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Dissertation Abstract

English title of the dissertation:

Optimization of Sequential Optical Systems with Extended Light Sources

The task of illumination is very important in everyday life. One example is roadway ligh-

ting, where special optics are used for many applications.

The computation of optical surfaces that redistribute the light of a source onto a target sur-

face with a desired distribution is the core question of this thesis.

We establish a solution concept for the determination of an optical system, consisting of an

extended light source, optical surfaces and a target surface.

The extended light source is modelled consequently, taking into account that the extended

light source is defined through a luminance distribution. The result is an integral expression

for the illuminance on the target surface.

Using this formulation, the optical surfaces can be optimized to generate the desired light dis-

tribution. Because only locally convergent optimization routines are considered for this task,

it is important that a good starting solution for the optimization process is used. Therefore,

the approximation of the light source as a point implicates many computation approaches.

Among others a mapping of the light rays from the point light source to points on the target

surface which transforms the light distribution of the point light source into the desired light

distribution can be determined. If it can be concluded that an optical surface regarding the

mapping exists, we call it an optimal mapping that is computed in this thesis using the for-

malism of Monge-Kantorovich.

In summary, the solution concept consists of three steps:

1. Computation of the optimal mapping

2. Calculation of an optical system, fulfilling the optimal mapping

3. Optimization of the optical system regarding the extension of the light source
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Zusammenfassung der Doktorarbeit

Titel der Doktorarbeit:

Optimierung sequentieller optischer Systeme mit ausgedehnter Lichtquelle

Die Beleuchtung spielt in unserem Alltag eine große Rolle. Wie beispielsweise in der Fahr-

bahnbeleuchtung wird diese Aufgabe in vielen Anwendungen durch spezielle Optiken gelöst.

Die Berechnung von Optiken, die die Lichtverteilung der Lichtquelle in eine gewünschte Ver-

teilung auf einer Zielfläche transformieren, ist das Thema dieser Arbeit.

Es wird ein Lösungskonzept für die Bestimmung eines optischen Systems, das aus einer aus-

gedehnten Lichtquelle, den optischen Flächen und der Zielfläche besteht, hergeleitet.

Die ausgedehnte Lichtquelle, deren Leuchtverhalten über eine Leuchtdichteverteilung be-

schrieben wird, wird konsequent modelliert. Das Ergebnis ist ein Integralausdruck für die

generierte Lichtverteilung auf der Zielfläche.

Auf dieser Formulierung aufbauend wird eine Optimierung der Flächen formuliert, um die

gewünschte Lichtverteilung zu erzeugen.

Da nur lokal konvergente Optimierungsmethoden in Frage kommen muss eine gute Startlö-

sung für die Optimierung bestimmt werden. Hierfür liefert die Approximation der Lichtquelle

als Punkt viele Berechnungsansätze. Unter anderem kann eine Zuordnung von Lichtstrahlen

der Punktlichtquelle auf Punkte der Zielfläche bestimmt werden, so dass die Lichtverteilung

der Punktlichtquelle in die gewünschte Lichtverteilung auf der Zielfläche transformiert wird.

Eine solche Zuordnung wird mapping genannt. Falls auf die Existenz von optischen Flächen

zu einem mapping geschlossen werden kann sprechen wir von einem optimalen mapping,

das in dieser Arbeit mit Hilfe des Formalismus von Monge-Kantorovich bestimmt wird.

Zusammenfassend besteht der Lösungsansatz aus drei Schritten:

1. Berechnung eines optimalen mappings

2. Bestimmung des optischen Systems zu dem optimalen mapping

3. Optimierung des optischen Systems für die Ausdehnung der Lichtquelle
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1 Einleitung

Welches ist der Weg, auf dem das Licht sich verteilt, der Ostwind sich verbreitet

über die Erde? (Hiob 38,24)

Schon immer war das Licht Sinnbild des Menschen für Leben und Wohlbefinden, so dass

der Wunsch nach gezielter Beleuchtung der Dunkelheit sehr alt ist. So soll bereits Archime-

des im zweiten Jahrhundert vor Christus mit den fokussierenden Eigenschaften des Parabo-

loiden experimentiert haben und auf diese Weise angreifende Schiffe in Brand gesteckt ha-

ben. Neben diesem Bestreben, Licht möglichst stark zu konzentrieren, zielt die Grundfrage

der Beleuchtung darauf ab, das Licht der Quelle durch die Optik so umzuverteilen, dass eine

gewünschte Lichtverteilung erzeugt wird. So besteht beispielsweise die Aufgabe der Innen-

raumbeleuchtung darin, ein Zimmer angenehm auszuleuchten.

Besonders in dem automobilen Sektor nimmt die Beleuchtung einen sehr großen und we-

sentlichen Teil ein, denn sowohl der Innenraum wie auch die Landschaft müssen beleuchtet

werden und durch Signalfunktionen sollen andere Verkehrteilnehmer auf das Fahrzeug auf-

merksam gemacht werden. Für alle Lichtfunktionen gibt es daher gesetzliche Anforderungen

an die erzeugten Lichtverteilungen, die den Einsatz von speziellen Optiken notwendig ma-

chen.

Wir beschränken uns in dieser Arbeit auf die geometrische Optik, d.h. wir modellieren Licht

durch Strahlen und vernachlässigen die Wellencharakteristik des Lichts. Diese Modellierung

ist zutreffend, wenn die Strukturen der Optik groß sind im Vergleich zur Wellenlänge des

Lichts, was in den automobilen Anwendungen der Fall ist.

Modelliert man zusätzlich die Lichtquelle als Punkt, so gibt es verschiedene Ansätze, wie das

Licht durch Optiken konzentriert und verteilt werden kann. Jedoch ist die Problemstellung

für ausgedehnte Lichtquelle komplexer und nicht geschlossen lösbar.

Zur Veranschaulichung der Thematik wird in Abbildung 1.1 eine Optik dargestellt, die mit ei-

ner LED ein Rechteck homogen beleuchtet. Die Form der Optik lässt erkennen, dass spezielle

Probleme konkret angepasste Optiken notwendig machen.

Die Zielsetzung dieser Arbeit ist es, mathematische Ansätze zur Berechnung, bzw. Opti-

mierung von Optiken herzuleiten, mit denen eine vorgegebene Lichtverteilung erzeugt wird.
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1 Einleitung

Abb. 1.1: Diese Primäroptik (rechts) erzeugt eine homogene Lichtverteilung auf einem Reflektor, damit
dieser ein gleichmäßiges Erscheinungsbild aufweist. Die Form lässt erkennen, dass jedes Be-
leuchtungsproblem eine eigene Lösung benötigt. Links ist zum Größenvergleich eine eine 1
Cent Münze abgebildet.

Wir wollen dieses Problem lösen, indem wir im ersten Schritt die Lichtquelle punktförmig

modellieren. Die berechnete Lösung zu diesem Ansatz soll im zweiten Schritt für eine ausge-

dehnte Lichtquelle optimiert werden.

Zur Herleitung des Lösungsansatzes mit einer Punktlichtquelle stellen wir zuerst verschiede-

ne Ansätze der Literatur vor und leiten anschliessend einen eigenen Ansatz aufbauend auf

den eingeführten Techniken her.

Die Effekte der Ausdehnung der Lichtquelle sollen durch Optimierung der Lösung für eine

Punktlichtquelle reduziert werden. Für eine effektive Optimierung eignen sich herkömmli-

che Simulationsergebnisse nicht, da sie durch zufällige Ergebnisse ein Rauschverhalten ha-

ben, was beispielsweise die Gradientenbildung einer Fehlerfunktion erschwert. Deshalb ist

es notwendig, eine analytische Formel für die erzeugte Lichtverteilung herzuleiten.

Die Ergebnisse der einzelnen Teilschritte des Gesamtkonzeptes sind überzeugend. Der Ap-

proximation der Lichtquelle als Punkt ist zwar im Allgmeinen ungültig, liefert aber in vielen

Problemstellungen sehr gute Resultate, so dass eine Umformulierung der Modellierung für

die Umverteilung der Lichtverteilung von Lasern ebenfalls möglich ist. Die Modellierung mit

ausgedehnter Lichtquelle zeigt gute Resultate für Primäroptiken, d.h. kleine Optiken, die das

Licht einer Quelle für das optische System vorrichten, oder eine homogene Verteilung erzeu-

gen sollen.

Aufgrund des hohen Interesses an optischer Flächenberechnung in der automobilen Indus-

trie wird diese Promotion im Unternehmen Hella KGaA Hueck & Co. durchgeführt.

Aufbau der Arbeit Zunächst wird in der Einleitung das Thema eingeführt und motiviert.

Anschließend folgt ein Grundlagenkapitel, in dem die optischen, lichttechnischen und ma-

thematischen Grundlagen eingeführt werden und eine einheitliche Notation definiert wird.

Im dritten Kapitel werden verschiedene Modellierungen des Beleuchtungsproblems unter
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Punktlichtquellen-Approximation eingeführt. Darauf aufbauend wird ein neuer Ansatz erar-

beitet, der die Bestimmung eines optimalen mappings mit der Berechnung einer zugehörigen

optischen Fläche kombiniert. Wir verstehen unter einem optimalen mapping eine Zuord-

nung von Lichtstrahlen von der Punktlichtquelle auf Punkte des zu beleuchtenden Gebietes,

zu dem eine optische Fläche existiert.

Da es für eine effiziente und korrekte Optimierung der Optik wichtig ist, die erzeugte Licht-

verteilung mit ausgedehnter Lichtquelle direkt zu modellieren, leiten wir in dem vierten Ka-

pitel die entsprechenden Formeln her.

Zur Zusammenfassung der dargestellten Ansätze und Lösungswege wird im fünften Kapitel

ein Gesamtkonzept zur Lösung des Beleuchtungsproblems erarbeitet. Darüber hinaus wird

die numerische Umsetzung der einzelnen Teilschritte erläutert. Dabei kommen Lineare Pro-

grammierung, Freiformflächen, automatisches Differenzieren und Gradientenverfahren zur

Anwendung.

Um die Effizienz und Anwendbarkeit der Modellierung zu zeigen, werden die Verfahren im

sechsten Kapitel auf einzelne konkrete Problemstellungen angewandt. Daneben wird die Mo-

dellierung mit Approximation der Lichtquelle als Punkt für die Umverteilung von Laserlicht

adaptiert.

Abschließend wird im Kapitel Sieben der hergeleitete Lösungsweg zusammengefasst und be-

urteilt.
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2 Grundlagen

Um die verschiedenen Modellierungs- und Lösungsansätze einheitlich einzuführen und zu

diskutieren, werden in diesem Kapitel die notwendigen Definitionen getroffen und physikli-

sche Größen eingeführt. Dazu wird zuerst das behandelte optische System mit den verschie-

denen Elemente beschrieben. Auf dieser Grundlage wird das Abbildungsverhalten analysiert

und schliesslich die verwendeten lichttechnischen Größen eingeführt.

2.1 Die Klasse der zu optimierenden optischen Systeme

In dieser Arbeit behandeln wir sequentielle optische Systeme. Diese bestehen aus einer Licht-

quelle χ, in einer Reihenfolge geordneten optischen Grenzflächen Σi und einer Zielfläche Ψ

(vgl. Abbildung 2.1). Diese Elemente sind abgeschlossene Teilmengen des R3.

Die Lichtquelle χ kann sich in dieser Arbeit sowohl auf eine Punktlichtquelle (Abbildung

2.1a), als auch auf eine ausgedehnte Lichtquelle (Abbildung 2.1b) beziehen. In den einzelnen

Kapiteln der Arbeit wird die jeweils verwendete Modellierung der Lichtquelle eingeschränkt.

Die FlächenΣi sind zwei-dimensionale differenzierbare Untermannigfaltigkeiten desR3, d.h.

sie sind regulär. Die Oberfläche der optischen Flächen sind idealisiert reflektierend oder bre-

chend, d.h. sie weisen keine statistische Rauhigkeit auf und können parametrisiert werden

durch die Funktionen

σΣi :ΠΣi → Σi mitΠΣi ⊂R2 abgeschlossen und (π1
Σi

,π2
Σi

) =:πΣi ∈ΠΣi .

Das Normalenvektorfeld der Fläche Σi wird durch die Parametrisierung definiert durch

~NΣi :ΠΣi → S2,

~NΣi (πΣi ) = NΣi∣∣∣∣NΣi

∣∣∣∣ mit NΣi := ∂

∂π1
Σi

σΣi (πΣi )× ∂

∂π2
Σi

σΣi (πΣi ). (2.1.1)

Die Orientierung des Normalenvektorfeldes hat keinen Einfluss auf spätere analytische Un-

tersuchungen, so dass die regulären Flächen nicht gleich orientiert sein müssen.

Die Zielfläche Ψ ist eine zwei-dimensionale, nicht zwingend differenzierbare Untermannig-
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2 Grundlagen

faltigkeit des R3. Dasselbe gilt für χ, falls eine ausgedehnte Lichtquelle vorliegt. Die Eigen-

schaft der Differenzierbarkeit wird in den jeweiligen Kapitel zusätzlich gefordert. Die Funk-

tionen σχ :Πχ→χ und σΨ : ΠΨ → Ψ sind die Parametrisierungen dieser Flächen, falls sie

benötigt werden.

In der schematischen Abbildung 2.1b werden nur brechende Flächen dargestellt. Es ist genau

so möglich, dass reflektierende Flächen Teil des sequentiellen optischen Systeme sind (vgl. Ab-

bildung 2.1a). Die Bezeichnung sequentiell wird im nächsten Abschnitt 2.2 behandelt, da es

in einem direkten Zusammenhang zu dem Abbildungsverhalten steht.

Σ2

Ψ
Σn

Σ1

χ

(a)

χ

Σ1

Ψ

Σn

σΣn

nχ nΨ

nΣ1
nΣn−1

N1(σ
−1
Σ1

(σΣ1
)) Nn(σ

−1
Σn

(σΣn
))σΣ1

(b)

Abb. 2.1: Schematische Darstellung sequentieller optischer Systeme. (b) Dieses System beinhaltet nur
brechende optische Flächen (a) Dieses System hat als erste optische Fläche einen Reflektor.

2.2 Das Abildungsverhalten

Wir modellieren die Ausbreitung von Licht im Raum entsprechend den Prinzipien der geo-

metrischen Optik als Lichtstrahlen. Ein Lichtstrahl λ ∈ R3 ×S2 besteht aus einem Tupel von

einem Punkt im R3 und einem Richtungsvektor. Die Menge aller Lichtstrahlen bezeichnen

wir mit

Λ :=R3 ×S2.

Für eine beliebige Fläche Σ definieren wir mit

ΛΣ :=Σ×S2

die Menge aller Lichtstrahlen, die von der Fläche Σ ausgehen.

Um den Weg eines Lichtstrahls durch das optische System zu beschreiben benötigt man die
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2.2 Das Abildungsverhalten

Berechnung von Schnittpunkten von Lichtstrahlen mit den optischen Flächen. Diese Schnitt-

punktberechnung definieren wir allgemein mit der Funktion

σ̃Σi :Λ→Σi . (2.2.1)

Je nachdem, ob es in dem jeweiligen Kapitel benötigt wird, bezeichnen wir mit σ̃χ und σ̃Ψ

die Schnittpunktberechnungen mit der Lichtquelle und der Zielfläche. Die Menge

Λ
Σ j

Σi
:= {

λ ∈ΛΣi |σ̃Σ j (λ) ist definiert
}

(2.2.2)

beinhaltet alle Strahlen, die von einer Fläche Σi aus die Fläche Σ j schneiden.

Jede Fläche Σi hat optische Eigenschaften, die die Umlenkung der Lichtstrahlen an der Flä-

che definieren. Aufgrund der Stetigkeit der Normalenvektorfelder kann die Ablenkung der

Lichtstrahlen analytisch berechnet werden. Diese Ablenkung ist sowohl bei der Brechung, als

auch bei Reflektion abhängig von dem Winkel des einfallenden Lichtstrahles zur Flächennor-

malen im Schnittpunkt und unter Umständen von weiteren flächenspezifischen Größen. Wir

beschreiben die Richtungsablenkung eines Lichtstrahls an der Fläche Σi allgemein mit der

Funktion

r edi rΣi : S2 ×S2 → S2, r edi rΣi (~ωi n , ~NΣi ) =~ωout .

Hierbei ist ~ωi n die Richtung des einfallenden Lichtstrahls, ~N die Flächennormale und ~ωout

der Richtungsvektor des umgelenkten Lichtstrahls. Die konkrete Definition der Funktion

hängt davon ab, ob die Grenzfläche reflektierend oder brechend ist und wird in den Abschnit-

ten 2.2.1 und 2.2.1 aufgestellt. Die Umlenkung eines Lichtstrahls λi n := (
p,~ωi n

)
an der opti-

schen Grenzfläche Σi kann zusammenfassend beschrieben werden als Funktion

Redi rΣi : Λ→Λ

Redi rΣi (λi n) =
(
σ̃Σi (λi n),r edi rΣi

(
~ωi n , ~NΣi

(
σ−1
Σi

(
σ̃Σi (λi n)

))))
. (2.2.3)

Das sequentielle1 Raytrace berechnet zwei Arten von Strahlengängen durch das optische Sys-

tem. Es werden also nur Strahlengänge betrachtet, die alle optischen Grenzflächen in der

gleichen Reihenfolge durchlaufen.

1. Forward-Raytrace2: Ein Lichtstrahl λχ wird von der Lichtquelle ausgehend sequentiell

1Die Bezeichnung des Raytraces als sequentiell meint, dass die optischen Flächen entsprechend der Reihenfolge
vorwärts oder rückwärts durchlaufen werden

2siehe Abbildung 2.2a
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2 Grundlagen

durch die optischen Flächen in aufsteigender Reihenfolge bis zum Schnittpunkt mit

der ZielflächeΨ verfolgt. Diese Abbildung

F :Λχ→Ψ

kann mittels Verkettung beschrieben werden durch

F (λχ) = Redi rΣ1 (λχ)︸ ︷︷ ︸
=:λ1

→ Redi rΣ2 (λ1)︸ ︷︷ ︸
=:λ2

→···→ Redi rΣn (λn−1)︸ ︷︷ ︸
=:λn

→ σ̃Ψ(λn)

= σ̃Ψ
(
Redi rΣn

(
Redi rΣn−1

(· · ·(Redi rΣ1 (λχ)
) · · ·))) . (2.2.4)

2. Backward-Raytrace3: Ein Lichtstrahl λΨ wird von der Zielfläche aus sequentiell durch

die nummerierten optischen Flächen bis zum Schnittpunkt mit der Lichtquelle ver-

folgt. Diese Abbildung

R :ΛΨ→χ

kann nur dann sinnvoll verwendet werden, wenn χ eine ausgedehnte Lichtquelle ist.

Das Backward-Raytrace kann ebenfalls durch Verkettung beschrieben werden durch

R(λΨ) = Redi rΣn (λΨ)︸ ︷︷ ︸
=:λn

→ Redi rΣn−1 (λn−1)︸ ︷︷ ︸
=:λn−1

→···→ Redi rΣ1 (λ2)︸ ︷︷ ︸
=:λ1

→ σ̃χ(λ1)

= σ̃χ
(
Redi rΣ1

(
Redi rΣ2

(· · ·(Redi rΣn (λΨ)
) · · ·))) . (2.2.5)

Die Abbildungen F und R können analytisch berechnet werden, falls die Schnittpunktbe-

rechnungen σ̃Σi , σ̃χ und σ̃Ψ durch analytische Formeln gegeben sind.

Es ist häufig von Interesse Strahlengänge zu betrachten, deren Anfangsstrahl durch einen

Punkt auf der ersten optischen Fläche Σ1 (bzw. Σn) und einen Ausgangspunkt x ∈ χ (bwz.

ψ ∈Ψ) definiert wird. In diesen Fällen muss der erste Schnittpunkt nicht berechnet werden.

Wir führen für i ∈ {1,n} die Funktion

λΣi : R3 ×ΠΣi →R3 ×S2

λΣi (p,πΣi ) = (
p,~ωΣi (p,πΣi )

)
mit ~ωΣi (p,πΣi ) := σΣi (πΣi )−p∣∣∣∣σΣi (πΣi )−p

∣∣∣∣ (2.2.6)

ein.

Zur Vereinfachung der Notation verwenden wir für diesen Fall dieselben Bezeichnungen für

die Raytrace-Funktionen. Für den Forward-Raytrace gilt in diesem Fall für x ∈χ undπΣ1 ∈ΠΣ1

3siehe Abbildung 2.2b
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2.2 Das Abildungsverhalten

die Definition

F (x,πΣ1 ) = σ̃Ψ
(
Redi rΣn

(
Redi rΣn−1

(· · ·(Redi rΣ1 (λΣ1 (x,πΣ1 ))
) · · ·))) . (2.2.7)

Der Backward-Raytrace ändert sich für y ∈Ψ und πΣn ∈ΠΣn analog zu

R(y,πΣn ) = σ̃χ
(
Redi rΣ1

(
Redi rΣ2

(· · ·(Redi rΣn (λΣn (y,πΣn ))
) · · ·))) . (2.2.8)

χ

Σ1

Ψ

Σn

Λχ

σ̃Σ1

Λ1
Λn−1 Λn

y = σ̃Ψ(Λn)

σΣn

nχ nΨ

nΣ1
nΣn−1

x

σΣ1
σ̃ΣnNΣ1

(σ̃Σ1
) NΣn

(σ̃Σn
)

(a)

χ

Σ1

Ψ

Σn

x = σ̃χ(Λ1)

σΣn

nχ nΨ

nΣ1
nΣn−1

y
Λn−1

Λ1 ΛΨ

σΣ1
σ̃Σ1

σ̃ΣnNΣ1
(σ̃Σ1

) NΣn
(σ̃Σn

)

Λn

(b)

Abb. 2.2: (a) Darstellung des Forward-raytraces durch ein sequentielles optisches System.
(b) Darstellung des Backward-raytraces durch ein sequentielles optisches System.

2.2.1 Umlenkung der Lichtstrahlen an optischen Grenzflächen

In diesem Unterkapitel soll die Funktion r edi rΣ : S2 ×S2 → S2, die die Umlenkung der Licht-

strahlen an der optischen Grenzfläche Σ beschreibt, analytisch hergeleitet werden. Aufgrund

der Klasse der zu optimierenden optischen Systeme ist die Art der Ablenkung eindeutig zu

definieren. Es werden zwei Fälle unterschieden. Aufgrund der Materialeigenschaft der Grenz-

fläche oder der Medien, die durch diese Fläche berandet werden, gibt es verschiedene Um-

lenkungsverhalten. Es ist möglich, dass der Lichtstrahl reflektiert oder gebrochen wird. Beide

Umlenkungsmöglichkeiten sind in Abbildung 2.3 dargestellt

vektorielles Reflektionsgesetz

Der Richtungsvektor ~ωi n schließt mit dem Normalenvektor ~NΣ an der Auftreffstelle auf der

Fläche Σ (siehe Abbildung 2.3a) den Winkel

α= arccos
(∣∣〈~ωi n , ~NΣ〉

∣∣)
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α

Σ

~NΣ

~ωin

~ωout
α

(a)

α

β

Σ

~NΣ

n1

n2

~ωin

~ωout

(b)

Abb. 2.3: Darstellung des optischen Prinzips der Reflektion und Brechung. (a) Der Lichtstrahl wird an
der optischen Grenzfläche Σ reflektiert. (b) Der Lichtstrahl wird an der optischen Grenzfläche
Σ in das optisch dichtere Medium hineingebrochen.

ein.

Falls Σ reflektierend ist, wird der Lichtstrahl so umgelenkt, dasss der ausfallende Lichtstrahl

~ωout denselben Winkel mit dem ~NΣ einschließt. Die entstehende Forderung lautet

〈~ωi n , ~NΣ〉 !=−〈~ωout , ~NΣ〉.

Darüber hinaus liegt~ωout in der Ebene, die durch~ωi n und ~NΣ aufgespannt wird. Es muss also

für ein µ,ν ∈R gelten

~ωout
!=µ~ωi n +ν~NΣ.

Einsetzen der zweiten Forderung in die erste liefert

〈~ωi n , ~NΣ〉 != −〈~ωout , ~NΣ〉
= −〈µ~ωi n +ν~NΣ, ~NΣ〉
= −µ〈µ~ωi n , ~NΣ〉−ν〈~NΣ, ~NΣ〉
= −µ〈µ~ωi n , ~NΣ〉−ν

⇒ ν = (−1−µ)〈~ωi n , ~N〉.

Dieses Ergebnis liefert

~ωout =µ~ωi n − (1+µ)〈~ωi n , ~NΣ〉~NΣ.
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2.2 Das Abildungsverhalten

Zur Bestimmung von µ beziehen wir uns auf die Forderung, dass Richtungsvektoren Ein-

heitsvektoren sein sollen. Da Einfalls- und Ausfallswinkel identisch sind ist eine hinreichende

Forderung gegeben durch

~ωi n × ~NΣ
!=~ωout × ~NΣ.

Einfügen des Zwischenergebnisses in diese Forderung liefert

~ωi n × ~NΣ = (
µ~ωi n − (1+µ)〈~ωi n , ~NΣ〉~NΣ

)× ~NΣ

= µ
(
~ωi n × ~NΣ

)+ (1+µ)〈~ωi n , ~NΣ〉
(
~NΣ× ~NΣ

)︸ ︷︷ ︸
=0

= µ
(
~ωi n × ~NΣ

)
⇒µ = 1.

Zusammenfassen dieser Ergebnisse liefert das Reflektionsgesetz

r edi r (~ωi n , ~NΣ) =~ωi n −2〈~ωi n , ~NΣ〉~NΣ. (2.2.9)

vektorielles Brechungsgesetz

Licht breitet sich in transparenten Medien mit unterschiedlicher Geschwindigkeit aus. Die

Abhängigkeit der Geschwindigkeit vom Medium wird mittels des Brechungsindex angege-

ben. Sei c0 die Lichtgeschwindigkeit im Vakuum und ci die Lichtgeschwindigkeit im Medium

i. Der Brechungsindex beschreibt die inverse relative Lichtgeschwindigkeit im Medium be-

züglich c0

ni := c0

ci
.

Die Veränderung der Geschwindigkeit des Lichts an einer optischen Grenzfläche ändert die

Richtung des Lichtstrahls. In Abbildung 2.3b sieht man die Brechung des Strahles ~ωi n zur

Flächennormalen ~NΣ hin, der vom optisch dünneren Medium 1 ins optisch dichtere Medium

2 gebrochen wird. Das Snelliussche Brechungsgesetz

sin(α)

sin(β)
= c1

c2
= n2

n1
=: n (2.2.10)

beschreibt die Beziehung zwischen den Winkeln α und β. Auf Grundlage dieses einfachen

physikalischen Gesetzes kann nun die vektorielle Änderung des Lichtstrahls an der Grenzflä-

che hergeleitet werden. Der Lichtstrahl ~ωout liegt in der durch die Einfallsrichtung ~ωi n und

der Flächennormale ~NΣ aufgespannten Ebene. Deshalb ergibt sich ~ωout als Linearkombina-
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2 Grundlagen

tion der Vektoren ~ωi n und ~NΣ:

~ωout =µ~ωi n +ν~NΣ

Einsetzen von sin(α) = ||~ωi n × ~NΣ|| und sin(β) = ||~ωout × ~NΣ|| in die Gleichung (2.2.10) liefert

n2

n1
=

∣∣∣∣~ωi n × ~NΣ

∣∣∣∣∣∣∣∣~ωout × ~NΣ

∣∣∣∣ =
∣∣∣∣~ωi n × ~NΣ

∣∣∣∣∣∣∣∣(µ~ωi n +ν~NΣ)× ~NΣ

∣∣∣∣
=

∣∣∣∣~ωi n × ~NΣ

∣∣∣∣
||µ(~ωi n × ~NΣ)+ν (~NΣ× ~NΣ)︸ ︷︷ ︸

=0

|| =
1

µ

⇒µ = n1

n2
= n−1 (2.2.11)

Da ~ωout ein Richtungsvektor ist, kann die Forderung

1 = ‖~ωout‖2 = ‖n−1~ωi n +ν~NΣ‖2 = ν2 +2νn−1〈~NΣ,~ωi n〉+n−2

aufgestellt werden. Auflösen der Gleichung nach ν liefert:

ν=−n−1〈~ωi n , ~NΣ〉+
√

n−2 · 〈~ωi n , ~NΣ〉2 +1−n−2.

Der Ausdruck unterhalb der Wurzel ist negativ, falls der kritische Winkel überschritten wird,

d. h., falls

|〈~ωi n , ~NΣ〉| >
√

1−n−2 = cos(arcsin(n−1)).

In diesem Fall tritt Totalrefektion ein. Das heißt, dass der Lichtstrahl nicht gebrochen, son-

dern reflektiert wird. Da wir sequentielle optische Systeme betrachten, gilt für so einen Licht-

strahl in diesem Fall, dass er nicht auf die Zielfläche auftrifft, da die Reihenfolge der optischen

Flächen nicht eingehalten wird. Im Regelfall trifft so ein Strahl auch nicht auf die Zielfläche,

jedoch kommen Situationen vor, in denen der Strahl chaotisch durch das optische System

vagabundiert und schließlich doch noch auf die Zielfläche trifft. Diese Strahlengänge werden

in sequentiellen Raytracern nicht berücksichtigt.

Zusammenfassen dieser Ergebnisse liefert das vektorielle Brechungsgesetz

r edi r (~ωi n , ~NΣ,n) =
n−1 ·~ωi n +ν~NΣ, falls

∣∣〈~ωi n , ~NΣ

〉∣∣<p
1−n−2

~ωi n −2〈~ωi n , ~NΣ〉~NΣ, sonst Totalreflexion.
(2.2.12)

Auch bei kleineren Auftreffwinkeln tritt ein weiterer Effekt auf, der in der Modellierung der

Problemstellung von Bedeutung sein wird. Dieser Effekt wird Fresnelsche Reflektion genannt

12



2.3 Grundlagen der Differentialgeometrie

und beschreibt das Verhalten, dass ein Strahl gebrochen wird, dabei jedoch ein Teil der Strah-

lung auch immer reflektiert wird, so dass die Energie des Strahles durch die Brechung ab-

nimmt. Die hier verwendete Formel

G(~ωi n , ~NΣ) =
0.5 · (G2

1 +G2
2

)
, falls

∣∣〈~ωi n , ~NΣ

〉∣∣<p
1−n−2

1, sonst.
(2.2.13)

mit G1(~ωi n , ~NΣ) = ni n ·〈~ωout , ~NΣ

〉−nout ·
〈
~ωi n , ~NΣ

〉
ni n ·〈~ωout , ~NΣ

〉+nout ·
〈
~ωi n , ~NΣ

〉
und G2(~ωi n , ~NΣ) = nout ·

〈
~ωout , ~NΣ

〉−ni n ·〈~ωi n , ~NΣ

〉
nout ·

〈
~ωout , ~NΣ

〉+ni n ·〈~ωi n , ~NΣ

〉
bezieht sich auf unpolarisiertes Licht (siehe [8, Abschnitt 5]).

2.3 Grundlagen der Differentialgeometrie

Die Fragestellung dieser Arbeit beschäftigt sich mit optischen Flächen. Um diese mathema-

tisch korrekt zu modellieren werden in der Folge differentialgeometrische Aussagen benötigt,

die in diesem Kapitel kurz eingeführt werden.

Der Hauptsatz der Differential- und Integralrechnung nach Lebesgue ermöglicht das Ablei-

ten von mehrdimensionalen Integralgleichungen. Als Orientierung dient [1, p. 363], sowie die

Zusammenfassung in Diplomarbeit [20, p.23-25].

Theorem 2.1 (Lebesgue Differentiationstheorem). Sei λ das Lebesgue-Maß auf Rn und f ∈
L1(Rn) bezüglich des Maßes λ. Die Integralfunktion G(A) := ∫

A f dλ ist ein Funktional auf der

Borel-σ-Algebra von Rn . Die Ableitung dieser Integralfunktion an der Stelle x ∈Rn ist definiert

durch

G ′(x) := lim
Bx→x

1

|Bx |
∫

Bx

f dλ,

wobei Bx n-dimensionale Kugeln mit Mittelpunkt in x sind, deren Durchmesser gegen 0 kon-

vergiert.

Die Ableitung existiert für fast alle x ∈Rn mit

G ′(x) = f (x)

Im Verlauf dieser Arbeit werden Integrale mit der Sphäre S2 als Integrationsgebiet aufge-

stellt. S2 ist eine 2-dimensionale Untermannigfaltigkeit im R3. Wir definieren den Begriff der

Untermannigfaltigkeit.

13



2 Grundlagen

Definition 2.1 (Untermannigfaltigkeit und reguläre Parametrisierung). Seien m ≤ n mit m,n ∈
N, X ⊂Rn und x ∈ X , so dass eine offene Menge U ⊂Rm und eine injektive und stetig differen-

zierbare Abbildung f : U → Rn existiert. Falls f (U ) ⊂ X eine in X offene Umgebung von x und

D f ( f −1(x)) injektiv ist, so heißt X eine Untermannigfaltigkeit der Dimension m und f heißt

reguläre Parametrisierung an x.

Um Funktionen auf Untermannigfaltigkeiten zu integrieren definieren wir nun die Gram-

sche Determinante.

Definition 2.2 (Gramsche Determinante). Sei X ⊂Rn eine m-dimensionale Untermannigfal-

tigkeit und f : U → X eine reguläre Parametrisierung mit U ⊂Rm . Die Gramsche Determinante

F f :Rm →R bezüglich f wird definiert durch

F f (u) = det
(
D f (u)T ·D f (u)

)
. (2.3.1)

Der Operator D bezeichet die Jakobi-Matrix der Abbildung f . Die Eigenwerte der Matrix sind

positiv, der Rang ist m und damit gilt F f (u) > 0.

Theorem 2.2 (Integration über Untermannigfaltigkeiten). Sei X ⊂ Rn eine m-dimensionale

Untermannigfaltigkeit. Es gibt genau ein Elementarintegral λX auf X , so dass für jede reguläre

Parametrisierung φ : U → X und jedes ϕ ∈Cc (X ) mit

{
x ∈ X | ϕ(x) 6= 0

}⊂φ(U )

die Gleichung ∫
X

ϕ(x) dλX (x) =
∫
U

ϕ(φ(u))
√
Fφ(u) dλm(u) (2.3.2)

gilt.

Lemma 2.1. Sei f :R2 →R3 mit f := ( f1, f2, f3)T eine reguläre Parametrisierung. Für die gram-

sche Determinante gilt:

F f (u, v) = ∥∥∂u f ×∂v f
∥∥2 (2.3.3)
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2.4 Definition optischer Größen

Beweis. Aufstellen der gramschen Determinante führt zu

F f (u, v) = det


(
∂u f1 ∂u f2 ∂u f3

∂v f1 ∂v f2 ∂v f3

)
·


∂u f1 ∂v f1

∂u f2 ∂v f2

∂u f3 ∂v f3




= det

(
∂u f 2

1 +∂u f 2
2 +∂u f 2

3 ∂u f1∂v f1 +∂u f2∂v f2 +∂u f3∂v f3

∂u f1∂v f1 +∂u f2∂v f2 +∂u f3∂v f3 ∂v f 2
1 +∂v f 2

2 +∂v f 2
3

)
= ∂u f 2

1 ∂v f 2
2 +∂u f 2

1 ∂v f 2
3 +∂u f 2

2 ∂v f 2
1 +∂u f 2

2 ∂v f 2
3 +∂u f 2

3 ∂v f 2
1 +∂u f 2

3 ∂v f 2
2

+ −2∂u f1∂v f1∂u f2∂v f2 −2∂u f1∂v f1∂u f3∂v f3 −2∂u f2∂v f2∂u f3∂v f3

= (∂u f1∂v f2 −∂u f2∂v f1)2 + (∂u f1∂v f3 −∂u f3∂v f1)2 + (∂u f2∂v f3 −∂u f3∂v f2)2

= ‖∂u f ×∂v f ‖2

2.4 Definition optischer Größen

Die korrekte physikalische und physiologische Beschreibung von Lichtquellen ist wichtig für

das Verständnis des optischen Problems, das in dieser Arbeit behandelt wird. Wir führen zu-

erst die strahlungsphysikalischen Größen ein, von denen die optischen Größen abgeleitet

werden. Wir orientieren uns an [18, p.69-72].

