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Zusammenfassung

In dieser Arbeit betrachten wir Probleme im Bereich verteilter Systeme und lokaler Algorithmen. Wir
betrachten verteilte Systeme die gegeben sind durch bestimmte Topologien miteinander vernetzen Knoten
und stellen die Frage, ob solche Topologien wiederhergestellt werden können wenn das Netzwerk durch
den Ausfall von Knoten oder Kanten oder dem Hinzukommen neuer Knoten oder Kanten verändert
wird. Dabei sollen lokale verteilte Algorithmen entwickelt werden, d.h. die Algorithmen werden auf
jedem Knoten ausgeführt und nutzen nur Informationen die lokal beim Knoten gespeichert wird wie
z.B. seine benachbarten Knoten, die das Netzwerk von einer beliebigen schwach zusammenhängenden
Starttopologie in eine gewünschte Zieltopologie überführen.

Diese Eigenschaft eines Algorithmus nennen wir topologische Selbststabilisierung. Motiviert wird
diese Betrachtung durch die zunehmende Nutzung von Peer-to-Peer (P2P) Systemen und von Cloud
Dienstleistern, also Szenarien in denen das verteilte System aus Ressourcen besteht, für die Ausfälle und
Verbindungen nicht mehr kontrolliert werden können.

Zur Analyse von topologisch selbststabilisierenden Algorithmen oder Protokollen führen wir geeignete
Modelle ein. Wir präsentieren dann für einige bestimme Topologien, mit welchen topologisch selbst-
stabilisierenden Protokollen diese erreicht werden können. Wir betrachten dabei als einführendes Beispiel
eine sortierte Liste von Knoten und fahren dann mit komplexeren Topologien wie einem bestimmtem
Small-World Netzwerk und einem komplettem Graphen fort.

Als nächstes wenden wir die Idee von topologisch selbststabilisierenden Protokollen auf das bekannte
Konzept von verteilten Hashtabellen an. Dabei zeigen wir, dass eine solche Lösung für bereits existierende
verteilte Hashtabellen möglich ist und entwickeln dann eine weitere verteilte Hashtabelle, die heterogene
Kapazitäten unterstützt, und ein dazugehöriges Protokoll.

Zum Schluss verlassen wir den Bereich topologisch selbststabilisierender Protokolle und betrachten
stattdessen, wie verteilte Hashtabellen erweitert werden können, sodass nicht nur exakte Suchanfragen
unterstützt werden sondern auch Suchanfrage nach dem ähnlichstem Schlüssel. Dabei betrachten wir
zum einen Ähnlichkeit in dem Sinne, dass der Antwortschlüssel den längsten gemeinsamen Präfix mit
dem Suchschlüssel besitzt, und zum anderen Ähnlichkeit in dem Sinne, dass der Antwortschlüssel der
Vorgänger des Suchschlüssels in einer gegebenen Ordnung ist.
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Abstract

This thesis considers problems located in the fields of distributed systems and local algorithms. In
particular we consider such systems given by specific topologies of interconnected nodes and want to
examine whether these topologies can be rebuilt in case the network is (massively) changed by failing or
joining nodes or edges. For this case we search for local distributed algorithms, i.e. the algorithms are
executed on every single node and only use local information stored at the nodes like their neighborhood
of nodes. By executing these algorithms we will show that the desired goal topologies can be reached
from any weakly connected start topology.

We call this property of an algorithm topological self-stabilization and motivate it by the increasing
usage of peer-to-peer (P2P) systems and of cloud computing. In both cases the user or owner of the data
and executed algorithms cannot control the resources and their connectivity.

In order to analyze topological self-stabilizing algorithms or protocols we introduce suited models. For
some specific topologies we then present and analyze topological self-stabilizing protocols. We consider
topologies like a sorted list of nodes, which we use as a simple introductory example. We then proceed
with more complex topologies like a specific small-world network and a clique.

We then show that the concept of topological self-stabilization can be used for distributed hash tables.
In particular we show that for existing distributed hash tables a topological self-stabilizing protocol can
be found. We also construct a new overlay network, that builds a distributed hash table that supports
heterogeneous capacities, and a corresponding topological self-stabilizing protocol.

At last we leave the concept of topological self-stabilization behind and instead show how to extend
the usage of distributed hash tables, in order to answer more than only exact queries. We present data
structures that can be built on top of distributed hash tables and support longest prefix queries and
predecessor or range queries.
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CHAPTER 1
Introduction

Imagine you’re the next Mark Zuckerberg. You’ve got the idea for the next big thing. As you are an
IT expert you are aware of all the new trends and technologies. As you also lack of money to invest
in infrastructure like several servers with high bandwidth, you decide to follow the current trend of
distributed computing and instead of buying the infrastructure you use the storage, computational power
and bandwidth provided by the so called cloud providers or by other users in a peer-to-peer network.
But with this decision new problems arise. If you use infrastructure provided by others you no longer
control this infrastructure, so the challenge is how to react on failures, on down times of the machines you
rented. Although cloud providers give guarantees on the availability of the resources you rented, e.g. the
Service Level Agreement of Amazon EC2 claims an availability of 99.95% [62], unavailability can still
be a problem especially if you have several resources provided by different cloud providers that should
be interconnected.

Let’s see if you can imagine something more. Let’s assume that if your application is truly successful
it will run on maybe thousands of virtual machines provided by different cloud providers (e.g. Google,
Amazon, Microsoft azure) [61, 28, 15] that should be interconnected in a specific way. In our example
we assume that all virtual machines are numbered, i.e. there exists a machine 1, a machine 2,· · · . Let’s
further assume that machine 1 should be connected to machines 2-4, machine 2 to machines 3-5, machine
3 to machines 4-6 and so on. A question that arises is how this connections can be maintained in case
some machines are unavailable. Let’s assume machine 6 is unavailable, then machine 7 assumes the role
of machine 6, machine 8 assumes the role of machine 7 and so on. Thus some connections have to be
changed in case machines become unavailable, e.g. machine 3 now has to be connected to machine 7
instead of the unavailable machine 6.

As we assumed that our application is running on several thousands of machines unavailability of some
machines becomes more likely and the connections can not be maintained manually. In fact we want our
system to be able to recover from any kind of degenerated state it can get into by failing or unavailable
machines or communication links. In this thesis we show some solutions to such problems in the field of
distributed systems. See Figure 1.1

In recent years a new quality of dynamics and uncertainty has been introduced to the concept of
distributed systems. Assumptions like that the number of nodes or faulty nodes in the system, bounds
of these or bounds on the network diameter are known before and by every node and can be used as
parameters in the distributed algorithm no longer hold if one considers distributed systems which are
peer-to-peer based or built using resources in the cloud [4, 57].

In peer-to-peer systems peers are allowed to enter or leave the system dynamically. It follows that
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Chapter 1 Introduction

...

...

...

...

...

Figure 1.1: Recovery of the connections of the set of virtual machines

no node can be aware of the total number of nodes whether faulty or not currently in the system. Thus
such an assumption is questioned from a practical point of view. By the leaving and (re)joining of nodes
also communication paths in the system alter or communication by some pair of nodes is even no longer
possible. So also assumptions on the network diameter or communication paths in general are not possible
in these settings.

A similar form of dynamics is introduced by the cloud computing paradigm. The cloud computing
paradigm states the need of elasticity and scalability in order to manage variable and potentially huge
workloads. This is achieved by scaling the storage or computational power of a single resource on the
one hand but also by adding further resources like virtual machines dynamically. So in such a setting also
the number of machines cannot be predicted in advance or is known by a single machine.

These new uncertainties are added to the several uncertainties already existing in static distributed
systems like the lack of temporal knowledge of the nodes or unreliable communication which are typically
modeled by asynchronous systems with different message passing models.

In this thesis we will present some answers on how to handle the challenges resulting from the described
dynamics. We will show that even if nodes join or leave the system or if communication between nodes
fail, i.e. if edges fail, the system can recover such that assumptions on communication paths or the network
diameter depending on the number of nodes are possible again. In fact we provide distributed algorithms
that can recover specific topologies and these topologies then provide bounds on the network diameter or
define communication paths. As described above such solutions can be helpful for peer-to-peer systems
or systems based on the cloud computing paradigm.

The presented techniques can be reused for peer-to-peer systems to recover the topology interconnecting
the peers. Most peer-to-peer systems claim to be self-organizing in the sense that the joining and leaving
of nodes can be handled if the rest of the system works properly, i.e. if all other nodes form the correct
topology and that no edge failures occur. With these restrictions it is unlikely that a worst-case scenario
happens and the topology interconnecting the peers degenerates totally [75, 69, 70, 50]. With our solutions
these restrictions are no longer necessary as with our distributed algorithms the topology can be recovered
from any degenerated form as long as all peers stay connected.

In the cloud computing scenario our techniques can be used to interconnect different resources like
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1.1 Thesis Overview

virtual machines that are provided by different cloud providers. So our solutions can be applied to the
case of cloud federation as our distributed algorithms maintain topologies automatically even if resources
are added or are taken out of the system dynamically. If a user needs further resources and rents further
virtual machines by some cloud provider the user does not have to connect these machines manually to
the machines already in his distributed system instead he only has to run one of the distributed algorithms
presented in this thesis on the virtual machines to maintain a specific topology on the virtual machines.

1.1 Thesis Overview

This thesis consists of four parts. In the chapter 2 we introduce the network and computational model we
will use in the following two parts. We further define topological self-stabilization.

In chapter 3 we develop topological self-stabilizing protocols for three different overlay networks. We
consider the sorted list, a specific small-world network and a clique as the overlay networks and show the
correctness of the corresponding protocols and analyze their stabilization time, stabilization work and
maintenance work.

In chapter 4 we apply our techniques of self-stabilizing protocols to distributed hash tables. We present
a Chord like overlay network Re-Chord that maintains all the features of Chord and a corresponding
topological self-stabilizing protocol. We then develop a new overlay network that supports heterogeneous
capacities of the nodes and also a topological self-stabilizing protocol.

In chapter 5 we do not develop new overlay networks or topological self-stabilizing protocols but
show how to extend existing solutions to support more than only exact queries. In particular we present
techniques to allow prefix queries and predecessor queries on distributed hash tables by providing two
data structures, the hashed Patricia trie and the hashed predecessor Patricia trie that can be built on top of
distributed hash tables.

3





CHAPTER 2
Models

In this chapter we introduce our models for topological self-stabilization. In this thesis two models for
topological self-stabilization are presented: an asynchronous model ATSS (asynchronous topological
self-stabilization), that will be used to give strong results on the correctness of our protocols, as our
protocols even work in an asynchronous setting, and a synchronous model STSS (synchronous topological
self-stabilization), that we use to provide bounds on the stabilization time and other complexities of our
protocols.

2.1 Topological Self-Stabilization

In this section we describe the general model for topological self-stabilization by giving a description of the
used network and computational models and then define what we mean by topological self-stabilization.

2.1.1 Network model

We assume a message passing model which is related to the model presented in [59] by Nor et al. To
model the structure of the networks we use a graph theoretic approach. The overlay network consists
of a static set V of n nodes and a set of edges E, which will be described in detail later on. We assume
fixed identifiers (ids) for each node. These identifiers are immutable in the computation, we only allow
identifiers to be compared, stored and sent. In our model the identifiers are used as addresses, such that
by knowing the identifier of one node another node can send messages to this node. On the identifiers
a unique order can be established. We further assume that there are no false identifiers in the network.
Although this is a strong assumption it can be justified. If we assume that there are false identifiers
in the system we need some mechanism to detect them before a message is sent to the false identifier.
Thus false identifiers don’t affect the protocol used to build the topologies, as still messages will only
be sent between nodes with correct identifiers. As we focus on the self-stabilizing protocols to build
certain topologies, we can simply assume that false identifiers can be detected or in other words no false
identifiers are existing.

The communication between nodes is realized by passing messages through channels. A node v can
send a message to u through the channel Chv,u. We assume that the capacity of a channel Chv,u is
unbounded and no messages are lost. We denote the channel Chu as the union of all channels Chv,u.

In order to describe the edge setE of the graph modeling our network we firstly define the computational
states. We distinguish between the node state of a node u, that is given by the set of identifiers stored in
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Chapter 2 Models

the internal variables of u, i.e. the nodes u can communicate with, and the channel state of a channel
Chu, that is given by all identifiers contained in messages in a channel Chu. The program state is then
defined by the node states of all nodes and the channel states of all channels, i.e. the assignment of values
to every variable of each node and messages to every channel. We call the combination of the node states
of all nodes the node state of the system and the combination of the channel states of all channels the
channel state of the system.

We model the network by a directed graph G = (V,E) called communication graph. The set of
edges E describes the possible communication pairs. E consists of two subsets: the explicit edges Ee =
{(u, v) : v is in u’s node state} and the implicit edges Ei = {(u, v) : v is in the channel state ofChu}.
Then E = Ee ∪Ei. Moreover we define Ge = (V,Ee) as the explicit communication graph. So we can
define a graph corresponding to every program state. We call Gt and Gte the communication graph and
explicit communication graph for an program state at time t.

2.1.2 Computational Model

Each node performs some predefined protocol P . A protocol P consists of a set of actions. An action has
the form < guard >→< command >. The guard predicate can be true or false, the guard predicate
only depends on local information of a node, i.e. its node state and a received message. command is
a sequence of statements that may perform computations or send messages to other nodes. Also all
computations only depend on the local information of the node performing the computations. Messages
can only be sent to nodes of which the identifiers are in the node state of the sending node or in the
received message. We introduce one special guard predicate τ called the timer predicate, which is
periodically true; i.e. according to an internal clock τ becomes true after a number of clock cycles and is
false the other times. We use τ to allow the nodes to perform periodical actions. A second predicate is
true if a message is received by a node. An action is enabled in some state if its guard is true and disabled
otherwise.

A computation is a sequence of program states such that for each program state si the next program
state si+1 is reached by executing an enabled action in si. By this definition, actions can not overlap
and are executed atomically giving a sequential order of the executions of actions. Thus by executing an
enabled action we reach the graph Gi+1 from the graph Gi.

2.1.3 Topological Self-stabilization

We now formally describe the problem of topological self-stabilization. In topological self-stabilization
the goal is to state a protocol P that solves an overlay problem OP starting from a topology in the set IT.
IT is the set of possible initial topologies. A protocol is unconditionally self-stabilizing if IT contains
every possible state. Analogously a protocol is conditionally self-stabilizing if IT contains only states
that fulfill some conditions. For topological self-stabilization we assume that IT contains any state as
long as GIT =

(
V,EIT

)
is weakly connected, i.e. the combined knowledge of all nodes and channels in

this state covers the whole network. Furthermore there are no identifiers that don’t belong to existing
nodes in the network.

The set of target topologies defined in OP is given by OP =
{
GOPe =

(
V,EOPe

)}
, i.e. the goal

topologies of the overlay problem are only defined on explicit edges and EOPi can be an arbitrary (even
empty) set of edges. We define the set of target topologies by the explicit edges only, as these are
permanent edges, i.e. ids stored in internal variables. So as soon as the topology formed by explicit edges
is in the set of target topologies, this topology fulfills all properties of the target topologies e.g. short
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2.2 ATSS vs. STSS

diameter, short routing length etc. despite any still existing implicit edges. We also call the program states
in OP legal states. We say a protocol P that solves a problem OP is topologically self-stabilizing if for P
convergence and closure can be shown. Convergence means that for P started with any state in IT every
computation eventually leads to a legal state in OP. Closure means that P started in a legal state in OP
maintains a legal state, i.e. only legal states are reachable. An illustration of the convergence and closure
property of a protocol P is given in Figures 2.1 and 2.2.

IT

OP

s0

s1
s2

...
si

si+1

Figure 2.1: Convergence for a protocol P

For a protocol P we assume that there are no oracles available for the computation. In particular
we assume that there is no connection oracle, that can connect disconnected parts of the network, no
identifier detector, that can decide whether an identifier belongs to an existing node or not, and no legal
state detector, that can decide based on global knowledge whether the system is in a legal state or not.
With these assumptions our model complies with the compare-store-send program model in [59] in which
protocols do not manipulate the internals of the nodes’ identifiers.

2.2 ATSS vs. STSS

In the ATSS model we assume an asynchronous message passing, i.e. for a message in a channel Chu it
is unknown when the message is delivered. For the channel we assume eventual delivery meaning that if
there is a state in the computation where there is a message m in the channel Chu there also is a later
state where the message m is not in the channel, but was received by the process. Note that this does
not imply any order between the messages from sending nodes. Considering the computational model
we add the assumption of weak fairness to our model. By weak fairness we mean that if an action is
enabled in all but finitely many states of the computation then this action is executed infinitely often. We
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IT

OP
s0

s1
s2

...si

si+1

Figure 2.2: Closure for a protocol P

further assume arbitrary asynchronicity concerning the internal clock of each node. Considering this
strong asynchronicity in the ATSS model we use this model in the following to show the correctness
of our protocols. By proving their correctness in the ATSS model we show that our protocols can be
implemented in a real-world application as also the internet is asynchronous and based on point-to-point
communication. For the ATSS model we don’t define asynchronous rounds to give any bounds on the
complexity of our protocols in an asynchronous setting. For this purpose we will introduce a second
synchronous model STSS.

In the STSS model we assume a synchronous message passing model, i.e. in the STSS model the
protocol is executed in synchronous rounds. For the passing of messages this means that messages sent in
one round are received immediately before the next round. Thus a node executes the action depending on
the received message one round after this messages was set. For the computational model this means that
we can drop the assumption of weak fairness and instead assume that each action that is enabled in one
round is also executed in the same round. For the STSS model we define that the next program state st+1

is reached from st by executing all enabled actions in round t. Accordingly the set Et = Eti ∪ Ete are
defined. Thus by executing all enabled actions in one round we reach the graph Gt+1 from the graph
Gt. In this thesis we use the STSS model to give complexity bounds for our protocols in a synchronous
setting to be able to talk about the efficiency of our protocols. We define the stabilization time to be the
worst-case number of rounds until, according to a protocol P , a state in OP is reached from any initial
state in IT . We further define two different kinds of work complexities.

We define the stabilization work to be the worst-case number of messages each node sends or receives
until according to a protocol P a state in OP is reached from any initial state in IT . For the stabilization
work we do not take into account the messages already in the initial state. As the channels capacities
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ATSS STSS
asynchronous message passing synchronous message passing
eventual delivery of messages messages are received in the next round

weak fairness enabled action are executed in each round
correctness only complexity results

Table 2.1: Properties of the two models for topological self-stabilization

are unbounded, there can be an arbitrary number of messages initially in the system, and thus also the
work in terms of received messages is unbounded. Therefore we only consider the messages sent and
received during the stabilization process, i.e. messages sent in the first round or later. For our analysis we
assume that each message contains a single identifier. If in our protocols messages are sent or received
that contain i identifiers then we simply count it as sending or receiving i messages.

The maintenance work is defined as the worst-case number of messages each node sends or receives
in one round in a state in OP , where we do not take into account the messages resulting from the
stabilization, i.e. we assume that there remain no messages in the Channel of each node after the
stabilization. We call such a stable state without remaining implicit edges OP ∗.

Furthermore we give bounds on the number of rounds and worst-case work for a node in the network
to recover the topology from single structural changes. We consider only single join and leave events in a
legal state. This means we want to answer the following question: in case the topology is already stable
how long does it take to recover if one single node joins or leaves the network? In case of a leaving node
we assume that the leaving of the node does not disconnect the network. Otherwise we say that a node is
not allowed to leave. We give a short overview of the two described models in table 2.1.
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CHAPTER 3
Self-Stabilizing Overlay Networks

3.1 Introduction

In this chapter we describe topological self-stabilizing algorithms that form overlay networks. We only
consider the protocols forming certain topologies and not the application of such topologies as distributed
data structures storing information, e.g. distributed hash tables. We start by considering a simple topology
to demonstrate how a topological self-stabilizing protocol looks like and analyze it according to our two
models. In fact we give a protocol for a self-stabilizing sorted list in section 3.2. We start with the sorted
list as it is not only a simple problem but the used protocol will also be reused to develop protocols for
more complex topologies. We present a protocol PLIST and an improved protocol PLISTsync for this
overlay problem and show that it is indeed topologically self-stabilizing in the ATSS and STSS model.
We further show a stabilization time of Θ(n), a stabilization work of Θ(n2) (resp. Θ(n) for PLISTsync)
and a maintenance work of O(1).

More complex topologies for which we present self-stabilizing protocols are small-world networks and
the complete graph. We consider small-world networks in section 3.3 as they share properties with many
real-world networks. For this overlay problem we again develop two protocols PSMALL−WORLD and
PSMALL−WORLDsync that are self-stabilizing in the ATSS and STSS model. We additionally show a
stabilization time of O(n+ δ) and a stabilization work of O(n2), and a maintenance work of O(n) for
the protocol PSMALL−WORLDsync if δ is the converging time of a specific random process.

At last we consider the problem of forming a complete graph in section 3.4. The complete graph is
an interesting overlay problem as it also is a way to discover all nodes in the network. This problem is
also known as resource discovery. If a node is aware of every resource in the network it is also able to
communicate with every resource and, according to our model, is therefore connected to every other
resource, i.e. all nodes form a complete graph. We give a topological self-stabilizing protocol PCLIQUE

for this overlay problem of forming a complete graph or a clique that is correct in the ATSS and STSS
model. We further show a stabilization time of Θ(n), a stabilization work of Θ(n), and a maintenance
work of O(1).

3.1.1 Related Work

Maintaining overlay networks has already been considered in a large body of literature. In the past the
work focused on how to keep an overlay network in a legal state, i.e. the network is already in a legal
state before some changes happen and has to recover to a legal state afterward. Far less work focused on
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self-stabilizing overlays, i.e. to recover to a legal state from any initial state.
In the case of structured Peer-to-Peer networks as CAN, Viceroy, Pastry, Skip graphs, SkipNet or

Chord [69, 50, 70, 2, 26, 75] mechanisms to keep the overlay network in a legal state are already given in
the introductory papers.

In [43] some stronger results could be shown for a specific overlay network as nodes were allowed to
fail even in not fully repaired states of the network. In particular an adversary can at most add and/or
remove O(log n) peers in a constant time interval while the system remains functional. Nevertheless
also this approach is not truly self-stabilizing as the set of states the system can recover from is limited,
e.g. all remaining nodes have the same estimation of the total number of nodes in the system and are
organized in supernodes forming a hypercube.

The idea of self-stabilization in distributed computing first appeared in a classical paper by E.W.
Dijkstra in 1974 [17] in which he looked at the problem of self-stabilization in a token ring. Interestingly,
though self-stabilizing distributed computing has received a lot of attention for many years, the problem
of designing self-stabilizing networks has attracted much less attention.

In order to recover certain network topologies from any weakly connected network, researchers have
started with simple line and ring networks. In [73], for example, Shaker and Reeves for the first time
present a self-stabilizing protocol for an overlay network. To build a ring given by the order of the
identifiers of the nodes each node searches for those nodes that succeed its own identifier by initializing
search messages in the system that are always routed to the node with the closest succeeding identifier. We
will use similar ideas in our protocols. In particular we use such message to build topologies that are not
locally checkable. In [60], Onus et al. present a local-control strategy called linearization for converting
an arbitrary connected graph into a sorted list. As we will see this protocol is a starting point for the
protocol we will introduce to form a sorted list, which again is the basis for advanced self-stabilizing
overlay networks.

In [19] Dolev and Kat describe a self-stabilizing protocol to build a hypertree with a polylogarithmic
degree and search time. Their hypertree overlay network provides a bounded in- and out-degree of
O(logbN) and a depth of also O(logbN), where N is the maximal number of nodes and b is an integer
parameter > 1. The self-stabilizing protocol is based on three ideas. Firstly each node has to know the
root. Additionally each node permanently ensures the validity of the its pointers to its parent and children.
If the parent pointer is incorrect it then contacts the root. All other nodes are informed by the nodes by a
broadcast and then collect information about the structure of their sub-trees in a convergecast such that in
the end all information is collected by the root. The root then ensures that all nodes are assigned to their
correct parental nodes and that the number of levels is not too high and otherwise enforces all nodes to
contact the root again.

Jacob et al. [30] generalize insights gained from graph linearization to two dimensions and present
a self-stabilizing construction for Delaunay graphs. In another paper, Jacob et al. [29] present a self-
stabilizing variant of the skip graph and show that it can recover its network topology from any weakly
connected state in O(log2 n) communication rounds with high probability. In [20] and [21] Dolev
and Tzachar show self-stabilizing algorithms for forming sub-graphs like clusters or expanders in just
polylogarithmic number of rounds.

In [7] the authors present a general framework for the self-stabilizing construction of overlay networks,
which may involve the construction of the clique. The algorithm requires the knowledge of the 2-hop
neighborhood for each node. In that way, failures at the structure of the overlay network can easily be
detected and repaired. However, the work in order to do that when using this method is high as in each
round a node sends the information about its complete neighborhood to all its neighbors.
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3.2 The Sorted List

3.2.1 Introduction

The first overlay problem for which we present a solution is the sorted list problem. We denote this
overlay problem by OP = LIST . A sorted list is given if each node is connected to its preceding and
succeeding node in an order established on the nodes v0, v1, · · · , vn−1. See Figure 3.1 for an example.
A list topology is probably the most simple topology one can think of. Therefore we start considering
this simple topology in the hope that also the solving protocol is simple and easy to understand to give a
first example for topological self-stabilization.

v1 v4 vn-1v5 vn-2v3v2

Figure 3.1: An example of a sorted list

3.2.2 Our Contribution

We present a protocol PLIST that solves the overlay problem LIST . We show the correctness of PLIST

in the ATSS model in Theorem 3.2.1. The basic ideas of the protocol PLIST are given in the paper [60]:

Melih Onus and Andrea W. Richa and Christian Scheideler, Linearization: Locally Self-Stabilizing
Sorting in Graphs, ALENEX, 2007

Our results of a stabilization time of Θ(n) of PLIST in the STSS model given in Theorem 3.2.5 is
based on proofs we firstly showed in [35], which is a joint work with my colleague Andreas Koutsopoulos
and our supervisor Christian Scheideler:

Sebastian Kniesburges and Andreas Koutsopoulos and Christian Scheideler, Re-Chord: a self-
stabilizing chord overlay network, SPAA, 2011

The results for the stabilization work given in Theorem 3.2.7, the maintenance work given in Theo-
rem 3.2.8, the work due to a single join given in Theorem 3.2.9 and in particular the improved stabilization
work of a modified protocol PLISTsync given in Theorem 3.2.10 are presented for the first time.

3.2.3 Formal Definition

According to our model presented in Chapter 2 we assume that each node can be identified by an unique
id. For a node v we define a hash function h : ID 7→ [0, 1] that maps the identifier of a node to a point
h(v) in the [0, 1] interval. We refer to h(v) as v’s position. We assume that h is chosen in a way such that
no two nodes get the same position. We further assume that h is known to every node, i.e. by knowing
the identifier of one node each node can determine its position. Then a global order on the nodes can be
defined by their positions h(v0) < h(v1) < · · · < h(vn−1) and each node can establish an order in the
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same way on its local neighborhood, which enables nodes to check whether the program state is globally
correct.

We can now define the sorted list as a list of nodes built according to the order of their positions.

Definition 3.2.1 A graph G = (V,E) is a sorted list, if V = {v0, · · · vn−1} with h(vi) < h(vi + 1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vj) :, j = i− 1 ∨ j = i+ 1∀0 < j < n− 1}.

We now define the internal variables of each node used in our protocol PLIST to solve the overlay
problem LIST . Each node u stores the following variables:

• u.predecessor: the preceding neighbor of u, i.e. a node v such that h(u.predecessor) < h(v).

• u.successor: the succeeding neighbor of u, i.e. a node v such that h(u.successor) > h(v).

Additionally each node contains the following variables:

• u.Ch: the implementation of Ch(u), a buffer storing all incoming messages.

• u.τ : a boolean variable that is periodically true to activate the periodic actions at the node u.

To communicate with each other, nodes send messages. In our protocol there is only one type of
message. The only content of a message is an identifier of some node. Thus a message m is of the
following form m = (v). In the following we define when an assignment of the variables is valid and
how the sets IT and LIST look like.

Definition 3.2.2 An assignment of the variables of a node u is valid if h(u.predecessor) < h(u) or
u.predecessor = nil and h(u.successor) > h(u) or u.successor = nil.

Note that an invalid assignment can be locally repaired immediately. Thus we assume in the following
w.o.l.g. that initially the assignment is valid for every node.

With the given internal variables we are now able to define the set of initial topologies IT and especially
the set of goal topologies LIST .

Definition 3.2.3 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of initial topologies is given by:

IT = {G = (V,E = Ee ∪ Ei) : G is weakly connected}

Definition 3.2.4 Let Ee and Ei be defined as described in Chapter 2. Then the set of target topologies is
given by:

LIST = {G = (V,E) : Ge is a sorted list}

3.2.4 Protocol PLIST

In this section we give a description of the used protocol for the topological self-stabilization of a sorted
list. The protocol is executed in a distributed way, i.e. each node executes the same protocol based on
its local information. We assume that the initial state and every following program state is valid, i.e.
the variables of each node are valid. The protocol PLIST is based on the following simple idea firstly
presented in [60]. Each node performs a local sorting on the positions of nodes received by messages
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and of nodes stored in internal variables. We firstly describe the protocol informally and then give an
implementation in pseudo code.

We assume a node u receives a messagem = (v) with the identifier of a node v. Then u checks whether
h(v) > h(u) or h(v) < h(u). If h(v) > h(u) and h(v) < h(u.successor) or u.successor = nil, then
u sends a message m = (w = u.successor) to v (only if u.successor 6= nil) and updates its internal
variable u.successor and sets it to v, i.e. u.successor = v in the next state. If h(v) > h(u) and
h(v) > h(u.successor) then u sends a message m = (v) to w = u.successor. In such a case we say
that u forwards v to w. An illustration of the described actions is given in Figure 3.2.

u w v

u w v

u v w

u v w

u v

u v

a) h(u)<h(w=u.successor)<h(v) b) h(u)<h(v)<h(w=u.successor)

c) h(u)<h(v) and u.successor=nil

Figure 3.2: Three possible cases if a node u receives a node v

If h(v) < h(u) and h(v) > h(u.predecessor) or u.predecessor = nil, then u sends a message
m = (w = u.predecessor) to v (only if u.predecessor 6= nil) and updates its internal variable
u.predecessor and sets it to v, i.e. u.predecessor = v in the next state. If h(v) < h(u) and h(v) <
h(u.predecessor) then u sends a message m = (v) to w = u.predecessor.

In this way nodes are sorted according to their positions and a node forwards all nodes it does not store
in internal variables to nodes with a closer position.

Additionally each node u periodically informs its closest neighbors (stored in u.successor and
u.predecessor) about itself by sending a message m = (u). This is done to achieve a strongly connected
list. An illustration of the periodic action is given in Figure 3.3.

So there are two different kinds of actions, one is executed if a node receives a message and the other
is executed periodically. To describe this formally we need two guards. The first guard is given by
message m ∈ u.Ch→ · · · . For the second guard we use the defined boolean predicate u.τ → · · · that is
periodically true. We now give an pseudo code implementation of the protocol PLIST in Algorithm 3.2.1.
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u wv

u wv

u sends m=(u) to v=u.predecessor and w=u.successor

Figure 3.3: Outcome of the periodic action of a node u

Algorithm 3.2.1 PLIST

message m = (v) ∈ u.Ch→
if h(v) > h(u) then

if u.successor = nil then
u.successor = v

else if h(v) < h(u.successor) then
send message m′ = (u.successor) to v
u.successor = v

else if h(v) > h(u.successor) then
send message m′ = (v) to u.successor

else
if u.predecessor = nil then

u.predecessor = v
else if h(v) > h(u.predecessor) then

send message m′ = (u.predecessor) to v
u.predecessor = v

else if h(v) < h(u.predecessor) then
send message m′ = (v) to u.predecessor

u.τ →
send message m = (u) to u.successor
send message m′ = (u) to u.predecessor
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3.2.5 Analysis in the ATSS model

In this section we analyze the protocol PLIST in the ATSS-model. We show the correctness in an
asynchronous setting by proving the convergence and closure property separately and then combine the
results to prove the following main theorem:

Theorem 3.2.1 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PLIST then eventually the graph converges to a graph G′ ∈ LIST (Convergence). If in an initial graph
G ∈ LIST every node executes the protocol PLIST then each possible computation leads to a graph
G′ ∈ LIST (Closure).

Convergence

We begin by showing that PLIST fulfills the convergence property.

Theorem 3.2.2 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PLIST then eventually the graph converges to a graph G′ ∈ LIST .

To show the theorem we first prove a set of lemmas from which the theorem follows. The main idea
of the proofs is that the lengths of the edges, measured by the number of nodes between the start and
endpoint in the sorted list, decrease until all consecutive nodes in the sorted list are directly connected.

Lemma 3.2.1 If a computation of PLIST started in a state in IT contains a state st where nodes u, v
are connected by a path in Gt then in every state st′ , t′ > t, after that there is a path from u to v in Gt

′
.

Proof. We show that in the executed actions according to the protocol PLIST edges are kept, added
or substituted by a path, such that the connectivity is maintained and no paths are disconnected. We
therefore assume that (u, v) ∈ Et and (u, v) /∈ Et+1:

1. (u, v) ∈ Ete: If v = u.successor then u receives a message m = (w) with h(u) < h(w) < h(v)
and u updates its successor and forwards v to w. Then (u,w) ∈ Et+1

e and (w, v) ∈ Et+1
i

and u and v stay connected. If v = u.predecessor then u receives a message m = (w) with
h(u) > h(w) > h(v) and u updates its predecessor and forwards v to w. Then (u,w) ∈ Et+1

e and
(w, v) ∈ Et+1

i and u and v stay connected.

2. (u, v) ∈ Eti : Then u receives a messagem = (v). If h(v) > h(u) and h(v) > h(u.successor) the
edge (u, v) in Gt is replaced by a path u,w = u.successor, v in Gt+1. The edge (u,w) obviously
exists as u currently stores w = u.successor and the edge (w, v) ∈ Et+1

i is created by a message
m = (v) sent to w. If u.successor = nil the edge (u, v) is retained in Gt+1 and even Gt+1

e . If
h(u.successor) > h(v) > h(u) then u stores v as its successor and thus (u, v) ∈ Et+1

e . The same
arguments hold for the case h(v) < h(u).

In the periodic action edges are only added to Gt, as u introduces itself to its predecessor and successor.
ut

The next lemma claims that the stored edges (u, u.successor) and (u, u.predecessor) are shortened
over time.
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Lemma 3.2.2 If the computation of PLIST reaches a state st where for some node u there are two edges
(u, v) ∈ Ete and (u,w) ∈ Eti such that h(u) < h(w) < h(v) (resp. h(v) < h(w) < h(u)) then this
computation contains a later state st′ , t′ > t, with an edge (u,w′) ∈ Et′e with h(w′) ≤ h(w) (resp.
h(w′) ≤ h(w)).

Proof. We only show the case h(u) < h(w) < h(v). For h(u) > h(w) > h(v) the same arguments can
be applied. If (u,w) ∈ Eti then there is a message m = (w) ∈ u.Ch. Once this message is received at
time t′ by u, u.successor is either updated to w, such that (u,w′) ∈ Et′e with w′ = w, or if u.successor
is not updated, u.successor must already be set to w′, such that (u,w′) ∈ Et′e with h(w′) < h(w). ut

The next lemma claims that edges given by a channel state are also shortened over time, but with the
difference that for these links the start-point of the link and not its endpoint is updated.

Lemma 3.2.3 If the computation of PLIST reaches a state st where for a node u there are links (u, v) ∈
Ete and (u,w) ∈ Eti with h(u) < h(v) < h(w) (resp. h(u) > h(v) > h(w)) then the computation
contains a later state st′ , t′ > t, where there is a link (w′, w) ∈ Et′i with h(u) < h(w′) < h(w) (resp.
h(u) > h(w′) > h(w)).

Proof. We again only show the case h(u) < h(v) < h(w). For h(w) < h(v) < h(u) the same
arguments can be applied. If (u,w) ∈ Eti there is a message m = (w) ∈ u.Ch. Once this message is
received by u, we know by Lemma 3.2.1 that there is a state st′ at time t′ > t where there is an edge
(u, x) ∈ Et′e with h(u) < h(x) ≤ h(v) as the stored edges in Ee are only shortened over time. Then w is
forwarded in state st∗ , t∗ > t′, to w′ = u.successor with h(w′) ≤ h(x) by a message m′ = (w). It then
holds that h(u) < h(w′) < h(w) and (w′, w) ∈ Et∗ . ut

Lemma 3.2.4 If the computation of PLIST reaches a state st where for some nodes u, v and w such that
h(u) < h(w) < h(v) (resp. h(v) < h(w) < h(u)) there are edges (u, v) ∈ Ete and (w, u) ∈ Ete then
the computation contains a later state st′ , t′ > t, where either some edge in Et

′
e is shorter than in Ete, i.e.

the startpoint is closer to the endpoint of the edge at time t′ than at time t, or (u,w) ∈ Et′e .

Proof. Remember that the periodic action is periodically enabled. In this action w sends a message
m = (w) to u. Then by Lemma 3.2.2 this lemma is proven. ut

Lemma 3.2.5 If the computation of PLIST reaches a state st where there is an edge (u, v) ∈ Ete then
the computation contains a later state st′ , t′ > t, where some edge in Et

′
e is shorter than in Ete or

(v, u) ∈ Et′e .

Proof. W.l.o.g. let h(u) < h(v). Eventually in a state st′ at time t′ > t u executes a periodic action
and the edge (v, u) is added to Et

′
i (if not already existing). If this edge is also added to Et

′
e , that is

v.predecessor = u, then the lemma holds. Otherwise we assume that no edge in Ete shortens. Then
h(u) < h(w = v.predecessor) < h(v) and according to lemma 3.2.3 the edge (v, u) ∈ Et′ is shortened
to an edge (w′, u) ∈ Et∗ in a state st∗ at time t∗ > t′ where h(u) < h(w′) < h(w). If (w′, x) ∈ Et∗e
where h(x) < h(u), then an edge in Ete has to shorten eventually according to Lemma 3.2.2. If x = u,
Lemma 3.2.4 holds and again an edge in Ete has to shorten. Otherwise according to Lemma 3.2.3 the
edge (w′, u) ∈ Et∗ to u shortens to (w′′, u) where h(u) < h(w′′) < h(w′). This implicit edge can only
shorten a finite number of times until an edge in Ete has to be shortened. ut
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Lemma 3.2.6 If the computation of PLIST reaches a state st such that (u, v) ∈ Et′e ⇒ (v, u) ∈ Et′e in
every state st′ , t′ > t, then this computation contains a state st∗ such that Et∗e is strongly connected.

Proof. If (u, v) ∈ Et′e ⇒ (v, u) ∈ Et′e holds for every t′ > t then in a periodic action no edges are
added to Et. Edges in Eti are shortened over time according to Lemma 3.2.3, such that eventually a state
st∗ is reached with Et

∗
e = Et

′
. As Et is weakly connected at time t = 0 and stays connected by Lemma

3.2.1 and (u, v) ∈ Ete ⇒ (v, u) ∈ Ete holds, eventually a state st∗ is reached such that Et
∗
e is strongly

connected. ut

Lemma 3.2.7 If the computation of PLIST reaches a state st such that Ete is strongly connected and for
every pair of nodes (u, v) ∈ Ete ⇒ (v, u) ∈ Ete then this state is a solution for the sorted list problem
and Gt ∈ LIST .

Proof. Let us assume that it is not a solution for the sorted-list problem. Then there is a pair vi, vi+1 of
consecutive nodes that are not directly connected. As Ete is strongly connected there is a shortest path
from vi to vi+1 and vice versa. On this path there has to be a node u that has two outgoing edges to nodes
v, w h(v) < h(u) and h(w) < h(u) (or h(v) > h(u) and h(w) > h(u)). This is a contradiction to the
definition of Ete in which each node has only one outgoing edge to its predecessor and successor. ut

We are now ready to show the Theorem. According to Lemma 3.2.1 Gt stays weakly connected during
the computation. By Lemma 3.2.2 and 3.2.3 it follows that all edges are shortened over time. Note
that as soon as a node receives a message there has to be a state st1 at time t1 with at least one edge
in Et1e . According to Lemma 3.2.4 eventually all edges in Et1e can not be shortened and either (u, v)
and (v, u) ∈ Et2e in some state t2 ≥ t1 or a new edge is added to Et1e . As for each node there are at
most two edges in Ete, eventually all edges are added and a state st3 at time t3 ≥ t2 is reached with
(u, v) ∈ Et3 ⇒ (v, u) ∈ Et3e . According to Lemma 3.2.5 there is a state such that in every state st4 at
time t4 ≥ t3 (u, v) ∈ Et4e ⇒ (v, u) ∈ Et4e . Now, according to Lemma 3.2.6 the computation contains a
later state st5 at time t5 ≥ t4 such that Et5e is strongly connected. Then by applying lemma 3.2.7 in this
state st5 the sorted-list problem is solved.

Closure

We will now show that for PLIST also the closure property holds, i.e. that once a legal state is reached in
the computation only legal states are reachable. This concludes our main theorem.

Theorem 3.2.3 If in an initial graph G ∈ LIST every node executes the protocol PLIST then each
possible computation leads to a graph G′ ∈ LIST .

Proof. If the computation reaches a state st such that Gt is a solution for the sorted list problem, then it
follows from the definition that the graph is strongly connected and for every pair of consecutive nodes
in the sorted list vi, vi+1 with h(vi) < h(vi+1) (vi, vi+1) ∈ Ete and (vi+1, vi) ∈ Ete. Then Et+1

e = Ete
as no edges in Ete are deleted or added or forwarded. Ete only changes if a node receives a message
containing a node that replaces either its successor or its predecessor. Obviously this can not happen if vi
and vi+1 are already connected. ut

Combining Theorem 3.2.2 and Theorem 3.2.3 we get our main theorem Theorem 3.2.1 that states that
PLIST is a topological self-stabilizing protocol for the sorted list problem.
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3.2.6 Analysis in the STSS model

Analyzing the same protocol PLIST in the STSS model we show some bounds on the complexities
defined in Chapter 2.

Theorem 3.2.4 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PLIST then the graph converges to a graph G′ ∈ LIST (Convergence) with a stabilization time of O(n)
and a stabilization work of Θ(n2). If in an initial graph G ∈ LIST ∗ every node executes the protocol
PLIST then each possible computation leads to a graph G′ ∈ LIST (Closure) with a maintenance work
of O(1).

Stabilization Time

We start by showing the stabilization time of the protocol PLIST . Note that in the STSS model we
execute all enabled actions in one round, i.e. all messages in u.Ch are received by a node u. Thus we
slightly adapt the notation of Et and Ete. Instead of considering the changed edge sets after each single
action we consider the changed edge sets after executing all enabled actions for all nodes in one round.

Theorem 3.2.5 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PLIST then the graph converges to a graph G′ ∈ LIST (Convergence) with a stabilization time of Θ(n).

To show the correctness of PList and the stabilization time in the STSS model we introduce some
further definitions and show a helpful lemma.

Definition 3.2.5 A path p = (u = w0, w1, · · ·wl = v) is called a weakly connecting path for a pair
of nodes u, v if (wi, wi+1) ∈ E or (wi+1, wi) ∈ E ∀0 ≤ i ≤ l. Let wmin = min {h(wi) ∈ p} and
wmax = max {h(wi) ∈ p}. We call wmin and wmaxthe border nodes of p and [h(wmin), h(wmax)]the
range of the weakly connecting path p.

Lemma 3.2.8 If a pair of nodes u and v with h(u) < h(v) (resp. h(v) < h(u)) is connected by a directed
path p = (u = w0, w1, · · ·wl = v) from u to v over nodes wi with h(u) ≤ h(wi) ≤ h(v) (resp. h(v) ≤
h(wi) ≤ h(u)) at a time t then there is directed path p′ = (u = w′0, w

′
1 = u.successor, w′2, · · ·w′l = v)

from u to v over nodes w′i with h(u) ≤ h(w′i) ≤ h(v) (resp. h(v) ≤ h(w′i) ≤ h(u)) at every time t′ > t.

Proof. We show that each directed edge (u, v) ∈ Et either stays or is substituted by such a directed
path from u to v. W.l.o.g. we assume h(u) < h(v). If there is an edge (u, v) ∈ Et there can be
two cases, such that (u, v) /∈ Et+1. Either v = u.successor and u receives a message m = (w)
with h(u) < h(w) < h(v) such that w becomes u’s successor and a message m′ = (v) is sent to w
or (u, v) ∈ Eti and u receives the message containing v and h(u.successor) < h(v) and a message
m′ = (v) is sent to w = u.successor. In both cases (u, v) is substituted by a directed path (u,w), (w, v)
as (u,w) ∈ Et+1

e and (w, v) ∈ Et+1
i and h(u) < h(w) < h(v). In each other case the edge (u, v)

remains with v = u.successor. ut

We are now ready to prove Theorem 3.2.5.
Proof. We first show that the stabilization time is in O(n). Let vi and vi+1 be two arbitrary consecutive
nodes in the sorted list. By the definition of IT we know that in every graph G ∈ IT there is a weakly
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connecting path for vi and vi+1. We show that the minimal range of all connecting paths is decreasing,
such that the two nodes are directly connected after at most O(n) synchronous rounds.

Let pt be a connecting path for two arbitrary consecutive nodes vi and vi+1 at time t. We then show
that we can find a connecting path at time t′, t′ > t, with a strictly smaller range. We firstly prove that if
one of the border nodes wtmin and wtmax defining the range of pt has two outgoing edges in pt, then we
can construct a connecting path pt+1 with a smaller range. W.l.o.g. we show this for wtmin as the same
arguments can be applied for wtmax.

If wtmin has two outgoing edges (wtmin, x), (wtmin, y) ∈ pt then in the next round according to Lemma
3.2.8 there is a directed path p1 = (wtmin = w′0, w

t
min.successor = w′1, w

′
2, · · ·w′l = x) from wtmin

to x such that h(wtmin) ≤ h(w′i) ≤ h(x)∀w′i and another path p2 = (wtmin = w′′0 , wmin.successor =
w′′1 , w

′′
2 , · · ·w′′k = y) fromwtmin to y such that h(wtmin) ≤ h(w′′i ) ≤ h(y)∀w′′i . Thus we can substitute the

edges (wtmin, x) and (wtmin, y) by p1 and p2 leaving outwtmin, as p1 and p2 both includewtmin.successor
and get a new weakly connecting path pt+1 with a strictly smaller range (see Figure 3.4).

w
t
min Vi w

t
maxVi+1yx

pt

W
t+1

min Vi W
t+1

maxVi+1yx

pt+1

wmin

wtmin.successor

Figure 3.4: The range of pt decreases if wtmin has two outgoing edges

It remains to show that it does not take too long before a border node has two outgoing edges. In
case vmin does not have two outgoing edges we construct pt+1 out of pt in the following way. If
(x, y) ∈ pt with h(x) < h(y) and y is delegated then according to Lemma 3.2.8 there is a directed path
p′ = (x = w0, w1 = x.successor, w2, · · ·wl = y) with h(x) ≤ h(wi) ≤ h(y) from x to y. Thus we
substitute (x, y) by p′ in pt to get pt+1. If (x, y) ∈ pt with h(x) < h(y) and y is not delegated then we
simply keep (x, y) ∈ pt+1.

If (x, y) ∈ pt with h(x) > h(y) and y is delegated then according to Lemma 3.2.8 there is a directed
path p′ = (x = w0, w1 = x.predecessor, w2, · · ·wl = y) with h(x) ≥ h(wi) ≥ h(y) from x to y. Thus
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we substitute (x, y) by p′ in pt to get pt+1. If (x, y) ∈ pt with h(x) > h(y) and y is not delegated, then
x introduces itself to y and we substitute (x, y) ∈ pt by (y, x) ∈ pt+1. Note that by all substitutions the
range of the path is not increasing. By using this construction scheme we can show that for a path pt it
takes at most max {0, n− t} rounds before wtmin has two outgoing edges. We denote by wtmin the left
border node of the connecting path pt.

We prove this by induction on t. Let p0 be an arbitrary undirected path connecting two consecutive
nodes vi, vi+1 in the sorted list. Then w0

min is the left border node of this path. If w0
min already has two

outgoing edges on p0 then it takes obviously at most max {0, n} rounds. Otherwise there is at least one
incoming edge (y, w0

min) on p0. For each such incoming edge (y, w0
min) the node y either introduces

itself to w0
min or delegates w0

min. In the first case w0
min then has an outgoing edge in p1 according to

our construction scheme. In the second case (y, w0
min) is substituted by a path p′ as described above.

Then w0
min still has an incoming edge (y′, w0

min), but with h(y′) < h(y). Obviously w0
min can only be

delegated n times before (y′, w0
min) is substituted by an outgoing edge. Let pt be an undirected path

connecting vi, vi+1 in the sorted list that was constructed out of p0 according to our construction scheme.
If wtmin already has two outgoing edges on pt then it takes obviously at most max {0, n− t} rounds.
Otherwise there is at least one incoming edge (y, wtmin) on pt. Then (y, wtmin) /∈ pt−1 but wtmin was
delegated to y by another node z with h(z) > h(y), otherwise y would have introduced itself to wtmin and
wtmin would have an outgoing edge instead. Thus (z, wtmin) ∈ pt−1. For this edge the same observation
holds. Then wtmin has been delegated t times by nodes z with h(z) > h(y). Thus there are at most n− t
nodes w with h(wtmin) < h(w) < h(y) wtmin can still be delegated to before the edge is substituted by
an outgoing edge.

Then it takes at most max {0, n− t} rounds before wtmin has two outgoing edges. If wtmin has two
outgoing edges we can construct a path with a smaller range. Then afterO(n) rounds vi, vi+1 are directly
connected,i.e. (vi, vi+1) ∈ Ee and (vi+1, vi) ∈ Ee. This gives us an upper bound of O(n) rounds for the
stabilization time.

Consider the graph shown in Figure 3.5.

v1 v4 vn-1v5 vn-2v3v2

Figure 3.5: A sorted list with a stabilization time Θ(n)

Then it obviously takes Ω(n) rounds until vn−1 is forwarded to vn−2 and vn−1 and vn−2 are introduced
to each other, as in each round vn−1 is forwarded to one node closer to vn−2. Thus in total we showed a
stabilization time of Θ(n).

ut

Theorem 3.2.6 If in an initial graph G ∈ LIST every node executes the protocol PLIST then each
possible computation leads to a graph G′ ∈ LIST (Closure).

Proof. The proof is the same as in the asynchronous setting. ut
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Stabilization Work

We proceed by giving a bound on the number of messages each node has to send and receive during the
stabilization time. For the protocol PLIST only a trivial bound of Θ(n2) stabilization work can be shown.

Theorem 3.2.7 If in an initial graph G ∈ IT every node executes the protocol PLIST then each possible
computation leads to a graph G′ ∈ LIST with a stabilization work of Θ(n2).

