao n .
1...n 4
Rollen Technik
Toadh,
0.n\ 7 1..n
Verantwortlich-
keit
1..n%
Guidance 10N 1n
4 Artefakte
r'd ;
Inkrement

Abbildung 38 Begriffe einer Software-Engineering-Methode (vergl. Abschnitt 2.1.1)

In Abschnitt 2.1.1 wurde bereits beschrieben, welche Elemente eine Soft-
ware-Engineering-Methode enthalten kann, also WAS (Punkt b) angepasst
werden kann. Die wichtigsten Elemente, die in Betracht gezogen werden
miissen, sind wie auch in Abbildung 38 zu sehen:

Aktivititen (= Aufgaben), welche innerhalb einer SEM
durchgefiihrt werden miissen.

Rollen (z.B. Projektleiter, Teammitglied, Tester, Architekt
usw.) zugeordnet zu Aktivitéten.

Artefakte (z.B. Dokumente, Arbeitsergebnisse, fertige Soft-
ware usw.), welche bei einzelnen Aktivititen entstechen bzw.
fiir die Durchfithrung weiterer Aktivitdten benotigt werden.

Verantwortlichkeiten, die eine Rolle besitzt und Aktivititen
oder Artefakten zugeordnet sind.

Workflow (= Zusammenhang und Reihenfolge) der einzel-
nen Aktivititen in Kombination mit Rollen und Artefakten.

Meetings (= Aktivitit), welche regelméBig in SEMs durchge-
fithrt werden.

Guidance (= Hilfsmittel, Anleitungen), alles was eingesetzt
wird, um bei der Durchfiihrung einer Aktivitédt zu helfen bzw.
um das gesetzte Ziel zu erreichen. Dabei konnen Technik
und Werkzeuge ebenfalls als Unterkategorien angesehen
werden.

134

* Technik (z.B. Priorisierungstechnik, Pair Programming bei
der Entwicklung usw.), welche fiir die Durchfiihrung einer
Aktivitdt und das Erstellen eines Artefakts eingesetzt wird.

* Werkzeuge (z.B. Software-Tools), welche fiir die Durchfiih-
rung einer Aktivitit eingesetzt werden und diese unterstiit-
zen.

* Qualifikation (= Skills), welche eine Person besitzen muss,
um fiir eine bestimmte Aktivitit eingesetzt zu werden. Dies
kann auch als Unterkategorie fiir die Rolle angesehen werden
oder wie in Abschnitt 2.1.1 beschrieben zugehdrig zu einer
Person sein.

e Meilensteine, welche den Abschluss eines bestimmten Zeit-
raums symbolisieren, zu dem bestimmte Dinge (z.B. Arbeits-
ergebnisse, fertige Software usw.) erreicht sein miis-
sen/sollen.

Diese Elemente wurden ausgewihlt, da sie die in Abschnitt 2.1.1 definierten
Elemente widerspiegeln. Die Hauptelemente sind dabei neben dem Work-
flow die Elemente Rolle, Artefakt und Aktivitit. Diese Hauptelemente wer-
den ebenfalls in anderen Modellen von Software-Engineering-Methoden als
Hauptelemente definiert, manchmal unter einem anderen Begriff.

Durch die Bestimmung des Anpassungspunktes im Modell der Software-
Engineering-Methode ist es nun besonders wichtig zu bestimmen, welches
Element/welche Elemente WIE (Punkt ¢) an dieser Stelle angepasst werden.
In Kapitel 3.1.2. wurden dafiir bereits die verschiedenen Anpassungs-Arten
ndher erldutert. Mit Hilfe der Ziele ist nun von einem Methoden-Engineer
zu bestimmen, was getan werden kann, um das Ziel weiter einzuhalten, z.B.
ob ein Element ausgetauscht, hinzugefiigt oder geléscht werden muss. In
manchen Fillen ist bereits in der Beschreibung einer Software-Engineering-
Methode vorhanden, was in bestimmten Féllen durchgefiihrt werden muss.
Hat der Methoden-Engineer bestimmt, was bei der moglichen Anpassung
durchgefiihrt wird, muss er noch iiberpriifen (Punkt d):

a. Ob die Reihenfolge in der SEM weiter eingehalten wird oder ob
diese entsprechend {iber Verbindungen neu gesetzt werden muss.

b. Ob die Verantwortlichen fiir die Elemente weiter gesetzt sind
oder diese neu gesetzt werden miissen.

Als einen letzten Schritt muss der Methoden-Engineer bestimmen, wer am
Ende alles iiber die Anderungen benachrichtig werden muss. Durch das
Modell und die entsprechende Zuordnung der Rollen kann schnell ermittelt

135

werden, welche Rollen, sowohl alt als auch neu, von der Anderung betrof-
fen sind und somit informiert werden miissen. Wichtig ist dabei zu beach-
ten, dass die Benachrichtigung bei weggefallenen Rollen nicht vergessen
wird. Durch die Zuordnung der konkreten Personen zu den Rollen auf der
Instanz-Ebene wird in der Ausfiihrung bestimmt, wer die entsprechende
Benachrichtigung bekommt, z.B. anhand einer Nachricht in E-Mail-Form.

Sind die verschiedenen Schritte vom Methoden-Engineer durchgefiihrt, hat
er fir die Planungsmoglichkeit am Ende bestimmt, an welcher Stelle im
Modell (Wo) bei einer Verletzung der Regel welche Elemente (Was), in
welcher Art (Wie) angepasst werden, welche Verbindungen (Welche)
erhalten oder neu gesetzt werden miissen und an wen welche Benachrichti-
gung (Wer) geschickt werden muss. Diese fiinf Punkte konnen in Schritt 6
in konkrete Ausfiihrungs- und Benachrichtigungs-Metriken fiir die Phase
Execute iiberfiihrt werden.

Zur Veranschaulichung wird wieder das Beispiel der Teamgrofle in Scrum
aufgegriffen. Das Team ist zu grof3 und beinhaltet mehr als 9 Personen. Der
Methoden-Engineer iiberlegt nun zunichst, wo und was er dndern kann,
wenn das Team zu grofl wird. In der Beschreibung von Scrum selbst wird
dazu geraten, das Team dann aufzusplitten (Team-Split). Das bedeutet, dass
mehrere Teams gemeinsam am Product Backlog arbeiten und diese sich in
Form eines Scrum of Scrums tiglich austauschen miissen.

;‘:xg::;':‘; bearbeiten Artefakt:Sprint Speziali- Artefakt: Product
T ¥ Aufgaben Backl sierun Backlog (PB
Personen b ¢ o8 erung Bl
A
A Y
Rolle: Team besitzt PB
TeamgroBe: 12 Team-Split bearbeiten (keine
Personen Aufgaben Anderungen)
A Y
A
Rolle: Team b
i betreut', Rolle: Product
TeamgroBe: 6 P g -
Personen Sl p .
RN Rolle: Scrum

Master

Abbildung 39 Team-Split: Aufteilung in zwei Teams und neue Zuordnung

Im Modell werden nun zum urspriinglichen Team ein oder mehrere Teams
(je nach Anzahl der Personen) hinzugefiigt, bei einem Beispiel von 12 Per-
sonen wiirden wie in Abbildung 39 zu sehen zwei neue Teams mit jeweils 6
Personen entstehen. Die Aufgaben im Product Backlog werden auf die
Teams aufgeteilt. Grau bedeutet dabei, dass sich diese Rolle bzw. dieses
Artefakt nicht dndert. Die Personen werden anhand ihrer Qualifikationen,
ableitend beispielsweise aus den Aufgaben im Product Backlog, auf die
Teams aufgeteilt. Der Product Owner bleibt weiterhin der Besitzer des Pro-

136

duct Backlogs und fiir ihn dndert sich nichts. Der Scrum Master an sich an-
dert sich ebenfalls nicht, aber er ist nun fiir zwei Teams verantwortlich.

Planrli.rlg- Daily Scrum:
Meeting e
Daily Scrum :
Split DS
s
Daily Scrum:
Retrospektive Ablauf Entwicklung Reihenfolge Team b
Sprint Meetings
‘% Scrum of Scrums:
Vertreter Team a &
Team b
Review -
Meeting

Abbildung 40 Split Daily Serum und Einfiigen Scrum of Scrums nach Daily Scrum

Im Modell wird ein Meeting, also eine Aktivitit, hinzugefiigt und zwar wie
in einem stark vereinfachten Modell in Abbildung 40 zu sehen nach dem
Daily Scrum. AuBlerdem wird das Daily Scrum in zwei aufgeteilt, eines wird
durchgefiihrt von Team a, das andere von Team b. Im Scrum of Scrums
treffen sich gewidhlte Vertreter aus den beiden Teams und besprechen dhn-
lich wie im Daily Scrum, was die Teams zum einen getan haben und zum
anderen als nichstes tun wollen.

Die Verantwortlichkeiten miissen nun bei dem alten Team neu gesetzt wer-
den. Es muss beispielsweise mindestens eine Person am Scrum of Scrums
teilnehmen und ist dafiir verantwortlich. Beim neuen Team miissen die Ver-
bindungen sowohl zum Product Backlog als auch zum neuen Meeting ge-
setzt werden. Bei den Benachrichtigungen miissen alle alten und neuen
Teammitglieder benachrichtig werden.

5.5.2 Variantenbestimmung

Bei vielen Anpassungen kann es verschiedene Moglichkeiten geben. Gerade
wenn ein Toleranzbereich vorhanden ist, gibt es mindestens eine Mdglich-
keit zur Anpassung, wenn der Bereich iiberschritten und eine, wenn der Be-
reich unterschritten wurde. Zusétzlich kann es noch weitere Varianten ge-
ben, muss es aber nicht. Die Anzahl der Varianten bestimmt sich also aus
dem Toleranzbereich und auch aus dem, was der Methoden-Engineer an
Moglichkeiten erkennt. Gerade deshalb ist es wichtig, dass die Herleitung
der Planungsmoglichkeiten eine erfahrene oder entsprechend ausgebildete
Person tibernimmt.

Sind die Varianten nach dem Vorgehen aus 5.5.1. bestimmt, so muss noch
bestimmt werden, wann welche Variante eingesetzt wird. Ist die Variante

137

anhand der Toleranziiber- bzw. -unterschreitung bestimmt, so kann dies
anhand der entsprechenden Regel geschehen, wie etwa im Beispiel im vor-
herigen Kapitel 5.4. Dort ist jeweils eine Variante angegeben, wenn das
Team grofer ist als der Toleranzbereich und eine zweite Variante, wenn das
Team kleiner ist als der Toleranzbereich. Je nachdem, welcher Fall zutrifft,
wird die entsprechende Variante ausgefiihrt.

Sind mehrere Varianten fiir einen Fall angegeben, muss zur Laufzeit, also
zur Ausfithrung der Plan-Phase bestimmt werden konnen, welche der Vari-
anten am besten geeignet ist zu dem jeweiligen Zeitpunkt. Dafiir muss es
eine entsprechende Vergleichsmoglichkeit geben, um die beste Variante zu
bestimmen. Dabei sind mit die beiden wichtigsten Faktoren:

e (Grad der Anpassung (muss viel oder nur sehr wenig angepasst wer-
den).

e Auswirkung der Anpassung auf der Gesamt-SEM. Das heif3it, wie
stark beeinflusst die Anpassung die restliche Software-Engineering-
Methode, das heiflt gibt es Konflikte, muss an einer anderen Stelle
ebenfalls etwas angepasst werden etc.

Gerade die Auswirkung einer Anpassung auf die Gesamt-SEM ist sehr
wichtig. Durch das Modell ist Riickverfolgung (Traceability) und die Ver-
bindung in der gesamten Methode gegeben. Mit Hilfe von Mustern (Pat-
tern), Traceability-Algorithmen oder Simulationen der Anpassung in der
Gesamt-SEM kann {iberpriift werden, wie sich Anpassung auswirkt und ob
es an anderen Stelle Probleme gibt. Zum Beispiel kann an einer anderen
Stelle ein anderes Ziel nicht mehr eingehalten werden oder die Software-
Engineering-Methode verlangsamt sich etc.

Wurde herausgefunden, dass die erstgewihlte Variante ein Problem darstellt
und einen Konflikt in der Gesamt-SEM ausldst, muss bestimmt werden,
welche weitere Variante genutzt werden kann. Es muss iiber alle mdglichen
Varianten tiberpriift werden, welche sich am besten fiir die Anpassung eig-
net und am wenigsten Probleme, wenn iiberhaupt, hervorruft. Wird festge-
stellt, dass jede Variante groe Konflikte hervorruft, muss unter Umstinden
eine neue Alternative mit den gegebenen Werten geplant werden, dhnlich
einer Planung ohne vorherige Planungsmdoglichkeiten

5.5.3 Konfliktpotential

Ein zusédtzlicher Punkt, welcher im Vorfeld betrachtet werden kann und
welcher die Auswahl der Alternativen unterstiitzen kann ist, die moglichen
Ziele und somit ihre Planungsmoglichkeiten im Vorfeld auf ihr Konfliktpo-
tential hin zu untersuchen. Die zu beantwortende Frage ist hier: Welche
Konflikte konnen bei den jeweiligen Zielen entstehen?.

138

Dabei muss in einem ersten Teil betrachtet werden, welches Konfliktpoten-
tial die Ziele untereinander besitzen kdnnen. Dies ist wichtig zu analysieren,
wenn in der spiateren Durchfiihrung von MAPE-K mehrere Anpassungen
gleichzeitig durchgefiihrt werden miissen. Ahnlich wie bei der Analyse der
Varianten in Bezug auf die Gesamt-SEM miissen die Ziele zueinander in
Beziehung gesetzt werden. Das heif3it, die Ziele miissen dahingehend be-
trachtet werden, ob sie in Konflikt zueinander stehen, was eher selten der
Fall sein sollte.

Zusitzlich miissen die erstellten Planungsmoglichkeiten und ihre Varianten
betrachtet werden, ob diese untereinander in Konflikt stehen, sollten sie
gleichzeitig zur Anwendung kommen. Eine Moglichkeit der Uberpriifung
wire ebenfalls die Anwendung von Simulationen sowie von der Verwen-
dung von Pattern und deren Analyse.

Anhand des Ergebnisses dieser Simulationsalgorithmen und Pattern-
Analyse ist es moglich die Konflikte zu identifizieren, aber auch um Lo6-
sungsmoglichkeiten fiir diese Konflikte bereits im Vorfeld zu finden. Ein
wichtiger Punkt sind dabei die Priorititen der Ziele. Stehen beispielsweise
zwel Ziele mit unterschiedlichen Prioritdten in Konflikt, so wird das Ziel
mit der h6heren Prioritit zuerst in Betracht gezogen und sticht das andere
Ziel unter anderem aus, sofern es keine Losung fiir diesen Konflikt gibt.
Allerdings sind vorher die Konsequenzen in Bezug auf die Gesamt-SEM zu
bewerten.

5.5.4 Kombinationsmaoglichkeiten

Fiir die Planung ist als letzter Punkt zu tiberlegen, wie Planungsmoglichkei-
ten und die daraus folgenden Anpassungen miteinander kombiniert werden
konnen. Da nicht jede Anpassung sofort sondern erst zu einem definierten
Zeitpunkt ausgefiihrt werden kann, ist es moglich, dass im MAPE-K mehre-
re Anpassungen aufgelaufen sind. Da diese zum Anpassungszeitpunkt nicht
alle direkt nacheinander in das Modell tiberfithrt werden sollen, muss eine
Kombination der aufgelaufenen Anpassungen erfolgen, um ein optimales
Ergebnis zu erzielen.

Um eine solche kombinierte Anpassung zu erstellen muss iiberlegt werden,
ob es bestimmte Kombinationspunkte innerhalb der Anpassungen gibt und
wie diese aussehen. Anzusetzen ist dabei an den beiden Punkten aus Ab-
schnitt 5.5.1 WO angepasst wird, WAS (welche Elemente) angepasst und
WIE (Art der Anpassung) angepasst werden kann.

Zu betrachten sind im ersten Schritt gleichartige Elemente, da diese zu ei-
nem neuen gleichartigen Element verschmolzen werden kdnnen. Sollen bei-
spielsweise zwei Rollen angepasst werden, muss zundchst untersucht wer-
den, ob sie an derselben Stelle angepasst werden. Ist dies der Fall, kann dies

139

zu einer gemeinsamen Rolle kombiniert werden. Sind die Rollen an ver-
schiedenen Stellen, werden sie in einem Anpassungsschritt angepasst, so-
fern sie nicht in Konflikt zueinander stehen. In einem zweiten Schritt wird
betrachtet, wie das Element angepasst wird, beispielsweise ob die Rolle hin-
zugefiigt oder ausgetauscht wird.

Schwierig wird es, wenn sich die Anpassung nicht ausschlielich auf ein
gleichartiges Element bezieht, sondern es sich um genau dasselbe Element
an derselben Stelle im Modell handelt, da die Anpassungen sehr wahr-
scheinlich in Konflikt zueinander stehen. Dann muss abgewogen werden,
welche von beiden Anpassungen den grofSiten Nutzen in der Einhaltung der
Ziele bringt, z.B. anhand der Prioritdten.

Die letzten drei Abschnitte Variantenbestimmung, Konfliktpotential und
Kombinationsmdglichkeiten haben verschiedene Punkte gezeigt, welche fiir
die spitere Planung einer Anpassung wichtig sind. Ebenso haben sie Her-
ausforderungen und erste Ideen zur Losung gezeigt. In dieser Arbeit soll
sich zu diesem Zeitpunkt darauf beschriankt werden, doch diese Punkte bie-
ten Potential fiir weitere Forschungsarbeiten.

5.6 Schritt 5 - Ableitung von Metriken

Schritt 5: Ableitung von Metriken

Aufgabe Aus den Analyseregeln werden entsprechende Met-
riken fiir die Messungen abgeleitet

Typ Ableiten
Sub-Typ: Metriken

Subschritte Aufbereitungsregeln herleiten

Input des Schrittes | Analyseregeln

Output des Schrit- | Metriken fiir die Messung, Aufbereitungsregeln fiir
tes Monitor

Maogliche Stake- Methoden-Engineer
holder

Nachdem im dritten Schritt die Regeln fiir die Analyse hergeleitet wurden,
ist es nun moglich, mit dieser Eingabe die Metriken fiir die Messungen mit
Hilfe der Sensoren herzuleiten. Die Metriken werden aus dem Wenn-Teil
der Regeln abgeleitet, da dieser Teil als Eingabe fiir die Auswertung der
Software-Engineering-Methode die entsprechenden Messwerte benotigt.

140

In diesem Schritt wird nun ermittelt, welche Messwerte notig sind, um die
entsprechende Analyseregel auswerten zu konnen. Dabei ist es moglich,
dass bei komplexen Regeln mehrere Messwerte notig sind, welche zu einem
Auswertungswert in der Monitor-Phase zusammengefasst werden. Somit
ergeben sich in einem zweiten Schritt die Aufbereitungsregeln fiir die spéte-
re Monitor-Phase. Zur Verdeutlichung einige Beispiele:

Beispiel 1: Fiir das Beispiel aus Schritt 3 wird in der Analyseregel die
Teamgrofle in Scrum ausgewertet. Gemessen werden dafiir die Anzahl
der Mitarbeiter in einem Scrum- oder Projektteam. Dies ergibt nun die
Metrik: Anzahl Mitarbeiter pro Team, was entsprechend gemessen wird.

Um aus diesem gemessenen Wert anschlieBend wieder den aufbereiteten
Wert fiir die Auswertung zu bekommen, wird die Herleitung praktisch
rickwérts angewandt. Es entsteht folgende Aufbereitungsregel fiir die
Monitor-Phase: Setze Teamgrofle = Anzahl Mitarbeiter pro Team.

Beispiel 2: In Schritt 3 wurde ebenfalls das Beispiel beziiglich der Nut-
zung von aktuellen Standards und Normen eingefiihrt. Es wurde be-
schrieben, dass es moglich sein muss, iiber einen Scan oder Datenbank-
eintrag die aktuelle Norm/den aktuellen Standard messen zu konnen. Ein
solcher Eintrag in der Datenbank wire damit die Metrik, welche fiir die-
se Auswertungsregel gemessen werden muss. Sie wiirde wie folgt lau-
ten: Datenbankeintrag Normen bzw. Datenbankeintrag Standard.

In der Aufbereitung wiirde der entsprechend ausgelesene Wert, in die-
sem Fall die Versionsnummer der Norm oder des Standards sowie das
Datum, auf den Wert ,,aktuelle Norm gesetzt™.

Beispiel 3: In einem komplexeren Beispiel soll die Zufriedenheit der
Kunden ausgewertet werden. Sobald diese einen bestimmten Grenzwert
unter- oder iiberschreitet, muss die Software-Engineering-Methode
iiberdacht werden. Die Kundenzufriedenheit kann dabei iiber die Anzahl
und Kiritikalitdt der Fehlermeldungen gemessen werden, welche die
Metrik ergeben. Die Messwerte an den Sensoren wéren damit zum einen
die Anzahl Fehlermeldungen und zum anderen die Kritikalitit der Feh-
lermeldung.

In der Aufbereitung wiirden diese beiden Werte miteinander kombiniert
werden. Nach der Aufbereitung wiren dann zum einen die Gesamtan-
zahl der Fehlermeldungen, z.B. 10, und zum anderen die zusitzliche
Aufschliisselung anhand der Fehlermeldungen bekannt: Gesamtzahl
Fehlermeldung = 10, davon 3 Blocker, 5 mittelkritische Fehler und 3
Schonheitsfehler.

141

5.7 Schritt 6 -Ableitung von Ausfiithrungsregeln und Be-
nachrichtigungen

Schritt 6: Ableitung von Ausfiihrungsregeln und Benachrichtigungen

Aufgabe Aus den Planungsmoglichkeiten werden Ausfiih-
rungsregeln und Benachrichtigungen abgeleitet
Typ Ableiten

Sub-Typ: Ausfithrungen + Benachrichtigungen

Subschritte 1. Ausfithrungsregeln ableiten
2. Benachrichtigungen ableiten

Input des Schrittes | Planungsmdglichkeiten + mdgliche Anpassungen

Output des Schrit- | Ausfiihrungsregeln + Benachrichtigungen
tes

Maogliche Stake- Methoden-Engineer
holder

Im letzten Schritt der Pre-Work miissen nun noch die Ausfithrungsregeln
und Benachrichtigungen bekannt sein, um am Ende in der Execute-Phase
die Software-Engineering-Methode letztendlich im laufenden Projekt anzu-
passen. Durch die Planungsmoglichkeiten und die verschiedenen Varianten
aus dem vorherigen Schritt ist nun bekannt, WAS an den jeweiligen Stellen
im Modell zum entsprechenden Ziel angepasst werden muss, z.B. ob eine
Rolle ausgetauscht, ein Artefakt hinzugefiigt oder geloscht werden muss
usw. Durch die Verantwortlichen und Beteiligten, welche den jeweiligen
Aktivititen etc. zugeordnet sind kann sofort ermittelt werden, wer alles be-
nachrichtig werden muss.

Die Ausfithrungsregeln geben im Detail an, wie die Anpassung der Soft-
ware-Engineering-Methode erfolgen soll. Die Anpassung erfolgt in der Aus-
fiihrungsphase in verschiedenen Schritten. Zunédchst wird das (allgemeine)
Modell der SEM, welches in der Wissensbasis liegt, auf Typ-Ebene ange-
passt. Dort werden entsprechend wie im vorherigen Abschnitt beschrieben,
Aktivitiaten etc. hinzugefiigt, geloscht ausgetauscht usw. Zusétzlich zu den
gednderten Aktivititen usw. miissen, falls notig, die entsprechenden Ver-
antwortlichen und/oder die Ausfiihrenden der Aktivitit gedndert werden.
Diese Anderung ergeben am Ende die Personen, welche benachrichtigt wer-
den miissen, egal ob sie eine neue Aktivitidt durchfiihren miissen oder ihre
alte gestrichen wurde. In einigen Féllen kann es sogar sein, dass eine Nach-
richt ans System geschickt werden muss, wenn sich eine automatische Akti-
vitdt etc. gedndert hat.

142

Die Regel selbst hat am Ende folgende Form:

1. Anpassung Modell (Aktion x Element m (Name)), Aktion y Element
n (Name), ...); wobei Aktion = loschen, hinzufiigen, austauschen
etc. ist und Element = Artefakt (Name Artefakt), Aktivitit (Name
Aktivitét), Rolle (Name Rolle) usw. ist

2. Anderung Stakeholder (Stakeholder x, Element m (Name), Aktion
t); wobei Stakeholder die entsprechende Rolle und somit Person im
Team angibt, Element wie im vorherigen Schritt das zugehdrige
Element (Aktivitit, Artefakt) angibt und die Aktion definiert, ob die
Person geloscht oder hinzugefiigt wird

3. Benachrichtigung Beteiligte (Beteiligter x, Anderung m); wobei der
Beteiligte die konkrete Person auf Instanz-Ebene ist, an welche die
Nachricht geht, mit der Anderung m, welche neue Aufgabe sie nun
durchfithren muss.

Wenn wir dies wieder auf unser einfaches Beispiel mit der TeamgrofBe be-
ziehen, wiirde bei einem zu grolen Team die Planungsmoglichkeit besagen,
dass ein Team-Splitting erfolgen soll und ein Scrum of Scrum durchgefiihrt
werden muss. Fiir die Ausfithrungsregel besagt dies, dass es zwei neue Rol-
len und somit zwei Teams gibt, welche dem Artefakt Product Backlog zu-
geordnet werden. Bei einer neuen Teamgrofle von beispielsweise 10 Perso-
nen wiirde dies zwei Teams mit jeweils 5 Personen ergeben. Die Teams
werden nach Skills aufgeteilt und die Aufgaben im Product Backlog ent-
sprechend zugeordnet.

Zusétzlich gibt es die neue Aktivitdt Scrum of Scrums, welche nach dem
sogenannten Daily Scrum mit eingefiigt wird, die Dauer von 15 Minuten hat
und als Verantwortliche dieser Aktivitit jeweils der Scrum Master und 1-2
Mitglieder der beiden Teams zugeordnet werden. Die jeweiligen Teammit-
glieder werden tiber die Aktivitidt und die neue Zuordnung informiert. Die
Daten werden vorher entsprechend in das Modell in der Wissensbasis ge-
schrieben. Die Ausfiihrungsregel wiirde dann ungeféhr so aussehen:

1. Anpassung Model (Hinzufiigen Team 2, Andern Team 1 (Anzahl
Personen), Hinzufiigen Meeting (Scrum of Scrums, nach Daily
Scrum), Andern Product Backlog (neue Zuordnung Aufgaben)

2. Anderung Stakeholder (Teammitglied 1, Rolle (Team 1), hinzufiigen
(fir alle Teammitglieder durchfiihren); Scrum Master, Meeting
(Scrum of Scrums), Hinzufiigen, Teammitglied 1-2 (Team 1), Mee-
ting (Scrum of Scrums), Hinzufligen; usw.

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivitit (Scrum
of Scrums), Teammitglieder 1 — 10, (neue Aktivitdt, neue Teamzu-
ordnung, neue Aufgaben Product Backlog)

143

Aufgrund dieser Regeln ist es dann in der Execute-Phase moglich, mit Hilfe
der Effektoren die Anpassung in das laufende Projekt zu {ibertragen.

5.8 Moglichkeiten zur Wiederverwendung der Pre-Work
— Ableitungsblock

Die Pre-Work ist zu Beginn relativ aufwendig und benétigt zum einen meh-
rere Personen, insbesondere zur Bestimmung und Priorisierung der Ziele.
Zum anderen braucht es einen erfahrenen Methoden-Engineer oder zumin-
dest eine Person mit ausreichend Erfahrung, um aus den priorisierten Zielen
die Regeln, Metriken, besonders aber auch die Planungsmoglichkeiten usw.
abzuleiten. Auch wenn die Arbeit einiges an Zeit in Anspruch nehmen kann,
bevor das Projekt beginnt, so wird bei der Durchfithrung des MAPE-K im
Projekt selbst entsprechend Zeit wieder gespart. Gerade dann ist im Projekt
die Zeit ein kritischer Faktor und es muss moglichst schnell sowie selbst-
adaptiv gehandelt werden. Dies ermoglichen die durchgefiihrten Schritte in
der Pre-Work.

Eine weitere Frage ist aber, wie die erfolgte Arbeit fiir spétere Projekte ge-
nutzt werden kann. Es wire sehr niitzlich, wenn die Schritte aus der Pre-
Work in neuen, vielleicht dhnlichen Projekten, nicht vollstindig wiederholt
werden miissen, sondern erfolgte Schritte zum Beispiel in der Wissensbasis
gespeichert und, mit eventuellen Anpassungen, wiederverwendet werden
konnen.

Die Idee ist hier, einen Block zu entwickeln, welcher in der Wissensbasis
fiir zukiinftige Projekte gespeichert werden kann und zu einem beschriebe-
nen Ziel die entsprechenden Regeln, Planungsmoglichkeiten, Metriken so-
wie Ausfiihrungsregeln enthélt. Zusatzlich muss es moglich sein, das Ziel
und somit den Block priorisieren zu konnen, denn die Prioritéten fiir ein Ziel
sind nicht in jedem Projekt gleich. Ferner muss der Block Konfigurations-
punkte im Ziel-Teil enthalten, um beispielsweise die Toleranzbereiche an-
passen zu konnen.

Die Herleitung bzw. der Aufbau eines solchen ,,Wiederverwendungs-
blockes* konnte wie in Abbildung 41 beschrieben aussehen. Dabei wird
wieder das Beispiel von vorher beziiglich der Teamgrofle in Scrum genutzt.
Die Software-Engineering-Methode ist im ersten Schritt mit ihren Regeln,
Verhaltensbeschreibungen, Workflow usw. gegeben, am besten aufbereitet
in der Form ,,.Beschreibung A, Beschreibung B, Beschreibung C*“ usw.

144

SEM: Scrum

.................. Konfigurationspunkt:

| _B_e_s_c_h_r_eilggr_‘l_g_A_ s ¢ Team gréBer oder
Beschreibung B = Kleiner
------------------ Ziel: Scrum Andere Prio

Beschesibung C Beschreibung A:

TeamgrofBe = 3<=
Anzahl Personen

<= 9 Weitere
Beschreibungen l
Prio: n PM: Scrum
TeamgroRe
Regel: Scrum < V1: Team zu klein
TeamgroRe + V2:Team zugroB
Wenn<3DannVl "~ ,~” Konfliktpotential:
Wenn >9 Dann V2 \‘ e Xy
N ',' Kombi(regeln): wz
Wi SEM:Scrum ’
X % »Block fir KB” g’
oo Regel | pm ™
P2 Metrik | AB o
- ~
Metrik: Scrum ,”’ ‘\\ AB: Scrum
TeamgroRe L’ . TeamgroRe
Metrik: # Personen N AnpassungVi
pro Team Anpassung V2

Benachrichtigungen

Abbildung 41Ableitungen der einzelnen Punkte und Zusammenfassung zu einem Block fiir die
Wissensbasis

Aus diesen Beschreibungen lassen sich einfach die Ziele ableiten. Die je-
weilige Beschreibung gibt in aufbereiteter (Kurz-) Form das entsprechende
Ziel an, mit dem Zusatz, welche Software-Engineering-Methode genutzt
wird. Im Beispiel wiirde dies fiir das Ziel lauten:

e Ziel genutzte SEM: Scrum (Original)

e Beschreibung A: 3 <= Teamgrofle <=9

e Priorisierung: n

e Weitere Beschreibungen konnen, falls nétig, im Block ent-
halten sein

Dies wire der erste Eintrag im Wiederverwendungsblock. Die Prioritét stellt
dabei einer der moglichen Konfigurationspunkte dar. Ein weiterer Konfigu-
rationspunkt wére in diesem Beispiel die Teamgrofe. Sie konnte auf maxi-
mal 10 Personen oder auch das Minimum konnte auf 4 Personen erhdht
werden.

Die daraus resultierenden Planungsmoglichkeiten auf der rechten Seite ent-
halten im Block unter dem Abschnitt PM, wie oben in Schritt 4 beschrieben,
die verschiedenen Varianten zur Anpassung fiir dieses Ziel. Zusitzlich sind
dort das mogliche Konfliktpotential beschrieben, sowie Kombinationspunk-
te, wo andere Bausteine beispielsweise ansetzen konnen, um sie miteinander
zu verkniipfen oder sogar zu vermischen.

145

Aus den Varianten konnen fiir den Block wie in Schritt 6 beschrieben die
entsprechenden Ausfiihrungsgsregeln und Benachrichtigungen, welche bei
diesem Ziel nétig wiren, im Block unter dem Abschnitt AB gespeichert
werden.

Ahnlich lassen sich die Abschnitte Regel und Metrik im Block von der lin-
ken Seite herleiten. Unter Regel sind die hergeleiteten Regeln beschrieben,
welche sich aus den Toleranzbereichen und Varianten wie unter Schritt 3
beschrieben zusammensetzen. Die daraus resultierenden Metriken werden in
einem weiteren Abschnitt festgehalten.

Wird nun ein weiteres Projekt aufgesetzt, welches ebenfalls die Software-
Engineering-Methode Scrum nutzen soll, kann der Block ,,Scrum, Team-
groBe* wiederverwendet werden und die Pre-Work muss nicht neu hergelei-
tet werden. Uber die moglichen Konfigurationspunkte kénnen die Unterab-
schnitte automatisch angepasst werden. Wird beispielsweise der Toleranz-
bereich um eine Person erhoht, werden die Regeln links entsprechend ange-
passt (Wenn <4 dann V1, Wenn >10 dann V2). Die restlichen Abschnitte
bleiben in diesem Fall gleich und miissen nicht mehr angepasst werden.

