
Faculty of Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Software Engineering Group
Warburger Straße 100
33098 Paderborn

Scenario-based Design of
Mechatronic Systems

by

Joel Greenyer
jgreen@upb.de

PhD Thesis
in partial fulfilment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)

supervised by
Prof. Dr. Wilhelm Schäfer

Paderborn, October 11, 2011

Abstract

Mechatronic systems today have to fulfill increasingly complex tasks in diverse
and often safety-critical situations. In order to cope with this complexity, the
design of the system is typically based on scenarios, in which the engineers
describe which sequences of events may, must, or must not happen in certain
situations. Scenarios allow humans to conceive complex requirements. However,
it may happen that contradictions are introduced among the scenarios, and thus
the specification becomes inconsistent. If such inconsistencies are not detected
early, this may require costly iterations in the system’s development or it may
lead to flaws in the system.

In the scope of this thesis, a method was developed for finding inconsisten-
cies in scenario-based specifications of mechatronic systems. Modal Sequence
Diagrams (MSDs) were extended so that now real-time requirements and envi-
ronment assumptions can be formulated. A technique was developed that maps
the problem of finding inconsistencies in such MSD specifications to the problem
of synthesizing winning strategies in two-player games. This way, an existing,
efficient algorithm can be employed for consistency analysis. Moreover, this
thesis presents a formal technique for decomposing the synthesis problem.

Furthermore, in order to find inconsistencies in specifications of dynamic
systems, this thesis presents concepts for improving the play-out algorithm.
This algorithm allows for the simulation of MSD specifications, but it may run
into avoidable violations of the specification. By combining the play-out with
strategies that could be successfully synthesized from parts of the specification,
the simulation produces less avoidable violations, thus giving the engineers more
reasons to suspect inconsistencies if violations occur.

iii

Zusammenfassung

Mechatronische Systeme müssen heute immer komplexere Aufgaben in vielseit-
igen, teils sicherheitskritischen Situationen erfüllen. Um diese Komplexität zu
beherrschen, basiert der Entwurf solcher Systeme meist auf Szenarien, in denen
Ingenieure beschreiben, welche Folgen von Ereignissen in bestimmten Situatio-
nen passieren können, müssen oder nicht passieren dürfen. Durch Szenarien
können Menschen komplexe Anforderungen erfassen. Allerdings können Wider-
sprüche zwischen den Szenarien entstehen und die Spezifikation somit inkon-
sistent werden. Werden Inkonsistenzen nicht früh entdeckt, kann dies teure
Iterationen in der Entwicklung erfordern oder zu Fehlern im System führen.

In dieser Dissertation wurde eine Methode entwickelt, um Inkonsistenzen
in szenariobasierten Spezifikationen mechatronischer Systeme zu finden. Modal
Sequence Diagrams (MSDs) wurden erweitert, sodass nun auch Echtzeiteigen-
schaften und Umweltannahmen beschrieben werden können. Eine Technik
wurde entwickelt, welche das Finden von Inkonsistenzen auf die Synthese von
Gewinnstrategien in Zweispielerproblemen abbildet, sodass ein existierender, ef-
fizienter Algorithmus für die Konsistenzanalyse verwendet werden kann. Zudem
wurde eine Technik für die Dekomposition des Syntheseproblems entwickelt.

Um Inkonsistenzen in Spezifikationen von dynamischen Systemen zu finden,
werden zudem Konzepte für die Verbesserung des play-out-Algorithmus präsen-
tiert. Der existierende Algorithmus ermöglicht die Simulation von MSD Spez-
ifikationen, bei der es jedoch zu vermeidbaren Verletzungen der Spezifikation
kommen kann. Durch eine neuartige Kombination des play-out-Algorithmus
mit erfolgreich für Teile der Spezifikation synthetisierten Strategien produziert
dieser weniger vermeidbare Verletzungen. So hat der Ingenieur mehr Grund
eine Inkonsistenz zu vermuten, wenn Verletzungen auftreten.

v

Acknowledgment

This work would not have been possible without the great working atmosphere
at the software engineering group in Paderborn. Chiefly responsible for that
is Wilhelm Schäfer, who I especially thank for his confidence in me, his good
advice, and the space he provided that allowed me to develop ideas and to
drive my research in a self-dependent way. Second, although not longer part
of the software engineering group in Paderborn, I thank Ekkart Kindler, who
has taught me many things and who has sparked my fascination for software
engineering.

I also thank all my current and former colleagues at the software engineer-
ing group for the helpful discussions and the good humor (especially during the
coffee breaks and any time “after 4pm”), especially Oliver Sudmann, Jan Rieke,
Matthias Meyer, Dietrich Travkin, Martin Hirsch, Stefan Henkler, Matthias
Tichy, Claudia Priesterjahn, Markus von Detten, Tobias Eckhard, Renate Löf-
fler, Christian Heinzemann, Jan Meyer, Jörg Holtmann, Björn Axenath, Patrick
Könemann, David Schmelter, Steffen Becker, and Christian Brenner. Especially
supportive during the last years were Jutta Haupt (not only the administrative
support, great were also the occasional cooky supply and the good laughs), Jür-
gen Maniera (a.k.a. “Sammy”), Astrid Canisius, and Eckhard Steffen. Also,
Christian Brenner and Yvonne Makopa helped a lot with proofreading.

Furthermore, I thank Gregor Engels and the members of his group for the
helpful discussions during the reading classes. I thank Heike Wehrheim for
her good advice. Very interesting and inspiring was the interdisciplinary work
with Prof. Gausemeier and his group. I especially thank Sascha Kahl, Roman
Dumitrescu, Sebastian Pook, and Jörg Donoth for the productive and fun coop-
eration. Also, I thank Jens Geisler and Christian Henke for the detailed insights
on the RailCab project. Very interesting and helpful was furthermore the exten-
sive discussion on MSDs with Shahar Maoz and the correspondence on Uppaal
Tiga with Shuhao Li. It was especially fun working with Sascha Burdick, Nils
Diekmann, Jens Frieben, Markus Fockel, Mathias Höckelmann, Lilija Klassen,
Daniel Loechelt, and Daniel Simon in the ScenarioTools project group.

I thank my family for their constant care and support: my parents Ruth
Greenyer-Boekstegers and Barnabas Greenyer, my sister Manon Greenyer, and
Nikolaus Boekstegers. For their endless care, I especially thank my grandparents
Elfriede and Benno Herzog. Finally, I thank Judith Mayer, my love, partner,
and friend, for her encouragement, patience, and for being there for me all the
time.

vii

Short contents

1 Introduction · 1

2 Problem Analysis · 11

3 Foundations · 23

4 Synthesis · 57

5 Symbiosis of Simulation and Synthesis · 117

6 Triple Graph Grammar Extensions · 143

7 Realization and Evaluation · 159

8 Related Work · 177

9 Conclusion and Future Research · 185

A Meta-Models and Profiles · 191

B MSD-to-TGA TGG Transformation · 199

C Examples · 231

Bibliography · 277

List of Figures · 289

Index · 297

viii

Contents

1 Introduction 1
1.1 The problem . 2
1.2 The objective . 6
1.3 The approach . 6
1.4 The contribution . 8
1.5 The structure of this thesis . 9

2 Problem Analysis 11
2.1 Characteristics of mechatronic systems 11

2.1.1 The architecture of advanced mechatronic systems . 11
2.2 The development of mechatronic systems 13

2.2.1 The interdisciplinary design language elaborated in
the CRC 614 . 13

2.2.2 Example: specifying two use cases in the RailCab
system . 14

2.3 Problem description . 15
2.4 Existing scenario-based design techniques 19

3 Foundations 23
3.1 Modal Sequence Diagrams . 23

3.1.1 MSDs and the object system 23
3.1.2 Events, messages, and runs 25
3.1.3 Event unification . 25
3.1.4 Existential and universal MSDs, hot and cold messages 26
3.1.5 Active MSDs, the cut, and hot and cold violations . 26
3.1.6 The iterative interpretation of MSDs 27
3.1.7 Satisfying an MSD specification 30
3.1.8 The play-out algorithm 30
3.1.9 Consistency, consistent executability, and realizsability 32
3.1.10 Parameterized messages 33
3.1.11 Object properties and side-effects 34
3.1.12 Assignments and conditions 35
3.1.13 Visible and Hidden events 36
3.1.14 Timed MSD specifications 37
3.1.15 Symbolic lifelines . 39
3.1.16 Forbidden messages . 45

ix

x CONTENTS

3.2 Timed Game Automata and Uppaal Tiga 46
3.2.1 Timed Automata in Uppaal 47
3.2.2 Timed Game Automata in Uppaal Tiga 49
3.2.3 On-the-fly synthesis of game strategies 49

3.3 Triple Graph Grammars . 50
3.3.1 Why model transformation with TGGs? 51
3.3.2 TGG structure and semantics 51
3.3.3 Forward transformation 54
3.3.4 Further extensions of TGGs 56

4 Synthesis 57
4.1 Overview . 58
4.2 The MSD specification scheme 59

4.2.1 Collaboration and class diagram 59
4.2.2 Requirement MSDs and assumption MSDs 60

4.3 Mapping untimed MSD specifications 62
4.3.1 The environment and system automata for untimed

MSD specifications . 62
4.3.2 Mapping the MSDs to TGA 67
4.3.3 Encoding assignments and conditions 73
4.3.4 Forbidden messages . 76
4.3.5 Assumption MSDs . 77

4.4 The winning condition . 79
4.4.1 Checking consistent executability with Uppaal Tiga 79
4.4.2 An alternative winning condition 81

4.5 Mapping timed MSD specifications 82
4.5.1 The environment and system automata for timed

specifications . 82
4.5.2 Encoding clock resets and time conditions 86
4.5.3 Extensions to the winning condition for timed spec-

ifications . 96
4.6 Compositional synthesis . 97

4.6.1 Compositional reasoning 97
4.6.2 The compositional synthesis technique 99
4.6.3 Example: the compositional synthesis of the produc-

tion cell specification 103
4.6.4 The compositional synthesis technique is sound . . . 108

4.7 Different kinds of consistency 113
4.7.1 Disallowing to delay steps in the timed setting 113
4.7.2 Consistency vs. consistent executability 114

4.8 Summary and Outlook . 115
4.8.1 Inconsistent environment assumptions 115
4.8.2 Partial observability . 115

5 Symbiosis of Simulation and Synthesis 117
5.1 Overview . 117
5.2 Guiding by controllers from single use cases 120

CONTENTS xi

5.2.1 Use case specification example 120
5.2.2 Play-out with synthesized controllers 123

5.3 Guiding by controllers from composed use cases 128
5.3.1 Composed use case example 128
5.3.2 Synthesizing controllers from composed use cases . . 131
5.3.3 Guiding the play-out of composed use case occurrences 132
5.3.4 Tracking composed use case occurrences 133
5.3.5 Systematically tracking composed use case occurrences 137
5.3.6 Overly restrictive context expressions 140

5.4 Summary and Outlook . 140

6 Triple Graph Grammar Extensions 143
6.1 Overview of the TGG extensions 143
6.2 Generalization of TGG rules . 144

6.2.1 Why a generalization concept for transformation rules? 145
6.2.2 The TGG rule generalization concept by Klar et al. . 146
6.2.3 Improvements to the existing TGG rule generaliza-

tion concept . 146
6.3 OCL attribute value constraints 150
6.4 UML stereotype constraints . 152
6.5 Reusable nodes . 152

6.5.1 Reusable nodes in the example 153
6.5.2 The operational semantics of reusable nodes in the

target domain during a forward transformation . . . 154
6.6 Summary . 157
6.7 Outlook . 157

7 Realization and Evaluation 159
7.1 The TGG Interpreter . 159
7.2 MSD-to-TGA mapping and synthesis 161
7.3 ScenarioTools . 162

7.3.1 Modeling . 162
7.3.2 Simulation . 165
7.3.3 Physics-engine and visualization 169

7.4 Evaluation . 169
7.4.1 Practicality of the MSD formalism 170
7.4.2 Synthesis . 173
7.4.3 Simulation . 174
7.4.4 TGG-based model transformation 175

8 Related Work 177
8.1 Advanced play-out techniques 177
8.2 Related synthesis approaches . 178

8.2.1 Synthesis of global controllers 179
8.2.2 Synthesis of distributed controllers 182

9 Conclusion and Future Research 185

xii CONTENTS

9.1 Summary . 185
9.2 Future research . 187

A Meta-Models and Profiles 191
A.1 The meta-model for Uppaal Tiga 191
A.2 MSD specifications in UML . 193

B MSD-to-TGA TGG Transformation 199
B.1 TGG rule overview . 199
B.2 OCL attribute definitions . 201
B.3 TGG rules . 204

C Examples 231
C.1 Simulating an example RailCab specification 232

C.1.1 Example specification overview 232
C.1.2 Use case DriveOntoTrackSection 234
C.1.3 Use case DriveOntoBranchingSwitch 238
C.1.4 Use case EnergyManagement 242
C.1.5 The simulation model 247

C.2 The symbiosis of synthesis and simulation – the use case
“Warn RailCabs On Track” . 250
C.2.1 Description of the use case “Warn RailCabs On Track” 250
C.2.2 The specification of the use case 250
C.2.3 Avoidable violating runs 252
C.2.4 The controller synthesized from the use case specifi-

cation . 252
C.3 Synthesis example – the production cell 257

C.3.1 Description of the production cell example 257
C.3.2 The MSD specification of the production cell 258
C.3.3 Compositional synthesis of the production cell spec-

ification . 263
C.4 Synthesis performance measurement 271

C.4.1 How the measurements were taken 271
C.4.2 Untimed specifications with exponentially growing

state space . 271
C.4.3 Timed specification with exponentially growing

state space . 274

Bibliography 277

List of Figures 289

Index 297

CHAPTER 1
Introduction

From household machines to medical devices and transportation systems, we
find mechatronic systems everywhere around us today. Mechatronic systems
also drive our industry in areas such as manufacturing, logistics, and agriculture.
To serve customers’ needs and to make systems more cost- and energy efficient,
these systems have to fulfill increasingly advanced functions and must often
be able to autonomously control complex physical processes. In some cities
or at airports, for example, we already find driverless transportation systems
in operation. Other examples are the highly automated logistics systems in
harbors and distribution centers.

The new requirements of today’s systems are often met by building better
hardware, for example better sensors or more efficient drives. But, the advanced
features of these systems are essentially enabled by software that controls the
complex processes in the systems. Software also allows for the communication of
subsystems and modules that were separate before, and therefore more and more
advanced functions are realized by the autonomous collaboration of mechatronic
modules and subsystems. Research today shows that it is even possible to build
systems that react robustly to hardware failures or systems that monitor their
performance and adapt their behavior autonomously to changing environmental
conditions. The former systems are called self-healing systems, the latter are
called self-optimizing systems.

Self-optimizing mechatronic systems and techniques for successfully devel-
oping such systems are the focus of the Collaborative Research Center 614 “Self-
optimizing Concepts and Structures in Mechanical Engineering” (CRC 614), a
large-scale interdisciplinary research program at the University of Paderborn.
This thesis is embedded in this research program.

There are two aspects that make the development of mechatronic systems
especially challenging. First, these systems are often used in safety-critical areas.
To make the systems safe, significant development time and costs has to be
spent on testing today. Second, the mechanical, electrical, and software aspects
of mechatronic systems are highly interrelated and can no longer be developed

1

2 CHAPTER 1. INTRODUCTION

separately. The growing number of requirements, the interconnectedness of the
mechatronic subsystems and modules, and the interdisciplinary nature of these
systems generate an enormous complexity that engineers must master during the
development of these systems. To handle the increasing complexity, systematic
development processes on the one hand, andmodel-based development techniques
on the other hand are developed within the CRC 614.

Model-based development techniques are more commonly applied in prac-
tice today, which means that engineers use problem-specific models to describe
the relevant concerns during the development of a system. In the automotive
domain, for example, car manufacturers and suppliers are beginning to adopt
the AUTOSAR standard for describing the software architecture of cars in a
standardized way. Now parts of the software component’s code can be gen-
erated automatically, which avoids mistakes due to manual programming and
prevents many problems of integrating software components later on. Also, the
code for the continuous control functions is often generated from models today,
for example from MATLAB-Simulink block diagrams.

But, although manufacturers recognize the benefits of model-based develop-
ment techniques, not all aspects of a system are described by adequate models in
practice today. This is especially true for the communication behavior of mecha-
tronic modules and subsystems. Moreover, model-based development techniques
are often applied only at later phases of the development. During the early de-
sign, the specification of the system and its software is typically captured in the
form of informal diagrams and text. This implies that an automated analysis of
the design is only possible at later phases of the development. Testing often only
takes place after the components and test cases have been implemented. How-
ever, when errors are detected during testing, they sometimes reveal that the
specification was inconsistent in the first place and it was in fact never possible
to come up with an implementation that could satisfy all the requirements in
all operating conditions. If such inconsistencies are not detected early, resolving
them often requires costly iterations.

Therefore, to reduce the development costs, new development techniques are
required that allow the engineers to specify the system and software require-
ments in an understandable, but precise way. Especially, the engineer must be
supported by automated analysis techniques already in the early design phases
in order to find inconsistencies in time.

1.1 The problem
For the design of mechatronic systems, the VDI 2206 “Design Methodology for
Mechatronic Systems” [VDI04] was developed, which addresses the particular
challenges in the interdisciplinary development of mechatronic systems. It pro-
poses a development process, which is based on the V-model. The V-model
divides the system development into three main development phases that can
be displayed in a V-shaped form. A V-model adapted from the VDI 2206 is
illustrated in Fig. 1.1. During the first development phase, called the concep-
tual design, experts from all disciplines jointly develop a first interdisciplinary

1.1. THE PROBLEM 3

conceptual model of the system, called the principle solution. The principle so-
lution is the basis for the subsequent discipline-specific implementation phase.
In this phase, the disciplines develop the discipline-specific parts of the system,
using their discipline-specific methods and tools. In the third phase, the sys-
tem integration, the discipline-specific results are integrated to form the final
product, while the components on the different hierarchy levels are validated
and verified against the requirements that were specified during the conceptual
design.

Conceptual Design

Implementation

Mechanical Engineering
Electrical Engineering

Control Engineering
Software Engineering

Sy
st

em
 In

te
gr

at
io

n

(Informal)
Requirements Product

Modeling and Analysis

Validation &
Verification

Principle
Solution

Figure 1.1: A V-model describing the development of a mechatronic system,
on the basis of the VDI 2206 “Design Methodology for Mechatronic Systems”

In the early conceptual design of a system, the engineers and stakeholders
have to develop a common understanding of the system to be developed. This
is typically done by gathering the different use cases of the system. A use case
describes the functionality of a system by sequences of interaction events that
take place among system and environment elements. These sequences may be
sequences that are required or possible to occur, or exceptional and erroneous
sequences [Jac92, RJB05, Poh07, vL09]. Such sequences of events are commonly
called scenarios.

For humans, use cases and scenarios are a natural way to conceive and
communicate what the system can, must, or must not do. They allow engineers
to concentrate on specifying one function of the system at a time, instead of
having to regard the whole functionality of the system at once. Therefore, use
cases and scenarios are an intuitive basis for capturing the complex requirements
of a system. A design that is based on use cases and scenarios is also called a
scenario-based design.

However, there are two problems that occur during the scenario-based de-
sign. First, the scenarios are typically described informally today. This im-

4 CHAPTER 1. INTRODUCTION

plies that the requirements posed by the scenarios may be ambiguous and may
therefore later be interpreted differently than originally intended. An interdis-
ciplinary specification language was developed within the CRC 614, that allows
engineers to capture the descriptions of a scenario by semi-formal structure and
behavior diagrams [Fra06]. Still, it turns out that the means for capturing the
behavior described in scenarios are inadequate. The same is true also for other
languages that may be used in the early system design, such as UML [UML09]
or SysML [Sys08].

The second problem is that, even when capturing the scenarios formally,
there may easily be contradictions in how the system is intended to behave.
Especially if the different use cases are formulated by different engineers or
stakeholders, there may easily be two scenarios, describing the same situation,
where one scenario requires the system to act in a way that is forbidden by the
other scenario. If that is the case, a specification is said to be inconsistent.

Let us consider an example in the following. The examples considered here
are taken from the context of the project “Neue Bahntechnik Paderborn/Rail-
Cab”1, RailCab in short. RailCab is an innovative concept for the future rail-
bound traffic. The vision is that, in the future, trains will no longer run on a
schedule, but small, autonomous vehicles, called RailCabs, transport passengers
and goods on demand. To reduce the energy loss due to wind resistance, the
RailCabs may form convoys when traveling in the same direction. Figure 1.2
illustrates the vision of the RailCab project. The images on the right show the
RailCab test track that is built at a scale of 1:2,5 at the university campus in
Paderborn.

convoy formation

passenger RailCab

cargo RailCab

test track at UPB campus

convoy formation on switch

Figure 1.2: The RailCab system: On-demand transportation of passengers and
goods by autonomous rail vehicles (taken from [ADG+09])

During the early design of such a system, engineers and other stakeholders
collect a number of use cases. For example, there may be different use cases
for a scenario where two RailCabs arrive at a merging switch, see Fig. 1.3.
One engineer may specify the standard case (i): in order to avoid collisions, a
RailCab must not enter a merging switch if another RailCab (that arrived ear-
lier) is already granted the permission to enter the switch. Another stakeholder

1“Neue Bahntechnik Paderborn”, http://www-nbp.upb.de

1.1. THE PROBLEM 5

(ii) wishes that express RailCabs with first-class passengers shall be given the
right of way before regular RailCabs. Third (iii), an engineer has in mind that
switches are only short sections of track and that the performance of the linear
drive to break on switches may be very limited. Therefore, the case has to
be considered that there has been a hazard reported on the subsequent track
section. Then none of the approaching RailCabs are allowed to enter the switch.

(i) The later RailCab must wait:

(ii) Certain kinds of RailCabs have the right of way:

(iii) Entering is denied when a hazard occurred on the subsequent track section:

Figure 1.3: Three use cases of RailCabs entering a merging switch

Between these use cases, there may be for example the following contradic-
tion: The requirements for use case (i) may be formulated in an overly restrictive
way. It may state that the RailCab arriving first must be permitted to enter
the switch. However, both use cases (ii) and (iii) describe a situation where this
must not happen. This is of course just a simple example, but inconsistencies
may be much more subtle. Sometimes contradictions only occur in rare cases.
Nevertheless, violating the requirements even in rare cases may have devastat-
ing consequences. The more use cases describe specific concerns in the same
situations, the more likely it is for inconsistencies to occur. To the use cases
above, for example, further ones will be added that describe how RailCabs shall
be able to form convoys or merge convoys at switches (see picture in the middle
of Fig. 1.2).

The dependencies among the use cases are often very complex and it is very
difficult to detect all contradictions by manual revision. But not detecting these
contradictions right away may lead to costly iterations later in the development.

6 CHAPTER 1. INTRODUCTION

If these contradictions even remain undetected, it may lead to critical flaws in
the final product. Especially in the development of mechatronic systems, it is
important that the principle solution forms a consistent basis for the imple-
mentation phase, because detecting and resolving inconsistencies spanning the
different interdisciplinary implementations is a great challenge today [GSG+09].

1.2 The objective
In order to address the above problems, the objective of this thesis is to develop
a technique that supports the engineer in the intuitive, but precise specification
of scenario-based requirements during the early conceptual design. Further-
more, the engineer shall be supported by automated techniques in detecting
inconsistencies among the requirements as early as possible.

The focus here lies on the requirements on the discrete behavior of a system,
because many central features of advanced mechatronic systems are based on
the discrete interaction of system components. Moreover, interdisciplinary be-
havioral concerns are often described on an abstract, discrete level during the
early design of a system.

Furthermore, time requirements shall be regarded. Time is an important
aspect in the design of mechatronic systems, because the software in such sys-
tems often has to control physical processes where it is crucial to consider delays
between certain control operations.

1.3 The approach
This thesis presents a technique for the consistent scenario-based design of
mechatronic systems. The technique is based on Modal Sequence Diagrams
(MSDs) [HM08], a formal interpretation of UML Sequence Diagrams [UML09]
for describing sequences of events that may, must, or must not occur during
the interaction of the system components and their environment. The concepts
of MSDs are based on Live Sequence Charts (LSCs), developed by Damm and
Harel [DH98, DH01]. In order to detect inconsistencies in MSD specifications,
this thesis proposes a combination of simulation and formal synthesis, as de-
scribed in the following.

When an engineer specifies the scenarios by a certain kind of MSDs, these
scenarios can be executed by an algorithm called the play-out algorithm [HM03].
The play-out algorithm allows engineers to simulate the behavior that emerges
from the interplay of multiple scenarios. This is a powerful technique to acquire
an insight into the relationships among the scenarios and to detect inconsisten-
cies in the specification. But by using simulation alone, many inconsistencies
may remain undetected. There are two reasons for that. First, even systematic
testing will typically not cover all possible situations that may occur during the
operation of the system. Second, the simulation algorithm may at times report
violations of the requirements even if the requirements are consistent. This is
because, during the early design of the system, there is typically a lot of non-
determinism remaining in the specification; we then say that the specification is

1.3. THE APPROACH 7

under-specified. In under-specified specifications, the play-out algorithm has to
make many non-deterministic choices. This means that if a certain sequence of
steps leads to a violation of the requirements, there may be another sequence of
steps that the play-out algorithm could have chosen to avoid the violation. The
play-out algorithm, however, cannot “look ahead” to avoid the avoidable viola-
tions. Therefore, if violations occur during the simulation, the engineer cannot
be sure whether the requirements are really inconsistent or only the play-out
algorithm fails to execute them consistently.

The formal synthesis, by contrast, is a technique that allows the engineer
to find out for sure whether the requirements described by a set of MSDs are
consistent or not. A synthesis algorithm answers this question by trying to find
a controller that satisfies the requirements under consideration of every possible
sequence of events in the system’s environment. If the synthesis algorithm can
find such a controller, it means that the regarded set of requirements is consis-
tent; if it fails to find an implementation, the requirements are inconsistent.

The disadvantage of formal synthesis is that it is an inherently complex task.
Therefore, it can only be applied to specifications of limited size. Furthermore,
the synthesis is not suited for finding controllers for dynamic systems. Dynamic
systems are systems in which the communication relationships between the com-
ponents may change over time or components may be added to or removed from
the system. This leads to an additional explosion of the number of states that
would have to be considered, which makes the synthesis more difficult or even
impossible if the number of possible system configurations is infinite. There-
fore, we have to rely on the simulation via the play-out algorithm for finding
inconsistencies in larger specifications or dynamic systems.

In order to more effectively find inconsistencies by the simulation via the
play-out algorithm, the approach in this thesis is to combine the synthesis and
simulation in a beneficial way: First, the synthesis is employed to detect incon-
sistencies in single use cases or combinations of use cases that refer to static
situations during the runtime of the system. Static situations are such situa-
tions where the communication relationships between the regarded components
do not change. Consider for example the use cases shown in Fig. 1.3. These
use cases refer to a static situation in the RailCab system where one or two
RailCabs approach a merging switch. For the duration of the use cases, there
is a fixed set of objects with fixed communication relationships.

If the synthesis detects inconsistencies, these inconsistencies must be re-
solved by the engineers. If the synthesis is successful, it yields a controller that
shows how the system can satisfy the regarded part of the specification. Un-
fortunately, even if controllers can be successfully synthesized for all use cases
in a specification, this does not imply that the specification is consistent. That
is because use cases may still “overlap” in different ways. Therefore, the sim-
ulation via play-out is still useful and necessary to find inconsistencies in this
case. In order to avoid more avoidable violations during play-out, the approach
is to improve the play-out by also interpreting the controllers that could be suc-
cessfully synthesized from the single use case specifications. This reduces the
amount of avoidable violations during simulation and thus gives the engineers
more reason to suspect an actual inconsistency if a hot violation occurs.

8 CHAPTER 1. INTRODUCTION

1.4 The contribution
The contribution of this thesis is as follows:
A novel synthesis technique. This thesis presents a novel technique for syn-

thesizing controllers from timed and untimed MSD specifications. The
synthesis is realized by mapping an MSD specification to the input for
Uppaal Tiga, a tool for finding winning strategies in untimed and timed
two-player games [CDF+05, BCD+06, BCD+07a]. A similar approach was
presented by Larsen et al. [LLNP09, LLNP10], which, however, has a
number of limitations. For example, their approach does not consider
many sequences of environment events, which may nevertheless occur in
reality. Thus, critical sequences of environment events may be overlooked
during the synthesis. The particular novelty of the technique presented
here is that it considers environment assumptions that can be specified by
an engineer. Being able to consider specific environment assumptions is
crucial in practical applications, because often a system will only be able
to satisfy its requirements if it can be assumed that not arbitrarily “bad”
things can happen in its environment. Especially in mechatronic systems,
many system functions are only realizable under the assumption that me-
chanical parts and the laws of physics restrict the possible sequences of
environment events. The environment assumptions can be formalized in
the form of assumption MSDs, by which the engineer can precisely specify
that after a particular sequence of events, certain events will or will not
occur in the environment. This is especially convenient during the early
design, if only incomplete information on the environment is available.

A compositional synthesis technique. Based on the concept of assumption
MSDs, this thesis furthermore presents a novel technique that, in certain
cases, allows engineers to decompose an MSD synthesis problem into two
or more smaller synthesis problems that in sum can typically be solved
much faster than the original synthesis problem. This technique is based
on the assume-guarantee paradigm [MC81, Jon83, Pnu85, GL94, CGP99]
and consists of a number of manual steps. These steps describe how to
split a given MSD specification into two parts and how to add additional
MSDs as assumptions and requirements to these parts, so that it is valid
to imply the consistency of the original specification from the consistency
of the parts. A sketch of a proof is presented that shows the soundness of
the technique. Furthermore, the technique is validated by the MSD speci-
fication of an industrial production robot. This kind of compositional syn-
thesis of LSC/MSD specifications has not been studied previously. Kugler
and Segall also propose a technique for the “compositional synthesis” of
LSC specifications [KS09]; their approach, however, differs significantly to
the one presented in this thesis.

Symbiosis of play-out and synthesis. This thesis presents concepts for im-
proving the simulation of an MSD specification via the play-out algorithm
with synthesized controllers for single use cases or combinations of use
cases in the specification. The concept is validated by an example. Kugler
et al. mention that their approach supports the execution of a controllers

1.5. THE STRUCTURE OF THIS THESIS 9

synthesized for an LSC specification [KPP09]. However, executing a syn-
thesized controller in combination with the play-out other LSCs/MSDs
has not been regarded thus far.

Novel extensions to TGG-based model transformations. The mapping
from an MSD specification to the input for Uppaal Tiga is very com-
plex, which makes it difficult to formally specify this mapping and to
develop an automatic translator. In this thesis, the mapping is formalized
and implemented by a Triple Graph Grammar (TGG) [Sch94]. TGGs
are a declarative, rule-based formalism for specifying the relationship be-
tween models, and are therefore an intuitive formalism for specifying the
mapping. Furthermore, a TGG can be interpreted for automatically trans-
forming a given input model into a target model. In order to adequately
describe the mapping, a number of extensions to the TGG formalism were
elaborated in the scope of this thesis. First, the Object Constraint Lan-
guage (OCL) [OCL10] was integrated in TGGs. Second, a rule generaliza-
tion (inheritance) concept for TGG rules was elaborated, which improves
the generalization concept previously proposed by Klar et al. [KKS07]. As
a result, the mapping is specified in a concise way and the same mapping
specification can furthermore be automatically executed.

The central concepts presented in this thesis were prototypically implemented
and validated by examples. The extensions to the TGG formalism are imple-
mented in the TGG Interpreter. An MSD editor, the transformation which
maps an MSD specification to the input for Uppaal Tiga, and an improved
play-out algorithm that can be guided by synthesized controllers are imple-
mented in the ScenarioTools tool suite. Also, a 3D-visualization for the
simulation of a system of RailCabs was integrated with ScenarioTools.

1.5 The structure of this thesis
This thesis is structured as follows. Chapter 2 presents a more detailed prob-
lem analysis. The foundations are introduced in Chap. 3. Chapter 4 describes
the synthesis technique. Chapter 5 presents how the play-out of an MSD spec-
ification can be guided by controllers synthesized from single use cases in the
specification. It furthermore explains how situations of overlapping use cases can
be specified as composed use cases, and how the play-out can be guided by con-
trollers synthesized from composed use cases. The extensions to the TGG-based
model transformation concepts are described in Chap. 6. Chapter 7 shows how
the concepts developed in this thesis were implemented. Chapter 8 discusses
the related work, and Chap. 9 concludes this thesis and presents new research
perspectives that emerge from this work.

Further examples and technical details can be found in the appendices. Ap-
pendix A describes a UML profile for MSD specification as well as a meta-model
for Uppaal Tiga. Appendix B shows the TGG for mapping an MSD speci-
fication to the input for Uppaal Tiga. Finally, Appendix C shows examples
of MSD specifications that were used to validate the synthesis and simulation
concepts and to benchmark the synthesis.

CHAPTER 2
Problem Analysis

This chapter introduces the problem addressed in this thesis in more detail.
First, Sect. 2.1 introduces the characteristics of mechatronic systems. Next, the
methodology for the conceptual design of advanced mechatronic systems as it
is currently proposed by the CRC 614 is explained in Sect. 2.2. Section 2.3
then illustrates the current problems with the scenario-based design according
to this methodology by an example. Last, Sect. 2.4 briefly overviews existing
techniques that have been developed to address the problem.

2.1 Characteristics of mechatronic systems
Mechatronic systems are a class of systems that combine mechanical, electronic
and software components and therefore require the collaboration of different en-
gineering fields or disciplines for their development [VDI04, Ise05, Ise07, Ise09].
These disciplines are, on the one hand, the classical engineering disciplines me-
chanical engineering and electrical engineering and, on the other hand, control
engineering and software engineering. Control engineering is usually responsible
for developing the software components which can be best described by contin-
uous functions. Software engineering is rather concerned with software that
is best described by discrete models, such as the interaction behavior between
different components and subsystems in a mechatronic system.

2.1.1 The architecture of advanced mechatronic systems

An advanced mechatronic system like the RailCab (as introduced in Chap. 1)
typically consists of a hierarchy of interacting mechatronic modules and subsys-
tems. In the CRC 614, the hierarchy levels of mechatronic systems are classified
according to Lückel et al. [LHLH01]. In this classification, a mechatronic sys-
tem consists of several mechatronic function modules (MFM). Each MFM has a
mechanical base structure, it has sensors, actuators, and one or several micropro-
cessors to run the software that controls the behavior of the module. Examples

11

12 CHAPTER 2. PROBLEM ANALYSIS

for such a module are the linear drive module of a RailCab or its active sus-
pension and tilting module. Several MFMs may be combined to an autonomous
mechatronic system (AMS). An AMS, for example a single RailCab, has its
own energy supply and may interact with its environment autonomously, i.e.,
without the constant interaction with a human. On the AMS level, the mod-
ules are typically supervised and coordinated hierarchically. The modules are
for example monitored for failures and measures are taken when failures occur
in order to guarantee a safe operation of the system. A number of AMS that
jointly fulfill a certain task is called a networked mechatronic system (NMS).
On the NMS level, the single members must again be monitored for failures.
An example of an NMS is a track system with RailCabs, track section controls,
stations, crossings, etc. that all have to interact in order to achieve the desired
functionality, which is, in this case, to transport passengers and goods.

On all these levels, the modules and subsystems communicate extensively.
Figure 2.1 for example illustrates different situations in which RailCabs interact
autonomously with each other and further components of the RailCab track
system. The different interactions are labeled by dashed ellipses. For example,
a RailCab may detect another RailCab driving ahead and decide to form a
convoy with it (Form convoy). RailCabs may also break up the convoy again, for
example when one RailCab takes another direction than the other members of
the convoy (Leave convoy). The track section controls are illustrated as antennae
attached to a track section. When a RailCab drives from one track section
onto another, it is necessary that it requests the permission to enter the next
track section (Drive onto track section). For example, a hazard may have been
detected by another RailCab on the next track section (Hazard occurred) such
that, for safety reasons, the RailCab may not enter the track section (Enter
denied when hazard on next track section). Branching and merging switches are
also controlled by special kinds of track section controls, called merging switch
control and branching switch control. A merging switch control must for example
ensure that two RailCabs, unless they are coordinating to form a convoy, do not
enter the switch at the same time (Drive onto merging switch). When a RailCab
approaches a branching switch, the RailCab has to decide which route to take
(Drive onto branching switch).

Form convoy Leave convoy Hazard occurred
Drive onto

track section

Drive onto
branching switch

Enter denied when hazard
on next track section
Drive onto

merging switch

Figure 2.1: Different interactions on the NMS level of the RailCabs system.

2.2. THE DEVELOPMENT OF MECHATRONIC SYSTEMS 13

2.2 The development of mechatronic systems
Within the CRC 614, a development methodology for advanced mechatronic
systems was developed. This methodology first proposes a detailed develop-
ment process [GFDK08a, GFDK08b, GZD+08, GFDK09, ADG+09]. As already
explained in Chap. 1 (see Fig. 1.1, p. 3), the macro-structure of the development
process is based on the V-model of the VDI 2206 [VDI04]. In the first phase,
the conceptual design, experts from all disciplines collaborate to create a first
design of the system, called the principle solution. For describing this principle
solution, the development methodology of the CRC 614 furthermore proposes
an interdisciplinary design language [Fra06, GFDK08a, GFDK08b, GFDK09],
which is similar to UML [UML09] and SysML [Sys08, FMS09], but originates
from specific design methods in mechanical engineering that were developed by
Kallmeyer [Kal98, GEK01].

2.2.1 The interdisciplinary design language elaborated in the
CRC 614

The interdisciplinary design language of the CRC 614 offers engineers a number
of diagrams by which many interrelated aspects of a mechatronic system can be
described. Figure 2.2 shows an overview of these diagrams. The development
process of the CRC 614 proposes that, first, after clarifying the design task and
analyzing the environment of the system to be, the use cases of the system are
described. For this purpose, the interdisciplinary design language proposes a
template for describing use cases by informal text and sketches. Within the
CRC 614, a use case is also called application scenario, but since use case is the
established term in computer science, this term is used in this thesis instead.

Based on the use cases, the structure of the system and its environment as
well as the behavior of the system is specified in more detail. The structure of the
system is captured by active structure diagrams. Such a diagram describes the
elements of the system and their properties and relationships. Particular kinds
of relationships are the flow of information, material and energy between the
elements. The environment diagram is virtually the same kind of diagram, but
it describes the elements in the environment of the system. Here, in particular,
the forces and events influencing the system are captured.

The language furthermore specifies behavior diagrams. A special kind of
state machine diagrams and a special kind of activity diagrams are proposed
to describe the operating states of a system and processes in the system. The
behavior diagrams are however not limited to these two [GFDK09], and further
behavior diagrams may be added to this language in the future.

The language proposes further kinds of diagrams. The function hierarchy
can be used to organize the functions of the system in a hierarchical manner and
the requirements can be used to capture relevant properties of system elements
in a structured list. The shape diagram can be used to describe a first draft of the
three-dimensional structure of the system. The system of objectives is a diagram
that captures the system’s optimization objectives and their relationships, an
aspect that is especially important in self-optimizing systems.

14 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.2: Overview of the diagram kinds used during the conceptual design
of mechatronic systems (taken from [ADG+09])

There are many relationships among the different diagrams. System ele-
ments described in the active structure, for example, can be associated with
behavior diagrams, and actions in the behavior diagrams again refer to system
elements performing the actions. A modeling tool supporting this language,
called the Mechatronic Modeler, is currently under development within
the VireS project [GBRP10, GDN10].

2.2.2 Example: specifying two use cases in the RailCab system

In the following, let us regard two simple example use cases and the structural
and behavioral models that engineers may have created for these use cases. First,
Fig. 2.3 shows the informal description and a sketch of the use case Drive onto
track section as well as the active structure diagram and the activity diagram
created for it. This use case describes that a RailCab that approaches the end
of one track section must request the permission to enter the next track section.
The track section control responsible for the next track section must either
grant or refuse the permission to enter. Second, Fig. 2.4 shows the informal
description and the structure and behavior diagrams created for the use case
Drive onto merging switch. This use case specifies that a RailCab that approaches
a merging switch shall not be given the permission to enter a merging switch
too early, because this may block the switch for too long.

2.3. PROBLEM DESCRIPTION 15

The active structure diagrams created for these use cases are very similar.
They all specify the logical relationships between the RailCab, the RailCab’s
current track section control, and the next track section control resp. the control
of the merging switch. There are information flow connectors indicating the
information exchanged between the environment and system elements.

The activity diagram for the use case Drive onto track section shows how
the RailCab, after receiving the environment event approaching end of track
section sends a request to enter the next track section to the next track section
control. After that, the next track section control replies, either allowing the
RailCab to enter the next track section or not. Then the events occur of the
RailCab passing the point of the last safe break, the point of no return, until
it eventually enters the next track section. The system elements involved in
the activities resp. events are denoted at the top of the events and actions.
(This is of course a simplified use case. In practice, we would for example also
describe what the RailCab should do if it is not permitted to enter the next
track section.)

The activity diagram of the use case Drive onto merging switch starts with
the reply of the merging switch control to the RailCab. Here a time attribute
is added, setting a clock variable c to zero. After the reply of the merging
switch control, the RailCab passes the point of the last safe break, the point
of no return, and finally enters the next track section. The time attribute of
the latter event states that it must occur less than 5 seconds after the reply
of the merging switch control was sent. (Concepts for representing time in the
behavior diagrams of the interdisciplinary conceptual design language have not
been precisely defined. The use of clock variables here is an ad hoc extension of
the activity diagram to represent time.)

Note that the environment events in these use cases, for example
approaching end of track section, are not concrete signals from sensors of
the RailCab. That is because at this stage of the conceptual design, it is usually
not determined by which sensors and actuators the system will interact with its
environment. It is a later design choice whether the RailCab determines partic-
ular points on the track section for example via fixed markers on the track, or
whether it will calculate these points based on its velocity, the traveled distance
on the track section, its mass, etc.

2.3 Problem description
The diagrams in Fig. 2.3 and 2.4 intuitively represent the informally described
behavior in the use cases, but their meaning is not clear. For example, the
diagrams do not precisely answer the following questions:

What is the relationship between the behavior diagrams? The first
problem with the above diagrams is that the relationship between the
behavior diagrams is not clear. For example, if a RailCab approaches a
merging switch, should the system also behave as described in the use
case Drive onto track section? And if the behavior described in the use
case Drive onto track section applies, is the action entering of merging

16 CHAPTER 2. PROBLEM ANALYSIS

Pa
rt

 I

A Use Case
Drive onto next track section17/07/2010 AS 12

Links

Sketch

When the RailCab is driving on a track section, it is at
some point notified that it approaches the end of the
track section. When reaching this point, the RailCab must
send a request to enter the next track section to the
section control responsible for the next track section.
Then the section control must reply, stating whether
entering the track section is currently allowed or not.
The reply must be received before the RailCab reaches
the point of the last safe break. This point precedes the
point of no return, beyond which it cannot be guaranteed
that breaking will safely stop the RailCab before it enters
the next track section.

Description

RailCab

current track
section control

next track
section control

RailCab

Environment

active structure: Drive onto next track section

track section control
(current section)

track section control
(next section)

next

current

Events:
approaching end
of track section,
last safe break,

no return,
enter next track

section

Events:
request

permission to
enter track

section

Events:
entering the
track section
allowed (yes/

no)

system element

environment element

information flow

relationship

active structure notation

activities notation

event (trigger)

activity

control flow

time attribute

activities: Request permission to enter track section

request
permission to

enter track
sectionapproaching end

of track section

RailCab -> tsc-next tsc-next -> RailCab
Env. -> RailCab

entering the
track section

allowed (yes/no)

last safe break

Env. -> RailCab

no return

Env. -> RailCab

enter next track
section

Env. -> RailCab

Figure 2.3: The informal description, active structure diagram and activity
diagram for the use case Drive onto track section

2.3. PROBLEM DESCRIPTION 17

Pa
rt

 I

A Use Case
Drive onto merging switch17/07/2010 AS 13

Links

RailCab

current track
section control

merging switch
control

Sketch

Description
If the RailCab drives onto a merging switch, the reply of
the next section control, stating whether entering the
track section is allowed, must not be sent more than 5
seconds before entering the switch, because the RailCab
must not block the switch for too long.
When the RailCab is notified to be approaching the end
of the track section, it takes between 8 to 12 seconds
until it effectively enters the next track section.
Furthermore, when the RailCab is notified to be
approaching the end of the track section, it takes at least
5 seconds until it passes the point of the last safe break.

system element

environment element

information flow

relationship

active structure notation

activities notation

event (trigger)

activity

control flow

time attribute

information item(s)
RailCab

Environment

active structure: Drive onto merging switch

track section control
(current section)

merging switch
control

next

current

Events:
last safe break,

no return,
enter next track

section

Events:
entering the

merging
switch

allowed (yes/
no)

activities: Reply of switch control not too early

entering the
merging switch
allowed (yes/no)

msc -> RailCab

c := 0
last safe break

Env. -> RailCab

no return

Env. -> RailCab

enter next track
section

Env. -> RailCab

c < 5 sec.

Figure 2.4: The informal description, active structure diagram and activity
diagram for the use case Drive onto merging switch

18 CHAPTER 2. PROBLEM ANALYSIS

switch allowed the same as the action entering the track section
allowed? Even if the actions were called identically, it is not defined if
this implies a relationship between the diagrams. Apparently, the merging
switch control is a special kind of track section control and that should
also exhibit all the behavior specified for the track section control, but
this is not explicitly specified anywhere.

What can happen? What must happen? The second problem is that it
is not clear whether the above activities describe possible scenarios or a
behavior that must always happen. For example, it seems that a RailCab
must request the permission to enter the next track section whenever it
approaches the end of its current track section. However, not each event
seems to be strictly required. For example, is it required that the events
last break, no return, enter next track section must occur in this
order? It seems that for describing the behavior of use cases, concepts are
missing for describing whether a certain event or a sequence of events must
happen or not. Furthermore, if there is a required sequence of events, it
must be possible to describe when this sequence is required to occur, for
example after a certain event or sequence of events.

What is the behavior of the system’s environment? The third problem
is that it is not clear what happens in the environment of the system. For
example, the informal description of the use case Drive onto merging switch
contains information about time intervals between points that the RailCab
passes on the track section. This information is not contained in the
activity diagram, but it is important in order to consider this information
in order to determine whether the RailCab can fulfill the required time
constraints.

Not only are these diagrams imprecise. Depending on the interpretation of the
use cases, the requirements posed by the use cases may be inconsistent. Fig. 2.5
illustrates the system behavior and the assumed time intervals between the
environment events as they are informally described in the above use cases. It
is required that the switch control sends the reply entering merging switch
allowed (abbreviated enterAllowed) before the RailCab passes the point of the
last safe break (abbreviated lastBreak), but not more than 5 seconds before
the RailCab effectively enters the next track section (abbreviated enterNext).
If we do not assume any maximal time after which the RailCab will enter the
next track section, it would not be possible at all to ensure that the track section
control can adhere to the time requirements.

The informal description of the use case Drive onto merging switch formu-
lates assumptions about the time intervals between certain environment events.
These are illustrated at the bottom of Fig. 2.5. The event lastBreak is assumed
to occur at least 5 seconds after the RailCab is notified about approaching the
end of the track section (abbreviated endOfTS). The event enterNext is assumed
to occur 8 to 12 seconds after endOfTS.

With these assumed time intervals, it turns out that it is actually not always
possible for the system to adhere to the specified time constraints: The system
must assume that lastBreak occurs already 5 seconds after endOfTS; therefore,

2.4. EXISTING SCENARIO-BASED DESIGN TECHNIQUES 19

enterAllowed

reply ≤5 sec.
before entering

the switch

≥5 sec.
8-12 sec.

environment
assumptions

entering next track section (enterNext)

point of no return (noReturn)

last point for safe breaking (lastBreak)

approaching the end of the track section (endOfTS)

Figure 2.5: An illustration of the time constraints formulated in the “Drive
onto merging switch” use case.

it will be necessary for the track section control to send the reply enterAllowed
less than 5 seconds after endOfTS. But then, if it takes up to 12 seconds for the
event enterNext to occur after endOfTS occurred, more than 7 seconds may
elapse between enterAllowed and enterNext. This violates the requirement
that not more than 5 seconds must pass between enterAllowed and enterNext.
Therefore the specification is inconsistent, because no system will be able to
always satisfy the requirements. The inconsistency could be resolved by either
extending the maximal time from enterAllowed to enterNext to 8 seconds, or
by changing the environment assumptions.

In summary, the existing design methodology must be extended by an ade-
quate language for precisely specifying scenarios. Furthermore, it must be pos-
sible to automatically analyze the scenarios for inconsistencies. In the following,
let us briefly overview other existing scenario-based design approaches.

2.4 Existing scenario-based design techniques
In software engineering, scenario-based design techniques are commonly ap-
plied to master the increasing complexity of software systems. One of the first
languages to describe scenarios were Message Sequence Charts (MSCs), which
originated in the telecommunication domain [ITU96], and were later included as
sequence diagrams in UML [UML09]. An MSC describes a possible interaction
scenario between a set of objects in the regarded system. Possible scenarios are
also called existential scenarios in the following. The objects are represented
by vertical lines, called lifelines, and arrows represent the exchange of messages
between the objects. The vertical axis denotes the temporal order among the
exchanged messages.

To express the relationship between single scenarios, high-level MSCs (hM-
SCs) were introduced. hMSCs express that there is a certain order among single
MSCs or that certain MSCs represent alternative scenarios. There were soon
efforts to use MSCs and hMSCs for not only documentation purposes. Krüger

20 CHAPTER 2. PROBLEM ANALYSIS

for example presented a technique for creating state machines from alternative
scenarios [KGSB99] and other kinds of hMSCs [Krü00]. Uchitel et al. presented
a technique for translating alternative MSCs to labeled transition systems (LTS)
[UK01, UKM03]. Similar techniques were presented by Leue et al. [LMR98] and
Borderlau et al. [BCS00].

These approaches, however, did not consider the overlapping of scenar-
ios. Overlapping scenarios were for example considered by Koskimies et al.
[KSTM98] and by Maier and Zündorf [MZ03], who propose a technique for
synthesizing statecharts from overlapping scenarios. The scenarios in these ap-
proaches, however, were all considered to be existential scenarios and could not
express that something must or must not happen. Whittle and Schumann later
extended existential scenarios by annotating messages in the MSC with pre-
and post-conditions [WS00, WS02]. They show how conflicts arise when differ-
ent MSCs specify contradicting conditions after the same sequence of messages.
Such an approach, however, is only adequate if the engineers can provide enough
meaningful pre- and post-conditions during the early design. This is, however,
often not the case.

Within the SceBaSy approach, developed at the Software Engineering
Group in Paderborn [Gie03, GB04, GT05, GKB05, GHHK06, HGH+09], UML
sequence diagrams were extended with time annotations. Furthermore, manda-
tory sequences of events could be specified in the sequence diagrams. To express
the relationships among the sequence diagrams, the lifelines must be annotated
with states that the represented object is in after sending or receiving a certain
message. Inconsistencies can occur when contradicting timing requirements are
specified or when there are different messages in two sequence diagrams following
the same state in mandatory sequences. If there are no contradictions, Real-
Time Statecharts [GB03, BG03] for the interacting objects can be synthesized
from the scenarios that realize the specified interaction behavior. The disad-
vantage of this approach is, however, that it requires the engineer to define the
states of the interacting objects, which is, similar to the pre- and post-conditions
above, information that is typically not available in the early design.

Because state annotations are difficult to provide, Damas et al. propose to
specify use cases by a combination of existential and negative (forbidden) sce-
narios and properties expressed in temporal logic [DLDvL05, DLvL06]. They
present an interactive approach where an algorithm generates questions when
uncertainties or conflicts are detected in the scenarios. After the engineer an-
swers these questions, a state-based implementation of the specified behavior
is synthesized. It may be, nevertheless, that inconsistencies remain, espe-
cially if the user answers the questions inconsistently. Similarly, Uchitel et
al. [UBC07, UBC09, SUB08] propose to specify interactions by a combination
of existential scenarios and safety properties temporal logic. They also propose
a technique for synthesizing a state-based implementation from the interaction
specification. In this process, inconsistencies manifest in the form of deadlocks,
which can be found in a subsequent analysis step. The disadvantage with these
approaches is, however, that the proposed languages do not distinguish between
events that may happen and events that must happen.

2.4. EXISTING SCENARIO-BASED DESIGN TECHNIQUES 21

Addressing this problem, Damm and Harel extended MSCs to Live Sequence
Charts (LSCs). In LSCs, existential scenarios can be described as well as scenar-
ios that formulate constraints over all interactions in the system. Furthermore,
it is possible to describe that, after a particular sequence of events, certain events
can, must or must not occur. Techniques have been proposed to find inconsis-
tencies in LSC specifications and for deriving state-based implementations from
an LSC specification. [HK99, HK02, BS03, BSL04, BH05, KPP09, KS09]. Very
useful, furthermore, is the play-out algorithm, developed by Harel and Marelly
[HM02a, HM03]. This algorithm can execute certain kinds of LSCs, permitting
the early simulation of the specified behavior.

Recently, Harel and Maoz proposed Modal Sequence Diagrams (MSDs)
[HM08], a formal interpretation of UML sequence diagrams based on the con-
cepts of LSCs. MSDs simplify some of the LSC language constructs. Due to the
language features as well as the existing analysis techniques, MSDs are the most
adequate basis for the development of a new technique for the scenario-based de-
sign of mechatronic systems. However, thus far no concepts have been presented
for specifying environment assumptions with MSDs/LSCs and the existing syn-
thesis and play-out techniques are not sufficient for finding inconsistencies in
MSD/LSC specifications with real-time constraints and environment assump-
tions. (A more detailed discussion on the related work follows in Chap. 8.)

CHAPTER 3
Foundations

This chapter introduces the fundamental concepts, languages and tools used in
this thesis. Modal Sequence Diagrams (MSDs) are introduced in in Sect. 3.1.
Next, Sect. 3.2 introduces Timed Game Automata (TGA) and the game solving
algorithm of Uppaal Tiga, which forms the basis of the synthesis technique
elaborated in this thesis. Last, Sect. 3.3 explains the basics of Triple Graph
Grammars (TGGs) and TGG-based model transformations.

3.1 Modal Sequence Diagrams
This section introduces Modal Sequence Diagrams (MSDs), the structure of
an MSD specification, and its semantics. It also explains different notions of
consistency and the principles of the play-out algorithm. The definitions in this
section are mainly based on the definitions of LSCs by Harel and Marelly [HM03]
and the definitions of MSDs by Harel and Maoz [HM08, Mao09]. However,
some definitions are also modifications or extensions to the original definitions.
Within the scope of this thesis, especially a variant of the play-out algorithm
was implemented in the ScenarioTools tool suite; this algorithm has some
differences to the original algorithm [HM03].

3.1.1 MSDs and the object system

A basic MSD specification consists of a set of MSDs where each lifeline repre-
sents exactly one object in a fixed object system [HM03]. The objects in the
system can send and receive messages. The middle of Figure 3.1 shows an ex-
ample of an object system. It consists of the objects env:Environment, rc:RailCab
and tsc:TrackSectionControl. Two MSDs RequestEnterAtEndOfTrackSection and
ReplyBeforeLastSafeBreak that make up the MSD specification are displayed at
the bottom. Which lifeline represents which object is indicated by the label of
the lifeline, and, in this figure, is additionally indicated by the dashed lines.

23

24 CHAPTER 3. FOUNDATIONS

lastBreak

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

ReplyBeforeLastSafeBreak

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

RequestEnterAtEndOfTrackSection

next:Track
SectionControl

rc:RailCabenv:Environment

Environment
RailCab

endOfTS()
lastBreak()
noReturn()
enterNext()
enterAllowed(
 allowed:Boolean)

TrackSectionControl

requestEnter()

DriveOntoTrackSection

«instance-of» «instance-of» «instance-of»

Lifeline

MSD

Message

system

system object

class
package

operationparameter

environment object

Figure 3.1: The object system and MSDs with concrete lifelines

An MSD specification subdivides the objects in the system into environment
objects and system objects. Environment objects are displayed as cloud-like
shapes; system objects are displayed as rectangles. The set of system objects is
also called the system, the set of environment object is also called the environ-
ment. The objects in the system are instances of classes that are contained in a
package. The top of Fig. 3.1 shows the package DriveOntoTrackSection with the
classes Environment, RailCab and TrackSectionControl. A class can have opera-
tions that specify which messages an object that is an instance of that class can
receive. A message is identified by the sending object, the receiving object and
an operation defined by the class of the receiving object. An operation has a list
of parameters that are typed over data types, which may be Boolean, Integer,
or other data types. A message sent between two objects carries a list of values
for each parameter of the operation that the message refers to. In the figure,

3.1. MODAL SEQUENCE DIAGRAMS 25

the class RailCab has a number of operations. The operation enterAllowed, for
example, has the Boolean parameter allowed.

Intuitively, the MSDs shown above express the following requirements. The
MSD RequestEnterAtEndOfTrackSection says that if the RailCab receives the
message endOfTS from the environment, the RailCab must send the message
requestEnter to the next track section control. The track section control must
then send the message enterAllowed back to the RailCab. The parameter of
the message is not specified in this case. The MSD ReplyBeforeLastSafeBreak
says that if the RailCab sends the message requestEnter to the track section
control, the track section control must send the message enterAllowed back
to the RailCab. Again, the parameter value for the message is not specified.
After the RailCab receives this message, the environment can send the message
lastBreak to the RailCab. This message must, however, not occur before
the message enterAllowed was sent. This behavior is essentially what was
informally described in the use case Drive onto track section shown in Fig. 2.3.
The constructs in the MSDs and their semantics are explained in more detail in
the following.

3.1.2 Events, messages, and runs

Whenever an object in the object system sends or receives a message, this is
called an event. For simplicity, only synchronous messages are regarded in
the scope of this thesis, where the sending and receiving of a message happen
synchronously. The sending and receiving of a message are therefore also re-
garded as one single event. Messages that are sent from environment objects are
called environment messages or environment events, messages sent from system
objects are called system messages or system events. An infinite sequence of
events in the object system, in other words, an infinite sequence of message
interchanges between the objects, is called a run of the object system. Here we
regard infinite runs, because we consider systems in which the system objects
react to sequences of environment events with arbitrary lengths, systems that
may run “forever”.

3.1.3 Event unification

A message in an MSD, for clarity also called a diagram message, is depicted as
an arrow between two lifelines. A diagram message represents an event in the
object system. More specifically, a message in an MSD represents an event in the
object system if the sending lifeline in the MSD represents the sending object,
if the receiving lifeline in the MSD represents the receiving object, and if the
message in the diagram refers to the same operation as the message sent in the
object system. If that is the case, a diagram message is also said to be unifiable
with an event occurring in the object system. It will be explained shortly how the
concept of event unification is extended in the case of parameterized messages.

26 CHAPTER 3. FOUNDATIONS

3.1.4 Existential and universal MSDs, hot and cold messages

An MSD describes a partial order among events in the object system. There
are two kinds of MSDs. First, there are existential MSDs, which describe an
order of events that must be possible to occur in at least one run of the object
system. Second, there are the universal MSDs, which formulate requirements
for all possible runs of the object system. Within the scope of this thesis, only
universal MSDs are regarded.

The messages in a universal MSD have a temperature and an execution kind.
The temperature of a message can be either hot or cold. Hot messages are
colored red; cold messages are represented by blue arrows. The execution kind
of a message can be either executed or monitored. Executed messages have a
solid line; monitored messages have a dashed line. The first message in an MSD
is always cold and monitored. Each universal MSD accepts a set of runs of an
object system. What the temperature and the execution kind mean and when
a run is accepted by an MSD is explained in the following.

3.1.5 Active MSDs, the cut, and hot and cold violations

Messages that have no preceding message in an MSD are called a minimal event.
The MSDs regarded in this thesis are required to only have one minimal event,
which is therefore also called the first event. If in a run in the object system an
event occurs which is unifiable with this first event, an active copy of the MSD,
or active MSD in short, is created. On the occurrence of further events in the
run that are unifiable with the subsequent messages, the active MSD progresses.

To capture this progress, the passed locations on each lifeline are marked.
Locations are the points on each lifeline where the arrows of the diagram mes-
sages are attached. The set of already passed locations in the active MSD copy
is called the current cut of the active MSD. If the cut reaches the end of the
diagram, the active copy of the MSD is discarded.

If the cut of an active MSD copy is immediately before a message on the
sending and receiving lifeline, the message is enabled. If one of the enabled
messages in an active MSD is hot, the cut is hot. If all enabled messages are
cold, the cut is cold. Similarly, if one of the enabled messages in an active MSD
is executed, the cut is executed. If all enabled messages are monitored, the cut is
monitored. Enabled executed messages are also called active messages or active
events.

If the active MSD copy is in a hot cut, it is not allowed for events to occur
in the object system which are unifiable with a message in the MSD that is
not currently enabled. If such an event occurs, this is a safety violation or
hot violation of the MSD. An MSD does not accept any run in which a safety
violations occurs. If the active MSD copy is in a cold cut and an event occurs
that is unifiable with a message in the MSD that is not currently enabled, this
is a cold violation of the MSD. Cold violations are allowed to occur, but if a
cold violation occurs, the active copy of the MSD is discarded.

If the cut is executed, but never progresses, this is also called a liveness
violation of the MSD. An MSD does not accept any run in which a liveness

3.1. MODAL SEQUENCE DIAGRAMS 27

violation occurs. If an active MSD is in a monitored cut, by contrast, it may
remain in this cut forever.

The semantics of the message temperature and the execution kind in this
thesis differ slightly from the MSD semantics defined by Harel and Maoz [HM08].
Originally, the semantics of a hot message is also that, if enabled, it must be
eventually progressed, i.e., if a hot message is enabled, a safety and a liveness
violation may occur. In this thesis, however, the above semantics of the temper-
ature and the execution kind is defined as described above in order to be able
to differentiate safety from liveness requirements. A hot and executed message
in the above semantics has the same meaning as a hot message in the original
semantics.

3.1.6 The iterative interpretation of MSDs

If the first message or the first messages in an MSD occur repeatedly later in
the MSD, it is possible for multiple active copies of the MSD to be created.
There are, however, approaches where such a behavior is explicitly excluded
[HK02, BS03, BSL04, BH05, KTWW06] and a new active copy of an MSD
is only created if currently no active copy of that MSD exists. This is called
the iterative interpretation. If multiple copies are allowed, as explained above,
this is called the invariant interpretation. The iterative semantics allows for an
easier analysis of the MSDs and the limitation that this interpretation implies
is only relevant in a few cases. The synthesis technique that was elaborated in
the scope of this thesis is based in the iterative interpretation of MSDs, which
will be explained in the following in more detail.

In the iterative interpretation of MSDs, the runs that are accepted by each
universal MSD can be represented by a Büchi automaton [Büc66]. A Büchi
automaton is a finite state automaton that accepts infinite words. The states in
a Büchi automaton are partitioned in accepting states, represented by a double
circle, and rejecting states, represented by a simple circle. Furthermore, a Büchi
automaton has a start state, represented by an incoming arrow. Between the
states, a Büchi automaton has transitions, labeled by symbols of an alphabet.
A Büchi automaton accepts an infinite word, which is an infinite sequence of
symbols from the alphabet, if there exists a sequence of transitions starting
from the start state and visiting accepting states infinitely often, such that the
sequence of transitions corresponds to the sequence of symbols in the given
infinite word. The alphabet in the following will be the set of possible events in
the object system. A Büchi automaton for a universal MSD is constructed as
follows, inspired by the automata construction proposed by Bontemps [BH02,
BS03] and Harel et al. [HM08].

Consider the MSD in Fig. 3.2. This MSD is a variant of the MSD Request-
EnterAtEndOfTrackSection of Fig. 3.1. In this MSD, the message enterAllowed
is hot and monitored and, additionally, the cold monitored message lastBreak
is appended in this MSD. The dashed horizontal lines show the different states
that an MSD can be in according to the iterative semantics. The line labeled
s0 represents the state where the MSD is inactive, the lines s1, s2, and s3
represent the different reachable cuts when the MSD is active. The state s0 is

28 CHAPTER 3. FOUNDATIONS

also called the initial cut of the MSD. The initial cut and all reachable cuts are
called the legal cuts of an MSD.

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

RequestEnterAtEndOfTrackSection

lastBreak

s0
s1

s2

s3

Figure 3.2: An extended version of the MSD RequestEnterAtEndOfTrackSection

A Büchi automaton for a universal MSD consists of one state per legal cut
in the MSD and a rejecting state, r. The states representing legal cuts are also
called cut states. The state r represents the situation where a safety violation
occurred in the MSD. The state representing the initial cut is the start state of
the Büchi automaton. The state representing the initial cut and each state that
represents a monitored cut is an accepting state. Figure 3.3 shows the Büchi
automaton created for the MSD RequestEnterAtEndOfTrackSection in Fig. 3.2.
It consists of the states s0, s1, s2, s3, and r. Since the state s0 represents the
initial cut, and the states s2 and s3 represent monitored cuts, these states are
accepting states.

s1

s0

s2

r

Σ \ {endOfTS}

endOfTS

requestEnter

enterAllowed

Σ

M \ {requestEnter}

Σ \ M

Σ \ M

M \ {enterAllowed}

s3

Σ \ M

M \ {lastBreak,
 endOfTS}lastBreak

endOfTS

“cold violation
by first event”

s3

s2

Figure 3.3: The Büchi automation corresponding to the iterative interpretation
of the universal MSD RequestEnterAtEndOfTrackSection in Fig. 3.2.

3.1. MODAL SEQUENCE DIAGRAMS 29

Between these states, transitions are created as follows. First, transitions
are created from each state that represents a legal cut to each following legal
cut. These transitions are labeled with the events that progress the (active)
MSD from the cut represented by the source state to the cut represented by the
target state. Figure 3.3 shows the transition labeled by the event entOfTS from
s0 to s1, the transition labeled by the event requestEnter from s1 to s2, and
the transition labeled by the event enterAllowed from s2 to s3. Additionally,
from states that represent cuts without a following cut, transitions are created
back to the state representing the initial cut. These transitions are labeled with
the events that terminate the MSD in the cut represented by the source state.
In Fig. 3.3, this is the transition labeled with the event lastBreak from state
s3 to state s0.

Second, each state in the Büchi automaton has a self-transition. These self-
transitions are labeled with sets of events. The self-transition on r is labeled
with all events that may occur in the object system. This set is called Σ in
the following. Intuitively, this means that, if a safety violation has occurred,
the automation will loop in this rejecting state forever, thus rejecting the run.
The self-transition on the state representing the initial cut is labeled with the
events Σ without the first event of the MSD, which is endOfTS in the above
case. Intuitively, this means that the MSD, when inactive, ignores all events
except the first event; in this state the automaton would for example accept
any sequence of events in which the first event of the MSD never occurs. The
remaining states, which represent the different reachable cuts of the active MSD,
have a self-transition for all events Σ without the events occurring in the MSD.
The latter set is called M . Intuitively, this means that the active MSD ignores
all events that are not occurring in the MSD. An active MSD remaining in a
monitored cut forever or an MSD that is always inactive accepts the run.

Last, there are transitions in the automaton which represent safety violations
and cold violations. Each state that represents a hot cut has a transition to the
state r. This transition is labeled with all the events that are appearing in
the MSD without the events that are enabled in this cut. In the example,
the cuts s1 and s2 are hot and transitions labeled M ∖ {requestEnter} and
M ∖ {enterAllowed}, respectively, lead from these states to r.

Each state that represents a cold cut has two transitions which represent
two different cases of cold violations. The first case is the cold violation by
the first event in the MSD. This transition leads to the state that represents
the first reachable cut, s1 in the above case, and is labeled by the first event.
Intuitively, this transition represents the behavior where the active copy of the
MSD is discarded by a cold violation, but immediately another active copy of the
MSD is created. This transition is omitted only in cut states where a message
is enabled that represents the same event as the first message in the diagram.
(The events may again be represented by another message later in the MSD.)

The second transition represents the case where the cold violation is caused
by an event that is represented by a message in the MSD, but that is not
represented by the first message in the MSD. This transition leads to the state
representing the initial cut and is labeled by the events that are not currently
enabled without the first event. The transition in the above example from s3

30 CHAPTER 3. FOUNDATIONS

to s0, labeled with the events M ∖ {lastBreak,endOfTS}, represents the cold
violation by an event that is not the first event in the MSD.

3.1.7 Satisfying an MSD specification

For the set of system objects, we can specify a controller that determines which
message and object sends after a certain sequence of events in the object sys-
tem. This controller can be non-deterministic. The environment objects are
uncontrollable, or, in other words, the environment objects could be controlled
by any possible controller. If there is no concrete controller for the environment
objects, the system is also called an open system [HP85]. If there is a controller
for the environment objects, the composition of the environment controller and
the system controller forms a controller for the whole object system. Such a
system is also called a closed system.

A closed system satisfies an MSD specification, consisting of a set of uni-
versal MSDs, if all runs of the system are accepted by all universal MSDs in
the specification. An open system satisfies an MSD specification if the closed
system formed for all possible controller for the environment satisfies the MSD
specification. A controller of an open system that satisfies an MSD specifica-
tion is also called an admissible controller or admissible implementation of the
specification

We assume a setting where the sending of messages takes no time and the
system is able to send any number of messages before the next environment
event occurs. This assumption is also called the synchrony hypothesis [BB91].
However, we do not desire any system that at some point reacts with an infinite
sequence of system events. Therefore, as also stated by Kugler et al. [KPP09],
for a system to satisfy an MSD specification, it is additionally required that
there must not be any run with an infinite sequence of system events. In other
words, the system must “listen” to environment events infinitely often.

3.1.8 The play-out algorithm

The play-out algorithm is an operational interpretation for universal LSCs and
MSDs, originally defined by Harel and Marelly for LSCs [HM02a, HM03]. The
idea is that, instead of implementing a controller for the system objects, we
just interpret the MSDs/LSCs, which tell us which messages the system objects
can, must, or must not send after a certain sequence of events. The play-out of
universal MSDs works as follows.

First, the system does nothing and waits for environment events to occur.
Then, just as described in Sect. 3.1.5, active copies of MSDs are created if an
environment event is unifiable with the first message in the respective MSDs.
Next, if there are active MSDs that reside in executed cuts, there is a set of
active (enabled and executed) events postulated by these active MSDs. The
play-out algorithm then non-deterministically chooses to execute one of these
events, i.e., orders the respective object to send the respective message, if this
does not lead to a safety violation of any other active MSD. This progresses the
cut of some active MSDs and may cause the activation of further MSDs, which

3.1. MODAL SEQUENCE DIAGRAMS 31

then again postulate a set of active events from which the play-out algorithm
chooses the next to execute. This process is repeated until there is no active
MSD with an executed cut left. Then the algorithm again listens for the next
environment event. The sending of a message is also called a step in the play-
out algorithm. This sequence of steps until the algorithm listens for the next
environment event is also called a super-step.

