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“Make things as simple as possible, but not simpler.”

(attributed to) Albert Einstein





Abstract

Modern embedded systems are a type of special-purpose computer systems. They are

widely used in industry and are becoming increasingly complicated due to the advances

in electronic techniques. Design errors in software account for a large percentage of the

computer system failures. In this thesis, we concern ourselves with online checking the

correctness of the control software applied to such kind of embedded systems that are

identified as safety-critical, whose failure or malfunction may cause severe damages.

The existing validation and verification techniques can not completely ensure that the

embedded software does behave as desired after it is released or deployed. Against

this background, we present an online model checking mechanism aimed to ensure the

correctness of the actual execution trace, instead of the universal correctness, of the em-

bedded software system. Notice that we don’t mean to propose a faster model checking

algorithm. The basic idea is to check during system execution a sequence of bounded

models that cover the actual execution trace of the software system under investigation.

Errors detected in the bounded models may indicate potential errors in the source code

of the target system. The bounded models are derived from the behavioral model of the

target system using the actual state information monitored periodically during system

execution. The online model checking problem is reduced to online reachability analysis,

which tries to look ahead finitely many steps on the model level. The properties to be

checked are specified in linear temporal logic. Because the checking process is done on

the model level, both safety and liveness properties can be handled during runtime.

By doing model checking online, we are able to reach those states that locate arbitrarily

deep in the state space and to predict potential errors even if the checking process falls

behind the execution of the target system. The state space explosion problem can thus

be avoided to some degree because the models to be checked are always bounded ones.

However, doing model checking online has to suffer from the limited execution time allo-

cated to each checking cycle. To deal with this problem, we speed up online reachability

analysis by reducing workload and adopting the symbolic state-based search algorithm

as well as using parallel computing. We present a general framework for integration of

online model checking with a real-time operating system, which can be implemented on

different hardware architectures from single-core, or multi-core to multiprocessor. The

RA component of the TCAS software is taken as case study to demonstrate the appli-

cability of our online model checking method. In addition, we extend the application of

the online model checking mechanism to hybrid systems.





Zusammenfassung

Moderne eingebettete Systeme sind spezielle Computersysteme. Sie sind in der Indus-

trie weit verbreitet und als Ergebnis der Fortschritte der Halbleitertechnologie immer

komplexer geworden. Designfehler in Software machen einen großen Prozentsatz der

Fehler in Computersystemen aus. In dieser Arbeit befassen wir uns mit der Online

Überprüfung der Korrektheit von Kontrollsoftware in eingebetteten Systemen, die als

sicherheitskritische identifiziert sind.

Die vorhandenen Validierungs- und Verifikationstechniken können nicht vollständig sich-

erstellen, dass sich die eingebettete Software wirklich wie gewünscht verhält, nachdem

sie freigegeben oder eingesetzt wurde. Vor diesem Hintergrund stellen wir einen Online

Model Checking Mechanismus vor, um die Korrektheit eines aktuellen Ausführungs-

pfades, anstatt die gesamte Korrektheit der eingebetteten Software, sicherzustellen.

Es ist dabei nicht das Ziel, einen schnelleren Model Checking Algorithmus vorzule-

gen. Die Grundidee des Ansatzes ist es, eine Folge von partiellen Modellen, die den

aktuellen Ausführungspfad der zu überprüfenden Software überdecken, während der

Systemausführung zu überprüfen. Die Fehler, die in den partiellen Modellen erkannt

werden, können mögliche Fehler im Quellcode des zu überprüfenden Systems anzeigen.

Die partiellen Modelle entstehen aus dem Verhaltensmodell des zu überprüfenden Sys-

tems mittels der aktuellen Zustandsinformation, die während der Laufzeit periodisch

aufgenommen wird. Das Online Model Checking Problem reduziert sich zu Online Er-

reichbarkeitsanalyse, wobei in jedem Überprüfungszyklus nur endlich viele Schritte auf

der Modellebene verfolgt werden. Die zu überprüfenden Eigenschaften sind Formeln in

Linearer Temporaler Logik. Sowohl Sicherheits- wie auch Lebendigkeitsüberprüfungen

lassen sich dabei auf Erreichbarkeitsanalyse während der Laufzeit zurückführen.

Mittels Online Model Checking sind wir in der Lage, die Zustände, die sich beliebig

tief in dem Zustandsraum befinden, zu erreichen. Dazu können wir auch potenzielle

Fehler vorhersagen, selbst wenn der Checking Prozess hinter der Ausführung des zu

überprüfenden Systems zurückfällt. Das Problem der Zustandsraumexplosion kann zu

einem gewissen Grad vermieden werden, da Online Model Checking eine vereinfachte

Form von Bounded Model Checking mit geleitenden initialen Zuständen ist, welches

zur Laufzeit angewandt wird. Andererseits leidet Online Model Checking unter der

beschränkten Ausführungsfrist, die für jeden Überprüfungszyklus festgelegt wird. Um

dieses Problem zu lösen, beschleunigen wir die Online-Erreichbarkeitsanalyse durch

gezielte Verringerung der Arbeitsbelastung und die Verwendung eines symbolischen zu-

standsbasierten Suchalgorithmus sowie mittels Parallel Computing. Wir präsentieren

einen allgemeinen Rahmen für die Integration von Online Model Checking in ein Echtzeit-

betriebssystem. Dieser Ansatz kann auf unterschiedlichen Hardware-Architekturen, von

Single-Core- oder Multi-Core- bis hin zu Multiprozessor-Architekturen, implementiert

werden. Die RA-Komponente der TCAS Software dient als Fallstudie, um die Anwend-

barkeit unserer Online Model Checking Methode zu demonstrieren. Darüber hinaus

erweitern wir die Anwendung des Online Model Checking auf Hybridsysteme.
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Chapter 1

Introduction

Nowadays embedded systems are playing an increasingly important role in our daily life.

Embedded systems are computer systems integrated into technical products, such as

flight control, automotive drive-by-wire, nuclear reactor management, and others. The

advances in electronic techniques enable the hardware of embedded systems to run highly

sophisticated software. Therefore, more functionality can be implemented in software.

E.g., modern cars usually have 20 to 70 electronic control units (ECUs) with millions of

lines of code [1]. More specifically, the engine control unit, the most powerful ECU on

most cars, executes concurrently up to 100 (software) tasks [2].

Autonomous and Autonomic Systems

By observing the evolution of cars in the past several decades, we are able to envision

that the development trends for embedded systems are moving from automated towards

autonomous and autonomic systems. E.g., driverless cars are capable of sensing the

environment and navigating without human intervention. In 2012, Google cofounder

Sergey Brin said that Google will have autonomous cars available for the general public

within five years [3]. Amazon is now exploring the use of drones, a kind of unmanned

aerial vehicle (UAV), for its package delivery service [4].

It follows that new software technology tends to add autonomy to modern embedded

systems so that they are able to operate on their own with little or even no directions from

humans [5]. Autonomous and autonomic are the two aspects of autonomy: autonomous

indicates self-directed to make the system fulfill some goal(s) independently, whereas

autonomic implies self-managing to keep the system robust against adversarial impacts,

no matter what happens in the environment.

1
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In academia, more attention is paid to autonomic computing [6], which aims to make

embedded systems capable of managing themselves in response to changes in the sys-

tem objectives or in the environment by means of self-configuration, self-optimization,

self-healing and self-protection. E.g., the RoSES project [7] proposes a general ap-

proach to building robust distributed embedded systems capable of configuring them-

selves by adding or removing components in the field rather than in the factory. The

project of Collaborative Research Centre (CRC) 614 “Self-Optimizing Concepts and

Structures in Mechanical Engineering” [8] presents a design methodology for tomor-

row’s self-optimizing electro-mechanical systems whose behaviors are characterized by

the communication and cooperation between the components with inherent “intelli-

gence”. Here the self-optimization is implemented by means of changing the parameters

or the structure of the system components. In addition, an organic programming ap-

proach [9] is presented for cyber-physical systems capable of self-adapting to changing

environments.

Safety Problems

Many embedded systems are safety-critical and long-lived systems. For safety-critical

systems, failures may cause high costs and even endanger human lives. In general, a (dis-

tributed) computer system may fail due to external and/or internal reasons [2]. External

reasons are related to the system specification itself or to the operational environment,

e.g., mechanical stress, wrong input, temperature, and so on. The main internal reasons

for failure may be: (i) random physical faults in hardware; (ii) design faults in hardware

and/or software; or (iii) communication failures in a distributed environment.

According to [2], “Field data on the observed reliability of many large computer systems

indicates that a significant and increasing number of computer system failures are caused

by design errors in the software and not by physical faults of the hardware.”

Software errors are caused usually by the unmanaged complexity of the system design.

The increasing complexity of the embedded software makes subtle errors extremely dif-

ficult to figure out or to reproduce in a laboratory environment. Although safety-critical

systems are usually designed to be fault-tolerant, experience shows that software errors

are still unavoidable.

We have to mention this widely known accident. On June 4, 1996 the Ariane 5 launcher

went into self-destruction mode 37 seconds after liftoff. The failure was caused by a soft-

ware error in the inertial reference system: a 64 bit floating point number (representing

the horizontal velocity) was converted to a 16 bit signed integer. Consequently, the con-

version failed and the guidance and altitude information was lost. Indeed the program
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was the same as the one that had worked perfectly in Ariane 4, while the continuous

dynamical systems around the software had changed. In the new physical environment,

the trusted code unfortunately led to a catastrophe [10].

In 2005 a Boeing 777-120 aircraft experienced an in-flight upset event due to a software

design error [11]. According to the investigation conducted by the Australian Transport

Safety Bureau, the problem stemmed from an error in the ADIRU1 software. The error

had existed in previous releases of the ADIRU software, but had been masked by other

code. The error was eventually exposed by a series of events that was unlikely to have

been revealed in the testing and certification process for the unit [12]. Due to the software

error, the fault-tolerant software used the erroneous data to make wrong decision.

David Cummings described also a case study they encountered in checking the flight

software for NASA’s Mars Pathfinder spacecraft [13]. A simple test which should produce

an even result (2, 4, 6, and so on) was inserted into the software. They observed just

once that the check had failed. They were “never able to reproduce the failure, despite

repeated attempts over many thousands if not millions of iterations.”

Another case study is about Toyota’s unintended acceleration problem [14]. Nowadays

cars’ throttles are mostly electronic instead of mechanical. Between the sensor under the

gas pedal and the actuator in the fuel injector many things are likely to go wrong in a

“drive-by-wire” system. It’s been reported since 2009 that Toyota Corollas can accelerate

unexpectedly at low speeds. A careful examination of the car’s software (i.e., firmware)

indicated that it could have failed in the way described in the case, not necessarily that

it did fail [15]. Toyota’s engine-control code contains more than 11,000 global variables.

The program structure is very complex. Various studies over the years determined that

functions with a cyclomatic complexity2 of greater than 10 have a higher risk of defects

[16]. Many functions in Toyota’s code have a cyclomatic complexity of higher than 50. In

particular, the cyclomatic complexity of throttle-angle sensor function is more than 100.

It is really difficult to check and ensure the correctness of such a complicated software.

Needless to say, it is quite important to ensure the correctness of embedded software.

Unfortunately, no existing verification and validation techniques can completely ensure

that a software system does behave as desired after it is released or deployed.

Existing Solutions: Testing, Model Checking, and Online Monitoring

For industrial designs testing is the mainstream solution to the safety problem of modern

embedded software. Software testing [17] tries to find defects by executing a program

1An acronym for Air Data Inertial Reference Unit.
2An integer-based metric used to measure the complexity of a program by counting the number of

linearly independent paths through the program.
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to see whether the required results are met or not. There is no way to completely test

a program of a moderate complexity. For untested inputs, undiscovered errors in deep

corners may show up during system execution. Even if an error is found by testing, it

is usually difficult to figure out the reason(s) for the error.

Different model checking techniques [18] play a supporting role in ensuring the safety of

large complex systems. Model checking needs to explore exhaustively the state space

of the behavioral model of the software system under investigation within reasonable

time and memory consumption. The complexity of autonomous and autonomic systems

exacerbates the state space explosion problem. Even the reachability problem can not

be solved completely when the state space is too large.

To challenge the state space explosion problem, many effective methods have been pro-

posed in the literature: partial order reduction [19], compositional reasoning [20], ab-

straction interpretation [21], bounded model checking [22], to name just a few. Partial

order reduction exploits the commutativity of the executed transitions in asynchronous

systems, which results in the same states when executed in different orders, to reduce the

state space that needs to be searched. Compositional verification is a divide-and-conquer

approach to mitigating the state space explosion in concurrent systems. Assumptions

on the environment are needed to guarantee the correctness of the individual compo-

nents. It is usually a non-trivial task to find the right assumptions and to check the

refinement of the environment against the assumptions. Abstraction is usually used in

the Counterexample Guided Abstraction Refinement (CEGAR) paradigm [23], where

the abstraction of the behavioral model is refined iteratively until either a definite result

is obtained or the refined model becomes intractable. Bounded Model Checking (BMC)

tries to search for an error path of length up to some finite bound from initial states.

Theoretically, there does exist a completeness threshold [24] for the bound, but it is

usually too large to perform BMC up to this threshold in practice.

Without doubt these improvements do make model checking applicable to more complex

systems, but at the cost of making the checking process more complicated and thus error-

prone, because the correctness of the checking program itself is difficult to be verified

exhaustively.

Note that the above mentioned checking techniques and the like are traditionally applied

during the software development phase before the software system is deployed in the field.

In this sense, they belong to the offline verification category.

Of course, there exist also other offline checking techniques, such as theorem proving,

static analysis, simulation, and the like. All these offline checking methods fail to ensure

definitely the correctness of large complex systems during the system development phase.
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Therefore, different online monitoring techniques (see Section 3) come into play. The

concept of online monitoring dates back to the assembly language era. Online monitoring

has been used in program debugging, profiling, optimization, and so on. Nowadays online

monitoring is applied to checking for the correctness of the actual execution trace of the

(software) system under observation. In this sense, it is also called runtime verification.

The basic idea of online monitoring is to observe the state information while the target

system is running, and then analyze based on the collected data whether the target

system behaves normally with respect to the given properties. In practice, the analysis

can be carried out on the spot or at some time later. The granularity of observation may

have a large impact on online monitoring. If it is too coarse, important information may

be missed; if it is too fine, the monitoring overhead will be too high. On the other hand,

the properties to be checked are usually derived from the system requirements, whereas

the execution trace to be monitored is at the code (i.e., implementation) level. The

semantic gap between the properties and the execution trace makes it usually difficult

to connect correctly the low level events (i.e., state information) with the corresponding

high level elements in the properties.

Our Solution: Online Model Checking

Given the source code and the (behavioral) model of the software program as well as the

properties to be checked, obviously, the semantic gap between the properties and the

behavioral model is more narrow than the semantic gap between the properties and the

source code of the target program. The behavioral model describes the system behaviors

at a higher level of abstraction. It may be generated based on the system requirements

or extracted from the source code of the target system. Anyway, it is relatively easier to

establish the semantic relationship between the source code and the behavioral model

of the target system, i.e., the mapping function from the low-level concrete states to the

high-level abstract states, as well as the semantic relationship between the behavioral

model and the properties to be checked. In other words, the behavioral model can bridge

the semantic gap between the source code and the properties to be checked.

To a fairly large degree, the correctness of the behavioral model can reflect the correctness

of the (source code) implementation of the target system. Because many implementation

details are abstracted away, the behavioral model is usually much simpler than the source

code. However, for large complex systems, such as autonomous and autonomic systems,

the behavioral model is still too complex to be explored exhaustively by offline checking

techniques.
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Against this background, we present the concept of online model checking, which is

the contribution of this thesis. Online model checking can be seen as an extension

of online monitoring. Like online monitoring, online model checking also observes the

state information of the target system at runtime and then checks the correctness of

the current execution trace against the given properties. Unlike online monitoring,

online model checking does not try to figure out potential errors from the collected data.

Instead, it tries to identify a partial model of the target program based on the observed

state information and then to search for errors in the obtained partial model. Errors

found in the partial model may indicate potential errors in the current execution trace or

even predict errors that may happen in the near future. The counterexample produced

by means of online model checking can be used to discover the root cause of the errors.

Considering that model checking is usually a time consuming process, it seems to be an

“impossible mission” to do model checking online while the target system is running.

This thesis tries to give a possible solution following the principle of making things “as

simple as possible, but not simpler”3. On the one hand, compared with (offline) model

checking, online model checking is obviously simple; on the other hand, compared with

online monitoring, online model checking is not that much simpler.

It is worth mentioning that online model checking is a complementary technique to the

existing solutions. It is originally proposed to be used during runtime after the target

program is deployed so as to provide an additional defense mechanism against potential

design errors in the program. Of course, it can also be used as an aid in software testing

to improve the test coverage, but this topic is outside the scope of this thesis.

Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 explains the basic concepts

and techniques used in the thesis to make the thesis self-contained; Chapter 3 details the

online monitoring techniques presented in the literature and discusses the differences and

similarities between online monitoring and online model checking; Chapter 4 presents

our online model checking mechanism as well as different speed-up techniques to improve

the performance of online model checking; Chapter 5 proposes a lightweight method to

decide the monitoring points in the target program; Chapter 6 integrates online model

checking with an RTOS as a verification service and analyzes the monitoring overhead

as well as the communication overhead; Chapter 7 provides a case study to demonstrate

the applicability of online model checking; Chapter 8 extends the application of online

model checking to hybrid systems; finally, we draw conclusions and point out possible

future research directions in Chapter 9.

3attributed to Albert Einstein.



Chapter 2

Preliminaries

To make the thesis self-explanatory, the following sections provide the definitions of the

terms used throughout this thesis.

2.1 Fault, Error and Failure

There are no unique and commonly accepted precise definitions of the concepts fault,

error and failure in the literature related to dependable computing. Here we adopt the

definitions of fault, error and failure proposed by Avizienis et al. in [25].

A failure indicates that some externally observable state of a system deviates from the

intended one, provided that there is output from the system; otherwise, there is no

failure, even if something does go wrong inside the system. That is, a failure refers to

some misbehavior of the system that can be observed by the user, be it a human user

or another computer system.

In contrast, an error indicates that some internal state of the system deviates from the

desired one, i.e., something goes wrong inside the system. Error(s) may or may not

result in failure(s).

A fault is “the adjudged or hypothesized cause of an error”, which can be internal or

external relative to the system under investigation.

Let’s take an example presented in [26] to further clarify the terms fault, error, and failure

at the software level. Given a system with the fault of missing the free statement in its

program, whenever the piece of code that should free memory is executed, the program

enters an error state: memory is allocated but never released. As long as the consumed

7
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memory keeps below a certain threshold, there is no failure observable from outside.

However, once the memory limits of the system are approached, a failure is observed.

2.2 Behavioral Model

The behaviors of a computer system can be modeled at various levels, e.g., at four levels

from low to high: the physical level, the digital logic level, the information level and

the external level [27]. In this thesis our interest is in the behaviors of a computer

system at the information level, i.e., software system. We’d like to detect errors in a

software system by doing model checking online while the software system is running.

For this purpose, we need to specify formally a behavioral model in terms of states and

transitions so as to reflect the computations of the software system at some abstraction

level and/or from some perspective.

While a software system is running, the values of the variables of the software system will

be updated over time. A state captures the values of the system variables at a particular

instant of time. Given a state, the values of the system variables can be changed by

executing an action, which results in an evolution of the system from the current state

to a next state. Such a pair of states (before and after the action is executed) indicates a

transition of the software system. A run of the system can thus be defined as a sequence

of (possibly infinite) states connected by transitions.

Let V = {v1 : D1, v2 : D2, · · · , vn : Dn} be the set of the system variables v1, v2, · · · , vn
ranging over the finite domains D1, D2, · · · , Dn respectively. A state is just a valuation

s : V → {D1, D2, · · · , Dn} for the variables in V . Given a valuation (i.e., a state)

〈v1 = d1, v2 = d2, · · · , vn = dn〉 with vi ∈ V and di ∈ Di for i = 1, 2, · · · , n. We can use

the formula (v1 = d1)∧(v2 = d2)∧· · ·∧(vn = dn) to represent it, where each proposition

vi = di is regarded as an atomic, basic element. Generally, atomic propositions have the

form vi = di. An atomic proposition vi = di is true in a state s if s(vi) = di. It is easy

to see that each state indicates a set of atomic propositions true in this state. On the

other hand, there may be more than one state in which the atomic proposition vi = di

holds. Hence, a formula can be interpreted as a set of all such states that make it true.

Similarly, a transition (s, s′) is a valuation of variables in the current state s and in the

next state s′. To distinguish the variables in the current state from the ones in the next

state, we rename the variables in the next state as V ′ = {v′1 : D1, v
′
2 : D2, · · · , v′n : Dn}.

Thus, for each variable vi in V , there is a corresponding (next state) variable v′i in V ′.

Now we are able to represent a set of transitions using a logic formula, too. This formula

is called transition relation, denoted as R(V, V ′).
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Given a software program P, the program variables and their value domains are available.

Let AP be the set of atomic propositions. Formally, the behaviors (or computations) of

the software program over AP can be modeled as a kind of state transition graph called

Kripke structure, denoted as M = (VM , DM , RM , IM , LM ), where

• VM = {v1 : D1, v2 : D2, · · · , vn : Dn} declares the set of the system variables and

their corresponding value domains,

• DM = D1 ×D2 × · · · ×Dn defines the state space of M ,

• RM ⊆ DM ×DM is the transition relation of M ,

• IM ⊆ DM is the initial condition of M , and

• LM : DM → 2AP is a labeling function that associates each state with the set of

atomic propositions (in AP ) true in that state.

In the state space of M , there is a transition between two states s and s′, if RM (s, s′)

holds. For the sake of convenience, we suppose the transition relation RM to be total.

That is, for every state s ∈ DM there exists a state s′ ∈ DM such that RM (s, s′) holds.

In fact, we can always make RM total by adding an auxiliary transition to each state s

without successors so that RM (s, s) holds.

A path (or run) ρ of M from a state s is an infinite sequence of states ρ = s0, s1, s2, · · ·
such that s0 = s and RM (st, st+1) holds for all t ≥ 0. Let S0 be the set of initial states

of M , i.e., S0 = {s ∈ DM | s |= IM}. A state s is reachable, if there exists a path ρ with

some prefix s0, s1, · · · , st in M such that s0 ∈ S0 and st = s. Notice that not all of the

states in DM are reachable from the given initial states. The set of reachable states of

M , denoted as S, are those states in DM reachable from the set S0 of initial states. For

large complex systems, especially parallel systems, it is usually difficult to identify all

the reachable states of the system model. In general, it is undecidable whether a state

of the system model is reachable or not [28].

Let’s take a simple transition system described in [18] as an example to explain the

above notions. The Kripke structure M of the simple system is defined as follows:

• VM = {x : D, y : D} where D = {0, 1},

• DM = D ×D = {(1, 1), (0, 1), (1, 0), (0, 0)},

• RM (x, y, x′, y′) ≡ x′ = (x+ y) mod 2 ∧ y′ = y,

• IM ≡ x = 1 ∧ y = 1, and
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• LM ((1, 1)) = {x = 1, y = 1}, LM ((0, 1)) = {x = 0, y = 1},
LM ((1, 0)) = {x = 1, y = 0}, and LM ((0, 0)) = {x = 0, y = 0}.

Fig. 2.1 illustrates a graphical representation of the Kripke structure of this example.

The state space of the system consists of four states (1, 1), (0, 1), (1, 0), and (0, 0). The

initial state (1, 1) is pointed to by an incoming edge without a source. It is easy to see

that the states (1, 0) and (0, 0) are not reachable from the initial state (1, 1). The path

ρ = (1, 1), (0, 1), (1, 1), · · · is the only path that starts from an initial state. This path

is the only valid behavior (or computation) of the transition system.

11 01 10 00

Figure 2.1: A Kripke structure example

2.3 Property Specification

Property specification defines formally a set of implementation-independent constraints

that a software system under investigation needs to satisfy. The properties are usually

specified in some logical formalism, e.g., temporal logic, automata, or regular expression,

etc., which describes how the behaviors of the software system should evolve over time.

It is usually difficult to decide whether or not a given specification is complete, i.e., it

covers all the properties that the software application should satisfy. It is also hard

to prove that what we write does capture exactly what we mean. In this thesis, we

simply suppose that the properties are correctly specified. Therefore, a model or an

implementation of the software system is proved to be correct, it means implicitly that

it is correct with respect to the given property specification.

2.3.1 Linear Temporal Logic

In this thesis, our concern is the correctness of the individual executions of the software

program under investigation. Therefore, linear temporal logic (LTL) [29] is adopted to

specify the properties that the software system is required to satisfy. LTL can specify

the ordering of states in time without defining time explicitly.

Given a behavioral model M over AP of the software program to be checked, an LTL

property over AP has the form Af , where A is a path quantifier meaning “for all paths”,

and f is a path formula specifying a (characteristic) predicate on the paths of the model
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M . For technical convenience, we consider LTL formulas in positive normal form, i.e.,

negations (if any) are applied only to atomic propositions. An LTL formula f in positive

normal form is inductively defined as follows:

• true and false are LTL formulas;

• if p ∈ AP , then p and ¬p are LTL formulas;

• if x and y are LTL formulas, then x∨y, x∧y, Xy, Fy, Gy, xUy, and xRy are LTL

formulas, where X (neXt), F (Future), G (Global), U (Until) and R (Release) are

temporal operators.

Let ρ = s0, s1, · · · , si, si+1, · · · be a path in the model M . We define the suffix of ρ

starting from si as ρi = si, si+1, · · · . The semantics of an LTL formula with respect to

the path ρ in M is formally defined below [18]:

1. M,ρ |= p iff p ∈ LM (s0).

2. M,ρ |= ¬p iff p 6∈ LM (s0).

3. M,ρ |= x ∨ y iff M,ρ |= x or M,ρ |= y.

4. M,ρ |= x ∧ y iff M,ρ |= x and M,ρ |= y.

5. M,ρ |= Xy iff M,ρ1 |= y.

6. M,ρ |= Fy iff M,ρi |= y for some i ≥ 0.

7. M,ρ |= Gy iff M,ρi |= y for all i ≥ 0.

8. M,ρ |= xUy iff M,ρj |= y for some j ≥ 0 and M,ρi |= x for all 0 ≤ i < j.

9. M,ρ |= xRy iff for all j ≥ 0, if for every i < j, M,ρi 6|= x then M,ρj |= y.

11 01 10 00

s0

s1 si

p
• • •

s0
• • • • • •

s1 sis0
• • • • • •

x

p:

xUy:

xRy:

yx x

s0
• • •

y
or

y y y x,y
or

s0
• • •

y y

s1s0
• • •

y
Xy:

Figure 2.2: The visualized explanation of some LTL formulas
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Intuitively, an LTL property defines the characteristics of those valid paths by imposing

certain constraint(s) on some placeholder(s) in the paths as illustrated in Fig. 2.2. For

example, the formula p requires that p holds in the first state of the path, xUy specifies

that x holds along the path until in some states where y holds, while xRy specifies that

y holds along the path up to and including the first state where x holds. In the latter

two cases, x is not required to hold eventually.

We usually go to check the negation of an LTL property, which describes the charac-

teristics of those error paths. In a model with finitely many states, an infinite path is

represented as a finite sequence of states of the form (s0, s1, · · · , si−1)(si, · · · , sn) with

si = sn for i ≥ 0, where (s0, s1, · · · , si−1) is a finite prefix in case of i > 0 (or empty

otherwise), and (si, · · · , sn) an ending loop (i.e., infinite suffix) of the path. Therefore,

an error path (counterexample) can be identified either by its finite prefix (finite witness)

or by its ending loop (infinite witness) that satisfies some specific constraint(s) derived

from the LTL formula.

There are two basic types of properties in LTL: safety and liveness. A general LTL

property can be expressed as conjunction of a safety property and a liveness property

[30]. Informally, a safety property means that something “bad” does never happen

during program execution, while a liveness property means that something “good” does

eventually happen [31].

Let Σ = 2AP . Then, Σ∗ represents the set of finite sequences of states, and Σω the set of

infinite sequence of states. For any two finite paths α, β ∈ Σ∗, βω denotes the sequence

of states obtained by infinitely repetition of β, and α · βω the infinite sequence of states

obtained by concatenation of α and βω. Formally, an LTL formula f over AP is a safety

property, if and only if (∀α ∈ Σω. α |= f) ⇐⇒ (∀i ≥ 0. (∃β ∈ Σω. α[0..i] · β |= f)); f is

a liveness property, if and only if (∀α ∈ Σ∗. (∃β ∈ Σω. α · β |= f)) [30].

As for a safety property, there exists no specific constraint(s) to the infinite suffix β of

the path satisfying it. That is, a counterexample of a safety property is a path with

a finite prefix α whose last state contradicts the property. As for a liveness property,

some desired state(s) must happen infinitely often along the path satisfying it. That is,

a counterexample of a liveness property is a path ending with an infinite suffix β that

contains no desired state(s).

For example, the safety property Gp, as shown in Fig. 2.3 (a), requires that something

good (p) always holds (or something bad (¬p) never holds); the liveness property FGp,

as shown in Fig. 2.3 (b), means no matter what happens along a finite prefix, eventually

something desired (p) will happen infinitely often.
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Figure 2.3: (a) Safety property Gp and (b) Liveness property FGp

2.3.2 Büchi Automaton

Given an LTL property f , we usually first transform its negation ¬f into an equivalent

Büchi automaton denoted as B¬f , and then go to check whether B¬f is satisfiable with

respect to the given model M , or not. The size of B¬f is, in the worst case, exponential

in the number of the subformulas of f . There are many algorithms in the literature

[32–37] that generate optimized Büchi automata from LTL formulas. In practice, the

commonly used requirements are not very sophisticated [38]. Indeed, the LTL formulas

and their Büchi automata are usually not that much complicated.

Of course, we can also directly specify properties using Büchi automata. In fact, Büchi

automata are more expressive than most temporal logic specification languages [39].

However, complementing directly a nondeterministic Büchi automaton involves an ex-

ponential blow-up [40]. In this sense, we prefer LTL to Büchi automata.

Informally, a Büchi automaton is an extension to a finite automaton in terms of accep-

tance condition. A finite automaton is a type of state transition graph with transitions

labeled with symbol(s) and some states marked as accepting states. An accepting run of

a finite automaton is a finite path from a start state to some accepting state. Instead, an

accepting run of a Büchi automaton is an infinite path from a start state to an ending

loop containing some accepting state(s) in it. In effect, the accepting state appears along

the path infinitely often.

Let Σ = 2AP be the set of atomic propositions (or symbols in the context of automaton).

Formally, a Büchi automaton B over Σ is defined as B = (Q,∆, Q0, F ), where Q is a

finite set of states; ∆ : Q × Σ → Q is a transition function; Q0 ⊆ Q is a set of initial

states; and F ⊆ Q is a set of accepting states.
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Figure 2.4: (a) BGp and (b) BFGp

For example, Fig. 2.4 shows two Büchi automata BGp and BFGp generated from the LTL

formulas Gp and FGp respectively. In Büchi automata, the start states are denoted by
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an edge without a source and the accepting states by concentric circles. The transitions

between states are labeled by predicates (i.e., symbols).

Let M be a model and Bf a Büchi automaton generated from an LTL formula f (with

respect to M). An infinite path ρ = s0, s1, · · · , si, si+1, · · · of M is accepted by Bf , i.e.,

M,ρ |= f , if and only if there exists a run γ = q0, q1, · · · , qi, qi+1, · · · in Bf such that

(i) q0 is a start state of Bf ;

(ii) Bf moves from the state qi to the next state qi+1, if the state si in M satisfies the

predicate on the transition (qi, qi+1); and

(iii) some accepting state of Bf appears in γ infinitely often.

Here we use “path” in the model M and “run” in the Büchi automaton Bf to distinguish

the two sequences of states in different contexts. In addition, we also say that the path ρ

matches the run γ in case that the first two conditions hold. Since the Büchi automaton

Bf is usually nondeterministic, it is possible that the same path of M may match more

than one run in Bf .

Note that if at some state qi of Bf , the state si in M meets no predicate on any transition

emanating from qi, then we say that there is an undefined transition emanating from qi.

It is easy to see that the Büchi automaton BGp (resp. BFGp) in Fig. 2.4 accepts exactly

the paths that satisfy the LTL formula Gp (resp. FGp). In addition, at the state q0 in

BGp as well as at the state q1 in BFGp there exists (implicitly) an undefined transition

with the predicate ¬p on it.

Recall that a (nontrivial) LTL property is either safety or liveness or a conjunction of a

safety property and a liveness property [30]. It is useful to distinguish between safety and

liveness so that the model checking algorithms can deal with them in different efficient

ways. We can use Büchi automata to determine whether a property is safety or not.

Let f be an LTL property and Bf a Büchi automaton1 generated from f . Recall that

a safety property claims that something “bad” does never happen, this is equivalent to

saying that any infinite run in Bf is accepting, i.e., no “bad thing” occurs. There is no

additional constraint(s) on the accepting states of the Büchi automaton. If a “bad” thing

does happen, there is no way to remedy it; otherwise, it follows that something “good”

would eventually happen. This means that a finite prefix is sufficient to contradict f in

case that f is a safety property. This finite run in Bf must eventually end with some

undefined transition. We call a finite run in Bf bad prefix (or “bad thing”), if there is no

1In Bf those states from which no accepting state is reachable are redundant, and thus deleted.
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way to extend this finite run to an infinite run in Bf . In other words, there is no way to

remedy this “bad thing”. Consequently, f is a safety property, if Bf has bad prefix(es)

but no constraint(s) on the accepting states, i.e., any infinite run in Bf is accepting.

