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Abstract

Many markets have seen a shift from the idea of buying and moved to leasing instead.

Arguably, the latter has been a major catalyst for their success. In the wake of this shift,

we study in this thesis leasing concepts from an algorithmic perspective. In particular,

we design theoretic models, study their inherent difficulty, and devise provably good

(often optimal), efficient algorithms, with the goal to cope with real-world resource

leasing scenarios.

A major difficulty faced by most of these markets is the uncertainty of future demands.

Consider a subcontractor who leases expensive resources from other companies to rent

them out to clients. The subcontractor may buy long/expensive leases for some resource,

just to realize later on that no more requests are issued for this resource in subsequent

time steps. Or, the subcontractor may buy short leases, just to notice later on that

having bought a longer lease would have cost less.

In attempt to capture this difficulty, our algorithms tend to be online, thus providing

solutions in the present without knowing the future.
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Zusammenfassung

Auf vielen Märkten beobachten wir eine Verschiebung vom Konzept des Kaufens zu dem

des Leasings. Dabei stellt letzteres einen wesentlichen Katalysator für den Erfolg der

Märkte dar. Als Folge dieser Verschiebung befassen wir uns in dieser Thesis mit dem

Konzept des Leasings aus einer algorithmischen Perspektive. Insbesondere entwerfen wir

theoretische Modelle, untersuchen ihre inhärente Schwierigkeit und erarbeiten beweisbar

gute (und häufig optimale) und effiziente Algorithmen mit dem Ziel einen Umgang mit

echten Leasing-Situationen zu ermöglichen.

Eine wesentliche Problematik, mit der sich viele der betrachteten Märkte konfrontiert

sehen, ist die Unsicherheit bezüglich der zukünftigen Nachfrage. Man betrachte beispiel-

sweise einen Subunternehmer, der kostspielige Ressourcen von anderen Unternehmen

least, um diese an seine Kunden zu vermieten. Der Subunternehmer könnte lange/teure

Leasings für eine Ressource nutzen und anschließend bemerken, dass keine weiteren An-

fragen für diese Ressource gestellt werden. Auf der anderen Seite könnte sich der Sub-

unternehmer für kurze Leasings entscheiden und daraufhin feststellen, dass ein längeres

Leasing günstiger gewesen wäre.

Um diese Schwierigkeit zu erfassen, sind unsere Algorithmen vornehmlich online und

ermöglichen somit Lösungen ohne die Zukunft im Voraus zu kennen.
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∆: maximum cardinality of sets

δ: maximum number of sets an element belongs to

K: number of lease types

lmax: maximum lease length

lmin: minimum lease length

lk: length of lease type k

dmax: longest interval length

dmin: shortest interval length

ILP : integer linear program
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Chapter 1

Introduction

Leasing as a model for temporarily acquiring access to goods or services - in contrast

to buying physical ownership - is certainly not a new business model. But given the rise

of digital services, in which physical ownership is at best a blurry concept, leasing is

rapidly becoming not only an alternative but the predominant business model in many

markets. As an example, consider the cloud computing market: Companies and research

institutions needing access to high-tech infrastructure no longer have to acquire or even

build their own server farms but can lease computing time from cloud computing services

such as Amazon AWS, Microsoft Azure, or Google App Engine. These provide different

types of affordable, fine granular, and scalable access to computational power. Arguably,

one of the major catalysts for these services’ success is their degree of flexibility: There

is no need for a huge, upfront investment but instead anyone can leverage access to big

data methods, fast and reliable storage, or scalable web services. A recent technical

report on the development and challenges of cloud computing can be found in [1].

In the light of this development, we will study in this thesis leasing concepts from

an algorithmic perspective. In particular, we will design theoretic models, study their

inherent difficulty, and devise provably (optimal) efficient online algorithms, with the

goal to cope with real-world leasing scenarios.

Given that at the scale of the above mentioned cloud service providers, even small profit

1
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improvements can have a considerable influence on their revenue, it seems necessary to

gain a better understanding of real-world leasing scenarios. This not only is necessary for

cloud service providers, but for cloud users needing access to resources in the cloud be it

for a private use, research need, or a business requirement, as well. With leasing, small

businesses are encouraged, larger ones are given more benefits, and high-tech resources

become easily accessible:

• Drop in initial expenses: There is no need for a large outlay of cash upfront so as

cost can be spread over a larger period of time. This significantly helps maintain

cash flow, which is critical to all businesses: Poor cash flow is a major cause of

small business failures.

• Flexible terms: Leased resources need not be worried about in comparison to

purchased ones: One can easily end a lease, renew it, or change its duration.

• Up-to-date equipment: Efficient, reliable, and high-tech equipment are often too

expensive to buy outright. Leasing not only makes the latter possible, but also

allows frequently replacing obsolete equipment with up-to-date ones.

A major difficulty faced by most businesses is the uncertainty aspect of future demands:

It is often not clear which demands will be requested in the future. Consider a truck

company that leases trucks from a third party based on demands needed. It might

happen that the company buys long/expensive leases for some truck, just to realize

later on that no more requests for this truck are issued in subsequent time steps. Or,

the company buys short leases, just to notice later on that having bought a longer lease

would have cost less.

In pursuit of keeping up with current markets, a sound, systematic, and scientific un-

derstanding of how to behave in face of such uncertainties is a gap we, scientists, are

expected to fill. I hope with this thesis I can take part in filling this gap.
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drive

sunny day

rainy day 

walk

Figure 1.1: Parking Permit Problem

1.1 The Price of Leasing Online

The ‘price of leasing online’ is the price we pay for not knowing the future while making

our leasing decisions. In attempt to realize this price on a theoretical level, Meyerson [2]

introduced the first leasing model with a simple daily-life problem: the ParkingPer-

mitProblem. In this problem, each day (depending on the weather) we have to either

use the car (if it is rainy) or walk (if it is sunny). In the former case, we must have a

valid parking permit, which we choose among different types of permits, each having a

different duration and price. The goal is to buy a set of permits in order to cover all rainy

days while minimizing the total cost of purchases (without using weather forecasts). See

Figure 1.1.

This simple problem, in which a single resource (a permit) is leased, captures the main

concept of leasing online. This thesis falls into a series of works that extend this concept

to more sophisticated problems - such as involving multiple resources - thereby incor-

porating the leasing concept into classical optimization problems, in which decisions are

assumed to be final (resources are bought).

Consider, as an example of multiple resources, a company that provides services in a



Chapter 1. Introduction 4

network it does not own and must therefore lease multiple nodes in order to use them as

servers. A customer may get the service from a server until the lease at the server node

expires, after which the node must be leased again to be used as a server. The main

problem the company is faced with is the unpredictable behavior of customer nodes: it

is not known which nodes at which point of time will request the service. Thus, the

company might buy long and expensive leases for some nodes, just to realize later on

that no more requests are issued to those nodes.

At the core of this example lies a complex infrastructure problem. The term infrastruc-

ture problems is used to refer to classical optimization problems that consider scenarios

where one acquires certain goods or resources (e.g., facilities, network nodes, or net-

work connections) in order to generate or improve a given infrastructure (e.g., a supply

network).

1.2 Thesis Overview

My thesis aligns with a prominent body of literature built upon the seminal work [2] by

Meyerson, who initiated the study of leasing in theoretical research. It has three parts,

the first two of which study two infrastructure problems, respectively. Part one (Chap-

ter 3) introduces and gives results for SetMulticoverLeasing. Part two (Chapter 4)

defines and gives results for FacilityLeasing. Part three (Chapter 5) extends the leas-

ing model by Meyerson [2] to a natural model with the aim to capture more real-world

leasing scenarios.

A short overview of results obtained in this thesis and their connection to the cloud

computing market are given in the following two publications, respectively.

Christine Markarian and Friedhelm Meyer auf der Heide. “Online Resource Leas-

ing”. To appear in: Proceedings of the 34th Annual ACM Symposium on Princi-

ples of Distributed Computing (PODC), 2015 [3].
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Sebastian Kniesburges, Christine Markarian, Friedhelm Meyer auf der Heide,

and Christian Scheideler. “Algorithmic Aspects of Resource Management in the

Cloud”. In: Proceedings of the 21st International Colloquium on Structural In-

formation and Communication Complexity (SIROCCO), 2014 [4].

The remainder of this section provides a short description of each part and the corre-

sponding results.

Set Multicover Leasing. In this part, SetMulticoverLeasing is introduced. El-

ements U (|U | = n), each with some value p specifying the number of sets to be covered

by, arrive over time and must be covered by sets from a family F (|F | = m) of subsets

of U . Each set can be leased for K different periods of time. Leasing a set S for a

period k incurs a cost cSk and allows S to cover its elements for the next lk time steps.

SetMulticoverLeasing asks to minimize the total cost of sets leased, such that each

element arriving at time t with value p is covered by p different sets containing it and

leased during time t. SetMulticoverLeasing generalizes SetCoverLeasing by set-

ting p = 1 for all elements. The latter was introduced by Anthony et al. [5] who only

studied the problem in the offline setting. In this part, the following is achieved:

(i) SetMulticoverLeasing is introduced and an O(log(δ · K) log n)-competitive

online algorithm for the latter, where δ is the maximum number of sets an element

belongs to, is given.

(ii) This algorithm is modified to yield the first competitive online algorithm for

SetCoverLeasing, with a competitive factor O(log(δ · K) log n) = O(log(m ·

K) log n).

(iii) This also implies:

• An optimalO(log δ log n)-competitive algorithm for OnlineSetMulticover

introduced by Berman and DasGupta [6] which is a special case of SetMul-

ticoverLeasing if we just set K = 1 and l1 =∞.
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• An improvement for OnlineSetCoverWithRepetitions introduced by

Alon et al. [7] in which elements arrive over time and may appear multi-

ple times such that an element must be covered by a different set at each

arrival, from O(log2(m · n)) [7] to O(log δ log(δ · n)) = O(logm log(m · n)).

The results in this part are based on the following publication.

Sebastian Abshoff, Christine Markarian, and Friedhelm Meyer auf der Heide.

“Randomized Online Algorithms for Set Cover Leasing Problems”. In: Proceed-

ings of the 8th Annual International Conference on Combinatorial Optimization

& Applications (COCOA), 2014 [8].

Facility Leasing. FacilityLeasing was introduced along with SetCoverLeasing

by Anthony et al. [5] who gave offline algorithms for the two problems. Clients D

(|D| = n) arrive over time and must be connected to open facilities F (|F | = m). Each

facility can be leased for K different periods of time. Leasing a facility i for a period k

incurs a cost cik and ensures that i is open for the next lk time steps. Connecting a client

j to facility i incurs a connecting cost dij . FacilityLeasing asks to connect each client

to an open facility while minimizing the total leasing and connecting costs. Nagarajan

et al. [9] gave the first online algorithm, with an O(K log n)-competitive factor for the

problem. In this part, the following is presented:

(i) The first online algorithm, with a time-independent competitive factor

O(lmax log(lmax)), where lmax denotes the maximum lease length, is given.

(ii) The algorithm is shown to have an O(log2(lmax))-competitive factor for many

‘natural’ cases, such as, situations in which the number of clients arriving in each

time step does not vary too much, or is non-increasing, or is polynomially bounded

in lmax.

The results in this part were achieved by Kling et al. in [10] and later incorporated into

the following publication. They are presented here in this thesis for completeness.
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Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm Meyer auf der

Heide, and Peter Pietrzyk. “Towards the Price of Leasing Online”. To appear

in: Journal of Combinatorial Optimization (JOCO), 2015 [11].

Flexible Demands. In this part, a new model for online leasing problems is intro-

duced. In this model, demands with deadlines arrive over time and need to be served

by leased resources. A resource can be leased for K different periods of time each in-

curring a different cost, such that longer leases cost less per unit time. Each demand j

can be served anytime between its arrival aj and its deadline aj + dj . The objective is

to meet all deadlines while minimizing the total leasing costs. This model is a natural

generalization of Meyerson’s ParkingPermitProblem [2] in which dj = 0 for all j. In

this part, the following is achieved:

(i) A new leasing model that considers demands with deadlines is introduced.

(ii) An online algorithm for the proposed model, with a Θ(K + dmax
lmin

)-competitive

factor where dmax and lmin denote the largest dj and the shortest available lease

length, respectively, is given.

(iii) The SetCoverLeasingWithDeadlines problem, an extension of SetCover-

Leasing which includes deadlines, is introduced.

(iv) An online competitive algorithm for SetCoverLeasingWithDeadlines, which

also improves results for SetCoverLeasing, is proposed.

The results in this part are based on the following publication.

Shouwei Li, Alexander Mäcker, Christine Markarian, Friedhelm Meyer auf der

Heide, and Sören Riechers. “Towards Flexible Demands in Online Leasing Prob-

lems”. In: Proceedings of the 21st International Computing and Combinatorics

Conference (COCOON), 2015 [12].

The next section discusses an interesting connection between the results obtained in this

thesis and the cloud computing market.
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1.3 Leasing in the Cloud

“Security is still the elephant in the cloud” said an information security architect who

builds security cloud services for international software vendors and whose team cur-

rently has the largest adopted cloud encryption solutions worldwide [13].

Although organizations are becoming more comfortable with the idea of putting at least

some of their resources into the cloud, this is still a comparatively new paradigm and thus

introduces a high level of uncertainty and questions regarding how secure the cloud is.

Ensuring a level of security to costumers, however, is clearly not an easy task. At best,

costumers are advised to pay particular attention to contractual language addressing

security-related issues. Nevertheless, cloud contracts often have vague terms regarding

the maintenance of data confidentiality, reliability, and recovery, making it difficult to

rely on cloud providers and manage risk. Consequently, costumers either decide to

stay away from the cloud - despite the benefits they would get, or are tempted to pass

the task off to a subcontracting company under the “the more eyes on it, the better”

theory, thus handing over full responsibility to a third party. This party is not only

expected to assure reliability to clients but to promptly respond to their expectations

and requirements.

It is well argued that involving subcontracting companies leads to a wider diversity of

providers in the cloud computing market thus avoiding the latter to be dominated by

few large providers. As a result of competition, a variety of prices is expected, thus

giving strong cost benefits for both providers and clients. These benefits are not only

restricted to cost, but benefits resulting from sharing resources as well - which already

constitute a key strength of the cloud computing market and become more prominent

when subcontractors come into play.