In diesem Kapitel wurde die Pre-Work im Detail beschrieben, welche die
ersten sechs Schritte des Ablaufes aus Kapitel 4 enthilt. Dabei wurde zu-
sitzlich erldutert, wie sich mit Hilfe einer GQM-Variante die Schritte 3-6
aus den priorisierten Zielen herleiten lassen. Abgeschlossen wurde das Ka-
pitel mit der Idee fiir die Erstellung eines Blockes pro Ziel zur Wiederver-
wendung fiir weitere Projekte. Diese Blocke lassen sich mit Konfigurations-
punkten fiir die Bediirfnisse eines neuen Projektes anpassen.

Im néchsten Kapitel werden die Schritte 7-10 im Detail beschrieben, wie die
Schritte im MAPE-K aufgebaut sind und ablaufen.

146

Kapitel 6 MAPE-K

(" Aus Kapitel 4:
MAPE-K4SEM

Framework & Schritt-Typen W
_A.nschluss an Kapitel 5 J

Abschnitt 6.6: Automatisierungen |

Weiter Kapitel 7:

> g an einem
praxisnahen Beispiel

Abbildung 42 Aufbau von Kapitel 6

Nachdem in Kapitel 5 die Pre-Work im Detail vorgestellt wurde, werden in
diesem Kapitel die folgenden Schritte 7-10, die Phasen und Durchfiihrung
des MAPE-K im Detail erldutert. Das Kapitel beginnt mit der Wissensbasis
— der Knowledge Base — im MAPE-K. Dies ist ein essentieller Baustein,
welcher alle wichtigen Elemente zur Durchfiihrung der Feedbackschleife
enthdlt. Nach der Beschreibung der Knowledge Base werden die weiteren
Schritte und somit die einzelnen Phasen im Detail erldutert, beginnend mit
Schritt 7, dem Messen der Werte und deren Aufbereitung, was sowohl die
Sensoren als auch die Monitor-Phase widerspiegelt. Darauf aufbauend wer-
den in Schritt 8 in der Analyse-Phase die Werte analysiert und bewertet, ob
eine Software-Engineering-Methode entsprechend angepasst werden muss.
Daran kniipft die Beschreibung des Schrittes 9 an, mit der Planung der An-
passung und Beschreibung des Anpassungszeitpunktes. Im néichsten Ab-
schnitt werden der letzte Schritt und die Phase Execute beschrieben, in wel-
cher die Anpassung ausgefiihrt wird. Dieses Kapitel schlieft mit der Be-
schreibung von Moglichkeiten zur Automatisierung des vorgestellten An-
satzes.

147

6.1 Der Spezial-Baustein im SE Method Manager - die

Knowledge Base

Die Wissensbasis, englisch Knowledge Base (KB) selbst gehort nicht zur
eigentlichen Feedbackschleife des MAPE-K und ist kein eigener Schritt im
MAPE-K4SEM. Dennoch ist dieser Baustein essentiell fiir das Gelingen des
MAPE-K und ebenfalls fiir das Gelingen des hier entwickelten Ansatzes.
Denn in der Wissensbasis werden alle nétigen Daten gespeichert, sowohl
aus der Pre-Work als auch wihrend der Ausfiihrung. Wahrend der Durch-
fiihrung der einzelnen Phasen bzw. der Schritte 7-10, interagiert jeder ein-
zelne Schritt mit der Knowledge Base, indem er Daten von dort abruft oder
wieder dort abspeichert.

Abbildung 43 Inhalte der Knowledge Base

Die nétigen Inhalte, die fiir den SE Method Manager und den Ablauf der
zehn Schritte gespeichert sind, sind in Abbildung 43 dargestellt. Dabei han-
delt sich um:

e Die priorisierten Ziele aus Schritt 1 & Schritt 2
e Die abgeleiteten Werte aus den Schritten 3-6
0 Regeln fiir die Analyse
0 Abgeleitete Metriken fiir die Sensoren und die Monitor-
Phase
0 Die Planungsmoglichkeiten
0 Die Ausfiihrungs- und Benachrichtigungsregeln
e Die gemessenen Werte
e Aufbereitungsregeln zur Autbereitung der gemessenen Werte
e Die aufbereiteten Werte
e Der Anpassungszeitpunkt (AZ)

148

e Das Modell der Software-Engineering-Methode, sowohl in seiner
Ursprungsform als auch das aktuelle instanziierte Modell und das
angepasste Modell

¢ Eine Methoden-Basis mit entsprechenden Methoden-Bausteinen

e FEine Historie iiber die Werte und dabei vor allem iiber die Anpas-
sung

Einzelne Elemente werden in verschiedenen Abschnitten des MAPE-
K4SEM erarbeitet, gespeichert und fiir die weitere Verwendung wieder ab-
gerufen. Es ist allerdings die Voraussetzung, dass das Ursprungsmodell der
Software-Engineering-Methode bereits festgelegt wurde. Dabei ist es egal,
ob es sich um eine klassische SEM, eine agile SEM, eine situationsspezifi-
sche SEM oder eine SEM, die fiir das Projekt zugeschnitten wurde, handelt.

Wichtig ist, dass die Software-Engineering-Methode als ein Modell vorliegt.
Die Modellierung kann beispielsweise anhand der in Abschnitt 2.1.2 vorge-
stellten Techniken wie SPEM, ISO 24744, MeteME oder einer vereinfach-
ten Form dieser Techniken erfolgen. Das Modell der Software-Engineering-
Methode ist fiir die Anpassung wichtig, damit klar ist, an welchen Stellen
im Modell die Anpassung der einzelnen Elemente, wie hinzufiigen oder
16schen, erfolgen kann. AuBBerdem sind anhand des modellierten Workflows
die Abhingigkeiten zwischen den einzelnen Elementen ersichtlich.

Anhand der aktuellen Instanz der Software-Engineering-Methode ist klar, in
welcher Auspragung sich das Projekt aktuell befindet. Dies ist ebenfalls
wichtig fiir die aktuelle Messung und Auswertung der einzelnen Messwerte.
Die Auswertung der Messwerte beziiglich einer Anpassung kann beispiels-
weise an einem bestimmten Punkt (Planning-Meeting in Scrum oder De-
sign-Phase in RUP) in der Software-Engineering-Methode anders ausfallen
als zu einem fritheren oder spéteren Punkt (Review-Meeting in Scrum oder
Test-Phase in RUP).

AbschlieBend ist das angepasste Modell der Software-Engineering-Methode
wichtig, welche nach der Anpassung in das Projekt iibertragen wird. Durch
die Ubertragung in das Projekt wird die angepasste Software-Engineering-
Methode zu der aktuellen Instanz der SEM im Projekt. Diese Transformati-
on erfolgt in der Execute-Phase.

Neben den Modellen und insbesondere dem Ursprungsmodell ist zu Beginn
die Methoden-Basis gegeben. In dieser werden alle Elemente (Bausteine)
gespeichert, die bei einer Anpassung und hier besonders in der Planung be-
notigt werden konnen. Das konnen Elemente von einzelnen Artefakten iiber
Aktivititen, Rollen bis hin zu (Teil-)Workflows sein.

149

Dabei ist es notig zu wissen, welchen Typ sie besitzen, zu welchem Punkt
sie in einer Software-Engineering-Methode eingesetzt werden konnen oder
was ihre Aufgabe ist. Ebenso muss bekannt sein, ob Verantwortlichkeiten
bendtigt werden, ob diese Elemente einen Input erfordern oder ob sie einen
Output fiir andere Elemente erzeugen. Diese Punkte miissen in den Elemen-
ten gespeichert sein. Fiir eine solche gespeicherte Ubersicht kann beispiels-
weise eine angepasste Form des in Abschnitt 4.3.2 vorgestellten Frame-
works genutzt werden. Die Methoden-Basis ist dabei nicht in sich abge-
schlossen, sondern kann kontinuierlich erweitert und in anderen Projekten
verwendet werden.

Neben diesen Inhalten der Wissensbasis, welche teils zu Beginn vorhanden
sein miissen, werden in ihr ebenfalls die erarbeiteten Ergebnisse aus den
ersten 6 Schritten abgelegt. Dies umfasst zundchst einmal die Ziele und Ei-
genschaften der Software-Engineering-Methode, welche in Schritt 1 defi-
niert und Schritt 2 entsprechend priorisiert wurden.

Wichtig fiir die ndchsten 4 Schritte sind die aus den Zielen abgeleiteten
Analyseregeln, die daraus abgeleiteten Metriken, die Planungsmoglichkei-
ten sowie die Ausfiihrungsregeln und Benachrichtigungen. Des Weiteren
sind die in unter Schritt 5 erarbeiteten Varianten, Konfliktpotentiale beziig-
lich der einzelnen Ziele sowie deren Kombinationspunkte bekannt.

Dabei werden die Metriken in Schritt 7 verwendet. Es ist mit ihrer Hilfe
moglich, iiber die Sensoren die erforderlichen Daten entsprechend zu mes-
sen. Die Analyseregeln in Schritt 8 fiir die Analyse und Auswertung der
gemessenen Werte benétigt. Die Planungsmoglichkeiten sind ebenso wie
die Konfliktpotentiale und Kombinationsmoglichkeiten fiir Schritt 9 wich-
tig. Abschliefend werden die Benachrichtigungs- und Ausfithrungsregeln in
Schritt 10 fiir die Durchfithrung der Anpassung gebraucht.

Fiir die Analysephase sind die aufbereiteten Werte wichtig, denn diese wer-
den fiir die Analyseregeln verwendet. Die von den Sensoren und mit Hilfe
der Metriken gemessenen Werte werden entsprechend ihrer Aufbereitungs-
regeln fiir die weitere Verwendung aufbereitet. Die Aufbereitungsregeln
werden neben den Metriken in Schritt 5 hergeleitet und in der Wissensbasis
abgespeichert.

Des Weiteren ist in der Wissensbasis der Anpassungszeitpunkt festgelegt
und abgespeichert. Dieser ist notig fiir die spatere Ausfithrung der Anpas-
sung, wann diese im Endeffekt durchgefiihrt wird. Der Anpassungszeitpunkt
und seine Bedeutung werden in Abschnitt 6.4 noch niher erldutert.

AbschlieBend wird in der Wissensbasis eine Historie der verschiedenen An-
passungen gespeichert. Diese ist wichtig fiir die Nachverfolgung der einzel-

150

nen Anpassungen, um zu sehen, wie wirksam die einzelnen Anpassungen
waren oder ob eine Anpassung wieder riickgéngig gemacht wurde. Ferner
kann diese Historie interessant sein, wenn die Erfahrung aus dem gemachten
Projekt fiir die Wiederverwendung iibertragen werden soll. Anhand der His-
torie konnen die Anpassungen, welche in bestimmten Situationen durchge-
fiihrt wurden, erfasst und als Erfahrung fiir ein kommendes Projekt mit &hn-
lichem Kontext und &hnlicher Software-Engineering-Methode verwendet
werden. So konnen beispielsweise mdgliche Situationen vorhergesehen und
ndtige Anpassungen eventuell vermieden werden.

Die Wissensbasis kann als eine Datenbank umgesetzt werden. Wichtig ist
dabei zu beachten, welcher Schritt oder welche Phase wihrend des MAPE
welche Schreib- und Leserechte besitzt. Die ersten sechs Schritte haben da-
bei Leserechte fiir das Element ,,Modell*, da dieses flir die Herleitung der
einzelnen Schritte, insbesondere der Anfangsschritte benotigt wird. Zusitz-
lich haben Schritt 1 und 2 Schreibrechte fiir das Element ,,priorisierte Zie-
le*, sowie Schritt 3-6 Schreibrechte fiir die Elemente die jeweils zu ihrem
Schritt korrespondieren.

Die Sensoren aus Schritt 6 bekommen Schreibrechte fiir das Element ,,ge-
messene Werte*, da die Sensoren die Werte dort entsprechend ihrer Mes-
sung hinterlegen. Ebenso bekommt anschlieend die Monitor-Phase Leser-
echte auf dieses Element, auf das Element , Aufbereitungsregeln®, sowie
Schreibrechte fiir das Element ,,aufbereitete Werte*, wo das Ergebnis der
Aufbereitung abgespeichert wird. Schritt 8 hat Leserechte beziiglich der
Analyseregeln.

Schritt 9 hat fiir die Planung Leserechte auf das Element der Planungsmog-
lichkeiten, sowie auf den Anpassungszeitpunkt. Die Schreibrechte fiir das
angepasste Modell der Software-Engineering-Methode erhilt erst Schritt 10,
da in der Execute-Phase das Modell in die Wissensbasis geschrieben und die
Anpassung iiber die Effektoren in das Projekt zuriickiibertragen wird. Dafiir
hat Schritt 10 zuséatzlich Leserechte auf die Ausfiihrungsregeln und Benach-
richtigungen.

Wie die genaue Durchfiihrung der einzelnen Schritte der MAPE-
Feedbackschleife mit Hilfe dieser Werte und Elemente der Wissensbasis

aussieht, wird in den folgenden Abschnitten beschrieben.

151

6.2 Schritt 7 - Werte messen und aufbereiten

Schritt 7: Werte anhand der Metriken messen und aufbereiten

Aufgabe Die Werte/ Metriken der SEM werden gemessen und
fiir die Speicherung in der Knowledge Base und die
anschlieende Analyse aufbereitet

Typ Messen + Erstellen

Subschritte 1. Werte messen
2. Werte aufbereiten

Input des Schrittes | Metriken, gemessene Werte durch die Sensoren

Output des Schrit- | Aufbereitete Messwerte
tes

Maogliche Stake- System (Monitor-Phase, Wissensbasis)
holder

Nachdem die Pre-Work abgeschlossen und die Wissensbasis mit den ver-
schiedenen Inhalten (Elemente aus der Pre-Work, Modell der SEM, Aufbe-
reitungsregeln usw.) gefiillt wurde, kann die eigentliche Durchfiihrung des
Projektes und somit des MAPE-K beginnen. Die Managed SE-Methode,
welche nun durch den MAPE-K iiberpriift wird, ist durch die aktuelle In-
stanz der Software-Engineering-Methode bereits festgelegt. Die entspre-
chenden Inhalte, wie Rollen und die konkreten Personen, die ersten auszu-
fuhrenden Aktivititen, die zu erstellenden Dokumente etc. sind auf die Aus-
gangswerte gesetzt. Die Durchfithrung der Feedbackschleife beginnt mit
Schritt 7 zum Start des Projektes.

6.2.1 Messen anhand von Sensoren

Bevor die eigentliche Monitor-Phase startet, miissen zunéchst die zu be-
obachtenden Werte mit Hilfe der Sensoren gemessen werden. Die Sensoren
ergeben sich aus den in Schritt 5 abgeleiteten Metriken. Die Metriken miis-
sen dafiir entsprechend in Sensoren umgewandelt werden. Das heif}t, es gilt
im Vorfeld festzulegen, wie und in welcher Form die Metrik gemessen wird.
Dafiir kann es moglicherweise mehrere Arten geben, die bei gleichem Er-
gebnis einen unterschiedlichen Aufwand erzeugen.

Die Sensoren iiberpriifen in den meisten Féllen Eintrdge in verschiedenen
Artefakten, sowohl im eigentlichen Projekt als mdglicherweise auch im ge-
samten Unternehmen oder der Umgebung. Zu der Umgebung konnen je
nach Metrik auch spezielle Eintrdger in einer Internetdatenbank oder auf
einer Webseite sein. Des Weiteren kann es spezielle Umgebungssensoren
geben, die beispielsweise messen, ob es zusétzliche Anweisungen von der

152

Unternehmensleitung, dem Projektleiter oder dhnliches gibt. Diese Anwei-
sungen werden in eine Liste bzw. Datenbank geschrieben oder aus E-Mails
mit einem entsprechenden Schlagwort in der Betreffzeile ausgelesen.

Zu Beginn des Projektes sind alle Sensoren mit den Initialwerten versehen.
Sobald eine Anderung an den Werten vorgenommen wird, registriert der
Sensor dies, er misst den entsprechenden Wert und gibt diesen an die Moni-
tor-Phase weiter. Fiir ein kurzes Beispiel zur Verdeutlichung wird wieder
die Teamgrofe aus Scrum verwendet.

Die Metrik, die sich fiir die Teamgrof3e in Schritt 5 ergab, war die Anzahl
der Personen pro Team. Die Teammitglieder sind in diesem Beispiel in ei-
ner Liste eingetragen. Dies kann einerseits eine Liste mit den Namen der
Personen sein, welche in einem Team sind. Oder es gibt im Unternehmen
eine vollstidndige Personenliste, in der es fiir jede Person einen Eintrag gibt,
welchem Team sie zugeteilt ist.

Der Sensor fiir Fall 1 iiberpriift die Teamliste und registriert eine Anderung
in der Liste. Der Sensor misst die Zahl der Personen, indem er in der Liste
die Personen zdhlt und das Ergebnis an die Monitor-Phase weitergibt. Im
zweiten Fall liberpriift der Sensor die Spalte Team in der gesamten Perso-
nenliste des Unternehmens und registriert, wenn sich an dieser Spalte etwas
andert. Dann z&hlt er die Personen fiir das Projektteam und gibt diese wiede-
rum an die Monitor-Phase zur Aufbereitung weiter. Hier muss in der gesam-
ten Personenliste jeweils liberpriift werden, ob eine Person zum aktuellen
Projektteam gehort oder nicht. Dadurch wire der zweite Fall aufwendiger.

In einem anderen Beispiel besagt eine Metrik, dass die aktuelle Norm oder
ein aktueller Standard beispielsweise fiir das Testen benutzt werden soll.
Dafiir ist in einem Wert festgelegt, welche aktuelle Norm im Projekt genutzt
wird (aktuelleNorm_ Projekt). Der Sensor iiberpriift zum Beispiel auf der
Webseite der Norm téglich, welche Norm aktuell ist. Dies kann beispiels-
weise liber das Auslesen der Versionsnummer erfolgen. Die Nummer wird
gemessen und in der Wissensbasis nach der Aufbereitung fiir die Analyse
abgespeichert.

Sind die Sensoren mit Hilfe der Metriken alle festgelegt, kann das Messen,
Beobachten und Aufbereiten beginnen.

6.2.2 Die Monitor-Phase - Werte aufbereiten

Nachdem die Sensoren die verschiedenen Werte gemessen haben, miissen
diese fiir die weitere Analyse aufbereitet werden. Dies erfolgt mit der Hilfe
von in Schritt 5 hergeleiteten Aufbereitungsregeln. Diese Regeln enthalten
einen oder mehrere gemessene Werte, welche fiir den Analysewert zusam-
mengefasst werden. Im einfachsten Fall ist der Messwert gleich dem Analy-

153

sewert. Ist der Fall komplexer, miissen die Werte entsprechend miteinander
kombiniert werden. Die aufbereiteten Werte werden anschlieBend in die
Wissensbasis geschrieben. Bevor der Wert in die Wissensbasis geschrieben
wird, wird er mit dem aktuellen Wert in der Wissensbasis verglichen. Ist der
Wert gleich, wird der Wert nicht neu gespeichert. Sind der aktuelle und der
neue Wert nicht gleich, wird der neue Wert in die Wissensbasis geschrieben.

Fiir eine Verdeutlichung werden die Beispiele aus Schritt 5 erneut aufgegrif-
fen. Im Beispiel der TeamgrofBe ist die Aufbereitung des Wertes relativ ein-
fach. Die Teamgrofle wird gleich dem Messwert, also die Anzahl der Perso-
nen, gesetzt. Ist der Wert anders als der vorherige Wert, so wird der neue
Wert in die Wissensbasis geschrieben und die Analyse-Phase wird gestartet,
da sich das Team vergroBert oder verkleinert hat.

In Schritt 5 wurde ebenfalls das komplexere Beispiel vorgestellt, die Kun-
denzufriedenheit zu beobachten. Fillt die Kundenzufriedenheit unter einen
bestimmten Schwellenwert, das heiflt der Kunde ist unzufrieden, muss etwas
gedndert werden. Die Metriken fiir die Kundenzufriedenheit waren zum
einen die Anzahl der Fehlermeldungen, die der Kunde in eine Liste einstellt
oder die von Mitarbeitern eingestellt werden mit dem Vermerk ,,Fehler
Kunde* sowie die Kritikalitit dieser Fehlermeldungen. Die Kritikalitdt steht
als Eintrag in den Fehlermeldungen, es muss dafiir nur jeweils dieses Feld
ausgelesen werden.

Um die Kundenzufriedenheit auswerten zu konnen, soll die Gesamtzahl der
Fehlermeldungen der Kunden und die Aufschliisselung anhand der Kritika-
litdt bekannt sein. Dafiir werden, sobald eine neue Fehlermeldung eingestellt
wurde, alle Kunden-Fehlermeldungen aufaddiert. Zusétzlich wird die jewei-
lige Kritikalitit ausgelesen und entsprechend der jeweiligen Kritikalitdt auf-
addiert. Diese Werte werden in der Aufbereitung miteinander kombiniert,
mit dem Eintrag in der Wissensbasis verglichen und gegebenenfalls wird
der Wert neu in die Wissensbasis geschrieben. Ein solcher aufbereiteter Ein-
trag konnte bei der gemessenen Anzahl von 10 Fehlermeldungen folgen-
dermaBen aussehen: Gesamtzahl Fehlermeldung=10, davon Blocker=3, mit-
telkritische Fehler=5, Schonheitsfehler=3. In der Analyse-Phase wird an-
schlieBend tiberpriift, ob etwas gedndert werden muss oder nicht.

Durch die Kombination aus ,,Messung mit Hilfe der Sensoren* und ,,Aufbe-
reitung dieser Werte fiir die Analyse-Phase” wird der aktuelle Status der
Software-Engineering-Methode auf der Instanz-Ebene kontinuierlich erfasst
und iiberwacht. Das Messen und Aufbereiten der Werte wird dabei vollstén-
dig vom System iibernommen.

154

6.3 Schritt 8 - Werte analysieren und bewerten

Schritt 8: Werte analysieren und bewerten

Aufgabe Die gemessenen Werte werden analysiert; als Ergeb-
nis kommt heraus, ob die SEM angepasst werden
muss oder nicht

Typ Analysieren
Subschritte 1. Werte analysieren => Auswertung des Wenn-
Teils
2. Anpassung ja/ nein => Ausfiihrung des Dann-
Teils

Input des Schrittes | Aufbereitete Messwerte; Analyseregeln

Output des Schrit- | Anpassung ja/ nein + Aktion; evtl. Analysedokument

tes
Maogliche Stake- System (Analyse-Phase), evtl. Methoden-Engineer
holder und/ oder Projektleiter zur Freigabe der Anpassung

In Schritt 7 wurden die gemessenen Werte gemél ihrer Aufbereitungsregeln
aufbereitet und in die Wissensbasis geschrieben. Damit sind die Werte nutz-
bar fiir die Analyse, welche durch das Schreiben in die Wissensbasis ange-
triggert wurde. Die Auswertung der Werte erfolgt mit Hilfe der in Schritt 3
abgeleiteten Analyseregeln und am Ende wird entschieden, ob eine Anpas-
sung erfolgt oder nicht.

6.3.1 Die Analyse-Phase

Von der Monitor-Phase bekommt die Analyse-Phase {iber einen Trigger
Bescheid, dass sich ein bestimmter Wert gedndert hat und aufbereitet wurde.
Dieser Wert wird entsprechend aus der Wissensbasis ausgelesen und in der
Analyseregel verwendet. Die Analyseregel wurde wie in Schritt 3 beschrie-
ben hergeleitet und ist ebenfalls in der Wissensbasis gespeichert.

Die Regel bestand dabei aus zwei Teilen, einem Wenn-Teil und einem
Dann-Teil. Fiir die Auswertung ist vor allem der Wenn-Teil wichtig, wo-
hingegen der Dann-Teil angibt, welche Aktion als nichstes ausgefiihrt wer-
den soll. Fiir die Analyseregeln gibt es wie in Abschnitt 5.4 beschrieben die
drei folgenden Formen:

1. Wenn ,,Angabe/ Ziel nicht erfiillt” dann ,,Planungsmdglich-
keit mit Werten aus Monitor

155

2. Wenn ,,Angabe/ Ziel nicht erfiillt” dann ,,Neue Planung mit
Werten aus Monitor + Ziel*

3. Wenn ,,Angabe/ Ziel erfiillt” dann Schritt 7 (Monitor-Phase)

Durch die Regel ist bekannt, in welchen Grenzen der aufbereitete Wert lie-
gen muss. Ist er innerhalb dieser Grenze, ist das Ergebnis der Bewertung,
dass die Software-Engineering-Methode nicht angepasst werden muss. Die
MAPE-K-Feedbackschleife wird an dieser Stelle fiir den gemessenen Wert
und das entsprechende Ziel abgebrochen und beginnt wieder bei Schritt 7,
den Sensoren und der Monitor-Phase, da das Ziel weiterhin erfiillt wird.

Liegt der Wert nicht innerhalb der Grenzen oder unter- bzw. iiberschreitet er
einen bestimmten Schwellenwert, so ist das Ergebnis, dass die Software-
Engineering-Methode angepasst werden muss. Dabei kénnen zwei Félle
auftreten: Zum einen sind bereits Planungsmoglichkeiten und die entspre-
chenden Varianten bekannt und die Plan-Phase kann mit den aufbereiteten
Werten gestartet werden. Zum anderen kann es aber in einigen Fillen
durchaus vorkommen, dass Planungsmoéglichkeiten noch nicht vorhanden
sind. Da bekannt ist, dass mit den aktuellen Werten mindestens ein Ziel
nicht erfiillt werden kann, wird die Plan-Phase gestartet, mit den Werten aus
der Monitor-Phase und dem Ziel, welches es zu erfiillen gilt. Je nach Ziel
konnen zusitzliche Informationen bendtigt werden. Diese werden fiir die
Plan-Phase entsprechend ausgelesen und gespeichert.

Zur Verdeutlichung der verschiedenen Fille werden hier noch einmal die
Beispiele aus Abschnitt 5.4 herangezogen und erldutert. Fiir den Fall der
Teamgrofle in Scrum gibt es zwei Mdglichkeiten zur Auswertung. Zum ei-
nen, ob das Team zu groB ist und gesplittet werden muss. Zum anderen, ob
das Team zu klein ist und eine oder mehrere Personen zum Team hinzuge-
fiigt werden muss/miissen. Bewegt sich das Team innerhalb der gesetzten
Grenzen, erfolgt keine Anpassung.

Bekommt die Analyse-Phase nun einen neuen Wert fiir die Teamgrofle ge-
liefert, wird zunéchst tiberpriift, ob die GroBe innerhalb der Grenzwerte
liegt, hier im Beispiel sind dafiir die Grenzen 3 und 9 nach der urspriingli-
chen Scrum-Beschreibung gewéhlt. Liegt der Wert innerhalb dieser Gren-
zen, wird zuriick zu Schritt 7 gegangen. Liegt der Wert auBBerhalb der Gren-
zen, das heifit die Regel liefert ein ,,false” zuriick, dann wird im néchsten
Schritt tiberpriift, ob das Team zu groB ist. Liefert die Regel ,,true®, wird die
Plan-Phase mit der entsprechenden Planungsmoglichkeit gestartet.

Liefert die Regel wiederum false, so ist das Team zu klein und es kann die
Planung mit der zweiten Variante fiir ein zu kleines Team beginnen. Die

156

urspriinglichen 3 Regeln aus Schritt 3 lassen sich somit folgendermalien fiir
die Analyse zusammenfassen:

Wenn Teamgrofle 3 <= Teamgrofle <=9 dann Schritt 7 sonst
Wenn Teamgrofle > 9 dann Planungsmoglichkeit Variante 1 (,,Team zu
grof3*, aktuelle Teamgrofe x) sonst
Planungsmdoglichkeit Variante 2 (,,Team zu klein®, aktuelle Teamgro

Bey)

Fiir den zweiten Fall in der Analyse, dass die Planungsmoglichkeiten noch
nicht bekannt sind, wird das Beispiel genutzt, dass aktuelle Standards und
Normen genutzt werden sollen, z.B. ein aktueller Standard zum Testen.
Wenn sich dieser nun éndert ist es notig, die Software-Engineering-Methode
darauf abzustimmen. Zunéchst wird fiir die Auswertung des Wenn-Teils die
aktuelle Version des Standards im Projekt ausgelesen, hier im Beispiel wird
daftir die Versionsnummer genutzt. Zusitzlich wird aus der Wissensbasis
die Versionsnummer fiir den aktuellen Standard allgemein ausgelesen. Die-
se beiden Werte werden in der Analyse miteinander verglichen. Ist die Ver-
sionsnummer aus dem Projekt gleich der allgemeinen Versionsnummer, so
ist keine neue Planung nétig. Doch sind beide Versionsnummer ungleich, so
wird die Plan-Phase gestartet. Dafiir wird zusétzlich die neue Version, so-
fern dies moglich ist, heruntergeladen und mitgeliefert. Die Auswertung
wiirde also folgendermafen lauten:

Wenn Versionsnummer Standard Testen Projekt != Versionsnum-
mer_Standard Test aktuell dann Plan neuer Standard(lese
Test Standard aus) sonst

Schritt 7

Es ist zu sehen, dass es mit Hilfe der verschiedenen Analyseregeln einfach
moglich ist, die verschiedenen Werte beziiglich der Ziele auf Abweichungen
hin zu analysieren und zu bestimmen, ob eine Anpassung nétig ist oder
nicht. Die Analyse kann somit vollstindig automatisiert iber das System
erfolgen. Doch fiir eine Absicherung kann eingefiihrt werden, bevor die
Planung endgiiltig angestof3en wird, dass sich der Projektleiter und/oder der
Methoden-Engineer das Ergebnis der Analyse anschaut und freigibt, ob die
Anpassung erfolgen soll oder nicht.

Wird die Anpassung nicht freigegeben, sondern bestimmt, dass die Soft-
ware-Engineering-Methode mit diesen Werten weiterlaufen soll und die
Ziele weiterhin erfiillt werden, so miissen die Regeln, Ziele und Werte ent-
sprechend in der Wissensbasis entsprechend angepasst werden. Doch dies
sollte nur in Ausnahmefillen durchgefiihrt werden, da dies je nach Ziel
Auswirkungen auf weitere Ziele und die gesamte Software-Engineering-
Methode haben kann. Die Ziele miissen zuerst liberpriift werden, dass sie

157

nicht verletzt werden. Das kann unter Umstinden zu einem hoheren Auf-
wand fiihren, als die weitere Planung und Ausfithrung.

6.3.2 Architekturmaéglichkeiten fiir die Analyse

Um die Analyse konkret umzusetzen und durchzufiihren, gibt es verschie-
dene Uberlegungen und Méglichkeiten. Als Grundlage fiir die Analyse und
Bewertung dienen die in Schritt 3 erstellten Bewertungsregeln. Diese beste-
hen aus einer einfachen Form, einem Wenn-Teil zur Auswertung und einem
Dann-Teil fiir weitere Ausfithrungen. Die erste einfache Moglichkeit ist es,
alle Regeln in der Form ,,if... then... else® zu programmieren. Doch dies
wiirde zu einem hohen Aufwand und verbrauchtem Speicherplatz fiihren.
AulBlerdem miissten die Funktionen auf die Eintrdge in einer Datenbank zu-
greifen, die in der einfachen Form noch nicht betrachtet sind.

6.3.2.1 Aktive Datenbanken

Eine erste Uberlegung ist es, fiir die Speicherung, das Auslesen und weitere
Auswerten der aufbereiteten Werte eine Datenbank und ein Datenbanksys-
tem zu nutzen. Fiir Datenbanken gibt es die verschiedensten Formen und
Funktionen, welche in einem Datenbankmodell festgelegt sind. Ein verwen-
detes Model ist die relationale Datenbank bzw. Datenbankmanagementsys-
teme.

Eine Datenbankmanagementsystem (DBMS) ist ein Softwaresystem, wel-
ches fiir die effiziente Erstellung und Verwaltung von Datenbanken ver-
antwortlich ist. Dabei implementiert ein DBMS die Speicherung und Wie-
derherstellung von Daten sowie die Speicherung und Verwaltung von Ob-
jekten wie Zugriffspfaden, Clustering von Daten usw [DGG95]. Die eigent-
liche Speicherung der Daten mit allen relevanten Informationen erfolgt in
der Datenbank (data base).

Fiir den Aufbau einer Datenbank gibt es verschieden Mdglichkeiten, welche
im Datenbankschema definiert sind. Der Zugriff und Anderungsméglichkei-
ten werden im Datenmodell festgelegt. Das DBMS und die konkrete Daten-
bank bilden zusammen das Datenbanksystem, engl. database system (DBS).
Eine aktive Datenbank oder mit anderen Worten ein aktives Datenbankma-
nagementsystem (active database management system, ADBMS) erweitert
das passive DBMS mit der Moglichkeit, reaktives Verhalten auf spezielle
Ereignisse wie beispielsweise Anderungen zu spezifizieren [DGG95,
MDg9, PD99].

Diese auslosenden Ereignisse, auch Trigger genannt, erfolgen zur Laufzeit
und konnen weitere Aktionen oder auszufiihrende Skripte innerhalb der Da-
tenbank anstofen. Das dies zur Laufzeit moglich ist, ist fiir die Ausfithrung
der Analyse und Bewertung essentiell.

158

Ein solches Trigger-System wird fiir die Ausfithrung der Aktivitdten benutzt
und als Regel definiert. Die Trigger-Regel triggert in einem ausldsenden
Ereignis und unter bestimmten Bedingungen eine weitere Aktion, wenn der
Trigger true zuriickliefert. Die bekannteste Implementierung solcher Regeln,
welche in DBMS bzw. ADBMS eingesetzt werden, sind die ECA-Regeln
[PD99, Qi07, DGGY5].