Formally, a finite prefix α ∈ Σ∗ in Bf is a bad prefix, if and only if ∀β ∈ Σω. α · β 2 f .

That is, there is no way to extend α to an infinite run in Bf .

From BGp it is easy to know that Gp is a safety property. Let’s introduce a special state

qe to help visualize the undefined transition in BGp as illustrated in Fig. 2.5. Obviously,

any run to the state qe is a bad prefix that contradicts Gp.
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Figure 2.5: Visualize the undefined transition in BGp

Bf can also be used to determine whether f is liveness, or not. f is a liveness property,

if Bf has no bad prefix but a constraint on the accepting states, i.e., from each accepting

state there must exist a path back to itself. No bad prefix means that no finite run can

contradict a liveness property. For any finite run that ends with an undefined transition,

this finite run can always be extended to an infinite run. For a liveness property, all the

undefined transitions (if any) in Bf are indeed redundant. Since from every state there

is a path to an accepting state in Bf , a “good” thing can, of course, eventually happen.

E.g., every finite run that leads to the undefined transition in BFGp can be extended to

an infinite run, and this infinite run can eventually reach the accepting state q1.

It is worth pointing out that there is a special Büchi automaton which accepts any path.

In this sense, we say that this automaton is universal. On the contrary, if an automaton

accepts no path, it is said to be empty. A set Qi of states in the given Büchi automaton

B is universal, if B becomes universal by redefining the set of initial states to be Qi.

The automata mentioned above label the transitions with symbols (i.e., predicates). In

contrast, we can also label the states of the automata with predicates. Thus, a Kripke

structure, which defines a model M , can be seen as a state labeled automaton with all

reachable states accepting.

For technical convenience, we define the Büchi automaton Bf of the given LTL property

f as a state labeled automaton. Let APf be a set of atomic propositions derived from f .

The Büchi automaton Bf = (VB, DB, RB, IB, LB, FB) is defined in a way similar to the

definition of the behavioral model M , where VB and DB are a set of variables and their
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(finite) domains, RB ⊆ DB×DB is a transition relation, IB ⊆ DB is an initial condition,

LB : DB → 2APf is a labeling function, and FB ⊆ DB is an acceptance condition.

For example, the state labeled automata for Gp and FGp are illustrated in Fig. 2.6.
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Figure 2.6: (a) BGp and (b) BFGp

A run γ of Bf is an infinite sequence of states γ = q0, q1, q2, · · · such that q0 |= IB and

RB(qt, qt+1) for t ≥ 0. Let inf(γ) be a set of states that appear infinitely often in γ. A

run γ is accepting if and only if inf(γ) ∩ {q | q |= FB} 6= ∅, i.e., at least one accepting

state q |= FB appears in the ending loop of γ.

2.4 LTL Model Checking

Given a finite state model M and an LTL property f , LTL model checking [18] aims to

answer the question: is it true that M,ρ |= f for any initialized path ρ of M (i.e., ρ is

an infinite path starting from some initial state of M)?

To solve this problem, we usually need to determine whether or not there exists an

initialized path ρ in M such that M,ρ |= ¬f? i.e., the path ρ is a witness against the

property f . Let B¬f be a Büchi automaton generated from the negation of f . Then,

we need to decide whether there exists an initialized path ρ that is accepted by B¬f .

Recall that the model M can be seen as a Büchi automaton with all the reachable

states accepting. Let L(M) represents a set of (initialized) paths of M and L(B¬f ) a

set of accepting runs of B¬f . If the intersection of L(M) and L(B¬f ) is empty, then f is

satisfied with respect to M ; otherwise, any path ρ ∈ L(M)∩L(B¬f ) is a counterexample.

Therefore, we’d better determine whether L(M) ∩ L(B¬f ) = ∅ or not. The complexity

of this process is PSPACE, i.e., polynomial in the size of the product of M and B¬f .

L(M)∩L(B¬f ) contains exactly all the accepting paths in the product ofM and B¬f that

violate the property f . Generally, let M = (VM , DM , RM , IM , LM ) over AP and B¬f =

(VB, DB, RB, IB, LB, FB) over AP¬f , then the product of M and B¬f over AP ∪ AP¬f
is a (Büchi) automaton denoted as M ×B¬f = (V,D,R, I, L, F ), where V = VM ∪ VB,

D = DM ×DB, R = RM ∧RB, I = IM ∧ IB, L : D → 2AP∪AP¬f labels each compound

state (s, q) ∈ DM ×DB with the set of atomic propositions in AP ∪AP¬f true in (s, q),

and F = FB is acceptance condition.
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An infinite path π of M ×B¬f is a sequence of compound states (s0, q0), (s1, q1), · · · in

M ×B¬f such that

• ρ = s0, s1, · · · is an infinite path of M with IM (s0) and RM (st, st+1) for t ≥ 0,

• γ = q0, q1, · · · is an infinite run of B¬f with IB(q0) and RB(qt, qt+1) for t ≥ 0,

• LM (st) is consistent with LB(qt) for t ≥ 0 with respect to the common propositions.

Let inf(π) be the set of (compound) states that appear infinitely often in π. An infinite

path π of M ×B¬f is accepting if and only if inf(π) ∩ {(s, q) | q |= FB} 6= ∅.

LTL model checking algorithms can be implemented by exploring an explicit state space

or a symbolic state space. As for explicit state space, we need to construct explicitly

the state transition graph of M ×B¬f as it is. In contrast, as for symbolic state space,

the set of states and the set of transitions in M × B¬f are represented symbolically as

Boolean formulas. This symbolic representation of states as well as of transitions can be

implemented using Binary Decision Diagrams (BDDs) [41] or Conjunctive Normal Form

(CNF). In the former case BDD-based tools, whereas in the latter case SAT solvers, are

usually used to solve the LTL model checking problem.

2.5 Bounded Model Checking (BMC)

Symbolic state based model checking can handle efficiently a much larger state space than

explicit state based model checking. However, the state space may grow exponentially in

the number of the variables in the behavioral model under investigation. That is, doing

model checking in a symbolic way does relieve the state space explosion problem to some

extent, but still suffers from the state space explosion problem. Against this background,

bounded model checking (BMC) is presented in [22], and later widely accepted in industry

and academia.

Unlike traditional model checking, bounded model checking tries to search for counterex-

amples in the initialized paths of length bounded by some integer k. If no error is found,

we increase the bound k until either an error is found, or some precomputed upper

bound (Completeness Threshold) is reached, or until the problem becomes intractable.

This method is incomplete if the completeness threshold is not reached.

In practice, BMC is usually encoded as a propositional satisfiability (SAT) problem.

Given a model M and an LTL property f , the SAT problem is defined as follows:

|[M,f ]|k = |[M ×B¬f ]|k = (IM (s0) ∧ IB(q0)) ∧ (|[M ]|k ∧ |[B]|k) ∧ |[C]|k
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where

• IM (s0) and IB(q0) are the initial conditions of M and B¬f respectively,

• |[M ]|k =
k∧

i=1
RM (si−1, si) and |[B]|k =

k∧
i=1

RB(qi−1, qi) encode the paths of length

k in M and B¬f respectively,

• the path constraint |[C]|k =
k∨

i=0
F (qi) if F is a finial condition in case that f is a

safety property, or |[C]|k =
k−1∨
l=0

((sl = sk)∧ (ql = qk)∧ (
k−1∨
i=l

F (qi))) if F is a fairness

condition in case that f is a liveness property.

It is worth pointing out that in case of f being invariant, the SAT problem is simplified

as |[M,f ]|k = IM (s0) ∧ |[M ]|k ∧ |[C]|k = IM (s0) ∧ (
k∧

i=1
RM (si−1, si)) ∧ (

k∨
i=0

F (si)) with

the final condition F = ¬f .

BMC can be implemented by explicit state-, BDD- and SAT- based search algorithms.

The paper [42] compares the performance of these three search algorithms on 62 bench-

marks drawn from commercial designs. The experimental results indicate that “BDD-

based BMC is much faster” for finding deep counterexamples (of length, say, k > 60),

while “SAT-based BMC is more effective than BDD-based BMC” for finding shallow

counterexamples (of length, say, k ≤ 60), but surprisingly “explicit state-based BMC

(by means of random search) is comparably effective.” As for the performance of SAT-

based BMC, the experimental results [22] done at IBM, Intel and Compag show that “if

k is small enough (typically not more than 60 to 80 cycles, depending on the model itself

and the SAT solver), it outperforms BDD-based techniques.” “The deeper the bug is

(i.e., the longer the shortest path leading to it is), the less advantage (SAT-based) BMC

has.” In addition, the experimental results [43] indicate that “SAT solvers are quite effec-

tive in eliminating logic that is not relevant to a given property.” In other words, “SAT

solvers appear to have significant potential for identifying that set of variables once a

suitable property is given.” Of course, the performance of the BMC algorithms depends

also strongly on the underlying hardware executing them as well as the complexity of

the problems to be checked, and others.

In this thesis, we present an online model checking mechanism using the BMC technique

to ensure the correctness of the actual execution trace within the next k (transition) steps

starting from each (current) state monitored during the execution of the software system

under investigation.
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Related Work

The work closely related to our online model checking are monitoring techniques in the

sense that they need to observe the state information during system execution and then

to check the correctness of the current execution trace of the target system. The concept

of monitoring can date back to the assembly language era. Since then people have

been using monitoring for testing, debugging, profiling, performance analysis, program

optimization, and more. As a consequence, different monitoring techniques have been

proposed since 1960. A comprehensive survey of program monitoring [28] was published

in 1981, which examined the concepts, goals and limitations of the monitoring techniques

at that time. The renewed interest in monitoring techniques nowadays is due to the

increasing complexity of the software systems. A recent survey [44] in 2004 identified a

wide spectrum of monitoring tools in the literature.

Generally, monitor observes the execution of the target system to sample the information

of interest and then diagnoses, based on the collected data, whether the system behaves

normally. The observed system may be a monolithic program, a parallel program, a dis-

tributed system, a real-time system, a hardware system, a network, or any combination

thereof. The information of interest can be collected at various levels of abstraction,

such as system level, process level, function level and statement level. The monitor can

be implemented in the same process as the target system. In this case, the monitoring

code is embedded in the target program. The monitor and the target system can also

be implemented as separate processes on the same processor or on different processors.

Monitoring is classified as online, if the collected data is analyzed while the target system

is running; otherwise, it is classified as offline. Online monitoring is also called runtime

monitoring. The interaction between the monitor and the target system is synchronous,

if the target program must wait until the diagnosis is finished; asynchronous, if it does

not need to wait for the result of the diagnosis.

19
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In order to gain further insight into the (runtime) monitoring technique, some selected

representative methods are described below in more detail.

Alamo

A Lightweight Architecture for Monitoring (Alamo) [45] is developed for monitoring

C and Icon programs against safety properties. Prior to compilation, Alamo employs

automatic program instrumentation to identify monitoring points and insert events into

the source code of the target program. Typical events are memory references, heap

allocations, procedure calls, I/O operations, and others. Control switches between the

Execution Monitor (EM) and the Target Program (TP). The EM sends event request

for desired events and transfers control to the TP. The TP executes until a desired event

occurs, reports the event and transfers control back to the EM. Upon receiving the event

report, the EM goes to check a predicate related to the event. The EM and the TP are

implemented as coroutines executing within the same address space. Therefore, the EM

is allowed to inspect the state of the TP for additional information, such as the values

of the variables, if necessary.

Anna Consistency Checking System

Anna (Annotated Ada) is an Ada extension for specifying constraints (Boolean expres-

sions) as formal comments on Ada constructs, such as type, object, statement, excep-

tion, and others. Given an Ada program with annotations (formal comments), the Anna

Consistency Checking System [46] transforms the annotations into checking functions

and inserts into the Ada program the calls to these functions at the points of poten-

tial specification violation, e.g., assignments, procedure calls and type conversions. To

improve the performance of the self-checking program in a multiprocessor system, for

each checking function, a buffer task and a checking task are introduced, which execute

concurrently with the Ada program being checked. The buffer task maintains a queue of

check requests. The checking function enqueues check requests with data to the buffer

task. The checking task dequeues them and performs the consistency checks. Upon

detection of an inconsistency, the checking task can ignore the inconsistency, report the

inconsistency to the Ada program, or terminate the Ada program.
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BEE++

BEE++ [47] is an object-oriented application framework for the development of dis-

tributed dynamic analysis tools. The distributed program being monitored is instru-

mented a priori with sensors. A sensor provides a placeholder for an event that is either

user-defined or predefined by BEE++. Whenever a sensor is encountered during pro-

gram execution, an event (loaded with runtime data) is generated and sent off to one or

more analysis tools bound to that sensor. These tools are used individually or in concert

to detect the desired correctness or performance of the program. BEE++ provides a

symmetric communication model similar to client-server approach, while allowing the

client (the target program) and the server (the analysis tool) to be placed in the same

entity, thereby providing peer-to-peer functionality. Events flow between the target pro-

gram(s) and the analysis tool(s) over two distinct communication pathways: Firehose

and Trickle. Firehose is used for high bandwidth communication from the target pro-

gram(s) to the analysis tool(s) through an event collection buffer. Trickle is designed for

asynchronous target program control and asynchronous monitoring in a way similar to

the ptrace facility in Unix to control the thread/process and read/write data. BEE++

supports a variety of system architectures ranging from single processes to parallel and

networked programs. Multiple clients (executing either as separate threads or processes)

are able to connect to a single analysis tool and a single clients is able to connect to

multiple analysis tools (running either on the same node or on different nodes). In the

latter case, the client sends the events just to one analysis tool which in turn forwards

the events to the other tools.

Observer-Worker System

An observer-worker system [48] aims to online check the behaviors of a distributed system

in operation. It consists of two distinct components: a worker and an observer. The

worker is an actual implementation of the system behaviors based on the given system

specification. The observer is a formal model of some adequately selected aspects of the

system behaviors that should be observed. The formal model is derived from the system

specification, and thus can be used as observer for different implementations of the same

system specification. The complexity of the formal model is restricted so as to guarantee

that the correctness of the formal model can be verified exhaustively. In this sense,

the observer can be seen as a reference, i.e., a correct implementation of the selected

system behavior to be observed. The actual implementation (the worker) is continuously

checked agains the reference (the observer) by comparing the worker behaviors with the

observer behaviors at some observable output level. For this purpose, the observer need
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to know and to access the runtime information of the worker behavior. There are two

ways in doing so: a) the worker informs explicitly the observer whenever an event of

interest occurs; b) the knowledge of the worker behavior is directly accessible to the

observer.

DynaMICs

Dynamic Monitoring with Integrity Constraints (DynaMICs) [49] is a software tool that

supports the generation of constraints, the construction and insertion of constraint-

checking code, and the tracing of failures with respect to requirements. A constraint

is specified as event-condition-action. The event defines what and when the variables

of interest need be monitored as well as when the constraint should be checked. The

condition defines in first order logic the relationships between program variables, asser-

tions on individual variables, and others. The action defines the response to a constraint

violation, such as recording state in a history log, saving state for error recovery, per-

forming state rollback, or initiating graceful degradation. For each constraint there is a

set of instrumentation points in the program code at which the constraint-checking code

is executed. The constraint-checking code may be an inline sequence of instructions,

a function call, or a trigger that initiates the constraint check on a separate process.

DynaMICs provides analysis tools to identify automatically the instrumentation points

at the source code, intermediate code, or object code level. The work of the monitor is

delegated either to the process executing the program code or to another process not

necessarily on the same processor.

Falcon

Falcon [50] is a set of tools that support online capture of the application-level in-

formation, online analysis of the captured program information and online steering of

the parallel program under investigation, which result in online modification of the pro-

gram’s execution. The information to be monitored ranges from single program variables

to program (compound) states constituted of multiple program components running in

parallel. The target program is instrumented a priori with the sensors and actuators

generated from the given monitoring specification. Sensors are used to obtain the state

information during program execution; whereas actuators to modify the execution of the

target program. A single central monitor resides on a remote machine. Multiple local

monitors execute on the target program’s machine so that they are able to rapidly inter-

act with the program. However, they may also run concurrently on different processors,
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using a buffer-based mechanism for communication between the target program and

the monitoring threads. A local monitor can also inspect the program variables asyn-

chronously with the execution of the target program by employing probe code without

requiring prior instrumentation of the target program. A steering client runs as a sepa-

rate program on a remote machine. It provides an interface for the user to interact with

the target application. Several steering servers operate as threads in the application’s

address space, thereby gaining direct access to the application components and the abil-

ity to execute asynchronously with application threads. They read incoming monitoring

events from the local monitors and respond to these events with appropriate steering

actions. Each steering server shares with each local monitor a circular buffer located

in jointly accessible memory. A steering server can perform simple program changes

by enabling probe code, or perform more complex changes by enacting the actuators

embedded in the application code.

Jass

Java with Assertions (Jass) [51] is a pre-compiler for Java programs annotated with

assertions. The assertions are special formatted comments instrumented into the target

Java program. Jass translates the assertions into Java code so that they can be checked

during program execution. The assertions are defined as boolean expressions of Java

extended with certain keywords as well as existential and universal quantifier over finite

sets. Besides the usual assertions, such as method pre- and postconditions, class invari-

ants, loop invariants and variants, and the like, Jass additionally supports refinement

checks and trace assertions. Refinement checks are used to test whether a subclass is a

behavioral subtype of its superclass. Trace assertions are used to monitor whether the

trace of actual method invocations is valid.

JPaX

Java PathExplorer (JPax) [52] is a general-purpose monitoring mechanism, which can be

easily extended to other programming languages. JPaX extracts the events of interest

from the execution trace of the target program and then analyzes these events via a

remote observer process, which may run on a different processor. JPaX consists of three

main modules: an instrumentation module, an interconnection module, and an observer

module. The instrumentation module instruments the target program using the given

instrumentation script. During runtime the instrumented program emits the events

of interest to the interconnection module. The interconnection module transmits these
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events further to the observer module. Upon receiving these events, the observer module

dispatches them to a set of observer rules, each of which performs a particular analysis.

The observer module currently provides two kinds of analysis: logic-based monitoring

and error pattern analysis. The former checks the execution trace against the properties

written in high level logics, such as safety properties and bounded liveness properties in

linear temporal logic; the latter analyzes the execution trace using various error pattern

detection algorithms.

MaC

Monitoring and Checking (MaC) [53] is an integrated framework for monitoring real-

time systems, which can check general requirements related to an execution trace and to

numerical computation. MaC consists of three components: a filter, an event recognizer,

and a runtime checker. The filter is a collection of code fragments that can extract state

information of the target system, such as the values of the variables and the function

calls, and then send it to the event recognizer. These code fragments will be inserted into

the implementation of the target system at the source code level or at the executable

code level. From the received state information the event recognizer tries to detect

the occurrence of an event defined at the requirements level in the given monitoring

script, and then sends the detected event to the runtime checker. In addition, the event

recognizer may also forward the values of the variables of interest to the runtime checker.

Based on the events (and the values) it received thus far, the runtime checker is able to

check the conformance of the sequence of events to the specification of requirements as

well as the correctness of the requirements related to numerical computation.

MoP

Monitoring-oriented Programming (MoP) [54] is a general monitoring architecture inde-

pendent of any specific programming language as well as any specific monitoring logic.

Each MoP tool specializes this architecture to support specific programming languages

and specific property logics. MoP consists of modules of three levels: process controllers

at the interface level, code generators at the language level, and logic engines at the

logic level. The workflow of the architecture is from the process controllers through the

code generators to the logic engines and then from the logic engines through the code

generators back to the process controllers. The properties to be checked are expressed

in some formal logic and inserted as annotations in the form of comments at various

user selected places in the target program. The process controller takes the annotated
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program as input and extracts the formal specifications from the annotations as output.

The code generator takes the formal specifications as input and transform them into the

formulas in some intermediate format as output. The logic engine then takes the formu-

las as input and produces abstract pseudocode for checking the formulas as output. The

pseudocode is target language independent, therefore, the logic engine can be reused

for different target languages. The code generator now takes the pseudocode as input

and translates it into code fragments of the target language as output. The process

controller then takes the code fragments as input and generates the executable code of

the monitored program. The code fragments can be embedded into the target program

or implemented as a different process, potentially on a different machine. In the latter

case, the target program is instrumented so as to transmit the events of interest to the

monitoring process.

Noninterference Monitoring

Noninterference Monitoring [55] is a hardware monitoring system designed for testing

and debugging real-time software systems without interfering with the execution of the

target system. The monitoring mechanism is implemented by using an auxiliary hard-

ware (MC68000 processor) connected with the internal buses of the target system. In

the monitoring phase, the activities of the target system are recorded at the user-defined

conditional breakpoints. The runtime information can be collected at three abstraction

levels: process level (e.g., system calls), function level (e.g., function calls) and instruc-

tion level (e.g., step-by-step execution trace). The target program is restricted to be

written in a block-structured programming language in which a block is a function (or

a procedure) and the scope of each variable is determined statically. The collected ex-

ecution history of the target system is post-processed independent of the execution of

the target system. The raw bus data is recorded in machine-level code, which contains

not only the key values of the events of interest but also some redundant information.

In the post-processing phase, the collected data is reorganized into meaningful informa-

tion so as to represent the execution history in higher level logical views, e.g., process

precedence graph and function calling tree.

Sentry System

The Sentry System [56] is a low precision and low cost monitoring system for sequential

and concurrent C programs. A sentry is a monitoring program generated from the given

target program with annotations. The annotations in the target programs are specially
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formatted comments derived from the properties to be checked. These comments are

later replaced by the calls to macros for communication with the sentry. The sentry

and the target program run in parallel and communicate with each other via shared

memory. The target program is non-blocking in the sense that it never waits for the

sentry. This means that some snapshots of the program state may be overwritten by

the target program before being read by the sentry. In other words, some snapshots

may be lost, hence, the precision is low. The sentry is able to check both safety and

progress properties. Generally, the sentry reads a snapshot as it becomes available and

then evaluates the properties. If a violation is detected, the sentry sends a signal to the

target program, which may initiate some user-defined recovery action.

Temporal Rover

Temporal Rover [57] is a code generator. Given a program instrumented a priori with

temporal properties as comments at some points in the source code, Temporal Rover

parser converts this annotated program into an identical program except that the prop-

erties are now implemented in source code, too. This program code of the properties

is compiled and linked as part of the program under investigation. During program

execution, the correctness of the properties is checked by executing the generated code.

Temporal Rover is able to deal with Linear Temporal Logic (LTL) and Metric Temporal

Logic (MTL), an extension to LTL by supporting relative time and real-time constraints.

In the case that a liveness property being checked keeps failed so far, Temporal Rover

concludes conservatively that so far the property is failed, because it does not know

during runtime whether or not the program will continue executing. The user is allowed

to define reaction to the checking results. In addition, Temporal Rover has a special

code generator targeted for embedded systems and concurrent systems. The generated

verification code is allowed to be executed in a separate process or processor. The host

and target code communicate via serial port, remote procedure call (RPC), or any other

communication protocols.

Runtime Monitors for Distributed Hard Real-Time Systems

Validation of distributed systems needs to account for the interactions among nodes (or

processes). Given a distributed hard real-time system under observation (SUO), which

contains a fixed set of nodes and a fixed set of interconnects between nodes, the following

three monitoring architectures at a conceptual level are presented in [12]:
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1. (Single) Bus-Monitor Architecture: The monitor is attached to the data bus of the

SUO, i.e., the monitor and the SUO share a common bus. The monitor receives

messages over the bus just like any other process in the system and then does error

checks based on the collected messages. If a violation is detected, the monitor will

send messages to the other processes through the shared bus.

2. Single Process-Monitor Architecture: A dedicated monitor bus is introduced. Each

process pi in the SUO is attached to the data bus as well as the monitor bus. In

addition, pi is instrumented to send data to the monitor over the monitor bus.

The monitor checks the correctness of the incoming data and signals the processes

in the SUO if a violation is detected.

3. Distributed Process-Monitor Architecture: Each process pi in the SUO has its

own monitor Mi, which may be implemented on the same hardware as pi. The

distributed monitors are attached to a dedicated monitor bus for communicating

with each other in order to reach agreement on diagnoses.

Online Failure Prediction

Recall that a failure is a kind of misbehaviors that can be observed from outside the

system (see Section 2.1). Online failure prediction [26] aims to assess the potential

occurrence of a failure in the near future in terms of seconds or minutes based on

the measurements of the actual system parameters, such as resource usage, CPU load,

system calls, etc., during runtime. There exists a wide spectrum of techniques dealing

with online failure prediction in the literature. Almost 50 failure prediction methods

have been surveyed in [26]. According to the type of the system parameters monitored

at runtime, online failure prediction methods are classified into four categories as follows:

1. Failure Tracking: The occurrence of failures is tracked in terms of, say, the time

of the occurrence and the types of the failures. This data can be analyzed to

predict the potential failures that may come up in the near future. E.g., the

probability distribution of the time to the next failure can be estimated based on

the knowledge obtained from the previous failure occurrences. Due to sharing of

resources, system failures may occur close together in a temporal as well as in a

spatial sense.

2. Symptom Monitoring: An error inside the system may cause abnormal behaviors

of the system parameters, such as memory usage, disk I/O, and unusual function

calls. These side-effects are called symptoms of the error. By analyzing the system

parameters monitored at runtime it is possible to detect symptoms that indicate
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an upcoming failure. E.g., a functional relationship between the selected system

parameters and the probability of failure occurrence can be established based on

the previously recorded training data. By applying this function to the selected

system parameters measured during runtime, it is possible to estimate the proba-

bility that a failure will occur. From a set of reference data points (i.e., training

data) it is also possible to derive a decision boundary that partitions the data

points into either failure-prone or non-failure-prone. Failure prediction can then

be accomplished by checking on which side of the decision boundary the current

date point is. In addition, failure prediction can also be performed by comparison

of the currently measured value to the expected value computed from the system

model with failure-free behaviors. If they differ significantly, an upcoming failure

is predicted. Failure can also be predicted by analyzing several successive samples

of the system parameters monitored during system operation.

3. Detected Error Reporting: When an error inside the system is detected, an error

event is usually reported using some logging mechanism. The error reports that

have occurred within some time interval (data window) before the current time

can be analyzed so as to decide whether or not a failure will occur in the near

future. E.g., from a set of event reports (training data) it is possible to identify

some conditions or patterns that indicate the occurrence of failures. Based on the

distribution of error types, the error generation rate, and the like, it is also possible

to predict upcoming failures.

4. Undetected Error Auditing: Auditing searches for incorrect states (undetected

errors) inside the system by checking on data that has or has not been used or

produced. It can be applied offline as well as during runtime. E.g., memory

auditing inspects data structures by checksumming. Failures can then be predicted

based on the undetected errors found by auditing.

Quantitative Verification at Runtime

Quantitative verification [58] is an extension of conventional model checking to proba-

bilistic models, which are typically variants of Markov chains, annotated with costs and

rewards. The properties to be checked are expressed quantitatively in temporal logic

extended with probabilistic and reward operators. Quantitative verification at runtime

[59] deals with self-adaptive software, which is capable of adapting autonomously to

changes in the environment. For this purpose, the probabilistic model of the software

system is augmented with the parameters that reflect the changes in the environment

in terms of, say, failure rates and costs/rewards. Whenever the changes in the environ-

ment are monitored, quantitative verification will be triggered to check whether or not
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the system model under the updated environment still satisfies the given quantitative

properties. In case that a violation is detected, adaptive maintenance will be carried

out. Quantitative verification can also help to make adaptive decisions so as to ensure

that under the updated environment the system model after adaptation continues to

satisfy the given quantitative properties.

Online Monitoring vs. Online Model Checking

Compared to offline verification techniques, such as testing, model checking, theorem

proving, and the like, online monitoring is rather lightweight due to its concern with the

correctness of the actual system execution1 against the given properties, which makes it

scale up well to deal with large complex systems. Generally speaking, online monitoring

consists mainly of the following two parts:

• Observer : record the state information during system execution;

• Analyzer : analyze the collected data to figure out (or sometimes predict) anomaly

in the target system.

Different monitoring techniques in the literature implement the observer as well as the

analyzer in different ways. Online model checking does bear some similarity to online

monitoring. It consists also of an observer and an analyzer. However, the implementa-

tion of the observer and the analyzer for online model checking is quite different from

the existing monitoring techniques to our knowledge.

Given the source code of a target program and its behavioral model, we assume that a

transition of the behavioral model corresponds to a predefined unit of execution of the

target program. Here, a unit of execution is supposed to be atomic and thus determines

the smallest distinguishable states of the program. It may be a statement or a composi-

tion of several statements within a basic block. A state is allowed to be monitored only

before or after a smallest unit of execution of the target program.

The properties to be checked usually fall into two categories [28]: state predicate and

process predicate. A state predicate is a boolean function defined on the state space of the

target program, which is attached to a specific point of control in the program code. A

process predicate is a boolean function defined on the set of sequences of program states,

which is attached to a range of control points rather than a single point of control in

the program text.

1i.e., a sequence of states monitored while the target system is running.
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Online checking a state predicate is trivial for both online monitoring and online model

checking due to its association with a specific point of control. For online monitoring,

the state predicate is checked at the time when the program’s execution reaches the

related point of control. For online model checking, the state predicate may be checked

before the program’s execution reaches the related point of control (see Chapter 7).

Online checking a process predicate has to do with a sequence of program states. For

a variable occurring in the property to be checked, the observer needs to probe every

change in the value of this variable. It is important to decide the appropriate locations

in the program code at which the program state should be monitored. The granularity

of observation can thus have a large impact on online monitoring. If it is too coarse,

important information may be missed; if it is too fine, the monitoring overhead will

be too high. E.g., if the monitor tries to check for overflow after every arithmetic

operation, it has to introduce more additional delay into the execution of the target

system. In case that the property is derived from the system requirements, the semantic

gap between the property and the execution trace make it usually difficult to establish a

correct relationship between the low level state information and the high level (atomic)

elements in the property.

Unlike online monitoring, online model checking does not directly check the correctness

of the actual execution trace. Instead, a sequence of partial (behavioral) models of the

target program that covers the actual execution trace is checked during runtime. The

analyzer is thus implemented as online model checker. Errors found in some partial

model may indicate errors in the actual execution trace or even predict errors that may

happen in the future. To make online model checking available, each partial model

covers the system behaviors up to a bounded length of k steps (for some appropriate

positive integer k). Here, a step is a unit of execution of the program code, which

corresponds to a transition in the behavioral model. By partitioning the program model

into a finite set of k-bounded partial models, each state information observed at runtime

is just used to decide which partial model should be checked next. Consequently, the

observer needs to probe the state information at runtime more or less every k steps. The

granularity of the observation is decided by the predefined bound k. This is different

from what the observer of online monitoring does, which needs to monitor the values of

the variables of interest whenever they are updated. In addition, the behavioral model

is usually generated at a higher abstraction level than the source code of the target

program. Compared to the source code, it is easier for the program model to establish

a correct semantic relationship with the properties to be checked.

Of course, model checking is usually time consuming. Doing model checking online is a

challenge. This is what the thesis tries to overcome.



Chapter 4

Online Model Checking

Mechanism

No matter how fast a model checking algorithm does execute, it has to explore (explicitly

or implicitly) all possible behaviors of the program model under investigation. This

feature of exhaustive exploration makes the model checking process not only memory

consuming but also time consuming, not to mention the state space explosion problem.

It looks unrealistic and impossible to do model checking online while the target program

is running. In this thesis, we don’t mean to propose a faster model checking algorithm to

ensure the universal correctness of the program model to be checked. Instead, we’d like to

present an online model checking mechanism whereby efficient model checking techniques

can be exploited during runtime to ensure the correctness of the actual execution trace

of the target program. What’s more, several acceleration techniques are also presented

to speed up the online model checking process.

4.1 Online Model Checking

Briefly speaking, online model checking aims to ensure the correctness of the actual

execution trace with respect to the given property by means of exploring during runtime

a sequence of those (bounded) behavioral models that cover the execution trace of the

target program.

4.1.1 Problem Statement

As a prerequisite for online model checking, the following information needs to be pre-

pared in advance:

31



32 Chapter 4. Online Model Checking Mechanism

• Source code P of the software application to be online checked, which is written in

a sequential programming language and instrumented with finitely many monitor-

ing points so as to probe actual state information during program execution (see

Chapter 5).

• Behavioral Model M of the software application, which is obtained in the software

development phase or abstracted from the source code P (see Chapter 5). There

may exist different behavioral models built at different levels of abstraction and/or

from different perspectives, which reflect accordingly the behaviors of the software

application at different levels of abstraction and/or from different perspectives.

• Mapping function α(s) = ŝ, which links each (concrete) state s of the program code

P with the corresponding (abstract) state ŝ of the program model M if any, or else

with a special state null if no appropriate abstract state is available. For different

behavioral models of the same software application, there may exist respectively

different mapping functions.

• LTL Property f , which specifies a characteristic predicate on the valid paths with

respect to the given program model M .