Proof. We first show that the stabilization work is in O(n2). As we know the stabilization time is O(n)
and in each of these rounds a node can receive at most O(n) different messages in each round. To avoid
counting messages resulting from overfull channels in the initial state we assume that identical messages
are only processed once in one round, i.e. identical messages in a channel are merged to one.

Additionally each node also sends only O(n) messages, as in each executed action at most O(1)
messages are sent. Thus each node sends and receives at most O(n2) messages until a legal state is
reached. It remains to show that in the worst case Ω(n2) messages are in fact sent or received by at least
one node during the stabilization.

Therefore consider the following example given in Figure 3.6 of an initially weakly connected network.

v1 v4 vn-1v5 vn-2v3v2

Figure 3.6: A sorted list with a stabilization work Θ(n2)

Then vn−1 is the successor of any other node in the network. Thus each node introduces itself to
vn−1, i.e. vn−1 receives n − 1 messages. vn−1 forwards all received ids to its predecessor vn−2. In
the next round vn−2 forwards all received ids (0, 1, 2, . · · · vn−4) to its predecessor vn−3 and introduces
itself. Then vn−2 becomes the successor of vn−3 and vn−3 stops sending its identifier to vn−1. So
vn−1 receives n− 2 messages in the next round. vn−3 then forwards all received ids (0, 1, 2, . · · · vn−5)
to its predecessor vn−4 and will become its successor. So then there are only n − 3 nodes for which
vn−1 is the current successor. Applying this argument inductively follows that after n− 1 rounds only
vn−2 stores vn−1 as its successor and a legal state is reached. During this stabilization vn−1 received
n− 1 +

∑n−1
i=1 i = Ω(n2) messages. ut
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Maintenance Work

Theorem 3.2.8 If in an initial graph G ∈ LIST ∗ every node executes the protocol PLIST then each
possible computation leads to a graph G′ ∈ LIST ∗ with a maintenance work of O(1).

Proof. In any graph G ∈ LIST ∗ there are only edges (vi, vi+1), (vi+1, vi) ∈ Ete and edges
(vi, vi+1), (vi+1, vi) ∈ Eti for a pair of consecutive nodes in the sorted list vi, vi+1. Thus a node
only sends O(1) messages in each round by introducing itself to its predecessor and successor and
receives only O(1) messages in each round by its predecessor and successor. ut

Single Join Events

For the completeness of the analysis we consider dynamic changes of the network in terms of single
joining nodes. For the sorted list we don’t analyze the case of a leaving node, as leaving is trivial for the
nodes with the minimal and maximal position v0 and vn−1 and all other nodes are not allowed to leave to
preserve connectivity.

Theorem 3.2.9 If a node joins a network G ∈ LIST it takes at most O(n) rounds until a legal state is
reached again with an additionally work of O(1) for each node per round.

Proof. A node u joins an existing network at time t by being aware of the identifier of exactly one
node v already in the network. u like the nodes already in the network execute the protocol PLIST .
Thus u will introduce itself to v as v = u.successor if h(u) < h(v) or v = u.predecessor otherwise.
For the rest of the proof we assume h(u) > h(v), in the other case symmetric arguments can be
applied. Then after one round (u, v) ∈ Et+1

i . According to PLIST v forwards u to v.successor if
h(u) > h(v.successor) > h(v) or stores u as v.successor. As u can only be forwarded O(n) times,
after l ∈ O(n) rounds (v′, u) ∈ Et+li with h(v′) < h(u) < h(w = v′.successor). Thus u becomes
v′.successor and the old node’s identifier w is forwarded to u. As the network was in legal state before
u stores w correctly as u.successor. After one further round of introduction a new legal state is reached.
During this O(n) rounds u introduced itself to v in each round, thus it takes additionally O(n) rounds
until a state in LIST is reached. In each round u only introduces itself to v and all other nodes already in
the network only send and receive introduction messages to and from their successor and predecessor and
one message containing u. So each node sends and receives at most O(1) messages in each round. ut

3.2.7 Modification

As we have seen the protocol PLIST works correctly for an asynchronous and synchronous setting. In
the following we improve the performance in a synchronous setting, in particular the stabilization work,
by exploiting the fact that all nodes execute the protocol PLISTsync synchronously and especially that all
messages are received at once in the beginning of one round.

The way to reduce the stabilization work is to avoid sending unnecessary messages. One way to
achieve this is to respond to the periodic messages sent by nodes that assume that they are the successor
or predecessor of the receiving node u by not only forwarding the identifier to u’s current successor or
predecessor but also to introduce u’s successor or predecessor to the sending node. By this modification
u will not receive periodic messages of these nodes again. To distinguish these periodic messages from
other messages we extend our messages by a message type. So messages now look like m = (type, id).
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We use two types one for for the periodic introduction messages introduction and one for the forwarding
messages forward.

Another way is to exploit the fact that all messages are received at once, so instead of treating each
forward message individually we can handle them as a batch. Then we can sort all ids received by
messages and forward them to their neighbor in this sorting instead of forwarding each identifier to
u’ successor or predecessor. E.g. if u receives the ids v1, v2, · · · , vk with h(u.successor) < h(vi) <
h(hi+1), then u will forward vi+1 to vi and only v1 to u.successor. Thus each node only receives one
message in the next round instead of O(n) messages that would be sent to u.successor in the original
protocol PLIST . An illustration is given in Figure 3.7.

w V3 Vku Vk-1V2V1

w V3 Vku Vk-1V2V1

u sends m=(forward,vi+1) to vi

Figure 3.7: Forwarding in PLISTsync

Then we get the following protocol PLISTsync presented in Pseudo-Code 3.2.2.
For this modified protocol we can show that the analysis for the correctness in the ATSS model still

holds. In the ATSS model we only receive one message in each time step, and thus PLIST and PLISTsync

are the same executed in the ATSS model with the only difference that we not only forward a node to the
predecessor or successor but might also forward the predecessor or successor to this node, so only some
implicit edges is added. If PLISTsync is executed in the STSS model we can still apply our analysis of
the stabilization time of Θ(n) rounds as we can still show that the range of a weakly connecting path
shrinks to a direct edge in O(n) rounds.

However we are now able to show that PLISTsync has a stabilization work of Θ(n).

Theorem 3.2.10 If in an initial graph G ∈ IT every node executes the protocol PLISTsync then each
possible computation leads to a graph GLIST ∈ LIST with a stabilization work of Θ(n).

Proof. We start by showing an upper bound of O(n). We handle the two types of messages separately.
We firstly show that each node u receives at most O(n) introduction messages. This follows from the

25



Chapter 3 Self-Stabilizing Overlay Networks

Algorithm 3.2.2 PLISTsync

message m ∈ u.Ch→
Sort all incoming ids v in messages and u.successor and u.predecessor according to their position
h(v), such that h(v−l) < h(v−(l−1)) < · · · < h(v−1) < h(u) < h(v1) < · · · < h(vk−1) < h(vk)
u.successor = v1

for i=1 to k-1 do
Send message m′ = (forward, vi+1) to vi
if thenvi is received by a message m = (introduction, vi)

send message m′ = (forward, vi−1) to vi
u.predecessor = v−1

for i=1 to l-1 do
Send message m′ = (forward, v−(i+1) to v−i
if thenv−i is received by a message m = (introduction, v−i)

send message m′ = (list, v−(i−1)) to v−i
u.τ →
send message m = (introduction, u) to u.successor
send message m′ = (introduction, u) to u.predecessor

observation that each node v sends at most one introduction message to u while u knows a node w with
position between u and v, i.e. v is not u’s predecessor or successor. If v sends an introduction message
u will respond by forwarding v to w and vice versa. So in the next round v knows w and will store it
or another node with a position between v and w as its predecessor or successor, so u will never be v’s
predecessor or successor again. Also u only sends O(n) introduction messages during the stabilization
as it sends at most two introduction messages in each round.

We can also show that each node u receives at most O(n) forward messages. W.l.o.g. we show that a
node u receives at most O(n) forward messages with identifiers w, such that h(u) < h(w). There are
two cases in which u receives such a message. Either u sends an introduction message to a node z with
h(w) < h(z) and received w in response or w is sent to u by a node y with h(y) < h(u) < h(w) that
simply forwards w to a closer node according to its local sorting. The first case can happen at most once.
As soon as u receives w it will never introduce it self to such a node z with h(w) < h(z). So we only
have to consider the second case. Let’s assume u receives ai forward messages containing wi from nodes
y with h(y) < h(u) where the wis are sorted in descending order h(wi) > h(wi+1) according to their
position. The ai messages containing wi can have two sources. Either wi was stored initially in a node y
with h(y) < h(u) or such a node y received wi as a response to an introduction message to a node z with
h(z) > h(wi), see Figure 3.8.

We therefore split ai into two components. Let bi be the number of times u receives wi because
initially there is an edge (y, wi) ∈ E0 and over time wi is forwarded to u. Let further ci be the number
of times u receives wi, because y received wi after an introduction message. We first can observe that∑l

i=1 bi = O(n). If a node y initially has edges (y, wi) and (y, wj) with j > i then this wi will never be
forwarded to u, as it will be forwarded to a node v with h(u) < h(wj) ≤ h(v) < h(wi). So there have
to be

∑l
i=1 bi different nodes y with h(y) < h(u). There can be at most O(n) such nodes.

To give a bound on
∑l

i=1 ci we have to determine how many different wi that will be forwarded to u a
node y can receive as a response to an introduction message. Let’s assume a node y sends wi and wj to

26



3.3 Small-World Networks

y wi zu

y wi zu

a) y initially stores wi

b) y receives wi from z

Figure 3.8: Different sources of wi for a node y

u. If a node y receives wi it can not have an edge (y, wj) with j > i as otherwise y would not send an
introduction message to a node z with h(z) > h(wi) > h(wj). So y receives wj after wi, but before y
forwards wi to a node v with h(y) < h(v) < h(u), because otherwise y would not send an introduction
message to a node z′ with h(z′) > h(wj) < h(v). So either y has edges to wi and wj at the same time
and then forwards wi to v′ with h(v′) > h(u) and then wi is never forwarded to u or wi is forwarded to
such a node v′ before receiving wj . In any case each node y receives at most one of the wis as a response.
Then

∑l
i=1 ci = O(n). If a node receives at most O(n) forwarding messages it will also send at most

O(n) forwarding messages. A forwarding message is sent because a node receives a forward message or
a wrong introduction message, of both a node can receive at most O(n) many.

The lower bound follows directly from the lower bound of the stabilization time. As it takes at least
Ω(n) rounds and at least one node sends at least Ω(1) messages in each round, as at least one node has a
predecessor or successor in the initial state otherwise the initial graph would not be connected. ut

3.3 Small-World Networks

3.3.1 Introduction

We now develop protocols for more complex networks like small-world networks. In the presented
protocol we reuse the ideas of the protocol PLIST and its analysis. We denote the overlay problem we
want to solve in this section by OP = SMALL −WORLD. An example of a small-world network
that we consider in this section is given in Figure 3.9.

So far we developed a model for topological self-stabilization and applied it to the sorted list as a
simple example. Obviously the sorted list is not a network anyone would use in a setting where faults of
links and processes are likely to happen. As soon as one node or link fails the whole networks becomes
disconnected. Furthermore the sorted list does not provide properties like a small diameter or short
routing lengths, which are in fact Θ(n). As we motivated the concept of topological self-stabilization
by the observation that faults are likely in large unsupervised networks like peer-to-peer networks, we
transfer the methodology introduced for the sorted list to more complex but also more robust and therefore
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Figure 3.9: An example of a small-world network based on a cyclic list an randomly chosen long-range
links
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more practical networks which will also provide certain properties like a small diameter or short routing
lengths. One class of more practical networks are small-world networks. We show that a self-stabilizing
solution is not only possible for well-structured overlays but also for networks formed by a randomized
process like a small-world network, in the sense that we still allow dynamics in the edges but show a
convergence to and maintenance of desired network properties starting in any weakly connected state.

Small-world networks are named after the small-world phenomenon firstly observed by Milgrim [53]
in 1967. In this work Milgrim observed the "six degrees of separation" in friendship graphs. The goal
of the experiments was to determine whether the hypothesis that each pair of persons is connected by a
short chain of acquaintances is true and if its true how many acquaintances such a chain consists of. A
typical experiment worked as follows. A letter was sent to a person in Omaha, Nebraska - the source.
The letter contained the name and address of a person in Boston, Massachusetts - the target. Now the
person receiving the letter had to send it to the target directly if she knows this person by forename or
send it to a person that is most likely to know the target. It turned out that in case of a successful delivery
the chain had a length ranging from two up to ten with an average of five acquaintances.

From this empirical validation of the small-world phenomenon arose the question how a network with
this property can be modeled. Even before Milgrim’s experiments Kochen worked on a mathematical
model for friendship graphs that could explain the small-world phenomenon that was published later [42].
Basically they explained the short lengths of chains of acquaintances by the small diameter occurring in
random graphs. However they also pointed out in a realistic model acquaintances should not be selected
randomly as it is more likely that a friend of personA knows another ofA’s friends and proposed different
approaches to this problem. In networks modeling friendships, the probability of befriending a particular
person is assumed to be inversely proportional to the number of geographically closer people, which
matches the experimentally observed small-world property [53, 47, 18].

It turned out that the small-world property can not only be found in friendship graphs but also other
real-world networks like the power grids, neural networks, social graphs [79]. Thus the research of
small-world networks became popular again in the last years, especially after Watts and Strogatz [79]
introduced their small-world network model. It is known that by taking a connected graph or network
with a high graph diameter and adding a very small number of edges randomly, the diameter tends to
drop drastically. In such a way networks can be constructed which have the small world property. The
mechanism Watts and Strogatz introduced is a small-world network model that is capable of interpolating
between a regular network and a random network using a single parameter. These graphs are constructed
using a regular lattice, and on this lattice a process of constructing certain edges and probabilistic rewiring
takes place, such that in the end a graph is formed that exhibits the small world properties. Watts and
Strogatz argued that such a model captures two crucial parameters of social networks: there is a simple
underlying structure that explains the presence of most edges, but a few edges are produced by a random
process that does not respect this structure. They showed that a number of naturally arising networks
exhibit this pair of properties. They also showed that the resulting graphs provide a high clustering
coefficient even if only a few edges are affected by the random process. Thus small-world networks in
the Watts-Strogatz model provide a certain robustness against node or link failures.

Kleinberg [34] showed based on the Watts-Strogatz model a mechanism not only constructing a
small-world network, but also allowing a distributed algorithm to find the shortest paths in this network.
In particular Kleinberg showed that greedy routing performs polylogarithmically using a k-harmonic
distribution [34] in a k-dimensional lattice.

The variation of the small-world network we use in this work is that presented in [14]. In this work a
distributed and randomized process is described that leads to a k-harmonic distribution of the long-range
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links obtaining the same polylogarithmic performance like Kleinberg [34]. In this case, a graph G,
given by a k-dimensional lattice, is enhanced with additional links chosen at random. More precisely,
every node is given some long-range link pointing at another node in the graph. It turns out that for
each long-range link added at a node u, the probability that the endpoint of this link is v is inversely
proportional to the size of the ball of radius dist(u, v) centered at u in G. So, in the k-dimensional
lattice Zk, the probability that u has a long-range link pointing at v is essentially proportional to 1/dk

where d is the distance between u and v in the lattice. This setting of the long-range links enables greedy
routing to perform in polylogarithmic expected number of steps (as a function of the distance in the lattice
between the source and the target). In our work, we will focus on the 1-dimensional variation of the graph
presented in [14]. We will try to form a self-stabilizing ring, which in addition contains long-range links
as described above, giving us all the desired properties.

3.3.2 Move-Forget Process

We now give a more detailed description of the Move and Forget (M &F) Process established in [14]. As
we mentioned above, each node establishes some links to other nodes. There exist two kinds of links, the
links to the next known neighbors of the node and the ring edges that form the underlying ring network,
as well as one long-range link for each node. The process that this long-range link follows is based on
the Move-and-Forget Rewiring Process, described in [14]. The procedure works as follows: Assume a
k-dimensional lattice Zk. In this lattice each node is initially occupied by exactly one token. These tokens
move mutually independently according to random walks, starting from the node itself. That is, each
token decides at each step its next position by altering its position in the lattice by ±1 in each dimension
with probability 1

2 . Nodes may forget their contacts through their long-range links. A long-range link
of age p.age = α ≥ 0 (meaning that it is in existence for α steps) is forgotten with a probability φ(α),
where

φ(α) =

{
0 if α = 0, 1 or 2

1− α−1
α

(
ln(α−1)

ln(α)

)1+ε
if α ≥ 3

ε is a fixed (arbitrary small) parameter of the algorithm. Note that the probability φ(α) is independent of
the number of dimensions k. When a long-range link is forgotten, the link stops existing and the token
starts its random walk from the original node again. An illustration of the Move-& Forget process is
given in Figure 3.10.

3.3.3 Our Contribution

In our work, we focus on the 1-dimensional variation of the graph presented in [14]. We propose a
distributed self-stabilizing protocol that forms a ring which, in addition, contains long-range links as
described above, giving us all the desired properties. In particular, the graph built by our protocol
converges to a small-world network and, once established, the small-world properties are maintained. We
present a protocol PSMALL−WORLD that solves the overlay problem SMALL−WORLD. We show
the correctness of PSMALL−WORLD in the ATSS model in Theorem 3.3.1. The ideas of the protocol
PSMALL−WORLD and the proof of correctness and the proof for the case of single joining or leaving
nodes in the STSS model given in Theorem 3.3.15 have already been published in [36] which is a joint
work with my colleague Andreas Koutsopoulos and our supervisor Christian Scheideler:
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...

u
u.long-range

...

a) long-range link before a move-forget step

...

u u.long-range

...

b) long-range link moves to the left

...

u u.long-range

...

c) long-range link moves to the right

...

u=u.long-range

...

d) long-range link is forgotten

Figure 3.10: Three possible outcomes of a move-forget step

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler: A Self-Stabilization Process for
Small-World Networks. IPDPS 2012

The results for the stabilization time in Theorem 3.3.8, stabilization work in Theorem 3.3.13 and
maintenance work in Theorem 3.3.14 of the optimized protocol PSMALL−WORLDsync are presented for
the first time.

3.3.4 Formal Definition

According to our model presented in Chapter 2 we assume that each node can be identified by an unique
id. We define a hash function h : ID 7→ [0, 1] that maps the identifier of a node to a point in the [0, 1]
interval. We refer to h(v) as v’s position. We assume that h is chosen, such that no two nodes get
the same position and that h is known to every node, i.e. by knowing the identifier of one node each
node can determine its position. Then a global order on the nodes can be defined by their positions
h(v1) < h(v2) · · · < h(vn).

Definition 3.3.1 A graph G = (V,E) is a one dimensional small world network if:

• V = v0, · · · vn−1 with h(vi) < h(vi + 1)∀i ∈ {0, · · ·n− 1}

• E = {(xi, xj) : j = i+ 1 mod n ∨ j = i− 1 mod n ∨ j = k} such that the probability distri-
bution of the number of nodes between xi and xk |i− k| resembles the 1-harmonic distribution, i.e.
probability prob(|i− k| = d)→ 1

d .
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We now define the internal variables of each node used in our protocol to solve the overlay problem
SMALL−WORLD. Each node u stores the following variables contributing to the explicit edge set:

• u.predecessor: The identifier of u’s left neighbor (h(u.predecessor) < h(u)) or nil if there is no
left neighbor.

• u.successor: The identifier of u’s right neighbor (h(u) < h(u.successor)) or nil if there is no
right neighbor.

• u.long-range The identifier of the node that u’s long range link points to.

• u.cycle: The identifier of the node that u’s cycle edge points to. Note that this identifier is only set
if u.successor = nil or u.predecessor = nil.

Additionally each node stores the following variables not contributing to the set of explicit edges.

• u.Ch: The channel for incoming messages.

• u.age: The age of the long range given by the number of rounds since the last reset of u.long −
range.

• u.τ : a boolean variable that is periodically true. Note that we don’t allow the adversary to alter
u.age.

To communicate with each other, nodes send and receive messages. The content of a message is given
by the ids of some nodes and a specification of the message type. So different types of messages can
trigger different actions. Thus a message m is of the following form m = (type, ids).

• forward: The standard message type to forward edges.

• long-range: This message type is used to mark incoming long range links that form the small-world
network.

• move-forget: This message is sent to respond to an incoming long range link and to inform the
origin of the long range link about possible network changes.

• cycle: This type of message is used to establish a cycle edge if a node misses its left neighbor.

• response-cycle: This message is sent to respond to an incoming cycle edge and to inform the source
of the cycle link about possible network changes.

• probing-right: This type of message is used to propagate the probing message to the right.

• probing-left: This type of message is used to propagate the probing message to the left.

In the following we define when an assignment of the variables is valid and how the sets of initial
topologies IT and the goal topologies SMALL−WORLD look like.
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Definition 3.3.2 An assignment of the variables of a node is valid if h(u.predecessor) < h(u) or
u.predecessor = nil and h(u.successor) > h(u) or u.successor = nil. Furthermore u.cycle 6=
nil only if u.successor = nil or u.predecessor = nil and if h(u.long − range) > h(u), then
h(u.long − range) > h(u.successor) and if h(u.long − range) < h(u), then h(u.long − range) <
h(u.predecessor). Note that an invalid assignment can be locally repaired immediately. Thus we assume
in the following w.o.l.g. that initially the assignment is valid for every node.

With the given internal variables we are now able to define the set of initial topologies IT and especially
the set of goal topologies SMALL−WORLD.

Definition 3.3.3 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of initial topologies is given by:

IT = {G = (V,E = Ee ∪ Ei) : G is weakly connected}

Definition 3.3.4 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of target topologies is given by:

SMALL−WORLD = {G = (V,E) : Ge is a 1-dimensional small-world network}

3.3.5 Protocol PSMALL-WORLD

The concept of our protocol for a self-stabilizing 1-dimensional small-world network consists of three
parts. At first we reuse the protocol PLIST to form a sorted list. We then introduce further actions to
establish an edge between the nodes with the maximal and minimal position to create a closed cyclic list.
This cyclic list is the same as a 1-dimensional lattice. By further actions the Move & Forget-process is
implemented. Then eventually a 1-dimensional small-world network is formed.

The basic approach to form a sorted list as presented in Section 3.2 is extended by using the long-range
links as shortcuts when u forwards a node v if h(v) > h(u.long − range) > h(u.successor) (resp.
h(v) < h(u.long − range) < h(u.predecessor)). We therefore have to ensure that the sorted list is
established between u and u.long − range. To ensure this connectivity we will introduce a technique
called probing which we discuss separately.

As the Move & Forget-process requires not only a sorted list as a structure but a cyclic list we need
further messages and actions. If a node u determines based on its local information that it is a node of
maximal or minimal position, i.e. u.successor = nil or u.predecessor = nil, then u stores the node of
minimal (resp. maximal) position it is aware of in u.cycle . Eventually u.cycle contains either the node
of minimal (resp. maximal) position v0 (resp. vn−1) in the network or u is informed about a node v with
h(v) > h(u) (resp. h(v) < h(u)), such that u.successor 6= nil (resp. u.predecessor 6= nil). In the
end this leads to an edge between v0 and vn−1 and vice versa, i.e. v0.cycle = vn−1 and vn−1.cycle = v0.
Obviously local information does not suffice to find the node of minimal or maximal position in the
network. Therefore we additionally need the local knowledge of our neighbors. In fact we send a message
to the node currently stored in u.cycle as the node of minimal (resp. maximal) position u is aware of and
trigger a response message containing the node with minimal (resp. maximal) position u.cycle is aware
of, so u can update its internal variable.

As a last step in our protocol we implement the M & F process for a 1-dimensional lattice. For each
node u its long-range link u.long − range is moved to the successor or predecessor of the current
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u.long − range. As there are two possibilities to move the endpoint of the long-range link each one is
chosen with probability 1

2 . This is achieved in the following way: whenever τ is true u sends a message
to u.long − range of type long-range and u.long − range responds by sending the identifiers of its
successor and predecessor. Then u chooses one as its new u.long − range. Additionally u forgets the
long-range link with probability φ(u.age).

About Probing

A general problem in topological self-stabilization is the restriction of locality, i.e. each node only knows
its direct neighbors stored in internal variables. By local knowledge alone failures in the topology can
not always be detected. Two examples are already mentioned above. How can the protocol ensure that
u and u.long − range are connected in the sorted list? How can u be sure that u.cycle contains the
node with the minimal or maximal position? Both questions can’t be answered by u itself based only
on u’s local knowledge. One can think of several solutions of this problem. One possible solution is to
extend the locality of each node, i.e. a node does not only know its own neighbor but also its neighbor’s
neighbors. A problem with this model is that if one wants to implement it the nodes have to inform all
their neighbors about their current neighborhood. This leads to a high amount of work in terms of sent
and received messages. In fact the work is then up to O(n2) for one node in one round.

We already sketched another solution by discussing how to form a cyclic list out of the sorted list.
Instead of extending the locality we can also extend the neighborhood of the nodes. So additionally to the
edges needed by the target topology each node maintains further explicit or implicit edges, such that the
node is enabled to check properties that need more than local knowledge. We call this technique probing
messages.

In the case of small-world networks we show how connectivity can be ensured by using probing
messages. In particular we want to be sure that nodes u and u.long − range are connected in the sorted
list, i.e. there is a path from u to u.long−range following only edges to successors or predecessors. There
is the trivial approach to ensure this connectivity by simply forwarding u.long − range to u.successor
or u.predecessor by a forward message in each round. As there can be up to n−2 nodes in the sorted list
between u and u.long − range this means that there is a high maintenance work of O(n) implicit edges
(messages) for each pair u, u.long − range in each round to ensure this connectivity. We can decrease
this amount by introducing specific probing messages of type probing−right and probing−left. These
messages not necessarily forwarded to the successor or predecessor of the receiving node but are routed
according to a greedy routing scheme to the neighbor of which the position is closest to the position of the
node contained in the probing message, i.e. we use possible long-range links as short-cuts. As we show in
the analysis this reduces the maintenance work. If the probing message fails to reach u.long− range, i.e.
it can not be forwarded anymore then the receiving node v creates a link to u.long − range by storing it
as its successor or predecessor. An example of the probing process is illustrated in Figure 3.11.

We present a pseudo code implementation of PSMALL−WORLD including a probing mechanism in
Algorithms 3.3.1-3.3.10.

3.3.6 Analysis in the ATSS model

We show the correctness of PSMALL−WORLD in the ATSS model of our approach by proving that each
initially weakly connected graph stabilizes to a small-world network. We show this by dividing the self-
stabilization process into different phases and determine the correctness of each phase. In particular we
will show that if each node executes PSMALL−WORLD started in a weakly connected graph, eventually
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u u.long-range
...

a) u starts probing to u.long-range

w w.long-range

u u.long-range
...

b) u send probing message to its successor

w w.long-range

m=(probing-right,u.long-range)

u.long-range
...

c) probing message is forwarded to w

w w.long-range

m=(probing-right,u.long-range)

u.long-range
...

d) w forwards probing message to w.long-range

w w.long-range

m=(probing-right,u.long-range)

u

u

u.long-range
...

e) w.long-range creates explicit edge to w.long-range

w w.long-rangeu

Figure 3.11: An example of a probing process for u and u.long − range
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Algorithm 3.3.1 PSMALL−WORLD

message m = (type, v) ∈ u.Ch→
if type=forward then

forward(v)
else if type=long-range then

long-range(v)
else if type=probing-right then

probing-right(v)
else if type=probing-left then

probing-left(v)
else if type=cycle then

cycle(v)
else if type=response-cycle then

response-cycle(v)
message m = (type, v0, v1, v2) ∈ u.Ch→
if type=move-forget then

move-forget(v0, v1, v2)
τ →
introduction()
probing()

a graph is reached, that contains the sorted list as a sub-graph. We then show that if started in a graph that
contains the sorted list as a sub-graph PSMALL−WORLD leads to a graph containing the cyclic list as
a sub-graph. We proceed by showing that started in a graph that contains the cyclic list a a sub-graph
eventually a small-world network is reached. Thus we can show the main theorem:

Theorem 3.3.1 If an initial graph G ∈ IT is weakly connected and each node executes the proto-
col PSMALL−WORLD then eventually the graph converges to a graph G′ ∈ SMALL −WORLD
(Convergence). If in an initial graph G ∈ SMALL − WORLD every node executes the protocol
PSMALL−WORLD then each possible computation leads to a graph G′ ∈ SMALL−WORLD (Clo-
sure).

To prove this theorem we have to introduce some formal definition of the intermediate graphs and
some subset of the edges.

Definition 3.3.5 We define:

• Ee−list = {(u, v) ∈ Ee : v = u.predecessor ∨ v = u.successor} ⊆ Ee is the subset of explicit
edges that will form the sorted list.

• Ei−list = {(u, v) ∈ Ei : ∃m = (forward, v) ∈ u.Ch} is the subset of implicit edges that are
needed to form the sorted list.

• Elist = Ee−list ∪ Ei−list is the set of edges that take part in the process of forming the sorted list.
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Algorithm 3.3.2 FORWARD(v)
if h(v) > h(u) then

if u.successor 6= nil then
if h(v) < h(u.successor) then

send message m=(forward,u.successor) to v
u.successor = v

else if h(v) > h(u.long − range) > h(u.successor) then
send message m = (forward, v) to u.long − range

else
send message m = (forward, v) to u.successor

else
u.successor = v
if u.cycle 6= nil then

forward(u.cycle)
u.cycle = nil

else if h(v) < h(u) then
if u.predecessor 6= nil then

if h(v) > h(u.predecessor) then
send message m = (forward, u.predecessor) to v
u.successor = v

else if h(v) < h(u.long − range) < h(u.predecessor) then
send message m = (forward, v) to u.long − range

else
send message m = (forward, v) to u.successor

else
u.predecessor = v
if u.cycle 6= nil then

forward(u.cycle)
u.cycle = nil

Algorithm 3.3.3 LONG-RANGE(V)
if u.predecessor 6= nil ∧ u.successor 6= nil then

send message m = (respond− long − range, u.predecessor, u.successor, u) to v
else if u.predecessor 6= nil then

send message m = (respond− long − range, u.predecessor, u.cycle, u) to v
else if u.successor 6= nil then

send message m = (respond− long − range, u.cycle, u.successor, u) to v
elseforward(v)
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Algorithm 3.3.4 PROBING-RIGHT(v)
if h(v) ≥ h(u.long − range) > h(u.successor) then

send message m = (probing − right, v) to u.long − range
else if h(v) ≥ h(u.successor) ∧ u.successor 6= nil then

send message m(probing − right, v) to u.successor
else

forward(v)

Algorithm 3.3.5 PROBING-LEFT(v)
if h(v) ≤ h(u.long − range) < h(u.predecessor) then

send message m = (probing − left, v) to u.long − range
else if h(v) ≤ h(u.predecessor) ∧ u.predecessor 6= nil then

send message m = (probing − left, v) to u.predecessor
else

forward(v)

Algorithm 3.3.6 CYCLE(v)
if h(v) < h(u) then

if h(u.long − range) < h(v) then
send message m = (forward, u.long − range) to v

else if h(u.predecessor) < h(v) ∧ u.predecessor 6= nil then
send message m = (forward, u.predecessor) to v

else if h(u.long − range) > h(v) then
send message m = (response− cycle, u.long − range) to v

else if u.successor 6= nil then
send message m = (response− cycle, u.successor) to v

else
send message m = (response− cycle, u) to v

else
if h(u.long − range) > h(v) then

send message m = (forward, u.long − range) to v
else if h(u.successor) > h(v) ∧ u.successor 6= nil then

send message m = (forward, u.successor) to v
else if h(u.long − range) < h(u.predecessor) then

send message m = (response− cycle, u.long − range) to v
else if u.predecessor 6= nil then

send message m = (response− cycle, u.predecessor) to v
else

send message m = (response− cycle, u) to v
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Algorithm 3.3.7 RESPONSE-CYCLE(v)
if u.predecessor = nil ∧ (h(v) > h(u.cycle) > h(u) ∨ (u.cycle = nil ∧ h(v) > h(u))) then

if u.cycle 6= nil then
forward(u.cycle)

u.cycle = v
else if u.successor = nil ∧ (h(v) < h(u.cycle) < h(u) ∨ (u.cycle = nil ∧ h(v) < h(u))) then

if u.cycle 6= nil then
forward(u.cycle)

u.cycle = v
elseforward(v)

Algorithm 3.3.8 MOVE-FORGET(v0, v1, v2)

if v2 = u.long − range then
Choose i ∈ 0, 1 with probability 1

2 each
send message m = (forward, u.long − range) to vi
send message m = (forward, v1−i) to vi
u.long − range = vi
reset = true with probability φ(u.age)
if reset=true then

forward(u.long − range)
u.long − range = u

else
probing(u.long − range)

else
forward(v0),forward(v1),forward(v2)

Algorithm 3.3.9 INTRODUCTION()
if h(u.predecessor) 6= nil then

send message m = (forward, u) to u.predecessor
else

send message m = (cycle, u) to u.cycle
if h(u.successor) 6= nil then

send message m = (forward, u) to u.successor
else

send message m = (cycle, u) to u.cycle
send message m = (long − range, u) to u.long − range
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Algorithm 3.3.10 PROBING()
if h(u.long − range) < h(u) then

if h(u.long − range) ≤ h(u.predecessor) then
send message m = (probing − left, u.long − range) to u.predecessor

else
if u.long − range ≥ u.successor then

send message m = (probing − right, u.long − range) to u.successor
if u.cycle 6= nil ∧ h(u.cycle) < h(u.predecessor) then

send message m = (probing − left, u.cycle) to u.predecessor
else if u.cycle 6= nil ∧ h(u.cycle) > h(u.successor) then

send message m = (probing − right, u.cycle) to u.successor

• Ee−cycle = {(u, v) ∈ Ee : v = u.cycle} ∪ Ee−list ⊆ Ee is the subset of explicit edges that will
form the cyclic list.

• Ei−cycle = {(u, v) ∈ Ei : ∃m = (cycle, v) ∨m = (response− cycle, v) ∈ u.Ch} ∪ Ei−list is
the subset of implicit edges that are needed to form the cyclic list.

• Ecycle = Ee−cycle ∪Ei−cycle is the set of edges that take part in the process forming the cyclic list.

Definition 3.3.6 A graph G = (V,E) is a sorted list, if V = v0, · · · vn−1 with h(vi) < h(vi + 1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vj) :, j = i− 1 ∨ j = i+ 1∀0 < j < n− 1}.

The definition of the sorted list is analogous to the definition used in Section 3.2, in which we solved
the sorted list overlay problem.

Definition 3.3.7 A graph G = (V,E) is a cyclic list, if V = v0, · · · vn−1 with h(vi) < h(vi+1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vi+1 mod n), (v+1, vi mod n)}.

An illustration of a cyclic list is given in Figure 3.12.

Convergence

We start by showing that the first part of theorem 3.3.1 holds and PSMALL−WORLD fulfills the conver-
gence property.

Theorem 3.3.2 If an initial graph G ∈ IT is weakly connected and each node executes the proto-
col PSMALL−WORLD then eventually the graph converges to a graph G′ ∈ SMALL −WORLD
(Convergence).

To show this we prove a set of intermediate theorems first, from which the convergence follows. Our
first theorem claims that the computation reaches a state, such that the sorted list is a sub-graph of the
graph of explicit edges.

Theorem 3.3.3 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLD then eventually the computation reaches a state st such that Gte−list is a sorted list.
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Figure 3.12: An example of a cyclic list
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To prove this theorem we first show a helpful lemma.

Lemma 3.3.1 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLD then eventually the computation reaches a state st such that Gtlist is weakly connected
and stays connected in every state st′ , t′ > t.

Proof. We start the proof by showing that if Gt is weakly connected also Gt+1 stays weakly connected.
We therefore assume that an edge (u, v) ∈ Et existing at time t does not exist at time t+ 1 and show that
u and v stay connected. We consider any possible explicit and implicit edge.

If (u, v) ∈ Ete but (u, v) /∈ Et+1 and

• v = u.successor at time t, then u forwards v to its new successorw at time t+1 and (u,w) ∈ Et+1
e

and (w, v) ∈ Et+1
i . Thus u and v stay connected.

• v = u.predecessor at time t, then by symmetric arguments u and v stay connected.

• v = u.cycle at time t, then u received a new node w with h(w) < h(v) < h(u) (resp. h(w) >
h(v) > h(u)) and forwards v, thus by the same arguments as above u and v stay connected.

• v = u.long − range, then u received a move-forget message and either forwards u to the new
endpoint w of the long-range link or forwards v to its successor w or predecessor w if u forgets the
long-range link. Then (u,w) ∈ Et+1

e and (w, v) ∈ Et+1
i .

If (u, v) ∈ Eti but (u, v) /∈ Et+1 and

• v is stored in a forward message, then u receives this message and forwards v to w = u.successor
or w = u.predecessor. Then (u,w) ∈ Et+1

e and (w, v) ∈ Et+1
i and u and v stay connected.

• v is stored in an long-range message, then u sends a message containing at least one of u.successor,
u.predecessor and u.cycle to v w.l.o.g. we assume that the message contains w = u.successor,
then (u,w) ∈ Et+1

e and (v, w) ∈ Et+1
i , or u forwards v in a forward message. Then u and v stay

connected.

• v is stored in a cycle message, then u responds to v by a message containing at least one of
u.successor, u.predecessor and u.long − range or u itself to v. W.l.o.g. we assume that the
message contains w = u.successor, then (u,w) ∈ Et+1

e and (v, w) ∈ Et+1
i and u and v stay

connected.

• v is stored in a response-cycle message, then either v is forwarded by a forward message or v
becomes the new u.cycle. Either way u and v stay connected.

• v is stored in a probing-right message, then u forwards v to u.successor or u.long − range or
stores v as its new u.successor. In both cases u and v stay connected.

• v is stored in a probing-left message, then u forwards v to u.predecessor or u.long − range or
stores v as its new u.predecessor. In both cases u and v stay connected.

• v is stored in a move-forget message, then either v is forwarded to the new endpoint of the
long-range link or v is the new u.long − range. Either way u and v stay connected.
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After establishing that connectivity is preserved, we define a time t0 at which every message initially
in u.Ch for any node u and also the messages in response have been received. Then we know that for
every long-range link u.long − range at time ti ≥ t0 u started a probing. Based on this fact we can
show that eventually a state sj at time tj ≥ t0 in the computation is reached such that Gtjlist is weakly
connected and stays weakly connected in any state sk at time tk ≥ tj .To show that Gtjlist stays connected
we consider the cases in which the connectivity in Gtlist might get lost.

If (u, v) ∈ Etlist, then either v = u.successor or v = u.predecessor or m = (forward, v) ∈ u.Ch.
In the first case connectivity is maintained, as u either keeps the edge or receives a node w as its new
successor and sends a message m = (forward, v) to w. Then (u,w) ∈ Et+1

e−list and (w, v) ∈ Et+1
i−list. In

the second case the connectivity is maintained if u stores v as its new successor or predecessor or if v is
forwarded by a message m = (forward, v) to u.successor or u.predecessor. Only if u forwards v to
u.long − range with h(u) < h(u.long − range) < h(v) (resp. h(u) > h(u.long − range) > h(v))
connectivity in Gt+1

list can be lost between u and v. We show that the connectivity eventually is restored
and only lost again a finite number of times, so eventually u and v stay connected in Gtjlist at some time
tj ≥ t0.

W.l.o.g. we assume h(v) < h(u) in the following. We now consider an edge (u, v) ∈ Et0list. Either
u and v stay connected in every state afterwards, so for this edge the lemma already holds or as we
have observed v is forwarded using a long-range link. We denote the time at which v is forwarded by u
by t1 then the edge (u, v) is replaced by a path (u,w1), (w1, v) ∈ Et1+1 where w1 = u.successor or
w1 = u.long − range at time t1 and h(u) < h(w1) < h(v).

Let wi be the node v is forwarded to at time ti. Now again either wi and v stay connected at every
state afterwards or v is forwarded to a node wi+1 at some time ti+1. Then for wi and wi+1 it holds
that h(u) < h(wi) < h(wi+1) < h(v). Then the number of times v is forwarded is bounded by O(n)
and eventually v can not be forwarded anymore. This forwarding procedure for v started at u gives us
a sequence of nodes fs(u, v) = (u = w0, w1, w2, · · ·wj , wj+1 = v). We call fs(u, v) a forwarding
sequence for u and v. In fs(u, v) wj stays connected with v in every state sk at time tk > tj and
wi = wi−1.successor or wi = wi−1.long − range at time ti.

If wi = wi−1.successor then again either wi−1 and wi stay connected in every state afterwards
ti or wi−1 forwards wi. Thus by the same arguments as for (u, v) we can replace (wi−1, wi) by a
forwarding sequence fs(wi−1, wi) = (wi−1 = w(i−1,i),0, w(i−1,i),1, · · ·w(i−1,i),l, w(i−1,i),l+1 = wi)
with h(wi−1) < h(w(i−1,i),j−1) < h(w(i−1,i),j) < h(wi) and w(i−1,i),j = w(i−1,i),j−1.successor or
w(i−1,i),j = w(i−1,i),j−1.long − range.

If wi = wi−1.long − range then according to our observation wi sends or has sent a probing
message containing wi. A probing message m = (probing − right, v) ∈ u.Ch is only forwarded
from u to u.successor or u.long − range whereby h(u) < h(u.successor) < h(v) or h(u) <
h(u.long − range) < h(v). If v can not be forwarded an edge (u, v) ∈ Ee−list is created. Thus
exactly like a forwarding sequence also a probing path gives us a sequence of nodes ps(u, v) = (u =
w0, w1, w2, · · ·wj , wj+1 = v). We call ps(u, v) a probing sequence for u and v. In ps(u, v) wj stays
connected with v in every state sk at time tk > tj and wi = wi−1.successor or wi = wi−1.long−range
at time ti.

Then we can replace (wi−1, wi) in fs(u, v) by such a probing sequence ps(wi−1, wi) = (wi−1 =
w(i−1,i),0, w(i−1,i),1, · · ·w(i−1,i),l, w(i−1,i),l+1 = wi) with h(wi−1) < h(w(i−1,i),j−1) < h(w(i−1,i),j) <
h(wi) and w(i−1,i),j = w(i−1,i),j−1.successor or w(i−1,i),j = w(i−1,i),j−1.long − range. An example
of such a replacement is given in Figure 3.13.
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u v
...

a) forwarding sequence fs(u,v)

w1 w2 wi wi+1 wi+2
... wj

u v
...

b) replacement of an edge (wi,wi+1) in fs(u,v) 

by a sequence fs(wi,wi+1) or ps(wi,wi+1)

w1 w2 wi wi+1 wi+2
... wj

...
w(i,i+1),1

w(i,i+1),2 w(i,i+1),l-1

w(i,i+1),l

Figure 3.13: An example of replacements in a forwarding sequence fs(u, v)

Inductively we can apply the same arguments on the replacing of forwarding or probing sequences. As
the number of nodes is finite, eventually at some time t′ we get a connecting sequence cs(u, v) = (u =
w̃0, w̃1, w̃2, · · · w̃l, w̃l+1 = v), where w̃j−1 stays connected in Gtlist with w̃j in every state afterwards
time t ≥ t′ and w̃j = w̃j−1.successor or w̃j = w̃j−1.long − range. We get cs(u, v) starting from the
forwarding sequence fs(u, v) of v from u and replacing each edge in this sequence that is a long-range
link or edge in Elist that gets disconnected by a probing sequence ps(wi, wi+1) or forwarding sequence
fs(wi, wi+1).

The same arguments that we used to show that if an edge (u, v) ∈ E0
list gets disconnected in Gtlist at

some time t then they are weakly connected in Gt
′
list and stay weakly connected in every state afterwards

can be applied for any edge in E0.
If v = u.long − range we start with a probing sequence instead of a forwarding sequence and

eventually no edges in this sequence can be replaced such that u and v are weakly connected in Gt
′
list and

stay weakly connected in every state afterwards.
If m = (probing − right, v) ∈ u.Ch (resp. m = (probing − left, v) ∈ u.Ch) again there is a

probing sequence ps(u, v) from u to v. Then with the same arguments as for v = u.long − range
eventually u and v are weakly connected in Gt

′
list and stay weakly connected in every state afterwards.

If m = (move − forget, v0, v1, v2) ∈ u.Ch there can be several cases. If v2 6= u.long − range,
v0, v1, v2 are treated as identifiers in forward messages, for which we already showed that eventually weak
connectivity in Gt

′
list is ensured. If w.l.o.g. v0 becomes the new long-range link, this can be reduced to the

case v = u.long − range. Then v1 and v2 are forwarded to v0 by forward messages and thus eventually
u will stay weakly connected with v1 and v2 via the node v0. If the long-range link is forgotten v0 is
treated as an identifier in a forward message and again u and v0 will eventually stay weakly connected in
Gt
′
list.
If v = u.cycle either u starts a probing to v and this can be reduced to the case v = u.long − range,

or before u starts a probing to v u.cycle is updated and v is treated as an identifier in a forward message.
If m = (response− cycle, v) ∈ u.Ch either v = u.cycle or v is treated as an identifier in a forward

message. If m = (long − range, v) ∈ u.Ch then u responds by sending a move-forget message
containing u. Then this can be reduced to m = (move − forget, v0, v1, u) ∈ v.Ch. Or if u can not
respond to v, v is treated as an identifier in a forward message.

In any case eventually there is a state st′ such that in any later state st, t ≥ t′, u and v stay weakly
connected in Gtlist. ut
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In the following we denote by t0 the time such that all nodes are weakly connected in Gtlist with
t ≥ t0 and stay weakly connected. From Lemma 3.3.1 follows that the computation reaches such a state
st0 Thus we can now show that Gt0list eventually converges to a sorted list. To show this convergence we
reuse the analysis presented in the proof of Theorem 3.2.2, where we showed the convergence property
for PLIST .

Lemma 3.3.2 If the computation of PSMALL−WORLD reaches a state st at a time t ≥ t0 where for
some node u there are two edges (u, v) ∈ Ete−list and (u,w) ∈ Eti−list such that h(u) < h(w) < h(v)
(resp. h(v) < h(w) < h(u)) then this computation contains a later state st′ , t′ > t, with an edge
(u,w′) ∈ Et′e−list with h(w′) ≤ h(w) (resp. h(w′) ≤ h(w)).

Remember that this lemma claims that the stored edges (u, u.successor) and (u, u.predecessor) are
shortened over time.
Proof. The proof is analogous to the proof of Lemma 3.2.2. We only substitute messages m = (v) used

in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E
t
i by

Eti−list and Et by Etlist. ut

Lemma 3.3.3 If the computation of PSMALL−WORLD reaches a state st, t ≥ t′0, where for a node u
there are edges (u, v) ∈ Ete−list and (u,w) ∈ Eti−list with h(u) < h(v) < h(w) (resp. h(u) > h(v) >

h(w)) then the computation contains a later state st′ , t′ > t, where there is an edge (w′, w) ∈ Et′list with
h(u) < h(w′) < h(w) (resp. h(u) > h(w′) > h(w)).

Proof. The proof is analogous to the proof of Lemma 3.2.3. We only substitute messages m = (v) used
in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 3.3.4 If the computation of PSMALL−WORLD reaches a state st, t ≥ t′0, where for some nodes
u, v and w such that h(u) < h(w) < h(v) (resp. h(v) < h(w) < h(u)) there are edges (u, v) ∈ Ete−list
and (w, u) ∈ Ete−list then the computation contains a later state st′ , t′ > t, where either some edge in
Et
′
e−list is shorter than in Ete−list or (u,w) ∈ Et′e−list.

Proof. The proof is analogous to the proof of Lemma 3.2.4. We only substitute messages m = (v) used
in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 3.3.5 If the computation of PSMALL−WORLD reaches a state st, t ≥ t′0, where there is an edge
(u, v) ∈ Ete−list then the computation contains a later state st′ , t′ > t, where some edge in Et

′
e−list is

shorter than in Ete−list or (v, u) ∈ Et′e−list.

Proof. The proof is analogous to the proof of Lemma 3.2.5. We only substitute messages m = (v) used
in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 3.3.6 If the computation of PSMALL−WORLD reaches a state st, t ≥ t′0, such that (u, v) ∈
Et
′
e−list ⇒ (v, u) ∈ Et′e−list in every state st′ , t′ > t, after, then this computation contains a state st∗ such

that Et∗e−list is strongly connected.
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Proof. The proof is analogous to the proof of Lemma 3.2.6. We only substitute messages m = (v) used
in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 3.3.7 If the computation of PSMALL−WORLD reaches a state st, t ≥ t′0, such that Ete−list is
strongly connected and for every pair of nodes (u, v) ∈ Ete−list ⇒ (v, u) ∈ Ete−list then this state is a
solution for the sorted list problem and Gtlist is a sorted list.

Proof. The proof is analogous to the proof of Lemma 3.2.7. We only substitute messages m = (v) used
in PLIST by messages m = (forward, v) used in PSMALL−WORLD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

We are now ready to show Theorem 3.3.3. According to Lemma 3.3.1 Gtlist is weakly connected and
stays weakly connected during the computation after some state st0 at every time t ≥ t0. By Lemma
3.3.2 and 3.3.3 follows that all edges in Gtlist are shortened over time. Note that as soon as a node receives
a forward message there has to be a state st1 , t1 ≥ t0, with at least one edge in Et1e−list. According to
Lemma 3.3.4 eventually no edge in Et1e−list can be shortened and either (u, v) and (v, u) ∈ Et2e−list at
some state st2 at time t2 ≥ t1 or a new edge is added to Et1e−list. As for each node there are at most two
edges in Ee−list, eventually all edges have to be added and a state st3 at time t3 ≥ t2 is reached with
(u, v) ∈ Et3e−list ⇒ (v, u) ∈ Et3e−list. According to Lemma 3.3.5 there is a state st4 such that in every
state st′ after (u, v) ∈ Et′e−list ⇒ (v, u) ∈ Et′e−list. Now, according to Lemma 3.3.6 the computation
contains a later state st5 at time t5 ≥ t4 such that Et5e−list is strongly connected. Then by applying lemma
3.3.7 Gt5l ist is a solution for the sorted-list problem.

Our second theorem claims that after a sorted list is formed the computation reaches a state, such that a
cyclic list is a sub-graph of the graph of explicit edges.

Theorem 3.3.4 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLD then eventually the computation reaches a state st such that Gte−cycle is a cyclic list.