2.4.1 Strahlungsphysikalische Größen

A
Ω

r

Abb. 2.4: Schematische Darstellung der Raumwinkels.

Die zentrale charakteristische Größe einer Strahlungsquelle ist die Strahlungsleistung, oder

auch Strahlungsfluss. Diese Größe wird durch den Quotienten aus Energie pro Zeit beschrie-
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2 Grundlagen

ben und mit Φe bezeichnet und in der SI-Einheit Watt [W = J s−1] angegeben. Der Strah-

lungsfluss breitet sich von der Strahlungsquelle in den Raum aus. Die Strahlungsquellen sind

in der Realität ausgedehnt Geometrien, die über die Oberfläche χ Strahlung von jedem Punkt

emittieren.

In vielen Problemen der Optik sind die Dimensionen der optischen Systeme derart, dass die

Größe der Lichtquelle gegenüber den Optiken sehr klein ist, so dass die Ausdehnung ver-

nachlässigt wird. Diese Approximation eröffnet ein breites Spektrum an Modellierungsmög-

lichkeiten in der geometrischen Optik. In diesen Fällen wird die Ausdehnung der Strahlungs-

quelle vernachlässigt und als Punkt approximiert. Mit Hilfe dieser Modellierung kann die Ab-

strahlung der Lichtquelle auf der Menge der Raumrichtungen, den Raumwinkeln, beschrie-

ben werden. Der Raumwinkel Ω wird in der Größe Steradiant (sr ) gemessen. Diese Einheit

beschreibt eine normiertes Flächenäquivalent auf einer Kugel. Sei die Fläche A auf einer Ku-

gel mit Radius r von einer Strahlungsquelle beleuchtet (siehe Abbildung 2.4), so ist der Raum-

winkel die normierte Fläche

Ω= A

r 2 sr ≤ 4πsr. (2.4.1)

Der Raumwinkel ist äquivalent zu der Winkelangabe in Bogenmaß in der zweidimensionalen

Geometrie.

Alle weiteren strahlungsphysikalischen Größen sind differentielle Größen des Strahlungsflus-

ses.

Strahlstärke Vernachlässigt man die Ausdehnung der Strahlungsquelle, so kann die Aus-

breitung der Strahlung unabhängig von Abständen angegeben werden, indem man die

Intensität Ie (~ω) in
[
W sr−1

]
pro Raumrichtung~ω ∈ S2 betrachtet (siehe Abbildung 2.5a).

Diese Größe wird Strahlstärke genannt mit der differentiellen Definition

Ie (~ω) := lim
dΩ~ω→{~ω}

dΦe

dΩ~ω

[
W

sr

]
mit dΩ~ω ∈ S2 messbar, ~ω ∈Ω~ω.

Bestrahlungsstärke Trifft der Strahlungsfluss der Strahlungsquelle auf eine FlächeΣ, so wer-

den die Punkte σ der Fläche unterschiedlich intensiv bestrahlt. Man spricht hier von

der Bestrahlungsstärke Be (σ) in
[
W m−2

]
, einer differentiellen Größe des Strahlungs-

flusses definiert durch

Be (σ) := lim
d Aσ→{σ}

dΦe

d Aσ

[
W

m2

]
mit d Aσ ⊂Σmessbar, σ ∈ Aσ. (2.4.2)

Die geometrischen Zusammenhänge werden in Abbildung 2.5a dargestellt. Falls χ eine

Punktlichtquelle ist kann ein Zusammenhang mit der Strahlstärke hergestellt werden:
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2.4 Definition optischer Größen

Wir betrachten den Lichtstrahl von χ in Richtung ~ω mit dem Auftreffpunkt σ . Mit r

bezeichnen wir den Abstand zwischen der Punktquelle und σ und ~NΣ ist der Norma-

lenvektor der Fläche Σ an der Stelle σ.

Im Grenzübergang d Aσ → {σ} kann das infinitesimale Flächenstück d Aσ als planar

angenommen werden. Sei dΩσ der Raumwinkel, der von der Strahlungsquelle aus das

Flächenstück d Aσ beleuchtet. Durch Projektion des planaren Flächenstücks d Aσ in

Richtung ~ω und aufgrund der Definition des Raumwinkels in Gleichung (2.4.1) gilt

d A ≈ dΩσr 2∣∣〈~ω, ~NΣ(σ)〉∣∣ . (2.4.3)

Diese geometrischen Zusammenhänge können in Abbildung 2.5a nachvollzogen wer-

den. Wenden wir diese Grenzwertbetrachtung auf die Bestrahlungsstärke an, so ergibt

sich

Be (σ) = lim
d Aσ→{σ}

dΦe,σ

d Aσ
= lim

dΩ~ω→{~ω}

dΦe,σ
∣∣〈~ω, ~NΣ(σ)〉∣∣

dΩσr 2 = Ie (~ω)

∣∣〈~ω, ~NΣ(σ)〉∣∣
r 2

[
W

m2

]
.

Strahldichte Die Strahlungsquelle ist in der Realität nicht punktförmig, sondern ausgedehnt.

Die Strahlstärke Ie (~ω) für ein~ω ∈ S2 ist somit ein integrierter Wert einer zusätzlich vom

Ort x ∈χ abhängigen Größe Le :χ×S2 →R+, die Strahldichte (in
[
W cd−1 m−2

]
).

Strahlungsquellen mit unterschiedlicher Größe, aber gleichem Strahlungsfluss erschei-

nen umso heller, je kleiner die strahlende Fläche ist (vgl. [18, S.70]).

Im Umkehrschluss sieht man, dass für eine planare Strahlungsquelle χ, von der in je-

dem Punkt Strahlung der gleichen Helligkeit Le in den Raum S2 emittiert wird, die ge-

nerierte Strahlstärke Ie (~ω) proportional zu der aus ~ω gesehenen Fläche ‖χ‖〈~Nχ(x),~ω〉
der Quelle ist (siehe Abbildung 2.5b). Für die Definition der Strahldichte wird also in

diesem Fall

Ie (~ω) = Le ||χ||〈~Nχ,~ω〉

gefordert. Diese Erkenntnis führt uns für allgemeine Strahlungsquellen zu der Defini-

tion

Le (x,~ω) := lim
dχx→{x}

d Ie (~ω)

dχx〈~Nχ(x),~ω〉 .

Da das Skalarprodukt 〈~Nχ(x),~ω〉 nicht von dχx abhängig ist, kann es als Konstante aus

dem Grenzwert gezogen werden:

Le (x,~ω)〈~Nχ(x),~ω〉 = lim
dχx→{x}

d Ie (~ω)

dχx
. (2.4.4)
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2 Grundlagen

Eine ausgedehnte Strahlungsquelle wird durch die Oberfläche χ mit der charakteristischen

Strahldichtefunktion Le,χ : χ×S2 → R+ definiert. Eine punkförmige Strahlungsquelle hinge-

gegen wird durch eine Strahlstärkefunktion Ie : S2 →R+ beschrieben. Zu einer ausgedehnten

Strahlungsquelle mit Strahldichtefunktion Le,χ wird die zugehörige Strahlstärkefunktion be-

rechnet durch

Ie,χ(~ω) =
Ï
χ

Lχ(x,~ω)
〈
~ω, ~Nχ(x)

〉
d x. (2.4.5)

Wir stellen den Zusammenhang der vier strahlungsphysikalischen Größen nochmal in fol-

gendem Beispiel her. Zur Vereinfachung der Formeln, bzw. besserer geometrischer Vorstel-

lung wollen wir noch eine Hilfsbetrachtung anstellen.

Lemma 2.2. Für die gramsche Determinante F der Funktion ~ωΣ(x, ·) :ΠΣ→ S2 gilt

F(~ωΣ)(x,πΣ) =F(σΣ)(πΣ)

(
〈~NΣ(πΣ),~ωΣ(πΣ)〉
||σΣ(πΣ)−x||2

)2

mit

~NΣ(πΣ) =
∂
∂π1

Σ

σΣ(πΣ)× ∂
∂π2

Σ

σΣ(πΣ)∥∥∥ ∂
∂π1

Σ

σΣ(πΣ)× ∂
∂π2

Σ

σΣ(πΣ)
∥∥∥

Beweis. Die Funktion ~ωΣ :ΠΣ→ S2 ist eine Verkettung der Funktion

α :Σ→ S2 mit α(σ) := σ−x

‖σ−x‖

und σ :ΠΣ→Σmit ~ωΣ =α◦σ. Wir betrachten ein πΣ ∈Πc
Σ mit einer Umgebung Πc

Σ ⊂ΠΣ mit

‖Πc
Σ‖ = c für 0 < c ≤ ‖ΠΣ‖. Das Gramsche Determinante von~ωΣ kann nun durch Integraltran-

formation aufgeteilt werden.Ï
Πc
Σ

√
F(~ωΣ)(x,πΣ)dπΣ =

Ï
~ωΣ(Πc

Σ)

d~ω=
Ï

α(σΣ(Πc
Σ))

d~ω

=
Ï

σΣ(Πc
Σ)

|detDα(σ)|dσ

=
Ï
Πc
Σ

√
F(σΣ)(πΣ)|detDα(σΣ(πΣ))|dπΣ

Aufgrund des Lebesgue Differentiationstheorems (Theorem 2.1) können die Integranden ver-
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dAσ = dA′
〈~ω, ~Nσ〉

σ

dΩ

dA′
σ ≈ dΩr2

~ω

~Nσ

dA′
dΦe,σ =

∫
dΩ

Ie(~ω)d~ω

Be(σ) =
dΦe,σ〈~ω, ~Nσ〉

dΩr2

Ie(~ω) =
dΦe,σ

dΩ

(a)

dχx

~Nχ(x)

~ωdχ′
x

Le(x, ~ω) =
Ie(~ω)

dχ′
x

= Ie(~ω)

dχx〈 ~Nχ(x),~ω〉
(b)

Abb. 2.5: Schematische Darstellung der Bestrahlungsstärke und Strahldichte. (a) Infinitesimale Herlei-
tung der Bestrahlungsstärke und Strahlstärke. (b) Infinitesimale Definition der Strahldichte.
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glichen werden und es gilt

F(~ωΣ)(x,πΣ) =F(σΣ)(πΣ)|detDα(σΣ(πΣ))|2.

Es bleibt zu zeigen, dass für σc
Σ :=σΣ(πc

Σ)

|detDα(σc
Σ)| = 〈~NΣ(σc

Σ),α(σc
Σ)〉

||σc
Σ−x||2

gilt. Für Σc :=σΣ(Πc
Σ) undΩc :=α(Σc ) gilt

‖Ωc‖ =
Ï
Σc

|detDα(σ)|dσ

Die Grenzwertbetrachtung c → 0 liefert

‖Ωc‖ ≈ ‖Σc‖|detDα(σ)|⇒ |detDα(σ)| ≈ ‖Ωc‖
‖Σc‖ .

Einsetzen des geometrischen Zusammenhangs aus Gleichung (2.4.3) für ‖Σc‖ liefert die Be-

hauptung.

Beispiel 2.1 (Zusammenhang der strahlungsphysikalischen Größen). Gegeben sei die kon-

stante Strahldichte-Verteilung Le :χ×S2 → 1 mit planarer Lichtquelle und ||χ|| = 1.

Die Strahlstärke Ie (~ω) mit ~ω ∈ S2 ergibt sich nach Gleichung (2.4.4) durch Integration über χ

durch

Ie (~ω) =
Ï
χ

Le (x,~ω)︸ ︷︷ ︸
=1

〈
~ω, ~Nχ

〉︸ ︷︷ ︸
=cos

(
]

(
~ω,~Nχ

))d x = cos
(
]

(
~ω, ~Nχ

))Ï
χ

d x

︸ ︷︷ ︸
=1

= cos
(
]

(
~ω, ~Nχ

))
. (2.4.6)

Der Strahlungsfluss kann nun durch Integration der Strahlstärke berechnet werden. Dabei

nehmen wir an, dass die Strahlungsquelle nur in den Halbraum Ω, in den der Normalenvek-

tor ~Nχ zeigt, abgegeben wird. Mit (φ,θ) bezeichnen wir die Polarkoordinaten mit Polachse ~Nχ.

Der Winkelφ ist der Azimuthalwinkel und θ der Polarwinkel. Die Gramsche Determinante der
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Parametrisierung über Polarwinkel ist si n(θ).

Φe =
Ï
Ω

Ï
χ

Le (x,~ω)︸ ︷︷ ︸
=1

〈
~ω, ~Nχ

〉
d xd~ω=

Ï
Ω

〈
~ω, ~Nχ

〉Ï
χ

d x

︸ ︷︷ ︸
=1

d~ω

=
Ï
Ω

cos
(
]

(
~ω, ~Nχ

))
d~ω=

π∫
−π

π
2∫

0

cos(θ)sin(θ)dθdφ

= 2π

[
−1

2
cos(θ)

] π
2

0
=π. (2.4.7)

Der Strahlungsfluss Φe (Σ), der von der Quelle auf eine Fläche Σ trifft, kann für x ∈ χ analog

mit der zusätzlichen Transformation ~ωΣ(x, ·) :ΠΣ→ S2 berechnet werden.

Zur Vereinfachung der Formeln leiten wir noch eine Eigenschaft der Transformation her. Der

Winkelbereich, durch den vom Punkt x ∈ χ aus die Fläche Σ beleuchtet wird bezeichnen wir

mitΩ(x,Σ). Aufgrund der Gleichung (2.4.4) wird der StrahlungsflussΦe durch

Φe =
Ï
χ

Ï
Ω(x,Σ)

Le (x,~ω)︸ ︷︷ ︸
=1

〈
~ω, Nχ

〉
d~ωd x

berechnet. Wenden wir die Transformation~ωΣ(x, ·) :ΠΣ→Σ und Lemma 2.2 an, so vereinfacht

sich diese Formel mit der vereinfachten Schreibweise ~ωΣ für ~ωΣ(x,πΣ) zu

Φe =
Ï
χ

Ï
ΠΣ

Le (x,~ωΣ)
〈
~ωΣ, ~Nχ

〉√
F(~ωΣ)dπΣd x

=
Ï
χ

Ï
ΠΣ

Le (x,~ωΣ)
〈
~ωΣ, ~Nχ

〉 〈~NΣ(πΣ),~ωΣ〉
||σΣ(πΣ)−x||2 dπΣd x.

Die Berechnung der Bestrahlungsstärke Be (σ(πσ)) mit πσ ∈ ΠΣ entsprechend der Definition

(2.4.2) führt zu

Be (σ(πσ)v) = lim
d Aσ⊂ΠΣ→{σ}

1

||d Aσ||
Ï
χ

Ï
d Aσ

Le (x,~ωΣ)
〈
~ωΣ, ~Nχ

〉 〈~NΣ(πΣ),~ωΣ〉
||σΣ(πΣ)−x||2 dπΣd x.

Leicht kann eine Majorante des inneren Integrals über d Aσ angegeben werden, da ΠΣ abge-

schlossen ist und somit ein Maximum aller Terme des Integranden existiert. Durch Anwendung
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des Satzes der majorisierten Konvergenz folgt

Be (σ(πσ)) =
Ï
χ

lim
d Aσ⊂ΠΣ→{σ}

1

||d Aσ||
Ï

d Aσ

Le (x,~ωΣ)
〈
~ωΣ, Nχ

〉 〈~NΣ(πΣ),~ωΣ〉
||σΣ(πΣ)−x||2 dπΣd x.

Aufgrund des Lebesgue Differentiationstheorems (Theorem 2.1) ist der Grenzwert des Integran-

den fast überall definiert und durch die Integration folgt für die Bestrahlungsstärke der Wert

Be (σ(πσ)) =
Ï
χ

Le (x,~ωΣ(x,πσ))
〈
~ωΣ(x,πσ), Nχ

〉 〈~NΣ(πσ),~ωΣ(x,πσ)〉
||σΣ(πσ)−x||2 d x. (2.4.8)

2.4.2 Bewertung der strahlungsphysikalischen Größen

Strahlung ist Energie, die durch elektromagnetische Wellen in allen Wellenlängen von einer

Quelle emittiert wird. Aufgrund der Wellenlängenabhängigkeit sind die bisher eingeführten

strahlungsphysikalischen Größen integrierte Werte über die Wellenlänge. Der Strahlungsfluss

kann als Integral

Φe =
∞∫

0

∂Φe

∂λ
(λ) dλ.

dargestellt werden. Das menschliche Auge nimmt die Strahlung in Abhängigkeit von der Wel-

lenlänge wahr. Diese sprektrale Empfindlichkeit wird durch die Hellempfindlichkeitskurve

V :]0,∞[→R+ beschrieben. Diese Funktion mit Maximum bei ca. 555nm gibt den Anteil der

vom Auge in Abhängigkeit von der Wellenlänge der Strahlung wahrgenommenen Strahlungs-

leistung an. Um also zu dem geeigneten Lichtbegriff zu gelangen, müssen die strahlungsphy-

sikalischen Größen noch entsprechend dieser Empfindlichkeit bewertet werden.

Wir definieren nun die lichttechnischen Größen durch die Bewertung der strahlungsphysi-

kalischen Größen.

Lichtfluss Der vom Menschen wahrgenommene Anteil des Strahlungsflusses wird als Licht-

fluss Φ bezeichet, der proportional ist zu

Φ≈
∞∫

0

∂Φe

∂λ
(λ)V (λ)dλ. (2.4.9)

Der Lichtfluss wird in der Größe Lumen[l m] gemessen. Ein lumen repräsentiert die

lichttechnische Leistung einer Kerzenflamme. Für die spektrale Verteilung von Son-

nenlicht gilt der Proportionalitätsfaktor Km := 683 l m/W . Wir definieren den Licht-

22



2.4 Definition optischer Größen

stromΦ durch

Φ= Km

∞∫
0

∂Φe

∂λ
(λ)V (λ) dλ. (2.4.10)

Lichtstärke Vernachlässigt man die Ausdehnung der Strahlungsquelle, so kann die Ausbrei-

tung der Strahlung unabhägnig von Abständen angegeben werden, indem man die In-

tensität I (~ω) in cd := [
lm sr−1

]
pro Raumrichtung ~ω ∈ S2 betrachtet (siehe Abbildung

2.5a). Diese Größe wird Lichtstärke genannt und differentiell definiert durch

I (~ω) := lim
dΩ~ω→{~ω}

dΦ

dΩ~ω

[
l m

sr

]
mit dΩ~ω ∈ S2 messbar, ~ω ∈Ω~ω.

Beleuchtungsstärke Trifft der Lichtfluss der Strahlungsquelle auf eine Fläche Σ, so werden

die Punkte σ der Fläche unterschiedlich intensiv bestrahlt. Man spricht hier von der

Beleuchtungsstärke B(σ) in l x := [
lm m−2

]
, einer differentiellen Größe des Lichtfluss

definiert durch

B(σ) := lim
d Aσ→{σ}

dΦ

d Aσ

[
lm

m2

]
mit d Aσ ⊂Σmessbar, σ ∈ Aσ.

Die geometrischen Zusammenhänge sind in Abbildung 2.5a dargestellt. Analog zur

Herleitung der Bestrahlungsstärke kann die Beleuchtungsstärke bei einer Punktlicht-

quelle angegeben werden durch

B(σ) = I (~ω)
〈~ω, ~NΣ(σ)〉

r 2

[
lm

m2

]
. (2.4.11)

Leuchtdichte Realte Lichtquellen sind nicht punktförmig, sondern ausgedehnt. Die Strahl-

stärke Ie (~ω) für ein ~ω ∈ S2 ist somit ein integrierter Wert einer zusätzlich vom Ort x ∈ χ
abhängigen Größe L :χ×S2 →R+, der Leuchtdichte (in

[
cd m−2

]
).

Analog zur Herleitung der Strahldichte erhalten wir die Definition

L(x,~ω) := lim
dχx→{x}

d I (~ω)

dχx〈~Nχ(x),~ω〉 .

Das Skalarprodukt 〈~Nχ(x),~ω〉 ist keine differentielle von dχx−abhängige Größe und

kann aus dem Grenzwert gezogen werden, so dass gilt

L(x,~ω)〈~Nχ(x),~ω〉 = lim
dχx→{x}

d I (~ω)

dχx
.
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2 Grundlagen

2.5 Definition des allgemeinen Beleuchtungsproblems

In einem sequentiellen optischen System (siehe Abschnitt 2.1) sollen die Flächen Σi mit i =
1, . . . ,n so bestimmt werden, dass eine geforderte Beleuchtungsstärkeverteilung BΨ :Ψ→ R+

auf der FlächeΨ generiert wird.

Falls eine Punktlichtquelle angenommen wird, ist χ ∈ R3 mit einer Lichtstärkeverteilung Iχ :

S2 →R+. Für eine ausgedehnte Lichtquelle ist χ⊂R3 eine Fläche mit regulärer Parametrisie-

rung x :Πχ→χ und Leuchtdichteverteilung Lχ :χ×S2 →R+.

Wir bezeichnen das optische System, das aus der Lichtquelle χ, den optischen Flächen

Σ1, . . . ,Σn und dem Detektor Ψ besteht mit O. Die Verteilung BO : Ψ→ R+ ist die tatsäch-

lich durch das optische System O generierte Beleuchtungsstärkeverteilung. In dieser Arbeit

beschränken wir uns auf Beleuchtungsstärkeverteilungen auf einer Fläche Ψ als Zielvorgabe.

Alle Modellierungen und Algorithmen können durch die Vorgabe einer Lichtstärkeverteilung

im Winkelraum vereinfacht werden.
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3 Modellierungen des Beleuchtungsproblems

mit einer Punktlichtquelle

Alle Modellierungsideen, die in diesem Kapitel eingeführt werden, basieren darauf, dass die

Lichtquelle als Punkt χ̂ ∈ R3 approximiert wird. Es werden einige Ansätze aus der Literatur

eingeführt. Anschließend wird eine abstrakterer Theorie eingeführt, die im Zuge dieser Ar-

beit auf das Beleuchtungsproblem angewandt werden soll. Im Folgenden werden drei Ansät-

ze dargestellt. In Abschnitt 3.1 und 3.2 besteht die Grundidee darin, die generierte Beleuch-

tungsstärke direkt zu berechnen und damit die Optik zu bestimmen, bzw. zu optimieren. Die

Theorie der schwachen Lösung in Abschnitt 3.3 versucht für einen eingeschränkten Fall Opti-

ken zu bestimmen, die bis auf Nullmengen glatt sind. Der vierte Ansatz in Abschnitt 3.4 ist ab-

strakter. Es wird nicht die generierte Beleuchtungsstärke berechnet, sondern aufgrund maß-

theoretischer Überlegungen eine geforderte Abbildung einer Menge von Lichtstrahlen von

der Lichtquelle auf Punkte der Zielfläche (source-target-mapping) bestimmt. Dieses source-

target-mapping soll die Eigenschaft haben, dass die Beleuchtungsstärkeverteilung generiert

wird, falls ein optisches System berechnet werden kann, das dieses source-target-mapping

erfüllt.

3.1 Analytische Berechnung der Beleuchtungsstärke durch eine

partiellen Differentialgleichung

In diesem Abschnitt wird der Ansatz von J. S. Schruben aus [19] innerhalb unserer Notation

verallgemeinert vorgestellt. Der Ansatz bezieht sich auf das Beleuchtungsproblem mit Punkt-

lichtquelle. Der Lichtstrom der Punktlichtquelle in χ̂ ∈ R3, der die erste optischen Fläche

Σ1(ΠΣ1 ) beleuchtet ist

ΦIχ̂(Σ1) =
∫

~ωχ̂,Σ1 (ΠΣ1 )

Iχ̂(~ω) d~ω.

25



3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Durch die reguläre Parametrisierung σ1 kann dieses Integral auf den Parameterbereich ΠΣ1

transformiert werden mit

ΦIχ̂(Σ1) =
∫
ΠΣ1

Iχ̂(~ωΣ1 (χ̂,π)
√
Fπ~ωΣ1 (χ̂,π)dπ. (3.1.1)

Der Ausdruck Fπ steht für die Funktionaldeterminante der Funktion~ωΣ1 (χ̂,π) bezüglich dem

zweiten Parameter π ∈R2.

Sei BΨ : Ψ→ R+ die Beleuchtungsstärkeverteilung, die durch das optische System realisiert

wird. Der Lichtstrom aufΨ, der durch BΨ definiert wird, ist

ΦBΨ(Ψ) =
∫
Ψ

BΨ(y)d y.

Das optische System mit den Flächen Σ1,Σ2, · · · ,Σn bildet Lichstrahlen ~ωΣ1 (χ̂,πΣ1 ) von der

Punktlichtquelle in χ̂ auf die Zielfläche Ψ ab (siehe Abbildung 2.2a). Wir beschreiben diese

Abbildung mit der Funktion F :ΠΣ1 →Ψ. Falls diese Funktion durch das optische System so

realisiert wird, dass F eine reguläre Parametrisierung vonΨ ist, folgt

ΦBΨ(Ψ) =
∫
ΠΣ1

BΨ(F (χ̂,π))
√
FπF (χ̂,π)dπ. (3.1.2)

Dieser Ansatz beschränkt sich damit auf optische Flächen Σi , die zweifach differenzierbar

sind, da F bereits die Normalenvektoren der Flächen benötigt, wozu die ersten Ableitungen

an den Flächen bestimmt werden müssen, so dass die ersten Ableitungen von F die zweiten

Ableitungen benötigen. Ein solches optisches System transportiert den Lichtstrom ΦIχ̂(ΩΣ1 )

vollständig in das Gebiet Ψ, so dass ΦIχ̂ = ΦBΨ gilt und die Integrale der Gleichung (3.1.1)

und (3.1.2) gleichgesetzt werden können. Ferner gilt für ein solches optisches System, dass

für jede offene und messbare Teilmenge DΠΣ1 ⊂ΠΣ1 gilt∫
DΠΣ1

Iχ̂(~ωΣ1 (χ̂,π))
√
Fπ~ωΣ1 (χ̂,π)dπ=

∫
DΠΣ1

BΨ(F (χ̂,π))
√
FπF (χ̂,π)dπ (3.1.3)

Das Lebesgue Differentiationstheorem 2.1 ermöglicht es nun, die Integranden zu vergleichen,

so dass die Beleuchtungsstärke BΨ über die partielle Differentialgleichung

BO(F (χ̂,πΣ1 )) = Iχ̂(~ωΣ1 (χ̂,πΣ1 )
√
Fπ~ωΣ1 (χ̂,πΣ1 )√

FπF (χ̂,πΣ1 )
(3.1.4)
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3.1 Berechnung der Beleuchtungsstärke durch eine PDG

berechnt werden kann. Diese Modellierung ermöglicht es für optische Systeme mit Punkt-

lichtquelle, deren Funktionaldeterminante FπF (χ̂,π) überall definiert ist und keine Null-

stellen hat, die Beleuchtungsstärkeverteilung mittels eines Forward-Raytrace an den Stellen

F (χ̂,ΠΣ1 ) zu bestimmen. Die Auswertung von FπF ist numerisch aufwändig und erhöht die

Anforderungen an das optische System, da die Fläche zweifach differenzierbar sein müssen,

um die Funktinaldeterminante berechnen zu können.

Setzt man zu einem bestehenden optischen System O an die Stelle von BO die geforderte

Beleuchtungsstärkeverteilung BΨ ein, so kann man aus der Gleichung (3.1.4) eine Nullstel-

lenforderung an das optische System

0
!= BΨ(F (χ̂,πΣ1 ))

√
FπΣ1

F (χ̂,πΣ1 )− Iχ̂(~ωΣ1 (χ̂,πΣ1 )
√
FπΣ1

~ωΣ1 (χ̂,πΣ1 ). (3.1.5)

formulieren.

Bemerkung 3.1 (Ursprüngliche Modellierung von J.S. Schruben in [19] und numerische Aus-

wirkungen). J.S. Schruben hat in ihrer ursprünglichen Modellierung nur optische Systeme mit

einer zu bestimmenden Freiformfläche Σ gewählt mit der Definition

σΣ1 (πΣ1 ) := χ̂+ρ(πΣ1 )~ωΣ1 (πΣ1 ).

Die Funktion ρ wird als Polarradius bezeichnet und ist eine zweifach differenzierbare skalare

Funktion ρ : ΠΣ1 → R+ und ~ω : ΠΣ1 → S2 ist eine reguläre Parametrisierung der Sphäre. In

diesem Fall gilt vereinfachend

~ωΣ1 (χ̂,πΣ1 ) = σΣ1 (πΣ1 )− χ̂
||σΣ1 (πΣ1 )− χ̂|| =

ρ(πΣ1 )~ω(πΣ1 )

||ρ(πΣ1 )~ω(πΣ1 )|| =
ρ(πΣ1 )~ω(πΣ1 )

ρ(πΣ1 )
=~ω(πΣ1 ).

Mit Hilfe dieser Modellierung, kann die Funktion F (χ̂, ·) :ΠΣ1 →Ψ analytisch in Abhängigkeit

vom Polarradius ρ und den ersten partiellen Ableitungen beschrieben werden. Wendet man

die Nullstellengleichung (3.1.5) an, so erhält man eine nichtlineare partialle Differentialglei-

chung zweiter Ordnung vom Typ Monge-Ampère. Hierbei ist der Polarradius ρ und die ersten

und zweiten partiellen Ableitungen die gesuchten Größen, die das optische System beschreiben.

Wählt man eine Diskretisierung ΠD
Σ1

von ΠΣ1 , so kann mit Hilfe von Finiten Differenzen und

der partiellen Differentialgleichung (3.1.5) eine Nullstellensuche definiert werden, die zum

Beispiel mittels eines Newton-Verfahrens gelöst werden kann.

Das Newton-Verfahren setzt indirekt voraus, dass der Polarradius dreifach partiell differen-

ziert werden kann. Die Anzahl an Gleichungen und Unbekannten ist in einem solchen Fall

identisch und damit lösbar.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Beispiel 3.1 (Validierung der Formel (3.1.4) mit Monte-Carlo-Raytrace-Ergebnissen). Wir wäh-

len als Beispiel ein optisches System mit einer optischen Fläche in Form eines Ellipsoids und

χ̂= (−0.5,0,0)T . Auf einer ZielflächeΨ wird die Beleuchtungsstärkeverteilung mittels der For-

mel (3.1.4) berechnet und mit Simulationsergebnissen verglichen (siehe Abbildung 3.1).

Abb. 3.1: Berechnete Beleuchtungsstärke entsprechend der Gleichung (3.1.4). Zur Validierung wird das
Simulationsergebnis mit eingezeichnet.

3.2 Analytische Berechnung der Beleuchtungsstärke durch eine

Faltung

Der vorige Ansatz weist einige Nachteile aufgrund der Komplexität der Funktionaldetermi-

nanteFπΣ1
F (χ̂, ·) auf. Zum einen müssen die Flächen in zweiter Ordnung differenzierbar sein.

Desweiteren stellen Nullstellen der Determinante Umkehrpunkten der Lichtstrahlen dar, in

denen die Gleichung nicht lösbar ist. Deshalb können durch diesen Ansatz nur solche opti-

sche Systeme beschrieben und gelöst werden können, deren generierte Abbildung F (χ̂, ·) :

ΠΣ1 →Ψ ein Diffeomorphismus ist.

Der Ansatz von M.A. Moiseev und L.L. Doskolovich in der Ausarbeitung [14] will diese Nachtei-

le umgehen und kann somit als Erweiterung der Modellierung von J. S. Schruben verstanden

werden.
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3.2 Berechnung der Beleuchtungsstärke durch eine Faltung

Auch dieser Ansatz modelliert die Lichtquelle als Punkt χ̂ ∈ R3. Ziel des Ansatzes ist es, die

Funktionaldeterminante für die Berechnung der Beleuchtungsstärke zu entfernen. Daraus

resultiert, dass die Lösungen in einem größeren Lösungsraum gesucht werden, da auch Sin-

gularitäten der Abbildungsfunktion F erlaubt sind. Ein weiterer Vorteil besteht darin, dass

die Berechnung der Beleuchtungsstärke nicht nur auf Auftreffpunkten von Lichtstrahlen der

Punktlichtquelle, sondern auf beliebigen Punkten des ZielgebietesΨmöglich ist.

Dies gelingt durch Faltung der partiellen Differentialgleichung (3.1.4) mit einer Funktion ei-

ner Delta-Folge δc :R2 →R+ mit c ∈R+. Für c → 0 gilt

lim
c→0

Ï
R2

δc (y) f (y)d y = f (0).

Mit Hilfe der Faltung kann die Beleuchtungsstärke am Punkt ŷ ∈Ψ berechnet werden durch

Bc,O(ŷ) =
Iχ̂(~ωΣ1 (χ̂,πΣ1 )

√
FπΣ1

~ωΣ1 (F−1(ŷ))√
FπΣ1

F (F−1(ŷ))

=
Ï

F (Ψ)

Iχ̂(~ωΣ1 (χ̂,πΣ1 )
√
FπΣ1

~ωΣ1 (F−1(ŷ))√
FπΣ1

F (F−1(ŷ))
δc (y − ŷ)d y

=
Ï
ΠΣ1

Iχ̂(~ωΣ1 (χ̂,πΣ1 )
√
FπΣ1

~ωΣ1 (χ̂,π)√
FπΣ1

F (χ̂,π)
δc (F (χ̂,π)− ŷ)

√
FπΣ1

F (χ̂,π)dπ

⇒ Bc,O(ŷ) =
Ï
ΠΣ1

Iχ̂(~ωΣ1 (χ̂,πΣ1 )
√
FπΣ1

~ωΣ1 (χ̂,π)δc (F (χ̂,π)− ŷ)dπ. (3.2.1)

Für den Grenzwert c → 0 gilt

lim
c→0

Bc,O(ŷ) = BO(ŷ),

so dass diese Formulierung eine Näherung an die tatsächlich generierte Beleuchtungsstärke

durch eine Punktlichtquelle darstellt.

Diese Gleichung hat den Vorteil, dass die Jakobi-Determinante nicht berechnet werden muss.

Durch Bestimmung der Abbildung F :ΠΣ1 →Ψmuss der Integrand für die Punkte ŷ ∈Ψmit

δc für ein c ∈R+ gefaltet werden. Dadurch ergibt sich im Gegensatz zur Gleichung (3.1.4) der

numerische Mehraufwand, dass für die Berechnung der Beleuchtungsstärke für jedes ŷ eine

Integration durchgeführt werden muss.

Die Faltung der Beleuchtungsstärkeverteilung kann auch verwendet werden, um die Effekte

durch die Ausdehnung der Lichtquelle zu approximieren. Beispielsweise kann eine Punkt-

lichtquelle eine unendliche Beleuchtungsstärke generieren, jedoch erzeugt eine ausgedehnte
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Lichtquelle an der gleichen Stelle eine sehr hohe, aber nicht unendliche Beleuchtungsstärke,

was durch die Faltung dieses Ansatzes nachgebildet wird.

Bemerkung 3.2 (Bestimmung der Optik in der ursprünglichen Modellierung von M.A. Moi-

seev und L.L. Doskolovich in [14]). M.A. Moiseev und L.L. Doskolovich haben die Formeln für

denselben Spezialfall aufgestellt wie J. S. Schruben in der Bemerkung 3.1. In der Formulierung

wurden jedoch noch die Fresnelschen Verluste (sie Gleichung 2.2.13) berücksichtigt, die als zu-

sätzlicher Faktor in die Gleichungen mit einfließen.