In this thesis, we will be the subcontractors - who despite making the life of clients easier

and the cloud a more desirable place, are faced with difficult challenges - challenges we

try to soften by identifying critical scenarios, proposing solutions, and calling research

for help.
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Client 1 Client 2 Client 3

Subcontractor

...

𝐏𝐫𝐨𝐯𝐢𝐝𝐞𝐫 𝟏 𝐏𝐫𝐨𝐯𝐢𝐝𝐞𝐫 𝟐

...

Figure 1.2: Leasing in the Cloud

Imagine you are a subcontractor and you have promised to satisfy all your costumers

not only by fulfilling their demands on time but by also giving them best possible prices.

You have agreed with a number of providers - all giving similar services but at different

costs. See Figure 1.2 for an illustration. Each day, you may receive a phone call from

a costumer asking to use a machine in the cloud - which although is offered by all

providers, the distance between the client and the provider affects the price and so you

need to make smart decisions. The closer the provider to the client is, the cheaper is the

connection cost. The overall price the client pays for using the machine depends on the

connection cost and the provider you pick - clearly you need to pay the provider and

here comes your challenge. As is typical for accessing machines in the cloud, you need to

decide how long to lease the machine - obviously, the longer the lease, the less you pay

per unit time. If you could know who will call on each day, things would have been easy

- there are plenty of efficient offline algorithms in the literature which one can use. But

the problem here is that you do not know which clients will demand which machines in

the future. Yet, you still need to decide when to lease a machine, from which provider,

and for how long. Chapter 4 of this thesis handles typically such scenarios.

Now what if, each provider offers only some of the services and all connection costs are

waved. You are asked to answer all phone calls and satisfy each costumer by selecting
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an appropriate provider which is offering the requested service. Again, for the same

reason of not knowing future phone calls, you are faced with a similar challenge - one

Chapter 3 of this thesis tries to solve.

Imagine you receive a phone call from a client saying: “I would like to use machine ‘X’

but I do not mind to wait as long as you can give me a better price - I just need to

use it any time before three weeks”. For a moment, you are happy because you have

more freedom - but does this make your decision any easier? We answer this question

in Chapter 5 and propose online algorithms for such situations.

I can go on with more of such scenarios but as long as I will have to go beyond the scope

of this thesis, I’d rather stop here and head to the technical contribution of this thesis,

in the coming chapters.





Chapter 2

Preliminaries

The aim of this chapter is to familiarize the reader with a background necessary to

grasp the research done in this thesis. Those familiar with approximation, online, and

primal-dual algorithms may skip the first section (Section 2.1). Section 2.2 provides

the first theoretic results in leasing: deterministic and randomized provably optimal

algorithms for the ParkingPermitProblem. The last section (Section 2.3) describes

a framework that transforms a given online problem with certain properties to its leasing

variant. Both problems SetMulticoverLeasing and FacilityLeasing studied in

Chapters 3 and 4, respectively, are derived from this framework.

2.1 Approximation, Online, & Primal-dual Algorithms

The main purpose of this section is to give the reader an intuitive idea and understanding

of how we measure the quality of our algorithms. To do so, we define approximation,

online, and primal-dual algorithms.

Approximation Algorithms. Many real-world optimization problems (e.g., nurse

scheduling, logistics, flights management) are often hard to solve optimally within a

reasonable period of time. In scientific terms, these problems are referred to as NP-hard

12
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problems, which cannot be solved in time polynomial in the input size if the complexity

classes NP and P are not equal. From here comes the idea of approximation algorithms,

which are algorithms running in time polynomial in the input while computing solu-

tions that are not necessarily optimal but provably close to optimal. More detailed

introduction to approximation algorithms can be found in [14].

To measure the quality of an approximation algorithm, worst-case approximation ratio

is commonly used.

Definition 2.1. (Worst-case Approximation Ratio) Given a minimization problem and

a set Π of all feasible instances of this problem. Let Opt(I) denote the cost of an optimal

solution for an instance I ∈ Π. We say an approximation algorithm Alg has a worst-case

approximation ratio γ if:

γ := sup
I∈Π

Alg(I)

Opt(I)

where Alg(I) is the cost of Alg for an instance I and γ = 1 if Alg is optimal.

Online Algorithms. Approximation algorithms are essential should time be crucial

and so we trade quality for computation time. There are other real-world problems,

however, in which time is not necessarily prominent. Instead, we lack critical information

such as the future. This is specifically true in the business world, in which demands are

not known in advance, or at least nothing is guaranteed about the future. Despite

that, we are expected to make smart decisions to keep the businesses alive. Computer

science models such scenarios as online problems where online means decisions are to be

made on-the-fly without having the entire input in advance. The difficulty in an online

problem lies in the irrevocable decisions: We cannot go back in time and change our

mind. More detailed introduction to online algorithms can be found in [15].

To measure the quality of an online algorithm, worst-case competitive ratio is commonly

used. Here, we basically compare the cost of an online algorithm to that of an optimal

offline algorithm, which knows all the future.
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Definition 2.2. (Worst-case Competitive Ratio) Given a minimization problem and

a set Π of all feasible instances of this problem such that only part of an instance is

revealed in each time step. Let Opt(I) denote the cost of an optimal offline solution for

an instance I ∈ Π. We say an online algorithm Alg has a worst-case competitive ratio

γ (or, γ-competitive) if:

γ := sup
I∈Π

Alg(I)

Opt(I)

where Alg(I) is the cost of Alg for an instance I and γ = 1 if Alg is optimal.

Throughout this thesis, we consider that instances are revealed by an adaptive adversary

which knows all the actions taken by an online algorithm thus far and can accordingly

choose the next instances. Moreover, we will talk about deterministic and randomized

online algorithms. Unlike a deterministic algorithm, the worst-case competitive ratio of

a randomized algorithm is measured using the expected cost resulting from the random

choices made by the randomized online algorithm.

Primal-dual Algorithms. The core of a primal-dual algorithm is a linear program.

A linear program (LP) is an optimization (minimization or maximization) of a linear

objective function over a feasible set defined by a system of linear inequalities. A key

aspect of optimization problems is that they come in pairs: Every minimization problem

has a maximization counterpart and vice versa. In Figure 2.1, we find a linear program

of a minimization problem, such that A ∈ Rn×m is a matrix and c, x ∈ Rm are column

vectors. The upper part is called the primal program (the original problem) and its

counterpart in the lower part is the dual program. x and y are called primal variables

and dual variables, respectively. Similarly, the inequalities Ax ≥ b and AT y ≤ c are

referred to as primal constraints and dual constraints, respectively. An integer linear

program (ILP) is a special case of LP where x ∈ {0, 1}. An introduction to linear

programming can be found in [16].

At a high level, a primal-dual algorithm works as follows:
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min cT · x
Subject to: Ax ≥ b

x ≥ 0

max bT · y
Subject to: AT y ≤ c

y ≥ 0

Figure 2.1: Linear Program

• Formulate a given optimization problem as a linear program.

• Construct a dual solution.

• Derive a primal solution from the dual solution.

Primal-dual algorithms have served as efficient approximation algorithms for many NP-

hard problems, not only in the offline but in the online setting as well. For more detailed

introduction to primal-dual algorithms, see [17].

The reason for their success mainly goes to the properties of linear programs and in

particular, the relationship between primal and dual programs. Among these properties

is the weak duality theorem, defined as follows.

Theorem 2.3. (Weak Duality) Let x be a feasible solution for the primal program and

y a feasible solution for the dual program, then

cT · x ≤ bT · y

Proof. Since y is a feasible solution for the dual program and x ≥ 0, we have

cT · x = xT · c ≤ xT · (AT · y)

Since x is a feasible solution for the dual program and y ≥ 0, we deduce

xT · (AT · y) = (Ax)T · y ≤ bT · y
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This means that any dual solution is a tight lower bound to a primal solution. Another

useful theorem regarding the optimal solution is described in the following.

Theorem 2.4. (Strong Duality) Let x∗ be an optimal solution for the primal program

and y∗ an optimal solution for the dual program, then

c · x∗ = b · y∗.

2.2 The Parking Permit Problem

Before we head to complex leasing problems, it is important to have an understanding

of the first theoretic model, algorithms, and results in leasing. As mentioned earlier,

Meyerson [2] introduced the first leasing model with the ParkingPermitProblem.

In this section, a formal definition of the problem along with two online approaches

(deterministic and randomized) proposed by Meyerson, are given.

2.2.1 The Leasing Model

In this section, a formal definition of the ParkingPermitProblem followed by a sim-

plified version of the latter are presented.

Problem Definition. On each day t, we are either given a client (sunny day) or not

(rainy day). There are K different types of leases (permits), each with its own duration

and cost (longer leases tend to cost less per day). A client arriving on day t is served if

there is a lease in the solution which covers t. The goal is to buy a set of leases such

that all arriving clients are served while minimizing the total cost of purchases.
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min
∑

(k,t)∈L
x(k,t) · ck

Subject to: ∀t′ ∈ D :
∑

(k,t)∈L,t′∈[t,t+lk]

x(k,t) ≥ 1

∀(k, t) ∈ L : x(k,t) ∈ {0, 1}

max
∑
t′∈D

yt′

Subject to: ∀(k, t) ∈ L :
∑

t′∈D,t′∈[t,t+lk]

yt′ ≤ ck

∀t′ ∈ D : yt′ ≥ 0

Figure 2.2: ILP Formulation of the ParkingPermitProblem

To allow more coherence throughout the thesis, particularly in regard to Chapter 5

which extends the ParkingPermitProblem model within the primal-dual scheme, we

will formulate the latter as an integer linear program (ILP).

Figure 2.2 shows this formulation. A lease of type k has cost ck and length lk. lmin

and lmax denote the shortest and the longest lease length, respectively. We refer to a

type k lease starting at time t as (k, t), a client arriving on day t as t, and an interval

[a, a+ b] as Iba. The collection of all leases is L and the collection of all clients is D. We

say a lease (k, t′) ∈ L is a candidate to client t ∈ D if t ∈ I lkt′ . The sum in the objective

function represents the costs of buying the leases. The indicator primal variable X(k,t)

tells us whether lease (k, t) is bought or not. The primal constraints guarantee that each

client t ∈ D is served. A dual variable Yt is assigned to each client t.

A Simplified Model. As a convenience for his analysis, Meyerson introduced a model

he referred to as the interval model. The interval model simplifies the original leasing

model at the cost of a small constant factor in the competitive ratio.

Definition 2.5. (Interval Model) Leases in the interval model satisfy the following two

properties:
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Figure 2.3: Interval Model

In the upper image, leases can have arbitrary length and start at arbitrary times. In
the lower image (interval model), we allow only lengths that are a power of two and
are non-overlapping for each lease type. The proof of Lemma 2.6 merely uses that we
can map between the two models by opening two consecutive intervals of the same time

without sacrificing feasibility.

• Lease lengths lk are powers of two.

• Leases of the same type do not overlap.

The following lemma states the effect of the interval model on the competitive ratio. An

illustration can be found in Figure 2.3.

Lemma 2.6. Any c-competitive leasing algorithm for the interval model yields a 4c-

competitive leasing algorithm for the original model.

Proof. Consider a leasing problem instance I for general leases and construct a new

instance I ′ by rounding each lease length lk ∈ N to the next power of two. That is,

the lease lengths of I ′ are l′k := 2dlog lke. Let S′ denote the solution constructed by the

c-approximation algorithm for the interval model when given I ′. From S′, we construct

a solution S for I as follows: for each lease of type k bought at time t in solution S′, buy

two consecutive leases of type k at times t and t+ lk. Since lk + lk ≥ l′k, any lease pair in

S covers at least all the demands covered by the original lease in S′. Moreover, we have
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cost(S) = 2 cost(S′) ≤ 2c cost(OPT ′), where OPT ′ denotes an optimal solution for I ′ in

the interval model. Now, note that an optimal solution OPT for I in the general model

yields a solution S̃ for I ′ in the interval model as follows: for each lease of type k bought

at time t in solution OPT, buy two leases of type k at times b t
l′k
c · l′k and b t

l′k
c · l′k. These

leases cover at least all the demands of the original lease and obey the interval model.

Thus, we get cost(OPT ′) ≤ cost(S̃) = 2 cost(OPT ). The lemma’s statement follows by

combining both inequalities.

2.2.2 Deterministic Approach

Meyerson gave a deterministic competitive algorithm for the ParkingPermitProblem

and showed that it is optimal. In what follows, a description of the algorithm, its

analysis, and the deterministic lower bound achieved - i.e., no deterministic algorithm

for the problem can obtain better than this bound - are presented.

Deterministic Algorithm. Although Meyerson does not explicitly present his deter-

ministic algorithm in a primal-dual fashion, his algorithm is, in essence, a primal-dual

algorithm and can be described as follows.

Algorithm 1 Deterministic Primal-dual Algorithm for the ParkingPermitProblem

When a client t′ arrives,
(i) increase the corresponding dual variable yt′ until the dual constraint

corresponding to a candidate (k, t) becomes tight.

(ii) set the primal variable x(k,t) of every tight candidate to one.

Analysis. Meyerson proved the competitive ratio of his algorithm using induction.

Nevertheless, it is also possible to use primal-dual techniques to do so, as we shall see

in what follows.

The theorem below states the competitive ratio of the primal-dual algorithm described

above.
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Theorem 2.7. Algorithm 1 yields a competitive ratio O(K) for the ParkingPermit-

Problem.

Proof. Since Algorithm 1 never violates the dual constraints (it stops increasing the dual

variables until one constraint is tight), the dual solution constructed is clearly feasible.

Furthermore, since the algorithm makes sure the primal variable of at least one candidate

is set to 1 for each arriving client, the primal solution is also feasible. It remains to show

a relationship between the cost of the primal solution and that of the dual solution, in

order to prove the competitive ratio as we shall see next.

