UNIVERSITY OF PADERBORN

Online Model Checking Mechanism
and Its Applications

by
Yuhong Zhao

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Electrical Engineering, Computer Science, and Mathematics

University of Paderborn

January 2016

http://www.uni-paderborn.de
zhao@upb.de
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

“Make things as simple as possible, but not simpler.”

(attributed to) Albert Einstein

Abstract

Modern embedded systems are a type of special-purpose computer systems. They are
widely used in industry and are becoming increasingly complicated due to the advances
in electronic techniques. Design errors in software account for a large percentage of the
computer system failures. In this thesis, we concern ourselves with online checking the
correctness of the control software applied to such kind of embedded systems that are

identified as safety-critical, whose failure or malfunction may cause severe damages.

The existing validation and verification techniques can not completely ensure that the
embedded software does behave as desired after it is released or deployed. Against
this background, we present an online model checking mechanism aimed to ensure the
correctness of the actual execution trace, instead of the universal correctness, of the em-
bedded software system. Notice that we don’t mean to propose a faster model checking
algorithm. The basic idea is to check during system execution a sequence of bounded
models that cover the actual execution trace of the software system under investigation.
Errors detected in the bounded models may indicate potential errors in the source code
of the target system. The bounded models are derived from the behavioral model of the
target system using the actual state information monitored periodically during system
execution. The online model checking problem is reduced to online reachability analysis,
which tries to look ahead finitely many steps on the model level. The properties to be
checked are specified in linear temporal logic. Because the checking process is done on

the model level, both safety and liveness properties can be handled during runtime.

By doing model checking online, we are able to reach those states that locate arbitrarily
deep in the state space and to predict potential errors even if the checking process falls
behind the execution of the target system. The state space explosion problem can thus
be avoided to some degree because the models to be checked are always bounded ones.
However, doing model checking online has to suffer from the limited execution time allo-
cated to each checking cycle. To deal with this problem, we speed up online reachability
analysis by reducing workload and adopting the symbolic state-based search algorithm
as well as using parallel computing. We present a general framework for integration of
online model checking with a real-time operating system, which can be implemented on
different hardware architectures from single-core, or multi-core to multiprocessor. The
RA component of the TCAS software is taken as case study to demonstrate the appli-
cability of our online model checking method. In addition, we extend the application of

the online model checking mechanism to hybrid systems.

Zusammenfassung

Moderne eingebettete Systeme sind spezielle Computersysteme. Sie sind in der Indus-
trie weit verbreitet und als Ergebnis der Fortschritte der Halbleitertechnologie immer
komplexer geworden. Designfehler in Software machen einen grofien Prozentsatz der
Fehler in Computersystemen aus. In dieser Arbeit befassen wir uns mit der Online
Uberpriifung der Korrektheit von Kontrollsoftware in eingebetteten Systemen, die als
sicherheitskritische identifiziert sind.

Die vorhandenen Validierungs- und Verifikationstechniken kénnen nicht vollstandig sich-
erstellen, dass sich die eingebettete Software wirklich wie gewiinscht verhélt, nachdem
sie freigegeben oder eingesetzt wurde. Vor diesem Hintergrund stellen wir einen Online
Model Checking Mechanismus vor, um die Korrektheit eines aktuellen Ausfithrungs-
pfades, anstatt die gesamte Korrektheit der eingebetteten Software, sicherzustellen.
Es ist dabei nicht das Ziel, einen schnelleren Model Checking Algorithmus vorzule-
gen. Die Grundidee des Ansatzes ist es, eine Folge von partiellen Modellen, die den
aktuellen Ausfithrungspfad der zu iiberpriifenden Software tiberdecken, wahrend der
Systemausfithrung zu iiberpriifen. Die Fehler, die in den partiellen Modellen erkannt
werden, konnen mogliche Fehler im Quellcode des zu iiberpriifenden Systems anzeigen.
Die partiellen Modelle entstehen aus dem Verhaltensmodell des zu tiberpriifenden Sys-
tems mittels der aktuellen Zustandsinformation, die wiahrend der Laufzeit periodisch
aufgenommen wird. Das Online Model Checking Problem reduziert sich zu Online Er-
reichbarkeitsanalyse, wobei in jedem ﬁberprﬁfungszyklus nur endlich viele Schritte auf
der Modellebene verfolgt werden. Die zu tiberpriifenden Eigenschaften sind Formeln in
Linearer Temporaler Logik. Sowohl Sicherheits- wie auch Lebendigkeitsiiberpriifungen
lassen sich dabei auf Erreichbarkeitsanalyse wiahrend der Laufzeit zuriickfiihren.

Mittels Online Model Checking sind wir in der Lage, die Zusténde, die sich beliebig
tief in dem Zustandsraum befinden, zu erreichen. Dazu kénnen wir auch potenzielle
Fehler vorhersagen, selbst wenn der Checking Prozess hinter der Ausfithrung des zu
iiberprifenden Systems zuriickfallt. Das Problem der Zustandsraumexplosion kann zu
einem gewissen Grad vermieden werden, da Online Model Checking eine vereinfachte
Form von Bounded Model Checking mit geleitenden initialen Zustdnden ist, welches
zur Laufzeit angewandt wird. Andererseits leidet Online Model Checking unter der
beschrinkten Ausfilhrungsfrist, die fiir jeden Uberpriifungszyklus festgelegt wird. Um
dieses Problem zu l6sen, beschleunigen wir die Online-Erreichbarkeitsanalyse durch
gezielte Verringerung der Arbeitsbelastung und die Verwendung eines symbolischen zu-
standsbasierten Suchalgorithmus sowie mittels Parallel Computing. Wir préasentieren
einen allgemeinen Rahmen fiir die Integration von Online Model Checking in ein Echtzeit-
betriebssystem. Dieser Ansatz kann auf unterschiedlichen Hardware-Architekturen, von
Single-Core- oder Multi-Core- bis hin zu Multiprozessor-Architekturen, implementiert
werden. Die RA-Komponente der TCAS Software dient als Fallstudie, um die Anwend-
barkeit unserer Online Model Checking Methode zu demonstrieren. Dartiber hinaus
erweitern wir die Anwendung des Online Model Checking auf Hybridsysteme.

Acknowledgements

Many people have provided help and encouragement over these years, without which

this thesis would not have been possible.

I would like to express my special appreciation and thanks to Prof. Franz Rammig for
accepting me in his research group at the time when I was getting into trouble in China.
Words can not express how grateful I am to him! His confidence and sustainable support

encourage me to keep going and continue my research on this topic.

I am grateful to Prof. Uwe Glésser, Prof. Hans Kleine Biining, Prof. Heike Wehrheim,

and Jun. Prof. Christian Plessl for serving on my examination committee.
I am thankful to Prof. Gabor Karsai for reviewing this thesis.

My thanks go to Krishna Sudhakar, Mona Qanadilo, Sufyan Samara, Karsten Scheibler,
and Kathrin Flalkamp. Some ideas would not be implemented without their help.

I would also like to thank Peter Schrammel for helping me understand the CBMC tool

and Ian Mitchell for helping me learn the level set methods.

A particular thank goes to my husband for bringing me pleasure. With him my life
becomes simple and is full of happiness so that I can overcome any interference occurred

in writing this thesis.
I am deeply grateful to my parents. Without them I would not be where I am today.

I would like to take this opportunity to thank Mr. Li Hongzhi for teaching me the
principle of “Truthfulness, Compassion, and Tolerance”, whereby I am able to maintain

a peaceful mind in everyday life, be it at work or at home.

Contents

1 Introduction

2 Preliminaries

2.1 Fault, Error and Failure
2.2 Behavioral Model
2.3 Property Specification o 0oL

2.3.1 Linear Temporal Logic

2.3.2 Biichi Automaton oo
2.4 LTL Model Checking
2.5 Bounded Model Checking (BMC)

3 Related Work

4 Online Model Checking Mechanism
4.1 Online Model Checking
4.1.1 Problem Statement oo o L
4.1.2 Online Model Checking for Safety Properties
4.1.3 Online Model Checking for Liveness Properties
4.14 Discussiono oL
4.1.5 Prototype Implementation and Experimental Results
4.2 Accelerating Online Model Checking
4.2.1 Reducing Workload o000
4.2.2 Online Symbolic Model Checking
4.2.3 Parallel Computing
4.2.4 Prototype Implementation and Experimental Results
4.3 SUMMATY . . . o v e e e e e e e e

5 Model Generation and Source Code Instrumentation
5.1 Embedded Control Applications.
5.2 Model Generation
5.3 Source Code Instrumentation
5.3.1 MISRA C e
5.3.2 Control Flow Graph,
5.3.3 Graph Partitioning o oo
5.4 Summary L e e

6 Integration of Online Model Checking with RTOS
6.1 Integration Framework o oo

xi

10
10
13
16
17

19

31
31
31
34
38
41
46
o4
54
o7
60
61
68

69
69
71
73
73
74
75
81

83

xii Contents
6.2 ORCOS e 87
6.3 Prototype Implementation oL 90
6.4 Evaluation. 94

6.4.1 Overhead Analysis, 95
6.4.2 Overhead Measurement 100
6.5 Discussion 103
6.6 SUmMmAary e e 104

7 Case Study 105
7.1 TCAS . . e e e e 105
7.2 Source Code e 107
7.3 Mapping Functions 109
7.4 Abstract Model 110
7.5 Experimental Results. Lo 111
7.6 SUmMmMary e e e e 113

8 Online Model Checking for Hybrid Systems 115
8.1 Motivation e 115
8.2 Hybrid Automaton o 116
8.3 Online Falsification Problem 117
8.4 Offline Backward Reachable Set Computation 119
8.5 Online Forward Reachability Checking 120
8.6 Experimental Results. o 121
8.7 Related Work e 126
8.8 Conclusion e 128

9 Conclusion and Future Work 129
9.1 Conclusion e 129
9.2 Future Work e 132

A Case Study: TCAS 133
A.1 RA Component of TCAS 133
A.2 Monitored Variables and Mapping Functions 137
A.3 Abstract Model 140

List of Figures 143

List of Tables 145

List of Publications 147

Bibliography 149

Chapter 1

Introduction

Nowadays embedded systems are playing an increasingly important role in our daily life.
Embedded systems are computer systems integrated into technical products, such as
flight control, automotive drive-by-wire, nuclear reactor management, and others. The
advances in electronic techniques enable the hardware of embedded systems to run highly
sophisticated software. Therefore, more functionality can be implemented in software.
E.g., modern cars usually have 20 to 70 electronic control units (ECUs) with millions of
lines of code [1]. More specifically, the engine control unit, the most powerful ECU on

most cars, executes concurrently up to 100 (software) tasks [2].

Autonomous and Autonomic Systems

By observing the evolution of cars in the past several decades, we are able to envision
that the development trends for embedded systems are moving from automated towards
autonomous and autonomic systems. E.g., driverless cars are capable of sensing the
environment and navigating without human intervention. In 2012, Google cofounder
Sergey Brin said that Google will have autonomous cars available for the general public
within five years [3]. Amazon is now exploring the use of drones, a kind of unmanned

aerial vehicle (UAV), for its package delivery service [4].

It follows that new software technology tends to add autonomy to modern embedded
systems so that they are able to operate on their own with little or even no directions from
humans [5]. Autonomous and autonomic are the two aspects of autonomy: autonomous
indicates self-directed to make the system fulfill some goal(s) independently, whereas
autonomic implies self-managing to keep the system robust against adversarial impacts,

no matter what happens in the environment.

2 Chapter 1. Introduction

In academia, more attention is paid to autonomic computing [6], which aims to make
embedded systems capable of managing themselves in response to changes in the sys-
tem objectives or in the environment by means of self-configuration, self-optimization,
self-healing and self-protection. E.g., the RoSES project [7] proposes a general ap-
proach to building robust distributed embedded systems capable of configuring them-
selves by adding or removing components in the field rather than in the factory. The
project of Collaborative Research Centre (CRC) 614 “Self-Optimizing Concepts and
Structures in Mechanical Engineering” [8] presents a design methodology for tomor-
row’s self-optimizing electro-mechanical systems whose behaviors are characterized by
the communication and cooperation between the components with inherent “intelli-
gence”. Here the self-optimization is implemented by means of changing the parameters
or the structure of the system components. In addition, an organic programming ap-
proach [9] is presented for cyber-physical systems capable of self-adapting to changing

environments.

Safety Problems

Many embedded systems are safety-critical and long-lived systems. For safety-critical
systems, failures may cause high costs and even endanger human lives. In general, a (dis-
tributed) computer system may fail due to external and/or internal reasons [2]. External
reasons are related to the system specification itself or to the operational environment,
e.g., mechanical stress, wrong input, temperature, and so on. The main internal reasons
for failure may be: (i) random physical faults in hardware; (ii) design faults in hardware

and/or software; or (iii) communication failures in a distributed environment.

According to [2], “Field data on the observed reliability of many large computer systems
indicates that a significant and increasing number of computer system failures are caused

by design errors in the software and not by physical faults of the hardware.”

Software errors are caused usually by the unmanaged complexity of the system design.
The increasing complexity of the embedded software makes subtle errors extremely dif-
ficult to figure out or to reproduce in a laboratory environment. Although safety-critical
systems are usually designed to be fault-tolerant, experience shows that software errors

are still unavoidable.

We have to mention this widely known accident. On June 4, 1996 the Ariane 5 launcher
went into self-destruction mode 37 seconds after liftoff. The failure was caused by a soft-
ware error in the inertial reference system: a 64 bit floating point number (representing
the horizontal velocity) was converted to a 16 bit signed integer. Consequently, the con-

version failed and the guidance and altitude information was lost. Indeed the program

Chapter 1. Introduction 3

was the same as the one that had worked perfectly in Ariane 4, while the continuous
dynamical systems around the software had changed. In the new physical environment,

the trusted code unfortunately led to a catastrophe [10].

In 2005 a Boeing 777-120 aircraft experienced an in-flight upset event due to a software
design error [11]. According to the investigation conducted by the Australian Transport
Safety Bureau, the problem stemmed from an error in the ADIRU! software. The error
had existed in previous releases of the ADIRU software, but had been masked by other
code. The error was eventually exposed by a series of events that was unlikely to have
been revealed in the testing and certification process for the unit [12]. Due to the software

error, the fault-tolerant software used the erroneous data to make wrong decision.

David Cummings described also a case study they encountered in checking the flight
software for NASA’s Mars Pathfinder spacecraft [13]. A simple test which should produce
an even result (2, 4, 6, and so on) was inserted into the software. They observed just
once that the check had failed. They were “never able to reproduce the failure, despite

repeated attempts over many thousands if not millions of iterations.”

Another case study is about Toyota’s unintended acceleration problem [14]. Nowadays
cars’ throttles are mostly electronic instead of mechanical. Between the sensor under the
gas pedal and the actuator in the fuel injector many things are likely to go wrong in a
“drive-by-wire” system. It’s been reported since 2009 that Toyota Corollas can accelerate
unexpectedly at low speeds. A careful examination of the car’s software (i.e., firmware)
indicated that it could have failed in the way described in the case, not necessarily that
it did fail [15]. Toyota’s engine-control code contains more than 11,000 global variables.
The program structure is very complex. Various studies over the years determined that
functions with a cyclomatic complexity? of greater than 10 have a higher risk of defects
[16]. Many functions in Toyota’s code have a cyclomatic complexity of higher than 50. In
particular, the cyclomatic complexity of throttle-angle sensor function is more than 100.

It is really difficult to check and ensure the correctness of such a complicated software.

Needless to say, it is quite important to ensure the correctness of embedded software.
Unfortunately, no existing verification and validation techniques can completely ensure

that a software system does behave as desired after it is released or deployed.

Existing Solutions: Testing, Model Checking, and Online Monitoring

For industrial designs testing is the mainstream solution to the safety problem of modern

embedded software. Software testing [17] tries to find defects by executing a program

! An acronym for Air Data Inertial Reference Unit.
2An integer-based metric used to measure the complexity of a program by counting the number of
linearly independent paths through the program.

4 Chapter 1. Introduction

to see whether the required results are met or not. There is no way to completely test
a program of a moderate complexity. For untested inputs, undiscovered errors in deep
corners may show up during system execution. Even if an error is found by testing, it

is usually difficult to figure out the reason(s) for the error.

Different model checking techniques [18] play a supporting role in ensuring the safety of
large complex systems. Model checking needs to explore exhaustively the state space
of the behavioral model of the software system under investigation within reasonable
time and memory consumption. The complexity of autonomous and autonomic systems
exacerbates the state space explosion problem. Even the reachability problem can not

be solved completely when the state space is too large.

To challenge the state space explosion problem, many effective methods have been pro-
posed in the literature: partial order reduction [19], compositional reasoning [20], ab-
straction interpretation [21], bounded model checking [22], to name just a few. Partial
order reduction exploits the commutativity of the executed transitions in asynchronous
systems, which results in the same states when executed in different orders, to reduce the
state space that needs to be searched. Compositional verification is a divide-and-conquer
approach to mitigating the state space explosion in concurrent systems. Assumptions
on the environment are needed to guarantee the correctness of the individual compo-
nents. It is usually a non-trivial task to find the right assumptions and to check the
refinement of the environment against the assumptions. Abstraction is usually used in
the Counterexample Guided Abstraction Refinement (CEGAR) paradigm [23], where
the abstraction of the behavioral model is refined iteratively until either a definite result
is obtained or the refined model becomes intractable. Bounded Model Checking (BMC)
tries to search for an error path of length up to some finite bound from initial states.
Theoretically, there does exist a completeness threshold [24] for the bound, but it is
usually too large to perform BMC up to this threshold in practice.

Without doubt these improvements do make model checking applicable to more complex
systems, but at the cost of making the checking process more complicated and thus error-
prone, because the correctness of the checking program itself is difficult to be verified

exhaustively.

Note that the above mentioned checking techniques and the like are traditionally applied
during the software development phase before the software system is deployed in the field.

In this sense, they belong to the offline verification category.

Of course, there exist also other offline checking techniques, such as theorem proving,
static analysis, simulation, and the like. All these offline checking methods fail to ensure

definitely the correctness of large complex systems during the system development phase.

Chapter 1. Introduction 5

Therefore, different online monitoring techniques (see Section 3) come into play. The
concept of online monitoring dates back to the assembly language era. Online monitoring
has been used in program debugging, profiling, optimization, and so on. Nowadays online
monitoring is applied to checking for the correctness of the actual execution trace of the

(software) system under observation. In this sense, it is also called runtime verification.

The basic idea of online monitoring is to observe the state information while the target
system is running, and then analyze based on the collected data whether the target
system behaves normally with respect to the given properties. In practice, the analysis
can be carried out on the spot or at some time later. The granularity of observation may
have a large impact on online monitoring. If it is too coarse, important information may
be missed; if it is too fine, the monitoring overhead will be too high. On the other hand,
the properties to be checked are usually derived from the system requirements, whereas
the execution trace to be monitored is at the code (i.e., implementation) level. The
semantic gap between the properties and the execution trace makes it usually difficult
to connect correctly the low level events (i.e., state information) with the corresponding

high level elements in the properties.

Our Solution: Online Model Checking

Given the source code and the (behavioral) model of the software program as well as the
properties to be checked, obviously, the semantic gap between the properties and the
behavioral model is more narrow than the semantic gap between the properties and the
source code of the target program. The behavioral model describes the system behaviors
at a higher level of abstraction. It may be generated based on the system requirements
or extracted from the source code of the target system. Anyway, it is relatively easier to
establish the semantic relationship between the source code and the behavioral model
of the target system, i.e., the mapping function from the low-level concrete states to the
high-level abstract states, as well as the semantic relationship between the behavioral
model and the properties to be checked. In other words, the behavioral model can bridge

the semantic gap between the source code and the properties to be checked.

To a fairly large degree, the correctness of the behavioral model can reflect the correctness
of the (source code) implementation of the target system. Because many implementation
details are abstracted away, the behavioral model is usually much simpler than the source
code. However, for large complex systems, such as autonomous and autonomic systems,
the behavioral model is still too complex to be explored exhaustively by offline checking

techniques.

6 Chapter 1. Introduction

Against this background, we present the concept of online model checking, which is
the contribution of this thesis. Online model checking can be seen as an extension
of online monitoring. Like online monitoring, online model checking also observes the
state information of the target system at runtime and then checks the correctness of
the current execution trace against the given properties. Unlike online monitoring,
online model checking does not try to figure out potential errors from the collected data.
Instead, it tries to identify a partial model of the target program based on the observed
state information and then to search for errors in the obtained partial model. Errors
found in the partial model may indicate potential errors in the current execution trace or
even predict errors that may happen in the near future. The counterexample produced

by means of online model checking can be used to discover the root cause of the errors.

Considering that model checking is usually a time consuming process, it seems to be an
“impossible mission” to do model checking online while the target system is running.
This thesis tries to give a possible solution following the principle of making things “as
simple as possible, but not simpler”?. On the one hand, compared with (offline) model
checking, online model checking is obviously simple; on the other hand, compared with

online monitoring, online model checking is not that much simpler.

It is worth mentioning that online model checking is a complementary technique to the
existing solutions. It is originally proposed to be used during runtime after the target
program is deployed so as to provide an additional defense mechanism against potential
design errors in the program. Of course, it can also be used as an aid in software testing

to improve the test coverage, but this topic is outside the scope of this thesis.

Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 explains the basic concepts
and techniques used in the thesis to make the thesis self-contained; Chapter 3 details the
online monitoring techniques presented in the literature and discusses the differences and
similarities between online monitoring and online model checking; Chapter 4 presents
our online model checking mechanism as well as different speed-up techniques to improve
the performance of online model checking; Chapter 5 proposes a lightweight method to
decide the monitoring points in the target program; Chapter 6 integrates online model
checking with an RTOS as a verification service and analyzes the monitoring overhead
as well as the communication overhead; Chapter 7 provides a case study to demonstrate
the applicability of online model checking; Chapter 8 extends the application of online
model checking to hybrid systems; finally, we draw conclusions and point out possible

future research directions in Chapter 9.

3attributed to Albert Einstein.

Chapter 2

Preliminaries

To make the thesis self-explanatory, the following sections provide the definitions of the

terms used throughout this thesis.

2.1 Fault, Error and Failure

There are no unique and commonly accepted precise definitions of the concepts fault,
error and failure in the literature related to dependable computing. Here we adopt the

definitions of fault, error and failure proposed by Avizienis et al. in [25].

A failure indicates that some externally observable state of a system deviates from the
intended one, provided that there is output from the system; otherwise, there is no
failure, even if something does go wrong inside the system. That is, a failure refers to
some misbehavior of the system that can be observed by the user, be it a human user

or another computer system.

In contrast, an error indicates that some internal state of the system deviates from the
desired one, i.e., something goes wrong inside the system. Error(s) may or may not

result in failure(s).

A fault is “the adjudged or hypothesized cause of an error”, which can be internal or

external relative to the system under investigation.

Let’s take an example presented in [26] to further clarify the terms fault, error, and failure
at the software level. Given a system with the fault of missing the free statement in its
program, whenever the piece of code that should free memory is executed, the program

enters an error state: memory is allocated but never released. As long as the consumed

8 Chapter 2. Preliminaries

memory keeps below a certain threshold, there is no failure observable from outside.

However, once the memory limits of the system are approached, a failure is observed.

2.2 Behavioral Model

The behaviors of a computer system can be modeled at various levels, e.g., at four levels
from low to high: the physical level, the digital logic level, the information level and
the external level [27]. In this thesis our interest is in the behaviors of a computer
system at the information level, i.e., software system. We'd like to detect errors in a
software system by doing model checking online while the software system is running.
For this purpose, we need to specify formally a behavioral model in terms of states and
transitions so as to reflect the computations of the software system at some abstraction

level and/or from some perspective.

While a software system is running, the values of the variables of the software system will
be updated over time. A state captures the values of the system variables at a particular
instant of time. Given a state, the values of the system variables can be changed by
executing an action, which results in an evolution of the system from the current state
to a next state. Such a pair of states (before and after the action is executed) indicates a
transition of the software system. A run of the system can thus be defined as a sequence

of (possibly infinite) states connected by transitions.

Let V. ={vy : D1,v3: Do, -+ ,u, : Dy} be the set of the system variables vy, ve, -, vy,
ranging over the finite domains D1, Do, - - - , D,, respectively. A state is just a valuation
sV — {Dy,Dy,---,D,} for the variables in V. Given a valuation (i.e., a state)
(v =dy,vg =dg,-++ ,v, =dy) with v; € V and d; € D; for i =1,2,--- ;n. We can use

the formula (v; = di) A (ve = da) A---A (v, = dy,) to represent it, where each proposition
v; = d; is regarded as an atomic, basic element. Generally, atomic propositions have the
form v; = d;. An atomic proposition v; = d; is true in a state s if s(v;) = d;. It is easy
to see that each state indicates a set of atomic propositions true in this state. On the
other hand, there may be more than one state in which the atomic proposition v; = d;

holds. Hence, a formula can be interpreted as a set of all such states that make it true.

Similarly, a transition (s, s’) is a valuation of variables in the current state s and in the
next state s’. To distinguish the variables in the current state from the ones in the next

state, we rename the variables in the next state as V' = {v} : D1,v} : Da, -+ ,v}, : Dy}.

rrn
Thus, for each variable v; in V, there is a corresponding (next state) variable v} in V.
Now we are able to represent a set of transitions using a logic formula, too. This formula

is called transition relation, denoted as R(V,V').