Die Fläche kann nicht wie in der Modellierung von J. S. Schruben mit einem Newton-Verfahren

gelöst werden, da die Freiheitsgrade der Fläche nicht mit den Punkten auf Ψ übereinstimmen

müssen, so dass die entsprechende Jakobi-Matrix im Allgemeinen nicht regulär sein muss. Die

tritt auch dann auf, wenn auszuwertende Punkte nicht beleuchtet werden. Deswegen wird die

Zielfunktion

ε(var (Σ)) :=
√√√√ 1

||Ψ||
Ï
Ψ

(
BO(y)−BΨ(y)

)2d y

verwendet, um die optischen Flächen im Sinne der kleinsten Quadrate zu optimieren.

Für die Optimierung kann beispielsweise ein Gradientenbasiertes Verfahren verwendet wer-

den, das die Zielfunktion εnach var (Σ), d.h. den zu optimierenden Variablen der FlächeΣ, ab-

leitet. Durch die Verwendung der Ableitung wird die Forderung an die optischen Flächen auch

in diesem Ansatz erhöht, so dass sie mindestens zweifach partiell differenzierbar sein müssen.

Beispiel 3.2 (Vergleich der Ergebnisse der Formel (3.2.1) mit der Modellierung nach Formel

(3.1.4)). Wir vergleichen die Formel (3.2.1) mit dem Beispiel 3.1 auf Seite 27. Für die Delta-

Folge verwenden wir die Gaussche Glockenfunktion

δc (y) = 1

πc2 exp

(
− y2

1 + y2
2

c2

)
(3.2.2)

und stellen das Ergbenis mit c = 0.5 in der Abbildungen 3.2a dar. Für die Punkte ŷ , an denen

die Gleichung (3.2.1) ausgewertet wurde, wurden die Auftreffpunkte des Forward-Raytrace aus

Beispiel 3.1 verwendet, um die Ergebnisse besser vergleichen zu können. Die Differenz dieser

Modellierung mit der zu der Modellierung von J. S. Schruben wird in Abbildung 3.2b wieder-

gegeben.

Die Differenz ist an den Randpunkten des Gebietes F (ΠΣ1 ) wesentlich größer als im Inneren

des Gebietes, da die Gausssche Glockenkurve symmetrisch um den auszuwertenden Punkt alle

weiteren Auftreffpunkte in Betracht zieht. An einem Randpunkt liegt ein großer Teil der Gaus-

schen Glockenkurve außerhalb des beleuchteten Gebietes, so dass der integrierte Wert kleiner

wird.

30



3.2 Berechnung der Beleuchtungsstärke durch eine Faltung

−10
0

10
20

30
40

50

−60
−40

−20
0

20
40

0

0.002

0.004

0.006

0.008

0.01

(a)

−10 0 10 20 30 40 50 −60
−40

−20
0

20
40

0

0.002

0.004

0.006

0.008

0.01

(b)

Abb. 3.2: Vergleich der berechneten Lichtverteilung durch die Faltung mit dem Ergebnis durch die par-
tielle Differentialgleichung. (a) Berechnete Beleuchtungsstärke entsprechend der Gleichung
(3.2.1) zu c = 0.5. (b) Differenz der berechneten Beleuchtungsstärke nach der Modellierung von
Schruben und Mooiseev. Es ist zu sehen, dass die Abweichung der beiden Modellierungen am
Rand höher ist. Das liegt daran, dass durch die Faltung ein Bereich ausserhalb des beleuchteten
Gebietes mitbetrachtet wird.

Um die Glättung der Beleuchtungsstärkeverteilung in Abhängigkeit von dem Faktor c zu ver-

deutlichen wird in Abbildung 3.2a das Ergebnis mit c = 0.5, in Abbildung 3.3a mit c = 4 und in

Abbildung 3.3b mit c = 8 dargestellt. Man kann in diesen Bildern gut die Glättung der Beleuch-

tungsstärkeverteilung in Abhängigkeit von der Breite der Gausschen Glockenkurve beobachten.
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Abb. 3.3: Einfluss der Faltungsbreite auf die berechnete Lichtverteilung. (a) Berechnete Beleuchtungs-
stärke entsprechend der Gleichung (3.2.1) mit c = 4. (b) Berechnete Beleuchtungsstärke ent-
sprechend der Gleichung (3.2.1) mit c = 8.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

3.3 Schwache Formulierung für Reflektorsysteme

Dieser Ansatz leitet eine schwache Lösung der kontinuierlichen Formulierung durch die par-

tielle Differentialgleichung (3.1.4) im maßtheoretischen Sinne her. Die Bezeichnung schwach

weist darauf hin, dass die Differenzierbarkeitsanforderungen an die Optik geringer sind und

die geforderten Eigenschaften nur fast überall gelten müssen.

Die Existenz einer schwache Lösung kann für optische Systeme, die nur einen Reflektor als

optische Fläche haben, gezeigt werden. Wir beziehen uns in diesem Abschnitt auf die Ausar-

beitungen von V. Oliker in [2] und [12].

Jeder Reflektor Σ lenkt die Lichtstrahlen der Punktlichtquelle χ auf die FlächeΨ um und rea-

lisiert auf diese Weise ein mappi ng F :Ω→Ψ. MitΩ⊂ S2 bezeichnen wir den Raumwinkel,

der von der Lichtquelle aus durch den Reflektor auf die ZielflächeΨ umgelenkt wird.

Das optische System transportiert in die Teilmenge DΨ⊂Ψ den Lichtstrom

Gχ,Σ(DΨ) =
Ï

F−1(DΨ)
I (~ω)dσ(~ω). (3.3.1)

Diese Abbildungeigenschaft wird in Abbildung 3.4 dargestellt.

Definition 3.1 (schwache Lösung). Eine schwache Lösung des Beleuchtungsproblems ist ge-

geben, falls das optische System mit nur einer reflektierenden Optik ein mapping F realisiert,

so dass für alle Borel-Mengen DΨ⊂ΨÏ
F−1(DΨ)

I (~ω)dσ(~ω) =Gχ,Σ(DΨ) =
∫

DΨ
B(y)d y (3.3.2)

gilt.

3.3.1 Existenz von schwachen Lösungen

Das Hauptergebnis von V. Oliker in [12, Seite 368] ist die Aussage über die Existenz von schwa-

chen Lösungen des Beleuchtungsproblem.

Theorem 3.1 (Existenz schwachen Lösungen des Reflektorproblems). Die Funktionen Iχ :

S2 →R+\{0} und BΨ :Ψ→R+\{0} seien integrierbar undΨ eine kompakte 1zweidimensionale

Untermannigfaltigkeit des R3 mit χ ∉Ψ. Zusätzlich gelte die Bedingung der EnergieerhaltungÏ
S2

Iχ(~ω)d~ω=
Ï
Ψ

BΨ(y)d y. (3.3.3)

1In dem original Theorem in [12][Seite 368] wird verlangt, dassΨ eine kompakte Teilmenge einer Ebene sein soll.
Jedoch ist diese Forderung zu scharf, wie aus der Fußnote auf Seite 365 hervorgeht. Hier erwähnt V. Oliker, dass
es genügt, wennΨ eine kompakte Teilmenge des R3 ist.
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Ψ

DΩ =

Ω

Σ

χ

DΨ =F−1(DΨ) F(DΩ)

Abb. 3.4: Mengentheoretische Sichtweise der schwachen Lösung des Reflektorproblems. Ein optisches
System löst ein Beleuchtungsproblem im schwachen Sinne, wenn die Energie in Teilmengen
des abzubildenden Raumwinkels auf entsprechede Teilflächen der Zielfäche abgebildet wer-
den, so dass Gleichung (3.3.2) erfüllt ist. Das optische System kann Unstetigkeitsstellen und
Nullstellen in der Jakobideterminante von F aufweisen, so lange diese Stellen Nullmengen
bilden.

Dann existiert ein geschlossener konvexer Reflektor, der die Gleichung (3.3.2) erfüllt.

Falls zusätzlich gilt, dass die Verteilungen I und B strikt positiv sind, dann ist die Lösung glatt

und generiert ein 2diffeomorphes mapping F : S2 →Ψ (siehe [15, Theorem 2.5]).

Eine Eindeutigkeitsaussage ist für den Fall, dass eine Lichtstärkeverteilung im Fernfeld er-

zeugt werden soll, d.h.Ψ⊂ S2, bekannt und wird für diesen Fall in dem Theorem 3.3 auf Seite

36 wiedergegeben.

Der Beweis dieses Theorems ist konstruktiv, indem diskrete Lösungen definiert und ihre Exis-

tenz bewiesen werden. Die kontinuierliche Aussage ist durch einen Grenzübergang des dis-

kreten Falls möglich.

Die Konstruktion der Lösungen bezieht sich auf Reflektoren, die durch eine skalare Funktion

ρ :Ωχ→R+, den Polarradius, definiert werden durch

Σρ(~ωχ) = ρ(~ωχ)~ωχ.

Insbesondere werden die Geometrien durch Ellipsoide Ed (y), den so genannten Elementar-

2Diese Aussage impliziert direkt, dass der Reflektor ein stetifges Normalenvektorfeld hat.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

geometrien, definiert. Ein Ellipsoid Ed (y) mit y ∈ Ψ hat χ in dem einen Fokuspunkt und y

in dem zweiten Fokuspunkt und konzentriert den gesamten Lichtstrom der Punktlichtquelle

auf den Punkt y . Wir definieren das Ellipsoid Ed (y) : S2 →R3 durch die Vorschrift

Ed (y)(~ω) := ρd (y,~ω)~ω (3.3.4)

mit dem Polarradius

ρd :Ψ×S2 →R+, ρd (y,~ω) = d(y)

1−ε(y)
〈
~ω, y−χ

||y−χ||
〉 . (3.3.5)

Mit ε bezeichnen wir die Exzentrizität des Ellipsoids

ε(y) =
√

1+ d(y)2

||y −χ||2 − d(y)

||y −χ|| . (3.3.6)

Die Funktion d :Ψ→ [δ,∞) mit δ> 0 ist der Fokalparameter der Ellipsoiden und beschreibt

die Größe des Ellipsoiden, ohne die optischen Eigenschaften zu verändern.

Der geschlossene konvexe Körper Bd ist so gewählt, dass ∂Bd (y) = Ed (y). Der Faktor δ sei so

groß gewählt, dassΨ⊂ Bd (y) für alle y ∈Ψ gilt.

Wir definieren den Reflektor Σd zur Funktion d durch

Σd = ∂
( ⋂

y∈Ψ
Bd (y)

)
. (3.3.7)

In der Abbildung 3.5 wird der Schnitt von drei Ellipsoiden und der resultierende Reflektor mit

der Verschnittoperation (3.3.7) dargestellt. Da der Schnitt von konvexen Körpern konvex ist,

berandet der Reflektor Σd einen konvexen Körper.

Falls Ed (y)∩Σd 6= ; ist, nennen wir Ed (y) ein tragendes Ellipsoid des Reflektors Σd .

Der Schnitt von zwei Ellpsoiden ist höchstens eine eindimensionale Untermannigfaltigkeit,

so dass die Menge der Unstetigkeitsstellen, bzw. Singularitäten des Reflektors Σd projiziert

auf die Sphäre eine S2-Nullmenge darstellt.

Der Polarradius ρd (~ω) des Reflektors Σd wird durch

ρΣd (~ω) = inf
y∈Ψ

{ρd (y,~ω)}. (3.3.8)
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definiert. Für das mapping gilt

F (~ω) = y falls ρd (y,~ω) = ρΣd (~ω)

F−1(y) = {~ω ∈Ω|ρd (y,~ω) = ρΣd (~ω)}.

Diskreter Reflektor Die n Punkte (y1, y2, . . . , yn) ⊂ Ψ mit den Fokalparametern

(d1,d2, . . . ,dn) definieren einen diskreter Reflektor. Aufgrund der Definition des Reflek-

tors ist der RaumwinkelΩ⊂ S2 eine bis auf Nullmengen disjunkte Vereinigung (F−1(yi ))n
i=1,

d.h. |Ω| = | ∪n
i=1 F−1(yi )|. Die Größen der Urbilder F−1(yi ) sind abhängig vom Vektor der

Fokalparameter (di )n
i=1. Von der Lichtquelle in χ aus trifft jeder Raumwinkel F−1(yi ) auf das

Ellipsoid Edi (yi ) und wird auf den Punkt yi abgebildet. Daraus folgt, dass der Lichtstrom Φ

auf die Lichtströme

Φi :=
Ï

F−1(yi )
I (~ω)dσ(~ω) mit i = 1. . .n.

diskret aufgeteilt wird.

Theorem 3.2 (Existenz von diskreten schwachen Lösungen des Beleuchtungsproblems). Sei

Ω ⊂ S2 und (y1, y2, . . . , yn) ⊂ Ψ eine disjunkte Menge von Punkten. Falls für die geforderten

Lichtströme (Φ1,Φ2, . . . ,Φn)
n∑

i=1
Φi =

Ï
Ω

Iχ(~ω)dσ(~ω), (3.3.9)

gilt, dann existiert ein Vektor von Fokalparametern d := (d1,d2, . . . ,dn), so dass der zugehörige

diskrete Reflektor 3Σd die gewünschten Lichtströme

Gχ,Σ(y) =Φi ∀ 1 ≤ i ≤ n (3.3.10)

generiert.

Durch Anwenden dieses Theorems auf eine dichte Folge Yn := (y1, y2, . . . , yn) inΨ kann das

Theorem 3.1, das den kontinuierlichen Fall behandelt, bewiesen werden.

Bemerkung 3.3 (konvergente oder divergente Reflektoren). Die Konstruktion der Reflektoren

(siehe Gleichung (3.3.7)) und die spätere Beweisführung erlauben es den Reflektor alternativ

durch

Σd = ∂
( ⋃

y∈Ψ
Bd (y)

)
. (3.3.11)

3siehe Gleichung (3.3.7)
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zu definieren. Der Unterschied in den resultierenden Reflektorgeometrien wird in der Abbil-

dung 3.6 dargestellt. Die Gleichung (3.3.7) konstruiert Reflektoren, deren Strahlengänge kon-

vergent sind, das heißt sie überkreuzen sich. Diese Geometrien haben einen eher tiefen Bau-

raum und geringe Ausdehnung.

Mit Gleichung (3.3.11) konstruierte Reflektoren hingegen realisieren einen divergenten Strah-

lengang ohne Überkreuzungen. Die resultierenden Reflektorgeometrien sind flach und haben

eine breite Ausdehung.

Bemerkung 3.4 (analoge Formulierung für das Fernfeld). Falls die Ausdehnung der Optik

vernachlässigt werden kann, wird die Ziellichtverteilung, bzw. die diskrete Verteilung der ge-

forderten Lichtströme Φi , nicht auf einer Fläche, sondern im Fernfeld auf einem Raumwinkel

Ψ⊂ S2 definiert. Für diesen Fall können Paraboloide als Elementargeometrien verwendet wer-

den, da diese die Abbildungseigenschaft haben, den vollen Raumwinkel auf einen Richtungs-

vektor abzubilden.

Für eine Richtung~y ∈Ψ und Fokalparameter d(~y) wird der Paraboloid

Pd (~y) := {ρd (~y ,~ω)~ω+χ | ~ω ∈ S2}

definiert durch den Polarradius

ρd (~y ,~ω) = d(~y)

1−〈~ω,~y〉 . (3.3.12)

Alle weiteren Definitionen und Eigenschaften sind analog zu der bisher eingeführten Varian-

te. Eine Eindeutigkeitsaussage der schwachen Lösung kann Theorem 4.2 aus [16][Seite 4104]

entnommen werden.

Theorem 3.3 (Eindeutigkeit von schwachen Lösungen des Reflektorproblems für das Fern-

feld). Falls Ωχ zusammenhängend ist, Iχ und BΨ positive und integrable Funktionen mit

Ψ ⊂ S2 sind, dann ist eine schwache Lösung des Reflektorproblems eindeutig bis auf Skalie-

rung.

3.3.2 Verwendung einer schwachen diskreten Lösung zum Aufbau einer

kontinuierlichen Lösung

Florian Fournier beschreibt in [7, Abschnitt 4] den Ansatz, eine diskrete Lösung des schwa-

chen Beleuchtungsproblems zu bestimmen und daraus einen glatten Reflektor herzuleiten.

Sei der Vektor (d n
i )n

i=1 der Fokalparameter des Reflektors Σd n , der das Beleuchtungsproblem

auf den Punkten (yn
i )n

i=1 löst, so dass der Reflektor die geforderten Lichtströme (Φi )n
i=1 auf

diesen Punkten konzentriert. Das Ergbenis von Oliker ist, dass für eine dichte Folge ((yn
i )n

i=1)n
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inΨ der Reflektor Σd n gegen die glatte Lösung Σd konvergiert, falls die Verteilungen Iχ : S2 →
R+ und BΨ :Ψ→R+ positive Funktionen sind.

Somit kann für ein n ∈Nder ReflektorΣd n als Annäherung an den gesuchten ReflektorΣd ver-

wendet werden. Wählt man Mittelpunkte ~ωi aus den Mengen F−1(yi ) aus und bestimmt die

Normalenvektoren ~Ni des Reflektors Σd n an diesen Stellen, so kann man aus diesem Norma-

lenvektorfeld einen glatten Reflektor bestimmen, der an den Schnittpunkten mit den Licht-

strahlen (χ,~ωi ) die Normalenvektoren ~Ni aufweist.
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χ

y1
y2
y3

Ω

Ed(y1)

Ed(y2)

Ed(y3)

(a)

χ

y1
y2
y3

Ω

Ed(y2) ⊂ Σd
Ed(y3) ⊂ Σd

Ed(y1) ⊂ Σd

(b)

Abb. 3.5: Die diskrete schwache Lösung des Beleuchtungsproblems mit drei Ellipsoiden. (a) Die drei El-
lispoiden zu Fokalparametern d1, d2 und d3 bündeln das Licht von χ auf einen der drei Punk-
te y1, y2 und y3. (b) Der resultierende Reflektor Σd aus der Verschneidung (3.3.7) von Ed (y1),
Ed (y2) und Ed (y3).

y1
y2
y3

(a)

y1
y2
y3

(b)

Abb. 3.6: Gegenüberstellung eines konvergenten Reflektors nach Gleichung (3.3.7) und eines divergen-
ten Reflektors nach Gleichung (3.3.11). (a) Konvergenter Reflektor nach Vorschrift (3.3.7).
(b) Der resultierende Reflektor bei alternativer Verwendung der Vereinigungsoperation Σd =
∂
(⋃

y ∈ΨBd (y)
)

in (3.3.11). Hierbei nimmt der Reflektor eine divergente Strategie an, wobei
der Punkt y2 nicht beleuchtet wird.
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3.4 Das optimale mapping und der

Monge-Kantorovich-Formalismus

Sowohl der Ansatz von J. S. Schruben in Abschnitt 3.1, als auch die Erweiterung von Mooi-

seev und Doskolovich in Abschnitt 3.2 beschreiben das optische System mit Punktlichtquelle

χ, so dass das generierte mapping F : Λχ →Ψ bestimmt werden kann. Da χ als Punkt ap-

proximiert wird, gilt Λχ ≡ Ωχ := ~ωΣ1 (χ,ΠΣ1 ) ⊂ S2. Aus dem mapping und eventuell den Ab-

leitungen des mappings kann die Beleuchtungsstärke berechnet werden und mit Hilfe der

entsprechenden Gleichungen das das optische System bestimmt oder optimiert werden, um

die gewünschte Beleuchtungsstärkeverteilung zu generieren. Somit haben wir es mit einem

inversen Problem zu tun, bei dem aus der gewünschten Wirkung des Systems auf die notwen-

dige Ursache geschlossen werden soll.

Dieser Zusammenhang führt schnell auf die abstraktere Fragestellung des optimalen map-

pings, das heißt es wird nicht direkt nach dem optischen System gesucht, sondern nach dem

diffeomorphen mapping

F :~ωΣ1 (χ,ΠΣ1 )︸ ︷︷ ︸
=:Ωχ⊂S2

→Ψ,

das aus der Lichtstärkeverteilung Iχ der Punktlichtquelle χ die gewünschte Beleuchtungs-

stärkeverteilung BΨ auf Ψ generiert. Vernachlässigt man die Ausdehnung des gesamten op-

tischen Systems, so kann das gesuchte mapping auch als Abbildung von Richtungsvektoren

auf Richtungsvektoren

F̂ :Ωχ→~ωΨ(χ,ΠΨ)︸ ︷︷ ︸
=:ΩΨ⊂S2

mit F̂ (~ωΣ1 ) =~ω−1
Ψ

(
χ,σ−1

Ψ

(
F (~ωχ)

))

verstanden werden. Diese Definition ist für das konkrete Monge-Problem wichtig, da Ele-

mente des Bild- und Urbildbereiches von F̂ zueinander in Beziehung gesetzt werden müs-

sen, indem sie sich auf derselben Fläche befinden.

Stellen wir die Integralgleichung (3.1.3) für die Funktion F̂ auf, so erhalten wir mit Hilfe der

Funktion σ̃Ψ(χ, ·) : S2 → Ψ (siehe Gleichung (2.2.1)) für jede offene und messbare Menge

DΩχ ⊂ΩχÏ
DΩχ

Iχ(~ω)d~ω=
Ï

σ̃Ψ(χ,F̂ (DΩχ))

BΨ(y)d y =
Ï

F̂ (DΩχ)

B(σ̃Ψ(χ,~ω))|detD~ωσ̃Ψ(χ,~ω)|︸ ︷︷ ︸
=:IΨ(~ω)

d~ω. (3.4.1)

Diese Gleichung verdeutlicht die Fragestellung des optimalen Transports. Die Energie in ei-

nem Teilgebiet des UrbildraumesΩχ wird durch das mapping auf ein anderes Teilgebiet von
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

ΩΨ abgebildet. Es soll also nicht direkt das inverse Problem gelöst werden, d.h. das passende

optische System bestimmt werden, sondern ein mapping F̂ berechnet werden, das die Dich-

te Iχ(~ωχ) aufΩχ in die Dichte IΨ(~ωΨ) aufΩΨ überführt.

Diese Eigenschaft ist aber für unsere Problemstellung nicht ausreichend, denn es muss ne-

ben der maßtheoretischen Transformation der Dichten ineinander auch sichergestellt wer-

den, dass zu dem berechneten mapping ein optisches System existiert, das dieses mapping

generiert. Die Berechnung des optischen Systems erfolgt in einem zweiten Schritt.

Existenz von optischen Flächen zu einem mapping

Sei F̂ :Ωχ →ΩΨ ein mapping, das die Dichte Iχ :Ωχ → R+ in die Dichte IΨ :ΩΨ→ R+ über-

führt. In diesem Abschnitt soll die Frage untersucht werden, welche Eigenschaft dieses map-

ping aufweisen muss, damit eine optische FlächeΣ existiert, die diese Abbildungseigenschaft

erfüllt.

Man kann aufgrund des mappings F̂ auf das nicht normierte Normalenvektorfeld NΣ : Σ→
R3 der brechenden optischen Fläche schließen durch

NΣ(σ(~ωχ)) = F̂ (~ωχ)− nχ
nΨ
~ωχ

4. (3.4.2)

Es ist zu klären, welche Bedingung das Normalenvektorfeld aufweisen muss, damit eine glat-

te Fläche Σ zu diesem Normalenvektorfeld existiert (siehe Lemma 3.1). Anschließend leiten

wir her, unter welchen Voraussetzungen an das mapping, das resultierende Normalenvektor

die notwendigen Eigenschaft aufweist und damit optische Flächen existieren (siehe Lemma

3.2).

Nach [7, Seite 10] existiert zu einem Normalenvektorfeld genau dann eine glatte Fläche, wenn

das Kurvenintegral ∮
T

NΣ(σ) ·dl = 0 (3.4.3)

über jede geschlossene Kurve T ⊂Σ verschwindet. Wir führen nun zu dieser Forderung einige

äquivalente Bedingungen für Vektorfelder auf. Wenden wir den Stokesschen Integralsatz an,

so erhalten wir die äquivalente Forderung (siehe [7, Seite 10])

0 =
∮
T

NΣ(σ) ·dl =
Ï
ST

〈r ot (NΣ)(σ), NΣ(σ)〉d~ωχ

⇐⇒ 〈r ot (NΣ)(σ), NΣ(σ)〉 = 0 auf Σ. (3.4.4)

4Falls Σ reflektierend ist muss
nχ
nΨ

= 1 gewählt werden.

40



3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

Zu der Forderung (3.4.3) gibt es zwei weitere äquivalente Eigenschaften, die das Normalen-

vektorfeld kennzeichnen:

r ot (NΣ)(σ) = (0,0,0)T ∀ σ ∈Σ (3.4.5)

und, dass das Normalenvektorfeld ein Gradientenfeld ist, d.h

∃Λ :R3 →R ∈C 1 mit NΣ =∇Λ. (3.4.6)

Das folgende Lemma beweist, dass diese Forderung an das Normalenvektorfeld ausreichend

ist, um auf die Existenz einer optischen Fläche zu schließen.

Lemma 3.1 (Existenz einer Fläche zu einem rotationsfreien Normalenvektorfeld). Falls ein

rotationsfreies Normalenvektorfeld NΣ gegeben ist, so existiert eine eindimensionale Schar von

Flächen, die dieses Normalenvektorfeld annehmen.

Beweis. Aufgrund der äquivalenten Eigenschaft (3.4.6) zur geforderten Rotationsfreiheit, exis-

tiert eine skalare FunktionΛ :Σ→R. Aufgrund der Differenzierbarkeit der skalaren Funktion

Λ ist nach dem Satz vom regulären Wert jedes Urbild Σc :=Λ−1(c) eine differenzierbare Flä-

che für jeden regulären Wert c vonΛ.

Zu jedem Punkt pc in Σc und jede beliebige Kurve gc,p : [−ε,ε] →Σc mit gc,pc (0) = pc gilt

Λ(gc,pc (t )) = c

für alle t ∈ [−ε,ε]. Die Ableitung dieser Gleichung

∇Λ(gc,pc (t )) ġc,pc (t ) = 0

sagt aus, dass ∇Λ(σ) für alle σ ∈ R3 senkrecht auf der Fläche ΣΛ(σ) steht und somit das Nor-

malenvektorfeld der Fläche ΣΛ(σ) durch

~NΣΛ(σ) (ω) = ∇Λ(σ)

||∇Λ(σ)|| ∀ σ ∈ΣΛ(σ)

definiert wird.

Aufgrung der Gleichung NΣ =∇Λ (3.4.6) sind alle Flächen Σc Lösungen des Problems, d.h. sie

generieren das mapping F̂ .

Das folgende Lemma soll den Zusammenhang zwischen der Wirbelfreiheit des mappings

F̂ und dem Normalenvektorfeld NΣ herstellen, um das Ergebnis des Lemma 3.1 für die nach

Gleichung (3.4.2) definierten Normalenvektorfelder anzuwenden und eine Anforderung an

das mapping aufzustellen.

41



3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Lemma 3.2 (Existenz einer optischen Fläche zu einem rotationsfreiem mapping F̂ ). Wenn

das mapping F̂ :Ωχ →ΩΨ ein Gradientenfeld ist, dann existiert eine glatte Fläche Σ, die das

mapping realisiert.

Beweis. Da F̂ ein Gradientenfeld ist, existiert eine skalare Funktion ζ : R3 → R mit F̂ (~ωχ) =
∇ζ(~ωχ) für alle ~ωχ ∈Ωχ.

Wir wählen fürΛ :R3 →R die Definition

Λ(ωχ) := ζ(ωχ)− nχ
2nΨ

||ωχ||22 ∀ ωχ ∈R3.

Für den Gradienten vonΛ gilt

∇Λ(ωχ) =∇ζ(ωχ)− nχ
nΨ

ωχ.

Einsetzen der Gleichung F̂ (~ωχ) =∇ζ(~ωχ) liefert

NΣ(~ωχ) = F̂ (~ωχ)− nχ
nΨ
~ωχ =∇Λ(~ωχ).

Damit ist das Normalenvektorfeld ebenfalls ein Gradientenfeld und nach Lemma 3.1 folgt die

Existenz einer eindimensionalen Schar von Flächen Σ.

Vor diesem Hintergund ist es ausreichend, mappings zu berechnen, die die äquivalenten

Eigenschaften ∮
T

F̂ (~ωχ) ·dl = 0 für alle geschlossenen Kurven T ⊂Ωχ (3.4.7)〈
r ot (F̂ )(~ωχ),F̂ (~ωχ)

〉= 0 aufΩχ (3.4.8)

r ot (F̂Σ)(~ωχ) = (0,0,0)T aufΩχ (3.4.9)

F̂ =∇ζ für ein ζ :Ωχ→R ∈C 1 (3.4.10)

erfüllen, um auf die Existenz von optischen Flächen zu schließen. Hierfür gibt es verschiede-

ne Ansätze. Im Folgenden wird der Ansatz von Haker und die Variationsmethode von Oliker

erläutert. Anschließend wird der Formalismus des Monge-Problems und die Relaxierung von

Kantorovich zur Bestimmung von optimalen mappings dargestellt.
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3.4.1 Rotationsfreie mappings nach Haker

Wir orientieren uns in diesem Abschnitt an der Ausarbeitung [9]. Dieses Verfahren wurde von

Adrien Bruneton in [21] für die gleiche optische Fragestellung verwendet wie in dieser Arbeit5.

Die Grundidee dieses Ansatzes besteht darin, ein initiales mapping F̄ :Ωχ→ΩΨ zu bestim-

men, das die Dichte Iχ aufΩχ in die Dichte IΨ aufΩΨ überführt, d.h.

Iχ(~ωχ) = IΨ(F̄ (~ωχ))det(DF̄ (~ωχ)) (3.4.11)

aber nicht zwangsläufig die geforderte Bedingung der Rotationsfreiheit erfüllt.

In einem iterativen Verfahren wird anschließend das mapping F̄ so verändert, dass die Ro-

tation verkleinert wird. Grundlage für dieses Verfahren ist, dass die Eigenschaft (3.4.11) für

F̃ := F̄ ◦ s−1

erhalten bleibt, falls s :Ωχ→Ωχ ein Diffeomorphismus mit

Iχ(~ωχ) = Iχ(s(~ωχ))|det(Ds(~ωχ))|

ist. Mit Hilfe einer Evolutionsgleichung wird die Abbildung s so bestimmt, dass

F̄ ◦ s−1 =∇ζ

für eine skalare Funktion ζ gilt. Aufgrund der äquivalenten Eigenschaften (3.4.7) bis (3.4.10)

gilt für

F̂ := F̄ ◦ s−1

die nach Lemma 3.2 geforderte Rotationsfreiheit.

3.4.2 Monge-Kantorovich-Formulierung des Reflektorproblems nach Oliker

V. Oliker hat die schwache Lösung für den Fall hergeleitet, dass das optische System nur aus

einer reflektierenden Fläche Σρ besteht. Von dieser schwachen Formulierung ausgehend ge-

ben wir die Übertragung in den Monge-Kantorovich-Formalismus wieder, so dass das nicht-

lineare Optimierungsproblem zur Bestimmung der schwachen Lösung auf ein lineares Pro-

blem übertragen werden kann (Wir orientieren uns an der Ausarbeitung [16]). Hierbei ist

allerdings zu beachten, dass dieser Ansatz nur für den Fall, dass die Ziellichtverteilung im

Fernfeld (Ψ =ΩΨ ⊂ S2) definiert wird und nicht leicht auf den Fall einer vorgegebenen Be-

5bezüglich einer Punktlichtquelle
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

leuchtungsstärke übertragen werden kann. Sei Σρ die Lösung des schwachen Reflektorpro-

blems, d.h. Σρ ist definiert durch den Polarradius ρ :Ωχ→R+ (siehe Abschnitt 3.3.1 auf Seite

32 und Bemerkung 3.4 auf Seite 36) mit

ρ(~ωχ) = inf
~ωΨ∈ΩΨ

p(~ωΨ)

1−〈~ωχ,~ωΨ〉

Führen wir die reziproke Fokalparameterfunktion λ(~ωΨ) := 1/p(~ωΨ) ein, so erhalten wir für

den Polarradius die äquivalente Gleichung

ρ(~ωχ) = inf
~ωΨ∈ΩΨ

1

λ(~ωΨ)(1−〈~ωχ,~ωΨ〉)
. (3.4.12)

Sei zu einem ~ωχ der Einheitsvektor ~ωΨ derart, dass ρ(~ωχ) auf ~ωΨ das Infimum annimmt.

Dann führt die Dualität

ρ(~ωχ) = 1

λ(~ωΨ)(1−〈~ωχ,~ωΨ〉)
⇔λ(~ωΨ) = 1

ρ(~ωχ)(1−〈~ωχ,~ωΨ〉)
(3.4.13)

zu der Definition des Reflektorpaares.

Definition 3.2 (Reflektorpaar). Zwei Reflektoren Σρ und Σλ zu einem Funktionenpaar (ρ,λ) ∈
C (Ωχ,R+)×C (ΩΨ,R+), das

ρ(~ωχ) := inf
~ωΨ∈ΩΨ

1

λ(~ωΨ)(1−〈~ωχ,~ωΨ〉)
(3.4.14)

λ(~ωΨ) := inf
~ωχ∈Ωχ

1

ρ(~ωχ)(1−〈~ωχ,~ωΨ〉)
. (3.4.15)

erfüllt, heißen Reflektorpaar zu (ρ,λ). Die Bezeichnung als Reflektorpaar geht darauf zurück,

dass mit Hilfe der Funktion λ auf dieselbe Weise wie für ρ ein Reflektor durch Σλ(~ωΨ) :=
λ(~ωΨ)~ωΨ definiert werden kann.

Das Produkt der Polarradien ρ und λ zu einem Reflektorpaar erfüllt für alle (~ωχ,~ωΨ) ∈Ωχ×
ΩΨ die Ungleichung

ρ(~ωχ)λ(~ωΨ) = inf
~ωχ∈Ωχ

inf
~ωΨ∈ΩΨ

1

λ(~ωΨ)ρ(~ωχ)(1−〈~ωχ,~ωΨ〉)2

≤ 1

λ(~ωΨ)ρ(~ωχ)(1−〈~ωχ,~ωΨ〉)2 ∀ (~ωχ,~ωΨ) ∈Ωχ×ΩΨ. (3.4.16)

Diese Ungleichung bleibt bei Anwendung des Logarithmus für alle (~ωχ,~ωΨ) ∈Ωχ×ΩΨ erhal-
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

ten und es folgt

log(ρ(~ωχ)λ(~ωΨ)) ≤ −(log(ρ(~ωχ)λ(~ωΨ)))−2(log(1−〈~ωχ,~ωΨ〉))

⇔ log(ρ(~ωχ))+ log(λ(~ωΨ)) ≤ − log(1−〈~ωχ,~ωΨ〉)︸ ︷︷ ︸
=:K (~ωχ,~ωΨ)

. (3.4.17)

Somit ist (Σρ ,Σλ) genau dann ein Reflektorpaar, wenn diese Ungleichung ∀(~ωχ,~ωΨ) ∈ Ωχ×
ΩΨ gilt.

Der Reflektor Σρ erfüllt für ~ωχ das mapping F̂Σρ (~ωχ) =~ωΨ genau dann, wenn

ρ(~ωχ) = 1

λ(~ωΨ)(1−〈~ωχ,~ωΨ〉)

erfüllt ist. Daraus folgt, dass das mapping F̂Σρ :Ωχ →ΩΨ, das durch den Reflektor Σρ gene-

riert wird, definiert werden kann durch

F̂Σρ (~ωχ) = {~ωΨ ∈ΩΨ| log(ρ(~ωχ))+ log(λ(~ωΨ)) = K (~ωχ,~ωΨ)}. (3.4.18)

Wir definieren das Funktional E auf den mappings ξ :Ωχ→ΩΨ durch

E (ξ) :=
Ï
Ωχ

K (~ωχ,ξ(~ωχ))d~ωχ. (3.4.19)

Das folgende Theorem bringt das mapping F̂Σρ in Zusammenhang zum Funktional E .