Let P ⊆ L denote the primal solution constructed by the algorithm. Since the dual

constraint is tight for each (k, t) ∈ P , we have

ck =
∑

t′∈D:t′∈It+lk
t

Yt′ . (2.1)

Then, we have

∑
(k,t)∈P

ck =
∑

(k,t)∈P

∑
t′∈D:t′∈It+lk

t

Yt′ =
∑
t′∈D

Yt′
∑

(k,t)∈P :t′∈It+lk
t

1. (2.2)

Assuming the interval model (Definition 2.6) for the leases, we have that on each day t,

there are exactly K leases covering t and hence are candidates for a client arriving on

day t. This means that the algorithm can only set the primal variables corresponding

to at most K leases to 1. Thus,

∑
(k,t)∈P :t′∈It+lk

t

1 ≤ K. (2.3)

This implies that the cost of the primal solution (
∑

(k,t)∈P
ck) is upper bounded by K

times the cost of the dual solution (
∑
t′∈D

Yt′). By weak duality (Theorem 2.3), we have

that any any feasible dual solution is a lower bound to any feasible primal solution,

which includes an optimal primal solution. This means the cost of the primal solution
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constructed by the algorithm is upper bounded by K times the cost of an optimal primal

solution, which concludes the proof.

Lower Bound. The theorem below shows a lower bound to the best deterministic

competitive ratio for the ParkingPermitProblem.

Theorem 2.8. No deterministic algorithm for the ParkingPermitProblem whose

competitive ratio depends solely on K can obtain better than Ω(K)-competitive ratio.

Proof. Consider an adversary with a very simple adaptive strategy: a client is given as

long as the algorithm can not serve it with the leases bought so far. Assume that leases

satisfy the interval model and there are K lease types with costs ck = 2k and length

lk = 2Klk−1 = (2k)k. We now look at intervals of length lk which have at least one

client and divide them into three classes.

(i) The algorithm buys a lease of length lk for this interval.

(ii) The algorithm buys a lease of length larger than lk for this interval.

(iii) The algorithm does not buy a lease of length lk or larger for this interval.

Let nk, nj(j > k), and qk denote the number of intervals of class (i), (ii), and (iii),

respectively. We denote by Alg and Opt the cost of an online algorithm and an optimal

offline algorithm, respectively. Now, we observe how two such algorithms behave.

Clearly, we have that Alg =
K∑
k=1

nkck. Moreover, we can show that Alg ≥ Kqkck.

Consider any interval of length lk containing at least one client. We show by induction

that any online algorithm must pay at least ck on each such interval.

• (base case) k=0, obviously true.

• (hypothesis) Assume the algorithm pays at least ck−1 for an interval of length lk−1.
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• (induction step) If the algorithm buys a lease of type k, then it spends at least

ck. Otherwise, we can divide the interval into 2K intervals of length lk−1, each

starting with a day containing a client. The algorithm spends for each of these

intervals, recursively, at least ck−1, thus summing up to a total cost of at least

2Kck−1 = Kck for an interval of length lk.

An optimal offline algorithm, on the other hand, cannot do worse than purchasing a

lease of type k for each interval of length lk. Thus, we have that Opt ≤ ck(qk +
∑
j≥k

nj).

Summing up over all K lease types, we get

KOpt ≤
K∑
k=1

(ck(qk +
∑
j≥k

nj))

=

K∑
k=1

(nk(

k∑
j=1

ck + ckqk)

≤
K∑
k=1

(2nkck + qkck)

≤ 3Alg

2.2.3 Randomized Approach

Besides the optimal deterministic algorithm, Meyerson used randomization to improve

the O(K)-competitive ratio to O(logK) and showed that it is optimal. In what follows,

a description of the randomized algorithm, its analysis, and the lower bound achieved -

i.e., no randomized algorithm for the problem can obtain better than this bound - are

presented.
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Randomized Algorithm. The core of Meyerson’s randomized algorithm is a frac-

tional solution - fractions of leases are bought (e.g., 1/4, 1/3, 1/2) such that for each ar-

riving client, fractions of its candidates sum up to 1. The fractional version of the Park-

ingPermitProblem can be viewed as a relaxation of the linear program - x(k,t) ∈ [0, 1]

rather than x(k,t) ∈ {0, 1}. Meyerson’s algorithm first constructs a fractional solution

and then converts it online to an integer solution using randomization.

The algorithm maintains a fraction f(k,t) (which, for ease of description, will be referred

to as fk) for each lease (k, t) ∈ L (similarly here: k ∈ L), initially set to zero and non-

decreasing throughout the algorithm. Let Qt be the collection of candidates of client

t. The randomization used is restricted only to choosing a threshold τ uniformly at

random between 0 and 1.

Algorithm 2 Randomized Algorithm for the ParkingPermitProblem

When a client t arrives,
(i) (fractional solution) While

∑
k∈Qt

fk < 1,

fk = fk · (1 + 1/ck) + 1
|Qt|·ck

(ii) (integer solution) buy k ∈ Qt with
K∑

i=k+1

fi < τ ≤
K∑
i=k

fi

Analysis. Meyerson proved that the randomized algorithm above has an O(logK)-

competitive ratio.

To achieve his competitive ratio, he proved that:

(i) The cost of the fractional solution constructed is at most O(logK) times that of

an optimal offline solution.

(ii) The cost of the integer solution constructed is at most that of the fractional solu-

tion.

Proof of (i) When a client t arrives, in each while loop, the fraction of each candidate

(k, t′) ∈ Qt is increased by
(
fk
ck

+ 1
|Qt|·ck

)
. If we sum up over all candidates in Qt, the

total fractional cost increases by
∑

(k,t′)∈Q ck ·
(
fk
ck

+ 1
|Qt|·ck

)
=
∑

k∈Qt
fk + 1. Since
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∑
k∈Qt

fk < 1, the total fractional cost thus increases by 2 in each while loop. Moreover,

in each while loop, at least one candidate k ∈ Qt is in the optimal solution. After ck

loops, the fraction of this candidate reaches to at least 1
|Qt| due to the second part of the

equation 1
|Qt|·ck . After this, the first part of the equation keeps multiplying the fraction

by (1 + 1/ck) and stops when it becomes larger than 1. Hence, after O (ck · log |Qt|)

loops,
∑

k∈Qt
fk will be greater than 1 and since |Qt| = K, (i) follows. �

Proof of (ii) Note that
K∑

i=k+1

fi < τ ≤
K∑
i=k

fi ensures feasibility of the integer solution,

because there will always be some lease k satisfying this inequality. To compute the

expected cost, consider an interval [t, t+ lk] and its corresponding lease. The algorithm

may buy this lease on any day in this interval and, in particular, on a day in which

τ >
K∑

i=k+1

fi and τ ≤
K∑
i=k

fi hold. The probability of buying a lease is thus bounded by

the probability that τ falls between these two values. To complete the total expected

cost, we sum up over all intervals of all lk’s. The next trick here is to exploit the following

two facts:

• The first and last days of neighboring intervals coincide.

• ci+1 ≥ 2ci.

Manipulating the obtained equation using these two facts concludes the proof of (ii). �

Lower Bound. The theorem below shows a lower bound to the best randomized

competitive ratio for the ParkingPermitProblem.

Theorem 2.9. No randomized algorithm for the ParkingPermitProblem whose

competitive ratio depends solely on K can obtain better than Ω(logK)-competitive ratio.

Proof. Following Yao’s minimax principle [18], which states that given an online prob-

lem, the competitive ratio of the best randomized online algorithm against any oblivious

adversary is equal to the competitive ratio of the best deterministic online algorithm un-

der some input distribution, Meyerson considered deterministic algorithms operating on
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a randomized input instance. There are K lease types such that ci = 2i for a lease type

i. The duration of a lease type i is assumed to be arbitrarily larger than that of lease

type i − 1. The randomized instance is constructed as follows. We say an interval is

active if the i-th subinterval of the interval is active with probability (1
2)i−1. This means

that the first sub-interval and the top-level interval are always active. This recursion

implies that an active interval corresponding to type 1 has a client. We now look at

how a deterministic online algorithm and an optimal offline algorithm behave given this

instance.

An online algorithm has to decide whether or not to buy a lease of type k for an active

interval. Buying a lease of type k costs ck = 2k, and if the algorithm chooses to pay

separately for each active sub-interval of type k− 1 instead, it pays an expected cost of

lk−1∑
i=0

2k−1

2i
= 2k−1

lk−1∑
i=0

2−i < 2k. (2.4)

This means that it is cheaper for the algorithm to buy shorter leases and this holds for

any type of lease. This implies that the algorithm is to buy only type 1 leases every time

a client arrives. Thus, the expected cost of the algorithm will be the expected number

of clients. Let ak be the expected number of active intervals of length lk. We have that

ak = ak−1 ·
lk−1∑
i=0

2−i. If lk is assumed to be arbitrarily large for any k, then we can say

that ak ≈ 2ak−1. This implies that aK ≈ 2K , where a1 = 1.

An optimal offline algorithm, on the other hand, can not do worse than buying a lease

of type k for every interval containing at least log k + 1 active sub-intervals. Meyerson

showed, using induction, that the expected cost of an optimal offline algorithm will thus

be upper bounded by 2K+1

logK .

2.3 The Leasing Framework

This section provides a general framework we proposed in [11], to transform a given

suitable online problem to its leasing variant. We will later use this framework to



Chapter 2. Preliminaries 26

formally describe SetMulticoverLeasing and FacilityLeasing in Chapters 3 and

4, respectively.

The main property, we require, of the original (non-leasing) online problem is a temporal

covering aspect: demands j ∈ D from a demand set D arrive over time and have to be

covered by buying a suitable infrastructure element i ∈ I from some infrastructure set

I. We use the notation (j, t) to indicate a demand j ∈ D arriving at time t ∈ N.

Buying an infrastructure element i is associated with a (one-time) cost ci ∈ R≥0. The

covering happens on the fly (without knowledge of the number or properties of future

demands) and represents an irrevocable decision (we cannot discard an already bought

infrastructure element when we perceive a better solution later on). Examples of such

problems include online vertex cover (where edges arrive over time and we buy nodes to

cover them), online dominating set (where nodes arrive over time and we buy incident

nodes to cover them), and online steiner trees (where terminals arrive over time and we

buy edges to keep them connected).

Given a problem with such a temporal covering aspect, we transform it into its leasing

variant by introducing K ∈ N different lease types. Lease type k ∈ {1, . . . ,K} is

associated with a lease length lk ∈ N. We use lmax := maxk lk to refer to the maximal

lease length. Instead of buying an infrastructure element i ∈ I, an algorithm leases i

at some time t ∈ N using some lease type k. This incurs a leasing cost cik ∈ R≥0 and

allows this infrastructure element to cover (suitable) demands during the time window

[t, t+ lk). We refer to the triple I ×{1, . . . ,K}×N as the infrastructure leasing set and

denote it by Ī. For a time t, we define Ī(t) :=
{

(i, k, t′) ∈ Ī : t ∈ [t′, t′ + lk)
}

(i.e., all

leases covering time t). By setting K = 1, l1 = ∞, and ci1 = ci, we get the original

(non-leasing) online problem. Note that this transformation is independent of other

problem aspects. For example, it does not interfere with when an infrastructure element

is regarded suitable to cover a demand. We will apply such transformations in Chapters

3 and 4 to extend known algorithmic design techniques (e.g., greedy or primal-dual

algorithms) to the leasing setting.





Chapter 3

Set Multicover Leasing

Resource allocation has become a major concern in many areas such as economy (re-

sources are allocated by markets), project management (jobs are scheduled to resources),

and networks (network nodes are assigned roles to be used as resources). Consider, as

an example, a set of files and a number of servers each containing a subset of these files.

Users arrive with time and request files among this set. Servers need to be activated

in order to give access to users. The difficulty here is that we do not know in advance

which files will be requested. Given that, we still need to decide which servers to acti-

vate, when, and for how long. Clearly, we want to minimize the cost of activating the

servers, keeping in mind that the longer we keep a server active the less we pay for the

server per unit time.

As another example, consider a subcontractor who leases expensive equipment from

other companies and rents them out to clients. If the subcontractor knows that some

equipment will be needed for ten whole years (e.g., each year a new client will come

and request the equipment for one year), it is best to lease it for ten years from a

company offering the equipment. Nevertheless, the subcontractor does not know what

will happen in the future and so might lease the equipment yearly for ten years every

time it is needed and pay a total of more instead.

28
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At the core of these examples, we have a complex optimization problem, SetMulti-

coverLeasing, which will be our subject of study in this chapter.

Chapter Basis. The results presented in this chapter are based on the following

publication.

Sebastian Abshoff, Christine Markarian, and Friedhelm Meyer auf der Heide.

“Randomized Online Algorithms for Set Cover Leasing Problems”. In: Proceed-

ings of the 8th Annual International Conference on Combinatorial Optimization

& Applications (COCOA), 2014 [8].

Chapter Outline. This chapter starts with an overview of related literature (Sec-

tion 3.1) along with a summary of results obtained in this chapter. Section 3.2 presents

a formal definition of SetMulticoverLeasing, gives some necessary notation, and

describes the algorithmic techniques used throughout the chapter. The main results of

this chapter comprising of an online algorithm and its analysis are presented in Sections

3.3 and 3.4, respectively. The chapter concludes with a short résume and future work

in Section 3.5.

3.1 Related Work & Contribution

Before stating the results obtained in this chapter, let us have an overview of literature

evolving around our problem at hand, SetMulticoverLeasing.

The latter roots from the classical NP-hard optimization problem SetCover. Given

a universe of elements U (|U | = n) and a family F (|F | = m) of subsets of U , each

associated with a cost. SetCover asks to cover each element while minimizing the

total cost of sets. SetCover has an O(log n) approximation ratio [19–22], which is

the best possible unless P = NP [23]. SetCover has been studied as a more general

version known as SetMulticover, in which all elements are required to be covered
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by p ≥ 1 different sets and has an O(log ∆) = O(log n) approximation ratio [14, 24],

where ∆ is the maximum cardinality of the sets. This problem is known as uniform

SetMulticover for a fixed value of p and as non-uniform SetMulticover for a

possibly different value of p for each set.

