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Dissertation Abstract

English title of the dissertation:
Optimization of Sequential Optical Systems with Extended Light Sources

The task of illumination is very important in everyday life. One example is roadway ligh-
ting, where special optics are used for many applications.
The computation of optical surfaces that redistribute the light of a source onto a target sur-
face with a desired distribution is the core question of this thesis.
We establish a solution concept for the determination of an optical system, consisting of an
extended light source, optical surfaces and a target surface.
The extended light source is modelled consequently, taking into account that the extended
light source is defined through a luminance distribution. The result is an integral expression
for the illuminance on the target surface.
Using this formulation, the optical surfaces can be optimized to generate the desired light dis-
tribution. Because only locally convergent optimization routines are considered for this task,
it is important that a good starting solution for the optimization process is used. Therefore,
the approximation of the light source as a point implicates many computation approaches.
Among others a mapping of the light rays from the point light source to points on the target
surface which transforms the light distribution of the point light source into the desired light
distribution can be determined. If it can be concluded that an optical surface regarding the
mapping exists, we call it an optimal mapping that is computed in this thesis using the for-
malism of Monge-Kantorovich.

In summary, the solution concept consists of three steps:
1. Computation of the optimal mapping
2. Calculation of an optical system, fulfilling the optimal mapping

3. Optimization of the optical system regarding the extension of the light source
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Zusammenfassung der Doktorarbeit

Titel der Doktorarbeit:
Optimierung sequentieller optischer Systeme mit ausgedehnter Lichtquelle

Die Beleuchtung spielt in unserem Alltag eine grof3e Rolle. Wie beispielsweise in der Fahr-
bahnbeleuchtung wird diese Aufgabe in vielen Anwendungen durch spezielle Optiken gelost.
Die Berechnung von Optiken, die die Lichtverteilung der Lichtquelle in eine gewiinschte Ver-
teilung auf einer Zielfliche transformieren, ist das Thema dieser Arbeit.

Es wird ein Losungskonzept fiir die Bestimmung eines optischen Systems, das aus einer aus-
gedehnten Lichtquelle, den optischen Flachen und der Zielflache besteht, hergeleitet.

Die ausgedehnte Lichtquelle, deren Leuchtverhalten iiber eine Leuchtdichteverteilung be-
schrieben wird, wird konsequent modelliert. Das Ergebnis ist ein Integralausdruck fiir die
generierte Lichtverteilung auf der Zielfldche.

Auf dieser Formulierung aufbauend wird eine Optimierung der Flachen formuliert, um die
gewiinschte Lichtverteilung zu erzeugen.

Da nur lokal konvergente Optimierungsmethoden in Frage kommen muss eine gute Startlo-
sung fiir die Optimierung bestimmt werden. Hierfiir liefert die Approximation der Lichtquelle
als Punkt viele Berechnungsansitze. Unter anderem kann eine Zuordnung von Lichtstrahlen
der Punktlichtquelle auf Punkte der Zielfliche bestimmt werden, so dass die Lichtverteilung
der Punktlichtquelle in die gewiinschte Lichtverteilung auf der Zielfliche transformiert wird.
Eine solche Zuordnung wird mapping genannt. Falls auf die Existenz von optischen Flichen
zu einem mapping geschlossen werden kann sprechen wir von einem optimalen mapping,
das in dieser Arbeit mit Hilfe des Formalismus von Monge-Kantorovich bestimmt wird.

Zusammenfassend besteht der Losungsansatz aus drei Schritten:
1. Berechnung eines optimalen mappings
2. Bestimmung des optischen Systems zu dem optimalen mapping

3. Optimierung des optischen Systems fiir die Ausdehnung der Lichtquelle
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1 Einleitung

Welches ist der Weg, auf dem das Licht sich verteilt, der Ostwind sich verbreitet
liber die Erde? (Hiob 38,24)

Schon immer war das Licht Sinnbild des Menschen fiir Leben und Wohlbefinden, so dass
der Wunsch nach gezielter Beleuchtung der Dunkelheit sehr alt ist. So soll bereits Archime-
des im zweiten Jahrhundert vor Christus mit den fokussierenden Eigenschaften des Parabo-
loiden experimentiert haben und auf diese Weise angreifende Schiffe in Brand gesteckt ha-
ben. Neben diesem Bestreben, Licht méglichst stark zu konzentrieren, zielt die Grundfrage
der Beleuchtung darauf ab, das Licht der Quelle durch die Optik so umzuverteilen, dass eine
gewlinschte Lichtverteilung erzeugt wird. So besteht beispielsweise die Aufgabe der Innen-
raumbeleuchtung darin, ein Zimmer angenehm auszuleuchten.

Besonders in dem automobilen Sektor nimmt die Beleuchtung einen sehr groBen und we-
sentlichen Teil ein, denn sowohl der Innenraum wie auch die Landschaft miissen beleuchtet
werden und durch Signalfunktionen sollen andere Verkehrteilnehmer auf das Fahrzeug auf-
merksam gemacht werden. Fiir alle Lichtfunktionen gibt es daher gesetzliche Anforderungen
an die erzeugten Lichtverteilungen, die den Einsatz von speziellen Optiken notwendig ma-
chen.

Wir beschranken uns in dieser Arbeit auf die geometrische Optik, d.h. wir modellieren Licht
durch Strahlen und vernachlédssigen die Wellencharakteristik des Lichts. Diese Modellierung
ist zutreffend, wenn die Strukturen der Optik gro8 sind im Vergleich zur Wellenldnge des
Lichts, was in den automobilen Anwendungen der Fall ist.

Modelliert man zusétzlich die Lichtquelle als Punkt, so gibt es verschiedene Ansétze, wie das
Licht durch Optiken konzentriert und verteilt werden kann. Jedoch ist die Problemstellung
fiir ausgedehnte Lichtquelle komplexer und nicht geschlossen 16sbar.

Zur Veranschaulichung der Thematik wird in Abbildung 1.1 eine Optik dargestellt, die mit ei-
ner LED ein Rechteck homogen beleuchtet. Die Form der Optik l4sst erkennen, dass spezielle

Probleme konkret angepasste Optiken notwendig machen.

Die Zielsetzung dieser Arbeit ist es, mathematische Ansédtze zur Berechnung, bzw. Opti-

mierung von Optiken herzuleiten, mit denen eine vorgegebene Lichtverteilung erzeugt wird.



1 Einleitung

Abb. 1.1: Diese Primdroptik (rechts) erzeugt eine homogene Lichtverteilung auf einem Reflektor, damit
dieser ein gleichmdifSiges Erscheinungsbild aufweist. Die Form ldsst erkennen, dass jedes Be-
leuchtungsproblem eine eigene Losung benétigt. Links ist zum Grofsenvergleich eine eine 1
Cent Miinze abgebildet.

Wir wollen dieses Problem lésen, indem wir im ersten Schritt die Lichtquelle punktformig
modellieren. Die berechnete Losung zu diesem Ansatz soll im zweiten Schritt fiir eine ausge-
dehnte Lichtquelle optimiert werden.

Zur Herleitung des Losungsansatzes mit einer Punktlichtquelle stellen wir zuerst verschiede-
ne Ansitze der Literatur vor und leiten anschliessend einen eigenen Ansatz aufbauend auf
den eingefiihrten Techniken her.

Die Effekte der Ausdehnung der Lichtquelle sollen durch Optimierung der Lésung fiir eine
Punktlichtquelle reduziert werden. Fiir eine effektive Optimierung eignen sich herkémmli-
che Simulationsergebnisse nicht, da sie durch zufillige Ergebnisse ein Rauschverhalten ha-
ben, was beispielsweise die Gradientenbildung einer Fehlerfunktion erschwert. Deshalb ist
es notwendig, eine analytische Formel fiir die erzeugte Lichtverteilung herzuleiten.

Die Ergebnisse der einzelnen Teilschritte des Gesamtkonzeptes sind tiberzeugend. Der Ap-
proximation der Lichtquelle als Punkt ist zwar im Allgmeinen ungiiltig, liefert aber in vielen
Problemstellungen sehr gute Resultate, so dass eine Umformulierung der Modellierung fiir
die Umverteilung der Lichtverteilung von Lasern ebenfalls moglich ist. Die Modellierung mit
ausgedehnter Lichtquelle zeigt gute Resultate fiir Priméroptiken, d.h. kleine Optiken, die das
Licht einer Quelle fiir das optische System vorrichten, oder eine homogene Verteilung erzeu-
gen sollen.

Aufgrund des hohen Interesses an optischer Flichenberechnung in der automobilen Indus-

trie wird diese Promotion im Unternehmen Hella KGaA Hueck & Co. durchgefiihrt.

Aufbau der Arbeit Zunichst wird in der Einleitung das Thema eingefiihrt und motiviert.
Anschliellend folgt ein Grundlagenkapitel, in dem die optischen, lichttechnischen und ma-
thematischen Grundlagen eingefiihrt werden und eine einheitliche Notation definiert wird.

Im dritten Kapitel werden verschiedene Modellierungen des Beleuchtungsproblems unter



Punktlichtquellen-Approximation eingefiihrt. Darauf aufbauend wird ein neuer Ansatz erar-
beitet, der die Bestimmung eines optimalen mappings mit der Berechnung einer zugehorigen
optischen Fldache kombiniert. Wir verstehen unter einem optimalen mapping eine Zuord-
nung von Lichtstrahlen von der Punktlichtquelle auf Punkte des zu beleuchtenden Gebietes,
zu dem eine optische Fldche existiert.

Da es fiir eine effiziente und korrekte Optimierung der Optik wichtig ist, die erzeugte Licht-
verteilung mit ausgedehnter Lichtquelle direkt zu modellieren, leiten wir in dem vierten Ka-
pitel die entsprechenden Formeln her.

Zur Zusammenfassung der dargestellten Ansitze und Losungswege wird im fiinften Kapitel
ein Gesamtkonzept zur Losung des Beleuchtungsproblems erarbeitet. Dariiber hinaus wird
die numerische Umsetzung der einzelnen Teilschritte erldutert. Dabei kommen Lineare Pro-
grammierung, Freiformflachen, automatisches Differenzieren und Gradientenverfahren zur
Anwendung.

Um die Effizienz und Anwendbarkeit der Modellierung zu zeigen, werden die Verfahren im
sechsten Kapitel auf einzelne konkrete Problemstellungen angewandt. Daneben wird die Mo-
dellierung mit Approximation der Lichtquelle als Punkt fiir die Umverteilung von Laserlicht
adaptiert.

Abschliefend wird im Kapitel Sieben der hergeleitete Losungsweg zusammengefasst und be-

urteilt.
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2 Grundlagen

Um die verschiedenen Modellierungs- und Lésungsansétze einheitlich einzufiihren und zu
diskutieren, werden in diesem Kapitel die notwendigen Definitionen getroffen und physikli-
sche Grollen eingefiihrt. Dazu wird zuerst das behandelte optische System mit den verschie-
denen Elemente beschrieben. Auf dieser Grundlage wird das Abbildungsverhalten analysiert

und schliesslich die verwendeten lichttechnischen Grof3en eingefiihrt.

2.1 Die Klasse der zu optimierenden optischen Systeme

In dieser Arbeit behandeln wir sequentielle optische Systeme. Diese bestehen aus einer Licht-
quelle y, in einer Reihenfolge geordneten optischen Grenzflachen Z; und einer Zielflache V¥
(vgl. Abbildung 2.1). Diese Elemente sind abgeschlossene Teilmengen des R>.

Die Lichtquelle y kann sich in dieser Arbeit sowohl auf eine Punktlichtquelle (Abbildung
2.1a), als auch auf eine ausgedehnte Lichtquelle (Abbildung 2.1b) beziehen. In den einzelnen
Kapiteln der Arbeit wird die jeweils verwendete Modellierung der Lichtquelle eingeschrankt.
Die Flichen X; sind zwei-dimensionale differenzierbare Untermannigfaltigkeiten des R3, d.h.
sie sind reguldr. Die Oberflache der optischen Fldchen sind idealisiert reflektierend oder bre-
chend, d.h. sie weisen keine statistische Rauhigkeit auf und kénnen parametrisiert werden

durch die Funktionen
os,: Iy, — Z;mitlly, c R? abgeschlossen und (ﬂ;i,ﬂéi) =7y, €Il5,.
Das Normalenvektorfeld der Flache Z; wird durch die Parametrisierung definiert durch

Nziinzi - 82,

2

. 0
Ny, (my,) = ——— mitN5 = ——05, (75,
M T | g R G

oy, (7s,). (2.1.1)

Die Orientierung des Normalenvektorfeldes hat keinen Einfluss auf spétere analytische Un-
tersuchungen, so dass die reguldren Fladchen nicht gleich orientiert sein miissen.

Die Zielflache V¥ ist eine zwei-dimensionale, nicht zwingend differenzierbare Untermannig-
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faltigkeit des R3. Dasselbe gilt fiir y, falls eine ausgedehnte Lichtquelle vorliegt. Die Eigen-
schaft der Differenzierbarkeit wird in den jeweiligen Kapitel zusdtzlich gefordert. Die Funk-
tionen gy : Iy — y und oy : [Iy — ¥ sind die Parametrisierungen dieser Fldchen, falls sie
bendétigt werden.

In der schematischen Abbildung 2.1b werden nur brechende Fldchen dargestellt. Es ist genau
so moglich, dass reflektierende Flachen Teil des sequentiellen optischen Systeme sind (vgl. Ab-
bildung 2.1a). Die Bezeichnung sequentiell wird im ndchsten Abschnitt 2.2 behandelt, da es

in einem direkten Zusammenhang zu dem Abbildungsverhalten steht.

(@) )

Abb. 2.1: Schematische Darstellung sequentieller optischer Systeme. (b) Dieses System beinhaltet nur
brechende optische Flichen (a) Dieses System hat als erste optische Fldche einen Reflektor:

2.2 Das Abildungsverhalten

Wir modellieren die Ausbreitung von Licht im Raum entsprechend den Prinzipien der geo-
metrischen Optik als Lichtstrahlen. Ein Lichtstrahl A € R3 x S? besteht aus einem Tupel von
einem Punkt im R® und einem Richtungsvektor. Die Menge aller Lichtstrahlen bezeichnen
wir mit

A:=R>x S

Fiir eine beliebige Flache X definieren wir mit
Ay :=2Zx s?

die Menge aller Lichtstrahlen, die von der Flache X ausgehen.

Um den Weg eines Lichtstrahls durch das optische System zu beschreiben bendétigt man die



2.2 Das Abildungsverhalten

Berechnung von Schnittpunkten von Lichtstrahlen mit den optischen Flachen. Diese Schnitt-

punktberechnung definieren wir allgemein mit der Funktion
0z, :A—2Z;. 2.2.1)

Je nachdem, ob es in dem jeweiligen Kapitel benotigt wird, bezeichnen wir mit 6, und 6y

die Schnittpunktberechnungen mit der Lichtquelle und der Zielfliche. Die Menge
Ay’ = {1 € Ay, |5, () ist definiert} (2.2.2)

beinhaltet alle Strahlen, die von einer Fldche Z; aus die Fldche X ; schneiden.

Jede Fldche X; hat optische Eigenschaften, die die Umlenkung der Lichtstrahlen an der Fla-
che definieren. Aufgrund der Stetigkeit der Normalenvektorfelder kann die Ablenkung der
Lichtstrahlen analytisch berechnet werden. Diese Ablenkung ist sowohl bei der Brechung, als
auch bei Reflektion abhédngig von dem Winkel des einfallenden Lichtstrahles zur Flachennor-
malen im Schnittpunkt und unter Umstinden von weiteren flaichenspezifischen GrofZen. Wir
beschreiben die Richtungsablenkung eines Lichtstrahls an der Fldche X; allgemein mit der

Funktion
. Q2. Q2 2 . T
redirg,: S x 8 — 8%, redirs,(@in, Ns,) = Qour.

Hierbei ist @;; die Richtung des einfallenden Lichtstrahls, N die Flichennormale und @y,
der Richtungsvektor des umgelenkten Lichtstrahls. Die konkrete Definition der Funktion
héngt davon ab, ob die Grenzfldche reflektierend oder brechend ist und wird in den Abschnit-
ten 2.2.1 und 2.2.1 aufgestellt. Die Umlenkung eines Lichtstrahls A;,, := (p,®i5) an der opti-

schen Grenzfldche X; kann zusammenfassend beschrieben werden als Funktion

Redirs, : A—A
Redirs,(\in) = (6;. (Ain), redirs, (J),-n,Nzi (ag} (63, (A,-n))))). 2.2.3)

Das sequentielle’ Raytrace berechnet zwei Arten von Strahlengingen durch das optische Sys-
tem. Es werden also nur Strahlengidnge betrachtet, die alle optischen Grenzflichen in der
gleichen Reihenfolge durchlaufen.

1. Forward-Raytrace?: Ein Lichtstrahl Ay wird von der Lichtquelle ausgehend sequentiell

IDie Bezeichnung des Raytraces als sequentiell meint, dass die optischen Flichen entsprechend der Reihenfolge
vorwdrts oder riickwérts durchlaufen werden
2siehe Abbildung 2.2a



2 Grundlagen

durch die optischen Fldchen in aufsteigender Reihenfolge bis zum Schnittpunkt mit
der Zielflache ¥ verfolgt. Diese Abbildung

F N -

kann mittels Verkettung beschrieben werden durch

F(Ay) = Redirs,(Ay) — Redirs,(A1) —---— Redirs,(Ap-1) = 0w (1y)
" _ J \ ~~ - S—_—
=\ =:A =1y
= Gy (Redirs, (Redirs, | (---(Redirz,(Ay))---))). (2.2.4)

2. Backward-Raytrace®: Ein Lichtstrahl Ay wird von der Zielfliche aus sequentiell durch
die nummerierten optischen Flichen bis zum Schnittpunkt mit der Lichtquelle ver-
folgt. Diese Abbildung

Z: Ny — )

kann nur dann sinnvoll verwendet werden, wenn y eine ausgedehnte Lichtquelle ist.

Das Backward-Raytrace kann ebenfalls durch Verkettung beschrieben werden durch

%Ay) = Redirs,(Ay) — Redirs, (An-1) = -+ — Redirs,(A2) — Gy (A1)
A ~~ -/ N ~ _ \
=:An =:An-1 =M
= Gy (Redirs, (Redirs, (- (Redirs,(Aw))---))). (2.2.5)

Die Abbildungen & und £ kénnen analytisch berechnet werden, falls die Schnittpunktbe-
rechnungen Js,, 6, und 6y durch analytische Formeln gegeben sind.

Es ist hdufig von Interesse Strahlengénge zu betrachten, deren Anfangsstrahl durch einen
Punkt auf der ersten optischen Fldche Z; (bzw. Z£,) und einen Ausgangspunkt x € y (bwz.
v € V) definiert wird. In diesen Féllen muss der erste Schnittpunkt nicht berechnet werden.
Wir fiihren fiir i € {1, n} die Funktion

As,

i

R3 x [y, — R x §*
o3, (ms,)—p

_ (2.2.6)
||os, (rs) - p||

As,(ps) = (pds,(p,7s)) mitds, (p,7s,) =

ein.
Zur Vereinfachung der Notation verwenden wir fiir diesen Fall dieselben Bezeichnungen fiir

die Raytrace-Funktionen. Fiir den Forward-Raytrace gilt in diesem Fall fiir x € y und 5, € Iy,

3siehe Abbildung 2.2b
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die Definition
F(x,mz,) =0y (Redirs, (Redirs, | (---(Redirs,(Az, (x,75,)))--))). (2.2.7)
Der Backward-Raytrace &ndert sich fiir y € ¥ und =y, €[5, analog zu

R(y,ms,) =0y (Redirs, (Redirs, (---(Redirs,(As, (y,75,))) ). (2.2.8)

(@) (b)

Abb. 2.2: (a) Darstellung des Forward-raytraces durch ein sequentielles optisches System.
(b) Darstellung des Backward-raytraces durch ein sequentielles optisches System.

2.2.1 Umlenkung der Lichtstrahlen an optischen Grenzflichen

In diesem Unterkapitel soll die Funktion redirs : S§2 x §%2 — &2 die die Umlenkung der Licht-
strahlen an der optischen Grenzflache X beschreibt, analytisch hergeleitet werden. Aufgrund
der Klasse der zu optimierenden optischen Systeme ist die Art der Ablenkung eindeutig zu
definieren. Es werden zwei Félle unterschieden. Aufgrund der Materialeigenschaft der Grenz-
fliche oder der Medien, die durch diese Fliche berandet werden, gibt es verschiedene Um-
lenkungsverhalten. Es ist moglich, dass der Lichtstrahl reflektiert oder gebrochen wird. Beide

Umlenkungsmaglichkeiten sind in Abbildung 2.3 dargestellt

vektorielles Reflektionsgesetz

Der Richtungsvektor @;, schlief$t mit dem Normalenvektor K]z an der Auftreffstelle auf der
Flache X (siehe Abbildung 2.3a) den Winkel

Q@ = arccos (| (@in, NE>|)
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2

(a) ®)

Abb. 2.3: Darstellung des optischen Prinzips der Reflektion und Brechung. (a) Der Lichtstrahl wird an
der optischen Grenzfliiche X reflektiert. (b) Der Lichtstrahl wird an der optischen Grenzfliche
X in das optisch dichtere Medium hineingebrochen.

ein.
Falls X reflektierend ist, wird der Lichtstrahl so umgelenkt, dasss der ausfallende Lichtstrahl

oy denselben Winkel mit dem Ns einschlieRt. Die entstehende Forderung lautet
I N o
(Win, Ng) = —{0Dour, Nx).

Dartiber hinaus liegt @, in der Ebene, die durch &;, und Ns aufgespannt wird. Es muss also
fiir ein u, v € R gelten

- | >
Woyr = UWipn +VNs.

Einsetzen der zweiten Forderung in die erste liefert

@i, Ns) = —(@our, Nx)
= —(udin+vNs, Ns)
= —p{pdin, Nx) - v(Ng, Nx)
= —pudin, Ns) —v
>v = (=1—w{dn N).

Dieses Ergebnis liefert

Dour = ,U(Din -1+ H)(J)in; NX>NZ-

10
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Zur Bestimmung von p beziehen wir uns auf die Forderung, dass Richtungsvektoren Ein-
heitsvektoren sein sollen. Da Einfalls- und Ausfallswinkel identisch sind ist eine hinreichende
Forderung gegeben durch

N > =
Win X Ny = W0oyr X Ns.

Einfiigen des Zwischenergebnisses in diese Forderung liefert

@inx Ny = (udin— 1+ @ (E)inrNZ>NZ) x Ny

©(@in x Ns) + 1+ @){@;n, Ns) (N x Ns)
=0
= p(@inx Nz)
=>upu = 1

Zusammenfassen dieser Ergebnisse liefert das Reflektionsgesetz

redir(@in, Ns) = ®in—2{®in, Ns) Ns. (2.2.9)

vektorielles Brechungsgesetz

Licht breitet sich in transparenten Medien mit unterschiedlicher Geschwindigkeit aus. Die
Abhingigkeit der Geschwindigkeit vom Medium wird mittels des Brechungsindex angege-
ben. Sei ¢ die Lichtgeschwindigkeit im Vakuum und c; die Lichtgeschwindigkeit im Medium
i. Der Brechungsindex beschreibt die inverse relative Lichtgeschwindigkeit im Medium be-

ziiglich ¢
Y

n; .= .
Ci
Die Verdnderung der Geschwindigkeit des Lichts an einer optischen Grenzfldche dndert die
Richtung des Lichtstrahls. In Abbildung 2.3b sieht man die Brechung des Strahles @;; zur
Flichennormalen Ns hin, der vom optisch diinneren Medium 1 ins optisch dichtere Medium
2 gebrochen wird. Das Snelliussche Brechungsgesetz
sin(a) _ca _ny_

sin(p) = C_z = p =n (2.2.10)

beschreibt die Beziehung zwischen den Winkeln a und f. Auf Grundlage dieses einfachen
physikalischen Gesetzes kann nun die vektorielle Anderung des Lichtstrahls an der Grenzfli-
che hergeleitet werden. Der Lichtstrahl &, liegt in der durch die Einfallsrichtung &;, und

der Flichennormale Ny aufgespannten Ebene. Deshalb ergibt sich @, als Linearkombina-

11
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tion der Vektoren @;, und Ns:

Wout = UWin + VN3

Einsetzen von sin(a) = ||&;; X Klel und sin(B) = || eyr % Klel in die Gleichung (2.2.10) liefert

ny_ ||@inxNsl| _ [|@inx Ns|
n ||(Dout X NZH ||(.uc-‘)in+vz_\72) X NZH
lowsNell 1

@in x Ny) +v(Ns x Ns) || K
——
=0
n_ o

=n (2.2.11)
ny

=y
Da @y, ein Richtungsvektor ist, kann die Forderung
2

~ 2 -1~ N7 112 2 1,87 ~ -
1=@ouell” =lln""@ip+vNs|l=v"+2vn (Ng,0in) +n

aufgestellt werden. Auflésen der Gleichung nach v liefert:

V=0 @i, Ng) +\ 12 @iy M) 41— 72,

Der Ausdruck unterhalb der Wurzel ist negativ, falls der kritische Winkel iiberschritten wird,
d. h., falls
(@in, Ns)| >V 1-n~2 = cos(arcsin(n1)).

In diesem Fall tritt Totalrefektion ein. Das heil3t, dass der Lichtstrahl nicht gebrochen, son-
dern reflektiert wird. Da wir sequentielle optische Systeme betrachten, gilt fiir so einen Licht-
strahl in diesem Fall, dass er nicht auf die Zielflache auftrifft, da die Reihenfolge der optischen
Fldchen nicht eingehalten wird. Im Regelfall trifft so ein Strahl auch nicht auf die Zielfléche,
jedoch kommen Situationen vor, in denen der Strahl chaotisch durch das optische System
vagabundiert und schliefllich doch noch auf die Zielfldche trifft. Diese Strahlengénge werden
in sequentiellen Raytracern nicht beriicksichtigt.

Zusammenfassen dieser Ergebnisse liefert das vektorielle Brechungsgesetz

-1 - ~ — ] -2
o n " -Win+vNs, falls [{@;n, Ns)|<V1-n
redir(@in, Ns,n) = " . |< " >| (2.2.12)
Win—2{0;n, Ns)Ns, sonst Totalreflexion.

Auch bei kleineren Auftreffwinkeln tritt ein weiterer Effekt auf, der in der Modellierung der

Problemstellung von Bedeutung sein wird. Dieser Effekt wird Fresnelsche Reflektion genannt

12
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und beschreibt das Verhalten, dass ein Strahl gebrochen wird, dabei jedoch ein Teil der Strah-
lung auch immer reflektiert wird, so dass die Energie des Strahles durch die Brechung ab-
nimmt. Die hier verwendete Formel
. 0.5-(B2+®2), falls [(@in, Ns)|<V1-n2
@i, Ny) = (&7+2) [(@im Nz (2.2.13)
1, sonst.

Nip - <5)out, NZ> — Nout* <E)in; NZ>
Nin-* <C7)0utv]_\72> + Nout - <C-Din;N>:>
Nout* <E)0ut; NE) — Nin- <J)in; NZ>

Nout* <E)0ut; NZ) +Nip- <E)in; NZ>

mit &1 (@;n, Ns) =

und  &3(@;in, Ns) =

bezieht sich auf unpolarisiertes Licht (siehe [8, Abschnitt 5]).

2.3 Grundlagen der Differentialgeometrie

Die Fragestellung dieser Arbeit beschiftigt sich mit optischen Flachen. Um diese mathema-
tisch korrekt zu modellieren werden in der Folge differentialgeometrische Aussagen benétigt,
die in diesem Kapitel kurz eingefiihrt werden.

Der Hauptsatz der Differential- und Integralrechnung nach Lebesgue erméglicht das Ablei-
ten von mehrdimensionalen Integralgleichungen. Als Orientierung dient [1} p. 363], sowie die

Zusammenfassung in Diplomarbeit [20} p.23-25].

Theorem 2.1 (Lebesgue Differentiationstheorem). Sei A das Lebesgue-Mafs auf R" und f €
LY(R™) beziiglich des MafSes A. Die Integralfunktion G(A) := [, f dA ist ein Funktional auf der
Borel-o-Algebra von R". Die Ableitung dieser Integralfunktion an der Stelle x € R" ist definiert

durch )

"(x):= i f ,
G (x) Bililx Bl fdaA
By

wobei By n-dimensionale Kugeln mit Mittelpunkt in x sind, deren Durchmesser gegen 0 kon-
vergiert.
Die Ableitung existiert fiir fast alle x € R" mit

G'(x)=f(x)

Im Verlauf dieser Arbeit werden Integrale mit der Sphire S? als Integrationsgebiet aufge-
stellt. S? ist eine 2-dimensionale Untermannigfaltigkeit im R3. Wir definieren den Begriff der

Untermannigfaltigkeit.

13
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Definition 2.1 (Untermannigfaltigkeit und reguldre Parametrisierung). Seienm <n mitm,ne
N, X c R" und x € X, so dass eine offene Menge U c R"™ und eine injektive und stetig differen-
zierbare Abbildung f : U — R" existiert. Falls f(U) c X eine in X offene Umgebung von x und
Df(f~1(x)) injektiv ist, so heifit X eine Untermannigfaltigkeit der Dimension m und f heifst

reguliire Parametrisierung an x.

Um Funktionen auf Untermannigfaltigkeiten zu integrieren definieren wir nun die Gram-

sche Determinante.

Definition 2.2 (Gramsche Determinante). Sei X < R" eine m-dimensionale Untermannigfal-
tigkeit und f : U — X eine reguldre Parametrisierung mit U < R™. Die Gramsche Determinante
Sf:R™ — R beziiglich f wird definiert durch

Ffw=det(Dfw’ -Df(w). (2.3.1)

Der Operator D bezeichet die Jakobi-Matrix der Abbildung f. Die Eigenwerte der Matrix sind
positiv, der Rang ist m und damit gilt § f (1) > 0.

Theorem 2.2 (Integration {iber Untermannigfaltigkeiten). Sei X c R" eine m-dimensionale
Untermannigfaltigkeit. Es gibt genau ein Elementarintegral A x auf X, so dass fiir jede reguldire

Parametrisierung ¢ : U — X und jedes ¢ € C.(X) mit

{xeX | px) #0} cpU)

die Gleichung
f(P(x) dAx(x) =f<P((P(u)) Sp(u) dA™ (u) (2.3.2)

X U

gilt.

Lemma2.1. Sei f :R?> — R3 mit f:= (fi, fo, f3)T eine reguliire Parametrisierung. Fiir die gram-
sche Determinante gilt:
S, v) = ||0uf xd,f|° (2.3.3)

14
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Beweis. Aufstellen der gramschen Determinante fiihrt zu

Oufi Oufi
0 0 0
3w v) _ det ( ufi  Oufz Oufs| dufs Oufs
0vfi Ovfo Oufs
Oufs 0uf3
_ det( Ouf?+0uf?+0uf? 0ufi0v fi +0uf20ufo+0uf30uf3
0ufi0y f1 +0uf20y fo +0u f30u f3 OufE+0ufi+0uf}

= 0ufPOufE+0ufROufE+0ufP0ufE+0ufF0ufE +0ufi0ufE+0ufi0uf}

+ =204 f100 f10uf200 f2 200 f10v fi0u 300 f3 — 20u 200 f20u f30u f3
= @uf10v fo =01 f20y [1)* + @u f100 f3 = 0u f30u f1)* + Oufody f3— 0u f300 f2)?
= 10.f % 0y f1I?

2.4 Definition optischer GroRen

Die korrekte physikalische und physiologische Beschreibung von Lichtquellen ist wichtig fiir
das Verstidndnis des optischen Problems, das in dieser Arbeit behandelt wird. Wir fiihren zu-
erst die strahlungsphysikalischen GréRen ein, von denen die optischen Grélen abgeleitet
werden. Wir orientieren uns an [18] p.69-72].

2.4.1 Strahlungsphysikalische GréfRen

Abb. 2.4: Schematische Darstellung der Raumuwinkels.

