

	

zur E

Sel

En

Erlangung d

Fakult

MA

bst‐a

ngine

des Grades

Erster	Gu

Zweiter	G

tät	für	Elekt

Pa

APE‐K

adapt

eering

Silke	G
sgeisen@s

Disser

“Doktor de

utachter:	Pr

Gutachter:	P

trotechnik,

Universität

Zukunft

D‐33102	

aderborn, N

K4SEM

ive	So

g‐Met

Geisen
s‐lab.upb.de

rtation	

r Naturwiss

	

	

rof.	Dr.	Gre

Prof.	Dr.	Jü

	

	

,	Informatik

t	Paderbor

tsmeile	1	

Paderborn

	

	

November 20

M	–	

oftwa

thode

	

senschaften”

gor	Engels	

rgen	Ebert	

k	und	Math

n	

n	

014

	

are‐

en	

” (Dr. rer. n

	

t			

hematik	

nat.)

1

2

Danksagung	

Auch wenn das Erarbeiten und Schreiben einer Dissertation eine eigenstän-
dige Leistung ist, wäre sie ohne die Unterstützung von anderen Personen
kaum möglich. An dieser Stelle möchte ich mich bei all jenen bedanken, die
mich über die ganzen Jahre unterstützt und immer wieder motiviert haben,
diese Arbeit fertig zu stellen.

Mein größter Dank geht hier an meinen Doktorvater und Mentor Prof. Dr.
Gregor Engels. Durch seine Unterstützung, konstruktive Kritik und sein
Vertrauen in mich ist diese Arbeit erst möglich gewesen. Gerade an Tief-
punkten konntest Du mich immer wieder motivieren, so dass ich heute an
dieser Stelle stehe. Danke!

Neben Gregor Engels geht mein Dank an Dr. Stefan Sauer. Nicht nur, dass
er mir die Ehre erweist, ein Mitglied meiner Promotionskommission zu sein,
sondern dass er mir zusammen mit Gregor die Möglichkeit gegeben hat, im
s-lab anzufangen, obwohl ich in meinem Vorstellungsgespräch von einem
meiner heutigen Spezialgebiete, den Agilen Methoden und insbesondere
Scrum, noch keine Ahnung hatte. Ich konnte gerade auch durch die ver-
schiedenen Projekte im s-lab viel Neues lernen und sie haben mir die Mög-
lichkeit gegeben, mich immer weiter zu entwickeln.

Bedanken möchte ich mich auch bei meinem Zweitgutachter Prof. Dr. Jür-
gen Ebert, durch sein konstruktives Feedback schon während des Doktoran-
densymposiums auf der SE 2012 in Berlin. Ebenso möchte ich mich bei
meinen weiteren Mitgliedern der Promotionskommission Prof. Dr. Wilhelm
Schäfer und Prof. Dr. Franz J. Rammig bedanken, dass sie diesen „letzten
Schritt“ gemeinsam mit mir gegangen sind.

Für die vielen fruchtbaren Diskussionen und die Unterstützung geht ein wei-
teres Dankesschön an meine Arbeitskollegen, dabei insbesondere meinen
Bürokollegen Holger Fischer für das Lesen von Teilen meiner Arbeit und
unsere regelmäßigen Diskussionen, Baris Güldali den ich immer wieder um
Rat fragen konnte und wir gerade im Testbereich in Verbindung mit Agilen
Methoden glaub ich einiges auf die Beine gestellt haben, sowie meinen
ehemaligen Bürokollegen Frank Brüseke und Simon Oberthür, der mir ge-
rade in der „heißen Endphase“ den Rücken im Projekt freigehalten hat.
Nicht vergessen möchte ich an dieser Stelle die „guten Seelen“ der AG En-
gels Friedhelm Wegener, Beatrix Wiechers und Sonja Saage, die einem bei
all den kleineren und größeren Problemchen mit Rat und Tat zur Seite stan-
den.

3

Bedanken möchte ich mich auch bei meinem ehemaligen Projektkollegen
Dietmar Koch, der sich bereit erklärt hat, meine Arbeit Korrektur zu lesen.
Dabei geht ein weiteres großes Dankeschön an meine „persönliche Deutsch-
lehrerin“, meine Schwester Stefanie Müser, die ihre Herbstferien geopfert
hat, um meine Arbeit Korrektur zu lesen. Durch ihre teils witzigen Kom-
mentare hat sie dafür gesorgt, dass ich „meine Fehler“ gern zur Kenntnis
genommen habe, insbesondere wenn meine Grammatik mal wieder wie bei
Yoda gewesen ist. Auch ist sie mit zuständig für mein Maskottchen, den
„Scrum-Wusel“; ich hoffe, er streift nicht mehr allzu sehr durch deine
Träume.

Als letztes möchte ich mich bei meinen Eltern Gisela und Hans Branden-
burg bedanken. Ohne eure Unterstützung und Motivation würde ich heute
nicht hier stehen, denn ihr habt mich immer wieder ermutigt, meinen Weg
zu gehen und ihr habt mir erst mein Studium und meine wissenschaftliche
Laufbahn ermöglicht.

4

	 	

5

	 	

6

Zusammenfassung	

Damit die erfolgreiche Entwicklung einer Software und somit der Erfolg
eines Projektes gewährleistet sind, wird häufig eine Software-Engineering-
Methode (SEM) zu Beginn auf die Projektsituation abgestimmt. Dennoch
scheitern teilweise bis zu 75% von Projekten im IT-Umfeld und überschrei-
ten ihr Budget oder können Deadlines nicht einhalten. Gerade während der
Durchführung der Software-Engineering-Methode können Änderungen an
der Projektsituation oder mangelnde Qualität den Projekterfolg gefährden.
Doch eine kontinuierliche Überwachung während der Nutzung der SEM
und speziell die zeitliche Komponente sind kritische Faktoren. Sie machen
es schwierig, eine Software-Engineering-Methode entsprechend zur Lauf-
zeit anzupassen. Diese Situationen und insbesondere der Faktor Zeit machen
eine dynamische und möglichst eigenständige Anpassung der SEM erfor-
derlich.

Bekannte Verbesserungs- und Anpassungsverfahren wie das Situational
Method Engineering, Six Sigma oder der PDCA-Zyklus, auch Deming-
Zyklus genannt, sind aufgrund ihrer langen Durchführungsdauer kaum für
eine solche Anpassung geeignet. Ferner finden diese entweder zu Beginn
des Projektes oder erst wenn bereits Probleme aufgetreten sind und das Pro-
jekt bereits „vor die Wand gelaufen“ ist, statt. Das Projektcontrolling oder
die Agilen Methode bieten zwar erste Ansätze für eine Anpassung zur Lauf-
zeit, sind jedoch für eine eigenständige Anpassung nicht einsetzbar, da
ihnen insbesondere Möglichkeiten zur Automatisierung fehlen.

Im Gegensatz zu Six Sigma, dem Deming-Cycle oder auch den Agilen Me-
thoden beobachten Ansätze aus den selbst-adaptiven Systemen zur Laufzeit
automatisch das gegebene System über sogenannte Feedbackschleifen und
passen das System gegebenenfalls eigenständig an. Das bekannteste Modell
ist dabei die Feedbackschleife MAPE-K. Diese Arbeit stellt mit MAPE-
K4SEM einen Ansatz vor, wie sich diese MAPE-K-Feedbackschleife auf
die Anpassung von einer SEM übertragen lässt und somit eine selbst-
adaptive Software-Engineering-Methode ermöglicht.	 	

7

	 	

8

Abstract	

For the successful development of software and thus the success of a pro-
ject, a software engineering methodod (SEM) is first tailored to the project
situation. Despite that up to 75% of projects in the IT enviroment fail during
their enactment. Deadlines are exceeded as well as the budget of the project.
The implementation of the software engineering method, changes to the
project situation or lack of quality endanger the success of the project. Espe-
cially time is a critical factor to detect problems and adapt a SEM in time.
A continous monitoring of the software engineering method is needed as
well as a dynamic and autonomous adaptation.

Approaches as Situational Method Engineering, Six Sigma or the PDCA-
Cycle, also known as Deming Cycle, are well-known for the improvement
and adaptation of software engineering methods. However, due to their long
implementation duration they are hardly suitable for such an adjustment.
Furthermore, these procedures are typically performed before or after prob-
lems are detected and the project has failed. Though agile methods like
Scrum or project controlling use first approaches for inspection and adapta-
tion of a running project, they are not usable for an autonomous adaptation
due to lack of automating possibilities.

Unlike Six Sigma, the Deming Cycle or the Agile Methods, approaches
from the self-adaptive systems domain observe systems automatically at
runtime using feedback loops and adapt the system autonomously if neces-
sary. The best-known model is called the MAPE-K loop. This PhD thesis
presents with MAPE-K4SEM an approach that uses the MAPE-K loop for a
continous monitoring and automatic adaption of software engineering me-
thod and thus makes a self-adaptive software engineering method possible.

9

	 	

10

Inhaltsverzeichnis	

KAPITEL 1 EINLEITUNG 14

1.1 MOTIVATION 14
1.2 PROBLEMSTELLUNG UND FORSCHUNGSFRAGE 16
1.3 ZIELSETZUNG UND LÖSUNGSANSATZ 20
1.4 AUFBAU DER ARBEIT 23

KAPITEL 2 GRUNDLAGEN UND VERWANDTE ARBEITEN 25

2.1 SOFTWARE-ENGINEERING-METHODEN 26
2.1.1 BESTANDTEILE EINES PROJEKTES UND EINER SOFTWARE-ENGINEERING-
METHODE 27
2.1.2 MODELLIERUNG VON SOFTWARE-ENGINEERING-METHODEN 31
2.1.3 ARTEN VON SOFTWARE-ENGINEERING-METHODEN 32
2.2 PROJEKTMANAGEMENT UND -KONTROLLE 36
2.2.1 PROJEKTMANAGEMENT 36
2.2.2 PROJEKTKONTROLLE 39
2.2.3 RESILIENZ IN PROJEKTEN – ADAPTIVE PROJEKTE 42
2.3 CHANGE MANAGEMENT AUF UNTERNEHMENSEBENE 45
2.4 ANPASSUNGEN VON SEM 50
2.4.1 ERSTE GROBE ANFORDERUNGEN AN DIE ANPASSUNG EINER SOFTWARE-
ENGINEERING-METHODE 50
2.4.2 ANPASSUNGEN VON SEM – VORGELAGERTE ANSÄTZE 51
2.4.3 ANPASSUNGEN VON SEM IM LAUFENDEN PROJEKT DURCH AGILE

METHODEN 54
2.4.4 ANPASSUNGEN VON SEM – KONTINUIERLICHE

VERBESSERUNGSPROZESSE 55
2.5 BEWERTUNG UND SCHWACHSTELLEN DER ANSÄTZE 60
2.5.1 PROBLEME UND BEWERTUNG DER VERSCHIEDENEN ANSÄTZE 60
2.5.2 GESAMTBEWERTUNG DER ANSÄTZE 68

KAPITEL 3 – BESCHREIBUNG DES LÖSUNGSANSATZES 72

3.1 ANALYSE DER ANSÄTZE UND ERWEITERUNG DER ANFORDERUNGEN 73
3.1.1 ANALYSE DER GEMEINSAMKEITEN DER ANSÄTZE UND WEITERE

HERAUSFORDERUNGEN 73
3.1.2 ANPASSUNGS-ARTEN 77
3.1.3 BEISPIELE FÜR ANPASSUNGEN 79
3.1.4 KONKRETISIERUNG DER ANFORDERUNGEN UND ABGRENZUNG 82

11

3.2 FEEDBACKSCHLEIFEN AUS DEN SELBST-ADAPTIVEN SYSTEMEN 85
3.2.1 SELBST-ADAPTIVE SYSTEME UND SELBST-ADAPTIVE SOFTWARE 85
3.2.2 ALLGEMEINE BESCHREIBUNG VON FEEDBACKSCHLEIFEN 87
3.2.3 DIE FEEDBACKSCHLEIFE MAPE-K 89
3.3 BESCHREIBUNG DER KONZEPTION EINES SE METHOD MANAGERS 93
3.3.1. AUFBAU UND BESCHREIBUNG DES SE METHOD MANAGER 95
3.3.2 DURCHSPIELEN DES SE METHOD MANAGERS ANHAND EINES BEISPIELS

 97
3.3.3 MÖGLICHKEITEN ZUR AUTOMATISIERUNG 99
3.4 ERSTES FAZIT UND WEITERE HERAUSFORDERUNGEN 100
3.4.1 ERSTES FAZIT BEZÜGLICH DES ANSATZES 100
3.4.2 WEITERE HERAUSFORDERUNGEN („TRIGGER-PROBLEME“) 102

KAPITEL 4 DER ANSATZ MAPE-K4SEM 105

4.1 ZIELORIENTIERTES VORGEHEN 105
4.2 BOTTOM-UP VS. TOP-DOWN 107
4.3 MAPE-K4SEM – DIE 10 SCHRITTE 109
4.3.1 PRE-WORK – SCHRITTE 1 BIS 6 110
4.3.2 MAPE-K – SCHRITTE 7 BIS 10 111
4.3.3 SCHALEN-MODELL UND ABLEITUNGSBAUM 113
4.4 SCHRITT-TYPEN UND FRAMEWORK ZUR CHARAKTERISIERUNG 114
4.4.1 SCHRITT-TYPEN 115
4.4.2 FRAMEWORK ZUR CHARAKTERISIERUNG 116
4.5 VERTIEFUNG MESSEN, MONITOR- UND ANALYSE-PHASE 118

KAPITEL 5 PRE-WORK 119

5.1 SCHRITT 1 – DEFINITION DER ZIELE 119
5.2 SCHRITT 2 – PRIORISIERUNG DER ZIELE 123
5.3 ABLEITUNG DER WEITEREN SCHRITTE 125
5.4 SCHRITT 3 – ABLEITUNG VON ANALYSEREGELN 130
5.5 SCHRITT 4 – ABLEITUNG VON PLANUNGSMÖGLICHKEITEN 132
5.5.1 HERLEITUNG 133
5.5.2 VARIANTENBESTIMMUNG 137
5.5.3 KONFLIKTPOTENTIAL 138
5.5.4 KOMBINATIONSMÖGLICHKEITEN 139
5.6 SCHRITT 5 – ABLEITUNG VON METRIKEN 140
5.7 SCHRITT 6 –ABLEITUNG VON AUSFÜHRUNGSREGELN UND

BENACHRICHTIGUNGEN 142
5.8 MÖGLICHKEITEN ZUR WIEDERVERWENDUNG DER PRE-WORK –

ABLEITUNGSBLOCK 144

12

KAPITEL 6 MAPE-K 147

6.1 DER SPEZIAL-BAUSTEIN IM SE METHOD MANAGER – DIE

KNOWLEDGE BASE 148
6.2 SCHRITT 7 – WERTE MESSEN UND AUFBEREITEN 152
6.2.1 MESSEN ANHAND VON SENSOREN 152
6.2.2 DIE MONITOR-PHASE – WERTE AUFBEREITEN 153
6.3 SCHRITT 8 – WERTE ANALYSIEREN UND BEWERTEN 155
6.3.1 DIE ANALYSE-PHASE 155
6.3.2 ARCHITEKTURMÖGLICHKEITEN FÜR DIE ANALYSE 158
6.4 SCHRITT 9 – ANPASSUNG PLANEN 160
6.4.1 DAS PLANEN EINER ANPASSUNG 162
6.4.2 ZWISCHEN PLANUNG & AUSFÜHRUNG – DER ANPASSUNGSZEITPUNKT

 164
6.5 SCHRITT 10 – ANPASSUNG AUSFÜHREN 167
6.6 AUTOMATISIERUNGEN 169

KAPITEL 7 EVALUIERUNG 172

7.1 EVALUIERUNG AN EINEM PRAXISNAHEN BEISPIEL 173
7.1.1 EVALUIERUNG AM PRAXISNAHEN BEISPIEL – BEGRÜNDUNG 173
7.1.2 BESCHREIBUNG DES BEISPIELS 174
7.1.3 DURCHSPIELEN DES BEISPIELS 177
7.2 VERGLEICH UND FAZIT 206
7.2.1 VERGLEICH MIT DEN URSPRÜNGLICHEN PRAXIS-PROJEKTEN 207
7.2.2 FAZIT DER EVALUIERUNG 212

KAPITEL 8 ZUSAMMENFASSUNG UND AUSBLICK 215

8.1 ZUSAMMENFASSUNG 215
8.2 AUSBLICK 220
8.2.1 VERKNÜPFUNG REQUIREMENTS ENGINEERING UND PRE-WORK 221
8.2.2 PLANEN OHNE PLANUNGSMÖGLICHKEITEN 221
8.2.3 KOMBINATION VON ANPASSUNGEN 222
8.2.4 ANALYSE VON KONFLIKTEN UND AUSWIRKUNG AUF GESAMT-SEM 223
8.2.5 ÜBERTRAGUNG DES ANSATZES AUF ANDERE BEREICHE 224

LITERATURVERZEICHNIS 226

ABBILDUNGSVERZEICHNIS 232

13

 	

14

Kapitel	1	Einleitung		

1.1	Motivation	
Effiziente, effektive und qualitativ hochwertige Softwareentwicklung wird
in der heutigen Zeit immer wichtiger. Dennoch scheitern nach Voller bis zu
75% der Projekte im IT-Umfeld [Vo13]. Als Gründe und mögliche Faktoren
nennt Voller hierfür u.a. undefinierte Ziele, fehlende Unterstützung des Ma-
nagements, unzureichend definierte Rollen und Verantwortlichkeiten, aber
auch ungenügende Kommunikation, das Ignorieren von Warnzeichen im
Projekt sowie nicht genügende Beachtung von Störeinflüssen.

Um ein Projekt zum Erfolg zu führen und eine Software erfolgreich zu ent-
wickeln, gibt es die verschiedensten Vorgehensmodelle bzw. Softwareent-
wicklungsprozesse und die neuen Agilen Methoden. In dieser Arbeit wird
der Begriff Software-Engineering-Methode [ES10] verwendet. Als eine
Software-Engineering-Methode (SEM) wird die relevante Menge an Ele-
menten verstanden, welche benötigt wird, um ein Software-Projekt in allen
wichtigen Aspekten zu beschreiben. Die SEM beinhaltet also nicht nur den
Softwareentwicklungsprozess an sich und seine Aktivitäten, sondern zusätz-
lich alle Artefakte, Rollen und Aufgaben die durchgeführt werden müssen
um die Meilensteine zu erreichen, sowie die Werkzeuge und Techniken die
für die Umsetzung der SEM benötigt werden [GLE12].

Doch auch wenn eine Software-Engineering-Methode im Projekt verwendet
wird, so gibt es nicht die eine Software-Engineering-Methode, welche für
jedes Projekt passt, die „one-size-fits-all“ Methode [Br96]. Typischerweise
wird eine SEM vor Beginn des Projektes entweder entsprechend zugeschnit-
ten (Tailoring [LL10]) oder eine Software-Engineering-Methode wird ei-
gens für die Situation im Projekt entwickelt. Um eine solche situationsbezo-
gene SEM für unternehmensinterne Zwecke zu entwickeln, wird das Situa-
tional Method Engineering [Br96, HSR10] angewendet.

Auch wenn eine Software-Engineering-Methode eigens für ein Projekt ent-
wickelt worden ist, kann es dennoch in der Praxis zu Problemen kommen,
so dass die Projekte am Ende scheitern und zum Misserfolg führen. Neben
den oben genannten Faktoren können folgende weitere Beispiele aus Projek-
ten des s-lab – Software Quality Labs1 in Paderborn genannt werden:

 In dem Scrum-Projekt „Quasi-Scrum“ [EG09] wurden nicht-
funktionale Anforderungen durch fehlende Einträge im Product-
Backlog nicht betrachtet. Beim Kunden traten anschließend Perfor-
manz-Probleme auf. Um die Betrachtung der nicht-funktionalen An-

1 http://s-lab.upb.de

15

forderungen in einem Entwicklungsprozess frühzeitig sicherzustel-
len, musste die SEM angepasst werden.

 Während eines großen und langlaufenden Projektes wächst die
Teamgröße. Die Verwaltungsstrukturen zur Unterstützung für bei-
spielsweise Dokumente und Tools müssen im laufenden Projekt ein-
geführt oder angepasst werden.

 Projektressourcen ändern sich beispielsweise durch eine Fusion oder
eine Umstrukturierung. Das betrifft auch laufende Projekte, sofern
diese nicht abgebrochen oder neu gestartet werden können.

 Gerade in agilen Projekten bekommt das Testen zwar eine wichtige
Rolle zugeschrieben. Aber schaut man sich die Original-Literatur an,
wie beispielsweise den Scrum Guide [SS13], wird das Testen nur
sehr oberflächlich oder gar nicht beschrieben. Es werden häufig nur
die Aufgaben wie beispielsweise Product Backlog Einträge in Scrum
selbst getestet und nicht der große Zusammenhang. Ein Relase- oder
End-To-End-Test ist insbesondere in der bekanntesten agilen Me-
thode Scrum gar nicht erst vorgesehen [GG12]. Durch dieses eher
unstrukturierte Testen bzw. Weglassen eines End-To-End- oder auch
vollständigen System-Tests kann es passieren, dass nur ungenügend
oder einige Funktionen gar nicht getestet werden.

 In Projekten sollen Standards und Normen eingehalten werden. Än-
dern sich diese kann es passieren, dass ebenfalls die Software-
Engineering-Methode angepasst werden muss.

 Die Erfahrung in einem weiteren s-lab-Projekt für ein großes Tele-
kommunikationsunternehmen mit verteilten Teams zeigte, dass ein
unstrukturiertes Vorgehen gerade im Projektcontrolling und in der
Ausführung zu großen Problemen führte. Deadlines konnten nicht
eingehalten werden, die Software zeigte sowohl in den Tests als
auch im produktiven Betrieb teilweise schwerwiegende Fehler, was
zu hohen Kosten führte. Es war klar, dass die Software-Engineering-
Methode angepasst werden musste, doch es war zum einen nicht
deutlich, wie die genaue Anpassung aussehen sollte. Zum anderen
war nicht ersichtlich, wie die Software-Engineering-Methode im lau-
fenden Betrieb überwacht und analysiert werden kann. Das größte
Problem war, wie der Projektleiter mitteilte, dass die Anpassung
zwar notwendig sei, doch das weder wirklich Zeit noch Ressourcen
für eine aufwendige Anpassung vorhanden waren. Somit blieb es am
Ende bei kleinen und nicht strukturierten ad-hoc Anwendungen, die
teils im Team, teils aber auch vom Projektleiter „aus dem Bauch

16

heraus“ entschieden wurden. Die Probleme wurden dadurch wenig
oder gar nicht gelöst.

 In dem Projekt wurde ebenfalls deutlich, dass bei Änderungen gera-
de über ein verteiltes Team hinweg, (neue) Verantwortlichkeiten
nicht klar gewesen sind. Die Teammitglieder haben Anpassungen
bzw. Änderungen zwar befürwortet, doch hätten sie sich eine kon-
krete Zuteilung von Verantwortlichkeiten gewünscht und vor allem
eine Benachrichtigung, dass sich etwas geändert hat. Dies wurde nur
unzureichend oder gar nicht vorgenommen.

 Eine weitere Erfahrung aus zwei Scrum-Projekten war, dass die
Teams zeitweise recht groß gewesen sind, teilweise bis zu 15 Perso-
nen. In Scrum ist vorgesehen, dass ab einer Größe von mehr als neun
Personen das Team geteilt wird und ein Scrum of Scrums eingeführt
werden sollte. Dies ist den Personen zwar bekannt gewesen, doch
der Aufwand für die Anpassung, also das Aufteilen des Teams, Zu-
weisung der neuen Aufgaben, Einführen eines neuen Meetings, war
den Mitgliedern zu aufwendig. Durch die höhere Anzahl von Perso-
nen gab es regelmäßig Kommunikationsschwierigkeiten, beispiels-
weise dass nicht jeder wusste, woran der andere gerade arbeitete. Es
kam sowohl zu Überschneidungen, als auch zu Konflikten, z.B. dass
eine Aufgabe, welche für die Weiterarbeit eines Teammitglieds
wichtig gewesen ist, noch gar nicht angefangen war. Dadurch ist es
vorgekommen, dass Aufgaben nicht pünktlich beendet werden konn-
ten.

Diese Beispiele und die oben genannten Faktoren zeigen, dass es zwar not-
wendig ist, eine Software-Engineering-Methode im laufenden Projekt dy-
namisch anzupassen, doch in der Praxis ist dies – wenn überhaupt – nur
unstrukturiert und ad hoc der Fall. Es ist wichtig, dass unmittelbar auf prob-
lematische Situationen reagiert werden kann, um den Erfolg sowie die Qua-
lität des Projektes weiterhin gewährleisten zu können. Doch gerade die
Überwachung während der Nutzung der SEM und speziell die zeitliche
Komponente sind kritische Faktoren. Diese machen es schwierig, eine
Software-Engineering-Methode entsprechend zur Laufzeit anzupassen.

1.2	Problemstellung	und	Forschungsfrage	
Wie die genannten Beispiele im vorherigen Abschnitt zeigen, ist es notwen-
dig, eine Software-Engineering-Methode im laufenden Projekt zu überwa-
chen, aber insbesondere sie zeitnah anzupassen. Ein Projekt besitzt auf der
einen Seite eine Software-Engineering-Methode für die Durchführung, auf
der anderen Seite wird das Projekt wie in Abbildung 1 zu sehen vom Pro-
jektmanagement und hauptsächlich von der Projektkontrolle überwacht.

Abbil

Proje
ger D
einen
umfa
wich
die P
mer u
bilde
zwisc
jekte

Die P
bei d
dabe
gen e
heißt
um Z
Term
direk
des P
tung
Die K
der g
sagen
dere

Das
rung
weise

ldung 1 Projek

ekte sind al
Dauer sein.
n umfassen
asst das Pro
htigsten sind
Personalführ
um eine be

en [Sn05]. B
chen der D

es, sowie de

Projektkont
der Planung
i basierend
eingehalten
t die Erreic
Ziele im Ra

minen, der Q
kt um die
Projektes w

von Termi
Kontrolle f

genutzten So
n, dass die
Faktoren al

Change M
smanageme
e mit dene

ktmanagement

lgemein ein
Dabei ist es

nden Überbl
ojektmanag
d dabei u.a.
rung [Sc13
stimmte Kl

Bei dem Dre
Dauer des Pr

r Qualität b

trolle unters
g, Überwac

d auf [F10],
n und die de
chung der P
ahmen des
Qualität und
eigentliche
ird allgeme
inen sowie
findet somit
oftware-Eng
Projektkont
ls für die So

Management
ent, beschäf
en auf der

1

t, Projektkontr

ne komplex
s wichtig, d
lick über d

gement som
die Planun
, Fi10]. Im
asse von Zi
eieck hande
rojektes, de

bzw. des gel

stützt dabei
chung und

[Sc13] und
efinierten Pr
Projektziele,

Umfangs d
d auch der
 Software-E
in anhand d
der Erfüllu

t auf einer a
gineering-M
trolle zwar
oftware-Eng

t, zu Deuts
ftigt sich zw
Unternehm

7

rolle und SEM

xe Angelege
dass die Ver
das gesamte
mit alle Elem
ng, die Kont

Projektman
ielen, welch

elt es sich au
en Kosten u
lieferten Lei

hauptsächli
Steuerung
d [BK12], d
rojektziele e
, dass es sic
des Projekt
Ressourcen

Engineering
der Einhaltu

ung der Qua
anderen Eb

Methode sta
dynamisch

gineering-M

sch Änderu
war mit Än

mensebene.

M sind kaum mi

enheit und k
rantwortlich
e Projekt ha
mente eine
trolle, die O
nagement d
he das „Ma
uch um die
und dem Au
istungsumfa

ich das Proj
des Projek
dass die Ra
erreicht wer
ch bei der P
es, den Pro
n handelt. E
g-Methode.
ung der Kos
alitätsvorgab
bene als ein
tt. Zusamm
ist, doch si

Methode nöt

ungs- oder
nderungen,
Das Haupt

iteinander verz

können von
hen zu jeder
aben. Im D
s Projektes

Organisation
dreht es sich
gische Drei
Abhängigk

ufwand des
angs.

ektmanagem
tes. Wichti

ahmenbedin
rden. Allerd
Projektkont
ojektkosten,
Es geht wen

Der Fortsc
sten, der Ein
ben kontrol

ne Überwach
menfassend i

ie betrachte
ig wären.

auch Verä
aber typisc

taugenmerk

rzahnt

n lan-
r Zeit
Detail
s, die
n und
h im-
ieck“

keiten
Pro-

ment
ig ist
ngun-
dings
trolle
, den
niger
chritt
nhal-
lliert.
hung
ist zu
et an-

ände-
cher-

k des

18

Change Managements liegt dabei mehr auf Personen und allgemeinem
Wandel im Unternehmen, weniger auf der konkreten Software-Engineering-
Methode. Die Veränderungen können sich zwar auf die SEM auswirken und
somit eine Ursache sein, dass diese ebenfalls geändert werden muss. Aller-
dings ist dies höchstens ein Baustein im Gesamtkontext des Veränderungs-
projektes, aber nicht primär. Doch die enge Verwandtschaft mit dem Pro-
jektmanagement und der zu Grunde liegende Prozess für die Durchführung
eines Veränderungsprojektes können in eine Änderung an einer Software-
Engineering-Methode mit einfließen.

Nach [SH13] findet Veränderungsmanagement in drei Phasen statt:

 Planung, wo die Vision erstellt, der aktuelle Status analysiert und
Maßnahmen geplant werden;

 Umsetzung, wo die erstellten Maßnahmen und Lösungen umgesetzt
werden;

 Evaluierung, wo die entsprechenden Maßnahmen überprüft werden,
ob sie den gewünschten Effekt geliefert haben.

Schaut man sich nun in Abbildung 1 die rechte Seite die Software-
Engineering-Methode an, so gibt diese dem Projekt eine strukturierte Vor-
gehensweise zur eigentlichen Durchführung, lässt aber Komponenten des
Projektmanagements wie die Personalführung, die eigentliche Kontrolle
selbst usw., außen vor. Es gibt auf dieser Seite verschiedene Möglichkeiten,
die Software-Engineering-Methode anzupassen, was durch einen Methoden-
Engineer erfolgt. Dieser kann eine Software-Engineering-Methode für das
Projekt spezifisch mit Hilfe von Situational Method Engineering [HSR10]
zusammensetzen oder sie für das Projekt „zuschneiden“ (Tailoring). Neben
diesen beiden vorgelagerten Ansätzen gibt es noch weitere im Rahmen des
Kontinuierlichen Verbesserungsprozesses wie Six Sigma [KA06] oder dem
PDCA-Zyklus [De86]. Diese beschäftigen sich ebenfalls mit Veränderungen
und Verbesserungen im Projekt.

Auch wenn die Vorgehensweisen alle Ansätze zur Verbesserung zeigen, so
liegt, bis auf bei den vorgelagerten Ansätzen, der Fokus allgemein mehr auf
dem gesamten Projekt, als auf der genutzten Software-Engineering-
Methode. In den vorgelagerten Ansätzen wird zwar eine Anpassung vorge-
nommen, jedoch ist diese statisch, das heißt sie wird nur einmal vor Beginn
des Projektes durchgeführt. Für die weitere Anpassung im Projekt sind diese
Ansätze sehr unflexibel.

Bei den Ansätzen zum kontinuierlichen Verbesserungsprozess kommt hin-
zu, dass sie von langer Dauer sind, das heißt sie können unter Umständen
mehrere Wochen und länger dauern. Wie sich in den Beispielen im vorheri-

19

gen Abschnitt zeigte, ist aber gerade die Zeit ein wichtiger und kritischer
Faktor. Eine verzögerungsfreie und dynamische Änderung während des
laufenden Projektes ist mit diesen Verfahren nur schwer oder gar nicht mög-
lich.

Einen weiteren Ansatz zur Verbesserung und Anpassung einer Software-
Engineering-Methode bieten die Agilen Methoden [Co02] und dabei insbe-
sondere Scrum [SB02]. Diese benutzen verschiedene Inspektionspunkte um
mögliche unerwünschte Abweichungen (Produkt- und Entwicklungspro-
zessabweichungen) zu entdecken [SS13].

Wenn eine Abweichung festgestellt wird, die außerhalb der akzeptablen
Grenze liegt, dann sollen Arbeitsgegenstand oder Prozess so schnell wie
möglich angepasst werden. Interessant ist dabei die Retrospektive. Sie ist
eine Gelegenheit für das Scrum Team, „sich selbst zu überprüfen, und einen
Verbesserungsplan für den kommenden Sprint zu erstellen“ [SS13, S. 12].
Damit ist die Retrospektive das wichtigste Ereignis innerhalb von Scrum,
welches auf Inspektion und Adaption des gesamten Entwicklungsprozesses
fokussiert ist.

Doch auch wenn die Agilen Methoden bereits Ansätze zur Verbesserung
liefern, liegt ihr Fokus zunächst nur zum Teil auf der Software-Engineering-
Methode, der Hauptfokus liegt auf dem zu entwickelnden Produkt. Durch
bestimmte Techniken wie tägliche Meetings, eine Retrospektive, Fort-
schrittsanalysen usw. kann zwar eine regelmäßige Überwachung gegeben
sein, diese ist aber typischerweise bezüglich der SEM eher informell und
nicht strukturiert. Gerade in der Planung einer Anpassung hat der Ansatz
hier Schwächen. Ferner sind die Überwachungen nur punktuell und weniger
kontinuierlich. Ebenfalls wird bei den gesamten Ansätzen der Faktor Zeit
nicht mit betrachtet. Um die Dauer der Überwachung und Durchführung der
Anpassung zu verkürzen, wären Automatisierungsmöglichkeiten wichtig,
doch diese sind alle in den Ansätzen nicht gegeben.

Aus der Betrachtung der verschiedenen Ansätze und der Notwendigkeit
einer Überwachung und Anpassung einer Software-Engineering-Methode
im laufenden Projekt stellt sich die Frage:

Wie kann eine Software-Engineering-Methode während der Nutzung au-
tomatisch und somit eigenständig überwacht, hinsichtlich Abweichungen
analysiert sowie anschließend selbstständig und automatisch angepasst
werden?

1.3	
Für
die V
ten
Met
ist e
mög

Abb

Die
stan
nötig
Eben
mati
führ
Dara
rung
Soft

Zielsetzu
die Beantw

Vorteile aus
Phasen aus
hode zusam

es, einen An
glichst selbs

bildung 2 Verb

Software-E
z-Ebene ko
gen Anpass
ne geplant
isiert währe
rt werden.
aus und nac
gen für ein
tware-Engin

A1. Der F
Engineerin

A2. Der An
ten Anpass

ung	und	L
wortung der
s den Ansät
s dem Chan
mmengebrac
nsatz zu ent
stständig, al

indung von Pr
adapti

Engineering
ontinuierlich
sung ausgew
und diese s

end der Lau

ch [Ge12] u
nen eigenen
neering-Met

Fokus der
ng-Methode

npassungsze
sung soll mö

2

Lösungsa
r im vorher
tzen und aus
nge Manag
cht und mit
twickeln, de
so adaptiv a

rojektmanagem
iven Software-

g-Methode s
h überwacht
wertet, darau
soll anschli

ufzeit durchg

und [GLE12
n Ansatz z
thode:

Anpassung
.

eitpunkt ist
öglichst kur

20

ansatz	
rigen Absch
s der Projek

gement und
teinander „v
er eine Soft
anpasst.

ment/ Projektk
-Engineering-M

soll währen
t, der aktue
uf aufbauen
eßend dyna
geführt und

2] ergeben s
zur selbst-a

g liegt auf

zur Laufze
rz sein.

hnitt gestell
ktkontrolle,

die Softwa
verzahnt“ w
tware-Engin

kontrolle und S
Methode

d ihrer Nut
elle Status h
nd eine Anp
amisch und

in das Proj

sich folgend
adaptiven A

f der genu

it und die D

lten Frage s
die drei gen

are-Enginee
werden. Das
neering-Me

SEM zu einer s

tzung auf d
hinsichtlich
passung auf

möglichst
jekt zurück

de erste Anf
Anpassung

utzten Softw

Dauer der ge

sollen
nann-
ering-
s Ziel
thode

selbst-

er In-
einer

f Typ-
auto-
über-

forde-
einer

ware-

esam-

21

A3. Die SEM soll kontinuierlich und möglichst eigenständig während
ihrer Ausführung in Hinblick auf notwendige Abweichungen und An-
passungen auf der Instanz-Ebene beobachtet werden.

A4. Die beobachteten Werte und der aktuelle Status müssen zur Lauf-
zeit analysiert und schnell beurteilt werden können.

A5. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitäts-
zielen geplant und durchgeführt werden können.

A6. Die Anpassung soll schnellstmöglich und zeitnah sowie möglichst
automatisch erfolgen.

Um eine Software-Engineering-Methode zur Laufzeit eigenständig zu
überwachen und hinsichtlich ihres aktuellen Status analysieren zu können,
ist es wichtig, ein kontinuierliches Feedback von der SEM zu bekommen.
Das Feedback muss ausgewertet, die SEM gegebenenfalls angepasst und
anschließend muss die SEM wieder beobachtet werden, vor allem ob die
Qualität weiterhin oder wieder gegeben ist [GLE12]. Dies entspricht dem
Verhalten einer sogenannten Feedbackschleife. Aufgrund der Beurteilung
soll eine weitere Planung für die Anpassung der SEM auf Typ-Ebene fol-
gen, welche anschließend zurück in das aktuelle Projekt überführt werden
muss. Diese Anpassung und Überführung sollen nicht nur während des Pro-
jektes selbst stattfinden, sondern so schnell wie es geht, wenn möglich sogar
automatisiert.

Die Idee einer Feedbackschleife und der Auswertung des Feedbacks inner-
halb eines laufenden Systems ist nicht neu. Diese Feedbackschleifen, engl.
Feedback-Loops [Do06, Br09], kommen heute insbesondere im Bereich
Autonomic Computing [KC03] zum Einsatz. Eine der bekanntesten Feed-
backschleifen in diesem Bereich ist die MAPE-K-Feedbackschleife [IB06,
KC03]. „MAPE“ steht dabei für die verschiedenen Phasen Monitor – Analy-
se – Plan – Execute. Das „K“ bezeichnet dabei eine Wissensbasis die Know-
ledge Base, auf der die vier MAPE-Phasen agieren.

Über einen sogenannten „Autonomic Manager“ wird ein „Managed Ele-
ment“, welches ein laufendes System abbildet, kontinuierlich zur Laufzeit
durch Sensoren überwacht. Diese Daten werden aufbereitet, anschließend
analysiert und wenn diese nicht den definierten Werten entsprechen, wird
eine Anpassung geplant und über Effektoren ausgeführt. Für die Durchfüh-
rung der verschiedenen Phasen wird das „Wissen“ aus der Wissensbasis
genutzt. Diese kann durch hinzugewonnenes Wissen fortlaufend erweitert
werden.

22

Die Idee ist nun, den Ablauf des MAPE-K auf die Anpassung einer Soft-
ware-Engineering-Methode zu übertragen. Eine der entscheidenden Fragen
ist dabei, wie die Anpassung einer Software-Engineering-Methode mit dem
MAPE-K kombiniert werden kann; ist es möglich alles auf die entsprechen-
den Phasen abzubilden und wie müssten diese dann aussehen?

Der Beitrag dieser Arbeit ist die Vorstellung des Ansatzes MAPE-K4SEM,
welcher MAPE-K als Kern enthält und eine selbst-adaptive Software-
Engineering-Methode ermöglicht. Mit dem analog zum Autonomic Mana-
ger entwickelten SE Method Manager ist es möglich, eine Software-
Engineering-Methode automatisch und somit eigenständige sowie kontinu-
ierlich zu überwachen, den aktuellen Status der SEM bzgl. möglicher Ab-
weichungen zu analysieren, eine nötige Anpassung zu planen und diese an-
schließend schnellstmöglich auszuführen. Um die „richtigen“ Werte in der
SEM zu messen und diese entsprechend anhand von Analyseregeln auszu-
werten und eine Anpassung bzgl. vordefinierter Ziele zu planen, wurde der
SE Method Manager um eine Pre-Work erweitert. Beide Teile zusammen,
die Pre-Work und der SE Method Manger (MAPE-K) ergeben den MAPE-
K4SEM-Ansatz, welcher durch einen Ablauf in 10 Schritten charakterisiert
ist.

Neben der zeitnahen und eigenständigen Anpassung einer Software-
Engineering-Methode zur Laufzeit ist ein weiterer Beitrag der Arbeit, dass
der Ansatz MAPE-K4SEM verschiedene Themengebiete wie Projektma-
nagement und –kontrolle sowie das Software Engineering nun miteinander
verbindet.

1.4	

Nach
siebe
und b
verw
Meth
Bei d
che s
gen,
chen
kann

Der
Besc
Schw
Besc
von
runge
stellt
adap
Ansa
ausge

Aufbau	d

h dieser Ein
en weiteren
behandelt d

wandte Arbe
hoden, die P
den verwand
sich mit der
sowohl vor

n Verbesseru
nten Ansätze

Hauptblock
chreiben de
wachstellen
chreibung. N
Software-E
en wird die
t. Dieser ist
tiven Syste

atz tiefergeh
earbeitet.

der	Arbei

A

nleitung bes
Kapiteln. D

die Grundlag
eiten. Dabe
Projektkont
dten Arbeit
r Anpassung
r Beginn ei
ung. Das K
e und den er

k besteht au
s Lösungsa
aus Kapite

Nach einer
Engineering-

 Konzeption
t an die bek
emen angele
hend analys

2

it	

bbildung 3 Au

steht die A
Der erste B
gen, welche
i wird vor
rolle und d

ten werden v
g einer Soft
ines Projekt
Kapitel schl
rsten Anfor

us vier Kap
ansatzes. D
el 2 mit ein

Beschreibu
-Methoden
n eines soge

kannte Feedb
ehnt. Nach
siert und we

23

ufbau der Arbe

Arbeit aus d
Block besteh
e für die Arb

allem auf
das Change
verschieden
tware-Engin

ktes als auch
ließt mit de
rderungen a

piteln, begi
as Kapitel
ner genaue
ung versch
und dem K
enannten SE
backschleif
einem kurz
eitere Herau

eit

drei Blöcken
ht aus dem
beit benötig
die Softwa
Manageme

ne Ansätze
neering-Met
h Ansätze z
en Schwach
n den eigen

innend mit
startet aufb

en Problem-
hiedener An
Konkretisiere
E Method M
fe MAPE-K
zen Zwische
usforderung

n mit insge
zweiten Ka

gt werden, s
are-Engineer
nt eingegan
dargestellt,
thode besch
zur kontinu
hstellen der

nen Ansatz.

Kapitel 3,
bauend auf
-Analyse un
npassungs-A
en der Anfo

Managers vo
K aus den se

enfazit wird
gen werden

esamt
apitel
sowie
ering-
ngen.
wel-

häfti-
uierli-
r be-

dem
f den
und –
Arten
orde-
orge-
elbst-
d der

n her-

24

Das Kapitel 4 erweitert den Lösungsansatz um ein zielorientiertes Vorge-
hen, um den Herausforderungen zu begegnen. Nach der Diskussion, ob ein
Bottom-Up oder Top-Down-Ansatz gewählt werden sollte, wird eine Kom-
bination der beiden Ansätze, der MAPE-K4SEM, mit einem 10-Schritte-
Ablauf entwickelt. Dieser Ansatz besteht aus einer „Pre-Work“ und dem
späteren MAPE-K. Das Kapitel schließt mit der Beschreibung verschiedener
Schritt-Typen, welche der MAPE-K4SEM-Ansatz beinhaltet und einem
Framework, wie diese Schritte in Kurzform beschrieben werden können.

Die Kapitel 5 und 6 beschreiben die jeweiligen Schritte in der Tiefe, wobei
Kapitel 5 die „Pre-Work“ erläutert und Kapitel 6 die spätere Ausführung,
den MAPE-K. Neben den einzelnen Schritten wird in Kapitel 5 insbesonde-
re darauf eingegangen, wie sich die einzelnen Schritte, Regeln und Werte in
der Pre-Work herleiten lassen. Zusätzlich wird ein Ansatz vorgestellt, wie
diese wiederverwendet werden können. Kapitel 6 beschreibt zusätzlich zu
den Schritten zunächst den Baustein der Wissensbasis (Knowledge Base),
welcher für das Gelingen des MAPE-K essentiell ist. Das Kapitel schließt
mit Möglichkeiten zur Automatisierung der einzelnen Schritte.

Der dritte Block der Arbeit behandelt zunächst mit Kapitel 7 die Evaluie-
rung anhand eines praxisnahen Beispiels, anhand dessen die Funktionsweise
des Ansatzes exemplarisch durchgeführt und überprüft wird. Dieses Beispiel
ist im Kern an das im ersten Abschnitt erwähnte Praxisprojekt Quasi-Scrum
[EG09] angelehnt. Das Projekt wurde vom s-lab durchgeführt und wird im
Laufe der Arbeit neben dem Beispiel der Teamgröße in Scrum, welche nicht
mehr als 9 und nicht weniger als 3 Personen betragen darf, in dieser Arbeit
mehrfach erwähnt werden. Im Projekt Quasi-Scrum wurde eine Kreditkal-
kulationssoftware entwickelt. Dafür wurde die eine angepasste Form der
Agilen Methode Scrum eingesetzt. Dieses Beispiel wird um einige Kompo-
nenten aus der eigenen Erfahrung sowie aus einem anderen Praxisprojekt,
welches in einem großen Telekommunikationsunternehmen durchgeführt
wurde, erweitert. Die Dissertation schließt in Kapitel 8 mit einer Zusam-
menfassung der geleisteten Arbeit und gibt einen Ausblick über zukünftige
Aufgaben.

 	

Kap
ten

In di
einer
tel so
les
Engi
stellu
näch
läute
che
Maßn
ware
den,
Dies
sowo
Meth
Meth
Im f
stellt
zu v
Proje
sätze

pitel	2	
n	

A

iesem Kapi
r Software-E
owie verwa
zu einem
neering-Me
ung verschi

hsten Absch
ert. Insbeson
sich mit de
nahmen bes

e-Engineerin
soll in Absc
beschäftig

ohl die Änd
hoden beein
hoden könn
folgenden A
t, welche si
erschiedene
ektes. Das K
e und Anfor

Grund

Abbildung 4 Au

tel werden
Engineering
andte Arbeit

Software-
ethode gehö
iedener Art

hnitt werden
ndere wird
er Überwac
schäftigt. D
ng-Methode
chnitt 2.3 au
t sich zwar

derungen au
nflussen als
nen sich unt
Abschnitt w
ch mit der
en Zeitpunk
Kapitel wir
rderungen an

2

dlagen	u

ufbau Kapitel

beginnend
g-Methode
ten beschrie
-Projekt un
ört. Daran k
ten von So
n das Projek
dabei auf d
chung von

Da sich diese
en beschäfti
uf das Chan
r mit Änder
f dieser Ebe
s auch die Ä
ter Umstän

werden verw
Anpassung

kten beschä
d mit einer
n den eigen

25

und	ver

2 und Überga

mit der Be
die Grundla
eben. Zunä
nd im Sp

knüpfen die
oftware-Eng
ktmanagem

die Projektk
Projekten

e Arbeit mi
igt, also de
nge Manage
rungen auf
ene können
Änderung v

nden auf da
wandte Ans

g von Softw
äftigen, zum
r Analyse d
nen Ansatz a

rwandt

ng zu Kapitel

eschreibung
agen für die
chst wird e

peziellen e
Modellieru

gineering-M
ment und de
kontrolle ein

und bei B
it der Anpa
er Änderung
ement einge
f Unternehm
n die Softwa
von Softwa
s Unternehm
sätze und A

ware-Engine
m Beispiel
er Schwach
abgeschloss

te	Arbe

3

g und Defin
e späteren K
rläutert, wa

einer Softw
ng und die

Methoden an
essen Inhalt
ngegangen,
edarf regeln

assung von S
g dieser Me
egangen wer
mensebene,
are-Engineer
are-Engineer
men auswir
Arbeiten vo
ering-Meth
vor Beginn

hpunkte der
sen.

ei‐

nition
Kapi-
as al-
ware-
Vor-

n. Im
te er-
wel-

lnden
Soft-
etho-
rden.
aber

ering-
ering-
rken.
orge-

hoden
n des
r An-

2.1

Um
nann
ausg
durc
gen.
besc
stan
gehö

Abst
reich
Durc
führ
hens
schr
henf
die
besc
Soft

Ein
lung
hens

	Softwar

Abbildu

Software h
nten „Softw
geführt, die
ch eine abs
. Dabei kan
chreiben, w
dteile, die
ören, werde

trakte Besc
h, doch häu
chführung
ren diese M
sweise in e
rieben werd
folge die ve
zu erzielen

chreibt dabe
twareprojek

Softwareen
gsablauf zu
smodell gef

e‐Engine

ung 5 Begriffse

heutzutage
wareprojekt“

ein konkre
trakte Besc
n diese abst

welche zur D
zu einem P

en in Abschn

chreibungen
ufig in ihre
zu Missver

Missverständ
einem Proje
den. Es besc
erschiedenen
nden Ergeb
ei ein optim
kt angepasst

ntwicklungsp
ur Entwickl
formt ist. Ei

2

eering‐Me

entwicklung So

erfolgreich
“, kurz Proj
etes Ergebni
chreibung z
trakte Besc
Durchführu
Projekt und
nitt 2.1.1 er

n zur Durch
er Ausführu
rständnissen

dnisse zum
ekt kann ko
chreibt auf a
n Aktivitäte

bnisse festg
males Vorge
t werden sol

prozess bes
lung einer
inem Softw

26

ethoden

oftware-Engin

h zu entwic
ekt, eine ko
is haben. D
zur Durchfü
hreibung ei
ng des Proj

d einer Soft
rläutert.

hführung ein
ung nicht k
n führen k
Misserfolg

onkret über
abstrakte W
en durchgef
gelegt [GIA
ehen, welch
llte, denn je

chreibt nach
Software,

wareentwick

eering-Method

ckeln, wird
onkrete Fol
iese Abfolg
ührung des
ine Reihenfo
jektes nötig
tware-Engin

nes Projekte
konkret gen

kann. Im sc
 des Projek
r ein Vorge

Weise, wie u
führt werden

AK]. Das V
hes typische
edes Projekt

h [GIAK, L
welcher du
lungsprozes

de (SEM)

in einem
lge von Sch
ge kann zun

Projektes
folge der Sc
g sind. Alle
neering-Me

es sind zwar
nug, was in
chlimmsten
ktes. Die V
ehensmodel

und welcher
en und es w
Vorgehensm
erweise für
t ist anders.

LL10] den H
urch das V
ss liegt dab

soge-
hritten
nächst
erfol-

chritte
e Be-
thode

r hilf-
n der

n Fall
Vorge-

ll be-
r Rei-
erden

modell
jedes

Hand-
Vorge-

ei ein

27

Prozessmodell zu Grunde, welches eine Menge von Tätigkeiten beschreibt,
die in einer bestimmten Handlungsabfolge ausgeführt werden, damit ein
Produkt entsteht oder weiterentwickelt wird [So07, GIAK]. Ludewig und
Lichter gehen in ihrer Definition des Prozessmodells noch weiter: Für sie
beinhaltet ein Prozessmodell nicht nur das Vorgehensmodell sondern zu-
sätzlich Aussagen über die personelle Organisation, die Gliederung der Do-
kumentation sowie die Verantwortlichkeiten für Aktivitäten und Dokumente
[LL10]. Da wie bereits beschrieben jedes Projekt anders ist, gibt es ver-
schiedene Ausprägungen dieser Prozessmodelle, es können keine oder nur
sehr schwer allgemeingültigen Aussagen getroffen werden.

Ein weiterer Begriff, der für die Beschreibung der Ausführung eines Projek-
tes genutzt wird, ist der Begriff Methode. Eine Methode beinhaltet absolut
alles, was für die Entwicklung gebraucht wird, das heißt beispielsweise so-
genannte Artefakte, Rollen und ausgeführte Tätigkeiten, aber auch in wel-
cher Reihenfolge und zu welchem Zeitpunkt was ausgeführt wird [HSR10].

Engels und Sauer [ES10] gehen in ihrer Beschreibung noch ein Stück weiter
und führen den Begriff Software-Engineering-Methode ein. Dieser bringt
den Softwareentwicklungsprozess bzw. das Prozessmodell und eine Metho-
de zusammen. Eine Software- Engineering-Methode ist das vollständige Set
an Elementen (z.B. Rollen, Artefakte und Tätigkeiten) welches benötigt
wird, um ein Projekt in allen relevanten Aspekten zu beschreiben. Diese
Beschreibung beinhaltet, ähnlich wie bei der Beschreibung des Prozessmo-
dells nach [LL10], nicht nur ein Vorgehensmodell an sich und seine Aktivi-
täten, sondern zusätzlich alle Artefakte und Aktivitäten die durchgeführt
werden müssen um gesetzte Ziele – die Meilensteine – zu erreichen. Zusätz-
lich beinhaltet eine Software-Engineering-Methode die Rollen, Werkzeuge
und Techniken die gebraucht werden, ebenso wie alle Abhängigkeiten zwi-
schen den Konzepten. Dies kann ebenfalls die Organisationsstrukturen, die
Vorgaben für das Projektmanagement, sowie die Qualitätssicherung, die
Dokumentation und die Konfigurationsverwaltung mit beinhalten, also alles
was zu einem Software-Projekt mit dazugehört.

Aufgrund dieser ausführlichen Definition soll der Begriff Software-
Engineering-Methode (SEM), in der vorliegenden Arbeit verwendet werden.

2.1.1	Bestandteile	eines	Projektes	und	einer	Software‐
Engineering‐Methode	
Software wird typischerweise in Unternehmen entwickelt. Je nach Größe
und Spezialisierung des Unternehmens kann es wie in Abbildung 6 zu se-
hen, ein oder mehrere Projekte zur Entwicklung oder Verbesserung von
Software besitzen. Um die Software erfolgreich zu entwickeln, wird das
Projekt mit Hilfe einer Software-Engineering-Methode durchgeführt. Doch

jede
hat n











es Projekt be
noch weiter

Ab

 Jedes P
stimmte
nem ode

 Die Per
team, k
Teams u
des Tea
der Soft

 Ein Tea
lifikatio
ten zur D

 Die Per
se Proje
kann ein

 Ein Proj
des Proj
bewegen
welcher
braucht

esitzt nicht
re Merkmale

bbildung 6 Beg

Projekt hat
en, teilweise
er mehreren

rsonen, wel
kurz das Te
unterteilt w
m besitzt da
tware-Engin

am besteht a
nen (Skills)
Durchführu

sonen im T
ektleiter, En
n Teammitg

jekt hat ver
jektes zusam
n sich meis
r Leistungsu
wird, aber a

2

nur eine So
e, u.a. nach

griffe basieren

eine Laufz
e begrenzte
n End- bzw.

lche das Pr
eam. Dabei

werden, z.B.
abei eine (o
neering-Met

aus natürlic
) besitzen m
ung des Proj

Team nehme
ntwickler,

glied eine od

rschiedene
mmen mit a
stens im Ra
umfang für
auch welch

28

oftware-Eng
[LL10]:

d auf [BK13],

eit, das hei
en, Zeitraum
. Zwischene

rojekt durc
i kann dies
. Entwickle
optimale) Te
thode besch

hen Person
müssen, um
jektes meist

en bestimmt
Software-A
der mehrere

Projektziel
allen Beteil
ahmen der
r die Erstell
he Zeit (s. La

gineering-M

[OMG08], [LL

ißt es läuft
m mit einem
endpunkten.

chführen, si
ses Team n
r-Team, Te
eamgröße, w
hrieben wird

en, welche
die verschie
tern zu könn

te Rollen ei
Architekt, T
e Rollen inn

e. Diese we
ligten defini
Qualität de
lung des E
aufzeit) das

Methode, son

L10]

t über eine
m Start- un
.

ind das Pro
noch in w

est-Team et
welche mit
d.

bestimmte
edenen Akt
nen.

in, beispiel
Tester u.a. D
nehaben.

erden zu B
niert. Projek
es Endprodu
Endprodukte
s Projekt zur

ndern

n be-
nd ei-

ojekt-
eitere

tc. Je-
Hilfe

Qua-
tivitä-

lswei-
Dabei

eginn
ktziele
uktes,
es ge-
r Fer-

29

tigstellung braucht und was das Projekt kostet (s. Projektkosten).
Nähere Erläuterungen dazu stehen in Abschnitt 2.2.1. Projektma-
nagement. Ein Projekt ist erfolgreich, wenn die (Teil-) Ziele erreicht
sind.

 Ein Projekt hat ein konkretes Budget, welches aus den errechneten
Projektkosten resultiert. Die Projektkosten errechnen sich u.a. aus
den Aufwänden, um die Software zu erstellen, aus der Laufzeit usw.
Ein Ziel im Projekt ist es, die Projektkosten einzuhalten oder sie,
wenn möglich, zu reduzieren und zu optimieren.

 Jedes Projekt befindet sich in einer Projektumgebung und hat ein ei-
genes Projektumfeld. Dazu zählen unter anderem die Rahmenbedin-
gungen, die nicht direkt etwas mit dem Projekt selbst zu tun haben.
Diese Rahmenbedingungen beinhalten beispielsweise das Unter-
nehmen selbst, wie die Größe (z.B. Mittelstand oder Großunterneh-
men), wie das Unternehmen strukturiert und organisiert (z.B. flache
Hierarchien) ist oder auch die Unternehmenspolitik. Hierzu zählt
auch das kulturelle Umfeld, sei es die Unternehmenskultur oder die
Kultur der einzelnen Personen im Zusammenspiel. Gibt es Änderun-
gen im Projektumfeld, so können diese das durchzuführende Projekt
und somit die Software-Engineering-Methode beeinflussen.

Die verschiedenen Bestandteile eines Projektes können Auswirkung auf die
gewählte Software-Engineering-Methode haben. Im Folgenden sollen die
Bestandteile einer Software-Engineering-Methode beschrieben werden, u.a.
nach [BK13], [LL10] und [OMG08]:

 Eine Software-Engineering-Methode wird durch eine oder mehrere
voneinander abhängigen Reihenfolge von zu erledigenden Schritten
beschrieben. Diese Reihenfolge wird Workflow genannt. Dieser
Workflow beschreibt, wie die einzelnen Elemente in der Software-
Engineering-Methode miteinander zusammenhängen und zu wel-
chem Zeitpunkt welches Element von wem ausgeführt wird.

 Einzelne Abschnitte im Workflow können sogenannte Meilensteine
beinhalten. Meilensteine bezeichnen einen Zeitpunkt oder Abschluss
im Workflow, wo beispielsweise Elemente fertiggestellt sein müs-
sen. Diese Meilensteine und deren Inhalt sowie ihr Zeitpunkt werden
im Vorfeld anhand von Kriterien definiert und festgelegt. Der Ab-
schnitt des Workflows ist erfolgreich beendet, wenn die im Vorfeld
definierten Kriterien des Meilensteins zum entsprechenden Zeit-
punkt erfüllt sind.

 Ein Workflow setzt sich aus einzelnen Aktivitäten zusammen. Eine
Aktivität bezeichnet eine bestimmte Aufgabe oder Tätigkeit, welche

30

im Rahmen der Software-Engineering-Methode durchgeführt wird.
Viele Aktivitäten werden durchgeführt, um Artefakte zu entwickeln.

 Artefakte in einer Software-Engineering-Methode haben verschiede-
ne Ausprägungen. Ein wichtiges Artefakt sind die sogenannten In-
kremente der zu erstellenden Software. Je nach Software-
Engineering-Methode sind dies die vollständige Software am Ende
des Projektes oder einzelne Bestandteile auf dem Weg zum Endpro-
dukt. Des Weiteren sind Artefakte einzelne Dokumente o.ä., welche
für den Erfolg der Software-Engineering-Methode wichtig sind. Dies
können Anforderungsspezifikationen, (Test-)Reporte oder andere
Ergebnisse sein. Ein weiteres Artefakt sind sogenannte Guidances,
Anleitungen oder Hilfestellungen für die Durchführung der einzel-
nen Aktivitäten.

 Die einzelnen Aktivitäten benötigten Artefakte sowohl als Input,
damit die Aktivität durchgeführt werde kann, als auch dass sie Arte-
fakte als Output für weitere Aktivitäten generieren. Der Zusammen-
hang zwischen Artefakten und Aktivitäten wird ebenfalls vom
Workflow festgelegt.

 Die einzelnen Aktivitäten werden wie in Abbildung 6 zu sehen von
einzelnen oder mehreren Rollen durchgeführt. Eine Rolle wird durch
eine konkrete Person im Team ausgefüllt, welche die entsprechenden
Qualifikationen für diese Rolle besitzt.

 Eine Rolle kann Verantwortung für ein Artefakt oder eine Aktivität
beinhalten, muss dies aber nicht. Wichtig ist, dass jede Aktivität und
jedes Artefakt mindestens einen Verantwortlichen besitzen.

 Um bestimmte Aktivitäten zu erfüllen oder um ein bestimmtes Arte-
fakt zu erzeugen, können verschiedene Techniken und auch Werk-
zeuge (engl. Tools) eingesetzt werden. Diese unterstützen die durch-
führenden Personen, um die Aktivität erfolgreich durchzuführen.

 Damit ein Projekt funktioniert, ist es wichtig, dass eine gesunde
Kommunikationskultur gepflegt wird. Das „Hauptinstrument“ dafür
ist eine Spezialform einer Aktivität, das Meeting. Meetings können
im unterschiedlichen Maße in Projekten eingesetzt werden. Einer-
seits können sie als kurze Informations-Meetings dienen, anderer-
seits aber auch zur Entscheidungsfällung. Dabei muss der „richtige“
Mittelweg gefunden werden, damit der zeitliche Aufwand nicht für
ergebnislose Meetings überhandnimmt und dass ausreichend Zeit für
die eigentliche Durchführung bleibt.

Die verschiedenen Bestandteile einer Software-Engineering-Methode sind
wichtig zu wissen, da anhand dieser Bestandteile eine Software-
Engineering-Methode im Endeffekt angepasst wird, indem beispielsweise

31

eine Aktivität hinzugefügt oder gelöscht oder der Workflow geändert wird.
Um Software-Engineering-Methoden auszuführen und später entsprechend
anpassen zu können, sollten sie anhand eines Modells dargestellt werden.
Durch ein Modell wird ersichtlich, wie die einzelnen Komponenten zusam-
menhängen und an welcher Stelle etwas entsprechend angepasst werden
kann.

2.1.2	Modellierung	von	Software‐Engineering‐Methoden	
Um eine Software-Engineering-Methode zu modellieren, werden die Be-
standteile entsprechend definiert und alle Rollen, ihre Verantwortlichkeiten,
Artefakte, Aktivitäten usw. miteinander verknüpft. Ebenso wird über die
Abhängigkeiten die Reihenfolge der Aktivitäten festgelegt und dargestellt.
Zusätzlich wird dadurch visualisiert, welche Artefakte als In- und Output für
eine Aktivität nötig sind, welche Rolle daran beteiligt ist oder die Verant-
wortlichkeit dafür besitzt. Zusätzlich können Regeln definiert werden, wel-
che bei der Ausführung einer Software-Engineering-Methode einzuhalten
sind oder den einzelnen Tätigkeiten werden Techniken zugeordnet. Ein Mo-
dell dient nicht nur der Visualisierung zur Verständlichkeit, sondern ein
automatisches Ausführen hilft den Personen bei der Umsetzung und dem
Entwickeln eines Produktes.

Ein Modell ist ebenfalls wichtig, damit die Software-Engineering-Methode
angepasst werden kann. Dadurch wird ersichtlich, an welcher Stelle sich ein
Element der SEM befindet und welche Abhängigkeiten bestehen. Soll ein
solches Element später ausgetauscht oder gelöscht werden, müssen diese
Abhängigkeiten ebenfalls mit in Betracht gezogen werden, um die Konsis-
tenz und Gesamtfunktionalität der Methode weiterhin zu gewährleisten.
Wird später ein Element hinzugefügt, kann im Modell geprüft werden, an
welcher Stelle dies eingefügt werden soll.

Für die Modellierung von Software-Engineering-Methoden gibt es bereits
verschiedene Modelle und Methoden. Die bekannteste und am meisten ein-
gesetzte ist das Software and Systems Process Engineering Meta-Modell,
kurz SPEM, der OMG [OMG08]. Dieses ist ein Meta-Modell und ebenfalls
ein UML-Profil zur Spezifikation von Software-Engineering-Methoden. Das
Modell der konkreten Software-Engineering-Methode, welches später im
Projekt genutzt wird, befindet sich auf der sogenannten „Typ-Ebene“. Auf
der darunterliegenden „Instanz-Ebene“ befinden sich die konkreten und in-
stanziierten Werte aus dem eigentlichen Projekt, beispielsweise welche
konkrete Person eine Rolle ausfüllt.

SPEM unterscheidet in seinem Modell zwischen den Methodeninhalten wie
Artefakte, Aktivitäten bzw. Aufgaben, Rollen usw. und den Prozessen. Da-
bei können verschiedene Prozesse über ein Set von Methodeninhalten spezi-

fizie
ieren
Proz

Ein
nem
Buch
besc
Dies
nem

Bei
Met
stell
kom
Met
sond
erste

Für
von
davo
Akti
eina
Mod

2.1.

Proj
Wen
beim

ert werden.
n, das heiß
zess definier

weiteres be
m anderen P

h von Ces
chrieben, w
ses Model i

m einzigen P

Sauer und
hode zur M
lt. Diese bau

mbiniert Idee
aME besch
dern mehr,
ellt werden

den spätere
SPEM, ISO

on erstellt w
ivitäten, Te

ander model
dellierung b

3	Arten	vo

Abbild

ekte untersc
nn ein bestim
m nächsten

Über Plugi
ßt es wird e
rt und ansch

ekanntes M
Prinzip als S
sar Gonzale
elche an de
integriert P

Paket einer M

d Engels [E
Modellierun
ut auf einem
en des Met

hreibt wenig
wie eine M
kann.

en Ansatz d
O 24744, M
wurde. Wic
chniken un
lliert sind. Z

bei der Nutz

on	Softwar

dung 7 Verschi

cheiden sich
mmtes Vor
schon zum

3

ins ist es mö
eine Basism
hließend pro

Modell ist di
SPEM beru
es-Perez un
er Entwickl
Prozesse, Pr
Methodensp

ES10] wird
ng von So
m Meta-Mo
ta-Modellin
ger, wie ein

Methode ent

dieser Arbe
MetaMe, ein
chtig ist zu

nd der Work
Zum andere
zung des An

re‐Enginee

iedene Arten v

h gerade in
rgehen für d
m Misserfol

32

öglich, SPE
methodik fü
ojektspezifi

e ISO 2474
uht. Dieses
nd Brian H
ung der ISO
rodukte und
pezifikation

d mit MetaM
oftware-Eng
odel des So
ng mit dene
ne Methode
sprechend a

it ist es ega
ner Variante
um einen, d
kflow sowie
en sollte kon
nsatzes verw

ering‐Meth

von Software-E

den Feinhe
das eine Pro
g führen. E

EM-Spezifik
ür einen Pro
isch angepa

44 [ISO07],
Modell wir

Henderson-S
O 24744 m
d Rollen („P
.

ME ebenfa
gineering-M
ftware Engi
n des Meth

e angepasst
anhand eine

al, ob das M
e oder eine
dass alle A
e die Abhän
nstant diese

wendet werd

hoden	

Engineering-M

eiten von an
ojekt erfolgr
Es gibt nich

kationen zu
ozess oder

asst.

, welches a
ird zusätzlic
Sellers[GPH

mitgewirkt h
Producer“)

alls eine M
Methoden v
gineering au
hod-Enginee
t werden kö
es Meta-Mo

Modell mit
er Vereinfac

Artefakte, R
ngigkeiten u
elbe Method
den.

Methoden

nderen Proje
reich ist, ka
ht die Softw

u vari-
Teil-

uf ei-
ch im
HS08]
haben.
in ei-

Meta-
vorge-
uf und
ering.
önnte,
odells

Hilfe
chung
ollen,
unter-
de zur

ekten.
ann es
ware-

33

Engineering-Methode, welche für alles und jedes Projekt passt, eine one-
size-fits-all“ Methode (vgl. auch [HS06], [Co02]).

Von daher gibt es die verschiedensten Arten von Software-Engineering-
Methoden, um ein Projekt zum Erfolg zu führen. In Abbildung 7 sind diese
mit einigen Vertretern exemplarisch dargestellt. Dabei wird hauptsächlich
zwischen den „klassischen“ Software-Engineering-Methoden und den soge-
nannten „Agilen Software-Engineering-Methoden“, auch Agile Methoden
genannt, unterschieden. Zusätzlich zu diesen beiden Gruppen gibt es „hyb-
ride“ Software-Engineering-Methoden, welche sich sowohl aus klassischen
und Agilen SEM zusammensetzen können als auch beispielsweise rein aus
verschiedenen Agilen Methoden. Die letzte Gruppe bilden die situationsspe-
zifischen Software-Engineering-Methoden. Diese Methoden zeichnen sich
dadurch aus, dass sie aus verschiedenen Bausteinen, den „Method Ele-
ments“, eine Software-Engineering-Methode speziell für ein Projektsituati-
on zusammenbauen. Die einzelnen Arten sollen im Folgenden näher erläu-
tert werden.

2.1.3.1		Klassische	Software‐Engineering‐Methoden	
Die traditionellen oder klassischen Software-Engineering-Methoden sind im
Gegensatz zu den Agilen Methoden besser strukturiert (formalisiert). Sie
besitzen mehr Vorgaben und Dokumentation und sind deshalb schwerge-
wichtiger. Hingegen werden Agile Methoden gern als leichtgewichtig be-
zeichnet. Ferner sind in traditionellen Methoden insbesondere die Anforde-
rungen stabiler und ändern sich im Laufe der Zeit eher weniger. Bekannte
Vertreter sind hier das V-Modell [DW99] bzw. V-Modell XT [RB07], das
Wasserfallmodell [Bo81] oder der Rational Unified Process (RUP) [Kr03,
Kr98], wobei der RUP ein besonderer Fall ist. Er kann sowohl schwerge-
wichtig, als auch leichtgewichtig implementiert werden. Eine agile Variante
ist beispielsweise der Agile Unified Process (AUP) von Scott Ambler
[Am06].

2.1.3.2	Agile	Methoden	
In den letzten Jahren hat die Popularität von sogenannten „leichtgewichti-
gen“ Vorgehensmodellen zugenommen. Erstmals wurde ein solches Modell
von Kent Beck mit Extreme Programming (XP) vorgestellt [Be00]. Heute
sind diese Modelle als Agile Software-Engineering-Methoden, kurz Agile
Methoden bekannt. Scrum [BS02, Gl08], Feature Driven Development
(FDD) [DCL99] und Crystal [Co02] sind nur einige weitere Beispiele, die
im Laufe der Zeit entstanden sind.

Die Bezeichnung „agil“ (lat. agilis: flink; beweglich) wurde auf einer Kon-
ferenz 2001 in Utah ausgewählt, wo ebenfalls das „Agile Manifest“ [AM01]
entstand. Dies stellt das Fundament für die agile Softwareentwicklung dar.

34

Eine Hauptcharakteristik Agiler Methoden ist die Vorgehensweise in itera-
tiven Zyklen. Das Ziel eines jeden iterativen Zyklus ist es, sowohl funktio-
nierende Software als auch neue Funktionalitäten für eine (bestehende)
Software zu liefern. In den verschiedenen Vorgehensmodellen gibt es be-
stimmte Rollen, die fest verteilt sind. Dabei liegt der Hauptfokus auf dem
Team, welches am besten interdisziplinär zusammengesetzt ist. Agile Me-
thoden sind dabei kommunikationsintensiv und legen Wert auf den Einzel-
nen selbst sowie auf Selbstverantwortung. Ein Team soll sich selbst organi-
sieren und alles kommunizieren, was zu einer Verminderung von aufwändi-
ger Dokumentation führen soll.

Ziel der Prozesse ist es, durch kurze iterative Zyklen schnellstmöglich Soft-
ware mit neuer Funktionalität zu liefern [DNZ07]. Dabei ist es schwierig,
wenn nicht unmöglich, in Projekten alle Anforderungen vorher festzulegen.
Mit den Agilen Methoden soll die Möglichkeit gegeben werden, zeitnah auf
neue Anforderungen und Änderungen reagieren zu können.

2.1.3.3	Hybride	Software‐Engineering‐Methoden	
Unter hybriden Software-Engineering-Methoden versteht man die Kombi-
nation von zwei Methoden miteinander. Die bekannteste Kombination im
agilen Bereich ist die Kombination von Scrum und Extreme Programming.
Eine typische Kombination ist die Verwendung von Scrum als Hülle mit der
Anreicherung von XP-Techniken, beispielsweise dem Pair Programming,
Test Driven Development usw. Ein bekannter Vertreter, welcher beide Agi-
le Methoden miteinander verknüpft ist xp@Scrum [MS02, Vr03]. Ein neue-
rer Vertreter unter den agilen Hybriden ist „Scrumban“ welches 2008 von
Ladas [LA09] vorgestellt wurde und Scrum mit Kanban kombiniert.

Der Agile Unified Process ist weniger ein Hybrid als die Kombination von
RUP mit den agilen Prinzipien. Es ist eine agile Ausprägung des RUP. Dies
ist mit ein Grund, warum teilweise darüber diskutiert wird, ob RUP nun zu
den agilen oder zu den klassischen Methoden gehört.

Seit einiger Zeit gibt es zusätzlich zu den agil-hybriden Methoden, die ers-
ten Kombinationen von klassischen mit agilen Methoden. Die bekannteste
Kombination ist hier die des V-Modells mit Scrum. Da das V-Modell häufig
im Dienstleistungssektor eingesetzt wird, wollten agile Anbieter möglichst
ebenfalls an Ausschreibungen für Projekte teilnehmen, obwohl das V-
Modell Voraussetzung war. Die Idee war nun, das V-Modell als äußere Hül-
le zu nutzen, mit den entsprechenden Meilensteinen usw. aber die innere
Entwicklung wurde in Form von Scrum genauer in Sprints durchgeführt.

Diese Beispiele zeigen gut, dass es möglich ist, Software-Engineering-
Methoden oder Methodenelemente miteinander zu kombinieren und somit
SEMs für den Zweck des Projektes anzupassen. Wie es möglich ist, eine

35

Software-Engineering-Methode vollständig aus Methodenelementen zu-
sammenzusetzen, wird in der Unterdisziplin des Method Engineering im
Situational Method Engineering behandelt.

2.1.3.4	Situationsspezifische	Software‐Engineering‐Methoden	
Method Engineering (ME) beschäftigt sich mit dem Design und der Kon-
struktion von Methoden, insbesondere für „information systems develop-
ment“ [HS06]. Sie wählen wiederverwendbare Methoden-Komponenten,
auch Method Fragments oder Method Chunks genannt, aus einer Methoden-
Basis (engl. Method Base) aus und setzen sie zu einer Methode zusammen.
Nützlich und aussagekräftig ist hier die Definition von Sjaak Brinkkemper
[Br96, S. 276]:“Method engineering is the engineering discipline to design,
construct and adapt methods, techniques and tools for the development of
information systems“.

Nach Sjaak Brinkkemper ist Method Engineering also eine (ingenieur-)
wissenschaftliche Disziplin für das Designen, Konstruieren und Anpassen
von Methoden, Techniken und Tools für die Entwicklung vor allem von
Informationssystemen. Dabei wird der Begriff Methode im Sinne von Vor-
gehensmodell oder Softwareentwicklungs-Prozess genutzt. Nach Brinkk-
emper ist eine Methode ein Ansatz, um ein Software- oder System-
Entwicklungsprojekt durchzuführen. Diese Methoden basieren auf einem
Ansatz, welcher aus verschiedenen Regeln und möglichen Richtungen für
die Entwicklung besteht. Die Methoden sind dabei systematisch strukturiert
in ihren Entwicklungsaktivitäten und den entsprechenden Artefakten, die
dabei entstehen. Brinkkemper spricht in seiner Definition allerdings nur von
Informations-Systemen.