Theorem 3.4. Gegeben sei ein Reflektorpaar (Σρ ,Σλ), so dass Σρ das Reflektorproblem löst.

Dann minimiert das zugehörige mapping F̂Σρ das Funktional (3.4.19) unter allen mappings,

die die Dichte Iχ schwach in IΨ überführen. Darüber hinaus gilt die Umkehrrichtung fast über-

all. Alle mappings, die das Funktional (3.4.19) minimieren sind mit F̂Σρ bis auf Nullmengen

identisch.

Beweis. Aus der Definition der schwachen Lösung geht hervor, dass die Übertragung der

Dichten nach Gleichung (3.4.1) für das zugehörige mapping F̂Σρ erfüllt ist. Wie bereits her-

geleitet wurde, erfüllen die Polarradien ρ und λ des Reflektorpaares die Bedingung

log(ρ(~ωχ))+ log(λ(~ωΨ)) ≤ K (~ωχ,~ωΨ). (3.4.20)

Die Gleichheit wird angenommen, wenn ~ωΨ = F̂ (~ωχ) gilt. Zu zeigen ist, dass F̂Σρ das Funk-

tional E minimiert.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Sei ξ eine beliebige Zuordnung, die die Gleichung (3.4.1) erfüllt, dann gilt für alle h ∈C (ΩΨ,R)Ï
Ωχ

h(ξ(~ω))Iχd~ω=
Ï

ξ(Ωχ)︸ ︷︷ ︸
=ΩΨ

h(~ω)IΨd~ω. (3.4.21)

Die Minimaleigenschaft von F̂ kann nun hergeleitet werden durchÏ
Ωχ

K (~ωχ,ξ(~ωχ))Iχd~ωχ ≥
Ï
Ωχ

[
log(ρ(~ωχ))+ log(λ(ξ(~ωχ)))

]
Iχd~ωχ

=
Ï
Ωχ

log(ρ(~ωχ))Iχd~ωχ+
Ï
Ωχ

log(λ(ξ(~ωχ)))Iχd~ωχ

(3.4.21)=
Ï
Ωχ

log(ρ(~ωχ))Iχd~ωχ+
Ï
ΩΨ

log(λ(~ωΨ))IΨd~ωΨ

=
Ï
Ωχ

log(ρ(~ωχ))Iχd~ωχ+
Ï
Ωχ

log(λ(F̂Σρ (~ωχ)))Iχd~ωχ

=
Ï
Ωχ

log(ρ(~ωχ))+ log(λ(F̂Σρ (~ωχ)))︸ ︷︷ ︸
=K (~ωχ,F̂ (~ωχ))

Iχd~ωχ

(3.4.18)=
Ï
Ωχ

K (~ωχ,F̂Σρ (~ωχ))Iχd~ωχ.

Die Eindeutigkeit des minimierenden mappings bis auf Nullmengen wird durch diese Inte-

gralrechnung ebenfalls begründet.

Dieses Theorems bringt die schwache Lösung des Reflektorproblems in Zusammenhang

mit dem Minimum des Funktionals E auf der Menge der mappings, die Iχ in B̂Ψ transformie-

ren. Durch die Eindeutigkeit des mappings kann das Minimum des Funktionals in diesem

Funktionenraum mit der schwachen Lösung identifiziert werden. Wir können die Umformu-

lierung des Problems als Monge-Problem zusammenfassen.

Optimierungsproblem 3.1 (Monge-Formulierung des Reflektorproblems). Gesucht sind für

die Dichten Iχ und BΨ und die Kostendichte K das optimale mapping F̂ , für das

F̂ = inf
ξ:Ωχ→ΩΨ


Ï
Ωχ

K (~ωχ,ξ(~ωχ))Iχd~ω

∣∣∣∣∣∣∣
Ï
Ωχ

h(ξ(~ω))Iχd~ω=
Ï
Ωχ

h(~ω)IΨd~ω∀h ∈C 0(ΩΨ)


gilt.

Wenn es eine schwache Lösung gibt, so kann auf den Reflektor indirekt durch dieses map-

ping geschlussfolgert werden. Die Existenz eines solchen mappings ist im Allgemeinen nicht
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

sichergestellt und darüber hinaus ist das Monge-Optimierungsproblem ein nichtlineares Op-

timierungsproblem. In der Relaxierung des Monge-Kantorovich Formalismus sucht man hin-

gegen nach einem schwach definierten mapping, das mit einem Maß τ auf der Produkt-σ-

Algebra auf Ωχ ×ΩΨ in Zusammenhang steht. Die duale Lösung des Monge-Kantorovich-

Problems kann direkt mit der schwachen Lösung identifiziert werden und soll nun eingeführt

werden.

Da ρ und λ stetige Funktionen sind und die Ungleichung (3.4.17) erfüllen, führen wir den

Funktionenraum

admΩχ×ΩΨ := {η ∈C (Ωχ,R)×C (ΩΨ,R)|η1(~ωχ)+η2(~ωΨ) ≤ K (~ωχ,~ωΨ)}

der zulässigen Funktionen ein.

Zur Herleitung des dualen Monge-Kantorovich-Problems definieren wir für η ∈ C (Ωχ,R)×
C (ΩΨ,R) das Funktional

G (η) :=
Ï
Ωχ

η1(~ωχ)Iχ(~ωχ)d~ωχ+
Ï
ΩΨ

η2(~ωΨ)IΨ(~ωΨ)d~ωΨ

=
Ï
Ωχ

η1(~ωχ)
Iχ(~ωχ)

‖ΩΨ‖
d~ωχ ‖ΩΨ‖︸ ︷︷ ︸

=Î
ΩΨ

d~ωΨ

+
Ï
ΩΨ

η2(~ωΨ)
IΨ(~ωΨ)

‖Ωχ‖
d~ωΨ ‖Ωχ‖︸ ︷︷ ︸

=Î
Ωχ

d~ωχ

=
∫∫∫∫
Ωχ×ΩΨ

η1(~ωχ)
Iχ(~ωχ)

‖ΩΨ‖
+η2(~ωΨ)

IΨ(~ωΨ)

‖Ωχ‖
d~ωχd~ωΨ

=
∫∫∫∫
Ωχ×ΩΨ

〈(
η1(~ωχ),η2(~ωΨ)

)
,

(
Iχ(~ωχ)

||Ωχ||
,

IΨ(~ωΨ)

||ΩΨ||
)〉

d~ωχd~ωΨ.

Die Schreibweise des Funktionals G kann vereinfacht werden durch

G (η) =
∥∥∥∥〈(

η1,η2
)

,

(
Iχ

||Ωχ||
,

IΨ
||ΩΨ||

)〉∥∥∥∥
L1(Ωχ×ΩΨ,R)

. (3.4.22)

Theorem 3.5. Seien (ρ,λ) die Polarradien eines Reflektorpaares. Dann sind folgende Aussagen

äquivalent:

1. η := (logρ, logλ) maximiert das Funktional G in admΩχ×ΩΨ .

2. Der Reflektor Σρ zum Polarradius ρ ist eine schwache Lösung des Reflektorproblems

Beweis. siehe [16, Theorem 3.4]
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Falls G das Maximum in der Funktion η ∈ admΩχ×ΩΨ annimmt, dann ist durch ρ(~ωχ) :=
eη1(~ωχ) der Polarradius der schwachen Lösung gegeben.

Optimierungsproblem 3.2 (duale Monge-Kantorovich-Formulierung des Reflektorproblems).

Gesucht sind s ∈C (Ωχ,R) und q ∈C (ΩΨ,R) mit

s(~ωχ)+q(~ωΨ) ≤− log(1−〈~ωχ,~ωΨ〉),

so dass das lineare FunktionalÏ
Ωχ

s(~ωχ)Iχ(~ωχ)d~ωχ+
Ï
ΩΨ

q(~ωΨ)IΨ(~ωΨ)d~ωΨ

maximiert wird.

Aus der Lösung (s, q) dieses Optimierungsproblems kann das zugehörige mapping F̂ be-

stimmt werden aufgrund der Forderung

F̂ (~ωχ) =~ωΨ⇔ s(~ωχ)+q(~ωΨ) =− log(1−〈~ωχ,~ωΨ〉).

Der Vollständigkeit halber geben wir an dieser Stelle noch das primale Monge-Kantorovich-

Problem an, dessen Lösung in einem direkten Zusammenhang zum gesuchten mapping F̂Σρ

steht.

Optimierungsproblem 3.3 (primale Kantorovich-Formulierung des Reflektorproblems). Ge-

sucht ist das Maß µ :σ(Ωχ×ΩΨ) →R+ mit den Marginalen

µ(DΩχ,ΩΨ) =
Ï

DΩχ

Iχ(~ωχ)d~ωχ ∀DΩχ ∈σ(Ωχ) und

µ(Ωχ,DΩΨ) =
Ï

DΩΨ

IΨ(~ωΨ)d~ωΨ ∀DΩΨ ∈σ(ΩΨ),

so dass das lineare Funktional∫∫∫∫
Ωχ×ΩΨ

− log(1−〈~ωχ,~ωΨ〉) d~ωχd~ωΨ

minimiert wird.

Aus dem Produktmaß kann das mapping F̂Σρ approximiert werden (siehe Abschnitt 3.4.4).

Die Idee hinter dieser Rekonstruktion ist, dass jedes schwach definierte mapping ξ :Ωχ→ΩΨ
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

ein Maß τξ induziert (siehe Abbildung 3.8) mit

µ(M ∩ξ−1(Y )) = τ(M ×Y ) = ν(ξ(M)∩Y ) mit Y ⊂Ωχ und M ⊂ΩΨ.

Diese Variante des Monge-Kantorovich-Algorithmus hat nur Gültigkeit für den Fall, dass das

optische System aus einem Reflektor besteht. Um zu einer allgmeingültigeren Formulierung

des Ansatzes zu gelangen wird in den folgenden Abschnitten eine allgemeinere Formulierung

des Monge-Problems und der Relaxierung durch Kantorovich dargestellt.

3.4.3 Das Monge-Problem des optimalen Transportes

Wir orientieren uns in diesem Abschnitt an der Ausarbeitung [4]. Seien zwei nichtnegative

Radon Maße µ+ aufΩχ ⊂ S2 und µ− aufΩΨ ⊂ S2 gegeben, so dass die Energieerhaltung

µ+(Ωχ) =µ−(ΩΨ) (3.4.23)

erfüllt wird. Das Monge-Problem des optimalen Transports sucht ein injektives mapping F̂ :

Ωχ→ΩΨ, das die Dichte µ+ in die Dichte µ− überführt, d.h.

µ−(B) = µ+(F̂−1(B)) ∀ µ−messbaren Mengen B.. (3.4.24)

In unserer Problemstellung sind die Maßeµ± durch die positiven und differenzierbaren Dich-

ten Iχ aufΩχ und IΨ aufΩΨ definiert durch

µ+(A) =
Ï

A
Iχ(~ωχ)d~ωχ ∀A ⊂Ωχ messbar

µ−(B) =
Ï

B
IΨ(~ωΨ)d~ωΨ ∀B ⊂ΩΨ messbar.

Die Energieerhaltung (3.4.23) ist äquivalent zu der ForderungÏ
Ωχ

Iχ(~ωχ)dωχ =
Ï
ΩΨ

IΨ(~ωΨ)d~ωΨ

und die Bedingung (3.4.24) zu

Iχ(~ωχ) = IΨ(F̂ (~ωχ))|det(DF̂ (~ωχ))|, (3.4.25)

falls F̂ ein Diffeomorphismus aufΩχ ist.

Zusätzlich bewertet eine Transportkostenfunktion c :Ωχ×ΩΨ→R+ durch das Transportkos-
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tenfunktional

C [F̂ ] :=
Ï
Ωχ

c(~ωχ,F̂ (~ωχ))dµ+(~ωχ) =
Ï
Ωχ

c(~ωχ,F̂ (~ωχ)Iχ(~ωχ)dΩχ

das mapping F̂ . Das Monge-Problem besteht darin, unter allen mappings, die die Gleichung

(3.4.24) erfüllen, das Minimum

F̂∗ := inf
{
C [F̂ ]|F̂ :Ωχ→ΩΨ,F̂#(µ+) =µ−}

(3.4.26)

zu finden.

Um die Relevanz dieses Ansatzes für das Beleuchtungsproblem (siehe Abschnitt 2.5) zu be-

legen soll nun ein möglicher Zusammenhang zwischen dem optimalen mapping und der

Existenz eines entsprechenden optischen Systems hergestellt werden. Nach Steven Haker in

[9, S. 228] ist das optimale mapping F̂∗ für die Kostenfunktion

c(~ωχ,~ωΨ) = ||~ωχ−~ωΨ||2

der Gradient einer konvexen Funktion ζ :Ωχ →R. In diesem Fall kann die Gleichung (3.4.25)

als partielle Differentialgleichung

Iχ(~ωχ) = IΨ(∇ζ(~ωχ))|det(Hζ(~ωχ))|. (3.4.27)

des Typs Monge-Ampère geschrieben werden. Dieser Zusammenhang erinnert an die Model-

lierung nach J. S. Schruben, da die partielle Differentialgleichung (3.1.5), die die Optik be-

schreibt, vom selben Typ ist. Der Zusammenhang zwischen dem optimalem mapping und

dem Beleuchtungsproblem (siehe Abschnitt 2.5) soll nun noch etwas näher betrachtet wer-

den. Die Eigenschaft

F̂∗ =∇ζ

ist äquivalent zur Wegunabhängigkeit des Integrals, bzw. dem Verschwinden des Ringinte-

grals ∮
T
∇ζ(~ωχ) ·dl =

∮
T

F̂∗(~ωχ) ·dl = 0

über jede geschlossene Kurve T ⊂Ωχ und der Wirbelfreiheit

r ot (F̂∗)(~ωχ) = 0

des mappings F̂∗ für alle π ∈Π.

Wegen der Verknüpfung zwischen dem mapping und dem Normalenvektorfeld kann zur Aus-
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legung von Optiken ein optimales mapping berechnet werden, zu dem dann ein optisches

System berechnet werden kann6. Hierbei bietet sich die Verwendung der quadratischen Ab-

standsfunktion besonders an. Jedoch ist das Monge-Problem aufgrund der hohen Nichtli-

nearität der Hessematrix und möglicher Singularitäten in der Funktion F̂ numerisch sehr

schwer zu lösen. Haker gibt in seiner Veröffentlich [9] eine Alternative zur Lösung der nichtli-

nearen partiellen Differentialgleichung an, indem das Problem erst eindimensional in beide

Richtungen gelöst wird und anschließend im Lösungsraum die Rotation iterativ verringert

wird. Kantorovich vereinfachte das Monge-Problem 1940 durch eine Relaxierung, die im Fol-

genden dargestellt werden soll.

3.4.4 Die Relaxierung des Monge-Problems durch Kantorovich zum primalen

Monge-Kantorovich-Problem

Die Relaxierung von Kantorovich besteht darin, nicht mehr diffeomorphe mappings

F̂ : Ωχ → ΩΨ zu bestimmen, sondern die Lösung im Raum der Produkt-Maße auf der Bo-

relschen σ-Algebra B
(
Ωχ×ΩΨ

)
mit Marginalen µ± zu suchen. Da Maße Nullmengen ver-

nachlässigen, stellen beispielsweise Nullstellen der Jakobideterminante det(DF̂ ) kein Pro-

blem dar, so dass dieser Ansatz in einem größeren Lösungsraum sucht, der auch nicht überall

definierte Lösungen zulässt. Wir bezeichnen diesen Maßraum mit

M :=
{

Radon-Maße µ aufΩχ×ΩΨ|Γ~ωχµ=µ+,Γ~ωΨµ=µ−
}

. (3.4.28)

Das relaxierte Produktmaßfunktional ist

J [µ] :=
∫∫∫∫

Ωχ×ΩΨ
c(~ωχ,~ωΨ)dµ(~ωχ,~ωΨ). (3.4.29)

Gesucht ist nun zuµ± das Maßµ∗ mit J [µ∗] = minµ∈M J [µ]. Dieses Problem wird das primale

Monge-Kantorovich-Problem genannt.

Der Zusammenhang zwischen dem mapping F̂∗ und dem Produktmaß µ∗ wird im folgen-

den Beispiel 3.3 verdeutlicht, im nächsten Abschnitt formuliert und für den diskreten Fall als

lineares Programm 3.1 gefasst.

Beispiel 3.3 (1D). In diesem Beispiel wenden wir die bisher hergeleiteten Formeln auf ein ein-

dimensionales Problem an. SeiΩχ = [0;1] =ΩΨ und Iχ = 1 = IΨ die Dichten der Maße µ±. Die

Lösung F̂∗ des Monge-Problems unter der Kostenfunktion c(x, y) = (x − y)2 ist die Identität

F̂∗(x) = x. Wir wollen das Monge-Kantorovich-Problem auf einer äquidistanten Diskretisie-

rung vonΩχ undΩΨ mit Schrittweite h = 1/n lösen. Die Maße µ± ergeben auf jedem Teilgebiet

6siehe hierzu die Aussage des Theorems 3.2 in Abschnitt 3.4
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die Zahlen µ+
i =µ−

j = h. Das induzierte Maß

µ∗(E) :=µ+ ({
π ∈R|(π,F̂∗(π)) ∈ E

}) ∀ E ∈B(Ωχ×ΩΨ) (3.4.30)

löst das Monge-Kantorovich-Problem (siehe [4, Seite 5]). Dieser Zusammenhang wird in Abbil-

dung 3.7 dargestellt. Die Relaxierung bezieht sich also darauf, dass nicht mehr die Frage ge-

µ+
1

µ+
2

µ+
2

µ+
4

µ+
5

µ−
1 µ−

2 µ−
3 µ−

4 µ−
5

ã∗(x1)

µ

h

h

h

h

h

0

0 0 0 0

0 0 0

00

0

00

00

00

0

0 0

Abb. 3.7: Darstellung des Zusammenhangs zwischen einem mapping und dem Produktmaß.

stellt wird, welche Punkt-zu-Punkt-Zuordnung die Maße ineinander überführt, sondern, wie

die einzelnen Mengen zusammenhängen, bzw. wie Teilmengen vonΩχ abgebildet werden. Da-

durch verdoppelt sich die Anzahl der Freiheitsgrade, jedoch hängt das Funktional und die Ne-

benbedingungen linear von dem Produktmaß ab.

Damit wird dargestellt, wie aus der Lösung des Monge-Problems die Lösung des relaxier-

ten Monge-Kantorovich-Problems hergeleitet werden kann. Wie jedoch aus der Lösung des

Monge-Kantorovich-Problems ein mapping rekonstruiert werden kann, ist an dieser Stelle

noch offen.

Konstruktion eines optimalen mappings aus der primalen Monge-Kantorovich-Lösung

Zu ~ωχ ∈Ωχ sei B~ωχ eine kleine offene Umgebung von ~ωχ. Die Dichte Iχ definiert in B~ωχ eine

Energie
∫

B~ωχ
I (~ωχ)d~ωχ. Wir wählen eine Diskretisierung

{
Ω

j
Ψ| j ∈ 1. . .o

}
mit o ∈ N+ von ΩΨ

mit den Mittelpunkten~ωi
Ψ ∈Ω j

Ψ. Die Maßzahl µ∗(B~ωχ×Ωi
Ψ) sagt aus, mit welchem Anteil die

52



3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

Energie in B~ωχ auf die TeilmengeΩi
Ψ abgebildet wird. Diese geometrische Bedeutung wird in

Abbildung 3.7 und 3.8 verdeutlicht und ermöglicht uns eine heuristische Art der Konstruktion

eines mappings durch

F̂+(~ωχ) :=

o∑
j=1

µ∗(B~ωχ ×Ω j
Ψ)~ω j

Ψ

µ∗(B~ωχ ×ΩΨ)
. (3.4.31)

Diese Definition stellt eine Annäherung an das optimale mapping F̂∗ dar. Betrachtet man

das Beispiel 3.3 in Abbildung 3.7, so sieht man sofort, dass das mapping F̂+ bei geeigneter

Wahl der Mittelpunkt identisch ist zu dem gesuchten mapping F̂∗.

Aufgrund der geometrischen Eigenschaft der Kostenfunktion wird für das minimierende Pro-

duktmaß µ∗ in der Regel gelten, dass die TeilmengeΨ~ωχ mit µ∗(B~ωχ ×Ψ~ωχ) > 0 und µ∗(B~ωχ ×
(Ψ\Ψ~ωχ)) = 0 klein ist und geringen Abstand zu ~ωχ hat. Dieser Sachverhalt führt zu einer

schwachen Besetztheit des Produktmaßes µ∗, die für effiziente Berechnungsroutinen (siehe

Abschnitt 5.5) ausgenutzt werden kann. Aus dieser Beobachtung folgt, dass die obige Defini-

tion des mappings F̂+ sinnvoll ist, da der Punkt ~ωχ in ein Gebiet auf Ψ abgebildet wird, in

das auch die Energie aus B~ωχ abgebildet wird.

Diese Motivation der Definition des mappings F̂+ kann auch eingesehen werden, wenn man

davon ausgeht, dass zu dem konkren Problem ein optimales mapping F̂∗ existiert. In diesem

Fall wird das Maß µ∗ von diesem induziert. Sei B~ωΨ eine offene Umgebung in Ψ, so gilt für

das Maß µ∗

µ+(B~ωχ ∩F̂∗−1(B~ωΨ)) =:µ∗(B~ωχ ×B~ωΨ) :=µ−(F̂∗(B~ωχ)∩B~ωΨ).

Wählt man eine Folge von Diskretisierungen vonΩχ, in der für alle~ωχ eine Teilfolge existiert,

die auf die Menge {~ωχ} konvergiert. Für das mapping F̂∗ gilt in diesem Fall der Zusammen-

hang

F̂∗(~ωχ) = lim
B~ωχ→{~ωχ}

lim
o→∞

o∑
k=1

µ∗(B~ωχ ,Ωk
Ψ)~ωi

Ψ

µ(B~ωχ ,ΩΨ)
.

zum Produktmaß µ∗. Eine diskrete eindimensionale Veranschaulichung dieses Rückschlus-

ses auf das mapping F̂+ wird im Beispiel 3.4 dargestellt. Wir fassen das primale Monge-

Kantorovich-Problem nun als lineares Programm zusammen.

lineares Programm 3.1 (primales Monge-Kantorovich-Problem). Wir wählen zur Vereinfa-

chung der Notation die Indizierung i ≡ (i1, i2) und j ≡ ( j1, j2) .

Sei eine disjunkte Unterteilung der MengenΩχ undΩΨ in {Ωi
χ|i = 1, . . . ,m} und {Ω j

Ψ| j = 1, . . . ,o}

mit m,o ∈N und den Mittelpunkten ~ωi
χ und ~ω j

Ψ gegeben. Die Maßzahlen µ+ und µ− können
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Ωχ

Ωm
χ

ΩΨ Ωo
ΨΩk

Ψ

Ωi
χ

F(Ωi
χ)

µ

µi,j µi,j+10 0 0. . .

F−1(Ωk
Ψ)

0

µ2,k

µ3,k

µ4,k

0

Abb. 3.8: Der Zusammenhang zwischen dem optimalen Produktmaß µ auf σ(Ωχ×ΩΨ) und einem bis
auf Nullmengen eindeutigen mapping F̂ . Das Maß enthält die Information, in welche Teil-
mengen vonΩΨ die einzelne Teilmenge vonΩχ wie stark abgebildet wird, so dass das mapping
approximiert werden kann. Das Maß läßt den umgekehrten Schluss zu für die Umkehrabbil-
dung F̂−1
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

mit Hilfe der Dichten Iχ und IΨ berechnet werden durch

µ+
i :=

Ï
Ωχi

Iχ(~ωχ)d~ωχ und µ−
j :=

Ï
ΩΨ j

IΨ(~ωΨ)d~ωΨ.

Aufgrund der geforderten Energieerhaltung (3.4.1) gilt

m∑
i=1

µ+
i =

o∑
j=1

µ−
j .

Mit der Kostenmatrix C , deren Elemente mit ci , j := c(~ωi
χ,~ω j

Ψ) gegeben sind sollen die m · n

Maßzahlen µ∗
i , j so bestimmt werden, so dass

m∑
i=1

o∑
j=1

ci , jµi , j (3.4.32)

minimiert wird unter den Nebenbedingungen

o∑
j=1

µî , j =µ+
î

,
m∑

i=1
µi , ĵ =µ−

ĵ
, für alle î = 1. . .m und ĵ = 1. . .o.

Diese (m +o) Nebenbedingungen lassen sich durch ein lineares Gleichungssystem der Form



1 . . . 1

1 . . . 1
. . .

. . .

1 . . . 1

1 1 1 1

01 01 01 01
. . .

. . .
. . .

. . .

1 1 1 1





µ1,1

µ1,2
...
...

µ2,1

µ2,2
...
...
...
...
...
...

µm,o



=



µ+(Ω1
χ)

µ+(Ω2
χ)

...

...

µ+(Ωm
χ )

µ−(Ω1
Ψ)

µ−(Ω2
Ψ)

...

...

µ−(Ωo
Ψ)



.

beschreiben.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Beispiel 3.4 (1D). Wir betrachten das 1D-Beispiel in Abbildung 3.9. Das Maß µ1 zur Dichte I

soll unter quadratischer Kostenfunktion in das Maß µ2 zur Dichte B überführt werden. Das Er-

gebnis des linearen Programmes ist das Produktmaß im unteren Teil der Abbildung. Eine Zeile

im Produktmaß sagt über ein optimales mapping F̂∗ : Ωχ → ΩΨ aus, auf welche Intervalle

des Zielgebietes die Energie im zugrundeliegende Intervall des Urbildraumes abgebildet wird.

Dieser Zusammenhang findet sich in der gewichteten Mittelwertbildung (3.4.31) wieder. Auf

diese Weise wird eine Annäherung an das optimale mapping bestimmt, das in Abbildung 3.10

dargestellt wird.
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Abb. 3.9: Eindimensionales primales Monge-Kantorovich Problem. Das Maß µ1 zur Dichte I soll unter
quadratischer Kostenfunktion in das Maß µ2 zur Dichte B überführt werden. Das Ergebnis des
linearen Programmes ist das Produktmaß im unteren Teil der Abbildung.

3.4.5 Das duale Monge-Kantorovich-Problem

Das zugehörige duale Monge-Kantorovich-Problem sucht im Raum

L := {
(u, v) | (u, v) ∈ L1(Ωχ)×L1(ΩΨ), u(~ωχ)+ v(~ωΨ) ≤ c(~ωχ,~ωΨ)

}
(3.4.33)
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

das Paar (u∗, v∗), auf dem das Kostenfunktional

K [u, v] :=
Ï
Ωχ

u(~ωχ)Iχ(~ωχ)dΩχ+
Ï
ΩΨ

v(~ωΨ)IΨ(~ωΨ)dΩΨ (3.4.34)

maximiert wird unter den Nebenbedingungen

u(~ωχ)+ v(~ωΨ) ≤ c(~ωχ,~ωΨ) ∀ ~ωχ ∈Ωχ, ~ωΨ ∈ΩΨ. (3.4.35)

Der diskrete Fall wird im Linearen Programm 3.2 zusammengefasst.

lineares Programm 3.2. Für eine Diskretisierung der Mengen, der Maße und der Kostenfunk-

tion wie im Linearen Programm 3.1 besteht die Aufgabe des diskreten dualen Monge-Kantorovich-

Problems darin, die Werte ui mit i = 1. . .m und v j mit j = 1. . .o zu bestimmen, so dass

m∑
i=1

uiµ
+
i +

o∑
j=1

v jµ
−
j (3.4.36)

maximiert wird unter den Nebenbedingungen

ui + v j ≤ ci , j für i = 1. . .mn und j = 1. . .op. (3.4.37)

Für die quadratische Kostenfunktion

u(~ωχ)+ v(~ωΨ) ≤ 1

2
||~ωχ−~ωΨ||22 ∀ ~ωχ ∈Ωχ, ~ωΨ ∈ΩΨ

und die Funktionen

ζ(~ωχ) := 1

2
||~ωχ||22 −u(~ωχ), Γ(~ωΨ) := 1

2
||~ωΨ||22 − v(~ωΨ) (3.4.38)

sind die Nebenbedingungen (3.4.35) äquivalent zu

ζ(~ωχ)+Γ(~ωΨ) ≥ 〈~ωχ,~ωΨ〉 (3.4.39)

und das Problem der Maximierung von (3.4.34) ist äquivalent zu der Minimierung von

L [ζ,Γ] :=
Ï
Ωχ

ζ(~ωχ)Iχ(~ωχ)d~ωχ+
Ï
~ωΨ

Γ(~ωΨ)IΨ(~ωΨ)d~ωΨ

für alle integrierbaren Funktionen ζ und Γ, die die Nebenbedingung (3.4.39) für alle ~ωχ ∈Ωχ

und ~ωΨ ∈ ΩΨ erfüllen. Wir fassen diese Umformulierung in einem weiteren linearen Pro-

gramm zusammen:
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

lineares Programm 3.3. Für eine Diskretisierung der Mengen, der Maße und der Kostenfunk-

tion wie im Linearen Programm 3.1 besteht die Aufgabe des diskreten dualen Monge-Kantorovich-

Problems darin, die Werte ζi mit i = 1. . .m und Γ j mit j = 1. . .o zu bestimmen, so dass

m∑
i=1

ζiµ
+
i +

o∑
j=1
Γ jµ

−
j (3.4.40)

minimiert wird unter den Nebenbedingungen

ζi +Γ j ≥ 〈~ωi
χ,~ω j

Ψ〉 für i = 1. . .m und j = 1. . .o. (3.4.41)

Falls ui und v j mit i = 1. . .m und j = 1. . .o die Lösung des Linearen Programmes 3.2 ist, erge-

ben sich die Zahlen ζi und Γ j durch Anwenden der Gleichungen (3.4.38) mit

ζi = 1

2
||~ωi

χ||22 −ui , Γ j = 1

2
||~ω j

Ψ||22 − v j .

Die mo Ungleichungs-Nebenbedingungen können in der Matrix-Schreibweise

1 1
...

. . .

1 1

1 1
...

. . .

1 1

1 1
...

1 1

1 1
...

. . .

1 1





ζ1

ζ2
...

ζm

Γ1

Γ2
...

Γo



≥



〈~ω1
χ,~ω1

Ψ〉
〈~ω1

χ,~ω2
Ψ〉

...

...

...

...

...

...

...

...

〈~ωm
χ ,~ωo

Ψ〉


geschrieben werden. Diese Matrix ist regulär und besitzt 2mo nicht-null-Einträge und das Glei-

chungssystem m +o Unbekannte.

Rückschluss von der dualen Monge-Kantorovich-Lösung auf das optimale mapping

Sei ζ die Lösung des Linearen Programms 3.3, so stellt folgendes Theorem den Zusammen-

hang zum gesuchten optimalen mapping F∗ her (siehe [4, Theorem 3.1 Seite 13]).
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

Theorem 3.6. Die Funktion F̂∗ :Ωχ →ΩΨ :=∇ζ löst das Monge-Problem (3.4.26) bei qudra-

tischer Kostenfunktion.

Beweis. siehe [4, Theorem 3.1 auf Seite 13]

In Abbildung 3.11 werden das berechnete mapping aus den Linearen Programmen 3.1 und

3.3 zu der primalen und dualen Formulierung des Monge-Kantorovich-Problems miteinan-

der verglichen.
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Abb. 3.10: Das mapping F̂+ :Ωχ →ΩΨ wird aus der primalen Lösung des Formalismus nach Kantoro-
vich des Monge-Problems durch die gewichtete Mittelpunktsbildung (3.4.31) bestimmt.

Abb. 3.11: Das Gitter Π der Mittelpunkte π̃i im Vordergrund der Zeichnungen soll auf die EbeneΩΨ im
Hintergrund abgebildet werden. F̂+ ist das berechente mapping. Im linken Bild wurde die-
ses mapping aus dem dualen linearen Programm 3.3 der Monge-Kantorovich-Formulierung
erzeugt und im rechten Bild aus dem primalen linearen Programm 3.1. Es sind geringe Un-
terschiede erkennbar.
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4 Modellierung des Beleuchtungsproblems

mit ausgedehnter Lichtquelle

Die bislang betrachteten Ansätze approximieren die ausgedehnte1 Lichtquelle χ ⊂ R3 als

Punkt χ̂ ∈ R3. Die resultierenden Probleme stellen bereits nichtlineare partielle Differenti-

algleichungen, Integralgleichungen, Minimierungsaufgaben oder hochdimensionale lineare

Programme dar. Durch die reale Ausdehnung der Lichtquelle gelten die Modellierungen mit

Punktlichtquellen nur approximativ, in Abhängigkeit von der relativen Größe des optischen

Systems zur Ausdehnung der Lichtquelle. Dieses Verhalten wird im folgenden Beispiel illus-

triert.

Beispiel 4.1 (Ungültigkeit der Punktlichtquellen-Approximation für kleine optische Syste-

me). Dieses Beispiel soll die allgemeine Ungültigkeit der Punktlichtquellen-Approximation

verdeutlichen. Je größer die Lichtquelle im Vergleich zur Optik wird, desto unschärfer wird

die generierte Abbildung. Wir wählen zu Verdeutlichung die Optik aus Abbildung 4.1a, die

mit dem PDE-Ansatz aus Abschnitt 3.1 berechnet wurde und das Portrait von Gaspard Monge

im Fernfeld generiert (Abbildung 4.1b). Wir setzen anstelle der Punktlichtquelle quadratische

Lichtquellen ein, die dieselbe Lichtstärkeverteilung realisieren. Es werden verschiedene Aus-

dehnungen der Lichtquelle betrachtet. In Abbildung 4.2 kann man den verursachten Effekt

der stärkeren Unschärfe der generierten Lichtstärkeverteilung in Abhängigkeit von der Aus-

dehnung der Lichtquelle beobachten. Aus diesem Grunde ist es wichtig, die Ausdehnung der

Lichtquelle zu modellieren

Innerhalb der Modellierungen mit Punktlichtquelle gibt es verschiedene Ansätze, bzw. Mög-

lichkeiten, die Effekte durch die Ausdehnung der Lichtquelle zu berücksichtigen, diese je-

doch nicht direkt zu modellieren. Einige Ansätze werden in dem nächsten Abschnitt angeris-

sen.

1Eine ausgedehnte Lichtquelle wird beschrieben durch die Leuchtdichtefunktion auf eine parametrisierbaren
zweidimensionalen Untermannigfaltigkeit des R3
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

4.1 Ansätze zur Berücksichtigung der Ausdehnung der Lichtquelle

unter Approximation der Lichtquelle als Punkt

Es gibt verschiedene Möglichkeiten, die Unschärfe der generierten Lichtverteilung durch die

reale Ausdehnung der Lichtquelle bereits in Ansätzenmit Approximation der Lichtquelle als

Punkt zu berücksichtigen. Einige Ansätze sollen hier vorgestellt werden.

rekursive Änderung der Ziellichtverteilung William Cassarly erwähnt in dem Artikel [6]

einen Ansatz, der auf allgemeine Modellierungen angewandt werden kann. Zu einem beliebi-

gen Algorithmus bezeichne O(BΨ) das optische System, das durch den Algorithmus berech-

net wird. Die durch O mit ausgedehnter Lichtquelle realisierte Beleuchtungsstärkeverteilung

ist B(O). Falls B(O) von der Zielverteilung abweicht, d.h.

