
Modeling and simulation of metallic,
particle-damped spheres for lightweight

materials

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

vorgelegt an der
Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn von

Herrn Dipl.-Math. Tobias Steinle

Gutachter:
1. Prof. Dr. Andrea Walther
2. Prof. Dr. Jadran Vrabec

eingereicht am: 28. Oktober 2015
Tag der mündlichen Prüfung: 15. Dezember 2015





Acknowledgements

Foremost, I wish to thank Prof. Dr. Andrea Walther for supervising this the-

sis, for giving me the opportunity to work in her research group in Pader-

born and her guidance, time, patience, support and many hours of fruitful

discussions during my time there. I would also like to express my gratitude

to her for introducing me to the scientific research world and for giving me

the opportunity to get to know and participate in the international research

community.

My special thanks also to Prof. Dr. Jadran Vrabec for providing insight

into the workings of molecular dynamics simulations, many long discus-

sions, and his open ear for any questions. I’m very grateful to Ulrike Jehring

of the Fraunhofer IFAM in Dresden for providing the technical motivation

for this thesis along with the experimental data for the simulations and her

support with any questions I had.

Also, I would like to thank all members of Prof. Walther’s research group

at the University of Paderborn for their valuable input and discussions dur-

ing my studies in Paderborn and for making the group a fun and pleasant

place to work at. For technical support, I would like to explicitly thank

Dr. Kshitij Kulshreshtha for his patient Linux and Latex support, Dr. Se-

bastian Grottel of the University Stuttgart for providing custom builds of

Megamol for the visualization of my simulation results, Matthias Heinen

for his custom data conversion script and the Paderborn Center for Parallel

Computing, PC2, for providing me with access to the OCuLUS computer,

which greatly reduced the time required for my simulations.

The University of Paderborn and the Graduate School GSANS provided

me with scholarships, for which I am very grateful. I would also like to

thank my parents for their encouragement and great support during my

whole studies and their faith in me.

Last but not least, I thank God for his great love, wisdom, strength and

guidance always.





Zusammenfassung der Arbeit

In vielen technischen Anwendungen spielt heute der Leichtbau eine große

Rolle, denn durch Gewichtseinsparungen lässt sich auch Energie einsparen.

Allerdings birgt der Leichtbau die Gefahr einer erhöhten Störanfälligkeit

gegenüber Vibrationen, die durch die Operation von Maschinen entstehen

können. Das Fraunhofer Institut für Fertigungstechnik und Angewandte

Materialforschung in Dresden beschäftigt sich mit den Möglichkeiten einer

Schwingungsdämpfung durch Verbundwerkstoffe. Dabei wird in die Leicht-

baustruktur eine Vielzahl von Hohlkugeln eingebracht, die mit Keramikpar-

tikeln gefüllt sind. Gerät das Material in Schwingung, wird kinetische En-

ergie durch Reibung der Partikel untereinander und mit der Gefäßwand

dissipiert.

Diese Fragestellung bildet die technische Motivation für diese Arbeit.

Ziel ist, ein Experiment zur Bestimmung des Restitutionskoeffizienten nu-

merisch nachzubilden. Dadurch sollen sich vielfältige Simulationsmöglich-

keiten eröffnen, um das Material optimieren zu können. In dem Experi-

ment wird dazu eine einzelne, mit Partikeln gefüllte Hohlkugel aus einer

vorgegebenen Höhe fallengelassen und das Verhalten des Verbundes unter-

sucht.

Die Simulation basiert auf einer Diskreten Elemente Methode um die

Trajektorien der einzelnen Partikel und der Kugel berechnen zu können.

Basierend auf einem Potentialansatz für die Interaktionsberechnung in der

Molekulardynamik kann das Reibungsverhalten vielfältig angepasst wer-

den. Das Simulationsvolumen wird durch reflektierende Randbedingun-

gen abgeschlossen und umfasst die Kugelhülle. In dieser Arbeit kam eine

hochflexible Speicherstruktur zum Einsatz, um die heterogene Verteilung

der Partikel im Raum mit einer effizienten Linked Cell Methode abbilden

zu können. Dadurch wird der Rechenaufwand für die Interaktionen stark

eingeschränkt, so dass eine in der Partikelzahl lineare Komplexität erreicht

wird. Umfangreiche numerische Experimente zeigen den großen Effekt der

Partikelfüllung auf das Dämpfungsverhalten.





Summary of the Thesis

Lightweight materials play an ever growing role in today’s world. Saving on

the mass of a machine will usually translate into a lower energy consump-

tion. However, lightweight applications are prone to develop performance

problems due to vibration induced by the operation of the machine. The

Fraunhofer Institute for Manufacturing Technology and Advanced Materi-

als in Dresden conducts research into the damping properties of composite

materials. They are experimenting with hollow, particle filled spheres em-

bedded in the lightweight material. If the material starts to vibrate, kinetic

energy is dissipated via friction of the particles with each other and the

spherical enclosure.

Such a system is the technical motivation of this thesis. Ultimately, a

numerical experiment to derive the coefficient of restitution is required.

With such a tool, multiple experiments can be conducted easily to optimize

the damping performance. To that end, a sphere filled with particles is

dropped from a certain height and the behavior of the system is observed.

The simulation developed in this thesis is based on a discrete element

method to track the individual particle and sphere trajectories. Based on

a potential based approach for the particle interactions deployed in molec-

ular dynamics, the behavior of the particles can be controlled effectively.

The simulated volume is using reflecting boundaries and encloses the hol-

low sphere. In this work, a highly flexible memory structure was used with

a linked cell approach to cope with the highly flexible mass of particles.

This allows for a linear complexity of the method in regard to the particle

number by reducing the computational overhead of the interaction compu-

tation. Multiple numerical experiments show the great effect the particles

have on the damping behavior of the system.
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Chapter 1

Introduction

Imagine a world where every aspect of life has been optimized to utilize as

many lightweight materials as possible. Energy consumption would be low-

ered dramatically, driving down operating cost while also benefitting the

environment. In the search for greener technologies in recent years, re-

search in lightweight materials has become very important. New technolo-

gies offer the potential of allowing a much more fuel-efficient operation of

machines, such as for personal and public means of transportation and ma-

chines used in manufacturing processes. These applications require a high

level of precision and reliability to ensure a high quality of the end prod-

uct as well as low maintenance costs. However, a completely lightweight

world would probably also be very noisy. Vibrations, induced by the opera-

tion of those machines themselves, pose a problem to achieve these goals.

E.g., rattling marks can occur during production in computer numerically

controlled (CNC) mills, making the produced part potentially useless. Oscil-

lating parts eventually break at weak spots, e.g., in fasteners. The constant

movement is also quite audible.

The classic remedy to vibrations, adding more mass, runs contrary to the

goal of low energy consumption. Thus, another approach has to be taken,

such as using composite materials. They combine two or more different

materials. The Fraunhofer Institute for Manufacturing Technology and Ad-

vanced Materials (IFAM) in Dresden has conducted research on the appli-

cability of light materials in the area of manufacturing. They have focused

especially on conglomerates that in the best case combine the positive traits

of its constituents. Sandwiched materials have become popular in this area

because they allow for easy customization. Fraunhofer IFAM Dresden has

focused its attention on sandwiched sphere structures, cf. Ref. [20]. These

materials use hollow metallic spheres that are encased between, e.g., two
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Figure 1.1: Sandwiched sphere structure, ©Fraunhofer IFAM Dresden

sheets of metal that can then be used in a machine casing, cf. Fig. 1.1.

There have been experiments to fill the spheres with a material that, while

still keeping the overall weight low, can help to dampen vibrations. In the

past, there have already been efforts to use so-called particle dampers to

eliminate vibration, cf. Ref. [28]. These devices are often encased and

attached to the machine externally. Fraunhofer IFAM Dresden is working

on manufacturing techniques to include the dampers in the casing itself.

The particles inside help vibrations to subside more quickly by substantially

converting kinetic energy to heat through friction that occurs between the

particles and the hull. The metallic hull at the same time ensures that the

particles inside are protected from environmental hazards, such as moisture

or solvents, which is important to guarantee the reliability of the damping

behavior in the long run.

The positive influence of these particles can be observed in a simple ex-

periment, where a filled sphere is dropped from a certain height to the fun-

dament and the rebound time is measured, i.e., the time it takes between

the first and second impact on the fundament. This measurement allows for

the derivation of the coefficient of restitution. In experiments, a filled and

an empty sphere show a completely different behavior. The empty sphere

takes a lot longer to come to rest on the fundament. Hence, the particles

2



obviously open up possibilities for damping. The connection of time and

damping is explained in the forthcoming chapters.

Using particle filled spheres in structures could help to cope with the

negative effects of vibrations, such as noise, wear, and tear. However, due to

the challenging manufacturing procedure, it is not practical to conduct real-

world experiments with many different material combinations. Additionally,

the manufacturing process imposes limits on the materials that can be used.

New procedures may need to be invented to exploit the potentially excellent

damping behavior of new composite materials containing these particles.

Therefore, a software simulation tool is desirable that will help to explore

and select suitable materials for the particles inside the spheres, leading the

way to an efficient design process in new light-weight applications, without

the need for great investment in new technologies.

During manufacturing, a basic sphere made of a polymer is covered with

a metallic powder and sintered. While the metal sphere is forming, the

polymer is chemically transformed and broken down into a powder that

remains in the hollow sphere. This complex manufacturing process is being

studied at Fraunhofer IFAM Dresden. The sintering process results in many

differently shaped and sized particles (cf. Fig. 1.2). Thus, the particle

heap inside a hollow sphere may be highly heterogeneous. The effect of

the particle mass and shape distribution therefore needs to be analyzed in

a systematic way to be able to make recommendations how the particles

should be produced with respect to their shape and size.

In the scope of this work, the standard experimental setup is considered

to be as follows (cf. Figure 1.3). The drop height of the sphere is 10 cm.

The diameter of the hollow sphere is around 3 mm and the particles inside

have a diameter in the range of 10−1 mm and a mass that is of the order

of magnitude of 10−7 g. Practically, there are up to around 105 particles in

the sphere. To cope with this number, a suitable and efficient numerical

simulation is required.

For this PhD thesis, a sophisticated model and a corresponding simulation

tool was developed that allows for the analysis of a particle filled sphere. In

the following chapters, detailed explanations will be given on how this ex-

periment was modeled and simulated. Furthermore, results as well as a

comparison to Fraunhofer IFAM Dresden experiments will be presented. It

will be shown that this approach can be used to successfully apply numeri-

cal tools to analyze the damping behavior of particle filled hollow spheres.

3



Figure 1.2: Particles in an electron microscope view, ©Fraunhofer
IFAM Dresden

Eventually, this opens up the route to optimize such lightweight composite

materials to achieve high damping in practical use cases. Chapter 2 ex-

plains the basics of molecular dynamics (MD) simulation that is used as the

foundation of this work. This includes the discussion of the potential based

interaction between particles. Chapter 3 focuses on the model developed

for the application of MD towards the simulation of the problem discussed

in this thesis. Chapter 4 presents the simulation approaches including the

linked cell approach that improves the complexity and therefore the overall

runtime of the simulation, and discusses numerical stability, while chapter

5 gives extensive numerical results of the energy damping performance of a

particle filled hollow sphere. Finally, chapter 6 presents thoughts on future

expansions of the software.
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10 cm

3 mm

Step I: Initial setup, where
the particles are in the cen-
ter of the sphere

Step II: After the particles
have settled at the bottom
of the sphere, the sphere is
released and the experiment
starts

Step III: The sphere drops to
the fundament

Step IV: The sphere rebounds
and the particles are dis-
persed inside

Figure 1.3: Setup and process of the experiment to determine the damp-
ing behavior by measuring the rebound time
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Chapter 2

State of the art

For the numerical simulation of this problem, various approaches can be

taken. Any selected method should be able to capture the translational and

rotational movement of each individual particle and allow for interactions

with the sphere. An obvious and straightforward idea is to use an event

driven method, where the time interval that the system is propagated by

in each iteration is directly derived from the next interaction that occurs in

the whole system. This entails a comprehensive computation to compare

all particle trajectories. A collision table needs to be computed upon ini-

tialization and needs to be kept updated throughout the simulation, stating

the time interval it would take for each particle to collide with all others

if they continue on their momentary trajectory. The minimum time in the

table would then govern the propagation of the system [16].

An attempt to simulate the particular experiment at hand has first been

made in a diploma thesis by Blase [5] using such an event driven approach.

In that work, the sphere and particles were modeled as two-dimensional

objects only. The trajectory of each particle was computed and to account

for the interaction of particles, all trajectories were checked against each

other to determine the next collision. The system was then propagated to

that point in time, the new trajectories were computed and so on. This par-

ticular approach is also known as hard sphere molecular dynamics and was

described by [2]. The simulation was able to match the experiment to some

extent, but it proved to be difficult to correctly capture the behavior of the

particles sliding or rolling around the boundary. Additionally, it is computa-

tionally too expensive for the expansion to the three spatial dimensions and

large numbers of particles required for the problem posed by Fraunhofer

IFAM Dresden.

Moving away from event driven methods, another possibility for a par-
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ticle simulation is a time driven approach, where the system is iteratively

propagated over a specified time step. A check for possible interactions is

performed after each iteration. This chapter will provide an introduction to

a corresponding time integration method used for the computation of the

dynamic behavior of a particle damped sphere.

2.1 Time driven approaches

Instead of focusing on the exact time of the next interaction and propagating

the system to that point in time, a time integration method propagates the

simulated system by a specified time step during each iteration regardless

of when the next interaction occurs. Time stepping methods are used in a

wide variety of applications, such as fluid simulations, astronomy, chemical

processes and deformation modeling.

There is a number of methods that can be used for particle simulations.

The techniques vary, depending on the size of the system as well as on the

fraction of simulation volume occupied by the particles. The main differen-

tiating feature of these methods is the type of interaction laws. A popular

and groundbreaking method is the discrete element method (DEM). Such a

simulation keeps track of the individual (hence discrete) particle’s positions

in space and their velocities. After each iteration, the system is analyzed

to account for any interactions. This method was introduced by Cundall [7]

for the simulation of rock fracture, i.e., the collapses of rock faces. The

method allowed to keep track of the individual rocks as they descended a

slope. The interaction laws are governed by a soft or hard contact model

and are meant to simulate the loss of kinetic energy due to friction, cf. Ref.

[27]. The soft model allows the particles to overlap while the hard contact

model does not. Cundall described interactions between the elements by a

simple contact law [6]. He used the overlap δn of two bodies and a stiffness

parameter Kn to derive a normal force

Fn = δnKn,

and similarly, using a shear stiffness Ks to calculate an incremental shear

force proportional to the shearing displacements of the two interacting bod-

ies

∆Fs = Ks(∆θ1 + ∆θ2),

8



with the increments of rotation of the two bodies ∆θ1 and ∆θ2. The Newto-

nian law of motion served as the basis to simulate the particle system, using

the forces acting between the particles to propagate the system over time.

A wide variety of methods evolved from that initial idea for different prob-

lems. Generally, DEM software is characterized by a high computational

effort due to the large number of particles considered and the resulting

need for interaction checks. These software packages are particularly pop-

ular for industrial applications, such as chute and belt problems in mining

operations.

Some numerical schemes have been developed specifically for applica-

tions where the particles are densely packed and make up most of the simu-

lated volume, requiring a different mathematical approach. For instance,

the contact between particles can be formulated using complementarity

constraints which leads to a differential variational inequality problem, cf.

Ref. [32].