The play-out algorithm can of course only order system objects to send
messages. Typically, environment messages will not be marked as executed.
However, if there is an executed environment message that is enabled at some
point, the system is at the environment’s mercy to eventually send an according
message. Otherwise it will not be able to satisfy the MSD specification. Only if
it is a cold executed message, the system may be able to cause a cold violation
of the respective active MSD and avoid to stay in an executed cut forever.

It may happen that the play-out algorithm runs into a situation where there
is a set of active events, but all of these events are forbidden to occur, because
they would lead to a safety violation of another MSD. Then the play-out algo-
rithm cannot process. This situation is also called a hot violation. Sometimes,
if a hot violation occurs, it could have been avoided if the play-out algorithm
had chosen to execute another message at some point in the past, or, in other
words, if it would have “looked ahead” earlier to see which sequence of steps
will avoid a hot violation. The play-out algorithm can, however, not look ahead
and thus may easily run into hot violations.

To alleviate this problem, Harel et al. have developed an improved play-out
algorithm, called smart play-out [HKMP02a]. Smart play-out can look ahead
one super-step and can thus avoid some avoidable violations. It can, however,
not avoid all violations, because the decisions of the algorithm in one super-step
can still make a hot violation in a future super-step inevitable.

Figure 3.4 illustrates different executions of a play-out algorithm that can
lead to a hot violation (red X) or a valid super-step (green check symbol). The
clouds on the left with the dashed arrows represent the environment events that
occur and the wiggly black lines are alternative super-steps that the play-out
algorithm can take in response to an environment event. The black dot at the
top represents the initial state of the play-out.

super-step

Figure 3.4: An illustration of valid and violating super-steps.

32 CHAPTER 3. FOUNDATIONS

Even though there is one sequence of super-steps on the right by which the
play-out algorithm could avoid hot violations, the smart play-out algorithm may
choose to execute another valid super-step on the left and then inevitably run
into a hot violation in the third super-step.

3.1.9 Consistency, consistent executability, and realizsability

An MSD specification is consistent if there exists an admissible controller for the
MSD specification, or, in other words, if there exists a controller for the system
that, if composed with any possible controller for the environment, satisfies the
MSD specification [BH05]. A consistent specification is also said to be realizable.

A specification is consistently executable if the play-out algorithm could sat-
isfy the MSD specification. Then we also say that there exists an admissible
strategy for the play-out algorithm. Kugler et al. [KPP09] also call this non-
violating execution. There are two differences between an admissible strategy of
the play-out algorithm and a general controller. First, the play-out algorithm
can only execute active events, i.e., it can only send messages if they are rep-
resented by an executed message that is currently enabled in an active MSD.
Second, the play-out algorithm will always terminate its current super-step be-
fore listening to the next environment event.

Note that consistent executability is a stronger property than consistency.
Even if there exists no execution of the play-out algorithm that satisfies the
specification, the specification may still be consistent. For example, if a play-
out algorithm cannot avoid a hot violation from some point on, it may be
possible to modify the play-out algorithm so that it can at some point execute
an event that is not currently active. By this modification, it may be possible
for the play-out algorithm to induce a cold violation in an active MSD that
would otherwise lead to the occurrence of a hot violation later on. The same
is true if the play-out algorithm would be modified to not necessarily terminate
every super-step before the next environment event occurs. In rare cases it may
be possible that this way an environment event leads to a cold violation of an
MSD that would be otherwise accountable for a hot violation.

Due to the limitations of play-out and smart play-out, which cannot always
avoid avoidable violation, it is not possible to use these techniques for determin-
ing whether an MSD specification is consistent or consistently executable. For
this purpose, a synthesis technique is elaborated in this thesis (see Chap. 4).
This technique is able to decide both the consistency and consistent executabil-
ity of an MSD specification.

Typically, the property that we want to show for an MSD specification is
consistent executability: an engineer wants to know “does there exist a system
that—by doing what it should or must do—and by not doing anything more—
can satisfy the requirements?” Sometimes, however, an engineer is rather in-
terested in the consistency of the MSD specification: then an engineer wants
to know “does there exist a system that by doing everything it can do—even
doing what we did not explicitly order it to do—including even doing nothing—
can satisfy the requirements?” An MSD specification that is not consistently
executable can become consistently executable by adding further MSDs. By

3.1. MODAL SEQUENCE DIAGRAMS 33

contrast, an MSD specification that is not consistent cannot become consistent
or consistently executable by adding further MSDs. Therefore, the engineer may
want to know whether an MSD specification is consistent if he wants to know
whether an existing specification is a consistent basis on which to add further
MSDs.

3.1.10 Parameterized messages

Some of the MSDs introduced previously contain messages with parameter (see
for example the message enterAllowed(isAllowed) in the MSD RequestEnter-
AtEndOfTrackSection in Fig. 3.1). A message in the diagram must either provide
concrete values for the parameters of the operation that the diagram message
refers to, or it must specify variables for the parameter, or a combination of
variables and literal values. The variables have a type that must be equal to the
type of the parameter. In an active MSD, a variable can be unbound and it can
become bound to a value of that type as explained shortly. These variable are
only visible within the scope of an active MSD; if the active MSD is terminated,
the variable is undefined. These variables are also called diagram variables.

In Sect. 3.1.3, it was defined that a diagram message is unifiable with an
event in the object system if the sending and receiving objects of the event
are represented by the sending and receiving lifeline of the diagram message,
and the event in the object system and the diagram message refer to the same
operation. For parameterized messages, this concept must be extended. If an
event and a diagram message are unifiable in the above sense, but the message
is parameterized, we say that they are message unifiable, but they are not yet
necessarily unifiable. In the parameterized case, the diagram message must
furthermore, for each parameter of the message, either specify the same literal
value, a variable bound to the same value, or an unbound variable. If that is
the case, the diagram message is also said to be parameter unifiable with the
event in the object system. A parameterized diagram message is only unifiable
with an event in the object system if it is both message and parameter unifiable
to that event.

The semantics of parameterized messages in MSDs is the following. If a
parameterized message is enabled, and a message occurs in the object system
that is unifiable with the enabled diagram message, the cut progresses beyond
this diagram message. If, however, an event occurs that is message unifiable
with an enabled message or another message in the MSD, but not unifiable, i.e.,
message and parameter unifiable, with an enabled event, this is a violation of
the diagram. As before, it is a forbidden safety violation if the cut is hot, and
it is an admissible cold violation if the cut is cold.

In the process of unifying an event in the object system with a diagram
message, all unbound variables are bound to the values carried by the event in
the object system.

If during play-out a parameterized message is active where no concrete
values for the parameters are specified, the play-out algorithm can non-
deterministically choose values for these parameters. The chosen values must,
however, not lead to a safety violation in any active MSD. More precisely, if

34 CHAPTER 3. FOUNDATIONS

there are other hot messages enabled that are message unifiable with the ex-
ecuted message, the values must be chosen such that the executed message is
also parameter unifiable with these enabled messages. If there exists no such
assignment of message parameters, it is a hot violation.

3.1.11 Object properties and side-effects

Classes can define properties that have a name and a certain data type, like
Integer, Boolean, or others. Instances of these classes carry concrete values for
these properties. These property values can be read in MSDs and an MSD can
specify how such properties can or must be modified.

Reading object properties

Consider a scenario that requires that the request of a RailCab to enter the
next track section must be refused by the track section control if a hazard has
occurred on the next track section. In other words, the track section control
must answer with enterAllowed(false) when the RailCab sends the message
requestEnter, but a hazard has occurred on the next track section. Let us
assume that whether a hazard has occurred on a track section or not (or has
been resolved again) is stored in the property hazardOccurred of the track section
control. In the MSD, we can then specify a value for a message parameter. For
this purpose, we use OCL expressions [OCL10] in the scope of this thesis. In
these expressions, diagram variables can be used, but also the lifeline names can
be used as variables. These variables, called lifeline variables, are bound to the
object represented by the lifeline. To specify message parameters, expressions
can be used that evaluate to a value that has the same type as the specified
parameter. Figure 3.5 shows the MSD EnterDeniedWhenHazardOccurred where
the above requirement is formalized. Here the expression next.hazardOccurred
is specified as the parameter for the message enterAllowed. This expression
evaluates to the value of hazardOccurred property of the object represented by
the next lifeline.

In such a case, events in the object system are only unifiable with this
diagram message if the value of the parameter equals the evaluation of the
expression in the diagram. In this example, it means that if the RailCab requests
the permission to enter the next track section, and the property hazardOccurred
is set to true, the track section control must not allow the RailCab to enter. If
hazardOccurred is set to false, the track section control must allow the RailCab
to enter.

Side-effects

Instead of just reading object properties, we would also like to specify that
certain values should or must be assigned to object properties. This can be
done by side-effects of messages. Harel and Marelly define that a parameterized
message (with one parameter) can be associated with the property defined for
the receiving object. Upon an occurrence of that message, the parameter value

3.1. MODAL SEQUENCE DIAGRAMS 35

rc:RailCab next:TrackSectionControl

requestEnter

EnterDeniedWhenHazardOccurred

enterAllowed(not next.hazarOcccurred)

Figure 3.5: A message parameter specified by an expression over an object
property

carried by the message occurrence is assigned to the object’s property. [HM03,
Sect. 5.6].

Within this thesis, the convention is used that if a class defines a property
and also defines an operation set<PropertyName>(newValue:<PropertyType>),
events in the system that are typed by this operation assign the carried parame-
ter value to the according property of the receiving object. By referring to these
messages, we can then specify in the MSDs how the object properties can or
must be modified. Figure 3.6 shows an example: if the RailCab detects an ob-
stacle, it must then set the attribute hazardOccurred of the current track section
control to true. This convention is also implemented in the ScenarioTools
play-out algorithm.

setHazardOccurred(true)

env:Environment rc:RailCab current:TrackSectionControl

obstacleDetected

ReportHazardOnObstacleDetection

Figure 3.6: An example for a message with a side-effect on the receiving object

3.1.12 Assignments and conditions

An MSD may also contain assignments and conditions, which are displayed
as boxes or hexagons, respectively, that can span one or multiple lifelines in
the MSD. By conditions, it can be specified if and when the cut of an MSD
progresses. Assignments can be used to modify diagram variables.

Conditions

Conditions have a condition expression and a temperature. Hot conditions are
displayed as hexagons with a solid red border. Cold conditions are displayed
as hexagons with a dashed blue border. The condition expression is displayed
inside the hexagon. Where a condition spans lifelines, these lifelines also have
locations and a condition is enabled if the cut is immediately before the condi-
tion’s locations on all lifelines that the condition spans. Similar to the parameter

36 CHAPTER 3. FOUNDATIONS

expressions above, a condition expression can be an OCL expression that may
refer to diagram and lifeline variables. In the case of a condition, the expression
must evaluate to a Boolean value.

The semantics of a cold condition is that if it is enabled, it is immediately
evaluated, before another event occurs in the object system. If the expression
evaluates to false, this is a cold violation of the diagram. If it evaluates to true,
the cut of the active MSD progresses.

The expression of a hot condition is also evaluated immediately and, if it
evaluates to true, the cut of the active MSD progresses. But, if it evaluates to
false, the cut cannot progress. As soon as the expression can be evaluated to
true, the cut progresses, but if that is never the case, the cut remains in front of
the hot condition forever. This is then a liveness violation of the MSD, i.e., the
MSD rejects runs where a hot condition is enabled, but the cut never progresses.

Assignments

Similar to a condition, an assignment has an assignment expression and can
cover one or multiple lifelines. Where the assignment covers a lifeline, the lifeline
also has locations, and the assignment is enabled if the cut is immediately before
the assignment on all lifelines that it covers. The assignment expressions are of
the form <diagramVar> = <expr>, where <diagramVar> is a diagram variable
and <expr> is the value expression. The value expression is an OCL expression
that may refer to diagram and lifeline variables and evaluates to a value of the
same type as the diagram variable.

If an assignment is enabled, the assignment expression is immediately ex-
ecuted, i.e., the diagram variable is assigned the value that results from the
evaluation of the value expression, before any other event in the object system
occurs.

The left of Fig. 3.7 shows an example of an MSD that contains an assign-
ment and a cold condition. After an occurrence of the event requestEnter,
the value of the property hazardOccurred of the object represented by the next
lifeline is assigned to the diagram variable hazardOcc. Subsequently, this dia-
gram variable is used in a cold condition. If hazardOcc is true, the cut in the
active diagram progresses and eventually an enterAllowed must occur with the
isAllowed parameter set to false. If hazardOcc is false, this is a cold violation
and the diagram is discarded. To the right, an MSD is shown that specifies the
same behavior, but where the cold condition directly refers to the property of
the object represented by the lifeline next.

3.1.13 Visible and Hidden events

Executing an assignment and progressing beyond a condition has no effect that
is visible within the object system. Remember that diagram variables are only
visible within an active MSD. Therefore, executing an assignment and progress-
ing beyond a condition is also called a hidden event. By contrast, the sending
of a message in the object system is visible in the object system and is therefore
also called a visible event.

3.1. MODAL SEQUENCE DIAGRAMS 37

rc:RailCab next:TrackSectionControl

requestEnter

EnterDeniedWhenHazardOccurred

hazardOcc =
next.hazardOccurred

hazardOcc

enterAllowed(false)

rc:RailCab next:TrackSectionControl

requestEnter

EnterDeniedWhenHazardOccurred

next.hazardOccurred

enterAllowed(false)

Figure 3.7: Simple examples of assignments and conditions in MSDs.

3.1.14 Timed MSD specifications

Time is an important aspect in mechatronic systems, where software controls
physical processes. The use case Drive onto merging switch (see Fig. 2.4), for
example, formulates time requirements in the RailCab system.

The notion of time was introduced to LSCs previously by Klose and Wittke
[KW01]. Harel and Marelly similarly defined a discrete time concept for LSCs
[HM02b, HM03]. Plock et al. introduced a real-time model to LSCs [PGZ05]
where the passage of time is represented by a global real-valued clock variable.
Assignments can assign the current value of that clock to time stamp variables
and constraints can be formulated over the clock and time stamp variables.
Larsen et al. [LLNP10] use multiple clock variables in LSCs that represent the
passage of time. The time model used in this thesis is similar to the one of
Larsen et al.

To represent time, clock variables are used in the MSDs. Clock variables are
real-valued diagram variables that synchronously and monotonically increase in
value over time. Clock variables can be reset to integer values in assignments,
which we then call clock resets. We can refer to clock variables in certain kinds
of conditions that we call time conditions. In time conditions, expressions can
be of the form x1 & expr where x1 is a clock variable, expr is an expression
without any clock variable, evaluating to an integer value, and & is an operator
<,≤,>,≥.

Just as with regular conditions, enabled time conditions are evaluated im-
mediately and the cut immediately progresses beyond the condition if the ex-
pression evaluates to true. If the expression of a cold time condition evaluates
to false, this is a cold violation. If the expression of a hot time condition evalu-
ates to false, the cut cannot progress. It progresses immediately as soon as the
expression evaluates to true, but it is a liveness violation of the MSD if that is
never the case. Hot time conditions that specify a lower time bound (& ∈ {>,≥})
are also called minimal delays. Hot time conditions that specify an upper time
bound (& ∈ {<,≤}) are also called maximal delays.

Figure 3.8 shows the MSD ReplyOfSwitchControlNotTooEarly, which formal-
izes the requirement formulated in the use case Drive onto merging switch. The
requirement says (see Fig. 2.4) that the reply enterAllowed of a merging switch
control to the request to enter a merging switch must not be sent more than
five seconds before entering the switch (enterNext). In the MSD, this time

38 CHAPTER 3. FOUNDATIONS

constraint is described by the help of the clock variable c. After the event
enterAllowed occurred, this clock variable is immediately reset to zero. Clock
resets are displayed as boxes, like assignments, but with an hour glass symbol
on the upper-right corner. After the message enterNext, a cold time condition
checks whether the value of c is greater than five immediately after enterNext
occurred. Time conditions are displayed as hexagons, like regular conditions,
but also have an additional hour glass symbol on the upper-right corner.

If it takes more than five seconds from enterAllowed to enterNext, the cut
progresses beyond the time condition. In this example, however, the cut will
then be stuck before the terminal hot condition forever, because the expression
will always evaluate to false. This is therefore a liveness violation of the MSD. An
MSD of this form are also called an anti-scenario, because it describes a sequence
of events that must not happen. If it takes exactly five seconds or less from
enterAllowed to enterNext, there will be a cold violation of the time condition
and the liveness violation of the MSD can be avoided. (For this example, we
assume that the lifeline next:MergingSwitchControl refers to an object next in the
object system, which is an instance of the class MergingSwitchControl, but we
will not go into the details of that object system here.)

enterNext

env:Environment rc:RailCab next:MergingSwitchControl

c > 5

enterAllowed(isAllowed)

ReplyOfSwitchControlNotTooEarly

c = 0

false

Figure 3.8: The MSD ReplyOfSwitchControlNotTooEarly.

Executing clock resets and evaluating time conditions are also hidden events.
Also, as mentioned previously, it is assumed that events take no time and time
can only elapse between events (synchrony hypothesis). But, any number of
events may occur in zero time. As before, we assume that the system can
take any number of steps in reaction to an environment event before the next
environment event occurs. If, however, the system waits for time to elapse,
environment events may occur. In order to satisfy a timed MSD specification,
we require that no safety or liveness violation occurs in any MSD and that
the system does not take infinitely many steps without waiting for environment
events to occur or for time to elapse.

The play-out of timed MSD specifications works as the play-out of an un-
timed MSD specification. The only difference is that the algorithm may have
to wait to progress beyond minimal delays. Otherwise, active messages are
executed immediately.

The directive of the play-out algorithm to always executes active messages
immediately is a practical convention. However, for that convention, the play-
out algorithm is unable to avoid certain kinds of violations in timed MSD spec-
ifications. For an example, consider a specification that consists of the MSDs in

3.1. MODAL SEQUENCE DIAGRAMS 39

Fig. 3.1 and the MSD above in Fig. 3.8. (We assume that there is some object
system where the third lifelines in these MSDs represent the same object.) The
play-out algorithm would send the messages requestEnter and enterAllowed
immediately after endOfTS occurred. However, as discussed above for the MSD
ReplyOfSwitchControlNotTooEarly, it is forbidden that more time elapses be-
tween enterAllowed and enterNext. Therefore, the immediate execution of
an active message may lead to a violation that could be avoided by delaying
the execution. However, because the play-out algorithm cannot look ahead, it
cannot decide when delaying the execution of an active message is reasonable.

Smart play-out can look ahead in the scope of one super-step and, therefore,
could decide to delay certain steps on the basis of the steps it can look ahead.
This is, however, not implemented in smart play-out [HKP04]. Therefore, the
smart play-out of timed MSD specifications may run into many avoidable vio-
lations. Even if smart play-out could look ahead, it would not be able to avoid
the violation in the scenario sketched in the above paragraph. The reason is
that the super-step where smart play-out could delay the enterAllowed mes-
sage terminates after sending enterAllowed. Thus, the possible time of the
occurrences of lastBreak cannot be anticipated by timed smart play-out. In
the synthesis technique that will be presented in Chap. 4, we will consider this
case.

3.1.15 Symbolic lifelines

The lifelines in the MSDs shown so far refer to concrete instances in the object
system (see Fig. 3.1, Sect. 3.1.1). These lifelines are also called concrete life-
lines. However, there are many systems, like the RailCab system, where just
considering one object system is not sufficient. Instead, we wish that a specifi-
cation applies to many different and possibly changing object systems. Then,
we would like to describe how certain kinds of objects, which for example have
certain relationships to each other, shall behave.

For example, we would like to specify that when any RailCab in the RailCab
system reaches the end of its track section, it requests the permission to enter
from that track section control that is responsible for the track section that is at
this point the RailCab’s next track section. In particular, we would also like to
express that it need not necessarily be a track section control that the RailCab
sends the request to—it could also be the control of a switch. Figure 3.9 illus-
trates how we would like the MSD RequestEnterAtEndOfTrackSection to apply
to such a configuration of objects in a larger RailCab system. In particular,
the figure shows a situation where a RailCab approaches a merging switch, and
the next track section control is thus the control of a merging switch. This is a
situation that may occur with different combinations of objects and we would
like to specify one MSD for all of these combinations.

For this purpose, the concept of symbolic lifelines was introduced by Harel
and Marelly [HM03]. Symbolic lifelines are lifelines that, instead of referring
to one concrete object, refer to a class. Graphically, a symbolic lifeline can
be recognized by a label that is not underlined. An MSD with only symbolic

40 CHAPTER 3. FOUNDATIONS

endOfTS

rc1 rc2

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

RequestEnterAtEndOfTrackSection

tsc1

tsc2

tsc3 sc1
requestEnter

env

We wish to describe that this
MSD applies to certain
combinations of objects

(a RailCab and its next track
section control, which could

also be a switch control)

Figure 3.9: An example the RequestEnterAtEndOfTrackSection with symbolic
lifelines in a dynamic system: which object does a lifeline represent?

lifelines is also called a symbolic MSD; an MSD with concrete lifelines is also
called a concrete MSD.

Symbolic lifelines can be bound to objects in the object system that are
instances of the class that the lifeline refers to. For a given object system, the
semantics of a symbolic MSD is equivalent to a set of concrete MSDs where
for each possible combination of bindings of the symbolic lifelines, there exists
a concrete MSD with lifelines corresponding to this possible combination of
bindings. In the following, this is called the general semantics of symbolic
MSDs.

In some cases, we want to restrict the symbolic MSD to specify the behavior
only for certain combinations of objects. Then, binding expressions can be
added to the MSD in order to restrict the possible bindings for the lifelines.
Binding expressions are Boolean expressions that refer to properties of objects
that may be bound to the lifelines [HM03]. A symbolic MSD then only specifies
the behavior for the combinations of objects where there exists a set of lifeline
bindings where all binding expressions evaluate to true.

Due to the combinatorial explosion, mapping a symbolic MSD to an equiv-
alent set of concrete MSDs is inefficient for the play-out of symbolic MSDs. Es-
pecially in large object systems where object properties change, or objects are
added and removed from the system, maintaining an equivalent set of concrete
MSDs is impractical. Therefore, the play-out algorithm interprets the symbolic
MSDs differently. The resulting behavior, also called the symbolic play-out se-
mantics, is not equivalent to the play-out of a corresponding set of concrete
MSDs, also called the general play-out semantics in the following. There are
small differences, which will be explained shortly.

3.1. MODAL SEQUENCE DIAGRAMS 41

The play-out semantics of symbolic MSDs is explained in the following. For
this purpose, we first need to extend the concept of event unification. Next, we
introduce binding expressions, which are restricted for the play-out algorithm to
a certain form for an efficient operational interpretation. In order to express the
relationships between objects, also the concept of associations is introduced.

According to Maoz [Mao09], we also consider the case where there are gen-
eralization relationships between the classes. Generalization is a directed rela-
tionship between two classes, where one class is the general class and the other
it the specific class. The relationship means that an object of the more specific
class is also an instance of a more general class. The specific class also inherits
all the properties defined for the general class [UML09, Sect.7.3.20, pp. 71].

Event unification in the play-out of symbolic lifelines

On the occurrence of a message between two objects, the first message of an
MSD can be unified with that message

1. if the operation of the message in the object system equals the operation
of the diagram message and

2. if the class of the sending object is equal to or a specialization of the class
represented by the sending lifeline.

3. if the class of the receiving object is equal to or a specialization of the
class represented by the receiving lifeline.

If a message in the object system can be unified with the first event of an MSD,
an active instance of that MSD is created. In this process, the sending and
receiving lifelines of the first message are bound to the sending resp. receiving
objects of the system message. Also the cut progresses beyond the first diagram
message. The lifelines in the active MSD that are not the sending or receiving
lifeline of the first message remain unbound unless, as explained shortly, there
is a binding expression that determines a binding for the lifeline.

If a monitored or executed message is subsequently enabled in the MSD
where the sending or receiving lifeline is unbound, there exist sophisticated
concepts for how the play-out algorithm can best mimic the general play-out
semantics of the symbolic MSDs. Harel and Marelly have elaborated these con-
cepts for LSCs [MHK02, HM03], but they could be also applied to MSDs. These
concepts involve creating duplicates of active MSDs/LSCs so that sequences of
events among different objects that the lifelines can be bound to can be moni-
tored or messages can be sent to multiple objects.

For simplicity, in the scope of this thesis, it is required that if a message is en-
abled, the sending and receiving lifelines must be bound. Then it is determined
which message in the object system the diagram message can be unified with, or,
if the diagram message is executed, which message the play-out algorithm shall
send between which objects. This can be achieved with binding expressions and
relationships that exist between the objects. These relationships are expressed
on the class level via associations, which binding expressions can refer to.

42 CHAPTER 3. FOUNDATIONS

Associations

In a class model, there can be associations between two classes [UML09, Sect.
7.3.3]. An association can be unidirectional or bidirectional. A unidirectional
association is displayed as a solid arrow between two classes; a bidirectional
association is displayed as a solid line between two classes. A unidirectional
association has one navigable end at the target end of the line with a name
and a cardinality, which can be single-valued, written as 0..1, or multi-valued,
written as 0..*. A bidirectional association has two navigable ends on both ends
of the association line. A navigable end means that instances of the opposite
class can have a pointer (in the single-valued case) or have a list of pointers (in
the multi-valued case) to instances of the class at that end of the association.
A bidirectional association means that if one object has a pointer to another
object according to a navigable end of an bidirectional association, this object
also has a pointer to the pointing object according to the opposite navigable
end of the same association.

These pointers or lists of pointers can be modified by operations defined in
the classes. By convention, in the case of a single valued navigable end, the
operation set<navigable-end-name>(newValue:<class-on-navigable-end>) can be
used to set the pointers of an object. In the case of a multi-valued navigable
end, the operation set<navigable-end-name>(newValue:List<class-on-navigable-
end>) can be used to set the lists of pointers of an object. To add a
pointer to a list or to remove a pointer from a list of a multi-valued naviga-
ble end, the operations add<navigable-end-name>(element:<class-on-navigable-
end>) and remove<navigable-end-name>(element:<class-on-navigable-end>) can
be used. As described in Sect. 3.1.11, messages referring to these operations can
be used in MSDs to specify the changes of pointers in the object system. Fur-
thermore, we allow diagram variables in MSDs that bind to objects or lists of
objects.

A pointer to an object is also called a link. The pointing object is called
the linking object; the object pointed to is also called the linked object. One
navigable end of an association can also be a composition, displayed as a black
diamond at the opposite end of the association line. A composition means that
a linked object is “part of” the linking object. Within the scope of this thesis,
it is defined that an object can only be linked by one link that corresponds to a
navigable end that is a composition, i.e., a object can only be part of one object
at a time.

Figure 3.10 shows parts of a RailCab object system and its class diagram.
This part of an object system corresponds to the system graphically displayed
above in Fig. 3.9. The class diagram has a bidirectional and one unidirectional
association. The bidirectional association expresses that a track section control
can have many registered RailCabs. The registered RailCabs have the track sec-
tion control as their current track section control. The unidirectional association
says that a track section control can have one next track section control. Further-
more, there is a generalization relationship from the class MergingSwitchControl
to TrackSectionControl, displayed by an arrow with a hollow triangle arrowhead.
This generalization means that instances of MergingSwitchControl are also in-

3.1. MODAL SEQUENCE DIAGRAMS 43

stances of TrackSectionControl. The object system shows a number of instances
of these classes with a certain configuration of links. Links are displayed as
arrows labeled with the name of the corresponding navigable end. (In order
to build meaningful track systems, we would of course also need a branching
switch control. But, these are not considered here to keep the examples small.)

tsc3:Track
SectionControl

rc2:RailCab

sc1:Merging
SwitchControl

tsc2:Track
SectionControl...

current

next

next

next

next

tsc1:Track
SectionControl

next
...

rc1:RailCab

...
next

object system

RailCab

MergingSwitchControlEnvironment

TrackSectionControl

hazardOccurred:Boolean

RailCabSystem

current

next

0..1

0..1

endOfTS()
lastBreak()
noReturn()
enterNext()
enterAllowed(
 allowed:Boolean)

requestEnter()

env:Environment

registered-
RailCabs

0..*

registered-
RailCabs

registered-
RailCabs

current

Figure 3.10: A class model of the RailCab system and a possible object system
(an object diagram representation of the system shown in Fig. 3.9)

Binding expressions

If a message is enabled in an active MSD, we require that the sending and receiv-
ing lifeline is bound. To ensure this, binding expressions must be specified for all
lifelines in a symbolic MSD that are not the sending and receiving lifeline of the
first event. Remember that these lifelines will be bound during the unification
of the first event. The binding expressions have the form <lifeline-name> :=
<expr>, where <lifeline-name> is the name of a lifeline, called slot lifeline,
and <expr> is an OCL expression [OCL10], called the value expression, that
evaluates to an object or a set of objects that are instances of the class that
types the role referred to by the slot lifeline. The result of evaluating the value
expression can also be null or an empty set, respectively. Again, diagram and

44 CHAPTER 3. FOUNDATIONS

lifeline variables can be used in the value expressions. The lifeline variables in
the case of symbolic lifelines are bound to the same object that the lifeline is
bound to. It may, however, also be that a lifeline variable, just as the lifeline, is
unbound. The value expression cannot be evaluated if a variable that appears
in it is unbound. The value expressions are evaluated as soon as they can be
evaluated. Then the binding of the lifeline takes place as follows.
The value expression evaluates to an object: If the value expression re-

sults to an object or a set containing a single object, the lifeline is bound
to that object.

The value expression evaluates to null: If the value expression results to
null or an empty set, this is a violation of the active MSD. This means
that

• it is a safety violation if the current cut of the active MSD is hot.
• it is a cold violation if the current cut of the active MSD is cold, i.e.

the active MSD will be discarded
• no active MSD will be created if the expression is evaluated right

after unifying the first message of an MSD.
The value expression evaluates to a set of two or more objects: If the

value expression results to a set of two or more objects, then copies of
MSDs are created for each object so that each object is bound to the slot
lifeline in one active MSD.

Figure 3.9 shows an example of the symbolic version of the MSD RequestEnter-
AtEndOfTrackSection, which contains a binding expression for the third lifeline.
(The expression label is attached to the according lifeline for better readability,
but the connector carries no additional semantics.) The expression says that the
next:TrackSectionControl lifeline must be bound to the object which is the next
track section control of the current track section control of the RailCab bound
to the lifeline rc:RailCab. For the RailCab rc2 in the object system illustrated
in Fig. 3.9, this would be the section control sc1.

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

RequestEnterAtEndOfTrackSection

endOfTS

next := rc.current.next

Figure 3.11: The MSD RequestEnterAtEndOfTrackSection with symbolic life-
lines and a binding expression

If the event endOfTS occurs in the object system, first an active copy of the
MSD is created with a binding for the lifelines env:Environment and rc:RailCab as
explained above. Then the binding expression can be evaluated, which results in
a binding of the lifeline next:TrackSectionControl. If a binding expression cannot
be evaluated until a message attached to that lifeline is enabled, the behavior

3.1. MODAL SEQUENCE DIAGRAMS 45

is undefined. In ScenarioTools, a play-out algorithm is implemented, which
reports this to the user as an exception.

The difference between the symbolic play-out and general play-out
semantics

Due to the restriction above, that the sending and receiving lifelines of enabled
messages must always be bound, the symbolic play-out semantics is very sim-
ilar to the general play-out semantics. However, there is one detail where the
semantics differ. Remember that it was defined that it is a safety violation if a
hot message is enabled in an active MSD, but another event occurs in the object
system that is unifiable with another message in the MSD that is not currently
enabled. The problem is that, for practical reasons, we do not require that all
lifelines must be bound immediately after the activation of the MSD. We can,
therefore, sometimes not decide for every message in a symbolic MSD, whether
an event that occurs in the object system is unifiable with that diagram message
as long as its sending or receiving lifeline is unbound. All the cases where this
cannot be decided are ignored. The symbolic play-out semantics may there-
fore produce executions where according to the general play-out semantics of
symbolic MSDs safety violations would occur.

3.1.16 Forbidden messages

As explained above, if a hot message is enabled, this means that certain messages
are not allowed to occur. Sometimes, however, we would like to specify that also
other messages, which do not necessarily represent an event in the scenario, are
forbidden to occur while an MSD is active.

Harel and Marelly introduced the concept of forbidden messages [HM03,
Chap. 17] in order to describe events that must not occur during a scenario
or events that may interrupt a scenario. Within this thesis, the convention is
used that forbidden messages are messages that have the forbidden stereotype
applied, indicated by the «forbidden» label attached to the message arrows, and
that must only occur in a section at the end of an MSD that is separated
from the rest of the diagram by a cold false condition that covers all lifelines
of the MSD. This condition marks the actual end of the diagram; there is a
cold violation once the condition is enabled, thus having the same effect as the
termination of the MSD.

Forbidden messages have a temperature, but no execution kind. Hot for-
bidden messages represent events that are not allowed to occur while the MSD
is active unless a corresponding message is currently enabled. Cold forbidden
messages represent events that can interrupt active MSD by a cold violation
unless a corresponding message is currently enabled.

Figure 3.12 shows an extension of the MSD RequestEnterAtEndOfTrack-
Section that now has one cold and one hot forbidden message. The meaning
of this MSD is that, while the MSD is active, an occurrence of the message
cancelRequest (sent between the objects represented by the lifelines rc and
next) leads to a cold violation of the active MSD, which is therefore discarded.

46 CHAPTER 3. FOUNDATIONS

It is even a cold violation if the current cut is hot. An occurrence of the event
enterNext (between the objects represented by the according lifelines) while
the MSD is active constitutes a safety violation, even if the current cut is cold.

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

RequestEnterAtEndOfTrackSection

endOfTS

false

cancelRequest
«forbidden»enterNext

«forbidden»

a cold false condition
marks the actual
end of the MSD

Figure 3.12: The MSD RequestEnterAtEndOfTrackSection with additional for-
bidden messages

3.2 Timed Game Automata and Uppaal Tiga
Because time is an important aspect for many kinds of systems, models for reac-
tive systems were introduced in the past that consider time, for example Timed
Automata [AD94]. Timed Automata are finite automata with a finite number of
clock variables that can take positive real values and synchronously, monoton-
ically, and continuously increase with time. The value of these clock variables
can be reset on state transitions. Such a time model is called a real-time model
or, synonymously, dense-time or continuous-time model. Real-time models have
advantages over discrete-time models. For example is it not necessary to a priori
decide on adequate time intervals for discretizing the model of a given system.

Alur et al. have shown that by restricting the expressions over clock val-
ues, Timed Automata can be described by a finite transition system [ACD93],
which makes the automated checking of temporal properties feasible. A tool for
modeling networks of Timed Automata and automatically checking their prop-
erties is the model checker Uppaal [BLL+96]. A number of other analysis tools
were implemented on the basis of the Uppaal model checker, such as Uppaal
Tiga [CDF+05, BCD+06, BCD+07a], a tool for finding strategies in timed and
untimed two-player games.

In this thesis, a technique for synthesizing controllers and for finding in-
consistencies in MSD specifications was developed based on Uppaal Tiga (see
Chap. 4). In the following, this section gives a short introduction to the Timed
Automata (TA) in Uppaal and the Timed Game Automata (TGA) in Uppaal
Tiga. For a more comprehensive introduction to Uppaal and Uppaal Tiga,
see the Uppaal tutorial [BDL04] and the Uppaal Tiga manual [BCD+07b].
A summary on the principles of the on-the-fly strategy synthesis algorithm im-
plemented by Uppaal Tiga is given in Sect. 3.2.3.

3.2. TIMED GAME AUTOMATA AND UPPAAL TIGA 47

For the purpose of mapping MSD specifications to a TGA model (see
Chap. 4), an EMF-based meta-model which reflects parts of the language con-
cepts of Uppaal resp. Uppaal Tiga was created. This meta-model is pre-
sented in Appendix A.1.

3.2.1 Timed Automata in Uppaal

In the Uppaal model checker, real-time systems can be modeled by a system
of parallel Timed Automata. Figure 3.13 shows an example of a light switch
modeled as a system of two parallel Timed Automata. The example is taken
from the Uppaal tutorial [BDL04].

Such a system is described by a number of templates of Timed Automata,
global declarations of variables, clocks, channels and functions, as well as a
system definition, which defines how the templates are instantiated to run as
concurrent processes. The templates are specified graphically; the variables,
clocks, channels and functions are specified in a C-like textual notation (see
the Uppaal [BDL04] tutorial for details on the textual notation). Figure 3.13
shows a system consisting of two template instances: Lamp1 is an instance of
template Lamp and User1 is an instance of template User.

A template defines a Timed Automaton, including local declarations of vari-
ables and functions that are used in the automaton. For clarity, a template is
called an automaton template in the following. The automaton in an automaton
template consists of a set of locations and edges. Each automaton has one initial
location, marked by the double-bordered circle. In a system, each instance of a
template can be in one current location at a time. Locations and edges are de-
liberately not called states and transitions, since the state of a system is defined
by the set of current locations of all template instances and the valuation of the
variables (including the clock variables). A transition is a discrete change in
the state of the system, which may be one edge firing or multiple, synchronized
edges in different template instances firing at the same time, which possibly, in
doing so, update the values of the variables and resetting clock values.

Each edge has a number of labels. Important here are the guard, update, and
synchronization labels. Guard labels are side-effect free expressions over vari-
ables and clocks that evaluate to a Boolean value. Clock guards are restricted
to the form x1 & expr or x1 − x2 & expr, where x1, x2 are clock variables, expr
is an integer expression, and & is a compare operator & ∈ {<,≤,>,≥,=}. Up-
date expressions are a comma-separated list of assignments that assign values
to variables. Clock variables may only be reset to positive integer values.

An edge is enabled in a template instance when the source location is the cur-
rent location of the template instance and when its guard expression evaluates
to true. Guards are evaluated before the updates are executed. Synchronization
labels are used to synchronize edges via channels. The labels press! and press?
in Fig. 3.13 are examples for such synchronization labels. In this case press is a
binary channel, which means that, when the sending edge, labeled press!, fires,
then a currently enabled receiving edge, labeled press?, must fire synchronously.
If more than one receiving edge is enabled, one of these enabled edges is non-
deterministically chosen for synchronization. If no receiving edge is enabled, the

48 CHAPTER 3. FOUNDATIONS

sending edge cannot fire. (The two latter cases will, however, never occur in the
lamp switch example.)

y=0

press?
press!

idlepress?

press?

press?

off low bright

y>=5

y<5

location
synchronization

update

edge
Lamp1 User1

chan press;

Lamp1 = Lamp();
User1 = User();

System Lamp1, User1;

global declarations

system definition

guard

Figure 3.13: An example of a light switch modeled as a system of Timed
Automata in Uppaal

Channels can further be broadcast channels, which means that a sending edge
must synchronize with an edge in each template instance where an according
receiving edge is enabled. If there are multiple enabled receiving edges in a
template instance (all going out of the current location), one is chosen non-
deterministically. Also, in contrast to the binary channel, the sending edge may
fire when no receiving edges are enabled.

In addition to the name label, locations may have an invariant and they may
be urgent or committed locations. The location invariant is a side-effect free,
Boolean expression, like the guard expression of an edge. The only restriction
is that lower bounds on clocks are not allowed. The system can never be in
a location when the invariant of the location evaluates to false. Therefore, the
system must leave the location before the invariant is false and it must not enter
a location when the invariant evaluates to false. This further has implications
on the synchronization: for example an enabled edge sending over a broadcast
channel cannot fire when an enabled receiving edge leads to a location where
the invariant evaluates to false.

If a location is urgent, this means that no time is allowed to pass while
the template instance is in this location. If a location is committed, no time
is allowed to pass, just as for urgent locations. But yet more strictly, it is
required that the next transition leaves a committed location. If the system is
in multiple committed locations at once, only transitions can be taken which
leave committed locations.

The specification language used in Uppaal is a subset of CTL. Uppaal
can check predicates over locations, variables and clocks. Furthermore, Uppaal
can check properties AG ϕ or EG ϕ. Here ϕ is a predicate and AG ϕ means
that on all paths (A) always (or “globally”, G) ϕ holds. EG ϕ means that
there exists (E) a path where always (G) ϕ holds. Also reachability properties

3.2. TIMED GAME AUTOMATA AND UPPAAL TIGA 49

in the form of EF ϕ can be checked. This property means that there exists
a path (E) where eventually (or “finally”, F) ϕ holds. Finally, Uppaal can
check liveness properties of the form AF ϕ or ϕ ↝ ψ. AF ϕ means that on
all paths (A) eventually (F) ϕ holds. ϕ ↝ ψ (“ϕ leads to ψ”) is equivalent
to AG (ϕ ⇒ AF ψ)), meaning that on all paths (A) it is always the case (G)
that if ϕ holds, then on all paths (A) eventually (F) ψ holds. Path formulae
(i.e. temporal operators) are not allowed to be nested. See the Uppaal tutorial
[BDL04] for details.

3.2.2 Timed Game Automata in Uppaal Tiga

Uppaal Tiga [CDF+05, BCD+06, BCD+07a] is an extension of Uppaal for
synthesizing winning strategies in timed and untimed two-player games. Up-
paal Tiga extends the Timed Automata of Uppaal to Timed Game Automata
(TGA). In addition to the TA introduced above, edges in a TGA can be marked
as controllable or uncontrollable. Transitions are controllable, if they involve
only controllable edges, otherwise transitions are uncontrollable. Controllable
transitions can be fired by the system, uncontrollable transitions can be fired by
the environment. If controllable and uncontrollable transitions are enabled, the
environment has priority over the system in firing the uncontrollable transitions.
This implies that the system can only fire if the environment chooses to wait or
has to wait, i.e., no uncontrollable transitions are enabled.

Given a network of TGA, Uppaal Tiga can find a strategy for the sys-
tem that satisfies a certain winning condition or it produces a counter-strategy,
which shows how the environment can violate the winning condition. Win-
ning conditions can be safety or reachability formulae, of the form AG ϕ or
AF ϕ, respectively. Furthermore, liveness properties can be specified of the
form AGAF ϕ, which means that ϕ must be true infinitely often.

A strategy is a function that tells the system resp. environment to wait
or to take certain transitions in a certain state. The strategy does not map
all states potentially reachable in the TGA system, but only such which are
reachable in a game controlled by the strategy, which means that there may
be very small strategies for large systems. Strategies may be nondeterministic,
and Uppaal Tiga is able to compute complete strategies [CDF+05, BCD+07b],
which means that for each state all transitions are computed by which the system
or environment can win.

Since Uppaal Tiga introduces no further syntactic constructs, an extensive
example is omitted here. See the Uppaal Tiga manual [BCD+07b] for details.
The following section introduces the key idea of the strategy synthesis algorithm.

3.2.3 On-the-fly synthesis of game strategies

In Uppaal Tiga, the winning strategies for the above-mentioned kinds of prop-
erties are determined by a backwards computation of winning states. The princi-
ple of the algorithm for solving reachability and safety games is briefly explained
in the following. For details, see the original presentation of the algorithm by

50 CHAPTER 3. FOUNDATIONS

Cassez et al. [CDF+05]. The algorithm for solving a game satisfying a liveness
property has not yet been documented or published.

The basic game solved by synthesis algorithm in Uppaal Tiga is a reach-
ability game. In a reachability game, a strategy for the system must be found
such that it can always reach a state that satisfies a certain property. These
states are also called goal states in the following. Safety games are the comple-
ment of these strategies: if there is no strategy for the environment to always
reach a forbidden state, i.e., goal state of the environment, the system wins the
safety game.

The algorithm can be best explained when only considering the reachabil-
ity game in an untimed model. The algorithm for finding winning strategies in
untimed reachability games was first described by Liu and Smolka [LS98]: start-
ing from the initial state, the algorithm explores transitions and states until it
finds a state which fulfills the winning condition. This is the first winning state.
Then, it reevaluates the predecessor states of the winning state: if all states
reachable by uncontrollable transitions are also winning states and at least one
controllable transition leads to a winning state, then the predecessor state is
also a winning state. Finally, if the reevaluation can include the initial state
into the set of winning states, the system can always win the reachability game.
If that is not the case, there is no strategy for the system to win.

In the timed case, the algorithm was enhanced by Cassez et al. such that
a symbolic representation of states is used, i.e., not the winning status of sin-
gle states is computed backwards, but the winning status of symbolic sets of
states. Furthermore, the backward computation of the winning states must also
consider the predecessors of states in different time regions.

For the untimed case, the algorithm for finding winning strategies is shown
to have a complexity that is linear with respect to the size of the state space
(number of states plus number of transitions). In the timed case, the perfor-
mance of the algorithm is not guaranteed to be linear, but in experiments the
authors show that, by the help of a number of optimizations, the runtime of
their algorithm is linear [CDF+05] to the size of the state space.

3.3 Triple Graph Grammars
The synthesis approach elaborated in the scope of this thesis (see Chap. 4)
requires a complex model-to-model (M2M) transformation from a stereotyped
UML sequence diagram model to a network of Timed Game Automata (TGA).
This transformation was specified and implemented by a Triple Graph Grammar
(TGG) [Sch94, KW07].

TGGs are a rule-based formalism for specifying mappings and transforma-
tions between models, and there exists a number of engines today which can
execute model transformations based on TGGs, for example Fujaba [Wag06] or
Moflon [AKRS06]. A transformation engine called the TGG Interpreter
for the transformation of EMF1 models in Eclipse was developed in the scope

1Eclipse Modeling Framework http://www.eclipse.org/emf/

http://www.eclipse.org/emf/

3.3. TRIPLE GRAPH GRAMMARS 51

of the author’s master’s thesis [Gre06]. This engine was extended by new con-
cepts and features in the scope of this thesis (see Chap. 6 and Sect. 7.1). In the
following, the basic principles of TGGs and TGG-based model transformations
are explained and the advantages of TGGs are highlighted.

3.3.1 Why model transformation with TGGs?

TGGs have a number of benefits over other model transformation approaches.
A TGG consists of rules that declaratively describe the relationship between
model patterns of two or more kinds of models. This way, a mapping between
models that are in some way structurally similar can be described conveniently.
A transformation developer only has to specify these relationships and does not
have to deal with “programming” the control structure of a translator program.
A control structure is not vital for describing many model transformation prob-
lems. To the contrary, the control logic is likely to require additional design and
maintenance efforts.

The Query/View/Transformation specification (QVT) by the OMG
[QVT08] also defines two declarative transformation languages, QVT-Core and
QVT-Relations. TGGs and the declarative QVT languages are very similar
and share many concepts; the QVT-specification however still contains seman-
tic ambiguities [Gre06, GK07, GK10]. Also, tool support for the declarative
QVT languages today is still premature.

3.3.2 TGG structure and semantics

TGGs define sets of corresponding graphs. An element of this set is typically
a triple consisting of two independent graphs that are linked via a third graph,
called the correspondence graph. Because of this triple structure, such a graph
is called a triple-graph in the following. These different graphs in a triple-graph
are typed over different type graphs. The TGG rules are non-deleting graph
production rules that describe how, based on a start graph or axiom, triple-
graphs can be created. Triple-graphs that can be created by a TGG are called
valid triple-graphs. The axiom is the smallest valid triple-graph.

Transferred to the “modeling world”, TGGs define sets of corresponding
models where the independent models, in the following called domain models,
are instances of different meta-models. The domain models are linked via a
correspondence model, which is an instance of a correspondence meta-model. In
the following explanations, the terms model and meta-model are used instead of
graph and type graph. A triple-graph is called a triple-model. The TGG rules
describe how, based on an axiom, triple-models can be created. Triple-models
that can be created by a TGG are, accordingly, called valid triple-models.

TGGs cannot only be used for defining sets of valid triple-models. They
can be operationalized for a number of application scenarios. For example, if a
model of one domain is given, called the source domain in the following, TGGs
can be operationalized to create a model of the opposite domain, called the target
domain, as well as a correspondence model, such that the resulting models form
a valid triple-model. This application scenario is called forward transformation.

52 CHAPTER 3. FOUNDATIONS

Sometimes, a TGG can also be applied in the opposite direction, which is then
called the backward transformation. If two domain models are given, a TGG
can further be interpreted in order to create a correspondence model that links
the two domain models, thereby determining whether the two domain models
correspond to each other with respect to the TGG. There are a number of further
application scenarios, but in the scope of this thesis, TGGs are used for forward
transformations only. Details on that application scenario are explained shortly
in Sect. 3.3.3.

The objects in the axiom are typically root objects that will contain the
objects that will be added to the model by applying TGG rules (as explained
shortly). Figure 3.14 shows an example of a TGG axiom from a TGG that
that maps an MSD specification to a system of Timed Game Automata (TGA).
This mapping is called MSD-to-TGA in short, and is the basis of the synthesis
technique that will be explained in Chap. 4. This axiom is a model where two
domain model objects exist, a package and an NTA (abbreviation for “Network
of Timed Automata”). In addition, there is a correspondence model object that
has links to the package object and the NTA object. The package object and the
NTA object are the root objects of an MSD specification and a TGA network,
respectively. The two domains are called UML and TGA, the correspondence
domain is called UML2TGA.

p:Package nta:Ntap2nta:PackageToNta:package :nta

UML TGAUML2TGA

Figure 3.14: An example of an axiom.

Figure 3.15 shows an example TGG rule that is a simplified rule from the
MSD-to-TGA transformation. A TGG rule is a graph grammar rule and consists
of a left-hand side graph and a right-hand side graph. (Here they are displayed
such that the left-hand side graph is at the top and the right-hand side graph is
at the bottom.) Both sides consist of nodes and edges where a node is typed over
a class in the meta-models of the according domain- or correspondence model;
an edge is typed over a navigable end of an association in the meta-models of
the according domain- or correspondence model2.

A TGG rule can be applied to an existing triple-model if there is a valid
match of the left-hand side pattern of the rule in the triple-model. There exists
a match if a structure can be found in the triple-model that is isomorphic to
the left-hand side pattern and the following conditions hold.

1. In a match, objects in the triple-model must be mapped to nodes such
that the node’s type class equals the object’s meta-class. Such a mapping
from a node to an object is called a node binding; in a node binding, the

2The TGG Interpreter relies on EMF, which defines a meta-meta-model according
to the EMOF standard [MOF06]. In this meta-model, there exist no associations. Instead,
classes can have references to other classes, which correspond to unidirectional associations. A
bidirectional association can be represented by two references that are opposites to each other.
Thus, an edge in a TGG rule of the TGG Interpreter is actually typed over a reference and
not a navigable end of an association. This, however, has no other conceptual implications.

3.3. TRIPLE GRAPH GRAMMARS 53

object is said to be bound to a node. Optionally, nodes can be marked as
“match subtype” ; then the object mapped to the node must be an instance
of the node’s type class, i.e., it may also be an instance of a specialization
of the node’s type class.

2. For each edge in a match, a link from the object bound to the edge’s
source node to the object bound to the edge’s target node must exist.
Furthermore, the navigable end represented by the link must equal the
edge’s type navigable end. A mapping from an edge in the rule to the
source and target objects of a link as well as the navigable end of the link
is called an edge binding; in an edge binding, the link is said to be bound
to the edge in the rule.

When a match is found, the matched structure can be replaced by a structure
as described by the right-hand side of the rule. But, because a TGG-rule is
always a non-deleting graph grammar rule, when a match of the left-hand side
pattern is found in the triple-model, the matched triple-model structure, instead
of being replaced, can be extended by what is described by the additional nodes
and edges on the right-hand side of the rule.

The rule in Fig. 3.15, for example, says that when a package and an NTA,
connected via a particular correspondence object, is found in the model, a col-
laboration can be added to the package and two templates can be added to
the NTA. (Templates or automaton templates define timed automata that can
be instantiated in a system of timed automata, see Sect. 3.2.1.). In addition,
two particular correspondence objects that link the newly added objects can be
added to the existing correspondence model. One graph that this rule can be
applied to is obviously the axiom.

p:Package nta:Ntap2nta:PackageToNta

coll:Collaboration
systemAT:Templatecoll2systemAT1:CollaborationToTemplate

environmentAT:Templatecoll2systemAT2:CollaborationToTemplate

p:Package nta:Ntap2nta:PackageToNta

::=

:package :nta

:package :nta

:packagedElement

:collaboration

:collaboration
:template

:template

:childCorresp

:childCorresp

:template

:template

UML TGAUML2TGA

left

right

Figure 3.15: A TGG rule as a graph grammar production rule.

Because a TGG rule is a non-deleting graph grammar, another, short-hand
notation can be used for displaying TGG rules. Such a short-hand notation
for the TGG rule of Fig. 3.15 is shown in Fig. 3.16. The nodes and edges
that occur on the left-hand side and the right-hand side of the TGG rule are
called context nodes resp. context edges [GK10]. The nodes and edges that
occur only on the right-hand side of the TGG rule are called produced nodes
resp. produced edges [GK10]. Context nodes are displayed as a white box with
a black border, context edges are represented by black arrows. The produced

54 CHAPTER 3. FOUNDATIONS

nodes are displayed as green nodes with a “++” label. Similarly, the produced
edges are shown as green arrows with a “++” label.

p:Package nta:Ntap2nta:PackageToNta

coll:Collaboration
systemAT:Templatecoll2systemAT1:CollaborationToTemplate

environmentAT:Templatecoll2systemAT2:CollaborationToTemplate

:package :nta

:packagedElement

:collaboration

:collaboration
:template

:template

:childCorresp

:childCorresp

:template

:template

++

++
++

++ ++

++

++

++++

++

++

++

++
++

name='Env'

name='Sys'

CollaborationToSystemATAndEnvironmentAT

Figure 3.16: The short-hand notation of a TGG-rule with additional attribute
value constraints.

Many extensions have been defined for TGGs. In addition to the TGG rule
displayed in Fig. 3.15, the TGG rule displayed in Fig. 3.16 additionally contains
attribute value constraints, displayed as yellow rounded rectangles. These con-
straints are attached to nodes and specify that the attributes of objects that are
matched by the node or created according to the node must be equal to the given
value. Here, one template object must be named ‘End’ and the other must be
named ‘Sys’. Section 6.3 describes in more detail how attribute expressions
can be formulated.

3.3.3 Forward transformation

A forward transformation works as follows. Let us assume that a source model
is given and shall be transformed into a target model according to a given
TGG. First, one instance of the axiom has to be created. That means that a
target model pattern and a correspondence model pattern have to be created
and connected to the appropriate objects in the source model such that there
exists a model structure that is isomorphic to the axiom. This is illustrated in
Fig. 3.17. The axiom is displayed as a rule, similar to a TGG rule as shown in
Fig. 3.16. The objects and links in the model that make up the occurrence of the
axiom are bound to the nodes resp. edges of the axiom graph. Note, however,
that the axiom is not actually a rule and it cannot be “applied” multiple times.

Next, the TGG rules are applied in the following way. First, the context
pattern and the source domain pattern are matched in the triple model such
that context nodes and edges are matched only to already bound objects resp.
links, and the produced source domain nodes and edges are matched only to
unbound objects resp. links. If such a match can be found for a rule, the rule
can be applied in the forward direction. This means that the produced target
and correspondence patterns are created in the model and additional bindings
are created for these newly matched resp. created objects. This forward rule
application schema is illustrated in Fig. 3.18.

With a match of the axiom as illustrated in Fig. 3.17 the above rule Collabo-
rationToSystemATAndEnvironmentAT can be applied in the forward transforma-

3.3. TRIPLE GRAPH GRAMMARS 55

:Package :Nta:PackageToNta

:Collaboration

:package :nta

:packagedElement

:Interaction
:Interaction

:...
:...

:ownedBehavior:ownedBehavior

:...
:...

p:Package nta:Ntap2nta:PackageToNta
:package :nta

UML TGAUML2TGA

target and correspondence objects and
links that form an instance of the axiom

node
and edge
bindings

given source model

PackageToNta (Axiom)

Figure 3.17: The creation of an instance of the axiom in the model.

p:Package nta:Ntap2nta:PackageToNta

coll:Collaboration
systemAT:Templatecoll2systemAT:CollaborationToTemplate

environmentAT:Templatecoll2systemAT:CollaborationToTemplate

:package :nta

:packagedElement

:collaboration

:collaboration
:template

:template

:childCorresp

:childCorresp

:template

:template

++

++
++

++ ++

++

++

++++

++

++

++

++
++

context nodes:
match already bound objects

produced target and correspondence domain nodes:
create and bind objects

produced source domain nodes:
match and bind unbound objects

name='Env'

name='Sys'

Figure 3.18: Interpretation of a TGG rule in a forward transformation scenario.

tion direction. The objects and links created in the correspondence resp. target
domain as a result of the rule application are illustrated in Fig. 3.19. For the
visual complexity, the bindings created for the nodes and edges in the rule to
the objects and links in the model are omitted in this figure.

Following the above procedure, further TGG rules can be applied to trans-
form the remaining source model. For example, there would be other rules for
transforming the two interactions shown in Fig. 3.19 as well as further objects.
The transformation terminates when no rule is applicable anymore. A transfor-
mation is successful when no unbound objects remain in the source model. In
practice often only parts of the model have to be transformed. Then the trans-
formation can be considered successful when all the elements in the regarded
view are bound.

56 CHAPTER 3. FOUNDATIONS

:Package :Nta:PackageToNta

:Collaboration

:package :nta

:packagedElement

:Interaction
:Interaction

:...
:...

:ownedBehavior
:ownedBehavior

:...
:...

UML TGAUML2TGA

target and correspondence objects and links created
by the forward application of the TGG rule

CollaborationToSystemATAndEnvironmentAT

systemAT:Template
name = “Sys” coll2systemAT1:CollaborationToTemplate

environmentAT:Template
name = “Env” coll2systemAT2:CollaborationToTemplate

:template

:template

:childCorresp

:childCorresp

:template

:template

:collaboration

:collaboration

Figure 3.19: Result of the forward application of the TGG rule Collabora-
tionToSystemATAndEnvironmentAT.

3.3.4 Further extensions of TGGs

Since the invention of TGGs, a number of extensions were proposed. Klar et
al. for example propose a concept of rule generalization, which permits to reuse
TGG rules in the definition of other, more specialized rules [KKS07]. Rule
generalization may greatly reduce the number of rules that have to be specified.
This concept is, with improvements, also employed in the TGG for mapping
MSD specifications to a system of TGA as explained in Chap. 4. The improved
generalization concept is described in more detail in Sect. 6.2.

Furthermore, the use of the Object Constraint Language (OCL) [OCL10], a
powerful language for formulating queries in object-oriented models, has been
proposed by Dang and Gogolla [DG08] to formulate attribute value constraints
in TGGs. OCL attribute value constraints are also integrated in the TGG
Interpreter. The details of this integration are explained in Sect. 6.3.

Another concept that was added in the scope of the author’s master thesis
[Gre06] and later more precisely defined in a paper [GK10], is the concept of
reusable nodes. Reusable nodes are nodes that can be interpreted either as
context nodes or as produced nodes. They may, for some mappings, greatly
reduce the number of rules that have to be specified. A contribution of this
thesis is a description of how the reusable nodes can be adequately interpreted
operationally in a forward transformation scenario. See Sect. 6.5 for details.

CHAPTER 4
Synthesis

This chapter presents a novel technique for synthesizing admissible controllers
or admissible play-out strategies for untimed and timed MSD specifications that
consist of a set of universal MSDs with concrete lifelines for a given, fixed ob-
ject system. The novelty of this technique is that, in addition to MSDs that
describe the requirements of the system, called requirement MSDs, environment
assumptions given in the form of assumption MSDs can be considered by the
synthesis. The synthesis can determine whether an MSD specification is con-
sistent or consistently executable. If that is the case, it returns an admissible
controller or an admissible strategy for the play-out algorithm, respectively.

Input for the synthesis is an MSD specification, including a description of an
object system, in the form of a stereotyped UML model. This specification is
mapped to a network of Timed Game Automata (TGA) in Uppaal Tiga. The
mapping is called MSD-to-TGA in short. With an adequate winning condition,
Uppaal Tiga can determine whether there exists an admissible controller for
the system objects or an admissible strategy for the play-out algorithm. If there
exists such a controller or strategy, it is returned by Uppaal Tiga. If that is
not the case, the specification is inconsistent or not consistently executable.

This chapter is structured as follows. Section 4.1 gives a brief overview of
the approach. Input for the synthesis are UML-based MSD specifications given
in a form as described in Sect. 4.2. Section 4.3 describes by an example how
an untimed specification is mapped to a TGA network. The winning condition
by which Uppaal Tiga can synthesize an admissible play-out strategy for the
specification is explained in Sect. 4.4. Section 4.5 presents variations and ex-
tensions to the MSD-to-TGA mapping that are necessary in a timed setting.
Then, Sect. 4.6 presents a technique for the compositional synthesis of MSD
specifications. This chapter first focuses on the problem of deciding consistent
executability, but Sect. 4.7 then discusses changes to the MSD-to-TGA map-
ping by which other kinds of consistency can be decided. The mapping from
an untimed or timed MSD specification to a TGA network is formalized and
implemented by the TGG shown in Appendix B.

57

58 CHAPTER 4. SYNTHESIS

4.1 Overview
Figure 4.1 illustrates the principle of this approach. For each MSD specification,
one environment automaton and one system automaton are created. Further-
more, each MSD and each assumption MSD is mapped to an MSD automaton
or assumption MSD automaton, respectively. For clarity, we call an MSD that is
not an assumption MSD a requirement MSDs in the following. A corresponding
automaton is thus also called requirement MSD automaton.

The idea of these automata is that the environment and system automata
can nondeterministically choose to “produce” environment resp. system events
that appear in the specification. The edges in the system automaton are con-
trollable, whereas the edges in the environment automaton are uncontrollable
(indicated by dashed arrows). When events are “produced” in the environment
or system automaton, certain edges in the MSD automata are synchronized via
a broadcast channel. When fired, these edges update certain variables, this way
representing the activation of MSDs, the progress of their cut, their termina-
tion, or cold violations and safety violations. An MSD automaton encodes the
iterative semantics of an MSD, similar to the automaton shown in Fig. 3.3.

In addition to this encoding, a winning condition is specified. Intuitively, this
condition expresses that, no matter which sequence of events the environment
automaton produces, the system must

• avoid running into a safety violation of any requirement MSD and
• always eventually progress all active events and
• infinitely often listen for environment events

unless
• a safety violation occurs in an assumption MSD or
• an assumption MSD never progresses beyond an active event

If there is a way for the system to satisfy this condition, Uppaal Tiga is able
to generate a corresponding strategy for the system to do so. This strategy is a
controller or an admissible play-out strategy that is a witness for the consistency
resp. consistent executability of the MSD specification.

Note that this approach differs from a classical verification approach where
typically the implementation of a system is given in the form of some transition
system and is analyzed to satisfy a specification, typically formulated in tempo-
ral logic. Here the problem and its solution are different. The problem is that
we search for an implementation to a given specification. The solution is that,
first, we create a transition system of a system and its environment (the system
and environment automata) that can virtually produce any possible sequence
of events that appear in a specification. Second, we extend this transition sys-
tem by the behavior represented by MSDs in the specification. Last, we specify
a condition (the winning condition) that describes when a certain behavior of
the system satisfies a given MSD specification. This condition is formulated in
CTL, but it only describes what it means in general to satisfy an MSD specifica-
tion, it does not itself specify any particular system requirements. In particular,
this winning condition is the same for all MSD specifications (except for slight
variations between the untimed and the timed setting).

4.2. THE MSD SPECIFICATION SCHEME 59

Environment System

“produces”
environment events

“produces”
system events

track the
progress and

violations

track the
progress and

violations

assumption MSDs requirement MSDs

requirement MSD automataassumption MSD automata
environment
automaton

system
automaton

Figure 4.1: The principle of encoding an MSD specification as a system of
Timed Game Automata

4.2 The MSD specification scheme
Input for the synthesis is an MSD specification, including the description of
an object system, in the form of a stereotyped UML model. As an example,
let us consider the MSD specification for the use case Drive onto track section,
which is described informally in Tab. 4.1. This is a simplified version of the use
case description shown in Fig. 2.3. For clarity, it is suggested to separate the
description of the system requirements and the environment assumptions from
each other in the informal use case descriptions.

4.2.1 Collaboration and class diagram

Figure 4.2 illustrates the UML-based MSD specification that captures the re-
quirements and assumptions formulated above. The object system is described
by a UML collaboration diagram [UML09]. A collaboration diagram is a special
kind of UML composite structure diagram for describing instances that “collec-
tively accomplish some desired functionality” [UML09, Sect. 9.3.3, p. 168]. The
nodes in this diagram are called roles. Each role represents an object. Whether
an object is a system object or an environment object, here again graphically in-
dicated by a rectangle or cloud symbol, respectively, is modeled by a stereotype
[UML09, Chap. 18] on the roles (see Fig. A.4).

The roles are typed over classes in a package. The top of the figure shows
the class diagram of the package DriveOntoTrackSection. The classes have op-
erations that specify which messages an object can receive. This class diagram
is similar to the class diagram shown in Fig. 3.1. One difference, however, is
that the parameter of the operation enterAllowed is omitted here. Parameterized
messages are not yet supported by this synthesis technique. In this example,

60 CHAPTER 4. SYNTHESIS

Table 4.1: Use Case Drive onto track section

Use Case: Drive onto track section Nr. 1

Requirements:
When the RailCab approaches the end of the track section, the RailCab must send
a request to enter the next track section to the section control responsible for the
next track section. Then the section control must reply, stating whether entering
the track section is currently allowed or not.
The reply must be received before the RailCab reaches the point of the last safe
break.

Environment assumptions:
When the RailCab is notified that it approaches the end of the track section, it
then passes the the point of the last safe break. At last, the RailCab enters the
next track section.

Sketch:

entering next track section

current next

last point for safe breaking

approaching the end of the track section

the parameter on enterAllowed can be omitted, because the specification does
not state whether it should allow the RailCab to enter the track section or not.

The lines between the roles are connectors that specify which objects in-
terchange messages with each other. These connectors can be specified before
modeling the MSDs to specify between which objects messages may be inter-
changed and, therefore, between which lifelines in the MSDs it is allowed to
draw messages.

4.2.2 Requirement MSDs and assumption MSDs

Figure 4.2 shows the MSDs RequestEnterAtEndOfTrackSection and ReplyBefore-
LastSafeBreak, which were already shown in Fig. 3.1. In the UML model, each
lifeline of each MSD references a role in the collaboration. The message tem-
perature and execution kind are specified by an extra message stereotype, as
already proposed by Maoz and Harel [MH06] (see also Fig. A.5).

New here is the assumption MSD LastBreakBeforeEnterNext. Assumption
MSDs specify how we assume the environment to behave. We assume that noth-
ing will happen in the environment that will violate any assumption MSD. If the
environment violates the assumptions, the system is not obliged to satisfy its
requirements. The MSD LastBreakBeforeEnterNext specifies that after endOfTS,
lastBreak must occur before enterNext occurs. For explanatory reasons, the

4.2. THE MSD SPECIFICATION SCHEME 61

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed

RequestEnterAtEndOfTrackSection

lastBreak

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed

ReplyBeforeLastSafeBreak

DriveOntoTrackSection

endOfTS

env:Environment rc:RailCab

<<EnvironmentAssumption>>
LastBreakBeforeEnterNext

false

enterNext

lastBreak
«forbidden»

rc:RailCab next:Track
SectionControl

env:Environment

Environment RailCab

endOfTS()
lastBreak()
noReturn()
enterNext()
enterAllowed()

TrackSectionControl

requestEnter()

DriveOntoTrackSection

Figure 4.2: An untimed MSD specification, formalizing the requirements of the
use case Drive onto track section

62 CHAPTER 4. SYNTHESIS

environment assumptions are modeled by an anti-scenario here: if enterNext
follows endOfTS without lastBreak occurring in the meantime, the cut will be
stuck in front of the hot false condition forever. This is therefore a liveness
violation of the assumption MSD. Assumption MSDs are distinguished from re-
quirement MSDs by the stereotype EnvironmentAssumption, which is graphically
indicated in the MSD label.

The UML model structure and the used stereotypes are documented in more
detail in the appendix, Sect. A.2.

4.3 Mapping untimed MSD specifications
An MSD specification given in the above form is mapped to a TGA network
as follows. Section 4.3.1 explains the automaton templates for the system and
environment automaton that are created for each MSD specification. Then
Sect. 4.3.2 explains how the MSDs are each mapped to an automaton template.

4.3.1 The environment and system automata for untimed
MSD specifications

The environment and system automata are shown in Fig. 4.3. The automata
refer to a number of globally declared variables, constants, channels, and func-
tions that are shown in Listing 4.1. Locally, the templates declare no further
functions or variables.

The basic idea is that the environment automaton can choose which events
occur in the environment, and the system automaton can choose which reaction
the system performs. Both automata can “produce” events in two steps: first,
the variable event is assigned with a value that represents the chosen event. Then
the automaton emits over a broadcast channel, which may synchronize edges in
the MSD automata. As will be explained shortly in Sect. 4.3.2, this leads to the
activation of MSDs, the progress of cuts in active MSDs, the occurrence of cold
violations or safety violations, or the termination of active MSDs.

Producing an environment event

Figure 4.3 shows the environment and system automata. Initially, the automata
are in the locations environmentInitial and systemInactive. In this state, the envi-
ronment may choose to take an uncontrollable edge to the location produceEvent.
In this example, there are three edges, assigning either the value of the constant
env_rc_endOfTS, env_rc_lastBreak or env_rc_enterNext to the variable event.
These constants represent the environment events appearing in the specification.
These are the messages endOfTS, lastBreak and enterNext, all sent from the
object env to the object rc.

The location produceEvent is committed, which means that an edge leaving
the location must be taken immediately, and before taking any other edge that
is not leaving a committed location. In this case, the edge that leads to the
location handleHiddenEvent must be taken. This edge emits over the broadcast
channel events. Emitting over this broadcast channel may synchronize certain

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 63

edges in the MSD automata as will be explained shortly. Emitting over this
broadcast channel also forces the system automaton to take the edge from the
location systemInactive to the location handleHiddenEvent. (Because this system
automaton edge is triggered by the uncontrollable edge in the environment au-
tomaton, and thus the system cannot control whether this edge is taken, this
edge is also modeled as an uncontrollable edge).

In the locations handleHiddenEvent, the system and environment must
progress all the currently active hidden events in the MSDs resp. assumption
MSDs. Remember that hidden events are assignments and conditions that must
be immediately progressed once they are enabled and before any other messages
are sent in the system (see Sect. 3.1.12). This works as follows: Because the
locations handleHiddenEvent in the environment and system automata are com-
mitted, edges leaving these locations must be taken immediately. The system
automaton can take an edge to the location systemActive. This edge emits over
the binary channel exitHandleHiddenEvent, and taking this edge therefore forces
the environment automaton to synchronously move to the location environment-
Initial. These edges can however only be taken if the guard expressions not
isHiddenEventEnabled(env) and not isHiddenEventEnabled(sys) evaluate
to true. The function isHiddenEventEnabled(int player) is a function that, if called
with the parameter sys, returns true if there are hidden events enabled in the re-
quirement MSDs. If the function is called with the parameter env, the function
returns true if there are hidden events enabled in the assumption MSDs. Be-
cause of these guard expressions, the environment and system automata must
take edges that loop in the handleHiddenEvent locations as long as there are
hidden events enabled in any of the MSDs or assumption MSDs. These loop-
ing edges emit over the binary channels hiddenEvent resp. hiddenAssumption-
MSDEvent, which synchronizes edges in the MSD automata resp. assumption
MSD automata that progress the cut beyond enabled assignments or conditions.
Eventually, all enabled hidden events will be processed and then the environ-
ment and system automata must progress to the locations environmentInitial and
systemActive.