6.3.2.2 ECA-Regeln (Event-Condition-Action-Rules)

Die Buchstaben ECA stehen fiir die Abkiirzung ,,Event” (E), ,,Condition*
(C), und ,,Action* (A). Zusammengefasst bestehen diese ECA-Regeln aus
einem auslosenden Ereignis (Event), den Bedingungen, welche das Ereignis
erfiillen (Condition) muss sowie der Aktion (Action), welche bei Erfiillung
der Bedingungen als néichstes ausgefiihrt wird. Nach [DGG95, S. 4-5] be-
sagt eine ECA-Regel: ,,when an event occurs, check the condition and if it
holds, execute the action". Diese Beschreibung der ECA-Regeln kommt der
definierten Analyseregel mit ihrer ,,Wenn..., Dann...“- Spezifikation sehr
nah.

Analog zu einer ,,Data definition language* (DDL) um eine Datenstruktur
zu modellieren, liefert eine aktive Datenbank eine ,,Rule definition language
(RDL), welche dazu genutzt werden kann, um die ECA-Regeln zu spezifi-
zieren [DGGY5]. Diese Sprache beinhaltet dabei Konstruktoren fiir die De-
finition der eigentlichen Regeln, also der Ereignisse, der Bedingungen, der
Aktionen sowie Constraints zur Ausfiihrung. Zusédtzlich benoétigt die
ADBMS eine Moglichkeit, um Ereignisse zu entdecken und die ECA-
Regeln anzuwenden. Dies kann beispielsweise iliber Sensoren oder Detekti-
onsregeln erfolgen.

Ubertragen auf die Analyseregel wiirde dies bedeuten, dass der aufbereitete
Wert das auslosende Ereignis ist. Genauer ist die Speicherung dieses neuen
Wertes in die aktive Datenbank das auslosende Event. Diesem Wert, sind
die Bedingungen zugeordnet. Die Bedingungen sind hier die Abfrage, ob
der Wert innerhalb der Grenzen liegt oder ein definierter Schwellenwert
iiber- oder unterschritten wird. Dies ist der urspriingliche Wenn-Teil der
Analyseregeln. Der Dann-Teil der Regeln beschreibt die Aktion in den
ECA-Regeln, welche bei Erfiillung der Bedingung durchgefiihrt wird.

Sind nun alle Regeln in der ECA-Form definiert und in der Wissensbasis in
einer aktiven Datenbank entsprechend gespeichert, so kann die MAPE-K-
Feedbackschleife mit Hilfe der Sensoren die relevanten Ereignisse iiberwa-
chen. Sobald ein Ereignis, das heilit die Speicherung eines relevanten Wer-
tes erfolgt ist, wird die entsprechende Regel-Komponente angesprochen,
welche fiir die Ausfithrung der Regel zustindig ist. Dies wird auch ,,Signa-
lisierung des Ereignisses* genannt [DGG95, S.5]. Zusitzlich zu dem Ereig-

159

nis kann auch ein Zeitstempel mitgegeben werden, wann das Ereignis einge-
treten ist und wiirde entsprechend als ein Paar abgespeichert (Event, Zeit).

Auch wenn der Zeitstempel hier in der MAPE-K-Feedbackschleife nicht
unbedingt erforderlich ist, soll dieser beibehalten werden. Wichtiger ist,
dass dieses Paar um die Prioritdt ergdnzt wird. Die Prioritdt ist gegeben
durch das Ziel, fiir welches der Wert ausgewertet wird. Dies ist ndtig, wenn
zwel Werte gleichzeitig gespeichert werden, damit das Ereignis mit der ho-
heren Prioritét zuerst ausgewertet wird. Die aktive Datenbank muss also bei
getriggerten Ereignissen zusétzlich den Mechanismus enthalten zu {iberprii-
fen, dass Ereignisse innerhalb desselben Zeitraumes, z.B. innerhalb einer
Minute, entdeckt werden und bei ihnen die Priorititen gegeneinander abge-
glichen werden. Ist dieser Mechanismus gegeben und die Wissensbasis so-
wie die Analyse-Phase als aktive Datenbank mit ECA-Regeln realisiert,
dann kann diese Phase vollstindig automatisch durchgefiihrt werden.

Die Aufbereitung der Monitor-Phase kann als eine vereinfachte Form der
Regel realisiert werden. Hier wiirde die zu iiberpriifende Bedingung wegfal-
len, denn ein gemessener Wert soll immer entsprechend aufbereitet werden.
In Wenn-Dann-Form wiirde die Regel lauten: Wenn Wert xy gemessen,
dann (bereite Wert auf mit Regel xy; schreibe Wert in KB; starte ECA mit
Ereignis ,,Wert*). Mit dieser gekoppelten Form wird der gemessene Wert
automatisch aufbereitet, in die Wissensbasis geschrieben und es wird auto-
matisch das auslosende Ereignis entdeckt. Die Auswertung der Bedingun-
gen wird entsprechend selbststindig gestartet. Ist die Auswertung positiv, so
wird die Plan-Phase gestartet; ist die Auswertung negativ, wird zur Monitor-
Phase iibergegangen.

Somit wiren mit Hilfe einer aktiven Datenbank und den ECA-Regeln die
Phasen Monitor und Analyse abgedeckt und eine Automatisierung ermog-
licht.

6.4 Schritt 9 - Anpassung planen

Schritt 9: Anpassung planen

Aufgabe Die Anpassung und mogliche Alternativen werden in
diesem Schritt geplant. Herangezogen werden die
vorher bestimmten Planungsmoglichkeiten, sowie die
gemessenen Werte anhand derer Planungsmdglich-
keiten bestimmt werden

Typ Planen

Subschritte 1. Anpassung planen
2. Anpassung analysieren
3. Anpassungszeitpunkt

160

4. Konflikte analysieren
5. Gegebenenfalls kombinierte Anpassung er-

stellen

Input des Schrittes

Ergebnis aus der Analyse, Planungsmoglichkeiten,
Konfliktpotential, Kombinationsmdglichkeiten, ge-
gebenenfalls Daten aus der Methoden-Basis

Output des Schrit-
tes

Geplante Anpassung

Mogliche Stake-
holder

System, bei Bedarf Methoden-Engineer und/ oder

Projektleiter

Ist das Ergebnis der Analyse, dass die Software-Engineering-Methode an-
gepasst werden muss, so wird mit Hilfe des Denn-Teils oder einer Action in
einer ECA-Architektur die Plan-Phase angestofen. Anders als im urspriing-
lichen MAPE-K besteht sie hier wie in Abbildung 44 zu sehen aus zwei
Teilen. Der erste Teil entspricht der Plan-Phase im MAPE-K, hier wird die
eigentliche Anpassung geplant und erstellt. Wie schon im Abschnitt vorher
angesprochen, kann die Planung dabei mit Hilfe von bereits erstellten Pla-
nungsmoglichkeiten oder die Anpassung muss ohne Planungsmoglichkeiten
mit Hilfe der Ziele und gemessenen Werten erfolgen.

e

~

.

Plan-Phase
Plan-Phase Teil 1 - Anpassung\ Plan-Phase Teil 2 -
planen Anpassungszeitpunkt (AZ)
Mit Planungs- Ohne Planungs- Zeitpunkt Konflikte Kombinierte
moglichkeiten | moglichkeiten analysieren Anpassung
4

/

Execute-Phase

Abbildung 44 Die zwei Hauptbestandteile der Plan-Phase

Der zweite Teil der Plan-Phase beriicksichtigt hier den Anpassungszeit-
punkt. Wie bereits in Abschnitt 3.4.2 unter der Herausforderung TP 5 ange-

161

sprochen, muss bei der Anpassung einer Software-Engineering-Methode der
Anpassungszeitpunkt (AZ) mit betrachtet werden. Es ist nicht wie bei einem
System mdglich, eine Software-Engineering-Methode zu jedem Zeitpunkt
anzupassen, sie sollte nicht einmal tdglich angepasst werden.

In diesem zweiten Teil wird zundchst der Zeitpunkt nach einer erfolgten
Anpassung analysiert, das hei3t ob der Anpassungszeitpunkt bereits erreicht
ist oder nicht. Sind mehrere Anpassungen zum AZ vorhanden, miissen diese
zundchst auf Konflikte hin analysiert werden und es muss gegebenenfalls
eine kombinierte Anpassung erstellt werden, bevor zur Execute-Phase {iber-
gegangen wird.

6.4.1 Das Planen einer Anpassung

Sind Planungsmoglichkeiten bereits vorhanden, so wird die Anpassung ent-
sprechend mit ihrer Hilfe durchgefiihrt. In den Planungsmoglichkeiten wur-
de bestimmt, wie in einer bestimmten Situation eine Anpassung vorgenom-
men werden soll. Das heift, es ist angegeben, an welcher Stelle im Modell
(Wo) bei einer Verletzung der Regel welche Elemente (Was), in welcher
Art (Wie) angepasst werden, welche Verbindungen (Welche) erhalten oder
neu gesetzt werden miissen und an wen welche Benachrichtigung (Wer)
geschickt werden muss (vergl. Abschnitt 5.5 Ableitung von Planungsmdg-
lichkeiten).

Dadurch ist klar, welche Elemente aus der Methoden-Basis fiir beispiels-
weise einen Austausch oder ein Hinzufligen genommen werden konnen.
Zusitzlich ist klar, an welcher Stelle im Modell der Software-Engineering-
Methode Elemente gedndert werden und wie die neuen Abhdngigkeiten aus-
sehen. Aulerdem wurde festgelegt, wer in der Ausfiihrung alles benachrich-
tigt wird.

Fiir das Beispiel mit der TeamgroBe in Scrum wiirden also bei einem zu
groflen Team die entsprechende Planungsmoglichkeit angegeben und in der
Plan-Phase aufgerufen. Wie bereits in Abschnitt 5.5 beschrieben ist in der
Planung durch den Aufruf festgelegt, dass das Team gesplittet wird und wie
viele Personen jeweils ein neues Team enthélt. Die konkrete Aufteilung der
Personen und der jeweiligen Aufgaben erfolgt nun in der Plan-Phase. Dies
kann zum einen automatisch mit Hilfe von Zuteilungsfunktionen erfolgen,
welche als Eingabe die Aufgaben und die jeweiligen Skills der Personen
kennen. Eine andere Moglichkeit ist, dass an dieser Stelle der Scrum Master
mit einbezogen wird und dass dieser die Aufteilung vornimmt.

Das neue Meeting kann wieder automatisch mit Hilfe der Planungsmoglich-
keiten eingefiigt werden, da hier genau bekannt ist, welches Element (Scrum
of Scrums) an welche Stelle (tidglich nach dem Daily Scrum) eingefiigt wer-
den muss. Ferner ist bekannt, an wen alles eine Benachrichtigung geschickt

162

werden muss. Diese Angaben sowie die Zuordnung werden entsprechend an
die Execute-Phase iibergeben.

Sind Planungsmoglichkeiten nun nicht vorhanden, so muss die Planung wie
in Abbildung 45 zu sehen mit Hilfe der gemessenen Werte und des Ziels
durchgefiihrt werden. Fiir die Planung der Anpassungen miissen zunéchst
die genaue Abweichung und die Folgen bestimmt werden. [n einem néchs-
ten Schritt wird das Ziel herangezogen und es muss bestimmt werden, mit
welchen Elementen, in welcher Art und an welcher Stelle dieses Ziel weiter
eingehalten wird. Dies kann mit Hilfe von entsprechenden Methoden-
Mustern (Method Pattern) erfolgen. Eine weitere Moglichkeit wire, Pla-
nungsalgorithmen an dieser Stelle mit hinzuzuziehen.

.@

v
Planung mit Hilfe
von Werten & Ziel

durchfiihren

N
[Ausfiihrungsregeln und

Benachrichtigungen
ableiten & speichern

lia]

A 4

Anpassung bzgl. [nein] Planung
Gesamt-SEM > abgeschlossen
analysieren

Anpassung stort Gesamt-SEM?

Abbildung 45 Planungsablauf ohne Planungsmoglichkeiten

Ist eine neue Anpassung mit Hilfe von Method Pattern und/ oder Planungs-
algorithmen erstellt, so miissen daraus entsprechend fiir die Execute-Phase
die Ausfiihrungsregeln und Benachrichtigungen abgeleitet und in der Wis-
sensbasis gespeichert werden. Die Ableitung kann mit Hilfe von Schritt 6
aus der Pre-Work erfolgen.

Zusitzlich zu der Herleitung der Ausfiihrungsregeln und Benachrichtigun-
gen ist es in einem weiteren Schritt wichtig, die geplante Anpassung beziig-
lich ihrer Auswirkung auf die Gesamt-SEM hin zu analysieren. Dies ist no-
tig um herauszufinden, ob diese neue Anpassung Auswirkungen auf andere
Abschnitte der Software-Engineering-Methode hat und ob diese Anpassung
bewirkt, dass andere Ziele verletzt werden. Die Analyse kann beispielsweise

163

mit einer Simulation und Simulationsalgorithmen durchgefiihrt werden.
Dafiir wird die Anpassung in eine Kopie des aktuellen Modells der SEM
iibertragen und in einer Simulation ausgefiihrt. Dadurch konnen die entspre-
chenden Auswirkungen bereits im Vorfeld abgeklart werden. Eine andere
Moglichkeit wire, eine Analyse iiber den Workflow durchzufiihren, bei-
spielsweise ob alle Abhdngigkeiten gegeben sind und entsprechend erreicht
werden kdnnen.

Wie diese Analyse und die vorher beschriebene Planung mit Hilfe von Al-
gorithmen oder Pattern im Detail aussehen, wird an dieser Stelle nicht im
Detail betrachtet. Es wird als gegeben angesehen, dass sowohl eine Simula-
tion oder Analyse zur Bewertung der Gesamtauswirkung als auch ,,Pla-
nungshilfen* gegeben sind.

Ergibt die Bewertung, dass die Anpassung Auswirkungen auf die Gesamt-
SEM hat, das heif3t, dass andere Ziele verletzt werden, so muss eine alterna-
tive Anpassung geplant werden. Diese Alternative wird am Ende ebenfalls
iiberpriift, ob sie weitere Ziele verletzt oder nicht. Es ist weiterhin zu {iber-
legen und festzulegen, wie oft eine Alternative geplant werden soll. Im
schlimmsten Fall kann es vorkommen, dass keine Alternative moglich ist,
welche kein Ziel verletzt. Somit muss zusétzlich ermittelt werden, welche
Art von Zielen verletzt wird, also welche Prioritédt die jeweiligen Ziele be-
sitzen. Ist das verletzte Ziel beispielsweise von wesentlich geringerer Priori-
tat, kann entschieden werden, dass die Anpassung trotzdem durchgefiihrt
und das andere Ziel entsprechend angepasst wird. Ist die Prioritdt des ver-
letzten Ziels hoher als die der Anpassung, so muss eine Alternative geplant
werden. Auch wenn solche Bestimmungen entsprechend fiir eine automati-
sche Ausfiihrung festgelegt werden konnen, sollte in einem solchen Fall der
Projektleiter und/oder ein Methoden-Engineer hinzugezogen werden.

Ist fiir die Anpassung entschieden, dass diese die Gesamt-SEM nicht beein-
flusst, also keine Ziele verletzt werden, so ist die Planung abgeschlossen
und es kann zum zweiten Teil der Plan-Phase iibergangen werden, dem An-
passungszeitpunkt.

6.4.2 Zwischen Planung & Ausfiihrung - der Anpassungszeitpunkt

Wie bereits zu Beginn des Abschnitts 6.4 erwédhnt, kann die Anpassung ei-
ner Software-Engineering-Methode nicht andauernd und schnell hinterei-
nander erfolgen. Zu viele Anpassungen kurz nacheinander wiirden ebenso
den Erfolg der Software-Engineering-Methode und somit des gesamten Pro-
jektes gefdhrden, wie wenn iiberhaupt keine Anpassung bei Problemen
durchgefiihrt werden wiirde. Ferner wiirden zu viele Anpassungen zu Ver-
wirrung und unter Umstdnden zu Unzufriedenheit bei den Teammitgliedern
filhren, wenn sich ihre Aufgaben stindig verdndern. Wiirden sich die Auf-

164

gaben in einer hohen Taktzahl &dndern, kann es passieren, dass Aufgaben
nicht zu Ende gebracht werden konnen, da andere wichtiger sind und ir-
gendwann das ganze Projekt hinter seiner Zeit zuriickfillt.

Der Zeitpunkt der Anpassung erfolgt zum einen je nach Kritikalitdt der An-
passung, zum anderen je nach Dauer und Komplexitit der Software-
Engineering-Methode. Anpassungen sollten mdglichst immer im gleichen
Intervall folgen, beispielsweise einmal in der Woche, alle zwei Wochen etc.
Der Anpassungszeitpunkt soll zu Beginn des Projektes mit allen Beteiligten
besprochen und festgelegt werden. Ahnlich wie bei den Agilen Methoden
sollen alle, die davon betroffen sind, also Teammitglieder, Projektleiter
usw., mit einbezogen werden und sich austauschen. Diese Personen konnen
am besten beurteilen, in welchen Intervallen sie vollstindige Anpassung der
Software-Engineering-Methode bewerkstelligen konnen, ohne dass es die
Qualitdt der Arbeit beeinflusst und ihr Projekt gefdhrdet. Zusitzlich soll in
die Software-Engineering-Methode ein regelmifBiger Zeitpunkt mit einge-
plant werden, zu dem der Anpassungszeitpunkt besprochen und gegebenen-
falls angepasst wird.

® Warte auf AZ oder neue Anpassung

A
Anpassung [nein]
zwingend
notwendig?
< = Anpassungszeitpunkt (AZ) erreicht?
[ial [nein]
[ial
la] X
Nur eine Anpassung im ,Pool”?
[nein]
L
Laufende Anpassung Anpassungen auf
in Monitor & Analyze Konflikte
blockieren analysieren

Konflikte lGsen

erstellen

Kombinierte EN-
Regeln erstellen

Abbildung 46 Durchfiihrungsschritte zum Anpassungszeitpunkt

Ist im ersten Teil der Plan-Phase nun eine Anpassung geplant worden, wird
nach der fertigen Anpassung zunichst wie in Abbildung 46 zu sehen die
Kritikalitdt der Anpassung tiberpriift. Besitzt die Anpassung die Prioritét 1,
also die hochste Prioritdt, so hei3t dies, dass die Anpassung zwingend not-
wendig ist, damit der Erfolg der Software-Engineering-Methode nicht ge-

165

fahrdet wird. Dies ist der einzige Punkt, wo eine Anpassung der SEM nicht
zum Anpassungszeitpunkt erfolgt und sofort zur Execute-Phase {libergegan-
gen wird.

Ist die Anpassung nicht zwingend erforderlich, so wird zuerst iiberpriift, ob
der Anpassungszeitpunkt bereits erreicht ist. Ist dies nicht der Fall, so wird
gewartet, bis der Anpassungszeitpunkt erreicht oder eine neue Anpassung in
Teil 1 erfolgt ist. Die Anpassung wird solange in einem ,,Anpassungs-Pool*
gespeichert. Ist der Anpassungszeitpunkt erreicht, wird die Anzahl der An-
passungen im Pool iiberpriift. Ist dort nur eine Anpassung zu finden, so wird
zur Phase Execute libergegangen und die Anpassung wird direkt ausgefiihrt.

Sind bereits mehrere Anpassungen im Pool, so wird zunéchst eine mogliche
laufende Anpassung in den Phasen Monitor und Analyse blockiert, damit
diese nicht weiter ausgefiihrt wird und mit den nun zu kombinierenden An-
passungen in Konflikt stehen. Die bereits fertigen Anpassungen werden zu-
nichst ebenfalls dahingehend analysiert, ob sie bzw. ihre Ziele moglicher-
weise in Konflikt zueinander stehen und sich gegenseitig beeinflussen. Fiir
diese Analyse kann das in Abschnitt 5.5.3 bestimmte Konfliktpotential her-
angezogen werden. Stehen eine oder mehrere Anpassungen in Konflikt zu-
einander, so muss zundchst nach einer Losung zur Beseitigung der Konflikte
gesucht werden. Dies kann unter Umstdnden zu einer Umplanung einer An-
passung fiihren oder sogar dazu, dass eine Anpassung nicht durchgefiihrt
und verworfen wird. Dies kann nur erfolgen, wenn die Prioritét der einen
Anpassung hoher ist als die der anderen.

Sind alle Konflikte geldst, kann nun eine kombinierte Anpassung geplant
und erstellt werden, da nicht alle Anpassungen gleichzeitig oder hinterei-
nander durchgefiihrt werden. Mit der kombinierten Anpassung ist ebenfalls
sichergestellt, dass die verschiedenen Abhdngigkeiten eingehalten und be-
achtet worden sind. Um eine solche kombinierte Anpassung erstellen zu
konnen, kann die in Abschnitt 5.5.4 vorgestellten Kombinationsmoglichkei-
ten genutzt werden. Dort wurde bestimmt, ob und welche Kombinations-
punkte es innerhalb der jeweiligen Anpassungen gibt und wie diese ausse-
hen. Anzusetzen ist dabei an den beiden Punkten aus Abschnitt 5.5.1 Wo
angepasst wird, Was (welche Elemente) angepasst und Wie (Art der Anpas-
sung) angepasst werden kann. Mit Hilfe dieser Kombinationspunkte konnen
am Ende die verschiedenen Anpassungen zu einer einzigen verschmolzen
werden.

Ist die kombinierte Anpassung erstellt, so ist die Plan-Phase abgeschlossen
und es wird die Execute-Phase mit der kombinierten Anpassung angestof3en,
damit sie entsprechend ausgefiihrt und in das Projekt zuriick iibertragen
werden kann.

166

6.5 Schritt 10 - Anpassung ausfiihren

Schritt 10: Anpassung ausfiihren

Aufgabe Die geplante Anpassung wird ausgefiihrt

Typ Ausfiihren

Subschritte 1. Anpassung ausfiihren & Modell an-
passen

2. Modelle speichern
3. Benachrichtigungen durchfiihren

Input des Schrittes | Anpassung zur Ausfithrung (Modell, Ausfiihrungsre-
geln, Benachrichtigung)

Output des Schrit- | Angepasste Software-Engineering-Methode
tes

Maogliche Stake- System (Execute), Projektleiter (gibt das okay zur
holder Ausfiihrung)

Sind die Anpassungen bestimmt und ist der Anpassungszeitpunkt erreicht
oder eine sofortige Anpassung erforderlich, so wird die Execute-Phase an-
gestoBen. Die Ausfiihrung der Anpassung und die Ubertragung der ange-
passten Software-Engineering-Methode erfolgt mit Hilfe der in Schritt 6
bestimmten Ausfiihrungsregeln und Benachrichtigungen.

Die Execute-Phase lduft wie bereits im Framework unter Subschritte be-
schrieben, in drei Schritten ab:

1. Die Anpassung der Software-Engineering-Methode wird mit Hilfe
der Anpassungsregeln in die Modelle der SEM iibertragen.

2. Die angepasste SEM wird in der Wissensbasis fiir die weitere
Durchfiihrung gespeichert. Das alte Modell wird gleichzeitig in die
Historie mit Datum iibertragen.

3. Es werden Benachrichtigungen an alle Beteiligten geschickt.

Sobald die Execute-Phase angestoflen wurde, werden anhand der geplanten
Anpassung die entsprechenden Ausfiihrungsregeln und Benachrichtigungen
ausgelesen. Diese wurden in Schritt 6 in der Pre-Work oder in der vorheri-
gen Plan-Phase erstellt und abgespeichert. Mit Hilfe dieser Regeln wird das
aktuelle Modell der Software-Engineering-Methode entsprechend fiir die
weitere Durchfiihrung aktualisiert.

Anhand der jeweiligen Regel werden automatisch die entsprechenden Akti-
vitdten, Techniken, Artefakte etc. im Modell hinzugefiigt, geloscht oder

167

ausgetauscht usw. Zusitzlich zu diesen gednderten Elementen miissen, falls
notig, die konkreten Verantwortlichen bzw. die Ausfiihrenden des Elements
gedndert werden. Ferner ist durch die Regel bekannt, welche Abhangigkei-
ten, wenn notig, neu im Modell gekniipft und gedndert werden miissen.

Dieses neue Modell wird entsprechend in der Wissensbasis gespeichert und
wird fiir die weitere Durchfiihrung mit Hilfe der Effektoren freigegeben.
Das heif3t, die Anpassung ist beendet und der neue Status des aktuellen Pro-
jektes kann iiber die angepasste Software-Engineering-Methode abgerufen
werden. In demselben Schritt, wenn das neue Modell in die Wissensbasis
gespeichert wird, wird das alte Modell nicht nur tiberschrieben, sondern eine
Kopie dieses alten Modells wandert mit einem Zeitstempel und einer Mar-
kierung, was eine Anpassung hervorgerufen hat, in die Historie. Die Histo-
rie kann zu einem gewihlten Zeitpunkt und besonders nach Beendigung des
Projektes hinsichtlich aller Anpassungen, die wahrend des Projektes stattge-
funden haben, abgerufen und ausgewertet werden. Diese Erfahrung kann
beispielsweise fiir das Aufsetzen von neuen Projekt genutzt und gemachte
Fehler konnen im Vorfeld mit beachtet und vermieden werden.

Als letzten Schritt in der Execute-Phase und somit in der MAPE-
Feedbackschleife werden Benachrichtigungen an alle Beteiligten geschickt,
die von der Anderung betroffen sind. Wer von den einzelnen Anderungen
betroffen ist, wurde bereits in Schritt 6 entsprechend herausgearbeitet, so
dass in der Execute-Phase eine entsprechende Nachricht automatisch vom
System geschickt werden kann. Die Nachrichten sind insofern personali-
siert, als dass der Betroffene jeweils die Anderung mitgeteilt bekommt, wel-
che ihn betrifft.

Im Beispiel der Teamgrofle in Scrum hiele das, wenn ein Team zu groB ist
und gesplittet wurde, wird liber die Benachrichtigungen jedem Teammit-
glied mitgeteilt, welchem Team er oder sie nun angehort, welche Aufgaben
zugeteilt wurden und wer am ersten Scrum of Scrums teilnimmt. Ferner
wird ihnen der Zeitpunkt mitgeteilt, ab wann die Anderung greift. In diesem
Beispiel wird dafiir der Anfang des nichsten Sprints gewihlt, so dass alle
Beteiligten erst ihre entsprechenden Aufgaben beenden kdnnen.

Auch wenn mit Hilfe der Regeln und Benachrichtigungen die Schritte au-
tomatisch ausgefiihrt werden kénnen, so kann es Sinn machen, dass vor Be-
ginn der eigentlichen Durchfithrung oder dem Versenden der Benachrichti-
gungen zunichst der Projektleiter und/ oder der Methoden-Engineer mit auf
die fertige Anpassung draufschaut und diese freigibt. Ist die Freigabe erteilt,
die Anpassung durchgefiihrt und sind alle Beteiligten benachrichtigt, so ist
die Anpassung abgeschlossen und eine angepasste Software-Engineering-
Methode liegt vor. Die Evaluierung und Uberwachung dieser SEM beginnt

168

nun von neuem mit Schritt 7, dem Messen der Werte anhand der Sensoren
und der Monitor-Phase.

6.6 Automatisierungen

In Abschnitt 3.3.3 wurden bereits Moglichkeiten fiir die Automatisierung
des Ansatzes vorgestellt und kurz diskutiert. Das Ziel war es, dass der SE
Method Manager mit der Hilfe von MAPE-K automatisiert werden kann,
wie es beim urspriinglichen Autonomic Manager der Fall ist. Es hat sich
herausgestellt, dass eine Automatisierung in den meisten Fillen moglich ist.
Doch an einigen Stellen im MAPE-K4SEM ist es sinnvoll, eine oder mehre-
re Personen einzusetzen. Auch wenn es beim Autonomic Manager moglich
ist, alle Phasen zu automatisieren, geschieht dies nicht immer bei allen Pha-
sen.

Im vorliegenden Ansatz ist es wie beschrieben so, dass er groBtenteils au-
tomatisch ablduft und Personen nur punktuell eingesetzt werden. Mit Hilfe
von definierten Sensoren erfolgt die Messung der spezifischen Daten auto-
matisch. Anhand der definierten Aufbereitungsregeln werden diese in der
Monitor-Phase selbststindig vom System aufbereitet. Wie in Abschnitt
6.3.1. dargelegt, kann mit der einfachen Form der Regel und der Kombina-
tion mit ECA-Regeln die Monitor-Phase vollstindig automatisch ablaufen
und die Analyse-Phase wird tiber den Einsatz von ECA-Regeln automatisch
angestof3en.

Ebenfalls ist es wie in Abschnitt 6.3.1. beschrieben mit einer aktiven Daten-
bank und dem Einsatz von den beschriebenen ECA-Regeln moglich, dass
die Analyse vollstindig automatisiert durchgefiihrt wird. Sobald die aufbe-
reiteten Werte gespeichert sind, wird damit die entsprechend dem Wert de-
finierte ECA-Regel ausgelost und die Werte werden anhand der Bedingung
ausgewertet. Je nachdem, ob die Bedingung positiv (true) oder negativ (fal-
se) ist, wird die Plan-Phase mit der entsprechenden Planungsmoglichkeit
oder den gemessenen Werten und Ziel angestoBen oder es wird wieder zu
Schritt 7 iibergegangen.

Der erste Zeitpunkt, an dem eine Person hinzugezogen werden kann, ist
wihrend des Ubergangs zwischen der Analyse- und der Plan-Phase, auch
wenn dieser automatisch moglich ist. Es kann hier Sinn machen, dass sich
ein Methoden-Engineer und/oder der Projektleiter zu diesem Zeitpunkt
Software-Engineering-Methode anschaut, ob an dieser Stelle wirklich eine
Anpassung ndtig oder ob sie noch im Rahmen ist. Dies kann allein schon
aus Erfahrungsgriinden der Personen sinnvoll sein. AnschlieBend kdnnen sie
die Freigabe fiir die Anpassung erteilen und den Ubergang zu der Plan-
Phase einlduten. Oder sie lehnen die Anpassung ab und MAPE-K wird in
Schritt 7 weiter fortgesetzt.

169

Wurde manuell beschlossen, dass die Anpassung nicht notig ist, miissen an
dieser Stelle die Rahmenbedingungen sowie die Regeln entsprechend ma-
nuell angepasst werden, ansonsten werden der vermeintliche Fehler und
seine Anpassung im ndchsten Schritt moglicherweise wieder erfolgen. Da-
bei sollte bedacht werden, dass diese manuelle Anderung wiederum Auf-
wand und mégliche ZeiteinbuBen mit sich bringen kann. Die manuelle An-
derung sollte daher nur in dringenden Fallen angewendet werden.

Die Plan-Phase selbst kann wie beschrieben ebenfalls in den meisten Féllen
automatisch erfolgen, vor allem dann, wenn bereits Planungsmoglichkeiten
vorhanden sind und diese nur ausgefiihrt werden miissen. Sind keine Pla-
nungsmoglichkeiten vorhanden, kann es unter Umstidnden sein, dass an die-
ser Stelle ein Methoden-Engineer hinzugezogen werden muss. Eine Auto-
matisierung oder zumindest eine Teil-Automatisierung ist an dieser Stelle
moglich, wenn entsprechende Planungsalgorithmen vorliegen und ange-
wandt werden konnen. Die Ableitung der Ausfiithrungsregeln und Benach-
richtigungen sollten allerdings entsprechend Schritt 6 manuell durchgefiihrt
werden. Die Auswirkung der Anpassung auf die Gesamt-SEM sollte wiede-
rum moglichst automatisiert mit Hilfe von beispielsweise Simulationen
durchgefiihrt werden. Manuell wiirde dies einen zu gro3en Aufwand bedeu-
ten, da verschiedene Moglichkeiten per Hand durchgespielt werden miissen
um herauszufinden, ob und welche Auswirkungen die Anpassung auf die
Gesamt-SEM hat. Der Ubergang zum Anpassungszeitpunkt erfolgt ebenfalls
automatisiert.

Der Anpassungszeitpunkt kann wiederum automatisch ausgewertet werden
und falls die Blockierung der vorherigen Phasen notig ist, kann dies eben-
falls vom System selbststindig erfolgen. Je nach Implementierung mit Hilfe
der Konfliktmoglichkeiten kann das Ermitteln der Konflikte der einzelnen
Anpassungen zueinander noch automatisch erfolgen. Doch fiir die Auflo-
sung der Konflikte und fiir eine Kombination der Anpassungen kann ein
Methoden-Engineer nétig sein. Sind allerdings entsprechende Planungsalgo-
rithmen und Kombinationspunkte bekannt, so kann eine Automatisierung
moglich sein.

Mit dem Ubergang von der Plan-Phase zur Execute-Phase und der endgiilti-
gen Ausfiihrung verhilt es sich #hnlich wie beim Ubergang von der Analyse
zur Planung. Der Ubergang von der Plan- zur Execute-Phase ist automatisch
moglich. Doch an dieser Stelle kann es ebenfalls Sinn machen, dass sich ein
erfahrener Methoden-Engineer die geplante Anpassung anschaut, sie auf-
grund seiner Erfahrung einschétzt und anschlieBend zur Durchfiihrung frei-
gibt. Diese menschlichen Zwischenschritte nutzen die Erfahrung der Perso-
nen und erhéhen das Vertrauen in die angepasste Methode.

170

Die Execute-Phase mit der Durchfiihrung der Anpassung, der Anderung des
Modells mit Hilfe der Ausfiihrungsregeln und das Senden der Benachrichti-
gungen kann entsprechend automatisch ausgefiihrt werden. Mit dem letzten
Schritt, dem Versenden der Benachrichtigungen, ist eine Anpassung abge-
schlossen und sie wird automatisch durch das kontinuierliche Ausfiihren des
SE Method Managers evaluiert und iiberwacht.

Das kurze Fazit beziiglich der Automatisierungen lautet, dass MAPE-
K4SEM automatisch durchgefiihrt werden kann. Somit ist auch sie selbst-
adaptive Anpassung einer SEM, also eine ,selbst-adaptive Software-
Engineering-Methode®, ist. Es macht an den genannten Ubergingen und in
der Plan-Phase jedoch Sinn, einen erfahrenen Methoden-Engineer einzuset-
zen.