Chapter 2. Preliminaries 9

Given a software program P, the program variables and their value domains are available.
Let AP be the set of atomic propositions. Formally, the behaviors (or computations) of
the software program over AP can be modeled as a kind of state transition graph called

Kripke structure, denoted as M = (Vias, Das, Ry, Iy, Lag), where

o Vi ={v1: Di,vg: Dy,--- v, : Dy} declares the set of the system variables and

their corresponding value domains,
e Dyy=D1 X Dy x---x D, defines the state space of M,
e Ry C Dy x Dy is the transition relation of M,

e Iy C Dy is the initial condition of M, and

2AP

o Ly : Dy — is a labeling function that associates each state with the set of

atomic propositions (in AP) true in that state.

In the state space of M, there is a transition between two states s and s, if Rps(s,s’)
holds. For the sake of convenience, we suppose the transition relation Rj; to be total.
That is, for every state s € D)y there exists a state s’ € Dy such that Rps(s, s’) holds.
In fact, we can always make Rj; total by adding an auxiliary transition to each state s

without successors so that Ry (s, s) holds.

A path (or run) p of M from a state s is an infinite sequence of states p = sg, s1, s2, - -
such that sy = s and Rps(s¢, s¢+1) holds for all ¢ > 0. Let Sy be the set of initial states
of M,ie., So={s € Dy | sk In} A state s is reachable, if there exists a path p with
some prefix sg, s1,---, S in M such that sy € Sy and sy = s. Notice that not all of the
states in Dy, are reachable from the given initial states. The set of reachable states of
M, denoted as S, are those states in Dy reachable from the set Sy of initial states. For
large complex systems, especially parallel systems, it is usually difficult to identify all
the reachable states of the system model. In general, it is undecidable whether a state

of the system model is reachable or not [28].

Let’s take a simple transition system described in [18] as an example to explain the

above notions. The Kripke structure M of the simple system is defined as follows:

Vi ={z:D,y: D} where D = {0,1},
e Dy =D xD=1{(1,1),(0,1),(1,0),(0,0)},
o Ru(z,y,2",y)=2" = (z+y) mod 2Ny =y,

e [yy=x=1Ay=1, and

10 Chapter 2. Preliminaries

o Ly((1,1)) ={z=1,y=1}, Ly((0,1)) = {z =0,y = 1},
Lym((1,0)) ={z =1,y =0}, and Ly ((0,0)) = { 0,y = 0}.

Fig. 2.1 illustrates a graphical representation of the Kripke structure of this example.
The state space of the system consists of four states (1,1), (0,1), (1,0), and (0,0). The
initial state (1,1) is pointed to by an incoming edge without a source. It is easy to see
that the states (1,0) and (0,0) are not reachable from the initial state (1,1). The path
p=(1,1),(0,1),(1,1),--- is the only path that starts from an initial state. This path

is the only valid behavior (or computation) of the transition system.

@ W

FIGURE 2.1: A Kripke structure example

2.3 Property Specification

Property specification defines formally a set of implementation-independent constraints
that a software system under investigation needs to satisfy. The properties are usually
specified in some logical formalism, e.g., temporal logic, automata, or regular expression,
etc., which describes how the behaviors of the software system should evolve over time.
It is usually difficult to decide whether or not a given specification is complete, i.e., it
covers all the properties that the software application should satisfy. It is also hard
to prove that what we write does capture exactly what we mean. In this thesis, we
simply suppose that the properties are correctly specified. Therefore, a model or an
implementation of the software system is proved to be correct, it means implicitly that

it is correct with respect to the given property specification.

2.3.1 Linear Temporal Logic

In this thesis, our concern is the correctness of the individual executions of the software
program under investigation. Therefore, linear temporal logic (LTL) [29] is adopted to
specify the properties that the software system is required to satisfy. LTL can specify

the ordering of states in time without defining time explicitly.

Given a behavioral model M over AP of the software program to be checked, an LTL
property over AP has the form A f, where A is a path quantifier meaning “for all paths”,

and f is a path formula specifying a (characteristic) predicate on the paths of the model

Chapter 2. Preliminaries 11

M. For technical convenience, we consider LTL formulas in positive normal form, i.e.,
negations (if any) are applied only to atomic propositions. An LTL formula f in positive
normal form is inductively defined as follows:

e true and false are LTL formulas;

e if p € AP, then p and —p are LTL formulas;

e if x and y are LTL formulas, then zVy, x Ay, Xy, Fy, Gy, Uy, and xRy are LTL
formulas, where X (neXt), F (Future), G (Global), U (Until) and R (Release) are

temporal operators.

Let p = sg,81, "+, Si,Si+1,--- be a path in the model M. We define the suffix of p
starting from s; as pi = 84, Si+1, - +. The semantics of an LTL formula with respect to

the path p in M is formally defined below [18]:

1. M,pEpiff pe Ly(so).

2. M,pE-piff p& Lu(so).

3. MpEaVvyif MipExor M,pE=y.

4. MplExNy it M,pExand M,p = y.

5. M,p = Xy iff M, p! =y.

6. M,p |= Fy iff M, p' =y for some i > 0.

7. M,p = Gy iff M, p' =y for all i > 0.

8. M,p = 2Uy iff M,p’ |=y for some j > 0 and M, p' =2 for all 0 <i < j.

9. M, p | 2Ry iff for all j > 0, if for every i < j, M, p’ [~ x then M, p’ |=y.

So So Sy
p: Hooo Xy Hﬁuuo

p
So S1 S; Sy

XUy [>')000)')ooo or .H...
X X X y y
So S4 S, So

XRy: @ >e Seee S>e Seee o e—Dees
y y y X,y y

FIGURE 2.2: The visualized explanation of some LTL formulas

12 Chapter 2. Preliminaries

Intuitively, an LTL property defines the characteristics of those valid paths by imposing
certain constraint(s) on some placeholder(s) in the paths as illustrated in Fig. 2.2. For
example, the formula p requires that p holds in the first state of the path, zUy specifies
that = holds along the path until in some states where y holds, while xRy specifies that
y holds along the path up to and including the first state where x holds. In the latter

two cases, x is not required to hold eventually.

We usually go to check the negation of an LTL property, which describes the charac-

teristics of those error paths. In a model with finitely many states, an infinite path is

represented as a finite sequence of states of the form (sg,s1, - ,8i—1)(8i, -, Sp) with
s; = sp for i > 0, where (so,s1, -+ ,8;—1) is a finite prefix in case of i > 0 (or empty
otherwise), and (s;,--- , sy) an ending loop (i.e., infinite suffix) of the path. Therefore,

an error path (counterexample) can be identified either by its finite prefix (finite witness)
or by its ending loop (infinite witness) that satisfies some specific constraint(s) derived
from the LTL formula.

There are two basic types of properties in LTL: safety and liveness. A general LTL
property can be expressed as conjunction of a safety property and a liveness property
[30]. Informally, a safety property means that something “bad” does never happen
during program execution, while a liveness property means that something “good” does

eventually happen [31].

Let ¥ = 247, Then, X* represents the set of finite sequences of states, and X¢ the set of
infinite sequence of states. For any two finite paths o, 8 € ¥*, B“ denotes the sequence
of states obtained by infinitely repetition of 8, and « - 8“ the infinite sequence of states
obtained by concatenation of o and 5“. Formally, an LTL formula f over AP is a safety
property, if and only if (Va € ¥¥. a = f) < (Vi > 0. (3 € X¥. a[0..7]- B = f)); fis
a liveness property, if and only if (Vo € ¥*. (35 € . a- B = f)) [30].

As for a safety property, there exists no specific constraint(s) to the infinite suffix 8 of
the path satisfying it. That is, a counterexample of a safety property is a path with
a finite prefix a whose last state contradicts the property. As for a liveness property,
some desired state(s) must happen infinitely often along the path satisfying it. That is,
a counterexample of a liveness property is a path ending with an infinite suffix 5 that

contains no desired state(s).

For example, the safety property Gp, as shown in Fig. 2.3 (a), requires that something
good (p) always holds (or something bad (—p) never holds); the liveness property FGp,
as shown in Fig. 2.3 (b), means no matter what happens along a finite prefix, eventually

something desired (p) will happen infinitely often.

Chapter 2. Preliminaries 13

So S1 So Si S141
Gp: HH.-. FGp'] >ono). >. >ooo
p p p p p p

(a) (b)

FIGURE 2.3: (a) Safety property Gp and (b) Liveness property FGp

2.3.2 Biicht Automaton

Given an LTL property f, we usually first transform its negation —f into an equivalent
Biichi automaton denoted as B-, and then go to check whether B- is satisfiable with
respect to the given model M, or not. The size of B_y is, in the worst case, exponential
in the number of the subformulas of f. There are many algorithms in the literature
[32-37] that generate optimized Biichi automata from LTL formulas. In practice, the
commonly used requirements are not very sophisticated [38]. Indeed, the LTL formulas

and their Biichi automata are usually not that much complicated.

Of course, we can also directly specify properties using Buchi automata. In fact, Bichi
automata are more expressive than most temporal logic specification languages [39].
However, complementing directly a nondeterministic Biichi automaton involves an ex-

ponential blow-up [40]. In this sense, we prefer LTL to Biichi automata.

Informally, a Biichi automaton is an extension to a finite automaton in terms of accep-
tance condition. A finite automaton is a type of state transition graph with transitions
labeled with symbol(s) and some states marked as accepting states. An accepting run of
a finite automaton is a finite path from a start state to some accepting state. Instead, an
accepting run of a Biichi automaton is an infinite path from a start state to an ending
loop containing some accepting state(s) in it. In effect, the accepting state appears along

the path infinitely often.

Let ¥ = 247 be the set of atomic propositions (or symbols in the context of automaton).
Formally, a Biichi automaton B over ¥ is defined as B = (Q, A, Qq, F'), where @ is a
finite set of states; A : Q x ¥ — @ is a transition function; Qo C @ is a set of initial

states; and F' C @ is a set of accepting states.

P true P
CO Y
@@
(a) (b)

FIGURE 2.4: (a) Bg, and (b) Brap

For example, Fig. 2.4 shows two Biichi automata Bg, and Brg), generated from the LTL
formulas Gp and FGp respectively. In Bichi automata, the start states are denoted by

14 Chapter 2. Preliminaries

an edge without a source and the accepting states by concentric circles. The transitions

between states are labeled by predicates (i.e., symbols).

Let M be a model and By a Biichi automaton generated from an LTL formula f (with
respect to M). An infinite path p = so, s1,- -+ , Si, Sit1,- -+ of M is accepted by By, i.e.,
M, p = f, if and only if there exists a run v = qo,q1, - @, Gi+1,- -+ in By such that

(i) qo is a start state of By;

(ii) By moves from the state g; to the next state g;11, if the state s; in M satisfies the

predicate on the transition (g;, ¢;+1); and

(ili) some accepting state of By appears in + infinitely often.

Here we use “path” in the model M and “run” in the Bichi automaton By to distinguish
the two sequences of states in different contexts. In addition, we also say that the path p
matches the run « in case that the first two conditions hold. Since the Biichi automaton
By is usually nondeterministic, it is possible that the same path of M may match more

than one run in By.

Note that if at some state ¢; of By, the state s; in M meets no predicate on any transition

emanating from ¢;, then we say that there is an undefined transition emanating from g;.

It is easy to see that the Biichi automaton Bg,, (resp. Brgp) in Fig. 2.4 accepts exactly
the paths that satisfy the LTL formula Gp (resp. FGp). In addition, at the state gy in
Bg, as well as at the state ¢; in Brg, there exists (implicitly) an undefined transition

with the predicate —p on it.

Recall that a (nontrivial) LTL property is either safety or liveness or a conjunction of a
safety property and a liveness property [30]. It is useful to distinguish between safety and
liveness so that the model checking algorithms can deal with them in different efficient

ways. We can use Bichi automata to determine whether a property is safety or not.

Let f be an LTL property and By a Biichi automaton' generated from f. Recall that
a safety property claims that something “bad” does never happen, this is equivalent to
saying that any infinite run in By is accepting, i.e., no “bad thing” occurs. There is no
additional constraint(s) on the accepting states of the Biichi automaton. If a “bad” thing
does happen, there is no way to remedy it; otherwise, it follows that something “good”
would eventually happen. This means that a finite prefix is sufficient to contradict f in
case that f is a safety property. This finite run in B; must eventually end with some

undefined transition. We call a finite run in By bad prefix (or “bad thing”), if there is no

In B ¢ those states from which no accepting state is reachable are redundant, and thus deleted.

Chapter 2. Preliminaries 15

way to extend this finite run to an infinite run in By. In other words, there is no way to
remedy this “bad thing”. Consequently, f is a safety property, if By has bad prefix(es)

but no constraint(s) on the accepting states, i.e., any infinite run in B + 18 accepting.

Formally, a finite prefix o € ¥* in By is a bad prefix, if and only if V8 € X¥. - B F f.

That is, there is no way to extend « to an infinite run in By.

From Bgy, it is easy to know that Gp is a safety property. Let’s introduce a special state
ge to help visualize the undefined transition in Bg, as illustrated in Fig. 2.5. Obviously,

any run to the state ¢, is a bad prefix that contradicts Gp.

p

FIGURE 2.5: Visualize the undefined transition in B,

By can also be used to determine whether f is liveness, or not. f is a liveness property,
if By has no bad prefix but a constraint on the accepting states, i.e., from each accepting
state there must exist a path back to itself. No bad prefix means that no finite run can
contradict a liveness property. For any finite run that ends with an undefined transition,
this finite run can always be extended to an infinite run. For a liveness property, all the
undefined transitions (if any) in By are indeed redundant. Since from every state there

is a path to an accepting state in By, a “good” thing can, of course, eventually happen.

E.g., every finite run that leads to the undefined transition in Brg, can be extended to

an infinite run, and this infinite run can eventually reach the accepting state ¢;.

It is worth pointing out that there is a special Biichi automaton which accepts any path.
In this sense, we say that this automaton is universal. On the contrary, if an automaton
accepts no path, it is said to be empty. A set Q; of states in the given Bichi automaton

B is universal, if B becomes universal by redefining the set of initial states to be @;.

The automata mentioned above label the transitions with symbols (i.e., predicates). In
contrast, we can also label the states of the automata with predicates. Thus, a Kripke
structure, which defines a model M, can be seen as a state labeled automaton with all

reachable states accepting.

For technical convenience, we define the Biichi automaton By of the given LTL property
f as a state labeled automaton. Let AP; be a set of atomic propositions derived from f.
The Biichi automaton By = (Vp, Dp, Rp,Ip,Lp, Fp) is defined in a way similar to the

definition of the behavioral model M, where Vg and Dpg are a set of variables and their

16 Chapter 2. Preliminaries

(finite) domains, Rp C Dp x Dp is a transition relation, Igp C Dp is an initial condition,

Lp : Dg — 2477 is a labeling function, and Fg C Dp is an acceptance condition.

For example, the state labeled automata for Gp and FGp are illustrated in Fig. 2.6.

rue p
(a) (b)

FIGURE 2.6: (a) Bg, and (b) Brap

A run v of By is an infinite sequence of states v = qo, q1, g2, - such that ¢o = Ip and
Rp(qt,qi+1) for t > 0. Let inf(y) be a set of states that appear infinitely often in . A
run v is accepting if and only if inf(y) N{q | ¢ = Fp} # 9, i.e., at least one accepting
state ¢ = Fp appears in the ending loop of ~.

2.4 LTL Model Checking

Given a finite state model M and an LTL property f, LTL model checking [18] aims to
answer the question: is it true that M, p |= f for any initialized path p of M (i.e., p is

an infinite path starting from some initial state of M)?

To solve this problem, we usually need to determine whether or not there exists an
initialized path p in M such that M,p = —f7 i.e., the path p is a witness against the
property f. Let B-; be a Biichi automaton generated from the negation of f. Then,
we need to decide whether there exists an initialized path p that is accepted by B-f.

Recall that the model M can be seen as a Bitchi automaton with all the reachable
states accepting. Let L(M) represents a set of (initialized) paths of M and L(B-y) a
set of accepting runs of B-¢. If the intersection of L(M) and L(B-y) is empty, then f is
satisfied with respect to M; otherwise, any path p € L(M)NL(B-y) is a counterexample.
Therefore, we’d better determine whether £(M) N L(B-f) = @ or not. The complexity
of this process is PSPACE, i.e., polynomial in the size of the product of M and B-;.

L(M)NL(B-y) contains exactly all the accepting paths in the product of M and B-; that
violate the property f. Generally, let M = (Var, Dar, Rar, v, L) over AP and B-y =
(VB,Dp,Rp,Ip,Lp, Fp) over AP, then the product of M and B-; over AP U AP-j
is a (Btichi) automaton denoted as M x By = (V,D, R, 1, L, F), where V = Vy; U Vp,
D=DyxDg, R=Ry AR, I =1y NI, L:D — 2APUAP-; 1ahels each compound
state (s,q) € Dy x Dp with the set of atomic propositions in AP U AP-¢ true in (s,q),

and F' = Fp is acceptance condition.

Chapter 2. Preliminaries 17

An infinite path ™ of M x B_ is a sequence of compound states (s, qo), (51,41), - in
M x B-y such that

® p = 380,51, - is an infinite path of M with In;(sp) and Rps(s¢, sp41) for ¢ > 0,
® vV =qo,q1, - is an infinite run of By with Ip(qo) and Rp(q,qi+1) for t >0,

o Ljs(s¢)is consistent with Lp(g;) for t > 0 with respect to the common propositions.

Let inf(m) be the set of (compound) states that appear infinitely often in 7. An infinite
path 7 of M x B-y is accepting if and only if inf(7) N {(s,q) | ¢ = Fp} # @.

LTL model checking algorithms can be implemented by exploring an explicit state space
or a symbolic state space. As for explicit state space, we need to construct explicitly
the state transition graph of M x B_ as it is. In contrast, as for symbolic state space,
the set of states and the set of transitions in M x B-y are represented symbolically as
Boolean formulas. This symbolic representation of states as well as of transitions can be
implemented using Binary Decision Diagrams (BDDs) [41] or Conjunctive Normal Form
(CNF). In the former case BDD-based tools, whereas in the latter case SAT solvers, are
usually used to solve the LTL model checking problem.

2.5 Bounded Model Checking (BMC)

Symbolic state based model checking can handle efficiently a much larger state space than
explicit state based model checking. However, the state space may grow exponentially in
the number of the variables in the behavioral model under investigation. That is, doing
model checking in a symbolic way does relieve the state space explosion problem to some
extent, but still suffers from the state space explosion problem. Against this background,
bounded model checking (BMC) is presented in [22], and later widely accepted in industry

and academia.

Unlike traditional model checking, bounded model checking tries to search for counterex-
amples in the initialized paths of length bounded by some integer k. If no error is found,
we increase the bound k£ until either an error is found, or some precomputed upper
bound (Completeness Threshold) is reached, or until the problem becomes intractable.

This method is incomplete if the completeness threshold is not reached.

In practice, BMC is usually encoded as a propositional satisfiability (SAT) problem.
Given a model M and an LTL property f, the SAT problem is defined as follows:

M fllk = [[M > B¢l = (Iar(s0) A Is(q0)) A (IIM][k A T[Bl[x) A [[C]]

18 Chapter 2. Preliminaries

where

e Iy(s0) and Ip(qo) are the initial conditions of M and B-y respectively,

k k
o |[M]|lx = A\ Rum(si—1,s:) and |[B]|x = A Rp(gi—1,¢) encode the paths of length
= i=1

=1
kin M and B-j respectively,

k
e the path constraint |[C]|, = V F(g) if F'is a finial condition in case that f is a
=0
- k—1
safety property, or [[C[x = V ((s1 = sk) M@ = ar) A(V F(g:)) if F'is a fairness
=0 1=l

condition in case that f is a liveness property.

It is worth pointing out that in case of f being invariant, the SAT problem is simplified
k k
as |[M, fllk = In(s0) A[M][e A[Cllk = Ini(so) A (AN Rar(siz1,8:)) A (V F(s)) with
i=1 i=0
the final condition F' = —f.

BMC can be implemented by explicit state-, BDD- and SAT- based search algorithms.
The paper [42] compares the performance of these three search algorithms on 62 bench-
marks drawn from commercial designs. The experimental results indicate that “BDD-
based BMC is much faster” for finding deep counterexamples (of length, say, k& > 60),
while “SAT-based BMC is more effective than BDD-based BMC” for finding shallow
counterexamples (of length, say, £ < 60), but surprisingly “explicit state-based BMC
(by means of random search) is comparably effective.” As for the performance of SAT-
based BMC, the experimental results [22] done at IBM, Intel and Compag show that “if
k is small enough (typically not more than 60 to 80 cycles, depending on the model itself
and the SAT solver), it outperforms BDD-based techniques.” “The deeper the bug is
(i.e., the longer the shortest path leading to it is), the less advantage (SAT-based) BMC
has.” In addition, the experimental results [43] indicate that “SAT solvers are quite effec-
tive in eliminating logic that is not relevant to a given property.” In other words, “SAT
solvers appear to have significant potential for identifying that set of variables once a
suitable property is given.” Of course, the performance of the BMC algorithms depends
also strongly on the underlying hardware executing them as well as the complexity of

the problems to be checked, and others.

In this thesis, we present an online model checking mechanism using the BMC technique
to ensure the correctness of the actual execution trace within the next k (transition) steps
starting from each (current) state monitored during the execution of the software system

under investigation.

Chapter 3

Related Work

The work closely related to our online model checking are monitoring techniques in the
sense that they need to observe the state information during system execution and then
to check the correctness of the current execution trace of the target system. The concept
of monitoring can date back to the assembly language era. Since then people have
been using monitoring for testing, debugging, profiling, performance analysis, program
optimization, and more. As a consequence, different monitoring techniques have been
proposed since 1960. A comprehensive survey of program monitoring [28] was published
in 1981, which examined the concepts, goals and limitations of the monitoring techniques
at that time. The renewed interest in monitoring techniques nowadays is due to the
increasing complexity of the software systems. A recent survey [44] in 2004 identified a

wide spectrum of monitoring tools in the literature.

Generally, monitor observes the execution of the target system to sample the information
of interest and then diagnoses, based on the collected data, whether the system behaves
normally. The observed system may be a monolithic program, a parallel program, a dis-
tributed system, a real-time system, a hardware system, a network, or any combination
thereof. The information of interest can be collected at various levels of abstraction,
such as system level, process level, function level and statement level. The monitor can
be implemented in the same process as the target system. In this case, the monitoring
code is embedded in the target program. The monitor and the target system can also
be implemented as separate processes on the same processor or on different processors.
Monitoring is classified as online, if the collected data is analyzed while the target system
is running; otherwise, it is classified as offfine. Online monitoring is also called runtime
monitoring. The interaction between the monitor and the target system is synchronous,
if the target program must wait until the diagnosis is finished; asynchronous, if it does

not need to wait for the result of the diagnosis.

19

20 Chapter 3. Related Work

In order to gain further insight into the (runtime) monitoring technique, some selected

representative methods are described below in more detail.

Alamo

A Lightweight Architecture for Monitoring (Alamo) [45] is developed for monitoring
C and Icon programs against safety properties. Prior to compilation, Alamo employs
automatic program instrumentation to identify monitoring points and insert events into
the source code of the target program. Typical events are memory references, heap
allocations, procedure calls, I/O operations, and others. Control switches between the
Execution Monitor (EM) and the Target Program (TP). The EM sends event request
for desired events and transfers control to the TP. The TP executes until a desired event
occurs, reports the event and transfers control back to the EM. Upon receiving the event
report, the EM goes to check a predicate related to the event. The EM and the TP are
implemented as coroutines executing within the same address space. Therefore, the EM
is allowed to inspect the state of the TP for additional information, such as the values

of the variables, if necessary.

Anna Consistency Checking System

Anna (Annotated Ada) is an Ada extension for specifying constraints (Boolean expres-
sions) as formal comments on Ada constructs, such as type, object, statement, excep-
tion, and others. Given an Ada program with annotations (formal comments), the Anna
Consistency Checking System [46] transforms the annotations into checking functions
and inserts into the Ada program the calls to these functions at the points of poten-
tial specification violation, e.g., assignments, procedure calls and type conversions. To
improve the performance of the self-checking program in a multiprocessor system, for
each checking function, a buffer task and a checking task are introduced, which execute
concurrently with the Ada program being checked. The buffer task maintains a queue of
check requests. The checking function enqueues check requests with data to the buffer
task. The checking task dequeues them and performs the consistency checks. Upon
detection of an inconsistency, the checking task can ignore the inconsistency, report the

inconsistency to the Ada program, or terminate the Ada program.

Chapter 3. Related Work 21

BEE-++

BEE++ [47] is an object-oriented application framework for the development of dis-
tributed dynamic analysis tools. The distributed program being monitored is instru-
mented a priori with sensors. A sensor provides a placeholder for an event that is either
user-defined or predefined by BEE++. Whenever a sensor is encountered during pro-
gram execution, an event (loaded with runtime data) is generated and sent off to one or
more analysis tools bound to that sensor. These tools are used individually or in concert
to detect the desired correctness or performance of the program. BEE++ provides a
symmetric communication model similar to client-server approach, while allowing the
client (the target program) and the server (the analysis tool) to be placed in the same
entity, thereby providing peer-to-peer functionality. Events flow between the target pro-
gram(s) and the analysis tool(s) over two distinct communication pathways: Firehose
and Trickle. Firehose is used for high bandwidth communication from the target pro-
gram(s) to the analysis tool(s) through an event collection buffer. Trickle is designed for
asynchronous target program control and asynchronous monitoring in a way similar to
the ptrace facility in Unix to control the thread/process and read/write data. BEE++
supports a variety of system architectures ranging from single processes to parallel and
networked programs. Multiple clients (executing either as separate threads or processes)
are able to connect to a single analysis tool and a single clients is able to connect to
multiple analysis tools (running either on the same node or on different nodes). In the
latter case, the client sends the events just to one analysis tool which in turn forwards

the events to the other tools.