Die zentrale charakteristische Grée einer Strahlungsquelle ist die Strahlungsleistung, oder

auch Strahlungsfluss. Diese Grol3e wird durch den Quotienten aus Energie pro Zeit beschrie-

15
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ben und mit ®, bezeichnet und in der SI-Einheit Watt [W = Js~!'] angegeben. Der Strah-
lungsfluss breitet sich von der Strahlungsquelle in den Raum aus. Die Strahlungsquellen sind
in der Realitdt ausgedehnt Geometrien, die {iber die Oberfldache y Strahlung von jedem Punkt
emittieren.
In vielen Problemen der Optik sind die Dimensionen der optischen Systeme derart, dass die
Grof3e der Lichtquelle gegeniiber den Optiken sehr klein ist, so dass die Ausdehnung ver-
nachléssigt wird. Diese Approximation erdffnet ein breites Spektrum an Modellierungsmog-
lichkeiten in der geometrischen Optik. In diesen Féllen wird die Ausdehnung der Strahlungs-
quelle vernachléssigt und als Punkt approximiert. Mit Hilfe dieser Modellierung kann die Ab-
strahlung der Lichtquelle auf der Menge der Raumrichtungen, den Raumwinkeln, beschrie-
ben werden. Der Raumwinkel Q wird in der Grof3e Steradiant (sr) gemessen. Diese Einheit
beschreibt eine normiertes Flachendquivalent auf einer Kugel. Sei die Flache A auf einer Ku-
gel mit Radius r von einer Strahlungsquelle beleuchtet (siehe Abbildung 2.4), so ist der Raum-
winkel die normierte Flache

Q= r—isr <A4mnsr. (2.4.1)

Der Raumwinkel ist 4quivalent zu der Winkelangabe in BogenmaQ in der zweidimensionalen
Geometrie.
Alle weiteren strahlungsphysikalischen GréRen sind differentielle GréRen des Strahlungsflus-

Ses.

Strahlstarke Vernachlidssigt man die Ausdehnung der Strahlungsquelle, so kann die Aus-
breitung der Strahlung unabhingig von Abstdnden angegeben werden, indem man die
Intensitdt I, (@) in [Wsr~!] pro Raumrichtung @ € S$* betrachtet (siehe Abbildung 2.5a).
Diese Grof3e wird Strahlstdrke genannt mit der differentiellen Definition

@,

IL,(®):= lim
(@) a0 dQg

w
—] mit dQg € S messbar, & € Q.
sr

Bestrahlungsstarke Trifft der Strahlungsfluss der Strahlungsquelle auf eine Fldche X, so wer-
den die Punkte o der Flache unterschiedlich intensiv bestrahlt. Man spricht hier von
der Bestrahlungsstiirke B.(0) in [Wm™2], einer differentiellen GroRe des Strahlungs-

flusses definiert durch

B = 1 —_—
@) ddo i) dAy

w .
) mit dA, < X messbar, 0 € A,. (2.4.2)

Die geometrischen Zusammenhinge werden in Abbildung 2.5a dargestellt. Falls y eine

Punktlichtquelle ist kann ein Zusammenhang mit der Strahlstdrke hergestellt werden:
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2.4 Definition optischer GréfSen

Wir betrachten den Lichtstrahl von y in Richtung & mit dem Auftreffpunkt o . Mit r
bezeichnen wir den Abstand zwischen der Punktquelle und ¢ und Ny ist der Norma-
lenvektor der Flache X an der Stelle o.

Im Grenziibergang d A, — {0} kann das infinitesimale Fldchenstiick d Ao als planar
angenommen werden. Sei dQ2, der Raumwinkel, der von der Strahlungsquelle aus das
Flachenstiick d A; beleuchtet. Durch Projektion des planaren Flachenstiicks d A, in

Richtung ® und aufgrund der Definition des Raumwinkels in Gleichung (2.4.1) gilt

dQgr?

N — . (2.4.3)
<@, N5 (0))

Diese geometrischen Zusammenhénge kdnnen in Abbildung 2.5a nachvollzogen wer-
den. Wenden wir diese Grenzwertbetrachtung auf die Bestrahlungsstdirke an, so ergibt

sich

dPey dPe,q | (@, Nz (0)] (@, N5 (o)) [ W]
B = li — = = i ! = L) =2 T
(o) dA;I—r}{U} dAg dQ;T{a,} dQyr? (@) r2 m2

Strahldichte Die Strahlungsquelle ist in der Realit4t nicht punktférmig, sondern ausgedehnt.
Die Strahlstdrke 1,(®) fiir ein & € S? ist somit ein integrierter Wert einer zusétzlich vom
Ort x € y abhéingigen GroRe L, : y x S — R, die Strahldichte (in [W cd™! m™2]).
Strahlungsquellen mit unterschiedlicher GréRe, aber gleichem Strahlungsfluss erschei-
nen umso heller, je kleiner die strahlende Fldche ist (vgl. [18} S.70]).

Im Umkehrschluss sieht man, dass fiir eine planare Strahlungsquelle y, von der in je-
dem Punkt Strahlung der gleichen Helligkeit L, in den Raum S? emittiert wird, die ge-
nerierte Strahlstirke I,(®) proportional zu der aus @ gesehenen Fliche | x| <N)c (x),®)
der Quelle ist (siehe Abbildung 2.5b). Fiir die Definition der Strahldichte wird also in
diesem Fall

L(@) = Lell Y KNy, )

gefordert. Diese Erkenntnis fiithrt uns fiir allgemeine Strahlungsquellen zu der Defini-
tion -
Le(x,0):= lim f—(w).
dxx=1x} dyx(Ny(x), )
Da das Skalarprodukt <Nx (x), @) nicht von dy, abhédngig ist, kann es als Konstante aus

dem Grenzwert gezogen werden:

PAVEN — . dIe(C_[))
Le(x, @) (Ny(x), @) = _ lim

. (2.4.4)
xx—ixt d)x

17



2 Grundlagen

Eine ausgedehnte Strahlungsquelle wird durch die Oberfliche y mit der charakteristischen
Strahldichtefunktion L, : x x $? — R* definiert. Eine punkférmige Strahlungsquelle hinge-
gegen wird durch eine Strahlstirkefunktion I, : S> — R™ beschrieben. Zu einer ausgedehnten
Strahlungsquelle mit Strahldichtefunktion L, , wird die zugehorige Strahlstdirkefunktion be-

rechnet durch

Ly(@) = ff Ly (x,®) (&, Ny(x)) dx. (2.4.5)
X

Wir stellen den Zusammenhang der vier strahlungsphysikalischen Groflen nochmal in fol-
gendem Beispiel her. Zur Vereinfachung der Formeln, bzw. besserer geometrischer Vorstel-

lung wollen wir noch eine Hilfsbetrachtung anstellen.

Lemma 2.2. Fiir die gramsche Determinante § der Funktion ox(x,-) : Iz — §? gilt

(N5 (1), @ (75)) ?
llos(rs) — x||?

S(@z)(x,ms) =F(0x) (Ts) (

T[]

0 _0_
3 Z(Tz(ﬂ):) x M%UZ(”Z)

Ns(ms) =

0 0
|srostrs) x soxin)|

Beweis. Die Funktion @ : [Tz — S? ist eine Verkettung der Funktion

g—X
lo—xl

a:X— S mita(o) =
und o : Iy — Z mit @5 = @ og. Wir betrachten ein 75 € [T mit einer Umgebung I1§ < [Ty mit

I Hg | = cfiir 0 < ¢ < |1z . Das Gramsche Determinante von @s kann nun durch Integraltran-
formation aufgeteilt werden.

ffmdnz ff dd = f dd

13 Bx(14) a(ox (L))

= f |detDa(o)|do

ox(I15)

= ff VS(os)(ms)|detDa(os(ns))|drs
I3

Aufgrund des Lebesgue Differentiationstheorems (Theorem 2.1) kdnnen die Integranden ver-
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2.4 Definition optischer GréfSen

(&,Ng)

(a)

o L (@) Ie (&)
Le(x7 )_ dx!, = an:(J\_iX(m)7"v>
b)

ADbb. 2.5: Schematische Darstellung der Bestrahlungsstdrke und Strahldichte. (a) Infinitesimale Herlei-
tung der Bestrahlungsstdrke und Strahlstdrke. (b) Infinitesimale Definition der Strahldichte.
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2 Grundlagen
glichen werden und es gilt

F(@3)(x,m5) = F(o5) (ns) | detDa(os (7)) °.
Es bleibt zu zeigen, dass fiir 0 := o5 (75)

(Nz(0%), a(0S)

|detDa(cS)| =
= llog — x|2

gilt. Fur ¢ := oz(Hg) und Q¢ := a(Z°) gilt

Q€I =ff|detDa(0)|da
ZL‘

Die Grenzwertbetrachtung ¢ — 0 liefert

1Q°]l

1Q° = IZ°ll| detDa(0)| = |detDa(o)| = =

Einsetzen des geometrischen Zusammenhangs aus Gleichung (2.4.3) fiir || X°| liefert die Be-

hauptung.

Beispiel 2.1 (Zusammenhang der strahlungsphysikalischen GréBen). Gegeben sei die kon-
stante Strahldichte-Verteilung L, : x x S> — 1 mit planarer Lichtquelle und || y|| = 1.

Die Strahlstéirke I,(®) mit & € S? ergibt sich nach Gleichung (2.4.4) durch Integration iiber y
durch

L@) = || Le(x,® (&,N,) dx= o, N. dx= o, N,)). 2.4.6
(@) ff (x,®) (@,Ny) dx=cos(£L(d X))ff x = cos (£ (@, Ny)) ( )
X =1 - X
=cos(£(®,Ny)) o

=1

Der Strahlungsfluss kann nun durch Integration der Strahlstiirke berechnet werden. Dabei
nehmen wir an, dass die Strahlungsquelle nur in den Halbraum Q, in den der Normalenvek-
tor Nx zeigt, abgegeben wird. Mit (¢, 0) bezeichnen wir die Polarkoordinaten mit Polachse N)c-

Der Winkel ¢ ist der Azimuthalwinkel und 0 der Polarwinkel. Die Gramsche Determinante der
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2.4 Definition optischer GréfSen
Parametrisierung iiber Polarwinkel ist sin(6).

ffffl;e(x,d))@z),ﬁx)dxd&):ff@,NX)f dxdid
Q x =1 Q X

=1

T
ffcos(& (J),Nx))d&’)=ffcos(@)sin(@)d@d(,b

Q -7 0

@,

27

—1 cos(@)] : =7. (2.4.7)
2 0

Der Strahlungsfluss ®.(X), der von der Quelle auf eine Fliche Z trifft, kann fiir x € y analog
mit der zusdtzlichen Transformation 0x(x,-) : Tl — S2 berechnet werden.

Zur Vereinfachung der Formeln leiten wir noch eine Eigenschaft der Transformation her. Der
Winkelbereich, durch den vom Punkt x € y aus die Fliche X beleuchtet wird bezeichnen wir
mit Q(x,X). Aufgrund der Gleichung (2.4.4) wird der Strahlungsfluss ®, durch

ff ff Le(x,®) (@, Ny ) dddx
——
X Qx,2) =1

berechnet. Wenden wir die Transformation ds (x,-) : Il — Z und Lemma 2.2 an, so vereinfacht

sich diese Formel mit der vereinfachten Schreibweise & fiir 0x(x,ms) zu

ffffLe(x»[bZ) <&)Z’NX> vV 3(5);)dnzdx

X s

ffffL (x, wz)(wz,Nx> (N (r2), D) — =27 = _dnsdx.

llos () — x||?
X Iz

@,

Die Berechnung der Bestrahlungsstirke Bo(o (115)) mit ns € [y entsprechend der Definition
(2.4.2) fiihrt zu

. 1 . =\ (Ns(my),dy)
B.(o(t,)v) = lim ffffL (x,05) (s, N,) ————————dnsdx.
T el — 01 || d Agl 1) . o[, 03) (0 X>||Uz(ﬂz)—x||2 *

Leicht kann eine Majorante des inneren Integrals iiber d A; angegeben werden, da Iy abge-

schlossen ist und somit ein Maximum aller Terme des Integranden existiert. Durch Anwendung
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2 Grundlagen

des Satzes der majorisierten Konvergenz folgt

. 1 L (N (15), )
B,(o( ))=[f lim ffL (x,0s) (s, N,) ———————dnsdx.
ee /) asentz—ior 1d 4,1 ) o[, 03) (B ">||az(nz)—x||2 *

Aufgrund des Lebesgue Differentiationstheorems (Theorem 2.1) ist der Grenzwert des Integran-

den fast iiberall definiert und durch die Integration folgt fiir die Bestrahlungsstérke der Wert

(Ns(714), @5 (%, 75))

dx. 2.4.8
los (o) —xIZ (2.48)

Be(o(ng)) = ff Le(x, 05 (x,75)) (@3 (X, 5), Ny )
4

2.4.2 Bewertung der strahlungsphysikalischen GroRen

Strahlung ist Energie, die durch elektromagnetische Wellen in allen Wellenldngen von einer
Quelle emittiert wird. Aufgrund der Wellenldngenabhéngigkeit sind die bisher eingefiihrten
strahlungsphysikalischen GréRen integrierte Werte iiber die Wellenldnge. Der Strahlungsfluss

kann als Integral

o
®, = f aa ; A) dA.
0

dargestellt werden. Das menschliche Auge nimmt die Strahlung in Abhdngigkeit von der Wel-
lenldnge wahr. Diese sprektrale Empfindlichkeit wird durch die Hellempfindlichkeitskurve
V :]10,00[— R" beschrieben. Diese Funktion mit Maximum bei ca. 555nm gibt den Anteil der
vom Auge in Abhédngigkeit von der Wellenldnge der Strahlung wahrgenommenen Strahlungs-
leistung an. Um also zu dem geeigneten Lichtbegriff zu gelangen, miissen die strahlungsphy-
sikalischen Gr68en noch entsprechend dieser Empfindlichkeit bewertet werden.

Wir definieren nun die lichttechnischen Groflen durch die Bewertung der strahlungsphysi-
kalischen GroRen.

Lichtfluss Der vom Menschen wahrgenommene Anteil des Strahlungsflusses wird als Licht-

fluss @ bezeichet, der proportional ist zu

oD,
D~ VA)dA. 2.4,
Of WV (DA (2.4.9)

Der Lichtfluss wird in der GroRe Lumen[lm] gemessen. Ein lumen repriasentiert die

lichttechnische Leistung einer Kerzenflamme. Fiir die spektrale Verteilung von Son-
nenlicht gilt der Proportionalitdtsfaktor K, := 683 Im/W. Wir definieren den Licht-
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2.4 Definition optischer GréfSen

strom ® durch

oo
O =K, %(MV(M dA. (2.4.10)
0

Lichtstdrke Vernachldssigt man die Ausdehnung der Strahlungsquelle, so kann die Ausbrei-
tung der Strahlung unabhignig von Abstdnden angegeben werden, indem man die In-
tensitit I(®) in cd := [l m sr’l] pro Raumrichtung & € S2 betrachtet (siehe Abbildung

2.5a). Diese Grof3e wird Lichtstérke genannt und differentiell definiert durch

I(®):= lim — | mit dQg € S? messbar, & € Q.

Qg —1@y dQg

dd [lm
sr

Beleuchtungsstéarke Trifft der Lichtfluss der Strahlungsquelle auf eine Flache X, so werden
die Punkte o der Flache unterschiedlich intensiv bestrahlt. Man spricht hier von der
Beleuchtungsstéirke B(o) in Ix := [lm m_z], einer differentiellen GréQe des Lichtfluss
definiert durch

Im

. do
B(o):= lim o

mit d A, < X messbar, o € A,.
dAc—{o} dAg 7 7

Die geometrischen Zusammenhénge sind in Abbildung 2.5a dargestellt. Analog zur
Herleitung der Bestrahlungsstérke kann die Beleuchtungsstirke bei einer Punktlicht-
quelle angegeben werden durch

B(o) = I(®) (2.4.11)

(@,Ns(0)) [Im
r2 m?|
Leuchtdichte Realte Lichtquellen sind nicht punktf6rmig, sondern ausgedehnt. Die Strahl-
stéirke I,(®) fiir ein @ € S? ist somit ein integrierter Wert einer zusétzlich vom Ort x € y
abhingigen GroRe L: y x S — R*, der Leuchtdichte (in [cd m™2]).

Analog zur Herleitung der Strahldichte erhalten wir die Definition

R . dal(®)
Lx,0):= lim ———.
drx—10 dy x(Ny(x),d)

Das Skalarprodukt (Nx(x),(f)) ist keine differentielle von dy,—abhingige Grole und

kann aus dem Grenzwert gezogen werden, so dass gilt

= R . dl(o)
L(x,0){Ny(x),) = lim .
dy.—{xt dyx

23



2 Grundlagen

2.5 Definition des allgemeinen Beleuchtungsproblems

In einem sequentiellen optischen System (siehe Abschnitt 2.1) sollen die Fldchen X; mit i =
1,...,n so bestimmt werden, dass eine geforderte Beleuchtungsstdirkeverteilung By : ¥ — R*
auf der Flache ¥ generiert wird.

Falls eine Punktlichtquelle angenommen wird, ist y € R® mit einer Lichtstirkeverteilung I X
$? — R*. Fiir eine ausgedehnte Lichtquelle ist y = R® eine Fliche mit regulirer Parametrisie-
rung x : ITy — y und Leuchtdichteverteilung L, : x x S$? - R*.

Wir bezeichnen das optische System, das aus der Lichtquelle y, den optischen Flichen
%1,...,2, und dem Detektor ¥ besteht mit O. Die Verteilung By : ¥ — R™ ist die tatséch-
lich durch das optische System © generierte Beleuchtungsstirkeverteilung. In dieser Arbeit
beschrianken wir uns auf Beleuchtungsstdrkeverteilungen auf einer Fliche W als Zielvorgabe.
Alle Modellierungen und Algorithmen kénnen durch die Vorgabe einer Lichtstéirkeverteilung

im Winkelraum vereinfacht werden.
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3 Modellierungen des Beleuchtungsproblems

mit einer Punktlichtquelle

Alle Modellierungsideen, die in diesem Kapitel eingefiihrt werden, basieren darauf, dass die
Lichtquelle als Punkt § € R® approximiert wird. Es werden einige Ansitze aus der Literatur
eingefiihrt. AnschlieBend wird eine abstrakterer Theorie eingefiihrt, die im Zuge dieser Ar-
beit auf das Beleuchtungsproblem angewandt werden soll. Im Folgenden werden drei Ansét-
ze dargestellt. In Abschnitt 3.1 und 3.2 besteht die Grundidee darin, die generierte Beleuch-
tungsstarke direkt zu berechnen und damit die Optik zu bestimmen, bzw. zu optimieren. Die
Theorie der schwachen Losung in Abschnitt 3.3 versucht fiir einen eingeschriankten Fall Opti-
ken zu bestimmen, die bis auf Nullmengen glatt sind. Der vierte Ansatz in Abschnitt 3.4 ist ab-
strakter. Es wird nicht die generierte Beleuchtungsstdrke berechnet, sondern aufgrund mag-
theoretischer Uberlegungen eine geforderte Abbildung einer Menge von Lichtstrahlen von
der Lichtquelle auf Punkte der Zielflache (source-target-mapping) bestimmt. Dieses source-
target-mapping soll die Eigenschaft haben, dass die Beleuchtungsstérkeverteilung generiert
wird, falls ein optisches System berechnet werden kann, das dieses source-target-mapping
erfiillt.

3.1 Analytische Berechnung der Beleuchtungsstirke durch eine
partiellen Differentialgleichung

In diesem Abschnitt wird der Ansatz von J. S. Schruben aus [19] innerhalb unserer Notation
verallgemeinert vorgestellt. Der Ansatz bezieht sich auf das Beleuchtungsproblem mit Punkt-
lichtquelle. Der Lichtstrom der Punktlichtquelle in j € R3, der die erste optischen Fliche
21(IIs,) beleuchtet ist

®, (51) = f 1,@) db.

D3, [x;)

25



3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Durch die reguldre Parametrisierung o; kann dieses Integral auf den Parameterbereich Iy,

transformiert werden mit

(I)IX(Zl):fIX(E)ZI()Z,n)\/gﬂd')zl()z,n)dn. (3.1.1)

5,

Der Ausdruck §” steht fiir die Funktionaldeterminante der Funktion @x, ({, 7) beziiglich dem
zweiten Parameter 7 € R%.
Sei By : ¥ — R* die Beleuchtungsstiirkeverteilung, die durch das optische System realisiert

wird. Der Lichtstrom auf ¥, der durch By definiert wird, ist

O, (V) = f By(n)dy.
v

Das optische System mit den Flachen X,X,,---,Z, bildet Lichstrahlen &y, (,75,) von der
Punktlichtquelle in j auf die Zielfliche V¥ ab (siehe Abbildung 2.2a). Wir beschreiben diese
Abbildung mit der Funktion & : I1g, — V. Falls diese Funktion durch das optische System so
realisiert wird, dass & eine regulédre Parametrisierung von W ist, folgt

®p, (V) = /B\y(g(f(,n))\/gﬂg(f(,n)dn. (3.1.2)

M5,

Dieser Ansatz beschrdnkt sich damit auf optische Flachen X;, die zweifach differenzierbar
sind, da & bereits die Normalenvektoren der Flichen bendtigt, wozu die ersten Ableitungen
an den Flachen bestimmt werden miissen, so dass die ersten Ableitungen von & die zweiten
Ableitungen benétigen. Ein solches optisches System transportiert den Lichtstrom @y, (Q5,)
vollstdndig in das Gebiet ¥, so dass @, = @p, gilt und die Integrale der Gleichung (3.1.1)
und (3.1.2) gleichgesetzt werden konnen. Ferner gilt fiir ein solches optisches System, dass

fiir jede offene und messbare Teilmenge DIIy, cIly, gilt

fI;g(c?)zl()Z,Jr))\/S”Ez’)zl()Z,n)dn: f By (F (1, m)\/F*F (1, m)dn (3.1.3)

DIy, DIy,

Das Lebesgue Differentiationstheorem 2.1 ermoglicht es nun, die Integranden zu vergleichen,
so dass die Beleuchtungsstédrke By iiber die partielle Differentialgleichung

I (05, (X, 75))/$"0s, (1, 75,)

By (F(},75,)) = (3.1.4)

VETF (R, 7s,)
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3.1 Berechnung der Beleuchtungsstirke durch eine PDG

berechnt werden kann. Diese Modellierung ermdoglicht es fiir optische Systeme mit Punkt-
lichtquelle, deren Funktionaldeterminante §”".% (¥, n) tiberall definiert ist und keine Null-
stellen hat, die Beleuchtungsstdrkeverteilung mittels eines Forward-Raytrace an den Stellen
Z (},I1x,) zu bestimmen. Die Auswertung von §".% ist numerisch aufwéndig und erhoht die
Anforderungen an das optische System, da die Flache zweifach differenzierbar sein miissen,
um die Funktinaldeterminante berechnen zu kénnen.

Setzt man zu einem bestehenden optischen System O an die Stelle von By die geforderte
Beleuchtungsstirkeverteilung By ein, so kann man aus der Gleichung (3.1.4) eine Nullstel-

lenforderung an das optische System

02 By(F (R, w3\ /32 F ({1 — [ @s, (1,7x) /32, 85, (Rrs). B.15)

formulieren.

Bemerkung 3.1 (Urspriingliche Modellierung von J.S. Schruben in [19] und numerische Aus-
wirkungen). J.S. Schruben hat in ihrer urspriinglichen Modellierung nur optische Systeme mit

einer zu bestimmenden Freiformfliche ¥ gewdihlt mit der Definition
oz, (ms) = +pnz,)0s, (T5).

Die Funktion p wird als Polarradius bezeichnet und ist eine zweifach differenzierbare skalare
Funktion p : My, — R™ und @ : My, — S? ist eine reguliire Parametrisierung der Sphdire. In
diesem Fall gilt vereinfachend

os,(s) -} ps)o(ns,)  plrs)d(Ts,)

J) ](A’]'[ 1) = = = = =
M T los, rs) -7l NGz )d@s)ll - plrsy)

=w(ry,)).

Mit Hilfe dieser Modellierung, kann die Funktion % (§,-) : llx, — ¥ analytisch in Abhdingigkeit
vom Polarradius p und den ersten partiellen Ableitungen beschrieben werden. Wendet man
die Nullstellengleichung (3.1.5) an, so erhdlt man eine nichtlineare partialle Differentialglei-
chung zweiter Ordnung vom Typ Monge-Ampere. Hierbei ist der Polarradius p und die ersten
und zweiten partiellen Ableitungen die gesuchten Gréfsen, die das optische System beschreiben.
Wiihlt man eine Diskretisierung Hgl von Iz, so kann mit Hilfe von Finiten Differenzen und
der partiellen Differentialgleichung (3.1.5) eine Nullstellensuche definiert werden, die zum
Beispiel mittels eines Newton-Verfahrens geldst werden kann.

Das Newton-Verfahren setzt indirekt voraus, dass der Polarradius dreifach partiell differen-
ziert werden kann. Die Anzahl an Gleichungen und Unbekannten ist in einem solchen Fall

identisch und damit losbar.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Beispiel 3.1 (Validierung der Formel (3.1.4) mit Monte-Carlo-Raytrace-Ergebnissen). Wir wdéh-
len als Beispiel ein optisches System mit einer optischen Flédche in Form eines Ellipsoids und
1 =(~0.5,0,0)". Auf einer Zielflciche ¥ wird die Beleuchtungsstiirkeverteilung mittels der For-

mel (3.1.4) berechnet und mit Simulationsergebnissen verglichen (siehe Abbildung 3.1).

10000,
8000,
6000,
4000,

2000,

ADbb. 3.1: Berechnete Beleuchtungsstdirke entsprechend der Gleichung (3.1.4). Zur Validierung wird das
Simulationsergebnis mit eingezeichnet.

3.2 Analytische Berechnung der Beleuchtungsstirke durch eine
Faltung

Der vorige Ansatz weist einige Nachteile aufgrund der Komplexitidt der Funktionaldetermi-
nante Sgl Z (¥,-) auf. Zum einen miissen die Flachen in zweiter Ordnung differenzierbar sein.
Desweiteren stellen Nullstellen der Determinante Umkehrpunkten der Lichtstrahlen dar, in
denen die Gleichung nicht losbar ist. Deshalb konnen durch diesen Ansatz nur solche opti-
sche Systeme beschrieben und gel6st werden kénnen, deren generierte Abbildung & (¥, -) :
Iz, — V¥ ein Diffeomorphismus ist.

Der Ansatz von M.A. Moiseevund L.L. Doskolovichin der Ausarbeitung [14] will diese Nachtei-
le umgehen und kann somit als Erweiterung der Modellierung von J. S. Schruben verstanden

werden.
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3.2 Berechnung der Beleuchtungsstérke durch eine Faltung

Auch dieser Ansatz modelliert die Lichtquelle als Punkt § € R3. Ziel des Ansatzes ist es, die
Funktionaldeterminante fiir die Berechnung der Beleuchtungsstirke zu entfernen. Daraus
resultiert, dass die Losungen in einem gréBeren Losungsraum gesucht werden, da auch Sin-
gularitdten der Abbildungsfunktion & erlaubt sind. Ein weiterer Vorteil besteht darin, dass
die Berechnung der Beleuchtungsstdrke nicht nur auf Auftreffpunkten von Lichtstrahlen der
Punktlichtquelle, sondern auf beliebigen Punkten des Zielgebietes ¥ moglich ist.

Dies gelingt durch Faltung der partiellen Differentialgleichung (3.1.4) mit einer Funktion ei-
ner Delta-Folge 6. : R> — R* mit c € R*. Fiir ¢ — 0 gilt

%iir(l)ff5c(y)f(y)dy=f(0).
R2

Mit Hilfe der Faltung kann die Beleuchtungsstiarke am Punkt y € ¥ berechnet werden durch

1@z, (1,7, /33, @5, (F L)

BC,D(JA/) =
JEEFF D)
1;@x, (1, 2,)\ /3%, 05, (F 1) )
= ff — — Sc(y—-pdy

S NGET )
Li(@s, (1, 75,), /83, 05, (F, 7)

ff 6c(F (1,m) - P\ /T3, F R, mdn

i \/ O3, F (X, 7)

= Beo(§) = ff I @s, (1 75\ [3E s, (L6 (F () - ). (3.2.1)

Iz,

Fiir den Grenzwert ¢ — 0 gilt
lim B.,o(7) = Bo (§),

so dass diese Formulierung eine Ndherung an die tatsdchlich generierte Beleuchtungsstérke
durch eine Punktlichtquelle darstellt.

Diese Gleichung hat den Vorteil, dass die Jakobi-Determinante nicht berechnet werden muss.
Durch Bestimmung der Abbildung & : [y, — ¥ muss der Integrand fiir die Punkte j € ¥ mit
. fiir ein ¢ € R* gefaltet werden. Dadurch ergibt sich im Gegensatz zur Gleichung (3.1.4) der
numerische Mehraufwand, dass fiir die Berechnung der Beleuchtungsstérke fiir jedes y eine
Integration durchgefiihrt werden muss.

Die Faltung der Beleuchtungsstdrkeverteilung kann auch verwendet werden, um die Effekte
durch die Ausdehnung der Lichtquelle zu approximieren. Beispielsweise kann eine Punkt-

lichtquelle eine unendliche Beleuchtungsstdirke generieren, jedoch erzeugt eine ausgedehnte
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Lichtquelle an der gleichen Stelle eine sehr hohe, aber nicht unendliche Beleuchtungsstdrke,

was durch die Faltung dieses Ansatzes nachgebildet wird.

Bemerkung 3.2 (Bestimmung der Optik in der urspriinglichen Modellierung von M.A. Moi-
seevund L.L. Doskolovich in [14]). M.A. Moiseev und L.L. Doskolovich haben die Formeln fiir
denselben Spezialfall aufgestellt wie J. S. Schruben in der Bemerkung 3.1. In der Formulierung
wurden jedoch noch die Fresnelschen Verluste (sie Gleichung 2.2.13) beriicksichtigt, die als zu-
sdtzlicher Faktor in die Gleichungen mit einfliefSen.

Die Fléiche kann nicht wie in der Modellierung von J. S. Schruben mit einem Newton-Verfahren
geldst werden, da die Freiheitsgrade der Fliche nicht mit den Punkten aufV iibereinstimmen
miissen, so dass die entsprechende Jakobi-Matrix im Allgemeinen nicht reguldr sein muss. Die
tritt auch dann auf, wenn auszuwertende Punkte nicht beleuchtet werden. Deswegen wird die
Zielfunktion

1
e(var(2)) := J m[f (Bo) - Bw(»)°dy
v

verwendet, um die optischen Fléchen im Sinne der kleinsten Quadrate zu optimieren.

Fiir die Optimierung kann beispielsweise ein Gradientenbasiertes Verfahren verwendet wer-
den, das die Zielfunktion e nach var (%), d.h. den zu optimierenden Variablen der Fliiche X, ab-
leitet. Durch die Verwendung der Ableitung wird die Forderung an die optischen Fldchen auch

in diesem Ansatz erhéht, so dass sie mindestens zweifach partiell differenzierbar sein miissen.

Beispiel 3.2 (Vergleich der Ergebnisse der Formel (3.2.1) mit der Modellierung nach Formel
(3.1.4)). Wir vergleichen die Formel (3.2.1) mit dem Beispiel 3.1 auf Seite 27. Fiir die Delta-
Folge verwenden wir die Gaussche Glockenfunktion

(3.2.2)

Vi+ys
CZ

1
6:.(y) = Fexp (—

und stellen das Ergbenis mit ¢ = 0.5 in der Abbildungen 3.2a dar. Fiir die Punkte y, an denen
die Gleichung (3.2.1) ausgewertet wurde, wurden die Auftreffpunkte des Forward-Raytrace aus
Beispiel 3.1 verwendet, um die Ergebnisse besser vergleichen zu kénnen. Die Differenz dieser
Modellierung mit der zu der Modellierung von J. S. Schruben wird in Abbildung 3.2b wieder-
gegeben.