B(O(BΨ)) 6= BΨ,

(a) (b)

Abb. 4.1: Die generelle Ungültigkeit der Punktlichtquellen-Approximation soll mit diesem Beispiel ver-
deutlicht werden. (a) Diese optische Fläche wurde mit Hilfe der Modellierung aus Abschnitt 3.1
berechnet. (b) Die generierte Lichtverteilung dieser Optik
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4.1 Berücksichtigung der Ausdehnung unter Punktlichtquellen-Approximation

dann kann der Algorithmus in einer Rekursionsschleife angewandt werden mit manipulierter

Ziellichtverteilung durch die Vorschrift

B1 := BΨ

Bn+1 = BΨ
B(O(Bn))

Bn .

Wenn die Abweichung der erzeugten Verteilung Bn+1 von der eigentlichen Ziellichtverteilung

BΨ klein genug ist, kann die Rekursion abgebrochen werden. Cassarly erwähnt verschiedene

Quellen, nach denen dieser Ansatz nur lokal konvergent sein soll, d.h. eine gute Startlösung

benötigt. Darüber hinaus nimmt die Rekursionsformel die Bereiche nicht in Betracht, in de-

nen BΨ nicht definiert ist. Aus diesen Gründen schlägt Cassarly eine rekursive Veränderung

des source-target-mappings vor. Die konkrete Modellierung ist jedoch nur für eindimensio-

nale, bzw. rotationssymmetrische Probleme anwendbar, so dass an dieser Stelle nicht darauf

eingegangen wird.

(a) (b) (c)

(d) (e) (f)

Abb. 4.2: Zusammenhang zwischen der Größe der Lichtquelle und der generierten Unschärfe im Bild.
Mit der Größe der Lichtquelle nimmt die Unschärfe der generierten Lichtstärkeverteilung zu.
(a) Punktlichtquelle. (b) Kantenlänge 0.25mm. (c) Kantenlänge 0.05mm. (d) Kantenlänge
0.1mm. (e) Kantenlänge 0.5mm. (f) Kantenlänge 1mm.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Generierung von scharfen Kanten in der Lichtverteilung Die Unschärfe durch ausgedehn-

te Lichtquellen wirkt sich besonders stark auf scharfe Hell-Dunkel Grenzen aus, die eine be-

sondere Bedeutung in der automobilen Beleuchtung spielen. Eine Möglichkeit, diese schar-

fen Grenzen auch mit einer ausgedehnten Lichtquelle zu realisieren, ist die Quellbildkorrek-

tur. Diese basiert darauf, in dem Algorithmus die Lage der angenommen Punktlichtquel-

le variabel zu gestalten. Zu jedem Punkt σ der optischen Fläche wird mittels des Forward-

Raytraces berechnet, welcher Randpunkt der Lichtquelle auf den obersten Punkt des zuge-

hörigen Lichtquellenbildes F (χ,σ) (siehe Abbildung 4.4b) abgebildet wird. Falls dieser Punkt

oberhalb der Hell-Dunkel-Grenze ist wird im nächsten Schritt der entsprechende Ort auf der

Lichtquelle für die Punktlichtquelle angenommen und die optische Fläche korrigiert. Auf die-

se Weise werden Optiken generiert, deren Lichtquellenbilder an die zu realisierende Hell-

Dunkel-Grenze heranreichen, aber diese nicht überlagern und damit auch nicht verfälschen.

Ein Beispiel mit relativ weicher Hell-Dunkel Grenze ist in Abbildung 4.3 dargestellt. Hier sieht

man, dass die ausgewählten Lichtquellenbilder an die Hell-Dunkel Grenze heranreichen, die-

se aber nicht überschreiten.
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Abb. 4.3: Die Lichtquellenbilder einer ausgedehnten Fläche liegen an der Hell-Dunkel Grenze ohne diese
zu überschreiten.

Anpassen der Modellierung mit einer Faltung aus Abschnitt 3.2 In dem Artikel [14] wird

eine theoretische Erweiterung der Modellierung auf ausgedehnte Lichtquellen gegeben. Die

Lichtquelle kann durch eine endliche Anzahl von Punktlichtquellen χi ∈ R3 mit i = 1, . . . ,n

modelliert werden. Die Lichtstärkeverteilung Iχ der ausgedehnten Lichtquelle muss gleich

der Summe
n∑

i=1
Iχi = Iχ
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4.1 Berücksichtigung der Ausdehnung unter Punktlichtquellen-Approximation

der Punktlichtquellen sein. Analog zur Formel (3.2.1) kann die Beleuchtungsstärkeverteilung

in dem Punkt y ∈Ψ berechnet werden durch die Summe

Bc,Ψ(y) =
n∑

i=1

Ï
ΠΣ1

Iχi (~ωΣ1 (χi ,π))
√
FπΣ1

~ωΣ1 (χi ,π)δc (y −F (χi ,π))dπ.

Wählt man eine dichte Folge ({χi |i = 1, . . . ,n})n inχ, dann erhält man im Grenzübergang nach

[14, Seite 539] die Integralgleichung

Bc,Ψ(y) =
Ï
ΠΣ1

Ï
χ

Lχ(x,~ωΣ1 (x,π))
〈
~Nχ,~ωΣ1 (x,π)

〉√
FπΣ1

~ωΣ1 (x,π)δc (y −F (x,π))d xdπ

über die Leuchtdichte der Lichtquelle. Diese exakte Beschreibung der Lichtquelle wird aller-

dings durch die zusätzliche Verwendung der Faltung verfälscht.

Alternativ kann auch die ursprüngliche Modellierung mit Punktlichtquelle von Mooiseev für

ausgedehnte Lichtquellen verwendet werden. Die Abbildung 4.2 zeigt, dass durch die Aus-

dehnung der Lichqtuelle eine Unschärfe auf die generierte Verteilung aufgebracht wird. Eine

solche Unschärfe kann mathematisch durch eine Faltung erzeugt werden, wobei die Stärke

der Unschärfe durch die Breite der Faltungsfunktion definiert wird. Da in der betrachteten

Modellierung die Beleuchungsstärke mittels einer Faltung berechnet wird, kann durch eine

variable Breite c : Ψ→ R+ die lokal unterschiedlich starke Unschärfe approximiert werden.

Da wir diesen Ansatz nicht weiter verfolgen verzichten wir an dieser Stelle auf eine Herlei-

tung der Funktion c.

Anpassung der schwachen Lösung für ausgedehnte Lichtquellen Für die schwache Lö-

sung des Reflektorproblems durch den Oliker-Algorithmus werden die Fokalparameter der

Ellipsoiden so berechnet, dass die diskreten Lichtströme auf den Zielpunkten generiert wer-

den. Für eine Punktlichtquelle ist dies sinvoll, da der gesamte Lichtstrom auf die Zielpunkte

abgebildet wird. In dem Artikel [6, ab Abschnitt 2.4] wird ein Ansatz beschrieben, um diese

Berechnung der schwachen Lösung für ausgedehnte Lichtquellen anzupassen.

Die generierte Beleuchtungsstärke BO(yi ) am Punkt yi ∈Ψ ist in diesem Fall nicht mehr rein

proportional von dem abgebildeten Lichtstrom Φi abhängig, der auf den Ellisoiden Ei trifft,

sondern zusätzlich antiproportional von der Größe des Lichtquellenbildes ‖F (χ,Ωi )‖. Dies

liegt daran, dass der Lichtstrom, der von der Lichtquelle auf eine Reflektorscherbe trifft, auf

das Gebiet des Lichtquellenbildes verteilt wird und somit die Beleuchtungsstärke mit Zunah-
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

me des Lichtquellenbildes geringer wird, d.h.

BO(yi ) = Φi

‖F (χ,Ωi )‖ .

Um diesen Effekt der Ausdehnung der Lichtquelle auszugleichen, wird eine Variation des Oli-

ker-Algorithmus vorgeschlagen. Die Beleuchtungsstärke BO(yi ) kann für lambertsche Licht-

quellen mit einer Leuchtdichte L0 berechnet werden durch

BO(yi ) = L0

Ï
~ωΣ(yi ,Ei∩Σ)

d~ω

Optimiert man nun die Fokalparameter darauf, dass die korrekten Raumwinkel (von der Ziel-

fläche gesehen) für die geforderten Beleuchtungsstärken angenommen werden, so umgeht

man den Antiproportionalität zur Größe des Lichtquellenbildes. Fournier nennt diesen An-

satz PS A-basierten Algorithmus. Die Abkürzung PSA steht für ’projezierten Raumwinkel’.

Allerdings beruht dieser Ansatz auf zwei weiteren Annahme:

1. Die Lichtquellenbilder der Ellipsoide müssen disjunkt sein, weil sonst für die Beleuch-

tungsstärke an den Punkten der Zielfläche verschiedene Reflektorscherben beteiligt

sind, was die Optimierung ungleich komplexer macht.

2. Die Lichtquellenbilder müssen die ZielflächeΨ fast vollständig überlagern. Diese For-

derung ergibt sich aus dem Ansatz von Fournier in Abschnitt 3.3.2, glatte Reflektoren

aus den diskreten Lösungen zu erzeugen. In diesem Fall werden die Lichtströme in

den Lichtquellenbildern gleichmäßig aufΨ verteilt. Wenn nun zwischen zwei benach-

barten Lichtquellenbildern, die die korrekte Beleuchtungsstärke erzeugen, eine große

Lücke ist, dann wird die Verteilung der kontinuierlichen Lösung geringere Beleuch-

tungsstärken generieren.

Eine Lösung wird in [6, ab Abschnitt 3.2] beschrieben. Das Gitter der Zielpunkte wird anfäng-

lich äquidistant gewählt und anschließend so optimiert, dass die Lichtquellenbilder einer

disjunkte Überlagerung vonΨ nahekommen.

Die beschriebenen Ansätze versuchen, die Effekte der Ausdehung der Lichtquelle indirekt in

den Modellierungen zu berücksichtigen, ohne die Ausdehnung direkt zu beschreiben und

basieren weiterhin auf der Punktlichtquellen-Approximation. Eine direkte Modellierung mit

ausgedehnter Lichtquelle kann helfen, diese Lösungen weiter zu optimieren und kann ins-

besondere in dem Fall Vorteile haben, wenn kleine Optiken mit großen Lichtquellenbildern

berechnet werden sollen. Im Folgenden ist χ eine ausgedehnte und parametrisierte Fläche,
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4.2 Abbildungseigenschaften der Optik mit ausgedehnter Lichtquelle

deren Leuchtcharakteristik über die Leuchtdichte Lχ :χ×S2 →R+ beschrieben wird.

4.2 Die Abbildungseigenschaften des optischen Systems mit

ausgedehnter Lichtquelle

Im Abschnitt 3.2 wird die Beleuchtungsstärke an einem Punkt y ∈Ψ durch das Faltungsinte-

gral (3.2.1) über den Parameterbereich ΠΣ1 der inneren optischen Fläsche beschrieben. Die

Energie in einem Lichtstrahl wird durch die Faltung auf einen Bereich inΨ aufgeteilt, so dass

eine differenzierte Größe der Lichtstärke gebildet wird. Diese Größe wird anschließend inte-

griert, um die Beleuchtungsstärke zu bestimmen.

Aus dieser Modellierung können zwei Parallelen zur ausgedehnten Lichtquelle gezogen wer-

den:

1. Durch das optische System wird die vierdimensionale Leuchtdichte in eine zweidi-

mensionale Beleuchtungsstärkeverteilung transformiert. Aufgrund dieser Dimensio-

nalität kann man darauf schließen, dass die generierten Beleuchtungsstärkeverteilung

auf dem DetektorΨ über eine Integralgleichung beschrieben werden kann.

2. Die Faltung auf der Fläche Ψ modelliert den Effekt, dass die Energie der Lichtquel-

le für einen Strahlengang nicht auf einen Punkt konzentriert wird, sondern auf einen

umgebenden Bereich aufgeweitet wird. Das ist genau das Abbildungsverhalten eines

optischen Systems mit ausgedehnter Lichtquelle.

Um also die generierte Beleuchtungsstärke mit ausgedehnter Lichtquelle zu berechnen, muss

das Abbildungsverhalten eines solchen optischen Systems beschrieben werden, das in Abbil-

dung 4.4 dargestellt wird. Die drei dargestellten Abbildungen des optischen Systems können

mit Hilfe des Forward- und Backward-Raytraces F und R (Gleichungen (2.2.4) bis (2.2.8))

deklariert werden.

1. Ein Punkt x der Lichtquelle χ wird durch die innere Optik auf F (x,~ωΣ1 (x,ΠΣ1 )) ⊂ Ψ
abgebildet.

2. Die Lichtquelle χ wird durch jeden Punkt σ(πΣ1 ) ⊂ Σ1 der inneren Optik auf die Teil-

menge F (χ,~ωΣ1 (χ,πΣ1 )) ⊂Ψ des Detektors abgebildet.

3. Jedem Punkt y ∈Ψder ZielebeneΨwird durch die Optik eine die Teilmenge R(y,ΠΣn ) ⊂
χ auf der Lichtquelle zugeordnet, von der aus Lichtstrahlen auf den Punkt y treffen.

Die zweite Abbildungseigenschaft ermutigt zu einer ersten approximativen Modellierung der

generierten Beleuchtungsstärke aufΨ.
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χ

y = F(x, πΣ)

Σ

x

Ψ

F(x,ΠΣ)

(a)

χ

σ(πΣ)

Σ

F(χ, πΣ)

Ψ

(b)

χ

Σ

y

R(y,ΠΣ)

Ψ

(c)

Abb. 4.4: Abbildungsverhalten eines optischen Systems mit ausgedehnter Lichtquelle und einer bre-
chenden Fläche. (a) Ein Punkt x der Lichtquelle χ wird durch die innere Optik auf
F (x,~ωΣ1 (x,ΠΣ1 )) ⊂ Ψ abgebildet. (b) Die Lichtquelle χ wird durch jeden Punkt σ(πΣ1 ) ⊂ Σ1

der inneren Optik auf die Teilmenge F (χ,~ωΣ1 (χ,πΣ1 )) ⊂Ψ des Detektors abgebildet. (c) Jedem
Punkt y ∈Ψ der Zielebene Ψ wird durch die Optik eine die Teilmenge R(y,ΠΣn ) ⊂ χ auf der
Lichtquelle zugeordnet, von der aus Lichtstrahlen auf den Punkt y treffen.
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4.3 Die diskrete Modellierung der Beleuchtungsstärke

Das Produktmaß µ der primalen Monge-Kantorovich-Formulierung setzt eine diskrete Auf-

teilung des Lichtflusses der Lichtquelle in einzelnen Raumwinkeln mit einem diskreten Ras-

ter von Lichtflüssen auf dem Detektor in Zusammenhang. Eine Zeile des Produktmaßes be-

schreibt die Verteilung eines diskreten Lichtstromes der Lichtquelle auf die Zellen des Detek-

tors (siehe Abschnitt 3.4.4).

Diese Betrachtung motiviert eine approximative Berechnung der Beleuchtungsstärkevertei-

lung mit einer ausgedehnten Lichtquelle, das in Abbildung 4.5 dargestellt wird. Sei ∆Πi , j
Σ1

mit

i = 1, . . . ,m und j = 1, . . . ,n eine Diskretisierung des Parameterbereiches der inneren Fläche

und ∆Σi , j
1 := σ1(∆ΠΣ1 ) die zugehörigen Flächenstücke. Das Flächenstück ∆Σi , j

1 wird von der

Lichtquelle mit einem Lichtstrom

∆Φi , j :=
Ï
χ

Ï
~ωΣ1 (x,∆Πi , j

Σ1
)

Lχ(x,~ω)〈~ω, ~Nχ(x)〉d~ωd x

=
Ï
χ

Ï
∆Π

i , j
Σ1

Lχ(x,~ωΣ1 (x,π))〈~ωΣ1 (x,π), ~Nχ(x)〉 Fπ~ωΣ1 (x,π)dπd x.

beleuchtet (vgl. Gleichung (2.4.5)). Sei ferner ∆Ψk,l mit k = 1, . . . ,o und l = 1, . . . , p eine Dis-

kretisierung des Detektors. Der Lichtstrom∆Φi , j wird nun durch das optische System auf die

Zellen ∆Ψk,l aufgeteilt. Diese Aufteilung kann ähnlich zum Produktmaß µ durch Maßzahlen

C k,l
i , j beschrieben werden. Für den Lichtstrom ∆Φk,l , der durch das optische System in die

Zelle ∆Ψk,l umgelenkt wird, gilt

∆Φk,l =
m,n∑

i , j=1
C k,l

i , j ∆Φi , j . (4.3.1)

Diese Aufteilung der Lichtströme wird in der Abbildung 4.5 dargestellt.

Die Beleuchtungsstärke BO aufΨ kann approximiert werden durch

BO(y) ≈ ∆Φk,l

|∆Ψk,l | ∀y ∈∆Ψk,l , (4.3.2)

wobei |∆Ψk,l | der Flächeninhalt der Detektorzelle ist.
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...

χ

Σ1 Σn

Ψ

∆Σi,j
1∆Φi,j

σ1(π
i,j
Σ1

)

∆Ψk,l

∆Ψi,j

Abb. 4.5: Darstellung der diskreten Modellierung der Beleuchtungsstärkeverteilung. Die Lichtströme

∆Φi , j , die von der Lichtquelle χ ausgehend auf ein kleines Flächenstück ∆Σi , j
1 der ersten opti-

schen Fläche treffen, werden durch das optische System abgebildet auf die FlächeΨ. Die exak-

te Auftrefffläche F (χ,∆Σi , j
1 ) des Lichts aufΨwird approximiert durch ∆Ψi , j =F (χ,σ1(πi , j

Σ1
)),

wobei σ1(πi , j
Σ1

) der Mittelpunkt von ∆Σi , j
1 ist. Auf Ψ wird der Lichtstrom aufgeteilt in ein dis-

kretes Gitter ∆Ψk,l .
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Bestimmung der Maßzahlen C k,l
i , j Seien π

i , j
Σi

die Mittelpunkte der Mengen ∆Πi , j
Σi

. Wir ap-

proximieren die Mengen F (χ,∆Πi , j
Σi

) mit

F (χ,∆Πi , j
Σi

) ≈F (χ,πi , j
Σi

) =:∆Ψi , j

Es wird vereinfachend angenommen, dass die Leuchtdichte, die von der Lichtquelle durch

∆Σ
i , j
1 auf Ψ abgebildet wird, konstant sei, so dass die Maßzahlen berechnet werden können

durch

C k,l
i , j ≈ ∆Ψi , j ∩∆Ψk,l

|∆Ψi , j |
. (4.3.3)

Dieser Ansatz bietet eine erste Möglichkeit, die Ausdehnung der Lichtquelle approximativ

zu modellieren, ist jedoch nur eine Annäherung. Eine kontinuierliche Modellierung des Pro-

blems wird in den nächsten Abschnitten hergeleitet.

4.4 Die Étendue des optischen Systems und Folgerungen

Im Ganzen gesehen beschäftigt sich die nichtabbildende Optik, bzw. Beleuchtungsoptik, mit

zwei Grundproblemen. Das erste Grundproblem ist das Beleuchtungsproblem aus Abschnitt

2.5, das in dieser Arbeit behandelt wird. Das zweite Grundproblem ist das Kollektorproblem.

Bei der Lösung des Kollektorproblems stößt man unweigerlich auf den Begriff der Étendue,

der aber auch Bedeutung für das Beleuchtungsproblem mit ausgedehnter Lichtquelle hat

und für die kontinuierliche Modellierung benötigt wird.

Die Étendue, oder auch Lichtleitwert genannt, ist eine Erhaltungsgröße des optischen Sys-

tems, die ohne Lichtverlust nicht verringert werden kann, aber beispielsweise durch Streu-

ung vergrößert wird. Wir beziehen uns auf das Buch [3, p. 65-72]. Die Größe beschreibt das

Phasenraumvolumen des vom optischen System transportierten Lichts und ist damit ein Pro-

dukt aus Fläche und Raumwinkel und wird berechnet durch ein Integral über alle Orte und

optische Momente, das die Optik durchleuchten. Optische Momente sind Lichtstrahlen, die

mit dem Brechungsindex des jeweiligen Mediums gewichtet sind. Für ein optisches System

kann an mehreren Flächen die Étendue bestimmt werden. Zum einen gibt es eine Étendue

von der Lichtquelle zur ersten optische Fläche und eine Étendue von der Zielfläche zur letz-

ten optischen Fläche, wie in Abbildung 4.6 dargestellt wird. Die Étendue Eχ der leuchtenden
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Fläche zur Optik wird nach [3, Formel 3.20 auf Seite 72] berechnet durch

Eχ =
Ï
χ

Ï
Ωx

n2
χ

〈
~Nχ(x),~ω

〉
d~ωd x =

Ï
χ

Ï
~ωΣ1 (x,ΠΣ1 )

n2
χ

〈
~Nχ(x),~ω

〉
d~ωd x

=
Ï
χ

Ï
ΠΣ1

n2
χ

〈
~Nχ(x),~ωΣ1 (x,πΣ1 )

〉√
F(~ωΣ1 (x,πΣ1 ))dπΣ1 d x. (4.4.1)

Analog ergibt sich für die Étendue EΨ der Optik zur Auftrefffläche

EΨ =
Ï
Ψ

Ï
ΠΣn

n2
Ψ

〈
~NΨ(y),~ωΣn (y,πΣn )

〉√
F(~ωΣn (y,πΣn ))dπΣn d x (4.4.2)

Die Étendue stellt eine Erhaltungsgröße dar, die nicht verringert werden kann, d.h. falls alle

Lichtenergie im Étendue Eχ ohne Lichtverlust auf die FlächeΨ gebracht wird, muss gelten

EΨ ≥ Eχ.

Das Konzentratorproblem besteht darin, das Licht mittels einer möglichst minimalen Optik

auf die Zielfläche zu konzentrieren. Dieses Problem ist genau dann gelöst, wenn die Optik das

Licht vollständig auf Ψ abbildet und die optischen Flächen die Étendue-Erhaltung EΨ = Eχ

erfüllen. Die geometrische Bedeutung der Étendue-Erhaltung wird in Abbildung 4.7 darge-

stellt. Die Lichtquelle wird durch jeden Punkt der Optik so aufΨ abgebildet, dass F (χ,πΣ1 ) =
Ψ für alle πΣ1 ∈ΠΣ1 gilt. Verfahren, die solche Probleme lösen basieren zum Beispiel auf dem

sogengannten Edge-Ray-Theorem oder den Flow-Lines oder dem SMS-Verfahren. Diese opti-

schen Systeme sind durch die Bedingung der Étendue-Erhaltung vollständig beschrieben, so

dass keine Freiheitsgrade übrig sind, die genutzt werden können, um im Zielgebiet beliebi-

ge Lichtverteilungen zu generieren. Deshalb können Beleuchtungsoptiken zur Generierung

von Ziellichtverteilungen nicht an der Étendue-Erhaltung arbeiten, sondern es muss gelten

Eχ ¿ EΨ. Für eine bessere Vorstellung kann man sich diesen Zusammenhang so vorstellen,

dass das Verhältnis von
Eχ

EΨ
der Dicke eines Pinsels entspricht, mit dem die generierte Licht-

verteilung gemalt wird. Ein Verhältnis von 1 steht in diesem Zusammenhang dafür, dass der

Pinsel genau so groß ist wie das Zielgebiet, so dass keine spezielle Verteilung ’gezeichnet’

werden kann.

Auch in dem Fall , dass Beleuchtungsoptiken vorliegen kann eine Erhaltungsgröße Eχ

Ψ ausge-

hend von Gleichung (4.4.1) definiert werden, indem nur die optischen Momente ausgewählt
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x1

Σ1

x2
Ωx2

Ωx1

χ

nχ Ωy1

Ωy2 y2

y1

nΨ

Σ2

Abb. 4.6: Darstellung der Étendue als Menge aller Lichtstrahlen, die die Optik durchleuchten.

χ

Σ1

Ψ

Σ2

Abb. 4.7: Darstellung des Abbildungsverhaltens eines Konzentrators, der am thermodynamischen Limit
der Étendue-Erhaltung arbeitet. Hierbei bildet jeder Punkt der Optik die leuchtende Fläche auf
das ganze Zielgebiet ab.
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werden, die auf der Zielfläche ankommen.

Eχ

Ψ =
Ï
χ

Ï
ΠΣ1

δΨ(F (x,πΣ1 ))n2
χ

〈
~Nχ(x),~ωΣ1 (x,πΣ1 )

〉√
F(~ωΣ1 (x,πΣ1 ))dπΣ1 d x.

Wir definieren die Funktion

R̂ :Ψ×ΠΣn →χ×ΠΣ1

R̂(y,πn) := (R(y,πn),σ−1
1 (σ̃1(y,πn))),

die zusätzlich zum Auftreffpunkt des Rückwärts-Raytraces den Paramter der inneren Fläche

zurückliefert. Mit Hilfe dieser Funktion können wir die Gleichung auf den Bereich Ψ×ΠΣn

transformieren. Es gilt:

Eχ

Ψ =
∫∫∫∫

R̂(Ψ,ΠΣn )

δΨ(F (x,πΣ1 ))n2
χ

〈
~Nχ(x),~ωΣ1 (x,πΣ1 )

〉√
F(~ωΣ1 (x,πΣ1 ))dπΣ1 d x

=
Ï
Ψ

Ï
ΠΣn

δχ(R(y,πΣn ))n2
χ

〈
~Nχ(R(y,πΣn )),~ωΣ1 (R̂(y,πΣn ))

〉
√
F(~ωΣ1 (R̂(y,πΣn )))

∣∣detDR̂(y,πΣn )
∣∣dπΣn .

Wir stellen die Größe Eχ

Ψ analog mit Hilfe der Gleichung (4.4.2) auf und erhalten:

Eχ

Ψ =
Ï
Ψ

Ï
ΠΣn

δχ(R(y,πΣn ))n2
Ψ

〈
~NΨ(y),~ωΣn (y,πΣn )

〉√
F(~ωΣn (y,πΣn ))dπΣn d y.

Ein Vergleich der Integranden (siehe Lebesgue Differentiationstheorem 2.1) führt zu der Ver-

einfachung der Jakobimatrixdeterminante des Backward-Raytrace (mit y := (y,πΣn ))

∣∣detDR̂(y)
∣∣= n2

Ψ

〈
~NΨ(y),~ωΣn (y)

〉√
F(~ωΣn (y))

n2
χ

〈
~Nχ(R(y)),~ωΣ1 (R̂(y))

〉√
F(~ωΣ1 (R̂(y)))

. (4.4.3)

Analog zu 4.4.3 lässt sich die Jakobimatrixdeterminante der Abbildung

F̂ :χ×ΠΣ1 →Ψ×ΠΣn

F̂ (x,π1) := (F (x,π1),σ−1
n (σ̃n(x,π1))),
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vereinfachen mit x := (x,πΣ1 ) durch

|detDF̂ (x)| =
n2
χ

〈
~Nχ(x),~ωΣ1 (x)

〉√
F(~ωΣ1 (x))

n2
Ψ

〈
~NΨ(F (x)),~ωΣn (F̂ (x))

〉√
F(~ωΣn (F̂ (x)))

, (4.4.4)

4.5 Die analytische Berechnung der Beleuchtungsstärke

Da die Beleuchtungsstärke eine differentielle Größe des Lichtflusses ist, werden wir im ers-

ten Schritt den LichtflussΦ(Ψ), der durch das optische System auf die ZielflächeΨ abgebildet

wird, analytisch formulieren und in einem zweiten Schritt auf die Beleuchtungsstärke rück-

schließen. Wir beziehen uns dabei auf den Typ von optischen Systemen aus Abschnitt 2.1. Mit

Φ(Σ1) bezeichnen wir den Lichtfluss, der von der Lichtquelle χ aus auf die optische Fläche Σ1

abgegeben wird.Φ(Σ1) kann berechnet werden durch

Φ(Σ1) =
Ï
χ

Ï
~ωΣ1 (x,ΠΣ1 )

Lχ(x,~ω)
〈
~Nχ(x),~ω

〉
dωd x

=
Ï
χ

Ï
ΠΣ1

Lχ(x,~ωΣ1 (x,π))
〈
~Nχ(x),~ωΣ1 (x,π)

〉√
F(~ωΣ1 (x,π))dπd x.

Sei Φ̂(Ψ) der Anteil von Φ(Σ1), der durch das optische System auf die Zielfläche Ψ gelenkt

wird. Es gilt

Φ̂(Ψ) =
Ï
χ

Ï
ΠΣ1

δΨ(F (x,π))Lχ(x,~ωΣ1 (x,π))
〈
~Nχ(x),~ωΣ1 (x,π)

〉√
F(~ωΣ1 (x,π))dπd x

=
∫∫∫∫

R̂(Ψ,ΠΣn )∩χ×S2

Lχ(x,~ωΣ1 (x,π))
〈
~Nχ(x),~ωΣ1 (x,π)

〉√
F(~ωΣ1 (x,π))dπd x.

Berücksichtigt man, dass aufgrund der Definition der Leuchtdichte mit Lχ(x,S2) = 0 für alle

x ∉χ
δχ(R(y,πΣn ))Lχ(R̂(y,πΣn )) = Lχ(R̂(y,πΣn ))

gilt, kann der Lichtstrom Φ̂(Ψ) aufΨ×ΠΣn transformiert werden zu

Φ̂(Ψ) =
Ï
Ψ

Ï
ΠΣn

Lχ(R̂(y,π))
〈
~Nχ(R(y,π)),~ωΣ1 (R̂(y,π))

〉
√
F(~ωΣ1 )(R̂(y,π))

∣∣detD(R̂(y,π))
∣∣dπd y.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Wir setzen die vereinfachende Gleichung (4.4.3) aus der Étendue-Betrachtung ein und erhal-

ten

Φ̂(Ψ) = n2
Ψ

n2
χ

Ï
Ψ

Ï
ΠΣn

Lχ(R̂(y,π))
〈
~NΨ(y),~ωΣn (y,π)

〉√
F(~ωΣn (y,π))dπd y. (4.5.1)

Um den LichtflussΦ(Ψ) zu bestimmen, muss noch der Verlust durch Fresnelsche Reflexionen

an den brechenden Grenzflächen berücksichtigt werden. Wir bezeichnen mit Ĝ(y,πΣn ) das

Produkt der Fresnelschen Verluste (siehe Gleichung (2.2.13)) für den Strahlengang R(y,πΣn ).

Der LichtstromΦ(Ψ) kann somit berechnet werden durch

Φ(Ψ) = n2
Ψ

n2
χ

Ï
Ψ

Ï
ΠΣn

Lχ(R̂(y,π))(1− Ĝ(y,π))

〈
~NΨ(y),~ωΣn (y,π)

〉√
F(~ωΣn (y,π))dπd y.

(4.5.2)

Diese Gleichung kann so interpretiert werden, dass die Lichtquelle durch die Optiken trans-

formiert wird und die äußere Fläche wie eine Lichtquelle wirkt. Diese Beobachtung motiviert

zur Definition der gesehenen Leuchtdichte aufΨ

Eχ :Ψ×S2 →R+

Eχ(y,~ωΣn (y,πΣn )) = n2
Ψ

n2
χ

Lχ(R̂(y,π))(1− Ĝ(y,π)).

In Abbildung 4.8 wird die simulierte gesehene Leuchtdichte von drei verschiedenen Positio-

nen für ein optisches System mit einer quadratischen Lichtquelle und eine elliptischen Linse

gezeigt. Es wird deutlich, dass die Größe und Form der gesehenen Lichtquelle für verschie-

dene Perspektiven unterschiedlich ist. Die gesehene Leuchtdichte kann auch mit den herge-

leiteten Formeln berechnet werden. In Abbildung 4.9 wird diese für eine Optik mit quadrati-

scher lambertscher Lichtquelle dargestellt. Die Beleuchtungsstärke BO :Ψ→ R+ ist definiert

über das Differential ∂Φ̂(Ψ)
∂y des Lichtstroms Φ(Ψ) und kann aufgrund der Gleichung (4.5.2)

berechnet werden durch

BO(y) = n2
Ψ

n2
χ

Ï
ΠΣn

Lχ(R̂(y,π))(1− Ĝ(y,π))

〈
~NΨ(y),~ωΣn (y,π)

〉√
F(~ωΣn (y,π))dπ.

(4.5.3)

Diese Modellierung des Lichtflusses und der Beleuchtungsstärke ermöglicht es, das optische

System hinsichtlich dieser Größen zu optimieren.

76



4.5 Die analytische Berechnung der Beleuchtungsstärke

C
:\U

sers\serosi1\D
esktop/

serosi1   F
ebruary 11, 2014, 10:12:31

Confidential. The contents may only be passed on, used or made known with our express permission. All rights reserved.

Experiment.rwr

(a)

C
:\U

sers\serosi1\D
esktop/

serosi1   F
ebruary 11, 2014, 10:13:01

Confidential. The contents may only be passed on, used or made known with our express permission. All rights reserved.

Experiment.rwr

(b)

C
:\U

sers\serosi1\D
esktop/

serosi1   F
ebruary 11, 2014, 10:14:20

Confidential. The contents may only be passed on, used or made known with our express permission. All rights reserved.

Experiment.rwr

(c)

Abb. 4.8: Ein optisches System mit quadratischer Lichtquelle und einer elliptischen Linse generiert die
dargestellte gesehene Leuchtdichte aus drei verschiedenen Positionen. Diese Darstellungen
sind das Ergebnis einer Simulation. Die erzeugte Lichtstärke in die jeweiligen Richtungen kor-
respondiert mit der Größe des Lichtquellenbildes auf der Optik von der jeweiligen Richtung
aus. (a) Die gesehene Leuchtdichte in der zentralen Perspektive. Es wird eine Lichtstärke von
293cd erzeugt. (b) Die Optik realisiert in diese Richtung eine Lichtstärke von 93cd erzeugt. (c)
Die Optik realisiert in diese Richtung eine Lichtstärke von 24cd erzeugt.

Abb. 4.9: Ein optisches System mit quadratischer Lichtquelle und einer Freiformfläche generiert die dar-
gestellte gesehene Leuchtdichte, die mit den hergeleiteten Gleichungen berechnet wurde. Es
wird ein virtueller Flug über die Optik aus ausgewählten Perspektiven dargestellt.
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5 Lösungskonzept des Beleuchtungsproblems

und numerische Umsetzung

In diesem Kapitel soll des Gesamtkonzeptes der Lösung des Beleuchtungsproblems und die

numerische Umsetzung der einzelnen Teilschritte erläutert werden. Dazu werden anfangs

einige grundsätzliche Techniken beschrieben.

5.1 Das Gesamtkonzept zur Lösung des Beleuchtungsproblems

Zur Wiederholung werden die wichtigsten lichttechnischen Größen in der Tabelle 5.1 defi-

niert.

Das allgemeine Ziel ist, das Beleuchtungsproblems mit direkter Modellierung der ausgedehn-

ten Lichtquelle zu lösen, d.h. die Freiheitsgade ~c der optischen Flächen Σ1, . . . ,Σn so zu be-

stimmen, dass die gewünschte Verteilung BΨ durch das optische System O generiert wird.

Dieses Problem soll mit unterschiedlichen Modellierungen aufsteigender Komplexität gelöst

werden, da die Berechnung der Beleuchtungsstärke nach Gleichung (4.5.3) mit ausgedehnter

Lichtquelle numerisch aufwendig ist und eine effiziente Optimierung nur lokal konvergent

ist.

In Abbildung 5.1 wird das Gesamtkonzept der numerischen Lösungssuche grafisch als Fluss-

diagramm dargestellt.