Proof. According to Theorem 3.3.3 the computation reaches a state st0 at a time t0 such that
Gt0e−list is a sorted list. Then only vmin and vmax with h(vmin) = min {h(v) : v ∈ V } and h(vmax) =

max {h(v) : v ∈ V } are missing a predecessor or successor. According to the protocolPSMALL−WORLD

vmin.cycle 6= nil and vmax.cycle 6= nil. Let w = vmin.cycle then h(w) > h(vmin) and w receives
eventually a cycle message and responds with a response-cycle message containingw′ with h(w′) > h(w)
andw′ = w.successor orw′ = w.long−range. Then in some state st1 at time t1 ≥ t0 vmin will receive
the message m = (response− cycle, w′) and thus in st1 vmin.cycle ≥ w′. Obviously vmin.cycle can
only be updated a finite number of times and eventually a state st2 is reached such that no update takes
place in a later state. Then at time t2 ≥ t1 and in every state afterwards vmin.cycle = vmax. By symmet-
ric arguments we can show that there is also a state st3 at time t3 ≥ t2 such that vmax.cycle = vmin and
vmin.cycle = vmax in every state st, t ≥ t3. ut

Theorem 3.3.5 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLD then eventually the computation reaches a state st such that Gte is a small-world
network.
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Proof. From Theorems 3.3.3 and 3.3.4 follows that the computation of PSMALL−WORLD reaches a
state st0 such that in every state st, t ≥ t0, Gte contains the 1- dimensional lattice (the cyclic list). Then
there is a later state st1 at time t1 ≥ t0 in the computation such that all long-range links have been
forgotten at least once between these states. It can easily been shown by using properties shown in [14]
that the maximal age of a long-range link is O(n) w.h.p.(with high probability is a probability ≥ 1− 1

nc ).
In each update a long-range link is forgotten with a probability at least 1

u.age (for u.age ≥ 3). Then∏n
u.age=3(1 − 1

u.age) = 2
n is the probability that a long-range link is not forgotten n times. And thus

w.h.p. u.age = O(n).
Then it can also been proven that there is a state st1 such that each node updated its long-range link at

leastO(n) times and thus w.h.p. all long-range links have been forgotten at least once. After this state the
move-and forget process for the long range links is performed on the cyclic list and eventually a state st′
at time t′ ≥ t1 is reached such that in any later state st, t ≥ t′, Gte forms a small-world network according
to [14]. ut

Then Theorem 3.3.2 follows immediately.

Closure

We will now show that for PSMALL−WORLD also the closure property holds.

Theorem 3.3.6 If in an initial graph G ∈ SMALL − WORLD every node executes the protocol
PSMALL−WORLD then each possible computation leads to a graph G′ ∈ SMALL−WORLD.

Proof. If Gte ∈ SMALL − WORLD then explicit edges in Gte−cycle do not change, as edges
(u, u.successor) (resp. (u, u.predecessor)) only change if u receives a node w with h(u) < h(w) <
h(u.successor) (resp. h(u) > h(w) > h(u.predecessor)). As the edges (u, u.successor) and
(u, u.predecessor) form a sorted list such a node w can not exist. Edges (u, u.cycle) with h(u) <
h(u.cycle) (resp. h(u) > h(u.cycle)) only change if u receives a node w with h(w) > h(u.cycle) or
h(w) < h(u) (resp. h(w) < h(u.cycle) or h(w) > h(u)). As only the nodes with minimal and maximal
position vmin and vmax have a cycle edge with vmin.cycle = vmax and vmax.cycle = vmin such a
node w can not exist. The only explicit edges that change are long-range links. As according to [14]
the distribution of the lengths of long-range links is stationary by the the Move & Forget process the
small-world property is maintained. ut

3.3.7 Protocol PSMALL-WORLDsync

In the next section we consider the efficiency of PSMALL−WORLD and therefore analyze it according
to our STSS model. In fact we will adapt the protocol to the synchronous setting. As we have seen for
the sorted list slight modifications can lead to improved bounds on the stabilization and maintenance
work. We do not describe the protocol PSMALL−WORLDsync in detail as the basic ideas are the same
as in PSMALL−WORLD. The only changes are that we do not react on each message individually, but
can react on a batch of messages received in the same round. In this way we can ensure that we update a
long-range link only once in one round and that all nodes that should be forwarded are sorted according
to their position and thus a node only sends one forward message to another node. We therefore collect
all received identifiers in move-forget messages in one set LRL, all identifiers received by forward
or introduction messages in a set S and all identifiers received by cycle messages in a set Cycle. We
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further use the modification we introduced in the improved PLISTsync to prevent nodes from introducing
themselves to nodes that can’t be their successors or predecessors. For simplicity we assume that u.τ is
true in every round.

We present a pseudo code implementation of PSMALL−WORLDsync including a probing mechanism
in Algorithm 3.3.11-3.3.19.

Algorithm 3.3.11 PSMALL−WORLDsync

message m ∈ u.Ch→
S = ∅ . Ids of nodes that should be forwarded by forward messages
LRL = ∅ . Ids of candidates for the long-range link
Cycle = ∅ . Set of nodes that should be responded to by respond-cycle-virtual messages
Probing = ∅ . Set of nodes that should be forwarded by probing messages
while m ∈ u.Ch do

if type=forward then
S.insert(v)

else if type=introduction then
S.insert(v)

else if type=long-range then
long-range(v)

else if type=probing-right then
Probing.insert(v)

else if type=probing-left then
Probing.insert(v)

else if type=cycle then
Cycle.insert(v)

else if type=response-cycle then
response-cycle(v)

else if type=move-forget then
if v2 = u.long − range then

LRL.insert(v0)
LRL.insert(v1)

else
S.insert(v0)
S.insert(v1)
S.insert(v2)

send-cycle()
send-probes()
move-forget()
send-list()
τ →
introduction()
probing()
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Algorithm 3.3.12 LONG-RANGE(V)
if u.predecessor 6= nil ∧ u.successor 6= nil then

send message m = (move− forget, u.predecessor, u.successor, u) to v
else if u.predecessor 6= nil then

send message m = (move− forget, u.predecessor, u.cycle, u) to v
else if u.successor 6= nil then

send message m = (move− forget, u.cycle, u.successor, u) to v
else

S.insert(v)

Algorithm 3.3.13 RESPONSE-CYCLE(v)
if u.predecessor = nil ∧ (h(v) > h(u.cycle) > h(u) ∨ (u.cycle = nil ∧ h(v) > h(u))) then

if u.cycle 6= nil then
S.insert(u.cycle)

u.cycle = v
else if u.successor = nil ∧ (h(v) < h(u.cycle) < h(u) ∨ (u.cycle = nil ∧ h(v) < h(u))) then

if u.cycle 6= nil then
S.insert(u.cycle)

u.cycle = v
else

S.insert(v)

3.3.8 Analysis in the STSS model

Analyzing the same protocol PSMALL−WORLDsync in the STSS model we show some bounds on the
complexities defined in Chapter 2.

Theorem 3.3.7 If an initial graph GIT ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLDsync then the graph converges to a graph G ∈ SMALL−WORLD (Convergence)
with a stabilization time of O(n + δ) and a stabilization work of O(n2). If in an initial graph G ∈
SMALL − WORLD∗ every node executes the protocol PSMALL−WORLDsync then each possible
computation leads to a graph G′ ∈ SMALL−WORLD (Closure) with a maintenance work of O(n).

Stabilization Time

We now prove an upper bound on the stabilization time of PSMALL−WORLDsync. The stabilization time
is bounded by the number of nodes n and the convergence time of the move-forget process δ

Theorem 3.3.8 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLDsync then the graph converges to a graph G′ ∈ SMALL−WORLD (Convergence)
with a stabilization time of O(n+ δ) w.h.p..

Like the convergence in the ATSS model we will prove the stabilization time in the STSS model by
proving the stabilization time for some intermediate steps. We begin with the following observation: After
at most two rounds each node has received every initial message and every response to an initial message.
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Algorithm 3.3.14 SEND-CYCLE()
if Cycle 6= ∅ then

W = {u.successor, u.predecessor, u.cycle, u.long − range}
Sort all nodes v in Cycle according to their position h(v), such that h(v−k) < h(v−(k−1)) < · · · <

h(v−1) < h(ui) < h(v1) < · · · < h(vk′−1) < h(v′k)
for j = 1 to k′ − 1 do

Send message m′ = (forward, vj+1) to vj
if ∃w : h(w) > h(v′k) ∧ w ∈W then

w = argmin {h(w′) : h(w′) > h(v′k) ∧ w′ ∈W}
send message m = (forward, w) to v′k

else if ∃w : h(w) < h(v) ∧ w ∈W then
w = argmin {h(w′) : h(w′) < h(v) ∧ w′ ∈W}
send message m = (response− cycle, w) to v

else
send message m = (response− cycle, u) to v

for j = 1 to k − 1 do
Send message m′ = (forward, v−(j+1) to v−j

if ∃w : h(w) < h(vk) ∧ w ∈W then
w = argmax {h(w′) : h(w′) < h(vk) ∧ w′ ∈W}
send message m = (forward, w) to v′k

else if ∃w : h(w) > h(v) ∧ w ∈W then
w = argmax {h(w′) : h(w′) > h(v) ∧ w′ ∈W}
send message m = (response− cycle, w) to v

else
send message m = (response− cycle, u) to v

Algorithm 3.3.15 SEND-PROBES()
if Probing 6= ∅ then

Sort all ids v in Probing ∪ {u.successor, u.predecessor, u.long − range} according to their
position h(v), such that h(v−k) < h(v−(k−1)) < · · · < h(v−1) < h(u) < h(v1) < · · · < h(vk′−1) <
h(v′k)

for j = 1 to k′ − 1 do
if vj+1 /∈ {u.successor, u.predecessor, u.long − range} then

Send message m′ = (probing, vj+1) to vj
S.insert(v1)
for j = 1 to k − 1 do

if v−(j+1) /∈ {u.successor, u.predecessor, u.long − range} then
Send message m′ = (probing, v−(j+1) to v−j

S.insert(v−1)
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Algorithm 3.3.16 MOVE-FORGET()
if M 6= ∅ then

Choose one element vi in LRL uniformly at random
S.insert(LRL ∪ {u.long − range} − {vi})
u.long − range = vi
reset = true with probability φ(u.age)
if reset=true then

S.insert(u.long − range)
u.long − range = u

Algorithm 3.3.17 SEND-LIST()
if S 6= ∅ then

Sort all ids v in S ∪ u.successor ∪ u.predecessor ∪ u.long − range according to their position
h(v), such that h(v−l) < h(v−(l−1)) < · · · < h(v−1) < h(u) < h(v1) < · · · < h(vk−1) < h(vk)

u.successor = v1

for i=1 to k-1 do
if i 6= 1 or v2 6= u.long − range then

Send message m′ = (forward, vi+1) to vi
if vi is received by a message m = (introduction, vi) then

send message m′ = (forward, vi−1) to vi
u.predecessor = v−1

for i=1 to l-1 do
if i 6= 1 or v−2 6= u.long − range then

Send message m′ = (forward, v−(i+1) to v−i
if v−i is received by a message m = (introduction, v−i) then

send message m′ = (forward, v−(i−1)) to v−i

Algorithm 3.3.18 INTRODUCTION()
if h(u.predecessor) 6= nil then

send message m = (introduction, u) to u.predecessor
else

send message m = (cycle, u) to u.cycle
if h(u.successor) 6= nil then

send message m = (introduction, u) to u.successor
else

send message m = (cycle, u) to u.cycle
send message m = (long − range, u) to u.long − range
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Algorithm 3.3.19 PROBING()
if h(u.long − range) < h(u) then

if h(u.long − range) ≤ h(u.predecessor) then
send message m = (probing − left, u.long − range) to u.predecessor

else
if u.long − range ≥ u.successor then

send message m = (probing − right, u.long − range) to u.successor
if u.cycle 6= nil ∧ h(u.cycle) < h(u.predecessor) then

send message m = (probing − left, u.cycle) to u.predecessor
else if u.cycle 6= nil ∧ h(u.cycle) > h(u.successor) then

send message m = (probing − right, u.cycle) to u.successor

Then each node u only receives long-range-respond messages from nodes w with w = u.long − range
and cycle-respond messages from nodes w with w = u.cycle. We call this point of time by t0 with
t0 ≤ 2. Then at every time t ≥ t0 for each w = u.long − range or w = u.cycle u has started a probing.

Theorem 3.3.9 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLDsync then the graph converges to a graph G′ such that G′e−list is a sorted list after
O(n) rounds.

To show this theorem we need to introduce a different notion of connectivity.

Definition 3.3.8 We call two nodes u and v connected over time at time t if there is a over time connecting
path p = (u = w0, w1, w2, · · · , wl = v) and (wi, wi+1) ∈ Elist at time t+ i ∀i < l. That means that u
and v don’t have to be connected all the time but it is possible to send a message from u to v at time t
along edges in Elist. We further call two nodes weakly connected over time at time t, if there a weakly
over time connecting path p = (u = w0, w1, w2 · · · , wl = v) and wi and wi+1 or wi+1 and wi are
connected over time.

In order to show Theorem 3.3.9 we first show a helpful lemma.

Lemma 3.3.8 If (u, v) ∈ Et or u and v are connected over time at time t then u and v are connected
over time for every time t′ > t.

Proof. In the following we assume h(u) < h(v), as for the case h(v) < h(u) symmetric arguments
can be applied. We first consider the case that (u, v) ∈ Et. Then either v is stored in a message in
u.Ch or v is stored in an internal variable. If v is stored in an internal variable then v = u.successor
or v = u.long − range or v = u.cycle. We first show that u and v are connected over time if u keeps
v in its internal variables and then proceed with the case that v is delegated. If v = u.successor and
v is not delegated then obviously u and v are connected over time and stay connected over time. If
v = u.long − range or v = u.cycle and v is not delegated then according to our observation u has
started a probing to v. Then this probing message takes a certain path through the network and u and
v are connected over time along this probing path. A probing message received by a node w is only
forwarded to w.successor, w.long − range or a node w′ with h(u) < h(w) < h(w′) < h(v) that w
also received a probing message for.
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If the probing message is forwarded to w.successor then w and w.successor are connected and thus
connect u and v over time. If the probing message is forwarded to w.long− range then according to our
observation w also sends a probing message destined for w.long − range and w and w.long − range
and thus also u and v are connected over time along the corresponding probing path. The same arguments
hold for the case that the probing message is forwarded to another probed node w′. By induction follows
that u and v are connected over time at time t and at every time after as long as u stores v in its internal
variables.

If v is not longer stored in an internal variable but is delegated, then v is delegated to a node w that is
connected to u by edges in Elist in the send-list action, or v is delegated to u.long− range for which we
already know that u and u.long − range are connected over time. If v is stored in a message in u.Ch,
then when u receives the message either v is stored in an internal variable or is delegated. For both cases
we have already shown that u and v then are connected over time.

Then also follows that if u and v are connected over time at time t they stay connected over time at
every time t′ > t. ut

We are now ready to prove Theorem 3.3.9.
Proof. As the network is initially weakly connected and stays weakly connected according to

Lemma 3.3.1 also Glist is weakly connected over time and stays weakly connected over time one
round after t0 ≤ 2 according to Lemma 3.3.8. In the following we reuse the analysis presented in the
proof of Theorem 3.2.5, where we showed the stabilization time for PLIST .

Let vi and vi+1 be two arbitrary consecutive nodes in the sorted list. Then there is a weakly over time
connecting path p for vi and vi+1. We show that the minimal range of all weakly over time connecting
paths is decreasing, such that the two nodes are directly connected after at most O(n) synchronous
rounds.

Let pt be a weakly over time connecting path for two arbitrary consecutive nodes vi and vi+1 at time
t ≥ t0. We then show that we can find a weakly over time connecting path at time t′ > t with a strictly
smaller range. We firstly prove that if one of the border nodes wtmin and wtmax defining the range of pt
has two outgoing edges in Et ∩ pt, then we can construct a connecting path pt+1 with a smaller range.
We will show this for wtmin as the same arguments can be applied for wtmax.

If wtmin has two outgoing edges (wtmin, x), (wtmin, y) ∈ pt then we can construct a new weakly
over time connecting path pt+1. From the proof of Lemma 3.3.8 follows that there is an over time
connecting path from wtmin to x and y over wtmin.successor. Thus in pt+1 wtmin can be substituted by
wtmin.successor and the range of the weakly over time connecting path decreases. It remains to show
that it does not take too long before a border node has two outgoing edges. In case wtmin does not have
two outgoing edges we construct pt+1 out of pt in the following way.

If (x, y) ∈ pt with h(x) < h(y) and y is delegated then according to Lemma 3.3.8 there is an over
time connecting path p′ = (x = w0, w1 = x.successor, w2, · · ·wl = y) with h(x) ≤ h(wi) ≤ h(y)
from x to y. Thus we can substitute (x, y) by p′ in pt+1. If (x, y) ∈ pt with h(x) < h(y) and y is not
delegated then we simply keep (x, y) ∈ pt+1.

If (x, y) ∈ pt with h(x) > h(y) and y is delegated then according to Lemma 3.3.8 there is an over time
connecting path p′ = (x = w0, w1 = x.predecessor, w2, · · ·wl = y) with h(x) ≥ h(w′i) ≥ h(y) from
x to y. Thus we substitute (x, y) by p′ in pt+1. If (x, y) ∈ pt with h(x) > h(y) and y is not delegated,
then y = x.predecessor and x introduces itself to y and we substitute (x, y) ∈ pt by (y, x) ∈ pt+1.

By using this construction scheme we can show that it takes at most max {0, n− (t− t0)} rounds
before wtmin has two outgoing edges on a path pt. We prove this by induction on t. Let p0 be an arbitrary
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weakly over time connecting path for two consecutive nodes xi, xi+1 in the sorted list. Then wt0min is
the left border node of this path. If wt0min already has two outgoing edges on pt0 then it takes obviously
most max {0, n} rounds. Otherwise there is at least one incoming edge (y, wt0min) on pt0 . For each
such incoming edge (y, wt0min) the node y either introduces itself to wt0min or delegates wt0min. In the first
case wt0min then has an outgoing edge in pt1=t0+1 and every following path pt

′
, t′ ≥ t1, according to

our construction scheme. In the second case (y, wt−0
min) is substituted by a path p′ as described above.

Then wt0min still has an incoming edge (y′, wt0min), but with h(y′) < h(y). Obviously wt0min can only be
delegated n times before (y′, wt0min) is substituted by an outgoing edge.

Let pt be an undirected path connecting vi, vi+1 in the sorted list that was constructed out of pt0
according to our construction scheme. If wtmin already has two outgoing edges on pt then it takes
obviously most max {0, n− (t− t0)} rounds. Otherwise there is at least one incoming edge (y, wtmin)
on pt. Then (y, wtmin) /∈ pt−1 but wtmin was delegated to y by another node z with h(z) > h(y),
otherwise y would have introduced itself to wtmin and wtmin would have an outgoing edge instead. Thus
(z, wtmin) ∈ pt−1. For this edge the same observation holds. As wtmin has been delegated in every round
before, wtmin has been delegated t times by nodes z with h(z) > h(y). Thus there are at most n− (t− t0)
nodes w′ with h(wtmin) < h(w′) < h(y) that wtmin can still be delegated to before the edge is substituted
by an outgoing edge. Then for a path pt it takes at most max {0, n− (t− t0)} rounds before wtmin has
two outgoing edges and if wtmin has two outgoing edges we can construct a path with a smaller range.
Thus after O(n) rounds vi, vi+1 are directly connected, i.e. (vi, vi+1) ∈ Ee−list and (vi+1, vi) ∈ Ee−list.

ut

Theorem 3.3.10 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLDsync then the graph converges to a graph G′ such that G′e−cycle is a cyclic list after
O(n) rounds.

Proof. The proof is based on the same arguments we already used in the analysis of the convergence in
the ATSS model for Theorem 3.3.4.

According to Theorem 3.3.9 the computation reaches a state st0 at a time t0 such that Gt0e−list is
a sorted list after O(n) rounds. Then only vmin and vmax with h(vmin) = min {h(v) : v ∈ V } and
h(vmax) = max {h(v) : v ∈ V } are missing a predecessor or successor. Thus according to the protocol
PSMALL−WORLDsync vmin.cycle 6= nil and vmax.cycle 6= nil. Let w = vmin.cycle then h(w) >
h(vmin) and w receives a cycle message in the next round and responds with a response-cycle message
containing w′ with h(w′) > h(w) and w′ = w.successor or w′ = w.long − range. Then vmin will
receive the message m = (response − cycle, w′) and thus after at most two rounds vmin.cycle ≥ w′.
Obviously vmin.cycle is updated in every round as long as w′ < vmax. Then after O(n) rounds
vmin.cycle = vmax. By symmetric arguments we can show that also after O(n) rounds vmax.cycle =
vmin and vmin.cycle = vmax in every state afterwards. ut

Theorem 3.3.11 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PSMALL−WORLDsync then the graph converges to a graph G′ ∈ SMALL−WORLD after O(n+ δ)
rounds w.h.p..

Proof. The proof is based on the same arguments we already used in the analysis of the convergence in
the ATSS model for Theorem 3.3.5.

From Theorem 3.3.10 follows that computation of PSMALL−WORLDsync reaches a state st0 such that
in every state st, t ≥ t0, Gte−cycle contains the cyclic list after O(n) rounds. It can easily been shown
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by using properties shown in [14] that the maximal age of a long-range link is O(n) w.h.p.(with high
probability is a probability ≥ 1− 1

nc ). Thus w.h.p. a long-range link is forgotten after O(n) rounds. As
soon as each long-range link was forgotten after t0 the move-and forget process for the long range links
is performed on the cyclic list and after O(δ) rounds Gte forms a small-world network and maintains it
forever according to [14]. ut

Then Theorem 3.3.8 follows immediately. We conclude the analysis by showing the Closure property
in the STSS model.

Theorem 3.3.12 If in an initial graph G ∈ SMALL −WORLD every node executes the protocol
PSMALL−WORLDsync then each possible computation leads to a graph G′ ∈ SMALL −WORLD
(Closure).

Proof. The proof is the same as in the asynchronous setting for Theorem 3.3.6. ut

Stabilization Work

Theorem 3.3.13 If in an initial graph G ∈ IT every node executes PSMALL−WORLDsync then each
possible computation leads to a graph G′ ∈ SMALL−WORLD with a stabilization work of O(n2).

Proof. In each round a node sends at most O(1) forward-messages to another node in the send-list
action. Then each node also receives at most O(1) forward-messages by on other node in one round.
Thus each node receives at most O(n) forward-messages in one round. Then according to Theorem 3.3.8
each node receives and sends at most O(n2 + nδ) forward messages during the stabilization.

Each node u sends at mostO(1) introduction message in one round to u.successor and u.predecessor.
Each node receives at most one introduction messages from a node w with w 6= u.successor and
w 6= u.predecessor. Then each node sends and receives at most O(n+ δ) introduction messages.

Each node sends at most one long-range message in one round. As the long-range links perform a
random walk on the cyclic list, there always exists the possibility for one node u that there are O(n)
nodes v with u = v.long − range. Then a node u can receive up to O(n) long-range messages in one
round. Then the number of received and sent long-range messages can only be bounded by O(n2 + nδ).

Each node initiates at most O(1) probing messages in each node. Each node sends at most O(1)
probing messages to another node in one round. Then each node also receives at most O(1) probing
message from another node in one round. Then each node sends or receives at most O(n2 + nδ) probing
messages during the stabilization.

Each node sends at most O(1) cycle message in one round and receives a cycle message once from a
node v which is not the node with the minimal or maximal position sending a cycle message to u. If u
receives cycle messages from two nodes v and w and h(v) < h(w) < h(u) (resp. h(v) > h(w) > h(u))
then u will send a message m = (forward, v) to w thus w updates its predecessor (resp. successor) and
will not send an cycle message to u again. Then each node u sends and receives at most O(n+ δ) cycle
messages. Furthermore u also only sends and receives O(n+ δ) response-cycle messages. ut

Maintenance Work

Theorem 3.3.14 If in an initial graph G ∈ SMALL −WORLD∗ every node executes the protocol
PSMALL−WORLDsync then each possible computation leads to a graph G′ ∈ SMALL −WORLD
with a maintenance work of O(n).
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Proof. As we already showed in the proof of Theorem 3.3.13 each node sends and receives at most
O(n) messages of each message type. We can further show by a more detailed analysis that each node
only sends and receives a polylogarithmic number of probing messages in expectation. In analysis
in [14] the authors claim that at each routing step, the distance to the destination is halved with a
probability of at least Ω

(
1

ln1+εd

)
with d being the distance to the destination. The proof is based on

the following idea: B is the set of nodes v, which have a distance to the destination node z which
is smaller than half of the distance of the current node w (of the routing path) to the destination, i.e.
B = {v ∈ Zk : dist(v, z) ≥ dist(w, z)/2}. Then the authors show that in the routing such a node
v is reached by w with the aforementioned probability Ω

(
1

ln1+εd

)
. So, in our 1-dimensional case, B

would consist of all the nodes being at most d/2 away from the destination, both on the left and on
the right of the destination node, where d is the distance of the current node to the destination. Since
in our probing procedure from u to u.long − range, we allow the usage of long-range links only if
they are at the left side of u.long − range, the probability that at any routing step the distance to the
destination would be halved is now equal to the probability that the next node of the probing path lies
in A = {v ∈ Zk : dist(v, z) ≥ dist(w, z)/2 ∧ h(v) < h(z)}. We restrict the set B by the additional
constraint h(v) < h(z). Then |A| ≥ |B|2 . Then also the probability to reach a node in A instead of B
is halved and thus still Ω

(
1

ln1+εd

)
. So, by the analysis of Theorem 2 in [14], we get that the expected

number of steps for a probing message to reach its destination in a stable state is O(ln2+ed). ut

Single Join and Leave Events

For the completeness of the analysis we consider dynamic changes of the network in terms of single
joining and leaving nodes.

Theorem 3.3.15 If a node joins or leaves a network that is previously in SMALL−WORLD it takes
at most O(ln2+εn) rounds until a legal state is reached again with an additional work of O(1) for each
node per round.

Proof. If a node u joins the network and is connected to an arbitrary node v already in the network,
u introduces itself to v. Then v either stores u in its internal variable if u = v.successor or u =
v.predecessor or v forwards u according to the greedy routing scheme we already described in the
analysis of the probing procedure in the proof of Theorem 3.3.14. Then it takes at most O(ln2+εn)
rounds until u is connected to its correct predecessor and successor. Thus the cyclic list is stabilized.

When a node u leaves the network the connections it had to and from other nodes are removed. As
a consequence, two nodes v and w formerly u.predecessor and u.successor have no right and left
neighbors. These nodes then initiate cycle messages. Also these cycle messages are forwarded according
to the greedy routing scheme and thus after at most O(ln2+εn) until v and w will be directly connected.

As we only add or remove one node the distribution of long-range links is still stationary and resembles
a harmonic distribution if n is large enough. ut

3.4 Resource Discovery or a self-stabilizing Clique

3.4.1 Introduction

To perform cooperative tasks in distributed systems the network nodes have to know which other nodes
are participating. Examples for such cooperative tasks range from fundamental problems such as group-
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based cryptography [58], verifiable secret sharing, distributed consensus [64], and broadcasting [67] to
peer-to-peer (P2P) applications like distributed storage, multiplayer online gaming, and various social
network applications such as chat groups. To perform these tasks efficiently knowledge of the complete
network for each node is assumed. Considering large-scale, real-world networks this complete knowledge
has to be maintained despite high dynamics, such as joining or leaving nodes, that lead to changing
topologies. Therefore the nodes in a network need to learn about all other nodes currently in the network.
This problem called resource discovery, i.e. the discovery of the addresses of all nodes in the network by
every single node, is a well studied problem and was firstly introduced by Harchol-Balter, Leighton and
Lewin in [25].

As mentioned in [25] the resource discovery problem can be solved by a simple swamping algorithm
also known as pointer doubling: in each round, every node informs all of its neighbors about its entire
neighborhood. While this just needs O(log n) communication rounds to inform every node about any
other node in every weakly connected network of size n, the work spent by the nodes can be very high
and far from optimal. Moreover, in the stable state (i.e., each node has complete knowledge) the work
spent by every node in a single round is Θ(n2), which is certainly not useful for large-scale systems.

Alternatively, each node may just introduce a single neighbor to all of its neighbors in a round-robin
fashion. However, it is easy to construct initial situations in which this strategy is not better than pointer
doubling in order to reach complete knowledge. The problem in both approaches is the high amount of
redundancy: addresses of nodes may be sent to other nodes that are already aware of that address.

In [25] a randomized algorithm called the Name-Dropper is presented that solves the resource discovery
problem within O(log2 n) rounds w.h.p. and work of O(n2 log2 n). In [45] a deterministic solution for
resource discovery in distributed networks was proposed by Kutten et al. Their solution uses the same
model as in [25] and improves the number of communication rounds to which takes O(log n) rounds and
O(n2 log n) amount of work.

Konwar et al. presented solutions for the resource discovery problem considering different models,
i.e. multicast or unicast abilities and messages of different sizes, where the upper bound for the work is
O(n2 log2 n). In their algorithms they also considered when to terminate, i.e. how can a node detect that
its knowledge is already complete.

Recently resource discovery has been studied by Haeupler et. al. in [24], in which they present two
simple randomized algorithms based on gossiping that need Ω(n log n) time and Ω(n2 log n) work per
node on expectation. They only allow nodes to send a single message containing at most one address of
size log n in each round. Thus their model is more restrictive compared to the model used in [25, 45] and
leads to an increased runtime in the number of rounds.

We present a deterministic solution that follows the idea of [24] and limits the number of messages
each node has to send and the number of addresses transmitted in one message. Our goal is to reduce
the number of messages sent and received by each node such that we avoid nodes to be overloaded. In
detail we show that resource discovery can be solved in O(n) rounds and it suffices that each node sends
and receives O(n) messages in total, each message containing O(1) addresses. Our solution is the first
solution for resource discovery that not only considers the total number of messages but also the number
of messages a single node has to send or receive.

Note that Ω(n) is a trivial lower bound for the work of each node to gain complete knowledge: starting
with a list, in which each node is only connected to two other nodes, each node has to receive at least
n − 3 IDs. So our algorithm is worst case optimal in terms of message complexity. Furthermore our
algorithm can handle the deletion of edges and joining or leaving nodes, as long as the graph remains
weakly connected. Modeling the current knowledge of all nodes as a directed graph, i.e. there is an
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edge (u, v) iff u knows v’s identifier, one can think of resource discovery as building and maintaining a
complete graph, a clique, as a virtual overlay network. We therefore present a protocol PCLIQUE that
topological self-stabilizing solves the overlay problem CLIQUE, in which the nodes form a complete
graph starting from an initially weakly connected graph. An example of a clique is given in Figure 3.14.

v0

v1

v2

vn-1
vn-2

v3

vn-3

vn-4

...

...

Figure 3.14: Example for a clique network

A self-stabilizing spanning tree algorithm could be used as an intermediate step to build a complete
graph. A large number of self-stabilizing distributed algorithms has already been proposed for the
formation of spanning trees in static network topologies, [10, 9, 27]. For example in [10] the authors
present a self-stabilizing spanning tree with minimal degree for the given network and in [9] a fast
algorithm for a self-stabilizing spanning tree is presented, which reaches optimal convergence time of
O(n2) asynchronous rounds. However, these spanning trees are either expensive to maintain or the
amount of work in these algorithms is not being considered.
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For the case that the network topology is flexible and potentially allows every node to connect to any
other node, self-stabilizing algorithms are known that construct a bounded degree spanning tree (e.g.,
[27]). The algorithm in [27] also has a very low overhead in the stable state. But no formal result is given
on the work to establish the spanning tree. Also, an outside rendezvous service, called an oracle, is used
to introduce nodes to other nodes, which is not available in our model.

3.4.2 Our Contribution

We show that resource discovery can be solved in O(n) rounds and that it suffices that each node sends
and receives O(n) messages in total, each message containing O(1) addresses. We present a protocol
PCLIQUE solving the overlay problem CLIQUE. The ideas of the protocol PCLIQUE and the results
on stabilization time given in Theorem 3.4.8, stabilization work given in Theorem 3.4.13, maintenance
work given in Theorem 3.4.14 and the cases of a single joining or leaving node given in Theorem 3.4.15
are based on results published in [38] which is a joint work with my colleague Andreas Koutsopoulos
and our supervisor Christian Scheideler:

Sebastian Kniesburges, Andreas Koutsopoulos and Christian Scheideler, A Deterministic Worst-Case
Message Complexity Optimal Solution for Resource Discovery, In 20th International Colloquium on
Structural Information and Communication Complexity (SIROCCO) 2013 (best student paper).

The results for the correctness in the ATSS model in Theorem 3.4.1 is presented for the first time.
In this section we show that the protocol PCLIQUE solves the clique overlay problem in the ATSS

and STSS model with a stabilization time of O(n) and a stabilization work of O(n), which is worst-case
optimal. We further show a maintenance work per round ofO(1) for each node once a legal state has been
reached. We also consider topology updates caused by a single joining or leaving node and show that the
network recovers in O(n) rounds with at most O(n) messages over all nodes besides the maintenance
work.

3.4.3 Formal Definition

According to our model presented in Chapter 2 we assume that each node can be identified by an unique
id. We define a hash function h : ID 7→ [0, 1] that maps the identifier of a node to a point in the [0, 1]
interval. We refer to h(v) as v’s position. We assume that h is chosen, such that no two nodes get
the same position and that h is known to every node, i.e. by knowing the identifier of one node each
node can determine its position. Then a global order on the nodes can be defined by their positions
h(v1) < h(v2) · · · < h(vn).

Definition 3.4.1 A graph G = (V,E) is a clique, if E = {(u, v) : u ∈ V ∧ v ∈ V − {u}}.

We now define the internal variables of each node used in our protocol to solve the overlay problem
CLIQUE. Each node u stores the following variables contributing to the explicit edge set:

• u.predecessor: The identifier of u’s left neighbor (h(u.predecessor) < h(u)) or nil if there is no
left neighbor.

• u.successor: The identifier of u’s right neighbor (h(u) < h(u.successor)) or nil if there is no
right neighbor.
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• u.neighborhood The set of nodes u is aware of stored in a cyclic list.

• u.received-list The set of nodes u receives by from its predecessor stored in a cyclic list.

• u.scan-list The set of nodes u receives by a scan message.

Additionally each node stores the following variables not contributing to the set of explicit edges.

• u.Ch: The channel for incoming messages.

• u.status: The status of a node, which is by default set to ’inactive’ and can be changed to ’active’.

• u.τ : a boolean variable that is periodically true.

To communicate with each other nodes send and receive messages. The content of a message is given
by the identifiers of some nodes and a specification of the message type. So different types of messages
can trigger different actions. Thus a message m is of the following form m = (type, ids). There are the
following types of messages:

• predecessor-request: A node u sends this message containing u’s identifier to a node v, if u
assumes that v is its predecessor.

• predecessor-accept: A node u sends this message to a node v containing u’s identifier, if u accepts
to be v’s predecessor.

• new-predecessor: A node u sends this message to a node v containing the identifier of a node w, if
u rejects to be v’s predecessor but recommends w as v’s new predecessor.

• deactivate: A node u sends this message to a node v containing the identifier of u, to stop v from
forwarding messages to u.

• activate: A node u sends this message to a node v containing the identifier of u, to allow v to
forward messages to u.

• forward-from-successor: By this message a node u forwards the identifier of a node w to its
predecessor.

• forward-from-predecessor: By this message a node u forwards the identifier of a node w to its
successor.

• forward-head: By this message a node u forwards the identifier of a node w, that has the minimal
position of all nodes in u’s neighborhood, to its successor.

• scan: By this message a node u checks whether the receiving node v and u are in the same spanning
tree.

• scan-acknowledgment: By this message a node u responds to a scan message and sends the
identifier of a node w, that has the minimal position of all nodes in u’s neighborhood.

• delete-successor: A node u sends this message to a node v if v acted as u’s predecessor, but u
stores another node as its predecessor.
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In the following we define when an assignment of the variables is valid and how the sets of initial
topologies IT and the goal topologies CLIQUE look like.

Definition 3.4.2 An assignment of the variables of a node is valid if h(u.predecessor) < h(u) with
u.predecessor ∈ u.neighborhood or u.predecessor = nil and if h(u.successor) > h(u) with
u.successor ∈ u.neighborhood or u.successor = nil. If there is some v ∈ u.neighborhood with
h(v) < h(u), then h(u.predecessor) 6= nil. If there is some v ∈ u.neighborhood with h(v) > h(u),
then h(u.successor) 6= nil. Furthermore u.scan − list ⊆ u.neighborhood and u.receive − list ⊆
u.neighborhood. Note that an invalid assignment can be locally repaired immediately. Thus we assume
in the following w.o.l.g. that initially and at every state of the computation the assignment is valid for
every node.

Definition 3.4.3 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of initial topologies is given by:

IT = {G = (V,E = Ee ∪ Ei) : G is weakly connected}

Definition 3.4.4 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of target topologies is given by:

CLIQUE = {G = (V,Ee : G is a clique}

3.4.4 Protocol PCLIQUE

In order to describe the algorithm formally and prove its correctness later on, we need the definitions
given below. We assume that a predecessor of a node is a node with the next smaller position, i.e. for all
u.predecessor links, h(u.predecessor) < h(u). Then all nodes in a connected component considering
only u.predecessor links form a rooted tree, where for each tree the root has the smallest position.

Definition 3.4.5 We call such a rooted tree formed by u.predecessor links a heap H . We further call
the root of the tree the head h = head(H) of the heap H . We further denote with heap(u) the heap H
such that u ∈ H .

Note here that the heap H is not a data structure or variable stored by any node. It is a notion used just
for the purpose of the analysis.

Definition 3.4.6 A heap H with head h, such that ∀v ∈ H − {h} ⇒ h(v.predecessor) < h(v) and
∀v ∈ H − {h} ⇒ v.predecessor.successor = v is a sorted list. We call a heap linearized w.r.t. a
node u ∈ H , if ∀v ∈ H − {h} : h(v.predecessor) < h(v) and ∀v ∈ H − {h} ∧ h(v) ≤ h(u) :
v.predecessor.successor = v. We further call the time until a heap is linearized w.r.t. a node u the
linearization time of u. We say that two heaps Hi and Hj are merged if all nodes in Hi and Hj form one
heap H .

Our primary goal is to collect the addresses of all nodes in the system at the node of minimal position,
which we also call the root. In order to efficiently distribute the addresses from this root to all other nodes
in the system, we organize them in a spanning tree of constant degree, which in our case is a sorted list
in ascending order of the positions of the nodes. To reach a sorted list, we intermediately organize the
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nodes in heaps satisfying the min-heap property, i.e. a predecessor of a node has a smaller position than
the node itself. The heaps will then be merged and linearized over time so that they ultimately form one
sorted list.

We developed this protocol to be worst-case optimal in terms of message complexity in a synchronous
setting. Therefore most details of the protocol will come into play when we analyze it in the STSS model.
Nevertheless to avoid repetition we give a complete description now.

In our protocol, in order to minimize the amount of messages sent by the nodes, we allow a node u to
share information only with u.successor and u.predecessor. More precisely a node forwards one of its
neighbors (i.e. the nodes it knows about) in a round-robin manner to its predecessor by a forward-from-
successor message. The intuition behind this is that if every node does that sufficiently often, eventually
the root will learn about all nodes in the system and will send this information back, also in a round-robin
manner, to its successor, who will then forward it to its successor by a forward-from-predecessor message
until each node is aware of every other node in the system. We illustrate this strategy and our goal
topology in Figure 3.15.

Each node periodically computes and updates its successor and predecessor. Each node u chooses the
node v in its neighborhood that has the maximal position among all nodes w with a position h(w) < h(u)
as its predecessor and requests from it to accept it as its successor by sending a predecessor-request
message. Among all nodes that send a predecessor-request message to a node u the one v with the
minimal position among all nodes w with a position h(w) > h(u) is selected as u.successor and u sends
a predecessor-accept message to v. For all other possible successors this new successor v is recommended
as a possible predecessor in a new-predecessor message.

We also need to ensure that there exists a path of successors from the root to all other nodes so that
the information of the root reaches every node. Initially there can be many nodes that seem to have the
minimal position according to their local knowledge. Each such node is a head of a heap. The challenge
is to merge all heaps into one, such that only the root remains as a head. To detect that there are different
heaps each head continuously scans its neighborhood.

A node that receives a scan message responds by sending the node with the minimal position in its
neighborhood in a scan-acknowledgment message to the node that sent a scan message. In this way a
head can decide whether the scanned node belongs to its heap or to another one. If it belongs to another
heap the two heaps are merged. To be sure that at some time all nodes in a heap know their head a node
forwards it to its predecessor in a forward-head message.

When a node forwards a node by a forward-from-successor resp. forward-from-predecessor message,
the node it forwards is the one at the head of the cyclic list u.neighborhood resp. u.received − list.
Then the head shifts to the next element of the cyclic list. In the same way if a node receives a forward-
from-successor resp. forward-from-predecessor message, it stores the received node at the head of its
list.

When u has no predecessor that it can send a forward-from-successor message to, although u is not a
head, it changes its status to inactive, and then informs its successor by a deactivate message not to send
its forward-from-successor messages to u. As soon as u has a predecessor u sends an activate message to
u.successor resetting the status to active.

If several nodes store u as their successor, i.e. u receives a deactivate, activate or forward-from-
predecessor message by a node that is not its predecessor, then u sends a delete-successor message,
correcting the wrong successor link.

An implementation of PCLIQUE in pseudo code can be found in Algorithms 3.4.1- 3.4.16.
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v0
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v2

vn-1
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vn-3

vn-4

...

...

u

u.predecessoru.successor

m=(forward-from-successor,x)m=(forward-from-predecessor,y)

Figure 3.15: The goal topology including a sorted list along which the messages are exchanged
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Algorithm 3.4.1 PCLIQUE

message m = (type, ids) ∈ u.Ch→
if type=forward-head then

forward-head-message(v0, v1)
else if type=scan then

scan-message(v)
else if type=scan-acknowledgment then

scan-acknowledgment-message(v)
else if type=delete-successor then

delete-successor-message(v)
else if type=predecessor-request then

predecessor-request-message(v)
else if type=new-predecessor then

new-predecessor-message(v0, v1)
else if type=predecessor-accept then

predecessor-accept-message(v)
else if type=forward-from-predecessor then

forward-from-predecessor-message(v0, v1)
else if type=forward-from-successor then

forward-from-successor-message(v0, v1)
else if type=deactivate then

deactivate-message(v)
else if type=activate then

activate-message(v)
τ →
forward-to-predecessor()
check-head()
forward-to-successor()
forward-head()

Algorithm 3.4.2 forward-to-predecessor()
if u.status 6= inactive ∧ h(u.predecessor) > nil then . u is not a head and u is active

send messagem = (forward−from−successor, u, u.neighborhood[head]) to u.predecessor
. forward node to predecessor

u.neighborhood[head] = u.neighborhood[head].next . shift head to next element in cyclic list

Algorithm 3.4.3 check-head()
if h(u.predecessor) = nil then . u is a head, scan a node

send message m = (scan, u) to u.neighborhood[head]
insert(u.received− list,u.neighborhood[head],tail) . a copy ofu.neighborhood[head] is

inserted at the end of u.received− list
u.neighborhood[head] = u.neighborhood[head].next . shift head to next element in cyclic list

else
send message m = (predecessor − request, u) to u.predecessor
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Algorithm 3.4.4 forward-to-successor()
if u.successor 6= nil then

send messagem = (forward−from−predecessor, u, u.received−list[head]) to u.successor
. forward node to successor

u.received− list[head] = u.received− list[head].next

Algorithm 3.4.5 forward-head()
u.neighborhood = u.neighborhood ∪ u.scan− list
minN = argmin{h(v) : v ∈ u.neighborhood}
if h(u.predecessor) 6= nil ∧ u.status 6= inactive then . forward largest node

send message m = (forward− head,minN) to u.predecessor
for all v ∈ u.scan− list do . send the minimum to the nodes of u.scan− list

send message m = (scan− acknowledgment,minN) to v
delete(u.scan− list,v)

Algorithm 3.4.6 forward-head-message(v,)
if u.status 6= inactive ∧ h(u.predecessor) > nil then . u is not a head and u is active

if v 6∈ u.neighborhood then
insert(u.neighborhood,v,tail)

if h(u.predecessor) 6= nil then
minN = {h(w) : w ∈ u.neighborhood}
if v 6= argminminN then

send message m = (scan− acknowledgment,minN) to v
else

send message m = (scan, u) to v

Algorithm 3.4.7 scan-message(v)
if m.type = scan then . u has been scanned by a head v

insert(u.scan− list,v)

Algorithm 3.4.8 scan-acknowledgment-message(v)
if v 6∈ u.neighborhood then

insert(u.neighborhood,v,tail)

Algorithm 3.4.9 delete-successor-message(v)
if v = u.successor then

u.successor = −∞
else if v 6∈ u.neighborhood then

insert(u.neighborhood,v,tail)
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Algorithm 3.4.10 predecessor-request-message(v)
if h(v) > h(u) then

if h(u.successor) 6= nil then . renew successor if necessary, and rearrange old successor
grandson=argmax{h(v), h(u.successor)}
u.successor=argmin{h(v), h(u.successor)}
send message m = (predecessor − accept, u) to u.successor
if u.status 6= inactive then

send message m = (activate, u) to u.successor
else

send message m = (deactivate, u) to u.successor
send message m = (new − predecessor, u.successor, u) to grandson

else
u.successor:=v
send message m = (predecessor − accept, u) to u.successor

else if v 6∈ u.neighborhood then
insert(u.neighborhood,v,tail)

Algorithm 3.4.11 new-predecessor-message(v0, v1)
if v1 = u.predecessor then

if h(v0) < h(u) ∧ h(v0) > h(u.predecessor) then
u.predecessor = v0

send message m = (predecessor − request, u) to u.predecessor
status(u)=inactive
if u.successor 6= nil then

send message m = (deactivate, u) to u.successor
else if v0 6∈ u.neighborhood then

insert(u.neighborhood,v,tail)
else

if v0 6∈ u.neighborhood then
insert(u.neighborhood,v,tail)

if v1 6∈ u.neighborhood then
insert(u.neighborhood,v,tail)

Algorithm 3.4.12 predecessor-accept-message(v)
if v 6= u.predecessor then . the predecessor has accepted u as its successor

if v 6∈ u.neighborhood then
insert(u.neighborhood,v,tail)

send message m = (delete− successor, u) to v
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Algorithm 3.4.13 deactivate-message(v)
if v = u.predecessor then

status(u):=inactive
if u.successor 6= nil then

send message m = (deactivate, u) to u.successor . forward the deactivation message to
successor
else

send message m = (delete− successor, u) to v
if v 6∈ u.neighborhood then

insert(u.neighborhood,v,tail)

Algorithm 3.4.14 activate-message(v)
if v = u.predecessor then

status(u):=active
if u.successor 6= nil then

send message m = (activate, u) to u.successor . forward the activation message to
successor
else

send message m = (delete− successor, u) to v
if v 6∈ u.neighborhood then

insert(u.neighborhood,v,tail)

Algorithm 3.4.15 forward-from-successor-message(v0, v1)
if v1 = u.successor then . insert the node forwarded from u.successor to u.neighborhood

insert(u.neighborhood, v0, head)
else

if v1 6∈ u.neighborhood then
insert(u.neighborhood,v1,tail)

if v0 6∈ u.neighborhood then
insert(u.neighborhood,v0,tail)

Algorithm 3.4.16 forward-from-predecessor-message(v0, v1)
if v1 = u.predecessor then . insert the node forwarded from u.predecessor to
u.neighborhood, u.received− list

insert(u.neighborhood, v0, tail)
insert(u.received-list, v0, head)

else
if v1 6∈ u.neighborhood then

insert(u.neighborhood,v1,tail)
if v0 6∈ u.neighborhood then

insert(u.neighborhood,v0,tail)
send message m = (delete− successor, u) to v1
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3.4.5 Analysis in the ATSS model

We now show the correctness of our approach in the ATSS model by proving that it stabilizes to a clique.
We show this by dividing the self-stabilization process into different phases and determine the correctness
of each phase. In particular we will show that if each node executes the protocol PCLIQUE started in an
weakly connected graph, eventually a graph is reached, such that the sorted list is sub-graph. We then
show that if started in a graph that contains the sorted list as a sub-graph PCLIQUE leads to clique. In
fact we show the following main theorem:

Theorem 3.4.1 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the graph converges to a graphG′ ∈ CLIQUE (Convergence). If in an initial
graph G ∈ CLIQUE every node executes the protocol PCLIQUE then each possible computation leads
to a graph G′ ∈ CLIQUE (Closure).

To prove this theorem we introduce some formal definitions of the intermediate graphs and subsets of
the edges.

Definition 3.4.7 We define:

• Ee−heap = {(x, y) ∈ Ee : y = x.predecessor} ⊆ Ee is the subset of explicit edges that will form
a heap.

• Ee−list = {(x, y) ∈ Ee : y = x.predecessor ∨ y = x.successor} ⊆ Ee is the subset of explicit
edges that will form the sorted list.

• Ei−list = {(x, y) ∈ Ei : ∃m = (list, y) ∈ x.Ch} is the subset of implicit edges that are needed
to form the sorted list.

• Elist = Ee−list ∪ Ei−list is the set of edges that take part in the process forming the sorted list.

Definition 3.4.8 A graph G = (V,E) is a sorted list, if V = v0, · · · vn−1 with h(vi) < h(vi + 1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vj) :, j = i− 1 ∨ j = i+ 1∀0 < j < n− 1}.

Convergence

We start by proving the convergence property of PCLIQUE .

Theorem 3.4.2 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the graph converges to a graph G′ ∈ CLIQUE.

To show this we will prove a set of intermediate theorems first, from which the convergence follows.
Our first theorem claims that the computation reaches a state, such that the sorted list is a sub-graph of
the graph of explicit edges.

Theorem 3.4.3 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the computation reaches a state st such that Gte−heap is one connected
component, i.e. weakly connected, in every state s′t, t

′ > t.
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Proof. Obviously if Gt is weakly connected, then Gt+1 is weakly connected, as in PCLIQUE nodes in
u.neighborhood are never deleted and received identifiers are stored in u.neighborhood, if they are not
already in u.neighborhood.

After establishing that connectivity is preserved, we define a time t0 at which every message initially
in u.Ch for any node u has been received, the messages in response have been delivered, each node
executed the periodic actions at least once and the corresponding messages and the responses have been
received. Then we know that every message m = (new − predecessor, w, u) sent by a node u at time
ti ≥ t0 contains a node w with w = u.successor and u = w.predecessor.

Then Gt0 consists of several heaps H1, H2 · · ·Hk. In the following we show that eventually all these
heaps are merged to one single heap as illustrated in Figure 3.16.

If two nodes u and v are in the same heap Hi at time t > t0 they will be in the same heap at time
t+ 1. Heaps are formed by edges (u, v) ∈ Ete−heap with v = u.predecessor. Thus it suffices to show
that a pair u, v with v = u.predecessor stays in the same heap. u and v can only be in different heaps if
u.predecessor is changed at time t+ 1. According to the protocol PCLIQUE there are only two cases in
which u.predecessor is changed. If u.predecessor = nil and u receives a node w with h(w) < h(u),
or if u receives a new-predecessor messagem = (new−predecessor, w, v = u.predecessor). Then we
can follow from our observation thatw = v.successor andw.predecessor = v = u.predecessor. Thus
if u updates u.predecessor to w (u,w = u.predecessor) ∈ Et+1

e−heap and (w, v = w.predecessor) ∈
Ete−heap and thus u and v are still in the same heap. If v 6= w.predecessor at time t+ 1 then w received
a new-predecessor message from v before and the argument can be applied inductively.

