
Identification of
Timed Behavior Models for

Diagnosis in Production Systems
Alexander Maier

Dissertation
in Computer Science

Faculty of Electrical Engineering,
Computer Science and Mathematics

University of Paderborn

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium
(Dr. rer. nat.)

Paderborn, November 2014

I dedicate this thesis to my father.

Acknowledgements

Although many hours have been invested into this work, this work would not be
possible without support of others.

First of all, I owe a great deal of gratitude to my supervisor Prof. Dr. Hans Kleine
Büning for the support in scientific questions and for giving me the scientific freedom.
Furthermore, I would like to give many thanks to Prof. Dr. Oliver Niggemann for
many scientific discussions and for the good cooperation, which resulted in many
common publications. I also give thanks to Dr. Meir Kalech for his willingness to
review this thesis.

I would like to thank Dr. Asmir Vodenčarević for the good cooperation during
both of our theses and for valuable discussions in research questions and writing
publications together.

I thank my colleagues and students at the research institutes inIT and Fraunhofer
IOSB-INA for the cooperative work: Thanks to Dr. Stefan Windmann for the project
management, for integrating this work into the model identification and diagnosis
framework proKNOWS. I thank Johann Badinger and David Schaffranek for the
implementation of BUTLA and OTALA in the proKNWOS framework. Furthermore,
I would like to thank the students Bernhard Jantscher and Fabian Böhm who imple-
mented some other state-of-the-art algorithms (Alergia, MDI, RTI+) for evaluation
purpose. I thank Björn Kroll, Florian Pethig and Darius Korzeniewski for imple-
menting the anomaly detection and the data acquisition in proKNOWS, such that the
algorithms can run in real production plant configurations. And I also thank Natalia
Moriz for many discussions about mathematical problems.

Since English is not my native language, I thank Syed-Shiraz Gilani for proof-
reading the English grammar in this thesis and providing valuable suggestions.

I also give thanks to the German Federal Ministry of Education and Research
(BMBF) for funding the project in which the dissertation was done.

I especially thank my parents for their immense support, I wish my father would
still be here and could read this thesis.

But most of all, I thank my wife Erika and our sons Leon Patrick, Lukas and
Julian for their immense patience and this work would not exist without their support.

Alexander Maier
Paderborn, November 2014

Abstract

Due to the increasing connectivity of automation devices and the increasing com-
puting power of embedded devices (Cyber-Physical Systems), production plants are
becoming increasingly complex. This leads to an increasing error susceptibility of
the systems and thus to a severe fault detection and analysis.

The task of man is changing from operation to monitoring. But due to the in-
creasing complexity of systems, operators are increasingly overwhelmed with the
monitoring. The monitoring of the system essentially comprises the detection of
faults in the regular production process.

Approaches from the field of model-based diagnosis are widely used for this
task. Here, a model is used to predict the behavior of the system for given inputs.
This prediction is compared with the actual behavior of the plant and in case of a
deviation, an error is reported. Often, manually created models are used. But the
manual creation of models is a time consuming and costly task. Thus, an automatic
modeling is desirable.

This is where this work begins. The use of intelligent technical systems should
support the operators in the monitoring of the system. In this work, three new
algorithms are introduced, of which two algorithms deal with the identification of
behavior models (in concretely: Timed Automata) and the third one uses the identified
models for anomaly detection:

First, the algorithm BUTLA is introduced, which runs faster than other algorithms
from state of the art. It is an offline identification algorithm, so it uses data which is
stored in a database and a preprocessing of the data.

Then, the algorithm OTALA is introduced, which to the best of our knowledge
is the first online passive identification algorithm for timed automata, that uses as
few expert knowledge as possible. One of its benefits is the autonomous convergence
detection. Therefore, this algorithm is especially suited for the usage in autonomously
running Cyber-Physical Production Systems.

Finally, the anomaly detection algorithm ANODA is introduced. It uses the
identified timed automata for anomaly detection.

The proposed algorithms are evaluated theoretically and empirically.

Zusammenfassung

Aufgrund zunehmender Vernetzung von Automatisierungsgeräten und der steigenden
Rechenleistung von eingebetteten Geräten (Cyber-Physical Systems) werden Pro-
duktionsanlagen immer komplexer. Dies führt zu einer steigenden Fehleranfälligkeit
der Systeme und damit zu einer erschwerten Fehler-Erkennung und -Analyse.

Die Aufgabe des Menschen wandelt sich vom Bedienen zum Überwachen. Aber
aufgrund der steigenden Komplexität der Anlagen werden Maschinenbediener auch
mit der Überwachung zunehmend überfordert. Die Überwachung der Anlage umfasst
im Wesentlichen die Erkennung von Fehlern im regulären Produktionsablauf.

Weit verbreitet sind Ansätze aus dem Bereich der Modellbasierten Diagnose.
Dabei wird ein Modell verwendet um das Verhalten der Anlage zu prognostizieren.
Diese Prognose wird mit dem realen Verhalten verglichen und bei einer Abweichung
ein Fehler gemeldet. Häufig kommen dabei manuell erstellte Modelle zum Einsatz.
Die manuelle Erstellung der Modelle ist jedoch eine zeitintensive Aufgabe. Demnach
ist eine automatische Modellerstellung wünschenswert.

Genau hier setzt diese Arbeit an. Der Einsatz von intelligenten technischen Sy-
stemen soll den Menschen in der Überwachung der Anlage unterstützen. In dieser
Arbeit werden drei neue Algorithmen eingeführt, von denen zwei Algorithmen sich
mit dem Lernen von Verhaltensmodellen in Form von zeitbehafteten endlichen Au-
tomaten befassen und der dritte die gelernten Automaten zur Anomalie-Erkennung
verwendet:

Zuerst wird der Algorithmus BUTLA eingeführt, der schneller ausgeführt wird
als andere Algorithmen (aus dem derzeitigen Stand der Technik). Es ist ein Offline-
Lernalgorithmus, der auf Daten in einer Datenbank zugreift und eine Vorverarbeitung
verwendet.

Dann wird der Algorithmus OTALA eingeführt, der nach unserem besten Wissen
der erste passive Online-Lernalgorithmus für zeitbehaftete endliche Automaten ist
und zudem mit minimalem Einsatz von Expertenwissen auskommt. Einer seiner
Vorteile ist die automatische Konvergenz-Erkennung. Daher ist dieser Algorithmus
speziell für die Verwendung in autonom laufenden eingebetteten Geräten geeignet.

Schließlich wird der Anomalie-Erkennungsalgorithmus ANODA eingeführt.
Er nutzt die identifizierten zeitbehafteten endlichen Automaten zur Anomalie-
Erkennung.

Die eingeführten Algorithmen werden theoretisch untersucht und empirisch aus-
gewertet.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Relevance to Related Work . 2
1.3 Contribution of this Thesis . 4
1.4 Realized and Potential Application Scenarios 5
1.5 Overview . 6

Part I Foundations 9

2 The Core Issue: Modeling and Learning Time 11
2.1 Modeling Time - A Taxonomy . 12
2.2 Learning Time - The Challenge . 15
2.3 Conclusion . 21

3 Formalisms 25
3.1 Basic notions . 25
3.2 Automata Formalisms . 30

4 Complexity of Identification of Finite Automata 37
4.1 The Identification Problem . 38
4.2 Identification frameworks . 40
4.3 Complexity of Identification of Finite Automata 42

5 Identification of Automata and Model-Based Anomaly Detection 49
5.1 Approaches for Anomaly Detection 50
5.2 Identification Algorithms for Finite Automata 52
5.3 Conclusion . 60

Part II Algorithms and Theory 63

6 Algorithmic Results 65
6.1 Requirements on modeling formalism and identification algorithm . 66
6.2 Bottom Up Timing Learning Algorithm (BUTLA) 67
6.3 Online Timed Automaton Learning Algorithm (OTALA) 88
6.4 Anomaly Detection . 93
6.5 Adaptive Learning . 96

7 Theoretical Results 99

xiii

xiv CONTENTS

7.1 Runtime Analysis of the Identification Algorithms 100
7.2 Evaluation of the Learning Error 103
7.3 Convergence and Identification In The Limit 111
7.4 Top-Down vs. Bottom-Up . 113
7.5 Splitting vs. Non-Splitting . 115
7.6 Online vs. Offline Identification 116
7.7 Runtime analysis of the anomaly detection algorithm 118

8 Empirical Results 119
8.1 Preliminaries . 120
8.2 Runtime Analysis of the Identification Algorithms 124
8.3 Top-Down vs. Bottom-Up . 128
8.4 Convergence of the Identification Algorithms 132
8.5 Empirical Analysis of the Anomaly Detection 135
8.6 BUTLA vs. OTALA . 138
8.7 BUTLA vs. alternative methods 139

Part III Applications 141

9 Applications 143
9.1 Tool Box Implementation . 143
9.2 Lemgo Model Factory . 145
9.3 Plant at Jowat AG . 148

Part IV Conclusion 151

10 Conclusions and Future Work 153
10.1 Conclusions . 153
10.2 Future Work . 154

List of Figures 157

List of Tables 161

Abbreviations 163

References 165

Chapter 1
Introduction

1.1 Motivation

Modern production plants are becoming much more complex than just a few years
ago. This is due to a high amount of automation in the production plants. As a
consequence, the role of the human in the production industry is changing. Formerly,
the role was to produce the products by hand. Then with first automated machines,
the production became easier and faster. In today’s modern production plants (at
least with huge quantities), the role of the human is to ensure a smooth running
of the automated production plant, i.e. the role of the human is changing from
operating to monitoring. However, due to the continuously increasing complexity
of the production plants, this task is also slowly becoming a tough task. Therefore,
intelligent systems are required that assist the plant operator in this task.

Many approaches have been developed to support the plant operator in the moni-
toring task. A main focus is on the diagnosis in production plants. A possible solution
is to create a model of the normal behavior and to use it during the regular plant op-
eration to detect some anomal behavior (model-based diagnosis, MBD). The manual
creation of behavior models is a tedious process and represents the bottleneck in the
development of approaches for model-based diagnosis. For the modeling itself, much
expertise is required and all interactions in the plant have to be known. Additionally,
not all physical effects can be captured and modeled in detail.

It is desirable to create this kind of models automatically. The human is especially
qualified to learn the normal behavior based on observations. This knowledge is then
used during the running process to detect some anomal behavior.

As so often, we can learn from nature, so we try to identify behavior models
automatically. To automate the model identification, approaches from the field of
machine learning and artificial intelligence are used. Identifying behavior models
from data is a complex problem in computer science. This is exactly the point where
this thesis begins. In this dissertation, algorithms are developed that identify behavior
models automatically from observations.

The automated identification of behavior models meets several major challenges:
Many approaches for model-identification assume the existence of a model struc-

ture and only learn the relevant parameters such as transition probabilities [SFJL03],

1

2 1 Introduction

time ranges or coefficients of differential equations (e.g. [Ise04]). The identification
of the entire model is still not the state of the art.

Another challenge is the trade-off between abstraction and accuracy (preciseness).
On the one hand, it is desirable to keep the learned model as compact as possible.
In most cases, it is not necessary to model all physical effects and their impact on
the system behavior (black box). On the other hand, the model should contain all
necessary information and the needed level of details to detect an abnormal behavior
in the diagnosis phase.

A special focus in this thesis is on the factor of time. This aspect has not been
sufficiently investigated so far in the current state of research. Existing methods often
only learn the normal behavior of a system in terms of patterns in order to detect
new behavior patterns in the diagnosis phase [MS03a, MS03b]. The identification of
the timing behavior requires the consideration of other effects, such as the question
whether a time deviation results from jitter or does it has to be classified as noise.

The model-identification generally requires a certain amount of a priori knowledge,
for example knowledge about asynchronously operating subsystems. Although there
exist some promising approaches, it is not yet possible to derive the causality reliably
between the signals from the data alone. How much and which a priori knowledge
is minimally necessary to allow a maximum degree of model-learning is an open
research question in automation.

1.2 Relevance to Related Work

The identification of behavior models is an active research field. Behavior models can
be learned as a neural network [CCW+11], trained as self-organizing maps [Fre08]
or parametrized using a linear equation system or differential equations [Ise04].

In this thesis, we decided to use the formalism of finite state machines, more
specifically, the timed automata. There already exist several algorithms for the identifi-
cation of finite automata using observations. In general, there is a distinction between
active and passive algorithms. Active algorithms allow to ask for new examples
during runtime while passive algorithms have to deal with a given set of examples.
The best known active algorithm is Angluin’s L* [Ang87]. MDI [TDdlH00] and
ALERGIA [CO99] are examples for passive algorithms which identify a probabilis-
tic deterministic finite automaton. They use only positive examples, i.e. no failure
measurements. Verwer already presented different algorithms for the identification
of Timed Automata [Ver10]. Some of them use negative as well as positive learning
examples. Furthermore, identification algorithms are distinguished identifying an
automaton in an online or offline manner. To the best of our knowledge, there exists
no algorithm for the online passive identification of timed automata.

The aforementioned algorithms mainly come from the field of grammatical in-
ference and are therefore tested on artificial data only. There are only few examples,
where a similar approach is used for the identification of behavior models in cyber-
physical production systems. One approach is given in [Rot10]. They identify a
Non-Deterministic Autonomous Automaton with Output (NDAAO), which not only
considers the events and event sequences, but also the state information in form of a
signal vector with inputs and outputs.

1.2 Relevance to Related Work 3

The goal of such identified models is the use for anomaly detection. Some ap-
proaches using statistical models are summarized in [MS03a, MS03b]. The behavior
of a system is identified in form of patterns, which are then classified to distinguish
between known behavior patterns (normal behavior) and unknown behavior patterns
(faults, anomaly or novelty). However, the time factor is not considered. Since the be-
havior of cyber-physical production systems, or technical systems in general, always
depend on time, other approaches have to be used. For this case, Timed Automata
already have been used, examples are given in [LSS01, Tri02].

The algorithmic scope of this thesis is divided in two parts (see also Figure 1.1):
Model identification and anomaly detection.

Model
Identification

Anomaly
detection

2

1

Fig. 1.1 The algorithmic focus is divided into two parts: Model identification and anomaly detection.

First, a new identification algorithm for Timed Automata (BUTLA) is introduced.
It uses domain specific knowledge and extends the aforementioned algorithms using
a new merging strategy, which results in a computation speed increase.

Focusing on the use case in cyber-physical production systems, some additional
requirements have to be considered, for instance the ability to identify the model
online. To the best of our knowledge, so far no online passive algorithm exists which
is suitable for the learning of normal behavior in form of timed automata. For this
purpose, the algorithm OTALA is introduced which closes the gap.

Additionally, a new anomaly detection algorithm ANODA is introduced, which
uses the identified Timed Automata for the detection of error in the plant behavior.

The presented work was a joint research work with Asmir Vodenčarević. The focus
of this thesis is on timing learning and development of the learning algorithm BUTLA,
which identifies a Timed Automaton. The work in [Vod13] is based on BUTLA and
it includes the continuous behavior. i.e. extending BUTLA to HyBUTLA, to identify
a Hybrid Timed Automaton.

4 1 Introduction

1.3 Contribution of this Thesis

The contributions of this work can be divided into two scopes: Algorithms and
Theory.

1. Algorithms

• First of all, we evaluated different modeling formalisms for the modeling of
timing behavior and chose the most appropriate. The most important selection
criterion is the ability for autonomous identification and for anomaly detection.
The result of the evaluation is that Timed Automata are best suited for this task.

• We developed the algorithm BUTLA for the identification of the timing behav-
ior. This is the first automaton identification algorithm that uses the bottom-up
merging strategy. The new merging order results in a computation speed in-
crease compared to other algorithms using the top-down merging order.

• We developed the algorithm OTALA, which is better suited for the learning
of the normal behavior of cyber-physical production systems. This is the first
online passive identification algorithm for Timed Automata. A big advantage
of OTALA is that it recognizes the convergence of the identification process
and is therefore able to autonomously abort the identification process at the
earliest point in time.

• We developed the algorithm ANODA for the anomaly detection in production
plants. It uses the automata of both BUTLA and OTALA. Using this algorithms,
logical, timed and probabilistic error can be detected.

• The developed algorithms have been tested in real-world applications. The
identified models were used for anomaly detection. The algorithms were nested
in a model identification and anomaly detection framework. This has been
applied to a model factory at the research institute and in a process plant at
Jowat AG.

2. Theory

• We prove that the bottom-up strategy performs faster on average than the
top-down strategy.

• We prove that BUTLA identifies Timed Automata weakly in the limit. The
runtime of BUTLA is polynomial to the input size.

• We prove that, under certain conditions, BUTLA identifies Timed Automata
strongly in the limit. Under the given conditions, BUTLA only uses learning
examples whose amount is polynomial to the size of the final automaton.

• We prove that, under certain conditions, BUTLA identifies the timing behavior
in the limit. Given enough learning examples, the identified timing behavior
corresponds to the correct timing behavior.

• We prove that, despite the exponential worst case runtime, OTALA can still
be used for the identification of Timed Automata in cyber-physical production
systems.

• We prove that ANODA ∈ L, i.e. the anomaly detection using Timed Au-
tomata uses space logarithmic to the input size and therefore can be performed
efficiently.

1.4 Realized and Potential Application Scenarios 5

1.4 Realized and Potential Application Scenarios

The automatic model identification has several potential applications. Most of them
have already been realized in our working group at the institute. Many works arose
from this thesis.

Model-based anomaly detection:
The model-based anomaly detection is the most obvious potential application.

It is also a key point in this thesis. The principle is the following: A model is used
during runtime and the behavior of the model is compared with the behavior of the
running plant. If some deviation arises between the prognosis of the model and
the current plant behavior, an anomaly is signaled.

Some work has already been done in the field of model-based anomaly detection.
However, most of them rely on a model that has been manually created. In this
thesis, we propose an approach in which the model is identified automatically,
i.e. without using expert knowledge. The introduced algorithms close the gap of
manual model creation for timed technical systems.

Model-based diagnosis goes a step deeper. It includes the anomaly detection
and the detection of the error cause. In our work so far, we only focused on model-
based anomaly detection. We captured the scope of model-based anomaly detection
in several publications [MNV+11, NSV+12, MKPGN13, KSSN14, KAB14] .

Model-based design:
The model-based design allows the user an early test of the components to be

developed. Using behavior models of the components, selected modules can be
specifically checked on selected properties. Furthermore, it offers the possibility
to check the fulfillment of specifications by simulation. For instance, some device
model is used to simulate the network behavior in the early development phase.
In [GKN+11], we described a concept of how such a simulation is possible: A
component-based simulation framework uses individual simulation components
and combines them to form a complete model. AutomationML is used for the
signal mapping between the PLC program and the simulation components. This
allows building a topology model; or different topology models whose properties
can be examined.

Furthermore, in [MKPGN13], we described an approach that how the algo-
rithms proposed in this thesis can be used to identify device models (behavior of
single network components like IO-devices) and how these models can be used
for model-based design.

Model-based testing:
Model-based testing approaches can be used to automate test activities or to

generate test case for the test process. For this, different approaches exist. However,
they all need models. The models can be created manually or, as we propose in
this thesis, generated automatically. E.g. in [SMK+13] we proposed a method
based on Hardware-In-The-Loop (HIL). Other approaches (also developed at our
research intitute) can e.g. be found in [KTN+12, KNSJ12, KDSJ14]

Plug & produce:
Another use case for models in cyber-physical production systems is plug &

produce. The goal is that the production systems and their automation systems
automatically connect to each other and can be adapted automatically to new

6 1 Introduction

scenarios such as new product variants to change the production modules. In order
to do so, the knowledge about the behavior of single components is required. This
is where the (automatically identified) models come into the game. In [OHN14],
an approach is proposed that uses our proposed model identification algorithm to
obtain a first behavior model based on generated event sequences. This behavior
model is adapted afterwards, based on real measurements.

Optimization:
The automatically identified models can also be used for optimization. Using

Hybrid Automata as modeling formalism for optimization and mode-predictive
control (e.g. [BC11]).

A possible application scenario could be the minimization of energy consump-
tion. The hybrid automaton holds the information about the energy consumption
(it is not more than a continuous signal) for each identified state. This gives an
advantage compared to a global power meter, which only holds information about
the overall energy consumption. Since the energy consumption is known for each
state, the cause for high energy consumption can be located more specifically.

1.5 Overview

This thesis is organized in four parts: (1) Foundations, (2) Algorithms and Theory,
(3) Applications and (4) Conclusion. The chapters are organized as follows:

Part I Foundations

The first part gives an overview to the foundations and the state of the art. Known
algorithms for the identification of finite automata are described and the most
important known results from the complexity analysis are summarized.

Chapter 2 analyzes the problem of identifying the normal behavior of timed
systems. Relevant modeling formalisms are compared regarding the special criteria.
Additionally, the challenge of identifying the timed behavior is analyzed and finally,
the choice of Timed Automata as modeling formalism is argued.

Chapter 3 leads into the topic by introducing the used terms and formalisms
formally.

Chapter 4 reviews the state of the art concerning the complexity of identification
of finite automata.

Chapter 5 reviews the state of the art concerning the existing algorithms for
model identification (especially finite automata) and existing diagnosis approaches.
Additionally, in the conclusion, the research gap is pointed out. Part II is aiming at
closing this gap.

Part II Algorithms and Theory

The second part is the core of this thesis. It introduces the algorithms and evaluates
them while examining theoretical and empirical aspects.

Chapter 6 introduces the model identification algorithms BUTLA and OTALA
and the anomaly detection algorithm ANODA.

1.5 Overview 7

Chapter 7 evaluates the introduced algorithms regarding theoretical aspects, like
runtime or correctness.

Chapter 8 uses artificial data to evaluate the algorithms empirically.

Part III Applications

The third part (contains only Chapter 9) gives the proof of concept by describing
the realized application scenarios, which are particularly a model identification
framework and two real-world scenarios in the production and process industry.

Part IV Conclusion

In Chapter 10 finally, the thesis is summarized and concluded. Additionally, an
outlook to future work is given.

Part I

Foundations

Chapter 2
The Core Issue: Modeling and
Learning Time

This chapter places the core issue of this thesis into the scientific landscape of time
modeling and time learning.

The modeling of time for computation purpose is a widely researched area. Many
formalisms have been created to model different aspects of timing behavior. In this
chapter, some aspects are analyzed which have to be considered when choosing
an appropriate timing modeling formalism. Based on this analysis, some modeling
formalisms are evaluated according to their capabilities to model the timing behavior.
One of those formalisms is chosen that is well suited for the application of this thesis:
the anomaly detection in cyber-physical production systems. For this, the formalisms
are introduced informally, formal definitions and more detailed information can be
found in the referred literature. The formalisms which are used later on in this thesis
are defined formally in Chapter 3.

To keep the application domain in mind, a special focus is on modeling and iden-
tification of the timing behavior of cyber-physical production systems. Additionally,
the suitability of the modeling formalisms according to automatic learnability from
observations only and the suitability for anomaly detection is evaluated.

The contributions given in this chapter are the following:

• We classify the timing modeling problem according to specified aspects in a
taxonomy.

• We analyze the modeling formalisms according to the suitability for automatic
learning.

• We choose an appropriate modeling formalism and reason the usability for the
desired application.

In Section 2.1, the most important aspects for time modeling are listed and
evaluated in a taxonomy. Section 2.2 analyzes the possibilities that how timing can be
learned based on different modeling formalisms. Finally in Section 2.3, the choice of
an appropriate formalism for the aforementioned purpose (identification and anomaly
detection) is argued and the challenges of the problem of timing learning are pointed
out.

11

12 2 The Core Issue: Modeling and Learning Time

2.1 Modeling Time - A Taxonomy

In [FMMR10], Furia et. al. give a comparative survey on time modeling formalisms
and summarize the most important features into a taxonomy. This section is mostly
based on that survey. The features of the taxonomy are analyzed with respect to the
usage of formalisms for the modeling of timed production systems and supplemented
with other features.

Discrete vs. Dense Time Domains
The separation of formalisms concerning the usage of discrete and dense time

domains is a first natural categorization. Discrete time models comprise a set of
isolated points, whereas dense time means that in a dense set, ordered by "<", for
every 2 points t1 and t2 with t1 < t2 there is always a third point t3 in between,
such that t1 < t3 < t2.

More detailed distinctions are useful to better evaluate the timing model for-
malisms:

• Finite or bounded time models: Often modeled timed systems consider time to
be infinite. The behavior can proceed indefinitely in the future and also in the
past. Therefore, it is natural to model time as an unbounded set. However in many
cases, a bounded time frame is necessary.
As an example, the filling of a container is considered. The process is time
bounded, both in the past (starting of the filling process) and in the future (stopping
the filling process or container is completely filled. If the container is filled within
maximum 10 seconds, a time range [0 sec...10 sec] is given. Without loss of
generality, the model for filling the container can be analyzed only within this
bounded time range.

0 10
sec

Filling

level

Fig. 2.1 Bounded time model: Filling of a container.

Another example is the modeling of periodic signals. Without the loss of generality,
only one cycle can be modeled to obtain the knowledge of the complete system.

• Hybrid systems: Timed systems can also be hybrid. In this case, hybrid means
that a model uses discrete as well as dense domains. Several reasons lead to the
necessity of hybrid models:

– A system with a discrete and maybe finite set of states is modeled using a
dense time domain. In a graphical representation, this leads to a square wave
form and the states are displayed as piecewise constant functions over dense
time.

2.1 Modeling Time - A Taxonomy 13

– In a similar way, a continuous behavior can be sampled with a regular interval
by using a sampler.

– Another case which leads to a hybrid model arises when discrete events are
modeled combined with continuous variables. This is especially the case in
timed and hybrid automata.

Explicit vs. implicit modeling of time
Another major distinctive feature is the possibility of implicit and explicit

modeling of time. Model formalisms with explicit time allow the modeling of
concrete time values for some specific event, e.g. "if the sensor is activated, start the
conveyor belt within two seconds". Implicit time modeling only gives information
about the time duration as a whole, e.g. the durations of states or actions, see
Figure 2.2.

ODEs, as an example, only give the possibility of implicit time modeling. Other
formalisms, mainly state-based formalisms such as statecharts, Petri nets and
timed automata allow both implicit and explicit time modeling. Timed automata,
for instance, have a relative time stamp for events. This time stamp is an explicit
time value. Adding all relative time stamps leads to an absolute time value based
on the beginning of the process, this is an implicit time value [FMMR10].

S0 S1

S2

sensor=1 [3 sec]

conveyer=1 [2 sec]

(a) (b)

t

f(t)

1 2 3 0

Fig. 2.2 Implicit (a) and explicit time model (b).

One clock vs. many clocks
Furthermore, time model formalisms can be differentiated according to their

number of used clocks. When dealing with independent modules within a system,
the question arises whether to use one or many clocks. The usage of many clocks
leads to the need of clock synchronization in the simulation step, whereas the
usage of one clock only requires a transformation from an n-clock model to a
1-clock model.

Timed Automata allow both, one and many clocks. However, in [Ver10] Verwer
showed that 1-clock-Timed Automata and n-clock-Timed Automata are language-
equivalent, but in contrast to n-clock-Timed Automata, 1-clock-Timed Automata
can be identified efficiently.

Concurrency and composition
Most real systems are too complex to model them in one overall model. The

behavior has to be divided into several subsystems, so that the overall model is a
composition of its sub-models. For finite state machines, we will see in section 3.1

14 2 The Core Issue: Modeling and Learning Time

that the number of states reduces enormously if the system is decomposed into
subsystems. This is also referred to as modularization.

The decomposition is a less mature process. Difficulties can arise in the synchro-
nization step. Mostly, the separated models of subsystems have equal or identical
properties. Furthermore, the time bases can be different between the modules,
discrete or continuous, or the time base is implicit for one module and explicit for
another.

Single-mode and multiple-modes
The distinction between models, which can only cope with single-modes and

models that additionally can deal with multiple-modes, goes a step deeper than
concurrency and decomposition. A system may, at some point in time, abruptly
change its behavior. In technical systems, this happens for reasons such as shifting
a gear or stopping a conveyor belt. All state based models (e.g. statecharts, Petri
nets or finite state machines) are able to describe multiple-mode systems, where
equation based formalisms (e.g. ordinary differential equation) can only describe
the behavior of single-mode systems. Figure 2.3 shows a simplified example for
a multi-mode model for shifting a gear. The figure in 2.3 (a) tries to capture the
behavior in a diagram. This behavior cannot be described using one differential
equation. The figure in 2.3 (b) shows the same behavior in a hybrid automaton,
which is (at least for this example) much more elegant.

speed

Motor revolution

time

shift(N→1) shift(1→2) shift(2→3)

(a)

(b)

Fig. 2.3 Multi-mode model in a (a) diagram and (b) hybrid automaton.

Linear- and branching-time models
It can also be differentiated between linear and branching time models [Var01].

Linear-time formalisms are interpreted over linear sequences of states. Each
description refers to (a set of) linear behaviors, where the future behavior from
a given state at a given time is always identical. Branching-time formalisms are
interpreted over trees of states. That means, in contrast to linear-time models,
the future behavior of a given state at a given time can follow different behavior
according to the tree (see also Figure 2.4).

A linear behavior can be regarded as a special case of a tree. Conversely, a tree
can be treated as a set of linear behaviors that share common prefixes (i.e., that
are prefix-closed); this notion is captured formally by the notion of fusion closure
[AH92]. Thus, linear and branching models can be put on a common ground and
compared.

2.2 Learning Time - The Challenge 15

0 1 2 3 4

s0 s1 s2 s3 s4

(a)

0 1 2 3 4

s0

(b)

s1b

s1a

s2a

s2b

s2c

s2d

s2e

s3a

s3b

s3c

s3d

s3e

s4a

s4b

Fig. 2.4 A linear (a) and branching time model (b) [FMMR10].

It is also possible to have semantic structures which were branching in the
past, which means that different pasts merge into one single present [Koy91].
Branching-in-the-past models are very rarely encountered in practice.

Linear time models, in general, work in a deterministic manner. Whenever an
input is read, the system behaves uniquely, i.e. the outputs are set deterministically.
In contrast to linear time models, branching time models are non-deterministic,
since the system can "choose" which state to go next.

2.2 Learning Time - The Challenge

Section 2.1 informally introduced several time modeling features and some for-
malisms that satisfy certain criteria. However, as indicated in the introduction, it
is not intended to create timing models manually. Instead, the models should be
identified automatically. This section reviews the applicability of some modeling for-
malisms with respect to automatic learning and the suitability for anomaly detection.

The evaluation of these formalisms concerning learnability is intended to answer
the following questions:

• Which method can learn which effects?
• Which modeling formalism can be used?
• What are the possibilities of certain formalisms?
• What are the limits?
• Can the models be used for anomaly detection?

This section considers the learnability of timed systems concerning several for-
malisms. In Subsection 2.3.2 the challenges in learning Timed Automata are outlined.
A more detailed analysis follows in Chapter 4.

For further analysis, we divide the considered formalisms into (1) Dynamic
system models (Section 2.2.1), (2) operational formalisms (Section 2.2.2) and (3)
descriptive formalisms (Section 2.2.3). In the following subsections these formalisms
are analyzed concerning their capabilities of modeling technical systems and whether
such kinds of models can be identified automatically. For each group at least one
modeling formalism is evaluated in more detail.

16 2 The Core Issue: Modeling and Learning Time

2.2.1 Dynamic system models

In various engineering disciplines (like mechanical or electrical) and especially in
control engineering, the so-called state-space representation is a common way to
model the timing behavior of technical systems [Kha02].

Three key elements are essential for the state-based representation: The vector x
with the state variables, the vector u with the input variables and the vector y with
the output variables. All these values explicitly depend on the time at which they are
evaluated (usually represented as x(t), u(t), and y(t)), i.e. it uses explicit timing
(see Section 2.1).

The temporal domain in state-based representation is either continuous (e.g. R)
or discrete (e.g. Z). Using the continuous temporal domain, the relationship between
x and u can be expressed through differential equations:

ẋ = f(x(t),u(t), t), t ∈ R (2.1)

Using the discrete temporal domain, the relationship between x and u can be
expressed through difference equations:

x(k + 1) = f(x(k),u(k), k), k ∈ Z (2.2)

Based on an initial condition x(0) and given input u(t), all calculations for x(t)
of equation 2.1 and for x(k) of equation 2.2 represent the system behavior. The
same combination of initial values and input values always results in the same
solutions, i.e. the systems that are modeled using state space representation are
usually deterministic. Thus, dynamical system models usually presuppose a linear
time model.

The main advantage of dynamical system models is that very detailed physical
models can be created using established mathematical methods. But this also can
turn into a disadvantage. For many purposes, the models are too detailed, i.e. they are
unsuitable for high-level description, since some expert knowledge is required to read
and understand the models. Furthermore, dynamical system models are unsuitable
for the modeling of distributed systems.

Various methods exist to identify dynamic system models. These methods are
grouped under the term model identification (sometimes the term "system identifica-
tion" is also used). In [IM10], Isermann describes some methods, e.g. by means of
parameter estimation. The states themselves are not identified. A structure model is
presumed and the identification methods determine the parameters. So, still some
expert knowledge is necessary and manual work has to be done.

Dynamical system models also can be used for fault detection (e.g. [Ise04]. Figure
2.5 shows the general scheme of process model-based fault detection using dynamical
system model according to [Ise04]. The model-based fault detection uses the inputs u
and the outputs y to generate residuals r, the parameter estimates Φ or state estimates
x, that are called features. A comparison of these features with the nominal values
(normal behavior) detects changes of features, which lead to analytical symptoms s.
The symptoms are then used to determine the faults.

2.2 Learning Time - The Challenge 17

actuators process sensors

process model

feature

generation

change

detection

fault diagnosis

U
Y

N

model-based

fault detection

r,Θ,x features

normal behavior

s analytical symptoms

faults

Fig. 2.5 General scheme of process model-based fault detection using dynamical system model
according to [Ise04].

2.2.2 Operational Formalisms

Operational formalisms can be roughly divided into synchronous state machines and
asynchronous abstract machines. These types are described in more detail in this
section.

Synchronous state machines
A large variety of synchronous state machines exists: finite state machine, state-

charts, timed automaton, hybrid automaton, Büchi automaton, Muller automaton,
and others (see [Tho90]). In this section we confine our self to finite state machines
and timed automata, the timing extension of finite state machines.

Finite state machines mainly consist of states and transitions between the states.
The transitions are fired if the condition is fulfilled. As Figure 2.6 shows, the
first transition is fired if an item is recognized at position A. This is also called a
(discrete) event. The behavior of a system is described as a computation path, i.e.
one run through the automaton from the initial state to the finite state.

The main strength and the reason for the wide usage of finite state machines
is their accessibility for humans and their simplicity. Often, processes or timing
behavior are described by a sequence of events. In fact, technical systems are often
programmed in state machines, e.g. using the standardized programming language
from IEC 61131. Therefore, modeling the timing behavior of such technical
systems, in the sense of finite state machines or timed automata, is consequential.
Figure 2.6 shows a simple example: If a bottle is placed on position A, the conveyer

18 2 The Core Issue: Modeling and Learning Time

belt is switched on. After reaching the position B, the conveyer belt is switched
off again.

S0 S1

conveyer=1

S2

position=A

position=B

S3 S4

conveyer=0

A B

Fig. 2.6 A technical system and corresponding state machine.

Another main advantage is the ability of abstractness. In most cases, the model
does not need all the details that could be modeled. The goal is mainly to compute
the timing behavior of systems (with focus on time), while the computation of the
exact physical behavior is less important. In particular, from the point of view of
the computer scientist, they are especially appealing, as they allow to reason about
time in a highly simplified way.

Finite state machines allow no explicit modeling of time. However, using
variations like timed automata, both explicit and implicit time modeling is possible.

Due to the simplicity, finite state machines are further usable for automatic
verification [CGP99].

Usually automata are non-deterministic since they comprise multiple computa-
tion paths (compare "branching time model" in Section 2.1). However, this can
also be deterministic (compare "linear time model" in Section 2.1), where multiple
runs of the automaton represent the possible behavior in general. This is mostly
more intuitive for the user.

In contrast to asynchronous abstract machines (e.g. Petri nets, see next para-
graph), finite state machines have no possibility to model concurrency. If it is
desired to model concurrent behavior of parallel running processes, one finite
state machine for each process has to be created and afterwards all parallel fi-
nite state machines are joined together. The most common concurrency model
is synchronous concurrency. It uses a global time base for all parallel finite state
machines and concurrent transitions that occur simultaneously. Further details on
concurrent finite state machines can be found in [LL98] and [GLL99].

Different types of automata have different features. Based on the basic finite
state machine, a wide range of sub types exists (probabilistic, non-deterministic,
timed, hybrid and other). A more detailed overview and formal definitions to the
variety of finite state machine formalisms will follow in Section 3.2.

Another very important issue in the context of this thesis is the applicability of
the formalism for automatic identification. As mentioned before, technical systems
are often programmed based on finite state machines. From this, it follows that
the state machines (including its sub classes) can be identified by observations.

2.2 Learning Time - The Challenge 19

Several algorithms exist to learn finite state machines. A detailed overview follows
in Section 5.2

Finally, finite state machines can also be used for fault detection and diagnosis
(e.g. in [Tri02, SFJL03, SADMK07]). For diagnosis, the learned automata can be
used as well as manually created ones. Depending on the used formalism, different
errors can be detected: wrong event sequence, improper event, timing deviation
and error in continuous signals.

Asynchronous abstract machines
Beside the finite state machines, which work synchronously, there exist for-

malisms that work asynchronously, called the asynchronous abstract machines.
The most popular formalism in this group is Petri nets.

Petri nets are named according to Carl Adam Petri, who initially developed this
modeling formalism [Pet62]. A variety of Petri nets exists. The most common type
is Place/transition-nets. It basically consists of states and transitions. Places store
tokens and hand them over to the transitions. If all incoming places hold at least
one token, a transition is enabled. An enabled transition can be fired. After firing
the transition, the tokens from the incoming transitions are moved to the outgoing
transitions. An example of a Petri Net with two execution steps is illustrated in
Figure 2.7.

