

Fakultät für Elektrotechnik , Informatik und Mathematik
Institut für Informatik
Fachgebiet Spezifikation und
Modellierung von Softwaresystemen
Warburger Straße 100
33098 Paderborn

Verification of Infinite-State Graph
Transformation Systems via

Abstraction

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von

Dipl. Inform. Dipl. Math.Dominik Steenken

Paderborn, im December 2014

©2014 – Dominik Steenken
all rights reserved.

Betreuer: Professor Dr. Heike Wehrheim Dominik Steenken

Verification of Infinite-State Graph Transformation
Systems via Abstraction

Abstract

In the field of model-driven software development (MDSD), the use of visual mod-
eling languages is abundant. One particular application of such modeling languages is
the specification of structurally dynamic systems, i.e. systems that are able to dynami-
cally change their structural configuration at run-time. To be useful, such systems must
adhere to certain quality constraints, such as the inability to produce configurations
that are deemed dangerous.

If MDSD is to be a viable alternative to traditional software development, it must
be firmly grounded in formal methods, so as to support the automatic checking of
such quality constraints at the model level. The natural formalization of structurally
dynamic systems is the mathematical notion of graph transformation systems. The for-
mal verification of such systems poses a challenge, since they often exhibit infinite state
spaces, i.e. they are able to generate an unbounded variety of different configurations.

In this thesis, we develop a new way to check infinite-state graph transformation
systems for their capacity to produce potentially dangerous configurations using finite
abstractions. In order to do so, we adapt established methods from other fields of ver-
ification to the graph transformation domain. To create the abstraction itself, we use
three-valued abstractions common in shape analysis methods to produce abstract graph
transformation systems that can be refined using first-order logic. The construction of
the state space is handled in a lazy fashion, as has been done in many model checking
tools, where we only look at those parts of the state space in detail that have a chance of
containing the error. We then employ the concepts of counterexample-guided abstrac-
tion refinement and interpolation, commonly used to great effect in the verification of
sequential programs, to semi-automatically construct abstraction refinements where
needed. This is based in a complete transformation of the graph concepts used in this
thesis into first-order logic with uninterpreted functions, which enables us to take ad-
vantage of the recent impressive progress in the field of SMT solving.

The result is a method that allows for a highly flexible analysis of infinite-state graph
transformation systems and thus represents a contribution to the verification of com-
plex, structurally dynamic systems in the context of MDSD. We present a proof-of-
concept implementation and report on first experimental results.

iii

Betreuer: Professor Dr. Heike Wehrheim Dominik Steenken

Verification of Infinite-State Graph Transformation
Systems via Abstraction

Zusammenfassung

Im Bereich der modellgetriebenen Softwareentwicklung ist der Gebrauch von vi-
suellen Modellierungssprachen weit verbreitet. Eine Anwendung solcher Model-
lierungssprachen ist die Spezifikation von strukturell dynamischen Systemen, also
solchen Systemen die in der Lage sind, ihre strukturelle Konfiguration zur Laufzeit
zu ändern. Um nützlich zu sein, müssen solche Systeme bestimmten Qualitätsan-
forderungen genügen, wie etwa die Eigenschaft, dass potenziell gefährliche Konfigu-
rationen von dem System nicht generiert werden können.

Wenn modellgetriebene Softwareentwicklung eine gangbare Alternative zur klas-
sischen Softwareentwicklung darstellen soll, muss sie mit formalen Methoden unter-
mauert werden, um eine automatische Überprüfung solcher Qualitätsanforderungen
auf der Modellebene zu ermöglichen. Die naheliegendste Formalisierung von struk-
turell dynamischen Systemen ist das mathematische Konzept der Graphtransforma-
tionssysteme. Die formale Verifikation solcher Systeme stellt eine Herausforderung dar,
da sie häufig unendlich große Zustandsräume aufweisen, d.h. sie sind in der Lage, eine
unendliche Vielfalt unterschiedlicher Konfigurationen zu erzeugen.

In dieser Arbeit entwickeln wir eine neue Methode um Graphtransformationssys-
teme mit unendlichem Zustandsraum mittels einer endlichen Abstraktion auf ihre
Fähigkeit, potenziell gefährliche Konfigurationen zu erzeugen, zu überprüfen. Um dies
zu erreichen, adaptieren wir etablierte Methoden aus anderen Bereichen der Verifika-
tion für die Graphtransformationsdomäne. Um die Abstraktion selbst zu realisieren,
verwenden wir dreiwertige Abstraktionen, die in Shapeanalysemethoden häufig ver-
wendet werden, um ein abstraktes Graphtransformationssystem zu erstellen welches
wir mittels Prädikatenlogik erster Ordnung verfeinern können. Der Aufbau des Zus-
tandsraum wird nach dem “Lazy” Paradigma gehandhabt, wie es in vielen Modelcheck-
ing Werkzeugen umgesetzt wird. Auf diese Weise können wir es vermeiden, Teile des
Zustandsraums, die keine Fehler enthalten, detailliert betrachten zu müssen. Ab-
schließend verwenden wir das Konzept der Gegenbeispiel-geleiteten Abstraktionsver-
feinerung mittels Interpolation, häufig erfolgreich eingesetzt bei der Verifikation se-
quenzieller Programme, um halbautomatisch Abstraktionsverfeinerungen erzeugen zu
können, wo sie benötigt werden.

iv

Betreuer: Professor Dr. Heike Wehrheim Dominik Steenken

Das Ergebnis ist eine Methode die eine hoch flexible Analyse von Graphtransforma-
tionssystemen mit unendlichem Zustandsraum erlaubt. Sie stellt daher einen Beitrag
zum Gebiet der Verifikation komplexer, strukturell dynamischer Systeme im Kontext
der modellgetriebenen Softwareentwicklung dar. Wir stellen eine prototypische Imple-
mentation, sowie erste experimentelle Ergebnisse vor.

v

Acknowledgments

First of all, i would like to thank my supervisor, Prof. Dr. Heike Wehrheim, for the
support and guidance she has given me and for the opportunity to work in an extraor-
dinary research group. Further, i would like to thank Prof. Dr. Holger Giese for taking
the time to review my thesis, and Prof. Dr. Wilhelm Schäfer, Prof. Dr. Eyke Hüller-
meier, and Dr. Theo Lettmann for attending my exam.

Special thanks go to Galina Besova, for many valuable exchanges about our respec-
tive research, and to Daniel Wonisch and Tobias Isenberg, who directly contributed to
my research. I further want to give thanks to the remaining current and former mem-
bers of our research group, Dr. Björn Metzler, Dr. Thomas Ruroth, Dr. Nils Timm,
Steffen Ziegert, Sven Walther, Oleg Travkin, and Marie-Christin Jakobs for providing
a collegial and open environment. I would also like to thank my student assistants,
Manuel Töws and Patrick Schleiter, who supported me in developing the early versions
of what became the implementation for this thesis.

I thank Claudia Priesterjahn, Christian Heinzemann, Kathrin Flaßkamp, Martin
Krüger, and Oliver Sudmann for a good and interesting collaboration within the Col-
laborative Research Center 614. I also thank all other members of the CRC for pro-
viding me the opportunity to work in a very interdisciplinary environment. The dis-
cussions i had with my colleagues in mechanical and control engineering helped me
appreciate the value of collaborating outside of one’s field.

Additionally, i thank Dr. Thomas Wahl, Dr. Philipp Rümmer, and Prof. Dr. Daniel
Kröning for a very instructional research stay at Oxford University and for introducing
me to new fields of study.

Finally, i thank my parents for providing me with the opportunity to study Com-
puter Science and eventually write this dissertation. Thank you for having the patience
to let me explore both my interests in computer science and math.

vi

Contents

1 Introduction 1
1.1 Problem Definition . 4
1.2 Contributions . 6
1.3 Thesis Outline . 8

2 Basic Definitions for Verifying Graph Transformation Sys-
tems 10
2.1 Graphs . 11
2.2 Graph Transformation Systems . 14
2.3 Model Checking Graph Transformation Systems 19

3 Abstracting Graph Transformation Systems using Three-
Valued Logic 24
3.1 Motivation . 25
3.2 Logical Encoding of Graphs . 27
3.3 Three-Valued Logic . 33
3.4 Shapes and Embedding . 35
3.5 Abstract Transformation and State Space Construction 39
3.6 Refinement Using Shape Constraints 53

4 SMT Encoding of Graph Embeddings and Traces 67
4.1 Motivation . 68
4.2 Satisfiability Modulo Theories . 72
4.3 Encoding of a Graph . 76
4.4 Encoding of a Graph Embedded Into a Shape 80
4.5 Encoding of a Trace . 94
4.6 Encoding of a Rule Application . 109
4.7 Encoding of the Emptiness of a Shape 115

1

5 Lazy State Space Construction 131
5.1 The Principle of Lazy State Space Construction 134
5.2 Shape Transition Trees . 141
5.3 Basic Construction Loop of an STT 151

6 Interpolation-guided Refinement Loop 163
6.1 Error Analysis and Conditions on Refinement 165
6.2 Automatic Abstraction Refinement via the Trace Encoding 175
6.3 Manual Abstraction Refinement Supported by Soundness Checks . . . 198

7 Implementation: Shape Graph Analyzer 201
7.1 Description and Usage . 201
7.2 Architecture . 206
7.3 Application Examples . 208
7.4 Possibilities for Extension . 221

8 Conclusion 223
8.1 Related work . 224
8.2 Future Work . 234
8.3 Summary and Concluding Thoughts 237

Appendix A Proofs 241

Appendix B Code Listings 255

References 282

2

Listing of figures

1.1 Abstraction Illustration . 7

2.1 A sample graph and its visual representation 12
2.2 A sample rule reversing and relabeling an edge (p indicated by dashed lines) 15
2.3 Applying the reversal rule to the sample graph 17
2.4 The graph transition system induced by the sample graph and the sam-

ple rule . 20
2.5 A graph transformation system modeling a linear list 22

3.1 A graph and its corresponding Logical Structure 32
3.2 Truth and Information order onK 35
3.3 A shape representing an arbitrarily long linear list 36
3.4 An example embedding . 37
3.5 A schematic view on soundly applying a rule to a shape 40
3.6 Materialization Example . 43
3.7 Application of a rule to a shape at a potential match (schematically) . . 47
3.8 Example for a canonical abstraction of a graph 49
3.9 A shape and a few example embeddings 54
3.10 A constrained shape with valid and invalid represented graphs 56
3.11 Two compatible, but mutually non-embedded constrained shapes . . . 59
3.12 The graphG is excluded by a canonical abstraction that disregards the

shape constraint . 64

4.1 The naïve process of counterexample validation 69
4.2 An example graph (see also Fig. 3.1) 79
4.3 The example shape used in Listing B.2 90
4.4 Schematic view of a concrete trace corresponding to an abstract trace . 97
4.5 Two different embeddings of the same graph induce different results . . 98
4.6 Modification of a shape representing a non-empty linear list 101
4.7 Modification of the add-rule of the linear list GTS 102
4.8 Example application of modified start and end rules 105

3

4.9 A schematic of the application of a rule to a shape and its effect on em-
bedded graphs . 109

4.10 An abstract error trace (Apply start, then add, then materialize error) . 115
4.11 A non-trivially infeasible shape . 129

5.1 The program fragment used by McMillan[113] to showcase his lazy ab-
straction approach . 135

5.2 ART of Fig. 5.1 with no abstraction predicates[113] 136
5.5 Schematic of an STT node . 143
5.6 A valid shape transition tree for the linear list example. 147
5.7 Schematic Visualization of the refinement process 156

6.1 Embedding fails due to missing nodes, while the past node hides that fact 171
6.2 The materialization set for a given S, P,m forms a subgraph-lattice iso-

morphic to the subset lattice of the summary nodes touched by the match
. 176

6.3 Merging of the variables of a constraint strengthens it 179
6.4 Schematic of the automatic refinement process 188
6.5 Applying start, then add creates an error in the initial abstraction . . 189
6.6 Display of one abstract error trace for manual refinement (sketch) . . . 199

7.1 Input File Set describing the Linear List Example 203
7.2 The STT display after an example execution for the linear list example . 205
7.3 The WorkItem display after an example execution for the linear list ex-

ample . 206
7.4 High-Level Architecture of SGA / SMTool 207
7.5 The first abstract error trace encountered by SGA on the Linear List Ex-

ample with Cleanup Error . 209
7.7 Forbidden Pattern representing a left-over cell node with an empty list . 209
7.6 The state of the STT for the linear list example with the cleanup error pat-

tern before each refinement step ((a) through (c)) and after construction
has concluded (d). 210

7.8 The second abstract error trace encountered by SGA on the Linear List
Example with Cleanup Error . 211

7.9 The final abstract error trace encountered by SGA on the Linear List Ex-
ample with Cleanup Error . 213

7.10 The simplified Firewall GTS taken from [162] with the addition of dy-
namic location creation . 215

7.11 The final abstract error trace encountered by SGA on the Linear List Ex-
ample with Cleanup Error . 217

7.13 The Task Scheduling GTS . 218

4

7.12 Forbidden Pattern representing a left-over cell node with an empty list . 218
7.14 The unresolvable error path found in the first iteration of SGA for the

scheduling example . 219
7.15 A Graph embedded into the incoming shape, but not the refined central

shape at the failure point . 220
7.16 STT after user refinement (rule names abbreviated) 221

5

1
Introduction

The ever growing complexity and interconnectedness of the software that
increasingly runs in and on every aspect of our world poses a challenge to the discipline
of software engineering. It means that ever more complex software will, over time, have
to adhere to ever more stringent quality standards. This problem is compounded by
the insight that this complexity growth will always out-pace the classical approach of
creating software more or less directly from a textual specification and only analyzing
the final product. The process of solving these problems led to a complete rethinking
of the software development process, culminating in the idea ofModel Driven Soft-
ware Development (MDSD)[5, 31, 43], an approach that represents a paradigm shift in
the way software is created.

In this approach, software is formally specified usingmodeling languages, often
geared specifically to the problem domain for which the software is intended. These
software models can then be verified to exhibit whatever quality criteria are appropri-
ate for the particular use cases the software is being designed for. This is an improve-
ment over the status quo since, as highly complex, Turing complete formalisms, reg-
ular full-scale programming languages produce programs that are very hard to verify.
In contrast, models created with custom-built modeling languages, which are often
appropriately restricted in scope, can be much more amenable to verification. These
easier-to-verify models are then transformed into programs in classical programming
languages, using fully-automatic transformations, yielding fully realized software with

1

guaranteed quality characteristics – provided the transformations are correct.
This promise of model driven software development can only be delivered upon

through the use of formal methods. Formal methods in the context of software en-
gineering are all methods and concepts that strive to provide a solid, rigorous mathe-
matical foundation for the specification, design, and analysis of software. They are not
limited to software – formal methods have been very successfully applied to the field of
hardware[82], and even completely outside the field of information technology, such as
in mechanical engineering, or electrical engineering[87].

For software, formal methods come in three broad groups: formal specification,
formal modeling, and formal verification[158]. First, formal methods for specification
enable the mathematically rigorous expression of the intent of the software, i.e. they
encode (part of) its purpose in terms of restrictions on its outputs and inputs and can
express functional (or even some non-functional) properties that the software must
have. Next, formal methods for the modeling of software focus on providing mathe-
matical formalisms that can express certain aspects of the system itself, like its structural
composition, or its dynamic behavior, or even unify all relevant aspects of the system
in one model. Finally, formal methods for the verification of software combine the
first two to start from a formal specification of the properties of a system and a formal
model of that system, to use a mathematically sound process to prove or disprove that
the given software satisfies the given specification.

If model driven software development is to be established as a serious alternative to
the classical approach, it needs to leverage these formal methods as much as possible
in order to provide a true advantage. The benefits are clear – in a fully realized MDSD
process, software systems are easier to create, due to more domain-specific models and
automated support based on the mathematical foundation of the modeling language,
and exhibit a much higher quality, because most errors can be caught in the modeling
phase by automated processes that understand the semantics of the model, not just the
syntax.

This last aspect, the employment of formal verification to reduce errors, is central.
Examining the literature, we can find many different formal methods to realize this.
One approach is program derivation[72, 138, 153], which aims to directly create (a model
of) a system from its specification, thus providing correctness by construction. There
are also methods that focus on issues external to the development process itself, such
as providing the establishment of trust between different providers of software, sup-
ported by proof carrying code[119], where a supplier can augment program code with
correctness proofs which can then be verified by the recipient. But the most prevalent
approaches, and the ones most closely associated with the term “formal verification”,
are deductive verification[13] andmodel checking[53]. Deductive verification means
the use of logical inference rules to derive from a model of a system its adherence to
the specification. Model checking, on the other hand, is a technique that uses a formal

2

representation of a model to essentially simulate all of its possible executions, and then
checks the result against the formal specification.

All these techniques are predicated on the use of formal mathematical models for
the representation of systems. Usually, this is achieved by creating a textual or visual
modeling language and defining its semantics by mapping the models it creates to cer-
tain mathematical objects. Mathematical concepts that are frequently used for this
purpose include automata, both in their basic finite form and in extended forms, such
as timed automata[11] or hybrid automata[88], and also Petri nets[116], process cal-
culi[137], and (well-structured) transition systems[7]. There are many modeling lan-
guages that are based on this basic mathematical framework, such as Promela[28] or
CSP[92], hardware description languages like VHDL[118], or even high-level func-
tional programming languages, such as Haskell[95]*, as well as consistent groups of
modeling languages, such as the UML[1] that mix formal models with languages whose
semantics are specified in natural language, i.e. informally.

This abundance of modeling languages and the supposition that domain specific
modeling languages will aid in the description of systems lead to a problem – all these
languages have to be learnt by the designers, which, given their prospective numbers
can incur large costs. One way to combat this is to use modeling languages that are as
intuitive and clear as possible, which, given that most of them are limited in scope, is
a more realistic proposition for these languages than for, e.g., regular programming
languages. Graphical or visual modeling languages go a long way towards this goal, ex-
ploiting human spatial intelligence and pattern recognition to present the content of
the model in a more concise, understandable way[79]. Such languages consist of vi-
sual abstractions of the systems to be modeled in order to make it easier for a human
designer to grasp the “big picture” described by a model. They tend to be very intu-
itively understandable and usually require comparatively little effort to learn. They are
particularly suited to model aspects of systems that can be interpreted as consisting of
discrete entities and relationships between those entities.

Such graphical modeling languages are at the core of the current effort to establish
model driven software development as an alternative to the traditional software de-
velopment framework, and thus formal methods supporting their use are of great im-
portance. Examples of such modeling languages include, e.g., the UML[1], SysML[2],
MechatronicUML[26, 43] or Matlab/Simulink[12]. Of particular interest are those
languages that are designed to model systems that exhibit autonomous structural re-
configuration, such as self-healing[73, 122] or self-optimizing[4] systems. Such systems
often exhibit complex behavior at runtime that is not easily predictable at design time,
even though they are in many cases deployed in highly safety-critical environments[149].

*Full programming languages are not usually grouped under modeling languages, but since
the mathematical foundations of functional programming languages are particularly rigorous,
they were included here.

3

As argued above, the application of formal methods to the use of these languages
goes beyond simple syntax checking and specifically includes automatic verification and
validation of models. Automation, in turn, requires precise mathematical definitions
of the syntax and semantics of the visual modeling languages used. Such definitions
make extensive use of the mathematical concept of graphs, and, more specifically, graph
transformations. The verification of properties of such systems is the subject of this
thesis.

Multiple approaches have been proposed to approach this topic (see Sec. 8.1). So
far, none of them has emerged as a complete solution, and every approach provides
a different set of benefits using a different trade-off in expressiveness, decidability, or
time and space complexity. With this thesis, we hope to present a new approach to the
problem that could provide new impulses toward a solution.

1.1 Problem Definition

Graphical modeling languages are such languages that, in their most reduced form,
can be expressed as graphs, mathematical objects consisting of nodes and labeled edges
between the nodes. In a graphical model, nodes are usually used to represent entities in
a system. This could, for example, be a class or an object in a UML diagram, a logic gate
in a circuit layout, a table in a database schema diagram, or a host in a network diagram.
The edges in a graphical model are then taken to represent some kind of relationship
between two (or sometimes more) entities. Examples include generalization arrows
in UML class diagrams, connections in circuit layouts, relations in database schema
diagrams, and network links in network diagrams.

In order to fix the problem definition for this thesis, we need to differentiate be-
tween the various uses that graphs are put to. The most common use of graphs is in
static structural models, i.e. models that represent either fixed structural relationships
between entities, such as class diagrams[3], entity-relationship models[45], or meta-
models[5], or momentary snapshots of fluid relationships, such as object diagrams[3].
While such models can also exhibit properties that must be formally verified†, they are
not the focus of this thesis.

There a two main fields in which graphs are also used in dynamic settings – model
transformations and behavior modeling.

Model transformation[5] is the transformation of models belonging to a well-
defined modeling language into other models of a different (or possibly the same) mod-
eling language. The importance of such transformations for model driven software
development cannot be overstated. A consequence of the application of more domain-
specific and thus less generic modeling languages is the fact that such languages are

†such as the feasibility of OCL-enhanced class diagrams[154]

4

often employed in contexts where their scopes overlap, i.e. where aspects of one model
are relevant in a different model. Also, the same modeled system might be analyzed or
otherwise acted upon in different contexts in the development process, requiring dif-
ferent models and thus transformations that map between them. Applications in the
domain of model transformations often use relatively complex graph transformation
formalisms (such as Triple Graph Grammars[80, 142]) and employ extensions of the
graph formalism itself, such as attributes. While the field of model transformations can
also benefit from the verification of graph transformation systems, we want to focus on
a different application in this thesis.

Behavior modeling refers to the activity of using (graphical) modeling languages to
define how a given system can evolve over time. The resulting models can focus on the
evolution of the internal state of a system, or the exchange of messages between sys-
tems over time, such as in activity diagrams and state charts[3], or in (timed) automata
networks[29]. They can also model the structural evolution of a system over time[71],
by describing how the relationships between the entities that the graphs concerned are
made of can change. Graph transformation systems are the ideal mathematical formal-
ism to model this, and since it has been shown that models like activity diagrams and
state charts can also be modeled by them, we consider them a general-purpose formal-
ism for behavior modeling. Once a behavior model has been created, it must be verified
against the requirements implied by its later use.

At the highest level of abstraction, a graph transformation system consists of a single
graph indicating the initial state of the system, as well as a (finite) number of graph
transformation rules, that describe what kind of actions the system can perform that
affect its structural composition, i.e. the graph that models its current state. A rule
consists of a left-hand side graph and a right-hand side graph. These describe the effect
of the rule by providing quite literally a before and an after picture of the affected part
of the graph. One applies a rule by finding a part of the graph modeling the current
state of the system that looks like the left-hand side of the rule, and replaces that part
with the right-hand side of the rule.

This basic concept of a graph transformation system has no notion of execution
control – rules can be (and are) applied whenever it is possible to apply them. There
are extensions of this formalism that allow for prioritization among the rules[75], or
even complete control flow specifications[71]. However, for this thesis we will focus on
the basic formalism. In this formalism, the semantics of a graph transformation system
are given by all graphs that can possibly be created from the initial graph by applying
sequences of graph transformation rules. This set of graphs then represents, in a sense,
the set of all possible configurations that the modeled system can have. The question
then becomes whether all of these configurations, or sequences of configurations, are
intended by the designer, or if some of them lie outside the specification. This question
is often exceedingly difficult to answer since the number of possible configurations is

5

usually extremely large, and in many important cases even infinitely large, removing all
hope to actually enumerate all possible configurations.

There are many kinds of properties that could be verified for graph transformation
systems (as for any other kind of behavior model). A very broad categorization[143]
splits them into safety properties (making sure that bad things never happen) and live-
ness properties (making sure that, eventually, good things happen). In this thesis we will
focus on safety properties, more specifically, on the so-called coverage problem. This
kind of property identifies a particular kind of sub-configuration of a system to be dan-
gerous, and then sets out to prove that the system can never produce a configuration
that contains, i.e. “covers”, that dangerous sub-configuration.

1.2 Contributions

For generic graph transformation systems, being a Turing-complete formalism‡, the
coverage problem is undecidable. This is related to the aforementioned fact that many
graph transformation systems have the ability to generate arbitrarily large sets of non-
isomorphic graphs, and thus induce infinite state spaces. Nevertheless, methods can be
designed to provide solutions for it in special cases (see Sec. 8.1). In this thesis, we seek
to develop a new method of solving the coverage problem for graph transformation
systems.

The main contribution to the field of model driven software development thus lies
in the exploration of a new verification technique for visual modeling languages de-
scribing dynamic behavior. As the chief obstacle in verifying models in such languages
usually consists of the infinite variety of structurally-distinct states they generate, we
will provide a verification technique that is able to handle infinite state spaces. This is
achieved by a novel approach to the verification of infinite-state graph transformation
systems.

In order to create this new approach, this thesis draws on successful techniques that
are already being employed in other subfields of software verification, and applies them
in the graph transformation context. In the following, we will name the individual
main contributions of this thesis and describe them briefly. The necessary correctness
proofs are assumed to be implied by each of the contribution descriptions.

Firstly, we provide an abstract graph formalism based on three-valued logic inspired
by the work of Sagiv et.al.[134] on shape analysis. This results in the ability to “gener-
alize” graphs by summarizing subgraphs using so-called “summary nodes”. This basic
principle is illustrated in Fig. 1.1. We further create a way of finely tuning this abstrac-
tion using first-order logical formulas[144]. These two contributions together enable
the construction of sound abstractions of the state spaces induced by behavior models

‡since a GTS can easily simulate a Turing machine

6

Figure 1.1: Abstracধon Illustraধon

in visual languages. Any verification results for the coverage problem obtained for the
abstraction automatically hold for the original system as well. The use of first-order
logic for abstraction refinement further means that a wide variety of domain knowl-
edge can be utilized to refine the abstraction if necessary. While the graph abstraction
itself is nearly identical to the original shape analysis, the application of regular trans-
formation rules to the abstract graphs, as well as the automatic maintenance of the
abstraction refinements goes significantly beyond that.

Secondly, we provide a way to facilitate the detection of abstraction errors, i.e. in-
stances where the abstraction glosses over important aspects of the system, as well as
analytical tools to detect unsound abstractions and superfluous abstract states. We
achieve this by encoding graphs, the membership in the represented graph set of an ab-
stract graph, as well as sequences of transformation rule applications guided by abstract
graph sequences in first-order logic. These contributions are based on prior work on
bounded model checking[97], but are modified and extended to cover a much wider
range of applications. We also provide specific implementation details to enable the im-
plementation of these encodings in the well-established language SMTLib to facilitate
the employment of state-of-the-art solvers. This will allow any verification technique
integrated into an MDSD process that is based on the techniques presented in this the-
sis in the short term to rely on readily available, off-the-shelf software for its implemen-
tation, and in the mid- and long-term to benefit from the rapid growth in efficiency
currently present in the field of SMT solving.

Thirdly, we provide a fully automatic state space construction algorithm that is
amenable to lazy refinement strategies, and a semi-automatic abstraction refinement
algorithm. These two algorithms make heavy use of the encodings mentioned above.
By adopting the lazy abstraction paradigm, we ensure that the construction of the state
space is only explored in detail where absolutely necessary, leaving safe portions of the
state space at as high an abstraction level as possible. By using a semi-automatic refine-
ment scheme we combine the convenience and easy applicability of an automatic ap-
proach for the common case with the analytical power of a human designer for special
cases where the automation is not sufficient.

Finally, we describe a prototypical implementation of these algorithms and report
on some experimental results. The implementation is modeling language-agnostic and

7

operates on a purely conceptual level. This serves to better illustrate the results of the
thesis and also underscores the wide range of applicability of the general approach – it
can be applied to any behavioral modeling language that models structural adaptation.

1.3 Thesis Outline

The remainder of this thesis retraces the important steps in developing our approach.
This leads to an outline where each successive chapter adds to and builds on the con-
cepts introduced in the chapter before, while after each chapter the approach as de-
scribed so far is closed in itself, if incomplete – it can be used to solve some problems,
but relies on the remaining chapters to make it useful.

We begin by introducing our modeling formalism, i.e. basic graphs and graph trans-
formation systems in Chapter 2, and describe its semantics that we will base our formal
analysis on. There we also describe how the model checking approach to verification
can be applied to graph transformation systems, by creating graph transition systems.

We build on this to then introduce our abstraction approach in Chapter 3. This al-
lows us to tackle the problem of infinite state spaces by providing a way to construct
finite abstractions of the state space in such a way that it represents a sound approxi-
mation with respect to the coverage problem. Working from a template provided by
shape analysis for pointer structures[134], we create an abstract graph transformation
formalism and use it to define shape transition systems in analogy to the graph transi-
tion systems encountered before. We also provide an abstraction refinement scheme
based on first-order logic that can be used to tune the abstraction to include or exclude
certain pieces of information.

The abstractions introduced in this chapter solve the problem of infinite state
spaces, but introduce new ones, such as the possibility of false error reports (known
as spurious counterexamples), and vacuous states, i.e. abstract states that do not repre-
sent any actual states. Motivated by this, in Chapter 4 we provide analysis tools that
can detect these problems and be utilized to alleviate them. Specifically, we create en-
codings of graphs and graph transformations into first-order logic that can be used to
identify spurious counterexamples produced by the analysis, as well as contradictory
refinements.

Chapter 5 then introduces a new state space construction algorithm that is designed
to overcome some of the weaknesses of the approach from Chapter 3 and provide a
framework specifically designed to take advantage of the encodings developed in Chap-
ter 4. The algorithm described here is complete with the exception of abstraction re-
finement, and can thus verify relevant examples where the initial abstraction is suitable
to prove the safety property.

An algorithm for abstraction refinement that fits into this state space construction

8

technique is then introduced in Chapter 6. It is a semi-automatic approach, contain-
ing an interpolation-based algorithm, an automatic backup algorithm, and finally a
framework for interaction with a human designer in case both of these attempts fail.

Chapter 7 then describes the prototypical implementation, called SGA, that was
created as part of this thesis. This implementation uses a pure graph formalism and
is thus not bound to any particular modeling language. This serves its purpose as a
demonstration of the abstract concepts described in this thesis and makes it easy to
transfer it to any modeling language that models structural changes in graphical models
based on the structure of those models. SGA is then applied to example problems in
order to show state space construction and abstraction refinement in action, as well as
to point out the remaining weaknesses of the approach.

Chapter 8 then concludes with an overview over related work, as well as an explo-
ration of possibilities for future work on our approach.

9

2
Basic Definitions for Verifying

Graph Transformation Systems

Graphs and graph transformations are central to graphical modeling lan-
guages. They are necessary to provide a proper mathematical background upon which
automated tools can be built. In this chapter, we will introduce the notions of graphs
and graph transformations that we will use as the basis for this thesis. We will also de-
scribe the basic approach to verifying graphical models and show why it is insufficient.

Graphical models generally model two different aspects of a system - structural as-
pects and behavioral aspects. Structural models describe the static structure of a system.
They can provide a high-level overview of relationships between elements or element
types in the model (e.g. a UML[3] class or component diagram) or a snapshot of a state
of the model in its runtime evolution (e.g. a UML object diagram). Since what is ex-
pressed in these models are typed relationships between distinct elements, graphs are
the ideal mathematical concept to define their semantics.

Behavioral models, on the other hand, describe how the modeled system evolves
over time. This can mean the change of system states (e.g. in a UML statechart), or
structural change in a system (e.g. in a MechatronicUML[26] story diagram). When
structures are modeled using graphs, then modeling structural changes requires a math-
ematical concept capable of expressing changes in graphs.

10

There are many approaches to mathematically define the transformation of graphs
into other graphs. Examples of such approaches include Node Label Controlled (NLC)[70]
transformation, Hyperedge Replacement Grammars (HRG)[64], and Triple Graph
Grammars (TGG)[142].

In this thesis, we will focus on the algebraic approach to graph transformation[67]
and its use for the modeling and verification of systems that undergo structural trans-
formations as part of their evolution. Modeling based on algebraic graph transforma-
tion is already part of some graphical modeling languages (such as MechatronicUML),
and some verification techniques for it have already been developed. However, as we
will see at the end of this chapter, the straightforward approach to verify such models
quickly runs into problems.

This chapter provides the basic definitions on which the approach presented in this
thesis is built. The definitions closely follow or derive from the standard definitions of
graphs and transformation as defined by Rozenberg et.al.[133]. The verification process
described at the end of this chapter amounts to the basic technique employed by the
GROOVE-tool[75].

We begin with the most basic notions, i.e. graphs and relationships between graphs.

2.1 Graphs

The graphs we use in this thesis are labeled, meaning their edges are annotated with
symbols taken from a finite set fixed at the beginning of modeling. Any kind of set can
be used as a label set, but it must be partitioned into unary labels and binary labels.

Definition 1 (Label Set). A label set L = (UL, BL) is a pair of two sets of symbols.
They are called the set of unary symbols UL, and the set of binary symbols BL. If L
is clear from context, we use the short forms U and B.

Having established the label set, we can now define our notion of labeled graphs. It
is the basic notion of a simple graph, with the addition of unary edges, i.e. edges that
are only connected to one node. The definition makes the expected restriction that
unary edges must have unary labels and binary edges must have binary labels. This
extra modeling effort is made in order to be able to distinguish between a binary edge
that only happens to connect a node to itself, and a unary edge that is meant to only
apply to one node. This will become important in Chapter 3.

Definition 2 (Labeled Graph). A labeled graph G over a label set L is a triple G =(
N,E1, E2

)
, where

NG is the set of nodes
E1

G ⊆ UL ×N is the set of unary edges

11

sample graph

n1

n2n3

b1

b1

b1

b2

u1

u2

u2

L=({u1, u2}, {b1, b2})sample_graph = { N = {n1, n2, n3} E1 = {(u1,n1),(u1,n2),(u2,n3)} E2 = {(n1,b2,n2), (n2,b1,n3), (n3,b1,n1),(n1,b2,n3)}}
Figure 2.1: A sample graph and its visual representaধon

E2
G ⊆ N ×BL ×N is the set of binary edges

If the graph is clear from context, we refer to these parts as N,E1 and E2 respectively.
Where appropriate, individual unary edges are denoted e1, binary edges are denoted
e2, while e denotes an edge without a specified arity.

In the following, we will use “graph” as a shorthand for “labeled graph”. The pur-
pose of a graph is to define relationships between its nodes and edges. These relation-
ships are called adjacency and incidence.

Definition 3 (Adjacency and Incidence). Let G =
(
N,E1, E2

)
be a graph. Two

nodes n1, n2 ∈ N that are connected by an edge (n1, b, n2) = e2 ∈ E2, labeled b,
are said to be b-adjacent, or just adjacent if the label is irrelevant. Any edge e is said to
be incident to its node(s). This is denoted n ∈ e for each node n in e. Two edges that
connect to the same node are said to be incident to each other.

Every graph has a visual representation. This representation shows each node as
a circle annotated with its name (e.g. n1). It further presents each unary edge (u, n)
as a u-labeled arrow originating close to and terminating at the circle representing n.
Finally, it draws a b-labeled arrow for each binary edge (n1, b, n2), originating at the
circle representing n1 and terminating at the circle representing n2. Figure 2.1 shows a
sample graph and its visual representation.

It is sometimes necessary to look at only a part of a given graph, instead of the whole
graph. The following definitions thus introduce two slight variations on this concept.

Definition 4 (Induced Graph). Given a graph G, every subset N ⊆ NG of its node set
induces a new graph. The graph induced by G and N is defined G↓N =

(
N, E1

G

y
N
, E2

G

y
N

)
,

12

where

E1
G

y
N

:=
{
(u, n) | (u, n) ∈ E1

G ∧ n ∈ N
}

E2
G

y
N

:=
{
(n1, b, n2) | (n1, b, n2) ∈ E2

G ∧ n1, n2 ∈ N
}

An induced graph is thus defined by a subset of its nodes and all edges incident to
(only) those nodes. In many cases, one also wants to restrict the edge set. For this rea-
son, the notion of a subgraph is useful.

Definition 5 (Subgraph). A graph G is said to be a subgraph of a graph H , written
G ≤ H , iff NG ⊆ NH , E1

G ⊆ E1
H , and E2

G ⊆ E2
H .

Having defined graphs and ways to identify parts of them, we can now begin to
define how a graph can be transformed into another. The basic idea of transforming
graphs can be intuitively understood to involve the finding of parts of a graph that are
“similar” to a given graph, and then swapping out that part for a different graph. Thus,
we need a more formal definition of similarity between (parts of) graphs.

This is provided by a notion from category theory, called amorphism. In this thesis,
we will abstract from most aspects of category theory that make up the mathematical
foundation of algebraic graph transformation. The notion of a morphism, however, is
so central that it cannot be omitted.

Definition 6 (Morphism). Given two mathematical objects X and Y , a morphism
f : X → Y is a structure-preserving mapping from X to Y . The precise meaning
of “structure-preserving” is dependent on the domain of X and Y . The set of all mor-
phisms between X and Y is denotedM (X,Y).

The general idea of a morphism carries over to graphs (and the category of graphs)
in the obvious way.

Definition 7 (Graph Morphism). Given two graphs G and H over a common label set
L, a graph morphism f : G → H is a total function between the node and edge sets of
G and H , such that

∀ (u, n) ∈ E1
G : f ((u, n)) = (u, f (n)) and

∀ (n1, b, n2) ∈ E2
G : f ((n1, b, n2)) = (f (n1) , b, f (n2))

G is called the source graph of the morphism, while H is called the target graph.

Thus, the structure preserved by a graph morphism is the adjacency between nodes
defined by the edge sets. If two nodes are connected by an edge with a certain label in

13

the source graph, their images in the target graph must be connected by the image of
that edge. These conditions can be interpreted constructively, as the following defini-
tion shows.

Definition 8 (Induced Graph Morphism). Let G and H be graphs, and let f : NG →
NH be a total function. f induces the graph morphism f̂ : G→ H by setting

f̂ (n) := f (n) ∀n ∈ NG

f̂ ((u, n)) :=
(
u, f̂ (n)

)
∀ (u, n) ∈ E1

G

f̂ ((n1, b, n2)) :=
(
f̂ (n1) , b, f̂ (n2)

)
∀ (n1, b, n2) ∈ E2

G

if f̂
(
E1

G

)
⊆ E1

H and f̂
(
E2

G

)
⊆ E2

H .

The existence of a graph morphism between two graphsG andH intuitively states
thatG is “similar” to (a part of)H . A direct corollary from this definition is the con-
cept of a graph isomorphism.

Definition 9 (Graph Isomorphism). Given two graphs G and H , a function f : G →
H is a graph isomorphism between G and H iff f is bijective, f is a morphism, and
f−1 is a morphism as well.

This is written G ≡f H , or simply G ≡ H if f is of no consequence. G and H are
then said to be isomorphic.

While two isomorphic graphs are usually not literally the same graph, their only dif-
ference lies in the identity of their nodes. None of the concepts presented here depend
in any way on that identity, so treating isomorphic graphs as if they were the same
graph is sound.

Having defined graphs and relations of similarity between them, we now move
on to define graph transformations, i.e. processes that transform a given graph into a
different graph.

2.2 Graph Transformation Systems

In order to transform a graph, one essentially needs two bits of information: which
parts of the graph need to be changed, and how they need to be changed. In algebraic
graph transformation (specifically the single- and double pushout approaches), this
is accomplished by specifying a single graph transformation as a tuple of two graphs.
The first describes a subgraph that the transformation is applied to, and the second
describes how that subgraph should look after the transformation has taken place.

14

sample rule

n1 n2

b1

n1 n2

b2

Figure 2.2: A sample rule reversing and relabeling an edge (p indicated by dashed lines)

This kind of transformation definition is captured in the concept of a graph rule.

Definition 10 (Graph Rule). A graph rule P = (L, p,R) consists of two graphs L and
R, as well as a graph isomorphism p : Lc → Rc between subgraphs Lc ≤ L and
Rc ≤ R.

It is worth noting, that the specific definition of a graph rule varies quite a bit be-
tween various applications of algebraic graph transformation. It is, for example, equiv-
alent to the above definition to replace the isomorphism with the condition that both
graphs must have a non-empty intersection. This makes certain aspects of application
easier, but also makes it harder to state the algebraic application definition on which
the approach is based. It is also possible (and common) to make the rule definition
less restrictive, and only require a partial graph morphism (a graph morphism onLc)
instead of an isomorphism, allowing for the possibility of a transformation merging
nodes. We choose the above definition as a compromise between conceptual clarity and
simplicity of application.

The graphL in this definition is referred to as the left hand side of P , whereasR
is referred to as the right hand side of P . We can now concretize the intuitive idea of
graph transformation, now called rule application, thusly:

Idea. Find an occurrence of the left hand side in a given graph, and replace this occur-
rence with the right hand side, preserving the subgraph indicated by p.

Figure 2.2 shows an example of a graph rule. It expresses that an occurrence of a b1
edge should be replaced by a b2 edge in the opposite direction. The isomorphism p is
indicated by dashed lines. Note that neither edge is touched by p.

The processes of finding an occurrence, and of replacing it, are calledmatching and
application, respectively.

Definition 11 (Match). Given a graph G, and a graph rule P = (L, p,R), a match for
P in G is an injective graph morphismm : L→ G.

15

In general, it is not necessary to require matches to be injective. We exclude non-
injective matches here in order to avoid a long list of problems with our verification ap-
proach. This is not a very significant constraint, since many interesting systems can be
adequately modeled using injective matching, and many models that use non-injective
matching can be rewritten to work with injective matching.

Using Def. 11, a match expresses that a subgraph ofG is similar to the left hand side
in the sense of graph morphisms. We can now transform the graphG by applying the
rule to that subgraph, which, for simplicity, we will also call the match of the rule.

Applying a graph rule in the algebraic approach can be done in one of two ways,
called single pushout and double pushout[133]. These ways differ in their underlying
categorical formalism. We will describe both of them here, distinguishing them not by
their categorical definition, but by the implications of those definitions on the applica-
tion process itself.

First, we need to define the condition under which a rule is applicable to a graph.
This always takes the form of some kind of condition on the match at which the rule is
to be applied. If the rule is applicable for a given match, we call that match valid.

Definition 12 (Rule Applicability (SPO)). Given a graph G and a rule P = (L, p,R),
any matchm : L→ G is valid.

Thus, in SPO, the mere existence of an injective morphism fromL toG suffices to
obtain rule applicability. Given a valid match, a rule can be applied to a graph in the
following way.

Definition 13 (Rule Application (SPO)). Let G be a graph, P = (L, p,R) be a rule,
m : L → G be a valid match, and G′ be the result of applying P toG atm using the
single pushout (SPO) method. We define the match on the nodes of the right hand side
as f := p ◦ (m | NLc) ∪ idNRc

. The graph G′ is then defined as follows:

NG′ := NG \m (NL \NLc) ∪ (NR \NRc)

E1
G′ :=

[
E1

G \m
(
E1

L \ E1
Lc

)
∪ f̂

(
E1

R \ E1
Rc

)]y
NG′

E2
G′ :=

[
E2

G \m
(
E2

L \ E2
Lc

)
∪ f̂

(
E2

R \ E2
Rc

)]y
NG′

As defined above, a rule application intuitively does the following:

• It begins with the node setNG, then removes the matches of the nodes that
occur exclusively in the left hand side and adds the nodes that occur exclusively
in the right hand side.

16

n1 n2

b1

n1 n2

b2

n1 n2

n1

n2n3

b1

b1

b1

b2

u1

u2

u2

n1

n2n3

b1

b1

b2

u1

u2

u2

n1

n2n3

b1

b1

b2

u1

u2

u2

reversal rule

sample graph

b2

L Lc/Rc R

Figure 2.3: Applying the reversal rule to the sample graph

• For i ∈ {1, 2}, it begins with the edge setEi
G, then removes the matches of the

edges that occur exclusively in the left hand side and adds the edges that occur
exclusively in the right hand side. It then restricts this new edge set to the nodes
ofG′ in order to remove possible dangling edges created by removing a node
without explicitly removing all its incident edges.

Essentially, the isomorphic part of the rule (Lc ≡p Rc) is kept, the parts exclusive to
the left hand side are deleted, and the parts exclusive to the right hand side are added.

Note that the actual nodes of the rule are added to the graph itself, possibly creating
problems when applying the same rule to the graph once more. These problems can
be easily circumvented by creating a new instance of the rule each time it is applied and
using consistent renaming to avoid node identity conflicts.

Figure 2.3 shows the application of the reversal rule to the sample graph at one par-
ticular match. In the figure, the remove and add steps are separated for clarity.

In its effects and in the context of the definitions made in this chapter, the double
pushout approach to rule application does not vary a lot from the single pushout ap-
proach. Essentially, it adds an additional application condition intended to exclude the
possibility of dangling edges.

Definition 14 (Rule Applicability (DPO)). Given a graph G and a rule P = (L, p,R),
a matchm : L→ G is valid iff ∀n ∈ NL \NLc we have

∀e1 ∈ E1
G : n ∈ e1 → ∃e1d ∈

(
E1

L \ E1
Lc

)
: m

(
e1d
)
= e1

17

∀e2 ∈ E1
G : n ∈ e2 → ∃e2d ∈

(
E2

L \ E2
Lc

)
: m

(
e2d
)
= e2

Intuitively speaking, in DPO rule application, a rule must explicitly delete all inci-
dent edges of every node it deletes. This means that, should the application of a rule
imply the creation of dangling edges, then the rule is deemed not applicable. Designing
models using DPO is thus more difficult, since node deletion is only possible if the en-
tire context of a node at runtime is known a priori. However, this more restrictive view
on rule application has many theoretical benefits as we will see in Sec. 3.6, as well as in
the following definition.

Definition 15 (Rule Application (DPO)). Given a graph G, a rule P = (L, p,R) and
a valid matchm : L → G, the result G′ of applying P toG atm, using the double
pushout (DPO) method, is defined as follows:

NG′ := NG \m (NL \NLc) ∪ (NR \NRc)

E1
G′ := E1

G \m
(
E1

L \E1
Lc

)
∪ f̂

(
E1

R \ E1
Rc

)
E2

G′ := E2
G \m

(
E2

L \E2
Lc

)
∪ f̂

(
E2

R \ E2
Rc

)
where f is defined as in Def. 13.

As expected, inducing the resulting graph on its node set is no longer necessary, since
the DPO application condition already makes sure that all remaining edges are only
incident to preserved nodes.

Having defined graph rules and their application to graphs, we can now transform
graphs into new graphs using rules. This forms the basis for the modeling of struc-
tural changes in systems described by graphs. There are many ways to actually define
a model of such a system, depending on the needs of the designer. In this thesis, we
will focus on the most basic way to model a structurally dynamic system : the graph
transformation system.

A graph transformation system defines an initial graph and a set of rules that can be
applied to this graph. The operational semantics of the system are obtained by exhaus-
tively applying the rules to the start graph until no new graphs can be created.

Definition 16 (Graph Transformation System (GTS)). A Graph Transformation Sys-
tem (GTS) is a tuple G = (I,R), where I is a graph andR is a set of rules.

Applying all applicable rules inR to I , we get a new set of graphs. From each iso-
morphic subset of these graphs, we keep only one representative. Applying all appli-
cable rules to the remaining graphs yields yet more graphs, and so on. If the graph

18

transformation system is finite (and it may very well not be, as we will see in the next
section), then this process of creating new graphs will eventually terminate and yield
the reach set of the GTS.

Definition 17 (Transition, Reach Set). Let G = (I,R) be a GTS, G be a graph, let
P ∈ R be a rule applicable to G at some matchm, and let G′ be the result of applying
P to G atm. This relationship between G, P ,m and G′ constitutes a transition and is
denoted G −P,m−−→ G′. When P orm are inconsequential, this can be written G −P→ G′

or G → G′, respectively. We write G →∗ G′ if there is a sequence of applications of
rules inR that transforms G into G′. The reach set of G is defined as reach (G) :=
{G | I →∗ G} /≡.

The reach set of a graph transformation system itself has no structure. In order to
obtain an overview of not just what kinds of graphs a GTS can produce, but also how
they are produced, i.e. by what rule sequences, we need a graph transition system.

Definition 18 (Graph Transition System). Let G = (I,R) be a graph transformation
system, and let reach (G) be its reach set. The graph transition system of G, denoted
trans (G) :=

(
N,E1, E2

)
, is a graph over the label setR× µ, defined as follows:

N := reach (G)
E1 := {(G, (P,m)) | m is a valid match for P in G ∧ LP = RP }

E2 :=
{(
G, (P,m) , G′) | G −P,m−−→ G′ ∧ LP ̸= RP

}

where µ is the set of all matches of rules in P to graphs in reach (G).

Note that the definition ofE2 excludes rules that perform no action, whereasE1 al-
lows only such rules that perform no action. This is a restriction that becomes relevant
in the next section.

This fully defines the operational semantics of a graph transformation system. Fig-
ure 2.4 shows the graph transition system for the graph transformation system consist-
ing of the sample graph in Fig. 2.1 and the reversal rule in Fig. 2.2.

2.3 Model Checking Graph Transformation Systems

A graph transformation system like this could, for example, model a UML object dia-
gram (the initial state), together with the effects of all methods in the system that affect
the object structure. The graph transition system would then show which object con-
figurations are reachable with the operations provided, and how these configurations
are reached.

19

G
1

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
4

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
3

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
6

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

 I

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
2

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
5

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

G
7

n
1

n
2

n
3

b
1

b
1

b
1

b
2

u
1

u
2

u
2

re
v
e
rs

e
(n

1
,n

2
)

re
v
e
rs

e
(n

3
,n

2
)

re
v
e
rs

e
(n

2
,n

3
)

re
v
e
rs

e
(n

2
,n

3
)

re
v
e
rs

e
(n

3
,n

1
)

re
v
e
rs

e
(n

1
,n

2
)

re
v
e
rs

e
(n

1
,n

2
)

re
v
e
rs

e
(n

3
,n

1
)

re
v
e
rs

e
(n

3
,n

1
)

re
v
e
rs

e
(n

1
,n

2
)

re
v
e
rs

e
(n

2
,n

3
)

re
v
e
rs

e
(n

2
,n

3
)

Figure 2.4: The graph transiধon system induced by the sample graph and the sample rule

20

A natural question to ask, then, would be whether the behavior as modeled con-
forms to the desired behavior of the system. This question motivates themodel check-
ing[52] of graph transformation systems. Given a model of a system, in this case a
graph transformation system, does it conform to a given specification?

The easiest way to answer this question in the context of model checking, is to trans-
form our graph transition system into a Kripke Structure, the basic model on which all
(explicit) model checking techniques are based. In order to achieve this, two things are
necessary: all paths in the graph transition systems must be made infinite, and the states
(the graphs) of the graph transition system must be annotated with atomic proposi-
tions which the specification will refer to.

Making all paths infinite is easy by simply adding a no-action self-edge to every
graph that does not have an outgoing edge. In order to add useful atomic propositions,
we need a way to express properties of graphs. As in the work by Rensink et.al.[75], we
achieve this by way of graph patterns.

Definition 19 (Graph Pattern). A graph pattern is a graph rule P = (L, p,R) with
L = R and p = idL.

Thus, a graph pattern is simply a rule that performs no action. Using patterns, we
can now define the Kripke Structure for any given GTS.

Definition 20 (Kripke Structure for a GTS). Let G = (I,R) be a graph transforma-
tion system, trans (G) =

(
N,E1, E2

)
be its graph transition system, and let P ⊆ R

be a set of patterns. The Kripke Structure K (G) = (S, S0, R, L) for G is defined as
follows:

S = N,

S0 = I,

R =
{(
G,G′) ∈ S × S | ∃P,m :

(
G, (P,m) , G′) ∈ E2

}
∪
{
(G,G) ∈ S × S | ¬∃G′, P,m :

(
G, (P,m) , G′) ∈ E2

}
,

L = N 7→
{
P ∈ P | ∃m : ((P,m) , N) ∈ E1

}
.

Thus, the patterns of the GTS become unary state predicates (atomic propositions)
in the Kripke Structure. In this way, all standard notions of model checking are trans-
latable to graph transformation systems. This includes full LTL/CTL model checking.

An implementation of this is explained in great detail in the works of Rensink
et.al.[75] and demonstrated in the GROOVE* tool.

In this thesis, we focus on a particular kind of model checking problem – the cover-
ing problem. Given a single pattern (modeling an “error”), and a graph transformation

*Graphs for Object Oriented Verification

21

 I

n1

list

head tail

start

n2

n1

list

head tail

n1

list

head tail

cell

add

n3

n1

list

tail

cell
n2

n1
list

tail

cell
n2

cell
next

end

n1

list

head tail

n2

n1

list

head tail

cell

remove

n2

n1

head

cell
n3

cell
next n2

n1

head

cell

list

list

 Linear List Graph
Transformation System

Figure 2.5: A graph transformaধon system modeling a linear list

system, is it possible to construct a graph that matches the pattern? This is known as
the covering problem and amounts to LTL model checking the specificationG¬error
for a given system.

Definition 21 (Covering Problem). A covering problem is a tuple (G, P) of a graph
transformation system and a pattern. G is said to cover P iff there exists a G ∈ reach (G)
and a matchm for P in G.

Checking whether a given graph transformation system covers a given pattern is very
straightforward – simply construct the transition system (or even just the reach set)
and check whether a graph matching the pattern exists. However, it is easy to see that
this approach runs into problems when the reach set grows very large, or even infinitely
large.

This can happen in relevant application scenarios very easily. Consider, for example,
the graph transformation system depicted in Fig. 2.5. It models a simple linear list data
structure, with actions to create a list, delete a list, and to add or remove objects.

22

While the data structure and the operations on it are very simple, it is also very clear
that its reach set is infinitely large, since nothing prohibits arbitrarily many add oper-
ations from being applied. Clearly, any process that relies on the construction of the
entire reach set of such a graph transformation system will fail to prove any properties
about it.

One way to deal with this issue is bounded model checking, i.e. only constructing a
finite prefix of the state space in the hope that, if errors are present, the rule sequences
leading to them will be relatively short. The other way to approach the problem is ab-
straction. By constructing a finite and sound abstraction of the infinite graph transition
system, it is possible to derive properties of the original system. This approach is taken
by a number of verification frameworks for graph transformation systems, as well as
this thesis.

In the next chapter, we will describe our approach to graph abstraction and compare
it to other approaches with similar goals.

23

3
Abstracting

Graph Transformation Systems
using Three-Valued Logic

State space explosion is a widespread problem in all facets of verification and
model checking. It occurs when small, incremental increases in the size of the model
result in huge increases in the size of the state space, making state enumeration in-
tractable. In models describing dynamically reconfigurable systems, state space ex-
plosion comes about via the combination and interaction of the rules that govern the
creation of new configurations. Each new rule creates not just all the new combinations
of rule execution sequences with the new rule, but can also lead to entirely new kinds
of configurations, on which the old rules also generate new configurations.

Since dynamically reconfigurable models are often, as described in the previous
chapter, modeled using graphs and graph transformation systems, this problem is mir-
rored in the model checking of graph transformation systems. The tendency of GTSs
to produce large or even infinite numbers of states makes it impossible to verify any
of their properties using explicit state space generation. A standard approach to solv-
ing this problem is to abandon the direct checking of the state space itself, and to work
instead on a finite and small overapproximation of it. This is an instance of a general
technique called abstract interpretation.

24

The basic idea is to create a notion of abstraction wherein each abstract state rep-
resents a (possibly infinite) set of concrete states. The properties of each abstract state
represent an overapproximation of the properties of the concrete states it represents.
Transitions between abstract states mirror transitions between the concrete states that
they represent and thereby form an abstract transition system.

An abstraction is called sound, if all parts of the original transition system are covered
by some part of the abstract transition system. It is easy to see that when a sound ab-
stract transition system does not contain a given type of error, this result is transferable
to the original system.

The effort required to find a good abstraction and compute the resulting abstract
transition system is usually substantial. Thus, this approach is only feasible when the
original problem is sufficiently intractable (which in the case of an infinite state space is
certainly the case) and enough information to base the design of the abstraction on is
available.

In this chapter, we will present our approach to tackling these issues for graph trans-
formation systems. It is based on the three-valued logic approach to verifying heap-
manipulating programs by Sagiv et.al.[134].

3.1 Motivation

There are many approaches to graph abstraction that already exist. Each of them is
built on a different theoretical framework. Some approaches focus on patterns instead
of graphs, using a pattern to represent all graphs that contain it, such as the work by
Daniela Schilling[139]. By starting from the error pattern and applying rules back-
wards, the absence of the pattern can be proven or disproved to be an inductive invari-
ant of the system. Other approaches use more explicit abstraction mechanisms. Exam-
ples for this are, e.g., the work by Baldan, Corradini and König[16], where the GTS is
fused with a Petri-net like structure to obtain a workable abstraction, and the work by
Rensink et.al.[36], in which nodes with similar neighborhoods are summarized.

Each of these approaches has its own strengths and weaknesses. A new abstraction
system for graph transformation systems should therefore attempt to address existing
weaknesses so as not to be redundant. One weakness common to these approaches is
that abstraction refinement is rather coarse-grained, if it is supported at all, and un-
able to adapt to the specifics of a given GTS. Our goal is thus to create an abstraction
system for graph transformation systems that is highly adaptable, both manually and
automatically, to a given GTS and even to specific covering problems for that GTS.

If the goal is maximum adaptability, then it makes sense to base the abstraction on a
highly expressive foundation. Outside of the domain of graph transformations, there
already is an abstraction system exhibiting some of these properties – shape analysis

25

for heap-manipulating programs. This approach was developed by Sagiv, Reps and
Wilhelm[134]. It represents the state of the heap in heap-manipulating programs using
logical structures, a concept that is very close to graphs. In the following sections, we
will present the logical foundations of shape analysis and adapt it to graph abstraction.

A Short Discussion of Shape Analysis

Before we move on to the minute details of the particular shape analysis approach that
we base our approach on, we will give the reader a quick overview over shape analysis in
general and explain how it fits into the overall landscape of formal verification.

Shape analysis techniques are an instance of a much more general concept called ab-
stract interpretation. Pioneered and formalized in the late 1970s by Patrick and Radhia
Cousot[57–59] it provided a very general framework by which concrete systems could
be formally related to abstractions of these systems. Cousot and Cousot described a
mathematical theory of abstraction functions (relating concrete models to their ab-
stractions) that allowed for a standardized relating of concrete semantics to abstract
semantics. Most formalisms in the area of formal verification that use abstraction are
either outright formulated in terms of abstract interpretation or can be interpreted in
such a way that the viewpoint provided by abstract interpretation is applicable.

The term shape analysis describes a category of abstraction approaches that apply
the basic insights of abstract interpretation to systems whose state is defined predom-
inantly by some kind of structural model. By far the most prevalent structure that is
considered by shape analysis approaches is the pointer structure on the heap induced
by imperative, heap-manipulating programs. These approaches chiefly seek to prove
pointer safety of those programs, i.e. the absence of memory leaks and null-pointer
dereferences, but can also express and prove structural properties of the data structures
represented in the heap. They use a variety of different abstraction and abstraction re-
finement approaches, from three-valued logic as done by Sagiv et.al.[134] and Thomas
Wies[155], over separation logic, as done by Distefano et.al.[61, 160], to more ad-hoc
approaches as done by Ghiya and Hendren[77]. The application of these approaches
has yielded many relevant results, even for industrially-relevant case studies (see, e.g.,
Yang et.al.[160]).

With the structure in the center of shape analysis – the pointer structure in the heap
– being so closely related to graphs, it is no wonder that shape analysis has inspired
many abstraction approaches for graph transformation systems. However, shape anal-
ysis is primarily a tool for the analysis of sequential programs. Thus, while the abstrac-
tion of the states themselves are very similar in graph abstraction and shape analysis,
the operational semantics of the systems are very different. They also tend to focus on
particular kinds of structures that often occur in heaps, such as linked lists, trees, or cy-
cles, while in graph transformation systems, such “standard” structures are much rarer.

26

Graph abstraction approaches (our approach included) thus tend to bear only a super-
ficial resemblance to shape analysis approaches. We will discuss other graph abstraction
approaches in detail in Sec. 8.1.

3.2 Logical Encoding of Graphs

Shape analysis uses first-order predicate logic to describe heap states and their proper-
ties. At the core of predicate logic lies the concept of a universe. A universe contains all
the objects that the logic will later enable us to express the properties of.

Definition 22 (Universe/Domain). A Universe or Domain is a set of objects. The pur-
pose of calling the set a domain or universe is to facilitate the creation of logical formulas
describing subsets of (k-powers of) the set.

Building on this concept, the notion of a predicate allows for the identification of
arbitrary subsets of (k-powers of) the universe. Each predicate is denoted by a predicate
symbol.

Definition 23 (Predicate Symbol). A Predicate Symbol is a symbol (like a, b, φ, ψ,
...) together with an integer k, called its arity. Thus, a predicate symbol is a pair (s, k),
where s is a symbol and k ∈ N0. s is said to have arity k or that it is a k-ary predicate.
If the arity is clear from context, we omit k and simply write s.

A predicate symbol of arity k denotes a predicate that defines a subset of the kth
power of the universe. Sets of predicate symbols provide a vocabulary for building first-
order formulas that describe properties of and relationships between the predicates
referenced by the symbols in the set. All sets of predicate symbols will contain at least
the equality symbol (=, 2).

In order to build first-order formulas using predicate symbols, we need syntactical
atoms that reference these symbols. This is provided by the predicate literal, expressing
the membership of a given k-tuple of universe elements in the subset defined by the
predicate represented by a given predicate symbol.

Definition 24 (Predicate Literal). Let (p, k) be a predicate symbol and let U be a uni-
verse. A Predicate Literal of (p, k) is written p (u1, . . . , uk), where u1, . . . , uk are
variables ranging over U .

For the equality predicate, we write (u1 = u2) instead of= (u1, u2). From pred-
icate literals, as well as boolean constants, boolean connectives and quantifiers, first-
order formulas can be constructed.

27

∧ 0 1

0 0 0
1 0 1

∨ 0 1

0 0 1
1 1 1

¬
0 1
1 0

Table 3.1: Truth Tables for Basic Operators in Boolean Logic

Definition 25 (First-Order Formula). Let F be the set of first-order formulas over a
set of predicate symbols P and a set of variables V . Let furthermore F : F → 2V

identify the set of free variables of any given formula. F and F are inductively defined
as follows:

1,0 ∈ F F (1) = F (0) = ∅
p (u1, . . . , uk) ∈ F iff ui ∈ V ∧ (p, k) ∈ P F (p (u1, . . . , uk)) := {u1, . . . , uk}

¬ (φ) ∈ F iff φ ∈ F F (¬φ) := F (φ)

(φ) ∧ (ψ) ∈ F iff φ,ψ ∈ F F (φ ∧ ψ) := F (φ) ∪ F (ψ)

(φ) ∨ (ψ) ∈ F iff φ,ψ ∈ F F (φ ∨ ψ) := F (φ) ∪ F (ψ)

∀u : (φ) ∈ F iff φ ∈ F ∧ u ∈ F (φ) F (∀u : (φ)) := F (φ) \ {u}
∃u : (φ) ∈ F iff φ ∈ F ∧ u ∈ F (φ) F (∃u : (φ)) := F (φ) \ {u}

Syntactically correct formulas by themselves have no direct meaning. This is because
the predicate symbols they use have no inherent meaning. All that a formula does is
to define relationships between the predicates represented by the predicate symbols it
contains. In order to assign a truth value (either true or false) to a formula, we need to
connect it to boolean logic first.

Definition 26 (Boolean Logic). Boolean Logic consists of the set B := {1,0}, together
with the operators ∧,∨ : {1,0} × {1,0} → {1,0} and ¬ : {1,0} → {1,0}. These
operators are defined as shown in Table 3.1.

We can further relate the elements of B to each other in a logical order, formalizing
the intuitive idea that 1 is “more true” than 0.

Definition 27 (Logical Order). The Logical Order≤ on B is a total order on B defined
as {(0,0) , (0,1) , (1,1)} ⊆ B2.

Boolean Logic gives us a way to actually define predicates, not just predicate sym-
bols, by treating them as characteristic functions of the subsets of the universe that they
represent.

Definition 28 (Predicate). A Predicate of arity k over a universe U is a total function
P : Uk → B.

28

The way to assign a truth value to a formula, then, is to assign to each predicate
symbol a predicate that it represents. This is captured in a so-called interpretation.

Definition 29 (Interpretation). Let U be a universe, and let P be a set of predicate
symbols. An interpretation ι ofP overU is a function that maps the elements of P to
predicates, i.e.

ιk : Pk →
(
Uk → B

)
ι :=

∪
k∈N

ιk

where Pk designates the subset of P restricted to k-ary predicates. The set of all possible
interpretations for P and U is denoted I (P, U). An interpretation is complete if ιk is
a total function for all k.

We assume that every interpretation automatically imbues the equality predicate
symbol=with its natural meaning, i.e. u1 = u2 is only set to true if u1 and u2 are
variables referencing the same universe element.

Given a universe, a set of predicate symbols, and an interpretation, the truth value
of any formula with respect to that context depends solely on the assignment of its free
variables (if any) to specific universe elements. That context, which fixes the meaning
of formulas, is called a logical structure.

Definition 30 (Logical Structure). A (2-valued) Logical Structure is a triple L =
(U,P, ι), where U is a universe, P a set of predicate symbols and ι ∈ I (P, U) a
complete interpretation. Any formula φ over P with F (φ) = ∅ can be evaluated
to a truth value in the context given by L. If F (φ) ̸= ∅, then the truth value of φ
depends on the assignments to the free variables. Given a logical structure L, we refer to
its constituent parts as UL, PL and ιL.

Since a formula might have free variables, it cannot ultimately be evaluated, until
these free variables are assigned to universe elements.

Definition 31 (Assignment). Given a set of Variables V and a universe U , an assign-
ment is a functionm : V → U . An assignment is called complete if it is a total
function. Given an assignmentm, a variable v and a universe element u, we define

m [v 7→ u] := x 7→

{
u if x = v

m (x) else

Given predicate symbols, predicates, interpretations, logical structures, and assign-
ments, the final missing piece is a definition of what “evaluating a formula” actually

29

means. This essentially defines themeaning or the semantics of a formula with respect
to a given logical structure.

Definition 32 (Formula Semantics). Let S = (U,P, ι) be a logical structure and let
φ be a first order formula over P and a set of variables V ranging over U . Letm :
F (φ) → U be an assignment of all free variables of φ. Then the value or the semantics
of φ are denoted JφKmS and are defined inductively in the following way:

For all c ∈ B:

JcKmS := c

For all predicate literals with free variables v1, . . . , vk:

Jp (v1, . . . , vk)KmS := ι (p) (m (v1) , . . . ,m (vk))

For formulas φ, ψ:

Jφ ∧ ψKmS := JφKmS ∧ JψKmSJφ ∨ ψKmS := JφKmS ∨ JψKmS
For a formula φ

J¬φKmS := ¬JφKmS
For a formula φ with a free variable v

J∀v : φKmS :=
∧

u∈U JφKm[v 7→u]
SJ∃v : φKmS :=

∨
u∈U JφKm[v 7→u]

S

Should F (φ) = ∅, the assignment is unnecessary. The semantics are then denotedJφKS . We define two sets:

σS (φ) := {m : free (φ) → U | JφKmS = 1}
νS (φ) := {m : free (φ) → U | JφKmS = 0}

If σS (φ) ̸= ∅, we call φ satisfiable in S, or SAT for short.
If σS (φ) = ∅, we call φ unsatisfiable in S, or UNSAT for short.

30

In summary, first-order formulas are made up of predicate literals, defined over a set
of predicate symbolsP , boolean constants, boolean connectives, and quantifiers. They
are given meaning by logical structures, consisting of a universeU and interpretations
for the predicate symbols used, as well as assignments for their free variables. We can
conceive of a logical structure as a logical context in which formulas, that is, specifica-
tions of properties of and interrelationships between predicates, can be evaluated.

Now, what does this have to do with graphs? In their papers[134], Sagiv et.al. use
logical structures as representations of heap states. Heap states consist in essence of two
types of things: memory cells, i.e. places on the heap where data is stored, and pointers,
i.e. references to memory cells, which are themselves stored in memory cells as well.
Thus, we have objects (memory cells), connected by binary relationships (pointers).
It is easy to see that, viewed this way, a heap state can be modeled (or understood) as a
graph.

We adopt this viewpoint in the following definitions.

Definition 33 (Logical Structure of a Graph). Let G =
(
N,E1, E2

)
be a graph over

a label set L = (UL, BL). The logical structure ofG, denoted ls(G) = (U,P, ι), is
defined as follows.

U := N

PL := {(u, 1) | u ∈ UL} ∪ {(b, 2) | b ∈ BL}
ι := ι1 ∪ ι2

ι1 (u) (x) := (u, x) ∈ E1 ∀ (u, 1) ∈ P∀x ∈ U

ι2 (b) (x, y) := (x, b, y) ∈ E2 ∀ (b, 2) ∈ P∀x, y ∈ U

Thus, the node set of a graph is used as the universe, the edge labels become predi-
cate symbols, and their interpretations, that is, the actual predicates, are derived from
the edge sets. This also works vice-versa, provided the predicate set does not contain
predicates of arity other than 1 and 2.

Definition 34 (Graph of a Logical Structure). Let ls = (U,P, ι) be a logical structure.
The graph of ls, denoted by G (ls), is defined as follows:

L := (UL := {u | (u, 1) ∈ P} , BL := {b | (b, 2) ∈ P})
N := U

E1 := {(u, n) | ι (u) (n)}
E2 := {(n1, b, n2) | ι (b) (n1, n2)}

31

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

next n1 n2 n3 n4

n1

n2

n3

n4 1
1

0 0 0
0 0 0 0
0 0 0
0 0 0

0

head n1 n2 n3 n4

n1

n2

n3

n4 0
0

0 0 1
0 0 0 0
0 0 0
0 0 0

0

tail n1 n2 n3 n4

n1

n2

n3

n4 0
0

0 1 0
0 0 0 0
0 0 0
0 0 0

0

list cell
n1

n2

n3

n4

1
0
0
0

0
1
1
1

U={n1, n2, n3, n4}
PL={(list,1),(cell,1),(head,2),(tail,2),(next,2)}

Figure 3.1: A graph and its corresponding Logical Structure

The above definitions mean that, at least in the absence of higher-arity (and 0-ary)
predicates, we can use the terms graph and logical structure interchangeably. If we were
to lift the restriction to simple graphs and allowed hypergraphs, this correspondence
would even extend to logical structures over predicate sets with k-ary predicates. As
an example of the correspondence between logical structures and graphs, consider the
example shown in Fig. 3.1. The graph (representing a small linear list, such as those
produced by the GTS in Fig. 2.5) and the logical structure are exactly equivalent.

The utility of identifying graphs with logical structures is twofold. On the one
hand, we can reuse many of the definitions and results that were achieved by Sagiv
et.al.[134] for abstracting heap states. This makes up the foundation of our abstraction
method. On the other hand, the representation of graphs as logical structures creates a
direct link between graphs and predicate logic with uninterpreted predicates, which en-
ables the SMT encodings used in Chap. 4 for counterexample analysis and abstraction
refinement.

As an immediate benefit, though, note that since a graph is a logical structure, and
logical structures lend meaning to formulas, we can now express conditions on graphs
as first-order formulas. For example, consider the following definition, which expresses
the existence of a match of a given rule to any graph.

Definition 35 (Matching Formula). Let P = (L, p,R) be a graph rule. The matching
formula for P is defined as

φP =
∧

(n,b,n′)∈E2
L

b
(
n, n′

)
︸ ︷︷ ︸

binary edges

∧
∧

(u,n)∈E1
L

u (n)

︸ ︷︷ ︸
unary edges

∧
∧

n1,n2∈NL
n1 ̸=n2

¬ (n1 = n2)

︸ ︷︷ ︸
injectivity

32

This formula can, given an assignment to its variables (sourced from the nodes of its
left hand side), be evaluated in any logical structure (read: graph) that shares the same
predicate set. In terms of Def. 32, we can express the matching condition of SPO using
the matching formula: for any rule P and graphG, if φP is satisfiable inG, then P is
applicable toG, and every assignment in σS (φP) yields a valid match*. Similarly, if φP

is unsatisfiable inG, then the rule is not applicable. A similar matching formula can be
defined for the DPO case.

All concepts defined on graphs easily carry over to logical structures. As an example,
we give the definition of a (graph) morphism between logical structures.

Definition 36 (Logical Structure Morphism). Let L,L′ be logical structures. A logical
structure morphism between L and L′ is a total function f : UL → UL′ , such that

ιL (u) (n) ≤ ιL′ (u) (f (n)) ∀ (u, 1) ∈ PL∀n ∈ UL

ιL (b) (n1, n2) ≤ ιL′ (b) (f (n1) , f (n2)) ∀ (b, 2) ∈ PL∀n1, n2 ∈ UL

This directly corresponds to the concept of an induced graph morphism. Corollary
concepts, like isomorphisms on logical structures, follow analogously.

Now that we can define graphs using first-order logic, the next step is to utilize the
abstraction approach by Sagiv et.al.[134] to create the notion of an abstract graph,
called a shape graph. In order to do this, though, we first need to introduce the logic
that this abstraction approach is based on: Kleene’s Three-Valued Logic.

3.3 Three-Valued Logic

Our approach to graph abstraction is based on the representation of graphs as logical
structures, and the subsequent “blurring” of those structures using Kleene’s Three-
Valued Logic. The basic idea of a 3-valued logic is to introduce a third truth value,
representing a kind of middle ground between 1 and 0, called ½. This third truth value
is meant to express uncertainty about the actual truth value, i.e. to express that it could
be either true or false. This third truth value interacts with boolean connectives as one
might expect, as the following definition shows.

Definition 37 (Kleene Logic). Kleene logic is an extension of boolean logic over the truth
value set K = {0,½,1}. Table 3.2 shows the meaning of the standard operators in
Kleene Logic.

*in the sense of SPO

33

∧ 0 ½ 1

0 0 0 0
½ 0 ½ ½
1 0 ½ 1

∨ 0 ½ 1

0 0 ½ 1
½ ½ ½ 1
1 1 1 1

¬
0 1
½ ½
1 0

Table 3.2: Truth Tables for Basic Operators in Kleene Logic

All definitions of the previous section are still valid if one uses the truth value set
K instead of B. A logical structure based onK rather than B is called a 3-valued log-
ical structure. The only actual modification necessary regards the formula semantics
definition, which is amended in the following way.