Die Differenz ist an den Randpunkten des Gebietes & (Ily,) wesentlich gréfSer als im Inneren
des Gebietes, da die Gausssche Glockenkurve symmetrisch um den auszuwertenden Punkt alle
weiteren Auftreffpunkte in Betracht zieht. An einem Randpunkt liegt ein grofser Teil der Gaus-
schen Glockenkurve aufserhalb des beleuchteten Gebietes, so dass der integrierte Wert kleiner

wird.
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-60 -10

(@) ()

Abb. 3.2: Vergleich der berechneten Lichtverteilung durch die Faltung mit dem Ergebnis durch die par-
tielle Differentialgleichung. (a) Berechnete Beleuchtungsstdirke entsprechend der Gleichung
(3.2.1) zu ¢ = 0.5. (b) Differenz der berechneten Beleuchtungsstdrke nach der Modellierung von
Schruben und Mooiseev. Es ist zu sehen, dass die Abweichung der beiden Modellierungen am
Rand héher ist. Das liegt daran, dass durch die Faltung ein Bereich ausserhalb des beleuchteten
Gebietes mitbetrachtet wird.

Um die Gléittung der Beleuchtungsstérkeverteilung in Abhdngigkeit von dem Faktor ¢ zu ver-
deutlichen wird in Abbildung 3.2a das Ergebnis mit c = 0.5, in Abbildung 3.3a mitc =4 und in
Abbildung 3.3b mit c = 8 dargestellt. Man kann in diesen Bildern gut die Gléttung der Beleuch-

tungsstdrkeverteilung in Abhdngigkeit von der Breite der Gausschen Glockenkurve beobachten.

0
-60 -10

(@) ()

Abb. 3.3: Einfluss der Faltungsbreite auf die berechnete Lichtverteilung. (a) Berechnete Beleuchtungs-
stdrke entsprechend der Gleichung (3.2.1) mit ¢ = 4. (b) Berechnete Beleuchtungsstdirke ent-
sprechend der Gleichung (3.2.1) mitc =8.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

3.3 Schwache Formulierung fiir Reflektorsysteme

Dieser Ansatz leitet eine schwache Losung der kontinuierlichen Formulierung durch die par-
tielle Differentialgleichung (3.1.4) im maRtheoretischen Sinne her. Die Bezeichnung schwach
weist darauf hin, dass die Differenzierbarkeitsanforderungen an die Optik geringer sind und
die geforderten Eigenschaften nur fast iiberall gelten miissen.

Die Existenz einer schwache Losung kann fiir optische Systeme, die nur einen Reflektor als
optische Flache haben, gezeigt werden. Wir beziehen uns in diesem Abschnitt auf die Ausar-
beitungen von V. Oliker in [2] und [12].

Jeder Reflektor X lenkt die Lichtstrahlen der Punktlichtquelle y auf die Fliche ¥ um und rea-
lisiert auf diese Weise ein mapping & : Q — ¥. Mit Q c S? bezeichnen wir den Raumwinkel,
der von der Lichtquelle aus durch den Reflektor auf die Zielfliche ¥ umgelenkt wird.

Das optische System transportiert in die Teilmenge DV < ¥ den Lichtstrom
Gy =(DVY) = ff I(@)do(®). 3.3.1)
F1DY)

Diese Abbildungeigenschaft wird in Abbildung 3.4 dargestellt.

Definition 3.1 (schwache Lésung). Eine schwache Losung des Beleuchtungsproblems ist ge-
geben, falls das optische System mit nur einer reflektierenden Optik ein mapping & realisiert,

so dass fiir alle Borel-Mengen DY c ¥
ff I(@)do () = Gy 5 (DY) =f B(y)dy (3.3.2)
F-1(DY) DY

gilt.

3.3.1 Existenz von schwachen Léosungen

Das Hauptergebnis von V. Oliker in [12} Seite 368] ist die Aussage tiber die Existenz von schwa-

chen Losungen des Beleuchtungsproblem.

Theorem 3.1 (Existenz schwachen Losungen des Reflektorproblems). Die Funktionen Iy :
S$? - R*\{0} und By : ¥ — R*\{0} seien integrierbar undV eine kompakte I zweidimensionale

Untermannigfaltigkeit des R3 mit y ¢ V. Zusditzlich gelte die Bedingung der Energieerhaltung

ff 1,(@)dé = ff By(y)dy. (33.3)
S2 b4

11n dem original Theorem in [12] [Seite 368] wird verlangt, dass ¥ eine kompakte Teilmenge einer Ebene sein soll.
Jedoch ist diese Forderung zu scharf, wie aus der Fullnote auf Seite 365 hervorgeht. Hier erwdhnt V. Oliker, dass
es geniigt, wenn ¥ eine kompakte Teilmenge des R3 ist.
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3.3 Schwache Formulierung fiir Reflektorsysteme

ADbb. 3.4: Mengentheoretische Sichtweise der schwachen Losung des Reflektorproblems. Ein optisches
System lost ein Beleuchtungsproblem im schwachen Sinne, wenn die Energie in Teilmengen
des abzubildenden Raumuwinkels auf entsprechede Teilfléichen der Zielféiche abgebildet wer-
den, so dass Gleichung (3.3.2) erfiillt ist. Das optische System kann Unstetigkeitsstellen und
Nullstellen in der Jakobideterminante von & aufweisen, so lange diese Stellen Nullmengen
bilden.

Dann existiert ein geschlossener konvexer Reflektor, der die Gleichung (3.3.2) erfiillt.
Falls zusditzlich gilt, dass die Verteilungen I und B strikt positiv sind, dann ist die Lésung glatt
und generiert ein  diffeomorphes mapping & : S*> — V (siehe [15, Theorem 2.5]).

Eine Findeutigkeitsaussage ist fiir den Fall, dass eine Lichtstdrkeverteilung im Fernfeld er-
zeugt werden soll, d.h. ¥ c $?, bekannt und wird fiir diesen Fall in dem Theorem 3.3 auf Seite
36 wiedergegeben.

Der Beweis dieses Theorems ist konstruktiv, indem diskrete Losungen definiert und ihre Exis-
tenz bewiesen werden. Die kontinuierliche Aussage ist durch einen Grenziibergang des dis-
kreten Falls moglich.

Die Konstruktion der Losungen bezieht sich auf Reflektoren, die durch eine skalare Funktion

p:Qy — R", den Polarradius, definiert werden durch
2p(@y) = p(@)) By

Insbesondere werden die Geometrien durch Ellipsoide E;(y), den so genannten Elementar-

2Diese Aussage impliziert direkt, dass der Reflektor ein stetifges Normalenvektorfeld hat.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

geometrien, definiert. Ein Ellipsoid E4(y) mit y € ¥ hat y in dem einen Fokuspunkt und y
in dem zweiten Fokuspunkt und konzentriert den gesamten Lichtstrom der Punktlichtquelle
auf den Punkt y. Wir definieren das Ellipsoid E;(y) : S — R® durch die Vorschrift

Eq())(@) :=pg(y,0)d (3.3.4)

mit dem Polarradius

d
04 ¥ xSE =R, pa(y,@) = W) . (3.3.5)

1-&(y) <@,ﬁ>

Mit € bezeichnen wir die Exzentrizitédt des Ellipsoids

d(y)? ay)
=4/1+ - . 3.3.6
£) Ny—xI> lly—xll (3:3.6)

Die Funktion d : ¥ — [0,00) mit § > 0 ist der Fokalparameter der Ellipsoiden und beschreibt

die GroRe des Ellipsoiden, ohne die optischen Eigenschaften zu verdndern.
Der geschlossene konvexe Korper B ist so gewihlt, dass 0B;(y) = E4(y). Der Faktor 6§ sei so
grof$ gewdhlt, dass W c B,;(y) fiir alle y € W gilt.
Wir definieren den Reflektor X ; zur Funktion d durch
;=0

() Baw) |- (3.3.7)

yev¥

In der Abbildung 3.5 wird der Schnitt von drei Ellipsoiden und der resultierende Reflektor mit
der Verschnittoperation (3.3.7) dargestellt. Da der Schnitt von konvexen Korpern konvex ist,
berandet der Reflektor X ; einen konvexen Kérper.

Falls E;(y) nZ,4 # @ ist, nennen wir E;(y) ein tragendes Ellipsoid des Reflektors .

Der Schnitt von zwei Ellpsoiden ist hochstens eine eindimensionale Untermannigfaltigkeit,
so dass die Menge der Unstetigkeitsstellen, bzw. Singularitdten des Reflektors X, projiziert
auf die Sphire eine S?-Nullmenge darstellt.

Der Polarradius p; (@) des Reflektors X ; wird durch

ps, (@) = inf {p,(y, )} (3.3.8)
ye¥
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3.3 Schwache Formulierung fiir Reflektorsysteme

definiert. Fiir das mapping gilt

ZF (W)
F ()

y falls pu(y,®) = ps, (@)

{@ € Qlpa(y, o) = px, (@)}

Diskreter Reflektor Die n Punkte (y;,)2,...,¥n) < ¥ mit den Fokalparametern
(dy,ds,...,d,) definieren einen diskreter Reflektor. Aufgrund der Definition des Reflek-
tors ist der Raumwinkel Q c S? eine bis auf Nullmengen disjunkte Vereinigung (& I i) ;7:1,
d.h. |Q| = [U | F7(y;)|. Die GroRen der Urbilder %! (y;) sind abhéngig vom Vektor der
Fokalparameter (d;)!",. Von der Lichtquelle in y aus trifft jeder Raumwinkel & ~1(y;) auf das
Ellipsoid Eg4, (y;) und wird auf den Punkt y; abgebildet. Daraus folgt, dass der Lichtstrom ®

auf die Lichtstrome

@i::ff I(@)do(@) miti=1...n.
F1y)
diskret aufgeteilt wird.

Theorem 3.2 (Existenz von diskreten schwachen Losungen des Beleuchtungsproblems). Sei
Q c S? und (y1,¥2,...,yn) < ¥ eine disjunkte Menge von Punkten. Falls fiir die geforderten
Lichtstrome (@1, ®o,...,D;)
i D; = ff Iy (@)do (@), (3.3.9)
i=1 o
gilt, dann existiert ein Vektor von Fokalparametern d := (dy, d>, ..., d,), so dass der zugehérige
diskrete Reflektor 3% ; die gewiinschten Lichtstrome

Gys())=®;¥1s<is<n (3.3.10)

generiert.

Durch Anwenden dieses Theorems auf eine dichte Folge Yy, := (y1,)2,..., ¥») in ¥ kann das

Theorem 3.1, das den kontinuierlichen Fall behandelt, bewiesen werden.

Bemerkung 3.3 (konvergente oder divergente Reflektoren). Die Konstruktion der Reflektoren
(siehe Gleichung (3.3.7)) und die spditere Beweisfiihrung erlauben es den Reflektor alternativ
durch

Za=0| U Ba|. (3.3.11)

yev

3siehe Gleichung (3.3.7)
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

zu definieren. Der Unterschied in den resultierenden Reflektorgeometrien wird in der Abbil-
dung 3.6 dargestellt. Die Gleichung (3.3.7) konstruiert Reflektoren, deren Strahlengdnge kon-
vergent sind, das heifst sie iiberkreuzen sich. Diese Geometrien haben einen eher tiefen Bau-
raum und geringe Ausdehnung.

Mit Gleichung (3.3.11) konstruierte Reflektoren hingegen realisieren einen divergenten Strah-
lengang ohne Uberkreuzungen. Die resultierenden Reflektorgeometrien sind flach und haben

eine breite Ausdehung.

Bemerkung 3.4 (analoge Formulierung fiir das Fernfeld). Falls die Ausdehnung der Optik
vernachldssigt werden kann, wird die Ziellichtverteilung, bzw. die diskrete Verteilung der ge-
forderten Lichtstrome ®;, nicht auf einer Fliche, sondern im Fernfeld auf einem Raumwinkel
W c S? definiert. Fiir diesen Fall konnen Paraboloide als Elementargeometrien verwendet wer-
den, da diese die Abbildungseigenschaft haben, den vollen Raumwinkel auf einen Richtungs-
vektor abzubilden.

Fiir eine Richtung y € ¥ und Fokalparameter d(¥) wird der Paraboloid
Pa) :=1{pa(7, )&+ | &€ %

definiert durch den Polarradius
d(y)

Alle weiteren Definitionen und Eigenschaften sind analog zu der bisher eingefiihrten Varian-

pa(y,0) = (3.3.12)

te. Eine Eindeutigkeitsaussage der schwachen Losung kann Theorem 4.2 aus [16][Seite 4104]

entnommen werden.

Theorem 3.3 (Eindeutigkeit von schwachen Losungen des Reflektorproblems fiir das Fern-
feld). Falls Qy zusammenhdngend ist, I, und By positive und integrable Funktionen mit
V¥ c S? sind, dann ist eine schwache Lisung des Reflektorproblems eindeutig bis auf Skalie-

rung.

3.3.2 Verwendung einer schwachen diskreten Losung zum Aufbau einer
kontinuierlichen Losung

Florian Fournier beschreibt in [7, Abschnitt 4] den Ansatz, eine diskrete Losung des schwa-
chen Beleuchtungsproblems zu bestimmen und daraus einen glatten Reflektor herzuleiten.
Sei der Vektor (d")}"_, der Fokalparameter des Reflektors X4, der das Beleuchtungsproblem
auf den Punkten (y? ;7:1 16st, so dass der Reflektor die geforderten Lichtstrome (dDi)?:l auf

diesen Punkten konzentriert. Das Ergbenis von Oliker ist, dass fiir eine dichte Folge (( yl.”) ?:1)'1
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3.3 Schwache Formulierung fiir Reflektorsysteme

in ¥ der Reflektor Z;» gegen die glatte Losung Z; konvergiert, falls die Verteilungen I, : §2 —
R* und By : ¥ — R* positive Funktionen sind.

Somit kann fiir ein 7 € N der Reflektor Z ;» als Anndherung an den gesuchten Reflektor 2 ; ver-
wendet werden. Wihlt man Mittelpunkte @; aus den Mengen %~ (y;) aus und bestimmt die
Normalenvektoren N; des Reflektors 2 ;- an diesen Stellen, so kann man aus diesem Norma-
lenvektorfeld einen glatten Reflektor bestimmen, der an den Schnittpunkten mit den Licht-

strahlen (y,&;) die Normalenvektoren N; aufweist.
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(@) ®)

Abb. 3.5: Die diskrete schwache Losung des Beleuchtungsproblems mit drei Ellipsoiden. (a) Die drei El-
lispoiden zu Fokalparametern d,, d, und ds biindeln das Licht von x auf einen der drei Punk-
te y1, y2 und ys. (b) Der resultierende Reflektor X ; aus der Verschneidung (3.3.7) von E4(y1),
Eq(y2) und Eq(y3).

®)

ADbb. 3.6: Gegeniiberstellung eines konvergenten Reflektors nach Gleichung (3.3.7) und eines divergen-
ten Reflektors nach Gleichung (3.3.11). (a) Konvergenter Reflektor nach Vorschrift (3.3.7).
(b) Der resultierende Reflektor bei alternativer Verwendung der Vereinigungsoperation £, =
0(Uy € ¥B4(y)) in (3.3.11). Hierbei nimmt der Reflektor eine divergente Strategie an, wobei
der Punkt y, nicht beleuchtet wird.
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3.4 Das optimale mapping und der

Monge-Kantorovich-Formalismus

Sowohl der Ansatz von J. S. Schruben in Abschnitt 3.1, als auch die Erweiterung von Mooi-
seev und Doskolovich in Abschnitt 3.2 beschreiben das optische System mit Punktlichtquelle
X, so dass das generierte mapping & : A, — ¥ bestimmt werden kann. Da y als Punkt ap-
proximiert wird, gilt A, = Q, := oz, (x,1x) c S2. Aus dem mapping und eventuell den Ab-
leitungen des mappings kann die Beleuchtungsstéirke berechnet werden und mit Hilfe der
entsprechenden Gleichungen das das optische System bestimmt oder optimiert werden, um
die gewlinschte Beleuchtungsstirkeverteilung zu generieren. Somit haben wir es mit einem
inversen Problem zu tun, bei dem aus der gewiinschten Wirkung des Systems auf die notwen-
dige Ursache geschlossen werden soll.

Dieser Zusammenhang fiithrt schnell auf die abstraktere Fragestellung des optimalen map-
pings, das heillt es wird nicht direkt nach dem optischen System gesucht, sondern nach dem
diffeomorphen mapping

F 03, (x, 1y,) — V¥,
— LU
=:Q,c8§?

das aus der Lichtstirkeverteilung I, der Punktlichtquelle y die gewiinschte Beleuchtungs-
starkeverteilung By auf W generiert. Vernachldssigt man die Ausdehnung des gesamten op-
tischen Systems, so kann das gesuchte mapping auch als Abbildung von Richtungsvektoren

auf Richtungsvektoren

F 1 Qy — Dy (y,Tly) mit F@s,) = by (1,09 (F@y))

=:QycS§?

verstanden werden. Diese Definition ist fiir das konkrete Monge-Problem wichtig, da Ele-
mente des Bild- und Urbildbereiches von % zueinander in Beziehung gesetzt werden miis-
sen, indem sie sich auf derselben Fldache befinden.

Stellen wir die Integralgleichung (3.1.3) fiir die Funktion &% auf, so erhalten wir mit Hilfe der
Funktion 6y(y,-) : S> — ¥ (siehe Gleichung (2.2.1)) fiir jede offene und messbare Menge
DQy < Qy

ff L(@)do = ff By(y)dy= ff f?(&ﬂx,@)ﬂdetD‘Y’éq;()(,E))[d&’). 3.4.1)
Dy 6w (1, F (DQy)) F(DQy) Iy (@)

Diese Gleichung verdeutlicht die Fragestellung des optimalen Transports. Die Energie in ei-
nem Teilgebiet des Urbildraumes Q, wird durch das mapping auf ein anderes Teilgebiet von
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Qy abgebildet. Es soll also nicht direkt das inverse Problem gelést werden, d.h. das passende
optische System bestimmt werden, sondern ein mapping & berechnet werden, das die Dich-
te I, (@) auf Q, in die Dichte Iy (@) auf Qy liberfiihrt.

Diese Eigenschalft ist aber fiir unsere Problemstellung nicht ausreichend, denn es muss ne-
ben der mafitheoretischen Transformation der Dichten ineinander auch sichergestellt wer-
den, dass zu dem berechneten mapping ein optisches System existiert, das dieses mapping

generiert. Die Berechnung des optischen Systems erfolgt in einem zweiten Schritt.

Existenz von optischen Flichen zu einem mapping

Sei & : , — Qy ein mapping, das die Dichte I, : O, — R* in die Dichte Iy : Qy — R* {iber-
fiihrt. In diesem Abschnitt soll die Frage untersucht werden, welche Eigenschaft dieses map-
ping aufweisen muss, damit eine optische Fliche X existiert, die diese Abbildungseigenschaft
erfiillt.

Man kann aufgrund des mappings & auf das nicht normierte Normalenvektorfeld N5 : £ —

R3 der brechenden optischen Fliche schlieRen durch
. n
Ns(0(@y) = F (@) —n—xax‘*. (3.4.2)
W

Es ist zu kldren, welche Bedingung das Normalenvektorfeld aufweisen muss, damit eine glat-
te Flache X zu diesem Normalenvektorfeld existiert (siehe Lemma 3.1). AnschlieBend leiten
wir her, unter welchen Voraussetzungen an das mapping, das resultierende Normalenvektor
die notwendigen Eigenschaft aufweist und damit optische Flachen existieren (sieche Lemma
3.2).
Nach [7, Seite 10] existiert zu einem Normalenvektorfeld genau dann eine glatte Fliche, wenn
das Kurvenintegral
sz (0)-dl=0 (3.4.3)
T

tiber jede geschlossene Kurve T c X verschwindet. Wir fithren nun zu dieser Forderung einige
dquivalente Bedingungen fiir Vektorfelder auf. Wenden wir den Stokesschen Integralsatz an,

so erhalten wir die dquivalente Forderung (siehe [7, Seite 10])

0 :y(Nz(a) -dl = ff (rot(Ns)(0), Nx(0)) diy
T St
< (rot(Nz)(0),Ns(0))=0aufZ. (3.4.4)

4Falls X reflektierend ist muss % =1 gewdhlt werden.
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Zu der Forderung (3.4.3) gibt es zwei weitere dquivalente Eigenschaften, die das Normalen-
vektorfeld kennzeichnen:
rot(Ns)(@) =(0,0,0)" VoeX (3.4.5)

und, dass das Normalenvektorfeld ein Gradientenfeld ist, d.h
JA:R® — Re %! mit Ny = VA. (3.4.6)

Das folgende Lemma beweist, dass diese Forderung an das Normalenvektorfeld ausreichend

ist, um auf die Existenz einer optischen Fldache zu schlielen.

Lemma 3.1 (Existenz einer Fldche zu einem rotationsfreien Normalenvektorfeld). Falls ein
rotationsfreies Normalenvektorfeld Ns gegeben ist, so existiert eine eindimensionale Schar von

Fléichen, die dieses Normalenvektorfeld annehmen.

Beweis. Aufgrund der dquivalenten Eigenschaft (3.4.6) zur geforderten Rotationsfreiheit, exis-
tiert eine skalare Funktion A : ¥ — R. Aufgrund der Differenzierbarkeit der skalaren Funktion
A ist nach dem Satz vom regulidren Wert jedes Urbild X, := A~Y(¢) eine differenzierbare Fli-
che fiir jeden reguldren Wert ¢ von A.

Zu jedem Punkt p. in Z. und jede beliebige Kurve g , : [—€,€] — Z; mit g¢ p (0) = p, gilt
A(gep (D) =c
fiir alle £ € [—¢,€]. Die Ableitung dieser Gleichung

VA(ge,p, (1) &e,p. (1) =0

sagt aus, dass VA (o) fiir alle o € R3 senkrecht auf der Fliche 2, ) steht und somit das Nor-

malenvektorfeld der Fliche X4 ) durch

VA(o)

A _ _VAlD)
20 @ = A @]

Voe ZA(U)

definiert wird.
Aufgrung der Gleichung N5 = VA (3.4.6) sind alle Flichen X, Lésungen des Problems, d.h. sie

generieren das mapping Z. O

Das folgende Lemma soll den Zusammenhang zwischen der Wirbelfreiheit des mappings
Z und dem Normalenvektorfeld N5 herstellen, um das Ergebnis des Lemma 3.1 fiir die nach
Gleichung (3.4.2) definierten Normalenvektorfelder anzuwenden und eine Anforderung an

das mapping aufzustellen.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Lemma 3.2 (Existenz einer optischen Fldche zu einem rotationsfreiem mapping F). Wenn
das mapping & Qy — Qu ein Gradientenfeld ist, dann existiert eine glatte Fliche Z, die das

mapping realisiert.

Beweis. Da & ein Gradientenfeld ist, existiert eine skalare Funktion ¢ : R®> — R mit F (E)X) =
V{ (@) fiir alle @, € Q,.
Wir wihlen fiir A : R? — R die Definition
- "y 2 3
Awy) :=C(wy) — ——llwylls V 0y €R.
2}’l\p
Fiir den Gradienten von A gilt
Ty
VA(wy) = V{(wy) — ——wy.
ny
Einsetzen der Gleichung g (@y) = V{(@,) liefert
iy

Ns(@y) = F (@) — —dy =VA@D,).
ny

Damit ist das Normalenvektorfeld ebenfalls ein Gradientenfeld und nach Lemma 3.1 folgt die

Existenz einer eindimensionalen Schar von Flachen X. O

Vor diesem Hintergund ist es ausreichend, mappings zu berechnen, die die dquivalenten

Eigenschaften
f F (@y)-dl= 0 fiir alle geschlossenen Kurven T < Q,, (3.4.7)
T
(rot(F)(@,),F(@,)) = 0aufQ, (3.4.8)
rot(Fs)@,) = 0,0,0)" auf Q (3.4.9)
F =V firein{:Qy —Re €’ (3.4.10)

erfiillen, um auf die Existenz von optischen Flachen zu schlief3en. Hierfiir gibt es verschiede-
ne Ansétze. Im Folgenden wird der Ansatz von Haker und die Variationsmethode von Oliker
erldutert. AnschlieSend wird der Formalismus des Monge-Problems und die Relaxierung von

Kantorovich zur Bestimmung von optimalen mappings dargestellt.
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3.4.1 Rotationsfreie mappings nach Haker

Wir orientieren uns in diesem Abschnitt an der Ausarbeitung [9]. Dieses Verfahren wurde von
Adrien Brunetonin [21] fiir die gleiche optische Fragestellung verwendet wie in dieser Arbeit°.
Die Grundidee dieses Ansatzes besteht darin, ein initiales mapping & : Qy — Qy zu bestim-
men, das die Dichte I, auf Q, in die Dichte Iy auf Qy tberfiihrt, d.h.

L(@y) = Iy(F (@) det(DF (@) (3.4.11)

aber nicht zwangsldufig die geforderte Bedingung der Rotationsfreiheit erfiillt.
In einem iterativen Verfahren wird anschlieRend das mapping & so verindert, dass die Ro-

tation verkleinert wird. Grundlage fiir dieses Verfahren ist, dass die Eigenschaft (3.4.11) fiir
Fi=Fos!
erhalten bleibt, falls s: Q, — Q, ein Diffeomorphismus mit
Ly (@y) = I (s(@y)) | det(Ds(@y))]
ist. Mit Hilfe einer Evolutionsgleichung wird die Abbildung s so bestimmt, dass
Fosl=v(

fiir eine skalare Funktion { gilt. Aufgrund der dquivalenten Eigenschaften (3.4.7) bis (3.4.10)
gilt fiir
F=Fos!

die nach Lemma 3.2 geforderte Rotationsfreiheit.

3.4.2 Monge-Kantorovich-Formulierung des Reflektorproblems nach Oliker

V. Oliker hat die schwache Losung fiir den Fall hergeleitet, dass das optische System nur aus
einer reflektierenden Flidche X, besteht. Von dieser schwachen Formulierung ausgehend ge-
ben wir die Ubertragung in den Monge-Kantorovich-Formalismus wieder, so dass das nicht-
lineare Optimierungsproblem zur Bestimmung der schwachen Losung auf ein lineares Pro-
blem iibertragen werden kann (Wir orientieren uns an der Ausarbeitung [16]). Hierbei ist
allerdings zu beachten, dass dieser Ansatz nur fiir den Fall, dass die Ziellichtverteilung im

Fernfeld (¥ = Qg c S?) definiert wird und nicht leicht auf den Fall einer vorgegebenen Be-

Speziiglich einer Punktlichtquelle
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

leuchtungsstérke {ibertragen werden kann. Sei Z, die Losung des schwachen Reflektorpro-
blems, d.h. Z, ist definiert durch den Polarradius p : Qy — R* (siehe Abschnitt 3.3.1 auf Seite
32 und Bemerkung 3.4 auf Seite 36) mit

p@y = int P&
dyeQy 1 — {0y, Oy)

Fiithren wir die reziproke Fokalparameterfunktion A(@y) := !/ p@y) €in, so erhalten wir fiir
den Polarradius die dquivalente Gleichung

inf — ! —— .
dweQy M@y) (1 —(Dy, D))

pldy) = (3.4.12)
Sei zu einem @, der Einheitsvektor @y derart, dass p(@y) auf @y das Infimum annimmt.
Dann fiihrt die Dualitét

1 1

- — /1_' —
POD = o= @now Y @)@y ae)

(3.4.13)

zu der Definition des Reflektorpaares.

Definition 3.2 (Reflektorpaar). Zwei Reflektoren X, und Z, zu einem Funktionenpaar (p, 1) €
C(Qy,RY) x C(Qy,R*), das

1

0,):= inf 4.14
P = e M@ (LG e)) (5419
Ady) := inf 1 (3.4.15)

Bye0, p(@) (1~ (Dy, D))

erfiillt, heifsen Reflektorpaar zu (p, A). Die Bezeichnung als Reflektorpaar geht darauf zuriick,
dass mit Hilfe der Funktion A auf dieselbe Weise wie fiir p ein Reflektor durch Z)(dw) :=

AMowy)oy definiert werden kann.

Das Produkt der Polarradien p und A zu einem Reflektorpaar erfiillt fiir alle (@, Dy) € Qy x

Qy die Ungleichung

1
@)A(y) = inf in — — —
PPN = 20, ve0, A@v)p@y) (1 — (@, dw))?

1
A@w)p @) (1 — @y, D))

V @y, &) €QyxQu.  (3.4.16)

Diese Ungleichung bleibt bei Anwendung des Logarithmus fiir alle (@, ®y) € Qy x Qy erhal-
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

ten und es folgt

log(p@)A@y)) <= —(log(p(@y)A@y))) —2(0g(1 —(@y, Dy)))
< log(p(dy)) +1log(A(@y)) < :log(l - (&')X,&')\y)l. (3.4.17)
—iK (@)

Somit ist (Z,Z,) genau dann ein Reflektorpaar, wenn diese Ungleichung V (@, ®y) € Q x
Qy gilt.
Der Reflektor Z,, erfiillt fiir @, das mapping ﬁ’zp (Wy) = @y genau dann, wenn

1
Mary) (1 —{@y, Dw))

p(&)x) =

erfiillt ist. Daraus folgt, dass das mapping s , - Qy — Qu, das durch den Reflektor Z, gene-

riert wird, definiert werden kann durch
Fs, (@y) = Dy € Qyllog(p(@,)) +logA@y)) = K(@y, @)} (3.4.18)

Wir definieren das Funktional & auf den mappings ¢ : Q, — Qy durch

5= [[ K@y e@paa, (3.4.19)
Q

X

Das folgende Theorem bringt das mapping s , in Zusammenhang zum Funktional &.

Theorem 3.4. Gegeben sei ein Reflektorpaar (Z,,X,), so dass X, das Reflektorproblem lost.
Dann minimiert das zugehérige mapping ﬁzp das Funktional (3.4.19) unter allen mappings,
die die Dichte I, schwach in Iy iiberfiihren. Dariiber hinaus gilt die Umkehrrichtung fast iiber-
all. Alle mappings, die das Funktional (3.4.19) minimieren sind mit ﬁzp bis auf Nullmengen

identisch.

Beweis. Aus der Definition der schwachen Losung geht hervor, dass die Ubertragung der
Dichten nach Gleichung (3.4.1) fiir das zugeho6rige mapping ﬁzp erfiillt ist. Wie bereits her-

geleitet wurde, erfiillen die Polarradien p und A des Reflektorpaares die Bedingung
log(p(@y)) +log(A(@y)) < K(@y, D). (3.4.20)

Die Gleichheit wird angenommen, wenn &y = .% (@) gilt. Zu zeigen ist, dass Fs , das Funk-

tional & minimiert.
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Sei  eine beliebige Zuordnung, die die Gleichung (3.4.1) erfiillt, dann gilt fiir alle & € C(Qy,R)

ff h(cf(&’)))lxd&'): f h(w)Iydo. (3.4.21)
o £@Qy)
=Qp

Die Minimaleigenschaft von % kann nun hergeleitet werden durch

v

|, k@c@naa, JJ.. ogtp@p+1ogic@on] 1y day
X X

ff IOg(P(E)x))deJ’x+ff log(A(& (@) Iy ddy
QX Q?(

3.221) ff log(p (@) I, dédy + ff log(A(@)) Iy diy
Qy Qy

ff log(p(&’)x))lxd[[)x+ff log(A(Fs, (@) Iy di,
QX Q?(

ffﬂ log(p(@y)) +10g(A(Fs, (@) I, did,
. 2 ’

=K(@,F (@)

fo K@y, Fs, (@) ddy.
X

(3.4.18)

Die Eindeutigkeit des minimierenden mappings bis auf Nullmengen wird durch diese Inte-

gralrechnung ebenfalls begriindet. O

Dieses Theorems bringt die schwache Lésung des Reflektorproblems in Zusammenhang
mit dem Minimum des Funktionals & auf der Menge der mappings, die I, in By transformie-
ren. Durch die Eindeutigkeit des mappings kann das Minimum des Funktionals in diesem
Funktionenraum mit der schwachen Losung identifiziert werden. Wir konnen die Umformu-

lierung des Problems als Monge-Problem zusammenfassen.