The location produceEvent has an invariant not hotEnvViolation and
envCutChanged. This invariant keeps the environment from producing events
if, first, a sequence of events has occurred that leads to a safety violation of an
assumption MSD. In this case, as we will see later, the variable hotEnvViolation
will be set to true in the violated assumption MSD automaton. This restriction
is introduced for performance reasons, to reduce the state space described by
the TGA system. Second, the invariant keeps the environment automaton from
producing events that have no effect on the MSDs in the current state. The
environment must not produce events that do not activate or terminate any
MSDs, nor change the cut of any MSD. Allowing these events would unneces-
sarily blow-up the state space. The variable envCutChanged records whether a
previous environment event has activated or terminated any MSD or changed
the cut of any MSD. It is set to false when the environment automaton changes
from the location produceEvent to the location handleHiddenEvent. As we ex-
plain later, the variable is immediately again set to true if this edge synchronizes
edges in the MSD automata, thereby activating or terminating at least one re-

64 CHAPTER 4. SYNTHESIS

quirement or assumption MSD or changing the cut of at least one requirement
or assumption MSD. In order to “win” against the system, i.e., to falsify the
winning condition, the environment automaton will always try to avoid running
into situations where envCutChanged remains false.

hiddenAssumptionMSDEvent!

exitHandleHiddenEvent?

event = env_rc_enterNext

events?

environmentInitial

handleHiddenEvent event = env_rc_lastBreak

not isHiddenEventEnabled(env)

event = env_rc_endOfTS

not hotEnvViolation and envCutChanged

produceEvent

events!

exitHandleHiddenEvent!

events?

event = next_rc_enterAllowed

event = rc_next_requestEnter

hiddenEvent!

handleHiddenEvent

systemActive

produceEvent

active(next_rc_enterAllowed)

not isActive(sys)

active(rc_next_requestEnter)

not hotViolation and sysCutChanged

not isHiddenEventEnabled(sys)

systemInactive

environment

system

sysCutChanged=false
event = next_rc_enterAllowed

events!
envCutChanged=false

Figure 4.3: The environment and system automata for an untimed example
MSD specification

Producing system events

When the environment and system automata are in the locations environment-
Initial and systemActive, the system automaton must immediately take an edge
leaving the committed location systemActive. This can be either the edge leading

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 65

back to the location systemInactive, or one of the edges leading to the location
produceEvent. The edge back to the location systemInactive is guarded by an
expression not isActive(sys). The function isActive(int player) is a function
that, if called with the parameter sys, returns true if there are active (i.e.
enabled executed) messages in the requirement MSDs. If the guard expression
evaluates to false, which means that there are active messages left to be executed
by the system, one of the edges leading to the location produceEvent must be
taken. These edges assign different constant values to the variable event. Each
of these constants represents a message that is sent by a system object.

When the system automaton is in the location produceEvent, it must im-
mediately take an edge to the location handleHiddenEvent. In doing so, like
the environment automaton, the system automaton emits over the broadcast
channel events, which may synchronize edges in the MSD automata. Emitting
over the events channel also forces the environment automaton into the location
handleHiddenEvent. Now, as explained above, both automata are again forced
to process all hidden events before the environment and system automata can
return to the locations environmentInitial and systemActive.

Note that the system is forced to immediately produce system events as long
as there remain active events, and it can only produce events that are currently
active in at least one active MSD. The environment can only choose to produce
the next environment event once there are no active system events left and
the system leaves the committed location systemActive to systemInactive. This
behavior corresponds to the play-out semantics described in Sect. 3.1.8.

Furthermore, similar to the environment automaton template, the loca-
tion produceEvent in the system automaton template has an invariant not
hotViolation and sysCutChanged. This invariant keeps the system from pro-
ducing events if a sequence of events has occurred that lead to a safety violation
of a requirement MSD. Also, it keeps the system from producing events that do
not activate or terminate any MSDs, nor change the cut of any MSD. These are
again, as for the environment automaton template, measures to prevent an un-
necessary blow up of the state space. (Note that, as explained so far, the system
can only produce events if an according message is active in at least one require-
ment MSD. Consequently, producing a system event will in any case progress
the cut of at least one MSD. Therefore, the variable sysCutChanged and the
mechanism for keeping the system from producing events without any relevant
effect is actually obsolete here. However, as will be discussed in Sect. 4.7.2, the
guards on the edges to the location produceEvent must be removed if a certain
kind of consistency is to be shown. Then the mechanism for keeping the system
from producing events without any relevant effect becomes relevant again, and
it is therefore included in the system automaton template for that particular
case.)

In the system automaton, there is furthermore an edge that loops in the lo-
cation systemInactive. This edge is important, because in the winning condition,
which will be presented shortly in Sect. 4.4, we require that the system must be
able to infinitely often enter that location. The system is able to do so infinitely
often if it infinitely often reacts to environment events and eventually returns
to the location systemInactive from the location systemActive. If, however, the

66 CHAPTER 4. SYNTHESIS

environment chooses not to produce any event at all, the system automaton can
still take a transition where it loops in the location systemInactive and, this way,
satisfy the winning condition.

Global declarations (part 1)

The declaration of variables, channels, constants and functions that the envi-
ronment and system automata refer to are shown in Listing 4.1. The implemen-
tations of the functions depend on the MSDs in the specification. Therefore, the
details of their implementation will be discussed in the following section, where
it is explained how MSDs and messages, conditions and assignments are mapped
to different parts in the TGA system. The language shown in the listings is the
C-like language for declaring variables, clocks and functions in Uppaal, see the
Uppaal tutorial [BDL04] for more information. The code comments explain
the purpose of the created elements.

Listing 4.1: Global declarations (Part I)
/∗ Broadcast channel t h a t synchron i ze s the edges in the MSD

automata when ’ producing ’ even t s in the system and
environment automata . ∗/

broadcast chan events ;

/∗ This v a r i a b l e r e p r e s e n t s the event t h a t the system
or environment choose to ’ produce ’ . ∗/

i n t event = 0 ;

/∗ These v a r i a b l e s r ep r e s e n t whether a s a f e t y v i o l a t i o n
occurred in a requirement or assumption MSD,
r e s p e c t i v e l y . ∗/

bool ho tV io l a t i on = f a l s e ;
bool hotEnvViolat ion = f a l s e ;

/∗ These v a r i a b l e s are s e t to f a l s e i f an event
produced by the environment or system does not
change the cut o f any MSD. ∗/

bool envCutChanged = true ;
bool sysCutChanged = true ;

/∗ Binary channe l s t h a t synchron i ze an edge in the system
or environment automaton wi th an edge in one requirement
or assumption MSD automaton f o r p r o g r e s s i n g the MSD’ s cut
beyond enab led c o n d i t i o n s or assignments , or f o r r e s e t t i n g
the MSD’ s cut when i t terminated . ∗/

chan hiddenEvent ;
chan hiddenAssumptionMSDEvent ;

/∗ Binary channel t h a t synchron i ze s the edges in the
environment and system automata f o r synchronous ly l e a v i n g
the ’ handleHiddenEvent ’ l o c a t i o n s . ∗/

chan exitHandleHiddenEvent ;

/∗ Constants de f ined f o r b e t t e r r e a d a b i l i t y ;
they are used in s e v e r a l f u n c t i o n s . ∗/

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 67

const i n t env = 0 ;
const i n t sys = 1 ;

/∗ These cons tan t s r ep r e s e n t the d i f f e r e n t environment or system
message even t s t h a t appear in the s p e c i f i c a t i o n . ∗/

const i n t env_rc_endOfTS = 2 ;
const i n t rc_next_requestEnter = 3 ;
const i n t env_rc_lastBreak = 4 ;
const i n t env_rc_enterNext = 5 ;
const i n t next_rc_enterAllowed = 6 ;

/∗ re turns whether t h e r e i s any hidden event c u r r e n t l y enab led
in a requirement MSD (p l ay e r = sys) or assumption MSD
(p l a y e r = env) ∗/

bool isHiddenEventEnabled (i n t p laye r) { . . . }

/∗ re turns whether t h e r e i s any execu ted message or any
hidden event c u r r e n t l y enab led in a requirement MSD
(p l a y e r = sys) or assumption MSD (p l a y e r = env) ∗/

bool i sAc t i v e (i n t p laye r) { . . . }

/∗ re turns whether t h e r e i s any execu ted message enab led in
any o f the MSDs t h a t r e p r e s e n t s the g iven diagram event ∗/

bool a c t i v e (i n t ev) { . . . }

/∗ a d d i t i o n a l g l o b a l f u n c t i o n s w i l l be c rea t ed f o r each
MSD in the s p e c i f i c a t i o n . ∗/

. . .

4.3.2 Mapping the MSDs to TGA

For each MSD in the specification, an MSD automaton template will be created.
This section explains this mapping by the example of the MSD automaton tem-
plate that is created for the MSD RequestEnterAtEndOfTrackSection, as shown
in the above example specification (see Fig. 4.2). The automaton for this MSD
is shown in Fig. 4.4. Listing 4.3 shows functions declared locally for that au-
tomaton template and Listing 4.4 shows additional global functions that are
created for this MSD, and it shows fragments of the function bodies of the
global functions that were introduced above in Listing 4.1.

Global declarations (part 2)

The basic idea of an MSD automaton is that it represents the progress of the
cut of the MSD according to the iterative MSD semantics (see Sect. 3.1.6) upon
the occurrence of environment or system events. It furthermore resets the cut
when cold violations occur or the active MSD terminates, i.e., the cut reaches
the end of the MSD. The cut is represented by a number of globally declared
integer variables which represent the current location of the cut per lifeline.
These variables are called lifeline variables and there is one lifeline variable
created per lifeline and per MSD in the specification. These lifeline variables
are named <MSD-name>_<instance-name>. Listing 4.2 shows the globally
declared lifeline variables for the MSD RequestEnterAtEndOfTrackSection.

68 CHAPTER 4. SYNTHESIS

Listing 4.2: The globally declared lifeline variables
i n t RequestEnterAtEndOfTrackSection_env = 0 ;
i n t RequestEnterAtEndOfTrackSection_rc = 0 ;
i n t RequestEnterAtEndOfTrackSection_next = 0 ;

The MSD automaton

The MSD automaton consists of two locations. One location is the initial loca-
tion, in which a number of edges loop. The second location is a location that
represents the occurrence of a hot violation in the MSD. Except for the one edge
that leads to the latter location, all edges loop in the initial location. The edges
are all synchronized with edges in the environment or system automaton via the
channels events or hiddenEvent. These edges represent different messages and
hidden events in the MSD.

First, in each MSD automaton template, one edge is created that corresponds
to the first event of the MSD (also called the minimal event). This edge is
enabled in the initial cut, which means that all lifelines are at their initial
position, (0,0,0) in this case. Additionally, the edge is enabled when the current
event produced by the environment or system automaton is the first event in
the MSD. The edge is synchronized by the broadcast channel events, and when
triggered, the update expression increases all the lifeline variables to 1.

Second, each MSD automaton has edges for all the other messages in the
MSD. For each message that is not the first, there is an edge with a guard that
also checks that the currently produced event corresponds to this message and
whether the lifeline variables are in a configuration which enables the sending
and receiving of the message in the MSD. Instead of determining that directly
in the guard expression, this is implemented in the Boolean function enabled(int
ev), which is created locally for each MSD template (see Listing 4.3). These
edges are also triggered by the broadcast channel events. The update expression
increments the lifeline variables of the sending and receiving lifeline. Figure 4.4
shows the edges created for the messages requestEnter and enterAllowed.

Third, each MSD automaton has an edge for handling the termination of the
active MSD. Terminating the active MSD is a hidden event, and therefore the
edge is synchronized via the binary channel hiddenEvent. The edge is enabled
when the lifeline configuration has reached its maximal value, (1,3,3) in this
case, and it updates the lifeline variables to the initial configuration (0,0,0).

Fourth, two edges are created in an MSD automaton which handle cold
violations. One of these two edges is responsible for handling the particular
case where the cold violation is caused by the occurrence of the diagram’s first
event. At the occurrence of a cold violation, the active copy of the diagram
is discarded, which is expressed here by resetting the lifeline variables to their
initial configuration. When the cold violation is caused by the first event, the
active copy of the diagram is discarded, but a new active copy is created at the
same time. This is expressed here by resetting all the lifeline variables of the
violated MSD to 1. (This corresponds to the behavior of the Büchi automaton
described in Sect. 3.1.6.) This behavior is realized by these two edges as follows.

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 69

RequestEnterAtEndOfTrackSection_rc++,
RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_env++

events?

events?

RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_rc++

RequestEnterAtEndOfTrackSection_rc++,
RequestEnterAtEndOfTrackSection_next++

RequestEnterAtEndOfTrackSection_env = 0,
RequestEnterAtEndOfTrackSection_rc = 0,
RequestEnterAtEndOfTrackSection_next = 0

events?

events?

hiddenEvent?

events?

events?

eventInMSD(event)
and not enabled(event)
and hotEventEnabled()

eventInMSD(event)
and not enabled(event)
and not event == env_rc_endOfTS
and not hotEventEnabled()

event == env_rc_endOfTS
and not enabled(event)
and not hotEventEnabled()

violation initial

RequestEnterAtEndOfTrackSection_rc = 1,
RequestEnterAtEndOfTrackSection_next = 1

hotViolation = true

RequestEnterAtEndOfTrackSection_env = 0,
RequestEnterAtEndOfTrackSection_rc = 0,
RequestEnterAtEndOfTrackSection_next = 0

(RequestEnterAtEndOfTrackSection_env == 1
and RequestEnterAtEndOfTrackSection_rc == 3
and RequestEnterAtEndOfTrackSection_next == 3)

event == rc_next_requestEnter
and enabled(event)

event == env_rc_endOfTS
and enabled(event)

event == next_rc_enterAllowed
and enabled(event)

RequestEnterAtEndOfTrackSection_env = 1,

minimal MSD
event

second
message

third
message

MSD END

cold violation

cold violation
by minimal event

hot violation

Figure 4.4: The TGA for the MSD RequestEnterAtEndOfTrackSection

The edge for the general-case cold violation is enabled if the current event
is an event in the MSD that is not enabled. The former is determined by the
Boolean function eventInMSD(int event) (see Listing 4.3). The latter is deter-
mined by the aforementioned Boolean function enabled(int ev). Also, the current
event must not be the first event of the MSD (not event==env_rc_endOfTS)
and that no hot events are enabled in the current cut, because this would con-
stitute a hot violation. Whether a hot event is enabled in the current cut is
determined by the Boolean function hotEventEnabled() (see Listing 4.3).

The edge for handling a cold violation by a first event is only enabled if the
current event is the first event of the MSD (event==env_rc_endOfTS). Further-
more, the event must not be currently enabled. The first event is enabled in the
initial cut, in the configuration (0,0,0), but if the same message occurs multiple
times in the MSD, it may also be enabled in other configurations.

Not shown in Fig. 4.4 is that all edges that change the values of the lifeline
variables, i.e., all edges that loop in the initial location, set the variables env-
CutChanged and sysCutChanged to true, in order to express that an event that
was produced by the environment or system template automaton has changed
the cut of at least one MSD (see in Sect. 4.3.1 that this is part of an optimization
mechanism that keeps the system and environment from producing events that
do not change the cut of any active MSD).

70 CHAPTER 4. SYNTHESIS

In the following, the implementation of the function declarations in List-
ing 4.3 and 4.4 are explained in more detail.

Declarations in the MSD automaton template

Listing 4.3 shows three Boolean functions created locally for each MSD automa-
ton template. The first function enabled(int ev) consists of a return statement
that is a disjunction of expressions which encode for each visible event (message)
whether it is enabled in the current cut (i.e., in the current configuration of the
MSD’s lifeline variables). The function hotEventEnabled() returns true if the
current cut is hot. Its return statement is a disjunction of expressions over the
lifeline variables, which encode for each hot message and condition in the MSD
whether it is enabled. The function eventInMSD(int event) returns true if the
event encoded in the integer parameter ev is an event in the MSD. Its return
statement consists of a disjunction of expressions which check for each visible
event the equality of the parameter variable ev and the integer constant that is
corresponding to the visible event in the MSD.

Listing 4.3: The functions declared in the automaton template for the MSD
RequestEnterAtEndOfTrackSection

/∗ re turns whether the event ev i s enab led in the
curren t cut o f the MSD ∗/

bool enabled (i n t ev){
return ((ev == env_rc_endOfTS)

and (RequestEnterAtEndOfTrackSection_env == 0
and RequestEnterAtEndOfTrackSection_rc == 0
and RequestEnterAtEndOfTrackSection_next == 0)

or (ev == rc_next_requestEnter)
and (RequestEnterAtEndOfTrackSection_rc == 1
and RequestEnterAtEndOfTrackSection_next == 1)

or (ev == next_rc_enterAllowed)
and (RequestEnterAtEndOfTrackSection_rc == 2
and RequestEnterAtEndOfTrackSection_next == 2)

) ;
}

/∗ re turns whether any hot event i s enab led in the
curren t cut o f the MSD ∗/

bool hotEventEnabled (){
return ((f a l s e

or (RequestEnterAtEndOfTrackSection_rc == 1
and RequestEnterAtEndOfTrackSection_next == 1)

or (RequestEnterAtEndOfTrackSection_rc == 2
and RequestEnterAtEndOfTrackSection_next == 2))) ;

}

/∗ re turns whether the event ev i s in the MSD ∗/
bool eventInMSD(i n t ev){

return (ev == env_rc_endOfTS
or ev == rc_next_requestEnter
or ev == next_rc_enterAllowed) ;

}

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 71

Global declarations (part 3)

Listing 4.4 shows globally declared Boolean functions, completing the declara-
tions shown in Listing 4.1 and 4.2. First, there are the two functions of the
form

(1) <MSD-name>_active(int ev), and
(2) <MSD-name>_hiddenEventEnabled()

which are created for each MSD in the specification. Additionally, there are the
Boolean functions

(3) active(int ev),
(4) isHiddenEventEnabled(int player), and
(5) isActive(int player)

which are created once per MSD specification. The declarations of the latter
functions were already shown in Listing 4.1. In the following it is explained how
the bodies of these functions are composed of certain fragments that are created
for each MSD in the specification.

Let us discuss the implementation principle of the function kinds (1) and
(2) first. The function RequestEnterAtEndOfTrackSection_active(int ev) is an
example of functions of kind (1). These functions consist of a return statement
that is a disjunction of expressions that are created for each executed visible
event and which encode whether the event is active in the current cut. The
functions of kind (2) have the purpose to determine whether there are hidden
events enabled in the current cut of the corresponding MSD. These functions
consist of a return statement which is a disjunction of expressions to determine
for each hidden event whether it is enabled in the current cut. Since the MSD
RequestEnterAtEndOfTrackSection has only one hidden event, namely the event
of its termination, the function RequestEnterAtEndOfTrackSection_hiddenEvent-
Enabled() only returns whether the lifeline variables of the MSD have reached
their maximal configuration (1,3,3).

The function active(int ev) determines whether the event encoded by the
integer parameter is active in any of the MSDs. It implements a return state-
ment which is the disjunction of calls to the functions of kind (1) explained
above. Since only the MSD RequestEnterAtEndOfTrackSection is considered for
now, just a call to the function RequestEnterAtEndOfTrackSection_active(int ev)
is shown here. The dots state that further function calls to functions that cor-
respond to the other MSDs in the specification will be added to the disjunction.

The function isHiddenEventEnabled(int player) checks whether there is any
hidden event enabled in the assumption or requirement MSDs. It does so by a
return statement that is a disjunction of calls to all the functions of the kind
(2), in conjunction with either the expression player == env if the MSD is an
assumption MSD, or in conjunction with the expression player == sys if the
MSD is a requirement MSD. Again, since there is yet only one regular MSD
regarded here, the disjunction of the return statement just contains a single
conjunction statement. The dots state that further conjunction statements,
corresponding to the other MSDs, will be added to the disjunction.

72 CHAPTER 4. SYNTHESIS

The function isActive(int player) determines whether there is any event cur-
rently active in any of the assumption or requirement MSDs. It does so by a
return statement that is a disjunction of statements that are a conjunction of
a call to the function active(int ev) and the expression player == env if the
event is an environment event or the expression player == sys if the event is a
system event. It is required that there are no executed environment messages in
requirement MSDs and that there are no executed system messages in assump-
tion MSDs. Additionally, the environment resp. system is considered active
if there are hidden events enabled in any assumption MSD resp. requirement
MSD. Therefore, a call to the function isHiddenEventEnabled(int player) with the
parameter player is added to the disjunction.

Listing 4.4: Global declarations (Part II) – additions made for the MSD Request-
EnterAtEndOfTrackSection

/∗ re turns whether the event ev i s a c t i v e in the
curren t cut o f MSD RequestEnterAtEndOfTrackSection ∗/

bool RequestEnterAtEndOfTrackSection_active (i n t ev){
return (f a l s e

or (ev == rc_next_requestEnter
and RequestEnterAtEndOfTrackSection_rc == 1
and RequestEnterAtEndOfTrackSection_next == 1)

or (ev == next_rc_enterAllowed
and RequestEnterAtEndOfTrackSection_next == 2
and RequestEnterAtEndOfTrackSection_rc == 2)

) ;
}

. . .

/∗ re turns whether any hidden event i s enab led in the
curren t cut o f MSD RequestEnterAtEndOfTrackSection ∗/

bool RequestEnterAtEndOfTrackSection_hiddenEventEnabled (){
return (RequestEnterAtEndOfTrackSection_env == 1

and RequestEnterAtEndOfTrackSection_rc == 3
and RequestEnterAtEndOfTrackSection_next == 3) ;

}

. . .

/∗ re turns whether the event ev i s a c t i v e in the
curren t cut o f any MSD ∗/

bool a c t i v e (i n t ev){
return RequestEnterAtEndOfTrackSection_active (ev)
or . . . ;

}

/∗ re turns whether a hidden event i s enab led in the
curren t cut o f any requirement MSD (p l ay e r = sys) or
any assumption MSD (p l a ye r = env) ∗/

bool isHiddenEventEnabled (i n t p laye r){
return ((p laye r == sys and

RequestEnterAtEndOfTrackSection_isHiddenEventEnabled ())
or . . .) ;

}

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 73

/∗ re turns whether any system event i s a c t i v e or any hidden
event i s enab led in the curren t cut o f any MSD ∗/

bool i sAc t i v e (i n t p laye r){
return (isHiddenEventEnabled (p layer))

or (
RequestEnterAtEndOfTrackSection_active (rc_next_requestEnter)

and p laye r == sys)
or (
RequestEnterAtEndOfTrackSection_active (next_rc_enterAllowed)

and p laye r == sys)
or . . .) ;

}

The above example only covers a small subset of the language constructs
defined for LSCs and MSDs. Encodings for asynchronous messages, combined
fragments (sub-diagrams for loops or if-then-else constructs) are to be worked
out the future. The encoding scheme for assignments and conditions is explained
in the following.

4.3.3 Encoding assignments and conditions

To illustrate the encoding of assignments and conditions Fig. 4.5 shows an ex-
tended version of the MSD RequestEnterAtEndOfTrackSection. Here an assign-
ment and a cold condition are added for the purpose of illustrating the encoding
of these constructs. Note that these constructs can be applied in more mean-
ingful ways once the synthesis is extended to consider object properties and
parameterized messages. For now the main application for conditions is the
terminal condition in anti-scenarios. Also, the principle of assignments and
conditions is extended to clock resets and time conditions that can be used to
formulate minimal and maximal delays between events. This is explained in
Sect. 4.5.

In the MSD shown in Fig. 4.5, a diagram variable i is initialized with the value
0 after the message endOfTS was sent. Then the message requestEnter must
be sent and the value of i is checked to be equal to 3. Since i was not changed
since its initialization (remember that diagram variables are only visible within
the scope of the active MSD, see Sect. 3.1.12), the condition will evaluate to
false. Because it is a cold condition, this leads to a cold violation of the diagram.

Figure 4.6 shows the automaton created for the MSD in Fig. 4.5. An addi-
tional edge is created for the assignment and two additional edges are created
for the cold condition. They are highlighted by labels and they are explained
in the following. (Again not shown here is that all edges that loop in the initial
location set the variables envCutChanged and envCutChanged to true.)

Assignments

Assignments are represented in the MSD automaton by an edge similar to the
edge for the MSD END event as shown in Fig. 4.4. The guard of the assignment
edge ensures that the current cut is immediately prior to the assignment on
all lifelines that the assignment covers. The update label increases the lifeline

74 CHAPTER 4. SYNTHESIS

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed

RequestEnterAtEndOfTrackSection

i = 3

i = 0

Figure 4.5: The MSD RequestEnterAtEndOfTrackSection extended by an as-
signment and a condition.

events?

RequestEnterAtEndOfTrackSection_next = 0,
RequestEnterAtEndOfTrackSection_rc = 0,
RequestEnterAtEndOfTrackSection_env = 0

events?

events?

RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_rc++

RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_rc++

RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_rc++,
i = 0

RequestEnterAtEndOfTrackSection_rc++,
RequestEnterAtEndOfTrackSection_next++

hiddenEvent?

hiddenEvent?

hiddenEvent?

events?

hiddenEvent?

events?

events?

(RequestEnterAtEndOfTrackSection_env == 1
and RequestEnterAtEndOfTrackSection_rc == 5
and RequestEnterAtEndOfTrackSection_next == 5)

event == env_rc_endOfTS
and not enabled(event)
and not hotEventEnabled()

event == env_rc_endOfTS and enabled(event)

event == rc_next_requestEnter and enabled(event)

initial

eventInMSD(event)
and not enabled(event)
and not event == env_rc_endOfTS
and not hotEventEnabled()

violation

eventInMSD(event)
and not enabled(event)
and hotEventEnabled()

RequestEnterAtEndOfTrackSection_next++,
RequestEnterAtEndOfTrackSection_rc++,
RequestEnterAtEndOfTrackSection_env++

RequestEnterAtEndOfTrackSection_env = 1,
RequestEnterAtEndOfTrackSection_rc = 1,
RequestEnterAtEndOfTrackSection_next = 1

RequestEnterAtEndOfTrackSection_env = 0,
RequestEnterAtEndOfTrackSection_rc = 0,
RequestEnterAtEndOfTrackSection_next = 0

RequestEnterAtEndOfTrackSection_env = 0,
RequestEnterAtEndOfTrackSection_rc = 0,
RequestEnterAtEndOfTrackSection_next = 0

event == next_rc_enterAllowed and enabled(event)

(RequestEnterAtEndOfTrackSection_next == 1
and RequestEnterAtEndOfTrackSection_rc == 1)

hotViolation = true

(RequestEnterAtEndOfTrackSection_next == 3
and RequestEnterAtEndOfTrackSection_rc == 3
and not(i == 3))

(RequestEnterAtEndOfTrackSection_next == 3
and RequestEnterAtEndOfTrackSection_rc == 3
and i == 3)

assignment

cold condition
(progress)

cold condition
(violation)

Figure 4.6: The TGA for the MSD RequestEnterAtEndOfTrackSection extended
by an assignment and a condition

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 75

variables of the lifelines that the assignment covers. The assignment expression,
here i = 0, is also part of the edge’s update label. Assignment expressions are
restricted to the form <var> = <expr>, where <var> is a integer variable and
<expr> is a valid Uppaal expression which evaluates to an integer value. Fur-
thermore, <var> is mapped to an integer variable declaration in the declarations
of the respective MSD template automaton.

Since the assignment is a hidden event, the edge is synchronized via the chan-
nel hiddenEvent. Also the global function RequestEnterAtEndOfTrackSection_is-
HiddenEventEnabled() is extended to return true when the assignment is enabled
(see Listing 4.5).

Cold Conditions

As explained in Sect. 3.1.12, cold conditions are evaluated immediately. The
active MSD progresses when the condition expression evaluates to true, and
there is a cold violation of the active MSD (the active MSD is discarded) when
the condition expression evaluates to false. This behavior is realized in the
MSD automaton by two edges that are created per cold condition: one, called
the progressing edge, which is enabled when the condition is enabled and the
expression evaluates to true, and another, called the violating edge, which is
enabled when the condition is enabled and the evaluation expression evaluates
to false. The latter edge updates all lifeline variables to 0. Figure 4.6 shows the
two edges.

Both edges are synchronized via the channel hiddenEvent. Also the global
function RequestEnterAtEndOfTrackSection_isHiddenEventEnabled() is extended
to return true when the condition is enabled (see Listing 4.5). Thus, either the
progressing edge or the violating edge will be triggered by the system automaton
immediately when the condition is enabled.

Listing 4.5: Global declarations (Part II) for the extended version of the MSD
RequestEnterAtEndOfTrackSection

/∗ re turns whether any hidden event i s enab led in the
curren t cut o f MSD RequestEnterAtEndOfTrackSection ∗/

bool RequestEnterAtEndOfTrackSection_isHiddenEventEnabled (){
return (

(RequestEnterAtEndOfTrackSection_env == 1
and RequestEnterAtEndOfTrackSection_rc == 5
and RequestEnterAtEndOfTrackSection_next == 5)

or RequestEnterAtEndOfTrackSection_next == 1
and RequestEnterAtEndOfTrackSection_rc == 1

or RequestEnterAtEndOfTrackSection_next == 3
and RequestEnterAtEndOfTrackSection_rc == 3

) ;
}

Hot Conditions

When the cut reaches the hot condition, but the condition expression evaluates
to false, this means that the MSD cannot progress beyond this condition until

76 CHAPTER 4. SYNTHESIS

it becomes true. It is a liveness violation only when that is never the case.
Because this approach does not yet support object properties, hot conditions
can only refer to diagram variables. Because of this restriction, in most cases
if a hot condition is reached and evaluates to false, we know that it will never
render true again. (Because of the partial order of events in an MSD, it could
be that an assignment can be executed while the hot condition is enabled, and
that this assignment changes the value of a diagram variable such that the
condition expression can be evaluated to true. These cases are, however, not
very common.)

Therefore, we can interpret it as a safety violation if a hot condition is en-
abled that evaluates to false. To encode this behavior, a pair of edges is created
for each hot condition, similar to the encoding of cold conditions explained
above. The update label of the violating edge additionally sets the variable
hotViolation to true.

4.3.4 Forbidden messages

Forbidden messaged are used to express that certain events must not occur
while an MSD is active or that the active MSD shall be interrupted at the
occurrence of a certain event (see Sect. 3.1.16). They must have the Forbidden
stereotype applied and are allowed only at the end of an MSD. Furthermore,
immediately prior to the first forbidden message in the MSD there must be a
condition marking the end of the MSD. This condition must have the expression
false and it must cover all lifelines of the MSD. The assumption MSD Last-
BreakBeforeEnterNext is an example of an MSD that contains a cold forbidden
message (see Fig. 4.2).

A hot forbidden message represents an event that must not occur while the
MSD is active. Therefore, if the MSD is active and the forbidden event occurs,
this is a safety violation. The only exception is that another, non-forbidden
message representing the same event is contained in the MSD and is currently
enabled. A cold forbidden message represents an event that if it occurs leads
to a cold violation of the MSD. Again, if there is currently a regular message
enabled which represents that event, this does not lead to a cold violation of the
MSD. Note that the occurrence of an event that corresponds to a cold forbidden
message in an MSD does not produce a safety violation if the active MSD is in
a hot cut. In other words, the occurrence of an event that corresponds to a cold
forbidden message always safely interrupts the active diagram.

In the MSD automaton template, forbidden messages are not represented by
any edge. Instead they just affect the return expression of the local functions
eventInMSD(int ev) and hotEventEnabled() of the MSD automaton template.
These functions influence whether the edges for the cold violation or the hot
(safety) violation are taken in the MSD automaton (see Fig. 4.4). These func-
tions are extended for each cold and hot forbidden messages in the MSD as
follows

First, for each hot or cold forbidden message, the return statement of the
function eventInMSD(int ev) is extended to return true if the given parameter
corresponds to the forbidden message. Second, the function hotEventEnabled()

4.3. MAPPING UNTIMED MSD SPECIFICATIONS 77

is extended to always return false if the current event corresponds to a cold
forbidden message and to always returns true if the current event corresponds
to a hot forbidden message and the MSD is active, i.e., the lifeline variables are
not in the initial configuration. If the current event neither corresponds to a hot
or cold forbidden message, the function still returns whether the current cut is
hot.

To realize this behavior of the function hotEventEnabled(), the return state-
ment is constructed according to the following schema (see Listing 4.7). The
return statement is a conjunction that as a first statement contains a disjunc-
tion. The first statement in the disjunction checks whether any hot event is
enabled in the current cut of the active MSD. The disjunction furthermore con-
sists of statements that check whether the current event corresponds to a hot
forbidden message and if not all lifeline variables are at the initial configuration.
The second statement of the conjunction checks whether the current event does
not correspond to a cold forbidden message.

Listing 4.6: The schema for constructing the function hotEventEnabled()
/∗ re turns whether any hot event i s enab led in the

curren t cut o f the MSD ∗/
bool hotEventEnabled (){

return ((<a hot message i s enabled in the cur rent cut>
or (<the cur rent event corresponds to a hot

fo rb idden message>
and <the l i f e l i n e v a r i a b l e s are not at the

i n i t i a l c on f i gu ra t i on >))
and <the cur rent event does not correspond to a

co ld fo rb idden message >);
}

4.3.5 Assumption MSDs

The example MSD specification introduced above (see Fig. 4.2) contains an as-
sumption MSD. Assumption MSDs have the stereotype EnvironmentAssumption
applied, but otherwise the same constructs are used as in requirement MSDs.

The set of assumption MSDs describes the possible sequences of events that
can take place in the environment. Arbitrary sequences of events may occur in
the environment as long as, first, never a hot violation occurs in the assumption
MSDs and, second, eventually there are no active (enabled executed) events in
any of the active assumption MSDs. The system is only obliged to adhere to
the requirements if no assumption MSD is violated.

The encoding of the assumption MSDs basically follows the same principle as
the encoding of the requirement MSDs. There are just a few differences. First,
all the edges in the assumption MSD automaton are uncontrollable. Second,
edges which represent hidden events are synchronized over the binary channel
hiddenAssumptionMSDEvent instead of the channel hiddenEvent. Third, if a
safety violation occurs, this results in setting the variable hotEnvViolation to
true instead of the variable hotViolation.

78 CHAPTER 4. SYNTHESIS

Figure 4.7 shows the automaton created for the MSD LastBreakBeforeEnter-
Next. The edges are uncontrollable and the edges that represent the hidden
events (the hot condition and the end of the MSD) are synchronized via the
channel hiddenAssumptionMSDEvent. The edge that represents the violation of
the hot condition sets the variable hotEnvViolation to true. Aside the just high-
lighted exceptions, the encoding of the different parts of the assumption MSD
follows the principles explained in Sect. 4.3.2. Again, not shown in this figure
is that all edges that loop in the initial location set the variables sysCutChanged
and envCutChanged to true, in order to express that an event produced by the
system or environment automaton has changed the cut of at least one MSD in
the specification (see Sect. 4.3.1).

events?

events?

events?

LastBreakBeforeEnterNext_env++,
LastBreakBeforeEnterNext_rc++

LastBreakBeforeEnterNext_env = 0,
LastBreakBeforeEnterNext_rc = 0,
hotEnvViolation = true

LastBreakBeforeEnterNext_env++,
LastBreakBeforeEnterNext_rc++

LastBreakBeforeEnterNext_env++,
LastBreakBeforeEnterNext_rc++

hiddenAssumptionMSDEvent?

hiddenAssumptionMSDEvent?

events?

hiddenAssumptionMSDEvent?

events?

eventInMSD(event)
and not enabled(event)
and not event == env_rc_endOfTS
and not hotEventEnabled()

event == env_rc_endOfTS
and not enabled(event)
and not hotEventEnabled()

(LastBreakBeforeEnterNext_env == 4
and LastBreakBeforeEnterNext_rc == 4)

initial

eventInMSD(event)
and not enabled(event)
and hotEventEnabled()

violation

LastBreakBeforeEnterNext_env = 0,
LastBreakBeforeEnterNext_rc = 0

LastBreakBeforeEnterNext_env = 0,
LastBreakBeforeEnterNext_rc = 0

hotEnvViolation = true

LastBreakBeforeEnterNext_env = 1,
LastBreakBeforeEnterNext_rc = 1

event == env_rc_endOfTS and enabled(event)

event == env_rc_enterNext and enabled(event)

(LastBreakBeforeEnterNext_env == 2
and LastBreakBeforeEnterNext_rc == 2
and not(false))

(LastBreakBeforeEnterNext_env == 2
and LastBreakBeforeEnterNext_rc == 2
and false)

minimal MSD
event

second
message

MSD END

cold violation

cold violation
by minimal event

hot violation

hot condition
(progress)

hot condition
(violation)

Figure 4.7: The TGA for the assumption MSD LastBreakBeforeEnterNext

Listing 4.7 shows the functions that are created locally for the MSD automa-
ton template. The encoding of these functions follows the principles explained
above (Sect. 4.3.2). Note that the return statement of the function eventIn-
MSD(int ev) returns true if the given parameter value equals the constant rep-
resenting the forbidden event lastBreak. Also the conjunction in the return
statement of the function hotEventEnabled() contains the statement event !=
env_rc_lastBreak. Thus the function always returns false if the current event
is lastBreak. This encoding ensures that the cold violation edge is taken if
that event occurs (and is not currently enabled).

4.4. THE WINNING CONDITION 79

Listing 4.7: The functions declared in the automaton template for the MSD
LastBreakBeforeEnterNext

/∗ re turns whether the event ev i s enab led in the
curren t cut o f the MSD ∗/

bool enabled (i n t ev){
return (ev == env_rc_endOfTS

and LastBreakBeforeEnterNext_env == 0
and LastBreakBeforeEnterNext_rc == 0

or (ev == env_rc_enterNext
and LastBreakBeforeEnterNext_rc == 1
and LastBreakBeforeEnterNext_env == 1)

) ;
}

/∗ re turns whether any hot event i s enab led in the
curren t cut o f the MSD ∗/

bool hotEventEnabled (){
return ((f a l s e

or f a l s e)
and event != env_rc_lastBreak) ;

}

/∗ re turns whether the event ev i s in the MSD ∗/
bool eventInMSD(i n t ev){

return (ev == env_rc_endOfTS
or ev == env_rc_enterNext
or ev == env_rc_lastBreak) ;

}

The encoding explained above produces a TGA network that represents the
play-out behavior of the MSD specification. The difference to the original se-
mantics of play-out is that here an iterative semantics is assumed (see Sect. 3.1.6)
and that the concept of assumption MSDs is introduced.

4.4 The winning condition
In order for Uppaal Tiga to calculate an admissible controller for the MSD
specification, it remains to specify a winning condition that formulates when
the system satisfies the MSD specification. In the following, a temporal prop-
erty is explained by which Uppaal Tiga checks the consistent executability (see
Sect. 3.1.9) of the MSD specification under consideration of environment events.
In the discussion (Sect. 4.7) it will be explained how to slightly modify the sys-
tem and environment automata so that also the consistency of the specification
can be shown by Uppaal Tiga.

4.4.1 Checking consistent executability with Uppaal Tiga

As explained in Sect. 3.1.9, a specification is consistently executable if there
exists a play-out algorithm (as the implementation of the system) which never
produces any safety or liveness violations, i.e., never takes forbidden steps and

80 CHAPTER 4. SYNTHESIS

always eventually takes steps in order to progress beyond enabled hot messages
and conditions. Additionally, the environment must be able to produce events
infinitely often, or, in other words, the system must “listen” to environment
events infinitely often and never take an infinite super-step. When extending
the setting by environment assumptions in the form of assumption MSDs, the
system is only required to fulfill the requirements if the environment assumptions
are satisfied. The environment assumptions are satisfied if there are never any
safety or liveness violations in the assumption MSDs. In contrast to the system,
we do not require the environment to be inactive infinitely often. This is already
implied by the play-out setting: the environment has to expect system events
to occur after each environment event.

The winning condition

This leads to a winning condition for the system which intuitively requires that

• the system listens for environment events infinitely often

and

– all requirement MSDs are inactive infinitely often, i.e., infinitely often
there are no active MSDs with enabled executed events

– there is never a safety violation in any requirement MSD

unless

– not all assumption MSDs are inactive infinitely often or
– there is a safety violation in any of the assumption MSDs

Note that we always require that the system eventually listen for environ-
ment events again. Otherwise, the system could easily force the environment to
violate the assumptions by keeping the environment from progressing beyond
enabled executed messages in active assumption MSDs.

In Uppaal Tiga, this can be formalized as a CTL formula with respect to
a TGA network of the above kind as

AG(AF (systemProcess.systemInactive and

(not isActive(sys)

and not hotV iolation

or hotEnvV iolation

or isActive(env))))

(4.1)

This formula states that the TGA network must be infinitely often in a state
where the following conditions hold. First, the system automaton (its running
instance is called systemProcess) is in the location systemInactive (here the sys-
tem listens for environment events). Second, there are no events active in any
requirement MSD. Third, no safety violation occurred in any requirement MSD.
Alternatively, there occurred a safety violation in an assumption MSD or there
is an active event in an assumption MSD. The latter two conditions mean that
the system automatically “wins” if the environment does not avoid a safety
violation and not all assumption MSDs are inactive infinitely often.

4.4. THE WINNING CONDITION 81

4.4.2 An alternative winning condition

In a previous publication of the synthesis approach [Gre10], a simpler winning
condition was proposed, which simply states that safety violations must never
occur. Larsen et al. propose a similar condition [LLNP10]. Under certain cir-
cumstances such a property is sufficient and Uppaal Tiga can find an admissi-
ble controller for the specification more efficiently. Therefore, in cases where the
runtime or the space required by the synthesis is critical, this winning condition
may be used instead of the one presented above (see the different benchmarks
documented in Appendix C).

When considering environment assumptions, a winning condition can be
specified that intuitively states that it must not be the case that a state is
reached where the following conditions hold

• a safety violation occurred in a requirement MSDs
• no safety violation occurred in any assumption MSD
• the environment is inactive, i.e., it has managed to progress beyond all

active events and it has processed all hidden events

The latter condition is important to keep the environment from provoking
a safety violation in a requirement MSD when this inevitably leads to a safety
violation of an assumption MSD. For example, the environment may violate
the requirements by producing an event which leads an assumption MSD in a
cut where a hot false condition is enabled. The above property states that
the environment can only win if it processes this enabled hidden event. In this
case, however, this sets the hotEnvViolation variable to true and the environment
looses. (Remember that hotEnvViolation is never reset to true again.)

This winning condition can be specified in CTL as

AG(not ((systemProcess.systemActive

and environmentProcess.environmentInitial)

and hotV iolation

and not hotEnvV iolation

and not isActive(env)))

(4.2)

This formula states that it must never be the case that the system and envi-
ronment automaton are in the locations systemActive resp. environmentInitial,
that a safety violation occurred in a requirement MSD, that no safety violation
has occurred in any assumption MSD, and that all the assumption MSDs are
inactive.

The above property, in the following called the AG property, is weaker than
the previous property in (4.1), which is called AGAF property in the following.
By the AG property, the system may also win by being active forever from some
point on. Therefore, this property may only be used if it can be guaranteed that
the specification is free of potential loops in which the system can always keep
at least one MSD active. In larger specifications, such loops may be difficult to
detect. Therefore, to ensure that a controller synthesized via the AG property

82 CHAPTER 4. SYNTHESIS

is an admissible implementation of the specification, a mechanism for automat-
ically checking the absence of such loops in the controller would need to be
developed in the future.

4.5 Mapping timed MSD specifications
This section explains the mapping from a timed MSD specification to a net-
work of TGA in Uppaal Tiga. In a timed setting, some details change in the
environment and the system automaton templates that are created for a speci-
fication. These changes are explained in Sect. 4.5.1. The principle for encoding
requirement or assumption MSDs as presented above (Sect. 4.3.2 and 4.3.5) does
not change in a timed setting. The mapping is only extended by the encoding of
clock resets and time conditions. These extensions are explained in Sect. 4.5.2.
The winning condition presented above is extended slightly in a timed setting.
This extension is explained in Sect. 4.5.3.

The encoding principles are explained by the help of MSDs from the example
specification shown in Fig. 4.8. This specification captures the combined require-
ments and assumptions from the use case Drive onto track section and Drive onto
merging switch, based on the use case descriptions shown in Fig. 2.3 and Fig. 2.4.
The requirements and assumptions from the MSD specification in Fig. 4.2 recur
in this specification with slight modifications. First, the MSDs RequestEnter-
AtEndOfTrackSection and ReplyBeforeLastSafeBreak of Fig. 4.2 are merged into
the extended MSD RequestEnterAtEndOfTrackSection that is shown here. Sec-
ond, the assumption MSD LastBreakBeforeEnterNext, which was formulated as
an anti-scenario in Fig. 4.2, is replaced by the MSD PassingTrackSectionPointsIn-
Sequence. Additionally, the MSD specification contains the MSD ReplyOfSwitch-
ControlNotTooEarly, which was already explained in Sect. 3.1.14 (see Fig. 3.8).
Also this specification contains the assumption MSDs LastBreakDelay and End-
OfTSToEnterNextDelay. The MSD LastBreakDelay expresses that the lastBreak
event does not occur less than five seconds after the event endOfTS. The MSD
EndOfTSToEnterNextDelay says that the event enterNext occurs within eight
to twelve seconds after the event endOfTS.

4.5.1 The environment and system automata for timed
specifications

Remember that for the play-out of LSC/MSD specifications with an untimed
setting, we assume that the system actions take no time and that the system is
always fast enough to perform any finite number of steps before the occurrence
of the next environment event (synchrony hypothesis) [HM03]. In a timed set-
ting, we stick with that assumption. Time can only pass between events, and
environment events occur only when the system is waiting.

In the timed play-out described by Harel and Marelly [HM02b], the play-out
always immediately executes active events. The play-out only delays steps if it
is forced to wait before minimal delays, i.e., hot time conditions that specify a
lower time bound.

4.5. MAPPING TIMED MSD SPECIFICATIONS 83

endOfTS

env:Environment rc:RailCab next:MergingSwitchControl

requestEnter

enterAllowed

RequestEnterAtEndOfTrackSection

lastBreak

DriveOntoMergingSwitch

enterNext

env:Environment rc:RailCab

c > 5

enterAllowed

ReplyOfSwitchControlNotTooEarly

c = 0

false

endOfTS

env:Environment rc:RailCab

<<EnvironmentAssumption>>
PassingPointsOnTrackInSequence

enterNext

lastBreak

endOfTS

env:Environment rc:RailCab

c < 5

<<EnvironmentAssumption>>
LastBreakDelay

c = 0

false

lastBreak

endOfTS

env:Environment rc:RailCab

c >= 8

<<EnvironmentAssumption>>
EndOfTSToEnterNextDelay

c = 0

enterNext

c <= 12

next:MergingSwitchControl

rc:RailCab next:Merging
SwitchControl

env:Environment

Figure 4.8: The specification of the use case Drive onto merging switch as an
example to illustrate the MSD-to-TGA mapping for timed specifications

However, in the example use case Drive onto merging switch shown above, the
system can only adhere to the specification if the track section control delays its
reply enterAllowed (see the explanations for the MSD ReplyOfSwitchControl-
NotTooEarly in Sect. 3.1.14). In the synthesis, we therefore want to allow the
system to delay any system step at any time, not only if minimal delays force
the system to delay the next step. To encode this in the TGA system, there are
a number of modifications to the environment and system automata in a timed
setting compared to the previously described environment and system automata
for the untimed setting.

This extra degree of freedom comes with a cost. Every time that the system
waits, environment events may occur, which greatly increases the state space
of the synthesis problem. For many examples, there exists a winning strategy
where the system does not have to delay active events. To find these strategies, it
is sufficient to only consider the restricted behavior, where the system may only
wait when minimal delays force it to wait [HM02b]. This can greatly reduce
the complexity of the synthesis problem. How to encode this restriction for
specifications where the restriction is reasonable will be discussed in Sect. 4.7.1.

Let us look at environment and system automata for the timed setting in
Fig. 4.9. These automata are very similar to those for untimed MSD specifi-
cations (see Fig. 4.3). Both automata can produce environment resp. system

84 CHAPTER 4. SYNTHESIS

events using the same two-step principle of first assigning a value to the variable
event and then emitting over the broadcast channel events. Also, both automata
have to process the enabled hidden events before simultaneously returning to
the locations environmentInitial resp. systemActive.

environment

system

events!

exitHandleHiddenEvent!

hiddenEvent!
event = next_rc_enterAllowed

events?

event = rc_next_requestEnter

block = true

enterHandleHiddenEvent?

enterHandleHiddenEvent!

hiddenEvent!
sysEnterHandleHiddenEvent

systemInactive

not hotViolation and sysCutChanged

not isHiddenEventEnabled(sys)

produceEvent

handleHiddenEvent

systemActive

block = false

block = false

active(rc_next_requestEnter)

liveTick = 0
liveTick > 1

active(next_rc_enterAllowed)

not block
and sysCutChanged

enterHandleHiddenEvent?

hiddenAssumptionMSDEvent!

events?

exitHandleHiddenEvent?

hiddenAssumptionMSDEvent!

enterHandleHiddenEvent!

handleHiddenEvent

envEnterHandleHiddenEvent

environmentInitial

produceEvent

events!

event = env_rc_enterNext

event = env_rc_endOfTS

event = env_rc_lastBreak

not hotEnvViolation and envCutChanged

not isHiddenEventEnabled(env)

envCutChanged = false

sysCutChanged = false

Figure 4.9: The environment and system automata for a timed example MSD
specification

The extensions discussed in the following are introduced because the system
may choose to wait or it may be forced to wait by hot minimal delays. When

4.5. MAPPING TIMED MSD SPECIFICATIONS 85

waiting, the system must be able to “return to action” without a triggering
environment event, i.e., the system must be able to send a message after a
certain time has passed or it must be able to trigger the progress beyond a hot
minimal delay that has rendered true after some time has passed.

Processing minimal delays

One change in these automata, compared to those for the untimed setting, is
that, when the automata are in the locations environmentInitial resp. system-
Active, the environment or system can process hidden events by taking an edge
to the location envEnterHandleHiddenEvent resp. sysEnterHandleHiddenEvent.
This edge emits over the binary channel hiddenAssumptionMSDEvent resp. hid-
denEvent. This extension is necessary because in timed MSD specifications, the
MSDs and assumption MSDs may contain minimal delays. In the above ex-
ample specification, there is for example the hot time condition c >= 8 in the
assumption MSD EndOfTSToEnterNextDelay shown in Fig. 4.8. Such minimal
delays require that the cut does not progress in the active MSD before the time
condition evaluates to true. Therefore, the environment or system must wait
until the condition becomes true before progressing the cut.

According to the original semantics of LSC, the cut must immediately
progress beyond a minimal delay if it is enabled and evaluates to true
[HM02b, HM03]. This is the same behavior as required for all enabled hid-
den events. However, in this encoding, the system resp. environment is not
forced to progress enabled minimal delays that evaluate to true immediately.
Minimal delays are therefore an exception to the general rule that enabled hid-
den events must be processed immediately. This exception is made because it is
not possible in the timed automata of Uppaal to force a transition immediately
when a clock variable is greater a given value. For example, imagine that the
condition of the minimal delay in the MSD EndOfTSToEnterNextDelay was c >
8. Then it would not be possible to say “wait until c is greater than 8, but also
do not wait any longer”.

When either the system or environment takes the edge to the location env-
EnterHandleHiddenEvent resp. sysEnterHandleHiddenEvent, they must leave this
location immediately to the location handleHiddenEvent. The reason for this
is that, after processing a minimal delay, other hidden events may be enabled
that need to be processed immediately. The edge from envEnterHandleHidden-
Event resp. sysEnterHandleHiddenEvent to handleHiddenEvent also emits over
the binary channel enterHandleHiddenEvent. The result is that always both
automata simultaneously end up in the location handleHiddenEvent from where
they eventually simultaneously progress to the locations environmentInitial and
systemActive.

Priority to system events

As stated above, we assume that time may only pass between events. Therefore
the system can take any finite number of steps before the next environment

86 CHAPTER 4. SYNTHESIS

event occurs, provided that it does not choose to wait or is forced to wait (by a
minimal delay). This semantics is encoded as follows.

Just like in the system automaton for the untimed setting, the location
systemActive is committed. Since enabled edges leaving a committed location
must be taken before any other edge is taken, the system now has the priority
in deciding to produce one of the currently enabled events by taking an edge
to the location produceEvent. Alternatively, it can also choose to wait and
listen for another environment event to occur by taking an edge to the location
systemInactive. If no environment event occurs and the system decides to take
the next step after some time has passed, it can switch to the location system-
Active again and produce events from there. If the system chooses to wait and
an environment event occurs, the system automaton progresses to the location
handleHiddenEvent and eventually ends up in the location systemActive. It then
has the chance to produce system events before the next environment event
occurs.

One effect that must be avoided in the system automaton is that the system
loops between the locations systemActive and systemInactive infinitely often. If
that was possible, the system could take infinitely many transitions in zero time
while the environment must wait to produce events in order not to violate any
assumption. This way, the system could in some cases be able to satisfy the
winning condition, because no time will pass anymore and the environment will
never be able to produce another event.

To avoid this behavior, the Boolean variable block is introduced. This vari-
able is set to true if the system decides to move from the location systemInactive
back to the location systemActive. If it decides to immediately return to system-
Inactive, it will not be able to take the edge to systemActive another time. This
is ensured by the guard not block. The variable block is only set to false again
when the system produces an event or processes a hidden event.

4.5.2 Encoding clock resets and time conditions

As mentioned above, when mapping timed MSDs to the corresponding TGA, the
principles for encoding messages, assignments, and conditions as explained for
untimed MSD specifications (see Sect. 4.3.2) remain unchanged. The mapping
must only be extended by the encoding of clock resets and time conditions.

The encoding of clock resets and time conditions is explained in the following
by the help of the example MSD ReplyOfSwitchControlNotTooEarly (see Fig. 4.8).
The MSD automaton corresponding to this MSD is shown in Fig. 4.10. The
contributions to the global declarations for the MSD are shown in Listing 4.8 and
the declarations created locally for the MSD in the MSD automaton template
are shown in Listing 4.9. Again not shown is that all edges looping in the initial
location set the variables envCutChanged and sysCutChanged to true.

Clock resets

Let us have a look at the MSD automaton in Fig. 4.10. The encoding of the
minimal message event and the second message event follow the same principle

4.5. MAPPING TIMED MSD SPECIFICATIONS 87

as explained previously in Sect. 4.3. Also the edges for a hot violation, the two
cases for the cold violation and the edge representing the termination of the
MSD are created as explained above. The clock reset is encoded like a normal
assignment except that the assigned variable is a clock variable, see Listing 4.9.

Cold time conditions

The example furthermore shows the encoding of a cold time condition. As
explained in Sect. 3.1.14, when the cut reaches a cold time condition in an
MSD, it is immediately evaluated. When it evaluates to true, the cut progresses
beyond the condition, when the cut evaluates to false, a cold violation occurs.
Thus, a cold time condition is encoded with the same progressing/violating edge
pair as an untimed cold condition. The progressing edge is enabled when the
lifeline variables of the lifelines covered by the time condition are at the position
immediately before the time condition and when the time constraint evaluates
to true. Then, the cut can progress. The violating edge is enabled when the
lifeline variables are at the position immediately before the time condition, but
the time constraint evaluates to false. Then, the cut is reset by resetting all
lifeline variables to zero, which represents the effect of a cold violation.

For each cold time condition, also the implementation of the function <MSD-
name>_hiddenEventEnabled() is extended such that it returns true when the
lifeline variables of the lifelines covered by the time condition are at the position
immediately prior to the time condition (see Listing 4.8).

Note that in Uppaal, one cannot simply form negations of time expressions
(as it is done in the case of untimed cold conditions). Therefore, to negate the
time constraint, the mapping must invert the compare operator, e.g. instead
of writing not (c > 5), the expression must be rewritten to c <= 5. Further-
more, expressions that test for the equality of a clock variable, like c == 5 are
prohibited in cold conditions because expressions like not (c == 5) or c ≠ 5
are not allowed as guard expressions in Uppaal. This approach requires that the
expressions in cold time constraints are given in the form c1 & <expr> and c1 -
c2 & <expr> where c1 and c2 are clock variables, & is an operator <,≤,≥,>, and
<expr> is an expression evaluating to an integer value. Furthermore, the only
variables allowed in <expr> are MSD variables defined by assignments prior to
the condition.

The global declarations shown in Listing 4.8 are created based on the
encoding principles explained in Sect. 4.3, and are included here merely to
give a complete picture of the encoding of the MSD ReplyOfSwitchControl-
NotTooEarly. The listing first shows the lifeline variables that are created
for the lifelines in the MSD. Second, the function ReplyOfSwitchControlNot-
TooEarly_active(int ev) is shown. It only returns false, because this MSD does
not contain any executed messages. Third, the function ReplyOfSwitchControl-
NotTooEarly_isHiddenEventEnabled() is shown. It contains an expression that
returns true if the cut has reached the end of the MSD (the lifeline variables are
in the configuration (3,5,2)), if the cut is in front of the hot false condition (the
lifeline variables are in the configuration (2,4,2)), if the cut is in front of the cold
condition (the lifeline variable for the lifeline rc equals 3), or if the cut is in front

88 CHAPTER 4. SYNTHESIS

events?

ReplyOfSwitchControlNotTooEarly_env = 0,
ReplyOfSwitchControlNotTooEarly_rc = 0,
ReplyOfSwitchControlNotTooEarly_next = 0

events?

events?

ReplyOfSwitchControlNotTooEarly_env++,
ReplyOfSwitchControlNotTooEarly_rc++,
ReplyOfSwitchControlNotTooEarly_next++

ReplyOfSwitchControlNotTooEarly_rc++

ReplyOfSwitchControlNotTooEarly_env = 0,
ReplyOfSwitchControlNotTooEarly_rc = 0,
ReplyOfSwitchControlNotTooEarly_next = 0,
hotViolation = true

ReplyOfSwitchControlNotTooEarly_rc++,
c = 0

ReplyOfSwitchControlNotTooEarly_env++,
ReplyOfSwitchControlNotTooEarly_rc++

hiddenEvent?

hiddenEvent?

hiddenEvent?

hiddenEvent?

events?

hiddenEvent?

events?

hiddenEvent?

(ReplyOfSwitchControlNotTooEarly_env == 3
and ReplyOfSwitchControlNotTooEarly_rc == 5
and ReplyOfSwitchControlNotTooEarly_next == 2)

event == next_rc_enterAllowed
and not enabled(event)
and not hotEventEnabled()

event == next_rc_enterAllowed and enabled(event)

event == env_rc_enterNext and enabled(event)

initial

eventInMSD(event)
and not enabled(event)
and not event == next_rc_enterAllowed
and not hotEventEnabled()

violation

eventInMSD(event)
and not enabled(event)
and hotEventEnabled()

ReplyOfSwitchControlNotTooEarly_env++,
ReplyOfSwitchControlNotTooEarly_rc++,
ReplyOfSwitchControlNotTooEarly_next++

ReplyOfSwitchControlNotTooEarly_env = 0,
ReplyOfSwitchControlNotTooEarly_rc = 0,
ReplyOfSwitchControlNotTooEarly_next = 0

hotViolation = true

ReplyOfSwitchControlNotTooEarly_env = 1,
ReplyOfSwitchControlNotTooEarly_rc = 1,
ReplyOfSwitchControlNotTooEarly_next = 1

ReplyOfSwitchControlNotTooEarly_env = 0,
ReplyOfSwitchControlNotTooEarly_rc = 0,
ReplyOfSwitchControlNotTooEarly_next = 0

(ReplyOfSwitchControlNotTooEarly_env == 2
and ReplyOfSwitchControlNotTooEarly_rc == 4
and ReplyOfSwitchControlNotTooEarly_next == 1
and false)

(ReplyOfSwitchControlNotTooEarly_env == 2
and ReplyOfSwitchControlNotTooEarly_rc == 4
and ReplyOfSwitchControlNotTooEarly_next == 1
and not(false))

(ReplyOfSwitchControlNotTooEarly_rc == 3
and c <= 5)

(ReplyOfSwitchControlNotTooEarly_rc == 3
and c > 5)

(ReplyOfSwitchControlNotTooEarly_rc == 1)

minimal MSD
event

clock reset

second
message

cold time
constraint

cold time
constraint
violation

hot “FALSE”
condition

hot violation

cold violation

cold violation
by minimal

event

hot “FALSE”
condition
violation

MSD END

Figure 4.10: The automaton template for the MSD ReplyOfSwitchControlNot-
TooEarly

4.5. MAPPING TIMED MSD SPECIFICATIONS 89

of the assignment (the lifeline variable for the lifeline rc equals 1). Furthermore,
the listing shows how the functions isHiddenEventEnabled(int player), active(int
ev), and isActive(int player) are extended by referring to the above functions.

Listing 4.8: Global declarations for the MSD ReplyOfSwitchControlNotTooEarly

. . .

i n t ReplyOfSwitchControlNotTooEarly_env = 0 ;
i n t ReplyOfSwitchControlNotTooEarly_rc = 0 ;
i n t ReplyOfSwitchControlNotTooEarly_next = 0 ;

. . .

/∗ re turn whether the event ev i s a c t i v e in the
curren t cut o f MSD ReplyOfSwitchControlNotTooEarly ∗/

bool ReplyOfSwitchControlNotTooEarly_active (i n t ev){
return f a l s e ; // The MSD conta ins no executed even t s . . .

}

. . .

/∗ re turn whether any hidden event i s enab led in the
curren t cut o f MSD ReplyOfSwitchControlNotTooEarly ∗/

bool ReplyOfSwitchControlNotTooEarly_isHiddenEventEnabled (){
return ((ReplyOfSwitchControlNotTooEarly_env == 3

and ReplyOfSwitchControlNotTooEarly_rc == 5
and ReplyOfSwitchControlNotTooEarly_next == 2)

or ReplyOfSwitchControlNotTooEarly_env == 2
and ReplyOfSwitchControlNotTooEarly_rc == 4
and ReplyOfSwitchControlNotTooEarly_next == 1

or ReplyOfSwitchControlNotTooEarly_rc == 1
or ReplyOfSwitchControlNotTooEarly_rc == 3) ;

}

. . .

/∗ re turns whether t h e r e i s any hidden event enab led in a
requirement MSD (p l a ye r = sys) or assumption MSD
(p l a y e r = env) ∗/

bool isHiddenEventEnabled (i n t p laye r){
return (. . .

or (ReplyOfSwitchControlNotTooEarly_isHiddenEventEnabled ()
and p laye r == sys)

or . . .) ;
}

/∗ re turns whether t h e r e i s any execu ted message enab led in
any o f the MSDs t h a t r e p r e s e n t s the g iven diagram event ∗/

bool a c t i v e (i n t ev){
return (. . .

or ReplyOfSwitchControlNotTooEarly_active (ev)
or . . .) ;

}

/∗ re turns whether t h e r e i s any execu ted messages or any

90 CHAPTER 4. SYNTHESIS

hidden event i s enab led in a requirement MSD (p l a y e r = sys)
or assumption MSD (p l ay e r = env) ∗/

bool i sAc t i v e (i n t p laye r){
return (isHiddenEventEnabled (p layer)

or . . .
or (
RequestEnterAtEndOfTrackSection_active (next_rc_enterAllowed)

and p laye r == sys)) ;
}

Listing 4.9 shows the implementations of the functions declared locally for
the MSD template automaton created for the MSD ReplyOfSwitchControlNot-
TooEarly. Also the declaration of the clock variable c is shown. The function
enabled(int ev) returns true if the lifeline variables are in a configuration where
the message enterNext is enabled and when called with the respective value for
the ev parameter. It also returns true if the lifeline variables are in the initial
configuration, where the first message enterAllowed is enabled, and when called
with the respective value for the ev parameter. The function hotEventEnabled()
always returns false because there is no hot message nor hot minimal delay in
the MSD. The function eventInMSD(int ev) returns true if it is called with a
value for the parameter that represents a message that appears in the MSD,
which is enterAllowed and enterNext in this case.

Listing 4.9: Local declarations of the MSD automaton template for the MSD
ReplyOfSwitchControlNotTooEarly

c l o ck c ;

/∗ re turns whether the event ev i s enab led in the
curren t cut o f the MSD ∗/

bool enabled (i n t ev){
return (

(ev == env_rc_enterNext and
ReplyOfSwitchControlNotTooEarly_rc == 2 and
ReplyOfSwitchControlNotTooEarly_env == 1)

or (ev == next_rc_enterAllowed and
ReplyOfSwitchControlNotTooEarly_rc == 0 and
ReplyOfSwitchControlNotTooEarly_next == 0 and
ReplyOfSwitchControlNotTooEarly_env == 0

) ;
}

/∗ re turns whether any hot event i s enab led in the
curren t cut o f the MSD ∗/

bool hotEventEnabled (){
return f a l s e ; // no hot msg or hot min de lay in t h i s MSD. . .

}

/∗ re turns whether the event ev i s in the MSD ∗/
bool eventInMSD(i n t ev){

return (ev == env_rc_enterNext
or ev == next_rc_enterAllowed

) ;
}

4.5. MAPPING TIMED MSD SPECIFICATIONS 91

Hot time conditions

Hot time conditions can specify minimal and maximal delays in the MSDs. Min-
imal delays specify lower time bounds of the form c ≥ <expr> or c > <expr>
and maximal delays specify upper time bounds of the form c < <expr> or c ≤

<expr>. Again <expr> must be an Uppaal-compliant expression evaluating
to an integer value. Thus far, the synthesis supports only expressions formed
from integer constants and integer variables that were defined by assignments
preceding the condition.

Due to this restriction, if a maximal delay is enabled, but its expression
evaluates to false, it is possible to immediately determine that a hot violation
has occurred, because it will never be able to become true if more time elapses.
Therefore, hot maximal delays are encoded similarly to untimed hot conditions
by a pair of a progressing and a violating edge, where the violating edge sets the
variable hotViolation or hotEnvViolation (in the case of the assumption MSD)
to true. The return statement of the global function <MSD-name>_hidden-
EventEnabled() is extended such that it returns true when the cut is prior to the
maximal delay.

Minimal delays are conditions where the expression will always render true
after some time. Therefore, each hot minimal delay is encoded by only one edge
in the MSD automaton that can progress the cut when the condition expres-
sion evaluates to true. For minimal delays, the implementation of the function
<MSD-name>_hiddenEventEnabled() must however not evaluate to true when
the cut is immediately prior to the hot minimal delay. This would force the
system or environment to immediately progress beyond the condition although
it may not yet be possible. It would be desirable to also include the delay
expression in the implementation of the <MSD-name>_hiddenEventEnabled()
function. This way, we could force the system and environment automata to
progress beyond enabled minimal delays as soon as they evaluate to true. That,
however, is not possible since Uppaal and Uppaal Tiga do not allow clock
variables to be used inside function bodies.

Therefore the implementation of the function <MSD-name>_hiddenEvent-
Enabled() is not extended to return true when the cut is prior to a minimal
delay. This means that, as soon as the delay expression evaluates to true, the
system or environment can choose to progress the cut beyond the hot minimal
delay at any time they please. See above (Fig. 4.9) how the environment and
system automata that are created for the timed MSD specification have edges
leaving the locations environmentInitial and systemActive to do so. As already
discussed above (see p. 85), it is not possible in Uppaal to encode a behavior
that forces the environment or system to progress minimal delays immediately
when they evaluate to true. If the expression is for example c > 8, it would
not be possible to say “wait until c is greater than 8, but also do not wait any
longer”.

If a minimal delay is enabled, i.e., the cut resides prior to the minimal delay
on all lifelines that the condition covers, the cut is hot. To encode this, the body
of the function hotEventEnabled() for the respective MSD automaton template

92 CHAPTER 4. SYNTHESIS

is extended for each minimal delay such that it returns true when the cut is
immediately prior to the minimal delay.

The environment or system must eventually progress a hot cut, otherwise
this is a liveness violation of the respective MSD. In order to express this, first, an
additional function is created in the TGA model for timed MSD specifications
that returns true if there is a minimal delay enabled in any assumption or
environment MSD. Second, the winning condition is extended to express that
the environment or system will not be able to win if there is any minimal delay
enabled in any assumption or requirement MSD, respectively. (This will be
explained shortly in Sect. 4.5.3.)

The additional global function that encodes whether a minimal delay is en-
abled in an assumption or requirement MSD is called isMinimalDelayEnabled(int
player). Called with the parameter env, this function returns whether there is a
minimal delay enabled in an assumption MSD. Called with the parameter sys,
this function returns whether there is a minimal delay enabled in a requirement
MSD.

In the example specification shown in Fig. 4.8, the assumption MSD Enter-
NextAfterEightToTwelveSeconds contains a minimal and a maximal delay. Fig-
ure 4.11 shows the automaton created for that MSD. Listing 4.10 shows the
extensions to the global declarations and globally declared functions that are
made for this MSD. Listing 4.11 shows the local declarations in the MSD au-
tomaton template. The MSD template automaton and the listings are briefly
described in the following. The extension to the winning condition in the timed
setting is explained in Sect. 4.5.3.

The MSD template automaton for the MSD EnterNextAfterEightToTwelve-
Seconds as shown in Fig. 4.11 shows the encoding for different MSD constructs
that were already explained before: the edges created for the minimal event (first
message), the second message, the termination of the MSD, the cold violation,
the cold violation by the minimal event, and the hot violation. The figure shows
the one edge that is created for the minimal delay. The edge is enabled if the
cut is prior to the condition on all lifelines that it covers, and the condition
expression c >= 8 must evaluate to true. The maximal delay is encoded by two
edges that are enabled if the cut is immediately in front of the condition on
all lifelines that it covers and if the condition expression c <= 12 evaluates to
true or false, respectively. One edge represents that the cut progresses upon a
successful evaluation of the condition. The other represents a hot violation that
consequently will occur if the expression is not true.

The extensions to the global declarations that are made for the MSD Enter-
NextAfterEightToTwelveSeconds are shown below in Listing 4.10. It first shows
the two lifeline variables that are created for the two lifelines in the MSD. Below
it shows the Boolean function EnterNextAfterEightToTwelveSeconds_active(int
ev) that returns true if the parameter ev represents the message enterNext and
the message is currently enabled in the MSD. The function EnterNextAfterEight-
ToTwelveSeconds_isHiddenEventEnabled() encodes whether there is currently a
hidden event enabled. This is the case if the cut is either at the end of the
MSD, in front of the clock reset, or in front of the maximal delay. The minimal
delay is not considered in this function. Whether a minimal delay is enabled

4.5. MAPPING TIMED MSD SPECIFICATIONS 93

events?