Observer-Worker System

An observer-worker system [48] aims to online check the behaviors of a distributed system
in operation. It consists of two distinct components: a worker and an observer. The
worker is an actual implementation of the system behaviors based on the given system
specification. The observer is a formal model of some adequately selected aspects of the
system behaviors that should be observed. The formal model is derived from the system
specification, and thus can be used as observer for different implementations of the same
system specification. The complexity of the formal model is restricted so as to guarantee
that the correctness of the formal model can be verified exhaustively. In this sense,
the observer can be seen as a reference, i.e., a correct implementation of the selected
system behavior to be observed. The actual implementation (the worker) is continuously
checked agains the reference (the observer) by comparing the worker behaviors with the

observer behaviors at some observable output level. For this purpose, the observer need

22 Chapter 3. Related Work

to know and to access the runtime information of the worker behavior. There are two
ways in doing so: a) the worker informs explicitly the observer whenever an event of
interest occurs; b) the knowledge of the worker behavior is directly accessible to the

observer.

DynaMICs

Dynamic Monitoring with Integrity Constraints (DynaMICs) [49] is a software tool that
supports the generation of constraints, the construction and insertion of constraint-
checking code, and the tracing of failures with respect to requirements. A constraint
is specified as event-condition-action. The event defines what and when the variables
of interest need be monitored as well as when the constraint should be checked. The
condition defines in first order logic the relationships between program variables, asser-
tions on individual variables, and others. The action defines the response to a constraint
violation, such as recording state in a history log, saving state for error recovery, per-
forming state rollback, or initiating graceful degradation. For each constraint there is a
set of instrumentation points in the program code at which the constraint-checking code
is executed. The constraint-checking code may be an inline sequence of instructions,
a function call, or a trigger that initiates the constraint check on a separate process.
DynaMICs provides analysis tools to identify automatically the instrumentation points
at the source code, intermediate code, or object code level. The work of the monitor is
delegated either to the process executing the program code or to another process not

necessarily on the same processor.

Falcon

Falcon [50] is a set of tools that support online capture of the application-level in-
formation, online analysis of the captured program information and online steering of
the parallel program under investigation, which result in online modification of the pro-
gram’s execution. The information to be monitored ranges from single program variables
to program (compound) states constituted of multiple program components running in
parallel. The target program is instrumented a priori with the sensors and actuators
generated from the given monitoring specification. Sensors are used to obtain the state
information during program execution; whereas actuators to modify the execution of the
target program. A single central monitor resides on a remote machine. Multiple local
monitors execute on the target program’s machine so that they are able to rapidly inter-

act with the program. However, they may also run concurrently on different processors,

Chapter 3. Related Work 23

using a buffer-based mechanism for communication between the target program and
the monitoring threads. A local monitor can also inspect the program variables asyn-
chronously with the execution of the target program by employing probe code without
requiring prior instrumentation of the target program. A steering client runs as a sepa-
rate program on a remote machine. It provides an interface for the user to interact with
the target application. Several steering servers operate as threads in the application’s
address space, thereby gaining direct access to the application components and the abil-
ity to execute asynchronously with application threads. They read incoming monitoring
events from the local monitors and respond to these events with appropriate steering
actions. Each steering server shares with each local monitor a circular buffer located
in jointly accessible memory. A steering server can perform simple program changes
by enabling probe code, or perform more complex changes by enacting the actuators

embedded in the application code.

Jass

Java with Assertions (Jass) [51] is a pre-compiler for Java programs annotated with
assertions. The assertions are special formatted comments instrumented into the target
Java program. Jass translates the assertions into Java code so that they can be checked
during program execution. The assertions are defined as boolean expressions of Java
extended with certain keywords as well as existential and universal quantifier over finite
sets. Besides the usual assertions, such as method pre- and postconditions, class invari-
ants, loop invariants and variants, and the like, Jass additionally supports refinement
checks and trace assertions. Refinement checks are used to test whether a subclass is a
behavioral subtype of its superclass. Trace assertions are used to monitor whether the

trace of actual method invocations is valid.

JPaX

Java PathExplorer (JPax) [52] is a general-purpose monitoring mechanism, which can be
easily extended to other programming languages. JPaX extracts the events of interest
from the execution trace of the target program and then analyzes these events via a
remote observer process, which may run on a different processor. JPaX consists of three
main modules: an instrumentation module, an interconnection module, and an observer
module. The instrumentation module instruments the target program using the given
instrumentation script. During runtime the instrumented program emits the events

of interest to the interconnection module. The interconnection module transmits these

24 Chapter 3. Related Work

events further to the observer module. Upon receiving these events, the observer module
dispatches them to a set of observer rules, each of which performs a particular analysis.
The observer module currently provides two kinds of analysis: logic-based monitoring
and error pattern analysis. The former checks the execution trace against the properties
written in high level logics, such as safety properties and bounded liveness properties in
linear temporal logic; the latter analyzes the execution trace using various error pattern

detection algorithms.

MaC

Monitoring and Checking (MaC) [53] is an integrated framework for monitoring real-
time systems, which can check general requirements related to an execution trace and to
numerical computation. MaC consists of three components: a filter, an event recognizer,
and a runtime checker. The filter is a collection of code fragments that can extract state
information of the target system, such as the values of the variables and the function
calls, and then send it to the event recognizer. These code fragments will be inserted into
the implementation of the target system at the source code level or at the executable
code level. From the received state information the event recognizer tries to detect
the occurrence of an event defined at the requirements level in the given monitoring
script, and then sends the detected event to the runtime checker. In addition, the event
recognizer may also forward the values of the variables of interest to the runtime checker.
Based on the events (and the values) it received thus far, the runtime checker is able to
check the conformance of the sequence of events to the specification of requirements as

well as the correctness of the requirements related to numerical computation.

MoP

Monitoring-oriented Programming (MoP) [54] is a general monitoring architecture inde-
pendent of any specific programming language as well as any specific monitoring logic.
Each MoP tool specializes this architecture to support specific programming languages
and specific property logics. MoP consists of modules of three levels: process controllers
at the interface level, code generators at the language level, and logic engines at the
logic level. The workflow of the architecture is from the process controllers through the
code generators to the logic engines and then from the logic engines through the code
generators back to the process controllers. The properties to be checked are expressed
in some formal logic and inserted as annotations in the form of comments at various

user selected places in the target program. The process controller takes the annotated

Chapter 3. Related Work 25

program as input and extracts the formal specifications from the annotations as output.
The code generator takes the formal specifications as input and transform them into the
formulas in some intermediate format as output. The logic engine then takes the formu-
las as input and produces abstract pseudocode for checking the formulas as output. The
pseudocode is target language independent, therefore, the logic engine can be reused
for different target languages. The code generator now takes the pseudocode as input
and translates it into code fragments of the target language as output. The process
controller then takes the code fragments as input and generates the executable code of
the monitored program. The code fragments can be embedded into the target program
or implemented as a different process, potentially on a different machine. In the latter
case, the target program is instrumented so as to transmit the events of interest to the

monitoring process.

Noninterference Monitoring

Noninterference Monitoring [55] is a hardware monitoring system designed for testing
and debugging real-time software systems without interfering with the execution of the
target system. The monitoring mechanism is implemented by using an auxiliary hard-
ware (MC68000 processor) connected with the internal buses of the target system. In
the monitoring phase, the activities of the target system are recorded at the user-defined
conditional breakpoints. The runtime information can be collected at three abstraction
levels: process level (e.g., system calls), function level (e.g., function calls) and instruc-
tion level (e.g., step-by-step execution trace). The target program is restricted to be
written in a block-structured programming language in which a block is a function (or
a procedure) and the scope of each variable is determined statically. The collected ex-
ecution history of the target system is post-processed independent of the execution of
the target system. The raw bus data is recorded in machine-level code, which contains
not only the key values of the events of interest but also some redundant information.
In the post-processing phase, the collected data is reorganized into meaningful informa-
tion so as to represent the execution history in higher level logical views, e.g., process

precedence graph and function calling tree.

Sentry System

The Sentry System [56] is a low precision and low cost monitoring system for sequential
and concurrent C programs. A sentry is a monitoring program generated from the given

target program with annotations. The annotations in the target programs are specially

26 Chapter 3. Related Work

formatted comments derived from the properties to be checked. These comments are
later replaced by the calls to macros for communication with the sentry. The sentry
and the target program run in parallel and communicate with each other via shared
memory. The target program is non-blocking in the sense that it never waits for the
sentry. This means that some snapshots of the program state may be overwritten by
the target program before being read by the sentry. In other words, some snapshots
may be lost, hence, the precision is low. The sentry is able to check both safety and
progress properties. Generally, the sentry reads a snapshot as it becomes available and
then evaluates the properties. If a violation is detected, the sentry sends a signal to the

target program, which may initiate some user-defined recovery action.

Temporal Rover

Temporal Rover [57] is a code generator. Given a program instrumented a priori with
temporal properties as comments at some points in the source code, Temporal Rover
parser converts this annotated program into an identical program except that the prop-
erties are now implemented in source code, too. This program code of the properties
is compiled and linked as part of the program under investigation. During program
execution, the correctness of the properties is checked by executing the generated code.
Temporal Rover is able to deal with Linear Temporal Logic (LTL) and Metric Temporal
Logic (MTL), an extension to LTL by supporting relative time and real-time constraints.
In the case that a liveness property being checked keeps failed so far, Temporal Rover
concludes conservatively that so far the property is failed, because it does not know
during runtime whether or not the program will continue executing. The user is allowed
to define reaction to the checking results. In addition, Temporal Rover has a special
code generator targeted for embedded systems and concurrent systems. The generated
verification code is allowed to be executed in a separate process or processor. The host
and target code communicate via serial port, remote procedure call (RPC), or any other

communication protocols.

Runtime Monitors for Distributed Hard Real-Time Systems

Validation of distributed systems needs to account for the interactions among nodes (or
processes). Given a distributed hard real-time system under observation (SUO), which
contains a fixed set of nodes and a fixed set of interconnects between nodes, the following

three monitoring architectures at a conceptual level are presented in [12]:

Chapter 3. Related Work 27

1. (Single) Bus-Monitor Architecture: The monitor is attached to the data bus of the
SUQ, i.e., the monitor and the SUO share a common bus. The monitor receives
messages over the bus just like any other process in the system and then does error
checks based on the collected messages. If a violation is detected, the monitor will

send messages to the other processes through the shared bus.

2. Single Process-Monitor Architecture: A dedicated monitor bus is introduced. Each
process p; in the SUO is attached to the data bus as well as the monitor bus. In
addition, p; is instrumented to send data to the monitor over the monitor bus.
The monitor checks the correctness of the incoming data and signals the processes

in the SUO if a violation is detected.

3. Distributed Process-Monitor Architecture: Each process p; in the SUO has its
own monitor M;, which may be implemented on the same hardware as p;. The
distributed monitors are attached to a dedicated monitor bus for communicating

with each other in order to reach agreement on diagnoses.

Online Failure Prediction

Recall that a failure is a kind of misbehaviors that can be observed from outside the
system (see Section 2.1). Online failure prediction [26] aims to assess the potential
occurrence of a failure in the near future in terms of seconds or minutes based on
the measurements of the actual system parameters, such as resource usage, CPU load,
system calls, etc., during runtime. There exists a wide spectrum of techniques dealing
with online failure prediction in the literature. Almost 50 failure prediction methods
have been surveyed in [26]. According to the type of the system parameters monitored

at runtime, online failure prediction methods are classified into four categories as follows:

1. Failure Tracking: The occurrence of failures is tracked in terms of, say, the time
of the occurrence and the types of the failures. This data can be analyzed to
predict the potential failures that may come up in the near future. E.g., the
probability distribution of the time to the next failure can be estimated based on
the knowledge obtained from the previous failure occurrences. Due to sharing of
resources, system failures may occur close together in a temporal as well as in a

spatial sense.

2. Symptom Monitoring: An error inside the system may cause abnormal behaviors
of the system parameters, such as memory usage, disk I/O, and unusual function
calls. These side-effects are called symptoms of the error. By analyzing the system

parameters monitored at runtime it is possible to detect symptoms that indicate

28

Chapter 3. Related Work

an upcoming failure. E.g., a functional relationship between the selected system
parameters and the probability of failure occurrence can be established based on
the previously recorded training data. By applying this function to the selected
system parameters measured during runtime, it is possible to estimate the proba-
bility that a failure will occur. From a set of reference data points (i.e., training
data) it is also possible to derive a decision boundary that partitions the data
points into either failure-prone or non-failure-prone. Failure prediction can then
be accomplished by checking on which side of the decision boundary the current
date point is. In addition, failure prediction can also be performed by comparison
of the currently measured value to the expected value computed from the system
model with failure-free behaviors. If they differ significantly, an upcoming failure
is predicted. Failure can also be predicted by analyzing several successive samples

of the system parameters monitored during system operation.

. Detected Error Reporting: When an error inside the system is detected, an error

event is usually reported using some logging mechanism. The error reports that
have occurred within some time interval (data window) before the current time
can be analyzed so as to decide whether or not a failure will occur in the near
future. E.g., from a set of event reports (training data) it is possible to identify
some conditions or patterns that indicate the occurrence of failures. Based on the
distribution of error types, the error generation rate, and the like, it is also possible

to predict upcoming failures.

. Undetected Error Auditing: Auditing searches for incorrect states (undetected

errors) inside the system by checking on data that has or has not been used or
produced. It can be applied offline as well as during runtime. E.g., memory
auditing inspects data structures by checksumming. Failures can then be predicted

based on the undetected errors found by auditing.

Quantitative Verification at Runtime

Quantitative verification [58] is an extension of conventional model checking to proba-

bilistic models, which are typically variants of Markov chains, annotated with costs and

rewards. The properties to be checked are expressed quantitatively in temporal logic

extended with probabilistic and reward operators. Quantitative verification at runtime

[59] deals with self-adaptive software, which is capable of adapting autonomously to

changes in the environment. For this purpose, the probabilistic model of the software

system is augmented with the parameters that reflect the changes in the environment

in terms of, say, failure rates and costs/rewards. Whenever the changes in the environ-

ment are monitored, quantitative verification will be triggered to check whether or not

Chapter 3. Related Work 29

the system model under the updated environment still satisfies the given quantitative
properties. In case that a violation is detected, adaptive maintenance will be carried
out. Quantitative verification can also help to make adaptive decisions so as to ensure
that under the updated environment the system model after adaptation continues to

satisfy the given quantitative properties.

Online Monitoring vs. Online Model Checking

Compared to offline verification techniques, such as testing, model checking, theorem
proving, and the like, online monitoring is rather lightweight due to its concern with the
correctness of the actual system execution' against the given properties, which makes it
scale up well to deal with large complex systems. Generally speaking, online monitoring

consists mainly of the following two parts:

e Observer: record the state information during system execution;

e Analyzer: analyze the collected data to figure out (or sometimes predict) anomaly

in the target system.

Different monitoring techniques in the literature implement the observer as well as the
analyzer in different ways. Online model checking does bear some similarity to online
monitoring. It consists also of an observer and an analyzer. However, the implementa-
tion of the observer and the analyzer for online model checking is quite different from

the existing monitoring techniques to our knowledge.

Given the source code of a target program and its behavioral model, we assume that a
transition of the behavioral model corresponds to a predefined unit of execution of the
target program. Here, a unit of execution is supposed to be atomic and thus determines
the smallest distinguishable states of the program. It may be a statement or a composi-
tion of several statements within a basic block. A state is allowed to be monitored only

before or after a smallest unit of execution of the target program.

The properties to be checked usually fall into two categories [28]: state predicate and
process predicate. A state predicate is a boolean function defined on the state space of the
target program, which is attached to a specific point of control in the program code. A
process predicate is a boolean function defined on the set of sequences of program states,
which is attached to a range of control points rather than a single point of control in

the program text.

!i.e., a sequence of states monitored while the target system is running.

30 Chapter 3. Related Work

Online checking a state predicate is trivial for both online monitoring and online model
checking due to its association with a specific point of control. For online monitoring,
the state predicate is checked at the time when the program’s execution reaches the
related point of control. For online model checking, the state predicate may be checked

before the program’s execution reaches the related point of control (see Chapter 7).

Online checking a process predicate has to do with a sequence of program states. For
a variable occurring in the property to be checked, the observer needs to probe every
change in the value of this variable. It is important to decide the appropriate locations
in the program code at which the program state should be monitored. The granularity
of observation can thus have a large impact on online monitoring. If it is too coarse,
important information may be missed; if it is too fine, the monitoring overhead will
be too high. E.g., if the monitor tries to check for overflow after every arithmetic
operation, it has to introduce more additional delay into the execution of the target
system. In case that the property is derived from the system requirements, the semantic
gap between the property and the execution trace make it usually difficult to establish a
correct relationship between the low level state information and the high level (atomic)

elements in the property.

Unlike online monitoring, online model checking does not directly check the correctness
of the actual execution trace. Instead, a sequence of partial (behavioral) models of the
target program that covers the actual execution trace is checked during runtime. The
analyzer is thus implemented as online model checker. Errors found in some partial
model may indicate errors in the actual execution trace or even predict errors that may
happen in the future. To make online model checking available, each partial model
covers the system behaviors up to a bounded length of k steps (for some appropriate
positive integer k). Here, a step is a unit of execution of the program code, which
corresponds to a transition in the behavioral model. By partitioning the program model
into a finite set of k-bounded partial models, each state information observed at runtime
is just used to decide which partial model should be checked next. Consequently, the
observer needs to probe the state information at runtime more or less every k steps. The
granularity of the observation is decided by the predefined bound k. This is different
from what the observer of online monitoring does, which needs to monitor the values of
the variables of interest whenever they are updated. In addition, the behavioral model
is usually generated at a higher abstraction level than the source code of the target
program. Compared to the source code, it is easier for the program model to establish

a correct semantic relationship with the properties to be checked.

Of course, model checking is usually time consuming. Doing model checking online is a

challenge. This is what the thesis tries to overcome.

Chapter 4

Online Model Checking

Mechanism

No matter how fast a model checking algorithm does execute, it has to explore (explicitly
or implicitly) all possible behaviors of the program model under investigation. This
feature of exhaustive exploration makes the model checking process not only memory
consuming but also time consuming, not to mention the state space explosion problem.
It looks unrealistic and impossible to do model checking online while the target program
is running. In this thesis, we don’t mean to propose a faster model checking algorithm to
ensure the universal correctness of the program model to be checked. Instead, we’d like to
present an online model checking mechanism whereby efficient model checking techniques
can be exploited during runtime to ensure the correctness of the actual execution trace
of the target program. What’s more, several acceleration techniques are also presented

to speed up the online model checking process.

4.1 Online Model Checking

Briefly speaking, online model checking aims to ensure the correctness of the actual
execution trace with respect to the given property by means of exploring during runtime
a sequence of those (bounded) behavioral models that cover the execution trace of the

target program.

4.1.1 Problem Statement

As a prerequisite for online model checking, the following information needs to be pre-

pared in advance:

31

32 Chapter 4. Online Model Checking Mechanism

e Source code P of the software application to be online checked, which is written in
a sequential programming language and instrumented with finitely many monitor-
ing points so as to probe actual state information during program execution (see
Chapter 5).

e Behavioral Model M of the software application, which is obtained in the software
development phase or abstracted from the source code P (see Chapter 5). There
may exist different behavioral models built at different levels of abstraction and/or
from different perspectives, which reflect accordingly the behaviors of the software

application at different levels of abstraction and/or from different perspectives.

e Mapping function a(s) = 3, which links each (concrete) state s of the program code
P with the corresponding (abstract) state s of the program model M if any, or else
with a special state null if no appropriate abstract state is available. For different
behavioral models of the same software application, there may exist respectively

different mapping functions.

e LTL Property f, which specifies a characteristic predicate on the valid paths with

respect to the given program model M.

For a software program under investigation, let P be the source code and M a behavioral
model (at some level of abstraction and/or from some perspective) of P, then the map-
ping function a(s) =5 from the state space of P to that of M is determined. Given any
property f to be checked, online model checking aims to explore whether f holds along
the execution trace of P during program execution by checking f against a sequence of

(bounded) models derived from M following the program state monitored at runtime.

Errors in the behavioral model may indicate potential errors in the source code of the
target program; therefore, instead of checking the correctness of the actual execution
trace itself with respect to the property f, the basic idea of the online model checking is

to check f against a set of bounded models that covers the actual execution trace of P.

Executing P results in a sequence of (possibly infinite) program states, called execution
trace. A (program) state consists of a point in the control flow of P together with an
assignment of values to all the variables of P at this point of control. The state space of
P is a Cartesian product of the definition domains of all the components that constitute a
state. Not all the states in the state space of P can be reached by executing P, regardless
of the input values. It is intuitive to think of an execution trace of P as a trajectory of

a point moving through space [28].

Fig. 4.1 below illustrates the three possible relationships between the behavioral model

and the source code (implementation) of the target program:

Chapter 4. Online Model Checking Mechanism 33

(i) equivalent — each concrete path p corresponds to an abstract path p and vice versa;

(ii) over-approzimate — each concrete path p corresponds to an abstract path p, but

not the other way round, i.e., the state space of the model is larger in this case;

(iii) under-approrimate — each abstract path p corresponds to a concrete path p, but

not the other way round, i.e., the state space of the model is smaller in this case.

system model system model system model

system implementation system implementation system implementation
(i) equivalence (i) over-approximation (iii) under-approximation

FIGURE 4.1: Three relationships between system model and system implementation

It is easy to reason that in the case of over-approximation, if no error is found in the
behavioral model, there is no error in the program code, too. This checking result is a
true positive. However, if an error path p is found in the model, there may not really
exist a corresponding error path p in the program code as depicted in Fig. 4.1 (ii),
i.e., the error path p is spurious. This checking result is a false negative. In the case
of under-approximation, if an error path p is found in the model, there must exist a
corresponding error path p in the program code. This checking result is a true negative.
However, if no error is found, there may still exist errors in the program code, because
not all of the concrete paths, say the error path p, are reflected in state space of the

model as depicted in Fig. 4.1 (iii). This checking result is a false positive.

Since we check the (behavioral) model instead of the actual execution trace of the target
program, it is possible to deal with not only safety properties but also liveness properties.
As mentioned in Section 2.3, a general LTL property can be decomposed into a safety
property and a liveness property whose conjunction is the original [30]. It is fair to say
that a nontrivial LTL property is either safety or liveness or a conjunction of a safety
property and a liveness property. Without loss of generality, let f = x A y where x is a
safety property and y a liveness property. Then, we have —f = —a V =y, which means
any counterexample against f is either a finite witness against the safety property z or

an infinite witness against the liveness property y.

Therefore, it is sufficient for us to concern ourselves with online model checking for safety

properties as well as for liveness properties respectively.

34 Chapter 4. Online Model Checking Mechanism

4.1.2 Online Model Checking for Safety Properties

Given a behavioral model M and a safety property f to be checked, let By be the
Biichi automaton generated from —f. Obviously, B-; accepts exactly those paths that
contradict f. Recall that a finite bad prefix is sufficient to contradict a safety property
(see Section 2.3). Consequently, it is possible to reduce the safety checking problem to
the invariant checking problem, which can be solved by reachability analysis. However,
if B—; is nondeterministic, which is usually the case, it is not that easy to decide whether
a finite prefix is a bad prefix or not, especially when f contains some redundancy. One
possible solution is to build a deterministic automaton B’ f from B-; by means of the
subset construction [40]. The set of accepting states of B’ 7 1s set to be those states that
are universal. Now we need to simply check the invariant that the product of M and

B’ ; never reaches an accepting state of B ;.

Note, however, that B’ f is, in the worst case, exponential in the size of B—, and thus
doubly exponential in the size of f, i.e., the number of subformulas of f. What’s more,
not every nondeterministic automaton can be transformed to an equivalent deterministic
one. E.g., the LTL formula FGp, no deterministic automaton can accept all those paths

that satisfy FGp [30].

According to [40], a safety property f may fall into one of the following three types:

(i) intentionally safe — all the bad prefixes against f are informative. E.g., Gp, all its
bad prefixes are informative in the sense that they reflect the whole reason why

Gp is violated.

(ii) accidentally safe — not all the bad prefixes against f are informative, but every
computation that violates f has at least one informative bad prefix. E.g., G(p V
(XgAX~q)) = Gp, the minimal bad prefixes against Gp are also the bad prefixes of
G(pV(XgAX~q)), but they do not reflect the whole reason why G(pV (XgAX—q))

is violated.

(iii) pathologically safe — there exists at least one computation that violates f but has
no informative bad prefix. E.g., (G(qVFGp) AG(rVFG—p))V GqV Gr, from its
negation (F(=gAGF-p)VF(-rAGFp))A\AF-gAF-r = F~gA\F-rA\(GFpVGF-p),
it is easy to see that its bad prefixes coincide with the bad prefixes of Gq V Gr.
Due to the existence of the liveness subformulas FGp and FG—p in the formula,
no bad prefixes of GqV Gr, which is always finite, can tell the whole reason against
(G(¢gVFGp) AG(rVFG—p))V GqV Gr.

The safety properties that are accidentally safe or pathologically safe contain redundancy

in them. E.g., the subformula X¢g A X—¢ = X(¢g A —q) is unsatisfiable, thus can be safely

Chapter 4. Online Model Checking Mechanism 35

removed from G(pV (XgA X—q)); the subformula GFpV GF-p is equivalent to Gtrue,
thus can be safely removed from F—g A F—r A (GFp vV GF-p), too.