Diese Definition wurde von [HSR10] insofern angepasst, dass sie „informa-
tion systems“ durch „system development“ zur Verallgemeinerung ausge-
tauscht haben.

Wenn die Methode nun genau auf ein Projekt oder eine Situation abge-
stimmt ist und sie wird für diesen Kontext aus den verschiedenen Metho-
den-Komponenten zusammengebaut, dann wird von Situational Method
Engineering (SME) [RR01,HS06] gesprochen. Neue Methoden werden
konstruiert, indem Methoden-Elemente von verschiedenen Methoden aus-
gewählt werden, welche für die Situation am besten geeignet sind.

[HSR10] beschreiben in ihrem State-of-the-Art Review des SME, dass die
optimistischste Art, eine situationsspezifische Methode zu erstellen, die Me-
thoden-Konstruktion unterstützt durch Tailoring/Customization einer Me-
thode sei.

36

Diverse Ansätze und Arbeiten haben sich mit Situational Method Enginee-
ring beschäftigt; viele von ihnen werden gut im State-of-the-Art Review von
Henderson-Sellers und Ralyté [HSR10] zusammengefasst. Zusätzlich wird
abschließend ein Ausblick gegeben, welche Forschungsrichtungen auf die-
sem Gebiet in den nächsten Jahren interessant sein könnten und wo es noch
Probleme gibt. Beispiele dafür sind, wie die Qualität von einer solchen Me-
thode beurteilt werden kann oder wie es möglich ist sicherzustellen, dass die
Konfiguration der ausgewählten Methoden-Elemente vollständig, korrekt
und konsistent ist.

2.2	Projektmanagement	und	‐kontrolle		
Ein Projekt ist im Allgemeinen eine sehr komplexe Angelegenheit und ein
Unternehmen ist von den Erfolgen seiner Projekte abhängig. Damit Projekte
erfolgreich sind, müssen sie zum einen gut verwaltet und zum anderen mit
entsprechenden Mechanismen kontrolliert und überwacht werden. Das Pro-
jektmanagement ist für die Verwaltung der Projekte zuständig, ein wichti-
ges Element ist dabei die Projektkontrolle bzw. das Projektcontrolling. In
den folgenden Abschnitten soll das Projektmanagement und insbesondere
die Projektkontrolle vorgestellt werden. Diese ist nicht nur mit der Überwa-
chung eines Projektes betraut, sondern greift bei Bedarf aktiv ein und führt
soweit möglich Änderungen durch.

2.2.1	Projektmanagement	
Projekte sind komplex in der Durchführung und können von langer Dauer
sein. Die Verantwortlichen müssen zu jeder Zeit einen umfassenden Über-
blick über das Projekt haben und sich nach [Fi10] bei der Durchführung von
Projekten in regelmäßigen Abständen verschiedenen Fragen stellen, wie
beispielsweise:

 Wie viele Mitarbeiter werden für das Projekt benötigt, welche Quali-
fikationen müssen sie dafür besitzen?

 Wie werden Projektleiter und die Mitarbeiter für das Projekt ausge-
wählt?

 Sind genug Ressourcen für das Projekt; was ist, wenn ein Engpass
im Projekt auftritt?

 Wie teuer wird das Projekt, welche Kosten können anfallen?

 Wie lang soll das Projekt dauern, was ist der konkrete Zeitraum für
die Durchführung?

 Was passiert bei Terminverzögerungen im Projekt, wie wirken sich
diese aus?

Die Grundlage, um all diese Fragen zu beantworten, der Komplexität Herr
zu werden und zu jeder Zeit den Überblick zu behalten, bildet das Projekt-
management. Nach der DIN 69901 beschreibt Projektmanagement die „Ge-

samt
die A

Gena
die w
Planu
Fi10]
betei
weise

Im P
Klas
Snee
schen
Qual
ein b
Qual
Ziel
durch
in we
drei
Lauf
dies
geleg
tigste

Das
testen

theit von Fü
Abwicklung

auer umfass
wichtigsten
ung, die K
]. Zusätzlic
iligt ist und
en ein Proje

Abbildu

Projektmana
se von Ziel

ed [Sn05] ve
n Dauer de
lität und dem
bestimmter L
lität und ge
festgelegt,
h beschreib
elchem Kos
Aspekte si

fe des Proje
immer zu L
gt werden, w
en sind und

Projektman
n sind in Ab

ührungsaufg
eines Proje

st Projektm
sind dabei

Kontrolle, di
ch beschreib
d wie mit w
ekt durchge

ung 8 Das mag

agement dr
len, welche
erdeutlicht.
es Projektes
m durch das
Leistungsum
ewünschte L
welche das

ben. Ferner
stenrahmen
nd voneina
ektes angep
Lasten des d
wo die Prio
zu Lasten w

nagement be
bbildung 9

3

fgaben, -org
ektes.“

management
nach der k

ie Organisa
bt das Proje

welchen Instr
führt wird [

ische Dreieck i

reht es sich
e das „Mag
Es stellt da

s, Kosten un
s Projekt ge
mfang, soge
Leistung w
s Projektend
wird der A
sich das Pr

ander abhän
passt und w
dritten Aspe
oritäten im P
welchen As

esteht aus v
zu sehen.

7

ganisation,

somit alle
klassischen
ation und d
ektmanagem
trumenten, T
[Fi10].

im Projektman

h typischer
gische Dreie
abei ebenfal
nd Aufwan
elieferte Lei
enannte Sac

widerspiegel
de, aber auc

Aufwand für
rojekt beweg
ngig. Denn
wird versuch
ektes. Von d
Projekt lieg
spektes eine

verschieden

-Techniken

Elemente
Manageme

die Personal
ment, wer a
Techniken u

nagement nach

rweise um
eck“ in Ab
lls die Abhä
nd des Proje
istungsumfa
chziele defin
n. Es werd
ch Lieferter
r das Projek
gen soll [Fi
werden ein

ht, sie zu o
daher muss

gen, welche
e Anpassung

nen Element

 und -mitte

eines Proje
entlehre u.a
lführung [S
alles am Pro
und Vorgeh

h [Sn05]

eine bestim
bbildung 8
ängigkeiten
ektes, sowie
ang dar. Es
niert, welch
den Termine
rmine zwisc
kt geschätzt
10, BK13].
n oder zwe
optimieren,

zu Beginn
Ziele am w

g erfolgen d

ten, die rele

el für

ektes,
a. die
Sc13,
ojekt
hens-

mmte
nach
zwi-

e die
wird

he die
e als
chen-
t und
 Alle
ei im
geht
fest-

wich-
darf.

evan-

Basi

Vor
eine
ware
welc
müs
den.

Proj
sen
gege

Proj
sind
aber
Pers
de V

Wer
da d
nen
über

Proj
nen
ten.
Vorg
ren,

ierend auf [

rgehens- un
es definierte
ebereich S
che dem Un
ssen diese M
.

jektkontro
des Projekt
ensteuern zu

jektorganis
d mehrere P
r auch Grem
sonen müsse
Verantwortli

rkzeuge: So
diese ab ein
bewältigt w

rsichtlicher

jektpsycho
durchgefüh
Beispielsw

gehensweis
von enorm

Abbildun

AE13, Fi10

nd Prozessm
en Prozesse
oftware-En
nternehmen

Modelle für

lle: Die Pro
tes im Blick
u können.

sation: Am
Personen bet
mien oder a
en verschie
ichkeiten, d

oftwaregest
ner bestimm
werden könn
und können

ologie: Proje
hrt, die sich
weise sind
sen und Wer
er Wichtigk

ng 9 Elemente

3

0] sind dies:

modelle: P
es durchgef
ngineering-M
n helfen, da

die Projekt

ojektkontro
k zu behalte

m Projekt un
teiligt. Dies
andere Bere

edene Aufga
die definiert

tützte Werk
mten Größe

nen. Mit Hi
n einfacher

ekte und P
h je nach In
die Komm
rkzeuge, ab

keit.

des Projektma

38

:

rojekte wer
führt. Vorge
Methoden d
as Projekt o
tsituation en

olle bietet M
en und bei Ä

nd auch am
s können ve
eiche im U
aben erledig
und zugew

kzeuge unter
nur noch sc
ilfe dieser W
abgewickel

rojektmana
dividuum u

munikation,
ber auch ein

anagements ba

rden typisch
ehensmodel
dienen dab
optimal abzu
ntsprechend

Mechanisme
Änderungen

m Projektma
erschiedene

Unternehmen
gen und hab

wiesen werde

rstützen kom
chwer von e
Werkzeuge
lt werden.

gement we
und Situatio
die Akzept

n Team geko

asierend auf [F

herweise an
lle und im

bei als Vor
zuwickeln. D
d angepasst

en, um alle
n gegebene

anagement s
e Rollen, Te
n sein. All
ben entspre
en müssen.

mplexe Proj
einzelnen P
werden Pro

erden von P
on anders ve
ptanz bestim
konnt zu mo

Fi110, AE13]

nhand
Soft-

rlage,
Dabei
t wer-

Pha-
nfalls

selbst
eams,
diese
chen-

jekte,
Perso-
ojekte

Perso-
erhal-

mmter
otivie-

39

Kulturelles Umfeld: Ebenso wie die Psychologie in einem Projekt ist auch
das kulturelle Umfeld sowohl vom Unternehmen als auch von jeder einzel-
nen Person sehr wichtig zu erachten. Sie beeinflussen das Handeln und
Denken einer Person.

Auch wenn alle Elemente für das Projektmanagement wichtig sind, ist für
diese Arbeit insbesondere die Projektkontrolle wichtig, da diese sich mit der
Überwachung und gegebenenfalls mit Änderungen im Projekt beschäftigt.
Sie bezieht ebenso das Element der Modelle als auch die der Organisation
mit ein. Gerade die letzten beiden Elemente werden in dieser Arbeit nicht
betrachtet. Im folgenden Abschnitt soll von daher die Projektkontrolle nun
ausführlicher beschrieben werden.

2.2.2	Projektkontrolle	
Die Projektkontrolle, auch Projektcontrolling oder kurz Controlling genannt,
unterstützt das Projektmanagement hauptsächlich bei der Planung, Überwa-
chung und Steuerung des Projektes. Wichtig ist dabei auf der Basis von
[F10], [Sc13] und [BK12], dass die Rahmenbedingungen eingehalten und
die definierten Projektziele erreicht werden. Es muss somit darauf geachtet
werden, dass geregelt ist, welche Pläne basierend auf den Zielen zu erstellen
sind und wie diese kontrolliert werden. Zusätzlich ist zu beachten, wer wo-
für verantwortlich ist, wie Termine und Kosten kontrolliert werden und ob
genug Ressourcen vorhanden sind usw.

Der Grundprozess im Controlling besteht nach [GA02] aus den vier ver-
schiedenen Schritten Zielfindung, Planung, Überwachung und Steuerung,
die in Abbildung 10 zu sehen sind.
Im ersten Schritt werden die Ziele definiert, welche durch das Projekt er-
reich werden sollen. Im zweiten Schritt wird geplant, wie diese Ziele im
Projekt erreicht werden können. Im Projekt wird laufend überwacht, ob die
Pläne eingehalten werden. Bei Änderungen wird wenn nötig dadurch ge-
gengesteuert, dass die Pläne angepasst werden.

In d
chen
Soll-
quen
Maß

 Zus
der f

Nach
aufg
gen
Wer

der DIN 69
ns der Proje
-Ist-Verglei
nzen und V
ßnahmenpla

Abbi

sammengefa
folgende Ab

hdem die Z
gestellt. Wä

aufgenomm
rden Abwei

Abbi

901 wird e
ektziele durc
ich, Festste
Vorschlagen
anung und K

ildung 11 Der R

asst ergeben
blauf, welch

Ziele festgel
ährend der
men und de
ichungen fe

ildung 10 Allge

4

ein solcher
ch:

ellung der
n von Korre
Kontrolle de

Regelkreis des

n sich basi
her in Abbil

legt sind, w
Überwachu
er Soll-Zus
estgestellt,

emeiner Contr

40

Regelkreis

Abweichung
ekturmaßna
er Durchfüh

s Controlling b

ierend auf d
ldung 11 zu

wird ein Pla
ung werden
stand mit d
werden die

rolling-Ablauf

als „Siche

gen, Bewer
ahmen, Mitw
hrung“ besc

basierend auf [G

der Definiti
u sehen ist:

an zur Errei
n regelmäßig
dem Ist-Zus
ese an die P

nach [GA02]

erung des E

rten der K
twirkung be
chrieben.

GA02]

ion und [G

ichung der
g Statusme

stand vergli
Projektsteue

Errei-

Konse-
ei der

GA02]

Ziele
eldun-
ichen.
erung

überg
gepla
chun
die Z
werd

Um
Cont
welc

Der
Rolle
proze
Vorg
mana

Der b
Zielf
halte
zeug
der P
Artef
Verb
nism

Wich
ziele
jekte
cen h

geben, wo m
ant werden

ng wird weit
Ziele nicht e
den.

diesen Reg
trolling-Sys
he beruhend

Grundproze
en ausfüllen
ess setzt si
gehensweise
agement-M

bereits besc
findung erz
en sind. In
gt, welcher
Projektüberw
fakte werde

besserung d
men wird der

htig ist es an
 bedeutet, d

es, den Proje
handelt und

Abbildung 12

mögliche K
. Der Plan
ter durchge
erfüllt werd

gelkreis ent
stem neben
d auf [GA0

ess wird vo
n, zum Beis
ich aus ver
e zugrunde
ethoden prä

chriebene G
eugt zunäch
der Projek
bei Bedarf
wachung w
en zu einem
es Grundpr
r Prozess im

n dieser Ste
dass es sich
ektkosten, d
d es wenige

2 Komponente

4

Konsequenze
wird wenn
führt. Kann

den, müssen

tsprechend
dem Grund
2] in Abbild

on Personen
spiel die vo
rschiedenen
liegt. Das V

äzisiert.

Grundprozes
hst das Kon

ktplanung w
f von der P
wird ein Übe
m Ergebnisb
rozesses her
mmer weiter

elle zu erwä
h hier um Zi
den Termine
er um eine

en Controlling-

41

en bewertet
n möglich a
n entweder d
n diese jewe

durchführe
dprozess au
dung 12 dar

n durchgefü
on einem Pr
n Aktivitäte
Vorgehen w

ss erzeugt v
nzept, in de

wird anschli
Projektsteuer
erwachungs
bericht zusa
rangezogen
r optimiert.

ähnen, dass
iele im Rah
en, der Qua
 Software-E

-System beruh

t und Korrek
angepasst un
der Plan od
eils entsprec

en zu könn
us weiteren
rgestellt sin

ührt, welche
rojektmanag
en zusamm
wird mit Hi

verschieden
em die Proj
ießend ein
rung modif
sbericht erz
ammengefa
wird. Durc

die Erreichu
hmen von U
alität und au
Engineering

hend auf [GA0

kturmaßnah
nd die Übe
er können s
chend angep

nen, besteht
n Komponen
nd.

e entsprech
ger. Der Gr

men, denen
lfe von Pro

ne Artefakte
jektziele fe
Projektplan

fiziert wird.
eugt. Diese
sst, welcher
ch diese Me

ung der Pro
Umfang des
uch der Ress
g-Methode g

2]

hmen
erwa-
sogar
passt

t ein
nten,

hende
rund-

eine
ojekt-

e, die
estge-
n er-
. Bei

e drei
er zur
echa-

ojekt-
Pro-

sour-
geht.

42

Beispielsweise geht es bei dem Ziel der Aufrechthaltung der Rahmenbedin-
gungen hauptsächlich darum, dass ein Projektteam arbeitsfähig bleibt, ohne
überbelastet zu werden [BK13]. Der Fortschritt des Projektes wird anhand
der Einhaltung der Kosten, der Einhaltung von Terminen sowie der Erfül-
lung der Qualitätsvorgaben kontrolliert. Kontrollmechanismen sind dafür
u.a. regelmäßige Fortschrittsberichte, Projektbesprechungen oder die Über-
prüfung der Ergebnisse in der Qualitätskontrolle. Die Kontrolle findet somit
auf einer anderen Ebene als einer Überwachung der eigentlichen Software-
Engineering-Methode statt. Ferner sind die genannten Überwachungsme-
chanismen zwar wichtig, finden aber in großen Abständen statt und stützen
sich, zumindest teilweise, auf Berichte.

Nach [BK13] ist es zwar wichtig, Kennzahlen für die Überwachung zu er-
fassen, wie beispielsweise den erbrachten Leistungsumfang, welche Res-
sourcen eingesetzt worden sind und der Vergleich des Ist- und Soll-
Zustandes der Pläne. Aber es ist schwierig, dafür entsprechende Messdaten
zu erfassen. Zwar können mit modernen Werkzeugen Arbeitsdaten und Er-
stellung von Berichten bezüglich der Software wie Build-, Fehler- und Test-
Statistiken unterstützt werden. Doch die Festlegung dieser Messwerte, ge-
nannt Metriken sowie deren Auswertung und Präsentation stellen eine große
Herausforderung dar.

Auch für das Zusammenstellen aller wichtigen Projektinformationen ist es
essentiell, wie im Rahmen des Projektmanagements beispielsweise Termin-,
Arbeits- und Ressource-Pläne festgelegt werden. Ebenso wichtig ist die
Identifikation von Problemen und das Festlegen von Maßnahmen usw. Da-
bei die Übersicht zu behalten und adäquat zu reagieren ist auch mit Soft-
wareunterstützung nicht einfach. Aber gerade auftretende Abweichungen
von den Plänen müssen möglichst früh erkannt werden, damit rechtzeitig
gegengesteuert werden kann. Der Plan muss dafür ständig aktualisiert wer-
den.

Die Frage ist also, wie sich diese Bereiche der Projektkontrolle auf die
Software-Engineering-Methode auswirken. Wie können Maßnahmen ver-
bessert und besser mit dem Überwachen einer Software-Engineering-
Methode verzahnt und somit optimiert werden? Wird eine Software-
Engineering-Methode im Projekt optimiert, so können auch die Ziele des
Projektmanagements besser eingehalten werden.

2.2.3	Resilienz	in	Projekten	–	Adaptive	Projekte	
Um die sich ständig ändernden Bedingungen, Umgebungen und Faktoren in
einem Projekt und somit einer Software-Engineering-Methode begegnen zu
können, wurden bei [Bo13] die Resilienz in Projekten und adaptive Projekte
thematisiert.

Resil
keit,
umge
Lösu
umzu
sagt
sowo
sie ih
einen
kann
gleic

Doch
ausbl
für P
der ö
ständ
dafür
wech

Mit
nach
und F
sich
welc
Mod
einem

lienz bezieh
dynamisch

ehen zu kön
ungsorientie
ugehen. Be
diese aus, d

ohl von inn
hre System
n stabilen Z
n, wird nach
ch verhinder

h ein Projek
lenden. Es

Projekte und
ökologische
de, welche
r, dass bei
hselt werden

Abbildung 13

Hilfe des H
h Bogert [Bo
Fähigkeiten
nach Boger
hes nicht ad

dells und den
m System u

ht sich zunä
h mit widrig
nnen. Dafür
erung etc. D
trachtet ma

dass System
nen als auch
mintegrität [B
Zustand zu
h der Defin
rt.

kt ist immer
sollte darau

d somit auch
en Resilienz
tolerierbar
bestimmte

n kann [Bo1

Das H.A.P.-M

H.A.P.-Mod
o13] werde

n eines adap
rt immer inn
daptiv ist, e
n verschied

und somit au

4

ächst auf de
gen Umstän
r nutzt er ve
Diese ermög
an nun Resi
me ihren Zus
h von außen
Bo13]. Ein
erreichen.

nition der st

r im Wande
uf entsprech
h Software-
z sinnvoll. D
sind. Die E
n Abweich
13]. Somit w

Modell nach Bo

dells (Hoch
en mit den s
ptiven Proje
nerhalb dies
einige sind n
denen Dime
uch von ein

43

en Mensche
nden und s
erschiedene
glichen es d
ilienz im Si
stand auch b
n ausgleich

n System ve
Alles, was
tatischen R

el und kann
hend reagie
-Engineerin
Danach exi

Einflüsse vo
hungen in e
wird die Sys

ogert [Bo13] m

h Adaptives
sechs Dime

ektes beschr
ser Dimensi
nur adaptive
ensionen las
nem Projekt

n und umfa
sich ändern
Faktoren w

dem Mensc
inne der Sy
bei Störung
en können.
ersucht also
 diese Stab

Resilienz au

n diese Zust
eren können
ng-Methode
istieren meh
on innen un
einen ander
stemintegrit

mit seinen sechs

 Projekt) in
ensionen di
rieben. Ein
ionen. Es g
er als ander
ssen sich die
t aufzeigen,

asst seine Fä
den Situati

wie Optimis
chen mit Kr
ystemtheori
gen und Ein

Somit beh
o immer wi
bilität gefäh
sgeblendet

tände auch n
n. Von dahe
n die Defin
hrere System
nd außen so
ren Zustand
tät gewahrt.

s Dimensionen

n Abbildun
e Eigenscha
Projekt befi
ibt kein Pro
re. Mit Hilfe
e Potentiale
welche zur

ähig-
ionen
smus,

Krisen
ie, so
nfluss
halten
ieder

hrden
oder

nicht
er ist

nition
mzu-
orgen
d ge-
.

n

ng 13
aften

findet
ojekt,
fe des
e von
r An-

44

passung und Veränderungen besonders geeignet sind. Neben den Personen
ist hier auch der Kontext zu betrachten.

Die sechs Dimensionen des H.A.P.-Modells sind:

1. Projektausrichtung (rot): Hier geht es sowohl um den Faktor Zeit,
als auch wie die Personen die Zukunft des Projektes betrachten und
wie sie es angehen wollen. Wichtig ist dabei die Vorausschau. Das
heißt es wird betrachtet, welche Szenarien eintreten könnten und wie
darauf entsprechend reagiert werden kann, damit das System bzw.
das Projekt seine Integrität wahrt. Dabei sollte sich immer an den
Zielen orientiert werden, denn nach Bogert sind adaptive Projekte
zielorientiert.

2. Projektumfeld (blau): Das Projektumfeld bei der Adaptivität von
Projekten wird hier im Sinne von Beziehungen, insbesondere in Hin-
sicht auf Personen betrachtet, welche sie untereinander, aber auch
mit der Umwelt haben. Um tragfähige Beziehungen zu erreichen, ist
ganz besonders das Feedback wichtig. Dynamische Systeme und in
diesem Fall Projekte können ohne Feedback nicht erfolgreich sein.
Sie brauchen die Rückkopplung, um Änderungen und Korrekturen
vornehmen zu können.

3. Projektsensitivität (grün): Bei der Projektsensitivität geht es haupt-
sächlich um die Achtsamkeit der Projektmitglieder in Bezug auf das
Projekt. Damit sind hier unter anderem die Aufmerksam des Einzel-
nen, aber auch die eigenen Erwartungen, Denkweisen, Interpretati-
onsmöglichkeiten und Bewertungen gemeint. Dabei ist es wichtig,
Details aus dem Projektumfeld wahrzunehmen und herauszufinden,
ob es Turbulenzen und Probleme geben könnte, um gegebenenfalls
gegensteuern zu können.

4. Projektgestaltung (orange): Bei der Projektgestaltung geht es in
erster Linie um die kulturellen Aspekte. Dabei kommt die Projektge-
staltung im Wesentlichen vom Management und soll von ihm ent-
sprechend ausgefüllt werden. Wesentliche Aspekte sind dabei eine
gute Fehlerkultur, Redundanzen, Entscheidungskompetenzen und
Flexibilität der einzelnen Teammitglieder.

5. Projektteaming (violett): Ein zentraler Aspekt von einem Projekt
ist das Projektteam mit seinen Personen, ihren Fähigkeiten und ver-
schiedenen Persönlichkeiten. Beim Teaming geht es darum, ein op-
timales und flexibles Team zu finden.

6. Projektwissen (grau): Die letzte Dimension beschäftigt sich mit
dem Wissen und den Erfahrungen der einzelnen Projektmitglieder.
Wichtig ist dabei vor allem, wie alle Mitglieder (voneinander) lernen
können, um die Erfahrungen zu nutzen, umzusetzen und sich zu ver-
bessern.

45

Das adaptive Projekt und H.A.P.-Modell von Bogert ist relativ abstrakt. Es
bezieht sich größtenteils auf die Personen in einem Projekt und wie diese
einerseits adaptiv mit dem Projekt umgehen, andererseits aber auch auf Kri-
sensituationen reagieren. Personen sind ein wichtiger Faktor im Projekt und
nötig, um eine Software-Engineering-Methode durchzuführen. Auch wenn
der Fokus nicht auf der Software-Engineering-Methode liegt, ist zu überle-
gen, wie diese Aspekte von einem adaptiven Projekt genutzt werden kön-
nen, um eine adaptive Software-Engineering-Methode zu entwickeln.

Ein Bereich, welcher sich ebenfalls mit Veränderungen beschäftigt und sich
auf Projekte und gegebenenfalls auf die Software-Engineering-Methode
auswirken kann, ist das Change Management. Dieses wird im nächsten Ab-
schnitt näher erläutert wird.

2.3	Change	Management	auf	Unternehmensebene	
Change Management, zu Deutsch Änderungs- oder auch Veränderungsma-
nagement, beschäftigt sich mit den Änderungen hauptsächlich auf den Un-
ternehmensebenen. Es beinhaltet dabei insbesondere „die speziellen Ma-
nagementtechniken, die zur Steuerung der Prozesse im Rahmen von Wandel
selbst erforderlich sind“ [La10, S. 3]. Wandel oder Veränderungen in einem
Unternehmen können die unterschiedlichsten Ursachen haben, ein wichtiger
Einflussfaktor ist dabei die Umwelt. Häufig ist es nötig, dass Unternehmen
auf die unterschiedlichen Anforderungen im Markt reagieren und sich an-
passen müssen. Die Anforderungen können ganz verschieden sein und desto
unterschiedlicher sind auch die Änderungsprozesse, die im Unternehmen
angestoßen werden können. Denn jeder Veränderungsprozess kann auf einer
anderen Ebene wirken und bildet einen anderen Schwerpunkt [SH13].

Das Change Management setzt dabei auf den Prozess selbst, um vom aktu-
ellen Ausgangspunkt ein definiertes Ziel zu erreichen. Dabei liegt nach
[La10] der Fokus weniger auf dem Ziel bzw. dessen Definition selbst, son-
dern auf der Gestaltung des Weges, also des Änderungsprozesses, um das
Ziel zu erreichen. Change Management hat von daher nach Abbildung 14
verschiedene Ansatzpunkte, welche sich nach „innen richten“. Diese gehen
dabei primär auf die Personen im Unternehmen [La10] ein.

Abbil
wirke

Ohn
Mita
deru
der
auch
ande
entsp

Ein
es so
gani
fe o
welc
jekte
Ablä
weg

Eben
Unte
tur d
Wer
sche
terne
rung

ldung 14 Ansa
en, basierend a

ne Personen
arbeit würd
ung im Unte
Personen s

h um ihre R
eren gegenü
prechenden

weiterer An
owohl um d
isation an si
organisiert s
che Ressour
e im Untern
äufen. Dies

g.

nso wie an
ernehmensk
der Mitarbe
rte, Annahm
en. Auch w
ehmen gibt
gsprozess e

atzpunkte des
auf [SH13, La1

n wäre in ein
e weder das
ernehmen m
selbst, den
Rollen im G
über und im
n Zuständigk

nsatzpunkt
die Hierarch
ich aufgeba
sind, welch
rcen und Te
nehmen leb
e entstehen

n den Struk
kultur wicht
eiter selbst.
men und G

wenn es vers
, so sollten

einbezogen

4

s Change Man
10]

nem Untern
s Unternehm

möglich. Da
Wandel du
Gesamtgefü

m Projekt ve
keiten sie b

sind die St
hie im Unte

aut ist. Des W
he Strategie
echnologien

ben von den
n manchmal

kturen im U
tig sein. Di
. Zum ande

Grundvorste
schiedene A
doch imme
werden. E

46

nagements und

nehmen nich
men überleb

abei geht es
urchzuführen
üge. Beispi
erhalten ode
esitzen und

trukturen im
ernehmen, a
Weiteren is
en im Unte
n vorhanden
n, teilweise
l evolutionä

Unternehme
ese lebt dab
eren lebt si
llungen im

Ansatzpunkt
er die ander
Eine Änderu

d Ebenen, auf

hts möglich
ben, noch w
sowohl um

n und sich
ele sind wi
er auch welc

ausführen.

m Unternehm
als auch dar
t es wichtig
rnehmen g
n sind usw.
informellen

är und auch

n kann ein
bei zum ein
e aber auch

m Unternehm
te für Verä
en Punkte m
ung auf de

f die Veränder

h, denn ohne
wäre eine V

m die Fähigk
anzupassen

ie sich Pers
che Aufgab

men. Dabei
rum, wie di
g, wie die A
gefahren we

Gerade die
n, Prozessen
h über Jahre

ne Änderun
nen von der
h davon, w
men selbst
änderung im
mit in den Ä
er Strukture

rungen

e ihre
Verän-
keiten
n, als
sonen
be mit

i geht
ie Or-

Abläu-
erden,
e Pro-
n und
e hin-

ng der
r Kul-

welche
herr-

m Un-
Ände-
ebene

47

ohne die Personen oder auch die ganze Kultur im Unternehmen mit zu be-
rücksichtigen ist meistens nur schwer möglich oder wird komplett scheitern
[La10].

Diese verschiedenen Ansatzpunkte im Change Management führen zu Ver-
änderungen auf drei verschiedenen Ebenen: Veränderungen in der Aufbau-
organisation, in der Ablauforganisation und Veränderungen im sozialen
Gefüge sowie im persönlichen Arbeitsverhalten [SH13]. Auch wenn die
Änderung an den Werten, Führungsinstrumenten und Verhalten der einzel-
nen Personen im Unternehmen sehr wichtig sein kann, ist für diese Arbeit
der Ansatzpunkt der Unternehmens-Struktur und von daher Veränderungen
an der Aufbau- und Ablauforganisation von größerem Interesse.

Änderungen auf der Ebene der Aufbauorganisation können sich auf Projekte
und damit auch auf deren Software-Engineering-Methode auswirken. Vor
allem Reorganisationen und Fusionen können es dringend nötig machen,
dass die Abläufe und somit die Software-Engineering-Methode angepasst
werden muss. Gerade aber auch die Ebene der Ablauforganisation kann sich
direkt auf die Änderung eines Projektes und somit der Software-
Engineering-Methode auswirken. Im Change Management wird aber bei der
Ablauforganisation nicht die genutzte Software-Engineering-Methode selbst
angepasst, sondern die Prozesse oder Geschäftsprozesse auf Unternehmens-
ebene.

Für den Veränderungsprozess wird typischerweise ein eigenes Verände-
rungsprojekt ins Leben gerufen. An diesem können verschiedene Personen
beteiligt sein, beispielsweise Personen aus der Führungsebene, aus dem Pro-
jektmanagement und Qualitätsmanagement, aus dem Betriebsrat und dem
Projektcontrolling usw. Für die Durchführung des Veränderungsprojektes
wird ein Kernteam zusammengestellt. Dieses plant sowohl das Projekt als
auch den Veränderungsprozess und führt sie anschließend durch [No14].

Der eigentliche Veränderungsprozess wird vorher genau geplant und ent-
worfen. Dabei werden die Veränderungen sowohl „Top-Down“ als auch
„Bottom-Up“ durchgeführt. Das bedeutet zum einen, die Rahmenbedingun-
gen und die Vorgehensweise werden von oben vorgegeben (top-down for
targets). Zum anderen bedeutet es, dass die spätere konkrete und inhaltliche
Umsetzung „von unten“ mit Hilfe der Betroffenen umgesetzt wird (bottom-
up for how to do it). [No14]

Für die Vorgehensweise heißt dies konkret, dass das Team die Veränderun-
gen plant, in dem es sich zunächst auf allen Ebenen den aktuellen Stand, die
aktuellen Abläufe sowie Prozesse anschaut und diese bezüglich Verbesse-

rung
gele
setzt
[SH
eval

Abbi

Dam
zum
Kern

Ein
und
) Pe
Fakt

Um
eine
Dies
ligte
Verä
teilig
Durc
und
ist d
gew
tion
fach

gspotentials
eitet und er
t und ansch
13]. Die E
luiert.

ildung 15 Kern

mit das Ver
m Erfolg füh

nthemen un

Faktor sind
am Wande

erson sein, w
tor Mensch

nun eine
e Vision en
se kann auc
en motiviert
änderungsp
gen sowie d
chführenden
es kommt

damit eine
währleistet. D

gestärkt. U
her überwun

analysiert.
stellt werde
hließend im

Ergebnisse d

nthemen und F

ränderungsp
hren, gibt

nd Erfolgsfa

d dabei zum
l mitwirken
welche den
wäre eine V

Änderung
ntwickelt we
ch als versch
t, eine Verä
rozesses all
die Kommu
n zu stärke
im Laufe d
höhere Ak

Durch eine
Unterschiede
nden werden

4

 Daraus kö
en. Diese w

m eigentlich
des Veränd

Faktoren des C

projekt und
es wie in

aktoren [La1

m einen die P
n müssen. Z
n Wandel a
Veränderun

im Unterne
erden, welc
hiedene Zie

änderung um
le davon Be

unikation zw
en. So werd
des Prozesse
kzeptanz an

gute Komm
e, zum Beis
n.

48

önnen Zielse
werden in k
hen Verände
derungsproz

Change Manag

d somit das
Abbildung
10, SH13].

Personen di
Zum anderen
anstößt und
ng überhaup

ehmen durc
che das Un
ele definiert
mzusetzen. W
etroffenen m

wischen den
den alle Per
es nicht zu
der Veränd

munikation
spiel in der

etzungen un
konkrete M
erungsproze
esses werd

gement basiere

Veränderu
15 zu seh

ie im Untern
n kann dies
mit begleit
t nicht mög

chzuführen,
nternehmen
t werden, w
Wichtig ist
mit am Proz
n Betroffene
sonen sofor
Missverstän

derung bei
wird zusätz
Kultur, kön

nd Lösunge
Maßnahmen

ess durchge
den abschlie

end auf [La10,

ungsmanage
hen verschie

rnehmen arb
s eine (Führ
tet. Ohne d

glich.

, muss zun
verbessern

welche die B
es, währen

zess aktiv z
en selbst un
rt mitgenom

ändnissen. F
den Betrof

zlich die Int
nnen somi

en ab-
über-

eführt
eßend

SH13]

ement
edene

beiten
rungs-
diesen

nächst
n soll.
Betei-
nd des
zu be-
d den

mmen
Ferner
ffenen
tegra-
it ein-

49

Wichtig ist nach [La10, SH13] die anschließende (Weiter-)Qualifizierung
aller Beteiligten. Durch die Veränderungen werden die Personen weiter
entwickelt, dabei speziell in ihrem Wissen und Können. Aber auch ihr Ver-
halten und ihre Einstellungen können sich dadurch wandeln und zum Erfolg
der Veränderungen beitragen.

Abschließend sind noch die Themen der Projektorganisation und der späte-
ren Evolution wichtig. Veränderungsprojekte können durch die vielen ver-
schiedenen Themen und Faktoren sehr komplex werden. Sie erfordern von
daher eine strukturierte und geplante Projektvorbereitung, Projektdurchfüh-
rung und Projektüberwachung. Deshalb sind das Projektmanagement und
das Change Management stark verwandt, nur das sich Change Management
auf Unternehmensebene bezieht und Projektmanagement auf die Projekt-
ebene. Es ist aber nicht nur der aktuelle Veränderungsprozess wichtig son-
dern es sollte ein fortlaufender Prozess sein. Veränderung und Wandel soll
kontinuierlich initiiert werden, damit sich ein Unternehmen stetig weiter
entwickeln kann [La10].

Wie an den verschiedenen Themen und Erfolgsfaktoren zu erkennen ist,
liegt ein Hauptaugenmerk des Change Managements auf Personen und all-
gemeinem Wandel im Unternehmen, weniger auf der konkreten Software-
Engineering-Methode. Wie bereits erwähnt, können sich Veränderungen auf
die SEM auswirken und somit eine Ursache sein, dass diese ebenfalls geän-
dert werden muss. Dies ist höchstens ein Baustein im Gesamtkontext bzw.
im Veränderungsprojekt, aber nicht primär. Doch die enge Verwandtschaft
mit dem Projektmanagement und der zu Grunde liegende Prozess für die
Durchführung eines Veränderungsprojektes können in eine Änderung an
einer Software-Engineering-Methode mit einfließen.

Dabei findet nach [SH13] Veränderungsmanagement in drei Phasen statt:

 Planung, wo die Vision erstellt, der aktuelle Status analysiert und
Maßnahmen geplant werden;

 Umsetzung, wo die erstellten Maßnahmen und Lösungen umgesetzt
werden;

 Evaluierung, wo die entsprechenden Maßnahmen überprüft werden,
ob sie den gewünschten Effekt geliefert haben.

Diese „Phasen“ können für die Änderung bzw. Anpassung einer Software-
Engineering-Methode ebenfalls betrachtet werden, ähnlich wie die Mecha-
nismen der Projektkontrolle. Es muss überprüft werden, wie sehr einzelne
Mechanismen aus dem Change Management und der Projektkontrolle be-
reits für die Anpassung von Software-Engineering-Methode zur Laufzeit bei
eingesetzt werden und wie effektiv diese sind. Ferner kann auch betrachtet

50

werden, ob bestehende Ansätze eher „Bottom-Up“, „Top-Down“ oder wie
im Change Management beides sind.
Bestehende Ansätze für Anpassungen von einer Software-Engineering-
Methode werden im nächsten Abschnitt vorgestellt und diskutiert.

2.4	Anpassungen	von	SEM	
Für die Verbesserung von Projekten, allgemeinen Prozessen oder Software-
Engineering-Methoden gibt es verschiedene Modelle und Vorgehensweisen.
Doch zunächst werden erste Anforderungen, welche an die möglichst eigen-
ständige Anpassung einer genutzten Software-Engineering-Methode zur
Laufzeit gestellt werden, definiert und erläutert.

2.4.1	Erste	grobe	Anforderungen	an	die	Anpassung	einer	Software‐
Engineering‐Methode	
Damit eine Software-Engineering-Methode während eines laufenden Pro-
jektes erfolgreich angepasst werden kann, sollen dafür die Vorteile und
Konzepte vom Projektcontrolling, aber auch des Change Managements in-
tegriert sein. Gerade die drei im vorherigen Abschnitt erwähnten Phasen
nach [SH13] sollen sich bei der Anpassung einer Software-Engineering-
Methode wiederfinden. Ferner ist zu betrachten, inwiefern die Konzepte des
adaptiven Projektes genutzt werden können. Aus den bereits beschriebenen
Abschnitten und aus der eigenen Erfahrung mit Projekten ergeben sich so-
mit folgende erste grobe Anforderungen an die Anpassung einer Software-
Engineering-Methode zur Laufzeit:

1. Der Fokus der Anpassung soll auf der genutzten Software-
Engineering-Methode liegen und nicht auf dem gesamten Pro-
jekt, auch wenn dieses nicht außer Acht gelassen werden darf.

2. Die Anpassung der Software-Engineering-Methode soll zur
Laufzeit des Projektes erfolgen.

3. Die Anpassung der Software-Engineering-Methode soll schnell
und möglichst eigenständig erfolgen sowie nicht von langer
Dauer sein und beispielsweise mehrere Tage oder länger in An-
spruch nehmen. Gerade die Erfahrung auch in eigenen Projekten
hat gezeigt, dass Zeit im Projekt ein kritischer Faktor ist und
nicht viel davon für die Anpassung in Anspruch genommen wer-
den kann.

4. Die Anpassungen sollen nicht einmalig zu bestimmten Zeitpunk-
ten, sondern kontinuierlich und regelmäßig erfolgen. Eine An-
passung soll insbesondere dann erfolgen, wenn es nötigt ist und
die Gefahr besteht, dass die Software-Engineering-Methode und
somit der Erfolg des Projektes in Gefahr sind.

5. Sowohl im Change Management als auch im adaptiven Projekt
und im Projektcontrolling wird erwähnt, dass die Vordefinition

51

von Zielen und Rahmenwerten und damit die Vorausschau wich-
tig sind, um mögliche Abweichungen zu erkennen und darauf
angemessen reagieren zu können.

6. Die genutzte Software-Engineering-Methode und das Umfeld
sollen kontinuierlich während der Laufzeit und Durchführung
überwacht werden. Das heißt wie Abschnitt 2.2.3 erwähnt ist re-
gelmäßig Feedback bzw. Rückkopplung zum aktuellen Status
sehr wichtig.

7. Wie bereits beim Change Management erwähnt, soll dieser aktu-
elle Status regelmäßig analysiert und ausgewertet werden, ob
Abweichungen vorhanden sind und Maßnahmen geplant und
eingeleitet werden müssen.

8. Die nötigen Maßnahmen oder Anpassungen müssen entspre-
chend geplant und zeitnah umgesetzt werden.

9. Wie in der dritten Phase des Change Management soll die erfolg-
te Anpassung in der Software-Engineering-Methode evaluiert
werden. Dies kann über eine weitere Überwachung der Nutzung
der SEM und entsprechendes Feedback im laufenden Projekt er-
folgen.

10. Ergebnisse von erfolgten Anpassungen und/ oder Planungen sol-
len für spätere Zeitpunkte und andere Projekte wiederverwendet
werden können.

11. Da die Zeit und somit die Ausführung der Anpassung ein kriti-
scher Faktor ist, soll alles möglichst automatisiert erfolgen.

Nachdem nun die ersten Anforderungen an eine Anpassung einer Software-
Engineering-Methode definiert wurden, werden verschiedene bereits vor-
handene Ansätze vorgestellt. Diese sind nach dem Kriterium des Zeitpunkts
der Anpassung sortiert. Dabei wird zuerst auf die Ansätze eingegangen,
durch welche die Software-Engineering-Methode vor der Durchführung
angepasst wird. Anschließend wird der „Spezialfall“ der Agilen Methoden
erläutert, welche erste Ansätze zur Anpassung während der Durchführung
aufzeigen. Abgeschlossen wird mit Ansätzen, welche im Rahmen des Kon-
tinuierlichen Verbesserungsprozesses anzusiedeln sind.

2.4.2		Anpassungen	von	SEM	–	Vorgelagerte	Ansätze	
In einem ersten Ansatz, um die passende Software-Engineering-Methode für
ein Projekt anzupassen, kann zum einen das Zuschneiden einer SE-Methode
sein. Dies nennt sich Tailoring. Zum anderen kann eine Software-
Engineering-Methode an sich aus verschiedenen Bausteinen mit Hilfe von
Situational Method Engineering neu erstellt werden.

52

2.4.2.1	Tailoring	von	Software‐Engineering‐Methoden	
Beim Tailoring, zu Deutsch zuschneiden, wird eine gegebene Software-
Engineering-Methode an das Projekt angepasst, indem sie dafür entspre-
chend zugeschnitten wird. Das Zuschneiden beinhaltet dabei Anpassungen
bzw. Änderungen im Projekt, welche aber mit dem Grundsatz der Software-
Engineering-Methode konform sind. Da es keine „one-size-fits-all“-
Methode gibt und nicht jede gleich gut für ein Projekt geeignet ist, ist dies
eine häufige Art der Anpassung. Zum Beispiel hat ein Projekt weniger
Budget und ist kleiner angelegt als ein anderes Projekt in demselben Unter-
nehmen. Das Projekt soll aber dieselbe Software-Engineering-Methode be-
nutzen. Es kann dann nötig sein, dass nicht alle Aktivitäten durchgeführt
und nicht alle Artefakte, welche in der generellen Software-Engineering-
Methode definiert sind, erzeugt werden [Sa11]. Doch auch beim Tailoring
muss beachtet werden, dass ein Zuschneiden einer Methode immer Konse-
quenzen für andere Artefakte oder Aktivitäten etc. beinhaltet. Es muss da-
rauf geachtet werden, dass die Konsistenz der Abhängigkeiten gewährleistet
ist. Beispielsweise entscheidet ein Projektleiter, dass eine neue Software
nicht mit sogenannten „Use Cases“ spezifiziert werden soll. Anstatt der Use
Cases soll eine Kombination von Businessprozessen, Business-Regeln usw.
genutzt werden. Diese Änderung hat einen großen Einfluss auf eben solche
Artefakte, welche typischerweise in Relation zu Use Cases stehen [Sa11].

Obwohl das Tailoring eine gute Methode ist, um Software-Engineering-
Methoden auf die Projektsituation anzupassen, muss zum einen bereits eine
Methode gegeben sein und zum anderen geschieht die Anpassung nur vor
Projektbeginn. Eine weitere Betrachtung der erfolgten Anpassung sowie
weitere mögliche Anpassung während der Nutzung der SEM im laufenden
Projekt ist hier nicht weiter vorgesehen

2.4.2.2	Anpassung	durch	Situational	Method	Engineering	
Situational Method Engineering (SME) beschäftigt sich wie in Abschnitt
2.1.3.4 beschrieben mit dem Design und der Konstruktion von situations-
spezifischen Software-Engineering-Methoden. Normalerweise wird die
SEM allerdings zu Beginn, also vor dem Start des Projektes, erstellt und
während der Laufzeit nicht weiter betrachtet. Im Situational Method Engi-
neering muss zunächst eine Methoden-Basis mit Methoden-Elementen auf-
gebaut werden. Zusätzlich müssen die Projektumgebung sowie das Projekt
selbst charakterisiert werden. Eines der wichtigsten Elemente im SME ist
dabei die Auswahl geeigneter Methoden-Elemente, auch Method Fragments
oder Method Chunks genannt, sowie das spätere Zusammensetzen dieser
Methoden-Elemente zu einer entsprechenden Software-Engineering-
Methode.

A

Sjaak
tions
Abbi
Umg
ßend
gege
ansch
schli
führt

Brink
Engi
men
Meth
mögl
kemp
den.
Umg
diese
se um

Im S
von
für e
Engi
das S

Abbildung 16

k Brinkkem
sspezifische
ildung 16 z
gebung char
d Methoden-
n die Char
hließend zu
ießend soll
t werden.

kkemper er
neering-Me
kann, was

hoden-Elem
lich sein so
per nicht er
Ferner wir

gebung char
e Informatio
m die Metho

State-of-the-
2010 [HSR
eine Metho
neering-Me

Situational M

Konfiguration

mper [Br96]
e Software-
zu sehen ist
rakterisiert.
-Elemente a
rakterisierun
u einer situ
diese Softw

rläutert, das
ethode zu d
zu einer A

menten führe
oll, aber nich
rläutert, wie
rd im Proz
rakterisiert w
onen abgele
oden-Eleme

-Art Review
R10] wird u
oden-Basis i
ethode kons
Method Eng

5

nsprozess für si

hat 1996 e
-Engineerin
. Dabei we
Aufgrund

aus der Met
ng validiert
uationsspezi
ware-Engin

ss es währ
drastischen

Anpassung S
en kann. Er
ht wie diese
e die auszu
ess zwar e
werden (mü
egt werden,
ente gegen d

w von Jolita
u.a. darauf e
identifiziert
struiert werd
gineering fü

3

ituationsspezif

einen Konfi
ng-Methode
erden zunäc
dieser Spez

thoden-Basi
rt. Diese M
ifischen SE
neering-Met

rend der Au
Änderunge

SEM durch
r erwähnt a
es möglich

utauschende
erwähnt, da
üssen). Es w
um sie spät

diese validie

a Ralyté un
eingegangen
t und wie
den kann. In
ür die selbst

fische Methode

igurationspr
n vorgeste
hst das Pro
zifikation w
is ausgewäh

Methoden-El
EM zusamm
thode im P

usführung
en im Proje

z.B. das A
allerdings n
ist. Ferner
n Elemente
ss das Proj

wird aber ni
ter zu nutze
eren zu kön

nd Brian He
n, wie Meth
aus diesen
nwiefern si
t-adaptive A

en nach [Br96]

rozess für s
ellt, welche
ojekt und de
werden ansc
hlt und eben
lemente we
mengesetzt.
Projekt durc

einer Softw
ektumfeld k

Austauschen
nur, dass d
wird bei Br

e bestimmt
jekt und de
cht erwähnt

en, beispiels
nnen.

enderson-Se
hoden-Elem
eine Softw

ch nun dies
Anpassung e

]

situa-
er in
essen
chlie-
nfalls
erden

Ab-
chge-

ware-
kom-
n von
dieses

rink-
wer-

essen
t, wo
swei-

ellers
mente
ware-
s und
einer

Soft
gena

2.4.
thod
Die
in It
hoch
folg
erste
nur
jede
eine
führ
tions
festg
pass
dies
auch
ob
Eng
ange
müs
gem
das
Stell
und
rung

Näh
Met
[SS1
Kom
spek
gene

Die
dies
besp
ßend
kann

Dies
durc

tware-Engin
auen Analys

3		Anpassu
den	
Agilen Me

terationen u
hwertige So
en meist de
ellt und in
grob sein u

er Iteration
e Teilmenge
rung wird a
sfähigen In
gestellt, wa
st werden m
er Stelle ka
h überprüft

die S
ineering-M
epasst
sste, aber

meinen bezi
Anpassen a
le auf die S

auf die A
gen an die S

here Ansatz
hode zur La
10],[Gl08].
mmunikation
ktiven einen
e SEM zu re

Retrospekt
em Meeting

prochen, zum
d wird bera
n.

se Meetings
chgeführt w

neering-Met
se gegenübe

ungen	von

ethoden besc
und einer n
oftware zu
em Schema
Anforderun

und werden
im zweiten

e davon, we
am funk-
nkrement
as ange-
muss. An
ann zwar

werden,
oftware-
ethode
werden

im All-
eht sich

an dieser
Software
Anforde-
Software.

zpunkte fü
aufzeit mit

Scrum ist
n in Form
n Mechanis
eflektieren u

tive ist dab
g wird die
m Beispiel
ten, wie da

s sind sehr g
werden. Dadu

A

5

thode eigne
er den defin

n	SEM	im	la

chäftigen si
näheren Kun

liefern. Die
a in Abbildu
ngen herunt
n im Laufe
n Schritt de
erden im dri

ür die Anp
Hilfe von A
t ein (Ma
von Meetin
mus liefert
und gegebe

bei ein inte
vorherige I
was gut un
s Vorgehen

gut als „Che
durch kann g

Abbildung 17

54

et, wird in
nierten Anfo

aufenden	P

ich mit der
ndenanbindu
e Iteratione
ung 17. Es
ter gebroch
der Zeit ve

er Planung.
itten Schritt

passung ei
Agilen Meth
anagement-)
ngs einbind
, um das ei

enenfalls anz

ernes Meeti
Iteration, de
nd was schl
n im nächste

eck-Points“
gegebenenfa

Vorgehen von

Abschnitt 2
orderungen

Projekt	du

Entwicklun
ung, um sc

en in den A
wird zunäc

hen. Diese m
erfeinert. D
 Die Planu
t ausgeführt

ner Softwa
hoden, liefe
 Framewo

det als auch
igene Vorge
zupassen.

ng der Tea
er sogenann
echt gelauf
en Sprint ve

, welche inn
falls innerha

 Agilen Metho

2.5 anhand
beschrieben

urch	Agile	

ng von Sof
chnell quali
Agilen Meth
ächst eine V
müssen zun
as geschieh

ungsschritte
t. Nach der

are-Enginee
ert jedoch S
ork, das so
h mit der R
ehen und d

ammitgliede
nte Sprint, g
fen ist. Ansc
erbessert w

nerhalb der
alb der Softw

oden angelehnt

einer
n.

Me‐

ftware
tative
hoden
Vision
nächst
ht vor
 oder
Aus-

ering-
Scrum
owohl
Retro-
die ei-

er. In
genau
chlie-
erden

SEM
ware-

t an [ITA134]

55

Engineering-Methode gegengesteuert werden, falls etwas schlecht läuft.
Nach jedem Sprint ist es ebenfalls möglich, dass neue Teammitglieder, also
auch neue Rollen, hinzukommen oder auch wegfallen.

Allerdings ist Scrum, wie allgemein Agile Methoden, recht generisch und
ungenau gehalten. Es wird nicht beschrieben wie festgestellt wird, was
schief läuft, außer der subjektive Eindruck oder ein evtl. nicht eingehaltenes
Ziel des Sprints (Sprint-Ziel). Des Weiteren wird auch nur im Team bespro-
chen, wie das eigene Vorgehen anzupassen ist. Die genutzte SEM an sich,
Aufgaben des sogenannte Product Owners oder andere Rahmenbedingungen
im Unternehmen sind nicht von Interesse.

Scrum-Teams sind meist recht klein und sollten nicht mehr als 9 Personen
betragen. Gibt es mehrere Scrum-Teams die an einem Projekt arbeiten,
müsste es eine allgemeine Retrospektive geben und Abhängigkeiten unter
einander müssten gerade im Falle von Anpassungen betrachtet werden. Dies
wird aber genau beschrieben noch betrachtet.

2.4.4		Anpassungen	von	SEM	–	Kontinuierliche	Verbesserungspro‐
zesse	
Gerade im Bereich des Qualitätsmanagements gibt es verschiedene Metho-
diken und Prozesse, um die Qualität zu verbessern. Dabei soll sich hier nicht
auf die Verbesserung von Software-Engineering-Methoden beschränkt, son-
dern allgemein vorgestellt werden, welche Möglichkeiten es gibt und auch
für das Software Engineering genutzt werden können. Typischerweise wer-
den diese Prozesse zwar kontinuierlich durchgeführt, jedoch nachdem ein
Problem bereits aufgetreten ist, sind diese Prozesse sehr langwierig und
können als eigene Projekte angesehen werden. Durch ihren hohen Arbeits-
aufwand mit meist mehreren Beteiligten ist damit ein hoher Zeit- und Kos-
tenaufwand verbunden. Zwei bekannte Vertreter des Kontinuierlichen Ver-
besserungsprozesses sind das CMMI (CapabilityMaturityModel Integration)
[Wa07], eine Familie von Referenz-Modellen, und SPICE (Software Pro-
cess Improvement and Capability Determination/ ISO 15504) [Wa07]. Die-
se beiden sollen allerdings hier nicht weiter betrachtet werden, da sie mehr
den Reifegrad von Software-Engineering-Methoden bestimmen und weni-
ger ihre eigentliche Anpassung.

2.4.4.1	PDCA‐Zyklus	
Als Grundlage für einen Kontinuierlichen Verbesserungsprozess (KVP)
dient der bekannte PDCA-Zyklus. Dieser Zyklus ist nicht eingeschränkt auf
die Verbesserung von Prozessen, sondern auch von Strukturen, Produkten,
Leistungen usw. Er hat seine Ursprünge in der Qualitätssicherung bzw. im
Qualitätsmanagement. Der PDCA gehört mittlerweile in Industrieunterneh-
men zum Standard und er ist Bestandteil der Norm ISO9001 [ISO08].

56

Die Systematik der kontinuierlichen Verbesserung und dem späteren
PDCA-Zyklus geht auf den Qualitätsexperten Deming zurück. Er wird des-
halb manchmal auch Deming-Zyklus (Deming-Cycle) oder „Deming-
Wheel“ genannt [MN06]. Der Deming-Zyklus wurde in den 50er-Jahren
von den Japanern übernommen und zum PDCA-Zyklus weiter entwickelt
[MN06]. Der PDCA-Zyklus definiert vier Grundschritte, welche zyklisch
wiederholt werden sollen, um eine kontinuierliche Verbesserung zu errei-
chen. Der Zyklus wird mittlerweile in verschiedensten Situationen und Pro-
jekten eingesetzt. Jeder der Buchstaben im PDCA-Zyklus bezeichnet dabei
eine Phase bzw. einen der Grundschritte [De86, ISO08,MN06], welche in
Abbildung 18 zu sehen sind:

 P – Plan (Planen): In der Planungsphase werden zunächst die Ziele,
Prozesse sowie die Maßnahmen entwickelt und festgelegt, welche
zur Qualitätsverbesserung dienen sollen. Diese werden zusätzlich
mit allen Beteiligten, z.B. Kunden und ihren Anforderungen, der
Kultur im Unternehmen, dem Management etc. abgestimmt.

 D – Do (Durchführen): Die geplanten Maßnahmen und entwickel-
ten Prozesse werden durchgeführt und im gesamten Unternehmen
umgesetzt.

 C – Check (Prüfen): Die umgesetzten Maßnahmen und Prozesse
sowie Produkte werden überwacht und anhand der festgelegten Ziele
kontrolliert.

 A – Act (Handeln): Das Ergebnis des Checks wird genutzt um
eventuell nötige Anpassungen einzuleiten.

D
g

Der P
Mana
um P
sern.
det,
PDC
anzu
Gera
regel
Orga

2.4.4
Bei D
Meth
ange
Kern
den P

Dabe
bildu
Anal
besse

Die Korrekt
gangspunkt

PDCA-Zyk
agement an
Prozesse, Pr
 Der Zyklu
höchstens

CA-Zyklus a
usehen, welc
ade die vier
lmäßig auf
anisations- u

4.2	Design
Design for S
hode zum Q
wandt [KA

nprozess von
Prozessen u

ei handelt e
ung 19 zu se
lyze – Impr
ern – Steuer

turmaßnahm
für ein erne

Abbildung 1

klus wirkt a
nzustoßen. E
rodukte etc

us wird dab
um Proble

als allgemei
cher z.T. ein
rte Phase, in

Einhaltung
und Arbeits

n	for	Six	Sig
Six Sigma,
Qualitätsma

A06]. Beson
n Six Sigm

und um sie n

s sich um e
ehen, besteh
rove – Cont
rn) woraus

5

men der letz
eutes Durch

8 Der PDCA-Z

auf das gesa
Er dient zum
. im Allgem
ei typischer

eme im Na
iner angeleg
nen hohen A
n der die M
g überprüft
aufwand fü

gma	und	D
kurz Six Si

anagement,
ders der DM
a ist, dient
nachhaltig z

einen Projek
ht dieser au
rol (= Defin
sich der Na

7

zten Phase
hlaufen des Z

Zyklus nach [D

amte Untern
m einen zur
meinen zu ü
rweise nich
achhinein z
gter Qualitä
Aufwand u

Maßnahmen
werden sol

ühren.

DMAIC‐Zyk
igma genan
Diese wird

MAIC-Zykl
zur Messba

zu verbesser

kt- und Reg
us den fünf P
nieren – Me

ame „DMAI

bilden wied
Zyklus.

De86, MN06]

nehmen und
r Problemlö
überwachen
ht auf ein Pr
zu erörtern.
ätsprozess im
und hohe Ko

als Standa
llen, kann z

klus	
nnt, handelt
d häufig in
lus, welcher
arkeit von b
rn.

gelkreis-Ans
Phasen Defi
essen – Ana
IC“ ableitet

derum den A

d ist daher
ösung, aber
n und zu ver
rojekt angew

Ferner ist
m Unterneh
osten beinha
rd definiert
zu einem h

es sich um
n der Wirtsc
r im Prinzip

bereits beste

satz. Wie in
fine – Measu
alysieren –
.

Aus-

vom
auch
rbes-
wen-
t der
hmen

haltet.
t und

hohen

m eine
chaft
p der
ehen-

n Ab-
ure –
Ver-

Ab

1. D
tung
das
Proj

2. M
Proz
halte
merk

3. A
find
gew

4. Im
wird
zusä
Alte

5. C
wach

Der
Six
sehr
meh
neu
eine
rung

bbildung 19 De

Define (D) –
gen des Ku
Problem im
ektcharta.

Measure (M
zess wirklic
et eine Pro
kmal.

Analyse (A)
en, warum

wünschten U

mprove (I)
d nun die V
ätzliches Zi
ernativen be

Control (C)
ht.

Aufwand b
Sigma hoch

r lang, teilw
hr darum, be

zu implem
er laufenden
gszeiten zu l

er DMAIC-Zyk

– In der Def
nden defini

m identifizi

M) – In dies
ch die beste
ozessfähigk

– Ziel der A
der Prozes

Umfang erfü

– Nachdem
Verbesserung
iel ist, dass
eispielsweis

– Der neue

bei der Dur
h. Die Durc
weise 90-12
estehende P

mentieren. E
n Software-E
lang.

5

klus, das Phas

fine-Phase w
iert, ebenso
ierten Proze

ser Phase ge
ehenden Ku
keitsuntersu

Analysepha
ss die Kund
üllt. Dazu w

m verstande
g geplant, g
s der Proze
e zur Koste

e Prozess wi

rchführung
chführung ei
20 Tage [K
Prozesse im
Es geht bei
Engineering

58

senmodell von

werden die
o wie Proje
ess beschrie

eht es darum
undenanford
chung für

ase ist es, di
denanforder
erden Proze

en wurde, w
getestet und
ess Variatio
eneinsparun

ird mit stati

eines solch
ines solchen

KA06]. Fern
m Allgemein

dem Ansat
g-Methode,

Six Sigma basi

Anforderun
ektgrenzen.
eben, häufig

m festzustel
derungen er

jedes relev

ie Ursachen
rungen heut
essanalysen

wie der Proz
d schließlich
onen beseiti
g entwickel

stischen Me

hen DMAIC
n Prozesses
ner geht es

nen zu verbe
tz nicht um
dafür wäre

ierend auf [KA

ngen und E
Zusätzlich

g in Form

llen, wie gu
rfüllt. Dies
vante Qual

n dafür hera
te noch nic

n durchgefüh

zess funktio
h eingeführ
tigt und kre
lt.

ethoden übe

C-Zyklus i
s dauert ebe
s bei Six S
essern und

m die Anpa
en die Durc

A06]

Erwar-
wird
einer

ut der
bein-
litäts-

auszu-
ht im
hrt.

oniert,
t. Ein
eative

er-

st in
nfalls

Sigma
diese
ssung

chfüh-

59

2.4.4.3	8D‐Methodik		
Ähnlich Six Sigma und auch dem PDCA-Zyklus ist die 8D-Methodik
[JSW11] zur Problemlösung, welche auch im Reklamations- und
Beschwerdemanagement eingesetzt wird. Es handelt sich um eine nachgela-
gerte Methode, da Fehler zu diesem Zeitpunkt bereits aufgetreten sind und
behoben werden müssen. Dadurch enthält die Methode zum einen So-
fortmaßnahmen, um schnell handeln zu können. Zum anderen enthält sie
Schritte für eine nachhaltige Entwicklung, um diesen Problemen durch an-
haltende Korrekturmaßnahmen im weiteren Verlauf vorzubeugen. Die 8D-
Methodik beinhaltet folgende acht Schritte, auch Disziplinen genannt
[JSW11]:

Schritt 1- Team bilden: Sobald ein Problem erkannt wurde, wird ein
Teamleiter festgelegt. Dieser ist sowohl für die Zusammenstellung des
Teams als auch für die korrekte Einhaltung der acht Schritte verantwortlich.

Schritt 2 – Problembeschreibung: Die Aufgabe des Teams ist es, dass
aufgetretene Problem vollständig zu beschreiben und genau abzugrenzen. Es
müssen die Abweichungen, also der Unterschied vom Ist- zum Soll-Zustand
genau definiert werden. Als Hilfe dazu dienen beispielsweise Spezifika-
tionen, getroffene Vereinbarungen mit dem Kunden, Anforderungen usw.
Ferner muss das Team die Auswirkungen der Abweichung abschätzen, ob
beispielsweise Maßnahmen nötig sind oder nicht.

Schritt 3 – Sofortmaßnahmen: In diesem Schritt muss das Team Entschei-
dungen für Sofortmaßnahmen treffen, um den Kunden vor schwerwieg-
enden Auswirkungen zu schützen. Im produzierenden Gewerbe heißt dies,
dass fehlerhafte Teile aus dem Umlauf genommen werden müssen, aber die
Lieferfähigkeit sichergestellt sein muss, beispielsweise durch Nacharbeiten
bei fehlerhaften Stücken.

Schritt 4 – Fehlerursachen: Nachdem die Sofortmaßnahmen eingeleitet
wurden, wird im Team untersucht, welche Ursachen es für den Fehler gibt.
Dies kann mit Hilfe von Tests, Experimenten oder auch durch einen Ver-
gleich erfolgen. Zur Hilfe können dabei beispielsweise die 5-Why-Methode
oder ein Ishikawa-Diagramm herangezogen werden. Am Ende ist die Grun-
dursache gefunden und genau beschrieben.

Schritt 5 – Planen von Korrekturmaßnahmen: Ist die Grundursache ge-
funden, werden anschließend die Korrekturmaßnahmen vom Team geplant,
welche vor allem die Grundursache nachhaltig beseitigen sollen. Die besten
Maßnahmen werden am Ende ausgewählt, beispielsweise mit Hilfe von
Versuchen und Tests, welche überprüfen, dass das Problem effektiv
beseitigt wurde.

60

Schritt 6 – Maßnahmenumsetzung und Prüfung der Wirksamkeit: Sind
die Maßnahmen vom Team definiert, werden diese anschließend in den
Prozess eingeführt und entsprechend mit den Produktionsdaten umgesetzt.
Zusätzlich wird überprüft, ob die Maßnahmen greifen und das Problem
komplett behoben wurde. Ist dies der Fall, können die Sofortmaßnahmen
aufgehoben werden.

Schritt 7 – Vorbeugungsmaßnahmen: Ist das Problem beseitigt, muss das
Team Vorbeugungsmaßnahmen treffen, damit dieser oder ähnliche Fehler
nicht wieder auftreten.

Schritt 8 – Abschluss und Würdigung der Teamleistung: Sind alle Auf-
gaben des Teams erledigt, wird die Leistung des Teams zum Abschluss ge-
würdigt und Erfahrungen, die im Laufe des Prozesses gesammelt wurden,
werden ausgetauscht und für die Zukunft festgehalten.

Wie an den acht Schritten zu erkennen ist, sind sich die 8D-Methodik und
Six Sigma sehr ähnlich und überschneiden sich teilweise in den Kernprozes-
sen. Ebenso wie Six Sigma ist die 8D-Methodik aufwendig und von länge-
rer Dauer. Deshalb sollte zu Beginn immer überlegt werden, ob die Anwen-
dung der Methodik nötig ist oder ob andere Vorgehensweisen zur Behebung
kleinerer Fehler angewendet werden können.

2.5			Bewertung	und	Schwachstellen	der	Ansätze		
Auch wenn in den einzelnen Abschnitten der Ansätze jeweils eine kurze
Einschätzung bezüglich der gestellten Anforderungen vorgenommen wurde,
sollen in diesem Abschnitt die verschiedenen Ansätze nochmals im Detail
überprüft und bewertet werden. Den beschriebenen Ansätzen wird zusätz-
lich das Projektcontrolling gegenübergestellt, da dieses sich mit der Über-
wachung von Projekten beschäftigt.

2.5.1	Probleme	und	Bewertung	der	verschiedenen	Ansätze	
Für die Bewertung der einzelnen Ansätze wurden verschiedene Bewer-
tungskriterien in Anlehnung an die bereits definierten Anforderungen er-
stellt. Die Kriterien werden im Folgenden aufgelistet. Anschließend werden
die einzelnen Kriterien genauer erklärt und die Ansätze sowie das Projekt-
controlling werden entsprechend in Bezug auf das Kriterium bewertet. Die
Bewertung entspricht dabei einer Zahl zwischen 0 und 5, wobei 0 bedeutet,
dass das Kriterium gar nicht erfüllt und 5 bedeutet, dass das Kriterium im
vollsten Maße erfüllt ist. Die Gesamtbewertung ist der gemittelte Wert aus
allen Kriterien. Eine Übersicht der Bewertung ist in der untenstehenden Ta-
belle dargestellt.

Die einzelnen Bewertungskriterien, die in die Bewertung der Ansätze ein-
gingen sind:

61

1. Fokus der Anpassung (Fokus)
2. Anpassungszeitpunkt (AZP)
3. Dauer der Anpassung (Dauer)
4. Kontinuität und Häufigkeit der Anpassung (KH)
5. Überwachung der genutzten SEM zur Laufzeit (ÜW)
6. Analyse und Auswertung des aktuellen Status (AA)
7. Planung von Maßnahmen (PM)
8. Evaluierung der Ergebnisse (EE)
9. Vorausschau (VS)
10. Wiederverwendung von Ergebnissen (WVE)
11. Automatisierungen (Auto)

Die Abkürzungen in den Klammern entsprechen denen in der Tabelle. Die
einzelnen Ansätze werden folgendermaßen abgekürzt:

 Situational Method Engineering (SME)

 Tailoring von Software-Engineering-Methoden (Tailoring)

 Agile Methoden (AM)

 PDCA-Zyklus (PDCA)

 Six Sigma (SiSi)

 8D-Methodik (8D)

 Projektcontrolling (PC)

 SME Tailoring AM PDCA SiSi 8D PC
Fokus 5 5 4 2 2 0 2
AZP 2 2 4 3 3 2 4
Dauer 3 3 4 3 1 3 3
KH 1 1 4 4 2 3 5
ÜW 0 0 4 4 2 2 5
AA 1 1 4 4 4 4 5
PM 0 0 2 3 5 5 3
EE 1 0 4 3 4 3 4
VS 3 3 2 5 3 1 5
Auto 1 0 0 0 0 0 1
WVE 3 3 3 3 3 3 3
Gesamt Ø 1.8 Ø 1.6 Ø 3.2 Ø 3.1 Ø 2.45 Ø 2.4 Ø 3.6
Tabelle 1 Übersicht der Bewertung der einzelnen Ansätze und des Projektcontrollings

Fokus der Anpassung

Bei diesem Kriterium wurde bewertet, welchen Fokus die einzelnen Ansätze
insbesondere bezüglich einer Anpassung oder einer Verbesserung besitzen.
Dabei ist festzustellen, dass nur bei den beiden vorgelagerten Ansätzen der

62

Fokus direkt auf der Software-Engineering-Methode liegt. Deswegen haben
beide Ansätze hier die höchste Bewertung erhalten.

Bei den Agilen Methoden liegt der Fokus nur indirekt auf der Software-
Engineering-Methode selbst, der Hauptfokus liegt zunächst auf der zu ent-
wickelnden Software. Doch wird beispielsweise durch die Technik der Ret-
rospektive auch die Software-Engineering-Methode selbst hinterfragt. Des
halb erhalten die Agilen Methoden die zweithöchste Bewertung

Bei den weiteren Ansätzen liegt der Fokus mehr auf den Projekten, als auf
der genutzten Software-Engineering-Methode. Die 8D-Methodik wird eher
im produzierenden Gewerbe als in der Softwareentwicklung eingesetzt,
weswegen sie bei diesem Kriterium mit 0 bewertet wurde.

Anpassungszeitpunkt (AZP)

Das Kriterium des Anpassungszeitpunktes beschreibt hier, wann eine Soft-
ware-Engineering-Methode oder ein Projekt angepasst wird. Das heißt, ob
sie vor Beginn der Durchführung angepasst werden, während der Laufzeit
oder erst nach der Durchführung. Der gewünschte Zeitpunkt war hier laut
den Anforderungen eine Anpassung zur Laufzeit.

Die beiden ersten Ansätze passen zwar eine Software-Engineering-Methode
an, aber dies geschieht vor der eigentlichen Durchführung. Deswegen haben
sie zusammen mit der 8D-Methode die geringste Punktzahl erhalten. Die
8D-Methodik passt den Prozess erst an, wenn schon ein Fehler passiert ist.
Der PDCA-Zyklus und Six Sigma werden zwar dem kontinuierlichen Ver-
besserungsprozess zugeordnet, sie überprüfen aber ein Projekt erst gegen
Ende der Laufzeit oder wenn das Projekt schon abgeschlossen ist, bei-
spielsweise wenn ein Projekt bereits „vor die Wand gelaufen“ ist. Die Un-
tersuchungen fließen gerade bei Six Sigma mehr in die späteren Projekte als
in das aktuelle Projekt mit ein.

Die Agilen Methoden betrachten regelmäßig über Feedback, beispielsweise
durch eine Retrospektive oder tägliche Meetings, den Fortschritt des Projek-
tes und somit der Software-Engineering-Methode. Somit kann bei Bedarf
gegengesteuert werden, allerdings typischerweise ohne die genutzte Agile
Methode an sich zu ändern. Das Projektcontrolling geht ähnlich vor, in dem
es das Projekt mit Hilfe von definierten Zielen während der Durchführung
überwacht. Deswegen haben diese beiden die Bewertung von 4 erhalten.

Dauer der Anpassungen

Mit dem Kriterium Dauer wird überprüft, wie lange eine Anpassung beim
jeweiligen Ansatz dauert. Das heißt, wieviel Zeit vergeht, bis die Anpassung
in die aktuelle Software-Engineering-Methode, entsprechend in das Projekt

63

oder in den Prozess überführt wird. Da Zeit in vielen Projekten ein kritischer
Faktor ist, soll wie in der entsprechenden Anforderung beschrieben die An-
passung schnellstmöglich erfolgen.

Design for Six Sigma ist ein Ansatz, der wie beschrieben sehr lange dauern
kann, teilweise 90-120 Tage [KA06], weswegen dieser Ansatz eine niedrige
Bewertung von 1 erhalten hat. Auch die vorgelagerten Ansätze können eine
längere Zeit in Anspruch nehmen, bis eine Software-Engineering-Methode
erstellt oder entsprechend zugeschnitten ist. Da dies aber vor dem Projekt
geschieht, wird dies nicht ganz so zeitkritisch angesehen, wie während der
Laufzeit, weswegen sie die Bewertung 3 erhalten haben.

Der PDCA-Zyklus, die 8D-Methode und das Projektcontrolling haben eben-
falls eine Bewertung von 3 erhalten. Diese nehmen auch eine gewisse Zeit
bis zur Anpassung und Durchführung der geplanten Maßnahmen in An-
spruch. Diese können aber normalerweise innerhalb von einigen Tagen bis
wenigen Wochen durchgeführt werden.

Die Agilen Methoden schneiden in Bezug auf dieses Kriterium am besten
ab, da sie mit Hilfe der Techniken von regelmäßigen Meetings relativ
schnell reagieren können. Meistens greifen die Änderungen zur nächsten
Iterationsschleife. Je nachdem wie der Rhythmus gewählt ist, kann dies in-
nerhalb von 2-4 Wochen erfolgen. Kleine Änderungen sind innerhalb von
einem Tag mit Hilfe von täglichen Meetings möglich.

Kontinuität und Häufigkeit der Anpassungen (KH)

Mit diesem Kriterium wird untersucht, wie kontinuierlich und häufig der
Ansatz eine entsprechende Anpassung überprüft und durchführt, beispiels-
weise ob dies zu jedem Zeitpunkt untersucht und durchgeführt wird, nur
punktuell oder sogar nur zu einem einzigen Zeitpunkt. Entsprechend der
Anforderung ist gewünscht, dass der Ansatz die Software-Engineering-
Methode kontinuierlich während der Nutzung und nicht nur punktuell auf
eine Anpassung hin überprüft und diese bei Bedarf durchführt.

Die beiden vorgelagerten Ansätze passen die Software-Engineering-
Methode nur zu genau einem Zeitpunkt an, vor Beginn der Durchführung.
Deswegen haben sie die niedrigste Bewertung erhalten. Six Sigma führt
zwar eine umfassende Untersuchung und Anpassung durch, welche auch an
mehreren Punkte greifen kann, doch auch diese findet typischerweise nur
am Ende des Projektes statt. Es wird gegebenenfalls noch einmal justiert,
falls die Maßnahmen die Vorgaben nicht optimal erfüllen. Deswegen hat
dieser Ansatz eine Bewertung von 2 erhalten

64

Zwar ist die 8D-Methodik dem Six Sigma recht ähnlich, jedoch überprüft
und passt sie in der Hinsicht den Prozess häufiger an, je nachdem wie häufig
entsprechende Probleme und Fehler auftauchen. Aufgrund der etwas häufi-
geren Untersuchung erhält dieser Ansatz die Bewertung 3.

Durch die Regelmäßigkeit der Überprüfung anhand eines kontinuierlichen
Prozesses (PDCA-Zyklus) bzw. mit Hilfe von regelmäßigem Feedback und
Meetings (Agile Methoden) erhalten der PDCA-Zyklus und die Agilen Me-
thoden die Bewertung 4. Die höchste Bewertung erhält das Projektcontrol-
ling aus dem Grund, da es ein Projekt wesentlich differenzierter und bei-
spielsweise nicht punktuell durch Meetings betrachtet.