EnterNextAfterEightToTwelveSeconds_rc++,
EnterNextAfterEightToTwelveSeconds_env++

events?

events?

EnterNextAfterEightToTwelveSeconds_rc++,
EnterNextAfterEightToTwelveSeconds_env++,
c = 0

EnterNextAfterEightToTwelveSeconds_rc = 0,
EnterNextAfterEightToTwelveSeconds_env = 0,
hotEnvViolation = true

EnterNextAfterEightToTwelveSeconds_rc++,
EnterNextAfterEightToTwelveSeconds_env++

EnterNextAfterEightToTwelveSeconds_env++,
EnterNextAfterEightToTwelveSeconds_rc++

hiddenAssumptionMSDEvent?

hiddenAssumptionMSDEvent?

hiddenAssumptionMSDEvent?

events?

hiddenAssumptionMSDEvent?

events?

hiddenAssumptionMSDEvent?

(EnterNextAfterEightToTwelveSeconds_env == 5
and EnterNextAfterEightToTwelveSeconds_rc == 5)

event == env_rc_endOfTS
and not enabled(event)
and not hotEventEnabled()

event == env_rc_endOfTS and enabled(event)

event == env_rc_enterNext and enabled(event)

initial

eventInMSD(event)
and not enabled(event)
and not event == env_rc_endOfTS
and not hotEventEnabled()

violation

eventInMSD(event)
and not enabled(event)
and hotEventEnabled()

EnterNextAfterEightToTwelveSeconds_rc++,
EnterNextAfterEightToTwelveSeconds_env++

EnterNextAfterEightToTwelveSeconds_env = 1,
EnterNextAfterEightToTwelveSeconds_rc = 1

EnterNextAfterEightToTwelveSeconds_env = 0,
EnterNextAfterEightToTwelveSeconds_rc = 0

EnterNextAfterEightToTwelveSeconds_env = 0,
EnterNextAfterEightToTwelveSeconds_rc = 0

(EnterNextAfterEightToTwelveSeconds_rc == 1
and EnterNextAfterEightToTwelveSeconds_env == 1)

(EnterNextAfterEightToTwelveSeconds_rc == 4
and EnterNextAfterEightToTwelveSeconds_env == 4
and c <= 12)

hotEnvViolation = true

(EnterNextAfterEightToTwelveSeconds_rc == 2
and EnterNextAfterEightToTwelveSeconds_env == 2
and c >= 8)

(EnterNextAfterEightToTwelveSeconds_rc == 4
and EnterNextAfterEightToTwelveSeconds_env == 4
and c > 12)

minimal MSD
event

clock reset

minimal
delay

maximal
delay

maximal
delay

violation

second
message

MSD END
cold violation
by minimal

event

cold violation

hot violation

Figure 4.11: The automaton template for the assumption MSD EnterNextAfter-
EightToTwelveSeconds

in this MSD or in any other MSD is rather encoded in the function isMinimal-
DelayEnabled(int player). Depending on the parameter, which can be either env
or sys, the function returns whether there is any minimal delay enabled in any
requirement or assumption MSD, respectively. In the use case specification Drive
onto merging switch there is only one MSD with one minimal delay. Thus, the
function returns true if the cut is prior to that minimal delay and, since the
MSD is an assumption MSD, if it is called with the parameter env.

The Boolean function isHiddenEventEnabled(int player) is extended to return
true if it is called with the parameter env and a hidden event is enabled in the
assumption MSD EnterNextAfterEightToTwelveSeconds. Whether this is the case
is answered by a call to the function EnterNextAfterEightToTwelveSeconds_is-
HiddenEventEnabled() (explained above) in the disjunction that makes up the
function’s return statement. The Boolean function active(int ev) is extended
to return true if it is called with a parameter that represents a message event
appearing in the MSD EnterNextAfterEightToTwelveSeconds that is currently
active. This is done by including a call to the function EnterNextAfterEight-

94 CHAPTER 4. SYNTHESIS

ToTwelveSeconds_active(int ev) in the disjunction that makes up the function’s
return statement. Last, the Boolean function isActive(int player) is extended to
return true if it is called with the parameter env and there is an active event
in MSD EnterNextAfterEightToTwelveSeconds. For this purpose, a call to the
above-mentioned function EnterNextAfterEightToTwelveSeconds_active(int ev) is
included in the disjunction that makes up the function’s return statement for
each executed event that appears in the MSD EnterNextAfterEightToTwelve-
Seconds (which is only the message enterNext).

Listing 4.10: Global declarations for the MSD EnterNextAfterEightToTwelve-
Seconds

. . .

// the l i f e l i n e v a r i a b l e s
i n t EnterNextAfterEightToTwelveSeconds_env = 0 ;
i n t EnterNextAfterEightToTwelveSeconds_rc = 0 ;

. . .

/∗ re turn whether the event ev i s a c t i v e in the
curren t cut o f MSD EnterNextAfterEightToTwelveSeconds ∗/

bool EnterNextAfterEightToTwelveSeconds_active (i n t ev){
return (f a l s e

or (ev == env_rc_enterNext
and EnterNextAfterEightToTwelveSeconds_env == 3
and EnterNextAfterEightToTwelveSeconds_rc == 3)) ;

}

. . .

/∗ re turn whether any hidden event (excep t minimal d e l a y s)
i s enab led in the current cut o f MSD
EnterNextAfterEightToTwelveSeconds ∗/

bool EnterNextAfterEightToTwelveSeconds_isHiddenEventEnabled (){
return ((EnterNextAfterEightToTwelveSeconds_env == 5

and EnterNextAfterEightToTwelveSeconds_rc == 5)
or EnterNextAfterEightToTwelveSeconds_rc == 1

and EnterNextAfterEightToTwelveSeconds_env == 1
or EnterNextAfterEightToTwelveSeconds_rc == 4

and EnterNextAfterEightToTwelveSeconds_env == 4) ;
}

. . .

/∗ re turn whether t h e r e are any minimal de l ay enab led in the
curren t cut o f MSD EnterNextAfterEightToTwelveSeconds ∗/

bool isMinimalDelayEnabled (i n t p laye r){
return (f a l s e

or (p laye r == env
and EnterNextAfterEightToTwelveSeconds_rc == 2
and EnterNextAfterEightToTwelveSeconds_env == 2)) ;

}

. . .

4.5. MAPPING TIMED MSD SPECIFICATIONS 95

/∗ re turns whether t h e r e i s any hidden event enab led in a
requirement MSD (p l a ye r = sys) or assumption MSD
(p l a y e r = env) ∗/

bool isHiddenEventEnabled (i n t p laye r){
return (. . .

or (
EnterNextAfterEightToTwelveSeconds_isHiddenEventEnabled ()

and p laye r == env)
or . . .) ;

}

/∗ re turns whether t h e r e i s any execu ted message enab led in
any o f the MSDs t h a t r e p r e s e n t s the g iven diagram event ∗/

bool a c t i v e (i n t ev){
return (. . .

or EnterNextAfterEightToTwelveSeconds_active (ev)) ;
}

/∗ re turns whether t h e r e i s any execu ted messages or any
hidden event i s enab led in a requirement MSD (p l a y e r = sys)
or assumption MSD (p l ay e r = env) ∗/

bool i sAc t i v e (i n t p laye r){
return (. . .

or
(EnterNextAfterEightToTwelveSeconds_active (env_rc_enterNext)
and p laye r == env)) ;

}

The declarations created locally for the automaton template of the MSD
EnterNextAfterEightToTwelveSeconds are shown in Listing 4.11 below.

The Boolean function enabled(int ev) is created to return true if it is called
with a parameter that represents an event that is represented by a message in the
MSD that is currently enabled. In the initial cut (where both lifeline variables
are zero), the first message endOfTS is enabled. The message endOfTS is enabled
if both lifeline variables equal three. The Boolean function hotEventEnabled()
is created to return true if the current cut is hot. This is the case where the
message enterNext is enabled, but also if the minimal delay is enabled. Last,
the function eventInMSD(int ev) is created to return true if a certain message
event occurs in the MSD. This is the case for the message events endOfTS and
enterNext. Thus the function returns true if called with a parameter which
represents one of these events.

Listing 4.11: Local declarations of the MSD automaton template for the MSD
EnterNextAfterEightToTwelveSeconds

c l o ck c ;

/∗ re turns whether the event ev i s enab led in the
curren t cut o f the MSD ∗/

bool enabled (i n t ev){
return (ev == env_rc_endOfTS

and EnterNextAfterEightToTwelveSeconds_rc == 0
and EnterNextAfterEightToTwelveSeconds_env == 0

or (ev == env_rc_enterNext

96 CHAPTER 4. SYNTHESIS

and EnterNextAfterEightToTwelveSeconds_rc == 3
and EnterNextAfterEightToTwelveSeconds_env == 3)) ;

}

/∗ re turns whether any hot event i s enab led in the
curren t cut o f the MSD ∗/

bool hotEventEnabled (){
return ((f a l s e

or (EnterNextAfterEightToTwelveSeconds_env == 3
and EnterNextAfterEightToTwelveSeconds_rc == 3)

or EnterNextAfterEightToTwelveSeconds_rc == 2
and EnterNextAfterEightToTwelveSeconds_env == 2)) ;

}

/∗ re turns whether the event ev i s in the MSD ∗/
bool eventInMSD(i n t ev){

return (ev == env_rc_endOfTS
or ev == env_rc_enterNext) ;

}

4.5.3 Extensions to the winning condition for timed
specifications

In a timed setting, the winning conditions presented in Sect, 4.4 have to be
changed slightly in order to express that the system or the environment cannot
win as long as there is a minimal delay enabled in a requirement or assumption
MSD, respectively. For this purpose the winning conditions are extended with
calls to the function isMinimalDelayEnabled(int player) as shown below.

The AGAF winning condition (4.1) is extended as follows.

AG(AF (systemProcess.systemInactive and

(not isActive(sys)

and not hotV iolation

and not isMinimalDelayEnabled(sys)

or hotEnvV iolation

or isActive(env)

or isMinimalDelayEnabled(env)))

(4.3)

It now states that the system wins if it is infinitely often in a state where the
system automaton is in the location systemInactive, there is no active event
in any requirement MSD, no hot violation has occurred in any requirement
MSD, and there is no minimal delay enabled in any requirement MSD, or a hot
violation has occurred in an assumption MSD, an environment event is active
in an assumption MSD, or a minimal delay is enabled in an assumption MSD.

4.6. COMPOSITIONAL SYNTHESIS 97

The AG winning condition (4.2) is extended as follows.

AG(not ((systemProcess.systemActive

and environmentProcess.environmentInitial)

and hotV iolation

and not hotEnvV iolation

and not isActive(env)

and not isMinimalDelayEnabled(env)))

(4.4)

It now states that the system wins if it can always avoid a situation where
the system and environment automaton are in the locations systemActive and
environmentInitial, respectively, a hot violation has occurred in some requirement
MSD, no hot violation has occurred in any assumption MSD, there is no active
event in any assumption MSD, and no minimal delay enabled in any assumption
MSD.

4.6 Compositional synthesis
The synthesis suffers greatly from the state space explosion problem [HMS08].
With every MSD, even with every lifeline that is added to an MSD specifica-
tion, the complexity of the synthesis problem grows exponentially. Therefore
there will always be a limit in the size of a specification for which synthesis can
be carried out on the available hardware and within an acceptable time span.
This section explains how in certain cases the synthesis problem can be de-
composed, which means that the consistency of the specification can be implied
from the consistency of smaller parts of the specification, which can typically
be determined much faster than the consistency of the original specification.

This section first explains the principles of compositional reasoning tech-
niques in Sect. 4.6.1, focusing on approaches based on the assume-guarantee
paradigm. Second, a compositional synthesis technique for the synthesis of MSD
specifications is presented in Sect. 4.6.2. Section 4.6.3 shows how this technique
is successfully applied to the MSD specification of a production cell, an industrial
production robot. Last, Sect. 4.6.4 more formally shows that the compositional
synthesis technique is sound, i.e., that it is valid to imply the consistency of the
original specification from the consistency of its parts.

4.6.1 Compositional reasoning

In formal verification, techniques for the compositional verification have been in-
tensively researched. If it turns out not to be feasible to check whether a certain
system satisfies a given specification, the idea is to decompose the system and
the specifications such that, if the parts of the system fulfill certain local proper-
ties, it implies that the system fulfills the original specification, in the following
also called the global specification. Since there are usually dependencies among
the system parts, each part has to be verified in the context of an environment
that consists of the environment of the system and the other parts of the system.

98 CHAPTER 4. SYNTHESIS

To verify the properties for one part without regarding the complete behavior of
the other parts, it is necessary to abstract from the behavior of the other parts.
Sometimes there exist properties that each system part can assume about the
other system parts such that the verification of each single system part can be
carried out more efficiently. In turn, each system part must be checked to guar-
antee the properties assumed by the other parts. This form of compositional rea-
soning is called the assume-guarantee paradigm (sometimes also rely-guarantee-
or assume-commitment paradigm) [MC81, Jon83, Pnu85, GL94, CGP99].

There are, however, challenges in applying the assume-guarantee paradigm.
An adequate decomposition of the system and its specification must be found, as
well as a set of adequate assume/guarantee properties. Adequate here means,
on the one hand, that the system parts should satisfy the assume/guarantee
properties if the system adheres to the specification. On the other hand, the
assume/guarantee properties must be sufficiently small in order to reduce the
complexity of the single verification steps compared to the complexity of verify-
ing the whole system. Often a given system is already decomposed into different
modules, but, depending on the properties that shall be checked for the sys-
tem, there may not always exist sufficiently small assume/guarantee properties
[MWW08].

Designing an assume-guarantee reasoning technique is not trivial, because
a particular application of the assume-guarantee paradigm may not be sound.
This means that, if certain properties hold for parts of the system, and the
conjunction of these properties imply the global specification, it cannot generally
be implied that the composed system satisfies the global specification. For
example, if liveness properties can be shown for parts of a system, but there is a
cyclic dependency between these parts, this does not necessarily imply that the
system is live. Imagine a system consisting of two parts and for both parts it can
be shown that they progress provided that the opposite system part progresses.
Both local properties imply that the whole system progresses, but it may be
that the parts mutually wait for each other and therefore the composed system
in fact never progresses [Sta85, Pnu85, CGP99].

The principle of compositional verification techniques can also be applied to
synthesis problems: whenever it can be implied that a system satisfies its speci-
fication, provided that parts of the system satisfy their local specifications (i.e.,
the application of the assume/guarantee paradigm is sound), it is also valid to
imply that if there exist implementations for the system parts that satisfy the
local specifications, and thus the local specifications are consistent, the compo-
sition of these parts constitutes an implementation of the global specification,
and thus the global specification is consistent. In the following, this kind of
reasoning is called compositional synthesis.

By having introduced the concept of assumption MSDs within the scope of
this thesis and a technique for synthesizing controllers from MSD specifications
that contain assumption MSDs, an important step is taken towards being able to
apply the assume-guarantee principle for the compositional synthesis of MSD
specifications. Compositional synthesis techniques have not been studied for
MSD or LSC specifications before. (Kugler and Segal refer to another kind of
“compositional synthesis”, see a discussion on the related work in Sect. 8.2.)

4.6. COMPOSITIONAL SYNTHESIS 99

4.6.2 The compositional synthesis technique

This section presents the compositional synthesis technique for MSD specifica-
tions. The technique consists of three steps that describe how to decompose
a given global specification into two part specifications and how additional as-
sume/guarantee properties can be added to these part specifications. If con-
trollers can be successfully synthesized from the part specifications created ac-
cording to the three steps described in the following, the composition of these
controllers constitutes an implementation of the global specification. Accord-
ingly, it is valid to imply the consistency of the global specification from the
consistency of its part specifications.

Note, however, that the three decomposition steps require a high amount of
creativity in order to find two part specifications that can be successfully synthe-
sized. Even if the global specification is consistent, there may not always exist a
decomposition of the global specification into two consistent part specifications
according to the three decomposition steps.

Section 4.6.3 shows how this technique is applied to a concrete MSD speci-
fication. The compositional synthesis technique is sound, because cyclic depen-
dencies are not allowed among the part specifications. The soundness is shown
more formally in Sect. 4.6.4, based on a proof of Stark [Sta85].

Figure 4.12 illustrates the steps of the compositional synthesis technique ap-
plied to an abstract example. It shows how to construct two part specifications
MSa and MSb from a given global specification MS. At the top, the figure
shows a system consisting of objects o1, . . . , o7. From the perspective of the
specification MS, the objects o3, . . . , o7 are system objects and the objects o1
and o2 are environment objects. The former set of objects are called Osys, the
latter is called Oenv. The global specification consists of a set of assumption
MSDs A and a set of requirement MSDs G (“guarantee”).

In order to decompose the synthesis problem, first, two part specifications
MSa and MSb are created as shown in the middle of Fig. 4.12. Creating these
part specification requires the two following steps:

Step 1 (Subdivide the set of system objects). Create two part specifications
MSa and MSb from the global specification MS such that objects that are
system objects in the global specification are system objects in either one of
the part specifications. The set of system objects in the first part specification
MSa is called Oa, the set of system objects in the second part specificationMSb

is called Ob. The objects Oenv and Ob are environment objects in MSa; The
objects Oenv and Oa are environment objects in MSb.

Step 2 (Create subsets of MSDs for the part specifications). Divide the set
of requirement MSDs in the global specification among the part specifications
MSa and MSb such that, first, the union of the sets of requirement MSDs in
the part specifications is equal to the set of requirement MSDs in the global
specification, i.e., each requirement MSD in MS must appear in MSa or MSb.
Second, each part specification may contain any subset of the assumption MSDs
in the global specification.

100 CHAPTER 4. SYNTHESIS

o2 o4 o5

o1
o2

o3
o4

o5
o6

o7

assumptions
of the global
specification

requirements
of the global
specification

o4 o5 o6

o1 o3 o4

o2 o6 o7

o1 o2

o5 o1 o2

o1 o2

o3
o4

o3
o4

o5
o6

o7

o5 o1 o2
o1 o2 o1 o3 o4

o4 o5 o6

o2 o6 o7

requirements of
part spec. 1

assumptions
of part spec. 1

requirements of
part spec. 2

requirements of
part spec. 2

assumptions
of part spec. 2

step 3: adding
assume/guarantee

properties

step 1/2:
decomposition

of the specification

o3 o4

o3 o4 o5

added guarantees

o1
o2

o1
o2

o3 o4

o3 o4 o5

added assumptions

additional properties as
guarantees/assumptions

o1 o2

o3
o4

o3
o4

o5
o6

o7

o5 o1 o2
o1 o2 o1 o3 o4

o4 o5 o6

o2 o6 o7

requirements of
part spec. 1

assumptions
of part spec. 1

requirements of
part spec. 2

requirements of
part spec. 2

assumptions
of part spec. 2

o1
o2

o1
o2

o5

o2 o4 o5

requirements of
part spec. 1

1a

1b

2b

2a

true

true

o2 o4 o5

global specification MS

MSa MSb

o5

requirements of
part spec. 1

AG+
a, b

GA

true

Oenv

Oenv Oenv

Oenv Oenv

Osys

Oa

Ob

⊆Ob

⊆Oa

Oa

Ob

⊆Ob

⊆Oa

Figure 4.12: A sketch of the compositional synthesis approach

4.6. COMPOSITIONAL SYNTHESIS 101

The middle section of Fig. 4.12, illustrates how the global specification of
the abstract example is decomposed into two part specifications MSa and MSb

according to Step 1 and Step 2. It shows that the objects o3 and o4 are the
system objects inMSa, Oa, and the objects o5, o6 and o7 are the system objects
in MSb,Ob. The system objects in MSa, Oa, are environment objects in MSb.
Sometimes the lifelines of the MSDs in the part specifications only refer to a
subset of their environment objects. The middle left of Fig. 4.12 for example
shows that MSa only refers to a subset of Ob, namely the object o5.

In the middle section of Fig. 4.12, the MSDs of the global specification are
split up according to Step 2. The message names are not shown in this abstract
example. The purpose of Fig. 4.12 is to indicate that typically the MSDs are
split up into four different groups. There are such requirement MSDs in MSa

that describe how the objects Oa are required to interact with the objects Oenv

(1a) resp. with the objects Ob (1b). Likewise, there are such requirement MSDs
in MSb that describe how the objects Ob are required to interact with the
objects Oenv (2a) resp. with the objects Oa (2b). (1a and 1b resp. 2a and 2b
may not necessarily be disjoint, i.e., there may be MSDs in MSa that refer to
both objects from env and b, and there may be MSDs inMSb that refer to both
objects from env and a. Note also that the MSDs in these sets not only specify
how the system objects interact with their environment objects, but also how
they interact with each other.)

If already at this point, after performing Steps 1 and 2, both part specifi-
cations can be shown to be consistent, this implies that there exist controllers
a and b for the objects Oa and Ob that fulfill the specification MSa resp. MSb

for any implementation of the environment objects Oenv that satisfies the en-
vironment assumptions and for any implementation of the Ob resp. Oa. In
other words, there exists a controller a of the objects Oa that can satisfy MSa

regardless of the behavior of the objects Ob and there exists a controller b of
the objects Ob that can satisfy MSb regardless of the behavior of the objects
Oa. This is indicated in the middle section of Fig. 4.12 by the arrows labeled
“true”: In MSa, no assumptions are made about the behavior of Ob. Likewise,
there are no assumptions made about the behavior of Oa in MSb. This means
that the composition of the controllers for a and b is an implementation of MS
and, thus, MS is consistent. (In the following, for simplicity, instead of saying
“controller for Oa” or “controller for Ob”, we simple say “a” or “b”, for exam-
ple “there exists an a satisfying MSa” means “there exists a controller for Oa

satisfying MSa”.)
For most specifications it will however not be possible to easily decompose

a global specification into two independently consistent parts, by only applying
Step 1 and 2. Very often, it will be necessary to furthermore assume that a will
not do arbitrarily “bad” things to force b to violate the specification MSb. This
can be done by adding adequate assumption MSDs to MSb. But, whenever an
assumption about a is added to MSb, it must be in turn ensured that there
exists an a which guarantees these properties. This can be done by taking the
same MSD that was added as an assumption MSD to MSb and adding it as
a requirement MSD to MSa. The additional assumptions that a guarantees
towards b, and, consequently, b assumes about a, are called AG+

a,b.

102 CHAPTER 4. SYNTHESIS

Sometimes, we would also like to add assume/guarantee properties in the
other direction: it must be assumed that b will not do arbitrarily “bad” things to
force a to violate the specificationMSa. However, if there are assume/guarantee
properties added in both directions, it may happen that both a and b can dis-
charge their obligation to fulfill their requirements by violating the assumptions
they make about their opposites. This way, a and b may be able to fulfill their
part specifications simply by not fulfilling the properties that their opposites as-
sume about them. This means that, even if the global assumptions A hold, the
local assumptions may not hold. Thus, the components a and b need not fulfill
any requirements and, consequently, the components need not fulfill the global
requirements G. It follows that the composition of a and b may not constitute
a valid implementation of the global specification, and it is therefore not valid
to imply the consistency of the global specification from the consistency of the
part specifications. Therefore, the compositional synthesis technique presented
here does only allow additional assume/guarantee properties to be added in one
direction.

As an example, imagine a system of two robot arms where we require that
they pass plates back and forth between each other infinitely often. Now we
could specify locally for each arm that it must pass a plate to the other arm,
assuming that the other arm passes a plate back. But now it could be that
neither of the two arms passes any plates to the other. This way, each arm
could satisfy its local specification, since the local assumptions are violated.
However, the system would not satisfy the original specification.

Step 3 (Add assume/guarantee properties to the part specifications). Assump-
tion MSDs may be added toMSb provided that for each assumption MSD added
to the MSb an identical MSD appears as a requirement MSD in MSa.

The lower part of Fig. 4.12 illustrates this process of adding MSDs AG+

a,b as
additional assumptions/guarantees to the specifications MSb resp. MSa.

For a decomposition of the specification, it may sometimes furthermore be
desirable or necessary to decompose a system object into two objects, where then
one object can fulfill the functions specified in one part specification and the
other can fulfill the functions specified by the other part specification. When
doing so, the MSD specification has to be modified accordingly. The goal is
that the modified specification can then be split up in such a way that one part
of the specification specifies the behavior of the first object and another part
of the specification specifies the behavior of the second object; optimally, and
in order to successfully apply the described compositional synthesis technique,
the behavior of the first object is independent from the behavior of the second
and only a few MSDs remain that specify what the second object must do in
reaction to the behavior of the first (an example will follow shortly).

If a system object is decomposed into two objects, then the MSD specifica-
tion can always be changed such that for the two system objects resulting from
the decomposition of the initial system object, the same externally visible be-
havior is specified as for the initial system object. Decomposing a system object

4.6. COMPOSITIONAL SYNTHESIS 103

and changing the MSD specification accordingly must be done before Step 1.
Therefore, this step is called “Step 0”, and works as follows.

Step 0 (Decomposing system objects). A system object in the specification may
be decomposed into two system objects. Then in each MSD in the specification,
each lifeline that represents the initial object must be split into two lifelines that
represent the two objects resulting from the decomposition of the initial system
objects. Then the set of messages that the initial object sent and received can be
split up into the messages that the first object resulting from the decomposition
sends and receives and the messages that the second object sends and receives.
In some MSDs, the effect may be that one of the lifelines does not send or
receive any messages. This lifeline can then be removed from the MSD. In the
MSDs where no lifeline can be removed, the lifelines must be synchronized so
that an ordering of the events as on the initial lifeline is preserved. This can
be achieved by introducing (hot or cold) conditions with the expression true
that cover both lifelines. These conditions must always be introduced between
two events (i.e., the sending or receiving of a message) where one event on one
lifeline is followed by an event on the other lifeline. The resulting externally
visible behavior that the specification specifies for the two objects then is the
same as the behavior specified for the initial object.

Note that the steps described above may require a high creativity in finding
two good part specifications. Two part specifications are “good” if they can be
successfully synthesized when the global specifications is consistent. The part
specifications should in particular not be bigger than the global specification
(in terms of the number of MSDs), because then it is likely that the synthesis
of controllers for the part specifications takes longer than the synthesis of a
controller for the global specification. Note that “good” result after Step 3 rely
on a good decomposition of the requirement MSDs in Step 2, which relies on
an adequate decomposition of the object system in Step 1. Also note that it
may be possible to decompose a specification multiple times by again applying
Steps 0-3 to the part specifications.

In the following section, the compositional synthesis approach is further
illustrated by an example. A more formal argument on the soundness of the
compositional synthesis technique consisting of the three steps described above
is given in Sect. 4.6.4.

4.6.3 Example: the compositional synthesis of the production
cell specification

This section presents the compositional synthesis of the production cell exam-
ple. The production cell is an industrial production system, which processes
metal blanks into plates. It was considered as a case study within the KorSo
project [LL94, LL06, BJ95]. Here a simplified version of the production cell is
considered.

104 CHAPTER 4. SYNTHESIS

The production cell example

A sketch of the production cell is shown in Fig. 4.13. It consists mainly of two
transport belts, a press, and two robot arms. Metal blanks are transported to
the production cell on the feed belt within certain time intervals. At the end
of the feed belt, these blanks arrive on a table where they have to be picked
up by the first robot arm. This robot arm transports the blank to a press,
where it is processed to a plate. Then a second robot arm picks up the plate
and transports it to the deposit belt. It is required that a blank is picked up
from the table before the next blank arrives. Also, the second robot arm must
pick up the pressed plate before the first robot arm can place a new blank into
the press. The controller of the production cell can control the press and the
movement of the robot arms. The arrival of the blanks, the time for pressing the
blanks to plates, and the time that the robot arms require for moving between
the table and the press resp. the press and the deposit belt are uncontrollable,
but certain minimal and maximal delays can be assumed.

arm A

arm Bdeposit belt

feed belt

delay between arriving
blank plates: f > FMIN

time for moving arm A:
AMIN ≤ a ≤ AMAX

time for moving arm B:
BMIN ≤ b ≤ BMAX

time for pressing
the blank plates:
PMIN ≤ p ≤ PMAX

press

table

Figure 4.13: A sketch of the production cell

Depending on the assumed delays, the specification may be inconsistent. If
the intervals in which blanks arrive at the press are too short, it may be that
the robot arms are not fast enough to transport the blanks resp. plates. It may
also be that the press takes too much time, so that the first robot arm cannot
release the next plate into the press quickly enough.

Table C.1 in the Appendix (Sect. C.3, p. 259) lists the requirements of
the (single) use case of the production cell. Section. C.3.2 presents the corre-
sponding MSD specification (the requirement MSDs are shown in Fig. C.26, the
assumption MSDs are shown in Fig. C.27).

It turns out that, due to the interdependent time constraints, the synthe-
sis for the specification is hardly feasible. Synthesizing an admissible play-out
strategy satisfying the AG winning condition from a consistent specification (i.e.,
values for the assumed time intervals for which the specification is realizable)
took 34 minutes. Synthesizing a controller strategy satisfying the AGAF win-
ning condition was not possible at all; the memory limit of 4GB was exceeded
after 7 hours (see Sect. C.3). The idea is therefore to split the specification of the
production cell in two parts. Controllers for the two part specifications could be

4.6. COMPOSITIONAL SYNTHESIS 105

synthesized much faster than a controller for the global specification. Synthesis
with the AG winning condition takes 0,01 + 0,5 minutes, synthesis with the
AGAF winning condition was now possible and took 0,09 + 2,03 minutes (see
row one in Fig. C.28 and C.32).

The decomposition of the production cell specification

The specification of the production cell is decomposed as follows. The first
part describes how the first robot arm transports the blanks to the press, and
the second part describes how the press processes the blanks that arrive at the
press as well as how the second robot arm transports the pressed plates to the
deposit belt. With this decomposition, the second part depends on the first
part. Whenever the first arm releases a blank into the press, the press must
process the plates and then arm B must transport the plates to the deposit
belt. In particular, it must be assumed that the first arm does not place blanks
into the press too quickly, because otherwise blanks may be placed into the press
before the press is finished or before arm B picks up the pressed plate from the
press. Therefore, it is necessary to additionally assume that the first arm will
release blanks into the press only within certain minimal time intervals. If such
an assumption is made by the second part, this property must consequently be
guaranteed by the first part.

Section C.3.3 illustrates this decomposition of the specification into two part
specifications. The MSD BlankArrivalAtPressDelay occurs as an assumption in
the second part specification (see Fig. C.31) and as a requirement in the first
part specification (see Fig. C.30). It is described in the following how these two
part specifications are created.

Step 0 (Decomposing system objects): One particular issue with this ex-
ample is that the object system of the original specification just consists of one
system object (c:Controller), which receives the signals from the table sensor and
controls arm A, the press and arm B. The top of Fig. 4.14 shows this controller
object c:Controller and the environment objects ts:TableSensor, a:ArmA, p:Press
and b:ArmB that the controller interacts with. The lines represent where ob-
jects interchange messages with each other. If there is just one system object,
the specification cannot be decomposed in a meaningful way. Therefore, as de-
scribed in Step 0 in Sect. 4.6.2, the global specification is changed such that
c:Controller is replaced by two system objects c1:Controller1 and c2:Controller2,
which control arm A resp. the press and arm B. The decomposition of the
controller is shown in in the middle of Fig. 4.14.

According to Step 0, this requires the MSDs in the specification to be
changed, too. The set of messages sent and received by c:Controller is split up so
that c1:Controller1 only interacts with ts:TableSensor and a:ArmA. c2:Controller2
only interacts with p:Press and b:ArmB. Many MSDs in the specification will
now only refer to either c1:Controller1 or c2:Controller2. Figure 4.15 shows
how the MSD PressPlateAfterArmAReleasesBlankPlate, where messages of both
c1:Controller1 and c2:Controller2 occur, is changed according to Step 0.

After decomposing the c:Controller object, we can split up the production
cell specification into two part specifications.

106 CHAPTER 4. SYNTHESIS

ts:TableSensor

a:ArmA

b:ArmB

p:Press

ts:TableSensor

a:ArmA

c:Controller

c1:Controller1

ts:TableSensor

a:ArmA

b:ArmB

p:Press

c1:Controller1

c2:Controller2

a:ArmA

b:ArmB

p:Press

c2:Controller2

c1:Controller1

Step 1: create the
object system for the

part specifications

Step 0: Decomposing
system objects

Figure 4.14: Step 0 and Step 1 in the decomposition of the production cell
specification

4.6. COMPOSITIONAL SYNTHESIS 107

releaseBlank

c:Controller

PressPlateAfterArmAReleasesBlankPlate

press

pickUp

pressingFinished

releaseBlank

c2:Controller2

pressingFinished

PressPlateAfterArmAReleasesBlankPlate

press
true

pickUp

c1:Controller1

Step 0: Decomposing
system objects

a:ArmA p:Press b:ArmB

a:ArmA p:Press b:ArmB

Figure 4.15: Splitting the lifeline of MSD PressPlateAfterArmAReleasesBlank-
Plate according to Step 0

Step 1 (Create the object systems for the part specifications): With the sys-
tem object c:Controller replaced by the objects c1:Controller1 and c2:Controller2,
two part specifications can be created (according to Step 1, see Sect. 4.6.2 above)
from the global specification with object systems where c1:Controller1 appears
as a system object in the first part specification and c2:Controller2 appears as a
system object in the second part specification. The bottom of Fig. 4.14 shows
the object systems that are created for the two part specifications. (See also
the collaboration diagrams in Fig. C.30 and Fig. C.31). The connector lines
between the objects at the bottom of Fig. 4.14 again describe where two objects
interchange messages. The connector lines are implied by the subsets of MSDs
that appear in the part specifications, as explained in the following.

Step 2 (Create subsets of MSDs for the part specifications): Subsets of
the MSDs from the global specification are taken to form the MSDs of the
first and second part specification. This example allows us to easily decompose
the requirement MSDs among the part specifications, while adhering to the
constraints formulated for Step 2 above (see Sect. 4.6.2): All the requirement
MSDs with lifelines referring to just the first controller are members of the first
part specification. All remaining requirement MSDs are placed in the second
part specification. The assumption MSDs are subdivided among the part spec-
ifications by the same principle. (This also explains which environment objects
from the global specification must be represented in the part specification col-
laboration diagrams: these are all such objects which occur in the MSDs that
are placed in the respective part specification.)

After this decomposition, the first part specification can be shown to be
consistent, provided that the time intervals in which the blanks arrive are not
too short for the first robot arm to pick them up. It will however not be pos-

108 CHAPTER 4. SYNTHESIS

sible to show that the second part specification is consistent. Synthesis will
show that the requirements are always easily violated by c1:Controller1 sending
the releaseBlank message to the first arm without any delay. Therefore, an
additional property must be added as an assumption to the second part speci-
fication and, accordingly, as an additional requirement (guarantee) to the first
part specification.

Step 3 (Add assume/guarantee properties to the part specifications): An
assumption is added to the second part specification that specifies a minimal
delay between occurrences of the releaseBlank event (MSD PressPlateAfter-
ArmAReleasesBlankPlate (2), see Fig. C.31). Accordingly, a copy of this MSD is
added as a requirement MSD in the first part specification (see Fig. C.30). The
tables in Fig. C.32 and C.33 present the results from synthesizing controllers
from the part specifications with different values for the timing assumptions
made about the blank arrival, the arms’ movement, and the pressing process.

4.6.4 The compositional synthesis technique is sound

This section shows more formally that if controllers could be successfully synthe-
sized from the part specifications MSa and MSb constructed according to the
steps described in Sect. 4.6.2, the composition of these controllers constitutes an
implementation of the global specification, i.e., there exits an implementation
for the global specification, and it is therefore valid to imply the consistency of
the global specification from the consistency of the part specifications. A proof
sketch is presented, inspired by the compositional proof technique presented by
Stark [Sta85].

Before sketching the proof, a number of conditions are formulated that follow
for the part specifications MSa and MSb when constructed according to the
steps above. Furthermore, some notations are defined that will be used in the
following. Note that the proof sketch abstracts from many details, such as the
exact semantics of the MSDs that results from their encoding in the TGAs of
Uppaal Tiga. Furthermore, a thorough proof would of course also require to
formally show the correctness of the synthesis technique, which is beyond the
scope of this thesis.

Definitions

In the following, we consider specifications of a system of objects O. The ob-
jects O can interchange messages. An infinite sequence of message interchanges
is called a run of the system, which we denote as π. The objects O can be con-
trolled by a controller, which defines a particular set of runs for the system. For
a controller c, the set of runs is denoted as L(c), also called the trace language
of the system controlled by the controller c. A controller for the objects O can
consist of the parallel composition of multiple controllers for disjoint subsets of
O. We write for example c = c1∣∣c2∣∣c3 to denote that c consists of the parallel
composition of c1, c2 and c3.

A specification can consist of a set of universal MSDs MS with lifelines rep-
resenting objects in O. In Sect. 3.1.6, it was already explained that a universal

4.6. COMPOSITIONAL SYNTHESIS 109

MSD can be described by a Büchi automaton that accepts a set of runs of a
system. According to Harel and Maoz [HM08], we denote this set of runs of a
universal MSD D as L(D), also called the trace language of a universal MSD
or the runs accepted by D. A run of the system satisfies the specification MS,
denoted as π ⊧MS, iff the run is accepted by every MSD in MS.

π ⊧MS ≡ π ∈ L(Di),∀Di ∈MS (4.5)

A specification can also be formed by the union of two sets of MSDs MS1
and MS2, denoted as MS1 ∪MS2. From (4.5) follows that

π ⊧MS1 ∪MS2 ≡ π ⊧MS1 ∧ π ⊧MS2 (4.6)

From (4.5) also follows that if a set of MSDs MS1 is a subset of another set of
MSDs MS2 and a run satisfies MS2, the run also satisfies MS1.

(MS1 ⊆MS2 ∧ π ⊧MS2) ⇒ π ⊧MS1 (4.7)

A specification MS can furthermore be formed from two sets of MSDs MS1
and MS2 by writing MS1 ⇒MS2. π ⊧MS1 ⇒MS2 means that if π satisfied
MS1, it also satisfies MS2.

π ⊧MS1 ⇒MS2 ≡ π ⊧MS1 ⇒ π ⊧MS2 (4.8)

(The MSDs MS1 and MS2 form a specification where MS1 are the assumption
MSDs and MS2 are the requirement MSDs.)

A controller c of the objects O satisfies a specification MS iff every run of
c satisfies MS.

c ⊧MS ≡ π ⊧MS,∀π ∈ L(c) (4.9)

A specification subdivides the set of objects O into (controllable)
system objects Osys and (uncontrollable) environment objects Oenv

(O = Osys ∪Oenv, Osys ∩Oenv = ∅). An MSD specification MS is consis-
tent iff there exists a controller s for the system objects such that for every
possible controller e of the environment objects, the controller formed by the
parallel composition of s and e satisfies the specification (see also Sect. 3.1.9).

MS is consistent ≡ ∃s∀e ∶ e∣∣s ⊧MS (4.10)

Such a controller s is also called the witness for the consistency of MS.

The two part specifications

Let MS be a global specification consisting of a set of assumption MSDs A and
the requirement MSDs G. Then applying the Steps 1-3 (see Sect. 4.6.2) yields
two part specifications MSa and MSb with the assumption MSDs Aa resp. Ab

and the requirement MSDs Ga resp. Gb. Using the notation defined above, we
write MS = A ⇒ G, MSa = Aa ⇒ Ga and MSb = Ab ⇒ Gb. The specifications
refer to a system of objects O that can be subdivided into the disjoint subsets
Oenv, Oa and Ob such that Oa ∪Ob and Oenv are the system resp. environment

110 CHAPTER 4. SYNTHESIS

objects of MS, Oa and Oenv ∪Ob are the system resp. environment objects of
MSa, and Ob and Oenv ∪Oa are the system resp. environment objects of MSb.
(As described above, it may be that the MSDs in the part specifications MSa

and MSb only refer to a subset of the Oenv ∪Ob resp. Oenv ∪Oa, but this has
no further implications for the following reasoning.)

In Step 2, the MSDs in MS are subdivided into several, not necessarily
disjoint subsets that later recur in the part specifications MSa and MSb. In
Step 3, further MSDs can be added to Ga and Ab. These subsets were illustrated
in Fig. 4.12; Fig. 4.16 again shows part of this diagram and introduces the
following abbreviations for these subsets of MSDs:

• AGenv,a: the MSDs that specify the requirements of Oenv towards Oa

• AGenv,b: the MSDs that specify the requirements of Oenv towards Ob

• AGa,env: the MSDs that specify the requirements of Oa towards Oenv

• AGb,env: the MSDs that specify the requirements of Ob towards Oenv

• AGa,b: the MSDs that specify the requirements of Oa towards Ob

• AGb,a: the MSDs that specify the requirements of Ob towards Oa

• AG+

a,b: the additional MSDs that are added as requirement MSDs toMSa

and as assumption MSDs in MSb

According to Step 2-3, the following conditions hold for the above subsets
of MSDs and A, G, Aa, Ga, Ab, and Gb.

The additional assumptions/requirements MSDs added in Step 3, AG+

a,b are
subset of AGa,b.

AG+

a,b ⊆ AGa,b (4.11)

G consists of the MSDs that specify requirements of Oa and Ob towards Oenv,
the requirements of Ob towards Oa, and the requirements of of Oa towards Ob.
Not part of G are the MSDs that are added as additional assumptions/require-
ments to the part specifications later on, AG+

a,b. We therefore write

G ⊆ AGa,env ∪AGa,b ∪AGb,env ∪AGb,a (4.12)

The MSDs A are subdivided into the sets of MSDs that specify the require-
ments of Oenv towards Oa and the MSDs that specify the requirements of Oenv

towards Ob.
A = AGenv,a ∪AGenv,b (4.13)

Ga consists of the MSDs which express the requirements of the objects Oa

towards the environment objects Oenv and the requirements of the objects Oa

towards the objects Ob (including the additional MSDs added in Step 3, AG+

a,b).

Ga = AGa,env ∪AGa,b (4.14)

Accordingly, Gb consists of the MSDs which express the requirements of the
objects Ob towards the environment objects Oenv and the requirements of the
objects Ob towards the objects Oa.

Gb = AGb,env ∪AGb,a (4.15)

4.6. COMPOSITIONAL SYNTHESIS 111

step 3: adding
assume/guarantee

properties

step 1/2:
decomposition

of the specification
MSa MSb

......

o1 o2

o3
o4

o3
o4

o5
o6

o7

o5 o1 o2
o1 o2 o1 o3 o4

o4 o5 o6

o2 o6 o7

requirements of
part spec. 1

assumptions
of part spec. 1

requirements of
part spec. 2

requirements of
part spec. 2

assumptions
of part spec. 2

o3 o4

o3 o4 o5

added guarantees

o1
o2

o1
o2

o3 o4

o3 o4 o5

added assumptions

additional properties as
guarantees/assumptions

o2 o4 o5

o5

o2 o4 o5

o1
o2

o3
o4

o5
o6

o7

assumptions
of the global
specification

requirements
of the global
specification

o4 o5 o6

o1 o3 o4

o2 o6 o7

o1 o2

o5 o1 o2

global specification MS

GA

AGenv, a AGa, env AGenv, b AGb, env

AGa, b

AG+
a, b

(⊆ AGa, b)

Osys

Oenv

Oa

Ob

AGb, a

requirements of
part spec. 1

true

Oenv Oenv

⊆Ob

⊆Oa

Figure 4.16: A sketch of how the compositional synthesis approach is mapped
to the proof technique of Stark

112 CHAPTER 4. SYNTHESIS

Aa consists of the MSDs which specify the requirements of objects Oenv

towards the objects Oa.
Aa = AGenv,a (4.16)

Ab consists of the MSDs which specify the requirements of objects Oenv

towards the objects Ob and the requirements of the objects Oa towards the
objects Ob (including the additional MSDs added in Step 3, AG+

a,b).

Ab = AGenv,b ∪AGa,b (4.17)

Proof

We can now prove that if the synthesis of controllers for MSa and MSb shows
thatMSa andMSb are consistent, then alsoMS is consistent. The proof works
by contradiction.

Proof (MS is consistent if MSa and MSb are consistent). We assume that
MSa and MSb are consistent, but MS is inconsistent. If MSa is consistent,
this means that there exists a controller a for the objects Oa such that the
parallel composition of a and any controllers e and b′ for the objects Oenv resp.
Ob satisfies MSa. If MSb is consistent, this means that there exists a controller
b for the objects Ob such that the parallel composition of b and any controllers
e and a′ for the objects Oenv resp. Oa satisfies MSb.

∃a, b ∶ e∣∣a∣∣b′ ⊧ Aa ⇒ Ga ∧ e∣∣a
′∣∣b ⊧ Ab ⇒ Gb,∀e, a

′, b′ (4.18)

If MS is inconsistent, this means that there do not exist any controllers a′
and b′ for the objects Oa and Ob such that the parallel composition of a′ and b′
with any controller e for the environment objects Oenv satisfies MS.

∄a′, b′ ∶ e∣∣a′∣∣b′ ⊧ A⇒ G,∀e (4.19)

In particular, if we choose a′ and b′ to be the witnesses a and b for the consistency
MSa and MSb, e∣∣a∣∣b would not satisfy MS, e being any possible controller for
the objects Oenv in the following.

e∣∣a∣∣b ⊭ A⇒ G,∀e (4.20)

e∣∣a∣∣b ⊭ A⇒ G means that there exists a run π in L(e∣∣a∣∣b) such that π ⊧ A,
but π ⊭ G. According to (4.12) and (4.7), this means that

π ⊭ AGa,env ∪AGa,b ∪AGb,env ∪AGb,a (4.21)

which, because of (4.6), can be rewritten as

π ⊭ (AGa,env ∪AGa,b) ∨ π ⊭ (AGb,env ∪AGb,a) (4.22)

or, because of of properties (4.14) and (4.15), as

π ⊭ Ga ∨ π ⊭ Gb (4.23)

4.7. DIFFERENT KINDS OF CONSISTENCY 113

This means that the requirements of either one of the part specifications is
violated. But because a and b satisfyMSa andMSb for every possible controller
e of Oenv (4.18), this again implies that the assumptions of at least one part
specification is violated.

π ⊭ Aa ∨ π ⊭ Ab (4.24)

which, due to properties (4.16) and (4.17) can be rewritten as

(π ⊭ AGenv,a) ∨ (π ⊭ (AGenv,b ∪AG
+

a,b)) (4.25)

which, due to (4.6), is equivalent to

π ⊭ AGenv,a ∨ π ⊭ AGenv,b ∨ π ⊭ AG+

a,b (4.26)

Because the assumption of the proof states that π ⊧ A, and because of
property (4.13), we can imply that π ⊧ AGenv,a and π ⊧ AGenv,b. This allows
us to further simplify the above condition to

π ⊭ AG+

a,b (4.27)

But because π ⊧ AGenv,a, and because we have assumed that a satisfiesMSa

for any controller of Oenv and Ob, e∣∣a∣∣b′ ⊧ AGenv,a ⇒ (AGa,env ∪AGa,b),∀e, b
′

(see (4.16), (4.18) and (4.14)), π must satisfy AGa,b. Because of (4.11) and (4.7),
it cannot be the case that π ⊭ AG+

a,b.
This contradicts the assumption of the proof and therefore proves that if

MSa and MSb if constructed from MS according to the above guidelines are
consistent, also MS is consistent.

4.7 Different kinds of consistency
This section discusses how the encoding of MSD specifications as a TGA network
as presented in Sect. 4.3 and 4.5 can be modified slightly in order to check
different kinds of consistency.

4.7.1 Disallowing to delay steps in the timed setting

One change in the encoding of the TGA system in a timed setting that can
drastically increase the efficiency of the synthesis is to disallow the system to
delay the execution of active system events. This restriction is also made in
the timed play-out, where it is required that active events are executed imme-
diately [HM02b]. This can be achieved by adding a guard not isActive(sys)
or hotViolation or hotEnvViolation to the edge in the system automaton
that leads from the location systemActive to the location systemInactive, like in
the system automaton in the untimed case. Now the system automaton can only
move from the location systemActive to the location systemInactive if there are
no events active in any requirement MSD. Because systemActive is a committed
location, it will have to produce events immediately. This greatly reduces the
state space of the synthesis problem. However, then it is not possible to success-
fully synthesize controllers for a range of consistent timed MSD specifications.

114 CHAPTER 4. SYNTHESIS

An admissible controller can for example not be found for the consistent Drive
onto merging switch use case, because the reply enterAllowed of the track sec-
tion control must then be sent immediately (as explained in Sect. 4.5.1). Also,
there will be no controller for the technical example presented in Sect. C.4.3.

However, for the production cell example, the synthesis speed can be in-
creased from 45 minutes to two seconds when delaying the system steps is dis-
allowed and using the AG winning condition. When disallowing the delay of
system steps, the synthesis with the AGAF winning condition is now possible
in five seconds. When the delay of system steps is allowed, it exceeded the
memory limits of four GB of Uppaal Tiga after seven hours. See the tables
in Fig. C.28 and C.29 for the comparison of the run-times of the synthesis with
different parameters for the delays in the production cell example.

4.7.2 Consistency vs. consistent executability

By the encoding of the TGA network presented in Sect. 4.3 and 4.5, the synthe-
sis determines whether an MSD specification is consistently executable, which
means that we check whether there is an admissible controller for the system
that can satisfy the requirements by always immediately executing only such
events that are currently active. Only in the timed setting, as discussed in the
previous section, we additionally allow the system to delay system steps. In
order to check the consistency of an MSD specification, we have to modify the
encoding of the TGA network, so that the system can, first, also execute events
that are not currently active, and second, that it can interrupt a super-step and
wait for environment events to occur, even if there are still active events.

These modifications only concern the encoding of the system automaton.
They are as follows:

• untimed setting:
– execute all events: the guards active(<event>) must be removed

from the edges that lead from the location systemActive to the loca-
tion produceEvent in the system automaton.

– interrupt super-step: The following modifications must be made:
∗ The guard not isActive(sys) must be removed from the edge
leading from the location systemActive to the location system-
Inactive.

∗ The Boolean variable block must be declared in the system au-
tomaton template

∗ An edge from the location systemInactive to the location system-
Active must be added with the guard not block and the update
lable block=true.

∗ The update label block=false must be added to the edge lead-
ing from the location produceEvent to the location handleHidden-
Event.

• timed setting:
– execute all events: the guards active(<event>) must be removed

from the edges that lead from the location systemActive to the loca-

4.8. SUMMARY AND OUTLOOK 115

tion produceEvent in the system automaton (same modification as in
the untimed setting).

– interrupt super-step: is already possible with the encoding pre-
sented in Sect. 4.5, see the discussion in Sect. 4.7.1.

4.8 Summary and Outlook
This chapter presented a technique for checking the consistency or consistent ex-
ecutability of untimed or timed MSD specifications. The technique is based on
encoding the problem as a two-player game that can be solved by Uppaal Tiga.
When checking the consistency or consistent executability, Uppaal Tiga is able
to synthesize an admissible global controller or an admissible play-out strategy
from the MSD specification if it is consistent or consistently executable, respec-
tively. If the MSD specification is inconsistent or not consistently executable,
Uppaal Tiga can even generate a counter-strategy that shows how the envi-
ronment can always violate the specification. The correctness of the technique
was not proven formally, but tests with different consistent and inconsistent
examples (see Sect. C.3 and C.4) produced the expected results, providing ev-
idence for the correctness of the technique. Once the TGA system is created,
Uppaal Tiga takes less than a second to synthesize controllers from the exam-
ple MSD specifications provided in this chapter. Sect. 7.4.2 will summarize the
performance evaluation results in more detail.

Novel in this synthesis technique is in particular that environment assump-
tions in the form of assumption MSDs can be considered during the synthesis.
Furthermore, this chapter presented a novel compositional synthesis technique.

Some issues, however, remain that will have to be addressed in the future.

4.8.1 Inconsistent environment assumptions

If the environment assumptions are overly optimistic, the specification may not
capture critical situations in the system’s environment. Even worse, if environ-
ment assumptions are captured in a scenario-based way, it may happen that the
environment is not able to always satisfy the environment assumptions. Then
we say that the environment assumptions are inconsistent. That means that
the system is always able to satisfy its requirements, because it can force the
environment to violate the environment assumptions.

Such environment assumptions are typically erroneous descriptions of the
environment behavior, and it is desirable to automatically check the environment
assumptions for such inconsistencies in the future.

4.8.2 Partial observability

One aspect that is not considered in this synthesis is that the system does
usually not have the complete information about the state of the environment.
Usually a system can only observe certain events in the environment, via sensors
or external messages that it receives. Many events in the environment may
therefore remain hidden to the system. This is called partial observability. There

116 CHAPTER 4. SYNTHESIS

are some specifications where the system cannot satisfy the requirements only
because it does not see certain moves of the environment. This problem does not
occur within the example MSD specifications shown in this thesis, but it may
be an issue in other practical examples. In the future, the synthesis therefore
has to be extended to support partial observability. For example the lifeline
variables of the assumption MSDs, the diagrams variables, or events that are
sent between environment objects must be obscured from the system. Uppaal
Tiga supports partial observability [Cas07]. Applying these concepts to the
MSD synthesis technique, however, is future work.

CHAPTER 5
Symbiosis of Simulation

and Synthesis

This chapter describes an improved play-out algorithm that is capable of avoid-
ing avoidable violations during the play-out of an MSD specification by in-
corporating controllers that could be successfully synthesized from parts of the
specification. In the following, Sect. 5.2 explains how the play-out can be guided
by controllers that could be successfully synthesized from single use case spec-
ifications. Section 5.3 explains how the play-out can be guided by controllers
that could be successfully synthesized from a combination of multiple use cases.
But first, Sect. 5.1 overviews the scenario-based design process that shall be
supported by the techniques presented in this chapter.

5.1 Overview
The synthesis described in the previous chapter allows us to synthesize con-
trollers for MSD specifications where MSDs have concrete lifelines that refer
to objects in a static object system. The synthesis is therefore not suited for
finding inconsistencies in large, dynamic systems, which we need to specify with
MSDs that have symbolic lifelines. However, single use cases in such systems
typically refer to a static structural context, which means that they describe
how objects that have certain relationships to each other shall interact. In the
following, we also say that use cases occur among certain objects in an object
system. It is therefore possible to specify the behavior for a single use case
based on a particular small and static object system that represents subsets of
objects among which the use case may occur in a larger object system. A single
use case can, thus, be specified in the form described in Sect. 4.2, and can then
serve as input for the synthesis.

If such a specification, which we call a use case specification in the following,
turns out to be inconsistent, this means that any specification containing the use

117

118 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

case specification will be inconsistent. The engineers will then have to resolve
this inconsistency. However, if all the use case specifications are consistent, this
does not necessarily mean that a specification consisting of all these use case
specifications is also consistent. It may still happen that occurrences of the use
case overlap, which means that active MSDs of different use cases may occur in
such a way that their lifelines bind to the same objects and express requirements
about how certain messages shall be exchanged among these objects. These
requirements may still be contradictory in some cases: an active MSD in one
use case occurrence may require something to happen that is forbidden by an
active MSD in another use case occurrence.

An illustration of use cases that occur among certain objects is shown in
Fig. 2.1. Here, for example, the occurrences of the use cases Drive onto merging
switch and Enter denied when hazard on next track section overlap.

Typically, it is difficult to anticipate in which combinations use cases may
overlap. One way to find that out is by using the simulation of the complete
specification via the play-out algorithm. When simulating a larger, possibly
dynamic system, the play-out algorithm can interpret the MSDs in the use case
specifications as symbolic MSDs (provided that adequate binding expressions
are specified for the lifelines in the MSDs).

The play-out algorithm could, however, run into avoidable violations during
the play-out. This means that the engineer will not know whether a hot violation
during the simulation indicates an inconsistency or not. However, the controllers
synthesized from the above use case specifications contain information of how
to execute the MSDs belonging to the same use case so that violations can be
avoided. The idea is therefore to exploit the information in these controllers to
reduce the number of avoidable violations during the play-out. If, during play-
out, we can track which active MSDs make up a certain use case occurrence,
then we can control the play-out of these active MSDs according to the controller
that was synthesized from this use case specification. This way it can be ensured
that the play-out algorithm takes no steps that would lead to a violation in the
active MSDs in that use case occurrence.

How to formally specify use case specifications and how to control the ex-
ecution of active MSDs of a use case occurrence according to a controller that
was synthesized from the use case specification is explained in Sect. 5.2.

Despite controlling the simulation by the controllers that were synthesized
from the use case specifications, violations may occur during the simulation
where use case occurrences overlap. Again, these violations may indicate an
inconsistency or an avoidable violation. To find this out, we would like to analyze
such overlappings of use case occurrences in more detail. Also overlappings of
use case occurrences often take place in a static structural context. In that
case, we can again employ the synthesis to determine whether violations of the
requirements can always be avoided or not. For this purpose, the overlapping
of use case occurrences in a certain structural context must first be captured
formally.

Section 5.3 describes how a situation where use cases overlapping in a certain
structural context can be specified in what is called a composed use case speci-
fication. The section describes furthermore how controllers can be synthesized

5.1. OVERVIEW 119

from these specifications. If these specifications turn out to be consistent, the
section explains how occurrences of such composed use cases can be tracked and
how the execution of the involved active MSDs can be guided by the synthe-
sized controllers in order to avoid yet more avoidable violations during further
simulations.

Figure 5.1 summarizes the design process that shall be supported by the tech-
nique presented in this chapter. After the use cases are described informally (1),
the use case descriptions must be captured formally in use case specifications (2).
Sometimes already typical overlappings of use cases are known to the engineer
at design time. If that is the case, this knowledge is very valuable and should
be capture in the form of composed use case specifications right away. Next,
controllers can be synthesized from the (composed) use case specifications (3).

(1) Describe use
cases informally

(2) Model use case
specifications

(including the specifications
of anticipated composed

use cases)

(5) Simulate the
MSD specification

(guided by the controllers
synthesized from the use

case specifications)

(4) Revise informal use
case descriptions

(6) Model composed
use case specifications

(of the situations where
violations occurred)

(7) Synthesize
controllers from

composed use case
specifications

(3) Synthesize
controllers from the

use case
specifications

[inconsistency detected]

[all use case
specifications
are consistent]

[violation occurred]

[no violations
occurred]

[inconsistency
detected]

[all composed use
case specifications

are consistent]

Figure 5.1: The process of finding and resolving inconsistencies in scenario-
based specifications envisioned in ScenarioTools

120 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

If inconsistencies are detected during the synthesis, this means that the
specification is inconsistent, and the engineers will have to revise the use case
descriptions (4). If controllers can be successfully synthesized from the use case
specifications specified so far, but it may be that use cases occur in combinations
that were not anticipated before, the simulation via the play-out algorithm
can be used, guided by the synthesized controllers in order to minimize the
amount of avoidable violations (5). If violations during the simulation occur,
the overlapping of use case occurrences in which this violation occurs can be
formally captured in a composed use case specification (6), and synthesis can
determine whether violations are always avoidable in this situation (7).

If it turns out that the composed use case specification is inconsistent, the
requirements must again be revised (4). Otherwise, if the synthesis is able to
synthesize a controller from the composed use case specification, this controller
can again be used to improve the simulation, such that the avoidable violation
can be avoided during the next simulation run (5). If no violations occur during
the simulation, there is an increased probability that the specification is con-
sistent. That probability, however, depends on how intensively the simulation
was carried out, i.e., how many of the possible overlappings of use cases were
simulated and how many of the possible sequences of environment events in such
situations were simulated.

This approach is of course limited if many use cases may overlap in vari-
ous ways. Then the synthesis of the composed use cases may not be feasible
anymore. Also, as we will see in Sect. 5.3, the process of tracking composed
use case occurrences for guiding the play-out of the involved active MSDs may
become very complex and may have a negative effect on the performance of the
simulation.

5.2 Guiding play-out by controllers synthesized
from single use cases

This section first introduces an example use case specification in Sect. 5.2.1 and
then explains in Sect. 5.2.2 how the play-out algorithm can be improved by
controllers that could be successfully synthesized from use case specifications.

5.2.1 Use case specification example

Let us first consider an example use case specification in the following. Figure 5.2
shows the specification of a use case which describes that when a RailCab detects
an obstacle on the track section, it must report to its current track section control
that a hazard has occurred at a certain position on the track section. The track
section control then has to inform other RailCabs driving on the same track
section about the occurrence of a hazard on the respective position.

Use case specification overview

In the collaboration diagram at the top, Fig. 5.2 shows the four objects that are
involved in the use case: the environment, a RailCab that detects an obstacle,

5.2. GUIDING BY CONTROLLERS FROM SINGLE USE CASES 121

a track section control, and a RailCab that is warned about the obstacle. The
roles in the collaboration diagram are typed over the classes shown in the class
diagram of Fig. 3.10.

The MSDs are a deliberately odd formalization of the use case in order
to construct a small example where naive play-out may run into an avoidable
violation. The requirements are described by three MSDs. The MSD Warning-
WhenObstacleDetected says that if the detecting RailCab detects an obstacle,
it must notify the track section control of a hazard that occurred on the track
section. The track section control must then inform the warned RailCab about
the hazard and, next, must tell it about the position of the hazard. (The actual
position would be represented by a parameter, but, as mentioned previously, the
synthesis does not yet support message parameters. So, this example abstracts
from the concrete position.)

The MSD ReportObstaclePosition describes a similar scenario. When the
detecting RailCab detects an obstacle, it must inform the track section control
about the position of the obstacle. The track section control must then send
this position to the warned RailCab. Last, the MSD ReportObstaclePosition-
AndIssueWarning says that if the detecting RailCab notifies the track section
control about a hazard and then sends the track section control the position of
an obstacle, the track section control must inform the warned RailCab about
the position of an obstacle and then warn it about a hazard.

Violating and non-violating executions

During the play-out of these MSDs, the play-out algorithm may run into
a violation. When the event obstacleDetected occurs, and the Rail-
Cab then sends hazardOccurred and then obstaclePosition, the mes-
sage hazardWarning is active in the MSD WarningWhenObstacleDetected and
the event obstacleAtPosition is active in the other two MSDs. But,
at this point the play-out algorithm will not be able to progress, because
obstacleAtPosition is forbidden to occur in WarningWhenObstacleDetected
and hazardWarning is forbidden to occur in ReportObstaclePositionAndIssue-
Warning. If the play-out algorithm, however, would have chosen to send
obstaclePosition before hazardOccurred, it could have avoided this viola-
tion.

The use case specification can serve as input for the synthesis described in
Chap. 4, and an admissible controller can be synthesized from this specification,
in which the violating execution is avoided.

Play-out of the MSDs

For the synthesis, the collaboration diagram describes one simple, static object
system. But, it is possible to model various, larger track systems based on the
classes that the roles refer to, as shown at the bottom of Fig. 3.10. Based on such
a larger object system, the play-out algorithm can also interpret these MSDs
as symbolic MSDs. (Possibly in combination with other MSDs from further
use case specifications.) For this purpose, however, as described in Sect. 3.1.15,

122 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

env:Environment detectingRC:RailCab current:TrackSectionControl

obstacleDetected
hazardOccurred

WarningWhenObstacleDetected

warnedRC:RailCab

hazardWarning

obstacleAtPosition

env:Environment detectingRC:RailCab current:TrackSectionControl

obstacleDetected

ReportObstaclePosition

warnedRC:RailCab

obstaclePosition

obstacleAtPosition

detectingRC:RailCab current:TrackSectionControl

hazardOccurred

ReportObstaclePositionAndIssueWarning

warnedRC:RailCab

obstaclePosition

obstacleAtPosition

hazardWarning

RailCabObstacleDetected

current = detectingRC.current
warnedRC=current.
registeredRailCabs

->excluding(detectingRC)

current = detectingRC.current

detectingRC:RailCab

current:TrackSectionControl

env:Environment

warnedRC:RailCab

warnedRC=current.
registeredRailCabs

->excluding(detectingRC)

warnedRC=current.
registeredRailCabs

->excluding(detectingRC)

Figure 5.2: The collaboration diagram and MSDs of the Warn RailCabs on track
use case specification

5.2. GUIDING BY CONTROLLERS FROM SINGLE USE CASES 123

binding expressions are required for the lifelines that will not be bound during
the unification of the first diagram message, in order to specify which objects
these lifelines shall be bound to.

The MSDs in Fig. 5.2 have binding expressions for these lifelines. In the MSD
WarningWhenObstacleDetected, for example, the binding expressions say that
the track section control bound to the lifeline current:TrackSectionControl must
be the current track section control of the detecting RailCab. Furthermore, the
lifeline warnedRC:RailCab shall be bound to any RailCab that is registered at the
current track section control and that is not the detecting RailCab. Remember
that if the value expression of a binding expression evaluates to a set of two or
more objects, copies of the active MSD will be created so that every object is
bound to the lifeline in one active MSD, see Sect. 3.1.15.

The binding expressions are the same for the according lifelines in the other
two MSDs, which is not surprising, since the lifelines represent the same objects
in the use case. Because the binding expressions are very often redundant, it
would be desirable in the future to specify these binding expressions only once,
for example in the collaboration diagram. The ScenarioTools implemen-
tation of the play-out algorithm, however, currently requires that the binding
expressions are specified within the MSDs.

5.2.2 Play-out with synthesized controllers

This section presents the extended play-out algorithm. Before coming to the
extension, the concept of a use case occurrence is introduced. Furthermore, it
is explained how the information of which steps are allowed to be performed by
the system is extracted from the synthesized controllers.

The use case occurrence

During runtime, a use case occurrence is the set of all active MSDs where, first,
the MSDs belong to the same use case, and, second, all lifelines representing the
same role are bound to the same object. In a use case occurrence, the lifeline
bindings also imply which object is represented by a role. The mapping of a
role to an object is also called a role binding.

The synthesized controller

The controller created by the synthesis described in Chap. 4 is an automaton
that contains directives of which transitions to take in each winning state of the
TGA network that corresponds to this use case specification. A state in this
controller is determined by the current locations of all processes in the TGA
network as well as the current value of all variables. This includes the lifeline
variables, which encode the current cuts of the MSDs.

In the following, however, we are not interested in every state of the syn-
thesized automaton. We only focus on certain states and transitions in this
controller: if we talk about a state in the following, we refer to a state where
the system automaton is in the location systemActive. The outgoing transi-
tions in these states represent the directive to either execute a certain event in

124 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

a particular configuration of cuts, or to wait for environment events to occur.
The former transitions are called event transitions, the latter are called waiting
transitions. The event transitions are transitions where the system automaton
takes an edge to the location produceEvent and assigns a particular value to
the event variable. (See Sect. C.2.4 for an example of the output generated by
Uppaal Tiga for the synthesis of the use case specification above.) If a state
has no event transitions, there is a waiting transition instead, where the system
automaton moves to the location systemInactive.

The value assigned to the event variable in an event transition represents a
message that refers to a certain operation and is sent between the objects that
are represented by the roles in the use case specification (see Sect. 4.3.1). We
say that a message in the object system can be unified with an event transition
if the operation specified by the event transition equals the operation of the
message in the object system and if the sending and receiving roles specified
by the event transition are bound to the sending resp. receiving object of the
message sent in the object system.

The extended play-out algorithm

The idea is now that one controller or even several controllers that were synthe-
sized from different use case specifications tell the play-out algorithm by which
steps it will be able to avoid violations among the MSDs that belong to an ac-
cording use case occurrence. This works by “obeying” the controller for specific
use case occurrences.

Remember that in an active MSD, in a certain cut, there may be one or
more messages active. These messages determine which messages shall be sent
between the objects bound to the sending and receiving lifelines. If a message
occurs in the object system that can be unified with a message that is not enabled
in the current cut, this is a cold violation or a safety violation, depending on
the temperature of the cut. Events that lead to safety violations are called
forbidden events. In a step, the play-out algorithm chooses to send a message in
the object system that is unifiable with a message that is active in some active
MSD, provided that it is not forbidden in another active MSD (see Sect. 3.1.8).

If there is an occurrence of a use case for which a controller exists, also called
a controlled use case occurrence, a similar principle is additionally applied for
the controller: In a certain state of a use case occurrence, i.e., in a certain
configuration of cuts of the active MSDs that make up the use case occurrence,
there may be a number of outgoing event transitions. The events represented
by an outgoing event transition in the current state are also called prescribed
events. If a message occurs in the object system that is not prescribed by a
controller, but can be unified with another event transition in the controller,
this is called disobeying the controller; events which disobey the controller in a
certain state are also called disobeying events.

When executing active events, the play-out algorithm will always try to
execute events that are not disobeying any controlled use case occurrence. Dis-
obeying a controlled use case occurrence is not necessarily a violation of the
requirements, but it means that from that point on the controller cannot guar-

5.2. GUIDING BY CONTROLLERS FROM SINGLE USE CASES 125

antee that it will be always possible to avoid violations of the MSDs within the
use case specification.

More specifically, the extended play-out algorithm works as follows.
0. Wait for an environment event to occur. If an event occurs that is forbid-

den by a currently active MSD, this is a hot violation. Then terminate.
If an environment event occurs that is not forbidden in any active MSD,
then continue as follows.

1. For all controlled use case occurrences, map the current cuts of the active
MSDs in that use case occurrence to a state in the controller. Mark this
state as the current state of the controller automaton for that use case
occurrence.

2. For each controlled use case occurrence, determine the set of prescribed
and disobeying events in the current state of the controller automaton for
the use case occurrence.

3. Determine the set of events that are active in an active MSD. Then,
a) if this set is empty, do nothing and wait for the next environment

event to occur (return to Step 0). Otherwise
b) remove from this set of events those that are forbidden to occur in

an active MSD. If the resulting set is empty, this constitutes a hot
violation, i.e., there are steps that have to be executed, but there is
no step that can be taken that would not lead to a safety violation
of an active MSD. The algorithm is terminated and an according
exception is thrown.

c) Remove from the remaining set of events the events that are disobey-
ing a controller of a controlled use case occurrence.

• If the resulting set is not empty, choose one of the events and
execute it. Then continue with Step 1.

• If the resulting set is empty, execute an event from the previous
set (the set of active, non-forbidden events) and issue a warn-
ing that the event is disobeying a controller and that from now
on the play-out will not be able to avoid violations among the
active MSDs within every controlled use case occurrence. Then
continue with Step 1.

(It is assumed that when events are executed or environment events occur in
the environment, the cuts of the MSDs progress as in the regular play-out algo-
rithm.) Figure 5.3 illustrates this process. On the left of the figure, a use case
occurrence is illustrated with a set of active MSDs that all reside in a certain cut.
The dashed lines from the use case ellipse to the environment, the RailCabs,
and the track section control illustrated at the bottom express which role, and
consequently, which lifeline is bound to which object. On the right, the steps of
the play-out algorithm as explained above are illustrated.