As G0 is weakly connected and stays weakly connected there is also a connection between all heaps
H1, H2 · · ·Hk at time t0. Let (u, v) ∈ Et0 with u ∈ Hi and v ∈ Hj be an edge connecting two heaps.
Then there is a state st1 with (u, v) ∈ Et1e and v ∈ u.neighborhood. Then according to PCLIQUE

eventually u will send v to its predecessor. By applying this argument inductively we can show that the
computation reaches a state t2 such that (u′, v) ∈ Et2 and u′ = head(heap(u)). Then if h(v) < h(u′),
u′ will set u′.predecessor to v and u′ and v are now in the same heap. If h(v) > h(u′) u′ will eventually
send a scan message to v. Now there can be three cases:

• in v.neighborhood is no node q with h(q) < h(u′) and v.predecessor = nil, then v sets
v.predecessor = u′.

• in v.neighborhood is no node q with h(q) < h(u′) then v will forward u′ to its predecessor v′,
then for v′ there can be the same three cases. Thus eventually case 1 or three holds.

• in v.neighborhood is a node q with h(q) < h(u′), then v will send a scan-acknowledgment
message to q containing w. By the same arguments as for the edge (u, v) we can also show that
eventually the computation reaches a state such that (v′, q) ∈ Et and v′ = head(heap(v)). Then
to show that u and v are in the same heap it suffices to show that v′ and q and u′ and q are in the
same heap. As h(v′) < h(v), h(u′) < h(u) and h(q) < h(u) and h(q) < h(v) this induction
terminates and u and v are in the same heap.

Then we can conclude immediately that eventually all nodes are in one single heap. ut

Theorem 3.4.4 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the computation reaches a state st such that Gte−list is a sorted list.

Proof. According to Theorem 3.4.3 the computation contains a state st0 such that all nodes form one
heap in every state st, t ≥ t0. Let v0, v1, · · · vn−1 be the nodes in sorted order such that h(vi) < h(vi+1).
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Figure 3.16: All single heaps are merged into one
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We then show by induction that the computation contains a state sti such that the heap is linearized w.r.t.
vi. Then all nodes will eventually form a sorted list as illustrated in Figure 3.17.

v0

H1

...

v0

v1

v2

vi

vn-1

vn-2

vn-3

Figure 3.17: A single heap is linearized to one sorted list

Obviously this holds for t0. Let’s assume the hypothesis holds for ti, then there is a state sti+1 at
time ti+1 > ti when every node has sent its predecessor-request message and received a corresponding
predecessor accept or new-predecessor message. If there are several nodes w with w.predecessor = vi
then all but vi+1 will receive a new-predecessor message thus for all w 6= vi+1 w.predecessor 6= vi.
Furthermore vi sets vi.successor = vi+1. Thus the heap is linearized w.r.t. vi+1 at this state sti+1 . ut

Theorem 3.4.5 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the computation reaches a state st such that Gte−list is a sorted list and for the
root w with w = head(heap(v))∀v ∈ V and u.neighborhood = V − {w}.

Proof. According to Theorem 3.4.4 the computation contains a state st0 such that all nodes form a sorted
list in every state st, t ≥ t0. Let v0, v1, · · · vn be the nodes in sorted order such that h(vi) < h(vi + 1).
Then according to PCLIQUE all nodes will forward their knowledge to their predecessors, whereby new
information is forwarded with a higher priority as it is inserted at the head of u.neighborhood, thus
eventually all information is accumulated at the root v0. ut
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Theorem 3.4.6 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then eventually the computation reaches a state st such that Gte is a clique.

Proof. Let v0, v1, · · · vn be the nodes in sorted order such that h(vi) < h(vi + 1). Then according
to Theorem 3.4.5 the computation contains a state st0 such that all nodes form a sorted list and
v0.neighborhood = V − v0 in every state st, t ≥ t0.Then according to PCLIQUE the root v0 will
forward its information in round-robin manner to its successor. In the same way each node forwards
the information received by the predecessor to its successor. Thus eventually the information sent by
the root reaches every node and thus u.neighborhood = V − {u} ∀u ∈ V . Then Gte is a clique, as
Ete = {(u, v) : u ∈ V ∧ v ∈ V − {u}}. ut

Closure

We will now show that for PCLIQUE also the closure property holds.

Theorem 3.4.7 If in an initial graph G ∈ CLIQUE every node executes the protocol PCLIQUE then
each possible computation leads to a graph G′ ∈ CLIQUE.

Proof. As Gte is a clique and thus u.neighborhood = V − {u} ∀u ∈ V and no nodes are deleted from
u.neighborhood according to PCLIQUE , also Gt+1

e is a clique. ut

3.4.6 Analysis in the STSS model

In this section we analyze PCLIQUE according to the STSS model. In particular we consider the
stabilization time, stabilization work and the maintenance work.

Stabilization time

Theorem 3.4.8 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCLIQUE then the graph converges to a graph G′ ∈ CLIQUE (Convergence) with a stabilization time
of Θ(n).

For our analysis we introduce some additional definition.

Definition 3.4.9 We define an undirected path as a sequence of edges (v0, v1), (v1, v2), · · · , (vk−1, vk),
such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ E ∨ (vi−1, vi) ∈ E.

Definition 3.4.10 We introduce a further edge set EscanEte−scan ∪Eti−scan of edges resulting from scan-
messages with Ete−scan =

{
(u, v) ∈ Et : v = argmin {h(w) : w ∈ u.scan− list}

}
and Eti−scan ={

(u, v) ∈ Et : m = (forward− head, v) ∈ u.Ch
}

. We call edges in Escan s-edges.

Definition 3.4.11 We say that two heapsH1 andH2 are s-connected if there exists at least one undirected
path from one node in H1 to one node in H2 and this path consists of either s-edges or edges having both
nodes in the same heap.

Like in the analysis of PCLIQUE in the ATSS model we will split the proof in some intermediate steps.
First we show that starting from a valid state all existing heaps will eventually be connected by s-edges,
so that they can merge afterward.
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Theorem 3.4.9 If Hi and Hj are two heaps connected by (u, v) ∈ Et then after Θ(n) rounds the heaps
have either merged or are connected by s-edges.

Before we show the theorem we prove some helpful lemmas.

Lemma 3.4.1 Let v0, · · · v|H|−1 be the elements in a heap H in ascending order of their position, i.e
h(vi) < h(vi+1). Then it takes at most i rounds until H is linearized w.r.t vi−1.

Proof. We prove the lemma by induction on the number of rounds i. Note that all nodes are connected
by the u.predecessor links only to nodes with smaller positions.

Induction base (i = 0): The head of the heap is the node with the minimal position v0 there-
fore trivially, ∀v ∈ H − {head(H)} : h(v) > h(v.predecessor) and ∀v ∈ H − {head(H)} ⇒
v.predecessor.successor = v.

Induction step (i→ i+1): By induction the heap is linearized w.r.t. vi−1 after at most i rounds, thus vi
has to be connected to vi−1 by a v.predecessor link. In the i+1th round vi−1 sends new−predecessor
messages to all other nodes with v.predecessor = vi−1, such that vi−1.successor = vi and vi becomes
the only node with vi.predecessor = vi−1. Then ∀v ∈ H − {h} : h(v) > h(v.predecessor) and
∀v ∈ H − {h} ⇒ v.predecessor.successor = v. ut

Lemma 3.4.2 If two heaps Hi and Hj merge to one heap H , the linearization time of a node u ∈ Hi

(resp. u ∈ Hj) can increase by at most |Hj | (resp. |Hi|).

Proof. Without loss of generality let u ∈ Hi. By Lemma 3.4.1 we know that the linearization time
depends on the number of nodes with a smaller position in the heap. The number of nodes with a smaller
position can increase by at most the size of the other heap Hj . Thus, also the linearization time can only
increase by at most |Hj |. ut

We introduce some additional notation to estimate the time it takes until some node is scanned by a
head of a heap.

For any edge (u, v) ∈ E with u ∈ Hi and v ∈ Hj , where hi and hj denote the corresponding heads of
the heaps, we define the following notation for the tth round: Let P t(u) be the length of the path from
u to hi, once Hi is linearized w.r.t. u. Let IDt(u, v) be the number of ids u forwards or scans before
sending or scanning v the first time. Let LT t(u) be the time it takes until the heap is linearized w.r.t. u ,
i.e. on the path from the head hi to u each node has exactly one predecessor and successor. Lemma 3.4.1
shows that LT t(u) is bounded by |Hi|.

Let φt(u, v) = P t(u) + IDt(u, v) + LT t(u). We call φt(u, v) the delivery time for a node v because
if φt(u, v) = 0, v is scanned in round t or has already been scanned by hi. We then denote by
Φt(u, v) = min

{
φt(w, v) : heap(u) = heap(w)

}
the minimal delivery time of v for any node in the

same heap as u.
For any edge (u, v) ∈ E, with u ∈ Hi and v ∈ Hj , (i.e. u and v are in different heaps) and

Φt(u, v) = 0 the head of Hi scans or has scanned v ∈ Hj resulting in the s-edge (v, hi)s.
We are now ready to prove Theorem 3.4.9

Proof. We start by showing an upper bound of O(n) rounds. It takes at most 2 rounds until each node
has received the messages initially in the system at time t = 0 and the corresponding responses. We
call this time t0. After t0 a node u only receives a forward-from-successor message at time t ≥ t0 from
a node v with v = u.successor at time t − 1. A node only sends a forward-from-successor message

73



Chapter 3 Self-Stabilizing Overlay Networks

if its predecessor accepted it as the successor. Thus as soon as one node in a round t > 2 forwards an
identifier w to its predecessor by a forward-from-successor message, each node u receiving this message
either forwards it to its predecessor immediately or is inactive and forwards w the next time it is active.
Note that an inactive node receives at most one forward-from-successor message while being inactive, as
also the successor will be deactivated in the next round. Thus w = u.neighborhood[head] while u is
inactive.

We claim that, if (u, v) ∈ Et0 is an edge between two heaps Hi and Hj , then for all rounds t ≥ t0:

Φt(u, v) ≤ max {2|Hi|+ n− (t− t0), 0} ≤ max {3n− (t− t0), 0}

We will show this claim by induction on the number of rounds. For the analysis we divide each round
t→ t+ 1 into two parts: in the first step t→ t′ all actions are executed and in the second step t′ → t+ 1
all network changes are considered. Thus, we assume that all actions are performed before the network
changes. This is reasonable as a node is aware of changes in its neighborhood only in the next round,
when receiving the messages. By network changes we mean the new edges that could be created in the
network. These new edges could possibly lead to the merging of some heaps at time t+ 1.

Induction base(t = t0):
For any edge (u, v) ∈ Et0 between Hi and Hj let u ∈ Hi be the node such that Φ0(u, v) = φ0(u, v).

Then P 0(u) ≤ Hi as the path length is limited by the number of nodes in the heap, ID0(u, v) ≤ n
as not more than n ids are in the system, and following from Lemma 3.4.1, LT (u) ≤ |Hi|. Then
Φ0(u, v) ≤ φ0(u, v) ≤ 2|Hi|+ n ≤ 3n.

Induction step(t→ t′): For any edge (u, v) ∈ Et0 between Hi and Hj let u ∈ Hi be the node such
that Φt(u, v) = φt(u, v).

Then in round t the following actions can be executed.

• u is inactive and can not forward an id. Then the heap is not linearized w.r.t. u, which implies that
the linearization time decreases by one, i.e. LT t

′
(u) = LT t(u)−1 and φt

′
(u, v) = φt(u, v)−1 ≤

2|Hi|+ n− (t− t0)− 1 as all other values are not affected.

• u is active, but does not send v by a forward-from-successor message, then the number of ids that u
is sending before v decreases by 1. Note that u hasn’t sent a forward-from-successor message with
v in a round before, as then according to our observation above there would be another node y ∈ Hi

with φt(y, v) < φt(u, v). Then IDt′(u, v) ≤ IDt(u, v) − 1 and φt
′
(u, v)) = φt(u, v) − 1 ≤

2|Hi|+ n− (t− t0)− 1.

• u sends a forward-from-successor message with v, then the length of the path for v to the head hi
decreases by 1 and φt+1(u.predecessor, v) ≤ P t(u)−1+IDt(u, v)+LT t(u) = φt(u, v)−1 ≤
2|Hi|+ n− (t− t0)− 1

Thus, in total Φt′(u, v) ≤ Φt(u, v)− 1 ≤ 2|Hi|+ n− (t− t0)− 1 ≤ 3n− ((t− t0) + 1).
Induction step(t′ → t + 1): Now we consider the possible network changes and their effects on

the potential Φt+1(u, v). Let again u ∈ Hi be the node such that Φt(u, v) = φt(u, v) for an edge
(u, v) ∈ Et0 between Hi and Hj . The following network changes might occur:

• some heaps Hk and Hl with k 6= i and l 6= i merge. This has no effect on Φt′(u, v). Thus,
Φt+1(u, v) = Φt′(u, v) ≤ 2|Hi|+ n− (t− t0)− 1 ≤ 3n− (t+ 1− t0).
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• Heaps Hi and Hk merge to H ′i. Obviously the length of the path of u can increase and P t+1(u) ≤
P t
′
(u) + |Hk|. According to Lemma 3.4.2 also the linearization time of u can increase and

LT t+1(u) ≤ LT t′(u)+|Hk|. In total Φt+1(u, v) ≤ Φt′(u, v)+2|Hk| ≤ 2|H ′i|+n−(t−t0)−1 ≤
3n− (t+ 1− t0).

Thus, in round t+ 1, Φt+1(u, v) ≤ 2|Hi|+ n− (t− t0)− 1 ≤ 3n− (t+ 1− t0). Hence for every
edge (u, v) ∈ Et0with u ∈ Hi and v ∈ Hj , Φt(u, v) = 0 after 3n rounds after t0, which means that the
head of Hi scans or has scanned v ∈ Hj resulting in a s-edge (v, hi).

It remains to show that two heaps connected by s-edges stay connected. If there is a s-edge (u, v)
connecting two heaps Hi and Hj at time t then if u is not the head of Hi u either forwards v to
its predecessor and Hi and Hj stay connected by the s-edge (u.predecessor, v) or u sends a scan-
acknowledgment to v withw = argmin {h(w′) : w′ ∈ u.neighborhood}, thenHi andHj stay connected
by the s-edges (u,w) and (v, w). If u is the head of Hi then either v becomes u’ predecessor and the
heaps are merged if h(v) < h(u) or u sends a scan message containing u itself and Hi and Hj are
connected by the s-edge (v, u).

Obviously Ω(n) is a lower bound for the stabilization time. Say a node u is connected to Ω(n) nodes
including a node v and the edge (u, v) is the only edge connecting v to the rest of the network. Then if
u stores v in the last position of u.neighborhood u forwards or scans Ω(n) nodes before v. Thus the
stabilization time is bounded by Ω(n). ut

Based on the results of Theorem 3.4.9, we will prove that after O(n) further rounds all nodes form
one heap.

Theorem 3.4.10 If all heaps are connected by s-edges after O(n) rounds all nodes form one single heap.

Proof. Let v0, v1 · · · vn be sorted by the position in ascending order, such that h(vi) < h(vi+1). We
define the following potential for a s-edge (vi, vj) as σ(vi, vj) = 2·i+2·j+I(vi, vj), where I(vi, vj) = 1
if j > i and 0 otherwise. If vi and vj are in the same heap σ(vi, vj) = 0. We proceed by showing that
in each round a s-edge is substituted by a set of s-edges with a smaller potential or the connected heaps
are merged. Let (vi, vj)s be a s-edge connecting two heaps Hl and Hk, i.e. vi ∈ Hl, vj ∈ Hk. Then
according to our algorithm the following actions might be executed.

• vi is the head of Hl and i > j then vj = vi.predecessor and vi sends a predecessor-request
message to vj , resulting in a merge of Hl and Hk.

• vi is the head ofHl and j > i then vi sends a scan message to vj with its own identifier and the edge
(vj , vi)s is created connecting Hl and Hk. Then σ(vj , vi) = 2i+2j+0 < 2i+2j+1 = σ(vi, vj).

• vi forwards vj to vm = vi.predecessor by a forward-head message, such that Hl and Hk are
connected by (vi.predecessor, vj)s. Then σ(vi.predecessor, vj) = 2m + 2j + I(vm, vj) <
2i+ 2j + I(vi, vj) = σ(vi, vj) as m < i.

• vi sends vm = argmin {h(w) : w ∈ vi.neighborhood} in a scan-acknowledgment message to vj
with m < i and m < j and the s-edge (vi, vj)s is substituted by s-edges (vi, vm)s and (vj , vm)s.
And Hl and Hk are connected via s-edges. The potential of the new edges is:

– σ(vi, vm) = 2i+ 2m+ I(vi, vm) < 2i+ 2j + I(vi, vj) = σ(vi, vj)

– σ(vj , vm) = 2j + 2m+ I(vi, vm) < 2i+ 2j + I(vi, vj) = σ(vi, vj)
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The maximal potential is bounded by σ(u, v) < 4n+ 1. By Theorem 3.4.9 we know that there is a state
at a time t1, such that all heaps are connected by s-edges. Thus after O(n) rounds each pair of heaps
that was connected at time t1 by s-edges is connected by a sequence of s-edges with potential 0. Then all
nodes form one heap. ut

Theorem 3.4.11 If all nodes form one heap, it takes O(n) rounds until the computation reaches a state
st such that Gt ∈ CLIQUE is a clique.

Proof. Since at this point we only have one head the heap will be linearized after O(n) rounds. This
follows directly from Lemma 3.4.1. Once the heap is linearized and forms a sorted list, each node will
be sent to the root, the remaining head, after at most 2n rounds. So the root will be aware of every node.
The root has sent all nodes in its neighborhood to its successor after n rounds. The successor of the root
forwards the received information to its successor. As a consequence, all nodes will receive all nodes
after n further rounds. Adding all this together, after O(n) rounds all nodes will know each other and a
clique will be constructed. ut

Combining Theorem 3.4.9, Theorem 3.4.10 and Theorem 3.4.11 our main theorem Theorem 3.4.8
holds and PCLIQUE needs a stabilization time of Θ(n).

We conclude the analysis by showing the Closure property in the STSS model.

Theorem 3.4.12 If in an initial graph G ∈ CLIQUE every node executes the protocol PLIST then
each possible computation leads to a graph G′ ∈ CLIQUE (Closure).

Proof. The proof is the same as in the asynchronous setting. ut

Stabilization work

According to Theorem 3.4.8 it takes Θ(n) rounds to reach a legal state. In each round t > 0 each
active node sends a message to its predecessor and its successor (forward-from-successor, forward-from-
predecessor) and receives a message from them (forward-from-successor, forward-from-predecessor).
Also, a node sends at most one activate/deactivate message to its successor at each round. This gives a
resulting work of Θ(n) for each node. By the following lemmas we show that the additional messages
sent and received during the stabilization are at most O(n) for each node.

Lemma 3.4.3 Each node sends and receives at most O(n) predecessor-request, predecessor-accept and
new-predecessor messages during the stabilization process.

Proof. In each round t > t0 each node sends at most one predecessor-request and one predecessor-accept
message and receives at most one predecessor-accept or new-predecessor message. It remains to show that
each node receives at most O(n) predecessor-request messages and sends at most O(n) new-predecessor
messages. Note that it suffices to show that each node receives at most O(n) predecessor-request, as the
number of new-predecessor messages directly depends on the number of received predecessor-request
messages. To each node that sends a predecessor-request to u that is not u’ successor, u sends a new-
predecessor message. A node u only sends at most one new-predecessor message to each other node
v. By receiving this message v changes its predecessor. Thus before u sends another new-predecessor
message to v, v has to change its predecessor back to u. A predecessor is only changed if a root receives a
node with a smaller position, or if the predecessor of a node sends a new-predecessor. v cannot be a head,
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thus v’s predecessor is only changed by another new-predecessor message. But v’s predecessor can not
be changed back to u as the position of the new predecessor is strictly increasing. By this monotonicity it
follows that a node u only sends at most one new-predecessor message to each other node v. Thus, every
node only sends and receives O(n) predecessor-request and new predecessor messages. ut

Lemma 3.4.4 Each node sends and receives at most O(n) scan and scan-acknowledgment messages
during the stabilization.

Proof. Only heads of heaps send scan messages. In each round each head sends O(1) scan messages.
One in the periodic actions and another one if a head receives a forward-head message with a node with a
greater position. Each scanned node sends a scan-acknowledgment message back or stores the sending
node in u.scan− list. Obviously a node can be scanned by up to n different heads in one round. Which
would lead to a work of O(n2) by receiving these messages. But as a node sends the node with minimal
position in its neighborhood with a scan-acknowledgment message, it is scanned at most once by heads
with a greater position. By receiving this node with minimal position the scanning node recognizes, if it
is still a head, that it cannot be a head of the heap and sets its predecessor and stops scanning. So a node
can be scanned by O(n) heads. Regarding the scan-acknowledgment messages, since each head sends
O(1) scan messages in each round, it receives also at most O(1) scan-acknowledgment messages in each
round. So, all in all, a node receives O(n) messages during the stabilization. ut

Lemma 3.4.5 Each node sends and receives at most O(n) forward-head messages through the stabiliza-
tion phase.

Proof. A node sends at most one forward-head message per round t > t0. The number of forward-head
messages it receives during the stabilization is limited by O(n). That is because each node u receives
one forward-head message from its successor in a round, and possibly from other possible successors, let
v be such one, for which v.predecessor = u. But v can only be once a possible successor of u, since
at the next round it either will be forwarded to u.successor and will never have u as its predecessor
again, or it becomes u.successor. Since each node can be only once a possible successor for u, the
number of forward-head messages sent through all possible successors is limited by n. So, the number of
forward-head messages it receives during the stabilization is limited by O(n). ut

Combining Lemmas 3.4.3,3.4.5 and 3.4.5 we get the following theorem:

Theorem 3.4.13 If in an initial graph G ∈ IT every node executes the protocol PCLIQUE then each
possible computation leads to a graph GCLIQUE ∈ CLIQUE with a stabilization work of Θ(n).

Maintenance work

Theorem 3.4.14 If in an initial graph G ∈ CLIQUE∗ every node executes the protocol PCLIQUE then
each possible computation leads to a graph G′ ∈ CLIQUE∗ with a maintenance work of O(1).

Proof. In a legal state G ∈ CLIQUE∗ all nodes form a sorted list. Thus, each node has exactly one
stable successor and one stable predecessor. Then each node sends and receives one predecessor-request
and one predecessor-accept message. Each node sends one forward-from-successor and one forward-
from-predecessor message. Moreover there is one head that sends one scan message, which is received
by one other node, and receives one scan-acknowledgment, sent by the scanned node. Thus, each node
sends and receives O(1) messages in a stable state. ut
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Single Join and Leave Event

Theorem 3.4.15 In a legal state it takes O(n) rounds and messages to recover and stabilize after a new
node joins the network. It takes O(1) rounds and messages to recover the clique after a node leaves the
network.

Proof. If a node u joins the network it creates an edge (u, v) to a node v in the clique. If h(v) < h(u),
u sends a predecessor-request to v, v then either accepts u as its successor or creates an edge from u to
v’s successor. It takes at mostO(n) rounds until v reaches its final position in the sorted list. Additionally
v sends u to its predecessor, and after O(n) rounds the root inserts u to its neighborhood. After O(n)
further rounds each node receives u’s identifier and u receives the identifier of all other nodes in the
network.

If h(v) > h(u) u will scan v. Then v sends u’s identifier to its predecessor, because it is a new node
in its neighborhood. If h(u) > h(root) v will respond by a scan-acknowledgment containing the root.
Then u assumes the root to be its predecessor and u is connected to a node v′ = root with h(u) > h(v′)
and the analysis from above holds.

If h(u) < h(root) then v will forward u by a forward-head message. After O(n) rounds the root
receives u and will set u as its new predecessor. Then by the following forward-from-successor messages
u will receive the identifier of any other node in O(n) rounds. After O(n) further rounds each node
receives u’s id. Thus, after O(n) rounds after a join the nodes form a clique and the sorted list is formed.

As each node only receives and sends O(1) messages in each round it also takes O(n) messages to
form a clique after one single node joins a stable clique.

Obviously a clique remains a clique in case a node u leaves the network. Also the sorted list is
immediately repaired, as the successor of the removed node, assumes u’ predecessor to be its predecessor
and sends a predecessor-request, which will be accepted as the node has no other successor. Note that if
u is the root of the list, u’s successor will recognize that there is no node with a smaller position in its
neighborhood and will correctly assume to be a head of a list and proceed the scanning. ut

3.5 Conclusion & Outlook

In this chapter we considered self-stabilizing protocols for three different overlay networks, namely a
sorted list, a specific small-world network and a clique. We analyzed the protocols according to the
ATSS and STSS model. For the PLIST protocol we showed a stabilization time of Θ(n), a stabilization
work of Θ(n) for PLISTsync and a maintenance work of O(1) in the STSS model. For the protocols
PSMALL−WORLD and PSMALL−WORLDsync we showed a stabilization time of O(n+ δ) and a stabi-
lization work of O(n2), and a maintenance work of O(n) for the protocol PSMALL−WORLDsync if δ is
the converging time of a specific random process. We also presented the protocol PCLIQUE to form a
complete graph or a clique and showed a stabilization time of Θ(n), a stabilization work of Θ(n), and
a maintenance work of O(1). Although we were able to show upper and lower bounds for PLIST and
PCLIQUE it remains open whether the algorithms are optimal. Obviously they are not optimal in the
stabilization time but are optimal in the stabilization and maintenance work. An interesting question
is how the trade-off between stabilization time and work looks like. It is easy to see that a topology
can be formed faster if more messages are sent, but how many messages in one round for one node are
optimal to achieve a certain stabilization time is unclear. By now all topologies we presented are based
on a one-dimensional order of the identifiers. Open questions are what is possible if there is no order of
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the identifiers or if the identifiers are multi-dimensional. Can a 2-dimensional grid be used as an basic
topology like we used the sorted list as a basic topology to build a small-world network? Considering the
used models and the analysis of topological self-stabilizing protocols it would be interesting to extend the
model by properties like monotonicity, i.e. do sub-graphs that are already in a legal state stay in this state
during the self-stabilization process or are properties like reachability of a pair of nodes preserved during
the stabilization.
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CHAPTER 4
Self-Stabilizing Distributed Hash Tables

4.1 Introduction

In this chapter we apply the concept of topological self-stabilization on distributed hash tables. We
therefore don’t restrict our focus on the topology and the protocol building it any longer, but also consider
how data is stored on the nodes forming the topology. In the following we show that our concept of
topological self-stabilization can be applied to basic approaches like the Chord network in our solution
Re-Chord in section 4.2. By showing that a topological self-stabilizing protocol exists that guarantees to
form a Chord-like network out of any weakly connected network, this network is more robust than the
original Chord network as it can recover from any failure as long as the network stays weakly connected.
Re-Chord maintains all characteristics of the Chord network. That is, a logarithmic routing distance
between a pair of nodes, a logarithmic degree and load balancing according to the consistent hashing
concept.

For this Re-Chord network we develop a self-stabilizing protocol PRe−Chord that is self-stabilizing
in the ATSS model and STSS model with a stabilization time of O(n log n), a stabilization work of
O(n log3 n), and a maintenance work per round of O(log2 n) for each node. We then proceed by
developing a new overlay network and topological self-stabilizing protocol for this network that supports
heterogeneity among the nodes in section 4.3. In particular we consider heterogeneity in terms of
different capacities of the nodes in our solution CONE-DHT, in which each node has a degree ofO(log n)
w.h.p.. The protocol PCONE for this overlay network works correctly in the ATSS and STSS model. In
the STSS model we show a stabilization time of O(n), a stabilization work of O(n2 +Dn log n) w.h.p.
if there are D data items stored in the network, and a maintenance work ofO(r+ log2 n) w.h.p. if a node
stores data items supervised by r reference nodes.

4.1.1 Related Work

Distributed Hash tables are distributed storage systems, i.e. a set of hosts stores a set of data. Distributed
Hash Tables (DHTs) were introduced as structured peer-to-peer networks. The most basic and popular
concepts are Chord [75], CAN [69], Pastry [70] and tapestry [82]. The common concept of all these
DHTs is to map the set of hosts to a virtual address space by a random hash function, such that each host
is responsible for a part or region of the address space. To evaluate which host stores which data, the data
is also mapped to the address space and stored by the host responsible for the region the data is mapped to.
By this the number of data items that need to be moved if a host joins or leaves the system can be limited.
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One variant of this idea is the concept of consistent hashing [33] implemented by Chord. In consistent
hashing, the data elements are hashed to points in [0, 1) and the hosts are mapped to disjoint intervals
in the same interval [0, 1). A host stores all the data elements that are hashed to points in its interval.
Consistent hashing was introduced to support the joining and leaving of nodes as w.h.p. at most O(K/n)
keys are moved if a node joins or leaves a network of n nodes andK keys. Furthermore consistent hashing
balances the load as each host is responsible for at most (1 + ε)K/n keys in expectation. An alternative
strategy is to hash data elements and hosts to pseudo-random bit strings and to store (indexing information
about) a data element at the host with the longest prefix match [65]. This concept is implemented by
Pastry and Tapestry. The mentioned basic DHTs provide the following features for a set of n hosts:

• logarithmic routing distance, i.e. O(log n) hops.

• logarithmic degree, i.e. also a routing table of size O(log n)

• (poly-)logarithmic structural changes in case of joining or leaving hosts.

• the maximum load exceeds the average by at most a factor of O(log n) with high probability.

Other proposed DHT schemes optimize the degree and the routing distance. For example Koorde [32]
achieves a routing distance of O(log n) with a degree of O(1) and a routing distance of O(log / log log n)
with a degree of O(log n).

In a heterogeneous setting, each host (or node) u has its specific capacity c(u) and the goal considered
in this paper is to distribute the data among the nodes so that node u stores a fraction of c(u)∑

∀v c(v) of the
data. The simplest solution would be to reduce the heterogeneous to the homogeneous case by splitting a
host of k times the base capacity (e.g., the minimum capacity of a host) into k many virtual hosts. Such a
solution is not useful in general because the number of virtual hosts would heavily depend on the capacity
distribution, which can create a large management overhead at the hosts. Nevertheless, the concept of
virtual hosts has been explored before (e.g., [23, 68, 8]). In [23] the main idea is not to place the virtual
hosts belonging to a real host randomly in the identifier space but in a restricted range to achieve a low
degree in the overlay network. However, they need an estimation of the network size and a classification
of nodes with high, average, and low capacity. A similar approach is presented in [8]. Rao et al. [68]
proposed some schemes also based on virtual servers, where the data is moved from heavy nodes to
light nodes to balance the load after the data assignment, so and data movement is induced even without
joining or leaving nodes. In [74] the authors organize the nodes into clusters, where a super node (i.e., a
node with large capacity) is supervising a cluster of nodes with small capacities. Giakkoupis et al. [22]
present an approach which focuses on homogeneous networks but also works for heterogeneous one.
However, updates can be costly.

Several solutions have been proposed in the literature that can manage heterogeneous storage systems
in a centralized way, i.e. they consider data placement strategies for heterogeneous disks that are managed
by a single server [71, 54, 51, 16, 81, 11] or assume a central server that handles the mapping of data
elements to a set of hosts [72, 12, 13]. We will only focus on the most relevant ones for our approach.
In [13] Brinkmann et al. introduced several criteria a placement scheme needs to fulfill, like a faithful
distribution, efficient localization, and fast adaptation. They introduce two different data placement
strategies named SHARE and SIEVE that fulfill their criteria. To apply their approach, the number of
nodes and the overall capacity of the system must be known. In [11] redundancy is added to the SHARE
strategy to allow a fair and redundant data distribution, i.e. several copies of a data element are stored such
that no two copies are stored on the same host. Another solution to handle redundancy in heterogeneous
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systems is proposed in [51], but also here the number of nodes and the overall capacity of the system must
be known. The only solution proposed so far where this is not the case is the approach by Schindelhauer
and Schomaker [72], which we call cone hashing. Their basic idea is to assign a distance function to each
host that scales with the capacity of the host. A data element is then assigned to the host of minimum
distance with respect to these distance functions. We will extend their construction into a self-stabilizing
DHT with low degree and diameter that does not need any global information and that can handle all
operations in a stable system efficiently with high probability (w.h.p.)1.

4.2 Re-Chord: A self-stabilizing Chord overlay network

4.2.1 Introduction

In this section we present a self-stabilizing solution for the Chord network. Chord as one of the pioneering
DHT-concepts has been studied thoroughly, and many variants of Chord have been presented that optimize
various criteria. Though Chord is known to be very efficient and scalable and it can handle churn quite
well, so far no protocol is known yet that guarantees that Chord is self-stabilizing, i.e. the Chord network
can be recovered from any initial state in which the network is still weakly connected. We present a
extension of the Chord network, called Re-Chord (reactive Chord), that turns out to be locally checkable,
and we present a self-stabilizing distributed protocol for it that can recover the Re-Chord network from
any initially weakly connected state inO(n log n) communication rounds. We also show that our protocol
allows a new node to join or to leave an already stable Re-Chord network so that within O((log n)2)
communication rounds the Re-Chord network is stable again.

4.2.2 Our contributions

We present a protocol PRE−CHORD solving the overlay problem RE − CHORD. The ideas of the
protocol PRE−CHORD and the results on stabilization time given in Theorem 4.2.9, stabilization work
given in Theorem 4.2.15, maintenance work given in Theorem 4.2.16 and the cases of a single joining or
leaving node given in Theorem 4.2.17 are based on results published in [35] and [39] which are joint
works with my colleague Andreas Koutsopoulos and our supervisor Christian Scheideler:

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler, Re-Chord: A Self-stabilizing
Chord Overlay Network, 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
San Jose, California, USA, June 2011.

Sebastian Kniesburges, Andreas Koutsopoulos, Christian Scheideler, Re-Chord: A Self-stabilizing
Chord Overlay Network. Theory of Computing Systems. 55(3): 591-612 (2014)

The results for the correctness in the ATSS model in Theorem 4.2.2 are presented for the first time.
In this section we show that the protocol PRE−CHORD solves the RE−CHORD overlay problem in

the ATSS and STSS model with a stabilization time ofO(n log n) and a stabilization work ofO(n log3 n).
We further show a maintenance work per round of O(log2 n) for each node once a legal state has been
reached. We also consider topology updates caused by a single joining or leaving node and show that the
network recovers in O(log3 n) rounds with at most O(log2 n) messages for each node.

1 I.e., a probability of 1− n−c for any constant c > 0
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4.2.3 Chord

Chord is basically a combination of a hypercubic overlay network with consistent hashing [33]. Consistent
hashing assigns keys to nodes by first hashing the nodes and then hashing the keys to the same space
by a hash function h that assigns nodes to the space uniformly at random (SHA-1 in Chord). A key k is
assigned to the node u, such that h(u) is equal to or follows h(k). In Chord h maps to a circle of numbers
from 0 to 2m − 1 so u is the next node following h(k) in clockwise order.

The Chord overlay network is defined in the following way [75]: Let successor(h(u)) denote the node
following h(u) in clockwise order on the circle of numbers from 0 to 2m − 1. Then each node u stores a
pointer to successor(h(u) + 2i−1mod2m) for 1 ≤ i ≤ m. Such a node is called the ith finger of u. The
first finger successor(u) obviously is the successor of u on the circle. Additionally to the fingers each
node also stores its predecessor on the circle. Chord then provides a routing length of O(log n) w.h.p.,
i.e. in O(log n) hops successor(h(k)), the node responsible for k is reached for a key k. Furthermore
the degree of each node is bounded by m = O(log n). If a node joins or leaves a Chord network it takes
O(log2 n) messages to re-establish the finger tables and routing invariants. An illustration of the m− 1
fingers of a node u is given in Figure 4.1.

02m-1

u
h(u)+2m-2

h(u)+2m-3

h(u)+2m-4

...

h(u)+20

Figure 4.1: An example of the m finger in a Chord network

The authors also point out that the Chord network can be made more robust if each node stores not
only its successor but the next r = O(log n) nodes succeeding it. However the disadvantage of Chord is
that there are states that Chord cannot recover from, e.g. if the nodes are partitioned in two disjoint circles
that are only connected by fingers (see Figure 4.2). Such a state cannot be locally detected and repaired
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as for every node locally the fingers and successor and predecessors are correct. Our solution is able
to recover from any weakly connected state even if connectivity is only given by messages containing
identifiers of nodes.

02m-102m-1

Figure 4.2: A state Chord cannot recover from

Several variants of Chord have already been studied since the presentation of the Chord network.
In [46] a variant called EPI Chord is presented that allows the system to do parallel searches for the
best route to the node storing the data for a certain search key. This does not improve the asymptotical
worst-case cost of O(log n) messages of Chord but it can achieve O(1) hop look-up performance under
look-up intensive workloads due to caching. In [52] another modification of Chord is presented. In
this approach Chord is extended by symmetric fingers, hence one can search in both directions of the
circle. A similar idea is given in [31] and [78], where links to the predecessors are stored instead of only
links to the successors of a node. In [78] also the physical distance is taken into account to estimate the
shortest route. All these variants only care about the look-up cost, but present no self-stabilizing process
to maintain the Chord structure. In [55] an algorithm is presented to build a Chord network from scratch
in O(log n) rounds, but still this algorithm is not self-stabilizing.

4.2.4 The Re-Chord Network

Our Re-Chord network is able to emulate the Chord network while maintaining all its properties and can
be maintained by a topological self-stabilizing protocol, PRE−CHORD. It can recover from any failure as
long as the network stays weakly connected. The idea is to reduce the problem of building a Chord-like
network to the sorted list problem presented in Section 3.2. To be more general then the Chord network
we assume h : ID 7→ [0, 1] to be a randomized hash function and let it map to the [0, 1] interval instead
of the numbers from 0 to 2m − 1. Then the number of nodes is not longer restricted by 2m. We assume
that h is chosen, such that no two nodes get the same position and that h is known to every node, i.e.
by knowing the identifier of one node each node can determine its position. Furthermore h has to be
a random hash function, i.e. the position of each node is chosen uniformly at random. Then a global
order on the nodes can be defined by their positions h(v1) < h(v2) · · · < h(vn). To reduce the Re-Chord
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problem to the sorted list problem each node simulates a number of virtual nodes instead of edges to the
finger nodes. Each virtual node than has an edge to its succeeding and preceding real node.

Definition 4.2.1 We call a node u ∈ V a real node. Each real node simulates a set of virtual nodes
ui with h(ui) = h(u) + 1

2i
mod 1 for 0 ≤ i ≤ m(u). Then u0 = u. We denote the set of all

(virtual) nodes by V +. We call all nodes ui belonging to the same real node u siblings. We choose
m(u) = min

{
i ∈ N : @v ∈ V ∧ v ∈

(
u, u+ 1

2i

]}
.

Note that we use the notation of ui to denote a virtual node and x0, · · · , xi to denote the ith node in
some sequence of nodes. To define the Re-Chord network we first define some relations between the
nodes in the network:

Definition 4.2.2 We define

• successorr(ui) = argmin
{
h(v) : v ∈ V : ∧ h(v) > h(ui)

}
• successorv(ui) = argmin

{
h(vj) : vj ∈ V + : ∧ h(vj) > h(ui)

}
• predecessorr(ui) = argmax

{
h(v) : v ∈ V : ∧ h(v) < h(ui)

}
• predecessorv(ui) = argmax

{
h(vj) : vj ∈ V + : ∧ h(vj) < h(ui)

}
• cycler(ui) = argmax {h(v) : v ∈ V } if predecessorr(ui) = nil.

• cycler(ui) = argmin {h(v) : v ∈ V } if successorr(ui) = nil).

• cyclev(ui) = argmax {h(v) : v ∈ V +} if predecessorv(ui) = nil.

• cyclev(ui) = argmin {h(v) : v ∈ V +} if successorv(ui) = nil).

Then a graph G = (V,Er) is a Re-Chord network, if V + =
⋃
u∈V

{
u0, ... · · ·um(u)

}
and Er ={

(u, v) : v ∈
⋃

0≤i≤m(u)

{
predecessorr(u

i), successorr(u
i), cycler(u

i)
}}

.

We show that we can emulate a Chord network by the above defined Re-Chord network, as Chord is a
sub-graph of a Re-Chord network.

Theorem 4.2.1 Chord is a sub-graph of a Re-Chord network. In the Re-Chord network each real node
simulates O(log n) virtual nodes w.h.p. probability and |V +| = O(n log n) w.h.p. and |ERe−Chord| ≤
4|EChord|.

Proof. Let (u, v) be an edge in the original Chord network, i.e. (u, v) ∈ EChord. If v = successor(h(u))
or v = predecessor(h(u)) in the Chord network, then v = successorr(u) or v = predecessorr(u) in
the Re-Chord network. If v is a finger of u in the Chord network then it holds that v = successorr(u

i)
in the Re-Chord network for some virtual node ui. In fact the mth finger in the Chord network corre-
sponds to v = successorr(u

0) the m − 1th finger to v = successorr(u
1) and the m − ith finger to

v = successorr(u
1+i) (see Figure 4.3).

We can show that each node simulates O(log n) virtual nodes w.h.p. corresponding to the O(log n)
fingers in the Chord network even without knowing n. Remind that in the Chord network m and
therefore the maximal number of nodes is fixed. If the positions of all nodes are distributed uniformly
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02m-1

u
h(u)+1/21

h(u)+1/22

h(u)+1/23

...

h(u)+1/2m

Finger in the Chord network

Real Successor in Re-Chord

Real node in Re-Chord

Virtual node of node u
Virtual node in Re-Chord

Figure 4.3: Each finger in Chord is simulated in Re-Chord by a real successor of a virtual node

at random then w.h.p. the distance between h(u0) and h(successorr(u
0)) is at least 1

n2 . Then the
distance between h(u0) and h(um(u)) is at least 1

n w.h.p. and therefore m(u) = O(log n). As each real
node simulate O(log n) virtual nodes in expectation there are O(log n) virtual nodes between u0 and
successorr(u

0). By applying a Chernoff bound one can also show that this holds w.h.p.. Then follows
that V + = O(n log n) w.h.p..

Thus all edges in Chord EChord can also be found in Re-Chord ERe−Chord, which also has some
additional edges as we also store predecessors for every virtual node, and EChord ⊂ ERe−Chord. In fact
|ERe−Chord| ≤ 4|EChord| as we store for each virtual node a real and a virtual predecessor and successor.

ut

Then also for Re-Chord it holds that the degree of nodes is bounded byO(log n) and the routing length
is O(log n).

4.2.5 Formal Definition

We now define the internal variables of each node used in our protocol to solve the overlay problem
RE − CHORD. Each real node u stores the following variables contributing to the explicit edge set:

• u.predecessorr: The identifier of u’s left neighbor of real nodes( h(u.predecessorr) < h(u) with
u.predecessorr ∈ V ) or nil if there is no left real neighbor.

• u.predecessorv: The identifier of u’s left virtual neighbor (h(u.predecessor) < h(u) with
u.predecessorr ∈ V +) or nil if there is no left neighbor.

• u.successorr: The identifier of u’s right real neighbor (h(u) < h(u.successor) with u.successorr ∈
V ) or nil if there is no right neighbor.
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• u.successorv: The identifier of u’s right virtual neighbor (h(u) < h(u.successor) with u.successorv ∈
V ) or nil if there is no right neighbor.

• u.cycler: The identifier of the real node that u’s cycle edge points to. Note that this identifier is
only set if u.successorr = nil or u.predecessorr = nil.

• u.cyclev: The identifier of the virtual node that u’s cycle edge points to. Note that this identifier is
only set if u.successorv = nil or u.predecessorv = nil.

• u.U+: the set of virtual nodes
{
u1, · · ·uu.m

}
.

• u.N = {u.predecessorr, u.predecessorv, u.successorr, u.successorv, u.cycler, u.cyclev} ∪
u.U+: The neighborhood of one node.

Additionally each real node stores the following variables not contributing to the set of explicit edges.

• u.m: the limit of virtual nodesm such thatm = argmini∈N
{
h(ui) : u.successorr /∈ [u, ui]

}
(resp.

m = argmini∈N
{
h(ui) : u.cycler /∈ [u, ui]

}
).

• u.Ch: The channel for incoming messages.

• u.τ : a boolean variable that is periodically true.

Each virtual node ui for some node u and i > 0 stores the same variables as a real node except the set
of virtual nodes and the limit of virtual nodes m, although we assume that each virtual node is aware of
all its siblings. This is reasonable as all virtual nodes ui are simulated by the same real node u.

The content of a message is given by the ids of some nodes and a specification of the message type.
So different type of messages can trigger different actions. Thus a message m is of the following form
m = (type, ids).

• forward: The standard message type to forward a node to another node.

• cycle-neighbor-real: This type of message is used to establish a cycle edge for the neighbors of a
node if a node is missing its left or right real neighbor.

• cycle-virtual: This type of message is used to establish a cycle edge if a node is missing its left or
right virtual neighbor.

• respond-cycle-virtual: This message is sent to respond to an incoming cycle edge and to inform the
start-point of the cycle edge about possible network changes.

• probing: This type of message is used to propagate a probing message.

In the following we define when an assignment of the variables is valid and how the sets of initial
topologies IT and the goal topologies RE − CHORD look like.

Definition 4.2.3 An assignment of the variables of a node is valid if h(ui.predecessorv) < h(ui) and
h(ui.predecessorr) ≤ h(ui.predecessorv) (or ui.predecessorr = nil and ui.predecessorv = nil)
and h(ui.successorr) ≥ h(ui.successorv) > h(ui) (or ui.successorr = nil and ui.successorv =
nil). Furthermore ui.cycler 6= nil only if ui.successorr = nil or uI .predecessorr = nil and
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ui.cyclev 6= nil only if ui.successorv = nil or ui.predecessorv = nil. Also m is valid if m =
argmini∈N

{
h(ui) : u.successorr /∈ [u, ui]

}
(resp. m = argmini∈N

{
h(ui) : u.cycler /∈ [u, ui]

}
). Note

that an invalid assignment can be locally repaired immediately. Thus we assume in the following w.o.l.g.
that initially the assignment is valid for every node.

Definition 4.2.4 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of initial topologies is given by:

IT =
{
G = (V +, E = Ee ∪ Ei) : G is weakly connected

}
Definition 4.2.5 Let Er =

{
(u, v) : v ∈

⋃
ui∈u−U+

{
ui.predecessorr, u

i.successorr, u
i.cycler

}}
.

For a graph G = (V +, E) we denote by Gr(G) = (V,Er) the graph only formed by real nodes.
Then the set of target topologies is given by:

RE − CHORD =
{
G = (V +, E) : Gr(G) is a Re-Chord network

}
4.2.6 Protocol PRE−CHORD

In this section we give a description of our algorithm. The algorithm is a protocol that each node executes
based on its own node and channel state. The protocol contains periodic actions that are executed if the
timer predicate τ is true and actions that are executed if the node receives a message m.

As mentioned above we assume that all internal variables are valid at every time, that means in
particular that each real node computes the correct value of u.m and simulates the corresponding virtual
nodes u0, · · ·uu.m ∈ u.U+.

The main idea of the protocol PRE−CHORD is that each node whether real or virtual executes similar
actions as presented in PLIST to form a sorted list. The actions in PRE−CHORD are more complex as we
have to distinguish between received identifiers of real and virtual nodes. Like in PSMALL−WORLD we
also extend the protocol to build a cyclic list instead of a simple sorted list. Again we distinguish between
real and virtual nodes when closing the cycle. As we use the virtual siblings of a node as shortcuts in
the forwarding process while building a sorted list (see Figure 4.4) we have to ensure that all ui ∈ u.U+

belonging to a real node u form one connected component. To ensure this connectivity we reuse the
probing technique presented in Section 3.3. We also use the probing to ensure connectivity between a
node and the node its cycle edge points to.

We present an implementation in Pseudo code of PRE−CHORD in Algorithms 4.2.1- 4.2.8.

4.2.7 Analysis in the ATSS model

We show the correctness in the ATSS model of our approach by proving that it stabilizes to a small-world
network. We show this by dividing the self-stabilization process into different phases and determine the
correctness of each phase. In particular we will show that if each node executes PRE−CHORD started in
an weakly connected graph, eventually a graph is reached, such that the sorted list is sub graph. We then
show that if started in a graph that contains the sorted list as a sub graph PRE−CHORD leads to a graph
containing the cyclic list as a sub graph. We proceed by showing that started in a graph that contains the
cyclic list a a sub graph eventually a Re-Chord network is reached. Thus we can show the main theorem:

Theorem 4.2.2 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the graph converges to a graph G′ ∈ RE − CHORD (Convergence).
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...