SetCover was also studied in the online setting [7, 25–30], the first online variant of

which is known as the OnlineSetCover problem. Here, in each time step, an element

from the universe U (|U | = n) arrives and must be covered by a family F (|F | = m)

of subsets of U , each associated with a cost. OnlineSetCover asks to minimize the

total cost of sets chosen. Alon et al. [25] gave an O(log δ log n)-competitive algorithm

for unweighted OnlineSetCover, in which all sets have cost 1, and an O(logm log n)-

competitive algorithm for weighted OnlineSetCover, where δ is the maximum number

of sets an element belongs to. They also showed that these bounds are nearly tight due

to a lower bound of Ω
(

logm logn
log logm+log logn

)
which they give for a wide range of relations

among m and n. The O(log δ log n)-competitive ratio for unweighted OnlineSetCover

was improved by [27] to O(log n/Opt · log δ), where Opt is the optimal offline solution

to the problem. Korman [26], in his Master’s thesis, gave a randomized lower bound

of Ω(logm log n) for OnlineSetCover. In a more general form, Alon et al. [7] con-

sidered the OnlineSetCoverWithRepetitions problem within the larger context of

admissions control in general networks. Here, an element may arrive multiple times

and must be covered by a different set at each arrival. Alon et al. gave a randomized

O(log2(m · n))-competitive algorithm and a deterministic bi-criteria algorithm for the

problem. A very similar problem called OnlineSetMulticover, an online variant of

SetMulticover, was studied by Berman and DasGupta [6]. As in the offline vari-

ant, all (arriving) elements are requested to be covered by p different sets. Motivated

by applications in systems biology, Berman and DasGupta focused on tight analysis of

approximability by improving results by Alon et al. [25] up to constant factors. Their

competitive ratios were given in terms of maximum set size ∆, δ, and p. They also

gave lower bounds Ω
(

logm/p logn/p
log logm/p+log logn/p

)
and Ω

(
logm logn

log logm+log logn

)
for unweighted and

weighted OnlineSetMulticover, respectively.

Later, Anthony et al. [5] generalized Meyerson’s ParkingPermitProblem to other
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infrastructure problems including OnlineSetCover by introducing its leasing variant

SetCoverLeasing and gave offline solutions for these problems. In SetCoverLeas-

ing, sets are leased with K different types and costs. A set S leased with type k ensures

that S can be used for the next lk time steps. The same set can later be used by leasing

it again. SetCoverLeasing asks to minimize the total leasing costs. Its connection to

OnlineSetCover becomes apparent if we just set K = 1 and l1 =∞. By discovering

an interesting relationship between infrastructure leasing problems and stochastic opti-

mization, Anthony et al. [5] achieved O(log n)-approximation for SetCoverLeasing.

Contribution. In this chapter, we introduce SetMulticoverLeasing in which ele-

ments U (|U | = n), each with some value p specifying the number of sets to be covered,

arrive over time and must be covered by sets from a family F (|F | = m) of subsets

of U . Each set can be leased for K different periods of time. Leasing a set S for a

period k incurs a cost cSk and allows S to cover its elements for the next lk time steps.

SetMulticoverLeasing asks to minimize the total cost of sets leased, such that each

element arriving at time t with value p is covered by p different sets containing it and

leased during time t. Then, we present an O(log(δ ·K) log n)-competitive algorithm for

SetMulticoverLeasing. SetCoverLeasing is a special case of SetMulticover-

Leasing if we just set p = 1 for all elements. The results obtained imply the first online

algorithm for SetCoverLeasing and yield:

• An optimalO(log δ log n)-competitive algorithm for OnlineSetMulticover whose

connection to SetMulticoverLeasing becomes apparent if we just set K = 1,

l1 = ∞, and cS1 = cS for each S, where cS1 is the cost incurred by set S leased

for a duration l1.

• An improvement for OnlineSetCoverWithRepetitions from O(log2(m·n)) [7]

to O(log δ log(δ · n)) = O(logm log(m · n)).

See Figure 3.1 for an illustration of these models and their corresponding results.
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Figure 3.1: Set Cover Leasing Models

(i) OnlineSetCoverWithRepetitions: O(log δ log(δ · n)); (ii) OnlineSetMulti-
cover: O(log δ log n); (iii) SetMulticoverLeasing: O(log(δ ·K) log n)

3.2 Model & Preliminaries

In this section, we start with a formal definition of SetMulticoverLeasing and then

describe the techniques we use in developing our online algorithm in Section 3.3.

Definition. In compliance with our framework in Section 2.3, we define SetMulti-

coverLeasing as follows. Elements U (|U | = n) form the demands set D and the

family F (|F | = m) of subsets of U forms the infrastructure set S̄. A demand j arriv-

ing at time t with a value pjt, specifying the number of sets it needs to be covered, is

denoted as (j, t). A set S with a lease type k ∈ {1, . . . ,K} starting at time t is denoted

as (S, k, t). The cost of leasing (S, k, t) is cSk. S̄t′ contains all triples (S, k, t) covering t′.

SetMulticoverLeasing asks to minimize the total cost of sets leased such that each

arriving demand (j, t) is covered by pjt different sets (S, k, t′) ∈ S̄t such that j ∈ S. Fig-

ure 3.2 shows the integer linear program (ILP) of SetMulticoverLeasing. A variable

xSkt is assigned to each (S, k, t) indicating whether it is bought or not. The constraint

assures that each arriving demand (j, t) is covered by pjt different sets.
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min
∑

(S,k,t)∈S̄

cSkxSkt

Subject to:
∑

(S,k,t′)∈S̄t:j∈S

xSkt′ ≥ pjt (j, t) ∈ D

xSkt ∈ {0, 1} (S, k, t) ∈ S̄t

Figure 3.2: ILP Formulation of SetMulticoverLeasing

Algorithmic Techniques. Before we describe our algorithm, let us have an idea of

what techniques are used in designing and analyzing our algorithm. The first technique is

a well-known technique, commonly used in randomized algorithms for problems that can

be formulated as linear programs, known as randomized rounding. The second is based

on a greedy strategy and can be used in both deterministic and randomized algorithms

- we call it layering. We give an informal description of each technique in what follows.

(i) Randomized rounding uses a probabilistic method to convert an optimal solution

of a relaxation of a given problem into an approximately optimal solution to the

original problem. Basically, it involves the following:

• Formulate the problem at hand into an integer linear program (ILP).

• Compute an optimal fractional solution x to the linear programming relax-

ation, i.e., the corresponding LP.

• Round the fractional solution x of the LP to an integer solution x′ of the ILP.

The challenge here is to choose a suitable integer linear program (ILP), compute

an efficient (optimal) fractional solution in polynomial time, and use probabilistic

arguments to round the fractional solution at ‘low’ cost.

(ii) Layering can be useful in designing algorithms for online problems involving de-

mands that can be partitioned into sub-demands such that sub-demands i and

i + 1 are each served by a separate ‘entity’ of the optimal solution. As an exam-

ple, consider SetMulticoverLeasing, in which each arriving element/demand

(j, t) needs to be covered by pjt different sets. Each of {1, 2, ..., pjt} constitutes a

sub-demand and a set used to cover (j, t) the first time can not be used to cover

it the second time, third time, and so on. Once a problem is defined with such a
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( j1 , t1 ) ( j2 , t2 ) ( j3 , t3 )

pj1t1 
= 3

pmax = pj2t2 
= 7

pj3t3 
= 5

Figure 3.3: Layering

Seven layers are formed resulting from sub-demands denoted by ‘x’ of the demands
(j1, t1), (j2, t2), and (j3, t3).

structure, for each arriving demand, we treat each of its sub-demands sequentially

as separate demands and serve them using an appropriate greedy strategy.

The term layering emerges from dividing demands into sub-demands, i.e., through-

out the overall time period, we will be constructing ‘layers’ in the following way: a

part of a layer, corresponding to time t, is formed for each sub-demand of a demand

arriving at time t. In SetMulticoverLeasing, pmax layers will be constructed,

where pmax is the maximum pjt: (j, t) ∈ D (see Figure 3.3 for an illustrative

example).

The main advantage of layering is the ease of analysis it provides, such that each

‘entity’ of a solution computed by the online algorithm to serve a sub-demand is

compared to the corresponding ‘entity’ of the optimal solution.

3.3 Online Algorithm

In this section, we propose an online randomized algorithm using techniques described

in Section 3.2.
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The following notation will be used in the algorithm. A triple (S, k, t′) is a candidate to

(j, t) if j ∈ S and (S, k, t′) ∈ S̄t. An element is p-covered if at least p of its candidates

are leased.

Algorithm. Our algorithm maintains a fraction fSkt for each set (S, k, t) ∈ S̄, initially

set to zero and non-decreasing throughout the algorithm. When a demand (j, t) ∈ D

arrives, we first 1-cover it by some candidate (S, k, t′) ∈ S̄. To do this, we increase

the fractions of all candidates until they sum up to 1. Then, using an appropriate

randomized rounding, we select at least one candidate and lease it. If pjt = 1, we are

done. Otherwise, to 2-cover (j, t), we increase the fractions of all candidates excluding

the one leased to 1-cover (j, t) (choose arbitrarily any set if there is more than one), until

they sum up to 1. Now, we again use randomized rounding to guarantee that a second

candidate is leased. We continue with this greedy strategy until (j, t) is pjt-covered.

We first describe an algorithm which i-covers any arriving element (j, t) (Algorithm 3)

and then use it in SetMulticoverLeasing (Algorithm 4).

We maintain for each set (S, k, t) ∈ S̄, 2 dlog(n+ 1)e independent random variables

X(Skt)(q), (1 ≤ q ≤ 2 dlog(n+ 1)e), distributed uniformly in the interval [0, 1]. We define

µSkt := min{X(Skt)(q)}.

Algorithm 3 i-Cover

Let Q ⊆ S̄ be the collection of candidates of (j, t) not yet leased during one of i − 1
previous calls of i-Cover.

(i) (fractional) while
∑

(S,k,t)∈Q fSkt < 1, do the following increment.

fSkt = fSkt · (1 + 1/cSk) + 1
|Q|·cSk

(ii) (integer) Lease (S, k, t) ∈ Q with fSkt > µSkt.

(iii) If (j, t) is not covered by some set in Q (i.e., there is no leased set in Q), then
lease the cheapest (S, k, t) ∈ Q.
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Algorithm 4 SetMulticoverLeasing

Whenever an element (j, t) arrives:
Set i to 0.

While(i ≤ pjt)
Run Algorithm 3 (i-Cover).
Increment i by 1.

3.4 Analysis

We now show that Algorithm 4 is O(log (δ ·K) log n) = O(log (m ·K) log n)-competitive

for SetMulticoverLeasing, thus implying results for OnlineSetMulticover and

OnlineSetCoverWithRepetitions as well.

It is easy to see that Algorithm 4 constructs a feasible solution to SetMulticover-

Leasing. To compute the total expected cost, we first bound the fractional cost (the

fractional cost is the sum of all fractions) by O(log (δ ·K)) ·Opt = O(log (m ·K)) ·Opt,

where Opt is the cost of an optimal offline solution. After that, we show that the random-

ized integer solution has an expected cost of at most O(log n) times the fractional cost

and hence deduce the expected O(log (δ ·K) log n) = O(log (m ·K) log n)-competitive

ratio of the algorithm. The following lemma below bounds the fractional cost.

Lemma 3.1. The fractional cost is O(log (δ ·K)) times the optimal offline solution.

Proof. We show the following two facts to bound the fractional cost.

1. An increment adds at most two to the fractional cost.

2. The total number of increments in the algorithm is O(log (δ ·K)) ·Opt.

We fix an element j and use S instead of (S, k, t) for simplicity.

Proof of 1: In an increment, the fraction of each candidate S ∈ Q is increased by(
fS
cS

+ 1
|Q|·cS

)
. Summing up over all candidates in Q, the fractional cost increases, after

each increment, by
∑

S∈Q cS ·
(
fS
cS

+ 1
|Q|·cS

)
=
∑

S∈Q fS + 1. Since an increment is only
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done if
∑

S∈Q fS < 1, each increment adds at most two to the cost of the fractional

solution.

Proof of 2: The total number of increments is the sum of the increments for each

1 ≤ i ≤ pmax, where pmax is the maximum number of sets any element needs to be

covered. An increment is only done if
∑

S∈Q fS < 1. For any 1 ≤ i ≤ pmax and in any

increment the algorithm decides to make, at least one set SOpt in the optimal solution

is a candidate and therefore increases its fraction (an optimal solution requires pmax

sets too). The fraction of SOpt reaches at least 1
|Q| after cSOpt

increments due to the

second part of the increment 1
|Q|·cSOpt

. After this, the first part of the increment keeps

multiplying the fraction by (1 + 1/cSOpt
) and stops when the fraction is larger than

1. Hence, after O(cSOpt
· log |Q|) increments,

∑
S∈Q fS will be greater than 1. Since

|Q| ≤ δK, 2 holds.

Since the fractions increase only during an increment, the lemma follows.

Lemma 3.2. The randomized integer solution has an expected cost of at most O(log n)

times the fractional cost.

Proof. We fix a set S. The expected cost of choosing S throughout the algorithm

is cS · Pr(fS > µS) ≤ 2 log(n + 1) · cS · fS . Thus, the total expected cost is upper

bounded by
∑

S∈F 2 log(n + 1) · cS · fS . Furthermore, to guarantee a feasible solution,

Algorithm 3 adds the cheapest candidate to the solution if an element j is not covered

after randomization (this is a lower bound to the optimal solution Opt). Nevertheless,

we show that this only happens with probability at most 1/n2 and adds an unnoticed

additional cost to the competitive ratio.

For a single 1 ≤ q ≤ 2 dlog(n+ 1)e, the probability that j is not covered is ≤
∏
S∈Q(1−

fS) ≤ e−
∑

S∈Q fS ≤ 1/e. The last inequality holds because
∑

S∈Q fS ≥ 1. Thus, the

probability that j is not covered, for all 1 ≤ q ≤ 2 dlog(n+ 1)e, is at most 1/n2. The

additional expected cost is thus upper bounded by n · 1/n2 ·Opt.

From the two lemmas 3.1 and 3.2, we can deduce the following theorem.
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Theorem 3.3. There is an online randomized algorithm for SetMulticoverLeasing

that is O(log (δ ·K) log n) = O(log (m ·K) log n)-competitive.

As mentioned earlier, OnlineSetMulticover is a special case of SetMulticov-

erLeasing. Thus, one can easily see that our algorithm yields an (O(log δ log n) =

O(logm log n)-competitive ratio for OnlineSetMulticover. This matches the ran-

domized Ω(logm log n) lower bound by Korman [26] for the problem. Hence, we deduce

the following.

Corollary 3.4. There is an online randomized optimal algorithm for OnlineSetMul-

ticover that has a competitive ratio of O(log δ log n) = O(logm log n).