Definition 38. Let S = (U,P, ι) be a 3-valued logical structure and let φ be a first
order formula over a set of predicate symbols P and a set of variables V ranging over U .
Letm : F (φ) → U be an assignment to all free variables of φ. Then JφKmS and JφKS ,
respectively, are defined as in Def. 32. We define three sets:

σS (φ) := {m : free (φ) → U | JφKmS = 1}
π (φ) := {m : free (φ) → U | JφKmS = ½}
νS (φ) := {m : free (φ) → U | JφKmS = 0}

If σS (φ) ̸= ∅, we call φ satisfiable ins S, or SAT for short.
If σ (φ) = ∅ and π (φ) ̸= ∅ we call φ possibly satisfiable, or ½SAT for short.
If σS (φ) = ∅ and π (φ) = ∅, we call φ unsatisfiable in S, or UNSAT for short.

Much like B,K is ordered by a logical order.

Definition 39 (Logical Order onK). The total order

≤:= {(0,0) , (½,½) , (1,1) , (0,½) , (0,1) , (½,1)}

is called the Logical Order or Truth Order on K.

This defines the logical order one might expect. The truth value 1 is, in this sense,
“more true” than ½, which, in turn is still “more true” than 0.

However,K has another order, born out of the intuition that the truth value ½
contains inherently “less information” than the other two values. Thus, ½ is, in a sense,
“more abstract” than 1 or 0.

Definition 40 (Information Order onK). The partial order

⊑:= {(0,0) , (½,½) , (1,1) , (0,½) , (1,½)}

34

is called the Information Order or Abstraction Order on K.

There is also a join operator for the information order, which, as expected, maps
everything except agreeing definite truth values to ½.

Definition 41 (Join Operator). The operator join ⊔ : K×K → K is defined as follows:

x ⊔ y =

{
x iff x = y

½ else

0 1

1
2

Figure 3.2: Truth and
Informaধon order onK

Figure 3.2 shows a combined diagram illustrating both orders
onK in a Hasse diagram. The basic idea behind the abstrac-
tion approach employed by us and Sagiv et.al. are already visible
here. When encoding graphs (or heap states) as logical struc-
tures, a truth value that is more abstract than 1 or 0 enables us
to not specify whether a given edge exists or not. The result-
ing logical structure can be thought of as an abstract structure,
representing both the case where the edge exists, and the case
where it does not. With a little extra effort, this uncertainty can
be extended to the existence of nodes, as well. The next section
describes in detail how the information order defined here can
be lifted from individual truth values to entire logical structures
and how this constitutes a valid abstraction mechanism.

3.4 Shapes and Embedding

In the previous section we have shown a direct link between graphs and 2-valued logi-
cal structures. We have also introduced a 3-valued logic, containing a third truth value
that represents, in a sense, both 1 and 0. Simply by using logical structures that are
not 2-valued, but 3-valued, we can thus obtain a notion of abstraction that allows us
to mark certain edges as ½-edges, edges that may or may not actually exist. It is easy to
see that such a 3-valued logical structure containing n½-edges would “represent”, in a
sense, a total of 2n 2-valued logical structures.

However, in order to build an effective abstraction mechanism, it is insufficient to
merely abstract from the existence of edges alone. We need to also be able to abstract
from the existence, and thereby, the number, of nodes in a graph. The following defi-
nition, equivalent to the corresponding definition by Sagiv et.al.[134], captures this.

Definition 42 (Shape). A shape graph or shape S is a 3-valued logical structure with
(sm, 1) ∈ PS . The special predicate sm is called the summary predicate. In a shape,
for any given node v, ι (sm) (v) is always automatically defined by ¬ (v = v) (i.e. it
can be valued ½, but never 1).

35

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

next n1 n2 n3 n4

n1

n2

n3

n4

0 0 0
0 0 0 0
0 0
0 0 0

0

head n1 n2 n3 n4

n1

n2

n3

n4 0
0

0 0 1
0 0 0 0
0 0 0
0 0 0

0

tail n1 n2 n3 n4

n1

n2

n3

n4 0
0

0 1 0
0 0 0 0
0 0 0
0 0 0

0

list cell
n1

n2

n3

n4

1
0
0
0

0
1
1
1

U={n1, n2, n3, n4}
PL={(list,1),(cell,1),(head,2),(tail,2),(next,2)}

next

1
2
_ 1

2
_
1
2
_

sm
0
0

0

1
2
_

Figure 3.3: A shape represenধng an arbitrarily long linear list

It is easy to see that any graph, that is, any 2-valued logical structure, can be seen as
a shape, i.e. a 3-valued logical structure, where the truth value ½ is simply not used.
Thus, a graph is merely a special form of a shape.

The intention of the introduction of the summary predicate (and its link to the
equality predicate) is to enable the abstraction of node sets. Note that the term ¬ (v = v)
should be interpreted to 0 for all nodes v in a 2-valued logical structure, i.e. a concrete
graph. In a 3-valued logical structure, however, we are able to interpret it as ½ for se-
lected nodes. For these nodes v, we also have ι (sm) (v) = ½, labeling them summary
nodes.

The graphical representation of a shape is similar to that of a graph. Edges valued
1 in the interpretation are drawn as solid arrows, while edges valued ½ are drawn as
dashed arrows. In addition, summary nodes are drawn as dashed circles. The summary
predicate is omitted in the graphical representation. Figure 3.3 shows an example shape,
meant to represent an arbitrarily long linear list.

Summary nodes are intended to represent whole sets of nodes. This means that
graphs represented by the shape are allowed to “replace” summary nodes with an arbi-
trary number of concrete nodes, provided these nodes share the properties of the sum-
mary node. The following definition, also analogous to Sagiv et.al.[134], concretizes
this notion of shapes representing other shapes and, ultimately, graphs.

Definition 43 (Embedding / Meaning of a Shape). A shape S is said to be embedded
into or represented by another shape S′ over the same predicate set, iff there exists a
function f : US → US′ with the following three properties:

(i) f is surjective

(ii) ∀(p, k) ∈ P∀u1, . . . , uk ∈ U : ιS (p) (u1, . . . , uk) ⊑ ιS′ (p) (f (u1) , . . . , f (uk))

36

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

next

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

f

Figure 3.4: An example embedding

(iii)
(∣∣f−1 (v)

∣∣ > 1
)
⊑ ιS′ (sm) (v)

The function f is called an embedding. This relationship between S and S′ is denoted
S ⊑f S

′ or S ⊑ S′ if f is clear from context or inconsequential. Note that S and S′

need to have the same set of predicates P .

The three embedding conditions defined above mirror closely the natural intuition
on what kinds of shapes a given shape S should represent.

Firstly, the embedding must be surjective, which means that any embedded shape
must have at least as many nodes as S and must map at least one of its nodes to each of
the nodes of S.

Secondly, the edges touching a node in S must represent an overapproximation of
the edges that touch the nodes that are mapped to it. This means that if, for a given
label and node pair, the corresponding edge in S is a ½-edge, then there is no restriction
for the such labeled edges between the nodes that are mapped to that pair (analogous
for unary edges). However, when S contains a definite edge (either 1 or 0), this must
be mirrored exactly in all represented shapes.

Thirdly, the value of sm for any given node v in S should be an abstraction of
whether more than one node is mapped to v. This means that an embedding can only
map more than one node to a node in S if that node is a summary node.

As an example, consider the embedding shown in Figure 3.4. It shows how the
graph shown in Fig 3.1 can be embedded into the shape shown in Fig. 3.3.

The notion of an embedding imposes a partial order on shapes, that is, the relation
⊑ on the set of possible shapes over a predicate setP is reflexive, transitive, and anti-
symmetric. The reflexivity property is easy to see. Each shape is clearly embedded into
itself by the identity map on its universe. For transitivity, we present the following

37

lemma:

Lemma 1. Let S ⊑g S
′ ⊑f S

′′ be two embeddings. Then the concatenation f ′ := f ◦g
of f and g is also an embedding.

Proof. Three conditions have to be shown:

• f ′ is surjective because it is the concatenation of two surjective maps.

• Let (p, k) ∈ P and (u1, . . . , uk) ∈ US . Since g is an embedding, it follows
that

ιS (p) (u1, . . . , uk) ⊑ ιS′ (p) (g (u1) , . . . , g (uk)) .

Since f is also an embedding, it follows that

ιS′ (p) (g (u1) , . . . , g (uk)) ⊑ ιS′′ (p) (f (g (u1)) , . . . , f (g (uk))) .

And thus, by the transitivity of⊑ onK, we have

ιS (p) (u1, . . . , uk) ⊑ ιS′′ (p)
(
f ′ (u1) , . . . , f

′ (uk)
)
.

• Let u ∈ US′ . Since g is an embedding, we know that
(∣∣g−1 (u)

∣∣ > 1
)
⊑

ιS′ (sm) (u) holds. Since f is also an embedding, we know that, for any v ∈
US′′ , we have

(∣∣f−1 (v)
∣∣ > 1

)
⊑ ιS′′ (sm) (v). And thus, by the transitivity

of ‘⊑ onK, we have
(∣∣g−1

(
f−1 (u)

)∣∣ > 1
)
⊑ ιS′′ (sm) (v) for any v ∈ US′′ .

Thus, f ′ is an embedding.

The antisymmetry condition in the context of shapes means that if two shapes are
embedded into each other, they must be isomorphic.

Lemma 2. Let S and S′ be shapes. If S ⊑ S′ and S′ ⊑ S, then S ≡ S′.

Proof. See Appendix A, page 241

The partial order⊑ on the set of shapes over a predicate setP is thus established. It
allows us to define exactly which shapes (and ultimately graphs) are represented by a
given shape S – namely all those shapes that are less than S in⊑. This leads to the idea
that a shape has ameaning, defined by the set of graphs that it represents.

Definition 44 (Shape Set / Graph Set). Let S be a shape. The shape set S (S) of S is
the set of all shapes that are represented by S:

S (S) :=
{
S′ | S′ ⊑ S

}
38

The graph set G (S) of S is the set of all graphs that are represented by S:

G (S) := {G | G ⊑ S ∧G is 2-valued}

These graph and shape sets exhibit the intuitively expected properties.

Corollary 1. Let S be a shape. Since every graph is also a shape, G (S) ⊆ S (S) holds.
Furthermore,let S′ be a shape such that S ⊑ S′. We now have S (S) ⊆ S (S′), as well
as G (S) ⊆ G (S′) due to the transitivity of ⊑.

Proof. trivial.

The final missing piece in the abstraction of single graphs and shapes is the inter-
play between properties of shapes, i.e. formulas evaluated in them, and the embedding
relation. This leads to the so-called embedding theorem, taken from Sagiv et.al.[134].

Theorem 1 (Embedding Theorem). Let S, S′ be shapes such that S ⊑f S
′ and let φ be

a formula over PS . Then, for any assignmentm of the free variables of φ (if necessary),

JφKmS ⊑ JφKf◦mS′

holds.

Proof. See Sagiv et.al.[134].

Therefore, the values of formulas on a shape S are overapproximations of the values
that this formula takes on all shapes represented by S. This theorem thus forms the
basis of the argument why the verification technique detailed in the next section is
sound.

3.5 Abstract Transformation and State Space Construction

Having defined abstractions of singular graphs, the next question is whether and how
graph transformations can be lifted to the abstract level as well. Here we begin to di-
gress from the original work by Sagiv et.al.[134], since their approach dealt with heap-
manipulating programs. Such programs can only perform a limited set of operations
on the heap, defined a priori. In contrast, each new graph transformation system brings
with it a new set of operations, i.e. rules, that can affect graphs in unique ways. Nev-
ertheless, our approach to abstract transformation follows the same concepts as theirs,
and exhibits many of the same properties.

The first question one ought to ask is what it actually means to apply a graph rule
to a shape graph. The most intuitive view on this would be that applying a rule P to

39

S S'LP RP

Sm St

match

match

match
match

match

match

Figure 3.5: A schemaধc view on soundly applying a rule to a shape

a shape graph S at a matchm simply means applying P to every graph in G (S) at
matchesm′ compatible withm via their embedding into S. However, this idea is only
viable if the rule is actually applicable at all these concrete matchesm′. In fact, nothing
keeps a shape from representing both graphs to which the rule is applicable, and graphs
to which it is not.

We thus refine the naïve idea above to this: applying P to S at an (abstract) match
mmeans creating a new shape covering all graphs that result from applying P to all
graphs in G (S) for which matchesm′ for P exist that are compatible withm via their
embedding. This idea of a sound rule application to a shape is shown schematically in
Fig. 3.5. First, one identifies the set of graphs in G (S) that have matches for P compat-
ible with the match to S. This set is represented by a new shape Sm. Then this shape,
and thereby the graphs in G (Sm) are transformed using P into a set of graphs repre-
sented by a shape St. Optionally, this resulting shape can be further abstracted in order
to normalize the abstraction.

In the following, we will address the key questions that arise from this idea: how
to tell if a rule even matches a shape, how to identify those graphs represented by the
shape that also match the rule, and how to construct the resulting shape covering the
resulting graphs.

Step 1 – Matching When looking at a shape S and a rule P , with the intention
of using P to transform S, the first question that arises is the question of applicabil-
ity. Can P actually be applied to S? In the concrete case, i.e. if S were 2-valued, this

40

reduces to the question of the existence of nodes and edges with certain labels in certain
configurations, as defined byLP . However, due to the presence of ½-edges and sum-
mary nodes, the existence of certain edges, and even of some nodes, is now no longer
clear.

In an attempt to solve this, we first reduce the question to the simplest possible
case: the case where the left hand side of the rule matches a concrete subgraph of S,
i.e. a part of S that contains neither ½-edges nor summary nodes. In order to check
the existence of such a match, we slightly extend the matching formula of P to exclude
summary nodes.

Definition 45 (Amended Matching Formula). Let P = (L, p,R) be a graph rule. The
amended matching formula for P is defined as

φP =
∧

(n,b,n′)∈E2
L

b
(
n, n′

)
︸ ︷︷ ︸

binary edges

∧
∧

(u,n)∈E1
L

u (n)

︸ ︷︷ ︸
unary edges

∧
∧

n1,n2∈NL
n1 ̸=n2

¬ (n1 = n2)

︸ ︷︷ ︸
injectivity

∧
∧

n∈NL

¬ sm (n)︸ ︷︷ ︸
non-summarization

Any further references to matching formulas or φP will refer to this amended ver-
sion, not the original formula as defined in Def. 35.

Clearly, if this formula is SAT in S, then any assignmentm ∈ σ (φP) is a match
of the left hand side into S and the subgraphm (LP) ≤ S is a 2-valued logical struc-
ture†. By the embedding theorem (Thm. 1), that means that the rule is applicable to all
graphs represented by the shape at the corresponding concrete matches. It would thus
be sound to just classically apply the rule at the shape level, since only the concrete part
of the shape, i.e. that part mirrored by all embedded graphs, is affected. Conversely,
should the matching formula be UNSAT in S, then by the embedding theorem there
can be no graph in G (S) to which the rule is applicable, and thus, declaring the rule to
not be applicable to S is sound. The really interesting case occurs when φP is ½SAT in
S.

In such a case, the intuition is that the shape S is too abstract to definitely establish
applicability. There are no definitely satisfying assignments in σ (φP) (otherwise φP

would be SAT), but there are assignments in π (φP), i.e. assignments that make φP

evaluate to ½. This might be because one of the edge terms is set to ½ in S, or because
the match contains a summary node. In such a case, we call P potentially applicable to
S. Each assignment in π (φP) is called a potential match.

The existence of a potential matchm of P to S means that there are some repre-
sented graphsG ⊑f S and definite matchesm′ of P intoG, such thatm = f ◦m′,

†ifm (LP)were 3-valued, one of the literals in φP would be valued ½, leading toJφP KmS ≤ ½.

41

but there are also represented graphs for which suchm′ do not exist. In order to actu-
ally apply the rule, we need to separate the former set of graphs from the latter set of
graphs. This is done bymaterialization.

Step 2 – Materialization The idea of materialization is, given S, P andm, to
construct a shape or set of shapes such that these shapes cover exactly those graphs in
G (S) that have a match for P that is compatible withm.

The process is based on the idea that every graph that matches P at the same “place”
that S does, must have a concrete expression of the left hand side of P atm. Thus, all
½-edges that are required by the rule in the match ofm are set to 1. Furthermore, as
many nodes as are matched to any given summary node bym are “materialized” (hence
the name) out of that summary node, inheriting all their edges from it. For any such
summary node, the shape does not specify whether the summary node represented
exactly as many nodes as were needed, or more than that. These two cases represent
different materializations, since, in both cases the rule would be applicable, yet, in the
former case, the summary node would have to be deleted, whereas in the latter case, it
would need to be preserved.

We thus gain a separate materialization for any subset of summary nodes in the
match of the rule that we choose to preserve. The following definition describes this
process.

Definition 46 (Materialization). Let S = (U,P, ι) be a shape, P = (L, p,R) be a
rule, andm : L → S be a match such that ½ ≤ JφP KmS . Let U s ⊆ m (NL) be
the set of nodes in the match that are summary nodes. Let I ⊆ U s be a subset of those
summary nodes. Then the materialization Sm

I = (Um,P, ιm) of S according tom
and I is defined as follows. The node set (universe) of Sm

I is defined by

Um := U \ (m (NL) \ I) ∪NL

whereas ιm is defined, for (sm, 1) ̸= (u, 1) , (b, 2) ∈ P by

ιm (u) (n) :=

{
1 if n ∈ NL ∧ (u, n) ∈ E1

L

ι (u) (f (n))

ιm (b) (n1, n2) :=

{
1 if n1, n2 ∈ NL ∧ (n1, b, n2) ∈ E2

L

ι (b) (f (n1) , f (n2))

ιm (sm) (n) :=

{
0 if n ∈ NL

ι (s)m (f (n))

42

add

n1

n2

list

cell

head

n1

n3

list

cell

head

n2
cell

next

n1

n2

list

cell

headtail

next

m

(a)

n1

n2

list

cell

headtail

next

n1

n2

list

cell

head
tail

next

n2
cell

next

next

next

head

tail

(b)

Figure 3.6: Materializaধon Example

where f := m ∪ idU |Um .
The set of materializations of S with respect to P andm is then defined as

matP,m (S) := {Sm
I | I ⊆ U s}

Note that, if JφP KmS = 1, then the corresponding materialization is Sm = S, i.e.
materialization of definite matches is unnecessary and produces the same shape anyway.

As an example, consider the shape, rule, and match shown in Fig. 3.6(a). The shape
represents (among other things) an arbitrarily long, but non-empty linear list. The rule
represents the adding of a node to a list, which certainly matches any non-empty list
using the match shown.

Figure 3.6(b) shows the set of materializations for this scenario. Since the match
included one summary node, two materializations are produced, representing the cases
where the list was exactly one entry long, and the case where it was at least two entries
long.

A materialization, in a sense, concretizes a shape to only represent those graphs to
which the rule is actually applicable. This has the effect that the resulting match of
the rule into the materialization (which is the identity map on the left hand side of the
rule) is always a concrete one, i.e. the image of the left hand side of the rule is a concrete
subgraph of the materialization.

Lemma 3. Let S be a shape, let P be a graph rule, and letm be a match for P in S

43

such thatm ∈ π (φP). Furthermore, let Sm ∈ matP,m (S) be a materialization of P
in S. Then we have JφP KidSm = 1.

Proof. By construction, the match of P into Sm is idNLP
, and the definition of ιm

ensures that any edge inE1
LP
, E2

LP
is definitely present in Sm, as well as that the sum-

mary predicate is valued 0 for all nodes in the match. Thus, φP must evaluate to true
in any materialization Sm of P .

Materializing a rule out of a shape using a match yields a set of shapes that definitely
match the rule. Since the part of the shape that the rule affects has been “concretized”,
rule application itself can then commence as normal on concrete graphs.

The question remains, whether materialization covers all of the graphs embedded
in a shape to which a rule could be applied at a given match. If the match is a definite
match, this follows directly from the embedding theorem. However, if the match is a
potential match, we have so far only shown that the rule is, in fact definitely applicable
to the resulting materialization, not whether that materialization actually covers all the
shapes it is supposed to cover. The following lemmata answer this question.

Lemma 4. Let S, P = (L, p,R),m, Sm and f be as in Def. 46. Then we have
Sm ⊑f S

Proof. We show each of the three embedding properties separately.

(i) f = m ∪ idU |Um is surjective, sincem (NL) covers the match of the rule,
whereas idU |Um = idU\(m(NL)\I) covers the remainder ofU .

(ii) For any (sm, 1) ̸= (u, 1) ∈ P and n ∈ Um, we have two cases: If n ∈ NL ∧
(u, n) ∈ E1

L, then, from the structure of φP we know that ιS (u) (f (n))must
have been either 1 or ½, which means that 1 = ιSm (u) (n) ⊑ ιS (u) (f (n))
holds. If n ̸∈ NL ∨ (u, n) ̸∈ E1

L then by construction we have ιSm (u) (n) =
ιS (u) (f (n)) and thus ιSm (u) (n) ⊑ ιS (u) (f (n)). The binary case follows
analogously. For (sm, 1) ∈ P and n ∈ Um, we have either n ∈ NL, in which
case ιS (sm) (f (n)) is either 0 or ½ (no other values are possible), and thus 0 =
ιSm (sm) (n) ⊑ ιS (sm) (f (n)) holds. In the other case, i.e. n ̸∈ NL, we have
ιSm (sm) (n) = ιS (sm) (f (n)) and thus ιSm (sm) (n) ⊑ ιS (sm) (f (n)).

(iii) Outside ofNL ⊆ Um, f is defined as the identity function onU . Thus, any
node inU to which more than one node inUm is mapped must lie in the image
m (NL). Any node n such that

∣∣m−1 (n)
∣∣ > 1must be a summary node, due to

the injectivity condition in φP . If there is a node n such that
∣∣m−1 (n)

∣∣ = 1, but∣∣f−1 (n)
∣∣ > 1, then there must be n1, n2 ∈ Um such that idU (n1) = m (n2).

Since only summary nodes in the image ofm are copied intoUm, nmust be a
summary node as well. Thus, in all cases we have

∣∣f−1 (n)
∣∣ > 1 ⊑ ιS (sm) (n).

44

So, a materialization Sm is embedded into the shape S from which it was con-
structed, which means that it represents a subset of the graphs that S represents. The
remaining issue is whether this graph set contains all the graphs that it should contain.

Lemma 5. Let S, P = (L, p,R),m, Sm and f be as in Def. 46. Let further G ⊑g S
be a graph andm′ : L → G be a match for P in G such thatm = g|m′(NL)

◦m′.
Then there exists an f ′ such that G ⊑f ′ Sm.

Proof. See Appendix A page 242.

A materialization for a triple of shape, rule and match, therefore, represents graphs
that were represented by the original shape (Lemma 4) and have a match for the rule
that is compatible with the match to the original shape (Lemma 3). Furthermore, there
are no graphs that are represented by the original shape, have a compatible match for
the rule, but are not represented by the materialization (Lemma 5).

Step 3 – Application Once a match for a rule has been found, and the hosting
shape materialized via that match, the conventional applicability of the rule to the
shape is assured. The application process itself is performed exactly as for the concrete
case. This is sound because the part of the shape that is affected by the rule applica-
tion is concrete and thus mirrored exactly in all graphs embedded into the materialized
shape, i.e. the effect of the rule on the graphs is the same as the effect of the rule on the
materialized shape. This is expressed in the following lemmata.

Lemma 6 (Soundness of Shape Transformation (SPO)). Let S be a shape, let P =
(L,R) be a rule, and letm be a definite match of P to S, i.e. JφP KmS = 1. Let fur-
ther S′ be the result of applying P to S atm. Then, for every G ∈ G (S), there exist
anm′ : L→ G and a G′ ∈ G (S′), such that G −P,m−−→ G′.

Proof. The embedding theorem (Theorem 1) states that JφP KmS = 1 is an overapprox-
imation of the value of JφP Km′

G , whereG ⊑f S andm = f ◦m′. Thus, P is appli-
cable toG and produces a resulting graphG′ and, since no summary nodes are part of
the match, f is a bijective function onm′ (L). The locality of graph rule application
ensures that P only changesG and S at its respective matches to those structures. Since
the exact same changes are performed onG as well as on S, f , extended in the obvious
way to any nodes added by the rule, remains a valid embedding forG′ into S′.

Thus, the resulting shape covers all the graphs that would result from applying the
rule to the represented graphs themselves (at a compatible match). If a graph was cov-
ered by the (possibly materialized) shape before application, its result is covered by the
result of the application.

45

In the absence of any kind of further restrictions on the graph sets embedded into
the shapes, the converse is also true.

Lemma 7 (Completeness of Shape Transformation (SPO)). Let S be a shape, let
P = (L,R) be a rule, and letm be a definite match of P to S, i.e. JφP KmS = 1.
Let further S′ be the result of applying P to S atm. Then, for every G′ ∈ G (S′),
there exist anm′ : L→ G and a G ∈ G (S), such that G −P,m−−→ G′.

Proof. LetG′ =
(
N ′, E1′, E2′

)
, letm′ be the match ofR inG, and letG =(

N,E1, E2
)
be given by

N := N ′ \m′ (NR \NRc) ∪NL \ (NLc)

E1 :=
[
E′1 \m′ (E1

R \ E1
Rc

)
∪ E1

L \ E1
Lc

]
E2 :=

[
E′2 \m′ (E2

R \ E2
Rc

)
∪ E2

L \ E2
Lc

]
,

i.e. by the reverse application of P toG′, ignoring dangling edges. SinceG has the
same structure asG′ outside the match of the rule, and the same holds for S and S′,
G is embedded into S outside the match. Further, since JφP KmS = 1we know that
within the match, an instance of the left hand side of the rule exists inG and S. Thus,
the only way thatG ⊑ S could be violated is through a dangling edge present in S but
absent (since no dangling edges were constructed) inG. Simply adding those edges to
Gwill then construct a graph Ĝ that satisfies the condition.

Note that, in the context of shape transformation, this notion of soundness applies
to the subset of the represented graphs to which the rule is actually applicable with
a match compatible to a given shape-level match (see Fig. 3.5). It is not the case that
all graphs represented by a shape find a corresponding transformation result in the
graph set of one of the resulting shapes, nor should it be, since the rule will not even be
applicable to most of them.

Summary In concrete graphs, matching and application proceeds as defined in
Chap. 2. Each match of a rule to a concrete graph yields one resulting graph.

On shapes, some matches are open to interpretation, which leads to uncertainty in
the result of the transformation. Thus, for each potential match to a shape, rule appli-
cation may yield a set of resulting shapes, via materialization. It is helpful to think of
this non-determinism as a kind of case switch over the number of nodes available in the
graphs represented by the shape. Each summary node is a node reservoir of uncertain
size, so use of one by a match introduces a switch between the case where the reservoir
was exhausted by the application of the rule and the case where it was not.

46

m

materialization application

Figure 3.7: Applicaধon of a rule to a shape at a potenধal match (schemaধcally)

Figure 3.7 shows a schematic of the whole process. First, a rule is (potentially) matched
to a shape. Then, using that rule and match, materializations are constructed from the
shape. Finally, these materializations are (classically) transformed, yielding a resulting
shape set.

Having defined rule application on the shape level, we can now introduce the no-
tion of an abstract graph transformation system, called a shape transformation system.

Definition 47 (Shape Transformation System (STS)). A Shape Transformation System
(STS) is a tuple S = (I,R), where I is a shape andR is a set of rules.

Based on this notion, the concept of abstract transitions, an abstract reach set and
the resulting notion of an abstract transition system follow. A shape transition is de-
fined analogously to a graph transition. The only significant difference is the necessity
to specify which subset of summary nodes was preserved in the transition.

Definition 48 (Shape Transition). Let S = (I,R) be an STS, S be a shape, let
P ∈ R be a rule applicable to S at some (potential or definite) matchm, let Sm ∈
matP,m (S), and let S′ be the result of applying P to S atm using Sm. This relation-
ship between S, P ,m, Sm, and S′ constitutes a transition and is denoted S −P,m,Sm

−−−−→
S′. When P ,m, or Sm are inconsequential, this can be written S −P,m−−→ S′, S −P→ S′

or S → S′, respectively. When there is a sequence of rules, matches and materializa-
tions that transforms S into S′, we write S →∗ S′.

Note that each transition incorporates a materialization. This necessarily leads to
a loss of abstraction in each transition, since while a materialization concretizes the
source shape, the target shape is not “re-abstracted” afterwards. While this may some-
times be the intended effect, it is often desirable to maintain a constant “level of ab-
straction” across shape transitions. For this, an abstraction scheme is required.

47

Definition 49 (Shape Abstraction Scheme). Let P be a set of predicates, and let S (P)
be the set of all shapes over P . An Abstraction Scheme overP is a function A : S (P) →
S (P) such that

∀S ∈ S (P) : S ⊑ A (S) shapes are embedded in their abstraction
A2 (S (P)) = A (S (P)) the abstraction scheme is idempotent

hold. Each abstraction scheme A induces an equivalence relation

≈A :=
{(
S, S′) | A (S) = A

(
S′)} ⊆ S (P)2

An abstraction scheme is called a Finite Abstraction Scheme iff S (P) /≈A is finite.
An abstraction scheme is called a Monotonic Abstraction Scheme, if it also satisfies the
condition

∀S, S′ ∈ S (P) : S ⊑ S′ → A (S) ⊑ A
(
S′) abstraction preserves embedding relations

An abstraction scheme thus partitions the set of all shapes over a given predicate
setP into regions, each of which is the shape set of a particular representative shape
given by the abstraction scheme. Applying an abstraction scheme to a shape is called
blurring. The design space for possible abstraction schemes is huge, ranging from the
trivial, such as the identity map on S (P), to highly complex algorithms meant to en-
sure certain properties for the representative shapes. For now, we will use a very basic
abstraction scheme, inspired by, and named after, the canonical abstraction given by
Sagiv et.al. in their paper on parametric shape analysis[134]. We will call this scheme the
canonical shape abstraction.

Definition 50 (Canonical Shape Abstraction). Let P be a predicate set, and let U ⊆ P
be its subset of unary predicates. The Canonical Shape Abstraction Scheme C is given by

C : S (P) → S (P)

S 7→
(
U/≃,P, ι′

)
where

≃ := {(u1, u2) | ∀p ∈ U : ι (p) (u1) = ι (p) (u2)} and
ι′ (p) (u) := ι (p) (u) ∀p ∈ U

ι′ (p) (u1, u2) :=
⊔

u∈[u1]≃
v∈[u2]≃

ι (p) (u, v) ∀p ∈ P \ U

It is easy to see that the function specified by this definition is indeed a finite ab-
straction scheme. Each shape is embedded into its image under C via the function as-
sociating each node with its equivalence class under≃. Furthermore, it is obviously

48

n1

n2

list

cell

head tail

next n3 n4
next

cell cell

n1

n2

list

cell

headtail

next

(a) (b)

Figure 3.8: Example for a canonical abstracধon of a graph

idempotent, since taking the quotient set of a quotient set for the same equivalence
relation will yield the same quotient set as a result. Finally, it is finite, since C cannot
produce shapes in which two nodes have the same values for all unary predicates. Since
the number of unary predicates is finite, the number of different value combinations
for these predicates are also finite, meaning that the number of different node sets that
shapes in S (P)≈C

can have is limited. For each fixed node set, only a finite number of

different shapes are possible, and thus we can conclude
∣∣∣S (P)≈C

∣∣∣ ∈ N.

It is worth noting that this abstraction scheme is not monotonic. Two nodes in a
shape might be equivalent w.r.t. ≃, but embedded into two nodes that are not equiv-
alent w.r.t. ≃. Thus, the abstraction would merge the two nodes in the embedded
shape, but not the two nodes in the target shape, breaking the embedding relation.

As an example of how the canonical abstraction works, consider the shape shown in
Fig. 3.8a. The equivalence classes with respect to≃ are the three cell nodes and the list
node. This leads to the canonical abstraction shown in Fig. 3.8b.

In general, the functionA that defines an abstraction scheme can be used to “re-
abstract the result of a shape transformation before a transition is recorded, thus ensur-
ing a constant level of abstraction. This is referred to as a normalized shape transition.

Definition 51 (Normalized Shape Transition). Let S = (I,R) be a shape transition
system over a predicate set P , and let A be an abstraction scheme over P . Let further
S be a shape and P ∈ R be a rule,m be a match, Sm and be its materialization. A
Normalized Shape Transition S −P,m,Sm

−−−−→A S′′ between S and another shape S′′ exists
iff there is a shape S′ such that

S −S,m,Sm

−−−−→ S′ and
S′′ = A

(
S′)

49

The same shorthands as for regular shape transitions apply.

Note that normalized shape transitions are a true generalization of regular shape
transitions, since a regular transition is just a normalized shape transition using id as
its abstraction scheme. In the remainder of this thesis, we will assume that all shape
transitions are normalized using the canonical abstraction. In the rare cases where a
regular shape transition is used, we will denote it as a normalized transition using id.

With transitions defined, the next step is to define the reach set of an STS. Other
than with a GTS, we can relax the isomorphism condition here, making use of embed-
dings instead. If a transition produces a shape that is embedded into, or covered by a
shape that was already produced, there is not much sense in recording this new shape.
Before we can use this insight to define the reach set of an STS, we first need the follow-
ing auxiliary definition.

Definition 52 (Non-dominated Set). Let (X,≤) be a partially ordered set. For any set
A ⊆ X , the non-dominated subset of A with respect to ≤, written A/ ≤, is defined by

A/≤ := {x ∈ A |̸ ∃y ∈ A : x ≤ y}

Thus, a non-dominated set, with respect to a given partial order on (a superset of)
that set, contains only elements that are not dominated, or covered, i.e. less than, some
other element of the set. This now allows us to succinctly define the reach set of a shape
transformation system.

Definition 53 (Reach Set of an STS). Let S = (I,R) be an STS, and let A be some
abstraction scheme. The reach set of S, denoted reach (S) is defined as

reach (S) := {S | I →∗
A S} /⊑

Note that, since C is a finite abstraction scheme, any algorithm that computes reach (S)
with the canonical abstraction is guaranteed to terminate, provided that the process of
creating the individual shapes is guaranteed to terminate. One such algorithm is shown
in Listing 3.1. The reach set is computed by alternating between two tasks: firstly, com-
puting all shapes that can be produced from the current shape set (starting with {I}),
and secondly removing from the resulting new set all covered shapes.

This makes the definition of the resulting transition system slightly more compli-
cated, since it removes, for many transitions, the actual target shapes. These transitions
must then be redirected to the shapes that cover the discarded actual target shapes. The
following definition formalizes this.

50

Lisধng 3.1: The algorithm for compuধng the reach set of an STS� �
input S = (I,S) ,A
O := I
reach (S) := O
while O ̸= ∅ do

N := ∅
for each S in O do

O := O \ {S}
for each (P,m, Sm) such that JφP KmS ≥ ½ do

S ′ := apply P to Sm at id
S ′′ := A (S ′)
N := N ∪ {S ′′}

od
od
reach (S) := reach (S) ∪N
reach (S) := nondom(reach (S))
O := reach (S) ∩N

od� �
Definition 54 (Shape Transition System). Let S = (I,R) be an STS, and let C be the
canonical abstraction scheme. The shape transition system of S , denoted trans (S) :=(
N,E1, E2

)
, is a graph over the label setR× µ, defined as follows:

N := reach (S)
E1 := {(S, (P,m, Sm)) | Sm is a valid materialization of P from G usingm}

E2 :=
{(
S, (P,m, Sm) , S′) | S −P,m,Sm

−−−−→C S
′ ∧ LP ̸= RP

}

where µ is the set of all tuples of rule, match and materialization that are applicable to
shapes in reach (S).

The shape transition system thus forms the operational semantics of the shape trans-
formation system. A shape transformation system can be seen as a generalization of
a graph transformation system, created by “abstracting” the initial graph into an ini-
tial shape, using the canonical abstraction scheme. This is beneficial since, by way of
the ability of shapes to represent infinite sets of graphs, a finite shape transition system
might be able to represent an infinite graph transition system.

51

The central question now becomes whether the soundness properties obtained for
individual shape transformations will transfer to the entire transition system.

Lemma 8 (Soundness of Abstract Reach Set). Let S = (I,R) be a shape transforma-
tion system, and let G = (GI ,R) be a graph transformation system with I = A (GI).
Let A be an abstraction scheme. Then, for every graph G ∈ reach (G), there is an
S ∈ reach (S) w.r.t. A, such that G ⊑g S for some g.

Proof. LetH be a graph andH ′ be a shape, such thatH ⊑g H
′. Let P be a rule such

that JφP KmH = 1 for somem, andH −P,m−−→ H ′′. Then, by Theorem 1, JφP Kg◦mH′ ≥
½ follows, i.e. P is at least potentially applicable toH ′. If JφP Kg◦mH′ = 1, then by
Lemma 6, there is anH ′′′ such thatH ′ −P,m,H′

−−−−→C H
′′′ andH ′′ ⊑ H ′′′. If JφP Kg◦mH′ =

½, then by Lemma 5, the same follows for one of the materializations ofH ′, i.e. there
is anH ′′′ and anH ′g◦m such thatH ′ −P,m,H′g◦m

−−−−−−→C H ′′′ andH ′′ ⊑ H ′′′. Thus,
individual transitions are sound.

LetA := {S | I →∗ S} be the set of all reachable shapes, regardless of coverage
status. IfG ∈ reach (G), then there is a pathG0 −P0,m0−−−→ G1 −P1,m1−−−→ · · · −Pk,mk−−−→ G
of rule applications from the initial graphG0 toG. By the above argument, we can
now inductively construct a path over I −P0,m′

0−−−→ S1 −P1,m′
1−−−→ · · · −Pk,m

′
k−−−→ S overA

such thatG0 ⊑f I ,G ⊑ S andGi ⊑ Si for all 1 ≤ i ≤ k.
Therefore, for everyG ∈ reach (G), there is an S ∈ A such thatG ⊑ S. By

definition, for every S ∈ A there is an S′ ∈ reach (S) such that S ⊑ S′ and thus, by
the transitivity of⊑, we obtain the original claim.

So, the abstract reach set is an overapproximation of the actual reach set. Thus, for
simple verification tasks like the covering problem, we can use the abstract reach set
in place of the original one and obtain transferable (negative) results, i.e. if a pattern
cannot be found in the abstract reach set it is also absent from the concrete reach set.
The converse will in general not hold. A similar result can be transferred to the abstract
transition system.

Theorem 2 (Soundness of Shape Transition Systems). Let S = (I,R) be a shape
transformation system, and let G = (GI ,R) be a graph transformation system with
GI ⊑f I . Let G0 −P0,m0−−−→ G1 −P1,m1−−−→ · · · −Pk,mk−−−→ G be a path in trans (G). Then
there exists a path in trans (S) such that

I −P0,f◦m0−−−−−→ S1 −P1,g1◦m1−−−−−→ · · · Sk −Pk,gk◦mk−−−−−−→ S

⊑ f ⊑ g1 ⊑ gk ⊑ f ′

G0 −P0,m0−−−→ G1 −P1,m1−−−→ · · · Gk −Pk,mk−−−→ G

52

Proof Sketch. The argument is the same here as in the proof for Lemma 8. The ex-
istence of the path throughA rather than trans (S) is assured by the soundness of
shape transformation. IfG −P,m−−→ G′ is part of the concrete path, then S −P,m,X−−−−→ S′

such thatG ⊑ S andG′ ⊑ S′ must be part of the abstract transition system for
some materializationX . Rule applicability is over-approximated in the abstraction,
this guarantees the source of the transition is valid. The targets of the transitions are
redirected according to the embedding between the various shapes that are produced,
which guarantees the target of the transition. Note, however, that S and S′ might be
the same shape.

So, if there is a path in a graph transition system that leads from the initial graph to
the error, then there is also a path in any shape transition system abstracted from that
graph transition system that leads to a shape that at least potentially matches the error.
The converse, however, does not hold. Thus, if there is a path in a shape transition
system leading to a shape that potentially (or even definitely) matches an error pattern,
there is no guarantee that any given concrete graph transition system covered by the
shape transition system will have a path that corresponds to their abstract error path.
This is an inherent property of over-approximating abstraction approaches.

For example, when one graph transitions to another, and both of these graphs are
represented by the same shape in the abstraction, then the corresponding shape transi-
tion system will have a self-loop where none existed in the graph transition system. The
shape transition system thus contains arbitrarily long paths along that loop that cannot
be replicated in the graph transition system.

When such a situation occurs, the abstraction itself needs to be adjusted in order
to rule out the erroneous path, but still remain an overapproximation of the original
system. This is the subject of the next section.

3.6 Refinement Using Shape Constraints

The abstraction scheme introduced in the previous sections is quite powerful. The in-
troduction of ½-edges exponentially increases the number of actual graphs a shape can
stand for, while the addition of a summary node even adds infinitely many interpreta-
tions. Thus, even simple shapes quickly come to represent huge sets of graphs. It is no
surprise, then, that usually, the set of graphs that a shape represents contains not only
the graphs it is intended to contain, but a whole lot more.

Consider, for example, the shape shown in Fig. 3.9(a). It is the linear list example
used previously, representing an arbitrarily long, non-empty list, as shown by the ex-
ample embeddings in Fig. 3.9(b). However, those embeddings are by no means the
only ones.

53

n1

n2

list

cell

headtail

next

(a)

n1

n2

list

cell

head tail

next n3 n4
next

cell cell

n1

n2

list

cell

head tail

next n4
cell

n1

n2

list

cell

headtail (b)

n1

n2

list

next n3

n4

cell

n1
list

head
tail

n1

n2

list

cell
next cell cell

next n2
cell

next n3 n4
next

cell cell

next

(c)

Figure 3.9: A shape and a few example embeddings

The head- and tail-edges, signifying the beginning and end of the list, illustrate this
nicely. While any valid list must have exactly one pair of these edges, because they are
½-edges in the shape, their existence is not mandatory in any represented graph. Even
worse, the fact that the target of these edges is a summary node means that nothing
prevents them from having multiple instances, pointing anywhere within the list, not
just at the beginning or end.

While these are problems that are soluble by simply redesigning the shape (see
Fig. 3.3), there are other issues that are not. Such issues are caused by ½-edges con-
necting summary nodes, in particular, a ½-self-edge on a summary node, as seen on
the cell-node in Fig. 3.9(a). Since there is no bound on the number of nodes that can be
represented by a summary node, the ½-self-edge gives it the ability to represent nodes
that are arbitrarily connected to each other by next-edges. Thus this one summary node
can literally represent any arbitrary graphmade up of cell-nodes and next-edges. Fig-
ure 3.9(c) shows a few such unwanted embeddings.

In the context of solving the covering problem for shape transformation systems,
this is not always a big problem. After all, the objective is merely to show the absence of
a given pattern from the system. If the unintended meanings of the shapes also do not
contain the pattern, they do no harm to the analysis.

However, one usually finds that basic shapes are just too coarse an abstraction for
any actual application. Thus, we need a way to exclude certain graphs from the graph
set of a shape, while preserving others. We achieve this by using the work of Daniel
Wonisch[144, 159]. We add first-order formulas to the shapes, together with assign-

54

ments for their free variables. This new construct, a formula together with an assign-
ment of its free variables to the nodes of a shape, is called a shape constraint‡. The
intention of this is that any graph embedded into the shape has to also satisfy the at-
tached formulas using all assignments that are compatible with the assignment to the
shape via the embedding used.

As a side note, this solution is in many ways similar to the notion of instrumenta-
tion predicates introduced by Sagiv et.al. in their paper on shape analysis[134] and their
follow-up paper on automatic updates for instrumentation predicates[129]. However,
it differs in several key aspects, most notably in the way shape constraints are main-
tained across rule applications, which provides several benefits over instrumentation
predicates, such as completeness under certain circumstances[159]. Shape constraints
are formally defined as follows.

Definition 55 (Shape Constraint). A shape constraint (α,m) for a shape S = (U,P, ι)
is a first-order formula α over P \{sm} with free variables F (α), together with a com-
plete assignmentm : F (α) → U .

Using shape constraints, the meaning of a given shape can be refined. Shape con-
straints are not (necessarily) mutually exclusive, i.e. a shape can have any number of
shape constraints attached to it, tuning its represented graph set to a very specific set of
graphs. This idea is formalized in the notion of the constrained shape.

Definition 56 (Constrained Shape). A Constrained Shape is a tuple (S,Λ), where S is
a shape, and Λ is a set of shape constraints for S.

The visual representation of a constrained shape shows the shape, the formulas of
its constraints, and, for every single constraint, a hyperedge, labeled with the formula
of the constraint and expressing the assignment using its tentacles labeled with the
variable names.

Having defined what shape constraints are and what they look like, we must now
define just what precisely it means to attach such a constraint to a shape. The basic idea
behind the meaning of shape constraints is that any graph or shape to which a shape
constraint is attached, has to satisfy that constraint, i.e. the formula, together with the
given assignment, must not evaluate to 0 in the shape it is attached to.

For graphs, this is a binary proposition. Since all literals in the formula will be inter-
preted with definite values, the constraint formula either evaluates to 1, or it evaluates
to 0. If it evaluates to 0, then the graph is invalid and can be discarded or ignored. If it
evaluates to 1, then the graph is valid and the information contained in the constraint
was already contained in the graph to begin with.

‡Daniel Wonisch called themdeductive constraints

55

next

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

G

n1

headtail

next

list

cell cell cell
n2 n3 n4n3

cell
next

next
next

next
next

G

n1

n2 n3 n4

headtail

nextnext

list

cell cell cell

next

G

n1

n2

headtail

list

cell
n3

cell
n4

cell

(a) (b)

Figure 3.10: A constrained shape with valid and invalid represented graphs

For shapes, however, the third option, ½, would indicate that some of the repre-
sented graphs are valid with respect to the constraint, whereas some are not. This then
represents a true gain in precision over an unconstrained shape.

As an example. consider the constrained shape shown in Fig. 3.10(a). It enhances
the unconstrained shape from Fig. 3.3 with a constraint that disallows self-edges in
the represented graphs. Note that the constraint uses only a single variable, ensuring
that the constraint behaves just like a unary edge under embedding – Any node of a
graph embedded into the constrained shape, that is mapped onto the cell node of the
shape, will have to satisfy its own version of the constraint. Figure 3.10(b) shows valid
embeddings into the shape, only some of which are still valid for the constrained shape.

In order to properly define the graph and shape sets represented by a constrained
shape, we need a proper mathematical definition of constraint semantics. These are
based on the idea introduced above – a shape or graph for which a constraint evaluates
to 0 is considered invalid and not part of the actual graph or shape set.

Definition 57 (Constraint Satisfaction). Let S be a shape, and let (α,m) be a con-
straint for S. If JαKmS ≥ ½, S is said to satisfy α. Let Λ be a set of constraints. If S
satisfies every constraint in Λ, S is said to satisfy Λ, written S |= Λ.

Note that in the case of graphs, the above condition becomes JαKmS = 1, meaning
that a constraint is satisfied on a graph, if it evaluates to true. Note also, that, when a
constraint evaluates to 1 in a shape, then the shape already contains all the informa-
tion the constraint provides, rendering the constraint useless. On the other hand, if a

56

constraint evaluated to 0 on a shape, then no embedded graph or shape could possibly
satisfy it, meaning that the shape no longer represents any graphs. Any useful con-
strained shape therefore will have to satisfy all of its constraints, leading to the concept
of validity.

Definition 58 (Constrained Shape Validity). Let (S,Λ) be a constrained shape. (S,Λ)
is said to be valid, iff S |= Λ.

Given a valid constrained shape, we can now move on to the central question:
which shapes and graphs are actually represented, or covered by it?

Definition 59 (Graph and Shape Sets of a Constrained Shape). Let (S,Λ) be a con-
strained shape. The set G (S,Λ) of represented graphs is defined as follows:

G (S,Λ) := {G | G ⊑f S ∧G |= concrf (Λ) ∧G 2-valued}
S (S,Λ) :=

{
S′ | G

(
S′) ⊆ G (S)

}
, where

concrf (Λ) :=
{(
α,m′) | (α,m) ∈ Λ ∧m = f ◦m′}

This definition, specifically the set concrf (Λ), is reminiscent of the definitions
for matching and materialization, generalized from matching formulas to arbitrary
formulas. It “projected”, in a sense, the constraints of the shape down onto a graph
along a classical embedding, where they can then be evaluated.

Note that, for both the shape and the graph sets, the requirement is that all con-
straints evaluate to 1. Given our previous definition of validity, this may seem surpris-
ing, especially for the shape set. However, this condition follows directly from our in-
tuition about embeddings, which state that embeddings should imply subset relation-
ships on the graph and shape sets. Thus, if an unconstrained shape is to be embedded
in a constrained shape, then its own graph and shape sets must not have to be modified
in order to make the embedding work. This means that the constraints projected down
onto the shape must not restrict the shape set. For the unconstrained case, we can now
define embeddings using our definition of the graph and shape sets above.

Definition 60 (Embedding of Unconstrained Shapes into Constrained Shapes). Let
(S,Λ) be a constrained shape. An unconstrained shape S is embedded into (S,Λ) iff
S ∈ S (S,Λ). A graph G is embedded into (S,Λ), iff G ∈ G (S,Λ).

As an example, letG = (U,Pι) be the top left graph in Fig. 3.10(b), and let(
S =

(
U ′,P, ι′

)
,Λ =

{(
α,m′ =

[
x 7→ n′3

])})
be the constrained shape in Fig. 3.10(a). The function

f :=
{(
n1 7→ n′1

)
,
(
n2 7→ n′2

)
,
(
n3 7→ n′3

)
,
(
n4 7→ n′4

)}
57

is the only possible embedding ofG into S, without taking constraints into account.
The only assignmentm : F (α) → U such that f ◦ m = m′ is [x 7→ n3]. Thus,
concrf (Λ) = {(α, [x 7→ n3])}. Evaluating this, we see that JαKmG = 0 and thus
G ̸|= concrf (Λ), i.e. G ̸∈ G (S,Λ), even though clearlyG ∈ G (S).

Thus, in this case, the set of graphs represented by the constrained shape is a true
subset of the set of graphs represented by the original shape. This is not always the case
when a constraint evaluates to ½ in a shape, since the constraint may be implied by
other constraints already present. Adding a constraint will, however, never increase the
represented graph and shape sets.

We now turn to embeddings between constrained shapes. Naturally, we want such
embeddings to resemble as closely as possible embeddings on unconstrained shapes.
This means, in particular, that embeddings should also reflect subset relations between
the graph sets of the respective shapes, i.e. if a shape (S,Λ) is embedded into a shape
(S′,Λ′), then we must have G (S,Λ) ⊆ G (S′,Λ′). As in the case of an unconstrained
shape embedded into a constrained one, this means that the constraints that are pro-
jected onto S by S′ via the embedding must be redundant, i.e. not restrict the graph
and shape sets of (S,Λ) any further. Unlike before, we no longer have access to a sim-
ple test to determine whether this is the case. The projected constraints may well eval-
uate to ½ and still be redundant, because their meaning is implied by the constraints
already in place. Thus, in order to check for an embedding relation between two con-
strained shapes, we would need to check whether the projected constraints are implied
by the combined meaning of the (potentially) embedded shape and its constraints. For
now, we will define this axiomatically. Chapter 4 will provide the tools which we will
use in Chapter 5 to create a more workable definition.

Definition 61 (Embedding into a Constrained Shape – Constrained). A constrained
shape (S′,Λ′) is said to be embedded into (S,Λ), written (S′,Λ′) ⊑f (S,Λ), iff

G
(
S′,Λ′) ⊆ G (S,Λ)

As an example, consider the two constrained shapes in Fig. 3.11. The left shape de-
scribes a linear list where no cell node has a next self-edge. The right shape describes
a linear list where no cell node may be the target of a head edge, and a tail edge at the
same time. It is obvious that any valid linear list with more than one cell will be em-
bedded in both of these shapes. However, neither graph set is a subset of the other.
A linear list with only one cell node is embedded into the left shape, but not the right
one. A linear list with next self-edges is allowed by the right shape, but not the left one.
Therefore, no embedding relationship exists between these two shapes.

Having defined shape constraints and their effects on shapes, we can now refine the

58

n1

n2

list

cell

headtail

next
x

n1

n2

list

cell

headtail

next
x

Figure 3.11: Two compaধble, but mutually non-embedded constrained shapes

meaning of singular shapes. This is fine for refining abstractions of structural models,
but this thesis is concerned with behavioral models, i.e. graph and shape transforma-
tions. Combining shape constraints with transformations poses a problem, however –
the graph rules were defined in the absence of constraints and thus contain no informa-
tion about their effect on them.

Clearly, this is a problem, since a constraint could, for example, require the non-
existence of a certain substructure in a graph. When a graph rule then constructs just
that substructure, the shape constraint cannot be left constant before and after the
transformation, because the resulting shape will become invalid.

Therefore, we need a way to update shape constraints, i.e. to enable them to incor-
porate new situations created by rule applications. The basic idea of how to do this
is to keep the meaning, rather than the formulas or assignments, of shape constraints
constant.

The reasoning behind this idea is the following: Let’s assume we have a constrained
shape (S,Λ) and a rule P that matches (S,Λ) at a matchm. Without loss of gener-
ality, we assume thatΛ = {(α, g)} is a single constraint, thatm is a definite match,
and that S′ is the result of classically applying P to S. Then all graphs in G (S,Λ)
match P at a match compatible tom. Applying the rule will now change these graphs
in some way. If the change does not affect the parts of the graphs thatΛmakes asser-
tions about, thenΛ still holds on S′. If, however, the edge and node changes intro-
duced by the rule change the interpretation of literals in α or the assignment g, then
the meaning, i.e. the value, of the constraint will change due to the rule application.

Usually, however, a rule does not change everything that a constraint makes asser-
tions about. For example, when a constraint asserts certain properties of three nodes
in the shape, and a rule eliminates one of them, the properties of the other two should
still be satisfied, i.e., the constraint should still evaluate to the same value as before, only

59

now stripped of any reference to the node that was deleted. This motivates the idea
that, when applying the rule P to (S,Λ), α′ and g′ should be constructed such that

JαKgS = Jα′Kg′S′

The constrained shape (S′,Λ′ = {α′, g′})would then be the result of applying P to
(S,Λ) atm.

Of course, one could just set each shape constraint on a shape to a constant of the
appropriate value, and set the assignments to empty maps to achieve this effect. How-
ever, this would obviously destroy any meaning inherent in the constraints. Rather, we
try to find formulas α′ that are as similar as possible to the original α, but exhibit the
above property.

Now, what does this mean in concrete terms? To illustrate this, we look at a simple
example before examining the (quite extensive) formal definition.

Example (Edge Deletion). Assume that we have a constraint that asserts the existence or
non-existence, respectively, of certain edges in a shape S. This means that the constraint
is a long conjunction of literals, with the free variables in the literals bound to certain
nodes in the shape by the assignment, such as this one:

(p1 (x1, x2) ∧ ¬p2 (x2) ∧ ¬p3 (x4, x4) ∧ p3 (x4, x5) ,
[x1 7→ n1, x2, x3 7→ n2, x4 7→ n3, x5 7→ n4])

If a rule application now deletes the p1-edge from n1 to n2, then the above constraint
will evaluate to false, even though the information about the remaining edges is still
valid. To combat this, we simply replace the term that carried the value of the deleted
edge with a constant containing its former value (1), leading to:

(ιS (p1) (n1, n2) ∧ ¬p2 (x2) ∧ ¬p3 (x4, x4) ∧ p3 (x4, x5) ,
[x2, x3 7→ n2, x4 7→ n3, x5 7→ n4])

≡ (1 ∧ ¬p2 (x2) ∧ ¬p3 (x4, x4) ∧ p3 (x4, x5) ,
[x2, x3 7→ n2, x4 7→ n3, x5 7→ n4])

≡ (¬p2 (x2) ∧ ¬p3 (x4, x4) ∧ p3 (x4, x5) , [x2, x3 7→ n2, x4 7→ n3, x5 7→ n4])

The resulting constraint preserves the information about the remaining edges without
conflicting with the result of the rule application.

It is useful, as a metaphor, to think of the transformed constraint as expressing as
much of the original constraint as possible in the transformed shape.

Of course, most rule applications do not just delete a single edge. But as we will see
in the formal definition, all effects of rules can be dealt with in a similar matter. Deleted

60

nodes can simply be removed from a formula by replacing all literals that contain it.
Added nodes do not touch any constraint, unless the constraint includes a quantifier,
in which case the constraint can be transformed by adding an exception for the new
node to the formula affected by the quantifier. Combinations of such effects do not
collide with each other, since they all involve replacing literals with constants for their
interpretation in the original shape, as well as addition of new subformulas.

The following definitions, simplified from Daniel Wonisch’s master thesis[159],
formalize the intuitive ideas described above.

Definition 62 (Transformation of Constrained Shapes). Let (S,Λ) be a constrained
shape, P = (L,R) be a rule and letm : L → S be a match such that JφP KmS = 1.
Let further be S′ such that S −P,m−−→ S′. Then the result of applying P to (S,Λ) atm
is defined as (

S′,Λ′) , where
Λ′ :=

{(
c′,m′) | (c,m) ∈ Λ

}
and each

m′ :=
(
m ∪ idUS′

)
∩
(
F
(
c′
)
× US′

)
c′ := replace (c, (m ∩ (F (c)× (US \ US′))))

Thus, for each shape constraint, the formula is transformed using the replace-
algorithm. The assignment is then cleared of any assignments from removed variables
or to removed nodes, as well as extended by the identity map of any nodes added. The
replace algorithm is the subject of the following definition.

Definition 63 (replace-Algorithm). The replace algorithm operates on first-order for-
mulas and is defined inductively as follows:

Literals For l ∈ K, we define replace (l, m̄) := l. Now, let (p, k) ∈ P be a
predicate, and v1, . . . , vk be variables:

• If k = 0, i.e., if p is a constant, then

replace (p(), m̄) = p()

• If k = 1 and m̄ (v) ̸∈ US′ , then

replace (p (v) , m̄) = ιS (p) (m̄ (v))

• If k = 2 and m̄ (v1) , m̄ (v2) ̸∈ US′ , then

replace (p (v1, v2) , m̄) = ιS (p) (m̄ (v1) , m̄ (v2))

61

• If k = 2 and either m̄ (v1) ̸∈ US′ or m̄ (v2) ̸∈ US′ , let w.l.o.g.
m̄ (v1) ̸∈ US′ and:

replace (p (v1, v2) , m̄) :=

 ∧
u∈m(NL∩NR)

((v1 = u) → ιs (p) (u, m̄ (v2)))


∧

 ∨
u∈m(NL∩NR)

(v1 = u)


• If k = 1, let H1 := {u | u ∈ US ∩ US′ ∧ ιS (p) (u) ̸= ιS′ (p) (u)} be
the set of individuals that are neither added nor removed by the rule and
for which the interpretation of p changes when the rule is applied. Then:

replace (p (v) , m̄) :=

 ∧
u∈H1

(v = u) → ιS (p) (u)


∧

 ∧
u∈H1

¬ (v = u)

→ p (v)


• If k = 2, let H2 := {(u1, u2) | u1, u2 ∈ US ∩ US′ ∧ ιS (p) (u1, u2) ̸= ιS′ (p) (u1, u2)}
be the set of individual pairs that are neither added nor removed by the
rule and for which the interpretation of p changes when the rule is applied.
Then:

replace (p (v1, v2) , m̄) :=

 ∧
(u1,u2)∈H2

((v1 = u1) ∧ (v2 = u2)) → ιS (p) (u1, u2)


∧

 ∧
(u1,u2)∈H2

¬ ((v1 = u1) ∧ (v2 = u2))

→ p (v1, v2)


• If (p, k) = (=, 2), then

replace ((v1, v2) , m̄) :=


1 if v1, v2 ∈ dom (m̄) ∧ m̄ (v1) = m̄ (v2)

0 else, ifv1 ∈ dom (m̄) ∨ v2 ∈ dom (m̄)

(v1 = v2) otherwise

62

Logical Connectives For formulas φ1 and φ2:

replace (φ1 ∨ φ2, m̄) := replace (φ1, m̄) ∨ replace (φ2, m̄)

replace (φ1 ∧ φ2, m̄) := replace (φ1, m̄) ∧ replace (φ2, m̄)

replace (¬φ1, m̄) := ¬replace (φ1, m̄)

Quantifiers For a formula φ and a variable v ̸∈ dom (m̄) (accomplished by consistent
renaming):

replace (∀v : φ, m̄) :=

∀v :

 ∧
u∈US′\US

¬ (v = u)

→ replace (φ, m̄)


∧

 ∧
u∈US\US′

replace (φ, m̄ [v 7→ u])


replace (∃v : φ, m̄) :=

∃v :

 ∧
u∈US′\US

¬ (v = u)

→ replace (φ, m̄)


∨

 ∨
u∈US\US′

replace (φ, m̄ [v 7→ u])



A shape constraint, updated using the above definition, always preserves as much
information of the original constraint as possible, while maintaining a stable evaluation
across rule applications.

In the original thesis[159], shape constraints (then called deductive constraints, built
on top of other abstraction refinement methods) are proven to update precisely, un-
der certain conditions. This means that if rule application is performed in DPO, and
certain additional properties are satisfied, e.g. that rules may never create edges that are
already present, rule application is complete. Each graph in the represented graph set of
the resulting constrained shape is the result of applying the rule to some graph in the
original represented graph set.

In this thesis, SPO is used, and some of the conditions imposed in Wonisch’s work
are impractical this context. Thus, here, a weaker version of the correctness theorems is
used.

Theorem 3 (Soundness of Constrained Shape Transformation). Let (S,Λ) be a con-
strained shape, and let (S′,Λ′) be the result of applying a rule P at a definite match
m. Then, for every G ⊑f S,Λ, and everym′ : LP → G such thatm = f ◦m′, there

63

n1

n2

cell

cell

next

x

next

y n1

n2

cell

cell

nextnext

x

yx

y

n2
cell

nextn1
cell

n2
cell x

next

y

Figure 3.12: The graphG is excluded by a canonical abstracধon that disregards the shape constraint
α

is a unique graph G′ such that

G −P,m
′

−−→ G′ and
G′ ⊑

(
S′,Λ′)

i.e., applying P to (S,Λ′) as per Def. 62 is sound.

Proof. See Daniel Wonisch’s master thesis[159].

Shape constraints are a tool for refinement, i.e. the restriction of shapes to smaller
and smaller sets of represented shapes and graphs. It should come as no surprise then,
that the very concept of shape constraints is at odds with the concept of an abstrac-
tion scheme, concerned with enlarging the graph and shape sets of shapes. Specifically,
when an abstraction scheme merges nodes together to obtain more general graphs, the
question arises how constraints that are attached to (some of) those nodes affect the
outcome.

As an example, consider the canonical abstraction scheme presented in Def. 50. The
naïve method of dealing with shape constraints in an abstraction scheme would be to
simply apply the scheme as before, redirecting the assignments of the constraints as
dictated by the merging of nodes. However, due to the definition of embedding in
the presence of shape constraints (see Def. 60), this greatly expands the meaning of
the constraint in almost all cases, resulting in a restriction of the graph set of the shape,

64

rather than an expansion.
Consider the shape (S,Λ) shown in Fig. 3.12. It represents two cell nodes, possibly

connected with next-edges. It also has a constraint attached to it, forbidding one of the
two possible directions for the next-edge.

If we were to abstract this shape using the canonical abstraction scheme, we would
arrive at the shape (S′,Λ′). Here, both cell nodes have been merged, since they did
not differ in the values of the unary predicates (cell and list). The potential next-edge is
now a self-edge, and the constraint now assigns both its variables to the merged node.

The problem now is this: in order for the original shape (and all the graphs in its
graph set) to still be embedded into the shape C (S,Λ), a requirement for a valid ab-
straction scheme in Def. 49, it must satisfy not just its original constraint, but also all
constraints in concrf (Λ′), where f is the embedding function induced by C. As we
can see in Fig. 3.12, this would mean that the resulting constraints rule out the existence
of any next-edge, excluding the graphG from the graph set, even though it was embed-
ded in the original shape (S,Λ).

Thus, abstraction schemes, if they are to be employed in the context of constrained
shapes, must take shape constraints into account. In the remainder of this thesis, we
will use the following modified canonical abstraction scheme. Given that there are an
infinite number of possible constraints that can be attached to a shape, this scheme is
no longer finite.

Definition 64 (Constraint-safe Abstraction). Let P be a predicate set, and let U ⊆ P
be its subset of unary predicates. Let F be the set of all first-order formulas over P and
a variable set V . Let (S,Λ) be a shape and let C (S) be its unconstrained canonical
abstraction. Let further (X := {S′ | S ⊑ S′ ∧ S′ ⊑ C (S)} ,⊑) be the partially or-
dered set of shapes “between” S and its canonical abstraction. Then the Constraint-safe
canonical Abstraction of (S,Λ) is given by a maximal (w.r.t. ⊑) shape C (S,Λ) :=
(S′,Λ′) such that

S ⊑f S
′ ⊑g C (S) and thus S′ ∈ X

Λ′ =
{
(α,m) | ∃m′ :

(
α,m′) ∈ Λ ∧m = f ◦m′}

G (S,Λ) = G
(
S,Λ ∪ concrf

(
Λ′))

With this definition, constraint-safe abstraction is derived from the classical canoni-
cal abstraction scheme with the additional property that no nodes may be merged such
that the thusly implied additional constraints to the original shape further restrict its
meaning. There are several things to note here. First, this is a declarative definition
rather than a constructive one, and multiple implementations of it are possible. This is
because, since we had to abandon the goal of a finite abstraction scheme, the particu-
lar implementation or construction of the abstraction is of lesser importance. Second,

65

the canonical abstraction of a shape, under this definition, is not unique. Uniqueness
of the abstraction is not part of the definition of an abstraction scheme and is really
only relevant when a finite target set of abstractions is the goal of the scheme, or when
multiple implementations of the abstraction scheme are required to reliably generate
the same abstractions. This is not the case for us. We only require that the abstraction
create an abstract shape into which the original shape is still embedded – which is true
by definition – and that the scheme is idempotent, which it is by virtue of the idempo-
tence of the classical canonical abstraction and the requirement of (local) maximality of
the shape.

The above definitions now enable us to refine our analysis using first-order formu-
las. This provides a highly expressive tool to tune the analysis to precisely the GTS and
error that are given, without giving up too much abstraction.

However, it is still unclear, where these first-order formulas should come from. Re-
quiring them to be constructed by hand hardly seems feasible in any practical scenario.

Furthermore, we have not yet solved the problem of spurious errors. If our anal-
ysis proves an STS to be error-free, we obtain a result that is transferable to the origi-
nal GTS. However, if an error is found, we do not have a proper way of figuring out
whether there is an error in the GTS that corresponds to it. And if it doesn’t, what
does this imply about our abstraction?

These questions will be answered in the next chapter, where we will utilize the
power of state-of-the art SMT solvers to test error paths for feasibility and derive new
constraints from them.

66

4
SMT Encoding of

Graph Embeddings and Traces

The expressive power of first-order logic is the key to the effectiveness of the
GTS abstraction scheme presented in the previous chapter. It enables a very precise
fine-tuning of the abstraction, that allows for very complex information to be incorpo-
rated. Such information could, for example, be provided by the error pattern, or the
rules of the GTS. Even domain knowledge, i.e. knowledge about what the graphs are
supposed to represent can be incorporated.

It is not surprising, then, that such extensive abilities come with a price. The price of
using unrestricted first-order logic is two-fold: undecidability and the curse of dimen-
sionality.

The first aspect, undecidability, is well-known. Unrestricted first-order logic is un-
decidable*, meaning that there is no decision procedure that can decide the satisfiability
of a given first-order formula in all cases in finite time. This directly implies that, for
example, it is impossible to construct an algorithm that can decide for any given con-
strained shape S whether it is feasible, i.e., if S (S) ̸= ∅ holds. This problem is not
limited to feasibility. Deciding, for example, whether a given abstract error trace has
any concrete counterparts, is also undecidable in general.

*This was proved by Alan Turing and Alonzo Church in the 1930s

67

This is not surprising, though, since the covering problem itself is already unde-
cidable for infinite-state GTSs[30]. The goal for an approach to solving the covering
problem for infinite-state systems therefore should not be decidability, but a reasonable
expectation of solvability. This means that the approach should work for as many sys-
tems as possible, as efficiently as possible. In the case of our approach, which uses first-
order logic, the natural approach to achieving this is to utilize the incredible progress in
the field of SMT solving that has been made in recent years, and continues to be made
today.

The second aspect, the curse of dimensionality, meaning an explosion in the size
of the design space, is a direct implication of the expressive power of first-order logic.
There are abstraction refinement schemes, such as the one proposed by Rensink et.al.[36]
(see Sec. 8.1), that only provide two dimensions for refinement. In this case, they are the
radius of the neighborhood, i.e. the context of nodes used to decide which nodes are
“similar”, and the upper bound for precise node counting, given by integers k and ω. If
the abstraction is too coarse, there is really only one thing to do: increase k or ω. This
is easy enough to automate, but severely limits the ability of the approach to actually
adapt to the problem at hand.

When using unrestricted first-order logic for shape refinement the problem is the
reverse. The infinite number of possibilities for refinement make it extremely difficult
to design refinement formulas (shape constraints) without the help of a human de-
signer. The techniques provided in this chapter form the basis of our approach to this
problem. The approach itself is given in Chapters 5 and 6.

4.1 Motivation

The close connection between graphs and logic made in the first two chapters of this
thesis allows us to frame nearly all tasks that make up the state space construction algo-
rithm for STS as satisfiability problems. Some of these tasks are not easily performed
in the domain of graphs. The central example for this in this thesis is the problem of
finding a concrete error trace to correspond to a given abstract trace.

Let S = (S0,R) be an STS,E be an error pattern, and

S0 −P1,m1,Sm
1−−−−−−→ S1 −P2,m2,Sm

2−−−−−−→ S2 −P3,m3,Sm
3−−−−−−→ · · · −Pn,mn,Sm

n−−−−−−→ Sn

be a path in S , such that we have JφEKmSi
= 0 for allm and 0 ≤ i ≤ n − 1, as well asJφEKme

Sn
≥ ½ for some potential matchme. Let further G = (I,R) be a GTS over the

same rule set, such thatG ⊑ S0.
If we want to know whether the error we have just found on the abstract level, i.e. in

the STS, is also present on the concrete level, i.e. in the GTS, we need to check for the

68

Figure 4.1: The naïve process of counterexample validaধon

existence of a path

I −P1,m′
1−−−→ G1 −P2,m′

2−−−→ G2 −P3,m′
3−−−→ · · · −Pn,m′

n−−−−→ Gn

in the GTS such that for all 1 ≤ i ≤ nwe have

Gi ⊑fi Si as well as
mi = fi−1 ◦m′

i and

∃m′
e : m

′
e = fn ◦me ∧ JφEKm′

e
Gn

= 1

meaning, every i-th graph in the concrete path is embedded into the i-th shape of the
abstract path, and each match (including the positive error match) used in the concrete
path is compatible via the appropriate embedding with the corresponding abstract
match.

The direct, naïve approach to finding such a path would be to start with I , compute
all matches that are compatible withm1, and list, for every resulting graph, all em-
beddings with which they might be embedded into S1. Then, for each pair of such a
resulting graph and a possible embedding, repeat the process, constructing, in essence,
a tree of paths through the transition system of the GTS, in which every level corre-
sponds to a single shape in the abstract path. Figure 4.1 shows a schematic of this pro-
cess.

The tree constructed in this manner is potentially huge, especially when the coun-

69

terexample is particularly long and actually valid. The prospect of having to construct
these huge trees for every abstract error trace that is found motivates the search for al-
ternatives.

The problem of having to validate counterexamples is, of course, not limited to
abstract graph transformation systems, but abstractions of dynamic systems in general.
Established methods in this domain, such as predicate abstraction[81], already have
proven ways of dealing with counterexample validation.

In predicate abstraction, an abstraction technique used to verify imperative pro-
grams, each counterexample is transcoded into a so-called path formula. This formula
encodes the possible program states along the path using consistent renaming of the
state variables (static-single-assignment, SSA). The advantage of this is that the states
need not be explicitly constructed. Instead, the formula is given to an appropriate
solver, which attempts to find a satisfying interpretation, i.e. a “model”. Any model
found by this solver represents an actual program path corresponding to the abstract
error path. The solver used is usually a so-called “SMT solver”, i.e. a program capa-
ble of finding satisfying assignments for first-order logic formulas with certain pre-
interpreted predicates and functions, called a “theory”.

In this chapter, I develop encodings of graph transformation systems into SMT
formulas. This will provide a way to encode all relevant checks that come up during
the construction of a shape transition system, including counterexample validation, in
SMT. Performing these checks via an SMT solver provides a much more efficient and
effective way to decide feasibility for shapes and traces (see Chapter 5). It can also serve
as an information source for abstraction refinement (see Chapter 6).

A Short Survey of Logical Encodings of Graphs and Their Proper-
ties

Given the conceptual similarity between logical structures and graphs, it is not surpris-
ing that the idea of encoding graphs in logic is not new, and in fact, many techniques
exist that in some way, as their central goal or as a side-effect or supporting factor, use
various logics to encode graphs and their properties in logic. For the purposes of this
short survey, we will distinguish between two categories of such techniques – on the
one hand, techniques that are used to assert or express information about graphs, and
on the other hand, techniques that use logic to express the graphs themselves.

A clear example of the first category of techniques is the OCL[50, 120] (Object
Constraint Language). This specialized constraint language is part of the UML[1] fam-
ily of languages and covers a large variety of applications within it. One of these appli-
cations is to restrict, e.g., the meaning of class diagrams, for example by disallowing the
coexistence of certain types of associations (edges) or requiring that certain instances
of classes (nodes) must always exist together, even when they are not connected by as-

70

sociations. In the intention of this particular instance, the OCL comes relatively close
to the concept of shape constraints presented in the previous chapter. However, while
shape constraints are simply first-order logic formulae related to graphs via assignments
into corresponding logical structures, the formal semantics of OCL, i.e. the mathemati-
cal underpinnings are much wider, as they need to incorporate other modeling aspects,
such as attributes, basic data types or operations on non-graphical aspects of a model.
There is an official formal semantics of the OCL[6], but its development is ongoing
and inconsistencies linger in the official specification[37].