For a software program under investigation, let P be the source code and M a behavioral

model (at some level of abstraction and/or from some perspective) of P, then the map-

ping function α(s) = ŝ from the state space of P to that of M is determined. Given any

property f to be checked, online model checking aims to explore whether f holds along

the execution trace of P during program execution by checking f against a sequence of

(bounded) models derived from M following the program state monitored at runtime.

Errors in the behavioral model may indicate potential errors in the source code of the

target program; therefore, instead of checking the correctness of the actual execution

trace itself with respect to the property f , the basic idea of the online model checking is

to check f against a set of bounded models that covers the actual execution trace of P.

Executing P results in a sequence of (possibly infinite) program states, called execution

trace. A (program) state consists of a point in the control flow of P together with an

assignment of values to all the variables of P at this point of control. The state space of

P is a Cartesian product of the definition domains of all the components that constitute a

state. Not all the states in the state space of P can be reached by executing P, regardless

of the input values. It is intuitive to think of an execution trace of P as a trajectory of

a point moving through space [28].

Fig. 4.1 below illustrates the three possible relationships between the behavioral model

and the source code (implementation) of the target program:
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(i) equivalent – each concrete path ρ corresponds to an abstract path ρ̂ and vice versa;

(ii) over-approximate – each concrete path ρ corresponds to an abstract path ρ̂, but

not the other way round, i.e., the state space of the model is larger in this case;

(iii) under-approximate – each abstract path ρ̂ corresponds to a concrete path ρ, but

not the other way round, i.e., the state space of the model is smaller in this case.
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Figure 4.1: Three relationships between system model and system implementation

It is easy to reason that in the case of over-approximation, if no error is found in the

behavioral model, there is no error in the program code, too. This checking result is a

true positive. However, if an error path ρ̂ is found in the model, there may not really

exist a corresponding error path ρ in the program code as depicted in Fig. 4.1 (ii),

i.e., the error path ρ̂ is spurious. This checking result is a false negative. In the case

of under-approximation, if an error path ρ̂ is found in the model, there must exist a

corresponding error path ρ in the program code. This checking result is a true negative.

However, if no error is found, there may still exist errors in the program code, because

not all of the concrete paths, say the error path ρ, are reflected in state space of the

model as depicted in Fig. 4.1 (iii). This checking result is a false positive.

Since we check the (behavioral) model instead of the actual execution trace of the target

program, it is possible to deal with not only safety properties but also liveness properties.

As mentioned in Section 2.3, a general LTL property can be decomposed into a safety

property and a liveness property whose conjunction is the original [30]. It is fair to say

that a nontrivial LTL property is either safety or liveness or a conjunction of a safety

property and a liveness property. Without loss of generality, let f = x ∧ y where x is a

safety property and y a liveness property. Then, we have ¬f = ¬x ∨ ¬y, which means

any counterexample against f is either a finite witness against the safety property x or

an infinite witness against the liveness property y.

Therefore, it is sufficient for us to concern ourselves with online model checking for safety

properties as well as for liveness properties respectively.
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4.1.2 Online Model Checking for Safety Properties

Given a behavioral model M and a safety property f to be checked, let B¬f be the

Büchi automaton generated from ¬f . Obviously, B¬f accepts exactly those paths that

contradict f . Recall that a finite bad prefix is sufficient to contradict a safety property

(see Section 2.3). Consequently, it is possible to reduce the safety checking problem to

the invariant checking problem, which can be solved by reachability analysis. However,

if B¬f is nondeterministic, which is usually the case, it is not that easy to decide whether

a finite prefix is a bad prefix or not, especially when f contains some redundancy. One

possible solution is to build a deterministic automaton B′¬f from B¬f by means of the

subset construction [40]. The set of accepting states of B′¬f is set to be those states that

are universal. Now we need to simply check the invariant that the product of M and

B′¬f never reaches an accepting state of B′¬f .

Note, however, that B′¬f is, in the worst case, exponential in the size of B¬f , and thus

doubly exponential in the size of f , i.e., the number of subformulas of f . What’s more,

not every nondeterministic automaton can be transformed to an equivalent deterministic

one. E.g., the LTL formula FGp, no deterministic automaton can accept all those paths

that satisfy FGp [30].

According to [40], a safety property f may fall into one of the following three types:

(i) intentionally safe – all the bad prefixes against f are informative. E.g., Gp, all its

bad prefixes are informative in the sense that they reflect the whole reason why

Gp is violated.

(ii) accidentally safe – not all the bad prefixes against f are informative, but every

computation that violates f has at least one informative bad prefix. E.g., G(p ∨
(Xq∧X¬q)) = Gp, the minimal bad prefixes against Gp are also the bad prefixes of

G(p∨(Xq∧X¬q)), but they do not reflect the whole reason why G(p∨(Xq∧X¬q))
is violated.

(iii) pathologically safe – there exists at least one computation that violates f but has

no informative bad prefix. E.g., (G(q∨FGp)∧G(r∨FG¬p))∨Gq∨Gr, from its

negation (F(¬q∧GF¬p)∨F(¬r∧GFp))∧F¬q∧F¬r = F¬q∧F¬r∧(GFp∨GF¬p),
it is easy to see that its bad prefixes coincide with the bad prefixes of Gq ∨Gr.

Due to the existence of the liveness subformulas FGp and FG¬p in the formula,

no bad prefixes of Gq∨Gr, which is always finite, can tell the whole reason against

(G(q ∨ FGp) ∧G(r ∨ FG¬p)) ∨Gq ∨Gr.

The safety properties that are accidentally safe or pathologically safe contain redundancy

in them. E.g., the subformula Xq∧X¬q = X(q∧¬q) is unsatisfiable, thus can be safely
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removed from G(p∨ (Xq∧X¬q)); the subformula GFp∨GF¬p is equivalent to Gtrue,

thus can be safely removed from F¬q ∧ F¬r ∧ (GFp ∨GF¬p), too.

To simplify the problem, we assume that f contains no semantic redundancy or at least

no syntactic redundancy. This assumption is reasonable and feasible. If a safety formula

contains some liveness subformulas, these liveness subformulas are definitely redundant.

We’d better optimize the given formula so that all the liveness subformulas are deleted.

The resulting formula is thus syntactically safe in the sense that X, G and R are the

only temporal operators allowed. As a consequence, it is rather simple to figure out

those states that are universal in the Büchi automaton B¬f , whereby there is no longer

need to build the deterministic automaton from B¬f .

Let’s redefine the acceptance condition of B¬f as the set of all such states in B¬f that

are universal. Now we need to simply check the invariant that the product of M and

B¬f never reaches an accepting state of B¬f . In this sense, the new acceptance condition

of B¬f is also called finial condition, which defines a set of targets (or error states) with

respect to f .

Of course, for the simple formula f = Gp, B¬f is trivial and the acceptance condition is

¬p. We need to search only the state space of M for a finite path that reaches an error

state satisfying ¬p. For a general safety property, we have to search the state space of

M ×B¬f for an error path in M . In the worst case, the whole state space of M ×B¬f
needs to be explored. If the state space of M × B¬f in terms of states and transitions

is too large, it is impossible to conduct an exhaustive exploration within a reasonable

time and memory consumption. In industry, for a complex software system, the state

space of its behavioral model M alone may be too large to be searched exhaustively

for checking a simple safety property like Gp. That is, even for a simple property, it

is difficult to prove it completely (during the software development phase) [60]. This is

one reason why we present the concept of online model checking.

By doing reachability analysis during runtime, we only need to search a smaller partial

state space in M ×B¬f that covers the actual execution trace of the target program in

operation. The basic idea [61] is illustrated in Fig. 4.2. While the software system is

running, whenever a monitoring point is reached, the current state si, i.e., the values

of the system variables of interest, will be probed. The corresponding abstract state

ŝi = α(si) (if any) can thus be delivered to the online model checker. This in turn will

trigger a new checking process: a partial state space starting from ŝi in M × B¬f will

be explored within a predefined time limit (i.e., checking cycle) allocated to the online

model checker in order to see whether there exists an error path from ŝi to a set of

error states defined by the final condition of B¬f . In this way, the state space explosion

problem can be avoided to a large extent.



36 Chapter 4. Online Model Checking Mechanism
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Figure 4.2: Online reachability checking

Due to the limited checking time, only finitely many (transition) steps in M ×B¬f , say,

the next k steps starting from the monitored state can be explored in each checking

cycle. Let I(ŝi) be the initial condition derived from the state ŝi monitored in the

i’th checking cycle. The partial state space being explored in this checking cycle can

thus be specified as I(ŝi) ∧ |[M ]|k ∧ |[B]|k. Recall that |[M ]|k =
k∧

i=1
RM (si−1, si) resp.

|[B]|k =
k∧

i=1
RB(qi−1, qi) encodes the paths of length k in M resp. B¬f (see Section 2.5).

The path constraint |[C]|k =
k∨

i=0
FB(qi) tests if some state qi |= FB within k steps. As a

consequence, the online reachability problem in the i’th checking cycle can be formally

defined as

|[M,f ]|ik = |[M ×B¬f ]|ik = I(ŝi) ∧ |[M ]|k ∧ |[B]|k ∧ |[C]|k.

Figure 4.3: Bounded model checking during runtime
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It is easy to see that online reachability checking is a kind of bounded model checking

[22] applied during runtime as illustrated in Fig. 4.3.

Traditional bounded model checking is done offline in a way as illustrated in Fig. 4.4:

starting from k = 0, if no error is found in any initialized path of length bounded by k,

we progressively increase the bound k by 1, looking for errors in longer and longer traces,

until either an error is found, or the complete threshold is reached, or until the checking

problem becomes intractable. In our case, we leave the bound k unchanged all the way,

instead, we change the initial condition I(ŝi) of the paths of length k in each checking

cycle as illustrated in Fig 4.3. In effect, we are searching deeper and deeper in the state

space of M × B¬f while the state space being checked in each cycle is relatively small.

Therefore, by doing BMC during runtime it is quite possible to find deep, corner-case

errors (if any) in the large state space of a highly sophisticated software system.
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Figure 4.4: Traditional bounded model checking

In each checking cycle, the online model checker may return the following three possible

checking results:

• unsafe: the checking process is finished in time, and an error path is found. How-

ever, in case that the system model is an over-approximation, the result may be

a false negative. Anyway, the error path is useful for the user to figure out the

reason.

• safe: the checking process is finished in time, but no error path is found. However,

in case that the system model is an under-approximation, the result may be a false

positive. Otherwise, the software system is safe within the next k steps relative to

the current monitored state ŝi.

• unknown: the checking process is enforcedly terminated due to timeout. In this

case, the state space of the bounded model is not exhaustively explored. Since no

error is found before timeout, it is reasonable to believe optimistically that there

might be no error in the neighborhood of the currently monitored state.
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4.1.3 Online Model Checking for Liveness Properties

Now let’s consider the case that f is a liveness property. If we make every state in B¬f

accepting, then B¬f becomes universal, i.e., it accepts any path. That is, there is no

way to contradict a liveness property using any finite prefix. A run in B¬f is accepting,

if and only if it goes through some accepting state infinitely many times. For finite state

automata, this means that we have to look for an accepting loop. A loop is accepting,

if some state in it is accepting.

Every execution trace of a software system can be thought of as a trajectory of a point

moving through space. It is not easy to detect a loop in it during runtime, because this

requires to look backward into the “history” or look forward into the “future”. Since

we check the behavioral model, instead of the execution trace, of the software system,

both the “history” and the “future” are accessible, theoretically speaking, it is possible

for us to online check a liveness property during program execution.

Nevertheless, even on the model level it is still not easy to detect a loop during runtime,

especially when the loop is too long to be detected in one checking cycle, e.g., its length

is greater than the predefined bound k. Fortunately, we can avoid detecting a loop by

means of the state-recording translation [62] from liveness checking to invariant checking,

which can then be solved by online reachability analysis.

Recall that an infinite path (s0, s1, · · · , si−1)(si, · · · , sn) with sn = si is usually made up

of two parts: the finite prefix (s0, s1, · · · , si−1) and the infinite loop (si, · · · , sn−1, sn).

Let’s call (s0, s1, · · · , si−1) the stem, (si, · · · , sn−1) the loop body, and sn (i.e., the second

occurrence of si) the loop closure. The basic idea of the state-recording translation is to

memorize the starting point si of every (potential) loop, a loop then is detected at some

state sn whenever sn = si.

Given M ×B¬f = (V,D,R, I, L, F ) with V = VM ∪ VB, D = DM ×DB, R = RM ∧RB,

I = IM ∧IB, L : DM×DB → 2AP∪AP¬f , and F = FB. In order to do the state-recording

translation, three auxiliary variables are introduced: (i) h ∈ D stores the starting state

of a potential loop; (ii) vl ∈ {st, lb, lc} marks the location of a state in the path with st

for stem, lb for loop body, or lc for loop closure; (iii) vf ∈ {true, false} indicates the

occurrence of an accepting state in the loop body. In addition, the symbol ~ is used

to stand for an arbitrary but fixed state in D. The state-recording translation is then

done by adding additional predicates to the initial condition and the transition relation

of M × B¬f respectively. As a result, we can redefine the product of M and B¬f as

M ×B¬f = (V ′, D′, R′, I ′, L′, F ′), where

• V ′ = V ∪ {vl : Dl, vf : Df} with Dl = {st, lb, lc} and Df = {true, false};



Chapter 4. Online Model Checking Mechanism 39

• D′ = D ×D ×Dl ×Df ;

• R′((r, h, vl, vf ), (r′, h′, v′l, v
′
f )) ≡ R(r, r′) ∧ (R1 ∨R2 ∨R3 ∨R4 ∨R5) with

R1 ≡ (h = h′) ∧ (h′ = ~) ∧ (vl = st) ∧ (v′l = st) ∧ ¬vf ∧ ¬v′f ,

R2 ≡ (h = ~) ∧ (h′ = r′) ∧ (vl = st) ∧ (v′l = lb) ∧ ¬vf ∧ (v′f → r′ ∈ F ),

R3 ≡ (h = h′) ∧ (vl = lb) ∧ (v′l = lb) ∧ (vf → v′f ) ∧ (v′f → vf ∨ r′ ∈ F ),

R4 ≡ (h = h′) ∧ (h′ = r′) ∧ (vl = lb) ∧ (v′l = lc) ∧ vf ∧ v′f , and

R5 ≡ (h = h′) ∧ (vl = lc) ∧ (v′l = lc) ∧ vf ∧ v′f );

• I ′(r, h, vl, vf ) ≡ I(r) ∧ (I1 ∨ I2) with

I1 ≡ (h = ~) ∧ (vl = st) ∧ ¬vf , and

I2 ≡ (h = r) ∧ (vl = lb) ∧ (vf → r ∈ F );

• L′(r, h, vl, vf ) = L(r);

• F ′ ≡ (vl = lc).

The initial condition I is partitioned into two categories characterized by the predicates

I1 and I2 respectively. For each (old) initial state r ∈ I, r may be the starting point of

some potential loop, or it may be not the starting point of any potential loop. The former

case is governed by I2, r is then saved in h, and vl = lb, indicating that r is located in the

body of a potential loop. If vf is set to true, then r must be an accepting state; otherwise,

it doesn’t matter. The latter case is governed by I1, r is not saved, h is thus set to the

default value ~, and vl = st, indicating that r is located on the stem of the path. In this

case, r being accepting state or not is meaningless, therefore, vf = false. Consequently,

we may have three (new) initial states in I ′: (r, h = ~, st,¬vf ), (r, h = r, lb,¬vf ), and

(r, h = r, lb, vf ) for r ∈ F .

Generally, for each (old) state r ∈ D, let x 6= r be any ancestor of r, then we may

have the following seven types of new states in D′: (r, h = ~, st,¬vf ), (r, h = r, lb,¬vf ),

(r, h = r, lb, vf ), (r, h = x, lb,¬vf ), (r, h = x, lb, vf ), (r, h = r, lc, vf ) and (r, h = x, lc, vf ).

The transition relation R is partitioned into 5 categories characterized by the predicates

R1, R2, R3, R4 and R5 respectively. For each (old) transition (r, r′) ∈ R, R1 is applied to

the state (r, h = ~, st,¬vf ) to get (r′, h = ~, st,¬vf ), which are located on the stem of

the path, i.e., no state is recorded; R2 is also applied to the state (r, h = ~, st,¬vf ), which

makes the state r′ recorded, thus we have (r′, h = r′, lb,¬vf ) and (r′, h = r′, lb, vf ) (for

r′ ∈ F ) located in the body of a potential loop; R3 is applied to the following four states

(r, h = r, lb,¬vf ), (r, h = r, lb, vf ), (r, h = x, lb,¬vf ), and (r, h = x, lb, vf ) to produce

(r′, h = r, lb,¬vf ), (r′, h = r, lb, vf ), (r′, h = x, lb,¬vf ) and (r′, h = x, lb, vf ) accordingly,

which are all located in the loop body; R4 is applied to the state (r, h = r′, lb, vf ) to

obtain (r′, h = r′, lc, vf ), which indicates that the previously saved state r′ does occur
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again, thus, the potential loop is indeed a loop; R5 is applied to two states (r, h = r, lc, vf )

and (r, h = x, lc, vf ) to produce (r′, h = r, lc, vf ) and (r′, h = x, lc, vf ) respectively.

Fig. 4.5 illustrates a state-recording process with respect to a path of M×B¬f . From s0

to si−1 is the stem of the path, which is obtained by applying I1 and then applying R1

finitely many times. At the state (si−1,~, st,¬vf ), applying R2 we have (si, si, lb,¬vf ),

in which the first occurrence of si is saved in h , indicating the starting point of a

potential loop. Since si is not accepting, thus vf = false. Afterwards, applying R3

finitely many times until the state sj is reached. Since sj is an accepting state, thus vf

is changed from false to true, indicating that an accepting state has occurred in the

loop body. Repeatedly applying R3 thereafter until R4 is applicable, which indicates

that si is reached again. Consequently, we get the state (si, si, lc, vf ), i.e., the end of the

loop. Thus, an accepting loop is detected. It is easy to see that the accepting loop is

(synchronously) detected as soon as the saved state occurs the second time. Since then

only R5 is applicable, thus h, vl and vf remain unchanged.
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Figure 4.5: A state-recording process

The new definition of M ×B¬f accepts a path whenever vl = lc, which indicates that an

accepting loop with respect to B¬f is detected. As a consequence, the liveness checking

problem is transformed into the invariant checking problem.

Let |S| be the number of (reachable) states and |T | the number of the transitions in the

original M ×B¬f . After the state-recording translation is applied, the number of states

is O(|S|2) and the number of transitions is O(|S| · |T |).

The above state-recording translation can be used to detect the shortest counterexample

(if any). If it doesn’t matter whether or not the counterexample is the shortest one, then

we do not need to take any state as the starting point of a potential loop. Instead, we

record only those accepting states as starting points. Thus, a loop is detected, whenever

a saved accepting state occurs again. In this way, the auxiliary variable vf is no longer

useful. As a result, we need to redefine the initial condition and the transition relation

of M ×B¬f as follows:

• I ′(r, h, vl, vf ) ≡ I(r) ∧ (I ′1 ∨ I ′2) with

I ′1 ≡ (h = ~) ∧ (vl = st)

I ′2 ≡ (h = r) ∧ (vl = lb) ∧ (r ∈ F )
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• R′((r, h, vl, vf ), (r′, h′, v′l, v
′
f )) ≡ R(r, r′) ∧ (R′1 ∨R′2 ∨R′3 ∨R′4 ∨R′5) with

R′1 ≡ (h = h′) ∧ (h′ = ~) ∧ (vl = st) ∧ (v′l = st)

R′2 ≡ (h = ~) ∧ (h′ = r′) ∧ (vl = st) ∧ (v′l = lb) ∧ (r′ ∈ F )

R′3 ≡ (h = h′) ∧ (vl = lb) ∧ (v′l = lb)

R′4 ≡ (h = h′) ∧ (h′ = r′) ∧ (vl = lb) ∧ (v′l = lc)

R′5 ≡ (h = h′) ∧ (vl = lc) ∧ (v′l = lc)

Let |F | be the number of accepting states, which is usually smaller than |S|. Following

this translation, the number of states is O(|S| · |F |) in the worst case. In addition, the

size of state is also smaller, since vf is not used. Of course, there are also other ways to

optimize the state-recording translation, but this is not the focus of this thesis.

4.1.4 Discussion

Before a software application is released (or deployed), it has usually already been verified

or validated intensively by means of different checking techniques, e.g., static analysis,

simulation and testing as well as model checking, and others. Therefore, it is reasonable

to believe that the remaining errors (if any) may locate quite possible in some deeper

corner in the state space of the software system. The online model checking mechanism is

a relatively lightweight solution to detect such kind of subtle errors. We’ve addressed that

the online model checking problem can be reduced to the online reachability checking

problem. We now discuss in the general sense some points that should be noticed.

Falsification instead of Verification

Obviously, our online model checking is by nature a lightweight and incomplete method.

It is suitable to falsify instead of verify the behavioral model against the given property.

Due to its working on the model level, the online model checker is able to look into the

near future in the system model. Thus, it can not only detect the error that has already

happened, but also the error that has not happened yet, as illustrated in Fig. 4.6.

bs0

bs1

bs2
bsi

Figure 4.6: Online model checking process
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If the partial state space starting from the current (abstract) state, say ŝi, overlaps with

an unsafe region marked as
⊗

, the (potential) error can be detected by the online model

checker even if the unsafe region is located much far away from the initial state(s), say

ŝ0, of the system model. In case that the actual execution trace (see the dotted line) has

already gone through the unsafe region, then the error has already happened. Otherwise,

the error has not happened yet. In this sense, the online model checker is able to predict

potential error(s) during system execution.

Let k be the predefined bound of the partial state space that needs to be explored from

each monitored state and k′ the number of steps that have been actually searched by

the online model checker in each checking cycle. Then, an error located at the (k′+1)’th

step can not be seen by the online model checker in the current checking cycle. E.g., the

unsafe region near the state ŝ2 in Fig. 4.6 can not be seen by the online model checker

in the second checking cycle.

Monitoring Points

There are a finite number of monitoring points. They are distributed in the source code

of the software program to be checked such that

• any two adjacent monitoring points are at distance at most k steps1;

• any location other than monitoring point in the source code is at distance at most

k steps from some monitoring point;

• between any two locations with distance greater than k steps there must exist

some monitoring point.

In Section 5.3 we’ll discuss how to determine the monitoring points in the the control

flow graph derived from the source code of the target program. For any two adjacent

monitoring points x and y in the control flow graph, it is easy to reason that there may

be more than one (loop free) path between x and y. Let δmax(x, y) be the maximum

distance between x and y. In addition to the above mentioned three conditions, we’d

like to make k − δmax(x, y) ≤ ε as illustrated in Fig. 5.3, where ε > 1 is an integer far

smaller than k. That is, for any monitoring point x, the succeeding monitoring point y

is located at most k and at least k − ε steps away from x.

No matter what property is to be checked, the state information is always monitored

at each predefined monitoring point. That is, the locations of the monitoring points

1Here one step means one transition (step) in the model of the target program.
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keep unchanged. There is no need to adjust the monitoring points in the source code

for online checking different properties. That is, after the monitoring points have been

instrumented in the source code, we are able to build the executable of the software

program once and for all.

Pre-Checking and Post-Checking

In each checking cycle the online model checker just uses each (current) state si mon-

itored during program execution to locate a starting point ŝi = α(si) in state space of

the program model (see Fig. 4.2). Thereafter, it conducts (semi-)exhaustive search for

errors independent of the execution of the target program. Theoretically speaking, the

online model checker may run ahead of or fall behind the progress of the target program.

We say that the online model checker is in the pre-checking mode, if it has explored at

least k steps before timeout, i.e., k ≤ k′; otherwise, it is in the post-checking mode, i.e.,

k′ < k, as illustrated in Fig. 4.7, where the bullets represent the states monitored during

system execution. It is easy to see that in the pre-checking mode the searched region

has already covered the next monitored state before timeout, while in the post-checking

mode the searched region may not cover the next monitored state, provided that the

online model checker conducts an exhaustive search. Otherwise, the next monitored

state may not be covered in both cases.

CallableObject

+ ~CallableObject()
+ callbackFunc()

MonitorQueue

− _monitor_queue[ARRAY_SIZE]: Monitor_Node
− _front: int
− _rear: int
− _capacity: int = ARRAY_SIZE
− _cur_cap: int

# enqueue(incoming_struct: Monitor_Node): void
# dequeue(outgoing_struct: Monitor_Node*): void
# checkFullQueue(): int
# checkEmptyQueue(): int
+ MonitorQueue()
+ initialize(): void
+ writeIntoQueue(): void
+ readFromQueue(buffer: char*): void

wtReadFromQueue

+ callbackFunc()

MonitorMemory.hh

k k'k kk'

k'=k

k'

k<k' k' < k

Pre-Checking mode Post-Checking mode

Figure 4.7: Pre-checking and Post-checking

For a nontrivial LTL formula f , we usually have to search in the state space of M×B¬f .

Given an execution trace of the program to be checked, let s0  s1  · · · si  · · · be

the sequence of states monitored during runtime at the locations l0, l1, · · · , li, · · · in the

source code. For each state si, there is a unique state ŝi = α(si) in M . For the sake of

simplicity, we also use si to refer to ŝi in M in case of no ambiguity. Generally, si may

be compatible with more than one state in B¬f . On the one hand, the automaton B¬f

is usually not deterministic; on the other hand, there may be more than one path going

through the states s0, s1, · · · , si in M , which matches more than one run in B¬f . Let Qi

be the set of states in B¬f such that for any state qi ∈ Qi, the compound state (si, qi) is
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reachable via a path through the states s0, s1, · · · , si from some initial state in (s0, q0).

Strictly speaking, in each checking cycle the online model checker should conduct the

search in the partial state space of M × B¬f starting from the set of states (si, Qi) at

least k steps in depth.

Ideally, we assume that the online model checker conducts an exhaustive search. Let si

be the state monitored at the location li for the current checking cycle and sj be the

state monitored at the location lj for the next checking cycle. The starting points in the

next checking cycle are then calculated based on the current starting states (si, Qi) and

the next monitored state sj . Formally, let forwardReachableSet(si, Qi, k, ε) be the set

of the (compound) states in M × B¬f that are forward reachable from (si, Qi) within

[k − ε, k] steps in the current checking cycle.

In the pre-checking mode the online model checker can reach the states at least k steps in

depth. Hence, we are able to obtain forwardReachableSet(si, Qi, k, ε) as a byproduct.

Consequently, (sj , Qj) = {(s, q) ∈ forwardsReachableSet(si, Qi, k, ε) | s = sj} are the

starting points of the next checking cycle.

In the post-checking mode the online model checker may not reach the states up to k

steps in depth before timeout. A possible solution is to resume the search work in the

next checking cycle until forwardReachableSet(si, Qi, k, ε) is obtained. There is also a

simple but not precise way to calculate (sj , Qj). That is, we can simply set Qj to all

the states in B¬f that are compatible with sj , i.e., Qj = {q ∈ Q | sj |= LB(q)}. As

a consequence, the states in (sj , Qj) are not ensured to be reachable from some initial

state of M × B¬f . Thus, the checking result may be not precise in case that some

compound state (sj , qj) does reach an error state, but is not reachable from any initial

state of M ×B¬f , i.e., the detected error is spurious.

In some special cases, there is no need to calculate (si, Qi) for each monitored state si.

E.g., the property f = Gp, the automaton B¬f is trivial, therefore, the search is carried

out in M ; from the automaton BFGp in Fig. 2.6 (b) it is easy to see that the states q0

and q1 are always reachable without any constraint on the paths to them, thus, we have

Qi = {q0, q1} for each si.

Variables of Interest

In the case that there are too many variables in the behavioral model M , considering

the monitoring overhead and the communication overhead between the target program

and the online model checker, it is better to monitor only the most important variables

in the system model, e.g., the program counter, the variables occurred in the property
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to be checked, and the variables in the cone of influence of the property, etc.. The user

should decide what variables are of most interest in the system model.

Let Ṽ (⊂ V ) be the subset of the variables to be monitored during system execution.

This incomplete information may not identify an individual state, but a set of states in

the behavioral model, whose valuations on the variables in Ṽ equal to the observed ones.

That is, there may exist more initial states in each checking cycle. This, in turn, means

that the workload of the online reachability analysis may become heavy. One possible

solution is to calculate an abstraction M̃ of the system model based on the variables in

Ṽ . In this way, each monitored state can be mapped to a unique state in M̃ .

In this thesis, we assume that all the variables in M can be monitored during runtime.

Producer-Consumer Problem

During system execution a sequence of (concrete) states are probed whenever a mon-

itoring point is reached. These states are stored in a (ring) buffer. In each checking

cycle, the online model checker tries to take a state from the buffer as a new start-

ing point, and then goes to search for an error path in the state space derived from

the behavioral model and the property to be checked. This procedure is similar to the

producer-consumer problem as shown in Fig. 4.8.

Runtime
Execution Trace

put take Online
Model Checking

Ring
Buffer

Figure 4.8: Producer-Consumer problem

In our case, we do not restrict the communication manner between the target system

and the online model checker, be it synchronous or asynchronous. To reduce the impact

of the online model checker on the execution of the target system, we do assume that

the monitored states are put into the buffer without blocking. That is, if the buffer is

full, the oldest state will be replaced by the latest one. On the other hand, if the buffer

is empty, i.e., no state is available, the online model checker will resume the search work

of the last checking cycle, provided that the work has not finished yet.

The buffer is used to balance the precessing speed of the both sides to some degree.

Ideally, no state in the buffer would be dropped by the online model checker. In reality,

it is not always the case. The producer might produce more data than the consumer

could consume in time. Generally, the online model checking is carried out in the state

space of M × B¬f . Let si be the starting point of the last checking cycle, and sj the
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starting point of the new checking cycle. If more than one state between si and sj is

dropped by the online model checker, then it is not easy to calculate precisely (sj , Qj),

because sj may be far away from si in the state space. In this case, the error detected

may be spurious. Of course, this is no longer a problem for the invariant checking that is

carried out in the state space of M , since every monitored state is reachable from some

initial state of M .

In this thesis, if the search is carried out in the state space of M ×B¬f , we assume that

no (monitored) state is dropped by the online model checker, i.e., the buffer is large

enough to record all the states monitored during runtime.

Others

The user is allowed to check different properties during runtime, i.e., the properties to be

checked are not necessary to be predefined in advance during the software development.

The properties that have not been checked during the software development, or have been

checked during the software development, but not completely proven, can be checked at

runtime after the software is deployed.

The study [63] indicates that “many informal requirements are specified as properties

of segments of program executions.” In practice, it is usually not necessary to check the

whole software program during runtime, instead, it is better to focus on some specific

component or piece of code in the component, which is considered to be safety critical.

4.1.5 Prototype Implementation and Experimental Results

Given the behavioral model M and the property f , be it safety or liveness, theoretically,

we are able to check M against f during runtime by means of online invariant checking.

The invariant derived from M and f partitions the state space of M × B¬f into two

non-overlapping regions: the set of valid states and the set of invalid states. What we

need to do is to search for the potential error states in the partial state space of M×B¬f
starting from each (abstract) state monitored during system execution.

As a proof of concept, we’ve implemented a prototype of the online model checking al-

gorithm using the explicit state based breadth first search (BFS). We adopt the explicit

state based instead of the symbolic state based search because by searching the explicit

state space we are able to observe the internal structure of the system model and its

influence on the performance of the online model checker. In addition, the implementa-

tion is relatively simple, it’s a good starting point for us to learn intuitively the details

of the online model checking mechanism.
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Online Model Checking Algorithm for Safety Properties

Suppose that the time limit allocated to the online model checker is T time units. Each

monitored (concrete) state is first mapped to the corresponding abstract state and then

stored in the predefined ring Buffer during system execution. Algorithm 4.1 shows the

pseudo code of the online model checking algorithm for safety properties. This algorithm

is simplified in the sense that for each monitored state s the starting points for a new

checking cycle are calculated in a simplified way: (s,Qs) = {(s, q) | q ∈ Q∧ s |= LB(q)},
i.e., s is composed with any state q in B¬f such that s |= LB(q).

The algorithm is straightforward: the online model checker waits until the Buffer is not

empty, then it takes a state s from the Buffer. After calculating the starting points

(s,Qs), it then goes to search the partial state space starting from (s,Qs) layer by layer

until some error state is reached, or the whole partial state space has been explored, or

the timeout occurs, whichever happens first. In the former two cases, the online model

checking algorithm will terminate itself with the output unsafe or safe accordingly. In

the latter case, the online model checker will output safe, if it has explored at least k

steps in depth; or unknown, otherwise. Afterwards, a new checking cycle starts. The

online model checker tries to take a new monitored state from the Buffer. If there is a

state available, then it will repeat the above mentioned process; otherwise, it will resume

the search work in the last checking cycle.

Concretely speaking, the algorithm is made up of the following three parts:

• lines 3-9: in the first checking cycle, the online model checker deals with the

initial state s, which is stored in the Buffer initially. r set is the set of starting

(compound) states derived from s and B¬f for the first checking cycle. If no

error state is found in it, the states in r set are pushed into the queue for further

processing, followed by a null as delimiter between layers. The index of layer starts

with zero. step records the index of the current layer being processed.