0 1

... ...

ui ui+l vj

...

ui ui+l vj0 1

Figure 4.4: ui forwards vj to its virtual sibling ui+l

Algorithm 4.2.1 PRE−CHORD FOR AN NODE ui

ui.N =
{
ui.successorv, u

i.successorr, u
i.cyclev, u

i.cycler, u
0, · · ·uu.m

}
message m = (type, v) ∈ ui.Ch→
if type=forward then

forward(v)
else if type=probing then

probing(v)
else if type=cycle-virtual then

cycle-virtual(v)
else if type=respond-cycle-virtual then

respond-cycle-virtual(v)
else if type=cycle-neighbor-real then

cycle-neighbor-real(v)
τ →
introduction()
probing()
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Algorithm 4.2.2 PRE−CHORD-FORWARD(v)
F = ∅ . set of nodes to be forwarded
if h(v) > h(ui) then

if v is real then
if ui.successorr 6= nil then

if h(v) < h(ui.successorr) then
F = ∪

{
ui.successorr

}
ui.successorr = v

else
F = F ∪ {v}

else
ui.successorr = v
if ui.cycler 6= nil then

F = F ∪
{
ui.cycler

}
ui.cycler = nil

if ui.successorv 6= nil then
if h(v) < h(ui.successorv) then

F = ∪
{
ui.successorv

}
ui.successorv = v

else
F = F ∪ {v}

else
ui.successorv = v
if ui.cyclev 6= nil then

F = F ∪
{
ui.cyclev

}
ui.cyclev = nil

for all w ∈ F do
if h(w) > h(ui) then

w′ = argmax
{
h(w′) : h(w′) < h(w) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to w′

else
w′ = argmin

{
h(w′) : h(w′) > h(w) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to w′
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else if h(v) < h(ui) then
if v is real then

if ui.predecessorr 6= nil then
if h(v) < h(ui.predecessorr) then

F = ∪
{
ui.predecessorr

}
ui.predecessorr = v

else
F = F ∪ {v}

else
ui.predecessorr = v
if ui.cycler 6= nil then

F = F ∪
{
ui.cycler

}
ui.cycler = nil

if ui.predecessorv 6= nil then
if h(v) < h(ui.predecessorv) then

F = F ∪
{
ui.predecessorv

}
ui.predecessorv = v

else
F = F ∪ {v}

else
ui.predecessorv = v
if ui.cyclev 6= nil then

F = F ∪
{
ui.cyclev

}
ui.cyclev = nil

for all w ∈ F do
if h(w) > h(ui) then

w′ = argmax
{
h(w′) : h(w′) < h(w) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to w′

else
w′ = argmin

{
h(w′) : h(w′) > h(w) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to w′
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Algorithm 4.2.3 PRE−CHORD-PROBING(v)
if h(v) > h(ui) then

if ∃w : h(w) < h(v) ∧ w ∈
{
ui.successorv, u

i.cyclev, u.U
+
}

then
w′ = argmax

{
h(w) : h(w) < h(v) ∧ w ∈

{
ui.successorv, u

i.cyclev
}
∪ u.U+

}
send message m = (probing, v) to w′

else
forward(v)

else
if ∃w : h(w) > h(v) ∧ w ∈

{
ui.predecessorv, u

i.cyclev, u
0, · · ·uu.m

}
then

w′ = argmin
{
h(w) : h(w) > h(v) ∧ w ∈

{
ui.predecessorv, u

i.cyclev
}
∪ u.U+

}
send message m = (probing, v) to w′

else
forward(v)

Algorithm 4.2.4 PRE−CHORD-CYCLE-VIRTUAL(v)
if h(v) < h(ui) then

if ∃w : h(w) < h(v) ∧ w ∈ ui.N then
w = argmax

{
h(w′) : h(w′) < h(v) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to v

else if ∃w : h(w) > h(v) ∧ w ∈ ui.N then
w = argmax

{
h(w′) : h(w′) > h(v) ∧ w′ ∈ ui.N

}
send message m = (respond− cycle− virtual, w) to v

else
send message m = (respond− cycle− virtual, ui) to v

else
if ∃w : h(w) > h(v) ∧ w ∈ ui.N then

w = argmin
{
h(w′) : h(w′) > h(v) ∧ w′ ∈ ui.N

}
send message m = (forward, w) to v

else if ∃w : h(w) < h(v) ∧ w ∈ ui.N then
w = argmin

{
h(w′) : h(w′) > h(v) ∧ w′ ∈ ui.N

}
send message m = (respond− cycle− virtual, w) to v

else
send message m = (respond− cycle− virtual, ui) to v
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Algorithm 4.2.5 PRE−CHORD-RESPOND-CYCLE-VIRTUAL(v)
if ui.predecessorv = nil∧ (h(v) > h(ui.cyclev) > h(ui)∨ (ui.cyclev = nil∧h(v) > h(ui))) then

if ui.cyclev 6= nil then
w = ui.cyclev

ui.cyclev = v
forward(w)

else if ui.successorv = nil ∧ (h(v) < h(ui.cyclev) < h(ui) ∨ (ui.cyclev = nil ∧ h(v) < h(ui)))
then

if ui.cyclev 6= nil then
w = ui.cyclev

ui.cyclev = v
forward(w)

elseforward(v)

Algorithm 4.2.6 PRE−CHORD-CYCLE-NEIGHBOR-REAL(v)
if v is real then

if ui.predecessorr = nil ∧ (h(v) > h(ui.cycler) > h(ui) ∨ (ui.cycler = nil ∧ h(v) > h(ui)))
then

if ui.cycler 6= nil then
w = ui.cycler

ui.cycler = v
forward(w)

else if ui.successorr = nil∧ (h(v) < h(ui.cycler) < h(ui)∨ (ui.cycler = nil∧h(v) < h(ui)))
then

if ui.cycler 6= nil then
w = ui.cycler

ui.cycler = v
forward(w)

elseforward(v)
else

forward(v)
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Algorithm 4.2.7 PRE−CHORD-INTRODUCTION()
if ui.predecessorv 6= nil then . ui introduces itself to ui.predecessorv

send message m = (forward, ui) to ui.predecessorv
else . ui introduces itself to ui.cyclev

send message m = (cycle− virtual, ui) to ui.cyclev
if h(ui.successorv) 6= nil then . ui introduces itself to ui.successorv

send message m = (forward, ui) to ui.successorv
else . ui introduces itself to ui.cyclev

send message m = (cycle− virtual, ui) to ui.cyclev
if h(ui.predecessorr) 6= nil then . real predecessor is forwarded to all virtual nodes in between

send message m = (forward, ui.predecessorr) to ui.predecessorv
if ui is not real then

if ui.successorv 6= nil then
send message m = (forward, ui.predecessorr) to ui.successorv

else
send message m = (cycle− neighbor − real, ui.predecessorr) to ui.cyclev

else . real predecessor (ui.cycler) is forwarded to all virtual nodes in between
send message m = (cycle− neighbor − real, ui.cycler) to ui.predecessorv
if ui is not real then

send message m = (cycle− neighbor − real, ui.cycler) to ui.successorv
if h(ui.successorr) 6= nil then . real successor is forwarded to all virtual nodes in between

send message m = (forward, ui.successorr) to ui.successorv
if ui is not real then

if ui.predecessorv 6= nil then
send message m = (forward, ui.successorr) to ui.predecessorv

else
send message m = (cycle− neighbor − real, ui.successorr) to ui.cyclev

else . real successor given by ui.cycler is forwarded to all virtual nodes in between
send message m = (cycle− neighbor − real, ui.cycler) to ui.successorv
if ui is not real then

send message m = (cycle− neighbor − real, ui.cycler) to ui.predecessorv
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Algorithm 4.2.8 PRE−CHORD-PROBING()
if ∃uj : j > i then . Probing to next virtual sibling uj

if h(uj) < h(ui.predecessorv) then
send message m = (probing, uj) to ui.predecessorv

else if h(uj) > h(ui.successorv) then
send message m = (probing, uj) to ui.successorv

if ui.cyclev 6= nil ∧ h(ui.cyclev) < h(ui.predecessorv) then . Probing to ui.cyclev
send message m = (probing, ui.cyclev) to ui.predecessorv

else if ui.cyclev 6= nil ∧ h(ui.cyclev) > h(ui.successorv) then
send message m = (probing, ui.cyclev) to ui.successorv

if ui.cycler 6= nil ∧ h(ui.cycler) < h(ui.predecessorv) then . Probing to ui.cycler
send message m = (probing, ui.cycler) to ui.predecessorv

else if ui.cycler 6= nil ∧ h(ui.cycler) > h(ui.successorv) then
send message m = (probing, ui.cycler) to ui.successorv

If in an initial graph G ∈ RE − CHORD every nodes executes the protocol PRE−CHORD then each
possible computation leads to a graph G′ ∈ RE − CHORD (Closure).

To prove this theorem we have to introduce some formal definition of the intermediate graphs and
some subset of the edges.

Definition 4.2.6 We define the following subsets of edges.

• Ee−list = {(u, v) ∈ Ee : v = u.predecessorv ∨ v = u.successorv} ⊆ Ee is the subset of ex-
plicit edges that will form the sorted list.

• Ei−list = {(u, v) ∈ Ei : ∃m = (forward, v) ∈ u.Ch} is the subset of implicit edges that are
needed to form the sorted list.

• Elist = Ee−list ∪ Ei−list is the set of edges that take part in the process forming the sorted list.

• Ee−cycle = {(u, v) ∈ Ee : v = u.cyclev} ∪ Ee−list ⊆ Ee is the subset of explicit edges that will
form the cyclic list.

• Ei−cycle = Ei−list ∪ {(u, v) ∈ Ei : ∃m = (type, v) ∈ u.Ch} with type = cycle − virtual or
type = respond− cycle. Ei−cycle is the subset of implicit edges that are needed to form the cyclic
list.

• Ecycle = Ee−cycle ∪ Ei−cycle is the set of edges that take part in the process of forming the cyclic
list.

Note that the above edge sets are defined on V + instead of V , i.e. we want to build a sorted list resp. a
cyclic list considering all virtual nodes instead of real nodes only.

Definition 4.2.7 A graph G = (V,E) is a sorted list, if V = v0, · · · vn−1 with h(vi) < h(vi+1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vj) :, j = i− 1 ∨ j = i+ 1∀0 < j < n− 1}.

Definition 4.2.8 A graph G = (V,E) is a cyclic list, if V = v0, · · · vn−1 with h(vi) < h(vi+1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vi+1 mod n), (vi, vi−1 mod n)}.
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Convergence

We start by showing that the first part of theorem 4.2.2 holds and PRE−CHORD fulfills the convergence
property.

Theorem 4.2.3 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the graph converges to a graph G′ such that Gr(G′) ∈ RE − CHORD
(Convergence).

To show this we prove a set of intermediate theorems first, from which the convergence follows. Our
first theorem claims that the computation reaches a state, such that the sorted list is a sub graph of the
graph of explicit edges.

Theorem 4.2.4 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the computation reaches a state st such that Gte−list is a sorted list.

Lemma 4.2.1 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the computation reaches a state st such that Gtlist is weakly connected and
stays connected in every state st′ t′ > t.

Proof. We start the proof by showing that if Gt is weakly connected also Gt+1 stays weakly connected.
We therefore assume that an edge (u, v) ∈ Et existing at time t does not exist at time t+ 1 and show that
u and v stay connected. We consider any possible explicit and implicit edge. The basic idea is to show
that if an identifier v of a node is not stored by a node u then it is forwarded to another node w that is
connected to u. Thus no identifier can get lost.

If (ui, vj) ∈ Ete but (ui, vj) /∈ Et+1 and

• vj = ui.successorv at time t but not at time t+ 1, then vj is replaced by a new virtual successor
wk = ui.successorv. Then ui forwards vj to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and
(w′l, vj) ∈ Et+1

i . Thus ui and vj stay connected.

• v0 = u.successorr at time t but not at time t + 1, then v0 is replaced by a new real successor
w0 = ui.successorr. Then ui forwards v0 to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and
(w′l, v

0) ∈ Et+1
i . Thus ui and v0 stay connected.

• vj = ui.predecessorv at time t but not at time t+1, then vj is replaced by a new virtual predecessor
wk = ui.predecessorv. Then ui forwards vj to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and
(w′l, vj) ∈ Et+1

i . Thus ui and vj stay connected.

• v0 = ui.predecessorr at time t but not at time t+ 1, then v0 is replaced by a new real predecessor
w0 = ui.successorv. Then ui forwards v0 to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and
(w′l, v

0) ∈ Et+1
i . Thus ui and v0 stay connected.

• vj = ui.cyclev at time t but not at time t + 1, then vj is replaced by a new virtual cycle node
wk = ui.cyclev or ui.cyclev = nil as ui is no longer missing a virtual predecessor or successor.
Then ui forwards vj to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and (w′l, vj) ∈ Et+1
i . Thus ui

and vj stay connected.
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• v0 = ui.cycler at time t but not at time t + 1, then v0 is replaced by a new real cycle node
w0 = ui.cycler or ui.cycler = nil as ui is no longer missing a real predecessor or successor. Then
ui forwards v0 to a node w′l ∈ ui.N and (ui, w′l) ∈ Et+1

e and (w′l, v0) ∈ Et+1
i . Thus ui and v0

stay connected.

If (ui, vj) ∈ Eti but (ui, vj) /∈ Et+1, then ui does not store vj in one of its internal variables. Then the
following observations hold. If

• vj is stored in a forward message, then ui receives this message and forwards vj to a node
wk ∈ ui.N . Then (ui, wk) ∈ Et+1

e and (wk, vj) ∈ Et+1
i and ui and vj stay connected.

• vj is stored in a cycle-virtual message, then ui responds by a respond-cycle-virtual message
containing a node wk ∈ ui.N to vj . Then (ui, wk) ∈ Et+1

e and (vj , wk) ∈ Et+1
i and ui and vj

stay connected.

• vj is stored in a respond-cycle-virtual message, then as ui does not store vj , vj is forwarded in a
forward message to a node wk ∈ ui.N . Then (ui, wk) ∈ Et+1

e and (vj , wk) ∈ Et+1
i and ui and vj

stay connected.

• vj is stored in a cycle-neighbor-real message, then as ui does not store vj , vj is forwarded in a
forward message to a node wk ∈ ui.N . Then (ui, wk) ∈ Et+1

e and (vj , wk) ∈ Et+1
i and ui and vj

stay connected.

• vj is stored in a probing message, then ui forwards vj to a node wk ∈ ui.N . Then (ui, wk) ∈ Et+1
e

and (vj , wk) ∈ Et+1
i and ui and vj stay connected.

Note that if u.m changes and a new virtual node uj is simulated by u connectivity among all virtual
nodes is preserved as the new virtual node uj will only be connected to nodes u0 and ui−1 are already
connected to.

After establishing that connectivity is preserved, we define a time t0 at which every message initially
in ui.Ch for any node ui has been received and also the responding messages have been delivered. Based
on this we can show that eventually a state st′ at time t′ ≥ t0 in the computation is reached such that
Gt
′
list is weakly connected and stays weakly connected in any state st at time t ≥ t′. In fact we show

that for each edge (ui, vj) in Et0 eventually ui and vj are connected in Gt
′
list and stay connected for ever

after. For each edge (ui, vj) in Et0 there are basically two options for ui. Either vj is stored in one of the
internal variables or vj is forwarded. This holds for all cases except that vj is in a cycle-virtual message,
then ui responds by a respond-cycle-virtual message.

We first consider the case that vj is eventually forwarded in a forward message. We assume w.l.o.g.
that h(vj) > h(ui). Then vj is forwarded to a node wk ∈ ui.N with h(ui) < h(wk) < h(vj). Thus
there is a time t1 such that a connecting path p1 = (ui, wk, vj) in Et1 exists. Now vj is stored in wk.Ch
in a forward message. And thus x1 = wk again has two options to either keep vj in an internal variable
in every state after or to forward vj eventually to another node x2 with h(x1) < h(x2) < h(vj). Then vj

can only be forwarded O(n log n) times. We denote the node vj is forwarded to at the lth forwarding
step by xl. Let l′ = O(n log n) be the number of times vj was forwarded.Then at time tl′ , we get a
forwarding sequence of fs(ui, vj) = (ui = x0, x1, · · ·xl′ , vj) with xl+1 ∈ xl.N at time tl.

As already observed xl either stores xl+1 in an internal variable forever or also eventually forwards
it in a forward message. If xl+1 is forwarded we can construct a forwarding sequence fs(xl, xl+1)
for each edge (xl, xl+1) as xl = x(l,l+1),0, x(l,l+1),1, · · ·x(l,l+1),o, xl+1 with h(xl) < h(x(l,l+1),p−1) <
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h(w(i−1,i),p) < h(xp+1) and x(l,l+1),p ∈ x(l,l+1),p−1.N for every p < o. Inductively we can apply the
same arguments and replace the resulting edges by further forwarding sequences, but as the number of
nodes is finite eventually at some time t′ we get a sequence ui = x̃0, x̃1, x̃2, · · · x̃l̃, x̃l̃+1 = vj , where
x̃j̃−1 stores x̃j̃ in an internal variable in every state after t ≥ t′.

It remains to show that (x̃j̃−1, x̃j̃) ∈ Etlist. If x̃j̃ ∈
{
x̃j̃−1.successorv, x̃j̃−1.predecessorv

}
ob-

viously (x̃j̃−1, x̃j̃) ∈ Etlist. If x̃j̃ ∈
{
x̃j̃−1.successorr, x̃j̃−1.predecessorr

}
then in the periodic

action x̃j̃−1 will introduce x̃j̃ to x̃j̃−1.successorv resp. x̃j̃−1.predecessorv. Thus we can replace
(x̃j̃−1, x̃j̃) by another forwarding sequence fs(x̃j̃−1, x̃j̃) given by a sequence of virtual successors. If

x̃j̃ ∈
{
x̃j̃−1.cyclev, x̃j̃−1.cycler, x̃

0
j̃−1

, · · · x̃
(x̃j̃−1).m

j̃−1

}
, then x̃j̃−1 will start a probing to x̃j̃ . Thus we

can replace (x̃j̃−1, x̃j̃) by a probing sequence ps(x̃j̃−1, x̃j̃) = (x̃j̃−1 = x̃(j̃−1,j̃),0, · · · x̃(j̃−1,j̃),õ, x̃j̃) with
h(x̃j̃−1) < h(x̃(j̃−1,j̃),p̃−1) < h(x̃(j̃−1,j̃),p̃) < h(x̃j̃) with p̃ < õ and x̃(j̃−1,j̃),p̃ ∈ x̃(j̃−1,j̃),p̃−1.N . By
applying these arguments inductively we get a sequence of virtual successors or predecessors connecting
ui and vj at some time t′ ≥ t0 such that no virtual successor or predecessor is forwarded in any state
t ≥ t′. Thus eventually ui and vj are connected in Etlist and Et+1

list for t ≥ t′ ≥ t0.
As we noted before this analysis holds for all cases except when vj is in a cycle-virtual message in

ui.Ch. we can reduce this case to ui being in a respond-cycle-virtual message in vj .Ch. Then we can
apply the aforementioned arguments. ut

From Lemma 4.2.1 follows that there is a time t0 such that all nodes are weakly connected in Gtlist
with t ≥ t0 and stay weakly connected. Thus we can now show that Gt0list eventually converges to a
sorted list. To show this convergence we reuse the analysis presented to prove Theorem 3.2.2, where we
showed the convergence property for PLIST .

Lemma 4.2.2 If the computation of PRE−CHORD reaches a state st t ≥ t0 where for some node
ui there are two edges (ui, vj) ∈ Ete−list and (ui, wk) ∈ Eti−list such that h(ui) < h(wk) < h(vj)

(resp. h(vj) < h(wk) < h(ui)) then this computation contains a later state st′ t′ > t with a edge
(ui, w′l) ∈ Et′e−list with h(w′l) ≤ h(wk) (resp. h(w′l) ≤ h(wk)).

Remind that this lemma claims that the edges (ui, ui.successorv) and (ui, ui.predecessorv) are
shortened over time.
Proof. The proof is analogous to the proof of Lemma 3.2.2. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist as defined above. ut

Lemma 4.2.3 If the computation of PRE−CHORD reaches a state st t ≥ t0 where for a node ui there are
edges (ui, vj) ∈ Ete−list and (ui, wk) ∈ Eti−list with h(ui) < h(vj) < h(wk) (resp. h(ui) > h(vj) >

h(wk)) then the computation contains a later state st′ t′ > t where there is an edge (w′l, wk) ∈ Et′list
with h(ui) < h(w′l) < h(wk) (resp. h(ui) > h(w′l) > h(wk)).

Proof. The proof is analogous to the proof of Lemma 3.2.3. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut
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Lemma 4.2.4 If the computation of PRE−CHORD reaches a state st t ≥ t0 where for some nodes
ui, vj and wk such that h(ui) < h(wk) < h(vj) (resp. h(vj) < h(wk) < h(ui)) there are edges
(ui, vj) ∈ Ete−list and (wk, ui) ∈ Ete−list then the computation contains a later state st′ t′ > t where
either some edge in Et

′
e−list is shorter than in Ete−list or (ui, wk) ∈ Et′e−list.

Proof. The proof is analogous to the proof of Lemma 3.2.4. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 4.2.5 If the computation of PRE−CHORD reaches a state st t ≥ t0 where there is an edge
(ui, vj) ∈ Ete−list then the computation contains a later state st′ t′ ≥ t where some edge in Et

′
e−list is

shorter than in Ete−list or (v, u) ∈ Et′e−list.

Proof. The proof is analogous to the proof of Lemma 3.2.5. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 4.2.6 If the computation of PRE−CHORD reaches a state st t ≥ t0 such that (ui, vj) ∈
Et
′
e−list ⇒ (vj , ui) ∈ Et′e−list in every state st′ t′ ≥ t after, then this computation contains a state st∗

such that Et
∗
e−list is strongly connected.

Proof. The proof is analogous to the proof of Lemma 3.2.6. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

Lemma 4.2.7 If the computation of PRE−CHORD reaches a state st t ≥ t1 such that Ete−list is strongly
connected and for every pair of nodes (ui, vj) ∈ Ete−list ⇒ (vj , ui) ∈ Ete−list then this state is a solution
for the sorted list problem and Gtlist is a sorted list.

Proof. The proof is analogous to the proof of Lemma 3.2.7. We only substitute messages m = (v) used
in PLIST by messages m = (forward, vj) used in PRE−CHORD and the sets Ete by Ete−list, E

t
i by

Eti−list and Et by Etlist. ut

We are now ready to show the correctness of Theorem 4.2.4. According to Lemma 4.2.1 Gtlist is
weakly connected and stays weakly connected during the computation after some state st0 . By Lemma
4.2.2 and 4.2.3 follows that all edges in Gtlist are shortened over time. Note that as soon as a node
receives a forward message there has to be a state st1 at time t1 ≥ t0 with at least one edge in Et1e−list.
According to Lemma 4.2.4 eventually all edges in Et1e−list can not be shortened and either (ui, vj) and
(vj , ui) ∈ Et2e−list at some state st2 at time t2 ≥ t1 or a new edge is added to Et1e−list. As for each node
there are at most two edges in Ee−list, eventually all edges are added and a state st3 at time t3 ≥ t2
is reached with (ui, vj) ∈ Et3e−list ⇒ (vj , ui) ∈ Et3e−list. According to Lemma 4.2.5 there is a state
st4 at time t4 ≥ t3 such that in every state st at time t ≥ t4 (ui, vj) ∈ Ete−list ⇒ (vj , ui) ∈ Ete−list.
Now, according to Lemma 4.2.6 the computation contains a later state st5 such that Et5e−list is strongly
connected. Then by applying lemma 4.2.7 Gt5list is a solution for the sorted-list problem.

The next theorem claims that the computation reaches a state, such that a cyclic list is a sub graph of
the graph of explicit edges.
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Theorem 4.2.5 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the computation reaches a state st such that Gte−cycle is a cyclic list.

Proof. The proof is analogous to the proof of Theorem 3.3.4. We only substitute messages m =
(cycle, v)and m = (respond − cycle, v) used in PSMALL−WORLD by messages m = (cycle −
virtual, vj)and m = (respond − cycle − virtual, vj) used in PRE−CHORD and the sets Ete−cycle,
Eti−cycle,E

t
cycle as defined forPSMALL−WORLD byEte−cycle,E

t
i−cycle,E

t
cycle defined forPRE−CHORD.

ut

The next theorem states that eventually a Re-Chord network is formed.

Theorem 4.2.6 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORD then eventually the computation reaches a state st such that Gr(Gte) is a Re-Chord
network.

Proof. From Theorem 4.2.5 follows that all virtual nodes form a sorted cyclic list at some state st0
and every state st with t ≥ t0. Then for each real node u0 its virtual predecessor (resp. successor)
vj = u0.predecessorv knows its real successor (resp. predecessor). vj .successorr = vj .successorv =
u0. Then if vj is not a real node itself it will inform its virtual predecessor (resp. successor) about u0.
Following from this argument eventually all virtual nodes vj between u0 and w0 = predecessorr(u

0)
(resp. w0 = successorr(u

0)) are a aware of u0 as their real successor successorr(vj) (resp. prede-
cessor predecessorr(vj)). As soon as a real node u0 knows its real successor, i.e. u0.successorr =
successorr(u

0) u0 computes the correct number of virtual nodes it has to simulate, i.e. u0.m = m(u0).
Thus at this point all virtual nodes are created. Note that inserting a new virtual node ui does not effect the
self-stabilization process, as all its predecessor and successors are already stored in ui−1 and u0. As soon
as every virtual node ui knows its real successor (resp. predecessor) successorr(ui) (resp. predecessor
predecessorr(u

i)) we can apply the same arguments as for 4.2.5 to show that eventually for all virtual
nodes ui.cycler = cycler(u

i). ut

Then Theorem 4.2.3 follows immediately.

Closure

We will now show that for PRE−CHORD also the closure property holds.

Theorem 4.2.7 If in an initial graphG withGr(G) ∈ RE−CHORD every nodes executes the protocol
PRE−CHORD then each possible computation leads to a graph G′ such that Gr(G′) ∈ RE−CHORD.

Proof. W.l.o.g we only consider edges (ui, vj) ∈ Ete with h(ui) < h(vj). Explicit edges in Gte do
not change, as edges (ui, ui.successorv) only change if ui receives a node wk with h(ui) < h(wk) <
h(ui.successorv). As ui.successorv = successorv(u

i) (resp. ui.predecessorv = predecessorv(u
i))

such a node wk cannot exist.
Furthermore edges (ui, ui.successorr) only change if ui receives a node w0 with h(ui) < h(w0) <

h(ui.successorr). As ui.successorr = successorr(u
i) such a node w0 cannot exist.

Edges (ui, ui.cyclev) with h(ui) < h(ui.cyclev) only change if ui receives a node wk with h(wk) >
h(ui.cyclev) or h(wk) < h(ui). As all virtual nodes form a cyclic list there cannot be a node wk with
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h(wk) < h(ui) if ui.predecessorv = nil. There also cannot be a node wk with h(wk) > h(ui.cyclev)
as ui.cyclev = cyclev(u

i) = argmax {h(v) : v ∈ V +}.
Edges (ui, ui.cycler) with h(ui) < h(ui.cycler) only change if ui receives a node w0 with h(w0) >

h(ui.cycler) or h(w0) < h(ui). As for all virtual node ui.successorr = successorr(u
i) such a node

w0 with h(wk) < h(ui) cannot exist. There also cannot be a node w0 with h(w0) > h(ui.cycler) as
ui.cycler = cycler(u

i) = argmax {h(v) : v ∈ V }. ut

4.2.8 Protocol PRE−CHORDsync

In this section we adapt PRE−CHORD for the STSS model and present PRE−CHORDsync. In this
adapted protocol PRE−CHORDsync we reuse the same modifications for a synchronous setting as in
the previously described protocols PSMALL−WORLDsync and PLISTsync. In particular we collect all
forward messages received in one round in a set LIST . We then sort all received identifiers and forward
a node to its preceding neighbor in this sorting. Then a node ui sends only O(1) forward messages
to another node vj . We use similar techniques to reduce the number of probing messages, which are
collected in a set Probing. Furthermore we use introduction messages to avoid too many introductions
by nodes that cannot be ui’s successor or predecessor. We also collect cycle-virtual messages in a set
Cycle to avoid cycle-virtual messages from nodes that should not miss a successor or predecessor. By
this we can reduce the number of messages. For simplicity we assume that τ is true in every round.

We present an implementation in Pseudo code of PRE−CHORDsync in Algorithms 4.2.9- 4.2.16.

4.2.9 Analysis in the STSS model

In this section we analyze PRE−CHORDsync according to the STSS model. In particular we consider the
stabilization time, stabilization work, the maintenance work and the work and time needed to recover
from a single join or leave event.

Theorem 4.2.8 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PRE−CHORDsync then the graph converges to a graph G′ ∈ RE − CHORD (Convergence) with a
stabilization time of O(n log n) and a stabilization work of O(n log3 n) w.h.p.. If in an initial graph
G ∈ RE − CHORD∗ every node executes the protocol PRE−CHORD then each possible computation
leads to a graph G′ ∈ RE−CHORD (Closure) with a maintenance work ofO(log2 n). In a legal state
it takes O(log2 n) rounds and O(log4 n) messages w.h.p. to recover and stabilize after a new real node
joins or leaves the network.

To prove this theorem we use the same formal definitions of the intermediate graphs and subsets of the
edges like in the analysis of PRE−CHORD.

Stabilization Time

We start by showing the stabilization time of the protocol PRE−CHORDsync. Remind that in the STSS
model we execute all enabled actions in one round, i.e. all messages in ui.Ch are received by a node ui.

Theorem 4.2.9 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORDsync then the graph converges to a graph G′ ∈ RE − CHORD (Convergence) with a
stabilization time of O(n log n) w.h.p..
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Algorithm 4.2.9 PRE−CHORDsync

message m ∈ ui.Ch→
List = ∅ . Set of nodes that should be forwarded by forward messages
Cycle = ∅ . Set of nodes that should be responded to by respond-cycle-virtual messages
Probing = ∅ . Set of nodes that should be forwarded by probing messages
while m ∈ ui.Ch do

if type=forward then
List.insert(vj)

else if type=introduction then
List.insert(vj)

else if type=probing then
Probing.insert(vj)

else if type=cycle-virtual then
Cycle.insert(vj)

else if type=respond-cycle-virtual then
respond-cycle-virtual(vj)

else if type=cycle-neighbor-real then
cycle-neighbor-real(vj)

send-probes()
send-cycle()
send-list()
τ →
introduction()
probing()

Algorithm 4.2.10 PRE−CHORDsync-SEND-LIST()
if List 6= ∅ then

Sort all ids vj in List ∪ ui.successorv ∪ ui.predecessorv ∪ ui.successorr ∪ ui.predecessorr
according to their position h(v), such that h(v−k) < h(v−(k−1)) < · · · < h(v−1) < h(ui) < h(v1) <
· · · < h(vk

′−1) < h(vk
′
)

ui.successorv = v1

ui.successorr = argmin
{
h(vl) : l > 0 ∧ vl is real

}
for j=1 to k’-1 do

Send message m′ = (forward, vj+1) to vj

if vj is received by an introduction message then
send message m′ = (forward, vj−1) to vj

ui.predecessorv = v−1

ui.predecessorr = argmax
{
h(vl) : l < 0 ∧ vl is real

}
for j=1 to k-1 do

Send message m′ = (forward, v−(j+1) to v−j

if vj is received by an introduction message then
send message m′ = (forward, v−(j−1)) to v−j
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Algorithm 4.2.11 PRE−CHORDsync-SEND-CYCLE()
if Cycle 6= ∅ then

Sort all ids vj in Cycle according to their position h(v), such that h(v−k) < h(v−(k−1)) < · · · <
h(v−1) < h(ui) < h(v1) < · · · < h(vk

′−1) < h(vk
′
)

for j = 1 to k′ − 1 do
Send message m′ = (forward, vj+1) to vj

if ∃wl : h(w) > h(vk
′
) ∧ wl ∈ ui.N then

wl = argmin
{
h(w′) : h(w′) > h(vk

′
) ∧ w′ ∈ ui.N

}
send message m = (forward, wl) to vk

′

else if ∃wl : h(wl) < h(v) ∧ wl ∈ ui.N then
wl = argmin

{
h(w′) : h(w′) < h(v) ∧ w′ ∈ ui.N

}
send message m = (respond− cycle− virtual, wl) to v

else
send message m = (respond− cycle− virtual, ui) to v

for j = 1 to k − 1 do
Send message m′ = (forward, v−(j+1) to v−j

if ∃wl : h(w) < h(vk) ∧ wl ∈ ui.N then
wl = argmax

{
h(w′) : h(w′) < h(vk) ∧ w′ ∈ ui.N

}
send message m = (forward, wl) to vk

′

else if ∃wl : h(wl) > h(v) ∧ wl ∈ ui.N then
wl = argmax

{
h(w′) : h(w′) > h(v) ∧ w′ ∈ ui.N

}
send message m = (respond− cycle− virtual, wl) to v

else
send message m = (respond− cycle− virtual, ui) to v

Algorithm 4.2.12 PRE−CHORDsync-SEND-PROBES()
if Probing 6= ∅ then

Sort all ids vj in Probing ∪ ui.successorv ∪ ui.predecessorv ∪
{
u0, · · ·uu.m

}
according to

their position h(v), such that h(v−k) < h(v−(k−1)) < · · · < h(v−1) < h(ui) < h(v1) < · · · <
h(vk

′−1) < h(vk
′
)

for j = 1 to k′ − 1 do
if vj+1 /∈ ui.successorv, ui.predecessorv, u0, · · ·uu.m then

Send message m′ = (probing, vj+1) to vj

List.insert(v1)
for j = 1 to k − 1 do

if v−(j+1) /∈ ui.successorv, ui.predecessorv, u0, · · ·uu.m then
Send message m′ = (probing, v−(j+1) to v−j

List.insert(v−1)
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Algorithm 4.2.13 PRE−CHORDsync-RESPOND-CYCLE-VIRTUAL(v)
if ui.predecessorv = nil∧ (h(v) > h(ui.cyclev) > h(ui)∨ (ui.cyclev = nil∧h(v) > h(ui))) then

if ui.cyclev 6= nil then
w = ui.cyclev

ui.cyclev = v
List.insert(w)

else if ui.successorv = nil ∧ (h(v) < h(ui.cyclev) < h(ui) ∨ (ui.cyclev = nil ∧ h(v) < h(ui)))
then

if ui.cyclev 6= nil then
w = ui.cyclev

ui.cyclev = v
List.insert(w)

else
List.insert(v)

Algorithm 4.2.14 PRE−CHORDsync-CYCLE-NEIGHBOR-REAL(v)
if v is real then

if ui.predecessorr = nil ∧ (h(v) > h(ui.cycler) > h(ui) ∨ (ui.cycler = nil ∧ h(v) > h(ui)))
then

if ui.cycler 6= nil then
w = ui.cycler

ui.cycler = v
List.insert(w)

else if ui.successorr = nil∧ (h(v) < h(ui.cycler) < h(ui)∨ (ui.cycler = nil∧h(v) < h(ui)))
then

if ui.cycler 6= nil then
w = ui.cycler

ui.cycler = v
List.insert(w)

else
List.insert(v)

else
List.insert(v)
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Algorithm 4.2.15 PRE−CHORDsync-INTRODUCTION()
if h(ui.predecessorv) 6= nil then

send message m = (introduction, ui) to ui.predecessorv
else

send message m = (cycle− virtual, ui) to ui.cyclev
if h(ui.successorv) 6= nil then

send message m = (introduction, ui) to ui.successorv
else

send message m = (cycle− virtual, ui) to ui.cyclev
if h(ui.predecessorr) 6= nil then

send message m = (forward, ui.predecessorr) to ui.predecessorv
if ui is not real then

if ui.successorv 6= nil then
send message m = (forward, ui.predecessorr) to ui.successorv

else
send message m = (cycle− neighbor − real, ui.predecessorr) to ui.cyclev

else
send message m = (cycle− neighbor − real, ui.cycler) to ui.predecessorv
if ui is not real then

send message m = (cycle− neighbor − real, ui.cycler) to ui.successorv
if h(ui.successorr) 6= nil then

send message m = (forward, ui.successorr) to ui.successorv
if ui is not real then

if ui.predecessorv 6= nil then
send message m = (forward, ui.successorr) to ui.predecessorv

else
send message m = (cycle− neighbor − real, ui.successorr) to ui.cyclev

else
send message m = (cycle− neighbor − real, ui.cycler) to ui.successorv
if ui is not real then

send message m = (cycle− neighbor − real, ui.cycler) to ui.predecessorv
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Algorithm 4.2.16 PRE−CHORDsync-PROBING()
if ∃uj : j > i then

if h(uj) < h(ui.predecessorv) then
send message m = (probing, uj) to ui.predecessorv

else if h(uj) > h(ui.successorv) then
send message m = (probing, uj) to ui.successorv

if ui.cyclev 6= nil ∧ h(ui.cyclev) < h(ui.predecessorv) then
send message m = (probing, ui.cyclev) to ui.predecessorv

else if ui.cyclev 6= nil ∧ h(ui.cyclev) > h(ui.successorv) then
send message m = (probing, ui.cyclev) to ui.successorv

if ui.cycler 6= nil ∧ h(ui.cycler) < h(ui.predecessorv) then
send message m = (probing, ui.cycler) to ui.predecessorv

else if ui.cycler 6= nil ∧ h(ui.cycler) > h(ui.successorv) then
send message m = (probing, ui.cycler) to ui.successorv

Like in the analysis of PRE−CHORD in the ATSS model we prove the theorem by showing some
intermediate steps. We start by showing that in O(n log n) rounds w.h.p. all nodes are weakly connected
in Elist and stay weakly connected.

Theorem 4.2.10 After O(n log n) rounds w.h.p. all virtual nodes are weakly connected in G =
(V +, Elist) and stay weakly connected.

Proof. We can use the same arguments as in the proof of Lemma 4.2.1 to show that all vir-
tual nodes are weakly connected and stay weakly connected in G = (V +, E). We proceed by
showing that nodes that are connected in Elist stay connected. If (ui, vj) ∈ Etlist then either vj ∈{
ui.successorv, u

i.predecessorv
}

or m = (forward, vj) ∈ ui.Ch or m = (introduction, vj) ∈
ui.Ch in either case if (ui, vj) /∈ Et+1

list then vj is forwarded in the send-list() action. Then according to
the protocol PRE−CHORDsync there is a path (ui = x0, · · ·xk = vj) with (xi, xi+1) ∈ Et+1

list and ui and
vj stay connected in Et+1

list .
It remains to show that for all (ui, vj) ∈ E0 − E0

list after t = O(n log n) rounds ui and vj are
connected in Etlist. W.l.o.g. we assume h(vj) > h(ui).

If (ui, vj) ∈ E0−E0
list then vj ∈

{
ui.successorr, u

i.cyclev, u
i.cycler

}
or m = (type, vj) ∈ ui.Ch

of type probing, cycle-virtual, respond-cycle-virtual or cycle-neighbor-real. If vj = ui.successorr, then
ui will send a message m = (forward, vj) to ui.successorv and thus after one round ui and vj are
connected in Etlist.

We now show that all virtual siblings are connected in Etlist after at most O(n log n) rounds. We prove
this by induction. Let ui, ui+1 be a pair of virtual siblings, such that in [ui, ui+1] is no other pair of virtual
siblings vj , vj+1. W.l.o.g. we assume h(ui < h(ui+1)). Then the probing from ui to ui+1 can only
proceed by forwarding the probing message to virtual or real successors or to other probed nodes. Let wk

be a node receiving the m = (probing, ui+1) probing initiated by ui. Then let ∆ be the number of nodes
w′ with h(w) < h(w′) < h(ui+1). Then m = (probing, ui+1) can only be forwarded at most ∆ − 1
further times before an edge (wk, ui+1) ∈ Etlist is created. If m = (probing, ui+1) is forwarded to a
virtual successorw′l of wk then by our previous analysis we know that wk and w′l are connected and stay
connected in Etlist. If m = (probing, w′l) ∈ wk.Ch then m = (probing, w′l) can also be forwarded at

107



Chapter 4 Self-Stabilizing Distributed Hash Tables

most ∆− 1 times. By applying this argument inductively we get a probing sequence ps(ui, ui+1) for
the pair ui, ui+1 with p = (ui = x0, x1 · · · , ui+1) after O(n log n) rounds w.h.p. (as ∆ = O(n log n)
w.h.p.), such that xi+1 ∈ {xi.successorv, xi.successorr}. Then after O(n log n) rounds w.h.p. ui and
ui+1 are connected in Etlist.

In the induction step we assume that for a pair ui, ui+1 all virtual siblings vj , vj+1 in [ui, ui+1]
are connected in Etlist after O(n log n) rounds w.h.p.. Let again wk be a node receiving the m =
(probing, ui+1) probing initiated by ui. Then let ∆ be the number of nodes w′l with h(wk) < h(w′l) <
h(ui+1). Then m = (probing, ui+1) can only be forwarded at most ∆− 1 further times before an edge
(wk, ui+1) ∈ Etlist is created. If m = (probing, ui+1) is forwarded to a virtual successor w′l of wk

then by our previous analysis we know that wk and w′l are connected and stay connected in Etlist. If
m = (probing, ui+1) is forwarded to a virtual sibling wl of wk then by the induction hypothesis we
know that wk and wl will be connected and stay connected in Etlist.

If m = (probing, w′l) ∈ wk.Ch then m = (probing, w′l) can also be forwarded at most ∆− 1 times.
By applying this argument inductively we get a probing sequence ps(ui, ui+1) for the pair ui, ui+1 with
p = (ui = x0, x1 · · · , ui+1) after O(n log n) rounds w.h.p. (as ∆ = O(n log n) w.h.p.), such that xi+1

is connected to and stays connected to xi in Etlist. Then after O(n log n) rounds w.h.p. ui and ui+1 are
connected in Etlist.
If a node ui receives a probing messagem = (probing, vj) ∈ ui.Ch (w.l.o.g. h(vj) > h(ui)) it either for-
wards vj by another probing message to a node w ∈ ui.P robing or w ∈

{
ui.successorv, u

0, · · · , uu.m
}

with h(ui) < h(w) < h(vj) or if vj cannot be forwarded an edge (ui, vj) ∈ Etlist is created.
Let ∆ be the number of nodes w , such that h(ui) < h(w) < h(vj). Then obviously ∆ = O(n log n)

and m = (probing, vj) can only be forwarded ∆ times. If ui forwards m = (probing, vj) to a node w
withm = (probing, w) ∈ ui.Ch thenm = (probing, vj) andm = (probing, w) can only be forwarded
at most ∆ − 1 times. If ui forwards m = (probing, vj) to a node w with w = uk ∈

{
u0, · · · , uu.m

}
then m = (probing, vj) can only be forwarded at most ∆ − 1 times and by our previous analysis we
know that ui and uk will be connected as virtual siblings in Etlist after O(n log n) rounds. If ui forwards
m = (probing, vj) to a node w with w = ui.successorv then we already know that ui and w are
connected and stay connected in Etlist and m = (probing, vj) can only be forwarded at most ∆ − 1
times. By applying these arguments inductively we get a probing sequence ps(ui, vj) for the pair ui, vj

with p = (ui = x0, x1 · · · , vj) after O(n log n) rounds w.h.p. (as ∆ = O(n log n) w.h.p.), such that
xi+1 is connected to and stays connected to xi in Etlist. Then after O(n log n) rounds w.h.p. ui and vj

are connected in Etlist.
If vj = ui.cyclev or vj = ui.cycler then ui will send a probing message m = (probing, vj)

in the probing() action. Thus we can reduce this case to the case of receiving a probing message
from vj . If m = (respond − cycle − virtual, vj) ∈ ui.Ch, ui either sets ui.cyclev = vj or treats
m as a forward message. Thus we can reduce it to one of the cases considered above. If m =
(cycle− neighbor − real, vj) ∈ ui.Ch, ui either sets ui.cycler = vj or treats m as a forward message.
Thus we can also reduce it to one of the cases considered above. If m = (cycle− virtual, vj) ∈ ui.Ch,
ui will send a message m = (respond− cycle− virtual, wk) containing a node wk ∈ ui.N . Thus by
our analysis we know that ui and wk and vj and wk will be connected in Etlist after O(n log n) rounds.
Then also ui and vj are connected. ut

Theorem 4.2.11 If an initial graph G ∈ IT is weakly connected and each nodes executes the proto-
col PRE−CHORDsync then the graph converges to a graph G′ such that G′e−list is a sorted list after
O(n log n) rounds w.h.p..
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Proof. By Theorem 4.2.10 we know that after O(n log n) rounds w.h.p. a state st0 is reached such
that all virtual nodes are weakly connected and stay weakly connected in Etlist for t ≥ t0. We use a
similar technique to form a sorted list in PRE−CHORDsync as in PLIST , i.e. we sort the nodes locally
according to their positions. The only difference is that we allow shortcuts by forwarding an identifier to a
virtual sibling. We therefore can simply apply Theorem 3.2.5, that provides an upper bound ofO(n log n)
rounds w.h.p., as |V +| = O(n log n) w.h.p.. ut

Theorem 4.2.12 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORDsync then the graph converges to a graph G′ such that G′e−cycle is a cyclic list after
O(n log n) rounds w.h.p..

Proof. According to Theorem 4.2.11 the computation reaches a state st0 such that all virtual nodes
form a sorted list after at most O(n log n) rounds w.h.p.. Thus only the virtual nodes with the minimal
vmin and maximal vmax position are missing a virtual predecessor or successor. Then these nodes send
in the introduction() action cycle-virtual messages to to their current cycle nodes w = vmin.cyclev and
w′ = vmax.cyclev. W.l.o.g. we consider only the case of vmin as the analysis for vmax is symmetric.
Then w is either vmax or w sends a respond-cycle-virtual message to vmin containing a node x with
h(x) > h(w). Then this action is repeated. If |V +| = O(n log n) w.h.p. vmin.cyclev is updated at most
O(n log n) times before vmin.cyclev = vmax. ut

Theorem 4.2.13 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PRE−CHORDsync then the graph converges to a graph G′ such that Gr(G′) is a Re-Chord network after
O(n log n) rounds w.h.p..

Proof. According to Theorem 4.2.12 the computation reaches a state st0 such that all virtual nodes
form a cyclic list after at most O(n log n) rounds w.h.p.. in every state st for t ≥ t0. Thus for each
node it holds that ui ui.successorv = successorv(u

i) and ui.predecessorv = predecessorv(u
i) and

ui.cyclev = cyclev(u
i). Then also for every real node u0 u0.successorv.predecessorr = u0 and

u0.predecessorv.successorr = u0. Let vj = u0.successorv then in the introduction() action vj will
inform its virtual successor about u0. As there are at most log n virtual nodes between a pair of consecutive
real nodes w.h.p. after O(log n) each virtual node knows its real predecessor and by the same arguments
the real successor and real cycle node. Then for each node ui ui.successorr = successorr(u

i) and
ui.predecessorr = predecessorr(u

i) and ui.cycler = cycler(u
i). ut

Then Theorem 4.2.9 follows immediately. We conclude the analysis by showing the Closure property
in the STSS model.

Theorem 4.2.14 If in an initial graph G with Gr(G) ∈ RE − CHORD every nodes executes the
protocol PRE−CHORDsync then each possible computation leads to a graph G′ such that Gr(G′) ∈
RE − CHORD.

Proof. The proof is the same as in the asynchronous setting for PRE−CHORD. ut

Stabilization work

Theorem 4.2.15 If in an initial graph G ∈ IT every node executes the protocol PRE−CHORD then
each possible computation leads to a graph G′ with Gr(G′) ∈ RE−CHORD with a stabilization work
of O(n log3 n) w.h.p. per node.
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Proof. In each round a virtual node sends O(1) introduction messages to its virtual successor and
predecessor. A virtual node also sends O(1) cycle-virtual messages and probing messages in each
round. Furthermore a virtual node only receives O(n log n) introduction messages, as a node ui only
receives an introduction message once from a node vj , if vj is not its virtual successor or predecessor.
If ui receives introduction messages from two nodes vj and wk and h(vj) < h(wk) < h(ui) (resp.
h(vj) > h(wk) > h(ui)) then ui will send a message m = (forward, wk) to vj thus vj updates
its virtual successor (resp. predecessor) and will not send an introduction message to ui again. As
cycle-real-neighbor messages are only sent to virtual successor or predecessors it follows that a node also
only receives O(n log n) cycle-real-neighbor messages.

A virtual node also only receives at most O(n log n) cycle-virtual messages, as a node ui only receives
a cycle-virtual message once from a node vj which is not the current node with the minimal or maximal
position sending a cycle-virtual message to ui. If ui receives cycle-virtual messages from two nodes
vj and wk and h(vj) < h(wk) < h(ui) (resp. h(vj) > h(wk) > h(ui)) then ui will send a message
m = (forward, vj) to wk thus wk updates its virtual predecessor (resp. predecessor) and will not send
an cycle-virtual message to ui again. Then ui also only sends O(n log n) respond-cycle-virtual messages.
A virtual node ui also only receives O(n log n) respond-cycle-virtual messages.

A virtual node ui sends at most O(1) probing messages to another node vj . A probing message is
only sent to a virtual successor or predecessor, a virtual sibling or another probed node. As we have
already seen a node can be the virtual successor or predecessor for at most O(n log n) nodes during the
stabilization. Thus a node ui can receive at most O(n log n) probing messages by nodes storing ui as
the virtual predecessor or successor. Furthermore a node ui has O(log n) virtual siblings w.h.p. Thus
during the stabilization ui receives at most O(n log2 n) probing messages by its virtual siblings. If there
are probing messages containing ui, ui might also receive probing messages. As we have already seen
there are at most O(n log n) nodes w with w.cyclev = ui during the stabilization, thus there are also at
most O(n log n) probes containing ui initiated by these nodes. Additionally ui−1 initiates probes to ui in
each round resulting in O(n log n) probes containing ui. Thus during the stabilization there are at most
O(n log n) probes containing ui then ui also receives only O(n log2 n) probing messages. As a node ui

only initiates probing messages to one virtual sibling ui+1 and its virtual cycle node ui.cyclev a node ui

sends in total O(n log2 n) probing messages resulting from the O(1) messages initiated in each round
and the O(n log2 n) probing messages received.

To bound the number of forward messages we follow the ideas presented in the proof of 3.2.10. We
show that a node u receives at mostO(n log n) forward messages with nodes vj , such that h(ui) < h(vj).
There are three cases in which ui receives such a message. Either ui sent an introduction message
to a node w with h(vj) < h(w) and received vj as a response or vj is sent to ui by a node w′ with
h(w′) < h(ui) < h(vj) that simply forwards vj to a closer node according to its local sorting or receives
vj as a response to a cycle-virtual message previously send by ui.

The first and last case can happen at most once. As soon as ui receives vj it will never introduce itself
to such a node w with h(vj) < h(w). If ui receives vj as a response to cycle-virtual message, then
ui was missing a virtual successor and now received a virtual successor and thus stops sending cycle-
virtual messages. So we can focus on the second case. Let’s assume ui receives ak forward messages
containing the node wk from nodes w′ with h(w′) < h(ui) where the wks are sorted in descending order
h(wk) > h(wk+1). The ak messages containing wk can have the three aforementioned sources. Either
wk was stored initially in a node w′ with h(w′) < h(ui) or such a node w′ received wk as a response
to an introduction or cycle-virtual message. We therefore split ak in to two components. Let bk be the
number of times ui receives wk because initially there is an edge (w′, wk) ∈ E0 and over time wk is
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forwarded to ui. And let ck be the number of times ui receives wk, because w′ received wk after an
introduction or virtual-cycle message. We first can observe that

∑l
i=1 bi = O(n log n). If a node w′

initially has edges (w′, wk) and (y, wl) with l > k then this wk will never be forwarded to ui, as it will
be forwarded to a node v with h(ui) < h(wl) ≤ h(v) < h(wk). So there have to be

∑
k=1 bk different

nodes w′ with h(w′) < h(ui). There can be at most O(n log n) such nodes w.h.p..
To give a bound on

∑
k=1 ck we have to determine how many different wks a node w′ can receive

as a response to an introduction or cycle-virtual message. If a node receives wk it cannot have an
edge (w′, wl) with l > k as otherwise w′ would not send an introduction message to a node w with
h(w) > h(wk) > h(wl) also w′ would not miss a virtual successor and send a cycle-virtual message. So
w′ receives wl after wk, but before w′ forwards wk to a node v with h(w′) < h(v) ≤ h(ui), because
otherwise w′ would not send an introduction message to a node w′′ with h(w′′) > h(wl) > h(v). So
either w′ has edges to wl and wk at the same time and then forwards wk to v′ with h(v′) > h(ui) and
this wk is never forwarded to ui or wk is forwarded to such a node v′ before receiving wl. So each node
w′ receives at most one of the wks as a response. Then

∑
i=k ck = O(n log n) w.h.p..