171

Kapitel 7 Evaluierung

/ Abschnitt 7.1: Evaluierung am praxisnahen Beispiel \
\
{ Abschnitt 7.1.1: Evaluierung am Abschnitt 7.1.2: Beschreibung des
praxisnahen Beispiel - Begriindung Beispiels

Abschnitt 7.1.3: Durchspielen des

o 7.1.3.1: Durchspielen der Pre-Work
Beispiels

am Beispiel

7.3.1.3: Komplexe & kombinierte
Anpassung

\.3.1.2: Einfache Anpassung

Abschnitt 7.2:
Vergleich und Fazit

Abbildung 47 Aufbau Kapitel 7

7.3.1.4: Anpassung ohne
Planungsméglichkeiten

In den Kapiteln 3 bis 6 wurde MAPE-K4SEM - ein Ansatz fiir die selbst-
adaptive Anpassung von Software-Engineering-Methoden — vorgestellt. In
diesem Kapitel soll der Ansatz an einem praxisnahen Beispiel durchgespielt
und evaluiert werden. Nach einer Begriindung fiir die Wahl dieses Beispiels
zur Evaluierung wird es im ndchsten Abschnitt im Detail beschrieben. Das
Beispiel ist dabei angelehnt an das konkrete Projekt ,,Quasi-Scrum® aus dem
s-lab — Software Quality Lab, welches bereits in vorherigen Kapiteln er-
wiahnt wurde. An einigen Stellen wird dieses Beispiel zusétzlich mit Erfah-
rung aus einem anderen Projekt angereichert. Nach der Beschreibung des
Beispiels beginnt das Durchspielen mit den Schritten 1bis 6, der Pre-Work.
Nachdem die einzelnen Elemente erstellt sind, beginnt der eigentliche
Durchlauf mit MAPE-K, die Schritte 7 bis 10. Im Beispiel werden drei ver-
schiedene Anpassungen durchgespielt, zunichst eine einfache Anpassung,
die mehrfach erwdhnte Teamgrofle. Daran schlie3t sich eine komplexe und
kombiniert Anpassung sowie eine Anpassung ohne Planungsmoglichkeiten
an. Das Kapitel schliefit mit einem Vergleich der Ergebnisse mit den Praxis-
Projekt und einem Fazit.

172

7.1 Evaluierung an einem praxisnahen Beispiel

Das Durchspielen eines praxisnahen Beispiels soll hier zeigen, wie die Pre-
Work und spéter die Durchfiihrung des MAPE-K in der Praxis aussehen und
funktionieren konnen. Fiir das Durchspielen wurden dabei sowohl eine An-
derung aus dem Projektcontrolling gewdhlt, welche eine Anpassung nur auf
der Instanz-Ebene bewirkt, als auch eine komplexere und kombinierte An-
passung einer Software-Engineering-Methode sowie einer Anpassung ohne
Planungsmdglichkeiten. Um im Beispiel die verschiedenen Anderungen
besser zeigen zu konnen, wurde jeweils ein Ausschnitt des stark vereinfach-
ten Modells der Software-Engineering-Methode gewihlt. Dieses Modell
wird im Beispiel beibehalten und kontinuierlich mit der jeweiligen Anpas-
sung erweitert.

7.1.1 Evaluierung am praxisnahen Beispiel - Begriindung

Fiir diese Arbeit wurde die Evaluierung am praxisnahen Beispiel gewihlt.
Gerade im Bereich der Durchfiihrung und Uberpriifung von Software-
Engineering-Methoden ist es schwierig, diese direkt zu iiberpriifen und mit
dem urspriinglichen Fall zu vergleichen. Zwar ist die Dauer der Anpassung
im vorgestellten Ansatz in der Durchfiihrung zeitnah und groBtenteils auto-
matisch moglich, doch die Uberpriifung miisste an einem Projekt wihrend
der Durchfiihrung tiber einen ldngeren Zeitraum erfolgen. Auch miisste das
Projekt von Anfang an mit begleitet werden, da die Pre-Work zu Beginn des
Projektes durchfiihrt werden muss.

Der Ansatz sollte zudem in einem Projekt in der Praxis, das heif3t in einem
Unternehmen umgesetzt und iiberpriift werden. Doch fiir eine Evaluierung
ist es schwierig, ein Unternehmen zu finden, welches bereit ist, diese durch-
zufilhren, denn im Unternechmen geht es bei einem Projekt um Zeit und
hauptsdchlich auch um Kosten. Um zu iiberpriifen, ob der Ansatz nicht nur
funktioniert, sondern bessere Ergebnisse fiir die Anpassung liefert als ohne
den eingesetzten Ansatz, miissten fiir einen direkten Vergleich dasselbe Pro-
jekt praktisch zweimal unabhingig voneinander gestartet werden, einmal
mit und einmal ohne den Ansatz. In der Unternehmenspraxis ist dies gar
nicht oder nur sehr schwer mdglich.

Von daher wurde fiir das Durchspielen des Ansatzes ein Beispiel gewdhlt,
welches sich nah an der Praxis befindet. Zwar ist das Beispiel konstruiert,
aber der Kern des Beispiels wurde in dhnlicher Form bereits in einem Pro-
jekt ohne den Einsatz des Ansatzes durchgefiihrt. Auch wenn das Beispiel
mit weiteren Aspekten angereichert wird, so stammen diese ebenfalls alle
aus der Praxiserfahrung und sind bereits vorgekommen. Durch diesen Pra-
xisbezug ist es am Ende moglich, den Ansatz mit den urspriinglichen Pro-
jekten zu vergleichen und schlussendlich ein Fazit zu ziehen.

173

7.1.2 Beschreibung des Beispiels

Das Beispiel, welches hier fiir die Evaluierung verwendet wird, ist im Kern
an das Praxisprojekt Quasi-Scrum [EG09] angelehnt. Dieses Projekt wurde
vom s-lab — Software Quality Lab — durchgefiihrt und in den vorherigen
Kapiteln bereits mehrfach erwihnt. In diesem Projekt wurde die Software-
Engineering-Methode angepasst, allerdings ohne die Hilfe von MAPE-
K4SEM und erst sehr spdt im Projekt, als es schon in einigen Punkten ,,vor
die Wand gelaufen* war. Dadurch hat das Unternehmen die Laufzeit ver-
langern und einen weitere Iteration zur Reparatur einschieben miissen, was
im Unternehmen zusdtzliche Kosten verursacht hat.

In diesem Beispiel soll jedoch nicht nur diese Anpassung aus diesem Projekt
gezeigt werden, sondern es wird mit der Erfahrung aus einem weiteren Pra-
xisprojekt angereichert sowie mit Empfehlungen aus einem Artikel, welcher
weitere Erfahrungen widerspiegelt. Es sollen wie bereits geschrieben in die-
sem Beispiel sowohl eine einfache Anpassung als auch komplexe Anpas-
sungen gezeigt werden. Zusitzlich wird an einem einfachen Beispiel ge-
zeigt, dass es mit dem Ansatz ebenfalls moglich ist zu erkennen, dass Res-
sourcen fehlen oder wegfallen und diese mit Hilfe der Planung schnellst-
moglich ersetzt und ausgetauscht werden konnen.

Im Projekt Quasi-Scrum wurde eine Kreditkalkulationssoftware entwickelt.
Dafiir wurde die Agile Methode Scrum eingesetzt. Da Scrum aus Sicht der
Beteiligten nicht optimal war, wurde die Software-Engineering-Methode
bereits im Vorfeld mit Hilfe von Tailoring angepasst. Die Ausgangslage soll
hier im Beispiel ebenfalls verwendet werden, um moglichst nah an der Pra-
xis zu bleiben. Die Daily Scrums finden im Beispielprojekt anstatt téglich
15 Minuten zweimal in der Woche (dienstags und donnerstags) jeweils 30
Minuten statt. Der Product Owner ist keine einzelne Person sondern besteht
aus einem Lenkungskreis von 5 Personen. Das Review-Meeting war im Pro-
jekt kein Informationsmeeting sondern ein Abnahmemeeting. In diesem
Beispiel bleibt das urspriingliche Review-Meeting allerdings erhalten. Die
restlichen Regeln und Eigenschaften von Scrum bleiben ebenfalls erhalten.
Wie sich die Anpassungen auf Regeln und Metriken auswirken, wird beim
Durchspielen des Beispiels erldutert.

Rolle: Team

Rolle: Scrum betreut Team bearbeiten Artefakt: Product
Master: PersonX peamngrobe: " Aufgaben Backlog (PB)
Personen
besitzt PB
Rolle:
Lenkungskreis
(PO)

Abbildung 48 Hauptrollen in Quasi-Scrum

174

Die Hauptrollen im Beispiel teilen sich wie in Abbildung 48 zu sehen wie
folgt auf:

e Es gibt einen Scrum Master, welcher das Team begleitet und durch
Person X im konkreten Projekt realisiert wird.

e Der Scrum Master betreut das Team, welches zu Beginn des Projek-
tes bzw. zum Start der Software-Engineering-Methode konkret aus
9 Personen besteht.

e Der Product Owner wird hier durch einen Lenkungskreis darge-
stellt. Dieser ist Besitzer des Hauptartefaktes Product Backlog, in
welchem alle Anforderungen und Aufgaben fiir die Entwicklung der
Software beinhaltet sind. Der Lenkungskreis wahlt die verschiede-
nen Aufgaben aus und priorisiert diese.

e Das Team bearbeitet wiahrend des Sprints die Aufgaben im Product
Backlog.

Der Ablauf eines Sprints zu Beginn des Beispiels wird in stark vereinfachter
Form in Abbildung 49 dargestellt, wobei diese Vereinfachung zur Verdeut-
lichung der verschiedenen Anpassungen beibehalten wird. Die Sprintlénge,
also die Linge einer Iteration, betrdgt hier 4 Wochen. Dabei beginnt der
Sprint montags mit dem Planning-Meeting, in dem gemeinsam im Team die
Aufgaben fiir den aktuellen Sprint besprochen werden. Der Scrum Master
hat die priorisierten Aufgaben bereits vom Lenkungskreis erhalten. Das
Team bestimmt nun, welche Aufgaben es in den niachsten vier Wochen rea-
lisieren kann.

Planning-
Meeting
Daily Scrum:
: :) Dienstag +
Retrospektive Ablf-:luf Entwicklung enthiit Donnerstag
Sprint: Time-Box: 30
4 Wochen Minuten
Review -
Meeting

Abbildung 49 Vereinfachter Ablauf in Quasi-Scrum

175

Wihrend der Entwicklung fiihrt das Team jeden Dienstag und Donnerstag
ein Daily Scrum von 30 Minuten durch, wo besprochen wird, was die ein-
zelnen Teammitglieder bisher getan haben und was sie in den nichsten Ta-
gen an Aufgaben bearbeiten wollen. Zusétzlich nimmt der Scrum Master die
Probleme des Teams auf und versucht diese zu 16sen. Ferner zeigt er mit
Hilfe von sogenannten BurnDown-Charts, wo das Team aktuell steht und
was es bisher geschafft hat. Nach der Entwicklung findet zusammen mit
dem Lenkungskreis ein Review-Meeting statt, in dem der Status nach dem
Sprint vorgestellt wird. Daran schlie3t sich die Retrospektive an, bei der die
Teammitglieder besprechen, was im Sprint gut und was schlecht gelaufen ist
sowie was sie im nachsten Sprint &ndern mochten. Im Original-Projekt fand
die Retrospektive erst ab Sprint 7 statt, im Beispiel wird sie von Beginn an
eingesetzt.

Im Folgenden soll dieses Grundszenario im Laufe der verschiedenen Sprints
mit Hilfe von MAPE-K4SEM angepasst werden. Fiir die Anpassungen wur-
den verschiedene Szenarien iiberlegt, die der Praxis entspringen. Eine einfa-
che, aber dennoch sehr wichtige Anpassung, die ausschlieBlich auf Instanz-
Ebene erfolgt, bezieht sich auf die Erkennung, wenn eine Person plotzlich
krank wird, Urlaub hat oder sogar das Unternehmen verlésst. Diese Person
muss zeitweise oder vollstindig im Team durch eine andere mit den ent-
sprechenden Féhigkeiten fiir die Aufgaben ersetzt werden. Eine andere
Moglichkeit kann sein, dass die Aufgaben der Person je nach Aufwand
durch das Team kompensiert werden konnen. Besonders wichtig ist, dass
die Teammitglieder iiber die Anderung der Verantwortlichkeit informiert
werden.

Auch wenn dies eine sehr einfache Erkennung und Anpassung wahrend der
Laufzeit der Software-Engineering-Methode und eher der Projektkontrolle
zuzuordnen ist, so ist diese Erkennung doch essentiell. In der Praxis kommt
dieser Fall, sei es durch Krankheit oder Urlaub, regelméBig vor. Wo Urlaub
im Voraus relativ gut einzuplanen ist, ist eine Vertretung bei Krankheit hin-
gegen wesentlich schwieriger ,,auf die Schnelle* zu finden.

Die Praxiserfahrung aus einem anderen Projekt hat gezeigt, wie wichtig
diese Erkennung bei grofen und verteilten Projekten ist. In diesen Projekten
geht schnell der Uberblick iiber die einzelnen Personen verloren und bei
Abwesenheit oder gar Verlassen des Unternehmens sind die Verantwort-
lichkeiten teilweise nicht mehr klar. In der Praxis ist es im angesprochenen
Projekt mehrfach vorgekommen, dass Personen aus einem anderen Team
das Unternehmen verlassen haben und die anderen Teams nicht dariiber
informiert wurden. Einmal hat ein solcher Fall das Team mehrere Tage ge-
kostet, um den neuen Ansprechpartner zu finden. Durch MAPE-K4SEM

176

hitte dies verhindert werden kdnnen. Deshalb soll diese einfache Anpassung
mit ins Beispiel aufgenommen werden.

Eine weitere Anpassung ist das mehrfach genannte Beispiel der Teamgrof3e
in Scrum. Auch wenn der Team-Split in Scrum vorgesehen ist, so wird er in
der Praxis nicht unbedingt vorgenommen. Auch im Praxisprojekt vergrof3er-
te sich das Team zeitweise, wurde aber nicht aufgeteilt, was zu Kommuni-
kationsschwierigkeiten und Verzdgerungen fiihrte. Aus diesem Grund wird
diese Anpassung ebenfalls mit aufgenommen.

Nachdem die Anpassung vorgenommen wurde, wird in einer ersten kom-
plexen Anpassung die Anpassung des urspriinglichen Quasi-Scrum-
Projektes mit Hilfe von MAPE-K4SESM durchgefiihrt. Um die insbesonde-
re nicht-funktionalen Eigenschaften wie Performanz besser erkennen und im
Product Backlog priorisieren zu konnen, wurde eine neue Phase, die ,,Kun-
den-Test-Tage*, mit zusdtzlichen Rollen in die Software-Engineering-
Methode eingefiihrt.

In einer weiteren komplexen Anpassung wird betrachtet, dass das Testen in
Scrum nicht immer optimal lduft. Auch wenn Testen einen wichtigen As-
pekt in den Agilen Methoden einnimmt, so ist es doch nur wenig und un-
strukturiert beschrieben. Dies kann zu unzureichenden Tests und spiteren
Fehlern in der Software fiithren. Durch das Hinzufligen von speziellen Tes-
taktivitdten kann dem entgegen gewirkt werden. Um ebenfalls eine kombi-
nierte Anpassung zu zeigen, werden im Beispiel diese Anpassung und die
Kunden-Test-Tage zu einer zusammengefasst. Wie dies zur Laufzeit mit
Hilfe von MAPE-K4SEM funktioniert, wird in Abschnitt 7.1.3.4 gezeigt.

Beendet wird die Evaluierung mit einer Planung ohne Planungsmoglichkeit,
dem bereits genannten Beispiel, dass ein aktueller Standard verwendet wer-
den soll.

7.1.3 Durchspielen des Beispiels

Das Grundszenario des Beispiels ist erldutert, ebenso was in den Sprints im
Laufe des Projektes angepasst werden soll. In den folgenden Abschnitten
wird nun erldutert, wie diese Anpassungen im Detail mit Hilfe von MAPE-
K4SEM aussehen. Zunichst werden dabei die ersten 6 Schritte — die Pre-
Work — durchgespielt und die Details fiir die einzelnen Beispiele werden
festgelegt und hergeleitet. Dabei ist zu erwédhnen, dass die Ziele, Regeln,
Metriken usw. hier im Beispiel nur auszugsweise fiir genau die einzelnen
Anpassungen festgelegt werden. Das Definieren und Herleiten aller Ziele,
Regeln und Metriken wiirde den Rahmen der Evaluierung sprengen.

Im weiteren Verlauf dieses Abschnittes werden fiir die verschiedenen An-
passungen die Schritte 7 bis 10 im MAPE-K durchlaufen und erldutert. Im

177

abschliefenden Abschnitt 7.2 werden die Pre-Work und die verschiedenen
Anpassungen soweit moglich mit der Praxis und den urspriinglichen Projek-
ten verglichen. Darauf aufbauend wird ein abschlieendes Fazit gezogen.

7.1.3.1 Durchspielen der Pre-Work am Beispiel

Bevor die einzelnen Schritte der Pre-Work fiir die verschiedenen Beispiel-
Anpassungen durchgespielt werden, muss zundchst erldutert werden, was
bereits vorab als gegeben angesehen wird.

Voraussetzungen und Festlegungen

Bevor die Pre-Work durchgespielt werden kann, gibt es verschiedene Ele-
mente, welche in der Wissensbasis gespeichert werden, die bereits vorhan-
den und gegeben sein miissen. Dies sind die Voraussetzungen, damit die z10
Schritte des MAPE-K4SEM durchgefiihrt werden konnen. Das wichtigste
Element, die eigentliche Software-Engineering-Methode muss gegeben und
mit allen Beteiligten abgestimmt sein. In diesem Beispiel wird wie ge-
schrieben als Software-Engineering-Methode die Agile Methode Scrum
verwendet.

Falls ndtig, muss vor Beginn die Software-Engineering-Methode mit Hilfe
von Tailoring fiir eine Situation angepasst worden sein oder sie wurde mit
Situational Method Engineering erstellt. In diesem Beispiel wurde die Soft-
ware-Engineering-Methode bereits angepasst. Um den MAPE-K4SEM nun
durchfiihren zu kénnen, muss die gegebene Software-Engineering-Methode
als Modell vorliegen. Die Modellierung kann mit den in Abschnitt 2.1.2
beschrieben Mdglichkeiten oder auch einer abgeschwichten Form davon
erfolgen. Wichtig ist, dass der Workflow und alle Aktivititen, Rollen, Arte-
fakte, Techniken usw. modelliert worden sind, damit die Anpassungen am
Modell entsprechend vorgenommen werden konnen.

Zusitzlich soll bereits eine Methoden-Basis mit verschiedenen Bausteinen
vorhanden und in der Wissensbasis abgespeichert sein. Diese Methoden-
Basis kann zum einen im Unternechmen von erfahrenen Methoden-
Engineern selbst entwickelt worden sein. Oder es konnen bereits vorhande-
nen Methoden-Basen, z.B. aus dem Internet oder von anderen Projekten,
iibernommen und abgespeichert werden. Dies ist wichtig, falls eine Anpas-
sung ohne Planungsmdglichkeiten geplant werden muss. Ist dies nétig, so
konnen verschiedene Bausteine aus der Methoden-Basis entnommen und
eingesetzt werden. Die Methoden-Basis ist um zusitzliche Bausteine erwei-
terbar. Die Methoden-Basis im Beispiel besteht aus Bausteinen der ver-
schiedenen Agilen Methoden mit zusidtzlichen Elementen aus den klassi-
schen Methoden.

178

Des Weiteren ist es notig, im Vorfeld den Anpassungszeitpunkt fiir die
Software-Engineering-Methode festzulegen. Wie bereits im vorherigen Ka-
pitel angesprochen ist dies wichtig, da eine SEM nicht zu jedem Zeitpunkt
angepasst werden kann. Der Anpassungszeitpunkt hingt zum einen von der
Software-Engineering-Methode und der Komplexitit des Projektes ab. Zum
anderen setzen sich alle Beteiligten vor Beginn des Projektes zusammen und
bestimmen gemeinsam einen Anpassungszeitpunkt, welcher im Laufe des
Projektes ebenfalls iiberdacht und angepasst werden kann.

In einem Scrum-Projekt bietet sich als erstes an, sehr komplexe Anpassun-
gen jeweils zu Beginn eines neuen Sprints durchzufiihren. In einem norma-
len Sprint wire filir die Planung einer entsprechenden Anpassung auf Typ-
Ebene nur wenig bis gar keine Zeit vorhanden, da solche Anpassungen nur
indirekt vorgesehen sind. Von daher wiirde es Sinn machen, die Software-
Engineering-Methode zu diesem Zeitpunkt anzupassen, vor allem wenn
kurze Sprints an der Tagesordnung sind. Besitzt der Sprint die Lange von 4
Wochen, so konnen ein bis mehrere Anpassungszeitpunkte zwischen den
einzelnen Sprints bestimmt werden. Der Abstand von Anpassungszeitpunk-
ten von weniger als einer Woche wiirde allerdings kaum Sinn machen, da
die Software-Engineering-Methode zu oft gedndert und Aufgaben unter
Umsténden nicht beendet werden wiirden.

Fiir dieses Beispiel wird der Anpassungszeitpunkt von zunichst alle 2 Wo-
chen festgelegt, zur Halbzeit und vor Beginn eines neuen Sprints. Durch die
Priorisierung der einzelnen Ziele kann es wie beschrieben dennoch vor-
kommen, dass einige Anpassungen sofort vorgenommen werden miissen, da
der Erfolg sonst gefdhrdet ist. Darunter wiirde beispielsweise die erste An-
passung bei Krankheit zéhlen.

Schritt 1 + 2: Definition und Priorisierung der Ziele

Sind das Projektteam und die Software-Engineering-Methode bestimmt, so
konnen der Methoden-Engineer und die entsprechenden Beteiligten mit dem
ersten Schritt des MAPE-K4SEM beginnen. Wie in Kapitel 5 beschrieben
beginnt das Team damit, die Ziele der Software-Engineering-Methode zu
definieren. Hier im Beispiel wird nur ein Auszug der Ziele beschrieben. Es
werden die Ziele definiert, die fiir die spdteren Anpassungen nétig sind und
es werden ein paar weitere mogliche Beispiele gegeben. Normalerweise
wird den verschiedenen Zielen noch zugeordnet, zu welchem Zeitpunkt sie
»aktiv sind. Hier im Beispiel sind alle Ziele immer aktiv und werden konti-
nuierlich tiberpriift. Ausnahme sind die Ziele, welche mit einem Meeting in
Verbindung stehen, beispielsweise die beiden folgenden Ziele bzgl. der Ori-
ginal-Methode oder die spiteren Ziele der angepassten Methode (ZAM2
und ZAM3). Diese sind nur zur Zeit des jeweiligen Meetings aktiv.

179

Zu Beginn wird wie in Abschnitt 5.1 beschrieben die angepasste Software-
Engineering-Methode Scrum mit ihren Eigenschaften betrachtet. Ziele, die
sich von den Eigenschaften und Regeln bei Scrum ableiten lassen sind bei-
spielsweise:

e ZOMI: Alle Meetings werden eingehalten und durchgefiihrt.
e ZOM2: Die Time-Boxes von Meetings werden eingehalten.

ZOM steht dabei fiir ,,Ziel Original-Methode*.

In diesem Projekt wird ein angepasstes Scrum verwendet und ein Len-
kungskreis anstatt des urspriinglichen Product Owners eingesetzt. Ziele, die
sich daraus und aus dem Original-Scrum ergeben sind beispielsweise:

e ZAMI: Der Lenkungskreis priorisiert die Anforderungen im Product
Backlog.

e ZAM2: Der Lenkungskreis schldgt die Aufgaben fiir einen neuen
Sprint und somit fiir das Sprint Backlog vor.

e ZAM3: Das Team sucht im Planning-Meeting die Aufgaben aus und
legt das endgiiltige Sprint Backlog fest.

e ZAM4: Der Scrum Master iibernimmt keine Entwicklungsaufgaben.

ZAM steht hier fiir ,,Ziel angepasste Methode*:

Im Beispiel sind gerade die Ziele wichtig, welche fiir die hier durchgefiihr-
ten Anpassungen relevant sind. Fiir die ersten Beispielanpassungen, dass
eine Ressource ausfillt (jemand wird krank) und dass die TeamgroBe in
Scrum eingehalten wird, lauten die Ziele:

e ZBAI1: Ressourcen optimal nutzen.
e ZBAZ2: Ressourcenverdnderungen abfangen.
e 7ZBA3: TeamgrofBe in Scrum einhalten.

ZBA steht dabei fiir ,,Ziel Beispielanpassung.

In der nichsten Anpassung geht es, wie im Prinzip in jedem Projekt ge-
wiinscht, darum, dass die Kundenzufriedenheit im Projekt hoch sein und die
Software mdglichst fehlerfrei sein soll. Gerade in Scrum ist es gewollt, dass
der Kunde friihzeitig Feedback gibt. Jedes ausgelieferte Produkt-Inkrement
ist prinzipiell einsatzfahig und kann vom Kunden eingesetzt werden. Der
Kunde kann des weiteren Feedback und Fehlermeldungen einstellen. Beides
wird anschlieBend in den néchsten Sprints umgesetzt bzw. die Fehler wer-
den behoben. Ein Sub-Ziel der Kundenzufriedenheit konnte dann heillen: Es
diirfen nur eine bestimmte Anzahl von negativen Meldungen oder Fehler-
meldungen vom Kunden vorhanden sein. AuBerdem sollen nicht-

180

funktionale Anforderungen wie Performanz und Usability ebenfalls mit be-
trachtet und eingehalten werden. Abgeleitete Ziele heillen dann:

e ZBAA4: Die Kundenzufriedenheit soll im Projekt hoch sein.
0 Es soll nur eine bestimmte Anzahl an Fehlermeldun-
gen/negativen Feedbackmeldungen vom Kunden vorliegen.
e ZBAS: Es diirfen keine kritischen Fehler (Blocker) vorliegen und
nur eine bestimmte Anzahl an nicht-funktionale Beschwerden.

Um die Kundenzufriedenheit und eine moglichst fehlerfreie Software ein-
halten zu konnen ist es ebenfalls wichtig, dass die Software ausreichend und
strukturiert getestet wird. In Scrum wird zwar erwihnt, dass Testen sehr
wichtig ist, aber es wird nicht vorgegeben, wie das Testen stattfinden soll.
Ferner wird im Original-Scrum erwidhnt, dass es keine expliziten Tester ge-
ben soll. Wichtig ist aber, dass zumindest alle Anforderungen getestet wer-
den. Als besonders wichtig werden in Scrum die Unit-, Integrations- und
User Acceptance-Tests angesehen. Daraus konnen sich beispielsweise als
Ziele ergeben:

e ZBAG: Das Testen wird strukturiert durchgefiihrt.

e ZBAT: Es gibt fiir die Software verschiedene Testarten und -stufen,

insbesondere Unit- und Integrationstests.

Sind wichtige Ziele fiir die Software-Engineering-Methode hergeleitet, so
wird zusdtzlich der Kontext des Projektes und des Unternehmens mit be-
trachtet. Dabei kann es fiir das Unternehmen wichtig sein, dass alle Normen
und Standards, beispielsweise im Testen eingehalten werden. Ebenso kann
es vorkommen, dass Anweisungen vom Projektleiter oder von der Unter-
nehmensleitung etc. eingehalten und umgesetzt werden miissen. Als Ziele,
ZK steht dabei fiir ,,Ziel Kontext®“, lieBen sich diese folgendermallen formu-
lieren:

e ZKI1: Die Standards fiir das Software-Testen sollen eingehalten wer-
den. Es soll immer der aktuellste Standard verwendet werden.

e ZK2: Die Anweisungen vom Unternehmen sollen eingehalten wer-
den.

e ZK3: Anweisungen vom Projektleiter sind einzuhalten.

In einem weiteren Schritt, der teilweise direkt mit der Zieldefinition erfol-
gen kann, werden die Rahmenbedingungen oder mogliche Abweichungen
fiir die Ziele festgelegt. Dies ist wichtig fiir die weiteren Schritte und zur
Ableitung der Analyseregeln. Fiir die Ziele der Original-SEM werden nur
fiir das dritte Ziel die Time-Boxen der verschiedenen Meetings festgelegt.
Die anderen beiden Ziele sind eindeutig und brauchen keine weiteren Rah-
menbedingungen. ZOM2 wiirde dann lauten:

181

ZOM2: Die Time-Boxes von Meetings werden eingehalten. Die
Time-Boxes fiir einzelnen Meetings sind:

0 Planning-Meeting: 1 Tag = 8 Stunden
Daily Scrum am Dienstag und Donnerstag: 30 Minuten
Review-Meeting: 4 Stunden
Retrospektive: 1 Stunde
Gesamter Sprint: 4 Wochen

O 0 oo

Hauptséchlich sollen hier fiir die Beispiele die Rahmenbedingungen festge-
legt werden. Fiir das erste Beispiel ist es wichtig, dass die Teamgréfle vom
Original-Scrum eingehalten wird. Dabei soll jede Ressource im Team, hier
die Ressource Person entsprechend genutzt und Verdnderungen sollen ge-
meldet werden.

ZBA1: Die Ressource Person soll optimal genutzt werden.

ZBA2: Jede Verdnderung der Ressource Person soll iiberpriift wer-
den. Bei einer Verdnderung miissen die Aufgaben der Person, die im
aktuellen Sprint zu erledigen sind, weiterhin bearbeitet und abge-
schlossen werden kdnnen.

ZBA3: Die TeamgroBle von Scrum soll eingehalten werden. Ein
Team soll nicht groBer als neun aber auch nicht kleiner als drei Per-
sonen sein.

Fiir die Ziele ZBA4 und ZBAS miissen die Anzahl der Fehlermeldungen
und der Feedbackmeldungen etc. als Rahmenbedingungen bestimmt wer-
den. Fiir das Beispiel wiirden sie folgendermallen lauten:

ZBA4: Die Kundenzufriedenheit im Projekt soll hoch sein. Es sollen
maximal 10 Fehlermeldungen/negative Feedbackmeldungen vom
Kunden vorliegen.

ZBAS: Es diirfen keine besonders kritischen Fehler, sogenannte Blo-
cker, und maximal 3 kritische Fehler vorliegen. Ebenfalls diirfen
maximal nur 2 nicht-funktionale Beschwerden vorliegen. Die An-
zahl der Schonheitsfehler ist nicht begrenzt.

Fiir die letzten zwei Beispielziele kdnnen als weitere Rahmenbedingungen
festgelegt werden:

ZBAG6: Das Testen wird strukturiert durchgefiihrt, jede Person im
Team soll seine eigenen Aufgaben testen.

ZBAT7: Es gibt fiir die Software Unit-Tests und Integrationstests. Je-
de Aufgabe besitzt einen Unit-Test und es wird pro Sprint ein Integ-
rationstest durchgefiihrt. Weitere Teststufen und Testarten werden
nur durchgefiihrt, wenn nétig.

182

Fiir die Kontext-Ziele wird keine Definition von weiteren Rahmenbedin-
gungen bendtigt. Nachdem die Ziele bestimmt sind, konnen diese nun von
den Beteiligten entsprechend priorisiert werden. Hier im Beispiel wird die
Einstufung nach dem Fehlerprinzip und eine Abstufung von 1 bis 5 gewihlt,
wobei 1 fiir Blocker steht, das heiit ohne dieses Ziel geht es nicht und eine
Anpassung muss sofort umgesetzt werden. Hingegen steht 5 fiir die nied-
rigste Stufe, das heifit die Anpassung gefdhrdet den Erfolg kaum oder nur
sehr wenig und muss nicht direkt umgesetzt werden. Auch wenn nur fiinf
Abstufungen vorhanden sind und somit verschiedene Ziele dieselbe Prioritét
haben konnen, wird hier davon ausgegangen, dass nur duferst selten der Fall
vorkommt, das zwei Ziele mit derselben Prioritit gleichzeitig getriggert
werden.

Da fiir den weiteren Verlauf in erster Linie die Ziele der Beispiele ZBA1 bis
ZBA7 sowie von ZK1 wichtig sind, werden nur diese Ziele priorisiert und
im weiteren Verlauf fiir die anderen Schritte verwendet.

Vor allem bei der Anderung einer Ressource beispielsweise durch Krank-
heit, Verlassen des Unternechmens oder dhnlichem, ist es wichtig, dass sofort
darauf reagiert wird, damit mogliche Engpasse oder nicht erledigte Aufga-
ben abgefangen werden. Deswegen bekommt dieses Ziel die Prioritdt 1.
Damit hdngt zusammen, dass die Ressourcen optimal genutzt werden, es ist
aber nicht ganz so essentiell wie ZBA2 und bekommt von daher die Prioritét
2. Dass die TeamgroBe eingehalten wird, ist dem Projektteam wichtig und
wird hier mit einer mittleren Prioritét (3) bewertet.

Die Kundenzufriedenheit in ZBA4 ist ebenfalls sehr wichtig, aber kein Blo-
cker und bekommt hier die Prioritit 2 ebenso wie das Ziel ZBAS. Das Tes-
ten ist beim Team zwar wichtig, wird aber eher als eine mittlere Kategorie,
jedoch nicht als nicht sehr wichtig angesehen. Von daher bekommt ZBA6
die Prioritdt 3 und ZBA7 die Prioritéit 4. Da die Einhaltung von Normen und
Standards im Beispiel-Unternehmen als sehr wichtig angesehen wird, wird
hier die Prioritdt 1 vergeben.