To simplify the problem, we assume that f contains no semantic redundancy or at least
no syntactic redundancy. This assumption is reasonable and feasible. If a safety formula
contains some liveness subformulas, these liveness subformulas are definitely redundant.
We’d better optimize the given formula so that all the liveness subformulas are deleted.
The resulting formula is thus syntactically safe in the sense that X, G and R are the
only temporal operators allowed. As a consequence, it is rather simple to figure out
those states that are universal in the Biichi automaton B_, whereby there is no longer

need to build the deterministic automaton from B_ .

Let’s redefine the acceptance condition of B- as the set of all such states in B_y that
are universal. Now we need to simply check the invariant that the product of M and
B_ ¢ never reaches an accepting state of B . In this sense, the new acceptance condition
of B is also called finial condition, which defines a set of targets (or error states) with

respect to f.

Of course, for the simple formula f = Gp, B-y is trivial and the acceptance condition is
—p. We need to search only the state space of M for a finite path that reaches an error
state satisfying —p. For a general safety property, we have to search the state space of
M x B_ for an error path in M. In the worst case, the whole state space of M x B_;
needs to be explored. If the state space of M x B_; in terms of states and transitions
is too large, it is impossible to conduct an exhaustive exploration within a reasonable
time and memory consumption. In industry, for a complex software system, the state
space of its behavioral model M alone may be too large to be searched exhaustively
for checking a simple safety property like Gp. That is, even for a simple property, it
is difficult to prove it completely (during the software development phase) [60]. This is

one reason why we present the concept of online model checking.

By doing reachability analysis during runtime, we only need to search a smaller partial
state space in M x By that covers the actual execution trace of the target program in
operation. The basic idea [61] is illustrated in Fig. 4.2. While the software system is
running, whenever a monitoring point is reached, the current state s;, i.e., the values
of the system variables of interest, will be probed. The corresponding abstract state
$; = a(s;) (if any) can thus be delivered to the online model checker. This in turn will
trigger a new checking process: a partial state space starting from 5; in M x B-y will
be explored within a predefined time limit (i.e., checking cycle) allocated to the online
model checker in order to see whether there exists an error path from s; to a set of
error states defined by the final condition of B— . In this way, the state space explosion

problem can be avoided to a large extent.

36 Chapter 4. Online Model Checking Mechanism

Online Model Checking

error states

A\ 4

SO S;\‘/
S3
S1
Runtime Execution Trace

FIGURE 4.2: Online reachability checking

Due to the limited checking time, only finitely many (transition) steps in M x By, say,
the next k steps starting from the monitored state can be explored in each checking
cycle. Let Z(s;) be the initial condition derived from the state S; monitored in the

1’th checking cycle. The partial state space being explored in this checking cycle can

k
thus be specified as Z(8;) A |[M]|x A |[B]|x. Recall that |[M]|x = A Rar(si—1,si) resp.

=1

k
I[B]lx = '/7\1 Rp(gi—1,¢) encodes the paths of length & in M resp. B- (see Section 2.5).

1=

k
The path constraint |[C]|x = \/ FB(g;) tests if some state ¢; = Fp within k steps. As a
i=0
consequence, the online reachability problem in the i’th checking cycle can be formally

defined as

M, f11}, = |[M x B[, = Z(5) MMl A [B]lx A Ck-

Runtime Online

Execution Trace Initial conditions Model Checking

Path of length k Constraints

|}y A 11BIl F— I[Cll,

FIGURE 4.3: Bounded model checking during runtime

Chapter 4. Online Model Checking Mechanism 37

It is easy to see that online reachability checking is a kind of bounded model checking

[22] applied during runtime as illustrated in Fig. 4.3.

Traditional bounded model checking is done offline in a way as illustrated in Fig. 4.4:
starting from k = 0, if no error is found in any initialized path of length bounded by &,
we progressively increase the bound & by 1, looking for errors in longer and longer traces,
until either an error is found, or the complete threshold is reached, or until the checking
problem becomes intractable. In our case, we leave the bound k£ unchanged all the way,
instead, we change the initial condition Z(8;) of the paths of length &k in each checking
cycle as illustrated in Fig 4.3. In effect, we are searching deeper and deeper in the state
space of M x B-; while the state space being checked in each cycle is relatively small.
Therefore, by doing BMC during runtime it is quite possible to find deep, corner-case

errors (if any) in the large state space of a highly sophisticated software system.

Initial
+ e o0
states o,’ K e

FIGURE 4.4: Traditional bounded model checking

In each checking cycle, the online model checker may return the following three possible

checking results:

e unsafe: the checking process is finished in time, and an error path is found. How-
ever, in case that the system model is an over-approximation, the result may be
a false negative. Anyway, the error path is useful for the user to figure out the

reaso1n.

e safe: the checking process is finished in time, but no error path is found. However,
in case that the system model is an under-approximation, the result may be a false
positive. Otherwise, the software system is safe within the next k steps relative to

the current monitored state ;.

e unknown: the checking process is enforcedly terminated due to timeout. In this
case, the state space of the bounded model is not exhaustively explored. Since no
error is found before timeout, it is reasonable to believe optimistically that there

might be no error in the neighborhood of the currently monitored state.

38 Chapter 4. Online Model Checking Mechanism

4.1.3 Online Model Checking for Liveness Properties

Now let’s consider the case that f is a liveness property. If we make every state in B
accepting, then B_; becomes universal, i.e., it accepts any path. That is, there is no
way to contradict a liveness property using any finite prefix. A run in B_ is accepting,
if and only if it goes through some accepting state infinitely many times. For finite state
automata, this means that we have to look for an accepting loop. A loop is accepting,

if some state in it is accepting.

Every execution trace of a software system can be thought of as a trajectory of a point
moving through space. It is not easy to detect a loop in it during runtime, because this
requires to look backward into the “history” or look forward into the “future”. Since
we check the behavioral model, instead of the execution trace, of the software system,
both the “history” and the “future” are accessible, theoretically speaking, it is possible

for us to online check a liveness property during program execution.

Nevertheless, even on the model level it is still not easy to detect a loop during runtime,
especially when the loop is too long to be detected in one checking cycle, e.g., its length
is greater than the predefined bound k. Fortunately, we can avoid detecting a loop by
means of the state-recording translation [62] from liveness checking to invariant checking,

which can then be solved by online reachability analysis.

Recall that an infinite path (sg,s1,- -, 8i—1)(si," -, $p) with s, = s; is usually made up
of two parts: the finite prefix (sg, $1,- - ,$;—1) and the infinite loop (s;, -, Sp—1, Sn)-
Let’s call (sg, 81, ,8i—1) the stem, (s;,- - , $p,—1) the loop body, and s,, (i.e., the second

occurrence of s;) the loop closure. The basic idea of the state-recording translation is to
memorize the starting point s; of every (potential) loop, a loop then is detected at some

state s, whenever s,, = s;.

Given M x By = (V,D,R,I,L,F) with V =V, UVp, D = Dy x D, R = Ry A Rp,
I=IyNIg,L:DyxDp— 2APUAPﬁf, and F' = Fpg. In order to do the state-recording
translation, three auxiliary variables are introduced: (i) h € D stores the starting state
of a potential loop; (ii) v; € {st, b, lc} marks the location of a state in the path with st
for stem, b for loop body, or lc for loop closure; (iii) vy € {true, false} indicates the
occurrence of an accepting state in the loop body. In addition, the symbol &® is used
to stand for an arbitrary but fixed state in D. The state-recording translation is then
done by adding additional predicates to the initial condition and the transition relation
of M x By respectively. As a result, we can redefine the product of M and B-; as
M x By = (V',D',R',I'| L', F'), where

o V' =V U{uv : Dy,vs: Df} with Dy = {st,lb,lc} and Dy = {true, false};

Chapter 4. Online Model Checking Mechanism 39

e D'=D x D x Dy x Dy;

o R'((r,h,u,vp), (r', B v, v%)) = R(r,r") A (B1 vV Re V Ry V Ry V Rj) with
Ry = (h=N)A (W =®)A (v = st) A (v] = st) A —vp A,
Ry=(h=@®) AW =1")A (v =st)A(v]=1b) A—wp A (v} = 1" € F),
Ry = (h=H)NA (0 =1b) A (v]=1b) A (vf = V}) A (V) = vp Vi’ € F),
Ry=(h=n)A (R =1") A (v =1b) A (v] = lc) ANvg A}, and
Rs = (h=H)A (v =lc) A (v; =lc) Nvg Avy);

o [I'(r,h, Ul,vf) =I(r) A (1 V Iy) with
Iy = (h=®) A (v = st) A ~vy, and
L=(h=7)A=1I)A (v —>r€F);

i L,(’I“, havlavf) = L(T)7

o I’

(v = lc).

The initial condition [is partitioned into two categories characterized by the predicates
I, and I respectively. For each (old) initial state r € I, » may be the starting point of
some potential loop, or it may be not the starting point of any potential loop. The former
case is governed by Is, 7 is then saved in h, and v; = [b, indicating that r is located in the
body of a potential loop. If vy is set to true, then r must be an accepting state; otherwise,
it doesn’t matter. The latter case is governed by I, r is not saved, h is thus set to the
default value ®, and v; = st, indicating that r is located on the stem of the path. In this
case, r being accepting state or not is meaningless, therefore, vy = false. Consequently,
we may have three (new) initial states in I': (r,h = ®, st, —~wy), (r,h = r,1b, ~vy), and
(r,h =r,lb,vy) for r € F.

Generally, for each (old) state r € D, let # r be any ancestor of r, then we may
have the following seven types of new states in D': (r,h = ®, st, —wy), (r,h = r,1b, —vy),

(ryh =r,lb,vy), (r,h = x,lb,—vy), (r,h = x,lb,vy), (r,h =1r,lc,vf) and (1, h = x,lc, vy).

The transition relation R is partitioned into 5 categories characterized by the predicates
R1, Ro, R3, Ry and Rj respectively. For each (old) transition (r,7’') € R, Ry is applied to
the state (r,h = ®, st, ~vy) to get (r',h = ®, st,~wy), which are located on the stem of
the path, i.e., no state is recorded; Ry is also applied to the state (r, h = ®, st, ~wy), which
makes the state 7’ recorded, thus we have (r',h = 1/,1b,—~wy) and (', h = 1/,1b,vy) (for
r’ € F) located in the body of a potential loop; R3 is applied to the following four states
(ryh = r,lb,—wy), (r,h = 7,1b,vf), (r,h = x,lb,~wy), and (r,h = z,1b,vy) to produce
(r',h =r,lb,—vy), (r',h =1,lb,vy), (7', h = x,lb,~wys) and (', h = x,1b,vs) accordingly,
which are all located in the loop body; Ry is applied to the state (r,h = /,1b,v¢) to

obtain (r',h = 1/,lc,vy), which indicates that the previously saved state ' does occur

40 Chapter 4. Online Model Checking Mechanism

again, thus, the potential loop is indeed a loop; R5 is applied to two states (r, h = ,lc, vy)

and (r,h = z,lc,vf) to produce (7', h =r,lc,vs) and (7', h = z,lc, vs) respectively.

Fig. 4.5 illustrates a state-recording process with respect to a path of M x B_ . From sg
to s;—1 is the stem of the path, which is obtained by applying I; and then applying R;
finitely many times. At the state (s;—1,®, st, ~vy), applying Ry we have (s;, s;,1b, ~vy),
in which the first occurrence of s; is saved in h , indicating the starting point of a
potential loop. Since s; is not accepting, thus vy = false. Afterwards, applying R3
finitely many times until the state s; is reached. Since s; is an accepting state, thus vy
is changed from false to true, indicating that an accepting state has occurred in the
loop body. Repeatedly applying Rj3 thereafter until Ry is applicable, which indicates
that s; is reached again. Consequently, we get the state (s;, s;,lc,vf), i.e., the end of the
loop. Thus, an accepting loop is detected. It is easy to see that the accepting loop is
(synchronously) detected as soon as the saved state occurs the second time. Since then

only Rj is applicable, thus A, v; and v; remain unchanged.

S @ Y @ @ eeo e ,@ eo e ,@ @ oo
s'¢&Fs s'¢Fg s'EFs s'=h
LRI m m O m oo o m m e e o
0, H—E © OnnsO)
v st st st 'Sot% b Ib 'gn%g Ie le I
Vi TV Vy Vy ™V Vy vy Yy vy

FI1GURE 4.5: A state-recording process

The new definition of M x By accepts a path whenever v; = lc, which indicates that an
accepting loop with respect to B-; is detected. As a consequence, the liveness checking

problem is transformed into the invariant checking problem.

Let |S| be the number of (reachable) states and |T'| the number of the transitions in the
original M x B-;. After the state-recording translation is applied, the number of states
is O(|S|?) and the number of transitions is O(|S| - |T|).

The above state-recording translation can be used to detect the shortest counterexample
(if any). If it doesn’t matter whether or not the counterexample is the shortest one, then
we do not need to take any state as the starting point of a potential loop. Instead, we
record only those accepting states as starting points. Thus, a loop is detected, whenever
a saved accepting state occurs again. In this way, the auxiliary variable v is no longer
useful. As a result, we need to redefine the initial condition and the transition relation

of M x B-j as follows:

o I'(r,h,u,vp) = I(r) A (17 V Iy) with
Il = (h=®) A (v = st)
Iy=(h=r)A(y=1Ib)A(reF)

Chapter 4. Online Model Checking Mechanism 41

Ry =(h=10)A (N =&)A (v =st)A(v] = st)
Ro=(h=@) AN =r")AN(y=st)A(v,=1b)A(r' € F)
Ry = (h=1)A(vy =1b) A (v] = 1b)
Ri=(h=N)NMH =7")A (v =1b) A (v] = lc)

Ry = (h=10)NA (v =lc) A (v, = lc)

Let |F| be the number of accepting states, which is usually smaller than |S|. Following
this translation, the number of states is O(|S| - |F|) in the worst case. In addition, the
size of state is also smaller, since vy is not used. Of course, there are also other ways to

optimize the state-recording translation, but this is not the focus of this thesis.

4.1.4 Discussion

Before a software application is released (or deployed), it has usually already been verified
or validated intensively by means of different checking techniques, e.g., static analysis,
simulation and testing as well as model checking, and others. Therefore, it is reasonable
to believe that the remaining errors (if any) may locate quite possible in some deeper
corner in the state space of the software system. The online model checking mechanism is
a relatively lightweight solution to detect such kind of subtle errors. We’ve addressed that
the online model checking problem can be reduced to the online reachability checking

problem. We now discuss in the general sense some points that should be noticed.

Falsification instead of Verification

Obviously, our online model checking is by nature a lightweight and incomplete method.
It is suitable to falsify instead of verify the behavioral model against the given property.
Due to its working on the model level, the online model checker is able to look into the
near future in the system model. Thus, it can not only detect the error that has already

happened, but also the error that has not happened yet, as illustrated in Fig. 4.6.

FIGURE 4.6: Online model checking process

42 Chapter 4. Online Model Checking Mechanism

If the partial state space starting from the current (abstract) state, say §;, overlaps with
an unsafe region marked as (X), the (potential) error can be detected by the online model
checker even if the unsafe region is located much far away from the initial state(s), say
50, of the system model. In case that the actual execution trace (see the dotted line) has
already gone through the unsafe region, then the error has already happened. Otherwise,
the error has not happened yet. In this sense, the online model checker is able to predict

potential error(s) during system execution.

Let k be the predefined bound of the partial state space that needs to be explored from
each monitored state and k' the number of steps that have been actually searched by
the online model checker in each checking cycle. Then, an error located at the (' +1)’th
step can not be seen by the online model checker in the current checking cycle. E.g., the
unsafe region near the state $3 in Fig. 4.6 can not be seen by the online model checker

in the second checking cycle.

Monitoring Points

There are a finite number of monitoring points. They are distributed in the source code

of the software program to be checked such that

e any two adjacent monitoring points are at distance at most k steps’;

e any location other than monitoring point in the source code is at distance at most

k steps from some monitoring point;

e between any two locations with distance greater than k steps there must exist

some monitoring point.

In Section 5.3 we’ll discuss how to determine the monitoring points in the the control
flow graph derived from the source code of the target program. For any two adjacent
monitoring points and y in the control flow graph, it is easy to reason that there may
be more than one (loop free) path between x and y. Let g (2,y) be the maximum
distance between x and y. In addition to the above mentioned three conditions, we’d
like to make k — 0pnaz(z,y) < € as illustrated in Fig. 5.3, where ¢ > 1 is an integer far
smaller than k. That is, for any monitoring point x, the succeeding monitoring point ¥y

is located at most k and at least k — ¢ steps away from z.

No matter what property is to be checked, the state information is always monitored

at each predefined monitoring point. That is, the locations of the monitoring points

'Here one step means one transition (step) in the model of the target program.

Chapter 4. Online Model Checking Mechanism 43

keep unchanged. There is no need to adjust the monitoring points in the source code
for online checking different properties. That is, after the monitoring points have been
instrumented in the source code, we are able to build the executable of the software

program once and for all.

Pre-Checking and Post-Checking

In each checking cycle the online model checker just uses each (current) state s; mon-
itored during program execution to locate a starting point §; = a(s;) in state space of
the program model (see Fig. 4.2). Thereafter, it conducts (semi-)exhaustive search for
errors independent of the execution of the target program. Theoretically speaking, the

online model checker may run ahead of or fall behind the progress of the target program.

We say that the online model checker is in the pre-checking mode, if it has explored at
least k steps before timeout, i.e., k < k’; otherwise, it is in the post-checking mode, i.e.,
k' < k, as illustrated in Fig. 4.7, where the bullets represent the states monitored during
system execution. It is easy to see that in the pre-checking mode the searched region
has already covered the next monitored state before timeout, while in the post-checking
mode the searched region may not cover the next monitored state, provided that the
online model checker conducts an exhaustive search. Otherwise, the next monitored

state may not be covered in both cases.

Kk Kok k' ki

k'=k k<k' k'<k
Pre-Checking mode Post-Checking mode

FIGURE 4.7: Pre-checking and Post-checking

For a nontrivial LTL formula f, we usually have to search in the state space of M x B-;.
Given an execution trace of the program to be checked, let sg ~» §1 ~» -+ ~> 5; ~> - -+ be
the sequence of states monitored during runtime at the locations lg,ly,--- ,l;,- -+ in the
source code. For each state s;, there is a unique state s; = a(s;) in M. For the sake of
simplicity, we also use s; to refer to §; in M in case of no ambiguity. Generally, s; may
be compatible with more than one state in B ;. On the one hand, the automaton B-;
is usually not deterministic; on the other hand, there may be more than one path going
through the states sg, s1,-- -, s; in M, which matches more than one run in B—;. Let Q;

be the set of states in B-; such that for any state ¢; € Q;, the compound state (s;, ¢;) is

44 Chapter 4. Online Model Checking Mechanism

reachable via a path through the states sg, s1,--- , s; from some initial state in (sg, qo).
Strictly speaking, in each checking cycle the online model checker should conduct the
search in the partial state space of M x B-; starting from the set of states (s;,(Q;) at
least k steps in depth.

Ideally, we assume that the online model checker conducts an exhaustive search. Let s;
be the state monitored at the location [; for the current checking cycle and s; be the
state monitored at the location /; for the next checking cycle. The starting points in the
next checking cycle are then calculated based on the current starting states (s;, Q;) and
the next monitored state s;. Formally, let forwardReachableSet(s;, Q;, k,) be the set
of the (compound) states in M x B-y that are forward reachable from (s;, Q;) within

[k — e, k| steps in the current checking cycle.

In the pre-checking mode the online model checker can reach the states at least k steps in
depth. Hence, we are able to obtain forwardReachableSet(s;, Q;, k,e) as a byproduct.
Consequently, (sj,Q;) = {(s,q) € forwardsReachableSet(s;,Q;,k,€) | s = s;} are the

starting points of the next checking cycle.

In the post-checking mode the online model checker may not reach the states up to k
steps in depth before timeout. A possible solution is to resume the search work in the
next checking cycle until forwardReachableSet(s;, Q;, k,¢) is obtained. There is also a
simple but not precise way to calculate (s;,Q;). That is, we can simply set @Q; to all
the states in By that are compatible with s;, i.e., Q; = {¢ € Q | s; = Lp(q)}. As
a consequence, the states in (s;,Q;) are not ensured to be reachable from some initial
state of M x B-;. Thus, the checking result may be not precise in case that some
compound state (s;,¢;) does reach an error state, but is not reachable from any initial

state of M x B_y, i.e., the detected error is spurious.

In some special cases, there is no need to calculate (s;, Q;) for each monitored state s;.
E.g., the property f = Gp, the automaton B_ is trivial, therefore, the search is carried
out in M; from the automaton Brg, in Fig. 2.6 (b) it is easy to see that the states go

and ¢; are always reachable without any constraint on the paths to them, thus, we have

Qi = {qo,q1} for each s;.

Variables of Interest

In the case that there are too many variables in the behavioral model M, considering
the monitoring overhead and the communication overhead between the target program
and the online model checker, it is better to monitor only the most important variables

in the system model, e.g., the program counter, the variables occurred in the property

Chapter 4. Online Model Checking Mechanism 45

to be checked, and the variables in the cone of influence of the property, etc.. The user

should decide what variables are of most interest in the system model.

Let V (C V) be the subset of the variables to be monitored during system execution.
This incomplete information may not identify an individual state, but a set of states in
the behavioral model, whose valuations on the variables in 1% equal to the observed ones.
That is, there may exist more initial states in each checking cycle. This, in turn, means
that the workload of the online reachability analysis may become heavy. One possible
solution is to calculate an abstraction M of the system model based on the variables in

V. In this way, each monitored state can be mapped to a unique state in M.

In this thesis, we assume that all the variables in M can be monitored during runtime.

Producer-Consumer Problem

During system execution a sequence of (concrete) states are probed whenever a mon-
itoring point is reached. These states are stored in a (ring) buffer. In each checking
cycle, the online model checker tries to take a state from the buffer as a new start-
ing point, and then goes to search for an error path in the state space derived from
the behavioral model and the property to be checked. This procedure is similar to the

producer-consumer problem as shown in Fig. 4.8.

:\
N

FIGURE 4.8: Producer-Consumer problem

take Online

Runtime put
> Model Checking

Execution Trace

In our case, we do not restrict the communication manner between the target system
and the online model checker, be it synchronous or asynchronous. To reduce the impact
of the online model checker on the execution of the target system, we do assume that
the monitored states are put into the buffer without blocking. That is, if the buffer is
full, the oldest state will be replaced by the latest one. On the other hand, if the buffer
is empty, i.e., no state is available, the online model checker will resume the search work

of the last checking cycle, provided that the work has not finished yet.

The buffer is used to balance the precessing speed of the both sides to some degree.
Ideally, no state in the buffer would be dropped by the online model checker. In reality,
it is not always the case. The producer might produce more data than the consumer
could consume in time. Generally, the online model checking is carried out in the state

space of M x B_y. Let s; be the starting point of the last checking cycle, and s; the

46 Chapter 4. Online Model Checking Mechanism

starting point of the new checking cycle. If more than one state between s; and s; is
dropped by the online model checker, then it is not easy to calculate precisely (s;,Q;),
because s; may be far away from s; in the state space. In this case, the error detected
may be spurious. Of course, this is no longer a problem for the invariant checking that is
carried out in the state space of M, since every monitored state is reachable from some

initial state of M.

In this thesis, if the search is carried out in the state space of M x By, we assume that
no (monitored) state is dropped by the online model checker, i.e., the buffer is large

enough to record all the states monitored during runtime.

Others

The user is allowed to check different properties during runtime, i.e., the properties to be
checked are not necessary to be predefined in advance during the software development.
The properties that have not been checked during the software development, or have been
checked during the software development, but not completely proven, can be checked at

runtime after the software is deployed.

The study [63] indicates that “many informal requirements are specified as properties
of segments of program executions.” In practice, it is usually not necessary to check the
whole software program during runtime, instead, it is better to focus on some specific

component or piece of code in the component, which is considered to be safety critical.

4.1.5 Prototype Implementation and Experimental Results

Given the behavioral model M and the property f, be it safety or liveness, theoretically,
we are able to check M against f during runtime by means of online invariant checking.
The invariant derived from M and f partitions the state space of M x B_; into two
non-overlapping regions: the set of valid states and the set of invalid states. What we
need to do is to search for the potential error states in the partial state space of M x By

starting from each (abstract) state monitored during system execution.

As a proof of concept, we’ve implemented a prototype of the online model checking al-
gorithm using the explicit state based breadth first search (BFS). We adopt the explicit
state based instead of the symbolic state based search because by searching the explicit
state space we are able to observe the internal structure of the system model and its
influence on the performance of the online model checker. In addition, the implementa-
tion is relatively simple, it’s a good starting point for us to learn intuitively the details

of the online model checking mechanism.

Chapter 4. Online Model Checking Mechanism 47

Online Model Checking Algorithm for Safety Properties

Suppose that the time limit allocated to the online model checker is T' time units. Each
monitored (concrete) state is first mapped to the corresponding abstract state and then
stored in the predefined ring Buffer during system execution. Algorithm 4.1 shows the
pseudo code of the online model checking algorithm for safety properties. This algorithm
is simplified in the sense that for each monitored state s the starting points for a new
checking cycle are calculated in a simplified way: (s,Qs) = {(s,q) | ¢ € QAs = Lp(q)},
i.e., s is composed with any state ¢ in By such that s = Lg(q).