As a more formal example of the use of logic to express properties of graphs (and
graph transformation systems), we consider the wide-spread use of monadic second-
order logic. It is commonly understood that monadic second-order logic is uniquely
suited for expressing properties of graphs and graph transformations[133]. Some tech-
niques for various applications use it to this effect[37, 56, 102]. However, greater ex-
pressive power always comes at the cost of feasibility – since monadic second order
logic constitutes an extension of first-order logic, decision procedures for it must be at
least as complex as decision procedures for first-order logic. That, and the comparative
dearth of tools capable of deciding monadic second order logic, let alone interpolation
support (see Chapter 6) led to our decision to stick with first-order logic.

In the second category we find several approaches that encode entire graphs in logic,
usually to utilize formal logic tools to derive some kind of insight about them. Most
related to our approach presented in this chapter is the work by Kreowski, Kuske and
Wille[105]. In this approach, the authors use logical encodings of graph transforma-
tion systems to find derivations, i.e. sequences of transformation rule applications, of
bounded length. Unlike in our approach, they do not use predicate logic, restricting
themselves to basic propositional logic, which, while allowing them to use SAT solvers
instead of SMT solvers, which in general are yet more efficient and fast, also prevents
them from expressing higher order concepts in their encodings, such as matches. In
their application they are able to solve this by simply enumerating all possible matches,
but for our use case where we will, for example, explicitly encode embedding functions,
thiis solution is intractable.

Another technique that is often used in the second category is the use of the well-
known formal modeling laguage Alloy[99] and its associated tools. Most related to
our technique in this regard is the work by Baresi and Spoletini[19]. Another approach
at bounded model checking, this work translates graphs and graph transformations
into the language of Alloy, which, underneath, is essentially first-order logic, like in
our approach. The main drawback of this approach is that the use of Alloy effectively
rules out the possibility of encodings with unbounded models, as well as the absence of
more advanced logical analysis tools, like interpolation (see Chapter 6). For the applica-
tion of encoding graph transformation sequences of bounded length, these drawbacks
are irrelevant. For our purposes though, a more powerful formalism is required. There

71

are other approaches that roughly belong to the same category[109, 148], but all of
them have similar restrictions.

The following section gives a brief overview and introduction to SMT, providing
context for the sections thereafter.

4.2 Satisfiability Modulo Theories

Given a first-order logical formula φ, the satisfiability problem is the problem of finding
a logical structure S, and an assignmentm : F (φ) → US of its free variables, such
that JφKmS = 1. This is assuming that the predicate symbols used in the formula are
entirely without inherent meaning and can be arbitrarily interpreted. However, that
is not the case in almost any practical application where first-order formulas are being
used.

Usually, first-order formulas are being used in tandem with, or on top of, another
formalism. For example, such a formalism might be linear integer arithmetic (LIA).
Terms in linear integer arithmetic represent statements about subsets of (k-powers
of) the natural numbers, using symbols like<,>,+, or ·. With first order logic, one
might now want to express the statement that all natural numbers that satisfy one LIA
term, also satisfy another LIA term. This fusion between pure first-order logic, and
pre-interpreted symbols belonging to a coherent formalism, is the basis of satisfiability
modulo theories (SMT).

SMT Overview SMT is similar to the basic satisfiability problem, in that it is about
finding logical structures and assignments (calledmodels) in which a given formula is
true. The difference is that in SMT, a certain subset of the predicate symbols used in
the formula are pre-interpreted, assigned to functions and relations over an also pre-
determined universe. These interpreted predicates, and the universe on which they
operate, are packaged together into a so-called theory. A first-order formula, together
with a theory fixing its universe and providing a number of interpretations for (some
of) its predicates, constitutes an SMT problem. Such problems are solved, i.e. models
are constructed for them, by programs called SMT solvers.

When attempting to find a model, an SMT solver will alternate between two sub-
modules. One module is a regular SAT-solver, treating literals containing predicates
as regular boolean variables. The other is a so-called theory solver. This is a program
encapsulating the interpretations of the functions and predicates that make up the the-
ory, as well as proof rules about these functions and predicates. Essentially, whenever
the SAT-solver derives that a certain set of theory literals (literals of predicate symbols
that are part of the theory) should be true at the same time, it queries the theory solver
to figure out whether this is possible, and, if not, why.

72

As an example, consider the following LIA-formula:

(x = 3) → ((y > x) ∧ (y < 0))

Purely from a logical standpoint, there are two types of models in which this for-
mula evaluates to true: Any model S in whichm (x) = 3, J(y > x)KmS = 1, andJ(y < 0)KmS = 1, as well as any model in whichm (x) ̸= 3. The theory solver would
now check (x = 3) ∧ (y > x) ∧ (y < 0) and find that there are no integers x and
y that satisfy that term. Thus, any model containing this interpretation would be dis-
carded, and the model ultimately produced would contain an assignment of x to some
value other than 3, as well as an arbitrary assignment for y.

There are many theories, including LIA, but also LRA (linear real arithmetic), BV
(bit vectors), ArraysEx (array with extensionality) and several more. SMT solvers have
been successfully employed in many fields, most notably (for this thesis) in counterex-
ample analysis in various abstraction-based verification schemes[115].

SMT in practice: SMTLib and Solvers Over the last 10 years, a de-facto stan-
dard for describing SMT theories and problems has emerged: SMTLib. This common
standard has allowed for the emergence of a competitive environment[21] for the de-
velopment of SMT solvers and the proliferation of common benchmarks derived from
real-world problems.

The complexity of SMTLib is considerable. While all encodings presented in this
thesis are written in SMTLib format, only a fraction of the actual language is used.
I will now present this fraction of the language in order to facilitate understanding
of the following sections. This introduction is based partly on a lecture by Roberto
Bruttomesso[39].

The basic unit of SMTLib is the Script. A script describes an SMT problem and all
its contextual definitions. It further describes exactly what problems should be solved,
and what output about the solutions should be generated.

Each script begins with a command to set the theory (called a logic) used in the
script.� �

(set-logic QF_UF)� �
A logic is essentially just a theory, plus a number of restrictions about how formulas
can be built. For use with graphs, a very basic logic will suffice. We will use two logics
in this chapter: UF and QF_UF. These represent, respectively, first-order logic with
uninterpreted functions, and quantifier-free first-order logic with uninterpreted func-
tions.

73

SMTLib allows the universe over which formulas are evaluated to by sorted, i.e.
typed, essentially partitioning the universe into a number of sub-universes. Such typ-
ing is not a part of basic first-order logic, but can easily be emulated in it, using unary
predicates and constraints on functions and predicates enforcing typing rules. Most
logics contain pre-defined types. For example, the LIA logic defines the type Int, for
integers. However, scripts are allowed to define their own types, called Sorts.� �
(declare-sort Node 0)� �

In general, sorts can have arities and be parameter-dependent. For example, the sort BV
for bit vectors has the length of the bit vectors as a parameter. For this thesis, a simple,
nullary sort for nodes will suffice†.

This concludes the typical preface of the script, dealing with the context of the prob-
lem described. What follows is a description of the problem itself.

This consists of a series of symbol declarations. Simple constants of either prede-
fined types (like boolean) or user-defined types (like Node above) are introduced as
nullary, uninterpreted functions / predicates.� �
(declare-fun boolVar () Bool)
(declare-fun nodeVar () Node)� �

When executing the script, any attempt to solve the given problem will involve finding
singular elements of the respective type to assign to these nullary functions.

Higher-level predicates and functions are declared in a similar way. Naturally, predi-
cates should have the return type Bool, while functions can have any return type. The
list of parameter types determines the arity of the function / predicate.� �
(declare-fun binaryEdge (Node Node) Bool)
(declare-fun match (Node) Node)� �

For our encoding, we will mostly restrict ourselves to unary and binary predicates.
SMTLib contains keywords for all the standard operators in first-order logic. They

follow a very intuitive naming scheme (see Listing B.1). All of these operators (like all
symbols in SMTLib) are written in prefix form.

The actual formulas are built with define-fun-statements.� �
(define-fun someFormula () Bool
(and (binaryEdge nodeVar nodeVar) (not boolVar))

)� �
†for now, additional sorts will be introduced later

74

The above code introduces the new symbol someFormula and interprets it as a nullary
predicate (no parameter types, return type Bool), with the interpretation defined by
the given formula.

Once formulas have been written, the actual SMT problem has to be defined. This
is done by way of the assert statement.� �
(assert (and someFormula someOtherFormula))� �

One can have multiple assert statements. Each of these statement adds its formula
parameter to the set of formulas that must be fulfilled for the problem described in
the script to be considered SAT. In essence, the formula represented by the script is a
conjunction of the formulas that are asserted in it.

In case one uses many assert-statements, it can make sense for formulas (other
than those defined by define-fun) to be named.� �
(assert (!
(and (binaryEdge nodeVar nodeVar) (not boolVar))
:named someFormula

))� �
Of course, named formulas can also be used outside of asserts, for example to construct
large formulas from named subformulas, to increase readability.

Once the formulas have been specified and asserted, the actual check must be per-
formed. This is done by a simple call to check-sat.� �
(check-sat)� �

Reading the check-sat command will prompt the program interpreting the script
to attempt to find a model within the given logic that satisfies all asserted formulas.
If a model is found, SAT is returned, if none exists, UNSAT is returned. Since the
combination of asserted formulas might be undecidable, a third result is also possible:
UNKNOWN is returned when neither SAT nor UNSAT could be determined after a
specified amount of time.

As stated earlier, SMTLib is massively more complex than these simple commands
indicate. However, they suffice for most applications in this thesis.

There are many programs that are capable of reading SMTLib input (either in Ver-
sion 1.2 or the more recent 2.0), such as CVC4[20], MathSat[40], OpenSMT[41],
SMTInterpol[46], Yices[65], Z3[114], and several more. These programs are collec-
tively referred to as SMT Solvers. Due to the standardization of SMTLib, any encod-
ing scheme producing SMTLib-compatible scripts can utilize any of these solvers.
However, the solvers themselves are not necessarily feature equivalent, and certain
features (like interpolation support) are rather rare. For these reasons, we will restrict

75

ourselves to two solvers for this thesis: SMTInterpol (for interpolation-based checks)
and Z3 (for all others).

4.3 Encoding of a Graph

As an introductory example, we will first look at how one can encode a single graph as
an SMT problem. The first question one ought to ask is this: what does it even mean
for an SMT problem to “encode” a graph? In this context, what we mean by this is the
following:

Idea. An SMT problem “encodes” a given mathematical object, iff there is a bijective
mapping between the object and the set of all valid models for the SMT problem.

This means that, for example, if we want to “encode” a single graph, we need to
create an SMT problem whose only model is exactly (modulo differences in formalis-
m/syntax) the logical structure that corresponds to the graph. With this in mind, we
set about to encode a given graphG by creating an SMT script describing an SMT
problem whose only model will give us the logical structure for that graph.

All scripts that that encode a single graph begin with the same prelude. First, the
logic is set, then the Node sort is introduced. Since quantifiers tend to greatly decrease
the performance of solvers, we will avoid using them wherever possible. Thus, we will
always use the QF_UF logic, unless explicitly stated otherwise.

Code Template 1 (SMT Prelude for Single Graphs). Each smt script encoding a single
graph begins with the same prelude:� �

(set-logic QF_UF)
(declare-sort Node 0)� �

Now we can begin encoding a graph. LetG =
(
V,E1, E2

)
be a graph with V a set

andE1, E2 sets of unary and binary edges, labeled over a separate setL = (UL, BL)
of unary and binary labels. The first objective is to make sure that the universe of the
generated model will contain exactly the nodes that make up V . Thus, we will intro-
duce a nullary Node constant for each element in V .

Code Template 2 (Universe Constants (Single Graph)). The universe of G is encoded
in node constants v1, . . . , vk .� �

(declare-fun v1 () Node)
...
(declare-fun vk () Node)� �

76

Note that this alone does not ensure that the universe will be exactly the node set,
only that there will be a Node constant for every node in the set. Nothing prevents the
SMT solver from instantiating more nodes than are necessary to interpret these node
constants. However, since all following formulas will explicitly reference only these
Node constants and use no quantifiers or variables that range over the Node sort as a
whole, there is no reason for the solver to instantiate more than k Node objects in the
universe.

On the other hand, there is also no explicit provision that states that these nullary
constants cannot have the same value, leading to a singleton universe. In order to pre-
vent this, we need to introduce a formula to make sure that at least k Node constants
will be instantiated. We do this by explicitly stating the inequality of every possible
node pair.

Code Template 3 (Pairwise Inequality (Single Graph)). The formula distinctNodes
is given by the following code template.� �
(define-fun distinctNodes () Bool
(and (not (= v1 v2)) (not (= v1 v3)) · · · (not (= v1 vk))

(not (= v2 v3)) · · · (not (= v2 vk))
...

(not (= vk−1 vk)))
)� �

It represents the first-order formula

k∧
i=1

k∧
j=i+1

¬ (vi = vj)

We believe the property of this encoding that all its models represent k distinct in-
stances of the node sort to be obvious enough as to not require a proof.

Having established the universe, i.e. the node set, we now move on to the edges.
This is based very much on the same idea as the encoding as a logical structure (see
Sec. 3.2). Each binary edge is represented by a binary predicate, while each unary edge is
represented by a unary predicate.

Thus, for each label l1 = (s1, k1) , . . . , ln = (sn, kn) ∈ L, we add an uninter-
preted predicate of the appropriate arity. For the sake of presentation, we assume we
have |UL| = l and |L| = n.

Code Template 4 (Label / Predicate Set (Single Graph)). Each unary / binary label in
the graph G is represented by a unary / binary predicate in the SMT encoding.� �

; first the unary predicates

77

(declare-fun s1 (Node) Bool)
...
(declare-fun sl (Node) Bool)
; then the binary predicates
(declare-fun sl+1 (Node Node) Bool)
...
(declare-fun sn (Node Node) Bool)� �

Once the predicate set is established, the actual edges can be encoded. The unary
edges on each node will be encoded in a separate (interpreted) function. In this func-
tion, we assert for each node the existence or non-existence of each type of unary edge
explicitly.

Code Template 5 (Unary Edges (Single Graph)). For nodes v1, . . . , vk and unary labels
s1, . . . , sl the function unaryG is given by:� �

(define-fun unaryG () Bool (and
B (s1, v1) · · · B (sl, v1)
...
B (s1, vk) · · · B (sl, vk)

))� �
where each block B (s, v) stands for either (s v) or (not (s v)), depending on
whether the edge (s, v) exists in the graph. Thus, it effectively represents the logical
formula

∧
v∈V

 ∧
((s,1),v)∈E1

s (v) ∧
∧

((s,1),v)̸∈E1

¬s (v)


The binary edges on each node pair will be encoded similarly, in another separate

(interpreted) function. The procedure is essentially the same as for unary edges. For
each binary label, we assert the existence or non-existence of that type of binary edge on
each possible node pair explicitly.

Code Template 6 (Binary Edges (Single Graph)). For binary labels sl+1, . . . , sn and
node pairs

(v1, v1) , . . . , (v1, vk) , (v2, v1) , . . . , (vk, vk−1) , (vk, vk)

we obtain the following function:� �
(define-fun binaryG () Bool (and

78

n1

n2

(head,2)
(list,1)

(tail,2)

(next,2) n3 n4
(next,2)

(cell,1)(cell,1)(cell,1)

Figure 4.2: An example graph (see also Fig. 3.1)

; we begin with the first binary label sl+1

; each B-block encodes the (non-)existence of an edge
; labeled sl+1 on the given node pair
B(sl+1,v1,v1) · · · B(sl+1,v1,vk) B(sl+1,v2,v1) · · · B(sl+1,vk,vk)
...
B(sn,v1,v1) · · · B(sn,v1,vk) B(sn,v2,v1) · · · B(sn,vk,vk)
))� �

where each B(x, y, z) block is either (x y z) or (not (x y z)), depending on
whether the corresponding edge exists in the graph or not. Thus, the function binaryG
effectively represents the logical formula

∧
v1∈V

 ∧
v2∈V

 ∧
(v1,(s,2),v2)∈E2

s (v1, v2) ∧
∧

(v1,(s,2),v2) ̸∈E2

¬s (v1, v2)


These three functions together, in the SMT context established so far, are already

sufficient to encode the graph. All that remains is to assert them and check for satisfia-
bility.

Code Template 7 (Graph Assertion). Given an SMT code containing instances of the
code templates 2, 3, 4, 5, and 6, the entire graph can then be asserted using� �

(assert (and distinctNodes unaryG binaryG))� �
As an example, consider the graph shown in Fig. 4.2. It represents a linear list with

three cells. A graph such as this can easily be encoded using the formulas defined above.
The encoding will be such that the resulting SMT problem is SAT, with exactly one
satisfying model – the logical structure of the graph itself.

79

Lemma 9 (Satisfiability of Single Graph Encoding). Let G =
(
N,E1, E2

)
be a

graph over a label set L, and let Sc be an SMT script built from G according to the
code templates 1, 2, 3, 4, 5, 6, and 7. Then there exists exactly one satisfying model for Sc
(modulo unused universe elements). This model represents exactly the logical structure
ls (G).

Proof. See Appendix A, page 243

The encoding for this particular graph is shown in Listing 4.1. It has been formatted
for maximum readability. It is easy to see that, especially for binary edges, the size of
the formula can grow very quickly. Even for such a simple graph, the listing barely fits
on one page. However, the power of modern SMT solvers is such that models of this
size pose no serious problem, and even much larger problems (i.e. larger, more complex
graphs) are usually solved in a matter of seconds or minutes at most[21].

This simple encoding is intended to show the basic idea of how graphs can be ex-
pressed in first-order logic. The actual encodings that we will use are based not only on
the encoding of singular graphs, like here, but on the encoding of embeddings between
graphs and shapes, and the encoding of rule applications as well. In the following, we
will go through these encodings and prove that they do in fact encode what they are
supposed to encode. The encodings themselves will tend to grow very large. For this
reason, any further listings for example encodings will be grouped in Appendix B.

4.4 Encoding of a Graph Embedded Into a Shape

As mentioned in Section 4.1, the first application of SMT encodings to the verification
of shape transformation systems is the validation of abstract traces. Figure 4.1 shows
that the notion of an embedding between a graph and a (possibly) constrained shape is
central to this process.

Thus, as a first step, we will now develop an encoding that will enable us to tell
whether a given graphG can be embedded into a shape (S,Λ). While this problem,
at least in the unconstrained case, is more easily solved in the domain of graphs, its
SMT encoding will provide the basis for much more complex encodings later on. We
will build upon the simple graph encoding above, and successively add an encoding of
the embedding function, and of the various aspects of the shape.

We will begin by considering the embedding function itself. As stated in Def. 43, an
embedding function f : UG → US is a surjective function between the universes of
two shapes. It must obey the following conditions:

Edge Abstraction For any node tuple t inUG and any predicate p the value of p on
f(t) in S must be equal to or more abstract than the value of p on t inG.

80

Lisধng 4.1: SMT Encoding of the graph shown in Fig. 4.2� �
(set-option : p r i n t− s u c c e s s false)
(set-logic QF_UF)
; Sort for graph nodes
(declare-sort Node 0)
; four node individuals (node set / universe)
(declare-fun v_ 1 () Node)
(declare-fun v_2 () Node)
(declare-fun v_3 () Node)
(declare-fun v_4 () Node)
; assert distinctiveness of the individuals
(define-fun d i s t i n c t N o d e s () Boo l

(and (not (= v_ 1 v_2)) (not (= v_ 1 v_3)) (not (= v_ 1 v_4)))
(and (not (= v_2 v_3)) (not (= v_2 v_4)))
(and (not (= v_3 v_4)))

)
; labels used in the graph become predicates
(declare-fun l i s t (Node) Boo l)
(declare-fun c e l l (Node) Boo l)
(declare-fun t a i l (Node Node) Boo l)
(declare-fun head (Node Node) Boo l)
(declare-fun nex t (Node Node) Boo l)
; defines the unary edges of the graph
(define-fun unaryG () Boo l (and

(l i s t v_ 1) (not (c e l l v_ 1))
(not (l i s t v_2)) (c e l l v_2)
(not (l i s t v_ 3)) (c e l l v_ 3)
(not (l i s t v_4)) (c e l l v_4)

))
; defines the binary edges of the graph
(define-fun b ina r yG () Boo l (and

(not (t a i l v_ 1 v_ 1)) (t a i l v_ 1 v_2) (not (t a i l v_ 1 v_3)) (not (t a i l v_ 1 v_4))
(not (t a i l v_2 v_ 1)) (not (t a i l v_2 v_2)) (not (t a i l v_2 v_3)) (not (t a i l v_2 v_4))
(not (t a i l v_ 3 v_ 1)) (not (t a i l v_ 3 v_2)) (not (t a i l v_ 3 v_3)) (not (t a i l v_ 3 v_4))
(not (t a i l v_4 v_ 1)) (not (t a i l v_4 v_2)) (not (t a i l v_4 v_3)) (not (t a i l v_4 v_4))

(not (head v_ 1 v_ 1)) (not (head v_ 1 v_2)) (not (head v_ 1 v_3)) (head v_ 1 v_4)
(not (head v_2 v_ 1)) (not (head v_2 v_2)) (not (head v_2 v_3)) (not (head v_2 v_4))
(not (head v_3 v_ 1)) (not (head v_3 v_2)) (not (head v_3 v_3)) (not (head v_3 v_4))
(not (head v_4 v_ 1)) (not (head v_4 v_2)) (not (head v_4 v_3)) (not (head v_4 v_4))

(not (n e x t v_ 1 v_ 1)) (not (n e x t v_ 1 v_2)) (not (n e x t v_ 1 v_3)) (not (n e x t v_ 1 v_4))
(not (n e x t v_2 v_ 1)) (not (n e x t v_2 v_2)) (not (n e x t v_2 v_3)) (not (n e x t v_2 v_4))
(not (n e x t v_3 v_ 1)) (n e x t v_3 v_2) (not (n e x t v_3 v_3)) (not (n e x t v_3 v_4))
(not (n e x t v_4 v_ 1)) (not (n e x t v_4 v_2)) (n e x t v_4 v_3)

(not (n e x t v_4 v_4))
))
; assert a conjunction of the formulae defined and
(assert (and d i s t i n c t N o d e s unaryG b ina r yG))
; check for satisfiability
(check-sat)
(get-model)� �

81

Node Abstraction If f maps more than one node inUG to one node u ∈ US , then u
must be a summary node in S.

We want the embedding to be a mapping between nodes in the graph and nodes in
the shape. Making sure that this is the case in SMT, where f is a regular binary pred-
icate on the node sort, is rather laborious. It is also unnecessary, since SMT already
provides us with the tools to automatically enforce what is, essentially, a typing rule.

Thus, we separate the universe of the graph and the universe of the shape by using
an additional sort, called ANode (Abstract Node). The embedding can then be repre-
sented by a function mapping the Node sort into the ANode sort.

This necessitates a change in the SMT prelude defined above, adding the new sort,
as well as the embedding function.

Code Template 8 (SMT Prelude for Graph Embeddings). Each SMT Script encoding
a graph embedded into a shape begins with the prelude specified in Code Template 1,
followed by� �

(declare-sort ANode 0)
(declare-fun _F (Node) ANode)� �

Having defined the new sort ANode, we can now declare the nodes in the graph and
the shape (i.e. the source and target of the embedding function) as Node and ANode
constants, analogous to the graph encoding above.

Code Template 9 (Universe Constants (Graph Embedding)). Let G be a graph and S
be a shape. Let v1, . . . , vk be the nodes of the graph, and let u1, . . . , um be the nodes
of the shape. Then, the encoding of the universe of both the graph and the shape take the
following form:� �
(declare-fun v1 () Node)
...
(declare-fun vk () Node)

(declare-fun u1 () ANode)
...
(declare-fun um () ANode)� �
Since each node in a shape is distinct from every other node in the shape, the dis-

tinctNodes formula can just be expanded to also include the node constants for the
shape. Note that inequality terms between Node and ANode constants are unnecessary,
as this is already taken care of by the typing system.

82

Code Template 10 (Pairwise Inequality (Graph Embedding)). The pairwise inequality
of concrete graph nodes is given by the first-order formula

k∧
i=1

k∧
j=i+1

¬ (vi = vj) ∧
m∧
i=1

m∧
j=i+1

¬ (ui = uj)

and encoded into SMTLib in a straightforward fashion as the function distinctN-
odes, using an appropriate function definition.

As with Code Template 3, a proof that any model of this formula will induce k dif-
ferent Node constants andm different ANode constants is deemed unnecessary.

In the next step, we need to limit the range of _F to make sure that its interpretation
will not necessitate creating individuals in the ANode sort that go beyond the constants
we have defined. Thus, we need to make sure that for each Node x, the ANode y it is
mapped to will be one of the constants we defined.

Code Template 11 (Embedding Range (Graph Embedding)). The range of the embed-
ding function is encoded by the first-order formula

∧
v∈UG

 ∨
u∈US

u = _F (v)


and encoded into SMTLib in a straightforward manner as the function function,
using an appropriate function definition. For each node v ∈ UG, this SMT function
thus encodes that _F must map it to one of the nodes u ∈ US .

As above, proving that an assertion of this formula the range of the function _F to
be restricted to the ANode constants u1, . . . , um is trivial.

Now that the function property is assured, we move on to surjectivity and node
abstraction. Both of these will be combined in a single formula. Surjectivity states, that
at least one node fromUG must map to each node inUS . On the other hand, node
abstraction states that, if and only if more than one node fromUG maps to a node in
S, that node must be a summary node.

This can be combined to the statement that for each non-summary node inUS ,
there must be exactly one node fromUG, that maps to it, and for each summary node
there must be at least one such node. We encode this property in a formula called sum-
marization.

Code Template 12 (Summarization (Graph Embedding)). Let u1, . . . , um′ denote the
non-summary nodes of S, and um′+1, . . . , um the summary nodes. The summariza-

83

tion property of the embedding function is encoded by the first-order formula

∧
u∈Uc

S

 ∨
v∈UG

u = _F (v) ∧
∧

v′∈UG\{v}

¬
(
u = _F

(
v′
)) ∧

∧
u∈Us

S

 ∨
v∈UG

u = _F (v)


where U c

S := {u ∈ US | ιS (sm) (u) = 0} and U s
S := {u ∈ US | ιS (sm) (u) = ½},

and encoded into SMTLib in a straightforward manner as the function summariza-
tion, using an appropriate function definition.

This guarantees both surjectivity and the node abstraction property for the interpre-
tation of _F, as the following lemma shows.

Lemma 10 (Correctness of Summarization encoding). Any function _F : UG →
US that satisfies the formula defined in Code Template 12 is a surjective function that
satisfies the summarization property, given that v1, . . . , vk, u1, . . . , um are pairwise
distinct.

Proof. See Appendix A, page 243.

What remains is the edge abstraction property. In order to ensure that the encoded
embedding function respects this property, we must first introduce an encoding of the
edges in the target shape. We can provide such an encoding by just slightly modifying
the graph encoding shown in Sec. 4.3. Since every graph is a shape, we already have an
encoding for a special subset of shapes (the graphs). Now, the idea is to remove certain
restrictions from the graph encoding to make it suitable for shapes.

The main differences between a graph and a shape are the existence of summary
nodes and ½-edges. The proper use of summary nodes in our encoding has already
been taken care of in the summarization formula. Thus, what remains are only the
½-edges.

When a shape contains a ½-edge, the intended meaning is that any graph embedded
into it can choose whether to contain the corresponding edge or not, i.e. the interpre-
tation of the predicate for that particular node tuple is unconstrained. In the SMT en-
coding we can take this literally and simply remove the restrictions on a given predicate
and node pair if the shape contains a ½-edge for that predicate and node pair, instead of
a regular edge or no edge.

So, for example, for a node pair u1, u2 in the shape, and a binary predicate p, we
would encode

(not (p u1 u2)) iff ιS (p) (u1, u2) = 0 and
(p u1 u2)) iff ιS (p) (u1, u2) = 1 and

(true) iff ιS (p) (u1, u2) = ½

84

This idea allows us to modify the formulas unaryG and binaryG (see Code Tem-
plates 5 and 6) to obtain unaryS and binaryS, their equivalents for shapes. Of course,
since the nodes of the shape are represented in the encoding by constants of the AN-
ode sort, rather than the Node sort, we can not use the same predicate set that we used
for the encoding of the graph edges. We must thus duplicate the predicate set for the
shape, using the prefix a (again, for “abstract”) to distinguish predicates on the shape
from predicates in the graph.

Code Template 13 (Label / Predicate Set (Graph Embedding)). Given a graph G and a
shape S over the same predicate set P , that predicate set is encoded as a set of uninter-
preted predicates. Let s1, . . . , sl be the unary predicates, and let sl+1, . . . , sn be the
binary predicates. The encoding is then given by the following code template:� �

; first the unary predicates
(declare-fun s1 (Node) Bool)
(declare-fun as1 (ANode) Bool)
...
(declare-fun sl (Node) Bool)
(declare-fun asl (ANode) Bool)
; then the binary predicates
(declare-fun sl+1 (Node Node) Bool)
(declare-fun asl+1 (ANode ANode) Bool)
...
(declare-fun sn (Node Node) Bool)
(declare-fun asn (ANode ANode) Bool)� �

Once the predicates for the shape have been established, the encoding of the edges
can follow.

Code Template 14 (Unary Edges (Shape)). For nodes u1, . . . , um and unary labels
s1, . . . , sl the function unaryS is given by:� �

(define-fun unaryS () Bool (and
B (s1, v1) · · · B (sl, v1)
...
B (s1, vk) · · · B (sl, vk)

))� �
where each block B (s, v) stands for either (as v), (not (as v)), or (true) de-
pending on whether ιS (s) (v) is 1, 0, or ½ in the shape. Thus, it effectively represents

85

the logical formula

∧
v∈V

 ∧
ιS(s,1)(v)=1

s (v) ∧
∧

ιS(s,1)(v)=0

¬s (v)


Code Template 15 (Binary Edges (Shape)). For binary labels sl+1, . . . , sn and node
pairs

(v1, v1) , . . . , (v1, vk) , (v2, v1) , . . . , (vk, vk−1) , (vk, vk)

we obtain the following function:� �
(define-fun binaryS () Bool (and
; we begin with the first binary label sl+1

; each B-block encodes a (possibly) (non-)existing edge
; labeled sl+1 on the given node pair
B(sl+1,v1,v1) · · · B(sl+1,v1,vk) B(sl+1,v2,v1) · · · B(sl+1,vk,vk)
...
B(sn,v1,v1) · · · B(sn,v1,vk) B(sn,v2,v1) · · · B(sn,vk,vk)
))� �

where each B(x, y, z) block is either (ax y z), (not (ax y z)), or (true),
depending on whether the corresponding edge exists in the graph or not. Thus, the func-
tion binaryS effectively represents the logical formula

∧
v1∈V

 ∧
v2∈V

 ∧
ιS(s,2)(v1,v2)=1

s (v1, v2) ∧
∧

ιS(s,2)(v1,v2)=0

¬s (v1, v2)


Correctness proofs for these definitions are analogous to the proofs for unaryG

and binaryG, from the proof of Lemma 9. Now that the (definite) edges of the shape
have been encoded, all that is left is to assert that, wherever definite edges exist in the
shape, they have to be mirrored by edges in the graph. Thus, for every node or node
pair in the graph, and every label, the corresponding edge must have the same value as
its image in the shape under _F.

As an example, let v1, v2 ∈ V be nodes in the graph, and let p be a binary predicate.
Let further u1, u2 ∈ US be nodes in the shape and let (u1, p, u2) be the only ½-edge
labeled p in the shape. Then, using an implication to introduce an exception for ½-
edges, the property described above would take the following form as a formula:

(¬ ((_F (v1) = u1) ∧ (_F (v2) = u2))) → (p (v1, v2) = p (_F (v1) , _F (v2)))

≡ (p (v1, v2) = p (_F (v1) , _F (v2))) ∨ ((_F (v1) = u1) ∧ (_F (v2) = u2))

86

This basic idea enables us to complete the encoding of the edge abstraction property
with two new formulas: unaryAbstraction and binaryAbstraction.

Code Template 16 (Unary Abstraction (Graph Embedding)). Let s1, . . . , sl be the
unary predicates in P . Furthermore, for each si, let usi1 , . . . , u

si
ki
be the set of nodes in

the shape S for which ι (si)
(
usij

)
= ½ ∀1 ≤ j ≤ ki holds. Then, the encoding for

unary equivalence between the graph and the shape is given by the following formula:� �
(define-fun unaryAbstraction () Bool (and

(or (= (s1 v1) (as1 (_F v1))) (= (_F v1) us11) · · · (= (_F v1) us1k1))
...

(or (= (s1 vk) (as1 (_F vk))) (= (_F vk) us11) · · · (= (_F vk) us1k1))
...

(or (= (sl v1) (asl (_F v1))) (= (_F v1) usl1) · · · (= (_F v1) uslkl))
...

(or (= (sl vk) (asl (_F vk))) (= (_F vk) usl1) · · · (= (_F vk) uslkl))

)� �
In first-order logic, this formula can be expressed as:

l∧
i=1

k∧
j=1

[
(si (vj) = si (_F (vj))) ∨

ki∨
o=1

(_F (vj) = usio)

]

Binary abstraction follows analogously.

Code Template 17 (Binary Abstraction (Graph Embedding)). Let sl+1, . . . , sn be the
binary predicates in P . Furthermore, for each si, let esi1 , . . . , e

si
ki
be the set of binary ½-

edges in the shape S. Let each edge esij be denoted (uj , si, wj). Then, the encoding for
binary equivalence between the graph and the shape is given by the following formula:� �
(define-fun binaryAbstraction () Bool (and

(or

(= (sl+1 v1 v1) (asl+1 (_F v1) (_F v1)))

(and (= (_F v1) u1) (= (_F v1) w1))
...

(and (= (_F v1) ukl+1
) (= (_F v1) wkl+1

))

87

)

(or

(= (sl+1 v1 v2) (asl+1 (_F v1) (_F v2)))

(and (= (_F v1) u1) (= (_F v2) w1))
...

(and (= (_F v1) ukl+1
) (= (_F v2) wkl+1

))

)
...

(or

(= (sl+1 vk vk) (asl+1 (_F vk) (_F vk)))

(and (= (_F vk) u1) (= (_F vk) w1))
...

(and (= (_F v1) ukl+1
) (= (_F vk) wkl+1

))

)
...

(or

(= (sn v1 v1) (asn (_F v1) (_F v1)))

(and (= (_F v1) u1) (= (_F v1) w1))
...

(and (= (_F v1) ukn) (= (_F v1) wkn))

)

(or

(= (sn v1 v2) (asn (_F v1) (_F v2)))

(and (= (_F v1) u1) (= (_F v2) w1))
...

(and (= (_F v1) ukn) (= (_F v2) wkn))

)
...

(or

(= (sn vk vk) (asn (_F vk) (_F vk)))

88

(and (= (_F vk) u1) (= (_F vk) w1))
...

(and (= (_F v1) ukn) (= (_F vk) wkn))

)

)� �
In first-order logic, this formula can be expressed as:

n∧
i=l+1

k∧
j1=1

k∧
j2=1

[
(si (vj1 , vj2) = si (_F (vj1) , _F (vj2))) ∨

ki∨
o=1

((_F (vj1) = uo) ∧ (_F (vj2) = wo))

]

While this code template might look significantly larger and more complicated, this
is entirely due to the need to go through all combinations of nodes to form possible
edges, rather than merely through the nodes themselves, as in the code template for
unary abstraction. The basic principle is exactly the same.

Note that it would be possible to make this encoding much more compact by not
separating the encoding of the shape and the encoding of the edge abstraction prop-
erty. Both of these could be merged by simply defining a formula that encodes the
presence of all definite edges implied by the shape directly on the graph. While this
would be a more compact and efficient encoding, it would remove the explicit proper-
ties of the shape from the script. However, as we will see in Chap. 6, an explicit encod-
ing of these properties is vital to the application that the formulas described here will be
used for. Thus, we will stick to this more verbose encoding.

In conclusion, we have now inserted into the encoding everything we need to ex-
press the problem of finding out whether a given graphG can be embedded into an
unconstrained shape S:

• We have introduced the shape itself to the encoding, with its own universe sort
(ANode) and constants, as well as (somewhat less restricted) edge formulas.

• We have further introduced an uninterpreted function _F on the Node sort,
mapping into the ANode sort. This function is intended to represent the poten-
tially existing embedding betweenG and S.

• We have introduced formulas imposing restrictions on _F, enforcing its totality,
correct range, surjectivity, as well as the node abstraction property.

89

• Lastly, we have introduced formulas enforcing the edge abstraction property on
_F.

Thus, all that remains is to assert all these formulas together and check for satisfiabil-
ity. Every satisfying model will contain an interpretation for _F that represents a valid
embedding ofG into S.

Code Template 18 (Embedding Assertion (Unconstrained)). Let G be a graph, and
let S be an unconstrained shape. Given an SMT script containing instances of the code
templates 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, the embeddability of G into S can be
asserted using� �

(assert (and
distinctNodes unaryG binaryG
function summarization
unaryS binaryS
unaryAbstraction binaryAbstraction

))� �
The correctness of this encoding is expressed in the following lemma.

Lemma 11 (Correctness of Embedding Encoding). Let G be a graph and S be a shape.
Let Sc be an SMT script containing an instance of the assertion defined in Code Tem-
plate 18 for G and S. Let F be the set of possible embeddings between G and S.

Then there is a one-to-one relationship between models of Sc and embeddings in F ,
i.e. each model of Sc is associated with a valid embedding of G into S, and vice-versa.
Specifically, this means that Sc is UNSAT if and only if F = ∅.

Proof. See Appendix A, page 244.

u1

u2

list

cell

headtail

next

Figure 4.3: The ex-
ample shape used in
Lisধng B.2

As an example, consider the shape shown in Fig. 4.3. It is
clear that the graph from the previous section (see Fig. 4.2)
is embedded into this shape. Listing B.2 shows the result
of applying the embedding encoding described in this sec-
tion to that graph and shape pair. When fed into an SMT
solver, the model produced creates the following embedding:
f := {(v1, u1) , (v2, u2) , (v3, u2) , (v4, u2)}, the only valid
embedding betweenG and S.

Note that, while a model for an SMT problem as described
in Code Template 18 will contain the logical structure forG,
and a function _F representing a valid embedding, it will in
general not be able to sensibly provide an interpretation for S.

90

This is merely due to the fact that the solver is not able to work
with three-valued logics and must, for each ½-edge in the shape,
decide whether to include the edge or not.

Thus far we have only dealt with unconstrained shapes in this encoding, and have
obtained a way to check for embeddings that is far more laborious and involved than
just using a graph algorithm to search for valid embeddings. Now we will extend our
encoding to constrained shapes, which is where the true advantage of using logical
encodings will become clear. As a reminder, a graphG is embedded into a constrained
shape (S,Λ) (see Def. 61) if and only if:

• G is classically embedded into S (see Def. 43) via an embedding f and

• G satisfies every possible interpretation ofΛ as defined by f .

In essence, the constraints further restrict our options for possible embeddings.
Therefore, we can include constraints in our encoding simply by using the encoding
we have created thus far, and add a formula that represents adherence to the constraints
implied by _F andΛ.

The basic idea of how we will achieve this is to derive, from each constraint, a for-
mula that is attached to particular nodes in the shape. Then, we will write out a for-
mula that states that, if a given graph node tuple is mapped to the shape node tuple the
constraint is attached to, then that graph node tuple has to satisfy the constraint. Of
course, at this point we have to restrict the constraints we can support to those repre-
sented by quantifier-free formulas, since we intend to encode the constraint formula
as-is into an SMT script using the QF_UF logic. In general, however, this restriction is
not necessary, as we will see in Sec. 4.7, where we will construct a constraint encoding
that allows quantifiers in order to check constrained shapes for feasibility.

As specified in Def. 55, every constraint consists of a formula and an assignment of
the free variables of that formula into the shape the constraint is attached to. Multiple
constraints may use the same formula, but different assignments. In order to increase
clarity and remove redundancies, we will begin by encoding each constraint formula as
its own function in our script.

Code Template 19 (Constraint Formulas (Graph Embedding)). Let α be a (constraint)
formula with free variables F (α) = {x1, . . . , xk}. Then the encoding of α is given by
the following code template:� �

(define-fun constraintα ((x1 Node) · · · (xk Node)) |α|)� �
where |α| in this code represents a direct SMT encoding of the formula itself, using the
predicate set for the graph, rather than that for the shape.

91

For each unique constraint formula inΛ, our encoding will contain a function as
defined above. These functions will then be used in the formula encoding the adher-
ence of the graph to each constraint implied by _F.

Code Template 20 (Constraint (Graph Embedding)). Let (α,m) be a constraint, let
k := |F (α)|, and let F (α) = {x1, . . . , xk}. Let further V̇ k be the set of all node
tuples (v1, . . . , vk) such that ∀i, j ∈ {1, . . . , k} : i ̸= j → vi ̸= vj . Let n :=

∣∣∣V̇ k
∣∣∣

and let
(
vi1, . . . , v

i
k

)
denote the i-th tuple in V̇ k . Then the encoding of the adherence of

a graph G to this particular constraint is given by the following code template, providing
the prior existence of an instance of Code Template 19 for α:� �

(define-fun constraintα,m () Bool (and
(=>

(and (= (_F v11) m (x1)) · · · (= (_F v1k) m (xk)))
(constraintα v11 · · · v1k)

)
...
(=>

(and (= (_F vn1) m (x1)) · · · (= (_F vnk) m (xk)))
(constraintα vn1 · · · vnk)

)
))� �

In effect, this code template represents the first-order function

n∧
i=1

 k∧
j=1

((
_F
(
vij
)
= m (xj)

)
→ α[x1 7→vi1,...,xk 7→vik]

)
Having encoded each individual constraint in this way, encoding adherence to all of

them is then a simple matter of creating the appropriate conjunction.

Code Template 21 (Constraints (Graph Embedding)). Let (S,Λ) be a constrained
shape. Let α1, . . . , αλ be the unique constraint formulas in Λ. For each αi, letmi

1, . . . ,m
i
µi

be the assignments for that formula that occur in Λ. Then, the encoding for the adher-
ence of the graph G to the constraint set implied by _F is given by the following code
template:� �

(define-fun constraints () Bool (and

constraintα1,m1
1
· · · constraintα1,m

µ1
λ

92

...

constraintαλ,m
λ
1

· · · constraintαλ,m
µλ
λ

))� �
This leads to a final extension of the overall assertion at the end of the encoding.

Code Template 22 (Embedding Assertion (Constrained)). Let G be a graph, and let
(S,Λ) be a constrained shape. Given an SMT script containing instances of the code
templates 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, and 17, as well as an instance of Code Tem-
plate 21 and all its required precursor instances (instances of Code Template 19 and
CoT. 20), the embeddability of G into (S,Λ) can be asserted using� �

(assert (and
distinctNodes unaryG binaryG
function summarization
unaryS binaryS
unaryAbstraction binaryAbstraction
constraints

))� �
As an example, let’s assume that we added the constraint

(α,m) := (¬next (x, x) , [x 7→ u2])

to the shape S shown in Fig. 4.3. For this constraint, we have k = 1 (cf. CoT. 19).
Thus, its constraint formula is given by� �
(define-fun constraintα ((x1 Node)) (not (next x1 x1)))� �

In order to derive the appropriate encoding for the adherence of the graphG (see
Fig. 4.2) to this constraint, we first need to determine the set V̇ 1, i.e. the set of 1-tuples
such that in every tuple each node occurs at most once. Fortunately, this is very easy:
V̇ 1 = {(v1) , (v2) , (v3) , (v4)}. The encoding for the adherence ofG to the con-
straint (α,m) is therefore given by� �
(define-fun constraintα,m () Bool (and
(=> (and (= (_F v1) u2) true) (constraintα v1))
(=> (and (= (_F v2) u2) true) (constraintα v2))
(=> (and (= (_F v3) u2) true) (constraintα v3))
(=> (and (= (_F v4) u2) true) (constraintα v4))

))� �
93

The whole constraint adherence formula, then, since this is the only constraint in our
example, is simply� �
(define-fun constraints () Bool (and
constraintα,m true

))� �
Adding these formulas to Listing B.2 yields Listing B.3, which still returns SAT,

since the graphG does in fact satisfy the constraint. Introducing a slight change to
G, however, like adding a self-edge labeled next to v2 (included in the code via the
commented-out line 55), changes the result to UNSAT, sinceG |= concr_F ({(α,m)})
no longer holds. In analogy to Lemma 11, this extension of the embedding encoding is
also correct.

Lemma 12 (Correctness of Constrained Embedding Encoding). Let G be a graph and
(S,Λ) be a constrained shape. Let Sc be an SMT script containing an instance of the
assertion defined in Code Template 22 for G and (S,Λ). Let F be the set of possible
embeddings between G and (S,Λ) (see Def. 61).

Then there is a one-to-one relationship between models of Sc and embeddings in F ,
i.e. each model of Sc is associated with a valid embedding of G into (S,Λ), and vice-
versa. Specifically, this means that Sc is UNSAT if and only if F = ∅.

Proof. This follows directly from Lemma 11 and the fact that CoT. 20, by Definition,
requires that for any given _F , the graph satisfy all possible interpretations of the
match of the constraint through that _F . Therefore, the models (more specifically,
the interpretation of _F in those models) represent exactly those embeddings that ad-
ditionally satisfy the constraint embedding condition.

4.5 Encoding of a Trace

In Section 4.1, we briefly touched on the importance of obtaining an encoding for the
existence of a concrete trace corresponding to an abstract trace. Having created encod-
ings for graphs and embeddings in the previous section, we now turn to creating such
an encoding, starting with its overall structure, and deferring the details of its compo-
nents to later sections. Before we can start to build this encoding, however, we first
need to formally establish the context in which it would be applied.

Ultimately, the goal for all techniques presented in this thesis is to verify a safety
property represented by some error patternE for a given, possibly infinite-state graph
transformation system. Let G = (I,R) be such a system. If the GTS is infinite-state,
or has an otherwise prohibitively large state space, we would abstract it into a shape
transformation system. This can be done by merely creating the canonical abstraction

94

Î of I (cf. Def. 50). Thus, S =
(
Î ,R

)
would be the corresponding STS. Now sup-

pose that, in the course of creating the shape transition system for S , a shape Sk (and
a path of length k to that shape) were discovered which potentially matchesE. Such a
path is called an abstract error trace.

Definition 65 (Abstract Error Trace). Let S =
(
Î ,R

)
be an STS, and let trans (S) =(

N,E1, E2
)
be its shape transition system. Let further E = (L, idL, L) be an error

pattern. For any k ∈ N, an abstract error trace of S through trans (S) is a path

(S0, (P0,m0, S
m
0) , S1) · · ·

(
Sk−1,

(
Pk−1,mk−1, S

m
k−1

)
, Sk
)
= π ∈ E2∗

of length k such that

S0 = Î andJφEKSk
me

≥ ½

for some matchme.

As stated in Chapter 3, the existence of such an abstract error trace does not mean
that a corresponding concrete error trace also exists. The question of the existence of
such a trace is what we are aiming to answer with our encoding. But, before we can do
so, we must define exactly what “corresponding” means in this context.

Definition 66 (Corresponding Concrete Error Trace). Let G = (I,R) be a GTS,
trans (G) =

(
N,E1, E2

)
be its transition system, and let S =

(
Î ,R

)
be an STS

such that I ⊑f0 Î for some f0. Let E = (L, idL, L) be an error pattern and let
π = e0e1 · · · ek be an abstract error trace for E in trans (S), where

ei = (Si, (Pi,mi, S
m
i) , Si+1) .

Then a corresponding error trace π′ for π is a path

(I, (P0,m0) , G1) · · · (Gk−1, (Pk−1,mk−1) , Gk) = π′ ∈ E2∗

of length k and a matchm′
e of E into Gk, such that

Gi ⊑fi S
m
i and

fi ◦mi = idNLPi
and

JφEKGk
m′

e
= 1 and

fk ◦m′
e = idNLE

95

Thus, a concrete trace, i.e. a path through the transition system of a graph transfor-
mation system, corresponds to an abstract error trace if

• it is of the same length,

• begins at the initial graph,

• ends in a graph that matches the error pattern,

• each of its intermediate graphs is embedded into the materialized shapes of the
respective steps in the abstract error trace,

• and each match used is compatible with the corresponding match used in the
abstract trace via that embedding.

This situation is depicted in Fig. 4.4. Note that, while the embeddings into material-
ized shapes will completely determine the match used for any concrete graph, this does
not mean that each abstract trace corresponds to only one concrete error trace at most.
This is due to the fact that, while the embeddings determine the matches, the embed-
dings themselves are not fully determined.

Lemma 13 (Number of corresponding concrete traces). Let G = (I,R) be a GTS, let
S =

(
Î ,R

)
be an STS covering G, and let trans (S) =

(
N,E1, E2

)
be its shape

transition system. Let further π be an abstract error trace of length k in trans (S). Let
π′i be the set of corresponding concrete error paths to πi, the prefix of the abstract error
path of length i. Let further G (π′i) be the set of terminal graphs of these paths, i.e. the
nodes in trans (G) that these paths terminate at. Then every graph G in G (π′i) creates
at most as many graphs in G

(
π′i+1

)
as it has distinct embeddings into Sm

i .

Proof. Let 0 < i < k, andG ∈ G (π′i). The definition of a corresponding concrete
trace now demands thatG ⊑f Sm

i . It also demands that the matchm′ of the rule
Pi toG is essentially the inverse of the embedding into the part of Sm

i that isNLPi
,

i.e. fi ◦ mi = id. SinceNLPi
must be a fully concrete subgraph of Sm

i , fi must be
injective when restricted to it, meaning thatmi is fully determined by fi. Since Pi and
mi are now fixed, the result of applying Pi toG atmi is also fixed, meaning that every
G ∈ G (π′i) creates at most as many non-isomorphic graphs inG

(
π′i+1

)
as it has

distinct embeddings fi into Sm
i .

Thus, a corresponding error trace can be constructed by starting from I and contin-
uing with the matches as defined by the subsequent embeddings into the materialized
shapes, until either no next embedding can be constructed, or the end of the abstract
trace is reached. The idea that there can be several possible embeddings of the same

96

Figure 4.4: Schemaধc view of a concrete trace corresponding to an abstract trace

graph into a materialized shape such that different graphs result might seem counter-
intuitive. After all, the materialization is there to remove all ambiguity with regard to
the match. The uncertainty regarding the embeddings stems from the materialization
of concrete nodes out of summary nodes. The concrete graph that was embedded into
the un-materialized shape might have embedded more than one node into such a sum-
mary node. The materialization does not prescribe which of these will be the concrete,
materialized node, and which will remain embedded into the summary node (if it per-
sists). Figure 4.5 illustrates such a situation‡. In rare cases where such situations do not
occur, there can only be at most one corresponding concrete trace, since there is only
one initial graph, and all embeddings and thus matches are prescribed by the abstract
trace.

Remark 1. In Def. 66 and the proof of Lemma 13, as well as in the remainder of this
thesis, matches as defined in Def. 11 are often concatenated with mappings that operate
on node sets alone. This is a slight abuse of notation and means that the mapping that is
concatenated is the function that induces the match, as per Def. 8.

Having established just what it is we wish to encode, we can now move on to think
about the actual encoding.

‡edge labels have been omitted, since they are not relevant to the problem.

97

Figure 4.5: Two different embeddings of the same graph induce different results

4.5.1 Overview and Challenges

The basic idea for creating an encoding of a sequence of actions within a system is to
encode the initial state, declare all subsequent states, and have the interpretation of
these subsequent states be restricted by a conjunction of encoded transition relations
that mirror the actions performed. In our case, the initial state would be the initial
graph, whereas the actions performed would be the graph rules applied in the trace.
Thus, our trace encoding will consist of an encoding of the initial graph, and a se-
quence of rule application encodings, all combined in one big conjunction.

Building on Def. 66, this encoding must not just encode a sequence of graph rule
applications at the concrete level, but should also make sure that the rules are applied in
such a way as to be consistent with the way they were applied at the abstract level. This
“consistency” is provided by the embedding functions fi between the graphsGi and
the shapes Sm

i , as shown in Fig. 4.4. Thus, for each step and each graphGi we need to
encode two things: thatGi is embedded into Sm

i , and thatGi is transformed by the
i-th rule application intoGi+1 using a compatible match as determined by fi.

Embedding encodings have already been dealt with in Sec. 4.4. We will thus reuse
that encoding and focus on the encoding of the rule applications themselves. The en-
coding of such a rule application, i.e. a transformation of a graph into another graph, as
opposed to merely encoding static graphs, brings with it a new set of challenges.

One of these challenges is the fact that, in one encoding, we need to represent several
entirely different graphs or graph sets – before and after each rule application. The
question then is how to separate them. This can be achieved in one of two ways.

98

One possibility would be to separate the universes, i.e. to create separate sets of node
constants for the different graphs. This seems the most intuitive option, since in the
graph formalism the graph (sets) are also separated chiefly by their universes / node
sets.

The other way would be to separate not the universes, but the predicate sets. Thus,
we would have one set of edge predicates for the graph before a rule application, and
one for after. Both of these predicate sets would operate on the same universe, thus
realizing two different graphs.

In terms of performance, tests performed by Tobias Isenberg[96] using similar en-
codings suggest that neither option is superior. For this thesis, we choose the latter op-
tion. We will index our edge predicates in order to distinguish graphs before and after
(i.e., in between) rule applications, in analogy to the static single assignment approach
in predicate abstraction[81].

Another challenge is the fact that all our encodings so far have relied on a fixed, sta-
ble universe of nodes. This makes the encoding of rule applications that add or remove
nodes difficult. For individual (and indeed any a priori fixed number of) rule applica-
tions, the solution to this is simple, and employed in our previous work[97] based on
Tobias Isenberg’s master thesis[96] as well.

Rather than attempting to encode the actual creation or destruction of nodes, we
pre-compute the maximum number of nodes that will be needed by any graph that
we encode and then create that many universe constants. The distinction between
“currently existing” and “currently deleted” or “reserve” nodes can then be made by
additional predicates.

These predicates will be called past, present and future, representing nodes
that were deleted, nodes that are currently “active”, and reserve nodes that may (or may
not) later on become active. Any graph rule that adds or removes nodes can easily be
converted into one that manipulates these three predicates instead.

Both of these challenges – how to separate the individual graphs and how to deal
with node dynamics – must be dealt with before an encoding of a trace can take place.

4.5.2 Indexing and GTS / STS Modification

We begin by describing how we deal with node dynamics, as this solution must be ap-
plied before the trace is even constructed. As stated above, the basic idea of dealing
with node dynamics is to “emulate” the actual creation and deletion of nodes by ma-
nipulating special predicates.

This works very well on the abstract level of shapes and shape transformations,
because the abstraction allows us to create (potentially infinite) “reservoirs” for new
nodes and “repositories” for deleted nodes. This is done with summary nodes.

99

Let S = (I,R) be a regular shape transformation system In order to modify it
to emulate node creation rather than actually performing it, the initial shape I is first
modified to contain two new summary nodes P and F , as well as three new predicates
past, present, and future. These new predicates are interpreted such that future is 1 on
F and 0 everywhere else, past is 1 on P and 0 everywhere else, and finally present is 0
on P and F , but 1 everywhere else.

The intention of this modification is clear: F serves as a reservoir for nodes to be
created in the future, P serves as a repository for nodes that were deleted, and present
marks all nodes that “actually” belong to the shape. New nodes are materialized out
of F and marked present, whereas deleted nodes are marked past after being stripped
of all other edges. This has the added benefit that the canonical abstraction described
in Def. 50 will always restore a transformed shape to the form where there is exactly
one node labeled past, and exactly one labeled future. Formally, the modification of the
starting shape I is defined by the following definitions. First, an auxiliary definition
meant to make the presentation of the actual definition more concise.

Definition 67 (Characteristic Function). Let A be a set. For any given subset B ⊆ A,
the characteristic function χA

B of that subset, is defined by

χA
B : A→ K

x 7→

{
1 if x ∈ B

0 else

Thus, the characteristic function identifies its subset.

With that, we can easily define the modification of a shape as described above.

Definition 68 (Modified Shape). Let S = (U,P, ι) be the a shape over the predicate
set P . The modified shape S′ = (U ′,P ′, ι′) is defined by

P ′ := P ∪ {past, present, future}
U ′ := U ∪ {p, f} (add two nodes)
ι′ := ι′′ ∪ ιpa ∪ ιpr ∪ ιfu

ι′′ := (s, k) 7→

{
ι (p) (u1, . . . , uk) if (u1, . . . , uk) ∈ Uk

0 otherwise

ιpa := past 7→ χU ′

{p}, ιpr := present 7→ χU ′
U , ιfu := future 7→ χU ′

{f}

applying consistent renaming where necessary.

Figure 4.6 shows an example of the modification process described in this definition.
Having modified the shape, we now turn to the graph rules. They must be modified as

100

u1

u2

list

cell

headtail

next

u1

u2

list

cell

headtail

next

u3
past

u4
future

Figure 4.6: Modificaধon of a shape represenধng a non-empty linear list

well in order to turn node creation into node materialization, and node deletion into
node labeling.

Let P = (L, p,R) be a graph rule. In order to modify it to emulate rather than
perform node creation and deletion, we first take the node setNR \ NL, i.e., the set
of nodes created by the rule, and add it to the left hand side. Then we add future edges
to these newly added nodes, as well as present edges to all other nodes in the left and
right hand side, and add the identity map on all these added elements to p. This has the
effect that, instead of actually creating new nodes, the rule now tries to match nodes
marked future for the nodes it wants to create, and nodes marked present for all other
nodes.

After having thusly dealt with node creation, we turn to node deletion. Similarly to
before, we add the nodes inNL \NR toR, and label them past inR, again adding the
identity map on the newly created elements to the rule isomorphism p. This has the
effect that, instead of actually deleting the nodes, the rule now labels them as past and
removes all edges from them that it used to match them.

Note that, while this removes some of the edges from the “deleted” nodes, it does
not necessarily remove all of them, since deleted nodes may be incident to edges that
were not part of the match – this is the “dangling edge” problem familiar from Chap. 2.
This necessitates a small change in the SPO rule application semantics, in order to ac-
commodate deleting nodes using a past label. Formally, this modification of rules is
defined as follows.

Definition 69 (Modified Rule). Let P = (L, p,R) be a graph rule over a predicate set
P . The modified rule P ′ = (L′, p′, R′) is defined using the modified graphs L′ and
R′, which are defined as follows

L′ :=
(
N ′

L, E
′1
L, E

2
L

)
101

add

n3

n1

list

tail

cell
n2

n1
list

tail

cell
n2

cell
next

add

n3

n3

n1

list

tail

cell
n2

n1
list

tail

cell
n2

cell
next

future

present

present present present

present

Figure 4.7: Modificaধon of the add-rule of the linear list GTS

N ′
L := NL ∪ (NR \NL)

E′1
L := E1

L ∪ {(present, n) | n ∈ NL} ∪
{
(future, n) | n ∈

(
N ′

L \NL

)}
R′ :=

(
N ′

R, E
′1
R, E

2
R

)
N ′

R := NR ∪ (NL \NR)

E′1
R := E1

R ∪ {(present, n) | n ∈ NR} ∪
{
(past, n) | n ∈

(
N ′

R \NR

)}
The new isomorphism between L′ and R′ is defined by

p′ := pr ∪ pp
pr := p ∪ idNL\NR

∪ idNR\NL

pp :=
{(

(present, nl) , (present, nr) | (present, nl) ∈ E1
L

∧ (present, nr) ∈ E1
R ∧ (nl, nr) ∈ pr

)}
Note that, when P neither adds nor deletes nodes, P ′ only differs from P by requiring
(and maintaining) present edges on all its nodes.

Figure 4.7 shows an example of the modification process described in this definition.
The add-rule is changed from creating a new node to add to the list to matching a
future-node and turning it into a present-node. In the course of this thesis, we will
often use these modified rules instead of regular rules. As stated above, these require a
slightly modified version of the SPO rule application definition.

Definition 70 (Modified Rule Application (SPO)). Let G be a graph, P = (L, p,R)
be a rule modified as per Def. 69,m : L → G be a valid match, and G′ be the result of
applying P toG atm using the single pushout (SPO) method. We define the match on
the nodes of the right hand side as f := p ◦ (m | NLc) ∪ idNRc

. The graph G′ is then
defined as follows:

NG′ := NG

E1
G′ :=

[
E1

G \m
(
E1

L \ E1
Lc

)
∪ f̂

(
E1

R \ E1
Rc

)]
\
{
(u, n) |

(
past,m−1 (n)

)
∈ E1

R

}
102

E2
G′ :=

[
E2

G \m
(
E2

L \ E2
Lc

)
∪ f̂

(
E2

R \ E2
Rc

)]
\
{
(n1, b, n2) |

(
past,m−1 (n)

)
∈ E2

R

}

In the original Definition 13, the removal of dangling edges was taken care of by
restricting the edge set to the new node set. With the node set being constant for modi-
fied rules, this had to be changed. In the above definition, the job of removing dangling
edges is performed by removing all edges on nodes that were matched by rule nodes
labeled past in the right hand side. Since these are exactly the nodes that the original,
unmodified rule would have deleted, it is easy to see that the modified rule application
has the same effect as the original one.

Lemma 14 (Equivalence of Modified Rules). Let S be a shape, let P = (L, p,R) be
a graph rule, and let Pmod be the result of modifying P according to Def. 69. For any
shape S, letmod (S) be the result of modifying S according to Def. 68. Let

mod (S) −P
mod,m,mod(S)m−−−−−−−−−−−→C S

′

be the normalized transition resulting from applying Pmod tomod (S) at some po-
tential matchm, provided such a match exists. Let further S −P,m

′,Sm′

−−−−−→C S′′ be the
normalized transition resulting from applying P to S atm′ := m↓NLP

. Then we have

S′ = mod
(
S′′) ,

i.e. GTS modification and shape transition commute.

Proof Sketch. Modified rule application differs from regular rule application only in
the treatment of added and deleted nodes. Every past-node created by the deletion of
a node by a modified rule will by Def. 50 be merged with the node P created by the
shape modification (see Def. 68). Thus, they are absent from the present-part of the
shape after rule application. Similarly, every future-node created by materialization out
of the node F created by the shape modification will have its future-edge removed by
the rule application and take the same place that the created node would have taken in
the original rule application. Therefore, S′ can only differ from S′′ in the existence of
the P and F nodes, and the present edges on the shape body, exactly what themod-
operation would add.

Note that this even works with Constraint-safe Abstraction (see Def. 64), since con-
straints can never touch past or future nodes (by Def. 70), and are thus always mergable
by the basic canonical abstraction.

103

Thus, applying a modified rule to a modified shape yields the same shape as modi-
fying the shape resulting from applying the unmodified rule to the unmodified shape.
Now that we are able to modify shapes and rules to emulate rather than perform node
creation and deletion, we can modify an entire shape transformation system to do the
same.

Definition 71 (Modified Shape Transformation System). Let S = (I,R) be a shape
transformation system. Let I ′ be the shape I , modified according to Def. 68, and let
R′ be the result of modifying every rule inR according to Def. 69. Then the modified
shape transformation system S ′ is given by S ′ = (I ′,R′).

This modified shape transformation system is equivalent to the original shape trans-
formation system, provided the modified SPO semantics are used.

Lemma 15 (Modified STS Equivalence). Let S = (I,R) be an STS, and let S ′ =
(I ′,R′) be its modification according to Def. 71. Let T := trans (S) be the transition
system for S , and let T ′ := trans (S ′) be the transition system for S ′, obtained using
the modified SPO semantics specified in Def. 70. Then there exists an isomorphism
between T and T ′.

Proof Sketch. This follows inductively from Lemma 14. Since the modification com-
mutes with every individual transition that is created, we can create the isomorphism
just by binding I to I ′ and simultaneously constructing the state spaces of both transi-
tion systems, constructing and updating the isomorphism as we go.

From now on, whenever we consider the encoding of a trace, we will assume that
the trace is part of the transition system of amodified transformation system, as defined
above. To illustrate the effect of this whole process of modifying the shape transfor-
mation system, consider the example shown in Fig. 4.8. Here, the modified start rule
is applied to the modified start shape, and upon the result, the modified end rule is ap-
plied. After every application, the resulting shape is abstracted to its canonical form
(see Def. 50). This example illustrates nicely how new nodes are materialized out of the
future-labeled node, and deleted nodes are absorbed (by the canonical abstraction) into
the past-labeled node.

Having solved the issue of node dynamics, what remains is the issue of graph sep-
aration. As stated in Sec. 4.5.1, the graphs in the trace are separated by indexing. This
indexing happens in a very straightforward manner. The trace encoding begins with an
encoding of the initial graph. Each rule application will define a new graph or graph set
constructed as the result of applying the rule to the respective previous graph (set).

We give the initial graph the index 0, and increment that index by 1with each rule
application. Thus, in the context of a single application of a rule P = (L, p,R) to a
graphG = (U,P, ι), yielding a result graphG′ = (U ′,P ′, ι′), we add some integer i

104

start

n2

n1

list

head tail

n1

list

head tail

cell

end

n1

list

head tail

n2

n1

list

head tail

cell

 I

n1n2 n3

list

head tail

past future
present

 I

n1n2

list

head tail

past

n3

future

n3

future

present

 I

n1n2

list

head tail

past

n3

future

n3

present

present

 I

n1n2

list

head tail

past

n3

future

n3

past

present

materialize
start

apply start,

canonical
abstraction

canonical
abstraction

materialize,
apply end

Figure 4.8: Example applicaধon of modified start and end rules

as an index to all labels inP , and i+1 as an index to all predicates inP ′. This approach
creates a situation where each satisfying interpretation for the predicate set with index i
corresponds to one possible graph obtained from the initial graph by applying the first
i rules of the trace. In the following, we will often need to refer to specific indices of
predicate sets in order to specify exactly which graph we are talking about. This is done
with the help of an indexed predicate set.

Definition 72 (Indexed Predicate Set). Let P be a set of predicates, and let k ∈ N be a
positive integer. Then we define the k-indexed predicate sets of P by

Pi := {(si, k) | (s, k) ∈ P} 0 ≤ i ≤ k

Thus, given a graph transformation system G = (I,R), and an abstract trace π of
length k, we can think of each graph in a corresponding concrete trace π′ as using one
of the k-indexed predicate sets ofP .

4.5.3 High-Level Encoding of a Trace

Now that all the trace-level parts are in place, we can construct the framework for the
encoding of a concrete trace corresponding to an abstract trace. Since we have not
defined all of the components of this encoding yet, we will use placeholder names,
thereby giving a good overview over the high-level structure of a trace encoding, with-
out going into too much detail.

105

As stated before, every trace encoding must begin with an encoding of the initial
graph. This encoding can be done using the basic graph encoding detailed in Sec. 4.3.
Note, however, that since we will need this graph to be embedded into themodified
initial shape of the shape transformation system, we must modify it as well, on top
of using the predicate setP0 instead ofP . This is done analogously to Def. 68, with
the exception that the added nodes can of course not be summary nodes and must
thus be regular nodes. Apart from this, the graph encoding can proceed just as normal,
creating an instance of Code Templates 3, 5, and 6. These code templates will require a
number of predicate declarations in the prelude of the encoding. We will denote these
declarations with the shorthand declare_graph in the encoding of the trace.

Next, we must take care that enough additional nodes are present to account for po-
tentially created nodes in the trace. Since at the concrete level, we can not use summary
nodes, we must determine how many nodes any graph in the trace is going to need, and
then create additional “overflow” nodes such that the largest graph in the trace can be
expressed on the nodes of the original graph plus the overflow nodes. We also need to
express that these overflow nodes are not part of the actual start graph. This is achieved
by marking them future nodes and encoding the absence of any other edges touching
these nodes. The following code template realizes this.

Code Template 23 (Overflow Nodes). Let G = (I,R) be a GTS, and let π =
(S0, (S

m
0 , P0,m) , S1) · · ·

(
Sk−1,

(
Sm
k−1, Pk−1,m

)
, Sk
)
be an abstract trace of

length k in the corresponding modified STS. For each rule P ∈ R, let |P | ∈ N0 be
the number of nodes in its left hand side§. Then λ :=

∑k−1
i=0 |Pi| is the number of

nodes required by the matches in the trace π and we encode the formula∧
x∈O

∧
y∈O∪NI

x ̸=y

¬ (x = y) ∧
∧
x∈O

future (x) ∧
∧

(s,1)∈P ′

s ̸=future

∧
x∈O

¬s (x)

∧
∧
x∈O

∧
y∈O∪NI

∧
(s,2)∈P ′

¬s (x, y)

as the function overflow in SMTLib, using an appropriate function definition. Here,
O is the set of overflow nodes and NI is the node set of the modified initial graph.

Note that technically, only the actually created nodes would have to be declared
as overflow nodes for the trace. However, here, we use the entire left hand side of the
rules, in order to make sure inapplicability of rules is always a matter of missing edges,
rather than missing nodes. The specific reason for this will become clear in Chapter 5.

Prior to defining this function, the node constants used to represent the overflow
nodes have to be declared. Once this is done, the function overflow states that the

§remember that in a modified rule, the created nodes are in the left hand side as well

106

overflow nodes are pairwise distinct from each other and from all nodes in the initial
graph, and that except for the future predicate, no predicate inP0 evaluates to 1 on
them or between them and the nodes of the initial graph.

Lemma 16 (Correctness of Overflow Encoding). Let S = (I := (U,P, ι) ,R) be a
modified STS over a predicate set P , π be an abstract error path for S, k be the num-
ber of nodes created in π, and let Sc be an SMT script containing an instance of Code
Template 3, 5, 6, and 23, as well as their prerequisite declarations. Then there is only one
satisfying model for Sc, containing the logical structure of the following shape.

S :=
(
U ′,P, ι′

)
U ′ := U

.
∪ {o1, . . . , ok}

ι′ := ι ∪ ι1 ∪ ι2

ι1 :=
∪

(s,k)∈P\{future}

{
(s, k) 7→

(
(x1, . . . , xk) 7→

{
0 iff xi ̸∈ U

ι (s, k) (x1, . . . , xk) else

)}

ι2 :=

{
(future, 1) 7→

(
x 7→

{
1 iff x ̸∈ U

ι (future) (x) else

)}

Proof. Obvious from Lemma 9 and the construction of overflow.

Having taken care of the initial graph and the overflow nodes, we can now turn to
the encoding of the actual transitions that make up the corresponding concrete trace.
Each such transition determines the form of the graph that follows it (Gi+1) based on
the form of the graph that precedes it (Gi). This has two parts, as depicted in Fig. 4.4:
an embedding ofGi into Sm

i , as well as an encoded relationship between the edges of
Gi andGi+1.

Encodings of Graph embeddings have already been defined in Sec. 4.4. We can thus
just use Code Template 18 or 22 as appropriate, as well as their prerequisite code tem-
plates, together with the required declarations (declare_embedding) in the prelude
of the script to realize this part of the transition. In order to distinguish the individual
embeddings from each other, we index the prerequisite function definitions for these
assertions, as well as the declarations with the index of the shape that they encode the
embedding into.

Note that, since the initial graph has already been defined, and the edges of each
subsequent graph in the trace graphs is determined by the encoding of the rule applica-
tions, the portions of the embedding encoding that encode the graph to be embedded,
i.e. distinctNodes¶, unaryG and binaryG, can be omitted. Each such embedding
encoding thus uses the Code Templates 11, 12, 14, 15, 16, 17, and, if necessary, 21.

¶The part about the nodes of the graph, not the part about the nodes of the shape

107

What remains for each step is the encoding of the rule application itself. A thorough
definition of this encoding is given in Sec. 4.6. For now, we will assume that an applica-
tion encoding consists of two functions: rule_selection and rule_application,
each of which can also be indexed with the appropriate step number. Declarations nec-
essary for these templates are referred to by their placeholder name declare_rule in
the trace encoding.

Now that the initial graph, the overflow nodes, the embeddings and the rule appli-
cations are all accounted for, the trace encoding is complete. The initial graph and the
overflow encoding define the starting point, the embeddings and rule applications gen-
erate the resulting restrictions on the graphs along the trace, and the final embedding
(into the final shape in which the error was materialized) makes sure the last graph in
the trace matches the error. This leads us to the following code template for the trace
encoding.

Code Template 24 (Corresponding Concrete Trace). Let G = (I,R) be a GTS,
and let π = (S0, (S

m0
0 , P0,m0) , S1) · · ·

(
Sk−1,

(
S
mk−1

k−1 , Pk−1,mk−1

)
, Sk
)
be

an abstract trace of length k in the corresponding modified STS. Let further Se
k be a

materialization of the error pattern E out of Sk . Then the corresponding concrete trace
can be encoded using using appropriate instances of Code Templates 3, 5, 6, 23, 11, 12, 14,
15, 16, 17, 21, 26, and 27. For the full listing, see Code Listing B.4 in Appendix B, page
260.

Any models of an SMT script containing an instance of the above template repre-
sents a sequence of graphs that constitute a valid path through the concrete transition
system of G, such that each graph in the path embeds into its corresponding shape in
the abstract trace, and each rule application is matched in such a way that it is compati-
ble with the corresponding rule application in the abstract trace, as defined in Def. 66.

Lemma 17 (Correctness of Trace Encoding). Let G = (I,R) be a GTS, and let π =
(S0, (S

m0
0 , P0,m0) , S1) · · ·

(
Sk−1,

(
S
mk−1

k−1 , Pk−1,mk−1

)
, Sk
)
be an abstract trace

of length k in the corresponding modified STS. Let further Se
k be a materialization of

the error pattern E out of Sk . Let Sc be an SMT script containing an instance of Code
Template 24 and its prerequisite templates. Then any model of Sc contains the logical
structures of graphs G0, . . . , Gk as well as the logical structures of instances of the rules
P0, . . . , Pk−1, and interpretations of functions f0, . . . , fk, such that

π′ :=
(
G0,

(
P0,m

′
0

)
, G1

)
· · ·
(
Gk−1,

(
Pk−1,m

′
k−1

)
, Gk

)
is a corresponding concrete trace for π, and Gk ⊑ Se

k .