Als eine niedrige Prioritét (5) konnte beispielsweise das Einhalten der Time-
Boxes angesehen werden. Hingegen wiirde das Einhalten von Anweisungen
des Projektleiters oder der Unternehmensleitung in die Kategorie 2 oder
sogar 1 fallen. Fiir die sieben Ziele der Beispiele und des Kontext-Ziels
ergibt sich somit folgende Priorisierung:

e 7ZBA1:Prio2
e ZBA 2: Prio 1 (wird immer angepasst)
e ZBA3:Prio3
e 7ZBA4:Prio2

183

e 7BA 5:Prio2
e 7BA 6:Prio3
e 7BA 7:Prio4
e ZK 1:Priol

Sind die beiden ersten Schritte durchgefiihrt und alle Ziele sowie ihre Priori-
sierung bestimmt, kdnnen nun wie in den Abschnitten 5.3 bis 5.7 beschrie-
ben die weiteren noétigen Informationen fiir die MAPE-K-Feedbackschleife
hergeleitet werden.

Schritt 3 + 4: Ableitung der Analyseregeln und Planungsmoglichkeiten

Fiir die Ableitung der Analyseregeln und Planungsmoglichkeiten sind die
Schritte 3 und 4 eng miteinander verkniipft. Wie in Abschnitt 5.4 beschrie-
ben besteht eine Analyseregel aus einem Wenn- und einem Dann-Teil. Der
Dann-Teil beschreibt dabei die Aktion, welche je nach Analyse-Ergebnis
ausgefiihrt werden soll und beinhaltet dabei je nach Regel Varianten der
Planungsmoglichkeiten

Zunachst wird aber der Wenn-Teil abgeleitet, also was iiberpriift werden
soll, damit das Ziel weiter eingehalten werden kann. Fiir das Ziel ZBA1
wird {iberpriift, ob alle Ressourcen, in diesem Fall Personen, genutzt wer-
den, das heif3t ob sie in einem aktuellen Projekt sind. Sind alle Personen in
einem Projekt und besitzen Aufgaben, passiert nichts. Ansonsten werden sie
einem Projekt oder ihnen werden Aufgaben zugeordnet. Nach Abschnitt 5.4
wiirden die beiden Regeln dann lauten:

a) RZBAI: Wenn Person Y 0 Aufgaben zugeordnet, dann Planung
(Ordne Aufgaben nach Fahigkeiten zu)
b) RZBAI1: Wenn Person Y Aufgaben zugeordnet, dann Schritt 7

Bei ZBA2 hingegen muss iiberpriift werden, ob eine Anderung an den Res-
sourcen stattgefunden hat, z.B. dass eine Person krank geworden ist oder
das Unternehmen verlassen hat. Um dies zu ermitteln, konnte jeder Person
ein Status im Team zugeordnet sein beispielsweise ,,aktiv, ,,Urlaub®,
krank®, geloscht®. Andert sich dieser Status, sind mogliche Planungs-
schritte, dass entweder die Aufgaben je nach Kapazitit vom Team iiber-
nommen werden oder dass eine neue Person mit den entsprechenden Fihig-
keiten eingesetzt wird.

Das Ubernehmen der Aufgaben oder Einsetzen einer Person sollte je nach
Ausfall der zu ersetzenden Person geplant werden. Ist beispielsweise eine
Person nur 3 Tage krank, braucht dafiir typischerweise keine neue Person
eingesetzt werden (Variante 1). Ist eine Person 3 Wochen im Urlaub, miis-
sen die Aufgaben entweder gut vom Team geplant oder von einer anderen

184

Person iibernommen werden (Variante 2). Fillt eine Person vollstindig weg,
muss diese ersetzt werden (Variante 3). Daraus wiirden sich folgende Re-
geln ergeben:

a) RZBA2: Wenn Statusidnderung == krank & Fehltage <= 5 dann
Planungsmdglichkeit Variante 1

b) RZBA2: Wenn Statuséinderung == krank oder Urlaub & Fehltage
>5 dann Planungsmoglichkeit Variante 2

c) RZBA2: Wenn Statusdnderung == Person geloscht dann Pla-
nungsmoglichkeit Variante 3

Wenn eine Person nicht anwesend ist, wiren ihr somit keine Aufgaben zu-
geordnet, was in diesem Fall korrekt ist. Von daher muss die Regel aus dem
vorherigen Fall angepasst werden und wiirde lauten:

e RZBAI12: Wenn Person Y 0 Aufgaben zugeordnet & Status ==
aktiv, dann Planung (Ordne Aufgaben nach Fihigkeiten zu)

In allen drei Varianten ist es wichtig, dass in der Planungsphase die Aufga-
ben der abwesenden Person bekannt sind und aus der Wissensbasis ausgele-
sen werden miissen. Ferner miissen in der Planungsphase die Skills der ein-
zelnen Personen bekannt sein, ebenso wie deren Auslastung. Dies ist wich-
tig, damit der richtigen Person die neuen Aufgaben zugewiesen werden
kdnnen.

In Schritt 4 sollen, soweit moglich, bereits im Vorfeld Konfliktmoglichkei-
ten zu den Zielen analysiert und gegebenenfalls Losungen aufgezeigt wer-
den. Hier im Beispiel muss bei der Verteilung der Aufgaben darauf geachtet
werden, dass es beispielsweise keinen Konflikt mit Ziel ZOM1 gibt, dass
der Scrum Master keine Entwicklungsaufgaben tibernehmen darf. Fillt ein
Mitglied aus dem Team aus, so darf der Scrum Master dessen Aufgaben
nach dieser Regel nicht iibernehmen. Diese Konflikt-Regel wird in der Wis-
sensbasis fiir die Plan-Phase gespeichert.

ZBA3 spiegelt Teamgrofe in Scrum wider. Die Analyseregeln und Pla-
nungsmoglichkeiten wurden dabei bereits in den Abschnitten 5.4. bzw. 5.5.
beschrieben und lauten:

a) RZBA3: Wenn Teamgrofe > 9, dann Planungsmdglichkeit Vari-
ante 1 (,,Team zu grof3*, aktuelle Teamgrofe x)

b) RZBA3: Wenn Teamgrofle < 5 dann, Planungsmdoglichkeit Vari-
ante 2 (,,Team zu klein, aktuelle Teamgrof3e y)

¢) RZBA3: Wenn Teamgrofle 3 <= Teamgrofe <=9, dann Schritt 7

185

Wie bereits in Abschnitt 5.4 beschrieben besagt die Planungsmdglichkeit
bei einem zu groBen Team, dass ein Team-Splitting durchgefiihrt und ein
neues Meeting Scrum of Scrums eingefiihrt werden soll. Da in diesem Pro-
jekt das Daily Scrum angepasst wurde und nur an 2 Tagen stattfindet, wird
hier die Planungsmoglichkeit ebenfalls entsprechend angepasst. Das Scrum
of Scrums soll ebenfalls nur an zwei Tagen stattfinden und zwar um einen
Tag verschoben zu den Daily Scrums, um eine gute Kommunikation zwi-
schen den Teams zu ermdglichen. Diese Anweisung spiegelt sich nachher in
Schritt 6 wider.

Die nichsten Ziele fiir die komplexeren Beispiel ZBA4 bis ZBA7 sind alle
relativ dhnlich und héngen miteinander zusammen, da sie alle den Bereich
Kundenzufriedenheit bzw. das Testen betreffen. Gerade die Kundenzufrie-
denheit ist in Projekten besonders wichtig. Ein Vorteil bei Scrum ist, dass
die Moglichkeit frithzeitig Feedback zu bekommen gegeben ist. Von daher
ist es hier im Projekt dem Kunden mdglich, Feedback tiber Fehlermeldun-
gen oder allgemeine Meldungen zu geben, z.B. als Eintrag zu einem Product
Backlog. Bei Scrum soll nach jedem Sprint ein fertiges Produkt-Inkrement
ausgeliefert werden. Je nach Unternehmen wird dieses Inkrement schon
eingesetzt oder nicht. Anhand dieser Meldungen ist es nach den Zielen
ZBA4 und ZBAS moglich, den entsprechenden Wenn-Teil festzulegen.

Um die Kundenzufriedenheit mit Hilfe einer Anderung der Software-
Engineering-Methode zu beheben, kann es verschiedene Mdglichkeiten ge-
ben. Zum einen kann ein Methoden-Engineer aus seiner Erfahrung schop-
fen, was in einer gegebenen Situation als Anpassung moglich ist, um die
Situation zu verbessern (Variante 1). Zum anderen ist es in diesem Ansatz
moglich, die Planungsmoglichkeiten ,,auflen vor* zu lassen und die entspre-
chende Anpassung je nach den angegebenen Werten erst in der Plan-Phase
zu planen (Variante 2).

Hier im Beispiel weill der Methoden-Engineer, dass in Scrum der Fokus
nicht unbedingt auf den nicht-funktionalen Anforderungen sondern mehr
auf den Funktionen liegt. Von daher tauchen diese Anforderungen nicht
unbedingt im Product Backlog und somit im Sprint Backlog auf, weil dem
Kunden die Wichtigkeit nicht bewusst ist [EG09]. Tauchen nun vermehrt
negative Meldungen (Regel ZBA4) nach der Auslieferung in Verbindung
mit nicht-funktionalen Anforderungen (Regel ZBAS) auf, so muss sicherge-
stellt werden, dass die Betrachtung von nicht-funktionalen Anforderungen
verstiarkt wird. Ferner kann es sinnvoll sein, den Kunden zu Anfang mit
einzubinden, damit die Fehler nicht erst im Produktionsbetrieb auftauchen.
Dies konnte beispielsweise dariiber erfolgen, dass der Kunde am Ende fiir
einen User Acceptance Test (UAT) direkt mit eingebunden wird.

186

Die Regeln fiir die Ziele ZBA4 und ZBAS werden teilweise zusammenge-
fasst. Liegt ein Blocker vor, muss dieser zwar behoben, aber die Software-
Engineering-Methode nicht sofort angepasst werden. Es muss also nur auf
der Instanz-Ebene eine Aufgabe hinzugefiigt werden, damit der Blocker
sofort angepasst wird. Summieren sich die Fehler allerdings oder treten &hn-
liche Fehler immer wieder auf, so kann dies auf eine Anpassung hindeuten.
Von daher kann in einer Regel fiir RZBAS die Zeit bzw. Historie der Mel-
dungen eine Rolle spielen. Am Ende ergeben sich daraus die Regeln:

a) RZBA4: Wenn Anzahl Fehlermeldungen/negatives Kundenfeed-
back < 10, dann Monitor

b) RZBA45: Wenn Anzahl Fehlermeldungen/negatives Kunden-
feedback >10 & Meldungen nicht-funktionale Eigenschaften >=
2, dann Planungsmoglichkeit Variante 1 (Kunden fiir UAT ein-
binden)

c) RZBA45 Wenn Anzahl Fehlermeldungen/ negatives Kunden-
feedback > 10 & Meldungen nicht-funktionale Eigenschaften <
2, dann Plan (Anzahl Blocker, kritischer Fehler, Schonheitsfeh-
ler)

d) RZBAS: Wenn Anzahl Blocker > 0 oder kritische Fehler > 3,
dann Planungsmoglichkeit (Fehler sofort beheben)

Die Ziele ZBA6 und ZBA7 beziehen sich nicht auf die Kundenzufrieden-
heit, sondern auf das Testen selbst. Da Fehlermeldungen und Testen aller-
dings sehr eng miteinander verbunden sind, ist zu liberpriifen, ob hier Kom-
binationsmdéglichkeiten vorliegen. Fiir das Ziel ZBA6 muss zunidchst iiber-
prift werden, ob jeder Entwickler seine eigene Aufgabe testet, z.B. iiber
Unit-Tests oder einen User Acceptance Test. Es sollte somit pro Aufgabe
jeweils ein Test zur Verfligung stehen, der vom Entwickler durchgefiihrt
wird. Ist dies nicht der Fall, wird der Entwickler vom System angewiesen,
einen Testfall zu erstellen.

Fiir das Ziel ZBA7 wird zunéchst tiberpriift, ob jede Aufgabe einen Unit-
Test besitzt, was sich mit dem Ziel ZBA6 kombinieren ldsst. Ferner wird
analysiert, ob im Sprint ein Integrationstest geplant ist. Zusétzlich lisst sich
das Ziel ZBA7 hier sowohl mit dem Ziel ZBAS, aber auch mit dem Ziel
ZBA4 kombinieren, um zu iiberpriifen, ob eine weitere Teststufe oder Test-
art notwendig ist. Dies konnen beispielsweise Inkrement- oder Systemtests
sein. Gibt es mehr Fehler als den vorgegebenen Blocker oder kritischen
Fehler, die regelmédBig wiederkehren, sollten mehr Tests durchgefiihrt wer-
den. Welche Art von Tests notwendig ist, miisste genauer in der Plan-Phase
geplant werden (Variante 1). Ist das Kundenfeedback regelmiBig negativ,
sollte ein allgemeiner Inkrementtest durchgefiihrt werden (Variante 2).

187

Zusitzlich kann sich bei den Planungsmdglichkeiten ergeben, um ZBA6
und ZBA7 zu erfiillen und das Testen strukturierter durchzufithren sowie
mehr Teststufen mit einzubinden, dass ein bis zwei explizite Personen als
Tester und/oder Test-Designer notig sind. Auch wenn Scrum diese definitiv
nicht vorsieht, zeigt die Erfahrung, dass der Einsatz sehr sinnvoll ist und in
Scrum mit eingebunden werden kann [GG12]. Deswegen soll dies im Bei-
spiel ebenfalls mit in die Software-Engineering-Methode bei Bedarf einge-
bunden werden.

Als Regeln wiirden sich ergeben:

a) RZAB67: Wenn jede Aufgabe Unit-Test vom Entwickler besitzt,
dann Monitor

b) RZAB67: Wenn Aufgabe keinen Unit-Test besitzt, dann Plan
(Benachrichtige Entwickler Erstellung Tesfall)

¢) RZAB7: Wenn Sprint keinen Integrationstest besitzt, dann Plan
(plane Integrationstest)

d) RZBAkombiniert: Wenn Blocker >= 0 oder kritische Fehler >= 3
& Fehlerhistorie > 2, dann Planungsmdglichkeit Variante 1 (zu-
sédtzliche Tests, zusitzliche Personen)

e) RZABkombiniert: Wenn Kunden-Feedback > 10 & Anzahl
Kundenfehler-Historie > 2, dann Planungsmdglichkeit Variante 2
(Inkrementtest)

Fiir das Kontext-Ziel ZK1 muss analysiert werden, ob der aktuelle Test-
Standard verwendet wird oder nicht. Dafiir wird die Versionsnummer ver-
glichen und ist diese hoher (also neuer) als die aktuelle Versionsnummer, so
soll die Software-Engineering-Methode an den neuen Standard angepasst
werden. Da es nicht mdglich ist vorherzusehen, welche Anderung ein neuer
Standard mit sich bringt, muss die Plan-Phase ohne vorherige Planungsmog-
lichkeiten gestartet werden. In der Plan-Phase muss dafiir der neue Standard
ausgelesen und hinsichtlich der Anderungen mit dem alten Standard vergli-
chen werden. Die Regel wiirde also lauten:

e RZKI1: Wenn Versionsnummer Test-Standard > als Versionsnum-
mer aktueller Test-Standard, Dann Plan (alter Test-Standard, neuer
Test-Standard)

Die Analyseregeln und Planungsmoglichkeiten fiir die verschiedenen Ziele
sind nun abgeleitet, ebenso mogliche Konflikt- und Kombinationsmdoglich-
keiten bedacht. Somit kann zu Schritt 5 und Schritt 6 libergegangen werden.
In diesen Schritten werden die Metriken sowie die konkreten Ausfiihrungs-
regeln und Benachrichtigungen abgeleitet.

188

Schritt 5: Ableitung der Metriken

Die Analyseregel und die Planungsmdoglichkeiten sind bestimmt. Nun kon-
nen zunéchst die Metriken fiir die einzelnen Regeln und im néchsten Schritt
die konkreten Ausfithrungsregeln und Benachrichtigungen abgeleitet wer-
den. Sind in diesem Schritt die einzelnen Metriken bestimmt, werden fir die
spiatere Monitor-Phase in einem Subschritt die Aufbereitungsregeln be-
stimmt. Dafiir wird wie in Abschnitt 5.6 beschrieben die Herleitung prak-
tisch riickwérts vorgenommen, um den entsprechenden Wert fiir die Analy-
se zu erhalten.

Fiir die Regel RZBA1 (a und b) muss gemessen werden, wie viele Aufgaben
einer Person zugeordnet sind, die Metrik wire also #Aufgabe/ Person Y. Fiir
die beiden Regeln entspricht der aufbereitete Wert dem gemessenen Wert.

Fiir die Regeln RZBA?2 (a,b,c) ist es notig, den aktuellen Status einer Person
zu messen. Jeder Person im Unternehmen ist dazu in beispielsweise einer
,Personenliste” der Status zugeordnet, ob diese krank, im Urlaub, aktiv oder
geloscht ist (ehemalige Mitarbeiter). Dieser Status wird entsprechend ausge-
lesen. Die Metrik wiirde dann lauten Status/ Person Y. Zusitzlich miissen
fiir die Regel RZBA?2 (a und b) die Fehltage ermittelt werden. Ist die Person
aktiv, sind die Fehltage = 0. Die Metrik wiirde hier lauten #Fehltage/ Person
Y. Die Autbereitung fiir die Regel RZBA2 (c) ist die Metrik beziiglich des
Status. Fiir die anderen beiden Regeln von RZBA2 werden die beiden Met-
riken zusammengefasst, da beide Werte fiir die Analyse bendtigt werden.
Uberliefert wird also die Kombination (Status & Fehltage)/Person Y.

Fiir die Regel RZBA12 greifen die beiden Metriken Status/ Person Y und
#Aufgaben/ Person Y. Die Monitor-Phase wiirde also am Ende liefern (Sta-
tus & #Aufgaben)/Person Y.

Die Metriken fiir die Ziele RZBA3 (a — ¢) wurden bereits in Abschnitt 5.6
im ersten Beispiel beschrieben. Hier ist die Metrik #Personen/ Team. Die
Aufbereitung fiir die TeamgroBe lautet dann entsprechend Teamgrofle =
#Personen/ Team.

Fiir die nichsten Regeln RZBA4, RZBAS und RZBA45 wird das Feedback
des Kunden und seine Fehlermeldungen, genauer die Art der Fehlermeldung
(nicht-funktional, Blocker, kritisch, Schonheitsfehler), ermittelt. Dafiir wird
im Product oder Sprint Backlog oder auch in einem Fehlermanagement-
System zunichst vermerkt, ob eine Meldung vom Kunden oder vom Team
ist. Zusétzlich wird fiir eine Fehlermeldung eingestellt, ob diese funktional
oder nicht-funktional ist sowie die Kritikalitdt des Fehlers. Diese Werte er-
geben dann die Metriken und spéter die entsprechenden Sensoren.

189

Im Detail lauten die Metriken jeweils:

e RZAB4 (a): #Fehlermeldungen/ negatives Feedback/ Kunde (damit
ist das gesamte Feedback iiber den Kunden gemeint, nicht eine ein-
zelne Person vom Kunden)

e RZBAA45 (b und c): #Fehlermeldungen/ negatives Feedback/ Kunde
und #Fehlermeldungen nicht-funktionale Eigenschaften

e RZBAS (d): #Blocker, #kritische Fehler, #Schonheitsfehler

Fiir die Aufbereitung ist in Fall a) der gemessene Wert gleich dem aufberei-
teten Wert. Fiir die Félle b) und c) werden die Werte wieder zusammen
iiberliefert als #Fehlermeldung/ negatives Feedback pro Kunde + #Fehler-
meldung nicht-funktionale Eigenschaften. Fiir den letzten Fall wird fiir die
Analyse nur das Tuple (#Blocker, #kritische Fehler) ilibergeben, da die
Schonheitsfehler nicht relevant sind.

Die Ziele RZBA6 und RZBA7 beschiftigen sich mit den Testarten, welche
ausgelesen werden miissen. Fiir RZBA67 muss fiir jede Aufgabe ausgelesen
werden, ob liberhaupt ein Unit-Test vorliegt und ob dieser vom entspre-
chenden Entwickler ist. Es muss also in der Aufgabe stehen, wem die Auf-
gabe zugeordnet ist (Verantwortlicher Aufgabe) und wer den Unit-Test er-
stellt hat (Verantwortlicher Unit-Test). Die einzelnen Metriken wiirden lau-
ten #Unit-Test/ Aufgabe Y; Verantwortlicher Aufgabe Y und Verantwortli-
cher Unit-Test Aufgabe Y. Fiir die Aufbereitung wiirde jeweils das Triple
dieser drei Werte zuriickgegeben (#Unit-Test/ Aufgabe Y & Verantwortli-
cher Aufgabe Y & Verantwortlicher Unit-Test Aufgabe Y). Fiir RZBA7
muss der Wert #Integrationstest/ Sprint ausgelesen werden. Dieser Wert ist
auch der Wert fiir die Aufbereitung.

Fiir die beiden kombinierten Ziele muss zusitzlich die Fehlerhistorie der
jeweiligen Fehler ausgelesen werden. Jeder Fehler wird in der Historie ge-
speichert. Tritt derselbe Fehler oder ein sehr &hnlicher Fehler erneut auf, so
wird die Historie um +1 hochgezihlt. Dies muss zum Teil von den Team-
mitgliedern manuell erfolgen, insbesondere wenn die Fehler nur sehr dhn-
lich sind. Dasselbe gilt fiir die Fehlerhistorie von Kundenmeldungen. Wird
beispielsweise ein Performanz-Fehler vom Kunden gemeldet, so wird dieser
in der Historie abgespeichert. Wird ein Fehler derselben Art vom Kunden
gemeldet, so wird die Historie um +1 nach oben gezihlt. Dasselbe gilt auch
fiir die funktionalen Fehler.

Daraus ergeben sich an weiteren zu messenden Werten die #Fehler X in
Historie und Anzahl Fehler Y in Kundenhistorie. Fiir die Aufbereitung wiir-
de in Fall d) das Triple (#Blocker, #kritische Fehler, #Fehler X in Historie)

190

zuriickgeliefert. In Fall ¢) wire es hingegen das Tuple (#Fehlermeldungen/
negatives Feedback/ Kunde, #Fehler Y Kundenhistorie).

Die Metrik fiir das Kontext-Ziel RZK1 ist die Versionsnummer des Test-
Standards. Dieser muss nur von einer Webseite oder aus einem manuellen
Eintrag in einer Liste ausgelesen werden. In der Aufbereitung wird diese
Versionsnummer auf ,,aktueller Test-Standard = Versionsnummer* gesetzt.

Um die Werte fiir die einzelnen Metriken zu messen, miissen diese entspre-
chend in die Sensoren umgewandelt werden. Wie im vorherigen Beispiel
gezeigt, muss die Versionsnummer des Test-Standards von der entsprechen-
den Seite oder aus einer entsprechenden Liste ausgelesen werden. In diesem
Beispiel wird einmal am Tag die Versionsnummer auf der Webseite gepriift.

Fiir die Historien miissen diese entsprechend jeweils in der Wissensbasis
vorliegen und werden manuell vom Scrum Master befiillt. Die Fehlerhisto-
rien werden jeweils hochgezéhlt. Fiir die Kritikalitdt der Fehler ist eine ent-
sprechende Einstellung im Fehlermanagementsystem vorhanden, die ausge-
lesen werden kann. Ebenso ist ein Eintrag moglich, ob es sich um einen
funktionalen oder nicht-funktionalen Fehler handelt. Ferner gibt es einen
Verantwortlichen fiir die Fehlermeldung, fiir den zusétzlich vermerkt ist, ob
dieser ein Kunde oder ein Teammitglied ist. Die Fehlermeldungen, die pro
Aufgabe eingestellt werden, sind in diesem Beispiel gleichzeitig das Feed-
back des Kunden.

Im Sprint Backlog sind die Aufgaben vorhanden und fiir jede Aufgabe ist
ein Verantwortlicher eingetragen, der entsprechend ausgelesen werden
kann. Diesen Aufgaben und dem ganzen Sprints konnen Tests zugeordnet
werden. Die Tests erhalten zusitzlich den Eintrag, welche Art sie sind, z.B.
Unit-Test, Integrationstest, Performanz-Test usw. AuBlerdem erhalten die
Tests jeweils einen Verantwortlichen.

Wie schon in Abschnitt 6.2.1. erldutert sind fiir das Ziel RZBA3 die Team-
mitglieder in einer Liste eingetragen. Dies kann einerseits eine Liste mit den
Namen der Personen, welche in einem Team sind, sein oder es gibt im Un-
ternehmen eine vollstindige Personenliste, in der es fiir jede Person einen
Eintrag gibt, welchem Team sie zugeteilt ist.

Fiir die Regeln RZBA1 und RZBA2 gibt es wie eingangs beschrieben je-
weils einen Eintrag zum Status der Person sowie einen Eintrag zu ihren
Fehltagen. Somit sind die Sensoren fiir die Beispielziele entsprechend vor-
handen.

191

Schritt 6: Ableitung der Ausfithrungsregeln und Benachrichtigungen

Auf der einen Seite sind nun die Metriken erstellt, um die Werte fiir die
Analyse zu bekommen. Auf der anderen Seite miissen noch die konkreten
Ausflihrungsregeln und Benachrichtigungen abgeleitet werden, um in der
Execute-Phase die Anderungen vornehmen zu kénnen. Die Ableitungen aus
den Planungsmoglichkeiten ergeben die in Abschnitt 5.7 beschriebenen
Regeln zur Anpassung des Modells der Software-Engineering-Methode.
Dies sind die Anpassung des Modells, Anderung der Verantwortlichkeiten,
also der Stakeholder und die Benachrichtigung an die entsprechenden Betei-
ligten. In diesem Abschnitt werden nun die Ausfiihrungsregeln und Benach-
richtigungen beschrieben, die im ndchsten Abschnitt fiir die verschiedenen
Anpassungen bendtigt werden.

Fir den einfachen Fall nach RZBA1 bzw. RZBA12, dass einer Person neue
Aufgaben zugeordnet werden, die entsprechend ihrer Féhigkeiten in der
Planung ausgewdhlt wurden, wiirden die Ausfiihrungsregeln und Benach-
richtigung lauten:

1. Anpassung Modell (keine Anpassung), da die Aufgaben bereits be-
stehen, nur noch keinen Verantwortlichen besitzen, der Status des
Stakeholders wird gedndert

2. Anderung Stakeholder (Person Y, Aufgabe Y, hinzufiigen); (Person
Y, Aufgabe Z, hinzufiigen);

3. Benachrichtigung Beteiligte (Person Y, neue Aufgaben);

Dieser einfache Fall erfordert zwar keine Anpassung der Software-
Engineering-Methode aber, es ist zu sehen, dass hier mit dem Ansatz eben-
falls Anderungen auf der Instanz-Ebene ausgefiihrt werden konnen. Ahnlich
gelagert ist der Fall der Anpassung der Regel RZBA2. Die Regel, dass die
Aufgaben im Team verteilt werden, wenn eine Person flir ein paar Tage
ausfillt, gleicht denen im vorherigen Fall. Der Unterschied ist an dieser
Stelle, dass unter 2. nur eine Person einer Aufgabe hinzugefiigt wird, wih-
rend gleichzeitig die aktuelle Person geldscht wird. Da der Status der Person
nicht aktiv ist, reicht es, nur den Beteiligten mit den neuen Aufgaben zu
benachrichtigen.

Auch wenn eine Person das Unternehmen verldsst, also geldscht ist, sehen
die Regeln im Prinzip gleich aus. Denn hier werden einer neuen Person alle
Aufgaben der vorherigen Person zugeordnet. In allen drei Féllen ist aller-
dings ein Konflikt zu beachten: Fillt ein Teammitglied aus, diirfen die Auf-
gaben nicht dem Scrum Master zugeordnet werden. Féllt der Scrum Master
aus, diirfen seine Aufgaben keinem Teammitglied zugeordnet werden. Bei-
de Falle wiirden gegen Ziel ZOM1 verstof3en.

192

Trifft die Regel RZBA3 mit dem Fall das das Team zu grof} ist zu, so erfolgt
die Anpassung wie in Schritt 5.6. beschrieben nach den folgenden Regeln
und Benachrichtigungen:

1. Anpassung Model (Hinzufiigen Team 2, Andern Team 1 (Anzahl
Personen), Hinzufiigen Meeting (Scrum of Scrums, nach Daily
Scrum), Andern Product Backlog (neue Zuordnung Aufgaben)

2. Anderung Stakeholder (Teammitglied 1, Rolle (Team 1), hinzufiigen
(fir alle Teammitglieder durchfiihren); Scrum Master, Meeting
(Scrum of Scrums), hinzufiigen, Teammitglied 1-2 (Team 1), Mee-
ting (Scrum of Scrums), hinzufligen; usw.

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivitdt (Scrum
of Scrums), Teammitglieder 1 — 10, (neue Aktivitdt, neue Teamzu-
ordnung, neue Aufgaben Product Backlog)

Da die Anpassung, dass das Team zu klein ist, in diesem Beispiel nicht vor-
kommen soll, werden die Ausfiihrungsregeln hier nicht beschrieben.

Wird nun nach Regel RZBA45 (Fall b) festgestellt, dass der Kunde fiir User
Acceptance Tests mit eingebunden werden soll, so wiirde die Planungsmdog-
lichkeit vorsehen, dass dies am Ende des Sprints iiber eine eigene Phase von
ca. 1 bis 3 Tagen erfolgt. Dafiir wird ein Team vom Kunden zusammenge-
stellt, welches aus Kunden-Testern besteht. Diese neue Phase erfolgt am
Ende der Entwicklung, wenn das Inkrement fertig ist, aber vor dem Review-
Meeting. Die Kunden bekommen die entsprechenden Aufgaben im Sprint
Backlog zugewiesen. Die Regeln und Benachrichtigungen wiirden dann wie
folgt lauten:

1. Anpassung Model (Hinzufiigen Rolle (Kunden-Test-Team (4 Perso-
nen)), Hinzufiigen Rolle (Kunden-Tester), Hinzufligen Aktivitit
(Kunden-Testtage (Dauer 2 Tage), nach Entwicklung vor Sprint),
Hinzufiigen Aktivitdt (Testen der Aufgaben), Hinzufiigen Zuord-
nung (Zuordnung Aufgaben))

2. Anderung Stakeholder (Kunden-Testerl, Rolle (Kunden-Test-
Team), hinzufligen (fiir alle neuen Kunden-Tester durchfiihren);
Scrum Master, Aktivitidt (Kunden-Test-Tage), hinzufiigen; Kunden-
Tester Zuordnung (Test der Aufgaben)).

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivitit (Kun-
den-Test-Tage), Kunden-Tester 1 — 4, (neue Aktivitit, neue Aufga-
ben Backlog))

Ergeben in einem anderen Fall die kombinierten Regeln, dass zusdtzliche
Tests mit Hilfe von expliziten Testern und/oder Test-Designern ebenso wie
ein Inkrementtest notig sind, so sollte dieses Test-Team wie ein weiteres
Team behandelt werden. Das heifit, es bekommt ein eigenes Test-Sprint

193

Backlog und trifft sich &hnlich wie im Fall eines zu groB3en Teams im Scrum
of Scrums, um sich mit dem Entwickler-Team auszutauschen. Der zuséitzli-
che Inkrementtest sollte am Ende der Entwicklung durchgefiihrt werden.
Die entsprechenden Regeln wiirden folgendermal3en aussehen:

1. Anpassung Model (Hinzufiigen Test-Team (2 Personen), Hinzufii-
gen Rolle (Tester), Hinzufiigen Rolle (Test-Designer), Hinzufiigen
Artefakt (Test Sprint Backlog), Hinzufligen Aktivitdt (Durchfiihrung
der Test-Aktivititen) Andern Aktivitit Entwicklung (Entwicklung +
Test), Hinzufligen Meeting (Scrum of Scrums, nach Daily Scrum,
Time-Box: 40 Minuten), Hinzufiigen Aktivitit (Inkrementtest, Ende
Entwicklung + Test))

2. Anderung Stakeholder (Test-Teammitglied 1, Rolle (Tester), hinzu-
fiigen, Test-Teammitglied 2, Rolle (Test-Designer), Rolle Scrum
Master, Meeting (Scrum of Scrums), hinzufiigen, Test-Teammitglied
1-2, Meeting (Scrum of Scrums), hinzufiigen, Test-Teammitglied 1-
2, Artefakt (Test Sprint Backlog), hinzufiigen, Test-Teammitglied 1-
2, Aktivitét (Test-Durchfiihrung), hinzufiigen, Test-Teammitglied 1-
2, Aktivitit (Inkrementtest), hinzufligen)

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivitdt (Scrum
of Scrums), Test-Teammitglieder 1 — 2, (neue Rolle, neue Aktiviti-
ten, neues Artefakt Test Sprint Backlog)

Da fiir die Regel RZK1 keine Planungsmoglichkeiten vorhanden sind, kon-
nen somit dafiir keine Ausfithrungsregeln und Benachrichtigungen erstellt
werden.

Die einzelnen Schritte in der Pre-Work sind nun durchgefiihrt. Die erarbei-
teten Ergebnisse werden vor Beginn des Projektes und somit vor Beginn des
Durchlaufs der MAPE-K-Feedbackschleife entsprechend der Beschreibung
in Abschnitt 6.1 in der Wissensbasis gespeichert. Zusitzlich zu der Historie
iiber die Anpassung wird hier eine Historie liber die Fehlermeldungen und
die Kundenfehlermeldungen angelegt. Die Analyseregeln wurden vor Be-
ginn entsprechend in die ECA-Regeln tlibertragen und eine aktive Datenbank
wurde fiir die Wissensbasis erstellt. Die einzelnen Anpassungen werden im
weiteren Verlauf an einfachen Modellen erldutert.