Überwachung der genutzten SEM zur Laufzeit (ÜW)

Dieses Kriterium ist eng mit dem vorherigen der kontinuierlichen Anpas-
sung verknüpft. Denn ohne eine fortwährende Überwachung einer Software-
Engineering-Methode während der Laufzeit wäre eine entsprechende An-
passung nicht möglich. Hier wird untersucht, ob der Ansatz überhaupt die
genutzte SEM zur Laufzeit überwacht, wie kontinuierlich er das Projekt
oder die SEM überwacht und wie sehr dabei das Feedback bzw. die Rück-
kopplung aus der Umgebung mit betrachtet wird. Wichtig wäre, wie in der
Anforderung beschrieben, dass der Ansatz die SEM oder das Projekt wäh-
rend der Laufzeit kontinuierlich überwacht und dabei die Umgebung und
deren Feedback mit einbezieht.

Die beiden vorgelagerten Ansätze werden mit 0 bewertet, da sie die Soft-
ware-Engineering-Methode nicht zur Laufzeit überwachen. Wie schon im
vorherigen Kriterium erwähnt führt Six Sigma zwar große Untersuchungen
und Analysen durch, überwacht dabei aber das Projekt nicht kontinuierlich.
Da es aber in der Analyse das Feedback der Umgebung mit einbezieht, er-
hält der Ansatz wie im vorherigen Kriterium die Bewertung 2. Dieselbe
Bewertung erhält die 8D-Methode, da diese ebenfalls den Prozess nicht kon-
tinuierlich überwacht, aber die Umgebung in das Feedback mit einbezieht.

Die Agilen Methoden erhalten wiederum eine Bewertung von 4, da sie ren-
gelmäßig den Fortschritt des Projektes und somit der SEM kontrolliere. Zu-
sätzlich ist bei ihnen das Einbeziehen der Umgebung besonders wichtig,
denn das Feedback hat hier einen hohen Stellenwert. Dennoch bekommt der
Ansatz nicht die Höchstbewertung in diesem Kriterium, da die Überwa-
chung noch zu punktuell ist.

Der PDCA-Zyklus erhält ebenfalls wieder die Bewertung 4. Dieser besitzt
zwar ebenfalls einen kontinuierlichen Zyklus, jedoch dauert entweder die
Durchführung der Überwachung aber sehr lange oder es werden nur die

65

eingesetzten Maßnahmen beobachtet. Allerdings wird hier ebenfalls die
Umgebung in die Überwachung mit einbezogen.

Das Projektcontrolling erhält hier die Höchstbewertung. Es wird mit ver-
schiedenen Mitteln versucht zu überwachen, ob die vordefinierten Ziele
während der Projektlaufzeit eingehalten werden. Falls Abweichungen bei
der Überwachung auffallen, wird versucht entsprechend gegenzusteuern.
Dabei wird auch die Umgebung in die Betrachtungen mit einbezogen.

Analyse und Auswertung des aktuellen Status (AA)

Bei diesem Kriterium wird untersucht, ob der aktuelle Status der Software-
Engineering-Methode oder des Projektes regelmäßig analysiert und bezüg-
lich möglicher Abweichungen ausgewertet wird. Für das Erkennen von
Abweichungen werden entsprechende Kennzahlen und Messdaten benötigt,
die vorher ermittelt werden müssen.

Die beiden vorgelagerten Ansätze bekommen beide die geringste Bewer-
tung, da sie den aktuellen Status nicht während der Laufzeit analysieren. Sie
bekommen dennoch eine Bewertung mit dem Wert 1, da beide Ansätze zu-
mindest vorher die Situation des Projektes analysieren und entsprechend die
Software-Engineering-Methode erstellen oder zuschneiden.

Alle weiteren Ansätze analysieren den aktuellen Status in der einen oder
anderen Ausprägung und werten diesen anschließend aus. Die Agilen Me-
thoden betrachten in Meetings regelmäßig den aktuellen Fortschritt. Es gibt
allerdings außer den Anforderungen an die Software, welche im Projekt zu
entwickeln ist, keine Kennzahlen oder Messdaten. Der PDCA-Zyklus über-
prüft in der Phase „Check“ den aktuellen Status und kontrolliert die umge-
setzten Maßnahmen. Als Kennzahlen dienen hier wiederum nur die Ziele
und Anforderungen.

Six Sigma und die 8D-Methodik überprüfen ebenfalls in längeren und de-
taillierten Untersuchungen den Status des Projektes bzw. Prozesses. Dafür
werden Kennzahlen definiert, um die entsprechenden Werte zu ermitteln.
Allerdings findet die Überprüfung des aktuellen Status nur zu genau diesem
Zeitpunkt statt und noch ein weiteres Mal, um die umgesetzten Maßnahmen
zu überprüfen.

Das Projektcontrolling erhält hier die höchste Bewertung, da der aktuelle
Status des Projektes regelmäßig kontrolliert, analysiert und auf mögliche
Abweichungen ausgewertet wird. Als Kennzahlen dienen dabei unter ande-
rem die definierten Ziele. Es können aber auch weitere Metriken und Kenn-
zahlen ermittelt werden.

66

Planung von Maßnahmen (Anpassung) (PM)

Das Kriterium zur Planung von Maßnahmen soll die eigentliche Anpassung
oder ihre Planung im zur Laufzeit beinhalten. Dafür müssen die Ist- und
Soll-Werte bekannt sein und ob eine Anpassung überhaupt nötig ist.

Die beiden vorgelagerten Ansätze erhalten wiederum die Bewertung von 0,
da sie in dem Sinne keine Planung von Maßnahmen enthalten und diese vor
allem nicht während des Projektes durchführen.

Die Agilen Methoden planen zwar jede Iteration und was dort umgesetzt
werden kann, dies bezieht sich aber typischerweise auf die Anforderungen
und m.E. im seltensten Fall auf die Software-Engineering-Methode. Inner-
halb einer Retrospektive können Maßnahmen angesprochen und auch ge-
plant werden. Dies ist aber kein fester Bestandteil der Retrospektive und die
Planungen sind nicht strukturiert. Von daher bekommen sie die Bewertung
2.

Der PDCA-Zyklus und das Projektcontrolling beinhalten beide eine Plan-
Phase. Diese Planungen, welche auch Maßnahmen beinhalten können, be-
ziehen sich allerdings auf vorher definierte Ziele, welche später kontrolliert
werden sollen. Falls diese nicht eingehalten werden, muss der Plan entspre-
chend geändert werden. Sie beziehen sich deswegen maximal indirekt auf
die Planung einer eigentlichen Anpassung und bekommen von daher eine
mittlere Bewertung.

Six Sigma und die 8D-Methodik planen konkret die Maßnahmen bzw. die
Anpassung, nachdem die Ist- und Soll-Werte (Six Sigma) verglichen oder
die Fehlerursachen identifiziert und Korrekturmaßnahmen (8D-Methode)
nötig sind. Deshalb bekommen beide die höchste Bewertung.

Evaluierung der Ergebnisse (EE)

Hier wird bewertet, ob wie im Change Management angeregt, die Ergebnis-
se der Anpassungen bei der weiteren Durchführung der Software-
Engineering-Methode überprüft werden. Dies ist nötig um festzustellen,
dass die korrigierte Software-Engineering-Methode oder die Projekte auch
den gewünschten Erfolg bringen und ein gewünschtes Ziel erfüllen.

Das Tailoring erhält wiederum die Bewertung von 0, da die zugeschnittene
Software-Engineering-Methode nicht überprüft wird, ob sie während der
Durchführung ihren Zweck erfüllt. Das Situational Method Engineering
bekommt aus dem Grund die Bewertung 1, da es zumindest in Ansätzen
überprüft, ob die Software-Engineering-Methode im späteren Gebrauch per-

67

formant ist. Falls nicht werden neue Bausteine ausgewählt, damit sie auf die
Projektsituation passt.

Der PDCA-Zyklus bekommt eine mittlere Bewertung. Er überprüft indirekt,
ob die Ergebnisse den gewünschten Erfolg haben. Im PDCA-Zyklus erfolgt
dies nur, wenn dieser von neuem beginnt. Die 8D-Methode erhält ebenfalls
die mittlere Bewertung. In Schritt 6 werden zwar die Maßnahmen theore-
tisch auf ihre Wirksamkeit überprüft, aber nicht in der eigentlichen Durch-
führung.

Das Projektcontrolling beinhaltet die Überwachung von möglichen Ergeb-
nissen mit in der allgemeinen Überwachung und bekommt von daher die
Bewertung von 4. Dieselbe Bewertung bekommen ebenfalls Six Sigma und
die Agilen Methoden. Six Sigma überprüft die Maßnahmen nicht in der ei-
gentlichen Durchführung, sondern später mit statistischen Methoden. Die
Agilen Methoden überprüfen insofern regelmäßig die Maßnahmen, in dem
sie regelmäßig Feedback von den Beteiligten sammeln, beispielsweise durch
Meetings.

Vordefinition von Zielen und Rahmenwerte (Vorausschau) (VZR)

Bei diesem Kriterium wird überprüft, ob im Vorfeld Ziele und Rahmenwer-
te definiert werden, die es einzuhalten gilt und ob diese hinsichtlich Anpas-
sungen oder Maßnahmen ausgewertet und überprüft werden können. Wie in
Anforderung 5 erwähnt ist dies wichtig, weil die Vordefinition von Zielen
und Rahmenwerten, die Vorausschau erst ermöglicht, um eventuelle Ab-
weichungen zu erkennen und darauf angemessen reagieren zu können.

Die 8D-Methodik erhält hier die Bewertung 1. Es werden an keiner Stelle
direkt die Ziele oder Rahmenbedingungen definiert. Sie müssen zumindest
indirekt bekannt sein, damit den Problemen entsprechend begegnet werden
kann.

Die Agilen Methoden erhalten eine Bewertung von 2, da Ziele typischer-
weise die Anforderungen sind, welche erfüllt werden müssen. Doch wird zu
Beginn des Projektes eine Vision festgelegt, welche die ersten Ziele enthält
und damit eine Richtung vorgibt, wie das Endprodukt aussehen sollte. Dies
bezieht sich aber in den seltensten Fällen auf die Agile Methode selbst.

Die beiden vorgelagerten Ansätze bekommen hier eine mittlere Bewertung.
Sie analysieren beide die Projektumgebung und sehen im Prinzip voraus,
welches die besten Anpassungen in der Software-Engineering-Methode
sind, damit die Rahmenwerte, welche durch die Projektumgebung gegeben
sind, eingehalten werden. Six Sigma erhält ebenfalls eine Bewertung von 3,
da in der ersten Phase zwar Anforderungen und Erwartungen definiert wer-

68

den, was auch Zielen und Rahmenbedingungen entsprechen kann, dies aber
nur indirekt etwas mit der gewünschten Vorausschau zu tun hat.

Der PDCA-Zyklus und das Projektcontrolling erhalten die höchste Bewer-
tung. In beiden Ansätzen werden zu Beginn Ziele definiert, auf denen die
späteren und weiteren Planungen von Maßnahmen und Anpassungen beru-
hen.

Automatisierungen (Auto)

Bei diesem Kriterium geht es darum, ob die Ansätze Automatisierung bei
der Anpassung einsetzen oder zumindest Möglichkeiten dafür bieten. Au-
tomatisierung bietet gerade beim wichtigen Faktor Zeit einen entscheiden-
den Vorteil, da sie Vorgänge, die sonst manuell durchgeführt werden, we-
sentlich beschleunigen können.

Betrachtet man allerdings die gegebenen Ansätze so setzt keiner der Ansät-
ze bisher Automatisierung zur Anpassung ein. Das Projektcontrolling kann
an einigen Stellen zwar durch Software unterstützt werden, es wird aber
weniger oder gar nicht zur Anpassung eingesetzt. Auch das Situational Me-
thod Engineering bietet zwar Ansätze zur Automatisierung, um beispiels-
weise Methoden-Elemente miteinander zu verbinden etc., aber diese befin-
den sich größtenteils noch in der Forschung.

Wiederverwendung von Ergebnissen (WVE)

Das Kriterium untersucht, inwiefern die Ergebnisse, wie beispielsweise Pla-
nungen von und durchgeführte Maßnahmen oder Anpassungen etc., für wei-
tere Software-Engineering-Methoden und/ oder Projekte wiederverwendet
werden können.

Alle Ansätze erhalten hier die mittlere Bewertung. Es wird nicht direkt er-
wähnt, wie bzw. dass die Ergebnisse wiederverwendet werden. Es ist jedoch
von jedem Ansatz vorstellbar, dass Teile wiederverwendet werden können.
Dafür müssen die Ergebnisse allerdings entsprechend dokumentiert und
unter Umständen aufbereitet werden. Beispielsweise muss die Situation, in
der es eine Abweichung gegeben hat, notiert und mit der entsprechenden
Anpassung versehen werden. Die vorgelagerten Ansätze müssten die Pro-
jektsituation und die dazu entsprechend zusammengebaute oder zugeschnit-
tene Software-Engineering-Methode mit einer entsprechenden Begründung
dokumentieren. Teile könnten dann in ähnlichen Situationen verwendet
werden.

2.5.2	Gesamtbewertung	der	Ansätze		
Wie in der Tabelle an den jeweiligen Gesamtergebnissen zu sehen ist, erfüllt
keiner der Ansätze und auch das Projektcontrolling die Anforderungen an

69

die adaptive Anpassung einer Software-Engineering-Methode zur Laufzeit
vollständig.

Gerade die vorgelagerten Ansätze Situational Method Engineering und Tai-
loring haben ein niedriges Ergebnis. Dies liegt daran, dass die Anpassung
der Software-Engineering-Methode nur vor dem Start des Projektes erfolgt.
Im Gegensatz dazu sind sie allerdings die beiden Ansätze, deren Fokus auf
der Software-Engineering-Methode und deren Anpassung selbst liegt. Dies
ist bei den anderen Ansätzen und auch beim Projektcontrolling nicht der
Fall. Der Fokus liegt hier auf dem Projekt.

Die Ansätze Six Sigma und die 8D-Methode haben eine durchschnittliche
Bewertung von 2.45 und 2.4 erhalten. Ein großes Manko ist hier zum einen
der Fokus der Anpassungen, welche nicht auf der Software-Engineering-
Methode liegen. Des Weiteren ist der wichtige Faktor Zeit insbesondere bei
Six Sigma sehr gering ausgeprägt, da die Anpassungszeiten teilweise bis zu
90 Tage und länger dauern. Auch der Anpassungszeitpunkt liegt hier eher
nach dem Projekt bzw. wenn das Projekt, oder bei der 8D-Methodik der
Prozess, bereits „vor die Wand gefahren“ ist. Die Ergebnisse fließen bei Six
Sigma eher in das gesamte Unternehmen und zukünftige Projekte als in das
aktuelle Projekt. Daraus folgt, dass es keine kontinuierliche und häufigere
Anpassung gibt sowie keine oder nur wenig Überwachung zur Laufzeit. Im
Analysieren und Auswerten des Status, der eigentlichen Probleme und der
Planung von entsprechenden Maßnahmen sind beide Ansätze hingegen
stark.

Der PDCA-Zyklus und die Agilen Methoden haben eine gute mittlere Be-
wertung erhalten. Sie besitzen bereits viele Ansätze, welche die Anforde-
rungen zum Teil erfüllen. Doch gerade beim PDCA-Zyklus liegt der Fokus
wiederum nicht auf der Software-Engineering-Methode und auch die Dauer
ist hier wesentlich höher. Auch die Planungen von Maßnahmen beziehen
sich hier nicht auf den analysierten Status, sondern werden im Voraus ge-
plant und sind an die Ziele angelehnt. Dadurch ist der Ansatz in der Voraus-
schau wiederum sehr stark.

Bei den Agilen Methoden liegt der Fokus zum Teil auf der Software-
Engineering-Methode, aber der Hauptfokus liegt auf dem zu entwickelnden
Produkt. Doch durch bestimmte Techniken wie tägliche Meetings, eine Ret-
rospektive, Fortschrittsanalysen usw. kann eine regelmäßige Überwachung
zur Laufzeit gegeben sein. Diese ist aber typischerweise bezüglich der SEM
eher informell und nicht strukturiert. Gerade in der Planung von Maßnah-
men und der Vorausschau hat der Ansatz Schwächen.

Das Projektcontrolling hat die höchste Bewertung der Ansätze erzielt, doch
auch hier gibt es Schwächen. Der Fokus liegt bei diesem Ansatz auf dem

70

Projekt selbst und betrachtet die Software-Engineering-Methode dadurch
höchstens indirekt. Auch die Dauer der Anpassung und der Anpassungszeit-
punkt selbst haben hier Abstriche bekommen. Das Projekt selbst wird zwar
kontinuierlich überwacht, aber beispielsweise die Planungen von Maßnah-
men bzw. Anpassungen beziehen sich dabei ähnlich wie im PDCA-Zyklus
auf solche Planungen, die vor dem analysierten Status erfolgt sind. Auch
wenn das Projektcontrolling in der Vorausschau ebenfalls stark ist, beziehen
sich die Ziele und Rahmenbedingungen auf „eine andere Ebene“, wie bei-
spielsweise die Zeit oder das Budget des Projektes und weniger auf die
Software-Engineering-Methode.

Ein weiteres Manko aller Ansätze bezüglich der Anforderungen ist, dass
keiner der Ansätze Möglichkeiten zur Automatisierung bietet. Gerade im
Projektcontrolling gibt es zwar Werkzeuge als technische Unterstützung,
diese haben aber weniger mit einer automatischen Anpassung zu tun. Gera-
de um den wichtigen Faktor Zeit mit einzubeziehen und die Dauer der
Überwachung sowie Durchführung der Anpassung zu verkürzen, wären
Automatisierungsmöglichkeiten wichtig.

Aus der Betrachtung der verschiedenen Ansätze und unter Einbezug der
vorher genannten Anforderungen sowie den daraus abgeleiteten Bewer-
tungskriterien hat sich ergeben, dass es wichtig ist, einen Kreislauf zu nut-
zen. Dieser soll die genutzte Software-Engineering-Methode kontinuierlich
und möglichst eigenständig während der Ausführung überwachen, auf Ab-
weichungen hin analysieren, eine Anpassung entsprechend planen und die
Anpassung soweit möglich automatisiert durchführen. Aus den Ergebnissen
der Bewertung und nach [Ge12] und [GLE12] lassen sich die erstellten An-
forderungen in folgende konkrete Anforderungen für einen Ansatz zur
selbst-adaptiven Anpassung einer Software-Engineering-Methode zusam-
menfassen:

A1. Der Fokus der Anpassung liegt auf der genutzten Software-
Engineering-Methode.

A2. Der Anpassungszeitpunkt ist zur Laufzeit, und die Dauer der ge-
samten Anpassung soll möglichst kurz sein.

A3. Die SEM soll kontinuierlich und möglichst eigenständig während
ihrer Ausführung in Hinblick auf notwendige Abweichungen und An-
passungen auf der Instanz-Ebene beobachtet werden.

A4. Die beobachteten Werte sowie der aktuelle Status müssen analy-
siert und schnell beurteilt werden können.

71

A5. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitäts-
zielen auf der Typ-Ebene geplant und durchgeführt werden können.

A6. Die Anpassung soll schnellstmöglich, zeitnah sowie möglichst au-
tomatisch erfolgen.

Das Ziel ist es nun, einen Ansatz zu entwickeln, der es einer Software-
Engineering-Methode ermöglicht, sich während ihrer Durchführung größ-
tenteils selbstständig zu überwachen und selbst-adaptiv anzupassen. Das
heißt konkreter, ein solcher Ansatz soll eine Software-Engineering-Methode
kontinuierlich und möglichst eigenständig zur Laufzeit überwachen und
ihren aktuellen Status hinsichtlich einer nötigen Anpassung auswerten. Auf-
bauend auf dieser Auswertung wird wenn nötig eine Anpassung der SEM
auf Typ-Ebene geplant und diese wird anschließend möglichst automatisiert
während der Laufzeit durchführt und zurück in die SEM auf Instanz-Ebene
übertragen.

Anhand einer kontinuierlichen Überwachung und der Anpassung zur Lauf-
zeit können die Ergebnisse der Anpassung außerdem direkt evaluiert wer-
den. Ferner soll mit in Betracht gezogen werden, wie die Ergebnisse, z.B.
Anpassungs- und Auswertungsmöglichkeiten etc. in Zukunft wieder ver-
wendet werden können. Für die Erarbeitung des Ansatzes werden die Vor-
teile der bereits bestehenden Ansätze genutzt. Dabei sollen hauptsächlich
deren Kreisläufe verwendet und weiter entwickelt werden. Die genauere
Analyse dieser Kreisläufe erfolgt nun im nächsten Kapitel „Beschreibung
des Lösungsansatzes“

Ka
zes

Um
zunä
herig
keite
adap
für w
und
eine
von
gen
und
ge fü

Dara
stell
ware
den

apitel	3
s		

einen mög
ächst sowoh
gen Ansätz
en werden
ptiven Anpa
werden zun

anschließe
er Software-

zwei komp
werden all
die MAPE-

für den Lösu

auf basieren
lt, welcher
e-Engineeri
weitere Det

	–	Besc

lichen Lösu
hl die Geme
ze analysiert
n zusätzlich
assung eine

nächst die P
end wird ge
-Engineerin

plexen Beisp
gemein die
-K-Schleife
ungsansatz b

nd wird die
als Framew
ing-Method
tails und He

A

7

chreibu

ungsansatz
einsamkeite
rt werden. N
h weitere
er Software-
Probleme au
eklärt, welc

ng-Methode
pielen. Nac

e Feedbacks
e im Besond
bilden.

e Konzeptio
work für die
den dient. N
erausforderu

Abbildung 20 A

72

ung	des

zu beschrei
en als auch
Nach dieser

Herausford
-Engineerin

us dem vorh
che Möglic

e alle existie
h der Konk
schleifen de
deren vorge

on eines SE
e selbst-ada

Nach einem
ungen vorg

Aufbau Kapite

s	Lösun

iben, soll in
die Schwac
r Analyse v
derungen b

ng-Methode
herigen Kap
chkeiten zu
eren können

kretisierung
er selbst-ada
stellt, da di

E Method M
aptive Anpa

kurzen Zw
estellt und d

el 3

ngsansa

n diesem K
chstellen de
von Gemein
bei der s

e untersucht
pitel aufgeg
ur Anpassun
n, u.a. mit
der Anford

daptiven Sys
iese die Gru

Managers v
assung von

wischenfazit
diskutiert.

at‐

apitel
er bis-
nsam-
elbst-
t. Da-
riffen
ng in
Hilfe

derun-
steme
undla-

vorge-
Soft-

t wer-

73

3.1	Analyse	der	Ansätze	und	Erweiterung	der	Anforde‐
rungen	
In Abschnitt 2.4 wurden verschiedene Vorgehensweisen zur Anpassung von
Software-Engineering-Methoden vorgestellt und in Abschnitt 2.5 wurden
diese Ansätze in Bezug auf die gestellten Ansätze analysiert und bewertet.
Es hat sich gezeigt, dass keiner der Ansätze alle Anforderungen ausreichend
erfüllt. Doch um einen eigenen Ansatz zu entwickeln, sollen die Vorteile
und Gemeinsamkeiten, welche die Ansätze besitzen, herausgefunden und
genutzt werden. Des Weiteren soll genauer herausgefunden werden, welche
weiteren Probleme und Herausforderung bei der adaptiven Anpassung einer
Software-Engineering-Methode bestehen und mit einem eigenen Ansatz
gelöst werden müssen. Im Anschluss werden die verschiedenen Möglichkei-
ten von Anpassungen erläutert, um im späteren Verlauf die sechs aufgestell-
ten Anforderungen an einen Ansatz zur Anpassung von Software-
Engineering-Methoden im laufenden Projekt zu erweitern und zu präzisie-
ren sowie gegenüber dem Projektcontrolling abzugrenzen.

3.1.1	Analyse	der	Gemeinsamkeiten	der	Ansätze	und	weitere	Her‐
ausforderungen	
Wie sich in Abschnitt 2.4 und 2.5 gezeigt hat, ist eine der Schwächen der
Ansätze, dass der Fokus zum einen nicht auf der Software-Engineering-
Methode liegt. Zum anderen ist eine weitere Schwäche, dass die Dauer der
Anpassung viel zu lang und sie somit ungeeignet ist. Ferner bieten die An-
sätze keine oder nur wenige Möglichkeiten zur Automatisierung, um die
Dauer der Anpassung zu verkürzen und eine selbst-adaptive Anpassung zu
ermöglichen. Ferner passen zwei Ansätze eine Software-Engineering-
Methode nur vor der Laufzeit an. Ansätze wie Six Sigma und die 8D-
Methodik werden erst eingesetzt, wenn bereits Probleme aufgetreten sind.
Gerade bei Six Sigma greifen Anpassungen häufig erst in anderen Projek-
ten.

Doc
troll
so fä
selb
vier
sich
len
auch

Ihne
ange
in de
mac
spät
bezü
bezi
Soft
den
Ziel
Met

Eine
von
Sigm

ch wenn man
ling-Prozess
fällt auf, das
en Prinzip
Ansätze fo
wiederholt

folgen eine
h Unterschie

en ist gemei
elehnt die m
er Phase „P

cht Sinn, Zi
er eine So
üglich diese
ieht sich di
tware (Agile
an das Proj
e, Eigensc
hode heraus

e weitere G
Maßnahme

ma auf die Z

Abbildung 2

n sich gerad
s und den
ss diese An
vorgehen u

olgen alle w
t oder bei B
erseits einem
ede.

insam, dass
möglichen Ä
Planen“ und
iele und Ra
oftware-Eng
er hin zu an
ie Zielfindu
e Methoden
jekt (Six Si
haften ode
sgefunden u

emeinsamk
en bzw. ein
Ziele bezieh

7

21 Die verschi

de die Agile
kontinuierli

nsätze und a
und ein ähn
wie in Abbi
Bedarf wiede
m ähnlichen

s sie Ziele o
Änderungen

d in Six Sigm
ahmenbedin
gineering-M
nalysieren.
ung auf ein
n) oder Erw
igma). Es m
er Erwartun
und beschri

keit der Ans
ner Anpass

ht. Zum eine

74

iedene Zyklen i

en Methode
ichen Verb

auch Six Sig
nliches Kern
ildung 21 z
erholen kan
n Schema,

oder eine V
n zu planen
ma in der P
ngungen im

Methode auf
Doch in d

n Projekt,
wartungen un
muss also h
ngen an e
eben werde

sätze ist, das
sung besitz
en ist es gut

im Überblick

en, den ursp
besserungspr
gma größten
nvorgehen

zu sehen ein
nn (Six Sigm
andererseits

Vision entwi
n. Im PDCA
hase „Defin
Vorfeld zu

f mögliche
en beschrie
die Anford

nd Anforder
erausgefund

eine Softwa
en können.

ss jeder Zyk
t, welche s
t, dass mögl

prünglichen
rozess ansc
nteils nach
besitzen. D
nem Zyklus
ma). Diese
s haben sie

ickeln, um
A-Zyklus is
ne“ enthalte
u definieren
e Abweichu
ebenen Ans
derungen a
rungen des
den werden
are-Enginee

klus die Pla
sich bis au
liche Situat

Con-
chaut,
dem-
Diese
s, der
Zyk-

e aber

daran
t dies
en. Es
n, um
ungen
sätzen
n die
Kun-

n, wie
ering-

anung
uf Six
ionen

75

vorausgeplant werden. Doch zum anderen ist das Problem, dass die eigentli-
che Planung von Maßnahmen sich nicht auf den aktuellen Status bezieht. Es
wäre somit sinnvoll, dass zunächst der aktuelle Status der Software-
Engineering-Methode zur Laufzeit hinsichtlich einer möglichen Anpassung
geprüft wird und anschließend eine Planung erfolgt, welche genau dieses
Problem löst.

Bis auf den Agilen Methoden ist den Ansätzen ebenfalls allen gemeinsam,
dass das Projekt oder Ergebnisse überprüft werden müssen. Im PDCA-
Zyklus allerdings erfolgt dies zu einem späteren Zeitpunkt als in den ande-
ren beiden Zyklen. Es ist also sinnvoll, dass es im neuen Ansatz ebenfalls
möglich ist, die erfolgte Anpassung entsprechend überprüfen zu können.

Allen Zyklen ist ebenfalls eine Anpassungs- oder Verbesserungs-Phase ge-
meinsam, im Controlling-Zyklus befindet sich dies in der Steuerungs-Phase.
Ebenso gibt es eine Ausführungs-Phase, beim PDCA-Zyklus im „Improve“
enthalten, im Controlling-Zyklus allerdings nur implizit. Die Ausführung
befindet sich meistens nach der Planung und vor der Überwachung. Das
heißt, dass die Planung ausgeführt und dann überprüft wird, bevor Maß-
nahmen zur Änderungen ergriffen werden.

Die Gemeinsamkeiten der Ansätze zeigen, dass es Sinn macht, ebenfalls
einen Zyklus einzusetzen. Dieser überwacht kontinuierlich die Software-
Engineering-Methode während der Durchführung, analysiert den aktuellen
Status, plant Anpassungen und führt diese entsprechend aus. Die Frage ist
hier, was die optimale Anordnung der verschiedenen Phasen in einem sol-
chen Feedback-Zyklus wäre, denn bisher unterscheiden sich die verschiede-
nen Ansätze.

Ferner muss neben der Software-Engineering-Methode selbst auch die Pro-
jektumgebung mit betrachtet werden. Diese kann sich ebenfalls auf die
Software-Engineering-Umgebung auswirken und Abweichungen erzeugen.
Es ist allgemein zu entscheiden, ob und wann welche (Teil-) Prozesse der
SEM geändert werden müssen.

Auch wenn Abweichungen einer Software-Engineering-Methode bekannt
sind und eine Anpassung nötig ist, ist zu entscheiden, ob Methoden-
Elemente ausgetauscht, gelöscht oder neue hinzugefügt werden müssen.
Wie beispielsweise Method Engineering für existierende Projekte eingesetzt
werden könnte, um u.a. diese Fragestellungen zu beantworten, steht als ein
offenes Feld im State-of-the-Art Review [HSR10, S. 465]: „How to use me-
thod engineering in the context of existing (legacy) methods (most of the
SME literature assumes greenfield projects)“

76

Wenn herausgearbeitet wurde, was und an welcher Stelle der Software-
Engineering-Methode geändert werden muss, ist zu klären, wie und welche
Methoden-Elemente ausgewählt werden müssen. Eine weitere Frage, die
geklärt werden muss ist, wo diese Elemente herkommen und/oder ob diese
im Ansatz bereits bekannt sind. Hier kann eine Technik aus dem Ansatz des
Situational Method Engineering eingesetzt werden, die Methoden-Basis.
Diese kann im Ansatz enthalten sein und entsprechende Elemente für die
SEM bereithalten.

Damit eine Software-Engineering-Methode überhaupt untersucht werden
kann, soll diese in einem Modell vorliegen (Typ-Ebene). Dabei ist es egal,
ob das Modell mit Hilfe von SPEM, ISO 24744, MetaMe, einer Variante
oder einer Vereinfachung davon erstellt wurde. Wichtig ist, dass konstant
dieselbe Methode zur Modellierung bei der Nutzung des Ansatzes verwen-
det wird. Jedoch ist es möglich, das zwei verschiedene Unternehmen jeweils
eine andere Möglichkeit zur Modellierung nutzen, diese anschließend aber
bei der Durchführung konsequent nutzen.

Ebenso ist es nötig, dass neben dem ursprünglichen Modell der SEM eine
aktuelle Instanz des Modells vorliegt (Instanz-Ebene). Dieses bildet den
aktuellen Status der Software-Engineering-Methode während der Durchfüh-
rung ab. Dies ist wichtig, um den aktuellen Status analysieren und später die
Anpassung zur Laufzeit durchführen zu können. Zusätzlich müssen die Pro-
jekteigenschaften und das Umfeld bekannt sein, sowie die Änderungen, die
geschehen sind. Eine Frage, die dabei zu klären wäre, ist, wo diese Elemen-
te abgelegt werden.

Sind Methoden-Elemente ausgewählt, müssen sie noch mit der alten Soft-
ware-Engineering-Methode zu einer neuen verschmolzen werden. Dies
spielt sich sowohl auf der Typ-Ebene (neues Modell) als auf der Instanz-
Ebene (weitere Durchführung der neuen SEM) ab. Es gibt verschiedene
Techniken im (Situational) Method Engineering, wie eine Software-
Engineering-Methode zusammengesetzt wird. Doch bevor dies erfolgt, soll-
ten folgende Fragen betrachtet und beantwortet werden: Wie wirkt sich die-
se Änderung auf die gesamte Software-Engineering-Methode (Gesamt-
SEM) aus? Wie sind die Abhängigkeiten zu anderen Methoden-Elementen
während der Änderung, kommt es durch die Änderung an einer anderen
Stelle zu Problemen? In Bezug auf die Methoden-Elemente selbst, sehen
[HSR10, S.465] dies ebenfalls als eine noch offene Forschungsfrage an:
„How to ensure that the configuration of these selected method fragments is
consistent and complete?“

Um einen Ansatz entwickeln und die genannten Punkte und Anforderungen
aus Abschnitt 2.5 erfüllen zu können, ist es wichtig zu wissen, wie eine

77

Software-Engineering-Methode überhaupt angepasst werden kann. Es muss
bekannt sein, welche Elemente angepasst werden können und wie diese mit-
einander zusammenhängen. Diese verschiedenen Möglichkeiten zur Anpas-
sung sollen im nächsten Abschnitt näher untersucht und erläutert werden.

3.1.2	Anpassungs‐Arten	
Um eine Software-Engineering-Methode anzupassen, gibt es verschiedene
Möglichkeiten. Die Anpassungen finden typischerweise auf der Typ-Ebene
statt, also am Modell der konkreten Software-Engineering-Methode selbst.
Um mögliche Arten einer Anpassung herauszufinden ist es wichtig zu wis-
sen, was die Bestandteile von einer Software-Engineering-Methode sind.
Die möglichen Bestandteile sowohl von einem Projekt als auch von einer
Software-Engineering-Methode wurden bereits in Abschnitt 2.1.1 beschrie-
ben und in Abbildung 6 dargestellt. Dazu gehören u.a. Artefakte (Dokumen-
te, Inkremente, Guidances), Aktivitäten, Rollen und ihre Verantwortlichkei-
ten, Techniken, Werkzeuge sowie die Reihenfolge von Aktivitäten, der
Workflow. Dies sind alles Elemente, welche in einer Software-Engineering-
Methode angepasst werden können. Nun wird im Folgenden beschrieben,
wie und in welcher Art diese angepasst werden kann.

3.1.2.1	Einer	Software‐Engineering‐Methode	ein	Element	hinzufü‐
gen	
Eine Möglichkeit, eine Software-Engineering-Methode anzupassen, ist es,
ihr etwas hinzuzufügen. Dies können verschiedene Elemente sein, z.B.:

a. eine neue Aktivität bzw. Aufgabe,
b. eine neue Rolle,
c. ein neues Artefakt,
d. eine neue Technik,
e. ein neues Werkzeug,
f. eine neue oder weitere Verantwortlichkeit für eine der oben genann-

ten Elemente,
g. eine zusätzliche Reihenfolge.

Des Weiteren kann es möglich sein, dass nicht nur ein neues oder ein weite-
res Element der Software-Engineering-Methode hinzugefügt wird, sondern
mehrere. Dies heißt genauer, dass eine Kombination von Elementen hinzu-
kommt, zum Beispiel eine neue Aktivität, welche von einer neuen Rolle
durchgeführt wird und/oder mit einer neuen Technik. Beispiele, wie die An-
passung durch das Hinzufügen ein oder mehrerer neuer Elemente aussehen
kann, werden in Abschnitt 3.1.3 beschrieben.

78

3.1.2.2	In	einer	Software‐Engineering‐Methode	ein	Element	lö‐
schen	
Das Gegenteil der Anpassung einer Software-Engineering-Methode durch
Hinzufügen eines Elements ist das Löschen eines Elements in der SEM.
Beim möglichen Löschen handelt es sich um dieselben Elemente wie im
vorherigen Abschnitt 3.1.2.1

Es kann ebenfalls eine Kombination von Elementen gelöscht werden, bei-
spielsweise eine Aktivität mit den zugehörigen Rollen und Techniken. So-
wohl beim Löschen von Elementen, als auch beim Hinzufügen von neuen
Elementen ist es wichtig, die Abhängigkeiten zwischen den einzelnen Ele-
menten zu kennen. Dadurch muss sichergestellt werden, dass die Anpassung
einer Software-Engineering-Methode nicht den Gesamtfluss der vollständi-
gen SEM stört. Ferner kann so herausgefunden werden, ob nur ein einzelnes
Element oder eine Kombination von Elementen gelöscht bzw. hinzugefügt
werden muss.

3.1.2.3	In	einer	Software‐Engineering‐Methode	ein	Element	erset‐
zen	oder		ändern	
Im Gegensatz zum Hinzufügen oder Löschen von Elementen in einer Soft-
ware-Engineering-Methode kann es sein, dass ein Element ersetzt oder ge-
ändert werden muss. Dies kann primär bei folgenden Elementen der Fall
sein:

a. Eine Rolle wird durch eine andere ersetzt oder die Rolle wird
weiter spezialisiert. Dabei ist speziell zu beachten, dass in diesem
Fall nicht nur die Person auf der Instanz-Ebene wechselt, z.B.
aufgrund von Krankheit, sondern dass die Rolle selbst geändert
wird. Beispiele können sein, dass die Rolle des Kunden durch ei-
nen „Kunden-Tester“ spezialisiert, oder dass die reine Rolle
„Softwareentwickler“ durch die Rolle „Tester“ für eine Aktivität
ersetzt wird.

b. Eine Aktivität ändert sich zum Beispiel vom Entwickeln eines
Artefakts hin zum Testen eines Artefakts.

c. Eine Technik wird ausgetauscht: Hat z.B. das Schätzen von
Aufwand nach der MuSCoW-Methode nicht den gewünschten
Erfolg gebracht, dann wird sie durch eine andere Schätzmethode
ersetzt. Oder einfaches Testen wird durch die Technik „Pair-
Testing“ ersetzt oder erweitert.

d. Ein Artefakt kann durch ein anderes ersetzt werden.

Typischerweise bleiben beim Ersetzen oder Ändern eines Elementes die
Abhängigkeiten und vor allem die Reihenfolge der Elemente bestehen.
Trotzdem sollte überprüft werden, wenn beispielsweise eine Aktivität geän-

79

dert wird, ob die zugeordneten Rollen noch in der Lage sind, diese Aktivität
auszuführen. Das heißt es gilt zu prüfen, ob die Rollen weiterhin die richti-
gen für die Aktivität sind oder ob sie ebenfalls geändert werden müssen. Ein
Beispiel könnte sein, dass sich die Aktivität von „Entwickeln“ zu „Testen“
ändert. Dann müssten die Rolle „Entwickler“ eventuell zu „Tester“ geändert
werden.

3.1.2.4	Die	Reihenfolge	–	der	Workflow	–	von	Elementen	wird	ver‐
ändert	
Des Weiteren kann es möglich sein, dass während einer Anpassung einer
Software-Engineering-Methode die Reihenfolge von Elementen geändert
werden muss. Dies kann insbesondere der Fall sein bei:

a. der Erstellung von Artefakten,
b. der Durchführung von Aktivitäten,
c. der Kombination von a. und b.

Auch in diesen Fällen muss darauf geachtet werden, dass die Abhängigkei-
ten betrachtet und der Gesamtfluss der Software-Engineering-Methode
durch die Änderung der Reihenfolge nicht gestört wird.

Im nächsten Abschnitt werden zwei komplexe Beispiele für Anpassungs-
Arten genannt und kurz erläutert.

3.1.3	Beispiele	für	Anpassungen	
Um in den beiden folgenden Beispiele besser verdeutlichen zu können, wa-
rum eine solche Anpassung nötig ist und wie diese erfolgen könnte, müssen
einige Punkte und Fragen bei den Beispielen beachtet und beantwortet wer-
den. Folgende Punkte und Fragen sind wichtig:

1. Damit eine Software-Engineering-Methode angepasst werden soll, muss
ein Problem auftreten, welches bei Nicht-Behandlung (fatale) Folgen für
den Erfolg des Projektes haben kann. Die Frage, die bei den Beispielen
nun dahinter steht ist: Was könnte ein Problem sein, damit z.B. etwas ei-
ner SEM hinzugefügt werden muss und wie könnte sich das Problem äu-
ßern?

2. Der nächste Punkt, welcher sich direkt an den ersten anschließt ist die
Frage, warum das Problem überhaupt ein Problem für die SEM, die
Teammitglieder, den Erfolg des Projektes usw. ist. Was hat es für Aus-
wirkungen, wenn dieses Problem NICHT gelöst wird? Auswirkungen
könnten unter anderem hohe Kosten sein, da das Einhalten von Dead-
lines nicht mehr möglich ist oder im schlimmsten Fall läuft das Projekt
„vor die Wand“.

3. Eine weitere zu beantwortende Frage kann sein, welche Eigenschaften
der SEM erfüllt sein müssen oder welche Ziele von ihr erfüllt sein müs-

80

sen, die mit dem Problem verletzt sein würden. Genauer würde die
zweigeteilte Frage lauten: Welche Eigenschaft bzw. welches Ziel der
SEM soll sichergestellt werden und würde mit dem auftretenden Prob-
lem verletzt?

4. Nachdem das Problem genau geklärt ist im Beispiel, muss aber das
Problem auch für die Anpassung möglichst früh (im Vorfeld) gefunden
werden. Die ebenfalls zweigeteilte Frage lautet dann: Was müsste an
Regeln oder Grenzen eingehalten werden, damit das Ziel oder die Ei-
genschaft nicht verletzt wird? Wie kann dies im Vorfeld herausgefunden
werden, beispielsweise anhand einer Messung (was müsste gemessen
werden)?

5. Sind die vorhergehenden Fragen beantwortet und durchgespielt, muss
im Beispiel geklärt werden, wie eine Lösung für das Problem aussieht,
das heißt: Wie müsste eine Anpassung im Beispiel aussehen?

6. Abschließend muss die fertige Anpassung in das Projekt übertragen und
vor allem müssen alle Beteiligten benachrichtigt werden. Die Frage lau-
tet also: Wer muss bei der Anpassung alles benachrichtig werden?

3.1.3.1	Beispiel	„Quasi‐Scrum“	
Ein erstes Beispiel für die Anpassung einer Software-Engineering-Methode
ist das Projekt „Quasi-Scrum“ [EG09]. In diesem Projekt aus dem s-lab –
Software Quality Lab wurde eine Kreditkalkulationssoftware entwickelt mit
Hilfe der Agilen Methode Scrum. Scrum wurde für das Projekt im Vorfeld
bereits angepasst. Es gab beispielsweise keine täglichen Stand-Up-
Meetings, sondern nur zwei- bis dreimal die Woche halbstündige Teammee-
tings. Ferner gab es keinen einzelnen Product Owner sondern einen Len-
kungskreis. Die Review-Meetings waren keine Informationsmeetings, son-
dern Abnahmemeetings durch den Lenkungskreis und es war nie das ganze
Team anwesend.

Das Problem in diesem Projekt war, dass die nicht-funktionalen Anforde-
rungen und hier besonders die Performanz große Schwierigkeiten bereiteten.
Dies äußerte sich zum einen dadurch, dass die Software unter hoher Last
lange Antwortzeiten besaß. Zum anderen war der Kunde sehr unzufrieden
und es gab viele Fehlermeldungen (Frage 1). Die Auswirkungen des Prob-
lems (Frage 2) waren einerseits, dass viele und schwerwiegenden Fehlern
sowie ein Ausfall der Software auftraten. Andererseits wurde das Produkt
durch den Kunden nicht abgenommen und ein „Reparatur-Sprint“ musste
durchgeführt werden, dessen Kosten beim Anbieter lagen. Zwar wurden die
Deadlines immer gehalten, aber unter Umständen war das Inkrement nicht
vollständig und wie vorher beschrieben performancetechnisch fehlerhaft.

Es war somit wichtig, dass die Optimierung der Performanz der Software
sichergestellt wird. Auf Scrum genau übertragen hieß das, dass die nicht-

81

funktionalen Eigenschaften der Software im Artefakt Product Backlog ste-
hen mussten (Frage 3), was hier im Projekt zunächst nicht der Fall war. Die
Betrachtung der nicht-funktionalen Eigenschaften ist häufig ein Problem in
den Agilen Methoden, gerade auch bei Scrum. Der Fokus liegt typischer-
weise auf den Funktionalitäten einer Software.

Damit dies vorher hätte auffallen können, hätte zum einen das Product
Backlog überwacht werden müssen, z.B. anhand einer Überprüfung auf Per-
formanz- oder Optimierungs-Einträge. Zum anderen hätte der Kunde stärker
im Vorfeld mit eingebunden werden müssen, beispielsweise anhand von
durch ihn durchgeführter Tests. Ferner hätten zum Erkennen des Problems
die Fehlereinträge des Kunden und somit seine Zufriedenheit (anhand der
Fehler oder eingetragener Kommentare) überprüft oder gemessen werden
können (Frage 4).

Die Lösung des Problems war in diesem Projekt die Einführung einer neuen
Aktivität und neuer Rollen (Frage 5). Es wurden 1-3 sogenannte „Kunden-
Test-Tage“ eingeführt, welche nach den Entwicklungstagen im Sprint und
vor dem Review-Meeting lagen. Zusätzlich wurde als neue Rolle das „Kun-
den-Test-Team“ eingeführt, welches aus „Kunden-Tester“ bestand. Diese
führten spezielle Tests durch, wodurch der Kunde zum einen mehr mit ein-
gebunden wurde. Zum anderen wurden ihm die nicht-funktionalen Eigen-
schaften wesentlich bewusster und diese wurden regelmäßig ins Product
Backlog eingetragen.

Die neue Aktivität wurde in einem neuen Sprint das erste Mal durchgeführt.
Während des vorherigen Sprints wurden sowohl die neuen Kunden-Tester
als auch das aktuelle Team über die Änderung informiert (Frage 6).

Dieses Beispiel kann auch analog für die nicht-funktionale Eigenschaft
Usability übernommen werden. An den Kunden-Test-Tagen können hier
Usability-Tests mit eingeplant werden.

3.1.3.2	Beispiel	„Test‐Sprint	in	Scrum“		
In den Agilen Methoden bekommt das Testen zwar eine wichtige Rolle zu-
geschrieben, wird aber in der Originalliteratur wie beispielsweise dem
ScrumGuide [SS13] nur sehr oberflächlich oder gar nicht beschrieben. Wird
die Aktivität Testen beschrieben, ist das Vorgehen nur vage und nicht unbe-
dingt strukturiert. Ferner soll das Testen von den Entwicklern selbst durch-
geführt werden; die Rolle eines expliziten Testers in Scrum-Teams ist im
Original nicht vorgesehen, streng genommen ist dies sogar verboten [SS13].

Auch wenn viel Wert auf Unit-Tests, kontinuierliche Integration und soge-
nannte User-Acceptance Tests [Glo11] gelegt wird, kann es durch das un-
strukturierte Testen passieren, dass nicht ausreichend getestet wird oder ei-

82

nige Funktionen gar nicht getestet werden. Die Product Backlog Einträge
haben evtl. einen Eintrag für einen Testfall oder einen Unit-Test, aber durch
das Fehlen eines systematischen Vorgehens kann es zu einer fehlerhaften
Software kommen, welche erst im Betrieb durch den Kunden entdeckt wird.
Zwar sollen gerade die Agilen Methoden dies verhindern, aber so etwas wie
Release- oder gar End-to-End-Tests sind in Scrum nicht vorgesehen (Frage
1).

Unsystematische Tests oder nicht durchgeführte, fehlende Tests können
somit zu mehr Kosten aufgrund einer höheren Fehlerrate führen. Falls Feh-
ler erst im Betrieb auftauchen, kann es passieren, dass durch die Bereini-
gung der Fehler aufgrund der Zeit Deadlines nicht eingehalten werden kön-
nen. Zusätzlich kann die Bereinigung der Fehler weitere Kosten verursachen
(Frage 2).

Es müsste somit überprüft werden, ob entweder zu jedem Backlog Eintrag
verschiedene Testarten (nicht nur der Unit-Test) vorhanden sind, oder ob es
eigene Test Backlog Einträge, wie in [GG12] vorgeschlagen, gibt. Ferner
kann die Liste mit den Mengen an Fehlermeldungen und deren Kritikalität
als Indikator genutzt werden, ob ausreichend Tests vorhanden sind (Frage 3
+ 4).

Um dieses Problem nun zu lösen, kann wie in [GG12] vorgeschlagen, eine
neue Aktivität, insbesondere für ein vollständiges Release, ein sogenannter
Release-Sprint eingeführt werden. Zusätzlich zu diesem neuen Sprint, wel-
cher sich gut in die Scrum-Methodik einbetten lässt, müssten entsprechende
neue Artefakt definiert und der Software-Engineering-Methode hinzugefügt
werden, zum Beispiel ein Test Backlog. Die sogenannten Daily Tasks im
normalen Sprint, also die täglichen Aufgaben, werden durch entsprechende
Test Tasks ersetzt und die täglichen Ergebnisse (Daily Results) werden
durch einen täglichen Test Report in diesem Sprint ersetzt. Dieser Sprint
wird von denselben Personen durchgeführt, allerdings diesmal in der Rolle
der „Tester“. Unter Umständen ist es nötig, für diesen Sprint einen Testex-
perten/Test-Designer o.ä. mit einzubringen (Frage 5).

Bevor dieser neue Sprint durchgeführt wird, werden alle Teammitglieder
und gegebenenfalls neue Tester oder Testexperten benachrichtigt (Frage 6).

3.1.4	Konkretisierung	der	Anforderungen	und	Abgrenzung	
Die beschriebenen Anpassungsarten zeigen, wie komplex eine Anpassung
im laufenden Projekt sein kann und welche verschiedenen Möglichkeiten es
gibt. Die beiden komplexen Beispiele und besonders die vorher diskutierten
Gemeinsamkeiten und Schwächen der Ansätze sowie zusätzlich definierte
Herausforderungen zeigen, was alles bei der Anpassung selbst und ebenfalls
im Vorfeld zu beachten ist. Zusätzlich mit den Bewertungskriterien aus Ka-

83

pitel 2.4 und diesen neuen Erkenntnissen wurden die vorherigen sechs An-
forderungen an den eigenen Ansatz um sieben weitere Anforderungen er-
weitert. Die konkreten Anforderungen lauten somit:

A1. Der Fokus der Anpassung liegt auf der genutzten Software-
Engineering-Methode.

A2. Der Ansatz soll ähnlich wie die bereits beschriebenen Ansätze ei-
nem kontinuierlichen Zyklus folgen und das Feedback der Umgebung
mit einbinden.

A3. Der Anpassungszeitpunkt ist zur Laufzeit und die Dauer der gesam-
ten Anpassung soll möglichst kurz sein.

A4. Die SEM soll kontinuierlich und möglichst eigenständig in Hin-
blick auf notwendige Abweichungen und Anpassungen auf der Instanz-
Ebene beobachtet werden.

A5. Für diese kontinuierliche Beobachtung müssen sowohl die Umge-
bung als auch die aktuelle Software-Engineering-Methode selbst über-
wacht werden können. Das heißt, es müssten konkrete Daten, welche
für die Überwachung notwendig sind, gemessen werden.

A6. Die beobachteten Werte, also der aktuelle Status, muss analysiert
und schnell beurteilt werden können.

A7. Die Werte, aber auch das Modell der Software-Engineering-
Methode, müssen an einem zentralen Ort abgelegt und es muss darauf
zugegriffen werden können.

A8. Eine unmittelbare Anpassung der Software-Engineering-Methode
zur Laufzeit muss unter Betrachtung von vorher definierten Qualitäts-
zielen geplant werden können.

A9. Es muss entschieden werden, wie die Anpassung erfolgt: ob ein
Element ausgetauscht wird, ein Element gelöscht wird usw. Es muss
ferner mit betrachtet werden, ob die Anpassung eine Auswirkung auf
die Gesamtmethode hat. Die Anpassung muss anschließend am Modell
auf der Typ-Ebene entsprechend durchgeführt werden.

A10. Die Anpassung muss von der Typ-Ebene in das laufende Projekt,
also auf die Instanz-Ebene, zurückübertragen werden können.

A11. Die Anpassung soll schnellstmöglich und zeitnah, sowie mög-
lichst automatisch und somit eigenständig erfolgen.

A12. Die Anpassung muss im laufenden Projekt evaluiert werden kön-
nen.

A13. Die Ergebnisse der Anpassung sollen für weitere Projekte wieder-
verwendet werden können.

84

Der zu entwickelnde Ansatz zur Anpassung einer Software-Engineering-
Methode weist Ähnlichkeiten zu den bestehenden Ansätzen und vorwiegend
zum Projektcontrolling auf. Doch das Projektcontrolling selbst hat, wie
schon in Abschnitt 2.4 und 2.5 beschrieben, einen ganz anderen Fokus – das
Projekt selbst.

Im Projektcontrolling werden im Gegensatz zum entwickelnden Ansatz
hauptsächlich die Facetten Einhaltung des Budgets, Einhaltung des Zeit-
plans und Einhaltung der (Sach-)Ziele betrachtet und überwacht. Dabei wird
weniger genau auf die Software-Engineering-Methode selbst geschaut, was
hier besonders wichtig ist. Es kann unter Umständen vorkommen, dass et-
was an der Software-Engineering-Methode geändert wird, doch dies ist eher
ad hoc und unstrukturiert.

Im zu entwickelnden Ansatz sollen zwar die im Projektcontrolling über-
wachten Ziele enthalten sein, aber es sollen vor allem die eigentlichen Ziele,
Eigenschaften und Elemente der Software-Engineering-Methode betrachtet
werden. Die Anpassung erfolgt zeitnah, strukturiert und wird im Modell der
Software-Engineering-Methode abgebildet. Ferner ist die Anpassung durch
den zu entwickelnden Ansatz von kürzerer Dauer und soll wenn möglich
automatisiert und selbst-adaptiv durchgeführt werden.

Es ist sowohl dem Team als insbesondere auch dem Projektmanager mit
Hilfe des Ansatzes möglich, Probleme innerhalb der Software-Engineering-
Methode rechtzeitig zu erkennen und diesen rechtzeitig entgegen zu steuern.
Mit dieser Unterstützung können die Ziele des Projektmanagements und
somit des Projektcontrollings eingehalten werden.

Für die Entwicklung des Ansatzes wurde nach einem weiteren, ähnlichen
Zyklus gesucht, welcher die Anforderungen abbildet. Der Zyklus bzw. die
Zyklen, welche die Anforderungen und die Gemeinsamkeiten der bestehen-
den Ansätze ebenfalls abbilden, sind die Feedbackschleifen aus den selbst-
adaptiven Systemen, welche im nächsten Abschnitt näher vorgestellt wer-
den.

 	

85

3.2	Feedbackschleifen	aus	den	selbst‐adaptiven	Syste‐
men	
Wie in Abschnitt 3.1 beschrieben, wird für Anpassungen, Veränderungen
oder Verbesserungen immer wieder ein Zyklus in verschiedenen Ausprä-
gungen verwendet. Am Ende des Abschnitts wurden Anforderungen defi-
niert, welche ein Zyklus zur Anpassung im Projekt erfüllen muss. Durch
diese Anforderungen wurde eine weitere Reihenfolge für den Ablauf des
Zyklus vorgeschlagen.

In den selbst-adaptiven Systemen werden zur Überwachung und Anpassung
von Systemen ebenfalls Zyklen verwendet, die sogenannten Feedback-
schleifen. Diese überwachen automatisch ein gegebenes System und geben
entsprechend Feedback, ob ein System möglicherweise angepasst werden
muss oder nicht. Diese Feedbackschleifen sollen neben selbst-adaptiven
Systemen im Folgenden vorgestellt werden, dabei speziell die bekannte
Feedbackschleife MAPE-K, welche den gestellten Anforderungen sehr nahe
kommt.

3.2.1	Selbst‐adaptive	Systeme	und	selbst‐adaptive	Software	
Um mit der immer größer werdenden Komplexität von Software-Systemen
umgehen zu können und Herr über die sich ständig ändernde Umgebung zu
werden, haben Softwareentwickler und -techniker angefangen, sich mit
Selbst-Adaptivität von Systemen zu beschäftigen [Br09]. Dabei haben sie
sich in anderen verwandten Gebieten umgeschaut, beispielsweise in der Ro-
botik oder der Künstlicher Intelligenz, um neue Wege für das Design von
Systemen und Software zu finden. Selbst-adaptive Systeme können auf eine
sich ändernde Umgebung und neue Anforderungen reagieren, welche zum
Zeitpunkt des Designs noch nicht bekannt waren. „Selbst“ (engl. self) heißt
in diesem Kontext, dass das System oder die Software selbstständig, also
autonom und ohne oder nur mit minimalen (menschlichen) Einfluss von
außen entscheiden kann, ob und wie auf Änderungen in der Umgebung rea-
gieren und sich gegebenenfalls anpassen kann [Ch09].

Aus einem ähnlichen Grund sind die Agilen Methoden in Bezug auf Soft-
ware-Engineering-Methoden bzw. die Entwicklung von Software(-
Produkten) entstanden. Sie sollen ebenfalls auf sich ändernde Anforderun-
gen an die Software zeitnah reagieren können, da nicht alle Anforderungen
zu Beginn bekannt sind oder der Kunde plötzlich eine Änderung haben
möchte.

Wissenschaftler und Entwickler haben sich viele Gedanken darüber ge-
macht, wie selbst-adaptive Systeme aussehen sollten, um eine große Band-
breite bei der Anpassung abdecken zu können, unter anderem die Perfor-
manz oder Sicherheit von Systemen. Gerade die Sicherheit ist bei sicher-

86

heitskritischen Systemen besonders wichtig. Aber auch das Fehlermanage-
ment kann mit selbst-adaptiven Systemen gut adressiert werden [KC03].

Normalerweise befinden sich Software-Systeme wie beschrieben in einer
sich andauernd ändernden Umgebung. Sie benötigen Personen, die sich mit
möglichst allen Faktoren auseinandersetzen und alle Möglichkeiten „vorher-
sehen“, die passieren können. Ferner müssen diese Personen Änderungen
bemerken und rechtzeitig agieren, damit die Systeme einwandfrei weiterlau-
fen. Doch gerade diese Aufgaben sind nicht nur kostspielig und sehr zeit-
aufwendig, sondern können kaum adäquat von Personen abgedeckt werden
[ST09].

Gerade ein immer größeres Verlangen nach weiteren Automatisierungen,
nach Robustheit oder Qualitätssicherung innerhalb des Budgets und inner-
halb einer bestimmten Zeit konnte bis dato kaum erfüllt werden. Die selbst-
adaptiven Systeme aber auch selbst-adaptive Software, welche nach dem-
selben Prinzip funktioniert, waren die Antwort auf diese Probleme.

Die Lösungen sind sogenannte „Closed-Loop-Systeme“, die eine Feedback-
schleife enthalten mit dem Ziel, Veränderungen rechtzeitig zu erkennen und
sich selbstständig anzupassen. Diese Veränderungen können durch die
Software oder das System selbst intern ausgelöst werden oder aber auch
durch den Kontext, in dem sie sich befinden, z.B. durch externe Events wie
mehr User Reqests [ST09]. Um das Ziel zu erfüllen, müssen sich die Syste-
me oder die Software und ihre Umgebung selbstständig überwachen, signi-
fikante Änderungen entdecken, entscheiden können, wie sie reagieren sollen
und diese Entscheidungen entsprechend ausführen. Dies erfolgt alles auto-
matisch zur Laufzeit.

Was selbst-adaptive Systeme und Software somit alle gemeinsam haben ist,
dass die Änderungen und die Entscheidungen, wie reagiert werden soll alle
automatisch und zur Laufzeit durchgeführt werden müssen. Dafür muss
ihnen ihr aktueller Zustand, aber auch der Zustand ihrer Umgebung bekannt
sein. Dies führt zu den vier Schlüssel-Aktivitäten im Feedback-Prozess
[KC03, BR09, CH09,ST09]:

1. Sammeln (Collect)
2. Analysieren (Analyze)
3. Entscheiden (Decide) und
4. Handeln bzw. Ausführen (Act)

Diese Schlüssel-Elemente finden sich typischerweise in den Feedback-
schleifen wieder, welche im folgenden Abschnitt näher beschrieben werden.

3.2.2
Um
Syste
Rück
komm
welc
müss

Abbil

Eine
Reak
Die v
Abbi
[Br09









Mit d
dene
in 20

Das
das z
chite

2	Allgemei
das dynami
emen ansat
kmeldung v
men. Die S
he Entsche
sen.

ldung 22 Schl

bewährte
ktion sind d
vier Schlüs
ildung 22 z
9, Ch09, Do

 das Sam
ect“),

 das Anal
 das Ents

soll („De
 das Hand

der Zeit ha
 Ausprägun

003 und spä

Rainbow-F
zu überwac
ektur-Manag

ine	Beschr
ische, sich
tzweise kon
vom aktuell
Systeme bra
eidungen zu

üsselfaktoren

Möglichkei
die sogenan
sselfaktoren
zu sehen un
o06]

mmeln von D

lysieren die
scheiden, ob
ecide“),
deln bzw. A

aben sich ne
ngen entwic
äter in 2007

ramework u
hende Syst
ger auf der a

8

reibung	vo
immer änd

ntrollieren
en Stand de
auchen dies
u einem bes

der allgemeine
Br0

it für ein s
nnten Feedb

für eine al
nd bereits

Daten über

eser Daten („
b das System

Ausführen d

eben der all
ckelt, u.a. d
die Shaw-F

unterteilt da
em auf der
anderen Sei

87

on	Feedbac
dernde Verh
zu können
es Systems
s Wissen u
stimmten Z

en Feedbacksc
09]]

solches Fee
backschleife
llgemeine F
im vorherig

das System

„Analyze“)
m oder die S

der Entschei

lgemeinen F
das Rainbow
Feedback-L

abei wie in
einen und

ite. Anhand

ckschleife
halten von
, müssen s
und seiner

um herauszu
Zeitpunkt ge

chleife basieren

edback mit
en (engl. Fe
Feedback-L
gen Abschn

m und den

),
Software an

idung („Act

Feedbacksc
w-Framewor
oop [MPS0

Abbildung
einem über

d von Monit

n	
selbst-adapt
sie ständig
r Umgebung
ufinden, ob
etroffen we

nd auf [Do06, C

entspreche
eedback-Loo
oop sind w
nitt beschri

Kontext („C

ngepasst we

“).

chleife versc
rk von [GC
8].

g 23 zu sehe
rwachenden
oring-

tiven
eine

g be-
b und
erden

Ch09,

ender
ops).

wie in
ieben

Coll-

erden

chie-
CS03]

en in
n Ar-

Mec
tektu
befin
ten
„Rep
prete
Fall

Auc
24 z
eige
woh
Feed
sich
Fram
kann
nand

In d
sind
mit
die
über

A

chanismen w
ur Manager
nden. Anha
auf Abweic
pair Handle
er“ und den
dem „Runt

ch in der Sh
zu sehen da
entlichen Fe
hl von der U
dbackschlei

alles vora
mework wer
nten Daten
der verglich

iesen Vergl
d, zusätzlich

ein. Diese
Korrekturen
rführt.

Abbildung 23 R

wird das Sy
r“ übertrage
and der über
chungen hin
er“ eine Anp
n „Übersetz
time Manag

aw-Feedbac
as ausführen
eedbackschl
Umgebung
ife übertrag
aussichtlich
rden die Da
erstellten z

hen.

leich fließen
h die Zielvo
werden ans
n werden m

8

Rainbow-Fram

ystem überw
en, wo sich
rtragenen D
n im Analy

npassung gep
zer“ zurück
ger“.

ck-Loop na
nde System
leife abgek
als auf vom

gen. Zusätzl
h weiter en
aten anhand
zukünftigen

n für die En
orstellungen
schließend
mit Hilfe vo

88

mework basiere

wacht und
h das Model
Daten und d
yzer analysi
plant. Diese

k in das Sy

ach [MPS08
m sowie die
kapselt. Dat
m System s
ich werden

ntwickelt. Ä
d eines aktu

System-M

ntscheidung
n, welche an
in einem n
on Komman

end auf [GCS0

diese Daten
ll des Syste
des Modells
iert und fall
e wird über
stem übertr

8] werden w
Betriebsum
en-Stichpro
selbst geme
Prognosen

Ähnlich wi
uellen und e
odells analy

, ob Korrek
nfangs erste
ächsten Sch
ndos in das

03]

n in den „A
ems und die
s werden di
ls nötig wir
r den „API
ragen, in di

wie in Abbil
mgebung vo
oben werde
essen und a
n gesammelt
ie im Rain
eines mit de
ysiert und m

kturen notw
ellt worden
hritt geplan
s System zu

Archi-
e API
e Da-
rd im
Inter-
iesem

ldung
on der
en so-
an die
t, wie

nbow-
en be-
mitei-

endig
sind,

nt und
urück

Ähnl
schle
lerwe
wurd
[IBM
vier
um e
Plan
ledge
Fram
fangs
dem
tem
back
men.

3.2.3
Das
nann
selbs
se A
bluep

A

lich diesen
eifen, die M
eile größten
de von Kep
M06] gemac

Schlüsselfa
eine Planung

und Execu
e Base“, w

mework und
sbuchstaben
Namen „M
abgekapsel

kschleife wi
.

3	Die	Feed
“Autonomi

nt, wurde v
st-adaptive S

Architektur,
print for aut

bbildung 24 Sh

beiden Mo
MAPE-K-Fe
nteils bei se

phart und C
cht. Die Fee
aktoren abb
g erweitert:

ute (Act). Z
wo beispiel
d in der Sha
n der Phasen

MAPE-K“. E
t und werd
rd im folge

dbackschle
ic Element”
on Kephart
System mit
MAPE-K g
tonomic com

8

haw-Feedback

dellen hat s
eedbacksch
elbst-adapti
hess [KC03
dbackschlei
ildet und d
: Monitor (C

Zusätzlich g
sweise die
aw-Feedbac
n und der K

Ebenfalls sin
den „Autono
enden Absc

eife	MAPE‐
”, oder auch
t und Ches
einer expli

genannt, wu
mputing” vo

89

k-Loop basiere

sich eine d
hleife [Br09
iven System
3] entwicke
ife besteht a

diese wie in
Collect), An

gibt es eine
Modelle ä

ck-Loop ge
Knowledge B
nd die Phas
omic Elem

chnitt genau

‐K	
h Kontroll-
s [KC03] a
iziten Feedb
urde populä
on IBM [IB

end auf [MPS0

der bekannte
9] entwicke
men eingese
elt und durc
aus vier Pha

n der Shaw-
nalyse (Ana
Wissensba

ähnlich wie
speichert w
Base führen

sen des MA
ment“ genan

uer unter di

bzw. Feedb
als weitere
back-Loop v
är durch den
BM06].

8]

esten Feedb
lt, welche m
etzt wird. D
ch IBM pop
asen, welch
-Feedback-L
alyze + Dec
sis, die „Kn
e im Rainb

werden. Die
n letztendlic

APE-K vom
nt. Diese F
ie Lupe gen

backschleife
Architektu

vorgestellt.
n “Architec

back-
mitt-

Diese
pulär

he die
Loop
cide),
now-
bow-

e An-
ch zu
Sys-

Feed-
nom-

fe ge-
ur für

Die-
ctural

Das
Elem
Man
Kom
Met

Eine
Dies
(M)
nem
Exec
(Kno
Man
spre
Aktu
blue
Phas
men

Abbildu

Autonomic
ment (dem
nager“ selbs
mponente si
hode haben

 Details

 diese D
den mu

 einen P
gen Än

 um dies

e solche M
se besteht w
oder Moni

m Planer (P)
cute-Phase.
owledge B
nager noch z
echenden D
uatoren, we
eprint“ von
sen, die Wi

ntiert werden

ung 25 Autono

c Element b
System), w
st, dessen K
ich nun selb
n [IBM06], w

sammelt, d

Details analy
uss,

Plan oder ei
nderungen sp

se Aktionen

Methode ist
wie in Abbi
itor-Phase,
der sogena
 Alle vier P
ase, K) [B
zwei Schnit

Daten samm
elche die A

IBM biete
issens-Basis
n können [I

9

mic element -

besteht wie
welches gem
Kern die Fee
bst manage
welche

die sie vom

ysiert um z

ine Reihe v
pezifiziert u

n auszuführe

die Implem
ildung 25 z
einem Ana

annten der P
Phasen teile

Br09, IBM0
ttstellen. Zu

meln und zu
Aktionen am
et ausführli
s, die Senso
IBM06, Br0

90

MAPE-K feed

e in Abbildu
managt wird
edbackschle
n kann, mu

System und

u entscheid

von Aktione
und

en.

mentierung
zu sehen au
alyzer (A) o
Plan-Phase u
en sich eine
06]. Zusätzl
um einen di
um anderen
m Ende aus
iche Beschr
oren und Ef
09].

dback loop nac

ung 25 zu s
d und aus d
eife ist. Dam
uss sie eine

d seiner Um

den, ob etwa

en erstellt,

des Auton
s vier Teile

oder der An
und einem E
e gemeinsam
lich besitzt
ie Sensoren,
n die Effek
sführen. De
reibungen a
ffektoren/Ak

ch [KC03]

sehen aus e
dem „Auton
mit eine Sy
e (automatis

mgebung bra

as geändert

welche die

nomic Mana
en, dem Mo
nalyse-Phas
Executer (E
me Wissens

der Auton
n, welche die
ktoren oder
er „Architec
an, wie die
ktuatoren im

einem
nomic
stem-

sierte)

aucht,

t wer-

nöti-

agers.
onitor
se, ei-
E), der
sbasis
nomic
e ent-
auch

ctural
e vier
mple-

91

In der Monitor-Phase sammelt der Monitor verschiedene Daten über das
System, den Prozess, in dem es sich befindet, sowie über dessen Kontext
und Umgebung. Diese Sensordaten werden gefiltert und akkumuliert, wofür
es verschiedene Methoden und Möglichkeiten gibt. Abschließend werden
die Daten und relevante Ereignisse in der Wissensbasis für die Zukunft ge-
speichert.

Der Analyzer vergleicht in der Analyse-Phase die Daten der Ereignisse mit
verschiedenen Mustern aus der Wissensbasis und/oder modelliert komplexe
Situationen, um mögliche Situationen in der Zukunft vorhersagen zu kön-
nen.

Der Planer interpretiert in der Planungsphase die Daten und Situationen. Er
erstellt mögliche Aktionen, die ausgeführt werden, um einen bestimmten
Status oder gesetzte Ziele des Systems erreichen zu können. Dieser Plan
wird wie beschrieben in der Execute-Phase durch den Executer und über die
Effektoren ausgeführt.

Auch wenn es durch den Autonomic Manager möglich ist, die verschiede-
nen Phasen der Feedbackschleife zu automatisieren, möchten professionelle
IT’ler manchmal nur einige Teile der potentiell automatisierten Phasen an
ihn delegieren [IBM06]. In Abbildung 26 sind die vier verschiedenen Profi-
le (Monitor, Analyse, Plan und Execute) des Autnomic Managers zu sehen.
Ein Administrator möchte beispielsweise nur die Monitor-Phase automati-
sieren und durch den Autonomic Manager ausführen lassen. Das Ergebnis
der Monitor-Phase, die gesammelten und vielleicht schon gefilterten und
akkumulierten Daten möchte er dann lieber an andere Konsolen oder auch
Menschen delegieren, als sie zu automatisieren, z.B. aufgrund von Erfah-
rungswerten etc. Natürlich können auch andere Teile zusätzlich automati-
siert werden. Durch diese Aufsplittung der Phasen sind die verschiedensten
Kombinationen möglich.

A

Wie
statt
eine
Kom
abhä
teme
mit
Poli
ne. D
tono
form
oder

Der
für a
naue
an u

Wie
neer
eine
näch
Funk
sen

Abbildung 26 A

e vorher be
t. Diese Wi
es Wörterbu
mbination au
ängig von d
en, besteht
einer bestim
cies, Anfra
Die gespeic
omic Manag
mationen üb
r verschiede

Autonomic
autonome S
er Betrachtu

unseren Ans

e würde es n
ring-Method
e selbst-adap
hst müsste ü
ktionen dar
als auch die

Aufsplittung de

schrieben,
issensbasis

uchs, einer D
us allem. Zu
den Interfac
das Wissen

mmten Synt
gen zur Än

cherten Date
ger genutzt.
ber und durc
ene Metrike

c Manager u
Systeme und
ung erfüllt
satz für die A

nun aussehe
de ersetzt w
ptive Anpas
überprüft w
rauf abbilde
e Wissensba

9

er Automatisie
[IBM

finden die
kann eine

Datenbank
umindest st
ces der Arc
n aus bestim
tax und Sem

nderung (Re
en werden v
. Zusätzlich
ch Topologi
en [IBM06].

und seine Fe
d Systemko
diese Feedb
Anpassung

en, wenn d
würde? Ist e
ssung von e

werden, ob u
en lassen un
asis, Sensor

92

erung der einze
M06]

vier Phase
Implement
oder eines
ellt er den Z

chitektur [IB
mmten Typ
mantik, wie
equests of C
von den ve

h kann die W
ien enthalte
.

eedbacksch
omponenten
backschleif
von Softwa

das System
es möglich,
einer SEM z
und wie sic
nd was sow
ren und Effe

elnen Phasen im

en über ein
tierung eine
Repositorie

Zugriff auf „
BM06]. In
en von „ma

e beispielsw
Change) und
rschiedenen
Wissensbas
n, als auch

leife MAPE
n beschriebe
fe genau die
are-Enginee

durch eine
diese Feed

zur Laufzei
h die einzel

wohl die ver
ektoren enth

m MAPE-K na

ner Wissens
er Registrie
es sein oder
„Wissen“ s
autonomen
anagement

weise Sympt
d Änderung
n Phasen im
sis Daten w
historische

E-K sind (bi
en. Doch be
e Anforderu
ering-Metho

Software-
dbackschleif
it zu nutzen
lnen Phasen

rschiedenen
halten müss

ach

sbasis
erung,
r eine
icher,

n Sys-
data“
tome,
gsplä-
m Au-
ie In-
Logs

isher)
ei ge-
ungen
oden.

Engi-
fe für

n? Zu-
n und

n Pha-
sten.

93

3.3	Beschreibung	der	Konzeption	eines	SE	Method	Mana‐
gers		
Eine Software-Engineering-Methode soll zur Laufzeit kontinuierlich über-
wacht und sich möglichst automatisch anpassen. Im hier vorgestellten An-
satz soll dazu der Ablauf des MAPE-K auf Software-Engineering-Methoden
übertragen werden. Eine der entscheidenden Fragen ist dabei, wie die An-
passung einer Software-Engineering-Methode mit dem MAPE-K kombi-
niert werden kann; ist es möglich alles auf die entsprechenden Phasen abzu-
bilden und wie müssten diese dann aussehen?

Um eine Software-Engineering-Methode mit Hilfe des MAPE-K überwa-
chen zu können ist es wichtig zu bestimmen, was genau auf der Instanz-
Ebene gemessen werden kann. Mit Hilfe der Sensoren ist es möglich, „har-
te“ Faktoren der Software-Engineering-Methode zu messen. Damit sind
solche Faktoren gemeint, die sich direkt in Listen, in Tabellen, im Code, in
Algorithmen, in Modellen usw. erfassen und auswerten lassen. Diese kön-
nen mit Hilfe von Metriken die zu messenden Werte bestimmen und sie
anschließend mit Hilfe von Sensoren für die weitere Verarbeitung erfassen.