Currently, message parameters and diagram variables are not supported by
the synthesis explained in Chap. 4, and the ScenarioTools play-out algorithm
does not yet support the play-out of timed MSD specifications and assumption
MSDs. So, the symbiosis of synthesis and simulation is currently only supported
for the core MSD language features. When extending these concepts to parame-
terized messages and time, it will also be necessary to consider the current value

126 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

detectingRC:RailCab current:TrackSectCtrl warnedRC:RailCab

env:Environment detectingRC:RailCab current:TrackSectCtrl warnedRC:RailCab

rc1

obstacleDetected

rc2 rc3

RailCabObstacleDetected

detectingRC:RailCab

current:TrackSectionControl

env:Environment

warnedRC:RailCab

env

warnedRC detectingRC
current

env

env:Environment detectingRC:RailCab current:TrackSectCtrl warnedRC:RailCab

Synthesized Controller
map current use case
occurrence state to a
state of the strategy
automaton

determine prescribed
and disobeying
events in the
controller

choose an event to execute
in the object system that is
active, not forbidden, and
not disobeying a controlled
use case occurrence

determine
prescribed and
disobeying events
in other controllers

1

2

3

determine
active and
forbidden
events in
other active
MSDs

Play-out Algorithm

determine
active and
forbidden
events in
active
MSDs of
use case
occurrence

Figure 5.3: Illustration of how the play-out of the active MSDs belonging to a
use case occurrence is aided by a synthesized controller strategy

of diagram variables and clocks when mapping the current state of the active
MSDs in the use case occurrence to the current state of the controller (Step 1).

Complete controllers

For this process, complete controllers must be synthesized from the use case
specifications. A complete controller is a controller that contains all winning
actions in each winning state of the TGA network. In the case of a controller
synthesized from a use case specification, a complete controller contains all
admissible reactions of the system objects in a certain configuration of cuts in
the use case occurrence, i.e., all possible steps that guarantee for the execution
of the MSDs within the use case specification to always avoid hot violations
and to always eventually execute all the active events. If the controllers are not
complete, the play-out algorithm would consider too many events as disobeying
events, and would therefore report warnings where there would still be a chance
to execute the MSDs in an admissible way. This would contradict the desired
goal of reducing the avoidable violations, or “false negatives”, that are reported

5.2. GUIDING BY CONTROLLERS FROM SINGLE USE CASES 127

to the engineer. Fortunately, Uppaal Tiga allows us to synthesized complete
controllers [BCD+07b].

Iterative vs. invariant interpretation of the MSDs

Another issue is that the synthesis only supports the iterative interpretation of
the MSDs, which means that the controller only considers states where there is
at most one active copy of an MSD in the use case specification (see Sect. 3.1.6).
The play-out algorithm must therefore also follow the iterative interpretation,
or, if it supports the invariant interpretation of the MSDs, it must be ensured
that during play-out never a situation occurs where two active copies of the
same MSD are created within the same use case occurrence. Only in these
cases, the iterative and invariant interpretations lead to the same behavior.
The play-out algorithm implemented in ScenarioTools supports the invariant
interpretation, but no examples of MSDs occur in the scope of this thesis where
the invariant interpretation differs from the iterative interpretation.

There are never two active copies of an MSD created if the first message
never appears again in the diagram. Cases where the invariant interpretation
could differ from the iterative interpretation can therefore be identified by a
simple syntax check.

Late binding of lifelines

The problem with guiding the execution of the active MSDs belonging to a use
case occurrence as described above is that not all lifelines of an active MSD
may be bound right at the time of its activation. The binding may take place
gradually as the active MSD progresses. A binding expression may for example
refer to a diagram variable that is bound to the value of a parameter of a
parameterized message that appears later in an MSD. If a lifeline is not bound
right after the activation of an MSD, this is called the late binding of lifelines.

If there is late binding, it is not always clear which use case occurrence an
active MSDs will turn out to belong to. However, if that is not clear, it is not
possible to determine which state a use case occurrence is in, and the play-out
cannot be guided by a controller as explained above. Therefore, late binding is
forbidden in this approach.

Because parameterized messages, diagram variables, and object properties
are not yet supported by the synthesis, no late binding can currently occur in
the use case specifications.

An active MSD could belong to multiple use case occurrences

One case that may occur, even without late binding, is that an active MSD
could belong to multiple use case occurrences. Imagine that there are two use
case occurrences of the same use case where a subset of the same roles are bound
to the same objects. An MSD with lifelines that only refer to these roles would,
after its activation, belong to both use case occurrences.

128 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

5.3 Guiding play-out by controllers synthesized
from composed use cases

This section first explains how to model composed use case specifications by an
example in Sect. 5.3.1. Then Sect. 5.3.2 explains how a composed use case spec-
ification can be mapped to the input for the synthesis as described in Chap. 4.
Next, Sect. 5.3.3 illustrates how the active MSDs that belong to the occurrence
of a composed use case can be controlled by a controller that was synthesized
from the composed use case specification. Last, Sect. 5.3.4, Sect. 5.3.5, and
Sect. 5.3.6 explain how to systematically track the active MSDs that make up
composed use case occurrences during the simulation.

5.3.1 Composed use case example

Consider the use case Enter denied when hazard on next track section, which
is informally described in Tab. 5.1. It says that a RailCab that requests the
permission to enter the next track section must not be allowed to enter if a
hazard has occurred on that next track section.

Table 5.1: Use Case Enter denied when hazard on next track section

Use Case: Enter denied when hazard on next track
section

Nr. 4

Requirements:
If a RailCab requests the permission to enter the next track section from the next
track section control, but there is a hazard on the next track section, the next track
section control must deny the permission to enter.

Environment assumptions:
none

Sketch:

next

rc

The specification of the use case Enter denied when hazard on next track
section is shown in Fig. 5.4. It says that if a RailCab requests the permission
to enter the next track section, and the hazard flag is set to true, the next track
section control must not allow the RailCab to enter.

When formulating this use case, the engineer could have in mind that a
hazard occurred on the next track section control because another RailCab on
that track section detected an obstacle, similar to the example in Sect. 5.2.1.
Furthermore, that a RailCab requests the permission to enter the next track

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 129

EnterDenied
WhenHazardOnNextTrackSection

rc:RailCab next:TrackSectionControl

requestEnter

EnterDeniedWhenHazardOccurred

next.hazard

enterAllowed(false)

rc:RailCab next:Track
SectionControl

Figure 5.4: The collaboration diagram and the (single) MSD specified for the
use case Enter denied when hazard on next track section

section is a behavior that was specified in the use case Drive onto track section.
Figure 5.5 shows a picture of the situation that the engineer could have in mind.

nextrc next

env

Drive onto
track section

env

Hazard occurredenv

rc
current

rc1 rc2

hazardOccurredendOfTS

next

EnterDenied
WhenHazardOnNext

TrackSection

rc

Figure 5.5: A combination of the use cases Drive onto track section and Haz-
ard occurred and Enter denied when hazard on next track section in a particular
instance situation

The use case Hazard occurred is another simple use case that is described in
Tab. 5.2. The use case specification is shown in Fig. 5.6. Here it is specified
that if a RailCab detects an obstacle on the track section, it reports to the
current track section control that a hazard has occurred on the track section.
The track section control must then set its hazard property to true, which is
modeled by the self-message setHazard(true). (Remember that set-messages
have side-effects on object properties, see Sect. 3.1.11.)

In the situation illustrated in Fig. 5.5, a combination of use cases overlap
in a particular structural context. This situation can be modeled by a UML
collaboration diagram as shown in Fig. 5.7. In the following, we call the specifi-
cation of such a situation a composed use case. This composed use case is called

130 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

Table 5.2: Use Case Hazard occurred

Use Case: Hazard occurred Nr. 3

Requirements:
If a RailCab detects an obstacle on the track section, it must report that a hazard
occurred to its current track section control.

Environment assumptions:
none

Sketch:

current

rc

env

obstacleDetected

hazardOccurred

obstacleDetected

env:Environment rc:RailCab current:TrackSectionControl

hazardOccurred

ReportHazardToTrackSectionControl

setHazard(true)

HazardOccurred

self = rc.current

current:Track
SectionControl

env:Environment

rc:RailCab

Figure 5.6: The collaboration diagram and the (single) MSD for the use case
Hazard occurred

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 131

Enter denied when hazard on next track section AND Drive onto track section AND
Hazard occurred. Here the objects among which the use cases occur are again
modeled by roles. We see the environment, two RailCabs, and one track sec-
tion control. (To reduce the visual complexity, no connectors are shown among
the roles in this diagram.) In addition, the collaboration diagram shows the
occurrences of use cases among these roles by the dashed ellipses. In UML, this
notation is called a collaboration use [UML09, Sect. 9.3.4, pp. 171]. Here we
call these ellipses internal use case occurrences instead.

Internal use case occurrences refer to other use case specifications as in-
dicated by their name. The dashed lines between the ellipses of internal use
case occurrences and the roles describe which role in the use case specification
that the internal use case occurrences refer to is mapped to which role in the
composed use case. These mappings are also called role mappings. There can
only be role mappings if the class that types the role in the specification of the
internal use case is equal to or a generalization of the class that types the role
in the composed use case.

rc1:RailCab

next:Track
SectionControl

EnterDeniedWhenHazardOnNextTrack
Section_AND_DriveOntoTrackSection_AND_HazardOccurred

env:Environment

rc2:RailCab

rc next

:DriveOnto
TrackSection

env
env

rc
current

:HazardOccurred

next

:EnterDenied
WhenHazardOnNext

TrackSection

rc

Figure 5.7: The collaboration diagram for a use case that is composed of
occurrences of the use cases Drive onto track section, Hazard occurred, and Enter
denied when hazard on next track section

5.3.2 Synthesizing controllers from composed use cases

A composed use case specification as illustrated above can be mapped to a
regular use case specification that can then serve as the input for the synthesis
described in Chap. 4. In this mapping, each lifeline of each MSD in each internal
use case is modified so that it does not anymore reference the role in the internal
use case specification, but instead references the role in the composed use case
that the role in the internal use case is mapped to. It may, however, happen that
there are two or more internal use case occurrences of the same use case within
a composed use case with different role mappings. Then it is necessary that the
MSDs in the internal use case are copied for each internal use case occurrence.
The lifelines in each MSD copy for an internal use case occurrence must then

132 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

refer to the role in the composed use case according to the role mapping of the
internal use case occurrence.

Figure 5.8 illustrates this mapping by the example. The left side shows
a composed use case 2OT, which specifies that the use case Drive onto track
section (here abbreviated OT) occurs twice within a certain structural context.
On the top left, there are two MSDs with lifelines that refer to the roles in
the specification of the use case OT, indicated by the lifeline names. On the
right, the figure displays the corresponding “flattened” use case specification.
The collaboration diagram contains the same roles as the collaboration diagram
of the composed use case, but there are no internal use case occurrences left.
Instead, there are two copies of the MSDs in the use case specification OT where
the lifelines refer to the roles according to the role mappings of the internal use
case occurrences on the left.

env:Env rc:RailCab next:TSC

2OT

rc1:RailCab

next1:TSC

env:Env

ot1:OT

next2:TSC

ot2:OT

OT

rc:RailCab next:TSC

env:Env

env:Env rc:RailCab next:TSC

msd A

rc2:RailCab

rcrc

next next

env env

2OT

rc1:RailCab

next1:TSC

env:Env

next2:TSC

rc2:RailCab

env:Env rc:RailCab next:TSCenv:Env rc2:RailCab next2:TSC

msd A _ot2

env:Env rc:RailCab next:TSCenv:Env rc1:RailCab next1:TSC

msd A_ot1

composed
use case

specification
of an internal

use case

flattened MSD specification

Figure 5.8: “Flattening” composed use cases to the input for the synthesis

Composed use cases may also again be composed to composed use cases.
The mapping to a “flattened” use case occurrence then works by iteratively
applying the mapping described above.

5.3.3 Guiding the play-out of composed use case occurrences

If a controller could be successfully synthesized from a composed use case, it
is possible to control the MSDs that make up the occurrence of that composed
use case according to the synthesized controller. To do that, it is necessary
to determine which active MSDs make up occurrences of use cases that are
internal use cases of the composed use case. Then it has to be determined

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 133

which combination of these use case occurrences makes up an occurrence of the
composed use case.

Figure 5.9 illustrates a state during the simulation of the RailCab system
where the composed use case Enter denied when hazard on next track section
AND Drive onto track section AND Hazard occurred (see Fig. 5.7) occurs. The
state that is illustrated here is the state after RailCab rc2 has detected an
obstacle on the track section and, as specified in the MSD ReportHazardTo-
TrackSectionControl in Fig. 5.6, reported a hazard to its current track section
control, which then set its hazard flag to true. Then, RailCab rc1 was notified
about reaching the end of its current track section and, in reaction, sent the
message requestEnter to its next track section control. The top of the figure
shows three active MSDs that make up occurrences of the use cases Drive onto
track section and Enter denied when hazard on next track section. Currently,
there is no active MSD of the use case Hazard occurred, because it was already
terminated after the hazard flag was set to true. The lifelines of the active MSDs
are bound as indicated by the labels in the rounded rectangles that are attached
to the lifelines.

The lifeline bindings imply which roles in the use case occurrences are bound
to which objects. According to the role mapping in the composed use case, these
use case occurrences make up an occurrence of the composed use case where the
role rc1 is bound to the object rc1, the role rc2 is bound to the object rc2, the
role env is bound to the object env, and the role next is bound to the object tsc4.
These role bindings are indicated by the dashed lines to the objects illustrated
at the bottom of the Fig. 5.9.

The current configuration of cuts of the active MSDs that belong to the
composed use case occurrence can be mapped to a state in the controller au-
tomaton. The play-out can then be guided by the controller as described in
Sect. 5.2.2.

5.3.4 Tracking composed use case occurrences

One difficulty in this approach is, however, that the life-cycle of a composed use
case already starts even if just one use case occurs that is an internal use case
of the composed use case. In the above example, already the occurrence of the
use case Hazard occurred was actually an occurrence of the composed use case.
Therefore, in order to control the play-out of the involved MSDs so that play-out
takes no steps that may lead to an avoidable violation in a composed use case
later on, already these occurrences of single use cases that occur internally in
a composed use case have to be controlled according to the controller that was
synthesized from the composed use case. That means that we have to control
the play-out of these use case occurrences long before occurrences of all use
cases occurring internally in a composed use case finally aggregate to make up
the situation that is specified in the composed use case. Even worse, there are
often various ways in which the situation specified in the composed use case
may emerge from this occurrence of one internal use case. Let us consider an
example in the following.

134 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

rc1:RailCab

next:Track
SectionControl

env:Environment :HazardOccurred

rc2:RailCab

env

hazardOccurredendOfTS

rc:RailCab next:TrackSectionControl

requestEnter

EnterDeniedWhenHazardOccurred

next.hazard

enterAllowed(false)

lastBreak

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(isAllowed)

ReplyBeforeLastSafeBreak

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

RequestEnterAtEndOfTrackSection

requestEnter

enterAllowed(isAllowed)

self = rc.current.next

hazard=true

Synthesized Strategy

:EnterDenied
WhenHazardOnNext

TrackSection
:DriveOnto

TrackSection

next

env

rc1 rc2

rc rc

env

env

current
rc

next

next

rc1 rc2
tsc1 tsc2 tsc3 tsc4

rc2 tsc4

rc1 tsc4env

rc1 tsc4env

Figure 5.9: An occurrence of the composed use case Enter denied when hazard
on next track section AND Drive onto track section AND Hazard occurred that is
executed based on a synthesized controller strategy

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 135

Example of tracking composed use case occurrences

The top of Fig. 5.10 shows the collaboration diagram of a composed use case
Drive onto track section AND Drive onto track section, in the following abbreviated
2OT. This composed use case describes a situation where two RailCabs on two
track sections reach the end of the track section and prepare for entering the
next track section. The diagram shows that the use case contains two internal
occurrences of the use case Drive onto track section. One is named ot1, with
its roles env, rc, next mapped to the roles env, rc1, next1, respectively, of the
composed use case. The other is named ot2, with its roles env, rc, next mapped
to the roles env, rc2, next2 of the composed use case respectively1.

The bottom of the figure shows two RailCabs, rcA and rcB, that drive on
different track sections in a RailCab system. Imagine that now rcA approaches
the end of its track section and there is an occurrence of the use case Drive onto
track section. This use case occurrence is called a and is represented in Fig. 5.10
by the dashed ellipse that is drawn just above the RailCab rcA. The occurrence
of this use case is already an occurrence of the composed use case. Actually,
this use case occurrence resembles two occurrences of the composed use case,
because the use case occurrence a can take the role of the internal use case
occurrence ot1 or the internal use case occurrence ot2 of the composed use case.
These two occurrences of the composed use case are represented in Fig. 5.10 by
the two dashed ellipses on the left in the row labeled L1.

If a use case occurrence plays the role of an internal use case occurrence in a
composed use case occurrence, this use case occurrence is also said to be bound
to the internal use case occurrence. If there is no use case occurrence that takes
the role of an internal use case occurrence within a composed use case occur-
rence, the internal use case occurrence is unbound. The label [(ot1,a),(ot2,?)] for
example says that the use case occurrence a is bound to the internal use case
occurrence ot1 and that the internal use case occurrence ot2 is unbound.

If in a composed use case occurrence all internal use case occurrences are
bound, it is called a complete composed use case occurrence, otherwise it is an
incomplete or partially bound composed use case occurrence.

Next, let use assume that the RailCab rcB also reaches the end of its track
section. That means that the use case Drive onto track section occurs another
time, which is illustrated in Fig. 5.10 by the use case occurrence named b. Here
two incomplete occurrences of the composed use case are created as in the first
case. In addition, a complete occurrence of the composed use case can now be
formed by binding ot1 to a and ot2 to b. But, alternatively also ot2 can be
bound to a and ot1 to b (see the two ellipses in the row L2).

In order to keep the play-out algorithm at all times from taking steps that
may lead to an avoidable violation in a composed use case occurrence, the play-
out must not take any steps that are forbidden by the controller synthesized from

1Note that the two internal use case in this composed use case actually do not overlap, i.e.,
they do not specify requirements for messages sent among the same roles. Therefore, if the
use case Drive onto track section is consistent, the synthesis of the composed use case would
not find any inconsistencies. But this is just a simple example with the purpose to illustrate
how to track occurrences of the composed use cases during the simulation.

136 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

use case occurrences
created upon the creation of
a, before the creation of b

DriveOntoTrackSection
_AND_DriveOntoTrackSection (2OT)

rc1:RailCab

next1:Track
SectionControl

env:Environment

rc2:RailCab

ot1:DriveOnto
TrackSection

next2:Track
SectionControl

ot2:DriveOnto
TrackSection

rc rc

nextnext

env env

rcA rcB
tcsC tcsD

env
endOfTSendOfTS

tcsBtcsA tcsE

L1

L2

a:DriveOnto
TrackSection

b:DriveOnto
TrackSection

:2OT[(ot1,?),(ot2,a)] :2OT[(ot1,b),(ot2,?)]:2OT[(ot1,a),(ot2,?)] :2OT[(ot1,?),(ot2,b)]

:2OT[(ot1,a),(ot2,b)] :2OT[(ot1,b),(ot2,a)]

:2OT[(ot1,a),(ot2,?)]

occurrence of the composed use case 2OT

internal use case occurrence ot2 is unbound

internal use case occurrence ot1 is bound to use case occurrence a

legend

Figure 5.10: An example of incomplete and complete occurrences of a composed
use case

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 137

the composed use case in the state that corresponds to the current configuration
of cuts in the active MSDs that make up any of the above composed use case
occurrences. We also say that the play-out must obey the controller in all the
above composed use case occurrences. It must even obey the partial composed
use case occurrences, because the use case Drive onto track section may occur in
the system another time to form a further complete use case occurrence with
the use case occurrences a and b.

Structural constraints among roles of composed use cases

In this example, there is an explosion of the number of composed use case
occurrences that need to be tracked the more often the use case Drive onto track
section occurs. One reason for that is that the composed use case does not
describe whether the internal use case occurrences shall occur in any particular
structural context. Imagine that we actually like to capture a situation where the
two use cases Drive onto track section occur on two subsequent track sections. If
we could specify such structural contexts, and then only track composed use case
occurrences within these structural contexts, we could reduce the combinations
of use case occurrences that we would need to consider during the simulation.

In the following, a concept is presented that allows the engineer to spec-
ify structural relationships between roles via OCL expressions, similar to the
binding expressions on lifelines. We call these OCL expressions context expres-
sions in the following. If such expressions are specified, we only track use case
occurrences for which these expressions evaluate to true.

Figure 5.11 shows the expression next1.next=next2 inside a label in the
collaboration diagram of the composed use case 2OT. These expressions must
evaluate to a truth value. In these expressions, the role names can be used as
variables. If the roles are bound, these variables are bound to the according
objects; if the roles are unbound, the variables are unbound. Expressions can
only be evaluated if all variables appearing in the expression are bound. The
above expression says that the object bound to the role next1 must link to the
object bound to role next2 as its next track section control.

In Fig. 5.11, the row labeled L2 shows that now the composed use case
occurrence with the internal use case bindings [(ot1,b),(ot2,a)] is not considered
anymore.

The next section describes more precisely how use case occurrences are
tracked systematically and how the context expressions are interpreted in this
process.

5.3.5 Systematically tracking composed use case occurrences

In Sect. 5.2.2, it was defined that the set of all active MSDs where, first, the
MSDs belong to the same use case, and, second, all lifelines representing the
same role are bound to the same objects, makes up the occurrence of a (non-
composed) use case. The lifeline bindings imply which objects the roles of
the use case specification are bound to. We have furthermore required that,
if an active MSD is created, all lifelines are bound right away, i.e., there is

138 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

use case occurrences
created upon the creation of
a, before the creation of b

DriveOntoTrackSection
_AND_DriveOntoTrackSection (2OT)

rc1:RailCab

next1:Track
SectionControl

env:Environment

rc2:RailCab

ot1:DriveOnto
TrackSection

next2:Track
SectionControl

ot2:DriveOnto
TrackSection

rc rc

nextnext

env env

rcA rcB
tcsC tcsD

env
endOfTSendOfTS

tcsBtcsA tcsE

L1

L2

a:DriveOnto
TrackSection

b:DriveOnto
TrackSection

:2OT[(ot1,?),(ot2,a)] :2OT[(ot1,b),(ot2,?)]:2OT[(ot1,a),(ot2,?)] :2OT[(ot1,?),(ot2,b)]

:2OT[(ot1,a),(ot2,b)]
these use

case occurrences cannot
be unified

next1.next = next2

:2OT[(ot1,a),(ot2,?)]

occurrence of the composed use case 2OT

internal use case occurrence ot2 is unbound

internal use case occurrence ot1 is bound to use case occurrence a

legend

Figure 5.11: An example of incomplete and complete occurrences of a composed
use case under consideration of a context expression

5.3. GUIDING BY CONTROLLERS FROM COMPOSED USE CASES 139

no late binding of lifelines. Thus, whenever a new active MSD is created or
an active MSDs is terminated, use case occurrences may be created, the role
bindings of use case occurrences may be updated, or use case occurrences may be
terminated. Whenever this is the case, also the composed use case occurrences
may be created, updated, or terminated. Instead of describing how to maintain
the composed use case occurrences operationally, two rules are presented below
that describe declaratively which composed use case occurrences must exist at
any time during the simulation.

In the following, we distinguish certain levels of composed use case occur-
rences. Composed use case occurrences with just one bound internal use case
are called level-1 occurrences. Composed use case occurrences with two bound
internal use case are called level-2 occurrences, etc. Consequently, if a com-
posed use case occurrence has n many internal use case occurrences, the level-n
occurrences are such where all the internal use case occurrences are bound. (Ex-
amples of level-1 and level-2 occurrences of the composed use case 2OT were
already shown in Fig. 5.10 and 5.11, in the rows labeled L1 and L2.) The com-
posed use case occurrence of the different levels have to be created so that the
following rules are satisfied.

Rule 1 (Level-1 occurrence of composed use cases). If an occurrence of a (non-
composed or composed) use case exists, for each occurrence of this use case
internally in a composed use case, an occurrence of that composed use case
must exist where the internal use case occurrence binds the use case occurrence.
The other internal use case occurrences remain unbound. Consequently, the
roles of the composed use case occurrence are bound to the objects bound by
the internal use case occurrence according to the role mappings that are specified
in the collaboration of the composed use case. Only if a binding expression can
be evaluated and evaluates to false, the according level-1 occurrence must not
exist.

Rule 2 (Level-2..n occurrence of composed use cases). Let i ∈ 2..n, where n
is the total number of internal use case occurrences of a composed use case.
For a set of level-1 use case occurrences, the following level-i occurrences of a
composed use case must exist: For each level-(i − 1) occurrence and for each
unbound internal use case occurrence therein, there must exist a level-i use case
occurrence for each level-1 use case occurrence that can be unified with the
level-(i − 1) occurrence. A level-(i − 1) use case occurrence can be unified2 with
a level-1 use case occurrence if the bound internal use case occurrence in the
level-1 use case occurrence is unbound in the level-(i − 1) use case occurrence.
Furthermore, each role mapped by that internal use case occurrence in the
level-(i − 1) use case occurrence must be either unbound or it must be bound
to the same object as the according role in the level-1 use case occurrence. The
unified level-i use case occurrence must be a copy of the level-(i − 1) use case
occurrence where additionally the internal use case occurrence that is bound
in the unifiable level-1 use case occurrence is bound accordingly. The roles of

2Note that the unification of occurrences of composed use cases is a different concept than
the unification of message events in MSDs, see Sect. 3.1.3

140 CHAPTER 5. SYMBIOSIS OF SIMULATION AND SYNTHESIS

the composed use case occurrence must be bound to the objects bound by the
internal use case occurrences according to the role mappings that are specified
in the collaboration of the composed use case. Only if a binding expression can
be evaluated and evaluate to false, the according level-i occurrence must not
exist.

The play-out must be controlled according to all the complete and incom-
plete use case occurrences that are created according to the above rules. It may
happen, however, that the configuration of cuts of the active MSDs that belong
to an incomplete composed use case occurrence cannot be mapped to a state
in the controller synthesized from the composed use case. That is because it
may be that, for example, two use case occurrences that appear internally in
a composed use case always occur simultaneously. In that case, there may be
a situation where there exist level-1 composed use case occurrences where just
one of the internal use case occurrences is bound, and the configuration of cuts
of just the active MSDs within this one composed use case occurrence cannot
be mapped to a state in the controller. In this case, the play-out is simply not
controlled according to this incomplete composed use case occurrences.

5.3.6 Overly restrictive context expressions

One problem with the above approach is that overly restrictive context expres-
sions in combination with a dynamic system may lead to simulation runs where
use cases occur in a context that first does not satisfy the context expressions,
but later the structure of the system changes such that the context expressions
are satisfied. Then it may be that the play-out runs into violations that could
have been avoided if weaker or no context expressions were specified. That
is because the play-out of the active MSDs in the use case occurrences were
not controlled right away according to the controller of the composed use case.
Further examples will have to be studied in the future to identify such cases.
In order not to track overly many composed use case occurrences during the
simulation, which may make the approach inefficient, but in order to guide the
play-out best as possible by the synthesized controllers, richer concepts may be
required. One idea is to specify that different context expressions have to be
satisfied in certain states of the composed use case occurrence.

5.4 Summary and Outlook
This chapter presented an extension to the play-out algorithm that allows it to
avoid more avoidable violations during the play-out of an MSD specification by
employing controllers that could be synthesized from parts of that specification.
It was shown how single use cases can be specified in use case specifications, how
active MSDs make up an occurrence of a use case during run-time, and how the
execution of these MSDs can be controlled by a synthesized controller. These
concepts were prototypically implemented in ScenarioTools. Furthermore,
concepts were presented of how situations where use case occurrences overlap
in a system can be captured in composed use case specifications, and how the

5.4. SUMMARY AND OUTLOOK 141

play-out can be guided by controllers that could be successfully synthesized from
these composed use case specifications. It was also shown how it is envisioned
that these techniques are applied in a scenario-based design process.

The concepts for guiding the play-out by controllers that could be success-
fully synthesized from composed use cases were not implemented in the scope of
this thesis. It yet remains to be validated to which extent these concepts can be
successfully used for simulating large systems with many overlapping use case
occurrences.

In the future, it would furthermore be desirable to integrate not only con-
trollers that could be successfully synthesized from use case specifications. If a
use case specification is inconsistent, Uppaal Tiga will synthesize a counter-
strategy that contains the information of how the environment will always be
able to violate the specification. In order to support the engineer in better un-
derstanding the nature of an inconsistency (after step 3 or 4 in the process shown
in Fig. 5.1), it would be desirable to extend the ScenarioTools simulation so
that it can also simulate the environment based on such counter-strategies. The
engineer can then “play” against the environment in order to understand how
the specification can be violated.

CHAPTER 6
Triple Graph Grammar

Extensions

The synthesis technique described in Chap. 4 is based on a mapping from MSD
specifications, given in the form of stereotyped UML models, to networks of
Timed Game Automata. This mapping is very complex, and it was therefore
difficult to formalize the mapping and to build an automatic translator for it.
The use of Triple Graph Grammars (TGGs) has greatly facilitated the specifica-
tion and implementation of this mapping. It was possible to intuitively describe
the correspondence between MSD and TGA constructs in the TGG rules.

However, some advanced TGG concepts and extensions to existing concepts
and tools were necessary in order to successfully and conveniently apply TGGs
for the task. The extensions to TGGs as previously introduced in Sect. 3.3
are explained in the following. First, an overview of the extensions is given in
Sect. 6.1. The extensions have been implemented in a tool, called the TGG
Interpreter, which is presented in Sect. 7.1.

6.1 Overview of the TGG extensions
Let us first overview the extended TGG concepts by the help of an example
TGG rule. Figure 6.1 shows the TGG rule MinimalEnvironmentMessage. As the
name suggests, it is a rule for mapping an environment message of an MSD
that is the minimal (first) message of this MSD to certain constructs in the
TGA. The diagram does not reveal the complete mapping represented by the
rule, because the rule is a specialization of another, more general rule. The
concept of TGG rule generalization is described by Klar et al. [KKS07]. In
this thesis, these concepts have been improved and implemented in the TGG
Interpreter. The dashed nodes in the rule diagram (1) are refined nodes,
which are nodes that are originally defined by a more general rule and to which
the specialized rule can add further edges or constraints. The concept of rule

143

144 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

generalization and the improvements that were elaborated in the scope of this
thesis are explained in Sect. 6.2.

The TGG rule also contains reusable nodes and reusable edges, displayed
gray with a “##” label (2a/2b). Reusable nodes/edges are such nodes/edges
that can be interpreted either as context or produced nodes/edges. The purpose
of these nodes/edges, their semantics, and how they are interpreted in a forward
transformation scenario is explained in Sect. 6.5.

TGGs are furthermore extended with OCL constraints (3). OCL constraints
can be used to specify the attribute values of objects that a node can be bound
to. Also, OCL constraints can be used to formulate application conditions for
the TGG rule. Section 6.3 explains further details. Last, the TGGs are extended
to support stereotype constraints in UML domains (4). This is explained in
Sect. 6.4.

2a

1

2b

4

3

Figure 6.1: The TGG rule MinimalEnvironmentMessage illustrates extensions
to the TGG formalism.

6.2 Generalization of TGG rules
Generalization, also called inheritance, is a powerful mechanism in object-
oriented software engineering to reuse and extend existing solutions. Klar et
al. have introduced this concept to TGG rules [KKS07]. They realized the
concepts within the Moflon tool suite.

6.2. GENERALIZATION OF TGG RULES 145

6.2.1 Why a generalization concept for transformation rules?

In the MSD-to-TGA mapping, different kinds of messages need to be mapped
to certain elements in the TGA system. Depending on the temperature of the
message, its execution kind, or whether it appears as the first message in an
MSD or not, different elements are created in the TGA system. Some elements
in the TGA system are created for every message in an MSD specification, but
others are only created in certain special cases. We find situations like these in
many transformations. It may be that a certain pattern shall be transformed in
a special way if for example objects in the pattern have a special type, special
attribute values, or if these patterns are found in a special context.

In such cases, instead of explicitly specifying the complete TGG rules for
every case, it is desirable to extract the commonality of certain rules in a more
general rule, and then to only specify the parts that are special in addition to the
general case in rules for the special cases. This way, we could avoid the tedious
and error-prone task of specifying the common part of different TGG rules
redundantly. Moreover, the TGG rule set would be much better maintainable,
because if the common part of multiple TGG rules must be changed, we would
only have to change it once in the more general rule, and not multiple times in
the rules for the special cases.

This can be achieved with the TGG rule generalization concept that is pre-
sented in the following.

Figure 6.2 shows a generalization hierarchy of rules for mapping the different
kinds of messages in an MSD specification. In the MSD-to-TGA mapping, we
have to distinguish whether the message is a minimal (first) message in the MSD
or a non-minimal message. If it is a minimal message, it must be distinguished
if it is a system or environment message. For a non-minimal message it has to
be distinguished if it is a hot or cold system or environment message. It must
furthermore be distinguished between an executable and monitored (hot/cold
and system/environment) message.

The mappings of all these different cases are similar. For example, for each
message, an edge is created in the MSD automaton. This is specified in the
most general rule, Message. Furthermore, the mappings for the minimal system
or environment messages both add certain expressions to the edges in the MSD
automaton. The mapping for these expressions is specified in the TGG rule
MinimalMessage. Also the non-minimal hot and cold messages have commonal-
ities, which are specified in the TGG rule NonMinimalMessage.

The TGG rule generalization relationships in Fig. 6.2 are represented by the
closed arrow, inspired by the notation of generalizations in UML class diagrams.
Some rules in this generalization hierarchy are abstract, indicated by the italic
label text. This means that these rules shall not be applied directly—only non-
abstract specializations of these rules can be applied directly. The semantics of
generalized/specialized rules and abstract rules is explained in the following.

146 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

Minimal Message

Cold Message Hot Message

Non-Minimal Message

Minimal Env. Msg. Cold Env. Message

Minimal Sys. Msg.

Cold Sys. Message

Cold Ex. Sys. Msg.

Message

Hot Env. Message

Hot Sys. Message

Hot Ex. Sys. Msg.

Cold Ex. Env. Msg. Hot Ex. Env. Msg.

Figure 6.2: The generalization hierarchy of the TGG rules for translating
different kinds of messages.

6.2.2 The TGG rule generalization concept by Klar et al.

A TGG rule describes a relation between a set of objects in one domain and
a set of objects in another domain. Klar et al. argue that “generalization
usually means that a member of a more specialized type also is a member of
the more general type” and, therefore, whenever a more specialized TGG rule is
applicable, also the more general rule should be applicable [KKS07, Sect. 4.1].
We call this the guiding principle of TGG rule generalization in the following.

To ensure that, Klar et al. declare a number of syntactical constraints for
TGG rules that specialize other TGG rules. These constraints require, first (1),
that a specialized rule contains a copy of the general rule [KKS07, rule 14].
Second (2), context nodes in the specialized rule may be replaced by nodes with
a more specialized type [KKS07, rule 15]. Third (3), produced nodes in the
general rule can be converted to context nodes in the specialized rule [KKS07,
rule 15]. Forth (4), new nodes and edges may be added to the context and
produced pattern of the rule [KKS07, rule 16], and, fifth (5), further attribute
value constraints and application conditions may be added to the rule [KKS07,
rule 17]. Last (6), the specialized rule must have a higher priority than the more
general rule [KKS07, rule 10]. The priorities are considered in the transforma-
tion engine such that that a more general rule is only applied when any more
specialized rule cannot be applied. This behavior is what we typically expect
from a TGG transformation engine in a forward transformation scenario.

6.2.3 Improvements to the existing TGG rule generalization
concept

The generalization approach taken in this thesis basically follows the above
syntactical constraints. However, some changes and improvements to the gen-
eralization concepts of Klar et al. are introduced in this thesis.

6.2. GENERALIZATION OF TGG RULES 147

Refined nodes

In the Moflon tool suite, creating a specialized TGG rule quite literally re-
quires to first create a copy of the more general rule and then to modify this rule
according to the syntactical constraints. This, however, creates many redun-
dancies in the TGG rules, which has a negative impact on their maintainability.
Instead, an approach is presented in this thesis that allows the engineer to only
specify the specific parts of a specialized rule inside a specialized rule—the gen-
eral part of the rule is only specified in the more general rule.

The generalization mechanism developed here allows a TGG rule to express
the generalization relationship to another rule by a reference to this rule. The
copy of the general rule inside the specialized rule is then only created within
the transformation engine during transformation-time, hidden from the user.

If extensions to the more general rule shall be added in the specialized rule,
such as specializing the type of a node in the more general rule (see (2) above),
adding an attribute constraint to a node in a more general rule (see (5) above),
or adding edges from nodes in the more general rule to other, possibly new
nodes (see (4) above), this can be done by the help of refining nodes. A refining
node is a node in the specialized rule that represents a node in a more general
rule. The latter node is also called a refined node. A refining node is displayed
like a regular node, but has a dashed border (see Fig. 6.1). It is required that
the refining node has the same name as the refined node, and that (according to
(2) above) its type class is equal to or a subclass of the type class of the refined
node (the original node in the general rule).

Klar et al. require that only context nodes in the specialized rule may have
a specialized type (see (2) above). This seems overly restrictive, and it is not
required by the guiding principle of TGG rule generalization; also the authors
give no argument for this restriction. Therefore, this restriction is not included
in this rule generalization approach.

The complete version of a specialized rule, i.e., the specializations and the
copy of the more general rule, is created only during transformation-time, when
the specialized rule is applied. A complete rule is formed by copying the contents
of the more general rule into the specialized rule. Only the refined nodes of the
more general rule are not copied. The edges in the more general rule that lead
to or go out from refined nodes in the specialized rule are copied such that
they lead to resp. go out from the according refining nodes instead. The same
holds for attribute value constrains in the mode general rule that are attached
to refined nodes: in the complete copy of the specialized rule, these attribute
constraints are attached to the according refining nodes. This process is applied
recursively if the more general rule is a specialization of a yet more general rule.

Changing the “color” of a node in a specialized rule

Klar et al. propose that a produced node in a general rule may become a context
node in the specialized rule (see (3) above). Intuitively, this seems to make the
rule applicable in fewer cases. But, as the following example shows, there are
examples where a more specialized rule would be applicable, but not the general

148 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

rule. This is a violation of the guiding principle of TGG rule generalization and
is, therefore, not allowed in the TGG rule generalization approach presented
here.

Consider the example shown in Fig. 6.3. On the left, two domain patterns
(“columns”) of the same domain in two TGG rules are shown. The left pattern
is that of a general rule and the right one is that of a more specialized rule. The
node b:B is a produced node in the general rule and becomes a context node
in the specialized rule. Now imagine that the shown domains are the source
domains in a forward transformation scenario and there is a situation in the
source domain instance model where there are the instances :A, :B, :C, and where
:A and :B are already bound (i.e., already matched by another rule, indicated
by the check symbol). According to the forward transformation interpretation
of a TGG rule as explained in Sect. 3.3, Fig. 3.18, the specialized rule’s source
pattern is applicable, because the context pattern can be matched to already
bound nodes and the produced pattern can be matched to unbound nodes.
However, the source domain pattern of the more general rule is not applicable
in this case: the context pattern (a:A) can be matched to a bound node, but the
produced pattern cannot be matched because the object b:B is already bound.
Thus, this violates the guiding principle of TGG rule generalization.

a:A

b:B

:b
++

++

c:C

:c++
++

a:A

b:B

:b

c:C

:c++
++

:A

:B

:b

:C

:c

domain pattern of
general TGG rule

domain pattern of
specialized TGG rule

instance domain
 model

bound nodes

Figure 6.3: An example where a specialized rule (according to Klar et al.) is
applicable, but not the general rule.

Therefore, the generalization approach presented here requires that pro-
duced nodes and context nodes must “preserve their color”, i.e., if the refined
node is a produced node or a context node, the refining node must be a produced
node or a context node, respectively. An exception are the reusable nodes. As
will be explained shortly (Sect. 6.5), reusable nodes can be interpreted as either
a produced node or a context node. In a more specialized rule, it may be decided
to turn the refining node of a reusable node into a produced or context node.
In the course of this thesis, there was however no case encountered where this
was useful or necessary.

Precedence instead of priority for specialized rules

In a TGG, all applicable rules can be applied non-deterministically. In principle,
this also holds if there are generalization relationships among the TGG rules.

6.2. GENERALIZATION OF TGG RULES 149

In a forward transformation scenario, however, the desired behavior is typically,
that a rule is only applied if not a more special rule can be applied.

Klar et al. require that the specialized rules shall have a higher priority
than the more general rules (see (6) above). Operationally, the Moflon TGG
engine will always try to apply a rule with a higher priority before trying to
applying a rule with a lower priority. In the approach presented by Klar et al.,
the priorities must be explicitly assigned to the rules.

The approach presented here does not rely on priorities. Instead the gener-
alization relationships imply precedences among the TGG rules. A specialized
rule always has precedence over a more general rule. Similar to the priority,
the precedence ensures that a rule will not be applied if a rule with precedence
over this rule is applicable. Operationally, the TGG Interpreter will only
try to apply a rule if it was not possible to apply rules with precedence over this
rule. This mechanism also ensures that never a more general rule is applied if
a more specialized rule is applicable. However, there are two advantages with
this approach compared to the approach with the priorities. First, the trans-
formation engineer will not have to explicitly assign any priority to the rules.
Secondly, the transformation engine can, after unsuccessfully trying to apply all
specializations of a more general rule, try to apply the more general rule right
away. In the approach using the priorities, the transformation engine may be
required to first try to apply other rules if there are rules that it did not try
to apply yet and that have a higher priority. This may have a disadvantage
concerning the efficiency as illustrated by the following example.

As an example consider the generalization hierarchy shown in Fig. 6.2.
The transformation engine may first try to apply the rule ColdExecutedSystem-
Message and, if the rule cannot successfully be applied to the model, the engine
may try the rule ColdSystemMessage next. This is different from the approach
proposed by Klar et al. If we assume that the priority of the TGG rule Message
is 0 and increases by one with each specialization, then the rules ColdExecuted-
SystemMessage and HotExecutedSystemMessage have the priority 4 and the TGG
rule ColdSystemMessage has the priority 3. Therefore, the transformation engine
would have to try to apply the rule HotExecutedSystemMessage before trying to
apply the rule ColdSystemMessage.

The advantage of the precedence-approach is that it leaves more room, for
example, to apply heuristics that can improve the speed of the transformation
engine. Such a heuristic may for example suggest rules that are more likely
to be successfully applicable, based on the currently unbound source elements
and the source produced pattern of the rule. For example, when there is an
unbound cold message in the model, but the rule ColdExecutedSystemMessage
is not applicable, it makes sense to first try to apply the TGG rule ColdSystem-
Message, instead of trying to apply HotExecutedSystemMessage.

150 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

6.3 OCL attribute value constraints
Within this thesis, TGGs were extended with attribute value constraints that
can be specified with OCL [OCL10]. This extension is implemented within the
TGG Interpreter.

OCL is particularly convenient for formulating conditions and queries in
object-oriented models. OCL is for example used in QVT for describing model
patterns and attribute constraints [QVT08]. Powerful interpreters for OCL
queries have been developed in the past, for example in the Eclipse Modeling
Project1, which is also integrated by the TGG Interpreter.

Figure 6.4 shows one constraint from the TGG rule MinimalEnvironment-
Message as shown in Fig. 6.1, and it highlights the terminology that is used
in the following. First, an attribute value constraint is always attached to a
node, which is called the constraint’s slot node. Second, the top row of the
rounded rectangle of the attribute value constraint shows the attribute that this
constraint requires a certain value for. This attribute is called the constraint’s
slot attribute. Last, the bottom row of the constraint’s rectangle contains the
value expression, which specifies the value required for the attribute. An object
can only be bound to the slot node if the value for the slot attribute equals the
evaluation of the value expression.

slot node

attribute value
constraint

slot attribute

value expression

Figure 6.4: An attribute value constraint is attached to a slot node and con-
strains the value of the slot attribute by the value specified by the value expres-
sion

OCL is integrated into the TGGs such that nodes, if they are named, can be
used as variables in the constraints. The value expression of the attribute value
constraint shown in Fig. 6.4 for example contains the variable msg, which is a
node in the TGG rule. (Actually it is a node in the more general rule, which
appears in the diagram as a refining node just to make it better visible where
the variable msg comes from.) These variables are also called node variables.
Here the expression specifies a string, which is the concatenation of the string
’event = ’ and value of the attribute typeName of the object bound by the
node msg. Also the variable self may be used in the value expression; self is
bound to the object bound by the slot node of the attribute value constraint.

The value expression of an attribute value constraint is evaluated immedi-
ately when the transformation engine tries to match the node that the attribute
value constraint is attached to or when an object is created according to the re-
spective node in the target or correspondence model. It may be, however, that
a value expression cannot be evaluated right away, because one of the nodes

1http://www.eclipse.org/modeling/mdt/?project=ocl#ocl

http://www.eclipse.org/modeling/mdt/?project=ocl#ocl

6.3. OCL ATTRIBUTE VALUE CONSTRAINTS 151

that occur in the value expression as a variable is not yet bound. Then the
expression is evaluated as soon as all the nodes that appear in the expression
as variables are bound. The latter case is called the delayed evaluation of the
value expression in contrast to the immediate evaluation.

A node in the source or context pattern of a rule can be matched if for each
attribute value constraint attached to the node, the object’s value for the slot
attribute equals the evaluation of the value expression. The graph matching
algorithm in the TGG Interpreter backtracks if a node cannot be matched
due to an immediate evaluation of an attribute constraint, i.e., it tries to find
another valid match for that node. When it turns out that a node is not a valid
match for an object upon a delayed evaluation, then the interpreter first tries
to find another match for the node that it matched last. An alternative match
for that node means another binding for a variable in the value expression, by
which the expression may render the required value. Only if all the candidates
that the interpreter tries for that last node do not satisfy the attribute value
constraint, it backtracks further. Eventually it may try to match the slot node
of the unsatisfied attribute value constraint to another object.

For an object created in the target and correspondence model the value of the
value expression is assigned to the slot attribute as soon as it can be evaluated.

In addition to attribute value constraints, a TGG rule may contain appli-
cation conditions. Application conditions are represented by the same rounded
rectangles used for attribute value constraints, but they do not specify any slot
attribute and do not necessarily need to specify a slot node. Moreover, the value
expression of an application must evaluate to a Boolean value. If no slot node is
specified, the value expression is evaluated as soon as bindings are available for
all the node variables. The transformation engine backtracks to find satisfac-
tory matches for the nodes and the rule is not applicable when no satisfactory
matches for the nodes can be found. One can specify a slot node for application
conditions. This way, the variable self can be used to represent the slot node
in the value expression. Also, the TGG Interpreter will not evaluate the
attribute value constraint before it tries to match the slot node. This may yield
a slight performance increase, because the TGG Interpreter will not try to
evaluate the condition before there is a binding candidate for a node that is in-
volved in the application condition. Specifying a slot node or not does however
not change the semantics of an application condition or the rule.

The implementation of the TGG Interpreter also allows the transfor-
mation engineer to define a number of custom OCL operations and attributes
in an external text file. The MSD-to-TGA transformation heavily uses such
operations and attributes, see Sect. B.2. The value expression of the attribute
value constraint shown in Fig. 6.4 for example accesses the property typedName
of the variable msg. This property is, however, no property of the UML meta-
class Message, but it is a custom attribute definition specified in OCL, see the
Listing B.1 in Sect. B.2.

Dang and Gogolla [DG08, Dan09] presented a similar approach for speci-
fying attribute value constraints and application conditions within TGGs. In
their approach, they specify TGG rules textually, including a number of OCL
statements. Then a framework called USE can operationalize the TGG rules,

152 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

including the evaluation of OCL constraints and the execution of assignments
on objects that are created on the target side. Compared to the approach pre-
sented here, however, it is not possible to define custom OCL operations and
attributes in an external text file. Also, they do not support many advanced
TGG features, such as generalization or support for TGGs that specify a map-
ping between more than two domains. Wagner [Wag09] also describes how to
incorporate OCL into TGGs, but this extension was not elaborated in detail,
nor implemented in the tool (Fujaba).

6.4 UML stereotype constraints
UML profiles are a powerful mechanism to extend UML for specific purposes.
A profile can define stereotypes that can be applied to certain UML elements,
and these stereotypes can also define a number of additional properties for the
stereotyped UML element. Profiles are used in this thesis to extend UML se-
quence diagrams to Modal Sequence Diagrams (see Sect. A.2). A stereotype for
messages, for example, adds the attributes temperature and execution kind to
messages.

To formulate constraints on whether a certain stereotype is applied to a
UML element, TGGs were extended by stereotype constraints in the scope of
this thesis, which can be specified for nodes in a UML domain.

The TGG rule MinimalEnvironmentMessage shown in Fig. 6.1 has a stereo-
type constraint applied to the node specPart:Property. which is indicated by the
additional label «SpecificationPart». Such a stereotype constraint expresses
that a node can only match the UML element object when the specified stereo-
type, here SpecificationPart, is applied to that element. Nodes can also have
multiple stereotype constraints. Then all of the specified stereotypes must be
applied to the UML element. Furthermore, it is possible to specify negative
stereotype constraints. Then the stereotype specification label in the node has
the form not «...». See the TGG rule Assignment shown in Fig. B.30 for an
example. A negative stereotype constraint means that the node can only match
a UML element that does not have this stereotype applied.

Furthermore, if a node has a stereotype constraint, attribute value con-
straints can be attached to the node that refer to a slot attribute defined by
the stereotype that the stereotype constraint requires to be applied. If such an
attribute value constraint is attached to a node, the node can only match an
object if the following conditions hold. First, as explained above, the stereo-
type constraint of course requires that the object is a UML element with the
respective stereotype applied. Second, it is required that the application of the
stereotype carries a value for the slot attribute that equals the evaluation of the
attribute value constraint’s value expression.

6.5 Reusable nodes
According to the TGG semantics introduced in Sect. 3.3, an object in the model
can be bound exactly once by a produced node. But there are often cases where

6.5. REUSABLE NODES 153

the transformation engineer wishes to specify a mapping where an object may
or may not yet have been bound (i.e., matched or created) by another rule
application. Then the transformation engineer would have to specify two rules:
one where the respective node is a context node and another rule where the
respective node is a produced node. This may lead to many redundant rules.

Instead the concept of reusable nodes [Gre06, GK10] was introduced, which
allow the transformation engineer to subsume these cases in one rule (see also
Kindler and Wagner [KW07]). Reusable nodes are represented in TGG rules as
gray nodes that have a “##” label. They can be bound to already bound or yet
unbound objects. In addition to reusable nodes, there are also reusable edges.
Reusable edges are also colored gray and have a “##” label. Similar to reusable
nodes, reusable edges can be bound to already bound or yet unbound links in the
model. For simplicity, the following explanations focus on the reusable nodes,
but same the principles apply to reusable edges as well.

Operationally interpreting reusable nodes in a source domain during a for-
ward transformation is easy: we just match an object without considering
whether the object is already bound by a previous rule application (this im-
plies that we interpret the reusable node as a context node) or not (this implies
that we interpret the reusable node as a produced node).

In the target domain, the transformation engine can similarly choose to
either create an according object anew or to match a previously created (and
therefore already bound) object. The latter choice is also called reusing an
object. In order to control these choices, application conditions can be used
[GK10]. Mostly, however, a reasonable default behavior for a transformation
engine is to reuse an existing object where it is possible and to only create an
object anew where it is not possible. The specification of the declarative QVT
languages specifies a similar behavior, called the check-before-enforce semantics
[QVT08].

Driven by the specific requirements in the MSD-to-TGA mapping, a specific
operational semantics for the interpretation of reusable nodes on the target side
during a forward transformation was elaborated in this thesis and implemented
in the TGG Interpreter.

6.5.1 Reusable nodes in the example

An example of a rule that contains reusable nodes is the TGG rule Minimal-
EnvironmentMessage shown above in Fig. 6.1. The rule maps environment mes-
sages in the MSD specification to different elements in the TGA model. It
contains reusable nodes in the UML domain (source domain) as well as in the
TGA domain (target domain). In the UML domain, the nodes :Lifeline and
specPart:Property are reusable, in the TGA domain, the nodes assignEnvEvent-
Edge:Edge and :TextualStatement are reusable.

Reusable nodes in the source domain

A message is an environment message when the sending lifeline represents an
environment object. In the UML model, this information is represented by the

154 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

attribute partKind of the stereotype SpecificationPart, which is attached to the
role in the collaboration that represents the object. Therefore, the nodes :Lifeline
and specPart:Property occur in the TGG rule MinimalEnvironmentMessage, in-
cluding the stereotype constraint and the attribute value constraint that checks
the value of this attribute. Before a rule for translating a message in an MSD
is applied for the first time, the sending lifeline and the role (property) rep-
resented by that lifeline are unbound. Then, when further rules are applied
for translating messages, the role (property) or also the sending lifeline may
already be bound. Instead of specifying multiple rules where the nodes :Lifeline
and specPart:Property occur in different combinations as context or produced
nodes, there is only one rule where they occur as reusable nodes.

Reusable nodes in the target domain

In the target domain, the rule MinimalEnvironmentMessage states, among other
things, that an edge going from the location environmentInitial to the location
produceEvent in the environment template automaton, assigning a value to the
variable event, shall be created or reused. In this case, the intended behavior is
that it shall be created anew if not yet any message representing the same event
has been translated previously, otherwise this edge shall be reused.

Figure 6.5 illustrates an example where there are three MSDs in which the
message m1 is sent from the lifeline env:Env (representing an environment ob-
ject) to a lifeline a:A, representing a system object. All these messages shall
be translated (among other things) to the same edge in the environment au-
tomaton. In the first MSD, the message is the minimal message and is mapped
by the TGG rule MinimalEnvironmentMessage. In the second MSD, there are
two messages which represent the same event. One is again the minimal mes-
sage and is mapped by the TGG rule MinimalEnvironmentMessage. The other
is a non-minimal cold message and is therefore mapped by the TGG rule Cold-
EnvironmentMessage. In the third MSD, probably an assumption MSD, the
message appears as a non-minimal hot executed message and is translated by
the TGG rule HotExecutedEnvironmentMessage. Whichever of these rule appli-
cations takes place first creates the edge and the attached update label. The
desired behavior is then that all other rule applications reuse this edge and its
update label.

6.5.2 The operational semantics of reusable nodes in the
target domain during a forward transformation

As mentioned above, in a forward transformation scenario, the transformation
engine could choose to match a reusable node on the target side to an existing
object, i.e., to reuse that object, or to create an according object anew. The
intention of the above example rule is to always reuse a certain edge object with
a certain update label in the target model when it already exists. Therefore,
mechanisms are required to ensure the reuse of objects in certain cases.

One possibility to control the reuse of objects is by using attribute value
constraints and application conditions. In an application condition, we could

6.5. REUSABLE NODES 155

m1

a:A

m1

a:A

...

m1

...

...

m1

a:A

...

event := env_a_m1

C
produceEvent

environmentInitial
Minimal Env. Msg.

Cold Env. Msg.

Hot Ex. Env. Msg.

Minimal Env. Msg.

env:Env

env:Env

env:Env

Figure 6.5: An illustration of how many messages representing the same event
are mapped to the same edge by different TGG rules

for example express that there must not be two edges between the same locations
with the same guard, update, and synchronization label. Instead of specifying
these application conditions for each rule, which could lead to redundancies, we
could also specify constraints of the models of the involved domains once per
transformation. These must then hold at the end of a transformation. We call
such conditions global constraints [GK10].

However, it would be inefficient for the transformation engine to first try
to create new objects, to then find out that this violates certain application
conditions, and then to try to reuse already existing objects. Therefore, it is
reasonable for the transformation engine in a forward transformation scenario
to first try to reuse existing objects and to create objects anew only if that is
not possible.

But should the transformation engine make the decision to reuse an object
separately for each node? Let us again consider the reusable nodes in the TGG
rule MinimalEnvironmentMessage (Fig. 6.1). Here there are two reusable nodes
in the target domain, one representing an edge object, one representing an up-
date label statement. Consider a case where this rule is applied to translate a
certain environment message, but some environment messages in an MSD spec-
ification were already translated to their corresponding TGA model elements
previously. What could happen now, if the decision to reuse an object is made
separately for each node, is that the transformation engine first checks whether
there is an edge object that can be reused for the node assignEnvEventEdge:Edge.
Because there were previously already some edge objects created, and no par-
ticular attribute value constraints are attached to the node, the transformation
engine will choose one for reuse. Next, it will try to reuse the attached update
label statement for the reusable node :TextualStatement. Let us assume that
the edge object that was reused has no attached update label that satisfies the
attribute value constraint attached to the node :TextualStatement. Therefore,
the transformation engine would now create a new update label statement for

156 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

the edge. The result will be an edge with possibly two update label statements,
both assigning another value to the variable event.

The outcome of such a transformation is clearly not what we intended in this
case. In order to control the reuse of objects for the assignEnvEventEdge:Edge
node, we could add further application conditions, but this seems very tedious.
Instead, we could require that existing objects in the target domain should only
be reused if we can find objects to be reused for each reusable node in the target
pattern of a rule. QVT’s check-before-enforce semantics formulates a similar
rule [QVT08]. We call this the reuse-all-or-create-all directive in the following.
But would that solution be satisfactory?

Let us again consider the TGG rule MinimalEnvironmentMessage (Fig. 6.1).
In the target domain, we find the reusable nodes assignEnvEventEdge:Edge and
:TextualStatement. Furthermore, however, the rule indirectly inherits from
the abstract rule Message. Among other things, it inherits the reusable node
:BooleanTextualExpression from this rule (see Fig. B.13, p. 215). This node rep-
resents a fragment in a return expression of the function bool eventInMSD(int
ev) that is created in the MSD automaton template corresponding to the MSD
that is the parent of the message (see Listing 4.3). This expression fragment
shall be created or reused when a message is translated.

Consider the case where we translate an MSD specification where there are
two MSDs in which the same minimal environment message appears, i.e., there
are two MSDs with first messages that refer to the same operation and that are
sent from and to lifelines that represent the same objects/roles. Both of these
messages will be translated by the MinimalEnvironmentMessage rule. During the
translation of the first message, a new edge will be created between the location
environmentInitial and the location produceEvent. Furthermore, an according
expression fragment will be added in the return statement of the function bool
eventInMSD(int ev) that is created in the MSD automaton template that corre-
sponds to the parent MSD of the message. During the translation of the other
message in the second MSD, the transformation engine would then consider
the reuse of the edge that has previously been created between the location
environmentInitial and the location produceEvent. However, in the function bool
eventInMSD(int ev) of the MSD automaton template that corresponds to the
second MSD, no expression fragment was yet created that can be reused by the
node :TextualStatement. According to the reuse-all-or-create-all directive, we
would then reuse no objects, but instead create objects for all reusable nodes.
This leads to two redundant edges in the environment automaton, which is not
the desired behavior in this case.

A solution to the problem is that the reuse-all-or-create-all directive does
not hold for all reusable nodes in a TGG rule, but only for certain groups
of reusable nodes in the rule. We call such a group a reusable pattern. In
the current implementation of the TGG Interpreter, a reusable pattern is
such a pattern in a TGG rule where reusable nodes and edges form a maximal
connected subgraph of the rule graph. So, for example, the reusable nodes
assignEnvEventEdge:Edge and :TextualStatement (and the edge between them)
forms one reusable pattern. The reusable node :BooleanTextualExpression forms

6.6. SUMMARY 157

another reusable pattern, because it is not connected to the other reusable
pattern via other reusable nodes and edges.

In the future, it may be desirable to not just imply that a reusable pat-
tern is formed where reusable nodes and edges form a maximal subgraph. It
may be that in such a pattern there are actually multiple patterns for which
the transformation engineer desires the reuse-all-or-create-all directive to hold
separately. Therefore, it should be possible for the transformation engineer to
specify explicitly which sets of nodes form a reusable pattern.

The reuse-all-or-create-all directive must hold for reusable patterns in all
domains and also in other transformation scenarios. The TGG Interpreter
is implemented such that there is a priority on the reuse of objects in the target
pattern during a forward transformation. However, the priority on the reuse is
not part of the TGG semantics in general. There may be other examples and
other application scenarios where this priority is not practical.

Reusable patterns are an important and relevant concept that have not been
proposed for TGGs previously.

6.6 Summary
Within the scope of this thesis, TGGs were extended by a number of vital
concepts for realizing complex transformations such as the MSD-to-TGA trans-
formation (see Appendix B). The extensions include a generalization concept
of TGG rules which improves the concepts presented previously by Klar et
al.[KKS07]. In the MSD-to-TGA mapping the generalization greatly reduces
the number of rules and the redundancy among the rules compared to a TGG
without generalization. Another extension to TGGs are the reusable nodes,
which also reduce the number of TGG rules when there are cases in a transfor-
mation where the objects in the source and target models may or may not have
been already matched resp. created. TGGs were also extended such that OCL
expressions can be used in attribute value constraints and application conditions.
Last, constraints can be added in UML domains to specify the application of
stereotypes and to specify attribute value constraints over stereotype attributes.

6.7 Outlook
In the future, it is desirable to investigate further concepts for reuse of TGG
rules. It can be observed in the MSD-to-TGA transformation that, despite
the extensive use of rule generalizations, there are still redundancies in the
rules. For example, there are four rules for different kinds of executed messages
(ColdExecutedEnvironmentMessage, ColdExecutedSystemMessage, HotExecuted-
EnvironmentMessage, and HotExecutedSystemMessage, see Fig. 6.2). The pat-
terns that these rules “add” to their more general rule are all very similar (see
Fig. B.21, B.23, B.26, and B.28).

Furthermore, it was explained in Sect. 5.3.2 that we would like to also trans-
late composed use cases to a system of TGAs so that a controller strategy can
be synthesized for the composed use cases. If a composed use case describes

158 CHAPTER 6. TRIPLE GRAPH GRAMMAR EXTENSIONS

the occurrence of use cases where two or more occurrences are occurrences of
the same use case, multiple MSD automaton templates, one for each internal
use case occurrence, will have to be created for the same MSDs in the use case
specification of the internal use case occurrence. Figure 6.6 illustrates this.

ComposedUseCase

uc1:UC uc2:UC

UC MSD template automata
created for the same MSD
for each occurrence of the
internal use case

Figure 6.6: In the translation of composed use cases to a TGA network, the
same MSD may have to be mapped to multiple MSD template automata if the
use case occurs as an internal use case occurrence in the composed use case
several times

The problem in creating these copies is that TGG rules must match the
elements in the MSD multiple times to create the corresponding elements in
multiple MSD template automata. However, the bind-only-once semantics of
the produced nodes allows an object to be matched only once by the produced
source pattern of a TGG rule. It seems that an additional TGG concept will
be required to solve this problems. It may be possible to define that the bind-
only-once directive must only hold within a certain scope of rule applications.

CHAPTER 7
Realization and

Evaluation

The major concepts presented in this thesis were realized in a number of software
tools. This chapter presents the TGG Interpreter in Sect. 7.1. The synthesis
of controllers from MSD specifications is realized in a tool chain as described
in Sect. 7.2. Editors for modeling use case specifications and a play-out algo-
rithm that can be guided by controllers synthesized from use case specifications
were implemented within the ScenarioTools tool suite, which is presented in
Sect. 7.3. This chapter last summarizes evaluation results obtained with these
tools in Sect. 7.4.

7.1 The TGG Interpreter
The TGG Interpreter is a tool for model-to-model (M2M) transformations
in Eclipse1. The TGG Interpreter can transform models of the Eclipse
Modeling Framework (EMF)2. In addition to a transformation engine, the tool
includes a graphical TGG rule editor, and basic UI support for configuring
and executing transformations in the Eclipse workbench. A first version of the
TGG Interpreter was implemented in the scope of the author’s master thesis
[Gre06], but all components were redesigned in the scope of this thesis in order
to incorporate new features (see Chap. 6), and to increase the performance and
extensibility.

Figure 7.1 shows a screenshot of the graphical TGG rule editor. The rule
currently edited is the rule MinimalEnvironmentMessage as shown in Fig. 6.1.
The left of the screenshot shows the palette of the TGG rule editor, where
tools can be selected to create new nodes, edges, and constraints. The editor is
type-model-sensitive, which means that it aids the user in creating only graph

1http://www.eclipse.org/
2http://www.eclipse.org/emf/

159

http://www.eclipse.org/
http://www.eclipse.org/emf/

160 CHAPTER 7. REALIZATION AND EVALUATION

patterns that represent valid model structures according to the type model of a
particular domain. The bottom shows the properties view, which allows the user
to modify the properties of the nodes, edges, and constraints in the diagram.
Currently, the properties of the selected constraint node are shown.

Figure 7.1: A screenshot of the TGG rule editor

TGG transformations can be configured and executed by simple actions that
are integrated in the Eclipse user interface. A transformation can be config-
ured and stored in an interpreter configuration model. This model contains the
information of which source model is to be transformed by which TGG, and
where the resulting target model shall be stored. Figure 7.2 shows a screenshot
of how the user can select the command to perform TGG transformation. For
more information about the TGG Interpreter, visit the TGG Interpreter
website3.

3http://www.cs.uni-paderborn.de/en/research-group/software-engineering/
research/projects/tgg-interpreter.html

http://www.cs.uni-paderborn.de/en/research-group/software-engineering/research/projects/tgg-interpreter.html
http://www.cs.uni-paderborn.de/en/research-group/software-engineering/research/projects/tgg-interpreter.html

7.2. MSD-TO-TGA MAPPING AND SYNTHESIS 161

Figure 7.2: A transformation can be executed by a simple right-click action on
an interpreter configuration file

7.2 MSD-to-TGA mapping and synthesis
The mapping of the MSD specification to a network of TGA is realized by a
two-step transformation approach. First, the MSD specification UML model is
transformed into an EMF model of a TGA network by a TGG transformation
(see the transformation specification in Appendix B). Then this model is trans-
formed to a valid input file for Uppaal Tiga via an XPAND4 model-to-text
(M2T) transformation. In combination with a winning condition (see Sect. 4.4),
Uppaal Tiga can then synthesize winning strategies for the TGA system if the
MSD specification is consistent. Otherwise, it will produce a counter-strategy,
which is a strategy that describes how it will be possible for the environment to
violate the winning condition resp. the MSD specification. Figure 7.3 illustrates
this process.

MSD specification
(stereotyped UML model)

TGA network
(EMF model)

M2M transformation

XPAND (M2T)
transformation

Uppaal TIGA
model file

<
 >

synthesis
via Uppaal Tiga

valid strategy
“How can the system

satisfy the specification?”

counter-strategy
“How can the environment
violate the specification?”

Figure 7.3: The two-step transformation approach

4see http://wiki.eclipse.org/Xpand

http://wiki.eclipse.org/Xpand

162 CHAPTER 7. REALIZATION AND EVALUATION

Between the TGG and XPAND transformations, there are two further steps
involved that are not shown in the figure. First, a simple Java component
sorts the function declarations in the EMF model of the TGA system. This is
necessary, because in Uppaal, functions can only call functions declared prior
to their own declaration. The Java component makes sure that the order of
the function declarations complies with this constraint. Such an order cannot
currently be ensured by the TGG transformation. Second, the negation of
time conditions expressions (replacing the operator < by ≥, or ≤ by >, and
vice versa) is carried out by another small Java component, since this cannot
be conveniently achieved in TGGs or OCL. These two Java components and
the XPAND transformation are assembled in an oAW (openArchitectureWare)
workflow5 that can be executed in Eclipse.

7.3 ScenarioTools
ScenarioTools integrates editors for specifying use case specifications, the
above-mentioned synthesis tool chain, and an implementation of the play-out
algorithm that can be guided by controllers synthesized from use case specifi-
cations. Major parts of ScenarioTools were realized by a project group, a
two-semester course for master students that took place at the software engi-
neering group of Prof. Schäfer in 2009 and 2010.

7.3.1 Modeling

A scenario-based specification of a system consists of a number of use case
specifications. As described in Sect. 4.2, a use case specification consists of a
class model, a collaboration diagram, and a number of MSDs. For modeling
these different parts of a use case specification, ScenarioTools relies on the
TOPCASED6 UML editors.

Modeling MSDs

MSDs can be modeled in UML with an additional profile that, for example,
extends messages in sequence diagrams with attributes for their temperature
and an execution kind. The profile used by ScenarioTools is an extension
of the profile defined by Maoz and Harel [MH06, HM08]. Section A.2 contains
a detailed documentation of the profile. In order to graphically show the tem-
perature and the execution kind of messages, the Topcased sequence diagram
editor component was extended and modified. Figure 7.8 shows a screenshot of
the editor.

5see http://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)
6http://www.topcased.org/

http://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)
http://www.topcased.org/

7.3. SCENARIOTOOLS 163

Package merge for a flexible combination and reuse of use case
specifications

The collaboration and sequence diagrams in the use case specifications can be
based on one class model; alternatively, ScenarioTools allows the engineers
to specify separate class models for the use case specifications that can later be
integrated in one class model via package merge. Package merge is a mechanism
defined by UML [UML09, Sect. 7.3.40, pp. 112] that describes how the classes,
properties, associations, etc. defined in one or several class diagrams can be
merged with the contents of another class diagram. This allows the engineer
to keep extensions to the class model that are made for the specification of
different use cases separate from each other. This has the advantage that it
is more easily traceable which classes, properties, operations, and associations
were added to the class model for which use case specification. Furthermore,
this way ScenarioTools allows the engineer to flexibly combine different use
case specifications, for example to define certain variants of a product, or to
reuse use case specifications in other contexts.

Instead of creating one big class model, ScenarioTools for example sup-
ports the following modeling process where use case-specific extensions to the
class model are captured in separate packages: Imagine that the engineers start
specifying the system by providing a first class model of the system, which we
call base model in the following. For example, the engineer could specify a base
model for the RailCab system that describes that a RailCab system consists of
RailCabs that have a certain speed and weight, may be registered to a current
track section control, and react to events in their environment. Track section
controls can have previous and next track section controls. The top of Fig. 7.4
shows such a class diagram (which is of course just a simplified model of a
RailCab system).

Then, when specifying the use case Drive onto track section (see Fig. 3.1
or 4.2), there are no new classes added to the base model, but there are new
types of messages introduced that can be received by the RailCabs and track
section controls. These message types are represented in the class model as
operations. Instead of adding these operations to the formerly created classes,
the engineers can create a new class model, define the specific extensions made
to the first class model in this new class model, and later merge the base class
model with these use case-specific extensions. The extensions to the base class
model that are specific for the use case Drive onto track section are shown in
the package in the middle of Fig. 7.4. This package has a merge relationship
to the base package, which means that it consists of the contents of the merged
package RailCabBase, but, in this case, adds operations to the classes RailCab
and TrackSectionControl.