• lines 12-25: in the current checking cycle, the online model checker goes to explore

the state space of M × B¬f layer by layer (by means of BFS). For each state r

(other than null) in the queue, its successors are calculated. r is stored in the

auxiliary queue tmp queue. The states in next(r) are then pushed into the queue

for further processing in case that no error state is found in it. Otherwise, the

online model checker will terminate itself with the output unsafe. Notice that the

states of two adjacent layers in the unfolded state transition graph may coexist

in the queue. The delimiter null is just used to separate them. When a null is

encountered, it indicates that all the states in the current layer have been checked,
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therefore, step needs to be increased by one. It is worth pointing out that a state

r′ in next(r) will not be added into the queue if r′ ∈ tmp queue ∪ queue, i.e., r′

has already occurred in the current layer. That is, the number of states in queue

may decrease to zero. In this case, the online model checker will terminate itself

with the output safe. Otherwise, it will continue to check the states in the next

layer until the timeout occurs.

• lines 27-38: when the timeout occurs, the online model checker will output safe,

if at least k steps in depth has been explored; or unknown, otherwise. Thereafter,

a new checking cycle starts. If the Buffer is not empty, the online model checker

takes a new current state s and then calculates a new set r set of the starting

points for the new checking cycle. Similar to the initial case, the states in r set

are pushed into the queue followed by null, if no error is found in it, and step

is reset to 0. If no state is available in the Buffer, the online model checker will

simply resume the search work left in the last checking cycle.

Algorithm 4.1: Explicit State-based Model Checking Algorithm

input : M,B, T, k

output : safe, unsafe, unknown

1 begin

2 wait ( isEmpty(Buffer) == false) //wait until Buffer 6= ∅
3 set timer to T time units //initial checking cycle

4 s←− Buffer //pop

5 r set = {(s, q) | q ∈ IB ∧ s |= LB(q)} //s ∈M
6 i f ∃r ∈ r set s.t. r.q ∈ FB then return unsafe

7 queue = r set //initialize queue

8 queue←− null //insert delimiter of layers

9 step = 0

10 tmp queue = ∅ //auxiliary queue

11 while isEmpty(queue) == false do

12 r = (s, q)←− queue //dequeue

13 i f r 6= null then //r is not delimiter of layer

14 tmp queue←− r //enqueue

15 next(r) = {(s′, q′)| s′ ∈ next(s) ∧ q′ ∈ next(q) ∧ s′ |= LB(q′)}
16 for each r′ ∈ next(r) do

17 i f r′.q ∈ FB then return unsafe

18 i f r′ 6∈ tmp queue ∪ queue then queue←− r′ //enqueue

19 endfor

20 else //null is dequeued (delimiter of layers)

21 step++

22 tmp queue = ∅
23 i f isEmpty(qeueue) == false then queue←− null //delimiter
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24 else return safe

25 endif

26 i f isT imeout(timer) then

27 i f step ≥ k then output safe

28 else output unknown

29 set timer to T time units //new checking cycle

30 i f isEmpty(Buffer) == false then //Buffer 6= ∅
31 s←− Buffer //pop

32 r set = {(s, q) | q ∈ Q ∧ s |= LB(q)} //s ∈M
33 i f ∃r ∈ r set s.t. r.q ∈ FB then return unsafe

34 queue = r set //initialize queue

35 queue←− null //insert delimiter of layer

36 step = 0

37 tmp queue = ∅
38 endif

39 endif

40 endwhile

41 end

The complexity of the algorithm is polynomial in the number of the states and transitions

in the partial state space having been searched. In theory, compared to the simplified

solution, it is usually more time-consuming to determine precisely the starting points

for a new checking cycle. How to calculate the exact starting points efficiently is a topic

worth further research. In practice, it should be acceptable to sacrifice accuracy for

speed. Although the online model checker might report spurious errors, theoretically, it

does not overlook real errors (if any) in the partial models having been checked.

Online Model Checking Algorithm for Liveness Properties

As for liveness checking, we have to search for an error loop in the state space of M×B¬f .

To this end, for each (compound) state r = (s, q), we introduce a “memory” of r,

denoted as memo(r), to memorize those accepting states that can reach r. Initially,

memo(r) = {r}, if q is an accepting state; or memo(r) = ∅, otherwise. We need then to

modify the for loop in Algorithm 4.1 in the following way:

16 for each r′ ∈ next(r) do

17 i f r′.q ∈ FB ∧ r′ ∈ memo(r) then return unsafe

17′ memo(r′) += memo(r) //update the memory of r′

18 i f r′ 6∈ tmp queue ∪ queue then queue←− r′ //enqueue

19 endfor
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It is easy to reason that an accepting loop (counterexample) can be detected, if r′ is an

accepting state and belongs to memo(r), because r′ is reachable from r and vice versa.

In this case, the algorithm returns unsafe. Otherwise, memo(r′) is updated by inheriting

the memory of r (line 17′).

Experimental Results

Two experiments have been carried out on the Linux platform with Pentium-IV 3.00Ghz

CPU and 1GB RAM. Our goal is to determine how far away the online model checker is

able to look into the near future from each (monitored) state of the given model within a

predefined time interval. The explicit state models are selected from the benchmark set

BEEM [64]. They are finite state machines (FSM) derived from mutual exclusion algo-

rithms, communications protocols, and so on, in research or industry settings. However,

the corresponding source code is not available. This is not a problem because we focus

on the model checking part, not on the state monitoring part. The real execution trace

can be replaced by the “execution trace” generated randomly from the corresponding

finite state machine. Thus, for each monitored state si, we have ŝi = si.

Model Type State Transition Avg. Out-
Degree

Max. Out-
Degree

BFS 
Height

Max.
Stack

Boolean 
Variables

Min. Look-
ahead

Max. Look-
ahead

Avg. Look-
ahead

sorter_1 Controller 20544 30697 1.5 5 198 617 36 40 299 103

collision_1 Communications 
protocol 5593 10792 1.9 5 57 617 25 26 81 48.7

synapse_2 Protocol 61048 125334 2.1 18 41 2349 46 7 28 21.5

driving_phils_2 Mutual exclusion 
algorithm 33173 81854 2.5 9 150 3702 27 31 97 65.7

blocks_1 Planning and 
Scheduling 7057 18552 2.6 6 19 4263 23 8 21 14

peterson_1 Mutual exclusion 
algorithm 12498 33369 2.7 5 54 1862 30 13 39 31.7

szymanski_1 Mutual exclusion 
algorithm 20264 56701 2.8 3 72 2064 27 13 90 49.7

hanoi_1 Puzzle 6561 19680 3 3 256 4376 36 56 103 75.9

iprotocol_2 Communications 
protocol 29994 100489 3.4 7 91 443 39 18 451 50

phils_3 Mutual exclusion 
algorithm 729 2916 4 6 17 518 18 156 357 265

cyclic_scheduler_1 Protocol 4606 20480 4.4 8 55 1819 40 23 437 278

rushhour_1 Puzzle 1048 5446 5.2 9 73 535 28 66 248 150.7

rushhour_2 Puzzle 2242 12603 5.6 10 80 906 32 36 408 116.4

pouring_1 Puzzle 503 4481 8.9 9 13 348 16 42 101 71.9

reader_writer_2 Protocol 4104 49190 12 19 13 4097 25 4 16 9.9

pouring_2 Puzzle 51624 1232712 23.9 25 15 44509 18 1 4 2

Table 4.1: Experimental results of online invariant checking

One experiment is conducted for online invariant checking. 16 models are selected from

the BEEM benchmark set. The features of these models are given in the number of

states, the number of transitions, the average degrees of states, the height of BFS, and

the maximal stack of DFS as well as the number of Boolean (state) variables. The

invariant to be checked is f = Gp, where the propositional formula p is derived from the

set of the states in each model. The experiment is designed to compute for each model

how many steps (i.e., transitions) the online model checker is able to look ahead from
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each state in the model within T = 1ms2. The experimental results in Table 4.1 show

the minimal, the maximal and the average look-ahead from the states of each model.

It is easy to see that the out-degrees of the states and the number of the Boolean variables

have a large influence on the look-ahead performance of the online reachability checking.

The other experiment is conducted for online liveness checking. The selected model is

driving phils 2, which is derived from a mutual exclusion algorithm of processes accessing

several resources, motivated by “The Driving Philosophers” [65]. The property to be

checked is f = G(ac0 → Fgr0), where the proposition ac0 denotes that process 0 requests

a resource and the proposition gr0 denotes that the resource is granted to process 0. In

other words, if process 0 requests a resource, the resource will be granted to it eventually.

This is a liveness property, its negation is F(ac0∧G(¬gr0)). The Büchi automaton B¬f

is illustrated in Fig. 4.9. It shows that the error path must end with a loop satisfying

G(¬gr0), i.e., ¬gr0 holds in each state on the loop.
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Figure 4.10: Experimental results of online liveness checking

In this experiment, the checking cycle is set to T = 5ms, i.e, the online model checker

has at most 5ms to do the search work in each checking cycle. The monitored states are

sampled every five steps from the execution trace generated randomly from the model.

The experimental result in Fig. 4.10 is obtained by running 2000 checking cycles. The

X-axis represents the checking cycles and the Y-axis (transition) steps checked in each

checking cycle. The property is not violated at least up to these 2000 checking cycles.

The minimal look-ahead is 23 steps, the maximal look-ahead is 74 steps and the average

look-head is 57.2 steps relative to the corresponding monitored states.

2The actual runtime may be more than 1ms in case that the timeout signal is not processed in time.
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Extend Online Model Checking Algorithm by means of Random Search

As far as explicit state based search is concerned, random search is a natural way to

improve the performance of our online model checking algorithm in terms of the look-

ahead steps (in each checking cycle) so that those models with a high density of states

can also be checked efficiently during runtime.

The paper [42] also justifies the random search approach by saying that “since BMC is

generally used to find counterexamples in contrast to proving that a property holds”, and

“the ability to use a random search is an advantage of the explicit state engine”, although

“this process may miss executions and thus counterexamples”. The experimental results

in [42] indicate that the explicit state based random search for BMC is surprisingly “as

effective as SAT-based BMC in finding short counterexamples for safety properties”.

Here the “short” counterexamples are at a depth of at most 50 steps in the state space.

In our case, a simple solution is to conduct a random BFS by introducing a new func-

tion select(r, dlim) to select randomly dlim successors of r if necessary, where dlim is a

predefined threshold on the out-degrees of the states in the model. If |next(r)| ≤ dlim,

select(r, dlim) = next(r). Otherwise, |next(r)| > dlim, then select(r, dlim) selects ran-

domly or in some heuristic way dlim states from next(r). As a result, the for loop in

Algorithm 4.1 can be modified in the following way:

16 for each r′ ∈ select(r, dlim) do

17 acceptance checking code

18 i f r′ 6∈ tmp queue ∪ queue then queue←− r′ //enqueue

19 endfor

Experimental Results

Two experiments have been carried out on a Linux platform with Intel Core 2 Duo

3.00Ghz CPU and 4G RAM. The model used is driving phils 2, which has 33,173 states

and 81,854 transitions. The average out-degree of the model is 2.5, the maximal out-

degree is 9 and the minimal one is 1. The state variables are encoded into 27 Boolean

variables. The timer is set to T = 5ms for each checking cycle. The experimental results

in Fig. 4.11 and Fig. 4.12 are obtained by running 200 checking cycles respectively.

For online invariant checking, the minimal, maximal and average look-ahead are 63, 146

and 113.3 steps respectively in the case dlim = 2; 48, 103, and 85.8 in the case dlim = 3;

47, 102, and 83.0 in the case that no random search is used. The liveness property to

be checked is also G(ac0 → Fgr0). The minimal, maximal and average look-ahead are

44, 143, and 99.4 steps respectively in the case dlim = 2; 23, 85 and 64.5 in the case
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dlim = 3; 30, 96 and 64.8 in the case that no random search is used. Considering that

the average out-degree of the model is 2.5, we are not able to gain much improvement

in performance by setting dlim to 3. However, we do gain better performance by setting

dlim to 2.

Figure 4.11: Online invariant checking by means of random BFS

Figure 4.12: Online liveness checking by means of random BFS

In the prototype the function select(r, dlim) is implemented to select states randomly.

In practice, the source code is usually validated by simulation and testing in the soft-

ware development phase. Some heuristic information learned in this process, e.g., which

control branch is more important, can be used to weight the related transitions in the

model. Accordingly, the function select() can be implemented in such a way that im-

portant transitions have more chance to be selected. If a state is reached more than one

time, at each time a well-defined select() function should select different successors of

this state. In addition, the threshold dlim can also be adjusted dynamically. In effect,

the function select() samples randomly the bounded paths of the model during runtime.
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4.2 Accelerating Online Model Checking

Doing model checking online has to suffer from the limited execution time allocated to

each checking cycle. The performance of online model checking depends on the search

algorithm, the underlying hardware and the operating system as well as the complexity of

the problem to be checked. Therefore, we can accelerate online model checking by means

of reducing the workload, speeding up the search engine and using parallel computing.

4.2.1 Reducing Workload

After the given model checking problem is transformed into the reachability problem, the

product of M and B¬f is reformulated as a finite automaton, denoted still as M×B¬f =

(V,D,R, I, L, F ) for the sake of convenience.

Offline Forward Exploration

The transition relation R(r, r′) defines a one-step transition relation in the state space

of M × B¬f . That is, applying R to any (compound) state r ∈ D, we get the one-step

successors of r. Let R1 = R, then we define the two-step transition relation R2(r, r′′) =

∃r′.R1(r, r′) ∧ R1(r′, r′′). Now applying R2 to any state r ∈ D, we are able to get the

two-step successors of r. Theoretically, starting from R1 we are able to offline calculate

multi-step transition relations R2, R3, · · · , Rk in the state space of M ×B¬f . Applying

Rm for 1 ≤ m ≤ k to any state r ∈ D, we are able to get the m-step successors of r.

Recall that for safety properties there is no way to extend a bad prefix to an infinite run

which is accepting (see Section 2.3). That is, once an error state is reached, the states

that follow it are all identified as error states. As a consequence, it is safe to search for

error states by multi-step jumping in the state space of M ×B¬f .

Let s be a state monitored at the location l for the current checking cycle. Upon receiving

s, the online model checker first calculates a set r set of the compound states compatible

with s as starting states of this checking cycle, and then simply applies Rk to r set to

see whether or not the the k-step successors of the states in r set may reach some error

state. It is worth pointing out that if an error state is detected, inbetween s and the the

error state there may exist other error states, i.e., the error state detected by multi-step

jumping may be not the one closest to s.

Now let s′ be a state monitored at the location l′ for the next checking cycle. Notice that

the distance d(l, l′) of any two adjacent monitoring points l and l′ falls into the integer
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interval [k − ε, k]. Therefore, the set r′ set of the starting states in the next checking

cycle is r′ set = {r′ | r′ ∈ forwardReachableSet(s,Q, k, ε) ∧ r.s = s′}. Similarly, by

applying Rk to r′ set, the online model checker is able to see whether or not the k-step

successors of the states in r′ set may reach some error state. In this way, as illustrated

in Fig. 4.13, the online model checker avoids searching step by step in the state space of

M ×B¬f .
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Figure 4.13: k-step forward jump

In practice, if Rk is not available due to the complexity of the behavioral model M , then

applying some Rm for 1 < m < k can also speed up the online checking process.

Taking this offline forward exploration into account, the pre-checking and post-checking

defined in Section 4.1.4 is no longer suitable. We say that the online model checker is

in the pre-checking mode, if there is one and only one state available in the ring buffer;

otherwise, it is in the post-checking mode, i.e., there is more than one state available.
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Figure 4.14: d-step forward jump

Although on the model level the distance d(l, l′) of any two adjacent monitoring points

l and l′ may be not unique, d(l, l′) (∈ [k − ε, k]) is unique with respect to the given

actual execution trace of the program to be checked. If this unique d(l, l′) is available

during runtime, then we can also make the online model checker each time take from

the buffer two states s and s′ in a row whenever it is in the post-checking mode. Instead

of jumping k steps forward, the online model checker in this case jumps d(l, l′) steps

forward, provided that s is monitored at the location l and s′ at the location l′, as

illustrated in Fig. 4.14. In this way, it is relatively easy to to calculate the exact starting

points for the new checking cycle. Notice that d(l, l′) and d(l′, l′′) may be not equal.
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Offline Backward Exploration

The final acceptance condition F (ofM×B¬f ) defines the set of error states. Let’s extend

the (initial) unsafe condition F to become F ∗ = F0 ∨ F1 ∨ · · · ∨ Fn by offline backward

exploration up to n steps starting from F0 = F , where Fi = {r | R(r, r′) ∧ r′ ∈ Fi−1}
for 0 < i ≤ n, as illustrated in Fig. 4.15. In effect, the workload of the online model

checker is reduced to a large degree by calculating in advance the backward reachable

set F ∗ from the (original) set F of error states.

*

Figure 4.15: Speed up online model checking

Due to time and memory limits, it is usually difficult for the online model checker to

explore forward too deep in the state space in each checking cycle. Therefore, the bound

k of the online depth-limited search should be set to a relatively small number. However,

the calculation of F ∗ is carried out offline, whereby time and memory are no longer a big

problem. In addition, many existing efficient approaches to reachability analysis can be

used to calculate F ∗. As a consequence, it is possible to explore backward much deeper

in the state space to be checked. Thus, it is reasonable to assume that n is much larger

than k. Of course, this doesn’t mean that n is large enough to solve the problem being

checked. The calculation of F ∗ still suffers from the state space explosion problem, n is

a limit obtained under a reasonable time and memory consumption.

Without the offline backward exploration, the online model checker is able to look ahead

ideally k steps in each checking cycle; with the offline backward exploration, the online

model checker is now able to look ahead ideally k + n steps.

As for the liveness checking problem, although we can transform it into the safety check-

ing problem by means of state-recording translation (see Section 4.1.3), the state space
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is increased quadratically in the number of states, not to mention the number of tran-

sitions. To make the online liveness checking process more efficient, we’d better make

the computation during runtime as simple as possible, but not simpler.

Loop detection is the key to the liveness checking problem, which usually leads to addi-

tional time and memory consumption. A possible solution is to leave the loop detection

done offline. The point is to calculate beforehand a new acceptance condition F0 ⊆ F

such that for any (compound) state (si, qi) |= F0, there exists a loop of length w (w ≥ 1)

through (si, qi) in M ×B¬f , i.e., F0 =
w∨
t=1

Ct
l with Ct

l = ∃r1, r2, · · · , rt.F (r0) ∧R(r0, r1)

∧ R(r1, r2) ∧ · · · ∧ R(rt−1, rt) ∧ (rt = r0). Then, as illustrated in Fig. 4.16, we need to

check during runtime whether or not the states in F0 is reachable.
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Figure 4.16: Speed up liveness checking

For a finite state system, the upper bound of w is the depth of backward breadth first

search starting from the accepting states in M×B¬f . In practice, it is usually difficult to

reach this upper bound due to the state space explosion problem. Since F0 is calculated

offline, many existing model checking techniques can be exploited to calculate F0. Thus,

it is reasonable to assume that w is much larger than k.

In the case that F0 can not be calculated precisely, let F̃0 (⊂ F0) be the partial solution

obtained within a reasonable time and memory consumption. Then, F ′ = F − F̃0 is the

set of accepting states unknown whether or not there exists a loop through them. We are

able to apply the variant of the state-recording translation to M×B¬f , whereby only the

states in F ′ are selected as the starting points of the potential loops (see Section 4.1.3).

In this way, the state space to be searched can be further reduced to some degree.

The focus of this thesis is on the online model checking mechanism and its applica-

tions. It is reasonable to assume that the multi-step transition relation Rm and/or the

backward reachable set F ∗ (if any) are provided in advance.

4.2.2 Online Symbolic Model Checking

Although there still exists some room to optimize the explicit state based model checking

algorithms, for many complex systems, it is not convenient to store and operate on the
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large state transition graph represented explicitly in terms of states and transitions due

to the huge memory and time consumption. It is widely accepted that the symbolic

state based checking methods are able to handle efficiently a much larger state space

than the explicit state-based ones. By symbolic state based model checking, the states

and the transitions between states are represented implicitly as formulas in quantified

propositional logic (see Section 2.2).

Online Symbolic Model Checking Algorithm

Given Rm and F ∗, for the sake of convenience, let M×B¬f = (V,D,Rm, I, L, F ∗) denote

the finite automaton obtained by the following offline preprocessing :

1. reduce the general model checking problem to the reachability checking problem;

2. calculate a multi-step transition relation Rm for some m > 1; and

3. extend the set F of error states to F ∗ by n-bounded backward reachability analysis.

As a consequence, we are able to conduct the online model checking by means of jumping

in the state space of M ×B¬f , as described in Algorithm 4.2. The algorithm is mainly

composed of the following three parts:

• lines 3-7: in the first checking cycle, the online model checker deals with the initial

state s, which is stored in the Buffer initially. r set is the starting (compound)

states derived from s and B¬f for the first checking cycle. If r set contains error

state(s), then the online model checker will terminate itself with the output unsafe.

jump records the number of jumps made by the search algorithm.

• lines 9-12: in the current checking cycle, r′ set is the set of m-step successors of

the set r set of (current) states. If no error state is found in it, r set is reset to

r′ set. The online model checker will continue to jump another m steps until the

timeout occurs.

• lines 14-21: when the timeout occurs, the online model checker will output safe,

if at least k steps in depth has been searched; or unknown, otherwise. Thereafter,

a new checking cycle starts. If the Buffer is not empty, the online model checker

takes a new current state s and then calculate a new set r set of starting points

for the new checking cycle. If no state is available in the Buffer, the online model

checker simply resumes the search work left in the last checking cycle.

Algorithm 4.2: Online Symbolic Model Checking Algorithm

input : M ×B¬f = (V,D,Rm, I, L, F ∗), T, k

output : safe, unsafe, unknown
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1 begin

2 wait ( isEmpty(Buffer) == false) //wait until Buffer 6= ∅
3 set timer to T time units

4 s←− Buffer //take the first monitored state

5 r set = {r ∈ I |r.s = s} //s ∈M
6 i f r set ∧ F ∗ 6= ∅ then return unsafe

7 jump = 0

8 while r set 6= ∅ do

9 r′ set = {r′ ∈ D | Rm(r, r′) ∧ r ∈ r set} //jump forward m steps

10 i f r′ set ∧ F ∗ 6= ∅ then return unsafe

11 jump+ +

12 r set = r′ set

13 i f isT imeout(timer) then

14 i f m ∗ jump ≥ k then output safe

15 else output unknown

16 set timer to T time units

17 i f isEmpty(Buffer) == false then //Buffer 6= ∅
18 s←− Buffer //take a new monitored state

19 r set = {(s, q) | q ∈ Q ∧ s |= LB(q)} //s ∈M
20 jump = 0

21 endif

22 endif

23 endwhile

24 end

BDD-based vs. SAT-based Search Engine

Both BDD (Binary Decision Diagram) [41] and CNF (Conjunctive Normal Form) can be

used to represent symbolically the set of states and the transition relation between states.

The online symbolic model checking algorithm can be implemented using BDD-based

or/and SAT-based search engine.

The paper [42] compared the performance of the two search engines on 62 benchmarks

drawn from commercial designs. The experimental results indicate that “SAT-based

BMC is more effective than BDD-based BMC” for finding shallow counterexamples

(of length, say, k ≤ 60), while “BDD-based BMC is much faster” for finding deep

counterexamples (of length, say, k > 60). In addition, the experiments done at IBM,

Intel and Compag [22] confirm that “if k is small enough (typically not more than 60 to

80 cycles, depending on the model itself and the SAT solver), it outperforms BDD-based

techniques.” “The deeper the bug is (i.e., the longer the shortest path leading to it is),

the less advantage (SAT-based) BMC has.”
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To our knowledge, it is more convenient to use BDD to calculate the (multi-step) suc-

cessors of any set of states. But in some cases the size of the BDD representation (of

some intermediate result) may be exponential independent of any variable ordering. By

using SAT solver, the successors are not directly calculated, instead, the error paths of

length k are searched (see Section 2.5). There are pros and cons to both BDD-based and

SAT-based methods. In this thesis, we prefer SAT-based to BDD-based search engine.

4.2.3 Parallel Computing

By applying the symbolic model checking technique together with the multi-step transi-

tion relation Rm and the extended set F ∗ of the error states we are able to improve the

performance of the online model checker to some degree. But this is still not the end of

the story.

As mentioned in Chapter 1, we concern ourselves with the correctness of the embedded

software applications. Many embedded applications are growing in complexity so as to

fulfill more functionality. The underlying hardware demands higher performance but

lower energy consumption. The interconnected multiple single core processors do not fit

this need any more. As a result, “multicores have become an unavoidable reality”[66].

The added computational power is thus available for other purposes, say, online model

checking, in our case. This can be fulfilled by installing additional (general-purpose)

operating systems to gain more functionality.
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Figure 4.17: Multiple virtual machines (VMs) hosted on multicore processor

However, when the multiple operating systems are running on a multicore processor, it

is a challenge to make them do not interfere with each other, e.g., shared memory access,
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interrupt handling, time management, and so on. Different virtualization techniques,

such as container and virtualization [67], can solve this problem. Considering that many

model checking tools work on top of general-purpose operating systems, a better solution

is to insert an embedded virtualization layer below the multiple operating systems [68],

as illustrated in Fig. 4.17. The hypervisor “virtualizes and arbitrates access to the cores,

memory and devices” to ensure that “each operating system can properly execute in its

own isolated partition” [68].

In this way, we are able to take the advantage of the parallelism of the multicore processor

to improve the performance of the online model checker. Instead of just using one model

checker, theoretically, two or more online model checkers can be used to run in parallel

to speed up the online model checking process.

4.2.4 Prototype Implementation and Experimental Results

In cooperation with Mona Qanadilo and Sufyan Samara from An-Najah National Uni-

versity, Nablus, Palestine, we’ve implemented a simplified version of the online symbolic

model checking algorithm using SAT solver [69]. The checking process is illustrated in

Fig. 4.3. The starting points for each checking cycle (except the first one) are decided in

a simple way similar to that of the explicit state-based implementation in Section 4.1.5.

We adopt a SAT-based instead of BDD-based search algorithm. On the one hand, the

modern SAT solvers are now able to handle efficiently large SAT problems with hundreds

of thousands of variables. According to [42], “SAT-based BMC is more effective than

BDD-based BMC” for finding shallow counterexamples, in particular, “SAT solvers are

quite effective in eliminating logic that is not relevant to a given property.” This means

that “SAT solvers appear to have significant potential for identifying that set of variables

once a suitable property is given.” On the other hand, the size of the BDD representation

(of some intermediate result) may be exponential independent of any variable ordering

in some special cases.

Optimizing SAT Solver for Online Model Checking

The SAT solver we used is zChaff3, because we are more familiar with the implementation

details of zChaff. First of all we need to tune zChaff for online model checking.

Converting a general propositional logic expression into its CNF representation usually

needs to introduce many auxiliary variables and thus results in a larger formula with

3http://www.princeton.edu/~chaff/zchaff.html

http://www.princeton.edu/~chaff/zchaff.html
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excessive number of variables. The experimental results in [70] indicate that the original

variables have more influence than the auxiliary variables on deduction. zChaff is a

general SAT solver. It does not distinguish the original variables from the auxiliary

ones in the given CNF representation. We’d like to make zChaff distinguish the original

variables from the auxiliary ones and then give the original variables priority over the

auxiliary variables in the assignment process of the SAT solver. For this purpose, we

modified the decision strategy VSIDS (Variable State Independent Decaying Sum) of

zChaff in favor of the original variables.

It is easy to see in Fig. 4.3 that the only difference among the individual SAT problems

in different checking cycles is the initial condition I(ŝi), which indicates the values of the

variables (of interest) monitored at runtime. Since each conflict clause4 learned by the

SAT solver is an implication of some clauses of the given SAT problem, it is redundant

and has nothing to do with the valuation of the variables. Therefore, the conflict clauses

learned in the previous checking cycles can be directly reused in the later checking cycles

to reduce the space to be searched.

To switch from the current checking cycle to the next checking cycle, we’d like to make

zChaff restart in an efficient manner. The restart operation in zChaff simply undoes

the assignments of those variables at the decision levels greater than 0. Without loss of

generality, let’s assume that the monitored variables v1, v2, · · · , vn be ordered in this way.

The initial conditions I(ŝi) and I(ŝi+1) of any two checking cycles in a row usually have

some common part, i.e., the valuation of some variables keeps unchanged. Therefore, we

make zChaff backtrack to the first variable vj (at the decision level j) whose valuation

has been changed in the initial condition I(ŝi+1). Of course, if v1 (at the decision level 1)

is such a variable, then we have to backtrack to the decision level 1 in this case. However,

as long as j > 1, we are able to reuse the deduction results done for v1, v2, · · · , vj−1 in

the next checking cycle. In particular, if the initial conditions I(ŝi) and I(ŝi+1) happen

to be the same, then we simply make zChaff resume the search work in the new checking

cycle, provided that the work has not been completely done.

Experimental Results of Online Model Checking Using Parallel Computing

Theoretically, by introducing Rm and F ∗, we are able to make the online symbolic model

checker look ahead more steps in each checking cycle. A further improvement can be

done using parallel computing. In doing so, we have multiple SAT-based online model

checkers work in parallel on the 64 bit Windows platform with 2.13GHz i3 CPU and

4GB RAM.

4A redundant clause that captures the causes of an inconsistency discovered during the search (for a
solution to the SAT problem) so as to prevent the same conflict from occurring again.
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The case study is the MSI protocol with transient states taken from the NuSMV5 soft-

ware package. It is a basic cache-coherence protocol, which specifies that “There are

three processors, each with one level of cache that stores 1-bit of data and has a 1-bit tag.

The caches are write-back, write-allocate. The bus arbitration is round-robin. There is

a memory with two 1-bit locations.”

We generate the transition relation in CNF from the NuSMV specification of the MSI

protocol and then unroll the transition relation up to k steps. Table. 4.2 lists the

number of total variables, the number of original variables and the number of total

clauses of |[M ]|k for k = 35, 40, 45 and 50 respectively. The original variables account

for about 24% of the total variables in each case. The property to be checked is an

invariant of the form AGp, from which the path constraint |[C]|k is derived in CNF.

The monitored states are sampled every k steps from the execution trace generated

simply by “executing” the model itself. Thus, we have si = ŝi.

k Total Variables Original Variables Total Clauses

35 6662 1620 22663
40 7602 1845 25873
45 8542 2070 29083
50 9482 2295 32293

Table 4.2: MSI model |[M ]|k with path of different lengths

The decision strategy adopted in the SAT solver has a large effect on the performance

of the online model checker. Should we use different decision strategies or use the same

decision strategy in the SAT-based online model checkers running in parallel? To answer

this question, we make two SAT solvers use different decision strategies: the original

VSIDS and the modified VSIDS (in favor of the original variables). Then, we do online

model checking for the MSI protocol with k = 35, 40, 45 and 50 from 201 different initial

states, i.e., 201 checking cycles. In this experiment, we do not set any time limit for

each checking cycle, just let the online model checkers run to the end and then start

the new checking cycle. From one checking cycle to the next checking cycle, the learned

clauses are reused by the SAT solvers. If one SAT solver works faster than the other

one, it will “consume” more initial states than the other SAT solver, i.e., it will run more

checking rounds. This is confirmed by the experimental results illustrated in Fig. 4.18

and in Fig. 4.19. The former shows that the SAT solver with modified VSIDS decision

strategy runs more checking cycles in all the four cases; the latter shows the cumulative

execution time (in seconds) of each SAT solver in all the four cases. It is easy to see that

the SAT solver with modified VSIDS decision strategy takes less execution time while

it runs more checking rounds in three of the four cases.

5http://nusmv.fbk.eu

http://nusmv.fbk.eu
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In this experiment, we use Round Robin scheduling algorithm, which gives each online

model checker equal priority. Although the two online model checkers do not run on

a real parallel hardware system, the experimental results do reflect the fact that the

decision strategy in favor of the original variables has a better performance on average,

which conforms with the conclusion in [70]. Consequently, we adopt the same decision

strategy (i.e., modified VSIDS) for the SAT solvers working in parallel.

Figure 4.18: Performance of the two decision strategies

Figure 4.19: Cumulative runtime of the two decision strategies

In addition, Fig. 4.20 shows the performance comparison of the modified VSIDS strategy

with the original VSIDS and the static order strategy obtained by online checking the

MSI protocol for k = 50 from 201 different (monitored) states. We zoom in on the results

obtained in the checking cycles from 90 to 128. It is easy to see that the performance

of the modified VSIDS strategy on average is more stable than the other two strategies

in the sense that there exist no large fluctuations in execution time from one checking

cycle to the next.
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Figure 4.20: Performance of the three decision strategies for k = 50

How many online model checkers running in parallel can obtain a better performance?

We use 1, 2, 3, 4 and 5 SAT-based model checkers respectively to online check the MSI

protocol for k = 50 from 201 different initial states (i.e., 201 checking cycles). In this

experiment, we also do not set any time limit for each checking cycle, just let the SAT

solvers run to the end and then start the new checking cycle. Given a setting of multiple

model checkers working in parallel, the maximum cumulative runtime of them indicates

the performance of this setting. E.g., in the setting of 5 SAT-based model checkers, we

take the maximum cumulative runtime of the 5 SAT solvers. The experimental results in

Fig. 4.21 illustrate the maximum cumulative runtime (in seconds) of the SAT solver(s)

in each setting.