7.1.3.2 Durchfithrung einer einfachen Anpassung

Zu Beginn des Projektes, dem Start der Ausfilhrung der Software-
Engineering-Methode und somit der Durchfiihrung von den Phasen MAPE
bzw. den Schritten 7 bis 10, werden die entsprechenden Eintrdge mit den
Initialwerten versehen. Alle Beteiligten werden dem Team iiber die Team-
liste zugeordnet, alle Teammitglieder bekommen den Status ,aktiv, die
TeamgroBe betrdgt zu Beginn bereits 9 Personen, dem Lenkungskreis wird

194

die Rolle des Product Owners zugeordnet, das Daily Scrum findet mit 30
Minuten dienstags und donnerstags statt, die Liste und das System fiir die
Fehlermeldungen wird initialisiert, das Product Backlog enthilt alle Anfor-
derungen usw. Der erste Sprint beginnt mit den Sprint Planning und es wird
das Sprint Backlog erstellt. Hier im Beispiel laufen die ersten zwei Sprints,
die noch relativ einfache Umsetzungen enthalten, nach Plan und es erfolgen
keine Anpassungen.

Beispiel Projektcontrolling: Krankheit oder Verlassen des Unterneh-
mens, Verteiltes Arbeiten

Am Anfang des néchstens Sprints, beispielsweise an Tag 6 nach dem Sprint
Planning und wiahrend der Entwicklung, ereignet es sich, dass der Scrum
Master einen Unfall hat und mindestens bis zum Ende des Sprints ausfillt.
Der Scrum Master meldet seine Krankheit dem Unternehmen und wie lange
er voraussichtlich ausfillt. Dies wird, zum Beispiel von der Sekretdrin, ent-
sprechend in die Liste eingetragen, der Status des Scrum Masters dndert sich
auf ,.krank* und die Fehltage von 21 Tagen werden ebenfalls eingetragen.

Diese Werte werden nun iiber die Sensoren gemessen und durch die Aufbe-
reitung in der Monitor-Phase wird (Status ,,krank* & Fehltage = 21/ Person
= Scrum Master) zuriickgeliefert. Die Eintrdge haben sich also in der Sta-
tuszeile und bei der Anzahl der Fehltage fiir den Scrum Master, gedndert.
Dies ist das auslosende Ereignis fiir die Analyse anhand der ECA-Regeln.

Die Auswertung der Analyse ergibt anschliefend, dass die Person lédnger
ausfallt und somit wird die Planung mit Variante 2 angesto3en. Hierzu wer-
den die Aufgaben des Scrum Masters in der Plan-Phase ausgelesen. Da die
Person ldnger krank und zusétzlich der Konflikt bekannt ist, dass das Team
die Aufgaben des Scrum Masters nicht tibernehmen darf, wird in der Perso-
nenliste eine Person gesucht. Diese soll die passenden Féhigkeiten fiir den
Scrum Master besitzen, muss Zeit fiir die Aufgaben haben oder bekommt
die entsprechende Zeit dafiir vom Unternehmen. Beispielsweise werden die
aktuellen Aufgaben dieser Ersatz-Person automatisch vom System im ande-
ren Team neu verplant.

195

Rolle: Team

Rolle: Scrum _ betreutTeam _ T snaig _bearbeiten Artefakt: Product
Master: Person X Brone: Aufgaben Backlog (PB)
Personen
s besitzt PB
Ist krank/ g
im Urlaub Rolle:
Lenkungskreis
Artefakt: Teamliste + 7 (Fo)
Eintrage (aktiv, krank, iy
Urlaub, weg) betreut ,
Team ,”
4
- 7 *
Ist ,
Vertretung Pid
¥ 4
ra
Rolle: Scrum

Master: Person Y

Abbildung 50 Austausch Scrum Master bei Krankheit, Verlassen des Unternehmens etc.

Die Planung ergibt also wie in Abbildung 50 zu sehen, dass die Person des
Scrum Masters X durch die Person Y fiir die Vertretungszeit ersetzt wird.
Die Eintrdge dafiir wurden aus der Teamliste entnommen. Die Person Y
wird dem Team als Vertretung des Scrum Masters zugeordnet. An der ei-
gentlichen Software-Engineering-Methode dndert sich nichts, da die Person
nur auf der Instanz-Ebene ausgetauscht wird.

Da das Ziel, wenn sich der Status einer Person verdndert, die Prioritit 1 hat-
te, wird der Anpassungszeitpunkt nicht abgewartet, sondern die Anpassung
wird sofort vorgenommen. In der Execute-Phase wird die Anpassung ent-
sprechend vorgenommen, die Teamliste erhdlt den neuen Eintrag beziiglich
des Scrum Masters und wer seine Vertretung ist. Dafiir wird der neue Status
,Vertretung® eingetragen, damit bekannt ist, wann der Scrum Master vo-
raussichtlich zuriick in sein altes Team wechselt. Alle Teammitglieder und
der neue Scrum Master werden entsprechend iiber die Anderung informiert.
Der Scrum Master tritt am nédchsten Tag bis zum Ende des Sprints seine
neuen Aufgaben an.

Beispiel Team-Vergrof3erung

Am Anfang des ndchsten Sprints (Nummer 4) ist der alte Scrum Master
wieder gesund und kann wie vorgesehen seine Aufgaben iibernehmen. In
der Teamliste wird entsprechend sein Status auf ,,aktiv gesetzt und seine
Vertretung kehrt in ihr altes Team zuriick. Da die Sprints langsam komple-
xer werden und der Lenkungskreis mehr Aufgaben realisiert haben mdchte,
hat dieser beschlossen, dass das Team durch 7 weitere Personen unterstiitzt
wird. Diese werden entsprechend in der Liste dem Team zugeordnet.

Die Sensoren lesen im weiteren Verlauf die Anzahl der Personen pro Team
aus, die nun 16 betrdgt. Durch die Aufbereitung in der Monitor-Phase wird

196

dieser Wert der Teamgrofle zugewiesen. Da sich dieser Wert geédndert hat,
ist dies das auslosende Ereignis fiir die Analyse-Phase. Die Auswertung
ergibt, dass das Team zu groB} ist und die entsprechende Planung wird ange-
stoBBen.

lle: Z 3 4%
50 & T;;r:.: bearbeiten fakt: Sprint Speziali- Artefakt: Product
Per:onen. "\Aufgaben Backlog sierung Backlog (PB)
Al
A
Rolle: Team :
TeamgroBe: 16 Team-Split bearbeiten . besitzt PB
Personen Aufgaben Y
Al
Al
Rolle: Team b M
TeamgroBe: 8 M. N Rolle: :
Personen b betreut ™ Lenkungskreis
v, Teams b (PO)
s Rolle: Scrum

-~

Master

Abbildung 51 Team-Split in Quasi-Scrum bei 16 Personen

Fiir ein zu groBBes Team ist ein Team-Split vorgesehen, bei 16 Personen
ergibt dies wie in Abbildung 51 zu sehen zwei Teams von je acht Personen.
Den Personen werden dabei jeweils die verschiedenen Aufgaben aus dem
Sprint Backlog zugewiesen. Der Scrum Master ist fiir beide Teams der An-
sprechpartner. Bei der Verteilung der Aufgaben fiir beide Teams achtet das
System darauf, dass die Aufgaben, welche die Teammitglieder im aktuellen
Sprint besitzen, ihnen entsprechend erhalten bleiben. Dadurch gibt es im
weiteren Sprint keine Konsistenz-Probleme, zum Beispiel das Aufgaben
abgebrochen und nicht weiter ausgefiihrt werden.

Beide Teams erhalten im weiteren Verlauf wie in Abbildung 52 zu sehen
ein eigenes Daily Scrum, welches sie dienstags und donnerstags jeweils 30
Minuten wie bisher abhalten. Zusdtzlich wird das Scrum of Scrums hinzuge-
fiigt, bei dem sich die Vertreter beider Teams jeweils mittwochs und freitags
fiir 30 Minuten treffen, um entsprechend den Fortschritt beider Teams zu
besprechen und sich zu koordinieren. Der Vertreter wird von den Teams
selbst bestimmt und muss nicht immer dieselbe Person sein. Von daher wird
dies vom System nicht vorgegeben.

197

Planning-

. Daily Scrum:
Lol Team a
Daily Scrum :
Split DS
W (Ds) "
Daily Scrum:
Retrospektive Ablauf Entwicklung Reihenfolge Team b
Sprint Meetings

m Scrum of Scrums:

Vertreter Team a &
Team b

Review -
Meeting

Abbildung 52 Vereinfachter Ablauf nach Team-Split in Quasi-Scrum

Nachdem die Planung entsprechend erfolgt ist, wird iiberpriift, ob der An-
passungszeitpunkt bereits erreicht ist, da das Ziel nicht die Prioritét 1 hatte
und somit keine sofortige Anpassung erfolgt. Der Anpassungszeitpunkt ist
noch nicht erreicht (Mitte des Sprints, Ende des Sprints), von daher wird die
Anpassung gespeichert und es wird bis zum Anpassungszeitpunkt gewartet.

Ist der Anpassungszeitpunkt erreicht, wird wie in Abschnitt 6.4.1 beschrie-
ben iiberpriift, ob nur eine Anpassung vorhanden ist. Da dies der Fall ist,
kann die Anpassung nun ausgefiihrt werden. Alle Teammitglieder werden
entsprechend tiber den Team-Split und somit welchem Team sie zugeordnet
sind, benachrichtigt. Zusétzlich erhalten sie die Information liber das Daily
Scrum, den Zeitpunkt des Scrum of Scrums sowie das die neue Zuordnung
ab dem néchsten Tag, also in der Mitte des Sprints, erfolgt.

7.1.3.3 Durchfiihrung einer komplexeren und kombinierten An-
passung

Da im weiteren Verlauf das grof3ere Team beibehalten wird und somit mehr
Aufgaben pro Sprint erledigt werden konnen, werden entsprechend fertige
Produkt-Inkremente geliefert, die der Kunde bereits anfiangt einzusetzen.
Von daher kann dieser bereits wichtiges Feedback geben und stellt, wenn
notig, Fehlermeldungen ein. In Sprint 6 kommt es nun vor, dass die Fehler-
meldungen vom Kunden immer weiter zunehmen, da ihm wihrend des Ein-
satzes vom Inkrement aus dem flinften Sprint wesentlich mehr Fehler und
Dinge auffallen, mit denen er nicht zufrieden ist. Vor allem erscheint dem
Kunden und auch seinen Anwendern das ausgelieferte Inkrement viel zu
langsam zu sein. Er erfasst entsprechend Fehlermeldungen beziiglich der
Performanz, 3 sind bereits vorhanden. Insgesamt sind nun 11 Meldungen im
System vorhanden. Die Riickmeldung ist der kombinierte Wert beider Wer-
te und die Anderung ist das auslosende Ereignis in der Monitor-Phase. Die
Analyse ergibt, dass die Software-Engineering-Methode gemill Regel
RZBAA45 (Fall b) angepasst werden muss (#Fehlermeldungen Kunde > 10

198

und #nicht-funktionale Meldungen >2). Der Kunde soll schon wéhrend des
Sprints fiir User Acceptance Tests mit eingebunden werden.

Rolle: Team a + Artefakt: Sprint
Team b bearbeiten Aufgaben & testen Aufgal Backlog Speziali- Artefakt: Product
TeamgriBe: je 8 Aufgaben + Testder ~ sierung Backlog
Personen Aufgaben
besitzt
PB
Rolle: Kunden- S
Test-Team S -
TeamgroBe: 4 ~u Rolle:
Personen Ss Lenkungskreis
S betreut "~ (PO)
T=~<__ Teams e
- ~
besteht aus -""-___::\ Rolle SeTa

Master

Rolle: Kunden-
Tester

Abbildung 53 Quasi-Scrum Kunden-Test-Team und Kunden-Tester

Die Planung ergibt wie in Abbildung 53 zu sehen, dass als weitere Rolle ein
Kunden-Test-Team mit der Teamgroe von 4 Personen mit eingebunden
werden soll. Das Team besteht aus einzelnen Kunden-Testern. Die Kunden-
Tester konnen auf das Backlog zugreifen und sollen die jeweiligen Aufga-
ben des aktuellen Sprints testen. Der Scrum Master ist ebenfalls der An-
sprechpartner fiir das Kunden-Test-Team.

Das Kunden-Test-Team soll das fertige Inkrement des jeweiligen Sprints
testen. Die dort erarbeiteten Informationen flieBend in das Review-Meeting
mit ein und moglichen Problemen kann besser entgegen gewirkt werden.
Diese zusitzlichen Tage zum Testen durch den Kunden kénnen durch den
Methoden-Baustein ,,Kunden-QS-Tage* realisiert werden und haben die
Linge von 1-3 Tagen. Hier im Beispiel sollen sie 2 Tage betragen und sol-
len wie in Abbildung 54 zu sehen nach der Entwicklung, aber vor dem Re-
view-Meeting stattfinden. Die Kunden-Tester bekommen als Aktivitit ent-
sprechend das Testen der Aufgaben zugewiesen. Da dies eine vollstdndig
neue Aktivitit ist, die nicht in die urspriingliche Entwicklung eingreift, muss
wihrend der Anpassung nicht darauf geachtet werden, ob Aufgaben bereits
beendet sind oder nicht.

199

Daily Scrum . Scrum of Scrums:
Reihenfolge

Teama+b: : Vertreter Teama+b
: Meetings 2
s Di & Do Mi & Fr
ann ll'lt:- Time-Box: 30 Time-Box: 30
Meeting enthilt Minuten Minuten
Retrospektive]
pe: Entwicklung bearbeiten von SB Artefakt: Sprint
Ablauf —— Backiog(sp)
. Aufgaben + Test
Sprint
/ﬂ\mn S8
Review - Kunden-QS- enthalt Test der
Meeting Tage (1-3 Tage) Aufgaben

Abbildung 54 Quasi-Scrum: zusiitzliche Kunden-QS-Tage

Bevor die Anpassung ausgefiihrt wird, wird wiederum iiberpriift, ob der
Anpassungszeitpunkt erreicht ist oder nicht, da die Prioritdt des urspriingli-
chen Ziels nicht die Prioritdt 1 betrdgt. Der Anpassungszeitpunkt ist noch
nicht erreicht und die Anpassung wird zunichst gespeichert.

Bevor die Anpassung ausgefiihrt wird, wird in der Monitor-Phase wiederum
die Analyse ausgeldst. Aktuell sind im Fehlermanagementsystem 4 kritische
Fehler vermerkt, wobei 2 der Fehler so oder in dhnlicher Form mittlerweile
zum dritten Mal auftreten. Ferner ist aus dem vorherigen Fall bekannt, dass
die Anzahl der Kundenriickmeldungen mehr als 10 betrdgt und davon sind
ebenfalls Fehler mittlerweile zum dritten Mal aufgetreten (z.B. die Perfor-
manz-Fehler). Die aufbereiteten Werte sind die auslosenden Ereignisse und
in der Analyse-Phase greifen hier die beiden kombinierten Regeln
RZBAkombiniert (d und e).

Diese Regeln stolen die Plan-Phase an, so dass zum einen mehr Tests und
explizite Tester mit eingebunden werden. Zum anderen soll am Ende des
Sprints ein vollstindiger Inkrementtest (Test des gesamten Systems bzw.
des Inkrements) erfolgen sollen.

Dafiir wird wie in Abbildung 55 zu sehen ein Test-Team eingefiihrt mit der
Teamgrofle von 2 Personen. Eine Person nimmt dabei die Rolle des Test-
Designers ein, die andere Person ist der Tester, welcher die Tests durch-
fithrt. Dieses Team wird ebenfalls vom Scrum Master betreut. Fiir diese
Tests gibt es ein neues Artefakt, analog zum Sprint Backlog gibt es ein Test
Sprint Backlog, in dem alle Tests beziiglich der Aufgaben enthalten sind.
Das heifllt, mogliche Tests werden aus den Aufgaben herausgezogen und in
das Test Sprint Backlog verlagert.

200

Rolle: Tester

Artefakt: Sprint Test

Rolle: Test- Backlog
) b_e_stehl aus Team testen Aufgaben Definierte Testfille
Spezialisierungen Teamgrifie: 2 P (Unit-Tests, UAT,
Personen A Integrationstests,
Rolle: Test- \ Systemtests)
Designer Y
\
\ g
\
\
Rolle: Team a + \ Artef
Teamb bearbeiten *, Aufgaben Ba:;iﬂsl Speziali- Artefakt: Product
TeamgriBe: je 8 \\ e sierung Backlog (PB)
Personen 1
\\
Seo A
. A besitzt PB
Sl betreut'y
el Teams M
S \
RUTOR Rolle:
-\
~u Rolle: Scrum Lenkungskreis
(PO)

Abbildung 55 Neue Rollen beziiglich Testen und ein neues Artefakt

Das Testen soll wie auch in dem Papier von [GG12] beschrieben wihrend
der Entwicklung durchgefiihrt werden. Somit wird die Entwicklung wie in
Abbildung 56 zu sehen um das explizite Testen erweitert. Zusétzlich zu den
Entwicklungsaufgaben wird die neue Aktivitét ,,Durchfiihrung der Testauf-
gaben‘ eingefiihrt. Die beiden Mitglieder des Test-Teams nehmen ebenfalls
am Scrum of Scrums der beiden Teams teil, um sich mit den beiden Teams
abzusprechen und zu koordinieren. Von daher wird die Time-Box des
Scrum of Scrums auf 40 Minuten erhoht, die beiden gewéhlten Wochentage
werden aber beibehalten.

Daily Scrum Team Reihenfolge Scrum of Scrums:
a+h: Meetings Vertreter Teama +b +
Di & Do
Time-Box: 30 Mi & Fr
Minuten

Durchfiihrung der

enthalt
planning: Testaufgaben (Test-
ng: Design, Durchfiihrung,
Meeting Report)
enthalt
bearbeiten der Aufgaben SB MB:::IH ?S,:)m
Entwicklung e
Aufgaben
= Ablauf + (explizierter)
Retrospektive .
Sprint flest :
Artefakt: Test Sprint
testen der Aufgaben SB Backlog
Inkrementtest Definierte Testfille
der Aufgaben

Review -
Meeting

Abbildung 56 Hinzufiigen der Testaktivititen im Scrum-Ablauf

Zusitzlich zu den Testaktivititen wird ein expliziter Inkrementtest hinzuge-
fiigt, welcher nach der Entwicklung stattfindet. Dieser ist ebenfalls im Test

201

Sprint Backlog vermerkt. Der Inkrementtest wird vom Test-Designer erstellt
und vom Tester entsprechend durchgefiihrt.

Nachdem die Anpassung erstellt ist, wird wie im vorherigen Fall iiberpriift,
ob der Anpassungszeitpunkt erreicht ist. Dieser ist ebenfalls noch nicht er-
reicht und die Anpassung wird entsprechend gespeichert.

Kombinierte Anpassung Kunden-QS-Tage + Testaktivitéiten

Da beide Anpassungen erst in der zweiten Sprinthilfte geplant wurden, er-
folgt der Anpassungszeitpunkt erst zum Ende des Sprints. Zum Anpas-
sungszeitpunkt wird festgestellt, dass zwei Anpassungen gespeichert wur-
den. Diese miissen nun fiir die Ausfiihrung miteinander zu einer gemeinsa-
men Anpassung kombiniert wird. Beide Ziele stehen nicht miteinander in
Konflikt und kénnen somit gut verbunden werden.

testen Aufgaben

besteht aus
Spezialisierung

testen Aufgaben
Speziali-
sierung

" \
Rolle: Team a + \ Artefakt: Sprint
Teamb Backlog
TeamgriBe: je 8 Aufgaben
Speziali-
sierung
Artefakt: Product
Backlog (PB)
betreut M besitzt PB
Teams
besteht aus Rolle:
Spezialisierung Lenkungskreis
(PO)

Abbildung 57 Die neuen Rollen in der kombinierten Anpassung - Kunden-Test-Team & Test-
Team

Wie in Abbildung 57 zu sehen, werden fiir die kombinierte Anpassung bei-
de Teams entsprechend ihrer vorher geplanten Anpassung dem Modell hin-
zugefiigt. Da es nun das neue Artefakt ,,Test Sprint Backlog® gibt und das
Kunden-Test-Team die Aufgaben nicht entwickeln, sondern testen soll,
greifen sie anstatt auf das Sprint Backlog nun auf das Test Sprint Backlog
zu, so dass beide Teams dieselben Tests durchfiihren konnen.

Die Aktivititen werden in dem vereinfachten Modell wie in Abbildung 58
zu sehen ebenfalls entsprechend ihrer vorherigen Anpassung gemeinsam
eingefiigt. Die Entwicklung erhilt die zusétzlichen Testaktivititen und das
Scrum of Scrums wird entsprechend erweitert. Am Ende der Entwicklung

202

findet zunichst der Inkrementtest statt, bevor die Kunden-QS-Tage starten.
Die eigentlichen Tests stehen im Test Sprint Backlog und werden zunéchst
vom Team und anschlieBend zur nochmaligen Validierung vom Kunden-
Test-Team durchgefiihrt. Die Ergebnisse werden gemeinsam im Review-
Meeting besprochen.

Daily Scrum Team

- o
Di & Do E Test-Team
Time-Box: 30
Minuten Time-Box: 40 Minuten

enthalt

Planning-
Meeting
Artefakt: Sprint
Retrospektive __ bearbeitender AufgabenSB ::""*
Ablauf
Sprint
testen der Aufgaben SB

Review - esten der Aufgaben SB
Meeting enthalt

Abbildung 58 Die kombinierte Anpassung

Die kombinierten Ausfiihrungsregeln und Benachrichtigungen sind dadurch
komplexer und lauten dann:

1. Anpassung Model (Hinzufiigen Rolle (Kunden-Test-Team (4 Perso-
nen)), Hinzufiigen Rolle (Kunden-Tester), Hinzufiigen Test-Team (2
Personen), Hinzufiigen Rolle (Tester), Hinzufiigen Rolle (Test-
Designer), Hinzufiigen Artefakt (Tes —Sprint Backlog), Hinzufiigen
Aktivitit (Durchfihrung der Test-Aktivititen) Andern Aktivitit
Entwicklung (Entwicklung + Test)), Hinzufiigen Meeting (Scrum of
Scrums, nach Daily Scrum, Time-Box: 40 Minuten), Hinzufiigen
Aktivitdt (Inkrementtest, Ende Entwicklung + Test), Hinzufiigen Ak-
tivitdt (Kunden-QS-Tage (Dauer 2 Tage), nach Inkrementtest vor
Review-Meeting), Hinzufligen Aktivitdt (Testen der Test-Aufgaben
durch Kunden-Tester))

2. Anderung Stakeholder (Kunden-Tester 1, Rolle (Kunden-Test-
Team), hinzufiigen (fiir alle neuen Kunden-Tester durchfiihren);
Scrum Master, Aktivitdt (Kunden-Test-Tage), hinzufiigen, Kunden-
Tester Artefakt (Test Sprint Backlog) hinzufiigen, Kunden-Tester 1-
4, Aktivitit (Test-Durchfiihrung) hinzufiigen, Test-Teammitglied 1,
Rolle (Tester), hinzufiigen, Test-Teammitglied 2, Rolle (Test-
Designer), Rolle Scrum Master, Meeting (Scrum of Scrums), hinzu-
fiigen, Test-Teammitglied 1-2, Meeting (Scrum of Scrums), hinzu-

203

fiigen, Test-Teammitglied 1-2, Artefakt (Test Sprint Backlog), hin-
zufiigen, Test-Teammitglied 1-2, Aktivitit (Test-Durchfiihrung),
hinzufiigen, Test-Teammitglied 1-2, Aktivitit (Inkrementtest), hin-
zufiigen)).

3. Benachrichtigung Beteiligte (Scrum Master, (neue Aktivitdt (Kun-
den-Test-Tage), neue Aktivitit (Scrum of Scrums), neue Rollen
(Test-Team, Kunden-Test-Team)) , Kunden-Tester 1 — 4, (neue Rol-
len, neue Aktivititen, neues Artefakt Test Sprint Backlog), Test-
Teammitglieder (neue Rolle, neue Aktivititen, neues Artefakt Test
Sprint Backlog))

Wihrend die neue Anpassung erstellt wird, werden mogliche neue Anpas-
sungen in den Phasen Monitor und Analyse blockiert, damit es zu keinen
weiteren Uberschneidungen kommt. Da die Anpassung am Ende des Sprints
erfolgt und Personen und Aktivitéten etc. neu hinzugefiigt werden, entsteht
hier kein Konflikt mit aktuellen Aufgaben, Artefakten etc. die gegebenen-
falls hitten beendet werden miissen.

Am Ende des Sprints wird die kombinierte Anpassung ausgefiihrt, welche
ab dem néchsten Sprint zum Einsatz kommit.

7.1.3.4 Durchfiihrung einer Anpassung ohne vorherige Planungs-
moglichkeiten

Im Laufe des ndchsten Sprints (Sprint 7) kommt es nun vor, dass der Test-
Standard, welchen das Team verwendet, aktualisiert wird. Die Versions-
nummer des Test-Standards wurde auf deren Webseite entsprechend hoch-
gezdhlt und der neue Standard wird zum Download angeboten. Der Sensor,
welcher tiglich die Webseite flir eine neue Versionsnummer scannt, ent-
deckt die neue Versionsnummer, liest diese aus und speichert sie entspre-
chend in der Wissensbasis. Dies ist das auslosende Ereignis fiir die Analyse.
Dort ergibt die Auswertung, dass die neue Versionsnummer hoher als die
alte ist und somit eine aktuellere Version vorliegt.

In der Plan-Phase wird der neue Test-Standard ausgelesen und mit dem al-
ten verglichen. Dies muss entweder manuell erfolgen oder es besteht die
Moglichkeit fiir ein Vergleichsprogramm &hnlich dem Vergleich in einer
Versionskontrolle, wo die gednderten Teile sofort angegeben werden. Der
Vergleich ergibt, dass nach dem neuen Test-Standard keinen Kundendaten
mehr als Testdaten verwendet werden diirfen. Diese wurden fiir einige Tests
bisher vom Team verwendet. Das heifit, es muss eine neue Aktivitit fir die
Testdatengenerierung erstellt werden, welche vom aktuellen Test-Team
verwendet wird.

204

Planning-
Meeting
Retrospektive
Ablauf
Sprint
Review -
Meeting

Kunden-Qs-

Daily Scrum Team

Scrum of Scrums:

a+h: ::el::;foslse VertreterTeama+b +
Di & Do £ Test-Team
Time-Box: 30 Mi & Fr
Minuten Time-Box: 40 Minuten
enthalt Durchfiihrung der
Testaufgaben
’
Test-Design,
Durchfiihrung, Report)
enthil Artefakt: Sprint
z bearbeiten der Aufgaben SB -Ba.d:l:ng

Entwicklung B

+ (explizierter)
Test Artefakt: Test Sprint
Backlog
testen der Aufgaben SB
Inkrementtest
Definierte Testfille
der Aufgaben
Test der 4
T testen der
Tage (1-3 Tage) enthilt Aufgaben Ritfeahian B

Abbildung 59 Anpassung auf Instanz-Ebene durch Hinzufiigen im Test Sprint Backlog

Fiir die Anpassung gibt es nun zwei Varianten. Die erste Variante passt die
Software-Engineering-Methode nur auf der Instanz-Ebene an. Dafiir wird
wie in Abbildung 59 zu sehen im Test Sprint Backlog eine neue Aufgabe
erstellt, welche besagt, dass neue Testdaten generiert werden miissen. Diese
Aufgabe bekommt die Prioritét 1, so dass sie nach Beendigung der aktuellen
Aufgaben als erstes fiir weitere Tests durchgefiihrt wird. Das Generieren der
Testdaten wird ebenfalls in die Aktivitit der Testdurchfithrung mit einge-

fligt.
Planning-
Meeting
Retrospektive
Ablauf
Sprint

Review -
Meeting

Generierung von

Daily Scrum Team

Scrum of Scrums:

at+h: aezhe‘nfolge VertreterTeama+b +
Di & Do jMestings] Test-Team
Time-Box: 30 Mi & Fr
Minuten Time-Box: 40 Minuten
enthalt
Durchfiihrung der
Testaufgaben (Test-
Design, Durchfiihrung,

Testdaten Artefakt: Sprint
; Backlog
Entwicklung bearbeiten der Aufgaben SB
Aufgaben
+ (explizierter)
Test
Artefakt: Test Sprint
testen der Aufgaben SB Backlog
Inkrementtest Definierte Testfalle
der Aufgaben
Kunden-Qs- Test der /m e
Tage (1-3 Tage) enthilt Aufgaben

Abbildung 60 Neue Aktivitiit "Generierung von Testdaten"

205

Die zweite Variante ist wie in Abbildung 60 zu sehen das Hinzufligen einer
neuen Aktivitit zu Beginn der Entwicklung. Die Testdaten werden in dieser
Aktivitdt generiert und fiir die folgenden Tests aus dem Test Sprint Backlog
verwendet, sowohl vom Test-Team als auch dem Kunden-Test-Team.

Die Entscheidung, welche Variante gewéhlt wird, soll zum Zeitpunkt der
Anpassung gefdllt werden. Ist der Anpassungszeitpunkt wihrend des
Sprints, wird die Variante 1 gewdhlt. So konnen aktuelle Test-Aufgaben in
der Durchfiihrung zunichst beendet werden, bevor die neuen Daten gene-
riert werden (Prioritdt 1). Konflikte werden somit vermieden.

Ist der Anpassungszeitpunkt zum Ende des Sprints, wird die Variante 2 ge-
wihlt. So konnen die Testdaten fiir die jeweiligen Tests immer zu Beginn
der Entwicklung generiert und im weiteren Verlauf des Sprints verwendet
werden, es entstehen ebenfalls keine Konflikte. Wird die Anpassung ausge-
fihrt, werden in beiden Fillen das Test-Team und das Kunden-Test-Team
iiber die Anderungen benachrichtigt, da diese von der Anderung betroffen
sind.

Da hier im Beispiel die Anderung des Test-Standards in der ersten Sprint-
Hilfte entdeckt wurde, greift fiir den aktuellen Sprint die erste Variante.
Doch da es Sinn macht, ab dem nichsten Sprint die zweite Variante zu nut-
zen, wird eine kombinierte Anpassung insofern vorgenommen, als dass
vermerkt wird, dass ab dem néchsten Sprint Variante 2 greift und damit Va-
riante 1 ablost.

Auch wenn diese Anpassung ohne vorherige Planungsmoglichkeiten relativ
einfach gewesen ist, so kann je nach Ziel und Werten die Planung schnell
komplex werden. Zum einen muss eine Anpassung mit den Werten voll-
stindig neu geplant werden, was entweder manuell durch einen erfahrenen
Methoden-Engineer erfolgt, oder automatisch iiber entsprechende Planungs-
algorithmen. Zum anderen miissen Konflikte am Ende ausgeschlossen und
Alternativen wie in Abschnitt 6.4.2 beschrieben geplant werden.

7.2 Vergleich und Fazit

In den vorherigen Abschnitten wurden mit Hilfe von einfachen und kom-
plexeren Beispielen verschiedene Anpassungsmoglichkeiten des Ansatzes
durchgespielt. Dabei wurden sowohl Anpassungen auf der Instanz-Ebene als
auch Anpassungen der Software-Engineering-Methode auf Typ-Ebene ge-
zeigt. Zusitzlich wurde eine kombinierte Anpassung und eine Anpassung
ohne Planungsmoglichkeiten dargestellt. In diesem Abschnitt werden die
Beispiele mit den urspriinglichen Praxis-Projekten verglichen, welche ohne
den MAPE-K4SEM-Ansatz durchgefiihrt wurden. Am Ende erfolgt ein Fa-
zit beziiglich der Evaluierung.

206

7.2.1 Vergleich mit den urspriinglichen Praxis-Projekten

Der Vergleich der durchgefiihrten Beispiele findet hier speziell mit dem
Projekt Quasi-Scrum statt, welches im s-lab zusammen mit einem Projekt-
partner im Unternehmen durchgefiihrt und bereits in [EG09] beschrieben
wurde. Da ein Grofiteil der beschriebenen Anpassungen so oder in dhnlicher
Form ohne den Einsatz des MAPE-K4SEM-Ansatzes stattgefunden haben,
ist eine Beurteilung gut moglich. Des Weiteren werden bei einigen Beispie-
len Vergleiche zu einem weiteren Projekt aus dem s-lab gezogen, welches in
einem groflen Unternechmen mit verteilten Teams, welche z.T. agil gearbei-
tet haben, stattgefunden hat.

Vergleich: Eine Person fillt aus

Gerade das erste Beispiel, wo eine Person ausfillt, kann gut mit beiden Pro-
jekten verglichen werden. Mit Hilfe des Ansatzes war es moglich, den
krankgewordenen Scrum Master schnell mit einer geeigneten Person zu
ersetzten, so dass das Team problemlos weiter arbeiten konnte. Der Erfolg
des Sprints und somit des Projektes war nicht gefdhrdet.

Im Projekt Quasi-Scrum ist es ebenfalls vorgekommen, dass eine Person
zwischenzeitlich krank geworden ist. Dies wurde zwar am ersten Tag be-
kannt, doch in diesen Fillen musste der Projektleiter entscheiden kénnen, ob
durch den Ausfall Aufgaben und somit der Sprint gefdhrdet sind. Hat er
dieses erfasst, hat er das Team zusammen gerufen oder bis zum Daily
Scrum gewartet und gefragt, wer sich im Stande sieht, die Aufgaben zu
tibernehmen. Hat sich niemand gemeldet, musste eine neue Person gesucht
werden, die fiir die Zeit der Krankheit die andere Person ersetzt. Typischer-
weise war es vom Team moglich, die Aufgaben zu iibernehmen, auch wenn
dies teilweise dazu gefiihrt hat, dass einige Aufgaben mehr Aufwand erfor-
dert haben, als urspriinglich geplant. Ein oder zweimal ist es vorgekommen,
dass eine Aufgabe bis zum Ende des Sprints nicht erfolgreich beendet wer-
den konnte.