P1

P2

P3

P4

P5

T1 T2

P1

P2

P3

P4

P5

T1 T2

P1

P2

P3

P4

P5

T1 T2

1

2

Fig. 2.7 An example Petri net with two execution steps.

It can easily be seen that FSMs can be transformed into Petri nets. Basically,
the Petri Net places correspond to states in the FSM, Petri Net transitions directly
correlate to transitions in FSMs, the starting state corresponds to a place holding a
token at the beginning and each final state in the FSM generates a transition in the
Petri Net, which throws a token away.

20 2 The Core Issue: Modeling and Learning Time

Petri nets also have been extended to handle timing information. Merlin and
Farber proposed the first Timed Petri net in [MF76]. Each transition is extended
with the minimum and maximum firing time, where the minimum firing time
can be 0 and the maximum can be∞. A comprehensive survey on several timed
extensions to Petri nets can be found in [Cer93] and [CMS99].

Furthermore, several approaches exist to identify Petri nets from sampled data.
However, some requirements are put on the language to be identified or some
assumptions are made, e.g. in [CGS07], Petri nets are identified from knowledge
of their language, where it is assumed that the set of transitions and the number of
places is known. Only the net structure and the initial marking are identified.

Petri nets in general are suited for fault detection (e.g. in [NDZ13] or [MWS13]).
The different types of Petri nets (mainly condition/event-systems, Place/transition-
nets and High-level Petri nets) have different time and space complexity. This will
be analyzed in more detail in Section 2.3.1.

2.2.3 Descriptive Formalisms

As the name suggests, descriptive formalisms describe the model using a natural
language, mostly based on mathematical logic [BCM+03]. Such formalisms are
especially suited if some conditions have to be described.

Example 1. If it is raining or if it was raining in the last two hours, then the street is
wet.

Similar rules can also be created for the prediction of output signals (actuators)
based on the inputs (sensors) in a cyber-physical production system.

As already shown in the example, the conditions can also contain time information.
There exist different types of descriptive formalisms, e.g. first order logics, tempo-

ral logics, explicit-time logics or algebraic formalisms. Further details can be found
in the literature, e.g. [BCM+03].

Some algorithms exist to identify descriptive models. For the prediction of the
behavior of cyber-physical production systems, a timed decision tree can be learned
for instance.

Examples for such learning algorithms are ID3 [Qui90], the C4.5 algorithm as
extension of the ID3 algorithm [Qui93] or a generic algorithm for building a decision
tree by Console [CPD11].

Note that the rule can not always be interpreted backwards. Using the last example
a reason for the wet street could be that somebody has washed his car on the
street. Therefore, descriptive formalisms have a limited suitability for anomaly
detection. The usage of descriptive formalisms for anomaly detection puts additional
requirements on the rules, they have to be more concrete. Using the given example,
it can be modified as follows:

Example 2. The street is wet if and only if it is raining or it was raining in the last
two hours.

This rule allows a backward interpretation if the reason for the wet street is unknown.
However, the meaning of the rule has now changed.

2.3 Conclusion 21

2.3 Conclusion

In this thesis we focus on the modeling formalism of Timed Automata. This Section
gives some reasons for why Timed Automata were chosen as modeling formalism
and what the challenges are in learning Timed Automata from observations only.

2.3.1 The choice of formalism to use

We have seen that many formalisms can be used to model the timing behavior. We
decided to use Timed Automata for the following reasons (the term finite state
machines can be also replaced by timed automaton):

• Intuition: Finite state machines are very intuitive for humans. They are easy to
understand.

• Understandability: In contrast to many other automatically identified models,
the identified finite state machines are understandable for humans. They can be
verified by experts.

• Wide usage: Finite state machines are widely used, e.g. for modeling or program-
ming.

• Learnability: Finite state machines are suitable for automatic learning.
• Diagnosability: Finite state machines are suitable for fault detection. This applies

for both, manually created and automatically identified finite state machines.
• Suitability for verification: The identified finite state machines can be used for

automatic verification.
• Modification: The identified finite state machine can be manually modified and

adapted after learning. This can also be done automatically.

However, it may be held that these arguments are also true for other formalisms,
such as Petri nets, Hidden Markov Models or Push-down automata. To refine the
selection, we recall the actual application, that uses models for anomaly detection.

The anomaly detection in cyber-physical production systems takes the current
observation and checks whether it belongs to the normal behavior, i.e. the model of
the normal behavior. In theoretical computer science, there exists a similar problem,
the word problem, in which a word is given and it is checked whether it belongs to a
certain language. Therefore, from the theoretical computer science point of view, the
anomaly detection problem corresponds to solving the word problem. So, we can
use the Chomsky hierarchy to refine the selection of possible modeling formalisms.
Table 2.1 shows the four levels of the Chomsky hierarchy and the corresponding time
and space complexity for solving the word problem.

The word problem for regular languages can be solved in linear time on constant
space, whereas the time and space complexity is worse for context-free and context-
sensitive languages. For type-0 languages, the word problem is not even decidable.
Applying this to the anomaly detection problem, it is evident that only regular
languages can be used due to the linear time complexity. Context-free and context-
sensitive languages cannot be used since it is necessary to have the complete word to
solve the word problem (e.g. the CYK algorithm, which is named after its inventors
Cocke Younger and Kasami, to solve the problem for context-free languages, which
additionally requires that the grammar is given in Chomsky normal form). This can

22 2 The Core Issue: Modeling and Learning Time

Table 2.1 Time and space complexity (with n as the input size) for solving the word problem
according to Chomsky hierarchy.

languages time complexity space complexity
regular
(type-3) O(n) O(1)

context-free
(type-2) O(n3) O(n2)

context-sensitive
(type-1) O(2n) O(n)

(type-0) not decidable

not be used for the application in anomaly detection, since an error should be signaled
here as soon as it appeared and not after finishing the production cycle.

As a consequence, we can state that we need a modeling formalism which can
describe regular languages (type-3 in the Chomsky hierarchy). Table 2.2 com-
pares FSMs with Petri nets using the classification according to Chomsky hier-
archy. It can be seen that push-down automata and the "classical" Petri nets (the
Place/transition-nets) cannot be used together with Turing machines. Finite automata
and condition/event-systems, which is a restricted subclass of Petri nets, are classified
in level three. Condition/event-systems have three limitations: (i) only one token per
place is allowed, (ii) capacity of places is limited to one token, (iii) edge weights
are limited to 1. With these limitations, the formalism of condition/event-systems
compared to finite automata only differs in the point of concurrency. However, it was
already mentioned that concurrency is very difficult to identify. In our approach, the
information about systems running in parallel (concurrency) is assumed to be given
as expert knowledge and the behavior is identified as finite automaton.

Table 2.2 Comparison of state machines and Petri nets and the classification according to Chomsky
hierarchy.

languages machines Petri nets
regular
(type-3) finite automata condition/event-systems

context-free
(type-2) push-down automata Place/transition-nets

(neither LPN ⊆ LCF
nor LCF ⊆ LPN)

context-sensitive
(type-1) linear-bounded Turing machines

(type-0) Turing machines High-level Petri nets

Furthermore, the question that may arise is why the timing behavior is not learned
using the formalism of Markov chains. Usually, Markov chain identification algo-
rithms assume the structure (states and transitions) as given and only the transition
probabilities are identified. As an example, the speech recognition is mentioned. A
Markov chain gives the probabilities of all combinations of subsequent syllables, i.e.
we obtain a fully meshed graph. In the domain of cyber physical production systems
a fully meshed graph is an absolutely rare case (or even impossible). Therefore, we
decided to use finite state machines. However, finite state machines are a special case
of Markov chains where the markov property is set to 1.

2.3 Conclusion 23

2.3.2 The challenges in Learning Timed Automata

In the previous sections we have argued that timed automata are best suited to model
the behavior of timed systems because of the simplicity and level of abstractness.
Furthermore, they are best suited to learn the behavior model automatically. How-
ever, there are still some challenges in learning timed automata. These are shortly
summarized here. Details will follow in Section 4.

• Identification of states and events: The timing behavior includes not only the
time stamps for some observations, but also some states and transitions with timed
events in between. Many learning algorithms (especially for learning of Markov
Chains) assume the states and transitions as given and only learn the transition
probabilities. Here, the structure (states and events) is not given but has to be
identified from observations.

• Number of clocks: Technical systems may be programmed using a certain num-
ber of clocks. These have to be identified or the behavior has to be expressed
using only one clock.

• Event splitting: When do events with different timing belong to the same event;
or do they describe different events? As can be seen in Figure 2.8, the events can
be split based on the timing, which is based on the container size. More formally:
The event’s timing distribution function can comprise several modes that have to
be identified.

filling bottle

filling bottle

t

d(t)

d(t)

t

place at
position A

place
at position B

A

B

filling bottle

filling bottle

t

d(t)

d(t)

t

place at
position A

place
at position B

A

B

Robot
Start

Large
Containers

Small
Containerstime

probability

time

probability
event a

event a

Fig. 2.8 The timing behavior changes based on the container size.

• Event splitting or timing preprocessing: Continuing from the previous point,
additional question arises that whether the modes are identified during the learning
process itself or whether a preprocessing can be used to identify multiple modes
and use this information in the learning process, avoiding the additional splitting
operation.

• Timing distribution function: Finally, an appropriate timing distribution func-
tion has to be chosen, which is able to correctly describe the technical processes.

All these issues are analyzed in more detail in the following sections.

Chapter 3
Formalisms

This chapter leads to the topic of this thesis and describes the necessary formalisms.
First, we give some basic notions to sketch the background of the work. Then, we
introduce several automata formalisms. We begin with the well-known Deterministic
Finite Automaton (DFA), then we include probabilistic information that leads to the
Probabilistic Deterministic Finite Automaton (PDFA) and finally we will include
additional timing information that results in the Probabilistic Deterministic Timed
Automaton (PDTA). The PDTA forms the basis for the subsequent chapters.

The chapter is organized as follows. First in Section 3.1, some basic notions are
introduced. Then, Section 3.2 gives an overview to some different formalisms for
finite automata.

3.1 Basic notions

This thesis is about identifying models for technical (time dependent) systems. Before
going more into the detail of modeling formalisms and model identification, the basic
notations and definitions are given in this section.

Discrete Event System

A Discrete Event System (DES) is a system that is driven by discrete events. A
DES has the following properties:

• The DES can only be in one state at one point in time.
• A discrete event causes the state change of the system.
• It is event-driven. i.e. only discrete events can trigger a state change.

The Discrete Event System is already a special variant of the term system. Further
variants are continuous systems, which only consider a continuous behavior, and
hybrid systems, which is a combination of discrete and continuous behavior.

Model

According to the definition of [Sta73], a model contains three characteristics:

• Abstraction: A model contains only selected features.

25

26 3 Formalisms

• Homomorphism: Statements on model elements hold for real world entities.
• Pragmatics: A model is always created for a certain purpose.

A model can not replace the original in all its particulars. Therefore, only the
needed features have to be modeled.

Example 3. The modeling of a timed behavior model of a production plant includes
events and the corresponding timing constraints. The information about needed
material for the construction is not necessary and therefore has not to be included in
the model.

Behavior Model

According to the oxford dictionary a behavior describes the way in which one acts
or conducts oneself, especially towards others (from http://oxforddictionaries.com).
Concerning technical systems, a behavior model describes the reaction of the output
variables on changing input variables.

Component

In the rarest cases, the behavior is modeled in one overall stand-alone model.
Typically, technical systems (especially huge production plants) consist of several
modules. Therefore, a single model is created for each module (component).

Definition 1 (Component). A component C is defined by a behavior function bC :
Rm+1 → Rn, n,m ∈ N. bC is a function with m input variables over time, and it
returns n output variables.

System Model

A system model holds information about several issues of the system. In addition
to a behavior model, the topology of network devices or the mapping of inputs and
outputs between components can be stored.

Parallelism Model

From a model learning perspective, a parallelism model divides a system in
asynchronously working sub-modules. This is necessary since, in general, it is not
possible to learn one overall model for the complete system. Figure 3.1 illustrates
the necessity of a parallelism model. In a system with two independent and asyn-
chronously working components, theoretically each state of the first component can
occur with each state of the second component. Therefore, the number of states has
to be multiplied; in the example: n = 10 · 5 = 50 states. Indeed, if a parallelism
model is used, each component is identified separately and the number of states has
to be summarized; in the example: n = 10 + 5 = 15 states.

Simulation

In general, the simulation is an approach for analysis of systems which are too
complex for theoretical or formulaic treatment. This is mainly the case in dynamic
system behavior. Simulation experiments are carried out on a model to gain insight
into the real system.

If finite state machines are used, then a simulation is the computation of a path
through the automaton, beginning with the initial state and quitting at a final state.

3.1 Basic notions 27

System

10 states 5 states

1 model with

n=10·5=50 states

2 models with

n=10+5=15 states

Using parallelism

model

Not using

parallelism model

Fig. 3.1 The need of a parallelism model.

Using a simulation of an automaton, new data can be created. This is especially done,
if only little data is available to identify a generalized model.

Learning Examples

Definition 2 (Learning Example). A learning example D is a matrix of values:

D =

t1 q1,1 . . . qd,1
t2 q1,2 . . . qd,2
...

...
...

...
tl q1,l . . . qd,l

,

where tj ,∀j = 1...l ∈ N are the time stamps and qi,j ,∀i = 1...d, j = 1...l ∈ N are
the values for the discrete sensors and actuators in the production plant. qi,j ∈ 0, 1 is
the discrete (or binary) value of the i-th signal at the j-th time stamp.

Please note that it is not distinguished between input and output signals.
The learning examples are combined together in a sequence

D = {D1, D2, ..., Dn},

with n recorded examples.

Each learning example includes one event sequence. A single event in this event
sequence is defined as follows.

Definition 3 (Event). Let Di be a learning example according to Definition 2. An
event e is defined as a change of one or more discrete signals between two subsequent
signal vectors, i.e. [q1,i . . . qd,i] 6= [q1,i+1 . . . qd,i+1].

Subsequent events lead to an event sequence:

Definition 4 (Event Sequence). An event sequence E (also referred to as string) is
defined as a sequence of n events ei: (e1) → (e2) → ... → (en), where ei is an
event according to Definition 3, with i, n ∈ N. The length of a sequence is defined
over the length of the string, i.e. the number n of events ei.

28 3 Formalisms

Language, accepted/ non-accepted words and the Word Problem

A running system creates a sequence of events, also called strings in the field of
theoretical computer science. All possible strings, also referred to as accepted words,
form a language L. All words which are not contained in the language are called
non-accepted or rejected words.

Definition 5 (Language). A language LA is defined as a set of words which are
accepted by an automaton A.

LA = {w | w is accepted by an automaton A}

The identification of a language requires the existence of words that are part of the
language. These words are provided either as positive or negative learning examples:

Definition 6 (Positive Learning Example). A learning example D is denoted as
positive with respect to a language LA if the probability

p(D|LA) > 0.

Positive learning examples are labeled as D+.

On the contrary, negative learning examples are defined as follows:

Definition 7 (Negative Learning Example). A learning example D is denoted as
negative with respect to a language LA if the probability

p(D|LA) = 0.

Negative learning examples are labeled as D−.

The Word Problem is well known in the field of theoretical computer science:

Definition 8 (Word Problem). Given a language L and a wordw (also called string),
it is checked whether the word w is part of the language L. Each positive learning
example is accepted by the languange, whereas each negative learning example is
rejected.

System Identification

The term system identification describes the process of observing a system’s
behavior and creating a corresponding model automatically. For this, approaches
from the field of machine learning, data mining and artificial intelligence are used.
In the literature, depending on the field of application, sometimes other terms are
used, e.g. language identification, model learning or grammatical inference. The
identification process is also referred to as learning process. Optionally, expert
knowledge can also be used to refine the model with additional information. This is
especially done if this knowledge is available anyway or if the required knowledge is
not automatically learnable due to the lack of learning techniques or non-observability.
Figure 3.2 shows the general system identification process.

Fault

A fault is a defect within the system. Examples for faults are software bugs, a
sensor break down or other random hardware faults.

3.1 Basic notions 29

System Model

Expert

knowledge

(optional)

System

identification Data Observation

Fig. 3.2 The system identification process.

Error

An error is a deviation of the simulation of a model from the required operation
of a system or subsystem. A fault may lead to an error, i.e. an error makes the fault
apparent. A fault may also be hidden for some time before it becomes visible as an
error.

Failure

A system failure occurs when the system can not perform the required function.
The presence of a fault might cause a whole system to deviate from its required
operation.

Anomaly

An anomaly is an observed deviation of the model simulation from the real plant
behavior. In the literature, the term novelty is also used [MS03a, MS03b], since an
anomaly also represents some new behavior, which was not observed before (in the
model identification step).

Anomaly Detection

Once the behavior model of the system is learned, it can be used for anomaly
detection, i.e. for the identification of unusual behavior. Figure 3.3 shows the typical
methodology for anomaly detection: The outputs from the observed system and the
predicted output of the model are compared. Differences hint at an anomaly.

System

Identification

System

Model

Anomaly

Detection

u y

ŷ

Fig. 3.3 Anomaly Detection in a technical process

30 3 Formalisms

Since the anomaly detection will play an important role in this thesis, we define
the anomaly detection problem formally:

Definition 9 (Anomaly Detection Problem). Given an automaton A and some ob-
servations in form of an event sequence E, according to Definition 4, it has to be
decided whether the events e from E belong to the given automaton A. In other
words, it is checked whether E is accepted by A.

Note the similarities between Definition 9 and Definition 8, i.e. finding anomalies
in the behavior of timed technical systems corresponds to solving the well known
Word Problem. This at least holds true if finite automata are used for the model of
normal behavior.

Diagnosis, Verification
Model-based diagnosis comprises more actions than the anomaly detection. While

anomaly detection contents itself with detecting some anomalous behavior, diagnosis
goes a step further and tries to determine the cause for the anomalous behavior.
Model-based diagnosis typically comprises three steps [BJ94]:

1. Symptom Detection: This step corresponds to the anomaly detection.
2. Hypothesis Generation: The listing of potential error causes.
3. Simulation and Check: All potential error causes from step 2 are simulated

using a modified model. The simulation output is compared with the logs of the
anomalous event sequence. If the simulation output corresponds to the anomalous
observations, the correct error cause is identified.

In this thesis, however, we confine our self to the detection of anomalies.

3.2 Automata Formalisms

In this work, timed automata are used for the anomaly detection. This Section
introduces the formalism step by step, beginning with the basic form of automata
(Non-Timed Deterministic Finite Automata) leading to the formalism Probabilistic
Deterministic Timed Automaton, which is used in Sections 6 and 7.

3.2.1 (Non-Timed) Deterministic Finite Automata

The Deterministic Finite Automaton, (DFA) [TB73] (sometimes referred to as
(deterministic) finite state automaton/machine, FSA/FSM) is the basic automaton.
All other types of automata, introduced in this section, are based on this formalism.

Definition 10 (Deterministic Finite Automaton). A Deterministic Finite Automa-
ton (DFA) A is a 5-tuple (S, s0, F,Σ, T), where

• S is a finite set of states,
• s0 ∈ S is the initial state,
• F ⊆ S is a set of final states/ accepted states,
• Σ is a finite set of symbols a and

3.2 Automata Formalisms 31

• T is a set of transitions of A. A transition from state s to s′ triggered by a ∈ Σ is
represented with (s, a, s′).

The DFA basically consists of states and transitions, where an event triggers a
transition to change the current state. An event typically is a change of some discrete
value in the system (e.g. bottle filled or position reached). An example for a simple
DFA can be seen in figure 3.4.

s0

s1

s2 s4

s3

a

b

c

d

Fig. 3.4 Deterministic Finite Automaton (DFA).

A Probabilistic Deterministic Finite Automaton (PDFA) [CO94], also known
as Stochastic Finite Automaton (SFA), is a 6-tuple (S, s0, F, P,Σ, E). In addition to
the DFA, the PDFA contains a set of probability matrices giving probabilities for the
firing of each transition. Probabilistic information is needed if we want to identify an
automaton from positive data only.

Definition 11 (Probabilistic Deterministic Finite Automaton). A Probabilistic De-
terministic Finite Automaton (PDFA) A is a 5-tuple (S, s0, F, P,Σ, T), where

• S is a finite set of states, each state s includes a probability of leaving the au-
tomaton. If a state si is not a final state, the probability p(i) = 0, otherwise the
probability is from the interval (0..1],

• s0 ∈ S is the initial state,
• F ⊆ S is a set of final states/ accepted states,
• Σ is a finite set of symbols a,
• T is a set of transitions of A. A transition from state s to s′ triggered by a ∈ Σ is

represented with (s, a, s′) and
• P is a set of probability matrices, pi,j(a) gives the probability of taking the

transition from state si to state sj with an input symbol a. With p(i) for the
probability that a string ends at the state si it holds that:

p(i) +
∑

∀si,sj∈S,∀a∈Σ

pi,j(a) = 1 (3.1)

3.2.2 Nondeterministic Finite Automata

Apart from Deterministic Finite Automata, there also exist Nondeterministic Finite
Automata (NFA). Unlike in deterministic automata, the number of outgoing transi-
tions in one state is not restricted to only one for each symbol. Each state can have

32 3 Formalisms

s0

s1

s2 s4

s3

a; p0,1(a)=0.6

a; p0,2 (b)=0.4

c; p2,3 (c)=0.3

d; p2,4 (d)=0.5

a; p(s0)=0

p(s2)=0.2

Fig. 3.5 Probabilistic Deterministic Automaton (PDFA)

multiple outgoing transitions with the same symbol. In addition to that, NFAs contain
not only a single initial state s0 ∈ S but a set of initial states S0 ⊆ S.

s0

s1

s2 s4

s3

a

b

c

c

Fig. 3.6 Nondeterministic Finite Automaton (NFA)

Since NFAs are not in the scope of this thesis, we do not give a formal definition.

3.2.3 Timed Automata

Naturally, technical systems depend on time. To model this kind of systems, a more
powerful formalism is needed that also includes timing information.

We can define a timed sequence according to the event sequences from Definition
4 . Since we always acquire the data with finite time precision, the sequence of timed
events (Timed Sequence) can now be described as value-timestamp-pairs:

Definition 12 (Timed Sequence). Let ei be an event according to Definition 3 and
ti the corresponding (relative) timestamp. A timed sequence (also timed string) τ
consists of n pairs of an event ei with a timestamp ti: (ei, ti) ∈ Σ×N : (e1, t1)→
(e2, t2) → ... → (ei, ti) → ... → (en, tn). The length of a timed sequence is not
defined over the passed time but over the length n of the string, which is the number
of events.

The Timed Automaton (TA) was firstly introduced by Alur and Dill in [AD94].
Additional to the events, the transitions obtain a time guard that has to be fulfilled
and which is reset each time the transition is fired. It also allows the existence of
multiple clocks and a different set of clocks can be reset in each transition.

Definition 13 (n-clock Deterministic Timed Automaton). An n-clock Determinis-
tic Timed Automaton (n-TA) is a 6-tuple (S, s0, F,Σ, C, T), where

3.2 Automata Formalisms 33

• S is a finite set of states. If a state is not a final state, the probability p = 0,
otherwise the probability is from the interval (0..1],

• s0 ∈ S is the initial state,
• F ⊆ S is a set of final states/ accepted states,
• Σ is a finite set of symbols a,
• C is a set of clocks,
• T is a set of transitions of A. A transition from state s to s′ triggered by a ∈ Σ is

represented with (s, a, λ, δ, s′), where λ specifies the clocks to be reset after this
transition and δ is the clock constraint over C. The automaton changes from state
si to state sj triggered by a ∈ Σ if the current clock value satisfies δ. The clocks
of λ are set to 0 after executing a transition, so that these clocks start counting
time from executing this transition.

Remark 1. The representation of the timing information is not specified in the defi-
nition. Usually, time ranges are used, i.e. the minimum and maximum time stamp
is stored for each event. The values in between are distributed uniformly. The deter-
mination of the minimum and maximum time value can be done globally for each
event in the automaton or locally for each transition. However, the timing behavior
in technical systems (and in most other real-world examples, too) shows a different
behavior. The timing behavior mostly shows a behavior following a Gaussian distri-
bution. In this case, the mean value and the standard deviation for the timing have to
be calculated in each transition.

Based on this formalism of the Timed Automaton, there exist some modified
versions. Here, we only give those, which are used in this thesis.

One-Clock Timed Automaton

Technical systems mostly depend on one clock only, the global time base. Ad-
ditionally, the identification of multiple clocks poses some additional problems
when it comes to the identification of Timed Automata. Verwer already showed
that in contrast to n-clock Timed Automata, Timed Automata with only one clock
can be identified efficiently [Ver10]. Therefore, the formalism of One-Clock Timed
Automaton was introduced.

Definition 14 (One-Clock Deterministic Timed Automaton). A One-Clock Deter-
ministic Timed Automaton (1-DTA) is a Timed Automaton according to Definition
13, where |C|= 1, i.e. only one clock is used. In each transition λ = c, i.e. the clock
is reset after each firing of a transition.

The reset of the clock after each firing of a transition leads to a relative time base.

Probabilistic Deterministic Timed Automaton

The introduction of a Probabilistic Deterministic Timed Automaton (PDTA) is
based on the same motivation as for the untimed automaton: we want to identify an
automaton from positive data only.

The PDTA is a One-Clock Timed Automaton with probabilistic information. It
allows only one clock, which is reset at each transition firing.

Definition 15 (Probabilistic Deterministic Timed Automaton). A Probabilistic
Deterministic Timed Automaton (PDTA) is a 6-tuple (S, s0, F, P,Σ, T), where

34 3 Formalisms

• S is a finite set of states, where each state s includes a probability of leaving
the automaton. If a state is not a final state, the probability p = 0, otherwise the
probability is from the interval (0..1],

• s0 ∈ S is the initial state,
• F ⊆ S is a set of final states/ accepted states,
• Σ is a finite set of symbols a,
• T is a set of transitions. A transition is represented with (s, a, δ, s′), where δ is

the clock constraint. The automaton changes from state si to state sj triggered by
a symbol a ∈ Σ if the current clock value satisfies δ. After executing a transition,
the clock c is set to 0, so that the clock starts counting time from executing this
transition.

• P is a set of probability matrices, pi,j(a) gives the probability of taking the
transition from state si to state sj triggered by a ∈ Σ. With the probability p(i)
that a string ends at the state si it holds that:

p(i) +
∑

∀si,sj∈S,∀a∈Σ

pi,j(a) = 1 (3.2)

An example PDTA is depicted in Figure 3.7. The clock guard is given here as time
range of possible relative time values with the minimum and maximum time stamp.

s0

s1

s2 s4

s3

a; p0,1(a)=0.6;

δ=[1,5]

a; p0,2 (b)=0.4;

δ=[3,6]

c; p2,3 (c)=0.3;

δ=[1,2]

d; p2,4 (d)=0.5;

δ=[5,7]

p(0)=0

p(2)=0.2

Fig. 3.7 Probabilistic Deterministic Timed Automaton (PDTA)

There exist some further subclasses of Timed Automata. Since these are not used
in this thesis, only a rough overview is given without formal definition. A detailed
overview to these formalisms can be found in [CL06].

Event-Recording Automata (ERA) as a subclass of TAs were introduced by
Alur et. al. in 1999 [AFH99]. In an ERA, every event a contains a clock that records
the time since the last occurrence of a.

Edge Labeled Continuous-time Markov Chains (CTMCL) are a mixture of
TAs and Hidden Marcov Models (HMM). Strictly speaking these are not FSMs
since this formalism is based on Markov Chains, but it is very similar to timed
FSM; transitions are labeled and time information is included. In each state, two
probabilities are given: (1) the probability of which state to choose next and (2) the
probability of how long to remain in the current state.

3.2 Automata Formalisms 35

3.2.4 Probabilistic Deterministic Hybrid Automaton

In contrast to the basic automata, the Probabilistic Deterministic Hybrid Timed
Automaton (PHyTA, basically introduced by Alur in 1995 [ACH+95]) considers
not only signals with discrete values but also continuous value changes. To describe
the continuous behavior, differential equations can be used. As long as a system
remains in a certain state, the behavior is described by a set of differential equations.
Usually hybrid automata are restricted to linear dependencies, but more complex
functions are also possible.

Definition 16 (Probabilistic Deterministic Hybrid Timed Automaton). A Proba-
bilistic Deterministic Hybrid Timed Automaton (PHyTA) is a tupleA = (S, s0, F,Σ,
T,∆, c,Θ), where

• S is a finite set of states, s0 ∈ S is the initial state, and F ⊆ S is a set of final
states,

• Σ is the alphabet comprising all relevant events.
• T ⊆ S ×Σ×∆× S gives the set of transitions, where ∆ is the set of timing con-

straints δi. E.g. for a transition 〈s, a, δs′〉, s, s′ ∈ S are the source and destination
states, a ∈ Σ is the trigger event and δ is the timing constraint.

• A single clock c is used to record the time evolution. The clock is reset at each
transition. Therefore, only relative time steps are possible.

• A set of functions Θ with elements θs : Rn → Rm,∀s ∈ S, n,m ∈ N, i.e. θs is
the function that computes signal value changes within a single state s.

Figure 3.8 shows a small example of a Probabilistic Deterministic Hybrid Timed
Automaton. The two states are labeled with "conveyer belt is running" and "conveyer
belt is halted". As a condition for the transition from the first to the second state, the
conveyer belt has to be stopped within 50 time units (for instance: seconds) measured
from the entrance in the first state (relative time). Additionally a probability of
p = 0.8 is given that this event will be carried out. Inside the states, continuous
signals can change over time, e.g. while the conveyer belt is running (in state 1), a
container is filled with some material and the weight is rising, which is represented
by the rising curve. If a continuous signal does not change its value, the function
value is constant over time.

Event „stop” / t<50 / p=0.8

State 1: „conveyer

belt is running“ State 2: „conveyer

belt is halted“

Fig. 3.8 An example of a Probabilistic Deterministic Hybrid Timed Automaton.

Chapter 4
Complexity of Identification of
Finite Automata

The identification of (deterministic) finite automata is an active research field and
some work has already been done to analyze the complexity of these identification
processes.

In this chapter, we summarize the most important issues from the current state
of the art concerning the complexity of identification of finite automata. For this,
different identification frameworks have been introduced, which help to classify the
identification algorithms. These identification frameworks allow to give generalized
statements about the complexity. For the context of this thesis, the framework of
identification in the limit is an important issue. This is used to evaluate the complexity
of identification of untimed and timed automata.

In this chapter, the main definitions and known results for the complexity of
automaton identification are the following:

• Definition of the automaton identification problem
• Complexity of the automaton identification problem, which is known to be NP-

complete
• Definition of the identification frameworks
• Complexity of identification of timed automata
• Different results for 1-clock timed automata and n-clock timed automata

This chapter is organized as follows: First in Section 4.1, we give a definition of
the ’identification problem’, which follows from the representation of information
to the automaton identification problem. In Section 4.2, we give an overview to
the identification frameworks, which are used to group identification algorithms
according to specific features. Finally in Section 4.3, we summarize some work
concerning the identification complexity. For this, we start with the complexity of
identification of (untimed) DFA and continue to the complexity of identification of
Timed Automata.

37

38 4 Complexity of Identification of Finite Automata

4.1 The Identification Problem

Before considering the identification problem itself, this section starts with the
representation of information. Naturally, the information is represented in form of
strings (a string is a sequence of characters) in the field of grammatical inference.
However, there are different possibilities to express some kind of information in
some cases. For instance, the string "abcdefghijklmnopqrstuvwxyz" can be easily
expressed as "the lower-case characters from the alphabet".

The Kolmogorov complexity is a measure of the information content of a string
and is given by the length of the shortest program that generates this string. This
shortest program is thus the best compression of the string without loss of information.
If the Kolmogorov complexity of a character string is at least as large as the string
itself, the string is then referred to as incompressible, random or unstructured. The
closer the Kolmogorov complexity is to the length of the string, the more ’random’
is the string (and the more information it contains). The string "abcabcabcabcab-
cabcabcabcabcabc", for instance, can be expressed as "10 times abc", which now
uses 12 (including white spaces) characters instead of 30. However, there also exist
examples of strings that cannot be expressed in a simpler way than just repeating their
characters. The principle of Kolmogorov complexity was independently developed in
1963 by Andrei Kolmogorov [Kol63, Kol98], in 1964 by RJ Solomonoff [Sol64], and
has connections to Shannon’s information theory [Sha48], which uses the concept of
entropy to characterize the density of information (information content).

The procedure of transferring the original string to the dense form can be denoted
as ’learning’. Learning in this context means to represent given information in a
compact form. From the Kolmogorov complexity point of view, learning means
to find rules that describe the generation of strings. This works best for repeating
sub-strings, e.g. the sub-string "abc" in the first example, but also for well known
character sequences as the alphabet "abc...xyz". It even becomes more important
when many combinations of characters (or character sequences) are allowed to form
an accepted word.

It can be seen that the listing of all possible information strings is not a good
solution. The following example uses an artificial problem to illustrate the application
scenario.

Example 4. Given some input strings with repeating character sequences, the task
is to reduce these to a representation with the smallest Kolmogorov complexity. Four
example input strings are listed in Figure 4.1 in the first line. One may notice that
it is natural to use regular expressions for this purpose. The second line gives the
resulting regular expression. Under the assumption that the repeating character
sequence can occur arbitrarily often, the regular expression can be simplified a
bit more. Each regular expression can be visualized as an automaton. The regular
expression from this example is visualized in the third line in Figure 4.1.

Example 4 illustrates that learning in the context of this thesis can be considered
as: reduction of the size of the input data strings to a representation with the smallest
Kolmogorov complexity, which is considered to be a regular grammar, visualized as
finite automaton.

In literature, the terms learning and identification are used synonymously. In most
cases learning denotes the gain of knowledge, while identification means the finding
of an unknown structure, e.g. the automaton structure with states and transitions. In
this thesis, these both terms are also used.

4.1 The Identification Problem 39

Input strings

1. abcbcbcbcbcbd

2. abd

3. abcbcbcbd

4. abcbcbcbcbcbcbcbcbcbcbcbcbcbd

Regular expression
 a(bc){0,13}bd

more generalized: a(bc)*bd

Automaton

a
b

c

d

Fig. 4.1 Analogy between the given input strings and the Kolmogorov complexity as regular
expression.

The methods in automaton identification are intended to learn the structure of the
model. Other approaches assume a given structure and only identify the parameters
(for instance probabilities in Bayesian networks or weight values in neural networks).
The automaton identification problem is the task to identify the unknown structure,
which corresponds to find an automaton that is consistent with some input data.
According to Occam’s razor [Dom99], this should be represented in the smallest
possible form, i.e. as few states as possible. A smaller automaton is simpler to
understand and therefore it is favored to represent the observed behavior.

Definition 17 (Automaton Identification Problem PAI). Given finite disjunctive
sets of positive D+ and negative D− examples (according to Definition 6 and
Definition 7 respectively) and a positive integer k, then the automaton identification
problem PAI is the problem of identifying an automaton A with at most k states
(called the smallest automaton), where the identified automaton A is consistent
with the sets of data examples, i.e. A accepts all examples from D+ and rejects all
examples from D−.

Gold showed in [Gol78] that the automaton identification problem PAI for DFAs is
NP-complete.

Thus, under the assumption that P 6= NP , no algorithm exists that identifies a
DFA efficiently from given data. Hence, the problem of finding the smallest possible
DFA without knowing the number of states, which is an optimization variant of the
automaton identification problem with a fixed number of states, cannot be easier to
solve.

On top of this result, in [PW93] Pitt and Warmuth showed that the minimum
consistent DFA problem cannot even be approximated within any polynomial.

Definition 18 (The Problem of identifying an Approximately Small Automaton
PAIapprox). Is there an algorithm, that can identify (or just determine the existence of)
a consistent DFA of size p(|Smin|) for some polynomial function p, where |Smin| is
the size of the smallest DFA, which is consistent with the given finite set of positive
and negative examples (D+,D−)?

The problem of identifying approximately small DFA PAIapprox has been shown
to be NP-complete [PW93] .

40 4 Complexity of Identification of Finite Automata

In [Vod13] it is shown that the aforementioned results can be generalized to the
class of TAs. Since a DFA corresponds to a TA without timing constraints, the set
of clocks is set to X = ∅ and the timing constraints ∆ = ∅. A TA without timing
constraints behaves like a DFA and the given results apply for TA.

4.2 Identification frameworks

The results from the last section suggest that automata can not be identified au-
tomatically from given data in an efficient way. Then the question arises whether
finite automata can be still identified efficiently, if more examples can be provided.
Therefore, some identification frameworks have been introduced that offer more
promising results. Here, the frameworks are introduced informally. In later sections,
formal definitions will be given for the used frameworks.

Identification from given finite data
The framework of identification from given finite data is used when the amount

of data at disposal is limited, i.e. it is not possible to acquire additional data even
if it is needed. The goal is to identify the target model as accurate as possible. The
target model should represent the data and classify them correctly. The framework
of identification from given finite data was introduced in [Gol78] to determine the
complexity of automaton identification.

Identification in the limit
In contrast to the framework of ’identification from given finite data’, the

framework identification in the limit assumes that an access to a data source is
available such that additional data can be requested as required. The learner is
getting more and more samples to learn the target language. Each sample improves
the quality of the target model. At some point, after a finite number of observations
(in the limit) the model reaches the target language. Even if the data source
provides an infinite amount of data, the identification process converges in finite
time. This identification is called identification in the limit [Gol67].

Figure 4.2 illustrates the difference between the frameworks (a) identification
from given finite data and (b) identification in the limit.