Figure 4.21: Performance comparison of multiple SAT-based model checkers

It is easy to observe that the setting of 2 SAT-based model checkers outperforms all the

other four settings. The possible reasons are analyzed as follows:

• The experimental results indicate that the learned clauses shared between different

checking cycles do improve the performance of the SAT solvers. But the more SAT
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solvers working in parallel, the less (initial) states each SAT solver can consume,

thus the less the learned clauses are produced to prune the state space for each

SAT solver.

• Each SAT solver has to access cache and memory frequently. We use Round

Robin scheduling algorithm, which gives each model checker equal priority. The

more SAT solvers working in parallel, the higher the probability of access conflicts

due to requesting data at the same time. The memory is a shared resource among

different SAT solvers. If we run more than two SAT-based model checkers in

parallel, it means more synchronization overhead. In this sense, our platform does

not simulate the parallel feature very well.

In this experiment, we notice that the learned clauses have a large impact on the perfor-

mance of the SAT solver. In the setting of 5 SAT-based model checkers, one SAT solver

consumes only 8 (initial) states, but its total execution time is even more than that of

the single solver setting, in which 201 (initial) states are processed.

Considering the price-performance ratio, it is better to use 2 SAT-based model checkers

working in parallel. In addition, we’ve tried to make the 2 SAT solvers share the shortest

learned clauses with each other, but the performance improvement is not satisfying due

to the additional communication overhead. Therefore, we keep the 2 SAT-based model

checkers working independent of each other.

Figure 4.22: Two online model checkers working in parallel

Now let two SAT-based model checkers work in parallel as illustrated in Fig. 4.22. Every

T time units only one model checker is allowed to take a state from the ring buffer. Each

model checker has 2T time units to do the search work. To simulate a general buffer

setting, we use a randomly generated Boolean value to decide whether the ring buffer is

empty or not. For each model checker, if the ring buffer is empty, the model checker will

either resume the search work of the last checking cycle, provided that the work has not

finished yet; or else simply wait until the next checking cycle starts. Otherwise, there is
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a state, say ŝi, available, then within the given 2T time units, the online model checker

tries to search for an error path of length up to k steps in the partial state space derived

from ŝi.

Given the model derived from the MSI protocol for k = 35, the experimental results in

Fig. 4.23 demonstrate the execution of one online model checker in the checking cycles

from 33 to 65 with the predefined time limit 2T = 0.08s. The highlights are described

as follows:

• In the checking cycles 45, 47, 49 and 53 the online model checker can not get a

state from the ring buffer and the search work of the last checking cycle has been

done, therefore, it does nothing but waits for the next checking cycle.

• In the checking cycles 37 up to 40 the online model checker can not get a state

from the ring buffer, since the search work of the checking cycle 36 has not finished

yet, therefore, it resumes the search work of the checking cycle 36.

• In the checking cycle 44 the online model checker resumes the search work of the

checking cycle 43 and finally gets a definite result this time, i.e., no error path of

length k ≤ 35 starting from the given state is found.

Figure 4.23: Execution of one online model checker with the random buffer setting

Let T be the predefined time limit for each checking round. If the online model checker

does not finish the search work within this limited time, it is usually difficult to measure

what percentage of the state space of the behavioral model has been searched within the

given T time units. There is a simple way to estimate this percentage coarsely. Given

a monitored state si, we have the SAT solver run to the end to get the total runtime in
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the bounded model derived from si, denoted as Ttotal. Then, T/Ttotal estimates coarsely

the percentage of the state space derived from si that has been searched by the model

checker in one checking cycle.

Let’s take the MSI protocol for k = 20 as example, which has 3842 variables (including

945 original variables) and 13033 clauses. Recall that for online model checking we do

not need to set k to a large number (thanks to the offline forward and/or backward

exploration). For an initial state, the total runtime Ttotal we measured is about 1.6s.

Then, T = 0.08s indicates that about 0.08/1.6 = 5% of the state space of the bounded

model derived from this state has been searched in one checking cycle.

4.3 Summary

In this chapter we present the concept of online model checking, which is the main topic

of this thesis. Online model checking is a lightweight and incomplete method applied at

runtime to falsify, instead of verify, the given behavioral model against the LTL property

to be checked. The errors found in the behavioral model may indicate the errors in the

source code of the target software system.

In theory both safety and liveness properties can be checked during system execution by

online model checking. The basic idea is to reduce the online model checking problem

to the invariant checking problem, which can be solved by online reachability analysis.

Doing model checking online suffers from the limited execution time allocated to each

checking cycle. Its performance depends mainly on the search algorithm and the under-

lying hardware as well as the complexity of the problem to be checked. The workload

of the online model checker can be reduced to some degree by introducing the m-step

transition relation Rm and the n-step backward reachable set F ∗. The performance of

the online model checker can be further improved by using a symbolic state-based search

engine and making more than one online model checker working in parallel.

As a proof of concept, we’ve implemented an explicit state-based and a symbolic state-

based online model checking algorithm. The explicit state-based online model checker is

mainly used to observe the internal structure of the behavioral model and its influence on

the performance of the online model checker. The experimental results indicate that the

density of states in the model and the number of state variables are the two main factors

affecting the speed of the online model checker. The symbolic state-based online model

checker adopts a tailored SAT-solver as its search engine. The experimental results in

different parallel settings indicate that two online model checkers working in parallel can

offer a better price/performance ratio.



Chapter 5

Model Generation and Source

Code Instrumentation

We’d like to apply the online model checking mechanism to embedded control software.

In practice, a software application after release may still contain subtle errors that have

escaped from being detected in the development life cycle. For a safety-critical system,

it is meaningful to catch in time these deep, corner-case errors in the embedded software

during system execution. As explained in Chapter 4, given the source code of the

program to be checked, in order to do online model checking, we need to instrument the

source code with finitely many monitoring points (once and for all) on the one hand,

and to obtain a (behavioral) model of the target program on the other hand. In this

chapter, we focus on model generation and source code instrumentation.

5.1 Embedded Control Applications

Embedded control software is used to control an external environment, which may be

artificial or biological objects, e.g., physical plants and humans. This environment (i.e.,

the controlled objects) is connected to the computer system, on which the control pro-

gram is running, through sensors and actuators or through other input-output interfaces.

The execution of such a kind of software application must meet various timing and other

constraints that are imposed on it by the (real-time) behaviors of the controlled objects.

But this doesn’t mean that the control program has to run as fast as possible. Instead, it

means that all the tasks of the control program should finish execution in the worst-case

by their deadlines. The deadlines are dictated by the controlled objects. A deadline is

hard, if missing it may result in severe consequence(s); otherwise, it is soft [2].

69
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Our concern is the software applications in such domains as automotive, aerospace, man-

ufacturing control, and the like, which exhibit time-periodic and multimodal features.

Modern control software in these domains is becoming increasingly complicated due to

the following requirements [71] on it:

• operate in distributed and embedded computing environments;

• communicate through different protocols;

• adapt to changes in operating environments; and

• behave in a dependable manner for safety critical systems.

A platform-independent programming abstraction is presented in [72] for specifying the

behaviors of embedded control software with (hard) real-time constraints. According to

[72], a typical control application consists usually of periodic (software) tasks governed

by a mode-switching logic for activating or deactivating tasks. Each (operational) mode

contains a (fixed) set of tasks active in this mode.

E.g., a typical fly-by-wire control system has five operational modes: takeoff, cruise,

autopilot, degraded and landing modes. In each of these modes, different sensing tasks,

control laws, and actuating tasks need to be executed. That is, some tasks are added

to, while others are removed from, the task set of the current mode. For instance, in the

takeoff mode, the landing gear is not needed; in the autopilot mode, the inputs are taken

from a supervisory flight planner, instead of from the pilot’s stick; and in the degraded

mode, some of the sensors and actuators are disabled due to damage.

Intuitively, modes impose some structure on the behaviors of the given control applica-

tion [73]. The control application is in one mode at a time, i.e., there is only one active

mode at any given time. The mode-switching logic determines the possible transitions

from one mode to other modes. It is a kind of finite state machine, in which each state

represents a mode and each transition specifies a possible switching between two differ-

ent modes. A mode switch can result in removing some tasks and adding others. After a

mode switch is finished, all subsequent actions follow the definition of the target mode.

A mode switch may happen while a task is still running. In this case, this task needs to

be continued in the target mode.

In each mode, a set of tasks are executed periodically following some scheduling strat-

egy. A task is a piece of application-level code, which typically implements a control

algorithm. Tasks communicate with each other as well as with sensors and actuators by

drivers. A driver is a piece of system-level code, which provides an abstract interface
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to (physical) devices by transporting and converting values between ports. A port is

abstracted as a typed variable. It keeps its value over time, until it is updated.

There are sensor ports, actuator ports, and task ports as well as mode ports. The

sensor ports are updated by the environment, i.e. sensor ports are treated as elementary

sources of values. All other ports are updated by their respective drivers. A driver may

provide sensor readings for the input ports of a task; or load task results into actuator

ports; or provide task results for the input ports of other tasks.

The task ports are used to communicate data between concurrent tasks or transfer data

from one mode to the next. In general, a task has input ports and output ports. A

typical task has also an internal state, the values at which are inaccessible outside the

task. What’s more, a task has a function from its input ports and the current state to its

output ports and the next state. This function is usually implemented by a sequential

program written in some programming language, say, C code.

In effect, a driver is a function that converts values of sensor ports and mode ports of

the current mode to the values for the input ports of the tasks in the target mode, or

loads the input ports with constants. Once the input ports of a task are updated by

a driver, the task is ready to run. That is, the task is put into a ready queue, from

which the scheduler of the operating system chooses tasks for execution following some

scheduling scheme.

Generally, a task may be mapped to a software-programmable component (in most cases)

with a local operating system, e.g., general-purpose processor (CPP) or application-

specific instruction set processor (ASIP). A task may also be mapped to a hardware

component, e.g., field-programmable gate array (FPGA) or application-specific inte-

grated circuit (ASIC).

In this thesis, we are concerned with the tasks running on top of some real-time operating

system.

5.2 Model Generation

A model is an abstraction of some aspect of a system [71]. The (bounded) models for

online model checking can be obtained at system development phase or by abstraction

from the source code of the program under investigation.

To deal with the increasing complexity of software products, Model-based Development

(MBD) becomes more and more popular in developing software applications in the au-

tomotive, aerospace and other industries. The investigation [74] shows that using MBD
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can help to shorten the development time, reduce the development costs, improve the

product quality, just to mention some aspects. MBD aims to reduce the complexity

by means of building the design models at multiple levels of abstraction and/or from

different perspectives, analyzing the models, and transforming the models into concrete

(code) implementation [71]. Thus, for a software application developed using MBD, the

design models at different levels of abstraction can be reused for online model checking.

It’s worth pointing out that using MBD does allow verification activities such as model

checking, theorem proving, simulation and testing to be conducted at the model level

in the early design phase. Many errors can thus be detected and corrected early in the

development life cycle, and this, in turn, does decrease the number of errors discovered

during the integration or system test phase. However, for large complex systems, it is

still difficult to prove the correctness of the behavioral model(s) due to the state space

explosion problem. E.g., for composing two mode transition diagrams of a flight guidance

system even in a constrained way, “there are typically over 1020 reachable states” [75].

On the other hand, the code generator used by MBD is usually too complex to be proved

for correctness. According to [74], “some companies are the opinion that the current

code generators are not applicable to generate high safety relevant code.” Indeed, not

all software applications are developed using MBD. Traditional hand-coded software

development is still useful, especially for developing ultrahigh safety critical systems.

In this case, the behavioral models at different levels of abstraction can be generated

directly from the source code of the software application to be checked. In fact, source

code itself is a kind of model describing how the program will behave when executed

[71].

As mentioned in Section 5.1, a mode transition diagram is a kind of finite state machine,

which is generated during the software development phase. Online model checking can

also be used to verify the mode-switching logic against the desired properties specified in

LTL. The execution result of a task in the current mode may trigger a transition to some

next mode. In this sense, each task can be seen as atomic. A typical task is implemented

by a sequential program written, say, in C code, which repeats the following three steps:

receive input data, update internal state and produce output. Therefore, the monitoring

point can be inserted “between the portions of C code which produce output and receive

new input” [76].

In this thesis the attention is paid to checking the functional correctness of a task, which

is identified as important among the others in the task set, during program execution.

Since the focus is on the internal behaviors of the task to be checked, the timeliness of

the task is beyond our concern. It is up to the scheduler to ensure the timeliness of the

tasks in the system.
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5.3 Source Code Instrumentation

We need to identify a finite set of monitoring points in the source code of the program to

be checked. For the sake of simplicity, we suppose that the target program is written in

a restricted subset of C that conforms to the (mandatory) requirements of the MISRA-C

coding standard. The monitoring points are determined by partitioning the control flow

graph derived from the source code into a finite set of subgraphs.

5.3.1 MISRA C

The C programming language is widely used to develop the embedded software for

safety critical systems in industry. However, some linguistic features of the C language

are either specified indefinitely or implementation-dependent. To avoid the traps and

pitfalls of C, guidelines for writing safe, portable and reliable code in C are highly

demanded. The Motor Industry Software Reliability Association1 (MISRA) published

in 1998 a coding standard for the C language officially known as MISRA-C:1998 [77].

MISRA-C:2004 titled “Guidelines for the use of the C language in critical systems” [78]

was released and in 2013 the release of MISRA C:2012 [79] was announced. Nowadays

MISAR C has evolved into a de-facto coding standard for developing embedded software

not only in the automotive industry, but also in other industries such as aerospace,

railways, nuclear, defense and medical devices, to name just a few.

To promote the safest possible use of C, the MISRA C standard recommends a restricted

subset of C, which has already established practices in industry. MISRA-C:2004 contains

122 mandatory and 20 advisory rules. The most significant limitations of MISRA-C:2004

[78] are listed below:

Rule 16.2 (required): Functions shall not call themselves, either directly

or indirectly.

Rule 20.4 (required): Dynamic heap memory allocation shall not be used.

These two rules simplify the structure of the states of the target program. Generally, a

program state is identified by the following two parts [28]:

• a control component — a point of control PC, which is not simply the program

counter, but may contain a procedure-calling chain of the target program; and

• a data component — an assignment of values to all the variables, including input

data and internal data, at the given point of control of the target program.

1http://www.misra-c.com

http://www.misra-c.com
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The points of control are located before (or after) the smallest execution units of the

source code of the target program. The data types declared in the program determine

the smallest distinguishable data components. The Cartesian product of the definition

ranges of all the state components form the state space of the target program. Notice that

this definition covers the states that may never be reached by the program’s execution

for any set of input data. It is indeed undecidable whether a given state may be reached

or not [28].

A program written in a language that allows dynamic memory allocation and (procedure)

recursion results in dynamic data structure and dynamic PC structure respectively for

identifying the states of the program. This increases the complexity of the monitoring

operations. In addition, the resulting state space is usually infinite.

On the contrary, a program written in a language that allows only static memory allo-

cation and no recursion produces a finite state space2 with simple state structure, which

is relatively easy to monitor, because the correspondence of the program variables to

the memory addresses can be established once and for all at compile-time.

To simplify the problem, we assume that the embedded software under consideration

is written in C and compliant to the MISRA C coding standard. Although in specific

cases some rules of MISRA C may be deviated from, in this thesis we suppose that the

above mentioned two rules are always obeyed.

5.3.2 Control Flow Graph

Among the points of control of the target program, we need to select some of them as

monitoring points for online model checking. This is done by analyzing the control flow

graph of the target program.

Given a sequential C program P with function calls (if any) managed by means of macro-

expansion. Since the statements of a sequential program are ordered one after another,

there is a unique entry point and a unique exit point for each statement, i.e., the smallest

execution unit of the source code. To avoid redundancy, the exit point of a statement

and the entry point of the following statement are merged into one. Together with the

entry and the exit points of the program P itself, we are able to uniquely label the entry

and the exit points of all statements of P [18, 80].

Without loss of generality, let’s represent the C program as P = (V, L, l0,T) [81], where

V is the set of typed variables that constitute the data component of the program state,

L is the set of locations, i.e., points of control in the target program, l0 is the entry

2Provided that all the data types are defined with finite ranges in the program.
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point of the program P, and T is the set of transitions between the control points. Each

transition is defined as a tuple (l, c, l′) with l, l′ ∈ L and c a constraint over the free

variables in V∪V′. The variables in V record the values at the (present) control location

l, while the variables in V′ record the values (of the variables from V) at the (next)

control location l′. Obviously, the set L of locations and the set T of transitions together

decide a directed (cyclic) graph (see Fig. 5.4 (a)), called the control flow graph3 (CFG)

of the program P, denoted as G(P) = (L,T).

In the terminology of (control flow) graph [82], we also call L the set of vertices and T

the set of edges of the graph G(P). G(P) contains a finite set of vertices and a finite

set of edges in it. A vertex li is said to dominate (or to be a dominator of) a vertex

lj if every path from the entry vertex l0 to lj must go through li. By definition, every

vertex dominates itself and the entry vertex l0 must be a dominator. A vertex li strictly

dominates a vertex lj if li dominates lj and li 6= lj . A immediate dominator of a vertex

lj is a vertex li that strictly dominates lj but does not strictly dominate any other vertex

between li and lj . The immediate dominator of a vertex (other than l0) is unique. E.g.,

in Fig. 5.4 (a) the vertices 1, 2, and 4 (strictly) dominates the vertices 5 and 6, while

the vertex 4 is an immediate dominator of the vertices 5 and 6.

Given a vertex l ∈ L, and an integer k > 0, we define G(l, k) as a k -bounded tree

obtained by unwinding the graph G(P) starting from l up to k steps (see Fig. 5.4 (b),

(c), and (d) for example). We call the vertices of this tree as nodes to distinguish them

from the vertices of the graph, from which the tree is derived. The vertex l is the root

node of the tree G(l, k). If a vertex in G(P) is reached along different paths within

k steps starting from l, there may exist several nodes in the tree G(l, k) representing

the same vertex in G(P). E.g., the node 4 occurs twice in the tree G(1, 3) in Fig. 5.4

(b). The maximum depth of a node li ∈ L with respect to the root node l, denoted as

δmax(l, li), is the number of edges on the longest path from l to li in the tree. Obviously,

δmax(l, li) ∈ [0, k]. E.g., in G(1, 3) (see Fig. 5.4 (b)) δmax(1, 4) = 3.

5.3.3 Graph Partitioning

As mentioned in subsection 4.1.4, we’d better select such a set of vertices in G(P) as

monitoring points that satisfy the following conditions: (i) any two adjacent monitoring

points are at distance at most k steps; (ii) any vertex other than monitoring point in

G(P) is at distance at most k steps from some monitoring point; and (iii) between any

two vertices with distance greater than k steps there must exist some monitoring point.

3Note that this definition is different from the traditional definition of control flow graph, where each
node represents a basic block (of code) and each (directed) edge a jump in the control flow.
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It is easy to reason that there always exists a solution, e.g., a trivial solution is to set all

the vertices in G(P) as monitoring points. Of course, the solution is not unique. Given

an integer k > 0, besides the entry point l0, we’d like to determine a smaller set of

vertices {l1, l2, · · · , ln} ⊂ L such that the trees G0(l0, k),G1(l1, k),G2(l2, k), · · · ,Gn(ln, k)

can cover the graph G(P) and have a similar size in terms of nodes and edges. In other

words, we hope to find out a smaller set of monitoring points that can be distributed in

G(P) as evenly as possible.

For this purpose, we’d like to partition G(P) into finite subgraphs in similar size (more

or less). There are two common approaches [83] to partitioning a graph: edge-cut and

vertex-cut. The former determines a set of edges (called edge-cut), while the latter

determines a set of vertices (called vertex-cut), whose deletion can make the graph

disconnected. Fig. 5.1 illustrates the difference of the two partitioning methods. For

each edge (x, y) in an edge-cut (see Fig. 5.1(a)), the two vertices x and y serves as the

exit- and entry-points of the respective partitions. For each vertex x in a vertex-cut

(see Fig. 5.1(b)), the vertex x serves as both the exit- and entry-points of the respective

partitions. In addition, a vertex can be cut in multiple ways as shown in Fig. 5.2, while

an edge can only be cut in one way.
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Figure 5.1: (a) Edge-cut partitioning vs. (b) Vertex-cut partitioning [83]

x
x

xy

x x

y

(a) (b)

(a) (b) (c)

Figure 5.2: Cutting a vertex in different ways [83]

Edge-cut partitioning is not suitable for us, because the edges in the cut does not belong

to any partition, e.g., the edge from x to y in Fig. 5.1(a), thus they can not be reached by

the online model checker without specifically dealing with them. Vertex-cut partitioning
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does not have this problem. The vertices in the cut belong to at least one partition (see

Fig. 5.1(b)). All the partitions together cover the whole graph with neither vertices nor

edges left outside. Therefore, we partition G(P) = (L,T) by vertex-cut partitioning.

It is usually NP-hard to find out a minimum vertex-cut that leads to partitions of similar

size. Here we give a simple procedure to produce a smaller vertex-cut for partitioning

G(P) into k-bounded trees. The vertices in the cut are then selected as monitoring points.

It is observed that for any vertex x in the vertex-cut, the tree G(x, k) must cover some

other vertices in the vertex-cut, and these vertices form a local cut of G(x, k). E.g., for

k = 3, a possible vertex-cut of the (control flow) graph in Fig. 5.4 (a) is {1,4,7}, then

the tree G(1, 3) covers the vertex 4 which forms a local cut in G(1, 3) (see Fig. 5.4 (b)),

and the same goes to the trees G(4, 3) and G(7, 3), where the vertex 7 forms a local cut

in G(4, 3) (see Fig. 5.4 (c)) and the vertex 4 a local cut in G(7, 3) (see Fig. 5.4 (d)).

Therefore, we aim to identify a smaller local cut (denoted by the dashed line) closer to

the bottom line of G(x, k) as illustrated in Fig. 5.3. That is, given a non-negative integer

ε (relatively far) less than k, we say that a local cut of G(x, k) is close to the bottom

line of G(x, k) with respect to ε, if for any node y in the cut, we have k− δmax(x, y) ≤ ε.

(b)(a)
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Figure 5.3: A smaller cut close to the bottom line of G(x, k)

We say that a node y in the tree G(x, k) is leaf node, if y is either an exit point of the

program P, or else δmax(x, y) = k. In the former case, δmax(x, y) ≤ k. E.g., in the tree

G(7, 3) (see Fig. 5.4 (d)) the leaf nodes are 5, 6, and 9, because δmax(7, 5) = 3 and

δmax(7, 6) = 3, but δmax(7, 9) = 2 which is less than k = 3, this is allowed, because the

node 9 is an exit point of the program.

The bottom line of G(x, k) consists of those non-trivial leaf nodes of G(x, k) that are not

exit points of the program P. Obviously, if all the leaf nodes of G(x, k) are exit points of
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the program P, then there is not need to cut G(x, k), because the tree G(x, k) can not

“grow” further, thus the bottom line is meaningless in this case.

The bottom line of G(x, k) itself can be seen as a local cut at the depth k relative to the

root node x. We’d like to evolve it into a smaller cut of G(x, k) by applying repeatedly

to it the following two rules:

rule 1: for a node y in the cut, if y dominates other node(s) in the cut, then

remove those nodes dominated by y from the cut;

rule 2: for a node y not in the cut, if y immediate dominates more than one

node in the cut and k − δmax(x, y) ≤ ε, then remove those nodes

immediate dominated by y from the cut and add y to the cut.

Let global cut be a set of nodes forming a vertex-cut of G(P) and local cut a set nodes

forming a vertex-cut of G(x, k). We partition G(P) in a way described in Algorithm 5.1.

First of all, global cut is initialized to {l0}, the entry point of the program P. For each

node x ∈ global cut, which has not been processed yet, the bottom line of G(x, k) with

respect to global cut is calculated in Algorithm 5.2. If the local cut of G(x, k) is not

empty, we try to reduced it to a smaller cut close to the bottom line of G(x, k) with

respect to ε. Afterwards, the smaller local cut is added to global cut. This procedure is

repeated until all the nodes in global cut have been processed. At this time, the nodes

in global cut are the vertex-cut of G(P).

Algorithm 5.1: Partition control flow graph G(P)

input : G(P), k, ε

output : global cut

1 begin

2 global cut = {l0} //initialize global vertex-cut

3 while ( there exists unprocessed node in global cut) do

4 let x be an unprocessed node in global cut

5 local cut = bottom line(G(x, k)) //see Algorithm 5.2

6 i f ( local cut 6= ∅) then //reduce the size of local cut

7 repeatedly apply rule 1 and rule 2 until fixed−point
8 add local cut to global cut

9 endif

10 endwhile

11 end

Let exit points be the set of exit points of the program P. Given global cut, i.e., a set

of thus far identified nodes in the vertex-cut of G(P), we say that a node z in G(x, k)

is a leaf node with respect to global cut, if z ∈ exit points, or z ∈ global cut, or else
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δmax(x, z) = k. That is, taking global cut into account, we redefine the bottom line of

G(x, k) as those non-trivial leaf nodes of G(x, k) that belongs neither to exit points nor

to global cut. Algorithm 5.2 returns such kind of nodes as local cut of G(x, k).

Algorithm 5.2: Calculate the bottom line of G(x, k) with respect to global cut

input : G(x, k), global cut, exit points

output : local cut

1 begin

2 current set = {x} //initialize local vertex-cut

3 next set = ∅
4 for (step = 1 to k ) do

5 while ( there exists unprocessed node in current set) do

6 let y be an unprocessed node in current set

7 for (each immediate successor z of y ) do

8 i f (z /∈ global cut) and (z /∈ exit points) then

9 add z to next set

10 endif

11 endfor

12 i f (next set == ∅) then return ∅
13 endwhile

14 current set = next set

15 next set = ∅
16 endfor

17 return current set

18 end

The for loop in Algorithm 5.2 iterates no more than k times. In each iteration, the suc-

cessor nodes of the nodes in current set are calculated, whose number is not more than

that of the nodes in the tree G(x, k). Therefore, the time complexity of Algorithm 5.2 is

linear in the number of nodes in the tree G(x, k). This algorithm returns either a empty

set or a set of nodes neither in global cut nor in exit points. In the latter case, the

algorithm ensures that for any leaf node y it returns, there exists at least one path from

the root node x to the leaf node y such that no nodes between them are in global cut

or exit points.

For each tree G(x, k) with a (non-empty) set of nodes returned by Algorithm 5.2, Al-

gorithm 5.1 tries to reduce the size of its local cut by applying repeatedly rule 1 and

rule 2 as long as possible. The size of the final local cut is not more than the number

of nodes on the bottom line of G(x, k). The nodes in the local cut are finally added to

global cut. As a consequence, the size of global cut increases monotonically. Since the

number of nodes in the graph G(P) is finite, Algorithm 5.1 can definitely terminate. On

the other hand, Algorithm 5.1 ensures that all the trees produced can cover the whole
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graph G(P). Therefore, the time complexity of this algorithm is linear in the number of

the vertices in G(P).

Let’s use the control flow graph G(P) illustrated in Fig. 5.4 (a) as an example to explain

our partitioning algorithm. The vertices of G(P) are named by numbering. Given k = 3

and ε = 1, we get the tree G(1, 3) shown in Fig. 5.4 (b) by unfolding 3 steps starting

from the vertex 1. Notice that the vertex 4 is duplicated twice in G(1, 3). According to

Algorithm 5.2, the bottom line of G(1, 3) consists of {4,5,6}. In Algorithm 5.1, local cut

is initially set to the bottom line of G(1, 3). Since the node 4 dominates the other two

nodes 5 and 6, it is safe to remove these two nodes from local cut (rule 1). Now the

local cut of G(1, 3) is reduced to {4}. No further reduction is possible, therefore, we add

it to the global vertex-cut, i.e., global cut = {1,4}. Similarly, we get the tree G(4, 3)

shown in Fig. 5.4 (c). The bottom line of G(4, 3) is {3,8}. Since the node 7 immediate

dominates these two nodes, it is safe to delete them and then add the node 7 to the

local cut of G(4, 3) (rule 2). As a result, we have global cut = {1,4,7}. Finally, we get

the tree G(7, 3) shown in Fig. 5.4 (d). The bottom line of G(7, 3) is empty (with respect

to global cut) because the node 4 ∈ global cut and the node 9 ∈ exit points (see the

lines 7-11 in Algorithm 5.2). By now all the nodes in global cut have been processed,

therefore, G(P) is partitioned into three components G(1, 3), G(4, 3) and G(7, 3). That

is, the monitoring points in the target program are located in {1,4,7}.
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Figure 5.4: Partition a control flow graph (a) into 3 components (b), (c) and (d).

In addition, there are two special cases in partitioning a CFG that need to be considered.

One is that the tree G(x, k) may cover a segment of the target program involving such
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computations that are more complex in control structure and/or data processing. This

indicates that the state space of the corresponding (behavioral) model may be too large

to be explored efficiently by means of online model checking. To reduce the state space

of the (behavioral) model, a possible solution is to cut G(x, k) vertically following the

dashed line or horizontally following the dotted line as illustrated in Fig. 5.5 (a). Cutting

G(x, k) vertically results in two (partial) models, which need to be checked currently

whenever the monitoring point x is reached. Cutting G(x, k) horizontally results in a

k′-bounded tree G(x, k′) with k′ < k. In fact, there is no need to make all the partitions

of G(P) k-bounded. We keep the bound k constant just for the sake of simplicity.

The other is that the length of a control loop in G(P) may be too short, e.g., the short

loop as illustrated in Fig. 5.5 (b). Obviously, the vertex x is the only monitoring point

according to our partitioning algorithm. That is, the program state is monitored at each

iteration of the loop during runtime. The shorter the loop, the higher the sample rate.

To reduce the sample rate, a possible solution is to syntactically unfold the loop up to

appropriate steps, say, 4 steps in this example. As a consequence, the state information

can be monitored every 4 steps, instead of every 1 step. Of course, the memory footprint

of the target program may be enlarged in this way.
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Figure 5.5: Two special cases in partitioning CFG

5.4 Summary

In this chapter, we first introduce a platform-independent programming abstraction for

specifying such control software applications that exhibit time-periodic and multimodal

features. This kind of software is usually safety-critical due to its use in the automotive,

aerospace and other industries. A typical control application contains a set of periodic

(software) tasks together with a mode-switching logic for activating or deactivating tasks.

Our goal is to (online) check the correctness of the internal behaviors of the task that is

identified as important among the others in the task set.
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There are two ways to get the (behavioral) models at multiple levels of abstraction

and/or from different perspectives for the program to be checked: one is to reuse the

(design) models built during the software development phase; the other is to abstract the

models directly from the source code of the target program. For the sake of simplicity,

we suppose that the target program is written in a restricted subset of C that conforms

to the (mandatory) requirements of the MISRA-C coding standard, which allows only

static memory allocation and no function recursion.

The monitoring points for online model checking are determined by analyzing the control

flow graph of the target program. We present a partitioning algorithm to calculate a

smaller set of monitoring points that are distributed more or less evenly in the control

flow graph. The time complexity of the algorithm is linear in the number of the vertices

in the control flow graph.



Chapter 6

Integration of Online Model

Checking with RTOS

As mentioned in Section 5.1, a typical embedded control application may switch from

one operational mode to another during system execution. As a result, some tasks (in

the current mode) are removed while others are added in the target mode. In order to

ensure the correctness of the control software, in particular, the correctness of the tasks

identified as safety-critical, during system execution, we present a framework for inte-

grating the online model checking mechanism with the underlying real-time operating

system (RTOS). As a proof of concept, a prototype is implemented by Krishna Sudhakar

as his master thesis [84] cosupervised by the author. This work is later published in [85].

6.1 Integration Framework

Given a real-time operating system (RTOS), which manages one or more system ap-

plications running in a interleaved manner, we can deploy the online model checker as

verification service inside the RTOS (with dashed lines) or outside the RTOS (without

dashed lines) as illustrated in Fig. 6.1.

In both cases, an observer is needed to record the current state information while the

system application under investigation is running. For a system application evaluated

as safety-critical or ultra-reliable, we assume that its source code has already been in-

strumented with special system calls at the predetermined monitoring points in advance.

Thus, the observer can be implemented inside the system call handler of this type of spe-

cial system call. Whenever the special system call at some monitoring point is triggered,

the observer (inside the system call handler) goes to read the values of the variables of

83
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interest at the current state, say si, out of the local memory of the target application,

and then to apply the predefined mapping function to obtain the corresponding ab-

stract state ŝi = α(si) in the (behavioral) model of the target application. At this time,

a simple assertion checking can be done if necessary. In case of violation, the operating

system will be informed right away. Otherwise, ŝi will be written into the ring buffer1,

which is allocated by the operating system to store the current state information for

online model checking. If the buffer is full, the oldest state will be overwritten by the

latest state.

Observer

Error found!

ring
buffer

write read

. . .

Figure 6.1: Integration Framework

On the other hand, the online model checker tries to take one (current) state out of the

ring buffer every T time units, where T is the time limit allocated to the online model

checker by the user. If the ring buffer is empty, the online model checker will either

resume the work of the last checking cycle, provided that the work has not finished yet;

or else simply wait until the next checking cycle starts. Otherwise, there is a state, say

ŝi, available, then within the given T time units, the online model checker tries to search

for an error path of length up to k steps starting from ŝi in the (bounded) state space

of the behavioral model of the target program. As a result, the following three possible

checking results may be reported to the operating system:

Case unsafe: the checking process is finished in time, and an error path is found. In

this case, an alarm will be sent to the operating system as quickly as possible.