For certain applications, it can be helpful to substitute several particles

by a single representative particle. This is helpful for scenarios, where the

movement of the particles resembles a fluid. Smoothed particle hydrody-

namics (SPH) is one method that is used in this case. Its governing equa-

tions are dominated by the pressure as it originates from the simulation of

compressible fluids. Instead of simulating each individual molecule, it is

based on the idea to substitute the fluid with discrete particles that repre-

sent the properties of their immediate vicinity, cf. Ref. [24]. SPH is an em-

pirical method that revolves around the idea to use approximate equations

for the variables that have an easily computable derivative. It facilitates a

kernel function W(x, hs) for the approximation. To interpolate any quantity

V that depends on spatial coordinates x over a domain Ω, SPH evaluates

VSPH(x) =
∫

Ω
V(x′)W(x− x′, hs)dx′,

where hs is called the smoothing length of the kernel function W. Thus, the

physical properties of a particle are influenced only by those of the particles

around it. The neighboring particles are determined by the kernel which is

usually symmetric and non-negative with∫
W(x− x′, hs)dx′ = 1.

9



The integral can be approximated by

VSPH(x) = ∑
b

Vb
mb
ρb

W(x− xb, h),

where the quantity Vb, mass mb, density ρb and spatial position xb are the

values of the b neighboring particles that all influence the considered parti-

cle. For many applications, the Gaussian kernel is selected. Another popular

kernel is a cubic spline kernel that reduces the influence of particles on the

properties of the considered particle to zero if they are further away than

2hs, cf. Ref. [25]. SPH is popular for use in special effects and animation,

as it gives good results for the visual representation of liquids without the

requirement for extensive computation time.

According to Fraunhofer IFAM Dresden, there are approximately 105 par-

ticles (occupying up to about 20 % of the volume) inside the cavity. The

particles do not represent a fluid and can move freely in the hollow sphere.

Thus, the use of a DEM type method is plausible.

2.2 Molecular dynamics

Molecular dynamics (MD) is a discrete element method that is able to con-

sider large numbers of molecules. It keeps track of every particle’s spatial

position and rotational-translational propagation. Initially it was only pos-

sible to simulate very few particles, starting at about 100 in 1959 (cf. Ref.

[1]), but modern computers are now able to deal with very large particle

numbers. There are implementations for large problems that utilize paral-

lel supercomputers for trillions of atoms [18]. Still larger systems require

more memory and computational power and will continue to greatly bene-

fit from the technological evolution in the future. For the case considered

here, approximately 100000-200000 particles have to be simulated. This is

well within the magnitude that MD can be used for. The simulated bodies

will not represent tiny molecules but rather the particles inside the sphere.

The flexibility in modeling different molecules will be beneficial for the com-

position of the heterogenous powder inside the sphere. MD does not neces-

sarily require information such as density or pressure inside the simulation

volume to correctly predict the movement of the particles. This allows to

simulate sparsely filled volumes with variable particle distributions. Thus,

an adapted MD variant is a suitable choice for the observation of the move-
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ment of particles in a hollow sphere considered for this work.

MD are governed by the Newtonian equations of motion for both the

translational and rotational part of the particle motion [18]. This law states

(cf. Ref. [23]):

Theorem 2.1. (Newton’s law)

The force F acting on a body of mass m and the acceleration a caused by it

act in the same direction and are proportional.

F = ma.

This equation is used to describe the motion of all particles in the MD en-

semble and can be written as a second order ordinary differential equation

p̈ = a =
F
m

.

Transforming it to a system of first order differential equations results in

v̇ =
F
m

, ṗ = v, (2.1)

with appropriate initial conditions for position p(0), velocity v(0) and force

F(0). For instance, in MD the initial velocity of the molecules might be

assigned at random within a certain interval, with initial F(0) = 0 and the

positions taken from an initial lattice configuration. The forces F are derived

from a potential acting between the different particles during the propaga-

tion of the system. This will be expanded upon in section 2.2.

Time integration

The system (2.1) has to be solved numerically. There are many options to do

this with a varying degree of accuracy. For instance, starting with a Taylor

expansion

p(t + ∆t) = p(t) + ∆tṗ(t) + O(∆t2),

and after omitting all but the first two terms, an approximate solution p is

achieved. Thus, with the Taylor expansion used on eqs. (2.1) to solve for p
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and v, the desired values can be approximated by

v(t + ∆t) ≈ v(t) + ∆t F
m , (2.2)

p(t + ∆t) ≈ p(t) + ∆tv(t). (2.3)

This approximation for the solution of a differential equation is known as the

explicit Euler method. Due to its construction, it is of first order accuracy.

To achieve a higher accuracy, the solutions are evaluated alternatingly,

with eq. (2.2) computed on the half step and then evaluating eq. (2.3) on

the full step. Also on the full step, and using the new particle positions,

the forces are re-evaluated. Then, the velocity is computed again in the

next half step using the updated forces. This is called Leapfrog algorithm.

Consequently, the translational motion of a body is computed by

v(t +
∆t
2
) = v(t− ∆t

2 ) + ∆t F(t)
m , (2.4)

p(t + ∆t) = p(t) + ∆tv(t + ∆t
2 ). (2.5)

During a simulation, v can be synchronized with p by just adding ∆t
2

F(t)
m at

the beginning of the iteration and then, after the p and F updates, another

half step is performed at the end of the simulation to approximate v. This

allows for easier extraction of the desired results, such as temperature,

pressure and energy at the full time step. An alternative to this method is

called the Velocity-Verlet (or Störmer-Verlet) method [14], which approxi-

mates the full step velocity using the forces calculated in the previous and

current step. This work makes use of the Leapfrog method.

Theorem 2.2. (Leapfrog accuracy)

The leapfrog scheme as described by eqs. (2.4) and (2.5) is a second-order

method.

Proof. Although the scheme is derived from a Taylor expansion truncated

after the first term, and therefore it would be natural to conclude that it

is only a first order method, the method is in fact a second order method.

Substituting v(t− ∆t
2 ) in eq. (2.4), using the previous iteration of eq. (2.5)

yields

v(t +
∆t
2
) =

p(t)− p(t− ∆t)
∆t

+ ∆t
F(t)
m

.
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This is then substituted into eq. (2.5) again

p(t + ∆t) = p(t) + ∆t
(

p(t)− p(t− ∆t)
∆t

+ ∆t
F(t)
m

)
,

finally leading to

p(t + ∆t)− 2p(t) + p(t− ∆t)
∆t2 =

F(t)
m

. (2.6)

This equation is a finite difference scheme for the second derivative, i.e.

Newton’s second law, proving that the Leapfrog method does approximate

it. To calculate the error of this scheme, the Taylor expansions for p(t± ∆t)
are introduced

p(t + ∆t) = p(t) + ∆tṗ(t) +
∆t2

2
p̈(t) +

∆t3

6
∂3p(t)

∂t
+

∆t4

24
∂4p(t)

∂t
+ . . . ,

p(t− ∆t) = p(t)− ∆tṗ(t) +
∆t2

2
p̈(t)− ∆t3

6
∂3p(t)

∂t
+

∆t4

24
∂4p(t)

∂t
− . . . .

These are substituted into eq. (2.6), yielding

p̈(t) +
∆t2

12
∂4p(t)

∂t
(+ . . . ) =

F(t)
m

+ εT. (2.7)

Thus, the error εT is of order O(∆t2), establishing the leapfrog scheme as a

second order method.

The error introduced by the finite difference scheme discussed above is

not the only one present in the system. Another aspect that needs to be

addressed is numerical stability. This concept describes how the errors

are propagated, i.e., whether they are amplified during simulation as time

progresses. A method is numerically stable, when these errors are not am-

plified. Stability is the major concern in MD simulations and the alternating

evaluation of eqs. (2.4) and (2.5) in the leapfrog scheme results in higher

numerical stability compared to just evaluating both equations together [8].

The leapfrog algorithm is conditionally stable, the condition of which is the

step size. Stability will be discussed further in section 2.3.

For the rotational movement of a particle, a similar scheme can be fol-

lowed for its angular velocity and orientation in space. This section intro-

duces the mechanical concepts used in rotational movement. The governing
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model is the equation of rigid body rotational movement and is given as

τ = Iα. (2.8)

Here, τ denotes the torque, while α and I are the angular acceleration and

the moment of inertia tensor, which is explained below. This can be rewrit-

ten once more as a first order system

L̇ = τ, ȯ = ω× o, (2.9)

where o is a vector fixed in the rotating body, representing the orientation

of the particle in space, and L the angular momentum. The angular velocity

ω links the two equations and can be evaluated as

ω = I−1L.

The moment of inertia tensor I acts as a descriptor for the resistance

of a specific body to a change in the rotation about a certain axis s. For

each individual particle shape, a different tensor needs to be derived. It is

defined by an integral over the volume V of the body

Is =
∫

V
ρ(r)r2dV, (2.10)

where r is the perpendicular distance to the axis s and ρ(r) the mass density

at each point of the body. Thus, it depends on the distribution of mass in a

body and the axis of rotation. For instance, for a solid sphere with radius R
and mass m, the tensor is

Is =
2
5

mR2,

for any axis s through the center because of the symmetry of the sphere.

For spatial rotational movement, the scalar moments are included in a

3× 3 matrix, describing the inertia of the body for rotation about a reference

system of axes.

Definition 2.1 (Cartesian system of axes). A system of axes or reference

system in n-dimensional space consists of an origin O and n orthogonal unit

vectors o1, o2, . . . , on in that point. Any point in that system can be described

by a linear combination O + a1o1 + a2o2 + · · ·+ anon of those vectors, with

ai ∈ R and is written as a n-tuple (a1, a2, . . . , an).
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Typically, several reference systems are used for a simulation, i.e. one

system for the definition of molecules and another one for the global posi-

tion of the particles. The molecules in MD are made up of atoms. Atoms

concentrate their mass in their nucleus. Therefore, MD uses the idealiza-

tion of point masses. Consequently, a molecule consisting of just one atom

(e.g. a noble gas) does not have any inertia to rotation at all, reducing I
to zero. Still, the tensor has to be specifically evaluated for each individual

particle type. For simplicity, the particles are assumed to be rigid, so the

tensor only has to be evaluated once at the beginning of the simulation.

The tensor is not the same for any reference system in the body and it is

best to evaluate it in a system attached to the center of mass as is shown

below. To achieve this, the center of mass of the molecule (or any other

particle) has to be calculated. Here, the case of point masses is considered.

In each particle’s body fixed system of axes it can be evaluated as

s =
1
m

n

∑
i=1

mi pi,

with individual cartesian positions pi and masses mi of the n spheres that

define that particle type with a total mass m. The spheres with coordinates

pi are then transformed to a new system of axes (x, y, z) with the origin at s.
The result is

p̃i = pi − s.

In any arbitrary system of axes, with the center of mass as the origin, the in-

ertia tensor can then be computed using the new coordinates p̃i := (xi, yi, zi)

of the n individual point masses as

Ixx =
n

∑
i=1

mi(y2
i + z2

i ), Iyy =
n

∑
i=1

mi(x2
i + z2

i ), Izz =
n

∑
i=1

mi(x2
i + y2

i ),

Ixy = Iyx =
n

∑
i=1

mixiyi, Ixz = Izx =
n

∑
i=1

mixizi, Iyz = Izy =
n

∑
i=1

miziyi,

with rotational axes x, y and z. The tensor is written as a symmetric matrix

I =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 .
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The particles in this work are built up from multiple spheres. However,

the origin of the system used to define the particle types does not necessar-

ily coincide with the center of mass. Thus, the particle system either needs

to be transformed to a mass centric system as described above, or the iner-

tia tensor needs to be transformed after it has been evaluated in a system

with any origin.

The Huygens-Steiner theorem can be used to evaluate the moment of in-

ertia tensor in a new reference system, once it has been calculated for the

body in any other system of axes, cf. Ref. [29].

Theorem 2.3. (Huygens-Steiner)

If the moment of inertia tensor Iij is known in the center of mass in a body

with mass m described in a body fixed system of axes (x, y, z) and the tensor

needs to be reevaluated at another point that is moved from the center of

mass by a vector a, the tensor can be reevaluated as

Ĩij = Iij + m(a2δij − aiaj),

with i, j ∈ {x, y, z} and Kronecker symbol δij and scalar product a2 =< a, a >.

For instance, the particle in Figure 2.1 consists of 5 identical spherical

bodies with mass m1 = m2 = ... = m5 arranged in a T shape with point

masses at the coordinates (0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0) and (1, 2, 0) in a

global reference system. The center of mass is calculated using the coordi-

nates (xi, yi, zi) in that system

s =
1

5m1
m1 ((0, 0, 0) + (1, 0, 0) + (2, 0, 0) + (1, 1, 0) + (1, 2, 0)) = (1, 0.6, 0).

If the original coordinates are used, the inertia tensor evaluated at the

origin is

I =

 5 3 0
3 7 0
0 0 12

 .

Using Theorem 2.3, the tensor can now easily be re-evaluated in the center
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Figure 2.1: Particle consisting of five spheres described in two coordi-
nate systems; the system (S, {x′, y′, z′}) is fixed in the center
of mass and the axes coincide with the principal axes of the
body

of mass with a = (1, 0.6, 0)T, which yields

I =

 3.2 0 0
0 2 0
0 0 5.2

 .

Using an arbitrary reference system for the inertia tensor computation

generally does not produce such a simple form. In those cases, to simplify

the moment of inertia tensor to only include the diagonal elements, it needs

to be transformed into a new reference frame, called the system of princi-

pal axes, which is the coordinate system where the axes correspond to the

principal axes of the body. This system always has the origin at s.

To accomplish the alignment of the axes, the eigenvalues of the tensor

have to be calculated along with their corresponding eigenvectors. The

eigenvectors are the columns of the tensor aligned to the principal axes. If

all eigenvalues are equal, the rotating body is symmetrical.

The tensor together with eqs. (2.9) allows for the full description of the

rotational movement.

However, despite of the simpler inertia tensor in the center of mass and

the system of principal axes , the computation of the rotational orientation

in space remains less than optimal. The angular velocity ω, which is re-

quired in order to update the orientation o of the particle, is dependent on

the inertia tensor, which, in the global reference frame, is dependent on the

spatial orientation that usually changes over time. This means that the an-

gular velocity would need to be re-evaluated continuously by a constant use
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of rotational matrices for transforming it between the body-fixed system,

where the inertia tensor does not change, and the global system, to obtain

the orientation of the particle in space. This additional computational effort

can be avoided.

Quaternions

To account for the rotational movement of particles, it is reasonable to use

a quaternion representation of the orientation in space. Quaternions, first

introduced by Hamilton in 1843, expand on complex numbers and are often

used in inertial navigation, mechanical design and robot dynamics [26] to

represent rotational movements and spatial attitude. They are defined using

three units of imaginary numbers, denoted by coefficients i, j and k.

Definition 2.2. (Quaternion)

The commonly used representation of a quaternion is

q = q0 + iq1 + jq2 + kq3 := q0 + q̂,

with factors qi ∈ R and imaginary units i, j and k. The quaternion norm is

defined as

‖q‖ = q2
0 + q2

1 + q2
2 + q2

3.

To be able to multiply quaternions, the imaginary units must satisfy the

Hamiltonian multiplication rules.

Definition 2.3. (Hamiltonian products)

For the products of the quaternion imaginary units i, j and k, the following

rules apply

i2 = j2 = k2 = ijk = −1,

ij = k = −ji, (2.11)

jk = i = −kj,

ki = j = −ik.

Unit quaternions with ‖q‖ = 1 can be used to describe a rotation of a

vector x ∈ R3 simply by quaternion multiplication. For the rotation, the

vector x must be transformed into a quaternion x̄, cf. Ref. [22].
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Definition 2.4. (Representation of a R3 vector as a quaternion)

A vector x = (x1, x2, x3)
T ∈ R3 can be represented as a quaternion x̄ using

x =

 x1

x2

x3

 = 0 + ix1 + jx2 + kx3 := x̄.

Such quaternions with a real part zero are also called pure quaternions.

With this representation, the rotated vector xr can be calculated by the

multiplication

xr = qxq∗, (2.12)

where q∗ is the conjugate quaternion of q

q∗ = q0 − iq1 − jq2 − kq3.

Naturally, xr will also be a quaternion. It should be noted that the multiplica-

tion of quaternions is not commutative due to the multiplication rules of the

imaginary units in eq. (2.11), thus, the order of multiplication is important

to obtain the correct result of eq. (2.12).