Proof. First, Lemma 16 implies thatG0 is part of any model for the script, along with
a set of ko overflow nodes where ko is the sum of the left hand sides of the rules in the

108

materialize transform blur

transform

Figure 4.9: A schemaধc of the applicaধon of a rule to a shape and its effect on embedded graphs

trace. This ensures that there are always enough nodes of the Node sort to embed into
the materialized shapes of the abstract trace. Furthermore, Lemma 11 implies that an
embedding function _F_0 embeddingG0 into Sm

0 is also part of the model.
We will now assume that the rule application encoding implies that a graphG1

such thatG0 −
P0,_F_0−1◦idLP0−−−−−−−−−−−→ G1 is part of the model, i.e. that the rule application

encoding constructsG1 fromG0 using the match implied by the embedding. Now
thatG1 is part of the model, we can proceed as withG0 and obtainG2 and so on. We
also obtainGk ⊑_F_k S

e
k (form the correctness of the k-th embedding by Lemma 11).

Thus, given the correctness of the rule application encoding, the trace encoding is
correct.

Having established the overall structure of a trace encoding, we can now move on to
the final missing piece, the rule application encoding.

4.6 Encoding of a Rule Application

What remains of the trace encoding described in Sec. 4.5 is the encoding of the actual
rule application. We will base this encoding on previous work[96, 97], with a few mod-
ifications to take advantage of the different context.

Each individual transformationGi −P,m−−→ Gi+1 contains 4 essential mathematical
objects – the graphGi, the rule P , the matchm, and the result graphGi+1. WhenGi,

109

P , andm are fixed, the resulting graphGi+1 is uniquely determined. As shown in the
proof of Lemma 13, the matchm is actually fully defined by the embedding into Sm

i .
Thus, our encoding will be based onGi, Sm

i and P , leaving the solver to create the
matchingm from fi and a result graphGi+1 to complete the model, creating a valid
graph transformation in the process.

Figure 4.9 shows a schematic of the context from which the encoding is constructed.
The highlighted parts are the ones that will actually be encoded, with the “transform”
part being described in this section.

Since each transformation encoding is part of a sequence, the graphGi need never
be explicitly encoded, since it can be assumed to have been provided by the encoding
of the previous step, or the encoding of the initial graph if i = 0. Furthermore, Sm

i

is, in the context of a trace encoding, already encoded by the embedding encoding.
Therefore, the only mathematical object that actually must be added to the encoding is
P .

Now, before the actual encoding can be constructed, we need to decide how the var-
ious parts will be represented. We need to somehow represent a match, i.e. a function
mapping nodes onto other nodes, and we need to refer to that match when determin-
ing the effect of the rule P at that match onGi+1. If this function were to be encoded
explicitly, this referral would be rather cumbersome, requiring scores of “if-then” state-
ments making the value of certain edges inGi+1 dependent on the (at the time of the
encoding unknown) values of the match. Such effects can be seen in the embedding
encoding (see Sec. 4.4), where the embedding itself is represented as such a function.

In this particular context, however, we can take advantage of the fact that, since
matches are injective, we can emulate them by representing them as an equivalence re-
lation (=) between the nodes of the rule and the nodes of the graph, rather than an
explicit function. This has the benefit that we can refer directly to the rule nodes when
specifying the effect onGi+1, because by the definition of= the formula must then
also hold for the graph node to which the rule node was matched. Using equality in-
stead of an explicit matching function brings with it the problem that the same rule
cannot be used twice, but this is easily solved by simply creating a new (indexed) in-
stance of the rule for every step in the trace. Having established this basic idea, we can
move on to the actual encoding.

As stated above, the rule application encoding consists of two parts, called
rule_selection and rule_application. In rule_selection, the match be-
tween P andGi is established. In rule_application, the edges ofGi+1 are encoded
as they result from the edges ofGi and the encoded match. Beyond the declarations for
the edges ofGi andGi+1, as well as the embedding ofGi into Sm

i , the only declara-
tions that are strictly necessary for this part of the encoding are the ones that establish
the existence of the rule nodes. We will begin with these declarations.

110

Code Template 25 (Declarations for Rule Application Encodings). Let (Si, (Sm
i , Pi,m) ,

Si+1) be a single transition in an abstract error trace π, where Pi = (L, p,R) with
NL = NR is a modified graph rule. The instances of the rule nodes n0, . . . , nλi

for this
single transition are then declared in the following way.� �

(declare-fun Pi_n0 () Node)
...
(declare-fun Pi_nλi

() Node)� �
This merely establishes the existence of these rule nodes. It does not establish that

they are pairwise distinct or in any way encode the edges of the rule itself, since nei-
ther of these encodings are necessary. Any interpretation of these node constants will
have to make them pairwise distinct, because they are later set equal to nodes that are
required to be pairwise distinct by an instance of Code Templates 3 and 23. The edges
of the rule would theoretically be necessary to establish a match. However, the embed-
ding into a shape in which the left hand side of that rule has been materialized (Sm

i)
is already equivalent to this. Thus, only the nodes themselves are required to act as a
proxy between the edges ofGi+1 andGi.

We continue by defining the actual match condition. As noted earlier, the fact that a
graphGi is embedded into a shape Sm

i , in which a rule P is materialized using a match
m, already establishes that the rule P matches the graph at idL ◦f−1, a function which
at this point is well-defined. With that in mind, all that remains to do to create the
match is to require the nodes in the rule to be equal to the nodes that are embedded
into the corresponding rule nodes in the abstract trace.

Code Template 26 (Match Encoding). Let (Si, (Sm
i , Pi,m) , Si+1) be a single tran-

sition in an abstract error trace π, where Pi = (L, p,R) with NL = NR and
|NL| := λi is a modified graph rule. Let Gi ⊑fi S

m
i be the graph at the i-th place

in the corresponding concrete trace π′ Let n0, . . . , nλi
∈ NL be the rule node instances,

and let v0, . . . , vλi
∈ f−1

i (NL) be the nodes of the graph Gi that are embedded into
the materialized part of Sm

i . Then the encoding of the match is given by the formula

λi∧
j=0

(nj = vj)

and encoded into SMTLib in a straightforward fashion as the function rule_selection,
using an appropriate function definition.

The correctness of this encoding is trivial. An instance of this code template estab-
lishes the identity between the rule nodes and the graph nodes to which they must be
matched, according to the embedding into the corresponding materialized shape.

111

This fairly simple encoding stands in stark contrast to the second part of the appli-
cation encoding. Here, we must express that the graphGi+1 contains the edges Pi cre-
ates, does not contain the edges Pi removes, according to the match defined previously,
and, crucially, looks exactly like Gi in those places that are unaffected by the rule.

More formally, for any node tuple (v0) or (v0, v1) in the universe consisting of the
nodes of the initial graph and the overflow nodes, and each predicate pi+1, we must
express the value of pi+1 at that tuple. Our encoding must do this without knowing a
priori which nodes inGi were matched by the rule. Here our earlier decision to encode
matches as equality pays off in a significant simplification – we can simply check for any
given node tuple in the universe whether it is matched by (read: equal to) a node tuple
in the rule where a change occurs, and can then assert that change forGi+1.

In order to avoid having to perform this check for absolutely every node tuple and
predicate in the graph, we introduce a slight optimization. Most graph rules only
change the values of a few predicates, leaving the others untouched. If, for example,
a given rule has absolutely no effect on p-edges, it makes sense to simply encode that
all p-edges stay the same, and not to check for any matches regarding p. Thus, given a
rule Pi, all predicates p that are not changed by Pi can be updated forGi+1 using the
formula

υ∧
j=1

pi+1 (vj) = pi (vj) if p is unary

υ∧
j1=1

υ∧
j2=1

pi+1 (vj1 , vj2) = pi (vj1 , vj2) if p is binary

where υ is the size of the universe, i.e. the number of nodes in the initial graph, plus the
added past and future nodes (i.e. 2), plus the number of overflow nodes.

When the predicate p is in principle modified by the rule Pi, then we need to mod-
ify this formula to insert an exception. The value of the predicate at a given node tuple
should remain the same, unless the node tuple was the target of the match of one of the
p-edges in the rule that are changed by it. To ease the definition of this new formula,
we first define the set of created and deleted edges for a rule.

Definition 73 (Changed Edge Sets). Let P be a rule modified according to Def. 69. Let
E1

L, E
2
L be the edge sets of the left-hand side, and E1

R, E
2
R be the edge sets of the right-

hand side. Then the changed edge sets E1
+, E

1
−, E

2
+, and E2

− are defined as follows.

E1
+ := E1

R \ E1
L unary edges added

E1
− := E1

L \ E1
R unary edges removed

112

E2
+ := E2

R \ E2
L binary edges added

E2
− := E2

L \ E2
R binary edges removed

Equipped with these edge sets, we can now specify a formula that expresses that
edges should remain the same, unless they are the match target of a changed edge,
which is given by

υ∧
j=1

¬
 ∨

(p,n)∈E1
+∪E1

−

(n = vj)

 ∨ pi+1 (vj) = pi (vj)

 ,
if p is unary, and

υ∧
j1=1

υ∧
j2=1

 ∨
(n1,p,n2)∈E2

+∪E2
−

(n1 = vj1 ∧ n2 = vj2) ∨ pi+1 (vj1 , vj2) = pi (vj1 , vj2)

 ,
if p is binary. Thus, the persistence of edges is only required if they are matched to
none of the changed edges.

What remains is to express, as a formula, what happens to those edges that domatch
changed edges. This is done easily enough, by simply expressing the new value of the
edge. Again, we reap the benefits of using equality as the match, because it enables us
to simply express the edges on the rule nodes and have that automatically carry over to
the graph nodes to which they are matched. The following formula demonstrates this.∧
(p,n)∈E1

+

p (n) ∧
∧

(p,n)∈E1
−

¬p (n) ∧
∧

(n1,p,n−2)∈E2
+

p (n1, n2) ∧
∧

(n1,p,n−2)∈E2
−

¬p (n1, n2)

Building on these formulas, our encoding for the application of a rule will consist
of four parts. The first part will define added edges, the second part will define deleted
edges, the third part will encode definitely unchanged edges, and the fourth and last
part will take care of conditionally unchanged edges.

Code Template 27 (Application Encoding). Let (Si, (Sm
i , Pi,m) , Si+1) be a single

transition in an abstract error trace π, where Pi = (L, p,R) with NL = NR and
|NL| := λi is a modified graph rule. Let NI ∪ {p, f} ∪ O = {v1, . . . , vυ} be
the set of universe nodes, where O is the set of overflow nodes. Let |U | = υ and let
P0 =

{
(s, k) | ∀ (n1, . . . , nk) ∈ Nk

L : ιL (s) (n1, . . . , nk) = ιR (s) (n1, . . . , nk)
}

be the set of predicates that are not changed by P . Let further

E1
+ =

{(
u+,1, n+,1

)
, . . . ,

(
u+,a, n+,a

)}
113

E1
− =

{(
u−,1, n−,1

)
, . . . ,

(
u−,b, n−,b

)}
E2

+ =
{(
n+,1, b+,1,m+,1

)
, . . . ,

(
n+,c, b+,c,m+,c

)}
and

E2
− =

{(
n−,1, b−,1,m−,1

)
, . . . ,

(
n−,d, b−,d,m−,d

)}
Then the encoding of the application step for Pi is given by the formula∧

(p,n)∈E1
+

pi+1 (n) ∧
∧

(p,n)∈E1
−

¬pi+1 (n)

∧
∧

(n1,p,n2)∈E2
+

pi+1 (n1, n2) ∧
∧

(n1,p,n2)∈E2
−

¬pi+1 (n1, n2)

∧
∧

(p,1)∈P0

υ∧
j=1

pi+1 (vj) = pi (vj)

∧
∧

(p,2)∈P0

υ∧
j1=1

υ∧
j2=1

pi+1 (vj1 , vj2) = pi (vj1 , vj2)

∧
∧

(p,1)∈P\P0

υ∧
j=1

¬
 ∨

(p,n)∈E1
+∪E1

−

(n = vj)

 ∨ pi+1 (vj) = pi (vj)



∧
∧

(p,2)∈P\P0

υ∧
j1,j2=1

 ∨
(n1,p,n2)
∈E2

+∪E2
−

(n1 = vj1 ∧ n2 = vj2) ∨ pi+1 (vj1 , vj2) = pi (vj1 , vj2)


This is encoded in SMTLib as the function rule_application. See Code Listing B.5
in Appendix B, page 261 for the full listing of the template.

With this code template we express that, for every node tuple and every predicate
that is potentially changed by the rule, the node tuple is either matched to a changed
edge in the rule, in which case the change is reflected in the result graph, or it is not, in
which case the value of the predicate at that node tuple must remain constant. Pred-
icate values of predicates that are not touched by the rule are to remain constant by
default.

Lemma 18 (Correctness of Application Step Encoding). Let Gi be a (modified) graph,
let Si be a (modified) shape such that Gi ⊑f ′

i
Si, let Pi = (L, p,R) be a rule, let Sm

i

be a materialization of Pi out of Si for some matchm, and let Gi ⊑fi S
m
i . Let Gi+1

be the result of applying Pi to Gi at f−1
i

y
L
. Let further Sc be an SMT script contain-

ing some form of encoding of Gi, Sm
i , and fi, as well as instances of Code Templates 26

and 27. Then, any model of Sc contains the logical structure of Gi+1.

114

n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

head tail

past

n3

future

n4

present

present n5

future cell

cell

n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

headtail

past

n3

future

n4

present

n5

future

present
next

cell

cell

n1n2

list

head tail

past

n3

future

n4

future

present

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2 n3

list

head tail

past future
present

n1n2

listpast

n3

future
present

materialize
start

apply
start blur

apply
add

blurmaterialize
error

materialize
add

headtail

n4 n5

present

present
next

cell

cell
head
tail

next
next

Figure 4.10: An abstract error trace (Apply start, then add, then materialize error)

Proof. See Appendix A, page 247.

With this, we have completed our encoding of rule application, and thus of corre-
sponding concrete traces in general.

For an example of an application of the rule application encoding in the context of
a trace encoding, consider the trace shown in Fig. 4.10. In this abstract trace, a list is
created using start, then a node is added using add. At this point, the two cell nodes are
merged to maintain canonical abstraction. This then allows for the materialization of
the error pattern, which consists of a single cell node with a next-self-edge.

Clearly, this trace is spurious, since at this point there is no way in the original GTS
that a next-self-edge could exist. We can now use our corresponding concrete trace
encoding to prove this.

The encoding can also give us much more information about this trace, ranging
from where in the trace the abstraction strays from the original system to the kind of
constraints that could be used to reign it back in. These uses of the encoding are ex-
plored in Chapter 6.

4.7 Encoding of the Emptiness of a Shape

Besides the verification and analysis of abstract error traces, there is another application
for SMT encodings in the context of our approach that was alluded to in the descrip-
tion of constraints in Sec. 3.6. For an unconstrained shape there is always at least one

115

graph that is embedded into it. This can easily be seen by remembering that any graph
is a shape and that adding ½-edges and summary nodes only ever adds possible embed-
dings, but never subtracts them. The introduction of constraints, however, changes
this, since they explicitly exclude certain embeddings from the overall set of possible
embeddings into the shape they are attached to.

While for individual constraints this usually does not exclude all of the possible em-
beddings, multiple constraints together can easily collide, rendering the shape useless.
This situation is called an empty shape.

Definition 74 (Empty Shape). Let (S,Λ) be a constrained shape. (S,Λ) is said to be
an empty or infeasible shape iff G (S,Λ) = ∅. If (S,Λ) is not empty, it is said to be
feasible.

Determining whether or not a constrained shape is empty (or feasible) is non-trivial.
Evaluating the constraints inΛ on S can yield 0, of course, but that only considers
one constraint at a time, and only detects trivially unusable shapes. The much more
common, and much more difficult to detect case occurs when two or more constraints
contradict each other, e.g. ifΛ = {(c1,m1) , (c2,m2)} and G (S, {(c1,m1)}) ∩
G (S, {(c2,m2)}) = ∅.

In Sec. 4.4, we have already developed an encoding that can decide whether a given
graphG can be embedded into a given constrained shape (S,Λ). If the shape is empty,
this encoding would surely yield UNSAT. Unfortunately, that would only mean that
G, specifically, cannot be embedded into (S,Λ), not that no graph can possibly be em-
bedded. In Sec. 4.5 we have seen that the encoding of the graph can be made external to
the embedding encoding, and that the graph used need not be fully defined. But even
if all constraints on the graph are lifted, the encoding would still always define a fixed
number of nodes to make up the graph to be embedded.

Clearly, the embedding encoding, as defined so far, cannot be used to check whether
any graph of any size can be embedded into a given shape. This is because in order to
express that, we would need to quantify over the Node sort, which we cannot do in the
encodings defined so far, since they are all written for the QF_UF logic. In this section,
we will develop a quantified version of the embedding encoding which will enable
us to detect any empty shapes that are constructed over the course of any algorithm
exploring the state space of an STS.

The purpose of the new encoding will be to give a simple yes or no answer to the
question “G (S,Λ) ̸= ∅?”, and will thus be called the “shape feasibility encoding”.
Therefore, the explicit encoding of the embedding, which was previously used in the
embedding encoding in order to be able to glean the actual embedding from the model
created, is no longer necessary. We will thus base the shape feasibility encoding on
the graph encoding described in Sec. 4.3, rather than the embedding encoding. This
meshes well with the intuition that a concrete graph is the simplest form of a shape,

116

and trivially feasible. From this we will derive successively more complex encodings
that incorporate more and more features of a shape, beginning with ½-edges, continu-
ing with summary nodes and ending with constraints.

As a reminder, the graph encoding consists of a prelude which establishes the edge
labels as unary and binary predicates on a Node sort, as well as Node constants repre-
senting the node set, and continues to assert the pairwise distinctiveness of the nodes
(distinctNodes, see CoT. 3), as well as the unary and binary edges of the graph
(unaryG and binaryG, see CoT. 5 and 6). This encoding yields exactly one model,
representing the logical structure of the graph itself.

In order to introduce the first relaxation, ½-edges, to this encoding, we use the same
reasoning as we used for the embedding encoding: an edge that is neither required to
exist nor not to exist by the edge encoding can be interpreted by the solver in both ways
– mimicking the meaning of a ½-edge. We thus use a modified version of unaryG to
encode unary ½ edges.

Code Template 28 (Unary Edges in Feasibility Encoding). Let S = (U,P, ι) be a
shape, with |U | = k and P consisting of l unary predicate symbols and n − l binary
predicate symbols. The unary edges in S that are not incident to any summary nodes
are encoded using the following code template.� �

(define-fun unaryG () Bool (and
B(s1 v1) · · · B(sl v1)
...
B(s1 vk) · · · B(sl vk)

))� �
where each B(si vj) stands for

(not (si vj)) if ιs (si) (vj) = 0

(si vj) if ιs (si) (vj) = 1

(true) ifι (si) (vj) = ½ ∨ ι (sm) (vj) = ½

It thus encodes the first-order formula∧
ι(s)(v)=1
ι(sm)(v)=0

s (v) ∧
∧

ι(s)(v)=0
ι(sm)(v)=0

¬s (v)

Analogously, a modified version of binaryG takes care of binary ½-edges.

Code Template 29 (Binary Edges in Feasibility Encoding). Let S = (U,P, ι) be a
shape, with U = {v1, . . . , vk} and P consisting of l unary predicate symbols and n− l

117

binary predicate symbols. The binary edges in S that are not incident to any summary
nodes are encoded using the following code template.� �

(define-fun unaryG () Bool (and
B(sl+1 v1 v1) · · · B(sn v1 v1)
B(sl+1 v1 v2) · · · B(sn v1 v2)
...
B(sl+1 vk−1 vk) · · · B(sn vk−1 vk)
B(sl+1 vk vk) · · · B(sn vk vk)
))� �

where each B(si vj1 vj2) stands for

(not (si vj1 vj2)) ifιs (si) (vj1 , vj2) = 0

(si vj1 vj2) ifιs (si) (vj1 , vj2) = 1

(true) ifι (si) (vj) = ½ ∨ ι (sm) (vj1) = ½ ∨ ι (sm) (vj2) = ½

It thus encodes the first-order formula∧
ι(s)(v1,v2)=1
ι(sm)(v1,v2)=0

s (v1, v2) ∧
∧

ι(s)(v1,v2)=0
ι(sm)(v1,v2)=0

¬s (v1, v2)

These encodings are correct by the same arguments that were used in Lemma 9 and
Lemma 11. An encoding using these modified versions of unaryG and binaryG is thus
capable of expressing the presence of ½-edges. This enables us to encode the (trivially
given) feasibility of shapes without summary nodes and constraints – each such shape
has 2e embedded graphs, where e is the number of ½-edges in the shape.

Thus far, the modifications have been fairly straightforward. However, the addition
of summary nodes to the picture requires more effort on our part. As stated above,
we do not want to explicitly encode the embedding function and therefore, using the
embedding function to incorporate the semantics of summary nodes is not an option.

Instead we will encode summary nodes not, like regular nodes, as Node constants,
but rather as unary Node predicates. A node is embedded into a summary node n,
if the associated predicateN evaluates to 1 for that node. Every such predicate will
therefore act as the characteristic function (see Def. 67) of the set of nodes embedded
into that particular summary node.

In order to accomplish this, we will need to change the prelude. Let S = (U,P, ι)
be an unconstrained shape, and let {v1, . . . , vm} =: S ⊆ U be the set of summary
nodes. For each summary node vi, a unary Node predicate _Vi is constructed. This
gives us the prelude for the feasibility encoding, based on the prelude of the graph en-

118

coding.

Code Template 30 (Prelude for Feasibility Encoding). Let S = (U,P, ι) be an uncon-
strained shape, let |U | = υ and let P consist of l unary predicates and n − l binary
predicates. Let further {v1, . . . , vm} =: S ⊆ U be the set of summary nodes in S,
and let N := U \ S = {u1, . . . , uk} be the set of non-summary nodes in S, where
|N | = k. Then the SMT prelude for the feasibility encoding of S is given by the follow-
ing code template.� �

(set-logic UF)
(declare-sort Node 0)
...
; non-summary nodes and predicates as in Sec. 4.3
...
; declare each summary node as a unary node predicate
(declare-fun _V1 (Node) Bool)
...
(declare-fun _Vm (Node) Bool)� �

The addition of the node predicates for the summary nodes necessitates a change
to the encoding that ensures that the nodes are distinct. Instead of simply requiring
that nodes are pairwise distinct, we will now require in addition that every member of
the Node sort is either equal to exactly one of the Node constants, or belongs to exactly
one of the sets defined by the summary node predicates. This essentially translates to
one of the conditions a mapping must meet in order to be considered an embedding
function – each node in the graph must be embedded into exactly one of the nodes in
the shape, and only summary nodes are allowed to have more than one node embedded
into them. The following code template is the result.

Code Template 31 (Exclusivity Encoding). Let S = (U,P, ι) be an unconstrained
shape, and let |U | = υ. Let further {v1, . . . , vm} =: Σ ⊆ U be the set of summary
nodes in S, and let N := U \ S = {u1, . . . , uk} be the set of non-summary nodes in
S, where |N | = k. Then the encoding of the exclusivity of the Node sort for S is given
by the following first-order formula

k∧
i=1

k∧
j=i+1

¬ (vi = vj) ∧
k∧

i=1

m∧
j=1

¬_V j (vi) ∧ ∀x :

k⊕
i=1

(x = vi)⊕
m⊕
j=1

_V j (x)

which is encoded into SMTLib in s straightforward fashion as the function exclusiv-
ity. For the complete Code Template, please see Code Listing B.6, page 262.

The correctness of this encoding is expressed in the following lemma.

119

Lemma 19 (Correctness of exclusivity encoding). Let S be an unconstrained shape, and
let Sc be a script containing the corresponding instances of Code Templates 30, 28, 29,
and 31. LetM be a model of Sc using a Node universe U , and let f be the mapping
f : U → US given by

f (x) :=

{
vi if ι (=) (vi, x)

vj if ι (_V j) (x)

Then f is a total function that obeys the node abstraction property, i.e.∣∣f−1 (x)
∣∣ > 1 ≥ ι (sm) (x)

Proof. Since the distinctiveness of all node constants is encoded directly in exclusiv-
ity, and the term

k∧
i=1

m∧
j=1

¬_V j (vi) implies

ιM (_V j) (x) = 0

for all summary nodes vj and node constants x, the injectivity of f on the set of non-
summary nodes is guaranteed. Further, if there existed a universe element x such that it
is neither equal to one of the node constants nor belongs to one of the sets defined by
the _V j predicates, this would mean

∃x : ¬

 k⊕
i=1

(x = vi)⊕
m⊕
j=1

_V j (x)


which is literally the negation of the last part of the exclusivity formula. Thus,
sincem is a model, every universe element is either equal to one of the node constants
of satisfies one of the summary node predicates, which makes f total.

This, of course only takes care of the existence of the summary nodes and their se-
mantics with regard to the (implicitly given) embedding function. What remains to
be defined is how edges that are incident to summary nodes are encoded, since our en-
coding for edges so far (Code Templates 28 and 29) explicitly exclude such edges. As
before, unary and binary predicates are handled separately, with binary predicates be-
ing further subdivided into two separate code templates.

Unary edges that are incident to summary nodes are handled similarly to unary
edges on concrete nodes. The only difference is that now, rather than naming particular
nodes for which we define predicate values, we universally quantify over all nodes that

120

belong to a given summary node.

Code Template 32 (Unary Edges on Summary Nodes). Let S = (U,P, ι) be a shape
with P consisting of l unary predicate symbols and n − l binary predicate symbols. Let
further {v1, . . . , vm} =: Σ ⊆ U be the set of summary nodes in S. Then the encoding
of the unary edges on the summary nodes of S is given by the following code template.� �

(define-fun unaryS () Bool (forall ((x (Node))) (and
; first the positive then the negative assertions
(=> (_V1 x) (and B(s1 x) ... B(sl x)))
...
(=> (_Vm x) (and B(s1 x) ... B(sl x)))

)))� �
where, as in previous code templates, for each 1 ≤ j ≤ m, each Block B(si x) stands
for

(not (si x)) if ι (si) (vj) = 0

(si x) if ι (si) (vj) = 1

(true) if ι (si) (vj) = ½

This encodes the following first-order formula:

∀x :

 m∧
i=1

_V i (x) →

 ∧
(s,1)

ι(s)(vi)=0

¬s (x) ∧
∧
(s,1)

ι(s)(vi)=1

s (x)





Note that, in the case of summary nodes, definite knowledge about edges is in gen-
eral much rarer than for definite nodes, so these formulas are usually rather short, since
all literals concerning ½-edges are optimized out. We can now move on to the binary
edges of S.

As mentioned above, this part of the shape encoding is split into two sub-parts.
First, we will deal with binary relations between summary nodes and definite nodes,
and vice-versa. Then, we handle binary relations between pairs of summary nodes. The
following encoding defines the first part.

Code Template 33 (Binary Edges Between Concrete and Summary Nodes). Let S =
(U,P, ι) be a shape with P consisting of l unary predicate symbols and n − l binary
predicate symbols. Let further {v1, . . . , vm} =: Σ ⊆ U be the set of summary nodes in
S. Then the encoding of the binary edges between summary nodes and concrete nodes in
S is given by the following code template.

121

� �
(define-fun binaryS1 () Bool (forall ((x (Node))) (and

(=> (_V1 x) (and B(sl+1 x v1) · · · B(sl+1 x vk)
B(sl+1 v1 x) · · · B(sl+1 vk x)))

...
(=> (_Vm x) (and B(sl+1 x v1) · · · B(sl+1 x vk)

B(sl+1 v1 x) · · · B(sl+1 vk x)))
)))� �

where, again, each B(x y z) block is either (x y z), (not (x y z)), or (true),
depending on whether the corresponding edge exists in the shape or not. The correspond-
ing first-order formula is as follows

∀x :

 m∧
i=1

_V i (x) →

 ∧
(s,2),v

ι(s)(vi,v)=0

¬s (x, v) ∧
∧

(s,2),v
ι(s)(vi,v)=1

s (x, v)

∧
∧

(s,2),v
ι(s)(v,vi)=0

¬s (v, x) ∧
∧

(s,2),v
ι(s)(v,vi)=1

s (v, x)





The second part, dealing exclusively with edges between summary nodes, is encoded
as follows.

Code Template 34 (Binary Edges Between Summary Nodes). Let S = (U,P, ι)
be a shape with P consisting of l unary predicate symbols and n − l binary predicate
symbols. Let further {v1, . . . , vm} =: Σ ⊆ U be the set of summary nodes in S. Then
the encoding of the binary edges between summary nodes in S is given by the following
code template.� �
(define-fun binaryS2 () Bool (forall ((x (Node)) (y (Node))) (and
(=> (and (_V1 x) (_V1 y)) (and B(sl+1 x y) · · · (and B(sn x y))))
...
(=> (and (_V1 x) (_Vm y)) (and B(sl+1 x y) · · · (and B(sn x y))))
(=> (and (_V2 x) (_V1 y)) (and B(sl+1 x y) · · · (and B(sn x y))))
...
(=> (and (_Vm x) (_Vm y)) (and B(sl+1 x y) · · · (and B(sn x y))))

)))� �

122

with the B blocks defined as before, representing the following first-order function:

∀x, y :


m∧

i,j=1

(_V i (x) ∧ _V j (y)) →

 ∧
(s,2)

ι(s)(vi,vj)=0

¬s (x, y) ∧
∧
(s,2)

ι(s)(vi,vj)=1

s (x, y)





All three of these code templates follow the same basic idea. Every node that is em-
bedded into a given summary node must mirror all of its definite properties. The set
of nodes that are embedded into a given summary node vi is identified by the node
predicate _Vi. Thus, every node for which a given node predicate is true, must exhibit
all of the definite properties associated with the corresponding summary node. This is
expressed in the following lemma.

Lemma 20 (Correctness of Edge Encodings for Summary nodes). Let S be an uncon-
strained shape, and let Sc be a script containing the corresponding instances of Code
Templates 30, 28, 29, 31, 32, 33, and 34. LetM be a model of Sc using a Node universe
U , and let f be the mapping f : U → US given by

f (x) :=

{
vi if ι (=) (vi, x)

vj if ι (_V j) (x)

Then f is a total function satisfying the node abstraction property and the edge abstrac-
tion property, i.e.

ιM (p) (v1, . . . , vk) ⊑ ιS (p) (f (v1) , . . . , f (vk))

for all predicates p and all node tuples v1, . . . , vk .

Proof. By Lemma 19, f is a total function that satisfies the node abstraction property.
In analogy to the proof of Lemma 11, we now assume that there is a binary predicate
(p, 2) and a node tuple (v1, v2) such that

½ ̸= ιS (p) (f (v1) , f (v2)) ̸= ιM (p) (v1, v2)

holds. Keep in mind that as an interpretation in boolean logic, ιM cannot produce the
truth value ½. We distinguish four cases.

f (v1) , f (v2) ̸∈ Σ : In this case, by the correctness of the Formulae unaryG and
binaryG (see CoT. 28 and CoT. 29), the assumption is already contradicted.

f (v1) ∈ Σ ∧ f (v2) ̸∈ Σ : In this case, let vi := f (v1). M must satisfy the follow-

123

ing term present in the formula binaryS1 (see CoT. 33):

∀x :


_V i (x) →

 ∧
(s,2),v

ι(s)(vi,v)=0

¬s (x, v) ∧
∧

(s,2),v
ι(s)(vi,v)=1

s (x, v)

∧
∧

(s,2),v
ι(s)(v,vi)=0

¬s (v, x) ∧
∧

(s,2),v
ι(s)(v,vi)=1

s (v, x)





Thus, every universe element, including v2, must satisfy ∧
(s,2),v

ι(s)(vi,v)=0

¬s (x, v) ∧
∧

(s,2),v
ι(s)(vi,v)=1

s (x, v) ∧
∧

(s,2),v
ι(s)(v,vi)=0

¬s (v, x) ∧
∧

(s,2),v
ι(s)(v,vi)=1

s (v, x)


Since v2 ̸∈ Σ, we know that there exists a node constant vj such that v2 = vj ,
and thus the above formula enforces that

ιS (p) (f (v1) , f (v2)) = ιM (p) (v1, v2)

holds.

f (v2) ∈ Σ ∧ f (v1) ̸∈ Σ: analogous to the above.

f (v1) , f (v2) ∈ Σ: Let vi = f (v1) ∧ vj = f (v2). Then the formula binaryS2
(see CoT. 34) contains the term

∀x, y :


(_V i (x) ∧ _V j (y)) →

 ∧
(s,2)

ι(s)(vi,vj)=0

¬s (x, y) ∧
∧
(s,2)

ι(s)(vi,vj)=1

s (x, y)





and thus, any pair of universe elements belonging to _V i and _V j, respectively,
has to satisfy  ∧

(s,2)
ι(s)(vi,vj)=0

¬s (x, y) ∧
∧
(s,2)

ι(s)(vi,vj)=1

s (x, y)



124

and thus mirror all definite edges present in the shape, implying

ιS (p) (f (v1) , f (v2)) = ιM (p) (v1, v2)

for the particular pair v1, v2.

Therefore, in all cases, the assumption is refuted and thus the edge abstraction property
is upheld by any model of Sc.

Thus far we have made sure that the definite nodes in the graph are distinct, that
every node in existence is associated either with a definite node, or with a summary
node, and that every node in existence mirrors the definite properties of the node it is
associated with. This is an almost complete encoding of the existence of an embedding
function from an undetermined graph of undetermined size (the solver will attempt
to find a universe that satisfies the model) into the given shape. The only remaining
property of an embedding is surjectivity.

We need to make sure that the predicates we introduced for the summary nodes will
be interpreted as 1 for at least one node each. A similar statement is not needed for
the definite nodes, since their existence is already assured by the corresponding node
constants. The surjectivity property is encoded using the following code template.

Code Template 35 (Surjectivity Property). Let S = (U,P, ι) be a shape and let
{v1, . . . , vm} =: S ⊆ U be the set of summary nodes in S. Then the encoding for
the surjectivity property of the implicit embedding in the encoding for the emptiness of S
is given by the formula

∃x1, . . . , xm :

(
m∧
i=1

_V i (xi)
)

which is encoded into SMTLib in a straightforward fashion as the function surjec-
tivity, using an appropriate function definition.

The correctness argument for this formula is very straightforward, and will thus
be omitted here. This assures that each summary node has at least one actual node
assigned to it. The encoding, as it is defined so far, can already be used to check for the
emptiness of unconstrained shapes. However, as we have seen at the beginning, that is
not useful, since unconstrained shapes never can be empty.

Lemma 21 (Models for Unconstrained Shape Encoding). Let S = (U,P, ι) be a shape,
and let Sc be a script containing one corresponding instance each of Code Templates 30,
28, 29, 31, 32, 33, 34, and 35. Let Sc further contain assertions for these code instances.
Then Sc is satisfiable, and every model for Sc contains the logical structure of a graph

125

G that can be embedded into S. There are furthermore exactly as many models for Sc
as there are graphs that can be embedded into S.

Proof. This follows from the correctness of the individual formulas that make up the
unconstrained shape encoding, and specifically from Lemma 19 and Lemma 20.

In order to obtain an actually useful encoding for the emptiness of a shape, we need
to add support for constraints. According to Def. 60, graphs are embedded into con-
strained shapes if and only if they satisfy all shape constraints that, under the embed-
ding, are equivalent to the shape constraints on the shape. Thus, for our encoding we
need a way to express this condition, i.e. we need a way to encode the formulas of the
shape constraints, and a way to go through all possible interpretations of their assign-
ments under all possible embeddings.

Fortunately, our constraints are already formulated as first-order formulas, which
makes the encoding simple. As in the Embedding Encoding in Sec. 4.4, we can encode
the constraint formulas using Code Template 19. Thereby, every distinct formula αi

that is used by the constraints inΛ is encoded as an SMT function constraintαi ,
with each free variable being converted into a function parameter.

In order to to then take all possible assignments into account, we first start with
the simplest possible case. Let (αi,mi) be a shape constraint, and letMi be the image
ofmi. In the simplest possible case, all nodes inMi are concrete nodes. This is the
simplest case, because all embedded graphs must embed exactly one node into each of
the nodes inMi, creating only one possible interpretation formi. Thus, in that case,
we would only need to assert the truth of constraintαi with the nodes inMi as
parameters.

The next issue is how to deal with summary nodes. Let s ∈ Mi be a summary
node, and let all nodes inMi \ {s} be concrete nodes. LetU be the universe of the
shape, V̄i be the set of variables assigned to nodes other than s bymi, and let ᾱi be αi,
with every variable in V̄i replaced by its image undermi. Thus, (ᾱi, mi↓s) is a shape
constraint with a single free variable v, assigned to the summary node s. Now, this con-
straint must hold for any embedded graph, regardless of which node is embedded into
s. Therefore, it must hold for all nodes for which the corresponding node predicate
_Vs holds, i.e. we get

∀x : _V s (x) → (αi)[v 7→x]

This basic idea is extended to arbitrary numbers of summary nodes in the following
code template.

Code Template 36 (Constraint Encoding). Let (α,m) be a constraint, and let

126

constraintα be the encoding of its formula according to Code Template 19. Let fur-
ther

{y1, . . . , ya′ , ya′+1, . . . , ya}

be the set of free variables of α, sorted in such a way that the first a′ variables are as-
signed to summary nodes bym and the remaining variables are assigned to concrete
nodes. Let vi = m (yi) be the assigned nodes for these variables. Then, the encoding of
the adherence of the potentially embedded graph encoded by the feasibility encoding to
the constraint (α,m) is given by the following code template.� �

(define-fun constraint_α_m () Bool (forall
((x1 (Node)) ... (xa′ (Node)))
(=>
(and (_V1 x1) ... (_Va’ x1))
(constraintα x1 · · · xa′ va′+1 · · · va)

)
))� �

This effectively encodes the first-order formula

∀x1, . . . , xa′ :
a′∧
i=1

_V i (xi) →
(
α[y1 7→x1,...,ya′ 7→xa′ ,ya′+1 7→m(ya′+1),...,ya 7→m(ya)]

)
Since this first-order formula for constraint satisfaction follows directly from Def. 60

(using the implied embedding), the correctness of this formula is trivially given. Hav-
ing defined all constituent parts, we can now encode the feasibility of any given con-
strained shape as an SMT problem. The following code template creates the required
assertion and pulls all the required parts together.

Code Template 37 (Shape Feasibility Assertion). Let (S = (U,P, ι) ,Λ) be a con-
strained shape, with Λ having the form

Λ = {(α1,m1) , . . . , (α1,ma1) , (α2,m1) , . . . , (αc,mac)}

Given an SMT script containing corresponding instances of the Code Templates 30, 28,
29, 32, 33, 34, 35, 19, and 36, the feasibility of (S,Λ) can be asserted by� �

(assert (and
exclusivity
unaryG binaryG
unaryS binaryS1 binaryS2
surjectivity

127

constraint_α1_m1 · · · constraint_α1_ma1...
constraint_αc_m1 · · · constraint_αc_mac

))� �
The constraints encoding restricts the meaning of the actual shape, and can in the

extreme case render the resulting script unsatisfiable, as the following Lemma shows.

Lemma 22 (Correctness of Constrained Shape Feasibility Encoding). Let (S = (U,P, ι) ,Λ)
be a constrained shape, with Λ having the form

Λ = {(α1,m1) , . . . , (α1,ma1) , (α2,m1) , . . . , (αc,mac)}

Let Sc be a script containing a corresponding instance each Code Templates 37, as well
as all its prerequisite Code Templates. Then there are exactly as many models for Sc
as there are graphs that can be embedded into S. Specifically, Sc is unsatisfiable if and
only if G (S,Λ) = ∅.

Proof. Direct corollary of the previous lemmata and definitions.

As an example for this encoding, consider the shape shown in Fig. 4.11. It represents
(among other things) an arbitrarily large cycle of cell nodes, comprised of next edges.
In order to exclude some of the interpretations that are not cycles of cell nodes and
next edges, a number of constraints have been added to the shape. In total, there are 4
constraints, made from a total of 3 different formulas:

Λ = {(α, [v 7→ n1]) , (α, [v 7→ n2]) , (β, [v 7→ n3]) , (γ, [v 7→ n3, w 7→ n3])} where
α :=∃x, y : (next (x, v) ∧ next (v, y) ∧ ¬ (x = v) ∧ ¬ (y = v))

β :=∀x : (next (v, v) ∧ ¬ (x = v) → ¬next (x, v) ∧ ¬next (v, x))
γ := (v = w) ∧ next (v, v)

Here, the formula α expresses that there is an incoming next edge, as well as an out-
going next edge incident to its free variable. This constraint is attached to n1 and n2.
The edge (n1, next, n2) satisfies half of the condition α for both nodes, leaving us with
the constraint that there must be at least one incoming edge to n1, and at least one
outgoing edge to n2.

The formula β expresses that if the node it is attached to has a self-edge labeled next,
then there must be no other next-edges attached to it. This constraint is attached to the
node n3. Since n3 is a summary node, this constraint must therefore hold for all nodes
embedded into n3, i.e. it holds for all nodes in the cycle that are not n1 or n2.

128

n2
cell

next
v

n1

cell
n3

cell

nextnext

next

w
v

vv

Figure 4.11: A non-trivially infeasible shape

Finally, the formula γ expresses that its two free variables are identical, and that the
node they are attached to has a self-edge. This constraint is also attached to n3. Due
to the definition of the embedding conditions for constraints, this has the effect that
only one node can be embedded into n3, since as soon as there are more than one, the
condition that they are all identical no longer holds. Thus, this constraint expresses
that n3 is a single node with a self-edge labeled next.

Each of these constraints individually are easily satisfiable by the shape. Even any
two of them together can still be satisfied. Taken together however, these three con-
straints make the shape infeasible. The constraint (γ, [v 7→ n3, w 7→ n3]) determines
that n3 is a single node with an next-self-edge. The constraint (β, [v 7→ n3]) on the
same node tells us that since n3 has a self-edge labeled next, it can have no other next-
edges incident to it. And finally, this contradicts the α-constraints, which required an
incoming next-edge into n1, and an outgoing next-edge from n2, neither of which is
still possible since the only possible source (or target, respectively) of these edges was
n3. Therefore, we have G (S) = ∅ for this shape S.

Just by reasoning on the shape itself it would be fairly difficult to deduce this. Using
the SMT encoding defined in this section, however, we can query any SMT solver
capable of processing the UF theory with our encoding and receive the answer almost
instantly. Listing B.7 shows the encoding for the shape shown in Fig. 4.11. Note that
the encoding is small, positively tiny compared to the trace encoding we defined before.
This is due, among other factors, to the fact that only definite knowledge needs to be
encoded, the embedding does not need to be encoded explicitly, and quantifiers allow
us to take many shortcuts unavailable to us before.

Of course, the runtime is not always so favorable. As stated earlier, our use of first-
order logic makes all tests that have to do with constraints in particular, or quantifiers
in general (as in this encoding) undecidable. However, the vast majority of shapes can
be checked for feasibility in a handful of seconds using the methods presented in this

129

sections, and as we will see in Chapters 5 and 6, state space construction and refinement
can be organized such that undecidable instances (or rather, timeouts) cannot lead
to an unsound analysis, but rather to a slightly less efficient one. One can of course
manually construct cases that lead to timeouts for the solver, but for the average use
case, our approach seems to be feasible.

In conclusion, we have now constructed SMT encodings that let us check for the
existence of concrete traces corresponding to abstract error traces, and for the feasi-
bility of any given shape, constrained or not. Together with the definitions of shape
transformation systems obtained in the previous chapter, this gives us all the tools we
need to construct the verification algorithm that is the centerpiece of this thesis. We
will properly define this algorithm in the following two chapter, and examine an ex-
ample implementation of it, as well as example applications of that implementation, in
Chapter 7.

130

5
Lazy State Space Construction

The provenance of the constraints used to refine shapes has not been
specified so far. Clearly, requiring all such constraints to be created by hand at the
start of the analysis is not feasible. On the other hand, the construction of the abstract
state space as defined so far does not lend itself well to deriving constraints during con-
struction. Thus, in this chapter and the next one, we will attempt to create another
approach at state space construction and semi-automatic abstraction refinement to
address this issue. We begin by looking to the literature for guidance on automatic ab-
straction refinement.

All verification schemes that use abstraction and aim to be automatic rather than
interactive have to incorporate some form of this process. For this reason, plenty of re-
search has been performed for a large variety of verification techniques and use cases,
yielding several general templates for methods to refine the abstraction. One such tem-
plate is called CEGAR[51] – counterexample guided abstraction refinement.

The central idea of CEGAR is that a spurious abstract error trace is a failure in the
abstraction, and that that failure is most specifically expressed in the error trace it-
self. After all, if the algorithm that created the trace concluded that it is an error, even
though it is not (a spurious error), then at some point along that trace it must have left
the actual state space of the original problem, and considered states that are not actually
part of the system. Finding this point, and figuring out what information the algo-
rithm was lacking there, is the key to refining the abstraction just enough to rule out

131

that specific spurious trace. This allows a verification system to automatically refine its
abstraction, but do so as little as possible, in order to obtain just enough precision to
verify the system, and not more.

Since its introduction[51], the CEGAR technique has found widespread use across
the field of model checking and is now considered to be a state-of-the-art technique.
CEGAR is used in many successful model checking tools, such as SLAM[18], which
has found use in verifying Windows device drivers, the more recent BLAST[32] model
checker, which has an even wider range of target applications, or a number of other
tools, such as Moped[101], SatAbs[54], and F-Soft[98] While most of these tools per-
form some kind of predicate abstraction[81], CEGAR has been and is being applied
to many other abstraction approaches as well[8, 121, 156]. Even though the target use
cases and the abstraction formalisms may differ, the fundamental concept of CEGAR
remains the same.

A basic abstraction system implementing CEGAR works as follows. First, it chooses
an initial abstraction. This abstraction is usually chosen to be as coarse as possible,
unless domain knowledge is available that delivers refinement information that is guar-
anteed to be useful. Then, the state space of the system is constructed with respect to
that abstraction. This state space is searched for potential errors, and such errors, when
found, are tested against the original, unabstracted system. If no error is found, the sys-
tem is deemed safe. If a non-spurious error is found, the system is proven to be faulty.
If, however, only spurious errors are found, these errors are used to refine the abstrac-
tion. Then, the state space with respect to the new abstraction is constructed and
the process continues. Note that CEGAR itself does not specify how the abstraction
should be refined, and especially does not force either a lazy or a non-lazy approach
– SLAM recomputes the state space upon adoption of a new abstraction (non-lazy)
while BLAST only refines the part of the abstraction that exhibited the spuriou serror
(lazy).

In the previous chapters, we have defined algorithms to construct the state space of
an STS, as well as SMT encodings that can determine whether or not a given abstract
trace through such a state space is spurious or not. Thus, it seems that we have all that
we need to implement the CEGAR paradigm and complete the feature set of our ap-
proach. However, applying CEGAR directly to shape transformation systems, as we
have defined them so far, would be difficult.

The main reason for this is that the CEGAR approach requires that, when an error
is found, a finite number of counterexamples can be identified. In the domain where
the idea of CEGAR originated, the static analysis and verification of sequential pro-
grams, this is always the case. Each counterexample corresponds to an execution path
through the program, represented by its control-flow graph. Any construction of an
abstract state space is grounded in this control flow graph and can rely on it as a struc-
ture that does not change with the abstraction.

132

In our approach, on the other hand, such a structure that could ground the analysis
is conspicuously absent. As in all basic graph transformation systems, we assume that
graph rules are applied continuously and atomically, whenever they match some part of
the graph. Translated into the language of sequential programs, this would mean that
a GTS with n rules is like a system with n parallel processes, each one consisting of an
infinite loop executing only one check (is the rule applicable?) and one action (apply
the rule), if the check succeeds. As far as control flow goes, this is not helpful. One
could of course argue that the control-flow graph of a graph transformation system is
its transition system. That, however, mixes control flow and knowledge about the state
of the system, meaning that in infinite-state GTS, the transition system is of course
infinite, making it equally useless as a fixture for the abstraction system.

Thus, we are stuck with the following situation. Our abstract state space construc-
tion algorithm (see Chapter. 3) creates the abstract reach set of an STS related to a given
GTS by the canonical abstraction (see Def. 50). It then uses an existential abstraction
(see Def. 54) to create a (finite) shape transition system to correspond to the (possibly)
infinite graph transition system. As detailed in Def. 53, in doing so, it uses the covering
relation between shapes to discard shapes that are covered by other shapes. This is done
in order to limit the size of the state space. When an error shape is found, i.e. a shape
that potentially matches the error pattern, we are faced with the task of creating a coun-
terexample for it, i.e. an abstract error trace from the initial shape to the error shape.
However, since we have potentially discarded many shapes during the construction of
the reach set, the construction of such a trace can be difficult, if not impossible.

This can go so far that the initial shape and the error shape are subsumed by the
same shape in the reach set of the STS, leaving us with absolutely no trace information
to go on. Furthermore, even when an actual trace from the initial shape to the poten-
tial error exists, it will, due to the nature of an existential abstraction, almost always
encounter self-transitions on the way, where certain rules applied to certain shapes lead
back to those shapes themselves. In such cases, there are an infinite number of possi-
ble traces that could be gained for a given potential error, and it is not clear that any
particular one of them, such as, e.g., the shortest one, is the best one to use.

Clearly, if we are to employ CEGAR, a different approach to state space construc-
tion and refinement is required.This new approach will be a relatively direct imple-
mentation of the principle of lazy abstraction, or lazy state space construction (LSSC),
already employed by several CEGAR-approaches, such as BLAST[32] and the ap-
proach by McMillan[113]. In LSSC, the state space is explored by unfolding it like a
tree, rooted in the initial state. Every rule applicable to a shape represented by a node
in that tree creates a number of child nodes, which will in turn have their own child
nodes, and so on. Where in our previous approach of a transition system, states that
are found to be covered by other states are used to fold the transition system back in
on itself, in order to obtain a concise representation, a covered node in LSSC is simply

133

marked as such and left unexplored.
When an error node is found in the unfolding of the tree, there is only one possible

path from the initial node to it. This path is taken to be the abstract error trace, and
used to obtain a refinement of the abstraction, such as a new set of shape constraints.
Crucially, this abstraction refinement is then not applied to the entire tree, but only
along the path to the error, leading to a representation of the state space in which dif-
ferent parts of it are represented with different levels of abstraction. This solves both
our issues that were raised above – paths are now guaranteed to exist and be unambigu-
ous.

Over the course of this chapter, we will first examine a representative example of
the LSSC paradigm in Section 5.1. Having obtained a more detailed idea of how LSSC
works, we apply this knowledge in Section 5.2 to the definition of the shape transition
tree, the basic data structure that will support the state space we construct. Based on
this definition, we then create the algorithm that constructs this data structure in Sec-
tion 5.3. There we will focus on what actions are performed on the tree and how they
work together in creating the outer construction loop of the LSSC approach. The de-
scription of the inner refinement loop is left to Chapter 6.

5.1 The Principle of Lazy State Space Construction

The observation that originally motivated lazy state space construction or, more specif-
ically, lazy abstraction refinement, is that in many cases, an error is localized to a very
small portion of the state space, while other, large sections of the state space are error-
free. In verification approaches that rely on a successively refined, global abstraction,
such cases incur huge, unnecessary costs as they dutifully explore safe sections of the
state space in great detail. Thus, much could be gained by creating a verification ap-
proach that does not refine its abstraction globally, but locally – only on those parts of
the state space that cannot be verified using a coarser, and therefore less costly, abstrac-
tion.

In this chapter, we will apply this basic idea to the exploration of the state space
of an STS, and to the refinement of its abstraction. In doing this, we will follow the
template given by Kenneth McMillan in his 2006 paper on lazy abstraction[113]. This
paper contains a very clear description of lazy state space construction, which is helped
by the fact that it completely omits abstract post operators, to speed up construction.
While this work was done on sequential programs and is most directly comparable to
predicate abstraction[81] of such programs, the basic principles employed in it can be
transfered to our use case as well.

McMillan’s paper focused on programs written in a C-like, sequential programming
language. A fragment of such a program is shown in Fig 5.1. In McMillan’s approach,

134

� �
do {
lock();
old = new;
if (*) {

unlock();
new++;

}
} while (new != old)� �

(a) C-like source code

L=0

L=1;
old=new

[L!=0]

L=0;
new++

[new==old]

[new!=old]

ERR

(b) Control-Flow Graph

Figure 5.1: The program fragment used by McMillan[113] to showcase his lazy abstracধon approach

the program to be verified is first converted into a control-flow graph (CFG). In this
graph, each program location corresponds to a node, and each transition between pro-
gram locations corresponds to a directed edge, connecting these program locations. A
transition representing the execution of a statement is labeled with the effect of that
statement on the variables of the program. A conditional branch, on the other hand,
is labeled with the condition that has to be met so that that particular branch can be
taken. In the particular example shown in Fig. 5.1, the initial location describes the state
of the system before entering the piece of code shown in the figure, and the error loca-
tion is implicitly reached when lock() is called whileL ̸= 0 holds.

Once the control-flow graph has been constructed, a set of starting abstraction pred-
icates is chosen. These are the predicates that form the abstract domain that will be
used to describe (and over-approximate) the state of the program. In the abstraction,
the state of the program will be described only by the truth values of these predicates.
Usually, the analysis begins with an empty set of predicates, meaning that the abstrac-
tion is unable to express any knowledge about the program state whatsoever*.

Once a predicate set has been chosen, an abstract reachability tree (ART) is con-
structed from the CFG using those predicates. The constructed tree is rooted in the
initial state of the program, corresponding to the starting location in the CFG. This
state is labeled with the knowledge about the initial state of the variables in the pro-
gram, expressed using the predicates from the predicate set chosen at the beginning.
Since one usually starts with an empty predicate set, this label will usually be true.

Now, each so far unexplored node is explored in the following way, until no unex-
plored nodes remain.

Each edge in the CFG that goes out from the CFG location corresponding to the

*excluding, of course, the program location itself

135

node is converted into an outgoing edge to a new node in the ART. If the edge is a
statement, it is labeled with the effect of that statement. In the lazy abstraction paradigm,
this effect must be over-approximated, meaning that the following state must be la-
beled with a formula over the abstraction predicates that is implied by the actual effect
of the statement and the formula of the source node. This can be achieved by com-
puting the abstract-post operator, yielding the strongest formula expressible in the
abstraction predicates that satisfies the above condition. But, since computing the ab-
stract post-operator usually incurs high costs, this can also be avoided by just labeling
the successor state true. McMillan uses this latter version in his paper[113].

If the edge, on the other hand, is a conditional edge, then it is checked whether the
condition conflicts with the label of the parent node. If it does, the edge is discarded. If
it does not, the edge is retained and the label for the new node, as above, will be implied
by the source node formula and the condition, e.g., true.

Once a new node has been constructed, it is checked against existing nodes to see if
any of them cover the new node, i.e. represent the same program location and have a
label that is implied by the label of the new node. If the node is covered, it represents a
special case of a node that has already been explored, meaning that exploring it would
be redundant. Such nodes are marked as covered and not explored. This process of
exploring and potentially covering nodes continues until an error location is reached in
the ART.

0

12

L=0
[L!=0]

ERR

T

TT

Figure 5.2: ART
of Fig. 5.1 with
no abstracধon
predicates[113]

Figure 5.2 shows an ART for the program in Fig. 5.1. The initial
state represents the state of the program before the loop is entered.
It is labeled true, since we have no knowledge of the program
state at that point. As the CFG shows, we know that L is initial-
ized to zero at the beginning of the program. This is represented
by the first edge in the ART. However, since no abstraction pred-
icates were used, we cannot utilize this information, i.e. we have
no choice but to label the new node with true as well. This node
represents the call to lock() at the beginning of the loop. Now,
we have no way to derive whether L is zero or non-zero on the call
to lock(), forcing us to consider the possibility that it might be
non-zero. This leads to the existence of a corresponding edge and a
node corresponding to the error location in the CFG.

At this point, counterexample-guided abstraction refinement is employed by exam-
ining the path 0→1→2 from the initial node to the error location and deducing what
predicates might be necessary to exclude this path (given that the path is spurious). In
order to understand how this works, and how our encoding from Chap. 4 figures into
all this, we must first take a quick detour and explore the concept of Craig Interpola-
tion.

Craig Interpolation is a mathematical concept that was first made feasible in 1957 by

136

A

B

I

(a) I implied byA, inconsistent withB

A

B

I

(b) I implied byA, implyingB

logician William Craig in his paper “Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory”[60]. In essence, Craig proved that a formula
satisfying the conditions specified by the following definition always exists:

Definition 75 (Interpolant). Let λ (φ) be the set of non-logical symbols, such as predi-
cates, contained in a first-order logical formula φ. Let further A and B be inconsistent
first-order formulas, i.e. σS (A ∧B) = ∅ (see Def. 32). Then there exists a logical
formula I such that

• A |= I , i.e. all models of A are models of I (A implies I),

• I ∧B |= 0, i.e. I and B are inconsistent, and

• λ (I) ⊆ λ (A) ∩ λ (B), i.e. I uses only the common symbols of A and B.

Such a formula is known as an interpolant for A and B.

Intuitively speaking this means that whenever there are two inconsistent first-order
formulasA andB, there exists a generalization I ofA, which is still inconsistent with
B, but only uses symbols common to bothA andB. Figure 5.3a shows a sketch of the
relationship of the model sets of the three formulas in this scenario. Simple rearrange-
ment of these symbols gives us also an alternative way of thinking about interpolation,
namely that, given formulasA andB, such thatA |= B, there is a formula I over their
common symbols such thatA |= I |= B. This interpretation is shown in Fig. 5.3b.
The fact that the formula I in both of these interpretations lies “between”A andB
motivated the term “interpolation”.

137

Another way of thinking of an interpolant, as defined in Def. 75 and depicted in
Fig. 5.3a, is that it represents the essence of whyA andB are inconsistent, condensed
into a form compatible with both formulas. As we will see, McMillan made use of this
interpretation of interpolants in his paper[113] in an ingenious way.

Returning to the example shown in Fig. 5.2, the counterexample 0→1→2 is first
converted into a so-called path formula, consisting of a formula I describing the ini-
tial state of the program (true here), and a sequence of transition formulas Ti,i+1

describing the relationship between the program variables of step i in the path and the
variables of step i + 1. In order to express this in logic, the program variables are in-
dexed, so that every state along the path has its own set of program variables. This is
called static single assignment (SSA). So, in our case, we would end up with a formula

I ∧ T0,1 ∧ T1,2

describing an execution path in the original program, where the first call to lock()
fails sinceL ̸= 0. BecauseL is initialized to 0 in the program (visible in the control
flow graph in Fig. 5.1), this path formula is infeasible.

Since we now have an infeasible conjunction of subformulas, by inserting cuts into
the conjunction we can construct from this two instances of the situation described in
Def. 75.

I︸︷︷︸
A

∧T0,1 ∧ T1,2︸ ︷︷ ︸
B

(5.1)

I ∧ T0,1︸ ︷︷ ︸
A

∧ T1,2︸︷︷︸
B

(5.2)

Thus, two interpolants result from this. I1, the interpolant for cut (5.1) is a formula
that is implied by the initial state, but inconsistent with the application of the two tran-
sitions. Thus, intuitively, it represents the answer to the question “what information
does the initial state contain that makes the following two transitions infeasible?”. The
interpolant for cut (5.2), I2, can be interpreted similarly. It is implied by I ∧ T0,1,
but inconsistent with T1,2, the transition that goes from lock() to the error state.
Intuitively, I2 is thus the answer to the question “What information does the state
at lock() contain that would prevent the following transition to the error state”. In
other words, each interpolant is essentially an answer to the question what information
the abstraction was missing at that point that could have been helpful to prevent the
creation of the spurious error.

In this particular case, we could for example obtain the interpolants I1 = 1, since
the initial state contains no information, and I2 = (L = 0), since that is implied by
the transition T0,1, but inconsistent with T1,2. Through these interpolants, we have

138

0

12

3

4

5

L=0

L=1;
old=new

[L!=0]

L=0;
new++

[new!=old]

ERR

F L=0

6
[L!=0]

ERR

T
T

T

T

T

(a) Second spurious error
found

0

12

3

4

5

L=0

L=1;
old=new

[L!=0]

L=0;
new++

[new!=old]

ERR

F L=0

6
[L!=0]

ERR

F
L=0

L=0

old=new

7

[new==old]

T

8

9

[new!=old]

10
[L!=0]

ERR

F

old=new

F

T

(b) ART complete and error-free

additional information that we can add to the states along the path. We add true to
the initial state (to no effect),L = 0 to state 1, and false to state 2, since the path
leading to it was infeasible (this is essentially the interpolant forA := I ∧ T0,1 ∧ T1,2
andB := 1). Once this is done, the error state is no longer reachable in the ART as
constructed so far and we can continue exploring it.

It should be noted that refining nodes in such a manner can mean that nodes that
previously covered other nodes may now cease to do so, necessitating the further ex-
ploration of the now uncovered nodes. Once the new information has been added to
the nodes, and any now-faulty covering information removed, exploration of the ART
continues until another error is found or no nodes remain unexplored. In the partic-
ular example used by McMillan, the refinement process repeats once more when the
error shown in Fig. 5.4a is found. Note that, again, all labels on the newly constructed
nodes are true. An interpolation of the path formula corresponding to that new error
path leads via further exploration to the ART shown in Fig. 5.4b. This ART contains
another spurious counterexample, the refinement of which does not lead to any new
unexplored nodes. After this has been concluded, the system is declared safe since no
nodes are left unexplored and no error node is reachable.

In this thesis, we will define an adaptation of the above approach for shape trans-
formation systems. Much of the basic principle can be used directly, without many
modifications. In order to do this, we need the following:

• A tree-like data structure that represents the state space of an STS, as an ana-
logue to the ART. (→Sec. 5.2)

• A notion of when any node in this data structure covers another node. (→Sec. 5.2)

• A construction algorithm, capable of creating that data structure, starting with
the initial shape. (→Sec. 5.3)

139

• A procedure which derives from a path through this tree an abstract error trace,
and its corresponding encoding (see Chapter 4). (→Chap. 6)

• A strategy of where in this encoding to place the interpolation cuts (→Chap. 6)

• An algorithm that takes resulting interpolants and uses them to refine a path
through the tree. (→Chap. 6)

We will gather these remaining parts over the course of the next sections, going into
more detail about McMillan’s lazy abstraction approach as needed.

A Short Survey of Lazy Abstraction

Before we move on to define our own approach, we will take a short detour to give
the reader a quick overview over the topic of lazy abstraction. The idea of lazy ab-
straction is of course older than the paper by McMillan that we used to illustrate the
process. While the term “lazy abstraction” was used before 2002 to informally refer to
application-specific abstraction schemes that were “lazy” in a sense specific to the re-
spective approach, for the purposes of this overview, the seminal paper for lazy abstrac-
tion is the one written by Henzinger, Jhala, Majumdar, and Sutre[91]. In this paper
the basic principles of lazy abstraction in the context of software verification were de-
scribed, and demonstrated with the introduction of the BLAST tool, which was later
described in its own paper[32].

The concept of lazy abstraction offered the attractive prospect of removing a lot
of redundant work from state space construction and was thus quickly adopted by a
number of tools, such as KRATOS[48], SAFARI[9], Wolverine[106], and IC3[47].
It was then applied, often via those tools, to industrially relevant problems, such as
device drivers[90], SystemC[48], and Hardware models[151].

The combination of craig interpolation with lazy abstraction (and CEGAR)[89]
marked an important step forward for lazy abstraction since it provided a widely us-
able, relatively simple way to provide the local abstraction refinements needed for
lazy abstraction. Use of interpolation was soon widespread in lazy abstraction and
expanded the reach of lazy abstraction further with the introduction lazy abstrac-
tion for richer languages, e.g. by including support for arrays[10] and full Presburger
Arithmetic[93], or by using it for termination proofs[55]. Lazy abstraction has also
been combined with shape analysis[33] (see Chapter 3, page 26) and partial order
reduction[49] to further reduce the state space that still needs to be explored.

Clearly, lazy abstraction is a very successful abstraction technique that is still evolv-
ing†. This thesis represents a new entry into this field by applying this successful paradigm
to the verification of abstract graph transformation systems.

†for example, through generalizations into even more flexible abstraction methods[38]

140

We now begin thepresentation of our own approach by defining shape transition
trees, the data structure that will serve as our analogue to the abstract reachability tree.

5.2 Shape Transition Trees

In McMillan’s lazy abstraction approach, the control flow graph of the program is un-
folded to obtain the so-called abstract reachability tree. Each node in this tree represents
a state of the program, made up of a location in the control flow graph and a formula
restricting the state of the programs variables at that location. A single path reaches
from the initial state to every such node, clearly identifying the execution path in the
original program that corresponds to it.

If we are to apply the lazy state space construction paradigm to shape transforma-
tion systems, we need a tree-like data structure that would similarly represent an “un-
folding” of an STS. Thus, we need to find a way to represent states of the system, i.e.
nodes in the tree, in such a way that they can be refined without jeopardizing the struc-
ture of the tree.

In our scenario, we will assume that we are tasked with verifying the absence of an
error patternE from an infinite-state GTS G = (I,R), using an abstraction scheme
A. We make the following observation of how state space construction for the corre-
sponding STS S = (A (I) ,R) proceeds with regard to a single, non-initial shape
Si. First, a shape transformation creates a new shape St

i . This new shape is the direct
result of a rule application to a materialized shape and thus not on the same level of
abstraction as its source shape. Then, the abstraction schemeA is applied to the shape,
yielding a new, “normalized” shape Si. For this shape, potential matches for all the
rules inR are computed, yielding a set of materializations Sm0

i , . . . , Smk
i , from which

new shapes are derived via rule application.
Thus, for each actual shape produced by the STS, there is an “incoming shape”, and

a potentially large but finite and constant number of “outgoing shapes”, or material-
izations. This observation leads us to our definition of the tree nodes we will use: each
such node consists of a central shape representing the state described by the node, an
single entry point, describing how the shape was constructed, and a number ofmate-
rialization points, providing anchors for transitions to subsequent states. In order to
keep the definitions more concise from this section forward, we first introduce a short-
hand notation for constrained shapes.

Definition 76 (Shorthand for Constrained Shapes). Let (S,Λ) be a constrained shape.
As a shorthand, this can be written as S. The constraint set itself can be referred to
using ΛS .

We will now go through the mathematical definitions necessary to establish the full
concept of an STT node. As the central shape is just a shape as defined in Def. 56, we

141

begin with the entry point.

Definition 77 (Entry Point). Let S, S′ be shapes, such that G (S) ⊆ G (S′). Then S is
called an entry point of the shape S′ (and vice-versa).

Thus, an entry point to a shape S (and later an STT node) is just another shape
that, covers some (but not necessarily all) of the same graphs as S. In the context of
an STT, entry points are either unabstracted results of rule applications, or the initial
graph of a GTS. We move on to materialization points.

Definition 78 (Materialization Point). Let S be a shape, let P be a graph rule, and let
m be a match such that JφP KmS ≥ ½. Let further Sm be the corresponding materializa-
tion, and fm be its embedding into S. The tuple (Sm, fm) is called a materialization
point of S. For any fixed rule setR, the materialization set MR (S) is the set of all
possible materialization points of S. When the rule set is clear from context, it may be
omitted.

A materialization point for a shape S represents a single materialization of some rule
out of S. The rule itself, the match, as well as the constraints derived for the material-
ization are not part of the definition, since they can be easily derived from the material-
ization and the embedding. For every shape, there can only ever be a finite amount of
different materialization points, given that the rule set is finite.

Lemma 23 (Materialization Sets are Finite). Let S be a shape, and letR be a finite set
of graph rules. Then we have |MR (S)| ∈ N0.

Proof. It is well known that, for any two setsA,B, the number of different mappings
fromB toA is given by |A||B| ∈ N0 Thus, for any rule P , the number of mappings
fromLP into S is finite, and therefore the number of potential matchesm is also fi-
nite. As per Def. 46, the number of materializations for any given potential match is
given by 2n, where n is the number of summary nodes in the match. Therefore, every
rule P ∈ R has a finite number of materializations for any given shape S. Since there
is one materialization point for every possible materialization of each rule inR, we can
thus conclude that |MR (S)| ∈ N.

Having defined entry and materialization points, we can move on to defining the
STT nodes themselves.

Definition 79 (STT Node). Let G = (I,R) be a graph transformation system. Let
further A be an abstraction scheme and S = (A (I) ,R) be the shape transformation
system for G w.r.t. A. An STT node in this context is a triple

(
Sin, S,M

)
, where

G
(
Sin
)
∩ G (S) ̸= ∅ andM = MR (S).

142

Figure 5.5: Schemaধc of an STT node

Figure 5.5 shows a schematic of an STT node
(
St
i , Si,M

(
Si
))

. As the definition
above states, each STT node has one entry point, here designated St

i . The intention
of this entry point is to serve as the anchor point for the single incoming edge for the
node. For inner nodes and leaves, this shape will be the unabstracted result shape of the
transformation represented by the incoming edge. For the root, having no incoming
edge, this shape will be the initial graph of the GTS.

The central shape S serves as a label for the entire node. All other shapes in the node
are embedded into it, cutting out sections of the graph set covered by S.

The materialization points, here labeled just with the materialized shapes
Sm0
i , . . . , Smk

i themselves, serve as anchor points for outgoing edges. They can also
represent a potential error in the state, if they contain a materialization of the error
pattern rather than the left hand side of a rule.

In a tree made up of these nodes, edges connect STT nodes. Each such edge is associ-
ated with exactly one materialization point and one entry point. They are labeled with
the rule that is applied in the corresponding transformation and the materialization
point that serves as the basis for that transformation. These transition edges give the
STT its tree structure.

In analogy to the abstract reachability trees used by McMillan, STTs use a second
kind of edge to indicate a coverage relationship. Covering edges go from covered nodes
to the nodes that cover them. The thusly defined covering relationship means that the
state represented by the covered node is already completely represented by the covering
node. Further exploration beyond that node is thus unnecessary. In order to properly

143

define the STT, we first state a basic definition of a generic tree.

Definition 80 (Tree). A graph G =
(
N,E1, E2

)
over a label set L = (UL, BL) is a

tree if and only if

∃!ρ ∈ N : ∀ρ ̸= n ∈ N : ∃!π ∈ E2∗ : π = (ρ, l1, x) · · · (y, lk, n) , k ∈ N

The unique node ρ is then called the root of G, and for each node n ∈ N the unique
path π from ρ to n is called the root path π (n). A tree defines a partial order on its
nodes, called the ancestor relation ⪯. It is defined by

⪯ :=
{
(n,m) ∈ N ×N | ∃π ∈ E2∗ : π = (n, l, x) · · ·

(
y, l′,m

)}
This structure forms the basis of the STT. Similar to graphs, there are various ways

to define substructures of trees that can be removed, modified, or added. For the al-
gorithms manipulating STTs that we will define in Section 5.3 and Chapter 6, we will
specifically need two concepts: subtrees, and tree pruning.

Definition 81 (Subtree, Tree Pruning). Let T =
(
N,E1, E2

)
be a tree over a label set

L. Let n ∈ N . Then the tree Tn =
(
Nn, E

1
n, E

2
n

)
over L is the subtree rooted in n, if

and only if

Nn = {m ∈ N | n ⪯ m}
E1

n =
{
(u,m) ∈ E1 | m ∈ Nn

}
E2

n =
{
(m1, b,m2) ∈ E2 | m1,m2 ∈ Nn

}
By removing the subtree for a node n from a tree T , it can be pruned at n, leading to
the tree T ′ = T \ Tn, defined by

N ′ = N \Nn ∪ {n}

E1′ = E1 \ E1
n ∪

{
(u, n) ∈ E1

}
E2′ = E2 \ E2

n

Having established these basic structures, we can now move on to extend them for
the purpose of representing unfoldings of STSs. The following definition states the
basic structure of an STT.

Definition 82 (Shape Transition Tree). Let G = (I,R) be a GTS, let A be an ab-
straction scheme, and let S = (A (I) ,R) be the corresponding STS. Let N be the
set of all possible STT nodes usingR, letM be the set of all materialization points
and E the set of all possible embeddings.. A Shape Transition Tree is a tuple T =(
N,E1, E2, C, lc

)
, where

144

• N is an arbitrary set,

• E1 ⊆ N ×N , E2 ⊆ N × (R×M)×N are sets such that
(
N,E1, E2

)
is a

tree over the label set L = (N ,R×M), rooted in ρT ∈ N ,

• ∀n ∈ N :
∣∣{x, n} ∈ E1

∣∣ = 1, i.e. all nodes have exactly one label given by a
unary edge,

• C ⊆ N ×N is a set such that ∀ (n,m) ∈ C : n ̸⪯ m,

• lc : C → E is a labeling function.

E2 is the set of transition edges, while C is the set of covering edges. For any transi-
tion edge e, re denotes the rule applied, while

(
Sm
e , f

m
e

)
denotes the materialization

point used, i.e. le (e) =
(
re,
(
Sm
e , f

m
e

))
. For any node n, Sn denotes the central

shape of its associated STT node (via the unary edge), while Sin
n denotes its incoming

shape, i.e.
((
Sin
n , Sn,M

(
Sn
))
, n
)
∈ E1. The set of covered nodes, i.e. the set of

nodes with outgoing covering edges, is denoted NC = {n ∈ N | ∃m ∈ N : (n,m) ∈ C}.

This definition establishes the “syntactical” structure of a shape transition tree. Sub-
trees and tree pruning extend to this data structure in the obvious way, by restricting
C and lc to the respective part of the tree. For ease of presentation, we will occasion-
ally conflate the concepts of a node in the STT and an STT node, e.g. by stating that
transition edges connect STT nodes even though this is technically not the case.

So far, our definition allows many STTs that are not in any way valid unfoldings of
an STS. This property of an STT is defined separately.