Notice that the error path might be false negative. However, to avoid the error

really to happen, we have to conservatively choose to inform the operating system

the potential danger. In response, the operating system may raise an exception.

Considering that the exception handling is usually domain specific, thus we do not

1To reduce data misses, a (ring) buffer is used because the rate at which data is received and the rate
at which it can be processed are variable over time.
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discuss it here in a general sense. In addition, the error path can be recorded to

help the user to figure out the cause of the error later.

Case safe: the checking process is finished in time, but no error path is found. That

is, it is safe within the next k steps relative to ŝi. The operating system continues

its normal operation in this case.

Case unkown: the checking process is forcedly terminated due to timeout. Therefore,

the state space of the (bounded) model is not exhaustively explored. It is, however,

reasonable to believe that the probability is low of detecting errors near the current

state ŝi in this case. It is up to the operating system to deal with this case anyway.

Needless to say, monitoring state information during program execution has more or less

an influence on the performance of the target program as well as the underlying operating

system. By introducing a special type of system call and its system call handler to fulfill

the monitoring work, both the source code of the target application and the operating

system need not to be modified too much. Since the system call handler usually has

to consume some processing time, this in turn will limit the number of variables to be

monitored. In this case, only the most important variables are selected to be monitored

during runtime.

A variable is considered important, if it is used in a conditional statement of the target

program. That is, the value of such a variable may make a contribution in deciding the

control flow of the program’s execution at the control point, at which multiple branches

exist. Accordingly, the state space of the program model to be explored by the online

model checker is reduced, because only one branch, instead of all the branches, of the

program at this point needs to be taken into account.

Notice that the state information monitored for online model checking is used to reduce

the state space of the behavioral model to be searched. In order to decrease the monitor-

ing overhead by monitoring a subset of the state variables, this incomplete information

may not uniquely identify an individual state, but a set of states in the behavioral model

(see Section 4.1.4). As a consequence, the online model checker maybe needs to search

in a larger state space of the behavioral model. The checking result is, however, not af-

fected as long as the checking time is sufficient. This is different from online monitoring

whereby the analysis may still not be accurate no matter how much time is taken due

to the incomplete information collected during runtime.

In addition, the schedulability analysis for the target system with online model checking

integrated can be conducted offline beforehand. Because the locations of the monitoring

points and the number of the variables to be monitored are known in advance, it is thus
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possible to estimate the monitoring overhead and then statically analyze the worst-case

execution time (WCET) of the source code of the system application during runtime.

By now we’ve explained the integration framework in a general sense at the conceptual

level. The development of embedded systems indicates a trend towards incorporating

more than one CPU, i.e., maybe multiple cores on a chip or multiple chips on a board or

any combination thereof [86]. For example, in the automotive industry, the AUTOSAR

OS specification published in 2011 added support for multicore systems [87]. The inte-

gration framework can then be implemented on different hardware architectures from

single-core or multicore processor to multiprocessor:

• Single Core Processor: One possible implementation is to make the online

model checker as a system service in the RTOS kernel [88]. In doing so, a fixed

time slot is reserved a priori for online model checking, say, at the beginning (or

end) of each scheduling cycle of the RTOS. This time slot is specifically reserved

for the (online) verification service. If no online checking task is active, the sched-

uler is allowed to allocate this slot to such preemptive low priority tasks that can

be moved or replaced by the online checking task at any time when the verifi-

cation service is triggered. The advantage of this way of integration is that the

communication overhead between the RTOS and the online model checker is very

low. However, including the online model checker in the kernel space increases

the footprint of the RTOS, even in the cases that the online checking service is

not requested. In addition, the online model checker is usually a computationally

intensive task, which requires additional memory and consumes additional energy.

Another possible solution is to introduce a hypervisor to build multiple virtual

machines, and then make the online model checker and the RTOS run on differ-

ent virtual machines. Of course, a hypervisor will play a more valuable role on a

multicore platform [86].

• Multicore Processor: From the software perspective, there are basically two

types of multicore designs: Asymmetric Multi-Processing (AMP) and Symmetric

Multi-Processing (SMP) [86, 89, 90]. In both cases, the online model checker can

be assigned to a (specific) core different from the one that runs the RTOS. In this

way, the memory footprint of the RTOS is reduced by deploying the online model

checker outside the RTOS kernel. This also does not affect schedulability so much,

as the only special additions to the RTOS are an “observer” and a function to

communicate with the online model checker. However, for a multicore platform,

special attention must be paid to ensure that the software running on different

cores, be it operating systems or applications, are properly separated from each

other so that they do not interfere with each other. Fortunately, there are different
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techniques, in particular, different virtualization techniques, such as container and

hypervisor [67], to fulfill this goal.

• Multiprocessor: The processors in a multiprocessor system may be tightly cou-

pled at the bus level or loosely coupled via Internet for communication. The

online model checker and the RTOS can thus be deployed on different processors

(or nodes). They communicate with each other via I/O ports. Of course, correct

delivery of messages needs to be guaranteed. In this way, the task(s) running on

the RTOS can be verified by the online model checker on a remote machine. The-

oretically, it is possible to verify distributed (real-time) applications by means of

online model checking. Since the RTOS and the online model checker are deployed

over a network, a number of factors comes into play when calculating the delay in

communication, such as, bandwidth, error rate, noise, and so on.

Which solution is the best choice? That depends on many factors, such as the workload of

the online model checker, the (real-time) operating system, the communication overhead,

and the performance of the underlying hardware, to name just a few.

6.2 ORCOS

Figure 6.2: Architecture of ORCOS [91]

Organic ReConfigurable Operating System (ORCOS) [91] is a small-footprint real-time

operating system2 designed to be configurable during design-time and even during run-

time [92]. Through a special configuration language based on XML, the user is able to

configure only the functionality which is actually needed and decide which functionality

to place in kernel and which in userspace [93]. The architecture of ORCOS is illustrated

in Fig. 6.2. ORCOS is implemented using fully object oriented programming with C++

2Developed at the University of Paderborn in the research group chaired by Prof. Franz Rammig.
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and suitable for most of the processors available to embedded systems, e.g., PowerPC405,

Sparc Leon3, ARMv4(t) and above, QEMU (emulating PowerPC405), OMAP3530 SOC

(Limited Support), etc..

The kernel of ORCOS is made up of several modules, which can be configured through

the XML-based configuration language SCL (Skeleton Customization Language) [94].

Now let’s break it down.

Processes The processes are called tasks in ORCOS. A task is just a resource con-

tainer, its executing entity is called thread. A thread is the unit of execution and

scheduling, not the task. In order to guarantee predictability, ORCOS introduces a spe-

cial type of task called worker task. In fact, there is only one worker task in ORCOS.

This worker task belongs to the kernel space and can spawn multiple worker threads.

Each worker thread has its own stack and shares the resource of the work task. The

worker threads can take over such kind of work that arrives non-deterministically, e.g.,

asynchronous IO interrupts, or that needs to be executed at a specific time, e.g., timed

calls or periodic calls to functions. The introduction of the worker threads allows these

activities to be scheduled like any other threads [95].

Scheduler The scheduler is in the core of the ORCOS kernel. ORCOS schedules based

on threads. The following scheduling strategies are implemented in ORCOS: Round

Robin (RR), Fixed-Priority Scheduling (FPS), Rate Monotonic Scheduling (RMS) [96],

Earliest Deadline First (EDF) [96] and EDF with Total Bandwidth Server (TBS) [97].

Thread Interrupthandler SyscallManager

syscall()
handleSyscall()

return value

Figure 6.3: Syscall processing of ORCOS [91]

System Calls The tasks as well as services in user space can use kernel functionalities

only through the system calls defined in the syscall API. The processing of a system call is
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illustrated in Fig. 6.3. Whenever a thread issues a system call, the related information

of the system call will be stored at the specific locations on the stack of the task.

Afterwards, a software interrupt is raised and then the kernel will take control, which

involves storing the context of the task and triggering an appropriate interrupt handler.

Thereafter, the SyscallManager will be invoked: the parameters as well as the syscall

number are loaded from the stack of the task and the functionality of the system call

is executed. Notice that there is no direct function call on the Interrupthandler.

Instead, the syscall() will cause a sequence of assembler instructions to be executed,

which react on the software interrupt and end up calling the Interrupthandler.

Communication ORCOS allows inter-node and inter-process communication. Two

processes or nodes communicate with each other using socket API. The socket design is

implemented using a configurable protocol stack. Each socket can be explicitly config-

ured (even at runtime) to define which protocol stack will be used.

Memory Management The memory management belongs to the core of the ORCOS

kernel. ORCOS follows the rule of separating the kernel and every task’s memory from

each other. Each task has its own memory manager. In addition, ORCOS is capable

of virtual addressing if the underlying hardware architecture is equiped with a Memory

Management Unit (MMU).

Filesystem The filesystem of ORCOS is inspired by the Unix filesystem. Whenever a

resource is created, it will automatically register itself at the Filemanager. Each device

is accessible by a unique path.

HAL The ORCOS kernel does not operate directly on the hardware in order to main-

tain portability to other hardware platforms. Instead, the kernel delegates the calls to

the hardware through a Hardware Abstraction Layer (HAL), which offers an interface

independent of any hardware platform, which in turn delegates the calls to the real

underlying hardware.

Power Management ORCOS has built-in power management to control the power

consumption of the devices that support throttling or other power states through their

device drivers.
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6.3 Prototype Implementation

As a proof of concept, we’ve integrated the online model checker with ORCOS on top of

a (virtualized) multicore platform. Fig. 6.4 illustrates the architecture of our prototype

implementation. The whole system is built on a Linux platform (32 bit Ubuntu 12.04

LTS) with 3GHz Pentium 4 CPU and 2GB RAM. ORCOS runs on top of QEMU [98], a

open source machine emulator that emulates in our setting the microcontroller PowerPC

405EP with 333MHz CPU and 4KB on-chip memory. During the time when ORCOS was

developing, QEMU v1.5.0 was the highest version available for download. This version

of QEMU fails to emulate the networking capability of PowerPC 405EP, which makes

ORCOS impossible to communicate with the outside world. Therefore, a communication

helper3 is used to connect ORCOS with the outside world. The online model checker

is implemented as verification service on Linux because it adopts a tailored zChaff SAT

solver as its search engine, which needs to run on a general purpose operating system.

Linux (Ubuntu 12.04)

QEMU 1.5.0 Communication
Helper

Online 
Model Checker

Kernel

task1 taskn● ● ●

ORCOS

Figure 6.4: Architecture of prototype implementation

In some sense, this implementation comes close to a productive system running on a mul-

ticore platform (as shown in Fig. 4.17 in Section 4.2.3), where the software application

on top of ORCOS and the online model checker on top of Linux run on different virtual

machines. In other words, ORCOS on top of QEMU (emulating PowerPC 405EP) is

running as a process on the host, i.e., the Linux platform. The online model checker is

running as another process on the same host. Notice that both processes can be seen

as an own virtual machine on top of a (virtualized) multi-core platform. In this sense,

the Linux platform also plays a role of hypervisor. The communication helper emulates

then a standard inter-VM (Virtual Machine) communication service of the hypervisor.

Fig. 6.5 illustrates the details of our implementation. In order to probe the state infor-

mation during runtime, we add a special system call monitor read(), an observer, a

3A plugin to QEMU developed in Java by Sijia Li, a student assistant in the research group chaired
by Prof. Franz Rammig.
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ring buffer and a special worker thread into the kernel of ORCOS. For a task to be

checked, we assume that the monitor read() system calls have already been inserted at

the monitoring points in the source code of the task at the software development phase.

The system call monitor read() is handled by the observer inside SyscallManager.

The observer is a snippet of code that copies the values of the variables being mon-

itored from the memory of the task into the ring buffer in the kernel space. The

ring buffer occupies a contiguous memory region, whose structure is decided by the

number and types of the variables to be monitored. The worker thread functions as a

delegate of the online model checker inside ORCOS. If the ring buffer is not empty,

the delegate does periodically the following work: it takes a (concrete) state from the

ring buffer, maps this state into the corresponding abstract state, and then delivers

the abstract state to the online model checker.

ORCOS
task1 taskn● ● ●

monitor_read()

SyscallManager

delegate of 
Online Model Checker

(WorkerThread)

Ring 
Buffer

write

read

Kernel

observer

Communication
Buffer

write read

QEMU

readBufferThread

listenServerThread

Communication Helper

Initialization

Receive State

Send Result

Execute 
Search Engine

Online 
Model Checker

encoder.c var_list.txt .elf of task

MonitorMemory.hh

Monitor_gen.hh MonitorMemory.cc

Monitoring Tool

Python
Script

Figure 6.5: Integration of online model checking with ORCOS

Monitoring Tool

A Python script is used to generate the monitoring tool for ORCOS. The Python script

takes three files (provided by the user) as input: var list.txt, encoder.c and the

.elf file of the task to be checked. The file var list.txt contains the variables to be

monitored. The file encoder.c contains the mapping functions. Each mapping function

defines as a predicate, which accepts the variables in var list.txt as parameters and
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returns a Boolean value. By disassembling the .elf file of the target program, we are

able to obtain the detail information about the variables of interest, such as data type,

memory address, and so on. Notice that the program is assumed to be written in C

and compliant to the MISRA C standard (see Section 5.3.1). In addition, for the sake

of simplicity we also assume that the program does not call such external function(s)

whose source code (in C) is not available. Because neither dynamic memory allocation

nor function recursion is allowed, the correspondence of variables to addresses can thus

be established once and for all at compile time [28].

CallableObject

+ ~CallableObject()
+ callbackFunc()

MonitorQueue

− _monitor_queue[ARRAY_SIZE]: Monitor_Node
− _front: int
− _rear: int
− _capacity: int = ARRAY_SIZE
− _cur_cap: int

# enqueue(incoming_struct: Monitor_Node): void
# dequeue(outgoing_struct: Monitor_Node*): void
# checkFullQueue(): int
# checkEmptyQueue(): int
+ MonitorQueue()
+ initialize(): void
+ writeIntoQueue(): void
+ readFromQueue(buffer: char*): void

wtReadFromQueue

+ callbackFunc()

MonitorMemory.hh

struct Monitor_Node {
   type1  var1;
   type2  var2;
   ∙∙∙ ∙∙∙ 
}

#define ARRAY_SIZE = 5

/*Monitor_gen.hh*/

bool mapping_function1(){∙∙∙}
bool mapping_function2(){∙∙∙}
∙∙∙ ∙∙∙ 

void enqueue(){∙∙∙}
void dequeue(){∙∙∙}
void writeIntoQueue(){∙∙∙}
void readFromQueue(){∙∙∙}

/*MonitorMemory.cc*/

Figure 6.6: Monitoring tool of ORCOS

The Python script produces two files Monitor gen.hh and MonitorMemory.cc as out-

put. These two files together with MonitorMemory.hh build the monitoring tool of

ORCOS as shown in Fig. 6.6. The header file Monitor gen.hh contains the structure

definition of Monitor Node and the macro definition ARRAY SIZE. The former defines

a row of the ring buffer, and the latter the length of the ring buffer. The header

file MonitorMemory.hh contains class MonitorQueue, which defines the ring buffer

(i.e., monitor queue) and its interface. This file is not generated by the Python script,

because the definition of class MonitorQueue is fixed. The ring buffer is declared as
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a static member, so that all the instances of class MonitorQueue and its subclasses

can operate on the same ring buffer. The source file MonitorMemory.cc contains

the mapping functions given in encoder.c as well as the definitions of the four in-

terface functions of the ring buffer: enqueue(), dequeue(), writeIntoQueue() and

readFromQueue().

The access to enqueue() and dequeue() is protected, while writeIntoQueue() and

readFromQueue() are publicly accessible. enqueue() adds one state entry to the end of

the ring buffer. When the buffer is full, the oldest state entry will be overwritten by

the newest one. dequeue() removes one state entry from the ring buffer and stores it

into a temporary location. writeIntoQueue() copies the current state entry from the

local memory of the task being checked in the user space into a temporary location in

the kernel space, and then puts it into the ring buffer by enqueue().

Worker Thread

ORCOS has to exchange information with the outside world through the communication

buffer shared with QEMU. A specific worker thread is used to transfer the data from

the ring buffer to the communication buffer and then send it to the online model checker.

The priority of the worker thread is set to lower than that of the task being checked.

The worker thread is an instance of class wtReadFromQueue. As illustrated in Fig. 6.6,

class wtReadFromQueue inherits class MonitorQueue in MonitorMemory.hh. It has

no member data but one member function callbackFunc(). This function is the main

function of the worker thread.

The worker thread calls readFromQueue() to take a (concrete) state from the ring

buffer by dequeue(), applies the mapping functions to this state to get an abstract one,

and then puts the abstract state into the communication buffer using sendwithQEMU().

After the online model checker sends the checking result back to the communication

buffer, the worker thread is also responsible for fetching the checking result from the

communication buffer using receivefrom(). In case that the result indicates unsafe,

the worker thread then tries to inform ORCOS as quickly as possible. sendwithQEMU()

and receivefrom() are member functions of class qemueth, which is implemented in-

side ORCOS. sendwithQEMU() writes the data into the communication buffer, while

receivefrom() reads the data out of the communication buffer.

The worker thread can be seen as a delegate of the online model checker inside ORCOS.
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Communication Helper

The communication helper acts as an intermediary between ORCOS and the outside

world for exchanging data. It is implemented in Java as plugin to QEMU. There are

mainly two threads readBufferThread and listenSeverThread. readBufferThread

reads a data out of the communication buffer and then sends it to a connected sever

using the TCP/IP protocol. listenSeverThread receives a data from a connected sever

using the TCP/IP protocol and then writes it into the communication buffer.

Online Model Checker

The online model checker can be seen as a server application, which is implemented as a

process of the Linux platform. We use a tailored zChaff SAT solver (see Section 4.2.4) as

its search engine. The (bounded) behavioral model of the task as well as the property to

be checked is encoded as CNF formula in DIMACS format. At the initialization phase,

the online model checker loads the model together with the property into memory. Once

the TCP/IP connection is established between the communication helper and the online

model checker, it waits for a state information sent from ORCOS. Upon receiving the

state information, it goes to search the state space of the behavioral model for an error

by the SAT solver within a predefined time limit. By timeout it terminates the search

anyway and sends the result (i.e., safe, unsafe, or unknown) back to ORCOS. Thereafter

the online model checker waits for a new state information and repeats the above steps

until an error is found or the task being checked terminates.

6.4 Evaluation

The integration of online model checking with RTOS introduces unavoidably additional

overhead for monitoring the state information and transferring the data between the

RTOS and the online model checker. We first analyze qualitatively the constitution of

the overhead to figure out the factors that may affect the performance of the RTOS as

well as the task under investigation during runtime. Afterwards, we provide a quantitive

measurement of the monitoring overhead and the communication overhead.

Although the Linux platform can not exactly reflect a real multicore system and QEMU

can not exactly emulate the target hardware as it is, it is still meaningful to implement

our online model checking mechanism on this virtual multicore platform. The imple-

mentation of the observer and the online model checker is mainly dependent on the

respective operating system. If the whole system is ported to a real hardware platform,
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the only part of the implementation that needs to be modified is the code segment re-

sponsible for the communication between the observer (via the RTOS) and the online

model checker.

The experimental results are somewhat biased by our implementation using an emulator.

Therefore, the relative results (i.e., the time consumption as a function of bytes to be

processed) are more meaningful than the absolute values. To our knowledge, there should

exist a quasi linear relationship between the actual values and the measured results. In

this sense, a reasonable order of magnitude, to which the actual values may belong, can

be estimated based on the results measured on the emulator.

6.4.1 Overhead Analysis

Here we give an analytical estimation of the overhead introduced by the online model

checking mechanism, i.e., the monitoring overhead and the communication overhead.

The analysis aims to determine the factors that can help to reduce the overhead.

Monitoring Overhead

Without loss of generality, let taski be a safety critical task to be checked. Then, the

total execution time τi of taski holds

τi ∝ Ttask + (Tsyscall ×Nsyscall), for Nsyscall ≥ 1,

where Ttask is the WCET of taski without taking into account the online model checking,

Tsyscall is the processing time of the system call for monitoring variables, and Nsyscall

is the number of the special system calls (i.e., monitor read()) in taski.

Tsyscall is proportional to the number Nbyte of the bytes being copied, together with

some constant processing time of syscall, i.e., context switch, interrupt handling, etc.,

thus,

Tsyscall ∝ TcopyNbyte
+ Csyscall.

Therefore, the total execution time τi is defined as

τi = Ttask + (TcopyNbyte
+ Csyscall)×Nsyscall.

As a result, the monitoring overhead is calculated as

Poverhead =
Tsyscall ×Nsyscall

Ttask
.
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The monitoring overhead is proportional to the number of the system calls for monitoring

variables, provided that the number of the variables to be monitored is fixed. In order to

reduce the monitoring overhead, it is better to set the normal system calls as monitoring

points as long as possible. In this way, Csyscall needs not to be counted as a part of the

monitoring overhead, because these system calls belong to the normal behaviors of the

task. Now let’s define Nsyscall = N′syscall + N′′syscall, where N′syscall is the number of

the special system calls and N′′syscall the number of the normal system calls but set as

monitoring points. Then the monitoring overhead is defined as

Poverhead =
Tsyscall ×N′syscall + TcopyNbyte

×N′′syscall

Ttask
.

In particular, if all the monitoring points can be set in those places in which the normal

system calls locate, i.e., N′syscall = 0 and Nsyscall = N′′syscall, then, the monitoring

overhead is reduced to be

Poverhead =
TcopyNbyte

×Nsyscall

Ttask
.

Recall that the monitoring points are predetermined at the software development phase,

the only way to reduce the monitoring overhead is to reduce the number of the variables

to be monitored. For this purpose, it is better associate a weight to each variable by some

criteria such that the larger the weight of a variable, the more impact the variable has

on deciding the paths in the behavioral model of the program to be checked. However,

the incomplete state information may increase the workload of the online model checker

(see Section 4.1.4).

Communication Overhead

Recall that the communication between ORCOS and the online model checker is imple-

mented by a specific worker thread. For the sake of simplicity, the worker thread acting

as the delegate of the online model checker is called delegate in the sequel. The main

work of the delegate is to read the data from the ring buffer, apply it to the mapping

functions, and then send the results to the online model checker. In addition, it also

deals with the checking result sent back from the online model checker. Therefore, the

execution time τwt of the delegate is defined as

τwt = Tcomm + C,

where C is a constant time taken for context switches and for executing the remainder

code of the delegate.
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The time Tcomm taken for transferring the data between ORCOS and the online model

checker is made up of the following three factors:

• TORCOS to olmc: time taken for transferring the data from ORCOS to the online

model checker;

• Colmc: constant time taken for running the online model checker; and

• Tolmc to ORCOS : time taken for transferring the data from the online model checker

back to ORCOS.

It is worth pointing out that TORCOS to olmc and Tolmc to ORCOS are determined mainly

by how the data exchange between ORCOS and the online model checker is implemented

on what kind of system architecture. Given a real multi-core platform, TORCOS to olmc

and Tolmc to ORCOS should be much smaller than our implementation on top of QEMU

together with the communication helper.

TORCOS to olmc depends on TORCOS to QEMU , TQEMU to helper and Thelper to olmc as il-

lustrated in Fig. 6.7, where TORCOS to QEMU is the time taken for writing the data into

the communication buffer; TQEMU to helper is the time taken for reading the data out

of the communication buffer; and Thelper to olmc is the time taken for sending the data

from the communication helper to the online model checker using TCP/IP protocol. In

addition, there is also a constant time taken for sending an ACK from the online model

checker back to the communication helper. Therefore,

TORCOS to olmc = TORCOS to QEMU + TQEMU to helper + Thelper to olmc + C,

where C is a constant time taken for context switches, receiving ACKs, etc..
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Figure 6.7: Sending state information to online model checker

The time TORCOS to QEMU consists mainly of the following three factors:

• Tdeque: time taken for copying a (concrete) state out of the ring buffer inside

ORCOS;

• Tmap: time taken for mapping the concrete state into the corresponding abstract

state according to the given mapping functions; and
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• Tcopy to buf : time taken for copying the (abstract) state to the communication

buffer inside QEMU.

Further, Tdeque is proportional to the size of the data being monitored; Tmap depends

on the number of the mapping functions to be applied and the execution time of each

mapping function; Tcopy to buf is proportional to the number of the mapping functions,

because the return values of the mapping functions are the values being copied to the

communication buffer. Therefore, we have

Tdeque ∝ Nbyte,

Tmap ∝ Nmap func ×Tmap func, and

Tcopy to buf ∝ Nmap func.

The computation time Colmc of the online model checker is considered to be constant,

because the online model checker is always assigned by the user a predefined time limit

for its execution. In case of timeout it must terminate its execution anyway.

Tolmc to ORCOS depends on Tolmc to helper, Thelper to QEMU , and TQEMU to ORCOS as il-

lustrated in Fig. 6.8. Here Tolmc to helper is the time taken for sending the checking result

from the online model checker to the communication helper through the TCP/IP connec-

tion. In addition, there is also a constant time taken for sending an ACK from the com-

munication helper back to the online model checker. Thelper to QEMU is the time taken

for writing the checking result into the communication buffer. TQEMU to ORCOS is the

time taken for reading the checking result from the communication buffer. Therefore,

Tolmc to ORCOS = Tolmc to helper + Thelper to QEMU + TQEMU to ORCOS + C,

where C is a constant time taken for context switches, sending ACKs, etc..
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Figure 6.8: Receiving checking result from online model checker

Notice that the communication helper is in fact transparent to ORCOS and to the online

model checker. In order to send a data to the online model checker, what the delegate

needs to do is to put the data into the communication buffer; on the other hand, the

online model checker connects to a certain port and listen for the incoming connections.
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There are two ways to synchronize the communication between the delegate/ORCOS

and the online model checker: synchronous and asynchronous communication.

Synchronous Communication As illustrated on the left hand side of Fig. 6.9, after

sending the data to the online model checker, the delegate needs to wait for the checking

result sent back by the online model checker in the current execution cycle. This means

that the delegate has to enter the blocked state until the checking result has arrived. If

the delegate is set to the highest priority, it will move directly to the running state and

then preempt the currently running task. In case of a negative result, the alarm will be

sent to ORCOS by the same execution instance of the delegate as quickly as possible.

The WCET taken for synchronous communication is thus defined as

Tcomm = TORCOS to olmc + Colmc + Tolmc to ORCOS + C

where C is a constant time taken for context switches, sending ACKs, etc..
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Figure 6.9: Synchronous and Asynchronous Communication

Asynchronous Communication As illustrated on the right hand side of Fig. 6.9,

after sending the data to the online model checker, the delegate does not need to wait
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for the checking result sent by the online model checker in the current execution cycle.

Instead, the result is checked by a successive execution instance of the delegate. That

is, in each execution cycle, the delegate first checks the communication buffer for

the result from the online model checker with respect to the data sent in a preceding

execution cycle. If the result does not indicate an error, the delegate will send the new

data to the online model checker; otherwise, the delegate will inform ORCOS of the

potential error and then terminate its execution. Therefore, in case of a negative result,

the alarm will be sent to ORCOS in a successive execution instance of the delegate.

The WCET taken for asynchronous communication is thus defined as

Tcomm =





Tolmc to ORCOS + C, error

Tolmc to ORCOS + TORCOS to olmc + C, otherwise

where C is a constant time taken for context switches, sending ACKs, etc..

Given the behavioral model to be checked, the number Nmap func of the mapping func-

tions is usually fixed. Consequently, the time Tdeque, Tmap and Tcopy to buf can not be

reduced. Notice that the checking result of the online model checker can be configured

to send back to ORCOS only when a violation against the property is detected. In this

way, Tolmc to ORCOS can be neglected, provided that the errors (if any) in the target

program are very few. This assumption is reasonable because a safety-critical program

should have been intensively checked before it is released. The only way to reduce the

execution time τwt of the delegate is to reduce the transmission time from ORCOS to

the online model checker, i.e., TORCOS to olmc.

6.4.2 Overhead Measurement

Based on our prototype implementation we’ve measured the execution time taken for

monitoring the variables (i.e., Tsyscall) and for transferring the data between ORCOS

and the online model checker (i.e., TORCOS to olmc and Tolmc to ORCOS). We have to

point out that the QEMU just emulates the target Instruction Set Architecture (ISA) as

well as the hardware interface of the peripheral devices [99]. That is, no timing model of

the target architecture is implemented in QEMU. The execution time measured depends

thus not only on the implementation of QEMU but also on the configuration of the host

computer, i.e., the type of the CPU, the size of the memory, the scheduling algorithm

and the workload of the host operating system, to name just a few. As a consequence,

the measured results do not exactly reflect the actual overhead produced on the native

PowerPC microcontroller for online model checking. In this sense, the relative results

(i.e., the time consumption as a function of bytes to be processed) are more meaningful
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than the absolute values. In addition, the measured results do provide us with a clue

of the order of magnitude, of which the actual values may be. Our primary goal is to

determine those factors that may affect the performance of the online model checking

so as to improve the online model checking mechanism.

Monitoring State Information

We’ve instrumented the source code of the task to be checked with the monitor read()

system calls in advance. Whenever monitor read() is executed, the “observer” (em-

bedded in the system call manager) will copy the values of the variables of interest from

the memory of the task to the ring buffer in the kernel space. We’ve measured the

time taken for copying the data of different size from 10 bytes up to 100 bytes stepping

increasingly by 10 bytes. For each setting, the measurement is done 50 times in order to

obtain an average value. The time is measured in microseconds by getting the difference

of the time from the start of the system call to its end.

Fig. 6.10 shows the average time taken for monitoring the state information in different

size settings together with the corresponding linear regression line defined by the linear

equation f(x) = 8.04x + 160.72, which indicates that by increasing every 10 bytes, the

time taken for monitoring increases approximately by 80.4µs.
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Figure 6.10: Time taken for monitoring state information

It is reasonable to believe that there should also exist a similar linear relationship between

the size of the data and the time consumption in case that the measurement is done on

a real hardware platform.
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Sending State Information to Online Model Checker

We’ve measured the time TORCOS to olmc taken for transferring the data of different size

from 10 bytes up to 100 bytes stepping increasingly by 10 bytes, too. The measurement

is also done 50 times for each setting in order to obtain an average value. The time is

measured in microseconds, which consists mainly of two parts: TORCOS to QEMU and

TQEMU to olmc.

The transmission time TQEMU to olmc from QEMU to the online model checker is almost

constant, i.e., about 50µs, for the data of different size from 10 bytes up to 100 bytes.

The result is obtained by getting the difference of the time at which the communication

helper begins to read the data from the (communication) buffer and the time at which

the data is sent to the online model checker using the TCP/IP protocol. The constant

transmission time lies in that the communication buffer is configured to accommodate

the date of at least 100 bytes and the data is sent off to its destination in one TCP/IP

packet. This transmission time depends largely on how the online model checker is

integrated with RTOS. Shared memory seems to be the best solution whereby the time

consumption can be neglected (to some degree).
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Figure 6.11: Time taken for transferring data from ORCOS buffer to QEMU buffer

The time TORCOS to QEMU = Tdeque + Tmap + Tcopy to buf , i.e., it covers the time taken

for reading the values (of the concrete state) from the ring buffer inside ORCOS, applying

the mapping functions to them, and then writing the resulting values (of the abstract

state) into the communication buffer inside QEMU. The measured time, as illustrated in

Fig. 6.11, varies between 150µs and 200µs in average for the data of size from 10 bytes

up to 30 bytes, while between 200µs and 250µs in average for the data of size from 40

bytes up to 100 bytes. Because the time Tmap depends mainly on the complexity of

the mapping functions, there should exist no linear relationship between the size of the

data and the time consumption. Considering that the variables to be monitored and the

mapping functions are given in advance, TORCOS to QEMU is hard to be reduced further.
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Receiving Checking Result from Online Model Checker

The checking result is usually one byte4 (say, 0 stands for safe, 1 for unsafe, and 2 for

unknown). Therefore, the transmission time Tolmc to ORCOS can be seen as constant.

The measurement is done 10 times in order to obtain an average result. The transmission

time in average is about 372.82µs. Although only one byte is sent back to ORCOS,

Tolmc to ORCOS is somewhat greater than TORCOS to olmc. The reason lies in that the

delegate (i.e., the worker thread) may not be active at the time when the checking result

is sent back to ORCOS. In this case, we have to wait until the delegate is activated by

the scheduler of ORCOS and then the checking result will be processed. In practice, it

is better to send the checking result back to ORCOS only when an error is detected.

Thus, the checking result can be used as signal to trigger a software interrupt with a

higher priority. In this way, the checking result can be processed earlier by ORCOS.

6.5 Discussion

In [12] four special requirements on the integration architecture are proposed for (online)

monitoring fault tolerant real-time systems:

• Functionality : the monitor does not modify the nominal functionality of the target

system, unless the target system itself violates the given (property) specification;

• Schedulability : the monitor does not interfere with the timeliness of the services

provided by the target system, i.e., the monitoring mechanism does not cause the

target system to violate its hard real-time guarantees, unless the target system

itself violates the given (property) specification;

• Reliability : the monitoring mechanism does not decrease the (required) reliability

of the target system, i.e., the reliability of the target system integrated with the

monitor is greater than or equal to the reliability of the target system alone;

• Certifiability : the monitoring mechanism does not make the re-certification of the

target system overly difficult, i.e., the monitoring mechanism does not add unduly

modifications to the source code (or object code) of the target system.