Definition 2.5. (Quaternion multiplication)

The product pq of two quaternions p and q evaluates as

pq = p0q0 − p̂q̂ + p0q̂ + q0 p̂ + p̂× q̂,

with the cross product

p̂× q̂ :=

∣∣∣∣∣∣∣
i j k

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ ,

and the scalar product

p̂q̂ := p1q1 + p2q2 + p3q3.

Note the omission of the imaginary units.

For the purpose of the simulation, the multiplication can also be written

using the matrix notation.
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Proposition 2.1 (Matrix vector multiplication scheme). Given two quater-

nions p and q, their quaternion product is equivalent to

pq =


p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0




q0

q1

q2

q3

 . (2.13)

With these rules in place, the computational description of the rotation in

(2.12) is complete.

Of course, to specify the specific rotational axis represented by the unit

quaternion in that equation, the following definition is required.

Definition 2.6. (Quaternion rotation)

To perform a rotation about a rotational axis that is described by a unit

vector d = (d1, d2, d3)
T and an angle φ, the quaternion q in eq. (2.12) is

q = cos
φ

2
+ sin

φ

2
(id1 + jd2 + kd3). (2.14)

An advantage of the quaternion representation for a rotation is that it is

not as computationally demanding as using a rotation matrix. However, if

required, for a given unit quaternion, a rotation matrix can be extracted

that performs the same rotation [2].

Proposition 2.2. (Rotational matrix)

A quaternion with norm ‖q‖ = 1 is equivalent to a rotational matrix

Arot =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3.

 .

Quaternions are a good choice for numerical calculations when working

with rotational movement, because they do not possess the singularity that

the Euler angle representation suffers from. This is known as gimbal lock

and may cause the software to malfunction, cf. Ref. [30]. In the course of

this work, Fincham’s leapfrog rotational algorithm [10] was used to evaluate

the rotational orientation in space and the angular velocity of all particles

in the simulation. It makes use of the quaternion representation described

above and suggests a leapfrog scheme similar to the translational one. With

this framework, the movement of each particle can be simulated.
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Force computation

Equation (2.4) contains a force term. This force represents the interaction

of the particles with each other. In MD, this is derived from a potential U
acting between two particles with distance d. The potential is related to the

force through the first derivative

F(d) = −∂U(d)
∂d

. (2.15)

There are many different potentials that are used, pair-potentials as well

as multi-body-potentials. A popular potential [15] is the Lennard-Jones (LJ)

or (12,6) potential, cf. Figure 2.2. It was introduced by the mathemati-

cian Lennard-Jones in 1924 and describes the highly complex interactions

of atoms in a simplified manner. It is defined as

U(d) = 4ε

((σ

d

)12
−
(σ

d

)6
)

, (2.16)

where ε denotes the depth of the potential well and σ the diameter of the

considered particle. The parameter ε indicates the magnitude of binding

forces between atoms. Since the force acting between particles is defined as

0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

d

U
(d

)

Figure 2.2: Lennard-Jones potential with parameters ε = 1, σ = 1
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the negative first derivative of U, the 12th power term results in a repulsive

force between particles while the 6th power term results in an attractive

force. The attraction is an approximation of the dispersive force and the

other one is an approximation of the Pauli repulsion, induced by overlapping

electron orbits of the atoms concerned. At the potential minimum at d = 2
1
6 σ

of U, the dominating term changes. The LJ potential is especially well suited

for the simulation of noble gas atoms, cf. [33].

Using this interaction potential and taking into account eq. (2.15), the

force induced between interacting particles i and j with a distance dij is

given as

Fij(dij) = 24ε

2

(
σ

dij

)12

−
(

σ

dij

)6
 rij

d2
ij

. (2.17)

The vector rij = pj − pi is the direction of the induced force. The poten-

tial acts on all particles and in theory, an interaction occurs between all

particles. Naturally, this leads to high computational costs. Therefore, a

cut-off-parameter rc
i > 0, rc

i ∈ R is introduced that limits the reach of the

potential around each particle, which can be different depending on the

particle type. Only particle pairs (i, j) with a distance dij < min(rc
i , rc

j ) are

explicitly considered to interact, thus the cut-off radius resembles a sphere

of influence around each particle, similar to the function of the kernels in

SPH. Therefore, the force FMD(i, j) often used in MD is

FMD(i, j) =

Fij(dij), dij < min{rc
i , rc

j}
0, otherwise.

(2.18)

Boundary conditions

In MD, the simulation volume is often considered to be just a very small part

of an infinite space among which the molecules are equally distributed. The

material, be it a gas, liquid or solid, stretches out in all directions and the

behavior inside is expected to be largely homogeneous. This means that this

large space can be filled by fitting a much smaller simulation volume or cell

inside and multiplying it in every direction. Periodic boundary conditions

perfectly support this concept by treating a particle that exits the cell on one

side as a particle that is entering from the neighboring cell on the opposite

side, cf. Figure 2.3. Periodic boundaries can be easily implemented. For this
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Figure 2.3: Periodic boundary conditions

purpose, the simulation box could be set such that one corner of the cuboid

coincides with the origin, for instance normalized to (0, 1)× (0, 1)× (0, 1).
The boundary condition can now be easily enforced on the particle positions

by calculating

p(i) = p(i)− bp(i)/lcl,

where l is the length of the cell box and bpc calculates the largest integer

pl so that pl < p. This operation is performed in each iteration.

Reduced units

The particles in MD have a very small size and mass. Very small numbers

may introduce instability in numerical computations on computers as they

are prone to subtractive cancellation, i.e., terms cancel themselves out dur-

ing subtraction. This is termed underflow, which results in inexact compu-

tations because of vastly differing scales of numbers used in an operation.

For instance, subtracting an extremely small number from a large number

will not give the correct result when the precision of the employed arith-
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metics is insufficient to represent all digits. Therefore, reduced units are

used to scale the relevant quantities to a safe number range and set the

stage for all calculations. In MD, the dimensions of the molecules define

the reduced units, cf. Table 2.1. E.g., a commonly used time step in MD

is in the range of one to five femtoseconds. All relevant parameters, such

as the velocities, are therefore calculated in the magnitude regime set by

these reduced units and have to be carefully chosen. If the velocities, for

instance, would still have a unit such as m/s, they would be extremely small

and there would be a good chance that they may underflow to 0 when used

in actual numerical computations. All constants, such as the standard grav-

ity g, and other simulation parameters, such as positions and potentials, are

also scaled accordingly and converted to the same reference system. The

concept of reduced unit remains relevant for this work and more details on

the reduced units used are discussed in chapter 4.

Variable Description Unit
σ particle diameter 10−10 m (or 1 Å)
m particle mass 10−24 g
∆t time step 10−15 s

Table 2.1: Typical units in molecular dynamics

2.3 Numerical properties of molecular

dynamics

MD is based on a symplectic integration method such as the leapfrog in-

tegrator. This means, that energy is conserved in the system. However,

when using computers, numerical errors are introduced because of the in-

exact operations and can accumulate. Thus, the energy will not remain

constant as the simulation progresses. This can be prevented by using a

small time step and a correction once every few steps, e.g., by adjusting

the temperature using a thermostat that allows the overall kinetic energy

to only fluctuate slightly around a specified constant value, cf. Ref. [19]. In

the case considered in this work, external forces act upon the system in the

form of gravity and friction, where the effect of the numerical error is much

less pronounced and thus, a thermostat is not essential. The time step must

still be selected very carefully, as will be discussed later in chapter 4.
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Chapter 3

Modeling of a particle-filled

sphere

Molecular dynamics is a method that is tailored for the use with very small

particles on the nano scale, representing atoms. On that scale, the phys-

ical model needs to be a different one than in the case of much larger or

macroscopic particles. For instance, attractive forces between molecules

need to be taken into account as well as forces induced by charges that the

molecules carry. These effects do not play a role on the comparatively large

scale considered here. Instead, a form of friction must be introduced. Also,

the boundary conditions need to be reflective instead of periodic to allow

for the spherical enclosure.

This chapter discusses the modeling of the particles as well as the han-

dling of boundary conditions used in this work. Furthermore, continuous

(potential based) and discrete possibilities will be discussed for the inter-

actions that drive the dampening effect. A model is suggested to provide a

consistent method for the simulation.

The goal of the numerical simulation in this work is to model the following

experiment:

Definition 3.1. (Drop experiment I)

A hollow sphere with radius R and mass M is filled with N particles of vary-

ing size and shape. The sphere is dropped onto a fundament from height hd.

The time ∆T between the first two bounces of the sphere onto the funda-

ment is called the rebound time. This is recorded to derive the coefficient

of restitution of the combined sphere-particle system.

The first step in modeling the experiment is to allow for a detailed repre-

sentation of the particles.
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3.1 Particles

To account for the heterogeneous particles in the model, they are built up

similarly to molecules that are made up of different atoms, each idealized

as a sphere. Therefore, the concept of defining molecules can conveniently

be carried over to the present model, where the particles are much larger.

The most basic particle is thus also a sphere, while more complex particles

are modeled as combinations of spheres, just like a molecule, cf. Fig. 3.1.

Every particle has its own fixed system of axes in which the positions of all

spheres that make up the particle are configured. It is possible to define

several different particle shapes and sizes for a simulation run via an input

data file, providing a heterogeneous mixture of particles inside the sphere.

To keep track of all particles, they are denoted by a particle number i and

are characterized by their position of the center of mass pi, velocity vi and

the rotational equivalent orientation oi and angular velocity ωi. The hollow

sphere is also characterized by its position cs and velocity vs.

Figure 3.1: Example of a cube shaped particle consisting of eight
spheres

Interaction potential

In theory, any interaction potential has to be evaluated between each parti-

cle pair because it has an infinite range. However, considering an individual

particle with diameter σi, most particles in the system are very far away and

will therefore hardly interact, unless a long reaching potential is desired.

To reduce the computational effort, the concept of a cut-off radius rc
i ≥ σi

explained in the previous chapter carries over from MD into this new ap-

proach. Particles with a distance dij > rc
i were treated as interaction-free.
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Consequently, a larger cut-off radius r∗i attached to the center of mass is

required for more complex particles that encloses all individual spherical

parts. This is required in order to capture potential interactions that take

place with outlying parts of interaction partners that may touch before their

centers of gravity get close enough, e.g. in rod shaped particles. This larger

cut-off radius must be evaluated only once at the start of the simulation for

each particle type. When checking for interactions, r∗i is used in a first step.

If that check is positive, the interaction forces can be evaluated using the

exact distances of each individual spherical part contained in the particles.

For that computation, the specific cut-off radii of the individual parts con-

cerned are used.

In simulations with particles of different size, the cut-off radius of the

smaller particle is selected when checking for interactions. This eliminates

the evaluation of potential interactions where small particles that may mo-

mentarily enter a larger particle’s cut-off radius could interact, even when

their trajectories would not cross. The position of the sphere with the great-

est distance Dmax from the center of mass s plays the dominant role in the

calculation of r∗i

Dmax = max{|s− p1|, |s− p2|, . . . , |s− pn|}.

Consequently, the body’s cut-off radius r∗i must satisfy

r∗i > Dmax + rc
i , (3.1)

in order to detect any interaction that may occur. For simple spherical parti-

cles, r∗i = rc
i . For complex particles, rc

i is selected as the cut-off radius of the

largest spherical part in that particle, if the parts have different diameters.

In the considered scenario, the particles are much larger than atoms and

it is therefore sensible to assume that they do not exhibit significant attrac-

tive forces. Therefore, a different potential can be used, i.e. the LJ potential

without the attractive 6th power term

U(d) = 4ε
(σ

d

)12
. (3.2)

Characteristically of the 12th power potential is that the slope close to σ

is very steep and will therefore result in an abrupt interaction force when

two particles interact with a reasonably small cut-off radius, cf. Figure 3.2.

Therefore, this potential resembles a very hard material.
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Figure 3.2: Repulsive interaction potential

Alternatively, the original LJ potential remains a valid choice when a softer

material is required. The cut-off radius can be selected specifically to still

completely eliminate the attracting part of the potential. For that purpose,

the portion of the graph with positive slope is cut off and therefore, only

repulsive forces can occur. That cut-off radius rp is calculated by using the

derivative of the potential and finding the minimum where the slope turns

positive.

∂U(d)
∂d

= 0,

24ε

d

(
2
(σ

d

)12
−
(σ

d

)6
)
= 0,

2
(σ

d

)12
−
(σ

d

)6
= 0,

yielding

rp = 21/6σ.

Note that the particle index i is omitted for better readability. Thus, the max-

imal cut-off radius that should be used depends on σ and should be selected

independently for each particle shape to satisfy σi ≤ rc
i ≤ rp. When the

cut-off radius is set close to rp, the interactions do not immediately induce

a very large force, but instead introduce a gradually rising force between

the particles proportional to their distance dij. This can be interpreted as

accounting for the small deformations that occur in real-life interactions.

Thus, the interaction model used here can be understood as a soft repulsive
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Figure 3.3: Shifted Lennard-Jones potential, with rc
i = 1.122 σ

sphere model. To also ensure a smoother slope in the potential energy, the

potential may be shifted to have its root at d = rc
i , cf. Figure 3.3, in the

following way

Us(d) = U(d)−U(rc
i ) = 4ε

((σ

d

)12
−
(

σ

rc
i

)12

−
(σ

d

)6
+

(
σ

rc
i

)6
)

.

This shifted potential does not have an impact on the force computation, as

the only change to eq. (2.16) is the addition of a constant.

3.2 Initialization

In the scope of this work, the experiment of the dropping sphere was sim-

ulated by subjecting the system to gravity. For this purpose, the sphere

was positioned inside the simulation volume at the height hd from which

it was dropped later. The particles were placed inside of it in a spherical

configuration. This ensured that all particles remained inside the sphere

during their initial placement. To describe the position of a point in space,

spherical coordinates can be used.

Definition 3.2. (Spherical coordinates)

Spherical coordinates use an origin, for instance O = (0, 0, 0)T and three

parameters r, θ ∈ [0, π) and φ ∈ [0, 2π), with r, θ, φ ∈ R. The first parame-

ter r is the radial distance from the origin. The other two are values that

characterize the polar angle θ and azimuthal angle φ.
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Given spherical coordinates (r, θ, φ), the cartesian coordinates (x, y, z) can

be extracted as  x
y
z

 = O +

 r sin θ cos φ

r sin θ sin φ

r cos θ

 .

To set up the experiment, the first particle was placed at the center of

the hollow sphere, at the position p1 = (0, 0, 0)T. The other particles were

placed in layers around it using spherical coordinates. To achieve this, the

radial distance was increased in steps for each layer, starting from r = 0,

r = r + α max
i
{r∗i },

where α ≥ 1 ∈ R to prevent particle overlaps at the beginning of the ex-

periment. For the increments of the angles, that position layers of particles

in circles around the center, it must hold that the distance of the particles

should always remain at least r∗c = maxi{r∗i }. Otherwise, an interaction

would occur immediately at the start of the simulation. The polar angle θ

starts at 0 and is incremented from there. Consider the triangle (O, A, B)
in Fig. 3.4. After the placement of the very first particle at O, r has been

incremented and θ = 0 resulted in the placement of the second particle at

A. Now, the increment for θ needs to be found to place the third particle

at B in a manner that will result in a spherical layer around the particle at

O when θ is successively incremented until the layer is complete. Note that

only in the case of this first layer, the triangle (O, A, B) is equilateral; the

computation is shown for the general case.

To find the increment θ′, consider that the side opposite to θ′ must also

have the length αr∗c , so that particles at O and B do not overlap. Thus, it is

clear that the angular increment also depends on the current layer’s radial

distance r and can be found using

sin
θ′

2
=

αr∗c
2r

,

=⇒ θ′ = 2 arcsin
αr∗c
2r

. (3.3)

After each increment of θ, a full circle of particles was laid out in the (x− y)-
plane about the z axis (by doing a full sweep over increments of φ). The

radius of this circle can be found as the height hr in the triangle considered

30



O

A

B
r

r

θ'

h

Figure 3.4: Angle increment θ′ and radius hr in the initialization phase
for the placement of the first three particles

for the increment of θ. To calculate this height, consider that for the area A
of the triangle, the equations

A =
1
2

rhr, and also

A =
1
2

r2 sin θ,

hold. Combining those equations, hr may be evaluated as

hr = r sin θ.