Schwierig wird es bei den „weichen“ Faktoren. Damit ist beispielsweise
gemeint, wenn sich zwei Personen im Team nicht verstehen, die Kommuni-
kation untereinander nicht funktioniert, Missverständnisse entstehen usw.
Dies sind Faktoren auf der psychologischen, kulturellen und zwischen-
menschlichen Ebene, welche zwar Auswirkungen auf die Software-
Engineering-Methode und somit auf den Erfolg des Projektes haben. Wei-
che Faktoren lassen sich jedoch nur schwierig bestimmen. Es lassen sich
maximal die Auswirkungen solcher Faktoren beobachten und messen, wenn
diese sich in den harten und somit messbaren Faktoren niederschlagen.

Auch das Projektcontrolling sagt nach [He13], dass ein Projektmanager sol-
che strukturellen Konflikte zwar nicht grundsätzlich verhindern kann, aber
er kann im Voraus versuchen diese zu reduzieren. Dies ist beispielsweise
möglich, in dem er Projektrollen so definiert, dass dabei möglichst wenige
Personen im selben Fachgebiet arbeiten oder dass jede Person in möglichst
wenigen Fachgebieten arbeitet. Diese Aspekte können wiederum in Mess-
werte umgewandelt werden, zum Beispiel anhand der Qualifikationen und
Zugehörigkeiten der Personen und Rollen, welche in einem Dokument fest-
gelegt sind.

Wenn nun entsprechend die weichen Faktoren soweit wie möglich in harte
Faktoren umgewandelt werden, ist eine weitere wichtige Frage, wie sicher-
gestellt wird, dass das Richtige gemessen wird. Das heißt, dass die korrek-
ten Werte erfasst und ausgewertet werden. Wie dies im Ansatz sichergestellt
wird, beschreiben Abschnitt 4.3 und ausführlicher Abschnitt 5.3.

94

Um nun die Software-Engineering-Methode beobachten zu können und ent-
sprechende Messwerte zur Auswertung zu erhalten, muss die Software-
Engineering-Methode und ihre Instanziierung mit den entsprechenden Wer-
ten im Projekt zunächst selbst abgebildet werden. Dies kann hier über das
Managed Element erfolgen, welches sonst das zu verwaltende System dar-
stellt. Die resultierende „Managed SE-Methode“ muss somit alle aktuellen
Daten der instanziierten Software-Engineering-Methode beinhalten, welche
kontinuierlich gemessen und überwacht werden können. Daten können da-
bei u.a. die aktuell erstellten Artefakte, die durchgeführten Aktivitäten, die
konkret ausfüllten Rollen, eingesetzte Techniken, durchgeführte Meetings
usw. sein.

Anhand der Sensoren werden nun die entsprechenden Daten gemessen und
in der Monitor-Phase anschließend aufgezeichnet, für die Analyse aufberei-
tet sowie zusätzlich in die Wissensbasis geschrieben. Anhand der Sensoren
und der Monitor-Phase wäre somit sichergestellt, dass die Software-
Engineering-Methode aber auch ihre Umgebung kontinuierlich überwacht
werden, wie in der Anforderung A5 gefordert.

In der Analyse-Phase werden die gemessenen und aufbereiteten Daten aus-
gewertet. Die Daten spiegeln den aktuellen Status der Software-
Engineering-Methode wider, den Ist-Zustand. Dieser wird mit vorher defi-
nierten Werten, also einem Soll-Zustand, verglichen. Falls die gemessenen
Daten den Soll-Zustand nicht erfüllen, das heißt von den im Vorfeld defi-
nierten Werten beispielsweise durch Über- oder Unterschreiten abweichen,
wird die Plan-Phase angestoßen, um eine Anpassung zu planen. Die Aus-
wertung und Analyse des aktuellen Zustandes erfolgt dabei mit Hilfe der
Wissensbasis.

Hat die Analyse-Phase nun ergeben, dass die Software-Engineering-
Methode angepasst werden muss, werden in der Plan-Phase eine Anpassung
und mögliche Varianten geplant. Dafür können verschiedene Methoden-
Elemente aus einer Methoden-Basis ausgewählt werden. Diese Elemente
können gegen Elemente in der aktuellen Software-Engineering-Methode
ausgetauscht, gelöscht oder ihr hinzugefügt werden. Anschließend soll die
Konsistenz der Anpassung in Hinblick auf die gesamte SEM überprüft wer-
den, vor allem ob diese Anpassung an einer anderen Stelle Konflikte aus-
löst. Ist dies der Fall, muss eine Alternative geplant werden.

Als letztes wird die Anpassung in der Execute-Phase über Effektoren ausge-
führt, das heißt die angepasste SEM wird in das aktuelle Projekt übertragen
und alle Beteiligte müssen entsprechend benachrichtig werden. Mit einer
solchen Anpassung wäre zum einen erfüllt, dass die Anpassung während des
laufenden Projektes stattfindet (Anforderung A3). Zum anderen erfolgt die

Anpa
dann
tisch

3.3.1
Nach
ist, w
„SE

Das
Syste
die „
tuelle
Elem
Engi
spiel

Die b
Infor
notw
der M
ßerde
Baus
Baus

assung nich
n, wenn ein
h geschehen

1.	Aufbau	u
hdem erörte
wird in Abb
Method Ma

bisherige M
em, sondern
„Managed S
en Projektd

ment erfolg
neering-Me

lsweise Date

beschrieben
rmationen,

wendig sind.
Monitor-Pha
em enthält
steinen für
steine für e

ht nur währ
n Problem a

(Anforderu

und	Besch
ert wurde, d
bildung 27 e
anager“ gez

Abbildung

Managed El
n die Softwa
SE-Methode
daten sowie
gt die Dat
ethode ausg
en ein, erze

ne Wissensb
die für eine
. Dies sind
ase genutzt
die Wissen
eine Softw
ine agile al

9

rend des P
auftritt. Let
ung A11).

hreibung	d
dass eine A
eine detailli
eigt.

g 27 Aufbau de

lement ist h
are-Enginee
e“ besteht a
e allen Proj
eneingabe.
geführt un
ugen Artefa

basis beinh
e Anpassun
definierten
t werden, so
nsbasis ein

ware-Engine
ls auch eine

95

Projektes, so
tztgenanntes

des	SE	Meth
Abbildung a
iertere Ausa

es SE Method

hier wie be
ering-Metho
aus dem akt
ektbeteiligt

Hier wird
nd die Proj
akte, dokum

haltet eine I
ng der Softw
Ziele, Aufb

owie Regeln
ne Methoden
eering-Meth
e klassische

ondern zeit
s sollte mö

hod	Manag
auf den MA
arbeitung fü

Managers

ereits beschr
ode selbst. D
tuellen Proj
ten und übe
d die aktu
jektbeteiligt

mentieren M

Information
ware-Engin
bereitungsre
n zu ihrer A
n-Basis mi

hode. Dies
e SEM sein

nah und im
öglichst auto

ger		
APE-K mög
ür einen sol

rieben nich
Dieses Elem
jekt mit den
er das Man
uelle Softw
ten geben

Meetings usw

sbasis mit
neering-Meth
egeln, welch
Anpassung.
t verschied
können sow

n. Abschlie

mmer
oma-

glich
lchen

ht ein
ment,
n ak-

naged
ware-

bei-
w.

allen
thode
he in
. Au-
denen
wohl

eßend

96

enthält die Wissensbasis ein Modell der aktuellen Software-Engineering-
Methode selbst.

Das Modell ist sehr wichtig, denn an diesem werden die Änderungen durch-
geführt, beispielsweise das Hinzufügen eines Artefakts, die Änderung von
Rollen, das Austauschen einer Technik usw. Die Modellierung einer SEM
kann beispielsweise über SPEM oder MetaME erfolgen, aber auch eine ein-
fache Form eines Modells kann gegeben sein. Wichtig ist, dass alle Artefak-
te, Rollen, Aktivitäten, Techniken und der Workflow sowie die Abhängig-
keiten untereinander modelliert sind. Nur so kann eine Anpassung vorge-
nommen werden. Die verschiedenen Elemente der Wissensbasis sollten vor
der Projektdurchführung erstellt werden. Durch das vorherige Erstellen
vermindert sich der Aufwand während der Durchführung.

Ähnlich wie die Modelle sind die Sensoren, welche u.a. automatisch je nach
Phase anhand von Regeln ausgewählt werden können, bereits vorher vor-
handen. Diese Sensoren erfassen bestimmte Werte über beispielsweise das
Eintragen in Programme oder Listen durch die Projektmitarbeiter. Das Ein-
tragen der Werte würde nur einen geringen Mehraufwand für die Mitarbei-
ter bedeuten, da dies in ihren geregelten Tagesablauf mit eingebettet ist.

In der Monitor-Phase werden nun wie vorher beschrieben die eingegebenen
Daten beobachtet und für die Analyse aufbereitet. Dies erfolgt über vorher
definierte Aufbereitungsregeln mit Hilfe der Wissensbasis. Zum Beispiel ist
für eine bestimmte Auswertung die Teamgröße wichtig. Die Sensoren mes-
sen kontinuierlich die Anzahl der Personen pro Team. In der Monitorphase
wird dies insofern aufbereitet, als dass die Anzahl der Personen pro Team
gleich der Teamgröße gesetzt wird.

In der Analyse-Phase wird zu Beginn ausgewertet, ob sich Projektdaten ge-
ändert haben. Im positiven Fall, wird überprüft, ob vorher gesetzte Ziele und
Grenzwerte für diese Projektdaten weiterhin eingehalten werden. Ist dies der
Fall, wird die Software-Engineering-Methode weiter fortgeführt und die
Phase Plan wird nicht aufgerufen. Werden die Werte über- oder unterschrit-
ten, soll die SEM angepasst werden und die Plan-Phase wird mit den zu
ändernden Daten aufgerufen.

In der Plan-Phase wird nun die Änderung der Software-Engineering-
Methode geplant. Wie in 3.1.2. kann es mehrere Möglichkeiten für die An-
passung einer Methode geben. Je nach Änderungsbedarf wird ein Element
hinzugefügt, ausgetauscht oder gelöscht. In Betracht kommt auch die Ände-
rung des Ablaufs. Die Planung kann über vorhandene Erfahrungswerte aber
auch über Planungs-Algorithmen erfolgen. Bevor die geplante Änderung
umgesetzt wird sollte überprüft werden, ob und wie sich diese auf die ge-
samte Software-Engineering-Methode auswirkt. Die Frage ist, ob diese Än-

97

derung an dieser Stelle die SEM verbessert, oder ob sie an einer anderen
Stelle dadurch weitere Probleme erzeugt. Für den Fall, dass die gesamte
SEM an einer anderen Stelle stark gestört wird, muss eine Alternative ge-
plant und mit der Gesamt-SEM sowie der anderen Planungsvariante abge-
glichen werden. Ist dies erfolgt, wird die endgültige Planung festgelegt und
die Execute-Phase wird aufgerufen.

Die Execute-Phase passt nun sowohl das Modell als auch die Instanz der
aktuellen SEM mit der geplanten Änderung an und ermittelt, wer alles an-
hand von Benachrichtigungen (Notifications) über die Änderung informiert
werden muss. Dies können sowohl Betroffene der Änderung sein als auch
Programme oder Systemteile.

Abschließend greifen nun die Effektoren in das aktuelle Projekt und somit
in die aktuelle Software-Engineering-Methode ein und setzen die Anpas-
sung entsprechend um. Bei den Effektoren handelt es sich um ein generi-
sches Konzept. Effektoren können sowohl Projektpläne als auch Projektpa-
rameter anpassen. Sie können ebenfalls Modelle automatisch ändern und
Benachrichtigungen verschicken. Effektoren müssen ferner für die Nach-
vollziehbarkeit der Änderungen sorgen, z.B. über einen Mechanismus, um
Änderungen in ein Log der Wissensbasis zu schreiben.

Eine selbst-adaptive Anpassung einer Software-Engineering-Methode wäre
mit Hilfe von einem SE Method Manager also theoretisch möglich. Dies
soll im nächsten Abschnitt mit Hilfe von einem einfachen Beispiel verdeut-
licht werden.

3.3.2	Durchspielen	des	SE	Method	Managers	anhand	eines	Bei‐
spiels	
Für das Durchspielen des SE Method Managers wird das einfache Beispiel
der Teamgröße in Scrum verwendet. In Scrum ist die Teamgröße des Ent-
wicklungsteams ein wichtiger Bestandteil. Ein Team sollte nach [SS13]
nicht größer als 9 und nicht kleiner als 3 Personen sein. Würden weniger als
3 Personen im Entwicklungsteam arbeiten so besteht die Gefahr, dass diese
kein funktionierendes Produkt-Inkrement liefern, weil sie beispielsweise
nicht über die nötigen Skills verfügen. Sind mehr als 9 Personen im Ent-
wicklungsteam so erfordert dies nach Schwaber und Sutherland zu viel Ko-
ordination. Das zu große Entwicklungsteam erzeugt eine zu hohe Komplexi-
tät um erfolgreich durch Scrum verwaltet zu werden [SS13]. Neben der Ko-
ordination leidet zusätzlich die Kommunikation.

Auch wenn Scrum für beide Möglichkeiten Lösungsansätze vorsieht, bei-
spielweise bei einem zu großen Team das Team zu splitten und das zusätzli-
che Team-Meeting Scrum of Scrums einzuführen, so wird dies in der Praxis
nicht unbedingt umgesetzt. Die Erfahrung, dass ein zu großes Team nicht

entsp
gem
SE M

Die
hen
dass
größ
beze
kom
zusä

Übe
hat.
Reg
Team
som

In d
ßer
nega
Eng

In d
nen
mit

prechend g
macht. Wie
Method Ma

Abbildung 2

Managed S
die Agile M

s das origin
ße verwende
eichnet, bes

mplexer Spri
ätzliche Anz

er die Senso
In der Mo

el für die T
mgröße ist.

mit zu groß.

er Analyse-
als neun P
atives Erge
ineering-M

der Plan-Pha
geplant. De
sechs Perso

geteilt wurd
eine eigens
nager dafür

8 Anpassung b

SE-Methode
Methode Sc

nale Scrum
et werden so
teht zu Anf
int ansteht,
zahl der Mit

oren wird n
onitor-Phase
Teamgröße b

Die neue T

-Phase wird
ersonen ist.
ebnis und
ethode ange

ase wird die
er Plan ist, d
onen entsteh

9

de, wurde a
ständige An
r aussieht, w

bei einem zu gr

e hier im B
crum im Or
durchgefüh
oll. Das Ent
fang aus 7 P
werden dem
tglieder wir

nun gemess
e werden d
besagt, dass
Teamgröße

d analysiert,
. Die Analy

die Beur
epasst werd

e Anpassung
dass ein Tea
hen. Die Pe

98

auch in eine
npassung sc
wird im folg

roßen Team m

Beispiel ist w
riginal. Das

hrt wird und
twicklungst
Personen. D
m Team 5 M
rd ein einer

en, dass sic
die neuen P
s die Anzah
beträgt nun

 ob das Tea
yse ergibt i
rteilung la

den muss.

g für das zu
am-Split du
ersonen wer

em Praxis-P
chnell und e
genden Beis

mit dem SE Met

wie in Abbi
s definierte
d somit die
team, hier e

Da beispielsw
Mitglieder h
Liste festge

ch die Team
Projektdaten
hl der Team
n die Zahl 1

am kleiner a
in diesem B
autet, dass

u große Tea
urchgeführt
rden gemäß

Projekt im
einfach mit

spiel gezeigt

ethod Manager

ildung 28 z
Ziel lautet
optimale T

einfach mit T
weise gerad
hinzugefügt
ehalten.

mgröße geä
n aufbereite
mmitglieder
12. Das Tea

als drei oder
Beispiel als

die Softw

am mit 12 P
und zwei T

ß ihrer Skill

s-lab
t dem
t.

r

zu se-
t hier,
Team-
Team
de ein
t. Die

ändert
et, die
= der

am ist

r grö-
so ein
ware-

Perso-
Teams
ls den

99

Teams zugeordnet, ebenso wie die Aufgaben aus dem Product Backlog.
Zusätzlich wird geplant, dass ein Scrum of Scrums nach dem Daily Scrum
durchgeführt wird. Dies ist ähnlich wie das Daily Scrum ein Informations-
meeting, wo sich Vertreter der beiden Teams treffen und entsprechend aus-
tauschen.

In der Execute-Phase wird die geplante Software-Engineering-Methode ent-
sprechend in die Wissensbasis geschrieben und der Termin für das Scrum of
Scrums wird nach dem Daily Scrum gesetzt. Abschließend werden alle Be-
teiligten über die Änderungen informiert und wann diese Änderungen in
Kraft treten. Über die Effektoren werden die Änderungen in das aktuelle
Projekt übertragen und die Benachrichtigungen versendet. Die Software-
Engineering-Methode ist somit angepasst.

3.3.3	Möglichkeiten	zur	Automatisierung	
Beim ursprüngliche Autonomic Manager ist es möglich, alle vier Phasen zu
automatisieren. Trotzdem wird wie in Abschnitt 3.2.2 beschrieben dies nicht
immer durchgeführt. Manchmal werden nur einzelne Phasen automatisiert
oder Kombinationen von einzelnen Phasen. Das Ziel des SE Method Mana-
gers sollte ebenfalls sein, dass MAPE-K vollständig automatisiert werden
kann. Insbesondere das Messen der Daten über Sensoren, die Monitor-Phase
mit der Aufbereitung der Daten für die Analyse-Phase sowie die Analyse-
Phase selbst bieten sich für eine Automatisierung an. Die Auswertung der
Daten kann automatisch über Regeln erfolgen, welche vorher definiert und
in der Wissensbasis abgelegt wurden. Ähnliches kann bei der Aufbereitung
der Daten in der Monitor-Phase erfolgen. Spezielle Aufbereitungsregeln
werden definiert, in der Wissensbasis abgelegt und später in der Monitor-
Phase automatisch angewendet.

Auch wenn der Übergang zwischen der Analyse-Phase und der Plan-Phase
automatisch erfolgen kann, beispielsweise hat die Auswertung ergeben, dass
die Software-Engineering-Methode an einer bestimmten Stelle angepasst
werden muss, macht es an dieser Stelle Sinn, den Menschen mit einzubin-
den. Ein Methoden-Engineer und/oder der Projektleiter sollten die Software-
Engineering-Methode daraufhin prüfen, ob an dieser Stelle wirklich eine
Anpassung nötig oder ob sie noch im Rahmen der SEM erlaubt ist.

Anschließend können sie die Freigabe für die Anpassung erteilen und den
Übergang zu der Plan-Phase einläuten. Oder sie lehnen die Anpassung ab
und MAPE-K wird in der Monitor-Phase weiter fortgesetzt. An dieser Stelle
sollten dann die Rahmenbedingungen und die Regeln entsprechend ange-
passt werden. Ansonsten werden der vermeintliche Fehler und seine Anpas-
sung im nächsten Schritt möglicherweise erneut erfolgen.

100

Mit den Übergängen von der Plan-Phase zur Execute-Phase sowie der end-
gültigen Ausführung verhält es sich ähnlich. Die Phasen an sich sollten au-
tomatisiert durchgeführt werden und auch ein automatischer Übergang ist
möglich. Doch an beiden Stellen macht es Sinn, dass ein erfahrener Metho-
den-Engineer sich die geplante Anpassung anschaut, sie aufgrund seiner
Erfahrung einschätzt und anschließend zur Durchführung freigibt. Zusätz-
lich kann sich am Ende der Execute-Phase vor der endgültigen Durchfüh-
rung der Anpassung, der Projektleiter unter Umständen zusammen mit dem
Methoden-Engineer, die nötige Anpassung ansehen und das endgültige
Okay geben. Diese menschlichen Zwischenschritte nutzen die Erfahrung der
Personen und erhöhen das Vertrauen in eine angepasste Methode.

3.4	Erstes	Fazit	und	weitere	Herausforderungen	
In dem vorherigen Abschnitt wurde mit Hilfe des SE Method Managers
basierend auf MAPE-K, ein Ansatz vorgestellt, welcher es grundlegend
möglich macht, die Anpassung einer Software-Engineering-Methode selbst-
adaptiv durchzuführen. In den folgenden Abschnitten wird nach einem kur-
zen Fazit bezüglich des Ansatzes dieser tiefergehend betrachtet und zusätz-
lich erörtert, welche weiteren Probleme sich im Detail ergeben.

3.4.1	Erstes	Fazit	bezüglich	des	Ansatzes	
Nach einem ersten Betrachten und Durchspielen des SE Method Managers
zeigt sich, dass die automatisierte Überwachung einer im Vorfeld festgeleg-
ten Software-Engineering-Methode und deren zeitnahe, selbst-adaptive und
automatische Anpassung zur Laufzeit mit Hilfe von MAPE-K grundsätzlich
möglich sind. Die vier Phasen des MAPE-K Monitor, Analyse, Plan und
Execute, erfüllen weitestgehend die Anforderungen A1 bis A13.

Der Fokus liegt wie in A1 gefordert auf der Software-Engineering-Methode,
welche das zu überwachende Element darstellt (Managed SE-Methode). Die
MAPE-K-Feedbackschleife folgt einem kontinuierlichen Zyklus ähnlich den
der bereits vorhandenen Ansätze und bindet Feedback mit Hilfe von Senso-
ren ein. Damit ist Anforderung A2 ebenfalls erfüllt. Mit Hilfe des Zyklus,
der wie im vorherigen Abschnitt beschrieben teils automatisch durchgeführt
werden kann, kann die Dauer der Analyse, Anpassung und insbesondere
Ausführung relativ kurz gehalten werden, womit Anforderung A3 erfüllt
wäre.

Die Sensoren messen die Projektdaten und die Monitor-Phase bereitet sie
entsprechend für die weitere Auswertung auf. Dadurch ist nicht nur eine
kontinuierliche Messung der SEM auf Instanz-Ebene, sondern auch eine
durchgehende Beobachtung der SEM gewährleistet. Damit wären Anforde-
rung A4 und durch das Messen mit Hilfe von Sensoren wäre Anforderung
A5 erfüllt.

101

Die Analyse-Phase analysiert anhand der gemessenen Daten entsprechend
den aktuellen Status und beurteilt, ob ein Anpassungsbedarf der verwende-
ten Software-Engineering-Methode nötig ist oder nicht. Dadurch ist Anfor-
derung A6 erfüllt.

In der Plan-Phase wird eine entsprechende Anpassung auf der Typ-Ebene
geplant, indem Methoden-Bestandteile hinzugefügt, gelöscht oder ausge-
tauscht werden. Dies erfüllt grundlegend die Herausforderung A8 und teil-
weise A9 (Beurteilung, welche Elemente hinzugefügt, gelöscht oder ausge-
tauscht werden).

Abschließend wird mit Hilfe der Execute-Phase und der Effektoren die
Software-Engineering-Methode zeitnah angepasst, das heißt die Anpassung
wird von der Typ-Ebene auf die Instanz-Ebene und somit in das laufende
Projekt übertragen. Dadurch ist Anforderung A10 erfüllt. Da dies grundle-
gend automatisch, schnell und eigenständig möglich sein sollte, wäre vo-
raussichtlich auch die Anforderung A11 erfüllt.

Damit die vier Phasen in der Feedbackschleife durchgeführt werden können,
sind die wichtigen Daten, welche für die einzelne Schritte benötigt werden,
in der Wissensbasis zentral gespeichert und es kann darauf zugegriffen wer-
den. Damit ist auch Anforderung A7 erfüllt.

Da die MAPE-K-Feedbackbackschleife im Projekt auch nach einer Anpas-
sung kontinuierlich mit den neuen Werten der Anpassung weiterläuft, wer-
den somit automatisch die Ergebnisse der Anpassung mitbetrachtet und eva-
luiert, ob sie die Ziele entsprechend einhalten. Deswegen ist auch Anforde-
rung A12 erfüllt.

Ferner ist es möglich, die bestehenden Daten in der Wissensbasis weiterzu-
verwenden und in neuen Projekten einzusetzen. Dadurch würde die Erfah-
rung erhalten bleiben. Allerdings kann die Wissensbasis nur in Teilen ver-
wendet werden, da jedes Projekt eine andere Software-Engineering-
Methode besitzt. Es ist also zu überlegen, wie und welche Elemente in ein
neues Projekt eingesetzt werden könnten. Dann wäre Anforderung A13
ebenfalls erfüllt.

Der SE Method Manager mit MAPE-K als Kern eignet sich somit als Lö-
sung zur selbst-adaptiven Anpassung einer Software-Engineering-Methode.
Es ist noch zu überlegen, wie der zweite Teil der Anforderung A9 – die
Auswirkung auf die Gesamt-SEM – erfüllt werden kann. Dies wäre zum
Beispiel möglich, wenn innerhalb der Plan-Phase die geplante Anpassung in
Bezug auf die Gesamt-SEM analysiert wird. Dies könnte beispielsweise mit
Hilfe einer Simulation erfolgen. Dann wäre auch die Anforderung A9 voll-
ständig erfüllt.

Im n
Man
weit

3.4.
Auc
gen
eine
denn

Im G
sich
nich
an, b
im P
siert

Die
werd
Feed
bloß
Feed
fakts
welc
ren
impl

nächsten A
nagers der A
teren Herau

2	Weitere
ch wenn der

Abschnitt g
es laufenden
noch im tief

Gegensatz z
während d

ht um ein Sy
beginnt dies
Projekt vorh
t.

erste Frage
den müssen
dbackschlei
ß durch sein
dbackschlei
s die Feedb
che Änderu
würden; jed
lementierter

Abbildung 2

bschnitt wi
Ansatz in d

usforderunge

e	Herausfo
r SE Method
gut eignet,
n Projektes
feren Detail

zu dem ursp
der Anpassu
ystem hand
ser korrekte
handen sind

e die dabei a
n. Was zäh
ife durchgef
n Vorhande
ife anstößt
backschleife
ungen an dem
de Änderun
r Code zur D

29 State-Chart

1

ird nun nac
der Tiefe be
en sich erge

rderungen
d Manager
um eine So
schnell und

l betrachtet

prünglichen
ung um ein

delt. Schaut
erweise mit
d, werden di

aufkommt i
hlt alles als
führt wird?

ensein, beim
(„triggert“)

e auslöst. Da
m Artefakt

ng oder spe
Dateneinga

t des SE Metho

02

ch der erste
etrachtet un
eben.

n	(„Trigger
sich nach d

oftware-Eng
d zeitnah an
werden.

MAPE-K m
ne Software
man sich d
der Datene

iese aufbere

ist, welche D
s Dateneing
? Die Frage
m Anlegen u
) oder ob a
aran würde
zum Auslö
zielle Ände

abe zählen w

od Managers u

en Eignung
nd herausge

r‐Problem
dem ersten F
gineering-M
nzupassen, m

muss man b
e-Engineerin
den Ablauf i
eingabe. So
eitet, gespei

Daten überh
gabe, dami
e ist, ob ein
und Lösche
allein ein Ä

sich die Fr
ösen der Mo
erungen? O
würde.

und die „Trigge

des SE M
earbeitet, w

me“)	
Fazit im vo

Methode wäh
muss der A

bedenken, da
ng-Methode
in Abbildun

obald neue D
ichert und a

haupt alle e
it die MAP
n neues Art
en die MAP

Ändern des
rage anschli
onitor-Phase

Oder auch, o

er-Probleme"

ethod
welche

rheri-
hrend

Ansatz

ass es
e und
ng 29
Daten
analy-

erfasst
PE-K-
tefakt

PE-K-
Arte-

ießen,
e füh-
ob ein

103

Da sich dieses und die folgenden Probleme darauf beziehen, wann die
MAPE-K-Feedbackschleife und ihre Phasen getriggert werden und sich die-
ses Anfangsproblem weiter durchzieht, werden die Herausforderungen, die
sich dadurch für den Ansatz ergeben, im Folgenden auch „Trigger-
Probleme“ genannt. Wie sich Folgeprobleme und zusätzliche Herausforde-
rungen aus dem ersten Triggern ergeben wird nun weiter erläutert. Doch
zunächst lautet die Kernfrage für Triggerproblem 1:

TP1: Granularität der Dateneingabe: Wie granular müssen die Daten
für die Dateneingabe sein, damit die Monitor-Phase angestoßen wird?

Aus der fehlenden Granularität der Daten leitet sich direkt Triggerproblem 2
ab. Denn auch wenn bekannt ist, wie granular die Daten sein müssen, ist die
Frage, ob bei allen neuen Daten getriggert werden muss. Werden alle einge-
gebenen Daten aufbereitet und ausgewertet? Es muss die Frage beantwortet
werden, wie die relevanten Daten für die Aufbereitung und Auswertung
bestimmt und von den anderen Daten herausgefiltert werden.

Triggerproblem TP2: Wie werden die relevanten Daten für die Aufbe-
reitung und Auswertung anhand einer Datenfilterung bestimmt?

Auch wenn bekannt ist, welche Daten gemessen und aufbereitet werden
müssen, ist das Folgeproblem, welches sich aus den ersten beiden ergibt,
dass bei der Eingabe von vielen Daten gleichzeitig nicht bekannt ist, wann
getriggert wird. Die vielen Daten könnten zur Folge haben, dass eine „Dau-
ertriggerung“ erfolgt. Auf den ersten Blick erscheint dies nicht schlimm,
aber wie wird entschieden, was wann und in welcher Reihenfolge abgear-
beitet wird? Es muss geklärt werden, ob Daten gleichzeitig oder kurz nach-
einander verarbeitet werden können. Bei einer Software-Engineering-
Methode ist es eher sinnvoll, Daten und insbesondere eine spätere Anpas-
sung sequentiell zu verarbeiten. Es muss also eine Vorgehensweise gefun-
den werden, eine Reihenfolge festzulegen, wann welche Daten ausgewertet
und weiter verarbeitet werden. Dafür müssten Prioritäten vergeben werden.
Jedoch ist es aktuell schwer zu entscheiden, welche gemessenen Daten eine
höhere Priorität hätten als andere.

Triggerproblem TP3: Wie können Prioritäten für zu messende Daten,
deren Aufbereitung und Auswertung vergeben werden, damit eine se-
quentielle Bearbeitung möglich ist?

Auch wenn Prioritäten vergeben sind und eine Reihenfolge für die Bearbei-
tung festgelegt ist, ist ein weiteres Problem, dass nicht bekannt ist, ob sich
die bereits getriggerten Anpassungen gegenseitig beeinflussen. Das heißt, es
muss möglich sein zu überprüfen, ob mögliche Anpassungen in Konflikt
zueinander stehen. Dafür müsste zum einen bekannt sein, welche Anpas-

104

sung und welche Daten bearbeitet werden. Zum anderen wäre es sinnvoll zu
wissen, welche Daten potentiell zueinander in Konflikt stehen, um dies
eventuell im Vorfeld abzufangen und eine Anpassung entsprechend zu pla-
nen.

Triggerproblem TP4: Wie kann möglichst früh überprüft werden, ob
getriggerte Daten und somit eine mögliche Anpassungen zueinander in
Konflikt stehen?

Ein letzter zu betrachtender Punkt ist der Anpassungszeitpunkt. Ein System
kann problemlos jederzeit und kurz hintereinander angepasst werden. Doch
bei einer Software-Engineering-Methode ist es nicht möglich, sie beispiels-
weise stündlich oder täglich anzupassen. Dies würde vermutlich mehr Cha-
os auslösen, als wirklich zu helfen. Eine Anpassung einer Software-
Engineering-Methode kann von daher nur in bestimmten zeitlichen Abstän-
den vorgenommen werden. Es muss geklärt werden, wie schnell hinterei-
nander Anpassungen zeitlich erfolgen können. Da somit eine Anpassung
nicht jederzeit erfolgen kann, muss klar sein was passiert, wenn mehrere
Anpassungen bis zum Anpassungszeitpunkt auflaufen. Wie können diese
miteinander kombiniert werden? Eine weitere wichtige Frage in diesem Zu-
sammenhang ist, was mit Daten passiert, die zum Anpassungszeitpunkt be-
reits getriggert sind und die sich somit in der Planung befinden.

Triggerproblem TP5: Wie kann der Anpassungszeitpunkt für eine
Software-Engineering-Methode bestimmt werden und wie kann zu die-
sem Zeitpunkt eine kombinierte Anpassung erfolgen?

Diese weiteren Herausforderungen gilt es zu untersuchen und vor allem her-
auszufinden, wie sich diese lösen lassen. Wie ein zielorientiertes Vorgehen
genutzt werden kann, um den Ansatz zu erweitern und sowohl den weiteren
Herausforderungen zu begegnen als auch weiterhin die Anforderungen A1 –
A13 zu erfüllen, wird im nächsten Kapitel erläutert.

Kap

In Ka
lich
wurd
dami
letzte
blem
diese
MAP
pitel

4.1	
Scho
Um
eine
filter
filter
lyse
Date
gen a
runge
Engi
Auss

pitel	4	

apitel 3 wur
ist, Softwa

de der Ansa
it sich eine
en Teil wur

me, welche
e mit Hilfe
PE-K4SEM
vorgestellt.

Zielorien
on [Bo13,
nun den T
ausreichend

rung sicherg
rt werden so
und die sp
n für die A
analysiert w
en, Eigens
neering-Me

sage von [B

Der	An

rde ein Lösu
are-Enginee
atz des MAP

SEM eben
rden weiter
bei einer d
eines zielor

M-Ansatzes a
.

ntiertes	V
, S. 54] beh

Triggerprobl
de Granular
gestellt wer
ollen, muss
pätere Planp
Analyse ben
wird, ähnlich
schaften un
ethode erfü
ol] über ein

A

10

nsatz	M

ungsansatz
ering-Metho
PE-K aus de
nfalls möglic
re Herausfo
detaillierten
rientierten V
angegangen

Vorgehen
hauptet: „A
lemen zu b
rität und da
den kann. U
man wissen

phase gebra
nötigt werde
h wie beim

nd Ziele b
üllen muss.
n zielorienti

Abbildung 30 A

05

MAPE‐K

vorgestellt,
oden zur L
en selbst-ad
chst selbst-

orderungen
n Betrachtu
Vorgehens
n werden kö

n		
Adaptive Pr
begegnen, m
arauf aufbau
Um herausz
n, welche D
aucht werde
en ist es nö

m Testen. Es
bekannt sei

Dies kann
ertes Vorge

Aufbau Kapite

K4SEM

, wie es gru
Laufzeit anz
daptiven Sys
-adaptiv anp
diskutiert,

ung auftrete
und des sel
önnen, wird

rojekte sind
muss überle
uend eine g
zufinden, w
Daten nur fü
en. Um zu
tig herauszu
s müssen al
in, welche
n angelehn
ehen erfolge

el 4

ndsätzlich m
zupassen. D
stemen gew
passen kann
die Trigger

en können.
lbstentwick
d in diesem

d zielorienti
egt werden,
geeignete Da
elche Daten

ür die Daten
wissen, we

ufinden, wo
so die Anfo

die Softw
nt an die o
en.

mög-
Dafür
wählt,
n. Im
rpro-
Wie

kelten
m Ka-

iert“.
, wie
aten-
n ge-
nana-
elche
o ge-
orde-
ware-
obige

106

In diesem zielorientierten Vorgehen müssen also als erstes die Ziele und
Eigenschaften der Software-Engineering-Methode definiert werden. Sind
die Ziele bekannt, kann im nächsten Schritt überlegt werden, was zum einen
dafür nötig ist, damit diese Ziele erfüllt werden. Zum anderen ist es nötig
herauszufinden, in welchen Grenzen diese Erfüllung liegt, das heißt was ist
mindestens nötig, damit dieses Ziel erfüllt wird und was ist maximal nötig.

Sind diese Dinge bekannt, können daraus Regeln entwickelt werden, welche
für die Analyse genutzt werden können. Liegt die Erfüllung des Ziels in den
definierten Grenzen, muss nichts getan werden. Ist aber die Erfüllung des
Ziels in Gefahr, das heißt der analysierte Wert liegt außerhalb der Grenzen,
muss eine Anpassung der Software-Engineering-Methode vorgenommen
werden. Doch durch die vorherige Definition ist bereits bekannt, um wel-
ches Ziel es sich handelt und welche Grenze über- bzw. unterschritten wur-
de. Da die Regeln vom vorher definierten Ziel hergeleitet wurden ist es zum
Teil ebenfalls möglich. im Vorfeld zu überlegen, mit welchen Strategien
dieses Ziel erreicht werden kann. Diese Strategien können vordefinierte An-
passungen für die Planung ergeben.

Ein Vorteil dieses Vorgehens ist, dass durch die definierten Regeln gut die
zu messenden Werte – die Metriken – für die Sensoren und für die Monitor-
Phase bestimmt werden können. Es ist bekannt, was für die Analyse ge-
braucht wird. Aus dieser Regel werden die Analysewerte extrahiert. Die
Analysewerte sind die Werte, welche die Aufbereitung in der Monitor-
Phase als Endergebnis haben muss. Aus diesen Werten kann ermittelt wer-
den, welche Daten für die Aufbereitung gemessen werden müssen. In einfa-
chen Fällen können die gemessenen Daten gleich den aufbereiteten Werten
sein. Damit ist sowohl die nötige Granularität der Werte bekannt, die ge-
messen werden müssen, als auch ein Datenfilter gesetzt.

Im weiteren Vorgehen der MAPE-K-Schleife ist es nun möglich, genau zu
bestimmen, was in der Analyse- und was in der Plan-Phase getriggert wird.
Ein abstraktes Beispiel: zu den Zielen x, y und z gehören jeweils die Regeln
rx, ry und rz sowie die zu messenden Metriken mx, my und mz. Wird nun
die Metrik my gemessen, wird nur dieser Wert aufbereitet und automatisch
wird Regel ry getriggert und mit den gemssenen Werten ausgewertet. Ande-
re Werte werden im Prinzip gar nicht beachtet und triggern nicht die
MAPE-K-Schleife.

Da die Ziele bekannt sind, ist es möglich, diesen Zielen Prioritäten zuzuord-
nen. Diese Prioritäten können sowohl an die Analyse- als auch an die Pla-
nungsmöglichkeiten usw. vererbt werden. Anhand einer geeigneten Prioritä-
tenvergabe kann nun eine Reihenfolge für die Abarbeitung der Daten erstellt
werden. Auf das Beispiel übertragen hätte Ziel x die Priorität 1, Ziel y die

107

Priorität 2 und Ziel z die Priorität 3. Würden nun die Metriken mx, my und
mz gemessen, würde als erstes die Regel rx ausgewertet und im Falle der
Grenzüber- bzw. unterschreitung würden diese Werte als erstes geplant und
angepasst, da sie die geerbte Priorität 1 haben. Anschließend würde Regel ry
mit Priorität 2 und abschließend Regel rz mit Priorität 3 weiter verarbeitet.
Damit wäre auch Triggerproblem TP3 gelöst.

Da die Ziele bekannt sind und teilweise die Planungsmöglichkeiten und
Analyseregeln im Vorfeld bestimmt werden können, ist es ebenfalls mög-
lich, die Ziele auf mögliches Konfliktpotential zu untersuchen. Es sind am
Ende sowohl die Metriken als auch die Analyseregeln und mögliche Anpas-
sungen (zum Teil) bekannt. Diese können miteinander abgeglichen und auf
Konflikte hin analysiert werden. Besteht Konfliktpotential, können im Vor-
feld bereits Lösungen und Planungsalternativen erstellt werden, falls die
Anpassungen im gleichen Anpassungszyklus, das heißt vom einen Anpas-
sungszeitpunkt bis zum nächsten, gemessen werden. Damit wäre es mög-
lich, Triggerproblem TP4 im Vorfeld zu begegnen.

Ähnlich wie das Konfliktpotential können im Vorfeld auch Kombinations-
möglichkeiten für einzelne Ziele bestimmt werden. Dazu wäre es wichtig,
für die Planungsmöglichkeiten der verschiedenen Ziele jeweils Kombinati-
onspunkte zu ermitteln. Mit Kombinationspunkten ist gemeint, an welcher
Stelle ist es möglich, bei einer geplanten Anpassung anzuknüpfen, z.B. kön-
nen bei der Erstellung eines Artefaktes verschiedene Techniken angewandt
werden. Dabei wäre die Technik ein Kombinationspunkt. Damit wäre Trig-
gerproblem TP 5 ebenfalls größtenteils gelöst. Es ist zusätzlich nötig, für die
Software-Engineering-Methode einen geeigneten Anpassungszeitpunkt fest-
zulegen. Dieser kann beispielsweise anhand der Eigenschaften festgelegt
werden.

4.2	Bottom‐Up	vs.	Top‐Down		
Für die Analyse von Prozessen aber auch im Bereich der Programmentwick-
lung und im Software Engineering gibt es zwei Ansätze, die genau gegen-
sätzlich aufgebaut sind. Diese beiden Ansätze, „Top-Down“ und „Bottom-
Up“ genannt, werden in vielen Bereichen eingesetzt, neben der Software-
entwicklung beispielsweise auch in der Konzeption von Algorithmen
[CGL05].

Der Top-Down-Ansatz (engl. von oben nach unten) startet dabei mit der
Beschreibung von etwas Abstrakten bzw. Allgemeinen und spezifiziert ab-
wärts immer weitere Details. Dies wird auch Deduktion genannt. In Multi-
Agenten-Systemen startet der Ansatz beispielsweise damit, globale Anfor-
derungen für die Agenten zu spezifizieren, um diese nachher im Detail auf
die einzelnen Eigenschaften der Agenten hinunterzubrechen [CGL05]. Wird

108

der Ansatz in der Algorithmik eingesetzt so heißt dies, dass ein Algorithmus
zunächst sehr allgemein und umgangssprachlich definiert wird. Im weiteren
Verlauf wird er immer detaillierter spezifiziert und in zusätzliche Einheiten
aufgeteilt, bis am Ende der fertige Algorithmus steht.

Der Bottom-Up-Ansatz (engl. von unten nach oben) arbeitet genau gegen-
sätzlich. Hier werden zunächst einzelne Details spezifiziert, in Agentensys-
temen beispielsweise die einzelnen Eigenschaften der Agenten oder in der
Algorithmik einzelne Funktionen und Bestandteile eines Algorithmus. Beim
weiteren Vorgehen wird ein immer komplexeres und allgemeineres Ganzes
spezifiziert. Dieser Vorgang wird auch Induktion genannt.

Diese beiden Ansätze werden ebenfalls in der Prozessverbesserung einge-
setzt. Der Top-Down-Ansatz vergleicht dabei den eigentlichen Prozess, z.B.
der Organisation, mit bereits vorhandenen oder generellen Standards im
Unternehmen. Während des Verbesserungsprozesses werden anschließend
die Unterschiede zwischen beiden herausgearbeitet. Die Annahme ist hier,
dass, sobald der Prozess im Detail geändert wurde, automatisch die erzeug-
ten Produkte ebenfalls verbessert werden [Thomas in TM94].

Der Bottom-Up-Ansatz geht hier hingegen davon aus, dass die Änderung
und Verbesserung eines Prozesses von folgenden Elementen ausgehen soll-
te: den allgemeinen Organisationszielen, ihren Charakteristiken, den Pro-
dukten und ihren Attributen sowie von der vorhandenen Erfahrung. Die
Veränderung sollte sich auf der lokalen Ebene abspielen anstatt allgemeine
und universelle Elemente zu nutzen. [McGarry in TM94].

Doch bei beiden Ansätzen geht es hauptsächlich darum, das Produkt zu ver-
bessern, wobei jeweils davon ausgegangen wird, dass sich bei einer Pro-
zessverbesserung auch das Produkt verbessert.

Die Frage ist nun, wie sich diese Ansätze auf die Anpassung einer Software-
Engineering-Methode übertragen lassen und welcher Ansatz verwendet
werden sollte. Schaut man sich die Vorgehensweise von MAPE-K an, so
verwendet dieser eine Art Bottom-Up-Ansatz. Das System bzw. im SE Me-
thod Manager ist die Software-Engineering-Methode bekannt. Um diese
anzupassen, werden alle detaillierten Daten der Software-Engineering-
Methode gemessen, analysiert und ausgewertet um zu bestimmen, ob die
SEM angepasst werden soll oder nicht. Hier werden also die detaillierten
Daten genommen um auf das allgemeinere Modell und deren Anpassung zu
schließen. Sie werden also genutzt, um eine Anpassung an dem Modell und
somit an der Software-Engineering-Methode selbst vorzunehmen.

109

Am Ende von Kapitel 3 in Abschnitt 3.4 hat sich gezeigt, dass diese Vorge-
hensweise einige neue Herausforderungen mit sich bringt. Vor allem ist
nicht klar, wie detailliert die Datenmessung sein soll, in welcher Reihenfol-
ge analysiert oder was analysiert wird usw. Im vorherigen Abschnitt wurde
ein zielorientiertes Vorgehen vorgestellt, welches diese Herausforderungen
bewältigen soll. Dies würde einen Top-Down-Ansatz darstellen, da zunächst
die allgemeinen Ziele und Eigenschaften der Software-Engineering-
Methode definiert und beschrieben werden, um diese dann in detailliertere
Regeln und abschließende Metriken aufzubrechen. Doch wie kann nun die-
ser Top-Down-Ansatz genutzt werden, um die Software-Engineering-
Methode anzupassen?

Die Idee ist, die beiden Ansätze miteinander zu kombinieren. Wie schon in
Abschnitt 2.3 „Change Management“ und von [No14] erwähnt, sollten die
Veränderungen im Change Management sowohl Top-Down als auch Bot-
tom-Up geplant und durchgeführt werden. Das heißt, dass die Rahmenbe-
dingungen und die Vorgehensweise werden von oben vorgegeben (top-
down for targets) werden. Die spätere konkrete und inhaltliche Umsetzung
wird von unten mit Hilfe der Betroffenen umgesetzt (bottom-up for how to
do it). Dies kann ebenfalls für den Ansatz zur selbst-adaptiven Anpassung
einer Software-Engineering-Methode verwendet werden.

Dafür sollten wie in Abschnitt 4.1 beschrieben zunächst Top-Down die Zie-
le und Eigenschaften definiert und in Regeln, Möglichkeiten zur Planung
und Metriken weiter verfeinert werden. Sobald dies vorhanden ist, kann die
konkrete und inhaltliche Umsetzung „bottom-up-mäßig“ mit Hilfe von
MAPE-K umgesetzt werden. Dies erfolgt, indem die eigentliche MAPE-K-
Feedbackschleife durchgeführt wird, beginnend mit der Messung der Daten,
diesmal allerdings anhand der konkreten Metriken.

Der Top-Down-Ansatz leistet sozusagen die Vorarbeiten, damit MAPE-K,
also der Bottom-Up-Ansatz, später mit den konkreten Werten erfolgreich
durchgeführt werden kann. Wie dies genau aussehen kann, wurde in einem
10-Schritte-Ablauf erarbeitet, dem MAPE-K4SEM-Ansatz, welcher im
nächsten Abschnitt vorgestellt wird.

4.3	MAPE‐K4SEM	–	die	10	Schritte		
Für das beschriebene zielorientierte Vorgehen wurde der Ansatz MAPE-
K4SEM entwickelt, ein Ablauf in 10 Schritten. Dieser stellt außerdem
sicher, dass nicht nur die richtigen Werte am Ende gemessen, sondern
zusätzlich die benötigten Werte für die Durchführung des MAPE-K korrekt
ermittelt werden.

110

Der Ansatz gliedert sich dabei in zwei Teile, in die zu Beginn erforderlichen
Schritte – der „Pre-Work“ – und dem danach folgenden MAPE-K. In der
Pre-Work werden alle Schritte durchgeführt, um die in Abschnitt 3.4.4 be-
schriebenen Elemente wie Ziele, Analyseregeln, Metriken usw. herzuleiten.
Sind diese Dinge bekannt, kann der MAPE-K darauf aufbauend durchge-
führt werden. Mit der Kombination dieser beiden Teile ist am Ende eine
selbst-adaptive Anpassung und somit eine „selbst-adaptive Software-
Engineering-Methode“ möglich. Im Folgenden werden die 10 Schritte des
MAPE-K4SEM kurz vorgestellt.

4.3.1	Pre‐Work	–	Schritte	1	bis	6		
Die Pre-Work beinhaltet die Schritte für die Vorarbeiten, also um alle benö-
tigten Daten wie Regeln, Metriken usw. anhand der Ziele für die Durchfüh-
rung des MAPE-K zu ermitteln. Bevor die Daten allerdings hergeleitet wer-
den können, müssen erst die Ziele definiert und priorisiert werden.

4.3.1.1	Schritt	1:	Definition	der	Ziele	
In Schritt 1 werden wie der Name schon sagt, die Ziele der Software-
Engineering-Methode definiert. Dies sind insbesondere die Eigenschaften
und teilweise Regeln, welche die SEM erfüllen muss um erfolgreich zu sein.
In diese Ziele fließen auch die Umgebung, in welcher das Projekt und somit
die SEM durchgeführt werden, mit ein. Dazu zählen das Unternehmen und
seine Kultur selbst sowie der Kontext, in dem das Projekt durchgeführt
wird. In Scrum sind beispielsweise verschiedene Aktivitäten vorgegeben,
welche eingehalten werden sollen, wie etwa ein Sprint Planning-Meeting
oder das Review-Meeting. Auch gibt es für jede Iteration ein „Sprint-Goal“
welches erreicht werden soll.

4.3.1.2	Schritt	2:	Priorisierung	der	Ziele
Nachdem die Ziele definiert sind, ist es nun wichtig, diesen verschiedene
Prioritäten zu geben. Dabei sollte darauf geachtet werden, dass die Prioritä-
ten nicht zu grobgranular gewählt werden. Dies kann ansonsten dazu führen,
dass es schwierig wird, eine Reihenfolge für die Auswertung von Daten zu
erstellen. Sind sowohl die Ziele definiert als auch priorisiert, können nun die
weiteren Daten und Regeln ermittelt werden. Dabei können die nächsten
beiden Schritte parallel durchgeführt werden.

4.3.1.3	Schritt	3:	Ableitung	von	Analyseregeln	
In Schritt 3 werden nun aus den priorisierten Zielen die Grenzwerte ermittelt
und in Analyseregeln überführt. Eine erste Idee ist dabei, die Regeln in der
Form „Wenn…, dann…“ zu formulieren, beispielsweise „Wenn Wert x
Grenze über- oder unterschreitet, dann Planung mit Aktion y sonst Projekt-
durchführung“.

111

4.3.1.4	Schritt	4:	Ableitung	von	Planungsmöglichkeiten	
Auf der einen Seite werden die Analyseregeln abgeleitet, auf der anderen
Seite können durch die SEM-Beschreibung und durch das vorhandene Mo-
dell mögliche Planungen für eine Anpassung hergeleitet werden. Die Gren-
zen sind bekannt und in einigen Fällen gibt es schon Vorschläge, was getan
werden soll, wenn diese Grenzen über- oder unterschritten werden. Daraus
können nicht nur mögliche Anpassungen sondern auch zusätzliche Varian-
ten bestimmt werden, falls eine bestimmte Anpassung nicht möglich ist.

Zusätzlich kann in diesem Zuge das mögliche Konfliktpotential der einzel-
nen Ziele ermittelt und es können gleich entsprechende Lösungen geplant
werden, falls dieser Konflikt auftritt. Ein dritter denkbarer Unterschritt ist
die Bestimmung von Kombinationsmöglichkeiten und Kombinationspunk-
ten, was mit Hilfe des Modelles möglich ist.

4.3.1.5	Schritt	5:	Ableitung	von	Metriken	
Nachdem Schritt 3 und Schritt 4 durchgeführt wurden, kann nun im Folgen-
den bestimmt werden, welche Metriken für die Analyseregeln gemessen,
aufbereitet und ausgewertet werden müssen. Die Metrik wird dabei im abs-
trakten Beispiel aus Schritt 3 im Prinzip durch „Wert x“ bestimmt. Zur Ver-
deutlichung wird wieder das der Teamgröße in Scrum aufgegriffen. Hier
durfte das Team nicht größer als neun und nicht kleiner als drei Personen
sein. Es müsste nun also die Teamgröße ausgewertet werden. Die zu mes-
sende Metrik wäre somit die „Anzahl der Personen pro Team“.

4.3.1.6	Schritt	6:	Ableitung	von	Ausführungsregeln	und	Benach‐
richtigungen	
Auf der anderen Seite sind nun die Planungsmöglichkeiten aus Schritt 4
bekannt und somit, welche Art von Anpassung durchgeführt werden soll. Es
wird zum Beispiel an einer Stelle im Modell etwas hinzugefügt, gelöscht
oder ausgetauscht. Zusätzlich ist bekannt, wer alles über die Anpassung in-
formiert werden muss anhand der Rollen und den Verantwortlichkeiten, die
zu dem entsprechenden Element im Modell gehören. Aus der geplanten An-
passung und der Information, wer Bescheid wissen muss, können dann ent-
sprechende Ausführungsregeln und Benachrichtigungen hergeleitet werden.

Mit diesen sechs Schritten sind die Vorarbeiten und somit die Pre-Work
abschlossen. Die Ziele, Regeln und hergeleiteten Daten werden entspre-
chend in der Wissensbasis gespeichert, damit sie in dem folgenden MAPE-
K-Teil verwendet werden können.

4.3.2	MAPE‐K	–	Schritte	7	bis	10	
Die Pre-Work ist an dieser Stelle abgeschlossen und alle Daten, um MAPE-
K erfolgreich zur Anpassung einer Software-Engineering-Methode einzu-
setzen, sind gewonnen und in der Wissensbasis gespeichert. Im Folgenden

112

werden kurz die vier weiteren Schritte vorgestellt, welche bei der Durchfüh-
rung ausgeführt werden und was sie beinhalten sollten.

4.3.2.1	Schritt	7:	Werte	messen	und	aufbereiten	
MAPE-K beginnt in Schritt 7 mit der Messung der Metriken über entspre-
chende Sensoren. Diese gemessenen Werte werden in der Monitor-Phase
anschließend aufbereitet und in die Wissensbasis geschrieben, damit sie in
der Analyse-Phase ausgewertet können. Am Beispiel der Teamgröße würde
nun also die Anzahl der Personen über Sensoren gemessen und in der Moni-
tor-Phase würde der Wert insofern aufbereitet, als dass die Anzahl der Per-
sonen gleich der Teamgröße gesetzt werden würde (Anzahl Personen/Team
= Teamgröße).

4.3.2.2	Schritt	8:	Werte	analysieren	und	bewerten	
Sind die Werte gemessen und aufbereitet, werden sie anschließend in der
Analyse-Phase entsprechend ihren Regeln analysiert und ausgewertet. Liegt
der Wert innerhalb der Grenzen, wird das Projekt weiter durchgeführt (es
passiert nichts). Liegt der Wert außerhalb, wird die Plan-Phase mit den ent-
sprechenden Werten über den Dann-Teil getriggert. Auch wenn dies auto-
matisch möglich ist, kann es an dieser Stelle sinnvoll sein, dass der Projekt-
leiter oder ein Methoden-Engineer sich die Auswertung anschaut und das
endgültige Okay für eine Anpassung gibt. Oder er beschließt, dass mit die-
sen Werten die SEM weiter durchgeführt werden kann. Dann sollten aller-
dings die entsprechenden Regeln und Grenzen angepasst werden.

4.3.2.3	Schritt	9:	Anpassung	planen	
Die Auswertung in Schritt 8 hat ergeben, dass eine Anpassung nötig ist. Der
Dann-Teil hat die entsprechenden Daten geliefert, zum Beispiel, welche
Planungsmöglichkeit oder Planungsvariante genutzt werden soll.

Zusätzlich muss nach der geplanten Anpassung in einem zweiten Teil dieses
Schrittes überprüft werden, ob der Anpassungszeitpunkt bereits erreicht ist.
Ist dies der Fall, kann die Anpassung sofort über die Execute-Phase ausge-
führt werden. Ist dies nicht der Fall, muss die Anpassung in einem „Anpas-
sungs-Pool“ gespeichert werden. Ist der Zeitpunkt anschließend erreicht,
muss der Pool überprüft und gegebenenfalls müssen geplante Anpassungen
zu einer Anpassung erst kombiniert, bevor sie ausgeführt werden.

4.3.2.4	Schritt	10:	Anpassung	ausführen	
Im finalen Schritt ist die Anpassung für die Software-Engineering-Methode
nun bekannt und kann automatisch über die Effektoren mit Hilfe der Aus-
führungsregeln und Benachrichtigungen ausgeführt werden. Eine Anpas-
sung ist nach diesem Schritt abgeschlossen und die Schritte 7 bis 10 werden
entsprechend wiederholt, beginnend mit der Messung der Daten über die
Sensoren.

4.3.3
Scha
versc
ordne
sehen
sowi
dann
Kont
benö
führe
Meth
dell d
Schri
die „

Insbe
werd
Ziele
Diese
hinte
Work
ablei

Auf
(R),
werd
wirke

3	Schalen‐
aut man sich
chiedenen E
et werden k
n, dass Unt
e den Kont

n konkreter
text ableitet

ötigt, um ein
ende Projek
hode vor Pr
der SEM w
itte 7 bis 10

„Kontext-Sc

Abbi

esondere d
den nun wie
e (Z) zu de
e Ziele wer

erlegt. Die n
k, denn die
iten.

der linken
woraus sich

den aus den
en sich auf

Modell	un
h die Schrit
Ebenen bew
können. Die
ternehmen
text, in dem
den Projek

t. Dieser Pro
ne konkrete
kt spezifisc
rojektbeginn

wird anschlie
0 zu nutzen
chicht“.

ildung 31 Das

er Projektk
e in Abschn
finieren un
rden ebenfa
nächste Sch
ese Schritte

Seite sind d
h die Metri

n Zielen die
die Regeln

11

nd	Ableitun
tte näher an

wegen und
e oberste S
mit seiner

m es sich be
ktkontext, w
ojektkontex
Software-E

ch zu erstel
n entspreche
eßend in der
n. Diese bei

Schalenmodell

kontext und
nitt 3.4.5.1 b
nd anschließ
alls in der W
hale beinhal

lassen sich

dies zunäch
iken (Me) a
e Planungsm
aus, da sie

13

ngsbaum
n, ist zu erk
somit versc
chale enthä
Kultur und
ewegt. Die
welcher sich
xt und das U
Engineering
llen oder e
end zuzusch
r Wissensba
iden Schale

l inklusive des

d die Softw
beschrieben
ßend die Pr
Wissensbasi
ltet die näch
h jeweils v

hst wie besc
ableiten las
möglichkeit
den spätere

kennen, das
chiedenen „
ält wie in A
d all seinen

Schale dar
h aus dem
Unternehme
g-Methode f
eine Softwa
hneiden. Da
asis abgeleg
n bilden im

Ableitungsbau

ware-Engin
dazu genut

rioritäten (P
s – Knowle
hsten vier S

von priorisie

chrieben die
ssen. Auf d
ten (PM) a
en Dann-Te

ss sich diese
„Schalen“ z

Abbildung 3
n Gegebenh
runter beinh
übergeordn

en selbst we
für das durc
are-Engineer
as konkrete
gt, um es fü

m Schalenmo

umes

neering-Met
tzt, zunächs

Pr) zu verge
edge Base –
Schritte der
erten Zielen

e Analysere
er rechten S

abgeleitet. D
eil in den An

e auf
zuge-
31 zu
heiten
haltet
neten
erden
chzu-
ering-

Mo-
ür die
odell

thode
st die
eben.
– (K)

Pre-
n her

egeln
Seite

Diese
naly-

114

seregeln bestimmen. Dies wird ausführlich erläutert in Kapitel 5. Im letzten
Schritt werden in dieser Schale auf der rechten Seite die Ausführungsregeln
und Benachrichtigungen (AB) abgeleitet. Die beschriebenen beiden Schalen
bilden damit die „Pre-Work-Schicht“. Wie nun auch schon zu erkennen ist,
bilden die einzelnen Schritte sowie die Schalen darüber einen Ableitungs-
baum, wie sich die verschiedenen Daten gewinnen lassen, von der obersten
Schale hinunter bis zur letzten Schale der Pre-Work.

Vor allem die gewonnen Daten aus der letzten Schale der Pre-Work (S3-S6)
wirken sich jeweils auf die darunterliegende Schale aus. Diese Schale bein-
haltet die Schritte der MAPE-K-Feedbackschleife und bildet damit zugleich
die MAPE-Schicht. Dabei werden die Daten von S5 (Me) in S7 (M) genutzt,
von S3 (R) in S8 (A), von S4 (PM) in S9 (P) und zu guter Letzt die Daten
aus S6 (AB) in S10 (E). Dies wird im Schalenmodell durch die gestrichelten
Pfeile verdeutlicht. Die Pfeile in der MAPE-Schale verdeutlichen dabei die
genaue Reihenfolge, in welcher die einzelnen Schritte innerhalb von
MAPE-K durchgeführt werden.

Die unterste Schale und zugleich unterste Schicht beinhaltet das durchge-
führte Projekt und somit die durchgeführte Software-Engineering-Methode
(SEM) auf der Instanz-Ebene. Diese wirkt sich sowohl in die darüber lie-
gende Schale aus, indem die Daten in der Monitor-Phase bzw. Schritt 7 ge-
nutzt werden. Und die darüber liegende Schale wirkt sich umgekehrt über
Schritt 10 auf die SEM aus, durch die durchgeführte Anpassung.

Zuletzt gibt es noch eine dahinterliegende Schicht, welche in grün gekenn-
zeichnet ist. Dies ist die „K-Schicht“ und enthält die Wissensbasis (K). Die
Daten aus der Pre-Work-Schicht werden alle in der Wissensbasis hinterlegt,
damit sie von der darunter liegenden MAPE-Schicht genutzt werden kön-
nen. Die oberste Schicht und zweitoberste Schale greifen nur insofern auf
die K-Schicht zu, in dem das erstellte Modell der Software-Engineering-
Methode dort ebenfalls abgelegt wird. Die Kontextinformationen werden
zunächst nicht in der K-Schicht abgelegt und gebraucht.

Die genaue Nutzung des Ableitungsbaumes der ersten vier Schalen wird
ausführlich in Kapitel 5 erläutert, wie sich die einzelnen Schritte und die
entsprechenden Daten mit seiner Hilfe herleiten lassen.

4.4	Schritt‐Typen	und	Framework	zur	Charakterisierung	
Bevor in den nächsten beiden Kapiteln die einzelnen Schritte des MAPE-
K4SEM detaillierter erläutert werden, wird zunächst erörtert, welche ver-
schiedenen Typen von Schritten es gibt. Anschließend wird ein kurzes
Framework erarbeitet, welches jeden Schritt zu Beginn gleichermaßen be-
schreibt und kurz erläutert, was dieser Schritt beinhaltet.

115

4.4.1	Schritt‐Typen	
Jeder der 10 Schritte im MAPE-K4SEM-Ansatz hat einen bestimmten
„Typ“. Der Typ eines jeden Schrittes beschreibt, was den Schritt ausmacht
und was seine genaue Aufgabe ist. Im Software Engineering gibt es ver-
schiedene Bereiche, wo die Beschreibung anhand eines Typs wichtig ist und
Sinn macht. In der Programmierung hat beispielsweise jede Funktion einen
Typ wie boolean, int, double oder String. Diese Typen sagen aus, um was
für eine Art von Funktion es sich handelt, was ihr Rückgabewert ist und
wozu sich dieser verwenden lässt. Auch Fehler lassen sich anhand eines
Typs klassifizieren, der aussagt, wie kritisch ein Fehler ist. Beispiele sind
hier Blocker, kritischer Fehler oder leichte Fehler wie „Schönheitsfehler“.

Die 10 Schritte im MAPE-K4SEM erfüllen alle eine bestimmte Funktion.
Diese werden entsprechend anhand des Typs charakterisiert und beschrei-
ben, wozu der jeweilige Schritt verwendet werden kann. Dies kann bei-
spielsweise wichtig für die spätere Wiederverwendung der einzelnen Schrit-
te werden. Sollte der 10-Schritte-Ablauf des MAPE-K4SEM einmal ange-
passt, erweitert oder nur Teile daraus in einem anderen Kontext wiederver-
wendet werden, so ist es möglich, anhand der Schritt-Typen zu erkennen,
wo diese sich einsetzen lassen und wie sie verwendet werden können.

Betrachtet man nun die 10 Schritte genauer, ist zum einen festzustellen, dass
es nicht zehn verschiedene Schritt-Typen gibt, sondern dass einige Schritte
einen gleichen oder ähnlichen Schritt-Typ enthalten. Zum anderen kann ein
Schritt durch mehr als einen Schritt-Typ charakterisiert werden. Dies ist bei
den späteren MAPE-K-Schritten der Fall. Diese besitzen einen „Haupt-
Typen“ und zum Teil einen „Sub-Typ“, welcher die Subschritte beschreibt.
Dies wird ausführlicher erläutert in Kapitel 6.

Werden die Schritte des MAPE-K4SEM aus Kapitel 4 betrachtet, ergeben
sich die folgenden verschiedenen Typen:

1. Erstellen – Im Schritt dieses Typs wird etwas für die weitere Verwen-
dung erstellt und festgelegt, z.B. die Ziele und Eigenschaften einer
SEM.

2. Ableiten – Im Schritt dieses Typs wird etwas für die weitere Verwen-
dung abgeleitet, z.B. Metriken. Insbesondere von diesem Typen gibt es
weitere Sub-Typen.

3. Priorisieren – Im Schritt dieses Typs wird etwas für die weitere Ver-
wendung priorisiert, z.B. die Ziele der SEM aus Schritt 1.

4. Messen – Im Schritt dieses Typs werden Werte für die weitere Verwen-
dung gemessen, z.B. Messwerte der Metriken.

116

5. Analysieren – Im Schritt dieses Typs wird etwas für die weitere Ver-
wendung analysiert, z.B. die gemessenen Werte der SEM.

6. Planen – Im Schritt dieses Typs wird etwas für die weitere Verwendung
geplant, z.B. die Anpassung für eine SEM.

7. Ausführen – Im Schritt dieses Typs wird etwas für die weitere Verwen-
dung ausgeführt, z.B. die geplanten Änderungen.

Wie bereits im zweiten Punkt erwähnt, kann man bei genauer Betrachtung
des MAPE-K4SEM, den Typ „Ableiten“ in weitere Sub-Typen unterteilen,
je nachdem, WAS abgeleitet wird. Dann ergeben sich folgende Sub-Typen:

a. Regeln,
b. Metriken,
c. Planungsmöglichkeiten,
d. Konflikte und Konfliktlösungsmöglichkeiten,
e. Ausführungen und Benachrichtigungen.

Für den hier vorgestellten Ansatz sind die Typen vollständig, da sie alle
Schritte des MAPE-K4SEM abdecken und beschreiben. Für andere Be-
schreibungen, welche ebenfalls mit Ableitungen oder Schritten arbeiten,
können sich weitere Schritte mit anderen Typen ergeben. Überträgt man die
Typen beispielsweise auf den GQM-Ansatz (Goal – Question – Metric), auf
welchen in Kapitel 5 noch näher eingegangen wird, so können hier zwei der
Schritte entsprechend wiederverwendet werden. Die Definition der Ziele
(Goal) ließe sich mit dem Typ „Erstellen“ abdecken und das Ableiten der
Metriken (Metric) mit dem Schritt Ableiten und dem Subtyp „Metriken“.
Für den Schritt des Ableitens der Fragen (Question) kann ebenfalls der Typ
„Ableiten“ verwendet werden, aber es gebe hier einen neuen Subtypen,
„Fragen“.

Um die einzelnen Schritte sowohl näher als auch auf einen Blick zu be-
schreiben und diese genauer zu charakterisieren wurde nicht nur das Prinzip
der Typen eingeführt, sondern es wurde ein Framework erarbeitet, in wel-
chem u.a. die Schritt-Typen verwendet werden. Dieses wird im nächsten
Abschnitt erläutert.

4.4.2	Framework	zur	Charakterisierung	
Um die einzelnen Schritte näher zu charakterisieren, wurde ein kurzes
Framework erarbeitet. Dieses Framework gibt in zusammengefasster Form
verschiedene Elemente, welche den Schritt beschreiben, wieder. Das
Framework charakterisiert den Schritt kurz anhand seiner Aufgabe, seines
Typs, den enthaltenen Subschritten, welche zur Durchführung des Schrittes
nötig sind, sowie welchen Input der Schritt zur Ausführung benötigt und

117

was das Ergebnis – der Output – des Schrittes ist. Zusätzlich wird aufge-
führt, welcher Stakeholder, das heißt, welche Verantwortlichen für den
Schritt nötig sind.

Ähnlich wie die verschiedenen Typen der Schritte, kann dieses Framework
nicht nur in diesem Ansatz, sondern auch in anderen Kontexten, welche
ebenfalls mit Schritten arbeiten, wieder verwendet werden. Beispielsweise
kann das Framework ebenfalls verwendet werden, um einzelne Schritte oder
auch Aktivitäten innerhalb einer Software-Engineering-Methode zu be-
schreiben. Es kann auf einen Blick erfasst werden, was die Aufgabe des
Schrittes ist, wie er charakterisiert ist (Typ), was mögliche Schritte inner-
halb des Schrittes oder der Aktivität sind, was als Input benötigt wird, was
der Output dieses Schrittes und wer dafür verantwortlich ist.

Schrittnummer + Schrittname
Aufgabe Die Aufgabe des Schrittes wird kurz und knapp be-

schrieben

Typ Typ des Schrittes und möglicher Sub-Typ
Subschritte Die einzelnen Subschritte, welche innerhalb des

Schrittes durchzuführen sind, werden beschrieben

Input des Schrittes Dokumente oder anderer Input, welcher benötigt
wird, damit der Schritt ausgeführt werden kann

Output des Schrit-
tes

Ergebnisse, z.B. Dokumente, welcher der Schritt als
Output beispielsweise für andere Schritte liefert

Mögliche Stake-
holder

Stakeholder bzw. Personen, welche am Schritt betei-
ligt und/oder für ihn verantwortlich sind

Abbildung 32 Framework zur Charakterisierung

Das Framework kann ebenfalls wenn der Kontext es erfordert um weitere
Kategorien erweitert werden. In manchen Fällen kann es Sinn machen, ein
einfaches Beispiel hinzuzufügen, um auf einen Blick zu erläutern, was hier
gemeint ist. Des Weiteren kann es an manchen Stellen Sinn machen, anzu-
geben, mit welchem Schritt oder welchen Schritten der beschriebene Schritt
zusammenhängt, z.B. wer sein Vorgänger oder sein Nachfolger ist. Da die
Schritte in diesem Ansatz größtenteils sequentiell aufeinander aufbauen,
wurde hier auf diese Kategorie verzichtet.

Wenn das Framework für eine Software-Engineering-Methode genutzt wür-
de, dann würde das Einfügen der Kategorie Vorgänger/Nachfolger wiede-

118

rum mehr Sinn machen, um die Zusammenhänge im Überblick zu behalten.
Ferner kann es bei einer SEM beispielsweise Sinn machen, eine Kategorie
„Werkzeuge“ oder „Technik“ mit hinzuzufügen, wenn diese für einen
Schritt verwendet werden sollen. Anhand dieser Beispiele ist zu sehen, dass
eine Wiederverwendung und Übertragbarkeit des Frameworks gegeben ist.

In Kapitel 5 und Kapitel 6 findet das Framework seine Anwendung und es
wird beschrieben, wie der jeweilige Schritt und seine Subschritte im Detail
aussehen, ebenso wie der Input genutzt und der Output im Laufe des Schrit-
tes erzeugt wird.

4.5	Vertiefung	Messen,	Monitor‐	und	Analyse‐Phase	
In den folgenden Kapiteln 5 und 6 soll der vorgestellte Ansatz MAPE-
K4SEM mit seinen zehn Schritten vertieft dargestellt werden. Da der Ansatz
des SE Method Managers und die verschiedenen Phasen sehr komplex sind,
sollen in dieser Arbeit insbesondere die Schritte der Pre-Work und die ers-
ten beiden Phasen des MAPE-K, die Monitor- und die Analyse-Phase, ver-
tiefend dargestellt werden.

Das Hauptaugenmerk liegt hierbei auf dem Messen der Daten und welche
Daten für das Gelingen des MAPE-K gewonnen werden können. Gerade das
Messen der Daten ist besonders wichtig, denn ohne die entsprechenden
Werte kann die Feedbackschleife des MAPE-K nicht durchgeführt werden.
Dabei ist zunächst wichtig zu wissen, was später überhaupt mit den entspre-
chenden Sensoren an Daten gemessen werden kann. Um dies herauszufin-
den, sind ebenfalls die Schritte 1-3 und 5 besonders wichtig und werden in
Kapitel 5 vertiefend behandelt.

Auch wenn die anderen Schritte erläutert werden, liegt zusätzlich neben
dem Messen das weitere Augenmerk auf den ersten beiden Phasen Monitor
und Analyse, da diese eng verknüpft sind mit der Gewinnung der Daten.
Ohne das Aufbereiten der gewonnenen Daten und einer korrekten Analyse
mit den entsprechenden Regeln, kann eine automatische und somit selbst-
adaptive Anpassung einer Software-Engineering-Methode nicht funktionie-
ren.

In diesem Kapitel wurde ein zielorientiertes Vorgehen und im Speziellen
der Ansatz MAPE-K4SEM, bestehend aus der Kombination der Pre-Work
und dem anschließenden MAPE-K, vorgestellt, um insbesondere den in Ab-
schnitt 3.4 definierten Herausforderungen TP1 bis TP5 zu begegnen. Ferner
wurden Schritt-Typen definiert und ein Framework zur Charakterisierung
der einzelnen Schritte erarbeitet. Wie die genauen Schritte der Pre-Work
und der MAPE-K-Feedbackschleife im Detail aussehen, wird in den Kapi-
teln 5 (Pre-Work) und 6 (MAPE-K) nun näher vorgestellt.

Kap

Im v
Schri
te für
lasse
bege
Deta
geste
die S
Schri

5.1	

Aufg

Typ

Subs

pitel	5	

vorherigen
itten vorges
r die MAPE

en, um den b
gnen. In die

ail beschrieb
ellt. Zu Beg
Schritt-Type
itt auf einen

Schritt	1

gabe

schritte

Pre‐W

A

Kapitel wu
stellt. Diese
E-K-Feedba
beschrieben
esem Kapite
ben sowie e
ginn jeden S
en aus dem
n Blick in K

1	–	Defini

Schr
Die
Eng

Erst

2

11

Work	

bbildung 33 A

urde der M
e Schritte be
ackschleife h
nen Herausf
el werden n
ine Möglich

Schrittes we
vorherigen

Kurzform da

tion	der	

ritt 1: Defin
einzelnen Z

gineering-M

tellen – Die

1. Method
Softwar
finieren

2. Weitere

19

Aufbau Kapitel

MAPE-K4SE
eschreiben,
herleiten un

forderungen
nun die sech
hkeit zu ihr
erden sowoh
Kapitel ver

arzustellen.

Ziele	

nition der Z
Ziele und Ei

Methode wer

Ziele werd

de, Eigensch
re-Engineer
n (Hauptziel
e Ziele/Anfo

l 5

EM-Ansatz
wie sich di

nd anschließ
n am Ende v
hs Schritte d
rer Wiederv
hl das Fram
rwendet, um

Ziele
igenschafte

rden definie

den erstellt

haften und R
ring-Method
l und Subzie
orderungen

mit seinen
e nötigen In
ßend verwen
von Kapitel
der Pre-Wor
verwendung
mework als
m den jeweil

n der Softw
rt

Regeln der
de als Ziele
ele)
aus Kontex

n 10
nhal-

enden
 3 zu
rk im

g vor-
auch
ligen

ware-

de-

xt de-

Inpu

Out
tes
Mög
hold

Eine
Met
werd
an,
dam
gute
scha
eben

Zusä
solle
trach

A

Som
eine
Seite

ut des Schr

tput des Sch

gliche Stak
der

er der wicht
riken, dam
den kann, is
welche Vo

mit das Proje
er Qualität i
aften der S
nfalls als Zi

ätzlich zu d
en die Eige
htet und als

Abbildung 34

mit wirken a
en Seite die
e der Konte

rittes Gen

Scr
sun

hrit- Die

ke- Me
Tea

tigsten Schr
mit die MA

st der erste
orgaben die
ekt erfolgre
st. Diese V
oftware-En
ele definier

den Eigensch
enschaften d

Ziele herge

Herleitung und

uf die Defin
Softaware-

ext.