Definition 83 (STT Validity). Let G = (I,R) be a GTS. An STT T =
(
N,E1, E2, C, lc

)
is called a valid unfolding of or a valid STT for G, if and only if

1.
((
I, S0,M

(
S0
))
, ρT

)
∈ E1, with I ∈ G

(
S0
)

i.e. the root is the abstraction of I ,

2. ∀e = (n,m) ∈ E :
(
Sm
e , f

m
e

)
∈ M

(
Sn
)
∧ Sn −

re,m,Sm
e−−−−−→ Sin

m ,
i.e. transition edges represent shape transitions,

3. ∀n ∈ N \NC : ∀ (Sm, fm) ∈ M
(
Sn
)
:[

G (Sm) = ∅ ∨ ∃e ∈ E2 :
(
(Sm, fm) =

(
Sm
e , f

m
e

))]
,

i.e. all materialization points of non-covered nodes are either invalid or explored,

4. ∀n,m ∈ N : (∃ (n,m) ∈ C) → Sn ⊑lc(n,m) Sm ∧ ¬∃ (n,m′) ∈ E2,
i.e. covering edges imply an embedding and no covered nodes are explored, and

145

5. ∀n : Sin
n ⊑ Sn,

i.e. the incoming shape is covered by the central shape.

Note that, since error materializations cannot be explored (because patterns cannot be
applied), condition 3 implies that there are no valid materializations of the error any-
where in T . Note also, that in a valid STT, the set of leaf nodes is formed by NC , the
set of covered nodes, and by nodes with materialization sets that contain no valid shapes.

A valid STT represents a complete unfolding of a (possibly infinite-state) graph
transformation system. This idea of an STT “representing a GTS” motivates the fol-
lowing definition, which provides the answer to the question which particular graphs
from a GTS are represented by any given shape in the STT. The concept of a local
graph set is a slight extension of the concept of corresponding concrete traces from
Sec. 3.5 and Sec. 4.5.

Definition 84 (Local Graph Set). Let G = (I,R) be a GTS, let A be an abstraction
scheme, and let S =

(
S0 := A (I) ,R

)
be the corresponding STS. Let S0 −P1,m1,Sm1−−−−−−→

· · · −Pk,mk,S
mk−−−−−−−→ Sk be an abstract trace of length k. Then, for every i ∈ {1, . . . , k},

let the local graph set Γi be defined by

Γ0 := {I}

Γi :=
{
G | ∃G′ ∈ Γi−1 :

[
G′ ⊑f S

mi ∧ ∃m′ :
(
m = f ◦m′ ∧G′ −Pi,m

′
−−−→ G

)]}
The local graph set defines for every prefix of an abstract trace the set of graphs that

can be produced by the original GTS by following the constraints of the abstract trace.
In other words, for every shape Si along the trace, Γi defines the set of graphs from
the original reach set it actually represents, as opposed to the totality of all graphs that
are embedded into it. Note that Γi can be empty, if the abstraction is so coarse that it
includes behavior that can not be replicated by the GTS at all. This will usually be the
case. Since every node in an STT has an associated root path, and thus an abstract trace,
we denote the local graph set for an STT node n by Γ (n).

We will now show that a graph transformation system can only have a valid STT if it
is free of the error pattern.

Figure 5.6 shows an example for a valid STT for the linear list example using the
canonical abstraction from Def. 64. In the interest of a concise presentation, unary
edges have been omitted – list nodes are denoted by diamond-shaped nodes, while cell
nodes are denoted by regular, circular nodes. Solid edges are transition edges, dashed
edges are covering edges. Each STT node is denoted by its central shape only.

We can see that the STT does not contain any materializations of the error pattern –
a single cell node with a next self-edge. Each shape in which the error could potentially

146

h t

h t h t

h t h t
x

x x
x

h
t

n

n

n

h
t

n

n

t

n

nh hht

x

h t
x

h t h t
x

n

x
t

n

h
h t

h t

start

end

add

end

add add del del

end

end start

add add del del

n
n n

x x
x

ht

n

n

ht

n

n

t

n

nh hht

x

h t
x

n
n n

ht ht ht ht

Figure 5.6: A valid shape transiধon tree for the linear list example.

147

materialize has been annotated with a constraint forbidding exactly that concretization.
Thus, from this STT we conclude that the linear list example is free of that particular
error pattern.

In order to prove that this is sound, we need to prove that a valid STT can only
cover an error-free GTS. For this, we need to prove that

1. no covered node could potentially produce paths in its subtree that are not
covered by paths in the covering node’s subtree, and

2. each path in the transition system of the GTS corresponds to a path in the STT
(possibly using covering edges).

From Definition 83, we already know that the root of a valid STT is an overapprox-
imation of the initial graph of a GTS (Condition 1). We further know that each tran-
sition edge represents a valid shape transition (Condition 2). Thus, by the soundness
of shape transitions (see Lemma 6), we already know that paths through the STT that
do not involve covering edges represent valid overapproximations of paths through the
transition system of the GTS. What remains to be seen is that an STT node is marked
as covered only when exploring it could absolutely not yield any new behavior. Closely
linked to this is the following lemma. It states that when a shape S is embedded into
another shape S′, then every one of its materializations (w.r.t. a fixed rule setR) is em-
bedded into one of the materializations of S′.

Lemma 24 (Embedding implies Materialization Coverage). LetR be a set of rules, and
let S, S′ be shapes such that S ⊑f S′. Then for every shape Sm ∈ MR (S), there
exists a shape S′m′ ∈ MR (S′), such that Sm ⊑f ′ S′m′ , for some embedding function
f ′.

Proof. Let Sm ∈ MR (S) be a materialization for a rule P ∈ R, with Sm ⊑fm S
that preserves a set of summary nodes I . By the embedding property, the potential
matchm used to construct the embedding has a corresponding matchm′ = f ◦ m
for the shape S′. By the transitivity of embeddings, we have Sm ⊑g S

′, where g :=
f ◦fm. We now choose a materialization S′m′ ∈ MR (S′) for the rule P such that the
set I ′ of preserved summary nodes satisfies f (I) ⊆ I ′, i.e., it contains the embedding
targets of all summary nodes preserved by Sm. We can now construct an embedding
Sm ⊑f ′ S′m′ as follows.

f ′ (n) :=

{
n if n ∈ NLP

f (n) otherwise

Since a materialization is constructed (see Def. 46) by removing the match, inserting
the left hand side of the rule, while preserving all summary nodes in I , this is indeed a

148

valid function mapping Sm into S′m. It is also a valid embedding, since it is in effect
a union on disjoint supports between a valid embedding and the identity function on
NLP

.

Every materialization point of a covered shape is thus covered by at least one materi-
alization point of the covering shape. From the soundness of shape transformation (see
Lemma 6), we know that the coverage relationship is preserved in rule applications.
Now, the goal is to show that any behavior that follows from a covered node is nec-
essarily covered by the behavior that follows the covering node. All we really need to
know is whether any actual graph traces that might possibly be covered by the abstract
trace through a covered node is covered by the behavior that follows the covering node.
For this reason, we can ignore the abstraction for the hypothetical behavior induced by
the covered node. Thus, the following lemma states that the subtree of concrete graphs
under a covered node, is also covered by the subtree under the covering node.

Lemma 25 (Node Coverage implies Subtree Coverage). Let T =
(
N,E1, E2, C, lc

)
be a valid shape transition tree for a GTS G = (I,R) and an abstraction scheme A,
and let n, n′ ∈ N be two nodes in that tree such that

((
Sin, S,MR (S)

)
, n
)
∈ E1,((

S′in, S′,MR (S′)
)
, n′
)
∈ E1, and (n, n′) ∈ C . Let further Tn′ be a shape

transition tree forR, rooted in n′, and using the abstraction scheme A. Let Γ (n) be
the local graph set of n. Then we have that for every sequence of graph transitions

G0 −P1,m1−−−→ · · · −Pk,mk−−−→ Gk

of length k with G0 ∈ Γ (n), there is a mapping π : {G0, . . . , Gk} → N , such that
∀i ∈ {0, . . . , k − 1} we have

∃ (Sm, fm) ∈ M
(
Sπ(Gi)

)
:Gi ⊑fi S

m ∧ Sπ(Gi) −
Pi+1,S

m,fi◦mi+1−−−−−−−−−−→ Sπ(Gi+1)

(5.3)

Note that the path in the image of π might contain covering edges.

Proof. See Appendix A, page 248.

Thus we can conclude that it is sound to terminate the exploration of an STT at
covered nodes, since any behavior that could be discovered beyond the covered node is
surely represented by the behavior beyond the covering node. Note that, in particular,
the embedding theorem implies that any match for the error pattern that could be
found beyond the local graph set of a covered node is guaranteed to turn up in the
path through the tree described by π. The subtree coverage lemma, together with the
soundness of shape transformations, essentially implies that all paths of a GTS are
represented by any valid shape transition tree that was constructed for it on the basis of

149

its initial graph and some abstraction scheme. The following lemma restates this in a
more explicit manner.

Lemma 26 (Path Coverage Lemma). Let G = (I,R) be a graph transformation
system, and let A be an abstraction scheme. Let T =

(
N,E1, E2, C, lc

)
be a valid

STT corresponding to G with root node ρT =
(
I, S0 := A (I) ,M

(
S0
))
. Let π :=

I −P0,m0−−−→ G1 −P1,m1−−−→ · · · be some (possibly infinite) path through trans (G). Then
there exists a mapping g that maps every graph in π to an edge in E2, such that ∀i ≥ 0

Gi ⊑ Sg(Gi) (5.4)

Gi ⊑fi S
m
g(Gi)

(5.5)

Sg(Gi) −
Pi,S

m
g(Gi)

,fi◦mi

−−−−−−−−−→ Sg(Gi+1) (5.6)

holds.

Proof. Lemma 25 implies that such a function g exists for any finite path up to an arbi-
trary length k. The existential nature of the abstraction (expressed in the Embedding
Theorem) ensures that whenever the concrete path can be extended, the abstract path
can be extended as well.

We can now formulate the central point of shape transition trees, i.e., that the exis-
tence of a valid STT for a given GTS implies that that GTS is free of the error pattern..

Theorem 4 (Valid STTs cover valid GTSs). Let G = (I,R) be a graph transfor-
mation system, let E be an error pattern, and let A be an abstraction scheme. Let
T =

(
N,E1, E2, C, lc

)
be a valid STT corresponding to G with root node

ρT =
(
I, S0 := A (I) ,M

(
S0
))
.

Then there is no G ∈ trans (G) such that JφEKmG = 1 for anym.

Proof. Assume that there is a nodeGe ∈ trans (G) such that JφEKmGe
= 1 for some

error matchm. Then there is a shortest path from the initial graph I toGe through
trans (G). Let I −P0,m0−−−→ G1 −P1,m1−−−→ · · ·Gk −Pk,mk−−−→ Ge be that path. Then, the
Path Coverage Lemma (26) implies that there is a node n ∈ T such that Sn potentially
matches the error. This contradicts the validity of T .

This shows that a GTS can be considered free of a given error pattern, if a valid STT
for that GTS and error pattern can be constructed. The question that remains is how
to construct an STT for a given GTS in such a way that the result is guaranteed to be
valid if the GTS is error-free. Section 5.3 deals with the basic construction algorithm
that delivers this, assuming a refinement algorithm that is explained in Section 6.

150

5.3 Basic Construction Loop of an STT

The basic idea of how to construct a valid STT for a given GTS (if possible) is as fol-
lows. We begin with a graph transformation system G = (I,R), an abstraction scheme
A, and an error patternE. We construct the root node ρT = (I, S0,MR (S0)) of
the STT by abstracting I to S0 usingA, and computingMR (S0). Using the shape
feasibility encoding (see Sec. 4.7), we mark all materialization points that have empty
graph sets. For each remaining materialization point, we then construct an outgoing
transition edge by applying the associated rule to the materialized shape. We obtain an
unabstracted result shape to which we can apply the abstraction scheme, creating a new
STT node as the target of the edge in the process. For these newly created STT nodes,
we check whether their central shapes are embedded into the central shapes of any
of the already explored nodes (currently only the root node). We add covering edges
where such embedding relations exist, and compute the materialization sets where they
do not. With each of the remaining new nodes, we now proceed exactly as we did with
the root node. This continues until we have constructed a tree where all leaf nodes are
covered or contain no valid materializations.

Two issues can prevent us from completing this process successfully.
If the GTS is not safe, or if the initial abstraction is so coarse that it creates spurious

errors, we will eventually produce an STT node that contains a feasible materialization
point for the error pattern. In such cases we must examine the error, decide whether
the error is real, and, if it is not, somehow improve the abstraction. This is covered in
Chapter 6.

It is also possible that the exploration does not terminate, if the abstraction is too
precise. This is an expected and unavoidable complication, since we are dealing with an
undecidable problem.

Assuming that the construction of the STT terminates and that no error nodes are
encountered, the resulting STT will be valid (by construction) and prove G safe with
respect toE.

In the following, we will properly define the construction process sketched above,
identify and describe the individual sub-algorithms that compose it, and prove that an
error-free termination does in fact always produce a valid STT.

Examining the high-level process described above, we observe that there are a num-
ber of discrete actions that are taken. For the purpose of specifying the overall con-
struction algorithm, we will assume that each of these actions is performed by its own
sub-algorithm. Data that pertains to the overall algorithm, such as the rule set, er-
ror pattern, or abstraction scheme used, is assumed to be globally defined and shared
among the individual sub-algorithms. The actions that we will integrate in this manner
are the following

151

• Sets of materialization points are computed – this is called node expansion.

• Materialization points are checked for emptiness of their graph sets – this is
called the feasibility check.

• Shape transformations are computed for feasible, non-error materialization
points, yielding new STT nodes – this is called node exploration.

• Central shapes of newly constructed nodes are checked for embeddings into the
central shapes of existing nodes during a coverage check.

• Finally, upon discovering a feasible error materialization Se, error handling is
invoked to refine the abstraction. This semi-automatic sub-algorithm either
terminates the analysis with a real error, or restructures the STT in such a way
that the (infeasible) error can no longer occur.

Before we can define the main algorithm or examine its correctness, we must define
the exact effect of each of these algorithms on the STT. For this, we need to slightly
adjust our definition of an STT node in order to account for the fact that the creation
of a node (done during exploration) is separated in the construction process from the
computation of its materialization points (done during expansion).

Definition 85 (Tentative STT Node). Let A be an abstraction scheme. A tuple
(
Sin, S, ∅

)
is called a tentative STT node iff Sin is a valid entry point for S.

Using this new concept, we now understand that node exploration produces tenta-
tive STT nodes, while node expansion turns them into fully realized STT nodes. This
is useful in the formal definition of the effects of these sub-algorithms, which we will
now establish to facilitate the proof of correctness of the main algorithm. We begin
with the EXPAND-algorithm.

Definition 86 (Valid EXPAND-algorithm). An algorithm taking as input a tentative
STT node n =

(
Sin, S, ∅

)
of an STT T , a rule setR and an error pattern P is said

to be a valid EXPAND-algorithm, if and only if after its execution the following conditions
hold:

(a) n =
(
Sin, S,MR (S)

)
, and

(b) no other parts of T are modified.

Thus, a valid EXPAND algorithm computes the materialization set for a tentative
node, turning it into a regular STT node. Not all of those materializations will be fea-
sible. In order to identify those that are not, a valid CHECKFEASIBLE algorithm can be
used.

152

Definition 87 (Valid CHECKFEASIBLE-algorithm). An algorithm is a valid CHECK-
FEASIBLE-algorithm if and only if it takes a shape S as input, returns a value b ≥
(G (S) ̸= ∅), always terminates, and has no side-effects.

Note that this definition does not require that infeasible shapes are always detected.
As in other instances in this thesis when the satisfiability of a first-order formula is de-
termined, there is the possibility that this analysis will not terminate (or time out, de-
pending on implementation). If an infeasible shape is not detected, this does not com-
promise the soundness of the overall analysis – it just means that more spurious parts
of the state space will be explored. On the other hand, if a feasible shape were deemed
infeasible, this could lead to error paths being overlooked. Thus, in our definition for
the CHECKFEASIBILITY algorithm we demand that a timeout (or some other measure
guaranteeing termination) be implemented and that the algorithm err on the side of
feasibility.

Once individual materialization points have been deemed feasible, they can be ex-
plored, i.e. the shape transitions they represent computed and new STT nodes created.
We now define the specific conditions that the exploration needs to satisfy.

Definition 88 (Valid EXPLORE-algorithm). Let n =
(
Sin, S,M

)
be an STT node

in an STT T =
(
N,E1, E2, C, lc

)
, and let x be the node it labels (in E1). For

every
(
Sm
i , f

m
i

)
∈ M with i ∈ {1, . . . , |M |} such that G

(
Sm
i

)
̸= ∅, let

Pi be the rule used to construct the materialization, and let St
i be the shape such that

Sm
i −Pi,id−−→ St

i . An algorithm taking as input a unary edge
(
n =

(
Sin, S,M

)
, x
)

of an STT T =
(
N,E1, E2, C, lc

)
and returning a set T of tentative STT nodes

(again, as unary edges), is a valid EXPLORE-algorithm if and only if after its execution
the following conditions on the resulting STT T ′ =

(
N ′, E1′, E2′, C, lc

)
are satisfied:

T =
{
n1, . . . , n|M |

}
N ′ = N ∪ T

E2′ = E2 ∪
{(
n,
(
Pi,
(
Sm
i , f

m
i

))
, ni

)
| i ∈ {1, . . . , |M |} ∧ G

(
Sm
i

)
̸= ∅
}

E1′ = E1 ∪
{((

St
i ,A

(
St
i

)
, ∅
)
, ni

)
| (n, l, ni) ∈ E2′

}
This relatively complex definition merely assures that transition edges are added to

the STT labeled with correct transitions and only for those materialization points that
are feasible. Furthermore it ensures that the tentative nodes created by the algorithm
are constructed by merely applying the abstraction scheme to the transformed shape.
Before these tentative nodes can be transformed into full STT nodes we must make
sure that their graph set is not already covered by some other full STT node in the tree.

153

This is done by using the COVER-algorithm to check for embedding relations between a
given pair of nodes,

Definition 89 (Valid COVER-algorithm). An algorithm taking as input two unary edges
(n, x) and (m, y) of an STT T is a valid COVER-algorithm if and only if it always
terminates and returns a function f , such that

(f = ∅) ∨
(
x ̸⪯ y ∧ Sn ⊑f Sm

)
Note that, again, as in the case of the CHECKFEASIBILITY algorithm, we do not

demand that the COVER-algorithm return an embedding if one exists. We only require
that any function it does return is an actual embedding and that the resulting embed-
ding edge would not connect n to a nodemwithin its own subtree.

These algorithm descriptions cover everything the main algorithm does except for
error handling. Analyzing a trace and refining the abstraction along its path is a much
more complex task than the tasks performed by the other sub-algorithms, leading to an
equally complex set of requirements for a valid algorithm that accomplishes said task.
However, if we want to prove correctness of the main algorithm effectively, we need to
specify, as abstractly as possible, the effect of the HANDLEERROR-algorithm on the STT.

Definition 90 (Valid HANDLEERROR-algorithm). Let A be an algorithm operating on
an STT T for a GTS G, taking an STT node n and one of its materialization points(
Sm
ϵ , f

m
ϵ

)
for an error pattern E as an input. Let

π (n) = e1 · · · eϵ with ei =
(
ni−1,

(
Pi−1,

(
Sm
i−1, f

m
i−1

))
, ni

)
be the root path of n. A is called a valid HANDLEERROR-algorithm, if and only if it
always terminates and for any given parameters, and its effect is exactly one of the fol-
lowing:

(a) If Γ (nϵ) ∩ G
(
Sm
ϵ

)
̸= ∅, it returns (π, (n)), where π is an error path through

trans (G) corresponding to π (n), and does not modify T .

(b) If Γ (nϵ) ∩ G
(
Sm
ϵ

)
= ∅, let k be the smallest integer such that Γ (nk) ∩

G
(
Sm
k

)
= ∅. For any 0 ≤ i ≤ k, let furthermi, Pi, and Ii be the match, rule,

and subset of summary nodes used to construct Sm
i , and let Ti =

(
Ni, E

1
i , E

2
i , Ci, lci

)
be the subtree rooted in ni. Finally, let 0 ≤ j ≤ k. Then HANDLEERROR returns
(∅, (nj , . . . , nk)) and modifies T =

(
N,E1, E2, C, lc

)
such that the resulting

STT T ′′ =
(
N ′′, E1′′, E2′, C ′′, l′′c

)
is defined by

(
N ′, E1′, E2′, C ′, l′c

)
=

154

T ′ := T \ Tj and the following conditions:

N ′′ = N ′ ∪ {nj , nj+1, . . . , nk}

E1′′ = E1′ \ {(xj , nj) , (xj+1, nj+1) , . . . , (xk, nk)}
∪ {(yj , nj) , (yj+1, nj+1) , . . . , (yk, nk)}

yi =
(
S′in

k−i,
(
Sk−i,Λ

′
k−i := Λk ∪ {(αi,mi)} ,MR

((
Sk−i,Λ

′
k−i

))))
E2′′ = E2′ ∪

{(
nj ,
(
Pj ,
((
Sm
j ,Λ

m
j ∪ concrfm

j
(αj ,mj)

)
, fmj

))
, nj+1

)
, . . . ,(

nk−1,
(
Pk−1,

((
Sm
k−1,Λ

m
k−1 ∪ concrfm

k−1
(αk−1,mk−1)

)
, fmk−1

))
, nk

)}
C ′′ = C ′ \ {(x, l, y) | y ∈ {nj , . . . , nk}}
l′′c = l′c

y
C′′

where each (αi,mi) is a shape constraint such that the materialization Smi
i from

(Si,Λ
′
i) usingmi, Pi, and Ii is infeasible, i.e.

G
(
Smi
i

)
= ∅ , as well as

S′in
i ⊑

(
Si,Λ

′
i

)
, and thus

Γ (ni) ⊆ G
((
Si,Λ

′
i

))
.

This fairly complex definition merits a more intuitive explanation. Essentially, the
HANDLEERROR sub-algorithm decides whether the abstract trace it is given covers a real
error. If so, this error is returned and the tree is not modified. If the error is spurious,
HANDLEERROR determines the failure point k – the point at which the abstract trace
becomes spurious. It also chooses an index j < k and then refines the central shapes of
the nodes nj through nk with one additional constraint each. The transformed shapes
along the refined path segment, along with the materialization sets of the refined nodes
are then recomputed. All behavior under the refined nodes except for the refined path
is removed. Figure 5.7 shows a schematic of this process.

Note that the HANDLEERROR sub-algorithm depends on solving a long first-order
formula. This does not create termination problems, since by construction our trace
encoding uses a finite domain, guaranteeing decidability.

However, as we will see in Chapter 6, the automatic part of the analysis is not guar-
anteed to find a suitable refinement. This motivates the implementation of HAN-
DLEERROR as a semi-automatic algorithm, with a human designer complementing the
automatic refinement process where necessary. Due to this human component, the
concept of termination becomes somewhat fuzzy, since it depends on the ability of the

155

error

k=failure point

j=refinement
 point refined node

refined node

refined node

Figure 5.7: Schemaধc Visualizaধon of the refinement process

user to create refinements. For the remainder, we will assume that, when queried, a hu-
man designer can, in cooperation with the algorithm (see Chapter 6), always produce a
suitable refinement.

Now, using valid implementations of the sub-algorithms defined above, we can
finally formulate the overall construction algorithm, and convince us of its correctness.
Listing 5.1 shows the Pseudocode formulation of the algorithm.

Theorem 5 (Correctness of Construction Algorithm). Let G = (I,R) be a graph
transformation system, let P be an error pattern, and let A be an abstraction scheme.
Let the algorithms EXPAND, EXPLORE, CHECKFEASIBILITY, COVER and HANDLEER-
ROR be valid, according to Definitions 86, 87, 88, 89 and 90. Then the main construction
algorithm (see Listing 5.1), applied to the inputs G and P , will either

(i) not terminate,

(ii) terminate and produce a concrete error path through trans (G), or

(iii) terminate and produce a valid STT T .

Proof. See Appendix A, page 249.

The above proof and thus the validity of Theorem 5 hinges on the correctness of
the individual sub-algorithms. Thus, we will now examine each of them in detail and
prove that they conform to Definitions 86, 87, 88, 89, and 90, respectively.

156

Lisধng 5.1: Main construcধon algorithm� �
1 Input: Initial graph I, rule set R, error pattern P

2 S0 <- A (I); ρ <-
(
I, S0,MR

(
S0

))
;

3 T <- (r, {(ρ, r)} , ∅, ∅, ∅);

4 E <- {(ρ, r)}; K <- ∅;

5 while (E ̸= ∅) do

6 Choose and remove (n, x) from E;

7 for each (m, y) ∈ K do

8 F <- COVER(n, m);

9 if ∃f ∈ F then

10 CT <- (n,m); lc <- lc ∪ {((n,m) , f)};

11 break;

12 fi;

13 od;

14 if (∃ (n, l,m) ∈ C) continue;

15 EXPAND(n);

16 for each
(
Sm, fm

)
in (M

(
Sn

)
) do

17 if not CHECKFEASIBLE(Sm) then

18 mark materialization point
(
Sm, fm

)
invalid in n;

19 fi;

20 od;

21 for each valid (Se, fe) ∈ M
(
Sn

)
do

22 (p, (n1, . . . , nl)) <- HANDLEERROR(n, (Se, fe), T);

23 if not (p is empty) then

24 return p;

25 else

26 K <- K \ {n1, . . . , nl};

27 n <- n1;

28 E <- E ∪ {x | n ∈ (n1, . . . , nl) ∧ (x, n) ∈ CT } ∪ {n2, . . . , nl};

29 fi;

30 od;

31 E <- E ∪ EXPLORE((n, x)); K <- K ∪ {(n, x)};

32 od;

33 return T� �
157

Lisধng 5.2: EXPAND sub-algorithm� �
1 Input: STTNode

(
Sin, S,M

)
2 M <- ∅;
3 for each r in ({P} ∪ R) do
4 for each potential match m for r do
5 for each keepSet i for r,m do
6 Sm <- materialization for S, r,m, i;
7 fm <- Embedding of Sm into S

8 M <- M ∪ {(Sm, fm)};
9 attach materialization point for Sm to n

10 od;
11 od;
12 od;� �

The EXPAND sub-algorithm

The EXPAND sub-algorithm is a simple computation of the materialization set of a
given STT node. Listing 5.2 shows a Pseudocode representation of this algorithm. No
further properties than the correct computation of materializations is required here.
Thus we can assume that EXPANDworks as required in Def. 86.

The EXPLORE sub-algorithm

The EXPLORE sub-algorithm similarly simply performs shape transformations as de-
fined in Chapter 3. Examining Listing 5.3, it is easy to see that, in terms of Def. 88 and
the proof of Thm. 5, EXPLOREmaintains the loop invariant in the sense that it reestab-
lishes the condition that all nodes must either be covered, marked for expansion (here,
returned in T), or have transition edges attached to all feasible materialization points.
The loop on lines 4− 13 goes through all feasible materializations. For each such mate-
rialization, lines 6 − 7 compute the result shape, line 8 constructs a new tentative STT
node for the result shape using the abstraction scheme, and lines 9 − 12 add that node
and the corresponding label and transition edge to the correct sets. Thus, EXPLORE
works as required by Def. 88.

The CHECKFEASIBILITY sub-algorithm

The objective of the CHECKFEASIBILITY sub-algorithm is to determine whether the
graph set for the given constrained shape is empty. This is achieved using the feasibil-
ity encoding described in Sec. 4.7. The given shape is encoded into an SMTLib script,

158

Lisধng 5.3: EXPLORE sub-algorithm� �
1 Input: Unary Edge

((
Sin, S,M

)
, n
)

2 T =
(
N,E1, E2, C, lc

)
<- STT of n;

3 T <- ∅;
4 for each (Sm, fm) in M do
5 if (G (Sm) = ∅) then continue;
6 P <- rule used to construct Sm;
7 St <- Apply P to Sm at id;
8 m <- (St,A (St) , ∅);
9 T <- T ∪ {(m,x)};
10 N <- N ∪ {x};
11 E1 <- E1 ∪ {(m,x)}
12 E2 <- E2 ∪ {(n, (P, (Sm, fm)) , x)};
13 od;
14 return T;� �

processed by a solver, and the result returned as a simple boolean response. The result-
ing algorithm is exceedingly simple, restricted to simply call the encoder, and then the
solver. In the case of a timeout, 1 is returned. Otherwise, the return value is

b :=

{
1 , if result is SAT
0 , if result is UNSAT

The COVER-algorithm has a similar part, so we will forgo making the CHECKFEA-
SIBILITY algorithm explicit here, and just assume that we have a valid implementation
of the algorithm conforming to Def. 87, based on the correctness of the feasibility en-
coding established in Lemma 22.

The COVER sub-algorithm

The COVER algorithm is a bit more involved than EXPAND, EXPLORE, and CHECK-
FEASIBILITY. The objective is, given two STT nodes n andm, to compute a valid
embedding from Sn to Sm, if such an embedding exists. This is the first instance in
this thesis, where we have to decide if there exists an embedding relationship between
to possibly constrained shapes. Thus far, we have not properly defined how such a check
would be performed (see Def. 61).

As a reminder, Sn can, axiomatically speaking, be thought of as being embedded
into Sm, if and only if G

(
Sn
)
⊆ G

(
Sm
)
, as specified in Def. 61. This is the case if a

classical embedding f exists such that Sn ⊑f Sm, and the constraints of Sm, projected

159

onto Sn, do not further restrict the meaning of Sn. If we think of a shape as formulat-
ing conditions on the graphs embedded into it, we can express this same thought in the
language of logic – the restrictions imposed by concrf

(
ΛSm

)
on embedded graphs

are implied by the restrictions imposed by Sn andΛSn , respectively. In other words, if
Sn ⊑f Sm holds, then no graph can exist that is embedded into Sn but violates some
constraint in concrf

(
ΛSm

)
.

Lemma 27 (Constraint Implication implies Embedding). Let (S,Λ) and (S′,Λ′) be
shapes such that S ⊑f S

′ for some f . Then we have (S,Λ) ⊑f (S′,Λ′) if and only if

∀G : G ⊑g (S,Λ) → G |= concrf◦g
(
Λ′)

Proof. First, (S,Λ) ⊑f (S′,Λ′) ⇒ ∀G : G ⊑g (S,Λ) → G |= concrf◦g (Λ
′).

If (S,Λ) ⊑f (S′,Λ′), then allG ∈ G (S,Λ)must be embedded in (S′,Λ′).
Since S ⊑f S′, the existence of an embeddingG ⊑g S implies the existence of an
embeddingG ⊑f ′:=f◦g S

′. This embedding is valid for the constrained shape (S′,Λ′),
iffG |= concrf ′ (Lambda′) by Def. 60.

Now, (S,Λ) ⊑f (S′,Λ′) ⇐ ∀G : G ⊑g (S,Λ) → G |= concrf◦g (Λ
′).

We know that S ⊑f S′, and that allG ∈ G (S,Λ) satisfy concrf ′ (Lambda′).
ThereforeG ⊑f ′ S′ for allG ∈ G (S,Λ), and the claim follows directly from Def. 60.

This last formulation suggests a simple solution to determining the embedding re-
lation between constrained shapes – we can use the shape feasibility encoding from
Sec. 4.7. This encoding can be thought of as consisting of two parts, two formulas: the
part encoding embeddability into the shape itself (comprised of Code Templates 30,
28, 29, 32, 33, 34, and 35), and the part encoding adherence to the constraints attached
to the shape (comprised of Code Templates 19 and 36). For any shape S, we will de-
note these parts ∥S∥ and ∥Λ∥S, for the sake of argument. Now, for the shape Sn, any
model of ∥Sn∥ ∧ ∥ΛSn∥ represents a graph embedded into it. In accordance with our
argument above, we can extend that to

∥Sn∥ ∧ ∥ΛSn∥ ∧ ¬∥ concrf
(
ΛSm

)
∥.

Any model of this formula would represent a graph that is embedded in Sn, but
does not satisfy at least one of the constraints implied by Sm. In other words, it would
be evidence, that the graph set of Sn is not fully covered by the graph set of Sm, re-
futing the embedding relation. On the other hand, if the formula is unsatisfiable,
then no such graph exists, and a valid embedding relation is established. That is the

160

Lisধng 5.4: COVER sub-algorithm� �
1 Input: STTNode n, STTNode m

2
3 F <- Compute all classical embeddings from Sn to Sm

4 for each f in F do
5 Sn <- EncodeFeasibility(Sn); // see Sec. 4.7

6 Λ <- concrf (Λm)

7 C <- EncodeConstraints(Λ); // see CoT. 36

8 result <- SolveWithTimeout(Sn ∧ ¬C); // any SMT solver (UF logic)
9 if (result == UNSAT) then
10 return f;
11 fi;
12 od;
13 return ∅;� �

basis of the COVER algorithm, shown in Listing 5.4. The correctness of the embed-
dings computed by it follows from the correctness of the shape feasibility encoding and
Lemma 27.

As was already hinted at in the definition of a valid COVER-algorithm (Def. 89),
the potential undecidability caused by quantifiers in the constraint encodings leads to
a problem that we have to handle via a timeout on line 8. In case the unsatisfiability
of the encoding cannot be decided within a certain time frame, SAT is assumed, i.e.
we assume that the embedding we were testing is invalid. This ensures that we only
return valid embeddings. We can also occasionally miss embeddings, but just as in the
CHECKFEASIBILITY case, this does not compromise soundness, just efficiency and,
potentially, termination.

With these straightforward sub-parts, the construction algorithm is almost com-
plete. The last missing piece is the algorithm that handles errors when found. Since this
process is much more complicated, it will be handled in its own chapter.

161

6
Interpolation-guided Refinement

Loop

The sheer expressive power of first-order logic, used to create constraints
in our shape abstraction approach, enables us to craft very precisely tuned abstractions.
The downside of this is the size of the design space for these constraints. When a spuri-
ous error is found in the course of the construction algorithm described in Section 5.3,
we must create a constraint, or possibly a series thereof, that removes the error from the
analysis. Left solely to a human designer, this is a very complex task, error-prone and
time-consuming. However, a fully automatic approach faces stiff challenges due to the
nature of the formalism, and might not always be able to craft constraints that are as
meaningful as constraints created by a human mind.

In this thesis, we adopt a hybrid approach. We will introduce two different proce-
dures to automatically generate constraints from a spurious error. Both of these proce-
dures create constraints applicable to a single point in the trace. In cases where only a
series of constraints would soundly exclude the error, this will be detected and a human
designer queried for those constraints. In designing the constraints, the designer will be
assisted by results from the automatic attempt at constraint design, as well as methods
to check the soundness of any constraints designed so far.

162

A Short Examination of Abstraction Refinement Approaches

Before we move on to describe our own approach to abstraction refinement in detail,
we will give the reader a short (if almost necessarily incomplete) overview over abstrac-
tion refinement approaches. As the basic idea of abstraction is widespread in all fields
of analysis, not just in software verification, so is the basic concept of abstraction refine-
ment. We will thus only look at a few examples in the field of verification in general,
and shape analysis in particular, that offer alternatives to the counterexample-based
refinements we already discussed on page 132.

Any approach at software verification that uses abstraction in any variable way,
that is, any approach that is able to use different abstractions for different problem
instances (or even the same instance) must incorporate some mechanism to configure
the abstraction. We will distinguish two ways of doing so: a priori and a posteriori ap-
proaches.

A priori abstraction refinement (or more accurately, abstraction configuration) ap-
proaches seek to adapt the abstraction to the problem at hand before applying it. This
usually involves heuristics about the structure of the system[117] or the error that is
searched for. Such approaches are orthogonal to the a posteriori approaches and can
be applied in conjunction with them. There has also been work to apply an a priori
approach to abstraction refinement to our abstraction process[42], using knowledge
derived from the structure of the graph transformation rules and the error pattern.

A posteriori abstraction refinement approaches are those which we normally asso-
ciate with the term “abstraction refinement”. Starting from a first, usually very rough
guess at an abstraction, the abstraction is iteratively refined, in either lazy or non-lazy
fashion, until the abstraction is precise enough to prove or disprove the desired prop-
erty. The quintessential example of this is of course counterexample-guided abstrac-
tion refinement. Before the introduction of CEGAR, though, and in many special-
ized cases where for whatever reason CEGAR is not applicable, a number of other
approaches to abstraction refinement have been explored. For the purposes of this
overview, an approach is only a true CEGAR approach when the entire counterexam-
ple (meaning a path from an initial state to an error state) is used for refinement. By
this definition, the following kinds of approaches outside the CEGAR approach exist.

In some cases, the abstraction is parametrized by a relatively small number of factors,
such as the radius in neighborhood abstraction (see Sec. 8.1), or even the path length in
bounded model checking*. The standard approach to refining such abstractions is very
simple – just keep increasing the numbers until the abstraction is sufficiently precise.
Heuristics may be applied to the stepping of those increases, such as using the “size”
of the property as a lower bound in neighborhood abstraction, but the basic principle

*For this, bounded model checking must be seen as an abstraction insofar as it represents an
under-approximation of the state space

163

remains the same.
When more flexible abstractions are used, more complex refinements are required.

As an example, Loginov, Reps and Sagiv[110] extend their shape analysis approach[134]
with an abstraction refinement approach that uses subformula-based heuristics com-
bined with inductive learning to gain new instrumentation predicates for their abstrac-
tion. If a verification approach uses theorem proving, the information by the prover
can often be used to refine the abstraction used, as done for example by Saïdi and
Shankar[135]. Other approaches may source their abstraction refinements from sources
completely external to the analysis itself – for example, Bauer, Toben and Westphal[23]
use separate analyses to gain insights about the system, such as topology invariants,
that can be used for abstraction refinement. The diversity of abstraction refinement
approaches is only bounded by the diversity of abstraction approaches.

The remainder of this chapter will be structured as follows. First, we will describe
how to differentiate spurious errors from real ones, and analyze the error trace itself as
well as the conditions that any useful refinement that excludes a spurious error would
have to meet in Section 6.1. Next, we will explore the possibilities for automatic ab-
straction refinement in Section 6.2. Finally, in Section 6.3, we describe the tools avail-
able to human designers when crafting constraints in cases where the automatic ab-
straction refinement methods fail. On the whole, this will constitute a semi-automatic
algorithm conforming to Def. 90 from the previous chapter.

6.1 Error Analysis and Conditions on Refinement

Before any abstraction refinement can take place, we must first make sure that it is even
necessary, that is, we must determine whether the error is really spurious. This is done
by checking if there is a corresponding concrete error in the original graph transfor-
mation system. Should such an error exist, we have proven the GTS unsafe and are
finished. On the other hand, if no such concrete error exists, we have detected a spu-
rious error, and must somehow refine the STT in such a manner as to exclude a re-
occurrence of that particular spurious error.

The starting point of our approach will be the trace encoding established in Chap-
ter 4, Section 4.5. Each materialization point for the error pattern that we might find is
attached to an STT node e, which defines a unique, abstract path from the root STT
node ρ to e. From the information contained in that root path, an abstract error trace
according to Def. 65 can easily be constructed. Thus, we are in a situation where we can
check for the existence of a corresponding concrete error trace, i.e. an “actual” error in
the original GTS (see Def. 66), by using the trace encoding described by Code Tem-
plate 24.

Clearly, if this encoding is unsatisfiable, then there is no corresponding concrete

164

error trace and therefore no behavior in the original GTS, erroneous or otherwise, that
is reflected by this abstract trace, which means that it can safely be removed from the
STT. On the other hand, since the encoding does use the original, initial graph for
its encoding and tries to find actual sequences of applications of the original rules to
mirror the behavior represented by the abstract trace, any model for this encoding will
represent an actual path through the transition system for the original GTS, ending in
a graph that matches the error pattern, in other words, an actual error. Thus, with the
encoding and solving of the trace encoding, the first task is complete – if the error is
real, we can construct a corresponding error path and return it.

To get to this point, the original formulation of the trace encoding was sufficient.
In order to extract useful constraint information from the trace, additional work is
needed. We will first focus on extracting additional information from the given encod-
ing, and then enhance the encoding to make it more useful for abstraction refinement.

If the encoding is unsatisfiable, then we know that at some point along the path, the
abstraction ceased to cover any actual behavior. It is this point that we need to find and
change in such a way that the remainder of the path can no longer be explored.

This change will be in the form of new shape constraints, attached to the central
shapes of STT nodes along the abstract trace in such a way that the constraints do not
allow the abstract trace to proceed to the error pattern, but also do not exclude any of
the behavior of the original graph transformation system. We codify these properties of
a useful and correct refinement in the following definition.

Definition 91 (Valid Refinement). Let π = e1 · · · ek with

ei =
(
ni−1,

(
Pi,
(
Sm
i−1, f

m
i−1

))
, ni

)
be the root path of an STT node nk =

(
Sin
k , Sk,Mk

)
such that

(
Se
k, f

e
k

)
∈ Mk is a

materialization for the error pattern. Let nj1 , . . . , nj2 , with ni =
(
Sin
i , Si,Mi

)
be a

sequence of STT nodes along that path. A sequence of constraints (αj1 ,mj1) , . . . , (αj2 ,mj2)
is a valid refinement for π if and only if

G
(
Sm
j2 ,Λ

m
j2 ∪ concrfm

j2
({(αj2 ,mj2)})

)
= ∅

the materialization at j2 is made invalid
∀i ∈ {j1, . . . , j2} : Sin

i ⊑ (Si,Λi ∪ {(αi,mi)})
the incoming shape remains embedded

∀i ∈ {j1, . . . , j2} , f,G :
[
G ∈ Γ (ni) ∧G ⊑f Si : G |= concrf ({(αi,mi)})

]
no actual graph is excluded

165

Note that the second condition implies the third. Note also that the first and last
condition taken together mean that j1 and j2 have to be chosen such that the materi-
alization at j2 is spurious. The objective of the semi-automatic algorithm described in
this section is to find such indices, construct a valid refinement as defined above and
add it to the STT at the appropriate point along the path. We will focus first on finding
this point, the exact spot where the abstract trace becomes spurious.

It stands to reason that, if there is some index i in the path π, after which no rule ap-
plied in the path has a concrete counterpart, that the parts of the encoding that encode
for steps i + 1 and later are inconsequential for that insight. This is because the encod-
ing of concrete traces corresponding to an abstract trace (see CoT 24) has the form

φ := ∥I∥ ∧ ∥step0∥ ∧ · · · ∧ ∥stepk∥,

where ∥I∥ is the encoding of the initial state, consisting of Code Templates 3, 5, 6,
and 23, while each ∥stepi∥ is an encoding of a rule application, consisting of instances
of Code Templates 11, 12, 14, 15, 16, 17, 21, 26, and 27. Note that in this context the match
of the error is also an application step, albeit with an empty effect.

Thus, each prefix of initial state encoding and i step encodings encodes a set of
graphs that result from applying the corresponding rules to the initial graph. This set
was called Γi in Sec. 5.3. The subsequent step will build on that graph set, meaning that
if the graph set becomes empty, e.g. because there simply is no corresponding valid rule
application in the concrete GTS, every consecutive graph set must be empty as well.
We will call the index in the path at which this occurs the failure point (denoted k in
Def. 90).

Definition 92 (Failure Point). Let π be an abstract error trace, and let

φ := ∥I∥ ∧ ∥step0∥ ∧ · · · ∧ ∥stepn∥,

be its encoding according to Code Template 24. For any n ≥ i ∈ N, let

φi := ∥I∥ ∧ ∥step0∥ ∧ · · · ∧ ∥stepi∥,

be the i-th prefix of φ. Then, the failure point of φ is defined by

min {i ∈ N | i ≤ k ∧ φi |= ⊥}

It is worth noting, that the actual failure can only occur at a specific point within
the ∥stepi∥ identified by the failure point. Each ∥stepi∥ is defined, according to Code
Template 24, as

166

∥embedi∥ ∧ ∥applyi∥,

where ∥embedi∥ encodes the embedding of the current graph (set) into themate-
rialized shape of step i, as well as an instance of Code Template 21 and all its required
precursor instances (instances of CoT. 19 and CoT. 20), and ∥applyi∥ encodes the ac-
tual application of the rule (using Code Templates 26 and 27). Since, once the embed-
ding into the materialized shape is established, the match of the rule is given and thus
the application of the rule necessarily possible, the failuremust lie in the embedding. In
other words, when trace encodings fail to be satisfiable, it is always due to the embed-
ding into the materialized shape at the failure point.

Having thusly determined the failure point, we turn to the subject of refining the
abstraction. Since the failure occurs when a materialized shape represents a subset of
the graph set of the central shape of an STT node that does not actually represent any
graphs in the original system, the goal will be to add constraints to the central shape
of that node that preclude that particular materialization. If the error is already im-
plied by the incoming shape, additional constraints added to nodes further back in the
trace might also be necessary. Adding these constraints should be done in such a way
that the thusly gained information is carried over to the other materialization points
to refine the entire subtree defined by the STT node. We will discuss two separate au-
tomatic ways to achieve this, as well as explore tools to make this task easier for human
designers.

Before we can do this, however, we will reexamine the trace encoding from Chap-
ter 4 and make two adjustments. The first adjustment will concern the encoding of
constraints, while the second will add to the conditions that the embeddings must sat-
isfy.

When we first created our trace encoding, we assumed nothing about the con-
straints that might exist on the abstract shapes along the way. This lead to an encod-
ing that is able to handle any kind of constraint. However, in our application of the
trace encoding for the purposes of abstraction refinement, we know exactly where these
constraints come from, and what properties they have. This allows us to introduce a
significant simplification of the encoding.

Consider the following argument to motivate the simplification. Since we begin our
state space construction process with no abstraction refinement whatsoever, the part of
the encoding that accounts for the constraints (CoT. 21) will always reduce to (true),
adding no information to the encoding. On subsequent trace encodings, for every
shape we encode an embedding into, we have exactly two kinds of constraints – those
that were added to the central shape of the respective node directly by the refinement,
and those that were added to nodes further back in the trace and carried over to this

167

shape via shape transformations. In both cases, we can conclude that the encoding of
these constraints is superfluous. In the first case, the constraint is a valid refinement
according to Def. 91, and thus cannot evaluate to false on any graph embedded into the
shape. In the second case, the constraint was a valid refinement for a prior shape, and
the soundness of the transformation of constrained shapes guarantees us that since the
constraint did not contradict any graph at the concrete level when it was introduced, it
still does not do so.

This intuitive argument suggests that accounting for constraints that were obtained
from the encoding itself in future encodings is redundant. The following definitions
and lemmata confirm this intuition. In order to make assertions about the process
of refinement, we first need to establish the starting point to which refinements are
applied.

Definition 93 (Original Central Shape). Let T be an STT produced by a (not necessar-
ily complete) run of the construction algorithm described by Listing 5.1. For every node n
in T , the shape So

n denotes its original central shape, i.e. the shape the node was origi-
nally created with. By definition, every later, refined central shape Sn is embedded into
So
n.

Being thusly able to distinguish between constraints that were present from the
beginning and thus implied by the shape transformation that created a node, and
constraints that were added as valid refinements, we can now state the validity lemma
hinted at by the definition of valid refinements.

Lemma 28 (Valid Refinements Remain Valid). Let T be an STT. Let n =
(
Sin, (Sn,

Λn) ,M) be an STT node of T , let (So
n,Λ

o
n) be its original central shape with Sn ⊑fo

So
n, and let every (α,m) ∈ Λn \ concrfo

n
(Λo

n) be a valid refinement. Let Γ (n) be
the local graph set of n, let π (n) be the root path for n, π′ (n) be the same path with all
constraint sets replaced by ∅, and let Γ′ (n) be the local graph set for n implied by that
modified root path. Then

Γ (n) = Γ′ (n)

Proof. We will prove this by induction over the root path, beginning with the first
refined node (for all prior nodes, Γ (n) = Γ′ (n)must obviously hold). Let n0 be that
node. Then we know thatΛo

n0
= ∅, i.e. all (α,m) ∈ Λn0 are valid refinements as

defined by Def. 91. Because of this, Def. 91 implies that Γ (n0) = Γ′ (n0), since valid
refinements, by definition, do not contradict the local graph set.

Now, let ni be a node along the path such that Γ (ni) = Γ′ (ni). Then we know
that for all constraints inΛni , and all graphsG ∈ Γ′ (ni),G |= concrf (Λni) holds,
where f is the function that embedsG into Sni . The soundness of constrained shape
transformation (established by Theorem 3) the guarantees that the claim holds for the

168

unabstracted result shape St
i as well. The main algorithm (see Listing 5.1) now guar-

antees that for the resulting STT node ni+1, i.e. the next STT node in the root path,
the original central shape So

i+1 is obtained by applying the abstraction scheme to St
i .

Thus, since St
i ⊑ So

i , we know that ∀G ∈ Γ′ (ni+1) : G ⊑ So
i+1. In analogy to the

start of the induction, we can now use Def. 91 to conclude that the same holds for any
refinement of the original central shape as well, completing the induction.

Thus, we now know that all valid refinements we add will, as they should be, always
be satisfied on the actual concrete graphs embedded into the central shapes of our STT
nodes. This implies that encoding the implied constraints for the embedding into any
materialized shape is redundant, as the following Lemma shows.

Lemma 29 (Classical Embedding Implies Constraint Satisfaction). Let G be a graph,
and let S = (S,Λ) be a shape, and let F be the set of all f such that G ⊑f S. Let
furthermore ∀f ∈ F : G ⊑f S. Let Sm be a shape such that Sm ⊑fm S for some fm
and Λm = concrfm (Λ). Then

∀g : G ⊑g S
m → G ⊑g S

m,

i.e. every classical embedding of G into Sm is also a constrained embedding of G into
Sm.

Proof. Let g be a function such thatG ⊑g S
m. Then f := fm ◦ g is a function such

thatG ⊑f S. Since F contains all such functions, we know thatG ⊑f S and thus
G |= concrf (Λ). We obtain

G |= concrf (Λ)

= concrfm◦g (Λ)

= concrg (concrfm (Λ))

= concrg (Λ
m)

Thus we getG ⊑g S
m.

Put together, these lemmata prove that we can omit the constraints encoding. The
unconstrained embedding encoding always has all valid classical embeddings as models,
making sure that the premise for Lemma 29 is and remains given. Thus, whenever a
classical embedding into a materialized shape exists, the implied constraints are always
satisfied.

This concludes our first adjustment. To motivate the second adjustment, we observe
that in the current encoding, there are four code templates that together define the
embeddings used. These make sure that the embedding function maps to the target

169

head
u1 list

tail

u2
cell next

u3

past
u4

future
u5

cell head
u1

list tail

u2

cell

next

u3
past

u4
future

f1

f2

Figure 6.1: Embedding fails due to missing nodes, while the past node hides that fact

shape (CoT. 11), obeys the summarization property and is surjective (CoT. 12), and maps
graph nodes to shape nodes in such a way that their edges are compatible (CoT. 16 and
CoT. 17). Considering that we will attempt to find the reason for the non-existence of
embeddings into materialized shapes using interpolation, this is not quite ideal.

To understand this, note that, given shapes S and S′, there are two different groups
of reasons why S might not be embeddable into S′ – the embedding may fail because
of missing or surplus nodes, or due to incompatible edge sets. It is important to under-
stand that these issues are not independent of each other. As an example, consider the
situation shown in Fig. 6.1.

It is clear that, intuitively, the embedding between these two shapes fails because S′

assumes that there is only one cell node, while S contains two. This is illustrated by the
green mapping which is an embedding except for the fact that the cell node in S′ is not
a summary node. When encoding a trace that includes such embeddings, we would like
to detect the fact that the node set appears to be the problem.

However, since the various properties of an embedding are encoded separately, the
mapping shown in red is, for the encoding, just as viable a candidate for an embedding
as the green mapping. The red mapping fails for an entirely different reason, however
– the fact that a cell-labeled node should not be embedded into an past-labeled node,
and the fact that incoming tail and next edges are disallowed. While this is a perfectly
valid result, it does not help us much, for example, in crafting a constraint to attach to
a central shape to exclude a materialization. In short, we would like the encoding to
ignore embeddings that fail “for the wrong reason”.

170

In general, it is not possible to properly define “right” or “wrong” reasons for non-
embeddability. However, in our particular context, where every embedding we care
about is an embedding of a graph into a materialized shape, where we know that the
graph is already embedded into the central shape, we can improve the situation.

LetG be a graph, let S be a shape, let Sm ⊑fm S be a materialization from S,
and let F ̸= ∅ be the set of all embeddings f such thatG ⊑f S. Now, let g be an
embedding such thatG ⊑g S

m. From the transitivity of embeddings, we know that
G ⊑fm◦g S, and thus fm ◦ g ∈ F . Thus, every embedding ofG into Sm (if any exist)
is an fm-factor of an embedding into S.

This fairly straightforward insight allows us to add to the encoding a formula which
restricts the choices for possible embeddings into the materialized shape to only such
functions that, when concatenated with fm, yield an embedding into the central
shape. Not only does this potentially make searching for a model for the encoding
easier, it has the more important benefit that we can now distinguish between a trace
that failed due to node set concerns and a trace that failed only because of missing / su-
perfluous edges. Before we can see this, however, we must formally define the formulas
we add to the encoding.

Given an embedding f into the central shape, we can easily formulate the con-
straints it places on possible embeddings g into the materialization:

∀x : g (x) ∈ fm−1 ◦ f (x)

In order to encode a condition like this, however, our trace encoding would have to
include information about the embedding into the central shape. Currently, it only
includes this information indirectly.

As Def. 62 implies, the embedding of a graph into a materialized shape is the exact
same embedding as the embedding of the transformed graph into the transformed,
materialized shape. This is because the same rule is applied to the same, concrete sub-
part of the graph and the shape. Our encoding thus contains an embedding into the
unabstracted, transformed shape St

i at any step i.
The obvious idea would be to utilize this information to restrict the materialization

embedding. After all, we know how St
i embeds into Si via f ti , and thus can construct

by fi = f ti ◦ fmi−1 valid embeddings into the central shape. However, doing this would
not quite be correct. While the formula fi = f ti ◦ fmi−1 would yield an embedding into
the central shape for every embedding into the incoming shape, the fact that the central
shape is (usually) more abstract means that more embeddings than that are possible.
That is not to say that more graphs are allowed – the graph set is still constrained by
the concrete trace set. Rather, the abstracted central shape allows for reinterpretations
of the graphs that exist via new embeddings. These new embeddings translate to new
projected matches, in much the same way as depicted in Fig. 4.5. Thus, using the em-

171

beddings implied by the embeddings into the incoming shape is insufficient – we need
the actual embeddings into the central shape.

We are going to achieve this by simply adding an additional embedding encoding to
each step of the trace. Thereby, each step then encodes

(a) an embedding into the central shape,

(b) a restriction of embeddings into the materialized shape,

(c) an embedding into the materialized shape, and

(d) a rule application based on that embedding.

The only new component in this is the encoding for the restriction of the embed-
ding into the materialized shape. We will define it now.

Code Template 38 (Restriction of Materialization Embedding). Let S be a script
wherein an instance of Code Template 18 encodes embeddings into a shape S. Let Sm

be a materialization for S, where Sm ⊑fm S. Let the embedding function for S used
be named _F_i and let a further function with the same signature names _F_j be de-
clared. Then the encoding of the restriction of the materialization embedding is given
by the first-order formula

∧
x∈U

∧
y∈USm

(_F_i (x) = y) →

 ∨
z∈fm−1(y)

(_F_j (x) = z)


This is encoded into SMTLib in the straightforward manner, defining a function
named corr_i_j.

The correctness of this code template is established in the following lemma.

Lemma 30 (Correctness of Embedding Restriction). Let S be a script wherein an in-
stance of Code Template 18 encodes embeddings into a shape S. Let Sm be a material-
ization for S and let S furthermore contain an instance corr_i_j of CoT. 38 for S,
Sm. Let the embedding functions used be named _F_i and _F_j, respectively. Then
any model for S will contain interpretations of _F_i and _F_j such that

_F_i = fm ◦ _F_j

Proof. Assume that we have a model for S wherein there exists a node n such that
_F_i (n) ̸= fm ◦ _F_j (n). Then, from CoT. 38 we can conclude that we can reorga-

172

nize S to represent a first order formula given by

φ ≡ α ∧
∧

y∈USm

(_F_i (n) = y) →

 ∨
z∈fm−1(y)

(_F_j (n) = z)

 .
Let now x1 := _F_i (n) and x2 := fm ◦ _F_j (n), with x1 ̸= x2. We obtain

φ ≡ α ∧
∧

y∈USm

(_F_i (n) = y) →

 ∨
z∈fm−1(y)

(_F_j (n) = z)


≡ α ∧

∧
y∈USm

(x1 = y) →

 ∨
z∈fm−1(y)

(_F_j (n) = z)


≡ α ∧

 ∨
z∈fm−1(x1)

(_F_j (n) = z)

 (6.1)

≡ α ∧ 0 ≡ 0 (6.2)

Where (6.1) holds because the implication can only not evaluate to true for that part
of the conjunction where x1 = y holds, and (6.2) holds because _F_i (n) ̸= fm ◦
_F_j (n) implies that ¬∃z ∈ fm−1 (x1) s.t. _F_j (n) = z, because otherwise
fm (_F_j (n)) = fm (z) = x1 = _F_i (n)would violate the assumption. Thus
the contradiction is established, and we obtain that any model of S satisfies _F_i =
fm ◦ _F_j, which was the claim.

With this encoding, we can define our new trace encoding. We only have to make
a final small adjustment to the indexing used. Since, for each step, there are now two
embedding encodings to consider, we will adopt the following indexing scheme. For
each step i in the trace encoding,

• The application encoding and the graphs themselves will be indexed by i.

• The embedding into the central shape and the central shape itself will be in-
dexed by 2i.

• The embedding into the materialized shape and the materialized shape itself will
be indexed by 2i+ 1.

With this in mind, we define the new trace encoding.

Code Template 39 (Unconstrained, Embedding Restricted Trace Encoding). Let G =
(I,R) be a GTS, and let π = (S0, (S

m
0 , P0,m) , S1) · · ·

(
Sk−1,

(
Sm
k−1, Pk−1,m

)
, Sk
)

173

be an abstract trace of length k in the corresponding modified STS. Then the correspond-
ing concrete trace can be encoded using, using appropriate instances of Code Templates 3,
5, 6, 23, 11, 12, 14, 15, 16, 17, 21, 26, 27, and 38. For the complete template, see Code Tem-
plate B.8, Appendix B, page 264.

This modified trace encoding can now be used as the base of the automatic abstrac-
tion refinement techniques described in the next section.

6.2 Automatic Abstraction Refinement via the Trace Encoding

To begin, we establish a simple sanity check to figure out whether an automatically
generated constraint can be soundly added to a shape. Looking to Def. 91, we see three
conditions. The first condition concerns the usefulness of the constraint, rather than
its soundness, and the third condition is implied by the second. Thus, we focus on the
second condition. For any central shape Si to which we add a constraint, yielding the
new shape S′

i, the incoming shape must remain embedded, i.e.

St
i ⊑ S′

i

must hold.
This is a simple embedding condition that can be checked using the already estab-

lished methods used in the COVER-sub-algorithm. If this embedding check is positive,
then we have established that no concrete graph that could conceivably be represented
by an abstract trace ending in this node is omitted by the newly refined central shape.
Equipped with this sanity check, we move on to the two automatic abstraction refine-
ment techniques we will cover in this thesis: materialization-based refinement and
interpolation-based refinement.

First, the – ostensibly – simple option: materialization-based refinement. The idea
here is this: since the abstraction failure is expressible by a single materialization that
does not cover any actual graphs in the concrete system, we can fix the abstraction by
excluding the graph set defined by the materialization from the graph set defined by
the central shape. This would require creating a shape constraint that evaluates to false
exclusively on the target materialization (and on all shapes embedded into it).

While this is a very straightforward idea, it is complicated by the fact that the ma-
terializations created by a single match for a single rule (but different “keep sets” of
summary nodes) are not independent of each other. In fact, the materializations in this
scenario are linked together into a lattice structure by the subgraph relation. This is
shown in Fig. 6.2.

Lemma 31 (Materialization Lattice). Let S be a shape, let P be a rule and letm be
a potential match in S for P . Let A be the set of summary nodes in the image ofm,

174

iso

Figure 6.2: The materializaধon set for a given S, P,m forms a subgraph-laষce isomorphic to the
subset laষce of the summary nodes touched by the match

and for any I ⊆ A, let Sm
I be the corresponding materialization. Then the set of all

materializations for S, P , andm forms a lattice w.r.t. the subgraph relation ≤ that is
isomorphic to the subset lattice on A.

Proof. Let 2A be the power set ofA, and let Sm be the set of materializations for S, P,
andm. The subset relationship⊆ forms a partial order on all sets, and thus also does so
on 2A. The subgraph relationship forms a partial order on all shapes and thus also does
so on Sm.

We define f as the obvious bijective mapping between 2A and Sm:

f : 2A → Sm

X 7→ Sm
X

Now, letX,Y ∈ 2A such thatX ⊆ Y . Then, by Def. 46, f (X) = Sm
X and

f (Y) = Sm
Y differ only in the summary nodes that they preserve and are otherwise

identical. Specifically, Sm
Y preserves, by definition, all summary nodes that Sm

X pre-
serves, and then preserves a set of additional nodes Y \ X . Thus we can obtain Sm

Y

from Sm
X by adding the nodes in Y \ X via the construction described in Def. 46.

Therefore, Sm
X is a part of Sm

Y , i.e. SX ≤ SY .
On the other hand, let Sm

X ≤ Sm
Y . SinceX ⊆ USm

X
and, by the definition of the

subgraph relation (Def. 5),USm
X

⊆ USm
Y
, we thus know thatX ⊆ USm

Y
, and therefore,

X ⊆ Y .

175

The presence of this materialization lattice means that excluding singular materi-
alizations is bound to be very difficult. Consider a constraint (α,m) attached to the
central shape S that is intended to exclude a materialization point (Sm, fm). If that is
to work, there must by an assignmentm′ for F (α) into Sm such that JαKm′

Sm = 0 and
m = fm ◦m′.

That in itself is not problematic, of course, but if Sm is not the top element in the
materialization lattice, then there is at least one other materialization point (S′m, f ′m)
such that Sm ≤ S′m. Furthermore, by construction, we have f ′m

y
Sm = fm and

thusm′ has the propertym = f ′m ◦ m′. Therefore, constructing a constraint that
excludes Sm but not S′m is impossible without referencing nodes outside the assign-
ment of the constraint, i.e. the use of quantifiers. In the face of the obvious decidability
issues that we encounter when adding quantifiers to constraints, such a step should
only be taken when absolutely necessary.

Instead of creating highly complex, quantified constraints, we recognize that ab-
straction errors that invalidate some elements of the materialization lattice but not
others are created by node set constraints, i.e. the fact that at the concrete level, more
or fewer nodes of a particular type are available than the particular materialization as-
sumes. Such cases are better dealt with by manipulating the node set of the central
shape, rather than adding constraints to it. We will therefore restrict ourselves to the
most specific constraint we can create that remains unquantified.

Definition 94 (Negative Materialization Constraint). Let S be a shape over a predicate
set P , let P be a rule,m be a potential match of P to S, and let I be a subset of S, the
set of summary nodes touched bym. Let N be the universe of the left hand side of P ,
and let ιm be the interpretation defining the logical structure of the materialization Sm

(see Def. 46). Then the negative materialization constraint (α, ν) for Sm is defined by

N ′ :=
{
n′ | n ∈ I

}
ν := m ∪

{(
n′, n

)
| n ∈ I

}
α := ¬ (αset ∧ αun ∧ αbin)

αset :=
∧

n,m∈N∪N ′

n ̸=m

¬ (n = m)

αun :=
∧

(s,1)∈P

 ∧
n∈NL

ιSm (n)=1

s (n) ∧
∧

n∈NL
ιSm (n)=0

¬s (n)



176

αbin :=
∧

(s,2)∈P

 ∧
n1,n2∈NL

ιSm (n1,n2)=1

s (n1, n2) ∧
∧

n1,n2∈NL
ιSm (n1,n2)=0

¬s (n1, n2)



where fm is the embedding of Sm into S.

Intuitively speaking, αset is true whenever the additional variables made for the
summary nodes that the materialization preserves are assigned to nodes outside of the
left hand side of the rule. The subformulas αun and αbin on the other hand, ensure
that the part of the materialization that is mapped to the match really does instantiate
the left hand side of the rule. Adding this constraint to a shape S will thus cause any
materialization equal to Sm or covered by Sm to become infeasible. However, as im-
plied by Lemma 31, it will also invalidate any materialization that is an upper bound
for the target materialization in the materialization lattice. Often, this will not be a
problem, as those materializations are also spurious. The sanity check introduced at the
beginning of the chapter will indicate whether this is the case.

As a side note, this constraint can be used for applications other than oure abstrac-
tion refinement. If we remove the αset part of the formula, we obtain a constraint that
expresses the non-applicability of a graph transformation rule. An important extension
of the basic graph transformation formalism is the so-called negative application con-
dition, or NAC, which expresses that a rule should only be applied, if its left hand side
matches a graph, and at the same time none of its NACS match the graph. It is thus
clear that, using a simplified negative materialization constraint, support for NACs
could be added to our theory. For now, we will refrain from doing so and focus on the
basic formalism. We continue by asserting the correctness of the negative materializa-
tion constraint defined above.

Theorem 6 (Negative Materialization Constraints Exclude Materializations). Let S =
(S,Λ) be a shape, and let Sm be a materialization from that shape. Let (α,m) be the
negative materialization constraint for Sm, and let Λ′ := Λ∪{(α,m)}. Then we have

G (S) \ G
(
S,Λ′) = G (Sm)

or, in other words, the graphs that are removed from the graph set of S by the negative
materialization constraint are embedded into the materialization Sm or a materializa-
tion S′m from the same lattice such that Sm ⊑ S′m.

Proof. See Appendix A, page 252.

177

(a)

Sn1 n2nextnext (b)

S' n1next

(c)

S''n1 n2nextnextGn1 n2next
(d)

Figure 6.3: Merging of the variables of a constraint strengthens it

The advantage of this method is that it is easy to perform, and is always applicable.
The disadvantage is that it is very specific to the materialization excluded, generates
large constraints with many variables, which are harder to work with, and always en-
codes the entire structure of the rule as a negative constraint, even when only a specific,
small part of it is the actual problem. That can lead to the abstraction becoming bur-
dened with useless information. Also, since the materializations are created from the
rule set, the kinds of constraints that this method can produce are rather limited.

These shortcomings motivate the second approach we will cover in this thesis. In-
spired by the use of Craig Interpolation in other lazy abstraction approaches, we will
use interpolants to construct new shape constraints. The idea here would be to inter-
polate the trace encoding after every step, and use the interpolants gained thereby to
refine the central shapes of the respective STT nodes. This naïve approach, however,
is made infeasible by several complications present in our domain of abstract graph
transformations.

The first such complication was already hinted at in the definition of the canoni-
cal abstraction for constrained shapes (see Def. 64). A constraint attached to a shape
does not easily transfer to a shape it is embedded into. To understand this, consider the
effect that we intuitively associate with the transfer of a constraint from a shape S to
a shape S′ it is embedded into. A constraint removes a certain subset of graphs from
the graph set of S. Moving this constraint – soundly – to S′, we would expect that
the constraint continues to exclude the same graph set, thus not further restricting S′.
However, with the naïve method of merely projecting the constraint along the embed-

178

ding, this is not what happens. For a quick example, consider the shape in Fig. 6.3.
It is clear that the shape under (a) has only one graph in its graph set: a graph with

two nodes, n1 and n2, as well as a single next edge from n2 to n1, shown under (d).
This is ensured by the constraint α, which eliminates another interpretation, in which
n1 and n2 are connected by next in both directions. However, if we now increase the
abstraction, as depicted under (b), and simply merge the nodes n1 and n2, this creates
an additional constraint as an implication of the constraint on the abstracted shape.
This is shown under (c). Since we have lost the knowledge in which direction the next
edge was disallowed, it is now disallowed in both directions, which removes the orig-
inal shape, as well as all graphs in its graph set, from the shape set of the abstracted
shape. Thus, counterintuitively, merging nodes and thus using a more abstract shape
in the presence of shape constraints will oftentimes reduce the size of the represented
graph set, instead of increasing it.

This problem is relevant because our trace encoding encodes graphs at the concrete
level, as well as materialized shapes at the abstract level. Thus, any interpolants ob-
tained from the trace encoding are going to use terms local to a graph at the concrete
level, a materialized shape, or both. In any of these cases, constraints derived from such
interpolants will thus be attached, at best, to the materialized shape, and would then
have to be transferred to the central shape.

The fact that the central shapes are part of the encoding does not help here. This is
because, conceptually, as mentioned above, the point of failure in the correspondence
between a concrete trace and an abstract trace will always be the embedding into the
materialization. Thus, embeddings into central shapes or even unabstracted result
shapes will never be relevant to the unsatisfiability of the trace encoding and would
therefore be ignored by the interpolator.

Hence, we are forced to transfer the constraint from the materialized shape to the
central shape, which might not always be possible.

The second complication comes into play when choosing the interpolation cuts to
use. Consider the following partition of a trace encoding for an abstract trace contain-
ing two transition edges. The encoding of the initial graph, including overflow nodes
is denoted by ∥I∥, embedding encodings by ∥embedi∥, and rule application encod-
ings by ∥applyi∥. Embedding encodings with odd indices are assumed to include an
instance of the embedding correspondence encoding (CoT. 38). We will assume that
the failure point is 2, i.e. only the embedding into the materialized error (∥embed5∥)
makes the trace infeasible.

∥I∥∧ ∥embed0∥∧ ∥embed1∥∧ ∥apply0∥∧ ∥embed2∥ . . .
↑ ↑ ↑ ↑

179

(1) (2) (3) (4)

. . .∧ ∥embed3∥∧ ∥apply1∥∧ ∥embed4∥∧ ∥embed5∥
↑ ↑ ↑ ↑
(5) (6) (7) (8)

If our goal is to obtain an interpolant which we can immediately use as a formula for
a shape constraint, we need to make sure that the interpolant only uses symbols from
the part of the trace formula that describes the materialized shape. However, at any of
the eight interpolation points shown above, symbols of the concrete graph level are
part of the symbol set intersection. This is because the transformation and persistence
of these symbols must be continuous over the entire trace. Thus, at (1), (2), and (3),
graph labels with the index 0, at (4), (5), and (6), graph labels with the index 1, and
at (7) and (8), graph labels with the index 2 are part of the intersection. Clearly, if we
are to eliminate graph labels from the interpolants, we need to use interpolation cuts at
different places. We deal with both of these complications in the following way.

The problem of transferring a constraint from the materialized shape to the central
shape of an STT node is ameliorated by taking measures to produce a constraint that
is as simple as possible (see below), and using the constraint transfer mechanism of
the canonical abstraction (see Def. 64) to move it to the central shape. Should this
fail, we fall back on using the naïve constraint detailed in Def. 94. While this is not an
ideal solution, it is a workable placeholder for a future abstraction mechanism that will
replace it.

The problem of obtaining usable formulas from interpolating the trace is solved
by a new interpolation point. The only feasible place for this, avoiding significant re-
arrangement of the terms of the encoding, is the failure point. For the purposes of
interpolant generation, terms beyond the failure point may be omitted, since they can-
not be part of the refutation proof that creates the interpolant. Thus, we can treat the
embedding encoding at the failure point as the final term in the encoding. Within this
embedding encoding, the encoding of the properties of the materialized shape is the
only part that relies exclusively on terms from the materialized shape. These are in-
stances of Code Templates 14 and 15. Since conjunctions are commutative, we can move
these terms to the very end of the embedding encoding, and insert a new interpolation
cut just before these terms. This changes ∥embed5∥ in our example to

∥corr_4_5∥︸ ︷︷ ︸
CoT 38

∧∥func5∥︸ ︷︷ ︸
CoT 11

∧∥summ5∥︸ ︷︷ ︸
CoT 12

∧∥unAbs5∥︸ ︷︷ ︸
CoT 16

∧∥binAbs5∥︸ ︷︷ ︸
CoT 17︸ ︷︷ ︸

:=∥comp5∥

∧∥unS5∥︸ ︷︷ ︸
CoT 14

∧∥binS5∥︸ ︷︷ ︸
CoT 15︸ ︷︷ ︸

:=∥prop5∥

,

180

thus changing the encoding of the whole trace to

∥I∥ ∧ ∥embed0∥ ∧ ∥embed1∥ ∧ ∥apply0∥ ∧ ∥embed2∥ . . .
. . . ∧ ∥embed3∥ ∧ ∥apply1∥ ∧ ∥embed4∥ ∧ ∥comp5∥ ∧ ∥prop5∥

↑
(9)

which introduces the interpolation point (9). At this point, any solver computing
an interpolant is forced by the restricted vocabulary of the interpolant to construct it
using only the nodes and edges of the materialized shape.

From such an interpolant, the creation of a new shape constraint is trivial. Each
occurrence of a reference to a node of the shape in the interpolant is replaced with a
variable, the reference preserved by a corresponding mapping in the assignment of the
constraint.

Note, however, that the actual abstraction error might be the under- or over- estima-
tion of the sizes of certain node sets represented by (summary-) nodes. The interpola-
tion cut described above, in contrast, attempts to express the abstraction error in terms
of the edges found in the materialization at the failure point. As an example, consider
again the example shown in Fig. 6.1. Here, the interpolant might attempt to express the
fact that there are two nodes that have to be embedded into one non-summary node by
expressing that the unary edges on all the other nodes prevent it from embedding the
redundant node into those nodes, which is clearly not an ideal outcome.

Observant readers may have noticed that we have already taken action against this.
The embedding correspondence encoding described in CoT. 38, together with the in-
clusion of the embeddings into the central shapes into the trace encoding, cause the
trace encoding to actually become infeasible before reaching the interpolation point if
the node set itself prevents the trace from continuing. At the point indicated here,

∥corr_i− 1_i∥ ∧ ∥funci∥ ∧ ∥summi∥ ∧ ∥unAbsi∥ ∧ ∥binAbsi∥ ∧ ∥unSi∥ ∧ ∥binSi∥
↑
(∗)

the functions that could possibly be embeddings into the shape Sm
i have already been

reduced to surjective functions satisfying the summarization property that are fmi -
factors of an embedding into Si. If Sm

i discarded a summary node into which more
than one node was embedded by all embeddings into Si, the encoding will become
unsatisfiable at this point. The following lemma states this formally.