Query learning
Both identification frameworks, ’identification from given finite data’ and

’identification in the limit’, work as passive learner (will be introduced in Section
5.2.1). The data are taken as they are provided (e.g. as stored in the data base or as
taken from the data stream during data acquisition). In contrast, the framework
of query learning works in an active manner. That means, data can be requested
on demand. This implies a student-teacher relationship. The student (learner) can
make a query to the teacher (Oracle). This query can either be a question whether
a certain sample is accepted by the target language (answer: yes or no) or whether
the hypothesis is consistent with the target model (answer: yes or counterexample).
This framework assumes the existence of an Oracle. The Oracle knows the target
language and answers the questions correctly. Figure 4.3 illustrates the difference
between active and passive learning according to [Ton01].

4.2 Identification frameworks 41

Given Finite

Data

Identification

Algorithm

Sensor

data

example n+1

example n

example n-1

example 2

example 1

Hypothesis 1

Hypothesis 2

Hypothesis n-1

Target

Target

Target

(a) Identification from given finite data

(b) Identification in the limit

Fig. 4.2 Identification from given data and identification in the limit [Vod13].

World
Passive

Learner

Model or

Classifier

Data Output

World
Active

Learner

Model or

Classifier

Response

Output

Query

Fig. 4.3 Difference between active and passive learning [Ton01].

42 4 Complexity of Identification of Finite Automata

PAC identification
All three aforementioned identification frameworks are intended to identify a

correct automaton from data. The framework of Probably Approximately Correct
learning (PAC-learning, introduced by Leslie Valiant in 1984 [Val84]) allows an
acceptable deviation. The deviation of the identified model from the target model is
only allowed with a given probability. Even a deviation larger than the predefined
value is possible, but only with a very small probability. PAC-learning can be used
instead of the aforementioned identification frameworks if (1) the target language
can not be identified correctly, (2) the needed amount of data for convergence is
overwhelming, or (3) when the runtime of the present identification algorithm is
inefficient.

Algorithms that use the framework of PAC-learning are given e.g. in [CG08]
and [CT04].

The focus in this thesis is more on the framework of identification in the limit.
The other frameworks are considered marginally.

4.3 Complexity of Identification of Finite Automata

Section 4.1 showed that DFAs can not be identified efficiently. In this section, the
complexity of identification of finite automata is analyzed in more detail. For this,
especially the framework of identification in the limit is used.

4.3.1 Identification in the Limit

In Section 4.2, the framework of identification in the limit was introduced informally.
Here, we give a formal definition and refine this to stronger limitations.

Definition 19 (Identification in the limit [Gol67]). In the framework of identifica-
tion in the limit, the learner gets more and more data. If there exists an algorithm A
and during the identification process the model converges to the target language Lt,
the algorithm A identifies Lt in the limit.

However, the framework of identification in the limit itself gives no information
about the time or amount of data needed for the identification process. Therefore,
two more restricted versions are introduced.

Definition 20 (Weak Polynomial Identification in the Limit with Probability
One [dlH10]). Let D be a set of observations/ learning examples according to
Definition 2 for which an automaton A should be identified. An automaton learning
algorithm A identifies A weakly polynomially in the limit with probability one

1. if A identifies A in the limit with probability one and
2. if the identification runtime is in O(f(|D|)),

where |D| denotes the length of all observations and f a polynomial function.

4.3 Complexity of Identification of Finite Automata 43

Simplified, it can be said: A language is called weakly polynomially identifiable
in the limit with probability one if the language is identifiable in the limit with time
polynomial to the size of the input data.

The definition of weak polynomial learning in the limit gives information about
the time needed for learning, but still holds no information about the needed amount
of data. This leads to the more restricted version of strong polynomial identification
in the limit.

Definition 21 (Strong Polynomial Identification in the Limit with Probability
One [dlH10]). Let D be a set of observations/ learning examples according to Defi-
nition 2 for which an automaton A should be identified. An automaton identification
algorithm A identifies A strongly polynomially in the limit with probability one

1. if A identifies A in the limit with probability one and
2. if the identification runtime is in O(f1(|D|)) and
3. if |D|≤ f2(|A|),

where |D| denotes the length of all observations, |A| denotes the size of the final
automaton, i.e. the number of states and f1, f2 are polynomial functions.

Simplified, it can be said: A language L is called strongly polynomially identifiable
in the limit with probability one if the language is identifiable in the limit with time
polynomial to the size of the input data and using only a polynomial number of input
samples (polynomial to the size of the final automaton). This is also referred to as
identifiable from polynomial time and data or simply efficiently identifiable in the
limit. It is already proved that DFAs are identifiable in the limit.

Theorem 1. DFAs are weakly identifiable in the limit using positive and negative
learning examples [Gol67, Pit89].

Proof (Sketch). To prove this theorem, Gold uses the identification by enumeration
technique. Step-by-step, the examples are included to the automaton and the algo-
rithm always delivers the smallest automaton. The automaton is consistent with all
data examples, which so far have been used for the identification. The technique is
computationally inefficient. However, it identifies DFAs in the limit. ut

In general, this seems to be a good result. However, the algorithm uses positive as
well as negative learning examples. Since our goal is to identify behavior models in
cyber-physical production systems, we can not use negative learning examples and
therefore we are more interested in the identification using positive learning examples
only. Unfortunately, the results given in the next theorem, are less promising.

Theorem 2. DFAs are not identifiable in the limit using positive learning examples
only [Gol67, Pit89].

Proof (Sketch). Generally, DFAs belong to a class of languages that contain all
finite and at least one infinite language. To prove the theorem, Gold constructs a
text for learning such an infinite language in the limit that constantly repeats a text
for learning some of the finite languages from the same class. Since the language
is infinite, the repetitions can occur an infinite number of times and therefore the
identification algorithm mistakenly outputs the finite language indefinitely long. From
this, it follows that DFAs are not identifiable in the limit using positive learning
examples only. ut

44 4 Complexity of Identification of Finite Automata

According to [Vod13], Theorem 1 and Theorem 2 can also be generalized to the
class of timed automata. Since a DFA corresponds to a TA without timing constraints,
the set of clocks is set to X = ∅ and the timing constraints ∆ = ∅. A TA without
timing constraints behaves like a DFA and the results of Theorem 1 and Theorem 2
apply for TA.

In [OG92], it is further shown that the class of all DFAs are efficiently identifiable
in the limit using a state merging method [OG92]. Further, in [DLH97] it is proven
that NFAs are not efficiently identifiable in the limit. The proofs can be found in the
cited literature and are not given here.

4.3.2 Efficient Identification of Timed Automata

Much work has been done on complexity of identification of DFA. On the contrary,
less work has been done on the complexity of identification of TA. In his dissertation,
Verwer has dealt thoroughly with this subject. This section summarizes the main
contributions to the complexity of the identification of timed automata according to
[VWW08], [Ver10].

Section 4.3.1 introduced the framework of identification in the limit. In [VWW08],
Verwer gives alternative definition for efficient identification in the limit using char-
acteristic sets.

Definition 22 (Characteristic Set). A characteristic set Dc of a target language Lt
for an algorithm A is a finite set of examples (Dc+ ∈ Lt,Dc− ∈ Lt) such that:

• given the characteristic set Dc as input, the algorithm A identifies the target
language Lt correctly, i.e the algorithm A returns an automaton A1, such that
L(A1) = Lt.

• given any other input sample D′ ⊇ Dc, Lt is still identified correctly.

Verwer uses the characteristic sets to prove the efficient identifiability of a certain
class of automata. A class of automata C is efficiently identifiable in the limit if
there exists an algorithm A and two polynomials p and q, such that for any input
sample of size n, the runtime of A is bounded by p(n) and for every target language
Lt = L(A),A ∈ C there exists a characteristic set Dc of Lt, the size of Dc is
bounded by q(|A|).

Definition 23 (Polynomial reachability). A class of automata C is called polyno-
mially reachable if for all automata A ∈ C for any reachable state q there exists a
string τ and a polynomial function p, with |τ |≤ p(|A|), such that τ reaches q in A.
(For timed strings recall Definition 12.)

Proposition 1. The class of DTAs is not polynomially reachable [VWW08].

Proof. This can be proven by giving an example automaton, which is not polynomially
reachable. In [VWW08], Verwer gives the automaton as illustrated in Figure 4.4.
In order to reach state q3, a string of length |τ |≥ 2n is required, since it can only
be reached if both clock guards x ≥ 2n and y ≤ 1 are satisfied. For this, the
clock guard y has to be reset 2n times. Thus, the shortest string reaching state q3

is of exponential size. From this, it follows that the class of timed automata is not
polynomially reachable. ut

4.3 Complexity of Identification of Finite Automata 45

q0 q1 q2

q3

a

reset x

b

x≤1, reset x

c

y ≤ 1, reset y

d

x ≥ 2n ˄ y ≤ 1

Fig. 4.4 Example automaton to demonstrate that timed automata are not polynomially reachable
(according to [VWW08]).

The polynomial reachability is required for the polynomial distinguishability.

Definition 24 (Polynomial distinguishability). A class of automata C is called
polynomially distinguishable if for any two automata A1,A2 ∈ C and L(A1) 6=
L(A2) there exists a polynomial function p and a string τ ∈ L(A1)∆L(A2), such
that |τ |≤ p(|A1|+|A2|), where ∆ is an operator to construct the symmetric differ-
ence of two strings.

Proposition 2. The class of DTAs is not polynomially distinguishable [VWW08].

Proof. In Proposition 1, it was shown that the class of DTAs is not polynomially
reachable. Thus, there is a DTA A with a state q for which the length of the string τ
can not be bounded by a polynomial p(|A|). Taking this DTAA and constructing two
DTAs A1 = 〈S,X,Σ,∆, q0{q}〉 and A2 = 〈S,X,Σ,∆, q0{∅}〉 (by construction, τ
is the shortest string in L(A∞) and L(A∈) accepts the empty language), τ is the
shortest string such that τ ∈ L(A1)∆L(A∈). Since |A1|+|A2|≤ 2 · |A|, the length
of τ can not be bounded by a polynomial p(|A1|+|A2|), and therefore, the class of
DTAs is not polynomially distinguishable. ut

The terms of polynomial reachability and distinguishability are now used to show
that, in general, the class of timed automata can not be identified efficiently.

Theorem 3. The class of DTAs cannot be identified efficiently [Ver10]

Proof. Two conditions have to be fulfilled to satisfy the claim of efficient identification
in the limit: The class of automata has to be (1) polynomially reachable and (2)
polynomially distinguishable, since to be able to efficiently identify a DTA A, we
have to be able to distinguish A from any other DTA A1 using a (timed) string that
is bounded by a polynomial p.

In Proposition 1, it has been shown that the class of DTAs is not polynomially
reachable, further in Proposition 2, it was shown that the class of DTAs is not
polynomially distinguishable. Therefore, the class of DTAs cannot be identified
efficiently.

ut

Theorem 3 at least applies for timed automata with more than one clock, since
Proposition 1 requires an automaton with more than one clock.

In his dissertation, Verwer gives an algorithm that learns an n-clock DTA. It is
based on the algorithm ID_1-DTA (see Section 5.2.4), which identifies a 1-DTA.

46 4 Complexity of Identification of Finite Automata

Verwer shows that the modification of the algorithm ID_1-DTA identifies an
n-DTA in time polynomial to the size of the input and exponential to the amount of
clocks [Ver10].

Theorem 3 showed, that n-clock DTAs are not identifiable efficiently. Using timed
automata with only one clock according to Definition 14, we obtain better results.
Verwer proved that the class of one-clock timed automata (1-DTA) is identifiable
efficiently [VdWW09]. The proof follows the same strategy as the proof that n-clock
timed automata are not efficiently identifiable. First, he showed that 1-DTAs are
polynomially reachable, than he proved that 1-DTAs are polynomially distinguishable.
This leads to the final theorem, that 1-DTA are efficiently identifiable. Since the
proofs comprise several pages in [Ver10], only proof sketches are given here. The
full proofs can be found in the mentioned literature.

Proposition 3. 1-DTAs are polynomially reachable [VdWW09]

Proof (Sketch). Verwer proves it by analyzing for each state si in an automaton A,
how it can be reached when shortest timed strings τi are given . For each state
s ∈ S, the number of prefixes of τ that end in s maximally equals the number of
times the clock is reset by τ . Furthermore, he shows that the clock is reset by τ at
most |S| times. Together it means that τ visits each state at most |S| times during a
computation of A. Therefore, the length of τ is polynomially bounded by |S|·|S|. ut

Proposition 4. 1-DTAs are polynomially distinguishable [VdWW09].

Proof (Sketch). The proof uses a similar argument as the proof of Proposition 3,
but turns at to be more difficult. Considering the difference of two one-clock timed
automata, now two clocks have to be checked. However, there is no clock guard that
is bounded by both clocks, and automata such as displayed in Figure 4.4 can not be
constructed. ut

Theorem 4. DTAs with a single clock are efficiently identifiable [Ver10]

Proof (Sketch).
This follows from Proposition 3 and Proposition 4. Further in [VdWW09], Verwer

gives the algorithm ID_1-DTA (for a short description see also Section 5.2.4), which
identifies a 1-DTA and satisfies the following properties:

• the identification of a single transition needs time polynomial to the size of the
input samples,

• the amount of needed transition identifications (input data) is also polynomial to
the size of the input samples,

• for each transition in the automaton, there exists a characteristicDc set in the size
of the smallest 1-DTA, where Dc is consistent with the input data and guarantees
that the target language is identified correctly,

• the number of these transition identifications that are necessary to identify the
correct target language is polynomial to the size of the smallest 1-DTA.

Combining this with Definition 21, ID_1-DTA identifies a 1-DTA in polynomial
time with polynomial data and is therefore efficiently identifying a 1-DTA. More
generally, 1-DTAs are efficiently identifiable.

ut

4.3 Complexity of Identification of Finite Automata 47

Obtaining this positive result, the question arises, whether an n-DTA can also be
identified efficiently and whether an n-DTA can be converted into a 1-DTA. The
(maybe surprising) answer is that 1-DTAs and n-DTAs are language equivalent
[Ver10], however the conversion itself can not be performed efficiently since the
1-DTA is, in worst case, exponentially larger than the n-DTA.

Definition 25 (Language equivalence). Two automata classes C1 and C2 are called
language equivalent if for each A1 ∈ C1 there exists an A2 ∈ C2 such that L(A1) =
L(A2) and vice versa.

Theorem 5. 1-DTAs and n-DTAs are language equivalent [Ver10].

Proof (Sketch).
To prove this theorem, Verwer describes a method to transform any n-clock

automaton to a one-clock automaton. For this, he used a modified region construction
method, based on the first version of Alur [AD94], applying it to all but one clocks of
the n-DTA. The removed clocks in each state are represented by a constant deviation
from the remaining clock. This method does not influence the accepted language.
From this it follows that 1-DTAs and n-DTAs are language equivalent.

ut

Summarized, it can be said that it is not necessary to deal with the identification
of n-DTAs since 1-DTAs and n-DTAs are language equivalent (Theorem 5), while
n-DTAs can not be identified efficiently (Theorem 3) and 1-DTAs can be identified
efficiently (Theorem 4). Therefore in the further course of this thesis, we only
consider the identification of 1-DTAs.

Chapter 5
Identification of Automata and
Model-Based Anomaly
Detection

This chapter gives an overview of the state of the art for automaton identification
algorithms and their application, the anomaly detection in cyber-physical production
systems.

The automaton identification algorithms are classified according to different
characteristics. The classification and an overview to the most important algorithms
is given in this section. The identification algorithms BUTLA and OTALA, which are
introduced in this thesis (see Chapter 6), are partially based on these algorithms. Due
to the designated application, a special focus is on the applicability of the algorithms
to anomaly detection in cyber-physical production systems.

The main contents of this chapter are the following:

• We give an extended classification scheme for finite automaton identification
algorithms.

• Based on the classification, existing learning algorithms are explained.
• We identify the gaps, which are addressed later in this thesis.

This chapter is organized as follows:
Section 5.1 addresses the actual application of the identified automata and gives

an overview to the state of the art for model-based anomaly detection.
In Section 5.2, a classification of learning algorithms is given and based on this

classification some state of the art identification algorithms are presented. Finally in
Section 5.3, we conclude this part and point out the gaps in the presented automaton
identification algorithms, which are addressed in this thesis.

49

50 5 Identification of Automata and Model-Based Anomaly Detection

5.1 Approaches for Anomaly Detection

Anomaly detection approaches can be subdivided into two groups: (1) Phenomeno-
logical and (2) Model-based approaches.

Phenomenological Approach:
The system’s output is directly classified as correct or anomalous. In such ap-

proaches, the classifier (e.g. k-nearest neighbor) is trained with learning patterns. In
the following classification phase, anomalies are detected by calculating the member-
ship to one of the learned classes (good or anomalous) i.e. anomalies are detected
(see figure 5.1 right hand side).

Comparison
Measurements Predictions

Production plant Model Production plant

 Anomalies Anomalies

Classifier

Measurements

Model-based Phenomenological

Fig. 5.1 Model-based and Phenomenological Approach.

Model-based Approach:
In order to detect anomalies in the behavior, a model-based approach, as depicted

in Figure 5.1 (left hand side), can be used. A model is used to predict the normal
behavior of a plant. For this, the simulation model needs all the inputs of the plant,
e.g. product information, plant configuration, plant status and sensor/ actuator values.
If the actual behavior varies significantly from the simulation results, the behavior is
classified as anomalous.

While phenomenological approaches are often more straight-forward and do not
require a model, they have one major inherent drawback: They must deduce against
the direction of causality since they deduce from measurements (i.e. symptoms)
to anomalies. For complex distributed systems with many inter-dependencies be-
tween components and complex causalities, this leads to several problems: (1) The
classification rules need a high number of measurement variables – including the
measurements’ history – to differentiate between error causes. (2) A high number of
classification rules is needed to capture the effect of different input combinations and
again all combinations over time may be needed.

Since the analysis of a plant’s behavior depends on a high number of input signals
and normally deals with distributed plants and automation systems, a model-based
approach is chosen in this thesis. Therefore, the main focus is on model-based
approaches.

5.1 Approaches for Anomaly Detection 51

Model-based anomaly detection is the process of comparison between the real
behavior of a system (via observations) and the behavior or prediction of a model
(via simulation) as illustrated in Figure 3.3.

Significant work has been done in applying model-based anomaly detection to dis-
crete event systems, i.e. changes of state values caused by the asynchronous discrete
events. The finite automaton is one of the most established modeling formalisms
for discrete event systems. Different types for different cases were developed (see
also Section 3.2) to detect different error types. For this, finite state automata, timed
automata or Petri nets are used (see e.g. [CGS07], [HZKW03], [KNJ10], [LSS01],
[SLPQ06], [Tri02]).

The principle of anomaly detection consists of running the discrete-event model
with observations and reporting anomalies for observations that do not fit the model.
For example, in the case of finite state automata, an anomaly occurs once there is no
automaton transition from the current state that should be triggered by the observed
event, i.e. if the sequence of control signals (events) is incorrect. In timed automata,
there are further timing constraints for the state transitions, which can be checked for
timing anomalies [VBNM11].

Apart from anomaly detection in discrete event systems, there exist many ap-
proaches for the anomaly detection in hybrid or continuous systems.

Neural networks and regression-based methods have been used to approximate
the functional dependency between continuous process variables and the time
[VBNM11]. Sensor signals are predicted according to this functional dependency
and significant deviations of the predicted signal values from the observations are
reported as anomalies.

Statistical approaches to anomaly detection are predominantly based on building
a probability distribution model and considering how likely objects are under that
model. In most approaches, state space equations are employed for modeling the
temporal transition of hidden process variables, which are related to the measurements
with a measurement model. Kalman filter-based observers (e.g. [HW02], [NB07],
[Hen02], and [ZKH+05]) or particle filters (see e.g. [WD09]) can be used to estimate
the hidden process variable. Hidden Markov Models [JKH08] assume value-discrete
process variables whose temporal transitions are described with a probability matrix.
Statistical anomaly detection usually comprises state estimation i.e. the estimation of
the hidden process variable, residual generation and decision making. Methods like
the sequential probability ratio test, the cumulative sum algorithm, the generalized
likelihood ratio test or a local approach proposed in [BBN93] can be used for change
detection in the residuals. In [LH11] and [SH09], a decision-making algorithm
proposed in [SS80] is applied, which is based on estimates for the residual and its
co-variance matrix.

Furthermore, approaches for anomaly detection are used in strictly continuous
systems like neural networks, support vector machines, radial basis functions, adap-
tive resonance theory, qualitative trend analysis models, signed directed graphs or
principal component analysis based methods are e.g. considered in [Bar10, SCZ+09].

Clustering-based methods create groups of strongly related objects and find
objects which do not strongly belong to any cluster [TSK06]. Examples for clustering
algorithms are K-means, agglomerative hierarchical clustering, DBSCAN, Fuzzy
clustering, mixture model clustering, density-based clustering, graph-based clustering
or the application of self-organizing maps (SOM) (see [TSK06] for details). The

52 5 Identification of Automata and Model-Based Anomaly Detection

use of self-organizing maps (SOM) for anomaly detection has been investigated in
[Fre08].

Industrial processes typically consist of both continuous physical processes and
discrete events which are caused by discrete valves, on/off switches, logical over-
rides etc. [RT11]. Such hybrid systems are characterized by discrete modes with
continuous process behavior and discontinuities caused by mode transitions. For this
reason, anomaly detection in hybrid systems usually comprises a combination of
the described methods for fault detection in an underlying discrete event system and
fault detection in the strictly continuous process behavior, which can be assigned
to a discrete mode. Mode transitions can be attributed to control events, continuous
system variables crossing threshold values or probabilistic changes according to an
underlying Markov process. Many approaches abstract from the control events and
assume probabilistic mode changes or mode changes according to continuous system
variables.

5.2 Identification Algorithms for Finite Automata

In Section 4.2, some identification frameworks were introduced, which are used
to identify finite automata. This section refines it and gives a classification for the
identification algorithms for finite automata. After this, we give an overview to
identification algorithms and their functional principles for each class.

5.2.1 Classification of Learning Algorithms

Several algorithms exist to identify finite automata. They can roughly be distinguished
by the following features:

• Offline or online learning: Offline identification algorithms presume a data
acquisition and storage for further usage. They can apply preprocessing during
the learning process since the data is stored and it is possible to access the data
multiple times. Online learning is more real-time critical. Here, the algorithms
are allowed to access the data only once. In one step, this data sample has to be
included into the model. No preprocessing and storage of the data is possible.

• Passive or active learning: Passive learning algorithms have to cope with a given
set of observations to learn the model. Additionally, passive algorithms are not
able to choose the data or request additional information. In contrast, active
learning algorithms can ask for additional data or further information, if needed.
Active learning algorithms often imply a teacher-student relationship. It is related
to the framework of query-learning.

• Given finite or infinite data: The available data, which is used by the learning
algorithms, can be finite or infinite (c.f. identification frameworks ’identifica-
tion from given finite data’ and ’identification in the limit’ from Section 4.2).
Usually the available data is finite, this at least holds true for the application in
cyber-physical production systems. Though, it was shown that the identification
problem for DFAs from given finite data is NP-complete [Gol78] (c.f. Section

5.2 Identification Algorithms for Finite Automata 53

4.1). However, many identification algorithms converge to the (correct) target
language if infinite data are available. Examples for identification algorithms
which identify an automaton in the limit are ALERGIA [CO94], MDI [TDdlH00]
and RTI+ [Ver10].

• Informant or text identification: As the name sounds, the informant identifica-
tion assumes the existence of some expert. It can also be described as supervised
learning. The learning algorithm gets positive learning examples (according to
Definition 6) and negative examples (according to Definition 7). In the context of
grammar learning, a positive example is a word accepted by the target language,
on the contrary a negative example is not accepted. Example algorithms which
learn from informant are RPNI [OG92] and ID_1DTA [VdWW09]. However,
using identification algorithms in the context of cyber-physical production sys-
tems, negative examples are hard to generate, since it is impossible to enforce
failures in the production systems and log them, nor is it possible to think about
all possible failures and simulate them in a model (which, by the way, would have
to be created manually). Therefore, the framework of text identification plays an
important role in this thesis. It is a kind of unsupervised learning in which only
positive examples are available.

• Allowing don’t-care states or not: So far, this criterion was not considered for
the classification of learning algorithms. Algorithms which use incoming and
outgoing events and event sequences for the state equivalence check usually have
don’t-care states, since it may become possible to reach a state using different
paths. To avoid don’t-care states, the algorithm should check the state information
itself (e.g. the signal vector in cyber-physical production systems). In [RLL10]
and [RSLL12] algorithms are proposed, which identify finite automata without
don’t-care states.

Example 5. Figure 5.2 shows an example to illustrate the difference between both
versions. In the example setup and two switches S1 and S2 are used to switch a
light.

[110]

[101]

[000]

[111]

State vector:
[light; S1; S2]

Without
don‘t care
states

[1xx] [000]

[111]

S1 off

S1 on

S2 on

S2 off S1 off

S1 on

S2 on

S2 off

With
don‘t care
states

Fig. 5.2 Automata with and without don’t care states.

The state vector contains three signals: the light, and the two switches. This state
vector is given in each state with its corresponding value: "1" when the signal is
active, "0" when the signal is not active and "x" when the signal can be active

54 5 Identification of Automata and Model-Based Anomaly Detection

as well as inactive. Both automata describe the same behavior, while the first
automaton (not allowing don’t care states) uses one state more than the second
one. However, the second automaton, which contains a don’t care states, is not
unambiguous. Depending on the event sequence, the state in the middle can be
assigned differently.

Automata without don’t care states usually have more states than automata that
contain don’t care states.

In the literature, the terms active and online are often mixed up. The reason is that
usually active learning algorithms work in an online manner and vice versa. Though,
in Section 6.3, we introduce a learning algorithm that learns in an online and passive
manner.

The single points of the aforementioned list do not exclude each other. Learning
algorithms can belong to multiple groups, e.g. offline passive learning from text using
positive examples only.

5.2.1.1 Offline passive model learning

Offline learning algorithms have to cope with a given set of observations. The data
comes from a database. Most offline learning algorithms use the state merging
approach to identify the structure of the automaton. The general state merging
methodology is displayed in figure 5.3.

Data
Measure-

ments

Data
Acquisition

Prefix
Detection

State
Merging

1 2 3

Fig. 5.3 The general offline learning methodology using the state merging approach.

In step (1), the system is observed and the events are extracted. The data can also
come from a simulated model, for instance a finite state machine. In both cases the
data are stored into a database.

In step (2), the prefix tree is created. Beginning with an initial state, a new state is
created after each discrete event. The first observation sample leads to a linked list of
states. The following samples begin again with the initial state. As far as the prefix is
equal, the states and events are followed. When an event is observed at some point,
which is not an outgoing event from the current state, a new transition and a new
state are created. The prefix tree stores the event paths in a dense form since every
prefix is stored only once.

In step (3), each pairs of states are checked for compatibility. If a compatible
pair of states is found, the states are merged. This is done to obtain a generalized
automaton that abstracts the behavior of the observed system.

Several existing algorithms learn an automaton in an offline manner. They all
proceed in the described steps but have different compatibility checks for state

5.2 Identification Algorithms for Finite Automata 55

merging and different merging strategies. The best known offline learning algorithms
are Alergia [CO94], MDI [TDdlH00] and RTI+ [Ver10]. A more detailed description
to some algorithms will follow in the next subsections.

5.2.1.2 Active model learning

Active learning is also often referred to as query learning. The learning is organized
as a student-teacher-relationship, where the student asks questions and the teacher
answers them.

At the beginning, the learner (student) knows nothing about the language L to be
identified. The teacher knows L and can answer the learners queries, which can be
one of two types:

• A membership query: Is the word w accepted by the automaton A?
• An equivalence query: Is the language of the hypothesized automaton H equiva-

lent with the language A to be identified; i.e. L(H) = L(A)?

The learner organizes all results of the membership queries in tables. These are used
to create the automaton. The equivalence queries are used to check whether the
constructed automaton is correct or not. If it is correct, the teacher answers with yes
otherwise he returns a counterexample.

Angluin’s L* [Ang87] is one of the first and most famous active learning algo-
rithms that identifies a DFA. The learning operates as illustrated in figure 4.3.

Grinchtein introduced an online active learning algorithm for timed target lan-
guages [GJL04] identifying event-recording automata (ERA). The algorithm works
similar to L*.

5.2.1.3 Online passive model learning

To the best of our knowledge, so far no algorithm for the online passive learning of
timed automata exists, which in addition gets along with only positive examples. In
Section 6.3, we close this gap and introduce OTALA, which is the first online passive
learning algorithm for Timed Automata using positive learning examples only.

5.2.2 Identification of untimed Deterministic Finite Automata

Algorithms which identify (untimed) DFAs use positive as well as negative learning
examples. Such algorithms are often used in the field of grammatical inference. A
comprehensive survey on algorithms in the field of grammatical inference is given in
[dlH05]. In this thesis, only some basic algorithms are mentioned.

RPNI

One of the first identification algorithms that used the state merging approach
is the Regular Positive and Negative Inference (RPNI) [OG92]. It identifies a DFA
from informant, i.e. it uses positive as well as negative examples. It is based on
the red-blue framework [LPP98]. At the beginning, the root is colored red, its
descendants are colored blue, all other states are not colored at the beginning.

56 5 Identification of Automata and Model-Based Anomaly Detection

The red states are final, they will not be deleted. The blue states are candidates
for the merging with red states. In a top-down manner the blue states are merged
with the red ones. If the resulting DFA is consistent with the sample set (positive
and negative examples do not end in the same state), the merge is kept otherwise
rejected. Then, the descendants of the blue state are colored blue. This procedure
is continued until all states are colored red.

L*

Angluin’s L* [Ang87] is an active identification algorithm for the identification
of DFA. As described in Section 5.2.1.2, the learning process is organized as a
student-teacher-relationship, where the student asks questions (membership or
equivalence query) and the teacher answers them accordingly.

5.2.3 Identification of untimed Probabilistic Deterministic Finite
Automata

Identification algorithms for (untimed) probabilistic DFAs only use positive learning
examples. Commonly used (passive) algorithms are e.g. MDI (Minimal Divergence
Inference) [TDdlH00] and ALERGIA [CO94]. They both start with a prefix tree, go
top down from the root to the leafs and search for compatible states. However, they
both use a different method to compute the compatibility of states and a different
state merging method.

ALERGIA

The algorithm Alergia, introduced by Carrasco and Oncina in 1994 [CO94],
was originally developed for the identification of stochastic regular languages by
using state merging techniques. It identifies a Probabilistic Deterministic Finite
Automata (PDFA, see also Definition 11) using positive learning examples only.
While the RPNI algorithm used the negative examples to prevent an incorrect
merging, Alergia has to rely on positive examples only. So it uses the event
probabilities to prevent such incorrect mergings: Two states are compatible if the
probabilities of the event sequences in their respective subtrees are similar.

Alergia operates on a PTA, comparing each pairs of states in a top-down manner,
beginning at the root of the tree and continuing with the states according to their
lexicographical order of the shortest paths. Two states are compatible, when their
arrivals, terminations and outgoing transitions belong to the same probability
distribution. For this, a threshold given by the Hoeffding bound [Hoe63] is used.
The children of the regarded states have to fulfill this condition as well, that is, we
recursively ensure that the subtrees of two states, and the very nodes themselves
are compatible. After finding two compatible states, they are merged together,
which can result in a nondeterministic automaton, as the yielding state would have
two transitions triggered with the same symbol. That means, we have to recursively
merge subtrees of the same trigger symbols in order to reestablish a deterministic
automaton. This is done without further checking for compatibilities, as their
compatibility was ensured by the recursive check that had been done beforehand.

5.2 Identification Algorithms for Finite Automata 57

MDI

The MDI (Minimal Divergence Inference) algorithm was introduced by Thol-
lard et al. [TDdlH00] and operates in the same problem domain as Alergia, but
with a different merging criterion. MDI tries to "globally control the level of gener-
alization from the learning sample". The creators of the MDI algorithm state that
Alergia’s main problem is that its state merging operation operates locally only,
that is, the overall divergence of the algorithm to the sample set is not taken into
consideration. MDI however, calculates the Kullback-Leibler divergence between
the original PTA, and the modified PTA after each merging operation. The merging
operation is only accepted if the calculated divergence is below a given threshold
value, otherwise rejected again. That is, when applying the MDI algorithm on a
PTA, the divergence constraints are constantly checked during runtime, which is
supposed to result in an output of better quality. Note, that the global calculation
of the compatibility leads to an increased calculation effort, since in each step
(compatibility check of two states) two states are merged and the resulting PTA is
compared with the previous one, and if the new PTA differs from the previous too
much, it is rejected again.

In [VMN13], we performed a comprehensive evaluation on the performance of
these and other identification algorithms.

5.2.4 Identification of Deterministic Timed Automata

The field of identification of timed automata is less mature than the identification
of untimed automata. Only few algorithms have been developed so far. Most re-
search work in this field has been done by Verwer [VdWW07, VdWW06, VdWW08,
VdWW09] for the identification of Timed Automata and Grinchtein (e.g. in [GJL04])
for the identification of Event Recording Automata, a subclass of Timed Automata.

This section is not about the identification of Timed Automata according to
Definition 13 only, but also about automata that can handle with timing information
in general.

Verwer et. al. already presented several algorithms for the identification of timed
automata. Two of them (ID_1DTA and RTI+) are mentioned here and explained
roughly, since in this thesis we refer to them. Some of the algorithms require positive
as well as negative examples (e.g. ID_1DTA). Two states are merged when there
exists no negative example that prevents this action, i.e. this new merge would lead
to an automaton, which would accept an example from the set of negative examples.
Using only positive examples for the identification (as RTI+ does), some probabilistic
information have to be used to determine the consistency of the automaton with the
sample sets for each merge step.

ID_1-DTA

In [VdWW09], Verwer presented the algorithm ID_1-DTA for the identification
of 1-DTAs. It identifies 1-DTAs efficiently in the limit from informant, i.e. it uses
positive as well as negative learning examples. It is an offline leaning algorithm
but does not use the state merging approach. It identifies the automaton structure
piece by piece. In each identification step, one transition is identified. For this, first
a data sample has to be chosen. Then for each data sample, three elements have to

58 5 Identification of Automata and Model-Based Anomaly Detection

be identified: (1) the smallest consistent lower bound for the clock guard (2) the
clock reset and (3) the target state.

In [Ver10], Verwer proves that:

• given any input sample S, ID_1-DTA returns a 1-DTA A in polynomial time that
is consistent with S and

• if S contains a characteristic subsample Scs for some target language Lt, then
ID_1-DTA returns a correct 1-DTA A.

That is, the algorithm ID_1-DTA identifies 1-DTAs efficiently in the limit.

RTI+

In [Ver10], Verwer gives an algorithm, Real-Time Identification from positive
data, RTI+, which identifies a PDTA (with one clock) from text, i.e. it identi-
fies a PDTA using positive examples only. Verwer proved that RTI+ identifies
PDTA in polynomial time in the limit. RTI+ is an extension of the algorithm RTI
[VdWW07], which identifies a non-probabilistic DTA from informant, i.e. using
positive and negative examples. Verwer denotes the formalism as probabilistic
deterministic real-time automaton, PDRTA, which is a probabilistic DTA with one
clock, and the clock is reset in each transition.

The general identification method is illustrated in Figure 5.3. Since it uses the
state merging approach, first, a timed prefix tree acceptor is created, which is
generally the same as the untimed PTA but additionally contains time information.

In the second step, applying the top-down strategy, i.e. beginning with the root
and proceeding to the leafs of the PTA, the algorithm checks whether there exist
compatible states that can be merged. Additionally a splitting process is introduced.
A transition can be split if the resulting sub trees are significantly different.

The red-blue-framework [LPP98] is used to mark states in red and blue. In each
iteration step, a blue state is selected, which is visited most often and all possible
merges of this blue state with all red states and all possible splits of the incoming
transition of the blue state are evaluated and the p-values are calculated. If the
lowest p-value of a split is less than 0.05, the split is performed, otherwise, if the
highest p-value of a merge is greater than 0.05 then this merge is performed. After
a split is performed, the prefix sub trees from the subsequent nodes have to be
renewed. The decision whether two states have to be merged or a transition has to
be split is made on the p-value, which is calculated using the likelihood ratio test.

5.2.5 Identification of subclasses of Deterministic Timed Automata

Apart from the identification of Deterministic Timed Automata, there exist ap-
proaches which deal with subclasses of Timed Automata. Some of them are men-
tioned in this subsection. Since they don’t play a big role in the context of this thesis,
they are explained only roughly.

Identification of Event-Recording Automata (ERA)

Event-Recording Automata belong to a subclass of Timed Automata. The main
difference is that ERA measure the time between the occurrence of single events,
i.e. the time is measured for each event until it occurs the next time. Details to the
formalism of ERA can be found in [AFH99].

5.2 Identification Algorithms for Finite Automata 59

Grinchtein et. al. [GJL04] developed an active algorithm for the identification
of ERA. It extends Angluin’s algorithm L* for active learning of regular languages
to the setting of timed systems. The general method follows the principle of active
learning as explained in Section 5.2.1.2.

The first algorithm (from Grinchtein) needed an exponential amount of queries.
In [LAD+11], the algorithm TL* is introduced, which is an efficient extension
of Angluin’s algorithm L* and Grinchtein’s algorithm. They prove that TL* is
correct and terminates in a finite number of iterations and that the ERA learned by
TL* has the minimal number of locations.

Identification of Finite Automata based on state vectors

A completely different approach is proposed in [RLL10] and [RSLL12]. The
approach does not stem from the field of grammatical inference. Instead it is more
application-oriented. The application scenario is equal to this thesis, the anomaly
detection in cyber-physical production systems. They use a formalism, which they
call non-deterministic autonomous automaton with output (NDAAO). The main
difference to timed automata is the definition of the state information using a
vector with the values of the given signals (inputs and outputs, I/O-vector). The
learning procedure is based on the assumption that each I/O vector is created by a
new event.

In the learning procedure for each incoming observation (which is an I/O
vector), it is checked whether it was observed before. If this is the case, it is also
checked whether an appropriate transition exists. If a state or transition does not
exist, it is created. The transitions don’t contain an event and they are triggered by
time only, which is expressed as a time range with the minimum and maximum
time stamp.