Imagine further that the engineers now specify the use case of a RailCab
driving onto a merging switch. One scenario in this use case is that the Rail-
Cab must not be given the permission to enter a merging switch too early (see
Fig. 3.8). In this use case, messages appear that refer to operations that were
added in the package of the use case specification Drive onto track section. But,
furthermore, the class MergingSwitchControl is added to the class model in this

164 CHAPTER 7. REALIZATION AND EVALUATION

use case specification. Again, instead of adding this class to the package of the
use case specification Drive onto track section, this extension is modeled in a
separate package, see the bottom of Fig. 7.4.

RailCab

speed:Int
weight:Int

TrackSectionControl

RailCab

endOfTS()
lastBreak()
noReturn()
enterNext()
enterAllowed(
 isAllowed:Boolean)

TrackSectionControl

requestEnter()

RailCab TrackSectionControl

MergingSwitchControl

next

previous

merging

current

RailCabBase

DriveOntoTrackSection

DriveOntoMergingSwitch

Environment

0..1

0..1

0..1

RailCabSystem

1 0..* 0..*

0..1

«merge»

«merge»

Figure 7.4: The class models of the RailCab specification base package (sim-
plified), and the use cases Drive onto track section and Drive onto merging switch

The package for the use case Drive onto merging switch consists of the ele-
ments specified in the package and the contents of the merged packages. More
specifically, the semantics of package merge is as follows. A package that merges
another package also consists of the contents of the merged package. Classes
with the same name are merged to the same classes and, furthermore, properties
and operations of the same class are merged when they have the same name,
type, and the same parameters (in the case of operations). The merged Drive
onto merging switch package would thus look like the package shown in Fig. 7.5.

When further use cases are specified, this may result in a package structure
as shown in Fig. 7.6. This figure shows the packages created for further use

7.3. SCENARIOTOOLS 165

TrackSectionControl

MergingSwitchControl

merging

DriveOntoMergingSwitch

next

previous

RailCab
speed:Int
weight:Int
endOfTS()
lastBreak()
noReturn()
enterNext()
enterAllowed(
 isAllowed:Boolean)

currentEnvironment

0..1

0..1

0..1

RailCabSystem

1 0..* 0..*

Figure 7.5: The merged package for use case Drive onto merging switch as shown
in Fig. 7.4

cases in the RailCab system. The dashed lines represent merge relationships.
Here, for example the use case Hazard occurred is independent from the use case
Drive onto track section and therefore only merges the base package. The use case
Enter denied when hazard on next track section, however, specifies the behavior of
the RailCab system where both the use case Drive onto track section and Hazard
occurred occur. That means that this use case will contain MSDs with messages
that refer to operations and properties that were specified in the packages of the
use cases Drive onto track section and Hazard occurred. Therefore, the package of
the use case Enter denied when hazard on next track section merges the packages
of the use cases Drive onto track section and Hazard occurred.

The figure shows further packages of other use cases. These contents of all
these packages can later be me merged into one package, which is called RailCab
integrated here. This package, as well as the base package, contain no MSDs.
(The packages that contain MSDs and collaboration diagrams are annotated
by the small ellipse symbol in the upper-right corner of the package symbol in
Fig. 7.6.) We also call a package that merges the packages of other use case
specifications an integrated model in the following. Based on the integrated
model, we can then create objects systems, based on which we can then simu-
late the specified behavior. Alternatively, we could just merge a subset of the
packages, for example to create a specification for a variant of the system or to
analyze only a subset of the use case specifications. The package Enter denied
when hazard on next merging switch is such an example. Here we merge only the
packages of the use cases that are involved when a RailCab is about to enter a
merging switch on which a hazard has occurred.

7.3.2 Simulation

In order to create a simulation from an integrated model, two steps are necessary.
First, the merging package must be translated into an ECore model, see Fig. 7.7

166 CHAPTER 7. REALIZATION AND EVALUATION

Enter denied
when hazard on
track following
merging switch

Hazard
occurred

Drive onto
track section

Drive onto
merging switch

Form
convoy

Drive onto
branching switch

RailCab
Base

Enter denied
when hazard
on next track

section

...

RailCab
Integrated

Analysis:
Enter denied
when hazard

on next
merging
switch

Figure 7.6: The package merge relationships between the packages of some use
case specifications in the RailCab system specification

(2). ECore is the meta-modeling language of EMF, which complies to a subset
of the Meta Object Facility (MOF) specification of the OMG [MOF06]. This
translation is performed automatically via a TGG transformation by the TGG
Interpreter. In the ECore model, all the classes are effectively merged, which
means that there are no merge relationships as in the UML model; the classes
that result from these merge relationships (as for example shown in Fig. 7.5)
are computed by the transformation. The TGG transformation not only creates
the ECore classes, but also stores a correspondence model, which contains the
information of which ECore class corresponds to which classes in the UML
specification.

Figure 7.7 shows an overview of the ScenarioTools modeling and simula-
tion process. The top schematically shows a UML specification with packages
and their merge relationships (1) and the transformation into a merged ECore
class model (2).

Based on the ECore model, a simple editor can be easily created by the
Eclipse Modeling Framework (EMF), which allows the engineer to create an
instance model of the considered system see Fig. 7.7 (3). Graphical representa-
tions of this object system can easily be generated using the Graphical Modeling
Framework (GMF)7. Remember that there are systems for which many differ-
ent instances exist. There may be for example many different RailCab track

7http://www.eclipse.org/gmf/

http://www.eclipse.org/gmf/

7.3. SCENARIOTOOLS 167

uc2

uc1

uc3

«merge»«merge» «merge»

«merge»«merge» «merge»

base

integr. integr.

perform the ScenarioTools
simulation (play-out)

the transformation
creates the merged

class model
(ECore)

UML-to-Ecore
transformation

(via TGGs)

«instanceof»

create a/the
instance model

model the MSD
specification

(UML)1

3

2

4

the ScenarioTools
play-out interprets the

MSDs in the
specification based on

the instance model

synthesized
 controller

Figure 7.7: An overview of the ScenarioTools modeling and simulation
process

systems with various RailCabs driving in different places. In such cases, the
engineers must decide which instance system to simulate.

Based on the instance model, a simulation can be started in Scenario-
Tools (4). In order to do so, the engineer has to load the instance model that
shall be simulated. Furthermore, the engineer has to select the correspondence
model that was created during the UML-to-ECore transformation. Through the
references to the UML specification that are stored in this correspondence model,
the ScenarioTools simulation can determine which lifelines of the MSDs in
the (UML-based) specification can be bound to which objects in the (EMF-
based) instance model. The simulation then calculates a list of environment
events that can occur for the objects in the instance model. The engineer can
now start “playing” the role of the environment by selecting one of the possible
events from a list in the user interface, see the bottom list shown in Fig. 7.8.

On the occurrence of an environment event, MSDs may become active. The
active MSDs and the bindings of their lifelines to the objects in the instance
model are shown to the engineer in a tree-view, see the view on the right in
Fig. 7.8.

The play-out implemented in ScenarioTools supports the dynamic bind-
ing of lifelines and OCL binding expressions (see Sect. 3.1.15). The simulation
can now simulate the reaction of the system in three different modes that the

168 CHAPTER 7. REALIZATION AND EVALUATION

engineer can choose. First, the simulation engine may execute the super-step in
a random manner. That means that one of the active system events is executed
as long as there are active system events left to be executed. Alternatively, the
engineer can choose a step-mode where he chooses the active system event to
execute next. These events can be chosen from the same view that also displays
the environment events, see the bottom list shown in Fig. 7.8.

Furthermore, the engineer can choose to execute the system reaction accord-
ing to a controller that was successfully synthesized from a use case specification.
This is indicated at the left of Fig. 7.7. The play-out then works as described
in Sect. 5.2; the concepts presented in Sect. 5.3 are not yet implemented.

active events

active MSDs

current cut

Figure 7.8: An overview of the MSD editor in ScenarioTools and the sim-
ulation user interface.

Similar to the Play Engine by Harel and Marelly [HM03], the simulation
in ScenarioTools can also visualize the current cut of the active MSD in the
MSD editor. The cut is shown as a green line, see the middle of Fig. 7.8. The
history of the simulation can also be shown in a list view.

The ScenarioTools play-out algorithm currently only supports the play-
out of untimed MSD specifications. However, it supports parameterized mes-
sages, alternative fragments, the assignment and evaluation of instance proper-
ties, and, as mentioned above, it supports the evaluation of binding expressions
given in the form of OCL. It turned out that extending the simulation with the
notion of real-time is not a trivial task, and could unfortunately not be realized
in the scope of this thesis.

Controller strategies for untimed MSD specifications that were synthesized
with Uppaal Tiga can be integrated with the play-out in ScenarioTools (see
Listing C.1, p. 254 in Sect. C.2.4 for an example of the format in which such

7.4. EVALUATION 169

a strategy is generated by Uppaal Tiga). Because the play-out does not yet
support a timed setting and the synthesis does not yet support parameterized
messages, this integration is still minimal.

In the future it is also planned to extend the simulation so that the user
is kept from selecting environment events that lead to a safety violation in an
assumption MSD.

7.3.3 Physics-engine and visualization

The user interface of the ScenarioTools simulation displays the current state
of the simulation in a very generic way. Therefore, depending on the aspects
that the engineer is interested in, other ways of visualizing the simulation are de-
sirable. For the visualization of RailCab systems, a 3D visualization was created
in the ScenarioTools Visualization project, see Fig. 7.9 for a screenshot.

The ScenarioTools Visualization project was realized in a cooperative
student project in the course “Distributed Software Development”8 by master
students from the University of Zagreb, Croatia, Mälardalens University, Swe-
den, and the University of Paderborn.

In this visualization, the movement of RailCabs along track sections and
over merging and branching switches is shown in a graphically appealing way.
The engineer can now for example observe where a RailCab has to stop because
a hazard has occurred on a track section. In the future, this visualization could
be extended to show more information about the current state of the simulation
in adequate ways, for example the current communication relationships between
the RailCabs and track section controls, obstacles on the track sections, or states
of the RailCab, such as malfunctions or convoy modes.

In addition to the visualization, a simple physics-engine was implemented
within the ScenarioTools Visualization project. This physics-engine sim-
ulates the movement of the RailCabs along the track section. Now the user does
not have to select environment events manually. For this purpose, a simulation
of the kinematics of an accelerating and decelerating RailCab was implemented
in the physics-engine.

7.4 Evaluation
Within this thesis, powerful techniques were developed and prototypically im-
plemented that support the engineer in the consistent scenario-based design of
mechatronic systems. Based on a range of examples, these techniques were
evaluated.

First, the practicality of the MSD formalism was demonstrated by specifying
a comprehensive set of interrelated example use cases from the context of the
RailCab project. Second, the performance of the synthesis was measured for
various timed and untimed example MSD specifications. For these examples,
also the performance of the TGG-based transformations was measured.

8http://www.fer.hr/rasip/dsd

http://www.fer.hr/rasip/dsd

170 CHAPTER 7. REALIZATION AND EVALUATION

Figure 7.9: A screenshot of the user interface of the 3D visualization that was
realized within the ScenarioTools Visualization project

A general insight from elaborating these examples is that, although MSDs
constitute a convenient formalism, inconsistencies are easily introduced in
scenario-based specifications, especially in timed MSD specifications. This
strongly underlines that synthesis and simulation techniques are vital for de-
tecting such flaws in the specification early. The encountered inconsistencies
were very often of such a nature that they could be resolved by formulating rea-
sonable environment assumptions. This moreover emphasizes the importance of
being able to formally capture specific scenarios that describe what we assume
will or will not happen in the environment.

The evaluation of the practicality of the MSD formalism is discussed in
Sect. 7.4.1. This section also explains why which kinds of inconsistencies are
easily introduced in scenario-based specifications, why environment assump-
tions are important, and why synthesis and simulation techniques are vital.
The results of evaluating the synthesis and simulation technique are discussed
in Sect. 7.4.2 and 7.4.3. Last, results of evaluating the TGG transformation
technique are presented in Sect. 7.4.4.

7.4.1 Practicality of the MSD formalism

Within the scope of this thesis, a number of timed and untimed example MSD
specifications were elaborated:

7.4. EVALUATION 171

• The small timed and untimed RailCab use case specifications that were
presented in Chap. 4.

• The comprehensive untimed specification of the RailCab presented in
Sect. C.1 and C.2

• The timed specification of the production cell presented in Sect. C.3
• The benchmark example specifications presented in Sect. C.4

One general result from elaborating these examples is that MSDs seem to
be a convenient formalism for specifying complex interactions. The RailCab
example presented in Sect. C.1 in particular demonstrates that it was possible
to specify multiple interdependent use cases, which contributed requirements for
different situations during the operation of the RailCab system. These use case
specifications could then be successfully composed to a complex specification of
the RailCab system behavior.

Especially the concepts of symbolic messages and message unification (see
Sect. 3.1.10) were very useful to first specify more abstract scenarios that could
later be refined by more specific ones. For example, the MSD RequestEnter-
AtEndOfTrackSection in Fig. C.4 specifies that, after the RailCab requests the
track section control for the permission to enter, the track section control must
send a positive or negative reply (enterAllowed(true/false)). The concrete
decision yet remains undetermined in this scenario, in anticipation of various
special cases that could require either a positive or negative decision. Later on,
MSDs were added to the specification that determined the decision in specific
scenarios. Consider for example the MSD EnterDeniedWhenHazardOnBranching-
TrackSection in Fig. C.11. This scenario describes a case where the next track
section control is a branching switch control and where there is a hazard on the
track section that is connected to the branching exit of the switch. In this case,
the RailCab must not be allowed to enter the track section, which is modeled
by the message enterAllowed(false).

In these cases the hot/cold modalities of the MSDs were especially helpful to
describe possible default behavior, i.e., something that the system can do if there
is no reason against it, and certain strictly required behavior that must happen
in a specific scenario. For instance, the MSD DefaultEnterAllowed (see Fig. C.6)
uses a cold message to specify that, by default, the track section control should
reply enterAllowed(true) in the above example. By contrast, the above-
mentioned MSD EnterDeniedWhenHazardOnBranchingTrackSection (Fig. C.11)
uses a hot message to specify that, in that particular case, the reply must be
enterAllowed(false).

However, even though MSDs help the engineer to specify use cases sepa-
rately from each other, thereby, in principle, being able to concentrate on the
specification of one particular aspect of the system’s behavior at a time, incon-
sistencies are easily introduced. This requires a constant effort to detect and
resolve these inconsistencies. Many inconsistencies can, however, be avoided if
engineers plan and coordinate their specification activities and if extra care is
taken with certain MSD constructs, as explained in the following.

172 CHAPTER 7. REALIZATION AND EVALUATION

Systematically planning and coordinating the specification activities

First, if engineers are going to specify interdependent use cases in separate
teams, they are well advised to coordinate their activities. If they specify inter-
dependent use case cases unaware of each other, it is likely that inconsistencies
or simply naming clashes will occur. It may be that the same classes or events
are called differently, which later on will require a tedious renaming in the use
case specifications. Moreover, inconsistencies are likely to occur if engineers
that concentrate on the specification of one use case are unaware of possible ex-
ceptions or alternatives to that case. Then it is likely to happen that sequences
of events are modeled as mandatory events (by hot messages), which will later
contradict the use cases that specify the alternative sequences of events.

Therefore, engineers will have to systematically plan their use case specifi-
cation activities. The engineers could for example start out with collecting all
the use cases, including a very brief informal description, and then elaborate
possible dependencies or “overlappings” between them. Then it will often be
possible to identify more general use cases and use cases that describe special
cases of that general use case, for example as in the scenario above where the
RailCab must not be allowed to enter the next track section in certain cases.
From such a map of use cases, the engineers could plan their activities and
specify the more general use cases first, and more special use cases later. The
engineers could for example elaborate a package diagram as shown in Fig. C.2,
first adding the more general use cases “at the top”, then the more special use
cases “below”, and coordinate their specification activities along the lines in this
package diagram.

In addition to systematically planning their specification activities, the en-
gineers should frequently analyze their use case specifications in order to detect
naming clashes and behavioral inconsistencies among the use cases early.

MSD modeling constructs that should be handled with care

In the process of elaborating these examples, it turned out that inconsistencies
are particularly likely to occur if the following constructs are used within MSD
specifications.

The system is particularly “vulnerable” to violations of its requirements if
requirement MSDs specify minimal delays, i.e., hot conditions with a lower time
bound. Such a minimal delay means that the system may have to wait for time
to elapse before it is able to progress the cut of an active requirement MSD.
While waiting, the system listens for environment events, and the cut of the
active MSD will be hot. In this situation, the environment has the opportunity
to do many things that may violate the active MSD.

Similarly dangerous is the use of hot environment messages within require-
ment MSDs. We use these messages if we wish to express that a certain sequence
of events, including environment events, must happen and must not be aborted
in any case. The MSD ArmATransportBlankToPress in the production cell speci-
fication (see Fig. C.26) is an example where a hot environment message is used.
If the cut reaches such a message, the system will have to wait for the accord-

7.4. EVALUATION 173

ing environment event to occur, and it resides in a hot cut until this message
does occur. This again means that the environment has a good opportunity to
violate the requirements.

Assumption MSDs are helpful to formulate specific environment
assumptions

In these cases, it often turns out that the environment is able to violate the
requirements in ways yet unforeseen by the engineer. Sometimes, this will force
the engineer to change the system requirements. Very often, however, the engi-
neer will be able to justify that the sequence of environment events that caused
the violation of the requirements can be safely excluded from the possible envi-
ronment behavior. In this case, assumption MSDs are particularly convenient
to precisely specify specific sequences of events that are assumed not to occur in
the environment. The assumption MSDs ArmAMoveFromPressToTableTimeAs-
sumption and ArmAMoveFromTableToPressTimeAssumption (see Fig. C.27) for
example describe a reasonable assumption on the behavior of the production
cell’s robot arm that helps to avoid a violation of the MSD ArmATransport-
BlankToPress.

7.4.2 Synthesis

The correctness of the synthesis and its performance were tested using a number
of different timed and untimed MSD specifications. The synthesis was applied
to the untimed and timed RailCab example specifications of Chap. 4, the timed
specification of the production cell presented in Sect. C.3, and to the benchmark
example specifications presented in Sect. C.4. The main results are the following.

The synthesis technique produces correct results

The correctness of the synthesis technique was not shown formally. However,
the synthesis was tested with examples that were diverse in size and nature. For
all these examples, the synthesis produced the expected results, i.e., it reported
specifications that were expected to be consistent as consistent, and it reported
specifications that were expected to be inconsistent as inconsistent.

The synthesis suffers greatly from many interrelated time
constraints in timed MSD specifications

Synthesis is an inherently complex problem and its performance especially seems
to suffer from many interrelated time constraints in timed MSD specifications.
The benchmark example presented in Sect. C.4.3 contained many interrelated
time constraints and the synthesis, using the AGAF winning condition, was
barely possible with a specification containing six requirement MSDs and one
assumption MSD. Note however, that this example is an extreme case, consid-
ering the state space and number of time intervals this specification describes
compared to the size of the specification, i.e., the number of MSDs, lifelines
and messages. The production cell specification is a practical example that also

174 CHAPTER 7. REALIZATION AND EVALUATION

contains many interrelated time constraints. This example is not yet very big,
but already marks the border in the size of timed MSD specifications for which
the synthesis, using the AGAF winning condition and no other optimizations
(see Fig. C.28), can be carried out successfully.

The synthesis performance is increased in a setting where the
system is not allowed to delay the execution of active events

The performance of the synthesis can be immensely increased if we introduce
a restriction for the system, demanding that it must not delay the sending of
active messages. In the example of the production cell, this restriction could
greatly reduce the synthesis times, in some cases the synthesis was by up to
a factor of 1500 (using the AG winning condition) faster than without that
restriction (see the table in Fig. C.29 compared to the table in Fig. C.28).

Unfortunately, this restriction will make it impossible for the synthesis to
find a winning strategy if, in order to satisfy the requirements, the system must
delay the sending of an active message. So this restriction does not allow us to
find winning strategies for the benchmark example in Sect. C.4.3 or the timed
RailCab use case specification presented in Sect. 4.5. (See also the discussion
on this restriction in Sect. 4.7.1).

Decomposing the synthesis problem can greatly reduce the
complexity of the synthesis problem

Decomposing the synthesis problem as described in Sect. 4.6 can greatly reduce
its complexity. This technique was successfully applied to the specification of the
production cell and the sum of the synthesis times for the two part specifications
compared to the synthesis times for the global specification could be reduced
by an average factor of 350 (see the tables in Fig. C.28 and C.32).

Note that how much the total synthesis times can be reduced depends on
how “good” a decomposition of the specification can be found. Also note that,
due the restrictions of the compositional synthesis technique, it will not be
able to apply the technique to all kinds of specifications, and finding a “good”
decomposition of a specification is a creative, manual process that also takes
time (see Sect. 4.6).

7.4.3 Simulation

The implementation of the play-out algorithm in ScenarioTools can suc-
cessfully execute the MSD specification presented in Sect. C.1, and helps in
detecting inconsistencies in the specification. The concepts for combining the
play-out of a specification with controllers synthesized from single use cases in
this specification was validated by the example use case specification presented
in Sect. C.2. In combination with the controller synthesized from this use case
specification, the simulation can successfully avoid the avoidable violations in
occurrences of that use case.

Due to the current limitation of the synthesis and the ScenarioTools play-
out algorithm, a more comprehensive evaluation of the symbiosis of synthesis

7.4. EVALUATION 175

and simulation was not yet possible and is subject of future work. No detailed
performance measurements were conducted for the implementation of the play-
out algorithm, since its performance was not the focus of this thesis.

One result form simulating the example MSD specifications is that the us-
ability of ScenarioTools yet suffers from an insufficient visualization of the
simulation. Even though a 3D simulation can be used to simulate the Rail-
Cabs’ movement in a track system (see Fig. 7.9), and the cuts of active MSDs
can be visualized (see Fig. 7.8), it is yet difficult for the user to maintain an
overview of complex interactions that take place. This could be improved by
a better graphical representation of the message exchange that takes place and
the possibility to replay certain steps in the simulation, i.e., to step back and
then forward again in the simulation.

7.4.4 TGG-based model transformation

The complex MSD-to-TGA mapping could be successfully specified and exe-
cuted based on TGGs (see Appendix B). The performance measurements show
that the TGG Interpreter is not very fast, but exhibits acceptable transfor-
mation times for the considered examples. For example, the largest MSD speci-
fication that was transformed into an MSD system was the decomposed produc-
tion cell specification, consisting of two packages, 15 MSDs, 35 lifelines, 47 mes-
sages and 13 time conditions. It took about 37 seconds to transform this spec-
ification into the two corresponding TGA systems (see the table in Fig. C.32).
The transformation time grows linearly with the size of the MSD specification,
as was shown by the help of the benchmark examples (see Sect. C.35).

Overall, the performance of the TGG Interpreter is acceptable. Keep
in mind, first, that applying TGG rules involves expensive pattern matching,
second, that TGGs are a declarative formalism and the TGG Interpreter
will often try to apply rules that, after matching parts of the rule’s graph pat-
tern, turn out not to be applicable. Third, the TGG Interpreter relies on
interpreting the TGG rules, so no code is generated from the TGG rules as in
Fujaba or Moflon, which could potentially be executed faster. Nevertheless,
the performance of the TGG Interpreter could probably yet be increased by
applying smarter heuristics, which avoid many of the unsuccessful rule appli-
cation attempts. Improving the performance of the TGG Interpreter is yet
future work.

CHAPTER 8
Related Work

This section discusses the related work of this thesis. An overview of existing
scenario-based design approaches was already given in Sect. 2.4. This section
therefore concentrates on work that is more directly related to the concepts pre-
sented in this thesis. Section 8.1 presents advanced related play-out techniques,
and Sect. 8.2 discusses related synthesis approaches. Especially, Sect. 8.2.2 dis-
cusses existing approaches for synthesizing distributed implementations from
LSC specifications in order to highlight possible directions for future work. Ad-
vanced TGG concepts that are related to the TGG extensions presented in this
thesis were already thoroughly discussed in Chap. 6. Therefore, this discussion
is not continued here.

8.1 Advanced play-out techniques
Smart play-out [HKMP02b, HKMP02a, HKP04] is an extension of the play-out
algorithm, implemented for an improved play-out of LSCs in the Play Engine
[HM03]. Smart play-out allows the play-out algorithm to avoid some avoidable
violations by looking ahead a limited number of steps that the system takes
in reaction to an environment event. For this purpose, smart play-out relies
on model-checking. Each time that the system must react to an environment
event, the played-out LSC specification and the current state of the system,
i.e., object properties and state of (pre-)active LSC copies, is encoded into a
model-checking problem. Model-checking is then used during execution-time
to calculate a sequence of steps that the system can take in reaction to an
environment event until there are no active messages left (i.e., enabled messages
in the main chart of active LSC copies).

Smart play-out can only avoid a limited number of avoidable violations,
because it can only look ahead in the scope of one super-step, which is the
sequence of steps the play-out algorithm takes in reaction to an environment
event, until it waits for the next environment event to occur. In a timed setting,
super-steps can also end where the system waits for minimal delays to become

177

178 CHAPTER 8. RELATED WORK

true; therefore, in specifications with many minimal delays, the super-steps
may thus become very short, so that the power of smart play-out is especially
limited. Especially in a timed setting, the symbiosis of synthesized controllers
with the play-out algorithm therefore seems an especially promising approach
in more drastically reducing the number of avoidable violations during play-out.
Unfortunately, these concepts were not yet elaborated in this thesis to such an
extent that this assumption could be validated.

Harel and Segall propose another approach for smart play-out that does not
rely on a model checker, but instead on a planning algorithm [HS07]. This
approach, however, has the same limitation in the number of steps it can look
ahead. Therefore, the approach of combining play-out with synthesized con-
trollers for parts of the specification, as presented in Chap. 5, will be able to
avoid violations that smart play-out will not be able to avoid. It would be in-
teresting to investigate in the future if the two approaches, smart play-out and
the symbiosis of simulation and synthesis, can be beneficially combined. For
example, if a number of single use case specifications, which were each shown to
be consistent by synthesis, overlap during the simulation, avoidable violations
may still occur, even if the simulation is guided by the controllers synthesized
for the single use case specifications. Here maybe the concept of smart play-out
can help of avoiding some of these avoidable violations.

One particular drawback of smart play-out is that it requires a static object
system in order to encode the problem of finding an admissible super-step in a
model checker. The approach presented in this thesis, combining play-out with
synthesis, does not have this limitation.

The symbiosis of play-out and synthesized controllers from (parts of) the
specification has not been elaborated thus far. Kugler et al. [KPP09] have inte-
grated their synthesis approach with the Play Engine to execute the resulting
implementation. Their work, however, does not consider how a synthesized
controller can be executed in combination with not yet synthesized parts of the
specification. Also is it not considered how multiple controllers, synthesized for
subsets of the specification, can be executed in combination.

Maoz and Harel present an alternative realization of the play-out algorithm
by mapping LSCs to executable AspectJ code [MH06]. The implementation
contains extension points for strategies to be included that advise the play-out
algorithm on which steps to choose if there is a set of active events. Thus far,
however, no such extensions have been elaborated.

8.2 Related synthesis approaches
There exists a range of synthesis approaches that propose techniques to syn-
thesize a global controller from universal LSC specifications and, thereby, to
check the consistency of the specification. They are closely related to the syn-
thesis technique in Chap. 4 and will be discussed in the following. It follows a
short discussion on approaches that propose techniques to derive a distributed
implementation from the specification (Sect. 8.2.2).

8.2. RELATED SYNTHESIS APPROACHES 179

8.2.1 Synthesis of global controllers

This section introduces the existing approaches for synthesizing global con-
trollers from LSC specifications by Harel and Kugler [HKMP02b], Bontemps
et al. [BS03, BSL04, BH05], Kugler et al. [KPP09, KS09] and Larsen et al.
[LLNP09, LLNP10].

Synthesis by product automata construction by Harel and Kugler

Harel and Kugler describe the first approach for synthesizing LSC specifications
[HK99, HK02]. In their work, they first present a mapping from simple univer-
sal LSCs to finite state machines. Second they present an algorithm that first
constructs a product automaton from the finite state machines and then succes-
sively eliminates the states from where the system cannot guarantee to always
avoid hot violations. If the resulting automaton is empty, the specification is
inconsistent.

Third, Harel and Kugler present a mechanism by which a resulting automa-
ton, if it is not empty, can be distributed such that it results a state-based
implementation of the objects that satisfies the specification. The distribution
approach essentially consists of copying the product automaton for each object
in the system and then synchronizing all these automata whenever a step is
taken by the system. This results in large state machines for the objects and an
extensive overhead of communication among the objects. In principle, however,
Harel and Kugler could demonstrate that an LSC specification is realizable by
an implementation of the objects iff it is consistent.

Harel and Kugler only support a limited variant of LSCs in their synthesis
approach. The synthesis is performed with untimed (universal) LSCs that may
only have one message in the prechart, environment messages may only appear
in the prechart, and there is no support for assignments, conditions, or param-
eterized messages. Also a static object system and an iterative semantics (see
Sect. 3.1.6) is assumed.

First game-theoretic approach by Bontemps et al.

Bontemps et al. describe the first game-theoretic approach for synthesizing a
global controller from an LSC specification [BS03, BSL04]. They regard a re-
stricted subset of universal LSCs in which there are no conditions or other rich
constructs. Also the messages have no distinct modality—all messages appear-
ing in the main chart must occur, which corresponds to the meaning of hot
executed messages in this thesis. In addition to universal LSCs, a specification
may contains an initial LSC, which contain sequences of events that must occur
at the beginning of each execution of the system.

From the specification, a Büchi automaton is created that accepts all infinite
sequences of steps that respect the safety and liveness properties of the universal
LSCs. An algorithm then considers a turn-based game on this automaton and
tries to synthesize a winning strategy, i.e. a strategy for the system to always
take steps in the automaton such that the resulting run is accepting.

180 CHAPTER 8. RELATED WORK

The concepts were prototypically implemented [BH05]. Extensions to con-
sider timed specifications were not elaborated.

(Compositional) synthesis by Kugler et al.

Kugler et al. describe a game-theoretic synthesis technique [KPP09, KS09]
for synthesizing a global controller from an LSC specification. Their idea is
very similar to the concepts proposed by Bontemps et al. They adopt the
encoding from LSCs to an SMV (Symbolic Model Verifier) model that was
elaborated for smart play-out [HKMP02b]. Based on this model, their algorithm
calculates a winning strategy for the system if the specification is inconsistent.
If no winning strategy exists, the specification is consistent. In contrast to the
concepts presented by Bontemps et al., the approach by Kugler et al. is the
first realization of a game-theoretic synthesis approach that uses a symbolic
representation of the state space. However, only a limited number of LSC
language features is supported. The LSCs are untimed, and there is no support
for parameterized messages or object properties. Again, a static object system
and an iterative semantics of the charts is assumed.

As already mentioned in Sect. 8.1, Kugler et al. integrate their synthesis in
the play-engine in order to execute the global controller. After each environment
event, a super-step is extracted from this global controller by using a model
checker, just as in smart play-out [HKMP02b].

Kugler and Segall have furthermore proposed a compositional approach for
synthesizing controllers from LSC specifications [KS09]. However, their compo-
sitional approach differs significantly from the compositional approach presented
in Sect. 4.6. Kugler and Segall propose the following approach. First, they use
the above-mentioned technique [KPP09] to synthesize controllers from arbitrary
disjoint subsets of the MSDs in a specification. If, in this process, it turns out
that there is an inconsistency among one of these subsets, this implies that the
complete specification is inconsistent, and therefore this inconsistency must be
resolved. If all the subsets of MSDs are consistent, this yields a set of interme-
diate controllers. From subsets of these controllers, yet other, bigger controllers
are then synthesized similarly to the approach presented by Harel and Kugler
earlier [HK02]. This process continues until a global controller is synthesized.
The benefit of this approach is, first, that inconsistencies may be found quickly
already during the first runs of the synthesis. Second, the complexity of the
synthesis task is reduced slightly, compared to running the synthesis for the
whole specification at once. Intuitively, each synthesis steps eliminates more
and more inadmissible runs on each level. Therefore, during the last synthesis
steps, it may be that the state space that must be considered is smaller than
the state space that would need to be considered when synthesizing a controller
from the complete specification at once.

By contrast, the compositional approach discussed in Sect. 4.6 requires
an engineer to decompose the specification in a smart way, using an assume-
guarantee paradigm. If then controllers can be synthesized successfully for the
parts, this implies that the original specification is consistent, and the combi-
nation of the two controllers form an admissible implementation of the specifi-

8.2. RELATED SYNTHESIS APPROACHES 181

cation. This approach requires more creativity from the engineers, but it will
in many cases be possible to reduce the complexity of the synthesis problem
more drastically than by the approach of Kugler and Segall. Especially, this is
because the compositional synthesis approach described here does not require
further synthesis steps on the controllers that were synthesized from the part
specifications.

Synthesis via Uppaal Tiga by Larsen et al.

Larsen et al. presented an approach for synthesizing controllers from timed uni-
versal LSC specifications via Uppaal Tiga [LLNP09, LLNP10]. The approach
was developed in parallel with the synthesis technique presented in this thesis
[Gre09, Gre10]. There are some similarities in both approaches, but also many
differences.

Similar is that Larsen et al. synthesize controllers from timed or untimed
universal LSC specifications. The LSCs have synchronous messages and the
timed variant may have clock resets and time conditions, similar to the timed
MSDs in this thesis. The LSCs are mapped to a network of Timed Game
Automata (TGA). The winning condition used by Larsen et al. is a simple
safety condition to always avoid hot violations, similar to the AG condition
presented in Sect. 4.4.2.

Their mapping principle is as follows. First, each lifeline of each universal
LSC is mapped to an automaton, called lifeline automaton. Each location on
the lifeline is translated into a location in such an automaton. Between these
locations are edges that send and receive over particular broadcast channels that
represent according events that are enabled when the cut of the MSD is at the
corresponding location. Additionally, there is an automaton created for each
universal LSC, called coordinator automaton, which for example synchronizes
the lifeline automata when all the lifelines synchronously progress from the
prechart into the main chart.

The sending of a message is represented by taking an edge in a lifeline
automaton which emits over a broadcast channel that represents this event. All
other lifeline automata where this event is “enabled” have an edge which receives
over this channel, and thus, these lifeline automata then progress synchronously.

The messages sent by system instances are represented by controllable edges.
Therefore, the system may “produce” such events that are currently enabled.
Similarly, the environment messages are represented by uncontrollable edges in
the lifeline automata corresponding to environment instances. This encoding
has a severe limitation: the environment may only produce events that are cur-
rently enabled in an LSC. That means that environment events can only occur if
there is currently an active LSC that “expects” this environment event to occur;
environment events that are not enabled in any LSC will not occur. The latter
assumption is overly optimistic, and has no practical justification.

In the approach presented in this thesis, by contrast, any environment event
may always occur, unless it is explicitly restricted by environment assumptions.
The approach described in this thesis thus does not accidentally introduce overly

182 CHAPTER 8. RELATED WORK

optimistic assumptions on the environment, but allows the engineers to specifi-
cally define which behavior will or will not occur in the environment.

In the approach by Larsen et al., liveness in the main chart is expressed
by marking the locations in the lifeline automata which represent lifeline loca-
tions in the main chart as urgent. This means that when the system is in such
a location, time is not allowed to pass. This, however, implies that no time is
allowed to pass between the sending of enabled events. The system may only de-
lay the evaluation of time conditions. Therefore, this synthesis approach would
fail in finding a winning strategy for the example RailCab use case Drive onto
merging switch, which requires that the sending of the event enterAllowed is
delayed. The synthesis technique presented in this thesis, by contrast, manages
to synthesize an admissible controller for that specification.

One characteristic of the approach by Larsen et al. is that they consider the
invariant interpretation of the LSCs (see Sect. 3.1.6). The invariant interpreta-
tion allows multiple active copies of an LSC to be created for the same instances.
This may happen when the triggering event sequence of the main chart occurs
repeatedly in the chart. However, the encoding proposed by Larsen et al. does
not actually capture these different copies. Rather, occurrences of the first event
always only re-initialize the active copy of an LSC.

Finally, by the winning condition used by Larsen et al., controllers may be
synthesized where the system remains in an infinite loop. That may for example
happen if there are two MSDs where one MSD always triggers the activation of
the other. Using the AGAF winning condition in the approach presented here,
this can be avoided. (See also the discussion on the different winning conditions
in Sect. 4.4.2.)

8.2.2 Synthesis of distributed controllers

The synthesis approaches discussed above are restricted to synthesizing global
controllers from the LSC specifications. The same restriction applies to the
synthesis technique elaborated in this thesis. In practice, however, a global
controller cannot always be used directly as the implementation, especially in
distributed systems with multiple controllers. Therefore, it is ultimately desired
to have a method for automatically synthesizing a distributed implementation
of the specification if the specification is consistent.

However, synthesizing a distributed implementation is a problem that has
not been solved in a satisfying way. Bontemps et al. have actually shown that
the problem of deciding whether there exists a distributed implementation of
an LSC specification is not decidable [BS05]. But, there exist approaches for
synthesizing distributed implementations that are either incomplete or make
additional assumptions.

The approach by Harel and Kugler mentioned above [HK99, HK02] proposes
a technique to construct a distributed implementation by essentially copying
the global controller for each object. Additional messages are introduced that
synchronize all objects upon each step of the system. However, especially in
time-critical applications, where the communication between the components of
a system may take time, this approach may not always be applicable.

8.2. RELATED SYNTHESIS APPROACHES 183

Another incomplete method is proposed by Bontemps et al. [BS03, BSL04].
They propose a technique where the implementation of a system component is
generated from the universal LSCs using a mapping to automata. Each lifeline
of each universal LSC is projected onto the system component that it represents.
Then an implementation is created from these lifelines such that a component
tracks the messages that it receives and then sends messages similar to a play-out
algorithm that just views the system from the perspective of only that compo-
nent. That means for example that a component may decide to send a message
that causes a hot violation for some other component. Last, it is checked whether
a distributed implementation created this way satisfies the specification, i.e. if
violations like the one mentioned above do not occur. If the implementation
satisfies the specification, the created system is a valid implementation of the
specification. If the created system does not satisfy the specification, there may
still be another implementation satisfying the specification. Thus the approach
is not complete.

Similarly, Harel et al. propose a synthesis technique that mainly relies on
a mapping from universal LSCs to statecharts [HKP05]. For each component
in the specification, a statechart is created with parallel regions for each LSC
in which the component is represented by a lifeline. Each region contains a
sub-statechart which encodes the behavior of the component in an LSC, i.e.,
the messages it sends and receives. The states in the sub-statecharts represent
locations in the chart. The resulting statecharts are synchronized by additional
messages when the cut in a chart synchronously progresses from the prechart
to the main chart for all components in the LSC. Ultimately, it is checked if the
implementation resulting from this mapping satisfies the specification. More
specifically, model checking is employed to check whether the resulting imple-
mentation can infinitely often reach a state where all charts are simultaneously
inactive. Again, the approach is not complete, i.e. the specification may never-
theless be consistent and there may exist an implementation for the specification
that is just not discovered by the approach. The approach presented by Harel is
limited only to LSCs with simple messages. Lochau [Loc07] proposes extensions
to that approach.

There have also been other methods proposed for distributing a global con-
troller to a network of local controllers. One recent approach by Halle and
Bultan [HB10] suggests a projection from a global controller to distributed con-
trollers and to later check the equivalence of the two behaviors. The novelty
of this approach is that the projection works in such a way that each compo-
nent also “guesses” what the state of the other components in the system may
be. This way, a distributed implementation may be found that behaves exactly
like the global controller. The approach is also not complete, i.e., there may
exist a distributed implementation if the result of the approach is negative. It
is an interesting future research perspective to investigate if such techniques
can be applied for distributing the global controller resulting from the synthesis
technique presented in this thesis.

CHAPTER 9
Conclusion and
Future Research

This thesis presented a comprehensive technique for the scenario-based design
of advanced mechatronic systems that allows engineers to precisely specify and
compose the scenario-based requirements of a system and to analyze these re-
quirements for inconsistencies already during the early design of the system.
The core concepts of this technique were implemented in the ScenarioTools
tool suite and were validated by a range of examples. The technique prevents
costly iterations in the system’s development and devastating flaws in the final
product that may occur if inconsistencies are detected only in later development
phases or remain undetected until the system’s start of operation.

9.1 Summary
The technique developed in this thesis is based on the language of Modal Se-
quence Diagrams (MSDs) [HM08], a formal interpretation of UML sequence
diagrams based on Live Sequence Charts (LSCs) [DH01], a formalism for pre-
cisely specifying how the components in a system should, must, or must not
interact in reaction to events in their environment. Furthermore, the technique
developed in this thesis is based on the play-out algorithm [HM02a, HM03], a
technique for executing universal MSDs/LSCs that allows engineers to simulate
the scenario-based specification.

This thesis extended the existing concepts by two complementary techniques.
First, a novel technique for automatically synthesizing controllers from MSD
specifications was developed, which allows engineers to effectively detect incon-
sistencies in timed and untimed MSD specifications. The synthesis is realized
by a mapping from UML-based MSD specifications to networks of Timed Game
Automata (TGA). By also supplying an appropriate winning condition, Uppaal
Tiga, a tool for finding winning strategies in timed or untimed two-player games

185

186 CHAPTER 9. CONCLUSION AND FUTURE RESEARCH

[BCD+06, BCD+07a], can then determine the consistency of a given MSD spec-
ification. In doing so, Uppaal Tiga calculates an admissible controller for the
MSD specification if it is consistent. The particular benefit of this approach is
that it reuses the efficient data structures and the efficient algorithm [CDF+05]
of a validated tool.

The main novelty in the presented synthesis technique is that controllers
can be synthesized from specifications that not only consist of scenarios that
describe the required system behavior. Engineers may also explicitly formulate
assumptions on the possible environment behavior using assumption MSDs.
The synthesis can then show whether there exists a system that can fulfill the
requirements in the specification provided that the environment adheres to the
assumptions. The synthesis of LSC/MSD specifications under consideration
of environment assumptions has not been studied previously. This extension is
however crucial for practical applications in the domain of mechatronic systems.
Very often a system will only be able to satisfy certain requirements if it can
be assumed that not arbitrary sequences of environment events can occur that
may force the system to violate its requirements. In mechatronic systems, the
possible sequences of environment events are often restricted due to mechanical
principles, the laws of physics, or because certain properties are known about
external mechatronic- or software components.

Based on the assumption MSDs, a technique for the compositional synthesis
of MSD specifications using the assume/guarantee paradigm was developed in
this thesis. In certain cases, it allows for decomposing a synthesis problem into
two or more smaller synthesis problems that in sum can be solved much faster
than the original synthesis problem. Such a technique has not yet been elabo-
rated for LSC/MSD specifications. A sketch for the proof of the soundness of the
compositional synthesis technique was presented and a successful application of
the technique was illustrated by the help of a simplified MSD specification of
an industrial production robot.

Due to the inherent complexity of the synthesis problem, it will not be
possible to apply the synthesis to the often considerably large specifications of a
mechatronic system. Also, not all MSD specifications can be decomposed and it
is not possible to synthesize the specification of a dynamic system, i.e., systems
in which communication relationships between components may change during
runtime. Nevertheless, it is suggested to use synthesis to detect inconsistencies
in parts of the specification. More specifically, synthesis can be used to detect
inconsistencies within the specifications of single use cases if these use cases refer
to a static structure within a bigger, possibly dynamic system. Controllers can
also be synthesized from composed use cases, which are occurrences of certain
combinations of use cases occurrences that overlap within a particular structural
context.

This way, many inconsistencies can be effectively detected. However, the
engineer cannot be sure if there exists a system that adheres to the specification
if the use cases overlap in unforeseen ways. For dynamic mechatronic systems,
or systems with a complex specification, it is therefore suggested to analyze
the complete specification for inconsistencies via the simulation based on the
play-out algorithm.

9.2. FUTURE RESEARCH 187

The play-out algorithm was extended in the scope of this thesis, so that
now the play-out of the scenarios in a specification can be guided by controllers
that were successfully synthesized from use case specifications or composed use
case specifications. This extension improves the simulation, because it helps the
play-out avoid more avoidable violations of the specification (“false negatives”),
which may occur during the play-out of MSD specifications that are typically
under-specified during the early design. The advantage is that the simulation
is less disrupted by avoidable violations and the engineer has more reason to
suspect actual inconsistencies when violations occur during the simulation.

To achieve this symbiosis of simulation and synthesis, this thesis presented
an extension to the play-out algorithm. In this extension, the execution of the
active MSDs that make up an occurrence of a use case are controlled according
to a controller that was synthesized from the according use case specification. A
prototype validating this extension of the play-out algorithm was implemented
in ScenarioTools. Concepts were furthermore elaborated for controlling the
active MSDs that belong to the occurrences of composed use cases. The chal-
lenge for the extended play-out algorithm is that it may have to anticipate
multiple different possibilities of how the situation described in the composed
use case specification may emerge from occurrences of its constituent use cases.
This poses a complex task for the play-out algorithm that may become infeasible
if controllers for many complex composed use cases shall guide the play-out.

Finally, in the process of developing the above-mentioned synthesis tech-
nique, new extensions to TGG-based model transformations were developed
and implemented within TGG Interpreter. The mapping from UML-based
MSD specifications to a TGA system in Uppaal Tiga posed a major model
transformation challenge. Complex structures in stereotyped UML sequence
diagrams had to be translated into a complex TGA model, consisting of func-
tion and variable declarations as well as automata definitions. For this purpose,
the Object Constraint Language (OCL) [OCL10] was integrated with TGGs for
expressing application conditions and attribute value constraints. In UML mod-
els, furthermore, constraints can now be formulated over stereotype applications
on UML elements and the values of the additional attributes that a stereotype
application supplies to the UML element. Furthermore, a rule generalization
(inheritance) mechanism was introduced, improving the concepts originally pro-
posed by Klar et al. [KKS07]. These extensions made it possible to formalize
and implement the complex MSD-to-TGA mapping in a concise way by a visual
and rule-based formalism.

9.2 Future research
This thesis presented an ambitious vision for an improved scenario-based de-
sign of mechatronic systems. Many novel and useful concepts were thoroughly
elaborated, prototypically implemented, and validated by examples. In order to
solve a broader range of interesting practical problems, however, there are some
open tasks.

188 CHAPTER 9. CONCLUSION AND FUTURE RESEARCH

The synthesis, for example, will have to be extended to synthesize controllers
for MSD specifications that contain MSDs with parameterized and asynchronous
messages as well as richer constructs like if-then-else fragments or while loops.
Also, for certain kinds of environment assumptions, it will be relevant to consider
during the synthesis that the system may not have the complete information
about the state of the environment, but can only observe part of the events
occurring in the environment.

Furthermore, the play-out algorithm will have to be extended to simulate
real-timed MSD specifications. Also the concepts for guiding the play-out by
controllers synthesized from composed use cases must yet be implemented and
validated. In order to support the engineer in better understanding the incon-
sistencies that may be detected during the synthesis of use case specifications,
it would also be desirable to extend the ScenarioTools simulation such that
it can execute the counter-strategy that will be synthesized by Uppaal Tiga in
that case. Using the ScenarioTools simulation to “play” the role of the sys-
tem against an environment that will be always able to violate the requirements,
the engineers may be able to better understand the nature of the inconsistency.

It is also desirable to integrate ScenarioTools with the Mechatronic
Modeler [GBRP10, GDN10], a tool for the design of mechatronic systems
based on the interdisciplinary specification language that is developed within
the scope of the CRC 614.

In the future it is particularly interesting to investigate how to further reuse
the formal scenario specification when the software of the system must be imple-
mented in later development phases. One idea is to use the scenarios to generate
test cases that support the software engineers in the manual implementation of
the software.

In some cases, if the mechatronic system is controlled by a single proces-
sor, the software for the system could even be automatically generated from a
global controller if one can be successfully synthesized from an MSD specifica-
tion by the synthesis technique presented here. In a mechatronic system with
distributed processors, however, that will not be possible. For these cases it
should be investigated how to automatically synthesize distributed controllers
from the specification.

Some ideas have been presented previously (see also Sect. 8.2.2). For ex-
ample, Harel et al. describe how a global controller that could be successfully
synthesized from a specification can be mapped to local controllers for objects
in an object system. This approach, however, introduces an immense commu-
nication overhead, because additional messages for communicating the global
state among the local objects are introduced [HK02].

Another interesting approach for distributing a global controller was pre-
sented by Halle and Bultan [HB10]. They describe how to project a global
controller to local controllers for system objects that “guess” the global state
(i.e., the state the system would be in according to the global controller) from
the messages they send and receive. If these guesses of the global states can de-
viate from the actual global state, the local controllers do not constitute a valid
implementation of the global controller. But there could be ways to successively
add coordination messages that eventually allow the local controllers to always

9.2. FUTURE RESEARCH 189

correctly agree on the global state of the system, thus finally constituting a
valid implementation. Such an approach could be used to create a distributed
implementation for objects in a system from a global controller that could be
synthesized from an MSD specification using the technique presented here.

One open question regarding the simulation of MSD specifications (see the
process described in Sect. 5.1, Fig. 5.1) is if there is any indication of when the
engineer has simulated “enough” to be sure, at least to a measurable degree,
that the specification is free of inconsistencies. To answer this question, it
would be necessary to determine, first, how many of the possible combinations
of overlappings of use case occurrences were analyzed and, second, how many
of the possible runs in the different combinations of overlappings of use case
occurrences were simulated.

Especially in dynamic systems, finding all possible overlappings of use case
occurrences can be difficult. It could, however, be possible to capture the pos-
sible reconfigurations in a dynamic system in a graph transformation system
and enrich this system by the information of when and where which use cases
may occur. Then the different possible states of that system can be systemat-
ically explored in order to find the different possible overlappings of use case
occurrences.

Because some functions in mechatronic systems are of a continuous nature,
it would furthermore be desirable to model hybrid scenarios, i.e., scenarios that
describe not only which sequences of events may, must, or must not occur, but
also describe constraints on continuous variables. Similar ideas were already
presented in the past [GKS00]. It would be especially interesting to investigate
if there are certain kinds of such constraints by which play-out algorithm, i.e.,
the operational semantics of the scenarios, could be extended so that hybrid
scenarios can be executed. Once this is possible, the simulation can be employed
to find inconsistencies also in hybrid specifications.

APPENDIX A
Meta-Models and

Profiles

The mapping from an MSD specification to a network of Timed Game Automata
(TGA) as explained in Chap. 4 is chiefly realized by a TGG-based model trans-
formation from a stereotyped UML model to an ECore model of a TGA network
(see Sect. 7.2, Fig. 7.3). In order to better understand the TGG rule set pre-
sented in Chap. B, this chapter first explains the meta-model for networks of
TGA in Uppaal Tiga in Sect. A.1 and, second, presents the profile used for
modeling MSD specifications with UML in Sect. A.2.

A.1 The meta-model for Uppaal Tiga
The Uppaal Tiga ECore meta-model captures the parts of the Uppaal Tiga
language that are used in the synthesis approach presented in this thesis. In-
stances of this meta-model, i.e., models of concrete networks of TGA, can be
translated to a valid input file for Uppaal Tiga by a model-to-text transforma-
tion (as described in Sect. 7.2). A brief explanation of the meta-model is given
in the following; see the tutorial on Uppaal [BDL04] or the online help of the
Uppaal Tiga tool for a more comprehensive description of the language.

The first class diagram in Fig. A.1 shows the meta-classes that are used for
describing the automaton templates, the global resp. template-specific declara-
tions, and the declarations of TGA systems (i.e., the instantiation of automaton
templates). The root of each model in Uppaal Tiga is called NTA (network of
Timed Automata). It contains a number of automaton templates and a system
declaration that defines a number of instantiations of these templates. Each
template consists of locations and edges that have one source and one target
location. The NTA and each template may have declarations that consist of
declarations of functions, channels, clocks, and Boolean and integer variables.
Functions may themselves have parameter variable declarations. In this model,

191

192 APPENDIX A. META-MODELS AND PROFILES

to declare for example a Boolean variable, a BooleanDeclaration has to be
created together with a VariableID that determines the name and, optionally,
an initial value for that variable. When multiple variable IDs are contained
in a Boolean declaration, this leads to declarations like bool a = true, b =
false;.

Note that not each possible instance of the meta-model leads to valid input
for Uppaal Tiga. For example, according to the meta-model, a channel may
be initialized with a String expression, or the parameter variable declarations
for functions may have an initializer, which is not possible in Uppaal Tiga.
The aim of this model is primarily to support the MSD-to-TGA mapping in a
convenient way. The TGG transformation uses this model in such a way that
the XPAND transformation produces valid input files.

Figure A.1: An ECore meta-model for Uppaal Tiga (automaton templates,
global/template declarations, system declarations)

Most properties of the locations and edges are encoded by String or Boolean
attributes. For the invariant expressions of locations and the guard expressions
of edges, the model defines the class BooleanExpression. Further, the update
expression of an edge is represented by a Statement. Figure A.2 shows the meta-
classes for functions, statements, and expressions. An expression can either be
a plain text expression, an integer literal, or a Boolean expression. Again, this
is not intended to represent a valid grammar for Uppaal Tiga expressions,
but shall just serve the MSD-to-TGA mapping in a convenient way. A Boolean
expression can either simply be an expression given in the form of a text string,

A.2. MSD SPECIFICATIONS IN UML 193

but it can also be a conjunction or disjunction of other Boolean expressions,
or a binary compare expression between two other expressions. The compare
expressions can use a number of compare operators given in the enumeration
CompareOperator. A Boolean expression can further be the call to a Boolean
function with zero or more arguments. A function in this model may have
a number of statements. In the scope if this paper, however, only Boolean
functions are created with a single return statement that is a Boolean expression.

Figure A.2: An ECore meta-model for Uppaal Tiga (functions, statements,
expressions)

A.2 MSD specifications in UML
This section illustrates how an MSD specification is represented using UML2
and a profile. The MSD profile used here is a modified and extended variant of
the profile created by Maoz in the context of the S2A project1 [MH06]. In the
following, first the stereotypes used in the MSD profile are presented. Second,
the abstract syntax of an MSD specification in UML is illustrated by object
diagrams. This shall help to understand the definition of the mapping from
MSDs to the system of TGAs in Chap. B. For general information on UML
profiles and the UML meta-classes, see the UML2 specification [UML09].

The diagram in Fig. A.3 shows the stereotypes and data types which extend
UML for modeling MSD specifications. First, there is the stereotype MSDSpec-

1http://www.wisdom.weizmann.ac.il/~maozs/s2a/

http://www.wisdom.weizmann.ac.il/~maozs/s2a/

194 APPENDIX A. META-MODELS AND PROFILES

ification, which extends the UML meta-class Package. By its attribute specifi-
cationKind, an MSD specification can be marked as a timed specification or an
untimed specification. Second, there is the stereotype SpecificationPart, which
extends the UML meta-class Property. Specification parts model the environ-
ment and system objects in the MSD specification. To distinguish environment
and system objects, the SpecificationPart stereotype has the attribute partKind.
This attribute is typed over the enumeration PartKind, which defines two lit-
erals “Environment” and “System”. Third, the profile contains the stereotype
ModalMessage, which adds attributes for the temperature and execution kind
to messages. The temperature attribute is typed over the enumeration Temper-
atureKind, which defines the two literals “cold” and “hot”. The execution kind
attribute is typed over the enumeration ExecutionKind, which defines the two
literals “monitor” and “execute”. Each message in an MSD specification must
be a modal message, which is expressed by the “required”-annotation on the
stereotype extension arrow. Forth, the profile contains the stereotype Condi-
tion, which extends the meta-class StateInvariant, and, like the modal message,
defines an attribute temperature. Conditions are state invariants with the con-
dition stereotype applied, assignments are state invariants with no stereotype
applied. To syntactically distinguish time conditions and assignments which
specify clock resets, there are the stereotypes TimeCondition and ClockReset.

«enumeration»
PartKind

System
Environment

«enumeration»
ExecutionKind

Monitored
Executed

«metaclass»
Package

«stereotype»
MSDSpecification

spec.Kind:SpecificationKind

«metaclass»
Message

«stereotype»
ModalMessage

temperature:TemperatureKind
executionKind: ExecutionKind

{required}

«metaclass»
StateInvariant

«stereotype»
Condition

temperature:TemperatureKind

«Profile» Modal

«stereotype»
ClockReset

«stereotype»
TimeCondition

«metaclass»
Property

«stereotype»
SpecificationPart

partKind:PartKind

«enumeration»
SpecificationKind

Untimed
Timed

«enumeration»
TemperatureKind

Cold
Hot

Figure A.3: The UML-Profile for MSD-Specifications

The object diagrams in Fig. A.4, A.5 and A.6 illustrate the abstract syntax
of part of the MSD specification Drive onto track section modeled in UML and
by using the above profile. The first two object diagrams show part of the MSD
RequestEnterAtEndOfTrackSection and the corresponding collaboration as shown
in in Fig. 4.2. The object diagram in Fig. A.6 shows how the time condition

A.2. MSD SPECIFICATIONS IN UML 195

of the MSD ReplyOfSwitchControlNotTooEarly in Fig. 4.8. is represented in the
abstract syntax.

Figure A.4 shows the abstract syntax of a part of the MSD RequestEnter-
AtEndOfTrackSection, which is part of the MSD specification Drive onto track
section. The root object is a package to which the stereotype MSDSpecifica-
tion is applied. An MSD specification contains a collaboration, which in turn
contains properties that represent the environment and system objects of the
MSD specification. The stereotype SpecificationPart is applied to the properties.
The attribute partKind determines whether a the property represents as system
object or an environment object. The object diagram furthermore shows that
the properties are typed over the classes contained in the package. In addition
to the properties, the collaboration contains interactions. The object diagram
shows the root object of the MSD RequestEnterAtEndOfTrackSection with its
three lifelines (see Fig. 4.2). The object diagram also shows how the lifelines
refer to the properties in the collaboration.

:Package
name=”DriveOntoTrackSection”

:Collaboration
name=”DriveOntoTrackSection”

:Interaction
name=”RequestEnterAtEndOfTrackSection”

:Class
name=”RailCab”

:Class
name=”Environment”

:Class
name=”TrackSectionControl”

:Property
name=”env”

:Property
name=”rc”

:Property
name=”next”

:Lifeline
name=”env”

:Lifeline
name=”nect”

:Lifeline
name=”rc”

type

type

type

represents

represents

represents

«MSDSpecification»
specificationKind=Timed

«SpecificationPart»
partKind=Environment

applied
stereotype

«SpecificationPart»
partKind=System

applied
stereotype

«SpecificationPart»
partKind=System

applied
stereotype

applied
stereotype

Figure A.4: The abstract syntax of an MSD specification: packages, classes,
collaborations, parts, interactions, and lifelines

Figure A.5 shows further details of the abstract syntax; objects already
appearing in Fig. A.4 are grayed-out. Besides the lifelines, the object diagram
shows a message in the MSD. The message has the stereotype ModalMessage
applied. The object diagram shows how the message is attached to the sending
and receiving lifeline via message occurrence specifications. The diagram in
particular shows that the message occurrence specifications are contained in

196 APPENDIX A. META-MODELS AND PROFILES

the interaction via the ordered reference fragments. The position in this list
is denoted by the numbers in the brackets. This ordering reflects the order
of events in a UML Sequence Diagram. Each message occurrence specification
references a send operation event. For synchronous messages, the sending and
receiving message occurrence specifications refer to the same event. The event
in turn refers to an operation defined by the type class of the property referred
to by the receiving lifeline. If there are multiple messages representing the same
message kind in an MSD specification, there are multiple send operation events
which refer to the same operation.

:Package
name=”DriveOntoTrackSection”

:Collaboration
name=”DriveOntoTrackSection”

:Interaction
name=”RequestEnterAtEndOfTrackSection”

:SendOperationEvent
name=”SendOperationEvent2”

:SendOperationEvent
name=”SendOperationEvent1”

:SendOperationEvent
name=”SendOperationEvent3”

:Lifeline
name=”env”

:Lifeline
name=”next”

:Lifeline
name=”rc”

:Message
name=”Message1”

:MsgOccSpec

:MsgOccSpec

sendEvent

receiveEvent

covered

covered

event
event

[0]

[1]

:Class
name=”RailCab”

:Operation
name=”endOfTS”

operation

fragment

fragment

«MSDSpecification»
specificationKind=Timedapplied

stereotype

«ModalMessage»
temperature=Cold

executionKind=Monitorapplied
stereotype

Figure A.5: The abstract syntax of an MSD specification: messages, occurrence
specifications, events, and operations

The object diagram in Fig. A.6 shows the abstract syntax representation of
a condition. In this case the time condition of the MSD ReplyOfSwitchControl-
NotTooEarly as shown in Fig. 4.8. Time conditions are state invariants with the
stereotype TimeCondition applied. A state invariant can cover one or multiple
lifelines that it references via the covered reference. A state invariant further
can have a constraint with an expression that carries the expression string.
Just like message occurrence specifications, state invariants are contained in
the interaction via the ordered reference fragments. Fig. A.6 shows that the
time condition of the MSD ReplyOfSwitchControlNotTooEarly in Fig. 4.8 is at
position 5.

A.2. MSD SPECIFICATIONS IN UML 197

:Package
name=”DriveOntoTrackSection”

:Collaboration
name=”DriveOntoTrackSection”

:Interaction
name=”ReplyOfSwitchControlNotTooEarly”

covered

[5]fragment :StateInvariant
name=”StateInvariant2”

:Lifeline
name=”rc”

:Constraint
name=”Constraint1”

invariant

:OpaqueExpression
body=”c>5”

specification

«MSDSpecification»
specificationKind=Timedapplied

stereotype

«TimeCondition»
temperature=Coldapplied

stereotype

Figure A.6: The abstract syntax of an MSD specification: conditions and
expressions

APPENDIX B
MSD-to-TGA TGG

Transformation

This chapter presents the TGG-based mapping fromMSD use case specifications
to networks of timed automata as explained in Chap 4, called the MSD-to-TGA
mapping in short. First, Sect. B.1 gives an overview of the TGG rules. Then
Sect. B.2 lists a number of auxiliary operations, defined in OCL, that are used
within the TGG rules. Last, Sect. B.3 lists all TGG rules in the MSD-to-TGA
mapping.

The MSD-to-TGA mapping is part of ScenarioTools. Installing
ScenarioTools or just the MSD-to-TGA transformation feature allows the
reader to test the transformation or to inspect the TGG rules and example
models in more detail. Installation instructions can be found on the following
website:

http://www.cs.upb.de/index.php?id=scenariotools

B.1 TGG rule overview
The MSD-to-TGA TGG consists of one axiom and 30 TGG rules. Figure B.1
shows an overview that illustrates the rule generalization relationships as well
as the dependencies between the rules. There is a dependency between rule if
the application of a rule requires the application of one or several other rule
applications. For example, in order to apply the rules MSDSpecification or
TimedMSDSpecification, a binding of the axiom must exist; in order to apply
the rule Lifeline, a binding of the rule MSD and MSDSpecification or TimedMSD-
Specification must exist.

The TGG rules map an MSD use case specification to a network of TGA ba-
sically as follows: The axiom simply defines the correspondence between the root
objects of the models, i.e., the package of the MSD specification and the NTA
object (Fig. B.2). Then the rules MSDSpecification or TimedMSDSpecification

199

http://www.cs.upb.de/index.php?id=scenariotools

200 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

A
bs

tra
ct

M
SD

S
pe

ci
fic

at
io

n

Ti
m

ed
M

S
D

Sp
ec

ifi
ca

tio
n

M
S

D
S

pe
ci

fic
at

io
n

M
S

D

Li
fe

lin
e

M
in

im
al

 M
es

sa
ge

C
ol

d
M

es
sa

ge
H

ot
 M

es
sa

ge

N
on

-M
in

im
al

 M
sg

.

M
in

im
al

 E
nv

. M
sg

.
C

ol
d

E
nv

. M
es

sa
ge

M
in

im
al

 S
ys

. M
sg

.

C
ol

d
S

ys
. M

es
sa

ge

C
ol

d
E

x.
 S

ys
. M

sg
.

M
es

sa
ge

Pa
ck

ag
eT

oN
ta

 (A
xi

om
)

S
ta

te
 In

va
ria

nt

C
on

di
tio

n

H
ot

 M
in

. D
el

ay

C
ol

d
C

on
di

tio
n

C
ol

d
Ti

m
e

C
on

di
tio

n

H
ot

 M
ax

. D
el

ay
H

ot
 C

on
di

tio
n

A
ss

ig
nm

en
t

C
lo

ck
 R

es
et

C
ol

d
E

x.
 E

nv
. M

sg
.

Fo
rb

id
de

n
M

sg
.

H
ot

 E
nv

. M
es

sa
ge

H
ot

 S
ys

. M
es

sa
ge

H
ot

 E
x.

 S
ys

. M
sg

.

H
ot

 E
x.

 E
nv

. M
sg

.

ru
le

 g
en

er
al

iz
at

io
n

de
pe

nd
en

cy
ap

pl
ic

at
io

ns
 o

f a
 ru

le
 re

qu
ire

s
th

e
ap

pl
ic

at
io

n
of

 a
 a

no
th

er
 ru

le

C
lo

ck
 R

es
et

S
ta

te
 In

va
ria

nt

TG
G

 ru
le

ab
st

ra
ct

TG

G
 ru

le

Figure B.1: An overview of the rule relationships in the TGG defining the
MSD-to-TGA mapping

B.2. OCL ATTRIBUTE DEFINITIONS 201

map the collaboration of the MSD specification and create the basic structure
of various elements in the TGA model: the environment and system automaton
templates, the global declarations along with a number of variables, function
skeletons, and the system declaration, which defines instantiations of the en-
vironment and system automaton templates. Most of this mapping is defined
in the abstract super-rule AbstractMSDSpecification (see Fig. B.3- B.6). The
rules MSDSpecification or TimedMSDSpecification add aspects that are specific
to untimed resp. timed MSD specifications (see Fig. B.7 and B.8).

Based on applications of MSDSpecification or TimedMSDSpecification, the
rule MSD (Fig. B.9 to B.11) can be applied for each MSD in the MSD speci-
fication. The rule creates an MSD automaton template and its instantiation.
Based on applications of the rule MSD, it is then possible to apply the rule
Lifeline (Fig. B.12), which maps each lifeline of an MSD to a lifeline variable
an parts of update and guard expressions of edges in the corresponding MSD
automaton template, as well as parts of expressions in various function bodies.
Based on applications of MSD, the rules for mapping various kinds of mes-
sages (Fig. B.13 to B.28) and state invariants, i.e., conditions, assignments, etc
(Fig. B.29 to B.37), can be applied.

B.2 OCL attribute definitions
The following listing shows the contents of an OCL custom definitions file that
is part of the mapping definition. It defines additional attributes and opera-
tions for UML elements that are used in constraints in the TGG rules. These
additional attributes and operations mainly provide strings that are required in
the TGA model. For example, the attribute varName produces the string that
is used for the names of lifeline variables in the TGA model.

Listing B.1: Custom OCL definitions
package uml

context L i f e l i n e
def : varName : S t r ing =

s e l f . i n t e r a c t i o n . name . concat (’_ ’)
. concat (s e l f . r e p r e s en t s . name)

def : minimalEventOnLife l ine : Boolean =
s e l f . i n t e r a c t i o n . fragment−>at (1) . covered
−>includes (s e l f) or
s e l f . i n t e r a c t i o n . fragment−>at (2) . covered
−>includes (s e l f)

def : a l lFragments : OrderedSet (Interact ionFragment) =
s e l f . i n t e r a c t i o n . fragment
−>select (f | f . covered−>includes (s e l f))

def : maxVarValue : I n t eg e r =
s e l f . a l lFragments−>s ize ()
+ (i f s e l f . minimalEventOnLife l ine then 0 else 1 endif)

def : g e tPo s i t i onBe f o r e (f : Interact ionFragment) : I n t eg e r =
s e l f . a l lFragments−>indexOf (f)
− (i f s e l f . minimalEventOnLife l ine then 1 else 0 endif)

/∗ taken h t t p :// w ik i . e c l i p s e . org /OCLSnippets : ∗/
def : t oS t r i ng (i : I n t eg e r) : S t r ing =

202 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

OrderedSet{1000000 , 10000 , 1000 , 100 , 10 , 1}−> iterate (
denominator : I n t eg e r ;
s : S t r ing = ’ ’ |
l e t numberAsString : S t r ing = OrderedSet{

’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’
}−>at (i . d iv (denominator) .mod(10) + 1)

in
i f s=’ ’ and numberAsString = ’ 0 ’ then

s
else

s . concat (numberAsString)
endif

)
def : g e tPo s i t i onBe f o r eS t r i ng (f : Interact ionFragment)

: S t r ing = s e l f . t oS t r i ng (s e l f . g e tPo s i t i onBe f o r e (f))

context Message
def : typeName : S t r ing =

s e l f . sendEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on) . covered
−>any(t rue) . r e p r e s en t s . name . concat (’_ ’)
. concat (s e l f . r ece iveEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on) . covered
−>any(t rue) . r e p r e s en t s . name) . concat (’_ ’)
. concat (s e l f . sendEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on) . event
.oclAsType(uml : : SendOperationEvent) . opera t i on . name)

def : i n c r ea s eSend ingRece i v i ngL i f e l i n eExpr : S t r ing =
s e l f . sendEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on) . covered
−>any(t rue) . varName . concat (’++,␣ ’)
. concat (s e l f . r ece iveEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on) . covered
−>any(t rue) . varName) . concat (’++’)

def : sendingMsgOccSpec : MessageOccur renceSpec i f i ca t i on =
s e l f . sendEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on)

def : receivingMsgOccSpec : MessageOccur renceSpec i f i ca t i on =
s e l f . r ece iveEvent
.oclAsType(uml : : MessageOccur renceSpec i f i ca t i on)

def : s e n d i n gL i f e l i n e : L i f e l i n e =
s e l f . sendingMsgOccSpec . covered−>any(t rue)

def : r e c e i v i n g L i f e l i n e : L i f e l i n e =
s e l f . receivingMsgOccSpec . covered−>any(t rue)

def : s end ingLocat ion : In t eg e r =
s e l f . s e n d i n gL i f e l i n e . a l lFragments
−>indexOf (s e l f . sendingMsgOccSpec)
− (i f s e l f . s e n d i n gL i f e l i n e . minimalEventOnLife l ine

then 1 else 0 endif)
def : r e c e i v i ngLoca t i on : In t eg e r =

s e l f . r e c e i v i n g L i f e l i n e . a l lFragments
−>indexOf (s e l f . receivingMsgOccSpec)
− (i f s e l f . r e c e i v i n g L i f e l i n e . minimalEventOnLife l ine

then 1 else 0 endif)

context I n t e r a c t i o n
def : i n c r e a s eA l l L i f e l i n eVa r i a b l e sExp r : S t r ing =

B.2. OCL ATTRIBUTE DEFINITIONS 203

s e l f . l i f e l i n e −>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |
i f expr = ’ ’ then l l . varName . concat (’++’)

else expr . concat (’ , ␣ ’) . concat (l l . varName)
. concat (’++’) endif)

def : a l l L i f e l i n eVa r i a b l e sZ e r oExp r : S t r ing =
s e l f . l i f e l i n e −>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |

i f expr = ’ ’ then l l . varName . concat (’ ␣==␣0 ’)
else expr . concat (’ ␣and␣ ’)
. concat (l l . varName) . concat (’ ␣==␣0 ’) endif)

def : r e s e tA l l L i f e l i n eVa r i a b l e sExp r : S t r ing =
s e l f . l i f e l i n e −>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |

i f expr = ’ ’ then l l . varName . concat (’ ␣=␣0 ’)
else expr . concat (’ , ␣ ’)
. concat (l l . varName) . concat (’ ␣=␣0 ’) endif)

context Sta t e Inva r i an t
def : enabledExpr : S t r ing =

s e l f . covered−>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |
i f expr = ’ ’ then l l . varName . concat (’ ␣==␣ ’) .

concat (l l . g e tPo s i t i onBe f o r eS t r i n g (s e l f))
else expr . concat (’ ␣and␣ ’) . concat (l l . varName)

. concat (’ ␣==␣ ’)

. concat (l l . g e tPo s i t i onBe f o r eS t r i n g (s e l f))
endif)

def : i n c r e a s eA l lCove r edL i f e l i n eVar i ab l e sExpr : S t r ing =
s e l f . covered−>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |

i f expr = ’ ’ then l l . varName . concat (’++’)
else expr . concat (’ , ␣ ’) . concat (l l . varName)
. concat (’++’) endif)

def : r e s e tA l lCove r edL i f e l i n eVar i ab l e sExpr : S t r ing =
s e l f . covered−>iterate (l l : L i f e l i n e ; expr : S t r ing = ’ ’ |

i f expr = ’ ’ then l l . varName . concat (’ ␣=␣0 ’)
else expr . concat (’ , ␣ ’) . concat (l l . varName)
. concat (’ ␣=␣0 ’) endif)

context OpaqueExpression
def : at (i : I n t eg e r) : S t r ing =

s e l f . body−>any(t rue) . sub s t r i ng (i , i)
def : he lperSequence : Sequence (In t eg e r) =

Sequence { 1 . . s e l f . body−>any(t rue) . s ize ()}
/∗ t h i s i s a l i t t l e t r i c k y , because OCL does not suppor t

many s t r i n g opera t i ons . Probab ly i t would be b e t t e r
to extend OCL: ∗/

def : f i r s tOccOfEqua l s : I n t eg e r = s e l f . he lperSequence
−>iterate (counter : I n t eg e r ; r e s u l t : I n t e g e r = 0 |

i f ((s e l f . at (counter) = ’=’ or s e l f . at (counter) = ’ ␣ ’)
and r e s u l t = 0) then counter else r e s u l t endif)

/∗ Jus t checks whether the exp re s s i on conta ins an ’ < ’: ∗/
def : isMaximalDelay : Boolean = s e l f . he lperSequence
−>iterate (counter : I n t eg e r ; r e s u l t : I n t e g e r = 0 |

i f ((s e l f . at (counter) = ’< ’)
and r e s u l t = 0) then counter else r e s u l t endif) > 0

def : varName : S t r ing =
s e l f . body−>any(t rue)
. sub s t r i ng (1 , s e l f . f i r s tOccOfEqual s −1)

endpackage

204 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

B.3 TGG rules
This section lists the TGG rules in the MSD-to-TGA mapping as shown in the
overview in Fig. B.1.