Optimierungsproblem 3.1 (Monge-Formulierung des Reflektorproblems). Gesucht sind fiir

die Dichten I, und By und die Kostendichte K das optimale mapping Z, fiir das

fZQX —>Q\y
QX

F=_inf ffK((DX,E(J)X))IXd&) ffh(é((f)))lxd&)zf/h(&))l\yd&)‘v’hecgo((lq/)
QX Q?C
gilt.

Wenn es eine schwache Losung gibt, so kann auf den Reflektor indirekt durch dieses map-

ping geschlussfolgert werden. Die Existenz eines solchen mappings ist im Allgemeinen nicht
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

sichergestellt und dariiber hinaus ist das Monge-Optimierungsproblem ein nichtlineares Op-
timierungsproblem. In der Relaxierung des Monge-Kantorovich Formalismus sucht man hin-
gegen nach einem schwach definierten mapping, das mit einem Mal$ 7 auf der Produkt-o-
Algebra auf Q, x Qy in Zusammenhang steht. Die duale Losung des Monge-Kantorovich-
Problems kann direkt mit der schwachen Losung identifiziert werden und soll nun eingefiihrt
werden.

Da p und A stetige Funktionen sind und die Ungleichung (3.4.17) erfiillen, fithren wir den

Funktionenraum
adeXxQ\y ={n€C(Qy,R) x C(Qy,R) N1 (@y) +n2(@y) < K(Dy,Dy)}

der zuldssigen Funktionen ein.
Zur Herleitung des dualen Monge-Kantorovich-Problems definieren wir fiir n € C(Q,,R) x
C(Qy,R) das Funktional

G = f[ M@ L@ dd, + f 12(@w) Ty (@) did

L (@)
ffﬂl( 0y)———=day Qv +/ n2(Dy) f(@w) doy Q|
1Qwll 1241 ——

—ff diy Qv =[f da,
Q
L Iy(@w) .
—dw,d

foff m@y ||pr|| B T S

Iy (@y) I\}'(w\}'))> Lo

dw.,dowy.

ffff< M @pm2@), (nsz T At
Q)(XQ‘I’

Die Schreibweise des Funktionals ¢ kann vereinfacht werden durch

Gn) = ”<(n1,nz)’(“éﬁ’ ||slzill)>

Theorem 3.5. Seien (p, A) die Polarradien eines Reflektorpaares. Dann sind folgende Aussagen

(3.4.22)

L' (QyxQy,R)

dquivalent:
1. n:= (logp,logA) maximiert das Funktional ¢ in admq xq, -
2. Der Reflektor Z, zum Polarradius p ist eine schwache Losung des Reflektorproblems

Beweis. siehe [16, Theorem 3.4] O
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Falls ¢ das Maximum in der Funktion n € ad mq, xq, annimmt, dann ist durch p(®@y) :=

e @2 der Polarradius der schwachen Lésung gegeben.

Optimierungsproblem 3.2 (duale Monge-Kantorovich-Formulierung des Reflektorproblems).
Gesucht sind s € C(Qy,R) und q € C(Qy,R) mit

$(@y) + q(@y) = —log(l —(@y, D)),

so dass das lineare Funktional
f f S@ L@y + ff GG Iy @) divy
Q, Qu

maximiert wird.

Aus der Losung (s, g) dieses Optimierungsproblems kann das zugehérige mapping & be-

stimmt werden aufgrund der Forderung
F (@) = by © s(@y) + q@w) = —log(1 — (@y, D))

Der Vollstandigkeit halber geben wir an dieser Stelle noch das primale Monge-Kantorovich-
Problem an, dessen Losung in einem direkten Zusammenhang zum gesuchten mapping EAZP
steht.

Optimierungsproblem 3.3 (primale Kantorovich-Formulierung des Reflektorproblems). Ge-

sucht ist das MafS p1: 0(Qy x Qy) — R* mit den Marginalen

u(DQy, Qy) = ff I (@0y)ddy YDQy € 0(Qy) und
DQ,

H(y, DQy) = ff Iy (@y)ddy YDQy € 0(Qy),
DQy

so dass das lineare Funktional

ffff —log(1—(@y, dy)) ddyddy

QX XQ\II
minimiert wird.

Aus dem ProduktmaR kann das mapping Fs , approximiert werden (siehe Abschnitt 3.4.4).
Die Idee hinter dieser Rekonstruktion ist, dass jedes schwach definierte mapping ¢ : Qy — Qg
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ein MaR 7¢ induziert (siehe Abbildung 3.8) mit
,u(Mmf‘l(Y)) =T(MxY)=v(l(M)NnY)mit Y cQy und M < Qy.

Diese Variante des Monge-Kantorovich-Algorithmus hat nur Giiltigkeit fiir den Fall, dass das
optische System aus einem Reflektor besteht. Um zu einer allgmeingiiltigeren Formulierung
des Ansatzes zu gelangen wird in den folgenden Abschnitten eine allgemeinere Formulierung

des Monge-Problems und der Relaxierung durch Kantorovich dargestellt.

3.4.3 Das Monge-Problem des optimalen Transportes

Wir orientieren uns in diesem Abschnitt an der Ausarbeitung [4]. Seien zwei nichtnegative

Radon MaBe u* auf Qy < $? und p~ auf Qy < S? gegeben, so dass die Energieerhaltung
1 Q) =g (Qw) (3.4.23)

erfiillt wird. Das Monge-Problem des optimalen Transports sucht ein injektives mapping & :
Qy — Qy, das die Dichte p* in die Dichte u~ tiberfiihrt, d.h.

p (B) = p'(&Fl(B)V u messbaren Mengen B.. (3.4.24)

In unserer Problemstellung sind die MaBe u* durch die positiven und differenzierbaren Dich-

ten I, auf Qy und Iy auf Qy definiert durch

A

ffA L (@y)dd, Y AcQy messbar

u(B)

ff Iy (Ow)ddw YB < Qg messbar.
B

Die Energieerhaltung (3.4.23) ist dquivalent zu der Forderung
L(®y)dw =[[ Iy (Ow)dd
/»[Qx x Wy X Oy ywy v
und die Bedingung (3.4.24) zu
I,(@y) = Iy (F (@) det(DF (@), (3.4.25)

falls & ein Diffeomorphismus auf Q, ist.
Zusitzlich bewertet eine Transportkostenfunktion ¢: Qy x Qg — R* durch das Transportkos-

49
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tenfunktional
€] ::ffg c(a)x,@(@))dw@%):ffg @y, F (@) L@y dQy
X X

das mapping % . Das Monge-Problem besteht darin, unter allen mappings, die die Gleichung

(3.4.24) erfiillen, das Minimum
F*=inf{GIFNF :Qy— Qu, T =p"} (3.4.26)

zu finden.

Um die Relevanz dieses Ansatzes fiir das Beleuchtungsproblem (siehe Abschnitt 2.5) zu be-
legen soll nun ein moglicher Zusammenhang zwischen dem optimalen mapping und der
Existenz eines entsprechenden optischen Systems hergestellt werden. Nach Steven Haker in

[9} S. 228] ist das optimale mapping & * fiir die Kostenfunktion
c(@y, D) = |l@y - Dwll®

der Gradient einer konvexen Funktion ¢ : Q, — R. In diesem Fall kann die Gleichung (3.4.25)

als partielle Differentialgleichung
Iy(@y) = Iy (V{(@y))] det(HE (0y))]. (3.4.27)

des Typs Monge-Ampere geschrieben werden. Dieser Zusammenhang erinnert an die Model-
lierung nach J. S. Schruben, da die partielle Differentialgleichung (3.1.5), die die Optik be-
schreibt, vom selben Typ ist. Der Zusammenhang zwischen dem optimalem mapping und
dem Beleuchtungsproblem (siehe Abschnitt 2.5) soll nun noch etwas ndher betrachtet wer-
den. Die Eigenschaft

F*=V(

ist dquivalent zur Wegunabhingigkeit des Integrals, bzw. dem Verschwinden des Ringinte-

grals
fW(@%dhf F*(@y)-dl=0
T T

tiber jede geschlossene Kurve T < Q, und der Wirbelfreiheit
rot(F*) (@) =0

des mappings & * fiir alle 7 € I1.
Wegen der Verkniipfung zwischen dem mapping und dem Normalenvektorfeld kann zur Aus-
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legung von Optiken ein optimales mapping berechnet werden, zu dem dann ein optisches
System berechnet werden kann®. Hierbei bietet sich die Verwendung der quadratischen Ab-
standsfunktion besonders an. Jedoch ist das Monge-Problem aufgrund der hohen Nichtli-
nearitit der Hessematrix und méglicher Singularititen in der Funktion % numerisch sehr
schwer zu 16sen. Haker gibt in seiner Verdffentlich [9] eine Alternative zur Losung der nichtli-
nearen partiellen Differentialgleichung an, indem das Problem erst eindimensional in beide
Richtungen gel6st wird und anschliefend im Losungsraum die Rotation iterativ verringert
wird. Kantorovich vereinfachte das Monge-Problem 1940 durch eine Relaxierung, die im Fol-

genden dargestellt werden soll.

3.4.4 Die Relaxierung des Monge-Problems durch Kantorovich zum primalen
Monge-Kantorovich-Problem

Die Relaxierung von Kantorovich besteht darin, nicht mehr diffeomorphe mappings
F Qy — Qy zu bestimmen, sondern die Losung im Raum der Produkt-MaRe auf der Bo-
relschen o-Algebra %8 (Q, x Qy) mit Marginalen y* zu suchen. Da MaRe Nullmengen ver-
nachlissigen, stellen beispielsweise Nullstellen der Jakobideterminante det(D.%) kein Pro-
blem dar, so dass dieser Ansatz in einem grofleren Losungsraum sucht, der auch nicht tiberall

definierte Losungen zuldsst. Wir bezeichnen diesen Mallraum mit
M= {Radon-MaBe pauf Qy x QT p=p",Tg,pu= ,u_}. (3.4.28)

Das relaxierte Produktmalfunktional ist

Jlyl == f[ff @y, Ow)dW@y, Hw). (3.4.29)
Q)(XQ‘I’

Gesucht ist nun zu p* das MaR p* mit J{p*] = minge 4 J[p]. Dieses Problem wird das primale
Monge-Kantorovich-Problem genannt.

Der Zusammenhang zwischen dem mapping % * und dem ProduktmaR p* wird im folgen-
den Beispiel 3.3 verdeutlicht, im nachsten Abschnitt formuliert und fiir den diskreten Fall als

lineares Programm 3.1 gefasst.

Beispiel 3.3 (1D). In diesem Beispiel wenden wir die bisher hergeleiteten Formeln auf ein ein-
dimensionales Problem an. Sei Q,, = [0;1] = Qy und Iy = 1 = Iy die Dichten der MafSe u*. Die
Lésung F* des Monge-Problems unter der Kostenfunktion c(x,y) = (x — y)2 ist die Identitdt
F*(x) = x. Wir wollen das Monge-Kantorovich-Problem auf einer dquidistanten Diskretisie-

rung von ), und Qy mit Schrittweite h = 1/n lésen. Die MafSe u* ergeben auf jedem Teilgebiet

6siehe hierzu die Aussage des Theorems 3.2 in Abschnitt 3.4
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die Zahlen u = p; = h. Das induzierte Maf§
gt (B) = ut ({m e RI(r,F* (M) € E}) V E€ B(Qy x Q) (3.4.30)

lost das Monge-Kantorovich-Problem (siehe [4, Seite 5]). Dieser Zusammenhang wird in Abbil-

dung 3.7 dargestellt. Die Relaxierung bezieht sich also darauf, dass nicht mehr die Frage ge-

Ha | Mg He | Hu Hag

+ 7
MHe - —--7" '

Abb. 3.7: Darstellung des Zusammenhangs zwischen einem mapping und dem Produktmafys.

stellt wird, welche Punkt-zu-Punkt-Zuordnung die Mafse ineinander iiberfiihrt, sondern, wie
die einzelnen Mengen zusammenhdngen, bzw. wie Teilmengen von Q) abgebildet werden. Da-
durch verdoppelt sich die Anzahl der Freiheitsgrade, jedoch héngt das Funktional und die Ne-

benbedingungen linear von dem Produktmafs ab.

Damit wird dargestellt, wie aus der Losung des Monge-Problems die Losung des relaxier-
ten Monge-Kantorovich-Problems hergeleitet werden kann. Wie jedoch aus der Losung des
Monge-Kantorovich-Problems ein mapping rekonstruiert werden kann, ist an dieser Stelle

noch offen.

Konstruktion eines optimalen mappings aus der primalen Monge-Kantorovich-Lésung

Zu 0y € Qy sei By, eine kleine offene Umgebung von @,. Die Dichte I, definiert in By, eine
Energie [, I(&,)dd,. Wir wihlen eine Diskretisierung {Q{yl jel ...0} mit o € N* von Qy
Wy

mit den Mittelpunkten &Y, € ny. Die Mazahl u* (B, x Q) sagt aus, mit welchem Anteil die
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Energie in By, auf die Teilmenge Qfl, abgebildet wird. Diese geometrische Bedeutung wird in
Abbildung 3.7 und 3.8 verdeutlicht und erméglicht uns eine heuristische Art der Konstruktion
eines mappings durch

4 . .

$ p i, <0

FH@,) =" . (3.4.31)
' (B, x Q)

Diese Definition stellt eine Anniherung an das optimale mapping % * dar. Betrachtet man
das Beispiel 3.3 in Abbildung 3.7, so sieht man sofort, dass das mapping %* bei geeigneter
Wahl der Mittelpunkt identisch ist zu dem gesuchten mapping G

Aufgrund der geometrischen Eigenschaft der Kostenfunktion wird fiir das minimierende Pro-
duktmaR p* in der Regel gelten, dass die Teilmenge ¥ mit u* (B, x ¥, ) >0und p* (B, x
(P\¥3 ) = 0 klein ist und geringen Abstand zu @, hat. Dieser Sachverhalt fiihrt zu einer
schwachen Besetztheit des ProduktmalRles u*, die fiir effiziente Berechnungsroutinen (siehe
Abschnitt 5.5) ausgenutzt werden kann. Aus dieser Beobachtung folgt, dass die obige Defini-
tion des mappings Z* sinnvoll ist, da der Punkt (T)X in ein Gebiet auf ¥ abgebildet wird, in
das auch die Energie aus B, abgebildet wird.

Diese Motivation der Definition des mappings % * kann auch eingesehen werden, wenn man
davon ausgeht, dass zu dem konkren Problem ein optimales mapping % * existiert. In diesem
Fall wird das MaR8 u* von diesem induziert. Sei By, eine offene Umgebung in W, so gilt fiir
das Mal§ u*

ut(Bs, N F*(Ba,) = " (By, x Bg,) = (F*(Bz )N Bs,).

Wiéhlt man eine Folge von Diskretisierungen von Q, in der fiir alle @, eine Teilfolge existiert,
die auf die Menge {®,} konvergiert. Fiir das mapping F* gilt in diesem Fall der Zusammen-
hang
) o u*(Bs, ,Qk)o!
F*@)= lim lim) —2 ¥ ¥
BEJX_’{(DX}O_’OO k=1 H(BE)X:Q\P)
zum Produktmal} p*. Eine diskrete eindimensionale Veranschaulichung dieses Riickschlus-
ses auf das mapping %* wird im Beispiel 3.4 dargestellt. Wir fassen das primale Monge-

Kantorovich-Problem nun als lineares Programm zusammen.

lineares Programm 3.1 (primales Monge-Kantorovich-Problem). Wir wdhlen zur Vereinfa-
chung der Notation die Indizierung i = (i1, i) und j = (j1, j2) .

Sei eine disjunkte Unterteilung der Mengen Qy undQy in {Qili =1,...,mlund {Q{I,Ij =1,...,0}
mit m, 0 € N und den Mittelpunkten &’);'C und cT){I, gegeben. Die MafSzahlen u* und u~ kinnen
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

.................................................

Abb. 3.8: Der Zusammenhang zwischen dem optimalen ProdukimafS u auf o(Qy x Q) und einem bis
auf Nullmengen eindeutigen mapping % . Das Maf enthdlt die Information, in welche Teil-
mengen von Qy die einzelne Teilmenge von Q, wie stark abgebildet wird, so dass das mapping
approximiert werden kann. Das Mafs ldfst den umgekehrten Schluss zu fiir die Umkehrabbil-

dung %!
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus
mit Hilfe der Dichten I und Iy berechnet werden durch

t= L,(&,)d®d, und T:z[f Iy (@y)ddy.
K; ffgh 1\ Wy X Hj v, v(wy y

Aufgrund der geforderten Energieerhaltung (3.4.1) gilt

Mit der Kostenmatrix C, deren Elemente mit c;,j := c(@ LT)\]{,) gegeben sind sollen die m - n

i
X’
MafSzahlen yi} jso bestimmt werden, so dass

m o
DY cijti (3.4.32)
i=1j=1
minimiert wird unter den Nebenbedingungen
o m . R
Z,U;J =ll:¢r,z,ul~,]f:u]?, fiirallei=1..mundj=1...0.
j=1 i=1

Diese (m + o) Nebenbedingungen lassen sich durch ein lineares Gleichungssystem der Form

Hi1,1
H1,2
1 1 : K@)
oo + 2
1 1 HER)
H2,1
H2,2 :
1 (Qy)
1 1 1 1 > (Q%p)
01 01 01 01 .
1 1 1 1 ’
B Q)
Hm,o
beschreiben.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

Beispiel 3.4 (1D). Wir betrachten das 1D-Beispiel in Abbildung 3.9. Das Mafs i1, zur Dichte I
soll unter quadratischer Kostenfunktion in das Mafs 1, zur Dichte B iiberfiihrt werden. Das Er-
gebnis des linearen Programmes ist das Produktmafs im unteren Teil der Abbildung. Eine Zeile
im Produktmap sagt iiber ein optimales mapping F* Qy — Qu aus, auf welche Intervalle
des Zielgebietes die Energie im zugrundeliegende Intervall des Urbildraumes abgebildet wird.
Dieser Zusammenhang findet sich in der gewichteten Mittelwertbildung (3.4.31) wieder. Auf
diese Weise wird eine Anndherung an das optimale mapping bestimmt, das in Abbildung 3.10
dargestellt wird.

My mit Dichte | H, mit Dichte B

Solution p

0.045
0.04
0.035
0.03
0.025
0.02
0015
0.01
0.005
1 5 10 15 20 25 30 35 40 a5 50 55 60

Abb. 3.9: Eindimensionales primales Monge-Kantorovich Problem. Das Mafs i1, zur Dichte I soll unter
quadratischer Kostenfunktion in das Mafs u, zur Dichte B tiberfiihrt werden. Das Ergebnis des
linearen Programmes ist das Produktmafs im unteren Teil der Abbildung.

3.4.5 Das duale Monge-Kantorovich-Problem
Das zugehorige duale Monge-Kantorovich-Problem sucht im Raum

Z:={wv) | (u,v) € L"(Q) x L' (Qu), u@,) + v(@y) < c(@y, dy)} (3.4.33)
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus
das Paar (u*, v*), auf dem das Kostenfunktional
K u,v] = ffﬂx w(@y) Iy (@) dQy +ffgw V(i) Iy (Og)dQwy (3.4.34)
maximiert wird unter den Nebenbedingungen
U@y) + V(@) < cdy,dw) Y dyeQy, dy € Qy. (3.4.35)

Der diskrete Fall wird im Linearen Programm 3.2 zusammengefasst.

lineares Programm 3.2. Fiir eine Diskretisierung der Mengen, der MafSe und der Kostenfunk-
tion wie im Linearen Programm 3.1 besteht die Aufgabe des diskreten dualen Monge-Kantorovich-

Problems darin, die Werte u; miti=1...m und vj mit j = 1...0 zu bestimmen, so dass
m o
DUl + ) Vi (3.4.36)
i=1 j=1
maximiert wird unter den Nebenbedingungen
ui+vi<cj fiiri=1...mnundj=1...op. (3.4.37)
Fiir die quadratische Kostenfunktion
~ ~ T R ~
u(y) +vlwy) < Ellwx —wyll; YV oyeQy, Oy €EQy
und die Funktionen
~ L. o ~ ~ L. 9 ~
((@y) = zllwxllz —u(wy), I'oy):= Ellwxpllz - v(wy) (3.4.38)
sind die Nebenbedingungen (3.4.35) dquivalent zu
((@y) + T (@) = Dy, D) (3.4.39)
und das Problem der Maximierung von (3.4.34) ist 4quivalent zu der Minimierung von
21,1 = ffg (@) Ly (@) didy + f f F(@w) Iy @y)diy
X Wy

fiir alle integrierbaren Funktionen ¢ und T, die die Nebenbedingung (3.4.39) fiir alle @, € Q,
und &y € Qg erfiillen. Wir fassen diese Umformulierung in einem weiteren linearen Pro-

gramm zusammen:
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

lineares Programm 3.3. Fiir eine Diskretisierung der Mengen, der Mafse und der Kostenfunk-
tion wie im Linearen Programm 3.1 besteht die Aufgabe des diskreten dualen Monge-Kantorovich-

Problems darin, die Werte(; miti=1...m undT j mit j = 1... 0 zu bestimmen, so dass
m o
2 Cimi + T (3.4.40)
i=1 j=1

minimiert wird unter den Nebenbedingungen

(i+Tj2@,0%) firi=1...mundj=1...o. (3.4.41)

Falls u; und v; miti=1...mund j = 1...0 die Losung des Linearen Programmes 3.2 ist, erge-
ben sich die Zahlen {; undT j durch Anwenden der Gleichungen (3.4.38) mit

1 . |
~>1112 ~ 2
Ci =Syl = wi, Tj = Slldyll; — vj.

Die mo Ungleichungs-Nebenbedingungen kénnen in der Matrix-Schreibweise

1 1 (@), @)
(@), %)
1 1 1 .
1 1 (2
1 1 Cm
=
1 1 I,
I
1 1
1 1 T
1 1 @y, &%)

geschrieben werden. Diese Matrix ist reguldir und besitzt2mo nicht-null-Eintrdge und das Glei-

chungssystem m + o Unbekannte.

Riickschluss von der dualen Monge-Kantorovich-Losung auf das optimale mapping

Sei { die Losung des Linearen Programms 3.3, so stellt folgendes Theorem den Zusammen-

hang zum gesuchten optimalen mapping & * her (siehe [4, Theorem 3.1 Seite 13]).
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3.4 Das optimale mapping und der Monge-Kantorovich-Formalismus

Theorem 3.6. Die Funktion &* : Qy — Qy := V{ lost das Monge-Problem (3.4.26) bei qudra-
tischer Kostenfunktion.

Beweis. siehe [4, Theorem 3.1 auf Seite 13] O

In Abbildung 3.11 werden das berechnete mapping aus den Linearen Programmen 3.1 und
3.3 zu der primalen und dualen Formulierung des Monge-Kantorovich-Problems miteinan-

der verglichen.
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3 Modellierungen des Beleuchtungsproblems mit einer Punktlichtquelle

reconstructed mapping a*
20 T T T

151

10

5

s

10 15

Abb. 3.10: Das mapping F* : Qy — Qv wird aus der primalen Lisung des Formalismus nach Kantoro-
vich des Monge-Problems durch die gewichtete Mittelpunktsbildung (3.4.31) bestimmt.

Berechnetes mapping a * aus dem dualen Monge-Kantorovich-Problem Berechnetes mapping a * aus dem primalen Monge-Kantorovich-Problem
0 20 -
- L T LV 1 ST
¥ I \ [ —
m— ] I Cn
15 [ ‘ =

BRI e S T
7
A
+
|

“rH ,ﬂ )
et st
0 0 |
JHH ST

H] ]

4— T i+
I .

L " T T T T T T T T T
20 -15 -10 5 0 5 10 15 20 2 15 -10 5 0

ADbb. 3.11: Das Gitter 11 der Mittelpunkte it; im Vordergrund der Zeichnungen soll auf die Ebene Qg im
Hintergrund abgebildet werden. %* ist das berechente mapping. Im linken Bild wurde die-
ses mapping aus dem dualen linearen Programm 3.3 der Monge-Kantorovich-Formulierung
erzeugt und im rechten Bild aus dem primalen linearen Programm 3.1. Es sind geringe Un-
terschiede erkennbar.
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4 Modellierung des Beleuchtungsproblems

mit ausgedehnter Lichtquelle

Die bislang betrachteten Ansitze approximieren die ausgedehnte! Lichtquelle y c R® als
Punkt f € R3. Die resultierenden Probleme stellen bereits nichtlineare partielle Differenti-
algleichungen, Integralgleichungen, Minimierungsaufgaben oder hochdimensionale lineare
Programme dar. Durch die reale Ausdehnung der Lichtquelle gelten die Modellierungen mit
Punktlichtquellen nur approximativ, in Abhdngigkeit von der relativen Grof3e des optischen
Systems zur Ausdehnung der Lichtquelle. Dieses Verhalten wird im folgenden Beispiel illus-

triert.

Beispiel 4.1 (Ungiiltigkeit der Punktlichtquellen-Approximation fiir kleine optische Syste-
me). Dieses Beispiel soll die allgemeine Ungiiltigkeit der Punktlichtquellen-Approximation
verdeutlichen. Je gréfser die Lichtquelle im Vergleich zur Optik wird, desto unschdrfer wird
die generierte Abbildung. Wir wiihlen zu Verdeutlichung die Optik aus Abbildung 4.1a, die
mit dem PDE-Ansatz aus Abschnitt 3.1 berechnet wurde und das Portrait von Gaspard Monge
im Fernfeld generiert (Abbildung 4.1b). Wir setzen anstelle der Punktlichtquelle quadratische
Lichtquellen ein, die dieselbe Lichtstirkeverteilung realisieren. Es werden verschiedene Aus-
dehnungen der Lichtquelle betrachtet. In Abbildung 4.2 kann man den verursachten Effekt
der stirkeren Unschdirfe der generierten Lichtstirkeverteilung in Abhdngigkeit von der Aus-
dehnung der Lichtquelle beobachten. Aus diesem Grunde ist es wichtig, die Ausdehnung der

Lichtquelle zu modellieren

Innerhalb der Modellierungen mit Punktlichtquelle gibt es verschiedene Ansétze, bzw. Mog-
lichkeiten, die Effekte durch die Ausdehnung der Lichtquelle zu beriicksichtigen, diese je-
doch nicht direkt zu modellieren. Einige Ansidtze werden in dem néchsten Abschnitt angeris-

sen.

IEine ausgedehnte Lichtquelle wird beschrieben durch die Leuchtdichtefunktion auf eine parametrisierbaren
zweidimensionalen Untermannigfaltigkeit des R3
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

4.1 Ansitze zur Beriicksichtigung der Ausdehnung der Lichtquelle
unter Approximation der Lichtquelle als Punkt

Es gibt verschiedene Méglichkeiten, die Unschérfe der generierten Lichtverteilung durch die
reale Ausdehnung der Lichtquelle bereits in Ansdtzenmit Approximation der Lichtquelle als

Punkt zu beriicksichtigen. Einige Ansétze sollen hier vorgestellt werden.

rekursive Anderung der Ziellichtverteilung William Cassarly erwihnt in dem Artikel
einen Ansatz, der auf allgemeine Modellierungen angewandt werden kann. Zu einem beliebi-
gen Algorithmus bezeichne O (By) das optische System, das durch den Algorithmus berech-
net wird. Die durch O mit ausgedehnter Lichtquelle realisierte Beleuchtungsstdrkeverteilung
ist B(9). Falls B(9) von der Zielverteilung abweicht, d.h.

B(O(By)) # By,

Nl B

[deg)

. : 1x1
0.0000 0.0005 0.0019 0.0042

(@) ®)

ADbb. 4.1: Die generelle Ungiiltigkeit der Punktlichtquellen-Approximation soll mit diesem Beispiel ver-
deutlicht werden. (a) Diese optische Fldche wurde mit Hilfe der Modellierung aus Abschnitt 3.1
berechnet. (b) Die generierte Lichtverteilung dieser Optik
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4.1 Beriicksichtigung der Ausdehnung unter Punktlichtquellen-Approximation

dann kann der Algorithmus in einer Rekursionsschleife angewandt werden mit manipulierter

Ziellichtverteilung durch die Vorschrift

Bl = B\p
By

Br1 BOG

ne

Wenn die Abweichung der erzeugten Verteilung B, von der eigentlichen Ziellichtverteilung
By klein genug ist, kann die Rekursion abgebrochen werden. Cassarly erwahnt verschiedene
Quellen, nach denen dieser Ansatz nur lokal konvergent sein soll, d.h. eine gute Startlésung
bendtigt. Dariiber hinaus nimmt die Rekursionsformel die Bereiche nicht in Betracht, in de-
nen By nicht definiert ist. Aus diesen Griinden schlidgt Cassarly eine rekursive Verdnderung
des source-target-mappings vor. Die konkrete Modellierung ist jedoch nur fiir eindimensio-
nale, bzw. rotationssymmetrische Probleme anwendbar, so dass an dieser Stelle nicht darauf

eingegangen wird.

@ (e) ®

Abb. 4.2: Zusammenhang zwischen der Grofse der Lichtquelle und der generierten Unschdrfe im Bild.
Mit der Grdfse der Lichtquelle nimmt die Unschdrfe der generierten Lichtstdirkeverteilung zu.
(a) Punktlichtquelle. (b) Kantenlidnge 0.25mm. (c) Kantenldnge 0.05mm. (d) Kantenlinge
0.1mm. (e) Kantenlédnge 0.5mm. (f) Kantenlinge 1mm.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Generierung von scharfen Kanten in der Lichtverteilung Die Unschérfe durch ausgedehn-
te Lichtquellen wirkt sich besonders stark auf scharfe Hell-Dunkel Grenzen aus, die eine be-
sondere Bedeutung in der automobilen Beleuchtung spielen. Eine Méglichkeit, diese schar-
fen Grenzen auch mit einer ausgedehnten Lichtquelle zu realisieren, ist die Quellbildkorrek-
tur. Diese basiert darauf, in dem Algorithmus die Lage der angenommen Punktlichtquel-
le variabel zu gestalten. Zu jedem Punkt o der optischen Fliche wird mittels des Forward-
Raytraces berechnet, welcher Randpunkt der Lichtquelle auf den obersten Punkt des zuge-
horigen Lichtquellenbildes & (y, o) (siehe Abbildung 4.4b) abgebildet wird. Falls dieser Punkt
oberhalb der Hell-Dunkel-Grenze ist wird im nichsten Schritt der entsprechende Ort auf der
Lichtquelle fiir die Punktlichtquelle angenommen und die optische Flache korrigiert. Auf die-
se Weise werden Optiken generiert, deren Lichtquellenbilder an die zu realisierende Hell-
Dunkel-Grenze heranreichen, aber diese nicht iiberlagern und damit auch nicht verfalschen.
Ein Beispiel mit relativ weicher Hell-Dunkel Grenze ist in Abbildung 4.3 dargestellt. Hier sieht
man, dass die ausgewahlten Lichtquellenbilder an die Hell-Dunkel Grenze heranreichen, die-

se aber nicht tiberschreiten.

Y: | (547.5 [cd] at (2.30, -2.50) 51.7 [Im]) of "candela detector view"
[deg] | ;

L DN H— ]

-40 -30 -20 -10 0 10 20 30 40

EEE——TTTe———— T

05 55 54.8 5475

Abb. 4.3: Die Lichtquellenbilder einer ausgedehnten Fléiche liegen an der Hell-Dunkel Grenze ohne diese
zu iiberschreiten.