Identification of Continuous-Time Markov Chains

A slightly different yet closely related field is addressed by Sen et. al. [SVA04].
They use Edge Labeled Continuous-Time Markov Chains (CTMCL) as formalism
for timed behavior models. The identification algorithm is based on the state
merging paradigm introduced in RPNI [OG92] and ALERGIA [CO94]. They
construct a prefix tree and then look for compatible states and merge them. It also
uses the same order. The only difference is the usage of an additional condition for
the amount of time spent in a state, which is based on the Chebychev inequality.

5.2.6 Identification of Probabilistic Deterministic Hybrid Automata

The aforementioned algorithms only consider discrete events in the transitions. As
shown in Figure 5.4, Learning continuous signals as discrete events in a discrete
Automaton would lead to a huge amount of states since every change of any signal
corresponds to an event. A more effective way is to use hybrid automata in which
only discrete signals describe events and continuous signals are approximated in the
states.

The first algorithm which learns a Hybrid Automaton is called HyBUTLA: Hybrid
Bottom Up Timing Learning Algorithm [VKBNM11]. It was developed in cooper-
ation with this thesis. HYBUTLA is based on BUTLA. While BUTLA identifies

60 5 Identification of Automata and Model-Based Anomaly Detection

discrete Automaton

y

x

y

x

Hybrid Automaton

x

y

Fig. 5.4 The idea and operating principle of hybrid automata.

the automaton structure and learns the timing behavior, HyBUTLA includes the
continuous behavior into the states. If necessary, the states are also split. The decision
is based on an autonomous jump detection using the wavelet transform for example.
This enables the hybrid automaton to generate transitions that are not only based on
discrete events but also on crossing a threshold or on sudden changes in a continuous
signal, which is dependent on time.

5.2.7 Identification of Nondeterministic Automata

Only few approaches deal with the identification of Nondeterministic Automata. The
DeLeTe and DeLeTe2 algorithms were introduced by Denis et. al. in [DLT04] for
the identification of Residual Finite State Automata (RFSA), which is a subclass of
Nondeterministic Automata. Since the identification of Nondeterministic Automata
is not subject of research in this thesis, it is only referred to the literature.

5.3 Conclusion

In this part, we gave an overview to timing modeling formalisms and argued why
we are focusing on finite state machines and, more specifically, on timed automata
(Chapter 2). The main reasons are the simplicity, the fact that they can be identified
from observations only and their applicability for anomaly detection.

In Chapter 4, we worked out that our identification framework is the identification
in the limit. Several state of the art identification algorithms have been presented in
Section 5.2. RTI+, so far the only existing algorithm that identifies a timed automaton
from text, has three main disadvantages:

• The top-down strategy requires a (time consuming) recursive compatibility check.
• The evaluation of all possible merges and splits additionally consumes time.

5.3 Conclusion 61

• After every performed split, the prefix tree acceptor has to be renewed from the
corresponding transition, this again consumes time and, additionally, a lot of space
to store all the necessary information.

To overcome these disadvantages, a new identification algorithm for timed automaton
will be presented. It introduces a different timing learning method and a new state
merging strategy.

As already mentioned in Section 5.2, to the best of our knowledge so far no
identification algorithm exists that identifies a Timed Automaton in an online and
passive manner. But this is required for use in cyber-physical production systems. To
close this gap, an appropriate identification algorithm is presented.

Part II

Algorithms and Theory

Chapter 6
Algorithmic Results

This chapter presents the main contribution of this thesis: Algorithms for the identifi-
cation of Timed Automata. A special focus is on the suitability of the algorithms for
the identification of the normal behavior in cyber-physical production systems. The
identified automata are finally used for anomaly detection.

The main contributions of this chapter are the following:

• We describe how events are generated from timed observations in production
plants.

• We give a new offline passive identification algorithm BUTLA, which is the first
algorithm that uses the bottom-up merging strategy.

• We describe a new method to identify the timing behavior that avoids the time
consuming splitting operation.

• We introduce a new online passive identification algorithm OTALA, which is the
first online passive identification algorithm for timed automata.

• We present the anomaly detection algorithm ANODA.
• We give algorithms for the adaptive identification for both, BUTLA and OTALA.

The structure of this chapter is organized as follows: In Section 6.1, the require-
ments are analyzed, which are used for the modeling formalism and the learning
algorithm. Section 6.2 introduces the offline passive algorithm BUTLA. It firstly
introduces the bottom-up merging strategy, which results in a computation speed
increase. Additionally it uses a different timing learning approach. In Section 6.3, the
online passive identification algorithm OTALA is introduced, which to the best of
our knowledge is the first online passive identification algorithm for timed automata.
It is especially created for the identification of rather small stand-alone embedded
devices or cyber-physical production systems. Section 6.4 presents the final usage of
the identified models: the anomaly detection. The algorithm ANODA is presented,
which uses the identified timed automata to find anomalies in production systems
during runtime. Finally, in Section 6.5 we show that how the models can be adapted
during runtime when an error is signaled, whereas it belongs to the normal behavior.

This chapter is partially based on contributions which we published on interna-
tional conferences [MNV+11, VKBNM11, VBNM11, MKPGN13, Mai14].

65

66 6 Algorithmic Results

6.1 Requirements on modeling formalism and identification
algorithm

The identified model shall be used for anomaly detection in production plants in
the automation industry. Therefore, the modeling formalism and the identification
algorithm should be adapted to this use case. In this section, the main requirements
are listed.

Requirements on the modeling formalism:
In general, model-based diagnosis can use any kind of behavior models. However,

the quality of diagnosis depends on the used modeling formalism and the prediction
abilities of the models. In this section, we give some requirements on this formalism
for the use case of anomaly detection for production plants.

• State based systems: Production plants mainly show a state based behavior, i.e.
the system’s state is precisely defined by its discrete IO signals.

• Consideration of time: Since actions in production plants essentially depend on
time, the formalism has to consider it as well.

• Probabilistic information: Here, the behavior models describe the previous,
recorded plant behavior. So unlike in specification models, behavior probabilities
must be modeled.

• Distributed systems: Most production plants consist of several (distributed) mod-
ules. The formalism has to deal with parallel components.

• Hybrid data: Most production plants contain not only discrete signals but also
continuous ones. So an appropriate formalism has to consider both, i.e. the identi-
fied model should be hybrid (comprising both, discrete and continuous behavior).
This aspect is considered in [Vod13], so we only consider a discrete behavior in
this thesis.

• Learnability: Since the goal is not to create the model manually, it should be
possible to identify the model automatically using an identification algorithm.

Requirements on the identification algorithm:
In principle, all of the mentioned requirements from above (requirements on the

modeling formalism) also apply to the identification algorithm. The identification
algorithm should be able to capture the following issues:

• State based behavior
• Timing information
• Probabilistic information
• Distributed systems

Furthermore, the following issues have to be considered:

• Parallelism structure: Based on a given parallelism structure, the identification
algorithm should be able to identify independent (parallel running) components.

• Hybrid data: This requirement is captured in [Vod13], where the algorithm Hy-
BUTLA is introduced. HyBUTLA is based on BUTLA, which is introduced in
Section 6.2.

Requirements on the system to be identified:
Finally, there are some requirements on the system for which the behavior has to

be identified.

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 67

• Observability: In general, only the observable effects can be identified. Therefore,
the system and its behavior have to be observable. Partially, this also applies to
the anomaly detection. Anomalies in observable signals can be detected reliably.
However, some anomalies can be detected indirectly, e.g. the wear of a conveyer
belt can be detected using the time it needs to convey something from one point
to another.

• Deterministic behavior: The system should behave in a deterministic way, since
the chosen modeling formalism can not handle non-determinism. Each non-
deterministic situation is determinized again in the model.

6.2 Bottom Up Timing Learning Algorithm (BUTLA)

This section introduces the Bottom Up Timing Learning Algorithm (BUTLA). It
only uses positive learning examples to identify the automaton structure, including
states and transitions. The transitions between two states contain information about
the timing constraints as relative time stamps referred to the entering of the state
and probabilistic information. The identified automaton is a one-clock Probabilistic
Deterministic Timed Automaton according to Definition 15.

BUTLA differs from existing automata identification algorithms (see Section 5.2)
in the following points :

• Bottom-up learning strategy: All existing offline identification algorithms fol-
lowing the state merging approach, such as Alergia [CO94], RPNI [OG92], MDI
[TDdlH00] or RTI+ [Ver10] (see also Section 5.2) use the top-down strategy to
search for compatible states. Beginning with the root of the prefix tree acceptor,
all pairs of the subsequent states are checked for compatibility using the lexico-
graphical order of the shortest path. BUTLA is the first algorithm that introduces
the bottom-up strategy. Beginning with the leafs of the prefix tree acceptor all
previous states are checked for compatibility using the lexicographical order of
the longest path. This bottom-up strategy works best if all leafs of the prefix
trees correspond to final states or to the same states in a cyclic process. Here,
the new algorithm applies the domain specific knowledge: For measurements of
cyber-physical production plants, it is usually not a problem to guarantee this
constraint.
A detailed evaluation of the advantages and disadvantages of both strategies
follows in Section 7.4.

• New timing learning: The timing information is given as relative time stamp
from the last occurring event and is usually modeled as time span, including the
minimum and maximum value of the recorded time values for a certain transition.
BUTLA additionally uses a probability density function (PDF) over time, which
reflects the system’s behavior in more detail. In contrast to other identification
algorithms (e.g. RTI+ [Ver10]), the timing identification procedure directly refers
to the PDFs to determine whether two timed events belong to the same process.
Further details are given in Section 6.2.3.

• Merging criterion: The merging criterion basically uses the Hoeffding Bound
similar to the algorithm Alergia [CO94]. However, this criterion has to be adapted
since BUTLA uses the bottom-up strategy. Instead of using the out-going tran-
sitions as Alergia does, BUTLA considers the incoming transitions to calculate

68 6 Algorithmic Results

the compatibility criterion. As to the rest, the determinization process is equal to
those algorithms. Details will follow in Section 6.2.5.

• Avoiding split operations: The best known algorithm for learning timed automata
(RTI+ in [Ver10]), adds an additional splitting step to the merging procedure
mentioned above: transitions are split by subdividing the corresponding time
interval. The split is performed when the resulting new sub-trees do not resemble
each other. Besides the runtime problems (this is done for all possible splits of
a time interval), this procedure does not necessarily take natural clusters in the
timing information into consideration. BUTLA avoids this splitting operation
by including an additional preprocessing step that identifies (multiple) timing
distribution functions and uses this information in an early stage such that a
splitting operation becomes dispensable. A more detailed evaluation is given in
Section 7.5.

The identification algorithm BUTLA follows the methodology from Figure 6.1:

Network
Measure-

ments

PTA Construction

State
Merging

0

Event Generation
(1a)

Timing Preprocessing
(1b)

Synchronized
Signals and

Events

Data
Measure-

ments
1a+1b

2

3

Prefix Tree
Acceptor (PTA)

Model
(Timed Automaton)

Fig. 6.1 BUTLA identification method.

• Step 0: Network measurements
First of all, all relevant data is measured from the system. For this, the system is
observed during several production cycles. The resulting observation sequences
(recorded signal vectors and time stamps) are stored in a database.

• Step 1a: Event generation
An event is defined as the change between two subsequent signal vectors (see
Definition 3). Thus, the events are generated by extracting the differences between
the signal vectors based on the recorded signal vectors and time stamps. The
event’s timing is calculated as relative time value to the previous event.

• Step 1b: Timing preprocessing
Then, the timing of the events is analyzed in a preprocessing step. The relative
time values of each event are collected in a histogram. It is decided whether the
timing behavior is subdivided into multiple modes based on this histogram and

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 69

the resulting probability density distribution over time. In case of multiple modes,
an event is separated according to the number of modes in the PDF such that each
event consists of only one mode. For instance, an event ei from the alphabet Σ
with 2 modes is separated into ei,1, ei,2 forming Σ′, an extended set of symbols,
as can be seen in Figure 6.2. In the following steps (construction of the prefix tree
acceptor and state merging), only this modified alphabet Σ′ is used.

Probability density

function over time

Separated events

t

p(t)

ei ei,1

p(t)

ei,2

t

Fig. 6.2 An event with a multi-mode timing behavior is separated into its modes.

• Step 2: Construction of the Timed Prefix Tree Acceptor
In the next step, common prefixes of data sequences are detected. For the first
cycle, the sequence of events is stored in form of a linked list of events. Then
for each following cycle, common prefixes with a previous event sequence are
detected; if the actual sequence derives at some point, it leads to a new branch.
The final result is a prefix tree (prefix tree acceptor, PTA), which models all
observation sequences in a dense form—dense because common sequences are
stored only once.

• Step 3: State merging
This step is the core of the identification algorithm. Now, similar states of the prefix
tree acceptor are merged. Using the bottom-up strategy in the lexicographical
order of the longest paths, all pairs of states are checked for compatibility. If
a pair of states satisfies the compatibility criterion, the states are merged. The
structure of the automaton is identified using the state merging method. Note that
unlike other identification approaches, this structure does not have to be given
but is identified based on observations. The result is a Timed Automaton, which
represents the timing behavior of the observed system in an abstracted way.

A detailed description for each individual steps is given in the following subsec-
tions.

The complete algorithm BUTLA is shown in algorithm 1 and works as follows:
Learning examples according to Definition 2 are given as input. Details on the data
acquisition are given in Section 6.2.1.

First, the events are generated (line 1, details in Section 6.2.2). Then the timing is
preprocessed (line 2, details in Section 6.2.3), creating a new set of symbols Σ′. Then,
a prefix tree is created based on the generated events and the new set of symbols (line
3, details in Section 6.2.4).

Finally, compatible states are merged in a bottom-up order (line 4-9); Each pair
of states is checked for compatibility (line 5). How state compatibility is defined
will be explained in Section 6.2.5. If a pair of states is found to be compatible, they
are merged into one state (line 6). The new state obtains all incoming and outgoing
transitions from the compatible states and the state leaving probability is averaged.

70 6 Algorithmic Results

After each merging step, the resulting automaton can be non-deterministic. So the
automaton has to be determinized (line 7). Recursively, it is checked whether there
exist two outgoing transitions with the same symbol for each subsequent state. If this
is the case, then both descendents are merged. Note, that the modified set of symbols
Σ′ is used here and therefore it may happen that two different symbols contain the
same event but stemming from different time modes. This has been separated in the
timing preprocessing.

The final result is the identified Timed Automaton according to Definition 15.

Algorithm 1 Bottom-Up Timed Automata Learning Algorithm BUTLA.

Algorithm BUTLA (Σ, D):
Given:
(1) Alphabet Σ
(2) Observations D = {D1, . . . ,Dn} where Di ∈ (Σ×R)∗,

Di is one sequence of timed events (e.g. a system cycle, according to Definition 2)
Result: Timed AutomatonA (according to Definition 15)
(1) Compute events Σ based on D.
(2) Σ′ = timingPreprocessing(Σ)
(3) Build prefix tree PTA = (S, s0, F, P,Σ′, E) based on D.

PTA is a timed automaton according to definition 15.
(4) for all v, w ∈ S in a bottom-up order do
(5) if compatible(v, w) then
(6) A = merge(v, w)
(7) determinize(A)
(8) end if
(9) end for
(10) returnA

6.2.1 Step 0: Network measurements

A prerequisite for model identification in cyber-physical production systems is the
data acquisition. Different methods exist to obtain the required data: (1) direct
connection to the PLC, (2) a network tap to sniff the data, (3) a mirrored port on a
network switch, (4) writing the data directly from the Supervisory Control and Data
Acquisition (SCADA) system into a database or (5) special data acquisition cards
in parallel to the IOs in the plant. In this thesis we stick to the second solution. The
principle of the data acquisition is shown in Figure 6.3. Basically, the data is acquired
from the network using a network tap. A special data logger extracts the payload out
of the data stream.

The data, which is acquired in the production plant, is stored according to the
Definition 2 as a matrix with timestamps and the associated signal vector:

D =

t1 q1,1 . . . qd,1
t2 q1,2 . . . qd,2
...

...
...

...
tl q1,l . . . qd,l

,

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 71

00111010100011010011101001101011

data

logger

payload

Data stream

PLC IO

Data

base

𝐷 =

𝑡
1

𝑆1
0

𝑆2
0

2 1 0
3
4

1
1

1
0

Fig. 6.3 The principle of data acquisition using a network tap.

The first column represents the time stamps in an absolute time base beginning at
the start of the measurements. The other d columns represent the signal vectors to
each time stamp.

The observed system can consist of several independent subsystems. However,
BUTLA is not able to identify these subsystems and to subdivide the overall behavior
into single independent components. This also applies to almost all identification
methods and algorithms. Therefore, this has to be done beforehand. For this, several
methods exist, of which two are roughly explained here:

• Approximation of the parallelism structure using the system topology
We use one method (introduced in [MNV+11] and [JJN11]), that is especially
suitable for distributed production plants connected via Profinet. It is based on
the assumption that each independent subsystem is connected to one separate IO
module. In practice, this mostly works well, since signals which belong to one
subsystem are mostly located close to each other locally. For this, the topology
of the automation system is used to approximate the parallelism structure. This
parallelism structure decomposes the overall model into parallel components—for
which sequential behavior models can be identified.
AutomationML [Aut14] can be used as an exchange format to store the topol-
ogy of the automation systems — and therefore the parallelism structure. This
parallelism structure includes information about the IO devices, Programmable
Logical Controllers (PLCs) and communication networks.
Here, the Profinet standard is used as an example. The result is an unsorted
collection of all participants in the network.

• Automatic identification of the parallelism structure
In his dissertation, Roth describes a method that how such a parallelism structure
can be identified automatically based on recorded observations [Rot10]. He uses
the term partitioning. The partitioning of discrete event sub-systems can be
obtained using expert knowledge, but also by analyzing the event sequences. In
the latter case, the event sequences are analyzed concerning the correlation and
concurrency of subsets of the event sequences. For this, some metrics are used
(e.g. introduced in [MWvdBD03]), which allow to compare two arbitrary events
and to obtain information about their concurrent or causal relation.

72 6 Algorithmic Results

Based on the identified parallelism model, which includes information about
independent sub-modules, the algorithm BUTLA can be used to identify the timed
behavior models as described in the following subsections. For each independent
sub-module, a separate model is identified based on its associated input and output
signals.

6.2.2 Step 1a: Event Generation

The network measurements are used to generate the alphabet and the timing con-
straints. Inputs are positive samples according to Definition 2. The events e are
defined as changes between two subsequent signal vectors and the resulting time
stamp (according to Definition 3).

In the first step, these changes are detected. Furthermore, the time stamps are
calculated. Since only one clock is used, the only possibility is to use relative time, i.e.
to reset the clock after each event. To obtain the relative time stamps, the difference
between each occurring events is calculated.

Example 6. Let us consider an example measurement Di with 4 discrete signals
a, b, c, d.

Di =

1 0 0 0 0
2 0 0 0 0
3 0 1 0 0
...

...
...

...
...

27 1 1 0 0
...

...
...

...
...

42 1 0 0 0
...

...
...

...
...

77 1 0 1 1
84 1 0 1 1

,

First, the events are generated based on the difference between two subsequent
signal vectors. Here the events are the following (as time value, first the absolute
time stamp is captured):

e1:’b=1’ (t=3)
e2:’a=1’ (t=27)
e3:’b=0’ (t=42)
e4:’c=1;d=1’ (t=77)

Then, the relative time stamps are calculated, as discussed in our example:
e1:’b=1[3]’
e2:’a=1[24]’
e3:’b=0[15]’
e4:’c=1;d=1[35]’

Note that only changes of the values in discrete signals generate an event. It may
happen that equal signal vectors appear consecutive (e.g. between 77 and 84 time
units in the example data matrix). This does not lead to an event. The same applies to

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 73

present values of continuous signals (not displayed in the example data matrix). The
latter case is considered in the partner dissertation [Vod13], extending BUTLA to the
identification of Hybrid Timed Automata→ HyBUTLA.

Now, all samples Di from the sequence D = {D1, D2, ..., Dn} are used to
generate the events. Additionally, a list of observed time values is created for each
event. The events are now available in tupels:

{ei, {t1, t2, ..., tk}},

with ei a certain event, k ∈ N the number of observations with this event and
{t1, t2, ..., tk} is a list with the observed time values.

The listing of all events is stored in Σ. It is the alphabet of the automaton.

6.2.3 Step 1b: Timing Preprocessing

Once the data is stored in a database, the timing behavior of the observed system
is analyzed. BUTLA firstly introduces a preprocessing step to identify the timing
behavior of events. In the context of this section, timing behavior means how timing
is represented for specific events in the automaton.

Several methods can be used to describe the timing behavior in events:

1. Time ranges: Only the minimum and maximum time values are used to determine
the time bounds.

2. Uni-modal timing distribution functions: All time values are supposed to stem
from the same (uni-modal) distribution function.

3. Multi-modal timing distribution functions: It is considered that a mixture of
uni-modal timing distributions can also occur. All single uni-modal distribution
functions are identified. A uni-modal distribution function is a special case of
multi-modal distribution functions.

These methods are described in the following subsections.

6.2.3.1 Timing Identification based on Time Ranges

The identification of the timing behavior based on the time ranges is the most simple
version. Here, it is just mentioned for the sake of completeness. The identification is
rather simple: For each transition, the minimum and maximum time value is stored.
Additionally, no timing preprocessing is necessary.

However, a timing model with only minimum and maximum time values is not
expressive enough since it does not necessarily represent the timing behavior in a
proper way. This can be seen in Figure 6.4: Obviously there are two clusters of timing
values but this information can not be captured by identifying only the minimum and
maximum time value.

Furthermore, the bounds are too strict from the anomaly detection point of view.
This can also be seen in Figure 6.4. In case of normal operation, the time value is in
the green area. An error will be signaled while crossing the border to enter the red
area. Warnings can not be issued due to the strict borders.

74 6 Algorithmic Results

t

min max

Fig. 6.4 Strict borders with minimum and maximum time stamps.

6.2.3.2 Unimodal Timing Distribution Function

As already mentioned, BUTLA uses a different time learning operation. Here, we
use a different heuristic to learn the correct timing information at the transitions. The
timing is expressed by means of probability density functions (PDF) instead of time
intervals; this allows for a much preciser model of the timing.

Especially from the anomaly detection point of view, the usage of PDFs is advan-
tageous. In Figure 6.5, it can be seen that it gives a warning before signaling an error.
The green area describes the normal behavior. If a time stamp enters the yellow area,
a warning will be given and if it enters the red area, finally an error will be signaled.

p(t)

t min max mean

Fig. 6.5 The usage of probability density functions over time allow to give warnings before signaling
an error.

In this subsection, we first assume that the timing behavior can be described using
a uni-modal distribution function and we analyze which distribution function is suited
best to describe the timing in transitions. Multi-modal distribution functions/ mixture
models are covered in the next subsection.

When talking about probability density functions, the question about the appro-
priate distribution function arises. Here, we consider timed processes of technical
systems. The timed events which we observe are a mixture of randomized events.
This leads to the assumption that the Gaussian distribution function should be a
good choice. However, the established Gaussian distribution function also has its
counter-argument. Since the Gaussian distribution function is defined over [−∞,∞],
there exist positive probabilities for negative values. However, from timing modeling
point of view, negative time values are impossible. This effect can be eliminated
by additionally using time ranges with the minimum and maximum observed time
stamp.

We performed some experiments in real plant data sets to discover the most
appropriate distribution function. For this, we have acquired some data from a real
production plant and we have calculated the empirical accumulated density function
for the time values of each event. Then we used the the Kolmogorov Smirnov test

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 75

(see e.g. [EDJ+71] for details) for each event to calculate the p-value. The larger
the p-value, the more similar are the chosen distribution functions, particularly the
empirical data from the observations and one of the reference distribution function.

Figure 6.6 shows some typical cumulated density functions (CDF) for one event
of a test data set and chosen distribution functions. Although it is just a snapshot
of one event, it can be seen that the Gaussian distribution fits the test data set best.
Other events in the data set performed similarly.

Fig. 6.6 Cumulated density functions for a data set and chosen distribution functions.

The box plot in Figure 6.7 gives an overview about the calculated p-values for
each distribution function. It can be seen that the Gaussian distribution by far gives
the best results using the p-value.

Furthermore, in Table 6.1, the numbers that belong to the distribution function are
given. A data set is fitting to a given distribution function if the calculated p-value is
larger than 5%. It can be seen, that the Gaussian Normal Distribution is most suited
to describe timing in technical processes.

Since the Gaussian distribution gives the best results, in the following subsections,
we do not use the other distribution functions.

76 6 Algorithmic Results

Fig. 6.7 Box plot for calculated p-values of Kolmogorov Smirnow Tests.

Table 6.1 Number of fitting functions for each chosen distribution function. The fitting is counted
if the calculated p-value is larger than 5%.

fit don’t fit % fit
Gaussian 344 8 97.7%
Exponential 282 70 80.1%
Uniform 263 89 74.7%
Frechet 271 81 77.0%

6.2.3.3 Identification of multiple distributions in events

Often, some events (e.g. switching on a conveyor belt) appear several times in the set
of observations. In that case, it must be checked whether these events are generated
by the same process; this is done based on the events’ timing. As described in
Definition 15, an event’s timing is defined as the relative time span since the last
event occurrence. So, for each available event a, the Probability Density Function
—probability over time—is computed. If the PDF is the sum of several Gaussian
distributions, separate events are created for each Gaussian distribution.

As shown in Figure 6.8, the signal a controlling the robot is used for two different
processes with two different timings (i.e. PDFs): Containers are sorted according to
their size, each size results in a different timing of the robot movements.

One decision lies at the core of transition timing learning: Should a transition with
an event e be split into two transitions with different timing information? Unlike
other approaches, we base our decision on the timing information itself, not on the
sub-tree resemblance. Figure 6.9 shows an example:
s0 and s1 are two states in an automaton, the transition timing is a statistic for the

transition occurrences in the past and is expressed as a probability density function
(shown next to the transition).

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 77

filling bottle

filling bottle

t

d(t)

d(t)

t

place at
position A

place
at position B

A

B

filling bottle

filling bottle

t

d(t)

d(t)

t

place at
position A

place
at position B

A

B

Robot
Start

Large
Containers

Small
Containerstime

probability

time

probability
event a

event a

Fig. 6.8 An event which is used in different process contexts is treated as two different events.

Using Verwer’s approach [Ver10], the transition would only be split (new states
s′1 and s′′1) if the new resulting sub-trees are significantly different. The motivation is
that different states should define different successive behaviors, i.e. sub-trees.

P

t

5

s'1

s''1 Subtree

Subtree

incompatible
[0,2]

(2,9]

s0

s1s0

Subtree

Subtrees'1

s''1

[0,5]

(5,9]

s0

Traditional
Approach New

Approach

Subtree

Fig. 6.9 A different timing learning approach.

But looking at the transition’s timing in the figure, a split could be justified just on
the basis of probability density functions: Obviously the density function is created
by two overlapping Gaussian distributions. So it can be presumed that two different
technical processes have created the corresponding event—i.e. here again we apply
domain specific knowledge. Different processes must be modeled as different states,
because only then the learning algorithm can associate transitions with the correct
timing and only such a precise timing association allows for a correct separation
between correct and erroneous behavior (anomaly detection).

So far, existing identification algorithms (see Section 5.2) do not consider time
while creating the prefix tree, i.e. initially the data set is considered to be untimed and
the prefix tree is constructed. The timing information is included afterwards. This

78 6 Algorithmic Results

gives the need of additional operations like the splitting of transitions, because the
knowledge about the timing information is not available.

To avoid the splitting operation, the timing modes have to be identified in a
preprocessing step. The method for detecting multiple modes in events roughly
works as follows (see also Figure 6.10): For each event, a probability density function
(PDF) over time is calculated based on the list with the observed time values. If the
resulting PDF is multi-modal, i.e. a sum of (overlapping) individual distributions, the
event is separated into these modes according to the number of identified modes.

data Probability density

function over time

Separated events

𝑎𝑖 5,22,8,5,4, … 15

t

p(t)

ai ai,1

p(t)

ai,2

t

Fig. 6.10 Principle of the mode separation method.

For the detection of multiple modes in events, three methods have been evaluated:

• Kernel density estimation: This version is straight forward by estimating the
density of the distribution function and subdividing at local minimums. It is
optimized for efficient computation time. Nevertheless it delivers useful results.

• EM - algorithm: This method is well-known from the state of the art. It performs
well, but the number of mixed distribution functions has to be known or determined
subsequently by trying all values and take the best fitting.

• Variational Bayesian inference: This version needs the most time but delivers the
best results. The number of overlapping distribution function is calculated in an
iterative manner.

Due to the high computation effort of the EM-algorithm and Variational Bayesian
inference, we chose to use the Kernel density estimation for the timing preprocessing
in BUTLA. Since the kernel density estimation is used in the following, it is described
in more detail.

Algorithm 2 shows how the kernel density estimation is used to detect multi-
modal timing distributions and how multiple-mode distributions are separated into
single-mode distributions.

The algorithm is about the generation of an extended set of symbols. Therefore, a
new set Σ′ is initialized as an empty set in line 0.

First, in line 1, all timing values t1, t2, ..., tk are collected and stored in a list
{a, {t1, t2, ..., tk}}, k ∈ N for each event a ∈ Σ.

Then, in lines 2-3, the PDFs are calculated using the kernel density estimation
method for each event a ∈ N. Density estimation methods use a set of observations
to find the subjacent density function. Given a vector t with the time values of the
observations, the underlying density distribution for a time value t can be estimated
as

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 79

Algorithm 2 Timed preprocessing algorithm with Kernel Density Estimation.

Given:
(1) MeasurementsD = {D0, . . . ,Dn−1}where Di is one sequence of events over time according
to Definition 2 (i.e. one measurement or one scenario).
(2) set of symbols Σ (from Definition 15)
Result:
extended set of symbols Σ′

(0) Σ′ = ∅
(1) Collect all relative time values for each event a ∈ Σ
(2) for each a ∈ Σ
(3) Calculate PDF according to equation 6.4
(4) Find local minimums in density function
(5) for each mode a′ in a
(6) Σ′ = Σ′ ∪ a′
(7) end for each
(8) Calculate needed statistic parameters (mean µ and standard deviation σ)
(9) end for each

f(t) =
1

N

N∑
i=1

k(ti; t) (6.1)

where N ∈ N is the number of time values in the vector of observations and k(ti; t)
is a non negative kernel function∫ ∞

−∞
k(t; t)dt = 1. (6.2)

As underlying probability distribution, we use the Gaussian distribution, which is
defined as:

G(µ, σ2, t) =
1√

2πσ2
e−

(t−µ)2

2σ2 (6.3)

where σ2 is the bandwidth (smoothing factor), µ the mean value and t is the time
value, for which the probability is calculated.

The choice of the bandwidth is important for the correctness of the results and
it is the subject of research in different publications (e.g. [BGK10]). In the case of
identifying the normal behavior of production plants, it is useful not to use a fixed
value for smoothing factor but to keep it variable. Here, the variable smoothing factor
is 5% of the current value. This results in the greater variance for greater time values
and smaller variance for smaller time values. Therefore, the density is estimated as:

f(t) =
1

N

N∑
i=1

1√
2π · 0.05ti

e
− (x−t)2

2·0.05ti . (6.4)

In the next step (line 4 in Algorithm 2) the local minimums in the calculated
PDF are localized. One mode is assumed to be between the local minimums. Each
detected mode is then included in the extended set of symbols Σ′ (lines 5-7). At this
point, the algorithm does not distinguish between multi-mode and single-mode PDFs.

80 6 Algorithmic Results

If there exists only one mode in a PDF, the corresponding event is also included in
Σ′.

Finally, referring to the original data (discrete time values) and based on the
assumption of normally distributed data, the needed statistic parameters (mean µ and
standard deviation σ) are calculated (line 8). This is done for each mode: between
the minimum value, all local minimums and the maximum value.

Example 7. The algorithm is illustrated using an artificial data set.
Figure 6.11 shows an artificial data set with a vector of observations (discrete

time values t for an event e). For the experiment four modes with the mean values
[100; 200; 300; 400] and the corresponding standard deviations [0.1; 20; 10; 5] are
used. For each mode 1500 samples were created randomly according to the given
parameters.

Fig. 6.11 Artificial data set for the running example.

Figure 6.12 shows the calculated probability density function. For the reason of
comparison with other density functions, the function is normalized to the maximum
value of ’1’.

Fig. 6.12 Normalized probability density function.

As can be seen in Figure 6.13, all four distributions are localized. The estimated
parameters are [100.013, 199.294, 299.481, 400.079] for the mean values and [0.541,
19.59, 10.687, 4.944] for the corresponding standard deviations.

Table 6.2 shows the given parameters µ and σ and the corresponding identified
values. As long as the distribution functions are not mixed with each other, this
method is able to distinguish between different modes that belong to different process
steps.

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 81

Fig. 6.13 Normalized probability density function, separated into the modes.

Table 6.2 Experimental results on artificial data.

Given µ Identified µ Given σ Identified σ
100 100.013 0.5 0.541
200 199.294 20 19.59
300 299.481 10 10.687
400 400.079 5 4.944

In this example, all modes could be detected correctly. However, errors occur in
some cases, especially with a high amount of overlapping values between modes.
The separation capabilities and the error are theoretically analyzed in Section 7.2.2.

The result of this algorithm is an extended set of symbols, where new symbols
are created for each event with a multiple-mode PDF according to the number of
modes. Events with single-mode PDFs are not changed or modified. In the following
steps (generation of the prefix tree acceptor and state merging), only the new set of
symbols Σ′ is used. Events with equal signal changes but stemming from different
distributions are treated as different.

6.2.4 Step 2: Construction of the Prefix Tree Acceptor

In this section, we introduce two versions for the construction of a timed prefix
tree acceptor. An offline and an online version. The offline version should be used
preferably. However, if the network measurements can not be stored for some reason,
the online version can be used.

6.2.4.1 Offline PTA creation

The modified alphabet Σ′ with the identified events and the corresponding timing
(created in Algorithm 2) is used to create the prefix tree acceptor.

Beginning with an initial state, each event creates a new state with a transition
in between (including the event, the relative time value and an occurrence counter).
The first learning example creates a linked list of states. In the following learning
example, beginning with the initial state, it is checked whether it is possible to follow
the current prefix tree acceptor. If at some point, there exists no appropriate transition,

82 6 Algorithmic Results

a new transition to a new state will be created. Here, the timing probability density
functions are considered already.

Example 8. As can be seen in Figure 6.14, events with different timing probabil-
ity density functions lead to different sub trees. Unlike the events ’b’ and ’c’, ’a’
comprises two modes. When following the existing path, it is now not only checked
whether the event is equal but also the equivalence of the corresponding PDFs. In
this example, the occurrence of the event ’a’ can lead to two different states. This
avoids an unnecessary split operation afterwards.

P

t

a1 a2 S2 S1

S4 S5

a1

a2

c

S3
b

P

t

b

P

t

c

Fig. 6.14 Creating timed prefx tree acceptor using events with single/ multiple modes.

Algorithm 3 shows the procedure of generating a timed prefix tree acceptor.
The algorithm begins with the initial state (state 0) in line 1. The main part is

organized in two for-loops. The outer loop is for the iteration over the learning
examples D (line 2) while the inner loop is for the iteration over the events in each
learning example (line 3). In line 4, the next event in the learning example is picked
up, in line 5 the corresponding time stamp. The if condition in line 6 checks whether
the current event can be assigned to some out-going transition of the current state.

If there exists such a transition, the timing in the transition is adapted (check for
time ranges with minimum and maximum in line 6), the counters for the current state
(line 8) and for the current transition (line 9) are increased and the destination of the
taken transition is set to be the next current state (line 10).

If there exists no appropriate transition, first, a new state is created (line 12) and
then a new transition between the current and the new state (line 13). Then, the new
state is set to be the new current state (line 14) and the counter is initialized to 1.

After leaving the first for-loop (the last event of a learning example), the final
count of last current state is increased (line 18).

Finally, after the iterations over all learning examples are finished, the created
PTA is returned (line 20).

Note, that the timing constraints do not have to be calculated for the transitions,
since each event is already assigned with the corresponding (separated) distribution
function. However, the time ranges are adapted in line 7. In this function, an if -
condition checks whether the time stamp δ is below the minimum or above the
maximum value of the time range, which is adapted if necessary.

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 83

Algorithm 3 Generation of a timed prefix tree acceptor.

Algorithm timedPTA (Σ′, D):
Given:
(1) extended set of symbols Σ′ (output from Algorithm 2)
(2) Observations D = {D1, . . . ,Dn} where Di ∈ (Σ′ ×R)∗,

Di is one sequence of timed events (see Definition 2)
Result: timed Prefix Tree Acceptor PT A (PT A is an automaton according to Definition 15)
(1) currentState = 0
(2) for i=1 : n // iterate over sequences Di
(3) for j=1 : size(Di) // iterate over events
(4) e=getEvent() // e ∈ Σ′

(5) δ=getTimeStamp()
(6) if out-goingTransitionExists(State currentState, Event e)
(7) adaptTiming(currentTransition, δ)
(8) currentState.num++
(9) currentTransition.num++
(10) currentState = destination(State currentState, Event e)
(11) else
(12) createNewState(State newState)
(13) createNewTransition(State currentState, Event e, Time δ, int num=0, State newState)
(14) currentState = newState
(15) currentState.num = 1
(16) end if
(17) end for
(18) currentState.finalCount++
(19) end for
(20) return PT A

Usually, the learning examples D are separated according to the cycles in the
observed production plants. This is part of the necessary expert knowledge.

A reasonable question is about the automatic identification of production cycles,
which are used to begin with the initial state again. This could be done by defining
start and stop conditions, e.g. pressing a start and stop button.

However, it is not necessary to identify cycles. A prefix tree acceptor in the special
form as linked list of states including several cycles is sufficient to identify these
cycles during the learning process. However, including this information increases the
learning speed since many compatible states don’t have to be identified and merged
as the prefix tree acceptor already comprises these states.