Furthermore, by slightly modifying our algorithm, we manage to improve the competitive

ratio for OnlineSetCoverWithRepetitions by Alon et al. [7]. This can be done

as follows. Rather than maintaining for each set 2 dlog(n+ 1)e independent random

variables, we maintain 2 dlog((δn) + 1)e independent random variables. Therefore, the

randomized integer solution is at most O(log n) times the fractional cost (the additional

expected cost is now (nδ · 1/(nδ)2) ·Opt). Hence, we deduce the following.

Corollary 3.5. There is an online randomized algorithm for OnlineSetCoverWith-

Repetitions that has a competitive ratio of O(log δ log (δ · n)) = O(logm log (m · n)).

3.5 Conclusion & Outlook

This chapter presented the first online algorithm for the leasing variant of the well-known

SetCover which has always been of both theoretical and practical interest. With the

results in this chapter, we open a research room for a wide range of covering problems

(e.g., vertex cover, edge cover), that were not previously studied with a leasing aspect,

thus shortening the distance between theory and practice.

While the techniques used in our approach proved to yield (optimal) efficient algo-

rithms, designing algorithms for more sophisticated covering problems may not be so
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easy. Nevertheless, our techniques may give the first insights to solve the leasing variants

of these problems. Speaking of which, it is interesting to note that these techniques are

mainly a combination of techniques used in the non-leasing variants of the problems

studied. From here, we wonder whether leasing inherits a difficulty in addition to the

difficulty incurred by the infrastructure nature of the problems, or we could just treat

infrastructure leasing problems as their non-leasing variants - like we more or less do

here in this chapter. One way to estimate this difficulty is through lower bounds. The

only lower bounds we have for SetCoverLeasing, for example, are the determinis-

tic Ω
(
K + logm logn

log logm+log logn

)
and the randomized Ω(logK + logm log n). While Ω(K)

and Ω(logK) are deterministic and randomized lower bounds for the ParkingPermit-

Problem, respectively, Ω
(

logm logn
log logm+log logn

)
and Ω(logm log n) are deterministic and

randomized lower bounds for OnlineSetCover, respectively. It is still not known

whether we can prove stronger lower bounds or we can close the gaps by designing new

algorithms.

Another important observation is the difference between the factors in the competitive

ratio of the ParkingPermitProblem and SetCoverLeasing. While the competitive

ratio of the ParkingPermitProblem depends solely on K, that of SetCoverLeas-

ing depends on n, m, and K. Obviously, this difference emerges from the infrastructure

nature of SetCoverLeasing which makes the competitive ratio depend on m and n in

addition to K. Nevertheless, it turns out that one may get rid of this dependency on n

as we shall see in Chapter 5. This does not merely mean a competitive ratio depending

on simply different factors - like is known for many classical optimization problems (e.g.,

fixed parameter tractable (FPT) problems), but it also means in-dependency on time.

The latter is a crucial property for problems modeled in the online setting in which n

may be unbounded, i.e., demands continue to arrive as long as the business is running.

SetCoverLeasing captures the basic leasing model one may think of while moving

from buying to leasing resources. In fact, we assume in the ParkingPermitProblem

that we do not know demands in advance - since we can not know the weather forecast.

But what if we collect data from previous years and assume demands are given according

to some probability distribution. While such extensions are not within the scope of this
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thesis, we do actually extend the ParkingPermitProblem to a more general model

for demands in Chapter 5.





Chapter 4

Facility Leasing

Consider a company that runs a distributed service on a network. In order to provide

the service, the company has to choose a set of nodes to become service providers in

such a way that they are easily accessible by customer nodes. The nodes in the network

do not belong to the company and must therefore be leased before they can be used to

provide the service. There are various leases of different duration and cost. Once a lease

expires, the node is no longer able to provide the service. In order to use the node again,

a new lease must be bought. The customer nodes can freely use any node’s service as

long as there is an active lease for this node. The costs of using it are proportional to

the distance (latency) between customer node and service-providing node. This means

that on the one hand the company wants to buy leases for nodes as seldom as possible,

while on the other hand it wants to make sure that customer nodes are not too far away

from currently leased nodes. Things would have been easy if the company knows in

advance which customers will request the service - but since it does not, it must face

the difficulty incurred by the uncertainty of the future.

As another example, suppose that a soft-drink company plans to place its vending ma-

chines in a city. The company has already identified potential sites for the machines in

a number of different neighborhoods and knows the cost of renting each potential site.

Its aim is to minimize the renting costs and the average traveling distance of customers,

42
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without knowing which customers will arrive.

At the core of these examples, we have a complex optimization problem, FacilityLeas-

ing, which will be our subject of study in this chapter.

Chapter Basis. The results in this part were achieved by Kling et al. in [10] and

later incorporated into the following publication.

Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm Meyer auf der

Heide, and Peter Pietrzyk. “Towards the Price of Leasing Online”. To appear

in: Journal of Combinatorial Optimization (JOCO), 2015 [11].

Chapter Outline. This chapter starts with an overview of related literature (Sec-

tion 4.1) along with a summary of results obtained in this chapter. Section 4.2 presents

a formal definition of FacilityLeasing, gives some necessary notation, and describes

the algorithmic techniques used throughout the chapter. The main results of this chapter

comprising of an online algorithm and its analysis are presented in Sections 4.3 and 4.4,

respectively. The chapter concludes with a short résume and future work in Section 4.5.

4.1 Related Work & Contribution

Before stating the results obtained in this chapter, let us have an overview of literature

evolving around our problem at hand, FacilityLeasing.

The latter originates from one of the most popular NP-hard optimization problems,

FacilityLocation. Not only is FacilityLocation widely known in operations re-

search [31, 32] and many other applications, it has also attracted the attention of com-

puter scientists and particularly theorists. A survey of its applications and methods

handling it can be found in [33]. Given a complete bipartite graph G = (F ∪ C,E),

where F (|F | = m) refers to facilities and C (|C| = n) refers to clients. FacilityLoca-

tion asks to open facilities in order to assign each client to an open facility. Opening
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a facility incurs an opening cost and assigning a client i to facility j yields a connection

cost. The goal is to minimize the total opening and connection costs. FacilityLoca-

tion has many variants most of which have constant approximation [34–41].

FacilityLocation was also known as an online version OnlineFacilityLocation.

Here, in each step, a subset of clients arrive and need to be assigned to open facilities.

OnlineFacilityLocation has been studied in both the metric setting [42, 43], where

connection costs satisfy the triangle inequality and the non-metric setting [44, 45]. In the

metric setting, Meyerson [45] presented a randomized O(log n)-competitive algorithm

which was improved into a deterministic O(log n/ log log n) - competitive algorithm by

Fotakis [44] who also showed that this bound is optimal.

Inspired by Meyerson’s ParkingPermitProblem, Anthony et al. [5] extended On-

lineFacilityLocation to FacilityLeasing. Here, unlike OnlineFacilityLoca-

tion in which facilities can be used forever once they are open, we must pick one of

K different lease types when opening a facility. A lease type k has a certain lease

length lk. Leasing a facility i using lease type k incurs a cost cik and ensures that i

is open for the next lk time steps. The same facility can later be used by leasing it

again. FacilityLeasing asks to minimize the total leasing and connection cost. Its

connection to OnlineFacilityLocation becomes apparent if we just set K = 1 and

l1 = ∞. Anthony et al. [5] showed an interesting relationship between infrastructure

leasing problems and stochastic optimization that led to an O(K)-approximation for

FacilityLeasing (offline setting). Nagarajan and Williamson [42] later improved the

O(K)-approximation into a 3-approximation and gave an O(K log n)-competitive algo-

rithm for metric FacilityLeasing (online setting).

Contribution. In this chapter, we study FacilityLeasing introduced by Anthony

et al. [5] who studied the problem in the offline setting. Clients D (|D| = n) arrive

over time and must be connected to open facilities F (|F | = m). Each facility can be

leased for K different periods of time. Leasing a facility i for a period k incurs a cost cik

and ensures that i is open for the next lk time steps. Connecting a client j to facility i

incurs a connecting cost dij . FacilityLeasing asks to connect each client to an open



Chapter 4. Facility Leasing 45

facility while minimizing the total leasing and connecting costs. Nagarajan et al. [9]

gave the first online algorithm, with an O(K log n)-competitive factor for the problem.

The results in this chapter extend those by Nagarajan et al. [9] and include:

• The first online algorithm, with a time-independent competitive factor

O(lmax log(lmax)), where lmax denotes the maximum lease length.

• An O(log2(lmax))-competitive factor for many ‘natural’ cases, such as situations

where the number of clients arriving in each time step does not vary too much, or

is non-increasing, or is polynomially bounded in lmax.

4.2 Model & Preliminaries

In this section, we start with a formal definition of FacilityLeasing and then describe

the techniques used in developing the online algorithm in Section 4.3.

Definition. In compliance with our framework in Section 2.3, we define FacilityLeas-

ing as follows. The demand set is the set of clients D (|D| = n) and the set F (|F | = m)

of facilities forms the infrastructure set F̄ . More than one client may arrive in a time

step and Dt denotes the set of clients arriving at time step t. A client j arriving at

time t is denoted as (j, t) and a facility i with lease type k ∈ {1, . . . ,K} starting at

time t is denoted as (i, k, t). The cost of leasing (i, k, t) is cik. Each (j, t) must be

connected to a leased (i, k, t), and this incurs a connection cost dij . Clients and facili-

ties reside in a metric space such that connection costs satisfy the triangle inequality:

∀i, i′ ∈ F , j, j′ ∈ D : di′j ≤ dij +dij′+di′j′ . FacilityLeasing asks to minimize the total

leasing and connection costs. The series Hq :=
∑q

i=1(|Di|/(
∑i

j=1|Dj |)) can be used to

describe the clients’ arriving pattern, and we will see that it is tightly connected to the

algorithm’s competitiveness in Section 4.4.

Figure 4.1 shows the integer linear program (ILP) of FacilityLeasing. The first sum

in the objective function represents the costs incurred by leasing facilities. A variable
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min
∑

(i,k,t)∈F̄

cikxikt +
∑

(j,t)∈D

∑
i∈F

dijyijt

Subject to:
∑
i∈F

yijt ≥ 1 (j, t) ∈ D∑
(i,k,t′)∈F̄t

xikt′ − yijt ≥ 0 i ∈ F , (j, t) ∈ D

yijt ∈ {0, 1} i ∈ F , (j, t) ∈ D
xikt ∈ {0, 1} (i, k, t) ∈ F̄

max
∑

(j,t)∈D

αjt

Subject to: αjt − βijt ≤ dij i ∈ F , (j, t) ∈ D∑
(j,t′)∈D : t′∈[t,t+lk)

βijt′ ≤ cik (i, k, t) ∈ F̄

βijt ≥ 0 i ∈ F , (j, t) ∈ D
αjt ≥ 0 (j, t) ∈ D

Figure 4.1: ILP Formulation of FacilityLeasing

xikt is assigned to each (i, k, t) indicating whether it is bought or not. The remaining

part of the objective function represents the costs incurred by connecting each client to

a facility, where variable yijt indicates whether a client j that arrived at time step t is

connected to facility i. While the first primal constraint guarantees that each client is

connected to at least one facility, the second makes sure that each client is only connected

to a facility that is leased during the time step of the client’s arrival. Let F̄t be the set

of all facilities covering time step t.

Algorithmic Techniques. Before we describe the algorithm, let us have an idea of

what techniques are used in designing and analyzing the algorithm.

While the latter is a primal-dual algorithm exploiting the properties of linear programs

discussed in Chapter 2, it does not, however, follow the standard approach of con-

structing feasible primal and dual solutions. Instead, it allows itself to violate the dual

constraints, thus constructing an infeasible dual solution. The infeasible dual solution

is then used to construct a feasible primal solution. The challenge is now to analyze the
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algorithm. Obviously, weak duality alone no more yields the competitive ratio since the

dual solution constructed is not feasible. Hence, a technique that proved to be success-

ful in analyzing many algorithms is adopted. The latter is based on scaling the dual

solution constructed with some factor f() (i.e., multiplying the dual solution by f()))

to yield a dual solution that is feasible. Obviously, this factor will be incorporated into

the competitive ratio:

• primal ≤ f ′() · infeasible dual (the primal solution is bounded in terms of the dual

solution constructed). See Figure 4.2 for an illustration.

• feasible dual = f() · infeasible dual. This part will be the most difficult: finding a

suitable value for f().

• primal ≤ f ′(k)
f(k) · feasible dual ⇒ O(f

′(k)
f(k) )-competitive ratio (weak duality).

These primal-dual algorithms which construct a feasible primal and an infeasible dual are

called dual-fitting algorithms. For examples of dual-fitting algorithms, see [38, 40, 46].

The idea of dual-fitting algorithms is in fact not new - it has always been there in the

literature, but mostly implicitly: e.g., to prove the approximation of SetCover [19, 22].

Another prominent property highly contributing in the analysis is the triangle inequality

with which the metric version of the problem is defined. The latter has proved to be of

significant help in achieving the competitiveness, as we shall see in Section 4.4.

4.3 Online Algorithm

In this section, we present an online deterministic algorithm using techniques described

in Section 4.2.

A triple (i, k, t′) is a candidate to (j, t) if (i, k, t′) ∈ F̄t. The algorithm is formulated such

that it creates a solution that adheres to the interval model defined in Lemma 2.6 in

which lease lengths lk are powers of two and leases of the same type do not overlap. At
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Figure 4.2: Dual-fitting

the beginning, all facilities are closed. At the arrival of the client set Dt at time t, these

clients are assigned to open facilities to satisfy their demands by opening new facilities

if necessary. The costs charged for this step comprise the corresponding connection cost

dij for assigning the clients j ∈ Dt to open facilities (i, k, t) ∈ F̄ and the opening cost

of newly opened facilities. Complying with the interval model, facilities can be opened

using lease type k only at times t that are a multiple of the corresponding lease length lk.

That is, only at times t with t ≡ 0 mod lk. In particular, this might cause us to open a

facility (i, k, t′) ∈ F̄ belatedly at the current time t ≥ t′. Note that the algorithm uses

(i, k, t′) only to cover clients arriving at or after time t ≥ t′ - former clients must have

been covered by other facilities at their arrival. The interval model ensures that for each

k and i there is exactly one candidate (i, k, t′) ∈ F̄ which covers t (i.e., (i, k, t′) ∈ F̄t).