If a node receives at most O(n log n) forward messages w.h.p. it will also send at most O(n log n)
forward messages w.h.p.. Summing up we get that each virtual node sends or receives at mostO(n log2 n)
messages w.h.p.. As each real node simulates O(log n) virtual nodes w.h.p. each real node send or
receives O(n log3 n) in total.

ut

Maintenance work

Theorem 4.2.16 If in an initial graph G ∈ RE − CHORD∗ every nodes executes the protocol
PRE−CHORD then each possible computation leads to a graphG′ ∈ RE−CHORD with a maintenance
work of O(log2 n).

Proof. Each virtual node sends to and receives from its virtual successor and predecessor O(1)
introduction messages. In a stable state no forward messages are sent or received. Each virtual node sends
to and receives from its virtual successor and predecessor O(1) cycle-real-neighbor messages. As only
the virtual nodes with a minimal or maximal position send one cycle-virtual message a node can only
receive O(1) such messages, then also only O(1) respond-cycle-virtual messages are sent and received.
A node only receives probing messages by its virtual successor and predecessor or its virtual siblings so
in total O(log n) w.h.p. or at most one probing message for each probing message destined for the node
itself. There are at most O(1) probes initiated to a virtual node in each round. Summing up a virtual node
receives and sends at most O(log n) messages in each round w.h.p.. Then a real node sends and receives
at most O(log2 n) messages in one round in a stable state w.h.p.. ut

Single Join and Leave Event

In this section we examine the number of steps needed for a network to recover to its stable state when a
node joins or leaves the network.

When a node joins the network, it is initially connected with an arbitrary real node already in the
network and it is integrated to its stable position by the protocol PRE−CHORDsync.

Theorem 4.2.17 In a legal state it takes O(log2 n) rounds and O(log4 n) messages w.h.p. to recover
and stabilize after a new real node joins or leaves the network.
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Proof. If a node u joins the network and is connected to a real node v already in the network then,
according to PRE−CHORDsync, u determines u.m and simulates the corresponding virtual nodes ui.
Thus for at least one ui ui.successorv = v or ui.predecessorv = v. Then ui introduces itself to v.
Then either v stores ui in its internal variables v.successorv, v.predecessorv or v.cyclev or forwards
ui. Then after O(log n) rounds ui will reach its correct virtual successor or predecessor. Then after
O(log n) further rounds ui will know its other correct real successor w0 and predecessor w′0and its
virtual successor and predecessor (or cycle nodes). Then there is another virtual sibling uj such that w0

or w′0 are its real predecessor or successor. Thus after O(log n) further rounds by the same arguments
also uj will know its correct real and virtual neighbors. As u simulates O(log n) virtual nodes it takes
O(log2 n) rounds to integrate u and all its virtual nodes.

A new node ui sends at most O(1) forward messages as it is only (initially) connected to at most O(1)
nodes vj that are not its virtual successor or predecessor. As soon as ui updates its virtual successor and
predecessor it is connected to its correct virtual successor or predecessor, and then only has to forward
the old values once. In each round a joining node ui sends O(1) introduction, cycle-virtual messages and
cycle-real-neighbor messages. As seen in the analysis of the maintenance work each node receives and
sends at most O(log n) probing messages in one round. This argument still holds as each ui can only be
the virtual successor or predecessor of O(1) nodes in one round. Then a joining real node u has to send
and receive O(log4 n) messages until a joining node is integrated. A node vj already in the network is a
virtual successor or predecessor of at most O(1) nodes ui thus vj only receives O(1) messages in one
round additional to its maintenance work while all ui are integrated.

If a node u leaves the network also all its virtual nodes leave the network. So there areO(log n) gaps in
the cyclic list. If a gap exists because a virtual node ui i > 0 left, then this gap will be closed in O(log n)
rounds, as the virtual successor and predecessor wj of ui now will take their real successor or predecessor
v0 as also their virtual successor or predecessor. Then this real node v0 will forwardwj to its correct virtual
predecessor or successor. As there are w.h.p. at most O(log n) virtual nodes between two real nodes after
O(log n) rounds w.h.p. wj .successorv = successorv(w

j) or wj .predecessorv = predecessorv(w
j)

and the gap is closed.
If a gap exists because the real node u0 left, then its virtual successor and predecessor no longer have

a virtual predecessor or successor and will set their virtual cycle node to the node with the maximal or
minimal position they know. As all other gaps are closed after O(log n) rounds w.h.p. this start-point of
this cycle edge will be updated along a routing path thus O(log n) times w.h.p. and the gap is closed.

In the first case a real node v0 receives at most O(1) additional introduction messages and sends
O(1) additional forward messages. In the second case at most O(1) nodes (u’s virtual successor and
predecessor) send a cycle-virtual message, then a node vj can receive at most O(1) additional cycle-
virtual messages in one round. Then each virtual node still sends or receives O(log n) messages in each
round. Thus a real node v sends and receives at most O(log3 n) messages until a stable state is reached.

ut

4.3 CONE-DHT: A distributed self-stabilizing algorithm for a
heterogeneous storage system

4.3.1 Introduction

In this section we consider the problem of designing distributed protocols for a dynamic heterogeneous
storage system
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In this section we present a self-stabilizing overlay network for a distributed heterogeneous storage
system based on the data assignment presented in [72].

We state the following requirements on our solution: Fair load balancing: every node with x% of the
available capacity gets x% of the data. Space efficiency: Each node stores at most
O(|data assigned to the node|+ log n) information. Routing efficiency: There is a routing strategy that
allows efficient routing in at most O(log n) hops. Low degree: The degree of each node is limited by
O(log n). Furthermore we require an algorithm that builds the target network topology in a self-stabilizing
manner, i.e., any weakly connected network G = (V,E) is eventually transformed into a network so that
a (specified) subset of the explicit edges forms the target network topology (convergence) and remains
stable as long as no node joins or leaves (closure).

4.3.2 Our contribution

We present a protocol PCONE solving the overlay problem CONE. The ideas of the protocol PCONE

and the CONE-DHT overlay network, the results for the correctness in the ATSS model in Theorem
4.3.5 and the case of a joining or leaving node given in Theorem 4.3.21 and Theorem 4.3.22 are based
on results published in [37] which is a joint work with my colleague Andreas Koutsopoulos and our
supervisor Christian Scheideler:

Sebastian Kniesburges, Andreas Koutsopoulos and Christian Scheideler, CONE-DHT: A distributed
self-stabilizing algorithm for a heterogeneous storage system, 27th International Symposium on Dis-
tributed Computing (DISC 2013)

The results for the stabilization time in the STSS model in Theorem 4.3.13, stabilization time in
Theorem 4.3.18 and maintenance work in Theorem 4.3.19 are presented for the first time.

We present a self-stabilizing algorithm that organizes a set of heterogeneous nodes in an overlay
network such that each data element can be efficiently assigned to the node responsible for it. We use
the scheme described in [72] (which gives us good load balancing) as our data management scheme and
present a distributed protocol for the overlay network, which is efficient in terms of message complexity
and information storage and moreover works in a self-stabilizing manner. The overlay network efficiently
supports the basic operations of a heterogeneous storage system, such as the joining or leaving of a node,
changing the capacity of a node, as well as searching, deleting and inserting a data element. In fact we
show the following results:

There is a topological self-stabilizing protocol for maintaining a heterogeneous storage system that
achieves fair load-balancing, space efficiency and routing efficiency, while each node has a degree of
O(log n) w.h.p.. The protocol PCONE is correct in the ATSS and STSS model. In the STSS model we
show a stabilization time of O(n), a stabilization work of O(n2 +Dn log n) w.h.p. if there are D data
items stored in the network, a maintenance work of O(r + log2 n) w.h.p. if a node stores data items
supervised by r reference nodes. A single join, leave or capacity change of a node can be handled in
O(log n) rounds and needs O(log3 n) work. The data operations can be handled in O(log n) time in a
stable system.

4.3.3 The original CONE-Hashing

Before we present our solution, we first give some more details on the original approach that we call
CONE-Hashing [72]. In [72] the authors present a centralized solution for a heterogeneous storage system

113



Chapter 4 Self-Stabilizing Distributed Hash Tables

in which the nodes are of different capacities. We denote the capacity of a node u as c(u). We use a hash
function h : V 7→ [0, 1) that assigns to each node a hash value. A data element of the data set D is also
hashed by a hash function g : D 7→ [0, 1). W.l.o.g. we assume that all hash values and capacities are
distinct.

According to [72] each node has a height function Hf
u (x) = 1

cu
f(|x − h(u)|), which determines

which data is assigned to the node, where f is a monotonic increasing function. A node is responsible
for those elements d with Hf

u (g(d)) = minv∈V {Hf
v (g(d))}, i.e. d is assigned to u. We denote by

R(u) = {x ∈ [0, 1) : Hf
u (x) = minv∈V {Hf

v (x)}} the responsibility range of u (see Figure 4.5). Note
that R(u) can consist of several intervals in [0, 1).

0 1

h:IDà[0,1)

g:Dà[0,1)

Hfu(x)

d1 d2

u v

Figure 4.5: Responsibilities in CONE

In the original paper [72], the authors considered two cases of height functions, one of linear form
H lin
u (x) = 1

c(u) |x− h(u)| and of logarithmic form H log
u (x) = 1

c(u)(−log(|1− (x− h(u))|). For these
height functions the following results were shown by the authors [72]:

Theorem 4.3.1 A data element d is assigned to a node u with probability c(u)∑
v∈V c(v)−c(u) for linear

height functions H lin
u (x) and with probability c(u)∑

v∈V c(v) for logarithmic height functions H log
u (x). Thus

in expectation fair load balancing can be achieved by using a logarithmic height function H log
u (x).

The CONE-Hashing supports the following operations for a data element d or a node v:

• Search(d): Returns the node u such that g(d) ∈ R(u).

• Insert(d): d is assigned to the node returned by Search(d).

• Delete(d): d is removed from the node returned by Search(d).
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• Join(v): For all u ∈ V the responsibility ranges R(u) are updated and data elements d, with
g(d) ∈ R(v) are moved to v.

• Leave(v): For all u ∈ V the responsibility ranges R(u) are updated and data elements d assigned
to v are moved to nodes w such that g(d) ∈ R(w).

• CapacityChange(v): For all u ∈ V the responsibility ranges R(u) are updated and data elements d
not assigned to v, but with g(d) ∈ R(v) are moved to v while data elements d′ assigned to v but
with g(d) ∈ R(w) are moved to nodes w.

In [72] the authors further present a data structure to efficiently support the described operations in a
centralized approach. For their data structure they showed that there is an algorithm that determines for a
data element d the corresponding node u with g(d) ∈ R(u) in expected time O(log n). The used data
structure has a size of O(n) and the joining, leaving and the capacity change of a node can be handled
efficiently.

In the following we show that CONE-Hashing can also be realized by using a distributed data
structure called CONE-DHT. We present a suitable topology on the node set V that supports an efficient
determination of the responsibility ranges R(u) for each node u . The topology supports an efficient
Search(d) algorithm, i.e. for an Search(d) query inserted at an arbitrary node w, the node v with
g(d) ∈ R(v) should be found. Furthermore a Join(v), Leave(v) and CapacityChange(v) operation does
not lead to a high amount of data movements, (i.e. no more than the data now assigned to v or no longer
assigned to v should be moved) or a high amount of structural changes ( i.e. changes in the topology built
on V ).

4.3.4 The CONE-DHT

In order to built the CONE-DHT we introduce the CONE-overlay network, which can support efficiently
a heterogeneous storage system.

The network layer

For the determination of the edge set of a CONE-network, we need following definitions, with respect to
a node u:

• succ+
1 (u) = argmin{h(v) : h(v) > h(u) ∧ c(v) > c(u)} is the next node at the right of u

with larger capacity, and we call it the first larger successor of u. Building upon this, we define
recursively the i-th larger successor of u as: succ+

i (u) = succ+
1 (succ+

i−1(u)), ∀i > 1, and the
union of all larger successors as S+(u) =

⋃
i succ

+
i (u).

• The first larger predecessor of u is defined as: pred+
1 (u) = argmax{h(v) : h(v) < h(u) ∧ c(v) >

c(u)} i.e. the next node at the left of u with larger capacity. The i-th larger predecessor of
u is: pred+

i (u) = pred+
1 (pred+

i−1(u)),∀i > 1, and the union of all larger predecessors as
P+(u) =

⋃
i pred

+
i (u).

• We also define the set of the smaller successors of u, S−(u), as the set of all nodes v, with
u = pred+

1 (v), and the set of the smaller predecessors of u, P−(u) as the set of all nodes v, such
that u = succ+

1 (v).
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• We further define the successor of a node u succ(u) = argmin {h(v) : h(v) > h(u)} and the
predecessor of and node u pred(u) = argmax {h(v) : h(v) < h(u)}.

• We define also the neighborhood set of u as N(u) = S+(u) ∪ P+(u) ∪ S−(u) ∪ P−(u).

Now we can define the CONE-network in the following way.

Definition 4.3.1 A graph G = (V,E) is a CONE-network if V is the set of hosts in the network and
E = {(u, v) : v ∈ S+(u) ∪ P+(u) ∪ S−(u) ∪ P−(u)}.

In other words, a node u maintains connections to each node u, if there does not exist another node w
with larger capacity than c(w) > c(v) between v and u (see Figure 4.6). We will prove that this graph is
sufficient for maintaining a heterogeneous storage network in a self-stabilizing manner and also that in
this graph the degree is bounded logarithmically w.h.p..

0 1

capacity

u

u.P+

u.P-

u.S+

u.S-

u.succ+1

u.pred+1

Figure 4.6: The CONE-network from u’s perspective

The data management layer

We discussed above how the data is assigned to the different nodes. That is the assignment strategy we
use for data in the CONE-network.

In order to understand how the various data operations are realized in the network, we have to describe
how each node maintains the knowledge about the data it has, as well as the intervals it is responsible
for. In fact in our CONE-DHT a node u does not know for which intervals it is responsible for, but there
always is another node v that can decide if a data item d should be stored at node u. It turns out that in
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order for a data item to be forwarded to the correct node, which is responsible for storing it, it suffices
to contact the closest node (in terms of hash value) from the left to the data item’s hash value. That is
because then, if the CONE-network has been established, this node (for example node v in Figure 4.7) is
aware of the responsible node u for this data item. We call the interval between h(v) and the hash value
of v’s closest right node Iv. We say that v is supervising Iv. We show the following theorem.

0 1

h:IDà[0,1)

g:Dà[0,1)

Hfu(x)

d1 d2

u v

Iu Iv

Figure 4.7: Responsibilities in CONE-DHT with supervised intervals

Theorem 4.3.2 In a CONE-network a node u knows all the nodes v with R(v) ∩ Iu 6= ∅.

Proof. We need to show that all these nodes v withR(v)∩Iu 6= ∅ are in S+(u)∪P+(u)∪S−(u)∪P−(u).
W.l.o.g. let us consider only the case of h(v) > h(u), i.e. v ∈ S+(u) ∪ S−(u). We assume

that there is a node w with h(u) < h(w) that has a responsible interval in u’s supervised interval
and is not in S+(u) or S−(u). If w is not in S−(u) or S+(u) there must be at least one node w′

with a larger capacity c(w′) > c(w) which is closer to u than w with h(u) < h(w′) < h(w). Then
∀x < h(v) ∈ [0, 1) it holds that|x − h(w′)| < |x − h(w)| =⇒ f(|x − h(w′)|) < f(|x − h(w)|)
for some height function Hf

u (x), since f is increasing. Moreover, since c(w′) > c(w) we can show
1

c(w′)f(|x− h(w′)|) < 1
c(w)f(|x− h(w)|) =⇒ Hf

w′(x) < Hf
w(x)∀x < h(v) ∈ [0, 1), so w′ dominates

w for those points x. And since h(u) < h(w′), it cannot be that w is responsible for an interval in Iu,
since in that region w is dominated (at least) by w′. This contradicts our assumption about the existence
of such a node w. ut

So, the nodes store their data in the following way. If a node u has a data item d that falls into one of
its responsible intervals, it stores in addition to this item a reference to the node v that supervises this
interval. A node also stores the sub-interval it is responsible for in which the data item d falls. In case the
data item is not stored at the correct node, v can resolve the conflict when contacted by u. Therefore u
has to contact the reference node v periodically.
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A node has operations for inserting, deleting and searching a data item in the CONE-network.
Let us focus on the search operation Search(d) for a data item. Again we first search for the node u

supervising the interval d falls into. Then u contacts the node responsible for it. We use a greedy routing
scheme to find correct node v with g(d) ∈ Iv. If a search request wants to reach some position g(d) = x
in [0, 1), and the request is currently at node u, then u forwards the search operation to the node w in
N(u) that is closest to x and x > h(w) > h(u) or x < h(w) < h(u), until the node supervising x is
reached. Then this node will forward the request to the responsible node. A more formal definition of the
greedy routing follows:

Definition 4.3.2 The CONE Greedy routing strategy is defined as follows: If operation op is to be
executed at position x in [0, 1] and op is currently at node u, then u forwards op to the node v such that
v = argmax {h(w) : w ∈ N(u) ∪ {u} ∧ h(w) < x} if x > h(u) or u forwards op to the node v such
that v = argmin {h(w) : w ∈ N(u) ∪ {u} ∧ h(w) > x} if x < h(u). If h(v) = h(u) and x > h(u),
then x ∈ Iu and u forwards op to the node responsible for the sub-interval containing x. If h(v) = h(u)
and x < h(u) then u forwards op to pred(u) as x is in its supervised interval.

In that way we can route to the responsible node and then get an answer whether the data item is found
or not, and so the searching is realized. The delete operation Delete(d) for a data item d can be realized
in the same way, only that when the item is found, it is also deleted from the responsible node. An insert
operation Insert(d) follows a similar procedure, with the difference that when the responsible node is
found, the data item is stored by it together with a reference to the supervising node.

Structural Properties of a Cone Network

In this section we show that the degree of a node in a stable CONE-network is bounded by O(log n)
w.h.p, and hence the information stored by each node (i.e the number of nodes which it maintains contact
to, |Ee(u)|) is bounded by O(log n+ |amount of data stored in a node|) w.h.p..

First we show following lemma:

Lemma 4.3.1 In a stable CONE network for each u ∈ V , |S+(u)| and |P+(u)| are in O(log n) w.h.p.

Proof. For an arbitrary u ∈ V let W = S+(u) ∪ {u} = {w0, w1, w2 · · ·wk} and let W be
sorted by ids in ascending order, such that h(wi) < h(wi+1) for all 1 ≤ i < k. Furthermore, let
Ŵ (wi) = {w ∈ V : h(w) > h(wi) ∧ c(w) > c(wi)} be the set of all nodes with larger positions and
larger capacities than wi.

So, the determination of W and so S+(u) is done by continuously choosing the correct wi out of
Ŵ (wi−1), when w1, w2, ...wi−1 are already chosen. In this process, each time a wi is determined, the
number of nodes from which wi+1 can be chosen is getting smaller, since the nodes at the left of wi
as well as the nodes with smaller capacity than wi can be excluded. We call the choice of wi good,
if |Ŵ (wi−1)| > 2|Ŵ (wi)|, i.e. the number of remaining nodes in Ŵ (wi) is (at least) halved. Let
|Ŵ (w0)| = k = O(n). Since the position h(u) for each node u is assigned uniformly at random, we
can easily see that Pr[wiis a good choice] = 1

2 , ∀i ≥ 1. Then after a sequence of i choices that contains
log k good choices the remaining set Ŵ (wi) is the empty set. Thus there can not be more than log k good
choices in any sequence of choices.

So, what we have now is a random experiment, that is described by the random variable l, that is
equal to the number of choices we must make, until we manage to have made log k good ones. Then the

118



4.3 CONE-DHT: A distributed self-stabilizing algorithm for a heterogeneous storage system

random variable l follows the negative binomial distribution. In order to bound the value of l from above
we apply the following tail bound for negative binomial distributed random variables derived by using a
Chernoff bound:

Let Y have the negative binomial distribution with parameters s and p, i.e. with probability p there
is a success and Y is equal to the number of trials needed for s successes. Pick δ ∈ [0, 1]. Then
Pr[Y > s

(1−δ)p ] ≤ exp( −δ2s3(1−δ))

We apply this claim with p = 1
2 and s = log k and we pick δ = 7

8 . Then Pr[Y > 16 log k] ≤
exp(−δ

22 log k
3(1−δ) ) < k−2. Thus with probability at least 1 − k−2, l = O(log k). As k = O(n) also

l = O(log n). ut

Lemma 4.3.2 In a stable CONE network for each u ∈ V , E[|S−(u)|] and E[|P−(u)|] are O(1) and
|S−(u)| and |P−(u)| are O(log n) w.h.p..

Proof. W.l.o.g. we consider only E[|S−(u)|] and |S−(u)| in the proof. For each node v being in S−(u)
it holds that u = pred+

1 (v). Since each node has at most one pred+
1 ,
∑

v∈V S
−(v) = n. Then for a node

u, E[S−(u)] = 1.
Now we consider the second part of the statement. Let v be the direct right neighbor of u, i.e. the first

(from the left) node in S−(u) (S−(u)[1]). Then we can observe that every node in S−(u) (except v) must
be in S+(v). Let us assume that a node w is in S+(v) but not in S−(u), then there must be another node
y : h(u) < h(v) < h(y) < h(w) and c(y) > c(w), such that y ∈ S−(u). But then y would be also in
S+(v) instead of w. Then S−(u)/{v} ⊆ S+(v), but we already showed that |S+(v)| = O(log n) w.h.p.,
from which follows that |S−(u)| = O(log n) w.h.p.. ut

Combining the two lemmas we get the following theorem.

Theorem 4.3.3 The degree of each node in a stable CONE network is O(log n) w.h.p.

Additionally to the nodes in S+(u), S−(u), P+(u) and P−(u) that lead to the degree of O(log n)
w.h.p. a node u only stores references to nodes supervising the intervals it is responsible for, where it
actually stores data. A node u stores at most one reference and one interval for each data item.

Theorem 4.3.4 In a stable CONE network each node stores at most O(log n+ |amount of data|) infor-
mation w.h.p.

Once the CONE networkGCONE is set up, it can be used as a heterogeneous storage system supporting
inserting, deleting and searching for data. The CONE Greedy routing implies the following bound on the
diameter:

Lemma 4.3.3 CONE Greedy routing takes on a stable CONE network w.h.p. no more than a logarithmic
number of steps, i.e. the diameter of a CONE network is O(log n) w.h.p..

Proof. This follows directly from Lemma 4.3.1, where we showed that each node u has w.h.p. a
logarithmic number of nodes in P+(u) and S+(u), which means each node has a logarithmic distance to
the node with the greatest capacity w.h.p., and vice versa, which means that the node with the greatest
capacity has logarithmic distance to every node in the network. The proof for the CONE Greedy routing
follows from a generalization of this observation. If an operation op with position x ∈ Iu is currently at
node v w.l.o.g. we assume h(u) > h(v), then op is forwarded at most O(log n) times w.h.p. to a node w
such that w ∈ S+(v) and further O(log n) times w.h.p. (along nodes in S+(u)) from w to u. ut
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4.3.5 Formal definition

Now we define the problem we solve in this paper in the previously introduced notation. We provide a
protocol PCONE that solves the overlay problem CONE and is topologically self-stabilizing.

In order to give a formal definition of the edges in Ee and in Ei we firstly describe which internal
variables are stored in each node u, i.e. which edges exist in Ee:

• u.S+ a set of nodes v with h(v) > h(u) ∧ c(v) > c(u) such that ∀w ∈ u.N : h(v) > h(w) >
h(u) =⇒ c(v) > c(w). All nodes in u.S+ can be responsible in Iu.

• u.succ+
1 = argmin {h(v) : v ∈ u.S+}: The first node to the right with a larger capacity than u

• u.P+ a set of nodes v with h(v) < h(u) ∧ c(v) > c(u) such that ∀w ∈ u.N : h(v) < h(w) <
h(u) =⇒ c(v) > c(w). All nodes in u.P+ can be responsible in Iu.

• u.pred+
1 = argmax {h(v) : v ∈ u.P+}: The first node to the left with a larger capacity than u

• u.S− a set of nodes v with h(v) > h(u) ∧ c(v) < c(u) such that ∀w ∈ u.N : h(v) > h(w) >
h(u) =⇒ c(v) > c(w). All nodes in u.S− can be responsible in Iu.

• u.P− a set of nodes v with h(v) < h(u) ∧ c(v) < c(u) such that ∀w ∈ u.N : h(v) < h(w) <
h(u) =⇒ c(v) > c(w). For all nodes in u.P− v.succ+

1 = u.

• u.S∗ =
{
u.S− ∪

{
u.succ+

1

}}
: the set of right neighbors that u communicates with. We assume

that the nodes are stored in ascending order so that h(u.S∗[i]) < h(u.S∗[i + 1]). If there are k
nodes in u.S∗ then u.S∗[k] = u.succ+

1 .

• u.P ∗ =
{
u.P− ∪

{
u.pred+

1

}}
: the set of left neighbors that u communicates with. We assume

that the nodes are stored in descending order so that h(u.P ∗[i]) > h(u.P ∗[i + 1]) If there are k
nodes in u.P ∗ then u.P ∗[k] = u.pred+

1 .

• u.DS the data set, containing all intervals u.DS[i] = [a, b], for which u is responsible and stores
actual data u.DS[i].data. Additionally for each interval a reference u.DS[i].ref to the supervising
node is stored

Additionally each node stores the following variables :

• u.τ : the timer predicate that is periodically true

• u.Iu: the interval between u and the successor of u. u is supervising u.Iu.

• u.Ch: The channel for incoming messages.

The content of a message is given by the ids of some nodes and a specification of the message type.
So different type of messages can trigger different actions. Thus a message m is of the following form
m = (type, ids).

• forward: By this message a node introduces itself to other nodes or other nodes to each other, if
they should be connected.

• list-update: This type of message is used to update the P+ and S+ list in nodes in u.S− and u.P−.
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• check-interval: By this message a node checks whether it is responsible for a certain interval [a,b]
by asking the supervising node.

• update-interval: By this message a supervising node informs a responsible node about the intervals
it is responsible for.

• forward-data: This type of message is used to route data in the network.

• store-data: This type of message is used to tell a node to store the data it is responsible for.

In the following we define when an assignment of the variables is valid and how the sets of initial
topologies IT and the goal topologies CONE look like.

Definition 4.3.3 We define a valid state as an assignment of values to the internal variables of all nodes
so that the definition of the variables is not violated, e.g. u.S+ contains no nodes w with h(w) < h(u)
or c(w) < c(u) or h(u) < h(v) < h(w) and c(v) > c(w) for any v ∈ u.N . Note that an invalid
assignment can be locally repaired immediately. Thus we assume in the following w.o.l.g. that initially
and in every later state the assignment is valid for every node.

Definition 4.3.4 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of initial topologies is given by:

IT = {G = (V,E = Ee ∪ Ei) : G is weakly connected}

Definition 4.3.5 Let Ee and Ei be defined as described in Chapter 2 according to the definition of
internal variables. Then the set of target topologies is given by:

CONE = {G = (V,E) : Ge is a CONE-network}

4.3.6 Protocol PCONE

In this section we give a description of our algorithm. The algorithm is a protocol that each node executes
based on its own node and channel state. The protocol contains periodic actions that are executed if the
timer predicate τ is true and actions that are executed if the node receives a message m.

In order for a node u to maintain valid lists (u.S+, u.P+), it makes a periodic check of its lists with its
neighbors in u.S−, u.P−, where the lists are compared, so that inconsistencies are repaired. Moreover a
node checks whether u.S−/u.P− are valid and introduces to every node in u.S−/u.P− to them their
closest larger right/left neighbors (from u’s perspective).

Unnecessary (for these lists) nodes are forwarded. Forwarding means that node u sends a node
v : h(v) > h(u) (resp. h(v) < h(u)) to the node w′ = argmax {h(w) : w ∈ u.S∗ ∧ h(w) < h(v)}
(resp. w′ = argmin {h(w) : w ∈ u.P ∗ ∧ h(w) > h(v)}) by a message m = (forward, v) to w′. The
idea is to forward nodes closer to their correct position, so that a sorted list is formed.

In the periodic actions each node introduces itself to its successor and predecessor u.S∗[1] and u.P ∗[1]
by a message m = (forward, u). Also each pair of nodes (v, w) in u.P ∗ and u.S∗ with consecutive
positions h(v) and h(w) are introduced to each other. A node u also introduces the nodes u.succ+

1

and u.pred+
1 to each other by messages of type forward. By this a triangle is formed by edges

(u, u.pred+
1 ), (u, u.succ+

1 ), (u.succ+
1 , u.pred

+
1 ) (see Figures 4.8).
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Figure 4.8: Construction of a triangle between u, u.succ+
1 , and u.pred+
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To establish correct P+ and S+ lists in each node, a node u sends its u.P+ (resp. u.S+) list
periodically to all nodes v in u.S− (resp. u.P−) by a message m = (list− update, u.S+ ∪ {u}) (resp.
m = (list− update, u.P+ ∪ {u})) to v.

The last action a node periodically executes is to send a message to each reference in u.DS to
check whether u is responsible for the data in the corresponding interval [a, b] by sending a message
m = (check − interval, [a, b], u).

If the message predicate is true and u receives a message m, the action u performs depends on the type
of the message. If u receives a message m = (forward, v) u checks whether v has to be included in
it’s internal variables u.P+, u.S+, u.P− or u.S−. If u doesn’t store v, v is delegated. If u receives a
message m = (list− update, list), u checks whether the identifiers in list have to be included in it’s
internal variables u.P+, u.S+, u.P− or u.S−. If u doesn’t store a node v in list, v is delegated. If u
stores a node v in u.S+ (resp. u.P+) that is not in list, v is also delegated as it also has to be in the list
of u.pred+

1 (resp. u.succ+
1 ). The remaining messages are necessary for the data management.

If u receives a message m = (check − interval, [a, b], v) it checks whether v is in u.S+ or u.P+

or has to be included, or delegates v. Then u checks whether [a, b] is in u.Iu and if v is responsible
for [a, b]. If not, u sends a message m = (update − interval, IntervalSet) to v containing a set of
intervals in [a, b] that v is not responsible for and references of the supervising nodes. If u receives a
message m = (update− interval, IntervalSet) it forwards all data in intervals in IntervalSet to the
corresponding references by a message m = (forward − data, data). If u receives such a message
it checks whether the data is in its supervised interval u.Iu. If not u forwards the data according to a
greedy routing strategy, if u supervises the data it sends a message m = (store− data, data, u) to the
responsible node. If u receives such a message it inserts the data, the interval and the corresponding
reference in u.DS. Note that no identifiers are ever deleted, but always stored or delegated. This ensures
the connectivity of the network.

In the following we give a description of the protocol executed by each node in pseudo code in
Algorithms 4.3.1- 4.3.9.

4.3.7 Analysis in the ATSS model

In this section we show the correctness of the presented protocol in the ATSS model. We do this by
showing that by executing our algorithm any weakly connected network eventually converges to a CONE
network and once a CONE network is formed it is maintained in every later state. We further show that in
a CONE network the data is stored correctly.

To show convergence we will divide the process of convergence into several phases, such that once one
phase is completed its conditions will hold in every later program state.

Theorem 4.3.5 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PCLIQUE then eventually the graph converges to a graph G′ ∈ CONE (Convergence). If in an initial
graph G ∈ CONE every nodes executes the protocol PCONE then each possible computation leads to
a graph G′ ∈ CONE (Closure).

To prove this theorem we have to introduce some formal definition of the intermediate graphs and
some subset of the edges.

Definition 4.3.6 We define the following subsets of edges:
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Algorithm 4.3.1 PCONE

m ∈ u.Ch received by u→ . demand actions depending on the received message
if m=(list-update,List) then

ListUpdate(List)
else if m=(forward,v) then

Forward(v)
else if m=(check-interval,[a,b],v) then

CheckInterval([a,b],v)
else if m=(update-interval,IntervalSet) then

UpdateInterval(IntervalSet)
else if m=(forward-data,data) then

ForwardData(data)
else if m=(store-data,data,interval,v) then

StoreData(data,interval,v)
u.τ → . periodic actions
for all w ∈ u.S− do

send m=(list-update,u.P+ ∪ {u}) to w
for all w ∈ u.P− do

send m=(list-update,u.S+ ∪ {u}) to w
BuildTriangle()
CheckDataIntervals()

Algorithm 4.3.2 BUILDTRIANGLE()
for all w ∈ u.S∗ do . periodic introduction of nodes and u itself

v−(w) = argmax {h(v) : v ∈ u.S∗ ∧ h(v) < h(w)}
send m=(forward,w) to v−(w) and m’=(forward,v−(w)) to w

for all w ∈ u.P ∗ do
v+(w) = argmin {h(v) : v ∈ u.P ∗ ∧ h(v) > h(w)}
send m=(forward,w) to v+(w) and m’=(forward,v+(w)) to w

for all w ∈ u.S− ∪ u.P− ∪
{
u.succ+

1 , u.pred
+
1

}
do

send m=(forward,u) to w
send m=(forward,u.pred+

1 ) to u.succ+
1 and m’=(forward,u.succ+

1 ) to u.pred+
1
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Algorithm 4.3.3 FORWARD(V)
if c(v) > c(u) ∧ h(u) < h(v) < h(u.succ+

1 ) then . demand action by a received node id
send m=(buildtriangle,u.succ+

1 ) to v
u.succ+

1 = v
else if c(v) > c(u) ∧ h(u) > h(v) > h(u.pred+

1 ) then
send m=(buildtriangle,u.pred+

1 ) to v
u.pred+

1 = v
else if h(v) > h(u) then

calculate S−tmp out of u.S− and v
for all w ∈ (u.S− ∪ {v})− S−tmp do

v−(w) = argmax
{
h(v) : v ∈ S−tmp ∪

{
succ+

1

}
∧ h(v) < h(w)

}
send m=(forward,w) to v−(w)

u.S− = S−tmp
else if h(v) < h(u) then

calculate P−tmp out of u.P− and v
for all w ∈ (u.P− ∪ {v})− P−tmp do

v+(w) = argmin
{
h(v) : v ∈ P−tmp ∪

{
pred+

1

}
∧ h(v) > h(w)

}
send m=(forward,w) to v+(w)

u.P− = P−tmp

• Ee−connected = {(x, y) ∈ Ee : y ∈ x.P+ ∪ x.S+ ∪ x.S− ∪ x.P−} ⊆ Ee is the subset of explicit
edges that will ensure connectivity of the graph.

• Ei−connected = {(x, y) ∈ Ei : ∃m = (forward, y) ∈ x.Ch} is the subset of implicit edges that
ensure connectivity of the graph.

• Econnected = Ee−connected ∪ Ei−connected

• Ee−list = {(x, y) ∈ Ee : y = x.P ∗[1] ∨ y = x.S∗[1]}

• Ei−list = {(x, y) ∈ Ei : m = (forward, y) ∈ x.Ch}

• Elist = Ee−list ∪ Ei−list

Definition 4.3.7 A graph G = (V,E) is a sorted list, if V = v0, · · · vn−1 with h(vi) < h(vi+1)∀i ∈
{0, · · ·n− 1} and E = {(vi, vj) : j = i− 1 ∨ j = i+ 1 ∀j : 0 < j < n− 1}.

Convergence

We start by proving the convergence property of PCONE .

Theorem 4.3.6 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PCONE then eventually the graph converges to a graph G′ ∈ CONE.

We divide the proof into 3 parts. First we show the preservation of the connectivity of the graph, then
we show the convergence to the sorted list and eventually the convergence to the CONE-network.
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Algorithm 4.3.4 LISTUPDATE(LIST)
LList+ = z ∈ List : h(z) < h(u) ∧ c(z) > c(u) . candidates for u.P+

LList− = z ∈ List : h(z) < h(u) ∧ c(z) < c(u) . candidates for u.P−

RList+ = z ∈ List : h(z) > h(u) ∧ c(z) > c(u) . candidates for u.S+

RList− = z ∈ List : h(z) > h(u) ∧ c(z) < c(u) . candidates for u.S−

calculate P+
tmp out of u.P+ and LList+ . calculate new lists and delegate all nodes not stored in the

new lists
Z = (u.P+ − LList+) ∪ ((u.P+ ∪ LList+)− P+

tmp)

if u.P+ 6= P+
tmp then

for all z ∈ Z do
send m=(forward,z) to P+

tmp[1]

u.P+ = P+
tmp

calculate S+
tmp out of u.S+ and RList+

Z = (u.S+ −RList+) ∪ ((u.S+ ∪RList+)− S+
tmp)

if u.S+ 6= S+
tmp then

for all z ∈ Z do
send m=(forward,z) to S+

tmp[1]

u.S+ = S+
tmp

calculate P−tmp out of u.P− and LList−

for all w ∈ (u.P− ∪ LList−)− P−tmp do
v+(w) = argmin

{
h(v) : v ∈ P−tmp ∪

{
pred+

1

}
∧ h(v) > h(w)

}
send m=(forward,w) to v+(w)

u.P− = P−tmp
calculate S−tmp out of u.S− and RList−

for all w ∈ (u.S− ∪RList−)− S−tmp do
v−(w) = argmax

{
h(v) : v ∈ S−tmp ∪

{
succ+

1

}
∧ h(v) < h(w)

}
send m=(forward,w) to v−(w)

u.S− = S−tmp

Algorithm 4.3.5 CHECKDATAINTERVALS()
for all u.DS[i] do

send m=(check-interval,[a, b] = u.DS[i],u) to u.DS[i].ref
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Algorithm 4.3.6 CHECKINTERVAL([A,B],V)
if v 6∈ u.P+ ∪ u.S+ ∪ u.S− then

Forward(v)
IntervalSet := ∅
i:=1
if a < h(u) then

IntervalSet[i]=[a, h(u)] ∩ [a, b] . The interval begins left of u, so u can’t be the supervising node
for the whole interval

IntervalSet[i].ref=u.P ∗[1]
i:=i+1

if b > u.S∗[1] then
IntervalSet[i]=[u.S∗[1], b] ∩ [a, b] . The interval ends right of u.S∗[1], so u can’t be the

supervising node for the whole interval
IntervalSet[i].ref=u.S∗[1]
i:=i+1

[c, d] := Iu(v) . Iu(v) is the sub-interval of u.Iu for which v is responsible for
[e,f]:=([a, b] ∩ u.Iu)/Iu(v)
if e < c then

IntervalSet[i]=[e, c] ∩ [a, b] . u as the supervising node, knows other nodes responsible for parts of
the interval

IntervalSet[i].ref=u
i:=i+1

if f > d then
IntervalSet[i]=[d, f ] ∩ [a, b] . u as the supervising node, knows other nodes responsible for parts

of the interval
IntervalSet[i].ref=u

send m=(update-interval,IntervalSet) to v

Algorithm 4.3.7 UPDATEINTERVAL(INTERVALSET)
for all [a, b] ∈ IntervalSet do

for all [c, d] ∈ u.DS do
for all [e, f ] ∈ {[c, d]− [a, b]} do

l:=|u.DS|
u.DS[l+1]=[e,f]
u.DS[l+1].ref=[c,d].ref . references are set to the new supervising node
u.DS:=u.DS − {[c, d]}

for all data ∈ [c, d] ∩ [a, b] do
send m=forward-data(data) to [a, b].ref . data u seems not to be responsible for
delete(data)
Forward([a,b].ref) . references to supervising nodes are forwarded to maintain connectivity

UpdateDS() . Delete all intervals without data, forward the references of the deleted intervals, unite all
consecutive intervals with the same reference
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Algorithm 4.3.8 FORWARDDATA(DATA)
if data.id 6∈ u.Iu then

if data.id ∈ [u.P ∗[1], u] then
send m=(forward-data(data)) to u.P ∗[1]

else
send m=(forward-data(data) to
w : (h(u) < h(w) < data.id ∨ h(u) > h(w) > data.id) ∧ |data.id − h(w)| =

miny∈u.P ∗∪u.S∗{|data.id− h(y)|},
else

send m=(store-data,data,Iu(v),u) to v : data.id ∈ Iu(v)

Algorithm 4.3.9 STOREDATA(DATA,INTERVAL,V)
if ∃i : interval = u.DS[i] then

u.DS[i].data := u.DS[i].data ∪ data.id ∈ u.DS[i]
Forward(u.DS[i].ref)
u.DS[i].ref=v

else
l:=|u.DS|
u.DS[l+1]=interval
u.DS[l+1].ref=v
u.DS[l+1].data=data

In the first part we show that the protocol keeps the network weakly connected and eventually forms a
network that is connected by edges (u, v) ∈ Ee such that v ∈ u.P+ ∪ u.S+ ∪ u.S− ∪ u.P− and edges
(u, v) ∈ Ei such that m = (forward, v) ∈ u.Ch.

Lemma 4.3.4 If u and y are connected in Gtconnected at time t then they will be weakly connected at
every time t′ > t.

Proof. We consider every possible edge (u, v) in Gconnected and show that u and v stay weakly
connected. W.l.o.g. we assume h(v) > h(u).

If (u, v) ∈ Etr−connected then there can be the following cases:

• y ∈ u.S+ at time t, then either v is delegated to u.succ+
1 by a forward message sent to u.succ+

1

and u and v are connected in Gt+1
connected by (u, u.succ+1 ) ∈ Et+1

e−connected and (u.succ+
1 , v) ∈

Et+1
i−connected, or v is stored in u.S+ and (u, v) ∈ Et+1

e−connected.

• v ∈ u.S− at time t, then either v is delegated to w−(v) = argmax{h(w) : w ∈ u.S∗ ∧ h(w) <
h(v)} or v is also stored in u.S− at time t + 1. By the same arguments as above u and v are
connected in Gt+1

connected.

If (u, v) ∈ Eti−connected then m = (forward, v) ∈ u.Ch. If u processes m, then either v is stored in
u.P+, u.S+, u.S−, u.P− and (u, v) ∈ Et+1

r−connected or v is delegated to w−(v) = argmax{h(w) : w ∈
u.S∗ ∧ h(w) < h(v)} and u and v are connected in Gt+1

connected. ut
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Lemma 4.3.5 If if there is a state st such that Gt is weakly connected then eventually there is a state st′
at time t′ ≥ t such that Gt

′
connected will be weakly connected.

Proof. Again we consider every edge (u, v) in G and show that eventually u and v will be connected
in Gconnected. Note that we already showed in Lemma 4.3.4, that nodes connected in Gconnected stay
connected in Gconnected. Therefore we only have to consider those edges in E −Econnected. W.l.o.g. we
assume h(v) > h(u).

If (u, v) ∈ Ete − Ete−connected there can be the following case:
v ∈ u.DS[i].ref at time t and u has received an interval-update message with a new reference for

the data in u.DS[i] or the data is deleted. Then in both cases u delegates v to w−(v) and u and v are
connected in Gconnected. If u does not delegate v, then u eventually sends an check-interval message to v.
Then either u ∈ v.P+ ∪ v.S+ or v delegates u and u and v are weakly connected in Gconnected.

If v is stored in an incoming message in u.Ch then there can be the following cases:

• v is in a list in a list-update message. Then either v is stored in u.P+, u.S+, u.S−, u.P− or v is
delegated to w−(v) and u and v are weakly connected in Gconnected.

• v is a reference in an interval-update message, then either v is stored as a new reference for some
data or if there is no corresponding data v is delegated to w−(v) and u and v eventually are weakly
connected in Gconnected.

• v is a reference in an store-data message, then v is stored as a new reference in u.DS. And as
already shown u and v are eventually weakly connected.

ut

Combining the Lemmas 4.3.4 and 4.3.5 leads to the following theorem:

Theorem 4.3.7 If G is weakly connected at time t, then at some time t′ ≥ t Gconnected will be weakly
connected at every time t′′ ≥ t′.

In the next part we show that if Gconnected is weakly connected eventually a sorted list will be formed.

Theorem 4.3.8 If Gconnected is weakly connected at a state st then eventually Gt
′
e−list will be a sorted

list in a state st′ t′ ≥ t and stay a sorted list in every later state.

Before we show the theorem we show some helping lemmas.

Lemma 4.3.6 Eventually all nodes u.S∗[i] and u.S∗[i+1] (resp. u.P ∗[i] and u.P ∗[i+1]) with i < |u.S∗|
will be connected and stay connected in every state after over nodes w with h(u.S∗[i]) < h(w) <
h(u.S∗[i+ 1]).

Proof. In the periodic action u executes Build−Triangle(), in which u introduces every pair of nodes
u.S∗[i], u.S∗[i+ 1] to each other (see Figure 4.9). The connecting path for such a pair only changes if
w.l.o.g. u.S∗[i] delegates u.S∗[i + 1], but then u.S∗[i] can delegate u.S∗[i + 1] only to a node v with
h(u.S∗[i]) < h(v) < h(u.S∗[i + 1]). By using this argument inductively u.S∗[i] and u.S∗[i + 1] stay
connected in every state after over nodes w with h(u.S∗[i]) < h(w) < h(u.S∗[i+ 1]). ut
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Figure 4.9: A node u introduces the nodes in u.S− to each other in Build-Triangle()
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Lemma 4.3.7 If (u, v) ∈ Econnected and (u, z) ∈ Etconnected and h(u) < h(v) < h(z) (resp. h(u) >
h(v) > h(z)) then eventually (v′, z) ∈ Et

′
connected with h(u) < h(v′) < h(z) and t′ ≥ t (resp.

h(u) > h(v′) > h(z)) and u and z are connected over nodes w : h(u) < h(w) ≤ h(v′) (resp.
w : h(u) > h(w) ≥ h(v′) and in particular over u.S∗[1] (resp. u.P ∗[1]).

Proof. W.l.o.g we assume h(u) < h(v) < h(z). If u delegates z to a node v′ then obviously
h(u) < h(v′) < h(z) and u and z are connected over w = v′. In case z is not delegated z is stored in
u.S+ or u.S− or in a message m = (forward, z) ∈ u.Ch.

If z is stored in u.S− and (u, v) ∈ Econnected and h(u) < h(v) < h(z) then either v ∈ u.S− or
m′ = (forward, v) ∈ u.Ch. Eventually m′ is processed by u and either v is delegated, then there
is another node w′ ∈ u.S− : h(u) < h(w′) < h(v) < h(z) or v is stored in u.S−. Thus eventually
z ∈ u.S− and another node w′ ∈ u.S− such that h(u) < h(w′) < h(z). From all such nodes w′ ∈ u.S−
such that h(u) < h(w′) < h(z) u introduces z to v′ = argmax {h(x) : x ∈ u.S− ∧ h(x) < h(z)} and
(v′, z) ∈ Econnected with h(u) < h(v′) < h(z) and by the same arguments as above u and z stay
connected over nodes h(u) < h(w) ≤ h(v′).

If z ∈ u.S+ and z = u.succ+
1 the same analysis as for z ∈ u.S− can be applied. If z ∈ u.S+ and

z 6= u.succ+
1 eventually u will receive the v′.S+ list of v′ = u.succ+

1 . If z ∈ v′.S+ then (v′, z) ∈
Econnected with h(u) < h(v′) < h(z) and by the same arguments as above u and z stay connected
over nodes h(u) < h(w) < h(v′). Otherwise u sends a message m = (forward, z) to v′ and again
(v′, z) ∈ Econnected with h(u) < h(v′) < h(z) and by the same arguments as above u and z stay
connected over nodes h(u) < h(w) < h(v′).

If m = (forward, z) ∈ u.Ch, then eventually u processes m and either stores z in u.S+ or u.S− and
we can apply one of the cases above or z is delegated.

In all cases v′ ∈ u.S∗ and thus u and z are also connected over u.S∗[1], as all nodes in u.S∗ are
connected according to Lemma 4.3.6. ut

Lemma 4.3.8 If (u, z) ∈ Etconnected with h(u) < h(z) (resp. h(u) > h(z)) then eventually (z, v) ∈
Et
′
connected t

′ ≥ t with h(u) < h(v) < h(z) (resp. h(u) > h(v) > h(z))and u and v are connected over
nodes w with h(u) < h(w) < h(v) (resp. h(u) > h(w) > h(v)).

Proof. W.l.o.g we assume h(u) < h(z). If (u, z) ∈ Etconnected and (u, v) ∈ Etconnected and h(u) <
h(v) < h(z) we can apply Lemma 4.3.7 and eventually (v′, z) ∈ Et′connected with h(u) < h(v′) < h(z)
and u and v′ are connected over nodes w h(u) < h(w) < h(v′) in every state after.

Now if (v′, y) ∈ Et′connected with h(v′) < h(y) < h(z) we might again apply the lemma. Obviously
we only can apply Lemma 4.3.7 a finite number of times until there is a node w′ such that (w′, z) ∈
Et
′′
connected and there is no (w′, y′) ∈ Et′′connected with h(w′) < h(y′) < h(z). Then still u and w′ are

connected over nodes h(u) < h(w) < h(w′). Then either z = w′.S∗[1] or m = (forward, z) ∈ w′.Ch.
If z = w′.S∗[1] then eventually w′ will introduce itself to z by a message m′ = (forward, w′),
then (z, w′) ∈ Econnected with h(u) < h(w′) < h(z) and u and w′ are connected over nodes w :
h(u) < h(w) < h(w′). Otherwise as soon as w′ processes m′ w′.S∗[1] is set to z and the same
arguments as in the first case hold. ut

Before we prove the theorem we introduce some additional definitions.

Definition 4.3.8 We define an undirected path p as a sequence of edges (v0, v1), (v1, v2), · · · , (vk−1, vk),
such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ Econnected ∨ (vi−1, vi) ∈ Econnected. We further define
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vmin = argmin {h(v) : v ∈ p} and vmax = argmax {h(v) : v ∈ p}. Then the range of a path range(p)
is given by range(p) = vmax − vmin.

Now we are ready to prove Theorem 4.3.8.
Proof. Let vi and vi+1 be a pair of nodes connected in the sorted list. Then as Gconnected is weakly

connected there is an undirected path connecting vi and vi+1. Let pt be such a path at time t. We show
that there is a path pt

′
with t′ ≥ t that connects vi and vi+1 weakly such that range(pt) > range(pt

′
).

Let utmin and utmax be the smallest and greatest node on the path pt that define the range of pt. W.l.o.g.
we show that the range decreases as h(utmin) increases for larger t.