6.2.4.2 Online PTA creation without preprocessing

So far, the timing behavior is evaluated before creating the prefix tree. If an event
shows a multi-modal timing behavior, the event is split based on the identified timing
constraints. In the subsequent generation of the prefix tree, this new set of events
is taken into account. However, methods which find the separation points are only
usable in a preprocessing step. For the case in which a timing preprocessing is not
feasible (for instance when the observations can not be stored), an online generation
of the PTA is necessary. Here, two other methods are introduced: (1) Online PTA

84 6 Algorithmic Results

creation with local timing update and (2) Online PTA creation with global timing
update.

To show the differences between both versions, they are both illustrated using an
example with the same data set.

1. Local timing update:
During the creation of the prefix tree acceptor, the timing values are succes-
sively added in each transition. These timing values are only stored locally in the
histogram of the current transition after each incoming event.

Example 9. Let us consider the following three data samples (each consisting of
events and corresponding time stamps): 1: (a7; b3; c2; d5), 2: (a5; b2; c1; a6), 3:
(a3; c3; d5). Figure 6.15 illustrates the generation of the prefix tree acceptor. The
first learning example leads to a linked list of states. In the subsequent steps, the
event with the corresponding timing is captured locally in each transition.

1. a7; b3; c2; d5
2. a5; b2; c1; a6
3. a3; c3; d5

a [7,5,3] b [3,2] c [2,1] d [5]

c [3] a [6]

d [5]

a [7,5] b [3,2] c [2,1] d [5]

a [6]

a [7] b [3] c [2] d [5]
1

2

3

Fig. 6.15 Creating the timed PTA with local timing updates.

In contrast to the method with time preprocessing, equal events occurring in
different states are not mixed up. On the other hand, collecting time values
separately leads to a small number of timing values per event, especially at the
leafs of the PTA. This version is unusable for few data, since it is not possible to
calculate statistics or probability density distribution functions for a small number
of observations.

2. Global timing update:
The second version is extending the first one. In contrast to the first version, the
timing for each event is collected globally, i.e. the same timing histogram is stored
in each transition with the same symbol a ∈ Σ. During creation of the prefix tree
acceptor, all timing values in the prefix tree acceptor are updated.

Example 10. Let us again consider the following three data samples (each con-
sisting of events and corresponding time stamps): 1: (a7; b3; c2; d5), 2: (a5; b2;
c1; a6), 3: (a3; c3; d5). Figure 6.16 illustrates the generation of the prefix tree
acceptor. It can be seen that equal events occurring in different paths in the PTA
obtain the same timing histogram.

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 85

1. a7; b3; c2; d5
2. a5; b2; c1; a6
3. a3; c3; d5

a [7,5,6,3] b [3,2] c [2,1,3] d [5,5]

c [2,1,3] a [7,5,6,3]

d [5,5]

a [7,5,6] b [3,2] c [2,1] d [5]

a [7,5,6]

a [7] b [3] c [2] d [5]
1

2

3

Fig. 6.16 Creating the timed PTA with global timing updates.

Using both versions, the separation of events based on computed timing con-
straints, e.g. using the kernel density estimation, can not be used because the postfixes
are already mixed into common states. In that case, more complex splitting operations
are necessary, e.g. as in [Ver10].

Comparing offline and online PTA generation, we can conclude the following:
Using the offline version, data with only few observations per event can be

captured better, since all time values for equal events even from different states are
collected. This leads to a higher amount of observations to calculate the density
functions and the corresponding parameters. Furthermore, the preprocessing allows
to separate events based on the timing (multi-modal PDF). This makes the splitting
operation superfluous.

On the contrary, the online creation of the PTA leads to a smaller amount of data,
especially in the leaves. Additionally, the time values are included on-line such that a
separation of events based on the timing (multi-modal PDF) is not possible. In this
case, a more complicated splitting operation is necessary (as introduced in [Ver10]).
The online PTA creation should only be used if it is not possible at all to store the
observations to use them in a preprocessing.

6.2.5 Step 3: State Merging

The PTA itself is not suitable for anomaly detection, since it is not generalized
enough.

Once the PTA is created, it is used to identify compatible states that can be merged.
After finishing this procedure, the identified automaton represents the timing behavior
of a system in a generalized way. The resulting automaton is suited for the anomaly
detection, which is the purpose of the identified automata.

This subsection describes the core of the identification algorithm: the state merg-
ing.

BUTLA uses a function compatible to check whether two states can be merged.
The idea is similar to ALERGIA’s approach (see section 3), with the difference that
we compare incoming rather than outgoing transitions.

86 6 Algorithmic Results

First of all, several additional variables are needed in Algorithm 4: The number
of occurrences of an incoming transition for a specific state and a specific event
(f(a, δ, v), line 1), the number of occurrences of incoming and outgoing transitions
for a specific state (fin/out, lines 2-3) and the number of measurement sequences
which end in a specific state (fend, line 4). If the fends for two states (in relation to
fin) are too different, they are not merged (lines 5-6). Similarly, if for any event a
the corresponding f(a, ∗)s are too different (in relation to fin), the states are also
not merged (lines 8-9).

If the two nodes are found to be compatible, the compatibility of the respective
subtrees must be checked, too. This is done by applying the algorithm 4 recursively
to all nodes in the subtrees (lines 10-11).

Algorithm 4 Comparison algorithm compatible

Algorithm compatible (v,w):
Given: v, w ∈ S
Result: decision yes or no
(1) f(a, δ, v) :=

∑
e=(∗,a,δ,v)∈T Num(e), v ∈ S, a ∈ Σ, δ ∈ ∆, where ∗ is an arbitrary

element
(2) fin(w) :=

∑
e=(∗,∗,∗,w)∈T Num(e), w ∈ S

(3) fout(v) :=
∑
e=(v,∗,∗,∗)∈T Num(e), v ∈ S

(4) fend(v) := fin(v)− fout(v), v ∈ S
(5) if fractions-different(fin(v), fend(v), fin(w), fend(w))
(6) return false
(7) for all a ∈ Σ do
(8) if fractions-different(fin(v), f(a, δ, v), fin(w), f(a, δ, w))
(9) return false
(10) if not compatible(v′, w′) ∀ (v, a, δ, v′), (w, a, δ, w′) ∈ T
(11) return false
(12) end for
(13) return true

This is done to prevent later unnecessary splits; the function PDF-different can be
implemented using the well-known R2 test.

To compare whether two fractions f0
n0

and f1
n1

are significantly different (function
fractions-different), we use the Hoeffding Bound [Hoe63]:

fractions-different(n0, f0, n1, f1) :=

∣∣∣∣ f0

n0
− f1

n1

∣∣∣∣ >√
1

2
log

2

α

(
1
√
no

+
1
√
n1

)
where 1− α, α ∈ R is the probability of the decision.

Example 11. The computation of the compatibility of states is illustrated using an
example with a simplified computation of the compatibility. Simplified, because the
example only considers the compatibility computation of the states according to line
8 in Algorithm 4. However, the computation of the function fractions-different for
final states (line 5) works in the same way, as well as the recursive compatibility
check (line 10).

6.2 Bottom Up Timing Learning Algorithm (BUTLA) 87

Figure 6.17 shows two states with incoming and outgoing transitions for which
the compatibility is computed.

v

a(11)

b(4) c(15)

w

a(13)

b(12) c(25)
Tv

Tw

Fig. 6.17 Example states for the computation of the compatibility.

Table 6.3 shows the computation of the compatibility for two configurations.
The numbers of configuration 1 are taken from Figure 6.17. In configuration 2,
the occurrence counter for the symbol a in state w was increased by one. For the
computation, we used α=0.8.

Table 6.3 Example computation of state compatibility.

configuration 1
(Figure 6.17)

configuration 2
(slightly modified)

all symbols fin(v) 15 15
fin(w) 25 26

symbol a
f(a, δ, v) 11 11
f(a, δ, w) 13 12

fractions-different true false

symbol b
f(b, δ, v) 4 4
f(b, δ, w) 12 12

fractions-different true false
result compatible false true

The computation of the function fractions-different for configuration 1 gives
the result that the states are compatible. However, it can be seen that only slight
modifications can decide on the compatibility of states. By changing one value
(configuration 2), the states are not considered to be compatible any more.

The compatibility computation of two states is prone to errors. Especially when
only few observations are available, a small change (e.g. the addition of only one
observation) can decide on the compatibility of two states, leading to a different
automaton. This effect can be seen in Example 11.

Additionally, there exists the parameter α which has to be set manually by the
operator. Although there exist typical values which can be set, it is still a kind of
expert knowledge and a wrong setting of this parameter can lead to either a over-
approximated automaton (too many merges) or to an under-approximated automaton
(too few merges). For instance, both states from Figure 6.17 are considered not to be
compatible if the α-parameter is set to α=0.7 in the example. A detailed theoretical
analysis on the identification error follows in Section 7.2.

88 6 Algorithmic Results

6.3 Online Timed Automaton Learning Algorithm (OTALA)

The implementation of identification algorithms on cyber-physical systems such
as IO devices in industrial networks puts several additional requirements to the
algorithms, which are mainly:

• Economical usage of memory space: The implementation of identification algo-
rithms on cyber-physical systems requires an economical use of memory space.
Due to the limited memory space, the observations can not be stored (as it is
required by offline learning algorithms) but rather every data sample has to be
included directly into the model. This leads to the need of online learning algo-
rithms.

• Real-time capability: The real-time capability is an important requirement for
the learning in cyber-physical systems. Since the incoming data can not be stored,
the implementation has to be able to handle the data stream in real-time, i.e. each
data sample has to be included into the model before the next data sample arrives.

• No expert knowledge: Furthermore, it is required that as little as possible expert
knowledge is used. Offline learning algorithms still need some expert knowledge:
the learning cycles have to be recorded. Here, the user of the learning algorithm
usually has no knowledge about the amount of data that is needed to learn a correct
automaton. The main advantage of our proposed algorithm is that it copes without
expert knowledge. Additionally, the implementation can be operated by untrained
personnel: Using a convergence criterion, the algorithm recognizes itself when
the identification process is finished.

• Active learning is not possible: Active learning algorithms can not be used for
learning in Cyber-physical production systems since there is no possibility to ask
for samples. The data has to be taken as it comes. Additionally, there is no oracle
(teacher) which can tell whether the hypothesis is correct and eventually return a
counter example.

To overcome these challenges, this section introduces an unsupervised online
learning algorithm, the Online Timed Automaton Learning Algorithm (OTALA).

The key question for automata identification algorithms is about the compatibility
of states. Offline algorithms following the state merging approach (BUTLA and
other) use the event sequences of the postfixes to determine the compatibility of
states. However, learning the automaton in an online manner, it has to be referred to
other information.

OTALA uses the signal vector u as state information.

Definition 26 (Signal Vector). A signal vector u is a vector of the input and output
signals in the observed system u = (io1, io2, ..., io|IO|)

T , where each ioi is the value
of a discrete signal (input or output) in the observed system and |IO| is the number
of input and output signals. Each ioi, i ∈ N indicates for the corresponding input or
output signal, whether it is active (ioi = 1) or inactive (ioi = 0).

Therefore, the identification algorithm OTALA is mainly based on the following
assumption:

Assumption 1 Each state in the observed cyber-physical production system can be
represented by a signal vector and each signal vector corresponds to one state in the
final automaton.

6.3 Online Timed Automaton Learning Algorithm (OTALA) 89

This assumption is necessary, since the compatibility of states has to be determined
during runtime and, especially at the beginning, no information about event sequences
is available. This method implies that the system is memory-less, i.e. a state holds no
information about the history, the prefix. Different event sequences can lead to the
same state. A similar formalism is used by [RLL10].

The formalism of Timed Automaton (see Definition 13) is modified to additionally
capture the signal vector as state information.

Definition 27 (State-based Timed Automaton). The State-based Timed Automa-
ton is a 4-tuple A = (S,Σ, T, δ), where

• S is a finite set of states. Each state s ∈ S is a tuple s = (id,u), where id is a
current numbering and u = (io1, io2, ..., io|IO|)

T is a signal vector according to
Definition 26.

• Σ is the alphabet, the set of events.
• T is a set of transitions. A transition is represented with (s, a, δ, s′), where s, s′ ∈
S are the source and destination states, a ∈ Σ is the symbol and δ is the clock
constraint.The automaton changes from state si to state sj triggered by a symbol
a ∈ Σ if the current clock value satisfies δ. The clock c is set to 0 after executing
a transition, so that the clock starts counting time from executing this transition.

• A transition timing constraint δ : T → I , where I is a set of intervals. δ always
refers to the time spent since the last event occurred. It is expressed as a time
range or as a probability density function (PDF), i.e. as probability over time.

The State-based Timed Automaton does not need an initial state as the original
Timed Automaton does. Since the state is defined over the active/inactive IO values,
the starting point is the state corresponding to the actual system’s configuration.
Furthermore, due to the infinite operation of the system, the set of final states is not
needed either. Finally, (just like the PDTA from Definition 15) the State-based Timed
Automaton does not need multiple clocks. Instead, only one clock is used which is
reset with each firing of a transition, which results in relative time since the entering
of states.

The algorithm OTALA works as follows (see also algorithm 5):
First of all, an empty automatonA is created according to Definition 27 (line 0). In

lines 1 - 2, the starting state is created using the first signal vector which is obtained
by the function getNextEvent(D). Since it is an online identification procedure, the
data come from a running system and eventually it has to be waited until a new
event occurs. This is done in the function getNextEvent(D). It additionally returns
the corresponding time stamp, which, however, is not used in line 1.

The main part of the algorithm is wrapped by the while-loop (lines 3 - 22), which
is executed as long as the identification has not converged. This is checked in the
function identificationConverged(). How the convergence of the identification is
detected will be explained later.

In line 4, the function getNextEvent(D) is used again to obtain the next signal
vector u and the corresponding t.

The following for-loop (lines 5 - 15) is used to search for the state that corresponds
to the obtained signal vector. In the iteration over all states of the automaton, line 6
checks whether the obtained signal vector corresponds to the signal vector of the state.
The signal vector of the state is returned by the function getSignalVectorFromState(s),
which gets the state number as input. If such a state already exists in the automaton

90 6 Algorithmic Results

(line 7), it is checked whether there exists a transition between the current state and
the new state (line 8).

If there exists such a transition, the timing information for this transition is adapted
(function adaptTimingInformation(t), line 9), otherwise a new transition is created
(function createNewTransition(currentState,t,s), line 11) with the current state as
source, the new state as destination and the time stamp t setting both, minimum and
maximum. Finally, the new state is set to be the next current state (line 14).

If no state with the current signal vector exists (line 16), a new state is created
(function createNewState() line 17), then a new transition between the currents and
the new state is created (function createNewTransition(currentState, t(j), snew),
line 18) and finally the new state is set to be the next current state (line19).

After each step (iteration over all states and modification of the automaton), it is
checked whether the identification process converged (function identificationCon-
verged(), line 21). If the identification process converged, the identified automaton A
is returned (line 22), otherwise the while-loop is continued in line three, waiting for
the next event.

Algorithm 5 Online timed automata learning algorithm OTALA.

Algorithm OTALA:
Given: learning examples D = {D1, D2, ..., Dn} according to Definition 2
Result: State-based Timed AutomatonA according to Definition 27

(0) A = initializeAutomaton() //A is a State-based Timed AutomatonA according to Def. 27
(1) t, u = getNextEvent(D)
(2) currentState = createNewState(u)
(3) while identificationConverged()==false
(4) t, u = getNextEvent(D)
(5) for all s ∈ S, where S is the list of states in the current automatonA
(6) if u == getSignalVectorFromState(s)
(7) stateExists = true
(8) if transitionExists(currentState, s,A)
(9) adaptTimingInformation(t)
(10) else
(11) createNewTransition(currentState, t, s)
(12) end if
(13) end if
(14) currentState = s
(15) end for
(16) if !stateExists
(17) snew = createNewState()
(18) createNewTransition(currentState, t(j), snew)
(19) currentState = snew
(20) end if
(21) if identificationConverged()=true
(22) returnA
(23) end if
(24) end while

Figure 6.18 illustrates the principle of the learning algorithm OTALA: The signal
vectors are processed subsequently. The first signal vector creates the first state. For

6.3 Online Timed Automaton Learning Algorithm (OTALA) 91

the following signal vectors, it is checked whether a state with the corresponding
signal vector and the corresponding transition already exists and if not, a new one
is created. This is continued until no more events are observed or the learning
converged.

observed signal vector
u=(u1, u2, u3, u4)

0110

0111

0101

1110

u3=0

0110

0111

0101

u3=0

0110

0110

0111

Fig. 6.18 The principle of the online learning algorithm OTALA.

The reader may has noticed that the runtime is exponential: In each step (iteration
over all states and modification of the automaton), all possible states have to be
checked for equivalence. The number of possible states is given by the number of
possible combinations of each input/ output signal: |S|= 2|IO|, where |IO| is the
number of signals, i.e. it is exponential in the number of input and output signals.
However, in practice, the number of states is mostly rather small, so that this approach
still can be applicable. Furthermore, the identification runtime depends on the number
of transitions in the behavior model. The maximum number of outgoing transitions
for one state corresponds to the number of states since between two states there can
be only one transition.

The runtime behavior will be analyzed in detail in Section 7.6. Additionally, the
runtime behavior will be compared with the runtime of the offline identification with
BUTLA.

An additional feature of the OTALA algorithm is that it autonomously recognizes
when the learning process is finished.

The learning progress can be measured based on the following characteristics:

92 6 Algorithmic Results

1. Number of states: During the learning process the number of states is continu-
ously growing. Whenever a new state is observed, which is not available in the
model, it is added to the model.

2. Number of transitions: Additionally, the number of transitions has to be consid-
ered. Even when no states are added anymore, transitions between states can still
be added.

3. Changing (enlarging) the time bounds: Finally, the changing of the time bounds
has to be considered. Even when no states and transitions are added to the model
anymore, the time bounds (the minimum and maximum time value for each
transition) can still change

The identification can be considered as finished, when no more states and tran-
sitions are added to the model and when the time bounds of the transitions do not
change anymore. In practice, this is not easy to decide, since we cannot look into the
future and therefore we cannot know if one of the values will change in the future.

So we have to decide based on the past that whether learning is finished or not.
If for a certain amount of time nothing has changed, the learning process can be
considered as finished. The question here is: What does "certain amount of time"
mean?

Figure 6.19 shows the convergence of the learning for a test data set.

0 2000 4000 6000 8000 10000
0

30

60

90

120

150

180

events

ch

an
ge

s

convergence

Fig. 6.19 Convergence of the learning algorithm OTALA

A trivial yet efficient possibility is to consider the last nconv samples and check
whether the model has been changed concerning the characteristics in the afore-
mentioned enumeration. The value nconv can be chosen arbitrarily, a good choice is
dependent on the observed process. However, setting nconv = 1000 is empirically a
good choice in most cases.

Another method takes the variable number of states into account. For this, the
number of states is multiplied with a factor fconv , which also can be chosen arbitrarily.
Empirically, fconv ≈ 10 in most cases is a good choice. Hence, the identification
converged if the last nconv = |S|·fconv events did not contain any changes (|S| is
the number of states in the automaton).

6.4 Anomaly Detection 93

6.4 Anomaly Detection

The identified models are finally used for anomaly detection. From a practical point
of view, the anomaly detection is the comparison of the behavior of the real plant with
the prediction of the identified model. An anomaly is a deviation of the simulated
behavior from the current behavior of the real plant. In the literature sometimes the
term novelty detection is used (e.g. [MS03b, MS03a]), i.e. an anomaly is signaled if
some new behavior is observed which has not been encountered before.

From a theoretical point of view, the issues have to be investigated in more detail.
Here, still several open issues remain:

• Simulation inaccuracies: The models which are used for anomaly detection
have been identified automatically beforehand using an identification algorithm.
The goal of identification is to abstract a generalized behavior model from the
measurements, i.e. the model is an abstracted view of the original observations. To
obtain an abstracted view, a generalization of the observed behavior is necessary.
This leads to a normal imprecision. During anomaly detection, this imprecision
has to be taken into consideration.

• Handling of time: Cyber-physical production plants usually depend on time.
Therefore, pattern based methods that compare observed and identified behavior
patterns are only suitable to a limited extent. Using the timing information for
anomaly detection, effects such as a time offset or different time velocities have
to be considered.

• Noise: All technical data such as sensor values are subject to noise. So, for any
discrepancy between predictions and measurements it must be decided whether it
has been caused by noise or by an anomaly.

• Trade-off between false-positive and false-negative rate: This issue is closely
related to simulation inaccuracies. Error sources such as noise and simulation
inaccuracies lead to classification errors. Two measurements are important to
assess the quality of an anomaly detection algorithm: The false-positive rate
(behavior that is free of anomalies but recognized as anomalous) and the false-
negative rate (anomalous behavior which is not detected as such). A high false-
positive rate leads to operator attention overload, while a high false-negative rate
causes system degradation due to the anomalous system behavior. Therefore, a
good anomaly detection is a trade-off between the false-positive and false-negative
rate.

This section introduces the anomaly detection algorithm ANODA. For this, the
identified PDTA as defined in Definition 15 is used.

The anomaly detection algorithm was firstly introduced in [MNV+11], while the
abbreviation "ANODA"’ was firstly used in [VBNM11].

The behavior of the production plant can be defined as a path through the automa-
ton (see also Figure 6.20):

Definition 28 (Path through Automaton). Let A = (S, s0, F, P,Σ, E) be a PDTA
according to Definition 15. A path P through the automaton is defined as a sequence
of transitions, i.e. P ⊆ T .

Furthermore, the observations in the plant are defined as follows:

94 6 Algorithmic Results

Definition 29 (Observation). One observation in the plant is defined as o = (a, t),
where

• a is the trigger event (signal change) in the plant according to Definition 3 and
• t ∈ R is a relative time value (relative to the last event).

a
S1 S2

b
S3

c S4

Sf

d
S5

f

Pautomaton = ((S1,a,S2),(S2,b,S3)(S3,c,S4)(S4,d,S5))
Pobserved = ((S1,a,S2),(S2,b,S3)(S3,f,Sf))

Fig. 6.20 An identified path in the automaton (Pautomaton) and a currently observed path through
the automaton (Pobserved) with an anomaly at event f .

The identified automaton is now used to detect an unusual behavior (an anomaly)
in the behavior of a cyber-physical production system. During runtime, the running
production plant is observed and the identified model is simulated in parallel. Then
the simulation outputs are compared with the observations from the running system.
If any difference arises there, an anomaly has occurred.

Algorithm 6 shows the discrete anomaly detection algorithm ANODA. An identi-
fied PDTA (according to Definition 15) is given as input. Furthermore, observations
from the production plant are received regularly.

The result is the detected anomaly if there exist one, otherwise the target state
snew of the taken transition is returned. This state is used as input for the next
iteration of the ANODA algorithm.

The discrete anomaly detection in Algorithm 6 works as follows:
In line 1 it is checked, whether there exists a transition from the current state s

(which is given as input) to some destination state s′ using the given event a. If no
such transition exists, the anomaly "unknown event" is returned in line 8.

The timing is checked in a separate if-condition, such that it can be distinguished
between the anomalies "unknown event" and "wrong timing". For this, in line 2 it is
checked whether the given time stamp t satisfies the timing constraint δ of the chosen
transition from line 1. Here, time ranges can be used as well as probability density
distribution functions. In the first case it has to be checked, whether the provided
time stamp t lies between the identified minimum and maximum time value (see also
Figure 6.4). In the latter case, it has to be checked whether the provided time stamp t
satisfies the identified PDF by calculating the probability of occurrence for this time
stamp. An anomaly is signaled when the calculated probability is below a threshold
(this threshold is an additional parameter). This case is illustrated in Figure 6.5. If the
time stamp does not satisfy the given timing constraint, in line 5 the anomaly "wrong
timing" is returned.

6.4 Anomaly Detection 95

If both, the event check in line 1 and the timing check in line 2 give positive
results, the chosen destination state from line 1 is set to be the next current state in
line 3. It is returned in line 10.

Algorithm 6 Discrete anomaly detection algorithm ANODA

Algorithm discreteANODA:
Given:
(1) Probabilistic Deterministic Timed Automaton (PDTA) A = (S, s0, F, P,Σ, T) (according to
definition 15)
(2) An observation o = (a, t) according to Definition 29
(3) s ∈ S, at the beginning, this value is assigned with the initial state s0

Result: detected anomaly (if there exists one), otherwise the moved current state snew

(1) if exists e ∈ T with e = (s, a, ∗, s′) then // a ∈ Σ is a symbol,
// s′ ∈ S is a potential destination state,
// and * is an arbitrary time stamp (not checked here)

(2) if t satisfies δ(e) then // check timing
(3) snew := s′ // go to next state
(4) else
(5) return anomaly: wrong timing
(6) end if
(7) else
(8) return anomaly: unknown event
(9) end if
(10) return snew

Following types of anomalies can be detected using this procedure:

• Unknown event/ Wrong event sequence: In the current state, an event occurred
that has not been observed before (in the identification process). E.g. while filling
a bottle, the next event should be "bottle full" (identified event), but for some
reason the filling stops (current event: "stop filling").
For every observed event, it is checked whether its symbol corresponds to one of
the possible outgoing events in the current state (line 1). An error is found when
no transition with the observed event exists, i.e. if the observed path is not equal
to one possible simulated path in the automaton (see also figure 6.20).

• Timing error: A timing error occurs when a signal changes correctly, but the
observed timing (relative time stamp) does not satisfy the identified timing con-
straint. E.g. if the filling of the bottle should take between four and five seconds,
an anomaly would be found when this takes less than four or more than five
seconds. Since we often do not have hard time limits, it’s useful to work with
distribution functions. In this case the probability of the failure can be returned.

Additionally, the following two errors can be detected based on the information
available in the automaton, though it is not covered by Algorithm 6.

• State remaining error: When the system remains in a state which is not a final
state, it is assigned to be an error. E.g. for a production cycle with six bottles to
fill, it is an error when the production stops at the fourth bottle.

96 6 Algorithmic Results

To detect this kind of anomalies, an "active waiting" for the next event has to be
implemented. While waiting for the next event, it has to be checked continuously
whether it is still possible to use one of the out-going transitions. For this, the
timing constraints for all outgoing transitions are monitored. If the upper limit is
crossed for all out-going transitions, such that (if in the future an event will occur)
the timing constraint cannot be satisfied, it is checked whether the current state is
a final state (s ∈ F).
A state remaining error has occurred when the upper limits of the timing con-
straints of all outgoing transitions are crossed and s /∈ F .

• Probability error: The PDTA, according to Definition 15, holds information
about the probabilities of all outgoing transitions. Taking these probabilities
into consideration, more complex and gradual errors can be detected when the
probabilities in the observed system diverge from the probabilities in the model.
E.g. while checking the filling of a bottle, 95% of the bottles are filled correctly
and 5% incorrectly. Here it would be an anomaly, if the observed probability
exceeds this usual value.
To detect this kind of anomalies, the occurrences of each event in the observed
system are counted and the probabilities are recalculated after each occurrence.
Using an additional parameter ψ ∈ [0, 1], which is needed as permitted tolerance,
an anomaly is signaled if the probability exceeds this tolerance.

In Section 7.2, the anomaly detection capabilities and the error rates for wrong
event sequences and timing errors are evaluated.

The anomaly detection algorithm is explained using an automaton according to
Definition 15. Indeed, the algorithm does not distinguish between automata which are
identified using BUTLA or OTALA. Both algorithms operate on nearly the same data
structure. The only difference is that OTALA additionally uses the signal vector in
the states, which is needed during the identification process only. However, OTALA
includes the events into the transitions in the same way as BUTLA does. These events
are used to be compared with the observations in the production plants (see Definition
29). Therefore, automata from both identification algorithms can use ANODA for
anomaly detection.

6.5 Adaptive Learning

In Section 6.2, we have seen that BUTLA is not able to recognize the convergence of
identification autonomously. Therefore, it often occurs that a model is not identified
completely. This leads to the fact that often correct behavior is classified as faulty,
i.e. we obtain a high false positive rate. OTALA is, however, capable to recognize
the convergence of identification autonomously. Nevertheless, the same problem can
still occur.

A possible solution is to adapt the model during runtime: If the anomaly detection
algorithm signals a faulty behavior, the plant operator can decide whether it is really
due to an error or whether it is a false alarm. In the latter case, the observed behavior
has to be included into the model.

In this section, we show how this new behavior can be included into the model
afterwards. However, the adaptive learning is still subject of future work. Here, we
only sketch the rough methodology.

6.5 Adaptive Learning 97

6.5.1 Adaptive Learning for BUTLA

Using the models identified by BUTLA, it is not a trivial case to adapt the model,
since BUTLA determines the compatibility of two states based on their postfixes.
However, the postfix of the current behavior is not yet known at the time of failure.

It can be distinguished between two possible failure types:

1. Timing error: This failure type indeed is easy to adapt in the model: The given
time bounds just have to be enlarged by the supposed wrong timing value and
the probability density function with the corresponding parameters have to be
calculated again. The structure of the automaton (states and transitions) does not
have to be changed.

2. Wrong event sequence: This case is more difficult to handle. At this stage we only
give a workaround for the adaption: Since the compatibility of two states is not
encoded in the state itself (as for example the IO vector used by OTALA) but
recursively calculated over event sequences of the postfixes of both states, we
first have to observe the complete production cycle until the end. This requires
saving the observations (event sequence) of the whole production cycle. These
observations are included into the prefix tree acceptor (which by the way also has
to be stored beforehand). Then BUTLA is applied to identify a new automaton
based on the modified prefix tree acceptor.

6.5.2 Adaptive Learning for OTALA

A model, which is identified with OTALA can be adapted easily, since OTALA uses
the IO vector to determine the compatibility of two states. Adapting a misclassified
timing error to the automaton is the same as for BUTLA: Enlarging the time bounds
and compute the probability density function over time and its parameters again. In
case of a misclassified event sequence error, it has to be checked whether the new
observed state (IO vector) already exists. This is done in the same way as OTALA
works:

1. If the corresponding state exists, we just have to include a new transition (with the
time value setting the time bound) between the current state and the found target
state.

2. If the corresponding state does not exist, we have to create it with the correspond-
ing transition in between. The same is done for the subsequent events and IO
vectors until we reach a state that is already available in the automaton (case 1).

Chapter 7
Theoretical Results

In this chapter, the introduced algorithms BUTLA (see Section 6.2) and OTALA (see
Section 6.3) are analyzed according to some theoretical aspects.

The contributions of this chapter are the following:

• We show that BUTLA runs polynomial to the input size, i.e. that BUTLA identifies
the class of 1-clock timed automata weakly in the limit with probability one
(Lemma 1).

• We calculate the learning error for each mentioned error type (Section 7.2).
• We give some constraints under which we can show that BUTLA identifies

the class of 1-clock timed automata strongly in the limit with probability one
(Theorem 11).

• we subdivide the framework of identification in the limit into states identification
in the limit (Theorems 10 and 11) and timing identification in the limit (Theorem
12).

• We show that the bottom-up strategy works faster than top-down in relevant cases
(Proposition 6).

• We show that BUTLA identifies the timing behavior without a splitting operation,
and that the computation time can be reduced using a preprocessing of time values
instead of the splitting operation (Propositions 7 and 8).

• We show that despite the exponential runtime of OTALA (Lemma 2), it can still
be used efficiently for the identification of timed automata.

• We evaluate the applicability of online and offline identification algorithms for
certain application scenarios (Section 7.6).

• We show that the Anomaly Detection Problem using ANODA PANODA ∈ L, i.e.
the computation can be performed on logarithmic space (Theorem 13).

This chapter is organized as follows: Section 7.1 analyzes the runtime of the
identification algorithms BUTLA and OTALA. In Section 7.2, the error of the
identification algorithms is analyzed. These are the state merging error and the
timing error. Section 7.3 analyzes the convergence of the identification with BUTLA
concerning the concept of identification in the limit. In the Sections 7.4 - 7.6, the
identification approaches are compared: Top-down vs. Bottom-Up (Section 7.4),
Splitting vs. Non-Splitting (Section 7.5) and Online vs. Offline Identification (Section
7.6). Finally in Section 7.7, the runtime of the anomaly detection algorithm ANODA
is analyzed.

99

100 7 Theoretical Results

The results in this chapter were partially published in [NSV+12] and [NVM+13].

7.1 Runtime Analysis of the Identification Algorithms

First of all, we analyze the runtime behavior of both identification algorithms,
BUTLA and OTALA. Both algorithms show a different runtime behavior. BUTLA
is an offline identification algorithm, which identifies the TA based on the PTA and
therefore the runtime depends on the number of states in the PTA. OTALA is an
online identification algorithm. At runtime there exists no PTA, the structure of the
automaton is built piece by piece while checking the vector of input and output
signals. Therefore, the runtime of OTALA is not based on some number of states in
a PTA but on the number of input and output signals in the observed system.

7.1.1 Runtime Analysis of BUTLA

In Section 6.2.5, we presented the identification algorithm BUTLA (Algorithm 1).
This algorithm consists of three main parts:

1. Computation of events (step (1))
2. Timing preprocessing (step (2))
3. Generation of the prefix tree acceptor (step (3))
4. Identification of the automaton structure and state merging (Step (4-10))

Lemma 1. The algorithm BUTLA runs in O(n3
0) where n0 denotes the number of

states in the prefix tree acceptor.

Proof. Step (1) of the algorithm runs in O(n0) since the number of events is less than
the number of observations.

Step (2) runs linearly to the number of observations (see Proposition 8).
Step (3) also uses every observation once, i.e. it runs in O(n0).
In step (4-10) the algorithm compares a maximum of n2

0 nodes. In each merging
step for nodes v, w, both of their subtrees have to be accessed by the algorithm
compatible and determinized. ut

Hence, BUTLA runs polynomially to the size of the prefix tree acceptor. This
lemma will later be used for the proof of identification in the limit.

In the paper where Carrasco introduces the Alergia algorithm [CO94], he states
that Alergia has a linear runtime. However, the runtime is not analyzed there in a
formal way, but instead it’s done by giving an empirical measurement. The runtime
measurement there is based on the total number of input samples. For the experiment,
he used many input samples generated from the Reber grammar [Reb67] (see also
Section 8.1.1.1). To measure the computation runtime, he added the runtime of
creating the PTA with the runtime of merging the compatible states. But since the
number of input samples is very high while the number of states in the PTA is rather
small (even for 10000 input samples, there are only 41 states in the PTA), the time
for creating the PTA is much higher than the time for merging the compatible states.
This effect is reinforced by the fact that for an increasing input size, the number

7.1 Runtime Analysis of the Identification Algorithms 101

of states in the PTA stays constant, and thereby the runtime of the state merging.
Adding this constant time for merging to the linear time of creating the PTA, the total
runtime seems to be linear. This means that the quadratic term of the state merging
can be neglected. This again leads us to the fact that it makes a difference if cycles
in the data measurements are separated or recorded in one long linked list. In the
second case, the number of states corresponds to the number of events since there is
no overlapping of the prefixes. This is illustrated in the following example:

Example 12. We compare the runtime of learning the Reber grammar with the given
numbers from the last paragraph with the same number of events, which lead to a
PTA as a linked list of states. The number of events, the number of states and the
runtime (in time units) is given for both scenarios in Table 7.1

Table 7.1 Comparison of two scenarios and their computation runtimes.

separated input samples all events in one sample
number of events 10000 10000
number of states in the PTA 41 10000

runtime [time units]
10000 + 412

= 11681
10000 + 100002

≈ 108

It can be seen that separating the cycles (with 10000 events in total) leads to a
highly condensed PTA with 41 states and therefore to a runtime of 11681 time units.
The quadratic runtime of the state merging plays a marginal role. Whereas the PTA
of the second scenario, where the cycles are not separated, includes 10000 states
(each event leads to a new state) and therefore leads to a computation time of about
108 time units.

In Section 8.2. the runtime of BUTLA is analyzed empirically based on artificial
and real data.

7.1.2 Runtime Analysis of OTALA

The algorithm OTALA was introduced in Chapter 6.3 and is given in Algorithm
5. The reader may has noticed that the runtime of OTALA is exponential: In each
identification step, all possible states have to be checked for equivalence with the
incoming observed data vector.

Proposition 5. The potential number of possible states is exponential to the number
of IOs (number of input and output signals).

Proof. Applying the assumption that each state in the observed cyber-physical pro-
duction system can be described by the signal vector of the inputs and outputs and
corresponds to one state in the final automaton, the number of possible states is given
by the number of possible combinations of all input and output signals: |S|= 2|IO|.

ut

In each step (lines 2-12 in Algorithm 5), all of the possible states have to be
checked for equality with the given IO vector in the worst case. This leads to the
worst case runtime of OTALA:

102 7 Theoretical Results

Lemma 2. The worst case runtime of OTALA per step (which is the search of the
destination state corresponding to the input data vector) is in O(2|IO|), where IO is
the number of input and output signals.

Proof. This follows directly from Proposition 5 and line (2) in algorithm 5 in which
all states are checked for equality. ut

However, the worst case runtime will rarely be exhausted while running the
identification algorithm in cyber-physical production systems, even with maximum
number of states. The average runtime can be calculated as:

Tavg,theo =
1

|IO|

|IO|−1∑
i=0

2i =
1

|IO|

(
2|IO| − 1

)
(7.1)

To obtain a model with the worst case number of states, we have used the drunken
sailor simulation (a random walk) to generate a model such that each state in a
discrete state space will be visited at some point in time. Figure 7.1 shows the
runtime behavior of the model identification of the drunken sailor simulation with
10 signals. The total number of states is |S|= 210 = 1024. The growing number of
states is shown in Figure 7.2.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

events

le
ar

ni
ng

 ti
m

e
pe

r
ev

en
t [

se
c]

Fig. 7.1 Runtime behavior of OTALA.