Hieran ist zu erkennen, dass der Ansatz zwar nur einen geringen, aber den-
noch entscheidenden Unterschied macht. Dadurch, dass dieser eigenstindig
ermitteln kann, wer filir die Aufgaben der ausfallenden Person zustindig ist
und Kapazitit bereitstellen kann, wird sichergestellt, dass schnell ein geeig-
neter Ersatz gefunden und nahtlos weitergearbeitet werden kann. Aufgaben
konnen beendet und der Sprint eingehalten werden. Ferner wissen alle Per-
sonen liber die neue Zustdandigkeit Bescheid.

Wie wichtig insbesondere die Benachrichtigung an sich ist, wird im Ver-
gleich mit dem zweiten Projekt deutlich. Hier wurde wie bereits beschrieben
mit verteilten Teams gearbeitet, wodurch eine hohe Anzahl Personen im
gesamten Team vorhanden gewesen ist. Zwar haben sich die Teams regel-

207

mifBig mit Hilfe von Vertretern der jeweiligen Teams auseinandergesetzt,
doch aufgrund einer hohen Fluktuation in den verschiedenen Teams war
teilweise nicht klar, wann ein Verantwortlicher das Team verlassen hat und
wer der neue Ansprechpartner gewesen ist.

Ein Beispiel, welches in der Praxis vorgekommen ist: Das Test-Team hat
einen Fehler gefunden, diesen erfasst und dem Zustindigen des entspre-
chenden Teams eine E-Mail mit der Fehlerbeschreibung geschrieben. Da
der Fehler ein Blocker war, musste dieser schnellstmdglich behoben wer-
den, um das Testen abzuschlieBen. Das Problem: Die Antwort auf die ge-
schriebene E-Mail war, dass der Zustindige das Unternehmen verlassen
hatte. Zundchst musste nun der neue Ansprechpartner gefunden und ihm das
Problem erldutert werden. Dies allein hat zwei Tage gedauert, in denen der
Fehler nicht behoben werden konnte.

Zusitzlich fehlten dem neuen Zustiandigen die entsprechenden Qualifikatio-
nen, denn er nannte ein altes Problem als Fehler, welches schon lange beho-
ben war. Das Test-Team musste dem Zustdndigen erldutern, wie er dies bei
sich beheben kann, damit er sich um den urspriinglichen Fehler kiimmern
konnte. Insgesamt hat dies eine Woche an Zeit gekostet, wodurch der Fehler
nicht behoben wurde und einen Teil der Tests blockiert hat. Die Deadline

musste deswegen nach hinten geschoben werden.

Gerade in diesem Projekt mit verteilten Teams hétten die Teams es gern
gesehen, wenn die Zustdndigkeiten jederzeit bekannt gewesen und dass sie
speziell bei Verdanderungen immer informiert worden wiren. Dies war in
mehreren Fillen nicht gegeben und hat einiges an Zeit gekostet.

Auch wenn die beschriebene Anpassung nur auf der Instanz-Ebene stattfin-
det, kann hier gezeigt werden, dass der Einsatz von MAPE-K4SEM dieses
Problem vor allem mit Hilfe der Benachrichtigungen an die passenden Be-
teiligten, beheben kann. Es wire nicht nur Zeit gespart worden, sondern es
wire die passende Person ausgewiahlt worden.

Vergleich: Teamgrofie und zusitzliches Meeting

Der zweite Vergleich beziiglich der TeamgroBle findet wiederum mit dem
Projekt Quasi-Scrum statt. Hier ist das Interessante, dass das Team zwar
vergrofert wurde, es betrug wie im Beispiel-Projekt zwischenzeitlich min-
destens 16 Personen, doch es wurde wie in Scrum urspriinglich vorgesehen
kein Team-Split vorgenommen und ein zusitzliches Scrum of Scrums ein-
gefiihrt. Auch wenn sich alle Personen zu den zwei Daily Scrums getroffen
haben, so fiihrte dies zum einen dazu, dass regelmiBig die Time-Boxes
iiberschritten wurden, was weitere Entwicklungszeit gekostet hat. Zum an-
deren gab es Uberschneidungen bei den Aufgaben. Ein Teammitglied wollte

208

eine neue Aufgabe anfangen, brauchte aber Informationen aus einer anderen
Aufgabe, welche noch nicht fertiggestellt war. Die Kommunikation im gro-
Ben Team, von dem nicht alle in demselben Raum saflen, funktionierte nur
bedingt. Dadurch verzogerten sich einige Aufgaben und der Sprint war in
Gefahr. Dieser konnte manchmal nur mit Uberstunden eingehalten werden.

Auch wenn der Team-Split vorgeschlagen wird, wird dieser wie auch im
Beispiel zu sehen, nicht immer durchgefiihrt, was Absprachen und die
Kommunikation verschlechtert. Durch MAPE-K4SEM wiren der Team-
Split und das zusitzliche Meeting automatisch gegeben und eine bessere
Kommunikation sowie Absprache wiren gesichert. Die Einhaltung des
Sprints wire dadurch besser gewihrleistet gewesen.

Gerade in verteilten Teams ist ein zusétzliches Meeting mit Vertretern der
einzelnen Teams wichtig. Dies konnte auch im anderen Projekt erfahren
werden. Es gab zwar ein regelmifBiges Meeting initiiert durch das Test-
Team, doch es war keine Pflicht, dass alle Vertreter der einzelnen Teams
daran teilnehmen mussten; die Verantwortlichkeiten waren nicht fest gege-
ben. Dies fiihrte dazu, dass hdufig Verantwortliche aus einzelnen Teams
fehlten und Fehler nicht besprochen werden konnten. Das flihrte zu Verzo-
gerungen, was wiederum zur Gefdhrdung der Deadlines fiihrte. Auch eine
Eskalation nach oben hat wenig zur Verbesserung beigetragen.

Durch MAPE-K4SEM wire dieses Meeting und besonders Verantwortliche
wiren automatisch festgelegt worden. Eine Besprechung der Fehler wire
moglich gewesen und Deadlines hitten voraussichtlich eingehalten werden
konnen.

Vergleich: Zusitzliche Kunden-QS-Tage und weitere Testaktivititen

Im Quasi-Scrum-Projekt wurden im Laufe des Projektes ebenfalls die Kun-
den-QS-Tage wie in [EG09] beschrieben eingefiihrt, ebenso wie zusétzliche
Testaktivititen. Fiir weitere Testaktivititen wurde dem Team eine weitere
Person hinzugefiigt. Diese war ausschlielich fiir das Testen und dabei fiir
die User Acceptance Tests zustidndig, Unit-Tests und ein automatischer In-
tegrationstest existierten bereits. Am Anfang hat der Tester nur verschiede-
ne UATs durchgefiihrt, ohne einen konkreten Testfall zu beschreiben. Am
Ende wurde die Anforderung abgenommen oder nicht und mogliche Prob-
leme wurden entsprechend dokumentiert.

In spéteren Sprints hat der Tester vorgeschlagen, das Testen mehr zu struk-
turieren und fiir jede Anforderungen ein oder mehrere Testfélle zu erstellen.
Dies wurde vom Team gut angenommen und in spéteren Sprints durchge-
fiihrt. Dies fiihrte zu einer Verbesserung der Software und es gab spéter we-
niger Fehler im ausgelieferten Inkrement. Auch wenn es von der Testseite

209

her logisch klingt, Testfdlle von Anfang an zu dokumentieren, so ist dies in
den Agilen Methoden nicht unbedingt vorgegeben [vergl. GG12]. Der Pro-
duct Backlog Eintrag dient dabei als Beschreibung und es wird geraten, zu-
sdtzlich entsprechende Akzeptanzkriterien zu definieren. Auch dies wird in
der Praxis nicht immer vorgenommen.

Durch MAPE-K4SEM wire das strukturierte Testen wesentlich frither und
mit den entsprechenden wichtigen Aktivititen eingebunden worden. Er hétte
damit voraussichtlich zu einer Verbesserung der Testqualitdt und somit der
Qualitit des Inkrements gefiihrt.

Deutlicher wird dies bei der Einfiihrung der Kunden-QS-Tage, insbesondere
zur Sicherstellung der Betrachtung der nicht-funktionalen Anforderungen.
Der Fokus liegt bei Scrum auf den funktionalen Anforderungen, was auch in
diesem Projekt der Fall gewesen ist. Es gab zwar Performanzvorgaben fiir
die Software, doch diese haben nie einen Eintrag im Product Backlog erhal-
ten. Auch auf einer Konferenz (Informatik 2009) wurde in einem Workshop
diskutiert, ob dies von Anfang an geschehen sollte, oder erst im Laufe des
Projektes. Dariiber gab es geteilte Meinungen. Doch auch wenn die Anfor-
derungen vom Anfang an im Product Backlog gestanden hétten, so miissten
sie vom Product Owner entsprechend ausgewihlt und vor allem priorisiert
werden. Auch dies war im Projekt nicht der Fall, da wie beschrieben das
Hauptaugenmerk auf den funktionalen Anforderungen lag.

Dies fithrte dazu, dass die Performanz der Inkremente beim Kunden immer
schlechter wurde bis hin zum Absturz der Software bei zu groB3er Belastung.
Dadurch wurde klar, dass der Kunde schon vorher mit eingebunden werden
sollte mit Hilfe der Kunden-QS-Tage. Durch seine Einbindung wurde ihm
sehr schnell bewusst, wie wichtig gerade nicht-funktionale Anforderungen
sind. Es ergaben sich neue Eintrdge fiir die Optimierung der Performanz,
welche immer hoch bis sehr hoch priorisiert wurden. Somit konnte die Per-
formanz bis zum Ende des Projektes erhoht und gehalten werden. Doch
vorher hat dies eine Menge Zeit und den Anbieter einen zusitzlichen Sprint
gekostet, den er selbst bezahlen musste.

Durch MAPE-K4SEM wire es moglich gewesen, Probleme schon automa-
tisch vorher zu erkennen und dem entgegen zu steuern, nicht nur mit zusétz-
lichen Testaktivititen, sondern auch mit der Einbindung des Kunden.
Dadurch hitten insofern Kosten gespart werden konnen, als dass der Ab-
sturz der Software voraussichtlich nicht erfolgt und die Performanzschwie-
rigkeiten in einem fritheren Stadium entdeckt worden wire. Der zusétzliche
Sprint wére nicht notig gewesen.

Im Projekt mit den verteilten Teams wurde das Testen wesentlich struktu-
rierter angegangen. Es war ein Test-Team mit verschiedenen Testern und

210

einem Testmanager vorhanden. Die Testfélle fiir einen End-to-End-Test
wurden im Vorfeld definiert und entsprechend durchgefiihrt. Doch vorheri-
ge Tests durch das Entwicklungsteams und speziell gemeinsame Integrati-
ons- und Systemtests durch eine Zusammenarbeit der verteilten Teams wur-
den nicht durchgefiihrt. Von daher traten die Fehler erst beim abschlieBen-
den End-to-End-Test auf.

Mit einer entsprechenden Anpassung der Ziele und der Regeln im MAPE-
K4SEM-Ansatz hitten diese Gegebenheiten iiberwacht und Probleme im
Vorfeld entdeckt werden konnen. Eine Anpassung und das Hinzufiigen ein-
zelner Inkrement- und insbesondere gemeinsamer Integrationstests hitten
hier zu einer besseren Qualitét beigetragen und durch den Ansatz wire ent-
sprechend Zeit gespart worden.

Sowohl der Kunde als auch der Endanwender wurden in diesem Projekt gar
nicht mit eingebunden. Eine endgiiltige Abnahme erfolgte liber das Ma-
nagement, welches an den endgiiltigen Test-Reports interessiert war. Von
daher ist nicht bekannt, ob es Fehler im produktiven System gab oder nicht.
Durch den Einsatz des MAPE-K4SEM-Ansatzes wire ein schnelles Einbin-
den von Endanwendern oder das direkte Einbinden des Managements gut
moglich gewesen. Ob durch das Einbinden des Endanwenders eine weitere
Steigerung der Qualitdt moglich gewesen wire ist schwer abzuschitzen, da
aktuelle Daten nicht bekannt sind.

Vergleich: Neuer Test-Standard

Der Einsatz von Standards, insbesondere eines Test-Standards, wurde in
beiden Projekten nicht vorgenommen. Doch auch wenn ein direkter Ver-
gleich nicht moglich ist, liegt die Vermutung nahe, dass vom Team nicht
taglich tiberpriift wird, ob ein neuer Standard vorhanden ist oder nicht. Wire
ein neuer Standard vorhanden, so miisste manuell verglichen werden, wel-
che Anderung vorliegt, was wiederum Zeit kostet.

Auch wenn im Beispiel angegeben ist, dass ein Vergleich mdglicherweise
manuell erfolgen muss, so wird zumindest rechtzeitig dariiber Bescheid ge-
geben, dass eine Anpassung erfolgen muss. Sobald die Anderungen erkannt
sind, kann die Planung gegebenenfalls mit Hilfe von Planungsalgorithmen
sowie die Ausfiihrung und Benachrichtigung wiederum automatisch statt-
finden. Dies wiirde ebenfalls Zeit und Kosten sparen.

211

7.2.2 Fazit der Evaluierung

Auch wenn es sich bei dem Durchspielen der verschiedenen Beispiele um
konstruierte Beispiele handelte, so sind diese wie sich vor allem im Ver-
gleich zeigt, sehr nah an der Praxis.

Zunichst konnte anhand des Durchspielens der Pre-Work gezeigt werden,
wie konkret einzelne Regeln, Metriken, Planungsmoglichkeiten sowie Aus-
fithrungsregeln und Benachrichtigungen aus den priorisierten Zielen herge-
leitet werden. Dabei war auch zu sehen, wie Regeln fiir einzelne Ziele mit-
einander zusammenhéingen und kombiniert werden konnen. Gerade die Pla-
nungsmoglichkeiten hdngen eng mit der Herleitung der Ziele zusammen, da
sie fir den Dann-Teil der Analyseregeln wichtig sind.

Der Aufwand fiir die Definition der Ziele und die weiteren Schritte der Pre-
Work ist im Vergleich zu den Schritten 7 bis 10 wesentlich hoher, da diese
grofBtenteils manuell vorgenommen werden miissen. Neben allen Beteiligten
fiir die Definition der Ziele, ihren Rahmenbedingungen und der Priorisie-
rung, wird eine erfahrene Person bendtigt, beispielsweise ein Methoden-
Engineer. Aber auch ein erfahrener Projektleiter kann die einzelnen Schritte
vornehmen.

Obwohl der Aufwand zunichst hoch erscheint, so kann er mit dem Aufwand
fiir das Ermitteln und Spezifizieren bzw. Beschreiben von Anforderungen
an eine Software (Requirements Engineering) [Hel3, Gal4] verglichen
werden. Das Finden und Definieren der Anforderungen an eine Software
benoétigt ebenfalls seine Zeit, ist aber essentiell um eine gute und qualitativ
hochwertige Software zu entwickeln. Die Ziele und die daraus resultieren-
den Schritte sind fiir eine qualitativ hochwertige Software-Engineering-
Methode ebenfalls essentiell. Vom Zeitpunkt her kann das Durchfiihren der
Pre-Work gleichzeitig mit dem Requirements Engineering durchgefiihrt
werden. Auch wenn die Eintrige fiir ein Product Backlog anfangs teilweise
grober gehalten werden konnen, als in einer anderen Software-Engineering-
Methode, so ,,fallen diese nicht vom Himmel®“. Sobald die Eintrdge fiir ein
Product Backlog erstellt sind, lassen sich die Sprints und die Entwicklung
schneller durchfiihren.

Genauso verhilt es sich mit dem Ansatz MAPE-K4SEM. Sind die verschie-
denen Schritte der Pre-Work erstellt und entsprechend in der Wissensbasis
gespeichert, erfolgt die Durchfithrung der Schritte 7 bis 10, der eigentliche
Durchlauf der MAPE-Feedbackschleife wesentlich schneller und grofBten-
teils automatisch.

212

Durch den Vergleich mit den beiden Praxis-Projekten konnte gezeigt wer-
den, dass die Nutzung der Software-Engineering-Methode kontinuierlich
wihrend der Laufzeit liberwacht werden kann. Probleme werden automa-
tisch erkannt und entsprechend angepasst. Die Anpassungen sind zusétzlich
auf der Instanz-Ebene moglich. Im Gegensatz zu Anpassungen in den Pra-
xis-Projekten konnten im Vergleich die Anpassungen schneller, strukturier-
ter und groBtenteils eigenstindig ohne Hilfe von auBlen durchgefiihrt wer-
den. Besonders wichtig ist, dass automatisch alle erforderlichen Beteiligten
vom System tiiber die Anpassung informiert werden. Dabei bekommen die
Beteiligten konkret die Benachrichtigung nur mit den Informationen, die sie
betreffen, und wann die neue Anpassung greift.

Dass gerade die Benachrichtigungen beispielsweise liber neue Verantwortli-
che sehr wichtig sind und Zeit sparen, hat das erste Beispiel im Zusammen-
hang mit verteilten Teams gezeigt. Der hier gezeigte Ansatz wiirde in einem
solchen Szenario den Projektleiter insofern unterstiitzen, als dass er den
Uberblick iiber die verschiedenen Teams behilt. Gerade bei einer hohen
Fluktuation und vielen Statusdnderungen der Personen kann eine automati-
sche Ubersicht und Benachrichtigung viel Zeit und Probleme ersparen. Es
kann beispielsweise verhindert werden, dass jemand Informationen nicht
rechtzeitig erhélt.

Des Weiteren wurde in der Evaluierung gezeigt, wie Anpassungen sich zum
Anpassungszeitpunkt verhalten und wie eine kombinierte Anpassung aus-
sieht. Im Vergleich mit dem Praxis-Projekt Quasi-Scrum wiren die Kunden-
QS-Tage voraussichtlich frither zum Einsatz gekommen, Probleme beziig-
lich der Performanz wiren frither erkannt und der Absturz der Software und
die Kosten fiir einen zusédtzlichen Sprint wéren verhindert worden. Das Hin-
zufiigen neuer Rollen war ebenfalls mit dem Ansatz problemlos moglich
und fiithrte zu einem strukturierteren Testen.

Auch wenn eine Planung ohne Planungsmoglichkeiten gezeigt wurde, so
konnte diese nicht direkt mit der Praxis verglichen werden. In diesem Fall
war die Anpassung ohne Planungsmoglichkeiten verhéltnismaBig einfach.
Wie schon im entsprechenden Abschnitt beschrieben, kdnnen solche Pla-
nungen wesentlich komplexer und aufwendiger sein und es wird ein erfah-
rener Methoden-Engineer oder es werden gute Planungsalgorithmen beno-
tigt.

Ferner konnte an einem einfachen Beispiel gezeigt werden, dass Ziele mit-
einander in Konflikt stehen kdnnen und diese mit beachtet werden miissen.
Im Fall des Scrum Masters, der keine Teamaufgaben iibernechmen darf, war
dieser Konflikt verhédltnismiBig einfach zu beheben. Auch hier kénnen sich
komplexere Konflikte ergeben, die eine Losung bendtigen.

213

Des Weiteren wurde in den Beispielen angesprochen, dass die Anpassungen
zum Zeitpunkt der Anpassung keine anderen Aufgaben beeinflusst haben
und diese abgeschlossen werden konnten. Im Falle des neuen Test-
Standards wurden zwei Varianten angegeben, welche dies mit beachten.
Auch muss es bei komplexeren Fillen mit betrachtet werden, wie Anpas-
sungen die aktuelle Software-Engineering-Methode beeinflussen kdnnen.

AbschlieBend kann gesagt werden, dass anhand der durchgefiihrten Beispie-
le und dem Vergleich mit der Praxis, der Ansatz MAPE-K4SEM fiir die
Anpassung von Software-Engineering-Methoden zur geeignet ist und funk-
tioniert. Obwohl die Pre-Work manuell erfolgt, kdnnen die eigentliche
Uberwachung, Analyse, Planung und endgiiltige Anpassung groBtenteils
automatisch und somit selbst-adaptiv durchgefiihrt werden.

214

Kapitel 8 Zusammenfassung und Ausblick

In den vorherigen Kapiteln wurde der Ansatz MAPE-K4SEM vorgestellt,
welcher eine selbst-adaptive Software-Engineering-Methode ermdoglicht. Es
konnte gezeigt werden, dass es mit Hilfe des Ansatzes moglich war, die
Software-Engineering-Methode zur Laufzeit automatisch zu iiberwachen,
Ergebnisse der Uberwachung zu analysieren und bei Bedarf die SEM ent-
sprechend anzupassen. Im néchsten Abschnitt wird nach einer kurzen Wie-
derholung der Ausgangssituation eine Zusammenfassung des Ansatzes so-
wie der Evaluierung gegeben. Ferner wird der Beitrag dieser Arbeit erldu-
tert. Abschlieend wird ein Ausblick gegeben, welche weiteren Arbeiten
diesen Ansatz zum einen weiter verfeinern und zum anderen sich daran an-
schlielen konnen.

8.1 Zusammenfassung

Nach [Vo13] scheitern heute noch ca. 75% der Projekte im IT-Umfeld. Als
Griinde werden dabei u.a. undefinierte Ziele, fehlende Unterstiitzung des
Managements, unzureichend definierte Rollen und Verantwortlichkeiten,
fehlender Change-Management-Prozess, aber auch nicht angemessene Be-
achtung von Storeinfliissen oder das Ignorieren von Warnzeichen im Projekt
genannt.

Ferner konnen als weitere Faktoren genannt werden, dass zwar jedes Projekt
ein Vorgehen, aber nicht unbedingt eine Software-Engineering-Methode
besitzt. Ist eine Software-Engineering-Methode vorhanden, kann diese mit
Tailoring oder Situational Method Engineering vor Beginn des Projektes
angepasst werden. Wihrend der Laufzeit des Projektes wird die SEM jedoch
nicht iiberwacht und es fehlt die Zeit, bei Warnzeichen diese schnellstmog-
lich anzupassen.

Auch wenn das Projektmanagement mit der Projektkontrolle sowie das
Change Management Ansitze zur Uberwachung und Verinderung liefert, so
sind diese meistens nicht mit der Software-Engineering-Methode selbst ver-
zahnt und befinden sich alle auf einer anderen Ebene bzw. betrachten einen
anderen Kontext. In Kapitel 2 wurden daher zunichst erste Anforderungen
definiert, die an die moglichst eigenstindige Anpassung einer Software-
Engineering-Methode gestellt werden, beispielsweise dass der Fokus auf der
SEM liegen muss. Diese Anforderungen wurden in Kapitel 3.1. noch einmal
iberarbeitet, verfeinert und auf die 13 Anforderungen A1 bis A13 erweitert.

Im weiteren Verlauf des zweiten Kapitels wurden sowohl verschiedene An-
passungsmethoden als auch das Projektcontrolling genauer vorgestellt. Um
die Eignung dieser Ansitze einschdtzen zu konnen, wurden die ersten gro-
ben Anforderungen in Bewertungskriterien tiberfiihrt. Auch wenn die ver-

215

schiedenen Ansitze diverse Moglichkeiten bieten, so konnte mit Hilfe der
Bewertungskriterien festgestellt werden, dass die Ansétze nicht ausreichen,
eine Software-Engineering-Methode zur Laufzeit anzupassen. Insbesondere
eine automatische Uberwachung und mdglichst eigenstindige Anpassung
war nicht gegeben.

In dieser Arbeit wurde mit MAPE-K4SEM ein Ansatz vorgestellt, der die
Vorteile der verschiedenen Feedbackzyklen aus den bisherigen Ansdtzen
iibernimmt. Mit dem in Kapitel 3 vorgestellten der SE Method Manager
(SEMM), wurde ein Ansatz erarbeitet, welcher im Kern die Feedbackschlei-
fe MAPE-K aus den selbst-adaptiven Systemen nutzt. Mit Hilfe des Ansat-
zes unter der Nutzung des SE Method Managers wird eine automatische und
selbst-adaptive Uberwachung und Anpassung einer Software-Engineering-
Methode ermdglicht.

SME | Tailoring | AM | PDCA | SS 8D | PC | SEMM
Fokus |5 5 4 2 2 0 2 5
AZP 2 2 4 3 3 2 4 5
Dauer |3 3 4 3 1 3 3 5
KH 1 1 4 4 2 3 5 5
ow 0 0 4 4 2 2 5 5
AA 1 1 4 4 4 4 5 5
PM 0 0 2 3 5 5 3 5
EE 1 0 4 3 4 3 4 5
VS 3 3 2 5 3 1 5 4
Auto 1 0 0 0 0 0 1 4
WVE 3 3 3 3 3 3 3 4
Gesamt [O 1.8 | 1.6 0] 031 |0 0] %) D4.7
3.2 245 (24 |36

Tabelle 2 Ubersicht der Bewertung des Ansatzes im Vergleich zu den anderen Ansiit-
zen.

Vergleicht man nun den SEMM mit den Bewertungskriterien aus Kapitel 2,
so ist in Tabelle 2 zu sehen, dass dieser bereits eine hohere Bewertung er-
zielt als die vorherigen Ansdtze. Der Fokus liegt bei SEMM auf der Soft-
ware-Engineering-Methode und dem sich zur Laufzeit befindenden Anpas-
sungszeitpunkt. Durch einen hohen Grad an Automatisierung ist die Dauer
der Anpassung kurz und kann sowohl friihzeitig als auch weitestgehend ei-
genstindig durchgefiihrt werden. Die Anpassungen erfolgen kontinuierlich
und je nach Bedarf. Durch die Monitor-Phase ist eine kontinuierliche Uber-
wachung der SEM gegeben und mit Hilfe der Analyse-Phase wird regelmi-
Big der aktuelle Status ausgewertet, ob eine Anpassung erforderlich ist. Bei
Bedarf wird in der Plan-Phase eine entsprechende Anpassung geplant und
iber die Execute-Phase friihzeitig und schnell ausgefiihrt.

216

Da die MAPE-K-Feedbackschleife kontinuierlich wéhrend des Projektes
ausgefiihrt wird, werden die Ergebnisse einer Anpassung evaluiert, ob sie
entsprechend den Erfolg des Projektes erhalten oder nicht. Da zu Beginn des
Projektes die Regeln, Sensoren etc. bekannt sein miissen, ist bis zu einem
gewissen Grad die Vorausschau gegeben. Diese kann durch die Erweiterun-
gen aus Kapitel 4 noch verbessert werden. Eine vollstindige Automatisie-
rung des SE Method Managers ist zwar moglich, es macht aber an einigen
Stellen, beispielsweise nach der Analyse-Phase, wihrend der Plan-Phase
oder am Ende der Plan-Phase, Sinn, jeweils einen Methoden-Engineer oder
den Projektleiter wie beschrieben mit einzubeziehen. Die Ergebnisse konnen
wiederverwendet werden, insbesondere Vorarbeiten und gemachte Erfah-
rungen. Am Ende von Kapitel 3 konnte zunédchst in Abschnitt 3.4.1 gezeigt
werden, dass der Ansatz neben den Bewertungskriterien ebenso die gestell-
ten Anforderungen A1 bis A13 erfiillt.

Kapitel 3 schloss mit der Vorstellung der weiteren Herausforderungen TP1
bis TP5. Es musste geklirt werden, wie granular die Daten fiir den Ansatz
sein miissen, ebenso wenig, welche Daten wirklich wichtig fiir die Aufberei-
tung und die Analyse sind. Es wurde herausgearbeitet, wie sichergestellt
werden kann, was gemessen und in der Analyse-Phase analysiert und aus-
gewertet wird. Ferner musste herausgearbeitet werden, wie eine Reihenfolge
fiir die Analyse und Planung erstellt werden und Konflikte vermieden wer-
den konnen. Ferner musste ein Anpassungszeitpunkt vorliegen, da ein Sys-
tem zwar zu jedem Zeitpunkt angepasst werden kann, eine Software-
Engineering-Methode aber nicht. Sollten zum Anpassungszeitpunkt mehrere
Anpassungen vorliegen, musste herausgearbeitet werden, wie diese mitei-
nander kombiniert werden kdnnen.

Um diesen Herausforderungen zu begegnen wurde ein zielorientierter An-
satz verfolgt und der Ansatz MAPE-K4SEM entwickelt. Dieser Ansatz bin-
det den SE Method Manager als Kernvorgehen in einen 10-Schritte-Ablauf
ein und setzt sich aus einer Pre-Work (Schritte 1-6) und der MAPE-K-
Feedbackschleife (Schritte 7-10) und somit dem SE Method Manager zu-
sammen. Die Pre-Work startet mit der Definition der Ziele, welche bei der
Software-Engineering-Methode eingehalten werden sollen, und priorisiert
diese Ziele. Diese Priorisierung setzt sich fiir die Analyse und die Planung
der Anpassung fort, wodurch eine Reihenfolge der Anpassungen erstellt
werden kann.

Im weiteren Verlauf der Pre-Work werden sowohl Regeln fiir die Analyse
und daraus die entsprechenden Metriken, als auch Planungsmdglichkeiten
fir die Plan-Phase wund entsprechende Ausfithrungsregeln und
Benachrichtigungen abgeleitet. Ferner wird im Schritt der
Planungsmdglichkeiten im Voraus untersucht, welche moglichen Konflikte

217

auftreten konnen und es werden erste Losungsmoglichkeiten dafiir gesucht.
Ebenso wird untersucht, wie sich verschiedene Planungsmoglichkeiten
kombinieren lassen konnen; es wird nach Kombinationspunkten gesucht.
Zur Wiederverwendung der Ergebnisse wurde in Abschnitt 5.8 ein Block
zur weiteren Verwendung definiert. Dieser Block enthilt die Ergebnisse aus
der Pre-Work fiir das jeweilige Ziel und sie werden in der Wissensbasis
gespeichert. Die jeweiligen Blocke konnen in spiteren Projekten
entsprechend wieder verwendet werden.

In der MAPE-K-Feedbackschleife werden die eigentlichen Schritte des SE
Method Managers durchgefiihrt. Hierfiir werden die in der Wissensbasis
gespeicherten Ergebnisse aus der Pre-Work genutzt. Die Plan-Phase wird in
zwei Teile unterteilt, die eigentliche Planung und den Anpassungszeitpunkt.
Hier wird betrachtet, ob mehrere Anpassungen vorliegen und es wird
gegebenenfalls eine kombinierte Anpassung erstellt und anschlieend
ausgefiihrt.

s MAPE-K4SEM N\

[TP1, TP2, TP3 P5 |

| Defiotion der Zee | TP4

Schritt 5 - Schritt 6—
Ableitung von Metriken Ableitung von

Ausfiihrungsregeln &

\ Pre-Work (Schritt 1-6) MAPE-K (Schritt 7-10) /

Abbildung 61 Mit Hilfe der Pre-Work + MAPE-K werden zusétzlich die Herausforderungen
TP1 - TPS gelost

Wie in Abbildung 61 zu sehen, konnen mit dem MAPE-K4SEM-Ansatz
nicht nur die Anforderungen A1l bis A13 erfiillt werden, sondern die Her-
ausforderungen TP1 bis TP5 werden damit ebenfalls erfiillt.

Der wissenschaftliche Beitrag dieser Arbeit ist somit zum einen mit MAPE-
K4SEM ein Ansatz, welcher eine selbst-adaptive Software-Engineering-
Methode ermdglicht. Eine insbesondere automatische und somit eigenstén-
dige sowie kontinuierliche Uberwachung der SEM, Analyse des aktuellen
Status, Planung und Ausfiihrung einer ndtigen Anpassung war mit den bis-

218

herigen Ansédtzen in dieser Form gar nicht oder nur in Teilen mdglich. Ne-
ben der zeitnahen und eigenstindigen Anpassung einer Software-
Engineering-Methode zur Laufzeit ist ein weiterer Beitrag der Arbeit, dass
der Ansatz MAPE-K4SEM verschiedene Themengebiete miteinander ver-
bindet. Der Ansatz verkniipft die selbst-adaptiven System direkt mit dem
Software Engineering. Der Beitrag ist hier genauer die Ubertragung des
MAPE-K auf die Anpassung von Software-Engineering-Methoden.

Zusitzlich beinhaltet MAPE-K4SEM Ansidtze aus dem Projektmanagement
und dem kontinuierlichen Verbesserungsprozess, in dem Feedbackschleifen
an sich genutzt werden. Ferner beinhalten diese Ansétze beispielsweise ei-
nen Kontrollmechanismus und das Planen von GegenmaBnahmen, aller-
dings in einem anderen Kontext. Der Ansatz iibertrdagt dies auf den Kontext

der Software-Engineering-Methoden mit einer erweiterten Feedbackschlei-
fe.

MAPE-K4SEM {ibernimmt den Fokus auf die Software-Engineering-
Methode aus dem Tailoring und dem Situational Method Engineering sowie
die gegebenenfalls mit diesen Ansidtzen im Vorfeld angepasste Software-
Engineering-Methode. MAPE-K4SEM geht dann den weiteren Schritt und
liberwacht eigenstindig, wie sich die gegebene SEM wéhrend der Laufzeit
verhélt.

/ Projeln \
b - .I..—_ J

— I
Projekt- : Software-
managementund -._ | 1 Engineering-
-kontrolle 1 | Methoden (SEM) |
3 | Situational Method J
_.--- Engineering & I
|._ Tailoring einer SEM |
| “", L T S | . |
Change |~ | E “l Agile Methoden |
Management | \ /
| .| Kontinuierlicher
|
I

Verbesserungs- — €——
|_ prozess

Selbst-

adaptive
SEM

Abbildung 62 MAPE-K4SEM verzahnt mit Hilfe der selbst-adaptiven Systeme das Projektma-
nagement und Software-Engineering-Methoden

219

Als letztes beinhaltet der Ansatz die in Abschnitt 2.3 beschriebenen drei
Phasen des Change Managements — Planung, Umsetzung und Evaluierung.
Wie in Abbildung 62 zu sehen, verarbeitet MAPE-K4SEM die verschiede-
nen Einfliisse zu einem eigenen Ansatz und verzahnt dabei vor allem das
Projektmanagement, hier genauer die Projektkontrolle, und Software-
Engineering-Methoden mit Hilfe der selbst-adaptiven Systemen zu einer
selbst-adaptiven Software-Engineering-Methode.