This serves as the basis for the computation of the increment for φ. Similarly

to the derivation of eq. (3.3), with hr as the hypotenuse,

φ′ = 2 arcsin
αr∗c
2hr

. (3.4)

The angle φ is then incremented, starting from 0 to 2π. After the layer

of particles on the φ circle is completed, θ is incremented again, hr is re-

evaluated and another circle is layered by incrementing φ. Once θ reaches

π, the radial distance r is increased again and the next layer is applied. This

is continued until all particles have been placed. The algorithm requires

three nested loops, as described in Listing 3.1.

To compute the total number of particles with cut-off radius r∗c that fit in a
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Listing 3.1: Initial configuration

radius=0.0
while (particles need to be placed)

theta=0.0
radius=radius+alpha*rc
while (particles need to be placed)
phi=0.0
while (particles need to be placed)
xi=radius*sin(theta)*cos(phi)
yi=radius*sin(theta)*sin(phi)
zi=radius*cos(theta)
p =(xi,yi,zi) !particle position
phi=phi+2.0*asin(alpha*rc/(2.0*radius*sin(theta)))
if (circle is full) exit

end while
theta=theta+2.0*asin(alpha*rc/(2.0*radius))
if (layer is full) exit
end while

if (no unplaced particle remains) exit
end while

hollow sphere with radius R, first the number of particles that can be placed

on a circle are calculated, using eq. (3.4)

ncircle =

⌊
2π

φ′

⌋
=

⌊
π

arcsin αr∗c
2hr

⌋
.

This is repeated for each layer (θ, r), yielding

Nmax = 1 + ∑
hr(θ,r)

bR/αr∗c c

∑
j=1

 π

arcsin jαr∗c
2hr

 . (3.5)

With the particles in place, the numerical experiment can be described.

Definition 3.3. (Drop experiment II)

The experiment commences by placing the hollow sphere at a certain height

hd. The particles are placed inside in a spherical configuration as described

above. When the simulation is started, the particles are released first while

the hollow sphere remains fixed in space, cf. Figure 3.5. When the particles

have come to a steady state at the bottom of the cavity, due to gravitation,

the sphere is released and the experimental phase commences. The system
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Figure 3.5: Initial placement of 200000 particles inside a hollow sphere
and their position after the initial settlement phase before
the drop experiment starts

is simulated through multiple impacts with the fundament. These impacts

are recorded and the rebound time ∆T is calculated.

The initial settlement phase guarantees the comparability of the results.

In a simulation with different particles, the particles in the initial placement

are assigned their shape at random to have a heterogeneous mix. This intro-

duces a stochastic component into the experiment. To prevent the dilution

of the numerical results, it is possible to extract the particle positions at any

point in the simulation, i.e. after the initial phase, and to enter such a con-

figuration into a new simulation with different parameters. The potential

between the hollow sphere and the particle mass may cause a minute initial

delay in the free fall of the particles. To prevent this behavior, it is advisable

to set the particle velocities to the sphere velocity during the beginning of

the experiment.

3.3 Boundary conditions

To account for the reflections of the particles from the sphere during the

experiment, the boundary has to be modeled differently than in straight-

forward MD. Motivated by the underlying application, reflective boundary

conditions were used. There are several ways to model reflections and a

decision has to be made for either a discrete or continuous approach.

The discrete route may use the actual geometric trajectories. Each par-
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ticle’s trajectory is identified by its position pi and velocity vi. When the

particle is propagated in the next time step to pnew
i , a breach of the sphere

boundary with the center at the position cnew
s can be verified by computing

dis = ‖pnew
i − cnew

s ‖. (3.6)

Comparing the distance dis to the radius R of the sphere yields the relative

position of the particle in the sphere. If the particle is outside of the sphere,

it is clear that the previous time step has to be examined more carefully and

that a reflection has to take place. This can be computed exactly by using

geometric relations.

Theorem 3.1. (Reflection of a particle in the sphere)

A particle with new position pnew
i that does not satisfy dis ≤ R must be re-

flected by the sphere hull. Given the particle’s previous position pi and ve-

locity vi and the sphere’s position cs, the reflected position can by computed

using the tangential plane in the point of impact.

Proof. First, let the particle be placed at the position pi of the preceding

time step. Then, the distance to the boundary can be derived by solving

‖(pi + tvi)− cs‖ = rs,

for t. The intersection point with the sphere is

ptemp = pi + tvi. (3.7)

Next, the reflection angle β has to be considered. The reflection occurs on

the tangential plane at ptemp. The unit normal vector of that plane is

ni = (ptemp − cs)/
√
〈ptemp − cs, ptemp − cs〉. (3.8)

Now, the velocity vector vi needs to be manipulated according to the reflec-

tion angle. This can be done without evaluating a rotation matrix by using

the rotation formula of Rodrigues [3]

v′i = vi − 2〈vi, ni〉ni. (3.9)

This is equivalent to a rotation of −vi around ni by π, cf. Figure 3.6. Now,

the particle can be advanced by considering the reflection, advancing the

remainder of the time step from ptemp using the new velocity v′i.
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Figure 3.6: Example of a particle-sphere interaction with pre- and post-
collision velocity vectors vi and v′i and tangential impact
plane ti with normal vector ni

During the collision, energy will be dissipated. If the coefficient of resti-

tution between particle and sphere material is known, velocities of the col-

lision partners after the impact can be obtained using the principle of con-

servation of momentum

msvs + mpvp = msv̄s + mpv̄p, (3.10)

and the definition of the coefficient of restitution

εr =
v̄p − v̄s

vs − vp
. (3.11)

The velocity v̄p of the particle after the interaction can be obtained by solv-

ing eq. (3.11) for v̄s

v̄s = v̄p − εr(vs − vp),

and substituting the result in eq. (3.10). Solving for the particle’s post-

impact velocity results in

v̄p =
msvs + mpvp −msεr(vs − vp)

ms + mp
.

Similarly, v̄s is obtained.

However, a number of problems arises when implementing this approach

on a computer. The inexact nature of the computation will result in numer-

ical errors and eventually in the failure to correctly predict the particle’s

position. For very small reflection angles, small errors in the computation

can have a great effect. For particles sliding along the hull of the sphere,

several reflections could take place during a single time step and it would be

35



Figure 3.7: Particle-sphere interaction model using phantom particles
at the boundary layer

computationally too expensive to implement multiple checks for that case.

This will eventually result in particles exiting the sphere. Annoyingly, this

sometimes occurred after many hours of computation. To eliminate this

problem, smaller time steps could be chosen, however, this quickly leads

to unacceptable runtimes. In fact, the simulation time may grow from a

few hours to several weeks. Therefore, this approach is not feasible for the

simulation of the systems considered in this thesis, as confirmed by corre-

sponding computations.

Instead, a continuous, potential based approach was used in the present

work. One possibility to achieve this is to use phantom particles positioned

around the sphere, cf. Figure 3.7. However, this method proved to be in-

feasible. The phantom particles need to be small enough to approximate

the hull reasonably well but with those particles that are around the same

size as the powder inside, problems may arise during the simulation. A

very small time step, smaller than 1/100th of the time step used with the

approach discussed below, had to be selected or the particles managed to

breach the barrier. The most serious problem, however, was the aggrega-

tion of particles that posed a threat to the integrity of the barrier. With a

larger heap, as particles start to accumulate at the bottom of the sphere,

those at the bottom of the pile are pushed against the barrier by gravity

acting on the other particles above, and are eventually forced outside of

the sphere as the potential that is originating from the heap overcomes the

potential around the phantom layer of the sphere.

To circumvent these problems, the reflection was enforced by using a

barrier potential function. This could also be interpreted as barrier particles

with an infinitely large diameter.
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Using the same concept as in the particle interaction, the repulsing force

increases as the distance between the sphere and particle grows closer.

Contrary to the particle potential, however, it continues to increase and

act in the same direction outside the sphere. Particles that manage to exit

the sphere due to the heap’s push would still be subjected to that potential

and pushed back inside. This allows the simulation to have a much greater

flexibility in the time step size. A potential that can be used for this purpose

is of the form

Ub(di) = 0.5β exp(d2
i )− 1. (3.12)

The resulting force is

F(di) = −βdi exp(d2
i ), (3.13)

where β ∈ R controls the magnitude of the potential and was set to have the

same magnitude as the gravitational potential to allow for deflection. This

empowers the barrier to overcome the gravitational potential and deceler-

ate the particles. The vector di determines the direction of the rejecting

force and is based on the position of particle i relative to the center of the

sphere

di =
cs − pi

‖cs − pi‖
.

Similarly to the interaction of particles, the particle’s specific cut-off ra-

dius r∗i was also used for these particle-sphere interactions, only inducing a

force close to the boundary. Particles further inward were not considered

as interaction partners. As an additional benefit, the resulting method is

fully based on a unified approach for all particle interactions. This keeps

the method easily modifiable, allowing to substitute other potentials for the

interactions, if required.

During the experiment, the sphere is subjected to exterior forces, i.e., the

impact at the fundament. This will cause the hull to deform. Additionally, it

should later be able to transmit vibrations that occur in the composite ma-

terial to the particles. Two kinds of deformation were implemented in this

work. The first approach is aimed at modeling the movement of a sphere

trapped inside a larger body, such as a casing that is excited to vibrate,

e.g., by the operation of a machine. In that case, the whole sphere will

be displaced relative to the particles. It would be plausible to incorporate
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the movement of the center of the sphere into the model, however, using a

pulsing hollow sphere to transmit vibration to the particles by varying the

radius of the sphere by a small amount sv will yield comparable results and

shows better performance.

Definition 3.4. (Pulsing radius)

Let the sphere have a radius R and the simulation is performed with the

time step ∆t. The pulsing vibration mode is given as

r(t) = (1− sv)R + sv sin(
t

∆t
).

The second approach takes into account the way the boundary deforms

upon impact and introduces an ellipsoidal deformation, thus, this model

more closely resembles the behavior in the drop experiment. When the

sphere interacts with the fundament, it will suffer a compression along the

vertical axis. For this work, it was assumed that the deformation of the

sphere is uniform, i.e., the sphere expands along the sides and flexes into

an ellipsoid.

Definition 3.5. (Ellipsoid)

The ellipsoid is defined by its half-axes e1, e2, and e3 ∈ R and is parametrized

by

x2

e2
1
+

y2

e2
2
+

z2

e2
3
= 1,

with x, y, z ∈ R.

Note that the sphere is also covered by this definition when all half-axes

are equal. Because of the assumption above, during deformation, e1 = e2

holds, which is called an oblate ellipsoid. After the deflection of this el-

lipsoid, it can be suggested that the shape of the hollow sphere starts to

oscillate between the ellipsoidal and spherical form. During this oscillation,

the volume must remain constant. The volume of an ellipsoid is

Vell =
4πe1e2e3

3
, (3.14)

thus, the product of the half-axes always has to remain constant during

oscillation. Similar to the pulsing radius, a sine-based vibration can be in-

troduced on the half-axis e3 and the other half-axes may then be obtained

with (3.14).
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For the ellipsoidal deformation, the previously presented discrete reflec-

tive computation for the spherical case no longer holds because the radius

of a sphere cannot be used for the ellipsoid. Therefore, a more complex

derivation is necessary.

Proposition 3.1. (Ellipsoid-particle deflection)

Given an ellipsoid Σ and a particle trajectory Γ

Σ :
x2 + y2

e2
1

+
z2

e2
3
= 1, (3.15)

Γ : pi + gvi = (x, y, z)T, (3.16)

the intersection of Σ and Γ is

p∗ = pi + τvi, with

τ1/2 =
−b +

√
b2 − 4ac

2a
, where

a =

〈
vi,

(
vix , viy , viz

e2
1

e2
3

)〉
, b =

〈
2pi,

(
vix , viy , viz

e2
1

e2
3

)〉
, and

c = p2
ix
+ p2

iy + p2
iz

e2
1

e2
3
− e2

1.

Proof. The problem of finding the intersection of the ellipsoid and the tra-

jectory of the particle i is to find τ where

x2 + y2

e2
1

+
z2

e2
3
= 1, so that

(x, y, z)T = pi + τvi,

holds. Note that for readability, only the case where the ellipsoid is centered

in the origin is described here, for the general case, the ellipsoid equation

would be expanded to

(x−mx)2 + (y−my)2

e2
1

+
(z−mz)2

e2
3

= 1,

where (mx, xy, mz) is the midpoint of the ellipsoid. Substituting eq. (3.16) in
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eq. (3.15) results in a quadratic equation for τ

τ2

〈
vi,

(
vix , viy , viz

e2
1

e2
3

)〉
+ τ

〈
2pi,

(
vix , viy , viz

e2
1

e2
3

)〉
+

+ p2
ix
+ p2

iy + p2
iz

e2
1

e2
3
− e2

1 = 0.

(3.17)

The solution is

τ1/2 =
−b±

√
b2 − 4ac

2a
, where

a =

〈
vi,

(
vix , viy , viz

e2
1

e2
3

)〉
, b =

〈
2pi,

(
vix , viy , viz

e2
1

e2
3

)〉
, and

c = p2
ix
+ p2

iy + p2
iz

e2
1

e2
3
− e2

1.

The negative solution for τ can be discarded, because of the orientation

of the velocity vector that is always pointing towards the boundary of the

sphere. Therefore, τ will always be a positive fraction of the time step ∆t
and thus

τ =
−b +

√
b2 − 4ac

2a
.

For the duration τ, the particle i propagates with velocity vi before reach-

ing the impact point on the hull. After that, it is reflected and propagates

the remainder of the time step ∆t− τ with the new, post-impact velocity. To

derive it, the normal vector of the tangential plane at the intersection point

has to be computed and then, similarly to the spherical case, the velocity

vector vi is reflected to v′i. The normal vector in any point on the surface

of the ellipsoid is obtained using the gradient of the ellipsoid surface which

results in

n =

 2x/e2
1

2y/e2
1

2z/e2
3

 , (3.18)

for any point (x, y, z) that lies on the surface. The normal unit vector after
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normalization is

n̂ =
n
‖n‖ .

With this normal vector, the reflected velocity vector is computed similarly

as in eq. (3.9). Consequently, the new position of the particle after the

reflection is

pnew
i = pold

i + τvi + (∆t− τ)v′i.

This approach can also be used in the case of a non-deforming sphere by ad-

ditionally setting e1 = e2 = e3. Just like in the case of the sphere discussed

above, this discrete computation of the trajectory of a reflected particle car-

ries the risk of miscalculations due to numerical errors or when the impact

angle on the surface is very small with the possibility of multiple impacts

within one time step ∆t. Additionally, solving the quadratic equation (3.17)

for every particle that comes in contact requires an increased computa-

tional effort during phases where the bulk of particles inside move against

the sphere during the experiment, greatly increasing simulation time. For

the continuous potential-based approach, the particle-sphere interaction in-

volves the problem of finding the closest distance of a point to an ellipsoid

surface for the potential evaluation. The result is a minimization problem,

further introducing numerical effort. Therefore, the pulsing radius defor-

mation was primarily used in this work to observe system behavior under

external excitation.

Modeling of contact with the fundament

For the interaction of the hollow sphere with the fundament that it is being

dropped upon, a strictly mechanical approach of performing an inelastic

collision could be taken. The coefficient of restitution is required for this

computation. It can be evaluated by performing the drop experiment with

an empty sphere and measuring the height that the sphere reaches after

rebounding. When dropping from height hd and measuring the rebound

height h, the coefficient of restitution εr is given by [11]

εr =

√
h
hd

. (3.19)
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Alternatively, in the one-dimensional case, it can be derived from the veloc-

ities vA and vB of two bodies A and B before the impact and the velocities

uA and uB after the impact by

εr =
uA − uB

vA − vB
. (3.20)

In the three-dimensional simulation, this holds for the velocity component

perpendicular to the impact surface. In the considered scenario, that sur-

face is the (x− z) plane and therefore, the y component of the sphere veloc-

ity is affected. Since the surface is supposed to be the fundament and the

motion of the sphere is relative to it, the velocity of the surface is always

zero. This results in

vnew
y = −εrvold

y .