In practice however, the systems show a better behavior. Often signals are only
switched on and off together in a pair or group (e.g. two conveyor belts to transport
something) or combinations of signal groupings can be precluded (e.g. the filling
of a container can only be started if the container is not full). For each excluded
combination possibility, the number of possible states reduces by half. This reduces
the runtime of the identification process.

The runtime can further be reduced when it is possible to use more memory
space. To achieve this, space for each possible state is allocated beforehand. This
needs space exponential to the number of IOs. During the learning process, it is not
necessary to iterate over the whole list of states. Instead of this, the IO vector just has
to be converted into a decimal number (the time taken is logarithmic to the number
of IOs) and used for a storage access. This approach is usable in practice, since
the number of IOs is known beforehand, therefore the worst case memory space
consumption can be determined.

7.2 Evaluation of the Learning Error 103

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

events

st

at
es

Fig. 7.2 State convergence behavior of OTALA.

Considering the Figures 7.1 and 7.2, it is notable that the number of states increases
at the beginning and then remains constant. The runtime behaves in the same way:
As long as there are only few states in the automaton, less time is needed. In reverse,
once all states have been captured, the runtime remains relatively constant. This
again leads to a linear cumulative runtime, considered over all incoming events.

The average runtime will be empirically analyzed in Section 8.2.2.

7.2 Evaluation of the Learning Error

In Section 6.2, the BUTLA algorithm was introduced, which learns a Timed Automa-
ton from positive data. The identified models are used for anomaly detection. An
appropriate algorithm, ANODA, has been introduced in Section 6.4. However, errors
can occur during learning, which have an impact on the anomaly detection. In this
section, the possible identification error is analyzed. The results in this section have
been partially published in [NVM+13].

The identification error is divided into two parts: (1) the state merging error
(Section 7.2.1) and (2) the timing identification error (Section 7.2.2). Both types of
identification error are evaluated in this section.

In this section, for each aforementioned anomaly type, the probability is analyzed
that the anomaly could not be found (false negative) or that an anomaly is identified
incorrectly (false positive). Such errors can occur either because of incorrectly
identified models or because of incorrectly classified measurements.

The calculation of the identification error will be used later to prove the Identifia-
bility in the limit in Section 7.3.

7.2.1 State merging error

One main part of the identification algorithm BUTLA is the identification of the
automaton structure, i.e. the states and transitions. In this section, the identification
error for state merging is analyzed. Two types of errors can occur:

104 7 Theoretical Results

1. False negative (FN): an anomaly could not be found
2. False positive (FP): an anomaly is identified incorrectly

The Hoeffding Bound [Hoe63] will be used in several proofs. Therefore, it is
introduced beforehand.

Lemma 3. (Hoeffding’s Inequality) Let Z1, ..., Zn be independent, identically dis-
tributed random variables, with 0 ≤ Zi ≤ 1. Then

P

[∣∣∣∣∣ 1n
n∑
i=1

Zi − E [Z]

∣∣∣∣∣ > ε

]
≤ α = 2 exp

(
−2nε2

)
(7.2)

with ε the deviation between the empirical mean 1
n

n∑
i=1

Zi and the true mean E [Z], n

the number of samples and a confidence 0 ≤ α ≤ 1 with p = (1−α) the probability
of the decision.

That means, the probability that the deviation between the empirical and the true
mean is greater than ε is less or equal than α.

7.2.1.1 False negative error

According to Hoeffding’s inequality, we know that an observed transition probability
f
g is with a probability of> (1−α) at most

√
1
2g log 2

α away from the true probability
p, where f is the number of observations for a specific event (incoming or outgoing
transitions) and g is the sum of all observations for the corresponding state. Therefore,

P

(∣∣∣∣fg − p
∣∣∣∣ > h(g, α)

)
= α,

P

(∣∣∣∣fg − p
∣∣∣∣ ≤ h(g, α)

)
= 1− α

with the Hoeffding bound h(g, α)) =
√

1
2g log 2

α .

Lemma 4. For two observed transition probabilities f0
g0
, f1g1 and one corresponding

probability p (i.e. both observed transition probabilities are from the same distri-
bution), it follows that with a probability of < 2α (the confidence) the following
holds ∣∣∣∣f0

g0
− f1

g1

∣∣∣∣ > h(g0, g1, α)

with the bound

h(g0, g1, α) =

(√
1

g0
+

√
1

g1

)
·
√

1

2
log

2

α
≤ 2α

This is the probability that a correct merging is not done by the algorithms.

Proof.

7.2 Evaluation of the Learning Error 105

P (|f0/g0 − f1/g1| > h(g0, g1, α))

=P (|(f0/g0 − p)− (f1/g1 − p)| > h(g0, g1, α))

≤P (|(f0/g0 − p)|+ |(f1/g1 − p)| > h(g0, g1, α))

≤P (|f0/g0 − p| > h(g0, α) ∪ |f1/g1 − p| > h(g1, α))

=1− P (|f0/g0 − p| ≤ h(g0, a))P (|f1/g1 − p| ≤ h(g1, α))

=1− (1− α)2

=2α− α2.

That means, at least one of the two error sources
∣∣∣ f0g0 − p∣∣∣ or

∣∣∣ f1g1 − p∣∣∣ must have
exceeded the error limit. ut

7.2.1.2 False positive error

False positive errors for the anomaly detection occur when a correct transition is
missing in the learned automaton. This can only happen if a correct merging of two
states has been missed by the algorithm:

Theorem 6. The probability of a false positive error in the anomaly detection pFP is
bounded by 1− n3|Σ|+2αn3|Σ|, where α is the confidence, Σ is the set of symbols
and n denotes the number of input samples.

Proof. According to Lemma 4, the error for one call to the function compatible (see
Algorithm 4) is bounded by 2α. For each node pair, |Σ|n such calls are needed
since every node has a maximum of |Σ| edges and the subtree is bounded by n.
Furthermore, a maximum of n2 state pairs can be checked for compatibility. This
assumes independent tests. De la Higuera and Thollard have shown in [HT00] that
dependencies only lower the probabilities, i.e. the errors are still bounded as shown
above.

So it follows that:

pFP = 1− (n3|Σ|(1− 2α)) = 1− n3|Σ|+2αn3|Σ|

ut

False negative errors for the anomaly detection occur when an incorrect transition
exists in the learned automaton. This can only happen if an incorrect merging of two
states has been carried out by the algorithm:

So in the following line of argument, we assume that two observed transition
probabilities f0

g0
and f1

g1
stem from two different distributions. We now have to

compute the probability that is generated form different distributions,
∣∣∣ f0g0 − f1

g1

∣∣∣ ≤(√
1
g0

+
√

1
g1

)
·
√

1
2 log 2

α .

Lemma 5. Let f0g0 and f1
g1

stem from two different distributions and f0
g0
→ p0,

f1
g1
→

p1. Then the probability of an incorrect merging is bounded by 2α iff p1 − p0 >

2γ, γ = max (γ0, γ1) , γi =
√

1
2gi

log 2
α , where α is the confidence value.

106 7 Theoretical Results

Proof. Incorrect merging happens if either one of the observations f0
g0
, f1g1 lies within

the intervals [p0 − γ0], [p1 − γ1] of the other distributions. Figure 7.3 shows a
situation on its left hand side whereat–correctly–a merging is not done.

On its right hand side, the error scenario is shown. Here we first assume that f0g0
is incorrectly classified as stemming from p1 and an incorrect merging happens.

In the left-hand scenario, it must hold that p1 − p0 > γ0 + γ1. And this inequality
is true if p1 − p0 > 2γ.

Under this constraint, an (incorrect) merging can only happen if one of the two
observations fi

gi
is outside its interval [pi − γi]. And the probability of this is (see the

explanations above) 2α. ut

p0p0-γ0 p0+γ0 p1p1-γ1 p1+γ1

f0/g0 f1/g1

p0p0-γ0 p0+γ0

p1p1-γ1 p1+γ1
f0/g0

correct non merging scenario incorrect merging scenario

Fig. 7.3 Idea for proving Lemma 5.

Theorem 7. If ∀i, j : pi − pj > 2γ, the probability of a false negative error in
the anomaly detection pFN is bounded by 1 − n3|Σ|+2αn3|Σ|, where α is the
confidence, Σ is the set of symbols and n denotes the number of input samples.

Proof. According to Lemma 5, the error probability for one test error for false
negative errors corresponds to the error for a false positive error (iff ∀i, j : pi−pj >
2γ), i.e. we can repeat the idea of Theorem 6. ut

Remark 2. The constraint ∀i, j : pi − pj > 2γ means that we must assume that
probabilities occur only in specific steps. And the step size depends on the number
of samples in the least used transition. In practice this is not a problem since the
step size shrinks proportional to

√
1/n, if we presume that for each observation fi

gi
it

holds that gi = cn, c ∈ R where n ∈ N denotes the sample size.

Corollary 1. If ∀i, j : pi − pj > 2γ, both the false positive error pFP and the false
negative error pFN (see Theorems 6 and 7) can be kept below any given maximum
error level pmax by choosing a specific value for α.

Proof. If we set α = 1−pmax
2n3|Σ| −

1
2 , pFP and pFN will be bounded by pmax. To see

this, insert this α into the error bounds of Theorems 6 and 7. ut

7.2.2 Timing learning error

In the same way as for state merging errors, the error for the timing identification is
calculated. Three error sources are analyzed here in detail:

7.2 Evaluation of the Learning Error 107

1. Wrong separation of a single mode into different modes
2. Wrong combination of different modes into one mode
3. Timing identification error in one transition

The computation of the combination and separation errors is based on the separa-
tion method, using the kernel density estimation as described in Section 6.2.3.3.

First, the definition of the correct timing behavior representation is given. Then,
the analysis of the identification error of the algorithm follows.

7.2.2.1 Correct timing behavior

The timing information in one transition is given as probability density distribution
(PDF) over time and a minimum and maximum time value. The PDF is calculated
globally over all transitions that are using the same event (symbol a in the alphabet
Σ), while the minimum and maximum time value is identified locally for each
transition. Thus, it can happen that the mean value lies beyond the identified time
range. However, this still belongs to the correct behavior. This case is illustrated in
Figure 7.4.

max µ t

φ(t)

min

σ

Fig. 7.4 Globally calculated PDF and locally identified time range can lead to the situation that the
mean of the distribution lies beyond the identified time range.

During the timing preprocessing, it is globally checked for each event whether
the time values are distributed in different modes. Events with multiple modes are
separated into the single modes such that each transition consists of an event with
the corresponding local time range and the global single-mode PDF. However, the
separation of different modes is subject to errors. Errors occur either when different
modes are wrongly combined into one mode or when a single mode is wrongly
separated into different modes.

7.2.2.2 Wrong separation of a single mode into different modes

The error of wrong separation of a single mode into different modes mainly occurs
when only few learning examples are available to identify the distribution functions.
Figure 7.5 illustrates this error: The correct distribution with µ12 was not identified.
Instead, two other distributions with µ1 and µ2 are identified.

108 7 Theoretical Results

µ1

t

φ(t)

µ2

σ2

σ1

µ12

σ12

Fig. 7.5 One mode (with µ12) is wrongly separated into different modes (with µ1 and µ2)

Theorem 8. With a growing number of learning samples, the error of wrong separa-
tion of a single mode into different modes converges to 0.

Proof. From the Hoeffding bound, we know that ε ≤
√

1
2n log 2

α . From this it follows
directly that with growing number of samples n, the error ε converges to 0.

ut

The error of wrong separation of a single mode into different modes leads to the
situation, that two states can not be merged even if they are compatible. This error
has been investigated in Section 7.2.1.

7.2.2.3 Wrong combination of different modes into one mode

The error of wrong combinations of different modes into one mode mainly occurs
when two distributions are located closely to each other (small margin γ) and when
the deviation from the mean is high (large standard deviation σ). An illustration of
the error emergence is given in Figure 7.6: Two different distributions with µ1 and
µ2 are wrongly combined into a PDF with one mode with µ12.

µ1 t

φ(t)

t µ2

σ2

σ1

µ12

σ12

Fig. 7.6 Two different modes (with µ1 and µ2) are wrongly combined into one mode (with µ12)

7.2 Evaluation of the Learning Error 109

Following factors are influencing the error: (1) margin between the means of the
distributions (γ = |µ1 − µ2|), (2) spread of the values (σ1, σ2) and (3) the number of
learning examples.

Assumption 2 The calculation of the error assumes the following values to be
known: (1) number of observations, (2) mean and spread of the distribution and (3)
margin between the means of distributions.

First, we assume that the PDF is been generated using an infinite number of
learning examples, i.e. the PDF is calculated error-free. In a later step, the influence
of the number of learning examples on the error is also investigated.

Furthermore, it is assumed that there exist two distributions that are overlapping.
More than two distributions are handled in the same way.

The error is the uncertainty at the local minimum between two modes in the
calculated PDF. According to Equation 6.1, the PDF for a data vector t is calculated
as

f(t, t, µ, σ) =
1

N

N∑
i=1

k(ti; t) =
1

N

N∑
i=1

1√
2πσ2

e−
(t−µ)2

2σ2 . (7.3)

Analogous, the density of the sum of two different distributions is given as

f(t1, µ1, σ1, t2, µ2, σ2, t) =
1

N1

N1∑
i=1

k(t1,i, µ1, σ1, t) +
1

N2

N2∑
i=1

k(t2,i, µ2, σ2, t).

(7.4)

The local minimum between the two peaks is the separation point tseparation.
The error ε is calculated using the densities for the mean value and the separation

point. It is expressed as the difference of the maximum (density of the mean value)
and local minimum (density of the separation point) of the density function (see also
Figure 7.7).

µ1

φ(t)

t µ2

σ2 σ1

tseparation

ε

γ

Fig. 7.7 Illustration of ε, the timing distribution separation error.

ε = f(t = max(µ1, µ2))− f(t = tseparation) (7.5)

It can be distinguished between three cases, based on the margin γ:

1. γ = 0: ε = 1, because it can not be distinguished between two completely
overlapped distributions.

110 7 Theoretical Results

2. γ = ∞ : ε = 0, because there is no overlapping and the distributions can be
separated completely.

3. γ > 0 and f(t = tseparation) > 0: 0 < ε ≤ 1. From a theoretical point of view, a
small margin between distributions is more interesting. Parts of the distribution
functions are overlapping. This leads to an error. Figure 7.7 illustrates this case.

Lemma 6. If γ > σ1 + σ2, the modes of two distributions with means µ1 and µ2

and standard deviations σ1 and σ2 can be separated correctly.

Proof. For one PDF, it is known that the largest positive gradient is at the point µ−σ,
while the largest negative gradient is at the point µ+ σ.

Assuming two PDFs from independent random variables (generated with an
infinite number of observations, i.e. error-free) with means µ1, µ2 and standard
deviations σ1, σ2, where µ2 = µ1 + σ1 + σ2. Adding both PDFs, the maximum of
the resulting PDF will be exactly at xmax = µ1 + σ1 = µ2 − σ2. 1 This means that
Algorithm 2 will not find a local minimum to create a separation point. The same
applies for γ < σ1 + σ2.

If γ > σ1 + σ2, a local minimum will be found, since the potential separation
point µ1 + σ1 < xmax < µ2 + σ2.

ut

The error further depends on the number of learning examples, since the cor-
rectness of the generated probability density function becomes more precise for
a growing number of examples. This is captured using the Hoeffding bound. In
Theorem 8 we have already seen that the error in creating the PDF shrinks with a
growing number of learning samples.

The error of wrong separation of a single mode into different modes leads to the
situation that two states can not be merged even if they are compatible. This error
has been investigated in Section 7.2.1.

7.2.2.4 Timing identification error in one transition

Finally, an identification error can occur in single transitions. This happens when
only few learning examples are available to identify the distribution function.

Assumption 3 In the line of argumentation, it is assumed that the separation into
the modes performed well, i.e. without any error. Furthermore, only uni-modal dis-
tribution functions are considered. Multi-modal distribution functions have already
been separated in different events.

Using Lemma 3, we can formulate the following theorem:

Theorem 9. Let Z1, ..., Zn be independent, identically distributed random variables,
with 0 ≤ Zi ≤ 1. Drawing n samples, with probability at least (1− α), α ∈ R, the

difference between the empirical mean 1
n

n∑
i=1

Zi and the true mean E [Z] is at most ε,

where

1 This can be checked by creating the sum of both PDFs, calculating the derivation of the sum and
determining the zero.

7.3 Convergence and Identification In The Limit 111

ε ≤
√

1

2n
log

2

α
(7.6)

This ε directly corresponds to the bound of timing errors in a single transition.

Proof. Follows directly from Lemma 3.
ut

Timing identification errors in one transition do not lead to a merging error.

7.3 Convergence and Identification In The Limit

Based on the error calculation from Section 7.2, the capabilities of identification in
the limit are proven in this section.

If the number of examples is constant and if positive as well as negative examples
are used, Gold proved in [Gol78] that the identification of a DFA of the given size
k ∈ N is NP-complete, i.e. no efficient algorithms exist—under the assumption
that P 6= NP . However, Oncina and Garcia showed in [OG92] that an efficient
algorithm exists when the number of observations is not constant but can grow during
an algorithm’s runtime,—this is called identification in the limit. In this context, an
algorithm is efficient when it has a runtime polynomial to the number of observations
and the number of observations is polynomial to the size of the optimal automaton
(recall Definition 19).

It has been proven that probabilistic DFAs [CO99, TDdlH00] and also probabilis-
tic DTA with one clock [Ver10] are identifiable in the limit in polynomial time. Such
probabilistic automata only use positive observations.

As long as a single clock is used (in fact only one clock is used), it can be said that
BUTLA identifies the system behavior model in the limit in polynomial time. The
polynomial runtime behavior has been proven in Lemma 1, so only the identification
in the limit has to be shown. Two parts have to be proven:

1. States identification in the limit. This ensures that the automaton structure is
identified correctly in the limit.

2. Timing identification in the limit. This ensures that the timing behavior (distribu-
tion functions and time ranges) is identified correctly in the limit.

7.3.1 States identification in the limit

Lemma 7. If ∀i, j : pi − pj > 2γ, the algorithm BUTLA identifies a correct automa-
ton in the limit.

Proof. This directly follows from Corollary 1. ut

The concept of “identification in the limit” has a crucial drawback: Nothing is
said about the problem complexity in terms of data size n and in terms of runtime
complexity. For this, two new concepts are introduced: 1. “Weak Polynomial Identifi-
cation in the Limit with Probability One” requires that the algorithms has a runtime
polynomial to the number of observations. 2. “Strong Polynomial Identification in

112 7 Theoretical Results

the Limit with Probability One” additionally requires that only a polynomial number
of observations in the automation size is used.

Theorem 10. If ∀i, j : pi − pj > 2γ, the algorithm BUTLA fulfills the criterion of
“Weak Polynomial Identification in the Limit with Probability One”.

Proof. Follows from Lemma 7 and from Lemma 1. ut

In [dlH10] de la Higuera argues that PDFAs are not strongly polynomially identifi-
able in the limit with probability one. Here, we show that if we give some limitations,
the criteria of "strong polynomial identification in the limit with probability one" can
be fulfilled.

Theorem 11. If ∀i, j : pi − pj > 2γ and if the automaton size |A| is larger than |Σ|,
the algorithm BUTLA fulfills the criterion of “Strong Polynomial Identification in the
Limit with Probability One”.

Proof. We already know from Theorem 10, that “Weak Polynomial Identification in
the Limit with Probability One” is fulfilled.

The error probability of BUTLA is bounded by c1αn3|Σ|, c1 ∈ R (see Theorems
6 and 7). So, to achieve an error probability of < δ, we set α = c2

n4 , c2 ∈ R. This
fulfills point (a) from Definition 21.

From this, it follows that the criteria are fulfilled for n ≥ c3|Σ|
δ . And since we

assume that the automaton size |A|> |Σ| (this only means that there are no unused
symbols in the alphabet), it follows that the criteria are also fulfilled for n > c3|A|

δ .
From this, it follows that points (b) and (c) from Definition 21 are fulfilled. ut

7.3.2 Timing identification in the limit

This Section firstly introduces the concept of Timing Identification In The Limit.
Similar to the known framework of identification in the limit, we calculate the timing
identification error and prove that the error converges to zero for a growing number
of learning examples.

Using the Hoeffding bound, the question can be answered that how many learning
samples are needed to identify a correct automaton. This leads to the concept of
timing identification in the limit.

Lemma 8. Given a required accuracy ε and a confidence α, we need at least n =
log
(

2
α

)
· 1

2ε2 samples.

Proof. From the Hoeffding Bound we know that ε ≤
√

1
2n log 2

α . From this it follows

directly that n ≥ log
(

2
α

)
· 1

2ε2 .
ut

The following theorem summarizes the issues from above and introduces the
concept of Timing Identification in the Limit.

Theorem 12. Given an infinite number of observations n, the timing identification
error converges to 0 and if for each two timing distributions for one event γ > σ1+σ2,
i.e. in the limit, a correct timed automaton is identified.

7.4 Top-Down vs. Bottom-Up 113

Proof. From the Theorem 8 and Lemma 9 we know, that the timing error decreases
with a growing number of learning examples. Furthermore, the ”states identification
in the limit” has been shown in Theorems 10 and 11. Together with Lemma 8, it
follows that the timing can also be identified in the limit.

ut

7.4 Top-Down vs. Bottom-Up

Previous algorithms for learning (timed) automata such as MDI [TDdlH00] Alergia
[CO99] and RTI+ [Ver10] work in a top-down order. The order of comparison for
potential merges starts with the root state of the prefix tree acceptor and its first
descendent. The order of the states is defined by the lexicographic order of the
shortest sequence of events leading to a final state (leaf) in the PTA. The algorithm
BUTLA works in a bottom-up order (see also figure 7.8). Here, we start with the
final states and proceed via the ascendents towards the root state. Because each
compatibility check for states v, w comprises a recursive checking of both sub-trees
of v and w, BUTLA has the advantage of handling smaller sub-trees near to the root
of the original prefix tree acceptor.

The new bottom-up merging order used here means a significant speed-up of the
algorithm compared to previous algorithms [TDdlH00, CO99, Ver10]. Figure 7.8
shows an example: On the left hand side, two states will be merged. Before the
merging step, both sub-trees must be checked for compatibility, this takes O(n+ n′)
steps. After the merging step, the merged sub-tree comprises n+ n′ states and has to
be determinized, this again takes O(n+ n′) steps. After this merging step, further
merging steps are done within the sub-tree, and again, further recursive compatibility
checks and recursive determinization steps are required.

n n' m

merge

merge
top-down

order
bottom-up

order

Fig. 7.8 The advantage of a bottom-up merging order.

The example on the right hand side shows the result of a bottom-up order merging:
Since the sub-tree has already been merged in previous merging steps, the sub-trees
share a large parts of their states and the compatibility can therefore be checked
efficiently. Furthermore, no recursive determinization of the sub-tree is necessary
because it was deterministic before. This is a rather optimist example, but it captures
the gist of the bottom-up strategy.

114 7 Theoretical Results

In the worst case—no merging of states—this different order makes no difference
for the runtime behavior. But in most cases, a significant runtime improvement can
be seen whereat the degree of improvement depends on the structure of the prefix
tree and on the structure of the final automaton.

Here we give a theoretical runtime comparison for an important class of problems:
the complete tree problem. When observing cyber-physical production systems, we
usually have sequences of, more or less, similar lengths—corresponding to a cycle
of the cyber-physical production system, i.e. the prefix tree acceptor resembles a
complete tree. And the final automaton usually resembles a sequence of states—
corresponding to the states of the cycle of the run of the cyber-physical production
system.

Definition 30. (Complete Tree Problem) In the Complete Tree Problem, the prefix
tree acceptor is a complete tree of a fixed state out-degree of k ∈ N. The optimal
merged automaton is a single sequence of states.

Proposition 6. For complete tree problems, top-down algorithms (using the state
merging procedure as e.g. ALERGIA does) run in O(n2

0 log n0) whereas BUTLA
runs in O(n2

0), where n0 denotes the number of states in the original prefix tree.

Proof. The O(n2
0 log n0) results from the sum of sub-tree sizes for all compatibility

checks:
∑n0

i=1

∑i
j=0(log(n0 − i) + log(n0 − j)) where the numbers correspond

to the lexicographic state order. BUTLA merges two states in each compatibility
check, so the subtrees always have the height 1. This results in a quadratic runtime
behavior. ut

The Complete Tree Problem is just an example for which the bottom-up technique
performs better. On the contrary, there exist scenarios, where the top-down merging
order performs better. This is especially the case for PTAs that contain just one long
linked list of states.

In Section 8.3 we empirically analyze this scenario using a drunken sailor simula-
tion, which creates a long linked list of states in the PTA.

Empirical measurements (see figure 7.9) show a rather O(n2
0) runtime behavior.

Here, the Reber grammar was used again to compare the runtime. Both algorithms run
in n2

0 in average. However, the bottom-up algorithm works faster than the top-down
approach by a factor of ≈ 3.

Fig. 7.9 Runtime behavior of the algorithms based on bottom up and top down strategy.

7.5 Splitting vs. Non-Splitting 115

7.5 Splitting vs. Non-Splitting

Figure 2.8 illustrates that a state can be a starting point for different processes: When
the robot is started, it depends on the size of the containers that which of the sub-trees
is taken for the further process, based on the time that is needed to move the container.
Different possibilities exist to identify the different timing behavior of the sub-trees.

The algorithm RTI+ proposed by Verwer in [Ver10] (see also Section 5.2.4)
introduced a splitting operation for transitions. The algorithm calculates a p-value
for all possible splits and its sub-trees. If the lowest p-value of one split is less than
0.05, the transition is split.

Figure 7.10 illustrates the problem of the splitting operation. The main drawback
of using the splitting operation is that it requires additional computation time. First,
all possible splits have to be evaluated. Based on the number of observations, these
can be a huge amount. And after finding the best splitting point based on the smallest
p-value, the transition has to be split. Here, for all postfixes of the corresponding
transition, it has to be decided that which path to follow. Since all these paths are
mixed in the previous states, the information that which path follows which states,
based on the original data, has to be stored somehow. This leads to a huge memory
consumption. To avoid this high memory consumption, RTI+ renews the prefix
tree acceptor beginning with the corresponding state after each splitting operation.
However, this is still time and space consuming.

Proposition 7. The time complexity of calculating and performing a splitting opera-
tion is O(m2 · n2), where m is the number of input samples and n is the number of
states in the PTA.

Proof. For each transition (in worst case there are n− 1 transitions in the PTA, if it
is a linked list of states with only one input sample or all input samples follow the
path), the p-value has to be calculated (which has to be done for each input sample
using the certain transition). Therefore, the complexity for calculating the p-values is
O(m · n).

One splitting operation itself also needs time in O(m · n) for the creation of the
PTA with m input samples, where each can have n states.

In the worst case, if each transition has to be split, the complexity is inO(m2 ·n2).
ut

n n' m

Split a a a

Fig. 7.10 The problem of the splitting operation.

116 7 Theoretical Results

BUTLA firstly uses a preprocessing of timing values to avoid this splitting oper-
ation. This version is based on the assumption that events with the same changing
signals but different timing behavior describe different behavior.

In the preprocessing step, events with multiple timing modes are identified. These
modes are used for the creation of the prefix tree. Events with the same symbol
but arising from different timing modes are handled as different events and lead
to different states in the prefix tree. In the identification phase, these events are
also handled as different. Using this preprocessing step, the splitting process can be
omitted. This leads to a computation speed increase.

Proposition 8. The time complexity of calculating the timing modes in a preprocess-
ing step is in O(n), where n is the number of observed events.

Proof. Since this is during the preprocessing step and the PTA does not exist so far,
the worst case is not dependent on the PTA structure, but only on the number of
incoming events and the number of symbols.

First, the time stamps for each symbol in the alphabet a ∈ Σ have to be collected.
This takes time O(n).

Then for each a ∈ Σ, the probability density distribution over time has to be calcu-
lated. For this, Equation 6.4 is computed. Note that all events are not considered for
a single symbol a ∈ Σ, but only those that belong to this symbol a. All computations
together need time O(n). Additionally the local minimums have to identified, which
is also done in O(n).

All these steps are performed subsequently and therefore the overall time com-
plexity for the preprocessing step is O(n).

ut

Using the preprocessing step, the computation time can be reduced compared to
the splitting version. While the splitting version runs in polynomial time, we could
reduce this additional timing computation to linear time using the preprocessing step.

7.6 Online vs. Offline Identification

This section compares the runtime behavior of both, online and offline automata
identification algorithms, respectively OTALA and BUTLA. Both algorithms have
different characteristics, so the runtime behavior can not be compared directly to
assess which algorithm runs faster. Therefore, only a recommendation can be given
that which identification algorithm should be used, based on the given use case.

As showed before, the identification time of OTALA is exponential to the number
of input and output signals, whereas the runtime of BUTLA is cubic to the number
of states in the prefix tree acceptor (the number of states in the prefix tree acceptor
grows with the amount of observations).

BUTLA works best if the identification data is separated into cycles such that the
prefix tree acceptor is highly condensed. However, this often cannot be guaranteed
for cyber-physical production systems. In that case the prefix tree acceptor can
consist of far more than one hundred thousand of states in a linked list. And since
the identification time is cubic to the size of the prefix tree acceptor, this would lead
to a high computation time.

7.6 Online vs. Offline Identification 117

In contrast, the runtime of OTALA is only based on the number of input and output
signals and not on the amount of data. Therefore, the accumulated identification
time over the input samples is rather linear. In cyber-physical production systems,
the number of input and output signals is known beforehand. Therefore, the needed
identification time can be roughly predicted. Mostly, the number of input and output
signals is limited to a small number. This makes OTALA applicable, despite the
exponential runtime.

Additionally, OTALA is able to stop the identification process if the identified
model converged to the target model, such that all the data do not have to be consid-
ered for identification.

Summarized, comparing online (OTALA) and offline (BUTLA) identification
algorithms, the following recommendations can be given:

The usage of an online identification algorithm (e.g. OTALA) is recommended, when:

• memory space is limited, such that the observations cannot be stored,
• it is not possible to use expert knowledge at all,
• the number of needed learning samples and the convergence of learning progress

is not known beforehand or
• the observations can not be separated into cycles, which form a dense prefix tree

acceptor.

On the contrary, the usage of an offline identification algorithm (e.g. BUTLA) is
recommended, when:

• the number of signals is huge,
• the states of the target model can not be described by signal vectors and equal

events can arise subsequently or
• the learning data can be separated into cycles.

Table 7.2 summarizes the comparison of the online identification algorithm
OTALA with the offline identification algorithm BUTLA.

Table 7.2 Comparison of OTALA and BUTLA

OTALA BUTLA
not possible to use expert

knowledge + -

limited memory space + -
amount of needed identification data

is not known beforehand + -

observations can not be separated into
cycles automatically + -

small number of signals + +
data can be separated into

cycles + +

huge number of signals - +
states do not correspond to

signal vectors - +

118 7 Theoretical Results

7.7 Runtime analysis of the anomaly detection algorithm

The anomaly detection is a time critical process. Similar to online identification, the
observations cannot be cached but rather have to be evaluated directly. This has to
be finished before the next event arises. Additionally, the decision whether an event
belongs to the normal behavior or is an anomaly is required to be given promptly.

In Section 2.3.1, it was already mentioned that the anomaly detection in automata
corresponds to the word problem in regular languages. The word problem is in O(n),
where n = |w| is the length of the word. We now show that this result can be refined:

Theorem 13. The Anomaly Detection Problem (see Definition 9) using ANODA
PANODA ∈ L, i.e. the computation can be performed on logarithmic space.

Proof. The automaton A is part of the input and is therefore stored on the input tape.
The input string w is also stored on the input tape.

To show that a problem uses only logarithmic space, only the additional space
has to be analyzed. Since the input and output tape need space at least linear to the
input size, a logarithmic usage space were not possible.

At the beginning, the number of the initial state has to be stored (space: log(n),
where n is the number of states in the automaton). In each step, it is checked for
each symbol (that is for each incoming event) whether there exists a transition in the
automaton (stored on the input tape) with the actual event and the currently stored
state as origin. Additionally the timing constraints are checked. This all happens in
linear time and does not need additional space. If this is the case, the number of the
corresponding destination state has to be stored. Since the last state number (which
is currently stored on the working tape) is not needed any more, it can be overwritten.
If no corresponding outgoing transition is found the input is rejected. At the end,
there is the final state check. After reaching the last incoming event, it is checked
whether the current state is a final state. If it is a final state, the input is accepted,
otherwise it is rejected. This check does not need memory space and it only needs
constant time.

The needed space is logarithmic to the size of the input (automaton A and input
string w) because only one state number has to be stored and the binary encoding of
this state number needs space logarithmic to the automaton size, i.e. the number of
states in A.

ut

An empirical analysis of the needed time and real-time capabilities of the anomaly
detection algorithm ANODA is given in [Vod13].

Chapter 8
Empirical Results

In this chapter, the Timed Automaton identification algorithms BUTLA and OTALA
and the anomaly detection algorithm ANODA are evaluated empirically. In the
last chapter, the algorithms have been evaluated theoretically. Here, we give some
experimental results, which empirically confirm the results. The experiments are
mainly based on artificial data and on real data, which was enlarged by simulation.

Since in [VMN13, Vod13], the algorithm BUTLA was compared with several
other automata identification algorithms, we mainly focus on the comparison of
BUTLA with OTALA.

The main contributions of this chapter are the following: we prove by empirical
evaluation

• that BUTLA identifies a TA in polynomial time,
• that BUTLA identifies a correct TA in the limit,
• that OTALA converges to the correct TA,
• that OTALA on average runs much faster than the worst case runtime (which is

exponential) such that it can be used for the identification of behavior models for
cyber-physical production systems in acceptable time,

• that the bottom-up strategy works better than the top-down strategy in most recent
cases and

• that ANODA (using identified Timed Automata) can be used for the anomaly
detection in Cyber-Physical Production Systems.

This chapter is structured as follows: First, in Section 8.1 we explain which data
sets we used for the empirical evaluation. Section 8.2 analyzes the runtime complexity
of identifying Timed Automata. Section 8.3 evaluates the different influence of top-
down and bottom-up merging order on the runtime behavior. In Section 8.4 the
convergence behavior of BUTLA and OTALA is analyzed. Section 8.5 evaluates the
capabilities of the anomaly detection algorithm ANODA. Section 8.6 evaluates the
differences of online and offline identification algorithms (BUTLA and OTALA).
Finally in Section 8.7, BUTLA is tested against two alternative approaches.

119

120 8 Empirical Results

8.1 Preliminaries

This section leads to the empirical analysis of the automaton identification algorithms.
Section 8.1.1 introduces some artificial data and a method to artificially extend real
data . In Section 8.1.2 some quality measures are introduced, which are used to judge
the experimental results.

8.1.1 Used Artificial Data

All researchers in data mining face the same problem: The lack of convincing amount
of data from real systems. For this reason, artificial data is needed. This Section
describes three possibilities of how to create enough data artificially: (1) The usage
of artificial data (Section 8.1.1.1 and 8.1.1.2) and (2) the usage of a (learned) model
to create an extended data set (Section 8.1.1.3).

8.1.1.1 Reber Grammar

One frequently used data set, which serves as benchmark data to compare the quality
of grammatical inference algorithms, is the so called Reber grammar [Reb67]. Figure
8.1 shows the original automaton of the Reber grammar. Each transition probabilities
are normally distributed. The probabilities are not displayed in Figure 8.1.

X

S

S

B

T

P

T

V

V

P X E

Fig. 8.1 Automaton of original reber grammar

Using the automaton for the Reber grammar, accepted words can be created easily.
"BPVPXVPXVPXVVE" is an accepted word for example, and "BTSSPXSE" is not
accepted. An accepted word can simply be created by simulating the automaton. To
obtain a data set with n samples, the automaton just has to be simulated n times.
Based on this data set, an automaton can be identified. Ideally, the original and the
identified automaton should be equal. A list of non-accepted words can be used to
check the quality of the identified automaton. Each word which is not accepted by
the original should also not be accepted by the identified automaton.

8.1 Preliminaries 121

Originally, the Reber grammar was created for benchmarks with stochastic au-
tomata. The transitions only contain symbols that are added one after the other and
result in an accepted word. Events in automation systems describes the switching
of an actuator or sensor, e.g. the starting of a conveyor or the switching of position
sensor. Therefore, the symbols in automata consist of the name of a sensor/ actuator
and the new signal value, e.g. "conveyer=1". Furthermore, the transitions in the Reber
grammar have no timing constraints. To enhance the testing possibilities, arbitrary
timing information was included for each transition. The timing information is given
as a time range with the minimum and maximum relative time stamp.

Since the presented algorithms (BUTLA and OTALA) are used in automation
systems, loops cannot be performed as they are present in the Reber grammar. Each
event in a transition describes an event in an automation system. A Sensor or actuator
cannot be switched on twice without being switched off in the meantime. The loops
in the Reber automaton are modified in a way that each signal is switched off before
being switched on again. This leads to three additional states.

The transition probabilities are not modified. In Figure 8.2, they are not displayed
again.

X=1
[15..19]

 X=0
[7..8]

X=1
[3..8]

V=1
[2..6]

 V=0
[10..15]

T=1
[5..8]

T=0
[6..8]

S=0
[5..9]

S=1
[3..6]

P=1
[5..6]

B=1
[12..16]

E=1
[7..8]

S=1
 [9..13] V=0

[1..5]

 T=1
[5..8]

2

4 7

9 5

8

3

6

1 11 10

Fig. 8.2 Automaton of modified reber grammar

For the following experiments with the Reber grammar, only the modified version
is used.

8.1.1.2 Random Walk

The random walk (also known as drunken sailor simulation, see also Figure 8.3)
[Pea05] is a simulation method, which is based on pure randomness.

The method is known from graph theory. Here it is used as follows. At the
beginning there is an initial state vector (all zeros or random combination). In each
simulation step one random signal is changing its value. By running the simulation
over some time, each state in the discrete state space will be visited.

122 8 Empirical Results

Fig. 8.3 Principle of the random walk (drunken sailor) simulation.