The algorithm is straightforward: the online model checker waits until the Buffer is not
empty, then it takes a state s from the Buffer. After calculating the starting points
(s,Qs), it then goes to search the partial state space starting from (s, Q) layer by layer
until some error state is reached, or the whole partial state space has been explored, or
the timeout occurs, whichever happens first. In the former two cases, the online model
checking algorithm will terminate itself with the output unsafe or safe accordingly. In
the latter case, the online model checker will output safe, if it has explored at least k
steps in depth; or unknown, otherwise. Afterwards, a new checking cycle starts. The
online model checker tries to take a new monitored state from the Buffer. If there is a
state available, then it will repeat the above mentioned process; otherwise, it will resume

the search work in the last checking cycle.

Concretely speaking, the algorithm is made up of the following three parts:

e lines 3-9: in the first checking cycle, the online model checker deals with the
initial state s, which is stored in the Buffer initially. r_set is the set of starting
(compound) states derived from s and B-y for the first checking cycle. If no
error state is found in it, the states in r_set are pushed into the queue for further
processing, followed by a null as delimiter between layers. The index of layer starts

with zero. step records the index of the current layer being processed.

e lines 12-25: in the current checking cycle, the online model checker goes to explore
the state space of M x B-; layer by layer (by means of BFS). For each state r
(other than null) in the queue, its successors are calculated. r is stored in the
auxiliary queue tmp_queue. The states in next(r) are then pushed into the queue
for further processing in case that no error state is found in it. Otherwise, the
online model checker will terminate itself with the output unsafe. Notice that the
states of two adjacent layers in the unfolded state transition graph may coexist
in the queue. The delimiter null is just used to separate them. When a null is

encountered, it indicates that all the states in the current layer have been checked,

48

Chapter 4. Online Model Checking Mechanism

therefore, step needs to be increased by one. It is worth pointing out that a state
r’ in next(r) will not be added into the queue if ' € tmp_queue U queue, i.e., r’
has already occurred in the current layer. That is, the number of states in queue
may decrease to zero. In this case, the online model checker will terminate itself
with the output safe. Otherwise, it will continue to check the states in the next

layer until the timeout occurs.

lines 27-38: when the timeout occurs, the online model checker will output safe,
if at least k steps in depth has been explored; or unknown, otherwise. Thereafter,
a new checking cycle starts. If the Buffer is not empty, the online model checker
takes a new current state s and then calculates a new set r_set of the starting
points for the new checking cycle. Similar to the initial case, the states in r_set
are pushed into the queue followed by null, if no error is found in it, and step
is reset to 0. If no state is available in the Buffer, the online model checker will

simply resume the search work left in the last checking cycle.

ALCGORITHM 4.1: Explicit State-based Model Checking Algorithm

input: M,B, Tk

output: safe, unsafe, unknown

1 begin

2 wait (isEmpty(Buffer) == false) //wait until Buffer #0
3 set timer to T time units //initial checking cycle
4 s <— Buffer //pop

5 rset={(s,q) |q€lpNnskE=Lg(q)} //seM

6 if Jr € rset s.t. r.q € Fgp then return unsafe

7 queue=rset //initialize queue

8 queue +— null //insert delimiter of layers

9 step =0

10 tmpqueue =0 //auxiliary queue

11 while isEmpty(queue) == false do

12 r = (s,q) +— queue //dequeue

13 if r#null then //r is not delimiter of layer

14 tmp_queue <— r //enqueue

15 next(r) = {(s',¢)| s’ € next(s) Nq' € next(q) Ns' = Lg(q')}
16 for each 1’ € next(r) do

17 if 7. € Fp then return unsafe

18 if r’ & tmp_queue U queue then queue <+— 1’ //enqueue
19 endfor

20 else //null is dequeued (delimiter of layers)

21 step ++

22 tmp_queue = ()

23 if isEmpty(qeueue) == false then queue +— null //delimiter

Chapter 4. Online Model Checking Mechanism 49

24 else return safe

25 endif

26 if isTimeout(timer) then

27 if step > k then output safe

28 else output unknown

29 set timer to T time units //new checking cycle
30 if isEmpty(Buffer) == false then //Buffer #0
31 s <— Buffer //pop

32 rset ={(s,q) | g€ QANsELg(q)} //seM

33 if dr €rset s.t. r.q € Fp then return wunsafe
34 queue = r-set //initialize queue

35 queue <— null //insert delimiter of layer
36 step =0

37 tmp_queue = ()

38 endif

39 endif

40 endwhile

41 end

The complexity of the algorithm is polynomial in the number of the states and transitions
in the partial state space having been searched. In theory, compared to the simplified
solution, it is usually more time-consuming to determine precisely the starting points
for a new checking cycle. How to calculate the exact starting points efficiently is a topic
worth further research. In practice, it should be acceptable to sacrifice accuracy for
speed. Although the online model checker might report spurious errors, theoretically, it

does not overlook real errors (if any) in the partial models having been checked.

Online Model Checking Algorithm for Liveness Properties

As for liveness checking, we have to search for an error loop in the state space of M x B_.

)

To this end, for each (compound) state r = (s,q), we introduce a “memory” of r,
denoted as memo(r), to memorize those accepting states that can reach r. Initially,
memo(r) = {r}, if ¢ is an accepting state; or memo(r) = 0, otherwise. We need then to

modify the for loop in Algorithm 4.1 in the following way:

16 for each 7’ € next(r) do

17 if r.g € Fg Ar' € memo(r) then return unsafe

17 memo(r’) += memo(r) //update the memory of r/
18 if v’ &€ tmp_queue U queue then queue +— r’' //enqueue

19 endfor

50 Chapter 4. Online Model Checking Mechanism

It is easy to reason that an accepting loop (counterexample) can be detected, if 7’ is an
accepting state and belongs to memo(r), because r’ is reachable from r and vice versa.
In this case, the algorithm returns unsafe. Otherwise, memo(r’) is updated by inheriting

the memory of r (line 17’).

Experimental Results

Two experiments have been carried out on the Linux platform with Pentium-1V 3.00Ghz
CPU and 1GB RAM. Our goal is to determine how far away the online model checker is
able to look into the near future from each (monitored) state of the given model within a
predefined time interval. The explicit state models are selected from the benchmark set
BEEM [64]. They are finite state machines (FSM) derived from mutual exclusion algo-
rithms, communications protocols, and so on, in research or industry settings. However,
the corresponding source code is not available. This is not a problem because we focus
on the model checking part, not on the state monitoring part. The real execution trace
can be replaced by the “execution trace” generated randomly from the corresponding

finite state machine. Thus, for each monitored state s;, we have s; = s;.

Model Type State Transition Avg. Out- | Max. Out-| BFS Max. Boolean Min. Look- Max. Look- Avg. Look-
yP Degree Degree | Height [Stack Variables ahead ahead ahead

sorter_1 Controller 20544 30697 1.5 5 198 617 36 40 299 103

collision_1 Communications 5593 10792 19 5 57 617 25 26 81 487
protocol

synapse_2 Protocol 61048 125334 21 18 41 2349 46 7 28 215

driving_phils_2 Mutual exclusion 33173 81854 25 9 150 3702 27 31 97 65.7
algorithm

blocks_1 Planning and 7057 18552 26 6 19 4263 23 8 21 14
Scheduling

peterson_1 Mutual exclusion 12498 33369 27 5 54 1862 30 13 39 31.7
algorithm

szymanski_1 Mutual exclusion | 5556, 56701 28 3 72 2064 27 13 90 497
algorithm

hanoi_1 Puzzle 6561 19680 3 3 256 | 4376 36 56 103 75.9

iprotocol 2 Communications 29994 100489 34 7 91 443 39 18 451 50
protocol

phils_3 Mutual exclusion 729 2916 4 6 17 518 18 156 357 265
algorithm

cyclic_scheduler_1 [Protocol 4606 20480 4.4 8 55 1819 40 23 437 278

rushhour_1 Puzzle 1048 5446 52 9 73 535 28 66 248 150.7

rushhour_2 Puzzle 2042 12603 56 10 80 906 32 36 408 116.4

pouring_1 Puzzle 503 4481 89 9 13 348 16 42 101 719

reader_writer_2 Protocol 4104 49190 12 19 13 4097 25 4 16 9.9

pouring_2 Puzzle 51624 | 1232712 239 25 15 | 44509 18 1 4 2

TABLE 4.1: Experimental results of online invariant checking

One experiment is conducted for online invariant checking. 16 models are selected from
the BEEM benchmark set. The features of these models are given in the number of
states, the number of transitions, the average degrees of states, the height of BFS, and
the maximal stack of DFS as well as the number of Boolean (state) variables. The
invariant to be checked is f = Gp, where the propositional formula p is derived from the
set of the states in each model. The experiment is designed to compute for each model

how many steps (i.e., transitions) the online model checker is able to look ahead from

Chapter 4. Online Model Checking Mechanism 51

each state in the model within 7" = 1ms®. The experimental results in Table 4.1 show

the minimal, the maximal and the average look-ahead from the states of each model.

It is easy to see that the out-degrees of the states and the number of the Boolean variables

have a large influence on the look-ahead performance of the online reachability checking.

The other experiment is conducted for online liveness checking. The selected model is
driving_phils_2, which is derived from a mutual exclusion algorithm of processes accessing
several resources, motivated by “The Driving Philosophers” [65]. The property to be
checked is f = G(acy — Fgrg), where the proposition acy denotes that process 0 requests
a resource and the proposition grg denotes that the resource is granted to process 0. In
other words, if process 0 requests a resource, the resource will be granted to it eventually.
This is a liveness property, its negation is F(aco A G(—gro)). The Biichi automaton B-,;
is illustrated in Fig. 4.9. It shows that the error path must end with a loop satisfying
G(—gro), i.e., 7gro holds in each state on the loop.

F——H——

true acy 1gry 87y

FIGURE 4.9: Biichi Automaton of —~f = F(aco A G(—gro))

steps

70

60

50 { ! l H

- | RS

30r

20

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001
checking cycles

FIGURE 4.10: Experimental results of online liveness checking

In this experiment, the checking cycle is set to T' = 5ms, i.e, the online model checker
has at most 5ms to do the search work in each checking cycle. The monitored states are
sampled every five steps from the execution trace generated randomly from the model.
The experimental result in Fig. 4.10 is obtained by running 2000 checking cycles. The
X-axis represents the checking cycles and the Y-axis (transition) steps checked in each
checking cycle. The property is not violated at least up to these 2000 checking cycles.
The minimal look-ahead is 23 steps, the maximal look-ahead is 74 steps and the average

look-head is 57.2 steps relative to the corresponding monitored states.

2The actual runtime may be more than 1ms in case that the timeout signal is not processed in time.

52 Chapter 4. Online Model Checking Mechanism

Extend Online Model Checking Algorithm by means of Random Search

As far as explicit state based search is concerned, random search is a natural way to
improve the performance of our online model checking algorithm in terms of the look-
ahead steps (in each checking cycle) so that those models with a high density of states

can also be checked efficiently during runtime.

The paper [42] also justifies the random search approach by saying that “since BMC is
generally used to find counterexamples in contrast to proving that a property holds”, and
“the ability to use a random search is an advantage of the explicit state engine”, although
“this process may miss executions and thus counterexamples”. The experimental results
in [42] indicate that the explicit state based random search for BMC is surprisingly “as
effective as SAT-based BMC in finding short counterexamples for safety properties”.

Here the “short” counterexamples are at a depth of at most 50 steps in the state space.

In our case, a simple solution is to conduct a random BFS by introducing a new func-
tion select(r, djin,) to select randomly dy;,, successors of r if necessary, where dj;,, is a
predefined threshold on the out-degrees of the states in the model. If |next(r)| < djim,
select(r, djim,) = next(r). Otherwise, |next(r)| > dym, then select(r, dyym,) selects ran-
domly or in some heuristic way dy;,, states from next(r). As a result, the for loop in

Algorithm 4.1 can be modified in the following way:

16 for each 1’ € select(r,d};,) do
17 acceptance checking code
18 if v & tmp_queue U queue then queue +— r’ //enqueue

19 endfor

Experimental Results

Two experiments have been carried out on a Linux platform with Intel Core 2 Duo
3.00Ghz CPU and 4G RAM. The model used is driving_phils_2, which has 33,173 states
and 81,854 transitions. The average out-degree of the model is 2.5, the maximal out-
degree is 9 and the minimal one is 1. The state variables are encoded into 27 Boolean
variables. The timer is set to T' = 5ms for each checking cycle. The experimental results

in Fig. 4.11 and Fig. 4.12 are obtained by running 200 checking cycles respectively.

For online invariant checking, the minimal, maximal and average look-ahead are 63, 146
and 113.3 steps respectively in the case d;,, = 2; 48, 103, and 85.8 in the case dy,, = 3;
47, 102, and 83.0 in the case that no random search is used. The liveness property to
be checked is also G(acy — Fgrg). The minimal, maximal and average look-ahead are

44, 143, and 99.4 steps respectively in the case dj;;,, = 2; 23, 85 and 64.5 in the case

Chapter 4. Online Model Checking Mechanism 53

diim = 3; 30, 96 and 64.8 in the case that no random search is used. Considering that
the average out-degree of the model is 2.5, we are not able to gain much improvement
in performance by setting dj;,, to 3. However, we do gain better performance by setting

diim to 2.

look ahead
1

140 (steps) A
120 dim =2
100 \' . Y > dn=3
o | NININAR ANGANNANAR VA \W\I\I\M N\/\MV\JM ~ vt

J[\NV W ‘!\l“\] MY ’ B B N Ay speedup
60 [\,’.‘ ¥ \ \
40
20
0 checking

HHHHHHHHHHHHHHHHHHHH rounds

FIGURE 4.11: Online invariant checking by means of random BFS

160

look ahead

(steps)
140 {

120 - > dim=2

100 dim=3

Wlthout
80

b e

20

checking

o w o PRI NI] - © © PRI NI
wwwwww < < 0 ©ONN®O®O SO d=nNNm®mST I L ON~NK®®D O rounds
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

FIGURE 4.12: Online liveness checking by means of random BFS

In the prototype the function select(r, dy;,) is implemented to select states randomly.
In practice, the source code is usually validated by simulation and testing in the soft-
ware development phase. Some heuristic information learned in this process, e.g., which
control branch is more important, can be used to weight the related transitions in the
model. Accordingly, the function select() can be implemented in such a way that im-
portant transitions have more chance to be selected. If a state is reached more than one
time, at each time a well-defined select() function should select different successors of
this state. In addition, the threshold dj;,, can also be adjusted dynamically. In effect,

the function select() samples randomly the bounded paths of the model during runtime.

54 Chapter 4. Online Model Checking Mechanism

4.2 Accelerating Online Model Checking

Doing model checking online has to suffer from the limited execution time allocated to
each checking cycle. The performance of online model checking depends on the search
algorithm, the underlying hardware and the operating system as well as the complexity of
the problem to be checked. Therefore, we can accelerate online model checking by means

of reducing the workload, speeding up the search engine and using parallel computing.

4.2.1 Reducing Workload

After the given model checking problem is transformed into the reachability problem, the
product of M and B- is reformulated as a finite automaton, denoted still as M x B_y =
(V,D,R,I,L,F) for the sake of convenience.

Offline Forward Exploration

The transition relation R(r,7’) defines a one-step transition relation in the state space
of M x B_y. That is, applying R to any (compound) state » € D, we get the one-step
successors of 7. Let R = R, then we define the two-step transition relation R?(r,r”) =
I R (r,r") A RY(+',7"). Now applying R? to any state r € D, we are able to get the
two-step successors of r. Theoretically, starting from R!' we are able to offline calculate
multi-step transition relations R, R3,--- , R¥ in the state space of M x B_, ¢- Applying

R™ for 1 <m < k to any state r € D, we are able to get the m-step successors of r.

Recall that for safety properties there is no way to extend a bad prefix to an infinite run
which is accepting (see Section 2.3). That is, once an error state is reached, the states
that follow it are all identified as error states. As a consequence, it is safe to search for

error states by multi-step jumping in the state space of M x B_y.

Let s be a state monitored at the location [for the current checking cycle. Upon receiving
s, the online model checker first calculates a set r_set of the compound states compatible
with s as starting states of this checking cycle, and then simply applies R* to r_set to
see whether or not the the k-step successors of the states in r_set may reach some error
state. It is worth pointing out that if an error state is detected, inbetween s and the the
error state there may exist other error states, i.e., the error state detected by multi-step

jumping may be not the one closest to s.

Now let s’ be a state monitored at the location I’ for the next checking cycle. Notice that

the distance d(l,1") of any two adjacent monitoring points [and !’ falls into the integer

Chapter 4. Online Model Checking Mechanism 55

interval [k — e, k]. Therefore, the set r’_set of the starting states in the next checking
cycle is 1’ _set = {r' | ' € forwardReachableSet(s,Q,k,e) ANr.s = s'}. Similarly, by
applying RF to r’_set, the online model checker is able to see whether or not the k-step
successors of the states in 7’/_set may reach some error state. In this way, as illustrated
in Fig. 4.13, the online model checker avoids searching step by step in the state space of
M x B-y.

k-step
/\ k-step
s . ‘ Ria)
_____ e Sa N N e e
7@ 79 7 7

FIGURE 4.13: k-step forward jump

In practice, if R¥ is not available due to the complexity of the behavioral model M, then

applying some R™ for 1 < m < k can also speed up the online checking process.

Taking this offline forward exploration into account, the pre-checking and post-checking
defined in Section 4.1.4 is no longer suitable. We say that the online model checker is
in the pre-checking mode, if there is one and only one state available in the ring buffer;

otherwise, it is in the post-checking mode, i.e., there is more than one state available.

acry o A

©

\./
A4
1
1
1
1
'

~

k k
FIGURE 4.14: d-step forward jump
Although on the model level the distance d(I,1’) of any two adjacent monitoring points
[and I’ may be not unique, d(l,!') (€ [k — ¢,k]) is unique with respect to the given
actual execution trace of the program to be checked. If this unique d(l,1") is available
during runtime, then we can also make the online model checker each time take from
the buffer two states s and s’ in a row whenever it is in the post-checking mode. Instead
of jumping k steps forward, the online model checker in this case jumps d(l,1") steps
forward, provided that s is monitored at the location [and s’ at the location I, as

illustrated in Fig. 4.14. In this way, it is relatively easy to to calculate the exact starting

points for the new checking cycle. Notice that d(I,1") and d(I’,1”) may be not equal.

56 Chapter 4. Online Model Checking Mechanism

Offline Backward Exploration

The final acceptance condition F (of M x B-¢) defines the set of error states. Let’s extend
the (initial) unsafe condition F' to become F* = Fy V F} V - -+ V F,, by offline backward
exploration up to n steps starting from Fy = F, where F; = {r | R(r,7") A7’ € F;_1}
for 0 < ¢ < n, as illustrated in Fig. 4.15. In effect, the workload of the online model
checker is reduced to a large degree by calculating in advance the backward reachable

set F'* from the (original) set F' of error states.

FIGURE 4.15: Speed up online model checking

Due to time and memory limits, it is usually difficult for the online model checker to
explore forward too deep in the state space in each checking cycle. Therefore, the bound
k of the online depth-limited search should be set to a relatively small number. However,
the calculation of F™* is carried out offline, whereby time and memory are no longer a big
problem. In addition, many existing efficient approaches to reachability analysis can be
used to calculate F*. As a consequence, it is possible to explore backward much deeper
in the state space to be checked. Thus, it is reasonable to assume that n is much larger
than k. Of course, this doesn’t mean that n is large enough to solve the problem being
checked. The calculation of F* still suffers from the state space explosion problem, n is

a limit obtained under a reasonable time and memory consumption.

Without the offline backward exploration, the online model checker is able to look ahead
ideally k steps in each checking cycle; with the offline backward exploration, the online

model checker is now able to look ahead ideally k + n steps.

As for the liveness checking problem, although we can transform it into the safety check-

ing problem by means of state-recording translation (see Section 4.1.3), the state space

Chapter 4. Online Model Checking Mechanism 57

is increased quadratically in the number of states, not to mention the number of tran-
sitions. To make the online liveness checking process more efficient, we’d better make

the computation during runtime as simple as possible, but not simpler.

Loop detection is the key to the liveness checking problem, which usually leads to addi-

tional time and memory consumption. A possible solution is to leave the loop detection

done offline. The point is to calculate beforehand a new acceptance condition Fy C F

such that for any (compound) state (s;, ;) = Fo, there exists a loop of length w (w > 1)

through (s;,¢;) in M x By, ie., Fy = \171 C} with Cf = 3r1, 79, -+ ,ri.F(ro) A R(ro,71)
t=

A R(ri,m2) A=+ A R(ri—1,7¢) A (ry = ro). Then, as illustrated in Fig. 4.16, we need to

check during runtime whether or not the states in Fy is reachable.

Reachable?

FIGURE 4.16: Speed up liveness checking

For a finite state system, the upper bound of w is the depth of backward breadth first
search starting from the accepting states in M x B_y. In practice, it is usually difficult to
reach this upper bound due to the state space explosion problem. Since Fj is calculated
offline, many existing model checking techniques can be exploited to calculate Fy. Thus,

it is reasonable to assume that w is much larger than k.

In the case that Fy can not be calculated precisely, let ﬁo (C Fp) be the partial solution
obtained within a reasonable time and memory consumption. Then, F’' = F — Fy is the
set of accepting states unknown whether or not there exists a loop through them. We are
able to apply the variant of the state-recording translation to M x B_y, whereby only the
states in F” are selected as the starting points of the potential loops (see Section 4.1.3).

In this way, the state space to be searched can be further reduced to some degree.

The focus of this thesis is on the online model checking mechanism and its applica-
tions. It is reasonable to assume that the multi-step transition relation R™ and/or the

backward reachable set F* (if any) are provided in advance.

4.2.2 Online Symbolic Model Checking

Although there still exists some room to optimize the explicit state based model checking

algorithms, for many complex systems, it is not convenient to store and operate on the

58 Chapter 4. Online Model Checking Mechanism

large state transition graph represented explicitly in terms of states and transitions due
to the huge memory and time consumption. It is widely accepted that the symbolic
state based checking methods are able to handle efficiently a much larger state space
than the explicit state-based ones. By symbolic state based model checking, the states
and the transitions between states are represented implicitly as formulas in quantified

propositional logic (see Section 2.2).

Online Symbolic Model Checking Algorithm

Given R™ and F™, for the sake of convenience, let M x By = (V, D, R™, I, L, F*) denote

the finite automaton obtained by the following offline preprocessing:

1. reduce the general model checking problem to the reachability checking problem;
2. calculate a multi-step transition relation R™ for some m > 1; and

3. extend the set F' of error states to F* by n-bounded backward reachability analysis.

As a consequence, we are able to conduct the online model checking by means of jumping
in the state space of M x B_, as described in Algorithm 4.2. The algorithm is mainly

composed of the following three parts:

e lines 3-7: in the first checking cycle, the online model checker deals with the initial
state s, which is stored in the Buffer initially. r_set is the starting (compound)
states derived from s and B for the first checking cycle. If r_set contains error
state(s), then the online model checker will terminate itself with the output unsafe.

jump records the number of jumps made by the search algorithm.

e lines 9-12: in the current checking cycle, r’_set is the set of m-step successors of
the set r_set of (current) states. If no error state is found in it, r_set is reset to
r’_set. The online model checker will continue to jump another m steps until the

timeout occurs.

e lines 14-21: when the timeout occurs, the online model checker will output safe,
if at least k steps in depth has been searched; or unknown, otherwise. Thereafter,
a new checking cycle starts. If the Buffer is not empty, the online model checker
takes a new current state s and then calculate a new set r_set of starting points
for the new checking cycle. If no state is available in the Buffer, the online model

checker simply resumes the search work left in the last checking cycle.

ALGORITHM 4.2: Online Symbolic Model Checking Algorithm
input: M xB-y=(V,D,R™,I,L,F*), Tk

output: safe, unsafe, unknown

Chapter 4. Online Model Checking Mechanism 59

1

2 wait (isEmpty(Buffer) == false) //wait until Buffer #0

3 set timer to T time units

4 s<— Buffer //take the first monitored state

5 rset={rell|rs=s} //seM

6 if rset A\F* #(then return unsafe

7 Jjump=20

8 while r_set #0 do

9 r’_set ={r' € D | R™(r,r') Ar € r_set} //jump forward m steps

10 if r’set N\F*# () then return unsafe

11 Jump + +

12 r_set = r'_set

13 if isTimeout(timer) then

14 if mx*jump >k then output safe

15 else output unknown

16 set timer to T time units

17 if isEmpty(Buffer) == false then //Buffer # ()
18 s «— Buffer //take a new monitored state
19 reset ={(s,q) | € QANs=Lp(q)} //seM

20 Jump =10

21 endif

22 endif

23 endwhile

24 end

BDD-based vs. SAT-based Search Engine

Both BDD (Binary Decision Diagram) [41] and CNF (Conjunctive Normal Form) can be
used to represent symbolically the set of states and the transition relation between states.
The online symbolic model checking algorithm can be implemented using BDD-based

or/and SAT-based search engine.

The paper [42] compared the performance of the two search engines on 62 benchmarks
drawn from commercial designs. The experimental results indicate that “SAT-based
BMC is more effective than BDD-based BMC” for finding shallow counterexamples
(of length, say, k& < 60), while “BDD-based BMC is much faster” for finding deep
counterexamples (of length, say, & > 60). In addition, the experiments done at IBM,
Intel and Compag [22] confirm that “if k is small enough (typically not more than 60 to
80 cycles, depending on the model itself and the SAT solver), it outperforms BDD-based
techniques.” “The deeper the bug is (i.e., the longer the shortest path leading to it is),
the less advantage (SAT-based) BMC has.”