Because the mass and velocity of the sphere are known at every point of

time in the simulation, the new velocity after the impact with the fundament

is immediately computable if the coefficient of restitution εr is known. If it

is possible to derive the coefficient from a physical experiment, this is a

clear advantage of this reflection approach, as the collision can then be

performed exactly.

However, since the particle interaction is based on a potential and a dis-

crete mechanical approach for the fundament interaction would disrupt the

otherwise continuous potential-based formulation of the model, it is favor-

able to simulate the whole system using potentials. Therefore, the funda-

ment contact is modeled similarly to the contact of particles with the sphere

with a potential Us, using the barrier force (3.13) and a cut-off radius rc for

the interaction. Instead of di, the distance of the sphere to the fundament

is used after taking into account rc

ds := cs − R− rc.

If 〈ds, ds〉 < r2
c , an interaction takes place, a rejecting force is induced and

the sphere is reflected back up from the surface. A great advantage of the

continuous potential approach is that relatively large time steps can be cho-

sen as the exponential potential will ensure that all particles are reflected

and can not exit the simulation. Note that the model now uses potentials

for every possible interaction; particle-particle, sphere-particle and sphere-

fundament. Thus, the method is homogenized by using potentials exclu-
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sively. The potentials are easily interchangeable and can be adjusted to

different requirements, e.g., for soft or hard interactions. A continuous ap-

proach for all interactions simplifies event handling overall, since a discrete

approach would lead to a high numerical effort to always identify the next

interaction to propagate the system to that point in time. The potentials

allow for overlaps to occur and still capture the physical interaction, under

the condition that the specified time step is small enough.

3.4 Friction

Friction is problematic in many industrial applications. However, it is de-

sired in the particular scenario considered, because it is the driving force

behind the damping effect studied here and needs to be taken into account.

Many models for solid body interaction depend on rather elaborate compu-

tations. One example is using a soft particle model [28]. The interaction

forces for the normal and tangential direction are evaluated separately. The

normal forces are based on the Hertz-Kuwabara-Kono (HKK) model and the

tangential force on Coulomb’s law of friction. The HKK model takes into

account specific material parameters, such as Young’s modulus E and Pois-

son’s ratio ν

Fn = −knα3/2 − γnvn
√

α, (3.21)

with normal stiffness kn = 2
3 E
√

R/2(1− ν2)−1 and R−1 the sum of the in-

verse radii of the interaction partners. The other parameters are the over-

lap α, the normal damping coefficient γn, and the relative normal velocity

vn of the two spheres. For the tangential force, the authors [28] use

Fs = min(|γsvs
√

α|, |µdFn|)sign(vs).

Here, the material parameter γs represents the shear damping coefficient,

µd the dynamic friction coefficient, and vs the relative tangential velocity.

Models such as this one are able to match real world behavior very well.

However, due to their complexity, in a simulation that has to consider ~105

interacting bodies, these models are not applicable due to the computa-

tional effort required. Furthermore, the material inside the sphere changes

during the sintering process and the material parameters are altered, cf.

Figure 3.8.
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Figure 3.8: Clumping of particles after sintering, ©Fraunhofer IFAM
Dresden

Therefore, a much more efficient and simple approach was required in

the course of this work. Whenever an interaction occurs, each particle that

takes part is marked. During the update of the velocities in the simula-

tion, this information is recovered and results in a minimal reduction of the

kinetic energy. The reduction is computed as

vnew
i = (1− nint)(vold

i +
∆t

2mi
Fi). (3.22)

If more than one interaction occurs in a time step, i.e. with a particle and

the sphere, the factor nint may be incremented for each interaction. This re-

duction can be calibrated to real world experimental data. At the beginning

of the next time step, the factor nint is reset to zero. The same concept is

used to reflect friction on the rotational movement and to model friction of

the hollow sphere with the fundament.
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Chapter 4

Simulation of the physical

experiment

The efficiency of the damping effect of the particles can be observed using

physical experiments. A simulation software to match those findings on

a computer was developed based on the model discussed in the previous

chapter. It allows to perform many variations of the experiment without the

need to actually manufacture the sphere.

The ultimate goal of this work was to derive the coefficient of restitution of

the simulated system. This value directly quantizes the amount of damping

that can be achieved by the addition of particles when compared to the

experiment without particles.

4.1 Coefficient of restitution

In the physical experiments at Fraunhofer IFAM Dresden, the rebound time

∆T is measured using a microphone that records the impacts on a plate

[21]. Thus, computing this time via simulation is the most desirable result,

because it will directly yield the coefficient of restitution and enables a di-

rect comparison to the physical experiment. To use ∆T as a measure of

damping, its relation to the coefficient of restitution must be explored.

According to Ref. [21], the coefficient of restitution (COR) εr in an experi-

ment with drop height hd can be derived from the vertical throw upwards

y(t) = vbt− g
2

t2, (4.1)

with the standard gravity g = 9.81 ms−2 and starting velocity vb, in this case,

the velocity immediately after the bounce with the fundament. Coupled with

45



the definition of the coefficient of restitution [11],

εr = −
vb
v0

, (4.2)

where v0 is the velocity the sphere reaches before the bounce after the

drop from height hd, the COR can be derived from the rebound time. First,

to obtain v0, the drop time t∗ from hd to the fundament is calculated

y(t∗) = hd −
g
2

t2
∗ = 0

t∗ =

√
2hd
g

.

The velocity at the impact is then

v0 = ẏ(t∗) = −gt∗ = −
√

2hdg

To obtain the velocity vb after the bounce, the measured time ∆T is used.

This is the time after which the height y according to eq. (4.1) reaches 0
again after the first deflection, indicating the second bounce on the funda-

ment. Thus, the velocity of the sphere after the first impact can be evaluated

by

0 = t(vb −
g
2

t),

=⇒ vb = ∆T
g
2

.

Substituting the results for v0 and vb in eq. (4.2) yields

εr =

√
g

8hd
∆T2.

4.2 Straightforward algorithm

The naive straightforward algorithm must check each particle for potential

interactions with every other particle. Naturally, this leads to a double loop

over the particles in the implementation and results in quadratic complexity

in terms of the particle number N. Algorithm 4.1 shows that basic algorithm

in pseudo code. Consequently, the particle number has a big direct impact

on the computational effort. However, this double loop is not necessary for

the interaction computation as the particles are not distributed uniformly in
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Listing 4.1: Quadratic algorithm

!import simulation parameters
!initialize simulation
for integration=1: intsteps
for i=1:N
update vs, v(i) = v(i) + 0.5∆t(F(i)/m(i)− g)
update ps, p(i) = p(i) + ∆tv(i)
update ω(i), o(i)

end for
for j=1:N
if ‖p(i)− p(j)‖ < rcut then
compute Fij using potential U
update F(i), F(j)

end if
end for
for i=1:N
update v(i) = v(i) + 0.5∆t(F(i)/m(i)− g)

end for
compute energy

end for
! return results: simulation data, impact times

the simulation volume and the actual number of interactions is quite small,

so that steps can be undertaken to reduce the effort spent on the interaction

calculation. Selecting a suitable cut-off radius, where only the immediate

vicinity of the particle is considered, is a first step in reducing the num-

ber of possible interactions dramatically. However, while the simulation of

moderately sized systems with spatial equally distributed particles bene-

fits from this, for the present application, it is inadequate. In addition to the

high number of particles, the number of interactions increases greatly, even

with a small cut-off radius, when the simulation reaches the point where

particles start to accumulate at the bottom of the sphere. In that case, a

dramatic increase of the computational effort is observed. Thus, measures

to handle the interactions more effectively must be taken.

4.3 Linked cell method

To lower the complexity of the method, a way to significantly reduce the

number of potential interaction partners has to be found. This can be
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r*c

Figure 4.1: Linked structure with overlap r∗c ; the potential interaction
partners of the blue particle within the cut-off radius r∗c are
shown in red

achieved by dividing the simulation volume into small cubic cells. For every

particle in such a cell, the other particles in that cube have to be considered

as potential interactions. However, for particles close to the boundary of the

cell, the neighboring cells have to be considered as well, so there is an inter-

action overlap around each individual cube, linking the cells. Information

about particles in that domain has to be exchanged with neighboring cells.

The optimal cell size may depend on the cut-off radius of the largest particle

in the simulation, r∗c [14]. This ensures that all physically possible interac-

tions will only occur among particles in immediately neighboring cells, cf.

Figure 4.1. Thus, only a very limited number of neighboring cells are con-

sidered, instead of the whole simulation volume. For a simulation volume

with length L = (lx, ly, lz)T, the resulting number of cells in each direction is

N∗ = (N∗x , N∗y , N∗z )
T = dL/r∗c e,

where dxe of a floating point number x is the smallest integer number larger

or equal to x. In each iteration, the particles can be distributed with little

numerical effort among the array of cells using the coordinates for the i-
th particle pi = (px, py, pz)i. Each cell is identified by three integer values
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x

z y

(i,j,k)

Figure 4.2: Cell neighbors of the cell (i, j, k) that are considered by the
algorithm (shaded in blue)

(ic, jc, kc) := (i, j, k)c and the cell index for a particle is calculated by

(i, j, k)c = b(N∗x px/lx, N∗y py/ly, N∗z pz/lz)c.

The amount of work that has to be done in each iteration during the sim-

ulation run can be greatly reduced by choosing a traversing order of the

cells that only computes interactions with the cells that have not yet been

traversed. This prevents the need to check for the double counting of inter-

actions of particles in neighboring cells (particle i in cell a with particle j in

cell b and vice versa). In this work, the traversing is started at one of the

corners of the simulation region, i.e., the cell that contains the origin. Only

cells in positive x and y direction contain valid interaction partners. Addi-

tionally, the next layer in positive z direction is also permitted to contain

interaction partners. This method results in a maximum of 13 neighbor-

ing cells that have to be considered for every linked cell, cf. Figure 4.2.

Fewer neighboring cells occur at the edges and corners of the simulation

volume. The algorithm is sketched in Listing 4.2. The distribution of par-

ticles among the cells leads to an improvement in algorithmic efficiency.

In fact, the linked cell approach is characterized by a linear complexity in

terms of the particle number as opposed to the quadratic complexity of the

first approach [14]. In standard MD applications, the equally distributed

particles allow for an efficient operation of the linked cell (LC) algorithm
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Listing 4.2: Cell traversing algorithm

for k=2,zcells-1 !cells in z direction
for j=2,ycells-1 !cells in y direction
for i=2,xcells-1 !cells in x direction
!set current cell index as (i,j,k)
!now cascade through neighbor cells
!with indices (in,jn,kn) and calculate interactions

!first on the same z plane
kn=k
for jn={j,j+1}
for in={i,i+1}
!calculate interactions
!between particles in (i,j,k), (in,jn,kn)

end for
end for
jn=j+1
in=i-1
!calculate interactions
!between particles in (i,j,k), (in,jn,kn)

!now move onto the cells in the next z layer
kn=k+1
for jn={j-1,j,j+1}
for in={i-1,i,i+1}

!calculate interactions
!between particles in (i,j,k), (in,jn,kn)

end for
end for

end for
end for

end for
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N LC quadratic
625 27m 36s 5 min 53s
1250 38min 21s 15min 13s
2500 74min 32s 44min 30s
5000 n/a 145 min 17s

Table 4.1: Run times for a simulation over 70000 time steps for a linked
cell algorithm with equal memory allocation to all cells com-
pared to a standard algorithm

with a basic memory allocation system that uses the same amount of mem-

ory for each cell, avoiding the need for any runtime memory management.

However, in the experiment that was considered here, a large amount of

particles congregate in a small volume at the bottom due to the gravitational

force. Thus, the cells that are at the top of the sphere are temporarily basi-

cally empty. Over the course of the simulation, the load balance of the cells

regarding their memory requirement is varying strongly. An example of

this is shown in Table 4.1, where the drop experiment was simulated with a

commonly used linked cell algorithm using equally distributed memory and

compared to the required computation time of the standard algorithm as in

Listing 4.1. Note that the overhead associated with the memory allocation

leads to higher run times for the LC method. Furthermore, the simulation

even breaks down for as few as 5000 particles because the accumulation of

particles in a few cells and the resulting memory requirement exhausts the

available memory. In order to use the linked cell algorithm for the applica-

tion of the particle filled sphere, it has to be able to cope with very uneven

particle distributions, e.g., by adaptively managing memory allocation for

each individual cell.

4.4 Adapted linked cell method

Memory system

In this work, a method with a highly variable memory structure was im-

plemented that is able to deal with uneven particle distributions. It uses a

pointer administrated linked list structure. For easy access, every particle is

represented by a identification number (ID). These IDs are organized in lists

associated with each individual linked cell. The first list element (cf. Listing

4.3) in a cell is attached to a cell header and the remaining list elements
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Listing 4.3: List element representing a particle

type listelement
integer :: id=0 !particle ID number
type(listelement), pointer :: next => null()
!pointer to the next particle in the cell

end type

are connected by pointers, cf. Figure 4.3. During each iteration, the cells

are traversed and the list for each individual cell is accessed successively

to obtain the potential interaction partners of the particles in that cell. The

neighboring cells with their particle lists can also easily be retrieved using

the pointers attached to the cell header.

As the simulation evolves, the particles move across cell borders and need

to be reattached to another cell’s element list. The lists are reordered in

each iteration and are organized in a last-in-first-out order, i.e., new ele-

ments are always added as the new head element. To avoid repeated deal-

location of the list elements, an additional index vector provides a perma-

nent pointer to each element. This allows for an access to each particle’s

list element without destroying it, i.e., reallocating the memory structure in

every time step. Additionally, the problem of dangling pointers is avoided as

no element is deallocated until the termination of the program and contin-

uous access is always provided by the index vector. The pointers between

1

7
98

98 7 1

98 7 1

2
10

35

35 10 2

Figure 4.3: Linked cell list memory structure
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Listing 4.4: Linked cell algorithm

!import simulation parameters
!initialize simulation and cell lists
!store particles in cells using pointer linked lists
for integration= 1:IntSteps
for i=1:N
update v(i), vs(i), p(i), ps(i)
update ω(i), o(i)
update linked cell lists

end for
for every cell !cascade through all neighbor cells
if ‖p(i)− p(j)‖ < rcut then
compute Fij using potential U
update F(i), F(j)

end if
end for
for i=1:N
update v(i) = v(i) + 0.5∆t(F(i)/m(i)− g)

end for
compute energy

end for
! return results: simulation data, impact times

the IDs that make up a cell list can easily be reconfigured by using the in-

dex vector, therefore avoiding the loss of any elements in memory. The cells

themselves are set to be fixed relative to the sphere position and are defined

at the beginning of the simulation run, so cell borders are only evaluated

once.

Instead of using an index vector that points to elements representing par-

ticles, an approach was also considered that omits the extra elements used

in Listing 4.3 and reconfigures the pointers inside the index vector itself.

However, this led to higher runtimes. An explanation for this behavior could

be that the individual elements perform better because they fit in a faster

cache due to being few in number per cell, whereas using pointers in the

larger index vector requires using slower high-level memory that is large

enough to store the complete vector. E.g., in a test on a machine with an

Intel Core2 Duo 8500 Processor, the vector-based simulation took around

6.6% longer than the implementation that uses additional single element

memory blocks (450 h vs. 422 h for 150000 time steps with 35000 par-

ticles). Consequently, the linked cell memory structure is associated with
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an additional effort compared to the straightforward quadratic approach.

The distribution and pointer reconfiguration needs to be done in each iter-

ation as particle positions change over time and they enter and leave cells.

However, as the number of particles increases to tens of thousands, the

advantage of the linear complexity compared to the standard approach’s

quadratic complexity far outweighs that overhead. Chapter 5 elaborates on

that. The basic LC algorithm is shown in Listing 4.4.