Since the random walk explores the whole (discrete) state space, it is well suited
for worst case simulations. In this chapter, the random walk simulation is used for
convergence and worst case runtime tests with OTALA.

8.1.1.3 Data from simulated model

This method gives the possibility to obtain a high amount of data, which is referred
to a real system. Based on an existing model, many simulations can be carried out
and the simulation outputs are stored in a database. These data are used afterwards to
learn a behavior model.

Figure 8.4 shows how data can be manifolded and how the extended data can be
used:

1. Data acquisition

Data
2. Model identification

3. Model simulation

extended
Data 4. Model learning

5. Model comparison

Fig. 8.4 Simulation of identified model to obtain more data.

8.1 Preliminaries 123

1. Data acquisition: First, the production plant is observed and the data is stored
into a data base.

2. Model learning: The acquired data is used to learn a model.
3. Model simulation: Usually, only few observed data exists. Therefore, the learned

model from step (2) is simulated. Each needed information is available. Beginning
with the starting state and based on the transition probabilities, it is decided that
which state is visited next. The timing in the corresponding transition is chosen
randomly according to the distribution function. Each simulation step, i.e. each
generated event and the corresponding time information is logged into a data
base. The simulation is performed until it stops in a final state. The simulation can
be repeated as many times as needed. Many repetitions result in a significantly
extended data set.

4. Model learning: Using the extended data set, a new model is learned.
5. Model comparison: Now, for evaluation purposes, both models can be compared.

In general, it is difficult to evaluate the correctness of an identified discrete model.
Only experts of a plant know all the details of the normal behavior of a plant. Even
for the experts, it is at least time consuming. For laymen, it is impossible, since they
have no knowledge about the original behavior of the plant. On the contrary, using
the aforementioned approach, the original model is available, which is the identified
model from step (2). The original automaton and the identified one can now be easily
compared.

8.1.2 Correctness of identified Timed Automata

The correctness of a classifier or model in general is evaluated using certain quality
measures. Commonly used quality measures for instance are accuracy, precision or
f-measure. Most of these quality measures are based on the computation of different
ratios between correctly and incorrectly classified samples according to the confusion
matrix. We used the confusion matrix according to [TSK06], which is shown in Table
8.4. It gives an overview over the number of True Positive, False Positive, False
Negative and True Negative samples. These numbers are explained as follows:

• True Positives (TP) are samples that are really anomalous and detected as such by
the anomaly detection algorithm.

• False Positives (FP) are samples that are free of anomalies, but recognized as
anomalous.

• False Negatives (FN) samples are anomalies that are not detected by the algorithm.
• True Negatives (TN) are really normal samples that are recognized as such by the

algorithm.

Predicted Class
Positive Negative

Actual
Class

Positive True Positive (TP) True Negative (TN)
Negative False Positive (FP) False Negative (FN)

Table 8.1 Confusion Matrix

124 8 Empirical Results

The Specificity (or true negative rate) gives the probability that the algorithm
signals no error, if the test sample is indeed not anomalous.

Specificity =

∑
TN∑

FP +
∑
TN

(8.1)

The Sensitivity (or true positive rate, recall) gives the probability that the algorithm
detects an error, if the test sample is really anomalous.

Sensitivity =

∑
TP∑

TP +
∑
FN

(8.2)

The Accuracy is a measurement of the anomaly detection capabilities and is
calculated as the ratio of the number of correct predictions and the total number of
predictions:

Accuracy =

∑
FP +

∑
TN∑

FP +
∑
FN +

∑
TP +

∑
TN

(8.3)

Often it is difficult, or even impossible, to generate negative test samples. In the
domain of cyber-physical production systems, this would require some records of
production runs with inserted faults. However, this is not feasible since it is not
possible to enforce all possible errors because not all possible faults can be foreseen.
If only positive examples are available, the k-fold cross validation [RN10] can be
used to divide the learning examples in a learning set and a test set. The overall
training set is divided into k groups, of which k− 1 groups are used for identification
and the remaining group is used for testing.

Two special cases of the k-fold cross validation are very popular and also used
later in this thesis: For the 2-fold cross validation, the learning examples are divided
into two groups. First, one group is used for model identification and the other group
for testing, then the other way around. Using the leave one out cross validation
(LOOCV), each of the k groups consists of only one sample, i.e. k = n, where n is
the number of input samples.

8.2 Runtime Analysis of the Identification Algorithms

In Section 7.1.1, we analyzed the runtime of both, BUTLA and OTALA formally.
In this section, we give some empirical results to show the runtime behavior using
artificial and real data.

8.2.1 Runtime Analysis of BUTLA

Lemma 1 showed that the algorithm BUTLA runs in O(n3
0), where n0 denotes the

number of states in the PTA. However, the average runtime is rather quadratic. Figure
8.5 shows the result for the Reber grammar. Since the PTA of the Reber grammar
contains only few states, the creation of the PTA was modified in such a way that
each data example leads to a separate branch. This leads to a PTA with a huge number
of states, depending on the amount of input samples.

8.2 Runtime Analysis of the Identification Algorithms 125

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

#states in PTA

ru
nt

im
e

[m
s]

runtime

quadratic approximation

Fig. 8.5 BUTLA shows a rather quadratic runtime behavior for Reber data.

By computing the runtime in the same way as Carrasco did (based on the input
sample size [CO94]), we obtain a rather linear behavior. However, these results can
only be generated empirically and have no theoretical impact. The reason for the
linear runtime behavior has been investigated in Section 7.1.1. Figure 8.6 shows
the linear runtime behavior for an increasing amount of input data from the Reber
grammar.

0 0.5 1 1.5 2 2.5

x 10
4

0

1000

2000

3000

4000

5000

6000

#input samples

ru
nt

im
e

[m
s]

runtime

linear approximation

Fig. 8.6 Based on the amount of input samples, BUTLA shows a rather linear behavior.

8.2.2 Runtime Analysis of OTALA

In Lemma 2, it was shown that the runtime of OTALA is exponential in the number
of IOs.

In general, this means that it is not suited for systems with a high amount of IOs.
Nevertheless, according to [MNV+11] and [RSLL12] it is not useful to identify one
overall model for the whole system but rather for subsets of the IOs. It means that only
those signals are used to identify a model that belong to the same sub-process. This
reduces the number of used signals again and makes OTALA applicable. Since the

126 8 Empirical Results

runtime is dependent on the number of IOs, the worst case runtime can be determined
beforehand.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

events

le
ar

ni
ng

 ti
m

e
pe

r
ev

en
t [

se
c]

Fig. 8.7 Runtime behavior of OTALA.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

events

st

at
es

Fig. 8.8 Convergence behavior of OTALA.

We used the drunken sailor simulation with 10 signals for the worst case analysis.
Figure 8.7 shows the computation time of OTALA for each incoming event. At the
beginning of the incoming event sequence (approximately the first 1000 events), the
computation time is rising and then remains approximately at the same level. This
is due to the number of states, which is 210 = 1024. Comparing Figure 8.7 and
Figure 8.8, it can be seen that the needed time rises as long as the number of current
states increases. As far as the maximum number of states is reached, the runtime also
remains approximately on the same level.

To examine this dependency in more detail, Figure 8.9 shows the runtime of
OTALA plotted against number of states. The results are based on a data set created
by a drunken sailor simulation with 20 signals. The target model comprises 220 ≈
1 million states. However, the simulation was aborted after 100000 events, such that
the experimental results are given until about 90000 states. On the x-coordinate, the

8.2 Runtime Analysis of the Identification Algorithms 127

number of states is given and on the y-coordinate, the individual needed time for
finding the corresponding state.

It can be seen that the runtime can be approximated linearly to the number of
states.

Fig. 8.9 Runtime of OTALA plotted against number of states.

Due to the linear dependency of the runtime on the number of states, it can be
concluded that OTALA can be efficiently used to identify timed automata of cyber-
physical production systems if it can be roughly estimated that the potential number
of states is rather small.

Note that this experiment is based on an artificial data set (random walk) and a
huge number of states is considered. According to Figure 8.9, approximately half a
second is needed to find the correct state for a model with 90000 states and to create
a new one if no appropriate state was found. However, the number of states in real
plants rarely exceeds a few hundred. Additionally, the experiments are performed
using MATLAB on a commercial practice PC. Using embedded programming on
embedded devices, the computation speed can be further increased.

The runtime can be further reduced, if more memory space is used. For each
possible state, memory space is allocated and the state ID corresponds to the decimal
representation of the IO-vector. During runtime of the algorithm, it is not necessary
to iterate over all possible states, just the IO-vector has to be converted into a decimal
number and the corresponding memory space has to be addressed. The drawback
of this method is the high amount of needed memory space and in usual cases, it is
not used at all. Since the number of IOs is known beforehand, the needed amount of
memory space can be predetermined.

The difference between the space and time optimized version of OTALA can
be seen in figure 8.10. Here, the cumulative runtime over all incoming events is
used. Both show a rather linear runtime behavior, the time optimized version runs
about 10 times faster. The time optimized allocates the maximum amount of space
at the beginning, even if it is not needed, whereas the space optimized version only
allocates memory space when it is necessary.

128 8 Empirical Results

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

events

ru
nt

im
e

[m
s]

runtime (space optimized)

runtime (time optimized)

Fig. 8.10 Difference between the space and time optimized version of OTALA.

8.3 Top-Down vs. Bottom-Up

In this section, we empirically analyze the influence of the merging order (bottom-up
and top-down) on the performance of the identification. For this, the same implemen-
tation is used, but the merging order is exchanged. Both, the bottom-up and top-down
strategy are used to compare the influence on the learning procedure, without the
effects that depend on other algorithms.

The analysis comprises the comparison of:

1. number of needed compatibility checks
2. number of (recursive) determinizations
3. runtime of the learning procedure

8.3.1 Experiments with the Reber grammar

First, we used the Reber grammar for some experiments. The modified Reber gram-
mar, as shown in Figure 8.2, was used to generate input learning samples. These
generated input samples were used to identify Timed Automata using both, the
top-down and bottom-up strategy. Then we compared the three criteria from above.
The results are given in Figures 8.11, 8.12 and 8.13.

Figure 8.11 shows the number of needed compatibility checks as a function of
the number of states in the prefix tree acceptor n0. It can easily be seen that the
bottom-up strategy needs less compatibility checks. Due to the bottom-up merging
order, less (in this case even no) recursive checks have to be performed than using
the top-down strategy and therefore the amount of compatibility checks is lower.

Figure 8.12 shows the number of determinizations depending on the number of
states in the PTA. While the number of determinizations for the top-down strategy is
growing with the number of states in the PTA, the bottom-up strategy did not use any
determinization. This is due to the small size of the input strings (which are around

8.3 Top-Down vs. Bottom-Up 129

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

n
0

#c
om

pa
tib

ili
ty

 c
he

ck
s

top−down

bottom−up

Fig. 8.11 Comparison of needed compatibility checks for BUTLA and OTALA using Reber
grammar.

5-10 characters), which results in a small tree size. Since the bottom-up strategy
starts with the leafs (final states) and proceeds upwards to the root (initial state), and
the tree height is small, no recursive checks and, therefore, no determinizations are
necessary.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

n
0

#d
et
er
m
in
iz
at
io
ns

top−down

bottom−up

Fig. 8.12 Comparison of needed determinizations for BUTLA and OTALA using Reber grammar.

The number of needed compatibility checks and determinizations finally influ-
ences the needed amount of time. Since the bottom-up strategy needs less compatibil-
ity checks and less determinizations, the computation is also faster. Both, runtime for
bottom-up and top-down strategy can be approximated quadratically, but the bottom-

130 8 Empirical Results

up strategy works faster by a factor of ≈ 2.5. The runtime results are illustrated in
Figure 8.13.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

n
0

tim
e

[m
se

c]

top−down

bottom−up

Fig. 8.13 Comparison of needed amount of time for BUTLA and OTALA using Reber grammar.

8.3.2 Experiments with an artificial data set based on random walk
simulation

We also used the random walk simulation according to Section 8.1.1.2 to generate
artificial data. The random walk simulation starts with a random initial condition
(here: random signal vector) and runs randomly trough the whole state space. The
simulation result is one long sequence of events. This leads to a PTA that consists of
one long linked list of states.

In Section 7.4, we stated that the bottom-up strategy weakens for PTAs, which
consist of only one long linked list of states. The advantage of the bottom-up strategy
can only be exploited when there exist pairs of long compatible subtrees near to the
leaf. However, the following two points are not met by the random walk simulation:
(1) The random walk simulation provides only one long event sequence, i.e. no pairs
of long subtrees and (2) the event sequences are generated by pure randomness and
therefore only few compatible event sequences will be found such that the advantage
of avoiding the recursive check cannot be exploited.

As can be seen in Figures 8.14, 8.15 and 8.16, the top-down merging order gives
better results for this kind of PTAs.

Figure 8.14 shows the comparison of the number of compatibility checks. The
bottom-up merging order needed significantly more compatibility checks than the
top-down strategy.

As already mentioned for the Reber grammar, the top-down order performed
significantly more determinizations. Approximately 1100 states (of the 1500 states
in the PTA) have been merged in the determinization procedure.

8.3 Top-Down vs. Bottom-Up 131

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

n
0

#c
om

pa
tib

ili
ty

 c
he

ck
s

top−down

bottom−up

Fig. 8.14 Comparison of needed compatibility checks using data from the random walk simulation
which leads to a long linked list as PTA.

0 500 1000 1500
0

200

400

600

800

1000

1200

n
0

#d
et
er
m
in
iz
at
io
ns

top−down

bottom−up

Fig. 8.15 Comparison of needed determinizations using data from the random walk simulation
which leads to a long linked list as PTA.

Due to the high amount of determinizations in using the top-down merging order
and the high amount of compatible checks using the bottom-up merging order, the
bottom-up strategy requires more computation time for this kind of data. Figure 8.16
shows the simulation results for the computation time.

The results of the random walk simulation show the weakness of the bottom-up
strategy. However, it is an artificial data set, which is far away from practice. The
relevant application scenarios show a more structured behavior. In general, there
exist pairs of long compatible subtrees, such that the advantages of the bottom-up
strategy can be exploited.

132 8 Empirical Results

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

n
0

tim
e

[m
se

c]

top−down

bottom−up

Fig. 8.16 Comparison of needed time using data from the random walk simulation which leads to a
long linked list as PTA.

Finally, it can be concluded that the bottom-up strategy works faster for the
relevant cases.

8.4 Convergence of the Identification Algorithms

Both, BUTLA and OTALA, converge towards the target automaton after a certain
amount of input data. However, both algorithms show a different convergence behav-
ior. OTALA is able to detect the convergence autonomously, while BUTLA is not
able to do so. The convergence of BUTLA can only be shown by identifying several
models and comparing them.

In this section, we analyze the convergence capabilities of the identification
algorithms BUTLA and OTALA empirically.

8.4.1 Convergence of the Identification Algorithm BUTLA

In contrast to OTALA, BUTLA is not able to determine the convergence of the
identification process. The convergence can only be determined a posteriori. For this,
several input data sets with an increasing amount of data are used to identify multiple
models and to compare the output model. If the models are different, a new data set
with more input samples is used to identify a new model. At some point in time, the
model will not change compared to the previous one. If it does not change further
over a certain time, the identification process can be considered as converged.

In [Vod13], the number of identified states is taken as convergence criterion. Here,
we extend the convergence criterion using a qualitative measure.

8.4 Convergence of the Identification Algorithms 133

The correctness of a model can be determined by its ability to recognize anomal
behavior. Therefore, in an iterative manner, models with an increasing number
of input samples are identified. The identified models are then used for anomaly
detection using a separate data set with positive samples that are not used for model
identification. At some point in time, the specificity (true negative rate) should reach
100%, i.e. all positive samples are recognized as such by the algorithm, which means
that the identification converged. If a representative data set is used, the identification
process can be considered as converged as soon as the specificity reaches 100%.

In an experiment, the Reber grammar was used to evaluate the convergence
behavior. As identification input, samples from the Reber grammar was used in
increasing number. The anomaly detection was performed on a separate data set
of 200 positive samples, which were not used for model identification. Figure 8.17
shows the convergence curve of the specificity. After training the model with 130 or
more learning samples, the specificity reached 99.5%, only one of the 200 samples
could not be classified correctly.

0 25 50 75 100 125 150 175 200 225 250 275
0

20

40

60

80

100

input samples

sp
ec

ifi
ci

ty
 (

%
)

Fig. 8.17 Convergence of the model identification with BUTLA based on specificity calculation.

Of course, this method of analyzing the convergence of identification using
BUTLA is only usable in offline experiments and not for the identification in practice.
But it shows the ability of BUTLA to converge to the correct automaton.

8.4.2 Convergence of the Identification Algorithm OTALA

In Section 6.3, we introduced the online identification algorithm OTALA. One of its
main benefits is that it is able to recognize the convergence of the identification by
checking whether the input samples lead to a change in the model. If the model did
not change for a certain amount of time, the identification process can be considered
as converged.

In this section, the convergence of OTALA is empirically analyzed. According to
Section 6.3, we use the following convergence criteria:

134 8 Empirical Results

1. Number of states
2. Number of transitions
3. Number of changing (enlarging) time bounds

In Section 6.3, it was claimed that the correct model is identified when the afore-
mentioned criteria converged. In this section, we empirically analyze this convergence
of the model identification using the method as described in Section 8.4.1: Step by
step, in an iterative manner, a model is identified for a given data set using an increas-
ing amount of learning samples. In each step, a test data set of 200 positive examples,
which were not used for identification, was used for anomaly detection. For each
setting, the specificity according to Equation 8.1 is calculated. This is compared with
the convergence of the three mentioned criteria.

The two curves are displayed in Figure 8.18

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

input samples

specificity (%)
changes

Fig. 8.18 Comparison of the convergence curve (number of changes) with specificity for OTALA.

Both, the curve of calculated specificity values and the curve of amount of changes,
show a similar behavior. At around the 100th input sample, both reach their final
value. This means that the three aforementioned points can be used to determine the
convergence of identification.

8.4.3 Comparison of the Convergence Behavior with BUTLA and
OTALA

In this section we compare the convergence behavior of the identification process
with BUTLA and OTALA. Using the same data set (in an iterative manner with
an arising amount of learning examples), both algorithms were used to identify
Timed Automata. For each identified automaton, a disjunctive data set of 200 positive
learning examples was used to perform the anomaly detection, again the same data
set for BUTLA and OTALA. As a convergence criterion, the calculated specificity is
used as before. To compare the convergence behavior, both convergence curves are
plotted in the same figure (see Figure 8.19).

It can be seen that both algorithms show a similar convergence behavior. OTALA
needed approximately 100 learning samples to reach the final specificity of 98,5%.

8.5 Empirical Analysis of the Anomaly Detection 135

0 50 100 150 200 250 300
0

20

40

60

80

100

#UinputUsamples

sp
ec

ifi
ci

ty
U(

%
)

OTALA
BUTLA

Fig. 8.19 Comparison of the convergence behavior using BUTLA and OTALA.

BUTLA needed some more learning examples (around 130) to reach the final speci-
ficity of 99.5%, which however was slightly better than OTALA.

Since both algorithms show a similar convergence behavior, the automatic conver-
gence detection of OTALA can be exploited when determining the needed amount of
data for the identification with BUTLA. For this, the identification algorithm OTALA
runs in parallel during data acquisition (see step 0 in Section 6.2.1). As soon as
OTALA converged (the three criteria from Section 6.3), it can be assumed that the
amount of data is sufficient to converge with BUTLA as well.

8.5 Empirical Analysis of the Anomaly Detection

As already mentioned in Section 6.2.3, the timing is analyzed in a preprocessing step
for each event. In this context, the timing distributions in each event are identified. If
the timing behavior consists of several different distributions, these are identified as
well.

The separation into different modes is not always performed correctly. Following
errors can occur in the identification of the underlying distributions:

1. Correctly identified single-mode distribution but errors beyond the borders of the
minimum and maximum time value

2. Two modes are separated correctly but parts of the distributions are overlapping

These error types are evaluated in this section. Since the identification of the un-
derlying distribution functions assumes a Gaussian distribution (see Section 6.2.3.2),
here, the calculation of the identification error is based on the same assumption. The
same way it can be calculated for the assumption of other distribution functions.

In Section 8.5.3 we empirically analyze how the anomaly detection accuracy can
be increased by enlarging the identified time bounds.

136 8 Empirical Results

8.5.1 Error beyond the borders of the minimum and maximum
time value

False positive timing errors occur when a timing is observed for a correct behavior
during runtime that has not been learned before and therefore is not included in the
model. ANODA uses the learned relative time ranges to check the timing behavior,
i.e. a timing error is signaled if the observed time value is below the minimum or
above the maximum time stamp.

To calculate the false positive timing error for a single transition, again, a normal
distribution for the relative timestamps is assumed. Given the density function

φ(t) =
1√
2πσ

· e−
1
2 (t−µσ)

2

, (8.4)

with µ the mean and σ the standard deviation of the underlying normal distribution
for the observed data, the false positive error PFP can be calculated as

PFP =

min∫
0

φ(t)dt+

∞∫
max

φ(t)dt. (8.5)

The error PFP is marked in figure 8.20.

min max µ

σ

t

φ(t)

Fig. 8.20 Gaussian normal distribution and the false positive error (black area)

Empirical measurements delivered an average false positive rate of about 3%,
however, if there exist only few observations for a certain branch in the automaton,
the false positive error for single transitions can rise up to 30%.

The false positive error rate could be reduced using wider time ranges, but the
false negative error rate raised in the same time.

Remark 3. The normal distribution is not restricted to positive values. However, time
stamps in technical systems can only have positive values. Yet this calculation still
holds true since the error, as given in Equation 8.5, only gives an upper bound. The
real error is always smaller.

8.5.2 Error with overlapping distributions

So far, only the case of uni-modal distribution has been considered. Taking multi-
modal distributions into account, the overlapping error has to be considered as well.

8.5 Empirical Analysis of the Anomaly Detection 137

Assuming two Gaussian distribution functions according to Equation 8.4, the
overlapping error can be calculated as

PFP =

min2∫
0

φ2(t)dt+

∞∫
max1

φ1(t)dt, (8.6)

where φ1(t) and φ2(t) are the two identified distribution functions with their
parameters respectively. Additional to the overlapping error in Equation 8.6, the error
beyond the borders of the minimum and maximum time value has to be calculated
according to Equation 8.5.

µ1 t

φ(t)

t µ2

σ2 σ1

max1=

min2

Fig. 8.21 Gaussian normal distribution and the overlapping of two distribution functions (black
area)

8.5.3 Enlarging identified Time Bounds

Running the anomaly detection in a real plant setup, we encounter the problem of
that often a model cannot be identified completely due to the lack of enough input
data. The result is a high false positive rate, i.e. in many cases, a correct behavior is
classified as anomalous. this is particularly true for the timing behavior. A solution
for this problem could be to enlarge the time bounds and therefore accept more of
the observed behavior. However, this leads to conflict: The larger the time bounds,
which reduce the false positive error rate, the higher is the false negative error rate.

During the anomaly detection phase, the running plant’s timing behavior is com-
pared with the prognosis of the identified model. A timing anomaly is signaled when-
ever a measured timing is outside the timing interval δ (see Definition 15) in the iden-
tified Timed Automaton. Here, the interval is defined as [µ−k ·σ, µ+k ·σ], k ∈ R+

where µ is the mean value of the corresponding original observations’ timings and σ
is the standard deviation.

In a first experiment, the Lemgo Model Factory is used again. A frequently
occurring error for example is the wear of a conveyer belt which leads to a decrease in
the system’s throughput. 12 production cycles are used to identify a normal behavior
model. The PTA comprises 6221 states. BUTLA reduces this to 13 states—this
corresponds to a compression rate of 99.79%.

To verify the model learning algorithm with a high amount of data, in a second
experiment, data is generated artificially using the modified Reber grammar (extended

138 8 Empirical Results

with timing information). 1000 samples are generated to learn the model, then 2000
test samples are created where 1000 comprise timing errors. From the initial 5377
states in the PTA, a model with 6 states is learned.

Table 8.2 shows the error rates for the anomaly detection applied to both data sets
using different factors k.

Table 8.2 Experimental results using real and artificial data.

k =1 k =2 k =3 k =4

false negative rate (%) - LMF 2 5.3 12.8 30
false positive rate (%) - LMF 12 4.2 2 0
false negative rate (%) - Reber grammar 0 1.3 7.5 21
false positive rate (%) - Reber grammar 9 3.1 1.1 0

The experimental results in Table 8.2 show that the false positive rate could be
reduced by enlarging the time bounds. But at the same time, the false negative rate
rose. The application of the enlargement of the time requires a tradeoff between false
positive and false negative rate. This has to be done separately for each application.

8.6 BUTLA vs. OTALA

Finally, BUTLA and OTALA are compared from the practical point of view.
For this evaluation, a part of the smart factory has been used. It comprises 10

IOs (6 inputs, 4 outputs). The acquired data set comprised 12 production cycles.
Since this data set is not sufficient to converge to the correct model, it was extended
by simulation as described in Section 8.1.1.3. The final data set comprised 5000
production cycles. However, an expert of the plant guessed that 200 production cycles
should be enough to identify a correct behavior model. To keep the scenario realistic,
only the first 200 samples were used by BUTLA to learn a model. OTALA needed
500 samples to converge. Both OTALA and BUTLA identified a model with 15
states.

Then, 3000 positive and 100 negative samples where used for anomaly detection.
The result is given in the confusion matrix (according to [TSK06]) in Table 8.3. The
accuracy is calculated according to Equation 8.3.

Table 8.3 Confusion matrix for experiment in the smart factory.

true true false false
positive negative positive negative
fTP fTN fFP fFN Accuracy

OTALA 100% 98% 2% 0% 99%
BUTLA 100% 76% 24% 0% 88%

It can be seen, that all inserted errors could be found with both identified models
(100% true positives and 0% false negative). However, since BUTLA used too little
learning examples, the value for false positives is very high (24%). This clarifies

8.7 BUTLA vs. alternative methods 139

the problem, which is not known in advance that how many samples are needed for
learning. The number of false positives for OTALA is smaller (2%) since the learning
converged and only some outliers have not been used for learning.

In this experiment, we used only 200 samples for learning the model with BUTLA,
because this number was guessed by an expert. This amount of data was not sufficient
to converge, and therefore, the accuracy is worse than using OTALA (which learned
until convergence). However, using the same number of learning samples for BUTLA,
it reaches the same accuracy as OTALA.

It can be seen that both algorithms produce good results, but it reveals the weak-
ness of BUTLA: It is not possible to determine how many learning samples are
required to learn a correct model, whereas OTALA is able to recognize convergence
autonomously and therefore uses the minimum number of learning samples only.
Therefore, OTALA is especially suited for the case if only little knowledge about the
process is available.

In Section 9.2, BUTLA and OTALA are compared concerning the quality for
anomaly detection using data sets from a real production plant.

8.7 BUTLA vs. alternative methods

The quality of anomaly detection with models identified by BUTLA has also been
compared with the quality of anomaly detection with models identified by alternatives
methods, namely neural networks and decision tree learning. For this, two subsystems
of the LMF have been used (transport modules). First, a learning data set has been
used to identify a model (the same data set for each method). Then, a test data set
has been used for anomaly detection (again the same data set for each method). The
test data set included positive as well as negative examples. So, the results are given
in the confusion matrix in Table 8.4.

Table 8.4 Confusion matrix for the experiment in the LMF.

true
positive

true
negative Accuracy

BUTLA 100% 97% 98,5%
Neural Networks 40.2% 42.2% 41.2%
Decision Trees 90.5% 83.3% 86.9%

BUTLA was able to detect all inserted anomalies. The number of false positives
is also a good value, only some outliers (mainly timing deviations) have not been
learned. In total, a high accuracy of 98.5% is achieved. In contrast, the neural
networks and decision trees achieved an accuracy of only 41% and 87% respectively.

Part III

Applications

Chapter 9
Applications

A drawback of many contributions is the lack of real data. Many algorithms are tested
on artificial data only, which in many cases are specially tailored for the proposed
identification algorithm. These algorithms often fail when they use real data. The
algorithms proposed in this thesis are not only used for artificial data, but also in real
applications of industrial production plants.

The usability of the identified models for anomaly detection has been shown in
various application scenarios. First, the model factory at the Institute Industrial IT in
Lemgo has been used to test the basic functionality of the algorithm. The results and
some figures are shown in section 9.2. After this, the algorithm has been tested at a
real plant at Jowat AG in Detmold (see section 9.3). Due to the size and complexity,
this plant was more challenging than the model factory.

The main purpose of the learned models is the anomaly detection in production
plants. Therefore, this aspect is specially considered.

The contributions of this chapter are the following:

• We describe the framework proKNOWS, which is an implemented tool chain for
model identification, diagnosis and optimization.

• We show the applicability of the proposed identification algorithms for the Lemgo
Model Factory, an experimental plant setup.

• We show the applicability of the proposed identification algorithms for a real
process plant at Jowat AG.

This Section is organized as follows: First in Section 9.1, the tool box proKNOWS
is introduced, which was developed as framework for model identification and
diagnosis algorithms. Section 9.2 shows the applicability at the Lemgo Model Factory
(LMF), which is an experimental production plant serving for tests of different
research work. Finally in Section 9.3, we show the application at a process plant at
Jowat AG.

9.1 Tool Box Implementation

In a joint research work with the research institute Fraunhofer IOSB-INA, Pro-
KNOWS, a framework for model identification, diagnosis and optimization has been

143

144 9 Applications

developed. ProKNOWS comprises several algorithms for the identification of behav-
ior models and for the diagnosis of production plants. Here, among others, BUTLA
and OTALA are used for model identification and ANODA for the anomaly detection.
Figure 9.1 shows the architecture of the tool box proKNOWS.

OPC UA Server

Presentation Layer

OPC UA Client

OPC UA
Server

Model
Learning

Diagnosis
Optimi-
zation

GUI

Fig. 9.1 The architecture of the tool box proKNOWS.

Using a datalogger as proposed in [PKN+12, PN12], the data is acquired from the
production plant and passed to an OPC UA server. Any OPC UA client can connect
to this server and subscribe the required signals.

proKNOWS is also equipped with an OPC UA client. The obtained data is
forwarded to one of the chosen applications. These are diagnosis, model identification
and optimization.

For each module which has to be monitored, a separate instance is created. Here,
the BUTLA or OTALA algorithm is used to identify a behavior model for each
module. If OTALA is chosen for the identification, the data are received online
directly via the OPC UA client. For the identification with BUTLA, the data are
stored into a database, before they are used offline to identify a model.

In the diagnosis phase, as for the identification with OTALA, the data are usually
received online directly via the OPC UA client. It also provides the possibility to run
the anomaly detection on historical data, which is stored in the data base.

Finally, the user is informed about all the actions in a separate graphical user
interface (GUI). For this, an OPC UA server-client relationship is established again.
The advantage is the platform independence, as any kind of platform can be used for
visualization, e.g. iOS or Android devices.

Figure 9.2 shows a screen shot of the graphical user interface in proKnows.
The visualization (in this configuration) consists of four parts:

9.2 Lemgo Model Factory 145

Fig. 9.2 Graphical user interface in proKnows.

• Top left: At the top left, the identified automaton is displayed. In the displayed
screen shot, currently the diagnosis phase is active. Below the visualized automa-
ton, a detailed information about the last event is given. The current state is colored
green, the historical path of the automaton is colored blue. In case of an occurring
anomaly, the corresponding elements are colored in a different color to highlight
the anomalous behavior. In this example, the transition between state S3 and S4 is
marked in a different color because the underlying timing was anomalous.

• Bottom: Detailed messages about any possible error are given in the message
box at the bottom. In this screen shot, it gives detailed information about the error,
which is highlighted in the automaton: A timing error occurred between state S3
and S4.

• Top right: In this field some other visualization can be placed. The given screen
shot shows the visualization of the Discrete State Encoding (DSE, see [MTN12]
for more details).

• Middle: The field in the middle allows the visualization of continuous signals. In
this example, the visualization of the actual power and energy consumption was
chosen.

The framework proKNOWS will continuously be extended by including more
identification and diagnosis algorithms.

9.2 Lemgo Model Factory

The Lemgo Model Factory (LMF) is an exemplary plant at the Institute Industrial
IT in Lemgo, Germany. It serves as an experimental platform for the first imple-
mentations of the research work done at the institute. The LMF consists of eight
modules with different roles such as transporting, weighing, packing and storing
bulk material (corn) and finally for producing (popcorn). The modules 1, 2 and 3 are
used to transport and weigh the bulk material, module 6 is used to pack portions of

146 9 Applications

corn into bottles, which are transported via a conveyer belt (module 7) to a storing
robot (module 8). Finally, in module 4 and 5, popcorn is made from the corn. In total,
around 250 sensors and actuators are used, which are controlled by a central PLC
and connected via an industrial bus system, Profinet. Figure 9.3 shows the LMF with
the SCADA system.

Fig. 9.3 Lemgo Model Factory.

We performed several experiments with some acquired data. Here, we give some
results of experiments, using module 1 and 2. In total, 34 examples of the good
behavior were available.

Figure 9.4 shows an identified Timed Automaton from the second module in
the Lemgo Model Factory. To keep the figure clear, the timing information is not
displayed.

0 1I_xSilo1MinFull=1 2O_xAspirator1=1

3O_xConveyorBelt=1 4

O_xConveyorBelt=0

6I_xSilo1MinFull=0

5

O_xAspirator1=0O_xConveyorBelt=0

O_xAspirator1=1

 0

 1I_xSilo2MinFull=1

 9

I_xSilo2MinFull=1;I_xSilo2MaxFull=1
 2

O_xAspirator2=1

O_xAspirator2=1

 8O_xAspirator2=1

 3O_xMuscleTrigger=1

 5 6I_xSilo2MinFull=0 7I_xSilo2MinFull=1
O_xMuscleTrigger=1 4

O_xMuscleTrigger=0

O_xAspirator2=1

O_xAspirator2=0

O_xMuscleTrigger=1

 10

I_xSilo2MaxFull=0

O_xMuscleTrigger=1

Fig. 9.4 Identified Timed Automata from the first two modules in the Lemgo Model Factory.

First, we performed the 2-fold cross validation to evaluate the correctness and
generalization of the model identification algorithms. Since the single examples are
independent and the order is arbitrary, we divided the training set into the following
groups: (1) 1-17 and (2) 18-34.

Table 9.1 shows the results for the 2-fold cross validation for LMF data sets
of modules 1 and 2. Obviously, the amount of data (17 production cycles) is not
sufficient to identify a correct model. BUTLA reaches an average false positive rate
of 47%, OTALA even reaches an average rate of 79%.

9.2 Lemgo Model Factory 147

Table 9.1 Results for 2-fold cross validation for LMF data sets of modules 1 and 2.
Identification algorithm data set training subset test subset False Positive average False Positive

BUTLA
LMF 1 1 2 35.3%

47%2 1 76.5%

LMF 2 1 2 11.8%
2 1 64.7%

OTALA
LMF 1 1 2 76.5%

79.4%2 1 82.4%

LMF 2 1 2 70.6%
2 1 88.2%

Additionally, a Leave-One-Out cross validation (LOOCV), which is a special
variant of the k-fold cross validation, was performed. The results are given in Table
9.2.

Table 9.2 Results for Leave-One-Out cross validation for LMF data sets of modules 1 and 2.
identification algorithm data set False Positive Average False Positive

BUTLA LMF 1 79.4% 75%LMF 2 70.6%

OTALA LMF 1 85.3% 83.9%LMF 2 82.4%

Since more data (33 production cycles) were used to identify the models in this
experiment, better false positive rates were achieved. BUTLA has a false positive rate
of 75% and OTALA has 84%. Also, the difference between the two values decreased.
Using more examples for the identification, the difference between the two values
would further decrease and finally reach some value close to 100%.

We also performed some experiments with real data and inserted errors. Since er-
rors appear randomly, we used the LMF to insert some anomalous behavior. However,
it is difficult to insert errors in a running production plant and create a huge amount
of observations. Therefore, only few data are available for the anomaly detection
experiment with real errors.

In an experiment we inserted 17 different failures. Using the ANODA algorithm
and the identified Timed Automata, we were able to detect 88% of the failures
correctly. In the remaining 12% we were able to detect the error, but the error cause
was not identified correctly.

Although we were able to detect most of the errors (at least the failures which were
enforced by ourselves), we encountered a problem: Often, a correct behavior was
recognized as an error. This happens because we are not able to learn the completely
correct behavior model. For this, we would need an infinite number of recorded test
samples. To prevent this, it is possible to enrich the recorded observations e.g. by
using a normal distribution and create additional samples. Another possibility is
to adapt the model during runtime. For this, we would need a supervised learning
algorithm which allows the plant operator to add a path to the model. This issue is
not yet completely solved and should be addressed in future work. Attempts at a
solution are given in Section 6.5.

148 9 Applications

9.3 Plant at Jowat AG

The proposed algorithms have also been tested at a real production plant at the Jowat
AG.

The Jowat AG, with headquarters in Detmold, is one of the leading suppliers of
industrial adhesives. These are mainly used for woodworking and furniture manufac-
turing, in the paper and packaging industry, in the textile industry, for the graphic arts
and the automotive industry. The company was founded in 1919 and has manufactur-
ing sites in Germany in Detmold and Zeitz, plus three other producing subsidiaries,
the Jowat Corporation in the USA, the Jowat Swiss AG and the Jowat Manufacturing
in Malaysia. The supplier of all adhesive groups is manufacturing approx. 70,000
tons of adhesives per year, with around 790 employees. A global sales structure with
16 Jowat sales organizations plus partner companies is guaranteeing local service
with close customer contact.

The data was logged in one of the plants during production of one product. In
total, 14 production cycles were logged. The modeled part of the system is the input
raw material subsystem, which contains 6 material supply units (smaller containers)
connected to a large container where materials are mixed. Recorded discrete variables
are 15 valve open signals and their feedbacks (in total 30 discrete variables).