60 Chapter 4. Online Model Checking Mechanism

To our knowledge, it is more convenient to use BDD to calculate the (multi-step) suc-
cessors of any set of states. But in some cases the size of the BDD representation (of
some intermediate result) may be exponential independent of any variable ordering. By
using SAT solver, the successors are not directly calculated, instead, the error paths of
length k are searched (see Section 2.5). There are pros and cons to both BDD-based and
SAT-based methods. In this thesis, we prefer SAT-based to BDD-based search engine.

4.2.3 Parallel Computing

By applying the symbolic model checking technique together with the multi-step transi-
tion relation R™ and the extended set F™* of the error states we are able to improve the
performance of the online model checker to some degree. But this is still not the end of

the story.

As mentioned in Chapter 1, we concern ourselves with the correctness of the embedded
software applications. Many embedded applications are growing in complexity so as to
fulfill more functionality. The underlying hardware demands higher performance but
lower energy consumption. The interconnected multiple single core processors do not fit
this need any more. As a result, “multicores have become an unavoidable reality” [66].
The added computational power is thus available for other purposes, say, online model
checking, in our case. This can be fulfilled by installing additional (general-purpose)

operating systems to gain more functionality.

VM1 VM VMm

General-
Real-time Purpose Real-time
Application| | Application Application

RTOS || Linux/ RTOS

Windows

Hypervisor

|Core1| |Core2| LA

Multicore processor

FIGURE 4.17: Multiple virtual machines (VMs) hosted on multicore processor

However, when the multiple operating systems are running on a multicore processor, it

is a challenge to make them do not interfere with each other, e.g., shared memory access,

Chapter 4. Online Model Checking Mechanism 61

interrupt handling, time management, and so on. Different virtualization techniques,
such as container and virtualization [67], can solve this problem. Considering that many
model checking tools work on top of general-purpose operating systems, a better solution
is to insert an embedded virtualization layer below the multiple operating systems [68],
as illustrated in Fig. 4.17. The hypervisor “virtualizes and arbitrates access to the cores,
memory and devices” to ensure that “each operating system can properly execute in its

own isolated partition” [68].

In this way, we are able to take the advantage of the parallelism of the multicore processor
to improve the performance of the online model checker. Instead of just using one model
checker, theoretically, two or more online model checkers can be used to run in parallel

to speed up the online model checking process.

4.2.4 Prototype Implementation and Experimental Results

In cooperation with Mona Qanadilo and Sufyan Samara from An-Najah National Uni-
versity, Nablus, Palestine, we’ve implemented a simplified version of the online symbolic
model checking algorithm using SAT solver [69]. The checking process is illustrated in
Fig. 4.3. The starting points for each checking cycle (except the first one) are decided in

a simple way similar to that of the explicit state-based implementation in Section 4.1.5.

We adopt a SAT-based instead of BDD-based search algorithm. On the one hand, the
modern SAT solvers are now able to handle efficiently large SAT problems with hundreds
of thousands of variables. According to [42], “SAT-based BMC is more effective than
BDD-based BMC” for finding shallow counterexamples, in particular, “SAT solvers are
quite effective in eliminating logic that is not relevant to a given property.” This means
that “SAT solvers appear to have significant potential for identifying that set of variables
once a suitable property is given.” On the other hand, the size of the BDD representation
(of some intermediate result) may be exponential independent of any variable ordering

in some special cases.

Optimizing SAT Solver for Online Model Checking

The SAT solver we used is zChaff?, because we are more familiar with the implementation

details of zChaff. First of all we need to tune zChaff for online model checking.

Converting a general propositional logic expression into its CNF representation usually

needs to introduce many auxiliary variables and thus results in a larger formula with

3http://www.princeton.edu/~chaff/zchaff.html

http://www.princeton.edu/~chaff/zchaff.html

62 Chapter 4. Online Model Checking Mechanism

excessive number of variables. The experimental results in [70] indicate that the original
variables have more influence than the auxiliary variables on deduction. zChaff is a
general SAT solver. It does not distinguish the original variables from the auxiliary
ones in the given CNF representation. We’d like to make zChaff distinguish the original
variables from the auxiliary ones and then give the original variables priority over the
auxiliary variables in the assignment process of the SAT solver. For this purpose, we
modified the decision strategy VSIDS (Variable State Independent Decaying Sum) of

zChaff in favor of the original variables.

It is easy to see in Fig. 4.3 that the only difference among the individual SAT problems
in different checking cycles is the initial condition Z(s;), which indicates the values of the
variables (of interest) monitored at runtime. Since each conflict clause* learned by the
SAT solver is an implication of some clauses of the given SAT problem, it is redundant
and has nothing to do with the valuation of the variables. Therefore, the conflict clauses
learned in the previous checking cycles can be directly reused in the later checking cycles

to reduce the space to be searched.

To switch from the current checking cycle to the next checking cycle, we’d like to make
zChaff restart in an efficient manner. The restart operation in zChaff simply undoes
the assignments of those variables at the decision levels greater than 0. Without loss of
generality, let’s assume that the monitored variables v{, v, - - - , v, be ordered in this way.
The initial conditions Z(s;) and Z(s;11) of any two checking cycles in a row usually have
some common part, i.e., the valuation of some variables keeps unchanged. Therefore, we
make zChaff backtrack to the first variable v; (at the decision level j) whose valuation
has been changed in the initial condition Z(s;11). Of course, if v1 (at the decision level 1)
is such a variable, then we have to backtrack to the decision level 1 in this case. However,
as long as j > 1, we are able to reuse the deduction results done for vy, ve, -+ ,v;_1 in
the next checking cycle. In particular, if the initial conditions Z(S;) and Z(s;+1) happen
to be the same, then we simply make zChaff resume the search work in the new checking

cycle, provided that the work has not been completely done.

Experimental Results of Online Model Checking Using Parallel Computing

Theoretically, by introducing R™ and F™*, we are able to make the online symbolic model
checker look ahead more steps in each checking cycle. A further improvement can be
done using parallel computing. In doing so, we have multiple SAT-based online model
checkers work in parallel on the 64 bit Windows platform with 2.13GHz i3 CPU and
4GB RAM.

4A redundant clause that captures the causes of an inconsistency discovered during the search (for a
solution to the SAT problem) so as to prevent the same conflict from occurring again.

Chapter 4. Online Model Checking Mechanism 63

The case study is the MSI protocol with transient states taken from the NuSMV?® soft-
ware package. It is a basic cache-coherence protocol, which specifies that “There are
three processors, each with one level of cache that stores 1-bit of data and has a 1-bit tag.
The caches are write-back, write-allocate. The bus arbitration is round-robin. There is

a memory with two 1-bit locations.”

We generate the transition relation in CNF from the NuSMV specification of the MSI
protocol and then unroll the transition relation up to k steps. Table. 4.2 lists the
number of total variables, the number of original variables and the number of total
clauses of |[M]| for k = 35,40,45 and 50 respectively. The original variables account
for about 24% of the total variables in each case. The property to be checked is an
invariant of the form AGp, from which the path constraint |[C]| is derived in CNF.
The monitored states are sampled every k steps from the execution trace generated

simply by “executing” the model itself. Thus, we have s; = §;.

k | Total Variables | Original Variables | Total Clauses
35 6662 1620 22663
40 7602 1845 25873
45 8542 2070 29083
50 9482 2295 32293

TABLE 4.2: MSI model |[M]|;, with path of different lengths

The decision strategy adopted in the SAT solver has a large effect on the performance
of the online model checker. Should we use different decision strategies or use the same
decision strategy in the SAT-based online model checkers running in parallel? To answer
this question, we make two SAT solvers use different decision strategies: the original
VSIDS and the modified VSIDS (in favor of the original variables). Then, we do online
model checking for the MSI protocol with k£ = 35,40, 45 and 50 from 201 different initial
states, i.e., 201 checking cycles. In this experiment, we do not set any time limit for
each checking cycle, just let the online model checkers run to the end and then start
the new checking cycle. From one checking cycle to the next checking cycle, the learned
clauses are reused by the SAT solvers. If one SAT solver works faster than the other
one, it will “consume” more initial states than the other SAT solver, i.e., it will run more
checking rounds. This is confirmed by the experimental results illustrated in Fig. 4.18
and in Fig. 4.19. The former shows that the SAT solver with modified VSIDS decision
strategy runs more checking cycles in all the four cases; the latter shows the cumulative
execution time (in seconds) of each SAT solver in all the four cases. It is easy to see that
the SAT solver with modified VSIDS decision strategy takes less execution time while

it runs more checking rounds in three of the four cases.

*http://nusmv.fbk.eu

http://nusmv.fbk.eu

64 Chapter 4. Online Model Checking Mechanism

In this experiment, we use Round Robin scheduling algorithm, which gives each online
model checker equal priority. Although the two online model checkers do not run on
a real parallel hardware system, the experimental results do reflect the fact that the
decision strategy in favor of the original variables has a better performance on average,
which conforms with the conclusion in [70]. Consequently, we adopt the same decision

strategy (i.e., modified VSIDS) for the SAT solvers working in parallel.

160

W Modified VSIDS O Original VSIDS
140

120

100 —

80 —

60 —

Checking Cycles

35 40 45 50 k

FI1GURE 4.18: Performance of the two decision strategies

120

W Modified VSIDS O Original VSIDS

100

80

60

Total Runtime {sec)

20 +—

35 10 45 50 k

FIGURE 4.19: Cumulative runtime of the two decision strategies

In addition, Fig. 4.20 shows the performance comparison of the modified VSIDS strategy
with the original VSIDS and the static order strategy obtained by online checking the
MSI protocol for k£ = 50 from 201 different (monitored) states. We zoom in on the results
obtained in the checking cycles from 90 to 128. It is easy to see that the performance
of the modified VSIDS strategy on average is more stable than the other two strategies
in the sense that there exist no large fluctuations in execution time from one checking

cycle to the next.

Chapter 4. Online Model Checking Mechanism 65

—¢— Original VSIDS
Static Order
—&— Modified VSIDS

F.N i\l !

I T T I

P 1
bsadosaatBoatttatitdeduanteskorun

90 92 94 96 98 100102104 106 108110 112 114 116 118 120122 124 126 128

X 4~

FIGURE 4.20: Performance of the three decision strategies for £ = 50

How many online model checkers running in parallel can obtain a better performance?
We use 1, 2, 3, 4 and 5 SAT-based model checkers respectively to online check the MSI
protocol for k = 50 from 201 different initial states (i.e., 201 checking cycles). In this

experiment, we also do not set any time limit for each checking cycle, just let the SAT

solvers run to the end and then start the new checking cycle. Given a setting of multiple

model checkers working in parallel, the maximum cumulative runtime of them indicates

the performance of this setting. E.g., in the setting of 5 SAT-based model checkers, we

take the maximum cumulative runtime of the 5 SAT solvers. The experimental results in

Fig. 4.21 illustrate the maximum cumulative runtime (in seconds) of the SAT solver(s)

in each setting.
250

200

[
wu
=}

[
Q
=]

Runtime (sec)

50

1 2 3 4 5

Number Of SAT solvers

FIGURE 4.21: Performance comparison of multiple SAT-based model checkers

It is easy to observe that the setting of 2 SAT-based model checkers outperforms all the

other four settings. The possible reasons are analyzed as follows:

e The experimental results indicate that the learned clauses shared between different

checking cycles do improve the performance of the SAT solvers. But the more SAT

66 Chapter 4. Online Model Checking Mechanism

solvers working in parallel, the less (initial) states each SAT solver can consume,
thus the less the learned clauses are produced to prune the state space for each
SAT solver.

e Each SAT solver has to access cache and memory frequently. We use Round
Robin scheduling algorithm, which gives each model checker equal priority. The
more SAT solvers working in parallel, the higher the probability of access conflicts
due to requesting data at the same time. The memory is a shared resource among
different SAT solvers. If we run more than two SAT-based model checkers in
parallel, it means more synchronization overhead. In this sense, our platform does

not simulate the parallel feature very well.

In this experiment, we notice that the learned clauses have a large impact on the perfor-
mance of the SAT solver. In the setting of 5 SAT-based model checkers, one SAT solver
consumes only 8 (initial) states, but its total execution time is even more than that of

the single solver setting, in which 201 (initial) states are processed.

Considering the price-performance ratio, it is better to use 2 SAT-based model checkers
working in parallel. In addition, we’ve tried to make the 2 SAT solvers share the shortest
learned clauses with each other, but the performance improvement is not satisfying due
to the additional communication overhead. Therefore, we keep the 2 SAT-based model

checkers working independent of each other.

§
e o o
| SAT Solver 2 |
| saTsover1 |
[satsolverz |
SAT Solver 1 |
0 T 2T 3T 4T 5T 6T Time

FI1GURE 4.22: Two online model checkers working in parallel

Now let two SAT-based model checkers work in parallel as illustrated in Fig. 4.22. Every
T time units only one model checker is allowed to take a state from the ring buffer. Each
model checker has 27" time units to do the search work. To simulate a general buffer
setting, we use a randomly generated Boolean value to decide whether the ring buffer is
empty or not. For each model checker, if the ring buffer is empty, the model checker will
either resume the search work of the last checking cycle, provided that the work has not

finished yet; or else simply wait until the next checking cycle starts. Otherwise, there is

Chapter 4. Online Model Checking Mechanism 67

a state, say §;, available, then within the given 2T time units, the online model checker
tries to search for an error path of length up to k steps in the partial state space derived

from 5;.

Given the model derived from the MSI protocol for k& = 35, the experimental results in
Fig. 4.23 demonstrate the execution of one online model checker in the checking cycles
from 33 to 65 with the predefined time limit 27" = 0.08s. The highlights are described

as follows:

e In the checking cycles 45, 47, 49 and 53 the online model checker can not get a
state from the ring buffer and the search work of the last checking cycle has been

done, therefore, it does nothing but waits for the next checking cycle.

e In the checking cycles 37 up to 40 the online model checker can not get a state
from the ring buffer, since the search work of the checking cycle 36 has not finished

yet, therefore, it resumes the search work of the checking cycle 36.

e In the checking cycle 44 the online model checker resumes the search work of the
checking cycle 43 and finally gets a definite result this time, i.e., no error path of

length k£ < 35 starting from the given state is found.

90

80 4
e S
70
™ A
n = 4 ‘
60 im
& A
L e |dle
50 i
A
4 = Unsat
40
4 Timeout

30

20

10

Checking Cycles

30 353637 40 434445 47 4950 53 55 60 65 70

0 : o @ Py

FIGURE 4.23: Execution of one online model checker with the random buffer setting

Let T be the predefined time limit for each checking round. If the online model checker
does not finish the search work within this limited time, it is usually difficult to measure
what percentage of the state space of the behavioral model has been searched within the
given T time units. There is a simple way to estimate this percentage coarsely. Given

a monitored state s;, we have the SAT solver run to the end to get the total runtime in

68 Chapter 4. Online Model Checking Mechanism

the bounded model derived from s;, denoted as Tioq;. Then, T'/Tioq estimates coarsely
the percentage of the state space derived from s; that has been searched by the model

checker in one checking cycle.

Let’s take the MSI protocol for k = 20 as example, which has 3842 variables (including
945 original variables) and 13033 clauses. Recall that for online model checking we do
not need to set k to a large number (thanks to the offline forward and/or backward
exploration). For an initial state, the total runtime T}y, we measured is about 1.6s.
Then, T' = 0.08s indicates that about 0.08/1.6 = 5% of the state space of the bounded

model derived from this state has been searched in one checking cycle.

4.3 Summary

In this chapter we present the concept of online model checking, which is the main topic
of this thesis. Online model checking is a lightweight and incomplete method applied at
runtime to falsify, instead of verify, the given behavioral model against the LTL property
to be checked. The errors found in the behavioral model may indicate the errors in the

source code of the target software system.

In theory both safety and liveness properties can be checked during system execution by
online model checking. The basic idea is to reduce the online model checking problem
to the invariant checking problem, which can be solved by online reachability analysis.
Doing model checking online suffers from the limited execution time allocated to each
checking cycle. Its performance depends mainly on the search algorithm and the under-
lying hardware as well as the complexity of the problem to be checked. The workload
of the online model checker can be reduced to some degree by introducing the m-step
transition relation R™ and the n-step backward reachable set F'*. The performance of
the online model checker can be further improved by using a symbolic state-based search

engine and making more than one online model checker working in parallel.

As a proof of concept, we’ve implemented an explicit state-based and a symbolic state-
based online model checking algorithm. The explicit state-based online model checker is
mainly used to observe the internal structure of the behavioral model and its influence on
the performance of the online model checker. The experimental results indicate that the
density of states in the model and the number of state variables are the two main factors
affecting the speed of the online model checker. The symbolic state-based online model
checker adopts a tailored SAT-solver as its search engine. The experimental results in
different parallel settings indicate that two online model checkers working in parallel can

offer a better price/performance ratio.

Chapter 5

Model Generation and Source

Code Instrumentation

We'd like to apply the online model checking mechanism to embedded control software.
In practice, a software application after release may still contain subtle errors that have
escaped from being detected in the development life cycle. For a safety-critical system,
it is meaningful to catch in time these deep, corner-case errors in the embedded software
during system execution. As explained in Chapter 4, given the source code of the
program to be checked, in order to do online model checking, we need to instrument the
source code with finitely many monitoring points (once and for all) on the one hand,
and to obtain a (behavioral) model of the target program on the other hand. In this

chapter, we focus on model generation and source code instrumentation.

5.1 Embedded Control Applications

Embedded control software is used to control an external environment, which may be
artificial or biological objects, e.g., physical plants and humans. This environment (i.e.,
the controlled objects) is connected to the computer system, on which the control pro-
gram is running, through sensors and actuators or through other input-output interfaces.
The execution of such a kind of software application must meet various timing and other
constraints that are imposed on it by the (real-time) behaviors of the controlled objects.
But this doesn’t mean that the control program has to run as fast as possible. Instead, it
means that all the tasks of the control program should finish execution in the worst-case
by their deadlines. The deadlines are dictated by the controlled objects. A deadline is

hard, if missing it may result in severe consequence(s); otherwise, it is soft [2].

69

70 Chapter 5. Model Generation and Source Code Instrumentation

Our concern is the software applications in such domains as automotive, aerospace, man-
ufacturing control, and the like, which exhibit time-periodic and multimodal features.
Modern control software in these domains is becoming increasingly complicated due to

the following requirements [71] on it:

e operate in distributed and embedded computing environments;

e communicate through different protocols;

adapt to changes in operating environments; and

behave in a dependable manner for safety critical systems.

A platform-independent programming abstraction is presented in [72] for specifying the
behaviors of embedded control software with (hard) real-time constraints. According to
[72], a typical control application consists usually of periodic (software) tasks governed
by a mode-switching logic for activating or deactivating tasks. Each (operational) mode

contains a (fixed) set of tasks active in this mode.

E.g., a typical fly-by-wire control system has five operational modes: takeoff, cruise,
autopilot, degraded and landing modes. In each of these modes, different sensing tasks,
control laws, and actuating tasks need to be executed. That is, some tasks are added
to, while others are removed from, the task set of the current mode. For instance, in the
takeoff mode, the landing gear is not needed; in the autopilot mode, the inputs are taken
from a supervisory flight planner, instead of from the pilot’s stick; and in the degraded

mode, some of the sensors and actuators are disabled due to damage.

Intuitively, modes impose some structure on the behaviors of the given control applica-
tion [73]. The control application is in one mode at a time, i.e., there is only one active
mode at any given time. The mode-switching logic determines the possible transitions
from one mode to other modes. It is a kind of finite state machine, in which each state
represents a mode and each transition specifies a possible switching between two differ-
ent modes. A mode switch can result in removing some tasks and adding others. After a
mode switch is finished, all subsequent actions follow the definition of the target mode.
A mode switch may happen while a task is still running. In this case, this task needs to

be continued in the target mode.

In each mode, a set of tasks are executed periodically following some scheduling strat-
egy. A task is a piece of application-level code, which typically implements a control
algorithm. Tasks communicate with each other as well as with sensors and actuators by

drivers. A driver is a piece of system-level code, which provides an abstract interface

Chapter 5. Model Generation and Source Code Instrumentation 71

to (physical) devices by transporting and converting values between ports. A port is

abstracted as a typed variable. It keeps its value over time, until it is updated.

There are sensor ports, actuator ports, and task ports as well as mode ports. The
sensor ports are updated by the environment, i.e. sensor ports are treated as elementary
sources of values. All other ports are updated by their respective drivers. A driver may
provide sensor readings for the input ports of a task; or load task results into actuator

ports; or provide task results for the input ports of other tasks.

The task ports are used to communicate data between concurrent tasks or transfer data
from one mode to the next. In general, a task has input ports and output ports. A
typical task has also an internal state, the values at which are inaccessible outside the
task. What’s more, a task has a function from its input ports and the current state to its
output ports and the next state. This function is usually implemented by a sequential

program written in some programming language, say, C code.

In effect, a driver is a function that converts values of sensor ports and mode ports of
the current mode to the values for the input ports of the tasks in the target mode, or
loads the input ports with constants. Once the input ports of a task are updated by
a driver, the task is ready to run. That is, the task is put into a ready queue, from
which the scheduler of the operating system chooses tasks for execution following some

scheduling scheme.

Generally, a task may be mapped to a software-programmable component (in most cases)
with a local operating system, e.g., general-purpose processor (CPP) or application-
specific instruction set processor (ASIP). A task may also be mapped to a hardware
component, e.g., field-programmable gate array (FPGA) or application-specific inte-
grated circuit (ASIC).

In this thesis, we are concerned with the tasks running on top of some real-time operating

system.

5.2 Model Generation

A model is an abstraction of some aspect of a system [71]. The (bounded) models for
online model checking can be obtained at system development phase or by abstraction

from the source code of the program under investigation.

To deal with the increasing complexity of software products, Model-based Development
(MBD) becomes more and more popular in developing software applications in the au-

tomotive, aecrospace and other industries. The investigation [74] shows that using MBD

72 Chapter 5. Model Generation and Source Code Instrumentation

can help to shorten the development time, reduce the development costs, improve the
product quality, just to mention some aspects. MBD aims to reduce the complexity
by means of building the design models at multiple levels of abstraction and/or from
different perspectives, analyzing the models, and transforming the models into concrete
(code) implementation [71]. Thus, for a software application developed using MBD, the

design models at different levels of abstraction can be reused for online model checking.

It’s worth pointing out that using MBD does allow verification activities such as model
checking, theorem proving, simulation and testing to be conducted at the model level
in the early design phase. Many errors can thus be detected and corrected early in the
development life cycle, and this, in turn, does decrease the number of errors discovered
during the integration or system test phase. However, for large complex systems, it is
still difficult to prove the correctness of the behavioral model(s) due to the state space
explosion problem. E.g., for composing two mode transition diagrams of a flight guidance

system even in a constrained way, “there are typically over 10%° reachable states” [75].

On the other hand, the code generator used by MBD is usually too complex to be proved
for correctness. According to [74], “some companies are the opinion that the current
code generators are not applicable to generate high safety relevant code.” Indeed, not
all software applications are developed using MBD. Traditional hand-coded software
development is still useful, especially for developing ultrahigh safety critical systems.
In this case, the behavioral models at different levels of abstraction can be generated
directly from the source code of the software application to be checked. In fact, source
code itself is a kind of model describing how the program will behave when executed
[71].

As mentioned in Section 5.1, a mode transition diagram is a kind of finite state machine,
which is generated during the software development phase. Online model checking can
also be used to verify the mode-switching logic against the desired properties specified in
LTL. The execution result of a task in the current mode may trigger a transition to some
next mode. In this sense, each task can be seen as atomic. A typical task is implemented
by a sequential program written, say, in C code, which repeats the following three steps:
receive input data, update internal state and produce output. Therefore, the monitoring
point can be inserted “between the portions of C code which produce output and receive

new input” [76].

In this thesis the attention is paid to checking the functional correctness of a task, which
is identified as important among the others in the task set, during program execution.
Since the focus is on the internal behaviors of the task to be checked, the timeliness of
the task is beyond our concern. It is up to the scheduler to ensure the timeliness of the

tasks in the system.

Chapter 5. Model Generation and Source Code Instrumentation 73

5.3 Source Code Instrumentation

We need to identify a finite set of monitoring points in the source code of the program to
be checked. For the sake of simplicity, we suppose that the target program is written in
a restricted subset of C that conforms to the (mandatory) requirements of the MISRA-C
coding standard. The monitoring points are determined by partitioning the control flow

graph derived from the source code into a finite set of subgraphs.

5.3.1 MISRA C

The C programming language is widely used to develop the embedded software for
safety critical systems in industry. However, some linguistic features of the C language
are either specified indefinitely or implementation-dependent. To avoid the traps and
pitfalls of C, guidelines for writing safe, portable and reliable code in C are highly
demanded. The Motor Industry Software Reliability Association! (MISRA) published
in 1998 a coding standard for the C language officially known as MISRA-C:1998 [77].
MISRA-C:2004 titled “Guidelines for the use of the C language in critical systems” [78]
was released and in 2013 the release of MISRA C:2012 [79] was announced. Nowadays
MISAR C has evolved into a de-facto coding standard for developing embedded software
not only in the automotive industry, but also in other industries such as aerospace,

railways, nuclear, defense and medical devices, to name just a few.

To promote the safest possible use of C, the MISRA C standard recommends a restricted
subset of C, which has already established practices in industry. MISRA-C:2004 contains
122 mandatory and 20 advisory rules. The most significant limitations of MISRA-C:2004
[78] are listed below:

Rule 16.2 (required): Functions shall not call themselves, either directly

or indirectly.

Rule 20.4 (required): Dynamic heap memory allocation shall not be used.