If the above criteria are met, the real-time system will benefit by introducing a monitor-

ing mechanism [12]. Obviously, the same goes for the integration of online model check-

ing with RTOS. In our case, the source code of the target program is instrumented with

predetermined finitely many monitoring points. The distance between any two adjacent

monitoring points is not more than k (steps), a predefined bound for online (bounded)

model checking. The state information is permitted to be probed only at these monitor-

ing points. No other additional modifications to the source code are needed. Therefore,

4In case that an error is detected, the online model checker can provide more information if needed.
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the functionality of the target system is not changed. Since the number of the monitor-

ing points is fixed, so is the size of the state information to be monitored, as well as the

time limit allocated to the online model checker, the additional monitoring overhead and

communication overhead can be estimated a priori. Consequently, the schedulability of

the target system can be decided ahead of time. The online model checker only needs

to “read” the state information at monitoring points of the target program, and then

informs the underlying operating system only when a violation is detected. Theoreti-

cally speaking, the reliability and the certifiability of the target system are not affected

by online model checking.

6.6 Summary

First of all, we present a general framework for integration of online model checking with

RTOS, such as ORCOS. This integration framework can be implemented on different

hardware architectures from single-core or multicore processor to multiprocessor. As a

proof of concept, we implement a prototype on top of a (virtualized) multicore platform.

The implementation of the observer and the online model checker is mainly dependent

on the respective operating system. If the whole system is ported to a real multicore

platform, the only part of the implementation that needs to be modified is the code

segment responsible for the communication between the observer (via the RTOS) and

the online model checker.

Thereafter, we analyze qualitatively the constitution of the overhead to determine the

factors that may affect the performance of the RTOS as well as the task to be checked

and then provide a quantitive measurement of the monitoring overhead and the commu-

nication overhead. Although the experimental results can not exactly reflect the actual

values produced on a native PowerPC microcontroller, the measured values do provide

us with a clue of the order of magnitude, of which the actual values may be. According

to our analysis, there are two ways to reduce the monitoring overhead: one is to set the

native system calls in the source code as monitoring points as long as possible; the other

is to limit the number of variables to be monitored. As to the communication overhead,

it depends mainly on the time taken for sending the data to the online model checker. If

the observer and the online model checker can communicate through a shared memory,

then the overhead will be much lower.

Finally, we discuss the influence introduced by online model checking on the system to

be checked with respect to the four criteria: functionality, schedulability, reliability, and

certifiability. It turns out that our online model checking mechanism does meet these

criteria well.



Chapter 7

Case Study

The Traffic Alert and Collision Avoidance System (TCAS) is an on-board aircraft colli-

sion detection and resolution system aimed to reduce the incidence of mid-air collisions

between aircraft. TCAS is a well-known application in the domain of embedded systems,

which has been studied not only in academia but also in industry [100–104]. Therefore,

TCAS can be considered as “a benchmark for safety critical applications” [103].

In this chapter, we’d like to demonstrate the applicability of the online model checking

technique to a publicly available component of TCAS, which is responsible to provide a

solution for the pilot to avoid collision with other aircraft.

7.1 TCAS

TCAS [105] is designed to work independently of the aircraft navigation equipment and

the ground systems, which are used to provide Air Traffic Control (ATC) services. An

aircraft equipped with TCAS interrogates periodically all other aircraft equipped with a

corresponding active transponder in a determined range (i.e., protected volume) about

their position. Based on the replies received, TCAS tracks the slant range, altitude, and

relative bearing of surrounding traffic. Whenever an intruder aircraft is entering the pro-

tected volume (as shown in Fig. 7.1 and Fig. 7.2), TCAS issues a Traffic Advisory (TA)

to assist the pilot in the visual search for the intruder aircraft. TCAS then estimates a

time needed to reach the Closest Point of Approach (CPA) with the intruder. This time

value is used to calculate the vertical separation between the two aircraft. Depending

on the results obtained, TCAS may issue a Resolution Advisory (RA) to recommend

the pilot that he should either increase or maintain the existing vertical separation from

the intruder aircraft.

105
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Figure 13: TCAS II protected volume (horizontal view). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: TCAS II protected volume (vertical view). 
 
 

Figure 15: Example of TCAS/transponder panel (Boeing 737-700). 
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Figure 7.1: Protected volume (horizontal view) [106]
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Figure 13: TCAS II protected volume (horizontal view). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: TCAS II protected volume (vertical view). 
 
 

Figure 15: Example of TCAS/transponder panel (Boeing 737-700). 
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Figure 7.2: Protected volume (vertical view) [106]

Hybrid surveillance is a method that decreases the rate of surveillance interrogations

made by the TCAS unit of an aircraft [106]: with active surveillance, TCAS transmits

interrogations to the intruder’s transponder, as a reply the transponder provides the in-

formation such as range, bearing, and altitude of the intruder; with passive surveillance,

position data provided by an onboard navigation source (typically based on GPS) is

broadcast from the intruder’s transponder.

Fig. 7.3 illustrates how the system transitions from passive surveillance to active surveil-

lance as a function of the collision potential [105]: when an intruder is far from being

a threat, it is tracked with passive surveillance, and the passive surveillance position is

validated once per minute with a TCAS active interrogation; when the intruder is a near

threat in either altitude or range, but not both, it is tracked with passive surveillance,

and the passive surveillance position is validated once every 10 seconds with an active

TCAS interrogation; when the intruder is a near threat in both altitude and range, it is

tracked with active surveillance at a 1 Hz interrogation rate, i.e., once per second. The

criteria for transitioning from passive to active surveillance is designed to ensure that

all TCAS advisories should be based on active surveillance.
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Figure 9.  Transition from Passive to Active Surveillance

Figure 7.3: Transition from passive to active surveillance [105]

7.2 Source Code

In the Software-artifact Infrastructure Repository [107], there is a freely and publicly

available RA component of a preliminary version of TCAS in C, called tacs.c. The RA

component takes as input 12 parameters providing the positions of the two aircraft and

returns a single number as its output. The output can be 0, 1, or 2, where 0 means that

the situation is unresolved, 1 indicates an upward advisory, and 2 a downward advisory.

Based on this output, the aircraft operator is able to decide to increase or decrease the

aircraft’s altitude. The main function of the RA component is given in Algorithm 7.1.

From line 159 to line 170 the 12 state variables are set to the current values; line 172

is the special system call for monitoring these variables during runtime. In this case

study it is enough to set only one monitoring point. The complete source code of the

RA component is provided in Appendix A.1.

Algorithm 7.1: The main function of the RA component

input : Cur V ertical Sep,High Confidence, Two of Three Reports V alid, · · ·
output : 0, 1 , or 2

main ( int argc , char ∗argv [ ] )

{ · · · · · ·
157 initialize ( ) ;

158

159 Cur V ertical Sep = atoi ( argv [ 1 ] ) ; //int

160 High Confidence = atoi ( argv [ 2 ] ) ; //bool

161 Two of Three Reports V alid = atoi ( argv [ 3 ] ) ; //bool

162 Own Tracked Alt = atoi ( argv [ 4 ] ) ; //int

163 Own Tracked Alt Rate = atoi ( argv [ 5 ] ) ; //int
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164 Other Tracked Alt = atoi ( argv [ 6 ] ) ; //int

165 Alt Layer V alue = atoi ( argv [ 7 ] ) ; //int

166 Up Separation = atoi ( argv [ 8 ] ) ; //int

167 Down Separation = atoi ( argv [ 9 ] ) ; //int

168 Other RAC = atoi ( argv [ 1 0 ] ) ; //int

169 Other Capability = atoi ( argv [ 1 1 ] ) ; //int

170 Climb Inhibit = atoi ( argv [ 1 2 ] ) ; //int

171 //special system call for monitoring variables

172 monitor read (1 ) ;

173

174 fprintf ( stdout , "%d\n" , a l t s e p t e s t ( ) ) ;

175 exit (0 ) ;

176 }

The function call to alt sep test() at line 174 first tests the minimum vertical separa-

tion between two aircraft and then returns an advisory. The definition of this function

is given in Algorithm 7.2. First of all, it checks if an upward advisory is needed by

calling Non Crossing Biased Climb() and Own Below Threat() (line 124); afterwards,

it checks if a downward advisory is needed by calling Non Crossing Biased Descend()

and Own Above Threat() (line 125). If neither or both advisories are needed, it returns

value 0 (unresolved). Otherwise, it returns the advisory computed.

Algorithm 7.2: The definition of the function alt sep test()

int alt_sep_test ( )

{ · · · · · ·
116 enabled = High Confidence && (Own Tracked Alt Rate <= OLEV) &&

(Cur V ertical Sep > MAXALTDIFF) ;

117 tcas equipped = Other Capability == TCAS_TA ;

118 intent not known = Two of Three Reports V alid &&

(Other RAC == NO_INTENT) ;

119

120 alt sep = UNRESOLVED ;

121

122 i f (enabled && ((tcas equipped && intent not known) || ! tcas equipped))

123 {
124 need upward RA = Non Crossing Biased Climb() && Own Below Threat() ;

125 need downward RA = Non Crossing Biased Descend() &&

Own Above Threat() ;

126 i f (need upward RA && need downward RA)

127 /* unreachable: requires both Own Below Threat() and

128 Own Above Threat() to be true - that requires

129 Own Tracked Alt < Other Tracked Alt and

130 Other Tracked Alt < Own Tracked Alt, which isn’t possible */
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131 alt sep = UNRESOLVED ; //defined as 0

132 else i f (need upward RA)

133 alt sep = UPWARD_RA ; //defined as 1

134 else i f (need downward RA)

135 alt sep = DOWNWARD_RA ; // defined as 2

136 else

137 alt sep = UNRESOLVED ;

138 }
139

140 return alt sep ;

141 }

7.3 Mapping Functions

As explained in Chapters 4 and 6, we need to map the (concrete) states at the source

code level to the corresponding (abstract) state at the model level. For this case study,

the 10 mapping functions together with the 12 variables to be monitored are provided in

Appendix A.2. Of the 12 variables there are 10 int types and 2 bool types. The actual

values of the 10 int variables are passed as parameters to the 10 mapping functions to

get 10 bool values, as shown in Fig. 7.4. The 10 bool values together with the 2 original

bool values form an abstract state, which will be sent to the online model checker.

p_Cur_Vertical_Sep_GE_MINSEP()

p_Cur_Vertical_Sep_GT_MAXALTDIFF()
int Cur_Vertical_Sep

p_Own_Tracked_Alt_LT_Other_Tracked_Alt()

p_Other_Tracked_Alt_LT_Own_Tracked_Alt()

p_Own_Tracked_Alt_Rate_LE_OLEV()int Own_Tracked_Alt_Rate

p_Up_Separation_GE_ALIM()

p_Down_Separation_GE_ALIM()

p_upward_preferred()

p_tcas_equipped()int Other_Capability

p_Other_RAC_EQ_NO_INDENT()int Other_RAC

int Own_Tracked_Alt

int Other_Tracked_Alt

int Alt_Layer_Value

int Up_Separation

int Down_Separation

int Climb_Inhibit

bool Two_of_Three_Reports_Valid

bool High_Confidence

bool v2

bool v3

bool v4

bool v5

bool v8

bool v9

bool v10

bool v1bool v1

bool v6

bool v7

bool v11

bool v12

concrete state mapping functions abstract state

Figure 7.4: From concrete state to abstract state
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A mapping function1 usually takes the values of one or more (concrete) state variables as

input and returns a bool value as output. A typical example is given in Algorithm 7.3.

The returned value will be stored into the variable p Own Tracked Alt Rate LE OLEV,

which is named after the corresponding mapping function. This naming convention can

make the mapping relationship more understandable.

Algorithm 7.3: Mapping function p Own Tracked Alt Rate LE OLEV()

input : Own Tracked Alt Rate

output : true or false

119 bool p_Own_Tracked_Alt_Rate_LE_OLEV ( )

120 {
121 return (Own Tracked Alt Rate <= OLEV) ;

122 }

7.4 Abstract Model

In this case study, the mapping functions are deduced from the relational expressions oc-

curring in the function alt sep test(). By means of replacing the relational expressions

with the corresponding bool variables, we are able to obtain an abstract version of the

function alt sep test() defined in Algorithm 7.4. For example, the relational expression

(Own Tracked Alt Rate <= OLEV) at line 116 in Algorithm 7.2 is replaced by the bool

variable p Own Tracked Alt Rate LE OLEV at line 72 in Algorithm 7.4. Of course, the

four functions Non Crossing Biased Climb() and Non Crossing Biased Descend() as

well as Own Below Threat() and Own Above Threat() are also redefined in a similar way.

The complete definitions are given in Appendix A.3.

Algorithm 7.4: The abstract version of the function alt sep test()

int alt_sep_test ( )

{ · · · · · ·
72 enabled = High Confidence && p_Own_Tracked_Alt_Rate_LE_OLEV &&

p_Cur_Vertical_Sep_GT_MAXALTDIFF ;

73 tcas equipped = p_tcas_equipped ;

74 intent not known = Two of Three Reports V alid &&

p_Other_RAC_EQ_NO_INTENT ;

75

76 alt sep = UNRESOLVED ;

77

78 i f (enabled && ((tcas equipped && intent not known) || ! tcas equipped))

1In practice, it is better to define each mapping function as macro so as to improve the performance
of the mapping process.
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79 {
80 need upward RA = Non Crossing Biased Climb() && Own Below Threat() ;

81 need downward RA = Non Crossing Biased Descend() &&

Own Above Threat() ;

82 i f (need upward RA && need downward RA)

83 alt sep = UNRESOLVED ; //defined as 0

84 else i f (need upward RA)

85 alt sep = UPWARD_RA ; //defined as 1

86 else i f (need downward RA)

87 alt sep = DOWNWARD_RA ; // defined as 2

88 else

89 alt sep = UNRESOLVED ;

90 }
91 assert ( alt_sep != UNRESOLVED ) ;

92 return alt sep ;

93 }

In this abstract version of alt sep test(), the so called abstract state consists of the 12

bool variables illustrated in Fig. 7.4. Their values are dependent on the 12 (concrete)

variables in the target program and never changed by the program during its execution

cycle. If all the 12 variables in the target program are selected to be monitored, then

none of the 12 bool variables in the behavioral model becomes a free variable. In this

case, this abstract version is able to demonstrate the same behavior as the original

function. That is, if an error is detected in this abstract version, then there must be an

error in the source code of the function alt sep test().

However, if not all the 12 variables in the target program are monitored, the values

of some bool variables in the behavioral model may be undefined, i.e., they are free

variables. As a consequence, the abstract version is an over-approximation of the original

function. This means that an error detected in this abstract version may be spurious,

i.e., the checking result is false negative.

7.5 Experimental Results

The experiment is carried out using our prototype implementation on the Linux platform

(32 bit Ubuntu 12.04 LTS) with 3GHz Pentium 4 CPU and 2GB RAM (see Section 6.3).

Monitoring State Information There are 12 variables of interest: 10 int2 types

and 2 bool (char) types. Therefore, we need to copy 42 bytes to the ring buffer

2The size of an int is supposed to be 4 bytes on a 32-bit platform.
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whenever the monitoring point is reached. The time taken is measured in microseconds

for 50 times. On average it takes about 501.78µs for monitoring the state information

of 42 bytes, which is consistent with the result presented in Fig. 6.10 (in Section 6.4.2).

Monitoring Overhead We need to measure the execution time of the task (i.e., the

RA component) with and without the system call monitor read() added respectively.

The measurement is done 50 times for both cases. The execution time Ttask of the

task without monitoring state information is about 1319.14µs on average. Due to mon-

itoring state information, the average execution time of the task is increased by about

Tsyscall = 497.7µs. Therefore, the monitoring overhead Poverhead is Tsyscall/Ttask =

497.7/1319.14 = 37.7% in this case study.

Sending State Information to Online Model Checker By applying the 10 given

mapping functions we obtain 10 bool variables. Together with the two original bool

variables in the source code, we need to send only 12 bool (char) variables (12 bytes) to

the online model checker. The time TORCOS to olmc = TORCOS to QEMU +TQEMU to olmc

is measured in microseconds and the measurement is also done 50 times. On average we

have TORCOS to olmc = 189.16µs with TORCOS to QEMU = 142.3µs and TQEMU to olmc =

46.86µs in this case study.

Receiving Checking Result from Online Model Checker As mentioned in Sec-

tion 6.4.2, since the checking result is only one byte, the transmission time can be seen

as constant. We also do the measurement 50 times. On average the transmission time

is Tolmc to ORCOS = 368.62µs. This result is almost double the time taken for sending

the data to the online model checker, because the worker thread (i.e., the delegate) may

not always be active at the time when the checking result is sent back to ORCOS.

Online Model Checker The property to be checked is an assertion saying that the

function alt sep test() never returns 0, i.e., assert(alt sep != UNRESOLVED) (line

91 in Algorithm 7.4). By applying the tool CBMC [108] we are able to convert the

abstract version of alt sep test() together with the property into a boolean expression

in CNF format. In the original program tacs.c, the bool type is defined as int type,

which takes 32 bits. For the sake of simplicity, we redefine the bool type as char type,

which takes only 8 bits. The generated CNF file has 2348 (bool) variables and 5013

clauses.

Whenever the values of the 12 (abstract) variables are available, the online model checker

(with zChaff SAT solver as its search engine) will be invoked to decide whether the CNF



Chapter 7. Case Study 113

formula is satisfiable or not. The measurement is done for 10 randomly generated test

cases. The SAT solver takes about 24ms on average to finish the checking work.

It is worth mentioning that the generated CNF formula is still highly redundant, because

each abstract (state) variable is represented by 8 bits, instead of one bit, in the formula.

Therefore, the 12 (abstract) variables need 96 bits, instead of 12 bits, to represent them.

The same goes for the other bool variables occurring in alt sep test(). That is, there’s

still much room to reduce the checking time.

Recall that whenever an intruder becomes a near threat, the rate of surveillance inter-

rogations made by TCAS units is at most 1 Hz, i.e., once per second. In this sense,

the monitoring overhead and the communication overhead as well as the model checking

overhead are acceptable in this case study.

Theoretically speaking, by applying the online model checking mechanism the property

is going to be checked whenever a monitoring point is reached. In this case study,

the assertion is going to be checked at line 172 in Algorithm 7.1 before the function

alt sep test() is invoked to run. On the other hand, by introducing the online model

checking method we are able to check different properties during program execution

without interfering with the target program too much, of course, except inserting mon-

itoring points once and for all in advance.

7.6 Summary

In this chapter we take the RA component of TCAS as case study to demonstrate the

applicability of the online model checking approach. In this case study, it is enough

to insert just one monitoring point into the source code. There are 10 int and 2 bool

variables that need to be monitored during program execution. By applying 10 mapping

functions to the 10 monitored int values we are able to obtain 10 bool values, which

together with the 2 original bool values are delivered to the online model checker. The

abstract (behavioral) model together with the property to be checked is converted into

a boolean expression in CNF format. The monitoring overhead and the communication

overhead as well as the model checking time are measured using our prototype imple-

mentation on the 32 bit Linux platform with 3GHz Pentium 4 CPU and 2GB RAM.

The experimental results indicate that the overhead introduced by online model check-

ing is acceptable in this case study. It would be much more efficient to implement our

online model checking mechanism including optimization (for this case study) on top of

a suitable real hardware platform.





Chapter 8

Online Model Checking for

Hybrid Systems

As mentioned in Section 5.1, the embedded applications are a kind of software designed

to monitor and control physical processes, which usually results in feedback loops. The

software systems are usually modeled by finite state machines, whereas the physical

systems are governed in general by differential equations. The former are discrete state

systems, while the latter are continuous state systems. Hybrid systems are the combi-

nation of the two different worlds. The safety requirements on the continuous dynamics

of such systems give rise to a new challenge. In this chapter, we’d like to tackle this

challenge by the online model checking mechanism.

8.1 Motivation

Hybrid systems arise in many aspects of our daily life [109], such as aerospace, trans-

portation systems, robotics, motion control, power electronics, and so on. The behaviors

of a hybrid system are characterized by the interaction of operating modes and control

laws. Each operating mode is associated with a control law in terms of partial or ordinary

differential equations or difference equations [110]. The modes are switched following a

discrete logic, i.e., a kind of finite state machine.

In hybrid systems, a control law models the behaviors (and disturbance if any) of the

physical plant under control. At a mathematical level of abstraction, the control en-

gineer derives from the behaviors of the plants the corresponding control laws as well

as the operating modes, which are then optimized and validated by means of analysis

and simulation [72]. It is worth mentioning that hybrid systems are often operating in

115
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safety-critical situations, such as embedded controllers used in the automotive and air-

plane industries, and medical devices for monitoring serious health conditions. They are

subjected to specific potential failures. Although simulation is an easy way to validate

a hybrid system under investigation, it checks only a single trajectory of the system at

a time. No matter how many individual trajectories have been checked by simulation,

some unsafe case in deep corner may still be missed.

Typical properties studied for hybrid systems are reachability, stability and equilibria,

to name only a few. From the perspective of computer science, more attention is paid to

the reachability analysis. A hybrid system is considered safe if the unsafe states defined

in terms of state constraints are not reachable from the initial (safe) states.

For a hybrid system involving continuous dynamics, it is usually difficult to compute and

represent the set of states reachable from some initial set [111]. Decidability holds only

for those systems with simple continuous dynamics, even the most efficient algorithms

for hybrid-system verification usually have exponential time complexity with respect to

the dimension of the state space [112]. Recent research [112–116] aims to falsify, instead

of verify, the safety of the hybrid systems under investigation, i.e., tries to search for a

witness trajectory from an initial state to an unsafe state in case that such a trajectory

exists.

In this chapter we focus on ensuring the safety of the continuous dynamics of a hybrid

system by means of online model checking. The goal is to falsify the target hybrid

system during runtime.

8.2 Hybrid Automaton

Hybrid automata are a kind of formal language for modeling and analyzing the compu-

tations consisting of both continuous and discrete dynamics. A hybrid system is usually

modeled as a hybrid automaton H = (Q,X, Inv,E,G, J, U, f, I, F ) [117], where

- Q is the discrete and finite set of (operating) modes;

- X maps each mode q ∈ Q to the continuous state space Xq ⊂ Rdim(Xq);

- Inv maps each mode q ∈ Q to the continuous invariant Invq ⊆ Xq;

- E ⊆ Q×Q is the set of (discrete) transitions between modes;

- G maps each transition (qi, qj) ∈ E to the guard condition G(qi,qj) ⊆ Xqi ;

- J maps each transition (qi, qj) ∈ E to the reset function J(qi,qj) : G(qi,qj) → Xqj ;
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- U maps each mode q ∈ Q to the set of input controls Uq ⊆ Rdim(Uq);

- f maps each mode q ∈ Q to the continuous dynamics ẋ = fq(x, u) with u ∈ Uq;

- I ⊂ Q×X is the set of initial states; and

- F ⊂ Q×X is the set of unsafe states.
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Figure 8.1: A hybrid system trajectory

Intuitively, a trajectory of a hybrid system consists of continuous trajectories interleaved

with discrete transitions, as illustrated in Fig. 8.1: starting from an initial state (q0, x0),

the system evolves continuously in time following the control law ẋ = fq0(x, u) as long

as the invariant Invq0 holds. A discrete transition from q0 to qi can be triggered if the

guard condition G(q0,qi) is satisfied. As a result, the state of the system is reset according

to the reset function J(q0,qi). Let the state now be (qi, xti). Then, the system evolves

continuously in time following the control law ẋ = fqi(x, u) until a discrete transition is

triggered. The hybrid system behaves repeatedly in this way.

A hybrid automaton is blocking if a trajectory has to leave a mode due to the violation

of the invariant associated to the mode, but no discrete transition is enabled. A hybrid

automaton is Zeno if an infinite number of mode switching within a finite time is allowed.

We restrict ourselves to non-blocking and non-Zeno hybrid automata in this chapter.

8.3 Online Falsification Problem

A hybrid system is considered unsafe if an unsafe state is reachable from an initial

state. For online falsification, we mean to check whether or not a hybrid system is safe

while the system is running by online searching for a trajectory of length up to k time

steps from an initial state to an unsafe state in the hybrid automaton of the system, as

illustrated in Fig. 8.2, where the symbol
⊗

represents the unsafe region.

To make online model checking available, we assume that the actual states of the hybrid

system under investigation can be probed periodically during runtime. Without loss of

generality, let’s monitor the actual state information every T = kdt time units, where dt
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is the progression of time in one step. The monitored states are stored in a predefined

ring buffer. The online model checker tries to take a state from the buffer every T time

units. If there is a state available, the online model checker then goes to search for a

trajectory from this state to an unsafe state in the hybrid automaton within the time

limit T . To reduce the workload of this online search, we compute offline a backward

reachable set from the unsafe states up to n time steps beforehand, thus during runtime

the online model checker needs only to search in the near future (i.e., up to k time steps

for 0 < k < n) in the state space starting from each monitored state, as illustrated in

Fig. 8.3.

Figure 8.2: Online model checking problem

Operating Mode q

x = fq(x,u).

Figure 8.3: Online forward reachability checking

In each checking cycle, the online model checker may return the following three possible

checking results:

• unsafe: the checking process is finished in time, and an error trajectory is found;

• safe: the checking process is finished in time, but no error trajectory is found;

• unknown: the checking process is enforcedly terminated due to timeout.

In the unsafe case, where an error trajectory is found within ∆ (≤ T ) time units, ideally

the online model checker can predict the error ndt + kdt − ∆ time units in advance.

In the unknown case, where no error is found within T time units, it is reasonable to

believe that there should be no error at least in some neighborhood of the monitored

state.
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8.4 Offline Backward Reachable Set Computation

Given a hybrid automaton H = (Q,X, Inv,E,G, J, U, f, I, F ), the target set F of the

unsafe states may include different subset(s) of the continuous state space associated to

each (discrete) mode. For a mode q ∈ Q, the set of unsafe states (if any) in Xq can be

represented as an implicit surface function φq : Rdim(Xq) → R such that φq(x) ≤ 0 if

(q, x) ∈ F and φq(x) > 0 if (q, x) 6∈ F .

The level set methods [118] are a collection of numerical algorithms for computing ac-

curately the evolution of the implicit surface functions following the dynamics defined

by Hamilton-Jacobi partial differential equations (PDEs).

The study [119] has proved that “the viscosity solution of a Hamilton-Jacobi-Isaacs (HJI)

PDE describes the continuous backward reachable set” and implemented the basic level

set methods in Matlab1 to calculate the backward reachable set for hybrid systems.

For a mode q ∈ Q with an unsafe subset inXq, according to [119], the backward reachable

set within Xq is G1 ∪G2 ∪G3 \ E1 as illustrated in Fig. 8.4, where

• G1 ⊂ F is the initial unsafe subset;

• G2 is the set of states that can reach the unsafe set(s) in neighbor mode(s) due

to uncontrollable input, i.e., disturbance from the environment or the actions of

other systems;

• G3 is the set of states backward reachable from the unsafe set G1 ∪G2;

• E1 is the subset of unsafe states in G3 that can reach the safe state(s) in neighbor

mode(s) due to controllable input.Fig. 10. Illustration of our algorithm for computing reachable sets for hybrid systems.

the algorithm detailed in Fig. 11, we note that, for itera-
tion , and

.
To implement this algorithm, we need to compute

, and . The computation of and
requires inversion of the transition relation subject to
the quantifiers and ; the existence of this inverse can
be guaranteed subject to conditions on the map. In our
examples, we perform this inversion by hand. The algorithm
for computing is a direct modification of
the reachable set calculation of Section III; the details are
presented in [8]. Finally, we remark that this algorithm is
semidecidable when the operators and
are computable: when the continuous state dynamics are
constant and the guards and resets are polyhedra, then the
algorithm reduces to that for linear hybrid automata [68].

V. FLIGHT MANAGEMENT SYSTEM EXAMPLE

In this section, we demonstrate our hybrid systems anal-
ysis on an interesting and current example, the landing of
a civilian aircraft. This example is discussed in detail in [9]
and [10]. In addition to the examples presented here, we have
solved a range of multimode aircraft collision avoidance ex-
amples. Please refer to [8], [73] for these examples.

Fig. 11. Detail of the reach-avoid set from diagram 8 of Fig. 10.

The autopilots of modern jets are highly automated
systems that assist the pilot in constructing and flying
four-dimensional trajectories, as well as altering these tra-
jectories online in response to Air Traffic Control directives.
The autopilot typically controls the throttle input and the
vertical and lateral trajectories of the aircraft to automati-
cally perform such functions as acquiring a specified altitude
and then leveling, holding a specified altitude, acquiring a
specified vertical climb or descend rate, automatic vertical
or lateral navigation between specified way points, or
holding a specified throttle value. The combination of these
throttle–vertical–lateral modes is referred to as theflight
modeof the aircraft. A typical commercial autopilot has
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Figure 8.4: Computing backward reachable set [120]

In this chapter, we assume that the extended target set, denoted as F ∗, has already

been offline calculated by the level set methods or any other efficient methods.

1www.mathworks.com

www.mathworks.com
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8.5 Online Forward Reachability Checking

Given a hybrid automaton H with an extended target set F ∗, we need to decide whether

or not F ∗ is reachable within the predefined k time steps starting from each actual state

monitored during runtime (see Fig. 8.3). As a proof of concept, we’ve implemented an

online reachability checker based on the iSAT solver.

iSAT [121] is a SATisfiability checker for Boolean combinations of arithmetic constraints

over real- and integer-valued variables, which can handle not only linear constraints but

also non-linear constraints involving transcendental functions. Thanks to a tight integra-

tion of DPLL-style SAT solving with interval-based arithmetic constraint propagation,

the iSAT solver is able to deal with large Boolean combinations of multiple thousand

arithmetic constraints over some thousands of variables.

Given a formula to be checked, iSAT solver may terminate in the following three cases:

• unsatisfiable : the formula is actually unsatisfiable;

• satisfiable : the formula is satisfiable2 and a solution may be generated;

• unknown : a candidate solution may be given, but no guarantee for correctness.

The iSAT solver can conduct bounded reachability checking for hybrid systems, but it

can not be directly used for online reachability checking. In cooperation with Karsten

Scheibler, a developer of the iSAT solver from the University of Freiburg, an interface for

online reachability checking has been developed. Here we introduce mainly the following

two functions:

• isat3 register trans and target(is3, trans, target, k): this function un-

rolls the transition relation trans (of the hybrid system model) up to k time steps,

combines it with the set target of the unsafe states, and then registers the gener-

ated formula with the iSAT solver is3;

• isat3 solve with init(is3, init, T): this function reads an actual state init

monitored during system execution, and then tries to determine at runtime whether

or not there exists a trajectory from init to target within the predefined T time

units. The learned knowledge is shared by the subsequent calls to this function so

as to reduce the computation time.

2However, iSAT solver is not able to give a definite answer for some formulas being checked, because
interval arithmetic combined with splitting intervals leads to an incomplete deduction calculus.
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Let the actual states monitored during system execution be stored in a buffer. The online

reachability checking algorithm is straightforward as shown in Algorithm 8.1 below.

Algorithm 8.1: Online Bounded Reachability Checking

input : trans , target , k , T

output : safe , unsafe , unknown

1 begin

2 formula = isat3 register trans and target(is3, trans, target, k)

3 formula = isat3 node simplify detroy(is3, formula) //simplify the formula

4 while (buffer 6= ∅) do

5 init←− buffer //read a new actual state

6 result = isat3 solve with init(is3, init, T )

7 i f (result == satisfiable) then output unsafe

8 e l s e i f (result == unsatisfiable) then return safe

9 else output unknown

10 endif

11 endwhile

12 end

Recall that F ∗ is obtained by calculating the reachable set from F backward up to n

time steps. It is easy to reason that the larger the n, the smaller the k, thus the shorter

the online checking time, and the higher the sampling rate for the actual states. It is up

to the user to set a proper value to k. Ideally, it is better to make n be a larger value

so that errors if any can be predicted in time in most cases.

It is worth pointing out that there exist other efficient tools that can perform forward

reachability checking. However, they need to be tailored for online reachability checking.

We adopt the iSAT solver mainly because it is convenient for us to cooperate with the

developers of the iSAT project so as to tailor the tool for our needs. The implementation

details of the iSAT tool is beyond the scope of this thesis.

8.6 Experimental Results

Case Study

The RailCab Project [122] (founded at the University of Paderborn in 1997) aims to

develop a novel on-demand traffic system for the mobility in the future, whereby small,

driverless vehicles (called RailCabs) are able to transport on demand passengers and

goods directly to their destination. The RailCabs are equipped with steerable wheels.

They can build convoy automatically [123, 124], i.e., driving within small distances with-

out mechanical coupling, so as to reduce the air resistance and the power consumption.

A test track in a reduced scale of 1 : 2.5 was built at the University of Paderborn in
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2003. Two RailCabs can operate simultaneously at a maximum speed of 10m/s. The

motor can provide the vehicle with acceleration of ±0.8m/s2 on planar tracks.