We compared some key values of the identification using BUTLA and two other
algorithms from the state of the art: Alergia and MDI. In the experiment, the number
of states, comparisons, merges and determinizations have been compared. Since
OTALA is an online learning algorithm, not using the state merging approach, it does
not fit into this experiment. The results of the algorithms’ comparison are given in
Table 9.3.

Table 9.3 Algorithm comparison for Jowat AG data.

Alergia MDI BUTLA
#states in PTA 445 445 490

#states in automaton 27 16 13
#merges 418 429 477

#comparisons 1025 605 3702
#determinizations 348 578 188

reduction(%) 93.93 96.4 97.4

The PTA size of both MDI and Alergia are equal. Since BUTLA additionally
considers time and splits transitions with multiple time modes, BUTLA creates a
bigger PTA. High number of merges and high size reductions are evident for all
algorithms. BUTLA does more comparisons. This is due to comparing the timing of
transitions, in addition to comparing their probabilities. However, ALERGIA and
MDI perform more determinizations since they both proceed top-down and therefore
they have to recursively merge the subtrees of compatible states. An expert of the
plant has examined the outcome and stated that he was able to see the recipe of the
product in the automaton identified by BUTLA.

Due to the secrecy agreement, no figures of the identified automata can be shown
here.

The data we obtained included measurements of the correct production operation,
without observed erroneous behavior. Since the plant is daily used for production, it

9.3 Plant at Jowat AG 149

was not possible to insert some errors and to test the anomaly detection capabilities.
In future work, the algorithms will be connected to the plant prototypically. The
data will be received in real time, such that ANODA can find anomalies during the
running production.

Part IV

Conclusion

Chapter 10
Conclusions and Future Work

During the research for this thesis, some questions were answered and some new
questions arose. In this chapter, we give a summary of the research work done in this
thesis and an outlook to the future work.

10.1 Conclusions

This thesis started with the claim that manual model generation is time and cost
intensive. It is desirable to identify models automatically. The target application
domain is the automation industry, and production systems naturally depend on
time. Therefore in Chapter 2, an appropriate modeling formalism was identified,
which is suited to capture timed behavior. Further requirements are the suitability for
automatic identification and for anomaly detection. These requirements are met by a
Timed Automaton, which additionally scores in the intuitive interpretability and the
ability for visualization.

Based on the formalisms that were given in Section 3, in Section 4 the state
of the art research of the complexity of identification of finite automata was re-
viewed. Section 5 summarized some state of the art identification algorithms for
finite automata.

In Part II, we presented the main contribution of this thesis. Chapter 6 presented
the following algorithms:

• We introduced BUTLA for the identification of Timed Automata. This algorithm
firstly uses the bottom-up merging strategy, which results in a computation speed
increase.

• We introduced OTALA, which is the first passive online algorithm for the iden-
tification of Timed Automata. It is specially designed for the identification of
normal behavior in cyber-physical production systems where observations cannot
be stored and it is not possible to use expert knowledge.

• We introduced ANODA, the anomaly detection algorithm. It uses the Timed
Automata identified by BUTLA or OTALA and finds anomalies in the current
plant behavior.

153

154 10 Conclusions and Future Work

In Chapter 7, these algorithms were analyzed theoretically. The main theorems
which we proved are the following:

• BUTLA is weakly polynomially identifiable in the limit.
• BUTLA is strongly polynomially identifiable in the limit under certain conditions.
• BUTLA identifies the timing in the limit.
• The usage of a timing preprocessing instead of the splitting operation leads to a

computation speed increase.
• The bottom-up merging strategy runs faster for relevant cases than the top-down

merging strategy.
• The anomaly detection problem can be solved in logarithmic space, ANODA ∈
L.

Furthermore, the proposed algorithms were evaluated empirically. The results
are given in Chapter 8. As a main part of that chapter, BUTLA and OTALA are
compared concerning characteristic features such as runtime behavior, convergence
of identification and ability for anomaly detection.

Finally in Chapter 9, we gave three examples of how the identification and anomaly
detection algorithms are used in practice.

• The model identification and diagnosis framework proKNOWS that uses BUTLA
and OTALA for model identification and ANODA for anomaly detection.

• The developed algorithms have been used in the LMF, the model factory at the
institute. The applicability has been proven by empirical evaluations.

• The model identification algorithms have further been tested in a real process
plant at Jowat AG.

These examples prove the applicability of the proposed algorithms for real appli-
cation scenarios.

10.2 Future Work

Much research work has been done in this thesis. However, not all question have
been answered and additional questions arose. These are subject to future work.

Adaptive learning
In section 6.5 we introduced two approaches for the adaptive modification of

Timed Automata, which have been identified using BUTLA and OTALA respec-
tively. However, they partially use a work around to adapt the model. Especially
for BUTLA, it is still an open question that how the model can be adapted online
while the identification algorithm works offline.

Identification of Hybrid Automata
BUTLA has already been extended to HyBUTLA [Vod13] for the identification

of hybrid automata. In the next step, OTALA will be extended for the identification
of hybrid automata. Here, compared to HyBUTLA, additional research questions
are open, for instance, how the continuous signals can be approximated online.

Model-based diagnosis
ANODA, so far, is able to detect anomalies in the behavior of timed systems.

Combining with the approach from [Vod13], anomalies in continuous signals

10.2 Future Work 155

can also be detected. However, model-based diagnosis additionally includes the
identification of the error cause, which is still not realized and remains an open
topic for future work.

Practical usage of the identified automata in real applications
In Chapter 9 we gave some examples for the practical usage of the identified

automata. However, the framework proKNOWS is still a prototypical software
and has to be developed further to allow a continuous usage in an industrial
environment.

In Sections 9.2 and 9.3 we gave two examples of real plants in which the
identified models have been used. However, the usage of the Jowat data is restricted
to offline identification so far; this is due to the missing online data connection.
Furthermore, at least for the plant in Jowat, no error samples were available. In
future work, the proKNOWS will be be connected directly to the plant such that
an online analysis can be performed.

List of Figures

1.1 The algorithmic focus is divided into two parts: Model identification
and anomaly detection. 3

2.1 Bounded time model: Filling of a container. 12
2.2 Implicit (a) and explicit time model (b). 13
2.3 Multi-mode model in a (a) diagram and (b) hybrid automaton. . . . 14
2.4 A linear (a) and branching time model (b) [FMMR10]. 15
2.5 General scheme of process model-based fault detection using dynam-

ical system model according to [Ise04]. 17
2.6 A technical system and corresponding state machine. 18
2.7 An example Petri net with two execution steps. 19
2.8 The timing behavior changes based on the container size. 23

3.1 The need of a parallelism model. 27
3.2 The system identification process. 29
3.3 Anomaly Detection in a technical process 29
3.4 Deterministic Finite Automaton (DFA). 31
3.5 Probabilistic Deterministic Automaton (PDFA) 32
3.6 Nondeterministic Finite Automaton (NFA) 32
3.7 Probabilistic Deterministic Timed Automaton (PDTA) 34
3.8 An example of a Probabilistic Deterministic Hybrid Timed Automaton. 35

4.1 Analogy between the given input strings and the Kolmogorov com-
plexity as regular expression. 39

4.2 Identification from given data and identification in the limit [Vod13]. 41
4.3 Difference between active and passive learning [Ton01]. 41
4.4 Example automaton to demonstrate that timed automata are not

polynomially reachable (according to [VWW08]). 45

5.1 Model-based and Phenomenological Approach. 50
5.2 Automata with and without don’t care states. 53
5.3 The general offline learning methodology using the state merging

approach. 54
5.4 The idea and operating principle of hybrid automata. 60

6.1 BUTLA identification method. 68
6.2 An event with a multi-mode timing behavior is separated into its

modes. 69
6.3 The principle of data acquisition using a network tap. 71
6.4 Strict borders with minimum and maximum time stamps. 74

157

158 LIST OF FIGURES

6.5 The usage of probability density functions over time allow to give
warnings before signaling an error. 74

6.6 Cumulated density functions for a data set and chosen distribution
functions. 75

6.7 Box plot for calculated p-values of Kolmogorov Smirnow Tests. . . 76
6.8 An event which is used in different process contexts is treated as two

different events. 77
6.9 A different timing learning approach. 77
6.10 Principle of the mode separation method. 78
6.11 Artificial data set for the running example. 80
6.12 Normalized probability density function. 80
6.13 Normalized probability density function, separated into the modes. . 81
6.14 Creating timed prefx tree acceptor using events with single/ multiple

modes. 82
6.15 Creating the timed PTA with local timing updates. 84
6.16 Creating the timed PTA with global timing updates. 85
6.17 Example states for the computation of the compatibility. 87
6.18 The principle of the online learning algorithm OTALA. 91
6.19 Convergence of the learning algorithm OTALA 92
6.20 An identified path in the automaton (Pautomaton) and a currently

observed path through the automaton (Pobserved) with an anomaly
at event f . 94

7.1 Runtime behavior of OTALA. 102
7.2 State convergence behavior of OTALA. 103
7.3 Idea for proving Lemma 5. 106
7.4 Globally calculated PDF and locally identified time range can lead

to the situation that the mean of the distribution lies beyond the
identified time range. 107

7.5 One mode (with µ12) is wrongly separated into different modes (with
µ1 and µ2) . 108

7.6 Two different modes (with µ1 and µ2) are wrongly combined into
one mode (with µ12) . 108

7.7 Illustration of ε, the timing distribution separation error. 109
7.8 The advantage of a bottom-up merging order. 113
7.9 Runtime behavior of the algorithms based on bottom up and top

down strategy. 114
7.10 The problem of the splitting operation. 115

8.1 Automaton of original reber grammar 120
8.2 Automaton of modified reber grammar 121
8.3 Principle of the random walk (drunken sailor) simulation. 122
8.4 Simulation of identified model to obtain more data. 122
8.5 BUTLA shows a rather quadratic runtime behavior for Reber data. . 125
8.6 Based on the amount of input samples, BUTLA shows a rather linear

behavior. 125
8.7 Runtime behavior of OTALA. 126
8.8 Convergence behavior of OTALA. 126
8.9 Runtime of OTALA plotted against number of states. 127
8.10 Difference between the space and time optimized version of OTALA. 128

LIST OF FIGURES 159

8.11 Comparison of needed compatibility checks for BUTLA and OTALA
using Reber grammar. 129

8.12 Comparison of needed determinizations for BUTLA and OTALA
using Reber grammar. 129

8.13 Comparison of needed amount of time for BUTLA and OTALA
using Reber grammar. 130

8.14 Comparison of needed compatibility checks using data from the
random walk simulation which leads to a long linked list as PTA. . . 131

8.15 Comparison of needed determinizations using data from the random
walk simulation which leads to a long linked list as PTA. 131

8.16 Comparison of needed time using data from the random walk simu-
lation which leads to a long linked list as PTA. 132

8.17 Convergence of the model identification with BUTLA based on
specificity calculation. 133

8.18 Comparison of the convergence curve (number of changes) with
specificity for OTALA. 134

8.19 Comparison of the convergence behavior using BUTLA and OTALA. 135
8.20 Gaussian normal distribution and the false positive error (black area) 136
8.21 Gaussian normal distribution and the overlapping of two distribution

functions (black area) . 137

9.1 The architecture of the tool box proKNOWS. 144
9.2 Graphical user interface in proKnows. 145
9.3 Lemgo Model Factory. 146
9.4 Identified Timed Automata from the first two modules in the Lemgo

Model Factory. 146

160 LIST OF FIGURES

List of Tables

2.1 Time and space complexity (with n as the input size) for solving the
word problem according to Chomsky hierarchy. 22

2.2 Comparison of state machines and Petri nets and the classification
according to Chomsky hierarchy. 22

6.1 Number of fitting functions for each chosen distribution function.
The fitting is counted if the calculated p-value is larger than 5%. . . 76

6.2 Experimental results on artificial data. 81
6.3 Example computation of state compatibility. 87

7.1 Comparison of two scenarios and their computation runtimes. . . . 101
7.2 Comparison of OTALA and BUTLA 117

8.1 Confusion Matrix . 123
8.2 Experimental results using real and artificial data. 138
8.3 Confusion matrix for experiment in the smart factory. 138
8.4 Confusion matrix for the experiment in the LMF. 139

9.1 Results for 2-fold cross validation for LMF data sets of modules 1
and 2. 147

9.2 Results for Leave-One-Out cross validation for LMF data sets of
modules 1 and 2. 147

9.3 Algorithm comparison for Jowat AG data. 148

161

162 LIST OF TABLES

Abbreviations

1-DTA One-Clock Deterministic Timed Automaton
ANODA Anomaly Detection Algorithm
BUTLA Bottom-Up Timing Learning Algorithm
CDF Cumulated Density Function
CTMCL Edge Labeled Continuous-time Markov Chains
CYK Cocke Younger and Kasami
DES Discrete Event System
DFA Deterministic Finite Automaton
ERA Event-Recording Automaton
FN False Negative
FP False Positive
FSA Finite State Automaton
FSM Finite State Machine
GUI Graphical User Interface
HIL Hardware in the loop
HMM Hidden Marcov Models
HyBUTLA Hybrid Bottom-Up Timing Learning Algorithm
ID_1DTA Identification of 1-clock Deterministic Timed Automata
IO Input/Output
LMF Lemgo Model Factory
LOOCV Leave One Out Cross Validation
MBD Model-Based Diagnosis
MDI Minimal Divergence Inference
n-TA n-clock Deterministic Timed Automaton
NDAOO Non-Deterministic Autonomous Automaton with Output
NFA Nondeterministic Finite Automata
OTALA Online Timed Automaton Learning Algorithm
PAC Probably Approximately Correct
PDF Probability Density Function
PDFA Probabilistic Deterministic Finite Automaton
PDRTA Probabilistic Deterministic Real-Time Automaton
PDTA Probabilistic Deterministic Timed Automaton
PHyTA Probabilistic Deterministic Hybrid Timed Automaton
PLC Programmable Logical Controller
PTA Prefix Tree Acceptor
RPNI Regular Positive and Negative Inference
RTI Real-Time Identification
RTI+ Real-Time Identification from Positive Data
SCADA Supervisory Control and Data Acquisition

163

164 ABBREVIATIONS

SFA Stochastic Finite Automaton
TA Timed Automaton
TN True Negative
TP True Positive

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
vol. 126:183–235, 1994.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A
determinizable class of timed automata. Theoretical Computer Science, 211:1–13,
1999.

[AH92] Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of
timed regular languages. In In Proceedings of the 33rd Annual Symposium on
Foundations of Computer Science, pages 177–186. IEEE Computer Society Press,
1992.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comp.,
pages 75(2):87–106, 1987.

[Aut14] AutomationML. www.automationml.org, 2014.
[Bar10] A.M. Bartkowiak. Anomaly, novelty, one-class classification: A short introduc-

tion. In Computer Information Systems and Industrial Management Applications
(CISIM), 2010 International Conference on, 2010.

[BBN93] Mich Ele Basseville, Michèle Basseville, and Igor V. Nikiforov. Detection of Abrupt
Changes: Theory and Application. Prentice-Hall, 1993.

[BC11] Alberto Bemporad and Stefano Di Cairano. Model-predictive control of discrete
hybrid stochastic automata. IEEE Trans. Automat. Contr., 56(6):1307–1321, 2011.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, New York, NY, USA,
2003.

[BGK10] Z I Botev, J F Grotowski, and D P Kroese. Kernel density estimation via diffusion.
Annals of Statistics, 38(5):2916–2957, 2010.

[BJ94] R. Benjamins and W. Jansweijer. Toward a competence theory of diagnosis. IEEE
Expert, 9(5):43–52, Oct 1994.

[CCW+11] Ming Chang, Hongwei Chen, Yingying Wang, Yueou Ren, and Hao Kang. The
application of neural network in the intelligent fault diagnosis system. In Computa-
tional Intelligence and Security (CIS), 2011 Seventh International Conference on,
pages 412–415, Dec 2011.

[Cer93] A. Cerone. A Net-based Approach for Specifying Real-time Systems. Serie TD. Ed.
ETS, 1993.

[CG08] Jorge Castro and Ricard Gavaldà. Towards feasible pac-learning of probabilistic
deterministic finite automata. In Proceedings of the 9th international colloquium
on Grammatical Inference: Algorithms and Applications, ICGI ’08, pages 163–174,
Berlin, Heidelberg, 2008. Springer-Verlag.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

165

166 References

[CGS07] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri Nets from Knowledge
of Their Language. Discrete Event Dynamic Systems, 17(4):447–474, 2007.

[CL06] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[CMS99] Antonio Cerone and Andrea Maggiolo-Schettini. Time-based expressivity of time
petri nets for system specification. Theoretical Computer Science, 216(1 - 2):1 –
53, 1999.

[CO94] Rafael C. Carrasco and Jose Oncina. Learning stochastic regular grammars by
means of a state merging method. In GRAMMATICAL INFERENCE AND APPLI-
CATIONS, pages 139–152. Springer-Verlag, 1994.

[CO99] R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. In RAIRO (Theoretical Informatics and
Applications), volume 33, pages 1–20, 1999.

[CPD11] Luca Console, Claudia Picardi, and Daniele Theseider Dupré. Temporal decision
trees: Model-based diagnosis of dynamic systems on-board. CoRR, abs/1106.5268,
2011.

[CT04] Alexander Clark and Franck Thollard. Pac-learnability of probabilistic deterministic
finite state automata. J. Mach. Learn. Res., 5:473–497, December 2004.

[DLH97] Colin De La Higuera. Characteristic sets for polynomial grammatical inference.
Mach. Learn., 27(2):125–138, May 1997.

[dlH05] Colin de la Higuera. A bibliographical study of grammatical inference. Pattern
Recogn., 38(9):1332–1348, September 2005.

[dlH10] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.

[DLT04] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using rfsas.
Computer Science, pages 313(2):267–294, 2004.

[Dom99] Pedro Domingos. The role of Occam’s Razor in knowledge discovery. Data Mining
and Knowledge Discovery, 3:409–425, 1999.

[EDJ+71] W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet. Statistical Methods
in Experimental Physics. North Holland, 1971.

[FMMR10] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Modeling
time in computing: A taxonomy and a comparative survey. ACM Comput. Surv.,
42(2):6:1–6:59, March 2010.

[Fre08] Christian W. Frey. Diagnosis and monitoring of complex industrial processes based
on self-organizing maps and watershed transformations. In IEEE International Con-
ference on Computational Intelligence for Measurement Systems and Applications,
2008.

[GJL04] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording
automata. In In 6th International Workshop on Verification of Infinite-State Systems,
volume 138/4 of Electronic Notes in Theoretical Computer Science, pages 379–395.
Springer, 2004.

[GKN+11] Olaf Graeser, Barath Kumar, Oliver Niggemann, Natalia Moriz, and Alexander
Maier. Automationml as a basis for offline- and realtime-simulation. In 8th
International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2011), July 2011.

[GLL99] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on Computer-Aided Design, 18(6):742–
760, June 1999. Research report UCB/ERL M97/57.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447 – 474, 1967.

[Gol78] E Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302 – 320, 1978.

[Hen02] M.M. Henry. Model-based Estimation of Probabilistic Hybrid Automata. Mas-
sachusetts Institute of Technology, Department of Aeronautics and Astronautics,
2002.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):pp. 13–30, 1963.

[HT00] Colin Higuera and Franck Thollard. Identification in the limit with probability
one of stochastic deterministic finite automata. In ArlindoL. Oliveira, editor,
Grammatical Inference: Algorithms and Applications, volume 1891 of Lecture
Notes in Computer Science, pages 141–156. Springer Berlin Heidelberg, 2000.

References 167

[HW02] Michael W. Hofbaur and Brian C. Williams. Mode estimation of probabilistic
hybrid systems. In In Intl. Conf. on Hybrid Systems: Computation and Control,
pages 253–266. Springer Verlag, 2002.

[HZKW03] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in discrete-
event systems: framework and model reduction. Automatic Control, IEEE Transac-
tions on, 48(7):1199 – 1212, July 2003.

[IM10] R. Isermann and M. Münchhof. Identification of Dynamic Systems: An Introduction
with Applications. Advanced textbooks in control and signal processing. Springer,
2010.

[Ise04] Rolf Isermann. Model-based fault detection and diagnosis - status and applications.
In 16th IFAC Symposium on Automatic Control in Aerospace, St. Petersbug, Russia,
2004.

[JJN11] Michael Jaeger, Roman Just, and Oliver Niggemann. Using automatic topology
discovery to diagnose profinet networks. In 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France,
Sep 2011.

[JKH08] M. Jager, C. Knoll, and F.A. Hamprecht. Weakly supervised learning of a classifier
for unusual event detection. Image Processing, IEEE Transactions on, 17:1700–
1708, 2008.

[KAB14] T. Klerx, M. Anderka, and H. Kleine Büning. On the usage of behavior models
to detect atm fraud. In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI 2014), 2014.

[KDSJ14] Barath Kumar, Rainer Drath, Ben Schroeder, and Jürgen Jasperneite. Test generation
from functional 3d virtual environment models. In ETSI User Conference on
Advanced Automated Testing (UCAAT 2014), Munich, Sep 2014.

[Kha02] Hassan Khalil. Nonlinear Systems. Prentice Hall, January 2002.
[KNJ10] Barath Kumar, Oliver Niggemann, and Jürgen Jasperneite. Statistical models of

network traffic. In International Conference on Computer, Electrical and Systems
Science. Cape Town, South Africa, Jan 2010.

[KNSJ12] Barath Kumar, Oliver Niggemann, Wilhelm Schäfer, and Jürgen Jasperneite. Model-
ing and testing of automation systems. Advances in Intelligent and Soft Computing,
133:1027–1034, Mar 2012.

[Kol63] A.N. Kolmogorov. On tables of random numbers. Sankhya, Ser. A.(25):369 – 375,
1963.

[Kol98] A.N. Kolmogorov. On tables of random numbers. Theoretical Computer Science,
207(2):387 – 395, 1998.

[Koy91] Ron Koymans. (real) time: A philosophical perspective. In J. W. de Bakker, Cornelis
Huizing, Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Workshop,
volume 600 of Lecture Notes in Computer Science, pages 353–370. Springer, 1991.

[KSSN14] Björn Kroll, David Schaffranek, Sebastian Schriegel, and Oliver Niggemann. Sys-
tem modeling based on machine learning for anomaly detection and predictive
maintenance in industrial plants. In 19th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Barcelona, Sep 2014.

[KTN+12] Barath Kumar, Andreas Toensfeuerborn, Oliver Niggemann, Wilhelm Schäfer, and
Jürgen Jasperneite. Experience in deploying mbt for industrial automation. In ETSI
Model Based Testing User Conference (MBTUC) 2012., Tallinn, Estonia, Sep 2012.
ETSI.

[LAD+11] Shang-Wei Lin, Étienne André, JinSong Dong, Jun Sun, and Yang Liu. An efficient
algorithm for learning event-recording automata. In Tevfik Bultan and Pao-Ann
Hsiung, editors, Automated Technology for Verification and Analysis, volume 6996
of Lecture Notes in Computer Science, pages 463–472. Springer Berlin Heidelberg,
2011.

[LH11] W. Liu and I. Hwang. Robust estimation and fault detection and isolation algorithms
for stochastic linear hybrid systems with unknown fault input. Control Theory
Applications, IET, 5(12):1353 –1368, august 2011.

[LL98] Bilung Lee and Edward A. Lee. Hierarchical concurrent finite state machines in
ptolemy. In ACSD, pages 34–40. IEEE Computer Society, 1998.

[LPP98] Kevin Lang, Barak Pearlmutter, and Rodney Price. Results of the abbadingo one
dfa learning competition and a new evidence-driven state merging algorithm, 1998.

168 References

[LSS01] J. Lunze, J. Schröder, and P. Supavatanakul. Diagnosis of discrete event systems:
the method and an example. In Proceedings of the Workshop on Principles of
Diagnosis, DX’01, pages 111–118, Via Lattea, Italy, 2001.

[Mai14] Alexander Maier. Online passive learning of timed automata for cyber-physical
production systems. In The 12th IEEE International Conference on Industrial
Informatics (INDIN 2014). Porto Alegre, Brazil, Jul 2014.

[MF76] P.M. Merlin and David J. Farber. Recoverability of communication protocols–
implications of a theoretical study. Communications, IEEE Transactions on,
24(9):1036–1043, Sep 1976.

[MKPGN13] Alexander Maier, Markus Koester, Carlos Paiz Gatica, and Oliver Niggemann.
Automated generation of timing models in distributed production plants. In IEEE
International Conference on Industrial Technology (ICIT 2013), Cape Town, South
Africa, Feb 2013.

[MNV+11] Alexander Maier, Oliver Niggemann, Asmir Vodenčarević, Roman Just, and
Michael Jaeger. Anomaly detection in production plants using timed automata. In
8th International Conference on Informatics in Control, Automation and Robotics
(ICINCO). Noordwijkerhout, The Netherlands, Jul 2011.

[MS03a] M. Markou and S. Singh. Novelty detection: A review - part 1. Department of
Computer Science, PANN Research, University of Exeter, United Kingdom, 2003.

[MS03b] M. Markou and S. Singh. Novelty detection: A review - part 2. Department of
Computer Science, PANN Research, University of Exeter, United Kingdom, 2003.

[MTN12] Alexander Maier, Tim Tack, and Oliver Niggemann. Visual anomaly detection
in production plants. In 9th International Conference on Informatics in Control,
Automation and Robotics (ICINCO). Rome, Italy, Jul 2012.

[MWS13] M.M. Mansour, Mohamed A.A. Wahab, and Wael M. Soliman. Petri nets for
fault diagnosis of large power generation station. Ain Shams Engineering Journal,
4(4):831 – 842, 2013.

[MWvdBD03] Laura Maruster, A. Weijters, Antal van den Bosch, and Walter Daelemans. Discov-
ering process models by rule set induction. In Proceedings of the 5th International
Workshop on Symbolic and Numeric Algorithms for Scientific Computing, 2003.

[NB07] S. Narasimhan and G. Biswas. Model-based diagnosis of hybrid systems. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
37(3):348 –361, May 2007.

[NDZ13] Payam Nazemzadeh, Abbas Dideban, and Meisam Zareiee. Fault modeling in dis-
crete event systems using petri nets. ACM Trans. Embed. Comput. Syst., 12(1):12:1–
12:19, January 2013.

[NSV+12] Oliver Niggemann, Benno Stein, Asmir Vodenčarević, Alexander Maier, and Hans
Kleine Büning. Learning behavior models for hybrid timed systems. In Twenty-
Sixth Conference on Artificial Intelligence (AAAI-12), pages 1083–1090, Toronto,
Ontario, Canada, 2012.

[NVM+13] Oliver Niggemann, Asmir Vodencarevic, Alexander Maier, Stefan Windmann,
and Hans Kleine Büning. A learning anomaly detection algorithm for hybrid
manufacturing systems. In The 24th International Workshop on Principles of
Diagnosis (DX-2013), Jerusalem, Israel, Oct 2013.

[OG92] J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In
Advances in Structural and Syntactic Pattern Recognition, volume 5 of Machine
Perception and Artificial Intelligence. World Scientific, 1992.

[OHN14] Jens Otto, Steffen Henning, and Oliver Niggemann. Why cyber-physical production
systems need a descriptive engineering approach - a case study in plug produce. In
2nd International Conference on System-integrated Intelligence (SysInt), Bremen,
Germany, Jul 2014.

[Pea05] Karl Pearson. The problem of the random walk. Nature 72, pages 294–294, 1905.
[Pet62] C. A. Petri. Fundamentals of a theory of asynchronous information flow. In IFIP

Congress, pages 386–390, 1962.
[Pit89] L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In K.P. Jan-

tke, editor, Proceedings of International Workshop on Analogical and Inductive
Inference (AII), volume 397 of Lecture Notes in Computer Science, pages 18–44.
Springer-Verlag, Berlin, 1989.

[PKN+12] Florian Pethig, Bjoern Kroll, Oliver Niggemann, Alexander Maier, and Tim Tack. A
generic synchronized data acquisition solution for distributed automation systems.

References 169

In 17th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2012), Krakow, Poland, Sep 2012.

[PN12] Florian Pethig and Oliver Niggemann. A process data acquisition architecture for
distributed industrial networks. In Embedded World Conference 2012, Mar 2012.

[PW93] Leonard Pitt and Manfred K. Warmuth. The minimum consistent dfa problem
cannot be approximated within any polynomial. J. ACM, 40(1):95–142, January
1993.

[Qui90] J. R. Quinlan. Induction of decision trees. In Jude W. Shavlik and Thomas G. Diet-
terich, editors, Readings in Machine Learning. Morgan Kaufmann, 1990. Originally
published in Machine Learning 1:81–106, 1986.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[Reb67] A. S. Reber. Implicit learning of artificial grammars. Journal of Verbal Learning
and Verbal Behavior, 6:855–863, 1967.

[RLL10] M. Roth, J. Lesage, and L. Litz. Black-box identification of discrete event sys-
tems with optimal partitioning of concurrent subsystems. In American Control
Conference (ACC), 2010, pages 2601–2606, June 2010.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010.

[Rot10] Matthias Roth. Identification and Fault Diagnosis of Industrial Closed-loop
Discrete Event Systems: Identifikation und Fehlerdiagnose Industrieller Ereignis-
diskreter Closed-Loop-Systeme. Logos-Verlag, 2010.

[RSLL12] Matthias Roth, Stefan Schneider, Jean-Jacques Lesage, and Lothar Litz. Fault
detection and isolation in manufacturing systems with an identified discrete event
model. Int. J. Systems Science, 43(10):1826–1841, 2012.

[RT11] V.R. Ravi and T. Thyagarajan. Application of hybrid modeling techniques to a
non linear hybrid system. In Process Automation, Control and Computing (PACC),
2011 International Conference on, pages 1 –7, July 2011.

[SADMK07] Zineb Simeu-Abazi, Maria Di Mascolo, and Michal Knotek. Diagnosis of discrete
event systems using timed automata. In International Conference on cost effective
automation in Networked Product Development and Manufacturing, Monterrey,
Mexico, 2007.

[SCZ+09] Aishe Shui, Weimin Chen, Peng Zhang, Shunren Hu, and Xiaowei Huang. Review
of fault diagnosis in control systems. In Control and Decision Conference, 2009.
CCDC ’09. Chinese, pages 5324 –5329, June 2009.

[SFJL03] P. Supavatanakul, C. Falkenberg, and J. J. Lunze. Identification of timed discrete-
event models for diagnosis, 2003.

[SH09] C.E. Seah and Inseok Hwang. Fault detection and isolation for stochastic linear
hybrid systems. In Decision and Control, 2009 held jointly with the 2009 28th
Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pages 2622 –2627, Dez 2009.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–, july, october 1948.

[SLPQ06] P. Supavatanakul, J. Lunze, V. Puig, and J. Quevedo. Diagnosis of timed automata:
Theory and application to the damadics actuator benchmark problem. Control
Engineering Practice, 14(6):609–619, June 2006.

[SMK+13] Nikolai Schetinin, Natalia Moriz, Barath Kumar, Sebastian Faltinski, Oliver Nigge-
mann, and Alexander Maier. Why do verification approaches in automation rarely
use hil-test? In International Conference on Industrial Technology (ICIT) 25.-27.
February 2013, Cape Town, South Africa,, Feb 2013.

[Sol64] R.J. Solomonoff. A formal theory of inductive inference. part i. Information and
Control, 7(1):1 – 22, 1964.

[SS80] J. Segen and A. Sanderson. Detecting change in a time-series (corresp.). Information
Theory, IEEE Transactions on, 26(2):249 – 254, Mar 1980.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, Wien, New York,
1973.

[SVA04] Koushik Sen, M. Viswanathan, and Gul Agha. Learning continuous time markov
chains from sample executions. In Quantitative Evaluation of Systems, 2004. QEST
2004. Proceedings. First International Conference on the, pages 146–155, Sept
2004.

170 References

[TB73] B.A. Trakhtenbrot and J.M. Barzdin. North-Holland, 1973.
[TDdlH00] Franck Thollard, Pierre Dupont, and Colin de la Higuera. Probabilistic DFA

inference using Kullback-Leibler divergence and minimality. In Proc. of the 17th
International Conf. on Machine Learning, pages 975–982. Morgan Kaufmann,
2000.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B), pages 133–191. MIT Press,
Cambridge, MA, USA, 1990.

[Ton01] Simon Tong. Active Learning: Theory and Applications. PhD thesis, Stanford
University, Stanford, CA, USA, 2001.

[Tri02] Stavros Tripakis. Fault diagnosis for timed automata. In Werner Damm and Ernst-
Rüdiger Olderog, editors, FTRTFT, volume 2469 of Lecture Notes in Computer
Science, pages 205–224. Springer, 2002.

[TSK06] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley, 2006.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
November 1984.

[Var01] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In Proceedings of
the 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2001, pages 1–22, London, UK, UK, 2001. Springer-
Verlag.

[VBNM11] A. Vodenčarević, H. Kleine Büning, O. Niggemann, and A. Maier. Using be-
havior models for anomaly detection in hybrid systems. In Proceedings of the
23rd International Symposium on Information, Communication and Automation
Technologies-ICAT 2011, 2011.

[VdWW06] Sicco E. Verwer, Mathijs M. de Weerdt, and Cees Witteveen. Identifying an
automaton model for timed data. In Yvan Saeys, Elena Tsiporkova, Bernard De
Baets, and Yves van de Peer, editors, Proceedings of the Annual Machine Learning
Conference of Belgium and the Netherlands (Benelearn), pages 57–64. Benelearn,
2006.

[VdWW07] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. An algorithm for learning
real-time automata. In Maarten van Someren, Sophia Katrenko, and Pieter Adriaans,
editors, Proc. of the Sixteenth Annual Machine Learning Conference of Belgium
andthe Netherlands (Benelearn), pages 128–135, 2007.

[VdWW08] Sicco E. Verwer, Mathijs M. de Weerdt, and Cees Witteveen. Efficiently learning
simple timed automata. In Will Bridewell, Toon Calders, Ana Karla de Medeiros,
Stefan Kramer, Mykola Pechenizkiy, and Ljupco Todorovski, editors, Induction of
Process Models, pages 61–68. University of Antwerp, 2008. Workshop at ECML
PKDD.

[VdWW09] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. One-clock deterministic
timed automata are efficiently identifiable in the limit. In Adrian Horia Dediu,
Armand Mihai Ionescu, and Carlos Martin-Vide, editors, Language and Automata
Theory and Applications, pages 740–751. Springer, 2009.

[Ver10] Sicco Verwer. Efficient Identification of Timed Automata: Theory and Practice.
PhD thesis, Delft University of Technology, 2010.

[VKBNM11] Asmir Vodenčarević, Hans Kleine Büning, Oliver Niggemann, and Alexander
Maier. Identifying behavior models for process plants. In Proc. of the 16th IEEE
International Conf. on Emerging Technologies and Factory Automation ETFA’2011,
pages 937–944, Toulouse, France, September 2011.

[VMN13] Asmir Vodenčarević, Alexander Maier, and Oliver Niggemann. Evaluating learning
algorithms for stochastic finite automata. In 2nd International Conference on
Pattern Recognition Applications and Methods (ICPRAM 2013); Barcelona, Spain,
Feb 2013.

[Vod13] Asmir Vodenčarević. Identifying Behavior Models for Hybrid Production Systems.
PhD thesis, University of Paderborn, 2013.

[VWW08] Sicco Verwer, Mathijs Weerdt, and Cees Witteveen. Polynomial distinguishability
of timed automata. In Alexander Clark, François Coste, and Laurent Miclet, editors,
Grammatical Inference: Algorithms and Applications, volume 5278 of Lecture
Notes in Computer Science, pages 238–251. Springer Berlin Heidelberg, 2008.

References 171

[WD09] M. Wang and R. Dearden. Detecting and Learning Unknown Fault States in Hybrid
Diagnosis. In Proceedings of the 20th International Workshop on Principles of
Diagnosis, DX09, pages 19–26, Stockholm, Sweden, 2009.

[ZKH+05] Feng Zhao, Xenofon D. Koutsoukos, Horst W. Haussecker, James Reich, and Patrick
Cheung. Monitoring and fault diagnosis of hybrid systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 35(6):1225–1240, 2005.

	Introduction
	Motivation
	Relevance to Related Work
	Contribution of this Thesis
	Realized and Potential Application Scenarios
	Overview

	Part I Foundations
	The Core Issue: Modeling and Learning Time
	Modeling Time - A Taxonomy
	Learning Time - The Challenge
	Conclusion

	Formalisms
	Basic notions
	Automata Formalisms

	Complexity of Identification of Finite Automata
	The Identification Problem
	Identification frameworks
	Complexity of Identification of Finite Automata

	Identification of Automata and Model-Based Anomaly Detection
	Approaches for Anomaly Detection
	Identification Algorithms for Finite Automata
	Conclusion

	Part II Algorithms and Theory
	Algorithmic Results
	Requirements on modeling formalism and identification algorithm
	Bottom Up Timing Learning Algorithm (BUTLA)
	Online Timed Automaton Learning Algorithm (OTALA)
	Anomaly Detection
	Adaptive Learning

	Theoretical Results
	Runtime Analysis of the Identification Algorithms
	Evaluation of the Learning Error
	Convergence and Identification In The Limit
	Top-Down vs. Bottom-Up
	Splitting vs. Non-Splitting
	Online vs. Offline Identification
	Runtime analysis of the anomaly detection algorithm

	Empirical Results
	Preliminaries
	Runtime Analysis of the Identification Algorithms
	Top-Down vs. Bottom-Up
	Convergence of the Identification Algorithms
	Empirical Analysis of the Anomaly Detection
	BUTLA vs. OTALA
	BUTLA vs. alternative methods

	Part III Applications
	Applications
	Tool Box Implementation
	Lemgo Model Factory
	Plant at Jowat AG

	Part IV Conclusion
	Conclusions and Future Work
	Conclusions
	Future Work

	List of Figures
	List of Tables
	Abbreviations
	References