Anpassen der Modellierung mit einer Faltung aus Abschnitt 3.2 In dem Artikel [14] wird
eine theoretische Erweiterung der Modellierung auf ausgedehnte Lichtquellen gegeben. Die
Lichtquelle kann durch eine endliche Anzahl von Punktlichtquellen y; € REmiti=1,...,n
modelliert werden. Die Lichtstirkeverteilung I, der ausgedehnten Lichtquelle muss gleich

der Summe .
Z Iy, =1y
i=1
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4.1 Beriicksichtigung der Ausdehnung unter Punktlichtquellen-Approximation

der Punktlichtquellen sein. Analog zur Formel (3.2.1) kann die Beleuchtungsstérkeverteilung

in dem Punkt y € ¥ berechnet werden durch die Summe

Bew(3) =Y f f 1y @3, (i M)\ [T oz, (i 1)y — F (i, m) d.
l':ll_[Z

1

Wihlt man eine dichte Folge ({y;1i = 1,...,n}), in y, dann erhélt man im Grenziibergang nach

[14, Seite 539] die Integralgleichung

Bc,w(y)=ffffLX(x,cT)zl (x, M) { Ny, @s, (x,n)>\/Sgll?)zl(x,n)5c(y—ﬂ(x,m)dxdn
X

M5,

tiber die Leuchtdichte der Lichtquelle. Diese exakte Beschreibung der Lichtquelle wird aller-
dings durch die zusitzliche Verwendung der Faltung verfélscht.

Alternativ kann auch die urspriingliche Modellierung mit Punktlichtquelle von Mooiseev fiir
ausgedehnte Lichtquellen verwendet werden. Die Abbildung 4.2 zeigt, dass durch die Aus-
dehnung der Lichqtuelle eine Unschirfe auf die generierte Verteilung aufgebracht wird. Eine
solche Unschirfe kann mathematisch durch eine Faltung erzeugt werden, wobei die Starke
der Unschirfe durch die Breite der Faltungsfunktion definiert wird. Da in der betrachteten
Modellierung die Beleuchungsstirke mittels einer Faltung berechnet wird, kann durch eine
variable Breite ¢ : ¥ — R* die lokal unterschiedlich starke Unschirfe approximiert werden.
Da wir diesen Ansatz nicht weiter verfolgen verzichten wir an dieser Stelle auf eine Herlei-

tung der Funktion c.

Anpassung der schwachen Losung fiir ausgedehnte Lichtquellen Fiir die schwache Lo-
sung des Reflektorproblems durch den Oliker-Algorithmus werden die Fokalparameter der
Ellipsoiden so berechnet, dass die diskreten Lichtstréme auf den Zielpunkten generiert wer-
den. Fiir eine Punktlichtquelle ist dies sinvoll, da der gesamte Lichtstrom auf die Zielpunkte
abgebildet wird. In dem Artikel [6, ab Abschnitt 2.4] wird ein Ansatz beschrieben, um diese
Berechnung der schwachen Lésung fiir ausgedehnte Lichtquellen anzupassen.

Die generierte Beleuchtungsstéirke By (y;) am Punkt y; € W ist in diesem Fall nicht mehr rein
proportional von dem abgebildeten Lichtstrom ®; abhéngig, der auf den Ellisoiden E; trifft,
sondern zusétzlich antiproportional von der Grof3e des Lichtquellenbildes || 5 (y,Q;)ll. Dies
liegt daran, dass der Lichtstrom, der von der Lichtquelle auf eine Reflektorscherbe trifft, auf

das Gebiet des Lichtquellenbildes verteilt wird und somit die Beleuchtungsstdrke mit Zunah-
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

me des Lichtquellenbildes geringer wird, d.h.

Q;

Bo(yi) = ————.
o) =1 a0l

Um diesen Effekt der Ausdehnung der Lichtquelle auszugleichen, wird eine Variation des Oli-
ker-Algorithmus vorgeschlagen. Die Beleuchtungsstéirke By (y;) kann fiir lambertsche Licht-

quellen mit einer Leuchtdichte Ly berechnet werden durch

Bo(yi) = Lo ff 4

o3 (yi,EinX)

Optimiert man nun die Fokalparameter darauf, dass die korrekten Raumwinkel (von der Ziel-
fliche gesehen) fiir die geforderten Beleuchtungsstdrken angenommen werden, so umgeht
man den Antiproportionalitdt zur GroRe des Lichtquellenbildes. Fournier nennt diesen An-
satz PSA-basierten Algorithmus. Die Abkiirzung PSA steht fiir 'projezierten Raumwinkel’.

Allerdings beruht dieser Ansatz auf zwei weiteren Annahme:

1. Die Lichtquellenbilder der Ellipsoide miissen disjunkt sein, weil sonst fiir die Beleuch-
tungsstéirke an den Punkten der Zielflache verschiedene Reflektorscherben beteiligt

sind, was die Optimierung ungleich komplexer macht.

2. Die Lichtquellenbilder miissen die Zielfliche W fast vollstdndig {iberlagern. Diese For-
derung ergibt sich aus dem Ansatz von Fournier in Abschnitt 3.3.2, glatte Reflektoren
aus den diskreten Losungen zu erzeugen. In diesem Fall werden die Lichtstrome in
den Lichtquellenbildern gleichmifig auf ¥ verteilt. Wenn nun zwischen zwei benach-
barten Lichtquellenbildern, die die korrekte Beleuchtungsstdirke erzeugen, eine grolle
Liicke ist, dann wird die Verteilung der kontinuierlichen Losung geringere Beleuch-

tungsstdrken generieren.

Eine Losung wird in [6, ab Abschnitt 3.2] beschrieben. Das Gitter der Zielpunkte wird anfing-
lich dquidistant gewdhlt und anschliefend so optimiert, dass die Lichtquellenbilder einer
disjunkte Uberlagerung von ¥ nahekommen.

Die beschriebenen Ansétze versuchen, die Effekte der Ausdehung der Lichtquelle indirekt in
den Modellierungen zu beriicksichtigen, ohne die Ausdehnung direkt zu beschreiben und
basieren weiterhin auf der Punktlichtquellen-Approximation. Eine direkte Modellierung mit
ausgedehnter Lichtquelle kann helfen, diese Lésungen weiter zu optimieren und kann ins-
besondere in dem Fall Vorteile haben, wenn kleine Optiken mit grolRen Lichtquellenbildern

berechnet werden sollen. Im Folgenden ist y eine ausgedehnte und parametrisierte Fldche,
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4.2 Abbildungseigenschaften der Optik mit ausgedehnter Lichtquelle

deren Leuchtcharakteristik {iber die Leuchtdichte L, : y x $? — R* beschrieben wird.

4.2 Die Abbildungseigenschaften des optischen Systems mit
ausgedehnter Lichtquelle

Im Abschnitt 3.2 wird die Beleuchtungsstirke an einem Punkt y € ¥ durch das Faltungsinte-
gral (3.2.1) tiber den Parameterbereich IIy, der inneren optischen Fldsche beschrieben. Die
Energie in einem Lichtstrahl wird durch die Faltung auf einen Bereich in ¥ aufgeteilt, so dass
eine differenzierte GréBe der Lichtstédrke gebildet wird. Diese Grée wird anschlieBend inte-
griert, um die Beleuchtungsstéirke zu bestimmen.

Aus dieser Modellierung kénnen zwei Parallelen zur ausgedehnten Lichtquelle gezogen wer-
den:

1. Durch das optische System wird die vierdimensionale Leuchtdichte in eine zweidi-
mensionale Beleuchtungsstédrkeverteilung transformiert. Aufgrund dieser Dimensio-
nalitdt kann man darauf schlieBen, dass die generierten Beleuchtungsstiarkeverteilung

auf dem Detektor ¥ iiber eine Integralgleichung beschrieben werden kann.

2. Die Faltung auf der Fliche ¥ modelliert den Effekt, dass die Energie der Lichtquel-
le fiir einen Strahlengang nicht auf einen Punkt konzentriert wird, sondern auf einen
umgebenden Bereich aufgeweitet wird. Das ist genau das Abbildungsverhalten eines

optischen Systems mit ausgedehnter Lichtquelle.

Um also die generierte Beleuchtungsstédrke mit ausgedehnter Lichtquelle zu berechnen, muss
das Abbildungsverhalten eines solchen optischen Systems beschrieben werden, das in Abbil-
dung 4.4 dargestellt wird. Die drei dargestellten Abbildungen des optischen Systems kénnen
mit Hilfe des Forward- und Backward-Raytraces & und % (Gleichungen (2.2.4) bis (2.2.8))
deklariert werden.

1. Ein Punkt x der Lichtquelle y wird durch die innere Optik auf & (x, @z, (x,I1xz,)) ¢ ¥
abgebildet.

2. Die Lichtquelle y wird durch jeden Punkt o(7s,) = Z; der inneren Optik auf die Teil-
menge & (x, 0z, (x,75,)) < ¥ des Detektors abgebildet.

3. Jedem Punkt y € ¥ der Zielebene ¥ wird durch die Optik eine die Teilmenge 2 (y,I1z,) <

x auf der Lichtquelle zugeordnet, von der aus Lichtstrahlen auf den Punkt y treffen.

Die zweite Abbildungseigenschaft ermutigt zu einer ersten approximativen Modellierung der

generierten Beleuchtungsstirke auf W.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

(@) ®)

Ry, x)

(c)

ADbb. 4.4: Abbildungsverhalten eines optischen Systems mit ausgedehnter Lichtquelle und einer bre-
chenden Fliche. (a) Ein Punkt x der Lichtquelle y wird durch die innere Optik auf
ZF (x,03, (x,115,)) < ¥ abgebildet. (b) Die Lichtquelle y wird durch jeden Punkt o(ns,) € Z;
der inneren Optik auf die Teilmenge & (y,®s, (x,7x,)) < 'V des Detektors abgebildet. (c) Jedem
Punkt y € ¥ der Zielebene Y wird durch die Optik eine die Teilmenge Z(y,11z,) < x auf der

Lichtquelle zugeordnet, von der aus Lichtstrahlen auf den Punkt y treffen.
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4.3 Die diskrete Modellierung der Beleuchtungsstirke

4.3 Die diskrete Modellierung der Beleuchtungsstirke

Das Produktmal} u der primalen Monge-Kantorovich-Formulierung setzt eine diskrete Auf-
teilung des Lichtflusses der Lichtquelle in einzelnen Raumwinkeln mit einem diskreten Ras-
ter von Lichtfliissen auf dem Detektor in Zusammenhang. Eine Zeile des ProduktmalRes be-
schreibt die Verteilung eines diskreten Lichtstromes der Lichtquelle auf die Zellen des Detek-
tors (siehe Abschnitt 3.4.4).

Diese Betrachtung motiviert eine approximative Berechnung der Beleuchtungsstéarkevertei-
lung mit einer ausgedehnten Lichtquelle, das in Abbildung 4.5 dargestellt wird. Sei Al'lglj mit
i=1,...,mund j =1,...,n eine Diskretisierung des Parameterbereiches der inneren Flache
und AZi’j :=01(Ally,) die zugehorigen Flachenstiicke. Das Flachenstiick AZi’j wird von der

Lichtquelle mit einem Lichtstrom

AD; ;- ff ff LX(x DB, Ny (x))ydddx

le X, Al'[

f/ ff Ly (x, @5, (x,m){Ds, (x,7), Nx(x» § s, (x,m)dndx.

LN &
31

beleuchtet (vgl. Gleichung (2.4.5)). Sei ferner AP mitk=1,...,ound [ = 1,...,p eine Dis-
kretisierung des Detektors. Der Lichtstrom A®; ; wird nun durch das optische System auf die
Zellen AY*! aufgeteilt. Diese Aufteilung kann dhnlich zum ProduktmaR p durch MaRzahlen
Cl{f’jl beschrieben werden. Fiir den Lichtstrom A®%, der durch das optische System in die
Zelle AY*! umgelenkt wird, gilt

Ak = Z CHA®; 4.3.1)
i,j=1

Diese Aufteilung der Lichtstréme wird in der Abbildung 4.5 dargestellt.
Die Beleuchtungsstidrke By auf W kann approximiert werden durch

k1

Bo(y) = Vye APkl (4.3.2)

|APhL|

wobei |A¥*!| der Flicheninhalt der Detektorzelle ist.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Abb. 4.5: Darstellung der diskreten Modellierung der Beleuchtungsstdrkeverteilung. Die Lichtstrome

A®; ;, die von der Lichtquelle y ausgehend auf ein kleines Fliichenstiick AZ;J der ersten opti-
schen Fliche treffen, werden durch das optische System abgebildet auf die Fldche ¥ . Die exak-

teAuftreﬁ?lé?c'heg()(, AZi’]) des Lichts a'u.f\lf wird approximiert durch A¥Y; j = F(x, 01 (nglj)),
wobei 01 (n;’l] ) der Mittelpunkt von AZi'] ist. Auf'V wird der Lichtstrom aufgeteilt in ein dis-
kretes Gitter A\W®!,
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4.4 Die Etendue des optischen Systems und Folgerungen

Bestimmung der MaRzahlen Cf'jl Seien n;l] die Mittelpunkte der Mengen AH;_’ij . Wir ap-

proximieren die Mengen % (y, AH;’ij ) mit

F ALY = F(pmy) =AY

Es wird vereinfachend angenommen, dass die Leuchtdichte, die von der Lichtquelle durch
AZ’I’] auf ¥ abgebildet wird, konstant sei, so dass die MaBzahlen berechnet werden kénnen

durch .y
kil A\Pi,j NnAY"

ol (4.3.3)

b IAW;
Dieser Ansatz bietet eine erste Mdoglichkeit, die Ausdehnung der Lichtquelle approximativ
zu modellieren, ist jedoch nur eine Anndherung. Eine kontinuierliche Modellierung des Pro-

blems wird in den niachsten Abschnitten hergeleitet.

4.4 Die Etendue des optischen Systems und Folgerungen

Im Ganzen gesehen beschiftigt sich die nichtabbildende Optik, bzw. Beleuchtungsoptik, mit
zwei Grundproblemen. Das erste Grundproblem ist das Beleuchtungsproblem aus Abschnitt
2.5, das in dieser Arbeit behandelt wird. Das zweite Grundproblem ist das Kollektorproblem.
Bei der Losung des Kollektorproblems sto3t man unweigerlich auf den Begriff der Etendue,
der aber auch Bedeutung fiir das Beleuchtungsproblem mit ausgedehnter Lichtquelle hat
und fiir die kontinuierliche Modellierung benétigt wird.

Die Etendue, oder auch Lichtleitwert genannt, ist eine Erhaltungsgroe des optischen Sys-
tems, die ohne Lichtverlust nicht verringert werden kann, aber beispielsweise durch Streu-
ung vergrollert wird. Wir beziehen uns auf das Buch [3} p. 65-72]. Die Grol3e beschreibt das
Phasenraumvolumen des vom optischen System transportierten Lichts und ist damit ein Pro-
dukt aus Fliche und Raumwinkel und wird berechnet durch ein Integral iiber alle Orte und
optische Momente, das die Optik durchleuchten. Optische Momente sind Lichtstrahlen, die
mit dem Brechungsindex des jeweiligen Mediums gewichtet sind. Fiir ein optisches System
kann an mehreren Flichen die Etendue bestimmt werden. Zum einen gibt es eine Etendue
von der Lichtquelle zur ersten optische Fliche und eine Etendue von der Zielfliche zur letz-

ten optischen Fliche, wie in Abbildung 4.6 dargestellt wird. Die Etendue E, der leuchtenden
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Flache zur Optik wird nach [3} Formel 3.20 auf Seite 72] berechnet durch

ffff (R, (x),8) dvdx = ff ff 2 (N (0,3) diddx

X w):l (x H):l

f f f f 1y (Ny (%), @5, (x, m3,))\/§ @, (x,75,)) ds, dx. (4.4.1)

X Iy,

Ey

Analog ergibt sich fiir die Etendue Ey der Optik zur Auftrefffliche

f f f f né, ( Ny (y),ds, (y,75,) )/ @3, (v, w5,))dns, dx (4.4.2)

¥ I,

Die Etendue stellt eine ErhaltungsgroRRe dar, die nicht verringert werden kann, d.h. falls alle

Lichtenergie im Etendue E v ohne Lichtverlust auf die Fliche W gebracht wird, muss gelten
Ey = EX'

Das Konzentratorproblem besteht darin, das Licht mittels einer méglichst minimalen Optik
auf die Zielflache zu konzentrieren. Dieses Problem ist genau dann gel6st, wenn die Optik das
Licht vollstidndig auf ¥ abbildet und die optischen Flichen die Etendue-Erhaltung Ey = E,
erfiillen. Die geometrische Bedeutung der Etendue-Erhaltung wird in Abbildung 4.7 darge-
stellt. Die Lichtquelle wird durch jeden Punkt der Optik so auf ¥ abgebildet, dass & (y, 7n5,) =
W fiir alle wy, € Il5, gilt. Verfahren, die solche Probleme l6sen basieren zum Beispiel auf dem
sogengannten Edge-Ray-Theorem oder den Flow-Lines oder dem SMS-Verfahren. Diese opti-
schen Systeme sind durch die Bedingung der Etendue-Erhaltung vollstindig beschrieben, so
dass keine Freiheitsgrade tibrig sind, die genutzt werden kénnen, um im Zielgebiet beliebi-
ge Lichtverteilungen zu generieren. Deshalb kénnen Beleuchtungsoptiken zur Generierung
von Ziellichtverteilungen nicht an der Etendue-Erhaltung arbeiten, sondern es muss gelten
Ey < Ey. Fiir eine bessere Vorstellung kann man sich diesen Zusammenhang so vorstellen,
dass das Verhdltnis von % der Dicke eines Pinsels entspricht, mit dem die generierte Licht-
verteilung gemalt wird. Ein Verhiltnis von 1 steht in diesem Zusammenhang dafiir, dass der
Pinsel genau so grol3 ist wie das Zielgebiet, so dass keine spezielle Verteilung 'gezeichnet’
werden kann.

Auch in dem Fall, dass Beleuchtungsoptiken vorliegen kann eine Erhaltungsgrofie Eff, ausge-

hend von Gleichung (4.4.1) definiert werden, indem nur die optischen Momente ausgewahlt
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El 2:2

ny

Abb. 4.6: Darstellung der Etendue als Menge aller Lichtstrahlen, die die Optik durchleuchten.

Abb. 4.7: Darstellung des Abbildungsverhaltens eines Konzentrators, der am thermodynamischen Limit
der Etendue-Erhaltung arbeitet. Hierbei bildet jeder Punkt der Optik die leuchtende Fléiche auf
das ganze Zielgebiet ab.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

werden, die auf der Zielflaiche ankommen.

EL = ff f 8y (F (x,ms ) (N (%), @5, (x,75,) )/ § (@, (x, 75,))d7s, dx.

X Iy,
Wir definieren die Funktion

=%é’:‘l’xl]zn—»)(tzl
Ry, 7n) = (R, 70), 07 (F1(, ),

die zusétzlich zum Auftreffpunkt des Riickwdirts-Raytraces den Paramter der inneren Flache
zuriickliefert. Mit Hilfe dieser Funktion kdnnen wir die Gleichung auf den Bereich ¥ x Ily,

transformieren. Es gilt:

El = f f f f 8y (F (x, w5 )1 (N (%), @5, (x,75,) ) /S @5, (x, 75,))d7s, dx
)

R,y
:ffff6)((%(%”2"))”?(<NX(%(y’nzn))’a)zl('@(y»nin)»
v Iy,

\/3(@s, @ (y,75,)) |det DR (y, 75,)

dﬂzn.

Wir stellen die Groe Eé, analog mit Hilfe der Gleichung (4.4.2) auf und erhalten:
EL = fff 8 (R(y,7s,))ng (Ny (), D3, (y,75,)) /T @s, (v, 75,))dns, dy.
¥ I,

Ein Vergleich der Integranden (siehe Lebesgue Differentiationstheorem 2.1) fiihrt zu der Ver-

einfachung der Jakobimatrixdeterminante des Backward-Raytrace (mity:= (y, 75 ))

nZ (Ny(y), 05, ) VT @3, )

nZ (Ny(R(Y), Dz, (RY))) /T @z, (R(Y))

Analog zu 4.4.3 ldsst sich die Jakobimatrixdeterminante der Abbildung

|detDZ(y)| =

(4.4.3)

F iy xMy, — ¥ xIly,

F(x,m1) 1= (F(x,7m1),0, (0 n(x,71))),

74
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vereinfachen mitx:= (x,7z,) durch

nZ (Ny(x), @5, (%)) /T @z, X)
1, (Ny(F X)), 03, (F X))/ F@s, (F X))

4.5 Die analytische Berechnung der Beleuchtungsstirke

|detDZ (x)| = (4.4.4)

Da die Beleuchtungsstirke eine differentielle Gro3e des Lichtflusses ist, werden wir im ers-
ten Schritt den Lichtfluss ®(¥), der durch das optische System auf die Zielflache W abgebildet
wird, analytisch formulieren und in einem zweiten Schritt auf die Beleuchtungsstérke riick-
schlieBen. Wir beziehen uns dabei auf den Typ von optischen Systemen aus Abschnitt 2.1. Mit
®(Z;) bezeichnen wir den Lichtfluss, der von der Lichtquelle y aus auf die optische Fldche X,

abgegeben wird. ®(X;) kann berechnet werden durch

®E) = f/ ff Ly (x, ) (Ny(x),®) dwd x
X(_[)zl(x,nzl)
X Hzl

Sei ®(¥) der Anteil von ®(Z,), der durch das optische System auf die Zielfliche W gelenkt
wird. Es gilt

dWP)

fff 8w (F (x, M) Ly (x, D5, (x, 1) { Ny (x), D, (x, 7))/ F (@5, (x, M) dmdx

X Iy,

ff[f Ly (x, 05, (x, ) { Ny (x), D5, (x, 1))\ /T (@5, (x, ) dnd-x.

R(Y,I05,) Ny xS

Berticksichtigt man, dass aufgrund der Definition der Leuchtdichte mit L, (x, $?) = 0 fiir alle
X&Ex
8y (R (y,ms, )Ly (R (Y, 73,)) = Ly (% (y,75,)

gilt, kann der Lichtstrom () auf ¥ x [15y, transformiert werden zu

O(P) = ff ff Ly(R(y,m) (Ny(R(y, 7)), D5, (R(y, 7))

¥ I,

3(&321)(@(% 7)) |detD(PZ’(y, n))| dndy.
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4 Modellierung des Beleuchtungsproblems mit ausgedehnter Lichtquelle

Wir setzen die vereinfachende Gleichung (4.4.3) aus der Etendue-Betrachtung ein und erhal-

n? . .
éw:—wffffL% )Ny (), @5 (1,m))\/F@s (3, m)drdy. 4.5.1
(V) 2 (Z(y, 1) (Ny (y), 05, (y, 1)) /F @3, (y,m)dndy ( )

g,

ten

Um den Lichtfluss ®(¥) zu bestimmen, muss noch der Verlust durch Fresnelsche Reflexionen
an den brechenden Grenzflichen beriicksichtigt werden. Wir bezeichnen mit &y, ny,) das
Produkt der Fresnelschen Verluste (siehe Gleichung (2.2.13)) fiir den Strahlengang %(y, s ).
Der Lichtstrom ®(¥) kann somit berechnet werden durch

n? . .
(W) = n—\gff[flx(%(y,ﬂ))(l—6(%71))
Yo,

(Ny (), @5, 1, m) /@5, (y,m)drdy.

Diese Gleichung kann so interpretiert werden, dass die Lichtquelle durch die Optiken trans-

(4.5.2)

formiert wird und die dullere Flache wie eine Lichtquelle wirkt. Diese Beobachtung motiviert

zur Definition der gesehenen Leuchtdichte auf W

Ey:¥xS§ —R*
ng . .

Ey (3,05, (y,75,)) = —5 Ly (Z(y, 1) (1 - &(y, 1)).
n

X
In Abbildung 4.8 wird die simulierte gesehene Leuchtdichte von drei verschiedenen Positio-
nen fiir ein optisches System mit einer quadratischen Lichtquelle und eine elliptischen Linse
gezeigt. Es wird deutlich, dass die GréRe und Form der gesehenen Lichtquelle fiir verschie-
dene Perspektiven unterschiedlich ist. Die gesehene Leuchtdichte kann auch mit den herge-
leiteten Formeln berechnet werden. In Abbildung 4.9 wird diese fiir eine Optik mit quadrati-
scher lambertscher Lichtquelle dargestellt. Die Beleuchtungsstirke By : ¥ — R™ ist definiert
iiber das Differential %(;P) des Lichtstroms ®(¥) und kann aufgrund der Gleichung (4.5.2)

berechnet werden durch

n2 . .
Bo(y) = n—;’[[ Ly(%(y,m) (1 - &(y,7m))
Xl'lzn

(Ny (), 05, (y,m))\/F(@s, (v, m)dm.

Diese Modellierung des Lichtflusses und der Beleuchtungsstérke ermdglicht es, das optische

(4.5.3)

System hinsichtlich dieser Gro3en zu optimieren.
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@ ® ©

C,

ADbb. 4.8: Ein optisches System mit quadratischer Lichtquelle und einer elliptischen Linse generiert die
dargestellte gesehene Leuchtdichte aus drei verschiedenen Positionen. Diese Darstellungen
sind das Ergebnis einer Simulation. Die erzeugte Lichtstdrke in die jeweiligen Richtungen kor-
respondiert mit der GrofSe des Lichtquellenbildes auf der Optik von der jeweiligen Richtung
aus. (a) Die gesehene Leuchtdichte in der zentralen Perspektive. Es wird eine Lichtstdrke von
293cd erzeugt. (b) Die Optik realisiert in diese Richtung eine Lichtstdrke von 93cd erzeugt. (c)
Die Optik realisiert in diese Richtung eine Lichtstdirke von 24cd erzeugt.
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ADbb. 4.9: Ein optisches System mit quadratischer Lichtquelle und einer Freiformfliche generiert die dar-
gestellte gesehene Leuchtdichte, die mit den hergeleiteten Gleichungen berechnet wurde. Es
wird ein virtueller Flug iiber die Optik aus ausgewdihlten Perspektiven dargestellt.
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5 Losungskonzept des Beleuchtungsproblems

und numerische Umsetzung

In diesem Kapitel soll des Gesamtkonzeptes der Losung des Beleuchtungsproblems und die
numerische Umsetzung der einzelnen Teilschritte erldutert werden. Dazu werden anfangs

einige grundsétzliche Techniken beschrieben.

5.1 Das Gesamtkonzept zur Losung des Beleuchtungsproblems

Zur Wiederholung werden die wichtigsten lichttechnischen GréRen in der Tabelle 5.1 defi-
niert.

Das allgemeine Ziel ist, das Beleuchtungsproblems mit direkter Modellierung der ausgedehn-
ten Lichtquelle zu 16sen, d.h. die Freiheitsgade ¢ der optischen Flachen X4, ...,%; so zu be-
stimmen, dass die gewiinschte Verteilung By durch das optische System © generiert wird.
Dieses Problem soll mit unterschiedlichen Modellierungen aufsteigender Komplexitét gelost
werden, da die Berechnung der Beleuchtungsstdrke nach Gleichung (4.5.3) mit ausgedehnter
Lichtquelle numerisch aufwendig ist und eine effiziente Optimierung nur lokal konvergent
ist.

In Abbildung 5.1 wird das Gesamtkonzept der numerischen Losungssuche grafisch als Fluss-
diagramm dargestellt.

Im ersten Losungsschritt wird die Lichtquelle als Punkt § € R® approximiert, die Beleuch-
tungsstérkeverteilung By auf W auf die Lichtstirkeverteilung Iy auf Qg < S? im Fernfeld
umgerechnet und ein optimales mapping mittels des Monge-Kantorovich-Algorithmus be-
stimmt. Im zweiten Schritt werden die freien Flichenparameter, die im Vektor ¢ abgelegt
werden, berechnet, bzw. optimiert, so dass das mapping angenommen wird. Falls dieses
nicht zufriedenstellend realisiert werden kann, kann es notwendig sein, die Eingangsgrof$en
zu liberdenken und gegebenenfalls zu verdndern.

Wird das mapping korrekt angenommen, kann eine weitere Uberpriifung sinnvoll sein. Hier-
beiwird die generierte Lichtstirkeverteilung 1g im Fernfeld mit der gewlinschten Lichtstdirke-

verteilung Iy verglichen. Alternativ kann dieser Vergleich auch zwischen den Beleuchtungs-
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5 Lésungskonzept und numerische Umsetzung

stirkeverteilungen By und By durchgefiihrt werden. Fiir die Berechnung der generierten
Lichtverteilungen kann die Modellierung von Mooiseev (vgl. Formel (3.2.1)) aus Abschnitt 3.2
angewendet werden. Ist der Unterschied zu grof3, so kann an dieser Stelle entsprechend dem
Ansatz im ersten Unterabschnitt von 4.1 die geforderte Lichtstdrkeverteilung Iy verdndert
und die Berechnung der Startlésung wiederholt werden.

Es konnte ein weiterer Zwischenschritt an dieser Stelle eingefiigt werden, indem die Beleuch-
tungsstdrkeverteilung mit der diskreten Modellierung aus Abschnitt 4.3 berechnet wird und
die Flachenparameter ¢ optimiert werden. Durch diese Modellierung der Beleuchtungsstir-
ke wiirde die Ausdehnung der Lichtquelle genauer erfasst und durch die Optimierung die
Startflache besser fiir die eigentliche Optimierung mit ausgedehnter Lichtquelle angepasst.
In dieser Ausarbeitung wird jedoch von diesem Zwischenschritt abgesehen.

Der letzte Schritt des Losungsverfahren ist, das optische System auf Grundlage der analytisch

berechneten Beleuchtungsstérke aus Gleichung (4.5.3) zu optimieren.
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X; Qx; Ix;Q‘I’y Iy
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|
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Abb. 5.1: Das Gesamtkonzept zur Losung des Beleuchtungsproblems wird in dieser Grafik schematisch
als Flussdiagramm dargestellt.
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I@:Q\IJ—>R+

Ly:xxS*—R*
By, By

Die sequentiell geordneten optischen Flachen des optischen Sys-
tems

Vektor der zu optimierenden Freiheitsgrade der optischen Fla-
chen,,....,2,

Die leuchtende Fldche der ausgedehnten Lichtquelle.

Ort der Punktlichtquellenapproximation.

Die Zielfldche des optischen Systems.

optisches System aus Punktlichtquelle f, den optischen Flaichen
21,...,2, und der Zielfliche ¥

Raumwinkel, der von der Punktlichtquelle auf das Ziel abgebildet
werden soll.

Lichistéiirkeverteilung der Punktlichtquelle im Raumwinkel Q.
Die geforderte Beleuchtungsstdrkeverteilung auf ¥

Raumwinkel, der von j§ aus das Zielgebiet ¥ beleuchtet.
Ziellichtstdrkeverteilung auf Qw. Diese ergibt sich aus der Be-
leuchtungsstéirkeveteilung By auf ¥ durch y = o(}, ‘I’fc) (siehe
Gleichung (2.4.11)). Die Bedeutung von Iy ist, dass bei Vernach-
lassigung der Ausdehnung des optischen Systems die Beleuch-
tungsstdrkeveteilung By von } aus generiert wird, d.h.

Iy@y) = By(y) — LA
(@3, Ny (y))

Die generierte Lichtstéirkeverteilung auf Qy durch das optische
System O.

Die Leuchtdichte der ausgedehnten Lichtquelle.

Die generierte Beleuchtungsstiirkeverteilung auf ¥ mit ausge-
dehnter Lichtquelle und Punktlichtquelle.

Tabelle 5.1: Lichttechnische Gréfsen des optischen Systems.



5.2 Definition verwendeter Freiformflachen

5.2 Definition verwendeter Freiformflichen

Die eingefiihrten Modellierungen in dieser Arbeit erlauben es, sequentielle optische Systeme
mit glatten Fldche X4,...,%,, die {iber die Freiheitsgrade ¢ = (¢ ¢, ..., c;») beschrieben wer-
den zu optimieren. Diese konnen geometrische GréBen von analytischen Geometrien, wie
etwa der Radius einer Kugel, sein, als beispielsweise auch die Lage im Raum durch Verschie-
bung und Verdrehung. Soll jedoch eine komplexe Lichtverteilung erzeugt werden, so ist es
notwendig, eine oder mehrerer Flachen relativ feinstrukturiert zu berechnen. Zur Reduktion
des numerischen Aufwandes und zur Erh6hung der numerischen Stabilitét lokaler Optimie-
rer sollte die Anzahl an Freiheitsgraden moglichst klein sein.