Cell size

Due to geometric considerations, a computationally useful cell size for the

linked cell algorithm is equal to the cut-off radius specified for the sim-

ulation. Note that reducing the cell size past the cut-off radius r∗c is not

advisable, because interactions beyond the immediate neighboring cells

may occur that would not be captured. Thus, the algorithm would have to

consider additional cells beyond the immediate neighbors, while choosing

larger cells adds additional potential interaction partners to be evaluated

with respect to their distance. In the latter case, more interaction checks

are performed even though the partners are further apart than r∗c . When

several different particle sizes are used in a simulation, it is obvious that

the largest particle’s cut-off radius dictates the cell size to be used.

The following experiment compares the simulation of the same system

using r∗c and 2r∗c . It can be expected that increasing the cell size will also

increase the runtime. Unsurprisingly, the results in Table 4.2 show that the

runtime in minutes runtime in minutes
N l = 2r∗c l = r∗c N l = 2r∗c l = r∗c

10000 21.59 19.69 120000 458.35 269.61
20000 48.37 36.81 130000 488.88 286.39
30000 81.12 62.80 140000 539.87 315.76
40000 116.68 77.55 150000 590.13 328.12
50000 150.08 104.57 160000 658.37 363.60
60000 188.87 127.80 170000 667.87 393.15
70000 228.14 135.51 180000 726.60 423.22
80000 269.47 171.09 190000 794.99 448.03
90000 310.88 181.57 200000 843.60 479.25

100000 364.47 216.38 210000 889.04 483.78
110000 396.21 244.77 220000 951.34 523.80

Table 4.2: Computational runtime for the linked cell method with opti-
mal and double cell size
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simulation is much faster with the cell size set to r∗c . While doubling the cell

size reduces the pointer administrative overhead, the additional effort for

computing the interactions in each cell significantly outweighs that effect.

For very small particles, the optimal length can quickly result in thou-

sands of cells in each direction, leading to an excessive memory require-

ment, which is in fact limited by the available system memory. For such

simulations, a larger cell size must be selected. In addition to the cells

covering the sphere, two more layers of cells are added around it. This

padding is necessary because of the potential based particle-sphere inter-

action, due to which particles may momentarily exit the sphere during one

iteration only to be propelled back inside in the next time step by the bar-

rier potential (cf. Chapter 3). The padding layer ensures that particles that

are interacting with the barrier potential and have momentarily breached

the sphere are captured in a cell and can be handled. Thus, at least one

layer of cells must be outside of the sphere itself. Still, the time step has to

be selected carefully or particles may move beyond that outer layer. This

problem may also occur when a particle is subjected to many interactions at

once, resulting in an increased accumulated repelling force that results in a

significant change in velocity, emphasizing the importance of the selection

of a stable time step. Additionally, a second padding cell layer allows to omit

special treatment of the border cells in the cell traversing phase of the algo-

rithm. The sphere is embedded in a cuboid volume divided by cells. Thus,

many cells are outside of the sphere and add to the memory footprint even

though they do not contain any particles. However, as an advantage, this

prevents having to deal with a special treatment of cells that are on the very

edge of the simulation volume. Having a cuboid volume around the sphere

allows for easy traversing of the linked cells and reduces the computational

effort.

Proposition 4.1. (Memory requirement for the cells)

The maximum memory required for the linked cell structure with N cells in

x, y, and z direction, respectively, is N3 · 12 Bytes.

Proof. Each linked cell requires a pointer to an element, which is a custom

variable requiring 8 Bytes for the pointer and 4 Bytes for the integer on a

64 Bit system. In the chosen programming language Fortran, the pointer

has to be of the same type as the variable that it is associated with so every

cell pointer, when allocated, requires 12 Bytes. This leads to a memory
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requirement for the cell pointer structure of

Mr = N3 · 12 Bytes.

E.g., when considering an experimental setup typical for this work, where

the diameter of the sphere is 3 mm and the typical particles have a diame-

ter of 0.031 mm, the number of cells are calculated by dividing the sphere

diameter by the cut-off radius (r∗c = 0.035 mm), which yields 86 cells in each

direction plus the 4 padding cells. Thus, simulating the drop experiment

with the standardized particle in the standardized hollow sphere would take

approximately 8.7 MB of system memory for the linked cell array. How-

ever, when the particle diameter is decreased, system memory is exhausted

quickly. Due to the cubic memory complexity, the required memory rises

excessively, which could play an important role once particle breakup is

introduced. Using particles of one tenth the regular size, over 8 GB are re-

quired and at one hundredth of the size, approximately 8 TB are required.

This problem can be overcome, e.g., by increasing the size of the linked

cells to conserve memory at the cost of checking for more interactions.

The cells inside of the sphere stay fixed in their position relative to the

sphere during the simulation. This requires some careful adjustments for

the involved relative positions of the particles. The simulation works with

two different reference frames, one for the observation of the experiment

that is fixed relative to the fundament, cf. Figure 4.4. The other one is the

system for the sphere and the cells that changes its position relative to the

first system over time. To account for this during simulation, the frames

need to be synchronized [13].

Definition 4.1. (Galilean transformation)

A Galilean transformation transforms the dynamics in one frame so as to

be observed in the other frame when the two frames change their position

relative to each other.

This concept holds only for constant relative motions. In the considered

scenario, the sphere and the particles are accelerated by gravity. However,

the velocities of all elements in the system remain constant during every

time step and thus, a Galilean transformation can be performed in each

iteration.
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vs

Figure 4.4: Two reference frames in 2D; the first frame is fixed to the
fundament and the second one is fixed to the sphere and
moves with the velocity vs

Proposition 4.2. (Relative frame movement)

The movement of the particles in the sphere-fixed frame can be tracked in

the global frame via a Galilean transformation using the velocity vs of the

frame containing sphere and particles. The sphere is contained in reference

frame A while the other frame B is the one for the observer. It coincides

with the fundament, which is in the x− z plane at y = 0. In an iteration, the

frame A with the sphere is moved with vs inside the other system B. Thus,

the resulting transformation required for each particle is

pB
i = pA

i − vs∆t. (4.3)

Comparing the results of the quadratic approach and linked cell method,

due to the nature of inexact numerics on a computer, this correctional step

will lead to slightly different results when using the same simulation pa-

rameters. This is visible in the results in the next section below, where an

experiment was conducted to compare the two methods.

The interaction of the sphere is the same in both approaches. The barrier

potential on the fundament induces a force that acts upon the hollow sphere

together with the accumulated forces from the particle-sphere interactions.

With the simulation set up, the drop experiment can now be performed

numerically.
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4.5 Comparison of the linked cell method and

the quadratic approach

Compared to the straightforward approach with quadratic complexity, the

linked cell algorithm allows to use more particles in a simulation, because

a linear behavior of the computation time is maintained. Based on the

quadratic complexity of the former, increasing the particle number by a

factor of ten, the run time increases hundredfold. Therefore, a linear com-

plexity approach, such as the linked cell algorithm is the only viable option

to simulate systems with a large particle number within a tolerable com-

putational time frame. Generally, because of the linear complexity of the

linked cell algorithm, simulations complete quicker than with the straight-

forward quadratic approach. However, the sorting of the particles into the

cells also takes some effort, so simulations with small particle numbers will

not benefit. The results of both approaches were verified using the same

experimental parameters, such as frictional coefficients. To emphasize the

need and the advantages of the linked cell method, Table 4.3 lists the com-

putational time required for 1.5 · 106 time steps of 0.1 µs using the straight-

forward and LC algorithms. Additionally, the rebound time between impacts

is presented.

The linked cell algorithm completes faster than the quadratic algorithm

for systems that are larger than a few thousand particles. The impact time

varies only very slightly. This can be explained by minute numerical dif-

ferences that occur because the linked cell approach uses two coordinate

systems instead of one in the quadratic approach. Still, the quadratic ap-

proach retains its use for small systems, e.g., to train friction parameters or

for simulations with few (large) particles.

rebound time in ms run time in min
N SF LC SF LC
10 34.72 34.72 0.05 59

100 33.74 33.74 0.92 65
1000 26.42 26.34 48 80
2500 18.77 18.75 280 105
5000 12.22 12.24 881 113

Table 4.3: Linked cell (LC) and straightforward approach (SF) computa-
tional runtime and rebound time
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4.6 Energy conservation

The energy of the system has to be conserved in the simulation. In the case

considered here, potential and kinetic energy occur. The kinetic energy

is due to translational and rotational motion. The kinetic energy of the

particles with the individual masses mi, velocities vi, inertia tensors Ii and

angular velocities ωi is given by

Ekin
p =

1
2

n

∑
i=1

miv2
i +

n

∑
i=1

Iiω
2
i .

The potential energy of the particles consists of two parts; the energy due

to gravitation and the energy due to the particle-particle potential U,

Epot
p =

n

∑
i=1

mighi +
n−1

∑
i=1

n

∑
j=i+1
i^j

U(dij).

Here i ^ j denotes an interaction of particle i with particle j, hi the height

of the particles above the fundament and g the standard gravity. Similarly,

the kinetic energy of the hollow sphere is calculated from the sphere’s mass

ms and its velocity vs,

Ekin
s =

1
2

msv2
s ,

and its potential energy

Epot
s = msghs + Us(ds),

with hs the height of the sphere above the fundament and, if present, Us

the potential for the sphere-fundament interaction. Additionally, there is

a contribution to the potential energy from the particle-sphere boundary

potential,

Epot
ps =

n

∑
i=1

i^s

Ub(di),

where i ^ s denotes that particle i interacts with the hollow sphere. Con-

sequently, the total energy is

E = Epot
p + Ekin

p + Epot
s + Ekin

s + Epot
ps . (4.4)
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Comparing the energy between two time steps serves as a measure of the

energy dissipated due to the pseudo-friction introduced in eq. (3.22). Pro-

vided that the algorithm is numerically exact and the friction is omitted,

the energy should be conserved. However, the leapfrog integrator is only

a second order method and therefore it is not to be expected to have per-

fect energy conservation. Whenever there is an interaction, the length of

the time step in combination with the potential-based approach has a direct

impact on the resulting kinetic energy. This leads to a so-called energy drift

[12].

When considering two separate simulations that proceed with different

time steps ∆t1, ∆t2 and assuming, that at a certain point in time they both

have the numerically exact same energy Etotal, this drift can be explained. If

in the propagation to the next time step an interaction in both simulations

occurs where the positions, and therefore the distance d, between the inter-

action partners is also the same, the same force will be present due to the

potential

F =
24ε

d2

(
2
(σ

d

)12
−
(σ

d

)6
)

d,

where ε is the depth of the potential well and σ the particle diameter. How-

ever, it is assumed that the same force acts throughout the duration of a

time step. In order to propagate both systems to the next time step, this

force will act longer in case of a larger step ∆t2 > ∆t1. Assuming that there

is no other interaction during this time step, and omitting gravity for the

moment, the resulting change in kinetic energy is

∆Ekin
1 =

∆t1

2m
F 6= ∆t2

2m
F = ∆Ekin

2 .

Thus, the kinetic energy cannot be perfectly conserved, but depends on

the chosen time step. The total energy of the system after the interaction

will not be exactly the same as before the interaction occurred.

It is advisable to use smaller time steps, however, a balance between ac-

curacy and simulation time has to be found. A very small time step would

prohibitively increase the computational effort. In MD, a thermostat is of-

ten used to recalibrate the dynamics of the system every few time steps.

Because the velocity of the molecules is tied to the temperature of the mate-

rial, the simulation can be forced to retain a constant temperature, meaning

that a correctional factor has to be applied to the velocities [2, 12]. In the
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problem modeled here, the decrease in energy due to friction is much more

pronounced than the impact of a large time step. Thus, highly accurate en-

ergy conservation was not as important and a larger time step was chosen

in this work.

4.7 Energy experiment

To exemplify the energy conserving nature of the potential based approach

in connection with the leapfrog algorithm, an experiment was conducted

first with the sphere itself only. For that purpose, the drop on the fundament

was performed first for an empty sphere with and without friction and then,

particles were added.

The experiment was run for 150000 time steps of 1 µs. During that time,

a total of four rebounds were observed. Figure 4.5 shows the various forms

of energy present in the system along with the total energy. Friction was

turned off and the barrier potential was used for the interaction with the

fundament. The gravitational potential was shifted to reflect a drop onto a

raised platform - resulting in a higher potential energy, to allow for better

readability of the different parts of energy in the graph. As can be seen in

the graph, the total energy remains constant over time, making a strong

case for the use of the barrier potential. Now, with added pseudo-friction,

the same forms of energy are plotted in Figure 4.6. In the total energy,

the velocity dependent friction can be observed. In each time step where

the barrier was active, 0.001% of the velocity was subtracted, resulting in a

reduction of total energy. The sphere behaves like a bouncing basketball,

with the bounce height decreasing over time.

When particles were added (2000 in this next experiment), i.e., a filled

sphere was considered, with the friction set to zero, the energy should still

be preserved. As can be seen in Figure 4.7, this is in fact the case. However,

there is a slight shift visible that favors kinetic energy over time. The po-

tential energy decreases slightly, signaling a damping effect in the sphere,

while the particles are accelerated, visible in a rise of kinetic energy. Visual-

izing very long simulation runs, a speedup of the particles inside the sphere

can be clearly observed because of this shift. Adding pseudo-friction, the

effect of the particles on the damping of the sphere is very noticeable in the

total energy, cf. Figure 4.8. The most prominent dissipation of energy is

clearly visible in the graph and occurs shortly after the first rebound of the
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Figure 4.5: Energy contributions of an empty bouncing sphere without
friction
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Figure 4.6: Energy contributions of an empty sphere with friction
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Figure 4.7: Energy contributions of a sphere containing 2000 particles
without friction
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Figure 4.8: Energy contributions of a sphere containing 2000 particles
with friction
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sphere, when it collides with the bulk of particles. After this initial force-

ful interaction, the particles move freely inside the cavity in all directions.

Thus, a similar single imposing event with the same impact on the energy

cannot be expected, but it continues to be dissipated gradually over time. In

simulations with well over 100000 particles this initial event can be so pow-

erful, that the sphere rebounds immediately. In that case, the third bounce

will take much longer than the second bounce, requiring another measure

than the rebound time ∆T for the calculation of the coefficient of restitution.

4.8 Numerical properties

The simulation is based on the MD leapfrog algorithm derived from a Taylor

expansion on the first order differential equations. As shown in chapter 2,

in the leaping scheme, second order accuracy is achieved. The changes in

the model do not influence that result since the differences are in the com-

putation of the forces and boundaries. Therefore, second order accuracy is

maintained.

The changes do, however, have an impact on numerical stability. The term

stability has been coined for numerous different things. For the purpose of

this thesis, the numerical aspect is considered. This means that an examina-

tion of stability refers to the behavior of an algorithm with respect to error

amplification, or conservation of energy. The leapfrog method is based on a

truncated Taylor expansion that will lead inevitably to discretization or trun-

cation errors in the computation. The question that needs to be answered is,

whether these errors cause the solution to become unstable. For this pur-

pose, it is necessary to evaluate the errors in each time step. The stability

of the method ultimately depends on the time step ∆t. This becomes evident

in the interaction computation, where an inadequate time step choice may

lead to interacting particles with a large overlap, resulting in a great repul-

sive force that can destabilize the simulation. In the considered problem,

the maximum velocities of the particles will influence the maximum force,

and the velocities depend on the time interval when the sphere drops and

is subjected to gravity. Recall that in the leapfrog scheme, the velocity is

v(t + ∆t) = v(t) + ∆tF(t)/m. (4.5)

To achieve stability, the energy in the simulated system should remain con-

stant. Thus, the interaction force F in that time step must not accelerate the
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particles and at its greatest permitted extent, cause the particles to assume

the positions they had just prior to the interaction. Thus, it has to hold that

vmax = −vmax + ∆tF/m (4.6)

=⇒ F = 2mvmax/∆t (4.7)

To calculate the maximum force F that is permitted to occur, the maximum

velocity the particles may achieve is required. For any body that is dropped

from height hd, their terminal velocity at the fundament is vdrop =
√

2ghd.