These two rules simplify the structure of the states of the target program. Generally, a

program state is identified by the following two parts [28]:
e a control component — a point of control PC, which is not simply the program
counter, but may contain a procedure-calling chain of the target program; and

e a data component — an assignment of values to all the variables, including input

data and internal data, at the given point of control of the target program.

"http://www.misra-c.com

http://www.misra-c.com

74 Chapter 5. Model Generation and Source Code Instrumentation

The points of control are located before (or after) the smallest execution units of the
source code of the target program. The data types declared in the program determine
the smallest distinguishable data components. The Cartesian product of the definition
ranges of all the state components form the state space of the target program. Notice that
this definition covers the states that may never be reached by the program’s execution
for any set of input data. It is indeed undecidable whether a given state may be reached

or not [28].

A program written in a language that allows dynamic memory allocation and (procedure)
recursion results in dynamic data structure and dynamic PC structure respectively for
identifying the states of the program. This increases the complexity of the monitoring

operations. In addition, the resulting state space is usually infinite.

On the contrary, a program written in a language that allows only static memory allo-
cation and no recursion produces a finite state space? with simple state structure, which
is relatively easy to monitor, because the correspondence of the program variables to

the memory addresses can be established once and for all at compile-time.

To simplify the problem, we assume that the embedded software under consideration
is written in C and compliant to the MISRA C coding standard. Although in specific
cases some rules of MISRA C may be deviated from, in this thesis we suppose that the

above mentioned two rules are always obeyed.

5.3.2 Control Flow Graph

Among the points of control of the target program, we need to select some of them as
monitoring points for online model checking. This is done by analyzing the control flow

graph of the target program.

Given a sequential C program P with function calls (if any) managed by means of macro-
expansion. Since the statements of a sequential program are ordered one after another,
there is a unique entry point and a unique ezit point for each statement, i.e., the smallest
execution unit of the source code. To avoid redundancy, the exit point of a statement
and the entry point of the following statement are merged into one. Together with the
entry and the exit points of the program P itself, we are able to uniquely label the entry

and the exit points of all statements of P [18, 80].

Without loss of generality, let’s represent the C program as P = (V, L, [y, T) [81], where
V is the set of typed variables that constitute the data component of the program state,

L is the set of locations, i.e., points of control in the target program, ly is the entry

2Provided that all the data types are defined with finite ranges in the program.

Chapter 5. Model Generation and Source Code Instrumentation 75

point of the program P, and T is the set of transitions between the control points. Each
transition is defined as a tuple (I,¢,l’) with [,I’ € L and ¢ a constraint over the free
variables in VUV’. The variables in V record the values at the (present) control location
[, while the variables in V' record the values (of the variables from V) at the (next)
control location . Obviously, the set L of locations and the set T of transitions together
decide a directed (cyclic) graph (see Fig. 5.4 (a)), called the control flow graph® (CFG)
of the program P, denoted as G(P) = (L, T).

In the terminology of (control flow) graph [82], we also call L the set of vertices and T
the set of edges of the graph G(P). G(P) contains a finite set of vertices and a finite
set of edges in it. A vertex [; is said to dominate (or to be a dominator of) a vertex
l; if every path from the entry vertex ly to l; must go through [;. By definition, every
vertex dominates itself and the entry vertex [y must be a dominator. A vertex [; strictly
dominates a vertex [; if [; dominates [; and [; # ;. A immediate dominator of a vertex
l; is a vertex [; that strictly dominates /; but does not strictly dominate any other vertex
between [; and [;. The immediate dominator of a vertex (other than ly) is unique. E.g.,
in Fig. 5.4 (a) the vertices 1, 2, and 4 (strictly) dominates the vertices 5 and 6, while

the vertex 4 is an immediate dominator of the vertices 5 and 6.

Given a vertex | € L, and an integer k£ > 0, we define G(/,k) as a k-bounded tree
obtained by unwinding the graph G(P) starting from [up to k steps (see Fig. 5.4 (b),
(c), and (d) for example). We call the vertices of this tree as nodes to distinguish them
from the vertices of the graph, from which the tree is derived. The vertex [is the root
node of the tree G(l,k). If a vertex in G(P) is reached along different paths within
k steps starting from [, there may exist several nodes in the tree G(I, k) representing
the same vertex in G(P). E.g., the node 4 occurs twice in the tree G(1,3) in Fig. 5.4
(b). The mazimum depth of a node I; € L with respect to the root node I, denoted as
Omaz (1, 1;), is the number of edges on the longest path from [to [; in the tree. Obviously,
6maz(l,1;) € [0,k]. E.g., in G(1,3) (see Fig. 5.4 (b)) dmaz(1,4) = 3.

5.3.3 Graph Partitioning

As mentioned in subsection 4.1.4, we’d better select such a set of vertices in G(P) as
monitoring points that satisfy the following conditions: (i) any two adjacent monitoring
points are at distance at most k steps; (ii) any vertex other than monitoring point in
G(P) is at distance at most k steps from some monitoring point; and (iii) between any

two vertices with distance greater than k steps there must exist some monitoring point.

3Note that this definition is different from the traditional definition of control flow graph, where each
node represents a basic block (of code) and each (directed) edge a jump in the control flow.

76 Chapter 5. Model Generation and Source Code Instrumentation

It is easy to reason that there always exists a solution, e.g., a trivial solution is to set all
the vertices in G(P) as monitoring points. Of course, the solution is not unique. Given
an integer k£ > 0, besides the entry point /g, we’d like to determine a smaller set of
vertices {l1,la, -+ ,l,} C L such that the trees Go(lo, k), G1(l1, k), Ga(l2, k), - -+, Gp(ln, k)
can cover the graph G(P) and have a similar size in terms of nodes and edges. In other
words, we hope to find out a smaller set of monitoring points that can be distributed in

G(P) as evenly as possible.

For this purpose, we’d like to partition G(P) into finite subgraphs in similar size (more
or less). There are two common approaches [83] to partitioning a graph: edge-cut and
vertex-cut. The former determines a set of edges (called edge-cut), while the latter
determines a set of vertices (called vertex-cut), whose deletion can make the graph
disconnected. Fig. 5.1 illustrates the difference of the two partitioning methods. For
each edge (x,y) in an edge-cut (see Fig. 5.1(a)), the two vertices x and y serves as the
exit- and entry-points of the respective partitions. For each vertex x in a vertex-cut
(see Fig. 5.1(b)), the vertex x serves as both the ezit- and entry-points of the respective
partitions. In addition, a vertex can be cut in multiple ways as shown in Fig. 5.2, while

an edge can only be cut in one way.

®

(@)

FIGURE 5.2: Cutting a vertex in different ways [83]

Edge-cut partitioning is not suitable for us, because the edges in the cut does not belong
to any partition, e.g., the edge from x to y in Fig. 5.1(a), thus they can not be reached by

the online model checker without specifically dealing with them. Vertex-cut partitioning

Chapter 5. Model Generation and Source Code Instrumentation 77

does not have this problem. The vertices in the cut belong to at least one partition (see
Fig. 5.1(b)). All the partitions together cover the whole graph with neither vertices nor
edges left outside. Therefore, we partition G(P) = (L, T) by vertex-cut partitioning.

It is usually NP-hard to find out a minimum vertex-cut that leads to partitions of similar
size. Here we give a simple procedure to produce a smaller vertex-cut for partitioning

G(P) into k-bounded trees. The vertices in the cut are then selected as monitoring points.

It is observed that for any vertex z in the vertex-cut, the tree G(z, k) must cover some
other vertices in the vertex-cut, and these vertices form a local cut of G(x, k). E.g., for
k = 3, a possible vertex-cut of the (control flow) graph in Fig. 5.4 (a) is {1,4, 7}, then
the tree G(1,3) covers the vertex 4 which forms a local cut in G(1,3) (see Fig. 5.4 (b)),
and the same goes to the trees G(4,3) and G(7,3), where the vertex 7 forms a local cut
in G(4,3) (see Fig. 5.4 (c)) and the vertex 4 a local cut in G(7,3) (see Fig. 5.4 (d)).

Therefore, we aim to identify a smaller local cut (denoted by the dashed line) closer to
the bottom line of G(z, k) as illustrated in Fig. 5.3. That is, given a non-negative integer
e (relatively far) less than k, we say that a local cut of G(x,k) is close to the bottom

line of G(z, k) with respect to ¢, if for any node y in the cut, we have k — d;paz (2, y) < €.

X

/\ ------ e \

FIGURE 5.3: A smaller cut close to the bottom line of G(z, k)

We say that a node y in the tree G(x, k) is leaf node, if y is either an exit point of the
program P, or else 0,42 (2, y) = k. In the former case, dpmaz(x,y) < k. E.g., in the tree
G(7,3) (see Fig. 5.4 (d)) the leaf nodes are 5, 6, and 9, because 0,4.(7,5) = 3 and
Omaz(7,6) = 3, but dmaz(7,9) = 2 which is less than & = 3, this is allowed, because the

node 9 is an exit point of the program.

The bottom line of G(z, k) consists of those non-trivial leaf nodes of G(x, k) that are not

exit points of the program P. Obviously, if all the leaf nodes of G(z, k) are exit points of

78 Chapter 5. Model Generation and Source Code Instrumentation

the program P, then there is not need to cut G(z, k), because the tree G(z, k) can not

“grow” further, thus the bottom line is meaningless in this case.

The bottom line of G(x, k) itself can be seen as a local cut at the depth k relative to the
root node x. We’d like to evolve it into a smaller cut of G(z, k) by applying repeatedly

to it the following two rules:

rule 1: for a node y in the cut, if y dominates other node(s) in the cut, then

remove those nodes dominated by y from the cut;

rule 2: for a node y not in the cut, if y immediate dominates more than one
node in the cut and k — (2, y) < €, then remove those nodes

immediate dominated by y from the cut and add y to the cut.

Let global_cut be a set of nodes forming a vertex-cut of G(P) and local_cut a set nodes
forming a vertex-cut of G(z, k). We partition G(P) in a way described in Algorithm 5.1.
First of all, global_cut is initialized to {lp}, the entry point of the program P. For each
node x € global_cut, which has not been processed yet, the bottom line of G(z, k) with
respect to global_cut is calculated in Algorithm 5.2. If the local cut of G(x,k) is not
empty, we try to reduced it to a smaller cut close to the bottom line of G(z, k) with
respect to €. Afterwards, the smaller local_cut is added to global_cut. This procedure is
repeated until all the nodes in global_cut have been processed. At this time, the nodes

in global_cut are the vertex-cut of G(P).

ALGORITHM 5.1: Partition control flow graph G(P)
input: G(P),k,e
output: global_cut

1 begin

2 global_cut = {lp} //initialize global vertex-cut

3 while (there exists unprocessed node in global_cut) do
4 let =z be an unprocessed node in global_cut

5 local_cut = bottom_line(G(x,k)) //see Algorithm 5.2

6 if (local-cut #() then //reduce the size of local_cut
7 repeatedly apply rule 1 and rule 2 until fixed—point
8 add local_cut to global_cut

9 endif

10 endwhile

11 end

Let exit_points be the set of exit points of the program P. Given global_cut, i.e., a set
of thus far identified nodes in the vertex-cut of G(P), we say that a node z in G(z, k)

is a leaf node with respect to global_cut, if z € exit_points, or z € global_cut, or else

Chapter 5. Model Generation and Source Code Instrumentation 79

Omaz(z,z) = k. That is, taking global_cut into account, we redefine the bottom line of
G(z, k) as those non-trivial leaf nodes of G(x, k) that belongs neither to exit_points nor

to global_cut. Algorithm 5.2 returns such kind of nodes as local _cut of G(z, k).

ALGORITHM 5.2: Calculate the bottom line of G(x, k) with respect to global_cut

input: G(z,k), global_cut, exit_points

output: local_cut

1 begin

2 current_set = {x} //initialize local vertex-cut
3 nextset =10

4 for (step=1tok) do

5 while (there exists unprocessed node in current_set) do
6 let y be an unprocessed node in current_set
7 for (each immediate successor z of y) do
8 if (z¢ global_cut) and (z ¢ exit_points) then
9 add z to next_set

10 endif

11 endfor

12 if (next_set ==10) then return 0

13 endwhile

14 current_set = next_set

15 next_set =)

16 endfor

17 return current_set

18 end

The for loop in Algorithm 5.2 iterates no more than k times. In each iteration, the suc-
cessor nodes of the nodes in current_set are calculated, whose number is not more than
that of the nodes in the tree G(x, k). Therefore, the time complexity of Algorithm 5.2 is
linear in the number of nodes in the tree G(z, k). This algorithm returns either a empty
set or a set of nodes neither in global_cut nor in exit_points. In the latter case, the
algorithm ensures that for any leaf node ¥ it returns, there exists at least one path from
the root node = to the leaf node y such that no nodes between them are in global_cut

or exit_points.

For each tree G(z, k) with a (non-empty) set of nodes returned by Algorithm 5.2, Al-
gorithm 5.1 tries to reduce the size of its local_cut by applying repeatedly rule 1 and
rule 2 as long as possible. The size of the final local_cut is not more than the number
of nodes on the bottom line of G(z, k). The nodes in the local_cut are finally added to
global_cut. As a consequence, the size of global_cut increases monotonically. Since the
number of nodes in the graph G(P) is finite, Algorithm 5.1 can definitely terminate. On

the other hand, Algorithm 5.1 ensures that all the trees produced can cover the whole

80 Chapter 5. Model Generation and Source Code Instrumentation

graph G(P). Therefore, the time complexity of this algorithm is linear in the number of
the vertices in G(P).

Let’s use the control flow graph G(P) illustrated in Fig. 5.4 (a) as an example to explain
our partitioning algorithm. The vertices of G(P) are named by numbering. Given k = 3
and € = 1, we get the tree G(1,3) shown in Fig. 5.4 (b) by unfolding 3 steps starting
from the vertex 1. Notice that the vertex 4 is duplicated twice in G(1,3). According to
Algorithm 5.2, the bottom line of G(1, 3) consists of {4,5,6}. In Algorithm 5.1, local _cut
is initially set to the bottom line of G(1,3). Since the node 4 dominates the other two
nodes 5 and 6, it is safe to remove these two nodes from local_cut (rule 1). Now the
local cut of G(1,3) is reduced to {4}. No further reduction is possible, therefore, we add
it to the global vertex-cut, i.e., global_cut = {1,4}. Similarly, we get the tree G(4,3)
shown in Fig. 5.4 (c¢). The bottom line of G(4,3) is {3, 8}. Since the node 7 immediate
dominates these two nodes, it is safe to delete them and then add the node 7 to the
local cut of G(4,3) (rule 2). As a result, we have global_cut = {1,4,7}. Finally, we get
the tree G(7,3) shown in Fig. 5.4 (d). The bottom line of G(7,3) is empty (with respect
to global_cut) because the node 4 € global_cut and the node 9 € exit_points (see the
lines 7-11 in Algorithm 5.2). By now all the nodes in global_cut have been processed,
therefore, G(P) is partitioned into three components G(1,3), G(4,3) and G(7,3). That

is, the monitoring points in the target program are located in {1,4,7}.

@
®
(D
(8)
@
®
©®

(3)
@/ G
(b) G(1,3)

O,

(d) G(7.3)

(a) G(P)

FIGURE 5.4: Partition a control flow graph (a) into 3 components (b), (c) and (d).

In addition, there are two special cases in partitioning a CFG that need to be considered.

One is that the tree G(z, k) may cover a segment of the target program involving such

Chapter 5. Model Generation and Source Code Instrumentation 81

computations that are more complex in control structure and/or data processing. This
indicates that the state space of the corresponding (behavioral) model may be too large
to be explored efficiently by means of online model checking. To reduce the state space
of the (behavioral) model, a possible solution is to cut G(z, k) vertically following the
dashed line or horizontally following the dotted line as illustrated in Fig. 5.5 (a). Cutting
G(z, k) vertically results in two (partial) models, which need to be checked currently
whenever the monitoring point z is reached. Cutting G(z, k) horizontally results in a
k'-bounded tree G(z, k") with ¥’ < k. In fact, there is no need to make all the partitions
of G(P) k-bounded. We keep the bound & constant just for the sake of simplicity.

The other is that the length of a control loop in G(P) may be too short, e.g., the short
loop as illustrated in Fig. 5.5 (b). Obviously, the vertex x is the only monitoring point
according to our partitioning algorithm. That is, the program state is monitored at each
iteration of the loop during runtime. The shorter the loop, the higher the sample rate.
To reduce the sample rate, a possible solution is to syntactically unfold the loop up to
appropriate steps, say, 4 steps in this example. As a consequence, the state information
can be monitored every 4 steps, instead of every 1 step. Of course, the memory footprint

of the target program may be enlarged in this way.

(a) (b)

FI1GURE 5.5: Two special cases in partitioning CFG

5.4 Summary

In this chapter, we first introduce a platform-independent programming abstraction for
specifying such control software applications that exhibit time-periodic and multimodal
features. This kind of software is usually safety-critical due to its use in the automotive,
aerospace and other industries. A typical control application contains a set of periodic
(software) tasks together with a mode-switching logic for activating or deactivating tasks.
Our goal is to (online) check the correctness of the internal behaviors of the task that is

identified as important among the others in the task set.

82 Chapter 5. Model Generation and Source Code Instrumentation

There are two ways to get the (behavioral) models at multiple levels of abstraction
and/or from different perspectives for the program to be checked: one is to reuse the
(design) models built during the software development phase; the other is to abstract the
models directly from the source code of the target program. For the sake of simplicity,
we suppose that the target program is written in a restricted subset of C that conforms
to the (mandatory) requirements of the MISRA-C coding standard, which allows only

static memory allocation and no function recursion.

The monitoring points for online model checking are determined by analyzing the control
flow graph of the target program. We present a partitioning algorithm to calculate a
smaller set of monitoring points that are distributed more or less evenly in the control
flow graph. The time complexity of the algorithm is linear in the number of the vertices

in the control flow graph.

Chapter 6

Integration of Online Model
Checking with RTOS

As mentioned in Section 5.1, a typical embedded control application may switch from
one operational mode to another during system execution. As a result, some tasks (in
the current mode) are removed while others are added in the target mode. In order to
ensure the correctness of the control software, in particular, the correctness of the tasks
identified as safety-critical, during system execution, we present a framework for inte-
grating the online model checking mechanism with the underlying real-time operating
system (RTOS). As a proof of concept, a prototype is implemented by Krishna Sudhakar

as his master thesis [84] cosupervised by the author. This work is later published in [85].

6.1 Integration Framework

Given a real-time operating system (RTOS), which manages one or more system ap-
plications running in a interleaved manner, we can deploy the online model checker as
verification service inside the RTOS (with dashed lines) or outside the RTOS (without
dashed lines) as illustrated in Fig. 6.1.

In both cases, an observer is needed to record the current state information while the
system application under investigation is running. For a system application evaluated
as safety-critical or ultra-reliable, we assume that its source code has already been in-
strumented with special system calls at the predetermined monitoring points in advance.
Thus, the observer can be implemented inside the system call handler of this type of spe-
cial system call. Whenever the special system call at some monitoring point is triggered,

the observer (inside the system call handler) goes to read the values of the variables of

83

84 Chapter 6. Integration of Online Model Checking with RTOS

interest at the current state, say s;, out of the local memory of the target application,
and then to apply the predefined mapping function to obtain the corresponding ab-
stract state $; = «(s;) in the (behavioral) model of the target application. At this time,
a simple assertion checking can be done if necessary. In case of violation, the operating
system will be informed right away. Otherwise, 5; will be written into the ring buffer!,
which is allocated by the operating system to store the current state information for
online model checking. If the buffer is full, the oldest state will be overwritten by the

latest state.

Real-time Real-time
Application Application

RTOS
a(s;) = §; ><

v

ob write ring read Online
server 2\ \ buffer:] ? Model Checking

Inconsistent! Error found!

FIGURE 6.1: Integration Framework

On the other hand, the online model checker tries to take one (current) state out of the
ring buffer every T' time units, where T is the time limit allocated to the online model
checker by the user. If the ring buffer is empty, the online model checker will either
resume the work of the last checking cycle, provided that the work has not finished yet;
or else simply wait until the next checking cycle starts. Otherwise, there is a state, say
§;, available, then within the given T' time units, the online model checker tries to search
for an error path of length up to k steps starting from s; in the (bounded) state space
of the behavioral model of the target program. As a result, the following three possible

checking results may be reported to the operating system:

Case unsafe: the checking process is finished in time, and an error path is found. In
this case, an alarm will be sent to the operating system as quickly as possible.
Notice that the error path might be false negative. However, to avoid the error
really to happen, we have to conservatively choose to inform the operating system
the potential danger. In response, the operating system may raise an exception.

Considering that the exception handling is usually domain specific, thus we do not

'To reduce data misses, a (ring) buffer is used because the rate at which data is received and the rate
at which it can be processed are variable over time.

Chapter 6. Integration of Online Model Checking with RTOS 85

discuss it here in a general sense. In addition, the error path can be recorded to

help the user to figure out the cause of the error later.

Case safe: the checking process is finished in time, but no error path is found. That
is, it is safe within the next k steps relative to §;. The operating system continues

its normal operation in this case.

Case unkown: the checking process is forcedly terminated due to timeout. Therefore,
the state space of the (bounded) model is not exhaustively explored. It is, however,
reasonable to believe that the probability is low of detecting errors near the current

state §; in this case. It is up to the operating system to deal with this case anyway.

Needless to say, monitoring state information during program execution has more or less
an influence on the performance of the target program as well as the underlying operating
system. By introducing a special type of system call and its system call handler to fulfill
the monitoring work, both the source code of the target application and the operating
system need not to be modified too much. Since the system call handler usually has
to consume some processing time, this in turn will limit the number of variables to be
monitored. In this case, only the most important variables are selected to be monitored

during runtime.

A variable is considered important, if it is used in a conditional statement of the target
program. That is, the value of such a variable may make a contribution in deciding the
control flow of the program’s execution at the control point, at which multiple branches
exist. Accordingly, the state space of the program model to be explored by the online
model checker is reduced, because only one branch, instead of all the branches, of the

program at this point needs to be taken into account.

Notice that the state information monitored for online model checking is used to reduce
the state space of the behavioral model to be searched. In order to decrease the monitor-
ing overhead by monitoring a subset of the state variables, this incomplete information
may not uniquely identify an individual state, but a set of states in the behavioral model
(see Section 4.1.4). As a consequence, the online model checker maybe needs to search
in a larger state space of the behavioral model. The checking result is, however, not af-
fected as long as the checking time is sufficient. This is different from online monitoring
whereby the analysis may still not be accurate no matter how much time is taken due

to the incomplete information collected during runtime.

In addition, the schedulability analysis for the target system with online model checking
integrated can be conducted offline beforehand. Because the locations of the monitoring

points and the number of the variables to be monitored are known in advance, it is thus

86 Chapter 6. Integration of Online Model Checking with RTOS

possible to estimate the monitoring overhead and then statically analyze the worst-case

execution time (WCET) of the source code of the system application during runtime.

By now we’ve explained the integration framework in a general sense at the conceptual
level. The development of embedded systems indicates a trend towards incorporating
more than one CPU, i.e., maybe multiple cores on a chip or multiple chips on a board or
any combination thereof [86]. For example, in the automotive industry, the AUTOSAR
OS specification published in 2011 added support for multicore systems [87]. The inte-
gration framework can then be implemented on different hardware architectures from

single-core or multicore processor to multiprocessor:

e Single Core Processor: One possible implementation is to make the online
model checker as a system service in the RTOS kernel [88]. In doing so, a fixed
time slot is reserved a priori for online model checking, say, at the beginning (or
end) of each scheduling cycle of the RTOS. This time slot is specifically reserved
for the (online) verification service. If no online checking task is active, the sched-
uler is allowed to allocate this slot to such preemptive low priority tasks that can
be moved or replaced by the online checking task at any time when the verifi-
cation service is triggered. The advantage of this way of integration is that the
communication overhead between the RTOS and the online model checker is very
low. However, including the online model checker in the kernel space increases
the footprint of the RTOS, even in the cases that the online checking service is
not requested. In addition, the online model checker is usually a computationally
intensive task, which requires additional memory and consumes additional energy.
Another possible solution is to introduce a hypervisor to build multiple virtual
machines, and then make the online model checker and the RTOS run on differ-
ent virtual machines. Of course, a hypervisor will play a more valuable role on a

multicore platform [86].

e Multicore Processor: From the software perspective, there are basically two
types of multicore designs: Asymmetric Multi-Processing (AMP) and Symmetric
Multi-Processing (SMP) [86, 89, 90]. In both cases, the online model checker can
be assigned to a (specific) core different from the one that runs the RTOS. In this
way, the memory footprint of the RTOS is reduced by deploying the online model
checker outside the RTOS kernel. This also does not affect schedulability so much,
as the only special additions to the RTOS are an “observer” and a function to
communicate with the online model checker. However, for a multicore platform,
special attention must be paid to ensure that the software running on different
cores, be it operating systems or applications, are properly separated from each

other so that they do not interfere with each other. Fortunately, there are different

Chapter 6. Integration of Online Model Checking with RTOS 87

techniques, in particular, different virtualization techniques, such as container and

hypervisor [67], to fulfill this goal.

e Multiprocessor: The processors in a multiprocessor system may be tightly cou-
pled at the bus level or loosely coupled via Internet for communication. The
online model checker and the RTOS can thus be deployed on different processors
(or nodes). They communicate with each other via I/O ports. Of course, correct
delivery of messages needs to be guaranteed. In this way, the task(s) running on
the RTOS can be verified by the online model checker on a remote machine. The-
oretically, it is possible to verify distributed (real-time) applications by means of
online model checking. Since the RTOS and the online model checker are deployed
over a network, a number of factors comes into play when calculating the delay in

communication, such as, bandwidth, error rate, noise, and so on.