The node utmin is connected to nodes w1 and w2 on pt. If (w1, u
t
min) ∈ Etconnected and (utmin, w1) /∈

Et+1
connected, then according to Lemma 4.3.8 eventually (utmin, v1) ∈ Econnected and w1 and v1 are

connected over nodes w′ such that h(v1) < h(w′) < h(w1). The same holds for w2. Thus eventually
(utmin, v1) ∈ Etconnected and (utmin, v2) ∈ Etconnected and w1 and v1 are connected over nodes w′ with
h(v1) < h(w′) < h(w1) and w2 and v2 are connected over nodes w′′ : h(v2) < h(w′′) < h(w2).
Then either v1 = v2 and we can construct another path connecting u and y over w1 and w2 with
ut
′
min = v1 = v2, and h(ut

′
min) > h(ut

′
min), otherwise h(v1) < h(v2) or h(v2) < h(v1). W.l.o.g.

we assume h(v1) < h(v2). Then according to Lemma 4.3.7 eventually (v′2, v2) ∈ Et
′
connected and

v′2 and utmin are connected over nodes w′′ : h(utmin) < h(w′′) < h(v′2). Either v1 = utmin.S
∗[1]

or also according to Lemma 4.3.7 (v′1, v1) ∈ Econnected and v′1 and utmin are connected over nodes
w′′ : h(umin) < h(w′′)′ < h(v′1). Note that according to the proof of Lemma 4.3.7 v′1 and v′2 have to
be in umin.S∗ at the time t′ the edge (v′2, v2) ∈ Et′connected resp. (v′1, v1) ∈ Et′connected is created. Then
according to Lemma 4.3.6 v′1 and v′2 are also connected to umin.S∗[1]. Thus again we can construct
another path connecting vi and vi+1 over w1 and w2 with ut

′
min = utmin.S

∗[1] ∧ h(utmin.S
∗[1]) >

h(utmin).
Thus eventually a connecting path can be found with a strict smaller range and by applying these

arguments a finite number of times (vi, vi+1) ∈ Et∗connected and (vi+1, vi) ∈ Et∗connected in some state
st∗ at time t∗. Then if vi+1 ∈ vi.S∗ vi.S∗[1] = vi+1 otherwise m = (forward, vi+1) ∈ vi.Ch will
eventually be processed and vi.S∗[1] is set to vi+1. By the same arguments eventually vi = vi+1.P

∗[1].
As this holds for every pair vi, vi+1 of consecutive nodes in the sorted list, eventually Ge−list is a sorted
list and stays a sorted list in every later state. ut

In the last part we show that once the network has stabilized into a sorted list, it eventually also
stabilizes into the legal CONE-network.

Theorem 4.3.9 If Gte−list is a sorted list then eventually the computation of PCONE reaches a state st′
such that Gt

′ ∈ CONE.

We will first prove that eventually for every node u, u.succ+
1 = succ+

1 (u) and u.pred+
1 = pred+

1 (u).

Lemma 4.3.9 IfGte−list is a sorted list eventually for every node u u.succ+
1 = succ+

1 (u) and u.pred+
1 =

pred+
1 (u).

Proof. According to Theorem 4.3.8 the computation reaches a state st0 such that Gt0e−list is a sorted
list. We then prove the lemma by induction on the capacities of the nodes. In fact we show the following
hypothesis: If for all nodes v with c(v) < c(u) v.succ+

1 = succ+
1 (v) and v.pred+

1 = pred+
1 (v) then

eventually u.succ+
1 = succ+

1 (u) and u.pred+
1 = pred+

1 (u).
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We start the induction on the node vmin with the smallest capacity. Obviously for this node succ(vmin) =
succ+

1 (vmin) and pred(vmin) = pred+
1 (vmin). As Gte−list is a sorted list also vmin.S∗[1] = succ(vmin)

and vmin.P ∗[1] = pred(vmin). Thus vmin is already connected to succ+
1 (vmin) and pred+

1 (vmin), then
vmin.succ

+
1 = succ+

1 (vmin) and vmin.pred+
1 = pred+

1 (vmin).
In the inductive step let u be a node for which for all nodes v with c(v) < c(u) v.succ+

1 = succ+
1 (v)

and v.pred+
1 = pred+

1 (v). Let z = succ+
1 (u). Then let w1, w2 · · ·wl be the nodes in the sorted

list between u and z. We know that for each wi c(wi) < c(u) and thus wi.succ+
1 = succ+

1 (wi)
and wi.pred+

1 = pred+
1 (wi). Let wj = argmax {c(wi) : i ≤ l}. Then for wj succ+

1 (wj) = z and
pred+

1 (wi) = u.
Thus eventually wj will introduce z to u and vice versa in the Build-Triangle() action and u.succ+

1 =
succ+

1 (u) = z. By symmetric arguments we can show that also u.pred+
1 = pred+

1 (u). ut

Lemma 4.3.10 If Gte−list is a sorted list and for every node u u.succ+
1 = succ+

1 (u) and u.pred+
1 =

pred+
1 (u) then eventually u.S+ = S+(u) and u.P+ = P+(u) and u.S− = S−(u) and u.P− = P−(u).

Proof. We begin by showing that u.S− = S−(u) and u.P− = P−(u). If Gte−list is a sorted list
and for every node u u.succ+

1 = succ+
1 (u) and u.pred+

1 = pred+
1 (u) then eventually each node u

will receive a message m = (build − triangle, v) from each node v with v.succ+
1 = succ+

1 (v) = u
or v.pred+

1 = pred+
1 (v) = u. Then u.S− = S−(u) and u.P− = P−(u). We show that eventually

u.S+ = S+(u) and u.P+ = P+(u) by induction on the capacity of the nodes. We prove the following
hypothesis: If for all nodes v with c(v) > c(u) v.S+ = S+(v) and v.P+ = P+(v) then eventually
u.S+ = S+(u) and u.P+ = P+(u). We start the induction on the node u = vmax with the greatest
capacity. Obviously for vmax vmax.S+ = S+(vmax) and vmax.P+ = P+(vmax).

In the inductive step let u be a node for which for all nodes v with c(v) > c(u) v.S+ = S+(v) and
v.P+ = P+(v). Then we know by the first part of the proof that u ∈ u.succ+

1 .P
− and thus u.succ+

1

sends a message m = (list − update, u.succ+
1 .S

+ ∪
{
u.succ+

1

}
). As u.succ+

1 .S
+ = S+(succ+

1 (u))
also u.S+ = S+(u). By symmetric arguments we can show that u.P+ = P+(u). ut

Combing Lemma 4.3.9 and Lemma 4.3.10 Theorem 4.3.9 immediately follows.
Combining Theorem 4.3.7, Theorem 4.3.8 and Theorem 4.3.9 we can show that Theorem 4.3.6

holds, and by our protocol each weakly connected network converges to a CONE network.

Closure and Correctness of the data structure

We showed that from any initial state we eventually reach a state in which the network forms a correct
CONE network. We now need to show that in this state the explicit edges remain stable and also that
each node stores the data it is responsible for.

Theorem 4.3.10 If in an initial graph G ∈ CONE every nodes executes the protocol PCONE then
each possible computation leads to a graph G′ ∈ CONE.

Proof. The graph Ge = (V,Ee) only changes if the explicit edge set is changed. So if we assume that
G ∈ CONE at time t and for t′ > t G′ /∈ CONE then we added or deleted at least one explicit edge.
Let (u, v) ∈ Ete at time t. W.l.o.g. we assume h(u) < h(v). Either v ∈ S+(u) or v ∈ S−(u). In both
cases the edge is only deleted if u knows a node w with h(u) < h(w) < h(v) and c(w) > c(v). As
following from Theorem 4.3.9 all internal neighborhoods are correct in G there can not be such a node
w. By the same argument also no new edges are created. Thus G′ ∈ CONE at time t′. ut
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So far we have shown that by our protocol eventually a CONE network is formed. It remains to show
that also by our protocol eventually each node stores the data it is responsible for.

Theorem 4.3.11 If G ∈ CONE eventually each node stores exactly the data it is responsible for.

Proof. According to Theorem 4.3.2 each node knows which node is responsible for parts of the interval
it supervises. In our described algorithm each node u checks whether it is responsible for the data it
currently stores by sending a message to the node v that u assumes to be supervising the corresponding
interval. If v is supervising the interval and u is responsible for the data, then u simply keeps the data. If
v is not supervising the data or u is not responsible for the data then v sends a reference to u with the id
of anode that v assumes to be supervising the interval. Then u forwards the data to the new reference
and does not store the data. By forwarding the data by Greedy Routing it eventually reaches a node
supervising the corresponding interval, this node then tells the responsible node to store the data. Thus
eventually all data is stored by nodes that are responsible for the data. ut

4.3.8 Protocol PCONEsync

In this section we give a description of the the distributed algorithm for the synchronous setting. We
modify the protocol PCONE in a way that a node u that receives list-update messages from nodes w that
are not u.pre+

1 or u.succ+
1 at most once, i.e. u sends a message back containing the id of a node v with

h(v) between h(u) and h(w) and c(u) < c(v) < c(w). Then in the following rounds w can only send
list-update messages to v, but not to u. We therefore collect all sending nodes of a list-update message
in a set LS and all received lists in a set LIST . Furthermore we substitute the forward messages sent
periodically by a node to introduce itself by introduction messages. If a node u receives an introduction
message by a node w not in u.S∗ or u.P ∗, u informs the sender of the message about a node v it should
send the message to instead of u. Thus u receives introduction messages by nodes not in u.S∗ or u.P ∗ at
most once. Otherwise introduction messages are simply treated as forward messages. All introduction
and forward messages are collected in a set FORWARD, which is then sorted. Then nodes are only
forwarded to preceding nodes in the sorted set. In the following we give a description of the protocol
executed by each node in pseudo code in Algorithms 4.3.10- 4.3.18.

4.3.9 Analysis in the STSS model

In this section we analyze PCONEsync according to the STSS model. In particular we consider the
stabilization time, stabilization work and the maintenance work. Remind that D is the number of data
items stored in the system and that r is the number of nodes one node keeps references to.

Theorem 4.3.12 If an initial graph G ∈ IT is weakly connected and each node executes the protocol
PCONEsync then the graph converges to a graph G′ ∈ CONE (Convergence) with a stabilization time
of O(n) and a stabilization work of O(n2 +Dn log n). If in an initial graph G ∈ CONE∗ every node
executes the protocol PRE−CHORD then each possible computation leads to a graph G′ ∈ CONE
(Closure) with a maintenance work of O(r + log2 n). In a legal state it takes O(log n) rounds and
O(log3 n) messages w.h.p. to recover and stabilize after a new real node joins or leaves the network.
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Algorithm 4.3.10 PCONEsync

message m ∈ u.Ch→
FORWARD = ∅ . Ids of nodes that are received by forward messages
LIST = ∅ . IDs received by list-update messages
LS = ∅ . IDs of senders of list-update messages
CS = ∅ . IDs of senders of check-interval messages and received intervals
while m ∈ u.Ch do . demand actions depending on the received message

if m=(list-update,List,v) then
LIST = LIST ∪ List
LS = LS ∪ {v}

else if m=(forward,v) then
FORWARD = FORWARD ∪ {v}

else if m=(introduction,v) then
FORWARD = FORWARD ∪ {v}

else if m=(check-interval,[a,b],v) then
CS = CS ∪ {([a, b], v)}

else if m=(update-interval,IntervalSet) then
UpdateInterval(IntervalSet)

else if m=(forward-data,data) then
ForwardData(data)

else if m=(store-data,data,interval,v) then
StoreData(data,interval,v)

ListUpdate()
CheckInterval(CS)
Forward(FORWARD)
u.τ → . periodic actions
for all w ∈ u.S− do

send m=(list-update,u.P+ ∪ {u} , u) to w
for all w ∈ u.P− do

send m=(list-update,u.S+ ∪ {u} , u) to w
BuildTriangle()
CheckDataIntervals()

Algorithm 4.3.11 BUILDTRIANGLE()
for all w ∈ u.S∗ do . periodic introduction of nodes and u itself

v−(w) = argmax {h(v) : v ∈ u.S∗ ∧ h(v) < h(w)}
send m=(forward,w) to v−(w) and m’=(forward,v−(w)) to w

for all w ∈ u.P ∗ do
v+(w) = argmin {h(v) : v ∈ u.P ∗ ∧ h(v) > h(w)}
send m=(forward,w) to v+(w) and m’=(forward,v+(w)) to w

for all w ∈ u.S∗ ∪ u.P ∗ do
send m=(introduction,u) to w

send m=(forward,u.pred+
1 ) to u.succ+

1 and m’=(forward,u.succ+
1 ) to u.pred+

1
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Algorithm 4.3.12 FORWARD(FORWARD)
Calculate P ∗new, S∗new (including pre+

1new, succ+
1new) out of FORWARD ∪ u.S∗ ∪ u.P ∗

W = (FORWARD ∪ u.S∗ ∪ u.P ∗)− (P ∗new ∪ S∗new)
W ′ = FORWARD ∪ u.S∗ ∪ u.P ∗
for all w ∈W do

if h(w) < h(u) then
v+(w) = argmin {h(v) : h(v) > h(w) ∧ v ∈W ′}
send message m = (forward, w) to v+(w)
if w is received by an introduction message then

v+(w) = argmin {h(v) : h(v) > h(w) ∧ c(v) > c(w) ∧ v ∈W ′}
send message m = (forward, v+(w)) to w

else
v−(w) = argmax {h(v) : h(v) < h(w) ∧ v ∈W ′}
send message m = (forward, w) to v−(w)
if w is received by an introduction message then

v−(w) = argmax {h(v) : h(v) < h(w) ∧ c(v) > c(w) ∧ v ∈W ′}
send message m = (forward, v−(w)) to w

u.P ∗ = P ∗new
u.S∗ = S∗new

Stabilization Time

We start by showing the stabilization time of the protocol PCONEsync. Note that in the STSS model we
execute all enabled actions in one round, i.e. all messages in u.Ch are received by a node u. Thus we
slightly adapt the notation of Et and Ete. Instead of considering the changed edge sets after each single
action we consider the changed edge sets after executing all enabled actions for all nodes in one round.

Theorem 4.3.13 If an initial graph G ∈ IT is weakly connected and each nodes executes the protocol
PCONEsync then the graph converges to a graph G′ ∈ CONE (Convergence) with a stabilization time
of O(n).

To prove this theorem we use the same formal definitions of the intermediate graphs and subsets of the
edges like in the analysis in the ATSS model.

Like in the analysis of PCONE in the ATSS model we will prove the theorem by showing some
intermediate steps. We start by showing that in O(n) rounds all nodes are weakly connected in Elist
and stay weakly connected. In the following analysis we treat every introduction messages like a simple
forward message, as for received introduction messages only O(1) additional forward messages are sent,
i.e. every argument used for a forward message also holds for introduction messages.

Theorem 4.3.14 If Gconnected is weakly connected at a state st then after at most O(n) rounds Gt
′
e−list

will be a sorted list in a state st′ and stay a sorted list in every later state.

In order to show the theorem we first show some helpful lemmas.

Lemma 4.3.11 If u and v are weakly connected inGtconnected at time t then they will be weakly connected
at every time t′ > t.
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Algorithm 4.3.13 LISTUPDATE(LIST)
LList+ = z ∈ List : h(z) < h(u) ∧ c(z) > c(u) . candidates for u.P+

LList− = z ∈ List : h(z) < h(u) ∧ c(z) < c(u) . candidates for u.P−

RList+ = z ∈ List : h(z) > h(u) ∧ c(z) > c(u) . candidates for u.S+

RList− = z ∈ List : h(z) > h(u) ∧ c(z) < c(u) . candidates for u.S−

calculate P+
new out of u.P+ and LList+ . calculate new lists and delegate all nodes not stored in the

new lists
calculate S+

new out of u.S+ and RList+

calculate P−new out of u.P− and LList−

calculate S−new out of u.S− and RList−

N = List ∪ u.S+ ∪ u.S− ∪ u.P+ ∪ u.P−
L = S+

new ∪ S−new ∪ P+
new ∪ P−new

for all w ∈ N − S do . Nodes are delegated
if h(w) < h(u) then

v+(w) = argmin {h(v) : h(v) > h(w) ∧ v ∈ N}
send message m = (forward, w) to v+(w)
if w is a sender of a list-update message then . i.e. w ∈ LS

v+(w) = argmin {h(v) : h(v) > h(w) ∧ c(v) > c(w) ∧ v ∈ N}
send message m = (forward, v+(w)) to w

else
v−(w) = argmax {h(v) : h(v) < h(w) ∧ v ∈ N}
send message m = (forward, w) to v−(w)
if w is a sender of a list-update message then

v−(w) = argmin {h(v) : h(v) < h(w) ∧ c(v) > c(w) ∧ v ∈ N}
send message m = (forward, v−(w)) to w

for all w ∈ S : w is a sender of a list-update message do
if w 6= P+

new[1] ∧ w 6= S+
new[1] then . w is not the new u.pre+

1 or u.succ+
1

if h(w) < h(u) then
v+(w) = argmin {h(v) : h(v) > h(w) ∧ v ∈ S}
send message m = (forward, v+(w)) to w

else
v−(w) = argmin {h(v) : h(v) < h(w) ∧ v ∈ S}
send message m = (forward, v−(w)) to w

u.P+ = P+
new

u.S+ = S+
new

u.P− = P−new
u.S− = S−new

Algorithm 4.3.14 CHECKDATAINTERVALS()
for all u.DS[i] do

send m=(check-interval,[a, b] = u.DS[i],u) to u.DS[i].ref
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Algorithm 4.3.15 CHECKINTERVAL(CS
for all ([a, b], v) ∈ CS do

if v 6∈ u.P+ ∪ u.S+ ∪ u.S− then
FORWARD = FORWARD ∪ {v}

IntervalSet := ∅
i:=1
if a < h(u) then

IntervalSet[i]=[a, h(u)] ∩ [a, b] . The interval begins left of u, so u can’t be the supervising
node for the whole interval

IntervalSet[i].ref=u.P ∗[1]
i:=i+1

if b > u.S∗[1] then
IntervalSet[i]=[u.S∗[1], b] ∩ [a, b] . The interval ends right of u.S∗[1], so u can’t be the

supervising node for the whole interval
IntervalSet[i].ref=u.S∗[1]
i:=i+1

[c, d] := Iu(v) . Iu(v) is the sub-interval of u.Iu for which v is responsible for
[e,f]:=([a, b] ∩ u.Iu)/Iu(v)
if e < c then

IntervalSet[i]=[e, c] ∩ [a, b] . u as the supervising node, knows other nodes responsible for
parts of the interval

IntervalSet[i].ref=u
i:=i+1

if f > d then
IntervalSet[i]=[d, f ] ∩ [a, b] . u as the supervising node, knows other nodes responsible for

parts of the interval
IntervalSet[i].ref=u

send m=(update-interval,IntervalSet) to v

Algorithm 4.3.16 UPDATEINTERVAL(INTERVALSET)
for all [a, b] ∈ IntervalSet do

for all [c, d] ∈ u.DS do
for all [e, f ] ∈ {[c, d]− [a, b]} do

l:=|u.DS|
u.DS[l+1]=[e,f]
u.DS[l+1].ref=[c,d].ref . references are set to the new supervising node
u.DS:=u.DS − {[c, d]}

for all data ∈ [c, d] ∩ [a, b] do
send m=forward-data(data) to [a, b].ref . data u seems not to be responsible for
delete(data)
FORWARD = FORWARD ∪ {[a, b].ref} . references supervising nodes are

forwarded to maintain connectivity
UpdateDS() . Delete all intervals without data, forward the references of the deleted intervals, unite all
consecutive intervals with the same reference
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Algorithm 4.3.17 FORWARDDATA(DATA)
if data.id 6∈ u.Iu then

if data.id ∈ [u.P ∗[1]], u] then
send m=(forward-data(data)) to u.P ∗[1]

else
send m=(forward-data(data) to
w : (h(u) < h(w) < data.id ∨ h(u) > h(w) > data.id) ∧ |data.id − h(w)| =

miny∈u.P ∗∪u.S∗{|data.id− h(y)|},
else

send m=(store-data,data,Iu(v),u) to v : data.id ∈ Iu(v)

Algorithm 4.3.18 STOREDATA(DATA,INTERVAL,V)
if ∃i : interval = u.DS[i] then

u.DS[i].data := u.DS[i].data ∪ data.id ∈ u.DS[i]
FORWARD = FORWARD ∪ {u.DS[i].ref}
u.DS[i].ref=v

else
l:=|u.DS|
u.DS[l+1]=interval
u.DS[l+1].ref=v
u.DS[l+1].data=data

Proof. We show that for each existing edge (u, v) ∈ Etconnected either the edge remains and (u, v) ∈
Et+1
connected or a path connecting u, v exists. Obviously u and v stay weakly connected as long as an edge

(u, v) ∈ Et+1
connected exists. We therefore assume (u, v) ∈ Etconnected and (u, v) /∈ Et+1

connected. If v is
stored in an internal variable of u then there can be the following cases:

• v ∈ u.P+ ∪ u.S+ at time t, then v is delegated and u and v stay connected over the edges
(u, u.pred+

1 ) ∈ Et+1
e−connected and a path of implicit edges (u.pred+

1 , w1), (w1, w2) · · · (wi, v) ∈
Et+1
i−connected.

• v ∈ u.S− ∪ u.P− at time t, then v is delegated and u and v stay connected in Et+1
connected by a path

of implicit edges (w1, w2), · · · (wi, v) ∈ Et+1
i−connected. and one explicit edge (u, z) ∈ Et+1

e−connected
with z ∈ u.S− ∪ u.P− at time t+ 1.

• v ∈ u.DS[i].ref at time t then u has received an interval-update message with a new reference for
the data in u.DS[i] or the data is deleted. Then in both cases u delegates v to w−(v) (resp. w+(v))
and u and v stay connected in Et+1

connected.

If v is stored in an incoming message m in u.Ch, then then there can be the following cases when m
is received:

• v is in a list in a list-update message. Then either v is stored in u.P+, u.S+, u.S−, u.P− or v is
delegated and u and v stay connected as described in the case of v ∈ u.P+ ∪ u.S+.
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• v is the node sending a check-interval message. Then either v is stored in u.P+, u.S+ or delegated
to w−(v) (resp. w+(v)) and u and v stay connected.

• v is a reference in an interval-update message, then either v is stored as a new reference for some
data or if there is no corresponding data v is delegated to w−(v) (resp. w+(v)) and u and v stay
connected.

• v is a reference in an store-data message, then v is stored as a new reference in u.DS.

• v is an identifier in a forward message, then v is either stored in u.P+, u.S+, u.S−, u.P− or v is
delegated to w−(v) (resp. w+(v)) and u and v stay connected.

ut

Lemma 4.3.12 If if there is a state st such that Gt is weakly connected then after O(1) rounds the
computation reaches a state st′ t′ ≥ t such that Gt

′
connected is weakly connected.

Proof. Again we consider every edge (u, v) in G and show that eventually u and v will be connected
in Gconnected. Note that we already showed in Lemma 4.3.11, that nodes connected in Gconnected stay
connected in Gconnected. Therefore we only have to consider those edges in E − Econnected.

If (u, v) ∈ Ete − Ete−connected there can be the following case:
Either v ∈ u.DS[i].ref at time t and u has received an interval-update message with a new ref-

erence for the data in u.DS[i] or the data is deleted. Then in both cases u delegates v to w−(v) =
argmax {h(w) : w ∈ u.S∗ ∧ h(w) < h(v)} (resp. w+(v)) and u and v are connected in Gconnected. If u
does not delegate v, then u sends an check-interval message to v. Then either u ∈ v.P+ ∪ v.S+ or v
delegates u and u and v are weakly connected in Gconnected.

If v is stored in an incoming message in u.Ch then there can be the following cases:

• v is in a list in a list-update message. Then either v is stored in u.P+, u.S+, u.S−, u.P− or v is
delegated and u and v are weakly connected in Gconnected as shown in the proof of Lemma 4.3.11.

• v is a reference in an interval-update message, then either v is stored as a new reference for some
data or if there is no corresponding data v is delegated to w−(v) (resp. w+(v)) and u and v are
weakly connected in Gconnected after O(1) rounds.

• v is a reference in an store-data message, then v is stored as a new reference in u.DS. And as
already shown u and v are weakly connected after O(1) rounds.

ut

Before we prove the Theorem 4.3.14 we introduce some additional definitions like in the analysis in
the ATSS model.

Definition 4.3.9 We define an undirected path p as a sequence of edges (v0, v1), (v1, v2), · · · , (vk−1, vk),
such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈ Econnected ∨ (vi−1, vi) ∈ Econnected. We define vmin =
argmin {h(v) : v ∈ p} and vmax = argmax {h(v) : v ∈ p}. Then the range of a path range(p) is given
by range(p) = vmax − vmin.
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Lemma 4.3.13 AfterO(1) rounds all nodes u.S∗[i] and u.S∗[i+ 1] (resp. u.P ∗[i] and u.P ∗[i+ 1]) with
i < |u.S∗| will be connected and stay connected in every state after over nodes w′ with h(u.S∗[i]) <
h(w′) < h(u.S∗[i+ 1]) (resp. h(u.S∗[i]) > h(w′) > h(u.S∗[i+ 1])).

Proof. In the periodic action u executes Build − Triangle(), in which u introduces every pair of
nodes u.S∗[i], u.S∗[i+ 1] to each other. The connecting path only changes if w.l.o.g. u.S∗[i] delegates
u.S∗[i + 1], but then u.S∗[i] can delegate u.S∗[i + 1] only to a node w with h(u.S∗[i]) < h(w) <
h(u.S∗[i+ 1]). By using this argument inductively u.S∗[i] and u.S∗[i+ 1] stay connected in every state
after over nodes w′ : h(u.S∗[i]) < h(w′) < h(u.S∗[i+ 1]). ut

We are now ready to prove Theorem 4.3.14.
Proof. We show that the stabilization time is in O(n). Let ui and ui+1 be two arbitrary consecutive

nodes in the sorted list. By Lemma 4.3.12 we know that in every graph after O(1) rounds there is
a weakly connecting path for ui and ui+1 in Gconnected. By Lemma 4.3.13 we know that after O(1)
further rounds all nodes u.S∗[i] and u.S∗[i+ 1] (resp. u.P ∗[i] and u.P ∗[i+ 1]) with i < |u.S∗| will be
connected and stay connected in every state after over nodes w′ : h(u.S∗[i]) < h(w′) < h(u.S∗[i+ 1]).
Then also Lemma 4.3.7 can be applied. We denote this state by st0 . We then show that the minimal range
of all connecting paths is decreasing, such that the two nodes are directly connected after at most O(n)
synchronous rounds.

Let pt be a connecting path for two arbitrary consecutive nodes ui and ui+1 at time t. We then show
that we can find a connecting path at time t′ t′ > t with a strictly smaller range. We firstly prove that if
one of the border nodes vmin and vmax defining the range of pt has two outgoing edges in Etconnected∩pt,
then we can construct a connecting path pt+1 with a smaller range. We will show this only for vmin as
symmetric arguments can be applied for vmax.

If vmin has two outgoing edges (vmin, u), (vmin, v) ∈ Etconnected ∩ pt then in the next round ac-
cording to Lemma 4.3.7 there is a directed path p1 = (vmin = w′0, w

′
1 = vmin.S

∗[1], w′2, · · ·w′l = u)
from vmin to u such that h(vmin) ≤ h(w′i) ≤ h(u)∀w′i and another path p1 = (vmin = w′′0 , w

′′
1 =

vmin.S
∗[1], w′′2 , · · ·w′′k = v) from vmin to v such that h(vmin) ≤ h(w′′i ) ≤ h(v)∀w′′i . Thus we can

substitute the edges (vmin, u) and (vmin, v) by p1 and p2 leaving out vmin as p1 and p2 both include
vmin.S

∗[1] and get a new weakly connecting path pt+1.
It remains to show that it does not take to long before a border node has two outgoing edges. In

case vmin does not have two outgoing edges we construct pt+1 out of pt in the following way. If
(u, v) ∈ pt with h(u) < h(v) and v is delegated then according to Lemma 4.3.7 there is a directed
path p′ = (u = w′0, w

′
1 = u.S∗[1], w′2, · · ·w′l = v) with h(u) ≤ h(wi) ≤ h(v) from u to v. Thus we

substitute (u, v) by p′ in pt+1. If (u, v) ∈ pt with h(u) < h(v) and v is not delegated then we simply
keep (u, v) ∈ pt+1. If (u, v) ∈ pt with h(u) > h(v) and v is delegated then according to Lemma 4.3.7
there is a directed path p′ = (u = w′0, w

′
1 = u.P ∗[1], w′2, · · ·w′l = v) with h(u) ≥ h(w′i) ≤ h(v) from

u to v. Thus we substitute (u, v) by p′ in pt+1. If (u, v) ∈ pt with h(u) > h(v) and v is not delegated,
then u introduces itself to v and we substitute (u, v) ∈ pt by (v, u) ∈ pt+1.

By using this construction scheme we show that it takes at most max {0, n− (t− t0)} rounds before
vtmin has two outgoing edges for a path pt. We prove this by induction on t. Let pt0 be an arbitrary
undirected path connecting two consecutive nodes ui, ui+1 in the sorted list at time t0. Then vt0min is
the left border node of this path. If vt0min already has two outgoing edges on pt0 then it takes obviously
most max {0, n} rounds. Otherwise there is at least one incoming edge (v, vt0min) on pt0 . For each such
incoming edge (v, vt0min) the node v either introduces itself to vt0min or delegates vt0min. In the first case
vt0min then has an outgoing edge in p1 according to our construction scheme. In the second case (v, vt0min)
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is substituted by a path p′ as described above. Then vt0min still has an incoming edge (y′, vt0min), but
with h(y′) < h(v). Obviously vt0min can only be delegated n times before (y′, vt0min) is substituted by an
outgoing edge.

Let pt be an undirected path connecting ui, ui+1 in the sorted list that was constructed out of pt0
according to our construction scheme. If vtmin already has two outgoing edges on pt then it takes
obviously most max {0, n− (t− t0)} rounds. Otherwise there is at least one incoming edge (v, vtmin)
on pt. Then (v, vtmin) /∈ pt−1 but vtmin was delegated to v by another node z with h(z) > h(v),
otherwise v would have introduced itself to vtmin and vtmin would have an outgoing edge instead. Thus
(z, vtmin) ∈ pt−1. For this edge the same observation holds. As vtmin has been delegated in every
round before so t− t0 times by nodes z with h(z) > h(v) there are at most n− (t− t0) nodes w with
h(vtmin) < h(w) < h(v) vtmin can still be delegated to before the edge is substituted by an outgoing edge.
If it takes at most max {0, n− (t− t0)} rounds before vtmin has two outgoing edges and we can construct
a path with a smaller range then after O(n) rounds ui, ui+1 are directly connected, i.e. (ui, ui+1) ∈ Ee
and (ui+1, ui) ∈ Ee. ut

Theorem 4.3.15 If Gte−list is a sorted list then after O(n) rounds the computation of PCONE reaches a
state st′ such that Gt

′ ∈ CONE.

We will first prove that after O(n) rounds for every node u, u.succ+
1 = succ+

1 (u) and u.pred+
1 =

pred+
1 (u).

Lemma 4.3.14 If Gte−list is a sorted list after O(n) rounds for every node u, u.succ+
1 = succ+

1 (u) and
u.pred+

1 = pred+
1 (u).

Proof. According to Theorem 4.3.14 after O(n) rounds Gte−list is a sorted list. We then prove the
lemma by induction on the capacities of the nodes. In fact we show the following hypothesis: If for
all nodes v with c(v) < c(u) v.succ+

1 = succ+
1 (v) and v.pred+

1 = pred+
1 (v) then in the next rounds

u.succ+
1 = succ+

1 (u) and u.pred+
1 = pred+

1 (u).
We start the induction on the node u = vmin with the smallest capacity. Obviously for this

node succ(vmin) = succ+
1 (vmin) and pred(vmin) = pred+

1 (vmin). As Gte−list is a sorted list also
vmin.S

∗[1] = succ(vmin) and vmin.P ∗[1] = pred(vmin). Then vmin is already connected to succ+
1 (vmin)

and pred+
1 (vmin) and vmin.succ+

1 = succ+
1 (vmin) and vmin.pred+

1 = pred+
1 (vmin).

In the inductive step let u be a node for which for all nodes v with c(v) < c(u) v.succ+
1 = succ+

1 (v)
and v.pred+

1 = pred+
1 (v). Let z = succ+

1 (u). Then let v1, v2 · · · vl be the nodes in the sorted list
between u and z. We know that for each vi c(vi) < c(u) and thus vi.succ+

1 = succ+
1 (vi) and vi.pred+

1 =
pred+

1 (vi). Let vj = argmax {c(vi) : i ≤ l}. Then for vj succ+
1 (vj) = z and pred+

1 (vi) = u. Thus in
the next round vj will introduce z to u and vice versa in the Build-Triangle() action and u.succ+

1 =
succ+

1 (u) = z. By symmetric arguments we can show that also u.pred+
1 = pred+

1 (u). ut

Lemma 4.3.15 If Gte−list is a sorted list and for every node u u.succ+
1 = succ+

1 (u) and u.pred+
1 =

pred+
1 (u) then after O(n) rounds u.S+ = S+(u) and u.P+ = P+(u) and u.S− = S−(u) and

u.P− = P−(u).

Proof. We begin by showing that u.S− = S−(u) and u.P− = P−(u). If Gte−list is a sorted list and
for every node u u.succ+

1 = succ+
1 (u) and u.pred+

1 = pred+
1 (u) then in the next round each node u

will receive a message m = (build− triangle, v) from each node v with v.succ+
1 = succ+

1 (v) = u or
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v.pred+
1 = pred+

1 (v) = u. Then u.S− = S−(u) and u.P− = P−(u). We show that after O(n) further
rounds u.S+ = S+(u) and u.P+ = P+(u) by induction on the capacity of the nodes. We prove the
following hypothesis: If for all nodes v with c(v) > c(u) v.S+ = S+(v) and v.P+ = P+(v) then in the
next round u.S+ = S+(u) and u.P+ = P+(u). We start the induction on the node umax with the greatest
capacity. Obviously for umax umax.S+ = S+(umax) and umax.P+ = P+(umax). In the inductive step
let u be a node for which for all nodes v with c(v) > c(u) v.S+ = S+(v) and v.P+ = P+(v). Then
we know by the first part of the proof that u ∈ u.succ+

1 .P
− and thus in the next round u.succ+

1 sends
a message m = (list − update, u.succ+

1 .S
+ ∪

{
u.succ+

1

}
). As u.succ+

1 .S
+ = S+(succ+

1 (u)) also
u.S+ = S+(u). By symmetric arguments we can show that u.P+ = P+(u). ut

Combing Lemma 4.3.14 and Lemma 4.3.15 Theorem 4.3.15 follows immediately.
Combining Lemma 4.3.11, Theorem 4.3.14 and Theorem 4.3.15 we can show that Theorem 4.3.13

holds, and by our protocol each weakly connected network converges to a CONE network in O(n)
rounds.

Like in the analysis in the ATSS model it remains to show that not only the correct topology is formed
but that also each node stores the correct data. We show that after O(log n) further rounds w.h.p. each
node stores the correct data.

Theorem 4.3.16 If in an initial graph G ∈ CONE every nodes executes the protocol PCONEsync then
each possible computation leads to a graph G′ ∈ CONE.

Proof. The proof is the same as in the asynchronous setting for PCONE . ut

Theorem 4.3.17 If G ∈ CONE after O(log n) rounds w.h.p. each node stores exactly the data it is
responsible for.

Proof. According to Theorem 4.3.2 each node knows which node is responsible for parts of the interval
it supervises. In our described algorithm each node u checks whether it is responsible for the data it
currently stores by sending a message to the node v that u assumes to be supervising the corresponding
interval. If v is supervising the interval and u is responsible for the data, then u simply keeps the data. If
v is not supervising the data or u is not responsible for the data then v sends a reference to u with the id
of a node that v assumes to be supervising the interval. Then u forwards the data to the new reference
and does not store the data. By forwarding the data by Greedy Routing it reaches a node supervising the
corresponding interval in O(log n) rounds according to Lemma 4.3.3, this node then tells the responsible
node to store the data. Thus after O(log n) rounds all data is stored by nodes that are responsible for the
data. ut

Stabilization Work

Theorem 4.3.18 If in an initial graph G ∈ IT every nodes executes the protocol PCONEsync then each
possible computation leads to a graph G′ ∈ CONE with a stabilization work of O(n2 + Dn log n)
w.h.p. if there are D data items stored in the network.

Before we prove this theorem, we state some generalized versions of Lemma 4.3.1 and Lemma 4.3.2.

Lemma 4.3.16 At any time of the computation for each u ∈ V in a valid state, |u.S+| and |u.P+| ∈
O(log n) w.h.p..
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Lemma 4.3.17 At any time of the computation for each u ∈ V in a valid state, |u.S−| and |u.P−| ∈
O(log n) w.h.p..

These lemmas follow directly from the proofs of Lemma 4.3.1 and Lemma 4.3.2, as the arguments
hold for arbitrary sets of nodes left or right from a node u. We are now ready to prove the theorem.
Proof. Each node u receives at most O(log n) introduction messages w.h.p. by nodes v currently in
u.P ∗ and u.S∗ according to Lemma 4.3.17. Furthermore each node only receives at most O(1) messages
from nodes w′ that do not belong to (the updated) u.P ∗ and u.S∗, as u responds to such nodes by sending
a forward message containing a node w′′ between u and w′, such that w′ will possibly introduce itself to
w′′ but not u. A node only sends introduction messages to nodes in u.P ∗ and u.S∗. Thus in total each
node sends and receives O(n log n) introduction messages w.h.p..

Each node receives at most O(1) list-update messages by u.p+
1 and u.s+

1 . Furthermore u only receives
at mostO(1) list-update messages from nodes w′ that are not (the updated) u.p+

1 and u.s+
1 , as u responds

to such nodes by sending a forward message containing a node w′′ between u and w′, such that w′ will
send its list-update message possibly to w′′ but not u. A node only sends list-update messages to nodes in
u.P− and u.S−. As each list-update message contains up to O(log n) identifiers w.h.p., we count them
as O(log n) messages. Then each node sends and receives w.h.p. O(n log2 n) list update messages.

Each node u sends a check-interval message for each interval it seems to be responsible for to the
corresponding reference node, that should supervise the interval. There can be at most n reference nodes,
thus a node sends at most O(n2) check-interval messages.

A node receives a check-interval message for an interval it does not supervise at most once, i.e. if the
sending node is not in u.S+ or u.P+. Furthermore a node receives at most one check-interval message
from another node on one round. Thus a node u receives at most O(n log n) check-interval messages
w.h.p. according to Lemma 4.3.16 in total, as each sending node has to be currently in u.S+ or u.P+.

For each received check-interval message a node sends at most one update-interval message. Thus
a node sends at most O(n log n) update-interval messages in total w.h.p.. A node receives at most one
update-interval message by another node. An update-interval message is only received in response to
a check-interval message. As u sends at most O(n2) check-interval messages, it can also only receive
at most O(n2) update-interval messages in total. Thus a node u receives and sends at most O(n2)
update-interval messages w.h.p. in total.

We can also show that each node u sends and receives at most O(n2) forward messages w.h.p..
W.l.o.g. we show that a node u receives at most O(n2) forward messages containing nodes w′, such that
h(u) < h(w′). There are three cases in which u receives such a message. Either u sent an introduction
message to a node z with h(w′) < h(z) and received w′ in response or w′ is sent to u by a node y
that simply forwards w′ to a closer node according to its local sorting or u received w′ in a list-update
message. Obviously the first case and the last case happens at most O(n) times and each list-update
message contains up to O(log n) ids. Thus u receives at most O(n log n) ids by list-update messages or
responses to introduction messages. A node receives at most O(1) forward messages from other nodes
forwarding some ids. Thus by the second case a node u receives at most O(n2) forward messages. For
each received forward message a node sends at most O(1) forward messages. Thus in total each node
sends and receives at most O(n2) forward messages.

The number of forward-data and store-data messages are depending on the number of stored data items
in the network. Let D be the number of data items, then we can show that each node sends and receives
at most O(Dn log n) forward-data and store-data messages w.h.p.. A forward data-message is sent if a
node receives a forward-data message for a data item that it is not supervising or if the node no longer
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stores the data item, i.e. a update-interval message is received. Due to the greedy routing approach a node
receives a forward-data message at most once for each data item, that it is not supervising. If the node is
supervising the data item it receives at most O(n) forward-data messages in case that the responsible
node changes O(n) times. As we have seen a node receives at most O(n log n) update-interval messages
w.h.p. thus a node sends at most O(n log n) forward-data messages w.h.p. for a data item. A store-data
message is received at most O(n) times for a data item, in case that the supervising node for this data
item changes O(n) times. A node also sends a store-data message at most O(n) times for one data item,
in case that the responsible node changes up to O(n) times. In total each node sends and receives at most
O(Dn log n) forward-data and store-data messages w.h.p.. ut

Maintenance Work

Theorem 4.3.19 If in an initial graph G ∈ CONE∗ every node executes the protocol PCONEsync then
each possible computation leads to a graph G′ ∈ CONE with a maintenance work of O(r + log2 n)
w.h.p. if a node stores data items supervised by r reference nodes.

Proof. Each node u sends O(1) forward/introduction messages to each node in u.S− and u.P−.
Additionally u sends O(1) forward/introduction messages to u.pred+

1 and u.succ+
1 . Thus according to

Lemma 4.3.2 a node u sends O(log n) forward/introduction messages w.h.p.. A node u receives O(1)
forward/introduction messages from each node in u.S− and u.P− and from u.pred+

1 and u.succ+
1 . Thus

again according to Lemma 4.3.2 a node u receives O(log n) forward/introduction messages w.h.p..
Each node u sends its lists u.S+ (resp. u.P+) to all nodes in u.P− (resp. u.S−). As each list u.S+

(resp. u.P+) is of size O(log n) w.h.p. according to Lemma 4.3.1 we count sending one list as sending
O(log n) messages. Then according to Lemma 4.3.2 a node sends O(log2 n) list-update messages. Each
node u receives a list-update message from u.s+

1 and u.p+
1 thus according to Lemma 4.3.1 each node

receives O(log n) list-update messages.
Each node u sends a check-interval message for each interval it seems to be responsible for to the

corresponding reference node, that should supervise the interval. Thus each node sends at most r check-
interval messages if it stores r reference nodes. Each node receives at most O(log n) check-interval
messages w.h.p., as each sending node has to be in u.P+ or u.S+. According to Theorem 4.3.17 each
node already stores the correct data, thus no update-interval messages, no forward-data and no store-data
messages are sent. Thus in total the maintenance work of each node is O(r + log2 n) w.h.p.. ut

Single Join and Leave Event and Capacity Change

Concerning the network operations in the network, i.e. the joining of a new node, the leaving of a node
and the capacity change of a node, we show the following:

Theorem 4.3.20 In case a node u joins a stable CONE network, or a node u leaves a stable CONE
network or a node u in a stable CONE network changes its capacity, we show that in any of these three
cases it takes O(log n) rounds and O(log3 n) messages to recover to the new stable state.

We show the statement by considering the 3 cases separately. We start with the case of a joining node.

Theorem 4.3.21 If a node u joins a stable CONE network it takes O(log n) rounds and O(log3 n)
messages to recover to the new stable state.
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Proof. If u joins the network u is connected to a node v already in the network by an edge (u, v), i.e. v
is either stored in u.S∗[1] or u.P ∗[1]. In the Build-Triangle() action u then introduces itself to v after one
round. Then v either stores u in its internal variable or delegates u in the Build-Triangle(u) action. Even
if v stores u u is also introduced to nodes that should also know u in the Build-Triangle() action. By
these delegations and introduction u is forwarded according to the CONE Greedy routing we introduced
in Definition 4.3.2. Then according to Lemma 4.3.3 after O(log n) rounds w.h.p. u is connected to a
node w such that w = succ(u) or w = pred(u), i.e. u.S∗[1] = w and w.P ∗[1] = u or u.P ∗[1] = w
and w.S∗[1] = u. W.l.o.g. we assume w.S∗[1] = u. Let x = w.P ∗[1] before the integration of u, then
w introduces x to u, as soon as w is connected to u. Thus u is connected to succ(u) and pred(u) after
O(log n) rounds w.h.p..

Now there can be two cases either w = pred+
1 (u) or v ∈ u.P−. In the first case u learns u.P+ by

receiving a list-update from w. In the second case pred+
1 (u) ∈ w.P+ according to Theorem 4.3.6.

Then u = succ+
1 (w) = w.succ+

1 . Then according to the protocol PCONEsync w introduces u to
w1 = w.pred+

1 . Then again there can be two cases either w′1 = pred+
1 (u) or w1 ∈ S−(u). Thus we can

apply the same arguments inductively until u is connected to a node wi with wi = pred+
1 (u), or P+(u)

is empty. According to Lemma 4.3.1 it takes at most O(log n) rounds w.h.p. until wi is connected to
u. Then in the next round also u.P+ = P+(u) by receiving a list-update from wi. Then all wj with
j < i are in u.P− as P−(u) by definition is a subset of P+(w) before the integration of u. Thus also
u.P− = P−(u). As u is also connected to x = succ(u) we can show by symmetric arguments that after
O(log n) rounds w.h.p. also u.S+ = S+(u) and u.S− = S−(u).

As soon as u is connected to pred+
1 (u) and succ+

1 (u) also y.P− = P−(y) and y.S− = S−(y) for all
nodes y ∈ V . It remains to show that also y.P+ = P+(y) and y.S+ = S+(y) for all nodes y ∈ V . If for
a node y P+(y) (resp. S+(y)) changes after u joins the network, then u ∈ y.P+(u) (resp. u ∈ S+(y))
after the join of u. W.l.o.g we assume that P+(y) changes.

Then according to our analysis above there is a node z in y.P+ with z.pre+
1 = u and z.P+ = P+(z).

Then z sends a list-update message to all nodes in z.S−. As z ∈ y.P+ z.S− ∩ (y.P+ ∪ y) 6= ∅ and for
at least two nodes in y.P+ the P+ lists are correct. By applying this argument inductively after O(log n)
rounds w.h.p. according to Lemma 4.3.1 all nodes in P+(y) hold the correct P+ lists and then also y
receives a list-update from pre+

1 (y) and y.P=P+(y). By symmetric arguments we can also show that
after O(log n) rounds w.h.p. y.S+ = S+(y) for all nodes y ∈ V . Thus after O(log n) rounds a stable
state is reached and G′ ∈ CONE.

As long as u is not connected to w and x, u is only connected to v thus u sends and receives at
most O(1) messages w.h.p. in each round during this time. Afterward u is only connected to nodes
it will also store in the stable state. Thus according to Theorem 4.3.19 u will only send and receive
O(log2 n) messages in each round w.h.p.. Then in total u sends and receives at mostO(log3 n) messages
w.h.p.. Each node y ∈ V for which the sets of stored nodes do not change also sends and receives at
most O(log3 n) messages w.h.p. according to Theorem 4.3.19 as they only receive at most one forward
message containing u and send one message delegating u in each round additionally. Nodes for which
the sets of stored nodes change by the integration of u receive the correct lists and delegate all nodes
not longer stored once thus each node sends and receives O(log2 n) messages in total additionally.
Summing up each node sends and receives at most O(log3 n) messages until a node u is integrated and
the computation reaches a stable state. ut

We proceed with the case of a leaving node.
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Theorem 4.3.22 If a node u leaves a stable CONE network it takes O(log n) rounds and O(log3 n)
messages to recover to the new stable state.

Proof. The proof is similar to the proof in the case of a joining node. We assume that u is not the node
with the greatest capacity, otherwise the network gets disconnected when u leaves.We further assume that
u has a left and right neighbor, i.e. u is not the node with the maximal or minimal position, otherwise the
network remains stable even if u leaves. In the following let P+(x) denote the set before the leaving of u
and P ′+(x) the set after the leaving of u.

If u leaves the network, then for all nodes v ∈ S−(u) pred+
1 (v) changes and for all nodes w ∈ P−(u)

succ+
1 (w) changes. Then pred′+1 (v) ∈ P ∗(u) and succ′+1 (w) ∈ S∗(u). Thus for nodes x in P ∗(u) and

S∗(u) S−(x) resp. x.P−(x) can change. Furthermore like in the case of a joining node for nodes y with
u ∈ P+(y) or u ∈ S+(y) the sets P+(y) resp. S+(y) can change.

As u is not the node with the maximal capacity at least one of the sets u.P+ and u.S+ is not empty.
W.l.o.g. let u.P+ not be empty, then each node v in u.S− is connected to u.pred+

1 . We now show that
for each v ∈ u.S− after O(log n) round w.h.p. v.P+ = P ′+(v). Let l = |u.P ∗| then if all nodes v are
connected to w = pred+

1 (u) = u.P ∗[l] either v ∈ S′−(w) and w stores v or w delegates v to u.P ∗[l− 1].
Thus by applying the same argument inductively until after O(log n) rounds w.h.p. for each v ∈ u.S−
v.pred+

1 = pred′+1 (v) = u.P ∗[i] for some i ≤ l. Then in the next round v.P+ = P ′+(v). We now show
that for each v ∈ u.S− after O(log n) round w.h.p. also v.P− = P ′−(v) . We already showed that for
each v ∈ u.S− v.pred+

1 = pred′+1 (v) = u.P ∗[i]. Let w = v.pred+
1 = u.P ∗[i] Then w integrates all

v with w = v.pred+
1 in w.S−. If there are nodes v′ ∈ u.P− with succ′+1 (v′) = v, i.e. v′ ∈ P ′−(v),

then also u.P ∗[i− 1] ∈ P ′−(v) and w = u.P ∗[i] forwards v to u.P ∗[i− 1]. By applying this argument
iteratively on the u.P ∗[j]s according to Lemma 4.3.2 after O(log n) rounds w.h.p. v.P− = P−(v) for
all v ∈ u.S−. As for all nodes v ∈ u.S∗ v.P− = P−(v) and v.P+ = P+(v), also w.P− = P−(w)
and w.P+ = P+(w) for all nodes w ∈ u.P ∗. If for all nodes v ∈ u.S∗ v.P− = P−(v), then for all
w ∈ u.P ∗ w.succ′+1 = succ′+1 (w), as their successor has to be a node in u.S∗. If for all nodes v ∈ u.S∗
v.P+ = P+(v), then for all w ∈ u.P ∗ w.S′− = S′−(w), as only nodes in u.S∗ might be added. Then
for all nodes y ∈ V after at most O(log n) rounds y.S′− = S′−(y) and y.P ′− = P ′−(y). Like in
the case of a joining node it remains to show that y.S′+ = S′+(y) and y.P ′+ = P ′+(y) for all nodes
y ∈ V . If for a node y P+(y) (resp. S+(y)) changes after u leaves the network, then u ∈ P+(y) (resp.
u ∈ S+(y)) after the join of u. W.l.o.g we assume that P+(y) changes. Then according to our analysis
above there is a node z in y.P+ with z.pred+

1 = u and z.P ′+ = P ′+(z). Then z sends a list-update
message to all nodes in z.S−. As z ∈ y.P+ z.S−∩ (y.P+∪{y}) 6= ∅ and for at least two nodes in y.P+

the P+ lists are correct. By applying this argument inductively after O(log n) rounds w.h.p. according to
Lemma 4.3.1 all nodes in P+(y) hold the correct P+ lists and then also y receives a list-update from
pred+

1 (y) and y.P ′=P ′+(y). By symmetric arguments we can also show that afterO(log n) rounds w.h.p.
y.S′+ = S′+(y) for all nodes y ∈ V . Thus after O(log n) rounds w.h.p. a stable state is reached and the
resulting graph G′ ∈ CONE. Each node y ∈ V for which the sets of stored nodes do not change also
sends and receives at most O(log3 n) messages w.h.p. according to Theorem 4.3.19. Nodes for which the
sets of stored nodes change by the leaving of u receive the correct lists and delegate all nodes they don’t
store at most once thus each node sends and receives O(log2 n) messages w.h.p. in total additionally.
Summing up each node sends and receives at most O(log3 n) messages w.h.p. before the computation
reaches a stable state. ut

If the capacity of a single node u in a stable CONE network changes we can apply the same arguments
as for the cases of a joining or leaving node. By its local knowledge u can correct its lists u.S+, u.S−,
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u.P+. and u.P− in one single round. For all other nodes y ∈ V − {u} we can use the arguments of the
case of a joining node if c(u) increases or the case of a leaving node if c(u) decreases. Thus the following
theorem follows.