Thus, an algorithm merely has to specify which pair (i, k) is chosen to satisfy a client’s

demand. Due to this, a facility is sometimes denoted as a tuple (i, k), meaning facility

i with lease type k covering the current time step.

Algorithm. The algorithm is based on an approximation algorithm by Jain and Vazi-

rani [38] for the classical facility location problem. Their algorithm uses a primal-dual

approach to compute a 3-approximation, and makes use of a similar approach in each

single time step. In each time step t the algorithm operates in two phases, similar to the

algorithm by Nagarajan and Williamson [9] for the static facility location problem. In

the first phase, clients essentially bid towards the facilities - or better said, towards the
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tuples (i, k), representing for each k the facility of type k covering the current time step.

In the second phase, triangle inequality is used to choose a cheap subset of facilities to

actually open and assign clients to. In contrast to [38], the challenge here is to cope

with the problem to build a good solution for a facility location problem starting from

a partial solution (earlier arrived clients). This is similar to [9] but more complex since

here all newly arrived clients are considered simultaneously (instead of one after the

other).

First Phase: For each client j ∈ D≤t :=
⋃
t′≤tDt′ that arrived at time t or before, a

potential αjkt is introduced, starting at zero and continuously increasing (concur-

rently and at the same rate for each client). Each of these potentials is reset to

zero in each round. To simplify notation, let us define (x)+ := max(x, 0). For

any facility i of lease type k the invariant cik ≥
∑

j∈D≤t
(αjkt − dij)+ (INV1) is

maintained. Whenever equality is reached for some facility i and lease type k,

i is temporarily opened using lease type k. As soon as αjkt ≥ dij for a client

j ∈ D≤t and a (temporarily or permanently) open facility i of lease type k, αjkt

stops increasing. If j ∈ Dt (i.e., j is a newly arrived client), j is connected to i and

furthermore α̂j : is set to αjtk (these α̂j correspond to the dual variables αjt in the

ILP from Figure 4.1, the t given implicitly by the relation j ∈ Dt). The second

invariant ensures that in no time step t′ an αjkt′ is increased beyond α̂j (INV2).

Second Phase: In this phase K different conflict graphs are built, one for each lease

type k. The nodes of the graph for lease type k are given by temporarily and

permanently opened facilities i of lease type k. There is an edge between two

nodes i and i′ if and only if there is some client j ∈ D≤t with αjkt > max(dij , di′j).

Facilities i and i′ are said to be in conflict. Now, for each conflict graph a maximal

independent set (MIS) is computed and facilities in the MIS are permanently

opened (while closing the remaining temporarily opened facilities). If for a client

j ∈ Dt (i.e., newly arrived clients) the facility i it was connected to during the

first phase is not a member of a MIS, j is reconnected to a neighbor of i that is a

member of a MIS (i.e., permanently open).
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Note that the terms “temporarily open” and “permanently open” do not refer to the

lease length, but only whether the algorithm’s decision to open a new facility i with

lease type k that covers the current time step is final or not.

4.4 Analysis

We now show that the algorithm in the previous section is (3 +K)Hlmax-competitive for

FacilityLeasing.

Note that it is sufficient to consider the first lmax time steps: at time lmax all facilities

must be closed, since for any k ∈ { 1, 2, . . . ,K } we have lmax ≡ 0 mod lk. Let us

partition the time horizon into rounds τi := { (i− 1)lmax, . . . , ilmax − 1 } of length lmax.

By the above observation, these rounds yield independent sub-problems, each of length

lmax. Then we show that the solution of the algorithm is (3 + K)Hlmax-competitive in

each such round. Since the costs over all rounds are additive, this yields an overall

(3 +K)Hlmax-competitive factor.

The values α̂j computed by the algorithm correspond to the dual variables of the ILP

formulation in Figure 4.1. First of all, we show that the sum of all α̂j times (3 + K)

is an upper bound for the cost of the solution produced by the algorithm (Lemma 4.1).

Next, we consider the α̂j as a (possibly infeasible) solution to the dual program of

the FacilityLeasing ILP. We show that by scaling this solution down by a suitable

factor, we get a feasible solution to the dual program (Lemma 4.4). By the weak duality

theorem, multiplying both factors yields the final competitive factor (Theorem 4.5).

Upper Bounding the Solution. The following lemma upper bounds the cost of the

solution produced by the algorithm by (3+K)
∑

j∈D α̂j . The basic idea is to exploit the

triangle inequality to show that 3
∑

j∈D α̂j is a bound on the total connection cost and

that the algorithm ensures that each α̂j is used at most K times to cover the complete

costs for opening facilities.
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Lemma 4.1. The cost of the primal solution produced by the algorithm can be bounded

from above by (3 +K)
∑

j∈D α̂j.

Proof. We bound the connection costs of the clients and the opening costs of facilities

separately. The α̂j value of a client j is computed in step t of j’s arrival during the first

phase of the algorithm. During this phase, j is either connected to a facility i that was

already (permanently) opened at time t′ < t or one that was temporarily opened at the

current time t. In both cases its α̂j value was set such that it can cover at least the

distance dij between i and j. If i remains in one of the MIS computed in the second

phase of the algorithm, this guarantees that j is assigned to a facility i′ such that α̂j is

an upper bound on the client’s connection costs di′j . Otherwise, if i is no longer in any

MIS at the end of phase two, Proposition 4.2 (see below) exploits the metric property of

the facility location problem and yields that j is assigned to a facility i′ such that 3α̂j

is an upper bound on the client’s connection costs di′j .

Now, consider the facility costs and fix a facility i of lease type k that is permanently

opened at some time t by the algorithm. As (i, k) is opened permanently at time t

in the second phase, it must have been temporarily opened in the first phase. Thus,

by definition of the algorithm, invariant INV1 must hold with equality, that is cik =∑
j∈D≤t

(αjkt − dij)+. Consider these bids (αjkt − dij)+ of clients j ∈ D≤t to facility i of

lease type k. Note that all non-zero bids of clients j at the current time are guaranteed

to be used by facility (i, k) only, as (i, k) must have been in the corresponding MIS for

lease type k. Moreover, note that for a single client that arrived at time t, all its bids

given to (and used by) facilities of type k sum up to at most α̂j , as any αjkt′ with t ≥ t′

stops increasing as soon as a corresponding open facility (or α̂j) is reached. Together,

this yields that the total costs for opening facilities of type k in the solution produced

by the algorithm is upper bounded by
∑

j∈D α̂j . As there are K different lease types,

together with the bound on the connection costs we get the lemma’s statement.

The following proposition exploits the triangle inequality of our metric facility location

problem and its proof is completely analogous to ([38], Lemma 5).
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Proposition 4.2. For each client j that is reconnected in the second phase to a facility

i, we have α̂j ≥ 1
3dij.

Proof. Let i′ be the facility that client j was connected to in the first phase of the

algorithm. There must be a client j′ that is responsible for the conflict between facility

i and i′. We have that αj′ ≥ di′j , αj′ ≥ dij and αj ≥ di′j . Let si resp. si′be the points

in time where i resp. i′ are temporarily opened. We know that αj′ ≤ min(si, si′) since

j′ was contributing to both facilities, and that α̂j ≥ si′ since j was connected to i′.

Plugging this information into the triangle inequality dij ≤ di′j + di′j′ + dij′ yields the

proposition.

Scaling the Dual Variables for Feasibility. For the second part of the proof, it

remains to scale down the dual solution represented by α̂j such that we obtain a feasible

solution. Before we do so, we need another proposition based on the triangle inequality.

In spirit, it is similar to ([9], Lemma 5).

Proposition 4.3. Given a client l that arrived in time step t and a facility i of type k

for any client j that arrived before time t, we have αjkt − dij ≥ α̂l − 2dij − dil.

Proof. Showing that αjkt + dij + dil ≥ α̂l proves the proposition. Since for αjkt ≥ α̂l

the statement trivially holds, we assume the contrary. This means that client j reached

an open facility i′ (and thus its αjkt stopped increasing) before α̂l was fixed (i.e., αlkt

stopped increasing). Since αlkt stops increasing once it is large enough to cover the

distance between i′ and l and this distance is at most αjkt + dij + dil, the proposition

follows.

Before we continue with the Lemma 4.4 and its proof, let us define Nt to be the number

of clients that have arrived until time t (i.e., Nt := |D1|+ |D2|+ . . .+ |Dt−1|) and note

that

Nt = Nt
|Dt|
|Dt|

=
∑
j∈Dt

Nt

|Dt|
=

Nt

|Dt|
∑
j∈Dt

1. (4.1)
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For the previously defined series Hq, it holds that

t∗∑
t=1

2ht

t−1∑
t′=1

∑
j∈Dt′

dij =

t∗∑
t=1

2
∑
j∈Dt

dij(Ht∗ −Ht), (4.2)

which can be easily seen by observing that
∑q

i=1

∑i−1
j=1 xjhi =

∑q
i=1 xi(Hq −Hi) holds

for any series and any coefficients xi. Given these tools, we are now ready to formulate

and prove Lemma 4.4, which essentially shows that we get a feasible solution to the dual

program of our problem if we scale the α̂j by a factor of 1
Hlmax

. To ease notation in the

following, whenever we consider a facility i of lease type k at time t∗, any time steps t

we speak of are assumed to lie in the corresponding time interval of (i, k, t∗) (all other

time steps are of no interest with respect to the constraints of the dual program).

Lemma 4.4. For any facility i and lease type k at time t∗ we have

t∗∑
t=1

∑
j∈Dt

(α̂j/2Ht∗ − dij) ≤ cik,

where Hq :=
∑q

i=1
|Di|∑i

j=1 |Dj |
.

Proof. Recall the INV1 of the algorithm which states that the sum of bids towards a

facility at any point in time never exceeds its opening cost. Thus, for any time step t∗

we have

cik ≥
∑

j∈D≤t∗

(αjkt∗ − dij)+ =
∑
l∈Dt∗

(α̂l − dil)+ +
∑

j∈D<t∗

(αjkt∗ − dij)+

≥
∑
l∈Dt∗

(α̂l − dil) +
∑

j∈D<t∗

(αjkt∗ − dij)

=
∑
l∈Dt∗

(α̂l − dil) +
t∗−1∑
t=1

∑
j∈Dt

(αjkt∗ − dij)

≥
∑
l∈Dt∗

(α̂l − dil) +
t∗−1∑
t=1

∑
j∈Dt

(α̂l∗ − dil∗ − 2dij)

∗
=
∑
l∈Dt∗

(α̂l − dil) +

t∗−1∑
t=1

∑
j∈Dt

(α̂l∗ − dil∗)− 2

t∗−1∑
t=1

∑
j∈Dt

dij

=
∑
l∈Dt∗

(α̂l − dil) + (α̂l∗ − dil∗)
Nt∗

|Dt∗ |
∑
j∈Dt∗

1− 2
t∗−1∑
t=1

∑
j∈Dt

dij
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=
∑
l∈Dt∗

(α̂l − dil) +
Nt∗

|Dt∗ |
∑
j∈Dt∗

(α̂l∗ − dil∗)− 2

t∗−1∑
t=1

∑
j∈Dt

dij

≥
∑
l∈Dt∗

(α̂l − dil) +
Nt∗

|Dt∗ |
∑
j∈Dt∗

(α̂j − dij)− 2
t∗−1∑
t=1

∑
j∈Dt

dij

=
(

1 +
Nt∗

|Dt∗ |

) ∑
j∈Dt∗

(α̂j − dij)− 2
t∗−1∑
t=1

∑
j∈Dt

dij

=
(Nt∗ + |Dt∗ |

|Dt∗ |

) ∑
j∈Dt∗

(α̂j − dij)− 2

t∗−1∑
t=1

∑
j∈Dt

dij .

(* follows from Proposition 4.3 and l∗ := arg max(α̂l − dil))

The above inequality holds for each t ∈ { 1, . . . , t∗ }. Dividing each such inequality by

Nt+|Dt|
|Dt| yields the following set of inequalities:

|Dt∗ |
Nt∗ + |Dt∗ |

cik ≥
∑
j∈Dt∗

(α̂j − dij)− 2
|Dt∗ |

Nt∗ + |Dt∗ |

t∗−1∑
t=1

∑
j∈Dt

dij

|Dt∗−1|
Nt∗−1 + |Dt∗−1|

cik ≥
∑

j∈Dt∗−1

(α̂j − dij)− 2
|Dt∗−1|

Nt∗−1 + |Dt∗−1|

t∗−2∑
t=1

∑
j∈Dt

dij

...
...

...

|D2|
N2 + |D2|

cik ≥
∑
j∈D2

(α̂j − dij)− 2
|D2|

N2 + |D2|

1∑
t=1

∑
j∈Dt

dij

|D1|
N1 + |D1|

cik ≥
∑
j∈D1

(α̂j − dij)− 0.

Adding up these t∗ inequalities yields

(
|D1|

N1 + |D1|
+ . . .+

|Dt∗ |
Nt∗ + |Dt∗ |

)
cik

≥
t∗∑
t=1

∑
j∈Dt

(α̂j − dij)−
t∗∑
t=1

2
|Dt|

Nt + |Dt|

t−1∑
t′=1

∑
j∈Dt′

dij .
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Due to Inequality (4.2) we have

Ht∗cik ≥
t∗∑
t=1

∑
j∈Dt

(α̂j − dij)−
t∗∑
t=1

2
∑
j∈Dt

dij(Ht∗ −Ht)

=
t∗∑
t=1

∑
j∈Dt

(α̂j − 2Ht∗dij) +
t∗∑
t=1

∑
j∈Dt

2dij

(
Ht −

1

2

)

≥
t∗∑
t=1

∑
j∈Dt

(α̂j − 2Ht∗dij)

Dividing by 2Ht∗ yields
∑t∗

t=1

∑
j∈Dt

( α̂j

2Ht∗
− dij

)
≤ cik

2 ≤ cik.

Finally, by combining the results from Lemma 2.6, Lemma 4.1 and Lemma 4.4, and

using that our time horizon is at most lmax (i.e., t∗ ≤ lmax), the weak duality theorem

implies a competitive factor depending on the series Hk.