Lemma 32 (Node Set Error Detection). Let φ be an encoding of an abstract error trace

181

according to CoT. 39. Let f be the failure point of φ, let S2f and Sm
2f+1 be the central

and materialized shape at the failure point, and let φf be the 2f + 1-prefix of φ. Let
∥embed2f+1∥ be the encoding of the terminal embedding of φf , and let it be parti-
tioned as follows:

∥corr_j − 1_j∥︸ ︷︷ ︸
CoT 38

∧∥funcj∥︸ ︷︷ ︸
CoT 11

∧∥summj∥︸ ︷︷ ︸
CoT 12︸ ︷︷ ︸

:=∥nodej∥

∧∥unAbsj∥︸ ︷︷ ︸
CoT 16

∧∥binAbsj∥︸ ︷︷ ︸
CoT 17

∧∥unSj∥︸ ︷︷ ︸
CoT 14

∧∥binSj∥︸ ︷︷ ︸
CoT 15︸ ︷︷ ︸

:=∥nonnodej∥

,

where j := 2f + 1. Let F be the set of valid embeddings from the graphs in Γf into
S2f . If

¬
[
∃f ∈ F, g : UΓf

→ USm
j

:
(
f = fmj ◦ g

)]
,

then

φj−1 ∧ ∥nodej∥

is unsatisfiable.

Proof. From CoT. 11, CoT. 12, and Lemma 10 we know that every model for ∥funcj∥ ∧
∥summj∥ is a surjective function _F_j : UΓj → USm

j
satisfying the summarization

property. Due to the guaranteed presence of the future- and past-summary nodes in
the target shape and the fact thatUΓj is guaranteed to contain enough nodes to achieve
surjectivity (see CoT. 23), such functions always exist. From Lemma 30, we know that
exactly those functions _F_j such that ∃f ∈ F : f = fmj ◦ _F_j satisfy ∥corr_j −
1_j∥. Since these are exactly the functions that the assumption states do not exist, we
get the claim.

We (can) thus only proceed with the construction of an interpolation-based con-
straint, if the trace encoding is satisfiable up to the interpolation point. If it is not, we
deduce that a node set error occurred and fall back to the materialization based con-
straint. If it is, we construct the interpolation-based constraint using the following
definition.

Definition 95 (Interpolant-Based Constraint). Let φ be an encoding of an abstract
error trace according to CoT. 39. Let f be the failure point of φ, let j := 2f + 1, and
φj be the j-prefix of φ. Let ∥embedj∥ be the encoding of the terminal embedding of
φj , and let ∥compj∥ and ∥propj∥ be its decomposition into CoT. 38, 11,12,16,17, and
CoT. 14,15, respectively. Let I ̸≡ 0 be the interpolant obtained from interpolating
between φj−2 ∧ ∥embedj−1∥ ∧ ∥compj∥ and ∥propj∥. Then the Interpolant-Based

182

Constraint obtained from φ is a constraint (α,m) such that

α := I [n1/x1] [n2/x2] . . . [nk/xk]

m := [x1 7→ n1, x2 7→ n2, . . . , xk 7→ nk]

where for a formula ψ, ψ [x/y] denotes the formula ψ with all occurrences of x replaced
by y, and n1, . . . , nk are the nodes of the materialized shape Sm

j at the failure point.

Since this kind of constraint is created from an interpolant that by definition must
be incompatible with the right hand side of the formula that created it, it must, by
construction, evaluate to 0 on the materialized shape.

Lemma 33 (Interpolant-Based Constraint Excludes Materialization). Let π be a root
path through an STT T ending in an STT node with an error materialization point.
Let the failure point be i, and let (Sm, fm) be the materialized shape at i. Let (α,m)
be the interpolant-based constraint obtained from this path and materialization point,
as defined in Def. 95. Then Sm ̸|= (α,m).

Proof. We know from the nature of interpolation that α is implied by the prefix of
the path, yet incompatible with the embedding encoding for Sm. Since α expressed in
terms of the nodes and edges of Sm, that can only mean that α evaluates to 0 on Sm

withm.

We will now focus on the soundness of adding the constraint to the central shape.
In order to make predictions about this soundness, we must first specify the exact pro-
cess, inspired by the canonical abstraction, by which the interpolation-based constraint,
if possible, is transported from the materialized shape to the central shape of the STT
node. This process is comprised of two steps.

1. In the first step, the constraint is evaluated with respect to the central shape via
the materialization embedding. This will cause any literals in the constraint that
would evaluate to a definite value on the central shape to be replaced with a
constant of that value.

2. In the second step, we check whether any of the assignments of this modified
constraint are actually merged by projecting the constraint onto the central
shape. If so, it is unknown whether the constraint is sound and we have to
perform the sanity check described at the beginning of the section. If not, the
constraint is added to the central shape.

If the sanity check becomes necessary and deems the constraint unsound, we fall
back to the negative materialization constraint as specified by Def. 94. We begin the

183

formalization of this idea by defining basic constraint projection, i.e. the moving of a
shape constraint from a shape to another shape it is embedded into.

Definition 96 (Constraint Projection). Let S = (S,Λ) be a constrained shape, i.e.
Λ ̸= ∅, and let (α,m) ∈ Λ. Let further S′ be a shape such that S ⊑f S

′. Then the
projected constraint

(
α,mf

)
is defined bymf = f ◦m.

Having established the concept of constraint projection, we move on to the evalua-
tion of constraints on logical structures other than the one they are attached to. This is
called projected evaluation.

Definition 97 (Projected Evaluation of Constraints). Let S = (S,Λ) be a con-
strained shape, i.e. Λ ̸= ∅, and let (α,m) ∈ Λ. Let further S′ be a shape such
that S ⊑f S′. Then the projected evaluation of the constraint (alpha,m) is de-
fined by

(
α′, m↓F(α′)

)
, where α′ is obtained from α by replacing all predicate literals

p (x1, . . . , xk) as follows

p (x1, . . . , xk) 7→

{
c := ιS′ (p) (f ◦m (x1) , . . . , f ◦m (xk)) , if c ̸= ½
p (x1, . . . , xk) else

Thus, in order to obtain a shape constraint for the central shape from the inter-
polant, the interpolant is transformed into a shape constraint (α, n), by attaching it
to the materialization at the failure point via the obvious mapping. Then, its projected
evaluation is computed with respect to the central shape, yielding a new constraint
(α′,m′). If f−1 ◦ f ◦ m′ = m′, i.e. applying materialization embedding, followed
by its inversion onto the assignment of the new constraint yields the same assignment,
(α′,m′) is projected onto the central shape.

Projecting constraints along locally bijective embeddings like this is sound, as the
following lemma shows.

Lemma 34 (Bijectively Projected Constraints Are Sound Abstractions). Let G be a
graph, let S′ be a shape, and let f ′ be a surjective function f ′ : UG → US′ . Let (α,m)
be a constraint such that G |= concrf ′ ({(α,m)}). Let further S be a shape such that
S′ ⊑f S such that f−1 ◦ f ◦m = m and f ◦ f ′ = g with G ⊑g S. Then

G |= concrf◦f ′ ({(α, f ◦m)})

Proof. Since we know that f−1 ◦ f ◦m holds, we have

concrg ({(α,m)}) = concrf◦f ′ ({(α,m)})
= concrf−1◦f◦f ′

({(
α, f−1 ◦ f ◦m

)})
184

= concrf ′ ({(α,m)})

and thus the claim.

We now know that, under certain circumstances, we can soundly project the interpolant-
derived constraint from the materialized shape to the central shape. However, the
question remains whether the constraint thusly added to the central shape could po-
tentially exclude graphs that exist in the concrete system, making the refinement un-
sound. Intuitively, it seems obvious that this cannot be - the constraint was created
from an interpolant which was implied by the trace encoding that encoded (among
other things) the concrete graphs existent at that particular point in the tree. Thus, it
has to evaluate to true on all concrete graphs present. The following lemma states this.

Lemma 35 (Interpolant-Based Constraint is Sound). Let π be a root path through an
STT T ending in an STT node with an error materialization point (Sm, fm). Let k
be the failure point and let, for each prefix πi of π, Γ (πi) be the set of graphs produced
by all concrete traces corresponding to πi. This is equivalent to the i-local part of all
models of πi. Let (α,m) be the interpolant-based constraint obtained from this path
and failure point, as defined in Def. 95, and let all (β, n) ∈ ΛSk

be valid refinements
in the sense of Def. 91 and Lemma 28. Then we have

∀G ∈ Γ (πk) : G ⊑
(
Sk,ΛSk

∪ {(α,m)}
)
,

i.e. adding the interpolant-based constraint to the central shape of the STT node at the
failure point does not exclude any graphs that actually exist at the concrete level.

Proof. LetG ∈ Γ (πk). Let nowA be the formula to the left of the interpolation cut,
andB the formula to the right of it. Then we have

A = ∥I∥ ∧ . . . ∧ ∥stepk−1∥ ∧ ∥embed2k∥ ∧ ∥comp2k+1∥
B = ∥unS2k+1∥ ∧ ∥binS2k+1∥

The interpolant I is implied byA, yet Γ (πk) is already set by ∥start∥ ∧ ∥step1∥ ∧
. . . ∧ ∥stepk−1∥. We will now prove that the remainder ofA does not further restrict
Γ (πk). As a shorthand, we will set j := 2k + 1. By CoT. 39,G is embedded into
the central shape Sj−1 by the embedding function fj−1 provided by the model for
∥embedj−1∥. The formulas ∥funcj∥ and ∥summj∥ encode a surjective function fj
that obeys the summarization properties of an embedding. Γ (πk) places no restric-
tions on fj , and a model for fj always exists, since CoT 23 (overflow) ensures that
the concrete graph domain always has enough nodes to support a surjective function
into any materialization along the trace. Furthermore, corr_j − 1_j ensures (see

185

Lemma 30) that any such fj satisfies fj−1 = fmj ◦ fj , where fmj is the materializa-
tion embedding for step k. The formulas ∥unAbsj∥ and ∥binAbsj∥ enforce that the
graphs in Γ (πk)must mirror the properties of the materialized shape. However, they
do not specify these properties, and therefore, they alone also do not further restrict
Γ (πk). Thus, any model ofA contains the full Γ (πk), as well as a surjective function
fj from the concrete node set into the materialized shape that preserves the summa-
rization property and is an fmj -factor of the previously encoded embedding fj−1..
Therefore, for any such fj , we have

∀G ∈ Γ (πk) : G |= concrfj ({(I, idUSm)}) ,

where I is the interpolant, i.e. A |= I and I ∧ B |= 0. Now, let (α, g′) be the
result of applying projected evaluation to (I, id), and let fmj

−1 ◦ fmj ◦ g′ = g′. Let
m := fmj ◦ g′. Then we have

G |= concrfj
({((

α, g′
))})

= concrfj

(
concrfm

k
({(α,m)})

)
= concrfm

j ◦fj ({(α,m)})

= concrfj−1
({(α,m)})

Therefore, we can conclude that

∀G ∈ Γ (πk) : G ⊑
(
Sk,ΛSk

∪ {(α,m)}
)
,

holds.

Finally, we return to the original intention of the added constraint - its objective is
to exclude the materialization that was identified as the point of failure. Since the inter-
polant will by construction evaluate to false on the materialization, and the projection
(if it occurs) does not detract from that, it seems clear that this is the case. Nevertheless,
the following lemma formalizes this intuition.

Lemma 36 (Interpolation-Based Constraint Excludes Materialization at Failure Point).
Let π be a root path through an STT T ending in an STT node with an error mate-
rialization point (Sm, fm). Let k be the failure point, Sk the central shape, and Sm

k

be the materialized shape at the failure point. Let (α,m) be the interpolant-based con-
straint obtained from this path and failure point, as defined in Def. 95. Then we have

G
(
Sm
k ,ΛSk

∪ concrf ({(α,m)})
)
= ∅

186

interpolate
trace

projected
evaluation

directly
projectable?

fallback to
materialization

node set
error?

sanity
check?

no

yes no

determine
failure point

add to
shape

sanity
check?

encode
trace

fallback to
user input

sanity
check?

yes

yes

yes

no

no

yes

no

Figure 6.4: Schemaধc of the automaধc refinement process

Proof. This follows directly from Lemma 33 and the fact that any interpolant-based
constraint attached to the central shape will have been projected using a locally bijective
embedding, making concrf ({(α,m)}) a singleton set.

Thus, it is both useful and sound to add the interpolant-based constraint to the
central shape, if possible. This implies that the interpolant-based constraint is a valid
refinement.

Theorem 7 (Interpolant-Based Constraints are Valid). The interpolant-based constraint
described in Def. 95 is a valid refinement in the sense of Def. 91.

Proof. This follows directly from Lemmas 35 and 36.

Taken together, these definitions allow us to establish the process for abstraction
refinement sketched in Fig. 6.4. We begin by encoding the trace that represents the po-
tential error†. We then determine the failure point as specified by Def. 92. Checking for
satisfiability at the point given in Lemma 32 then allows us to determine whether node
set issues play a role. If they do, we skip interpolation and continue with a materialization-
based refinement. Otherwise, we interpolate the trace and extract the interpolant-based
constraint as specified by Def. 95. This constraint is then attached to the materialized
shape and evaluated with respect to the central shape, as defined in Def. 97. For the

†we assume the trace is unsatisfiable, since otherwise the refinement process would not have
been started

187

n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

head tail

past

n3

future

n4

present

present n5

future cell

cell

n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

headtail

past

n3

future

n4

present

n5

future

present
next

cell

cell

n1n2

list

head tail

past

n3

future

n4

future

present

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2 n3

list

head tail

past future
present

n1n2

listpast

n3

future
present

materialize
start

apply
start blur

apply
add

blurmaterialize
error

materialize
add

headtail

n4 n5

present

present
next

cell

cell
head
tail

next
next

Figure 6.5: Applying start, then add creates an error in the iniধal abstracধon

result, we check whether the conditions for Lemma 34 are given. If so, we can imme-
diately use the resulting constraint for the central shape. If not, we check whether the
adding of this constraint would violate the refinement conditions given in Def. 91.
Should this check reveal that the constraint is valid, we add it to the shape and are done.
Otherwise, we discard the constraint and construct a materialization-based constraint,
which we then similarly check. In case the resulting constraint is valid, we add it to the
shape. If that is not the case, we have to fall back to the user to provide a valid set of
constraints. In this, we support the user by checking the constraints they provide with
the same sanity check we used for the automatic refinement, and loop this until valid
constraints are provided. Those constraints are then added to their respective shapes
and the process ends.

As an example of the fairly complex process of adding an interpolation-based con-
straint to a central shape along an error path, consider the error path shown in Fig. 6.5.
In our linear list example, unfolding the STT with the basic exploration loop detailed
in Sec. 5.3 and the initial abstraction (no constraints), this is the first error path one
encounters. The STT recognizes that applying the rule start once yields a linear list
with one content cell. However, when the rule add is then applied, two content cells
exist, connected via a next edge, which the canonical abstraction will blur into a sin-
gle, summary content cell with a summary next self-edge. Thus, the information that
there were only two nodes without self-edges is lost, and the error pattern potentially
matches.

Knowing the concrete graph transformation system, however, we can immediately

188

see that this error is spurious - it does not exist in the GTS itself. Thus, the SMT en-
coding of this trace returns UNSAT. Interpolating as defined in Def. 95 gives us the
interpolant‡

α ≡ (next (x, x) → (past (x) ∨ (cell (x) → (next (x, x) → (past (x) ∨ ¬cell (x))))))
∨ (next (x, x) → ¬cell (x))

≡ (¬next (x, x) ∨ (past (x) ∨ (¬cell (x) ∨ (¬next (x, x) ∨ (past (x) ∨ ¬cell (x))))))
∨ (¬next (x, x) ∨ ¬cell (x))

≡ ¬next (x, x) ∨ past (x) ∨ ¬cell (x) ∨ ¬next (x, x) ∨ past (x) ∨ ¬cell (x)
∨ ¬next (x, x) ∨ ¬cell (x)

≡ ¬next (x, x) ∨ past (x) ∨ ¬cell (x)

which expresses that the node represented by x, which in this case is the cell node n4 in
the materialization Se

2 , cannot have a self next-edge and not be marked either past or
not cell at the same time. Attaching this to the materialized shape, we get the constraint

(¬next (x, x) ∨ past (x) ∨ ¬cell (x) , [x 7→ n4])

Now, following along with the process detailed above, we evaluate this constraint in
the central shape at the failure point, and find that the values of cell and past are already
fully determined there. This leads to a modified constraint.

(¬next (x, x) ∨ past (x) ∨ ¬cell (x) , [x 7→ n4])

becomes (¬next (x, x) ∨ 0 ∨ 0, [x 7→ n4])

= (¬next (x, x) , [x 7→ n4])

This is still invalid in the materialized shape, but expresses exactly the property about
the concrete graphs at this point that we would like to add to the shape. However,
since the assignmentm goes to node n4, which is merged with node n5 in the materi-
alization embedding, the condition for Lemma 34, i.e. fm−1 ◦ fm ◦ m is not given.
Following the process, we project the constraint onto S2 anyway, and perform a sanity
check. We obtain

S′
2 := (S2, {(¬next (x, x) , [x 7→ n4])}) .

For the sanity check, we now must determine whether St
2 remains embedded, i.e. if

‡This is an actual interpolant obtained by experiment with the implementation presented
in Chapter 7

189

St
2 ⊑ S′

2 holds. We encode

∥St
2∥ ∧ ¬∥ concr ({(S2, {(¬next (x, x) , [x 7→ n4])})}) ∥,

using Code Templates 37 and 36, searching for graphs embedded into St
2 that do not

satisfy the new implied constraints and obtain UNSAT, thus establishing St
2 ⊑ S′

2.
Therefore, adding the constraint directly to the central shape is sound and the error
pattern can now no longer be materialized from this shape.

Having refined the shape at the failure point, all that is left is to modify the remain-
der of the STT to account for the changes. At this point, any other materialization
points that may already exist become invalid, since they do not account for this new
constraint. This is easily fixed by projecting the new constraint downward, using the
function concrf , into all other existing materialization points. While this fixes the
materialization points, the transitions that might be attached to those materialization
points have to be modified, too. In the case of fully automatic abstraction refinement,
as described so far, we will achieve this by simply pruning the STT at the failure point,
i.e. removing all transition edges leading out from it, and recomputing those transi-
tions. If user-generated constraints are used, multiple consecutive shapes are possible
refined with constraints. In that case, we proceed just as in the automatic case, with the
one difference that the transition edges that link the refined shapes are retained, instead
of removed.

Before we move on to formally define the error handling algorithm, we introduce
a new partitioning of the trace encoding that will simplify failure point and node set
error detection.

Definition 98 (Error Trace Partitioning). Let φ be an instance of CoT. 39. Then it can
be partitioned in the following way:

∥I∥ ∧ φ0 ∧ . . . ∧ φ2k+1

where ∥I∥ encodes the start graph and the overflow encoding (if present) and thus con-
sists of instances of CoT. 3, 5, 6, and 23, while φi is defined by

∥embedi∥︸ ︷︷ ︸
CoT. 18

∧∥corr_i_i+ 1∥︸ ︷︷ ︸
CoT. 38

∧∥funci+1∥︸ ︷︷ ︸
CoT. 11

∧∥summi+1∥︸ ︷︷ ︸
CoT. 12

if i%2 = 0

∥unAbsi∥︸ ︷︷ ︸
CoT. 16

∧∥binAbsi∥︸ ︷︷ ︸
CoT. 17

∧∥unSi∥︸ ︷︷ ︸
CoT. 14

∧∥binSi∥︸ ︷︷ ︸
CoT. 15

∧∥applyi\2∥︸ ︷︷ ︸
CoT. 26,27

if i%2 = 1 ∧ i < 2k + 1

∥unAbsi∥︸ ︷︷ ︸
CoT. 16

∧∥binAbsi∥︸ ︷︷ ︸
CoT. 17

∧∥unSi∥︸ ︷︷ ︸
CoT. 14

∧∥binSi∥︸ ︷︷ ︸
CoT. 15

if i%2 = 1 ∧ i = 2k + 1

This partitions the trace encoding by splitting each step consisting of two embed-

190

dings and one rule application along the divider used in Lemma 32, thus facilitating
both failure point and node set error detection.

As Fig. 6.4 shows, at some point, we may have to rely on the user to provide shape
constraints along a path to achieve refinement. The particulars of how this can be
done are relegated to Sec. 6.3, but for the purposes of integration into the larger error
handling algorithm, we will define the behavior of a valid interactive user refinement
process here already, as we have already done for EXPAND, EXPLORE, COVER, CHECK-
FESSIBILITY, and HANDLEERROR. The procedure that queries the user for shape
constraints for refinement is called QUERYUSER.

Definition 99 (Valid QUERYUSER-algorithm). Let A be an algorithm operating on an
STT T for a GTS G, taking a root path πk = e1 · · · ek with

ei =
(
ni−1,

(
Pi−1,

(
Sm
i−1, f

m
i−1

))
, ni

)
through T and a materialization points

(
Sm
k , f

m
k

)
of the terminal node of the root

path as input. A is called a valid QUERYUSER-algorithm, if, given that Γk∩G
(
Sm
k

)
=

∅ and Γk−1 ∩ G
(
Sm
k−1

)
̸= ∅, it returns a sequence

((αj ,mj) , . . . , (αk,mk))

of shape constraints for some 0 ≤ j ≤ k such that

St
i ⊑ S′

i ∀j ≤ i ≤ k, where

S′
i−1 −

Pi−1,
(
S′m

i−1,f
m
i−1

)
−−−−−−−−−−−→ St

i ∀j < i ≤ k, and

G
(
S′m

k

)
= ∅

with S′
i := (Si,Λi ∪ {(αi,mi)}) and S′m

i :=
(
Sm
i ,Λ

m
i ∪ concrfm

i
({(αi,mi)})

)
.

Intuitively, this definition requires that a valid algorithm that queries the user for
a refinement of constraints produces a series of constraints such that the soundness
of shape transformations remains given along the refined path, and the failure point
materialization is excluded. Note, specifically, that j = k is allowed, i.e. the user must
not necessarily generate a whole sequence of constraints – if a single constraint will
work, that is fine as well. Of course, the algorithm itself in this scenario has no direct
control over the properties of the constraints produced. Thus, this definition requires
the QUERYUSER algorithm to incorporate some form of checking and feedback loop to
make sure that the constraints that are returned do conform to the requirements.

191

Lisধng 6.1: CheckEmbedded sub-algorithm� �
1 Input: Shape S1, Shape S2

2 φ <- EncodeFeasibility(S1); // see CoT. 37

3 ψ <- EncodeConstraints(S2); // see CoT. 36

4 result <- Solve(φ ∧ ¬ψ); // any SMT-compatible solver
5 if (result == UNSAT) then
6 return true;
7 else
8 return false;
9 fi;� �

To simplify the description of the error handling algorithm, we will encapsulate
(most) actions performed directly on the tree in the sub-algorithm ModifyTree,
shown in Listing 6.2, as well as use a sub-algorithm called CheckEmbedded, shown
in Listing 6.1, to encapsulate the embedding check between two shapes. The following
lemma establishes the effect of the ModifyTree algorithm.

Lemma 37 (Correctness of ModifyTree). Given a sequence of unary edges

σ =
((
n :=

(
Sin
1 , S1,M1, x1

)
, . . . , Sin

k , Sk,Mk, xk

))
,

of an STT T and a sequence of constraints

κ = ((α1,m1) , . . . , (αk,mk)) ,

such that

St
i ⊑ S′

i ∀j ≤ i ≤ k, where

S′
i−1 −

Pi−1,
(
S′m

i−1,f
m
i−1

)
−−−−−−−−−−−→ St

i ∀j < i ≤ k, and

G
(
S′m

k

)
= ∅

holds, the ModifyTree algorithm modifies T in such a way that Condition b of Def. 90
is established.

Proof. See Appendix A.

This is easy to see, since the algorithm literally just adds the constraints in the right
places, and removes all parts of the tree that have to be recomputed.

192

Lisধng 6.2: ModifyTree sub-algorithm� �
1 Input: Unary Edges σ = ((n1, x1) , . . . (nk, xk)), Constraints κ = ((α1,m1) , . . . , (αk,mk))

2 for each
(
ni =

(
Sin
i , Si,Mi

)
, xi

)
∈ σ do

3 Λi <- Λi ∪ {(αi,mi)}; // add constraint to central shape

4 for each ((S,Λ) , f) ∈ Mi do

5 Λ <- Λ ∪
{
concrf ({(αi,mi)})

}
; // project constraint onto materialization

6 if (∃ (a, l, b) : l = (P, ((S,Λ) , f))) then

7 T <- T \ Tb; // prune subtree behind materialization

8 fi;

9 od;

10 // remove outgoing edges from node except for the edge within the sequence

11 if (i < k) then

12 E2 <- E2 \ {(a, l, b) | a = ni ∧ b ̸= ni+1};

13 else

14 E2 <- E2 \ {(a, l, b) | a = ni};

15 fi;

16 // remove superfluous covering edges

17 CT <- CT \ {(x, l, y) | (x, l, y) ∈ CT ∧ y = ni};

18 od;

19 // remove superfluous covering edge labels

20 lcT <- lcT↓CT ;� �
We now have all the automatic pieces of the error-handling algorithm in place. All

that remains is to formally define it. Listing 6.3 shows a Pseudocode implementation of
the algorithm. We will now go through the algorithm line by line and work out how it
achieves its objective.

The algorithm works as follows. In lines 2 and 3, it determines the root path of the
error node and encodes it using CoT. 39 using the partitioning described in Def. 98. It
then launches a loop (line 4) that consecutively adds the parts of the encoding to an
SMT script and queries a solver to determine satisfiability (line 5).

If the result is SAT, then the if-clause from line 6 through line 33, which makes up
the entire loop body, is skipped. As we will see, once this branch is entered it is always
left via a return statement, meaning that lines 35− 37 are only executed when the en-
tire trace was SAT. Consequently, these lines extract the model from the solver, which
is now guaranteed to exist, and use it to construct a concrete error trace, which is then

193

Lisধng 6.3: HANDLEERROR sub-algorithm� �
1 Input: STTNode n :=

(
Sin, S,M

)
, Materialization Point (Se, fe)

2 π <- Root path for n;

3 φ0 ∧ . . . ∧ φ2l+1 <- EncodeTrace(π, (Se, fe)); // see CoT. 39, Lem. 32

4 for (i in [0..2l+1]) do

5 result <- Solve(φ0 ∧ . . . ∧ φ2l+1); // any SMTLib-compatible solver

6 if (result == UNSAT) then

7 k <- i\2; // failure point

8 mk <- Node At Failure Point k;

9 Sm
k <- Materialized shape at failure point k;

10 if (i % 2 == 1) then

11 I <- Interpolate(∥T∥, k); // interpolate as defined in Def. 95

12 (α,m) <- EvaluateProjected((I,m′)); // m′ obtained from encoding

13 Λk <- Λk ∪
{(

α, fm
k ◦m

)}
;

14 if ((fm
k

−1 ◦ fm
k ◦m ̸= m) || (CheckEmbedded(Sin

k , Sk))) then

15 ModifyTree((mk), ((α,m)));

16 return (ϵ, (mk));

17 else

18 Λk <- Λk \
{(

α, fm
k ◦m

)}
;

19 fi;

20 fi;

21 (α,m) <- NegMaterializationConstraint(Sm
k); // see Def. 94

22 Λk <- Λk ∪
{(

α, fm
k ◦m

)}
;

23 if CheckEmbedded(Sin
k , Sk) then

24 ModifyTree((mk), ((α,m)));

25 return (ϵ, (mk));

26 else

27 Λk <- Λk \
{(

α, fm
k ◦m

)}
;

28 fi;

29 {(αi1 ,mi1) , . . . , (αk,mk)} <- QueryUser(πk, Sm
k); // see Sec. 6.3

30 ((mi1 , xi1) , . . . , (mk, xk)) <- Unary edges of nodes from i1..k out of π.

31 ModifyTree(((mi1 , xi1) , . . . , (mk, xk)), {(αi1 ,mi1) , . . . , (αk,mk)});

32 return (ϵ, (mi1 , . . . ,mi2));

33 fi;

34 od;

35 M <- GetModel(∥T∥);

36 πe <- Construct Path from M;

37 return (πe, n);� �
194

returned.
Once the trace prefix has become unsatisfiable, the if-branch on line 6 is entered.

Lines 7− 9 determine the failure point, and extract the relevant STT node and materi-
alized shape.

Now, if the current index in the trace is even, then the trace became infeasible at one
of the points indicated by Lemma 32, indicating that there are no functions that are
factors of the embedding into the central shape with respect to the materialization em-
bedding at the failure point. Consequently, as described above and shown in Fig. 6.4,
the constraint must be constructed from the materialization rather than the interpola-
tion. This is realized with the if-clause on line 10.

If the current index in the trace is odd, we enter the if-branch and attempt to con-
struct an interpolation-based constraint. Line 11 queries the solver for an interpolant.
This interpolant, combined with the (identity-) mapping obtained from the solver, is
then simplified via projected evaluation on line 12. On line 13, the result of that pro-
cess is attached to the central shape. The if-clause on line 14 checks for the condition
used in Lemma 34, or, if that fails, whether the incoming shape is still embedded into
the central shape. If that check fails, the if-clause is left, the new constraint is removed
again on line 18 and execution then continues as if the trace index had been even, i.e.
on line 21. If the check succeeds, the tree is modified, i.e. the materialization points
of the node at the failure step are updated, and all outgoing transition edges removed.
An empty path and the modified node are then returned on line 16, terminating the
algorithm.

This pattern of adding the constraint, checking for sanity, modifying the tree and
returning the node or removing the constraint again in case of failure, is repeated on
lines 21-28. The only significant difference lies in the genesis of the constraint on line
21, which uses Def. 94 instead of Def. 95.

If execution reaches line 29, then a spurious error was detected, and all attempts to
automatically exclude this error via new constraints have failed. We then use QueryUser
to obtain a series of user-generated constraints. The ModifyTree algorithm then mod-
ifies the nodes for which constraints were generated. The modified nodes are then re-
turned, together with an empty path.

The soundness and validity of the changes made to the STT has already been proven
via the various lemmata in this section. What remains is the proof that HANDLEER-
RROR, as a sub-algorithm, adheres to Def. 90 and thus preserves the loop invariant
used by the correctness proof for the main algorithm in Theorem 5. Intuitively, this
is clear. The addition of the new constraint at the failure point invalidates at least one
of the materializations along the error path, removing the error materialization (and
possible a whole subtree containing it) from the STT. Outside of user intervention,
transitions are only removed, and never changed, while materialization points that are
affected are updated with the new constraints. The following lemma formalizes and

195

proves this intuition correct.

Lemma 38 (Correctness of HANDLEERROR). The algorithm specified by Listing 6.3,
here referred to by R, is a valid HANDLEERROR algorithm by the terms of Def. 90.

Proof. Let the input of the algorithm be n =
(
Sin, S,M

)
and (Se, fe) ∈ M . Let

π (n) = e1 · · · ek be the root path for n, with ei =
(
ni−1,

(
Pi,
(
Sm
i , f

m
i

))
, ni

)
.

We need to prove thatR always terminates and that its return value always satisfies
conditions a or b of Def. 90.

We begin with termination. R does not use any open-ended loops, thus the only
way for non-termination to occur is a procedure call that does not terminate. The only
candidate for this is line 5, where an SMT solver is repeatedly called to solve a trace en-
coding. As mentioned earlier, this solver call handles quantifier-free formulas over a
finite universe which are therefore in the decidable fraction of first-order logic. Termi-
nation of this solver call can thus be assumed.

We will now show that one of the two conditions is always fulfilled after execution
ofR, depending on the satisfiability of φ = φ0 ∧ . . . ∧ φ2l+1. If φ is SAT, then
condition a will hold. If φ is UNSAT, then condition b will hold. We will prove each of
these in turn.

First, we assume φ to be SAT. Then, from the correctness of the trace encoding (see
Sec. 4.5), we know that the model returned by the solver contains a concrete error trace.
We also know that the if-clause of lines 6− 33 is never entered, leading to the eventual
termination of the for-loop on lines 4 − 34. Lines 35 − 37 then extract the concrete
trace from the model, and return it, satisfying condition a.

We now turn to the case where φ is UNSAT. If that is the case, then there is a smallest
integer i such that φ0 ∧ . . . ∧ φi is UNSAT. The if-branch on lines 7 − 32 is entered
upon the for loop reaching that i. Within the if-branch, it is obvious that there are
exactly three places within the if-branch that have any effect on the return value and
T : lines 13− 16, 22− 25, and 31− 32. We examine each case in turn.

On line 13, the constraint created as defined in Def. 95 is added to the central shape
at the failure point. If the necessary conditions for this constraint hold (line 14), the
tree is modified accordingly and the modified node returned. The established correct-
ness of the interpolant-based constraint, together with the correctness of the Modi-
fyTree algorithm establish condition b upon termination ofR on line 16.

On line, the same process occurs, with Def. 95 being replaced by Def. 94. The argu-
ment for correctness remains the same.

On line 29, the user is queried for a series of refinements. The result of adding these
constraints to their respective STT nodes and modifying the tree accordingly follows
directly from Def. 99 and the correctness of ModifyTree. Thus, condition b is always
established when the algorithm is left from within the if-clause on lines 6− 33.

196

The valid HANDLEERROR algorithm completes the automatic portion of our tool set.
We can now, using a well-defined algorithm, construct a shape transition tree from a
graph transformation system, error pattern and abstraction scheme. The termination
of that algorithm with a valid STT then guarantees the safety of the GTS. In the fol-
lowing Section, we give a framework for implementing a QUERYUSER algorithm that
supports human designers as much as possible in crafting useful constraints. After that,
in the next chapter, we will take a look at an example implementation of this algorithm.

6.3 Manual Abstraction Refinement Supported by Soundness Checks

We will now discuss the QUERYUSER sub-algorithm in more detail. Since implemen-
tation details of an interactive algorithm will revolve chiefly around presentation, in-
teraction design, input parsing, etc., we will not give a full formal definition of this
algorithm here. We will rather take a closer look at the objectives of this sub-algorithm
and explore ways by which the checks and processes already developed in previous sec-
tions and chapters can be reused to aid the user in constructing sound and effective
constraints.

Looking at Def. 99, we see that the QueryUser algorithm must essentially do two
things. It must

• choose an index j lower than or equal to the failure point k, and

• provide shape constraints for the central shape of each node from index j
through k such that transformation soundness is preserved and the failure mate-
rialization excluded.

Note that that does not mean that every node from j to kmust be refined – it is
perfectly acceptable to use (1, ∅) as a constraint for nodes that need not be refined.
However, the utility of constraints further back in the trace that then do not influence,
even indirectly, the constraint that excludes the materialization is questionable and
dependent on very domain-specific circumstances.

Now, what does it mean that “transformation soundness is preserved and the failure
materialization excluded”? We will begin with the simpler of the two properties, the
notion of a “useful” constraint, i.e. the exclusion of the failure materialization. This
was the center of our work on automatic abstraction refinement: the constraint added
to the shape at the failure point must, projected onto the failure materialization, evalu-
ate to false, i.e.

Sm
k ̸|= concrfm

k
({(αk,mk)})

Since any sequence of constraints is useless without this property, it is sensible to start
the refinement process by choosing a constraint for Sk that has that property.

197

n1n2 n3

list

head tail

past future
present

n1n2

list

head tail

past

n3

future

n4

future

present n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

head tail

past

n3

future

n4

present

present
cell

n1n2

list

head tail

past

n3

future

n4

present

present n5

future cell

cell

n1n2

list

headtail

past

n3

future

n4

present

n5

future

present
next

cell

cell

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2

listpast

n3

future
present

headtail

n4 n5

present

present
next

cell

cell
head
tail

next
next

n1n2

list

head tail

past

n3
future

present

in out

center

in out

center

in out

center
s t a r t a d d

Figure 6.6: Display of one abstract error trace for manual refinement (sketch)

Turning to the other property, the “soundness” condition, we realize that such a
constraint might be in conflict with the incoming shape, i.e. shrink its graph set, even
though no actual graph from the concrete system is excluded by it. In the previous
section, this was handled with a sanity check that simply checked whether the incoming
shape remains embedded into the modified central shape, i.e. for an index i:

St
i ⊑ (Si,Λi ∪ {(αi,mi)}) ,

meaning the additional constraint does not shrink the graph set of the incoming shape.
In the automatic refinement process, we had no way to deal with a negative result of
that check. In the manual refinement process, however, we can simply bring this prob-
lem to the attention of the user, and have them fix it by also adding a constraint to the
previous shape in the trace.

Note that for both properties that need to be satisfied, there are straightforward pro-
cesses to check those properties defined in the previous section. The soundness prop-
erty is easily checked using the CheckEmbedded algorithm used in the HANDLEERROR
algorithm as a sanity check, while the “usefulness” of the constraint sequence can be
established by projecting the constraint for the failure point onto the failure materi-
alization and checking for feasibility using the algorithm CHECKFEASIBILITY from
Chapter 5. Thus, in the manual refinement process, a user might be presented with a
display like the one sketched in Fig. 6.6. If the prior attempt at automatic abstraction
refinement produced one, the user can be provided with the interpolant for the fail-

198

ure point as a starting point. After the user has provided a constraint for the terminal
shape of that path, we can check that constraint for soundness and usefulness using
CheckEmbedded and CHECKFEASIBILITY.

If CHECKFEASIBILITY fails, we can obtain from the (satisfiable) encoding a model
that represents a graph that remains embedded into the materialization, in spite of the
constraint. This can be displayed to the user, who can use this information to fix the
constraint, which is the only option at this point. If the constraint provided is use-
ful, but CheckEmbedded fails, we again gain from the model of the encoding a graph,
which in this case represents the set of graphs that are embedded into the incoming
shape, but not into the refined central shape. There are now two options for the user
to use this information. They can decide that the given graph represents spurious be-
havior and extend the refinement by refining the shape just before the shape they just
refined, thus decreasing the index j for the beginning of the refinement by 1. Alterna-
tively, they can use the graph provided as a hint to further refine the shape constraint
they provided.

Every time a constraint is added to a shape Si by the user, the materialization Sm
i

and, if present, unabstracted result shape St
i are recomputed to account for that change.

This may also cause a rechecking of the soundness of the shape constraint at i + 1 (if
any), since the refinement of St

i and accompanying smaller graph set might cause it to
be embedded into the central shape at i+ 1 after all.

In this manner a sequence of shape constraints is provided by the user that is, once
all checks are positive, guaranteed to conform to the conditions given in Def. 99. An
example application of such a process can be found in Section 7.3, on page 218.

199

7
Implementation:

Shape Graph Analyzer

The Shape Graph Analyzer (SGA) is the prototypical implementation created as
part of this thesis. It fully implements the LSSC construction algorithm detailed in
Chapter 5, including the automatic abstraction refinement process describes in Sec-
tion 6.2. SGA does as yet not include an implementation for manual abstraction re-
finement, terminating in cases where such a refinement would become necessary. It
has been implemented by binding a number of existing software packages, such as
SMT solvers and a three-valued logic framework, together with an implementation
of graphs, shapes, and the construction algorithm itself. In this chapter, we will gain a
high-level overview over the structure, usage, and capabilities of SGA and discuss the
results of applying SGA to a more complex verification for our linear list example, as
well as graph transformation systems from the literature.

7.1 Description and Usage

SGA is a standalone program written in the Java programming language. It builds on
the basic logical framework provided by TVLA[108] and uses SMTInterpol[46] to
interface with solvers, specifically, SMTInterpol itself and Microsoft’s Z3[114].

200

Each run of SGA will attempt to construct a valid STT for a graph transformation
system supplied to SGA via four input files. These input files describe the graph labels
available, the initial graph, the graph rules, and the forbidden pattern and so, together,
specify a graph transformation system G and a forbidden pattern P . The input files are
specified using a fragment of the input language for TVLA.

Figure 7.1 shows the structure of the input files by way of the linear list example
used throughout the thesis. We will now examine each file individually and describe its
structure and meaning. In all files, lines beginning with double-slashes (//) are consid-
ered comments and are ignored by SGA.

The Predicates File – *.tvp The predicates file establishes the set of predicates
available for building graphs by effectively setting the label set. Each line beginning
with %p introduces a new predicate. The format is� �
%p predicate_name(parameter1, . . ., parameterk)� �

with predicate_name fixing the name of the predicate / label and k determining the
arity of the predicate. The names of the parameters are placeholders and can be chosen
arbitrarily.

The Initial Graph File – *.tvs The initial graph file defines its namesake.
It is partitioned into two parts, defining the node and edge sets of the initial graph,
respectively. The nodes part has the form� �

%n = {v1, . . ., vk}� �
where, again, the particular node names can be chosen arbitrarily. The part defining the
predicates is comprised of a list, defining, for each label specified in the predicates file,
between which nodes edges with the respective label exist. This is written� �

%p = {u1 = {vi1,. . .,vj1} · · · un = {vin,. . .,vjn}
p1 = {vi1->wi1,. . .,vj1->wj1} · · · pm = {vi1->wi1,. . .,vj1->wj1}}� �

The Pattern File – *.vio The pattern file specifies the forbidden pattern that
defines the verification task performed by SGA. It has the same syntax as the initial
graph file. The graph defined by it is taken as the left hand side of the forbidden pat-
tern.

The Rules File – *.prod The rules file specifies the rule set of the graph trans-
formation system and is the most complex of the four files. The layout of the file has
the form

201

Lisধng 7.1: Predicates file predi-
cates.tvp� �
/////////////////////////
// Unary core predicates

// list node
%p l(v)
// cell node
%p c(v)

//////////////////////////
// Binary core predicates

// head of the list
%p h(v_1, v_2)
// tail of the list
%p t(v_1, v_2)
// list link
%p n(v_1, v_2)� �
Lisধng 7.2: Graph file initial.tvs� �
%n = {v}
%p = {

sm = {}
l = {v}
h = {v->v}
t = {v->v}
n = {}

}� �
Lisধng 7.3: Paħern file forbidden.vio� �
%n = {x}
%p = {

sm = {}
c = {x}
n = {x->x}

}� �

Lisধng 7.4: Rules file productions.prod� �
%prod start {

%left = {
%n = {n}
%p = {sm = {}

h = {n->n}
t = {n->n}
l = {n}

}}
%right = {

%n = {n, x}
%p = {sm = {}

h = {n->x}
t = {n->x}
l = {n}
c = {x}

}}
%g = {}

}
%prod end {

%left = {
%n = {n, x}
%p = {sm = {}

h = {n->x}
t = {n->x}
l = {n}
c = {x}

}}
%right = {

%n = {n}
%p = {sm = {}

h = {n->n}
t = {n->n}
l = {n}

}}
%g = {}

}
%prod add {

%left = {
%n = {n, x}
%p = {sm = {}

h = {n->x}
l = {n}
c = {x}

}}
%right = {

%n = {n, x, y}
%p = {sm = {}

h = {n->y}
l = {n}
c = {x, y}
n = {y->x}

}}
%g = {}

}
%prod del {

%left = {
%n = {n, x, y}
%p = {sm = {}

t = {n->y}
l = {n}
c = {x, y}
n = {x->y}

}}
%right = {

%n = {n, x}
%p = {sm = {}

t = {n->x}
l = {n}
c = {x}

}}
%g = {}

}� �
Figure 7.1: Input File Set describing the Linear List Example

202

� �
%prod rule1 {
%left = { G }
%right = { G }
%g = {}

}
...
%prod rulek {
%left = { G }
%right = { G }
%g = {}

}� �
where every occurrence of G indicates a graph specification using the same syntax as the
graph and pattern files. The graph given under %left specifies the left hand side of
the rule, whereas the graph given under %right. The subgraph isomorphism between
the left hand sideL and the right hand sideR of the rule is established via the implied
mapping on the node sets that is specified by the node names, i.e. nodes with the same
name in the specification of both sides refer to the same node. This is then extended
to an isomorphism between subgraphs ofL andR by settingLc = L \ (L \R) and
Rc = R \ (R \ L).

Two further configuration files, quantifiedlogicsolver.prop and inter-
polatingsolver.prop, determine various additional settings that pertain to the
solvers used. The implementation provides default versions of these files, and it is rec-
ommended to only change them to reflect installation details, such as the executable
path of the solver to be used. The syntax of these files is self-explanatory.

Once the input and configuration files have been created, the analysis can be started,
substituting the proper filenames for the use case, with� �
<sga_program_call> predicates.tvp initial_graph.tvs rules.prod pattern.vio� �
During execution, the program will report on its current status using two graphical

displays – the STT display and the WorkItem display. Figures 7.2 and 7.3 show these
two displays as they are showing the state of the program after an execution of SGA for
the linear list example.

The STTDisplay shows the tree structure of the STT. Each STT node is shown as a
node in a standard Java tree display. The label of each node contains basic information
about the STT node it represents. It begins with the name of the rule that produced
the node (the obvious exception to this being the root node), followed by a unique
name for the node, the number of materializations, outgoing connections, and whether
the node is currently being expanded or explored. Covered nodes are marked by the
node label ending in Covered by , followed by the name of the covering node. As

203

Figure 7.2: The STT display ađer an example execuধon for the linear list example

we can see here, the tree structure produced by SGA mirrors exactly the predicted tree
structure shown in Fig. 5.6.

The WorkItem display shows the execution tasks that have been created so far for
the construction of the STT, as well as their current status. SGA is designed for con-
current execution, so at any given time there may be many work items that are being
worked on at once. The kind of work item that are created include Expansions, Ex-
plorations, and EmbeddingChecks. Expansions and Explorations are self-explanatory,
while EmbeddingChecks represent calls to COVER in the main algorithm. Feasibility
checks are not recognized as individual work items as they are always performed as part
of another work item, such as a node expansion, where they are used to screen ma-
terialization points, or embedding checks, where they are used to establish graph set
inclusion.

SGA also maintains log files that include more detailed information about the ac-
tions taken by the various parts of the program. These logs are saved in files called
lsscEngine.log, lsscExpander.log, lsscFeasibility.log, and lsscEm-
bedding.log. It is here, where an error found in the system is reported. If the work
item list contains only completed work items, and no error has been reported in any of
the logs, then the constructed STT is valid and the system thus proven safe.

Once the analysis has finished, either because a real error was found, the tree was
declared valid, or a user input was requested, a summary of the result is written into an
appropriate file. In the case of a user input request or real error, the corresponding path
through the STT is written into a filed called errorpath.dot, which then contains

204

Figure 7.3: The WorkItem display ađer an example execuধon for the linear list example

the entire path, including materialization, application and blur actions, in the Graphviz
description language[69]. If the tree was valid, a similar file called finishedSTT.dot
is produced, containing the tree structure with central shapes, transformation edges,
and covering edges.

7.2 Architecture

We will now obtain a birds-eye view of the architecture of the tool. This includes all
the connections to external tools. The tool is roughly separated into two parts: SGA
itself, and an SMTLib-library called SMTool. Both of these tools were created to form
a prototype for the algorithms presented in this thesis.

SGA is essentially a tool for the state space exploration of shapes with constraints as
defined in Chapter 3. It is based on the three-valued logic engine TVLA[108], in that
it uses TVLA’s capabilities to represent three-valued logical structures and evaluate
formulas in those structures. Every aspect of the state space construction algorithm that
relies on the construction and solving of SMT formulas is relegated to SMTool.

SMTool is designed to be a front end for SMTLib-compatible solvers in general that
allows for the easy creation and solving of the encodings that are established in Chap-
ter 4 and refined in Chapter 6. It is based on SMTInterpol[46], and through it, can

205

<<uses>>

STT Data Structure

LSSC Execution

TVLA

LSSC Refinement

Formulae

Graph Concepts

Solver InterfaceEncodings SMTInterpol

External Solver Control Z3 / Any SMTLib Solver

<<uses>><<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<extends>>
<<uses>>

<<uses>>

Figure 7.4: High-Level Architecture of SGA / SMTool

interface with any solver that is SMTLib-compatible. In the particular use case with
SGA, we use Microsoft’s Z3 for all solving of formulas with quantifiers, but SMTool is
in no way restricted to Z3 and can, with very little effort, be configured to use any other
SMTLib-compatible solver.

Figure 7.4 shows a simplified schematic of the high-level architecture*. The groups
indicated by the shaded boxes represent software implemented as part of this thesis,
in part in collaboration with Daniel Wonisch and Manuel Töws, while the remain-
ing components represent software that is the result of other work. The upper group
shows the main components of SGA.

The STT Data Structure component encapsulates the data structure imple-
menting the shape transition tree, as well as all operations that can be applied to it
(such as tree pruning). Here, the capabilities of TVLA are used to represent constraint
formulas as three-valued formulas and shapes as three-valued logical structures, in order
to take advantage of prior work by Daniel Wonisch which implements the transforma-
tion of shape constraints. Also used is the implementation of graph domain concepts
of SMTool in order to be able to effectively communicate the state of the STT to the
encodings.

This component is then used by the highly concurrent implementation of the con-
struction algorithm, encapsulated in the LSSC Execution component. Internally,
that is, when not communicating with either SMTool or TVLA, constraints formulas

*with transitive «uses»-relationships omitted where they exist, in order to keep the presen-
tation more concise

206

are being represented with classes from the Formulae component in order to avoid
implicit bindings to specific solver or engine contexts that come with the respective im-
plementations of TVLA and SMTInterpol. When an error is encountered by the LSSC
Execution component, the creation of appropriate constraints is deferred to the LSSC
Refinement component.

Both LSSC-components of SGA use the Encodings component provided by SM-
Tool. For state space construction, it provides feasibility encodings, while for refine-
ment, it provides trace encodings. The Encodings package uses the Graph Con-
cepts package to represent the mathematical objects given to it on a conceptual level,
while using the Solver Interface component to actually call the configured solver
to solve the encodings. SMTInterpol as a solver is used directly by this interface. By
creating a separate process and wrapping the textual logging classes of SMTInterpol,
the External Solver Control component allows us to communicate via Pipes
with any SMTLib-compatible solver, which, in our case, is Z3.

7.3 Application Examples

In the course of presenting the usage of SGA, we have already demonstrated the result
of applying it to the linear list example. The results shown in Fig. 7.2 took around 3
seconds on an 8-core Intel Core-i7 computer, clocked at 3.4GHz, with 16GB memory.
We will now introduce further examples and show the results for them achieved with
SGA, reporting runtimes for those examples on that same machine.

Note that SGA is not optimized for performance, but rather for conceptual clarity,
ease of maintenance, and extendability. Thus, the runtime of this example implemen-
tation should only be considered as a demonstration of the asymptotic runtime behav-
ior of the algorithm, rather than a demonstration of feasibility in realistic settings.

7.3.1 Linear List Example with Cleanup Error

The first example we will look at uses the same GTS as our running example, but with
a different forbidden pattern, shown in Fig. 7.7. This pattern essentially represents a
“cleanup error”, i.e. a cell node left over after the list has been emptied. The different
error pattern necessitates different refinement steps, allowing us to observe in more
detail the refinement process employed by SGA, without obtaining a state space that
is too large to allow for such in-depth analysis. Overall, the algorithm performs three
refinement steps – an interpolation-based refinement, followed by a materialization-
based refinement, followed by a final interpolation-based refinement. Note that due to
the high parallelism present in the SGA implementation, the precise state that the STT
is in when a spurious error is encountered is neither entirely predictable, nor necessarily
compliant with the loop invariant familiar from Chapter 5.

207

apply
add

blur

n1n2

list

head tail

past

n3

future

n4

present

present
cell

materialize
add

n1n2

list

headtail

past

n3

future

n4

present

n5

future

present
next

cell

cell

n1n2

listpast

n3

future
present

head
tail

n4 present n5

cell

cell present

head

tail

next

next

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2 list

past

n3

future

present

head tail

n4 n5

cell

present next

head
tailpast

n1n2

list

head tail

past

n3

future

n4

present

present n5

future cell

cell

n1n2 list

past

n3

future

present

head tail

head tail

n4 presentnext
cell

n1n2 n3

list

head tail

past future
present

n1n2 list

past

n3

future

present

head tail

head tail

n4 presentnext
cell

start materialize
end

apply
endblur

materialize
error

Figure 7.5: The first abstract error trace encountered by SGA on the Linear List Example with Cleanup
Error

error

n1

list

head tail

n2
cell

Figure 7.7: Forbidden
Paħern represenধng a
leđ-over cell node with
an empty list

Now, beginning with the initial graph of the linear list GTS
(see Fig. 2.5), SGA begins constructing the STT, when it en-
counters the first error. The STT at that point is shown in
Fig. 7.6(a). The nodes that are part of the abstract error path
are shown in red. As we can see, the first error occurs when the
result of (abstractly) applying the start rule, followed by the
add rule, i.e. a shape representing (among other things) an ar-
bitrarily long linear list, matches the end rule. This is because
“arbitrarily long” also includes lists of length 1, to which the
end rule is applicable. The complete error path can be seen in
Fig. 7.5.

Having established the abstract error path, SGA queries the
SMTool library to perform the trace encoding and interpolation
as defined in Chapters 4 and 6. The result indicates that the ac-
tual failure point is not the shape that potentially matches the error, i.e. S4, but rather
the application of the end rule to the first shape representing an arbitrarily long linear
list, i.e. S3. This is spurious, since in the actual GTS, the linear list would have two cell
nodes at this point, one created by the start rule and one created by the add rule. The
interpolation-based shape constraint created by interpolating at the failure point is

208

start

add end

end
end

add
add

(a)

add

del
del

add
add

start

end

add add
add

add
end

deldel del

(b)

add

start

end

add adddel

addaddadd
del

deladdend

end

end add add deladd

(c)

add

start

end

add adddel

addend
add

addadddeldel del

(d)

Figure 7.6: The state of the STT for the linear list example with the cleanup error paħern before each
refinement step ((a) through (c)) and ađer construcধon has concluded (d).

209

apply
add

blur

n1n2

list

head tail

past

n3

future

n4

present

present
cell

materialize
add

n1n2

list

headtail

past

n3

future

n4

present

n5

future

present
next

cell

cell

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2
list

past

n3

future

present

n5 n6

cell

present next

head
tailcell

n1n2

list

head tail

past

n3

future

n4

present

present n5

future cell

cell

n1n2
list

past

n3

future

present

head tail

head tail

n6 presentnext
cell

n1n2 n3

list

head tail

past future
present

n1n2
list

past

n3

future

present

head tail

head tail

n6 presentnext
cell

start mate-
rialize

del

apply del,
blurend

materialize
error

n1n2

listpast

n3future

present

head
tail

n4

present

n6

cell

cell

present
head

tail next

next

n5 present
cell

next

tail head

next

next
next

next

head
tail

next

present

Figure 7.8: The second abstract error trace encountered by SGA on the Linear List Example with
Cleanup Error

(present (x4) ∨ ¬future (x1)∨¬cell (x2) ∨ ¬cell (x5) ∨ ¬head (x3, x5) ∨ ¬tail (x3, x5) ,
[x1 7→ n3, x2 7→ n4, x3 7→ n1, x4 7→ n2, x5 7→ n5])

Originally attached to the shape of the materialization point of the end-transition
edge, this constraint is then subjected to projected evaluation and subsequent projec-
tion to yield the constraint

(¬head (x3, x5) ∨ ¬tail (x3, x5) , [x3 7→ n1, x5 7→ n4])

which expresses, essentially, that there is no node represented by the summary cell-
node that is the target of both a head and a tail edge, which is a prerequisite to the end
rule. Since this does not conflict with St

3, the incoming shape for S3, the constraint is
declared valid. Materialization points are recomputed and no materialization of the
end rule is feasible anymore.

The analysis then continues until the second spurious error is encountered. After
having explored the STT node for S3 further, a new potential match for the error is
constructed by applying del, followed by end. A detailed view of this error path can be
seen in Fig. 7.8, while the state of the STT can be viewed in Fig. 7.6(b). In the interest
of readability, already present constraints have been omitted, and edges of the same

210

label that go in both directions between two nodes have been merged using two-tipped
arrows. Note that the blur action that produces S10 does not merge nodes n5 and n6.
This is because the interplay of the materialization of del, the application of del, and
the transformation of the constraints attached to those nodes leads to there only being
a single constraint on St

10:

(¬head (x3, x5) ∨ ¬tail (x3, x5) , [x3 7→ n1, x5 7→ n6])

Thus, the constraint is removed from n5, which precludes the merging of n5 and
n6, and ultimately allows for the materialization of the error pattern after a now-valid
application of end. Again, this error is spurious since, clearly, if we apply start, then
add, then del, and then end, we have removed exactly as many cell-nodes as we added,
leaving no room for any leftover nodes that the error pattern could potentially match.
Thus, this is obviously a node set issue, rather than an edge set issue.

As expected, the failure point returned by SMTool for the corresponding trace in-
dicates this. The specific point where the abstract trace leaves the concrete transition
system is not, as one might suspect, the application of end, but rather the particular
application of del used in the trace. This is because del was applied to a materialization
Sm
3 that preserved the cell summary node of shape S3, meaning that the materializa-

tion assumed that there were (at least) three cell nodes present, when in fact, there were
only two. This prompts SGA to abandon the interpolation-based approach and to in-
stead construct a negative materialization constraint for the particular materialization
of the del rule at S3, leading, after evaluation, to the following constraint.

(¬ (¬ (x1 = x2) ∧ ¬ (x1 = a) ∧¬ (x2 = a) ∧ tail (x0, x2) ∧ next (x1, x2)) ,
[x0 7→ n1, x1 7→ n4, x2 7→ n4, a 7→ n4])

This constraint now precludes any materialization of del from S3 that preserves the
cell-summary node. Equipped with this new constraint, the state space construction
continues, after the subtree below S3 has been discarded.

The final spurious error is found soon after. It is constructed by applying del (with-
out preserving the cell-summary node) to S3, followed by add, followed by end. The
reason this is possible is because the removal of the cell-summary node also removes
most of the constraints established earlier in the algorithm, so that another application
of add reestablishes the shape that was given by S3 before the first refinement. From
this shape, the same error can be reconstructed that was found when S3 was first con-
structed.

The complete error path is shown in Fig. 7.9, while the state of the STT is depicted

211

n1n2

list

head tail

past

n3

future

n4

present

present
cell

add
n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

n1n2 n3

list

head tail

past future
present

start del

n1n2 list

past

n3

future

present

n5 n6

cell

present next

head
tailcell

head
tail
next

n1n2

list

head tail

past

n3

future

n4

present

presentnext
cell

add

n1n2

listpast

n3

future
present

head
tail

n4 present n5

cell

cell present

head

tail

next

next

n1n2 list

past

n3

future

present

head tail

n4 n5

cell

present next

head
tailpast

n1n2 list

past

n3

future

present

head tail

head tail

n4 presentnext
cell

n1n2 list

past

n3

future

present

head tail

head tail

n4 presentnext
cell

apply
endblur

materialize
error

materialize
end

Figure 7.9: The final abstract error trace encountered by SGA on the Linear List Example with Cleanup
Error

in Fig. 7.6(c). Since the error is very similar, the created constraint ends up being (se-
mantically, not syntactically) identical to the constraint found in the first refinement.
Thus, after projected evaluation and subsequent projection, we again end up with

(¬head (x3, x5) ∨ ¬tail (x3, x5) , [x3 7→ n1, x5 7→ n4]) .

This, added to S24, again precludes any materialization of the end rule from shape
S24, and has the added benefit that the refined shape S24 is now embeddable into the
shape S3.

The construction algorithm continues, after having deleted the subtree under S24,
and immediately recognizes the newly created embedding relationship. The algorithm
continues to explore the remaining shapes, but finds no further errors. All discovered
shapes are now either fully explored or covered by some other shape. The validity of
the STT is thus established and we obtain the complete STT shown in Fig. 7.6(c).
On our reference machine, this process takes about 7,5 seconds on average, varying
between 6 and 9 seconds. This variance stems from the parallelism and the related non-
determinism inherent in the SGA implementation – the sequence in which shapes are
expanded, checked for embedding relations, etc. are not predictable in advance and
can lead to differences in how many shapes have to be considered on the way to a valid
STT.

Next, we consider an example from the literature and encounter refinements that

212

have to be referred to the user.

7.3.2 (Simplified) Firewall Example

Barbara König and Vitali Kozioura published a paper in 2006[102], in which they de-
scribed their tool Augur (see Sec. 8.1), and applied it to a graph transformation system
that described a computer network made up of connected locations, which in turn
formed two disconnected subnetworks linked by a single firewall. The purpose of the
firewall was to only let “safe” packets through. Thus, the property of the GTS that was
to be verified was that “unsafe” packets, which can only be created in the part of the
network that lies outside of the subnetwork shielded by the firewall, never reach the
network behind the firewall.

This example was then adopted and slightly modified by Eduardo Zambon and
Arend Rensink in 2012[162] to demonstrate the ability of their approach to take ad-
vantage of abstract state subsumption to curb the size of abstract state spaces in their
approach (also see Sec. 8.1). Here, we will use SGA to verify this simplified version and
show an example of necessary user intervention from the original, unabridged version.
Figure 7.10 shows this graph transformation system, with the addition of two rules,
createOutside and createInside, which add dynamic creation of connected locations,
at both sides of the firewall. The result of adding these rules is the creation of arbitrary
networks, both the safe part, and the unsafe part, making the infinite state space of
this GTS truly huge and immensely complex. However, due to the fact that any new
location has to be connected to exactly one existing location, this still means that the
subnetworks remain disconnected, and the property remains satisfied.

Applying SGA to this example, at first without createOutside and createInside, we
quickly obtain a very simple STT. It consists of the root node and 36 transitions going
out from it, each leading to an STTNode that is then covered by the root node. This
might seem strange, but it is indeed correct. The initial abstraction of the initial graph
causes the safe processes, unsafe processes, and inside locations each to be grouped into
summary nodes. Thus, the root node of the STT represents a state where there are an
arbitrary, positive number of safe processes on an arbitrary network behind the fire-
wall or on a single location in front of the firewall, and an arbitrary number of unsafe
processes on a single location in front of the firewall. None of the rules, which gov-
ern process movement, process creation, and the filtering property of the firewall, can
change anything about that state. Thus, every shape produced will be immediately em-
beddable into the initial shape. In total, the firewallFilter rule creates 24 of the resulting
shapes (8materializations each for 3matches), the createSafe rule creates 3 shapes (2
materializations for 1match, and 1 for another), the movePacket and movePacketBack
rules create 4 shapes each (4materializations for a single match), and the final resulting
shape is created by the single match and single materialization for createUnsafe. On our

213

 Simplified Firewall Graph
Transformation System

 I createSafe

n2

n1

L

s

n1

L

P

at

createUnsafe

n2

n1

L

u

n1

L

P

at

o o

movePacket

n1

L

n2

L
c

n3

P

at

n1

L

n2

L
c

n3

P

at

movePacketBack

n1

L

n2

L
c

n3

P

at

n1

L

n2

L
c

n3

at

P

firewallFilter

n2

L

n3
c

n1

P

at

n4 n5 n6

L
cin out

IF IFFW
n2

L

n3
c

n1

P

n4n5n6

L
cinout

IF IFFW

at

s s

createOutside

n2

n1

L

o

n1

L

L

c

o o

createInside

n2

n1

L

i

n1

L

L

c

i i

n1

L n2

i
oc

at

n3 n4 n5

L
cin out

IF IFFW

n6

s
n6 P

s

n0

L i

c

n6

u
n6

s
n6

Pu

P P P
at at at at

c

FW = FireWall, IF = InterFace, L = Location, P = Process, s = safe, u = unsafe,
at = at, i,in = inside, o,out = outside, c = connection

Figure 7.10: The simplified Firewall GTS taken from [162] with the addiধon of dynamic locaধon cre-
aধon

214

reference machine, this computation takes 3 seconds.
Adding the createOutside and createInside rules to the GTS changes relatively little.

The createInside rule behaves like the other rules in the previous STT, creating STT
nodes that are covered by the root. The createOutside rule introduces a new shape
(since the resulting summary location outside the firewall cannot be embedded into
the single outside location that existed earlier, but the resulting subtree is just a larger
version of the STT we had previously – all 82 nodes under the node created by create-
Outside are covered by that node. On our reference machine, this computation takes 5
seconds.

The relative ease with which we compute the state spaces for this example, and es-
pecially the fact that no refinement steps seem necessary stems from a key modification
introduced by Rensink and Zambon[162]. This modification consists of adding the i
and o labels which use unary labels to indicate the membership of locations in the in-
side and outside subnetworks. The original firewall example by König and Kozioura
did not have these labels. The effect of this modification is that using an abstraction
scheme that (among other things) uses unary labels to decide which nodes to merge
into summary nodes, the i and o labels enforce an invariant separation of the two sub-
networks.

This way, the separation of the subnetworks is never lost to the abstraction, and the
property is fairly obvious. Therefore, removing the i and o labels again will have a huge
impact on how difficult the example is to verify. This is achieved by simply removing
all edges with those labels from the initial graph and all rules. The subnetwork mem-
bership of the locations is now a transitive property defined by the c, in, and out edges,
and thus not readily available to the abstraction.

The result of this is immediately noticeable when applying SGA to the new version
of the problem, which is now much closer to the original model as specified by König
and Kozioura. The analysis begins constructing a large shape transition tree and goes
through 3 refinement cycles before arriving at the situation depicted in Fig. 7.11. The
error path under consideration begins with the application of createLocation to the
initial shape. There is only one possible match for this rule, but since there are two
summary nodes involved (n3 and n6), a total of four materializations are created. The
particular materialization chosen here is one where the L-summary node is assumed
to be exhausted (and is thus discarded), and the future-summary node is preserved.
Since in the initial graph, there are two locations that were summarized by n3, the cor-
responding trace encoding fails at the first step due to node set concerns. Since our
formulation of negative materialization constraints cannot express that a given sum-
mary node contains at least two nodes, we cannot add a constraint here that removes
this materialization, but leaves the ones that preserve n3 intact.

Thus, this would be a point where we would have to fall back to the user to create
an appropriate constraint. However, as specified by the refinement algorithm (see List-

215

n1

FW

n2
IF

n3

L

n4
P

s

n7

past

n6

future

c

n5

u

P

at at

S0

n1

FW

n2
IF

n3

L

n4
P

s

n7

past

n6

future

c

n5

u

P

at at

S0

n7

future

materialize
createLocation

Figure 7.11: The final abstract error trace encountered by SGA on the Linear List Example with
Cleanup Error

ing 6.3), SGA attempts to use the constraint anyway and use a sanity check to see if that
would be unsound. SGA thus projects the negative materialization constraint for Sm

0

onto S0. There it immediately simplifies to

(x = y, [x 7→ n6, y 7→ n6]) ,

thus disallowing the materialization of any additional nodes out of the future reservoir.
While this is obviously not the intended outcome, it is actually sound, since the ini-

tial graph also contains only one future node, thereby making no statement about the
minimum available space for new objects. The end effect of this is that SGA, through
this interplay of materialization constraints and sanity checks, refines the initial state
such that the problem is now much simpler (since no new locations or processes can
be created) and solves that problem instead of the one that was originally given. This
is easy enough, with the final STT being the corresponding subtree of the STT for the
firewall example in the form considered by Rensink and Zambon in [162].

Still, this should not be considered more than an artifact of the implementation.
The refinement step would, in a future implementation, be performed by the user, or
a more sophisticated negative materialization condition. In the next and final example
we will demonstrate that user-provided constraints can indeed successfully be incorpo-
rated into the process.

216

 Task Scheduling Graph
Transformation System

createTask

n1

Task

 I

n4
Scheduler

n5
CPU

waiting
n1

Task

n2

Task

waiting
n3

Task

waiting

ExecuteTask

n2
Scheduler

n3
CPU

n1

Task

n2
Scheduler

n3
CPU

n1

Task

nextTask workingOn
waiting

ScheduleTask

n2
Scheduler

n3
CPU

n2
Scheduler

n3
CPU

n1

Task

nextTask

n1

Task

waiting

Task

n4

workingOn
waiting

nextTask

Figure 7.13: The Task Scheduling GTS

7.3.3 User Intervention Example – Process Scheduling

This example is intended to demonstrate the user intervention process, i.e. the use of
user-supplied constraints in cases where both automatic processes fail. The example
GTS was taken from Daniel Wonisch’s master thesis[159]. It models a task scheduling
system.

error

n1

CPU

n2
Task

n2
Task

n2
Task workingOn

workingOn

workingOn

Figure 7.12: Forbidden
Paħern represenধng a
leđ-over cell node with
an empty list

This system consists of a single CPU, a single scheduling
agent, and a number of tasks to be scheduled. The various node
types of this GTS are modeled using the unary edges CPU ,
Scheduler, and Task. If a task is scheduled to be executed, this
is indicated by a nextTask-edge from the scheduler to the task.
There can always be only one such edge. A task that is currently
being processed by the CPU is indicated by a workingOn-edge
from the CPU to the task. This edge, too, must be unique.
Furthermore, a task is waiting until it is being worked on by a
CPU.

The rules in this GTS can create new tasks, schedule an ex-
isting task, or execute a scheduled task. Figure 7.13 shows the
GTS in the form in which we will give it to SGA. The initial
graph contains three tasks to begin with, one of which is already
scheduled to be executed, and thus the corresponding initial
shape will use a Task-summary node to represent these nodes.

The error that must be excluded is the scheduling of too many task for a CPU. In

217

n2
Scheduler

n3
CPU

waiting
n1

Task

nextTask

past

n4

future

n5

n2
Scheduler n3

CPU

waitingn1

Task

nextTask

waiting
n6

Task
past

n4

future

n5

nextTask

n2
Scheduler

n3

CPU

waiting
n1

Task
nextTask

n6

Task

past

n4

future

n5

workingOn

n2
Scheduler

n3

CPU

waiting
n1

Task
nextTask

n6

Task

past

n4

future

n5

workingOn

n2
Scheduler

n3

CPU

n1
Task

n6

Task

past

n4

future

n5

workingOn workingOn

n2
Scheduler

n3

CPU

n1

Task

past

n4

future

n5

workingOn

n2
Scheduler

n3

CPU

n7

Task

past

n4

future

n5

workingOn

n6
TaskTask

n1

workingOn

materialize
ExecuteTask

apply
ExecuteTask,
blur

materialize
ExecuteTask

blur
materialize
Error apply

ExecuteTask

Figure 7.14: The unresolvable error path found in the first iteraধon of SGA for the scheduling example

our example, we will assume that the CPU node represents a dual-core CPU, meaning
that at most two tasks may be executed by it. The error pattern for our GTS is thus
a CPU executing three tasks simultaneously, as depicted in Fig. 7.12. Examination of
the initial graph and the rules reveals that this error pattern cannot occur in the GTS,
regardless of how many tasks are created – each scheduling of a task requires the com-
pletion of an executing task. Since only one task is scheduled at the beginning, there
can never be more than one scheduled task and thus never more than one executing
task. Note, however, that the information that there is only one Task-node that has an
incoming nextTask-edge is lost in the initial abstraction.

This information loss in the initial abstraction poses a problem for the STS, which
SGA quickly uncovers during the construction of the STT. SGA finds the error path
shown in Fig. 7.14, which consists of two consecutive applications of the ExecuteTask
rule. Clearly, ExecuteTask cannot be executed twice in succession, due to the fact that
there is only one nextTask-edge in the initial graph and ExecuteTask does not produce
additional nextTask-edges.

While there are many details of this trace that exhibit behavior outside the range of
the concrete system†, during the analysis of the trace, SGA discovers that the failure
point is clearly the second application of ExecuteTask. Specifically, the absence of an
actual (as opposed to ½) nextTask-edge from the scheduler to a waiting task is identi-
fied as the cause of the abstraction failure. The problem with this can be easily seen in

†such as the materialization of three Task-nodes out of a summary node that is known to
only contain two

218

the shape S2 in Fig. 7.14, which represents both the unabstracted result shape of the
first application of ExecuteTask, and thus the incoming shape for the STT node con-
taining the shape at the failure point, as well as the central shape of that STT node.
Both shapes allowed for such edges to exist. The sanity check thus discards both the
interpolant-based constraint, and the negative materialization constraint (which also
disallows such an edge because the left-hand side of the rule requires it).

n2
Scheduler

n3

CPU

waiting
n1

Task
nextTask

n6

Task

past

n4

future

n5

workingOn

Figure 7.15: A Graph
embedded into the
incoming shape, but
not the refined central
shape at the failure
point

At this point, in a full implementation of the algorithm de-
scribed in Chapters 5 and 6, the user would be given the op-
portunity to provide constraints for the shapes from the initial
shape to the failure point. In order to simulate this exchange
with SGA we modified it to use a hard-coded user-generated
constraint for this specific test case. The problem with the
automatically-generated constraint would be relatively obvi-
ous to the user – they would be presented with the interpolant-
based constraint, the raw interpolant and the counterexample
for the sanity check. This last item is the key component. The
sanity check, i.e. the embedding check for the incoming shape
into the central shape augmented with the proposed constraint,
returns SAT when it fails. This means that, as described in
Sec. 6.3, the model of this satisfiable encoding contains a graph
that is embedded into the incoming shape, but not the central
shape. This graph (see Fig. 7.15) is presented to the user and
shows an existing nextTask-edge between the scheduler node and a task node – which
the user knows can’t exist. Therefore, the actual abstraction error happened earlier in
the trace and must be dealt with at that point.

This point, as indicated before, is the initial shape. Being the source of the initial Ex-
ecuteTask application in our error path, it does not contain the information that there
is only one task with an incoming nextTask-edge. This is ultimately the reason why
the abstraction was able to execute two (and by virtue of another overapproximation,
three) Task nodes. The user determines that this information should thus be added to
the initial shape. They provide the constraint

(¬ (¬ (x = y) ∧ nextTask (z, x) ∧ nextTask (z, y)) , [x 7→ n1, y 7→ n1, z 7→ n2]) ,

which expresses exactly that there is at most one Task-node with an incoming nextTask-
edge, and add it to the shape S0.

The refinement of the central shape of the root node causes SGA to discard the STT
thus far constructed and restart at S0, now with the new user-supplied constraint. This
leads to the construction of the STT shown in Fig. 7.16. The constraint provided by
the user is clearly sufficient to prove the validity of the STT.

219

cT eT eT

cTsTsT cT

Figure 7.16: STT ađer
user refinement (rule
names abbreviated)

The application of ExecuteTask (yielding S8) is now no
longer followed by another such application, since this is pro-
hibited by the constraint. Executing a task and then scheduling
a new task leads back to the initial shape, as expected. Creating
a task only adds a node to an existing summary node (shapes S8
and S0), or causes a merger with an existing non-summary node
(shape S9). The STT can even substantiate the intuition that,
given this GTS, ExecuteTask and ScheduleTask actions always
occur alternatingly (modulo applications of CreateTask). Note
also that the actual property being verified has been generalized
– the property holds for all GTSs that have an initial graph that
can be embedded into the intial shape, not just the initial graph
that was actually provided.