Im ersten Lösungsschritt wird die Lichtquelle als Punkt χ̂ ∈ R3 approximiert, die Beleuch-

tungsstärkeverteilung BΨ auf Ψ auf die Lichtstärkeverteilung IΨ auf ΩΨ ⊂ S2 im Fernfeld

umgerechnet und ein optimales mapping mittels des Monge-Kantorovich-Algorithmus be-

stimmt. Im zweiten Schritt werden die freien Flächenparameter, die im Vektor ~c abgelegt

werden, berechnet, bzw. optimiert, so dass das mapping angenommen wird. Falls dieses

nicht zufriedenstellend realisiert werden kann, kann es notwendig sein, die Eingangsgrößen

zu überdenken und gegebenenfalls zu verändern.

Wird das mapping korrekt angenommen, kann eine weitere Überprüfung sinnvoll sein. Hier-

bei wird die generierte Lichtstärkeverteilung IÔ im Fernfeld mit der gewünschten Lichtstärke-

verteilung IΨ verglichen. Alternativ kann dieser Vergleich auch zwischen den Beleuchtungs-
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5 Lösungskonzept und numerische Umsetzung

stärkeverteilungen BΨ und BÔ durchgeführt werden. Für die Berechnung der generierten

Lichtverteilungen kann die Modellierung von Mooiseev (vgl. Formel (3.2.1)) aus Abschnitt 3.2

angewendet werden. Ist der Unterschied zu groß, so kann an dieser Stelle entsprechend dem

Ansatz im ersten Unterabschnitt von 4.1 die geforderte Lichtstärkeverteilung IΨ verändert

und die Berechnung der Startlösung wiederholt werden.

Es könnte ein weiterer Zwischenschritt an dieser Stelle eingefügt werden, indem die Beleuch-

tungsstärkeverteilung mit der diskreten Modellierung aus Abschnitt 4.3 berechnet wird und

die Flächenparameter~c optimiert werden. Durch diese Modellierung der Beleuchtungsstär-

ke würde die Ausdehnung der Lichtquelle genauer erfasst und durch die Optimierung die

Startfläche besser für die eigentliche Optimierung mit ausgedehnter Lichtquelle angepasst.

In dieser Ausarbeitung wird jedoch von diesem Zwischenschritt abgesehen.

Der letzte Schritt des Lösungsverfahren ist, das optische System auf Grundlage der analytisch

berechneten Beleuchtungsstärke aus Gleichung (4.5.3) zu optimieren.
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5.1 Das Gesamtkonzept zur Lösung des Beleuchtungsproblems

Berechnung des opti-
malen mappings F̂

Startlösung durch
Berechnung oder Opti-
mierung des optischen
Systems zur Generie-

rung des mappings

Die Eingangs-
größen müssen

angepasst werden

Konnte das
mapping
generiert
werden

Veränderung
von IΨ für die

Berechnung
des mapping

Î
Ψ |IO(y)−

IΨ(y)|d y < ε

Optimierung des opti-
schen Systems mit aus-
gedehnter Lichtquelle

χ̂,Ωχ, Iχ,ΩΨ, IΨ

Σ1, . . . ,Σn ,~c

χ,Lχ,Ψ,BΨ

~c

ja

ja

nein

nein

Abb. 5.1: Das Gesamtkonzept zur Lösung des Beleuchtungsproblems wird in dieser Grafik schematisch
als Flussdiagramm dargestellt.
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5 Lösungskonzept und numerische Umsetzung

Σ1, . . . ,Σn Die sequentiell geordneten optischen Flächen des optischen Sys-
tems

~c Vektor der zu optimierenden Freiheitsgrade der optischen Flä-
chen Σ1, . . . ,Σn

χ⊂R3 Die leuchtende Fläche der ausgedehnten Lichtquelle.
χ̂ ∈R3 Ort der Punktlichtquellenapproximation.
Ψ⊂R3 Die Zielfläche des optischen Systems.
Ô optisches System aus Punktlichtquelle χ̂, den optischen Flächen

Σ1, . . . ,Σn und der ZielflächeΨ
Ωχ̂ ⊂ S2 Raumwinkel, der von der Punktlichtquelle auf das Ziel abgebildet

werden soll.
Iχ̂ :Ωχ→R+ Lichtstärkeverteilung der Punktlichtquelle im RaumwinkelΩχ.
BΨ→R+ Die geforderte Beleuchtungsstärkeverteilung aufΨ
ΩΨ ⊂ S2 Raumwinkel, der von χ̂ aus das ZielgebietΨ beleuchtet.
IΨ :ΩΨ→R+ Ziellichtstärkeverteilung auf ΩΨ. Diese ergibt sich aus der Be-

leuchtungsstärkeveteilung BΨ auf Ψ durch y = σ(χ̂,~ωχ̂) (siehe
Gleichung (2.4.11)). Die Bedeutung von IΨ ist, dass bei Vernach-
lässigung der Ausdehnung des optischen Systems die Beleuch-
tungsstärkeveteilung BΨ von χ̂ aus generiert wird, d.h.

IΨ(~ωχ̂)) = BΨ(y)
‖y − χ̂‖

〈~ωχ̂, ~NΨ(y)〉 .

IÔ :ΩΨ→R+ Die generierte Lichtstärkeverteilung auf ΩΨ durch das optische
System Ô.

Lχ :χ×S2 →R+ Die Leuchtdichte der ausgedehnten Lichtquelle.
BO,BÔ Die generierte Beleuchtungsstärkeverteilung auf Ψ mit ausge-

dehnter Lichtquelle und Punktlichtquelle.

Tabelle 5.1: Lichttechnische Größen des optischen Systems.
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5.2 Definition verwendeter Freiformflächen

5.2 Definition verwendeter Freiformflächen

Die eingeführten Modellierungen in dieser Arbeit erlauben es, sequentielle optische Systeme

mit glatten Fläche Σ1, . . . ,Σn , die über die Freiheitsgrade ~c = (c1 c2, . . . ,cm) beschrieben wer-

den zu optimieren. Diese können geometrische Größen von analytischen Geometrien, wie

etwa der Radius einer Kugel, sein, als beispielsweise auch die Lage im Raum durch Verschie-

bung und Verdrehung. Soll jedoch eine komplexe Lichtverteilung erzeugt werden, so ist es

notwendig, eine oder mehrerer Flächen relativ feinstrukturiert zu berechnen. Zur Reduktion

des numerischen Aufwandes und zur Erhöhung der numerischen Stabilität lokaler Optimie-

rer sollte die Anzahl an Freiheitsgraden möglichst klein sein.

Da optische Flächen nicht alle möglichen Formen abbilden müssen, sondern sternförmige

Flächen um einen Punkt ausreichen, kann eine Reduktion der Freiheitsgrade dadurch er-

reicht werden, dass die Fläche über eine skalare Funktion in zwei Veränderlichen beschrieben

wird. Diese Einschränkung entspricht dem bereits erwähnten Polarradius der zum Beispiel

von J. S. Schruben verwendet und in Bemerkung 3.1 erwähnt wurde. Die Modellierung von

J. S. Schruben führt das mathematische Problem auf ein partielles Differentialgleichungssys-

tem vom Typ Monge-Ampère zurück. Daneben kommt der Polarradius auch in der schwa-

che Formulierung von V. Oliker zur Beschreibung von optischen Flächen zum Einsatz (siehe

Gleichung (3.3.5)). Deshalb wählen wir für die Beschreibung von Freiformflächen dieselbe

Definition.

5.2.1 Freiformflächendefinition durch den Polarradius

Sei Σ die zu definierende Freiformfläche. Wir wählen zu der Punktlichtquelle χ̂ einen Raum-

winkelΩχ̂ ⊂ S2 mit Parametrisierung~ωχ̂ :ΠΣ→Ωχ̂. Der Polarradius der Freiformfläche Σmit

Zentrum χ̂ ∈ R3 ist eine skalare, differenzierbare Funktion ρ :ΠΣ→ R+. Die Freiformfläche Σ

wird definiert durch

σ(πΣ) := χ̂+ρ(πΣ)~ωχ̂(πΣ). (5.2.1)

Für die Parametrisierung ~ωΣ :ΠΣ→ΩΣ nach (2.2.6) gilt

~ωΣ(χ̂,πΣ) = σΣ(πΣ)− χ̂
‖σΣ(πΣ)− χ̂‖ = ρΣ(πΣ)~ωχ̂(πΣ)

‖ρΣ(πΣ)~ωχ̂(πΣ)‖ = ρΣ(πΣ)~ωχ̂(πΣ)

ρΣ(πΣ)
=~ωχ̂(πΣ).
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5 Lösungskonzept und numerische Umsetzung

Das Normalenvektorfeld ~NΣ :ΠΣ→ S2 der FlächeΣ zeigt mit der Vereinfachung p := ∂π1ρ und

q := ∂π2ρ in die Richtung

NΣ = (
p~ωχ̂+ρ∂π1~ωχ̂

)× (
q~ωχ̂+ρ∂π2~ωχ̂

)
= p~ωχ̂×ρ∂π2~ωχ̂+ρ∂π1~ωχ̂×q~ωχ̂+ρ∂π1~ωχ̂×ρ∂π2~ωχ̂

= (pρ)~ωχ̂×∂π2~ωχ̂+ (ρq)∂π1~ωχ̂×~ωχ̂+ρ2∂π1~ωχ̂×∂π2~ωχ̂.

Somit gilt für das Normalenvektorfeld

~NΣ := NΣ

‖NΣ‖
.

Für die Optimierung dieser Freiformoptiken benötigen wir eine differenzierbare Definition

des Polarradius ρ in Abhängigkeit von Freiheitsgraden, die optimiert werden können. Wir

wählen die Definition über eine skalare Spline-Funktion, da die einzelnen Koeffizienten nur

lokalen Einfluss haben und die Fläche keine Oszillationen aufweisen, wie beispielsweise bei

Polynomen höherer Ordnung.

5.2.2 Verwendung von B-Splines für die Definition des Polarradius

Wir definieren den Polarradius ρ :ΠΣ→ R+ und die ersten Ableitungen durch kubische Spli-

nes (wir beziehen uns auf [17, p. 45;210;226-227]). Der ParameterbereichΠΣ sei ein Rechteck-

gebiet mitΠΣ =Π1
Σ×Π2

Σ = [u1,u2]×[v1, v2]. Die Kontrollwerte-Matrix C ∈R(ξ1
ρ ,ξ2

ρ) mit ξ1,ξ2 ∈N
der Spline-Funktion speichert die Freiheitsgrade der Funktion. Zuerst definieren wir ξ1

ρ +1-,

bzw. ξ2
ρ+1-viele kubische Basisfunktionen in Abhängigkeit von der Richtung π1, bzw. π2.

Das Intervall [u1,u2] des ersten Parameters π1 wird in ξ1
ρ −3 viele äquidistante Teilintervalle

mit der Länge us = u2−u1

ξ1
ρ−3

unterteilt. Der Knotenvektor des ersten Parameters ist

K 1 :=
[

u1, u1, u1, u1, (u1 +1us), (u1 +2us), . . . , (u1 + (ξ1
ρ−4)us), u2, u2, u2, u2

]
.

Die kubischen B-Spline-Basisfunktionen Na,4 :Π1 → R+ mit a = 1. . .ξ1
ρ und deren Ableitung

ergeben sich durch Anwenden der rekursiven Formel
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Na,1(u) =
{

1 wenn K 1(a) ≤ u <K 1(a +1)

0 sonst

Na,k (u) = (u −k1(a))Na,k−1(u)

k1(a +k −1)−k1(a)
+ (k1(a +k)−u)Na+1,k−1(u)

k1(a +k)−k1(a +1)
.

N ′
a,2(u) = Na,1(u)

k1(a +1)−k1(a)
− Na+1,1(u)

k1(a +2)−k1(a +1)

N ′
a,k (u) =

Na,k−1(u)+ (u −k1(a))N ′
a,k−1(u)

k1(a +k −1)−k1(a)

+
(k1(a +k)−u)N ′

a+1,k−1(u)−Na+1,k−1(u)

k1(a +k)−k1(a +1)
.

Analog wird der Knotenvektor K 2 für den zweiten Parameter π2 und die Basisfunktionen

Mb,4 :Π2
Σ→R+ mit b = 1. . .ξ2

ρ mit den ersten Ableitungen definiert.

Für alle π ∈Π definieren wir die Matrix

S(π) := [
Na,4(π1)Mb,4(π2)

]ξ1
ρ ,ξ2

ρ

a=1;b=1 . (5.2.2)

Durch Anwenden der Kettenregel können die Matrizen ∂S
∂π1 (π), ∂S

∂π2 (π) und ∂2S
∂π1∂π2 (π) definiert

werden durch

∂S

∂π1 (π) := [
N ′

a,4(π1)Mb,4(π2)
]ξ1

ρ ,ξ2
ρ

a=1;b=1

∂S

∂π2 (π) :=
[

Na,4(π1)M ′
b,4(π2)

]ξ1
ρ ,ξ2

ρ

a=1;b=1

∂2S

∂π1∂π2 (π) :=
[

N ′
a,4(π1)M ′

b,4(π2)
]ξ1

ρ ,ξ2
ρ

a=1;b=1
.

Der Polarradius, die ersten Ableitungen und die gemischte Ableitung werden durch die Sum-

men
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ρ(π) =
ξ1
ρ∑

a=1

ξ2
ρ∑

b=1
Ca,bSa,b(π)

∂ρ

∂π1 (π) =
ξ1
ρ∑

a=1

ξ2
ρ∑

b=1
Ca,b

∂S

∂π1 a,b
(π)

∂ρ

∂π2 (π) =
ξ1
ρ∑

a=1

ξ2
ρ∑

b=1
Ca,b

∂S

∂π2 a,b
(π)

∂2ρ

∂π1∂π2 (π) =
ξ1
ρ∑

a=1

ξ2
ρ∑

b=1
Ca,b

∂2S

∂π1∂π2 a,b
(π)

(5.2.3)

berechnet. Die gemischte Ableitung wird an anderer Stelle für eine iterative Verfeinerung be-

nötigt und deshalb hier definiert (siehe Abschnitt 5.2.4). In Abbildung 5.2 wird der Zusam-

menhang zwischen den Kontrollpunkten und den Funktionswerten einer skalaren Funktion

dargestellt. Die Funktion ist nur in den Ecken mit den Kontrollpunkten identisch.

Abb. 5.2: Der Zusammenhang zwischen den Knotenpunkten und den Funktionswerten einer B-Spline-
Funktion wird dargestellt. In grün ist das Gitter der Kontrollpunkte und in rot das Gitter der
Funktionswerte dargestellt. Die Funktion interpoliert die Kontrollpunkte nur in den Ecken.
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5.2.3 Numerische Vorteile der Definition des Polarradius durch Splines

Diese Definition des Polarradius ermöglicht eine effiziente numerische Implementierung.

Da die Matrizen S(π), ∂S
∂π1 (π) und ∂S

∂ϑ (π) unabhängig von den Kontrollpunkten C sind, müs-

sen diese nur einmal aufgestellt werden und im Optimierungsprozess nicht neu berechnet

werden. Für eine DiskretisierungΠD
Σ = (πi , j )m,n

i , j=1 des WinkelbereichesΠΣ kann somit einmal

eine Matrix S ∈ Rm,n,ξ1,ξ2
mit S(i , j ) = S(πi , j ) aufgestellt werden, mit der der Polarradius zu

beliebigen Kontrollpunkten berechnet werden kann.

Darüber hinaus kann aufgrund der lokalen Abhängigkeit der B-Splines von den Knotenvek-

toren auf eine schwache Besetzheit der Matrix S geschlossen werden. Für alle π ∈Π1×Π2 mit

k1(e) ≤π1 ≤ k1(e +1) und k2( f ) ≤π2 ≤ k2( f +1) mit 4 ≤ e ≤ m +1 und 4 ≤ f ≤ n +1 gilt

Na,4(π1) =
6= 0 ⇔ e ≤ a ≤ e +4

= 0 sonst

und

Mb,4(π2)

6= 0 ⇔ f ≤ b ≤ f +4

= 0 sonst

Diese schwache Besetzheit von S und den partiellen Ableitungen kann zur Speicher- und Re-

chenreduktion genutzt werden.

Ein weiterer Vorteil zeigt sich für die Optimierung der Kontrollpunkte. Werden Gradienten-

basierte Optimierungsverfahren verwendet, so werden die Ableitungen von ρΣ, ∂ρΣ
∂π1 und ∂ρΣ

∂π2

nach den Kontrollpunkten C benötigt. Diese Werte sind aufgrund der einfachen Definition

des Polarradius durch Anwendung der Produktregel bereits bekannt durch

∂ρ

∂Ca,b
(π) = S(π)a,b

∂2ρ

∂π1∂Ca,b
(π) =

(
∂S

∂π1 (π)

)
a,b

∂2ρ

∂π2∂Ca,b
(π) =

(
∂S

∂π2 (π)

)
a,b

.

Darüber hinaus wirken sich die Kontrollpunkte nur lokal auf die Funktionswerte aus, d.h.

∂ρ

∂Ca,b
(π) = 0 ∀π ∉ [k1(a),k1(a +4)]× [k2(b),k2(b +4)].

87
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Diese Eigenschaft gilt auch für ∂2ρ

∂π1∂Ca,b
und ∂2ρ

∂π2∂Ca,b
und kann bei der Bestimmung von Gra-

dienten in Richtung der Kontrollpunkte angewandt werden.

5.2.4 Einfügen neuer Knotenpunkte zur Erhöhung der Modellierbarkeit des

Polarradius

Sei eine Spline-Definition des Polarradius ρ mit m ·n Spline-Koeffizienten in der Koeffizien-

tenmatrix C ∈ R(m,n) vorhanden mit Knotenvektoren K 1 ∈ Rm+4 und K 2 ∈ Rn+4. Im Prozess

der Optimierung kann es nützlich sein, die Knotenvektoren zu verfeinern. Wir bezeichnen

den neuen Polarradius mit ρ̂, die Koeffizientenmatrix mit Ĉ ∈R(m̂,n̂) und die Knotenvektoren

mit K̂ 1 ∈Rm̂+4 und K̂ 2 ∈Rn̂+4. Auf diese Weise ist es möglich, die Anzahl an Freiheitsgraden

in der Optimierung zu verändern, was Effekte auf das numerische Verhalten der Optimie-

rungsverfahren haben kann.

Der neue Polarradius ρ̂ soll identisch sein zu dem Polarradius ρ, oder diesen sehr genau ap-

proximieren.

Verfeinern durch Lösen eine linearen Gleichungssystems Eine Möglichkeit ist, die Koeffi-

zientenmatrix Ĉ ∈R(ξ1
ρ̂ ,ξ2

ρ̂) durch Lösen eines linearen Gleichungssystems zu bestimmen, wo-

bei ξ1
ρ̂

,ξ2
ρ̂

gerade Zahlen sein müssen. Man kann auf dem äquidistanten Gitter Π̂D ∈R(ξ̂
1
ρ/2,ξ̂

2
ρ/2)

im Definitionsgebiet mit dem vorhandenen Polarradius ρ die Matrizen

(
ρ
)

i , j ,

(
∂ρ

∂π1

)
i , j

,

(
∂ρ

∂π2

)
i , j

und

(
∂2ρ

∂π1∂π2

)
i , j

mit 1 ≤ i ≤ 0.5ξ̂1
ρ und 1 ≤ j ≤ 0.5ξ̂2

ρ berechnen. Fordert man nun, dass die Koeffizientenma-

trix Ĉ so zu bestimmen ist, dass der Polarradius ρ̂ diese Werte erfüllt, so ergibt sich mit Hilfe

der Gleichungen (5.2.3) ein reguläres lineares Gleichungssystem mit ξ1
ρ̂
·ξ2
ρ̂

Unbekannten. Die

Unbekannten des resultierenden Gleichungssystem sind die Einträge der gesuchten Koeffizi-

entenmatrix Ĉ . Dieses Verfahren kann angewandt werden, um das Gitter der Knotenpunkte

äquidistant zu verfeinern.

Boehm-Algorithmus Alternativ kann durch den Boehm-Algorithmus (siehe [10]) ein Kno-

tenpunkt k̂1
ν mit k1

ν−1 < k̂1
ν < k1

ν leicht in die erste Komponente von ρ eingefügt werden. Sei

K̂ 1 =
[

k1, . . . ,kν, k̂ν,kν+1, . . . ,kξ1
ρ

]
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der neue Knotenvektor der B-Spline-Basisfunktion der ersten Komponente des Polarradius

ρ̂, wobei die einzelnen ki die Knotenpunkte der B-Spline-Basisfunktionen der ersten Kom-

ponente von ρ sind. Der Boehm-Algorithus berechnet die Koeffizienten-Matrix Ĉ des Polar-

radius ρ̂ durch

Ĉi , j =


Ci , j für i ≤ ν−4

ki+k−k̂ν
ki+4−ki

Ci−1, j + k̂ν−4i
ki+4−ki

Ci , j für ν−3 ≤ i ≤ ν
Ci−1, j für i ≥ ν+1.

Das Einfügen eines Knotenpunktes im Vektor K 2 wird analog durchgeführt.

Oslo-Algorithmus Der Oslo-Algorithmus [17, siehe Seite 106-107] hingegeben erlaubt den

Wechsel auf einen neuen Knotenvektor. Es müssen die Koeffizienten α4
l ,i bestimmt werden,

so dass die Koeffizienten-Matrix Ĉ 1 ∈R(m̂,n) zu berechnen ist durch

Ĉ 1
i , j =

m∑
l=1

αl ,i Cl , j .

Das Ergebnis des Oslo-Algorithmus ist, dass die Koeffizienten α4
l ,i leicht über die Rekursi-

onsformel

α1
l ,i =

1 falls k1
l ≤ k̂1

i ≤ kl+1

0 sonst

αa
l ,i =

k̂1
i+3 −k1

l

k1
l+3 −k1

l

αa−1
l ,i + k1

l+4 − k̂1
l+3

k̂1
l+4 − k̂1

l+1

αa−1
l+1,i

berechnet werden können. Der Wechsel des zweiten Knotenvektors und damit die Bestim-

mung der Koeffizienten-Matrix Ĉ ∈R(m̂,n̂) durch

Ĉi , j =
n∑

l=1
βl , j Ĉ 1

i ,l .

kann im zweiten Schritt analog angewandt werden.

5.3 Gradientenberechnung für die Optimierung

Wir nehmen an, dass das optische System durch eine Kostenfunktion ε : ~c → R+ bewertet

wird, wobei die Parameter im Vektor ~c die Freiheitsgrade des optischen Systems sind. Für

sehr viele effiziente Optimierungsverfahren, wie etwa das BFGS-Verfahren, ist es notwendig,
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den Gradienten ∇ε der Kostenfunktion zu bestimmen. Wenn die Funktion ε allerdings sehr

komplex ist, ist es in vielen Fällen praktisch nicht möglich, die Ableitung analytisch zu be-

rechnen.

Der Gradient kann alternativ durch zentrierte Differenzenquotienten

∂ε

∂ci
(~c) = lim

h→0

ε((c1, . . . ,ci +h, . . . ,cn))−ε((c1, . . . ,ci −h, . . . ,cn))

2h

bestimmt werden. Diese Variante hat einige Nachteile. Zum einen wird der Gradient durch

die Wahl eines konkreten h > 0 nur approximiert und zum anderen kann der Rechenaufwand

für eine große Anzahl an Freiheitsgraden ~c sehr aufwendig werden, so dass eine praktische

Umsetzung schwierig wird.

Ein weiterer Nachteil fällt dann ins Gewicht, wenn die Fehlerfunktion ε ein Integral über eine

Funktion mit einem steilen Abfall enthält. In diesem Fall kann es passieren, dass durch eine

zu kleine Variation h im Differenzenquotienten keine Änderung des Integranden und damit

auch des Integrals beobachtet wird, weil die einzelnen Punkte des Integranden nicht über

die Kante der zu integrierenden Funktion wandern. Der Gradient liefert dann keine Abstiegs-

informationen. Die Formel (4.5.3) weist genau diese Schwierigkeit auf, was im Abschnitt 5.7

näher erläutert wird.

Eine weitere Alternative zur Bestimmung von Ableitungen ist das automatische Differenzie-

ren. Der Grundgedanke hierbei ist, dass jede analytische, als Programm definierte Funktion

eine Verkettung von wenigen Grundfunktionen ist. Der Rechenaufwand, um die Ableitun-

gen der Grundfunktionen zu bestimmen ist ungefähr genau so groß, wie die Auswertung

der Grundfunktion selbst. Das automatische Differenzieren überlagert nun diese Grundfunk-

tionen mit einer zusätzlichen direkten Berechnung der geforderten Ableitungen. Die An-

wendung der Kettenregel ermöglicht die Bestimmung der Ableitung der gesamten Funkti-

on. Es gibt verschiede Möglichkeiten der Berechnung der Ableitungen durch automatisches

Differenzieren, den Vorwärts-Modus und den Rückwärts-Modus. Der Vorteil des Rückwärts-

Modus ist, dass die benötigte Zeit zur Berechnung des Gradienten unabhängig ist von der

Anzahl an Freiheitsgraden der Funktion und linear abhängt von der benötigten Zeit der Funk-

tionsauswertung selbst. Für die Optimierung des optischen Systems zur Generierung eines

vorgegebenen mappings wird in Abbildung 5.12 diese Aussage belegt. Ein theoretisches Re-

sultat ist, dass für rationale Algorithmen die Operationen für die Berechnung des Gradienten

kleiner ist als das vierfache der Operationen der Funktionsauswertung selbst. Am einfachsten

ist es, den Ansatz des automatischen Differenzierens an einem Beispiel zu illustrieren.

Beispiel 5.1 (automatisches Differenzieren). Wir beziehen uns auf das Vorlesungsskript [5,
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5.3 Gradientenberechnung für die Optimierung

Seite 8-21] und wenden das automatische Differenzieren auf die Funktion

f :R3 →R, f (x1, x2, x3) = x2
1 x3 +x1x2 +5

x1 +x2x3

an. Diese kann durch die Verkettung der Elementarfunktionen f1, f2, . . . , f8 mit f = f11 berech-

net werden:
f1(x1) = x1, f2(x2) = x2, f3(x3) = x3,

f4( f1) = f 2
1

f5( f4, f3) = f4 f3

f6( f1, f2) = f1 f2

f7( f5, f6) = f5 + f6

f8( f7) = f7 +5

f9( f2, f3) = f2 f3

f10( f1, f9) = f1 + f9

f = f11( f8, f10) = f8

f10
.

Bezeichne der Operator ∇ den Vektor
(
∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
, so kann der Gradient ∇ f (x1, x2, x3) auf-

grund der Kettenregel berechnet werden durch

∇ f1 = [1,0,0], ∇ f2 = [0,1,0], ∇ f3 = [0,0,1]

∇ f4 = [2 f1∇ f1,0,0] = 2 f1[1,0,0]

∇ f5 =∇ f4 f3 + f4∇ f3 =∇ f4 f3 + f4[0,0,1]

∇ f6 =∇ f1 f2 + f1∇ f2 = [x2, x1,0]

∇ f7 =∇ f5 +∇ f6

∇ f8 =∇ f7

∇ f9 =∇ f2 f3 + f2∇ f3 = [0, f3, f2]

∇ f10 =∇ f1 +∇ f9 = [1,0,0]+∇ f9

∇ f = ∇ f11 = ∇ f8 f10− f8∇ f10

f 2
10

.

Dieses sukzessive Berechnen des Gradienten beschreibt den Vorwärts-Modus des automati-

schen Differenzierens. Da in jedem Schritt ein Vektor berechnet werden muss, dessen Länge

der Anzahl an Freiheitsgraden der Funktion f entspricht, ist die Anzahl an Operationen zur

Berechnung der gesamten Ableitung abhängig von der Anzahl an Freiheitsgraden. Eine theo-

retische Aussage hierzu ist, dass für die Berechnung des Gradienten einer Funktion mit n Frei-

heitsgraden höchstens die (3n + 1)-fache Anzahl an Operationen der Funkton selbst benötigt

werden. Wir können dieses Vorgehen abstrakter formulieren. Dafür führen wir die Funktion

Fi (Fi−1) = [Fi−1, fi ] mit F4(x1, x2, x3) = [ f1, f2, f3] ein. Sei ferner L(F11) die Auswahl der letzten
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Kompente des Vektors. Die Funktion f kann als Verkettung

f (x1, x2, x3) = L(F11(F10(F9(F8(F7(F6(F5(F4(x1, x2, x3)))))))))

interpretiert werden. Das Bilden des Gradienten dieser Verkettung entspricht der Multiplikati-

on der Jakobi-Matrizen

∇ f = DL(F11)︸ ︷︷ ︸
1×11

DF11(F10)︸ ︷︷ ︸
11×10

· · ·DF5(F4)︸ ︷︷ ︸
5×4

DF4(x1, x2, x3)︸ ︷︷ ︸
4×3

.

Die Matrizen weisen eine Struktur auf:

DL(F11) = [0, . . . ,0,1]

und

DFi =



1

1
. . .

. . .

1
∂ fi

∂ fi−1

∂ fi

∂ fi−2
· · · · · · ∂ fi

∂ f1


.

Das Multiplizieren dieser Matrizen von rechts nach links entspricht dem Vorwärts-Modus.

Der Rückwärts-Modus des automatischen Differenzierens entspricht der Multiplikation der

Matrizen von links nach rechts. Dabei muss der Algorithmus einmal durchgeführt werden und

alle Zwischenwerte fi und die Ableitungen müssen gespeichert werden. Geschicktes Ausführen

der Multiplikation unter Ausnutzen der Strukturen der Matrizen bewirkt, dass der Rechenauf-

wand für den Gradienten der Funktion unabhängig von der Anzahl an Freiheitsgraden ist. Ein

theoretisches Ergebnis sagt aus, dass der Rechenaufwand kleiner als das Fünffache des Rechen-

aufwandes der Funktion selbst ist. Der Nachteil dieser Berechnung liegt darin, dass durch die

Abspeicherung aller Zwischenergebnisse der Funktion viel Speicherplatz benötigt wird.

Ein weiterer Vorteil des automatischem Differenzieren ist, dass die Funktion nicht analy-

tisch gegeben sein muss, sondern eine Definition als Quelltext ausreicht. Die Kostenfunktio-

nen, die in unserem Lösungsansatz zu optimieren sind (siehe Abbildung 5.1) beziehen sich

auf die Berechnung von Strahlengängen duch das optische System. Damit die Kostenfunkti-

on analytisch differenziert werden kann durch Automatisches Differenzieren, muss das opti-

sche System aus Flächen bestehen, deren Schnittpunkte mit Lichtstrahlen explizit berechnet

werden können und nicht durch Optimierung bestimmt werden müssen. Daraus folgt für un-
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sere spezielle Formulierung, dass das System nur aus einer Freiformfläche bestehen darf und

alle anderen Flächen explizit definiert sein müssen.

5.4 Numerische Integration mittels Gauss-Quadratur

Zur Berechnung der Beleuchtungsstärke mit ausgedehnter Lichtquelle (siehe Gleichung

(4.5.3)) müssen Integrale berechnet werden. Deshalb ist eine effiziente Integrationstechnik

wichtig.

Das numerische Integrieren von Funktionen approximiert diese stückweise als Polynome

und integriert diese exakt. Wir beziehen uns auf das Buch [11, Kapitel 7]. Das Integral einer

Funktion I : [a,b] → R wird durch die Integration der Polynome mittels einer numerischen

Quadraturformel

I =
b∫

a

f (x)d x → Ĩ =
n∑

i=1
wi f (xi )

approximiert. Der Genauigkeitsgrad m ∈N einer Quadraturformel besagt, dass mit Hilfe die-

ser Formel Polynome mit Höchstgrad m exakt integriert werden können. Die Newton-Cotes

Quadraturformel realisiert zu (m +1) paarweise verschiedenen Stützstellen xi ∈ [a,b] genau

eine Vorschrift mit Genauigkeitsgrad von mindestens m.

Die Gauss-Quadraturformeln erhöhen diesen Genauigkeitsgrad, indem sie die Lage der Stütz-

stellen als weitere Freiheitsgrade für die Quadratur verwenden. Das Ergbnis dieses Ansat-

zes ist, dass für das Intervall [−1,1] zu n Stützstellen xi genau eine Quadraturformel Ĩ =∑n
k=1 wk f (xk ) mit dem Genauigkeitsgrad (2n −1) existiert. Die Stützstellen xk sind die Null-

stellen des n-ten Legendre-Polynoms

Pn(x) = 1

2nn!

d n

d xn [(x2 −1)n] =
b n

2 c∑
k=0

(−1)k (2n −2k)!

(n −k)!(n −2k)!k !2n xn−2k

und die Integrationsgewichte sind gegeben durch

wk =
1∫

−1

n∏
j=1
j 6=k

(
x −x j

xk −x j

)2

d x.

93



5 Lösungskonzept und numerische Umsetzung

Diese Werte können auch als Eigenwerte einer Matrix berechnet werden. Die Stützstellen xi

sind die Eigenwerte der Matrix

Jn =



0 β1

β1 0 β2

β2 0 β3
. . .

. . .
. . .

βn−2 0 βn−1

βn−1 0


mit

βk = kp
4k2 −1

.

Die Gewichte können durch die Eigenvektoren bestimmt werden. Sei~zk der Eigenvektor von

Jn zum Eigenwert xk . Dann gilt für die Gewichte

wk = 2(~zk
1 )2

‖~zk‖2
,

wobei ~zk
1 die erste Komponente des nicht normierten Eigenvektors zum Eigenwert xk ist.

Diese Formeln gelten für das Intervall [−1,1]. Wenden wir die Integration nun auf das zwei-

dimensionale Gebiet [a,b]× [c,d ] an, so kann die Quadraturformel mit Hilfe einer einfachen

Transformation

I =
b∫

a

d∫
c

f (x, y)d xd y =
1∫

−1

1∫
−1

(b −a)(d − c)

22 f

(
b −a

2
x + a +b

2
,

d − c

2
y + c +d

2

)
︸ ︷︷ ︸

=: f̂ (x,y,a,b,c,d)

d xd y

angewandt werden. Die Gauss-Quadratur mit einem Genauigkeitsgrad 2n −1 in beide Rich-

tungen führt auf die Formel

Ĩ =
n∑
µ=1

n∑
ν=1

wµwν f̂ (xµ, xν, a,b,c,d),

wobei die wi und xi für die Gauss-Gewichte und Stützstellen stehen. Die Stützstellen bezie-

hen sich auf das Intervall [−1,1]2, können aber leicht auf das eigentliche Integrationsgebiet

transformiert werden.
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Mehrlevel-Ansatz der Gauss-Quadratur Wir wenden die Gauss-Quadratur auf ein großes

Rechteckgebiet Π = Π1 ×Π2 = [π1
1,π1

2]× [π2
1,π2

2] an. Falls der Integrand in dem Integrations-

gebiet sehr feinstrukturiert ist, müssen die Stützstellen das Gebiet entsprechend ausfüllen.

Für eine hohe Anzahl an notwendigen Stützstellen ist es nicht sinnvoll, die Gauss-Quadratur

auf diese direkt anzuwenden, da in diesem Fall sehr hochdimensionale Eigenwertprobleme

zu lösen wären und interpolierende Polynome höherer Ordnung die Neigung zum Oszillie-

ren aufweisen. Deshalb wenden wir die Gauss-Quadratur mit n (ca. 3− 7) Stützstellen auf

kleineren Teilgebieten vonΠ an und setzen diese durch Summenbildung zusammen. Wir be-

zeichnen mit Πh die Unterteilung von Π in nh
1 ×nh

2 äquidistante Zellen, in denen die Gauss-

Quadratur angewandt wird. Die horizontale Zellenbreite ist h1 := π1
2−π1

1

nh
1

und die vertikale

h2 := π2
2−π2

1

nh
2

. Wir erhalten für I =Î
Π f (x, y)d xd y die Approximation

Ĩ =
nh

1 −1∑
i=0

nh
2 −1∑
j=0

n∑
µ=1

n∑
ν=1

wµwν f̂
(
xµ, xν,π1

1 + i h1,π1
1 + (i +1)h1,π2

1 + j h2,π2
1 + ( j +1)h2

)
.