Theorem 4.5. (an upper bound for FacilityLeasing) The algorithm is at most 4(3 +

K)Hlmax-competitive for FacilityLeasing. Here, the series Hq is defined by

Hq :=

q∑
i=1

|Di|∑i
j=1|Dj |

(4.3)

and describes the relationship between the number of clients that arrive in each step.

The following simple corollaries boundHlmax and bring the competitive factor guaranteed

by Theorem 4.5 into a more concrete and compact form.

Corollary 4.6. The algorithm is at most 4(3 +K)lmax = O(log(lmax)lmax)-competitive

for FacilityLeasing.

Corollary 4.7. If for each round, the number of clients at any time t does vary by

at most a constant factor, is non-increasing, or bounded from above by a polynomial

in lmax, the algorithm becomes at most O(K log(lmax)) = O(log2(lmax))-competitive for

FacilityLeasing.

While Corollary 4.7 arguably covers the most interesting and realistic cases, it seems

probable that one can in fact construct an instance where the bound given in Corol-

lary 4.6 is tight. Consider an arrival pattern where we have an exponential increase in
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the number of clients in each round: Di = 2i. Intuitively, such arrival patterns seem to

feature a unique hardness not only for this algorithm but for any online algorithm: At

any time t, the number of arriving clients essentially matches the total number of clients

that arrived up to now. Thus, in each single time step we have to solve a problem as

hard as the complete problem up to the current time. It remains an interesting prob-

lem, whether such instances are inherently difficult to handle for online algorithms, or

whether this conjectured lower bound is merely limited to this online algorithm.

4.5 Conclusion & Outlook

This chapter presented the first online algorithm for FacilityLeasing that has a com-

petitive ratio independent on the input length and thereby on time. One can easily

argue for the need of having such competitive factors specially when it comes to online

problems.

The competitive bounds presented in this chapter can be written as O(Klmax) and

O(K log(lmax)), respectively, since K ≤ log(lmax/lmin). Furthermore, as the determinis-

tic lower bound Ω(K) and the randomized lower bound Ω(logK) for the ParkingPer-

mitProblem carry over immediately to FacilityLeasing, one may hope to improve

these bounds to O(lmax log(K)) and O(log(K) log(lmax)), respectively, using randomiza-

tion. Preliminary ideas about how to achieve this can be found in [47].

Another interesting direction, suggested by Pietrzyk [47] in his thesis, includes dis-

tributed algorithms, similar in spirit to [34, 48]. Such distributed and local imple-

mentations, where a solution is computed not by a central authority but a network

of distributed sensor nodes (e.g., in our case, the facilities and clients), have attracted

much interest in recent years, and the primal-dual approach the algorithm here uses has

proven to be compatible with such a distributed model in other scenarios.

While previous work, including the results in this chapter, were focused on the leas-

ing variant of the most basic model of FacilityLocation which is referred to as the
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uncapacitated FacilityLocation, one may want to have a look at other variants of

FacilityLocation. A first step could be to study the leasing variant of capacitated

FacilityLocation in which facilities can serve limited number of clients per time step.

A recent paper [49] by An et al. solves capacitated FacilityLocation using LP-based

methodologies. The latter can be a strong starting point, by finding out whether these

methodologies also carry over to the online/leasing variant of the problem.

Capacitated FacilityLocation is tightly connected to scheduling. In order to see

this connection, let machines be the facilities and jobs be the clients. A machine can

only serve a limited number of jobs per time step. Consequently, studying the leasing

variant of FacilityLocation would mean studying the scheduling problem in which

machines are rented rather than bought. Hence, it will be exciting to combine tech-

niques from the two well-studied areas: scheduling and FacilityLocation, not only

from a technical point of view but also practical. This also involves investigating dif-

ferent scheduling models including jobs with different execution durations, values, and

additional precedence constraints between jobs. Furthermore, machines in capacitated

FacilityLocation are identical. One may want to consider heterogeneous machines

with different functionality or include set up costs for renting machines.





Chapter 5

Flexible Demands

Consider a travel agency that offers guided tours to tourists in a city. Each day, new

tourists who want to attend the tour before leaving the city may arrive. The travel

agency is willing to pay for each time a guide/tour is needed. To optimize its profit,

it must make wise decisions regarding when to hire a guide and for how long since the

longer (more consecutive days) a guide is hired, the lower the costs per day will be.

Furthermore, once it hires a guide for some period of time, it cannot change its mind

and tell the guide to stay for a shorter period.

As another example, consider clients who are flexible regarding when to use certain

resources offered by a subcontracting company (e.g., any day within two weeks will do)

and will be happy to be offered better resource prices for a later day. Since it does

not own the resources and despite having more freedom regarding when to provide the

service, the subcontracting company needs to make critical decisions of how long to

wait before serving a client. Since the subcontractor does not know of future clients in

advance, it may postpone a service to some day just to realize later on that it would

have been cheaper on another day.

At the core of these examples, we have leasing decisions that include deadlines, which

will be our subject of study in this chapter.

59
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Chapter Basis. The results presented in this chapter are based on the following

publication.

Shouwei Li, Alexander Mäcker, Christine Markarian, Friedhelm Meyer auf der

Heide, and Sören Riechers. “Towards Flexible Demands in Online Leasing Prob-

lems”. In: Proceedings of the 21st International Computing and Combinatorics

Conference (COCOON), 2015 [12].

Chapter Outline. This chapter introduces a new leasing model in which demands

have deadlines. Section 5.1 gives an overview of related literature along with a summary

of results obtained in this chapter. Section 5.2 introduces the new model and gives a

formal definition of the latter. Sections 5.3 and 5.4 present a deterministic algorithm and

its analysis, respectively. Section 5.5 introduces SetCoverLeasingWithDeadlines

and gives an algorithm for the latter. The chapter concludes with a short résume and

future work in Section 5.6.

5.1 Related Work & Contribution

A standard assumption in most models for infrastructure problems is the permanence

of the infrastructure purchased. Once a resource is bought, it is assumed it can be used

any time in the future without inducing further costs that can be influenced by time

or number of uses. In pursuit of better economies of scale, a number of models were

introduced. In the Buy-at-Bulk model [50], number of uses matter, such that cost varies

with the capacity a resource provides (the larger the capacity the cheaper per unit).

Another well studied model is the Rent-or-Buy model [51], where apart from buying

resources for various capacities, a resource can be bought and used forever at a larger

cost. None of these models, however, consider the effect of time on the cost. In fact,

deploying a server for a long period, for example, incurs maintenance and update costs

which must be taken care of.
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In the light of realizing influence of time on the cost of resources, Meyerson intro-

duced the leasing model [2] with the ParkingPermitProblem. In the same paper,

he introduced SteinerTreeLeasing, the leasing variant of SteinerTree. Given an

undirected graph G = (V,E) (|V | = n) and a cost for each edge e ∈ E. Pairs of commu-

nicating nodes announce themselves in each step. SteinerTreeLeasing asks to lease

edges, in order to maintain at each step a path between each pair, while minimizing

the total costs. Edges can be leased for K different periods of time with different costs.

Meyerson gave an O(log n logK)-competitive algorithm for the problem. Anthony et

al. [5] generalized the ParkingPermitProblem to infrastructure leasing problems in-

cluding SetCoverLeasing and FacilityLeasing. All related literature to these two

variants were discussed in Chapters 3 and 4, respectively.

A common feature in all these models is that demands need to be served on the spot.

However, this need not be always true. In many cases, although we do not know future

demands in advance, we might in fact have demands which are flexible, meaning they

have deadlines and can be served any time before their deadline. It is important to

point out that these deadlines only make sense in problems in which resources are leased

rather than bought since otherwise, it would always be better to postpone serving a

demand until its last deadline.

Contribution. In this chapter, we introduce a new model where, in contrast to related

work, demands do not have to be served immediately. As a natural extension, demands

can be postponed up to some fixed period of time resulting in a deadline for each demand.

Similar to the leasing model by Meyerson, a resource can be leased for K different periods

of time each incurring a different cost, such that longer leases cost less per unit time.

Each demand j can be served anytime between its arrival aj and its deadline aj + dj .

The objective is to meet all deadlines while minimizing the total leasing costs. This

model is a natural generalization of Meyerson’s ParkingPermitProblem [2] in which

dj = 0 for all j. Apart from introducing the model, we:

• give an online algorithm for the proposed model, with a Θ(K + dmax
lmin

)-competitive
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factor where dmax and lmin denote the largest dj and the shortest available lease

length, respectively.

• introduce the SetCoverLeasingWithDeadlines problem, an extension of Set-

CoverLeasing that includes deadlines.

• give an online competitive algorithm for SetCoverLeasingWithDeadlines,

which also improves results for SetCoverLeasing.

5.2 The Leasing Framework with Deadlines

In this section, we will define the leasing framework with deadlines by introducing the

OnlineLeasingWithDeadlines problem (OLD).

On each day t, a number of clients with deadlines t + di (we say a client with interval

[t, t+ di], where each day corresponds to a distance of 1 in the interval) arrives. There

are K different types of leases, each with its own duration and cost. Longer leases tend

to cost less per day. A client arriving on day t with deadline t + d is served if there

is a lease which covers at least one day of its interval. This also implies that we can

replace all clients arriving on a day t by only the client with the lowest deadline that

arrives on that day. Thus, we can assume without loss of generality that on every day t,

either (i) no client or (ii) only one client with deadline t+ d arrives. The goal is to buy

a set of leases such that all arriving clients are served while minimizing the total cost of

purchases.

We distinguish between uniform OLD and non-uniform OLD as follows. All clients in

uniform OLD have the same interval length, whereas clients in non-uniform OLD have

different interval lengths.

A lease of type k has cost ck and length lk. lmin and lmax denote the shortest and

the longest lease length, respectively. We denote by dmax and dmin the longest and the

shortest interval length of the clients, respectively. An online algorithm now does not

only need to serve clients while minimizing cost, but also needs to decide when to serve
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Figure 5.1: The Leasing Model with Deadlines

At the top, you see the leases in the interval model. The middle part represents the
OLD model and the lower part, on the time line, is a special case of OLD: the Park-

ingPermitProblem.

a client. Since resources expire after some time, decisions regarding when to serve a

client are critical. An online algorithm may decide to serve a client on some day just to

realize later on that postponing it would have been a better choice because a later lease

could have served more clients. Or, the opposite is true, where an online algorithm may

decide to postpone serving a client whereas serving it earlier by enlarging a lease that

has been bought would have cost less.

The ParkingPermitProblem is a special case of OLD if we just set dmax to 0. See

Figure 5.1 for an illustration of our model compared to the ParkingPermitProblem.

We formulate OLD using an integer linear program (ILP) (see Figure 5.2). We refer

to a type k lease starting at time t as (k, t), a client arriving at time t with deadline

t + d as (t, d), and an interval [a, a + b] as Iba. The collection of all leases is L and the

collection of all clients is D. We denote by Lt all leases covering day t. We say a lease

(k, t′) ∈ L is a candidate to client (t, d) ∈ D if Idt ∩ I
lk
t′ 6= ∅. The sum in the objective

function represents the costs of buying the leases. The indicator variable X(k,t) tells us

whether lease (k, t) is bought or not. The primal constraints guarantee that each client
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min
∑

(k,t)∈L
X(k,t) · ck

Subject to: ∀(t, d) ∈ D :
∑

(k,t′)∈L,Idt
⋂
I
lk
t′ 6=∅

X(k,t′) ≥ 1

∀(k, t) ∈ L : X(k,t) ∈ {0, 1}

max
∑

(t,d)∈D
Y(t,d)

Subject to: ∀(k, t) ∈ L :
∑

(t′,d)∈D,Id
t′
⋂
I
lk
t 6=∅

Y(t′,d) ≤ ck

∀(t, d) ∈ D : Y(t,d) ≥ 0

Figure 5.2: ILP Formulation of OLD

(t, d) ∈ D is served. A dual variable Y (t, d) is assigned to each client (t, d).

5.3 Online Algorithm

In this section, we present a deterministic primal-dual algorithm for OLD whose analysis

will follow in Section 5.4.

We adopt the interval model (Lemma 2.6) in which leases of type k are available only

at times t that are a multiple of the corresponding lease length lk. Thus, any day t can

be covered by exactly K different leases. Therefore, when a client (t, d) ∈ D arrives, our

algorithm needs to decide on which day t′ ∈ [t, t + d] to serve it and to specify one of

the K leases in Lt′ . For every lease (k, t) ∈ L, we define its contribution to be the sum

of values of the dual variables corresponding to clients having (k, t) as a candidate. We

say (t′, d) contributes to (k, t) if (k, t) is a candidate of (t′, d) and Y(t′,d) > 0. Two clients

(t′, d′) and (t, d) with t′ < t intersect if their corresponding intervals Id
′
t′ and Idt intersect

at t′ + d′.
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Algorithm. When a client (t, d) arrives, if it does not intersect any client (t′, d′) with

a non-zero dual variable where t′ < t, we perform the following two steps.

Step 1: We increase the dual variable Y(t,d) of the client until the constraint of some

candidate (k, t′) becomes tight, i.e.,

∑
(t,d)∈D:Idt ∩I

lk
t′ 6=∅

Y(t,d) = ck

We then buy all the leases in Lt with a tight constraint (we set their primal variable to

1). At this point, the following proposition holds.

Proposition 5.1. There exists at least one lease with a tight constraint that covers t.

Proof. Assume, for contradiction, that there is no lease with a tight constraint in Lt.

Then according to the algorithm, there must be a lease with a tight constraint in Lj ,

j ∈ [t+1, t+d] (we do not stop increasing the client’s dual variable until some constraint

becomes tight). Moreover, before (t, d) arrives, the contribution to every lease in Lt is at

least the contribution to its corresponding lease in Lj , j ∈ [t+1, t+d]. To show that the

latter is true, assume, for contradiction, that there is a lease (k, t′) in Lj , j ∈ [t+1, t+d],

with a contribution greater than that of its corresponding lease (k, t′′) in Lt. Then, there

must be a client which has contributed to (k, t′) and not to (k, t′′) (a client contributes

the same to all its candidates). This is only possible if this client has arrived after (t, d),

which is a contradiction. Hence, if the constraint of some lease in Lj , j ∈ [t+ 1, t+ d],

becomes tight when (t, d) arrives, then the constraint of its corresponding lease in Lt

must become tight as well (at any day, there are exactly K lease types).