Needless to say, driving in a convoy manner is a safety critical operation. In order to

demonstrate the applicability of online model checking to hybrid systems, we design

intentionally a simplified case study as illustrated in Fig. 8.5: two vehicles RailCab1

and RailCab2 brake along a straight line. The initial distance between the two ve-

hicles is d0 = 2.22m. RailCab1 brakes at the speed v1 = 10m/s with the constant

deceleration a1 = −0.8m/s2, while RailCab2 brakes at the speed v2 = 9.87m/s with

a2 = [−0.8,−0.7]m/s2.

RailCab 2 RailCab 1
d0

x2,v2 x1,v1

0 reference point

Figure 8.5: Case study

RailCab1
RailCab2

m

(s)

Figure 8.6: Distance change over time between the two vehicles

Figure 8.7: Speed change over time of the two vehicles
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Fig. 8.6 shows the distance change over time between the two vehicles. Fig. 8.7 shows

the speed change over time of the two vehicles. That is, the two vehicles should collide

with d = 0m, v1 = 0m/s and v2 = 0.5m/s. In other words, (d = 0, v1 = 0, v2 = 0.5) is

an unsafe state.

Offline Backward Reachable Set

In cooperation with Kathrin Flaßkamp from the Department of Mathematics at Univer-

sity of Paderborn, we calculate the reachable set target starting from the unsafe state

(d = 0, v1 = 0, v2 = 0.5) backward up to n = 20 time steps with each (integration) step

being dt = 0.05s. Since the continuous dynamics of the two vehicles is simple, instead of

using the level set methods, we get the backward reachable set using a usual numerical

integration algorithm. The numerical solution is illustrated in Fig. 8.8 as a set of points,

from each of which there exists a trajectory to the unsafe state (d = 0, v1 = 0, v2 = 0.5).

Backwards Reachable Set

Figure 8.8: Backward reachable set

By applying the Matlab program vert2lcon to the backward reachable set target in

terms of points in Fig. 8.8, we obtain a polyhedron (i.e., a convex hull) illustrated in

Fig. 8.9 that covers exactly the points in the backward reachable set. The convex hull

determines an implicit surface function, denoted as φ : R3 → R, such that φ(x) ≤ 0 if the

point x ∈ target; otherwise, φ(x) > 0. The convex hull is defined by the conjunction

of 42 linear inequalities of the form c1 · d+ c2 · v1 + c3 · v2 ≤ c4, where c1, c2, c3 and c4

are constants, as shown in the following list:
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0.000000d+ 1.000000v1 +−0.000000v2 ≤ 0.800000

0.694524d+ 0.243083v1 +−0.677161v2 ≤ −0.305591

0.716920d+ 0.215076v1 +−0.663151v2 ≤ −0.300927

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

−0.893641d+ 0.443749v1 + 0.067023v2 ≤ 0.033512

−0.879463d+ 0.475460v1 + 0.021987v2 ≤ 0.010993

0.000000d+ 0.658505v1 +−0.752577v2 ≤ −0.376288
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Figure 8.9: Convex hull of the backward reachable set

Online Forward Reachability Checking

The transition relation trans of the hybrid system model is encoded as a conjunction

of the following five expressions:

x′1 = x1 + v1dt+ 0.5a1dt
2

(v′1 = v1 + a1dt) or (v′1 = 0.0 and v1 + a1dt ≤ 0.0) or (v′1 = vmax and v1 + a1dt ≥ vmax)

x′2 = x2 + v2dt+ 0.5a2dt
2

(v′2 = v2 + a2dt) or (v′2 = 0.0 and v2 + a2dt ≤ 0.0) or (v′2 = vmax and v2 + a2dt ≥ vmax)

t′ = t+ dt

where x1 and x2 are the positions of the two vehicles relative to a predefined reference

point; dt = 0.05s is a constant indicating that the progression of time in one step is dt
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seconds. In addition, the primed version of each variable in the above formulas represents

the value of the same variable in the next (time) step.

The transition relation describes the behaviors of the two vehicles in one step from the

current state (x1, v1, x2, v2, t) to the next state (x′1, v
′
1, x
′
2, v
′
2, t
′) with two constraints: (i)

if vi + aidt ≤ 0.0 for i = 1 or 2, then v′i remains zero; (ii) if vi + aidt ≥ vmax, then v′i

remains vmax = 10m/s.

The reachability problem in this case study is encoded as a formula by unwinding the

trans up to k = 10 time steps and combining it with the target (line 2 in Algorithm 8.1).

Initially, we set x1 = 37.5m, v1 = 10.0m/s, x2 = 35.27575m, v2 = 9.87m/s and t = 0.0s.

The current state information (d = (x1−x2), v1, v2) is monitored every 0.5s by simulating

the movement of the two vehicles using a Matlab program. The generated trajectory

is illustrated in Fig. 8.10.

1
2

3

22

23

Figure 8.10: Online forward reachability checking

We need to check the formula during runtime to see whether or not the unsafe target

is reachable from some monitored state within k = 10 time steps (i.e., kdt = 0.5s). This

is conducted on a Linux platform with 3GHz Intel Core 2 Duo CPU and 4GB RAM.

The experimental results are listed in Table 8.1.

As for the former 22 monitored states, the checking results are all unsatisfiable, indicating

that the unsafe target can not be reached within 500ms. Thus, the online model checker

outputs safe. The actual time taken for each checking round is not more than 45ms. As
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for the 23rd monitored state (d = 0.69, v1 = 1.20, v2 = 1.62), the iSAT solver does find

a solution, indicating that the unsafe target may be reached within 500ms. The online

model checker outputs unsafe in this case. The actual time taken for this checking round

is 110.990ms.

Table 8.1: Experimental results of online forward reachability checking

Time (ms) Variables Clauses Decisions Deductions Conflicts Result

1 28.815 12358 9852 0 13056 11 safe

2 28.049 12412 9895 0 12715 11 safe

3 26.832 12458 9938 0 12745 11 safe

4 27.086 12500 9981 0 12833 11 safe

5 26.695 12535 10019 0 12883 11 safe

6 27.509 12565 10052 0 12901 11 safe

7 26.968 12613 10095 0 12958 11 safe

8 26.915 12659 10138 0 12947 11 safe

9 26.729 12703 10181 0 12907 11 safe

10 26.584 12794 10224 0 12769 11 safe

11 27.168 12777 10257 0 12673 11 safe

12 28.015 12819 10300 0 13165 11 safe

13 28.219 12974 10343 0 13200 11 safe

14 29.283 13177 10386 0 13578 11 safe

15 31.379 13541 10429 0 14572 11 safe

16 32.612 13883 10462 0 15206 11 safe

17 36.017 14101 10505 0 16590 11 safe

18 37.314 14089 10548 0 17032 11 safe

19 40.483 14030 10591 0 18228 11 safe

20 42.964 13597 10629 0 19144 11 safe

21 38.913 13307 10662 0 18597 11 safe

22 31.174 13009 10705 0 15679 11 safe

23 110.990 35289 10764 28604 31814 26 unsafe

Recall that we set n = 20 and k = 10 steps with each step dt = 50ms in this case study.

In the 23rd checking round the error is detected within ∆ = 111ms. In ideal case, the

online model checker is able to predict the error ndt+ kdt−∆ = 1, 389ms in advance.

8.7 Related Work

The work in [125–127] is also concerned with online model checking for the time-bounded

behaviors of a hybrid system in the short-run future. The basic idea is to sample during

runtime the numeric values of the observable system state parameters periodically, e.g., a

set u of input controls (see Section 8.2). Let the period be T time units. The behavioral

model of the hybrid system can thus be reduced by regarding the monitored parameters
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as constants for the next T time units. Obviously, the resulting model is only valid within

T time units. As a consequence, the online model checker has to provide an answer within

T time units whether or not the reduced model may violate the (safety) properties being

checked. To do this, a path-oriented reachability analysis [116] is applied, whereby a

feasibility problem of a set of linear constraints is derived and solved by the linear

programming (LP) approach.

It is worth pointing out that the state variables of the the reduced behavioral model

are not monitored at all while doing model checking during runtime. In this sense, this

online checking method is also called scenario based verification [125].

E.g., for a communication based train control (CBTC) system under investigation, the

radio block center sends the control parameter, i.e., the movement authority3 (MA), to

the onboard system of the trains nearby in every T = 500ms. Upon receiving the MA,

the onboard computer of each train needs to calculate a legal operation speed range

taking into account of the current speed of the train, the status of the track, the wind

speed, and others. Notice that the MA keeps unchanged within the next 500ms. Thus,

the behavioral model of the CBTC system can be reduced by regarding the MA as

constant. The resulting model is valid within the next 500ms. Hence, the online model

checker needs to provide an answer within 500ms whether or not the reduced model may

violate the safety property being checked. In this example, the MA is the only variable

monitored whenever it is generated or updated. The other state variables in the reduced

model are not monitored at all while doing model checking during runtime.

Our online model checking method is different from this work mainly in two aspects as

illustrated in Fig. 8.3.

On the one hand, we do not reduce the behavioral model by regarding the monitored

parameters as constants and then apply model checking to the reduced model. Instead,

we simply sample the state variables of interest in every k (time) steps with each step

being dt time units. The online model checker then tries to answer within T = kdt

time units whether or not the unsafe target state is reachable within k steps from each

monitored state. In our case, the monitored states are supposed to be unchanged within

dt time units (i.e., one integration step), instead of T time units. Here the parameters

k and dt are determined by the user.

On the other hand, we calculate offline a n-step backward reachable set F ∗ to reduce

the workload of the online model checker.

3The distance that a train is authorized to move forward within T time units.
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8.8 Conclusion

In this chapter, we extend the application of the online model checking mechanism to

hybrid systems. Our goal is to falsify, rather than verify, the safety of the hybrid system

under investigation by online reachability analysis. For this purpose, we search for a

witness trajectory from each monitored state to an unsafe state in the hybrid system

model during system execution. Analogous to the case of discrete state systems, we also

calculate offline a n-step backward reachable set from the unsafe states to speed up the

reachability checking process during runtime. Of course, parallel computing can also be

used to accelerate the reachability checking for hybrid systems. But this is not the focus

of this chapter.

As a proof of concept, we’ve implemented an online reachability checker for hybrid

systems using the tailored iSAT solver as its search engine. A simplified case study

based on two vehicles operating in a convoy manner demonstrates the applicability of

online model checking to hybrid systems. The experimental results indicate that in

theory the online model checker is able to predict errors before the errors actually occur.



Chapter 9

Conclusion and Future Work

Nowadays our world depends more and more on embedded systems. They are widely

used in industry and are reshaping the way we live. Many of us use embedded systems

every day without even knowing it. In this thesis, we concern ourselves with such kind

of embedded systems that are safety-critical, whose failure or malfunction may result in

severe damages, including loss of life.

9.1 Conclusion

Modern embedded systems are a kind of special-purpose computer systems, which are

becoming more complicated due to the advances in electronic techniques. They may fail

due to external reasons, such as mechanical stress and faulty input, or due to internal

reasons, such as design errors and physical faults. An increasing number of computer

system failures are caused by design errors in software [2]. New software technology

tends to enhance the “intelligence” of modern embedded systems. This increases the

complexity of embedded software and makes subtle errors extremely difficult to figure

out. In practice, no single checking technique, such as testing, simulation, model check-

ing, monitoring, etc., or any combination thereof, is able to completely ensure that the

embedded software does behave as desired after it is released or deployed. Against

this background, we present our online model checking mechanism as a complementary

method.

By doing model checking during system execution, we are able to monitor the actual

state information so as to reduce the state space to be explored by the online model

checker. The state space explosion problem is thus avoided to some degree by making

the online model checker look ahead in each checking cycle only finitely many steps in

129
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the state space of the behavioral model of the system under investigation. Online model

checking is a lightweight and incomplete method that can falsify, rather than verify,

the behavioral model of the target system. The goal is to ensure the correctness of the

actual execution trace, instead of the universal correctness, of the target system during

runtime (with respect to the property to be checked).

For this purpose, the actual state information is monitored periodically during system

execution. Starting from each monitored state in the given behavioral model, the online

model checker attempts to find an error path of bounded length within an allocated

time limit. The property to be checked is specified in LTL. A nontrivial LTL formula

is either safety or liveness or a conjunction of the two. It is sufficient to make the

online model checker solve the safety checking problem as well as the liveness checking

problem. To this end, we reduce the problem of safety checking and liveness checking

to the corresponding invariant checking problem, which can be solved by reachability

analysis. As a consequence, our online model checking is in effect a kind of online

reachability checking. Because of checking on the model level, the online model checker

is able to predict potential errors during runtime.

Reachability checking is also a challenge for large complex systems, not to mention doing

it during runtime, which suffers from the limited time allocated to it. We speed up the

online reachability checking process by reducing the workload and adopting the symbolic

state-based search algorithm as well as using parallel computing. The workload of the

online model checker can be reduced by calculating offline a m-step transition relation

Rm and a n-step backward reachable set F ∗ from the target set of error states. According

to our experience, making two symbolic state-based model checkers work in parallel can

obtain a better price/performance ratio.

We need to instrument the source code of the target system with a finite set of moni-

toring points once and for all in advance. During system execution, once a monitoring

point is reached, the state information at this point will be recorded in a (ring) buffer.

In each checking cycle, the online model checker tries to take a state from the buffer and

then conducts reachability analysis starting from this state. The monitoring points are

determined by analyzing the control flow graph of the target program. We present a par-

titioning algorithm to calculate a smaller set of monitoring points, which are distributed

more or less evenly in the control flow graph.

We present a general framework for integration of online model checking with a real-time

operating system, such as ORCOS. This integration framework can be implemented on

different hardware architectures from single-core, or multi-core to multiprocessor. We

implement a prototype on top of a (virtualized) multicore platform. At each monitoring

point, a special system call is introduced together with its system call handler to record
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the actual state information. In this way, both the source code of the target program

and the underlying operating system only need minor modifications. We analyze quali-

tatively the additional overhead introduced by online model checking. According to our

experience, the monitoring overhead can be reduced by setting the native system calls

in the source code as monitoring points as long as possible or by limiting the number

of variables to be monitored; the communication overhead between the target program

and the online model checker depends largely on the underlying system architecture.

We take the RA component of TCAS as case study to demonstrate the applicability

of our online model checking method. In this case study, only one monitoring point is

inserted into the source code. 10 int and 2 bool variables are monitored during program

execution. By applying 10 mapping functions to the 10 int values monitored, we get 10

bool values, which together with the original 2 bool values are sent to the online model

checker. The property to be checked is an assertion. The experimental results indicate

that the overhead introduced by online model checking is acceptable in this case study.

We extend the application of our online model checking mechanism to hybrid systems.

Analogous to the case of discrete state systems, our goal is to falsify, rather than verify,

the safety of the hybrid system under investigation by the online reachability analysis.

We search for a witness trajectory of length up to k time steps from each monitored state

to an unsafe state in the hybrid system model during system execution. To speed up

this reachability checking process, we also calculate offline a n-step backward reachable

set from the unsafe states. A simplified case study based on two vehicles operating

in a convoy manner demonstrates the applicability of online model checking to hybrid

systems. The experimental results indicate that in theory the online model checker is

able to predict errors before the errors actually occur.

Online model checking has the following advantages over offline checking techniques:

• Avoid the state space explosion problem to some degree: in each checking cycle,

the online model checker tries to search for an error path of bounded length in the

state space;

• Detect errors ultra deep in the state space: theoretically, the online model checker

is able to reach those states that locate arbitrarily deep in the state space;

• Predict errors before they actually happen: due to checking on the model level, the

online model checker is able to predict errors, even if it falls behind the execution

of the target system.

Compared with online monitoring, online model checking has the following advantages:
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• The behavioral model bridges the semantic gap between the requirements and the

source code of the target program;

• Monitoring points are placed in fixed locations in the source code independent of

the properties to be checked;

• The distance of any two adjacent monitoring points is not more than k steps;

• Look ahead up to k steps on the model level from each monitored state;

• Liveness properties can be checked on the model level during runtime.

When applying the online model checking mechanism to an embedded software system,

the schedulability analysis of the target system can be conducted offline beforehand.

The above mentioned advantages indicate that the online model checking method is

complementary to, but can not be replaced by, the existing checking techniques.

9.2 Future Work

Before the online model checking mechanism can be applied to real world applications,

there are several basic issues that remain to be investigated:

First, given a monitored state in the behavioral model M , how to calculate efficiently

the exact starting points in the state space of M × B¬f for the new checking cycle is a

topic worth further research.

Second, many programming languages allow dynamic memory allocation and function

recursion, which result in dynamic data structures and dynamic function-calling chains

respectively. How to monitor the variables stored in the memory allocated dynamically

during runtime as well as how to determine the monitoring points in the source code

written in such programming languages is worth further study.

Third, whenever an error is detected by the online model checker, how to evaluate the

severity of the error is a topic worth further consideration.

Last but not least, once the detected error is identified as a severe error, how to deal

with this error during runtime is also worth further investigation.
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Case Study: TCAS

A.1 RA Component of TCAS

1 /∗ −∗− Last−Edit : Fr i Jan 29 11 : 13 : 27 1993 by Tarak S . Goradia ; −∗− ∗/
2 /∗ $Log : t ca s . c , v $

3 ∗ Revis ion 1 .2 1993/03/12 19 : 29 : 50 f o s t e r

4 ∗ Correct l o g i c bug which didn ’ t a l low output o f 2 − hf

5 ∗ ∗/
6

7 #inc lude <s t d i o . h>

8

9 #d e f i n e OLEV 600 /∗ in f e e t s /minute ∗/
10 #d e f i n e MAXALTDIFF 600 /∗ max a l t i t u d e d i f f e r e n c e in f e e t ∗/
11 #d e f i n e MINSEP 300 /∗ min sepa ra t i on in f e e t ∗/
12 #d e f i n e NOZCROSS 100 /∗ in f e e t ∗/
13

14 typede f i n t bool ;

15

16 /∗ v a r i a b l e s ∗/
17 i n t Cur Ver t i ca l Sep ;

18 bool High Conf idence ;

19 bool Two of Three Reports Val id ;

20

21 i n t Own Tracked Alt ;

22 i n t Own Tracked Alt Rate ;

23 i n t Other Tracked Alt ;

24

25 i n t Alt Layer Value ; /∗ 0 , 1 , 2 , 3 ∗/
26 i n t Pos i t ive RA Alt Thresh [ 4 ] ;

27

28 i n t Up Separation ;

29 i n t Down Separation ;
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30

31 i n t Other RAC ; /∗ NO INTENT, DO NOT CLIMB, DO NOT DESCEND ∗/
32 #d e f i n e NO INTENT 0

33 #d e f i n e DO NOT CLIMB 1

34 #d e f i n e DO NOT DESCEND 2

35

36 i n t Other Capab i l i ty ; /∗ TCAS TA, OTHER ∗/
37 #d e f i n e TCAS TA 1

38 #d e f i n e OTHER 2

39

40 i n t C l imb Inh ib i t ; /∗ t rue / f a l s e ∗/
41

42 #d e f i n e UNRESOLVED 0

43 #d e f i n e UPWARDRA 1

44 #d e f i n e DOWNWARDRA 2

45

46 void i n i t i a l i z e ( )

47 {
48 Pos it ive RA Alt Thresh [ 0 ] = 400 ;

49 Pos it ive RA Alt Thresh [ 1 ] = 500 ;

50 Pos it ive RA Alt Thresh [ 2 ] = 640 ;

51 Pos it ive RA Alt Thresh [ 3 ] = 740 ;

52 }
53

54 i n t ALIM ( )

55 {
56 re turn Pos i t ive RA Alt Thresh [ Alt Layer Value ] ;

57 }
58

59 i n t Inh ib i t B ia s ed Cl imb ( )

60 {
61 re turn ( Cl imb Inh ib i t ? Up Separation + NOZCROSS : Up Separation ) ;

62 }
63

64 bool Non Cross ing Biased Cl imb ( )

65 {
66 i n t upward pre fer red ;

67 i n t u p w a r d c r o s s i n g s i t u a t i o n ;

68 bool r e s u l t ;

69

70 upward pre fer red = Inh ib i t B ia s ed Cl imb ( ) > Down Separation ;

71 i f ( upward pre fer red )

72 {
73 r e s u l t = ! ( Own Below Threat ( ) ) | | ( ( Own Below Threat ( ) ) &&

( ! ( Down Separation >= ALIM( ) ) ) ) ;

74 }
75 e l s e

76 {
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77 r e s u l t = Own Above Threat ( ) && ( Cur Vert i ca l Sep >= MINSEP) &&

( Up Separation >= ALIM( ) ) ;

78 }
79 re turn r e s u l t ;

80 }
81

82 bool Non Cross ing Biased Descend ( )

83 {
84 i n t upward pre fer red ;

85 i n t u p w a r d c r o s s i n g s i t u a t i o n ;

86 bool r e s u l t ;

87

88 upward pre fer red = Inh ib i t B ia s ed Cl imb ( ) > Down Separation ;

89 i f ( upward pre fer red )

90 {
91 r e s u l t = Own Below Threat ( ) && ( Cur Vert i ca l Sep >= MINSEP) &&

( Down Separation >= ALIM( ) ) ;

92 }
93 e l s e

94 {
95 r e s u l t = ! ( Own Above Threat ( ) ) | | ( ( Own Above Threat ( ) ) &&

( Up Separation >= ALIM( ) ) ) ;

96 }
97 re turn r e s u l t ;

98 }
99

100 bool Own Below Threat ( )

101 {
102 re turn ( Own Tracked Alt < Other Tracked Alt ) ;

103 }
104

105 bool Own Above Threat ( )

106 {
107 re turn ( Other Tracked Alt < Own Tracked Alt ) ;

108 }
109

110 i n t a l t s e p t e s t ( )

111 {
112 bool enabled , tcas equ ipped , intent not known ;

113 bool need upward RA , need downward RA ;

114 i n t a l t s e p ;

115

116 enabled = High Conf idence && ( Own Tracked Alt Rate <= OLEV) &&

( Cur Vert i ca l Sep > MAXALTDIFF) ;

117 t ca s equ ipped = Other Capab i l i ty == TCAS TA;

118 intent not known = Two of Three Reports Val id && (Other RAC ==

NO INTENT) ;

119
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120 a l t s e p = UNRESOLVED;

121

122 i f ( enabled && ( ( tcas equ ipped && intent not known ) | | ! t ca s equ ipped ) )

123 {
124 need upward RA = Non Cross ing Biased Cl imb ( ) && Own Below Threat ( ) ;

125 need downward RA = Non Cross ing Biased Descend ( ) &&

Own Above Threat ( ) ;

126 i f ( need upward RA && need downward RA )

127 /∗ unreachable : r e q u i r e s Own Below Threat and Own Above Threat

128 to both be true − that r e q u i r e s

129 Own Tracked Alt < Other Tracked Alt and

130 Other Tracked Alt < Own Tracked Alt , which i s n ’ t p o s s i b l e ∗/
131 a l t s e p = UNRESOLVED;

132 e l s e i f ( need upward RA )

133 a l t s e p = UPWARDRA;

134 e l s e i f ( need downward RA )

135 a l t s e p = DOWNWARDRA;

136 e l s e

137 a l t s e p = UNRESOLVED;

138 }
139

140 re turn a l t s e p ;

141 }
142

143 main ( argc , argv )

144 i n t argc ;

145 char ∗argv [ ] ;

146 {
147 i f ( argc < 13)

148 {
149 f p r i n t f ( stdout , ” Error : Command l i n e arguments are \n” ) ;

150 f p r i n t f ( stdout , ” Cur Vert i ca l Sep , High Confidence ,

Two of Three Reports Val id \n” ) ;

151 f p r i n t f ( stdout , ”Own Tracked Alt , Own Tracked Alt Rate ,

Other Tracked Alt \n” ) ;

152 f p r i n t f ( stdout , ” Alt Layer Value , Up Separation ,

Down Separation\n” ) ;

153 f p r i n t f ( stdout , ”Other RAC , Other Capabi l i ty , C l imb Inh ib i t \n” ) ;

154 e x i t (1 ) ;

155 }
156

157 i n i t i a l i z e ( ) ;

158

159 Cur Vert i ca l Sep = a t o i ( argv [ 1 ] ) ;

160 High Conf idence = a t o i ( argv [ 2 ] ) ;

161 Two of Three Reports Val id = a t o i ( argv [ 3 ] ) ;

162 Own Tracked Alt = a t o i ( argv [ 4 ] ) ;

163 Own Tracked Alt Rate = a t o i ( argv [ 5 ] ) ;
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164 Other Tracked Alt = a t o i ( argv [ 6 ] ) ;

165 Alt Layer Value = a t o i ( argv [ 7 ] ) ;

166 Up Separation = a t o i ( argv [ 8 ] ) ;

167 Down Separation = a t o i ( argv [ 9 ] ) ;

168 Other RAC = a t o i ( argv [ 1 0 ] ) ;

169 Other Capab i l i ty = a t o i ( argv [ 1 1 ] ) ;

170 Cl imb Inh ib i t = a t o i ( argv [ 1 2 ] ) ;

171

172 monitor read (1 ) ; /∗ s p e c i a l system c a l l f o r monitor ing v a r i a b l e s ∗/
173

174 f p r i n t f ( stdout , ”%d\n” , a l t s e p t e s t ( ) ) ;

175 e x i t (0 ) ;

176 }

A.2 Monitored Variables and Mapping Functions

1 #inc lude <s t d i o . h>

2

3 typede f i n t bool ;

4

5 /∗ monitored v a r i a b l e s ∗/
6 i n t Cur Ver t i ca l Sep ;

7 bool High Conf idence ;

8 bool Two of Three Reports Val id ;

9

10 i n t Own Tracked Alt ;

11 i n t Own Tracked Alt Rate ;

12 i n t Other Tracked Alt ;

13

14 i n t Alt Layer Value ; /∗ 0 , 1 , 2 , 3 ∗/
15

16 i n t Up Separation ;

17 i n t Down Separation ;

18

19 i n t Other RAC ; /∗ NO INTENT, DO NOT CLIMB, DO NOT DESCEND ∗/
20 i n t Other Capab i l i ty ; /∗ TCAS TA, OTHER ∗/
21 i n t C l imb Inh ib i t ; /∗ t rue / f a l s e ∗/
22

23 #d e f i n e OLEV 600 /∗ in f e e t s /minute ∗/
24 #d e f i n e MAXALTDIFF 600 /∗ max a l t i t u d e d i f f e r e n c e in f e e t ∗/
25 #d e f i n e MINSEP 300 /∗ min sepa ra t i on in f e e t ∗/
26 #d e f i n e NOZCROSS 100 /∗ in f e e t ∗/
27

28 #d e f i n e NO INTENT 0

29 #d e f i n e DO NOT CLIMB 1

30 #d e f i n e DO NOT DESCEND 2
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31

32 #d e f i n e TCAS TA 1

33 #d e f i n e OTHER 2

34

35 #d e f i n e UNRESOLVED 0

36 #d e f i n e UPWARDRA 1

37 #d e f i n e DOWNWARDRA 2

38

39 #d e f i n e Pos i t ive RA Alt Thresh 0 = 400

40 #d e f i n e Pos i t ive RA Alt Thresh 1 = 500

41 #d e f i n e Pos i t ive RA Alt Thresh 2 = 640

42 #d e f i n e Pos i t ive RA Alt Thresh 3 = 740

43

44 /∗ mapping f u n c t i o n s ∗/
45 bool p Cur Vertical Sep GE MINSEP ( )

46 {
47 re turn ( Cur Ver t i ca l Sep >= MINSEP) ;

48 }
49

50 bool p Own Tracked Alt LE Other Tracked Alt ( )

51 {
52 re turn ( Own Tracked Alt < Other Tracked Alt ) ;

53 }
54

55 bool p Other Tracked Alt LE Own Tracked Alt ( )

56 {
57 re turn ( Other Tracked Alt < Own Tracked Alt ) ;

58 }
59

60 bool p Down Separation GE ALIM ( )

61 {
62 i n t Pos i t ive RA Alt Thresh ;

63

64 switch ( Alt Layer Value )

65 {
66 case 0 :

67 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 0 ;

68 break ;

69 case 1 :

70 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 1 ;

71 break ;

72 case 2 :

73 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 2 ;

74 break ;

75 case 3 :

76 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 3 ;

77 break ;

78 d e f a u l t :
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79 break ;

80 }
81

82 re turn ( Down Separation >= Posit ive RA Alt Thresh ) ;

83 }
84

85 bool p Up Separation GE ALIM ( )

86 {
87 i n t Pos i t ive RA Alt Thresh ;

88

89 switch ( Alt Layer Value )

90 {
91 case 0 :

92 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 0 ;

93 break ;

94 case 1 :

95 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 1 ;

96 break ;

97 case 2 :

98 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 2 ;

99 break ;

100 case 3 :

101 Pos it ive RA Alt Thresh = Pos i t ive RA Alt Thresh 3 ;

102 break ;

103 d e f a u l t :

104 break ;

105 }
106 re turn ( Up Separation >= Posit ive RA Alt Thresh ) ;

107 }
108

109 bool p upward pre fe r red ( )

110 {
111 re turn ( ( C l imb Inh ib i t ? Up Separation + MINSEP : Up Separation ) >

Down Separation ) ;

112 }
113

114 bool p tca s equ ipped ( )

115 {
116 re turn ( Other Capab i l i ty == TCAS TA) ;

117 }
118

119 bool p Own Tracked Alt Rate LE OLEV ( )

120 {
121 re turn ( Own Tracked Alt Rate <= OLEV) ;

122 }
123

124 bool p Cur Vertical Sep GT MAXALTDIFF ( )

125 {
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126 re turn ( Cur Ver t i ca l Sep > MAXALTDIFF) ;

127 }
128

129 bool p Other RAC EQ NO INTENT ( )

130 {
131 re turn (Other RAC == NO INTENT) ;

132 }

A.3 Abstract Model

1 typede f i n t bool ;

2

3 /∗ abs t r a c t v a r i a b l e s ∗/
4 bool p Cur Vertical Sep GE MINSEP ;

5 bool p Cur Vertical Sep GT MAXALTDIFF ;

6 bool p Own Tracked Alt LT Other Tracked Alt ;

7 bool p Other Tracked Alt LT Own Tracked Alt ;

8 bool p Own Tracked Alt Rate LE OLEV ;

9 bool p Up Separation GE ALIM ;

10 bool p Down Separation GE ALIM ;

11 bool p upward pre fe r red ;

12 bool p tca s equ ipped ;

13 bool p Other RAC EQ NO INTENT ;

14

15 bool High Conf idence ;

16 bool Two of Three Reports Val id ;

17

18 #d e f i n e UNRESOLVED 0

19 #d e f i n e UPWARDRA 1

20 #d e f i n e DOWNWARDRA 2

21

22 bool Own Below Threat ( )

23 {
24 re turn p Own Tracked Alt LT Other Tracked Alt ;

25 }
26

27 bool Own Above Threat ( )

28 {
29 re turn p Other Tracked Alt LT Own Tracked Alt ;

30 }
31

32 bool Non Cross ing Biased Cl imb ( )

33 {
34 bool upward pre fer red ;

35 bool r e s u l t ;

36
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37 upward pre fer red = p upward pre fe r red ;

38 i f ( upward pre fer red )

39 {
40 r e s u l t = ! ( Own Below Threat ( ) ) | | ( ( Own Below Threat ( ) ) &&

! ( p Down Separation GE ALIM ) ) ;

41 }
42 e l s e

43 {
44 r e s u l t = Own Above Threat ( ) && p Cur Vertical Sep GE MINSEP &&

p Up Separation GE ALIM ;

45 }
46 re turn r e s u l t ;

47 }
48

49 bool Non Cross ing Biased Descend ( )

50 {
51 bool upward pre fer red ;

52 bool r e s u l t ;

53

54 upward pre fer red = p upward pre fe r red ;

55 i f ( upward pre fer red )

56 {
57 r e s u l t = Own Below Threat ( ) && p Cur Vertical Sep GE MINSEP &&

p Down Separation GE ALIM ;

58 }
59 e l s e

60 {
61 r e s u l t = ! ( Own Above Threat ( ) ) | | ( ( Own Above Threat ( ) ) &&

p Up Separation GE ALIM ) ;

62 }
63 re turn r e s u l t ;

64 }
65

66 i n t a l t s e p t e s t ( )

67 {
68 bool enabled , tcas equ ipped , intent not known ;

69 bool need upward RA , need downward RA ;

70 i n t a l t s e p ;

71

72 enabled = High Conf idence && p Own Tracked Alt Rate LE OLEV &&

p Cur Vertical Sep GT MAXALTDIFF ;

73 t ca s equ ipped = p tcas equ ipped ;

74 intent not known = Two of Three Reports Val id &&

p Other RAC EQ NO INTENT ;

75

76 a l t s e p = UNRESOLVED;

77

78 i f ( enabled && ( ( tcas equ ipped && intent not known ) | | ! t ca s equ ipped ) )
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79 {
80 need upward RA = Non Cross ing Biased Cl imb ( ) && Own Below Threat ( ) ;

81 need downward RA = Non Cross ing Biased Descend ( ) &&

Own Above Threat ( ) ;

82 i f ( need upward RA && need downward RA )

83 a l t s e p = UNRESOLVED;

84 e l s e i f ( need upward RA )

85 a l t s e p = UPWARDRA;

86 e l s e i f ( need downward RA )

87 a l t s e p = DOWNWARDRA;

88 e l s e

89 a l t s e p = UNRESOLVED;

90 }
91 a s s e r t ( a l t s e p !=UNRESOLVED) ;

92 re turn a l t s e p ;

93 }
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