Da optische Flachen nicht alle moglichen Formen abbilden miissen, sondern sternférmige
Flachen um einen Punkt ausreichen, kann eine Reduktion der Freiheitsgrade dadurch er-
reicht werden, dass die Fldche {iber eine skalare Funktion in zwei Verdnderlichen beschrieben
wird. Diese Einschriankung entspricht dem bereits erwdhnten Polarradius der zum Beispiel
von J. S. Schruben verwendet und in Bemerkung 3.1 erwdhnt wurde. Die Modellierung von
J. S. Schruben fiihrt das mathematische Problem auf ein partielles Differentialgleichungssys-
tem vom Typ Monge-Ampere zuriick. Daneben kommt der Polarradius auch in der schwa-
che Formulierung von V. Oliker zur Beschreibung von optischen Flichen zum Einsatz (siehe
Gleichung (3.3.5)). Deshalb wéhlen wir fiir die Beschreibung von Freiformfldchen dieselbe

Definition.

5.2.1 Freiformflichendefinition durch den Polarradius

Sei X die zu definierende Freiformfldche. Wir wéhlen zu der Punktlichtquelle j einen Raum-
winkel Q3 S2 mit Parametrisierung @ : Iy — Q4. Der Polarradius der Freiformfléache X mit
Zentrum j € R3 ist eine skalare, differenzierbare Funktion p : ITs — R*. Die Freiformfl4che X
wird definiert durch

o(ms) =} +prs)oy(ns). (5.2.1)

Fiir die Parametrisierung @y : [Ix — Q5 nach (2.2.6) gilt

os(ng) -1 _ px(mx)og(ms)  ps(ns)dg(ws)
los(ms) =% lpsGrs)og (sl px ()

O (f,ms) = =0;(ms).
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5 Lésungskonzept und numerische Umsetzung

Das Normalenvektorfeld Ns : Iy — S? der Fliche X zeigt mit der Vereinfachung p := 4,1 p und
g := 0,2p in die Richtung

Ny (p(?)i + panlf_[)fc) X (q(_[)f( + pa,.[z(?)j)

Py x PO02@0f + PO Dy X G § + PO Dy X PO20 ¢

(pP)Dj % 025+ (PG)O D X D + pza,,u?),z X Ong2j.

Somit gilt fiir das Normalenvektorfeld

. Ns
Nz = .
[Nz

Fiir die Optimierung dieser Freiformoptiken bendtigen wir eine differenzierbare Definition
des Polarradius p in Abhédngigkeit von Freiheitsgraden, die optimiert werden kénnen. Wir
wdhlen die Definition iiber eine skalare Spline-Funktion, da die einzelnen Koeffizienten nur
lokalen Einfluss haben und die Fldche keine Oszillationen aufweisen, wie beispielsweise bei

Polynomen héherer Ordnung.

5.2.2 Verwendung von B-Splines fiir die Definition des Polarradius

Wir definieren den Polarradius p : [Ty — R* und die ersten Ableitungen durch kubische Spli-
nes (wir beziehen uns auf [17, p. 45;210;226-227]). Der Parameterbereich I1s sei ein Rechteck-
gebiet mit ITy = 1} xIT2 = [u1, u] x [v1, v2]. Die Kontrollwerte-Matrix C € REH0) mit &1, 2 e N

der Spline-Funktion speichert die Freiheitsgrade der Funktion. Zuerst definieren wir 6}, +1-,

bzw. &5 + 1-viele kubische Basisfunktionen in Abhéngigkeit von der Richtung ', bzw. 7°.
Das Intervall [, uy] des ersten Parameters 7' wird in & :) — 3 viele dquidistante Teilintervalle
Up—Uy

T3 unterteilt. Der Knotenvektor des ersten Parameters ist
P

mit der Lange u, =

1 1
K= uy, uy, U (U + L), (U +2ug), . (U + (G, =4 us), U, Up, Uz, Uz |.

Die kubischen B-Spline-Basisfunktionen N, 4 : M- R*mita=1...¢ }, und deren Ableitung

ergeben sich durch Anwenden der rekursiven Formel
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1 wenn Al@<u<xYa+1)
0 sonst

Ngi(u) = {

(u—k @) Nyp_1(w) (K'(a+k)—u)Ngyq p-1 (1)

NeklW) = D@ Karh-—Kk(arD
N () = Na 1(u) Na+1,1(u)

a2 Ka+D)-k'(a) k'(a+2)-k'(a+1)

, Ng 1)+ u—-k'(@)N, , | ()
N, (w) = :

Kla+k-1)-kl(a)
(k'(a+k) ~wN, | (@)~ Nasyp-1(1)

* a+hb-—Ka+D

Analog wird der Knotenvektor .# 2 fiir den zweiten Parameter 72 und die Basisfunktionen
My H% —R*mitb=1... 6% mit den ersten Ableitungen definiert.
Fiir alle r € IT definieren wir die Matrix

§prp

S() := [Naa (@) Mpa(@®)] 20 .

(5.2.2)

Durch Anwenden der Kettenregel konnen die Matrizen (n), el S () und 1 0712 () definiert

werden durch

a 1, 2

) 1= [Ny )My a ]y

as ~ £,

(0= | NaaGr) My, )| 7"
9°S , &1,é2

onlon onignz ™ _[ 4(7r M, , (7 )] =1;b=1"

Der Polarradius, die ersten Ableitungen und die gemischte Ableitung werden durch die Sum-

men
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& &
pm) =3 Y CapSaptm)
a=1p=1
& &
ap b as
—(n) yyc abzT, 0
a=1b=1 ab
o e (5.2.3)
dp b as
;@)= ba2 n)
on? ;11;21 “
aZp ‘fp é’p 02
o2 ™= aZle 192 0

berechnet. Die gemischte Ableitung wird an anderer Stelle fiir eine iterative Verfeinerung be-
notigt und deshalb hier definiert (siehe Abschnitt 5.2.4). In Abbildung 5.2 wird der Zusam-
menhang zwischen den Kontrollpunkten und den Funktionswerten einer skalaren Funktion

dargestellt. Die Funktion ist nur in den Ecken mit den Kontrollpunkten identisch.

Zusammenhang von Knotenpunkten und Funktionswerten

Abb. 5.2: Der Zusammenhang zwischen den Knotenpunkten und den Funktionswerten einer B-Spline-
Funktion wird dargestellt. In griin ist das Gitter der Kontrollpunkte und in rot das Gitter der
Funktionswerte dargestellt. Die Funktion interpoliert die Kontrollpunkte nur in den Ecken.
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5.2.3 Numerische Vorteile der Definition des Polarradius durch Splines

Diese Definition des Polarradius ermdglicht eine effiziente numerische Implementierung.
Da die Matrizen S(n), %(n) und g—g(n) unabhingig von den Kontrollpunkten C sind, miis-
sen diese nur einmal aufgestellt werden und im Optimierungsprozess nicht neu berechnet

m,n

ij=1 des Winkelbereiches ITs kann somit einmal

werden. Fiir eine Diskretisierung I12 = (7;, ;)
eine Matrix S € R™™¢'¢* mit S(i, J) = 8(m; ;) aufgestellt werden, mit der der Polarradius zu
beliebigen Kontrollpunkten berechnet werden kann.

Dariiber hinaus kann aufgrund der lokalen Abhéngigkeit der B-Splines von den Knotenvek-
toren auf eine schwache Besetzheit der Matrix S geschlossen werden. Fiir alle 7 € IT! x IT? mit

k'tey<a'<k'(e+Dund kK*(f) <’ <k*(f+1) mitd<e<m+1und4< f<n+1gilt

1 Z0 ©e<a<e+4
Nga(m) =
=0 sonst

und
#0 o f<sb=sf+4

=0 sonst

Mb,4(ﬂ2){

Diese schwache Besetzheit von S und den partiellen Ableitungen kann zur Speicher- und Re-
chenreduktion genutzt werden.

Ein weiterer Vorteil zeigt sich fiir die Optimierung der Kontrollpunkte. Werden Gradienten-

basierte Optimierungsverfahren verwendet, so werden die Ableitungen von py, g% und g%

nach den Kontrollpunkten C benétigt. Diese Werte sind aufgrund der einfachen Definition

des Polarradius durch Anwendung der Produktregel bereits bekannt durch

%P () = St
0C,p @
ap as
0mlaCyp = (ﬁ(n))a,b
0%p 0S
0n20Cy (m= (@(m)a,b'

Dartiiber hinaus wirken sich die Kontrollpunkte nur lokal auf die Funktionswerte aus, d.h.

op

(M) =0V ¢ [k (a), k' (a+4)] x [ (D), K> (b+4)].
0Cqap
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d%p d%p
07[106‘[1,[,; anzacu,h
dienten in Richtung der Kontrollpunkte angewandt werden.

und

Diese Eigenschaft gilt auch fiir und kann bei der Bestimmung von Gra-

5.2.4 Einfiigen neuer Knotenpunkte zur Erh6hung der Modellierbarkeit des
Polarradius

Sei eine Spline-Definition des Polarradius p mit m - n Spline-Koeffizienten in der Koeffizien-
tenmatrix C € R“" vorhanden mit Knotenvektoren .# ' € R™** und #?2 € R"**. Im Prozess
der Optimierung kann es niitzlich sein, die Knotenvektoren zu verfeinern. Wir bezeichnen
den neuen Polarradius mit p, die Koeffizientenmatrix mit C € R"M ynd die Knotenvektoren
mit £ e R7** und £ ? € R"**. Auf diese Weise ist es moglich, die Anzahl an Freiheitsgraden
in der Optimierung zu verdndern, was Effekte auf das numerische Verhalten der Optimie-
rungsverfahren haben kann.

Der neue Polarradius p soll identisch sein zu dem Polarradius p, oder diesen sehr genau ap-

proximieren.

Verfeinern durch Losen eine linearen Gleichungssystems Eine Moglichkeit ist, die Koeffi-
A cl r2
zientenmatrix € € R“»*# durch Lésen eines linearen Gleichungssystems zu bestimmen, wo-
. A . . - &, &
beié :3, 4 % gerade Zahlen sein miissen. Man kann auf dem 4quidistanten Gitter I1° € R(*/2"/2)

im Definitionsgebiet mit dem vorhandenen Polarradius p die Matrizen

s sy T+ ) d
(p)z,] (aﬂl)i,j (67‘[2 i un omlom? ij

mitl<i< 0.552) und 1< j < 0.552 berechnen. Fordert man nun, dass die Koeffizientenma-
trix C so zu bestimmen ist, dass der Polarradius p diese Werte erfiillt, so ergibt sich mit Hilfe
der Gleichungen (5.2.3) ein reguldres lineares Gleichungssystem mit ¢ }) & % Unbekannten. Die
Unbekannten des resultierenden Gleichungssystem sind die Eintrége der gesuchten Koeffizi-
entenmatrix C. Dieses Verfahren kann angewandt werden, um das Gitter der Knotenpunkte

dquidistant zu verfeinern.

Boehm-Algorithmus Alternativ kann durch den Boehm-Algorithmus (siehe [10]) ein Kno-

tenpunkt k! mit k! | < k! < k! leicht in die erste Komponente von p eingefiigt werden. Sei

jl = klv---)kV)I%V’kV+1)-'-»k,f})
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der neue Knotenvektor der B-Spline-Basisfunktion der ersten Komponente des Polarradius
p, wobei die einzelnen k; die Knotenpunkte der B-Spline-Basisfunktionen der ersten Kom-
ponente von p sind. Der Boehm-Algorithus berechnet die Koeffizienten-Matrix C des Polar-
radius p durch
Ci,j firi<sv-4
Ci,j = %:%Ci—l,j +%Cm’ firv-3<i<v

Ci-1,j firi=zv+1.

Das Einfiigen eines Knotenpunktes im Vektor %2 wird analog durchgefiihrt.
Oslo-Algorithmus Der Oslo-Algorithmus [17, siehe Seite 106-107] hingegeben erlaubt den

Wechsel auf einen neuen Knotenvektor. Es miissen die Koeffizienten a‘l*i bestimmt werden,

so dass die Koeffizienten-Matrix C! € R zu berechnen ist durch
A 1 m
Cij= ZZ a1,iCyj.
=1

Das Ergebnis des Oslo-Algorithmus ist, dass die Koeffizienten a‘l‘i leicht iiber die Rekursi-

onsformel

. 1 falls k) < k! <kp

a; =
0 sonst
71 7l 1 _jl
a _ ki+3 kl a-1 kl+4 kl+3 a—1
a; ;=7 1% Y 71 i
, k —k ’ kl _ kl )
1+3 I 1+4 I+1

berechnet werden konnen. Der Wechsel des zweiten Knotenvektors und damit die Bestim-

mung der Koeffizienten-Matrix C € R"»® durch
A n Al
Ci,j = ZZ ﬁlijiyl.
=1

kann im zweiten Schritt analog angewandt werden.

5.3 Gradientenberechnung fiir die Optimierung

Wir nehmen an, dass das optische System durch eine Kostenfunktion € : ¢ — R* bewertet
wird, wobei die Parameter im Vektor ¢ die Freiheitsgrade des optischen Systems sind. Fiir

sehr viele effiziente Optimierungsverfahren, wie etwa das BFGS-Verfahren, ist es notwendig,
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den Gradienten Ve der Kostenfunktion zu bestimmen. Wenn die Funktion € allerdings sehr
komplex ist, ist es in vielen Fillen praktisch nicht méglich, die Ableitung analytisch zu be-
rechnen.

Der Gradient kann alternativ durch zentrierte Differenzenquotienten

ﬁ(a —lim el(ct,...,ci+h,...,cp))—€e((cyy...,ci—h,...,cp))
60,’ h—0 2h

bestimmt werden. Diese Variante hat einige Nachteile. Zum einen wird der Gradient durch
die Wahl eines konkreten / > 0 nur approximiert und zum anderen kann der Rechenaufwand
fiir eine grolRe Anzahl an Freiheitsgraden ¢ sehr aufwendig werden, so dass eine praktische
Umsetzung schwierig wird.

Ein weiterer Nachteil fallt dann ins Gewicht, wenn die Fehlerfunktion ¢ ein Integral {iber eine
Funktion mit einem steilen Abfall enthilt. In diesem Fall kann es passieren, dass durch eine
zu kleine Variation h im Differenzenquotienten keine Anderung des Integranden und damit
auch des Integrals beobachtet wird, weil die einzelnen Punkte des Integranden nicht {iber
die Kante der zu integrierenden Funktion wandern. Der Gradient liefert dann keine Abstiegs-
informationen. Die Formel (4.5.3) weist genau diese Schwierigkeit auf, was im Abschnitt 5.7
niher erldutert wird.

Eine weitere Alternative zur Bestimmung von Ableitungen ist das automatische Differenzie-
ren. Der Grundgedanke hierbei ist, dass jede analytische, als Programm definierte Funktion
eine Verkettung von wenigen Grundfunktionen ist. Der Rechenaufwand, um die Ableitun-
gen der Grundfunktionen zu bestimmen ist ungefdhr genau so grol3, wie die Auswertung
der Grundfunktion selbst. Das automatische Differenzieren iiberlagert nun diese Grundfunk-
tionen mit einer zusétzlichen direkten Berechnung der geforderten Ableitungen. Die An-
wendung der Kettenregel ermoglicht die Bestimmung der Ableitung der gesamten Funkti-
on. Es gibt verschiede Moglichkeiten der Berechnung der Ableitungen durch automatisches
Differenzieren, den Vorwirts-Modus und den Riickwérts-Modus. Der Vorteil des Riickwarts-
Modus ist, dass die bendtigte Zeit zur Berechnung des Gradienten unabhingig ist von der
Anzahl an Freiheitsgraden der Funktion und linear abhéngt von der benétigten Zeit der Funk-
tionsauswertung selbst. Fiir die Optimierung des optischen Systems zur Generierung eines
vorgegebenen mappings wird in Abbildung 5.12 diese Aussage belegt. Ein theoretisches Re-
sultat ist, dass fiir rationale Algorithmen die Operationen fiir die Berechnung des Gradienten
kleiner ist als das vierfache der Operationen der Funktionsauswertung selbst. Am einfachsten

ist es, den Ansatz des automatischen Differenzierens an einem Beispiel zu illustrieren.

Beispiel 5.1 (automatisches Differenzieren). Wir beziehen uns auf das Vorlesungsskript [5,
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5.3 Gradientenberechnung fiir die Optimierung

Seite 8-21] und wenden das automatische Differenzieren auf die Funktion

x‘i‘xg +X1X2+5

.3 —
f- R Rr f(xl)x2’x3) -
X1+ X2X3

an. Diese kann durch die Verkettung der Elementarfunktionen fi, f»,..., fs mit f = f11 berech-

net werden:

filxn) =x1, f2(x2) = x2, f3(x3) = x3,
fa(f1) =ff
Unf)  =fhifs
fe(fi,f2)  =hr
s, fe)  =f+fe
f8(f7) =f7+5
folf2, 3) =1 afs
fio(fi,fo)  =fitfo

= fulfs fio) =%.

Bezeichne der Operator V den Vektor (6‘971, aixz, aixs), so kann der Gradient V f(x1, X2, x3) auf-

grund der Kettenregel berechnet werden durch

VAi =11,0,0], Vf2=1[0,1,0], Vf3=[0,0,1]
Vs =[2AVf,0,00=2£[1,0,0]

Vs =Vfs+fiVfs =V/fafs+ f110,0,1]

Vs =Vfif+fiVh = [x2, X1,0]

Vfz =Vf+Vfs

Vs =Vfi

Vs =Vhafs+fVfs =0, f3, f2]

Vfio =Vfi+Vfg =[1,0,0]+V/fy
Vf= Vfu = %{Wﬁo-

Dieses sukzessive Berechnen des Gradienten beschreibt den Vorwdrts-Modus des automati-
schen Differenzierens. Da in jedem Schritt ein Vektor berechnet werden muss, dessen Linge
der Anzahl an Freiheitsgraden der Funktion f entspricht, ist die Anzahl an Operationen zur
Berechnung der gesamten Ableitung abhdingig von der Anzahl an Freiheitsgraden. Eine theo-
retische Aussage hierzu ist, dass fiir die Berechnung des Gradienten einer Funktion mit n Frei-
heitsgraden hichstens die (3n + 1)-fache Anzahl an Operationen der Funkton selbst benétigt
werden. Wir kionnen dieses Vorgehen abstrakter formulieren. Datfiir fiihren wir die Funktion
Fi(F;_1) = [Fioy, fi] mit F4(x1,x2,x3) = [f1, [2, f3] ein. Sei ferner L(F11) die Auswahl der letzten
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Kompente des Vektors. Die Funktion f kann als Verkettung
J(x1, X2, x3) = L(F11 (F1o (Fo (Fg (F7 (Fe (F5 (Fa (%1, X2, X3)))))))))

interpretiert werden. Das Bilden des Gradienten dieser Verkettung entspricht der Multiplikati-

on der Jakobi-Matrizen

Vf =DL(F11) DF;1(Fio) - - -DF5(Fs) DFy(x1, X2, X3) .
—_——— ———
1x11 11x10 5x4 4x3

Die Matrizen weisen eine Struktur auf:

DL(Fy1) =[0,...,0,1]

und
1
1
DF; =
1
Sfi  ofi .. ... Ofi
Ofi-1 0fi2 ofi

Das Multiplizieren dieser Matrizen von rechts nach links entspricht dem Vorwdirts-Modus.

Der Riickwdrts-Modus des automatischen Differenzierens entspricht der Multiplikation der
Matrizen von links nach rechts. Dabei muss der Algorithmus einmal durchgefiihrt werden und
alle Zwischenwerte f; und die Ableitungen miissen gespeichert werden. Geschicktes Ausfiihren
der Multiplikation unter Ausnutzen der Strukturen der Matrizen bewirkt, dass der Rechenauf-
wand fiir den Gradienten der Funktion unabhdingig von der Anzahl an Freiheitsgraden ist. Ein
theoretisches Ergebnis sagt aus, dass der Rechenaufwand kleiner als das Fiinffache des Rechen-
aufwandes der Funktion selbst ist. Der Nachteil dieser Berechnung liegt darin, dass durch die

Abspeicherung aller Zwischenergebnisse der Funktion viel Speicherplatz bendtigt wird.

Ein weiterer Vorteil des automatischem Differenzieren ist, dass die Funktion nicht analy-
tisch gegeben sein muss, sondern eine Definition als Quelltext ausreicht. Die Kostenfunktio-
nen, die in unserem Losungsansatz zu optimieren sind (siehe Abbildung 5.1) beziehen sich
auf die Berechnung von Strahlengédngen duch das optische System. Damit die Kostenfunkti-
on analytisch differenziert werden kann durch Automatisches Differenzieren, muss das opti-
sche System aus Fldchen bestehen, deren Schnittpunkte mit Lichtstrahlen explizit berechnet
werden kénnen und nicht durch Optimierung bestimmt werden miissen. Daraus folgt fiir un-
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sere spezielle Formulierung, dass das System nur aus einer Freiformflache bestehen darf und

alle anderen Flachen explizit definiert sein miissen.

5.4 Numerische Integration mittels Gauss-Quadratur

Zur Berechnung der Beleuchtungsstirke mit ausgedehnter Lichtquelle (siehe Gleichung
(4.5.3)) miissen Integrale berechnet werden. Deshalb ist eine effiziente Integrationstechnik
wichtig.

Das numerische Integrieren von Funktionen approximiert diese stiickweise als Polynome
und integriert diese exakt. Wir beziehen uns auf das Buch [IT} Kapitel 7]. Das Integral einer
Funktion I : [a, b] — R wird durch die Integration der Polynome mittels einer numerischen

Quadraturformel
b
n
=ff(x)dx —I=) wif(x)
g i=1

approximiert. Der Genauigkeitsgrad m € N einer Quadraturformel besagt, dass mit Hilfe die-
ser Formel Polynome mit Héchstgrad m exakt integriert werden kénnen. Die Newton-Cotes
Quadraturformel realisiert zu (m + 1) paarweise verschiedenen Stiitzstellen x; € [a, b] genau
eine Vorschrift mit Genauigkeitsgrad von mindestens m.

Die Gauss-Quadraturformeln erhbhen diesen Genauigkeitsgrad, indem sie die Lage der Stiitz-
stellen als weitere Freiheitsgrade fiir die Quadratur verwenden. Das Ergbnis dieses Ansat-
zes ist, dass fiir das Intervall [-1,1] zu n Stiitzstellen x; genau eine Quadraturformel I=
Y i_; Wi f(x) mit dem Genauigkeitsgrad (2n — 1) existiert. Die Stiitzstellen x; sind die Null-

stellen des n-ten Legendre-Polynoms

dr 1y %(—l)k 2n-2k)! N2k

P (x) =
n) = S & = koln—2k)ki2n ™

und die Integrationsgewichte sind gegeben durch

1
X—X
e

iZk

x.\

93



5 Lésungskonzept und numerische Umsetzung

Diese Werte konnen auch als Eigenwerte einer Matrix berechnet werden. Die Stiitzstellen x;

sind die Eigenwerte der Matrix

0 b
1 0 B
B 0 p3
Jn=
ﬂn—z 0 ﬁn—l
ﬁn—l 0
mit ‘
Pe= 4k2—1

Die Gewichte konnen durch die Eigenvektoren bestimmt werden. Sei Z* der Eigenvektor von
Jn zum Eigenwert x;. Dann gilt fiir die Gewichte

2(z5)?
Wk = a0
1212

wobei Z{C die erste Komponente des nicht normierten Eigenvektors zum Eigenwert xj ist.
Diese Formeln gelten fiir das Intervall [-1, 1]. Wenden wir die Integration nun auf das zwei-

dimensionale Gebiet [a, b] x [c, d] an, so kann die Quadraturformel mit Hilfe einer einfachen

Transformation
—a —-C —da a+ —-C Cc+
a c -1-1% ~ ’
=:f(x,y,a,b,c,d)

angewandt werden. Die Gauss-Quadratur mit einem Genauigkeitsgrad 27 — 1 in beide Rich-

tungen fiihrt auf die Formel
~ n n A
I = Z Z w,Lt wVf(x/Jr xV} a, b; c, d);
p=1lv=1
wobei die w; und x; fiir die Gauss-Gewichte und Stiitzstellen stehen. Die Stiitzstellen bezie-

hen sich auf das Intervall [-1,1]?, kénnen aber leicht auf das eigentliche Integrationsgebiet

transformiert werden.
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Mehrlevel-Ansatz der Gauss-Quadratur Wir wenden die Gauss-Quadratur auf ein groes
Rechteckgebiet IT = ! x 12 = [n},n;] X [n%,ng] an. Falls der Integrand in dem Integrations-
gebiet sehr feinstrukturiert ist, miissen die Stiitzstellen das Gebiet entsprechend ausfiillen.
Fiir eine hohe Anzahl an notwendigen Stiitzstellen ist es nicht sinnvoll, die Gauss-Quadratur
auf diese direkt anzuwenden, da in diesem Fall sehr hochdimensionale Eigenwertprobleme
zu 16sen wéren und interpolierende Polynome héherer Ordnung die Neigung zum Oszillie-
ren aufweisen. Deshalb wenden wir die Gauss-Quadratur mit n (ca. 3 — 7) Stiitzstellen auf

kleineren Teilgebieten von IT an und setzen diese durch Summenbildung zusammen. Wir be-

zeichnen mit [T, die Unterteilung von IT in n{@ x ng dquidistante Zellen, in denen die Gauss-
1__1
Quadratur angewandt wird. Die horizontale Zellenbreite ist k) := % und die vertikale

1
22
hy := ﬂzn,fl . Wir erhalten fiir I = ([} f(x, y)dxdy die Approximation

2

h
ny—1

ni-1
=) ZZ i i wywy f (X, Xy, ) + iRy, 70} + (@ + Dhy, 72 + jho, w5 + (j + D).
i=0 j=0 p=lv=1
Falls der Integrand in grof3en Bereichen des Integrationsgebietes verschwindet, muss dieser
in diesen Bereichen nicht berechnet und integriert werden. Da der Backward-Raytraceim All-
gemeinen nur kleine Teile der Flache auf die Lichtquelle abbildet, geben wir eine Moglichkeit
an, den Integranden der Gleichung (4.5.3) nur auf dem aktiven Bereich zu bestimmen. Wir
nennen die verwendete Reduktion des Rechenaufwandes Mehrlevel-Ansatz. Die dabei ver-
wendeten Gitter fiir die Gauss-Integration sind in Abbildung 5.3 dargestellt. Die Grundidee
besteht darin, ein grobes Teilgitter 1z von I1;, zu wéahlen und den Integranden zuerst auf [Ty
auszuwerten. AnschlieSend wird die Integration nur auf den Zellen durchgefiihrt, die in dem
Bereich liegen, in dem der Integrand ungleich Null ist. Dieser Ansatz ist besonders effektiv,
wenn der Integrand nur auf einem zusammenhéngenden Gebiet in IT ungleich null ist und
in groBen Teilen verschwindet. In der Berechnung der BSV weist dieses Vorgehen eine ho-
he Effizienz auf, wie in Abb. 5.4 dargestellt wird. Der Rechenaufwand der Gauss-Integration
einer Funktion, deren Tréger ca. % der Flache von IT bedeckt, kann auf diese Weise um ca.

denselben Faktor verringert werden.
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I1

1_[H Hgauss

Abb. 5.3: Die Berechnung eines Integrals mit Hilfe der Gauss-Quadratur auf den Stiitzstellenlg gy 55 wird
mit Hilfe von drei Gittern in I1 durchgefiihrt. Indem der Integrand auf dem groben Gitter Iy
ausgefiihrt wird, wird durch die Menge der Punkte, auf denen der Integrand ungleich null ist,
eine Teilmenge der Gauss-Quadraturzellen in I1;, ausgewdhlt (griin schraffierte Fliche). Auf
diese Weise dient das grobe Gitter I1y der Verkleinerung des Integrationsgebietes.
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ADbb. 5.4: Die bendtigte Berechnungszeit eines Integrals mit Hilfe der Gauss-Quadratur mit und ohne
Mehrlevel-Ansatz. (a) Gegeniiberstellung der Berechnung mit und ohne Mehrlevel-Ansatz. (b)
Das relative Verhalten der Berechnungszeit mit Mehrlevel-Verfahren zu der Berechnung auf
dem ganzen Integrationsgebiet.
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5.5 Berechnung des optimalen mappings nach Monge-Kantorovich

5.5 Berechnung des optimalen mappings mit dem

Kantorovich-Formalismus des Monge-Problems

Das Beleuchtungsproblem in Abschnitt 2.5 wird vereinfacht gelost durch die Approximati-
on der Lichtquelle als Punkt § € R® und die Berechung eines diskreten optimalen mappings
F Q? — Qy, das zur Bestimmung eines optischen Systems verwendet wird. Auf das op-
timale mapping soll mit Hilfe des ProduktmaRes aus dem primalen Monge-Kantorovich-
Formalismus geschlossen werden (siehe lineares Programm 3.1).

Die Transformation des Beleuchtungsproblems in diese Formulierung wird in Abbildung 5.5
dargestellt und das resultierende mapping nach Gleichung (3.4.31) in Abbildung 5.6. Das pri-
male Problem bietet den Vorteil, dass die Struktur des gesuchten diskreten Produktmasses
W {[Q;'E;Q;'Z“]ll <i<m-1}x{[Q; Q5|1 < k < 0— 1} — R* schwach besetzt ist (siehe Ab-
schnitt 3.4.4). Wir beschreiben das diskrete Produktmass als Matrix M € R("~1D-(0=1) ‘Mit Hilfe
der schwachen Besetztheit kann die Komplexitit des Linearen Programms reduziert werden.
In der urspriinglichen Formulierung werden (m—1)-(0o—1) Variablen unter (m—1)+(0—1) Ne-
benbedingungen berechnet. Bei feiner Diskretisierung der Gebiete Q; und Qy kann schnell
der bendétigte Speicherplatz und die Laufzeit des Programms die praktische Durchfiihrung
unattraktiv oder unmdéglich machen. Die schwache Besetztheit legt nahe, dass die Anzahl an
zu berechnender Koeffizienten auf O((m — 1) + (0 — 1)) reduziert werden kann. In der Ausar-
beitung [13] stellt Jan Van-Lent zwei Ansdtze zur Reduzierung der Komplexitét dar, die in den

folgenden Abschnitten definiert werden.
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5 Lésungskonzept und numerische Umsetzung

Transformation des Beleuchtungsproblems in den Monge-Kantorovich-Formalismus

oo O
ZiSaunua§
Seuets N

Abb. 5.5: Das Beleuchtungsproblem wird fiir die Anwendung des Monge-Kantorovich-Formalismus

transformiert. In dieser Darstellung ist die Transformation der Zielfliche ¥ auf die Sphdire dar-

gestellt. Auf der Sphdire iiberlagern die diskreten MafSe der Lichtquelle und der Zielfliche, die

durch die Kostenfunktion auf den Mittelpunkten der Zellen in Zusammenhang gebracht wer-
den.
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5.5 Berechnung des optimalen mappings nach Monge-Kantorovich

Berechnetes mapping aus der primalen Monge-Kantorovich Lésung

Abb. 5.6: Das resultierende mapping %+ aus dem diskreten Produktmaf der primalen Monge-
Kantorovich-Lésung des Beleuchtungsproblems in Abbildung 5.5 wird dargestellt. Die griinen
Strahlen miissen durch das optische System auf Lichtstrahlen in Richtung der blauen Strahlen
abgelenkt werden
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5 Lésungskonzept und numerische Umsetzung

5.5.1 Erster iterativer Algorithmus von Jan van Lent zur Losung des primalen
Monge-Kantorovich-Problems

Wir definieren J := {(i, k)|u; r # O} als aktiven Indexbereich der Losungsmatrix M mit der An-
zahl g :=|J| an Indexpaaren im aktiven Bereich. Das lineare Programm kann umgeschrieben

werden zu.

lineares Programm 5.1 (primales Monge-Kantorovich-Problem mit Ausnutzung der schwa-
chen Besetzheit). Die Bezeichnungen und Definitionen der Mafszahlen u! und K, und die
Kostenmatrix C seien wie im linearen Programm 3.1. Da fiir die Losung u; i = 0 fiir alle (i, k) ¢

J gilt, ist die Minimierung der Gleichung 3.4.32 dquivalent zu der Minimierung von

q

CI(k) H3(k)-
k=1

Die Nebenbedingungen 3.1 sind dquivalent zu

Y M=K Y. Mip=MHp firallei=1...(m-1)undk=1...(0-1), (5.5.1)
{(i,kyedli=i} {i,k)edlk=k}

die durch ein entsprechendes Gleichungssystem mit q Unbekannten beschrieben werden kén-

nen.