1

finieren
3. Zeitpun
4. Bereich

nutzte Softw
rum in der O
ngen etc.)

e definierten

ethoden-Eng
am usw.; all

ritte zur Ab
APE-K-Feed

Schritt – di
e Software
eich und die

Vorgaben od
ngineering-M
rt sind.

haften der S
des Kontex
eleitet werd

d Definition de

nition der Z
-Engineerin

20

n (falls nötig
nkte der Sch
he für Abwe

ware-Engine
Originalvers

n Ziele

gineer, aber
le, welche d

bleitung der
dbackschlei
e Definition
-Engineerin
e damit zu

der auch Reg
Methode, w

SEM soll no
xtes in Bezu
den.

er Ziele anhan

Ziele verschi
g- Methode

g)
hritte defini
eichungen d

eering-Meth
sion oder Sc

auch Kund
die Ziele mit

r verschiede
fe anschlie
n der Ziele.
ng-Methode
entwickelnd
geln beschr

welche im w

och der Kon
ug auf das

nd der SEM un

iedene Fakt
e selbst und

ieren
definieren

hode (z.B.
crum mit An

de, Managem
itdefinieren

enen Regeln
eßend eing
 Die Ziele g

e erfüllen m
de Software
reiben die E
weiteren Ve

ntext oder b
Projekt m

nd des Kontext

toren ein, au
d auf der an

npas-

ment,

n und
esetzt
geben
muss,
e von

Eigen-
erlauf

besser
it be-

tes

uf der
deren

121

Wie in Abbildung 34 zu sehen, hängt die Software-Engineering-Methode
unter anderem vom Unternehmen ab. Jedes Unternehmen hat seine eigene
SEM, diese kann jedoch von Projekt zu Projekt unterschiedlich sein. Des
Weiteren kann sich der Kontext des Projektes auf die Software-Engineering-
Methode auswirken. Ein gegebenes Modell einer SEM kann einmal für den
Projektkontext anhand von Situational Method Engineering erstellt worden
sein, oder es wurde für das Projekt zugeschnitten (Tailoring).

Im ersten Subschritt werden zunächst das konkrete Modell und die Be-
schreibung der Software-Engineering-Methode selbst betrachtet. Diese
bringt Regeln, Eigenschaften, Vorgehensmethode etc. mit, welche für den
Erfolg der SEM wichtig sind. Diese sollen von einem Methoden-Engineer
oder einer anderen entsprechend geeigneten Person extrahiert und als Ziele
erfasst werden. Ein kleines Beispiel ist, dass als Software-Engineering-
Methode Scrum genutzt wird. Eine bereits erwähnte Regel von Scrum ist
die Teamgröße, welche mindestens drei aber nicht mehr als neun Personen
betragen darf, damit ein Team gut arbeiten und das Projekt Erfolg hat. Als
Ziel definiert wäre dies nun: Die Teamgröße soll eingehalten werden und
darf nicht mehr als 9 oder weniger als 3 Personen betragen.

So können im ersten Schritt die verschiedenen Ziele festgelegt und mit wei-
teren Verantwortlichen, welche für den Erfolg des Projektes wichtig sind,
abgesprochen werden, so dass am Ende eine finale Version der Ziele steht.
Dieser Schritt ist nicht nur der wichtigste, sondern er kann auch am längsten
dauern. Die Definition und Abstimmung der Ziele nimmt einige Zeit in An-
spruch, ähnlich wie bei dem Erstellen von Anforderungen. Die Ziele können
auch als die Anforderungen an die Software-Engineering-Methode angese-
hen werden, damit die SEM am Ende von Erfolg gekrönt ist.

Jedoch ähnlich wie bei der Definition von Anforderungen kann die Anzahl
der definierten Ziele je nach Komplexität der gewählten Software-
Engineering-Methode relativ hoch sein. In diesem Schritt ist deswegen da-
rauf zu achten, die Ziele nicht zu feingranular zu fassen. Die weitere Verfei-
nerung erfolgt später anhand der Regeln, Planungsmöglichkeiten, Metriken
usw. Eine Möglichkeit, die Anzahl zu reduzieren wäre beipsielsweise falls
Ziele einen gleichen Aspekt behandeln ist zu überlegen und zu diskutieren,
ob diese zu einem Ziel zusammengefasst werden können. Dies kann bei-
spielsweise über ein „Hauptziel“ und „Subziele“ erfolgen. In Schritt 2 wer-
den anschließend nur die Hauptziele priorisiert.

Ein Beispiel wäre, dass in Scrum verschiedene Meetings, beispielsweise das
tägliche Daily Scrum-Meeting oder am Ende das Review-Meeting, durchge-
führt werden sollen. Das Hauptziel würde heißen: Es sollen alle Meetings
entsprechend ihrer Reihenfolge durchgeführt werden. Das Subziel könnte

122

dann lauten: Es soll täglich ein Daily Scrum-Meeting von 15 Minuten Dauer
immer zur selben Zeit durchgeführt werden.

Im nächsten Subschritt wird nun die rechte Seite aus Abbildung 34 betrach-
tet und falls nötig werden weitere Ziele und Anforderungen aus dem Kon-
text heraus definiert. Auch hier sind der Methoden-Engineer und bei Bedarf
weitere Verantwortliche nötig. Da jedes Projekt in einem anderen Kontext
stattfindet, gibt es andere Voraussetzungen, unter denen die Software-
Engineering-Methode funktionieren muss. Einen Einfluss können bei-
spielsweise verschiedene Standards und Normen haben, welche ein Unter-
nehmen einsetzen möchte oder sogar muss. Ein Beispiel kann sein, dass das
Unternehmen einen Standard oder eine Norm bezüglich der Gewinnung von
Testdaten nutzen möchte. Das Ziele wäre dann: Nutze den aktuellen Stan-
dard bezüglich der Gewinnung von Testdaten.

Ferner kann es vorkommen, dass Ziele nur zu bestimmten Zeitpunkten, bei-
spielsweise in einer bestimmten Phase, greifen. Somit kann bestimmt wer-
den, wann ein Ziel „aktiv“ wird, d.h. dass die später abgeleiteten Metriken
nur zu diesem Zeitpunkt gemessen werden. Neben den Zielen zu bestimm-
ten Zeitpunkten kann es welche geben, die immer greifen sollen, beispiels-
weise das Standards eingehalten werden müssen. Für das Review-Meeting
oder Planungsmeeting in Scrum würden Ziele beispielsweise nur zu Beginn
eines Sprints (Planung) oder am Ende (Review) aktiv werden. Die verschie-
denen Zeitpunkte sollen bei der Priorisierung mit beachtet werden.

Ein anderes Beispiel wäre die Einbeziehung des Kunden, ähnlich dem Bei-
spiel „Quasi-Scrum“ aus Kapitel 3.1.3.1. Dort hat sich am Ende herausge-
stellt, dass es wichtig ist, den Kunden mehr mit einzubeziehen (durch eigene
Aufgaben) als vorgegeben. Dies hatte sich über die Kundenzufriedenheit
oder besser die Kundenunzufriedenheit anhand vieler (Fehler-) Meldungen
herausgestellt. Das Hauptziel würde hier lauten: Die Kundenzufriedenheit
im Projekt soll hoch sein. Ein Subziel könnte dann heißen: Es darf nur eine
bestimmte Anzahl, welche entsprechend vorher definiert werden muss, von
negativen Meldungen oder Fehlermeldungen vom Kunden vorhanden sein.
Dafür muss natürlich sichergestellt sein, dass der Kunde regelmäßig die
Software begutachten und Fehlermeldungen verfassen darf. Dies kann in
Scrum gut realisiert werden und wurde teilweise bereits realisiert. Je nach-
dem, ob der Kunde nur nach der Auslieferung des Inkrements oder die gan-
ze Zeit über Meldungen verfassen darf, wird das Ziel immer oder nur nach
dem Sprint geschaltet.

Sind die Ziele sowohl aus der Beschreibung der Software-Engineering-
Methode selbst extrahiert als auch anhand des Kontextes erfasst, erfolgt ein
dritter Subschritt. In diesem Schritt werden, soweit dies bei dem Ziel mög-

123

lich ist, die Grenzen, in denen sich das Ziel bewegen darf, definiert. Diese
können bei der Beschreibung der Software-Engineering-Methode bereits
vorgegeben sein oder können entsprechend während der Besprechung und
dem Erstellen der Ziele definiert oder geändert werden.

Im ersten Beispiel bezüglich der Teamgröße in Scrum sind die Grenzen zum
einen vorgegeben, die Teamgröße muss sich zwischen mind. 3 und max. 9
Personen bewegen. Diese Grenzen können zum anderen aber auch ange-
passt werden, bei der Teamgröße können beispielsweise beide Grenzen auf
4 (untere Grenzen) oder auf 10 (obere Grenze) angehoben werden.

5.2	Schritt	2	–	Priorisierung	der	Ziele	
Schritt 2: Priorisierung der Ziele

Aufgabe Für die einzelnen Ziele werden Prioritäten vergeben,
z.B. Wichtigkeit des Ziels und/oder Kritikalität des
Ziels (ähnlich einer Fehlerpriorisierung)

Typ Priorisieren

Subschritte Keine Subschritte vorhanden

Input des Schrittes Konkrete Ziele aus Schritt 1

Output des Schrit-
tes

Priorisierte Ziele

Mögliche Stake-
holder

Kunde, Management, Team; alle, welche die Ziele
mitpriorisieren

Sobald die Ziele der Software-Engineering-Methode festgelegt sind, müssen
diese nun im zweiten Schritt priorisiert werden. Dieser Schritt ist besonders
wichtig für die spätere Durchführung der Analyse und Planung von gemes-
senen Werten, um eine mögliche Reihenfolge dafür festzulegen. Wie in Ka-
pitel 3.4.2. beschrieben, hilft dieser Schritt vor allem dabei, das Trigger-
problem TP3 zu lösen.

Dabei müssen die Verantwortlichen bei der Priorisierung des Ziels betrach-
ten, wie wichtig das Ziel für den Erfolg des Projektes und somit für den Er-
folg der Software-Engineering-Methode ist. Die Wichtigkeit des Ziels be-
stimmt, unter Einhaltung von bestimmten Grenzen (siehe Schritt 1), später
die Sortierung für die Analyse, die Planungsdurchführung und zum Teil
auch für die Anpassungsausführung.

124

Für die Priorisierung eines Zieles anhand seiner Wichtigkeit gibt es ver-
schiedene Möglichkeiten. Eine einfache Möglichkeit wäre dabei, den Zielen
Zahlen zuzuordnen, welche die Priorität darstellen. Ein Beispiel wären hier
Schulnoten, wobei 1 die höchste Priorität widerspiegelt und 6 die niedrigste
Priorität. Umgekehrt wäre es möglich, den Zielen eine Zahl von beispiels-
weise 1 bis 10 zuzuordnen, wobei 10 (= hohe Zahl) die höchste Priorität ist
und 1 die niedrigste.

Eine andere bekannte Methode, welche häufig in den agilen Methoden wie
beispielsweise Scrum zur Priorisierung des Product Backlogs eingesetzt
wird, ist die sogenannte MusCoW-Methode [Gl08]. MuSCoW ist dabei die
Abkürzung für „Must“, „Should“, „Could“ und „Would not“. Must bedeutet
dabei, dass eine Anforderung oder ein Ziel ein Muss ist. Wird dieses Ziel
verletzt oder diese Anforderung nicht umgesetzt, funktioniert die ganze
Software nicht und der Erfolg des Projektes ist hochgefährdet. Should ist in
diesem Zusammenhang zweitrangig, das heißt, die Anforderung bzw. das
Ziel sollte umgesetzt werden. Wird das Ziel nicht umgesetzt, ist der Erfolg
gefährdet, aber nicht so stark wie bei Must. Could bedeutet hier, dass es
schön wäre, wenn das Ziel umgesetzt wird (nice to have). Wird dies nicht
umgesetzt, ist der Erfolg wenig gefährdet. Interessant ist bei der MuSCoW-
Methode das Would not. Hier wird zusätzlich definiert, was NICHT umge-
setzt werden soll. Bei der ursprünglichen Methode wird damit definiert,
welche Anforderungen auf keinen Fall umgesetzt werden sollen. Auf Ziele
einer Software-Engineering-Methode umgemünzt hieße dies, welche Ziele
und Eigenschaften der Methode zum Misserfolg des Projektes führen wür-
den, wenn sie umgesetzt sind. Von der Wichtigkeit kann das Would not in
diesem Fall zwischen Must und Should angesiedelt werden. Übersetzt man
die MuSCoW-Methode in Zahlen, wären dies Prioritäten von 1 bis 4, wobei
Must die Priorität 1, Would not die Priorität 2, Should die Priorität 3 und
Could die Priorität 4 erhalten würde.

Eine andere Möglichkeit wäre es, die Ziele der Software-Engineering-
Methode anhand ihrer Kritikalität zu beurteilen, ähnlich einer Fehlerpriori-
sierung beim Testen. In Testprojekten, z.B. bei Nutzung der Tools JIRA
[At14] oder HP Quality Center Enterprise [HP14], können die Fehler be-
wertet werden und bekommen Attribute wie beispielsweise Blocker oder
leichter Fehler wie Schönheitsfehler. Dabei bekommt ein blockierender Feh-
ler in der Software die höchste Priorität, denn dies heißt, wenn dieser Fehler
nicht (sofort) behoben wird, blockiert die ganze Software und stürzt im
schlimmsten Fall ab. Der Fehler muss schnellstmöglich behoben werden.
Ein Schönheitsfehler besitzt hier die niedrigste Priorität und ist beispiels-
weise beim Testen von Software bei der Realisierung der GUI zu finden,
z.B. dass eine Farbe falsch gesetzt ist oder ein Feld nicht korrekt dargestellt
wird. Dieser Fehler sollte behoben werden, aber die Software funktioniert

125

auch ohne die Behebung einwandfrei. Zwischen diesen Kategorien kann es
verschiedene Abstufungen geben, beispielsweise insgesamt fünf Stufen oder
mehr.

Um die spätere Erstellung der Reihenfolge für die Analyse zu vereinfachen,
sollte die Priorisierung aus einer Zahlenfolge bestehen. Dabei können so-
wohl die MuSCoW-Methode als auch die Methode zur Fehlerpriorisierung
helfen, diese Reihenfolge anhand von Prioritäten zu erstellen.

Wichtig ist es darauf zu achten, die Abstufungen nicht zu feingranular (zu
viele Abstufungen zu wählen) aber auch nicht zu grobgranular (zu wenig
Abstufungen). Ist die Abstufung zu grobgranular, kann dies dazu führen,
dass keine Reihenfolge während der Analyse erstellt wird, da die Ziele die-
selben Prioritäten haben. Ist die Abstufung zu feingranular gewählt bedeutet
dies einen sehr hohen Aufwand, wenn die Menge der Ziele sehr hoch ist.
Von daher muss die Abstufung in Abhängigkeit von der Anzahl der Ziele
gewählt werden. Zusätzlich sollte mit betrachtet werden, wann das Ziel ak-
tiv sein wird. Greift beispielsweise zwei Ziele zu völlig unterschiedlichen
Zeitpunkten, können sie dieselbe Priorität erhalten.

Sollte es dennoch vorkommen, dass zwei Ziele gleichzeitig gemessen UND
dieselbe Priorität besitzen, muss der Methoden-Engineer oder der Projektlei-
ter eingreifen und beurteilen, welches Ziel zuerst analysiert wird. Ansonsten
kann die Durchführung automatisiert ohne das Eingreifen von Verantwortli-
chen erfolgen.

5.3	Ableitung	der	weiteren	Schritte	
Die Ziele der Software-Engineering-Methode sind nun definiert und wurden
priorisiert. In den folgenden Schritten geht es jetzt darum, aus diesen Zielen
zunächst wie in Kapitel 4.3.2. im Ableitungs- und Schalenmodel zu sehen,
die Regeln für die Analyse, die möglichen Planungsmöglichkeiten und dar-
aus jeweils Metriken und Ausführungsregeln und Benachrichtigungen wei-
ter ab- und herzuleiten.

Mit Hilfe der Ableitungsschritte wird, ausgehend von den Zielen, die Frage
beantwortet, was gemessen werden muss und wie die zu messenden Werte
gefunden werden können. Die Werte ergeben am Ende in Schritt 5 die Met-
riken. Diese sind die Grundlage für die anschließenden Sensoren im späte-
ren MAPE-K, welche die entsprechenden Werte für die Metriken messen.

Dies ist aber, wie auch im Ableitungsbaum zu sehen, nur die eine Seite
(links). Auf der anderen Seite steht die Frage, was angepasst wird und was
geplant werden kann. Dies erfolgt ebenfalls mit Hilfe der Ableitung ausge-
hend von den Zielen. Sobald die Planungsmöglichkeiten bekannt sind, kann

mit
gung

Die
4.3.2
dung
Ana
ande
und
ansc
richt

Wie
Punk
Top
Ziel
entsp
GQM
SB9

Für
zuw
ten.
um
best
welc
dell

1

ihrer Hilfe
gs-Metriken

Ableitungs
2. zu finden
g 35 darges

alyse und d
eren Seite w
Kombinati

chließend w
tigungen, ge

e ist es nun
kte herzulei
-Down-Ans
e oder auch
prechende
M-Model, w
99].

diesen Ans
wenden, um

Das Mode
ein Qualitä
eht am En
che für die
enthält nac

1. Die Ko
stimmte
können
spiele s

bestimmt w
n“ ausgefüh

Ab

reihenfolge
n ist, wird
stellt. Aus d
daraus die M
werden die P
ionen für A

wie beschrie
enauer die M

n möglich,
iten? Nach
satz vorzun
h Modelle f
Metriken h
wobei GQM

satz ist eben
aus den pr
ll wird typ

ätsmodell zu
de aus Me
Interpretati
hher drei ve

nzeptions-E
es Objekt m

in der Sof
sind das Pro

1

werden, we
hrt werden.

bbildung 35 W

e, welche eb
noch einma

den priorisie
Metriken fü
Planungsmö

Anpassungen
eben die gen
Metriken un

aus den pr
[BCR94] i

nehmen und
fokussieren.
herleiten zu
M für „Goa

nfalls die Id
riorisierten
ischerweise
u erstellen.

etriken sowi
ion der gem
erschiedene

Ebene – die
mit verschie
ftwareentwi
rodukt (Arte

26

elche „Anp

eitere Ableitun

benfalls im
al konkret f
erten Zielen
ür die Mess
öglichkeiten
n hergeleite
nauen Ausfü
nd Werte zu

riorisierten
st es nötig,

d sie sollte
 Um messb

u können, is
al“, Questio

dee, einen T
Zielen Reg

e als eine V
Dieses ist

ie einem sp
messenen D
e Ebenen [B

e Ziele (Go
denen Sicht
icklung ver
efakte, Inkr

assungs- un

ngen

Ableitungs
für die Pre-
n werden di
swerte herg
n sowie mö
et. Aus dies
führungsreg
ur Modifikat

Zielen die
die Herleit
sich dabei

bare Ziele zu
st ein Ansa
n“ „Metric“

Teil des GQ
geln und Me
Verfahrensw
hierarchisch
pezifischen
aten wichtig

BCR94]:

oals) – wel
tweisen def

rschiedene A
remente etc

nd Benachr

sbaum in K
-Work in A
ie Regeln fü
geleitet. Au
ögliche Kon
sen ergeben

geln und Be
ation.

e entspreche
tung nach e
i auf spezif
zu definieren
atz das bek
“ steht [BC

QM-Modell
etriken herz

weise verwe
ch aufgebau
n Set an Re
g sind. Das

lche für ei
finiert sind.
Arten sein.
c.), die Pro

richti-

Kapitel
Abbil-
ür die
uf der
nflikte
n sich
nach-

enden
einem
fische
n und

kannte
CR94,

ls an-
zulei-
endet,
ut und
egeln,
s Mo-

n be-
 Dies
 Bei-

ozesse

2

3

Diese
bean

1
2

3

Gena
für d
könn
gen d
dung

oder Pha
usw.) od
nutzt we

2. Die Ope
arbeitet w
erreicht o

3. Die Qua
beitet wi
ten. Dies
kumente
in subjek
nes Text

e drei Eben
ntworten gilt

1. Welches
2. Was soll

worten?
3. Welche

zu besch

au diese Fra
die linke, als
nen diesem
dann jeweil

g 36 zu sehe

asen im En
der auch für
erden.
erations-Ebe
wird. Diese
oder gemes

antitative-Eb
ird, um die
s kann sow
en, Aufwand
ktiver Form
tes usw.) ge

nen können
t. Sie werde

s Ziel soll du
l gemessen
(Question)
Metrik(en)

hreiben? (M

Abbildung 3

agen sollen
s auch die re
somit zugr
ls umformu
en, immer n

12

ntwicklungs
r die Ressou

ene (Questio
e Fragen cha
sen wird.

bene (Metri
Fragen in e
ohl in objek
d für Aktiv

m (z.B. Zufr
eschehen.

n in drei Fr
en genutzt, u

urch die Me
werden; w

sind in der
Metric)

36 Ableitung G

n in ähnlich
echte Seite
runde geleg
uliert werde
noch die Zi

27

sprozess (S
urcen, welc

on), in der e
arakterisiere

ic), in der ei
einer quanti
ktiver (z.B.

vitäten, Line
riedenheit d

ragen umge
um das Mod

essung errei
welche Frage

Lage, die n

GQM-Variante

her Weise d
des Ableitu

gt werden. A
en. Als ober
iele erhalten

Spezifikation
he für die E

eine Anzahl
en, wie ein

ine Anzahl
itativen For
 Versionsnu
es of Codes

der Benutzer

ewandelt we
dell zu erste

icht werden
en soll die

notwendige

e linke Seite

durch die Pr
ungsbaums b
Allerdings m
rstes bleibe
n. Um die j

n, Design,
Entwicklung

l von Frage
bestimmtes

von Daten
rm zu beant
ummer von
s usw.) als
r, Lesbarke

erden, die e
ellen:

n? (Goal)
Messung be

n Eigenscha

re-Work sow
beantwortet
müssen die
n wie in A
jeweils weit

Test
g ge-

en er-
s Ziel

erar-
twor-
n Do-
auch

eit ei-

es zu

eant-

aften

wohl
t und
Fra-

Abbil-
teren

128

Schritte und Ergebnisse zu erhalten, werden zunächst entsprechende Fragen
gestellt, um anschließend für die linke Seite erst die Regeln und dann die
Metriken herzuleiten:

1. Welches Ziel oder welche Eigenschaft soll bei der Software-
Engineering-Methode erhalten bleiben und kann durch eine Messung
sowie Analyse überprüft werden? (Goal, Schritt 1 + 2)

2. Was soll dafür analysiert und welche Grenzen können dafür einge-
halten werden? Welche Fragen muss ich für diese Analyse beant-
worten um die Regeln zu erhalten? (Questions)

3. Welche Metriken sind in der Lage, die nötigen Werte für die Analy-
se der Regeln zu liefern? Welche Faktoren beeinflussen das
Ziel?(Regeln, Schritt 3, Metric Schritt 5)

Mögliche Fragen können hier sein:

a. Wie stelle ich das Ziel sicher, was ist dafür nötig?
b. Zu welchem Zeitpunkt greift das Ziel?
c. Welche Faktoren beeinflussen das Ziel und müssen beobachtet wer-

den?
d. In welchen Bereichen/Grenzen bewegen sich diese Faktoren damit

das Ziel erreicht wird und erhalten bleibt?

Wie in Abbildung 36 zu sehen ergibt hierbei die Leitfrage c) die späteren
Metriken und Leitfrage d), ergibt anschließend die Regel für die Auswer-
tung. Beide Leitfragen können durch weitere Fragen verfeinert werden.
Wichtige Fragen, um eine Software-Engineering-Methode anzupassen und
um mögliche Schwächen oder Abweichungen festzustellen, könnten außer-
dem noch sein:

 Welche Abhängigkeiten in der Software-Engineering-Methode sind
kritisch?

 Welche Veränderungen am Projekt können Einfluss auf die Soft-
ware-Engineering-Methode nehmen?

 Wie wird sichergestellt, dass alle Beteiligten über eine Anpassung
und somit eine Veränderung in der SEM informiert sind?

 Wie werden neue Risiken und Gefahren für die Software-
Engineering-Methode erfasst und in MAPE-K integriert?

 Welche Übergänge im adaptiven Zyklus lassen sich wie managen?

Ein ähnliches Vorgehen kann für die Schritte der rechten Seite vorgenom-
men werden, welche in Abbildung 37 zu sehen sind. Dabei bleibt der erste
Punkt gleich und anschließend werden mit Hilfe der Fragen zunächst die
Planungsmöglichkeiten und dann die Ausführungs- und Benachrichtigungs-
Metriken hergeleitet:

1

2

3

Mög

a
b

c
d

e
f
g

Die L
Ausf
mit m

1. Welches
bleiben u
den? (Go

2. Was mu
das Ziel
damit ein
zuhalten

3. Welche
Software
tig werd
nungsmö

gliche Frage

a. Wie stell
b. An welc

eine SEM
c. Wer mus
d. Wie kan

angepass
e. Welche V
f. Welche K
g. Wie kön

Kombina

Leitfragen b
führung-Me
möglichen V

s Ziel soll
und kann d
oal, Schritt
ss unter bes
 weiter ein
ne Anpassu

n? (Question
Anpassung
e-Engineeri
den? Wie s
öglichkeiten

Abbildung 3

n können h

le ich das Z
hen Stellen

M angepass
ss bei einer

nn die gegeb
st werden, d
Varianten g
Konflikte k

nnen Anpass
ationspunkt

b) und c) e
etriken. Die
Verfeinerun

12

bei der So
durch eine M
1 + 2)
stimmten V

ngehalten w
ung geplant
ns)
sschritte sin
ng-Methode
sehen diese
n Schritt 4, M

37 Ableitung G

ier sein:

Ziel sicher, w
kann eine S

t werden (si
Anpassung

bene SEM m
damit das Z
gibt es dabei
können bei d
sungen kom
te?

ergeben mit
e Beantwor
ngsfragen di

29

oftware-Eng
Messung un

Voraussetzun
wird. Welch

werden kan

nd nötig; an
e angepasst
e „Anpassu
Metric, Sch

GQM-Variante

was ist dafü
SEM angep
iehe dazu K

g alles benac
mit den gem
iel weiter e
i?
den jeweilig

mbiniert wer

t Hilfe der P
rtung der re
ie Planungsm

gineering-M
nd Analyse

ngen geplan
e Fragen m
nn, um das

n welchen S
t und wer m
ungs-Metrik
hritt 6)

e rechte Seite

ür nötig?
passt werden
Kapitel 3.1.2
chrichtig we

messenen un
ingehalten w

gen Zielen e
rden, gibt es

Planungsmö
estlichen L
möglichkeit

Methode erh
e überprüft

nt werden, d
muss ich ste

Ziel weiter

Stellen mus
muss benach
ken“ aus?

n und wie k
2.)?
erden?
d analysiert
wird?

entstehen?
s bestimmte

öglichkeiten
Leitfragen e
ten.

halten
wer-

damit
ellen,
r ein-

ss die
hrich-
(Pla-

kann

ten

e

n die
ergibt

130

Wie genau die weiteren Ableitungen und somit die Schritte im Detail ausse-
hen, wird in den Abschnitten 5.4. bis 5.7. beschrieben.

5.4		Schritt	3	–	Ableitung	von	Analyseregeln	
Schritt 3: Ableitung von Analyseregeln

Aufgabe Für die Analyse-Phase werden anhand der Ziele
mögliche (Auswertungs-)Regeln abgeleitet

Typ Ableiten
Sub-Typ: Regeln

Subschritte 1. Auswertungsteil ableiten (Wenn-Teil)
2. Aktionsteil ableiten (Dann-Teil)

Input des Schrittes Priorisierte Ziele aus Schritt 2 und Grenzwerte

Output des Schrit-
tes

Regeln für die Analyse

Mögliche Stake-
holder

Methoden-Engineer, evtl. Projektmanagement

Nachdem die Ziele nun priorisiert sind, ist der nächste Schritt, die Analyse-
regeln für die spätere Analyse-Phase zur Durchführung des MAPE-K abzu-
leiten. Wie im vorherigen Abschnitt beschrieben, wird dazu eine Form des
GQM-Modells verwendet. In Schritt 1 wurden die Ziele definiert u.a. durch
die Eigenschaften der Software-Engineering-Methode, welche während der
Durchführung der SEM eingehalten werden sollen. Zusätzlich wurden Tole-
ranzbereiche und mögliche Abweichungen angegeben, in denen sich die
Ziele zur Einhaltung bewegen dürfen. Diese Angaben müssen nun mit Hilfe
der Leitfrage „In welchen Bereichen/Grenzen bewegen sich diese Faktoren
damit das Ziel erreicht wird und erhalten bleibt?“ in eine Regel-Form über-
führt werden.

Die Analyseregeln bestehen später aus zwei Teilen, aus einem Auswer-
tungsteil, dem Wenn-Teil und einem Aktionsteil, dem Dann-Teil. In diesem
Schritt geht es hauptsächlich um den Auswertungsteil, welcher aus den Zie-
len abgeleitet wird. Er ist dafür zuständig zu überprüfen, ob ein bestimmtes
Ziel sich noch innerhalb der gesetzten Grenzen befindet und ob es noch
erfüllt wird oder nicht. Je nach Ergebnis der Auswertung, beschreibt der
Aktionsteil was entsprechend zu tun ist.

Der Aktionsteil ist eng mit Schritt 4 verknüpft, der Ableitung von Pla-
nungsmöglichkeiten und deren Alternativen. Durch den Dann-Teil wird

131

beschrieben, welche Planungsmöglichkeit oder Alternative aufgerufen wird.
Falls eine bestimmte Voraussetzung, welche durch den Wenn-Teil ausge-
wertet wird, erfüllt ist, wird eine entsprechende Anpassung der Software-
Engineering-Methode aufgerufen. Es kann allerdings Situationen geben, wo
die Analyseregel ergibt, dass sich das Erfüllen des Ziels nicht mehr in sei-
nen Grenzen befindet, aber auch keine Planungsmöglichkeit vorhanden ist.
Die Anpassung muss dann während der Planphase bestimmt werden.

Daraus ergeben sich drei mögliche Regel-Formen, welche u.a. davon ab-
hängen, ob es eine Planungsmöglichkeit gibt oder nicht

1. Wenn „Angabe/ Ziel nicht erfüllt“ dann „Planungsmöglich-
keit mit Werten aus Monitor“

2. Wenn „Angabe/ Ziel nicht erfüllt“ dann „Neue Planung mit
Werten aus Monitor + Ziel“

3. Wenn „Angabe/ Ziel erfüllt“ dann Schritt 7 (Monitor-Phase)

Hier soll noch einmal das in Abschnitt 3.3.2 eingeführte Beispiel der Team-
größe in Scrum verwendet werden. Ist das Team zu groß, ist die Regel, dass
das Team gesplittet und ein Scrum of Scrums durchgeführt wird (Pla-
nungsmöglichkeit Variante 1). Ist das Team zu klein, muss eine weitere Per-
son mit entsprechenden Skills gesucht und dem Team hinzugefügt werden
(Planungsmöglichkeit Variante 2). Daraus ergeben sich nach erstens und
drittens folgende Regeln:

a. Wenn Teamgröße > 9 dann Planungsmöglichkeit Variante 1 (Team
zu groß, aktuelle Teamgröße x)

b. Wenn Teamgröße < 3 dann Planungsmöglichkeit Variante 2 (Team
zu klein, aktuelle Teamgröße y)

c. Wenn Teamgröße 3 <= Teamgröße <= 9 dann Schritt 7 (Monitor-
Phase)

Wie in 4.1. und genauer in 4.3.1.4 beschrieben sind typischerweise die Pla-
nungsmöglichkeiten bereits vorhanden. Es gibt einige Situationen, in denen
der Kontext eine Planung ohne vorherige Planungsmöglichkeiten triggern
kann. Ein Beispiel dafür ist, dass das Ziel ist, dass die SEM bestimmte
Normen und Standards einhalten soll, z.B. den aktuellen Standard zum Tes-
ten. Wenn sich dieser nun ändert, ist es nötig, die Software-Engineering-
Methode darauf abzustimmen. Die Regel würde nach zweitens dafür lauten:

 Wenn aktuelle Norm/aktueller Standard != aktuell genutzte Norm/
Standard, dann Neue Planung mit neuer Norm/ Standard (auslesen
aus Datenbank) else Schritt 7 (Monitor-Phase)

132

Damit diese Regel funktioniert, muss zunächst an einer Stelle, z.B. in der
Wissensbasis, immer bekannt sein, welche Norm/ welcher Standard aktuell
verwendet wird. Zum anderen muss es entweder möglich sein, den Kontext,
in diesem Fall beispielsweise eine entsprechende Seite im Internet, zu scan-
nen und auf eine mögliche neue Norm oder einen neuen Standard hin zu
überprüfen. Im einfacheren Fall wird regelmäßig von einem Teammitglied
oder einem Mitarbeiter des Unternehmens überprüft, ob es neue Normen
oder Standards gibt. Diese werden dann in eine entsprechende Datenbank
eingetragen.

5.5	Schritt	4	–	Ableitung	von	Planungsmöglichkeiten	
Schritt 4: Ableitung von Planungsmöglichkeiten

Aufgabe Aus den priorisierten Zielen (und der SEM) werden,
soweit möglich, Planungsmöglichkeiten abgeleitet

Typ Ableiten
Sub-Typ: Planungsmöglichkeiten

Subschritte 1. Ab- bzw. Herleitung von Planungsmöglichkei-
ten

2. Variantenbestimmung
3. Bestimmung von Konfliktpotential (und mög-

liche Lösungen)
4. Kombinationsmöglichkeiten und -punkte

Input des Schrit-
tes

Priorisierte Ziele und Software-Engineering-Methode

Output des Schrit-
tes

Möglichkeiten für die Planung

Mögliche Stake-
holder

Methoden-Engineer

Ähnlich wie aus der vorgegebenen Software-Engineering-Methode, den
Projektzielen und einem Toleranzbereich, Regeln abgeleitet werden können,
können im Vorfeld Anpassungs- bzw. Planungsmöglichkeiten bereits herge-
leitet werden. Die Herleitung der Planungsmöglichkeiten ist für die meisten,
aber für einige Ziele wie das Einhalten eines Standards, nicht möglich.

Wie in Abschnitt 5.3 beschrieben, sind zunächst die einzelnen Ziele und
Eigenschaften zu betrachten, für welche bereits im die Regeln und Tole-
ranzbereiche bestimmt wurden. Nun ist zu überlegen, was getan werden
muss, wenn diese Toleranzbereiche über- oder unterschritten werden und
somit die Gefahr besteht, dass das Ziel nicht mehr eingehalten wird. Es ist

133

nun die Leitfrage zu beantworten, was geplant werden muss, damit das Ziel
weiter eingehalten werden kann und somit die SEM weiter Erfolg hat
(Schritt „Q“ aus GQM).

5.5.1	Herleitung	
Da durch das Ziel, den Regeln und dem Toleranzbereich genau bekannt ist,
an welcher Stelle in der SEM ich mich gerade befinde, müssen verschiedene
Dinge betrachtet werden. Zunächst lautet jeweils die Frage, was genau an-
gepasst werden soll, wenn die Regel nicht eingehalten wird. Es muss dafür
genauer überlegt werden,

a. Wo muss im Modell der Software-Engineering-Methode an-
gepasst werden?

b. Was kann an dieser Stelle angepasst werden, z.B. ein Arte-
fakt, eine Rolle, eine Aktivität, eine Kombination daraus
usw.?

c. Wie muss an dieser Stelle angepasst werden, damit das Ziel
weiter sichergestellt wird, z.B. muss etwas hinzugefügt, et-
was ausgetauscht, etwas gelöscht werden usw.?

d. Welche Verbindungen müssen dabei neu gesetzt werden und
welche bleiben erhalten, z.B. welche Rollen gehören zu wel-
chen Aktivitäten, bleibt der Workflow erhalten oder muss er
neu gestaltet werden (neue Verbindungen setzen) usw.?

e. Wer muss alles über die Änderungen benachrichtigt werden,
z.B. welche neuen und alten Teammitglieder bekommen eine
Benachrichtigung? Oder erhält das System eine Nachricht,
wenn etwas automatisch durchgeführt werden kann usw.?

Auch wenn durch die Ziele und Regeln bekannt ist, an welcher Stelle ange-
passt werden muss, ist das gegebene Modell der Software-Engineering-
Methode wichtig um die Stelle des Ziels und der Regeln im Modell genau
zu definieren, also wo genau ich mich befinde (Punkt a). Nur anhand des
Modells und durch das Bekanntsein der Stelle, wo ich mich nun im Modell
befinde, ist es möglich herauszufinden, was an dieser Stelle angepasst wer-
den kann. Denn durch das Modell sind die Elemente, welche sich an der
anzupassenden Stelle befinden, genau definiert.

In A
ware
werd
müs

Abbildung 38

Abschnitt 2.
e-Engineeri
den kann. D
ssen, sind w

• A
d

• R
u

• A
w
f

• V
o

• W
n

• M
f

• G
w
u
u
w

8 Begriffe eine

.1.1 wurde
ing-Method
Die wichtig

wie auch in A

Aktivitäten
durchgeführ

Rollen (z.B
usw.) zugeo

Artefakte (z
ware usw.),
für die Durc

Verantwortl
oder Artefak

Workflow (
nen Aktivitä

Meetings (=
führt werde

Guidance (=
wird, um be
um das ges
und Werkz
werden.

1

er Software-En

bereits bes
de enthalten
gsten Eleme
Abbildung 3

(= Aufga
rt werden m

B. Projektle
ordnet zu A

z.B. Dokum
, welche be
chführung w

lichkeiten,
akten zugeor

(= Zusamm
äten in Kom

= Aktivität)
en.

= Hilfsmitt
ei der Durch
setzte Ziel
zeuge eben

34

ngineering-Met

schrieben, w
n kann, also
ente, die in
38 zu sehen

aben), welc
müssen.

eiter, Team
ktivitäten.

mente, Arbe
ei einzelnen
weiterer Ak

die eine Ro
rdnet sind.

menhang un
mbination m

, welche reg

tel, Anleitu
hführung ein
zu erreich

nfalls als U

thode (vergl. A

welche Elem
o WAS (Pun
n Betracht g
:

che innerh

mmitglied, T

eitsergebnis
Aktivitäten

tivitäten ben

olle besitzt

nd Reihenfo
mit Rollen un

gelmäßig in

ngen), alles
ner Aktivitä
en. Dabei k
Unterkatego

Abschnitt 2.1.1

mente eine
nkt b) ange
gezogen w

halb einer

Tester, Arch

sse, fertige
n entstehen
nötigt werd

und Aktiv

olge) der ei
und Artefakt

n SEMs dur

s was eing
ät zu helfen
können Te
orien ange

)

Soft-
epasst
erden

SEM

hitekt

Soft-
bzw.

den.

itäten

inzel-
ten.

chge-

esetzt
n bzw.
chnik
sehen

135

• Technik (z.B. Priorisierungstechnik, Pair Programming bei
der Entwicklung usw.), welche für die Durchführung einer
Aktivität und das Erstellen eines Artefakts eingesetzt wird.

• Werkzeuge (z.B. Software-Tools), welche für die Durchfüh-
rung einer Aktivität eingesetzt werden und diese unterstüt-
zen.

• Qualifikation (= Skills), welche eine Person besitzen muss,
um für eine bestimmte Aktivität eingesetzt zu werden. Dies
kann auch als Unterkategorie für die Rolle angesehen werden
oder wie in Abschnitt 2.1.1 beschrieben zugehörig zu einer
Person sein.

• Meilensteine, welche den Abschluss eines bestimmten Zeit-
raums symbolisieren, zu dem bestimmte Dinge (z.B. Arbeits-
ergebnisse, fertige Software usw.) erreicht sein müs-
sen/sollen.

Diese Elemente wurden ausgewählt, da sie die in Abschnitt 2.1.1 definierten
Elemente widerspiegeln. Die Hauptelemente sind dabei neben dem Work-
flow die Elemente Rolle, Artefakt und Aktivität. Diese Hauptelemente wer-
den ebenfalls in anderen Modellen von Software-Engineering-Methoden als
Hauptelemente definiert, manchmal unter einem anderen Begriff.

Durch die Bestimmung des Anpassungspunktes im Modell der Software-
Engineering-Methode ist es nun besonders wichtig zu bestimmen, welches
Element/welche Elemente WIE (Punkt c) an dieser Stelle angepasst werden.
In Kapitel 3.1.2. wurden dafür bereits die verschiedenen Anpassungs-Arten
näher erläutert. Mit Hilfe der Ziele ist nun von einem Methoden-Engineer
zu bestimmen, was getan werden kann, um das Ziel weiter einzuhalten, z.B.
ob ein Element ausgetauscht, hinzugefügt oder gelöscht werden muss. In
manchen Fällen ist bereits in der Beschreibung einer Software-Engineering-
Methode vorhanden, was in bestimmten Fällen durchgeführt werden muss.
Hat der Methoden-Engineer bestimmt, was bei der möglichen Anpassung
durchgeführt wird, muss er noch überprüfen (Punkt d):

a. Ob die Reihenfolge in der SEM weiter eingehalten wird oder ob
diese entsprechend über Verbindungen neu gesetzt werden muss.

b. Ob die Verantwortlichen für die Elemente weiter gesetzt sind
oder diese neu gesetzt werden müssen.

Als einen letzten Schritt muss der Methoden-Engineer bestimmen, wer am
Ende alles über die Änderungen benachrichtig werden muss. Durch das
Modell und die entsprechende Zuordnung der Rollen kann schnell ermittelt

werd
fen
ten,
wird
Insta
Ben

Sind
er fü
Mod
welc
erha
gun
in k
Exec

Zur
aufg
Met
wen
dazu
meh
Form

Im M
(je n
sone
Pers
Team
Arte
able
Team

den, welche
sind und so
dass die B

d. Durch di
anz-Ebene
achrichtigu

d die versch
für die Plan
dell (Wo) b
cher Art (
alten oder ne
g (Wer) ge

konkrete Au
cute überfüh

Veranschau
gegriffen. D
hoden-Engi

nn das Team
u geraten, d
hrere Teams
m eines Scru

Abbildu

Modell wer
nach Anzah
en würden w
sonen entst
ms aufgetei
efakt nicht
eitend beisp
ms aufgetei

e Rollen, so
omit inform
Benachrichti
e Zuordnun
wird in de
ng bekomm

hiedenen Sc
nungsmöglic
bei einer V
(Wie) ange
eu gesetzt w
schickt wer
usführungs-
hrt werden.

ulichung w
Das Team ist

ineer überle
m zu groß w
das Team da
s gemeinsam
um of Scrum

ng 39 Team-Sp

rden nun zu
hl der Person
wie in Abbi
ehen. Die
ilt. Grau be
ändert. Die

pielsweise a
ilt. Der Prod

1

owohl alt al
miert werden

igung bei w
ng der konk
er Ausführu
mt, z.B. anha

chritte vom
chkeit am E
erletzung d

epasst werd
werden müs
rden muss.
- und Bena

wird wieder
t zu groß un
egt nun zu
wird. In der
ann aufzusp
m am Produ
ms täglich a

plit: Aufteilun

um ursprüng
nen) hinzug
ildung 39 zu
Aufgaben
edeutet dab
e Personen
aus den Au
duct Owner

36

ls auch neu
n müssen. W
weggefallen
kreten Perso
ung bestimm
and einer N

Methoden-
Ende bestim
der Regel w
den, welche
ssen und an
Diese fünf

achrichtigun

das Beispie
nd beinhalte

unächst, wo
r Beschreib
plitten (Team
uct Backlog
austauschen

ng in zwei Team

glichen Tea
gefügt, bei
u sehen zwe
im Produc

bei, dass sic
werden anh

ufgaben im
r bleibt wei

u, von der Ä
Wichtig ist
nen Rollen
onen zu den
mt, wer di

Nachricht in

-Engineer d
mmt, an we
welche Elem
e Verbindu
wen welch
Punkte kön

ngs-Metrike

el der Team
et mehr als

o und was
ung von Sc
m-Split). Da
g arbeiten u
n müssen.

ms und neue Zu

am ein oder
einem Beis
ei neue Tea
t Backlog
ch diese Ro
hand ihrer

m Product B
terhin der B

Änderung b
dabei zu b
nicht verg

n Rollen au
ie entsprech
E-Mail-For

durchgeführ
elcher Stel
mente (Wa
ungen (We

he Benachr
nnen in Sch
en für die P

mgröße in S
9 Personen
er ändern

crum selbst
as bedeutet
und diese si

Zuordnung

r mehrere T
spiel von 12
ams mit jew

werden au
Rolle bzw. d

Qualifikati
Backlog, au
Besitzer des

etrof-
beach-
gessen
uf der
hende
rm.

rt, hat
lle im
as), in
elche)
ichti-

hritt 6
Phase

Scrum
n. Der
kann,

t wird
, dass
ich in

Teams
2 Per-

weils 6
uf die
dieses
onen,

uf die
s Pro-

duct
dert s

Im M
in ei
Daily
durch
treffe
lich w
ande

Die V
den.
teilne
bindu
setzt
Team

5.5.2
Bei v
wenn
keit z
reich
ben,
dem
Mög
der P
Perso

Sind
besti

Backlogs u
sich ebenfa

Abbildung 40

Modell wird
inem stark
y Scrum. Au
hgeführt vo
en sich gew
wie im Dai
ren als näch

Verantwortl
Es muss b

ehmen und
ungen sowo

werden. B
mmitglieder

2	Variante
vielen Anpa
n ein Tolera
zur Anpassu

h unterschri
muss es ab
Toleranzbe

glichkeiten e
Planungsmö
on übernimm

die Varian
immt werde

und für ihn
lls nicht, ab

0 Split Daily Sc

d ein Meetin
vereinfacht
ußerdem wi
on Team a,
wählte Vertr
ily Scrum, w
hstes tun wo

lichkeiten m
eispielswei
ist dafür ve

ohl zum Pr
Bei den Be
r benachrich

enbestimm
assungen ka
anzbereich
ung, wenn d
itten wurde
ber nicht. D
ereich und
erkennt. Ge
öglichkeiten
mt.

nten nach de
en, wann w

13

ändert sich
ber er ist nun

crum und Einf

ng, also eine
en Modell
ird das Dail
 das andere
reter aus de
was die Te
ollen.

müssen nun
se mindeste
erantwortlic
oduct Back

enachrichtig
htig werden

mung	
ann es versc
vorhanden
der Bereich
. Zusätzlich

Die Anzahl
auch aus d

erade desha
n eine erfah

em Vorgeh
welche Vari

37

nichts. Der
n für zwei T

fügen Scrum o

e Aktivität,
in Abbildu

ly Scrum in
e von Team

en beiden T
eams zum e

n bei dem al
ens eine Pe
ch. Beim ne
klog als auc
gungen müs
.

chiedene Mö
ist, gibt es

h überschritt
h kann es n
der Varian
dem, was d
alb ist es w
hrene oder

en aus 5.5.
ante einges

r Scrum Ma
Teams veran

f Scrums nach

, hinzugefüg
ung 40 zu s
n zwei aufge
m b. Im Sc

Teams und b
einen getan

lten Team n
erson am Sc
euen Team m
ch zum neu
ssen alle a

öglichkeiten
 mindesten
ten und ein

noch weiter
ten bestimm
der Method

wichtig, dass
entspreche

1. bestimm
setzt wird.

aster an sich
ntwortlich.

h Daily Scrum

gt und zwar
sehen nach
eteilt, eines
crum of Scr
besprechen
haben und

neu gesetzt
crum of Scr
müssen die
uen Meeting
alten und n

n geben. Ge
s eine Mög
e, wenn der
e Varianten

mt sich also
den-Enginee
s die Herlei
nd ausgebi

t, so muss n
Ist die Var

h än-

r wie
dem
wird
rums
ähn-
zum

wer-
rums
Ver-

g ge-
neuen

erade
glich-
r Be-
n ge-
o aus
er an
itung
ildete

noch
riante

138

anhand der Toleranzüber- bzw. -unterschreitung bestimmt, so kann dies
anhand der entsprechenden Regel geschehen, wie etwa im Beispiel im vor-
herigen Kapitel 5.4. Dort ist jeweils eine Variante angegeben, wenn das
Team größer ist als der Toleranzbereich und eine zweite Variante, wenn das
Team kleiner ist als der Toleranzbereich. Je nachdem, welcher Fall zutrifft,
wird die entsprechende Variante ausgeführt.

Sind mehrere Varianten für einen Fall angegeben, muss zur Laufzeit, also
zur Ausführung der Plan-Phase bestimmt werden können, welche der Vari-
anten am besten geeignet ist zu dem jeweiligen Zeitpunkt. Dafür muss es
eine entsprechende Vergleichsmöglichkeit geben, um die beste Variante zu
bestimmen. Dabei sind mit die beiden wichtigsten Faktoren:

 Grad der Anpassung (muss viel oder nur sehr wenig angepasst wer-
den).

 Auswirkung der Anpassung auf der Gesamt-SEM. Das heißt, wie
stark beeinflusst die Anpassung die restliche Software-Engineering-
Methode, das heißt gibt es Konflikte, muss an einer anderen Stelle
ebenfalls etwas angepasst werden etc.

Gerade die Auswirkung einer Anpassung auf die Gesamt-SEM ist sehr
wichtig. Durch das Modell ist Rückverfolgung (Traceability) und die Ver-
bindung in der gesamten Methode gegeben. Mit Hilfe von Mustern (Pat-
tern), Traceability-Algorithmen oder Simulationen der Anpassung in der
Gesamt-SEM kann überprüft werden, wie sich Anpassung auswirkt und ob
es an anderen Stelle Probleme gibt. Zum Beispiel kann an einer anderen
Stelle ein anderes Ziel nicht mehr eingehalten werden oder die Software-
Engineering-Methode verlangsamt sich etc.

Wurde herausgefunden, dass die erstgewählte Variante ein Problem darstellt
und einen Konflikt in der Gesamt-SEM auslöst, muss bestimmt werden,
welche weitere Variante genutzt werden kann. Es muss über alle möglichen
Varianten überprüft werden, welche sich am besten für die Anpassung eig-
net und am wenigsten Probleme, wenn überhaupt, hervorruft. Wird festge-
stellt, dass jede Variante große Konflikte hervorruft, muss unter Umständen
eine neue Alternative mit den gegebenen Werten geplant werden, ähnlich
einer Planung ohne vorherige Planungsmöglichkeiten

5.5.3	Konfliktpotential	
Ein zusätzlicher Punkt, welcher im Vorfeld betrachtet werden kann und
welcher die Auswahl der Alternativen unterstützen kann ist, die möglichen
Ziele und somit ihre Planungsmöglichkeiten im Vorfeld auf ihr Konfliktpo-
tential hin zu untersuchen. Die zu beantwortende Frage ist hier: Welche
Konflikte können bei den jeweiligen Zielen entstehen?.

139

Dabei muss in einem ersten Teil betrachtet werden, welches Konfliktpoten-
tial die Ziele untereinander besitzen können. Dies ist wichtig zu analysieren,
wenn in der späteren Durchführung von MAPE-K mehrere Anpassungen
gleichzeitig durchgeführt werden müssen. Ähnlich wie bei der Analyse der
Varianten in Bezug auf die Gesamt-SEM müssen die Ziele zueinander in
Beziehung gesetzt werden. Das heißt, die Ziele müssen dahingehend be-
trachtet werden, ob sie in Konflikt zueinander stehen, was eher selten der
Fall sein sollte.

Zusätzlich müssen die erstellten Planungsmöglichkeiten und ihre Varianten
betrachtet werden, ob diese untereinander in Konflikt stehen, sollten sie
gleichzeitig zur Anwendung kommen. Eine Möglichkeit der Überprüfung
wäre ebenfalls die Anwendung von Simulationen sowie von der Verwen-
dung von Pattern und deren Analyse.

Anhand des Ergebnisses dieser Simulationsalgorithmen und Pattern-
Analyse ist es möglich die Konflikte zu identifizieren, aber auch um Lö-
sungsmöglichkeiten für diese Konflikte bereits im Vorfeld zu finden. Ein
wichtiger Punkt sind dabei die Prioritäten der Ziele. Stehen beispielsweise
zwei Ziele mit unterschiedlichen Prioritäten in Konflikt, so wird das Ziel
mit der höheren Priorität zuerst in Betracht gezogen und sticht das andere
Ziel unter anderem aus, sofern es keine Lösung für diesen Konflikt gibt.
Allerdings sind vorher die Konsequenzen in Bezug auf die Gesamt-SEM zu
bewerten.

5.5.4	Kombinationsmöglichkeiten	
Für die Planung ist als letzter Punkt zu überlegen, wie Planungsmöglichkei-
ten und die daraus folgenden Anpassungen miteinander kombiniert werden
können. Da nicht jede Anpassung sofort sondern erst zu einem definierten
Zeitpunkt ausgeführt werden kann, ist es möglich, dass im MAPE-K mehre-
re Anpassungen aufgelaufen sind. Da diese zum Anpassungszeitpunkt nicht
alle direkt nacheinander in das Modell überführt werden sollen, muss eine
Kombination der aufgelaufenen Anpassungen erfolgen, um ein optimales
Ergebnis zu erzielen.

Um eine solche kombinierte Anpassung zu erstellen muss überlegt werden,
ob es bestimmte Kombinationspunkte innerhalb der Anpassungen gibt und
wie diese aussehen. Anzusetzen ist dabei an den beiden Punkten aus Ab-
schnitt 5.5.1 WO angepasst wird, WAS (welche Elemente) angepasst und
WIE (Art der Anpassung) angepasst werden kann.

Zu betrachten sind im ersten Schritt gleichartige Elemente, da diese zu ei-
nem neuen gleichartigen Element verschmolzen werden können. Sollen bei-
spielsweise zwei Rollen angepasst werden, muss zunächst untersucht wer-
den, ob sie an derselben Stelle angepasst werden. Ist dies der Fall, kann dies

140

zu einer gemeinsamen Rolle kombiniert werden. Sind die Rollen an ver-
schiedenen Stellen, werden sie in einem Anpassungsschritt angepasst, so-
fern sie nicht in Konflikt zueinander stehen. In einem zweiten Schritt wird
betrachtet, wie das Element angepasst wird, beispielsweise ob die Rolle hin-
zugefügt oder ausgetauscht wird.

Schwierig wird es, wenn sich die Anpassung nicht ausschließlich auf ein
gleichartiges Element bezieht, sondern es sich um genau dasselbe Element
an derselben Stelle im Modell handelt, da die Anpassungen sehr wahr-
scheinlich in Konflikt zueinander stehen. Dann muss abgewogen werden,
welche von beiden Anpassungen den größten Nutzen in der Einhaltung der
Ziele bringt, z.B. anhand der Prioritäten.

Die letzten drei Abschnitte Variantenbestimmung, Konfliktpotential und
Kombinationsmöglichkeiten haben verschiedene Punkte gezeigt, welche für
die spätere Planung einer Anpassung wichtig sind. Ebenso haben sie Her-
ausforderungen und erste Ideen zur Lösung gezeigt. In dieser Arbeit soll
sich zu diesem Zeitpunkt darauf beschränkt werden, doch diese Punkte bie-
ten Potential für weitere Forschungsarbeiten.

5.6		Schritt	5	–	Ableitung	von	Metriken	
Schritt 5: Ableitung von Metriken

Aufgabe Aus den Analyseregeln werden entsprechende Met-
riken für die Messungen abgeleitet

Typ Ableiten
Sub-Typ: Metriken

Subschritte Aufbereitungsregeln herleiten

Input des Schrittes Analyseregeln

Output des Schrit-
tes

Metriken für die Messung, Aufbereitungsregeln für
Monitor

Mögliche Stake-
holder

Methoden-Engineer

Nachdem im dritten Schritt die Regeln für die Analyse hergeleitet wurden,
ist es nun möglich, mit dieser Eingabe die Metriken für die Messungen mit
Hilfe der Sensoren herzuleiten. Die Metriken werden aus dem Wenn-Teil
der Regeln abgeleitet, da dieser Teil als Eingabe für die Auswertung der
Software-Engineering-Methode die entsprechenden Messwerte benötigt.

141

In diesem Schritt wird nun ermittelt, welche Messwerte nötig sind, um die
entsprechende Analyseregel auswerten zu können. Dabei ist es möglich,
dass bei komplexen Regeln mehrere Messwerte nötig sind, welche zu einem
Auswertungswert in der Monitor-Phase zusammengefasst werden. Somit
ergeben sich in einem zweiten Schritt die Aufbereitungsregeln für die späte-
re Monitor-Phase. Zur Verdeutlichung einige Beispiele:

• Beispiel 1: Für das Beispiel aus Schritt 3 wird in der Analyseregel die
Teamgröße in Scrum ausgewertet. Gemessen werden dafür die Anzahl
der Mitarbeiter in einem Scrum- oder Projektteam. Dies ergibt nun die
Metrik: Anzahl Mitarbeiter pro Team, was entsprechend gemessen wird.

Um aus diesem gemessenen Wert anschließend wieder den aufbereiteten
Wert für die Auswertung zu bekommen, wird die Herleitung praktisch
rückwärts angewandt. Es entsteht folgende Aufbereitungsregel für die
Monitor-Phase: Setze Teamgröße = Anzahl Mitarbeiter pro Team.

• Beispiel 2: In Schritt 3 wurde ebenfalls das Beispiel bezüglich der Nut-
zung von aktuellen Standards und Normen eingeführt. Es wurde be-
schrieben, dass es möglich sein muss, über einen Scan oder Datenbank-
eintrag die aktuelle Norm/den aktuellen Standard messen zu können. Ein
solcher Eintrag in der Datenbank wäre damit die Metrik, welche für die-
se Auswertungsregel gemessen werden muss. Sie würde wie folgt lau-
ten: Datenbankeintrag Normen bzw. Datenbankeintrag Standard.

In der Aufbereitung würde der entsprechend ausgelesene Wert, in die-
sem Fall die Versionsnummer der Norm oder des Standards sowie das
Datum, auf den Wert „aktuelle Norm gesetzt“.

• Beispiel 3: In einem komplexeren Beispiel soll die Zufriedenheit der
Kunden ausgewertet werden. Sobald diese einen bestimmten Grenzwert
unter- oder überschreitet, muss die Software-Engineering-Methode
überdacht werden. Die Kundenzufriedenheit kann dabei über die Anzahl
und Kritikalität der Fehlermeldungen gemessen werden, welche die
Metrik ergeben. Die Messwerte an den Sensoren wären damit zum einen
die Anzahl Fehlermeldungen und zum anderen die Kritikalität der Feh-
lermeldung.

In der Aufbereitung würden diese beiden Werte miteinander kombiniert
werden. Nach der Aufbereitung wären dann zum einen die Gesamtan-
zahl der Fehlermeldungen, z.B. 10, und zum anderen die zusätzliche
Aufschlüsselung anhand der Fehlermeldungen bekannt: Gesamtzahl
Fehlermeldung = 10, davon 3 Blocker, 5 mittelkritische Fehler und 3
Schönheitsfehler.

142

5.7	Schritt	6	–Ableitung	von	Ausführungsregeln	und	Be‐
nachrichtigungen	

Schritt 6: Ableitung von Ausführungsregeln und Benachrichtigungen
Aufgabe Aus den Planungsmöglichkeiten werden Ausfüh-

rungsregeln und Benachrichtigungen abgeleitet
Typ Ableiten

Sub-Typ: Ausführungen + Benachrichtigungen

Subschritte 1. Ausführungsregeln ableiten
2. Benachrichtigungen ableiten

Input des Schrittes Planungsmöglichkeiten + mögliche Anpassungen

Output des Schrit-
tes

Ausführungsregeln + Benachrichtigungen

Mögliche Stake-
holder

Methoden-Engineer

Im letzten Schritt der Pre-Work müssen nun noch die Ausführungsregeln
und Benachrichtigungen bekannt sein, um am Ende in der Execute-Phase
die Software-Engineering-Methode letztendlich im laufenden Projekt anzu-
passen. Durch die Planungsmöglichkeiten und die verschiedenen Varianten
aus dem vorherigen Schritt ist nun bekannt, WAS an den jeweiligen Stellen
im Modell zum entsprechenden Ziel angepasst werden muss, z.B. ob eine
Rolle ausgetauscht, ein Artefakt hinzugefügt oder gelöscht werden muss
usw. Durch die Verantwortlichen und Beteiligten, welche den jeweiligen
Aktivitäten etc. zugeordnet sind kann sofort ermittelt werden, wer alles be-
nachrichtig werden muss.

Die Ausführungsregeln geben im Detail an, wie die Anpassung der Soft-
ware-Engineering-Methode erfolgen soll. Die Anpassung erfolgt in der Aus-
führungsphase in verschiedenen Schritten. Zunächst wird das (allgemeine)
Modell der SEM, welches in der Wissensbasis liegt, auf Typ-Ebene ange-
passt. Dort werden entsprechend wie im vorherigen Abschnitt beschrieben,
Aktivitäten etc. hinzugefügt, gelöscht ausgetauscht usw. Zusätzlich zu den
geänderten Aktivitäten usw. müssen, falls nötig, die entsprechenden Ver-
antwortlichen und/oder die Ausführenden der Aktivität geändert werden.
Diese Änderung ergeben am Ende die Personen, welche benachrichtigt wer-
den müssen, egal ob sie eine neue Aktivität durchführen müssen oder ihre
alte gestrichen wurde. In einigen Fällen kann es sogar sein, dass eine Nach-
richt ans System geschickt werden muss, wenn sich eine automatische Akti-
vität etc. geändert hat.

143

Die Regel selbst hat am Ende folgende Form:

1. Anpassung Modell (Aktion x Element m (Name)), Aktion y Element
n (Name), …); wobei Aktion = löschen, hinzufügen, austauschen
etc. ist und Element = Artefakt (Name Artefakt), Aktivität (Name
Aktivität), Rolle (Name Rolle) usw. ist

2. Änderung Stakeholder (Stakeholder x, Element m (Name), Aktion
t); wobei Stakeholder die entsprechende Rolle und somit Person im
Team angibt, Element wie im vorherigen Schritt das zugehörige
Element (Aktivität, Artefakt) angibt und die Aktion definiert, ob die
Person gelöscht oder hinzugefügt wird

3. Benachrichtigung Beteiligte (Beteiligter x, Änderung m); wobei der
Beteiligte die konkrete Person auf Instanz-Ebene ist, an welche die
Nachricht geht, mit der Änderung m, welche neue Aufgabe sie nun
durchführen muss.

Wenn wir dies wieder auf unser einfaches Beispiel mit der Teamgröße be-
ziehen, würde bei einem zu großen Team die Planungsmöglichkeit besagen,
dass ein Team-Splitting erfolgen soll und ein Scrum of Scrum durchgeführt
werden muss. Für die Ausführungsregel besagt dies, dass es zwei neue Rol-
len und somit zwei Teams gibt, welche dem Artefakt Product Backlog zu-
geordnet werden. Bei einer neuen Teamgröße von beispielsweise 10 Perso-
nen würde dies zwei Teams mit jeweils 5 Personen ergeben. Die Teams
werden nach Skills aufgeteilt und die Aufgaben im Product Backlog ent-
sprechend zugeordnet.

Zusätzlich gibt es die neue Aktivität Scrum of Scrums, welche nach dem
sogenannten Daily Scrum mit eingefügt wird, die Dauer von 15 Minuten hat
und als Verantwortliche dieser Aktivität jeweils der Scrum Master und 1-2
Mitglieder der beiden Teams zugeordnet werden. Die jeweiligen Teammit-
glieder werden über die Aktivität und die neue Zuordnung informiert. Die
Daten werden vorher entsprechend in das Modell in der Wissensbasis ge-
schrieben. Die Ausführungsregel würde dann ungefähr so aussehen:

1. Anpassung Model (Hinzufügen Team 2, Ändern Team 1 (Anzahl
Personen), Hinzufügen Meeting (Scrum of Scrums, nach Daily
Scrum), Ändern Product Backlog (neue Zuordnung Aufgaben)

2. Änderung Stakeholder (Teammitglied 1, Rolle (Team 1), hinzufügen
(für alle Teammitglieder durchführen); Scrum Master, Meeting
(Scrum of Scrums), Hinzufügen, Teammitglied 1-2 (Team 1), Mee-
ting (Scrum of Scrums), Hinzufügen; usw.

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivität (Scrum
of Scrums), Teammitglieder 1 – 10, (neue Aktivität, neue Teamzu-
ordnung, neue Aufgaben Product Backlog)

144

Aufgrund dieser Regeln ist es dann in der Execute-Phase möglich, mit Hilfe
der Effektoren die Anpassung in das laufende Projekt zu übertragen.

5.8	Möglichkeiten	zur	Wiederverwendung	der	Pre‐Work	
–	Ableitungsblock	
Die Pre-Work ist zu Beginn relativ aufwendig und benötigt zum einen meh-
rere Personen, insbesondere zur Bestimmung und Priorisierung der Ziele.
Zum anderen braucht es einen erfahrenen Methoden-Engineer oder zumin-
dest eine Person mit ausreichend Erfahrung, um aus den priorisierten Zielen
die Regeln, Metriken, besonders aber auch die Planungsmöglichkeiten usw.
abzuleiten. Auch wenn die Arbeit einiges an Zeit in Anspruch nehmen kann,
bevor das Projekt beginnt, so wird bei der Durchführung des MAPE-K im
Projekt selbst entsprechend Zeit wieder gespart. Gerade dann ist im Projekt
die Zeit ein kritischer Faktor und es muss möglichst schnell sowie selbst-
adaptiv gehandelt werden. Dies ermöglichen die durchgeführten Schritte in
der Pre-Work.

Eine weitere Frage ist aber, wie die erfolgte Arbeit für spätere Projekte ge-
nutzt werden kann. Es wäre sehr nützlich, wenn die Schritte aus der Pre-
Work in neuen, vielleicht ähnlichen Projekten, nicht vollständig wiederholt
werden müssen, sondern erfolgte Schritte zum Beispiel in der Wissensbasis
gespeichert und, mit eventuellen Anpassungen, wiederverwendet werden
können.

Die Idee ist hier, einen Block zu entwickeln, welcher in der Wissensbasis
für zukünftige Projekte gespeichert werden kann und zu einem beschriebe-
nen Ziel die entsprechenden Regeln, Planungsmöglichkeiten, Metriken so-
wie Ausführungsregeln enthält. Zusätzlich muss es möglich sein, das Ziel
und somit den Block priorisieren zu können, denn die Prioritäten für ein Ziel
sind nicht in jedem Projekt gleich. Ferner muss der Block Konfigurations-
punkte im Ziel-Teil enthalten, um beispielsweise die Toleranzbereiche an-
passen zu können.

Die Herleitung bzw. der Aufbau eines solchen „Wiederverwendungs-
blockes“ könnte wie in Abbildung 41 beschrieben aussehen. Dabei wird
wieder das Beispiel von vorher bezüglich der Teamgröße in Scrum genutzt.
Die Software-Engineering-Methode ist im ersten Schritt mit ihren Regeln,
Verhaltensbeschreibungen, Workflow usw. gegeben, am besten aufbereitet
in der Form „Beschreibung A, Beschreibung B, Beschreibung C“ usw.

Abbild
Wisse

Aus
weili
Ziel
wird

Dies
dabe
ration
mal
werd

Die d
halte
die v
dort
te, w
zu ve

dung 41Ableit
nsbasis

diesen Bes
ige Beschre
an, mit de

. Im Beispie

 Z

 B

 P

 W
h

wäre der er
i einer der
nspunkt wä
10 Persone

den.

daraus resu
en im Block
verschieden
das möglich

wo andere Ba
erknüpfen o

tungen der ein

schreibunge
eibung gibt
em Zusatz,
el würde die

Ziel genutzt

Beschreibun

Priorisierung

Weitere Bes
halten sein

rste Eintrag
möglichen

äre in diesem
en oder auc

ultierenden P
k unter dem
en Variante
he Konflikt
austeine bei

oder sogar z

14

zelnen Punkte

en lassen sic
in aufberei
welche So

es für das Z

e SEM: Scr

ng A: 3 <= T

g: n

schreibunge

g im Wieder
Konfigurati
m Beispiel
ch das Min

Planungsmö
Abschnitt P

en zur Anpa
tpotential be
ispielsweise

zu vermisch

45

e und Zusamm

ch einfach
iteter (Kurz
oftware-Eng

Ziel lauten:

rum (Origin

Teamgröße

en können,

rverwendun
ionspunkte
die Teamg

nimum könn

öglichkeiten
PM, wie ob
assung für d
eschrieben,
e ansetzen k

hen.

menfassung zu

die Ziele a
z-) Form da
gineering-M

nal)

<= 9

falls nötig

ngsblock. D
dar. Ein we
röße. Sie k
nte auf 4 P

n auf der re
en in Schrit
dieses Ziel.
sowie Kom

können, um

einem Block f

ableiten. Di
s entsprech

Methode gen

, im Block

ie Priorität
eiterer Kon
önnte auf m
Personen er

echten Seite
tt 4 beschrie
Zusätzlich

mbinationsp
m sie miteina

für die

ie je-
hende
nutzt

k ent-

stellt
nfigu-
maxi-
rhöht

e ent-
eben,

h sind
punk-
ander

146

Aus den Varianten können für den Block wie in Schritt 6 beschrieben die
entsprechenden Ausführungsgsregeln und Benachrichtigungen, welche bei
diesem Ziel nötig wären, im Block unter dem Abschnitt AB gespeichert
werden.

Ähnlich lassen sich die Abschnitte Regel und Metrik im Block von der lin-
ken Seite herleiten. Unter Regel sind die hergeleiteten Regeln beschrieben,
welche sich aus den Toleranzbereichen und Varianten wie unter Schritt 3
beschrieben zusammensetzen. Die daraus resultierenden Metriken werden in
einem weiteren Abschnitt festgehalten.

Wird nun ein weiteres Projekt aufgesetzt, welches ebenfalls die Software-
Engineering-Methode Scrum nutzen soll, kann der Block „Scrum, Team-
größe“ wiederverwendet werden und die Pre-Work muss nicht neu hergelei-
tet werden. Über die möglichen Konfigurationspunkte können die Unterab-
schnitte automatisch angepasst werden. Wird beispielsweise der Toleranz-
bereich um eine Person erhöht, werden die Regeln links entsprechend ange-
passt (Wenn <4 dann V1, Wenn >10 dann V2). Die restlichen Abschnitte
bleiben in diesem Fall gleich und müssen nicht mehr angepasst werden.

In diesem Kapitel wurde die Pre-Work im Detail beschrieben, welche die
ersten sechs Schritte des Ablaufes aus Kapitel 4 enthält. Dabei wurde zu-
sätzlich erläutert, wie sich mit Hilfe einer GQM-Variante die Schritte 3-6
aus den priorisierten Zielen herleiten lassen. Abgeschlossen wurde das Ka-
pitel mit der Idee für die Erstellung eines Blockes pro Ziel zur Wiederver-
wendung für weitere Projekte. Diese Blöcke lassen sich mit Konfigurations-
punkten für die Bedürfnisse eines neuen Projektes anpassen.

Im nächsten Kapitel werden die Schritte 7-10 im Detail beschrieben, wie die
Schritte im MAPE-K aufgebaut sind und ablaufen.

	
 	

Kap

Nach
diese
des M
– der
welc
enthä
Schri
Schri
Sens
den i
eine
Dara
passu
schni
cher
schre
satze

pitel	6	

hdem in Ka
em Kapitel
MAPE-K im
r Knowledg
her alle wi
ält. Nach d
itte und som
itt 7, dem M
oren als au
in Schritt 8
Software-E

an knüpft di
ung und B
itt werden d
die Anpas

eibung von
es.

MAPE‐

Abb

apitel 5 die P
die folgend

m Detail erl
ge Base –
ichtigen El
er Beschrei
mit die einz
Messen der
ch die Mon
in der Ana

Engineering
ie Beschreib
eschreibung
der letzte Sc
sung ausge
Möglichke

14

‐K	

bildung 42 Auf

Pre-Work im
den Schritte
läutert. Das
im MAPE-
emente zur
ibung der K
zelnen Phas
r Werte und
nitor-Phase
alyse-Phase
g-Methode e
bung des Sc
g des Anpa
chritt und d

eführt wird.
eiten zur A

47

fbau von Kapit

m Detail vo
e 7-10, die
 Kapitel be
-K. Dies ist
r Durchführ
Knowledge
sen im Deta
d deren Auf
widerspieg
die Werte a

entsprechen
chrittes 9 an
assungszeitp

die Phase Ex
. Dieses Ka

Automatisier

tel 6

orgestellt w
Phasen und
ginnt mit d
t ein essent
rung der F
Base werd

ail erläutert
fbereitung,
elt. Darauf
analysiert u

nd angepass
n, mit der P
punktes. Im
xecute besc
apitel schlie
rung des vo

wurde, werde
d Durchfüh
er Wissensb
tieller Baus
eedbacksch

den die weit
, beginnend
was sowoh
aufbauend

und bewerte
st werden m
Planung der
m nächsten
chrieben, in
eßt mit der
orgestellten

en in
hrung
basis
stein,
hleife
teren
d mit
hl die

wer-
et, ob
muss.
r An-

Ab-
wel-

r Be-
n An-

6.1
Kno
Die
eige
MA
MA
Den
aus
führ
zeln
wied

Die
zehn
delt









	Der	Spez
owledge	
Wissensba

entlichen Fe
PE-K4SEM
PE-K und

nn in der W
der Pre-Wo

rung der ein
ne Schritt m
der dort abs

nötigen Inh
n Schritte g
sich um:

 Die prio

 Die abg
o R
o A

P
o D
o D

 Die gem

 Aufbere

 Die aufb

 Der Anp

zial‐Baus
Base	

asis, englisc
eedbackschl

M. Dennoch
ebenfalls fü

Wissensbasis
ork als auch
nzelnen Pha

mit der Know
speichert.

Abbild

halte, die fü
espeichert s

orisierten Zi

geleiteten W
Regeln für d
Abgeleitete
Phase
Die Planung
Die Ausfüh

messenen W

eitungsregel

bereiteten W

passungszei

1

stein	im	

ch Knowled
leife des MA
ist dieser B

für das Geli
s werden al
h während
asen bzw. d
wledge Base

dung 43 Inhalt

für den SE
sind, sind in

iele aus Sch

Werte aus den
die Analyse

e Metriken f

gsmöglichk
hrungs- und

Werte

ln zur Aufb

Werte

itpunkt (AZ

48

SE	Metho

dge Base (K
APE-K und

Baustein ess
ingen des h
lle nötigen
der Ausfüh

der Schritte
e, indem er

te der Knowled

Method M
n Abbildung

hritt 1 & Sch

n Schritten
e
für die Sens

keiten
Benachrich

ereitung der

Z)

od	Manag

KB) selbst
d ist kein ei
sentiell für d
hier entwick
Daten gesp

hrung. Wäh
7-10, inter
Daten von

dge Base

anager und
g 43 darges

hritt 2

3-6

oren und di

htigungsrege

r gemessene

ger	–	die	

gehört nich
igener Schr
das Gelinge
kelten Ans
peichert, so

hrend der D
ragiert jede

n dort abruft

d den Ablau
stellt. Dabei

ie Monitor-

eln

en Werte

ht zur
ritt im
en des
atzes.

owohl
Durch-

r ein-
t oder

uf der
i han-

149

 Das Modell der Software-Engineering-Methode, sowohl in seiner
Ursprungsform als auch das aktuelle instanziierte Modell und das
angepasste Modell

 Eine Methoden-Basis mit entsprechenden Methoden-Bausteinen

 Eine Historie über die Werte und dabei vor allem über die Anpas-
sung

Einzelne Elemente werden in verschiedenen Abschnitten des MAPE-
K4SEM erarbeitet, gespeichert und für die weitere Verwendung wieder ab-
gerufen. Es ist allerdings die Voraussetzung, dass das Ursprungsmodell der
Software-Engineering-Methode bereits festgelegt wurde. Dabei ist es egal,
ob es sich um eine klassische SEM, eine agile SEM, eine situationsspezifi-
sche SEM oder eine SEM, die für das Projekt zugeschnitten wurde, handelt.