In der anschlieBenden Evaluierung beim Durchspielen der verschiedenen
Beispiele konnte gezeigt werden, dass der MAPE-K4SEM-Ansatz vom
Prinzip her funktioniert. Durch den anschlieBenden Vergleich mit zwei Pra-
xis-Projekten wurde gezeigt, dass durch den Ansatz im Gegensatz zu den
Projekten eine Anpassung eigenstindig, zeitnah und schnell moglich ist. Mit
Hilfe des Ansatzes konnte sowohl Zeit gespart als auch Missverstdndnisse
beispielsweise in der Kommunikation, verhindert werden. Probleme konn-
ten frithzeitig erkannt und ithnen entgegengewirkt werden.

Es wurde festgestellt, wie wichtig gerade die Benachrichtigungen an die
Beteiligten wihrend der Ausfiihrung sind. Gerade in gro3en und verteilten
Teams kann so der Uberblick gewahrt werden und ein Wechsel von Ver-
antwortlichkeiten ist den entsprechenden Beteiligten rechtzeitig bekannt.
Auch wenn dies nur eine kleine Anderung auf der Instanz-Ebene und nicht
an der Software-Engineering-Methode selbst ist, so kann durch das Nicht-
Bekannt-Sein des Wechsels der Verantwortlichkeiten viel Zeit und dadurch
Geld verloren gehen. Wie im Praxis-Beispiel zu sehen, kann dadurch sogar
der Erfolg des Projektes gefdhrdet werden.

Es wurde gezeigt, dass eine kontinuierliche Uberwachung der Software-
Engineering-Methode gegeben ist und durch die Analyse und Auswertung
mit Hilfe von beispielsweise ECA-Regeln, ist eine schnelle Beurteilung des
aktuellen Status ebenfalls gegeben. Mit Hilfe der Pre-Work wird auf der
einen Seite durch die Ableitung der Analyseregeln und den anschlieBenden
Metriken von den vorher definierten Zielen sichergestellt, dass das Richtige
gemessen wird, um den Erfolg der Software-Engineering-Methode zu si-
chern. Auf der anderen Seite orientieren sich die Planungen ebenfalls an den
Zielen, so dass diese nach einer erfolgreichen Anpassung weiter eingehalten
werden.

8.2 Ausblick

Auch wenn mit MAPE-K4SEM ein funktionsfihiger Ansatz fiir eine selbst-
adaptive Software-Engineering-Methode vorgestellt wurde, so steht als
néchstes die Implementierung der Schritte 7 bis 10, des SE Method Mana-
gers in einem Prototyp an. Dabei sollte die Wissensbasis mit einer aktiven
Datenbank und den beschriebenen ECA-Regeln umgesetzt werden.

220

Ferner sind der Einsatz von MAPE-K4SEM und seine Evaluierung in einem
konkreten Projekt in einem Unternehmen wiinschenswert. Neben diesen
beiden direkten Ankniipfungspunkten an diese Arbeit gibt es noch weitere
Moglichkeiten fiir zukiinftige Arbeiten.

8.2.1 Verkniipfung Requirements Engineering und Pre-Work

Wie bereits in der Evaluierung angesprochen, nimmt die Pre-Work einiges
an Zeit in Anspruch. Gerade die Definition und Priorisierung der Ziele er-
fordern einen hohen Aufwand und auch das Einbeziehen von den Beteilig-
ten. Die Ziele fiir die Software-Engineering-Methode besitzen Ahnlichkei-
ten mit den Anforderungen an eine Software und haben somit eine Verbin-
dung zum Requirements Engineering. Dieses beschiftigt sich mit der Er-
mittlung, Analyse, Spezifizierung und Priorisierung sowie dem Manage-
ment von Anforderungen sowohl an Systeme als auch an Software-Produkte
[Hel3, Gal4].

Auch wenn die Ziele der Software-Engineering-Methode von der gegebenen
SEM hergeleitet werden konnen, z.B. anhand gegebener Regeln und Eigen-
schaften, wire in einer weiteren Arbeit zu iiberlegen, wie die Ahnlichkeiten
dieser beiden Gebiete genutzt und Moglichkeiten sowie Techniken aus dem
Requirements Engineering das Definieren der Ziele erweitern kdnnen. Ge-
rade die Ziele, die sich aus dem Projekt- und Unternehmenskontext ergeben,
konnten mit Hilfe dieser Techniken besser erfasst und praziser formuliert
werden.

Umgekehrt kann untersucht werden, ob und wie sich das Definieren der
Ziele einer Software-Engineering-Methode auf die Definition der Anforde-
rungen iibertragen lasst.

8.2.2 Planen ohne Planungsméglichkeiten

In Abschnitt 6.4.1 und Abbildung 44 wurde das Planen einer Anpassung
ohne Planungsmoglichkeiten beschrieben. In der Evaluierung wurde dafiir
das einfache Beispiel fiir die Anpassung bei einem neuen Test-Standard
gezeigt. Hier war die Planung ohne Planungsmoglichkeiten relativ einfach.
Doch fiir den Vergleich der beiden Test-Standards ist entweder ein manuel-
ler Vergleich oder, wie beschrieben, eine Software ndtig, die zwei Versio-
nen automatisch miteinander vergleichen kann.

Fiir weitere und insbesondere komplexere Planungen ohne vorher bekannte
Moglichkeiten ist die erste Losung, dass eine Person, ein Methoden-
Engineer oder ein erfahrener Software-Architekt oder Projektleiter einge-
setzt wird. Dieser schaut sich die gegebenen Werte und die entsprechenden
Ziele an und entwirft Varianten flir die Anpassungen. Doch dies nimmt
wieder viel Zeit in Anspruch und konnte den Zeitvorteil des Ansatzes revi-
dieren.

221

Ein erster Ansatz wire, die Planung mit Hilfe von Mustern (Pattern) vorzu-
nehmen. In der Arbeit von [FBL13] wird ein Ansatz vorgestellt, wie eine
situationsspezifische Methode mit Hilfe von Methoden-Mustern (Method
Patterns) erstellt werden kann. Es ist zu iiberlegen, wie diese Methoden-
Muster genutzt werden konnen, nicht um eine situationsspezifische Methode
zu erstellen, sondern um fiir eine bereits gegebene Software-Engineering-
Methode in der gegebenen Situation mit den vorliegenden Werten gemif
ihrer Ziele die entsprechende Anpassung zu planen.

Neben dem Ansatz der Methoden-Muster kann in einer weiteren Arbeit
untersucht werden, wie das Planen ohne bereits bekannte Planungsmoglich-
keiten automatisch mit Hilfe von Planungsalgorithmen moglich ist. Es kann
untersucht werden, welche Planungsalgorithmen bereits in der Literatur
vorhanden sind und wie gut diese fiir den Ansatz eingesetzt werden konnen.
Sind die Algorithmen aus der Literatur nicht ausreichend, so miissen diese
entsprechend angepasst und erweitert werden.

Des Weiteren ist zu liberlegen, ob es moglich ist, aus der Erfahrung zu ler-
nen und entsprechende Algorithmen aus dem maschinellen Lernen einzuset-
zen. Diese konnen mit bereits vorhandenen Planungsmdglichkeiten und
eventuellen Algorithmen trainiert werden, um anschliefend auf eine neue
Situation angemessen zu reagieren.

8.2.3 Kombination von Anpassungen

Bereits in der Evaluierung wurde ein Beispiel fiir die Kombination zweier
Anpassungen zum Anpassungszeitpunkt vorgestellt und durchgespielt. Hier
war eine Kombination relativ gut moglich, da sich die Ziele sehr dhnlich
waren.

In einer weiteren Arbeit wére zu untersuchen, welche Kombinationsmdg-
lichkeiten es zwischen den verschiedenen Elementen geben kann. Wie be-
reits in Abschnitt 5.4.4 beschrieben ist zu untersuchen, wie es sich verhilt,
wenn es sich beispielsweise bei der Kombination von zwei Anpassungen
nicht blo um gleichartige Elemente, sondern um genau dasselbe Element
an derselben Stelle im Modell handelt. Die eine Anpassung will dieses Ele-
ment 16schen, die andere Anpassung will dieses Element austauschen. Ste-
hen diese beiden Anpassungen in Konflikt oder gibt es eine Kombinations-
16sung?

Eine andere zu untersuchende Frage ist, wie zwei oder mehrere Elemente
miteinander verschmolzen werden konnen, wenn diese nicht von demselben
Typ sind? Wie kann abgewogen werden, welche den hoheren Nutzen
bringt? In einer solchen Arbeit wire ein Kombinationskonzept zu erstellen,
dass die verschiedenen Moglichkeiten betrachtet.

222

8.2.4 Analyse von Konflikten und Auswirkung auf Gesamt-SEM
Sowohl in der Pre-Work als auch zum Anpassungszeitpunkt wurde bereits
erwiahnt, dass es zwischen Zielen aber auch zwischen geplanten Anpassun-
gen zu Konflikten kommen kann. Ein einfaches Beispiel wurde in der Ana-
lyse gezeigt, wo der Konflikt beachtet werden muss, dass ein Scrum Master
keine Entwicklungsaufgaben iibernehmen darf. Neben diesem einfachen
Fall kann es zu wesentlich komplexeren Fallen kommen.

In einer weiteren Arbeit wire zu iliberlegen, wie mogliche Konflikte zwi-
schen einzelnen Zielen bereits im Detail in der Pre-Work analysiert werden
konnen und welche Losungsmoglichkeiten es geben kann. Sind Konflikte
zwischen den Zielen bekannt, ist die Frage zu kléren, ob diese nur mdglich
sind, wenn bereits Planungsmoglichkeiten vorhanden sind oder ob und wel-
che Konflikte es geben kann, wenn eine Anpassung erst wihrend der Plan-
Phase erstellt wird. Wie konnen diese Konflikte aussehen und wie kdnnen
diese gelost werden?

In einem weiteren Schritt kann untersucht werden, wie sich eine Planung
ohne vorherige Planungsmdoglichkeiten auf die gesamte Software-
Engineering-Methode auswirkt. Wie bereits in den Abschnitten 5.5.2 ,,Vari-
antenbestimmung* und 6.4.1 ,,Planen einer Anpassung* sowie in Abbildung
44 beschrieben, muss iiberpriift werden, wie sich eine Anpassung auf die
gesamte Software-Engineering-Methode auswirkt. Es muss sichergestellt
sein, dass die geplante Anpassung nicht in Konflikt zur restlichen SEM
steht. Dies wére mit Hilfe von Traceability- und Simulationsalgorithmen
moglich. Dazu muss untersucht werden, welche Algorithmen es bereits gibt
und ob diese fiir den Ansatz genutzt werden kdnnen oder ob sie angepasst
oder erweitert werden miissen.

Ferner ist zu untersuchen, wann eine Variante bzw. Alternativen-Planung
abgeschlossen und tberpriift wird, welcher Konflikt eine hohere Prioritét
hat. Dies ist nétig um zu verhindern, dass die Planung ohne Planungsmdg-
lichkeiten in einen Deadlock lduft. Der aktuelle Vorschlag ist, dass nach
maximal 3 geplanten Alternativen untersucht wird, welcher der Konflikte
die niedrigste Prioritét hat, damit eine Anpassung erfolgen kann.

Ein anderer Konflikt der entstehen kann, sind Aufgaben, die zur Zeit der
Anpassung noch nicht beendet sind. Die Frage ist, ob diese Aufgaben zu-
nichst beendet werden oder sofort zu neuen Aufgaben iibergegangen wird?
Wie ist die Handhabung mit alten Artefakten, wie wird dieses Wissen gesi-
chert. Im aktuellen Beispiel bei der SEM Scrum ist das Hauptartefakt das
Product Backlog. Da dieses immer erweitert wird oder Eintrdge geldscht
oder ausgetauscht werden, findet keine direkte Anderung des Artefakts statt.
Das heilit, das Artefakt wird weder geldscht noch ausgetauscht. Ein einfa-

223

cher Konflikt beziiglich Aufgaben wurde im letzten Beispiel gezeigt. Dort
wurden zwei Varianten erstellt, die je nach Ausfiihrung gegriffen haben. Es
wire zu untersuchen, wie dies bei anderen Konflikten aussehen kann und es
wére zu beurteilen, wann eine Aufgaben, Aktivitdt etc. beendet wird und
wann die neuen greifen.

8.2.5 Ubertragung des Ansatzes auf andere Bereiche

Der Ansatz MAPE-K4SEM ist von verschiedenen Bereichen und Ansétzen
beeinflusst und hat Vorteile beispielsweise der Projektkontrolle, aber auch
die Phasen des Change Managements verinnerlicht. Eine interessante wei-
terfithrende Frage wire, ob und wie sich der vorgestellte Ansatz in diese
Bereiche zuriickiibertragen lésst.

Der Fokus des vorgestellten Ansatzes liegt hier auf der Software-
Engineering-Methode. Es miisste untersucht werden, wie sich der Ansatz
auf den Kontext eines Projektes, also die Projektkontrolle, iibertragen ldsst.
Dafiir miissten die Ziele aus dem magischen Dreieck wie in Abschnitt 2.2.1
beschrieben betrachtet und als entsprechende Ziele fiir den Ansatz definiert
werden. Sind die Ziele definiert, konnen die weiteren Schritte entsprechend
aus dem Ansatz abgeleitet werden. Es muss aber zunéchst tiberpriift werden,
ob und wie sich der beschriebene Zyklus der Projektkontrolle abdndern und
an die MAPE-Feedbackschleife anpassen ldsst.

Eine andere Moglichkeit wére zu untersuchen, ob sich der Ansatz in einen
ganz anderen Bereich, wie Geschiftsprozesse und deren Uberwachung, oder
in die der Produktion iibertragen ldsst. Gerade die 8D-Methodik zeigt, dass
fiir das Reklamationsmanagement ein Zyklus dhnlich dem Six Sigma einge-
setzt wird. Die Frage ist: Wire es moglich eine kontinuierliche Uberwa-
chung und schnelle Anpassung mit Hilfe des MAPE-K4SEM in diesem Be-
reich einzusetzen?

Die Qualititsziele fiir die Produkte sind bekannt und es miisste bekannt sein,
welche Eigenschaften der Produktionsprozess erfiillen muss, um eine gute
Qualitdt zu liefern. Ist es moglich, aus diesen Zielen die entsprechenden
Regeln und Metriken sowie PlanungsmaBnahmen im Vorfeld abzuleiten?
Wiren die Definition der Ziele und entsprechenden Ableitungen der weite-
ren Schritte in diesem Umfeld mdoglich, so sollte auch die anschlieende
Durchfiihrung des MAPE-K mit diesen entsprechenden Werten mdglich
sein.

224

225

Literaturverzeichnis

[AE13]

[AMO1]

[AmO06]

[At14]

[BCR94]

[BK13]

[Bo81]

[Bol3]

[Bro6]

[Br09]

[Ch09]

[CGLOS]

Ahlemann, F., Eckl, C. (Hrsg.): Strategisches Projektmanage-
ment, Springer-Verlag Berlin Heidelberg 2013.

Agile Manifesto, www.agilemanifesto.org. (zuletzt besucht:
06.11. 2014).

Ambler, S.: The Agile Unified Process (AUP), Ambysoft,
http://www.ambysoft.com/unifiedprocess/agileUP.html, latest
Version 2006 (zuletzt besucht: 10.11. 2014).

Atlassian: JIRA. https://www.atlassian.com/de/software/jira (zu-
letzt besucht: 10.11. 2014).

Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question
Metric Approach. In: Encyclopedia of Software Engineering.
John Wiley & Sons, S. 528-532, 1994.

Broy, M., Kurhmann,M.: Projektorganisation und Management
im Software Engineering. Xpert.press, Springer Vieweg, 2013.

Boehm, B.: Software Engineering Economics. Englewood Cliffs:
Prentice Hall, 1981.

Borger, S.: Resilienz im Projektmanagement. SpringerGabler,
Wiesbaden 2013.

Brinkkemper, S.: Method engineering: engineering of
Information systems development methods and tools. In: Infor-
mation and Software Technology, Number 38, pp. 275-280,
2996.

Brun et. Al.: Engineering Self-Adaptive Systems through Feed-
back Loops, In: Software Engineering for Self-Adaptive Sys-
tems, Lecture Notes in Computer Science, Volume 5525/2009,
pp. 48-70, Springer Verlag, Heidelberg 2009.

Cheng et. al.: Software Engineering for Self-Adaptive Systems:
A Research Roadmap, In: Software Engineering for Self-
Adaptive Systems, Lecture Notes in Computer Science, Volume
5525/2009, pp. 1-26, Springer Verlag, Heidelberg 2009.

Crespi, V., Galstyan, A., Lerman, K.: Comparative Analysis of
Top-Down and Bottom-Up Methodologies for Multy-Agent

226

[Co02]

[De86]

[DGGI5]

[Do06]

[DW99]

[EG09]

[ES10]

[FLE13]

[Fi10]

[GA02]

System Design. In Proceedings of AAMAS’05, Utrecht, Nieder-
lande, 2005.

Cockburn, A.: Agile Software Development. The Agile Soft-
ware Development Series; Pearson Education, Inc. 2002

Deming, W.E.: Out of the crisis. Center for Advanced Engineer-
ing Study, MIT, Cambridge, MA, 1986.

Dittrich, K.R., Gatiu, S. Geppert, A.: The Active Database Man-
agement System Manifesto: A Rulebase of ADBMS Features.
In: Rules in Database Systems, LNCS, Volume 985, pp. 1-17,
1995.

Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E.,
Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.:
A survey of autonomic communications. In: ACM Transactions
Autonomous Adaptive Systems (TAAS) 1(2), pp. 223-259,
2006.

Droschel, W., Wiemers, M.: Das V-Modell 97. Der Standard fiir
die Entwicklung von IT-Systemen mit Anleitung fiir den Pra-
xiseinsatz. Oldenbourg, Miinchen 1999

Engels, G., Geisen, S., Sauer, S., Port, O.: Sicherstellen der Be-
trachtung von nicht-funktionalen Anforderungen in SCRUM-
Prozessen durch Etablierung von Feedback. In S. Fischer, E.
Macehle, R. Reischuk (eds.): Informatik 2009 - Im Focus das Le-
ben. Gesellschaft fiir Informatik (GI) (Bonn), Lecture Notes in
Informatics, vol. 154, pp. 3537-3551, 20009.

Engels, G., Sauer, S.: A Meta-Method for Defining Software
Engineering Methods. In: Nagl Festschrift, LNCS 5765, Spring-
er-Verlag Berlin Heidelberg, pp. 411-440, 2010.

Fazal-Baquaie, M., Luckey,M., Engels, G.: Assembly-based
Method Engineering with Method Patterns. Software Enginee-
ring 2013 Workshopband, GI, Kdéllen Druck+Verlag GmbH,
Bonn, pp. 435-444, 2013.

Fiedler, R.: Controlling von Projekten. Vieweg + Teubner,
GWYV Fachverlage GmbH, Wiesbaden 2010.

Gernert, C., Ahrend, N.: IT-Management: System statt Chaos —
Ein praxisorientiertes Vorgehensmodell. Oldenbourg Wissen-
schaftsverlag GmbH, Miinchen, 2002.

227

[Gal4]

[GCS03]

[Gel2]

[GIAK]

[GG12]

[GHOS]

[G108]

[GLE12]

[Hel3]

[HP14]

[HS06]

Gabler Wirtschaftslexikon, Stichwort: Requirements Enginee-
ring, Springer Gabler Verlag (Herausgeber),
http://wirtschaftslexikon.gabler.de/Archiv/75983/requirements-
engineering-v8.html (zuletzt besucht: 08.11.2014).

Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system depen-
dability through architecture-based self-repair. In: de Lemos, R.,
Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems. LNCS, vol. 2677. Springer, Heidelberg, 2003.

Geisen, S.: FEin Ansatz zur Anpassung von Software-
Engineering-Methoden im laufenden Projekt. In Proceedings of
Software Engineering 2012 (SE 2012) — Doktorandensymposi-
um, Petra Hofstedt, Claus Lewerentz (BTU Cottbus), vol. Report
01/12, pp. 7-12, 2012.

Gesellschaft fiir Informatik — Arbeitskreis Begriffssammlungen,
»Begriffe und Konzepte der Vorgehensmodellierung®,
http://public.beuth-hochschule.de/~giak/ (zuletzt besucht:
10.11.2014).

Geisen, S., Giildali, G.: ,,Agiles Testen in Scrum*, OnlineSpecial
des ObjektSpektrums, 18. Oktober 2012.

Gonzalez-Perez, C., Henderson-Sellers,B.: Metamodelling of
Software Engineering. John Wiley & Sons, Ltd. 2008.

Gloger, B.: SCRUM. Hanser Fachbuchverlag, Miinchen, 2008.

Geisen, S., Luckey,M., Engels, G.: Ein Ansatz zur dynamischen
Qualitidtsmessung, -bewertung und Anpassung von Software-
Engineering-Methoden. In: 19. GI-WIVM-Workshop der Fach-
gruppe Vorgehensmodelle im Fachgebiet Wirtschaftsinformatik,
Shaker Verlag, pp. 111-120, 2012.

Herrmann, A. et al., Requirements Engineering und Projekt-
management. Xpert.press, Springer Vieweg, 2013.

Hewlett-Packard Development Company: Quality Center Enter-
prise http://www8.hp.com/de/de/software-solutions/quality-
center-quality-management/ (zuletzt besucht: 10.11.2014).

Henderson-Sellers, Method Engineering: Theory and Practice.
In: Information Systems Technology and Its Applications. 5th
International Conference ISTA 2006, D. Karagiannis, H.C.

228

[HSR10]

[IBMOG6]

[1SO07]

[1SO08]

[ITA14]

[JSW11]

[KA06]

[KC03]

[Kr03]

[La09]

[LalO]

[LL10]

[MD89]

Mayr, Eds. Lecture Notes in Informatics (LNI) — Proceedings,
Volume P-84, pp. 13-23, , Gesellschaft Fiir Informatik, Bonn,
2006.

Henderson-Sellers, B.; Ralyté, J.: Situational Method Engineer-
ing: State-of-the-Art Review. Journal of Universal Computer
Science,vol. 16, no. 3, pp. 424-478, 2010.

IBM Corporation: An architectural blueprint for autonomic
computing. White Paper 4th edn., IBM Corporation 2006.

ISO/ 1IEC 24744. Software Engineering — Metamodel for Devo-
lopment Methodologies. Geneva: International Organization for
Standardization/ International Electronical Comission, 2007.

ISO 9001:2008. Qualititsmanagementsysteme — Anforderungen.
2008.

it-agile: Was ist agile Softwareentwicklung? http://www.it-
agile.de/wissen/methoden/agilitact/ (zuletzt besucht: 06.11.
2014).

Jung, B., Schweiller, S., Wappis, J.: 8D und 7STEP — Systema-
tisch Probleme 16sen. Carl Hanser, Miinchen 2011.

Kwak, Y.H.; Anbari, F.T.: Benefits, obstacles, and future of six
sigma approach. In: Technovation, Volume 26, Issues 5-6,
May-June 2006; pp. 708-715.

Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
In: IEEE Computer 36(1), 2003, pp. 41-50.

Kruchten, P.:The Rational Unified Process. An Introduction.
Addison-Wesley Longman, Amsterdam, 2003.

Ladas, C.: Scrumban — Essays on Kanban Systems for Lean
Software Development. Bertrams Print on Demand, 2009.

Lauer, T.: Change Management — Grundlagen und Erfolgsfakto-
ren, Springer Verlag Berlin Heidelberg, 2010.

Ludewig, J.; Lichter, H.: Software Engineering — Grundlagen,
Menschen, Prozesse, Techniken, dpunkt.verlag, Heidelberg,
2010.

McCarthy, D.R., Dayal, U.: The Architecture Of An Active Data

229

[MNO6]

[MPS08]

[MS02]

[Nol4]

[OMGO8]

[PD99]

[Qi07]

[RBO7]

[RRO1]

[Sall]

[SB99]

Base Management System. In: SIGMOD’89, Proceedings of the
1989 ACM SIGMOD international conference on Management
of data, pp.215-224, 1989.

Moen, N., Norman, C.: Evolution of the PDCA-Cycle. Erhiltlich
unter: http://pkpinc.com/files/NAO01MoenNormanFullpaper.pdf

(zuletzt besucht: 10.11. 2014).

Miiller, H.A., Pezz¢, M., Shaw, M.: Visibility of control in
adaptive systems. In: Second International Workshop on Ultra-
Large-Scale Software-Intensive Systems (ULSSIS 2008), ICSE
Workshop, 2008.

Mar, K.; Schwaber, K.: Scrum with XP, 2002. Erhéltlich unter
http://faculty.salisbury.edu/~xswang/research/papers/serelated/s
crum/scrumxp.pdf (zuletzt besucht: 05.11.2014)

Noé, M., Change-Prozesse effizient durchfiihren — Mit Pro-
jektmanagement den Unternehmenswandel gestalten, Spring-
erGabler, Wiesbaden 2014.

Object Management Group: Software & Systems Process Engi-
neering Meta-Model Specification, Version 2.0, 2008.

Paton, N.W., Diaz, O.: Active Database Systems. In: ACM
Computing Surveys, Vol. 31, No. 1, Mérz 1999.

Qiao,Y. et al.: Developing Event-condition-action Rules in Re-
al-time Active Database. In Proceedings of SAC’07, ACM, pp
511-516, Korea, 2007.

Rausch, A., Broy, M.: Das V-Modell XT — Grundlagen, Erfah-
rungen und Werkzeuge. dpunkt.verlag, Heidelberg 2007.

Ralyté, J., Roland,C.: An Assembly Process Model for Method
Engineering. In: Proceedings of CAiSE 2001, LNCS 2068, pp.
267-283, Springer-Verlag Berlin Heidelberg, 2001.

Sauer, S.: Systematic Development of Model-based Software
Engineering Methods, Dissertation, 2011.

van Solingen, R., Berghout, E.: The Goal/Question/Metric Meth-
od: a practical guide for quality improvement of software devel-
opment. McGraw-Hill Publishing Company, Berkshire, Eng-
land, 1999.

230

[SB02]

[Sc13]

[SH13]

[Sn05]

[S007]

[SS13]

[ST09]

[TM94]

[Vol3]

[Vr03]

[Wa07]

Schwaber, K.; Beedle, M.: Agile Development with Scrum.
Prentice Hall, 2002.

Schreckeneder, B.,C.: Projektcontrolling. Haufe-Lexer GmbH &
Co K@, Freiburg, 2013.

Stolzenberg, K., Heberle, K.: Change Management — Veridnder-
ungsprozesse erfolgreich gestalten, Springer Verlag Berlin Hei-
delberg, 2013.

Sneed, H. M.: Software-Projektkalkulation, Hanser Fachbuch-
verlag, 2005.

Ian Sommerville, “Software Engineering”, 8., aktualisierte
Auflage, Pearson Education Limited, 2007.

Schwaber, K., Sutherland, J.: The Scrum Guide, the official rule
book. Aktuelle Version: Juli 2013. http://www.scrumguides.org/
(zuletzt besucht: 10.11. 2014)

Salehie, M.; Tahvildari, L.. Self-adaptive software: Landscape
and research challenges. ACM Trans. Autonom. Adapt. Syst. 4,
2, Article 14, 2009.

Thomas, M.; McGarry, F.: Top-down vs. Bottom-up process
improvement. IEEE Software, Volume 11, Nr. 4, S. 12-13,
1994.

Voller, R.: Why Projects Fail — Projekte scheitern lassen... aber
richtig. Whitepaper, Trivadis AG, Mai 2013.
http://www.trivadis.com/uploads/tx _cabagdownloadarea/WP_W
hy Projects fail V1.0.pdf (zuletzt besucht: 10.11. 2014)

Vries, C.: Certifying for CMM Level 2 and ISO9001 with
XP@Scrum. In: Proceedings of Agile Development Conference
(ADC*03), pp. 120-124, IEEE, 2003.

Wallmiiller, E.: SPI — Software Process Improvement mit
CMMI, PSP/ TSP und ISO 15504, Hanser Verlag, 2007.

231

Abbildungsverzeichnis

Abbildung 1 Projektmanagement, Projektkontrolle und SEM sind kaum miteinander

verzahnt 17
Abbildung 2 Verbindung von Projektmanagement/ Projektkontrolle und SEM zu einer

selbst-adaptiven Software-Engineering-Methode 20
Abbildung 3 Aufbau der Arbeit 23
Abbildung 4 Aufbau Kapitel 2 und Ubergang zu Kapitel 3 25
Abbildung 5 Begriffsentwicklung Software-Engineering-Methode (SEM) 26
Abbildung 6 Begriffe basierend auf [BK13], [OMGO08], [LL10] 28
Abbildung 7 Verschiedene Arten von Software-Engineering-Methoden 32
Abbildung 8 Das magische Dreieck im Projektmanagement nach [Sn05] 37
Abbildung 9 Elemente des Projektmanagements basierend auf [Fi110, AE13] 38
Abbildung 10 Allgemeiner Controlling-Ablauf nach [GA02] 40
Abbildung 11 Der Regelkreis des Controlling basierend auf [GA02] 40
Abbildung 12 Komponenten Controlling-System beruhend auf [GA02] 41

Abbildung 13 Das H.A.P.-Modell nach Bogert [Bol13] mit seinen sechs Dimensionen 43
Abbildung 14 Ansatzpunkte des Change Managements und Ebenen, auf die Veranderungen

wirken, basierend auf [SH13, La10] 46
Abbildung 15 Kernthemen und Faktoren des Change Management basierend auf [Lal0,
SH13] 48
Abbildung 16 Konfigurationsprozess fiir situationsspezifische Methoden nach [Br96] 53
Abbildung 17 Vorgehen von Agilen Methoden angelehnt an [ITA134] 54
Abbildung 18 Der PDCA-Zyklus nach [De86, MNO6] 57
Abbildung 19 Der DMAIC-Zyklus, das Phasenmodell von Six Sigma basierend auf [KA06]
58
Abbildung 20 Aufbau Kapitel 3 72
Abbildung 21 Die verschiedene Zyklen im Uberblick 74
Abbildung 22 Schlusselfaktoren der allgemeinen Feedbackschleife basierend auf [Do06,
Ch09, Bro9]] 87
Abbildung 23 Rainbow-Framework basierend auf [GCS03] 88
Abbildung 24 Shaw-Feedback-Loop basierend auf [MPS08] 89
Abbildung 25 Autonomic element - MAPE-K feedback loop nach [KCO03] 90
Abbildung 26 Aufsplittung der Automatisierung der einzelnen Phasen im MAPE-K nach
[1BMO06] 92
Abbildung 27 Aufbau des SE Method Managers 95
Abbildung 28 Anpassung bei einem zu groRen Team mit dem SE Method Manager 98
Abbildung 29 State-Chart des SE Method Managers und die ,, Trigger-Probleme" 102
Abbildung 30 Aufbau Kapitel 4 105
Abbildung 31 Das Schalenmodell inklusive des Ableitungsbaumes 113
Abbildung 32 Framework zur Charakterisierung 117
Abbildung 33 Aufbau Kapitel 5 119
Abbildung 34 Herleitung und Definition der Ziele anhand der SEM und des Kontextes 120
Abbildung 35 Weitere Ableitungen 126
Abbildung 36 Ableitung GQM-Variante linke Seite 127
Abbildung 37 Ableitung GQM-Variante rechte Seite 129
Abbildung 38 Begriffe einer Software-Engineering-Methode (vergl. Abschnitt 2.1.1) 134
Abbildung 39 Team-Split: Aufteilung in zwei Teams und neue Zuordnung 136

Abbildung 40 Split Daily Scrum und Einfligen Scrum of Scrums nach Daily Scrum 137
Abbildung 41Ableitungen der einzelnen Punkte und Zusammenfassung zu einem Block fiir

die Wissensbasis 145
Abbildung 42 Aufbau von Kapitel 6 147

232

Abbildung 43 Inhalte der Knowledge Base 148

Abbildung 44 Die zwei Hauptbestandteile der Plan-Phase 161
Abbildung 45 Planungsablauf ohne Planungsmdglichkeiten 163
Abbildung 46 Durchfiihrungsschritte zum Anpassungszeitpunkt 165
Abbildung 47 Aufbau Kapitel 7 172
Abbildung 48 Hauptrollen in Quasi-Scrum 174
Abbildung 49 Vereinfachter Ablauf in Quasi-Scrum 175
Abbildung 50 Austausch Scrum Master bei Krankheit, Verlassen des Unternehmens etc. 196
Abbildung 51 Team-Split in Quasi-Scrum bei 16 Personen 197
Abbildung 52 Vereinfachter Ablauf nach Team-Split in Quasi-Scrum 198
Abbildung 53 Quasi-Scrum Kunden-Test-Team und Kunden-Tester 199
Abbildung 54 Quasi-Scrum: zusatzliche Kunden-QS-Tage 200
Abbildung 55 Neue Rollen beziglich Testen und ein neues Artefakt 201
Abbildung 56 Hinzufligen der Testaktivitaten im Scrum-Ablauf 201
Abbildung 57 Die neuen Rollen in der kombinierten Anpassung - Kunden-Test-Team &
Test-Team 202
Abbildung 58 Die kombinierte Anpassung 203
Abbildung 59 Anpassung auf Instanz-Ebene durch Hinzufiigen im Test Sprint Backlog 205
Abbildung 60 Neue Aktivitat "Generierung von Testdaten” 205
Abbildung 61 Mit Hilfe der Pre-Work + MAPE-K werden zusétzlich die
Herausforderungen TP1 - TP5 geldst 218
Abbildung 62 MAPE-K4SEM verzahnt mit Hilfe der selbst-adaptiven Systeme das
Projektmanagement und Software-Engineering-Methoden 219

233