(=1 pekannt ist, kann durch diese Um-

Falls der aktive Bereich J der Losung (u;, k)g.m_l)

k
formulierung des linearen Programms die gesuchte Losungsmatrix M bestimmt werden. Da

der aktive Bereich a-priori nicht bekannt ist, wird in [I3] ein iteratives Lésungsverfahren vor-
geschlagen nach dem Schema in Abbildung 5.7. Zu Beginn des iterativen Verfahrens wir ein
initialer aktiver Bereich J° gewihlt. Dieser kann beispielsweise durch eine Vorschrift definiert
werden, dass zu jedem 1 < i < (m — 1) eine gewisse Anzahl an Indexpaaren (i, k) gewahlt wer-
den, die die minimalen Kosten c; j fiir alle 1 < k < (0 — 1) verursachen.

AnschlieRend folgt eine Losungsschleife: Die Losungsmatrix M*~! aus dem linearen Pro-
gramm 5.1 zu dem gegebenen aktiven Bereich J¥~! wird berechnet. AnschlieRend wird diese
Losung analysiert und ein verdnderter aktiver Bereich J* bestimmt. Dazu werden zu jedem
1 < i < m alle Indexpaare in den aktiven Bereich J* aufgenommen, die innerhalb eines um-
gebenden Rechteckes um alle Zellen (i, k) mit M k=1 k) #0 liegen. Fiir ein eindimensionales
Problem wiirde dies bedeuten, dass die Indizes 1 < k; < k» < (0—1) bestimmt werden miissen,
fur die M (i, k;) = Mk-1(, k) =0 und M*=1(i, k) # 0 fiir alle k1 < k < k gilt. Alle Indexpaare
(i, k) mit k; < k < k, werden in den aktiven Bereich J° aufgenommen. Ein Abbruchkriterium
kann definiert werden durch die Forderung gk < 3%-1 da in diesem Fall sichergestellt wird,

dass der angenommene aktive Bereich den tatséchlichen enthilt. Im Beispiel 5.2 wird ein
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ADbb. 5.7: Schematische Darstellung des ersten iterativen Verfahrens von Jan Van Lent zur Losung des
primalen Monge-Kantorovich-Problems

eindimensionales Problem gel6st und der iterative Algorithmus dargestellt.

Beispiel 5.2 (Das erste iterative Verfahren von Jan van Lent an einem eindimenionalen Bei-
spiel). Wir wenden den Algorithus von Jan van Lent auf das eindimensionale Problem mit
den Dichten in Abbildung 5.8 an. Der iterative Prozess verdndert den aktiven Bereich. Die Pro-
duktmape fiir die jeweiligen aktiven Bereiche wéihrend der Iteration werden in Abbildung 5.9
dargestellt.
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Die Dichten pq und po
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Abb. 5.8: Die Dichte i, soll in die Dichte p, iiberfiihrt werden. Das Produktmafs des primalen Monge-
Kantorovich-Problems wird iterativ nach dem Algorithmus von Jan van Lent berechnet (siehe

Abbildung 5.9.)
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Abb. 5.9: Das iterative Verfahren von Jan Van Lent zur Losung des primalen Monge-Kantorovich-
Problems lost auf sich dndernden aktiven Bereichen das Problem 5.1. Die verschiedenen Pro-
duktmafSe werde in dieser Abbildung dargestellt.
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5.5 Berechnung des optimalen mappings nach Monge-Kantorovich

5.5.2 Zweiter iterativer Algorithmus von Jan van Lent zur Losung des primalen
Monge-Kantorovich-Problems

Alternativ kann auch ein anderes iteratives Verfahren angewandt werden. Hierbei werden
die Diskretisierungen der Gebiete Q, und Qy in jedem Iterationsschritt durch Unterteilung
der Zellen verfeinert. Sei Q§‘1 und Q’\;,‘l eine Diskretisierung mit der Losungsmatrix M*~!
und dem aktiven Bereich J*~1. Eine feinere Diskretisierung Q]; und Q(;, mit Q’;_l c Q’; und
Q\’;‘l c Q]\;, wird erstellt durch Unterteilung der einzelnen Zellen mit einem ganzzahligen
Vielfachen. Fiir die Ausfiihrung des linearen Programms auf der feineren Diskretisierung wer-
den in den aktiven Bereich J* nur die Zellen aufgenommen, die Teilmengen von Zellen in
Q';_l und Q(},‘l sind, deren Eintrag im ProduktmaR M*~! ungleich null ist. AnschlieRend wird
das lineare Programm 5.1 auf diesem aktiven Bereich bestimmt.

Damit dieser Ansatz zur Losung fiihrt, wird das initiale lineare Programm auf der groben Dis-
kretisierung Q?( und Q?I, als voll-besetztes lineares Programm 3.1 gel6st. Wenn die gewiinsch-
te Auflosung erreicht wird hat man die diskrete Losungsmatrix M" bestimmt. Dieses iterative

Losungsverfahren wird in Abbildung 5.10 schematisch dargestellt.

A Losun
Verfeinerung .g
T der Dikr des Li-
Losung des (_3 . € nearen
vollbesetz- Qt;Slergrgk Pro- Gebiete
ten linearen | icl IlllclllBe v | gramms genug N M= M
Programms f I 5.1 auf verfei- B
3.1 auf Qg . & dem nert?
0 des aktiven .
und Qy, ) k aktiven
Bereichs J .
-1 Bereich
aus M 5k

Abb. 5.10: Schematische Darstellung des zweiten iterativen Verfahrens von Jan Van Lent zur Losung des
primalen Monge-Kantorovich-Problems

Wir wenden dieses Verfahren auf dasselbe Problem an, wie den Algorithmus im vorigen Bei-

spiel 5.2

Beispiel 5.3 (Das zweite iterative Verfahren von Jan van Lent an einem eindimenionalen Bei-
spiel). Wirwenden den zweiten Algorithus von Jan van Lent ebenfalls auf das eindimensionale
Problem mit den Dichten aus Abbildung 5.8 an. Der iterative Prozess verfeinert die Diskretisie-
rungen, so dass eine Losung bestimmt werden kann zu einer wesentlich feineren Diskretisie-

rung als mit dem ersten Ansatz aus Beispiel 5.2. Die Produktmafse fiir die jeweiligen Diskreti-
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sierungen wihrend der Iteration werden in Abbildung 5.11 dargestellt.

Iterative Veranderung der Produktmal3e
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Abb. 5.11: Das zweite iterative Verfahren von Jan Van Lent zur Ldsung des primalen Monge-
Kantorovich-Problems l6st das entsprechende Lineare Programm auf einer groben Diskreti-
sierung und lést diese iterativ immer weiter auf. Dabei werden nur die Zellen des Produkt-
masses berechnet, die innerhalb gréberer Zellen liegen, deren Produktmass-Eintrag ungleich

null ist.

5.6 Bestimmung eines optischen Systems mit Hilfe eines optimalen

mappings

Gegeben sei ein diskretes optimales mapping & : Q;l — Q. Die optischen Fldchen X, bis 2,
sollen berechnet oder optimiert werden, so dass das mapping durch das optische System mit

der Punktlichtquelle in § € R® generiert wird.

Wir présentieren in Abschnitt 5.6.1 ein Optimierungsverfahren fiir allgemeine optische Sys-
teme mit verschiedenen Flachen und Freiheitsgraden.

Falls das optische System jedoch aus nur einer optischen Fldche besteht, kann das optimale
mapping & aufgrund der Gesetze der geometrischen Optik mit einem Normalenvektorfeld
Nf}- 1 Qy — S? der Fliche identifiziert werden. Nach dem Beweis von Lemma 3.2 zeigt das

Normalenvektorfeld der gesuchten Fldache in die Richtung

~ ny
Ny = F (@) — —~dy. (5.6.1)
ny
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5.6 Bestimmung eines optischen Systems durch ein optimales mapping

Das Lemma 3.2 besagt, dass zu einem rotationsfreien mapping % eine eindimensionale Schar
von optischen Fliachen existiert, die das gewiinschte mapping generieren. Eine optische Fla-
che, die durch ein rotationsfreies mapping, bzw. Normalenvektorfeld, beschrieben wird, kann

auf drei Weisen berechnet werden:

* Losen eines Systems partieller Differentialgleichungen als Anfangswertproblem, das
durch das Normalenvektorfeld des optimalen mappings definiert wird (siehe Abschnitt
5.6.2)

* Bestimmung der Flache durch Integration des Normalenvektorfeldes (siehe Abschnitt
5.6.3).

* Optimierung der Fldche zur Generierung des gewiinschten Normalenvektorfeldes (sie-
he Abschnitt 5.6.4).

Mit einigen weiteren Definitionen ist es auch mdéglich zwei oder noch mehr Flachen ein Nor-
malenvektorfeld zuzuordnen und die Flichen aufgrund des mappings % beziiglich der Nor-

malenvektorfelder zu optimieren (siehe Abschnitt 5.6.5).

5.6.1 Optimierung des optischen Systems zur Generierung des optimalen

mappings

Wenn mehrere optische Flichen X; bis ¥,, mit Freiheitsgraden ¢ € R” gleichzeitig zueinan-
der bestimmt werden miissen, um das mapping & zu generieren, dann kénnen diese Frei-
heitsgrade optimiert werden. Wir nutzen fiir die Optimierung ein Gradientenverfahren und
bezeichnen mit %; : Q4 — Qg das generierte mapping im Fernfeld des optischen Systems
zu den Freiheitsgraden ¢. Als Fehlerfunktion definieren wir den mittleren quadratischen Ab-
stand m . . m . .

€@ = Y 1Fe@y) - F @ 1 =2m- L(Fe@), FGp). (5.6.2)

Falls der Strahlengang durch das optische System analytisch berechnet werden kann, kann
der Gradient dieser Kostenfunktion durch automatisches Differenzieren im Riickwartsmodus
bestimmt werden, wobei die Berechnungszeit des Gradienten unabhingig ist von der Anzahl
an Freiheitsgraden (siehe Abschnitt 5.3). Die Abbildung 5.12 bestétigt die Effizienz des au-
tomatischen Differenzierens fiir diese Anwendung im Gegensatz zu Differenzenquotienten.
Die Kostenfunktion wird fiir eine Freiformfldche mit Polarradius definiert. Der Polarradius
wird durch kubische B-Splines mit unterschiedlich vielen Stiitzstellen beschrieben und die
Zeit fiir die Berechnung des Gradienten gemessen.Der Berechnungsaufwand des Automati-

schen Differenzierens geht relativ zu der Berechnungszeit der Kostenfunktion mit Verfeine-
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rung der Spline-Koeffizienten leicht zuriick, wogegen die Berechnungszeit der Differenzen-

quotienten linear zunimmt.

.+ Laufzeit der Kostenfunktion Vergleich AD zu Differenzenquotienten
’ ‘ Laufzeit der Kostenfunktion‘ Sool === Automatisches Differenzieren
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Abb. 5.12: Laufzeitanalyse der Gradientenberechnung in Abhdngigkeit von der Anzahl an Freiheitsgra-
den fiir die Kostenfunktion 5.6.2 zur Generierung eines vorgegebenen mappings. Es werden
verschieden feine Gitter von Spline-Koeffizienten verwendet, um die Abhdngigkeit von der
Anzahl an Freiheitsgraden darzustellen. Links wird die Dauer der Kostenfunktion aufgetra-
gen und rechts, wie viel Zeit das automatische Differenzieren, bzw. die Berechnung durch
Differenzenquotienten relativ zur Gesamtzeit der Funktion benétigt.

Ein gradientenbasiertes Optimierungsverfahren konvergiert nur gegen lokale Minima. Wird
die Flache durch sehr viele Spline-Koeffizienten beschrieben, so ist die Wahrscheinlichkeit
erhoht, dass mehr lokale Minima existieren und der Optimierer nicht zur globalen Losung
konvergiert. Deshalb verwenden wir den Ansatz, die Flache wihrend des Optimierungspro-
zesses iterativ zu verfeinern. Auf diese Weise sucht der Optimierer zuerst auf wenigen Para-
metern nach der Losung und nimmt die grobe Charakteristik der Lichtverteilung an. Wenn
eine Konvergenz festgestellt wird, werden weitere Knotenpunkte eingefiigt, wie im Abschnitt
5.2.4 beschrieben wird. Die Notwendigkeit und auch Giiltigkeit dieses Ansatzes wird in der
Abbildung 5.13 dargelegt. Wird die Fldche iterativ mit einer Spline-Koeffizientenanzahl von
[42,62,82,102,122] verfeinert, so ist die Konvegrenz wesentlich besser als das Gradientenver-
fahren, das direkt auf 122 Koeffizienten angewandt wird.

Die Zwischenstidnde des Optimierungsprozesses werden in Abbildung 5.14 analysiert, indem
die erzeugte Lichtverteilung mit ausgedehnter Lichtquelle dargestellt wird. Es ist zu erken-
nen, dass die erzeugte Lichtverteilung auch mit ausgedehnter Lichtquelle in die richte Rich-

tung entwickelt wird, diese aber nicht erreicht.
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Logarithmischer Fehler mit und ohne Splineverfeinerung
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=== Fehler mit Verfeinerung der Splines
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Abb. 5.13: Die Optimierung der optischen Fliche zur Generierung des optimalen mappings kann mit
und ohne iterative Verfeinerung der Spline-Koeffizienten durchgefiihrt werden. Die iterati-
ve Verfeinerung weist ein wesentlich besseres Konvergenzverhalten auf, als die Optimierung
ohne Verfeinerung, die direkt auf der feinsten Diskretisierung angewandt wird.

5.6.2 Berechnung einer optischen Flichen durch Losen eines Systems partieller
Differentialgleichungen

Wir gehen in diesem Fall davon aus, dass das optische System nur eine zu bestimmende opti-
sche Fliche X enthélt. Nach Lemma 3.2 existiert eine Schar von optischen Flachen, die dieses
Normalenvektorfeld beschreiben. Sei X : [1s — R? eine Fliche aus dieser Schar, so zeigt das

Normalenvektorfeld N in die Richtung
Nj = 6”122 X angz. (5.6.3)

Zusammenfiihren der Gleichungen (5.6.1) und (5.6.3) fithrt mit der reguldren Parametrisie-

rung @y : [z — Q4 zu den drei Forderungen
~ ng 1
Op 2 x 02— F(Mly) + el (Mx) =0 (5.6.4)

fiir die gesuchte dreidimensionale Funktion X. Modelliert man die Flache iiber einen Polar-

radius p (siehe Abschnitt 5.2.1), so kann das Kreuzprodukt (5.6.3) umgeschrieben werden zu

671‘22 x 67@2 = (an'zpa_)f( +pan;:&)7€) x (anzzp&)fc +p6n226)72)

panlzp(&))i X aﬂia)i) + panép(&’)f( X an;(f)i) + pz(aﬂ;:c_[)i X 67@&32).
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ADbb. 5.14: Eine Untersuchung der generierten Lichtverteilungen der optimierten Optik. (a) Das Simula-
tionsergebnis der optimierten Fldche mit der approximierten Punktlichtquelle. Das Ergebnis
weist die geforderte Charakteristik auf. (b) Die Verdnderung der generierten Beleuchtungs-
stdrkeverteilung mit ausgedehnter Lichtquelle wéhrend der Optimierung. Die Charakteristik
ndhert sich der gewiinschten konstanten Lichtverteilung an, erreicht diese allerdings nicht. Es

bleibt eine Uberhéhung im Zentralbereich erhalten.
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Einfiigen dieses Ergebnisses in das Gleichungssystem ergibt ein System aus drei partiellen
Differentialgleichungen. Um die Losung eindeutig zu bestimmen muss ein beliebiger An-

fangswert des Polarradius und der Ableitungen vorgegeben werden.

5.6.3 Berechnung einer optischen Fliche als Anfangswertproblem

Die zu berechnende Freiformfldche wird iiber den skalaren Polarradius p : [Ty — R* beschrie-
ben durch die Gleichung X(7x) = § + p(ms)@x (Tx). Zur Bestimmung der Fliche formulieren
wir ein Anfangswertproblem des Polarradius p.

Wir bezeichnen mit ¢ : [0,1] — IIz einen Pfad in der Parameterebene IIx und mit p; := po ¢
den Polarradius auf diesem Pfad. Das rotationsfreie Normalenvektorfeld Ng : [Ty — S? steht
senkrecht auf der Flache X. Aufgrund der Definition von X gilt auf dem ganzen Pfad ¢ die

Orthogonalititsbeziehung
B1(Nds(£(r) + p;(r) DDz (£(r) - Vi(r)) L Ng (£(r) Yr € [0,1].

Diese Orthogonalitdtsbeziehung ist in Sinne des euklidischen Skalarproduktes gleichbedeu-

tend mit der Forderung
(:(N®x(£(r) + p(r) D@z (£(r) - VE(r)), Ng (£(1))) 0.

Auflosen dieser Gleichung nach g, liefert die gewohnliche Differentialgleichung

(D@5 (t(r)) - Vi(r), N (£(r)))
(Ds(t(), Nz (t(r))y

Pr=—p:(r)

Wihlt man einen Startwert p(#x) € R*, so kann fiir alle Pfade ¢: [0,1] — [Ty mit #(0) = &y der
Polarradius entlang dieses Pfades durch Losen des Anfangswertproblems berechnet werden.
Es ist noch zu kldren, ob dieses Verfahren fiir alle Pfade mit dem gleichen Endpunkt #(1) das-
selbe Ergebnis liefert. Aufgrund des rotationsfreien Normalenvektorfeldes Ny existiert nach
Lemma 3.1 eine eindimensionale Schar von Flachen, die dieses Normalenvektorfeld anneh-
men. Mit Festlegung eines Startwertes X (/ix) wihlen wir aus dieser Schar eine optischen Fla-
che aus. Da das Anfangswertproblem entlang dieser Flache integriert folgt die Pfadunabhén-
gigkeit.

Das Normalenvektorfeld wird durch das mapping aus Abschnitt 5.5 auf einer Diskretisierung
des Parametergebietes I1Is berechnet. Fiir die Losung des Anfangswertproblems bietet sich
deshalb kein Mehrschrittverfahren an, sondern das explizite Euler-Verfahren, da die Diffe-

rentialgleichung nur auf der Diskretisierung bestimmt werden kann. Um die diskreten Fla-
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chenpunkte zu bestimmen, kann das Anfangswertproblem einmal in einer vertikalen Rich-
tung im Parametergebiet gel6st werden und anschlief3end fiir jeden Punkt auf dieser Lésung

in horizontaler Richtung, wie in Abbildung 5.15 dargestellt ist.

A

Np (%)

ADbb. 5.15: Das expizite Euer-Verfahren des Anfangswertproblems berechnet die Fldchenpunkte fiir die
Diskretisierung der Normalenvektoren. Zuerst wird entlang der vertikalen Richtungein Pfad
integriert (schwarz) und anschliefsend fiir jeden Punkt auf diesem Pfad die horizontale Rich-
tung (dunkelrot).

5.6.4 Optimierung des Normalenvektorfeldes einer Fléiche

Falls das gewiinschten Normalenvektorfeld N 4 einer Freiformflache bekannt ist, kann der-

selbe Optimierungsalgorithmus von Abschnitt 5.6.1 mit der alternativen Kostenfunktion
m — . - . 2 m - . - .
“— 1 1 _ - —
£ = ;—1 IN2(") ~ Ny @))12 = 2m - ;—1 (Ne(@)), Nz @)) (5.6.5)

verwendet werden. Diese Modellierung hat den Vorteil, dass Effekte wie beispielsweise Total-
reflektion die Optimierung nicht behindern und der Algorithmus stabiler ist. Eine praktiche
Umsetzung dieses Ansatzes wird in einem Unterabschnitt von 6.2 auf Seite 125 durchgefiihrt.

5.6.5 Alternative Berechnung mehrerer optischer Flachen

An dieser Stelle soll ein alternativer Ansatz aufgezeigt werden, wie mehrere optische Fla-

chen berechnet werden kénnen, um ein optimales mapping .% : Q3 — Qg zu generieren.
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5.6 Bestimmung eines optischen Systems durch ein optimales mapping

Ohne Beschridnkung der Allgemeinheit reduzieren wir in dieser Herleitung die Problemstel-
lung darauf, dass zwei Fldchen X; und X, zu berechnen sind. Die erste Flache soll das map-
ping s (& 7) = w generieren und kann tiber ein beliebiges Verfahren bestimmt wer-
den. Die zweite Fliche soll so berechnet werden, dass insgesamt das Zielmapping % erzeugt
wird, d.h. die zweite Fldche generiert das mapping ﬁzz : ﬁy_l (Qp) — Qg mit 922 (3:721 (@3)) =
F (@3). Auf diese Weise wird das mapping durch beide Fldchen erzeugt. Wir definieren die

gesuchte Fldache X, durch die skalare Funktion A: Q3 — R* durch
(D7) i= Z1(@7) + M@ ) Fx, @)

Die Optik wird in Abbildung 5.16 dargestellt. Diese Flachendefinition erméglicht es, mit Hil-

21
Yo

—

Wy

F(Wy)

ﬁzl ((’UX) /

o (@y) = Z1(By) + M@y ) Fs, (Gy)

1(@y) = ploy )@y

Abb. 5.16: Die beiden Fliichen stellen eine Optik dar, in der das gewiinschte mapping & : Qy — Qy von
beiden Flichen zu gleichen Teilen generiert wird.

fe der Gleichung (5.6.1) das geforderte Normalenvektorfeld sz fiir alle @, am Punkt X5 (@3)
durch das geforderte mapping ﬁzl (1) — ﬁy_z (w>) zu berechnen.
Das Normalenvektorfeld der Flache X, wird durch die skalare Funktion A und deren partiel-

len Ableitungen und der Parametrisierung @; : Iy, — Q4 definiert durch

N)l = 0,,;1 22 X 67@1 22

(a,,lzl 014051 ATy, + A0y Fs,) x (0,2 140 AT, + A0y Fs,|

(a,,lzl 0105z o) +0,2 A (a,,lzl o1 x Fs, )+ (a,,lzl 0105z Fs,)

=Ny,
+0, A(Fs, x5z 1)+ 0, A0y A(Fy, x T, ) A0 A, x 0,2 T,
1 1 1 1 N——— 1 1
o
+1 (a,,;l Fr, ¥ Oz o)+ A0y A(Fs, x Fs,) +1° (%lﬁzl x a,@l%_l) .

=0
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5 Lésungskonzept und numerische Umsetzung

Setzt man den normierten Vektoren N := ”%ﬁ mit sz gleich, so erhilt man ein System
aus drei partiellen Differentialgleichungen fiir die Funktion A und die partiellen Ableitun-
gen. Durch diese Gleichungen kann die zweite optische Fliche berechnet werden, falls das
mapping fﬁ“zl differenziert werden kann.

Alternativ zur Losung des Systems partieller Differentialgleichungen kann auch eine Fldchen-
optimierung durchgefiihrt werden mit dem Ziel, dass das Normalenvektorfeld mit dem ge-
forderten tibereinstimmt.

Eine praktiche Umsetzung dieses Ansatzes wird in einem Unterabschnitt von Absatz 6.2 auf
Seite 126 durchgefiihrt.

5.7 Optimierung mit ausgedehnter Lichtquelle

Die Beleuchtungsstirke kann durch die Gleichung (4.5.3) analytisch berechnet werden. Wir

geben die Gleichung noch einmal an fiir alle y € ¥:

2
Bz(y) = Z—%“ f f Ly (& (y,m) (1 - &(y,m) (Ny (), B, (1, M) /T @3, (v, 0)d7.

Hzn

Die numerische Integration dieser Gleichung wird durch den Mehrlevel-Ansatz der Gauss-
Quadratur aus Abschnitt 5.4 durchgefiihrt. Dazu wird das Gebiet 15, analog zur Abbildung
5.3 diskretisiert in ein grobes Gitter l'Ign und ein feineres Gitter Hgn mit Hgln c Hgn. Das feine
Gitter Hgn definiert die Zellen, in denen die Gauss-Quadratur durchgefiihrt wird. Zu Beginn
der Integration wird das Backward-Raytrace 2 auf das grobe Gitter l'[gn angewandt und die
Gauss-Integration in allen Zellen des feinen Gitters durchgefiihrt, die innerhalb des detek-
tierten Gebietes mit {Z () € y|m € Hgn} liegen.

Das Ziel dieser Arbeit ist es, aus dieser Modellierung ein Optimierungsverfahren der Frei-
heitsgrade ¢ des optischen Systems herzuleiten, damit sich die generierte Beleuchtungsstér-
ke B; ausreichend an die geforderte Beleuchtungsstdarke By angleicht. Wir verwenden auf-
grund der analytischen Definition der generierten Beleuchtungsstirke ein gradientenbasier-
tes Verfahren, wie etwa das BFGS-Verfahren mit Hilfe der Techniken des automatischen Dif-

ferenzierens.

Definition der Fehlerfunktion der Optimierung Eine Fehlerfunktion im Sinne der kleins-

ten Quadrate wird definiert durch

€10 =f(Bz(y)—B\y(y))2 dy. (5.7.1)
v
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5.7 Optimierung mit ausgedehnter Lichtquelle

Die Fehlerfunktion £; belohnt ein lokales Angleichen der generierten Beleuchtungsstirke an
die geforderte Verteilung. Die Abbildung 5.17 zeigt die generierte Beleuchtungsstéarkevertei-
lung am Anfang und am Ende einer Optimierung mit dieser Fehlerfunktion. Das lokale Aus-
gleichen fiihrt dazu, dass der Lichtstrom von den Regionen mit hohen Intensitdten nicht in
die anderen Regionen {ibertragen wird, so dass Lichtstrom verloren geht und die gewiinsch-

te Beleuchtungsstirkeverteilung nicht generiert werden kann. Aus diesem Grund wird eine

Einfeloptimierung der Beleuchtungsstarke Lichtfluss wahrend Einzieloptimierun
3 0.44 1
0.43
Lo
; 0.42
.E! (2}
A 27 @ 041
o) =
=
g 154 E 04
= ]
6 5 0.39¢
3 t 0.38
$ 05- 0.37
ol 03% 10 20 30 40

lterationen

Abb. 5.17: Die Optimierung eines optischen Systems mit der Einzieloptimierung zur Fehlerfunktion
(5.7.1) bewirkt in diesem Beispiel, dass in den Regionen mit zu hohen Intensitdten diese abge-
baut werden, der Lichtstrom jedoch nicht in die anderen Regionen transportiert wird, so dass
Lichtstrom verloren geht. Links ist die Verdnderung der Beleuchtungsstdrkeverteilung vom
Anfang zum Ende der Optimierung dargestellt und rechts die Verédnderung des Lichtflusses.

weitere Fehlerfunktion )

€2(C) = fBE(J/) dy- f By(y)dy (5.7.2)
v 14
definiert, die die globale Eigenschaft der Lichtstromerhaltung bewertet. Wir berechnen die
Lichtstrome mittels der Simpson-Regel. Die Gesamtfehlerfunktion der Optimierung setzt sich
durch eine Gewichtung
£(0) = a1€2(C) + a2€2(C) (5.7.3)

der beiden Fehlerfunktionen zusammen mit a;,a2 > 0 und a; + @2 = 1. In Abbildung 5.18
wird das Ergebnis mit Mehrzieloptimierung dargestellt. Der Lichtstrom bleibt erhalten und
die Intensititen werden gleichméaRiger ausgeglichen, allerdings wird die Optimierung ver-
langsamt und mehr Iterationen sind notwendig. Die Notwendigkeit dieser Mehrzieloptimie-

rung ist von Anwendungsfall zu Anwendungsfall unterschiedlich.

Berechnung des Gradienten Fiir die Berechnung des Gradienten Ve(¢) eignet sich aus zwei

Griinden das automatische Differenzieren. Zum einen ist ein analytisches Differenzieren der
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5 Lésungskonzept und numerische Umsetzung

Formeln aufgrund der hohen Komplexitét praktisch nicht méglich, das automatische Diffe-
renzieren liefert jedoch den analytischen Gradienten. Zum anderen hingt die Berechnungs-
zeit des Gradienten durch Differenzenquotienten linear von der Anzahl an Freiheitsgraden
ab. Die Berechnung des Gradienten mit Hilfe des automatischen Differenzierens im Riick-
wartmodus ist jedoch hiervon unabhingig. Dieses Verhalten wird in der Grafik 5.19 mit Hilfe
des automatischen Differenzierers ADIMAT in Matlab fiir die Fehlerfunktion ¢ untersucht.
Bei optimaler Einstellung dauert die Berechnung des Gradienten im Riickwirtsmodus ca.
zwolfmal so lange, wie die Auswertung der Funktion selber. Damit wird eine 'beliebig’ feine

Beschreibung der Flache durch B-Splines ermdoglicht.

Iterative Verfeinerung der Spline-Koeffizienten Analogzu der Optimierung optischer Sys-
teme zur Generierung eines rotationsfreien mappings in Abschnitt 5.6.1 verfeinern wir die
Flache wihrend des Optimierungsprozesses iterativ. Auf diese Weise sucht der Optimierer zu-
erst auf wenigen Parametern nach der Losung und nimmt die grobe Charakteristik der Licht-
verteilung an. Wenn eine Konvergenz festgestellt wird, werden weitere Knotenpunkte einge-
fiigt (vgl. Abschnitt 5.2.4). Wir verifizieren das iterative Verfeinern im Optimierungsprozess
anhand des Fehlerverhaltens in demselben Beispiel in Abbildung 5.18 fiir die Mehrzielopti-
mierung mit und ohne iterativer Verfeinerung. Das Ergebnis wird in der Abbildung 5.20 dar-
gestellt. Man kann die prinzipielle Notwendigkeit dieses Ansatzes fiir dieses Optimierungs-
problem an diesem Beispiel nicht nachweisen, wobei der Gesamtfehler mit iterativer Spline-
Verfeinerung etwas stirker reduziert wird. Dennoch in es sinnvoll die Spline-Flache wahrend
der Optimierung verfeinern zu kdnnen, da zusitzliche Freiheitsgrade in der Optimierung die
Herausbildung von Strukturen in der Zielbeleuchtungsstirkeverteilung erméglichen.

Die Verwendung einer gradientenbasierten Optimierung stellt Bedingungen an die Leucht-

dichteverteilung L: y x S> — R", die nun hergeleitet wird.
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5.7 Optimierung mit ausgedehnter Lichtquelle

Mekrfeloptimierung der Beleuchtungsstérke Lichtfluss wahrend Mehrzieloptimierung
35 " 0.44
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Abb. 5.18: Die Optimierung eines optischen Systems mit der Mehrzieloptimierung zur Fehlerfunktion
(5.7.3) bewirkt in diesem Beispiel, dass der Lichtstrom aus den Regionen mit zu hohen Inten-
sitéiten in die Region mit zu niedrigen Intensitdten transportiert wird und so der Lichtstrom
erhalten bleibt. Links ist die Verdnderung der Beleuchtungsstdrkeverteilung vom Anfang zum
Ende der Optimierung dargestellt und rechts die Verdnderung des Lichtflusses. Im oberen Bild
sieht man, dass der Lichtfluss wihrend der Optimierung anndhernd konstant bleibt. In der
unteren Grafik sieht man den oszillierenden Charakter des Lichtflusses. Das weist darauf hin,
dass die Gradienten der beiden Fehlerfunktionen nicht in die gleiche Richtung zeigen.