Having provided illustrative examples for every refinement
method supported by our implementation, as well as user in-
tervention, we now move on to point out those areas in which
SGA has the most room for improvement in the future.

7.4 Possibilities for Extension

In order to avoid overlap with Sec. 8.2 (Future Work), we will focus exclusively on such
improvements that could be realized without significant changes to the underlying
theory.

Interactive Refinement One obvious possibility would be to add an implemen-
tation of the manual refinement process described in Chapter 6. Since implementa-
tions of all the necessary checks are already in place for the various other parts of the
algorithm, the only significant investment of work necessary to enable interactive re-
finement would be the design and implementation of the user interface itself, as the
current implementation is simply not designed to handle this kind of user interaction.

Negative Application Conditions When using shape constraints for abstrac-
tion refinement, one useful corollary one obtains from that is the ability to incorporate
negative application conditions[83] into the analysis. As previously mentioned on
page 178, negative application conditions can be realized using shape constraints. This
was also incorporated into an earlier version of SGA. Since then, the abstraction re-
finement process, as well as the entire concept of state space construction has changed
significantly. While implementing this, support for NACs was deemed inessential and
was thus not transported into the new code. Relatively little effort would be required

220

to update the encoding implementation to be able to handle negative application con-
ditions again. This would enable SGA to analyze a wider variety of graph transforma-
tion system and would be an important step towards usefulness in realistic settings.

Compatibility Constraints Similar to the issue with NACs, compatibility
constraints are a feature that was supported by the first iterations of SGA, and has
since been rendered incompatible. Compatibility constraints are first-order formulas
that state general truths about all graphs in a system. They were the starting point for
Daniel Wonisch’s development of Deductive Constraints, which in turn were the direct
predecessors to the Shape Constraints used in this thesis. Compatibility Constraints
allow for a very effective way of incorporating domain knowledge into the analysis, and
have the additional advantage that they can be used to concretize shapes when they ex-
press information that is more general than would be necessary given the constraints.
With relatively little effort, SGA (and, to a much lesser extent, the underlying theory)
could be adapted to allow for the specification of compatibility constraints again, im-
proving the user’s influence over the abstraction further.

Most other improvements require more significant changes to the theory, and are
thus relegated to the next chapter.

221

8
Conclusion

The verification of structurally dynamic models is a difficult problem.
The new paradigm of model driven software development also makes it a very im-
portant problem, since behavioral modeling, e.g. of reconfigurable systems, is con-
stantly growing the number of real-world examples where the safety of such mod-
els is of paramount importance. The lazy state space construction algorithm with
interpolation-guided refinement presented in this thesis constitutes a new approach
to checking the safety of such models. It does so by solving the coverage problem for
infinite-state graph transformation systems*. The approach has been shown to be
effective on some examples, but also shows definite room for improvement in more
complex use-cases.

In this chapter, we will first conduct a survey of related techniques in the field.
Then, we will discuss the current shortcomings of our approach and point to future
work aimed at alleviating said shortcomings. Finally, we will summarize what was
achieved in this thesis with respect to the goals laid out in Chap. 1, review design de-
cisions made along the way and offer concluding thoughts.

*within the bounds of decidability

222

8.1 Related work

As already mentioned in the introduction (see Chap. 1), graph transformations and
graph transformation systems are applied in a multitude of settings, for a variety of
purposes (see, for example[68, 76, 123, 147, 150]). In many of these cases, it is important
that the graph transformation systems satisfy some kind of safety and/or correctness
property. And often, these systems exhibit intractably large or infinite state spaces.

It is therefore not surprising that a number of approaches have been proposed to
tackle the problem of verifying infinite-state graph transformation systems. In this sec-
tion, we will provide an overview of the work that has been done in this field, catego-
rizing the various different approaches by the way they reduce the size of the state space
they have to consider. Works that are related to this work by the techniques used rather
than the problem tackled are referenced at the appropriate place where the techniques
are discussed, such as on pages 26, 70, 132, and 140.

In the domain of model transformation, rather than basic graph transformation,
there exist also a number of approaches that aim to verify certain properties of trans-
formation languages that are in many cases based on graph transformation. The more
application-focused nature of model transformation research leads to a situation where
the main focus for the verification of such transformations lies on issues that can-
not occur in basic graph transformation systems, such as syntax issues or semantic
equivalence. There are approaches that seek to solve similar issues arising from the
use of graph transformation systems[44, 78, 145, 152, 157], but to the best of my knowl-
edge these approaches always either artificially reduce the state space by considering
bounded versions of the actual problems (and are thus related to the approaches dis-
cussed in Sec. 8.1.5), rely mostly on the power of human designers, e.g. by involving
interactive theorem provers in the process, or greatly reduce the expressiveness of the
language concerned. For this reason, we will focus in this section on more theoretical
work on basic graph transformation systems, since this achieves the goal of giving the
reader a good overview over the kinds of approaches that exist, without going into any
application-specific detail.

The categories that we will use to organize the various approaches are explicit state
representation, abstraction by patterns, abstraction by grammars, and bounded analy-
sis techniques. Explicit State Representation techniques are techniques that use abstract
states that provide an abstract counterpart to every component of the concrete states
they represent. This thesis is an example of an explicit state representation technique.
A variation on this are techniques performingAbstraction by Grammars. They em-
ploy specialized grammars to construct the abstract states and vary their precision. In
contrast, techniques that use abstraction by substructures use abstract states that de-
scribe only a part of the concrete states they represent, generally by using some form
of pattern matching. Finally, Bounded Analysis techniques obviate the need to look at

223

abstract states entirely by abandoning the notion that the entire state space has to be
searched. Such techniques usually explore some finite prefix of the state space, and thus
offer the assurance that if there is an error in the system that was not found, it must be
at least some fixed number of transitions long, or at least of some fixed size, depending
on the cutoff used.

Since they represent the base case of all these techniques, and because some of the
related work represents extensions of them, we will begin by surveying basic state space
construction and verification approaches for graph transformation systems that are not
explicitly able to deal with arbitrarily large state spaces.

8.1.1 Finite-State GTS Verification Techniques

For more than a decade now the importance of graphs and graph transformations as
a formal modeling tool has been steadily growing, and the advent of model-driven
development processes has greatly accelerated that growth. With increased use of graph
transformations, the verification of dynamic processes using them came more and more
into focus.

Starting with a paper by Heckel, Ehrig, Wolter and Corradini[84], a basic formal-
ism was developed in which the reach set of a given graph transformation system could
act as a state set which would then be linked by the rule applications on those states
to a transition system. Together with some notion of graph properties, such as, e.g.
graph patterns, this formalism could be used as a basis for model checking graph trans-
formation systems. From there, two main approaches to model checking finite-state
graph transformation systems emerged – translating graph transformation systems to
inputs for regular model checkers, and writing model checkers specifically for the use
with graph transformation systems. We will survey a selection of such approaches that
eventually led to the development of usable tools for the verification of graph transfor-
mation systems.

Translating graph transformation systems into model checker inputs is an approach
used by several tools and their accompanying formalisms, including CheckVML[140]
(Check Visual Modeling Languages) and OBGG[63] (Object Based Graph Grammars).

In CheckVML, a given graph transformation system with single pushout semantics
is first translated into an abstract – read: tool-independent – transition system from
which it can then be translated into any number of back-end model checkers. The
first model checker used for this purpose was SPIN[94]. Note that in CheckVML,
the graph transformation system is given in a special modeling language, specified by a
meta-model. As such, CheckVML provides (and requires) much more context for the
models it considers than similar approaches.

The OBGG approach was conceived of as a way to specify and verify distributed
software written in object-oriented programming languages. As such, its formalism

224

puts some restrictions on the models and transformations that can be used, mainly
to preserve and enforce the semantics of message passing on which the systems built
in OBGG are based. Furthermore, object deletion is prohibited in OBGG. These re-
strictions lead to many tasks that a verification or, for that matter, a simulation must
perform to be much simpler than in more general approaches like CheckVML or
GROOVE. The OBGG approach, like CheckVML, provides verification capabilities
by translating its own modeling language into Promela[28], the input language for the
SPIN[94] model checker.

As an example of an approach that does not rely on existing classical model checkers,
we look at GROOVE[75], which was already introduced in Chapter 2. It represents the
most direct implementation of the concept of model checking a graph transformation
system, and is also the one of the most application-agnostic tools available, requiring
no meta-model and implementing no additional restrictions for the graphs and rules
it uses. GROOVE verifies graph transformation systems (using properties specified in
CTL over graph patterns) by constructing the resulting graph transition system and
treating it as a Kripke structure, upon which it performs its own implementation of the
explicit CTL model checking algorithm. It is also the basis for some of the explicit state
representation techniques discussed in the next section.

A further example of an approach that provides simple model checking of graph
transformation systems was implemented in the highly versatile tool platform Fujaba[163].
Here, the basic graph transformation formalism was extended by merging it with the
concept of an activity diagram to obtain a certain level of execution control over the
graph transformation rules. This implementation was demonstrated at the transfor-
mation tool contest[111] in 2010. Further development in Fujaba that concerns the ver-
ification of graph transformation systems has focused on the support of additional
modeling elements, such as timing constraints, and the subsequent verification of
the result via a translation into a general-purpose model checker[66, 86], in this case
UPPAAL[27].

There are of course many other tools and specification languages that model graphs
and graph transformation systems to some degree, such as AGG[146], GrGen[74], and
PROGRES[141]. The focus of these approaches is not on verifying graph transforma-
tion systems after they have been defined, though. They either provide correctness-by-
construction properties by automatically modifying rules such that certain consistency
conditions are not violated (AGG), or focus on entirely different aspects than verifica-
tion altogether, such as efficiency (GrGen).

8.1.2 Explicit State Representation Techniques

For the category of explicit state representation techniques, we will discuss three ap-
proaches: Neighborhood Abstraction, Pattern Abstraction, and Petri Graph Abstrac-

225

tion. These each represent a completely different approach to the problem of graph
abstraction and show the diversity of techniques that exist.

Neighborhood Abstraction

In its outward appearance, neighborhood abstraction looks quite similar to the ap-
proach presented in this thesis. It summarizes individual nodes using summary nodes,
based on a notion of similarity, resulting in abstract graphs called shapes. It also pro-
vides algorithms for materialization and application of rules to shapes and thus creates
an abstract shape transformation system. The differences between neighborhood ab-
straction and our approach lie in the underlying formalisms.

In a series of papers[24, 36, 125, 126]†, the authors Rensink, Distefano, Bauer, Wil-
helm, Boneva, Kurbán and Kreiker developed a novel formalism for abstracting graphs.
Nodes and edges in shapes are annotated with multiplicities that are precise up to a pre-
defined bound ω. Graphs are then represented by these shapes if a relationship similar
to our embedding relationship exists between the graph and the shape which addition-
ally satisfies these multiplicity constraints.

The decision of which nodes to merge is made by a process that gives the approach
its name. Nodes whose neighborhood, i.e. the local context in their respective graphs,
made up of their adjacent nodes, up to a predefined bound k, is equivalent, are con-
sidered to be similar, and thus should be merged into summary nodes. This way, a
canonical abstraction can be defined, which guarantees that for any fixed ω and k, there
are only finitely many possible different shapes for any given label set. This is very ad-
vantageous, since it means that for a given ω and k a process creating the abstract state
space of a GTS is guaranteed to terminate.

In order to formulate properties of graphs that can be checked with this abstrac-
tion approach, a modal logic[22, 124] for graphs and shapes was created, that allows for
the specification of local transitive properties, and has the ability to precisely count up
to ω. This particular modal logic is preserved and reflected by the abstraction if suffi-
ciently large k and ω are chosen, i.e. verifying a property for the abstraction is equiv-
alent to verifying it for any of its concretizations. This is an impressive result that has
allowed the authors to verify some interesting properties of challenging case studies,
such as the firewall case study also investigated in Chap. 7.

A verification of an infinite-state graph transformation system using neighborhood
abstraction works by choosing very low initial values for ω and k, just enough for the
properties, and constructing the corresponding state space. If this is not sufficient to
prove the property, either ω or k are increased, and the process continues. Neighbor-
hood Abstraction has been prototypically implemented in the GROOVE tool[127].

†not a complete list

226

The weaknesses of this approach include the following. Neighborhood abstraction
has similar difficulties including a true transitive closure into its properties as we do.
Introduction of such unbounded transitivity would likely render the most impressive
reflection properties of this approach invalid. Furthermore, neighborhood abstraction
is unable to react to abstraction failures, i.e. the abstraction being too coarse to verify
a property, in a manner that is lazy and/or takes the spurious counterexample into
account. The only option for refinement is to increase one of the one-dimensional
precision parameters and recompute the state space. This is a weakness that is being
tackled by Pattern Abstraction, described in the following section.

Pattern Abstraction

Pattern Abstraction, first described in a paper by Rensink and Zambon[128] and later
extended in Eduardo Zambon’s PhD Thesis[161], can in some ways be seen as a more
sophisticated reinvention of neighborhood abstraction. It aims to alleviate the most
pressing problem with neighborhood abstraction, which is its reliance on a single inte-
ger – the radius k‡ – to define the precision of the abstraction. Not only is this abstrac-
tion refinement approach one-dimensional and unable to incorporate any additional
information, experimental results[161] also show that even unit increases on small k
result in massive increases in the size of the state space.

Pattern Abstraction tackles both of these problems by introducing pattern graphs.
The basic idea is this: rather than stating that any subgraph of size k constitutes a pat-
tern that should be preserved by the abstraction, we explicitly define a well-structured
hierarchy of graph patterns that should be preserved. This gives the user the ability to
identify important patterns in the graph transformation system and instruct the ab-
straction to preserve those. Similarly to neighborhood abstraction, multiplicities of
pattern occurrences are counted precisely up to some bound ω.

The ingenious formalism developed by Zambon in his thesis makes it possible to
construct well-defined shape transformation systems based on any set of sub-patterns,
all while sticking mostly to constructive definitions, facilitating implementation. Fur-
thermore, the fact that abstraction refinement is done using graphical patterns should
make a tool constructed for this theory usable even for non-experts.

However, Zambon does not give any instructions about how to arrive at the insight
which patterns would be useful to the abstraction, presumably leaving that to the in-
genuity or domain familiarity of the user. Furthermore, as of the time of this writing,
no implementation of this approach has been released and no experimental results
have been published, which makes it difficult to gauge the practical applicability of the
approach with any authority.

‡and, to a lesser extent, the multiplicity bound ω

227

Petri Graph Abstraction

Petri Graph Abstraction is an approach to abstract graph transformation developed
and analyzed by König, Corradini, Baldan and Kozioura in a series of papers[17] reach-
ing back to 2001[15]. The fundamental idea of Petri graph abstraction is to reduce the
problem of creating the state space of an infinite-state graph transformation system to
a formalism, in this case Petri nets, where the analysis methods available are more ma-
ture. This is done by creating a Petri graph, using the edges of the initial graph as the
places of a Petri net, and the rules of the graph transformation system as transitions.
The initial marking of this Petri net indicates the occurrences of the various edges in
the initial graph, and the firing of transitions then transforms this marking to indicate
the added or deleted edges. Newly created edges (and possibly the newly created nodes
that support them) create new places for the Petri net and thus grow the state space. To
curb this growth, the Petri graph is folded back in on itself when appropriate.

Note that while edge deletion can be modeled by removing markers from edges,
node deletion can not be expressed in this formalism. Note also that unlike in many
other formalisms, the verification task is not intertwined with the construction of the
state space, but rather happens after the fact, as an analysis of the final Petri graph.
Petri Graph Abstraction is based on hypergraphs and double pushout transformation
semantics, rather than simple graphs and SPO semantics like our approach.

Like all approaches based on overapproximation, spurious counterexamples are a
possibility in this approach. While their initial offering did not include a way to refine
the abstraction beyond a one-dimensional parameter similar to the one used by neigh-
borhood abstraction, this restriction has been lifted since then[102]. The approach
now includes a way to analyze spurious counterexamples and identify nodes along the
way whose merging caused the abstraction error. Prevention of the merging of these
nodes then removes the spurious counterexamples.

König et. al were able to prove many interesting properties for a variety of systems
with this approach, such as cycle-freedom properties, reachability properties, and the
absence of certain patterns. Their reach thus extends to safety as well as liveness proper-
ties. The extensive body of work on this approach also contains a fairly mature imple-
mentation called AUGUR[103].

8.1.3 Abstraction by Grammars

The observation that graph abstractions essentially relate graphs to other graphs, just
like graph transformations do, motivates the next set of approaches. These approaches
seek to approach abstract graph transformation essentially as two “perpendicular”
transformation systems – one system that models the system behavior, and one whose
function it is to make the states produced by the first system more abstract, or recon-

228

cretize them when required. This is more related to the shape analysis approach[134]
that our basic abstraction is based on than our approach itself, but we will include it
here since it provides a distinctly different view of graph abstraction. There is quite a
bit of work that falls under this category[14, 62, 107], but here we will restrict ourselves
to one representative approach, since it provides a good jumping-off point to research
other approaches and because it culminates in the presentation of a usable tool.

The approach we will look at is the one developed by Heinen, Noll and Rieger[85,
130]. It, and the tool that implements it, are called Juggrnaut (Just use graph grammars
for nicely abstracting unbounded structures). The basic idea is to use hyperedge re-
placement graph grammars (HRGs) to specify valid pointer structures in the heap.
Thereby, a pointer structure would be modeled by a hypergraph, and an HRG would
be used to define whether the graph was valid, i.e. parsable using the grammar, or not.

Thus, this approach uses a single abstract state – represented by the grammar – and
intermediate modified states, represented by intermediate graphs for which the pars-
ing fails. The actions of pointer-manipulating programs, in this case using a simple
programming language capable of pointer assignment, heap allocation, as well as condi-
tional and unconditional jumps, are then interpreted as graph transformations on the
abstract state. This state can be concretized using the reverse application of the parsing
rules, and reabstracted using forward application after the rule has been applied. This
approach was implemented in a tool[85].

The authors were able to show many relevant properties for their use case of a bi-
nary tree-manipulating algorithm, such as termination, coverage, and, of course, preser-
vation of the tree shape. While the use of grammars to abstract states is an interesting
approach, it should be pointed out that a great deal of user interaction goes into cre-
ating those analyses. The shape of the data structure to be modified, represented by
the HRG, must be supplied by hand. Furthermore, the modeling of the pointer oper-
ations as graph transformation operations must also be done by hand. The results are
thus not immediately transportable to other pointer manipulating languages, or, more
importantly, to other data structures being manipulated.

This is an inherent downside to the idea of using grammars for abstraction. Unless
the grammars are derived automatically on-the-fly to abstract common substructures, it
will always be necessary to handcraft grammars for every new data structure to be ver-
ified. It is interesting to note that the pattern-based abstraction described in Sec. 8.1.2
comes relatively close to this intuition. The hierarchical pattern-graphs used there are
similar to limited graph grammars specifying the structure of graph states. However,
even there a process of automatic or even semi-automatic abstraction refinement (or
even abstraction generation) is still missing as of this writing.

229

8.1.4 Substructure-based Abstraction Techniques

Unlike the previously discussed approaches that seek to present abstract states that
in some way cover a (possibly infinite) set of concrete states, usually by incorporating
special “abstract” components into graphs, the approaches described in this section
take the opposite view. Rather than trying to express a high level state directly, they use
certain substructures of graphs to represent all graphs that contain (or do not contain)
those substructures.

Pattern-based Abstraction with Backwards Application

The first approach that we will discuss here was developed by Schilling, Giese, Becker,
Beyer, and Klein[25] and further elaborated upon in Daniela Schilling’s PhD thesis[139].
This approach was for the purpose of modeling and verifying structural adaptations in
the context of distributed mechatronic systems. It uses graph patterns to represent the
substructures used to group sets of graphs into abstract states. Since graph patterns
have been used as “predicates” on graphs (see Sec. 8.1.1), this is strongly reminiscent
of predicate abstraction, where logical predicates over program variables are used to
represent the set of all states in which they evaluate to true.

More specifically, the central idea of this approach, is the representation of graphs
via graph patterns, which themselves are graphs, possibly extended by negative applica-
tion conditions. A graph is represented by a graph pattern, if an injective match for it
can be found that can not be extended to include any of its negative application condi-
tions. Thus, a single pattern represents an infinite set of states, and a set of patterns can
be used to cover an entire state space of a graph transformation system.

However, this approach does not seek to achieve a comprehensive representation
of the entire state space by forward constructing all possible states from some form of
abstraction of the initial state, especially since in the intended application domain a sin-
gle, well-defined initial state is often hard to come by. Rather, the opposite approach is
taken. Analysis starts at a set of forbidden patterns that formulate an invariant safety
condition for a GTS. Then, all possible combinations of how any rule in the rule set
could generate, or “complete” one of these patterns are computed. Each of these rule
and pattern combinations is executed backwards, to obtain a pattern that represents an
abstract state leading to the error state. If, by this method, a pattern can be constructed
that contains none of the forbidden patterns, i.e. a pattern representing a safe state,
then the claim that the absence of the set of forbidden patterns constituted an invari-
ant property is refuted and the system is declared unsafe.

By this method, infinite-state graph transformation systems of high complexity can
be proven to satisfy a given inductive invariant with comparatively little effort. The
analysis always terminates either with the message that the system is safe, or with a set

230

of counterexamples.
Considering that termination could never been guaranteed by any of the previous

examples, this is an impressive result. The price for termination is paid here by the re-
striction on the properties that can be verified, and the graph transformation semantics
that can be used. This backwards application means that the approach is limited to
graph transformation semantics that are reversible, such as DPO, while less restrictive
ones, like SPO, are not supported. More importantly, the restriction to inductive in-
variants can be quite severe. For a system to be safe, it is not sufficient merely to never
construct a forbidden pattern, but rather the rules must be set up so that the forbidden
pattern can never be constructed regardless of circumstances. Nevertheless, many inter-
esting properties, especially in the domain of distributed mechatronic systems fall into
this category and the approach has been successfully applied to case studies from that
domain[139].

The restriction to inductive invariants and the disregard for initial states are not
fixed features of the basic approach, though. This is evidenced by the modification
of the approach introduced by Saksena, Wibling and Jonsson[136], who, rather than
doing the inductive invariant check, used backwards application of rules to forbidden
patterns to perform a classical fixed-point computation. This means that, beginning
with the rule-and-forbidden-pattern combinations, rules are applied backwards over
and over again, creating ever new patterns that are allowed to subsume each other.
Eventually, a stable state is reached, where the computed patterns cover the entire state
space backward reachable from forbidden patterns. If the initial state is not covered
by this pattern set, then the system is declared safe. While this adds the requirement
of some kind of initial state description, and loses the termination guarantee that the
approach by Schilling et.al. possessed, it also opens up the possibility to verify a much
larger set of potential properties. In their paper, Saksena et.al. use this method to verify
an ad-hoc routing protocol called DYMO[136].

Overapproximation of Graph Transformation Systems using Well-
Quasi Orders

The second approach we will discuss was developed by König and Joshi in 2008[100].
Rather than using patterns, it relies on recent mathematical discoveries about graph
substructures calledminors. A graphG is a minor of a graphH ifG can be obtained
fromH by deleting or contracting edges, or removing isolated nodes (or, of course,
some combination thereof). Over the last couple of years, research by Robertson and
Seymour[131, 132] has revealed that the graph minor relation defines a well-quasi order
on graphs.

This is useful because it can be used to express certain classes of graph transition
systems as well-structured transition systems (WSTS)[100]. This implies that a finite

231

number of graph minors can be used to represent each such WSTS, and that finding
this set of minors is decidable. König and Joshi present a backwards reachability algo-
rithm for error graphs using these results and use it to verify a simple leader election
protocol in their initial paper[100].

It should be noted that the restrictions placed on the graph transformations systems
in this approach are really quite severe. According to König and Joshi, GTSs must
either be composed exclusively of rules with disconnected nodes or edges in their left-
hand side, or be transformed into a compatible GTS by adding rules that perform edge
contractions for every label in the graph domain. Clearly, in many application domains,
these are prohibitive restrictions.

This result was later generalized by König and Stückrath in 2014[104]. Here, the au-
thors widen the scope of their approach to include well-quasi orders induced by other
kinds of relations between graphs, specifically the subgraph relation and the induced
subgraph relation. While these new well-quasi orders and the theoretical framework
within which they are placed now allows for backwards reachability analyses for the
coverage problem for graph transformation systems with arbitrary rule sets, this relax-
ation comes at the price of additional restrictions put on the kinds of graphs that can
be represented. The most notable of these restrictions is given by the boundedness of
the length of all undirected paths by a fixed integer k, limiting the size of contiguous
components that the graph transformation system can be able to produce.

Regardless of these restrictions, the fact that this approach offers decidability for the
coverage problem with caveats that may not be relevant in many application scenarios
makes this an important result. A prototypical implementation exists and was used to
evaluate the practical feasibility of this approach[104]. The results indicate feasibility,
since all GTSs tested were verified in well under a minute, usually a few seconds.

8.1.5 Bounded Model Checking Techniques

In the field of model checking, the idea of managing intractably (or arbitrarily) large
state spaces by examining only a small, well-defined part of it, ideally one that is likely
to contain errors, is well known. For graph transformation systems, this idea has also
been gaining traction in the past decade, even if most approaches introduce the bound
on the state space often in an implicit way or otherwise do not strictly follow the ex-
ample of classical bounded model checking[34]. Such approaches include, e.g., the
approach by Tichy and Klöpper[148], which transforms GTSs into planning problems
in the PDDL language, the approach by Baresi and Spoletini[19], which uses the logi-
cal specification language Alloy to verify properties of GTSs in a bounded way, or the
approach by Lafuente and Vandin[109], which translates GTSs into rewriting logic
and checks properties specified in quantified µ-calculus on bounded prefixes of the re-
sulting state space. The graph transformation tool GROOVE[75] also has a mode that

232

allows for bounded state space exploration and verification. Here, we will represent
these bounded approaches by the approach given by Isenberg, Steenken and Wehrheim
in their 2013 paper[97]. This approach includes the SMT encoding that was the inspi-
ration for the trace encoding presented in Chapter 4.

Bounded model checking of graph transformation systems via SMT solving uses
SMT encodings of GTS execution paths of incrementing lengths. All aspects of graph
transformation, including isomorphism checking for the insertion of backwards transi-
tion edges into execution paths are faithfully represented by the encoding. This allows
for the classical formulation of bounded LTL model checking to be directly applica-
ble to the encoding. The LTL formula to be checked is encoded into the same SMT
formula, thus creating an encoding of a path of length k that violates the k-bounded
semantics of the given LTL formula. Clearly, any model of such an encoding is an er-
ror, i.e. a path through the GTS that violates the LTL property to be checked.

In contrast to our approach, thus, this approach is able to handle full LTL model
checking over graph patterns as predicates, with the caveat that only errors of a length
up to a certain k can be excluded. This represents a different trade-off than the one
accepted in this thesis – where we trade decidability for the ability to potentially rule
the entire state space safe, this approach, along with all other bounded approaches,
sacrifices the ability to exclude errors in favor of decidability. However, as McMillan
observed[112], it is possible, under certain circumstances, to use Craig interpolation
to lift this technique from a bounded state space exploration to an unbounded state
space exploration. This is an interesting avenue for future research in SMT encodings
of graph transformation systems.

8.2 Future Work

While the theoretical approach taken in this thesis provides a semi-automatic verifi-
cation technique for infinite-state graph transformation systems that is able to fully
automatically verify some examples, the results obtained by its implementation make
it clear that there is still room for improvement. The prospect of using SMT solving
and interpolation to refine the abstraction is promising, and similar work in the field of
program verification using such techniques suggests a great potential of this approach
to find suitable abstraction refinements. However, the theory, as it has been developed
so far, has as yet failed to fully deliver on this promise. In this section, we will explore
a few avenues of work that have the potential to greatly increase the usefulness of our
approach.

233

8.2.1 Shape-Based Refinement for Node Set Errors

In our lazy abstraction refinement approach, we thus far attempt an interpolation
based refinement first, followed by a materialization based refinement if that fails,
and finally refer to the user if the negative materialization constraint turns out to be
unsound. In the vast majority of cases where the interpolation based refinement fails,
it does so because the problem is that a materialization assumes that more or fewer of
a particular kind of node exist than actually do exist. In the majority of cases where
the subsequent materialization based refinement fails, this is due to the fact that while
the materialization based refinement as given by Def. 94 can express that too many of
a given type of node have been materialized, it is unable to express that too few such
nodes have been materialized. This is because, fundamentally, the guaranteed existence
of nodes in our formalism is something that is most naturally expressed by the inclu-
sion of said nodes in the shape, rather than by a constraint added after the fact.

A possible solution for this would be to introduce a new refinement mechanism
that splits summary nodes from which too few nodes were materialized into a number
of concrete nodes plus the original summary node, in essence, performing a kind of
materialization on the central shape. This would then preclude the offending materi-
alization from being performed again. Information about which nodes to split could
be obtained from the trace encoding where, with a slightly modified encoding, the in-
formation which parts of the materialization embedding could not be realized due to
node set concerns could be obtained by using fine grained formula partitioning and
unsat cores.

The introduction of this method into the LSSC algorithm would necessitate a
change in the STT definition, since individual shape transformations can now result
in different shapes and thus different nodes, based on which of the summary nodes
of the resulting shapes were split during a refinement. The claim that valid instances
of such modified STTs constitute proofs for the validity of the underlying GTSs must
then be reexamined.

8.2.2 Transitive Closure in Constraints

One of the most difficult to verify properties in graph transformation systems are those
that arise from the transitive closure of local graph properties. A good example for such
a property is the network separation property in the firewall example (see Sec. 7.3.2).
The membership of each location in either the network outside or inside the firewall
is determined by its transitive connection to the respective interface of the firewall.
The fact that the initial abstraction lacks this information lead to the summarization of
both subnetworks into the same network and thereby to spurious errors as processes
navigate connections into the protected network that do not exist in the concrete sys-

234

tem. Without a transitive closure operator, it is very difficult to express such properties.
However, since the three-valued shape analysis approach by Sagiv et. al.[134] does

support transitive closures, and support for transitive closures is under development
for at least one of the SMT solvers used in this thesis (Z3[35]), it is conceivable that this
restriction could be lifted in the future. Even if the automatic refinement procedure
remains unable to produce constraints utilizing transitive closure, the ability for the
user to specify such constraints would still greatly improve the reach of our approach.
The most significant change to our formalism would have to be made to the shape
constraint transformation definition, which would have to be amended to handle the
transitive closure operator.

8.2.3 Separation of Concrete Graph Predicates

The main reason our approach currently needs the ability to fall back to a human de-
signer to provide certain types of constraints is that automatic refinement is always
localized to a single shape, the one at the failure point. This is not ideal, since in many
cases, the shape at the failure point cannot effectively be refined without its predecessor
in the error path also being refined. As we saw in Sec. 5.1, the usual process for abstrac-
tion refinement with interpolation does add constraints along the entire path, not just
in one place for this very reason.

On page 180 we go into some detail about the reason for this shortcoming. Essen-
tially, the way the encoding currently works, there is no way to obtain a clean, usable
constraint from an interpolation at any point in the trace other than the failure point.
This is because the predicates that make up the concrete graph must be carried through
the entire trace and are thus part of every interpolation cut, except for the one at the
failure point because the part of the trace behind the failure point can be omitted.

Solving this problem is difficult. One possible approach might be adopting a multi-
layered encoding. On the first level, rule application is relegated to the shape level,
while the graphs are only represented via embeddings into the various shapes. While
this would introduce usable interpolation cuts at every step in the trace, it also is not
an entirely concrete encoding, since even when the embeddings remain constant,
the properties of the graphs that the shapes make no direct claims over are subject to
change over the course of the trace. Thus, each step in such an encoding re-introduces
a bit of abstraction. A second encoding level using only concrete graph applications
guided by the shapes at the abstract level could complement the first level in providing
both an accurate failure point and assessment of the feasibility of the error, as well as
workable interpolation points.

235

8.2.4 Relaxation of Initial State and Error Conditions

In our approach, we have so far assumed that there is a single, well-defined start graph
for the GTS, as well as a single error pattern. This decision was made to simplify the
setup of the overall algorithm. However, there is no compelling reason for why these
restrictions can not be overcome. It would, for example, be possible to replace the ini-
tial graph with an initial state, possibly already annotated with domain knowledge-
derived shape constraints by way of user input[42]. Only the trace encoding would
have to be slightly adapted, e.g. by including the initial constraints in the encoding
since they are not valid refinements, for that to become a possibility.

Similarly, but requiring a bit more work, the error pattern could be replaced by an
error shape, and the checking for a match for the error pattern could be replaced with
the search for an embedding of the error shape into any subshape of a given central
shape. While that would make the error checking itself more complicated, the scope of
verifiable properties would grow significantly.

8.3 Summary and Concluding Thoughts

In this thesis, we set out to create a novel mechanism for formally verifying safety prop-
erties of structurally dynamic systems, such as they occur in the modeling of, e.g. recon-
figurable systems, in model driven software development. In our formalization of such
models, this came down to solving the coverage problem for infinite-state graph trans-
formation systems. By way of SMT encodings of its various concepts, and the prior
work on three-valued abstractions that existed at the time, we sought to leverage tried-
and-true techniques from other branches of verification, such as lazy abstraction and
interpolation. With this approach, we hoped to create a technique that would improve
upon existing work mainly in the area of abstraction flexibility and expressive power.
The final goal was to implement a tool that would showcase the new technique and
prove that it could be realized.

For the most part, we have accomplished those goals. First, we focused and gener-
alized the three-valued logic abstraction for memory stores created by Sagiv et.al.[134]
by transferring it to the graph transformation domain, thus creating a system that was
capable of representing infinite state sets with finite shapes, and of transforming those
shapes in a sound abstraction of regular SPO semantics. Among the various available
abstraction formalisms to base our approach on, we chose this one because of its di-
rect link to formal logic. The ability of this formalism to directly evaluate first-order
formulas on the structures used and thereby refine the abstraction was seen as a key
component of creating a highly flexible and expressive abstraction refinement frame-
work. We added such a refinement formalism, inspired by instrumentation predicates,
to our shape system, and created an automatic update mechanism for that formalism

236

that allows for very high precision, being not only sound, but even complete under
certain circumstances§. Building on this formalism, we showed how an abstract shape
transition system could be created that was able to finitely and soundly represent the
infinite state spaces that are so characteristic for many graph transformation systems.

Subsequently, we tackled the unavoidable problem of having to identify spurious
counterexamples and vacuous, i.e. internally contradictory, shapes. Since we assumed
a single initial state there was a possibility to do this by, e.g., explicitly creating the con-
crete graph transformations that go along with the abstract counterexample and ana-
lyze the feasibility of spurious counterexamples that way. Motivated by the prospective
exponential growth of these concrete traces and our intention to glean abstraction
information in the form of formulas from our counterexample analysis, we instead de-
cided to solve this problem by creating suitable SMT encodings. Using prior work on
bounded model checking for graph transformation systems[97], we created a trace en-
coding using which an SMT solver is able to tell whether concrete traces exist that cor-
respond to a given abstract graph transformation trace. Since we eschewed unbounded
sorts and quantifiers in this encoding, we were able to keep this encoding in the decid-
able fragment of first-order logic. We were further able to create a feasibility encoding
for shapes, able to detect conflicts between constraints attached to the same shape. Due
to the unbounded nature of graphs in general, and the fact that we place no restriction
on the kinds of shape constraints that can be used in our technique, we were not able
to retain the same decidability result as for the trace encoding.

Put together, these parts of the technique constituted an approach to construct ab-
stract graph transition systems with a built-in detection for spurious counterexamples
and infeasible shapes. What remained missing was a way to actually use the refinement
potential of our approach in a systematic way that did not place the entire burden of
abstraction refinement on the user.

There are generally two ways to structure a abstract state space construction pro-
cess with abstraction refinement – either the refinement loop contains the state space
construction loop, or vice-versa. In the first case, one can generally arrange the abstrac-
tion in such a way that the state space construction is guaranteed to terminate. Non-
termination then comes from the analysis requiring infinitely many refinement steps.
In the second case, refinements are made locally and as part of the state space explo-
ration. As a result, less redundant work needs to be done, but state space exploration
itself is no longer guaranteed to terminate.

Recognizing the difficulties of creating a finite canonical abstraction with our ab-
straction refinement formalism, we opted for the second approach. For this, we adopted
the well-known techniques of lazy abstraction and interpolation-guided refinement in

§these special circumstances are not given for the application scenarios we have thus far
considered

237

order to automate much, if not all of the refinement process and create a state space
construction algorithm that would be able to avoid constructing most of the behavior
that was unnecessary to rule out the error. The shape transition tree data structure that
resulted from this proved very effective and provided a solid foundation upon which
to build a lazy, i.e. local, refinement process, allowing us to only closely scrutinize that
part of the state space that actually contains the error. Transferring the application
of Craig interpolation to the creation of new shape constraints proved far more chal-
lenging. We were ultimately able to modify our trace encoding in such a way that a
certain class of abstraction error could be automatically excluded by an interpolant
extracted from the encoding. Complemented with a fallback refinement strategy that
uses materializations as the source for constraints we created an automated refinement
algorithm using these strategies that would ultimately fall back to a human designer in
cases where the required constraints were too complex. Still, we were able to improve
on the base case of the designer providing the constraints unassisted by creating aux-
iliary checks for the generated constraints and offering interpolants and embedding
information as starting points for the manual construction of the refinement.

This approach was then implemented in a prototypical implementation in Java,
using existing software like TVLA[108], SMTInterpol[46], and Z3[114] to take advan-
tage of mature software offerings where possible. Only the automatic portion of the
approach was ultimately implemented, causing the resulting program to fail with an
error message whenever human input would have been required. This implementa-
tion was then tested on a few common examples of infinite-state graph transformation
systems. This showed that there are non-trivial examples for which the automatic re-
finement process, or even the pure state space construction method were sufficient.
However, it also showed that in many cases, the approach does not terminate or falls
back to user input.

Verifying infinite-state graph transformation systems, even just using a single error
pattern as the safety condition, is a very hard problem. Current work on this problem
goes in many different directions, each of which applies different trade-offs to achieve
results, usually by limiting the kind of rules or graphs that are supported. However, as
the discussion of related work in Sec. 8.1 showed, there are currently a number of more
mature techniques that, using different formalisms, achieve more impressive results
than our new approach. Still, no single approach has as yet emerged as a clear front-
runner, due to the great diversity of trade-offs and special cases that make up the field
today.

As Sec. 8.2 shows there are still many improvements that could be made to make
our approach more powerful, versatile, and practical. Most of these improvements are
achievable with relatively little effort, suggesting that many of the shortcomings of our
approach could be ameliorated in the near future.

If implemented correctly, this approach has the potential to be applicable in many

238

different scenarios. In model-driven development of software, it could serve as a veri-
fication tool for algorithm models for manipulating unbounded data structures such
as lists or trees, visual models of dynamic communication protocols such as ad hoc net-
working protocols, or behavioral models of structurally reconfigurable systems such as
self-optimizing mechatronic systems[4].

239

A
Proofs

This appendix contains all the proofs that were left out of the chapters of this thesis for
the sake of readability.

Proof of Lemma 2 (p38). Since both f and f ′ are surjective, |US | = |U ′
S |, as well as the

bijectivity of f and f ′ follow. Let g := f ′ ◦ f . We distinguish two cases:

(i) If g = id, then f ′ = f−1. Thus, for every (p, k) ∈ P , and (u1, . . . , uk), we
have

ιS (p) (u1, . . . , uk) ⊑ ιS (p) (f (u1) , . . . , f (uk)) and
ιS (p) (f (u1) , . . . , f (uk)) ⊑ ιS (p) (u1, . . . , uk) and thus

ιS (p) (u1, . . . , uk) = ιS (p) (f (u1) , . . . , f (uk))

i.e. S ≡f S
′.

(ii) If g ̸= id, we know that g is a bijective embedding of S into itself and that there
is at least one u ∈ US such that g (u) ̸= u. Now, because g is bijective there
is an n such that gn = g, i.e. gn (u) = u. This means that edge values are
monotonically increasing along the applications of g, i.e. for any (p, k) ∈ P and
0 ≤ 1 ≤ k:

ιS (p) (u1, . . . , ui−1, u, ui + 1, . . . , uk) ⊑ ιS (p) (u1, . . . , ui−1, u, ui + 1, . . . , uk)

240

Clearly, this is only possible if edge values remain constant along all applications
of g. Thus, g is a non-identity isomorphism on S. We can thus construct a new
embedding of S′ into S by setting f ′′ = g−1 ◦ f ′ = f−1 ◦ f ′−1 ◦ f ′ = f−1.
This brings us with g′ := f ′′ ◦ f = id back to the first case.

Proof of Lemma 5 (p45). By construction, Sm containsL as a concrete subgraph. Since
G is concrete, the matchm′ is injective. As seen in the proof of Lemma 4, f |Um\NL

is
injective. Thus, f ′ := g|UG\m′(NL)

∪m′−1 is a surjective function f ′ : NG → Um.
By construction, we get

f ◦ f ′ = f ◦
(
g|UG\m′(NL)

∪m′−1
)

= f ◦ g|UG\m′(NL)
∪ f ◦m′−1 non-intersecting domains

= f |g(UG\m′(NL))
◦ g|UG\m′(NL)

∪ f |NL
◦m′−1

= f |(US\m(NL))
◦ g|UG\m′(NL)

∪ f |NL
◦m′−1 m = g|m′(NL)

◦m′

= idUS
◦ g|UG\m′(NL)

∪ f |NL
◦m′−1

= idUS
◦ g|UG\m′(NL)

∪ f |NL
◦
(
m−1 ◦ g|m′(NL)

)
m = g|m′(NL)

◦m′

= idUS
◦ g|UG\m′(NL)

∪
(
f ◦m−1

)
◦ g|m′(NL)

m = g|m′(NL)
◦m′

= idUS
◦ g|UG\m′(NL)

∪ g|m′(NL)

= g

We will now show that f ′ is an embedding.
Let (u, 1) ∈ P and n ∈ UG\m (NL). Then we get ιG (u) (n) ⊑ ιS (u) (g (n)) =

ιSm (u) (f ′ (n)), since g is an embedding andm = g|m′(NL)
◦ m′. Now, let n ∈

m (NL) and (u, n) ∈ E1
L. Then we have 1 = ιG (u) (n) = ιSm (u)

(
m−1 (n)

)
=

ιSm (u) (f ′ (n)), sincem′ is an injective match. On the other hand, if n ∈ m (NL)
and (u, n) ̸∈ E1

L, then we have

ιSm (u)
(
f ′ (n)

)
= ιS (u)

(
f ◦ f ′ (n)

)
by Def. 46

= ιS (u) (g (n)) g = f ◦ f ′

⊒ ιG (u) (n)

241

Thus, we get ιG (u) (n) ⊑ ιSm (u) (f ′ (n)) in all cases. For (b, 2) ∈ P and n1, n2 ∈
UG, this follows analogously.

Finally, since g is an embedding, g|UG\m′(NL)
has the third embedding property.

Sincem′ is an injective match,m′−1 has it too. Thus, f ′, as a union of two functions
exhibiting the third embedding property, has it as well.

Therefore, f ′ is an embedding.

Proof of Lemma 9 (p79). Any model of Sc has to satisfy distinctNodes, unaryG,
and binaryG. Satisfaction of distinctNodes implies that the universeU of the
model contains k distinct node constants, and that the nullary predicates v1, . . . , vk
are interpreted such that there is a one-to-one mapping between them and those node
constants. Since the v1, . . . , vk each represent a node in the graph, this establishes a
one-to-one mapping between the graph nodes and the node constants in the model.
From CoT. 4, we know that the model uses the same predicate setP that serves as the
label setL ofG. Now, we assume that the logical structure (U,P, ι) induced by the
model interprets one of the unary predicates si on one of the node constants vj such
that

ι (si) (vj) ̸= ((si, 1) , vj) ∈ E1,

i.e. it contradicts the graph. From the definition of unaryGwe know that it consists of
a conjunction containing, among other elements the term B(si, vj), where

B(si, vj) =

{
si (vj) if ((si, 1) , vj) ∈ E1

¬si (vj) otherwise

This directly implies

ι (si) (vj) = ((si, 1) , vj) ∈ E1,

in contradiction to the assumption. The same argument holds for binary predicates.
Thus, (U,P, ι) is isomorphic to ls (G), since there is a one-to-one correspondence
betweenU andN , as well as betweenL andP , and in addition no interpretation of a
predicate in (U,P, ι) can differ from the valuation of that predicate in ls (G).

Proof of Lemma 10 (p84). We will show that in a model satisfying summarization,
the interpreted function _F can violate neither the surjectivity property, nor the node
abstraction property.

242

We begin with surjectivity. Let uj ∈ US such that ¬∃vi ∈ UG : _F (vi) = uj .
Then either uj ∈ U c

S or uj ∈ U s
S . If uj ∈ U c

S , then summarization contains the
conjunction

∨
v∈UG

uj = _F (v) ∧
∧

v′∈UG\{v}

¬
(
uj = _F

(
v′
))

≡
∨

v∈UG

0 ∧
∧

v′∈UG\{v}

¬0

 ≡ 0 (∗)

where (∗) holds because ¬∃vi ∈ UG : _F (vi) = uj . Similarly, if uj ∈ U s
S , we have∨

v∈UG

uj = _F (v) ≡
∨

v∈UG

0 ≡ 0

by the same argument.
We now turn to the node abstraction property. Let uj ∈ U c

S , andX := _F−1 (uj) =
{v1, . . . , vl}, i.e. |X| > 1 (due to pairwise inequality of node constants). Then, by
definition, summarization contains the term

∨
v∈UG

uj = _F (v) ∧
∧

v′∈UG\{v}

¬
(
uj = _F

(
v′
))

≡
∨
v∈X

1 ∧
∧

v′∈X\{v}

¬1 ∧
∧

v′∈UG\X

¬0

 ∧
∨

v∈UG\X

0 ∧
∧

v′∈UG\{v}

¬0

 ≡ 0

Thus, any violation of either the summarization property or the node abstraction
property is prohibited by summarization.

Proof of Lemma 11 (p90). From Lemma 9 and Lemma 10, we already know that the
model for Scwill contain an instance of ls (G), and an instance of ls (S′), where S′ is
created from S by removing all of its ½-edges. Furthermore we know that the model of
_Fwill be a function _F : UG → US that is surjective and satisfies the summarization
condition. What remains to show is that _F satisfies the edge abstraction condition,
given by

∀ (s, k) ∈ P∀v1, . . . , vk ∈ UG : ιG (s) (v1, . . . , vk) ⊑ ιS (s) (_F (v1) , . . . , _F (vk)) .

243

We now assume that _F is a function that violates that condition. For that purpose, let
(s, 2) ∈ P and v1, v2 ∈ UG such that ιG (s) (v1, v2) ̸= ιS (s) (_F (v1) , _F (v1))
and neither value is ½. Since ιS (s) (_F (v1) , _F (v1)) ̸= ½, we know that (v1, s, v2) ∈
E2

S is not a ½-edge. Without loss of generality, we assume that ιG (s) (v1, v2) = 1 and
ιS (s) (_F (v1) , _F (v1)) = 0. By CoT. 17 we know that the conjunction that consti-
tutes binaryAbstraction contains the term

(s (v1, v2) = s (_F (v1) , _F (v2))) ∨
ki∨
o=1

((_F (v1) = uo) ∧ (_F (v2) = wo))

Since we know that (v1, s, v2) ∈ E2
S is not a ½-edge, the disjunction on the right

reduces to false, leaving us with

(s (v1, v2) = s (_F (v1) , _F (v2))) ∨ 0

which implies ιG (s) (v1, v2) ̸= ιS (s) (_F (v1) , _F (v1)), in contradiction to the
assumption. The same argument follows for unary predicates (s, 1) and the unaryAb-
straction formula. Thus, every non-summary edge in the shape is mirrored exactly
by all its pre-images under _F , and the edge abstraction condition is thus satisfied.

Now, let f be a valid embedding ofG into S, i.e. G ⊑f S. Let further _F be
interpreted such as to mimic f , i.e.

∀v ∈ UG : (ι (_F) (v) = f (v)) .

Then _F has the right range to satisfy CoT 11, and by Lemma 10 it also satisfies CoT. 12.
Furthermore, since f satisfies the edge abstraction property, _F does so as well:

l∧
i=1

k∧
j=1

[
(si (vj) = si (_F (vj))) ∨

ki∨
o=1

(_F (vj) = usio)

]

≡
∧

(si,v)∈E1
G

ιS(si)(_F (v))=½

[
(si (v) = si (_F (v))) ∨

ki∨
o=1

(_F (v) = usio)

]
∧

∧
(si,v)∈E1

G

ιS(si)(_F (v)) ̸=½

[
(si (v) = si (_F (v))) ∨

ki∨
o=1

(_F (v) = usio)

]

≡
∧

(si,v)∈E1
G

ιS(si)(_F (v))=½

[(si (v) = si (_F (v))) ∨ 1]∧

244

∧
(si,v)∈E1

G

ιS(si)(_F (v)) ̸=½

[(si (v) = si (_F (v))) ∨ 0]

≡1 ∧
∧

(si,v)∈E1
G

ιS(si)(_F (v)) ̸=½

[(si (v) = si (_F (v)))]

Therefore, this encoding has as its models exactly the valid embeddings ofG into S.

Proof of Lemma 18 (p114). LetM be a model for Sc, and letGM
i+1 be the interpre-

tation of the i + 1-indexed versions ofP thatM contains. We want to show that
Gi+1 ≡ GM

i+1. Since the universes are identical and unchanging over the course of the
trace, this comes down to the placement of the edges.

Let now p ∈ P0, i.e. p is a predicate that is untouched by Pi. Then by CoT. 27,
there is only one term in rule_application that contains references to it:

υ∧
j1=1

υ∧
j2=1

pi+1 (vj1 , vj2) = pi (vj1 , vj2) if p is binary,

υ∧
j=1

pi+1 (vj) = pi (vj) if p is unary.

SinceM is a model for Sc, it must satisfy this term and thus

ιGi (p) (v, w) = ιGM
i+1

(p) (v, w) if p is binary, and

ιGi (p) (v) = ιGM
i+1

(p) (v) if p is unary

must hold for all nodes v, w. Thus,GM
i+1 andGi+1 are identical on all predicates in

P0.
Let now (p, 2) ∈ P \ P0, i.e. p is a binary predicate for which at least one value

changes in an application of Pi. Then by CoT. 27, Sc contains the following conjunc-
tion (with j := i+ 1) that references p:∧

(n1,p,n2)∈E2
+

pj (n1, n2) ∧
∧

(n1,p,n2)∈E2
−

¬pj (n1, n2)∧

245

υ∧
j1=1

υ∧
j2=1

 ∨
(n1,p,n2)∈E2

+∪E2
−

(n1 = vj1 ∧ n2 = vj2) ∨ pj (vj1 , vj2) = pi (vj1 , vj2)


≡

∧
(n1,p,n2)∈E2

+

pj (n1, n2) ∧
∧

(n1,p,n2)∈E2
−

¬pj (n1, n2)∧

∧
j1,j2∈U

(j1,p,j2)∈E2
+∪E2

−

 ∨
(n1,p,n2)∈E2

+∪E2
−

(n1 = vj1 ∧ n2 = vj2) ∨ pj (vj1 , vj2) = pi (vj1 , vj2)

∧

∧
j1,j2∈U

(j1,p,j2)̸∈E2
+∪E2

−

 ∨
(n1,p,n2)∈E2

+∪E2
−

(n1 = vj1 ∧ n2 = vj2) ∨ pj (vj1 , vj2) = pi (vj1 , vj2)


≡

∧
(n1,p,n2)∈E2

+

pj (n1, n2) ∧
∧

(n1,p,n2)∈E2
−

¬pj (n1, n2)∧

∧
j1,j2∈U

(j1,p,j2)∈E2
+∪E2

−

[1 ∨ pj (vj1 , vj2) = pi (vj1 , vj2)]∧

∧
j1,j2∈U

(j1,p,j2)̸∈E2
+∪E2

−

[0 ∨ pj (vj1 , vj2) = pi (vj1 , vj2)]

≡
∧

(n1,p,n2)∈E2
+

pj (n1, n2) ∧
∧

(n1,p,n2)∈E2
−

¬pj (n1, n2) ∧
∧

j1,j2∈U
(j1,p,j2) ̸∈E2

+∪E2
−

[pj (vj1 , vj2) = pi (vj1 , vj2)]

Thus, sinceM is a model for Sc, for any node pair v, w,Gi+1 must contain a p-edge
if Pi adds an edge there ((n1, p, n2) ∈ E2

+), must not contain a p-edge if Pi removes
an edge there ((n1, p, n2) ∈ E2

−), and must have the same edge value asGi if the rule
did not make any changes*. The same holds analogously for unary predicates. Thus,
GM

i+1 andGi+1 are identical on all predicates inP \ P0 and therefore identical on all
predicates, and thus isomorphic.

Proof of Lemma 9 (p79). Any model of Sc has to satisfy distinctNodes, unaryG,
and binaryG. Satisfaction of distinctNodes implies that the universeU of the

*recall that matches are expressed via equalities, so the use of rule nodes in graph contexts
and the use of graph nodes in rule contexts are valid here

246

model contains k distinct node constants, and that the nullary predicates v1, . . . , vk
are interpreted such that there is a one-to-one mapping between them and those node
constants. Since the v1, . . . , vk each represent a node in the graph, this establishes a
one-to-one mapping between the graph nodes and the node constants in the model.
From CoT. 4, we know that the model uses the same predicate setP that serves as the
label setL ofG. Now, we assume that the logical structure (U,P, ι) induced by the
model interprets one of the unary predicates si on one of the node constants vj such
that

ι (si) (vj) ̸= ((si, 1) , vj) ∈ E1,

i.e. it contradicts the graph. From the definition of unaryGwe know that it consists of
a conjunction containing, among other elements the term B(si, vj), where

B(si, vj) =

{
si (vj) if ((si, 1) , vj) ∈ E1

¬si (vj) otherwise

This directly implies

ι (si) (vj) = ((si, 1) , vj) ∈ E1,

in contradiction to the assumption. The same argument holds for binary predicates.
Thus, (U,P, ι) is isomorphic to ls (G), since there is a one-to-one correspondence
betweenU andN , as well as betweenL andP , and in addition no interpretation of a
predicate in (U,P, ι) can differ from the valuation of that predicate in ls (G).

Proof of Lemma 25 (p149). We will prove this by induction over the possible concrete
paths starting in Γ (n). Firstly, we recognize that, since (n, n′) ∈ C and T is valid, we
know that Sn ⊑ Sn′ and thus Γ (n) ⊆ G

(
Sn
)
⊆ G

(
Sn′
)
. Therefore, the central

shape of n′ covers all graphs of the local graph set of n. Now, let k ∈ N,G0 −P1,m1−−−→
· · · −Pk,mk−−−→ Gk be a path of length k withG0 ∈ Γ (n), and k − 1 > i ∈ N. We
assume that for all 0 ≤ j < i the lemma holds, i.e. we have a function π such that (5.3)
holds. Therefore, there is a materialization Sm of π (Gi) such thatGi ⊑fi S

m and a
shape St such thatGi+1 ⊑f ′

i+1
St. Let (ni+1, x) ∈ E1, and ni+1 be the STT node

for which St is the incoming shape. There are now two cases.
In the first case, ¬∃y : (x, y) ∈ C , i.e. is not a covered node. We then set π (Gi+1) :=

x. SinceGi+1 ⊑ St, from condition 5 we also know thatGi+1 ⊑ Sni+1 . Since Pi+2

matchesGi+1 atmi+2, andGi+1 ⊑f Sni+1 , we know by the embedding theorem
(Theorem 1) that Pi+2 potentiallymatches Sni+1 at a matchm′

i+2 = f ◦mi+2. ni+1

247

therefore has a materialization point
(
S
m′

i+2
ni+1 , f

m′
i+2

ni+1

)
such thatGi+1 ⊑ S

m′
i+2

ni+1 and

an outgoing transition edge labeled with
(
Pi+2,

(
S
m′

i+2
ni+1 , f

m′
i+2

ni+1

))
.

In the other case, x is a covered node and is thus embedded into another node x′.
Then we just set π (Gi+1) := x′. This is valid by the same argument as above, since
the existence of the covering edge (x, x′) implies the existence of a corresponding em-
bedding. With that, the induction is complete.

Proof of Theorem 5 (p156). Given that any algorithm will either terminate or not ter-
minate, we will focus on claims ii and iii. We will prove the following: After every
complete execution of the main loop (lines 5-31), T is an STT satisfying the validity
conditions 1, 2, 4, and 5 of Def. 83, and a modified version of condition 3, specifically†

∀n ∈ (N \NC) \ E :∀ (Sm, fm) ∈ M
(
Sn
)
:[

G (Sm) = ∅ ∨ ∃e ∈ E2 :
(
(Sm, fm) =

(
Sm
e , f

m
e

))]
(A.1)

In other words, the loop maintains the invariant that T is a valid STT, with the excep-
tion of condition 3 for the nodes inE. It is fairly obvious that, if the above holds, then
if the algorithm terminates, it is either becauseE became empty, i.e. the tree is now
valid, or the loop was left through line 24, in which case we have produced a concrete
counterexample.

We will begin by showing that the invariant holds when the loop is first entered.
Lines 2-3 construct the starting STT T , while line 4 setsE (the set of nodes to be pro-
cessed) to be the unary edge attaching the STT node for I to the root of the tree, as
well asK (the set of ”completed” nodes) to the empty set. By this construction, T
already satisfies condition 1, and since T contains no transition or covering edges what-
soever, conditions 2 and 4 are satisfied as well. The use of the abstraction schemeA to
construct the central shape of the root node ensures that condition 5 also holds (in fact,
the stronger condition G (I) ⊆ G

(
S0
)
holds). Due to the root node being part ofE,

the modified condition (A.1) holds, too.
Now, we assume that the invariant holds at the beginning of the loop body, i.e. T

satisfies conditions 1, 2, 4, and 5, as well as (A.1). Each loop iteration performs opera-
tions on a single STT node n taken from a unary edge removed fromE at the begin-
ning of the loop body. We now show for each condition in the loop invariant that it is
preserved with each loop iteration, provided that the loop body is executed completely
and not left via the return statement on line 24.

†with slight abuse of notation, sinceE contains unary edges, not nodes

248

Condition 1: The algorithms EXPAND, EXPLORE, CHECKFEASIBLE, and COVER, as
well as the main algorithm itself do not touch the root node n beyond its initial
expansion which cannot invalidate the condition due to Def. 86. Since Γ(n) =
{I} for the root node, and from Def. 90 we know that in any case where the
tree is modified the root is either not modified (Case a), or refined in such a way
that G

(
Sin
n

)
⊆ G

(
Sn
)
holds (Case b with k ≥ 0). Thus, condition 1 is always

preserved by the main loop body.

Condition 2: This condition states that every transition edge must represent a valid
shape transition. Only EXPLORE and HANDLEERROR affect transition edges
without removing them entirely (in which case condition 2 would be trivially
satisfied). By definition (see Def. 88), EXPLORE only produces transition edges
for which the condition holds. Furthermore, since HANDLEERROR never refines
the unabstracted result shape, only materialization points and central shapes,
and replaces invalid transitions by recomputing them, this condition is left un-
touched by it as well.

Condition 4: This condition concerns itself with covering edges, stating that each cov-
ering edge must be labeled with a valid embedding between the central shapes
of its source and target nodes. Only the main algorithm and HANDLEERROR
have an effect on this condition. In lines 7 − 13, covering edges are added toC
for all pairs (n,m) of nodes where COVER returns an embedding. Since COVER
only returns an embedding when one exists between the central shapes of the
parameter nodes (see Def. 89), this preserves the condition. Existing covering
edges might be invalidated by a refinement in the central shape of their target
node. This only happens if case b occurs in the execution of HANDLEERROR.
By Def. 90, we know that all covering edges that terminate in a refined node
ni, i < k are removed fromC , and the thereby uncovered nodes added toE.
Thus, condition 4 is preserved.

Condition 5: This condition describes the relationship between the entry point Sin

and the central shape S of each STT node n in the tree, i.e. Sin ⊑ S. Only
EXPLORE and HANDLEERROR can have an effect on this condition. The def-
inition of EXPLORE states that for any new (tentative) node n created by it,
Sn = A

(
Sin
n

)
and thus

Sin
n ⊑ Sn

holds. The HANDLEERROR sub-algorithm refines (in case b) the central shapes
of nodes ni, i < k, which could potentially invalidate condition 5. However,
Def. 90(b) states that this is not the case. Thus, condition 5 is preserved.

249

Condition (A.1): This modified version of Condition 3 states that all feasible material-
ization points either have transition edges attached to them, or their STT node
is covered, or their STT node is part ofE. Again, we assume that this condi-
tion is satisfied at the start of the loop body. In line 6, one node n (or rather one
unary edge assigning an STT node to a tree node) is removed fromE, break-
ing Condition (A.1). We will now go through the algorithm and see that this is
always rectified at some point in the loop body.

In lines 7 through 13, a loop goes through all pairs (n,m)where, syntacti-
cally, a covering edge could be added, and checks via COVER if a corresponding
embedding exists. If one is found, the corresponding covering edge is added,
thereby restoring condition (A.1). The loop is left and the main loop continued
by line 14. If no embedding is found, the loop terminates, line 14 does nothing,
and the node is expanded on line 15.

Lines 16 − 20 now determine which of the materializations are feasible, i.e.
which ones must be explored for Condition A.1 to hold again.

The loop on lines 21 − 30 now handles feasible error materializations. It is
only left once the current node n no longer has any. In that case, EXPLORE is
called and attaches transition edges to all feasible materialization points of n. n
is added toK , and all tentative nodes created by EXPLORE added toE on line
31, reestablishing Condition (A.1).

Now let’s assume that on line 21, n, which is the only non-explored node out-
side ofE, has at least one feasible error materialization

(
Se
n, f

e
)
. On line 22,

HANDLEERROR is called. By Definition 90, HANDLEERROR returns either a path
and a node, in which case the analysis should be terminated, or an empty path
and a refined node.

Let’s assume that p ̸= ϵ. Then the loop and the entire algorithm will be left via
the return statement on line 24, satisfying option ii for the outcome of the main
algorithm.

Thus, we now assume that p = ϵ and (n1, . . . , nl) now form the singular
branch of T that was refined by HANDLEERROR in accordance with Def. 90.
Then {n1, . . . , nl}will be removed fromK since they are no longer explored
on line 26. Then, all nodes that were uncovered by HANDLEERROR because
they were covered either by a node in the removed subtrees or by n1, . . . , nl,
are added toE on line 28. Nodes n2, . . . , nl (if they exist) are also added to
E, thus reestablishing Condition (A.1) for all those nodes. The particular er-
ror materialization with which the loop started has now been removed from
n, either by refining n, or by removing it from the tree entirely and replacing it
with a node that does not have that error materialization. Thus n is now again

250

the only unexplored node in T outside ofE. If it has another error material-
ization, the loop will continue. If not, the loop will be left, the node n explored
and added toK , as stated above. The loop invariant is thus reestablished. It is
worth noting that the loop from line 21 to line 30will always terminate, since
it is guaranteed to either remove an error materialization from the given node
(and there is always a finite number of them) or to move back along the root
path of n, which is also finite.

Thus, since the loop invariant is preserved by the loop body, and is equal to the validity
condition for T in caseE = ∅, the STT T is guaranteed to be valid if the main loop
is left, since that guaranteesE = ∅. Therefore, if the algorithm terminates, it always
either returns a path or a valid STT, as claimed in the Theorem.

Proof of Theorem 6 (p178). We will first prove Sm ̸|= concrf ({(α,m)}), i.e. G (Sm) ⊆
G (S) \ G (S,Λ′). For this, we need to show that there is anm′ such thatm =
fm ◦ m′ ∧ Sm ̸|= (α,m′). We constructm′ by assuming an arbitrary total order
≤ on the nodes ofN , and setting

m′ := idN ∪
{(
n′, x

)
| x ∈ fm−1 (ν (x)) \N

}
,

i.e. m′ assigns each node from the left hand side of the rule to itself, and the additional
variables for the summary nodes in S to the additional that were created for the pre-
served summary nodes (note that the second part of that definition is well-defined
since for each preserved summary node in the match, only one summary node is cre-
ated in the materialization, i.e. we have

∣∣{(n′, x) | x ∈ fm−1 (ν (x)) \N
}∣∣ = 1 for

all n′). We now obtain, by Def. 94:

fm ◦m′ = fm ◦ idN ∪fm ◦
{(
n′, x

)
| x ∈ fm−1

(
ν
(
n′
))

\N
}

= m ◦ idN ∪
{(
n′, fm (x)

)
| x ∈ fm−1

(
ν
(
n′
))

\N
}

= m ∪
{(
n′, ν

(
n′
))}

= ν

Thus, (α,m′) ∈ concrfm ({(α, ν)}). Now, the constraint (α,m′) can only be
violated on Sm if αset, αun and αbin are satisfied. αset is satisfied by construction of
m′.

Similarly, since αun and αbin mirror exactly the unary and binary edges found in the

251

materialized shape, we have that on Sm αun and αbin are satisfied.

Jαm′KνSm =
∧

(s,1)∈P

 ∧
n∈NL

ιSm (n)=1

ιSm (s)
(
m′ (n)

)
∧

∧
n∈NL

ιSm (n)=0

¬ιSm (s)
(
m′ (n)

)

=
∧

(s,1)∈P

 ∧
n∈NL

ιSm (n)=1

ιSm (s) (id (n)) ∧
∧

n∈NL
ιSm (n)=0

¬ιSm (s) (id (n))



=
∧

(s,1)∈P

 ∧
n∈NL

ιSm (n)=1

ιSm (s) (n) ∧
∧

n∈NL
ιSm (n)=0

¬ιSm (s) (n)



=
∧

(s,1)∈P

 ∧
n∈NL

ιSm (n)=1

1 ∧
∧

n∈NL
ιSm (n)=0

¬0


= 1 ∧ 1 = 1

αbin follows analogously. Thus, we get

JαKνSm = 0

⇒Sm ̸|= (α, ν)

⇒Sm ̸|= concrfm (Λ ∪ {(α,m)})
⇒G (Sm) ⊆ G (S) \ G

(
S,Λ′)

Now, in order for αset to be satisfiable on a materialization S′m other that Sm,
but in the same materialization lattice, S′m must preserve all the nodes that Sm pre-
serves, otherwise the additional variable cannot be assigned to a node that is outside of
NL. Thus, every materialization other than Sm that is excluded by (α,m) is an upper
bound for Sm in its materialization lattice.

Finally, if a graphG is embedded into none of the materializations, then it does not
match P at a matchm′ compatible withm. Thus, it cannot satisfy αun and αbin at an
assignment compatible withm, enforcingG |= concrg ({(α,m)}) for any such graph
G and embedding g into S.

Therefore, the graphs excluded by (α,m) are exactly the graphs that are embed-
dable into Sm and its upper bounds in its materialization lattice.

252

B
Code Listings

This appendix contains all code listings that, for the sake of a clear and concise presen-
tation, could not be included in the thesis at the point where they are discussed. Each
listing presented here references its section of origin.