Figure B.2: The TGG Axiom PackageToNta

B.3. TGG RULES 205

Figure B.3: Part of the TGG rule AbstractMSDSpecification (showing the en-
vironment automaton template created for an MSD specification as well as its
instantiation)

206 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.4: Part of the TGG rule AbstractMSDSpecification (showing the sys-
tem automaton template created for an MSD specification as well as its instan-
tiation)

B.3. TGG RULES 207

Figure B.5: Part of the TGG rule AbstractMSDSpecification (showing the global
variable and channel declarations that are created for an MSD specification)

208 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.6: Part of the TGG rule AbstractMSDSpecification (showing the global
function declarations that are created for an MSD specification)

B.3. TGG RULES 209

Figure B.7: The TGG ruleMSDSpecification (refines AbstractMSDSpecification)

210 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.8: The TGG rule TimedMSDSpecification (refines AbstractMSD-
Specification)

B.3. TGG RULES 211

Figure B.9: Part of the TGG rule MSD (showing the MSD automaton template
skeleton structure created for each MSD as well as the instantiation of the
template)

212 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.10: Part of the TGG rule MSD (showing the template variable and
function declarations created for an MSD automaton template)

B.3. TGG RULES 213

Figure B.11: Part of the TGG rule MSD (showing the global function declara-
tions created for each MSD)

214 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.12: The TGG rule Lifeline (mapping a lifeline to the declaration of
a lifeline variable and to structures which represent parts of MSD automaton
template edge update and guard expressions; furthermore mapped to part of
the bool isHiddenEventEnabled(int player) function body)

B.3. TGG RULES 215

Figure B.13: The TGG rule Message (mapping a message in a TGG to a
globally declared constant, an edge in the MSD automaton template, and part
of an expression that is declared for the MSD automaton template)

216 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.14: The TGG rule MinimalMessage (mapping a minimal message to
different parts of edge of edge update and guard labels in the MSD automaton
template as well as part of bool enabled (int ev) function that is declared for the
MSD automaton template, refines the rule Message)

B.3. TGG RULES 217

Figure B.15: The TGG rule MinimalEnvironmentMessage (mapping a minimal
environment message to an edge in the environment automaton template, refines
the rule MinimalMessage)

Figure B.16: The TGG ruleMinimalSystemMessage (mapping a minimal system
message to an edge in the system automaton template, refines the rule Minimal-
Message)

218 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.17: The TGG rule ForbiddenMessage (mapping a forbidden message
to parts of various function body expressions, refines the rule Message)

B.3. TGG RULES 219

Figure B.18: The TGG rule NonMinimalMessage (mapping a non-minimal
message to an edge update label in the MSD automaton template as well as
part of a body expression of the function bool enabled (int ev) in the MSD
automaton template, refines the rule Message)

220 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.19: The TGG rule ColdMessage (mapping a cold message, refines the
rule NonMinimalMessage)

Figure B.20: The TGG rule ColdEnvironmentMessage (mapping a cold (moni-
tored) environment message to the corresponding edge in the MSD automaton
template, refines the rule ColdMessage)

B.3. TGG RULES 221

Figure B.21: The TGG rule ColdExecutedEnvironmentMessage (mapping a cold
executed environment message to expression parts in global functions, refines
the rule ColdEnvironmentMessage)

Figure B.22: The TGG rule ColdSystemMessage (mapping a cold (monitored)
system message to the corresponding edge in the MSD automaton template,
refines the rule ColdMessage)

222 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.23: The TGG rule ColdExecutedSystemMessage (mapping a cold ex-
ecuted system message to expression parts in global functions, refines the rule
ColdSystemMessage)

Figure B.24: The TGG rule HotMessage (mapping a hot message, refines the
rule NonMinimalMessage)

B.3. TGG RULES 223

Figure B.25: The TGG rule HotEnvironmentMessage (mapping a hot (moni-
tored) environment message to the corresponding edge in the MSD automaton
template, refines the rule HotMessage)

Figure B.26: The TGG rule HotExecutedEnvironmentMessage (mapping a hot
executed environment message to expression parts in global functions, refines
the rule HotEnvironmentMessage)

224 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.27: The TGG rule HotSystemMessage (mapping a hot (monitored)
system message to the corresponding edge in the MSD automaton template,
refines the rule HotMessage)

Figure B.28: The TGG rule HotExecutedSystemMessage (mapping a hot exe-
cuted system message to expression parts in global functions, refines the rule
HotSystemMessage)

B.3. TGG RULES 225

Figure B.29: The TGG rule StateInvariant (mapping a state invariant to an
edge in the MSD automaton template and parts of global functions)

Figure B.30: The TGG rule Assignment (mapping an assignment to a variable
declaration in the corresponding MSD automaton template and adding an up-
date expression to the according edge in the MSD automaton template, refines
the rule StateInvariant)

226 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.31: The TGG rule ClockReset (mapping a clock reset to a clock dec-
laration in the corresponding MSD automaton template and adding an update
expression to the according edge in the MSD automaton template, refines the
rule StateInvariant)

Figure B.32: The TGG rule Condition (mapping a condition to an additional
part of the corresponding edge’s guard label as well as an additional edge that
represents the violation of the condition, refines the rule StateInvariant)

B.3. TGG RULES 227

Figure B.33: TGG Rule ColdCondition (mapping a cold condition to an update
label statement of the corresponding violating edge, refines the rule Condition)

Figure B.34: The TGG rule HotCondition (mapping a hot condition to an
update label statement of the corresponding violating edge, refines the rule
Condition)

228 APPENDIX B. MSD-TO-TGA TGG TRANSFORMATION

Figure B.35: The TGG rule ColdTimeCondition (mapping a cold time condition
to an update label statement of the corresponding violating edge, refines the rule
Condition)

Figure B.36: The TGG rule HotMaximalDelay (mapping a hot maximal delay
to an update label statement of the corresponding violating edge, refines the
rule Condition)

B.3. TGG RULES 229

Figure B.37: The TGG rule HotMinimalDelay (mapping a hot minimal delay
to an edge representing the progression of the delay in the corresponding MSD
automaton template as well as parts in global functions)

APPENDIX C
Examples

This appendix chapter presents a number of example MSD specifications that
where created to demonstrate, test and benchmark the the ScenarioTools
simulation and synthesis features that were developed within the scope of this
thesis.

Section C.1 describes a comprehensive RailCab specification that was mod-
eled with the ScenarioTools editors and which can be simulated using the
ScenarioTools implementation of the play-out algorithm.

Section C.2 presents one use case specification from the RailCab specification
in detail that resembles a case where the simulation may run into an avoidable
violation during the execution by naive play-out. Because the violation is an
avoidable violation, a controller can be successfully synthesized from the use case
specification that contains a strategy to always avoid the avoidable violation. If
the simulation is executed guided by this controller as explained in Chap. 5, the
simulation can always avoid the avoidable violation. Section C.2 in particular
presents excerpts from the controller as it is generated by Uppaal Tiga.

Section C.3 presents a timed example specification of an industrial produc-
tion robot, called the production cell, for which, depending on the values selected
for certain time intervals, a controller can be successfully synthesized by Uppaal
Tiga. In particular, the section additionally presents a variant of the production
cell specification that was decomposed according to the compositional synthesis
technique presented in Sect. 4.6. The section presents benchmark results of the
times required for the TGG transformation and the synthesis by Uppaal Tiga.

Last, Sect. C.4 presents some technical timed and untimed MSD specifica-
tions that are used to benchmark the efficiency of the synthesis.

231

232 APPENDIX C. EXAMPLES

C.1 Simulating an example RailCab specification
This section overviews a comprehensive RailCab example specification that can
be modeled and simulated with ScenarioTools. The specification integrates
multiple use case specifications that describe how the RailCab and switch- and
track section controls interact when RailCabs move in a track system. The
example also integrates a use case specification that describes how different
modules within the RailCab interact for the energy management of the RailCab
[ADG+09, Sect. 2.1.6, pp. 87].

Furthermore, the example contains a use case that illustrates how an avoid-
able violation may occur during the simulation of the specification. A controller
that can be successfully synthesized from the use case specification can be com-
bined with the simulation in ScenarioTools so that the avoidable violation
is always avoided. The use case specification and parts of the controller result-
ing from the synthesis are shown in Sect. C.2. Before coming to this use case
specification, an overview of the example specification is given in Sect. C.1.1.
Section C.1.2 to C.1.4 explain some use case specifications in more detail.

The example specification consists of nine class diagrams, nine collaboration
diagrams, and 27 MSDs. Therefore not all details of the example specification
will be explained here. If the reader wishes to inspect the example in more detail
or wishes to test the simulation, ScenarioTools and the example specification
can be downloaded and installed by following the instructions on the Scenario-
Tools website:

http://www.cs.upb.de/index.php?id=scenariotools

C.1.1 Example specification overview

The RailCab example specification consists of eleven packages that are shown
in Fig. C.1. On the top, there is the package RailCabBase, which defines the
base class model of the RailCab system. Below the RailCabBase package, there
are a number of packages that contain use case specifications, indicated by
the stereotype «MSDSpecification». The «merge» relationships between these
packages represent dependencies among the packages. The use case specification
packages depend on the RailCabBase package or on other use case specification
packages. The bottom of the diagram shows the package RailCabIntegrated,
which merges all the use case specifications. From this package, an ECore
package is created, based on which an instance system for the simulation is
created as explained in Sect. 7.3.

The class model defined in the package RailCabBase is shown in Fig. C.2.
This class model defines RailCab systems, which consists of an environment,
zero to many RailCabs and zero to many track section controls. A track sec-
tion control can have a next track section control and zero to many registered
RailCabs. A RailCab can have one current track section control.

The use case specifications specify the following behavioral aspects of the
RailCab system: First, the use case Drive onto track section describes how a
RailCab registers at the control of the next track section when it approaches

http://www.cs.upb.de/index.php?id=scenariotools

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 233

Figure C.1: A class diagram illustrating the merge relationships between the
different use case specification packages

Figure C.2: The class model defined in the package RailCabBase

234 APPENDIX C. EXAMPLES

the end of its current track section. When a RailCab registers at the next track
section control, the link to its current track section control is reset to the next
track section control as described in the use case Register RailCab. The use case
Hazard occurred describes that a RailCab must report a hazard to its current
track section control when it detects an obstacle on the track. The use caseWarn
RailCabs on track describes that when a RailCab reports a hazard to its current
track section control, it must also warn other RailCabs that are currently driving
on the same track section. The use case Enter denied when hazard on next track
section describes that a track section control must not allow a RailCab to enter
when a hazard occurred on the track section. When a RailCab is not allowed
to enter a next track section, it must stop, and will send a repeated request to
enter the next track section when the hazard is resolved. The use cases Drive
onto switch, Drive onto branching switch, and Drive onto merging switch introduce
the classes BranchingSwitchControl and MergingSwitchControl and describe for
example that a RailCab must not enter a merging switch if there is currently
another RailCab registered at the merging switch control. These use cases also
describe that a RailCab must not enter a switch if a hazard was reported on
a track section immediately following the switch (as explained in the introduc-
tion, see Fig. 1.3). Next, the use case RailCab Energy Management introduces
a number of modules that the RailCab consists of and that are involved in the
RailCab’s energy management. This use case specifies a protocol for how these
modules coordinate on a specific driving profile prior to entering a track section.

C.1.2 Use case DriveOntoTrackSection

The use case Drive onto track section describes how a RailCab registers at the
control of the next track section when it approaches the end of its current track
section. As shown in the collaboration diagram in Fig. C.31, the use case involves
the environment, a RailCab, its current and next track section controls, and the
RailCab’s route planner component. The MSDs in this use case specification
are shown in Fig. C.4 to C.7.

The MSD RequestEnterAtEndOfTrackSection describes that the RailCab,
upon approaching the end of the track section (endOfTS), must ask its route
planner component for the track section control that the RailCab must register
at next. The route planner replies with a reference to the next track section
control as a parameter (setNext(nextTSC)). Within the MSD RequestEnterAt-
EndOfTrackSection, there is no value specified for the variable nextTSC, so the
next track section control is not yet determined. Normally, the next track section
control will be the track section control which is the next track section control of
the RailCab’s current track section control, i.e., referenced by the next reference
(see the class diagram in Fig. C.2). It is described in the MSD SetDefaultNext-
TSC that the next track section control should be the next track section control
of the RailCab’s current track section (Fig. C.5). Usually, the setNext message

1 In the collaboration diagrams shown here, the environment roles are not represented by
a could symbol; this is currently not supported by the composite structure editor. The role
env:Environment is always the environment role. There are no connectors shown between the
roles in the collaboration diagrams, as it is not mandatory to include them.

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 235

Figure C.3: The collaboration diagram in the Drive onto track section use case
specification

in the MSD SetDefaultNextTSC will be unified with the setNext message in
the MSD RequestEnterAtEndOfTrackSection, thereby binding the result of the
OCL expression rc.current.next to the variable nextTSC. In the case where
the RailCab is on a branching switch, as we will see shortly, the route planner
may choose another track section control as the next track section control. The
MSD RequestEnterAtEndOfTrackSection then specifies that the RailCab must
request the permission to enter at the next track section. The requestEnter
message is sent to the lifeline next, which is bound depending on the value of the
parameter variable nextTSC of the preceding setNext message. The next track
section control must then reply whether entering the next track section is al-
lowed or not (enterAllowed). Again, the parameter value of the enterAllowed
is not determined within this MSD. The MSD DefaultEnterAllowed (Fig. C.6)
specifies that the next track section control should allow approaching RailCabs
to enter. However, if for example a hazard occurred on the next track section
control (use case Hazard occurred) or the RailCab plans to drive onto a merging
switch where already another RailCab is registered (Drive onto merging switch),
the respective track section or switch control must not allow the approaching
RailCab to enter. If the value bound to the variable isAllowed is true, then
the RailCab must register at the next track section control and it must then
unregister from the current track section control. All the above messages must
be sent before the RailCab passes the point of the last safe break and enters the
next track section.

The MSD StopWhenEnterDenied (Fig. C.7) specifies that if the RailCab is
not allowed to enter the next track section, it must stop. This is described by
a stop message to the environment. (Here the environment is not the physical
environment of the RailCab, but resembles a set of lower-level services that are
or will have to be provided by the RailCab.)

The class diagram in Fig. C.8 captures the extensions that the use case
specification Drive onto track section introduces to the structural model of the

236 APPENDIX C. EXAMPLES

Figure C.4: The MSD RequestEnterAtEndOfTrackSection of the use case speci-
fication Drive onto track section

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 237

Figure C.5: The MSD SetDefaultNextTSC of the use case specification Drive
onto track section

Figure C.6: The MSD DefaultEnterAllowed of the use case specification Drive
onto track section

Figure C.7: The MSD StopWhenEnterDenied of the use case specification Drive
onto track section

238 APPENDIX C. EXAMPLES

RailCab. It specifies that the RailCab has one route planner and may reference
a next track section control which it is going to register with next (see above).
Also, it defines operations for classes that specify which kinds of messages in-
stances of these classes can receive. (Within ScenarioTools, the MSD editor
automatically creates these operations when a new message kind is introduced
while editing an MSD.)

Figure C.8: The class diagram in the Drive onto track section use case specifi-
cation

C.1.3 Use case DriveOntoBranchingSwitch

A look into the use case specification Drive onto branching switch gives some more
interesting insights into the RailCab example specification. The use case again
describes a situation where a RailCab approaches the end of its current track
section, but it describes in particular a situation where the next track section is
a branching switch. The branching switch is controlled by a branching switch
control, a special kind of track section control.

The instances interacting in this use case are specified in the collaboration
diagram shown in Fig. C.9. Here again the environment, a RailCab, and its route
planner appear. Additionally, there is the branching switch control and the two
subsequent track section controls. A branching switch connects a preceding
track section with two subsequent track sections. One leaving straight, the
other branching to the side. Accordingly, as shown in the class diagram of the
use case specification (Fig. C.10), a branching switch control is a special kind of
switch control that not only has a next track section control (see the base class
model in Fig. C.2), but also has second next track section control that controls
the track section following the branching exit of the switch. This track section
control is referenced by the reference nextBranching.

If a RailCab approaches a branching switch, there are a number of cases
where the RailCab must not be permitted to enter. One situation is the case
where a hazard occurred on the branching switch. This is situation is covered
in the use case Hazard occurred. Another case is the situation where a hazard

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 239

Figure C.9: The collaboration diagram in the Drive onto branching switch use
case specification

Figure C.10: The class diagram in the Drive onto branching switch use case
specification

occurred on a subsequent track section. Due to the RailCab’s doubly-fed lin-
ear drive technology, the RailCab will only have a limited breaking power on
switches, which, in contrast to regular track sections, have no active magnetic
field. It thus may happen that a RailCab will not always be able to break on a
switch in order to avoid entering the next track section.

The MSD EnterDeniedWhenHazardOnBranchingTrackSection describes the
scenario where a branching switch control receives a request to enter from an
approaching RailCab, while there is a hazard on the track section following the
branching exit of the switch. (The case where there is a hazard on the track
section following the straight exit of the switch is described in the use case Drive
onto switch.) The MSD specifies that when the RaiCab sends a requestEnter
message to a branching switch control, then the condition must be checked
whether there is a hazard on the subsequent track section leaving the branch-
ing exit of the switch. This is specified by a cold condition that synchronizes
the two lifelines bsc (representing the branching switch control) and subsequent-

240 APPENDIX C. EXAMPLES

Branchingtsc (representing the control of the subsequent track section leaving
the branching exit of the switch). If this condition evaluates to true, then the
branching switch control must not allow the RailCab to enter.

Figure C.11: The MSD EnterDeniedWhenHazardOnBranchingTrackSection of
the use case specification Drive onto branching switch

As described above by the MSD StopWhenEnterDenied, if the next track
section control does not allow the RailCab to enter the next track section, the
RailCab will stop and wait. However, we want the RailCab to eventually start
moving again. We could specify a certain time period in which the RailCab will
again request the permission to enter. More simply, we specify that the RailCab
is triggered to repeat its request to enter the next track section if the situation
which caused the refusal of the request has changed. The MSD NotifyRailCab-
WhenHazardOnSubsequentBranchingSwitchResolved describes that the RailCab
should repeat its request to enter the next track section if a hazard that occurred
on the track section leaving the branching exit of the branching switch (and that
may have led to the refusal of the request to enter according to the MSD Enter-
DeniedWhenHazardOnBranchingTrackSection) is resolved. The MSD is triggered
by a sequence of four events where, first, the RaiCab requests the permission
to enter a branching switch that is, second, refused by the branching switch
control. Then, third, the hazard on the track section leaving the branching exit
of the switch was resolved in the environment, fourth, leading to setting the
hazard property of the respective track section control to false. (The use case
Hazard occurred introduces the hazard property on track section controls to mark
whether here is currently a hazard on a track section.) After this sequence of
events, the branching switch control should notify the RailCab that the hazard
was resolved. The RailCab should then in turn repeat its request to enter the
next track section. The branching switch control should then allow the RailCab
to enter. If there is for example another reason to refuse the request to enter,
for example because there is a hazard remaining on the branching switch, the
cold enterAllowed(true) message may be violated by anther MSD where a
message is enabled, requiring that the reply is enterAllowed(false) by a hot
message.

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 241

Figure C.12: The MSD NotifyRailCabWhenHazardOnSubsequentBranching-
SwitchResolved of the use case specification Drive onto branching switch

242 APPENDIX C. EXAMPLES

The MSD SetNextTrackSectionControlWhenBranchingOnSwitch describes a
situation where the RailCab is already on a branching switch and queries its
route planner to determine the track section control that the RailCab shall regis-
ter at next. Here the MSD determines the next track section control as follows.
First, a cold condition asks whether the value of the property branch of the
route planner is true and if the current track section control is indeed a branch-
ing switch control. The route planner has a property branch which encodes
whether the current decision of the route planner is to branch or to continue
moving straight. If the cold condition evaluates to false, the active copy of the
MSD is discarded. Otherwise the subsequent assignment is executed, assigning
the variable nexttsc with the reference to the control of the track section leaving
the branching exit of the switch that the RailCab is currently on. The vari-
able nexttsc is then bound and determines the parameter value of the message
setNext(nexttsc) that the route planner sends to the RailCab in reply to the
RailCab’s query.

Figure C.13: The MSD SetNextTrackSectionControlWhenBranchingOnSwitch of
the use case specification Drive onto branching switch

C.1.4 Use case EnergyManagement

The RailCab example specification furthermore contains a use case specification
that describes how modules within the RailCab interact for the RailCabs energy
management when the RailCab approaches the next track section. There are
four RailCab modules involved in the RailCab energy management: the linear
drive module, the energy supply module, the air gap adjustment system, and
the active suspension and tilting module. The RailCab’s energy management
is currently under development at the University of Paderborn. In order to
thoroughly test prototypes of the modules, first a distributed test bench will be
created. Figure C.14 illustrates this test bench.

A conceptual design of the energy management was worked out and de-
scribed in Adelt et al. [ADG+09, Sect. 2.1.6, pp. 87]. The conceptual design
basically consist of an active structure diagram that describes the information

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 243

air gap
adjustment system

linear drive
module

energy supply
module

active suspension
and tilting module

energy
management

Figure C.14: The RailCab’s energy management requires the communication
between different modules in the RailCab (AMS level) (taken from [ADG+09])

flows between the modules in the RailCab and an activity diagram that de-
scribes a sequence of events that should take place when a RailCab prepares to
enter the next track section. In the following, this conceptual design is expressed
by means of an MSD-based use case specification.

The collaboration diagram in Fig. C.15 shows the instances that interact to
realize the RailCab’s energy management. These instances are the track section
control, the RailCab, and the modules inside the RailCab: the drive module, air
gap adjustment system, the suspension and tilting module, the energy supply
module, and, last, the energy management, which is the central control com-
ponent coordinating the energy management process. Figure C.16 shows the
class model defined in the RailCab Energy Management use case specification
that defines that the RailCab consists of the modules mentioned above.

The default energy management scenario is described by the MSD RailCab-
EnergyManagementDefaultScenario shown in Fig. C.17. The scenario is triggered
if a RailCab requests the permission to enter the next track section control
and in reply the track section control grants the RailCab the permission to
enter (enterAllowed(true)). If this happens, the MSD states that the track
section control should also send a profile of the track section to the RailCab.
The profile contains for example information about the maximum velocities
allowed on different parts of the track section (velocity profile), information
about the elevation of the different parts of the track section (elevation profile),
and information about the power supply that is available on different parts of
the track section (power availability profile). The message in this MSD abstracts
from the concrete data that the track section control sends the RailCab. When
designing this scenario in more detail, this data may be added as a parameter.

244 APPENDIX C. EXAMPLES

Figure C.15: The collaboration diagram in the RailCab Energy Management use
case specification

Figure C.16: The class diagram in the RailCab Energy Management use case
specification

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 245

After receiving the track profile, the RailCab sends the elevation profile, the
maximum speed profile and the power availability profile to the drive module.
The drive module then calculates how fast it plans to drive on particular parts
of the track section and sends this information, called the velocity profile to the
suspension and tilting module as well as the air gap adjustment system. The
higher the driving speed, the more energy the suspension and tilting module
is likely to require for realizing a comfortable journey on the track section.
Also, the higher the driving speed, the air gap adjustment system will require
more energy to minimize the gap between the actor and stator field of the
linear drive. The larger the gap becomes, the less energy efficient the drive
will operate. Therefore, based on the velocity profile of the drive module, the
suspension and tilting module and the air gap adjustment system calculate
different possible operation modes and corresponding energy demands and send
these different modes and demands to the energy management. The energy
management collects this information and sends it to the drive module, which
determines which of these suggested profiles are realizable. The energy demand
by some of these profiles may exceed the energy that the drive module will be
able to generate on the track section. The realizable profiles are then sent back
to the energy management, which forwards these profiles to the energy supply
module. The energy supply module consists of batteries and capacitors that can
supply the RailCab with additional energy for a limited amount of time when the
RailCab requires more energy than it can generate through the drive module,
for example when driving uphill. The energy supply module calculates which
of the realizable driving profiles will be the most cost efficient. Typically, the
most cost efficient profiles are such where the energy supply must store the least
energy or where the energy needs only be stored for short amounts of time. The
energy supply sends the calculated costs and benefits of the different realizable
driving profiles to the energy management which selects the optimal profile
according to current optimization goals, like driving speed, driving comfort, or
energy efficiency. The optimal driving profile is then sent to the drive module,
the suspension and tilting module, and the air gap adjustment system, which
then prepare to execute this profile when the RailCab finally enters the next
track section.

All the messages in this scenario are cold, because it describes a sequence
of events that should happen. But at this stage of the conceptual design, not
all exceptions and alternatives in the energy management are anticipated. In
the future, exceptions and alternative scenarios must be specified by additional
MSDs. It may for example happen that the drive module cannot realize any
of the driving profiles suggested by the other modules. This is anticipated in
this MSD by including a cold forbidden message noRealizableDriveProfile
at the bottom of the MSD. This indicates that a cold violation will occur and
interrupt the described flow of event. What should or must be done in this case
must be described by another MSD. However, the example does not yet specify
these cases in more detail.

Next, Sect. C.1.5 overviews an instance model that is created based on the
class models that are merged in the RailCabIntegrated package. The use case

246 APPENDIX C. EXAMPLES

Figure C.17: The MSD SetNextTrackSectionControlWhenBranchingOnSwitch of
the use case specification Drive onto branching switch

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 247

specification of the use case RailCab Obstacle Detected is presented in more detail
in Sect. C.2.

C.1.5 The simulation model

As shown above in Fig. C.1, the package RailCabIntegrated integrates all the
use case specifications in one package. By the UML-to-ECore transformation
as explained in Sect. 7.3, an ECore model is created from this package and the
merge relationships. The resulting ECore package is shown in Fig. C.18. This
class model forms the basis for creating an instance model that can be simulated
in ScenarioTools.

Figure C.19 shows a simple instance model that is created based on this
ECore class model. It forms a simple circular track system with five track
sections, two switches and two RailCabs driving in this system. The left side
of the figure shows the instance system in the tree editor which EMF provides
“for free” as a simple mechanism to create instance models. The right shows a
more visually appealing sketch of the same system. In the future, it is desired
to create editors for a better visualization of the instance models. This could be
done, for example using the Graphical Modeling Framework (GMF)2. But most
importantly, it would be desirable to extend such editors so that the interactions
of the instances are nicely visualized.

Figure C.18: The ECore class model resulting from the UML-to-Ecore trans-
formation of the package RailCabIntegrated

2www.eclipse.org/gmf

www.eclipse.org/gmf

248 APPENDIX C. EXAMPLES

sketch of the instance systeminstance model in the
EMF tree editor

tsc2

tsc1

tsc3b

tsc3a

tsc4

mergingsc1

branchingsc1

Energy Management

rc2

Energy Management

rc1

Figure C.19: An instance model of a simple track system with five track
sections, two switches and two RailCabs

The user interface of ScenarioTools when simulating this example speci-
fication is shown in Fig. C.20. The main window shows the MSD RequestEnter-
AtEndOfTrackSection with its current cut. On the top right, there is the active
MSDs view, which show the currently active MSDs. On the middle right, there
is the trace view, showing a list of recorded events. At the bottom, there is the
events view, showing the currently active events that the user can choose from
to execute next.

C.1. SIMULATING AN EXAMPLE RAILCAB SPECIFICATION 249

Figure C.20: A screenshot of the ScenarioTools use interface

250 APPENDIX C. EXAMPLES

C.2 The symbiosis of synthesis and simulation – the
use case “Warn RailCabs On Track”

The use case Warn RailCabs on track is a simple example of an untimed use case
where the simulation of the contained MSDs by the play-out algorithm may
run into avoidable violations. (See also Sect. 5.2.) This section presents the
specification of this use case in detail and describes the resulting controller that
Uppaal Tiga can successfully synthesize from the use case specification. This
controller can be used by the ScenarioTools simulation in order to guide the
play-out of the MSD specification presented in Sect. C.1.

C.2.1 Description of the use case “Warn RailCabs On Track”

Figure C.21 shows a sketch of the use case. The use case specifies that if a
RailCab detects an obstacle on the track section, it must report to its current
track section control that a hazard occurred on the track section. The RailCab
must also send the position of the obstacle to the track section control. Then
the track section control must warn other RailCabs on the track section and
inform them about the position of an obstacle on the track section.

current

obstacleDetecteddetectingRCwarnedRC

hazardOccurred
obstaclePosition

hazardWarning
obstacleAtPosition

Figure C.21: A sketch of the situation described by the RailCab Obstacle
Detected use case

C.2.2 The specification of the use case

The specification for the use case Warn RailCabs on track consists of the col-
laboration diagram and the MSDs that are shown in Fig. C.22 to C.25. (Note
that this is a deliberately odd formalization of the use case in order to provide a
small example where an avoidable violation may occur during play-out.) Some
lifelines of the MSDs are equipped with binding expression. These are required
for the dynamic binding of the lifelines during the simulation. For the synthesis,
however, these binding expressions are ignored, since the synthesis assumes that
the lifelines are static and the roles in the collaboration diagram represent the
static object system.

The collaboration shows that the use case specifies the behavior of four roles,
representing the environment, the track section control and two RailCabs. One
role represents the RailCab that detects the obstacle; the other represents the
RailCab that is warned by the track section control.

Figure C.23 shows the MSD WarningWhenObstacleDetected. It describes
that, if a RailCab detects an obstacle (obstacleDetected), it must report a

C.2. THE SYMBIOSIS OF SYNTHESIS AND SIMULATION 251

Figure C.22: The collaboration diagram of the Warn RailCabs on track use case
specification

hazard to its current track section control (reportHazard). The track section
control must then send a warning (hazardWarning) and the obstacle position
(obstacleAtPosition) to the other RailCabs driving on the the same track
section.

Figure C.23: The MSD WarningWhenObstacleDetected

Figure C.24 shows the MSD ReportObstaclePosition. It states that if a Rail-
Cab detects an obstacle, it must send the position of the obstacle to its current
track section control (obstaclePosition), so that the track section control then
sends this information to the warned RailCab (obstacleAtPosition).

Figure C.24: The MSD ReportObstaclePosition

252 APPENDIX C. EXAMPLES

The MSD ReportObstaclePositionAndIssueWarning is shown in Fig. C.25. The
MSD states that if a RailCab reports a hazard to its current track section control
and also sends the position of an obstacle, the track section control must send
the position of the obstacle and the hazard warning to the warned RailCab.

Figure C.25: The MSD ReportObstaclePositionAndIssueWarning

C.2.3 Avoidable violating runs

The problem with this specification is that if a RailCab detects an obstacle
(obstacleDetected) and then sends the message reportHazard before sending
the message obstaclePosition, there will be a hot violation. This is because
the active copy of WarningWhenObstacleDetected requires hazardWarning to be
sent followed by obstacleAtPosition and the active copy of ReportObstacle-
PositionAndIssueWarning requires a different order of events, namely obstacle-
AtPosition to be sent followed by hazardWarning.

This hot violation can however be avoided by sending (1) obstaclePosition
before (2) reportHazard. This would avoid the activation of ReportObstacle-
PositionAndIssueWarning, and (3) hazardWarning followed by (4) obstacleAt-
Position could be sent. Another admissible reaction to obstacleDetected is
to send (1) reportHazard, (2) hazardWarning, (3) obstaclePosition, and last
(4) obstacleAtPosition.

C.2.4 The controller synthesized from the use case
specification

The synthesis technique presented in Chap. 4 allows us to automatically find
such admissible runs. Listing C.1 shows an excerpt of the winning strategy that
can be synthesized by Uppaal Tiga from the corresponding TGA system and
the AGAF winning condition as discussed in Sect. 4.4 (Prop. 4.1).

The synthesis settings

Because we want to use this strategy to guide the play-out of the specification,
we have to employ synthesis in the following way.

C.2. THE SYMBIOSIS OF SYNTHESIS AND SIMULATION 253

• we have to synthesize a complete strategy, which means that we have to
calculate all the winning actions for all winning states as explained in
Sect. 5.2.2. (This is done by using the veryfiytga command of Uppaal
Tiga with the -w2 option.)

• we have to synthesize a strategy where system messages may not only be
sent when they are active. A strategy where the system can only execute
messages when they are active on one of the MSDs is not sufficient: if we
simulate an MSD specification where the use case Warn RailCabs on track
is combined with other use case specifications, it may be that there are
other active MSDs during the simulation where the messages appearing
in the use case Warn RailCabs on track are active, even though they are
not active in any MSD of Warn RailCabs on track (see the discussion on
consistency vs. consistent executability Sect. 4.7.2).

The kinds of states in the synthesized controller

Listing C.1 shows part of the controller that is generated by Uppaal Tiga.
Such a controller consists of a list of states in the TGA system and directives
to either wait for the next environment event to occur, or to take a particular
transition from these states. From all the states in the generated controller, only
a subset is of interest for a system, namely those where the system automaton
(its instance is named systemProcess) is in the location systemActive. In this
location, the controller either tells the system to wait or that it must take a
particular step, see the explanation in Sect. 5.2.2.

A closer look at some states in the synthesized controller

Let us now take a closer look at the states displayed in Listing C.1:
The first state that is shown in the listing is the state where each MSD is in

the initial cut. Here, the system can either choose to wait, or it may send any
of the system messages appearing in the specification. The controller allows the
system to do so even though these messages are not active in this state (i.e.,
there is no executed message enabled which represents this event). If we just
synthesize a controller for the consistent executability, the resulting controller
would not allow for these messages to be sent by the system.

The second state resembles the super-cut that is reached after obstacle-
Detected has occurred. Here the controller prescribes two alternative tran-
sitions, to either send the message reportHazard, or to send the message
obstaclePosition. The controller does not allow the system to send the mes-
sages obstacleAtPosition or hazardWarning, nor does it allow the system to
do nothing.

The third state listed below corresponds to the super-cut that is reached
after the system chose to send the message obstaclePosition. Here the direc-
tive is to next send the message reportHazard. The controller does not allow
the system to send the messages obstaclePosition, obstacleAtPosition, or
hazardWarning, nor does it allow the system to do nothing.

The fourth state shown in the listing resembles the super-cut that is reached
if the system chose to send reportHazard after obstacleDetected occurred.

254 APPENDIX C. EXAMPLES

Then the directive is to next send the message hazardWarning. The controller
does not allow the system to send the messages obstaclePosition, obstacle-
AtPosition, or reportHazard, nor does it allow the system to do nothing.

The controller of course contains more states. In sum, the controller strategy
contains 120 states. The remaining states will not be explained further. The
strategy can be inspected in more detail after installing ScenarioTools and
the RailCab MSD specification example.

Listing C.1: Excerpt from the controller synthesized from the specification of
the use case Warn RailCabs on track

Strategy to win :

. . .

/∗
∗ A l l MSDs in the i n i t i a l cut −− note t h a t in t h i s
∗ s t a t e no message i s a c t i v e (i . e . , no executed
∗ message i s enabled) . Neverthe less , t h i s c o n t r o l l e r
∗ a l l o w s f o r any system message appearing in the
∗ use case s p e c i f i c a t i o n to occur :
∗ 1. " o b s t a c l e A t P o s i t i o n "
∗ 2. " reportHazard "
∗ 3. " o b s t a c l e P o s i t i o n "
∗ 4. " hazardWarning "
∗ (see t r a n s i t i o n s 2−5)
∗ A l t e r n a t i v e l y , the system can decide to do nothing
∗ (return to ’ systemProcess . systemInact ive ’ , f i r s t
∗ t r a n s i t i o n) .
∗/

State : (
systemProcess . systemActive
environmentProcess . e n v i r o n m e n t I n i t i a l
WarningWhenObstacleDetected_inst . i n i t i a l
Repo rtObsta c l ePos i t ion_i nst . i n i t i a l
ReportObstaclePosit ionAndIssueWarning_inst . i n i t i a l)
event=0 h o t V i o l a t i o n=0 hotEnvViolat ion=0
WarningWhenObstacleDetected_env=0
WarningWhenObstacleDetected_detectingRC=0
WarningWhenObstacleDetected_current=0
WarningWhenObstacleDetected_warnedRC=0
ReportObstaclePosit ion_env=0
ReportObstaclePosit ion_detect ingRC=0
ReportObstac lePos i t ion_current=0
ReportObstaclePosition_warnedRC=0
ReportObstaclePosit ionAndIssueWarning_detectingRC=0
ReportObstaclePosit ionAndIssueWarning_current=0
ReportObstaclePositionAndIssueWarning_warnedRC=0
systemProcess . b lock=1
sysCutChanged=1 envCutChanged=1
When you are in true , take transition

systemProcess . systemActive−>systemProcess . s y s t e m I n a c t i v e
{ 1 , tau , 1 }

When you are in true , take transition
systemProcess . systemActive−>systemProcess . produceEvent

{ 1 , tau , event := current_warnedRC_obstacleAtPosition }
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := detectingRC_current_reportHazard }

When you are in true , take transition
systemProcess . systemActive−>systemProcess . produceEvent

{ 1 , tau , event := detect ingRC_current_obstac lePos i t ion }
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := current_warnedRC_hazardWarning }

. . .

/∗
∗ State a f t e r " o b s t a c l e D e t e c t e d " −− the system must produce
∗ e i t h e r " reportHazard " or " o b s t a c l e P o s i t i o n " .
∗ The system must not produce " o b s t a c l e A t P o s i t i o n " or

C.2. THE SYMBIOSIS OF SYNTHESIS AND SIMULATION 255

∗ " hazardWarning " to not v i o l a t e the s p e c i f i c a t i o n .
∗/

State : (
systemProcess . systemActive
environmentProcess . e n v i r o n m e n t I n i t i a l
WarningWhenObstacleDetected_inst . i n i t i a l
Repo rtObsta c l ePos i t ion_i nst . i n i t i a l
ReportObstaclePosit ionAndIssueWarning_inst . i n i t i a l)
event=2 h o t V i o l a t i o n=0 hotEnvViolat ion=0
WarningWhenObstacleDetected_env=1
WarningWhenObstacleDetected_detectingRC=1
WarningWhenObstacleDetected_current=1
WarningWhenObstacleDetected_warnedRC=1
ReportObstaclePosit ion_env=1
ReportObstaclePosit ion_detect ingRC=1
ReportObstac lePos i t ion_current=1
ReportObstaclePosition_warnedRC=1
ReportObstaclePosit ionAndIssueWarning_detectingRC=0
ReportObstaclePosit ionAndIssueWarning_current=0
ReportObstaclePositionAndIssueWarning_warnedRC=0
systemProcess . b lock=1
sysCutChanged=1 envCutChanged=1
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := detectingRC_current_reportHazard }

When you are in true , take transition
systemProcess . systemActive−>systemProcess . produceEvent

{ 1 , tau , event := detect ingRC_current_obstac lePos i t ion }

. . .

/∗
∗ State a f t e r " o b s t a c l e D e t e c t e d " , " o b s t a c l e P o s i t i o n " −−
∗ the system must produce " reportHazard " .
∗ The system must not produce " o b s t a c l e A t P o s i t i o n " ,
∗ " o b s t a c l e P o s i t i o n " or " hazardWarning " to not
∗ v i o l a t e the s p e c i f i c a t i o n .
∗/

State : (
systemProcess . systemActive
environmentProcess . e n v i r o n m e n t I n i t i a l
WarningWhenObstacleDetected_inst . i n i t i a l
Repo rtObsta c l ePos i t ion_i nst . i n i t i a l
ReportObstaclePosit ionAndIssueWarning_inst . i n i t i a l)
event=4 h o t V i o l a t i o n=0 hotEnvViolat ion=0
WarningWhenObstacleDetected_env=1
WarningWhenObstacleDetected_detectingRC=1
WarningWhenObstacleDetected_current=1
WarningWhenObstacleDetected_warnedRC=1
ReportObstaclePosit ion_env=1
ReportObstaclePosit ion_detect ingRC=2
ReportObstac lePos i t ion_current=2
ReportObstaclePosition_warnedRC=1
ReportObstaclePosit ionAndIssueWarning_detectingRC=0
ReportObstaclePosit ionAndIssueWarning_current=0
ReportObstaclePositionAndIssueWarning_warnedRC=0
systemProcess . b lock=1
sysCutChanged=1 envCutChanged=1
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := detectingRC_current_reportHazard }

. . .

/∗
∗ State a f t e r " o b s t a c l e D e t e c t e d " , " hazardOccurred " −−
∗ the system must produce " hazardWarning " .
∗ The system must not produce " o b s t a c l e A t P o s i t i o n " ,
∗ " o b s t a c l e P o s i t i o n " or " reportHazard " to not
∗ v i o l a t e the s p e c i f i c a t i o n .
∗/

State : (
systemProcess . systemActive
environmentProcess . e n v i r o n m e n t I n i t i a l
WarningWhenObstacleDetected_inst . i n i t i a l
Repo rtObsta c l ePos i t ion_i nst . i n i t i a l
ReportObstaclePosit ionAndIssueWarning_inst . i n i t i a l)
event=3 h o t V i o l a t i o n=0 hotEnvViolat ion=0
WarningWhenObstacleDetected_env=1

256 APPENDIX C. EXAMPLES

WarningWhenObstacleDetected_detectingRC=2
WarningWhenObstacleDetected_current=2
WarningWhenObstacleDetected_warnedRC=1
ReportObstaclePosit ion_env=1
ReportObstaclePosit ion_detect ingRC=2
ReportObstac lePos i t ion_current=2
ReportObstaclePosition_warnedRC=1
ReportObstaclePosit ionAndIssueWarning_detectingRC=1
ReportObstaclePosit ionAndIssueWarning_current=1
ReportObstaclePositionAndIssueWarning_warnedRC=1
systemProcess . b lock=0
sysCutChanged=1 envCutChanged=1
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := current_warnedRC_hazardWarning }

. . .

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 257

C.3 Synthesis example – the production cell
The example presented in this section is that of an industrial production robot,
called the production cell, which processes metal blanks into plates. This exam-
ple was presented as a case study for a safety-critical real-time reactive system
within the KorSo project [LL94, LL06]. (KorSo is an abbreviation for the
German title “Korrekte Software”, “correct software” [BJ95].) The original
production cell is a system consisting of 14 sensors and 13 actuators [LL06].
In the following, a simplified version of the example is considered. A similar
example was also used to benchmark Uppaal Tiga by Cassez et al. [CDF+05].

The purpose of this example is, first, to show how to model the specification
of a more comprehensive, practical example system with timed MSDs. This
example especially demonstrates that in order to realize the requirements of the
production cell, it is of the essence to make assumptions about the behavior of the
system’s environment, in particular its mechanical parts, e.g., the movement of
robot arms. Furthermore, this specification serves as an example to demonstrate
the compositional synthesis technique that was described in Sect. 4.6. Last, the
purpose of this example is to validate the synthesis technique. The main results
are

• The synthesis produces correct results for this example, i.e., the synthe-
sis reports the specification to be consistently executable for minimal and
maximal delays that were anticipated to be realizable by the production
cell. Furthermore, the synthesis reports the specification not to be con-
sistently executable for minimal and maximal delays that should not be
realizable by the production cell.

• The example specification is already too complex for checking its consistent
executability using the AGAF winning condition (see Sect. 4.4). Uppaal
Tiga runs out of memory (4 GB) while exploring the state space induced
by the specification.

• Changing the synthesis setting such that the system is not allowed to delay
the execution of active events can drastically reduces the synthesis time.

• Decomposing the synthesis problem greatly reduces the complexity of the
synthesis problem and again greatly reduces the overall synthesis time.

In the following, Sect. C.3.1 describes the production example informally.
Section C.3.2 then explains the MSD specification and presents results from
synthesizing a controller from the specification with different values for certain
minimal and maximal delays in the example. Section. C.3.3 then introduces
the decomposition of the production cell specification into two part specifica-
tions and it presents the synthesis times for the part specifications and different
minimal and maximal delays.

C.3.1 Description of the production cell example

A sketch of the production cell is shown in at the bottom of Tab. C.1. It consists
essentially of two transport belts, a press, and two robot arms. The production
cell must work as follows: Metal blanks are transported to the production cell
on the feed belt within certain time intervals. At the end of the feed belt, these

258 APPENDIX C. EXAMPLES

blanks arrive on a table and are detected by a sensor. If a blank is detected by
the table sensor, it must be picked up by the first robot arm. This robot arm
must then transport the blank to the press, where it must then pressed to a
plate.

Next, a second robot arm must pick up the plate and transport it to the
deposit belt. It is required that a blank is picked up from the table before the
next blank arrives. Also, the second robot arm must pick up the pressed plate
before the first robot arm can place a new blank into the press. The controller of
the production cell can control the press and the movement of the robot arms.
The arrival of the blanks, the time for pressing the blanks to plates, and the
time that the robot arms require for moving between the table and the press
resp. the press and the deposit belt are uncontrollable, but certain minimal and
maximal delays can be assumed. (Different concrete values for these delays will
be chosen later on to evaluate the synthesis.)

The use case for this production cell is described in detail in Tab. C.1. Here
just one use case for the production cell is considered, namely the processing of
the arriving blanks. There could be further use cases, for example for exception
handling, but these are not considered here. An MSD specification capturing
these requirements is shown in Sect. C.3.2. For better readability, the para-
graphs resp. sentences in the use case description are numbered. The MSDs
representing these textual requirements in Sect. C.3.2 are numbered accordingly.

C.3.2 The MSD specification of the production cell

The collaboration diagram that represents the object system of the production
cell and the MSDs representing the requirements of the use case are shown in
Fig. C.26. The object system shows that the only controllable system component
is the controller c:Controller. The other components of the production cell, the
arms a:ArmA and b:ArmB, the press p:Press, and the table sensor ts:TableSensor
are environment objects.

The requirement MSDs

The MSDs (1)-(4) formalize the behavior described in the use case in a quite
straightforward way. The MSD ArmATransportBlankToPress (1) is triggered
when a blank has arrived at the table. It describes that the blank must be
picked up by arm a:ArmA, which then has to move to the press. Then arm
a:ArmA must arrive at the press. Note that this is a hot environment message,
which means that nothing must abort the sequence of events at this point.
This event is, however, not controllable by the system; it is shown shortly that
there are MSDs formulating environment assumptions that guarantee that arm
a:ArmA, when told to move to the press, will arrive at the press (see ArmA-
MoveFromTableToPressTimeAssumption (10) in Fig. C.27). When arm a:ArmA
has arrived at the press, it must release the blank into the press and then move
back to the table. Then it must eventually arrive at the table. As before, this
is modeled by a hot message. Including this message in the MSD in particular
expresses that the arm has to be back at the table before the next blank arrives.

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 259

Table C.1: Use Case Process Plate

Use Case: Process Plate Nr. 1

Requirements:
When a blank plate arrives at the table, it must be picked up by arm A. Then
the arm A has to move to the press and, when it has arrived, it must release the
blank into the press. Arm A then has to move back to the table. Arm A must have
arrived at the table before the next blank arrives (1).
When arm A has released the blank into the press, the press must press the plate.
When the pressing process is finished, then arm B must pick up the plate (2).
When arm B has picked up the processed plate, it must transport the plate to the
deposit belt (3). When arm B has arrived at the deposit belt, it must release the
processed plate. After releasing the processed plate, arm B must move back to the
press (4).
Plates must only be released into the press by arm A if arm B has picked up the
processed plate from the press (5).
Arm A must not try to pick up the next blank before it has returned to the table
(6). Arm B must not try to pick up the next pressed plate before it has returned
to the press (7).

Environment assumptions:
In the initial configuration, there is no blank on the table, arm A is located at the
table, and arm B is located at the press.
The following minimal and maximal delays can be guaranteed by the environment:

1. Plates arrive on the table at the end of the feed belt in intervals of f seconds,
where f > FMIN (9).

2. Arm A can move from the table to the press or from the press to the table
in a seconds, where AMIN ≤ a ≤ AMAX (10).

3. Arm B can move from the press to the deposit belt or from the deposit belt
to the press in b seconds, where BMIN ≤ b ≤ BMAX (11).

4. The press needs p seconds to process a blank plate, where PMIN ≤ p ≤
PMAX (12).

Sketch:

arm A

arm Bdeposit belt

feed belt

table
delay between arriving
blank plates: f > FMIN

time for moving arm A:
AMIN ≤ a ≤ AMAX

time for moving arm B:
BMIN ≤ b ≤ BMAX

time for pressing
the blank plates:
PMIN ≤ p ≤ PMAX

press

260 APPENDIX C. EXAMPLES

The MSD PressPlateAfterArmAReleasesBlankPlate (2) says that, after the
blank was released by arm a:ArmA, the press p must press the blank to a
plate and, when the pressing process is finished, arm b:ArmB must pick up the
pressed plate. The MSD ArmBTransportToDepositBeltAfterPickUpFromPress (3)
just states that arm b:ArmB must move to the deposit belt after picking up the
plate from the press. MSD ArmBReleasePlateAndReturnToPress (4) states that
arm b:ArmBmust release the plate and return to the press after having arrived at
the deposit belt. Note that the MSDs ArmBTransportToDepositBeltAfterPickUp-
FromPress (3) and ArmBReleasePlateAndReturnToPress (4) are not triggered by
the environment events arrivedAtDepositBelt and pressingFinished as de-
scribed by the textual requirements. Instead, these MSDs are triggered by the
preceding system messages moveToDepositBelt and press. This is because oth-
erwise these MSDs could be triggered at any time by the environment, thus easily
leading to violations. The environment assumptions, which will be explained
shortly, do not always restrict arrivedAtDepositBelt and pressingFinished
from occurring.

The MSD ArmAMustNotReleaseBlankBeforePlateRemovedByArmB (5) spec-
ifies that a:ArmA must not release a blank into the press unless the previous
pressed plate was picked up by b:ArmB. This is modeled by a hot forbidden
message. The MSD states that it is not admissible to release a blank into
the press twice unless the processed plate was picked up in between. Note
that the MSD-to-TGA mapping requires that forbidden messages appear at the
end of the MSD, separated by a cold false condition that marks the actual
end of the MSD, see Sect. 4.3.4. Similarly, the MSDs ArmAMustNotPickUp-
BlankBeforeReturnedToTable (6) and ArmBMustNotPickUpPlateBeforeReturned-
ToPress (7) prohibit that blanks/plates are picked up by the robot arms a:ArmA
resp. b:ArmB before they arrived at the according location.

The assumption MSDs

The MSD BlankArrivalDelay (9) describes that blanks may only arrive at the
table within a certain minimal delay. The MSDs ArmAMoveFromPressToTable-
TimeAssumption (10) and ArmAMoveFromTableToPressTimeAssumption (10)
specify that the robot arm a:ArmA, if told to move to the press resp. table,
it will arrive there within a certain time interval. The hot forbidden messages
in these MSDs state that if the arm is told to move to a desired location it will
not end up at the opposite direction. Furthermore, if the system orders the
robot arm to move to a location, but then orders it to return to its starting
location, it is assumed that the robot arm reverses before reaching its original
destination. For example, it the system orders the arm to move to the press, but
then orders it to move back to the table before the arm has arrived at the press,
the arm will return to the table and it will not reach the press. This behavior
is modeled by a cold forbidden message at the bottom of the MSDs. Remember
that an occurrence of an event that is represented by a cold forbidden message
results in the active MSD being safely exited, even if the active MSD is in a
hot cut. This behavior is not actually described in the use case text, but it

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 261

c:Controller

ProcessPlate

ts:TableSensor

a:ArmA

b:ArmB

p:Press

blankArrived

c:Controller

pickUp

arrivedAtPress

ArmATransportBlankToPress

moveToPress

releaseBlank

moveToTable

arrivedAtTable

releaseBlank

c:Controller

PressPlateAfterArmAReleasesBlankPlate

press

c:Controller

ArmBTransportToDepositBelt-
AfterPickUpFromPress

pickUp

moveToDepositBelt

moveToDepositBelt

c:Controller

ArmBReleasePlate-
AndReturnToPress

releasePlate

arrivedAtDepositBelt

moveToPress

c:Controller

ArmAMustNotReleaseBlankBefore-
PlateRemovedByArmB

releaseBlank

pickUp

false
releaseBlank
«forbidden»

moveToPress

c:Controller

ArmAMustNotPickUpBlank-
BeforeReturnedToTable

pickUp

arrivedAtTable

false

«forbidden»

moveToDepositBelt

c:Controller

ArmBMustNotPickUpPlate-
BeforeReturnedToPress

b:ArmB

pickUp

arrivedAtPress

false

«forbidden»

11

2

3

4

5

6

7

pickUp

b:ArmB

ts:TableSensor a:ArmA

a:ArmA p:Press b:ArmB

a:ArmA

b:ArmB

b:ArmBa:ArmA

pressingFinished

Figure C.26: The MSDs that specify the requirements of the production cell.

262 APPENDIX C. EXAMPLES

resembles a refined assumption of the environment behavior that an engineer
might have added to capture the behavior of the robot arms more precisely.

The assumptions for b:ArmB works accordingly (modeled in the MSDs ArmB-
MoveFromPressToDepositBeltTimeAssumption (11) and ArmBMoveFromDeposit-
BeltToPressTimeAssumption (11)). The assumed behavior of the press is modeled
in the MSD PressPlateAssumption (12), which says that the pressing process will
be finished within a certain time interval. The length of the time intervals is
represented by the parameters FMIN, AMIN/AMAX, BMIN/BMAX, and PMIN/PMIN.
See the table in Fig. C.32 for concrete values that are given to the parameters.

blankArrived

c:Controllerts:TableSensor

c = 0

c > FMIN

<<EnvironmentAssumption>>
BlankArrivalDelay

moveToPress

c:Controller

c = 0

c >= AMIN

<<EnvironmentAssumption>>
ArmAMoveFromTable

-ToPressTimeAssumption

arrivedAtPress

c <= AMAX

false

moveToTable

arrivedAtTable
«forbidden»

«forbidden»

moveToTable

c:Controller

c = 0

c >= AMIN

<<EnvironmentAssumption>>
ArmAMoveFromPress-
ToTableTimeAssumption

arrivedAtTable

c <= AMAX

false

moveToPress

arrivedAtPress
«forbidden»

«forbidden»

press

c:Controller

c = 0

c >= PMIN

<<EnvironmentAssumption>>
PressPlateAssumption

pressingFinished

c <= PMAX

moveToDepositBelt

c:Controller

c = 0

c >= BMIN

<<EnvironmentAssumption>>
ArmBMoveFromPress-

ToDepositBeltTimeAssumption

arrivedAtDepositBelt

c <= BMAX

false

moveToPress

arrivedAtPress
«forbidden»

«forbidden»

moveToPress

c:Controller

c = 0

c >= BMIN

<<EnvironmentAssumption>>
ArmBMoveFromDepositBelt-
ToPressTimeAssumption

arrivedAtPress

c <= BMAX

false

arrivedAtDepositBelt
«forbidden»

«forbidden»

moveToDepositBelt

9

10

10

11

11

12

a:ArmA

b:ArmB

b:ArmB

a:ArmA

p:Press

Figure C.27: The MSDs that specify the assumptions for the environment of
the production cell.

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 263

Synthesis results

The tables in Fig. C.29 and C.28 show how long transformation and synthesis
take for the production cell specification. Fig. C.28 shows the times of the
synthesis in a setting where the system is allowed to delay active system event.
The table in Fig. C.29 shows the synthesis times of the synthesis in a setting
where the system is not allowed to do so (see Sect. 4.7.1).

The rows show the synthesis times and whether the synthesis reported the
specification to be consistently executable or not for different concrete values for
the delay parameters. Remember that checking consistent executability means
that we consider a setting where the system can only execute steps that are
currently active in an MSD.

The bottom of the table in Fig. C.28 shows the number of MSDs, lifelines,
messages, clock variables, and time conditions in the specification. Furthermore,
table shows the time for transforming the MSD specification and the number of
TGG rules applied for the transformation.

The results are discussed in more detail at the end of Sect. C.3.3; Sect. C.4.1
explains in more detail how the measurements were taken. Sheet3_minutes

Page 1

1 8 2 3 2 3 1 2 yes 34,12 min (after 7 hours)
2 0 2 3 2 3 1 2 no 0,07 min (after 7 hours)
3 1 2 3 2 3 1 2 no 0,04 min aborted (after 12 hours)
4 5 2 3 2 3 1 2 no 11,80 min 11 hours
5 8 2 4 2 3 1 2 no 76,22 min aborted (after 12 hours)
6 8 2 3 2 4 1 2 no 64,56 min aborted (after 12 hours)
7 8 2 3 2 3 1 6 no 40,91 min (after 6 hours)
8 8 2 3 2 3 1 8 no 34,87 min aborted (after 12 hours)

Number of MSDs 13
Number of lifelines 30
Number of messages 45
Number of clock variables 6
Number of time conditions 11

114
34

mem out
mem out

mem out

Number of TGG rules applied
Time for TGG trans (sec.)**

FMIN
AMIN

AMAX
BMIN

BMAX
PMIN

PMAX
co

nsis
ten

tly
 ex

ec
utab

le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

* Times measured on a machine with
5 Intel Xenon E5520 CPUs at 2,27Ghz
and 72 GB RAM, Suse Linux (only one
core and 4GB RAM used by Uppaal Tiga)
** Time measured on a laptop with
one Intel Core2 T5500 CPU at 1,66Ghz
and 2 GB RAM, running Windows XP

Figure C.28: Times of transformation and synthesis for the production cell
specification with different concrete values for delays in the specification, in a
setting where the system is allowed to delay active events.

C.3.3 Compositional synthesis of the production cell
specification

This section shows how the production cell specification can be decomposed
into two part specifications according to the compositional synthesis technique
presented in Sect. 4.6. See also Sect. 4.6.3 for an explanation of how the two

264 APPENDIX C. EXAMPLES
Sheet3_minutes

Page 1

1 8 2 3 2 3 1 2 yes 0,04 min 0,09 min
2 0 2 3 2 3 1 2 no 0,01 min 1,19 min
3 1 2 3 2 3 1 2 no 0,02 min 1,37 min
4 5 2 3 2 3 1 2 no 0,07 min 1,41 min
5 8 2 4 2 3 1 2 no 0,05 min 1,16 min
6 8 2 3 2 4 1 2 no 0,05 min 1,29 min
7 8 2 3 2 3 1 6 no 0,08 min 1,76 min
8 8 2 3 2 3 1 8 no 0,10 min 2,06 min

FMIN
AMIN

AMAX
BMIN

BMAX
PMIN

PMAX
co

nsis
ten

tly
 ex

ec
utab

le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

* Times measured on a machine with
5 Intel Xenon E5520 CPUs at 2,27Ghz
and 72 GB RAM, Suse Linux (only one
core and 4GB RAM used by Uppaal Tiga)
** Time measured on a laptop with
one Intel Core2 T5500 CPU at 1,66Ghz
and 2 GB RAM, running Windows XP

Figure C.29: Times of transformation and synthesis for the production cell
specification with different concrete values for delays in the specification, in a
setting where the system is not allowed to delay active events.

part specifications are created. This section just briefly describes the part spec-
ifications with the additional assume/guarantee property that is added.

As described in Sect. 4.6.3, “step 0” of the decomposition of the specifi-
cation is the decomposition of the system object c:Controller into the objects
c1:Controller1 and c2:Controller2. The idea is that c1:Controller1 is responsible
for controlling a:ArmA and c2:Controller2 is responsible for controlling b:ArmB
and p:Press (see also Fig. 4.14). The following two part specifications, called
Transport Blank To Press and Press Plate And Transport To Deposit Belt, are
created from the global production cell specification.

Part specification one Transport Blank To Press

The first part of the specification is shown in Fig. C.30. The collabora-
tion diagram shows that this part only describes the behavior of the sys-
tem instance c1:Controller1 and the environment instances ts:TableSensor and
a:ArmA. The MSDs ArmATransportBlankToPress (1) and ArmAMustNotPickUp-
BlankBeforeReturnedToTable (6) describe the requirements of c1 and the assump-
tion MSDs BlankArrivalDelay (9) as well as ArmAMoveFromPressToTableTime-
Assumption (10) and ArmAMoveFromTableToPressTimeAssumption (10) describe
the assumed behavior of the arriving blanks as well as the robot arm A. Addi-
tionally, the requirement MSD BlankArrivalAtPressDelay is introduced here. It
states that blank plates must not be released into the press in intervals shorter
than RMIN . (This MSD appears as an assumption in the second part specifi-
cation Press Plate And Transport To Deposit Belt.)

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 265

ProductionCell-
TransportBlankToPress

ts:TableSensor

a:ArmA

blankArrived

c1:Controller1

pickUp

arrivedAtPress

ArmATransportBlankToPress

ts:TableSensor

moveToPress

releaseBlank

moveToTable

arrivedAtTable

blankArrived

c1:Controller1

c = 0

c > FMIN

<<EnvironmentAssumption>>
BlankArrivalDelay

moveToPress

c1:Controller1

c = 0

c >= AMIN

<<EnvironmentAssumption>>
ArmAMoveFromTable

-ToPressTimeAssumption

arrivedAtPress

c <= AMAX

false

moveToTable

arrivedAtTable
«forbidden»

«forbidden»

moveToTable

c1:Controller1

c = 0

c >= AMIN

<<EnvironmentAssumption>>
ArmAMoveFromPress-
ToTableTimeAssumption

arrivedAtTable

c <= AMAX

false

moveToPress

arrivedAtPress
«forbidden»

«forbidden»

BlankArrivalAtPressDelay

releaseBlank

c1:Controller1

c = 0

c > RMIN

c1:Controller1

moveToPress

c1:Controller1

ArmAMustNotPickUpBlank-
BeforeReturnedToTable

pickUp

arrivedAtTable

false

«forbidden»

1

8

9

9

6

guarantees a
lower bound on
the intervals in
which arm A

releases blanks
into the press

a:ArmA

a:ArmA

a:ArmA

a:ArmA

a:ArmA

ts:TableSensor

Figure C.30: Part one of the decomposed specification – controller c1 controls
arm A.

266 APPENDIX C. EXAMPLES

Part specification two Press Plate And Transport To Deposit Belt

The second part specification describes the requirements for the controller c2.
The only instance not relevant in this part specification is the table sensor. The
controller c1 appears in this specification as an environment instance.

The requirements of this part specification are described by the MSDs (2)-
(5) as already shown above. The only difference is that the MSDs PressPlate-
AfterArmAReleasesBlankPlate (2) and ArmAMustNotReleaseBlankBeforePlate-
RemovedByArmB (5) now have two lifelines representing the controllers c1 and
c2 (see also Fig. 4.15 and Sect. 4.6.2, “Step 0”).

The assumption MSDs are the MSDs (10)-(11) as already introduced above.
In addition this specification contains the assumption MSD BlankArrivalAtPress-
Delay. This assumption MSD is the same MSD as the one introduced as an
additional requirement (guarantee) in the part specification Transport Blank To
Press.

Synthesis results

The tables in Fig. C.32 and C.33 show the synthesis results and times for the
two part specification with different concrete values for the parameters FMIN,
RMIN AMIN/AMAX, BMIN/BMAX, and PMIN/PMIN. (Section C.4.1 explains how the
measurements where taken.) The table in Fig. C.32 shows the time of the
synthesis in a setting where the system is allowed to delay active system event.
The table in Fig. C.33 shows the synthesis times of the synthesis in a setting
where the system is not allowed to do so (see Sect. 4.7.1).

The synthesis was tested with the following concrete values for the parame-
ters:

• Row 1: the specification is consistently executable for these values
• Row 2-4: the time interval in which blanks may arrive at the table is too

short,
• Row 5: the time that arm a:ArmA may take to move from the table to

the press and from the press to the table, respectively, is too long.
• Row 6: the time that arm b:ArmB may take to move from the press to

the deposit belt and from the depsite belt to the press, respectively, is too
long.

• Row 7-8: the time that the press may take to process metal blanks to
plates is too long.

• Row 9: shows that the first part specification will is not consistently
executable if the assume/guarantee property is too strong.

• Row 10: shows that the second part specification will is not consistently
executable if the assume/guarantee property is too weak.

The bottom of the table in Fig. C.32 shows the number of MSDs, lifelines,
messages, clock variables, and time conditions per part specification. Further-
more, the time for transforming the MSD specification and the number of TGG
rules applied for the transformation are displayed.

The result of this evaluation is, first, that the synthesis produces correct re-
sults, i.e., it reports a (part) specification to be consistently executable if it is
expected to be consistently executable, and it reports that a (part) specification

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 267

ProductionCell-
PressPlateAndTransportToDepositeBelt

a:ArmA p:Press

b:ArmBc2:Controller2

c1:Controller1

releaseBlank

a:ArmA

c = 0

c > RMIN

<<EnvironmentAssumption>>
BlankArrivalAtPressDelay

releaseBlank

c2:Controller2

pressingFinished

PressPlateAfterArmAReleasesBlankPlate

press
true

releaseBlank

c2:Controller2

pickUp

false

releaseBlank
«forbidden»

true

ArmAMustNotReleaseBlankBefore-
PlateRemovedByArmB

press

c2:Controller2

c = 0

c >= PMIN

<<EnvironmentAssumption>>
PressPlateAssumption

pressingFinished

c <= PMAX

moveToDepositBelt

c2:Controller2 b:ArmB

c = 0

c >= BMIN

<<EnvironmentAssumption>>
ArmBMoveFromPress-

ToDepositBeltTimeAssumption

arrivedAtDepositBelt

c <= BMAX

false

moveToPress

arrivedAtPress
«forbidden»

«forbidden»

moveToPress

c2:Controller2

c = 0

c >= BMIN

<<EnvironmentAssumption>>
ArmBMoveFromDepositBelt-
ToPressTimeAssumption

arrivedAtPress

c <= BMAX

false

arrivedAtDepositBelt
«forbidden»

«forbidden»

moveToDepositBelt

moveToDepositBelt

c2:Controller2

ArmBReleasePlate-
AndReturnToPress

releasePlate

arrivedAtDepositBelt

moveToPress

assumes a lower bound
on the intervals in which
arm A releases blanks

into the press

11

11

12

2

4

5

c1:Controller1

b:ArmB

p:Pressc1:Controller1 b:ArmBa:ArmA

b:ArmB

a:ArmA p:Pressc1:Controller1

c2:Controller2

ArmBTransportToDepositBelt-
AfterPickUpFromPress

pickUp

moveToDepositBelt

b:ArmB

3

moveToDepositBelt

c2:Controller2

ArmBMustNotPickUpPlate-
BeforeReturnedToPress

pickUp

arrivedAtPress

false

«forbidden»
7

b:ArmB

pickUp

a:ArmA

Figure C.31: Part two of the decomposed specification – controller c2 controls
the press and arm B.