Wichtig ist, dass die Software-Engineering-Methode als ein Modell vorliegt.
Die Modellierung kann beispielsweise anhand der in Abschnitt 2.1.2 vorge-
stellten Techniken wie SPEM, ISO 24744, MeteME oder einer vereinfach-
ten Form dieser Techniken erfolgen. Das Modell der Software-Engineering-
Methode ist für die Anpassung wichtig, damit klar ist, an welchen Stellen
im Modell die Anpassung der einzelnen Elemente, wie hinzufügen oder
löschen, erfolgen kann. Außerdem sind anhand des modellierten Workflows
die Abhängigkeiten zwischen den einzelnen Elementen ersichtlich.

Anhand der aktuellen Instanz der Software-Engineering-Methode ist klar, in
welcher Ausprägung sich das Projekt aktuell befindet. Dies ist ebenfalls
wichtig für die aktuelle Messung und Auswertung der einzelnen Messwerte.
Die Auswertung der Messwerte bezüglich einer Anpassung kann beispiels-
weise an einem bestimmten Punkt (Planning-Meeting in Scrum oder De-
sign-Phase in RUP) in der Software-Engineering-Methode anders ausfallen
als zu einem früheren oder späteren Punkt (Review-Meeting in Scrum oder
Test-Phase in RUP).

Abschließend ist das angepasste Modell der Software-Engineering-Methode
wichtig, welche nach der Anpassung in das Projekt übertragen wird. Durch
die Übertragung in das Projekt wird die angepasste Software-Engineering-
Methode zu der aktuellen Instanz der SEM im Projekt. Diese Transformati-
on erfolgt in der Execute-Phase.

Neben den Modellen und insbesondere dem Ursprungsmodell ist zu Beginn
die Methoden-Basis gegeben. In dieser werden alle Elemente (Bausteine)
gespeichert, die bei einer Anpassung und hier besonders in der Planung be-
nötigt werden können. Das können Elemente von einzelnen Artefakten über
Aktivitäten, Rollen bis hin zu (Teil-)Workflows sein.

150

Dabei ist es nötig zu wissen, welchen Typ sie besitzen, zu welchem Punkt
sie in einer Software-Engineering-Methode eingesetzt werden können oder
was ihre Aufgabe ist. Ebenso muss bekannt sein, ob Verantwortlichkeiten
benötigt werden, ob diese Elemente einen Input erfordern oder ob sie einen
Output für andere Elemente erzeugen. Diese Punkte müssen in den Elemen-
ten gespeichert sein. Für eine solche gespeicherte Übersicht kann beispiels-
weise eine angepasste Form des in Abschnitt 4.3.2 vorgestellten Frame-
works genutzt werden. Die Methoden-Basis ist dabei nicht in sich abge-
schlossen, sondern kann kontinuierlich erweitert und in anderen Projekten
verwendet werden.

Neben diesen Inhalten der Wissensbasis, welche teils zu Beginn vorhanden
sein müssen, werden in ihr ebenfalls die erarbeiteten Ergebnisse aus den
ersten 6 Schritten abgelegt. Dies umfasst zunächst einmal die Ziele und Ei-
genschaften der Software-Engineering-Methode, welche in Schritt 1 defi-
niert und Schritt 2 entsprechend priorisiert wurden.

Wichtig für die nächsten 4 Schritte sind die aus den Zielen abgeleiteten
Analyseregeln, die daraus abgeleiteten Metriken, die Planungsmöglichkei-
ten sowie die Ausführungsregeln und Benachrichtigungen. Des Weiteren
sind die in unter Schritt 5 erarbeiteten Varianten, Konfliktpotentiale bezüg-
lich der einzelnen Ziele sowie deren Kombinationspunkte bekannt.

Dabei werden die Metriken in Schritt 7 verwendet. Es ist mit ihrer Hilfe
möglich, über die Sensoren die erforderlichen Daten entsprechend zu mes-
sen. Die Analyseregeln in Schritt 8 für die Analyse und Auswertung der
gemessenen Werte benötigt. Die Planungsmöglichkeiten sind ebenso wie
die Konfliktpotentiale und Kombinationsmöglichkeiten für Schritt 9 wich-
tig. Abschließend werden die Benachrichtigungs- und Ausführungsregeln in
Schritt 10 für die Durchführung der Anpassung gebraucht.

Für die Analysephase sind die aufbereiteten Werte wichtig, denn diese wer-
den für die Analyseregeln verwendet. Die von den Sensoren und mit Hilfe
der Metriken gemessenen Werte werden entsprechend ihrer Aufbereitungs-
regeln für die weitere Verwendung aufbereitet. Die Aufbereitungsregeln
werden neben den Metriken in Schritt 5 hergeleitet und in der Wissensbasis
abgespeichert.

Des Weiteren ist in der Wissensbasis der Anpassungszeitpunkt festgelegt
und abgespeichert. Dieser ist nötig für die spätere Ausführung der Anpas-
sung, wann diese im Endeffekt durchgeführt wird. Der Anpassungszeitpunkt
und seine Bedeutung werden in Abschnitt 6.4 noch näher erläutert.

Abschließend wird in der Wissensbasis eine Historie der verschiedenen An-
passungen gespeichert. Diese ist wichtig für die Nachverfolgung der einzel-

151

nen Anpassungen, um zu sehen, wie wirksam die einzelnen Anpassungen
waren oder ob eine Anpassung wieder rückgängig gemacht wurde. Ferner
kann diese Historie interessant sein, wenn die Erfahrung aus dem gemachten
Projekt für die Wiederverwendung übertragen werden soll. Anhand der His-
torie können die Anpassungen, welche in bestimmten Situationen durchge-
führt wurden, erfasst und als Erfahrung für ein kommendes Projekt mit ähn-
lichem Kontext und ähnlicher Software-Engineering-Methode verwendet
werden. So können beispielsweise mögliche Situationen vorhergesehen und
nötige Anpassungen eventuell vermieden werden.

Die Wissensbasis kann als eine Datenbank umgesetzt werden. Wichtig ist
dabei zu beachten, welcher Schritt oder welche Phase während des MAPE
welche Schreib- und Leserechte besitzt. Die ersten sechs Schritte haben da-
bei Leserechte für das Element „Modell“, da dieses für die Herleitung der
einzelnen Schritte, insbesondere der Anfangsschritte benötigt wird. Zusätz-
lich haben Schritt 1 und 2 Schreibrechte für das Element „priorisierte Zie-
le“, sowie Schritt 3-6 Schreibrechte für die Elemente die jeweils zu ihrem
Schritt korrespondieren.

Die Sensoren aus Schritt 6 bekommen Schreibrechte für das Element „ge-
messene Werte“, da die Sensoren die Werte dort entsprechend ihrer Mes-
sung hinterlegen. Ebenso bekommt anschließend die Monitor-Phase Leser-
echte auf dieses Element, auf das Element „Aufbereitungsregeln“, sowie
Schreibrechte für das Element „aufbereitete Werte“, wo das Ergebnis der
Aufbereitung abgespeichert wird. Schritt 8 hat Leserechte bezüglich der
Analyseregeln.

Schritt 9 hat für die Planung Leserechte auf das Element der Planungsmög-
lichkeiten, sowie auf den Anpassungszeitpunkt. Die Schreibrechte für das
angepasste Modell der Software-Engineering-Methode erhält erst Schritt 10,
da in der Execute-Phase das Modell in die Wissensbasis geschrieben und die
Anpassung über die Effektoren in das Projekt zurückübertragen wird. Dafür
hat Schritt 10 zusätzlich Leserechte auf die Ausführungsregeln und Benach-
richtigungen.

Wie die genaue Durchführung der einzelnen Schritte der MAPE-
Feedbackschleife mit Hilfe dieser Werte und Elemente der Wissensbasis
aussieht, wird in den folgenden Abschnitten beschrieben.

152

6.2	Schritt	7	–	Werte	messen	und	aufbereiten		
Schritt 7: Werte anhand der Metriken messen und aufbereiten

Aufgabe Die Werte/ Metriken der SEM werden gemessen und
für die Speicherung in der Knowledge Base und die
anschließende Analyse aufbereitet

Typ Messen + Erstellen

Subschritte 1. Werte messen
2. Werte aufbereiten

Input des Schrittes Metriken, gemessene Werte durch die Sensoren

Output des Schrit-
tes

Aufbereitete Messwerte

Mögliche Stake-
holder

System (Monitor-Phase, Wissensbasis)

Nachdem die Pre-Work abgeschlossen und die Wissensbasis mit den ver-
schiedenen Inhalten (Elemente aus der Pre-Work, Modell der SEM, Aufbe-
reitungsregeln usw.) gefüllt wurde, kann die eigentliche Durchführung des
Projektes und somit des MAPE-K beginnen. Die Managed SE-Methode,
welche nun durch den MAPE-K überprüft wird, ist durch die aktuelle In-
stanz der Software-Engineering-Methode bereits festgelegt. Die entspre-
chenden Inhalte, wie Rollen und die konkreten Personen, die ersten auszu-
führenden Aktivitäten, die zu erstellenden Dokumente etc. sind auf die Aus-
gangswerte gesetzt. Die Durchführung der Feedbackschleife beginnt mit
Schritt 7 zum Start des Projektes.

6.2.1	Messen	anhand	von	Sensoren	
Bevor die eigentliche Monitor-Phase startet, müssen zunächst die zu be-
obachtenden Werte mit Hilfe der Sensoren gemessen werden. Die Sensoren
ergeben sich aus den in Schritt 5 abgeleiteten Metriken. Die Metriken müs-
sen dafür entsprechend in Sensoren umgewandelt werden. Das heißt, es gilt
im Vorfeld festzulegen, wie und in welcher Form die Metrik gemessen wird.
Dafür kann es möglicherweise mehrere Arten geben, die bei gleichem Er-
gebnis einen unterschiedlichen Aufwand erzeugen.

Die Sensoren überprüfen in den meisten Fällen Einträge in verschiedenen
Artefakten, sowohl im eigentlichen Projekt als möglicherweise auch im ge-
samten Unternehmen oder der Umgebung. Zu der Umgebung können je
nach Metrik auch spezielle Einträger in einer Internetdatenbank oder auf
einer Webseite sein. Des Weiteren kann es spezielle Umgebungssensoren
geben, die beispielsweise messen, ob es zusätzliche Anweisungen von der

153

Unternehmensleitung, dem Projektleiter oder ähnliches gibt. Diese Anwei-
sungen werden in eine Liste bzw. Datenbank geschrieben oder aus E-Mails
mit einem entsprechenden Schlagwort in der Betreffzeile ausgelesen.

Zu Beginn des Projektes sind alle Sensoren mit den Initialwerten versehen.
Sobald eine Änderung an den Werten vorgenommen wird, registriert der
Sensor dies, er misst den entsprechenden Wert und gibt diesen an die Moni-
tor-Phase weiter. Für ein kurzes Beispiel zur Verdeutlichung wird wieder
die Teamgröße aus Scrum verwendet.

Die Metrik, die sich für die Teamgröße in Schritt 5 ergab, war die Anzahl
der Personen pro Team. Die Teammitglieder sind in diesem Beispiel in ei-
ner Liste eingetragen. Dies kann einerseits eine Liste mit den Namen der
Personen sein, welche in einem Team sind. Oder es gibt im Unternehmen
eine vollständige Personenliste, in der es für jede Person einen Eintrag gibt,
welchem Team sie zugeteilt ist.

Der Sensor für Fall 1 überprüft die Teamliste und registriert eine Änderung
in der Liste. Der Sensor misst die Zahl der Personen, indem er in der Liste
die Personen zählt und das Ergebnis an die Monitor-Phase weitergibt. Im
zweiten Fall überprüft der Sensor die Spalte Team in der gesamten Perso-
nenliste des Unternehmens und registriert, wenn sich an dieser Spalte etwas
ändert. Dann zählt er die Personen für das Projektteam und gibt diese wiede-
rum an die Monitor-Phase zur Aufbereitung weiter. Hier muss in der gesam-
ten Personenliste jeweils überprüft werden, ob eine Person zum aktuellen
Projektteam gehört oder nicht. Dadurch wäre der zweite Fall aufwendiger.

In einem anderen Beispiel besagt eine Metrik, dass die aktuelle Norm oder
ein aktueller Standard beispielsweise für das Testen benutzt werden soll.
Dafür ist in einem Wert festgelegt, welche aktuelle Norm im Projekt genutzt
wird (aktuelleNorm_Projekt). Der Sensor überprüft zum Beispiel auf der
Webseite der Norm täglich, welche Norm aktuell ist. Dies kann beispiels-
weise über das Auslesen der Versionsnummer erfolgen. Die Nummer wird
gemessen und in der Wissensbasis nach der Aufbereitung für die Analyse
abgespeichert.

Sind die Sensoren mit Hilfe der Metriken alle festgelegt, kann das Messen,
Beobachten und Aufbereiten beginnen.

6.2.2	Die	Monitor‐Phase	–	Werte	aufbereiten	
Nachdem die Sensoren die verschiedenen Werte gemessen haben, müssen
diese für die weitere Analyse aufbereitet werden. Dies erfolgt mit der Hilfe
von in Schritt 5 hergeleiteten Aufbereitungsregeln. Diese Regeln enthalten
einen oder mehrere gemessene Werte, welche für den Analysewert zusam-
mengefasst werden. Im einfachsten Fall ist der Messwert gleich dem Analy-

154

sewert. Ist der Fall komplexer, müssen die Werte entsprechend miteinander
kombiniert werden. Die aufbereiteten Werte werden anschließend in die
Wissensbasis geschrieben. Bevor der Wert in die Wissensbasis geschrieben
wird, wird er mit dem aktuellen Wert in der Wissensbasis verglichen. Ist der
Wert gleich, wird der Wert nicht neu gespeichert. Sind der aktuelle und der
neue Wert nicht gleich, wird der neue Wert in die Wissensbasis geschrieben.

Für eine Verdeutlichung werden die Beispiele aus Schritt 5 erneut aufgegrif-
fen. Im Beispiel der Teamgröße ist die Aufbereitung des Wertes relativ ein-
fach. Die Teamgröße wird gleich dem Messwert, also die Anzahl der Perso-
nen, gesetzt. Ist der Wert anders als der vorherige Wert, so wird der neue
Wert in die Wissensbasis geschrieben und die Analyse-Phase wird gestartet,
da sich das Team vergrößert oder verkleinert hat.

In Schritt 5 wurde ebenfalls das komplexere Beispiel vorgestellt, die Kun-
denzufriedenheit zu beobachten. Fällt die Kundenzufriedenheit unter einen
bestimmten Schwellenwert, das heißt der Kunde ist unzufrieden, muss etwas
geändert werden. Die Metriken für die Kundenzufriedenheit waren zum
einen die Anzahl der Fehlermeldungen, die der Kunde in eine Liste einstellt
oder die von Mitarbeitern eingestellt werden mit dem Vermerk „Fehler
Kunde“ sowie die Kritikalität dieser Fehlermeldungen. Die Kritikalität steht
als Eintrag in den Fehlermeldungen, es muss dafür nur jeweils dieses Feld
ausgelesen werden.

Um die Kundenzufriedenheit auswerten zu können, soll die Gesamtzahl der
Fehlermeldungen der Kunden und die Aufschlüsselung anhand der Kritika-
lität bekannt sein. Dafür werden, sobald eine neue Fehlermeldung eingestellt
wurde, alle Kunden-Fehlermeldungen aufaddiert. Zusätzlich wird die jewei-
lige Kritikalität ausgelesen und entsprechend der jeweiligen Kritikalität auf-
addiert. Diese Werte werden in der Aufbereitung miteinander kombiniert,
mit dem Eintrag in der Wissensbasis verglichen und gegebenenfalls wird
der Wert neu in die Wissensbasis geschrieben. Ein solcher aufbereiteter Ein-
trag könnte bei der gemessenen Anzahl von 10 Fehlermeldungen folgen-
dermaßen aussehen: Gesamtzahl Fehlermeldung=10, davon Blocker=3, mit-
telkritische Fehler=5, Schönheitsfehler=3. In der Analyse-Phase wird an-
schließend überprüft, ob etwas geändert werden muss oder nicht.

Durch die Kombination aus „Messung mit Hilfe der Sensoren“ und „Aufbe-
reitung dieser Werte für die Analyse-Phase“ wird der aktuelle Status der
Software-Engineering-Methode auf der Instanz-Ebene kontinuierlich erfasst
und überwacht. Das Messen und Aufbereiten der Werte wird dabei vollstän-
dig vom System übernommen.

155

	

6.3	Schritt	8	–	Werte	analysieren	und	bewerten		
Schritt 8: Werte analysieren und bewerten

Aufgabe Die gemessenen Werte werden analysiert; als Ergeb-
nis kommt heraus, ob die SEM angepasst werden
muss oder nicht

Typ Analysieren

Subschritte 1. Werte analysieren => Auswertung des Wenn-
Teils

2. Anpassung ja/ nein => Ausführung des Dann-
Teils

Input des Schrittes Aufbereitete Messwerte; Analyseregeln

Output des Schrit-
tes

Anpassung ja/ nein + Aktion; evtl. Analysedokument

Mögliche Stake-
holder

System (Analyse-Phase), evtl. Methoden-Engineer
und/ oder Projektleiter zur Freigabe der Anpassung

In Schritt 7 wurden die gemessenen Werte gemäß ihrer Aufbereitungsregeln
aufbereitet und in die Wissensbasis geschrieben. Damit sind die Werte nutz-
bar für die Analyse, welche durch das Schreiben in die Wissensbasis ange-
triggert wurde. Die Auswertung der Werte erfolgt mit Hilfe der in Schritt 3
abgeleiteten Analyseregeln und am Ende wird entschieden, ob eine Anpas-
sung erfolgt oder nicht.

6.3.1	Die	Analyse‐Phase	
Von der Monitor-Phase bekommt die Analyse-Phase über einen Trigger
Bescheid, dass sich ein bestimmter Wert geändert hat und aufbereitet wurde.
Dieser Wert wird entsprechend aus der Wissensbasis ausgelesen und in der
Analyseregel verwendet. Die Analyseregel wurde wie in Schritt 3 beschrie-
ben hergeleitet und ist ebenfalls in der Wissensbasis gespeichert.

Die Regel bestand dabei aus zwei Teilen, einem Wenn-Teil und einem
Dann-Teil. Für die Auswertung ist vor allem der Wenn-Teil wichtig, wo-
hingegen der Dann-Teil angibt, welche Aktion als nächstes ausgeführt wer-
den soll. Für die Analyseregeln gibt es wie in Abschnitt 5.4 beschrieben die
drei folgenden Formen:

1. Wenn „Angabe/ Ziel nicht erfüllt“ dann „Planungsmöglich-
keit mit Werten aus Monitor“

156

2. Wenn „Angabe/ Ziel nicht erfüllt“ dann „Neue Planung mit
Werten aus Monitor + Ziel“

3. Wenn „Angabe/ Ziel erfüllt“ dann Schritt 7 (Monitor-Phase)

Durch die Regel ist bekannt, in welchen Grenzen der aufbereitete Wert lie-
gen muss. Ist er innerhalb dieser Grenze, ist das Ergebnis der Bewertung,
dass die Software-Engineering-Methode nicht angepasst werden muss. Die
MAPE-K-Feedbackschleife wird an dieser Stelle für den gemessenen Wert
und das entsprechende Ziel abgebrochen und beginnt wieder bei Schritt 7,
den Sensoren und der Monitor-Phase, da das Ziel weiterhin erfüllt wird.

Liegt der Wert nicht innerhalb der Grenzen oder unter- bzw. überschreitet er
einen bestimmten Schwellenwert, so ist das Ergebnis, dass die Software-
Engineering-Methode angepasst werden muss. Dabei können zwei Fälle
auftreten: Zum einen sind bereits Planungsmöglichkeiten und die entspre-
chenden Varianten bekannt und die Plan-Phase kann mit den aufbereiteten
Werten gestartet werden. Zum anderen kann es aber in einigen Fällen
durchaus vorkommen, dass Planungsmöglichkeiten noch nicht vorhanden
sind. Da bekannt ist, dass mit den aktuellen Werten mindestens ein Ziel
nicht erfüllt werden kann, wird die Plan-Phase gestartet, mit den Werten aus
der Monitor-Phase und dem Ziel, welches es zu erfüllen gilt. Je nach Ziel
können zusätzliche Informationen benötigt werden. Diese werden für die
Plan-Phase entsprechend ausgelesen und gespeichert.

Zur Verdeutlichung der verschiedenen Fälle werden hier noch einmal die
Beispiele aus Abschnitt 5.4 herangezogen und erläutert. Für den Fall der
Teamgröße in Scrum gibt es zwei Möglichkeiten zur Auswertung. Zum ei-
nen, ob das Team zu groß ist und gesplittet werden muss. Zum anderen, ob
das Team zu klein ist und eine oder mehrere Personen zum Team hinzuge-
fügt werden muss/müssen. Bewegt sich das Team innerhalb der gesetzten
Grenzen, erfolgt keine Anpassung.

Bekommt die Analyse-Phase nun einen neuen Wert für die Teamgröße ge-
liefert, wird zunächst überprüft, ob die Größe innerhalb der Grenzwerte
liegt, hier im Beispiel sind dafür die Grenzen 3 und 9 nach der ursprüngli-
chen Scrum-Beschreibung gewählt. Liegt der Wert innerhalb dieser Gren-
zen, wird zurück zu Schritt 7 gegangen. Liegt der Wert außerhalb der Gren-
zen, das heißt die Regel liefert ein „false“ zurück, dann wird im nächsten
Schritt überprüft, ob das Team zu groß ist. Liefert die Regel „true“, wird die
Plan-Phase mit der entsprechenden Planungsmöglichkeit gestartet.

Liefert die Regel wiederum false, so ist das Team zu klein und es kann die
Planung mit der zweiten Variante für ein zu kleines Team beginnen. Die

157

ursprünglichen 3 Regeln aus Schritt 3 lassen sich somit folgendermaßen für
die Analyse zusammenfassen:

Wenn Teamgröße 3 <= Teamgröße <= 9 dann Schritt 7 sonst
Wenn Teamgröße > 9 dann Planungsmöglichkeit Variante 1 („Team zu
groß“, aktuelle Teamgröße x) sonst

Planungsmöglichkeit Variante 2 („Team zu klein“, aktuelle Teamgrö
ße y)

Für den zweiten Fall in der Analyse, dass die Planungsmöglichkeiten noch
nicht bekannt sind, wird das Beispiel genutzt, dass aktuelle Standards und
Normen genutzt werden sollen, z.B. ein aktueller Standard zum Testen.
Wenn sich dieser nun ändert ist es nötig, die Software-Engineering-Methode
darauf abzustimmen. Zunächst wird für die Auswertung des Wenn-Teils die
aktuelle Version des Standards im Projekt ausgelesen, hier im Beispiel wird
dafür die Versionsnummer genutzt. Zusätzlich wird aus der Wissensbasis
die Versionsnummer für den aktuellen Standard allgemein ausgelesen. Die-
se beiden Werte werden in der Analyse miteinander verglichen. Ist die Ver-
sionsnummer aus dem Projekt gleich der allgemeinen Versionsnummer, so
ist keine neue Planung nötig. Doch sind beide Versionsnummer ungleich, so
wird die Plan-Phase gestartet. Dafür wird zusätzlich die neue Version, so-
fern dies möglich ist, heruntergeladen und mitgeliefert. Die Auswertung
würde also folgendermaßen lauten:

Wenn Versionsnummer_Standard_Testen_Projekt != Versionsnum-
mer_Standard_Test_aktuell dann Plan neuer Standard(lese
Test_Standard aus) sonst
Schritt 7

Es ist zu sehen, dass es mit Hilfe der verschiedenen Analyseregeln einfach
möglich ist, die verschiedenen Werte bezüglich der Ziele auf Abweichungen
hin zu analysieren und zu bestimmen, ob eine Anpassung nötig ist oder
nicht. Die Analyse kann somit vollständig automatisiert über das System
erfolgen. Doch für eine Absicherung kann eingeführt werden, bevor die
Planung endgültig angestoßen wird, dass sich der Projektleiter und/oder der
Methoden-Engineer das Ergebnis der Analyse anschaut und freigibt, ob die
Anpassung erfolgen soll oder nicht.

Wird die Anpassung nicht freigegeben, sondern bestimmt, dass die Soft-
ware-Engineering-Methode mit diesen Werten weiterlaufen soll und die
Ziele weiterhin erfüllt werden, so müssen die Regeln, Ziele und Werte ent-
sprechend in der Wissensbasis entsprechend angepasst werden. Doch dies
sollte nur in Ausnahmefällen durchgeführt werden, da dies je nach Ziel
Auswirkungen auf weitere Ziele und die gesamte Software-Engineering-
Methode haben kann. Die Ziele müssen zuerst überprüft werden, dass sie

158

nicht verletzt werden. Das kann unter Umständen zu einem höheren Auf-
wand führen, als die weitere Planung und Ausführung.

6.3.2	Architekturmöglichkeiten	für	die	Analyse	
Um die Analyse konkret umzusetzen und durchzuführen, gibt es verschie-
dene Überlegungen und Möglichkeiten. Als Grundlage für die Analyse und
Bewertung dienen die in Schritt 3 erstellten Bewertungsregeln. Diese beste-
hen aus einer einfachen Form, einem Wenn-Teil zur Auswertung und einem
Dann-Teil für weitere Ausführungen. Die erste einfache Möglichkeit ist es,
alle Regeln in der Form „if… then… else“ zu programmieren. Doch dies
würde zu einem hohen Aufwand und verbrauchtem Speicherplatz führen.
Außerdem müssten die Funktionen auf die Einträge in einer Datenbank zu-
greifen, die in der einfachen Form noch nicht betrachtet sind.

6.3.2.1	Aktive	Datenbanken	
Eine erste Überlegung ist es, für die Speicherung, das Auslesen und weitere
Auswerten der aufbereiteten Werte eine Datenbank und ein Datenbanksys-
tem zu nutzen. Für Datenbanken gibt es die verschiedensten Formen und
Funktionen, welche in einem Datenbankmodell festgelegt sind. Ein verwen-
detes Model ist die relationale Datenbank bzw. Datenbankmanagementsys-
teme.

Eine Datenbankmanagementsystem (DBMS) ist ein Softwaresystem, wel-
ches für die effiziente Erstellung und Verwaltung von Datenbanken ver-
antwortlich ist. Dabei implementiert ein DBMS die Speicherung und Wie-
derherstellung von Daten sowie die Speicherung und Verwaltung von Ob-
jekten wie Zugriffspfaden, Clustering von Daten usw [DGG95]. Die eigent-
liche Speicherung der Daten mit allen relevanten Informationen erfolgt in
der Datenbank (data base).

Für den Aufbau einer Datenbank gibt es verschieden Möglichkeiten, welche
im Datenbankschema definiert sind. Der Zugriff und Änderungsmöglichkei-
ten werden im Datenmodell festgelegt. Das DBMS und die konkrete Daten-
bank bilden zusammen das Datenbanksystem, engl. database system (DBS).
Eine aktive Datenbank oder mit anderen Worten ein aktives Datenbankma-
nagementsystem (active database management system, ADBMS) erweitert
das passive DBMS mit der Möglichkeit, reaktives Verhalten auf spezielle
Ereignisse wie beispielsweise Änderungen zu spezifizieren [DGG95,
MD89, PD99].

Diese auslösenden Ereignisse, auch Trigger genannt, erfolgen zur Laufzeit
und können weitere Aktionen oder auszuführende Skripte innerhalb der Da-
tenbank anstoßen. Das dies zur Laufzeit möglich ist, ist für die Ausführung
der Analyse und Bewertung essentiell.

159

Ein solches Trigger-System wird für die Ausführung der Aktivitäten benutzt
und als Regel definiert. Die Trigger-Regel triggert in einem auslösenden
Ereignis und unter bestimmten Bedingungen eine weitere Aktion, wenn der
Trigger true zurückliefert. Die bekannteste Implementierung solcher Regeln,
welche in DBMS bzw. ADBMS eingesetzt werden, sind die ECA-Regeln
[PD99, Qi07, DGG95].

6.3.2.2	ECA‐Regeln	(Event‐Condition‐Action‐Rules)	
Die Buchstaben ECA stehen für die Abkürzung „Event“ (E), „Condition“
(C), und „Action“ (A). Zusammengefasst bestehen diese ECA-Regeln aus
einem auslösenden Ereignis (Event), den Bedingungen, welche das Ereignis
erfüllen (Condition) muss sowie der Aktion (Action), welche bei Erfüllung
der Bedingungen als nächstes ausgeführt wird. Nach [DGG95, S. 4-5] be-
sagt eine ECA-Regel: „when an event occurs, check the condition and if it
holds, execute the action". Diese Beschreibung der ECA-Regeln kommt der
definierten Analyseregel mit ihrer „Wenn…, Dann…“- Spezifikation sehr
nah.

Analog zu einer „Data definition language“ (DDL) um eine Datenstruktur
zu modellieren, liefert eine aktive Datenbank eine „Rule definition language
(RDL), welche dazu genutzt werden kann, um die ECA-Regeln zu spezifi-
zieren [DGG95]. Diese Sprache beinhaltet dabei Konstruktoren für die De-
finition der eigentlichen Regeln, also der Ereignisse, der Bedingungen, der
Aktionen sowie Constraints zur Ausführung. Zusätzlich benötigt die
ADBMS eine Möglichkeit, um Ereignisse zu entdecken und die ECA-
Regeln anzuwenden. Dies kann beispielsweise über Sensoren oder Detekti-
onsregeln erfolgen.

Übertragen auf die Analyseregel würde dies bedeuten, dass der aufbereitete
Wert das auslösende Ereignis ist. Genauer ist die Speicherung dieses neuen
Wertes in die aktive Datenbank das auslösende Event. Diesem Wert, sind
die Bedingungen zugeordnet. Die Bedingungen sind hier die Abfrage, ob
der Wert innerhalb der Grenzen liegt oder ein definierter Schwellenwert
über- oder unterschritten wird. Dies ist der ursprüngliche Wenn-Teil der
Analyseregeln. Der Dann-Teil der Regeln beschreibt die Aktion in den
ECA-Regeln, welche bei Erfüllung der Bedingung durchgeführt wird.

Sind nun alle Regeln in der ECA-Form definiert und in der Wissensbasis in
einer aktiven Datenbank entsprechend gespeichert, so kann die MAPE-K-
Feedbackschleife mit Hilfe der Sensoren die relevanten Ereignisse überwa-
chen. Sobald ein Ereignis, das heißt die Speicherung eines relevanten Wer-
tes erfolgt ist, wird die entsprechende Regel-Komponente angesprochen,
welche für die Ausführung der Regel zuständig ist. Dies wird auch „Signa-
lisierung des Ereignisses“ genannt [DGG95, S.5]. Zusätzlich zu dem Ereig-

160

nis kann auch ein Zeitstempel mitgegeben werden, wann das Ereignis einge-
treten ist und würde entsprechend als ein Paar abgespeichert (Event, Zeit).

Auch wenn der Zeitstempel hier in der MAPE-K-Feedbackschleife nicht
unbedingt erforderlich ist, soll dieser beibehalten werden. Wichtiger ist,
dass dieses Paar um die Priorität ergänzt wird. Die Priorität ist gegeben
durch das Ziel, für welches der Wert ausgewertet wird. Dies ist nötig, wenn
zwei Werte gleichzeitig gespeichert werden, damit das Ereignis mit der hö-
heren Priorität zuerst ausgewertet wird. Die aktive Datenbank muss also bei
getriggerten Ereignissen zusätzlich den Mechanismus enthalten zu überprü-
fen, dass Ereignisse innerhalb desselben Zeitraumes, z.B. innerhalb einer
Minute, entdeckt werden und bei ihnen die Prioritäten gegeneinander abge-
glichen werden. Ist dieser Mechanismus gegeben und die Wissensbasis so-
wie die Analyse-Phase als aktive Datenbank mit ECA-Regeln realisiert,
dann kann diese Phase vollständig automatisch durchgeführt werden.

Die Aufbereitung der Monitor-Phase kann als eine vereinfachte Form der
Regel realisiert werden. Hier würde die zu überprüfende Bedingung wegfal-
len, denn ein gemessener Wert soll immer entsprechend aufbereitet werden.
In Wenn-Dann-Form würde die Regel lauten: Wenn Wert xy gemessen,
dann (bereite Wert auf mit Regel xy; schreibe Wert in KB; starte ECA mit
Ereignis „Wert“). Mit dieser gekoppelten Form wird der gemessene Wert
automatisch aufbereitet, in die Wissensbasis geschrieben und es wird auto-
matisch das auslösende Ereignis entdeckt. Die Auswertung der Bedingun-
gen wird entsprechend selbstständig gestartet. Ist die Auswertung positiv, so
wird die Plan-Phase gestartet; ist die Auswertung negativ, wird zur Monitor-
Phase übergegangen.

Somit wären mit Hilfe einer aktiven Datenbank und den ECA-Regeln die
Phasen Monitor und Analyse abgedeckt und eine Automatisierung ermög-
licht.

6.4	Schritt	9	–	Anpassung	planen		
Schritt 9: Anpassung planen

Aufgabe Die Anpassung und mögliche Alternativen werden in
diesem Schritt geplant. Herangezogen werden die
vorher bestimmten Planungsmöglichkeiten, sowie die
gemessenen Werte anhand derer Planungsmöglich-
keiten bestimmt werden

Typ Planen

Subschritte 1. Anpassung planen
2. Anpassung analysieren
3. Anpassungszeitpunkt

Inpu

Outp
tes
Mög
hold

Ist d
gepa
einer
liche
Teile
eigen
ange
nung
mit H

Der
punk

ut des Schri

put des Sch

gliche Stake
der

das Ergebnis
asst werden
r ECA-Arch
en MAPE-K
en. Der erst
ntliche Anp
sprochen, k

gsmöglichke
Hilfe der Zie

A

zweite Tei
kt. Wie bere

4
5

ittes Erge

Kon
gebe

hrit- Gepl

e- Syst
Proje

s der Analy
muss, so w

hitektur die
K besteht si
te Teil entsp
passung gep
kann die Pl
eiten oder d
ele und gem

Abbildung 44 D

il der Plan-
eits in Absc

16

4. Konflikt
5. Gegeben

stellen

ebnis aus de
fliktpotentia

enenfalls Da
lante Anpas

em, bei Bed
ektleiter

yse, dass di
wird mit Hilf

Plan-Phase
ie hier wie
pricht der P

plant und er
anung dabe

die Anpassun
messenen W

Die zwei Haup

-Phase berü
hnitt 3.4.2 u

61

te analysier
nenfalls kom

er Analyse,
al, Kombin
aten aus der
ssung

darf Method

ie Software
fe des Denn
e angestoße
 in Abbildu

Plan-Phase i
rstellt. Wie
ei mit Hilfe
ung muss oh

Werten erfolg

ptbestandteile d

ücksichtigt
unter der H

ren
mbinierte A

Planungsm
ationsmögli
r Methoden-

den-Enginee

e-Engineerin
n-Teils oder
en. Anders a
ung 44 zu
im MAPE-K
schon im A

e von bereit
hne Planung
gen.

der Plan-Phase

hier den A
Herausforder

Anpassung e

öglichkeiten
ichkeiten, g
-Basis

er und/ oder

ng-Methode
r einer Actio
als im urspr
sehen aus
K, hier wird

Abschnitt vo
ts erstellten
gsmöglichk

e

Anpassungs
rung TP 5 a

er-

n,
ge-

r

e an-
on in
rüng-
zwei
d die
orher

n Pla-
keiten

szeit-
ange-

162

sprochen, muss bei der Anpassung einer Software-Engineering-Methode der
Anpassungszeitpunkt (AZ) mit betrachtet werden. Es ist nicht wie bei einem
System möglich, eine Software-Engineering-Methode zu jedem Zeitpunkt
anzupassen, sie sollte nicht einmal täglich angepasst werden.

In diesem zweiten Teil wird zunächst der Zeitpunkt nach einer erfolgten
Anpassung analysiert, das heißt ob der Anpassungszeitpunkt bereits erreicht
ist oder nicht. Sind mehrere Anpassungen zum AZ vorhanden, müssen diese
zunächst auf Konflikte hin analysiert werden und es muss gegebenenfalls
eine kombinierte Anpassung erstellt werden, bevor zur Execute-Phase über-
gegangen wird.

6.4.1	Das	Planen	einer	Anpassung	
Sind Planungsmöglichkeiten bereits vorhanden, so wird die Anpassung ent-
sprechend mit ihrer Hilfe durchgeführt. In den Planungsmöglichkeiten wur-
de bestimmt, wie in einer bestimmten Situation eine Anpassung vorgenom-
men werden soll. Das heißt, es ist angegeben, an welcher Stelle im Modell
(Wo) bei einer Verletzung der Regel welche Elemente (Was), in welcher
Art (Wie) angepasst werden, welche Verbindungen (Welche) erhalten oder
neu gesetzt werden müssen und an wen welche Benachrichtigung (Wer)
geschickt werden muss (vergl. Abschnitt 5.5 Ableitung von Planungsmög-
lichkeiten).

Dadurch ist klar, welche Elemente aus der Methoden-Basis für beispiels-
weise einen Austausch oder ein Hinzufügen genommen werden können.
Zusätzlich ist klar, an welcher Stelle im Modell der Software-Engineering-
Methode Elemente geändert werden und wie die neuen Abhängigkeiten aus-
sehen. Außerdem wurde festgelegt, wer in der Ausführung alles benachrich-
tigt wird.

Für das Beispiel mit der Teamgröße in Scrum würden also bei einem zu
großen Team die entsprechende Planungsmöglichkeit angegeben und in der
Plan-Phase aufgerufen. Wie bereits in Abschnitt 5.5 beschrieben ist in der
Planung durch den Aufruf festgelegt, dass das Team gesplittet wird und wie
viele Personen jeweils ein neues Team enthält. Die konkrete Aufteilung der
Personen und der jeweiligen Aufgaben erfolgt nun in der Plan-Phase. Dies
kann zum einen automatisch mit Hilfe von Zuteilungsfunktionen erfolgen,
welche als Eingabe die Aufgaben und die jeweiligen Skills der Personen
kennen. Eine andere Möglichkeit ist, dass an dieser Stelle der Scrum Master
mit einbezogen wird und dass dieser die Aufteilung vornimmt.

Das neue Meeting kann wieder automatisch mit Hilfe der Planungsmöglich-
keiten eingefügt werden, da hier genau bekannt ist, welches Element (Scrum
of Scrums) an welche Stelle (täglich nach dem Daily Scrum) eingefügt wer-
den muss. Ferner ist bekannt, an wen alles eine Benachrichtigung geschickt

werd
die E

Sind
in A
durch
die g
ten S
welc
einge
Must
nung

Ist ei
algor
die A
sensb
aus d

Zusä
gen i
lich i
tig u
Absc
bewi

den muss. D
Execute-Pha

Planungsm
Abbildung 4

hgeführt we
genaue Abw
Schritt wird
hen Elemen
ehalten wir
tern (Metho

gsalgorithme

A

ine neue An
rithmen ers
Ausführung
basis gespe
der Pre-Wor

ätzlich zu d
ist es in ein
ihrer Ausw

um herauszu
chnitte der S
irkt, dass an

Diese Angab
ase übergeb

möglichkeite
5 zu sehen
erden. Für

weichung un
d das Ziel h
nten, in wel
rd. Dies k
od Pattern)
en an dieser

Abbildung 45 P

npassung m
tellt, so mü
sregeln und

eichert werd
rk erfolgen.

der Herleitun
nem weiteren
irkung auf

ufinden, ob
Software-En
ndere Ziele v

16

ben sowie d
en.

en nun nich
mit Hilfe
die Planun

nd die Folg
herangezoge
lcher Art un
ann mit H
 erfolgen.
r Stelle mit

Planungsablauf

mit Hilfe von
üssen darau
d Benachric
den. Die Ab

ng der Aus
n Schritt wi
die Gesamt
diese neue
ngineering-
verletzt wer

63

die Zuordnun

ht vorhanden
der gemess

ng der Anpa
gen bestimm
en und es m
nd an welch

Hilfe von e
Eine weite
hinzuzuzieh

f ohne Planung

n Method P
us entsprech
chtigungen
bleitung kan

sführungsre
ichtig, die g
t-SEM hin z
Anpassung

-Methode h
rden. Die A

ng werden

n, so muss d
senen Wert
assungen m

mt werden. I
muss bestim
her Stelle di
entsprechen
ere Möglich
hen.

gsmöglichkeite

Pattern und/
hend für die
abgeleitet u
nn mit Hilf

geln und B
geplante An
zu analysier
g Auswirkun
at und ob d

Analyse kann

entsprechen

die Planung
e und des Z

müssen zunä
In einem nä

mmt werden
ieses Ziel w
den Metho

hkeit wäre,

en

/ oder Planu
e Execute-P
und in der
fe von Schr

Benachrichti
npassung be
ren. Dies is
ngen auf an

diese Anpas
n beispielsw

nd an

g wie
Ziels
ächst
ächs-

n, mit
weiter
oden-

Pla-

ungs-
Phase
Wis-
ritt 6

igun-
ezüg-
st nö-
ndere
ssung
weise

164

mit einer Simulation und Simulationsalgorithmen durchgeführt werden.
Dafür wird die Anpassung in eine Kopie des aktuellen Modells der SEM
übertragen und in einer Simulation ausgeführt. Dadurch können die entspre-
chenden Auswirkungen bereits im Vorfeld abgeklärt werden. Eine andere
Möglichkeit wäre, eine Analyse über den Workflow durchzuführen, bei-
spielsweise ob alle Abhängigkeiten gegeben sind und entsprechend erreicht
werden können.

Wie diese Analyse und die vorher beschriebene Planung mit Hilfe von Al-
gorithmen oder Pattern im Detail aussehen, wird an dieser Stelle nicht im
Detail betrachtet. Es wird als gegeben angesehen, dass sowohl eine Simula-
tion oder Analyse zur Bewertung der Gesamtauswirkung als auch „Pla-
nungshilfen“ gegeben sind.

Ergibt die Bewertung, dass die Anpassung Auswirkungen auf die Gesamt-
SEM hat, das heißt, dass andere Ziele verletzt werden, so muss eine alterna-
tive Anpassung geplant werden. Diese Alternative wird am Ende ebenfalls
überprüft, ob sie weitere Ziele verletzt oder nicht. Es ist weiterhin zu über-
legen und festzulegen, wie oft eine Alternative geplant werden soll. Im
schlimmsten Fall kann es vorkommen, dass keine Alternative möglich ist,
welche kein Ziel verletzt. Somit muss zusätzlich ermittelt werden, welche
Art von Zielen verletzt wird, also welche Priorität die jeweiligen Ziele be-
sitzen. Ist das verletzte Ziel beispielsweise von wesentlich geringerer Priori-
tät, kann entschieden werden, dass die Anpassung trotzdem durchgeführt
und das andere Ziel entsprechend angepasst wird. Ist die Priorität des ver-
letzten Ziels höher als die der Anpassung, so muss eine Alternative geplant
werden. Auch wenn solche Bestimmungen entsprechend für eine automati-
sche Ausführung festgelegt werden können, sollte in einem solchen Fall der
Projektleiter und/oder ein Methoden-Engineer hinzugezogen werden.

Ist für die Anpassung entschieden, dass diese die Gesamt-SEM nicht beein-
flusst, also keine Ziele verletzt werden, so ist die Planung abgeschlossen
und es kann zum zweiten Teil der Plan-Phase übergangen werden, dem An-
passungszeitpunkt.

6.4.2	Zwischen	Planung	&	Ausführung	–	der	Anpassungszeitpunkt
Wie bereits zu Beginn des Abschnitts 6.4 erwähnt, kann die Anpassung ei-
ner Software-Engineering-Methode nicht andauernd und schnell hinterei-
nander erfolgen. Zu viele Anpassungen kurz nacheinander würden ebenso
den Erfolg der Software-Engineering-Methode und somit des gesamten Pro-
jektes gefährden, wie wenn überhaupt keine Anpassung bei Problemen
durchgeführt werden würde. Ferner würden zu viele Anpassungen zu Ver-
wirrung und unter Umständen zu Unzufriedenheit bei den Teammitgliedern
führen, wenn sich ihre Aufgaben ständig verändern. Würden sich die Auf-

gabe
nicht
gend

Der Z
passu
Engi
Inter
Der A
bespr
solle
usw.
am b
Softw
Qual
die S
plant
falls

Ist im
nach
Kriti
also
wend

n in einer
t zu Ende g

dwann das g

Zeitpunkt d
ung, zum
neering-Me

rvall folgen,
Anpassungs
rochen und

en alle, die
, mit einbez

besten beurt
ware-Engin
lität der Arb
Software-En
t werden, zu
angepasst w

Abb

m ersten Te
h der fertige
ikalität der A
die höchste

dig ist, dam

hohen Tak
gebracht w

ganze Projek

der Anpassu
anderen je

ethode. Anp
, beispielsw
szeitpunkt s

d festgelegt
 davon bet
zogen werd
teilen, in we
eering-Meth
beit beeinfl
ngineering-
u dem der A
wird.

bildung 46 Dur

eil der Plan-
en Anpassu
Anpassung
e Priorität, s
mit der Erfo

16

ktzahl änder
erden könn
kt hinter sei

ung erfolgt z
e nach Dau
passungen

weise einmal
soll zu Begi
werden. Ä

troffen sind
den und sich
elchen Inter
hode bewer
usst und ih
Methode ei
Anpassungs

rchführungssch

-Phase nun
ung zunächs

überprüft.
so heißt die
olg der Soft

65

rn, kann es
nen, da and
iner Zeit zur

zum einen j
uer und K
sollten mög
l in der Wo
inn des Proj

Ähnlich wie
d, also Tea
h austausche
rvallen sie v
rkstelligen

hr Projekt g
in regelmäß
szeitpunkt b

hritte zum Anp

eine Anpas
st wie in A
Besitzt die

es, dass die
ftware-Engin

 passieren,
dere wichtig
rückfällt.

je nach Krit
Komplexität
glichst imm

oche, alle zw
ojektes mit a

bei den A
ammitgliede
en. Diese P
vollständige
können, oh
efährdet. Zu
ßiger Zeitpu
besprochen

passungszeitpu

ssung gepla
Abbildung 4

Anpassung
Anpassung

neering-Me

dass Aufg
ger sind un

tikalität der
der Softw

mer im glei
wei Wochen
allen Beteili
gilen Meth
er, Projektl

Personen kön
e Anpassung
hne dass es
usätzlich so
unkt mit ei
und gegebe

unkt

nt worden,
46 zu sehen
g die Priorit
g zwingend
ethode nicht

gaben
nd ir-

r An-
ware-
ichen
n etc.
igten

hoden
leiter

önnen
g der
s die
oll in
inge-
enen-

wird
n die
tät 1,

d not-
ht ge-

166

fährdet wird. Dies ist der einzige Punkt, wo eine Anpassung der SEM nicht
zum Anpassungszeitpunkt erfolgt und sofort zur Execute-Phase übergegan-
gen wird.

Ist die Anpassung nicht zwingend erforderlich, so wird zuerst überprüft, ob
der Anpassungszeitpunkt bereits erreicht ist. Ist dies nicht der Fall, so wird
gewartet, bis der Anpassungszeitpunkt erreicht oder eine neue Anpassung in
Teil 1 erfolgt ist. Die Anpassung wird solange in einem „Anpassungs-Pool“
gespeichert. Ist der Anpassungszeitpunkt erreicht, wird die Anzahl der An-
passungen im Pool überprüft. Ist dort nur eine Anpassung zu finden, so wird
zur Phase Execute übergegangen und die Anpassung wird direkt ausgeführt.

Sind bereits mehrere Anpassungen im Pool, so wird zunächst eine mögliche
laufende Anpassung in den Phasen Monitor und Analyse blockiert, damit
diese nicht weiter ausgeführt wird und mit den nun zu kombinierenden An-
passungen in Konflikt stehen. Die bereits fertigen Anpassungen werden zu-
nächst ebenfalls dahingehend analysiert, ob sie bzw. ihre Ziele möglicher-
weise in Konflikt zueinander stehen und sich gegenseitig beeinflussen. Für
diese Analyse kann das in Abschnitt 5.5.3 bestimmte Konfliktpotential her-
angezogen werden. Stehen eine oder mehrere Anpassungen in Konflikt zu-
einander, so muss zunächst nach einer Lösung zur Beseitigung der Konflikte
gesucht werden. Dies kann unter Umständen zu einer Umplanung einer An-
passung führen oder sogar dazu, dass eine Anpassung nicht durchgeführt
und verworfen wird. Dies kann nur erfolgen, wenn die Priorität der einen
Anpassung höher ist als die der anderen.

Sind alle Konflikte gelöst, kann nun eine kombinierte Anpassung geplant
und erstellt werden, da nicht alle Anpassungen gleichzeitig oder hinterei-
nander durchgeführt werden. Mit der kombinierten Anpassung ist ebenfalls
sichergestellt, dass die verschiedenen Abhängigkeiten eingehalten und be-
achtet worden sind. Um eine solche kombinierte Anpassung erstellen zu
können, kann die in Abschnitt 5.5.4 vorgestellten Kombinationsmöglichkei-
ten genutzt werden. Dort wurde bestimmt, ob und welche Kombinations-
punkte es innerhalb der jeweiligen Anpassungen gibt und wie diese ausse-
hen. Anzusetzen ist dabei an den beiden Punkten aus Abschnitt 5.5.1 Wo
angepasst wird, Was (welche Elemente) angepasst und Wie (Art der Anpas-
sung) angepasst werden kann. Mit Hilfe dieser Kombinationspunkte können
am Ende die verschiedenen Anpassungen zu einer einzigen verschmolzen
werden.

Ist die kombinierte Anpassung erstellt, so ist die Plan-Phase abgeschlossen
und es wird die Execute-Phase mit der kombinierten Anpassung angestoßen,
damit sie entsprechend ausgeführt und in das Projekt zurück übertragen
werden kann.

167

6.5	Schritt	10	–	Anpassung	ausführen		
 Schritt 10: Anpassung ausführen

Aufgabe Die geplante Anpassung wird ausgeführt

Typ Ausführen

Subschritte 1. Anpassung ausführen & Modell an-
passen

2. Modelle speichern
3. Benachrichtigungen durchführen

Input des Schrittes Anpassung zur Ausführung (Modell, Ausführungsre-

geln, Benachrichtigung)

Output des Schrit-
tes

Angepasste Software-Engineering-Methode

Mögliche Stake-
holder

System (Execute), Projektleiter (gibt das okay zur
Ausführung)

Sind die Anpassungen bestimmt und ist der Anpassungszeitpunkt erreicht
oder eine sofortige Anpassung erforderlich, so wird die Execute-Phase an-
gestoßen. Die Ausführung der Anpassung und die Übertragung der ange-
passten Software-Engineering-Methode erfolgt mit Hilfe der in Schritt 6
bestimmten Ausführungsregeln und Benachrichtigungen.

Die Execute-Phase läuft wie bereits im Framework unter Subschritte be-
schrieben, in drei Schritten ab:

1. Die Anpassung der Software-Engineering-Methode wird mit Hilfe
der Anpassungsregeln in die Modelle der SEM übertragen.

2. Die angepasste SEM wird in der Wissensbasis für die weitere
Durchführung gespeichert. Das alte Modell wird gleichzeitig in die
Historie mit Datum übertragen.

3. Es werden Benachrichtigungen an alle Beteiligten geschickt.

Sobald die Execute-Phase angestoßen wurde, werden anhand der geplanten
Anpassung die entsprechenden Ausführungsregeln und Benachrichtigungen
ausgelesen. Diese wurden in Schritt 6 in der Pre-Work oder in der vorheri-
gen Plan-Phase erstellt und abgespeichert. Mit Hilfe dieser Regeln wird das
aktuelle Modell der Software-Engineering-Methode entsprechend für die
weitere Durchführung aktualisiert.

Anhand der jeweiligen Regel werden automatisch die entsprechenden Akti-
vitäten, Techniken, Artefakte etc. im Modell hinzugefügt, gelöscht oder

168

ausgetauscht usw. Zusätzlich zu diesen geänderten Elementen müssen, falls
nötig, die konkreten Verantwortlichen bzw. die Ausführenden des Elements
geändert werden. Ferner ist durch die Regel bekannt, welche Abhängigkei-
ten, wenn nötig, neu im Modell geknüpft und geändert werden müssen.

Dieses neue Modell wird entsprechend in der Wissensbasis gespeichert und
wird für die weitere Durchführung mit Hilfe der Effektoren freigegeben.
Das heißt, die Anpassung ist beendet und der neue Status des aktuellen Pro-
jektes kann über die angepasste Software-Engineering-Methode abgerufen
werden. In demselben Schritt, wenn das neue Modell in die Wissensbasis
gespeichert wird, wird das alte Modell nicht nur überschrieben, sondern eine
Kopie dieses alten Modells wandert mit einem Zeitstempel und einer Mar-
kierung, was eine Anpassung hervorgerufen hat, in die Historie. Die Histo-
rie kann zu einem gewählten Zeitpunkt und besonders nach Beendigung des
Projektes hinsichtlich aller Anpassungen, die während des Projektes stattge-
funden haben, abgerufen und ausgewertet werden. Diese Erfahrung kann
beispielsweise für das Aufsetzen von neuen Projekt genutzt und gemachte
Fehler können im Vorfeld mit beachtet und vermieden werden.

Als letzten Schritt in der Execute-Phase und somit in der MAPE-
Feedbackschleife werden Benachrichtigungen an alle Beteiligten geschickt,
die von der Änderung betroffen sind. Wer von den einzelnen Änderungen
betroffen ist, wurde bereits in Schritt 6 entsprechend herausgearbeitet, so
dass in der Execute-Phase eine entsprechende Nachricht automatisch vom
System geschickt werden kann. Die Nachrichten sind insofern personali-
siert, als dass der Betroffene jeweils die Änderung mitgeteilt bekommt, wel-
che ihn betrifft.

Im Beispiel der Teamgröße in Scrum hieße das, wenn ein Team zu groß ist
und gesplittet wurde, wird über die Benachrichtigungen jedem Teammit-
glied mitgeteilt, welchem Team er oder sie nun angehört, welche Aufgaben
zugeteilt wurden und wer am ersten Scrum of Scrums teilnimmt. Ferner
wird ihnen der Zeitpunkt mitgeteilt, ab wann die Änderung greift. In diesem
Beispiel wird dafür der Anfang des nächsten Sprints gewählt, so dass alle
Beteiligten erst ihre entsprechenden Aufgaben beenden können.

Auch wenn mit Hilfe der Regeln und Benachrichtigungen die Schritte au-
tomatisch ausgeführt werden können, so kann es Sinn machen, dass vor Be-
ginn der eigentlichen Durchführung oder dem Versenden der Benachrichti-
gungen zunächst der Projektleiter und/ oder der Methoden-Engineer mit auf
die fertige Anpassung draufschaut und diese freigibt. Ist die Freigabe erteilt,
die Anpassung durchgeführt und sind alle Beteiligten benachrichtigt, so ist
die Anpassung abgeschlossen und eine angepasste Software-Engineering-
Methode liegt vor. Die Evaluierung und Überwachung dieser SEM beginnt

169

nun von neuem mit Schritt 7, dem Messen der Werte anhand der Sensoren
und der Monitor-Phase.

6.6	Automatisierungen	
In Abschnitt 3.3.3 wurden bereits Möglichkeiten für die Automatisierung
des Ansatzes vorgestellt und kurz diskutiert. Das Ziel war es, dass der SE
Method Manager mit der Hilfe von MAPE-K automatisiert werden kann,
wie es beim ursprünglichen Autonomic Manager der Fall ist. Es hat sich
herausgestellt, dass eine Automatisierung in den meisten Fällen möglich ist.
Doch an einigen Stellen im MAPE-K4SEM ist es sinnvoll, eine oder mehre-
re Personen einzusetzen. Auch wenn es beim Autonomic Manager möglich
ist, alle Phasen zu automatisieren, geschieht dies nicht immer bei allen Pha-
sen.

Im vorliegenden Ansatz ist es wie beschrieben so, dass er größtenteils au-
tomatisch abläuft und Personen nur punktuell eingesetzt werden. Mit Hilfe
von definierten Sensoren erfolgt die Messung der spezifischen Daten auto-
matisch. Anhand der definierten Aufbereitungsregeln werden diese in der
Monitor-Phase selbstständig vom System aufbereitet. Wie in Abschnitt
6.3.1. dargelegt, kann mit der einfachen Form der Regel und der Kombina-
tion mit ECA-Regeln die Monitor-Phase vollständig automatisch ablaufen
und die Analyse-Phase wird über den Einsatz von ECA-Regeln automatisch
angestoßen.

Ebenfalls ist es wie in Abschnitt 6.3.1. beschrieben mit einer aktiven Daten-
bank und dem Einsatz von den beschriebenen ECA-Regeln möglich, dass
die Analyse vollständig automatisiert durchgeführt wird. Sobald die aufbe-
reiteten Werte gespeichert sind, wird damit die entsprechend dem Wert de-
finierte ECA-Regel ausgelöst und die Werte werden anhand der Bedingung
ausgewertet. Je nachdem, ob die Bedingung positiv (true) oder negativ (fal-
se) ist, wird die Plan-Phase mit der entsprechenden Planungsmöglichkeit
oder den gemessenen Werten und Ziel angestoßen oder es wird wieder zu
Schritt 7 übergegangen.

Der erste Zeitpunkt, an dem eine Person hinzugezogen werden kann, ist
während des Übergangs zwischen der Analyse- und der Plan-Phase, auch
wenn dieser automatisch möglich ist. Es kann hier Sinn machen, dass sich
ein Methoden-Engineer und/oder der Projektleiter zu diesem Zeitpunkt
Software-Engineering-Methode anschaut, ob an dieser Stelle wirklich eine
Anpassung nötig oder ob sie noch im Rahmen ist. Dies kann allein schon
aus Erfahrungsgründen der Personen sinnvoll sein. Anschließend können sie
die Freigabe für die Anpassung erteilen und den Übergang zu der Plan-
Phase einläuten. Oder sie lehnen die Anpassung ab und MAPE-K wird in
Schritt 7 weiter fortgesetzt.

170

Wurde manuell beschlossen, dass die Anpassung nicht nötig ist, müssen an
dieser Stelle die Rahmenbedingungen sowie die Regeln entsprechend ma-
nuell angepasst werden, ansonsten werden der vermeintliche Fehler und
seine Anpassung im nächsten Schritt möglicherweise wieder erfolgen. Da-
bei sollte bedacht werden, dass diese manuelle Änderung wiederum Auf-
wand und mögliche Zeiteinbußen mit sich bringen kann. Die manuelle Än-
derung sollte daher nur in dringenden Fällen angewendet werden.

Die Plan-Phase selbst kann wie beschrieben ebenfalls in den meisten Fällen
automatisch erfolgen, vor allem dann, wenn bereits Planungsmöglichkeiten
vorhanden sind und diese nur ausgeführt werden müssen. Sind keine Pla-
nungsmöglichkeiten vorhanden, kann es unter Umständen sein, dass an die-
ser Stelle ein Methoden-Engineer hinzugezogen werden muss. Eine Auto-
matisierung oder zumindest eine Teil-Automatisierung ist an dieser Stelle
möglich, wenn entsprechende Planungsalgorithmen vorliegen und ange-
wandt werden können. Die Ableitung der Ausführungsregeln und Benach-
richtigungen sollten allerdings entsprechend Schritt 6 manuell durchgeführt
werden. Die Auswirkung der Anpassung auf die Gesamt-SEM sollte wiede-
rum möglichst automatisiert mit Hilfe von beispielsweise Simulationen
durchgeführt werden. Manuell würde dies einen zu großen Aufwand bedeu-
ten, da verschiedene Möglichkeiten per Hand durchgespielt werden müssen
um herauszufinden, ob und welche Auswirkungen die Anpassung auf die
Gesamt-SEM hat. Der Übergang zum Anpassungszeitpunkt erfolgt ebenfalls
automatisiert.

Der Anpassungszeitpunkt kann wiederum automatisch ausgewertet werden
und falls die Blockierung der vorherigen Phasen nötig ist, kann dies eben-
falls vom System selbstständig erfolgen. Je nach Implementierung mit Hilfe
der Konfliktmöglichkeiten kann das Ermitteln der Konflikte der einzelnen
Anpassungen zueinander noch automatisch erfolgen. Doch für die Auflö-
sung der Konflikte und für eine Kombination der Anpassungen kann ein
Methoden-Engineer nötig sein. Sind allerdings entsprechende Planungsalgo-
rithmen und Kombinationspunkte bekannt, so kann eine Automatisierung
möglich sein.

Mit dem Übergang von der Plan-Phase zur Execute-Phase und der endgülti-
gen Ausführung verhält es sich ähnlich wie beim Übergang von der Analyse
zur Planung. Der Übergang von der Plan- zur Execute-Phase ist automatisch
möglich. Doch an dieser Stelle kann es ebenfalls Sinn machen, dass sich ein
erfahrener Methoden-Engineer die geplante Anpassung anschaut, sie auf-
grund seiner Erfahrung einschätzt und anschließend zur Durchführung frei-
gibt. Diese menschlichen Zwischenschritte nutzen die Erfahrung der Perso-
nen und erhöhen das Vertrauen in die angepasste Methode.

171

Die Execute-Phase mit der Durchführung der Anpassung, der Änderung des
Modells mit Hilfe der Ausführungsregeln und das Senden der Benachrichti-
gungen kann entsprechend automatisch ausgeführt werden. Mit dem letzten
Schritt, dem Versenden der Benachrichtigungen, ist eine Anpassung abge-
schlossen und sie wird automatisch durch das kontinuierliche Ausführen des
SE Method Managers evaluiert und überwacht.

Das kurze Fazit bezüglich der Automatisierungen lautet, dass MAPE-
K4SEM automatisch durchgeführt werden kann. Somit ist auch sie selbst-
adaptive Anpassung einer SEM, also eine „selbst-adaptive Software-
Engineering-Methode“, ist. Es macht an den genannten Übergängen und in
der Plan-Phase jedoch Sinn, einen erfahrenen Methoden-Engineer einzuset-
zen.

 	

Ka

In d
adap
dies
und
zur
Beis
s-lab
wäh
rung
Beis
Nach
Durc
schi
die m
kom
an. D
Proj

apitel	7

den Kapiteln
ptive Anpas
em Kapitel
evaluiert w
Evaluierung
spiel ist dab
b – Softwa

hnt wurde. A
g aus einem
spiels begin
hdem die
chlauf mit M
edene Anp
mehrfach e

mbiniert Anp
Das Kapitel
ekt und ein

7	Evalui

A

n 3 bis 6 w
ssung von S
soll der An

werden. Nac
g wird es im

bei angelehn
are Quality
An einigen
m anderen P
nnt das Durc

einzelnen
MAPE-K, d
assungen d
rwähnte Te
passung sow
l schließt m
em Fazit.

1

ierung	

Abbildung 47 A

wurde MAPE
Software-E
nsatz an ein
ch einer Beg
m nächsten
nt an das ko

Lab, welch
Stellen wir
Projekt ang
chspielen m
Elemente

die Schritte
durchgespiel
eamgröße. D
wie eine An

mit einem Ve

72

	

Aufbau Kapite

E-K4SEM –
ngineering-

nem praxisn
gründung fü

n Abschnitt
nkrete Proj
hes bereits
d dieses Be

gereichert. N
mit den Schr
erstellt sin
7 bis 10. Im

lt, zunächst
Daran schlie
npassung o
ergleich der

el 7

– ein Ansat
-Methoden

nahen Beisp
ür die Wahl
im Detail b
ekt „Quasi-
in vorherig

eispiel zusät
Nach der B
ritten 1bis 6
d, beginnt
m Beispiel w
t eine einfa
eßt sich ein
hne Planun
r Ergebnisse

tz für die s
– vorgestel

piel durchge
l dieses Bei
beschrieben
-Scrum“ aus
gen Kapitel
tzlich mit E

Beschreibun
6, der Pre-W

der eigen
werden dre
ache Anpas
ne komplexe
ngsmöglichk
e mit den Pr

elbst-
llt. In

espielt
spiels

n. Das
s dem
ln er-
Erfah-
g des

Work.
tliche

ei ver-
ssung,
e und
keiten
raxis-

173

7.1	Evaluierung	an	einem	praxisnahen	Beispiel	
Das Durchspielen eines praxisnahen Beispiels soll hier zeigen, wie die Pre-
Work und später die Durchführung des MAPE-K in der Praxis aussehen und
funktionieren können. Für das Durchspielen wurden dabei sowohl eine Än-
derung aus dem Projektcontrolling gewählt, welche eine Anpassung nur auf
der Instanz-Ebene bewirkt, als auch eine komplexere und kombinierte An-
passung einer Software-Engineering-Methode sowie einer Anpassung ohne
Planungsmöglichkeiten. Um im Beispiel die verschiedenen Änderungen
besser zeigen zu können, wurde jeweils ein Ausschnitt des stark vereinfach-
ten Modells der Software-Engineering-Methode gewählt. Dieses Modell
wird im Beispiel beibehalten und kontinuierlich mit der jeweiligen Anpas-
sung erweitert.

7.1.1	Evaluierung	am	praxisnahen	Beispiel	–	Begründung		
Für diese Arbeit wurde die Evaluierung am praxisnahen Beispiel gewählt.
Gerade im Bereich der Durchführung und Überprüfung von Software-
Engineering-Methoden ist es schwierig, diese direkt zu überprüfen und mit
dem ursprünglichen Fall zu vergleichen. Zwar ist die Dauer der Anpassung
im vorgestellten Ansatz in der Durchführung zeitnah und größtenteils auto-
matisch möglich, doch die Überprüfung müsste an einem Projekt während
der Durchführung über einen längeren Zeitraum erfolgen. Auch müsste das
Projekt von Anfang an mit begleitet werden, da die Pre-Work zu Beginn des
Projektes durchführt werden muss.

Der Ansatz sollte zudem in einem Projekt in der Praxis, das heißt in einem
Unternehmen umgesetzt und überprüft werden. Doch für eine Evaluierung
ist es schwierig, ein Unternehmen zu finden, welches bereit ist, diese durch-
zuführen, denn im Unternehmen geht es bei einem Projekt um Zeit und
hauptsächlich auch um Kosten. Um zu überprüfen, ob der Ansatz nicht nur
funktioniert, sondern bessere Ergebnisse für die Anpassung liefert als ohne
den eingesetzten Ansatz, müssten für einen direkten Vergleich dasselbe Pro-
jekt praktisch zweimal unabhängig voneinander gestartet werden, einmal
mit und einmal ohne den Ansatz. In der Unternehmenspraxis ist dies gar
nicht oder nur sehr schwer möglich.

Von daher wurde für das Durchspielen des Ansatzes ein Beispiel gewählt,
welches sich nah an der Praxis befindet. Zwar ist das Beispiel konstruiert,
aber der Kern des Beispiels wurde in ähnlicher Form bereits in einem Pro-
jekt ohne den Einsatz des Ansatzes durchgeführt. Auch wenn das Beispiel
mit weiteren Aspekten angereichert wird, so stammen diese ebenfalls alle
aus der Praxiserfahrung und sind bereits vorgekommen. Durch diesen Pra-
xisbezug ist es am Ende möglich, den Ansatz mit den ursprünglichen Pro-
jekten zu vergleichen und schlussendlich ein Fazit zu ziehen.

7.1.
Das
an d
vom
Kap
Eng
K4S
die
läng
im U

In di
geze
xisp
weit
sem
sung
zeig
sour
mög

Im
Dafü
Bete
bere
hier
xis z
15 M
Min
aus
jekt
Beis
restl
Wie
Durc

2	Beschre
Beispiel, w

das Praxispr
m s-lab – So
piteln bereit
ineering-M

SEM und er
Wand gelau

gern und ein
Unternehme

iesem Beisp
eigt werden
projekt ange
tere Erfahru

Beispiel s
gen gezeigt
gt, dass es m
rcen fehlen
glich ersetzt

Projekt Qua
ür wurde di
eiligten nic
eits im Vorf

im Beispie
zu bleiben.
Minuten zw
nuten statt. D
einem Lenk
kein Infor

spiel bleibt
lichen Rege
e sich die A
chspielen d

eibung	des
welches hier
rojekt Quas
oftware Qu
s mehrfach
ethode ang

rst sehr spät
ufen“ war.
nen weitere
en zusätzlich

piel soll jed
n, sondern e
ereichert sow
ungen wider
owohl eine
t werden. Z
mit dem An

oder wegf
t und ausget

asi-Scrum w
ie Agile Me
ht optimal

feld mit Hilf
el ebenfalls

Die Daily
weimal in de
Der Product
kungskreis v
rmationsme
das ursprü

eln und Eig
Anpassungen

es Beispiels

Abbild

1

	Beispiels
r für die Ev
si-Scrum [E
uality Lab –
h erwähnt. I
gepasst, all
t im Projekt
Dadurch h

e Iteration z
he Kosten v

doch nicht n
s wird mit
wie mit Em
rspiegelt. E
e einfache A
Zusätzlich w
nsatz ebenfa
fallen und d
tauscht werd

wurde eine
ethode Scru

war, wurd
fe von Tailo
verwendet
Scrums fin

er Woche (
t Owner ist
von 5 Perso
eeting sond
üngliche Re
genschaften
n auf Regel
s erläutert.

dung 48 Haupt

74

valuierung v
EG09] angel
– durchgefü
In diesem P
erdings oh
t, als es sch

hat das Unte
zur Reparatu
verursacht h

nur diese An
der Erfahru

mpfehlungen
s sollen wie
Anpassung
wird an ein
alls möglich
diese mit H
den können

Kreditkalku
um eingeset
de die Soft
oring angep
werden, um

nden im Be
(dienstags u

keine einze
onen. Das R
dern ein Ab
view-Meeti
von Scrum

ln und Metr

trollen in Quas

verwendet w
lehnt. Diese
ührt und in

Projekt wurd
ne die Hil

hon in einig
ernehmen d
ur einschieb
hat.

npassung au
ung aus eine
n aus einem
e bereits ges
als auch ko

nem einfach
h ist zu erke
Hilfe der Pl
n.

ulationssoft
tzt. Da Scru
tware-Engin
passt. Die A
m möglichst
eispielprojek
und donners
elne Person

Review-Mee
bnahmemee
ing allerdin

m bleiben eb
riken auswi

si-Scrum

wird, ist im
es Projekt w
n den vorhe
de die Softw
lfe von M

gen Punkten
die Laufzeit
ben müssen

us diesem Pr
em weiteren
Artikel, we
schrieben in
omplexe A
hen Beispie
ennen, dass
lanung schn

tware entwi
um aus Sich
neering-Me

Ausgangslag
t nah an der
kt anstatt tä
stags) jewei
n sondern be
eting war im
eting. In di
ngs erhalten
benfalls erh
irken, wird

Kern
wurde
erigen
ware-
APE-

n „vor
t ver-

n, was

rojekt
n Pra-
elcher
n die-

Anpas-
el ge-
s Res-
nellst-

ckelt.
ht der
thode

ge soll
r Pra-
äglich
ils 30
esteht

m Pro-
iesem

n. Die
halten.

beim

Die H
folgt









Der A
Form
lichu
also
Sprin
Aufg
hat d
Team
lisier

Hauptrollen
t auf:

 Es gibt
Person X

 Der Scr
tes bzw
9 Person

 Der Pro
stellt. D
welchem
Softwar
nen Auf

 Das Tea
Backlog

Ablauf eine
m in Abbild
ung der vers

die Länge
nt montags
gaben für d
die priorisi
m bestimmt
ren kann.

n im Beispie

einen Scrum
X im konkr

rum Master
w. zum Start

nen besteht

oduct Own
Dieser ist B
m alle Anfo
re beinhalte
fgaben aus u

am bearbeit
g.

es Sprints zu
dung 49 darg
schiedenen
einer Itera
mit dem Pl

den aktuelle
erten Aufg
nun, welch

Abbildung 4

17

el teilen sich

m Master, w
reten Projek

betreut das
t der Softw
.

er wird hie
Besitzer des
orderungen u
et sind. Der
und priorisi

tet während

u Beginn de
gestellt, wo
Anpassung

ation, beträg
anning-Mee
n Sprint be

gaben bereit
he Aufgaben

49 Vereinfacht

75

h wie in Ab

welcher das
kt realisiert w

 Team, wel
ware-Enginee

er durch ei
Hauptartef

und Aufgab
r Lenkungsk
iert diese.

d des Sprint

es Beispiels
obei diese V
gen beibeha
gt hier 4 W
eting, in dem
esprochen w
ts vom Le
n es in den

ter Ablauf in Q

bbildung 48

s Team beg
wird.

ches zu Beg
ering-Metho

inen Lenku
faktes Prod
ben für die E
kreis wählt

ts die Aufga

s wird in sta
Vereinfachu
alten wird. D
Wochen. Da

m gemeinsa
werden. Der
enkungskrei

nächsten vi

Quasi-Scrum

zu sehen w

gleitet und d

ginn des Pro
ode konkret

ungskreis da
duct Backlo
Entwicklung
die verschi

aben im Pro

ark vereinfac
ng zur Verd
Die Sprintlä
abei beginnt
am im Team
r Scrum M
s erhalten.
ier Wochen

wie

durch

ojek-
et aus

arge-
og, in
g der
iede-

oduct

chter
deut-
änge,

nt der
m die

Master
Das

n rea-

176

Während der Entwicklung führt das Team jeden Dienstag und Donnerstag
ein Daily Scrum von 30 Minuten durch, wo besprochen wird, was die ein-
zelnen Teammitglieder bisher getan haben und was sie in den nächsten Ta-
gen an Aufgaben bearbeiten wollen. Zusätzlich nimmt der Scrum Master die
Probleme des Teams auf und versucht diese zu lösen. Ferner zeigt er mit
Hilfe von sogenannten BurnDown-Charts, wo das Team aktuell steht und
was es bisher geschafft hat. Nach der Entwicklung findet zusammen mit
dem Lenkungskreis ein Review-Meeting statt, in dem der Status nach dem
Sprint vorgestellt wird. Daran schließt sich die Retrospektive an, bei der die
Teammitglieder besprechen, was im Sprint gut und was schlecht gelaufen ist
sowie was sie im nächsten Sprint ändern möchten. Im Original-Projekt fand
die Retrospektive erst ab Sprint 7 statt, im Beispiel wird sie von Beginn an
eingesetzt.

Im Folgenden soll dieses Grundszenario im Laufe der verschiedenen Sprints
mit Hilfe von MAPE-K4SEM angepasst werden. Für die Anpassungen wur-
den verschiedene Szenarien überlegt, die der Praxis entspringen. Eine einfa-
che, aber dennoch sehr wichtige Anpassung, die ausschließlich auf Instanz-
Ebene erfolgt, bezieht sich auf die Erkennung, wenn eine Person plötzlich
krank wird, Urlaub hat oder sogar das Unternehmen verlässt. Diese Person
muss zeitweise oder vollständig im Team durch eine andere mit den ent-
sprechenden Fähigkeiten für die Aufgaben ersetzt werden. Eine andere
Möglichkeit kann sein, dass die Aufgaben der Person je nach Aufwand
durch das Team kompensiert werden können. Besonders wichtig ist, dass
die Teammitglieder über die Änderung der Verantwortlichkeit informiert
werden.

Auch wenn dies eine sehr einfache Erkennung und Anpassung während der
Laufzeit der Software-Engineering-Methode und eher der Projektkontrolle
zuzuordnen ist, so ist diese Erkennung doch essentiell. In der Praxis kommt
dieser Fall, sei es durch Krankheit oder Urlaub, regelmäßig vor. Wo Urlaub
im Voraus relativ gut einzuplanen ist, ist eine Vertretung bei Krankheit hin-
gegen wesentlich schwieriger „auf die Schnelle“ zu finden.

Die Praxiserfahrung aus einem anderen Projekt hat gezeigt, wie wichtig
diese Erkennung bei großen und verteilten Projekten ist. In diesen Projekten
geht schnell der Überblick über die einzelnen Personen verloren und bei
Abwesenheit oder gar Verlassen des Unternehmens sind die Verantwort-
lichkeiten teilweise nicht mehr klar. In der Praxis ist es im angesprochenen
Projekt mehrfach vorgekommen, dass Personen aus einem anderen Team
das Unternehmen verlassen haben und die anderen Teams nicht darüber
informiert wurden. Einmal hat ein solcher Fall das Team mehrere Tage ge-
kostet, um den neuen Ansprechpartner zu finden. Durch MAPE-K4SEM

177

hätte dies verhindert werden können. Deshalb soll diese einfache Anpassung
mit ins Beispiel aufgenommen werden.