The particles achieve their maximum velocity when they are reflected from

the sphere boundary and when that collision is elastic. In a perfect elastic

head-on collision of two masses m1 and m2 with pre-collision velocities v1

and v2, the post-collision velocities v′1 and v′2 are [4]

v′1 =
m1 −m2

m1 + m2
v1 +

2m2

m1 + m2
v2 (4.8)

v′2 =
2m1

m1 + m2
v1 −

m1 −m2

m1 + m2
v2. (4.9)

In the problem considered here, the masses of the sphere and particle differ

greatly. Then, with m1 � m2, the sphere’s velocity in (4.8) remains virtu-

ally unchanged, while the particle’s velocity after the interaction (4.9) is

dramatically increased by the impact with the heavy sphere in addition to

a complete reversal of the particle’s own pre-collision velocity. Thus, the

maximum velocity of a particle is vmax = 3
√

2ghd.

The greatest theoretical force that can occur is when two particles collide

with that velocity, when they had barely touched in the previous step (the

distance equal to the cut-off radius r∗c ). Their distance during the interaction

in the next time step is

d = r∗c − ∆t2vmax

which means that the force is

F(d) =
48ε

d

((σ

d

)12
− 1

2

(σ

d

)6
)

.

This term can be used in eq. (4.7) to obtain a solution for ∆t (here, it is
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solved for d first for better readability)

48ε

d

((σ

d

)12
− 1

2

(σ

d

)6
)
= 4mv2

max/(r∗c − d)

12ε(r∗c − d)
((σ

d

)12
− 1

2

(σ

d

)6
)
= dmv2

max

12εσ12(r∗c − d)− 6εσ6d6(r∗c − d)− d13mv2
max = 0

−mv2
maxd13 + 6εσ6d7 − 6εr∗c σ6d6 − 12εσ12d + 12εσ12r∗c = 0.

For time steps that satisfy this condition, the numerical algorithm performs

well. The dynamics of the system may behave badly for larger time steps

and will yield invalid results. Solving this equation numerically for an ex-

emplary drop experiment with hd = 0.1 m and a representative particle with

σ = 0.31 ∗ 10−1 mm, results in

d = (−1.44581,−0.34797, 0.346592, 0.351522, 1.32497) 10−4m.

Only the third solution is a valid choice for d (positive distance and smaller

than r∗c ) and returns a critical step size

∆t = 1.2823 · 10−7 s. (4.10)

With the step sizes selected in this manner, the experiments can commence

in the next chapter.
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Chapter 5

Results

With the suggested method, the damping behavior of a particle filled sphere

can be simulated. There are several interesting experiments that can be

performed with the software to compare them with real world experiments.

The following pages give a detailed view on the results of these numerical

experiments.

The simulation results were obtained by using the experimental data sup-

plied by Fraunhofer IFAM Dresden during the project. The real particles

vary in size due to the manufacturing process, but a representative par-

ticle has been identified by Fraunhofer IFAM Dresden that was used for

most of the presented simulations. Table 5.1 gives an overview of the typi-

cal parameters used in the simulations for this standard particle as well as

the representative sphere, where the parameters were also obtained from

Fraunhofer IFAM Dresden. For reference, commonly used parameters for

MD simulations are provided as well. The simulations for the damping be-

havior were performed on the OCuLUS system at the Paderborn Center for

Parallel Computing on nodes equipped with Intel Xeon Sandy Bridge E5-

2670 CPUs with 4 GB RAM per core.

Explanation Parameter Typical value used MD value
time step ∆t 0.1 µs 1 fs

particle diameter dp 3.1 · 10−2 mm 30− 300 pm
particle mass mp 4.1 · 10−5 mg 10−27 − 10−25 kg

friction part.-part. fp 0.1 -
friction part.-sphere fs 0.01 -

sphere diameter r 3 mm -
sphere mass ms 12.518 mg -

Table 5.1: Input data for the numerical experiment
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Friction parameters

Due to the nature of the potential-based friction used in this work, an unde-

sired effect of particle clumping can occur. This happens when the friction

between particles is too large, and particles start to move together. This can

be avoided by adjusting the parameters accordingly. For this purpose, the

quadratic simulation tool was very helpful. It provided a quick visualization

of just a few particles, where clumping is immediately visible. However,

the effect is also desirable to some extent, because real particles do clump

together, especially during sintering, cf. Figure 3.8. For the following ex-

periments, the parameters fp for the particle-particle interactions and fs for

the particle-sphere interactions will be stated for each simulation. Concern-

ing the parameter governing the sphere-fundament interaction, an experi-

ment with an empty sphere was performed to train the simulation to the

real world behavior of such a sphere and resulted in a parameter of 0.9. Ad-

ditionally, all friction parameters were multiplied by the time step to make

the results comparable when using different time steps. Not all numerical

values are provided in the following sections, where plots offer a clearer

presentation. The complementing tables can be found in the Appendix and

are referenced in the text.

5.1 Simulation 1: Damping behavior

The first simulation follows up on the most interesting question on how

the damping evolves with a growing number of particles and examines the

time between the first two impacts of the sphere on the fundament. Recall

that from this rebound time, the coefficient of restitution can be calculated.

This experiment used a drop height of h0 = 10 cm and friction parameters

fp = 0.05 and fs = 0.02 as well as the dimensions of the representative par-

ticle in Table 5.1. These settings were also used for the other simulations,

unless stated explicitly. The results of the experiment are shown in Figure

5.1 and, for reference, the numerical values can be found in Table A.1. As

expected, the damping effect of the particles grows with the number of the

particles. This is also the case in the physical experiment at Fraunhofer

IFAM Dresden [20]. The impact of the particles is already very pronounced

for relatively few particles, and continues to increase - though to a lesser

extent - as very high numbers of particles are reached. A similar behavior

has also been observed in particle damper experiments [28]. These devices
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Figure 5.1: Rebound time ∆T in the drop experiment for an increasing
number of particles

consisted of a particle filled enclosure attached to another body. The damp-

ing performance of the assembled system depended on the gap between the

particle heap at rest and the damper ceiling. The experiments showed that

as the number of particles increases and continue to fill up the cavity, the

impact of the particles is diminished. The resulting damper approached the

behavior of an unfilled, heavier damper with a mass that accounted for the

added particle mass, but where that system performed worse than a lighter,

more sparsely filled damper. It was suggested that this occurs because in

that case, the particles are not free to move inside the enclosure and are

not able to contribute a damping effect. Having established an effect of the

particle filling with this first experiment, it is now of interest to look closer

at the developed method.

5.2 Simulation 2: Time step size

This simulation was performed to test the stability measure developed in

the previous chapter. To improve the time required for the computations, a

larger time step could be used. To verify the integrity of the results, the time
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N ∆t=0.01 ∆t=0.05 ∆t=0.1
1 207.51 207.51 207.52

25 207.48 207.48 207.49
50 207.45 207.45 207.46

100 207.38 207.39 207.38
250 207.18 207.18 207.18
500 206.84 206.83 206.84
750 206.47 206.50 206.49

1000 206.14 206.13 206.15
1500 205.47 205.46 205.47
2000 204.77 204.74 204.76
2500 204.10 204.10 204.12
5000 200.72 200.78 200.78
7500 197.48 197.43 197.44

10000 194.08 194.12 194.13
12500 190.85 190.89 190.86
15000 187.63 187.61 187.54
17500 184.38 184.41 184.46
20000 181.29 181.34 181.29

Table 5.2: Rebound time (in ms) for various time steps

step was set as 0.01, 0.05 and 0.1 µs. For the friction parameters, fp = fs = 0
was used. As can be observed in Table 5.2, the results are comparable and

only offer minute differences that stem from the numerical noise. Thus,

the method scales very well with the step size and, more importantly, does

remain stable up to the calculated stability limit.

Another experiment on the impact of the variation of the time step with-

out friction was also conducted in Ref. [31]. The drop height was much

lower at h0 = 1.5 mm and a variety of time steps ranging from 0.01 to 5 µs

was used, well above the stability limit (which with this experimental setup

would be around 0.637 µs). Figure 5.2 shows that a too large time step will

lead to rebound time results that differ greatly from those obtained with

smaller time steps. However, more significantly, as soon as the time step is

small enough, the selection of an ever finer time discretization will not yield

significantly differing results. Also, note how a step size of 1 and 2 µs still

offers good results, indicating that the stability estimate is quite conserva-

tive and might be relaxed in the future. The numerical results can be found

in Table A.2.
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Figure 5.2: Rebound time for a variation of time steps in a drop experi-
ment with an increasing number of particles without friction

5.3 Simulation 3: Particle size

The next experiment observes the damping behavior when varying the par-

ticle dimensions. As mentioned before, in the manufacturing process, the

average diameter of the particles can be selected within a certain range.

Thus, a natural question is, which type of particle is best suited and should

be selected for the most pronounced damping effect. It could be suspected

that there will be a conflict of mass vs. number of particles. While smaller

particles may result in a higher number of interactions with the wall, their

mass is low. Thus, larger particles with a greater mass may yield a better

damping effect. In this next simulation, smaller and larger particles were

compared, with constant density and total filling mass and friction param-

eters fp = 0.1 and fs = 0.05. According to the real-world experiments,

smaller particles seem to offer a greater damping potential than larger par-

ticles [21]. However, as shown by this experiment, this is not the case for

all simulations. Surprisingly, the results in Figure 5.3 (and Table A.3) show

a fundamental change in the damping performance of the particles as the

total mass of the filling increases. For a very small filling mass, with fewer

particles, large particles yield a slightly better damping effect than small
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Figure 5.3: Rebound time for a variation of the total particle mass for
different particle diameters

particles. However, this behavior reverses itself as the mass is increased.

Thus, the ratio of total particle mass and hollow sphere mass plays an im-

portant role. For a greater number of particles, the smaller ones show a

clear advantage over the large particles and the difference in performance

is much more pronounced.

Another experiment with particles with a rod-like shape of varying length

(1, 2, 3 and 4 rigidly connected spheres of the same mass and diameter) was

conducted. Again, the total number of spheres - and thus, the total particle

mass - was kept constant, with a total of 12000, 24000 and 36000 spherical

particles for all shapes. The individual parts resembled the representative

particle and friction parameters were fp = 0.1 and fs = 0.02 throughout

the experiment. The results can be observed in Table 5.3. Similarly to the

previous simulation, there are some particles that perform worse than oth-

ers; in this experiment, the medium sized particles excel, while the smallest

particle performed worst.
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rod size ∆T in ms
1 particle 194.98 160.74 134.45
2 particles 164.65 135.00 116.73
3 particles 166.34 138.88 120.74
4 particles 169.05 142.11 121.89
total particles 12000 24000 36000

Table 5.3: Rebound time for varying particle lengths

5.4 Simulation 4: Impact of the friction

parameters

To later train the simulation model on the basis of real world experimental

data, the impact of the friction parameters was studied. Keeping the total

mass of the filling constant, the experiment was performed with larger or

smaller particles that have the same mass density. The experiment dou-

bled the particle volume in each simulation run. The specific diameters and

masses are stated in Table A.4. The ratio of particle mass and hollow sphere

mass was motivated by Fraunhofer IFAM Dresden data. For the first part of

the experiment, the parameter fs governing the sphere-particle interactions

remained constant and the particle-particle friction parameter fp was var-

ied. The results can be seen in Figure 5.4. In a second part, fs was varied

and fp was set as constant for the simulations in Figure 5.5. For reference,

all numerical values are listed in Table A.5.

The previous experiment suggested a better performance of the smaller

particles when the filling mass is as high as in this simulation. In line

with those observations, this friction experiment confirms that the smallest

particles offer the best performance, with a dramatic decrease in perfor-

mance when the diameter is increased. The friction experiment suggests

a greater influence of parameter fp, while variations of fs only bring about

small changes of the rebound time ∆T.
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5.5 Simulation 5: Particle shape

It is also of interest to conduct an experiment with variously shaped par-

ticles that have the same mass. For this purpose, the simulation was con-

ducted with particles that consisted of five spherical particles and assumed

the shape of “L”, “V”, “I”, “O” and “T”, cf. Figure 5.6 with fp = 0.1 and

fs = 0.02. Particle definitions are provided in the Appendix in Table A.6.

The experiment used up to a total of 12000 spherical parts, all similar to

the representative particle, and the observed rebound times are presented

in Table 5.4.

Figure 5.6: Different particle shapes: L, V, I, O and T (from left to right)

The results from these shape experiments seem to indicate that the shape

is not as important in determining the damping performance of the parti-

cles. However, one exception is the rod shaped "I" particle, that performs

worse across the board than the other, bulkier particles that concentrate

their mass in a more compact shape.

number of particles N
type 1000 2000 3000 4000 5000 6000

L 206.21 203.90 200.72 196.76 192.68 189.03
V 206.56 204.18 201.44 197.92 193.69 189.03
I 206.77 204.55 201.33 197.70 195.37 191.42
O 206.80 204.17 201.51 197.23 193.82 188.64
T 206.35 204.14 200.62 196.76 192.34 187.61

number of particles N
type 7000 8000 9000 10000 11000 12000

L 184.25 179.73 176.53 171.84 169.36 166.07
V 184.66 180.48 176.60 173.05 169.55 165.89
I 188.11 184.20 181.93 179.19 175.15 171.73
O 184.29 180.70 175.53 172.10 168.76 165.71
T 183.43 179.90 176.17 173.06 169.22 165.55

Table 5.4: Rebound time (in ms) for particles with different shapes and
constant mass
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5.6 Simulation 6: Mixed particle fillings

Another question is whether a homogeneous heap of particles performs bet-

ter with respect to the achieved damping than a mixed heap. For this pur-

pose, several simulations were conducted for a mixture of particles that

have different sizes. Because of the influx of heat during the sintering pro-

cess of the encasing sphere, parts of the powder inside will begin to melt

and combine to form larger particles. Expectedly, this results in a hetero-

geneous powder with larger and smaller particles. Thus, it is of interest to

provide the ability to simulate particle mixtures. For the simulation, four

different mixtures were used to compare the damping effect. Note that the

total mass of particles was kept constant during all experiments as well as

the mass density across the particle diameters. Table 5.5 lists the mixtures

that were used. The mixtures were prepared such that the same fraction

of mass was allocated to each particle type and the friction settings were

fp = 0.1 and fs = 0.02. The results obtained are given in Table 5.6.

It was established in Simulation 3, that the ratio of particle mass and

sphere mass determines what particle size performs best. In this mixture

experiment, that ratio assumes a value where the particle size does not

make a great difference on the damping performance. This is mirrored in

the results, where, as the mass increases, only Mix 3 with both larger parti-

cle types shows a disadvantage compared to the other mixtures. One could

suspect that this may get more pronounced as the mass increases even fur-

ther. However, a numerical simulation of much higher masses would require

improved packing strategies for the initial placement of the particles to fit

more particles in the sphere.

diameter in 10−1 mm
0.31 0.62 0.93

Mix 1 6000 750
Mix 2 6060 220
Mix 3 771 210
Mix 4 4004 500 148

Table 5.5: Composition of particle mixtures in the hollow sphere for the
experiment with a total mass of 0.369 mg
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rebound time in ms
Mix 1 205.73 203.49 199.57 191.71
Mix 2 205.55 203.48 197.60 189.91
Mix 3 205.03 202.33 198.33 195.57
Mix 4 205.69 203.76 198.28 189.65

mass in mg 0.123 0.246 0.369 0.492

Table 5.6: Rebound time for particle mixtures

5.7 Simulation 7: Vibration of the sphere

When the lightweight material is deployed in the real world, the hollow

spheres are subjected to vibration. To mirror this in the numerical experi-

ment, the sphere was modeled to accommodate this by a deformable hull.