268 APPENDIX C. EXAMPLES

ro
un

de
d

se
co

nd
s

P
ag

e
1

1
8

7
2

3
2

3
1

2
ye

s
0,

01
0,

05
ye

s
0,

09
2,

03
2

0
7

2
3

2
3

1
2

no
0

0,
02

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

3
1

7
2

3
2

3
1

2
no

0
0,

02
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
4

5
7

2
3

2
3

1
2

no
0

0,
03

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

5
8

7
2

4
2

3
1

2
no

0
0,

05
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
6

8
7

2
3

2
4

1
2

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

no
0,

1
2,

06
7

8
7

2
3

2
4

1
6

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

no
0,

08
1,

71
8

8
7

2
3

2
4

1
8

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

no
0,

11
2,

04
9

8
3

2
3

2
3

1
2

ye
s

0,
01

0,
04

no
0,

1
1,

18
10

8
9

2
3

2
3

1
2

no
0,

01
0,

05
ye

s
0,

11
2,

12

S
um

:
N

um
be

r o
f M

SD
s

6
9

15
N

um
be

r o
f l

ife
lin

es
13

22
36

N
um

be
r o

f m
es

sa
ge

s
20

27
47

N
um

be
r o

f c
lo

ck
 v

ar
ia

bl
es

4
4

8
N

um
be

r o
f t

im
e

co
nd

iti
on

s
6

7
13 13

1
31

,5
N

um
be

r o
f T

G
G

 ru
le

s
ap

pl
ie

d
Ti

m
e

fo
r T

G
G

 tr
an

s
(m

s)

FMIN
RMIN
AMIN
AMAX
BMIN
BMAX
PMIN
PMAX

Part
 sp

ec
. I

co
nsis

ten
tly

 ex
ec

utab
le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

Part
 sp

ec
. II

 co
nsis

ten
tly

 ex
ec

utab
le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

*
Ti

m
es

 m
ea

su
re

d
on

 a
 m

ac
hi

ne
 w

ith

5
In

te
l X

en
on

 E
55

20
 C

P
U

s
at

 2
,2

7G
hz

an
d

72
 G

B
 R

A
M

, S
us

e
Li

nu
x

(o
nl

y
on

e
co

re
 a

nd
 4

G
B

 R
A

M
 u

se
d

by
 U

pp
aa

l T
ig

a)
**

 T
im

e
m

ea
su

re
d

on
 a

 la
pt

op
 w

ith

on
e

In
te

l C
or

e2
 T

55
00

 C
P

U
 a

t 1
,6

6G
hz

an
d

2
G

B
 R

A
M

, r
un

ni
ng

 W
in

do
w

s
X

P

Figure C.32: Times of transformation and synthesis for the part specifications
of the production cell with different concrete values for delays in the specifica-
tion, in a setting where the system is allowed to delay active events.

C.3. SYNTHESIS EXAMPLE – THE PRODUCTION CELL 269

ro
un

de
d

se
co

nd
s

P
ag

e
1

1
8

7
2

3
2

3
1

2
ye

s
0

0,
01

ye
s

0,
01

0,
01

2
0

7
2

3
2

3
1

2
no

0
0,

02
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
3

1
7

2
3

2
3

1
2

no
0

0,
01

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

4
5

7
2

3
2

3
1

2
no

0
0,

02
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
5

8
7

2
4

2
3

1
2

no
0

0,
02

ye
s

(a
s

in
 1

)
(a

s
in

 1
)

6
8

7
2

3
2

4
1

2
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
no

0,
01

0,
05

7
8

7
2

3
2

4
1

6
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
no

0,
01

0,
05

8
8

7
2

3
2

4
1

8
ye

s
(a

s
in

 1
)

(a
s

in
 1

)
no

0,
01

0,
04

9
8

3
2

3
2

3
1

2
ye

s
0

0,
01

no
0,

01
0,

04
10

8
9

2
3

2
3

1
2

no
0

0,
02

ye
s

0,
01

0,
01

FMIN
RMIN
AMIN
AMAX
BMIN
BMAX
PMIN
PMAX

Part
 sp

ec
. I

co
nsis

ten
tly

 ex
ec

utab
le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

Part
 sp

ec
. II

 co
nsis

ten
tly

 ex
ec

utab
le?

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

*
Ti

m
es

 m
ea

su
re

d
on

 a
 m

ac
hi

ne
 w

ith

5
In

te
l X

en
on

 E
55

20
 C

P
U

s
at

 2
,2

7G
hz

an
d

72
 G

B
 R

A
M

, S
us

e
Li

nu
x

(o
nl

y
on

e
co

re
 a

nd
 4

G
B

 R
A

M
 u

se
d

by
 U

pp
aa

l T
ig

a)
**

 T
im

e
m

ea
su

re
d

on
 a

 la
pt

op
 w

ith

on
e

In
te

l C
or

e2
 T

55
00

 C
P

U
 a

t 1
,6

6G
hz

an
d

2
G

B
 R

A
M

, r
un

ni
ng

 W
in

do
w

s
X

P

Figure C.33: Times of transformation and synthesis for the part specifications
of the production cell with different concrete values for delays in the specifica-
tion, in a setting where the system is not allowed to delay active events.

270 APPENDIX C. EXAMPLES

is not consistently executable if it can be expected to be not consistently exe-
cutable. The results are correct using both the AG or AGAF winning condition.

Second, it turns out that disallowing the system to delay the execution of
active events can drastically reduce the synthesis time.

Third, the compositional synthesis can greatly reduce the complexity of the
synthesis problem. For example, synthesizing a controller for the global specifi-
cation was not possible when using the AGAF winning condition and allowing
the system to delay the execution of active events. The synthesis aborted be-
cause the available memory was used up after three to seven hours. Synthesizing
controllers for the part specifications in sum takes about 2 minutes (the memory
used was not measured).

C.4. SYNTHESIS PERFORMANCE MEASUREMENT 271

C.4 Synthesis performance measurement
This section presents results from measuring the performance of the synthesis
technique that developed in the scope of this thesis. The synthesis time was
measured by the help of technical example MSD specifications, which are of such
a kind that with a growing number of MSDs in the specification, the induced
state space grows exponentially. The synthesis times are furthermore compared
to the times for the TGG transformation, which maps the UML-based MSD
specifications to the corresponding TGA system.
The main results of these measurements are

• The synthesis of controllers for untimed MSD specifications can be carried
out within an acceptable time, i.e., in less than one minute, for specifica-
tions that describe more than 310 many reachable super-cuts.

• For untimed MSD specifications, the complexity of the synthesis grows
linearly with the state space induced by the MSD specification.

• For timed MSD specifications, the synthesis greatly suffers from the num-
ber of interrelated time intervals.

• The speed of the TGG transformation grows linearly in the size of the
MSD specifications.

C.4.1 How the measurements were taken

The the MSD-to-TGA transformation and the synthesis by Uppaal Tiga were
executed and measured on two different machines with the following configura-
tions:

• MSD-to-TGA transformation: Intel Core2 processor (T5500) at
1,66GHz and 2GB RAM, Windows XP, version 0.3 of the TGG Inter-
preter. The TGG used for the transformation is the one documented in
Appendix B.

• Uppaal Tiga synthesis: Intel Xenon E5520 at 2,27Ghz and 72 GB
RAM3, SUSE Linux (2.6.27.45-0.1), using Uppaal Tiga is 0.14 (rev.
4530), May 2010, as included in the ECDAR tool4, version 0.8.

C.4.2 Untimed specifications with exponentially growing state
space

The first measurement relies on a number of example MSD specifications that
have the following form as shown in Fig. C.34. Each MSD specification consists
of nMSDs where the first MSD is triggered by an environment event do and then
triggers two activations of the second MSD. Subsequently, this MSD triggers two
activations of the third MSD, etc. Fig. C.34 shows the MSD specification for
n = 3. This leads to a cascade of subsequent activations of MSDs and the state
space described by the MSD specification grows exponential with respect to the
number of MSDs in it. Because each MSD can be in three different cuts, we
approximate the state space with 3n.

3of which Uppaal Tiga is only able to address 4 GB
4http://www.cs.aau.dk/~adavid/ecdar/

http://www.cs.aau.dk/~adavid/ecdar/

272 APPENDIX C. EXAMPLES

do

env:Environment a:A b:B

DoM1

m1

m1

m1

a:A b:B

DoM2

m2

m2

m2

a:A b:B

DoM3

m3

m3

Figure C.34: Example of an untimed MSD specification with exponentially
many activations of MSDs (here n = 3)

The table in Fig. C.35 shows the results from transforming and synthesizing
controllers from the MSD specifications with one to thirteen MSDs. The first
three columns show the number of MSDs per specification as well as the number
of lifelines and the number of messages. The last two columns show the number
of TGG rules that were applied for transforming the specification into a TGA
model as well as the time the transformation took. The fourth and fifth column
show the time it took Uppaal Tiga for synthesizing a strategy satisfying the
AGAF and AG properties, see Cond. 4.2 and 4.1 in Sect. 4.4.Sheet4_2

Page 1

1 3 3 0 0 9 1,2
2 5 6 0 0 15 2,5
3 7 9 0 0 21 3,3
4 9 12 0 0 27 4,4
5 11 15 0 0 33 5,7
6 13 18 0 0 39 7
7 15 21 0,01 0,01 45 8,1
8 17 24 0,02 0,05 51 9,1
9 19 27 0,08 0,2 57 10,5

10 21 30 0,28 0,74 63 11,8
11 23 33 1,03 2,8 69 13
12 25 36 3,68 10,21 75 14,6
13 27 39 81 15,9mem out mem out

No. o
f M

SDs

No. o
f li

fel
ines

No. o
f m

es
sa

ges

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

No. o
f T

GG ru
les

 ap
plie

d

Tim
e f

or T
GG tr

an
sfo

rm
ati

on (s
ec

)**

* Times measured on a machine with
5 Intel Xenon E5520 CPUs at 2,27Ghz
and 72 GB RAM, Suse Linux (only one
core and 4GB RAM used by Uppaal Tiga)
** Time measured on a laptop with
one Intel Core2 T5500 CPU at 1,66Ghz
and 2 GB RAM, running Windows XP

Figure C.35: A table listing the time for transforming and synthesizing strate-
gies for an untimed MSD specification with exponentially many MSD activa-
tions.

C.4. SYNTHESIS PERFORMANCE MEASUREMENT 273

Strategies can be successfully synthesized from specifications with up to
twelve MSDs. For bigger specifications, the synthesis algorithm runs out of
memory (4 GB) after a few minutes. The TGG transformation times grow
linearly with the size of the MSD specification. An additional MSD takes the
transformation one additional second to translate. Up to the size of 8 MSDs,
the synthesis is faster than the transformation, but then quickly suffers from
the state space explosion. The chart in Fig. C.36 illustrates this graphically.

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700

Time for synth. AG cond.
Time for synth. AGAF cond.
Time for TGG transformation

Number of MSDs

Ti
m

e
(s

ec
on

ds
)

Figure C.36: A chart visualizing the time for transforming and synthesizing
strategies for an untimed MSD specification with exponentially many MSD ac-
tivations.

The synthesis times grow linearly with the state space described by the
specification. The chart in Fig. C.37 illustrates this by plotting the size of the
MSD specification against the logarithm of the synthesis times.

Cassez et al. prove that the synthesis algorithm for synthesizing strate-
gies for untimed reachability/safety games in Uppaal Tiga is efficient, i.e., at
most by a constant factor slower than the fastest possible synthesis algorithm.
The synthesis time is linear to the state space of the given synthesis problem
[CDF+05]. The measurements suggest that also the synthesis of controllers from
MSD specifications by the MSD-to-TGA mapping presented in Chap. 4 is ef-
ficient in the sense that it is not more than a constant factor slower than the
fastest possible synthesis algorithm.

274 APPENDIX C. EXAMPLES

1 2 3 4 5 6 7 8 9 10 11 12

-8

-6

-4

-2

0

2

4

6

8

10

12

Time for synth. AG cond.
Time for synth. AGAF cond.

Number of MSDs

LO
G

 ti
m

e
(s

ec
on

ds
)

synthesis time
grows linearly w.r.t.
the state space

Figure C.37: Plotting the logarithm (log2) of the synthesis time against the
size of the MSD specification

C.4.3 Timed specification with exponentially growing state
space

To measure the performance of the synthesis for timed specifications, MSD spec-
ifications were considered that also follow a similar schema as the specifications
presented in Sect. C.4.2. In the kinds of specifications considered here, an ad-
ditional clock reset and a minimal and maximal delay is added to each MSD.
With each additional MSD, the time for the system to complete all the MSDs
grows exponentially. Figure C.38 shows the specification with 5 MSDs. Each
MSD specifies a minimal delay of 1 and a maximal delay that depends on the
number of diagrams that are going to be subsequently triggered by the MSD.
One of the MSDs is an assumption MSD that prohibits the environment sending
another do event too early. If this assumption MSD was not included in the
specification, the specification could be easily violated.

The measurements show that synthesizing strategies for this kind of timed
specifications takes significantly longer. Synthesizing a strategy satisfying the
AGAF condition from a specification with 6 MSDs (including the one assump-
tion MSD) already takes over eight minutes. Synthesizing a strategy satisfying
the AG condition from a specification with 7 MSDs takes over 26 minutes. Syn-
thesizing a strategy satisfying the AGAF condition from a specification with 7
MSDs was successful only after over 10 hours. The chart shown in Fig. C.40
visualizes the synthesis and transformation times.

C.4. SYNTHESIS PERFORMANCE MEASUREMENT 275

do

env:Environment a:A b:B

DoM1

m1

m1

m1

a:A b:B

DoM2

m2

m2

m2

a:A b:B

DoM3

m3

m3

c >= 1

c = 0

c <= 8

c >= 1

c = 0

c <= 4

c >= 1

c = 0

c <= 2

m3

a:A b:B

DoM4

m4

m4

c >= 1

c = 0

c <= 1

do

env:Environment a:A

<<EnvironmentAssumption>>
DoAssumption

c > 8

c = 0

Figure C.38: Example of a timed MSD specification with exponentially many
activations of MSDs (here n = 4)

Sheet3_2

Page 1

2 5 4 2 3 0 0 18 2,1
3 7 7 3 5 0 0 27 3,7
4 9 10 4 7 0 0 36 5,5
5 11 13 5 9 0,04 0,42 45 7,1
6 13 16 6 11 0,69 8,72 54 8,7
7 15 19 7 13 26,58 10 hours 63 10,3

No. o
f M

SDs

No. o
f li

fel
ines

No. o
f m

es
sa

ges

No. o
f c

lock
 va

ria
bles

No. o
f ti

me c
onditio

ns

Tim
e f

or s
yn

th. A
G co

nd. (m
in)*

Tim
e f

or s
yn

th. A
GAF co

nd. (m
in)*

No. o
f T

GG ru
les

 ap
plie

d

Tim
e f

or T
GG tr

an
s (

se
c.)

**

* Times measured on a machine with
5 Intel Xenon E5520 CPUs at 2,27Ghz
and 72 GB RAM, Suse Linux (only one
core and 4GB RAM used by Uppaal Tiga)
** Time measured on a laptop with
one Intel Core2 T5500 CPU at 1,66Ghz
and 2 GB RAM, running Windows XP

Figure C.39: A table listing the time for transforming and synthesizing strate-
gies for a timed MSD specification with exponentially many MSD activations.

276 APPENDIX C. EXAMPLES

1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

Time for synth. AG cond.
Time for synth. AGAF cond.
Time for TGG transformation

number of MSDs

Ti
m

e
(s

ec
on

ds
)

Figure C.40: A chart visualizing the time for transforming and synthesizing
strategies for a timed MSD specification with exponentially many MSD activa-
tions.

The measurements show that the synthesis suffers greatly from the many
interrelated time intervals that are described by the specification. The mea-
surements suggest that the synthesis time grows more than linearly with the
state space that is described by the MSD specification, but there are too few
measurements to identify any correlations between the specification size and the
synthesis times.

Bibliography

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-
Checking in Dense Real-time. Information and Computation,
104:2–34, 1993.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[ADG+09] Philipp Adelt, Jörg Donoth, Jürgen Gausemeier, Jens Geisler, Ste-
fan Henkler, Sascha Kahl, Benjamin Klöpper, Alexander Krupp,
Eckehard Münch, Simon Oberthür, Carlos Paiz, Mario Porrmann,
Rafael Radkowski, Christoph Romaus, Alexander Schmidt, Bernd
Schulz, Henner Vöcking, Ulf Witkowski, Katrin Witting, and Olek-
siy Znamenshchykov. Selbstoptimierende Systeme des Maschienen-
baus – Definitionen, Anwendungen, Konzepte, volume 234. HNI-
Verlagsschriftenreihe, Heinz Nixdorf Institut Paderborn, August
2009. (in German).

[AKRS06] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and
Andy Schürr. MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In A. Rensink and
J. Warmer, editors, Model Driven Architecture - Foundations and
Applications: Second European Conference, volume 4066 of Lecture
Notes in Computer Science (LNCS), pages 361–375, Heidelberg,
2006. Springer Verlag.

[BB91] Albert Benveniste and Gérard Berry. The Synchronous Approach
to Reactive and Real-Time Systems. Proceedings of the IEEE, spe-
cial section "Another look at Real-time programming", 79(9):1270–
1282, September 1991.

[Büc66] J. Richard Büchi. Symposium on decision problems: On a deci-
sion method in restricted second order arithmetic. In Patrick Sup-
pes Ernest Nagel and Alfred Tarski, editors, Logic, Methodology
and Philosophy of Science, Proceeding of the 1960 International
Congress, volume 44 of Studies in Logic and the Foundations of
Mathematics, pages 1–11. Elsevier, 1966.

[BCD+06] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim G. Larsen, and Didier Lime. UPPAAL-Tiga: Timed
Games for Everyone. In Luca Aceto and Anna Ingolfdottir, editors,

277

278 BIBLIOGRAPHY

Proceedings of the 18th Nordic Workshop on Programming Theory
(NWPT’06), Reykjavik, Iceland. Reykjavik University, 2006.

[BCD+07a] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim G. Larsen, and Didier Lime. UPPAAL-Tiga: Time
for Playing Games! In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV’07), volume 4590 of LNCS, pages
121–125, Berlin, Germany, July 2007. Springer.

[BCD+07b] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim G. Larsen, and Didier Lime. Uppaal Tiga User-
manual. online resource, 2007. http://www.cs.aau.dk/~adavid/
tiga/manual.pdf – last accessed: April 2011.

[BCS00] Francis Bordeleau, Jean-Pierre Corriveau, and Bran Selic. A
scenario-based approach to hierarchical state machine design. In
Proceedings of the third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2000), pages
78–85, 2000.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial
on UPPAAL. In M. Bernardo and F. Corradini, editors, LNCS,
Formal Methods for the Design of Real-Time Systems (revised lec-
tures), volume 3185, pages 200–236. Springer Verlag, 2004.

[BG03] Sven Burmester and Holger Giese. The Fujaba Real-Time State-
chart Plugin. In Proceedings of the first International Fujaba Days
2003, Kassel, Germany, 2003.

[BH02] Yves Bontemps and Patrick Heymans. Turning High-Level Live
Sequence Charts into Automata. In Proceedings of the 1st Work-
shop on Scenarios and State Machines: Models Algorithms and
Tools (SCESM’02), 24th International Conference on Software En-
gineering (ICSE’02), May 2002. ACM, 2002.

[BH05] Yves Bontemps and Patrick Heymans. From Live Sequence Charts
to State Machines and Back: A Guided Tour. IEEE Transactions
on Software Engineering, 31(12):999–1014, 2005.

[BJ95] Manfred Broy and Stefan Jähnichen, editors. KORSO: Methods,
Languages, and Tools for the Construction of Correct Software:
Final Report. Springer, 1995.

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. UPPAAL – a Tool Suite for Automatic Verification
of Real-Time Systems. In Proceedings of the DIMACS/SYCON
workshop on Hybrid Systems III: Verification and Control, pages
232–243, 1996.

[BS03] Yves Bontemps and Pierre-Yves Schobbens. Synthesis of Open Re-
active Systems from Scenario-Based Specifications. In Proceedings
of the 3rd International Conference on Application of Concurrency

http://www.cs.aau.dk/~adavid/tiga/manual.pdf
http://www.cs.aau.dk/~adavid/tiga/manual.pdf

BIBLIOGRAPHY 279

to System Design (ACSD 2003), 18-20 June 2003, Guimaraes,
Portugal, pages 41–50, 2003.

[BS05] Yves Bontemps and Pierre-Yves Schobbens. The Complexity of
Live Sequence Charts. In Sassone, editor, Proceedings of the In-
ternational Conference on Foundations of Software Science and
Computation Structure (FoSSACS’05), pages 364–378, April 2005.

[BSL04] Yves Bontemps, Pierre Yves Schobbens, and Christof Löding. Syn-
thesis of Open Reactive Systems from Scenario-Based Specifica-
tions. Fundamenta Informaticae, 62(2):139–169, 2004.

[Cas07] Franck Cassez. Efficient on-the-fly algorithms for partially observ-
able timed games. In Proceedings of the 5th International Confer-
ence on Formal Modeling and Analysis of Timed Systems, FOR-
MATS’07, pages 5–24, Berlin, Heidelberg, 2007. Springer-Verlag.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G.
Larsen, and Didier Lime. Efficient On-the-fly Algorithms for the
Analysis of Timed Games. Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR’05), 3653:66–80,
August 2005.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, 1999.

[Dan09] Duc-Hanh Dang. On Integrating Triple Graph Grammars and OCL
for Model-Driven Development. PhD thesis, University of Bremen,
September 25th 2009.

[DG08] Duc-Hanh Dang and Martin Gogolla. On Integrating OCL and
Triple Graph Grammars. In Models in Software Engineering:
Workshops and Symposia at MODELS 2008, Toulouse, France,
September 28 - October 3, 2008. Reports and Revised Selected Pa-
pers, 2008.

[DH98] Werner Damm and David Harel. LSCs: Breathing Life into Mes-
sage Sequence Charts. Technical Report CS98-09, Weizmann In-
stitute of Science, Faculty of Mathematics and Computer Science,
1998.

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Mes-
sage Sequence Charts. In Formal Methods in System Design, vol-
ume 19, pages 45–80. Kluwer Academic Publishers, 2001. (Pre-
liminary version in Proc. 3rd IFIP Int. Conf. on Formal Meth-
ods for Open Object-Based Distributed Systems (FMOODS’99),
P. Ciancarini, A. Fantechi and R. Gorrieri, eds., Kluwer Academic
Publishers, 1999, pp. 293-312.

[DLDvL05] Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel
van Lamsweerde. Generating Annotated Behavior Models From
End-User Scenarios. IEEE Transactions on Software Engineering,
31(12):1056–1073, 2005.

280 BIBLIOGRAPHY

[DLvL06] Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde.
Scenarios, goals, and state machines: a win-win partnership for
model synthesis. In Proceedings of the 14th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering
(SIGSOFT ’06/FSE-14), pages 197–207. ACM, 2006.

[FMS09] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical
Guide to SysML: The Systems Modeling Language. Morgan Kauf-
mann, 2009.

[Fra06] Ursula Frank. Spezifikationstechnik zur Beschreibung der Prinzi-
plösung selbstoptimierender Systeme. PhD thesis, Fakultät für
Maschinenbau, Universität Paderborn, 2006. (in German).

[GB03] Holger Giese and Sven Burmester. Real-Time Statechart Seman-
tics. Technical Report tr-ri-03-239, Software Engineering Group,
University of Paderborn, Paderborn, Germany, June 2003.

[GB04] Holger Giese and Sven Burmester. Analysis and Synthesis for Pa-
rameterized Timed Sequence Diagrams. In Proceedings of the 3rd
International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (ICSE 2003 Workshop W5S), Edinburgh,
Scotland, 2004.

[GBRP10] J. Gausemeier, R. Brandis, and M. Reyes-Perez. A Specification
Technique for the Integrative Conceptual Design of Mechatronic
Productions and Production Systems. In Proceedings of the 11th
International Design Conference DESIGN 2010, 2010.

[GDN10] Jürgen Gausemeier, Rafal Dorociak, and Alexander Nyßen. The
mechatronic modeller: A software tool for computer-aided model-
ing of the principle solution of an advanced mechatronic system. In
11th International Workshop on Research and Education in Mecha-
tronics, September 2010.

[GEK01] Jürgen Gausemeier, Peter Ebbesmeyer, and Ferdinand Kallmeyer.
Produktinnovation. Strategische Planung und Entwicklung der Pro-
dukte von morgen. Carl Hanser Verlag, 2001. (in German).

[GFDK08a] Jürgen Gausemeier, Ursula Frank, Jörg Donoth, and Sascha Kahl.
Spezifikationstechnik zur Beschreibung der Prinziplösung selbst-
optimierender Systeme des Maschinenbaus (Teil 1). Konstruktion,
7/8:59–66, July/August 2008. (in German).

[GFDK08b] Jürgen Gausemeier, Ursula Frank, Jörg Donoth, and Sascha Kahl.
Spezifikationstechnik zur Beschreibung der Prinziplösung selbst-
optimierender Systeme des Maschinenbaus (Teil 2). Konstruktion,
9:91–99, September 2008. (in German).

[GFDK09] Jürgen Gausemeier, Ursula Frank, Jörg Donoth, and Sascha Kahl.
Specification Technique for the Description of Self-Optimizing
Mechatronic Systems. Research in Engineering Design, 20(4):201–
223, 2009.

BIBLIOGRAPHY 281

[GHHK06] Holger Giese, Stefan Henkler, Martin Hirsch, and Florian Klein.
Nobody’s perfect: Interactive Synthesis from Parametrized Real-
Time Scenarios. In Proceedings of the 5th ICSE 2006 Workshop
on Scenarios and State Machines: Models, Algorithms and Tools
(SCESM’06), Shanghai, China, 2006.

[Gie03] Holger Giese. Towards Scenario-Based Synthesis for Parametric
Timed Automata. In Proceedings of the 2nd International Work-
shop on Scenarios and State Machines: Models, Algorithms and
Tools (SCESM, ICSE 2003 Workshop 8), Portland, USA, 2003.

[GK07] Joel Greenyer and Ekkart Kindler. Reconciling TGGs with
QVT. In G. Engels, B. Opdyke, D.C. Schmidt, and Weil, F.
(Eds.), editors, Proceedings of the 10th International Conference
on Model Driven Engineering Languages and Systems, MoDELS
2007, September 30 - October 5, 2007, Nashville, USA, LNCS,
volume Volume 4735, pages pp. 16–30, Berlin, 2007. Springer Ver-
lag.

[GK10] Joel Greenyer and Ekkart Kindler. Comparing relational model
transformation technologies: implementing Query/View/Transfor-
mation with Triple Graph Grammars. Software and Systems Mod-
eling (SoSyM), 9(1):21–46, January 2010. Published online July
15, 2009.

[GKB05] Holger Giese, Florian Klein, and Sven Burmester. Pattern Synthe-
sis from Multiple Scenarios for Parameterized Real-Timed UML
Models. In Scenarios: Models, Algorithms and Tools. Springer
Verlag, 2005.

[GKS00] Radu Grosu, Ingolf Krüger, and Thomas Stauner. Hybrid sequence
charts. In ISORC ’00: Proceedings of the Third IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing,
page 104, Washington, DC, USA, 2000. IEEE Computer Society.

[GL94] Orna Grumberg and David E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages and
Systems, 16(3):843–871, 1994.

[Gre06] Joel Greenyer. A study of technologies for model transformation:
Reconciling TGGs with QVT. Diplomarbeit, Fakultät für Elek-
trotechnik, Informatik und Mathematik, Universität Paderborn,
2006.

[Gre09] Joel Greenyer. Integrating Models for the Design of Mecha-
tronic Systems. In Proceedings des gemeinsamen Workshops der
Informatik-Graduiertenkollegs und Forschungskollegs, pages 173–
174, Dagstuhl, June 2009.

[Gre10] Joel Greenyer. Synthesizing Modal Sequence Diagram Specifica-
tions with Uppaal-Tiga. Technical Report tr-ri-10-310, University
of Paderborn, February 2010.

282 BIBLIOGRAPHY

[GSG+09] Jürgen Gausemeier, Wilhelm Schäfer, Joel Greenyer, Sascha Kahl,
Sebastian Pook, and Jan Rieke. Management of Cross-Domain
Model Consistency During the Development of Advanced Mecha-
tronic Systems. In Margareta Norell Bergendahl, Martin Grimhe-
den, and Larry Leifer, editors, Proceedings of the 17th International
Conference on Engineering Design (ICED’09), volume 6, pages 1–
12, University of Stanford, CA, USA, August 2009. Design Society.

[GT05] Holger Giese and Sergej Tissen. The SceBaSy Plugin for the
Scenario-Based Synthesis of Real-Time Coordination Patterns for
Mechatronic UML. In Proceedings of the 3rd International Fujaba
Days 2005, Paderborn, Germany, 2005.

[GZD+08] Jürgen Gausemeier, Detmar Zimmer, Jörg Donoth, Sebastian
Pook, and Alexander Schmidt. Proceeding for the Conceptual De-
sign of Self-Optimizing Mechatronic Systems. In Proc. 10th Inter-
national Design Conference, Dubrovnik, Croatia, May 19-22 2008.

[HB10] Sylvain Halle and Tevfik Bultan. Realizability Analysis for
Message-based Interactions Using Shared-State Projections. In
Proceedings of the 18th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, FSE 2010, Santa Fe,
New Mexico, November 7-11, 2010, 2010.

[HGH+09] Stefan Henkler, Joel Greenyer, Martin Hirsch, Wilhelm Schafer,
Kahtan Alhawash, Tobias Eckardt, Christian Heinzemann, Renate
Löffler, Andreas Seibel, and Holger Giese. Synthesis of Timed Be-
havior From Scenarios in the Fujaba Real-Time Tool Suite. In
Proceedings of the 31th International Conference on Software En-
gineering (ICSE), Vancouver, Canada, 2009.

[HK99] David Harel and Hillel Kugler. Synthesizing State-Based Object
Systems from LSC Specifications. Technical report, The Weizmann
Institute of Science, Jerusalem, Israel, 1999.

[HK02] David Harel and Hillel Kugler. Synthesizing State-Based Object
Systems from LSC Specifications. In International Journal of
Foundations of Computer Science, volume 13:1, pages 5–51, 2002.
(Also, Proc. of the 5th International Conference on Implementa-
tion and Application of Automata (CIAA 2000; invited paper),
Lecture Notes in Computer Science, Vol. 2088, Springer-Verlag,
2001, pp. 1-33.).

[HKMP02a] David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart
Play-Out of Behavioral Requirements. In Proceedings of the 4th
International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2002, Portland, OR, USA, November 6-8, 2002,
pages 378–398, 2002.

[HKMP02b] David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart
Play-Out of Behavioral Requirements. Technical report, The Weiz-
mann Institute of Science, 2002.

BIBLIOGRAPHY 283

[HKP04] David Harel, Hillel Kugler, and Amir Pnueli. Smart Play-Out
Extended: Time and Forbidden Elements. In Proceedings of the 4th
International Conference on Quality Software (QSIC’04), pages 2–
10. IEEE Computer Society, 2004.

[HKP05] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis Revisited:
Generating Statechart Models from Scenario-Based Requirements.
In Hans-Jörg Kreowski, Ugo Montanari, Fernando Orejas, Grze-
gorz Rozenberg, and Gabriele Taentzer, editors, Formal Methods
in Software and Systems Modeling, volume 3393/2005, pages 309–
324. Springer-Verlag, 2005.

[HM02a] David Harel and Rami Marelly. Specifying and Executing Behav-
ioral Requirements: The Play-In/Play-Out Approach. Software
and System Modeling (SoSyM), 2:2003, 2002.

[HM02b] David Harel and Ramy Marelly. Playing with Time: On the Spec-
ification and Execution of Time-Enriched LSCs. In Proceedings of
the 10th IEEE/ACM International Symposium on Modeling, Anal-
ysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’02), Fort Worth, Texas, pages 193–202, 2002.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-Verlag,
August 2003.

[HM08] David Harel and Shahar Maoz. Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and Systems Mod-
eling (SoSyM), 7(2):237–252, May 2008.

[HMS08] David Harel, Shahar Maoz, and Itai Segall. Some Results on
the Expressive Power and Complexity of LSCs. In Arnon Avron,
Nachum Dershowitz, and Alexander Rabinovich, editors, Pillars
of Computer Science, Essays Dedicated to Boris (Boaz) Trakhten-
brot on the Occasion of His 85th Birthday, volume 4800 of Lecture
Notes in Computer Science, pages 351–366. Springer, 2008.

[HP85] David Harel and Amir Pnueli. On the Development of Reactive
Systems. Logics and Models of Concurrent Systems, 13:477–498,
1985.

[HS07] David Harel and Itai Segall. Planned and traversable play-out: a
flexible method for executing scenario-based programs. In Proceed-
ings of the 13th international conference on Tools and algorithms
for the construction and analysis of systems, TACAS’07, pages
485–499, Berlin, Heidelberg, 2007. Springer-Verlag.

[Ise05] Rolf Isermann. Mechatronic Systems: Fundamentals. Springer,
2005.

[Ise07] Rolf Isermann. Mechatronic Systems, Sensors, and Actuators:
Fundamentals and Modeling, chapter 2 Mechatronic Design Ap-
proach, pages 2–1 to 2–16. CRC Press, 2nd edition edition, Novem-
ber 2007. (1st edition 2002).

284 BIBLIOGRAPHY

[Ise09] Rolf Isermann. Springer Handbook of Automation, chapter
19 Mechatronic Systems–A Short Introduction, pages 317–331.
Springer, July 2009.

[ITU96] ITU-TS Recommendation Z.120: Message Sequence Charts
(MSC), 1996.

[Jac92] Ivar Jacobson. Object Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley Professional, 1992.

[Jon83] C. B. Jones. Tentative steps toward a development method for
interfering programs. ACM Trans. Program. Lang. Syst., 5(4):596–
619, 1983.

[Kal98] Ferdinand Kallmeyer. Eine Methode zur Modellierung prinzip-
ieller Lösungen mechatronischer Systeme. PhD thesis, University
of Paderborn, Heinz Nixdorf Institute, 1998. (in German).

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From
MSCs to Statecharts. In DIPES ’98: Proceedings of the IFIP
WG10.3/WG10.5 International Workshop on Distributed and Par-
allel Embedded Systems, pages 61–71, Norwell, MA, USA, 1999.
Kluwer Academic Publishers.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model Transfor-
mation in the Large. In Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The foundations of Software Engineer-
ing, Dubrovnik, Croatia, Sept. 03 - 07, 2007, pages 285 – 294,
September 2007.

[KPP09] Hillel Kugler, Cory Plock, and Amir Pnueli. Controller Synthesis
from LSC Requirements. In Marsha Chechik and Martin Wirsing,
editors, Proceedings of the 12th International Conference of Fun-
damental Approaches to Software Engineering, FASE 2009, Held
as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009., volume
5503 of Lecture Notes in Computer Science, pages 79–93. Springer,
2009.

[Krü00] Ingolf Krüger. Distributed System Design with Message Sequence
Charts. PhD thesis, Technische Universität München, Institut für
Informatik, 2000.

[KS09] Hillel Kugler and Itai Segall. Compositional Synthesis of Reactive
Systems from Live Sequence Chart Specifications. In Proceedings
of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2009, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009, pages
77–91, 2009.

[KSTM98] Kai Koskimies, Tarja Systa, Jyrki Tuomi, and Tatu Mannisto.
Automated support for modeling oo software. IEEE Software,
15(1):87–94, 1998.

BIBLIOGRAPHY 285

[KTWW06] Jochen Klose, Tobe Toben, Bernd Westphal, and Hartmut Wit-
tke. Check It Out: On the Efficient Formal Verification of Live Se-
quence Charts. In Thomas Ball and Robert B. Jones, editors, Pro-
ceedings of the 18th International Conference on Computer Aided
Verification, CAV 2006, Seattle, WA, USA, August 17-20, 2006.,
volume 4144 of Lecture Notes in Computer Science, pages 219–233.
Springer, 2006.

[KW01] Jochen Klose and Hartmut Wittke. An Automata Based Interpre-
tation of Live Sequence Charts. In Proceedings of the 7th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, volume 2031 of Lecture Notes In Computer
Science, pages 512–527. Springer, 2001.

[KW07] Ekkart Kindler and Robert Wagner. Triple Graph Grammars:
Concepts, Extensions, Implementations, and Application Scenar-
ios. Technical Report tr-ri-07-284, Department of Computer Sci-
ence, University of Paderborn, June 2007.

[LHLH01] Joachim Lückel, Thorsten Hestermeyer, and Xiaobo Liu-Henke.
Generalization of the Cascade Principle in View of a Structured
Form of Mechatronic Systems. In Proceedings of the IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
(AIM 2001), Villa Olmo, Como, Italy, 2001.

[LL94] Claus Lewerentz and Thomas Lindner, editors. Formal Develop-
ment of Reactive Systems, volume 891 of LNCS. Springer, 1994.

[LL06] Claus Lewerentz and Thomas Lindner. KORSO: Methods, Lan-
guages, and Tools for the Construction of Correct Software, chap-
ter Case study “production cell”: A comparative study in formal
specification and verification, pages 388–416. Springer, 2006.

[LLNP09] Kim G. Larsen, Shuhao Li, Brian Nielsen, and Saulius Pusinskas.
Scenario-based analysis and synthesis of real-time systems using
Uppaal. In Proceedings of the 13th Conference on Design, Automa-
tion, and Test in Europe (DATE’10). Aalborg University, 2009.
Technical Report.

[LLNP10] Kim G. Larsen, Shuhao Li, Brian Nielsen, and Saulius Pusinskas.
Scenario-based analysis and synthesis of real-time systems using
Uppaal. In Proceedings of the 13th Conference on Design, Au-
tomation, and Test in Europe (DATE’10), March 2010.

[LMR98] Stefan Leue, Lars Mehrmann, and Mohammad Rezai. Synthesiz-
ing ROOM Models from Message Sequence Chart Specifications.
Technical report, University of Waterloo, Canada, 1998.

[Loc07] Malte Lochau. On Synthesizing Statecharts from Live Sequence
Chart Specifications. Master’s thesis, Technical University Carolo-
Wilhelmina of Braunschweig, Institute for Programming and Re-
active Systems, 2007.

286 BIBLIOGRAPHY

[LS98] X. Liu and S. Smolka. Simple Linear-Time Algorithm for Minimal
Fixed Points. In Proceedings of the 26th Conference on Automata,
Languages and Programming (ICALP’98), volume 1443 of LNCS,
pages 53–66, 1998.

[Mao09] Shahar Maoz. Polymorphic Scenario-Based Specification Models:
Semantics and Applications. In Andy Schürr and Bran Selic, ed-
itors, Proceedings of the 12th International Conference on Model
Driven Engineering Languages and Systems, MODELS 2009, Den-
ver, CO, USA, October 4-9, 2009., volume 5795 of Lecture Notes
in Computer Science, pages 499–513. Springer, 2009.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of pro-
cesses. IEEE Transactions on Software Engineering, 7(4):417–426,
1981.

[MH06] Shahar Maoz and David Harel. From Multi-Modal Scenarios to
Code: Compiling LSCs into AspectJ. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2005, Portland, Oregon, USA, November
5-11, 2006, pages 219–230, 2006.

[MHK02] Rami Marelly, David Harel, and Hillel Kugler. Multiple Instances
and Symbolic Variables in Executable Sequence Charts. In Pro-
ceedings of the 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA
’02), volume 37 of ACM SIGPLAN Notices, pages 83–100, Novem-
ber 2002.

[MOF06] Meta Object Facility (MOF) Core Specification, January 2006.
OMG document formal/06-01-01.

[MWW08] Björn Metzler, Heike Wehrheim, and Daniel Wonisch. Decom-
position for compositional verification. In ICFEM ’08: Proceed-
ings of the 10th International Conference on Formal Methods and
Software Engineering, pages 105–125, Berlin, Heidelberg, 2008.
Springer-Verlag.

[MZ03] Thomas Maier and Albert Zündorf. The Fujaba Statechart Syn-
thesis Approach. In Proceedings of the 2nd International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools,
ICSE 2003, 2003.

[OCL10] Object Constraint Language (OCL 2.2), February 2010. OMG
document formal/2010-02-01.

[PGZ05] Cory Plock, Benjamin Goldberg, and Lenore Zuck. From Re-
quirements to Specifications. In Proceedings of the 12th Annual
IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems. IEEE Computer Society Press, 2005.

[Pnu85] Amir Pnueli. In Transition from Global to Modular Temporal Rea-
soning about Programs. Logics and models of concurrent systems,
pages 123–144, 1985.

BIBLIOGRAPHY 287

[Poh07] Klaus Pohl. Requirements Engineering. Grundlagen, Prinzipien,
Techniken. Dpunkt.Verlag GmbH, 2007.

[QVT08] Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, v1.0, April 2008. OMG document formal/08-04-03.

[RJB05] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni-
fied Modeling Language Reference Manual. Addison-Wesley Pro-
fessional, 2 edition, May 2005.

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph
Grammars. In Tinhofer, G. (Ed.), editor, 20th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science (LNCS), volume Volume 903, pages 151–163,
Heidelberg, 1994. Springer Verlag.

[Sta85] Eugene W. Stark. A proof technique for rely/guarantee properties.
Foundations of Software Technology and Theoretical Computer Sci-
ence, 206:369–391, 1985.

[SUB08] German Sibay, Sebastian Uchitel, and Victor Braberman. Ex-
istential Live Sequence Charts Revisited. In Proceedings of the
ACM/IEEE 30th Int. Conference on Software Engineering ICSE
’08, pages 41–50, 2008.

[Sys08] OMG Systems Modeling Language (OMG SysML 1.1), December
2008. OMG document ormsc/08-11-02.

[UBC07] Sebastian Uchitel, Greg Brunet, and Marsha Chechik. Behaviour
Model Synthesis from Properties and Scenarios. In Proceedings of
the 29th international Conference on Software Engineering, ICSE
’07, pages 34–43, Washington, DC, USA, 2007. IEEE Computer
Society.

[UBC09] Sebastian Uchitel, Greg Brunet, and Marsha Chechik. Synthesis
of Partial Behavior Models from Properties and Scenarios. IEEE
Transactions on Software Engineering, 35(3):384–406, 2009.

[UK01] S. Uchitel and J. Kramer. AWorkbench for Synthesising Behaviour
Models from Scenarios. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE 2001, pages 188–197,
2001.

[UKM03] S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Mod-
els from Scenarios. IEEE Transactions on Software Engineering,
29(2):99–115, 2003.

[UML09] UML 2.2 Superstructure Specification, February 2009. OMG doc-
ument formal/2009-02-02.

[VDI04] VDI, Verein Deutscher Ingenieure. VDI Guideline 2206, Design
Methodology for Mechatronic Systems. Berlin, 2004.

[vL09] Axel van Lamsweerde. Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley, 2009.

288 BIBLIOGRAPHY

[Wag06] Robert Wagner. Developing Model Transformations with Fujaba.
In Holger Giese and Bernhard Westfechtel, editors, Proceedings of
the 4th International Fujaba Days, volume tr-ri-06-275 of Tech-
nical Report, pages 79–82, Bayreuth, Germany, September 2006.
University of Paderborn.

[Wag09] Robert Wagner. Inkrementelle Modellsynchronisation. PhD thesis,
University of Paderborn, February 2009. (in German).

[WS00] Jon Whittle and Johann Schumann. Generating statechart designs
from scenarios. In Proceedings of the 22nd international conference
on Software engineering, ICSE ’00, pages 314–323, 2000.

[WS02] Jon Whittle and Johann Schumann. Statechart Synthesis from
Scenarios: an Air Traffic Control Case Study. In In Proceedings
of the International Workshop on Scenarios and State Machines,
ICSE ’02, 2002.

List of Figures

1.1 A V-model describing the development of a mechatronic system,
on the basis of the VDI 2206 “Design Methodology for Mecha-
tronic Systems” . 3

1.2 The RailCab system: On-demand transportation of passengers
and goods by autonomous rail vehicles (taken from [ADG+09]) . 4

1.3 Three use cases of RailCabs entering a merging switch 5

2.1 Different interactions on the NMS level of the RailCabs system. . 12
2.2 Overview of the diagram kinds used during the conceptual design

of mechatronic systems (taken from [ADG+09]) 14
2.3 The informal description, active structure diagram and activity

diagram for the use case Drive onto track section 16
2.4 The informal description, active structure diagram and activity

diagram for the use case Drive onto merging switch 17
2.5 An illustration of the time constraints formulated in the “Drive

onto merging switch” use case. 19

3.1 The object system and MSDs with concrete lifelines 24
3.2 An extended version of the MSD RequestEnterAtEndOfTrackSection 28
3.3 The Büchi automation corresponding to the iterative interpreta-

tion of the universal MSD RequestEnterAtEndOfTrackSection in
Fig. 3.2. 28

3.4 An illustration of valid and violating super-steps. 31
3.5 A message parameter specified by an expression over an object

property . 35
3.6 An example for a message with a side-effect on the receiving object 35
3.7 Simple examples of assignments and conditions in MSDs. 37
3.8 The MSD ReplyOfSwitchControlNotTooEarly. 38
3.9 An example the RequestEnterAtEndOfTrackSection with symbolic

lifelines in a dynamic system: which object does a lifeline represent? 40
3.10 A class model of the RailCab system and a possible object system

(an object diagram representation of the system shown in Fig. 3.9) 43
3.11 The MSD RequestEnterAtEndOfTrackSection with symbolic life-

lines and a binding expression . 44
3.12 The MSD RequestEnterAtEndOfTrackSection with additional for-

bidden messages . 46

289

290 LIST OF FIGURES

3.13 An example of a light switch modeled as a system of Timed
Automata in Uppaal . 48

3.14 An example of an axiom. 52
3.15 A TGG rule as a graph grammar production rule. 53
3.16 The short-hand notation of a TGG-rule with additional attribute

value constraints. 54
3.17 The creation of an instance of the axiom in the model. 55
3.18 Interpretation of a TGG rule in a forward transformation scenario. 55
3.19 Result of the forward application of the TGG rule Collabora-

tionToSystemATAndEnvironmentAT. 56

4.1 The principle of encoding an MSD specification as a system of
Timed Game Automata . 59

4.2 An untimed MSD specification, formalizing the requirements of
the use case Drive onto track section 61

4.3 The environment and system automata for an untimed example
MSD specification . 64

4.4 The TGA for the MSD RequestEnterAtEndOfTrackSection 69
4.5 The MSD RequestEnterAtEndOfTrackSection extended by an as-

signment and a condition. 74
4.6 The TGA for the MSD RequestEnterAtEndOfTrackSection ex-

tended by an assignment and a condition 74
4.7 The TGA for the assumption MSD LastBreakBeforeEnterNext . . 78
4.8 The specification of the use case Drive onto merging switch as

an example to illustrate the MSD-to-TGA mapping for timed
specifications . 83

4.9 The environment and system automata for a timed example MSD
specification . 84

4.10 The automaton template for the MSD ReplyOfSwitchControlNot-
TooEarly . 88

4.11 The automaton template for the assumption MSD EnterNext-
AfterEightToTwelveSeconds . 93

4.12 A sketch of the compositional synthesis approach 100
4.13 A sketch of the production cell . 104
4.14 Step 0 and Step 1 in the decomposition of the production cell

specification . 106
4.15 Splitting the lifeline of MSD PressPlateAfterArmAReleasesBlank-

Plate according to Step 0 . 107
4.16 A sketch of how the compositional synthesis approach is mapped

to the proof technique of Stark . 111

5.1 The process of finding and resolving inconsistencies in scenario-
based specifications envisioned in ScenarioTools 119

5.2 The collaboration diagram and MSDs of the Warn RailCabs on
track use case specification . 122

5.3 Illustration of how the play-out of the active MSDs belonging to
a use case occurrence is aided by a synthesized controller strategy 126

LIST OF FIGURES 291

5.4 The collaboration diagram and the (single) MSD specified for
the use case Enter denied when hazard on next track section 129

5.5 A combination of the use cases Drive onto track section and Hazard
occurred and Enter denied when hazard on next track section in a
particular instance situation . 129

5.6 The collaboration diagram and the (single) MSD for the use case
Hazard occurred . 130

5.7 The collaboration diagram for a use case that is composed of
occurrences of the use cases Drive onto track section, Hazard oc-
curred, and Enter denied when hazard on next track section 131

5.8 “Flattening” composed use cases to the input for the synthesis . 132
5.9 An occurrence of the composed use case Enter denied when hazard

on next track section AND Drive onto track section AND Hazard
occurred that is executed based on a synthesized controller strategy 134

5.10 An example of incomplete and complete occurrences of a com-
posed use case . 136

5.11 An example of incomplete and complete occurrences of a com-
posed use case under consideration of a context expression 138

6.1 The TGG rule MinimalEnvironmentMessage illustrates extensions
to the TGG formalism. 144

6.2 The generalization hierarchy of the TGG rules for translating
different kinds of messages. 146

6.3 An example where a specialized rule (according to Klar et al.) is
applicable, but not the general rule. 148

6.4 An attribute value constraint is attached to a slot node and con-
strains the value of the slot attribute by the value specified by
the value expression . 150

6.5 An illustration of how many messages representing the same
event are mapped to the same edge by different TGG rules 155

6.6 In the translation of composed use cases to a TGA network, the
same MSD may have to be mapped to multiple MSD template
automata if the use case occurs as an internal use case occurrence
in the composed use case several times 158

7.1 A screenshot of the TGG rule editor 160
7.2 A transformation can be executed by a simple right-click action

on an interpreter configuration file 161
7.3 The two-step transformation approach 161
7.4 The class models of the RailCab specification base package (sim-

plified), and the use cases Drive onto track section and Drive onto
merging switch . 164

7.5 The merged package for use case Drive onto merging switch as
shown in Fig. 7.4 . 165

7.6 The package merge relationships between the packages of some
use case specifications in the RailCab system specification 166

292 LIST OF FIGURES

7.7 An overview of the ScenarioTools modeling and simulation
process . 167

7.8 An overview of the MSD editor in ScenarioTools and the
simulation user interface. 168

7.9 A screenshot of the user interface of the 3D visualization that
was realized within the ScenarioTools Visualization project 170

A.1 An ECore meta-model for Uppaal Tiga (automaton templates,
global/template declarations, system declarations) 192

A.2 An ECore meta-model for Uppaal Tiga (functions, statements,
expressions) . 193

A.3 The UML-Profile for MSD-Specifications 194
A.4 The abstract syntax of an MSD specification: packages, classes,

collaborations, parts, interactions, and lifelines 195
A.5 The abstract syntax of an MSD specification: messages, occur-

rence specifications, events, and operations 196
A.6 The abstract syntax of an MSD specification: conditions and

expressions . 197

B.1 An overview of the rule relationships in the TGG defining the
MSD-to-TGA mapping . 200

B.2 The TGG Axiom PackageToNta . 204
B.3 Part of the TGG rule AbstractMSDSpecification (showing the en-

vironment automaton template created for an MSD specification
as well as its instantiation) . 205

B.4 Part of the TGG rule AbstractMSDSpecification (showing the sys-
tem automaton template created for an MSD specification as well
as its instantiation) . 206

B.5 Part of the TGG rule AbstractMSDSpecification (showing the
global variable and channel declarations that are created for an
MSD specification) . 207

B.6 Part of the TGG rule AbstractMSDSpecification (showing the
global function declarations that are created for an MSD speci-
fication) . 208

B.7 The TGG rule MSDSpecification (refines AbstractMSDSpecification) 209
B.8 The TGG rule TimedMSDSpecification (refines AbstractMSD-

Specification) . 210
B.9 Part of the TGG rule MSD (showing the MSD automaton tem-

plate skeleton structure created for each MSD as well as the
instantiation of the template) . 211

B.10 Part of the TGG rule MSD (showing the template variable and
function declarations created for an MSD automaton template) . 212

B.11 Part of the TGG rule MSD (showing the global function decla-
rations created for each MSD) . 213

LIST OF FIGURES 293

B.12 The TGG rule Lifeline (mapping a lifeline to the declaration of a
lifeline variable and to structures which represent parts of MSD
automaton template edge update and guard expressions; further-
more mapped to part of the bool isHiddenEventEnabled(int player)
function body) . 214

B.13 The TGG rule Message (mapping a message in a TGG to a glob-
ally declared constant, an edge in the MSD automaton template,
and part of an expression that is declared for the MSD automa-
ton template) . 215

B.14 The TGG rule MinimalMessage (mapping a minimal message to
different parts of edge of edge update and guard labels in the
MSD automaton template as well as part of bool enabled (int
ev) function that is declared for the MSD automaton template,
refines the rule Message) . 216

B.15 The TGG rule MinimalEnvironmentMessage (mapping a minimal
environment message to an edge in the environment automaton
template, refines the rule MinimalMessage) 217

B.16 The TGG rule MinimalSystemMessage (mapping a minimal sys-
tem message to an edge in the system automaton template, re-
fines the rule MinimalMessage) . 217

B.17 The TGG rule ForbiddenMessage (mapping a forbidden message
to parts of various function body expressions, refines the rule
Message) . 218

B.18 The TGG rule NonMinimalMessage (mapping a non-minimal
message to an edge update label in the MSD automaton tem-
plate as well as part of a body expression of the function bool
enabled (int ev) in the MSD automaton template, refines the rule
Message) . 219

B.19 The TGG rule ColdMessage (mapping a cold message, refines the
rule NonMinimalMessage) . 220

B.20 The TGG rule ColdEnvironmentMessage (mapping a cold (mon-
itored) environment message to the corresponding edge in the
MSD automaton template, refines the rule ColdMessage) 220

B.21 The TGG rule ColdExecutedEnvironmentMessage (mapping a cold
executed environment message to expression parts in global func-
tions, refines the rule ColdEnvironmentMessage) 221

B.22 The TGG rule ColdSystemMessage (mapping a cold (monitored)
system message to the corresponding edge in the MSD automa-
ton template, refines the rule ColdMessage) 221

B.23 The TGG rule ColdExecutedSystemMessage (mapping a cold ex-
ecuted system message to expression parts in global functions,
refines the rule ColdSystemMessage) 222

B.24 The TGG rule HotMessage (mapping a hot message, refines the
rule NonMinimalMessage) . 222

B.25 The TGG rule HotEnvironmentMessage (mapping a hot (mon-
itored) environment message to the corresponding edge in the
MSD automaton template, refines the rule HotMessage) 223

294 LIST OF FIGURES

B.26 The TGG rule HotExecutedEnvironmentMessage (mapping a hot
executed environment message to expression parts in global func-
tions, refines the rule HotEnvironmentMessage) 223

B.27 The TGG rule HotSystemMessage (mapping a hot (monitored)
system message to the corresponding edge in the MSD automa-
ton template, refines the rule HotMessage) 224

B.28 The TGG rule HotExecutedSystemMessage (mapping a hot ex-
ecuted system message to expression parts in global functions,
refines the rule HotSystemMessage) 224

B.29 The TGG rule StateInvariant (mapping a state invariant to an
edge in the MSD automaton template and parts of global functions) 225

B.30 The TGG rule Assignment (mapping an assignment to a variable
declaration in the corresponding MSD automaton template and
adding an update expression to the according edge in the MSD
automaton template, refines the rule StateInvariant) 225

B.31 The TGG rule ClockReset (mapping a clock reset to a clock
declaration in the corresponding MSD automaton template and
adding an update expression to the according edge in the MSD
automaton template, refines the rule StateInvariant) 226

B.32 The TGG rule Condition (mapping a condition to an additional
part of the corresponding edge’s guard label as well as an addi-
tional edge that represents the violation of the condition, refines
the rule StateInvariant) . 226

B.33 TGG Rule ColdCondition (mapping a cold condition to an update
label statement of the corresponding violating edge, refines the
rule Condition) . 227

B.34 The TGG rule HotCondition (mapping a hot condition to an up-
date label statement of the corresponding violating edge, refines
the rule Condition) . 227

B.35 The TGG rule ColdTimeCondition (mapping a cold time condi-
tion to an update label statement of the corresponding violating
edge, refines the rule Condition) . 228

B.36 The TGG rule HotMaximalDelay (mapping a hot maximal delay
to an update label statement of the corresponding violating edge,
refines the rule Condition) . 228

B.37 The TGG rule HotMinimalDelay (mapping a hot minimal delay
to an edge representing the progression of the delay in the cor-
responding MSD automaton template as well as parts in global
functions) . 229

C.1 A class diagram illustrating the merge relationships between the
different use case specification packages 233

C.2 The class model defined in the package RailCabBase 233
C.3 The collaboration diagram in the Drive onto track section use case

specification . 235
C.4 The MSD RequestEnterAtEndOfTrackSection of the use case spec-

ification Drive onto track section . 236

LIST OF FIGURES 295

C.5 The MSD SetDefaultNextTSC of the use case specification Drive
onto track section . 237

C.6 The MSD DefaultEnterAllowed of the use case specification Drive
onto track section . 237

C.7 The MSD StopWhenEnterDenied of the use case specification
Drive onto track section . 237

C.8 The class diagram in the Drive onto track section use case speci-
fication . 238

C.9 The collaboration diagram in the Drive onto branching switch use
case specification . 239

C.10 The class diagram in the Drive onto branching switch use case
specification . 239

C.11 The MSD EnterDeniedWhenHazardOnBranchingTrackSection of
the use case specification Drive onto branching switch 240

C.12 The MSD NotifyRailCabWhenHazardOnSubsequentBranching-
SwitchResolved of the use case specification Drive onto branching
switch . 241

C.13 The MSD SetNextTrackSectionControlWhenBranchingOnSwitch
of the use case specification Drive onto branching switch 242

C.14 The RailCab’s energy management requires the communication
between different modules in the RailCab (AMS level) (taken
from [ADG+09]) . 243

C.15 The collaboration diagram in the RailCab Energy Management
use case specification . 244

C.16 The class diagram in the RailCab Energy Management use case
specification . 244

C.17 The MSD SetNextTrackSectionControlWhenBranchingOnSwitch
of the use case specification Drive onto branching switch 246

C.18 The ECore class model resulting from the UML-to-Ecore trans-
formation of the package RailCabIntegrated 247

C.19 An instance model of a simple track system with five track sec-
tions, two switches and two RailCabs 248

C.20 A screenshot of the ScenarioTools use interface 249
C.21 A sketch of the situation described by the RailCab Obstacle De-

tected use case . 250
C.22 The collaboration diagram of the Warn RailCabs on track use case

specification . 251
C.23 The MSD WarningWhenObstacleDetected 251
C.24 The MSD ReportObstaclePosition 251
C.25 The MSD ReportObstaclePositionAndIssueWarning 252
C.26 The MSDs that specify the requirements of the production cell. . 261
C.27 The MSDs that specify the assumptions for the environment of

the production cell. 262
C.28 Times of transformation and synthesis for the production cell

specification with different concrete values for delays in the spec-
ification, in a setting where the system is allowed to delay active
events. 263

296 LIST OF FIGURES

C.29 Times of transformation and synthesis for the production cell
specification with different concrete values for delays in the spec-
ification, in a setting where the system is not allowed to delay
active events. 264

C.30 Part one of the decomposed specification – controller c1controls
arm A. 265

C.31 Part two of the decomposed specification – controller c2controls
the press and arm B. 267

C.32 Times of transformation and synthesis for the part specifications
of the production cell with different concrete values for delays
in the specification, in a setting where the system is allowed to
delay active events. 268

C.33 Times of transformation and synthesis for the part specifications
of the production cell with different concrete values for delays in
the specification, in a setting where the system is not allowed to
delay active events. 269

C.34 Example of an untimed MSD specification with exponentially
many activations of MSDs (here n = 3) 272

C.35 A table listing the time for transforming and synthesizing strate-
gies for an untimed MSD specification with exponentially many
MSD activations. 272

C.36 A chart visualizing the time for transforming and synthesizing
strategies for an untimed MSD specification with exponentially
many MSD activations. 273

C.37 Plotting the logarithm (log2) of the synthesis time against the
size of the MSD specification . 274

C.38 Example of a timed MSD specification with exponentially many
activations of MSDs (here n = 4) 275

C.39 A table listing the time for transforming and synthesizing strate-
gies for a timed MSD specification with exponentially many MSD
activations. 275

C.40 A chart visualizing the time for transforming and synthesizing
strategies for a timed MSD specification with exponentially many
MSD activations. 276

Index
active structure diagram, 13
admissible implementation, see MSD spec-

ification, admissible implementa-
tion

assignment, see Modal Sequence Diagrams
(MSDs), assignment

assume-guarantee paradigm, 8, 98
soundness, 98

automaton template, see Uppaal, (au-
tomaton) template

autonomous mechatronic system (AMS),
12

bound (use case occurrence), see composed
use case, bound use case occur-
rence

clock (Timed Automata), see Timed Au-
tomata, clock variables

clock (timed MSDs), see Modal Sequence
Diagrams (MSDs), clock

cold
cut, see cut, temperature

cold violation, 26
complete (composed use case occurrence),

see composed use case, complete
composed use case occurrence

complete controller (complete winning
strategy), 126

composed use case specification, 118
composed use cases, 186

bound use case occurrence, 135
complete composed use case occur-

rence, 135
levels of composed use case occur-

rences, 139
partially bound composed use case oc-

currence, 135
unified use case occurrences, 139

compositional synthesis technique, 97, 186
example (production cell), 263
global specification, 97
part specification, 99
soundness, 108

compositional verification, 97

conceptual design, 2
condition, see Modal Sequence Diagrams

(MSDs), condition
consistent, see MSD specification, consis-

tent
consistent executability, see MSD specifi-

cation, consistently executable
context expressions, 137
cut, 26

execution kind, 26
temperature, 26

disciplines, 11

edges (Uppaal), see Uppaal, edges
environment, see MSD specification, envi-

ronment objects
environment automaton template, 62
event, 25

environment event, 25
synchronous, 25
system event, 25

executed
cut, see cut, execution kind

first event, see Modal Sequence Diagrams
(MSDs), first event

global declarations (Uppaal), see Uppaal,
global declarations

global specification, see compositional syn-
thesis technique, global specifica-
tion

hidden event, 37
hot

cut, see cut, temperature
hot violation, 26

implementation (development phase), 3
incomplete (composed use case occur-

rence), see composed use case,
partially bound composed use
case occurrence

297

Index

levels (of composed use case occurrences),
see composed use cases, levels of
composed use case occurrences

lifeline, 19
binding expressions, 42
locations, 26
symbolic, 39

lifeline variables, 67
Live Sequence Charts (LSCs), 6, 20
local declarations (Uppaal), see Uppaal,

local declarations
locations (Uppaal), see Uppaal, locations

maximal delay, see also Modal Sequence
Diagrams (MSDs), time condi-
tions

mechatronic function modules (MFM), 11
Mechatronic Systems, 11
message, 23, 25

enabled, 26
forbidden, 45
side-effect, 35
temperature, 26
unifiable, 25

Message Sequence Charts (MSCs), 19
messages

symbolic, 171
minimal delay, see also Modal Sequence Di-

agrams (MSDs), time conditions
minimal event, see Modal Sequence Dia-

grams (MSDs), first event
Modal Sequence Diagrams (MSDs), 6, 21,

23
active, 26
active copy, see active
anti-scenario, 38
assignment, 35
assumption MSDs, 8, 60, 186
clock (variable), 37
clock reset, 37
concrete, 39
condition, 35
diagram variable, 33
existential, 25
first event, 26
first message, 26
invariant interpretation, 27, 182
iterative interpretation, 27
symbolic, 39
time conditions, 37

maximal delay, 91
minimal delay, 91

UML profile, 193
monitored

cut, see cut, execution kind
MSD automaton template, 67
MSD specification

admissible implementation, 30

consistent, 32, 79, 253
consistent (winning condition,

changes to TGA model), 113
consistently executable, 32, 79, 253
environment objects, 23
system objects, 23
under-specified, 6

MSD-to-TGA mapping, 57, 199

networked mechatronic system (NMS), 12

Object Constraint Language (OCL), 9, 149
object system, 23

part specification, see compositional syn-
thesis technique, part specifica-
tion

partial observability, 115
partially bound (composed use case occur-

rence), see composed use case,
partially bound composed use
case occurrence

play-out algorithm, 6, 21, 177
principle solution, 3
production cell, 257
production cell example, 103
progressing edge (MSD automaton tem-

plate), 75

RailCab, 4
role binding, see use case occurrence, role

binding
run, 25

safety violation, 26
scenarios, 3
self-optimizing systems, 1
smart play-out, 177
super-step, 177
synchrony hypothesis, 30, 38
system, see MSD specification, system ob-

jects
system automaton template, 62
system definition (Uppaal), see Uppaal,

system definition
Systems Modeling Language (SysML), 13

template (Timed Automaton), see Up-
paal, (automaton) template

Timed Automata, 45
clock variables, 46

Triple Graph Grammars (TGGs), 9, 50,
143

abstract rule, 145
application conditions, 151
application scenarios, 51
attribute constraints, 149
attribute value constraints, 54

298

Index

context edge, 53
context node, 53
correspondence graph, 51
domain model, 51
edge binding, 52
forward transformation, 51
generalization, 144
global constraints, 155
inheritance, see generalization
match (pattern), 52
node binding, 52
produced edge, 53
produced node, 53
refined nodes, 143
reusable nodes, 56, 144, 152
reusable pattern, 156
rule generalization, 55, 187
stereotype constraints, 152

Uppaal Tiga, 46, 48
(un)controllable edge, 48
ECore meta-model, 191
winning states (synthesis algorithm),

49
Uppaal, 46

(automaton) template, 46
channels, 47
edges, 47

enabled, 47
guard label, 47
synchronization label, 47
update label, 47

global declarations, 46
local declarations, 47
locations, 47

committed, 47
urgent, 47

system definition, 46
unified (use case occurrences), see com-

posed use case, unified use case
occurrences

use case occurrence, 123
role binding, 123

use cases, 3
composed, 9

violating edge (MSD automaton template),
75

visible event, 37

winning states, see Uppaal Tiga, winning
states

299

	1 Introduction
	1.1 The problem
	1.2 The objective
	1.3 The approach
	1.4 The contribution
	1.5 The structure of this thesis

	2 Problem Analysis
	2.1 Characteristics of mechatronic systems
	2.1.1 The architecture of advanced mechatronic systems

	2.2 The development of mechatronic systems
	2.2.1 The interdisciplinary design language elaborated in the CRC 614
	2.2.2 Example: specifying two use cases in the RailCab system

	2.3 Problem description
	2.4 Existing scenario-based design techniques

	3 Foundations
	3.1 Modal Sequence Diagrams
	3.1.1 MSDs and the object system
	3.1.2 Events, messages, and runs
	3.1.3 Event unification
	3.1.4 Existential and universal MSDs, hot and cold messages
	3.1.5 Active MSDs, the cut, and hot and cold violations
	3.1.6 The iterative interpretation of MSDs
	3.1.7 Satisfying an MSD specification
	3.1.8 The play-out algorithm
	3.1.9 Consistency, consistent executability, and realizsability
	3.1.10 Parameterized messages
	3.1.11 Object properties and side-effects
	3.1.12 Assignments and conditions
	3.1.13 Visible and Hidden events
	3.1.14 Timed MSD specifications
	3.1.15 Symbolic lifelines
	3.1.16 Forbidden messages

	3.2 Timed Game Automata and Uppaal Tiga
	3.2.1 Timed Automata in Uppaal
	3.2.2 Timed Game Automata in Uppaal Tiga
	3.2.3 On-the-fly synthesis of game strategies

	3.3 Triple Graph Grammars
	3.3.1 Why model transformation with TGGs?
	3.3.2 TGG structure and semantics
	3.3.3 Forward transformation
	3.3.4 Further extensions of TGGs

	4 Synthesis
	4.1 Overview
	4.2 The MSD specification scheme
	4.2.1 Collaboration and class diagram
	4.2.2 Requirement MSDs and assumption MSDs

	4.3 Mapping untimed MSD specifications
	4.3.1 The environment and system automata for untimed MSD specifications
	4.3.2 Mapping the MSDs to TGA
	4.3.3 Encoding assignments and conditions
	4.3.4 Forbidden messages
	4.3.5 Assumption MSDs

	4.4 The winning condition
	4.4.1 Checking consistent executability with Uppaal Tiga
	4.4.2 An alternative winning condition

	4.5 Mapping timed MSD specifications
	4.5.1 The environment and system automata for timed specifications
	4.5.2 Encoding clock resets and time conditions
	4.5.3 Extensions to the winning condition for timed specifications

	4.6 Compositional synthesis
	4.6.1 Compositional reasoning
	4.6.2 The compositional synthesis technique
	4.6.3 Example: the compositional synthesis of the production cell specification
	4.6.4 The compositional synthesis technique is sound

	4.7 Different kinds of consistency
	4.7.1 Disallowing to delay steps in the timed setting
	4.7.2 Consistency vs. consistent executability

	4.8 Summary and Outlook
	4.8.1 Inconsistent environment assumptions
	4.8.2 Partial observability

	5 Symbiosis of Simulation and Synthesis
	5.1 Overview
	5.2 Guiding by controllers from single use cases
	5.2.1 Use case specification example
	5.2.2 Play-out with synthesized controllers

	5.3 Guiding by controllers from composed use cases
	5.3.1 Composed use case example
	5.3.2 Synthesizing controllers from composed use cases
	5.3.3 Guiding the play-out of composed use case occurrences
	5.3.4 Tracking composed use case occurrences
	5.3.5 Systematically tracking composed use case occurrences
	5.3.6 Overly restrictive context expressions

	5.4 Summary and Outlook

	6 Triple Graph Grammar Extensions
	6.1 Overview of the TGG extensions
	6.2 Generalization of TGG rules
	6.2.1 Why a generalization concept for transformation rules?
	6.2.2 The TGG rule generalization concept by Klar et al.
	6.2.3 Improvements to the existing TGG rule generalization concept

	6.3 OCL attribute value constraints
	6.4 UML stereotype constraints
	6.5 Reusable nodes
	6.5.1 Reusable nodes in the example
	6.5.2 The operational semantics of reusable nodes in the target domain during a forward transformation

	6.6 Summary
	6.7 Outlook

	7 Realization and Evaluation
	7.1 The TGG Interpreter
	7.2 MSD-to-TGA mapping and synthesis
	7.3 ScenarioTools
	7.3.1 Modeling
	7.3.2 Simulation
	7.3.3 Physics-engine and visualization

	7.4 Evaluation
	7.4.1 Practicality of the MSD formalism
	7.4.2 Synthesis
	7.4.3 Simulation
	7.4.4 TGG-based model transformation

	8 Related Work
	8.1 Advanced play-out techniques
	8.2 Related synthesis approaches
	8.2.1 Synthesis of global controllers
	8.2.2 Synthesis of distributed controllers

	9 Conclusion and Future Research
	9.1 Summary
	9.2 Future research

	A Meta-Models and Profiles
	A.1 The meta-model for Uppaal Tiga
	A.2 MSD specifications in UML

	B MSD-to-TGA TGG Transformation
	B.1 TGG rule overview
	B.2 OCL attribute definitions
	B.3 TGG rules

	C Examples
	C.1 Simulating an example RailCab specification
	C.1.1 Example specification overview
	C.1.2 Use case DriveOntoTrackSection
	C.1.3 Use case DriveOntoBranchingSwitch
	C.1.4 Use case EnergyManagement
	C.1.5 The simulation model

	C.2 The symbiosis of synthesis and simulation – the use case ``Warn RailCabs On Track''
	C.2.1 Description of the use case ``Warn RailCabs On Track''
	C.2.2 The specification of the use case
	C.2.3 Avoidable violating runs
	C.2.4 The controller synthesized from the use case specification

	C.3 Synthesis example – the production cell
	C.3.1 Description of the production cell example
	C.3.2 The MSD specification of the production cell
	C.3.3 Compositional synthesis of the production cell specification

	C.4 Synthesis performance measurement
	C.4.1 How the measurements were taken
	C.4.2 Untimed specifications with exponentially growing state space
	C.4.3 Timed specification with exponentially growing state space

	Bibliography
	List of Figures
	Index