Eine weitere Anpassung ist das mehrfach genannte Beispiel der Teamgröße
in Scrum. Auch wenn der Team-Split in Scrum vorgesehen ist, so wird er in
der Praxis nicht unbedingt vorgenommen. Auch im Praxisprojekt vergrößer-
te sich das Team zeitweise, wurde aber nicht aufgeteilt, was zu Kommuni-
kationsschwierigkeiten und Verzögerungen führte. Aus diesem Grund wird
diese Anpassung ebenfalls mit aufgenommen.

Nachdem die Anpassung vorgenommen wurde, wird in einer ersten kom-
plexen Anpassung die Anpassung des ursprünglichen Quasi-Scrum-
Projektes mit Hilfe von MAPE-K4SESM durchgeführt. Um die insbesonde-
re nicht-funktionalen Eigenschaften wie Performanz besser erkennen und im
Product Backlog priorisieren zu können, wurde eine neue Phase, die „Kun-
den-Test-Tage“, mit zusätzlichen Rollen in die Software-Engineering-
Methode eingeführt.

In einer weiteren komplexen Anpassung wird betrachtet, dass das Testen in
Scrum nicht immer optimal läuft. Auch wenn Testen einen wichtigen As-
pekt in den Agilen Methoden einnimmt, so ist es doch nur wenig und un-
strukturiert beschrieben. Dies kann zu unzureichenden Tests und späteren
Fehlern in der Software führen. Durch das Hinzufügen von speziellen Tes-
taktivitäten kann dem entgegen gewirkt werden. Um ebenfalls eine kombi-
nierte Anpassung zu zeigen, werden im Beispiel diese Anpassung und die
Kunden-Test-Tage zu einer zusammengefasst. Wie dies zur Laufzeit mit
Hilfe von MAPE-K4SEM funktioniert, wird in Abschnitt 7.1.3.4 gezeigt.

Beendet wird die Evaluierung mit einer Planung ohne Planungsmöglichkeit,
dem bereits genannten Beispiel, dass ein aktueller Standard verwendet wer-
den soll.

7.1.3	Durchspielen	des	Beispiels	
Das Grundszenario des Beispiels ist erläutert, ebenso was in den Sprints im
Laufe des Projektes angepasst werden soll. In den folgenden Abschnitten
wird nun erläutert, wie diese Anpassungen im Detail mit Hilfe von MAPE-
K4SEM aussehen. Zunächst werden dabei die ersten 6 Schritte – die Pre-
Work – durchgespielt und die Details für die einzelnen Beispiele werden
festgelegt und hergeleitet. Dabei ist zu erwähnen, dass die Ziele, Regeln,
Metriken usw. hier im Beispiel nur auszugsweise für genau die einzelnen
Anpassungen festgelegt werden. Das Definieren und Herleiten aller Ziele,
Regeln und Metriken würde den Rahmen der Evaluierung sprengen.

Im weiteren Verlauf dieses Abschnittes werden für die verschiedenen An-
passungen die Schritte 7 bis 10 im MAPE-K durchlaufen und erläutert. Im

178

abschließenden Abschnitt 7.2 werden die Pre-Work und die verschiedenen
Anpassungen soweit möglich mit der Praxis und den ursprünglichen Projek-
ten verglichen. Darauf aufbauend wird ein abschließendes Fazit gezogen.

7.1.3.1	Durchspielen	der	Pre‐Work	am	Beispiel	
Bevor die einzelnen Schritte der Pre-Work für die verschiedenen Beispiel-
Anpassungen durchgespielt werden, muss zunächst erläutert werden, was
bereits vorab als gegeben angesehen wird.

Voraussetzungen und Festlegungen

Bevor die Pre-Work durchgespielt werden kann, gibt es verschiedene Ele-
mente, welche in der Wissensbasis gespeichert werden, die bereits vorhan-
den und gegeben sein müssen. Dies sind die Voraussetzungen, damit die z10
Schritte des MAPE-K4SEM durchgeführt werden können. Das wichtigste
Element, die eigentliche Software-Engineering-Methode muss gegeben und
mit allen Beteiligten abgestimmt sein. In diesem Beispiel wird wie ge-
schrieben als Software-Engineering-Methode die Agile Methode Scrum
verwendet.

Falls nötig, muss vor Beginn die Software-Engineering-Methode mit Hilfe
von Tailoring für eine Situation angepasst worden sein oder sie wurde mit
Situational Method Engineering erstellt. In diesem Beispiel wurde die Soft-
ware-Engineering-Methode bereits angepasst. Um den MAPE-K4SEM nun
durchführen zu können, muss die gegebene Software-Engineering-Methode
als Modell vorliegen. Die Modellierung kann mit den in Abschnitt 2.1.2
beschrieben Möglichkeiten oder auch einer abgeschwächten Form davon
erfolgen. Wichtig ist, dass der Workflow und alle Aktivitäten, Rollen, Arte-
fakte, Techniken usw. modelliert worden sind, damit die Anpassungen am
Modell entsprechend vorgenommen werden können.

Zusätzlich soll bereits eine Methoden-Basis mit verschiedenen Bausteinen
vorhanden und in der Wissensbasis abgespeichert sein. Diese Methoden-
Basis kann zum einen im Unternehmen von erfahrenen Methoden-
Engineern selbst entwickelt worden sein. Oder es können bereits vorhande-
nen Methoden-Basen, z.B. aus dem Internet oder von anderen Projekten,
übernommen und abgespeichert werden. Dies ist wichtig, falls eine Anpas-
sung ohne Planungsmöglichkeiten geplant werden muss. Ist dies nötig, so
können verschiedene Bausteine aus der Methoden-Basis entnommen und
eingesetzt werden. Die Methoden-Basis ist um zusätzliche Bausteine erwei-
terbar. Die Methoden-Basis im Beispiel besteht aus Bausteinen der ver-
schiedenen Agilen Methoden mit zusätzlichen Elementen aus den klassi-
schen Methoden.

179

Des Weiteren ist es nötig, im Vorfeld den Anpassungszeitpunkt für die
Software-Engineering-Methode festzulegen. Wie bereits im vorherigen Ka-
pitel angesprochen ist dies wichtig, da eine SEM nicht zu jedem Zeitpunkt
angepasst werden kann. Der Anpassungszeitpunkt hängt zum einen von der
Software-Engineering-Methode und der Komplexität des Projektes ab. Zum
anderen setzen sich alle Beteiligten vor Beginn des Projektes zusammen und
bestimmen gemeinsam einen Anpassungszeitpunkt, welcher im Laufe des
Projektes ebenfalls überdacht und angepasst werden kann.

In einem Scrum-Projekt bietet sich als erstes an, sehr komplexe Anpassun-
gen jeweils zu Beginn eines neuen Sprints durchzuführen. In einem norma-
len Sprint wäre für die Planung einer entsprechenden Anpassung auf Typ-
Ebene nur wenig bis gar keine Zeit vorhanden, da solche Anpassungen nur
indirekt vorgesehen sind. Von daher würde es Sinn machen, die Software-
Engineering-Methode zu diesem Zeitpunkt anzupassen, vor allem wenn
kurze Sprints an der Tagesordnung sind. Besitzt der Sprint die Länge von 4
Wochen, so können ein bis mehrere Anpassungszeitpunkte zwischen den
einzelnen Sprints bestimmt werden. Der Abstand von Anpassungszeitpunk-
ten von weniger als einer Woche würde allerdings kaum Sinn machen, da
die Software-Engineering-Methode zu oft geändert und Aufgaben unter
Umständen nicht beendet werden würden.

Für dieses Beispiel wird der Anpassungszeitpunkt von zunächst alle 2 Wo-
chen festgelegt, zur Halbzeit und vor Beginn eines neuen Sprints. Durch die
Priorisierung der einzelnen Ziele kann es wie beschrieben dennoch vor-
kommen, dass einige Anpassungen sofort vorgenommen werden müssen, da
der Erfolg sonst gefährdet ist. Darunter würde beispielsweise die erste An-
passung bei Krankheit zählen.

Schritt 1 + 2: Definition und Priorisierung der Ziele

Sind das Projektteam und die Software-Engineering-Methode bestimmt, so
können der Methoden-Engineer und die entsprechenden Beteiligten mit dem
ersten Schritt des MAPE-K4SEM beginnen. Wie in Kapitel 5 beschrieben
beginnt das Team damit, die Ziele der Software-Engineering-Methode zu
definieren. Hier im Beispiel wird nur ein Auszug der Ziele beschrieben. Es
werden die Ziele definiert, die für die späteren Anpassungen nötig sind und
es werden ein paar weitere mögliche Beispiele gegeben. Normalerweise
wird den verschiedenen Zielen noch zugeordnet, zu welchem Zeitpunkt sie
„aktiv“ sind. Hier im Beispiel sind alle Ziele immer aktiv und werden konti-
nuierlich überprüft. Ausnahme sind die Ziele, welche mit einem Meeting in
Verbindung stehen, beispielsweise die beiden folgenden Ziele bzgl. der Ori-
ginal-Methode oder die späteren Ziele der angepassten Methode (ZAM2
und ZAM3). Diese sind nur zur Zeit des jeweiligen Meetings aktiv.

180

Zu Beginn wird wie in Abschnitt 5.1 beschrieben die angepasste Software-
Engineering-Methode Scrum mit ihren Eigenschaften betrachtet. Ziele, die
sich von den Eigenschaften und Regeln bei Scrum ableiten lassen sind bei-
spielsweise:

 ZOM1: Alle Meetings werden eingehalten und durchgeführt.

 ZOM2: Die Time-Boxes von Meetings werden eingehalten.

ZOM steht dabei für „Ziel Original-Methode“.

In diesem Projekt wird ein angepasstes Scrum verwendet und ein Len-
kungskreis anstatt des ursprünglichen Product Owners eingesetzt. Ziele, die
sich daraus und aus dem Original-Scrum ergeben sind beispielsweise:

 ZAM1: Der Lenkungskreis priorisiert die Anforderungen im Product
Backlog.

 ZAM2: Der Lenkungskreis schlägt die Aufgaben für einen neuen
Sprint und somit für das Sprint Backlog vor.

 ZAM3: Das Team sucht im Planning-Meeting die Aufgaben aus und
legt das endgültige Sprint Backlog fest.

 ZAM4: Der Scrum Master übernimmt keine Entwicklungsaufgaben.

ZAM steht hier für „Ziel angepasste Methode“:

Im Beispiel sind gerade die Ziele wichtig, welche für die hier durchgeführ-
ten Anpassungen relevant sind. Für die ersten Beispielanpassungen, dass
eine Ressource ausfällt (jemand wird krank) und dass die Teamgröße in
Scrum eingehalten wird, lauten die Ziele:

 ZBA1: Ressourcen optimal nutzen.

 ZBA2: Ressourcenveränderungen abfangen.

 ZBA3: Teamgröße in Scrum einhalten.

ZBA steht dabei für „Ziel Beispielanpassung.

In der nächsten Anpassung geht es, wie im Prinzip in jedem Projekt ge-
wünscht, darum, dass die Kundenzufriedenheit im Projekt hoch sein und die
Software möglichst fehlerfrei sein soll. Gerade in Scrum ist es gewollt, dass
der Kunde frühzeitig Feedback gibt. Jedes ausgelieferte Produkt-Inkrement
ist prinzipiell einsatzfähig und kann vom Kunden eingesetzt werden. Der
Kunde kann des weiteren Feedback und Fehlermeldungen einstellen. Beides
wird anschließend in den nächsten Sprints umgesetzt bzw. die Fehler wer-
den behoben. Ein Sub-Ziel der Kundenzufriedenheit könnte dann heißen: Es
dürfen nur eine bestimmte Anzahl von negativen Meldungen oder Fehler-
meldungen vom Kunden vorhanden sein. Außerdem sollen nicht-

181

funktionale Anforderungen wie Performanz und Usability ebenfalls mit be-
trachtet und eingehalten werden. Abgeleitete Ziele heißen dann:

 ZBA4: Die Kundenzufriedenheit soll im Projekt hoch sein.
o Es soll nur eine bestimmte Anzahl an Fehlermeldun-

gen/negativen Feedbackmeldungen vom Kunden vorliegen.

 ZBA5: Es dürfen keine kritischen Fehler (Blocker) vorliegen und
nur eine bestimmte Anzahl an nicht-funktionale Beschwerden.

Um die Kundenzufriedenheit und eine möglichst fehlerfreie Software ein-
halten zu können ist es ebenfalls wichtig, dass die Software ausreichend und
strukturiert getestet wird. In Scrum wird zwar erwähnt, dass Testen sehr
wichtig ist, aber es wird nicht vorgegeben, wie das Testen stattfinden soll.
Ferner wird im Original-Scrum erwähnt, dass es keine expliziten Tester ge-
ben soll. Wichtig ist aber, dass zumindest alle Anforderungen getestet wer-
den. Als besonders wichtig werden in Scrum die Unit-, Integrations- und
User Acceptance-Tests angesehen. Daraus können sich beispielsweise als
Ziele ergeben:

 ZBA6: Das Testen wird strukturiert durchgeführt.

 ZBA7: Es gibt für die Software verschiedene Testarten und -stufen,
insbesondere Unit- und Integrationstests.

Sind wichtige Ziele für die Software-Engineering-Methode hergeleitet, so
wird zusätzlich der Kontext des Projektes und des Unternehmens mit be-
trachtet. Dabei kann es für das Unternehmen wichtig sein, dass alle Normen
und Standards, beispielsweise im Testen eingehalten werden. Ebenso kann
es vorkommen, dass Anweisungen vom Projektleiter oder von der Unter-
nehmensleitung etc. eingehalten und umgesetzt werden müssen. Als Ziele,
ZK steht dabei für „Ziel Kontext“, ließen sich diese folgendermaßen formu-
lieren:

 ZK1: Die Standards für das Software-Testen sollen eingehalten wer-
den. Es soll immer der aktuellste Standard verwendet werden.

 ZK2: Die Anweisungen vom Unternehmen sollen eingehalten wer-
den.

 ZK3: Anweisungen vom Projektleiter sind einzuhalten.

In einem weiteren Schritt, der teilweise direkt mit der Zieldefinition erfol-
gen kann, werden die Rahmenbedingungen oder mögliche Abweichungen
für die Ziele festgelegt. Dies ist wichtig für die weiteren Schritte und zur
Ableitung der Analyseregeln. Für die Ziele der Original-SEM werden nur
für das dritte Ziel die Time-Boxen der verschiedenen Meetings festgelegt.
Die anderen beiden Ziele sind eindeutig und brauchen keine weiteren Rah-
menbedingungen. ZOM2 würde dann lauten:

182

 ZOM2: Die Time-Boxes von Meetings werden eingehalten. Die
Time-Boxes für einzelnen Meetings sind:

o Planning-Meeting: 1 Tag = 8 Stunden
o Daily Scrum am Dienstag und Donnerstag: 30 Minuten
o Review-Meeting: 4 Stunden
o Retrospektive: 1 Stunde
o Gesamter Sprint: 4 Wochen

Hauptsächlich sollen hier für die Beispiele die Rahmenbedingungen festge-
legt werden. Für das erste Beispiel ist es wichtig, dass die Teamgröße vom
Original-Scrum eingehalten wird. Dabei soll jede Ressource im Team, hier
die Ressource Person entsprechend genutzt und Veränderungen sollen ge-
meldet werden.

 ZBA1: Die Ressource Person soll optimal genutzt werden.

 ZBA2: Jede Veränderung der Ressource Person soll überprüft wer-
den. Bei einer Veränderung müssen die Aufgaben der Person, die im
aktuellen Sprint zu erledigen sind, weiterhin bearbeitet und abge-
schlossen werden können.

 ZBA3: Die Teamgröße von Scrum soll eingehalten werden. Ein
Team soll nicht größer als neun aber auch nicht kleiner als drei Per-
sonen sein.

Für die Ziele ZBA4 und ZBA5 müssen die Anzahl der Fehlermeldungen
und der Feedbackmeldungen etc. als Rahmenbedingungen bestimmt wer-
den. Für das Beispiel würden sie folgendermaßen lauten:

 ZBA4: Die Kundenzufriedenheit im Projekt soll hoch sein. Es sollen
maximal 10 Fehlermeldungen/negative Feedbackmeldungen vom
Kunden vorliegen.

 ZBA5: Es dürfen keine besonders kritischen Fehler, sogenannte Blo-
cker, und maximal 3 kritische Fehler vorliegen. Ebenfalls dürfen
maximal nur 2 nicht-funktionale Beschwerden vorliegen. Die An-
zahl der Schönheitsfehler ist nicht begrenzt.

Für die letzten zwei Beispielziele können als weitere Rahmenbedingungen
festgelegt werden:

 ZBA6: Das Testen wird strukturiert durchgeführt, jede Person im
Team soll seine eigenen Aufgaben testen.

 ZBA7: Es gibt für die Software Unit-Tests und Integrationstests. Je-
de Aufgabe besitzt einen Unit-Test und es wird pro Sprint ein Integ-
rationstest durchgeführt. Weitere Teststufen und Testarten werden
nur durchgeführt, wenn nötig.

183

Für die Kontext-Ziele wird keine Definition von weiteren Rahmenbedin-
gungen benötigt. Nachdem die Ziele bestimmt sind, können diese nun von
den Beteiligten entsprechend priorisiert werden. Hier im Beispiel wird die
Einstufung nach dem Fehlerprinzip und eine Abstufung von 1 bis 5 gewählt,
wobei 1 für Blocker steht, das heißt ohne dieses Ziel geht es nicht und eine
Anpassung muss sofort umgesetzt werden. Hingegen steht 5 für die nied-
rigste Stufe, das heißt die Anpassung gefährdet den Erfolg kaum oder nur
sehr wenig und muss nicht direkt umgesetzt werden. Auch wenn nur fünf
Abstufungen vorhanden sind und somit verschiedene Ziele dieselbe Priorität
haben können, wird hier davon ausgegangen, dass nur äußerst selten der Fall
vorkommt, das zwei Ziele mit derselben Priorität gleichzeitig getriggert
werden.

Da für den weiteren Verlauf in erster Linie die Ziele der Beispiele ZBA1 bis
ZBA7 sowie von ZK1 wichtig sind, werden nur diese Ziele priorisiert und
im weiteren Verlauf für die anderen Schritte verwendet.

Vor allem bei der Änderung einer Ressource beispielsweise durch Krank-
heit, Verlassen des Unternehmens oder ähnlichem, ist es wichtig, dass sofort
darauf reagiert wird, damit mögliche Engpässe oder nicht erledigte Aufga-
ben abgefangen werden. Deswegen bekommt dieses Ziel die Priorität 1.
Damit hängt zusammen, dass die Ressourcen optimal genutzt werden, es ist
aber nicht ganz so essentiell wie ZBA2 und bekommt von daher die Priorität
2. Dass die Teamgröße eingehalten wird, ist dem Projektteam wichtig und
wird hier mit einer mittleren Priorität (3) bewertet.

Die Kundenzufriedenheit in ZBA4 ist ebenfalls sehr wichtig, aber kein Blo-
cker und bekommt hier die Priorität 2 ebenso wie das Ziel ZBA5. Das Tes-
ten ist beim Team zwar wichtig, wird aber eher als eine mittlere Kategorie,
jedoch nicht als nicht sehr wichtig angesehen. Von daher bekommt ZBA6
die Priorität 3 und ZBA7 die Priorität 4. Da die Einhaltung von Normen und
Standards im Beispiel-Unternehmen als sehr wichtig angesehen wird, wird
hier die Priorität 1 vergeben.

Als eine niedrige Priorität (5) könnte beispielsweise das Einhalten der Time-
Boxes angesehen werden. Hingegen würde das Einhalten von Anweisungen
des Projektleiters oder der Unternehmensleitung in die Kategorie 2 oder
sogar 1 fallen. Für die sieben Ziele der Beispiele und des Kontext-Ziels
ergibt sich somit folgende Priorisierung:

 ZBA 1: Prio 2

 ZBA 2: Prio 1 (wird immer angepasst)

 ZBA 3: Prio 3

 ZBA 4: Prio 2

184

 ZBA 5: Prio 2

 ZBA 6: Prio 3

 ZBA 7: Prio 4

 ZK 1: Prio 1

Sind die beiden ersten Schritte durchgeführt und alle Ziele sowie ihre Priori-
sierung bestimmt, können nun wie in den Abschnitten 5.3 bis 5.7 beschrie-
ben die weiteren nötigen Informationen für die MAPE-K-Feedbackschleife
hergeleitet werden.

Schritt 3 + 4: Ableitung der Analyseregeln und Planungsmöglichkeiten

Für die Ableitung der Analyseregeln und Planungsmöglichkeiten sind die
Schritte 3 und 4 eng miteinander verknüpft. Wie in Abschnitt 5.4 beschrie-
ben besteht eine Analyseregel aus einem Wenn- und einem Dann-Teil. Der
Dann-Teil beschreibt dabei die Aktion, welche je nach Analyse-Ergebnis
ausgeführt werden soll und beinhaltet dabei je nach Regel Varianten der
Planungsmöglichkeiten

Zunächst wird aber der Wenn-Teil abgeleitet, also was überprüft werden
soll, damit das Ziel weiter eingehalten werden kann. Für das Ziel ZBA1
wird überprüft, ob alle Ressourcen, in diesem Fall Personen, genutzt wer-
den, das heißt ob sie in einem aktuellen Projekt sind. Sind alle Personen in
einem Projekt und besitzen Aufgaben, passiert nichts. Ansonsten werden sie
einem Projekt oder ihnen werden Aufgaben zugeordnet. Nach Abschnitt 5.4
würden die beiden Regeln dann lauten:

a) RZBA1: Wenn Person Y 0 Aufgaben zugeordnet, dann Planung
(Ordne Aufgaben nach Fähigkeiten zu)

b) RZBA1: Wenn Person Y Aufgaben zugeordnet, dann Schritt 7

Bei ZBA2 hingegen muss überprüft werden, ob eine Änderung an den Res-
sourcen stattgefunden hat, z.B. dass eine Person krank geworden ist oder
das Unternehmen verlassen hat. Um dies zu ermitteln, könnte jeder Person
ein Status im Team zugeordnet sein beispielsweise „aktiv“, „Urlaub“,
„krank“, „gelöscht“. Ändert sich dieser Status, sind mögliche Planungs-
schritte, dass entweder die Aufgaben je nach Kapazität vom Team über-
nommen werden oder dass eine neue Person mit den entsprechenden Fähig-
keiten eingesetzt wird.

Das Übernehmen der Aufgaben oder Einsetzen einer Person sollte je nach
Ausfall der zu ersetzenden Person geplant werden. Ist beispielsweise eine
Person nur 3 Tage krank, braucht dafür typischerweise keine neue Person
eingesetzt werden (Variante 1). Ist eine Person 3 Wochen im Urlaub, müs-
sen die Aufgaben entweder gut vom Team geplant oder von einer anderen

185

Person übernommen werden (Variante 2). Fällt eine Person vollständig weg,
muss diese ersetzt werden (Variante 3). Daraus würden sich folgende Re-
geln ergeben:

a) RZBA2: Wenn Statusänderung == krank & Fehltage <= 5 dann
Planungsmöglichkeit Variante 1

b) RZBA2: Wenn Statusänderung == krank oder Urlaub & Fehltage
>5 dann Planungsmöglichkeit Variante 2

c) RZBA2: Wenn Statusänderung == Person gelöscht dann Pla-
nungsmöglichkeit Variante 3

Wenn eine Person nicht anwesend ist, wären ihr somit keine Aufgaben zu-
geordnet, was in diesem Fall korrekt ist. Von daher muss die Regel aus dem
vorherigen Fall angepasst werden und würde lauten:

 RZBA12: Wenn Person Y 0 Aufgaben zugeordnet & Status ==
aktiv, dann Planung (Ordne Aufgaben nach Fähigkeiten zu)

In allen drei Varianten ist es wichtig, dass in der Planungsphase die Aufga-
ben der abwesenden Person bekannt sind und aus der Wissensbasis ausgele-
sen werden müssen. Ferner müssen in der Planungsphase die Skills der ein-
zelnen Personen bekannt sein, ebenso wie deren Auslastung. Dies ist wich-
tig, damit der richtigen Person die neuen Aufgaben zugewiesen werden
können.

In Schritt 4 sollen, soweit möglich, bereits im Vorfeld Konfliktmöglichkei-
ten zu den Zielen analysiert und gegebenenfalls Lösungen aufgezeigt wer-
den. Hier im Beispiel muss bei der Verteilung der Aufgaben darauf geachtet
werden, dass es beispielsweise keinen Konflikt mit Ziel ZOM1 gibt, dass
der Scrum Master keine Entwicklungsaufgaben übernehmen darf. Fällt ein
Mitglied aus dem Team aus, so darf der Scrum Master dessen Aufgaben
nach dieser Regel nicht übernehmen. Diese Konflikt-Regel wird in der Wis-
sensbasis für die Plan-Phase gespeichert.

ZBA3 spiegelt Teamgröße in Scrum wider. Die Analyseregeln und Pla-
nungsmöglichkeiten wurden dabei bereits in den Abschnitten 5.4. bzw. 5.5.
beschrieben und lauten:

a) RZBA3: Wenn Teamgröße > 9, dann Planungsmöglichkeit Vari-
ante 1 („Team zu groß“, aktuelle Teamgröße x)

b) RZBA3: Wenn Teamgröße < 5 dann, Planungsmöglichkeit Vari-
ante 2 („Team zu klein, aktuelle Teamgröße y)

c) RZBA3: Wenn Teamgröße 3 <= Teamgröße <= 9, dann Schritt 7

186

Wie bereits in Abschnitt 5.4 beschrieben besagt die Planungsmöglichkeit
bei einem zu großen Team, dass ein Team-Splitting durchgeführt und ein
neues Meeting Scrum of Scrums eingeführt werden soll. Da in diesem Pro-
jekt das Daily Scrum angepasst wurde und nur an 2 Tagen stattfindet, wird
hier die Planungsmöglichkeit ebenfalls entsprechend angepasst. Das Scrum
of Scrums soll ebenfalls nur an zwei Tagen stattfinden und zwar um einen
Tag verschoben zu den Daily Scrums, um eine gute Kommunikation zwi-
schen den Teams zu ermöglichen. Diese Anweisung spiegelt sich nachher in
Schritt 6 wider.

Die nächsten Ziele für die komplexeren Beispiel ZBA4 bis ZBA7 sind alle
relativ ähnlich und hängen miteinander zusammen, da sie alle den Bereich
Kundenzufriedenheit bzw. das Testen betreffen. Gerade die Kundenzufrie-
denheit ist in Projekten besonders wichtig. Ein Vorteil bei Scrum ist, dass
die Möglichkeit frühzeitig Feedback zu bekommen gegeben ist. Von daher
ist es hier im Projekt dem Kunden möglich, Feedback über Fehlermeldun-
gen oder allgemeine Meldungen zu geben, z.B. als Eintrag zu einem Product
Backlog. Bei Scrum soll nach jedem Sprint ein fertiges Produkt-Inkrement
ausgeliefert werden. Je nach Unternehmen wird dieses Inkrement schon
eingesetzt oder nicht. Anhand dieser Meldungen ist es nach den Zielen
ZBA4 und ZBA5 möglich, den entsprechenden Wenn-Teil festzulegen.

Um die Kundenzufriedenheit mit Hilfe einer Änderung der Software-
Engineering-Methode zu beheben, kann es verschiedene Möglichkeiten ge-
ben. Zum einen kann ein Methoden-Engineer aus seiner Erfahrung schöp-
fen, was in einer gegebenen Situation als Anpassung möglich ist, um die
Situation zu verbessern (Variante 1). Zum anderen ist es in diesem Ansatz
möglich, die Planungsmöglichkeiten „außen vor“ zu lassen und die entspre-
chende Anpassung je nach den angegebenen Werten erst in der Plan-Phase
zu planen (Variante 2).

Hier im Beispiel weiß der Methoden-Engineer, dass in Scrum der Fokus
nicht unbedingt auf den nicht-funktionalen Anforderungen sondern mehr
auf den Funktionen liegt. Von daher tauchen diese Anforderungen nicht
unbedingt im Product Backlog und somit im Sprint Backlog auf, weil dem
Kunden die Wichtigkeit nicht bewusst ist [EG09]. Tauchen nun vermehrt
negative Meldungen (Regel ZBA4) nach der Auslieferung in Verbindung
mit nicht-funktionalen Anforderungen (Regel ZBA5) auf, so muss sicherge-
stellt werden, dass die Betrachtung von nicht-funktionalen Anforderungen
verstärkt wird. Ferner kann es sinnvoll sein, den Kunden zu Anfang mit
einzubinden, damit die Fehler nicht erst im Produktionsbetrieb auftauchen.
Dies könnte beispielsweise darüber erfolgen, dass der Kunde am Ende für
einen User Acceptance Test (UAT) direkt mit eingebunden wird.

187

Die Regeln für die Ziele ZBA4 und ZBA5 werden teilweise zusammenge-
fasst. Liegt ein Blocker vor, muss dieser zwar behoben, aber die Software-
Engineering-Methode nicht sofort angepasst werden. Es muss also nur auf
der Instanz-Ebene eine Aufgabe hinzugefügt werden, damit der Blocker
sofort angepasst wird. Summieren sich die Fehler allerdings oder treten ähn-
liche Fehler immer wieder auf, so kann dies auf eine Anpassung hindeuten.
Von daher kann in einer Regel für RZBA5 die Zeit bzw. Historie der Mel-
dungen eine Rolle spielen. Am Ende ergeben sich daraus die Regeln:

a) RZBA4: Wenn Anzahl Fehlermeldungen/negatives Kundenfeed-
back < 10, dann Monitor

b) RZBA45: Wenn Anzahl Fehlermeldungen/negatives Kunden-
feedback >10 & Meldungen nicht-funktionale Eigenschaften >=
2, dann Planungsmöglichkeit Variante 1 (Kunden für UAT ein-
binden)

c) RZBA45 Wenn Anzahl Fehlermeldungen/ negatives Kunden-
feedback > 10 & Meldungen nicht-funktionale Eigenschaften <
2, dann Plan (Anzahl Blocker, kritischer Fehler, Schönheitsfeh-
ler)

d) RZBA5: Wenn Anzahl Blocker > 0 oder kritische Fehler > 3,
dann Planungsmöglichkeit (Fehler sofort beheben)

Die Ziele ZBA6 und ZBA7 beziehen sich nicht auf die Kundenzufrieden-
heit, sondern auf das Testen selbst. Da Fehlermeldungen und Testen aller-
dings sehr eng miteinander verbunden sind, ist zu überprüfen, ob hier Kom-
binationsmöglichkeiten vorliegen. Für das Ziel ZBA6 muss zunächst über-
prüft werden, ob jeder Entwickler seine eigene Aufgabe testet, z.B. über
Unit-Tests oder einen User Acceptance Test. Es sollte somit pro Aufgabe
jeweils ein Test zur Verfügung stehen, der vom Entwickler durchgeführt
wird. Ist dies nicht der Fall, wird der Entwickler vom System angewiesen,
einen Testfall zu erstellen.

Für das Ziel ZBA7 wird zunächst überprüft, ob jede Aufgabe einen Unit-
Test besitzt, was sich mit dem Ziel ZBA6 kombinieren lässt. Ferner wird
analysiert, ob im Sprint ein Integrationstest geplant ist. Zusätzlich lässt sich
das Ziel ZBA7 hier sowohl mit dem Ziel ZBA5, aber auch mit dem Ziel
ZBA4 kombinieren, um zu überprüfen, ob eine weitere Teststufe oder Test-
art notwendig ist. Dies können beispielsweise Inkrement- oder Systemtests
sein. Gibt es mehr Fehler als den vorgegebenen Blocker oder kritischen
Fehler, die regelmäßig wiederkehren, sollten mehr Tests durchgeführt wer-
den. Welche Art von Tests notwendig ist, müsste genauer in der Plan-Phase
geplant werden (Variante 1). Ist das Kundenfeedback regelmäßig negativ,
sollte ein allgemeiner Inkrementtest durchgeführt werden (Variante 2).

188

Zusätzlich kann sich bei den Planungsmöglichkeiten ergeben, um ZBA6
und ZBA7 zu erfüllen und das Testen strukturierter durchzuführen sowie
mehr Teststufen mit einzubinden, dass ein bis zwei explizite Personen als
Tester und/oder Test-Designer nötig sind. Auch wenn Scrum diese definitiv
nicht vorsieht, zeigt die Erfahrung, dass der Einsatz sehr sinnvoll ist und in
Scrum mit eingebunden werden kann [GG12]. Deswegen soll dies im Bei-
spiel ebenfalls mit in die Software-Engineering-Methode bei Bedarf einge-
bunden werden.

Als Regeln würden sich ergeben:

a) RZAB67: Wenn jede Aufgabe Unit-Test vom Entwickler besitzt,
dann Monitor

b) RZAB67: Wenn Aufgabe keinen Unit-Test besitzt, dann Plan
(Benachrichtige Entwickler Erstellung Tesfall)

c) RZAB7: Wenn Sprint keinen Integrationstest besitzt, dann Plan
(plane Integrationstest)

d) RZBAkombiniert: Wenn Blocker >= 0 oder kritische Fehler >= 3
& Fehlerhistorie > 2, dann Planungsmöglichkeit Variante 1 (zu-
sätzliche Tests, zusätzliche Personen)

e) RZABkombiniert: Wenn Kunden-Feedback > 10 & Anzahl
Kundenfehler-Historie > 2, dann Planungsmöglichkeit Variante 2
(Inkrementtest)

Für das Kontext-Ziel ZK1 muss analysiert werden, ob der aktuelle Test-
Standard verwendet wird oder nicht. Dafür wird die Versionsnummer ver-
glichen und ist diese höher (also neuer) als die aktuelle Versionsnummer, so
soll die Software-Engineering-Methode an den neuen Standard angepasst
werden. Da es nicht möglich ist vorherzusehen, welche Änderung ein neuer
Standard mit sich bringt, muss die Plan-Phase ohne vorherige Planungsmög-
lichkeiten gestartet werden. In der Plan-Phase muss dafür der neue Standard
ausgelesen und hinsichtlich der Änderungen mit dem alten Standard vergli-
chen werden. Die Regel würde also lauten:

 RZK1: Wenn Versionsnummer Test-Standard > als Versionsnum-
mer aktueller Test-Standard, Dann Plan (alter Test-Standard, neuer
Test-Standard)

Die Analyseregeln und Planungsmöglichkeiten für die verschiedenen Ziele
sind nun abgeleitet, ebenso mögliche Konflikt- und Kombinationsmöglich-
keiten bedacht. Somit kann zu Schritt 5 und Schritt 6 übergegangen werden.
In diesen Schritten werden die Metriken sowie die konkreten Ausführungs-
regeln und Benachrichtigungen abgeleitet.

189

Schritt 5: Ableitung der Metriken

Die Analyseregel und die Planungsmöglichkeiten sind bestimmt. Nun kön-
nen zunächst die Metriken für die einzelnen Regeln und im nächsten Schritt
die konkreten Ausführungsregeln und Benachrichtigungen abgeleitet wer-
den. Sind in diesem Schritt die einzelnen Metriken bestimmt, werden für die
spätere Monitor-Phase in einem Subschritt die Aufbereitungsregeln be-
stimmt. Dafür wird wie in Abschnitt 5.6 beschrieben die Herleitung prak-
tisch rückwärts vorgenommen, um den entsprechenden Wert für die Analy-
se zu erhalten.

Für die Regel RZBA1 (a und b) muss gemessen werden, wie viele Aufgaben
einer Person zugeordnet sind, die Metrik wäre also #Aufgabe/ Person Y. Für
die beiden Regeln entspricht der aufbereitete Wert dem gemessenen Wert.

Für die Regeln RZBA2 (a,b,c) ist es nötig, den aktuellen Status einer Person
zu messen. Jeder Person im Unternehmen ist dazu in beispielsweise einer
„Personenliste“ der Status zugeordnet, ob diese krank, im Urlaub, aktiv oder
gelöscht ist (ehemalige Mitarbeiter). Dieser Status wird entsprechend ausge-
lesen. Die Metrik würde dann lauten Status/ Person Y. Zusätzlich müssen
für die Regel RZBA2 (a und b) die Fehltage ermittelt werden. Ist die Person
aktiv, sind die Fehltage = 0. Die Metrik würde hier lauten #Fehltage/ Person
Y. Die Aufbereitung für die Regel RZBA2 (c) ist die Metrik bezüglich des
Status. Für die anderen beiden Regeln von RZBA2 werden die beiden Met-
riken zusammengefasst, da beide Werte für die Analyse benötigt werden.
Überliefert wird also die Kombination (Status & Fehltage)/Person Y.

Für die Regel RZBA12 greifen die beiden Metriken Status/ Person Y und
#Aufgaben/ Person Y. Die Monitor-Phase würde also am Ende liefern (Sta-
tus & #Aufgaben)/Person Y.

Die Metriken für die Ziele RZBA3 (a – c) wurden bereits in Abschnitt 5.6
im ersten Beispiel beschrieben. Hier ist die Metrik #Personen/ Team. Die
Aufbereitung für die Teamgröße lautet dann entsprechend Teamgröße =
#Personen/ Team.

Für die nächsten Regeln RZBA4, RZBA5 und RZBA45 wird das Feedback
des Kunden und seine Fehlermeldungen, genauer die Art der Fehlermeldung
(nicht-funktional, Blocker, kritisch, Schönheitsfehler), ermittelt. Dafür wird
im Product oder Sprint Backlog oder auch in einem Fehlermanagement-
System zunächst vermerkt, ob eine Meldung vom Kunden oder vom Team
ist. Zusätzlich wird für eine Fehlermeldung eingestellt, ob diese funktional
oder nicht-funktional ist sowie die Kritikalität des Fehlers. Diese Werte er-
geben dann die Metriken und später die entsprechenden Sensoren.

190

Im Detail lauten die Metriken jeweils:

 RZAB4 (a): #Fehlermeldungen/ negatives Feedback/ Kunde (damit
ist das gesamte Feedback über den Kunden gemeint, nicht eine ein-
zelne Person vom Kunden)

 RZBA45 (b und c): #Fehlermeldungen/ negatives Feedback/ Kunde
und #Fehlermeldungen nicht-funktionale Eigenschaften

 RZBA5 (d): #Blocker, #kritische Fehler, #Schönheitsfehler

Für die Aufbereitung ist in Fall a) der gemessene Wert gleich dem aufberei-
teten Wert. Für die Fälle b) und c) werden die Werte wieder zusammen
überliefert als #Fehlermeldung/ negatives Feedback pro Kunde + #Fehler-
meldung nicht-funktionale Eigenschaften. Für den letzten Fall wird für die
Analyse nur das Tuple (#Blocker, #kritische Fehler) übergeben, da die
Schönheitsfehler nicht relevant sind.

Die Ziele RZBA6 und RZBA7 beschäftigen sich mit den Testarten, welche
ausgelesen werden müssen. Für RZBA67 muss für jede Aufgabe ausgelesen
werden, ob überhaupt ein Unit-Test vorliegt und ob dieser vom entspre-
chenden Entwickler ist. Es muss also in der Aufgabe stehen, wem die Auf-
gabe zugeordnet ist (Verantwortlicher Aufgabe) und wer den Unit-Test er-
stellt hat (Verantwortlicher Unit-Test). Die einzelnen Metriken würden lau-
ten #Unit-Test/ Aufgabe Y; Verantwortlicher Aufgabe Y und Verantwortli-
cher Unit-Test Aufgabe Y. Für die Aufbereitung würde jeweils das Triple
dieser drei Werte zurückgegeben (#Unit-Test/ Aufgabe Y & Verantwortli-
cher Aufgabe Y & Verantwortlicher Unit-Test Aufgabe Y). Für RZBA7
muss der Wert #Integrationstest/ Sprint ausgelesen werden. Dieser Wert ist
auch der Wert für die Aufbereitung.

Für die beiden kombinierten Ziele muss zusätzlich die Fehlerhistorie der
jeweiligen Fehler ausgelesen werden. Jeder Fehler wird in der Historie ge-
speichert. Tritt derselbe Fehler oder ein sehr ähnlicher Fehler erneut auf, so
wird die Historie um +1 hochgezählt. Dies muss zum Teil von den Team-
mitgliedern manuell erfolgen, insbesondere wenn die Fehler nur sehr ähn-
lich sind. Dasselbe gilt für die Fehlerhistorie von Kundenmeldungen. Wird
beispielsweise ein Performanz-Fehler vom Kunden gemeldet, so wird dieser
in der Historie abgespeichert. Wird ein Fehler derselben Art vom Kunden
gemeldet, so wird die Historie um +1 nach oben gezählt. Dasselbe gilt auch
für die funktionalen Fehler.

Daraus ergeben sich an weiteren zu messenden Werten die #Fehler X in
Historie und Anzahl Fehler Y in Kundenhistorie. Für die Aufbereitung wür-
de in Fall d) das Triple (#Blocker, #kritische Fehler, #Fehler X in Historie)

191

zurückgeliefert. In Fall e) wäre es hingegen das Tuple (#Fehlermeldungen/
negatives Feedback/ Kunde, #Fehler Y Kundenhistorie).

Die Metrik für das Kontext-Ziel RZK1 ist die Versionsnummer des Test-
Standards. Dieser muss nur von einer Webseite oder aus einem manuellen
Eintrag in einer Liste ausgelesen werden. In der Aufbereitung wird diese
Versionsnummer auf „aktueller Test-Standard = Versionsnummer“ gesetzt.

Um die Werte für die einzelnen Metriken zu messen, müssen diese entspre-
chend in die Sensoren umgewandelt werden. Wie im vorherigen Beispiel
gezeigt, muss die Versionsnummer des Test-Standards von der entsprechen-
den Seite oder aus einer entsprechenden Liste ausgelesen werden. In diesem
Beispiel wird einmal am Tag die Versionsnummer auf der Webseite geprüft.

Für die Historien müssen diese entsprechend jeweils in der Wissensbasis
vorliegen und werden manuell vom Scrum Master befüllt. Die Fehlerhisto-
rien werden jeweils hochgezählt. Für die Kritikalität der Fehler ist eine ent-
sprechende Einstellung im Fehlermanagementsystem vorhanden, die ausge-
lesen werden kann. Ebenso ist ein Eintrag möglich, ob es sich um einen
funktionalen oder nicht-funktionalen Fehler handelt. Ferner gibt es einen
Verantwortlichen für die Fehlermeldung, für den zusätzlich vermerkt ist, ob
dieser ein Kunde oder ein Teammitglied ist. Die Fehlermeldungen, die pro
Aufgabe eingestellt werden, sind in diesem Beispiel gleichzeitig das Feed-
back des Kunden.

Im Sprint Backlog sind die Aufgaben vorhanden und für jede Aufgabe ist
ein Verantwortlicher eingetragen, der entsprechend ausgelesen werden
kann. Diesen Aufgaben und dem ganzen Sprints können Tests zugeordnet
werden. Die Tests erhalten zusätzlich den Eintrag, welche Art sie sind, z.B.
Unit-Test, Integrationstest, Performanz-Test usw. Außerdem erhalten die
Tests jeweils einen Verantwortlichen.

Wie schon in Abschnitt 6.2.1. erläutert sind für das Ziel RZBA3 die Team-
mitglieder in einer Liste eingetragen. Dies kann einerseits eine Liste mit den
Namen der Personen, welche in einem Team sind, sein oder es gibt im Un-
ternehmen eine vollständige Personenliste, in der es für jede Person einen
Eintrag gibt, welchem Team sie zugeteilt ist.

Für die Regeln RZBA1 und RZBA2 gibt es wie eingangs beschrieben je-
weils einen Eintrag zum Status der Person sowie einen Eintrag zu ihren
Fehltagen. Somit sind die Sensoren für die Beispielziele entsprechend vor-
handen.

192

Schritt 6: Ableitung der Ausführungsregeln und Benachrichtigungen

Auf der einen Seite sind nun die Metriken erstellt, um die Werte für die
Analyse zu bekommen. Auf der anderen Seite müssen noch die konkreten
Ausführungsregeln und Benachrichtigungen abgeleitet werden, um in der
Execute-Phase die Änderungen vornehmen zu können. Die Ableitungen aus
den Planungsmöglichkeiten ergeben die in Abschnitt 5.7 beschriebenen
Regeln zur Anpassung des Modells der Software-Engineering-Methode.
Dies sind die Anpassung des Modells, Änderung der Verantwortlichkeiten,
also der Stakeholder und die Benachrichtigung an die entsprechenden Betei-
ligten. In diesem Abschnitt werden nun die Ausführungsregeln und Benach-
richtigungen beschrieben, die im nächsten Abschnitt für die verschiedenen
Anpassungen benötigt werden.

Für den einfachen Fall nach RZBA1 bzw. RZBA12, dass einer Person neue
Aufgaben zugeordnet werden, die entsprechend ihrer Fähigkeiten in der
Planung ausgewählt wurden, würden die Ausführungsregeln und Benach-
richtigung lauten:

1. Anpassung Modell (keine Anpassung), da die Aufgaben bereits be-
stehen, nur noch keinen Verantwortlichen besitzen, der Status des
Stakeholders wird geändert

2. Änderung Stakeholder (Person Y, Aufgabe Y, hinzufügen); (Person
Y, Aufgabe Z, hinzufügen);

3. Benachrichtigung Beteiligte (Person Y, neue Aufgaben);

Dieser einfache Fall erfordert zwar keine Anpassung der Software-
Engineering-Methode aber, es ist zu sehen, dass hier mit dem Ansatz eben-
falls Änderungen auf der Instanz-Ebene ausgeführt werden können. Ähnlich
gelagert ist der Fall der Anpassung der Regel RZBA2. Die Regel, dass die
Aufgaben im Team verteilt werden, wenn eine Person für ein paar Tage
ausfällt, gleicht denen im vorherigen Fall. Der Unterschied ist an dieser
Stelle, dass unter 2. nur eine Person einer Aufgabe hinzugefügt wird, wäh-
rend gleichzeitig die aktuelle Person gelöscht wird. Da der Status der Person
nicht aktiv ist, reicht es, nur den Beteiligten mit den neuen Aufgaben zu
benachrichtigen.

Auch wenn eine Person das Unternehmen verlässt, also gelöscht ist, sehen
die Regeln im Prinzip gleich aus. Denn hier werden einer neuen Person alle
Aufgaben der vorherigen Person zugeordnet. In allen drei Fällen ist aller-
dings ein Konflikt zu beachten: Fällt ein Teammitglied aus, dürfen die Auf-
gaben nicht dem Scrum Master zugeordnet werden. Fällt der Scrum Master
aus, dürfen seine Aufgaben keinem Teammitglied zugeordnet werden. Bei-
de Fälle würden gegen Ziel ZOM1 verstoßen.

193

Trifft die Regel RZBA3 mit dem Fall das das Team zu groß ist zu, so erfolgt
die Anpassung wie in Schritt 5.6. beschrieben nach den folgenden Regeln
und Benachrichtigungen:

1. Anpassung Model (Hinzufügen Team 2, Ändern Team 1 (Anzahl
Personen), Hinzufügen Meeting (Scrum of Scrums, nach Daily
Scrum), Ändern Product Backlog (neue Zuordnung Aufgaben)

2. Änderung Stakeholder (Teammitglied 1, Rolle (Team 1), hinzufügen
(für alle Teammitglieder durchführen); Scrum Master, Meeting
(Scrum of Scrums), hinzufügen, Teammitglied 1-2 (Team 1), Mee-
ting (Scrum of Scrums), hinzufügen; usw.

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivität (Scrum
of Scrums), Teammitglieder 1 – 10, (neue Aktivität, neue Teamzu-
ordnung, neue Aufgaben Product Backlog)

Da die Anpassung, dass das Team zu klein ist, in diesem Beispiel nicht vor-
kommen soll, werden die Ausführungsregeln hier nicht beschrieben.

Wird nun nach Regel RZBA45 (Fall b) festgestellt, dass der Kunde für User
Acceptance Tests mit eingebunden werden soll, so würde die Planungsmög-
lichkeit vorsehen, dass dies am Ende des Sprints über eine eigene Phase von
ca. 1 bis 3 Tagen erfolgt. Dafür wird ein Team vom Kunden zusammenge-
stellt, welches aus Kunden-Testern besteht. Diese neue Phase erfolgt am
Ende der Entwicklung, wenn das Inkrement fertig ist, aber vor dem Review-
Meeting. Die Kunden bekommen die entsprechenden Aufgaben im Sprint
Backlog zugewiesen. Die Regeln und Benachrichtigungen würden dann wie
folgt lauten:

1. Anpassung Model (Hinzufügen Rolle (Kunden-Test-Team (4 Perso-
nen)), Hinzufügen Rolle (Kunden-Tester), Hinzufügen Aktivität
(Kunden-Testtage (Dauer 2 Tage), nach Entwicklung vor Sprint),
Hinzufügen Aktivität (Testen der Aufgaben), Hinzufügen Zuord-
nung (Zuordnung Aufgaben))

2. Änderung Stakeholder (Kunden-Tester1, Rolle (Kunden-Test-
Team), hinzufügen (für alle neuen Kunden-Tester durchführen);
Scrum Master, Aktivität (Kunden-Test-Tage), hinzufügen; Kunden-
Tester Zuordnung (Test der Aufgaben)).

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivität (Kun-
den-Test-Tage), Kunden-Tester 1 – 4, (neue Aktivität, neue Aufga-
ben Backlog))

Ergeben in einem anderen Fall die kombinierten Regeln, dass zusätzliche
Tests mit Hilfe von expliziten Testern und/oder Test-Designern ebenso wie
ein Inkrementtest nötig sind, so sollte dieses Test-Team wie ein weiteres
Team behandelt werden. Das heißt, es bekommt ein eigenes Test-Sprint

194

Backlog und trifft sich ähnlich wie im Fall eines zu großen Teams im Scrum
of Scrums, um sich mit dem Entwickler-Team auszutauschen. Der zusätzli-
che Inkrementtest sollte am Ende der Entwicklung durchgeführt werden.
Die entsprechenden Regeln würden folgendermaßen aussehen:

1. Anpassung Model (Hinzufügen Test-Team (2 Personen), Hinzufü-
gen Rolle (Tester), Hinzufügen Rolle (Test-Designer), Hinzufügen
Artefakt (Test Sprint Backlog), Hinzufügen Aktivität (Durchführung
der Test-Aktivitäten) Ändern Aktivität Entwicklung (Entwicklung +
Test), Hinzufügen Meeting (Scrum of Scrums, nach Daily Scrum,
Time-Box: 40 Minuten), Hinzufügen Aktivität (Inkrementtest, Ende
Entwicklung + Test))

2. Änderung Stakeholder (Test-Teammitglied 1, Rolle (Tester), hinzu-
fügen, Test-Teammitglied 2, Rolle (Test-Designer), Rolle Scrum
Master, Meeting (Scrum of Scrums), hinzufügen, Test-Teammitglied
1-2, Meeting (Scrum of Scrums), hinzufügen, Test-Teammitglied 1-
2, Artefakt (Test Sprint Backlog), hinzufügen, Test-Teammitglied 1-
2, Aktivität (Test-Durchführung), hinzufügen, Test-Teammitglied 1-
2, Aktivität (Inkrementtest), hinzufügen)

3. Benachrichtigung Beteiligte (Scrum Master, neue Aktivität (Scrum
of Scrums), Test-Teammitglieder 1 – 2, (neue Rolle, neue Aktivitä-
ten, neues Artefakt Test Sprint Backlog)

Da für die Regel RZK1 keine Planungsmöglichkeiten vorhanden sind, kön-
nen somit dafür keine Ausführungsregeln und Benachrichtigungen erstellt
werden.

Die einzelnen Schritte in der Pre-Work sind nun durchgeführt. Die erarbei-
teten Ergebnisse werden vor Beginn des Projektes und somit vor Beginn des
Durchlaufs der MAPE-K-Feedbackschleife entsprechend der Beschreibung
in Abschnitt 6.1 in der Wissensbasis gespeichert. Zusätzlich zu der Historie
über die Anpassung wird hier eine Historie über die Fehlermeldungen und
die Kundenfehlermeldungen angelegt. Die Analyseregeln wurden vor Be-
ginn entsprechend in die ECA-Regeln übertragen und eine aktive Datenbank
wurde für die Wissensbasis erstellt. Die einzelnen Anpassungen werden im
weiteren Verlauf an einfachen Modellen erläutert.

7.1.3.2	Durchführung	einer	einfachen	Anpassung	
Zu Beginn des Projektes, dem Start der Ausführung der Software-
Engineering-Methode und somit der Durchführung von den Phasen MAPE
bzw. den Schritten 7 bis 10, werden die entsprechenden Einträge mit den
Initialwerten versehen. Alle Beteiligten werden dem Team über die Team-
liste zugeordnet, alle Teammitglieder bekommen den Status „aktiv“, die
Teamgröße beträgt zu Beginn bereits 9 Personen, dem Lenkungskreis wird

195

die Rolle des Product Owners zugeordnet, das Daily Scrum findet mit 30
Minuten dienstags und donnerstags statt, die Liste und das System für die
Fehlermeldungen wird initialisiert, das Product Backlog enthält alle Anfor-
derungen usw. Der erste Sprint beginnt mit den Sprint Planning und es wird
das Sprint Backlog erstellt. Hier im Beispiel laufen die ersten zwei Sprints,
die noch relativ einfache Umsetzungen enthalten, nach Plan und es erfolgen
keine Anpassungen.

Beispiel Projektcontrolling: Krankheit oder Verlassen des Unterneh-
mens, Verteiltes Arbeiten

Am Anfang des nächstens Sprints, beispielsweise an Tag 6 nach dem Sprint
Planning und während der Entwicklung, ereignet es sich, dass der Scrum
Master einen Unfall hat und mindestens bis zum Ende des Sprints ausfällt.
Der Scrum Master meldet seine Krankheit dem Unternehmen und wie lange
er voraussichtlich ausfällt. Dies wird, zum Beispiel von der Sekretärin, ent-
sprechend in die Liste eingetragen, der Status des Scrum Masters ändert sich
auf „krank“ und die Fehltage von 21 Tagen werden ebenfalls eingetragen.

Diese Werte werden nun über die Sensoren gemessen und durch die Aufbe-
reitung in der Monitor-Phase wird (Status „krank“ & Fehltage = 21/ Person
= Scrum Master) zurückgeliefert. Die Einträge haben sich also in der Sta-
tuszeile und bei der Anzahl der Fehltage für den Scrum Master, geändert.
Dies ist das auslösende Ereignis für die Analyse anhand der ECA-Regeln.

Die Auswertung der Analyse ergibt anschließend, dass die Person länger
ausfällt und somit wird die Planung mit Variante 2 angestoßen. Hierzu wer-
den die Aufgaben des Scrum Masters in der Plan-Phase ausgelesen. Da die
Person länger krank und zusätzlich der Konflikt bekannt ist, dass das Team
die Aufgaben des Scrum Masters nicht übernehmen darf, wird in der Perso-
nenliste eine Person gesucht. Diese soll die passenden Fähigkeiten für den
Scrum Master besitzen, muss Zeit für die Aufgaben haben oder bekommt
die entsprechende Zeit dafür vom Unternehmen. Beispielsweise werden die
aktuellen Aufgaben dieser Ersatz-Person automatisch vom System im ande-
ren Team neu verplant.

A

Die
Scru
Die
wird
gent
nur

Da d
te, w
wird
spre
des
„Ver
raus
der n
Der
neue

Beis

Am
wied
der
Vert
xer w
hat d
wird

Die
aus,

Abbildung 50 A

Planung er
um Masters

Einträge d
d dem Team
tlichen Soft
auf der Inst

das Ziel, we
wird der An
d sofort vor
echend vorg
Scrum Mas
rtretung“ e

ssichtlich zu
neue Scrum
Scrum Ma

en Aufgaben

spiel Team-

Anfang de
der gesund
Teamliste w
tretung kehr
werden und
dieser besch
d. Diese wer

Sensoren le
die nun 16

Austausch Scru

rgibt also w
 X durch d

dafür wurde
m als Vertre
tware-Engin
tanz-Ebene

enn sich der
npassungsze
rgenommen
genommen,
sters und we
ingetragen,
urück in sei

m Master we
aster tritt am
n an.

-Vergrößer

es nächsten
und kann

wird entspr
rt in ihr alte

d der Lenku
hlossen, das
rden entspre

esen im we
6 beträgt. D

1

um Master bei

wie in Abbil
die Person Y
en aus der
etung des S
neering-Met
ausgetausch

r Status eine
eitpunkt nic
n. In der Ex

die Teamli
er seine Ver

damit bek
in altes Tea
erden entsp
m nächsten

rung

n Sprints (N
wie vorges

rechend sein
es Team zu

ungskreis m
ss das Team
echend in d

eiteren Verla
Durch die Au

96

Krankheit, Ve

dung 50 zu
Y für die V
Teamliste

Scrum Mast
thode änder
ht wird.

er Person v
cht abgewar
xecute-Phas
iste erhält d
rtretung ist.

kannt ist, w
am wechsel
rechend üb

n Tag bis zu

Nummer 4)
sehen seine
n Status au

urück. Da d
mehr Aufgab
m durch 7 w
der Liste dem

auf die Anz
ufbereitung

erlassen des Un

u sehen, das
Vertretungsz
entnommen
ters zugeor
rt sich nicht

erändert, di
rtet, sondern
se wird die
den neuen E
 Dafür wird

wann der Sc
t. Alle Team
er die Ände
um Ende d

ist der alte
Aufgaben

uf „aktiv“ g
ie Sprints la

ben realisier
weitere Pers
m Team zug

zahl der Per
g in der Mon

Unternehmens e

ss die Perso
zeit ersetzt
n. Die Pers
rdnet. An d
ts, da die P

ie Priorität
n die Anpa
Anpassung

Eintrag bezü
d der neue S
crum Maste
mmitgliede
erung inform
des Sprints

te Scrum M
übernehme

gesetzt und
angsam kom
rt haben mö
sonen unter
geordnet.

rsonen pro T
nitor-Phase

etc.

on des
wird.

son Y
der ei-
Person

1 hat-
ssung
g ent-
üglich
Status
er vo-
er und
miert.
seine

Master
en. In
seine

mple-
öchte,
rstützt

Team
e wird

diese
ist d
ergib
stoße

Für e
ergib
Den
Sprin
sprec
Syste
Sprin
weite
abge

Beid
ein e
Minu
fügt,
für 3
bespr
selbs
dies v

er Wert der
dies das aus
bt, dass das
en.

A

ein zu groß
bt dies wie i
Personen w

nt Backlog
chpartner. B
em darauf,
nt besitzen,
eren Sprint
brochen un

de Teams er
eigenes Dail
uten wie bis
bei dem sic

30 Minuten
rechen und
st bestimmt
vom System

r Teamgröß
slösende Er
Team zu gr

Abbildung 51 T

ßes Team i
in Abbildun
werden dab
zugewiesen

Bei der Vert
dass die Au
, ihnen ents
t keine Kon

nd nicht weit

rhalten im w
ly Scrum, w
sher abhalte
ch die Vertr

n treffen, um
d sich zu ko

und muss n
m nicht vorg

19

e zugewies
reignis für
roß ist und

Team-Split in Q

ist ein Team
ng 51 zu seh
bei jeweils d
n. Der Scrum
teilung der
ufgaben, we
sprechend e
nsistenz-Pro
ter ausgefüh

weiteren V
welches sie
en. Zusätzlic
reter beider
m entsprech
oordinieren
nicht immer
gegeben.

97

sen. Da sich
die Analys
die entsprec

Quasi-Scrum b

m-Split vor
hen zwei Te
die verschie
m Master is
Aufgaben

elche die Te
erhalten ble
obleme, zu
hrt werden.

Verlauf wie
dienstags u

ch wird das
Teams jew

hend den F
n. Der Vertr
r dieselbe P

h dieser We
se-Phase. D
chende Plan

bei 16 Persone

rgesehen, b
eams von je
edenen Auf
st für beide
für beide T
eammitglied
eiben. Dadu

um Beispiel

in Abbildu
und donner
Scrum of S

weils mittwo
ortschritt b
reter wird

Person sein.

ert geändert
Die Auswer
nung wird a

n

bei 16 Pers
e acht Perso
fgaben aus
Teams der

eams achte
der im aktu
urch gibt e
l das Aufg

ung 52 zu s
stags jeweil

Scrums hinz
ochs und fre
eider Team
von den Te
Von daher

t hat,
rtung
ange-

sonen
onen.
dem

r An-
et das
uellen
es im
gaben

sehen
ls 30
zuge-
eitags
ms zu
eams
wird

Nach
pass
und
noch
Anp

Ist d
ben
kann
entsp
sind
Scru
ab d

7.1.
pas
Da i
Aufg
Prod
Von
nötig
meld
satze
Ding
Kun
lang
Perf
Syst
te un
Ana
RZB

Abbild

hdem die P
sungszeitpun

somit kein
h nicht errei
passung gesp

der Anpassu
überprüft,

n die Anpa
prechend üb

d, benachric
um, den Zei
dem nächste

3.3	Durch
sung	
im weiteren
fgaben pro S
dukt-Inkrem
n daher kan
g, Fehlerme
dungen vom
es vom Ink
ge auffallen

nden und au
gsam zu sei
formanz, 3 s
tem vorhand
nd die Änd

alyse ergibt
BA45 (Fall

dung 52 Verei

Planung ent
nkt bereits

ne sofortige
icht (Mitte
peichert und

ungszeitpun
ob nur eine
ssung nun
ber den Tea
htigt. Zusät
itpunkt des

en Tag, also

führung	e

n Verlauf da
Sprint erled

mente gelief
nn dieser be
eldungen ei
m Kunden im
krement aus
n, mit denen
uch seinen
in. Er erfas
sind bereits
den. Die Rü

derung ist da
t, dass die
b) angepas

1

infachter Ablau

tsprechend
erreicht ist,
Anpassung

des Sprints
d es wird bi

nkt erreicht,
e Anpassun
ausgeführt

am-Split un
tzlich erhal
Scrum of S
 in der Mitt

iner	komp

as größere T
digt werden
fert, die de
ereits wicht
in. In Sprint
mmer weite
s dem fünft
n er nicht z
Anwendern

sst entsprec
vorhanden

ückmeldung
as auslösen
e Software
sst werden m

98

uf nach Team-

erfolgt ist,
, da das Zie
g erfolgt. D
, Ende des S
is zum Anp

, wird wie i
ng vorhande
werden. A

nd somit we
ten sie die
Scrums sow
te des Sprin

plexeren		u

Team beibeh
n können, w
er Kunde b
tiges Feedb
t 6 kommt e
er zunehme
ten Sprint w
zufrieden is
n das ausg
chend Fehle
. Insgesamt
g ist der kom
nde Ereignis
e-Engineerin
muss (#Feh

-Split in Quasi

wird überp
el nicht die

Der Anpassu
Sprints), vo
assungszeit

in Abschnit
en ist. Da d

Alle Teamm
lchem Team
Information

wie das die
ts, erfolgt.

und	kombi

halten wird
werden ents
bereits anfä
ack geben
es nun vor,
n, da ihm w

wesentlich m
st. Vor allem
elieferte In
ermeldunge
t sind nun 1
mbinierte W
s in der Mo
ng-Methode

hlermeldung

i-Scrum

prüft, ob der
 Priorität 1
ungszeitpun
on daher wir
tpunkt gewa

tt 6.4.1 besc
dies der Fa

mitglieder w
m sie zugeo
n über das
neue Zuord

inierten	A

d und somit
sprechend fe
ängt einzuse
und stellt,
dass die Fe

während des
mehr Fehle
m erscheint

nkrement vi
en bezüglic
1 Meldung

Wert beider
onitor-Phase
e gemäß R
gen Kunde

r An-
hatte

nkt ist
rd die
artet.

chrie-
all ist,
erden

ordnet
Daily

dnung

An‐

mehr
fertige
etzen.
wenn
ehler-
s Ein-
r und
t dem
iel zu
h der
en im
Wer-

e. Die
Regel
> 10

und #
Sprin

Die P
Kund
werd
Teste
ben
sprec

Das
testen
mit e
Diese
Meth
Läng
len w
view
sprec
neue
währ
been

#nicht-funk
nts für User

Abbild

Planung erg
den-Test-Te
den soll. Da
er können a
des aktuell
chpartner fü

Kunden-Te
n. Die dort
ein und mö
e zusätzlich
hoden-Baus
ge von 1-3 T
wie in Abbi

w-Meeting s
chend das T
 Aktivität is
rend der An

ndet sind ode

ktionale Me
r Acceptanc

dung 53 Quasi

gibt wie in A
eam mit de
as Team bes
auf das Bac
en Sprints

ür das Kund

est-Team so
erarbeiteten

öglichen Pr
hen Tage zu
stein „Kund
Tagen. Hier
ildung 54 zu
tattfinden. D
Testen der
st, die nicht
npassung ni
er nicht.

19

ldungen >2
e Tests mit

i-Scrum Kunde

Abbildung 5
er Teamgrö
steht aus ein
cklog zugre
testen. Der

den-Test-Te

oll das fert
n Informati

roblemen ka
um Testen
den-QS-Tag
r im Beispi
u sehen nac
Die Kunden
Aufgaben z

t in die ursp
icht darauf

99

2). Der Kun
eingebunde

en-Test-Team

53 zu sehen
öße von 4 P
nzelnen Kun
eifen und so
r Scrum M
am.

tige Inkrem
ionen fließe
ann besser
durch den

ge“ realisie
iel sollen si
ch der Entw
n-Tester be
zugewiesen

prüngliche E
geachtet we

nde soll sch
en werden.

und Kunden-T

n, dass als w
Personen m
nden-Tester
ollen die jew
aster ist eb

ment des jew
end in das R

entgegen g
Kunden kö

ert werden
e 2 Tage be

wicklung, ab
ekommen al
n. Da dies e
Entwicklung
erden, ob A

on während

Tester

weitere Roll
mit eingebun
rn. Die Kun
weiligen Au
benfalls der

weiligen Sp
Review-Mee
gewirkt wer
nnen durch
und haben

etragen und
ber vor dem
ls Aktivität
eine vollstä
g eingreift, m
Aufgaben be

d des

le ein
unden
nden-
ufga-
r An-

prints
eting
rden.

h den
n die
d sol-
m Re-
t ent-
ändig
muss
ereits

Bev
Anp
chen
nich

Bev
die A
Fehl
zum
die A
eben
man
in d
RZB

Dies
expl
Spri
des I

Dafü
Team
Desi
führ
Test
Spri
Das
das T

A

or die Anp
passungszeit
n Ziels nich
ht erreicht un

or die Anpa
Analyse aus
ler vermerk

m dritten Ma
Anzahl der
nfalls Fehle
nz-Fehler). D
der Analy

BAkombinie

se Regeln s
lizite Tester
ints ein vol
Inkrements

ür wird wie
mgröße von
igners ein,
rt. Dieses T
ts gibt es ein
int Backlog
heißt, mög

Test Sprint

Abbildung 54

passung aus
tpunkt errei
ht die Prior
nd die Anpa

assung ausg
sgelöst. Akt

kt, wobei 2
al auftreten.

Kundenrüc
er mittlerwe
Die aufbere
se-Phase g
ert (d und e

stoßen die P
r mit einge
llständiger
) erfolgen s

e in Abbildu
n 2 Persone
die andere

Team wird
n neues Art

g, in dem al
gliche Tests

Backlog ve

2

Quasi-Scrum:

sgeführt wi
icht ist oder
rität 1 beträ
assung wird

geführt wird
tuell sind im
der Fehler
. Ferner ist
ckmeldunge
eile zum dri
eiteten Wert
greifen hie
).

Plan-Phase
ebunden we
Inkrementte

sollen.

ung 55 zu s
en. Eine Pe

e Person ist
ebenfalls v

tefakt, analo
lle Tests be
 werden au

erlagert.

200

 zusätzliche K

ird, wird w
r nicht, da d
ägt. Der An
d zunächst g

d, wird in de
m Fehlerma
so oder in ä
aus dem vo

en mehr als
itten Mal a
te sind die
er die bei

an, so dass
erden. Zum
est (Test d

ehen ein Te
erson nimm
t der Tester
vom Scrum
og zum Spr
ezüglich de

us den Aufg

unden-QS-Tag

wiederum üb
die Priorität

npassungsze
gespeichert.

er Monitor-
nagementsy
ähnlicher Fo
orherigen Fa
s 10 beträgt
ufgetreten (
auslösenden
den komb

zum einen
anderen so

es gesamte

est-Team ei
mt dabei die

r, welcher d
m Master be
rint Backlog
er Aufgaben
gaben herau

ge

überprüft, ob
ät des ursprü
eitpunkt ist
.

-Phase wied
ystem 4 krit
orm mittler
all bekannt
t und davon
(z.B. die P
n Ereigniss

binierten R

n mehr Test
oll am End
en Systems

ingeführt m
e Rolle des
die Tests d
etreut. Für
g gibt es ein
n enthalten

usgezogen u

b der
üngli-
noch

derum
tische
rweile
, dass
n sind
erfor-
e und

Regeln

s und
de des

bzw.

mit der
Test-

durch-
diese

n Test
sind.

und in

Das
der E
Abbi
Entw
gabe
am S
abzu
Scrum
werd

Zusä
fügt,

Abbil

Testen soll
Entwicklung
ildung 56 zu

wicklungsau
n“ eingefüh

Scrum of Sc
usprechen u
m of Scrum

den aber bei

Abb

ätzlich zu de
welcher na

ldung 55 Neue

 wie auch i
g durchgefü
u sehen um

ufgaben wir
hrt. Die beid
crums der b
und zu koo
ms auf 40 M
ibehalten.

bildung 56 Hin

en Testaktiv
ach der Ent

20

Rollen bezügl

in dem Pap
ührt werden

m das explizi
d die neue
den Mitglie

beiden Team
ordinieren.

Minuten erhö

nzufügen der T

vitäten wird
twicklung st

01

lich Testen und

pier von [G
n. Somit wi
ite Testen e
Aktivität „

eder des Tes
ms teil, um

Von daher
öht, die beid

Testaktivitäten

d ein expliz
tattfindet. D

d ein neues Art

G12] besch
ird die Entw
erweitert. Zu
Durchführu
st-Teams ne
sich mit de
r wird die
den gewählt

im Scrum-Ab

iter Inkrem
Dieser ist eb

tefakt

hrieben wäh
wicklung w
usätzlich zu

ung der Tes
ehmen eben
n beiden Te
Time-Box

ten Wochen

lauf

enttest hinz
benfalls im

hrend
wie in
u den
stauf-
nfalls
eams

x des
ntage

zuge-
Test

Spri
und

Nach
ob d
reich

Kom

Da b
folgt
sung
den.
men
Kon

Abbil
Team

Wie
de T
zuge
Kun
greif
zu, s

Die
zu s
eing
Scru

int Backlog
vom Tester

hdem die A
der Anpassu
ht und die A

mbinierte A

beide Anpa
t der Anpa
gszeitpunkt
. Diese müs
n Anpassung
nflikt und kö

ldung 57 Die n
m

e in Abbildu
Teams entsp
efügt. Da es
nden-Test-T
fen sie anst
so dass beid

Aktivitäten
sehen eben
gefügt. Die
um of Scrum

vermerkt. D
r entspreche

Anpassung e
ungszeitpun
Anpassung w

Anpassung

assungen ers
assungszeitp

wird festg
ssen nun fü
g kombinie
önnen somit

neuen Rollen i

ung 57 zu s
prechend ihr
s nun das n

Team die A
tatt auf das
de Teams di

n werden in
falls entspr
Entwicklun
ms wird en

2

Der Inkrem
end durchge

erstellt ist, w
nkt erreicht
wird entspre

Kunden-Q

st in der zw
punkt erst

gestellt, dass
ür die Ausfü
ert wird. Be
t gut verbun

in der kombin

ehen, werd
hrer vorher g
neue Artefa
Aufgaben n

Sprint Bac
ieselben Tes

n dem verei
rechend ihr
ng erhält di
ntsprechend

202

menttest wird
eführt.

wird wie im
ist. Dieser

echend gesp

QS-Tage + T

weiten Sprin
zum Ende
s zwei Anp
ührung mite
eide Ziele s
nden werden

nierten Anpass

en für die k
geplanten A

akt „Test Sp
nicht entwic
cklog nun a
sts durchfüh

infachten M
rer vorherig
ie zusätzlich
d erweitert.

d vom Test-

m vorherige
ist ebenfall

peichert.

Testaktivitä

nthälfte gep
des Sprint

passungen g
einander zu
stehen nich
n.

sung - Kunden

kombinierte
Anpassung d
print Backlo
ckeln, sond
auf das Test
hren können

Modell wie i
gen Anpass
hen Testakt
Am Ende d

-Designer er

en Fall über
ls noch nic

äten

plant wurde
nts. Zum A
gespeichert
einer geme

ht miteinand

n-Test-Team &

e Anpassung
dem Model
og“ gibt un
dern testen
t Sprint Ba
n.

in Abbildun
sung gemei
tivitäten un
der Entwick

rstellt

rprüft,
ht er-

n, er-
Anpas-

wur-
einsa-
der in

& Test-

g bei-
l hin-

nd das
soll,

cklog

ng 58
insam

nd das
klung

finde
Die e
vom
Test-
Meet

Die k
komp

1

2

et zunächst
eigentlichen
Team und

-Team durc
ting besproc

kombinierte
plexer und l

1. Anpassu
nen)), H
Personen
Designer
Aktivität
Entwick
Scrums,
Aktivität
tivität (K
Review-
durch Ku

2. Änderun
Team),
Scrum M
Tester A
4, Aktiv
Rolle (T
Designer
fügen, T

der Inkrem
n Tests steh
d anschließe
chgeführt. D
chen.

Abbild

en Ausführu
lauten dann

ung Model (
inzufügen R
n), Hinzufü
r), Hinzufü
t (Durchfü
lung (Entw
nach Dail

t (Inkremen
Kunden-QS
-Meeting), H
unden-Teste

ng Stakeho
hinzufügen

Master, Akt
Artefakt (Te
vität (Test-D
Tester), hi
r), Rolle Sc

Test-Teamm

20

menttest stat
hen im Test
end zur noc
Die Ergebn

ung 58 Die kom

ungsregeln
n:

(Hinzufügen
Rolle (Kund
ügen Rolle
gen Artefak

ührung der
wicklung + T

y Scrum, T
nttest, Ende
S-Tage (Dau
Hinzufügen
er))

older (Kun
n (für alle
tivität (Kun
st Sprint Ba

Durchführun
nzufügen,

crum Maste
mitglied 1-2

03

tt, bevor die
t Sprint Bac
chmaligen

nisse werde

mbinierte Anp

und Benach

n Rolle (Ku
den-Tester)
e (Tester),
kt (Tes –Sp

Test-Aktiv
Test)), Hinz
Time-Box:
Entwicklun
uer 2 Tage

n Aktivität (

nden-Tester
neuen Ku

nden-Test-T
acklog) hin
ng) hinzufü
Test-Team

er, Meeting
, Meeting (

e Kunden-Q
cklog und w
Validierung

en gemeinsa

passung

hrichtigung

unden-Test-
, Hinzufüge
Hinzufüge

print Backlo
vitäten) Än

zufügen Me
40 Minute

ng + Test), H
e), nach Ink
(Testen der

1, Rolle
unden-Teste
age), hinzu

nzufügen, K
ügen, Test-T

mmitglied 2
(Scrum of
(Scrum of S

QS-Tage sta
werden zunä
g vom Kun
am im Rev

en sind dad

-Team (4 Pe
en Test-Tea
en Rolle (T
og), Hinzufü
ndern Akti
eting (Scru

en), Hinzufü
Hinzufügen
krementtest
r Test-Aufg

(Kunden-T
r durchfüh

ufügen, Kun
Kunden-Test
Teammitglie
2, Rolle (T
Scrums), hi
Scrums), hi

arten.
ächst
nden-
view-

durch

erso-
am (2
Test-
fügen
ivität

um of
fügen
n Ak-
t vor

gaben

Test-
hren);
nden-
ter 1-
ed 1,
Test-
inzu-
inzu-

204

fügen, Test-Teammitglied 1-2, Artefakt (Test Sprint Backlog), hin-
zufügen, Test-Teammitglied 1-2, Aktivität (Test-Durchführung),
hinzufügen, Test-Teammitglied 1-2, Aktivität (Inkrementtest), hin-
zufügen)).