For the following simulation, the pulsing radius vibration was used with an

amplitude of 0.1 µm, with frequencies that may occur in industrial CNC ma-

chines, i.e. 6000, 12000, 18000 and 24000 revolutions per minute, or 100,

200, 300 and 400 Hz, while the friction parameters were with fp = 0.1 and

fs = 0.02. Observing the results in Figure 5.7, adding vibration does not

change the overall trend that the damping effect increases as the particle

number rises. Because the movement of the sphere results in more interac-

tions, a higher frequency actually improved the impact times slightly (also

see Table A.7).
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Figure 5.7: Rebound time for the numerical vibration experiment
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Overall, the performed numerical experiments agree with the assessment

of Fraunhofer IFAM Dresden, that smaller particles offer a greater poten-

tial for damping than larger particles. Additionally, the numerical simula-

tions suggest that the optimal size depends on the ratio of sphere mass and

particle mass. Concerning the shape of the particles, more compact parti-

cles that concentrate their mass in a smaller volume performed better. The

friction parameters introduced offer flexibility in training the model to real-

world data. With the capability to depict complex particles in all shapes and

sizes, the simulation is well prepared to cover a wide variety of experiments.
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Chapter 6

Outlook: Future developments

of the model

The simulation of a single hollow sphere leads to the natural question of

how to simulate the more complex and complete model of the lightweight

material that makes use of these sphere dampers.

The first problem that arises in that broader model is how to couple the

spheres. Recall that the spheres in the material can be bonded using dif-

ferent techniques, i.e., a soldered or glued bond. The underlying coupling

model needs to be flexible enough to accommodate both stiff and more flex-

ible bonds. A natural choice would be to use a coupled spring-dashpot sys-

tem for representing the bonds between two spheres, cf. Fig. 6.1. The

spring and dashpot can be adjusted to represent a multitude of materials by

modifying the spring parameter k and the damper coefficient c. Note that

these parameters are unrelated to the damping parameters in the previous

chapter where potentials were used. Repeating the drop experiment with

such a bond requires a new model for the forces acting on the spheres.

Definition 6.1 (Spring-dashpot bond model). A spring-dashpot model of a

bond with bonding gap length w of two spheres and with parameters k and

c is modeled by the system

F1 = −m1g + k(x1 − x2 − w)− c(ẋ2 − ẋ1) (6.1)

F2 = −m2g− k(x1 − x2 − w) + c(ẋ2 − ẋ1),

where g is the standard gravity, and with initial conditions

x1 = h0, x2 = h0 + w

ẋ1 = 0, ẋ2 = 0.
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Figure 6.1: Two spheres with a spring-dashpot bond

The damper resists motion via friction while the spring restricts the dis-

placement of the bond during the simulation. Apart from this adjustment of

the forces acting on the bonded spheres, the basic task of solving the New-

tonian equations of motion for the drop experiment remains unchanged. For

the reflection on the fundament, either the discrete or continuous potential

based approach could be used. Here, the discrete collisions could be more

desirable, as one could assume that the correct coefficient of restitution for

a filled sphere has been discovered in a prior, more detailed simulation run.

The impact however, marks a drastic change in the velocity direction and

thus a singularity in the model equation that needs to be dealt with, e.g.,

by setting the second derivative to zero. During an ECMI modeling week

in Paderborn, a student group was tasked with the implementation of this

model in MATLAB, cf. [9]. The model (6.1) along with a discrete funda-

ment reflection was used to simulate the drop experiment of two spheres

arranged in such a way that one sphere sits on top of the other and the

spheres are dropped together with a spring-dashpot bond. The results of

the simulation are shown in Fig. 6.2.

The graphs of the spheres’ position above the fundament show the influ-

ence of the bond, the distance of the spheres oscillating around the equi-

librium w. This basic model is a promising choice to examine the bonding

of several particle-filled spheres while omitting the need to simulate the

particle behavior in complete detail.

The spring-dashpot model only allows for one degree of freedom; moving

to a three-dimensional simulation, tangential spring-dashpot connections on

each displacement axis have to be added at each bond to allow movement in

all directions, creating a set of three spring-dashpot pairs for every sphere-

to-sphere contact. Naturally, the total number of bonds for each sphere

depends on the number of neighboring spheres, which are added as addi-

tional terms in eq. (6.1). The parameters k and c can be used to model

different bonds, controlling the stiffness of the matrix material.

Due to the complexity of the simulation, a complete, fully detailed nu-

merical computation of the material seems out of the question for now.
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Figure 6.2: Simulation results of the drop experiment with two bonded
spheres

Therefore, it would be plausible to move away from the detailed model to

a broader perspective. Instead of simulating each sphere with the parti-

cles individually, the composite material with many embedded spheres is

modeled, but still taking into account the effect of the particles.

To that end, the characteristic damping behavior of a filled hollow sphere

could be approximated by a different mathematical model, e.g., by introduc-

ing a self-damping term in the sphere’s force term

F1 = −m1g + k(x1 − x2 − w)− c(ẋ2 − ẋ1) + P(ẋ1(t)) (6.2)

F2 = −m2g− k(x1 − x2 − w) + c(ẋ2 − ẋ1) + P(ẋ2(t)).

In this model, the damping term P is inversely proportional to the particle’s

velocity vi(t) = ẋi(t)

P(vi(t)) =

αvi(t), if vi(t) < ν

d
vi(t)

, if vi(t) ≥ ν,

where α and d are constants and a small tolerance ν > 0. These parameters

need to be trained to mimic the effect of the particles in the hollow sphere.

The results of such a simulation with α = 0.2, d = 0.55 and ν = 0.1 are
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Figure 6.3: Simulation results of the drop experiment of two bonded
spheres with an additional self-damping term

shown in Fig. 6.3. Compared to the first model, the damping effect is more

pronounced, significantly so in the first rebound. This model may offer a

decent approximation when several thousand spheres are bonded together

in an enclosure, with the model parameters fitted to resemble the behavior

of a filled sphere simulated in detail in a previous step.
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Chapter 7

Conclusion

It was shown that to derive the coefficient of restitution of a particle filled

hollow sphere, a drop experiment can be used. The time between bounces

on the fundament serves as a measure for that coefficient. In this thesis,

a method to numerically model and simulate the physical experiment was

developed. The approach used is based on the molecular dynamics method

which is able to simulate large particle numbers. The suggested method

inherits the second-order accuracy of that approach. For the model of the

particles, pseudo-friction was implemented as well as a moving, deformable

simulation volume with a coherent potential-based approach for all interac-

tions. With this framework, it is now possible to simulate and test a large

number of particles inside a hollow sphere within a moderate amount of

computing time. Different particle shapes and sizes can be included in the

simulation, and the interaction potential can easily be modified or replaced

to suit the need of the simulation, e.g., to simulate different materials. The

simulation was initially developed and tested using a straightforward im-

plementation with a double loop for the interaction checks. However, the

quadratic nature of that algorithm makes the computation time of larger

systems impractical. The linked cell method on the other hand showed a

superior performance compared to the straightforward implementation and

is an obvious choice for the considered scenario that uses up to around

105 particles. For this purpose, a flexible memory structure using pointers

was implemented for the linked cell approach. Organizing the particles this

way, the simulation is able to deal with the agglomeration effects that occur

because of the gravity acting on the system as well as the changing distri-

bution of the particles inside the volume of the sphere as the experiment

commences.

For the first time, the method developed here is able to fulfill the require-
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ments of the simulation of the considered scenario. Notably, a range of

valid step sizes was identified to satisfy the requirement of numerical sta-

bility and energy conservation. While the straightforward approach is too

slow for a large number of particles, it still has its uses in parameter train-

ing as it returns results quickly for smaller systems containing just a few

particles. The numerical experiments support the findings of the physical

experiments, with a clear damping visible as the number of particles grows.

However, due to the heterogeneity of the physical particle mix, containing

a myriad of different shapes and sizes, results remain a coarse approxima-

tion of the real world experiment. Upon closer inspection, Fraunhofer IFAM

Dresden suspects the particle number to reach many millions and even up

to a billion, with the material breaking up during the experiment, with most

particles extremely small. Simulating such a system in very fine detail re-

mains a task for future computers.

Future developments

The method and software developed in this work provides a versatile and

powerful tool for conducting the drop experiment numerically. To simulate

the lightweight material on a larger scale, many particle-filled spheres could

be simulated together, e.g. using bonds as discussed in chapter 6. To com-

prehensibly simulate the composite material, thousands of spheres could

be coupled running in parallel on a large computer system. Challenges that

arise there include proper coupling of several spheres with each other and

with other structures in the material, and with that a greater flexibility in

deformation of the reflective layer. The coupling will have to be versatile to

allow for the different manufacturing models used, such as glue, solder or

the embedding in a resin matrix.

A possibility for that would be to revisit the phantom particle boundary

discussed in chapter 3 to build arbitrary walls and thus differently shaped

enclosures. The phantom particles would need to use some kind of exponen-

tial barrier potential to prevent hull breaches when particles accumulate

near the reflective layer.

Additionally, moving away from the detailed simulation, it would be de-

sirable to derive meta-models that approximate the damping effect caused

by the particles, as discussed in the previous chapter. These would be able

to help in the design and engineering process for new applications of the

lightweight material on a broader scale.

84



Another challenge that remains is the analysis of new friction models.

While there are highly detailed contact models available, they are not really

applicable for large systems on today’s computer hardware. If the compu-

tation of a single sophisticated interaction takes a few seconds or even min-

utes, a simulation with thousands of simultaneous contacts in each iteration

will not finish in any reasonable timeframe. Thus, the potential based ap-

proach is very useful to model interactions of bodies. The present software

has been built to allow for a quick exchange of the interaction potentials, so

experiments can quickly be modeled in a completely different manner when

another friction approach is to be studied.

In industrial applications, an optimization is always desirable. In the fu-

ture, the framework presented here could be expanded by a coupled opti-

mization to identify the most relevant design parameters in the lightweight

material. These parameters will have to follow the requirements regarding

solvent and temperature resistance and many others, so that a close co-

operation with mechanical engineers is paramount for the success of such

optimization efforts.

The linked cell algorithm presented here could potentially see some im-

provements in the workload caused by its structure. As many cells are

empty periodically, it should be possible to only save the cells that have

particles inside which would decrease the memory footprint. However, bal-

ancing performance with management overhead will always play a role with

these kind of simulations.

Another improvement that can be made is deploying sophisticated pack-

ing strategies for a more efficient initial configuration of the particles in-

side the sphere. This is especially important for more complex particles or

when dealing with mixtures. Since the current configuration builds upon

the largest cut-off radius of any particle present in the simulation, a higher

number of particles could be fitted inside the hollow sphere when smaller

particles are packed more efficiently.

Ultimately, discrete element simulations have always come down to raw

computing power. They have been highly dependent on the advances in

computing technology. Only with today’s computing power of supercom-

puters, is it possible to arrive at the threshold to real practical simulations.

Some of the fastest machines can now simulate a tiny but macroscopic drop

of liquid. It will be interesting to see the development that this field will

take in the future.
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Appendix A

Additional simulation data

This appendix complements the results obtained in Chapter 5.

Simulation 1: Damping behavior

N ∆T in ms N ∆T in ms
10000 198.40 80000 96.20
20000 184.44 90000 86.84
30000 166.91 100000 78.70
40000 148.97 110000 71.65
50000 132.98 120000 65.53
60000 118.95 130000 60.44
70000 106.83

Table A.1: Rebound time for an increasing number of particles

Simulation 2: Time step

N ∆t = 0.01 µs ∆t = 0.05 µs ∆t = 0.1 µs ∆t = 1 µs ∆t = 2 µs ∆t = 5 µs
50 34.58 34.56 34.69 34.69 34.69 32.03

100 34.54 34.56 34.41 32.04 29.36 32.02
250 34.56 34.56 34.71 34.66 34.70 32.01
500 34.55 34.57 34.65 34.66 34.68 45.25
750 34.53 34.47 34.37 34.54 34.67 31.95

1000 34.47 34.52 34.57 34.56 34.58 31.98
1500 34.42 34.36 34.47 34.52 34.45 31.88
2000 34.38 34.40 34.16 34.62 34.35 -
2500 34.25 34.26 34.44 34.46 34.46 44.88
5000 34.16 34.10 34.10 34.35 34.50 31.58
7500 34.07 34.05 34.15 34.33 34.23 -

10000 33.61 33.58 33.43 34.02 33.68 -
12500 33.12 33.11 33.07 32.92 32.59 -
15000 32.67 32.70 32.74 32.41 33.05 -
17500 32.17 32.10 32.07 31.97 32.25 -
20000 31.74 31.74 31.73 31.62 31.78 -

Table A.2: Rebound time (in ms) for varying time steps for the drop ex-
periment from height hd = 1.5 mm
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Simulation 3: Particle size

mass in mg σ = 0.31 · 10−4 m σ = 0.62 · 10−4 m σ = 0.93 · 10−4 m
0.123 205.64 205.91 205.30
0.246 202.62 202.23 201.66
0.369 200.52 198.15 197.42
0.492 194.81 194.64 193.11
0.615 186.10 190.75 188.80
0.738 176.99 186.44 184.35
0.861 168.28 180.37 179.98
0.984 160.46 175.58 175.37
1.107 153.16 169.84 170.59

Table A.3: Rebound time (in ms) for varying particle diameters and par-
ticle mass

Simulation 4: Impact of the friction parameters

σ in 10−4 m N mass in 10−5 mg
0.317 102326 4.404
0.400 51163 8.808
0.504 25575 17.620
0.635 12791 35.230
0.800 6395 70.464
1.008 3216 140.100
1.270 1598 281.900
1.600 799 563.700
2.016 399 1127.400

Table A.4: Number of particles, diameter and mass for the friction ex-
periment

σ in 10−4 m P=.05,k=.02 P=.1,k=.02 P=.15,k=.02 P=.1,k=.01 P=.1, k=.05 P=.1,k=.1
0.317 72.29 56.72 46.49 56.74 56.68 56.57

0.4 77.26 62.66 52.71 62.70 62.55 62.41
0.504 81.97 68.18 58.87 68.25 68.12 67.90
0.635 86.11 73.13 64.63 73.26 73.07 72.70

0.8 89.56 77.64 69.54 77.72 77.34 76.97
1.008 91.91 80.98 73.15 81.01 80.59 79.86

1.27 93.96 84.17 76.88 84.31 83.45 82.56
1.6 95.29 86.69 80.08 86.95 85.92 84.62

2.016 95.13 88.39 82.59 88.69 87.69 86.39

Table A.5: Rebound time (in ms) for varying friction parameters
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Simulation 5: Particle shape

type body-fixed coordinates (in 10−4 m)
L (0,0,0), (0,0.2,0), (0,0.4,0), (0.2,0,0), (0.4,0,0)
V (0,0,0), (0.2,0,0), (0.4,0,0), (0.1414,0.1414,0), (0.2828,0.2828,0)
I (0,0,0), (0,0.2,0), (0,0.4,0), (0,0.6,0), (0,0.8,0)
O (0,0,0), (± 0.1414,± 0.1414,0)
T (0,0,0), (0,0.2,0), (0,0.4,0), (0,0.2,0.2), (0,0.2,0.4)

Table A.6: Definition of particle types composed of five spheres

Simulation 6: Vibration of the sphere

frequency in Hz
N 0 100 200 300 400

10000 199.19 199.46 198.36 197.94 197.82
20000 171.43 171.92 170.64 170.52 170.42
30000 146.44 146.81 146.01 145.63 145.69
40000 127.13 127.43 126.63 126.56 126.40
50000 111.50 111.60 111.16 111.03 110.97
60000 98.43 98.59 98.23 98.14 98.14
70000 87.38 87.52 87.30 87.21 87.24
80000 77.91 78.05 77.68 77.76 77.70
90000 69.57 69.70 69.48 69.48 69.48

100000 62.31 62.43 62.21 62.23 62.27
110000 56.02 56.14 55.96 56.00 55.95
120000 50.68 50.77 50.63 50.64 50.61
130000 46.22 46.28 46.14 46.13 46.12

Table A.7: Rebound time (in ms) for varying vibration
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