Sekunden

150

Laufzeitanalyse der Gradientenberechnung

100

50

—Vorwartsmodus gemessen
—Ruckwartsmodus gemessen
---Vorwéartsmodus theoretisch
---Ruckwartsmodus theoretisch
Differenzenquotient

Abb. 5.19: Laufzeitanalyse der Berechnung des Gradienten in Abhdngigkeit von der Anzahl an Frei-
heitsgraden. Es werden Vorwdrts- und Riickwdrtsmodus in Theorie (gestrichelt) und Praxis
(durchgezogen) miteinander. Die theoretische Laufzeit fiir die Bestimmung des Gradienten
mittels Differenzenquotienten wird ebenfalls aufgetragen.
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5 Lésungskonzept und numerische Umsetzung

... Menhrzieloptimierung mit und ohne Spline-Verfeinerung

ohne Verfeinerung der Spline-Koeffizientel
—mit Verfeinerung der Spline-K { \

Abb. 5.20: Das Fehlerverhalten mit und ohne iterativer Spline-Verfeinerung wéhrend des Optimierungs-
prozesses wird dargestellt. Die Anzahl an Koeffizienten wird in dem einen Fall von 5° sukzes-
sive auf 9° angehoben (roter Graph). Im anderen Fall werden direkt 9°-viele Koeffizienten
optimiert (griiner Graph). Die prinzipielle Notwendigkeit der Spline-Verfeinerung kann an
dieser Stelle nicht nachgewiesen werden, da das Konvergenzverhalten in beiden Ansditzen et-
wa identisch ist.

Bedingungen an die Leuchtdichteverteilung der Lichtquelle aufgrund des gradientenba-
sierte Optimierungsverfahrens Bei ersten Optimierungsversuchen wurde eine rechtecki-
ge !lambertsche Lichtquellen verwendet, das heiflt, dass alle Punkte auf y mit konstanter
Leuchtdichte leuchten und alle Punkte aullerhalb der Fliche nicht leuchten. Das Verfahren
konvergiert in diesen Versuchen nicht. Um dieses Verhalten zu erkldaren reduzieren wir die
Freiheitsgrade auf zwei Spline-Koeffizienten mit globaler Losung bei (3.5;3.5). Die Fehler-
funktion zeigt in einer grob aufgelosten Umgebung der Startlosung ein glattes und differen-
zierbares Verhalten. Dies ist in der Abbildung 5.21 in zwei Rastern dargestellt. Der erwartete
Gradient an der Stelle (3.52;3.47) miisste aufgrund des glatten globalen Verhaltens der Feh-
lerfunktion in der ersten Komponente einen positiven und in der zweiten Komponente einen
negativen Eintrag aufweisen, jedoch sind in dem berechente Gradient beide Komponenten
positiv. Dieses Ergebnis wird dadurch bestitigt, dass sowohl das automatische Differenzie-
ren, als auch der Differenzenquotient dasselbe Verhalten aufweisen. Zur Klarung dieser Be-
obachtung betrachten wir in Abbildung 5.22 das Fehlerverhalten fiir unterschiedlich feine
Diskretisierungen (1071,1073,1075,1077) der Spline-Koeffizienten um den Wert (3.52;3.47)
herum. Es ist zu sehen, dass die Fehlerfunktion neben einer global stetigen Erscheinung lo-
kale Unstetigkeiten aufweist. Diese Beobachtung erklart den Effekt, dass der Gradient nicht
die erwartete Charakteristik aufweist, da das lokale Verhalten der Fehlerfunktion nicht dem

globalen entspricht. Diese Beobachtung wird auch dadurch gestiitzt, dass der Gradient der

1Eine lambertscher Lichtquelle weist eine konstante Leuchtdichte in alle Richtungen auf. Die generierte Licht-
stdrkeverteilung ist kosinusformig.
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5.7 Optimierung mit ausgedehnter Lichtquelle

Fehlerverhalten bei Variation zweier Spline-Koeffizienten Fehlerverhalten bei Variation zweier Spline-Koeffizienten

Abb. 5.21: Die Fehlerfunktion (5.7.3) in Abhdngigkeit von zwei Spline-Koeffizienten in der Ncihe der glo-
balen Losung. Die Auflosung des Gebietes ist in beiden Fiillen so grob, dass die Fehlerfunktion
ein glattes Erscheinungsbild hat.

Variation der Spline—-Koeffizienten um 0.1 Variation der Spline-Koeffizienten um 0.001

x10°

35201 347

Abb. 5.22: Die Fehlerfunktion (5.7.3) in Abhdngigkeit von zwei Spline-Koeffizienten in der Ndihe der
Startlosung fiir unterschiedlich feine Diskretisierungen der Spline-Koeffizienten. Die Leucht-
dichte der rechteckigen Lichtquelle ist in diesem Beispiel als perfekt lambertsch modelliert mit
unstetigem Abfall der Leuchtdichte am Rand der Lichtquelle. Diese Unstetigkeit kann man in
dem lokalen Verhalten der Fehlerfunktion beobachten, was die gradientenbasierte Optimie-
rung fiir diesen Fall erschwert.
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h (W) Gradient
1078 107%-(0.7561, 0.5567)
1077 1078.(0.7561, 0.5567)
1076 1075 (0.7561, 0.5567)
1075 107%.(0.0751, 0.3637)
1074 1075 (~1.4024, 3.9258)
1073 1078 (—2.4077, 4.5826)

Tabelle 5.2: Abhdingigkeit und Verhalten des FD-Gradienten von der Schrittweite h. Fiir grofseres h weist
der Gradient die erwartete Charakteristik auf, fiir kleines jedoch nicht. Das ldsst darauf
schliefSen, dass die Fehlerfunktion lokale Unstetigkeiten aufweist.

Fehlerfunktion fiir eine grof3ere Schrittweite bei Finiten Differenzen die erwartete Charakte-
ristik aufweist, fiir kleine jedoch nicht (siehe Tabelle 5.2).

Die Unstetigkeit der Lichtquellendefinition erklédrt dieses Verhalten der Fehlerfunktion. Das
Integral in der Formel (4.5.3) fiir die Beleuchtungsstdrke wird numerisch auf einem Gitter
in dem Parameterbereich IIy, bestimmt. Einige der diskreten Lichttrahlen haben Auftreff-
punkte auf der Lichtquelle y. Eine sehr geringe Anderung der Spline-Koeffizienten @ndert die
Auftreffpunkte, kann allerdings zu klein sein, damit eine Anderung in der Anzahl an diskreten
Lichtstrahlen, die die Lichtquelle treffen, eintritt. In diesem Fall wiirde die Anderung weder
durch einen Differenzenquotienten noch durch den analytischen Gradienten bemerkt wer-
den.

Dieses Problem kann dadurch gelést werden, die Leuchtdichteverteilung der Lichtquelle ste-
tig, bzw. glatt, zu definieren.

Wir untersuchen zu obigem Beispiel sowohl eine Definition mit linearem Abfall, als auch

einen differenzierbaren Abfall durch ein Polynom dritten Grades (siehe Abbildung 5.23). Die

(@ )

Abb. 5.23: Darstellung der Leuchtdichte der lambertschen Lichtquelle mit linearem (a), bzw. glattem (b)
Abfall der Leuchtdichte am Rand der Lichtquelle.
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5.7 Optimierung mit ausgedehnter Lichtquelle

Vorzeichen des Gradienten bei Verwednung dieser beiden Definitionen liefern an der Stelle
(3.52;3.47) die korrekte Charakteristik der Vorzeichen. Eine Darstellung der Fehlerfunktion in
verschiedenen Diskretisierungen (Abbildung 5.24) weisen keine Unstetigkeiten auf. Somit ist
die Stetigkeit der Leuchtdichte der Lichtquelle entscheidend fiir die gradientenbasierte Op-
timierung.

Dartiber hinaus wird der Einfluss der Differenzierbarkeit der Leuchtdichte im Konvergenz-
verhalten der Optimierung in Abbildung 5.25 deutlich. Es wird eine Fldche mit 16 Freiheits-
graden sowohl mit der linearen, als auch der differenzierbaren Definition der Leuchtdich-
te bestimmt. Die Variante mit differenzierbarer Definition ist hierbei wesentlich effizienter
als die stetige Variante, so dass wir die differenzierbare Definition wihlen. Dariiber hinaus
sieht man in dieser Abbildung den Unterschied zwischen dem Gradientenverfahren und dem
BFGS-Verfahren von IPOPT.

Var]iugtion der Spline-Koeffizienten um 0.1 Variation der Spline-Koeffizienten um 0.001

x10”°

42 44
35 38 4
i3 sz 34 36

Variation der Spline—Koeffizienten um 1e-005  Variation der Spline-Koeffizienten um 1e-006

347

Abb. 5.24: Die Fehlerfunktion (5.7.3) in Abhdngigkeit von zwei Spline-Koeffizienten in der Niihe der
Startlosung fiir unterschiedlich feine Diskretisierungen der Spline-Koeffizienten mit Verwen-
dung einer stetigen Leuchtdichteverteilung wie in Abbildung 5.23. Es sind keine Unstetigkei-
ten zu beobachten.
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109,

logarithmisches Fehlerentwicklung logarithmische Fehlerentwicklung
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Abb. 5.25: Analyse des logarithmischen Konvergenzverhaltens der Optimierung mit ausgedehnter Licht-

120

quelle und einer Freiformfldche mit 16 Freiheitsgraden fiir verschiedene Definitionen der
Lichtquelle. In der Grafik (a) ist die Optimierung mit stetiger Leuchtdichte (linearer Rand-
abfall) dargestellt und in Abbildung (b) mit differenzierbarer Leuchtdichte. Desweiteren wird
das Gradientenverfahren (blau) mit dem BFGS-Verfahren von IPOPT (rot) verglichen. Das

BFGS-Verfahren weist bessere Konvergenzeigenschaften auf bei Verwendung einer differen-
zierbaren Definition der Leuchtdichte auf.



6 Rechenbeispiele

In diesem Abschnitt werden verschiedene Anwendungsbeispiele mit den Algorithmen, die in
dieser Arbeit eingefiihrt und hergeleitet wurden, geldst. Dariiber hinaus wenden wir die Mo-
dellierung fiir Punktlichtquellen aus den Abschnitten 5.5 und 5.6 auf das Problem der Laser-

Umformung an.

6.1 Wall-Washer

Das Wall-Washer-Problem bezeichnet die Fragestellung nach einer Optik, die eine Wand ho-
mogen beleuchtet. Wir betrachten das optische System mit einer 1 x 1 mm? groRen lam-
bertschen Lichtquelle und einem zu beleuchtenden Rechteck auf einer Wand in 50 cm Ent-
fernung. Die Ausdehnung des zu beleuchtenden Rechtecks ist 10 x 10 ¢m?. Das berechne-
te mapping durch die diskrete Losung des Monge-Kantorovich-Algorithmus wird in Abbid-
lung 6.1 dargestellt. Die nach Abschnitt 5.6.1 optimierte Fliache, die dieses mapping generiert
wird in Abbildung 6.2 dargestellt und analysiert. Es ist zu erkennen, dass die Flache (Abb.
6.2a) die gewiinschte Lichtverteilung fiir eine Punktlichtquelle generiert (Abb. 6.2b), diese je-
doch mit der ausgedehnten Lichtquelle stark verzerrt wird (Abb. 6.2c). Das Ergebnis der Op-
timierung der optischen Fliche mit der ausgedehnten Lichtquelle nach Abschnitt 5.7 wird
in Abbildung 6.3 dargestellt und analysiert. Die generierte Lichtverteilung der Fliche (Abb.
6.3a) mit ausgedehnter Lichtquelle in Abbildung 6.3c entspricht der geforderten Lichtvertei-
lung wesentlich besser als die Lichtverteilung der Startfliche in Abbildung 6.2c. Die Simu-
lation mit einer Punktlichtquelle in Abbildung 6.3b weist einige Kaustiken, d.h. Linien mit
unendlich hoher Beleuchtungsstirke, auf. Diese Analyse zeigt, dass das Optimierungsergeb-
nis nicht mit Punktlichtquellen-Approximation berechnet werden kann, da man diesem Fall
nicht an Verteilungen mit Singularititen interessiert ist. In der Abbildung 6.4a wird die Feh-
lerentwicklung der Mehrzieloptimierung mit iterativer Verfeinerung der Spline-Koeffizienten
dargestellt. Das Konvergenzverhalten entspricht dem erwarteten Verhalten des Gradienten-
verfahrens und weist auf eine erfolgreiche Optimierung hin. Diese Optimierung wurde so-
wohl mit Finiten Differenzen, als auch Automatischem Differenzieren durchgefiihrt, wobei

die Fehlerentwicklung in beiden Féllen identisch war, die benétigte Zeit bei Verwendung von
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6 Rechenbeispiele

Berechnetes mapping aus der primalen Monge-Kantorovich Lésung

Abb. 6.1: Das resultierende mapping &* aus der primalen Monge-Kantorovich-Lisung fiir das Wall-
Washer-Problem. Die griinen Strahlen miissen durch das optische System auf Lichtstrahlen in
Richtung der blauen Strahlen abgelenkt werden. Die beiden Raster sind die diskreten Energie-
dichten der Lichtquelle und der zu beleuchtenden Fliche.

Finiten Differenzen jedoch entsprechende héher. Die Abbildung 6.4b vergleicht die relative
Dauer der Auswertung des Gradienten zur Auswertung der Funktion fiir Automatisches und
Finites Differenzieren. Es ist zu erkennen, dass das automatische Differenzieren ca. die 13fa-
che Zeit der Fehlerfunktionsauswertung unabhéngig von der Anzahl an Spline-Koeffizienten
bendtigt. Fiir die gewédhlte Auflosung von 10 x 10, bzw. 12 x 12 Spline-Koeffizienten ist die

bendtigte Zeit fiir zentrierte Finite Differenzen entsprechend hoher.
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6.1 Wall-Washer
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ADbb. 6.2: Darstellung und Analyse der berechneten Startfliiche fiir die Optimierung. (a) Diese Optik ist
das Ergebnis der Optimierung aus Abschnitt 5.6.1 zur Generierung des berechneten optimalen
mappings aus Abbildung 6.1. (b) Die generierte Lichtverteilung durch eine Punktlichtquelle.
(c) Die generierte Lichtverteilung mit der ausgedehnten Lichtquelle.

E(38978.9 [i] a (56,50, 75,50, 500,00) 30,6 Im]) of "view of measuring plane’ (856012450, 13,80, 500.00) 31,0 ) of “Viw of moasuring plane”

88 856 8580

(@) ®) (©

ADbb. 6.3: Darstellung und Analyse der optimierten Freiformfldche mit ausgedehnter Lichtquelle. (a) Die-
se Optik ist das Ergebnis der Optimierung aus Abschnitt 5.7 zur Generierung einer homogenen
Lichtverteilung mit ausgedehnter Lichtquelle. (b) Die generierte Lichtverteilung mit Punkt-
lichtquelle. (c) Die generierte Lichtverteilung mit der ausgedehnten Lichtquelle.
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ADbb. 6.4: Analyse der Fehlerentwicklung und Gradientenberechnung wéhrend der Optimierung mit
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ausgedehnter Lichtquelle nach Abschnitt 5.7. (a) Die Fehlerentwicklung wdhrend der Opti-
mierung mit ausgedehnter Lichtquelle nach Abschnitt 5.7. Der griine Kreis markiert den Ite-
rationsschritt, an dem die Spline-Koeffizienten verfeinert werden. Der Verlauf des Graphen ist
in diesem Fall unabhdngig davon, ob automatisches Differenzieren oder Finite Differenzen
verwendet werden. (b) Vergleich der Dauer der Gradientenberechnung relativ zur Dauer der
Auswertung der Funktionswerte auf den ersten 25 Iterationsschritten. Es ist zu erkennen, dass
die Gradientenberechnung mit automatischem Differenzieren ca. die 13fache Zeit der Fehler-
funktionsauswertung benétigt. Fiir die gewdhlte Auflosung von 10 x 10, bzw. 12 x 12 Spline-
Koeffizienten ist die bendétigte Zeit fiir zentrierte Finite Differenzen entsprechend hoher.



6.2 Umformung eines Laserstrahls

6.2 Umformung eines Laserstrahls

In diesem Beispiel soll gezeigt werden, dass die Ansétze fiir Punktlichtquellen aus Abschnitt
5.5 und 5.6 auf die Problemstellung der Umformung von Lasern angepasst werden kénnen.
Die beiden Lichtquellen verbindet, dass die Menge an Strahlen in beiden Féllen eine zweidi-
mensionale Menge ist und somit in den Monge-Kantorovich-Formalismus iibertragen wer-
den konnen. Der Unterschied besteht in der Art der Abstrahlung der Lichtstrahlen von der
Lichtquelle aus. Zuerst iibertragen wir die Problemstellung mit Lasern in den Formalismus
von Monge-Kantorovich als lineares Programm und definieren anchliefend die Freiformfla-

che durch die Strahlenginge des Lasers.

Formulierung des linearen Programms Wir bezeichnen mit y c R® die Austrittsfliche des
Lasers mit Abstrahlung in Richtung @, und Intensitédt J, : y — R*. Wir betrachten die disjunk-
te Unterteilung {)(i c xli =1,...,m} von y mit Mittelpunkten f(i € xi. Mit )Zfl, € ¥ bezeichnen
wir die Abbildung der Punkte 7’ € y in Richtung @, auf V. Sei (W cW¥|j=1,...,0} eine dis-
junkte Unterteilung der Zielfliche ¥ mit Mittelpunkten v/ € W/, Die diskreten MaRzahlen

werden berechnet durch

pj::ff_]x(x)dxundp]‘.:fﬁy By (y)dy. (6.2.1)
X j

Mit diesen Bezeichnungen kann das lineare Programm in Analogie zum linearen Programm
5.1 aufgestellt werden und mit den Algorithmen aus Abschnitt 5.5.1 und 5.5.2 geldst werden.
Mit dem Ergebnis wird das diskrete mapping % : {)Zi € )(i li=1,...,m} — ¥ berechnet.

Optimierungeiner Linsedes TypsI Mit einer Linse des Typs I bezeichnen wir eine brechen-
de Optik, deren Innenfldche X; berechnet werden muss, um das gewliinschte mapping & zu
erfiillen und deren Aullenfldche X, eine Ebene mit Normalenvektor ]_\722 ist. Wir beschreiben
auch in diesem Fall die Innenfliche durch eine skalare Funktion p : y — R mit der Fldchen-
definition X, (x) := y(x) + p(x)E)X. Fiir alle x € y zeigt der Normalenvektor ]_\7;1 (x) am Punkt
21 (x) der inneren Fliche in die Richtung

ONs ONs dy op . oy op . .
a0 0 750+ g [ S wa,

Mit dieser Definition kann das optische System in Analogie zum Abschnitt 5.6.1 optimiert
werden.

Vernachlissigt man die Ausdehnung der Optik, so kann aus dem optimalen mapping & das
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6 Rechenbeispiele

mapping F {()ny,&’)x)li =1,...,0} = Qy mit Qy := {ﬁly € ¥} berechnet werden durch

ﬁ"(x) = Z0 .
1 ()l

Will man nun die innere Fliche bestimmen, so muss das mapping % (x) noch zuriickgerech-
net werden auf Richtungsvektoren 921 (x) im Linsenmaterial durch die optische Brechung an

der ebenen AuRenfliche mit der Definition
35721 (x):=redirs, (—fj(x),]_\?zz).

Die geforderten Normalenvektoren N 4, (x) fiir alle x € y der inneren Fldche zeigen in Anleh-
1

nung an Gleichung (5.6.1) in die Richtung

und konnen auf diese Weise bestimmt werden. Die Innenfldche kann mit den Optimierungs-
algorithmen der Abschnitte 5.6.1 bis 5.6.4 bestimmt werden. In der Abbildung 6.5a wird die
berechnete innere Linsenflache dargestellt, die einen homogenen Laser mit den Mallen
[-0.6mm;0.6mm] x [-0.16mm;0.16mm] auf ein Rechteck der senkrechten Ebene in 10mm
Entfernung mit den MaBen [-3mm;3mm] x [-15mm; 15mm] abbildet. Die Simulation der
Optik in Abbildung 6.5b zeigt sehr gute Resultate und bestétigt den Ansatz.

(@) (b)

ADbb. 6.5: Darstellung des Linsentyps I mit Simulationsergebnis. (a) Die berechnete Linse, die einen ho-
mogenen Laser mit den MajSen [-0.6mm;0.6mm] x [-0.16mm;0.16 mm] auf ein Rechteck auf
der senkrechten Ebene in 10mm Entfernung mit den Mafsen [-3mm;3mm]x[-15mm;15mm]
abbildet. (b) Die Simulation der Optik zeigt, dass die Umverteilung des Laserstrahls erfolgreich
ist und die gewiinschte Lichtverteilung erzeugt wird. die griinen Lichtstrahlen markieren einige
Strahlengdnge

126



6.2 Umformung eines Laserstrahls

Optimierung einer Linse des Typs II Mit einer Lines des Typs II bezeichnen wir die Um-
setzung des Ansatzes aus Abschnitt 5.6.5. Die Ausdehnung der Optik wird vernachléssigt und
die Linse soll das mapping .% : {()Zfl,,&)x)li =1,...,0} — Qg aus dem vorherigen Abschnitt
generieren, wobei beide optische Flichen die einzelnen Lichtstrahlen um denselben Winkel
ablenken sollen. Es soll also das mapping ﬁzl (%) := g(x;w)" durch die innere Fldche X; und
32722 (ﬁzl (x)) := & (x) durch die duRere Fliche realisiert werden. Die Optik wird analog zu Ab-

schnitt 5.6.5 definiert (siehe Abbildung 6.6). Die beiden berechneten Flichen zu demselben

L2(z) = T1(x) + AM@)Fy, (2)
ADbb. 6.6: Das berechnete optimale mapping fiir die Laserstrahlen wird generiert, indem das mapping

durch beide optische Flichen zu gleichen Teilen generiert wird.

optischen Problem wie im vorigen Abschnitt und auch die Simulation werden in Abbildung
6.7 dargestellt.

(@) (b)

Abb. 6.7: Darstellung des Linsentyps Il mit Simulationsergebnis. (a) Die berechnete Linse, die einen ho-
mogenen Laser mit den MafSen [-0.6mm;0.6mm] x [-0.16mm;0.16 mm] auf ein Rechteck auf
der senkrechten Ebene in 10mm Entfernung mit den Mafsen [-3mm;3mm]x [—15mm;15mm]
abbildet. Hierbei wurden sowohl die Eintritts- als auch die Austrittsfliiche zueinander berech-
net, so dass beide Fldchen jeden Strahlengang um denselben Winkel ablenken. (b) Die Simula-
tion der Optik zeigt, dass die Umverteilung des Laserstrahls erfolgreich ist und die gewiinschte
Lichtverteilung erzeugt wird. die griinen Lichtstrahlen markieren einige Strahlengdinge
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6 Rechenbeispiele

Berechnung eines Linsenarrays zur Homogenisierung der erzeugten Lichtverteilung bei
Verwendung einer realen Laserdiode In den beiden vorhergehenden Beispielen nehmen
wir fiir die Lichtquelle einen idealen Laser mit homogenem parallelem Licht an. Reale La-
serdioden hingegen sind nicht homogen und auch nicht perfekt parallel, sondern weisen
beispielsweise eine elliptische Streuung wie in Abbildung 6.8a auf. Das Simulationsergeb-
nis des Ergebnisses aus dem vorherigen Abschnitt (siehe Abbildung 6.5a) mit der Laserdiode
als Lichtquelle wird in Abbildung 6.8c dargestellt. Es ist zu sehen, dass die Inhomogenitét
der Laserdiode auf das Zielgebiet abgebildet wird und die gewiinschte Lichtverteilung nicht
generiert wird. Das Simulationsergebnis in Abbildung 6.8b gibt den Vergleich zwischen der
parallelen Lichtquelle und der realistischen Laserdiode wieder. Wir stellen fest, dass die L6-

sung fiir paralleles Licht nicht anwendbar ist fiir eine Laserdiode. Eine Méglichkeit, die In-

®) (©

ADbb. 6.8: Der Linsentyp I aus Abbildung 6.5a wird mit einer realistischen Laserdiode simuliert. (a) Die
Lichtverteilung der Laserdiode. Diese Lichtquelle ist keine perfekte parrallele Lichtquelle, son-
dern weist Divergenz und Inhomogenitdten auf. (b) Dieses Simulationsergebnis vergleicht die
Simulation mit paralleler Lichtquelle und Laserdiode miteinander. Man kann deutlich erken-
nen, das das beleuchtete Gebiet variiert. (c) Das Simulationsergebnis mit der Laserdiode. Die
Inhomogenitdten der Laserdiode werden auf das Zielgebiet abgebildet.

homogenitédten der Laserdiode nicht scharf auf das zu beleuchtende Gebiet abzubilden ist,
mehrere kleine Optiken zu berechnen, die jeweils aus einem Teil des Laserstrahls die gesamte

Lichtverteilung erzeugen. Auf diese Weise {iberlagern sich die einzelnen Teile der Lichtvertei-
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lung der Laserdiode und Inhomogenitéten gleichen sich aus. Ein Linsen-Array, das auf diese
Weise berechnet wird, wird in Abbildung 6.9a dargestellt. Die einzelnen Teiloptiken sind fiir
paralles Licht gerechnet, das aus einem Teil des Laserstrahls die gewiinschte Lichtverteilung
erzeugen. Die erzeugte Lichtverteilung (siehe Abbildung 6.9b) ist ndher an der gewiinschten
Verteilung als die Simulation mit einer einzelnen Optik (vgl. Abbildung 6.8c). Aufgrund der
Streuung der Laserdiode erhalten die einzelnen Linsen im Array allerdings Licht von dem La-
ser mit unterschiedlichen Auftreffwinkeln. Dies hat zur Folge, dass die generierten Lichtver-
teilungen der einzelnen Linsen auf der Zielfliche verschoben und verzerrt werden, was bei
der Uberlagerung der erzeugten Lichtverteilungen zu einer stufenweisen Gesamtlichtvertei-
lung fiihrt. Diese Charakteristik ist in dem vertikalen Schnitt durch die Lichtverteilung in Ab-
bildung 6.9c deutlicher sichtbar. Um dieses Problem der Verschiebung der einzelnen Licht-
verteilungen zu umgehen, kann man die Richtung des parallelen Lichts fiir die einzelnen
Linsen im Array durch eine gemittelten Richtungsvektor des Lichts, das von der Laserdiode
auf die einzelne Linse abgegeben wird, anpassen. Das Ergebnis wird in Abbildung 6.10 dar-
gestellt und kann direkt verglichen werden mit dem unkorrigierten Multilinsen-Array-Ansatz
aus Abbildung 6.9. Die erzeugte Lichtverteilung ist homogen und weist keine Stufenstruktur
auf. Mit Hilfe dieses Ansatzes kann die gewiinschte Lichtverteilung erzeugt werden. Das Op-
timierungsverhalten der eingefdrbten Linsen in Abbildung 6.10 wird in Abbildung 6.11 ana-
lysiert. Es ist zu sehen, dass die Optimierung fiir die Flichen am Rand schlechter konvergiert
als im Zentralbereich. Dies kann verschiedene Ursachen haben, z.B. erlaubt die Parametri-
sierung nicht, die gesuchten Normalenvektorfelder zu beschreiben oder aber das geforderte
Normalenvektorfeld weist eine zu grolle Rotation auf. Daneben sind jedoch die Verldufe im

Anfang der Optimierung sehr dhnlich.
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(a)

(b) (©)

Abb. 6.9: Zur Homogenisierung des Simulationsergebnisses aus Abbildung 6.8c mit einer Laserdiode
wird ein Multilinsen-Array-Ansatz verwendet. Jede Linse erzeugt die gesamte Lichtverteilung,
so dass die einzelnen Bilder der Laserdiode iiberlagert werden und das Ergebnis auf diese Wei-
se homogenisiert wird. (a) Das Multilinsen-Array. Jede Linse wird hierbei fiir paralleles Licht
aus derselben Richtung gerechnet. (b) Das Simulationsergebnis zeigt eine Homogenisierung.
Jedoch verschieben sich durch die Streuung der Laserdiode die einzelnen Lichtverteilungen, so
dass die generierte Lichtverteilung eine Stufenstruktur aufweist. (c) Die erzeugte Stufenstruk-
tur wird in diesem vertikalen Schnitt durch die Beleuchtungsstdrkeverteilung verdeutlicht.
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s P

(a)

(b) (c)

Abb. 6.10: Um die Stufen in der Lichtverteilung mit Multilinsen-Array in Abbildung 6.9 zu entfernen,
werden die einzelnen Linsen fiir paralleles Licht aus unterschiedlichen Richtungen gerechnet.
Auf diese Weise kann die Streuung der Laserdiode beriicksichtigt werden. (a) Das Multilinsen-
Array. Jede Linse wird hierbei fiir paralleles Licht aus unterschiedlichen Richtungen gerechnet.
Einige Linsen sind gesondert eingefiirbt, weil die Optimierung dieser Fldchen in Abbildung
6.11 analysiert wird. (b) Das Simulationsergebnis zeigt die gewiinschte Homogenisierung und
die Stufenstruktur ist nicht mehr erkennbar. (c) Der vertikale Schnitt durch die Beleuchtungs-
stdrkeverteilung bestditigt diesen Ansatz, da die Stufenstruktur nicht mehr vorhanden ist.
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Fehlerentwicklung wéhrend der Optimierung der einzelnen Linsen

10 ; ; ; ; ; ; :
—Linse 1
—Linse 2
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10" E
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107 E
10_2 L L L L L L L
0 5 10 15 20 25 30 35 40

Abb. 6.11: Es werden die Fehlerentwicklungen wéhrend der Optimierung von den drei in Abbildung 6.10
eingefiirbten Linsen dargestellt. Der rote Graph bezieht sich auf die Linse am Rand und der
griine auf die Linse im Zentralbereich des Arrays. Es ist zu sehen, dass die Optimierung fiir die
Fléichen am Rand schlechter konvergiert als im Zentralbereich. Dies kann verschiedene Ur-
sachen haben, z.B. erlaubt die Parametrisierung nicht, die gesuchten Normalenvektorfelder
zu beschreiben oder aber das geforderte Normalenvektorfeld weist eine zu grofse Rotation auf.
Daneben sind jedoch die Verldufe im Anfang der Optimierung sehr dhnlich.
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7 Zusammenfassung

Wir konnten in dieser Arbeit eine exakte Modellierung des Beleuchtungsproblems fiir opti-
sche Systeme mit ausgedehnter Lichtquelle herleiten. Die analytische Berechnung der Be-
leuchtungsstérke wurde im Rahmen der Optimierung von optischen Systemen als Teil der
Bewertungsfunktion erfolgreich eingesetzt. Aufgrund der Notwendigkeit, die optischen Fla-
chen durch viele Freiheitsgrade zu beschreiben, kommen fiir die Optimierung nur lokal kon-
vergente gradientenbasierte Optimierungsverfahren in Frage. Der Riickwértsmodus des Au-
tomatischen Differenzierens konnte fiir die Gradientenberechnung sehr erfolgreich einge-
setzt werden.

Aufgrund der lokalen Konvergenz der betrachteten Klasse von Optimierungsverfahren eroft-
nete die Approximation der Lichtquelle als Punkt viele Méglichkeiten, um gute Startlosungen
fiir die Optimierung zu berechnen.

Wir haben den Weg verfolgt, unabhingig von dem konkreten Aufbau des optischen Systems
zunichst ein optimales, d.h. rotationsfreies, mapping durch den Formalismus von Monge-
Kantorovich zu bestimmen. Mit Hilfe der Algorithmen von Jan Van lent konnte das sich er-
gebende lineare Programm auch in hoher Aufl6sung schnell gelost werden. Die Berechnung
einer Startflache, die das optimale mapping generiert wurde umgesetzt und die bestimmten
Flachen haben die geforderten Resultate fiir eine Punktlichtquelle generiert.

Anhand konkreter Anwendungsbeispiele wurde die Effektivitdt und Vielseitigkeit des Gesamt-

algorithmus unter Beweis gestellt.
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