3. Benachrichtigung Beteiligte (Scrum Master, (neue Aktivität (Kun-
den-Test-Tage), neue Aktivität (Scrum of Scrums), neue Rollen
(Test-Team, Kunden-Test-Team)) , Kunden-Tester 1 – 4, (neue Rol-
len, neue Aktivitäten, neues Artefakt Test Sprint Backlog), Test-
Teammitglieder (neue Rolle, neue Aktivitäten, neues Artefakt Test
Sprint Backlog))

Während die neue Anpassung erstellt wird, werden mögliche neue Anpas-
sungen in den Phasen Monitor und Analyse blockiert, damit es zu keinen
weiteren Überschneidungen kommt. Da die Anpassung am Ende des Sprints
erfolgt und Personen und Aktivitäten etc. neu hinzugefügt werden, entsteht
hier kein Konflikt mit aktuellen Aufgaben, Artefakten etc. die gegebenen-
falls hätten beendet werden müssen.

Am Ende des Sprints wird die kombinierte Anpassung ausgeführt, welche
ab dem nächsten Sprint zum Einsatz kommt.

7.1.3.4	Durchführung	einer	Anpassung	ohne	vorherige	Planungs‐
möglichkeiten	
Im Laufe des nächsten Sprints (Sprint 7) kommt es nun vor, dass der Test-
Standard, welchen das Team verwendet, aktualisiert wird. Die Versions-
nummer des Test-Standards wurde auf deren Webseite entsprechend hoch-
gezählt und der neue Standard wird zum Download angeboten. Der Sensor,
welcher täglich die Webseite für eine neue Versionsnummer scannt, ent-
deckt die neue Versionsnummer, liest diese aus und speichert sie entspre-
chend in der Wissensbasis. Dies ist das auslösende Ereignis für die Analyse.
Dort ergibt die Auswertung, dass die neue Versionsnummer höher als die
alte ist und somit eine aktuellere Version vorliegt.

In der Plan-Phase wird der neue Test-Standard ausgelesen und mit dem al-
ten verglichen. Dies muss entweder manuell erfolgen oder es besteht die
Möglichkeit für ein Vergleichsprogramm ähnlich dem Vergleich in einer
Versionskontrolle, wo die geänderten Teile sofort angegeben werden. Der
Vergleich ergibt, dass nach dem neuen Test-Standard keinen Kundendaten
mehr als Testdaten verwendet werden dürfen. Diese wurden für einige Tests
bisher vom Team verwendet. Das heißt, es muss eine neue Aktivität für die
Testdatengenerierung erstellt werden, welche vom aktuellen Test-Team
verwendet wird.

A

Für d
Softw
wie i
erste
Aufg
Aufg
Testd
fügt.

Abbildung 59 A

die Anpassu
ware-Engin
in Abbildun

ellt, welche
gabe bekom
gaben als er
daten wird

A

Anpassung auf

ung gibt es
eering-Meth
ng 59 zu se
besagt, das

mmt die Prio
rstes für wei
ebenfalls in

Abbildung 60 N

20

Instanz-Ebene

nun zwei V
hode nur a
ehen im Te
s neue Test

orität 1, so d
itere Tests d
n die Aktiv

Neue Aktivität "

05

e durch Hinzu

Varianten. D
auf der Inst
est Sprint B
tdaten gener
dass sie nach
durchgeführ
vität der Te

"Generierung

ufügen im Test

Die erste Va
tanz-Ebene

Backlog eine
riert werden
h Beendigun
rt wird. Das
estdurchfüh

von Testdaten

Sprint Backlo

ariante pass
an. Dafür

e neue Auf
n müssen. D
ng der aktu
s Generieren
rung mit ei

n"

og

st die
wird

fgabe
Diese
uellen
n der
inge-

206

Die zweite Variante ist wie in Abbildung 60 zu sehen das Hinzufügen einer
neuen Aktivität zu Beginn der Entwicklung. Die Testdaten werden in dieser
Aktivität generiert und für die folgenden Tests aus dem Test Sprint Backlog
verwendet, sowohl vom Test-Team als auch dem Kunden-Test-Team.

Die Entscheidung, welche Variante gewählt wird, soll zum Zeitpunkt der
Anpassung gefällt werden. Ist der Anpassungszeitpunkt während des
Sprints, wird die Variante 1 gewählt. So können aktuelle Test-Aufgaben in
der Durchführung zunächst beendet werden, bevor die neuen Daten gene-
riert werden (Priorität 1). Konflikte werden somit vermieden.

Ist der Anpassungszeitpunkt zum Ende des Sprints, wird die Variante 2 ge-
wählt. So können die Testdaten für die jeweiligen Tests immer zu Beginn
der Entwicklung generiert und im weiteren Verlauf des Sprints verwendet
werden, es entstehen ebenfalls keine Konflikte. Wird die Anpassung ausge-
führt, werden in beiden Fällen das Test-Team und das Kunden-Test-Team
über die Änderungen benachrichtigt, da diese von der Änderung betroffen
sind.

Da hier im Beispiel die Änderung des Test-Standards in der ersten Sprint-
Hälfte entdeckt wurde, greift für den aktuellen Sprint die erste Variante.
Doch da es Sinn macht, ab dem nächsten Sprint die zweite Variante zu nut-
zen, wird eine kombinierte Anpassung insofern vorgenommen, als dass
vermerkt wird, dass ab dem nächsten Sprint Variante 2 greift und damit Va-
riante 1 ablöst.

Auch wenn diese Anpassung ohne vorherige Planungsmöglichkeiten relativ
einfach gewesen ist, so kann je nach Ziel und Werten die Planung schnell
komplex werden. Zum einen muss eine Anpassung mit den Werten voll-
ständig neu geplant werden, was entweder manuell durch einen erfahrenen
Methoden-Engineer erfolgt, oder automatisch über entsprechende Planungs-
algorithmen. Zum anderen müssen Konflikte am Ende ausgeschlossen und
Alternativen wie in Abschnitt 6.4.2 beschrieben geplant werden.

7.2	Vergleich	und	Fazit	
In den vorherigen Abschnitten wurden mit Hilfe von einfachen und kom-
plexeren Beispielen verschiedene Anpassungsmöglichkeiten des Ansatzes
durchgespielt. Dabei wurden sowohl Anpassungen auf der Instanz-Ebene als
auch Anpassungen der Software-Engineering-Methode auf Typ-Ebene ge-
zeigt. Zusätzlich wurde eine kombinierte Anpassung und eine Anpassung
ohne Planungsmöglichkeiten dargestellt. In diesem Abschnitt werden die
Beispiele mit den ursprünglichen Praxis-Projekten verglichen, welche ohne
den MAPE-K4SEM-Ansatz durchgeführt wurden. Am Ende erfolgt ein Fa-
zit bezüglich der Evaluierung.

207

7.2.1	Vergleich	mit	den	ursprünglichen	Praxis‐Projekten	
Der Vergleich der durchgeführten Beispiele findet hier speziell mit dem
Projekt Quasi-Scrum statt, welches im s-lab zusammen mit einem Projekt-
partner im Unternehmen durchgeführt und bereits in [EG09] beschrieben
wurde. Da ein Großteil der beschriebenen Anpassungen so oder in ähnlicher
Form ohne den Einsatz des MAPE-K4SEM-Ansatzes stattgefunden haben,
ist eine Beurteilung gut möglich. Des Weiteren werden bei einigen Beispie-
len Vergleiche zu einem weiteren Projekt aus dem s-lab gezogen, welches in
einem großen Unternehmen mit verteilten Teams, welche z.T. agil gearbei-
tet haben, stattgefunden hat.

Vergleich: Eine Person fällt aus

Gerade das erste Beispiel, wo eine Person ausfällt, kann gut mit beiden Pro-
jekten verglichen werden. Mit Hilfe des Ansatzes war es möglich, den
krankgewordenen Scrum Master schnell mit einer geeigneten Person zu
ersetzten, so dass das Team problemlos weiter arbeiten konnte. Der Erfolg
des Sprints und somit des Projektes war nicht gefährdet.

Im Projekt Quasi-Scrum ist es ebenfalls vorgekommen, dass eine Person
zwischenzeitlich krank geworden ist. Dies wurde zwar am ersten Tag be-
kannt, doch in diesen Fällen musste der Projektleiter entscheiden können, ob
durch den Ausfall Aufgaben und somit der Sprint gefährdet sind. Hat er
dieses erfasst, hat er das Team zusammen gerufen oder bis zum Daily
Scrum gewartet und gefragt, wer sich im Stande sieht, die Aufgaben zu
übernehmen. Hat sich niemand gemeldet, musste eine neue Person gesucht
werden, die für die Zeit der Krankheit die andere Person ersetzt. Typischer-
weise war es vom Team möglich, die Aufgaben zu übernehmen, auch wenn
dies teilweise dazu geführt hat, dass einige Aufgaben mehr Aufwand erfor-
dert haben, als ursprünglich geplant. Ein oder zweimal ist es vorgekommen,
dass eine Aufgabe bis zum Ende des Sprints nicht erfolgreich beendet wer-
den konnte.

Hieran ist zu erkennen, dass der Ansatz zwar nur einen geringen, aber den-
noch entscheidenden Unterschied macht. Dadurch, dass dieser eigenständig
ermitteln kann, wer für die Aufgaben der ausfallenden Person zuständig ist
und Kapazität bereitstellen kann, wird sichergestellt, dass schnell ein geeig-
neter Ersatz gefunden und nahtlos weitergearbeitet werden kann. Aufgaben
können beendet und der Sprint eingehalten werden. Ferner wissen alle Per-
sonen über die neue Zuständigkeit Bescheid.

Wie wichtig insbesondere die Benachrichtigung an sich ist, wird im Ver-
gleich mit dem zweiten Projekt deutlich. Hier wurde wie bereits beschrieben
mit verteilten Teams gearbeitet, wodurch eine hohe Anzahl Personen im
gesamten Team vorhanden gewesen ist. Zwar haben sich die Teams regel-

208

mäßig mit Hilfe von Vertretern der jeweiligen Teams auseinandergesetzt,
doch aufgrund einer hohen Fluktuation in den verschiedenen Teams war
teilweise nicht klar, wann ein Verantwortlicher das Team verlassen hat und
wer der neue Ansprechpartner gewesen ist.

Ein Beispiel, welches in der Praxis vorgekommen ist: Das Test-Team hat
einen Fehler gefunden, diesen erfasst und dem Zuständigen des entspre-
chenden Teams eine E-Mail mit der Fehlerbeschreibung geschrieben. Da
der Fehler ein Blocker war, musste dieser schnellstmöglich behoben wer-
den, um das Testen abzuschließen. Das Problem: Die Antwort auf die ge-
schriebene E-Mail war, dass der Zuständige das Unternehmen verlassen
hatte. Zunächst musste nun der neue Ansprechpartner gefunden und ihm das
Problem erläutert werden. Dies allein hat zwei Tage gedauert, in denen der
Fehler nicht behoben werden konnte.

Zusätzlich fehlten dem neuen Zuständigen die entsprechenden Qualifikatio-
nen, denn er nannte ein altes Problem als Fehler, welches schon lange beho-
ben war. Das Test-Team musste dem Zuständigen erläutern, wie er dies bei
sich beheben kann, damit er sich um den ursprünglichen Fehler kümmern
konnte. Insgesamt hat dies eine Woche an Zeit gekostet, wodurch der Fehler
nicht behoben wurde und einen Teil der Tests blockiert hat. Die Deadline
musste deswegen nach hinten geschoben werden.

Gerade in diesem Projekt mit verteilten Teams hätten die Teams es gern
gesehen, wenn die Zuständigkeiten jederzeit bekannt gewesen und dass sie
speziell bei Veränderungen immer informiert worden wären. Dies war in
mehreren Fällen nicht gegeben und hat einiges an Zeit gekostet.

Auch wenn die beschriebene Anpassung nur auf der Instanz-Ebene stattfin-
det, kann hier gezeigt werden, dass der Einsatz von MAPE-K4SEM dieses
Problem vor allem mit Hilfe der Benachrichtigungen an die passenden Be-
teiligten, beheben kann. Es wäre nicht nur Zeit gespart worden, sondern es
wäre die passende Person ausgewählt worden.

Vergleich: Teamgröße und zusätzliches Meeting

Der zweite Vergleich bezüglich der Teamgröße findet wiederum mit dem
Projekt Quasi-Scrum statt. Hier ist das Interessante, dass das Team zwar
vergrößert wurde, es betrug wie im Beispiel-Projekt zwischenzeitlich min-
destens 16 Personen, doch es wurde wie in Scrum ursprünglich vorgesehen
kein Team-Split vorgenommen und ein zusätzliches Scrum of Scrums ein-
geführt. Auch wenn sich alle Personen zu den zwei Daily Scrums getroffen
haben, so führte dies zum einen dazu, dass regelmäßig die Time-Boxes
überschritten wurden, was weitere Entwicklungszeit gekostet hat. Zum an-
deren gab es Überschneidungen bei den Aufgaben. Ein Teammitglied wollte

209

eine neue Aufgabe anfangen, brauchte aber Informationen aus einer anderen
Aufgabe, welche noch nicht fertiggestellt war. Die Kommunikation im gro-
ßen Team, von dem nicht alle in demselben Raum saßen, funktionierte nur
bedingt. Dadurch verzögerten sich einige Aufgaben und der Sprint war in
Gefahr. Dieser konnte manchmal nur mit Überstunden eingehalten werden.

Auch wenn der Team-Split vorgeschlagen wird, wird dieser wie auch im
Beispiel zu sehen, nicht immer durchgeführt, was Absprachen und die
Kommunikation verschlechtert. Durch MAPE-K4SEM wären der Team-
Split und das zusätzliche Meeting automatisch gegeben und eine bessere
Kommunikation sowie Absprache wären gesichert. Die Einhaltung des
Sprints wäre dadurch besser gewährleistet gewesen.

Gerade in verteilten Teams ist ein zusätzliches Meeting mit Vertretern der
einzelnen Teams wichtig. Dies konnte auch im anderen Projekt erfahren
werden. Es gab zwar ein regelmäßiges Meeting initiiert durch das Test-
Team, doch es war keine Pflicht, dass alle Vertreter der einzelnen Teams
daran teilnehmen mussten; die Verantwortlichkeiten waren nicht fest gege-
ben. Dies führte dazu, dass häufig Verantwortliche aus einzelnen Teams
fehlten und Fehler nicht besprochen werden konnten. Das führte zu Verzö-
gerungen, was wiederum zur Gefährdung der Deadlines führte. Auch eine
Eskalation nach oben hat wenig zur Verbesserung beigetragen.

Durch MAPE-K4SEM wäre dieses Meeting und besonders Verantwortliche
wären automatisch festgelegt worden. Eine Besprechung der Fehler wäre
möglich gewesen und Deadlines hätten voraussichtlich eingehalten werden
können.

Vergleich: Zusätzliche Kunden-QS-Tage und weitere Testaktivitäten

Im Quasi-Scrum-Projekt wurden im Laufe des Projektes ebenfalls die Kun-
den-QS-Tage wie in [EG09] beschrieben eingeführt, ebenso wie zusätzliche
Testaktivitäten. Für weitere Testaktivitäten wurde dem Team eine weitere
Person hinzugefügt. Diese war ausschließlich für das Testen und dabei für
die User Acceptance Tests zuständig, Unit-Tests und ein automatischer In-
tegrationstest existierten bereits. Am Anfang hat der Tester nur verschiede-
ne UATs durchgeführt, ohne einen konkreten Testfall zu beschreiben. Am
Ende wurde die Anforderung abgenommen oder nicht und mögliche Prob-
leme wurden entsprechend dokumentiert.

In späteren Sprints hat der Tester vorgeschlagen, das Testen mehr zu struk-
turieren und für jede Anforderungen ein oder mehrere Testfälle zu erstellen.
Dies wurde vom Team gut angenommen und in späteren Sprints durchge-
führt. Dies führte zu einer Verbesserung der Software und es gab später we-
niger Fehler im ausgelieferten Inkrement. Auch wenn es von der Testseite

210

her logisch klingt, Testfälle von Anfang an zu dokumentieren, so ist dies in
den Agilen Methoden nicht unbedingt vorgegeben [vergl. GG12]. Der Pro-
duct Backlog Eintrag dient dabei als Beschreibung und es wird geraten, zu-
sätzlich entsprechende Akzeptanzkriterien zu definieren. Auch dies wird in
der Praxis nicht immer vorgenommen.

Durch MAPE-K4SEM wäre das strukturierte Testen wesentlich früher und
mit den entsprechenden wichtigen Aktivitäten eingebunden worden. Er hätte
damit voraussichtlich zu einer Verbesserung der Testqualität und somit der
Qualität des Inkrements geführt.

Deutlicher wird dies bei der Einführung der Kunden-QS-Tage, insbesondere
zur Sicherstellung der Betrachtung der nicht-funktionalen Anforderungen.
Der Fokus liegt bei Scrum auf den funktionalen Anforderungen, was auch in
diesem Projekt der Fall gewesen ist. Es gab zwar Performanzvorgaben für
die Software, doch diese haben nie einen Eintrag im Product Backlog erhal-
ten. Auch auf einer Konferenz (Informatik 2009) wurde in einem Workshop
diskutiert, ob dies von Anfang an geschehen sollte, oder erst im Laufe des
Projektes. Darüber gab es geteilte Meinungen. Doch auch wenn die Anfor-
derungen vom Anfang an im Product Backlog gestanden hätten, so müssten
sie vom Product Owner entsprechend ausgewählt und vor allem priorisiert
werden. Auch dies war im Projekt nicht der Fall, da wie beschrieben das
Hauptaugenmerk auf den funktionalen Anforderungen lag.

Dies führte dazu, dass die Performanz der Inkremente beim Kunden immer
schlechter wurde bis hin zum Absturz der Software bei zu großer Belastung.
Dadurch wurde klar, dass der Kunde schon vorher mit eingebunden werden
sollte mit Hilfe der Kunden-QS-Tage. Durch seine Einbindung wurde ihm
sehr schnell bewusst, wie wichtig gerade nicht-funktionale Anforderungen
sind. Es ergaben sich neue Einträge für die Optimierung der Performanz,
welche immer hoch bis sehr hoch priorisiert wurden. Somit konnte die Per-
formanz bis zum Ende des Projektes erhöht und gehalten werden. Doch
vorher hat dies eine Menge Zeit und den Anbieter einen zusätzlichen Sprint
gekostet, den er selbst bezahlen musste.

Durch MAPE-K4SEM wäre es möglich gewesen, Probleme schon automa-
tisch vorher zu erkennen und dem entgegen zu steuern, nicht nur mit zusätz-
lichen Testaktivitäten, sondern auch mit der Einbindung des Kunden.
Dadurch hätten insofern Kosten gespart werden können, als dass der Ab-
sturz der Software voraussichtlich nicht erfolgt und die Performanzschwie-
rigkeiten in einem früheren Stadium entdeckt worden wäre. Der zusätzliche
Sprint wäre nicht nötig gewesen.

Im Projekt mit den verteilten Teams wurde das Testen wesentlich struktu-
rierter angegangen. Es war ein Test-Team mit verschiedenen Testern und

211

einem Testmanager vorhanden. Die Testfälle für einen End-to-End-Test
wurden im Vorfeld definiert und entsprechend durchgeführt. Doch vorheri-
ge Tests durch das Entwicklungsteams und speziell gemeinsame Integrati-
ons- und Systemtests durch eine Zusammenarbeit der verteilten Teams wur-
den nicht durchgeführt. Von daher traten die Fehler erst beim abschließen-
den End-to-End-Test auf.

Mit einer entsprechenden Anpassung der Ziele und der Regeln im MAPE-
K4SEM-Ansatz hätten diese Gegebenheiten überwacht und Probleme im
Vorfeld entdeckt werden können. Eine Anpassung und das Hinzufügen ein-
zelner Inkrement- und insbesondere gemeinsamer Integrationstests hätten
hier zu einer besseren Qualität beigetragen und durch den Ansatz wäre ent-
sprechend Zeit gespart worden.

Sowohl der Kunde als auch der Endanwender wurden in diesem Projekt gar
nicht mit eingebunden. Eine endgültige Abnahme erfolgte über das Ma-
nagement, welches an den endgültigen Test-Reports interessiert war. Von
daher ist nicht bekannt, ob es Fehler im produktiven System gab oder nicht.
Durch den Einsatz des MAPE-K4SEM-Ansatzes wäre ein schnelles Einbin-
den von Endanwendern oder das direkte Einbinden des Managements gut
möglich gewesen. Ob durch das Einbinden des Endanwenders eine weitere
Steigerung der Qualität möglich gewesen wäre ist schwer abzuschätzen, da
aktuelle Daten nicht bekannt sind.

Vergleich: Neuer Test-Standard

Der Einsatz von Standards, insbesondere eines Test-Standards, wurde in
beiden Projekten nicht vorgenommen. Doch auch wenn ein direkter Ver-
gleich nicht möglich ist, liegt die Vermutung nahe, dass vom Team nicht
täglich überprüft wird, ob ein neuer Standard vorhanden ist oder nicht. Wäre
ein neuer Standard vorhanden, so müsste manuell verglichen werden, wel-
che Änderung vorliegt, was wiederum Zeit kostet.

Auch wenn im Beispiel angegeben ist, dass ein Vergleich möglicherweise
manuell erfolgen muss, so wird zumindest rechtzeitig darüber Bescheid ge-
geben, dass eine Anpassung erfolgen muss. Sobald die Änderungen erkannt
sind, kann die Planung gegebenenfalls mit Hilfe von Planungsalgorithmen
sowie die Ausführung und Benachrichtigung wiederum automatisch statt-
finden. Dies würde ebenfalls Zeit und Kosten sparen.

212

	

7.2.2	Fazit	der	Evaluierung	
Auch wenn es sich bei dem Durchspielen der verschiedenen Beispiele um
konstruierte Beispiele handelte, so sind diese wie sich vor allem im Ver-
gleich zeigt, sehr nah an der Praxis.

Zunächst konnte anhand des Durchspielens der Pre-Work gezeigt werden,
wie konkret einzelne Regeln, Metriken, Planungsmöglichkeiten sowie Aus-
führungsregeln und Benachrichtigungen aus den priorisierten Zielen herge-
leitet werden. Dabei war auch zu sehen, wie Regeln für einzelne Ziele mit-
einander zusammenhängen und kombiniert werden können. Gerade die Pla-
nungsmöglichkeiten hängen eng mit der Herleitung der Ziele zusammen, da
sie für den Dann-Teil der Analyseregeln wichtig sind.

Der Aufwand für die Definition der Ziele und die weiteren Schritte der Pre-
Work ist im Vergleich zu den Schritten 7 bis 10 wesentlich höher, da diese
größtenteils manuell vorgenommen werden müssen. Neben allen Beteiligten
für die Definition der Ziele, ihren Rahmenbedingungen und der Priorisie-
rung, wird eine erfahrene Person benötigt, beispielsweise ein Methoden-
Engineer. Aber auch ein erfahrener Projektleiter kann die einzelnen Schritte
vornehmen.

Obwohl der Aufwand zunächst hoch erscheint, so kann er mit dem Aufwand
für das Ermitteln und Spezifizieren bzw. Beschreiben von Anforderungen
an eine Software (Requirements Engineering) [He13, Ga14] verglichen
werden. Das Finden und Definieren der Anforderungen an eine Software
benötigt ebenfalls seine Zeit, ist aber essentiell um eine gute und qualitativ
hochwertige Software zu entwickeln. Die Ziele und die daraus resultieren-
den Schritte sind für eine qualitativ hochwertige Software-Engineering-
Methode ebenfalls essentiell. Vom Zeitpunkt her kann das Durchführen der
Pre-Work gleichzeitig mit dem Requirements Engineering durchgeführt
werden. Auch wenn die Einträge für ein Product Backlog anfangs teilweise
gröber gehalten werden können, als in einer anderen Software-Engineering-
Methode, so „fallen diese nicht vom Himmel“. Sobald die Einträge für ein
Product Backlog erstellt sind, lassen sich die Sprints und die Entwicklung
schneller durchführen.

Genauso verhält es sich mit dem Ansatz MAPE-K4SEM. Sind die verschie-
denen Schritte der Pre-Work erstellt und entsprechend in der Wissensbasis
gespeichert, erfolgt die Durchführung der Schritte 7 bis 10, der eigentliche
Durchlauf der MAPE-Feedbackschleife wesentlich schneller und größten-
teils automatisch.

213

Durch den Vergleich mit den beiden Praxis-Projekten konnte gezeigt wer-
den, dass die Nutzung der Software-Engineering-Methode kontinuierlich
während der Laufzeit überwacht werden kann. Probleme werden automa-
tisch erkannt und entsprechend angepasst. Die Anpassungen sind zusätzlich
auf der Instanz-Ebene möglich. Im Gegensatz zu Anpassungen in den Pra-
xis-Projekten konnten im Vergleich die Anpassungen schneller, strukturier-
ter und größtenteils eigenständig ohne Hilfe von außen durchgeführt wer-
den. Besonders wichtig ist, dass automatisch alle erforderlichen Beteiligten
vom System über die Anpassung informiert werden. Dabei bekommen die
Beteiligten konkret die Benachrichtigung nur mit den Informationen, die sie
betreffen, und wann die neue Anpassung greift.

Dass gerade die Benachrichtigungen beispielsweise über neue Verantwortli-
che sehr wichtig sind und Zeit sparen, hat das erste Beispiel im Zusammen-
hang mit verteilten Teams gezeigt. Der hier gezeigte Ansatz würde in einem
solchen Szenario den Projektleiter insofern unterstützen, als dass er den
Überblick über die verschiedenen Teams behält. Gerade bei einer hohen
Fluktuation und vielen Statusänderungen der Personen kann eine automati-
sche Übersicht und Benachrichtigung viel Zeit und Probleme ersparen. Es
kann beispielsweise verhindert werden, dass jemand Informationen nicht
rechtzeitig erhält.

Des Weiteren wurde in der Evaluierung gezeigt, wie Anpassungen sich zum
Anpassungszeitpunkt verhalten und wie eine kombinierte Anpassung aus-
sieht. Im Vergleich mit dem Praxis-Projekt Quasi-Scrum wären die Kunden-
QS-Tage voraussichtlich früher zum Einsatz gekommen, Probleme bezüg-
lich der Performanz wären früher erkannt und der Absturz der Software und
die Kosten für einen zusätzlichen Sprint wären verhindert worden. Das Hin-
zufügen neuer Rollen war ebenfalls mit dem Ansatz problemlos möglich
und führte zu einem strukturierteren Testen.

Auch wenn eine Planung ohne Planungsmöglichkeiten gezeigt wurde, so
konnte diese nicht direkt mit der Praxis verglichen werden. In diesem Fall
war die Anpassung ohne Planungsmöglichkeiten verhältnismäßig einfach.
Wie schon im entsprechenden Abschnitt beschrieben, können solche Pla-
nungen wesentlich komplexer und aufwendiger sein und es wird ein erfah-
rener Methoden-Engineer oder es werden gute Planungsalgorithmen benö-
tigt.

Ferner konnte an einem einfachen Beispiel gezeigt werden, dass Ziele mit-
einander in Konflikt stehen können und diese mit beachtet werden müssen.
Im Fall des Scrum Masters, der keine Teamaufgaben übernehmen darf, war
dieser Konflikt verhältnismäßig einfach zu beheben. Auch hier können sich
komplexere Konflikte ergeben, die eine Lösung benötigen.

214

Des Weiteren wurde in den Beispielen angesprochen, dass die Anpassungen
zum Zeitpunkt der Anpassung keine anderen Aufgaben beeinflusst haben
und diese abgeschlossen werden konnten. Im Falle des neuen Test-
Standards wurden zwei Varianten angegeben, welche dies mit beachten.
Auch muss es bei komplexeren Fällen mit betrachtet werden, wie Anpas-
sungen die aktuelle Software-Engineering-Methode beeinflussen können.

Abschließend kann gesagt werden, dass anhand der durchgeführten Beispie-
le und dem Vergleich mit der Praxis, der Ansatz MAPE-K4SEM für die
Anpassung von Software-Engineering-Methoden zur geeignet ist und funk-
tioniert. Obwohl die Pre-Work manuell erfolgt, können die eigentliche
Überwachung, Analyse, Planung und endgültige Anpassung größtenteils
automatisch und somit selbst-adaptiv durchgeführt werden.

215

Kapitel	8	Zusammenfassung	und	Ausblick	

In den vorherigen Kapiteln wurde der Ansatz MAPE-K4SEM vorgestellt,
welcher eine selbst-adaptive Software-Engineering-Methode ermöglicht. Es
konnte gezeigt werden, dass es mit Hilfe des Ansatzes möglich war, die
Software-Engineering-Methode zur Laufzeit automatisch zu überwachen,
Ergebnisse der Überwachung zu analysieren und bei Bedarf die SEM ent-
sprechend anzupassen. Im nächsten Abschnitt wird nach einer kurzen Wie-
derholung der Ausgangssituation eine Zusammenfassung des Ansatzes so-
wie der Evaluierung gegeben. Ferner wird der Beitrag dieser Arbeit erläu-
tert. Abschließend wird ein Ausblick gegeben, welche weiteren Arbeiten
diesen Ansatz zum einen weiter verfeinern und zum anderen sich daran an-
schließen können.

8.1	Zusammenfassung	
Nach [Vo13] scheitern heute noch ca. 75% der Projekte im IT-Umfeld. Als
Gründe werden dabei u.a. undefinierte Ziele, fehlende Unterstützung des
Managements, unzureichend definierte Rollen und Verantwortlichkeiten,
fehlender Change-Management-Prozess, aber auch nicht angemessene Be-
achtung von Störeinflüssen oder das Ignorieren von Warnzeichen im Projekt
genannt.

Ferner können als weitere Faktoren genannt werden, dass zwar jedes Projekt
ein Vorgehen, aber nicht unbedingt eine Software-Engineering-Methode
besitzt. Ist eine Software-Engineering-Methode vorhanden, kann diese mit
Tailoring oder Situational Method Engineering vor Beginn des Projektes
angepasst werden. Während der Laufzeit des Projektes wird die SEM jedoch
nicht überwacht und es fehlt die Zeit, bei Warnzeichen diese schnellstmög-
lich anzupassen.

Auch wenn das Projektmanagement mit der Projektkontrolle sowie das
Change Management Ansätze zur Überwachung und Veränderung liefert, so
sind diese meistens nicht mit der Software-Engineering-Methode selbst ver-
zahnt und befinden sich alle auf einer anderen Ebene bzw. betrachten einen
anderen Kontext. In Kapitel 2 wurden daher zunächst erste Anforderungen
definiert, die an die möglichst eigenständige Anpassung einer Software-
Engineering-Methode gestellt werden, beispielsweise dass der Fokus auf der
SEM liegen muss. Diese Anforderungen wurden in Kapitel 3.1. noch einmal
überarbeitet, verfeinert und auf die 13 Anforderungen A1 bis A13 erweitert.

Im weiteren Verlauf des zweiten Kapitels wurden sowohl verschiedene An-
passungsmethoden als auch das Projektcontrolling genauer vorgestellt. Um
die Eignung dieser Ansätze einschätzen zu können, wurden die ersten gro-
ben Anforderungen in Bewertungskriterien überführt. Auch wenn die ver-

216

schiedenen Ansätze diverse Möglichkeiten bieten, so konnte mit Hilfe der
Bewertungskriterien festgestellt werden, dass die Ansätze nicht ausreichen,
eine Software-Engineering-Methode zur Laufzeit anzupassen. Insbesondere
eine automatische Überwachung und möglichst eigenständige Anpassung
war nicht gegeben.

In dieser Arbeit wurde mit MAPE-K4SEM ein Ansatz vorgestellt, der die
Vorteile der verschiedenen Feedbackzyklen aus den bisherigen Ansätzen
übernimmt. Mit dem in Kapitel 3 vorgestellten der SE Method Manager
(SEMM), wurde ein Ansatz erarbeitet, welcher im Kern die Feedbackschlei-
fe MAPE-K aus den selbst-adaptiven Systemen nutzt. Mit Hilfe des Ansat-
zes unter der Nutzung des SE Method Managers wird eine automatische und
selbst-adaptive Überwachung und Anpassung einer Software-Engineering-
Methode ermöglicht.

 SME Tailoring AM PDCA SS 8D PC SEMM
Fokus 5 5 4 2 2 0 2 5
AZP 2 2 4 3 3 2 4 5
Dauer 3 3 4 3 1 3 3 5
KH 1 1 4 4 2 3 5 5
ÜW 0 0 4 4 2 2 5 5
AA 1 1 4 4 4 4 5 5
PM 0 0 2 3 5 5 3 5
EE 1 0 4 3 4 3 4 5
VS 3 3 2 5 3 1 5 4
Auto 1 0 0 0 0 0 1 4
WVE 3 3 3 3 3 3 3 4
Gesamt Ø 1.8 Ø 1.6 Ø

3.2
Ø 3.1 Ø

2.45
Ø
2.4

Ø
3.6

Ø 4.7

Tabelle 2 Übersicht der Bewertung des Ansatzes im Vergleich zu den anderen Ansät-
zen.

Vergleicht man nun den SEMM mit den Bewertungskriterien aus Kapitel 2,
so ist in Tabelle 2 zu sehen, dass dieser bereits eine höhere Bewertung er-
zielt als die vorherigen Ansätze. Der Fokus liegt bei SEMM auf der Soft-
ware-Engineering-Methode und dem sich zur Laufzeit befindenden Anpas-
sungszeitpunkt. Durch einen hohen Grad an Automatisierung ist die Dauer
der Anpassung kurz und kann sowohl frühzeitig als auch weitestgehend ei-
genständig durchgeführt werden. Die Anpassungen erfolgen kontinuierlich
und je nach Bedarf. Durch die Monitor-Phase ist eine kontinuierliche Über-
wachung der SEM gegeben und mit Hilfe der Analyse-Phase wird regelmä-
ßig der aktuelle Status ausgewertet, ob eine Anpassung erforderlich ist. Bei
Bedarf wird in der Plan-Phase eine entsprechende Anpassung geplant und
über die Execute-Phase frühzeitig und schnell ausgeführt.

217

Da die MAPE-K-Feedbackschleife kontinuierlich während des Projektes
ausgeführt wird, werden die Ergebnisse einer Anpassung evaluiert, ob sie
entsprechend den Erfolg des Projektes erhalten oder nicht. Da zu Beginn des
Projektes die Regeln, Sensoren etc. bekannt sein müssen, ist bis zu einem
gewissen Grad die Vorausschau gegeben. Diese kann durch die Erweiterun-
gen aus Kapitel 4 noch verbessert werden. Eine vollständige Automatisie-
rung des SE Method Managers ist zwar möglich, es macht aber an einigen
Stellen, beispielsweise nach der Analyse-Phase, während der Plan-Phase
oder am Ende der Plan-Phase, Sinn, jeweils einen Methoden-Engineer oder
den Projektleiter wie beschrieben mit einzubeziehen. Die Ergebnisse können
wiederverwendet werden, insbesondere Vorarbeiten und gemachte Erfah-
rungen. Am Ende von Kapitel 3 konnte zunächst in Abschnitt 3.4.1 gezeigt
werden, dass der Ansatz neben den Bewertungskriterien ebenso die gestell-
ten Anforderungen A1 bis A13 erfüllt.

Kapitel 3 schloss mit der Vorstellung der weiteren Herausforderungen TP1
bis TP5. Es musste geklärt werden, wie granular die Daten für den Ansatz
sein müssen, ebenso wenig, welche Daten wirklich wichtig für die Aufberei-
tung und die Analyse sind. Es wurde herausgearbeitet, wie sichergestellt
werden kann, was gemessen und in der Analyse-Phase analysiert und aus-
gewertet wird. Ferner musste herausgearbeitet werden, wie eine Reihenfolge
für die Analyse und Planung erstellt werden und Konflikte vermieden wer-
den können. Ferner musste ein Anpassungszeitpunkt vorliegen, da ein Sys-
tem zwar zu jedem Zeitpunkt angepasst werden kann, eine Software-
Engineering-Methode aber nicht. Sollten zum Anpassungszeitpunkt mehrere
Anpassungen vorliegen, musste herausgearbeitet werden, wie diese mitei-
nander kombiniert werden können.

Um diesen Herausforderungen zu begegnen wurde ein zielorientierter An-
satz verfolgt und der Ansatz MAPE-K4SEM entwickelt. Dieser Ansatz bin-
det den SE Method Manager als Kernvorgehen in einen 10-Schritte-Ablauf
ein und setzt sich aus einer Pre-Work (Schritte 1-6) und der MAPE-K-
Feedbackschleife (Schritte 7-10) und somit dem SE Method Manager zu-
sammen. Die Pre-Work startet mit der Definition der Ziele, welche bei der
Software-Engineering-Methode eingehalten werden sollen, und priorisiert
diese Ziele. Diese Priorisierung setzt sich für die Analyse und die Planung
der Anpassung fort, wodurch eine Reihenfolge der Anpassungen erstellt
werden kann.

Im weiteren Verlauf der Pre-Work werden sowohl Regeln für die Analyse
und daraus die entsprechenden Metriken, als auch Planungsmöglichkeiten
für die Plan-Phase und entsprechende Ausführungsregeln und
Benachrichtigungen abgeleitet. Ferner wird im Schritt der
Planungsmöglichkeiten im Voraus untersucht, welche möglichen Konflikte

auftr
Eben
kom
Zur
zur w
der
gesp
entsp

In d
Met
gesp
zwe
Hier
gege
ausg

Abb

Wie
nich
ausf

Der
K4S
Met
dige
Statu

reten könne
nso wird u

mbinieren la
Wiederverw

weiteren Ve
Pre-Work

peichert. D
prechend w

der MAPE-K
hod Manag

peicherten E
i Teile unte
r wird betr
ebenenfalls
geführt.

bildung 61 Mit

e in Abbild
ht nur die A
forderungen

wissenscha
SEM ein A
hode ermög

e sowie kon
us, Planung

en und es w
untersucht,

assen könne
wendung d
erwendung
für das jew

Die jeweili
wieder verwe

K-Feedback
gers durchg
Ergebnisse a
erteilt, die e
rachtet, ob

eine kom

t Hilfe der Pre

dung 61 zu
Anforderung
n TP1 bis TP

aftliche Beit
Ansatz, welc
glicht. Eine
ntinuierliche
g und Ausfü

2

werden erste
wie sich

en; es wird
der Ergebni

definiert. D
weilige Ziel
igen Blöc
endet werde

kschleife we
geführt. Hie
aus der Pre-

eigentliche P
 mehrere A

mbinierte A

e-Work + MAP
TP1 - T

sehen, kön
gen A1 bis
P5 werden d

trag dieser A
cher eine

e insbesonde
e Überwach
ührung eine

218

e Lösungsm
verschiede

d nach Kom
sse wurde

Dieser Block
l und sie w
cke können
en.

erden die e
erfür werde
-Work genu
Planung und
Anpassunge

Anpassung

PE-K werden z
TP5 gelöst

nnen mit d
A13 erfüll

damit ebenf

Arbeit ist so
selbst-adapt
ere automat
hung der SE
er nötigen A

möglichkeite
ene Planun
mbinationsp
in Abschni
k enthält die

werden in d
n in spät

igentlichen
en die in d
utzt. Die Pla
d den Anpa
en vorliege
erstellt un

zusätzlich die H

em MAPE-
t werden, s
falls erfüllt.

omit zum ei
tive Softwa
tische und
EM, Analy

Anpassung w

en dafür ges
ngsmöglichk
punkten ges
itt 5.8 ein B
e Ergebniss

der Wissens
teren Proj

n Schritte de
der Wissens
an-Phase w

assungszeitp
en und es
nd anschlie

Herausforderu

-K4SEM-A
sondern die

inen mit M
are-Enginee
somit eigen

yse des aktu
war mit den

sucht.
keiten
sucht.
Block
se aus
sbasis
ekten

es SE
sbasis

wird in
punkt.

wird
eßend

ungen

Ansatz
 Her-

APE-
ering-
nstän-
uellen
n bis-

herig
ben
Engi
der A
binde
Softw
MAP

Zusä
und d
an si
nen
dings
der S
fe.

MAP
Meth
die g
Engi
überw
verhä

Abbil

gen Ansätze
der zeitn

neering-Me
Ansatz MA
et. Der An
ware Engin
PE-K auf di

ätzlich beinh
dem kontin
ich genutzt
Kontrollme
s in einem a
Software-En

PE-K4SEM
hode aus de
gegebenenfa
neering-Me
wacht eigen
ält.

ldung 62 MAP

en in dieser
nahen und
ethode zur L

APE-K4SEM
satz verknü

neering. De
ie Anpassun

haltet MAP
nuierlichen V

werden. Fe
echanismus
anderen Ko
ngineering-

M übernimm
em Tailoring
falls mit die
ethode. MA
nständig, w

PE-K4SEM ver
nagement

21

r Form gar n
eigenstän

Laufzeit ist
M verschied
üpft die selb
r Beitrag i

ng von Softw

PE-K4SEM
Verbesserun
erner beinha

und das P
ontext. Der A
Methoden m

mt den Fo
g und dem S
esen Ansätz

APE-K4SEM
wie sich die

rzahnt mit Hilf
und Software

19

nicht oder n
ndigen Anp
t ein weiter
dene Theme
lbst-adaptiv
ist hier gen
ware-Engin

Ansätze au
ngsprozess,
alten diese
Planen von
Ansatz übe
mit einer e

okus auf d
Situational
zen im Vor

M geht dann
gegebene S

fe der selbst-a
e-Engineering-M

nur in Teile
passung e

rer Beitrag d
engebiete m
en System

nauer die Ü
neering-Met

us dem Proj
, in dem Fe
Ansätze be

n Gegenmaß
erträgt dies a
rweiterten F

die Softwa
Method En
rfeld angep
n den weite
SEM währe

daptiven Syste
Methoden

en möglich.
iner Softw
der Arbeit,

miteinander
direkt mit

Übertragung
hoden.

ektmanagem
edbackschle
eispielsweis
ßnahmen, a
auf den Kon
Feedbacksc

are-Engineer
ngineering s
passte Softw
eren Schritt
end der Lau

eme das Projek

. Ne-
ware-

dass
ver-
dem

g des

ment
eifen
se ei-
aller-
ntext

chlei-

ering-
sowie
ware-
t und
ufzeit

ktma-

220

Als letztes beinhaltet der Ansatz die in Abschnitt 2.3 beschriebenen drei
Phasen des Change Managements – Planung, Umsetzung und Evaluierung.
Wie in Abbildung 62 zu sehen, verarbeitet MAPE-K4SEM die verschiede-
nen Einflüsse zu einem eigenen Ansatz und verzahnt dabei vor allem das
Projektmanagement, hier genauer die Projektkontrolle, und Software-
Engineering-Methoden mit Hilfe der selbst-adaptiven Systemen zu einer
selbst-adaptiven Software-Engineering-Methode.

In der anschließenden Evaluierung beim Durchspielen der verschiedenen
Beispiele konnte gezeigt werden, dass der MAPE-K4SEM-Ansatz vom
Prinzip her funktioniert. Durch den anschließenden Vergleich mit zwei Pra-
xis-Projekten wurde gezeigt, dass durch den Ansatz im Gegensatz zu den
Projekten eine Anpassung eigenständig, zeitnah und schnell möglich ist. Mit
Hilfe des Ansatzes konnte sowohl Zeit gespart als auch Missverständnisse
beispielsweise in der Kommunikation, verhindert werden. Probleme konn-
ten frühzeitig erkannt und ihnen entgegengewirkt werden.

Es wurde festgestellt, wie wichtig gerade die Benachrichtigungen an die
Beteiligten während der Ausführung sind. Gerade in großen und verteilten
Teams kann so der Überblick gewahrt werden und ein Wechsel von Ver-
antwortlichkeiten ist den entsprechenden Beteiligten rechtzeitig bekannt.
Auch wenn dies nur eine kleine Änderung auf der Instanz-Ebene und nicht
an der Software-Engineering-Methode selbst ist, so kann durch das Nicht-
Bekannt-Sein des Wechsels der Verantwortlichkeiten viel Zeit und dadurch
Geld verloren gehen. Wie im Praxis-Beispiel zu sehen, kann dadurch sogar
der Erfolg des Projektes gefährdet werden.

Es wurde gezeigt, dass eine kontinuierliche Überwachung der Software-
Engineering-Methode gegeben ist und durch die Analyse und Auswertung
mit Hilfe von beispielsweise ECA-Regeln, ist eine schnelle Beurteilung des
aktuellen Status ebenfalls gegeben. Mit Hilfe der Pre-Work wird auf der
einen Seite durch die Ableitung der Analyseregeln und den anschließenden
Metriken von den vorher definierten Zielen sichergestellt, dass das Richtige
gemessen wird, um den Erfolg der Software-Engineering-Methode zu si-
chern. Auf der anderen Seite orientieren sich die Planungen ebenfalls an den
Zielen, so dass diese nach einer erfolgreichen Anpassung weiter eingehalten
werden.

8.2	Ausblick	
Auch wenn mit MAPE-K4SEM ein funktionsfähiger Ansatz für eine selbst-
adaptive Software-Engineering-Methode vorgestellt wurde, so steht als
nächstes die Implementierung der Schritte 7 bis 10, des SE Method Mana-
gers in einem Prototyp an. Dabei sollte die Wissensbasis mit einer aktiven
Datenbank und den beschriebenen ECA-Regeln umgesetzt werden.

221

Ferner sind der Einsatz von MAPE-K4SEM und seine Evaluierung in einem
konkreten Projekt in einem Unternehmen wünschenswert. Neben diesen
beiden direkten Anknüpfungspunkten an diese Arbeit gibt es noch weitere
Möglichkeiten für zukünftige Arbeiten.

8.2.1	Verknüpfung	Requirements	Engineering	und	Pre‐Work	
Wie bereits in der Evaluierung angesprochen, nimmt die Pre-Work einiges
an Zeit in Anspruch. Gerade die Definition und Priorisierung der Ziele er-
fordern einen hohen Aufwand und auch das Einbeziehen von den Beteilig-
ten. Die Ziele für die Software-Engineering-Methode besitzen Ähnlichkei-
ten mit den Anforderungen an eine Software und haben somit eine Verbin-
dung zum Requirements Engineering. Dieses beschäftigt sich mit der Er-
mittlung, Analyse, Spezifizierung und Priorisierung sowie dem Manage-
ment von Anforderungen sowohl an Systeme als auch an Software-Produkte
[He13, Ga14].

Auch wenn die Ziele der Software-Engineering-Methode von der gegebenen
SEM hergeleitet werden können, z.B. anhand gegebener Regeln und Eigen-
schaften, wäre in einer weiteren Arbeit zu überlegen, wie die Ähnlichkeiten
dieser beiden Gebiete genutzt und Möglichkeiten sowie Techniken aus dem
Requirements Engineering das Definieren der Ziele erweitern können. Ge-
rade die Ziele, die sich aus dem Projekt- und Unternehmenskontext ergeben,
könnten mit Hilfe dieser Techniken besser erfasst und präziser formuliert
werden.

Umgekehrt kann untersucht werden, ob und wie sich das Definieren der
Ziele einer Software-Engineering-Methode auf die Definition der Anforde-
rungen übertragen lässt.

8.2.2	Planen	ohne	Planungsmöglichkeiten	
In Abschnitt 6.4.1 und Abbildung 44 wurde das Planen einer Anpassung
ohne Planungsmöglichkeiten beschrieben. In der Evaluierung wurde dafür
das einfache Beispiel für die Anpassung bei einem neuen Test-Standard
gezeigt. Hier war die Planung ohne Planungsmöglichkeiten relativ einfach.
Doch für den Vergleich der beiden Test-Standards ist entweder ein manuel-
ler Vergleich oder, wie beschrieben, eine Software nötig, die zwei Versio-
nen automatisch miteinander vergleichen kann.

Für weitere und insbesondere komplexere Planungen ohne vorher bekannte
Möglichkeiten ist die erste Lösung, dass eine Person, ein Methoden-
Engineer oder ein erfahrener Software-Architekt oder Projektleiter einge-
setzt wird. Dieser schaut sich die gegebenen Werte und die entsprechenden
Ziele an und entwirft Varianten für die Anpassungen. Doch dies nimmt
wieder viel Zeit in Anspruch und könnte den Zeitvorteil des Ansatzes revi-
dieren.

222

Ein erster Ansatz wäre, die Planung mit Hilfe von Mustern (Pattern) vorzu-
nehmen. In der Arbeit von [FBL13] wird ein Ansatz vorgestellt, wie eine
situationsspezifische Methode mit Hilfe von Methoden-Mustern (Method
Patterns) erstellt werden kann. Es ist zu überlegen, wie diese Methoden-
Muster genutzt werden können, nicht um eine situationsspezifische Methode
zu erstellen, sondern um für eine bereits gegebene Software-Engineering-
Methode in der gegebenen Situation mit den vorliegenden Werten gemäß
ihrer Ziele die entsprechende Anpassung zu planen.

Neben dem Ansatz der Methoden-Muster kann in einer weiteren Arbeit
untersucht werden, wie das Planen ohne bereits bekannte Planungsmöglich-
keiten automatisch mit Hilfe von Planungsalgorithmen möglich ist. Es kann
untersucht werden, welche Planungsalgorithmen bereits in der Literatur
vorhanden sind und wie gut diese für den Ansatz eingesetzt werden können.
Sind die Algorithmen aus der Literatur nicht ausreichend, so müssen diese
entsprechend angepasst und erweitert werden.

Des Weiteren ist zu überlegen, ob es möglich ist, aus der Erfahrung zu ler-
nen und entsprechende Algorithmen aus dem maschinellen Lernen einzuset-
zen. Diese können mit bereits vorhandenen Planungsmöglichkeiten und
eventuellen Algorithmen trainiert werden, um anschließend auf eine neue
Situation angemessen zu reagieren.

8.2.3	Kombination	von	Anpassungen	
Bereits in der Evaluierung wurde ein Beispiel für die Kombination zweier
Anpassungen zum Anpassungszeitpunkt vorgestellt und durchgespielt. Hier
war eine Kombination relativ gut möglich, da sich die Ziele sehr ähnlich
waren.

In einer weiteren Arbeit wäre zu untersuchen, welche Kombinationsmög-
lichkeiten es zwischen den verschiedenen Elementen geben kann. Wie be-
reits in Abschnitt 5.4.4 beschrieben ist zu untersuchen, wie es sich verhält,
wenn es sich beispielsweise bei der Kombination von zwei Anpassungen
nicht bloß um gleichartige Elemente, sondern um genau dasselbe Element
an derselben Stelle im Modell handelt. Die eine Anpassung will dieses Ele-
ment löschen, die andere Anpassung will dieses Element austauschen. Ste-
hen diese beiden Anpassungen in Konflikt oder gibt es eine Kombinations-
lösung?

Eine andere zu untersuchende Frage ist, wie zwei oder mehrere Elemente
miteinander verschmolzen werden können, wenn diese nicht von demselben
Typ sind? Wie kann abgewogen werden, welche den höheren Nutzen
bringt? In einer solchen Arbeit wäre ein Kombinationskonzept zu erstellen,
dass die verschiedenen Möglichkeiten betrachtet.

223

8.2.4	Analyse	von	Konflikten	und	Auswirkung	auf	Gesamt‐SEM	
Sowohl in der Pre-Work als auch zum Anpassungszeitpunkt wurde bereits
erwähnt, dass es zwischen Zielen aber auch zwischen geplanten Anpassun-
gen zu Konflikten kommen kann. Ein einfaches Beispiel wurde in der Ana-
lyse gezeigt, wo der Konflikt beachtet werden muss, dass ein Scrum Master
keine Entwicklungsaufgaben übernehmen darf. Neben diesem einfachen
Fall kann es zu wesentlich komplexeren Fällen kommen.

In einer weiteren Arbeit wäre zu überlegen, wie mögliche Konflikte zwi-
schen einzelnen Zielen bereits im Detail in der Pre-Work analysiert werden
können und welche Lösungsmöglichkeiten es geben kann. Sind Konflikte
zwischen den Zielen bekannt, ist die Frage zu klären, ob diese nur möglich
sind, wenn bereits Planungsmöglichkeiten vorhanden sind oder ob und wel-
che Konflikte es geben kann, wenn eine Anpassung erst während der Plan-
Phase erstellt wird. Wie können diese Konflikte aussehen und wie können
diese gelöst werden?

In einem weiteren Schritt kann untersucht werden, wie sich eine Planung
ohne vorherige Planungsmöglichkeiten auf die gesamte Software-
Engineering-Methode auswirkt. Wie bereits in den Abschnitten 5.5.2 „Vari-
antenbestimmung“ und 6.4.1 „Planen einer Anpassung“ sowie in Abbildung
44 beschrieben, muss überprüft werden, wie sich eine Anpassung auf die
gesamte Software-Engineering-Methode auswirkt. Es muss sichergestellt
sein, dass die geplante Anpassung nicht in Konflikt zur restlichen SEM
steht. Dies wäre mit Hilfe von Traceability- und Simulationsalgorithmen
möglich. Dazu muss untersucht werden, welche Algorithmen es bereits gibt
und ob diese für den Ansatz genutzt werden können oder ob sie angepasst
oder erweitert werden müssen.

Ferner ist zu untersuchen, wann eine Variante bzw. Alternativen-Planung
abgeschlossen und überprüft wird, welcher Konflikt eine höhere Priorität
hat. Dies ist nötig um zu verhindern, dass die Planung ohne Planungsmög-
lichkeiten in einen Deadlock läuft. Der aktuelle Vorschlag ist, dass nach
maximal 3 geplanten Alternativen untersucht wird, welcher der Konflikte
die niedrigste Priorität hat, damit eine Anpassung erfolgen kann.

Ein anderer Konflikt der entstehen kann, sind Aufgaben, die zur Zeit der
Anpassung noch nicht beendet sind. Die Frage ist, ob diese Aufgaben zu-
nächst beendet werden oder sofort zu neuen Aufgaben übergegangen wird?
Wie ist die Handhabung mit alten Artefakten, wie wird dieses Wissen gesi-
chert. Im aktuellen Beispiel bei der SEM Scrum ist das Hauptartefakt das
Product Backlog. Da dieses immer erweitert wird oder Einträge gelöscht
oder ausgetauscht werden, findet keine direkte Änderung des Artefakts statt.
Das heißt, das Artefakt wird weder gelöscht noch ausgetauscht. Ein einfa-

224

cher Konflikt bezüglich Aufgaben wurde im letzten Beispiel gezeigt. Dort
wurden zwei Varianten erstellt, die je nach Ausführung gegriffen haben. Es
wäre zu untersuchen, wie dies bei anderen Konflikten aussehen kann und es
wäre zu beurteilen, wann eine Aufgaben, Aktivität etc. beendet wird und
wann die neuen greifen.

8.2.5	Übertragung	des	Ansatzes	auf	andere	Bereiche	
Der Ansatz MAPE-K4SEM ist von verschiedenen Bereichen und Ansätzen
beeinflusst und hat Vorteile beispielsweise der Projektkontrolle, aber auch
die Phasen des Change Managements verinnerlicht. Eine interessante wei-
terführende Frage wäre, ob und wie sich der vorgestellte Ansatz in diese
Bereiche zurückübertragen lässt.

Der Fokus des vorgestellten Ansatzes liegt hier auf der Software-
Engineering-Methode. Es müsste untersucht werden, wie sich der Ansatz
auf den Kontext eines Projektes, also die Projektkontrolle, übertragen lässt.
Dafür müssten die Ziele aus dem magischen Dreieck wie in Abschnitt 2.2.1
beschrieben betrachtet und als entsprechende Ziele für den Ansatz definiert
werden. Sind die Ziele definiert, können die weiteren Schritte entsprechend
aus dem Ansatz abgeleitet werden. Es muss aber zunächst überprüft werden,
ob und wie sich der beschriebene Zyklus der Projektkontrolle abändern und
an die MAPE-Feedbackschleife anpassen lässt.

Eine andere Möglichkeit wäre zu untersuchen, ob sich der Ansatz in einen
ganz anderen Bereich, wie Geschäftsprozesse und deren Überwachung, oder
in die der Produktion übertragen lässt. Gerade die 8D-Methodik zeigt, dass
für das Reklamationsmanagement ein Zyklus ähnlich dem Six Sigma einge-
setzt wird. Die Frage ist: Wäre es möglich eine kontinuierliche Überwa-
chung und schnelle Anpassung mit Hilfe des MAPE-K4SEM in diesem Be-
reich einzusetzen?

Die Qualitätsziele für die Produkte sind bekannt und es müsste bekannt sein,
welche Eigenschaften der Produktionsprozess erfüllen muss, um eine gute
Qualität zu liefern. Ist es möglich, aus diesen Zielen die entsprechenden
Regeln und Metriken sowie Planungsmaßnahmen im Vorfeld abzuleiten?
Wären die Definition der Ziele und entsprechenden Ableitungen der weite-
ren Schritte in diesem Umfeld möglich, so sollte auch die anschließende
Durchführung des MAPE-K mit diesen entsprechenden Werten möglich
sein.

225

 	

226

Literaturverzeichnis	

[AE13] Ahlemann, F., Eckl, C. (Hrsg.): Strategisches Projektmanage-

ment, Springer-Verlag Berlin Heidelberg 2013.

[AM01] Agile Manifesto, www.agilemanifesto.org. (zuletzt besucht:
06.11. 2014).

[Am06] Ambler, S.: The Agile Unified Process (AUP), Ambysoft,
http://www.ambysoft.com/unifiedprocess/agileUP.html, latest
Version 2006 (zuletzt besucht: 10.11. 2014).

[At14] Atlassian: JIRA. https://www.atlassian.com/de/software/jira (zu-
letzt besucht: 10.11. 2014).

[BCR94] Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question
 Metric Approach. In: Encyclopedia of Software Engineering.
John Wiley & Sons, S. 528–532, 1994.

[BK13] Broy, M., Kurhmann,M.: Projektorganisation und Management
 im Software Engineering. Xpert.press, Springer Vieweg, 2013.

[Bo81] Boehm, B.: Software Engineering Economics. Englewood Cliffs:
 Prentice Hall, 1981.

[Bo13] Borger, S.: Resilienz im Projektmanagement. SpringerGabler,
Wiesbaden 2013.

[Br96] Brinkkemper, S.: Method engineering: engineering of
Information systems development methods and tools. In: Infor-
mation and Software Technology, Number 38, pp. 275-280,
2996.

[Br09] Brun et. Al.: Engineering Self-Adaptive Systems through Feed-
back Loops, In: Software Engineering for Self-Adaptive Sys-
tems, Lecture Notes in Computer Science, Volume 5525/2009,
pp. 48-70, Springer Verlag, Heidelberg 2009.

[Ch09] Cheng et. al.: Software Engineering for Self-Adaptive Systems:
A Research Roadmap, In: Software Engineering for Self-
Adaptive Systems, Lecture Notes in Computer Science, Volume
5525/2009, pp. 1-26, Springer Verlag, Heidelberg 2009.

[CGL05] Crespi, V., Galstyan, A., Lerman, K.: Comparative Analysis of
Top-Down and Bottom-Up Methodologies for Multy-Agent

227

System Design. In Proceedings of AAMAS’05, Utrecht, Nieder-
lande, 2005.

[Co02] Cockburn, A.: Agile Software Development. The Agile Soft-
ware Development Series; Pearson Education, Inc. 2002

[De86] Deming, W.E.: Out of the crisis. Center for Advanced Engineer-
ing Study, MIT, Cambridge, MA, 1986.

[DGG95] Dittrich, K.R., Gatiu, S. Geppert, A.: The Active Database Man-
agement System Manifesto: A Rulebase of ADBMS Features.
In: Rules in Database Systems, LNCS, Volume 985, pp. 1-17,
1995.

[Do06] Dobson, S., Denazis, S., Fernandez, A., Gaıti, D., Gelenbe, E.,
Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.:
A survey of autonomic communications. In: ACM Transactions
Autonomous Adaptive Systems (TAAS) 1(2), pp. 223–259,
2006.

[DW99] Dröschel, W., Wiemers, M.: Das V-Modell 97. Der Standard für
die Entwicklung von IT-Systemen mit Anleitung für den Pra-
xiseinsatz. Oldenbourg, München 1999

[EG09] Engels, G., Geisen, S., Sauer, S., Port, O.: Sicherstellen der Be-
trachtung von nicht-funktionalen Anforderungen in SCRUM-
Prozessen durch Etablierung von Feedback. In S. Fischer, E.
Maehle, R. Reischuk (eds.): Informatik 2009 - Im Focus das Le-
ben. Gesellschaft für Informatik (GI) (Bonn), Lecture Notes in
Informatics, vol. 154, pp. 3537-3551, 2009.

[ES10] Engels, G., Sauer, S.: A Meta-Method for Defining Software
Engineering Methods. In: Nagl Festschrift, LNCS 5765, Spring-
er-Verlag Berlin Heidelberg, pp. 411-440, 2010.

[FLE13] Fazal-Baquaie, M., Luckey,M., Engels, G.: Assembly-based
Method Engineering with Method Patterns. Software Enginee-
ring 2013 Workshopband, GI, Köllen Druck+Verlag GmbH,
Bonn, pp. 435-444, 2013.

[Fi10] Fiedler, R.: Controlling von Projekten. Vieweg + Teubner,
GWV Fachverlage GmbH, Wiesbaden 2010.

[GA02] Gernert, C., Ahrend, N.: IT-Management: System statt Chaos –
Ein praxisorientiertes Vorgehensmodell. Oldenbourg Wissen-
schaftsverlag GmbH, München, 2002.

228

[Ga14] Gabler Wirtschaftslexikon, Stichwort: Requirements Enginee-
ring, Springer Gabler Verlag (Herausgeber),
http://wirtschaftslexikon.gabler.de/Archiv/75983/requirements-
engineering-v8.html (zuletzt besucht: 08.11.2014).

[GCS03] Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system depen-
dability through architecture-based self-repair. In: de Lemos, R.,
Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems. LNCS, vol. 2677. Springer, Heidelberg, 2003.

[Ge12] Geisen, S.: Ein Ansatz zur Anpassung von Software-

Engineering-Methoden im laufenden Projekt. In Proceedings of
Software Engineering 2012 (SE 2012) – Doktorandensymposi-
um, Petra Hofstedt, Claus Lewerentz (BTU Cottbus), vol. Report
01/12, pp. 7-12, 2012.

[GIAK] Gesellschaft für Informatik – Arbeitskreis Begriffssammlungen,
„Begriffe und Konzepte der Vorgehensmodellierung“,
http://public.beuth-hochschule.de/~giak/ (zuletzt besucht:
10.11.2014).

[GG12] Geisen, S., Güldali, G.: „Agiles Testen in Scrum“, OnlineSpecial
des ObjektSpektrums, 18. Oktober 2012.

[GH08] Gonzalez-Perez, C., Henderson-Sellers,B.: Metamodelling of
 Software Engineering. John Wiley & Sons, Ltd. 2008.

[Gl08] Gloger, B.: SCRUM. Hanser Fachbuchverlag, München, 2008.

[GLE12] Geisen, S., Luckey,M., Engels, G.: Ein Ansatz zur dynamischen
Qualitätsmessung, -bewertung und Anpassung von Software-
Engineering-Methoden. In: 19. GI-WIVM-Workshop der Fach-
gruppe Vorgehensmodelle im Fachgebiet Wirtschaftsinformatik,
Shaker Verlag, pp. 111-120, 2012.

[He13] Herrmann, A. et al., Requirements Engineering und Projekt-

management. Xpert.press, Springer Vieweg, 2013.

[HP14] Hewlett-Packard Development Company: Quality Center Enter-
prise http://www8.hp.com/de/de/software-solutions/quality-
center-quality-management/ (zuletzt besucht: 10.11.2014).

[HS06] Henderson-Sellers, Method Engineering: Theory and Practice.
In: Information Systems Technology and Its Applications. 5th
International Conference ISTA 2006, D. Karagiannis, H.C.

229

Mayr, Eds. Lecture Notes in Informatics (LNI) – Proceedings,
Volume P-84, pp. 13-23, , Gesellschaft Für Informatik, Bonn,
2006.

[HSR10] Henderson-Sellers, B.; Ralyté, J.: Situational Method Engineer-
ing: State-of-the-Art Review. Journal of Universal Computer
Science,vol. 16, no. 3, pp. 424-478, 2010.

[IBM06] IBM Corporation: An architectural blueprint for autonomic
computing. White Paper 4th edn., IBM Corporation 2006.

[ISO07] ISO/ IEC 24744. Software Engineering – Metamodel for Devo-
lopment Methodologies. Geneva: International Organization for
Standardization/ International Electronical Comission, 2007.

[ISO08] ISO 9001:2008. Qualitätsmanagementsysteme – Anforderungen.
 2008.

[ITA14] it-agile: Was ist agile Softwareentwicklung? http://www.it-
agile.de/wissen/methoden/agilitaet/ (zuletzt besucht: 06.11.
2014).

[JSW11] Jung, B., Schweißer, S., Wappis, J.: 8D und 7STEP – Systema-
tisch Probleme lösen. Carl Hanser, München 2011.

[KA06] Kwak, Y.H.; Anbari, F.T.: Benefits, obstacles, and future of six
sigma approach. In: Technovation, Volume 26, Issues 5-6,
May-June 2006; pp. 708-715.

[KC03] Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
In: IEEE Computer 36(1), 2003, pp. 41–50.

[Kr03] Kruchten, P.:The Rational Unified Process. An Introduction.
Addison-Wesley Longman, Amsterdam, 2003.

[La09] Ladas, C.: Scrumban – Essays on Kanban Systems for Lean
Software Development. Bertrams Print on Demand, 2009.

[La10] Lauer, T.: Change Management – Grundlagen und Erfolgsfakto-
ren, Springer Verlag Berlin Heidelberg, 2010.

[LL10] Ludewig, J.; Lichter, H.: Software Engineering – Grundlagen,
Menschen, Prozesse, Techniken, dpunkt.verlag, Heidelberg,
2010.

[MD89] McCarthy, D.R., Dayal, U.: The Architecture Of An Active Data

230

Base Management System. In: SIGMOD’89, Proceedings of the
1989 ACM SIGMOD international conference on Management
of data, pp.215-224, 1989.

[MN06] Moen, N., Norman, C.: Evolution of the PDCA-Cycle. Erhältlich
 unter: http://pkpinc.com/files/NA01MoenNormanFullpaper.pdf
 (zuletzt besucht: 10.11. 2014).

[MPS08] Müller, H.A., Pezzé, M., Shaw, M.: Visibility of control in
 adaptive systems. In: Second International Workshop on Ultra-
 Large-Scale Software-Intensive Systems (ULSSIS 2008), ICSE
 Workshop, 2008.

[MS02] Mar, K.; Schwaber, K.: Scrum with XP, 2002. Erhältlich unter

http://faculty.salisbury.edu/~xswang/research/papers/serelated/s
crum/scrumxp.pdf (zuletzt besucht: 05.11.2014)

[No14] Noé, M., Change-Prozesse effizient durchführen – Mit Pro-
jektmanagement den Unternehmenswandel gestalten, Spring-
erGabler, Wiesbaden 2014.

[OMG08] Object Management Group: Software & Systems Process Engi-
neering Meta-Model Specification, Version 2.0, 2008.

 [PD99] Paton, N.W., Diaz, O.: Active Database Systems. In: ACM
Computing Surveys, Vol. 31, No. 1, März 1999.

[Qi07] Qiao,Y. et al.: Developing Event-condition-action Rules in Re-
al-time Active Database. In Proceedings of SAC’07, ACM, pp
511-516, Korea, 2007.

[RB07] Rausch, A., Broy, M.: Das V-Modell XT – Grundlagen, Erfah-
rungen und Werkzeuge. dpunkt.verlag, Heidelberg 2007.

[RR01] Ralyté, J., Roland,C.: An Assembly Process Model for Method
Engineering. In: Proceedings of CAiSE 2001, LNCS 2068, pp.
267-283, Springer-Verlag Berlin Heidelberg, 2001.

[Sa11] Sauer, S.: Systematic Development of Model-based Software
Engineering Methods, Dissertation, 2011.

[SB99] van Solingen, R., Berghout, E.: The Goal/Question/Metric Meth-
od: a practical guide for quality improvement of software devel-
opment. McGraw-Hill Publishing Company, Berkshire, Eng-
land, 1999.

231

[SB02] Schwaber, K.; Beedle, M.: Agile Development with Scrum.
Prentice Hall, 2002.

[Sc13] Schreckeneder, B.,C.: Projektcontrolling. Haufe-Lexer GmbH &
Co KG, Freiburg, 2013.

[SH13] Stolzenberg, K., Heberle, K.: Change Management – Veränder-
ungsprozesse erfolgreich gestalten, Springer Verlag Berlin Hei-
delberg, 2013.

[Sn05] Sneed, H. M.: Software-Projektkalkulation, Hanser Fachbuch-
verlag, 2005.

[So07] Ian Sommerville, “Software Engineering”, 8., aktualisierte
Auflage, Pearson Education Limited, 2007.

[SS13] Schwaber, K., Sutherland, J.: The Scrum Guide, the official rule
book. Aktuelle Version: Juli 2013. http://www.scrumguides.org/
(zuletzt besucht: 10.11. 2014)

[ST09] Salehie, M.; Tahvildari, L.. Self-adaptive software: Landscape
and research challenges. ACM Trans. Autonom. Adapt. Syst. 4,
2, Article 14 , 2009.

[TM94] Thomas, M.; McGarry, F.: Top-down vs. Bottom-up process

improvement. IEEE Software, Volume 11, Nr. 4, S. 12-13,
1994.

[Vo13] Voller, R.: Why Projects Fail – Projekte scheitern lassen… aber
richtig. Whitepaper, Trivadis AG, Mai 2013.
http://www.trivadis.com/uploads/tx_cabagdownloadarea/WP_W
hy_Projects_fail_V1.0.pdf (zuletzt besucht: 10.11. 2014)

[Vr03] Vries, C.: Certifying for CMM Level 2 and ISO9001 with
XP@Scrum. In: Proceedings of Agile Development Conference
(ADC‘03), pp. 120-124, IEEE, 2003.

[Wa07] Wallmüller, E.: SPI – Software Process Improvement mit

CMMI, PSP/ TSP und ISO 15504, Hanser Verlag, 2007.

232

Abbildungsverzeichnis	
Abbildung 1 Projektmanagement, Projektkontrolle und SEM sind kaum miteinander
verzahnt 17
Abbildung 2 Verbindung von Projektmanagement/ Projektkontrolle und SEM zu einer
selbst-adaptiven Software-Engineering-Methode 20
Abbildung 3 Aufbau der Arbeit 23
Abbildung 4 Aufbau Kapitel 2 und Übergang zu Kapitel 3 25
Abbildung 5 Begriffsentwicklung Software-Engineering-Methode (SEM) 26
Abbildung 6 Begriffe basierend auf [BK13], [OMG08], [LL10] 28
Abbildung 7 Verschiedene Arten von Software-Engineering-Methoden 32
Abbildung 8 Das magische Dreieck im Projektmanagement nach [Sn05] 37
Abbildung 9 Elemente des Projektmanagements basierend auf [Fi110, AE13] 38
Abbildung 10 Allgemeiner Controlling-Ablauf nach [GA02] 40
Abbildung 11 Der Regelkreis des Controlling basierend auf [GA02] 40
Abbildung 12 Komponenten Controlling-System beruhend auf [GA02] 41
Abbildung 13 Das H.A.P.-Modell nach Bogert [Bo13] mit seinen sechs Dimensionen 43
Abbildung 14 Ansatzpunkte des Change Managements und Ebenen, auf die Veränderungen
wirken, basierend auf [SH13, La10] 46
Abbildung 15 Kernthemen und Faktoren des Change Management basierend auf [La10,
SH13] 48
Abbildung 16 Konfigurationsprozess für situationsspezifische Methoden nach [Br96] 53
Abbildung 17 Vorgehen von Agilen Methoden angelehnt an [ITA134] 54
Abbildung 18 Der PDCA-Zyklus nach [De86, MN06] 57
Abbildung 19 Der DMAIC-Zyklus, das Phasenmodell von Six Sigma basierend auf [KA06]
 58
Abbildung 20 Aufbau Kapitel 3 72
Abbildung 21 Die verschiedene Zyklen im Überblick 74
Abbildung 22 Schlüsselfaktoren der allgemeinen Feedbackschleife basierend auf [Do06,
Ch09, Br09]] 87
Abbildung 23 Rainbow-Framework basierend auf [GCS03] 88
Abbildung 24 Shaw-Feedback-Loop basierend auf [MPS08] 89
Abbildung 25 Autonomic element - MAPE-K feedback loop nach [KC03] 90
Abbildung 26 Aufsplittung der Automatisierung der einzelnen Phasen im MAPE-K nach
[IBM06] 92
Abbildung 27 Aufbau des SE Method Managers 95
Abbildung 28 Anpassung bei einem zu großen Team mit dem SE Method Manager 98
Abbildung 29 State-Chart des SE Method Managers und die „Trigger-Probleme" 102
Abbildung 30 Aufbau Kapitel 4 105
Abbildung 31 Das Schalenmodell inklusive des Ableitungsbaumes 113
Abbildung 32 Framework zur Charakterisierung 117
Abbildung 33 Aufbau Kapitel 5 119
Abbildung 34 Herleitung und Definition der Ziele anhand der SEM und des Kontextes 120
Abbildung 35 Weitere Ableitungen 126
Abbildung 36 Ableitung GQM-Variante linke Seite 127
Abbildung 37 Ableitung GQM-Variante rechte Seite 129
Abbildung 38 Begriffe einer Software-Engineering-Methode (vergl. Abschnitt 2.1.1) 134
Abbildung 39 Team-Split: Aufteilung in zwei Teams und neue Zuordnung 136
Abbildung 40 Split Daily Scrum und Einfügen Scrum of Scrums nach Daily Scrum 137
Abbildung 41Ableitungen der einzelnen Punkte und Zusammenfassung zu einem Block für
die Wissensbasis 145
Abbildung 42 Aufbau von Kapitel 6 147

233

Abbildung 43 Inhalte der Knowledge Base 148
Abbildung 44 Die zwei Hauptbestandteile der Plan-Phase 161
Abbildung 45 Planungsablauf ohne Planungsmöglichkeiten 163
Abbildung 46 Durchführungsschritte zum Anpassungszeitpunkt 165
Abbildung 47 Aufbau Kapitel 7 172
Abbildung 48 Hauptrollen in Quasi-Scrum 174
Abbildung 49 Vereinfachter Ablauf in Quasi-Scrum 175
Abbildung 50 Austausch Scrum Master bei Krankheit, Verlassen des Unternehmens etc. 196
Abbildung 51 Team-Split in Quasi-Scrum bei 16 Personen 197
Abbildung 52 Vereinfachter Ablauf nach Team-Split in Quasi-Scrum 198
Abbildung 53 Quasi-Scrum Kunden-Test-Team und Kunden-Tester 199
Abbildung 54 Quasi-Scrum: zusätzliche Kunden-QS-Tage 200
Abbildung 55 Neue Rollen bezüglich Testen und ein neues Artefakt 201
Abbildung 56 Hinzufügen der Testaktivitäten im Scrum-Ablauf 201
Abbildung 57 Die neuen Rollen in der kombinierten Anpassung - Kunden-Test-Team &
Test-Team 202
Abbildung 58 Die kombinierte Anpassung 203
Abbildung 59 Anpassung auf Instanz-Ebene durch Hinzufügen im Test Sprint Backlog 205
Abbildung 60 Neue Aktivität "Generierung von Testdaten" 205
Abbildung 61 Mit Hilfe der Pre-Work + MAPE-K werden zusätzlich die
Herausforderungen TP1 - TP5 gelöst 218
Abbildung 62 MAPE-K4SEM verzahnt mit Hilfe der selbst-adaptiven Systeme das
Projektmanagement und Software-Engineering-Methoden 219