Theorem 4.3.23 If a node u in a stable CONE network changes its capacity it takes O(log n) rounds
and O(log3 n) messages w.h.p. to recover to the new stable state.

4.4 Conclusion & Outlook

This chapter presented the application of topological self-stabilization to two distributed hash tables.
We introduced Re-Chord, a Chord like distributed hash table that can be formed by a self-stabilizing
protocol PRE−CHORD with a stabilization time of O(n log n), a stabilization work of O(n log3 n), and
a maintenance work per round of O(log2 n) for each node. It seems like that by a modified analysis and
maybe some modifications of the protocol a sublinear stabilization time can be shown like in the analysis
in [29]. This results from the observation that if a node ui forwards a node v to a virtual sibling uj the
distance to v is halved. Thus a polylogarithmic stabilization time seems likely. Then also the stabilization
work could be improved.

This chapter also presented a heterogeneous distributed hash table for which we considered hetero-
geneity in terms of different capacities of the nodes. In the presented overlay network CONE-DHT each
node has a degree of O(log n) w.h.p.. The protocol PCONE for this overlay network is correct in the
ATSS and STSS model. In the STSS model we showed a stabilization time of O(n), a stabilization work
of O(n2 +Dn log n) w.h.p. if there are D data items stored in the network, and a maintenance work of
O(r + log2 n) w.h.p. if a node stores data items supervised by r reference nodes. This is the first attempt
to present a self-stabilizing method for a heterogeneous overlay network and it works efficiently regarding
the information stored in the hosts. Furthermore our solution provides a low degree, fair load balancing
and polylogarithmic update cost in case of joining or leaving nodes. Our solution is independent of the
capacities and their distribution, thus there are no restrictions on the minimal or maximal capacity of a
node. The properties of the overlay network even hold for arbitrary height functions as long as they are
monotonic.

Also for the CONE-DHT the optimality of the stabilization time and work remains an open question.
Also for PCONE it might be possible to exploit the logarithmic degree of the nodes and logarithmic length
of a routing path in the analysis to show that the stabilization time is polylogarithmic. A natural extension
of this approach is to consider heterogeneity in more than one aspect, e.g. nodes with heterogeneous
capacities and bandwidth. Then it could be necessary to build a 2-dimensional overlay network that
supports heterogeneity. Even heterogeneity in further aspects like stability or trustfulness of the nodes
could be considered to build overlay networks for specific applications.
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CHAPTER 5
Prefix and Range Queries on Distributed Hash Tables

5.1 Introduction

So far the distributed hash tables we presented only supported exact queries, i.e. on a look-up request the
system answers with the requested data item, if it is currently stored in the system or gives a negative
output if the data item is not found. In section 5.2 we present a solution that can be built on top of such
distributed hash tables and enables them to also support prefix queries. If an item with the searched key
is not found the system responds with an item that has a similar key - in this case the longest matching
prefix - like the key of the searched item. We therefore introduce a data structure called hashed Patricia
trie, that is able to support prefix queries on top of distributed hash tables. This data structure supports the
following operations: PrefixSearch(x) and Insert(x) can be executed in O(log(|x|)) hash table accesses
while Delete(x) only needs a constant number of hash table accesses.

We will then extend this solution to also support range queries on the keys by the hashed predecessor
Patricia trie in section 5.3. We get a hashed predecessor Patricia trie out of our hashed Patricia trie by
adding pointers, pointing to the minimal and maximal key in a sub trie. For this data structure we show
that all operations PredecessorSearch(x), Insert(x) and Delete(x) can be executed in O(log logU) hash
table accesses when U is the size of the universe of the keys.

5.1.1 Related Work

The design of efficient search structures is a classical problem in computer science. The longest prefix
problem we consider in the first section can be defined as follows. From a set S of keys, represented
as binary strings, find a key y ∈ S that has the longest common prefix with the search key x. The
predecessor problem then is a search problem that is closely related to the longest prefix problem. In
a predecessor problem we are given a key and the problem is to find y = max {z ∈ S | z ≤ x}. In our
context with strings, a natural interpretation of z ≤ x is that z is lexicographically smaller than x (i.e., the
first letter different in x and z is lexicographically smaller in z than in x). In this case, either the closest
predecessor or the closest successor of x has the longest prefix match with x.

When using standard balanced search trees to solve the longest prefix problem like in [5] or the related
problem of predecessor search on n = |S| keys, the worst case execution time is in O(log n) due to
traversing the edges of the tree. Patrascu et al. [63] gave tight bounds of Θ(log l) for the runtime of
predecessor search on a data structure in a RAM model with words of length l = Θ(log n). The upper
bound results from using the van Emde Boas data structure presented in [76]. The van Emde Boas tree
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comes with a specific layout limiting its use to a small range of values to be space efficient. When hashing
its entries as we do it with our extended Patricia trie, then the van Emde Boas tree can be used to run
PrefixSearch(x), Insert(x) and Delete(x) in time Θ(log |x|) in the worst case (w.h.p., where the probability
is due to the hashing). However achieving a constant runtime for Delete(x) and a constant number of data
structure updates for each operation would require major modifications in the van Emde Boas tree which
is already a non-trivial, recursively defined data structure. We believe that our approach is much more
intuitive and simple to understand.

A trie is a search tree in which every edge represents a letter and every node represents a string
consisting of the letters of the unique path from the root to that node. Thus the depth of a trie for a set of
strings S is equal to the maximum length of a string in S and therefore can be much larger than the depth
of a balanced search tree. In the presented solution we will use a Patricia trie, which is a compressed
trie, i.e. edges do not represent letters but strings and a path in a trie can be compressed to an edge in the
Patricia trie. A formal definition will be given later.

Trie hashing has been used in [44] in an approach close to the hardware level called HEXA to reduce
the memory needed to store a node of a trie and its information by avoiding string pointers to the next
node. This approach is validated for IP look-up in routers and string matching. Our approach follows
the idea of HEXA in some points, as we only store labels of the edges and no string pointers. But since
we are concentrating on a higher level by using our data structure in a distributed setting like a DHT,
we focus on the number of DHT accesses instead of minimizing the computations and memory usage,
although our approach is asymptotical optimal in the memory usage.

Trie hashing has also been used, for example, in file systems [48, 49], IP look-up [77] and distributed
hash tables [66] in order to provide efficient longest prefix searching. While the update cost of these data
structures is expensive in the worst case (i.e., linear in the size of the key), Waldvogel et al. [77] as well
as Ramabhadran et al. [66] use binary search on the prefix length to obtain a runtime of O(log |x|) resp.
limit the number of messages to O(log |x|) for PrefixSearch(x).

The approach of Ramabhadran et al. called Prefix Hash Tree [66] is probably most comparable to ours.
Both are based on Trie hashing and both are designed for DHT-based peer-to-peer systems. The main
advantages of our hashed Patricia trie compared to the Prefix Hash Tree are the minimized update costs.
Using the Prefix Hash Tree, insertions and deletions can lead to worst case costs of O(|max. key length|).
This is due to the buckets that contains the keys. If the number of keys stored in a bucket rises beyond its
maximum size the bucket is split, and it might be split up to O(|max. key length|) times ( when all keys
are distributed to the same child). The same problem occurs in case of the deletion of a key. Ramabhadran
et al. present a workaround by allowing the maximum size of the buckets to be exceeded. A Patricia trie
is a compressed trie and thus contains less nodes in average, so less hash table entries are needed in our
solution. In a hashed Patricia trie keys of arbitrary lengths can be stored instead of a fixed length in the
Prefix Hash Tree. However, notice that the Prefix Hash Tree also supports range queries, which are not
considered in this paper.

A better solution for prefix search in distributed systems is due to Awerbuch and Scheideler [3]. They
embed a skip graph [2] based on the entries in S into a distributed system using consistent hashing and
store the addresses of the nodes for every link of the skip graph so that each link traversal in the skip graph
just means a single message hop in the distributed system. While this allows to execute PrefixSearch(x),
Insert(x) and Delete(x) in O(log n) communication rounds, the update cost when nodes join and leave
the system can be much larger than in a DHT. With the hashed Patricia trie we minimize the update costs
and furthermore present a data structure applicable on any kind of DHT that provides write and read
commands.
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In the second part of this chapter we will consider the predecessor problem to be able to support
range queries for the key set stored in a distributed hash table. In [6] and [1] an overview of the
different approaches for solving the predecessor problem is given. Using exponential search trees one
can achieve the following runtime only depending on the number of key currently in the data structure
while only using linear space: O(min

{
log log n+ log n/ log logU, log logn ∗ log logU

log log logU ,
}

). Thus if
n = O(logU) this solution outperforms our solution, but if n = O(U) our solution is better and in fact
optimal.

We will reuse some techniques used for the x- and y-fast tries [80] introduced by Willard in our solution
and combine them with the space efficient Patricia trie. Y-fast tries are also space efficient but have the
drawback that they consist of a combination of different data structures, the keys are stored in several
balanced search trees and for every search tree a representative is held in a x-fast trie. We therefore
think that our solution using only a single Patricia trie is much more intuitive and simple to understand.
Furthermore for y-fast tries only an amortized update cost of O(log logU) can be shown, whereas for the
hashed Predecessor Patricia trie a worst case update cost of O(log logU) can be shown.

5.2 Hashed Patricia Trie: Efficient Longest Prefix Queries on
Distributed Hash Tables

5.2.1 Introduction

In this section we consider the problem of longest prefix queries on distributed hash tables. In the
following we formally define the problem and present a data structure that efficiently supports longest
prefix queries with the help of any common DHT, e.g. Chord [75] or Pastry [70].

Definition 5.2.1 (Longest Prefix Problem) Given a set of binary strings S and a binary string x, find
y ∈ S such that y has the longest common prefix with x of all strings in S. The prefix of a string is a
sub string beginning with the first bit. If there are several keys with a longest prefix, any one of them is
returned as y.

In order to provide a data structure for the problem of longest prefix queries we need the following
operations:

Insert(x): this adds the key x to the set S. If x already exists in S, it will not be inserted a second time.
Delete(x): this removes the key from the set S, i.e., S := S − {x}.
PrefixSearch(x): this returns a key y ∈ S that has a longest common prefix with x.
We will present a data structure called hashed Patricia trie for these operations, which is based on an

extension of the Patricia trie [56] over the data set embedded into a hash table. With this data structure,
PrefixSearch(x) and Insert(x) can be executed in O(log(|x|)) hash table accesses while Delete(x) only
needs a constant number of hash table accesses. Moreover, the number of changes in the data structure
for each Insert(x) and Delete(x) operation is a constant. That is, the costs of the presented operations are
independent of the size of the data structure as they only depend on the length of the input |x|. Our bounds
on the hash table accesses imply that only few messages have to be sent when using the well-known
distributed hash table (DHT) approach in order to realize our data structure. Most importantly just
O(1) updates in the DHT are needed per operation, so it is easy to keep the DHT synchronized. We
further point out that our solution is asymptotically optimal in the use of memory space, requiring only
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Θ(sum of all key lengths) of memory. This implies that the data structure can easily be implemented on
top of a DHT without producing an overhead in terms of memory usage.

5.2.2 Our contributions

We present a data structure that supports longest prefix queries on distributed hash tables and give the
costs of the operations PrefixSearch(x), Insert(x), and Delete(x), given in theorems 5.2.3- 5.2.5. These
results are based on work published in [40]:

Sebastian Kniesburges, Christian Scheideler, Hashed Patricia Trie: Efficient Longest Prefix Matching
in Peer-to-Peer Systems, In the 5th Workshop on Algorithms and Computation 2011 (WALCOM 2011),
New Delhi, India, February, 2011.

5.2.3 Hashed Patricia Trie

In this section we describe our hashed Patricia trie. We first review the structure of an ordinary Patricia
trie, then describe its modifications, and finally show how to combine it with a hash table.

Patricia Trie

The concept of a Patricia trie was first proposed by Morrison in [56]. Suppose for the moment that all
keys in the given key set K have the same length (i.e., consist of the same number of letters). In this case,
the Patricia trie of these keys is a compressed trie in which every edge now represents a string (instead of
just a single letter), every inner node (except for the root) has two children, and every node represents a
string resulting from the concatenation of the strings along the unique path from the root to that node.

See Figure 5.1 for an example.
In the following, we will restrict ourselves to keys representing binary strings. For every node v in the

Patricia tree, let b(v) be the binary string identifying it (i.e., in Figure, b(k5) = 10101). Let |b(v)| be the
length of b(v). To maintain keys with arbitrary lengths, we also allow inner nodes with just one child in
the Patricia trie, but only if such a node represents a key in the key set K (that is, node lists in the trie
cannot be compressed beyond these nodes).

In our Patricia trie data structure, every node v stores b(v) and the edge labels to the father and the two
children, denoted by p−(v), p0(v) (the child whose edge label starts with 0), and p1(v) (the child whose
edge label starts with 1), respectively. Node v also stores up to two keys, key1(v) and key2(v). If there is
a key k ∈ K with k = b(v), then key1(v) is set to k and is otherwise empty. If there is a key k ∈ K with
prefix b(v) that is longer than b(v), then key2(v) is set to any one of these keys and is otherwise empty.
As we will see, it is possible to make sure that every key k ∈ K is stored at most once in key2(w) of
some Patricia node w, which is important to ensure efficient updates. In order to remember this node,
each node v with b(v) ∈ K stores a string r(v) with the property that for the node w with b(w) = r(v),
key2(w) = b(v).

It has already been shown that binary search is possible on a hashed trie [66], but to enable binary
search on a hashed Patricia trie we need further nodes. For this we need some notation. Given two binary
strings a = (am, · · · a1, a0) and b = (bm, · · · b1, b0) (possibly filled up with leading 0s so that a and b
have the same length), let msd(a, b) be the unique bit position so that aj = bj for all j > msd(a, b) and
amsd(a,b) 6= bmsd(a,b). So msd(a, b) is the most significant bit in which the two strings differ. Now, let us
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replace every edge {v, w} in the Patricia trie by two edges {v, u}, {u,w} where the label b(u) of u is a
prefix of b(w). More precisely, let `1 = |b(v)| and `2 = |b(w)|, and let m = msd(`1, `2), then b(u) is
the prefix of b(w) of length

∑blog `2c+1
i=m (`2)i · 2i. (If u happens to have the same label as v or w, then we

just merge it with that Patricia node and declare the result a Patricia node.)
As an example, assume we have two connected Patricia nodes v, w with b(v) = 01001 and b(w) =

010010011. Then `1 = |b(v)| = 5 = (101)2 and `2 = |b(w)| = 9 = (1001)2 and m = msd(`1, `2) = 3.
The resulting msd-node u gets the prefix b(u) = 01001001 of length 8 = (1000)2. For an example see
Figure 5.2.

The intuition for the introduction of the msd-nodes is to use the msd-nodes as nodes that will be visited
by a binary search. Performing a binary search on a normal Patricia trie can lead to problems. Assume in
round i a prefix k with length |k| = li is searched, i.e. HT-look-up(k) is performed. If the Patricia trie and
the hash table does not contain such a key, it is not clear whether the prefix length should be increased or
decreased, as there could still be a key with a prefix longer than li. Therefore we introduce the msd-nodes
v with the property that the length of b(v) is calculated such that it will be found by the binary search.

We will call the resulting trie an msd-Patricia trie and the added nodes msd-nodes (while the original
nodes are called Patricia nodes). In our data structure, each msd-node v stores b(v) and the edge labels
to the father and its child, using the variables p−(v) (for the father) and p0(v) or p1(v) (depending on
whether the edge label to the child starts with 0 or 1). Note that the number of nodes in the msd-Patricia
Trie is asymptotical the same as in the Patricia trie, i.e. we overload the Patricia trie only by a constant
factor (one msd-node between a pair of connected Patricia nodes).
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Figure 5.1: An example of a Patricia Trie

Hashed Patricia Trie

We will now show how to combine the msd-Patricia trie with a hash table. For every node (either a
Patricia node or an msd-node) its label b(v) will be hashed with an appropriate hash function (see Figure)
for an example). At this moment we do not specify the hash function but just assume the existence of two
operations on the used hash table: HT-write(key, data) and HT-look-up(key), where data represents the
data of a Patricia node or msd-node with label key. Using these operations allows us to directly access
nodes whose labels are known instead of traversing the Patricia trie. In order to keep our approach as
general as possible, we will bound the cost of our operations in terms of hash table accesses and discuss
later how to best realize the hash table in a distributed setting. We only focus on the communication costs
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Figure 5.2: msd nodes are added between each pair of Patricia nodes

HT-write(key,data) HT-look-up(key)
PrefixSearch(x) - O(log |x|)

Insert(x) O(1) O(log |x|)
Delete(x) O(1) O(1)

Table 5.1: Costs of hashed Patricia trie operations

since internal computations are considered to be rather cheap. More specifically, we present operations
with a performance as shown in Table 5.1. For the memory usage we will show that the following theorem
holds.

Theorem 5.2.1 The hashed Patricia trie needs Θ(
∑

k∈K |k|) memory space, where
∑

k∈K |k| is the sum
of the bit lengths of the stored keys.

Proof. Obviously it takes Ω(
∑

k∈K |k|) space to store all keys. But in a hashed Patricia trie not only the
keys are stored, but also the inner nodes and the msd-nodes store their identifier b(v) and the edge labels.
We will show, that following our construction scheme the needed memory space is O(|K|). First, note
that the Patricia trie is a binary tree with four kinds of nodes, the root r, which is an inner node with one
or two children, the inner nodes V2 with two children, the inner nodes V1 with one children that store a
key1(v) ∈ K and the leaves V0 also storing keys in key1(v). Each node of V2 has two descendants and
each node of V1 and the root one and every node except for the root has a parent, thus the total number of
nodes is 2 ∗ |V2|+ |V1|+ 2, and the total number of nodes is also 1 + |V2|+ |V1|+ |V0|. Thus it holds that
|V2| = |V0|+ 1. Each v ∈ V2 ∪ {r} stores a key in key2(v), each key is stored at most once in key2(v),
and its identifier b(v) satisfies |b(v)| < |key2(v)|. Thus for all nodes of V2 ∪ {r} O(

∑
k∈K |k|) space

is required. For the msd-nodes we know that each msd-node is placed between every pair of connected
Patricia nodes and each msd-node v has a child w with |b(v)| < |b(w)|. Thus the sum of all lengths of
the b(v)s of the msd-nodes is less than the sum of all key lengths. At last note that the concatenation of
the edge labels on a path from the root to a leaf corresponds to the key of the leaf, and therefore the sum
of all edge labels must be less than the sum of the key lengths. Summing up Θ(

∑
k∈K |k|) memory space

is needed.
ut
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Figure 5.3: An example of a hashed Patricia trie

Applications

We can easily implement the hashed Patricia trie on top of a DHT. When using, e.g., Chord [75] or Pastry
[70] in order to realize a DHT, then the HT-write(key,data) and HT-look-up(key) operations can be realized
by sending a single message along at most O(logN) sites w.h.p., where N is the number of sites in the
system. Hence, we obtain the following result. By using an underlying DHT we leave the cases of churn
and load balancing up to the DHT, i.e. our hashed Patricia trie does not affect the quality of the DHT.

Theorem 5.2.2 When using Chord or Pastry the PrefixSearch(x) and the Insert(x) operations can be
executed in O(log |x| logN) communication rounds w.h.p. The Delete(x) operation requires O(logN)
communication rounds w.h.p.

5.2.4 Operations

In this section we provide algorithms for the operations Insert(x), Delete(x) and PrefixSearch(x). We will
also show the correctness and bound their costs.

PrefixSearch(x)

The algorithm for the PrefixSearch(x) operation is based on the idea of binary searching. We assume that
x ∈ {0, 1}` has the form (x1, . . . , x`). The binary search starts with parameters k = 0 and s = blog(|x|)c.
Then in each binary search step the algorithm decides whether there is a key in the Patricia trie with
a prefix (x1, · · ·xk+2s). If so, then k is increased to k + 2s, and otherwise k stays as it is. Also, s is
decreased by 1 in any case. At last, the binary search provides some node v in the Patricia trie. From that
node on, the Patricia trie is traversed downwards along the route determined by x till the first Patricia
node w is found whose label is not a prefix of x, or a leaf is reached. PrefixSearch(x) then returns the key
stored in w. As we will see, only a constant number of edges have to be traversed from v to w so that our
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cost bound for PrefixSearch(x) holds. The pseudo code for this algorithm is given below. An illustration
is given by Figure 5.4.

0

|x|

1/2 |x|

3/4|x|

5/8 |x|

x=(x|x|,…,x2,x1,x0)

HT-lookup(x|x|,…,x1/2 |x|)

HT-lookup(x|x|,…,x5/8|x|)

HT-lookup(x|x|,…,x3/4|x|)

Figure 5.4: An illustration of a binary search on a hashed Patricia trie

We will prove the correctness of PrefixSearch(x) with the help of two lemmas. First, we will show the
correctness of the first while loop (binary search) in PrefixSearch(x). Let y be a key with the longest
matching prefix prex with x in the data structure. Let v be the last node on the route from the root to prex
in the msd-Patricia trie. Hence, |b(v)| ≤ |prex|. As we said, |b(v)| = l is represented by (lm, · · · , l0)
differing from the representation of the keys. Thus |b(v)| can also be described as

∑m
j=0 2j ∗ lj . We will

now prove the following lemma.

Lemma 5.2.1 If v is the last node on the unique path from the root to prex with an identifier b(v) with
|b(v)| =

∑m
j=0 2j ∗ lj then in round k of the while loop in PrefixSearch(x) the existence of a prefix of x

with length
∑m

j=dlog(|x|)e−k+1 2j ∗ lj will be detected.

Proof. The proof is given by induction on k. Assume that b(v) 6= ε, i.e. v is not the root of the trie.
Firstly we show that the theorem holds for the basis k = 1. Hence the binary search needs to detect a
prefix of length 2log(|x|). Note that dlog(|x|)e ≥ m ≥ 0 as |b(v)| has at most dlog(|x|)e digits. Also note
here is no prefix with length 2m

′
and m′ > m as v is the last node on the route to prex. If m < log(|x|)
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Algorithm 5.2.1 PREFIXSEARCH(X)
if key1(HT − look − up(x)) = x or key2(HT − look − up(x)) = x then

return x
s := blog(|x|)c
k := 0
v := HT − look − up(ε)
p := px1(v)

while s ≥ 0 do
v := HT − look − up(x1, · · · , xk+2s)
if v 6= ∅ then

k := k + 2s

p := (x1, · · · , xk) ◦ pxk+1
(v)

else
if (x1, · · ·xk+2s) is prefix of p then

k := k + 2s

s := s− 1

while b(v) is prefix of x do
if pxk+1

(v) exists then
k := k +

∣∣pxk+1
(v)
∣∣

v := HT − look − up(b(v) ◦ pxk+1
(v))

else
if px̄k+1

(v) exists then
k := k +

∣∣px̄k+1
(v)
∣∣

v := HT − look − up(b(v) ◦ px̄k+1
(v))

else
break

if key1(v) 6= nil then
return key1(v)

else
return key2(v)
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there is no prefix of length 2log(|x|), which corresponds to the undefined sum
∑m

j=dlog(|x|)e−1+1 2j ∗ lj .
If m = dlog(|x|)e, then we claim that there exists a msd-node u with b(u) being a prefix of b(v) and
|b(u)| = 2m ≤ |b(v)| on the path to v. If v is a Patricia node, this msd-node exists because there must be
a pair of original Patricia nodes u′, v′ on the route to v with |b(u′)| < 2m and |b(v′)| ≥ 2m as |b(w)| is
increasing on the route to v beginning with 0 for the root. Then msd(u′, v′) = m. The same arguments
hold if v is a msd-node and |b(v)| > 2m. If v is a msd-node and |b(v)| = 2m u = v and u′ is the parent
of v and v′ its child.

In the induction step we show that, if the theorem holds for any k < dlog(|x|)e, it will also hold for
k+ 1. By assuming that the theorem holds for k we know that a prefix of length

∑m
j=dlog(|x|)e−k+1 2j ∗ lj

was found by the binary search. If dlog(|x|)e − k + 1 > m there is no prefix of this length and∑m
j=dlog(|x|)e−k+1 2j ∗ lj is empty and, so we assume from now on dlog(|x|)e − k + 1 ≤ m. If lk+1 = 0

the already found prefix is also a prefix of length
∑m

j=dlog(|x|)e−k+1 2j ∗ lj . If lj = 1 and there is a
node u with b(u) being a prefix of b(v) and thus of prex and |b(u)| =

∑m
j=dlog(|x|)e−k−1+1 2j ∗ lj it

will be found by the binary search in round k + 1. If lj = 1 but there is no such node u with |b(u)| =∑m
j=dlog(|x|)e−k−1+1 2j ∗ lj , then there cannot be a Patricia-node u′ with

∑m
j=dlog(|x|)e−k+1 2j ∗ lj ≤

|b(u′)| <
∑m

j=dlog(|x|)e−k−1+1 2j ∗ lj , otherwise ldlog(|x|)e−k−1 has to be a most significant digit for a
pair of Patricia-nodes u′, v′, because a Patricia-node v′ with |b(v′)| ≥

∑m
j=dlog(|x|)e−k−1+1 2j ∗ lj exists.

The Patricia-node v′ is either on the route to v or a child of v or v itself. We know by assumption that the
binary search has found the last node w with |b(w)| =

∑m
j=dlog(|x|)e−k′+1 2j ∗ lj k′ ≤ k, that exists in

the msd-Patricia trie and set the variable p to (x1, · · ·xk′) ◦ pxk′+1
. Therefore (x1, · · ·xk+1) has to be

a prefix of p and the prefix of length
∑m

j=dlog(|x|)e−k−1+1 2j ∗ lj is detected by the binary search. This
proves the theorem. If b(v) = ε, i.e. |b(v)| = 0, then m = 0 and v will be detected as a prefix of x in the
end of the binary search. ut

Lemma 5.2.2 If v is the last node on the route to prex, the next Patricia node v∗ storing a key y that has
the longest prefix prex with x will be found in a constant number of edge traverses.

Proof. If v is a msd-node one edge will be traversed in the second while loop to reach v∗. If v is a
Patricia-node there will be at most two edges traversed in the second loop. So after at most two steps v∗

is reached following the edges to the descendants of v, that maximize the longest matching prefix. If v
has no descendants v∗ = v and the loop breaks. ut

Next, we analyze the cost of the operation in terms of HT-write(key, data) and HT-look-up(key)
operations, which are asymptotically upper bounding the cost of all operations if we assume that all the
other primitive operations, including computing the length of a string or concatenating two strings, can
be done in unit time.

Theorem 5.2.3 The PrefixSearch(x) operation requires O(log(|x|)) HT-look-up(key) operations.

Proof. The first part of PrefixSearch(x) is the binary search that needs O(log(|x|)) HT-look-up(key)
operations operations. The second part of the PrefixSearch(x) needs at most two further HT-look-up(key)
operations. So altogether the theorem follows. ut

Insert(x)

The Insert(x) operation is similar to an insert in a traditional Patricia trie. This means: first, the correct
position of x is searched in the trie and then x is inserted by redirecting the pointers of the affected
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nodes. If the trie is empty we insert a new root w with b(w) = ε and key2(w) = x and one child v of w
with b(v) = x and key1(v) = x and r(v) = b(w) and add an msd-node between w and v. Otherwise,
we use a slightly adapted version of the PrefixSearch(x) operation, that returns the Patricia node v in
the trie at which the operation stops instead of the key, to search for the right position in the trie. If
key1(v) = x or key2(v) = x, the key is already in the data structure and will not be inserted a second
time. If we know v we also know u as the parental Patricia node via the p−(v) edges. If x is a prefix
of b(v) there can be three cases. If x = b(u) then key1(u) = x. If x = b(v) then key1(v) = x. And if
|b(u)| < |x| < |b(v)| then a node w is inserted between u, v with b(w) = x and key1(w) = x and the
msd-nodes between u,w and w, v are either added or their edges are updated (the old msd-node remains
either between u and w or w and v). If b(v) is a prefix of x, then v has to be a leaf and a node w with
key1(w) = x and b(w) = x is inserted as a child of v. Further r(w) is set to r(v) and r(v) is deleted and
key2(HT − look − up((r(v))) = x is set. Finally the msd-node between v, w is inserted. Recall that
r(v) returns the inner node storing key2(HT − look − up(x)) = x. If neither x is a prefix of b(v) nor
b(v) a prefix of x then a new Patricia node w with key1(w) = x and b(w) = x is inserted as a sibling
of v. If px|b(u)|+1

exists, a Patricia node w′ has to be inserted between u, v as the new parent of v and
w. Let j = msd(b(v), x), then key2(w′) = x and b(w′) = x1 · · ·xj−1. Then r(w) = b(w′) and the
msd-nodes between u,w′ w′, v and w′, w are added or updated. If px|b(u)|+1

does not exist a node w with
key1(w) = x and b(w) = x is inserted as a child of u. If key2(u) = nil it is updated to key2(u) = x
and r(w) = b(u). At last the msd-node between u,w is added.

Obvious Insert(x) is correct if PrefixSearch(x) is correct. E.g. in Figure 5.5.

k1

k2 k3

k3k4k2k1

00 1

1010101101

0001 0011 1010 1101

k1

k2 k3

k3k4k2k1

00 1

1
0101101

0011 1010 11010001

k5

1111

k5

01 11

Insert(1111)

Figure 5.5: How to insert a new key into a hashed Patricia trie

Theorem 5.2.4 The Insert(x) operation requiresO(log(|x|)) HT-look-up(key) operations(key) operations
and O(1) HT-write(key,data) operations.

Proof. The Insert(x) operation needs one PrefixSearch(x) with O(log(|x|)) HT-look-up(key) operations,
and afterward a constant number of nodes are inserted by HT-write(key,data) operations. So Insert(x) can
be executed with O(log(|x|)) HT-look-up(key) operations and O(1) HT-write(key,data) operations. ut

Delete(x)

We assume that the key x exists. Then we hash the key to get the corresponding nodes v = HT −
look − up(x), w = HT − look − up(r(v)) and u as v’s parental Patricia node. If key2(v) 6= nil, v
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is still needed after the deletion of x, so only key1(v) = nil, has to be set, as there is no node w. If
key2(v) = nil, v can have one or no child. If there is a child w′ it is connected to u, and a new msd-node
between u and w′ is inserted after the deletion of the msd-nodes caused by v.

If v has no child, v is a leaf. In this case if key2(u) = nil, so v was the only child of u, r(u) = r(v)
and key2(w) = key1(u). If key2(u) 6= nil, the data structure is updated by key2(w) = key2(u) and
r(HT − look − up(key2(u))) = b(w) and key2(u) = nil, as u is no longer necessary for the structure
of the Patricia trie. If key1(u) 6= nil, u is still in the data structure due to the key key1(u) = b(u).
Otherwise u can be deleted by connecting the parental Patricia node and the remaining child of u. Then
the msd-nodes caused by u are deleted and new msd-nodes between the parental Patricia node and the
child are inserted.

Obviously Delete(x) only substitutes nodes with one descendant by an edge and therefore maintains
the msd-Patricia trie structure correctly. E.g. in Figure 5.6.
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1010101101

0001 0011 1010 1101
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k2 k3

k3k4

0011 1

1010100011

1010 1101

Delete(0001)

Figure 5.6: How to delete a key in a hashed Patricia trie

Theorem 5.2.5 The Delete(x) operation requiresO(1) HT-look-up(key) operations and HT-write(key,data)
operations.

Proof. The Delete(x) operation needs a constant number of HT-look-up(key) and HT-write(key,data)
operations, as only a constant number of Patricia and msd-nodes are modified or deleted. ut

5.3 Hashed Predecessor Patricia Trie: Efficient Predecessor
Queries on Distributed Hash Tables

5.3.1 Introduction

In this section we extend the hashed Patricia Trie to be able to support further queries. In particular we
address the problem of finding the predecessor in a key set and present an efficient data structure called
hashed Predecessor Patricia trie. Our hashed Predecessor Patricia trie supports PredecessorSearch(x) and
Insert(x) and Delete(x) in O(log logU) hash table accesses when U is the size of the universe of the keys.
That is the costs only depend on U and not the size of the data structure. One feature of our approach is
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that it only uses the look-up interface of the hash table and therefore hash table accesses may be realized
by any distributed hash table (DHT). In the following we define the predecessor problem and present a
data structure that efficiently supports the predecessor problem with the help of any common DHT, e.g.
Chord [75] or Pastry [70].

Definition 5.3.1 (Predecessor Problem) Given a key set S with a total order and a search key x, find
max {y ∈ S|y ≤ x}.

In the context of strings, a natural interpretation of z ≤ x is that z is lexicographically smaller than x
(i.e., the first letter different in x and z is lexicographically smaller in z than in x). Throughout the paper
we will only consider binary strings.

A data structure for the predecessor problem supports the following operations:

• Insert(x): this adds the key x to the set S. If x already exists in S, it will not be inserted a second
time.

• Delete(x): this removes the key from the set S, i.e., S := S − {x}.

• PredecessorSearch(x): this returns a key y ∈ S that is the predecessor of x.

We will present a data structure called hashed Predecessor Patricia trie for these operations, which is
based on an extension of the Patricia trie [56] called hashed Patricia trie. For the hashed Predecessor
Patricia trie we will show that all operations PredecessorSearch(x), Insert(x) and Delete(x) can be executed
in O(log logU) hash table accesses when U is the size of the universe of the keys. That is, the costs
of the presented operations are independent of the size of the data structure as they only depend on the
size of the universe U . Our bounds on the hash table accesses imply that only a few messages have to
be sent when using the well-known distributed hash table (DHT) approach in order to realize our data
structure. We further point out that our solution is asymptotically optimal in the use of memory space,
requiring only Θ(sum of all key lengths) of memory. This implies that the data structure can easily be
implemented on top of a DHT without producing an overhead in terms of memory usage.

5.3.2 Our contributions

We present a data structure that supports predecessor queries on distributed hash tables and give the costs
of the operations PredecessorSearch(x), Insert(x), and Delete(x), given in theorems 5.3.2- 5.3.4. With
these results we elaborate on the results mentioned in [41]:

S. Kniesburges, C. Scheideler, Brief Announcement: Hashed Predecessor Patricia Trie - A Data
Structure for Efficient Predecessor Queries in Peer-to-Peer Systems, 26th International Symposium on
Distributed Computing (DISC), 2012.

5.3.3 Hashed Predecessor Patricia trie

In this section we describe our solution. The hashed Predecessor Patricia trie is based on the hashed
Patricia trie we introduced in the last section. As for the hashed Patricia trie we do not specify the
underlying hash function but just assume the existence of two operations on the used hash table: HT-
write(key, data) and HT-look-up(key), where data represents the data of a Patricia node or msd-node with

161



Chapter 5 Prefix and Range Queries on Distributed Hash Tables

label key. Using these operations allows us to directly access nodes whose labels are known instead of
traversing the Patricia trie. In order to keep our approach as general as possible, we will bound the cost of
our operations in terms of hash table accesses.

The binary search in the hashed Patricia trie consists of two parts as described in the last section. The
first part returns the node in the hashed Patricia trie of which the identifier is the longest prefix of the
search key among all nodes in the hashed Patricia trie. In the second part a key is returned that has the
longest prefix with the search key among all keys.

We will reuse the first part of the binary search to find the predecessor of a search key. If we have
found the node v of which the label is the longest prefix of the search key x, then there are 3 possible
cases of the position of the predecessor pred(x) of the search key:

• x is between the left and right sub-trie, so pred(x) is the greatest key in the left sub-trie.

• x is greater then all keys in the right sub-trie, then pred(x) is the greatest key in the left sub-trie of
the first ancestor of v containing v in its left sub-trie.

• x is smaller then all keys in the left sub-trie, then pred(x) is the greatest key in the left sub-trie of
the first ancestor of v containing v in its right sub-trie.

By adding a pointer lmax to the greatest key in the left sub-trie of each Patricia node we can easily
solve two of the three cases. Following this pointer from v we can always solve the first case, following
the lmax pointer from the parental Patricia node parent(v) of v we can either solve the second or the
third case as v is either in the left or right sub-trie of parent(v). Thus the remaining case to solve is
the case in which pred(x) is greater (resp. smaller) then all nodes in the sub-trie rooted at v and v is
not in the left (resp. right) sub-trie of parent(v). An intuitive approach would be to add pointers to the
maximal and minimal key in the sub-trie rooted at v. As many nodes can point to the same maximal key,
e.g. v is the right child of its parental Patricia node, which again is the right child of its parental node and
so on, this approach would lead to high update costs of Θ(logU). In our solution we will only store one
pointer for each leaf as a maximal (resp. minimal) key in a sub-trie. The first node v on the unique path
from the root to the leaf for which a leaf is the maximal (resp. minimal) key in its sub-trie stores a pointer
rmax (resp. lmin) to it. For all other Patricia nodes, that have the same rmax (resp. lmin) as v we add a
pointer structure such that they will find v and thus rmax in at most O(log logU) steps. To describe this
pointer structure we introduce the following definitions.

Definition 5.3.2 We call a path along edges, of which each label starts with a 1 (resp. 0) and that ends
in a leaf node of the trie a 1-sequence (resp. a 0-sequence). Each such 1-sequence (0-sequence) is defined
by its starting node v in the trie, i.e. the last node on the path to the leaf such that p−(v) = 0 · · · (resp.
p−(v) = 1 · · · ).

Definition 5.3.3 Let w be a msd-node with |b(w)| =
∑log logU

i=0 xi2
i and let l be the last digit such that

xl = 1 and xj = 0∀j < l. Then w′ is the msd-node that is visited before w such that b(w′) is the longest
prefix of b(w) among all prefixes of lengths |b(w′)| =

∑log logU
i=j xi2

i j > l. We call w a first hit of the
binary search if w and w′ lie on different 1-sequences (resp. 0-sequences).

For our pointer structure we determine at which msd-nodes a binary search can firstly hit a 1-sequence
(resp. 0-sequence). All nodes along such a sequence have the same rmax (resp. lmin) leaf. The determined
msd-nodes will then be connected as a linked list by pointers ll(v). Thus if we find a node v in the binary

162



5.3 Hashed Predecessor Patricia Trie: Efficient Predecessor Queries on Distributed Hash Tables

x=(x|x|,…,x2,x1,x0)
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Figure 5.7: How to find pred(x) from v
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search, we follow the linked list pointers to find the starting node of that sequence, which stores the
corresponding rmax (resp. lmin) value.

Lemma 5.3.1 A linked list by pointers ll(v) consists of at most O(log logU) nodes, i.e. there are at
most O(log logU) first hits on a 1-sequence (resp. 0-sequence).

Proof. Let u be a starting node of a 1-sequence (resp. 0-sequence) and let w be the corresponding rmax
leaf. Then we can determine all first hits on this sequence. For each binary search for a key x such that
b(u) is a prefix of x, i.e. a binary search that will actually hit the 1-sequence, the first possible hit, i.e. the
first prefix length of x that is queried, is given by the msd-node v1 with |b(v1)| =

∑blog `2c+1
i=m (`2)i · 2i,

where `1 = |b(u)|, `2 = |b(w)| and m1 = msd(`1, `2) and b(v1) is a prefix of w. Note that all nodes
v′ on the 1-sequence starting by u with |b(v′)| > |b(v1)| can not be first hits. If we assume that such a
node v′ is a first hit, then b(v′) is a prefix of the search key x, but then also b(v1) is a prefix of x and v1 is
queried before v′, such that v1 is a first hit, which contradicts the assumption that v′ is a first hit. Then for
another first hit v2 on the same 1-sequence it must hold that |b(v2)| < |b(v1)|. This meas that b(v1) is no
prefix of the search key x and the query of the binary search was negative. Then the next possible hit or
the prefix length of the next query by the binary search is given by v2 with |b(v2)| =

∑blog `2c+1
i=m (`2)i · 2i,

where `1 = |b(u)|, `2 = |b(v1)| and m2 = msd(`1, `2) and b(v2) is a prefix of w. Note that all nodes
v′′ on the 1-sequence starting by u with |b(v1)| > |b(v′′)| > |b(v2)| can not be first hits by the same
arguments as for the nodes v′. By induction we can show that the j-th first hit is given by vj with
|b(vj)| =

∑blog `2c+1
i=m (`2)i · 2i, where `1 = |b(u)|, `2 = |b(vj−1)| and mj = msd(`1, `2) and b(vj) is a

prefix of w. Then j is limited byO(log logU) as for each first hit vj we determined a different msd-value
mj and the number of bits is limited by O(log logU). Or in other words to reach vj there have to be
j− 1 negative queries by the binary search and according to Theorem 5.2.3 in the last section the number
of queries (HT-look-up(key) operations) of the binary search is limited by O(log logU). ut

An example of the added pointers is given in Fig. 5.8. For the memory usage we will show that the
following theorem holds.

Theorem 5.3.1 The hashed Predecessor Patricia trie needs Θ(
∑

k∈S |k|) memory space, where
∑

k∈S |k|
is the sum of the bit lengths of the stored keys.

Proof. According to Theorem 5.2.1 a hashed Patricia trie needs Θ(
∑

k∈S |k|) memory space. Addi-
tionally each node stores at most one lmax and rmax pointer and one further pointer to build a linked list
along a 1-sequence or a 0-sequence. Thus the needed memory space increases only by a constant factor
and stays asymptotically optimal. ut

5.3.4 Operations

PredecessorSearch(x)

The algorithm for the PredecessorSearch(x) operation is based on the idea of binary searching presented
in the last section and [40]. We assume that x ∈ {0, 1}` has the form (x1, . . . , x`). The binary search
starts with parameters k = 0 and s = blog(|x|)c. Then in each binary search step the algorithm decides
whether there is a key in the Patricia trie with a prefix (x1, · · ·xk+2s). If so, then k is increased to k + 2s,
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and otherwise k stays as it is. Also, s is decreased by 1 in any case. At last, the binary search provides
some node v in the Patricia trie of which the identifier is a longest prefix of the search key x. Along this
binary search the ll(v) value is updated and when the binary search terminates it follows the ll(v) pointer
to reach the correct node that stores the rmax (resp. lmin) value for v.

Algorithm 5.3.1 PredecessorSearch(x)
if key1(HT − look − up(x)) = x or key2(HT − look − up(x)) = x then

return x
else

s := blog(|x|)c
k := 0
v := HT − look − up(ε)
ll := ll(v)
p := px1(v)

while s ≥ 0 do
v := HT − look − up(x1, · · · , xk+2s)
if v 6= ∅ then

k := k + 2s

p := (x1, · · · , xk) ◦ pxk+1
(v)

if ll(v) 6= ∅ then
ll := ll(v)

else
if (x1, · · ·xk+2s) is prefix of p then

k := k + 2s

s := s− 1

w := HT − look − up(b(v)− p−(v))
if lmax(v) < x < lmax(w) then

return lmax(v)
else if lmax(w) < x < lmax(v) then

return lmax(w)
else

while ll 6= null do
ll := ll(ll)

return lmin(ll) or rmax(ll)

We now show the correctness and complexity of the predecessor search.

Theorem 5.3.2 An execution of PredecessorSearch(x) needs O(log logU) HT-look-up(key) operations.

Proof. In the last section and [40] we have shown that a binary search on the prefix length is possible
on a hashed Patricia trie in O(log logU) steps. This binary search finds the node v, such that v’s string
identifier b(v) is the longest prefix for the query key x for all string identifiers of nodes in the trie. To find
the correct predecessor of x at most O(log logU) further steps along ll(v) pointers are necessary. ut
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Insert(x)

The Insert(x) operation is similar to an insert in a traditional Patricia trie. This means: first, the correct
position of x is searched in the trie and then x is inserted by redirecting the pointers of the affected nodes.
To insert a key x we use the binary search to find the Patricia node v such that v’s string identifier b(v)
is the longest prefix for the query key x for all Patricia nodes and as in the Predecessor Search we also
find the node v′ that is the first hit of the binary search before finding v. Following ll(v′) we can also
determine the node u that stores the corresponding rmax (resp. lmin), i.e. u defines the 1-sequence (resp.
0-sequence). If the binary search ends in a msd-node v is simply its parental Patricia node. This binary
search takes at most O(log logU) steps. If key(v) = x, the key is already in the data structure and will
not be inserted a second time. Otherwise if we follow pz(v) with b(v) ◦ z being a prefix of x to the next
Patricia node w. Then between w and v a new Patricia node w′ is added, such that b(w′) is the longest
common prefix of x and b(w). Now there can be four cases:

• z = 1 and x is stored in a left child of w′

• z = 1 and x is stored in a right child of w′

• z = 0 and x is stored in a right child of w′

• z = 0 and x is stored in a left child of w′

We only consider the first two cases as the later ones can be solved analogously. In the first case we
insert w′ as a right child of v between v and w. Additionally we insert three msd-nodes m0, m1 and m2

between v and w′, w′ and x and w′ and w. As m1 is the only msd-node on the 0-sequence from w′ to
x we set ll(m1) = w′. Note that for the 1-sequence defined by u along v, w′ and w all msd-nodes that
were first hits of the binary search remain first hits and we only have to include m0 or m2 in the linked
list of first hits, if they are also first hits. This can easily be done as we know the last first hit v′ on the
path to v. The second case is more complicated as it might happen that we create a new 1-sequence
defined by w and thus msd-nodes that were no first hits on the 1-sequence defined by u now become
first hits (see figure). In this case we again add w′ as a right child of v and w becomes a left child of w′.
Additionally we insert three msd-nodes m0, m1 and m2 between v and w′, w′ and w and w′ and x. As
m2 is the only msd-node on the 1-sequence from w′ to x we set ll(m2) = v′ and add it to the linked
list if m2 is a first hit. For the new 1-sequence defined by w we determine all possible first hits. Let
|b(w)| =

∑log logU
i=0 xi2

i. Then let l = msd(log logU, |b(w)|). Then each first hit between w and the old
rmax has to be a msd-node with an identifier that is a prefix of rmax of length

∑log logU i = lxi2
i + 2l

∀l : xl = 0. Additionally we have to set lmin(w′) = lmin(w), as w is now a left child of w′ and thus the
0-sequence starts at w′. We update the first hits of this 0-sequence in the same way as described for the
1-sequence. See Figure 5.9.

Theorem 5.3.3 An execution of Insert(x) needs O(log logU) HT-look-up(key) and HT-write(key,data)
operations.

Proof. The correctness follows from the correctness of PredecessorSearch(x) and the given description.
According to 5.3.2 PredecessorSearch(x) needs at most O(log logU) HT-look-up(key) operations. We
insert a constant number of new nodes into the hashed Patricia trie and have to update the ll(v) pointer of
msd-nodes becoming first hits. It follows from the given description that there are at most O(log logU)
of such msd-nodes. Thus Insert(x) needs at most O(log logU) HT-write(key,data) operations. ut
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Delete(x)

The Delete(x) operation is performed as a reverse Insert(x) operation, i.e. first x is hashed to get access
to the leaf node with the label x. Then this node and its parental Patricia node w′ have to be removed
and the pointers in the hashed Patricia trie have to be updated, as x is not longer rmax (resp. lmin) for a
1-sequence (resp. 0-sequence). Furthermore the parental Patricia node w′ has defined a 1-sequence or
0-sequence and thus the ll(v) pointers have to be updated. Like in the Insert(x) operation we also find
the node u defining the 1-sequence w′ and its parental Patricia node v are lying on by the search in the
PredecessorSearch(x) operation. Using the same notation as for Insert(x), again there can be four cases:

• z = 1 and x is stored in a left child of w′

• z = 1 and x is stored in a right child of w′

• z = 0 and x is stored in a right child of w′

• z = 0 and x is stored in a left child of w′

We again only consider the first two cases as the later ones can be solved analogously. In the first
case we remove w′ as a right child of v and connect v to the right child of w′ w. We also remove the
msd-nodes m0 and m2 between v and w′ and w and w′. As |b(w′)| > |b(w)| one msd-node out of m0

and m2 is kept and thus we do not have to update the linked list of first hits for the 1-sequence. As the
0-sequence defined by w′ only consists of w′ m1 and the removed leaf, we do not have to perform further
updates. Like in the Insert(x) operation the second case is more complicated. In this case w′ is left child
of w and defines a new 1-sequence with another linked-list. Then the linked lists of the 1-sequences
defined by u and w′ have to be merged. Furthermore w now defines the 0-sequence that was defined by
w′. Thus we connect w as a right child to v. As we know rmax of the 1-sequence defined by w we can
update the rmax value stored in u and can also update the linked-list by determining all possible first hit
on the 1-sequence defined by u. Let |b(u)| =

∑log logU
i=0 xi2

i. Then let l = msd(log logU, |b(u)|). Then
each first hit between u and the new rmax has to be a msd-node with an identifier that is a prefix of rmax
of length

∑log logU i = lxi2
i + 2l ∀l : xl = 0. We also set lmin stored at w to the lmin value previously

stored at w′ and update the linked list as described above for the 1-sequence. See Figure 5.10.

Theorem 5.3.4 An execution of Delete(x) needs O(log logU) HT-look-up(key) and HT-write(key,data)
operations.

Proof. The correctness follows from the correctness of PredecessorSearch(x) and the given description.
According to 5.3.2 PredecessorSearch(x) needs at most O(log logU) HT-look-up(key) operations. We
insert a constant number of new nodes into the hashed Patricia trie and have to update the ll(v) pointer of
msd-nodes becoming first hits. It follows from the given description that there are at most O(log logU)
of such msd-nodes. Thus Delete(x) needs at most O(log logU) HT-write(key,data) operations. ut

5.4 Conclusion & Outlook

In this chapter we presented two simple data structures that can be built on top of existing distributed hash
tables to support longest prefix queries and predecessor queries or range queries. The hashed Patricia
trie we introduced in the first section supports PrefixSearch(x) and Insert(x) with O(log(|x|)) hash table
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accesses while Delete(x) only needs a constant number of hash table accesses. The hashed predecessor
Patricia trie introduced in the second section supports all operations PredecessorSearch(x), Insert(x)
and Delete(x) using only O(log logU) hash table accesses when U is the size of the universe of the
keys. As we have already mentioned the runtime in terms of hash table accesses is optimal for both
approaches as was shown in [63]. It remains an open question if the number of update operations, i.e.
HT-write(key,data) operations can be reduced when supporting predecessor queries. Although there are
several other approaches to support range queries on distributed hash tables we believe that our suggested
solutions are more intuitive and simple to understand.
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