Falls der Integrand in großen Bereichen des Integrationsgebietes verschwindet, muss dieser

in diesen Bereichen nicht berechnet und integriert werden. Da der Backward-Raytrace im All-

gemeinen nur kleine Teile der Fläche auf die Lichtquelle abbildet, geben wir eine Möglichkeit

an, den Integranden der Gleichung (4.5.3) nur auf dem aktiven Bereich zu bestimmen. Wir

nennen die verwendete Reduktion des Rechenaufwandes Mehrlevel-Ansatz. Die dabei ver-

wendeten Gitter für die Gauss-Integration sind in Abbildung 5.3 dargestellt. Die Grundidee

besteht darin, ein grobes TeilgitterΠH vonΠh zu wählen und den Integranden zuerst aufΠH

auszuwerten. Anschließend wird die Integration nur auf den Zellen durchgeführt, die in dem

Bereich liegen, in dem der Integrand ungleich Null ist. Dieser Ansatz ist besonders effektiv,

wenn der Integrand nur auf einem zusammenhängenden Gebiet in Π ungleich null ist und

in großen Teilen verschwindet. In der Berechnung der BSV weist dieses Vorgehen eine ho-

he Effizienz auf, wie in Abb. 5.4 dargestellt wird. Der Rechenaufwand der Gauss-Integration

einer Funktion, deren Träger ca. 1
10 der Fläche von Π bedeckt, kann auf diese Weise um ca.

denselben Faktor verringert werden.
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Π

ΠH Πh Πgauss

Abb. 5.3: Die Berechnung eines Integrals mit Hilfe der Gauss-Quadratur auf den StützstellenΠg auss wird
mit Hilfe von drei Gittern in Π durchgeführt. Indem der Integrand auf dem groben Gitter ΠH

ausgeführt wird, wird durch die Menge der Punkte, auf denen der Integrand ungleich null ist,
eine Teilmenge der Gauss-Quadraturzellen in Πh ausgewählt (grün schraffierte Fläche). Auf
diese Weise dient das grobe GitterΠH der Verkleinerung des Integrationsgebietes.
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Abb. 5.4: Die benötigte Berechnungszeit eines Integrals mit Hilfe der Gauss-Quadratur mit und ohne
Mehrlevel-Ansatz. (a) Gegenüberstellung der Berechnung mit und ohne Mehrlevel-Ansatz. (b)
Das relative Verhalten der Berechnungszeit mit Mehrlevel-Verfahren zu der Berechnung auf
dem ganzen Integrationsgebiet.
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5.5 Berechnung des optimalen mappings mit dem

Kantorovich-Formalismus des Monge-Problems

Das Beleuchtungsproblem in Abschnitt 2.5 wird vereinfacht gelöst durch die Approximati-

on der Lichtquelle als Punkt χ̂ ∈ R3 und die Berechung eines diskreten optimalen mappings

F̂ : Ωm
χ̂

→ ΩΨ, das zur Bestimmung eines optischen Systems verwendet wird. Auf das op-

timale mapping soll mit Hilfe des Produktmaßes aus dem primalen Monge-Kantorovich-

Formalismus geschlossen werden (siehe lineares Programm 3.1).

Die Transformation des Beleuchtungsproblems in diese Formulierung wird in Abbildung 5.5

dargestellt und das resultierende mapping nach Gleichung (3.4.31) in Abbildung 5.6. Das pri-

male Problem bietet den Vorteil, dass die Struktur des gesuchten diskreten Produktmasses

µ : {[Ωi
χ̂

;Ωi+1
χ̂

]|1 ≤ i ≤ m −1}× {[Ωk
Ψ;Ωk+1

Ψ ]|1 ≤ k ≤ o −1} → R+ schwach besetzt ist (siehe Ab-

schnitt 3.4.4). Wir beschreiben das diskrete Produktmass als Matrix M ∈R(m−1),(o−1). Mit Hilfe

der schwachen Besetztheit kann die Komplexität des Linearen Programms reduziert werden.

In der ursprünglichen Formulierung werden (m−1)·(o−1) Variablen unter (m−1)+(o−1) Ne-

benbedingungen berechnet. Bei feiner Diskretisierung der Gebiete Ωχ̂ und ΩΨ kann schnell

der benötigte Speicherplatz und die Laufzeit des Programms die praktische Durchführung

unattraktiv oder unmöglich machen. Die schwache Besetztheit legt nahe, dass die Anzahl an

zu berechnender Koeffizienten auf O((m −1)+ (o −1)) reduziert werden kann. In der Ausar-

beitung [13] stellt Jan Van-Lent zwei Ansätze zur Reduzierung der Komplexität dar, die in den

folgenden Abschnitten definiert werden.
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Abb. 5.5: Das Beleuchtungsproblem wird für die Anwendung des Monge-Kantorovich-Formalismus
transformiert. In dieser Darstellung ist die Transformation der ZielflächeΨ auf die Sphäre dar-
gestellt. Auf der Sphäre überlagern die diskreten Maße der Lichtquelle und der Zielfläche, die
durch die Kostenfunktion auf den Mittelpunkten der Zellen in Zusammenhang gebracht wer-
den.
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5.5 Berechnung des optimalen mappings nach Monge-Kantorovich

Abb. 5.6: Das resultierende mapping F̂+ aus dem diskreten Produktmaß der primalen Monge-
Kantorovich-Lösung des Beleuchtungsproblems in Abbildung 5.5 wird dargestellt. Die grünen
Strahlen müssen durch das optische System auf Lichtstrahlen in Richtung der blauen Strahlen
abgelenkt werden
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5 Lösungskonzept und numerische Umsetzung

5.5.1 Erster iterativer Algorithmus von Jan van Lent zur Lösung des primalen

Monge-Kantorovich-Problems

Wir definieren I := {(i ,k)|µi ,k 6= 0} als aktiven Indexbereich der Lösungsmatrix M mit der An-

zahl q := |I| an Indexpaaren im aktiven Bereich. Das lineare Programm kann umgeschrieben

werden zu.

lineares Programm 5.1 (primales Monge-Kantorovich-Problem mit Ausnutzung der schwa-

chen Besetzheit). Die Bezeichnungen und Definitionen der Maßzahlen µ+
i und µ−

k und die

Kostenmatrix C seien wie im linearen Programm 3.1. Da für die Lösung µi ,k = 0 für alle (i ,k) ∉
I gilt, ist die Minimierung der Gleichung 3.4.32 äquivalent zu der Minimierung von

q∑
k=1

cI(k)µI(k).

Die Nebenbedingungen 3.1 sind äquivalent zu

∑
{(î ,k)∈I|î=i }

µî ,k =µ+
i ,

∑
{(i ,k̂)∈I|k̂=k}

µi ,k̂ =µ−
k , für alle i = 1. . . (m −1) und k = 1. . . (o −1), (5.5.1)

die durch ein entsprechendes Gleichungssystem mit q Unbekannten beschrieben werden kön-

nen.

Falls der aktive Bereich I der Lösung (µi ,k )(m−1),(o−1)
i ,k bekannt ist, kann durch diese Um-

formulierung des linearen Programms die gesuchte Lösungsmatrix M bestimmt werden. Da

der aktive Bereich a-priori nicht bekannt ist, wird in [13] ein iteratives Lösungsverfahren vor-

geschlagen nach dem Schema in Abbildung 5.7. Zu Beginn des iterativen Verfahrens wir ein

initialer aktiver BereichI0 gewählt. Dieser kann beispielsweise durch eine Vorschrift definiert

werden, dass zu jedem 1 ≤ i ≤ (m−1) eine gewisse Anzahl an Indexpaaren (i ,k) gewählt wer-

den, die die minimalen Kosten ci ,k für alle 1 ≤ k ≤ (o −1) verursachen.

Anschließend folgt eine Lösungsschleife: Die Lösungsmatrix M k−1 aus dem linearen Pro-

gramm 5.1 zu dem gegebenen aktiven Bereich Ik−1 wird berechnet. Anschließend wird diese

Lösung analysiert und ein veränderter aktiver Bereich Ik bestimmt. Dazu werden zu jedem

1 ≤ i ≤ m alle Indexpaare in den aktiven Bereich Ik aufgenommen, die innerhalb eines um-

gebenden Rechteckes um alle Zellen (i ,k) mit M k−1(i ,k) 6= 0 liegen. Für ein eindimensionales

Problem würde dies bedeuten, dass die Indizes 1 ≤ k1 ≤ k2 ≤ (o−1) bestimmt werden müssen,

für die M(i ,k1) = M k−1(i ,k2) = 0 und M k−1(i ,k) 6= 0 für alle k1 ≤ k ≤ k2 gilt. Alle Indexpaare

(i ,k) mit k1 ≤ k ≤ k2 werden in den aktiven Bereich Ii aufgenommen. Ein Abbruchkriterium

kann definiert werden durch die Forderung Ik ⊆ Ik−1, da in diesem Fall sichergestellt wird,

dass der angenommene aktive Bereich den tatsächlichen enthält. Im Beispiel 5.2 wird ein
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5.5 Berechnung des optimalen mappings nach Monge-Kantorovich

Berechnung
des initialen
aktiven Be-
reiches I0

Bestimmung
der Lö-

sungsmatrix
M k−1

aus dem
linearen

Programm
5.1 auf dem

aktiven
Bereich
Ik−1

Bestimmung
des aktiven

Bereichs
Ik des

nächsten
Iterations-
schrittes

durch die
Analyse des
Nichtnull-

Struktur
in der Lö-

sungsmatrix
M k

Ik ⊆ Ik−1 M = M k
yes

no

Abb. 5.7: Schematische Darstellung des ersten iterativen Verfahrens von Jan Van Lent zur Lösung des
primalen Monge-Kantorovich-Problems

eindimensionales Problem gelöst und der iterative Algorithmus dargestellt.

Beispiel 5.2 (Das erste iterative Verfahren von Jan van Lent an einem eindimenionalen Bei-

spiel). Wir wenden den Algorithus von Jan van Lent auf das eindimensionale Problem mit

den Dichten in Abbildung 5.8 an. Der iterative Prozess verändert den aktiven Bereich. Die Pro-

duktmaße für die jeweiligen aktiven Bereiche während der Iteration werden in Abbildung 5.9

dargestellt.
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Abb. 5.8: Die Dichte µ1 soll in die Dichte µ2 überführt werden. Das Produktmaß des primalen Monge-
Kantorovich-Problems wird iterativ nach dem Algorithmus von Jan van Lent berechnet (siehe
Abbildung 5.9.)
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Abb. 5.9: Das iterative Verfahren von Jan Van Lent zur Lösung des primalen Monge-Kantorovich-
Problems löst auf sich ändernden aktiven Bereichen das Problem 5.1. Die verschiedenen Pro-
duktmaße werde in dieser Abbildung dargestellt.
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5.5.2 Zweiter iterativer Algorithmus von Jan van Lent zur Lösung des primalen

Monge-Kantorovich-Problems

Alternativ kann auch ein anderes iteratives Verfahren angewandt werden. Hierbei werden

die Diskretisierungen der Gebiete Ωχ und ΩΨ in jedem Iterationsschritt durch Unterteilung

der Zellen verfeinert. Sei Ωk−1
χ und Ωk−1

Ψ eine Diskretisierung mit der Lösungsmatrix M k−1

und dem aktiven Bereich Ik−1. Eine feinere Diskretisierung Ωk
χ und Ωk

Ψ mit Ωk−1
χ ⊂Ωk

χ und

Ωk−1
Ψ ⊂ Ωk

Ψ wird erstellt durch Unterteilung der einzelnen Zellen mit einem ganzzahligen

Vielfachen. Für die Ausführung des linearen Programms auf der feineren Diskretisierung wer-

den in den aktiven Bereich Ik nur die Zellen aufgenommen, die Teilmengen von Zellen in

Ωk−1
χ undΩk−1

Ψ sind, deren Eintrag im Produktmaß M k−1 ungleich null ist. Anschließend wird

das lineare Programm 5.1 auf diesem aktiven Bereich bestimmt.

Damit dieser Ansatz zur Lösung führt, wird das initiale lineare Programm auf der groben Dis-

kretisierungΩ0
χ undΩ0

Ψ als voll-besetztes lineares Programm 3.1 gelöst. Wenn die gewünsch-

te Auflösung erreicht wird hat man die diskrete Lösungsmatrix M n bestimmt. Dieses iterative

Lösungsverfahren wird in Abbildung 5.10 schematisch dargestellt.
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Abb. 5.10: Schematische Darstellung des zweiten iterativen Verfahrens von Jan Van Lent zur Lösung des
primalen Monge-Kantorovich-Problems

Wir wenden dieses Verfahren auf dasselbe Problem an, wie den Algorithmus im vorigen Bei-

spiel 5.2

Beispiel 5.3 (Das zweite iterative Verfahren von Jan van Lent an einem eindimenionalen Bei-

spiel). Wir wenden den zweiten Algorithus von Jan van Lent ebenfalls auf das eindimensionale

Problem mit den Dichten aus Abbildung 5.8 an. Der iterative Prozess verfeinert die Diskretisie-

rungen, so dass eine Lösung bestimmt werden kann zu einer wesentlich feineren Diskretisie-

rung als mit dem ersten Ansatz aus Beispiel 5.2. Die Produktmaße für die jeweiligen Diskreti-
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5 Lösungskonzept und numerische Umsetzung

sierungen während der Iteration werden in Abbildung 5.11 dargestellt.
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Abb. 5.11: Das zweite iterative Verfahren von Jan Van Lent zur Lösung des primalen Monge-
Kantorovich-Problems löst das entsprechende Lineare Programm auf einer groben Diskreti-
sierung und löst diese iterativ immer weiter auf. Dabei werden nur die Zellen des Produkt-
masses berechnet, die innerhalb gröberer Zellen liegen, deren Produktmass-Eintrag ungleich
null ist.

5.6 Bestimmung eines optischen Systems mit Hilfe eines optimalen

mappings

Gegeben sei ein diskretes optimales mapping F̂ :Ωm
χ̂
→ΩΨ. Die optischen Flächen Σ1 bis Σn

sollen berechnet oder optimiert werden, so dass das mapping durch das optische System mit

der Punktlichtquelle in χ̂ ∈R3 generiert wird.

Wir präsentieren in Abschnitt 5.6.1 ein Optimierungsverfahren für allgemeine optische Sys-

teme mit verschiedenen Flächen und Freiheitsgraden.

Falls das optische System jedoch aus nur einer optischen Fläche besteht, kann das optimale

mapping F̂ aufgrund der Gesetze der geometrischen Optik mit einem Normalenvektorfeld
~NF̂ : Ωχ̂ → S2 der Fläche identifiziert werden. Nach dem Beweis von Lemma 3.2 zeigt das

Normalenvektorfeld der gesuchten Fläche in die Richtung

NF̂ = F̂ (~ωχ̂)− nχ̂
nΨ
~ωχ̂. (5.6.1)
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5.6 Bestimmung eines optischen Systems durch ein optimales mapping

Das Lemma 3.2 besagt, dass zu einem rotationsfreien mapping F̂ eine eindimensionale Schar

von optischen Flächen existiert, die das gewünschte mapping generieren. Eine optische Flä-

che, die durch ein rotationsfreies mapping, bzw. Normalenvektorfeld, beschrieben wird, kann

auf drei Weisen berechnet werden:

• Lösen eines Systems partieller Differentialgleichungen als Anfangswertproblem, das

durch das Normalenvektorfeld des optimalen mappings definiert wird (siehe Abschnitt

5.6.2)

• Bestimmung der Fläche durch Integration des Normalenvektorfeldes (siehe Abschnitt

5.6.3).

• Optimierung der Fläche zur Generierung des gewünschten Normalenvektorfeldes (sie-

he Abschnitt 5.6.4).

Mit einigen weiteren Definitionen ist es auch möglich zwei oder noch mehr Flächen ein Nor-

malenvektorfeld zuzuordnen und die Flächen aufgrund des mappings F̂ bezüglich der Nor-

malenvektorfelder zu optimieren (siehe Abschnitt 5.6.5).

5.6.1 Optimierung des optischen Systems zur Generierung des optimalen

mappings

Wenn mehrere optische Flächen Σ1 bis Σn mit Freiheitsgraden ~c ∈ Rn gleichzeitig zueinan-

der bestimmt werden müssen, um das mapping F̂ zu generieren, dann können diese Frei-

heitsgrade optimiert werden. Wir nutzen für die Optimierung ein Gradientenverfahren und

bezeichnen mit F̂~c : Ωχ̂ → ΩΨ das generierte mapping im Fernfeld des optischen Systems

zu den Freiheitsgraden~c. Als Fehlerfunktion definieren wir den mittleren quadratischen Ab-

stand

ε(~c) :=
m∑

i=1
‖F~c (~ωi

χ̂)−F (~ωi
χ̂)‖2 = 2m −

m∑
i=1

〈F~c (~ωi
χ̂),F (~ωi

χ̂)〉. (5.6.2)

Falls der Strahlengang durch das optische System analytisch berechnet werden kann, kann

der Gradient dieser Kostenfunktion durch automatisches Differenzieren im Rückwärtsmodus

bestimmt werden, wobei die Berechnungszeit des Gradienten unabhängig ist von der Anzahl

an Freiheitsgraden (siehe Abschnitt 5.3). Die Abbildung 5.12 bestätigt die Effizienz des au-

tomatischen Differenzierens für diese Anwendung im Gegensatz zu Differenzenquotienten.

Die Kostenfunktion wird für eine Freiformfläche mit Polarradius definiert. Der Polarradius

wird durch kubische B-Splines mit unterschiedlich vielen Stützstellen beschrieben und die

Zeit für die Berechnung des Gradienten gemessen.Der Berechnungsaufwand des Automati-

schen Differenzierens geht relativ zu der Berechnungszeit der Kostenfunktion mit Verfeine-
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rung der Spline-Koeffizienten leicht zurück, wogegen die Berechnungszeit der Differenzen-

quotienten linear zunimmt.
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Abb. 5.12: Laufzeitanalyse der Gradientenberechnung in Abhängigkeit von der Anzahl an Freiheitsgra-
den für die Kostenfunktion 5.6.2 zur Generierung eines vorgegebenen mappings. Es werden
verschieden feine Gitter von Spline-Koeffizienten verwendet, um die Abhängigkeit von der
Anzahl an Freiheitsgraden darzustellen. Links wird die Dauer der Kostenfunktion aufgetra-
gen und rechts, wie viel Zeit das automatische Differenzieren, bzw. die Berechnung durch
Differenzenquotienten relativ zur Gesamtzeit der Funktion benötigt.

Ein gradientenbasiertes Optimierungsverfahren konvergiert nur gegen lokale Minima. Wird

die Fläche durch sehr viele Spline-Koeffizienten beschrieben, so ist die Wahrscheinlichkeit

erhöht, dass mehr lokale Minima existieren und der Optimierer nicht zur globalen Lösung

konvergiert. Deshalb verwenden wir den Ansatz, die Fläche während des Optimierungspro-

zesses iterativ zu verfeinern. Auf diese Weise sucht der Optimierer zuerst auf wenigen Para-

metern nach der Lösung und nimmt die grobe Charakteristik der Lichtverteilung an. Wenn

eine Konvergenz festgestellt wird, werden weitere Knotenpunkte eingefügt, wie im Abschnitt

5.2.4 beschrieben wird. Die Notwendigkeit und auch Gültigkeit dieses Ansatzes wird in der

Abbildung 5.13 dargelegt. Wird die Fläche iterativ mit einer Spline-Koeffizientenanzahl von

[42,62,82,102,122] verfeinert, so ist die Konvegrenz wesentlich besser als das Gradientenver-

fahren, das direkt auf 122 Koeffizienten angewandt wird.

Die Zwischenstände des Optimierungsprozesses werden in Abbildung 5.14 analysiert, indem

die erzeugte Lichtverteilung mit ausgedehnter Lichtquelle dargestellt wird. Es ist zu erken-

nen, dass die erzeugte Lichtverteilung auch mit ausgedehnter Lichtquelle in die richte Rich-

tung entwickelt wird, diese aber nicht erreicht.
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Abb. 5.13: Die Optimierung der optischen Fläche zur Generierung des optimalen mappings kann mit
und ohne iterative Verfeinerung der Spline-Koeffizienten durchgeführt werden. Die iterati-
ve Verfeinerung weist ein wesentlich besseres Konvergenzverhalten auf, als die Optimierung
ohne Verfeinerung, die direkt auf der feinsten Diskretisierung angewandt wird.

5.6.2 Berechnung einer optischen Flächen durch Lösen eines Systems partieller

Differentialgleichungen

Wir gehen in diesem Fall davon aus, dass das optische System nur eine zu bestimmende opti-

sche Fläche Σ enthält. Nach Lemma 3.2 existiert eine Schar von optischen Flächen, die dieses

Normalenvektorfeld beschreiben. Sei Σ : ΠΣ → R3 eine Fläche aus dieser Schar, so zeigt das

Normalenvektorfeld ~NΣ in die Richtung

NF̂ = ∂π1
Σ
Σ×∂π2

Σ
Σ. (5.6.3)

Zusammenführen der Gleichungen (5.6.1) und (5.6.3) führt mit der regulären Parametrisie-

rung ~ωχ̂ :ΠΣ→Ωχ̂ zu den drei Forderungen

∂π1
Σ
Σ×∂π2

Σ
Σ−F̂ (ΠΣ)+ nχ̂

nΨ
~ωχ̂(ΠΣ)

!= 0 (5.6.4)

für die gesuchte dreidimensionale Funktion Σ. Modelliert man die Fläche über einen Polar-

radius ρ (siehe Abschnitt 5.2.1), so kann das Kreuzprodukt (5.6.3) umgeschrieben werden zu

∂π1
Σ
Σ×∂π2

Σ
Σ = (∂π1

Σ
ρ~ωχ̂+ρ∂π1

Σ
~ωχ̂)× (∂π2

Σ
ρ~ωχ̂+ρ∂π2

Σ
~ωχ̂)

= ρ∂π1
Σ
ρ(~ωχ̂×∂π2

Σ
~ωχ̂)+ρ∂π2

Σ
ρ(~ωχ̂×∂π1

Σ
~ωχ̂)+ρ2(∂π1

Σ
~ωχ̂×∂π2

Σ
~ωχ̂).
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Abb. 5.14: Eine Untersuchung der generierten Lichtverteilungen der optimierten Optik. (a) Das Simula-
tionsergebnis der optimierten Fläche mit der approximierten Punktlichtquelle. Das Ergebnis
weist die geforderte Charakteristik auf. (b) Die Veränderung der generierten Beleuchtungs-
stärkeverteilung mit ausgedehnter Lichtquelle während der Optimierung. Die Charakteristik
nähert sich der gewünschten konstanten Lichtverteilung an, erreicht diese allerdings nicht. Es
bleibt eine Überhöhung im Zentralbereich erhalten.
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Einfügen dieses Ergebnisses in das Gleichungssystem ergibt ein System aus drei partiellen

Differentialgleichungen. Um die Lösung eindeutig zu bestimmen muss ein beliebiger An-

fangswert des Polarradius und der Ableitungen vorgegeben werden.

5.6.3 Berechnung einer optischen Fläche als Anfangswertproblem

Die zu berechnende Freiformfläche wird über den skalaren Polarradius ρ :ΠΣ→R+ beschrie-

ben durch die Gleichung Σ(πΣ) = χ̂+ρ(πΣ)~ωΣ(πΣ). Zur Bestimmung der Fläche formulieren

wir ein Anfangswertproblem des Polarradius ρ.

Wir bezeichnen mit t : [0,1] → ΠΣ einen Pfad in der Parameterebene ΠΣ und mit ρt := ρ ◦ t

den Polarradius auf diesem Pfad. Das rotationsfreie Normalenvektorfeld ~NF :ΠΣ→ S2 steht

senkrecht auf der Fläche Σ. Aufgrund der Definition von Σ gilt auf dem ganzen Pfad t die

Orthogonalitätsbeziehung

ρ̇t (r )~ωΣ(t (r ))+ρt (r ) (D~ωΣ(t (r )) ·∇t (r )) ⊥ ~NF (t (r )) ∀r ∈ [0,1].

Diese Orthogonalitätsbeziehung ist in Sinne des euklidischen Skalarproduktes gleichbedeu-

tend mit der Forderung

〈
ρ̇t (r )~ωΣ(t (r ))+ρt (r ) (D~ωΣ(t (r )) ·∇t (r )) , ~NF (t (r ))

〉 != 0.

Auflösen dieser Gleichung nach ρ̇t liefert die gewöhnliche Differentialgleichung

ρ̇t =−ρt (r )

〈
D~ωΣ(t (r )) ·∇t (r ), ~NF (t (r ))

〉〈
~ωΣ(t (r )), ~NF (t (r ))

〉 .

Wählt man einen Startwert ρ(π̂Σ) ∈ R+, so kann für alle Pfade t : [0,1] →ΠΣ mit t (0) = π̂Σ der

Polarradius entlang dieses Pfades durch Lösen des Anfangswertproblems berechnet werden.

Es ist noch zu klären, ob dieses Verfahren für alle Pfade mit dem gleichen Endpunkt t (1) das-

selbe Ergebnis liefert. Aufgrund des rotationsfreien Normalenvektorfeldes ~NF existiert nach

Lemma 3.1 eine eindimensionale Schar von Flächen, die dieses Normalenvektorfeld anneh-

men. Mit Festlegung eines Startwertes Σ(π̂Σ) wählen wir aus dieser Schar eine optischen Flä-

che aus. Da das Anfangswertproblem entlang dieser Fläche integriert folgt die Pfadunabhän-

gigkeit.

Das Normalenvektorfeld wird durch das mapping aus Abschnitt 5.5 auf einer Diskretisierung

des Parametergebietes ΠΣ berechnet. Für die Lösung des Anfangswertproblems bietet sich

deshalb kein Mehrschrittverfahren an, sondern das explizite Euler-Verfahren, da die Diffe-

rentialgleichung nur auf der Diskretisierung bestimmt werden kann. Um die diskreten Flä-
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5 Lösungskonzept und numerische Umsetzung

chenpunkte zu bestimmen, kann das Anfangswertproblem einmal in einer vertikalen Rich-

tung im Parametergebiet gelöst werden und anschließend für jeden Punkt auf dieser Lösung

in horizontaler Richtung, wie in Abbildung 5.15 dargestellt ist.

~ω(π̂)

~NF (π̂)

Abb. 5.15: Das expizite Euer-Verfahren des Anfangswertproblems berechnet die Flächenpunkte für die
Diskretisierung der Normalenvektoren. Zuerst wird entlang der vertikalen Richtungein Pfad
integriert (schwarz) und anschließend für jeden Punkt auf diesem Pfad die horizontale Rich-
tung (dunkelrot).

5.6.4 Optimierung des Normalenvektorfeldes einer Fläche

Falls das gewünschten Normalenvektorfeld ~NF̂ einer Freiformfläche bekannt ist, kann der-

selbe Optimierungsalgorithmus von Abschnitt 5.6.1 mit der alternativen Kostenfunktion

ε(~c) :=
m∑

i=1
‖~N~c (~ωi

χ̂)− ~NF̂ (~ωi
χ̂)‖2 = 2m −

m∑
i=1

〈
~N~c (~ωi

χ̂), ~NF̂ (~ωi
χ̂)

〉
(5.6.5)

verwendet werden. Diese Modellierung hat den Vorteil, dass Effekte wie beispielsweise Total-

reflektion die Optimierung nicht behindern und der Algorithmus stabiler ist. Eine praktiche

Umsetzung dieses Ansatzes wird in einem Unterabschnitt von 6.2 auf Seite 125 durchgeführt.

5.6.5 Alternative Berechnung mehrerer optischer Flächen

An dieser Stelle soll ein alternativer Ansatz aufgezeigt werden, wie mehrere optische Flä-

chen berechnet werden können, um ein optimales mapping F̂ : Ωχ̂ → ΩΨ zu generieren.
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5.6 Bestimmung eines optischen Systems durch ein optimales mapping

Ohne Beschränkung der Allgemeinheit reduzieren wir in dieser Herleitung die Problemstel-

lung darauf, dass zwei Flächen Σ1 und Σ2 zu berechnen sind. Die erste Fläche soll das map-

ping F̂Σ1 (~ωχ̂) := F̂ (~ωχ̂)+~ωχ̂
2 generieren und kann über ein beliebiges Verfahren bestimmt wer-

den. Die zweite Fläche soll so berechnet werden, dass insgesamt das Zielmapping F̂ erzeugt

wird, d.h. die zweite Fläche generiert das mapping F̂Σ2 : F̂Σ1 (Ωχ̂) →ΩΨ mit F̂Σ2 (F̂Σ1 (~ωχ̂)) =
F̂ (~ωχ̂). Auf diese Weise wird das mapping durch beide Flächen erzeugt. Wir definieren die

gesuchte Fläche Σ2 durch die skalare Funktion λ :Ωχ̂→R+ durch

Σ2(~ωχ̂) :=Σ1(~ωχ̂)+λ(~ωχ̂)F̂Σ1 (~ωχ̂).

Die Optik wird in Abbildung 5.16 dargestellt. Diese Flächendefinition ermöglicht es, mit Hil-

Σ1(~ωχ) = ρ(~ωχ)~ωχ

~ωχ

Σ2(~ωχ) = Σ1(~ωχ) + λ(~ωχ)F̂Σ1
(~ωχ)

F̂Σ1(~ωχ)
F̂(~ωχ)

Σ1

Σ2

Abb. 5.16: Die beiden Flächen stellen eine Optik dar, in der das gewünschte mapping F̂ :Ωχ →ΩΨ von
beiden Flächen zu gleichen Teilen generiert wird.

fe der Gleichung (5.6.1) das geforderte Normalenvektorfeld ~NΣ2 für alle ~ωχ am Punkt Σ2(~ωχ̂)

durch das geforderte mapping F̂Σ1 (~ω1) → F̂Σ2 (~ω2) zu berechnen.

Das Normalenvektorfeld der Fläche Σ2 wird durch die skalare Funktion λ und deren partiel-

len Ableitungen und der Parametrisierung ~ωχ̂ :ΠΣ1 →Ωχ̂ definiert durch

Nλ := ∂π1
Σ1
Σ2 ×∂π2

Σ1
Σ2

=
(
∂π1

Σ1
σ1 +∂π1

Σ1
λF̂Σ1 +λ∂π1

Σ1
F̂Σ1

)
×

(
∂π2

Σ1
σ1 +∂π2

Σ1
λF̂Σ1 +λ∂π2

Σ1
F̂Σ1

)
=

(
∂π1

Σ1
σ1 ×∂π2

Σ1
σ1

)
︸ ︷︷ ︸

=NΣ1

+∂π2
Σ1
λ

(
∂π1

Σ1
σ1 ×F̂Σ1

)
+λ

(
∂π1

Σ1
σ1 ×∂π2

Σ1
F̂Σ1

)

+∂π1
Σ1
λ

(
F̂Σ1 ×∂π2

Σ1
σ1

)
+∂π1

Σ1
λ∂π2

Σ1
λ

(
F̂Σ1 ×F̂Σ1

)︸ ︷︷ ︸
=~0

+λ∂π1
Σ1
λ

(
F̂Σ1 ×∂π2

Σ1
F̂Σ1

)

+λ
(
∂π1

Σ1
F̂Σ1 ×∂π2

Σ1
σ1

)
+λ∂π2

Σ1
λ

(
F̂Σ1 ×F̂Σ1

)︸ ︷︷ ︸
=~0

+λ2
(
∂π1

Σ1
F̂Σ1 ×∂π2

Σ1
F̂Σ1

)
.
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5 Lösungskonzept und numerische Umsetzung

Setzt man den normierten Vektoren ~Nλ := Nλ

‖Nλ‖ mit ~NΣ2 gleich, so erhält man ein System

aus drei partiellen Differentialgleichungen für die Funktion λ und die partiellen Ableitun-

gen. Durch diese Gleichungen kann die zweite optische Fläche berechnet werden, falls das

mapping F̂Σ1 differenziert werden kann.

Alternativ zur Lösung des Systems partieller Differentialgleichungen kann auch eine Flächen-

optimierung durchgeführt werden mit dem Ziel, dass das Normalenvektorfeld mit dem ge-

forderten übereinstimmt.

Eine praktiche Umsetzung dieses Ansatzes wird in einem Unterabschnitt von Absatz 6.2 auf

Seite 126 durchgeführt.

5.7 Optimierung mit ausgedehnter Lichtquelle

Die Beleuchtungsstärke kann durch die Gleichung (4.5.3) analytisch berechnet werden. Wir

geben die Gleichung noch einmal an für alle y ∈Ψ:

B~c (y) = n2
Ψ

n2
χ

Ï
ΠΣn

Lχ(R̂(y,π))(1− Ĝ(y,π))
〈
~NΨ(y),~ωΣn (y,π)

〉√
F(~ωΣn (y,π))dπ.

Die numerische Integration dieser Gleichung wird durch den Mehrlevel-Ansatz der Gauss-

Quadratur aus Abschnitt 5.4 durchgeführt. Dazu wird das Gebiet ΠΣn analog zur Abbildung

5.3 diskretisiert in ein grobes Gitter ΠH
Σn

und ein feineres Gitter Πh
Σn

mit ΠH
Σn

⊂Πh
Σn

. Das feine

Gitter Πh
Σn

definiert die Zellen, in denen die Gauss-Quadratur durchgeführt wird. Zu Beginn

der Integration wird das Backward-Raytrace R auf das grobe Gitter ΠH
Σn

angewandt und die

Gauss-Integration in allen Zellen des feinen Gitters durchgeführt, die innerhalb des detek-

tierten Gebietes mit {R(π) ∈χ|π ∈ΠH
Σn

} liegen.

Das Ziel dieser Arbeit ist es, aus dieser Modellierung ein Optimierungsverfahren der Frei-

heitsgrade~c des optischen Systems herzuleiten, damit sich die generierte Beleuchtungsstär-

ke B~c ausreichend an die geforderte Beleuchtungsstärke BΨ angleicht. Wir verwenden auf-

grund der analytischen Definition der generierten Beleuchtungsstärke ein gradientenbasier-

tes Verfahren, wie etwa das BFGS-Verfahren mit Hilfe der Techniken des automatischen Dif-

ferenzierens.

Definition der Fehlerfunktion der Optimierung Eine Fehlerfunktion im Sinne der kleins-

ten Quadrate wird definiert durch

ε1(~c) =
∫
Ψ

(
B~c (y)−BΨ(y)

)2 d y. (5.7.1)
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5.7 Optimierung mit ausgedehnter Lichtquelle

Die Fehlerfunktion ε1 belohnt ein lokales Angleichen der generierten Beleuchtungsstärke an

die geforderte Verteilung. Die Abbildung 5.17 zeigt die generierte Beleuchtungsstärkevertei-

lung am Anfang und am Ende einer Optimierung mit dieser Fehlerfunktion. Das lokale Aus-

gleichen führt dazu, dass der Lichtstrom von den Regionen mit hohen Intensitäten nicht in

die anderen Regionen übertragen wird, so dass Lichtstrom verloren geht und die gewünsch-

te Beleuchtungsstärkeverteilung nicht generiert werden kann. Aus diesem Grund wird eine

Abb. 5.17: Die Optimierung eines optischen Systems mit der Einzieloptimierung zur Fehlerfunktion
(5.7.1) bewirkt in diesem Beispiel, dass in den Regionen mit zu hohen Intensitäten diese abge-
baut werden, der Lichtstrom jedoch nicht in die anderen Regionen transportiert wird, so dass
Lichtstrom verloren geht. Links ist die Veränderung der Beleuchtungsstärkeverteilung vom
Anfang zum Ende der Optimierung dargestellt und rechts die Veränderung des Lichtflusses.

weitere Fehlerfunktion

ε2(~c) =
∫
Ψ

B~c (y)d y −
∫
Ψ

BΨ(y)d y

2

(5.7.2)

definiert, die die globale Eigenschaft der Lichtstromerhaltung bewertet. Wir berechnen die

Lichtströme mittels der Simpson-Regel. Die Gesamtfehlerfunktion der Optimierung setzt sich

durch eine Gewichtung

ε(~c) =α1ε2(~c)+α2ε2(~c) (5.7.3)

der beiden Fehlerfunktionen zusammen mit α1,α2 > 0 und α1 +α2 = 1. In Abbildung 5.18

wird das Ergebnis mit Mehrzieloptimierung dargestellt. Der Lichtstrom bleibt erhalten und

die Intensitäten werden gleichmäßiger ausgeglichen, allerdings wird die Optimierung ver-

langsamt und mehr Iterationen sind notwendig. Die Notwendigkeit dieser Mehrzieloptimie-

rung ist von Anwendungsfall zu Anwendungsfall unterschiedlich.