Lisধng B.1: SMTLib Operators for First-Order Logic� �
1 not ; logical negation
2 and ; logical and
3 or ; logical or
4 xor ; logical exclusive or
5 => ; logical implication
6 = ; equals
7 ite ; if-then-else
8 forall ; universal quantifier
9 exists ; existential quantifier� �

Lisধng B.2: Embedded Graph Encoding (see Sec. 4.4)� �
1 (set-option :print-success false)
2 ;(set-option :produce-unsat-cores true)
3 (set-logic QF_UF)
4 ; Sort for graph nodes
5 (declare-sort Node 0)
6 (declare-sort ANode 0)
7 (declare-fun _F (Node) ANode)
8 ; four node individuals in the graph (node set / universe)
9 (declare-fun v_1 () Node)
10 (declare-fun v_2 () Node)
11 (declare-fun v_3 () Node)
12 (declare-fun v_4 () Node)
13 ; two node individuals in the shape
14 (declare-fun u_1 () ANode)
15 (declare-fun u_2 () ANode)
16 ; assert distinctiveness of the individuals
17 (define-fun distinctNodes () Bool

253

18 (and (not (= v_1 v_2)) (not (= v_1 v_3)) (not (= v_1 v_4))
19 (not (= v_2 v_3)) (not (= v_2 v_4))
20 (not (= v_3 v_4))
21 (not (= u_1 u_2)))
22)
23 ; labels used in the graph become predicates
24 (declare-fun list (Node) Bool)
25 (declare-fun cell (Node) Bool)
26 (declare-fun tail (Node Node) Bool)
27 (declare-fun head (Node Node) Bool)
28 (declare-fun next (Node Node) Bool)
29 (declare-fun alist (ANode) Bool)
30 (declare-fun acell (ANode) Bool)
31 (declare-fun atail (ANode ANode) Bool)
32 (declare-fun ahead (ANode ANode) Bool)
33 (declare-fun anext (ANode ANode) Bool)
34 ; defines the unary edges of the graph
35 (define-fun unaryG () Bool (and
36 (list v_1) (not (cell v_1))
37 (not (list v_2)) (cell v_2)
38 (not (list v_3)) (cell v_3)
39 (not (list v_4)) (cell v_4)
40))
41 ; defines the binary edges of the graph
42 (define-fun binaryG () Bool (and
43 (not (tail v_1 v_1)) (tail v_1 v_2) (not (tail v_1 v_3)) (not (tail v_1 v_4))
44 (not (tail v_2 v_1)) (not (tail v_2 v_2)) (not (tail v_2 v_3)) (not (tail v_2 v_4))
45 (not (tail v_3 v_1)) (not (tail v_3 v_2)) (not (tail v_3 v_3)) (not (tail v_3 v_4))
46 (not (tail v_4 v_1)) (not (tail v_4 v_2)) (not (tail v_4 v_3)) (not (tail v_4 v_4))
47
48 (not (head v_1 v_1)) (not (head v_1 v_2)) (not (head v_1 v_3)) (head v_1 v_4)
49 (not (head v_2 v_1)) (not (head v_2 v_2)) (not (head v_2 v_3)) (not (head v_2 v_4))
50 (not (head v_3 v_1)) (not (head v_3 v_2)) (not (head v_3 v_3)) (not (head v_3 v_4))
51 (not (head v_4 v_1)) (not (head v_4 v_2)) (not (head v_4 v_3)) (not (head v_4 v_4))
52
53 (not (next v_1 v_1)) (not (next v_1 v_2)) (not (next v_1 v_3)) (not (next v_1 v_4))
54 (not (next v_2 v_1)) (not (next v_2 v_2)) (not (next v_2 v_3)) (not (next v_2 v_4))
55 (not (next v_3 v_1)) (next v_3 v_2) (not (next v_3 v_3)) (not (next v_3 v_4))
56 (not (next v_4 v_1)) (not (next v_4 v_2)) (next v_4 v_3) (not (next v_4 v_4))
57))
58 ; defines the range of the embedding function
59 (define-fun function () Bool (and
60 (or (= (_F v_1) u_1) (= (_F v_1) u_2))
61 (or (= (_F v_2) u_1) (= (_F v_2) u_2))
62 (or (= (_F v_3) u_1) (= (_F v_3) u_2))
63 (or (= (_F v_4) u_1) (= (_F v_4) u_2))
64))
65 ; defines the summarization property
66 (define-fun summarization () Bool (and
67 (or (and (= (_F v_1) u_1) (not (= (_F v_2) u_1)) (not (= (_F v_3) u_1)) (not (= (_F v_4) u_1)))
68 (and (not (= (_F v_1) u_1)) (= (_F v_2) u_1) (not (= (_F v_3) u_1)) (not (= (_F v_4) u_1)))
69 (and (not (= (_F v_1) u_1)) (not (= (_F v_2) u_1)) (= (_F v_3) u_1) (not (= (_F v_4) u_1)))
70 (and (not (= (_F v_1) u_1)) (not (= (_F v_2) u_1)) (not (= (_F v_3) u_1)) (= (_F v_4) u_1))
71)
72 (or (= (_F v_1) u_2) (= (_F v_2) u_2) (= (_F v_3) u_2) (= (_F v_4) u_2))
73))
74 ; defines the unary edges of the shape
75 (define-fun unaryS () Bool (and
76 (alist u_1) (not (acell u_1))
77 (not (alist u_2)) (acell u_2)
78))
79 ; defines the binary edges of the shape
80 (define-fun binaryS () Bool (and
81 (not (atail u_1 u_1))
82 (not (atail u_2 u_1)) (not (atail u_2 u_2))
83
84 (not (ahead u_1 u_1))
85 (not (ahead u_2 u_1)) (not (ahead u_2 u_2))
86
87 (not (anext u_1 u_1)) (not (anext u_1 u_2))
88 (not (anext u_2 u_1))
89))
90 ; assert edge abstraction for unary edges
91 (define-fun unaryAbstraction () Bool (and
92 (or (= (list v_1) (alist (_F v_1))) false)
93 (or (= (cell v_1) (acell (_F v_1))) false)
94 (or (= (list v_2) (alist (_F v_2))) false)
95 (or (= (cell v_2) (acell (_F v_2))) false)

254

96 (or (= (list v_3) (alist (_F v_3))) false)
97 (or (= (cell v_3) (acell (_F v_3))) false)
98 (or (= (list v_4) (alist (_F v_4))) false)
99 (or (= (cell v_4) (acell (_F v_4))) false)
100))
101 ; assert edge abstraction for binary edges
102 (define-fun binaryAbstraction () Bool (and
103 (or (= (tail v_1 v_1) (atail (_F v_1) (_F v_1))) (and (= (_F v_1) u_1) (= (_F v_1) u_2)))
104 (or (= (tail v_1 v_2) (atail (_F v_1) (_F v_2))) (and (= (_F v_1) u_1) (= (_F v_2) u_2)))
105 (or (= (tail v_1 v_3) (atail (_F v_1) (_F v_3))) (and (= (_F v_1) u_1) (= (_F v_3) u_2)))
106 (or (= (tail v_1 v_4) (atail (_F v_1) (_F v_4))) (and (= (_F v_1) u_1) (= (_F v_4) u_2)))
107
108 (or (= (tail v_2 v_1) (atail (_F v_2) (_F v_1))) (and (= (_F v_2) u_1) (= (_F v_1) u_2)))
109 (or (= (tail v_2 v_2) (atail (_F v_2) (_F v_2))) (and (= (_F v_2) u_1) (= (_F v_2) u_2)))
110 (or (= (tail v_2 v_3) (atail (_F v_2) (_F v_3))) (and (= (_F v_2) u_1) (= (_F v_3) u_2)))
111 (or (= (tail v_2 v_4) (atail (_F v_2) (_F v_4))) (and (= (_F v_2) u_1) (= (_F v_4) u_2)))
112
113 (or (= (tail v_3 v_1) (atail (_F v_3) (_F v_1))) (and (= (_F v_3) u_1) (= (_F v_1) u_2)))
114 (or (= (tail v_3 v_2) (atail (_F v_3) (_F v_2))) (and (= (_F v_3) u_1) (= (_F v_2) u_2)))
115 (or (= (tail v_3 v_3) (atail (_F v_3) (_F v_3))) (and (= (_F v_3) u_1) (= (_F v_3) u_2)))
116 (or (= (tail v_3 v_4) (atail (_F v_3) (_F v_4))) (and (= (_F v_3) u_1) (= (_F v_4) u_2)))
117
118 (or (= (tail v_4 v_1) (atail (_F v_4) (_F v_1))) (and (= (_F v_4) u_1) (= (_F v_1) u_2)))
119 (or (= (tail v_4 v_2) (atail (_F v_4) (_F v_2))) (and (= (_F v_4) u_1) (= (_F v_2) u_2)))
120 (or (= (tail v_4 v_3) (atail (_F v_4) (_F v_3))) (and (= (_F v_4) u_1) (= (_F v_3) u_2)))
121 (or (= (tail v_4 v_4) (atail (_F v_4) (_F v_4))) (and (= (_F v_4) u_1) (= (_F v_4) u_2)))
122
123 (or (= (head v_1 v_1) (ahead (_F v_1) (_F v_1))) (and (= (_F v_1) u_1) (= (_F v_1) u_2)))
124 (or (= (head v_1 v_2) (ahead (_F v_1) (_F v_2))) (and (= (_F v_1) u_1) (= (_F v_2) u_2)))
125 (or (= (head v_1 v_3) (ahead (_F v_1) (_F v_3))) (and (= (_F v_1) u_1) (= (_F v_3) u_2)))
126 (or (= (head v_1 v_4) (ahead (_F v_1) (_F v_4))) (and (= (_F v_1) u_1) (= (_F v_4) u_2)))
127
128 (or (= (head v_2 v_1) (ahead (_F v_2) (_F v_1))) (and (= (_F v_2) u_1) (= (_F v_1) u_2)))
129 (or (= (head v_2 v_2) (ahead (_F v_2) (_F v_2))) (and (= (_F v_2) u_1) (= (_F v_2) u_2)))
130 (or (= (head v_2 v_3) (ahead (_F v_2) (_F v_3))) (and (= (_F v_2) u_1) (= (_F v_3) u_2)))
131 (or (= (head v_2 v_4) (ahead (_F v_2) (_F v_4))) (and (= (_F v_2) u_1) (= (_F v_4) u_2)))
132
133 (or (= (head v_3 v_1) (ahead (_F v_3) (_F v_1))) (and (= (_F v_3) u_1) (= (_F v_1) u_2)))
134 (or (= (head v_3 v_2) (ahead (_F v_3) (_F v_2))) (and (= (_F v_3) u_1) (= (_F v_2) u_2)))
135 (or (= (head v_3 v_3) (ahead (_F v_3) (_F v_3))) (and (= (_F v_3) u_1) (= (_F v_3) u_2)))
136 (or (= (head v_3 v_4) (ahead (_F v_3) (_F v_4))) (and (= (_F v_3) u_1) (= (_F v_4) u_2)))
137
138 (or (= (head v_4 v_1) (ahead (_F v_4) (_F v_1))) (and (= (_F v_4) u_1) (= (_F v_1) u_2)))
139 (or (= (head v_4 v_2) (ahead (_F v_4) (_F v_2))) (and (= (_F v_4) u_1) (= (_F v_2) u_2)))
140 (or (= (head v_4 v_3) (ahead (_F v_4) (_F v_3))) (and (= (_F v_4) u_1) (= (_F v_3) u_2)))
141 (or (= (head v_4 v_4) (ahead (_F v_4) (_F v_4))) (and (= (_F v_4) u_1) (= (_F v_4) u_2)))
142
143 (or (= (next v_1 v_1) (anext (_F v_1) (_F v_1))) (and (= (_F v_1) u_2) (= (_F v_1) u_2)))
144 (or (= (next v_1 v_2) (anext (_F v_1) (_F v_2))) (and (= (_F v_1) u_2) (= (_F v_2) u_2)))
145 (or (= (next v_1 v_3) (anext (_F v_1) (_F v_3))) (and (= (_F v_1) u_2) (= (_F v_3) u_2)))
146 (or (= (next v_1 v_4) (anext (_F v_1) (_F v_4))) (and (= (_F v_1) u_2) (= (_F v_4) u_2)))
147
148 (or (= (next v_2 v_1) (anext (_F v_2) (_F v_1))) (and (= (_F v_2) u_2) (= (_F v_1) u_2)))
149 (or (= (next v_2 v_2) (anext (_F v_2) (_F v_2))) (and (= (_F v_2) u_2) (= (_F v_2) u_2)))
150 (or (= (next v_2 v_3) (anext (_F v_2) (_F v_3))) (and (= (_F v_2) u_2) (= (_F v_3) u_2)))
151 (or (= (next v_2 v_4) (anext (_F v_2) (_F v_4))) (and (= (_F v_2) u_2) (= (_F v_4) u_2)))
152
153 (or (= (next v_3 v_1) (anext (_F v_3) (_F v_1))) (and (= (_F v_3) u_2) (= (_F v_1) u_2)))
154 (or (= (next v_3 v_2) (anext (_F v_3) (_F v_2))) (and (= (_F v_3) u_2) (= (_F v_2) u_2)))
155 (or (= (next v_3 v_3) (anext (_F v_3) (_F v_3))) (and (= (_F v_3) u_2) (= (_F v_3) u_2)))
156 (or (= (next v_3 v_4) (anext (_F v_3) (_F v_4))) (and (= (_F v_3) u_2) (= (_F v_4) u_2)))
157
158 (or (= (next v_4 v_1) (anext (_F v_4) (_F v_1))) (and (= (_F v_4) u_2) (= (_F v_1) u_2)))
159 (or (= (next v_4 v_2) (anext (_F v_4) (_F v_2))) (and (= (_F v_4) u_2) (= (_F v_2) u_2)))
160 (or (= (next v_4 v_3) (anext (_F v_4) (_F v_3))) (and (= (_F v_4) u_2) (= (_F v_3) u_2)))
161 (or (= (next v_4 v_4) (anext (_F v_4) (_F v_4))) (and (= (_F v_4) u_2) (= (_F v_4) u_2)))
162))
163 ; assert a conjunction of the formulae defined and
164 (assert (and distinctNodes unaryG binaryG function summarization unaryS binaryS unaryAbstraction binaryAbstraction))
165 ; check for satisfiability
166 (check-sat)
167 (get-model)
168 (get-unsat-core)� �

Lisধng B.3: Embedded Graph Encoding with constraints (see Sec. 4.4)� �
255

1 (set-option :print-success false)
2 ;(set-option :produce-unsat-cores true)
3 (set-logic QF_UF)
4 ; Sort for graph nodes
5 (declare-sort Node 0)
6 (declare-sort ANode 0)
7 (declare-fun _F (Node) ANode)
8 ; four node individuals in the graph (node set / universe)
9 (declare-fun v_1 () Node)
10 (declare-fun v_2 () Node)
11 (declare-fun v_3 () Node)
12 (declare-fun v_4 () Node)
13 ; two node individuals in the shape
14 (declare-fun u_1 () ANode)
15 (declare-fun u_2 () ANode)
16 ; assert distinctiveness of the individuals
17 (define-fun distinctNodes () Bool
18 (and (not (= v_1 v_2)) (not (= v_1 v_3)) (not (= v_1 v_4))
19 (not (= v_2 v_3)) (not (= v_2 v_4))
20 (not (= v_3 v_4))
21 (not (= u_1 u_2)))
22)
23 ; labels used in the graph become predicates
24 (declare-fun list (Node) Bool)
25 (declare-fun cell (Node) Bool)
26 (declare-fun tail (Node Node) Bool)
27 (declare-fun head (Node Node) Bool)
28 (declare-fun next (Node Node) Bool)
29 (declare-fun alist (ANode) Bool)
30 (declare-fun acell (ANode) Bool)
31 (declare-fun atail (ANode ANode) Bool)
32 (declare-fun ahead (ANode ANode) Bool)
33 (declare-fun anext (ANode ANode) Bool)
34 ; defines the unary edges of the graph
35 (define-fun unaryG () Bool (and
36 (list v_1) (not (cell v_1))
37 (not (list v_2)) (cell v_2)
38 (not (list v_3)) (cell v_3)
39 (not (list v_4)) (cell v_4)
40))
41 ; defines the binary edges of the graph
42 (define-fun binaryG () Bool (and
43 (not (tail v_1 v_1)) (tail v_1 v_2) (not (tail v_1 v_3)) (not (tail v_1 v_4))
44 (not (tail v_2 v_1)) (not (tail v_2 v_2)) (not (tail v_2 v_3)) (not (tail v_2 v_4))
45 (not (tail v_3 v_1)) (not (tail v_3 v_2)) (not (tail v_3 v_3)) (not (tail v_3 v_4))
46 (not (tail v_4 v_1)) (not (tail v_4 v_2)) (not (tail v_4 v_3)) (not (tail v_4 v_4))
47
48 (not (head v_1 v_1)) (not (head v_1 v_2)) (not (head v_1 v_3)) (head v_1 v_4)
49 (not (head v_2 v_1)) (not (head v_2 v_2)) (not (head v_2 v_3)) (not (head v_2 v_4))
50 (not (head v_3 v_1)) (not (head v_3 v_2)) (not (head v_3 v_3)) (not (head v_3 v_4))
51 (not (head v_4 v_1)) (not (head v_4 v_2)) (not (head v_4 v_3)) (not (head v_4 v_4))
52
53 (not (next v_1 v_1)) (not (next v_1 v_2)) (not (next v_1 v_3)) (not (next v_1 v_4))
54 (not (next v_2 v_1)) (not (next v_2 v_2)) (not (next v_2 v_3)) (not (next v_2 v_4))
55 ; (not (next v_2 v_1)) (next v_2 v_2) (not (next v_2 v_3)) (not (next v_2 v_4))
56 (not (next v_3 v_1)) (next v_3 v_2) (not (next v_3 v_3)) (not (next v_3 v_4))
57 (not (next v_4 v_1)) (not (next v_4 v_2)) (next v_4 v_3) (not (next v_4 v_4))
58))
59 ; defines the range of the embedding function
60 (define-fun function () Bool (and
61 (or (= (_F v_1) u_1) (= (_F v_1) u_2))
62 (or (= (_F v_2) u_1) (= (_F v_2) u_2))
63 (or (= (_F v_3) u_1) (= (_F v_3) u_2))
64 (or (= (_F v_4) u_1) (= (_F v_4) u_2))
65))
66 ; defines the summarization property
67 (define-fun summarization () Bool (and
68 (or (and (= (_F v_1) u_1) (not (= (_F v_2) u_1)) (not (= (_F v_3) u_1)) (not (= (_F v_4) u_1)))
69 (and (not (= (_F v_1) u_1)) (= (_F v_2) u_1) (not (= (_F v_3) u_1)) (not (= (_F v_4) u_1)))
70 (and (not (= (_F v_1) u_1)) (not (= (_F v_2) u_1)) (= (_F v_3) u_1) (not (= (_F v_4) u_1)))
71 (and (not (= (_F v_1) u_1)) (not (= (_F v_2) u_1)) (not (= (_F v_3) u_1)) (= (_F v_4) u_1))
72)
73 (or (= (_F v_1) u_2) (= (_F v_2) u_2) (= (_F v_3) u_2) (= (_F v_4) u_2))
74))
75 ; defines the unary edges of the shape
76 (define-fun unaryS () Bool (and
77 (alist u_1) (not (acell u_1))
78 (not (alist u_2)) (acell u_2)

256

79))
80 ; defines the binary edges of the shape
81 (define-fun binaryS () Bool (and
82 (not (atail u_1 u_1))
83 (not (atail u_2 u_1)) (not (atail u_2 u_2))
84
85 (not (ahead u_1 u_1))
86 (not (ahead u_2 u_1)) (not (ahead u_2 u_2))
87
88 (not (anext u_1 u_1)) (not (anext u_1 u_2))
89 (not (anext u_2 u_1))
90))
91 ; assert edge abstraction for unary edges
92 (define-fun unaryAbstraction () Bool (and
93 (or (= (list v_1) (alist (_F v_1))) false)
94 (or (= (cell v_1) (acell (_F v_1))) false)
95 (or (= (list v_2) (alist (_F v_2))) false)
96 (or (= (cell v_2) (acell (_F v_2))) false)
97 (or (= (list v_3) (alist (_F v_3))) false)
98 (or (= (cell v_3) (acell (_F v_3))) false)
99 (or (= (list v_4) (alist (_F v_4))) false)
100 (or (= (cell v_4) (acell (_F v_4))) false)
101))
102 ; assert edge abstraction for binary edges
103 (define-fun binaryAbstraction () Bool (and
104 (or (= (tail v_1 v_1) (atail (_F v_1) (_F v_1))) (and (= (_F v_1) u_1) (= (_F v_1) u_2)))
105 (or (= (tail v_1 v_2) (atail (_F v_1) (_F v_2))) (and (= (_F v_1) u_1) (= (_F v_2) u_2)))
106 (or (= (tail v_1 v_3) (atail (_F v_1) (_F v_3))) (and (= (_F v_1) u_1) (= (_F v_3) u_2)))
107 (or (= (tail v_1 v_4) (atail (_F v_1) (_F v_4))) (and (= (_F v_1) u_1) (= (_F v_4) u_2)))
108
109 (or (= (tail v_2 v_1) (atail (_F v_2) (_F v_1))) (and (= (_F v_2) u_1) (= (_F v_1) u_2)))
110 (or (= (tail v_2 v_2) (atail (_F v_2) (_F v_2))) (and (= (_F v_2) u_1) (= (_F v_2) u_2)))
111 (or (= (tail v_2 v_3) (atail (_F v_2) (_F v_3))) (and (= (_F v_2) u_1) (= (_F v_3) u_2)))
112 (or (= (tail v_2 v_4) (atail (_F v_2) (_F v_4))) (and (= (_F v_2) u_1) (= (_F v_4) u_2)))
113
114 (or (= (tail v_3 v_1) (atail (_F v_3) (_F v_1))) (and (= (_F v_3) u_1) (= (_F v_1) u_2)))
115 (or (= (tail v_3 v_2) (atail (_F v_3) (_F v_2))) (and (= (_F v_3) u_1) (= (_F v_2) u_2)))
116 (or (= (tail v_3 v_3) (atail (_F v_3) (_F v_3))) (and (= (_F v_3) u_1) (= (_F v_3) u_2)))
117 (or (= (tail v_3 v_4) (atail (_F v_3) (_F v_4))) (and (= (_F v_3) u_1) (= (_F v_4) u_2)))
118
119 (or (= (tail v_4 v_1) (atail (_F v_4) (_F v_1))) (and (= (_F v_4) u_1) (= (_F v_1) u_2)))
120 (or (= (tail v_4 v_2) (atail (_F v_4) (_F v_2))) (and (= (_F v_4) u_1) (= (_F v_2) u_2)))
121 (or (= (tail v_4 v_3) (atail (_F v_4) (_F v_3))) (and (= (_F v_4) u_1) (= (_F v_3) u_2)))
122 (or (= (tail v_4 v_4) (atail (_F v_4) (_F v_4))) (and (= (_F v_4) u_1) (= (_F v_4) u_2)))
123
124 (or (= (head v_1 v_1) (ahead (_F v_1) (_F v_1))) (and (= (_F v_1) u_1) (= (_F v_1) u_2)))
125 (or (= (head v_1 v_2) (ahead (_F v_1) (_F v_2))) (and (= (_F v_1) u_1) (= (_F v_2) u_2)))
126 (or (= (head v_1 v_3) (ahead (_F v_1) (_F v_3))) (and (= (_F v_1) u_1) (= (_F v_3) u_2)))
127 (or (= (head v_1 v_4) (ahead (_F v_1) (_F v_4))) (and (= (_F v_1) u_1) (= (_F v_4) u_2)))
128
129 (or (= (head v_2 v_1) (ahead (_F v_2) (_F v_1))) (and (= (_F v_2) u_1) (= (_F v_1) u_2)))
130 (or (= (head v_2 v_2) (ahead (_F v_2) (_F v_2))) (and (= (_F v_2) u_1) (= (_F v_2) u_2)))
131 (or (= (head v_2 v_3) (ahead (_F v_2) (_F v_3))) (and (= (_F v_2) u_1) (= (_F v_3) u_2)))
132 (or (= (head v_2 v_4) (ahead (_F v_2) (_F v_4))) (and (= (_F v_2) u_1) (= (_F v_4) u_2)))
133
134 (or (= (head v_3 v_1) (ahead (_F v_3) (_F v_1))) (and (= (_F v_3) u_1) (= (_F v_1) u_2)))
135 (or (= (head v_3 v_2) (ahead (_F v_3) (_F v_2))) (and (= (_F v_3) u_1) (= (_F v_2) u_2)))
136 (or (= (head v_3 v_3) (ahead (_F v_3) (_F v_3))) (and (= (_F v_3) u_1) (= (_F v_3) u_2)))
137 (or (= (head v_3 v_4) (ahead (_F v_3) (_F v_4))) (and (= (_F v_3) u_1) (= (_F v_4) u_2)))
138
139 (or (= (head v_4 v_1) (ahead (_F v_4) (_F v_1))) (and (= (_F v_4) u_1) (= (_F v_1) u_2)))
140 (or (= (head v_4 v_2) (ahead (_F v_4) (_F v_2))) (and (= (_F v_4) u_1) (= (_F v_2) u_2)))
141 (or (= (head v_4 v_3) (ahead (_F v_4) (_F v_3))) (and (= (_F v_4) u_1) (= (_F v_3) u_2)))
142 (or (= (head v_4 v_4) (ahead (_F v_4) (_F v_4))) (and (= (_F v_4) u_1) (= (_F v_4) u_2)))
143
144 (or (= (next v_1 v_1) (anext (_F v_1) (_F v_1))) (and (= (_F v_1) u_2) (= (_F v_1) u_2)))
145 (or (= (next v_1 v_2) (anext (_F v_1) (_F v_2))) (and (= (_F v_1) u_2) (= (_F v_2) u_2)))
146 (or (= (next v_1 v_3) (anext (_F v_1) (_F v_3))) (and (= (_F v_1) u_2) (= (_F v_3) u_2)))
147 (or (= (next v_1 v_4) (anext (_F v_1) (_F v_4))) (and (= (_F v_1) u_2) (= (_F v_4) u_2)))
148
149 (or (= (next v_2 v_1) (anext (_F v_2) (_F v_1))) (and (= (_F v_2) u_2) (= (_F v_1) u_2)))
150 (or (= (next v_2 v_2) (anext (_F v_2) (_F v_2))) (and (= (_F v_2) u_2) (= (_F v_2) u_2)))
151 (or (= (next v_2 v_3) (anext (_F v_2) (_F v_3))) (and (= (_F v_2) u_2) (= (_F v_3) u_2)))
152 (or (= (next v_2 v_4) (anext (_F v_2) (_F v_4))) (and (= (_F v_2) u_2) (= (_F v_4) u_2)))
153
154 (or (= (next v_3 v_1) (anext (_F v_3) (_F v_1))) (and (= (_F v_3) u_2) (= (_F v_1) u_2)))
155 (or (= (next v_3 v_2) (anext (_F v_3) (_F v_2))) (and (= (_F v_3) u_2) (= (_F v_2) u_2)))
156 (or (= (next v_3 v_3) (anext (_F v_3) (_F v_3))) (and (= (_F v_3) u_2) (= (_F v_3) u_2)))

257

157 (or (= (next v_3 v_4) (anext (_F v_3) (_F v_4))) (and (= (_F v_3) u_2) (= (_F v_4) u_2)))
158
159 (or (= (next v_4 v_1) (anext (_F v_4) (_F v_1))) (and (= (_F v_4) u_2) (= (_F v_1) u_2)))
160 (or (= (next v_4 v_2) (anext (_F v_4) (_F v_2))) (and (= (_F v_4) u_2) (= (_F v_2) u_2)))
161 (or (= (next v_4 v_3) (anext (_F v_4) (_F v_3))) (and (= (_F v_4) u_2) (= (_F v_3) u_2)))
162 (or (= (next v_4 v_4) (anext (_F v_4) (_F v_4))) (and (= (_F v_4) u_2) (= (_F v_4) u_2)))
163))
164 ; define constraint function for alpha
165 (define-fun constraint_alpha ((x_1 Node)) Bool (and
166 (not (next x_1 x_1))
167))
168 ; define constraint adherence for (alpha,m)
169 (define-fun constraint_alpha_m () Bool (and
170 (=> (and (= (_F v_1) u_2) true) (constraint_alpha v_1))
171 (=> (and (= (_F v_2) u_2) true) (constraint_alpha v_2))
172 (=> (and (= (_F v_3) u_2) true) (constraint_alpha v_3))
173 (=> (and (= (_F v_4) u_2) true) (constraint_alpha v_4))
174))
175 ; define overall constraint adherence
176 (define-fun constraints () Bool (and
177 constraint_alpha_m
178 true
179))
180 ; assert a conjunction of the formulae defined and
181 (assert (and distinctNodes unaryG binaryG function summarization unaryS binaryS
182 unaryAbstraction binaryAbstraction constraints))
183 ; check for satisfiability
184 (check-sat)
185 (get-model)� �

Lisধng B.4: Lisধng for Code Template 24� �
1 (set-option :print-success false)

2 (set-logic QF_UF)

3 (declare-sort Node 0)

4 (declare-sort ANode 0)

5 ; declarations for initial graph encoding

6 declare_graph

7 ; declarations for overflow encoding

8 (declare-fun o1 () Node)

9 ...

10 (declare-fun oλ () Node)

11 ; declarations for embeddings (see prelude for embedding encoding)

12 ; these contain the declarations of the predicates for G1 · · · Gk

13 declare_embedding_0

14 ...

15 declare_embedding_k

16 ; declarations for applications

17 declare_rule_0

18 ...

19 declare_rule_k-1

20

21 ; graph encoding

22 (define-fun distinctNodes () Bool ...)

23 (define-fun unaryG () Bool ...)

258

24 (define-fun binaryG () Bool ...)

25 ;overflow nodes

26 (define-fun overflow () Bool ...)

27 ; embedding into initial shape S0

28 (define-fun function_0 () Bool ...)

29 (define-fun summarization_0 () Bool ...)

30 (define-fun unaryS_0 () Bool ...)

31 (define-fun binaryS_0 () Bool ...)

32 (define-fun unaryAbstraction_0 () Bool ...)

33 (define-fun binaryAbstraction_0 () Bool ...)

34 (define-fun constraints_0 () Bool ...)

35 ; rule application transforming I into G1

36 (define-fun () rule_selection_0 Bool ...)

37 (define-fun () rule_application_0 Bool ...)

38

39 ...

40

41 ; rule application transforming Gk−1 into Gk

42 (define-fun () rule_selection_k-1 Bool ...)

43 (define-fun () rule_application_k-1 Bool ...)

44 ; embedding into materialized error shape Se
k

45 (define-fun function_k () Bool ...)

46 (define-fun summarization_k () Bool ...)

47 (define-fun unaryS_k () Bool ...)

48 (define-fun binaryS_k () Bool ...)

49 (define-fun unaryAbstraction_k () Bool ...)

50 (define-fun binaryAbstraction_k () Bool ...)

51 (define-fun constraints_k () Bool ...)

52

53 ; assertion

54 (assert (and distinctNodes · · · constraints_k))� �
Lisধng B.5: Lisধng for Code Template 27� �

1 (define-fun rule_application () Bool (and

2 ; first, positive effects of rule (unary, binary)

3 (u+,1
i+1 n+,1) · · · (u+,a

i+1 n+,a)

4 (b+,1
i+1 n+,1 m+,1) · · · (b+,c

i+1 n+,c m+,c)

5 ; then, negative effects of the rule (unary, binary)

6 (u−,1
i+1 n−,1) · · · (u−,b

i+1 n−,b)

259

7 (b−,1
i+1 n−,1 m−,1) · · · (b−,d

i+1 n−,d m−,d)

8 ; then the unchanged predicates u1, . . . , ue′ , be
′+1, . . . , be ∈ P0

9 ; (unary, binary)

10 (= (u1
i+1 v1) (u1

i v1)) · · · (= (u1
i+1 vυ) (u1

i vυ))

11 ...

12 (= (ue′
i+1 v1) (ue′

i v1)) · · · (= (ue′
i+1 vυ) (ue′

i vυ))

13 (= (be
′+1

i+1 v1) (be
′+1

i v1)) · · · (= (be
′+1

i+1 vυ) (be
′+1

i vυ))

14 ...

15 (= (bei+1 v1) (bei v1)) · · · (= (bei+1 vυ) (bei vυ))

16 ; and finally the potentially changed predicates

17 ; ū1, . . . , ūf ′
c , b̄f

′+1
c , . . . , b̄ec ∈ P \ P0 (unary, binary)

18 (or (= v1 n+,1) · · · (= v1 n+,a)

19 (= v1 n−,1) · · · (= v1 n−,a)

20 (= (ū1
i+1 v1) (ū1

i v1)))

21 ...

22 (or (= vυ n+,1) · · · (= vυ n+,a)

23 (= vυ n−,1) · · · (= vυ n−,a)

24 (= (ūf ′

i+1 v1) (ūf ′

i v1)))

25 (or (and (= v1 n+,1) (= v1 m+,1)) · · · (and (= v1 n+,c) (= v1 m+,c))

26 (and (= v1 n−,1) (= v1 m−,1)) · · · (and (= v1 n−,d) (= v1 m−,d))

27 (= (b̄f
′+1

i+1 v1) (b̄f
′+1

i v1)))

28 ...

29 (or (and (= vυ n+,1) (= vυ m+,1)) · · · (and (= vυ n+,c) (= vυ m+,c))

30 (and (= vυ n−,1) (= vυ m−,1)) · · · (and (= vυ n−,d) (= vυ m−,d))

31 (= (b̄fi+1 vυ vυ) (b̄fi vυ vυ)))

32))� �
Lisধng B.6: Lisধng for Code Template 31� �

1 (define-fun exclusivity () Bool (and

2 ; concrete nodes are distinct from each other

3 (not (= v1 v2)) (not (= v1 v3)) · · · (not (= v1 vk))

4 (not (= v2 v3)) · · · (not (= v2 vk))

5 ...

6 (not (= vk−1 vk))

260

7 ; concrete nodes are distinct from summary nodes

8 (not (_V1 v1)) · · · (not (_V1 vk))

9 ...
...

10 (not (_Vm v1)) · · · (not (_Vm vk))

11 ; all nodes of the node sort are either concrete nodes

12 ; or embedded into one of the summary nodes

13 (forall ((x (Node))) (xor

14 (= x v1) · · · (= x vk)

15 (_V1 x) · · · (_Vm x)

16))

17))� �
Lisধng B.7: Encoding of the feasibility of the shape shown in Fig. 4.11)� �

1 (set-option :produce-proofs true)
2 (set-logic UF)
3 (declare-sort Node 0)
4 (push 1)
5 (declare-fun x1 () Node)
6 (declare-fun x2 () Node)
7 (declare-fun _X3 (Node) Bool)
8 (declare-fun cell (Node) Bool)
9 (declare-fun next (Node Node) Bool)
10
11 (define-fun exclusivity () Bool (forall ((x Node)) (or
12 (and (not (= x x1)) (not (= x x2)) (_X3 x))
13 (and (not (= x x1)) (= x x2) (not (_X3 x)))
14 (and (not (= x x2)) (not (_X3 x)) (= x x1))
15)))
16
17 (define-fun unaryG () Bool (and
18 (cell x1)
19 (cell x2)
20))
21
22
23 (define-fun binaryG () Bool (and
24 (not (next x2 x1))
25 (not (next x1 x1))
26 (next x1 x2)
27 (not (next x2 x2))
28))
29
30 (define-fun unaryS () Bool (forall ((x Node))
31 (=> (_X3 x) (cell x))
32))
33
34 (define-fun binaryS1 () Bool (forall ((x Node))
35 (=> (_X3 x) (and (not (next x1 x)) (not (next x x1))))
36))
37
38 (define-fun binaryS2 () Bool (forall ((x Node))
39 (=> (_X3 x) true)
40))
41
42
43 (define-fun surjectivity () Bool (exists ((x_0 Node))
44 (_X3 x_0)
45))
46
47 (define-fun constraint_alpha1 () Bool (exists
48 ((x Node) (y Node))
49 (and (next x1 y) (next x x1) (not (= y x1)) (not (= x x1)))
50))
51
52 (define-fun constraint_alpha2 () Bool (exists
53 ((x Node) (y Node))

261

54 (and (next x2 y) (next x x2) (not (= y x2)) (not (= x x2)))
55))
56
57 (define-fun constraint_beta () Bool (forall ((x_0 Node))
58 (=>
59 (_X3 x_0)
60 (forall ((x Node))
61 (=>
62 (and (next x_0 x_0) (not (= x x_0)))
63 (and (not (next x x_0)) (not (next x_0 x)))
64)
65))
66))
67
68 (define-fun constraint_gamma () Bool (forall
69 ((x_1 Node) (x_0 Node))
70 (=>
71 (and (_X3 x_0) (_X3 x_1))
72 (and (= x_0 x_1) (next x_0 x_0))
73)
74))
75
76 (assert (! exclusivity :named assert_exclusivity))
77 (assert (! unaryG :named assert_unaryG))
78 (assert (! binaryG :named assert_binaryG))
79 (assert (! unaryS :named assert_unaryS))
80 (assert (! binaryS1 :named assert_binaryS1))
81 (assert (! binaryS2 :named assert_binaryS2))
82 (assert (! surjectivity :named assert_surjectivity))
83 (assert (! constraint_alpha1 :named assert_constraint_alpha1))
84 (assert (! constraint_alpha2 :named assert_constraint_alpha2))
85 (assert (! constraint_beta :named assert_constraint_beta))
86 (assert (! constraint_gamma :named assert_constraint_gamma))
87
88 (check-sat)
89 (pop 1)� �

Lisধng B.8: Unconstrained Embedding Restricted Trace Encoding� �
1 (set-option :print-success false)

2 (set-logic QF_UF)

3 (declare-sort Node 0)

4 (declare-sort ANode 0)

5 ; declarations for initial graph encoding

6 declare_graph

7 ; declarations for overflow encoding

8 (declare-fun o1 () Node)

9 ...

10 (declare-fun oλ () Node)

11 ; declarations for embeddings (see prelude for embedding encoding)

12 ; these contain the declarations of predicates for G1 · · · Gk

13 declare_embedding_0

14 ...

15 declare_embedding_2k + 1

16 ; declarations for applications

17 declare_rule_0

18 ...

19 declare_rule_k-1

20

262

21 ; graph encoding

22 (define-fun distinctNodes () Bool ...)

23 (define-fun unaryG () Bool ...)

24 (define-fun binaryG () Bool ...)

25 ;overflow nodes

26 (define-fun overflow () Bool ...)

27 ; embedding into initial shape S0

28 (define-fun function_0 () Bool ...)

29 (define-fun summarization_0 () Bool ...)

30 (define-fun unaryS_0 () Bool ...)

31 (define-fun binaryS_0 () Bool ...)

32 (define-fun unaryAbstraction_0 () Bool ...)

33 (define-fun binaryAbstraction_0 () Bool ...)

34 ; embedding correspondence 0→1

35 (define-fun corr_0_1 () Bool ...)

36 ; embedding into materialized shape Sm
0

37 (define-fun function_1 () Bool ...)

38 (define-fun summarization_1 () Bool ...)

39 (define-fun unaryS_1 () Bool ...)

40 (define-fun binaryS_1 () Bool ...)

41 (define-fun unaryAbstraction_1 () Bool ...)

42 (define-fun binaryAbstraction_1 () Bool ...)

43 ; rule application transforming I into G1

44 (define-fun () rule_selection_0 Bool ...)

45 (define-fun () rule_application_0 Bool ...)

46

47 ...

48

49 ; rule application transforming Gk−1 into Gk

50 (define-fun () rule_selection_k-1 Bool ...)

51 (define-fun () rule_application_k-1 Bool ...)

52 ; embedding into central shape of step k

53 (define-fun function_k () Bool ...)

54 (define-fun summarization_k () Bool ...)

55 (define-fun unaryS_k () Bool ...)

56 (define-fun binaryS_k () Bool ...)

57 (define-fun unaryAbstraction_k () Bool ...)

58 (define-fun binaryAbstraction_k () Bool ...)

59 ; embedding correspondence 2k → 2k + 1

60 (define-fun corr_0_1 () Bool ...)

61 ; embedding into materialized error shape Sk

263

62 (define-fun function_2k+1 () Bool ...)

63 (define-fun summarization_2k+1 () Bool ...)

64 (define-fun unaryS_2k+1 () Bool ...)

65 (define-fun binaryS_2k+1 () Bool ...)

66 (define-fun unaryAbstraction_2k+1 () Bool ...)

67 (define-fun binaryAbstraction_2k+1 () Bool ...)

68 ; assertion

69 (assert (and distinctNodes · · · binaryAbstraction_2k+1))� �

264

References

[1] (2007). OMG Unified Modeling Language (OMG UML). Technical report,
Object Management Group.

[2] (2010). OMG Systems Modeling Language (OMG SysML™). Technical
report, Object Management Group.

[3] (2011). OMG Unified Modeling Language. Technical Report August, Object
Management Group.

[4] (2014). Design Methodology for Intelligent Technical Systems. Lecture Notes in
Mechanical Engineering. Springer, Heidelberg.

[5] (2014). MDA Guide revision 2.0. Technical Report June, Object Management
Group.

[6] (2014). OMG Object Constraint Language. Technical Report February, Object
Management Group.

[7] Abdulla, P. A., Cerans, K., Jonsson, B., & Yih-Kuen, T. (1996). General de-
cidability theorems for infinite-state systems. Proceedings 11th Annual IEEE
Symposium on Logic in Computer Science, (pp. 313–321).

[8] Abdulla, P. A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., & Rezine,
A. (2010). Constrained Monotonic Abstraction: A Cegar for Parameterized
Verification. In P. Gastin & F. Laroussinie (Eds.), 21st International Conference
on Concurrency Theory (CONCUR 2010) (pp. 86–101). Paris, France: Springer
Berlin Heidelberg.

[9] Alberti, F., Bruttomesso, R., & Ghilardi, S. (2012a). SAFARI: SMT-based
Abstraction for Arrays with Interpolants. In P. Madhusudan & S. A. Seshia
(Eds.), Computer Aided Verification, 24th International Conference (CAV 2012
(pp. 679–685). Berkeley, California, USA: Springer Berlin Heidelberg.

265

[10] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., & Sharygina, N. (2012b).
Lazy abstraction with interpolants for arrays. Logic Programming and Auto-
mated Reasoning, (pp. 46–61).

[11] Alur, R. & Dill, D. L. (1994). A theory of timed automata. Theoretical Com-
puter Science, 126(2), 183–235.

[12] Angermann, A. (2007). Matlab-Simullink-Stateflow: Grundlagen, Toolboxen,
Beispiele. Oldenbourg Verlag.

[13] Apt, K. R., De Boer, F. S., & Olderog, E.-R. (2009). Verification of sequential
and concurrent programs. Springer.

[14] Bakewell, A., Plump, D., & Runciman, C. (2003). Checking the shape safety of
pointer manipulations. In Relational and Kleene-Algebraic Methods in Com-
puter Science: 7th International Seminar on Relational Methods in Computer
Science and 2nd International Workshop on Applications of Kleene Algebra,
Bad Malente, Germany, Revised Selected Papers (pp. 48–61).

[15] Baldan, P., Corradini, A., & König, B. (2001). A static analysis technique for
graph transformation systems. In Proceedings odCONCUR 2001—Concurrency
Theory, 12th International Conference (pp. 381–395). Aalborg, Denmark.

[16] Baldan, P., Corradini, A., & König, B. (2004). Verifying Finite-State Graph
Grammars: an Unfolding-based Approach. In P. Gardner & N. Yoshida (Eds.),
15th International Conference on Concurrency Theory (CONCUR 2004) (pp.
83–98). London, UK: Springer.

[17] Baldan, P., Corradini, A., & König, B. (2008). A framework for the verification
of infinite-state graph transformation systems. Information and Computation,
206(7), 869–907.

[18] Ball, T., Levin, V., & Rajamani, S. K. (2011). A decade of software model check-
ing with SLAM. Communications of the ACM, 54(7), 68—-76.

[19] Baresi, L. & Spoletini, P. (2006). On the use of Alloy to analyze graph trans-
formation systems. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, & G.
Rozenberg (Eds.), Third International Conference on Graph Transformations
(ICGT 2006) (pp. 306–320). Natal, Rio Grande do Norte, Brazil: Springer.

[20] Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., & Tinelli, C. (2011). CVC4. In Computer Aided Verification -
23rd International Conference (CAV 2011) (pp. 171–177). Snowbird, UT, USA:
Springer.

266

[21] Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A., & Moura, L.
(2012). 6 Years of SMT-COMP. Journal of Automated Reasoning, 50(3), 1–35.

[22] Bauer, J., Boneva, I., Kurbán, M. E., & Rensink, A. (2008). A modal-logic based
graph abstraction. In H. Ehrig, R. Heckel, G. Rozenberg, & G. Taentzer (Eds.),
4th International Conference on Graph Transformations (ICGT 2008) (pp. 321–
335). Leicester, United Kingdom: Springer.

[23] Bauer, J., Toben, T., & Westphal, B. (2007). Mind the shapes: abstraction re-
finement via topology invariants. In K. S. Namjoshi, T. Yoneda, T. Higashino,
& Y. Okamura (Eds.),Automated Technology for Verification and and Analysis,
5th International Symposium (ATVA 2007) (pp. 35–50). Tokyo, Japan: Springer.

[24] Bauer, J. & Wilhelm, R. (2007). Static analysis of dynamic communication
systems by partner abstraction. In H. R. Nielson & G. Filé (Eds.), Static Anal-
ysis, 14th International Symposium (SAS 2007) (pp. 249–264). Kongens Lynby,
Denmark: Springer.

[25] Becker, B., Beyer, D., Giese, H., Klein, F., & Schilling, D. (2006). Symbolic
invariant verification for systems with dynamic structural adaptation. In L. J.
Osterweil, H. D. Rombach, & M. L. Soffa (Eds.), Proceedings of the 28th inter-
national conference on Software engineering (ICSE 2006) (pp. 72–81). New York,
New York, USA: ACM.

[26] Becker, S., Dziwok, S., Gerking, C., Schäfer, W., Heinzemann, C., Thiele, S.,
Meyer, M., Priesterjahn, C., Pohlmann, U., & Tichy, M. (2014). The Mecha-
tronicUML Design Method - Process and Language for Platform-Independent
Modeling. Technical report, Heinz Nixdorf Institute, University of Paderborn,
Paderborn.

[27] Behrmann, G., David, A., Larsen, K. G., Hå kansson, J., Petterson, P., Wang,
Y., & Hendriks, M. (2006). Uppaal 4.0. In Third International Conference on
the Quantitative Evaluation of Systems (QEST 2006) (pp. 125–126). Riverside,
California, USA: IEEE.

[28] Bell Labs, R. (2014). Promela Language Reference.

[29] Bengtsson, J. & Yi, W. (2004). Timed automata: Semantics, Algorithms and
Tools. In J. Desel, W. Reisig, & G. Rozenberg (Eds.), Lectures on Concur-
rency and Petri Nets, Advances in Petri Nets (pp. 87–124). Eichstätt, Germany:
Springer.

[30] Bertrand, N., Delzanno, G., König, B., Sangnier, A., & Stückrath, J. (2012). On
the Decidability Status of Reachability and Coverability in Graph Transforma-
tion Systems. In A. Tiwari (Ed.), 23rd International Conference on Rewriting

267

Techniques and Applications (RTA 2012) (pp. 1–24). Nagoya, japan: Schloss
Dagstuhl - Leibniz Zentrum für Informatik.

[31] Beydeda, S., Book, M., & Gruhn, V., Eds. (2005). Model-Driven Software De-
velopment. Springer Berlin Heidelberg.

[32] Beyer, D., Henzinger, T. A., Jhala, R., & Majumdar, R. (2007). The software
model checker Blast. International Journal on Software Tools for Technology
Transfer, 9(5-6), 505–525.

[33] Beyer, D., Henzinger, T. A., & Théoduloz, G. (2006). Lazy shape analysis. In
T. Ball & B. J. Jones (Eds.), Computer Aided Verification, 18th International
Conference (CAV 2006) (pp. 532–546). Seattle, Washington, USA: Springer.

[34] Biere, A., Cimatti, A., Clarke, E. M., & Zhu, Y. (1999). Symbolic model check-
ing without BDDs. In R. Cleaveland (Ed.), Tools and Algorithms for Con-
struction and Analysis of Systems, 5th International Conference (TACAS 1999),
number 97 (pp. 193–207). Amsterdam, The Netherlands: Springer.

[35] Bjø rner, N. (2011). Engineering theories with Z3. In H. Yang (Ed.), Program-
ming Languages and Systems - 9th Asian Symposium (APLAS 2011) (pp. 4–16).
Kenting, Taiwan: Springer.

[36] Boneva, I., Kreiker, J., Kurbán, M., Rensink, A., & Zambon, E. (2012). Graph
Abstraction and Abstract Graph Transformations (Amended version). Tech-
nical report, Centre for Telematics and Information Technology, University of
Twente.

[37] Brucker, A. D. & Wolff, B. (2012). Featherweight OCL. In M. Balaban, J. Cabot,
M. Gogolla, & C. Wilke (Eds.), Proceedings of the 12th Workshop on OCL and
Textual Modelling (OCL 2022) (pp. 19–24). Innsbruck, Austria: ACM.

[38] Brückner, I., Dräger, K., Finkbeiner, B., & Wehrheim, H. (2007). Slicing ab-
stractions. In International Symposium on Fundamentals of Software Engineer-
ing (FSEN 2007) (pp. 17–32). Tehran, Iran: Springer.

[39] Bruttomesso, R. (2011). Satisfiability Modulo Theories Lezione 1.

[40] Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., & Sebastiani, R. (2008).
The mathsat 4 smt solver. In A. Gupta & S. Malik (Eds.), Computer Aided Ver-
ification, 20th International Conference (CAV 2008) (pp. 299–303). Princeton,
New Jersey, USA: Springer.

268

[41] Bruttomesso, R., Pek, E., Sharygina, N., & Tsitovich, A. (2010). The opensmt
solver. In J. Esparza & R. Majumdar (Eds.), Tools and Algorithms for the Con-
struction and Analysis of Systems, 16th International Conference (TACAS 2010)
(pp. 150–153). Paphos, Cyprus: Springer.

[42] Buckler, C. (2010). Generierung von Shape-Analysen aus Graph-Spezifikationen.
Master thesis, Universität Paderborn.

[43] Burmester, S., Giese, H., & Tichy, M. (2005). Model-driven development of
reconfigurable mechatronic systems with MechatronicUML. In U. Aß mann,
M. Aksit, & A. Rensink (Eds.),Model Driven Architecture, European MDA
Workshops: Foundations and Applications (MDAFA 2003) (pp. 47–61).
Twente, The Netherlands: Springer.

[44] Cabot, J., Clarisó, R., Guerra, E., & de Lara, J. (2010). Verification and Vali-
dation of Declarative Model-to-Model Transformations Through Invariants.
Journal of Systems and Software, 83(2), 283–302.

[45] Chen, P. P. (1976). The Entity-Relationship model — Toward a Unified View
of Data. ACM Transactions on Database Systems (TODS), 1(1), 9–36.

[46] Christ, J., Hoenicke, J., & Nutz, A. (2012). SMTInterpol: An Interpolating
SMT Solver. In A. F. Donaldson & D. Parker (Eds.),Model Checking Software -
19th International Workshop (SPIN 2012), volume 3 (pp. 248–254). Oxford, UK:
Springer.

[47] Cimatti, A. & Griggio, A. (2012). Software model checking via IC3. In P. Mad-
husudan & S. A. Seshia (Eds.), Computer Aided Verification, 24th International
Conference (CAV 2012 (pp. 277–293). Berkeley, California, USA: Springer.

[48] Cimatti, A., Griggio, A., & Micheli, A. (2011a). KRATOS – A Software Model
Checker for SystemC. In G. Gopalakrishnan & S. Qadeer (Eds.), Computer
Aided Verification - 23rd International Conference (CAV 2011) (pp. 310–316).
Snowbird, Utah, USA: Springer Berlin Heidelberg.

[49] Cimatti, A., Narasamdya, I., & Roveri, M. (2011b). Boosting Lazy Abstraction
for SystemC with Partial Order Reduction. In P. A. Abdulla, K. Rustan, &
M. Leino (Eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems, 17th International Conference (TACAS 2011) (pp. 341–356). Saarbrücken,
Germany: Springer.

[50] Clark, T. & Warmer, J. (2002). Object Modeling with the OCL - The Rationale
behind the Object Constraint Language. Lecture Notes in Computer Science,
2263.

269

[51] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2000).
Counterexample-guided abstraction refinement. In E. A. Emerson & A. P.
Sistla (Eds.), Computer Aided Verification, 12th International Conference (CAV
2000) (pp. 154 —- 169). Chicago, Illinois, USA: Springer.

[52] Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge,
Massachusetts: MIT Press, 1 edition.

[53] Clarke, E. M., Grumberg, O., & Peled, D. A. (2001). Model Checking, volume
962. MIT Press.

[54] Clarke, E. M., Kroening, D., Sharygina, N., & Yorav, K. (2005). SATABS: SAT-
based predicate abstraction for ANSI-C. In N. Halbwachs & L. D. Zuck (Eds.),
Tools and Algorithms for the Construction and Analysis of Systems, 11th Inter-
national Conference (TACAS 2005) (pp. 570–574). Edinburgh, Scotland, UK:
Springer.

[55] Codish, M., Fuhs, C., Giesl, J., & Schneider-Kamp, P. (2010). Lazy abstraction
for size-change termination. In C. G. Fermüller & A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning, 17th International
Conference (LPAR 2010) (pp. 217–232). Yogyakarta, Indonesia: Springer.

[56] Courcelle, B. (1994). Monadic Second-Order Definable Graph Transductions:
A Survey. Theoretical Computer Science, 126(1), 53—-75.

[57] Cousot, P. (1981). Semantic Foundations of Program Analysis. Program Flow
Analysis: Theory and Applications, 10, 303–342.

[58] Cousot, P. (2012). Formal verification by abstract interpretation. In A. Goodloe
& S. Person (Eds.),NASA Formal Methods, 4th International Symposium
(NFM 2012) (pp. 3–7). Norfolk, Virginia: Springer.

[59] Cousot, P. & Cousot, R. (1992). Abstract Interpretation and Application to
Logic Programs. The Journal of Logic Programming, 13(2&3), 103–179.

[60] Craig, W. (1957). Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory. The Journal of Symbolic Logic, 22(3), 269–
285.

[61] Distefano, D., O’hearn, P. W., & Yang, H. (2006). A local shape analysis based
on separation logic. In H. Hermanns & J. Palsberg (Eds.), Tools and Algorithms
for the Construction and Analysis of Systems, 12th International Conference
(TACAS 2006) (pp. 287–302). Vienna, Austria: Springer.

270

[62] Dodds, M. & Plump, D. (2006). Extending C for Checking Shape Safety. Elec-
tronic Notes in Theoretical Computer Science, 154(2), 95–112.

[63] Dotti, F. L., Foss, L., Ribeiro, L., & dos Santos, O. M. (2003). Verification of
Distributed Object-based Systems. In E. Najm, U. Nestmann, & P. Stevens
(Eds.), Formal Methods for Open Object-based Distributed Systems (FMOODS
2003) (pp. 261–275). Paris, France: Springer.

[64] Drewes, F., Kreowski, H.-J., & Habel, A. (1997). Hyperedge Replacement
Graph Grammars. In G. Rozenberg (Ed.),Handbook of Graph Grammars and
Computing by Graph Transformation, volume 1 (pp. 95–162). World Scientific.

[65] Dutertre, B. (2006). Yices 2.2. In A. Biere & R. Bloem (Eds.), Proceedings on the
2nd SMT competition (SMTCOMP 2006) (pp. 737 —- 744). Vienna, Austria:
Springer International Publishing.

[66] Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M., Priesterjahn, C., &
Schäfer, W. (2011). Modeling and Verifying Dynamic Communication Struc-
tures Based on Graph Transformations. Computer Science - Research and De-
velopment, 28(1), 3–22.

[67] Ehrig, H., Prange, U., & Taentzer, G. (2006). Fundamentals of Algebraic Graph
Transformation - Monographs in Theoretical Computer Science. Springer.

[68] Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Taentzer, G., Varró, D., & Varró-Gyapay, S. (2005). Model Transformation by
Graph Transformation: A Comparative Study. In Proceedings of the Interna-
tional Workshop on Model Transformations in Practice (MTiP 2005)Genova,
Italy.

[69] Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2002).
Graphviz — open source graph drawing tools. InGraph Drawing (pp. 483–
484).

[70] Engelfriet, J. & Rozenberg, G. (1991). Graph Grammars Based on Node Rewrit-
ing: An Introduction to NLC Graph Grammars. In H. Ehrig, H.-J. Kreowski,
& G. Rozenberg (Eds.),Graph Grammars and Their Application to Com-
puter Science, 4th International Workshop (pp. 12 —- 23). Bremen, Germany:
Springer.

[71] Fischer, T., Niere, J., Torunski, L., & Zündorf, A. (1998). Story diagrams: A
new graph rewrite language based on the unified modeling language and java.
In H. Ehrig, G. Engels, H.-J. Kreowski, & G. Rozenberg (Eds.), Theory and
Application of Graph Transformations, 6th International Workshop (TAGT
1998) (pp. 296–309). Paderborn, Germany: Springer.

271

[72] Franssen, M. (1999). Cocktail: A Tool for Deriving Correct Programs. InWork-
shop on Automated Reasoning (pp. 39 —- 40). Edinburgh, Scotland, UK: The
Society for the Study of Artificial Intelligence and Simulation Behaviour.

[73] Frei, R. & Serugendo, G. D. M. (2014). Self-Healing Software, chapter 5, (pp.
71–82). World Scientific.

[74] Geiß, R., Batz, G. V., Grund, D., Hack, S., & Szalkowski, A. (2006). GrGen: A
fast SPO-based graph rewriting tool. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, & G. Rozenberg (Eds.),Graph Transformations, Third Interna-
tional Conference (ICGT 2006) (pp. 383–397). Natal, Rio Grande do Norte,
Brazil: Springer.

[75] Ghamarian, A. H., Mol, M., Rensink, A., Zambon, E., & Zimakova, M. (2011).
Modelling and Analysis using GROOVE. International Journal on Software
Tools for Technology Transfer, 14(1), 15–40.

[76] Ghezzi, C., Mocci, A., & Monga, M. (2009). Synthesizing intensional behavior
models by graph transformation. In Proceedings of the 31st International nfer-
ence on Software Engineering (ICSE 2009) (pp. 430–440). Vancouver, Canada:
IEEE.

[77] Ghiya, R. & Hendren, L. (1996). Is it a tree, a DAG, or a cyclic graph? A shape
analysis for heap-directed pointers in C. In H.-J. Boehm & G. L. Steele Jr. (Eds.),
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (pp. 1—-15). St. Petersburg Beach, Florida, USA: ACM
Press.

[78] Giese, H., Glesner, S., & Leitner, J. (2006). Towards verified model transforma-
tions. In D. Hearnden, J. G. Süß, B. Baudry, & N. Rapin (Eds.), 3rd Workshop
on Model Development , Validation and Verification (MoDeVVa 2006)Genova,
Italy: Le Commissariat à l’Energie Atomique - CEA.

[79] Giese, H. & Henkler, S. (2006). A Survey of Approaches for the Visual Model-
Driven Development of Next Generation Software-Intensive Systems. Journal
of Visual Languages & Computing, 17(6), 528–550.

[80] Giese, H., Hildebrandt, S., & Lambers, L. (2010). Toward Bridging the Gap Be-
tween Formal Semantics and Implementation of Triple Graph Grammars. In L.
Lucio, E. Vieira, & S. Weiß leder (Eds.),Workshop on Model-Driven Engineer-
ing, Verification, and Validation (MoDeVVa 2010) (pp. 19–24). Oslo, Norway:
IEEE.

272

[81] Graf, S. & Saïdi, H. (1997). Construction of abstract state graphs with PVS. In
O. Grumberg (Ed.), Computer Aided Verification, 9th International Conference
(CAV 1997 (pp. 72 – 83). Haifa, Israel: Springer.

[82] Gupta, A. (1992). Formal Hardware Verification Methods: A Survey. In R. Kur-
shan (Ed.), Formal Methods in System Design, volume 1 (pp. 5–92). Springer
US.

[83] Habel, A., Heckel, R., & Taentzer, G. (1996). Graph Grammars with Negative
Application Conditions. Fundamenta Informaticae, 26(3/4), 287–313.

[84] Heckel, R., Ehrig, H., Wolter, U., & Corradini, A. (1997). Integrating the Spec-
ification Techniques of Graph Transformation and Temporal Logic. In I. Prí-
vara & P. Ruzicka (Eds.),Mathematical Foundations of Computer Science, 2nd
International Symposium (MFCS 1997) (pp. 219 —- 228). Bratislava, Slovakia:
Springer.

[85] Heinen, J., Noll, T., & Rieger, S. (2010). Juggrnaut: Graph Grammar Abstrac-
tion for Unbounded Heap Structures. Electronic Notes in Theoretical Computer
Science, 266(August), 93 —- 107.

[86] Heinzemann, C., Suck, J., & Eckardt, T. (2010). Reachability Analysis on Timed
Graph Transformation Systems. Electronic Communications of the European
Association of Software Science and Technology, 32.

[87] Heisserman, J. (2004). Exploring the Future of Design: Formal engineering
design synthesis, volume 36. Cambridge University Press.

[88] Henzinger, T. A. (1996). The theory of hybrid automata. New Brunswick, New
Jersey, USA: IEEE Computer Society.

[89] Henzinger, T. A., Jhala, R., Majumdar, R., & McMillan, K. L. (2004). Ab-
stractions from Proofs. Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, (POPL 2004), 39(1), 232–
244.

[90] Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G. C., Sutre, G., & Weimer,
W. (2002a). Temporal-safety proofs for systems code. In E. Brinksma & K. G.
Larsen (Eds.), Computer Aided Verification, 14th International Conference
(CAV 200 (pp. 526–538). Copenhagen, Denmark: Springer.

[91] Henzinger, T. A., Jhala, R., Majumdar, R., & Sutre, G. (2002b). Lazy Ab-
straction. In J. Launchbury & J. C. Mitchell (Eds.), 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2002), volume 37
(pp. 58–70). Portland, Oregon, USA: ACM.

273

[92] Hoare, C. (1985). Communicating sequential processes, volume 21. Prentice-Hall.

[93] Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., & Rümmer, P.
(2012). A verification toolkit for numerical transition systems. In D. Gian-
nakopoulou & D. Méry (Eds.), 18th International Symposium on Formal Meth-
ods (FM 2012) (pp. 247–251). Paris, France: Springer.

[94] Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5), 279–295.

[95] Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.,
Guzmán, M. M., Hammond, K., Hughes, J., Johnsson, T., Kleburtz, D., Nikhil,
R., Partain, W., & Peterson, J. (1997). Report on the Programming Language
Haskell: a non-strict, Purely Functional Language Version 1.2. ACM SIG-
PLAN Notices - Haskell special issue, 27(May), 1 – 164.

[96] Isenberg, T. (2012). Bounded Model Checking für Graphtransformationssysteme
als SMT-Problem. Master thesis, University of Paderborn.

[97] Isenberg, T., Steenken, D., & Wehrheim, H. (2013). Bounded Model Checking
of Graph Transformation Systems via SMT Solving. In D. Beyer & M. Boreale
(Eds.), Formal Techniques for Distributed Systems - Joint International Confer-
ence (FMOODS/FORTE 2013) (pp. 178–192). Florence, Italy: Springer.

[98] Ivančić, F., Yang, Z., Ganai, M. K., Gupta, A., Shlyakhter, I., & Ashar, P. (2005).
F-Soft: Software verification platform. In K. Etessami & S. K. Rajamani (Eds.),
Computer Aided Verification, 17th International Conference (CAV 2005) (pp.
301–306). Edinburgh, Scotland, UK: Springer.

[99] Jackson, D., Shlyakhter, I., & Sridharan, M. (2001). A micromodularity mech-
anism. In International Symposium on Foundations of Software Engineering,
volume 26 (pp.6̃2). Vienna· Austria: ACM.

[100] Joshi, S. & König, B. (2008). Applying the Graph Minor Theorem to the Ver-
ification of Graph Transformation Systems. In A. Gupta & S. Malik (Eds.),
Computer Aided Verification, 20th International Conference (CAV 2008) (pp.
214–226). Princeton, New Jersey, USA: Springer.

[101] Kiefer, S., Schwoon, S., & Suwimonteerabuth, D. (2009). Moped - A Model-
Checker for Pushdown Systems. Date of Access: January, 20.

[102] König, B. & Kozioura, V. (2006). Counterexample-guided Abstraction Refine-
ment for the Analysis of Graph Transformation Systems. In H. Hermanns & J.

274

Palsberg (Eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems, 12th International Conference (TACAS 2006), volume 627 (pp. 197–211).
Vienna, Austria: Springer.

[103] König, B. & Kozioura, V. (2008). Augur 2 — A New Version of a Tool for the
Analysis of Graph Transformation Systems. Electronic Notes in Theoretical
Computer Science, 211, 201–210.

[104] König, B. & Stückrath, J. (2014). A general framework for Well-Structured
Graph Transformation Systems. In P. Baldan & D. Gorla (Eds.), Concurrency
Theory, 25th International Conference (CONCUR 2014) (pp. 467–481). Rome,
Italy: Springer.

[105] Kreowski, H.-J., Kuske, S., & Wille, R. (2010). Graph Transformation Units
Guided by a SAT Solver. In H. Ehrig, A. Rensink, G. Rozenber, & A. Schürr
(Eds.),Graph Transformations, 5th International Conference (ICGT 2010), vol-
ume 637 (pp. 27–42). Enschede, The Netherlands: Springer.

[106] Kroening, D. & Weissenbacher, G. (2011). Interpolation-based software verifica-
tion with WOLVERINE. In G. Gopalakrishnan & S. Qadeer (Eds.), Computer
Aided Verification, 23rd International Conference (CAV 2011) (pp. 573–578).
Snowbird, Utah, USA: Springer.

[107] Lee, O., Yang, H., & Yi, K. (2005). Automatic Verification of Pointer Programs
Using Grammar-based Shape Analysis. In S. Sagiv (Ed.), Programming Lan-
guages and Systems, 14th European Symposium on Programming (ESOP 2005)
(pp. 124–140). Edinburgh, Scotland, UK: Springer.

[108] Lev-Ami, T. & Sagiv, M. (2000). TVLA: A System for Implementing Static
Analyses. In J. Palsberg (Ed.), Static Analysis, 7th International Symposium
(SAS 2000) (pp. 280–302). Santa Barbara, California, USA: Springer.

[109] Lluch-Lafuente, A. & Vandin, A. (2011). Towards a Maude Tool for Model
Checking Temporal Graph Properties. Electronic Communications of the Euro-
pean Association of Software Science and Technology, 41.

[110] Loginov, A., Reps, T., & Sagiv, M. (2005). Abstraction refinement via inductive
learning. In K. Etessami & S. K. Rajamani (Eds.), Computer Aided Verification,
17th International Conference (CAV 2005) (pp. 519–533). Edingurgh, Scotland:
Springer.

[111] Mazanek, S., Rensink, A., & Van Gorp, P. (2010). Transformation Tool Contest
2010. Technical Report July, Malaga, Spain.

275

[112] McMillan, K. L. (2003). Interpolation and SAT-based Model Checking. In
W. A. Hunt Jr. & F. Somenzi (Eds.), Computer Aided Verification, 15th Interna-
tional Conference (CAV 2003) (pp. 1–13). Boulder, Colorado, USA: Springer.

[113] McMillan, K. L. (2006). Lazy Abstraction with Interpolants. In T. Ball & R. B.
Jones (Eds.), Computer Aided Verification, 18th International Conference (CAV
2006) (pp. 123–136). Seattle, Washington, USA: Springer.

[114] Moura, L. D. & Bjø rner, N. (2008). Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan & J. Rehof (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference (TACAS 2008) (pp. 337–
340). Budapest, Hungary: Springer.

[115] Moura, L. D. & Bjø rner, N. (2011). Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9), 69–77.

[116] Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE, 77(4), 541–580.

[117] Namjoshi, K. & Kurshan, R. (2000). Syntactic program transformations for
automatic abstraction. In E. A. Emerson & A. P. Sistla (Eds.), Computer Aided
Verification, 12th International Conference (CAV 2000) (pp. 435–449). Chicago,
Illinois: Springer.

[118] Navabi, Z. (1997). VHDL: Analysis and Modeling of Digital Systems. New
York, NY, USA: McGraw-Hill, Inc., 2 edition.

[119] Necula, G. C. (2011). Proof-carrying code. In H. C. A. van Tilborg & S. Jajodia
(Eds.), Encyclopedia of Cryptography and Security, number November (pp.
984—-986). Springer, 2 edition.

[120] Pandey, R. K. (2011). Object constraint language (OCL); past, present and
future. ACM SIGSOFT Software Engineering Notes, 36(1), 1—-4.

[121] Prabhakar, P., Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Hybrid
automata-based cegar for rectangular hybrid systems. In R. Giacobazzi, J.
Berdine, & I. Mastroeni (Eds.), Verification, Model Checking, and Abstract In-
terpretation, 14th International Conference (VMCAI 2013) (pp. 48–67). Rome,
Italy: Springer.

[122] Priesterjahn, C., Steenken, D., & Tichy, M. (2013). Timed hazard analysis of
self-healing systems. In J. Cámara, R. de Lemos, C. Ghezzi, & A. Lopes (Eds.),
Assurances for Self-Adaptive Systems – Principles, Models, and Techniques (pp.
112–151). Springer.

276

[123] Rafe, V. & Rahmani, A. T. (2008). Formal analysis of workflows using UML
2.0 activities and graph transformation systems. In J. S. Fitzgerald, A. E. Hax-
thausen, & H. Yenigün (Eds.), International Conference on Theoretical Aspects
of Computing (ICTAC 2008) (pp. 305–318). Istanbul, Turkey: Springer.

[124] Rensink, A. (2003). A logic of local graph shapes. Technical report, Formal
Methods, and Tools, University of Twente, Twente, The Netherlands.

[125] Rensink, A. (2004). Canonical Graph Shapes. In D. A. Schmidt (Ed.), Pro-
gramming Languages and Systems, 13th European Symposium on Programming
(ESOP 2014) (pp. 401–415). Barcelona, Spain: Springer.

[126] Rensink, A. & Distefano, D. (2006). Abstract Graph Transformation. Elec-
tronic Notes in Theoretical Computer Science, 157(1), 39–59.

[127] Rensink, A. & Zambon, E. (2011). Neighbourhood Abstraction in GROOVE.
Electronic Communications of the European Association of Software Science and
Technology, 32.

[128] Rensink, A. & Zambon, E. (2012). Pattern-Based Graph Abstraction. In H.
Ehrig, G. Engels, H.-J. Kreowski, & G. Rozenberg (Eds.),Graph Transforma-
tions, 6th International Conference (ICGT 2012 (pp. 66–80). Bremen, Germany:
Springer.

[129] Reps, T., Sagiv, M., & Loginov, A. (2010). Finite Differencing of Logical For-
mulas for Static Analysis. ACM Transactions on Programming Languages and
Systems, 32(6), 24.

[130] Rieger, S. & Noll, T. (2008). Abstracting Complex Data Structures by Hyper-
edge Replacement. In H. Ehrig, R. Heckel, G. Rozenberg, & G. Taentzer (Eds.),
Graph Transformations, 4th International Conference (ICGT 2008) (pp. 69–83).
Leicester, United Kingdom: Springer.

[131] Robertson, N. & Seymour, P. (2004). Graph Minors. XX. Wagner’s Conjec-
ture. Journal of Combinatorial Theory, Series B, 92(2), 325–357.

[132] Robertson, N. & Seymour, P. D. (2010). Graph minors XXIII. Nash-Williams’
Immersion Conjecture. Journal of Combinatorial Theory, Series B, 100(2), 181–
205.

[133] Rozenberg, G. & Ehrig, H. (1997). Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume 1: Foundations, volume 1. World
Scientific.

277

[134] Sagiv, M., Reps, T., & Wilhelm, R. (2002). Parametric Shape Analysis via 3-
valued Logic. ACM Transactions on Programming Languages and Systems,
24(3), 217–298.

[135] Saïdi, H. & Shankar, N. (1999). Abstract and model check while you prove. In
N. Halbwachs & D. Peled (Eds.), Computer Aided Verification, 11th Interna-
tional Conference (CAV 1999) (pp. 443–454). Trento, Italy: Springer.

[136] Saksena, M., Wibling, O., & Jonsson, B. (2008). Graph Grammar Modeling
and Verification of ad hoc Routing Protocols. In C. R. Ramakrishnan & J. Re-
hof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference (TACAS 2008) (pp. 18–32). Budapest, Hungary:
Springer-Verlag.

[137] Sangiorgi, D. & Walker, D. (2001). The pi-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press.

[138] Sannella, D. & Tarlecki, A. (2012). Foundations of algebraic specification and
formal software development, Monographs in Theoretical Computer Science.
Springer.

[139] Schilling, D. (2006). Kompositionale Softwareverifikation mechatronischer
Systeme. Phd thesis, Universität Paderborn.

[140] Schmidt, A. & Varró, D. (2003). CheckVML: A Tool for Model Checking
Visual Modeling Languages. In P. Stevens, J. Whittle, & G. Booch (Eds.),UML
2003 - The Unified Modeling Language, Modeling Languages and Applications,
6th International Conference, volume 2 (pp.9̃2). San Francisco, California, USA:
Springer.

[141] Schürr, A. (1997). Developing Graphical (Software Engineering) Tools with
PROGRES. In W. R. Adrion, A. Fuggetta, R. N. Taylor, & A. I. Wasserman
(Eds.), Proceedings of the 19th International Conference on Software Engineering
(pp. 487–550). Boston, Massachusetts: ACM.

[142] Schürr, A. & Klar, F. (2008). 15 Years of Triple Graph Grammars. In H. Ehrig,
R. Heckel, G. Rozenberg, & G. Taentzer (Eds.),Graph Transformations, 4th
International Conference (ICGT 2008), volume 5214 (pp. 411–425). Leicester,
United Kingdom: Springer.

[143] Sistla, A. P. (1994). Safety, Liveness and Fairness in Temporal Logic. Formal
Aspects of Computing, 6(5), 495–511.

278

[144] Steenken, D., Wehrheim, H., & Wonisch, D. (2011). Sound and Complete
Abstract Graph Transformation. In A. da Silva Simao & C. Morgan (Eds.),
14th Brazilian Symposium on Formal Methods, Foundations and Applications
(SBMF 2011) (pp. 92–107). Sao Paulo, Brazil: Springer.

[145] Stenzel, K., Moebius, N., & Reif, W. (2011). Formal verification of QVT trans-
formations for code generation. In J. Whittle, T. Clark, & T. Kühne (Eds.),
Model Driven Engineering Languages and Systems, 14th International Confer-
ence (MODELS 2011) (pp. 533–547). Wellington, New Zealand: Springer.

[146] Taentzer, G. (2004). AGG: A Graph Transformation Environment for Mod-
eling and Validation of Software. In J. L. Pfaltz, M. Nagl, & B. Böhlen (Eds.),
Applications of graph Transformations with Industrial Relevance, 2nd Interna-
tional Workshop (AGTIVE 2003) (pp. 446–453). Charlottesville, Virginia, USA:
Springer.

[147] Taentzer, G. & Ehrig, H. (1996). Computing by Graph Transformation - A
Survey and Annotated Bibliography. Technical Report March, TU Berlin,
Berlin, Germany.

[148] Tichy, M. & Klöpper, B. (2011). Planning Self-Adaption with Graph Trans-
formations. In A. Schürr, D. Varró, & G. Varró (Eds.),Applications of Graph
Transformations with Industrial Relevance, 4th International Symposium (AG-
TIVE 2011) (pp. 137–152). Budapest, Hungary: Springer.

[149] Trächtler, A. (2006). Railcab-mit innovativer Mechatronik zum Schienen-
verkehrssystem der Zukunft. In VDE-Kongress 2006: VDE VERLAG GmbH.

[150] Varró, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D.-H., Geiß, R.,
Greenyer, J., Van Gorp, P., Kniemeyer, O., Narayanan, A., Rencis, E., &
Weinell, E. (2008). Transformation of UML Models to CSP: A Case Study
for Graph Transformation Tools. In A. Schürr, M. Nagl, & A. Zündorf (Eds.),
Applications of Graph Transformations with Industrial Relevance (AGTIVE
2007) (pp. 540–565). Kassel, Germany: Springer.

[151] Vizel, Y., Grumberg, O., & Shoham, S. (2012). Lazy abstraction and SAT-based
reachability in hardware model checking. In G. Cabodi & S. Singh (Eds.), For-
mal Methods in Computer-Aided Design (FMCAD 2012), number 978 (pp.
173–181). Cambridge, UK: IEEE.

[152] Wang, J., Kim, S.-K., & Carrington, D. A. (2006). Verifying metamodel cover-
age of model transformations. In 17th Australian Software Engineering Con-
ference (ASWEC 2006) (pp. 10 pp.–282). Sydney, Australia: IEEE Computer
Society.

279

[153] Ward, M. P. & Zedan, H. (2013). Provably correct derivation of algorithms
using FermaT. Formal Aspects of Computing, 26(5), 993–1031.

[154] Warmer, J. B. & Kleppe, A. G. (1998). The Object Constraint Language: Precise
Modeling With Uml (Addison-Wesley Object Technology Series).

[155] Wies, T. (2009). Symbolic shape analysis. Phd thesis, Universität Freiburg.

[156] Wimmel, H. & Wolf, K. (2011). Applying CEGAR to the Petri net state equa-
tion. In P. A. Abdulla, M. Rustan, & M. Leino (Eds.), Tools and Algorithms
for the Construction and Analysis of Systems, 17th International Conference
(TACAS 2011) (pp. 224–238). Saarbrücken, Germany: Springer.

[157] Wimmer, M., Kappel, G., Schönböck, J., Kusel, A., Retschitzegger, W., &
Schwinger, W. (2009). TROPIC: a framework for model transformations
on petri nets in color. In S. Arora & G. T. Leavens (Eds.), Companion to the
24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2009) (pp. 783–784). Orlando,
Florida: ACM.

[158] Wing, J. M. (1990). A specifier’s introduction to formal methods. IEEE Com-
puter, 23(9), 8,10–22,24.

[159] Wonisch, D. (2010). Increasing the Preciseness of Shape Analysis for Graph
Transformation Systems. Master thesis, University of Paderborn.

[160] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., &
O’Hearn, P. W. (2008). Scalable shape analysis for systems code. In A. Gupta
& S. Malik (Eds.), Computer Aided Verification, 20th International Conference
(CAV 2008) (pp. 385–398). Princeton, New Jersey, USA: Springer.

[161] Zambon, E. (2013). Abstract Graph Transformation - Theory and Practice. Phd
thesis, University of Twente.

[162] Zambon, E. & Rensink, A. (2012). Graph Subsumption in Abstract State Space
Exploration. In A. Wijs, D. Bosnacki, & S. Edelkamp (Eds.), Proceedings of the
1st Workshop on Graph Inspection and Traversal Engineering, (GRAPHITE
2012), volume 99 (pp. 35–49). Tallinn, Estonia.

[163] Zündorf, A. (2009). Model Checking the Leader Election Protocol with Fujaba.
In 5th International Workshop on Graph-based Tools (GraBaTs 2009) (pp. 1–11).
Zürich, Switzerland: Springer.

280

	Introduction
	Problem Definition
	Contributions
	Thesis Outline

	Basic Definitions for Verifying Graph Transformation Systems
	Graphs
	Graph Transformation Systems
	Model Checking Graph Transformation Systems

	Abstracting Graph Transformation Systems using Three-Valued Logic
	Motivation
	Logical Encoding of Graphs
	Three-Valued Logic
	Shapes and Embedding
	Abstract Transformation and State Space Construction
	Refinement Using Shape Constraints

	SMT Encoding of Graph Embeddings and Traces
	Motivation
	Satisfiability Modulo Theories
	Encoding of a Graph
	Encoding of a Graph Embedded Into a Shape
	Encoding of a Trace
	Encoding of a Rule Application
	Encoding of the Emptiness of a Shape

	Lazy State Space Construction
	The Principle of Lazy State Space Construction
	Shape Transition Trees
	Basic Construction Loop of an STT

	Interpolation-guided Refinement Loop
	Error Analysis and Conditions on Refinement
	Automatic Abstraction Refinement via the Trace Encoding
	Manual Abstraction Refinement Supported by Soundness Checks

	Implementation: Shape Graph Analyzer
	Description and Usage
	Architecture
	Application Examples
	Possibilities for Extension

	Conclusion
	Related work
	Future Work
	Summary and Concluding Thoughts

	Appendix Proofs
	Appendix Code Listings
	References