Step 2: By the proposition above, we have that the algorithm buys at least one lease

in Lt. Even though the client is now served, we do one more step. We buy the lease(s)

from Lt+d which correspond(s) to what is bought in Step 1 from Lt (we set the primal

variable(s) to 1).
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5.4 Analysis

We now show that the primal-dual algorithm above is O(K)-competitive for uniform

OLD and O(K + dmax
lmin

)-competitive for non-uniform OLD. We also show that the anal-

ysis of our algorithm is tight. This also implies an O(K)-competitive factor for the

ParkingPermitProblem (dmax = 0) which coincides with the tight result given by

Meyerson [2].

Proposition 5.2. Both the primal and the dual solutions constructed by the algorithm

are feasible.

Proof. It is easy to see that the dual constraints are never violated since the algorithm

stops increasing the dual variables as soon as some constraint becomes tight. As for

the primal solution, we show that each client (t, d) ∈ D is served. When a client (t, d)

arrives, we have two possibilities: either (t, d) intersects a previous client or it does not.

If it does not, then our algorithm makes sure it is served in Step 1. Otherwise if it

intersects a previous client (t′, d) with Y(t′,d) being zero, our algorithm makes sure it

serves (t, d) in Step 1. If Y(t′,d) is greater than zero, then our algorithm already covered

days t′ and t′+d to serve (t′, d). Since (t, d) and (t′, d) intersect at t′+d, (t, d) is therefore

served as well.

Theorem 5.3. The primal-dual algorithm achieves an optimal O(K)- and an O(K +

dmax
lmin

)-competitive ratio for uniform and non-uniform OLD respectively.

Proof. Let P ⊆ L denote the primal solution constructed by the algorithm. Because the

dual constraint is tight for each (k, t) ∈ P , we have

ck =
∑

(t′,d)∈D:Id
t′∩I

lk
t 6=∅

Y(t′,d).

Hence,

∑
(k,t)∈P

ck =
∑

(k,t)∈P

∑
(t′,d)∈D:Id

t′∩I
lk
t 6=∅

Y(t′,d) =
∑

(t′,d)∈D
Y(t′,d)

∑
(k,t)∈P :Id

t′∩I
lk
t 6=∅

1.
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Whenever the algorithm buys leases to serve (t′, d) ∈ D, it only buys candidates from

Lt′ (Step 1) and Lt′+d (Step 2). Since there are exactly K leases at any day, it therefore

buys at most 2K candidates. If the algorithm does not buy any further candidates of

(t′, d), we get an O(K)-competitive ratio by weak duality theorem (both primal and

dual solutions are feasible) since

∑
(k,t)∈P :Id

t′∩I
lk
t 6=∅

1 ≤ 2K.

This will be the case for uniform OLD since any client sharing common candidates with

(t′, d) intersects (t′, d) at t′+d thus being served at t′+d and the algorithm does not buy

any further candidates of (t′, d). As for non-uniform OLD, the algorithm may buy more

of (t′, d)’s candidates when new clients sharing common candidates with (t′, d) arrive in

the coming days. We upper bound the total number of these candidates as follows.

∑
(k,t)∈P :Id

t′∩I
lk
t 6=∅

1 ≤
t′+d∑
i=t′

|Li| ≤
K∑
j=1

⌈
dmax
lj

⌉

By Lemma 2.6 we have that lj ’s are increasing and powers of two. Hence, the right sum

above can be bounded by the sum of a geometric series with ratio half.

K∑
j=1

⌈
dmax
lj

⌉
≤ K + dmax

[
1
l1

(
1−(1/2)K

1−1/2

)]
= K + dmax

[
2
l1

(
1− (1/2)K

)]
.

Since K ≥ 1 we have

K + dmax

[
2
l1

(
1− (1/2)K

)]
≤ K + dmax

l1
.

Therefore,

∑
(k,t)∈P :Id

t′∩I
lk
t 6=∅

1 ≤ K +
dmax
lmin

since the algorithm can not buy more than K + dmax
lmin

candidates.

Proposition 5.4. The analysis of the aforementioned algorithm is tight.
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(a) Leases bought by our primal-dual
algorithm are marked in red.

(b) Leases bought by an optimal algo-
rithm are marked in green.

Comparison of our primal-dual and an optimal algorithm for a specific instance of our
problem. It is easy to see that the primal-dual algorithm pays almost dmax/lmin times

what the optimal algorithm would pay.

Figure 5.3: Tight Example

Proof. A lower bound of Ω(K) follows immediately from the lower bound of Ω(K) for

the ParkingPermitProblem by setting dmax = 0. We now give a tight example

for Ω(dmax/lmin) for the non-uniform case. Let dmax and lmin be arbitrary. For our

problem instance, we start with a client (0, dmax) and add clients ((i− 1) · lmin, i · lmin)

for i ∈ {2, . . . , bdmax/lminc}. Similarly, we add 2 different lease types, one with length

lmin and cost 1, and one with length 2dlog2(dmax)e and cost 1 + ε. See Figure 5.3 for a

visualization. Now, in order to cover client (0, dmax), the dual variable of this client is

increased until ∑
(t,d)∈D:Idt ∩I

lk
t′ 6=∅

Y(t,d) = ck (5.1)

and this happens at the same time for all leases of length lmin in the interval Idmax
0 . The

algorithm then only buys the leases at the start and at the end point. However, to cover

clients ((i− 1) · lmin, i · lmin) for i ∈ {2, . . . , bdmax/lminc}, the algorithm buys all the short

leases, as constraint (5.1) is already tight from the prior step. This leads to an overall

cost of at least bdmax/lminc, whereas the optimal algorithm only buys the long lease with

cost 1 + ε.

5.5 Application to Set Cover Leasing

In this section, we introduce the SetCoverLeasingWithDeadlines problem (SCLD)

and give an O(log(m · (K + dmax
lmin

)) log lmax)-competitive algorithm.
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min
∑

(S,k,t)∈F
X(S,k,t) · ckS

Subject to: ∀(e, t, d) ∈ U :
∑

(S,k,t′)∈F,Idt
⋂
I
lk
t′ 6=∅,e∈S

X(S,k,t′) ≥ 1

∀(S, k, t) ∈ F : X(S,k,t) ∈ {0, 1}

Figure 5.4: ILP Formulation of SCLD

5.5.1 Problem Definition

SCLD is a generalization of SetCoverLeasing in which elements arrive over time and

must be covered by sets from a family of subsets of these elements. Each set can be

leased for K different periods of time. Leasing a set S for a period k incurs a cost

ckS and allows S to cover its elements for the next lk time steps. The objective is to

minimize the total cost of the sets leased, such that elements arriving at any time t

are covered by sets which contain them and are leased during time t. SCLD extends

SetCoverLeasing by allowing elements to have deadlines and be covered any time

before their deadline. We define SCLD analogously to non-uniform OLD and formulate

it using ILP (see Figure 5.4).

We denote by δ the maximum number of sets an element belongs to, by n the number

of elements, and by m the number of sets. We refer to a set S with lease type k starting

on day t as (S, k, t) and an element e arriving on day t with deadline t + d as (e, t, d).

The collection of all set triples is F and the collection of all element triples is U . We

say (S, k, t′) ∈ F is a candidate to (e, t, d) ∈ U if e ∈ S and Idt ∩ I
lk
t′ 6= ∅. The sum in

the objective function represents the costs of buying the sets. The indicator variable

X(S,k,t) tells us whether (S, k, t) is bought or not. An element is covered if at least one

of its candidates is bought. The primal constraints guarantee that each (e, t, d) ∈ U is

covered.
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5.5.2 Online Algorithm

In this section, we present a randomized algorithm for SCLD. We denote by F(e,t,d) the

collection of all candidates of (e, t, d). Our algorithm first solves the LP of SCLD and

then rounds it to solve its ILP. The algorithm maintains for each set (S, k, t) ∈ U ,

2 dlog(lmax)e independent random variables r(Skt)(q), 1 ≤ q ≤ 2 dlog(lmax)e, distributed

uniformly in the interval [0, 1]. We define µSkt := min{r(Skt)(q)}.

Algorithm 5 SetCoverLeasingWithDeadlines

When an element (e, t, d) arrives,
(i) (LP solution) while

∑
(S,k,t)∈F(e,t,d)

X(S,k,t) < 1;

X(S,k,t) = X(S,k,t) · (1 + 1/ckS) + 1

|F(e,t,d)|·ckS

(ii) (ILP solution) Round X(S,k,t) to 1 if X(S,k,t) > µSkt and if (e, t, d) is not yet
covered, buy the cheapest (S, k, t) ∈ F(e,t,d) (set its primal variable to 1).

5.5.3 Analysis

We show that Algorithm 5 above is O(log(δ · (K + dmax
lmin

)) log lmax) = O(log(m · (K +

dmax
lmin

)) log lmax)-competitive for SCLD.

It is easy to see that Algorithm 5 constructs a feasible solution ILP to SetCoverLeas-

ing. To compute the total expected cost CILP of ILP, we first bound the cost of the LP

solution CLP by O(log(δ · (K + dmax
lmin

))) = O(log(m · (K + dmax
lmin

))) ·Opt, where Opt is

the optimal solution cost of ILP. Then, we show that CILP is at most O(log lmax) times

CLP and hence deduce the expected O(log(m · (K + dmax
lmin

)) log lmax)-competitive factor

of the algorithm.

To do so, we partition the time horizon into intervals of length lmax. Due to the interval

model (Lemma 2.6), all leases of all sets end on days i : i = 0 mod lmax. Hence, we

bound CILP over any interval of length lmax by O(log(m·(K+ dmax
lmin

)) log lmax))·Optlmax ,

where Optlmax is the optimum over the corresponding interval of length lmax. Summing

up over all such intervals yields our competitive factor for SCLD.
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Lemma 5.5. The cost CLP (lmax) of the LP solution over an interval of length lmax is at

most O(log(δ · (K+ dmax
lmin

))) ·Optlmax = O(log(m · (K+ dmax
lmin

))) ·Optlmax where Optlmax

is the cost of the optimal solution over this interval.

Proof. We fix any interval of length lmax from our partition. Any set (SOPT , k, t
′) in the

optimum solution over this interval has been a candidate for some element (e, t, d). When

(e, t, d) arrives, our algorithm increases the primal variables of (e, t, d)’s candidates until

they sum up to one. After O(ckSOPT
· log

∣∣F(e,t,d)

∣∣) increases, X(SOPT ,k,t′) becomes greater

than one and the algorithm makes no further increases. Furthermore, these increases

never add a total of more than 2 to the primal variables. This is because

∑
(S,k,t)∈F(e,t,d)

ckS ·
(
X(S,k,t)

ckS
+

1

ckS
·
∣∣F(e,t,d)

∣∣) ≤ 2,

since
∑

(S,k,t)∈F(e,t,d)
X(S,k,t) < 1 before the increase. The same holds for any other set

in the optimum solution over this interval. Using a similar argument as in OLD, we can

bound
∣∣F(e,t,d)

∣∣ by δ · (K + dmax
lmin

) (there are at most K + dmax
lmin

leases for each of the at

most δ candidate sets). This completes the proof of the lemma.

Lemma 5.6. The cost CILP (lmax) of the ILP solution over an interval of length lmax is

at most O(log lmax) · CLP (lmax), where CLP (lmax) is the cost of the LP solution over this

interval.

Proof. We fix any interval of length lmax from our partition. The probability to buy a

set (S, k, t) ∈ F in this interval is proportional to the value of its primal variable. Hence,

CILP (lmax) is upper bounded by

∑
(S,k,t)∈F

2 log(lmax + 1) · ckS ·X(S,k,t)

To guarantee feasibility, every time an element is not covered, the algorithm buys the

cheapest candidate, which is a lower bound to Optlmax . The probability that an element
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is not covered is at most 1/(lmax)2. Since the random variables are drawn independently,

we can add the expected costs incurred by the corresponding at most lmax elements and

deduce a negligible expected cost of lmax · 1/(lmax)2 ·Optlmax which concludes the proof

of the lemma.

From the two lemmas above, we deduce the following theorem.

Theorem 5.7. There is an online randomized algorithm for SCLD with a competitive

factor of

O(log(δ · (K +
dmax
lmin

)) log lmax) = O(log(m · (K +
dmax
lmin

)) log lmax)

SetCoverLeasing is nothing but a special case of SCLD if we set dmax = 0. Hence,

we deduce the following corollary thereby improving the previous result for SetCover-

Leasing [8] from O(log(m ·K) log n) to O(log(m ·K) log lmax) by removing the depen-

dency on n and therefore on time.

Corollary 5.8. There is an online randomized algorithm for SetCoverLeasing that

has a time-independent O(log(δ·K) log lmax) = O(log(m·K) log lmax)-competitive factor.

5.6 Conclusion & Outlook

In this chapter, we extended the line of leasing by introducing a new model for online

leasing problems, and as a first infrastructure leasing problem, we studied SetCov-

erLeasing with this model. Proceeding in this direction, one may want to look at

other infrastructure leasing problems starting, for instance, with FacilityLeasing and

SteinerTreeLeasing.

Our model introduces flexibility to demands with the aim to capture more general ap-

plications. Demands in our model have the flexibility of having a deadline. It will be

interesting to extend this work to include models that handle other flexibilities (e.g., can

be served on specific days within some period of time).
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Furthermore, demands in our model require a single day to be served. Allowing demands

that require more than one day to be served will be a natural extension of our model.

Even though the techniques used in this chapter do not carry over directly to this

extension, they still give the first insights. Along this direction, one may want to consider

demands with weights and leases with capacities, such that a weight represents some

load required to serve the corresponding demand, and a capacity represents how much

load a lease can bear per unit time step.

Along the same line of leasing lies an important unanswered question of what happens

if demands and/or their deadlines are given according to some probability distribution.

The assumption made in all existing leasing models is indeed relatively strong: in many

real-life scenarios, it is possible to predict what the future hides based on past events.

While it is difficult to have an optimal degree of abstraction, one may still want to look

at applications from actual markets in order to extend leasing models accordingly.

Another direction will be to consider lease prices changing over time, or in other words,

prices also given according to some probability distribution. This clearly makes sense

for many scenarios in which fixed prices are often hard to find.
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