Berechnung des Gradienten Für die Berechnung des Gradienten ∇ε(~c) eignet sich aus zwei

Gründen das automatische Differenzieren. Zum einen ist ein analytisches Differenzieren der
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5 Lösungskonzept und numerische Umsetzung

Formeln aufgrund der hohen Komplexität praktisch nicht möglich, das automatische Diffe-

renzieren liefert jedoch den analytischen Gradienten. Zum anderen hängt die Berechnungs-

zeit des Gradienten durch Differenzenquotienten linear von der Anzahl an Freiheitsgraden

ab. Die Berechnung des Gradienten mit Hilfe des automatischen Differenzierens im Rück-

wärtmodus ist jedoch hiervon unabhängig. Dieses Verhalten wird in der Grafik 5.19 mit Hilfe

des automatischen Differenzierers ADIMAT in Matlab für die Fehlerfunktion ε untersucht.

Bei optimaler Einstellung dauert die Berechnung des Gradienten im Rückwärtsmodus ca.

zwölfmal so lange, wie die Auswertung der Funktion selber. Damit wird eine ’beliebig’ feine

Beschreibung der Fläche durch B-Splines ermöglicht.

Iterative Verfeinerung der Spline-Koeffizienten Analog zu der Optimierung optischer Sys-

teme zur Generierung eines rotationsfreien mappings in Abschnitt 5.6.1 verfeinern wir die

Fläche während des Optimierungsprozesses iterativ. Auf diese Weise sucht der Optimierer zu-

erst auf wenigen Parametern nach der Lösung und nimmt die grobe Charakteristik der Licht-

verteilung an. Wenn eine Konvergenz festgestellt wird, werden weitere Knotenpunkte einge-

fügt (vgl. Abschnitt 5.2.4). Wir verifizieren das iterative Verfeinern im Optimierungsprozess

anhand des Fehlerverhaltens in demselben Beispiel in Abbildung 5.18 für die Mehrzielopti-

mierung mit und ohne iterativer Verfeinerung. Das Ergebnis wird in der Abbildung 5.20 dar-

gestellt. Man kann die prinzipielle Notwendigkeit dieses Ansatzes für dieses Optimierungs-

problem an diesem Beispiel nicht nachweisen, wobei der Gesamtfehler mit iterativer Spline-

Verfeinerung etwas stärker reduziert wird. Dennoch in es sinnvoll die Spline-Fläche während

der Optimierung verfeinern zu können, da zusätzliche Freiheitsgrade in der Optimierung die

Herausbildung von Strukturen in der Zielbeleuchtungsstärkeverteilung ermöglichen.

Die Verwendung einer gradientenbasierten Optimierung stellt Bedingungen an die Leucht-

dichteverteilung L :χ×S2 →R+, die nun hergeleitet wird.
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5.7 Optimierung mit ausgedehnter Lichtquelle

Abb. 5.18: Die Optimierung eines optischen Systems mit der Mehrzieloptimierung zur Fehlerfunktion
(5.7.3) bewirkt in diesem Beispiel, dass der Lichtstrom aus den Regionen mit zu hohen Inten-
sitäten in die Region mit zu niedrigen Intensitäten transportiert wird und so der Lichtstrom
erhalten bleibt. Links ist die Veränderung der Beleuchtungsstärkeverteilung vom Anfang zum
Ende der Optimierung dargestellt und rechts die Veränderung des Lichtflusses. Im oberen Bild
sieht man, dass der Lichtfluss während der Optimierung annähernd konstant bleibt. In der
unteren Grafik sieht man den oszillierenden Charakter des Lichtflusses. Das weist darauf hin,
dass die Gradienten der beiden Fehlerfunktionen nicht in die gleiche Richtung zeigen.
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Vorwärtsmodus theoretisch
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Abb. 5.19: Laufzeitanalyse der Berechnung des Gradienten in Abhängigkeit von der Anzahl an Frei-
heitsgraden. Es werden Vorwärts- und Rückwärtsmodus in Theorie (gestrichelt) und Praxis
(durchgezogen) miteinander. Die theoretische Laufzeit für die Bestimmung des Gradienten
mittels Differenzenquotienten wird ebenfalls aufgetragen.
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5 Lösungskonzept und numerische Umsetzung
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Abb. 5.20: Das Fehlerverhalten mit und ohne iterativer Spline-Verfeinerung während des Optimierungs-
prozesses wird dargestellt. Die Anzahl an Koeffizienten wird in dem einen Fall von 52 sukzes-
sive auf 92 angehoben (roter Graph). Im anderen Fall werden direkt 92-viele Koeffizienten
optimiert (grüner Graph). Die prinzipielle Notwendigkeit der Spline-Verfeinerung kann an
dieser Stelle nicht nachgewiesen werden, da das Konvergenzverhalten in beiden Ansätzen et-
wa identisch ist.

Bedingungen an die Leuchtdichteverteilung der Lichtquelle aufgrund des gradientenba-

sierte Optimierungsverfahrens Bei ersten Optimierungsversuchen wurde eine rechtecki-

ge 1lambertsche Lichtquellen verwendet, das heißt, dass alle Punkte auf χ mit konstanter

Leuchtdichte leuchten und alle Punkte außerhalb der Fläche nicht leuchten. Das Verfahren

konvergiert in diesen Versuchen nicht. Um dieses Verhalten zu erklären reduzieren wir die

Freiheitsgrade auf zwei Spline-Koeffizienten mit globaler Lösung bei (3.5;3.5). Die Fehler-

funktion zeigt in einer grob aufgelösten Umgebung der Startlösung ein glattes und differen-

zierbares Verhalten. Dies ist in der Abbildung 5.21 in zwei Rastern dargestellt. Der erwartete

Gradient an der Stelle (3.52;3.47) müsste aufgrund des glatten globalen Verhaltens der Feh-

lerfunktion in der ersten Komponente einen positiven und in der zweiten Komponente einen

negativen Eintrag aufweisen, jedoch sind in dem berechente Gradient beide Komponenten

positiv. Dieses Ergebnis wird dadurch bestätigt, dass sowohl das automatische Differenzie-

ren, als auch der Differenzenquotient dasselbe Verhalten aufweisen. Zur Klärung dieser Be-

obachtung betrachten wir in Abbildung 5.22 das Fehlerverhalten für unterschiedlich feine

Diskretisierungen (10−1,10−3,10−5,10−7) der Spline-Koeffizienten um den Wert (3.52;3.47)

herum. Es ist zu sehen, dass die Fehlerfunktion neben einer global stetigen Erscheinung lo-

kale Unstetigkeiten aufweist. Diese Beobachtung erklärt den Effekt, dass der Gradient nicht

die erwartete Charakteristik aufweist, da das lokale Verhalten der Fehlerfunktion nicht dem

globalen entspricht. Diese Beobachtung wird auch dadurch gestützt, dass der Gradient der

1Eine lambertscher Lichtquelle weist eine konstante Leuchtdichte in alle Richtungen auf. Die generierte Licht-
stärkeverteilung ist kosinusförmig.
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Abb. 5.21: Die Fehlerfunktion (5.7.3) in Abhängigkeit von zwei Spline-Koeffizienten in der Nähe der glo-
balen Lösung. Die Auflösung des Gebietes ist in beiden Fällen so grob, dass die Fehlerfunktion
ein glattes Erscheinungsbild hat.
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Abb. 5.22: Die Fehlerfunktion (5.7.3) in Abhängigkeit von zwei Spline-Koeffizienten in der Nähe der
Startlösung für unterschiedlich feine Diskretisierungen der Spline-Koeffizienten. Die Leucht-
dichte der rechteckigen Lichtquelle ist in diesem Beispiel als perfekt lambertsch modelliert mit
unstetigem Abfall der Leuchtdichte am Rand der Lichtquelle. Diese Unstetigkeit kann man in
dem lokalen Verhalten der Fehlerfunktion beobachten, was die gradientenbasierte Optimie-
rung für diesen Fall erschwert.
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5 Lösungskonzept und numerische Umsetzung

h
(
ε(c+h)−ε(c)

h

)
Gradient

10−8 10−6 · (0.7561, 0.5567)
10−7 10−6 · (0.7561, 0.5567)
10−6 10−6 · (0.7561, 0.5567)
10−5 10−6 · (0.0751, 0.3637)
10−4 10−6 · (−1.4024, 3.9258)
10−3 10−6 · (−2.4077, 4.5826)

Tabelle 5.2: Abhängigkeit und Verhalten des FD-Gradienten von der Schrittweite h. Für größeres h weist
der Gradient die erwartete Charakteristik auf, für kleines jedoch nicht. Das lässt darauf
schließen, dass die Fehlerfunktion lokale Unstetigkeiten aufweist.

Fehlerfunktion für eine größere Schrittweite bei Finiten Differenzen die erwartete Charakte-

ristik aufweist, für kleine jedoch nicht (siehe Tabelle 5.2).

Die Unstetigkeit der Lichtquellendefinition erklärt dieses Verhalten der Fehlerfunktion. Das

Integral in der Formel (4.5.3) für die Beleuchtungsstärke wird numerisch auf einem Gitter

in dem Parameterbereich ΠΣn bestimmt. Einige der diskreten Lichttrahlen haben Auftreff-

punkte auf der Lichtquelle χ. Eine sehr geringe Änderung der Spline-Koeffizienten ändert die

Auftreffpunkte, kann allerdings zu klein sein, damit eine Änderung in der Anzahl an diskreten

Lichtstrahlen, die die Lichtquelle treffen, eintritt. In diesem Fall würde die Änderung weder

durch einen Differenzenquotienten noch durch den analytischen Gradienten bemerkt wer-

den.

Dieses Problem kann dadurch gelöst werden, die Leuchtdichteverteilung der Lichtquelle ste-

tig, bzw. glatt, zu definieren.

Wir untersuchen zu obigem Beispiel sowohl eine Definition mit linearem Abfall, als auch

einen differenzierbaren Abfall durch ein Polynom dritten Grades (siehe Abbildung 5.23). Die

(a) (b)

Abb. 5.23: Darstellung der Leuchtdichte der lambertschen Lichtquelle mit linearem (a), bzw. glattem (b)
Abfall der Leuchtdichte am Rand der Lichtquelle.
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5.7 Optimierung mit ausgedehnter Lichtquelle

Vorzeichen des Gradienten bei Verwednung dieser beiden Definitionen liefern an der Stelle

(3.52;3.47) die korrekte Charakteristik der Vorzeichen. Eine Darstellung der Fehlerfunktion in

verschiedenen Diskretisierungen (Abbildung 5.24) weisen keine Unstetigkeiten auf. Somit ist

die Stetigkeit der Leuchtdichte der Lichtquelle entscheidend für die gradientenbasierte Op-

timierung.

Darüber hinaus wird der Einfluss der Differenzierbarkeit der Leuchtdichte im Konvergenz-

verhalten der Optimierung in Abbildung 5.25 deutlich. Es wird eine Fläche mit 16 Freiheits-

graden sowohl mit der linearen, als auch der differenzierbaren Definition der Leuchtdich-

te bestimmt. Die Variante mit differenzierbarer Definition ist hierbei wesentlich effizienter

als die stetige Variante, so dass wir die differenzierbare Definition wählen. Darüber hinaus

sieht man in dieser Abbildung den Unterschied zwischen dem Gradientenverfahren und dem

BFGS-Verfahren von IPOPT.
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Abb. 5.24: Die Fehlerfunktion (5.7.3) in Abhängigkeit von zwei Spline-Koeffizienten in der Nähe der
Startlösung für unterschiedlich feine Diskretisierungen der Spline-Koeffizienten mit Verwen-
dung einer stetigen Leuchtdichteverteilung wie in Abbildung 5.23. Es sind keine Unstetigkei-
ten zu beobachten.
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Abb. 5.25: Analyse des logarithmischen Konvergenzverhaltens der Optimierung mit ausgedehnter Licht-
quelle und einer Freiformfläche mit 16 Freiheitsgraden für verschiedene Definitionen der
Lichtquelle. In der Grafik (a) ist die Optimierung mit stetiger Leuchtdichte (linearer Rand-
abfall) dargestellt und in Abbildung (b) mit differenzierbarer Leuchtdichte. Desweiteren wird
das Gradientenverfahren (blau) mit dem BFGS-Verfahren von IPOPT (rot) verglichen. Das
BFGS-Verfahren weist bessere Konvergenzeigenschaften auf bei Verwendung einer differen-
zierbaren Definition der Leuchtdichte auf.
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6 Rechenbeispiele

In diesem Abschnitt werden verschiedene Anwendungsbeispiele mit den Algorithmen, die in

dieser Arbeit eingeführt und hergeleitet wurden, gelöst. Darüber hinaus wenden wir die Mo-

dellierung für Punktlichtquellen aus den Abschnitten 5.5 und 5.6 auf das Problem der Laser-

Umformung an.

6.1 Wall-Washer

Das Wall-Washer-Problem bezeichnet die Fragestellung nach einer Optik, die eine Wand ho-

mogen beleuchtet. Wir betrachten das optische System mit einer 1 × 1 mm2 großen lam-

bertschen Lichtquelle und einem zu beleuchtenden Rechteck auf einer Wand in 50 cm Ent-

fernung. Die Ausdehnung des zu beleuchtenden Rechtecks ist 10× 10 cm2. Das berechne-

te mapping durch die diskrete Lösung des Monge-Kantorovich-Algorithmus wird in Abbid-

lung 6.1 dargestellt. Die nach Abschnitt 5.6.1 optimierte Fläche, die dieses mapping generiert

wird in Abbildung 6.2 dargestellt und analysiert. Es ist zu erkennen, dass die Fläche (Abb.

6.2a) die gewünschte Lichtverteilung für eine Punktlichtquelle generiert (Abb. 6.2b), diese je-

doch mit der ausgedehnten Lichtquelle stark verzerrt wird (Abb. 6.2c). Das Ergebnis der Op-

timierung der optischen Fläche mit der ausgedehnten Lichtquelle nach Abschnitt 5.7 wird

in Abbildung 6.3 dargestellt und analysiert. Die generierte Lichtverteilung der Fläche (Abb.

6.3a) mit ausgedehnter Lichtquelle in Abbildung 6.3c entspricht der geforderten Lichtvertei-

lung wesentlich besser als die Lichtverteilung der Startfläche in Abbildung 6.2c. Die Simu-

lation mit einer Punktlichtquelle in Abbildung 6.3b weist einige Kaustiken, d.h. Linien mit

unendlich hoher Beleuchtungsstärke, auf. Diese Analyse zeigt, dass das Optimierungsergeb-

nis nicht mit Punktlichtquellen-Approximation berechnet werden kann, da man diesem Fall

nicht an Verteilungen mit Singularitäten interessiert ist. In der Abbildung 6.4a wird die Feh-

lerentwicklung der Mehrzieloptimierung mit iterativer Verfeinerung der Spline-Koeffizienten

dargestellt. Das Konvergenzverhalten entspricht dem erwarteten Verhalten des Gradienten-

verfahrens und weist auf eine erfolgreiche Optimierung hin. Diese Optimierung wurde so-

wohl mit Finiten Differenzen, als auch Automatischem Differenzieren durchgeführt, wobei

die Fehlerentwicklung in beiden Fällen identisch war, die benötigte Zeit bei Verwendung von
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6 Rechenbeispiele

Abb. 6.1: Das resultierende mapping F̂+ aus der primalen Monge-Kantorovich-Lösung für das Wall-
Washer-Problem. Die grünen Strahlen müssen durch das optische System auf Lichtstrahlen in
Richtung der blauen Strahlen abgelenkt werden. Die beiden Raster sind die diskreten Energie-
dichten der Lichtquelle und der zu beleuchtenden Fläche.

Finiten Differenzen jedoch entsprechende höher. Die Abbildung 6.4b vergleicht die relative

Dauer der Auswertung des Gradienten zur Auswertung der Funktion für Automatisches und

Finites Differenzieren. Es ist zu erkennen, dass das automatische Differenzieren ca. die 13fa-

che Zeit der Fehlerfunktionsauswertung unabhängig von der Anzahl an Spline-Koeffizienten

benötigt. Für die gewählte Auflösung von 10× 10, bzw. 12× 12 Spline-Koeffizienten ist die

benötigte Zeit für zentrierte Finite Differenzen entsprechend höher.
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Abb. 6.2: Darstellung und Analyse der berechneten Startfläche für die Optimierung. (a) Diese Optik ist
das Ergebnis der Optimierung aus Abschnitt 5.6.1 zur Generierung des berechneten optimalen
mappings aus Abbildung 6.1. (b) Die generierte Lichtverteilung durch eine Punktlichtquelle.
(c) Die generierte Lichtverteilung mit der ausgedehnten Lichtquelle.
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Abb. 6.3: Darstellung und Analyse der optimierten Freiformfläche mit ausgedehnter Lichtquelle. (a) Die-
se Optik ist das Ergebnis der Optimierung aus Abschnitt 5.7 zur Generierung einer homogenen
Lichtverteilung mit ausgedehnter Lichtquelle. (b) Die generierte Lichtverteilung mit Punkt-
lichtquelle. (c) Die generierte Lichtverteilung mit der ausgedehnten Lichtquelle.
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Abb. 6.4: Analyse der Fehlerentwicklung und Gradientenberechnung während der Optimierung mit
ausgedehnter Lichtquelle nach Abschnitt 5.7. (a) Die Fehlerentwicklung während der Opti-
mierung mit ausgedehnter Lichtquelle nach Abschnitt 5.7. Der grüne Kreis markiert den Ite-
rationsschritt, an dem die Spline-Koeffizienten verfeinert werden. Der Verlauf des Graphen ist
in diesem Fall unabhängig davon, ob automatisches Differenzieren oder Finite Differenzen
verwendet werden. (b) Vergleich der Dauer der Gradientenberechnung relativ zur Dauer der
Auswertung der Funktionswerte auf den ersten 25 Iterationsschritten. Es ist zu erkennen, dass
die Gradientenberechnung mit automatischem Differenzieren ca. die 13fache Zeit der Fehler-
funktionsauswertung benötigt. Für die gewählte Auflösung von 10× 10, bzw. 12× 12 Spline-
Koeffizienten ist die benötigte Zeit für zentrierte Finite Differenzen entsprechend höher.
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6.2 Umformung eines Laserstrahls

6.2 Umformung eines Laserstrahls

In diesem Beispiel soll gezeigt werden, dass die Ansätze für Punktlichtquellen aus Abschnitt

5.5 und 5.6 auf die Problemstellung der Umformung von Lasern angepasst werden können.

Die beiden Lichtquellen verbindet, dass die Menge an Strahlen in beiden Fällen eine zweidi-

mensionale Menge ist und somit in den Monge-Kantorovich-Formalismus übertragen wer-

den können. Der Unterschied besteht in der Art der Abstrahlung der Lichtstrahlen von der

Lichtquelle aus. Zuerst übertragen wir die Problemstellung mit Lasern in den Formalismus

von Monge-Kantorovich als lineares Programm und definieren anchließend die Freiformflä-

che durch die Strahlengänge des Lasers.

Formulierung des linearen Programms Wir bezeichnen mit χ⊂ R3 die Austrittsfläche des

Lasers mit Abstrahlung in Richtung~ωχ und Intensität Jχ :χ→R+. Wir betrachten die disjunk-

te Unterteilung {χi ⊂ χ|i = 1, . . . ,m} von χ mit Mittelpunkten χ̂i ∈ χi . Mit χ̂i
Ψ ∈Ψ bezeichnen

wir die Abbildung der Punkte χ̂i ∈ χ in Richtung ~ωχ auf Ψ. Sei {Ψ j ⊂Ψ| j = 1, . . . ,o} eine dis-

junkte Unterteilung der Zielfläche Ψ mit Mittelpunkten ψ j ∈ Ψ j . Die diskreten Maßzahlen

werden berechnet durch

µ+
i :=

Ï
χi

Jχ(x)d x und µ−
j :=

Ï
Ψ j

BΨ(y)d y. (6.2.1)

Mit diesen Bezeichnungen kann das lineare Programm in Analogie zum linearen Programm

5.1 aufgestellt werden und mit den Algorithmen aus Abschnitt 5.5.1 und 5.5.2 gelöst werden.

Mit dem Ergebnis wird das diskrete mapping F : {χ̂i ∈χi |i = 1, . . . ,m} →Ψ berechnet.

Optimierung einer Linse des Typs I Mit einer Linse des Typs I bezeichnen wir eine brechen-

de Optik, deren Innenfläche Σ1 berechnet werden muss, um das gewünschte mapping F zu

erfüllen und deren Außenfläche Σ2 eine Ebene mit Normalenvektor ~NΣ2 ist. Wir beschreiben

auch in diesem Fall die Innenfläche durch eine skalare Funktion ρ : χ→ R mit der Flächen-

definition Σ1(x) := χ(x)+ρ(x)~ωχ. Für alle x ∈ χ zeigt der Normalenvektor ~NΣ1 (x) am Punkt

Σ1(x) der inneren Fläche in die Richtung

∂~NΣ1

∂x1 (x)× ∂~NΣ1

∂x2 (x) =
(
∂χ

∂x1 (x)+ ∂ρ

∂x1 (x)~ωχ

)
×

(
∂χ

∂x2 (x)+ ∂ρ

∂x2 (x)~ωχ

)
Mit dieser Definition kann das optische System in Analogie zum Abschnitt 5.6.1 optimiert

werden.

Vernachlässigt man die Ausdehnung der Optik, so kann aus dem optimalen mapping F das
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6 Rechenbeispiele

mapping F̂ : {(χ̂i
Ψ,~ωχ)|i = 1, . . . ,o} →ΩΨ mitΩΨ := { y

‖y‖ |y ∈Ψ} berechnet werden durch

F̂ (x) := F (x)

‖F (x)‖ .

Will man nun die innere Fläche bestimmen, so muss das mapping F̂ (x) noch zurückgerech-

net werden auf Richtungsvektoren F̂Σ1 (x) im Linsenmaterial durch die optische Brechung an

der ebenen Außenfläche mit der Definition

F̂Σ1 (x) := r edi rΣ2

(−F̂ (x), ~NΣ2

)
.

Die geforderten Normalenvektoren ~NF̂Σ1
(x) für alle x ∈χ der inneren Fläche zeigen in Anleh-

nung an Gleichung (5.6.1) in die Richtung

−F̂Σ1 (x)− nΣ1

nχ
~ωχ̂

und können auf diese Weise bestimmt werden. Die Innenfläche kann mit den Optimierungs-

algorithmen der Abschnitte 5.6.1 bis 5.6.4 bestimmt werden. In der Abbildung 6.5a wird die

berechnete innere Linsenfläche dargestellt, die einen homogenen Laser mit den Maßen

[−0.6mm;0.6mm]× [−0.16mm;0.16mm] auf ein Rechteck der senkrechten Ebene in 10mm

Entfernung mit den Maßen [−3mm;3mm]× [−15mm;15mm] abbildet. Die Simulation der

Optik in Abbildung 6.5b zeigt sehr gute Resultate und bestätigt den Ansatz.
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Abb. 6.5: Darstellung des Linsentyps I mit Simulationsergebnis. (a) Die berechnete Linse, die einen ho-
mogenen Laser mit den Maßen [−0.6mm;0.6mm]×[−0.16mm;0.16mm] auf ein Rechteck auf
der senkrechten Ebene in 10mm Entfernung mit den Maßen [−3mm;3mm]×[−15mm;15mm]
abbildet. (b) Die Simulation der Optik zeigt, dass die Umverteilung des Laserstrahls erfolgreich
ist und die gewünschte Lichtverteilung erzeugt wird. die grünen Lichtstrahlen markieren einige
Strahlengänge
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6.2 Umformung eines Laserstrahls

Optimierung einer Linse des Typs II Mit einer Lines des Typs II bezeichnen wir die Um-

setzung des Ansatzes aus Abschnitt 5.6.5. Die Ausdehnung der Optik wird vernachlässigt und

die Linse soll das mapping F̂ : {(χ̂i
Ψ,~ωχ)|i = 1, . . . ,o} → ΩΨ aus dem vorherigen Abschnitt

generieren, wobei beide optische Flächen die einzelnen Lichtstrahlen um denselben Winkel

ablenken sollen. Es soll also das mapping F̂Σ1 (x) := F̂ (x)+~ωχ
2 durch die innere Fläche Σ1 und

F̂Σ2 (F̂Σ1 (x)) := F̂ (x) durch die äußere Fläche realisiert werden. Die Optik wird analog zu Ab-

schnitt 5.6.5 definiert (siehe Abbildung 6.6). Die beiden berechneten Flächen zu demselben

Σ1(x) = x+ ρ(x)~ωχ

~ωχ

Σ2(x) = Σ1(x) + λ(x)F̂Σ1
(x)

F̂Σ1
(x)

F̂(x)

Σ1

Σ2

x

Abb. 6.6: Das berechnete optimale mapping für die Laserstrahlen wird generiert, indem das mapping
durch beide optische Flächen zu gleichen Teilen generiert wird.

optischen Problem wie im vorigen Abschnitt und auch die Simulation werden in Abbildung

6.7 dargestellt.
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(b)

Abb. 6.7: Darstellung des Linsentyps II mit Simulationsergebnis. (a) Die berechnete Linse, die einen ho-
mogenen Laser mit den Maßen [−0.6mm;0.6mm]×[−0.16mm;0.16mm] auf ein Rechteck auf
der senkrechten Ebene in 10mm Entfernung mit den Maßen [−3mm;3mm]×[−15mm;15mm]
abbildet. Hierbei wurden sowohl die Eintritts- als auch die Austrittsfläche zueinander berech-
net, so dass beide Flächen jeden Strahlengang um denselben Winkel ablenken. (b) Die Simula-
tion der Optik zeigt, dass die Umverteilung des Laserstrahls erfolgreich ist und die gewünschte
Lichtverteilung erzeugt wird. die grünen Lichtstrahlen markieren einige Strahlengänge
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6 Rechenbeispiele

Berechnung eines Linsenarrays zur Homogenisierung der erzeugten Lichtverteilung bei

Verwendung einer realen Laserdiode In den beiden vorhergehenden Beispielen nehmen

wir für die Lichtquelle einen idealen Laser mit homogenem parallelem Licht an. Reale La-

serdioden hingegen sind nicht homogen und auch nicht perfekt parallel, sondern weisen

beispielsweise eine elliptische Streuung wie in Abbildung 6.8a auf. Das Simulationsergeb-

nis des Ergebnisses aus dem vorherigen Abschnitt (siehe Abbildung 6.5a) mit der Laserdiode

als Lichtquelle wird in Abbildung 6.8c dargestellt. Es ist zu sehen, dass die Inhomogenität

der Laserdiode auf das Zielgebiet abgebildet wird und die gewünschte Lichtverteilung nicht

generiert wird. Das Simulationsergebnis in Abbildung 6.8b gibt den Vergleich zwischen der

parallelen Lichtquelle und der realistischen Laserdiode wieder. Wir stellen fest, dass die Lö-

sung für paralleles Licht nicht anwendbar ist für eine Laserdiode. Eine Möglichkeit, die In-
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Abb. 6.8: Der Linsentyp I aus Abbildung 6.5a wird mit einer realistischen Laserdiode simuliert. (a) Die
Lichtverteilung der Laserdiode. Diese Lichtquelle ist keine perfekte parrallele Lichtquelle, son-
dern weist Divergenz und Inhomogenitäten auf. (b) Dieses Simulationsergebnis vergleicht die
Simulation mit paralleler Lichtquelle und Laserdiode miteinander. Man kann deutlich erken-
nen, das das beleuchtete Gebiet variiert. (c) Das Simulationsergebnis mit der Laserdiode. Die
Inhomogenitäten der Laserdiode werden auf das Zielgebiet abgebildet.

homogenitäten der Laserdiode nicht scharf auf das zu beleuchtende Gebiet abzubilden ist,

mehrere kleine Optiken zu berechnen, die jeweils aus einem Teil des Laserstrahls die gesamte

Lichtverteilung erzeugen. Auf diese Weise überlagern sich die einzelnen Teile der Lichtvertei-
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6.2 Umformung eines Laserstrahls

lung der Laserdiode und Inhomogenitäten gleichen sich aus. Ein Linsen-Array, das auf diese

Weise berechnet wird, wird in Abbildung 6.9a dargestellt. Die einzelnen Teiloptiken sind für

paralles Licht gerechnet, das aus einem Teil des Laserstrahls die gewünschte Lichtverteilung

erzeugen. Die erzeugte Lichtverteilung (siehe Abbildung 6.9b) ist näher an der gewünschten

Verteilung als die Simulation mit einer einzelnen Optik (vgl. Abbildung 6.8c). Aufgrund der

Streuung der Laserdiode erhalten die einzelnen Linsen im Array allerdings Licht von dem La-

ser mit unterschiedlichen Auftreffwinkeln. Dies hat zur Folge, dass die generierten Lichtver-

teilungen der einzelnen Linsen auf der Zielfläche verschoben und verzerrt werden, was bei

der Überlagerung der erzeugten Lichtverteilungen zu einer stufenweisen Gesamtlichtvertei-

lung führt. Diese Charakteristik ist in dem vertikalen Schnitt durch die Lichtverteilung in Ab-

bildung 6.9c deutlicher sichtbar. Um dieses Problem der Verschiebung der einzelnen Licht-

verteilungen zu umgehen, kann man die Richtung des parallelen Lichts für die einzelnen

Linsen im Array durch eine gemittelten Richtungsvektor des Lichts, das von der Laserdiode

auf die einzelne Linse abgegeben wird, anpassen. Das Ergebnis wird in Abbildung 6.10 dar-

gestellt und kann direkt verglichen werden mit dem unkorrigierten Multilinsen-Array-Ansatz

aus Abbildung 6.9. Die erzeugte Lichtverteilung ist homogen und weist keine Stufenstruktur

auf. Mit Hilfe dieses Ansatzes kann die gewünschte Lichtverteilung erzeugt werden. Das Op-

timierungsverhalten der eingefärbten Linsen in Abbildung 6.10 wird in Abbildung 6.11 ana-

lysiert. Es ist zu sehen, dass die Optimierung für die Flächen am Rand schlechter konvergiert

als im Zentralbereich. Dies kann verschiedene Ursachen haben, z.B. erlaubt die Parametri-

sierung nicht, die gesuchten Normalenvektorfelder zu beschreiben oder aber das geforderte

Normalenvektorfeld weist eine zu große Rotation auf. Daneben sind jedoch die Verläufe im

Anfang der Optimierung sehr ähnlich.
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Abb. 6.9: Zur Homogenisierung des Simulationsergebnisses aus Abbildung 6.8c mit einer Laserdiode
wird ein Multilinsen-Array-Ansatz verwendet. Jede Linse erzeugt die gesamte Lichtverteilung,
so dass die einzelnen Bilder der Laserdiode überlagert werden und das Ergebnis auf diese Wei-
se homogenisiert wird. (a) Das Multilinsen-Array. Jede Linse wird hierbei für paralleles Licht
aus derselben Richtung gerechnet. (b) Das Simulationsergebnis zeigt eine Homogenisierung.
Jedoch verschieben sich durch die Streuung der Laserdiode die einzelnen Lichtverteilungen, so
dass die generierte Lichtverteilung eine Stufenstruktur aufweist. (c) Die erzeugte Stufenstruk-
tur wird in diesem vertikalen Schnitt durch die Beleuchtungsstärkeverteilung verdeutlicht.
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(c)

Abb. 6.10: Um die Stufen in der Lichtverteilung mit Multilinsen-Array in Abbildung 6.9 zu entfernen,
werden die einzelnen Linsen für paralleles Licht aus unterschiedlichen Richtungen gerechnet.
Auf diese Weise kann die Streuung der Laserdiode berücksichtigt werden. (a) Das Multilinsen-
Array. Jede Linse wird hierbei für paralleles Licht aus unterschiedlichen Richtungen gerechnet.
Einige Linsen sind gesondert eingefärbt, weil die Optimierung dieser Flächen in Abbildung
6.11 analysiert wird. (b) Das Simulationsergebnis zeigt die gewünschte Homogenisierung und
die Stufenstruktur ist nicht mehr erkennbar. (c) Der vertikale Schnitt durch die Beleuchtungs-
stärkeverteilung bestätigt diesen Ansatz, da die Stufenstruktur nicht mehr vorhanden ist.
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6 Rechenbeispiele
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Abb. 6.11: Es werden die Fehlerentwicklungen während der Optimierung von den drei in Abbildung 6.10
eingefärbten Linsen dargestellt. Der rote Graph bezieht sich auf die Linse am Rand und der
grüne auf die Linse im Zentralbereich des Arrays. Es ist zu sehen, dass die Optimierung für die
Flächen am Rand schlechter konvergiert als im Zentralbereich. Dies kann verschiedene Ur-
sachen haben, z.B. erlaubt die Parametrisierung nicht, die gesuchten Normalenvektorfelder
zu beschreiben oder aber das geforderte Normalenvektorfeld weist eine zu große Rotation auf.
Daneben sind jedoch die Verläufe im Anfang der Optimierung sehr ähnlich.
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7 Zusammenfassung

Wir konnten in dieser Arbeit eine exakte Modellierung des Beleuchtungsproblems für opti-

sche Systeme mit ausgedehnter Lichtquelle herleiten. Die analytische Berechnung der Be-

leuchtungsstärke wurde im Rahmen der Optimierung von optischen Systemen als Teil der

Bewertungsfunktion erfolgreich eingesetzt. Aufgrund der Notwendigkeit, die optischen Flä-

chen durch viele Freiheitsgrade zu beschreiben, kommen für die Optimierung nur lokal kon-

vergente gradientenbasierte Optimierungsverfahren in Frage. Der Rückwärtsmodus des Au-

tomatischen Differenzierens konnte für die Gradientenberechnung sehr erfolgreich einge-

setzt werden.

Aufgrund der lokalen Konvergenz der betrachteten Klasse von Optimierungsverfahren eröff-

nete die Approximation der Lichtquelle als Punkt viele Möglichkeiten, um gute Startlösungen

für die Optimierung zu berechnen.

Wir haben den Weg verfolgt, unabhängig von dem konkreten Aufbau des optischen Systems

zunächst ein optimales, d.h. rotationsfreies, mapping durch den Formalismus von Monge-

Kantorovich zu bestimmen. Mit Hilfe der Algorithmen von Jan Van lent konnte das sich er-

gebende lineare Programm auch in hoher Auflösung schnell gelöst werden. Die Berechnung

einer Startfläche, die das optimale mapping generiert wurde umgesetzt und die bestimmten

Flächen haben die geforderten Resultate für eine Punktlichtquelle generiert.

Anhand konkreter Anwendungsbeispiele wurde die Effektivität und Vielseitigkeit des Gesamt-

algorithmus unter Beweis gestellt.
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7 Zusammenfassung
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