Which solution is the best choice? That depends on many factors, such as the workload of
the online model checker, the (real-time) operating system, the communication overhead,

and the performance of the underlying hardware, to name just a few.

‘ Service ‘ ‘ Task ‘ ‘ Task User Space
- e S SN S B SEE S S S S GEE e e e e T e - - - - - L SVStem
Calls
‘ System Call Manager
‘ Basic File System ‘F Memory Management
Transparent Communication
Migration
Character / Comm Block Scheduling
Device Drivers " Kernel Space
Interrupts
Hardware ‘

FIGURE 6.2: Architecture of ORCOS [91]

Organic ReConfigurable Operating System (ORCOS) [91] is a small-footprint real-time
operating system? designed to be configurable during design-time and even during run-
time [92]. Through a special configuration language based on XML, the user is able to
configure only the functionality which is actually needed and decide which functionality
to place in kernel and which in userspace [93]. The architecture of ORCOS is illustrated
in Fig. 6.2. ORCOS is implemented using fully object oriented programming with C++

2Developed at the University of Paderborn in the research group chaired by Prof. Franz Rammig.

88 Chapter 6. Integration of Online Model Checking with RTOS

and suitable for most of the processors available to embedded systems, e.g., PowerPC405,
Sparc Leon3, ARMv4(t) and above, QEMU (emulating PowerPC405), OMAP3530 SOC
(Limited Support), etc..

The kernel of ORCOS is made up of several modules, which can be configured through
the XML-based configuration language SCL (Skeleton Customization Language) [94].

Now let’s break it down.

Processes The processes are called tasks in ORCOS. A task is just a resource con-
tainer, its executing entity is called thread. A thread is the unit of execution and
scheduling, not the task. In order to guarantee predictability, ORCOS introduces a spe-
cial type of task called worker task. In fact, there is only one worker task in ORCOS.
This worker task belongs to the kernel space and can spawn multiple worker threads.
Each worker thread has its own stack and shares the resource of the work task. The
worker threads can take over such kind of work that arrives non-deterministically, e.g.,
asynchronous IO interrupts, or that needs to be executed at a specific time, e.g., timed
calls or periodic calls to functions. The introduction of the worker threads allows these

activities to be scheduled like any other threads [95].

Scheduler The scheduler is in the core of the ORCOS kernel. ORCOS schedules based
on threads. The following scheduling strategies are implemented in ORCOS: Round
Robin (RR), Fixed-Priority Scheduling (FPS), Rate Monotonic Scheduling (RMS) [96],
Earliest Deadline First (EDF) [96] and EDF with Total Bandwidth Server (TBS) [97].

Thread Interrupthandler SyscallManager
syscall()
""""""""""""" handleSyscall()
;:

—

,(...........

oo TetUMVAlE :

FIGURE 6.3: Syscall processing of ORCOS [91]

System Calls The tasks as well as services in user space can use kernel functionalities

only through the system calls defined in the syscall API. The processing of a system call is

Chapter 6. Integration of Online Model Checking with RTOS 89

illustrated in Fig. 6.3. Whenever a thread issues a system call, the related information
of the system call will be stored at the specific locations on the stack of the task.
Afterwards, a software interrupt is raised and then the kernel will take control, which
involves storing the context of the task and triggering an appropriate interrupt handler.
Thereafter, the SyscallManager will be invoked: the parameters as well as the syscall
number are loaded from the stack of the task and the functionality of the system call
is executed. Notice that there is no direct function call on the Interrupthandler.
Instead, the syscall() will cause a sequence of assembler instructions to be executed,

which react on the software interrupt and end up calling the Interrupthandler.

Communication ORCOS allows inter-node and inter-process communication. Two
processes or nodes communicate with each other using socket API. The socket design is
implemented using a configurable protocol stack. Each socket can be explicitly config-

ured (even at runtime) to define which protocol stack will be used.

Memory Management The memory management belongs to the core of the ORCOS
kernel. ORCOS follows the rule of separating the kernel and every task’s memory from
each other. Fach task has its own memory manager. In addition, ORCOS is capable
of virtual addressing if the underlying hardware architecture is equiped with a Memory
Management Unit (MMU).

Filesystem The filesystem of ORCOS is inspired by the Unix filesystem. Whenever a
resource is created, it will automatically register itself at the Filemanager. Each device

is accessible by a unique path.

HAL The ORCOS kernel does not operate directly on the hardware in order to main-
tain portability to other hardware platforms. Instead, the kernel delegates the calls to
the hardware through a Hardware Abstraction Layer (HAL), which offers an interface
independent of any hardware platform, which in turn delegates the calls to the real

underlying hardware.

Power Management ORCOS has built-in power management to control the power
consumption of the devices that support throttling or other power states through their

device drivers.

90 Chapter 6. Integration of Online Model Checking with RTOS

6.3 Prototype Implementation

As a proof of concept, we’ve integrated the online model checker with ORCOS on top of
a (virtualized) multicore platform. Fig. 6.4 illustrates the architecture of our prototype
implementation. The whole system is built on a Linux platform (32 bit Ubuntu 12.04
LTS) with 3GHz Pentium 4 CPU and 2GB RAM. ORCOS runs on top of QEMU [98], a
open source machine emulator that emulates in our setting the microcontroller PowerPC
405EP with 333MHz CPU and 4KB on-chip memory. During the time when ORCOS was
developing, QEMU v1.5.0 was the highest version available for download. This version
of QEMU fails to emulate the networking capability of PowerPC 405EP, which makes
ORCOS impossible to communicate with the outside world. Therefore, a communication
helper? is used to connect ORCOS with the outside world. The online model checker
is implemented as verification service on Linux because it adopts a tailored zChaff SAT

solver as its search engine, which needs to run on a general purpose operating system.

ORCOS

taskq | e o o | tasky,

Kernel

Communication Online
QEMU 1.5.0 Helper Model Checker

Linux (Ubuntu 12.04)

FIGURE 6.4: Architecture of prototype implementation

In some sense, this implementation comes close to a productive system running on a mul-
ticore platform (as shown in Fig. 4.17 in Section 4.2.3), where the software application
on top of ORCOS and the online model checker on top of Linux run on different virtual
machines. In other words, ORCOS on top of QEMU (emulating PowerPC 405EP) is
running as a process on the host, i.e., the Linux platform. The online model checker is
running as another process on the same host. Notice that both processes can be seen
as an own virtual machine on top of a (virtualized) multi-core platform. In this sense,
the Linux platform also plays a role of hypervisor. The communication helper emulates

then a standard inter-VM (Virtual Machine) communication service of the hypervisor.

Fig. 6.5 illustrates the details of our implementation. In order to probe the state infor-

mation during runtime, we add a special system call monitor_read(), an observer, a

3A plugin to QEMU developed in Java by Sijia Li, a student assistant in the research group chaired
by Prof. Franz Rammig.

Chapter 6. Integration of Online Model Checking with RTOS 91

ring buffer and a special worker thread into the kernel of ORCOS. For a task to be
checked, we assume that the monitor_read () system calls have already been inserted at
the monitoring points in the source code of the task at the software development phase.
The system call monitor_read() is handled by the observer inside SyscallManager.
The observer is a snippet of code that copies the values of the variables being mon-
itored from the memory of the task into the ring buffer in the kernel space. The
ring buffer occupies a contiguous memory region, whose structure is decided by the
number and types of the variables to be monitored. The worker thread functions as a
delegate of the online model checker inside ORCOS. If the ring buffer is not empty,
the delegate does periodically the following work: it takes a (concrete) state from the
ring buffer, maps this state into the corresponding abstract state, and then delivers

the abstract state to the online model checker.

ORCOS encoder.c var_list.txt .elf of task

tasky, |
Python
Script

| taskq

monitor_read()

SyscallManager

| observer | - =
write Monitor_gen.hh MonitorMemory.cc
MonitorMemory.hh
Ring Kernel
Buffer Monitoring Tool
read Online
delegate of Model Checker

Online Model Checker eee re -
(WorkerThread) Initialization

Receive State

write read Communication Helper /1 Execute
Communication)I readBufferThread / Search Engine
Buffer S~ P Send Result
listenServerThread end Resu
QEMU n

FIGURE 6.5: Integration of online model checking with ORCOS

Monitoring Tool

A Python script is used to generate the monitoring tool for ORCOS. The Python script
takes three files (provided by the user) as input: var list.txt, encoder.c and the
.elf file of the task to be checked. The file var_1ist.txt contains the variables to be
monitored. The file encoder.c contains the mapping functions. Each mapping function

defines as a predicate, which accepts the variables in var_list.txt as parameters and

92 Chapter 6. Integration of Online Model Checking with RTOS

returns a Boolean value. By disassembling the .elf file of the target program, we are
able to obtain the detail information about the variables of interest, such as data type,
memory address, and so on. Notice that the program is assumed to be written in C
and compliant to the MISRA C standard (see Section 5.3.1). In addition, for the sake
of simplicity we also assume that the program does not call such external function(s)
whose source code (in C) is not available. Because neither dynamic memory allocation
nor function recursion is allowed, the correspondence of variables to addresses can thus

be established once and for all at compile time [28].

CallableObject

+ ~CallableObject()
+ callbackFunc()

A
MonitorMemory.hh

MonitorQueue [*Monitor_gen.hh*/
- _monitgr_queue[ARRAY_SIZE]: Monitor_Node #define ARRAY_SIZE =5
: —Itg;nrt_' ilnntt struct Monitor_Node {
- capacity: int = ARRAY_SIZE type1 vary;
- _cur_cap: int ypez vary;
enqueue(incoming_struct: Monitor_Node): void }

dequeue(outgoing_struct: Monitor_Node*): void
checkFullQueue(): int

checkEmptyQueue(): int

+ MonitorQueue()

+ initialize(): void

+ writelntoQueue(): void

+ readFromQueue(buffer: char*): void bool mapping_function(){:-}
bool mapping_functiona(){:--}

/*MonitorMemory.cc*/

void enqueue(){--}
void dequeue(){--'}

wtReadFromQueue void writeintoQueue(){-}
void readFromQueue(){---}

+ callbackFunc()

FIGURE 6.6: Monitoring tool of ORCOS

The Python script produces two files Monitor_gen.hh and MonitorMemory.cc as out-
put. These two files together with MonitorMemory.hh build the monitoring tool of
ORCOS as shown in Fig. 6.6. The header file Monitor_gen.hh contains the structure
definition of Monitor Node and the macro definition ARRAY_SIZE. The former defines
a row of the ring buffer, and the latter the length of the ring buffer. The header
file MonitorMemory.hh contains class MonitorQueue, which defines the ring buffer
(i.e., monitor_queue) and its interface. This file is not generated by the Python script,

because the definition of class MonitorQueue is fixed. The ring buffer is declared as

Chapter 6. Integration of Online Model Checking with RTOS 93

a static member, so that all the instances of class MonitorQueue and its subclasses
can operate on the same ring buffer. The source file MonitorMemory.cc contains
the mapping functions given in encoder.c as well as the definitions of the four in-
terface functions of the ring buffer: enqueue(), dequeue(), writeIntoQueue() and

readFromQueue ().

The access to enqueue() and dequeue() is protected, while writeIntoQueue() and
readFromQueue () are publicly accessible. enqueue () adds one state entry to the end of
the ring buffer. When the buffer is full, the oldest state entry will be overwritten by
the newest one. dequeue () removes one state entry from the ring buffer and stores it
into a temporary location. writeIntoQueue() copies the current state entry from the
local memory of the task being checked in the user space into a temporary location in

the kernel space, and then puts it into the ring buffer by enqueue().

Worker Thread

ORCOS has to exchange information with the outside world through the communication
buffer shared with QEMU. A specific worker thread is used to transfer the data from
the ring buffer to the communication buffer and then send it to the online model checker.
The priority of the worker thread is set to lower than that of the task being checked.
The worker thread is an instance of class wtReadFromQueue. As illustrated in Fig. 6.6,
class wtReadFromQueue inherits class MonitorQueue in MonitorMemory.hh. It has
no member data but one member function callbackFunc (). This function is the main

function of the worker thread.

The worker thread calls readFromQueue() to take a (concrete) state from the ring
buffer by dequeue (), applies the mapping functions to this state to get an abstract one,
and then puts the abstract state into the communication buffer using sendwithQEMU().
After the online model checker sends the checking result back to the communication
buffer, the worker thread is also responsible for fetching the checking result from the
communication buffer using receivefrom(). In case that the result indicates unsafe,
the worker thread then tries to inform ORCOS as quickly as possible. sendwithQEMU()
and receivefrom() are member functions of class gemueth, which is implemented in-
side ORCOS. sendwithQEMU() writes the data into the communication buffer, while

receivefrom() reads the data out of the communication buffer.

The worker thread can be seen as a delegate of the online model checker inside ORCOS.

94 Chapter 6. Integration of Online Model Checking with RTOS

Communication Helper

The communication helper acts as an intermediary between ORCOS and the outside
world for exchanging data. It is implemented in Java as plugin to QEMU. There are
mainly two threads readBufferThread and listenSeverThread. readBufferThread
reads a data out of the communication buffer and then sends it to a connected sever
using the TCP/IP protocol. listenSeverThread receives a data from a connected sever

using the TCP/IP protocol and then writes it into the communication buffer.

Online Model Checker

The online model checker can be seen as a server application, which is implemented as a
process of the Linux platform. We use a tailored zChaff SAT solver (see Section 4.2.4) as
its search engine. The (bounded) behavioral model of the task as well as the property to
be checked is encoded as CNF formula in DIMACS format. At the initialization phase,
the online model checker loads the model together with the property into memory. Once
the TCP/IP connection is established between the communication helper and the online
model checker, it waits for a state information sent from ORCOS. Upon receiving the
state information, it goes to search the state space of the behavioral model for an error
by the SAT solver within a predefined time limit. By timeout it terminates the search
anyway and sends the result (i.e., safe, unsafe, or unknown) back to ORCOS. Thereafter
the online model checker waits for a new state information and repeats the above steps

until an error is found or the task being checked terminates.

6.4 FEvaluation

The integration of online model checking with RTOS introduces unavoidably additional
overhead for monitoring the state information and transferring the data between the
RTOS and the online model checker. We first analyze qualitatively the constitution of
the overhead to figure out the factors that may affect the performance of the RTOS as
well as the task under investigation during runtime. Afterwards, we provide a quantitive

measurement of the monitoring overhead and the communication overhead.

Although the Linux platform can not exactly reflect a real multicore system and QEMU
can not exactly emulate the target hardware as it is, it is still meaningful to implement
our online model checking mechanism on this virtual multicore platform. The imple-
mentation of the observer and the online model checker is mainly dependent on the

respective operating system. If the whole system is ported to a real hardware platform,

Chapter 6. Integration of Online Model Checking with RTOS 95

the only part of the implementation that needs to be modified is the code segment re-
sponsible for the communication between the observer (via the RTOS) and the online

model checker.

The experimental results are somewhat biased by our implementation using an emulator.
Therefore, the relative results (i.e., the time consumption as a function of bytes to be
processed) are more meaningful than the absolute values. To our knowledge, there should
exist a quasi linear relationship between the actual values and the measured results. In
this sense, a reasonable order of magnitude, to which the actual values may belong, can

be estimated based on the results measured on the emulator.

6.4.1 Overhead Analysis

Here we give an analytical estimation of the overhead introduced by the online model
checking mechanism, i.e., the monitoring overhead and the communication overhead.

The analysis aims to determine the factors that can help to reduce the overhead.

Monitoring Overhead

Without loss of generality, let task; be a safety critical task to be checked. Then, the

total execution time 7; of task; holds
T; X Ttask: + (Tsyscall X Nsyscall)a for Nsyscall > 17

where Ty, is the WCET of task; without taking into account the online model checking,
Tsyscan is the processing time of the system call for monitoring variables, and Ny scqn

is the number of the special system calls (i.e., monitor_read()) in task;.

Tsyscan is proportional to the number Njy . of the bytes being copied, together with
some constant processing time of syscall, i.e., context switch, interrupt handling, etc.,

thus,

Tsyscall X Tcopbeyte + Csyscall-

Therefore, the total execution time 7; is defined as

T = Ttask: + (Tcopbeyte + Csyscall) X Nsyscall-

As a result, the monitoring overhead is calculated as

Tsyscall X Nsyscall

Poverhead =
Ttask

96 Chapter 6. Integration of Online Model Checking with RTOS

The monitoring overhead is proportional to the number of the system calls for monitoring
variables, provided that the number of the variables to be monitored is fixed. In order to
reduce the monitoring overhead, it is better to set the normal system calls as monitoring
points as long as possible. In this way, Cgyscqu needs not to be counted as a part of the
monitoring overhead, because these system calls belong to the normal behaviors of the
task. Now let’s define Ngyscat = N syscati + N”syscatr, where N'gygcq is the number of
the special system calls and N” g s.q the number of the normal system calls but set as

monitoring points. Then the monitoring overhead is defined as

/ "
Tsyscall x N syscall + Tlcopbeyte x N syscall

Poverhead =
Ttask

In particular, if all the monitoring points can be set in those places in which the normal
system calls locate, i.e., N'gyscan = 0 and Ngyscan = N”gyscau, then, the monitoring

overhead is reduced to be

’:[‘copbey,gE X Nsyscall

Poverhead =
Ttask

Recall that the monitoring points are predetermined at the software development phase,
the only way to reduce the monitoring overhead is to reduce the number of the variables
to be monitored. For this purpose, it is better associate a weight to each variable by some
criteria such that the larger the weight of a variable, the more impact the variable has
on deciding the paths in the behavioral model of the program to be checked. However,
the incomplete state information may increase the workload of the online model checker
(see Section 4.1.4).

Communication Overhead

Recall that the communication between ORCOS and the online model checker is imple-
mented by a specific worker thread. For the sake of simplicity, the worker thread acting
as the delegate of the online model checker is called delegate in the sequel. The main
work of the delegate is to read the data from the ring buffer, apply it to the mapping
functions, and then send the results to the online model checker. In addition, it also
deals with the checking result sent back from the online model checker. Therefore, the

execution time 7, of the delegate is defined as

Twt = Teomm + C,

where C is a constant time taken for context switches and for executing the remainder

code of the delegate.

Chapter 6. Integration of Online Model Checking with RTOS 97

The time Ty taken for transferring the data between ORCOS and the online model

checker is made up of the following three factors:

e Torcos tooime: time taken for transferring the data from ORCOS to the online

model checker;
o C,jme: constant time taken for running the online model checker; and

o T nci0.0rCcOs: time taken for transferring the data from the online model checker
back to ORCOS.

It is worth pointing out that Torcos to.oime a0d Topmeto.orCOS are determined mainly
by how the data exchange between ORCOS and the online model checker is implemented
on what kind of system architecture. Given a real multi-core platform, Torcos to.olme
and Toimeto.orcos should be much smaller than our implementation on top of QEMU

together with the communication helper.

TORCOS,to,olmc depends on TORCOSJO,QEMU’ TQEMU,to,helper and Thelper,to,olmc as il-
lustrated in Fig. 6.7, where Torcos_to.9emu is the time taken for writing the data into

the communication buffer; Ty to helper is the time taken for reading the data out
of the communication buffer; and Theiper_tooime is the time taken for sending the data
from the communication helper to the online model checker using TCP /IP protocol. In
addition, there is also a constant time taken for sending an ACK from the online model

checker back to the communication helper. Therefore,

TORC’OS,to,olmc = TORC’OS,to,QEMU + TQE'MU,to,helper + Thelper,to,olmc + C7

where C is a constant time taken for context switches, receiving ACKs, etc..

. icati send
ORCOS write communication read | Communication Online

buffer Helper TCPAP model checker
QEMU ACK

FIGURE 6.7: Sending state information to online model checker

The time Torcos_to.Qemu consists mainly of the following three factors:

® Tjcque: time taken for copying a (concrete) state out of the ring buffer inside

ORCOS;

e T,,,: time taken for mapping the concrete state into the corresponding abstract

state according to the given mapping functions; and

98 Chapter 6. Integration of Online Model Checking with RTOS

o Tiopytobuy: time taken for copying the (abstract) state to the communication
buffer inside QEMU.

Further, T geque is proportional to the size of the data being monitored; T4, depends
on the number of the mapping functions to be applied and the execution time of each
mapping function; Tcopy ot is proportional to the number of the mapping functions,
because the return values of the mapping functions are the values being copied to the

communication buffer. Therefore, we have

Tdeque X betm
Tmap X Nmap,func X Tmap,funcaa'nd

Tcopy,to,buf X Nmap,funo

The computation time C,y,. of the online model checker is considered to be constant,
because the online model checker is always assigned by the user a predefined time limit

for its execution. In case of timeout it must terminate its execution anyway.

Tolmc,to,ORC'OS depends on Tolmc,to,helpera Thelper,to,QEMUy and TQEMU,to,ORCOS as il-

lustrated in Fig. 6.8. Here Ty to_helper is the time taken for sending the checking result
from the online model checker to the communication helper through the TCP /IP connec-
tion. In addition, there is also a constant time taken for sending an ACK from the com-
munication helper back to the online model checker. Theiper to.QrEmu is the time taken
for writing the checking result into the communication buffer. Torumu.to. OrRCOS is the

time taken for reading the checking result from the communication buffer. Therefore,

Tolmc,to,ORCOS = Tolmc,to,helper + Thelper,to,QEMU + TQEMU,to,ORCOS + 07

where C is a constant time taken for context switches, sending ACKs, etc..

communication . . receive -
ORCOS read write | Communication Online

delegate buffer Helper Tepp model checker
QEMU ACK

FIGURE 6.8: Receiving checking result from online model checker

Notice that the communication helper is in fact transparent to ORCOS and to the online
model checker. In order to send a data to the online model checker, what the delegate
needs to do is to put the data into the communication buffer; on the other hand, the

online model checker connects to a certain port and listen for the incoming connections.

Chapter 6. Integration of Online Model Checking with RTOS 99

There are two ways to synchronize the communication between the delegate/ORCOS

and the online model checker: synchronous and asynchronous communication.

Synchronous Communication As illustrated on the left hand side of Fig. 6.9, after
sending the data to the online model checker, the delegate needs to wait for the checking
result sent back by the online model checker in the current execution cycle. This means
that the delegate has to enter the blocked state until the checking result has arrived. If
the delegate is set to the highest priority, it will move directly to the running state and
then preempt the currently running task. In case of a negative result, the alarm will be

sent to ORCOS by the same execution instance of the delegate as quickly as possible.

The WCET taken for synchronous communication is thus defined as

Tcomm = TORCOS,to,olmc + Colmc + Tolmc,to,ORCOS +C

where C is a constant time taken for context switches, sending ACKs, etc..

delegate
receive
result
delegate
[]
° []
° []
[]
send
Zi?: data
wait online NOT online
for model wait model
result checker for checker
result
receive
receive result
result
[]
[]
[]
Synchronous Asynchronous
Communication ZZT: Communication

FIGURE 6.9: Synchronous and Asynchronous Communication

Asynchronous Communication As illustrated on the right hand side of Fig. 6.9,

after sending the data to the online model checker, the delegate does not need to wait

100 Chapter 6. Integration of Online Model Checking with RTOS

for the checking result sent by the online model checker in the current execution cycle.
Instead, the result is checked by a successive execution instance of the delegate. That
is, in each execution cycle, the delegate first checks the communication buffer for
the result from the online model checker with respect to the data sent in a preceding
execution cycle. If the result does not indicate an error, the delegate will send the new
data to the online model checker; otherwise, the delegate will inform ORCOS of the
potential error and then terminate its execution. Therefore, in case of a negative result,

the alarm will be sent to ORCOS in a successive execution instance of the delegate.

The WCET taken for asynchronous communication is thus defined as

T oime_to.orcos + C, error
Tcomm -
T oime_to.orc0s + TorcOS tooime + C, otherwise

where C is a constant time taken for context switches, sending ACKs, etc..

Given the behavioral model to be checked, the number N, func of the mapping func-
tions is usually fixed. Consequently, the time Tgeque, Tmap and Teopy to by can not be
reduced. Notice that the checking result of the online model checker can be configured
to send back to ORCOS only when a violation against the property is detected. In this
way, Toimeto.orRCOS can be neglected, provided that the errors (if any) in the target
program are very few. This assumption is reasonable because a safety-critical program
should have been intensively checked before it is released. The only way to reduce the
execution time 7,; of the delegate is to reduce the transmission time from ORCOS to

the online model checker, i.e., TorcoS to.oime-

6.4.2 Overhead Measurement

Based on our prototype implementation we’ve measured the execution time taken for
monitoring the variables (i.e., Tgyscqu) and for transferring the data between ORCOS
and the online model checker (i.e., Torcos._tooime and Toimeto.0rRCOS)- We have to
point out that the QEMU just emulates the target Instruction Set Architecture (ISA) as
well as the hardware interface of the peripheral devices [99]. That is, no timing model of
the target architecture is implemented in QEMU. The execution time measured depends
thus not only on the implementation of QEMU but also on the configuration of the host
computer, i.e., the type of the CPU, the size of the memory, the scheduling algorithm
and the workload of the host operating system, to name just a few. As a consequence,
the measured results do not exactly reflect the actual overhead produced on the native
PowerPC microcontroller for online model checking. In this sense, the relative results

(i.e., the time consumption as a function of bytes to be processed) are more meaningful

Chapter 6. Integration of Online Model Checking with RTOS 101

than the absolute values. In addition, the measured results do provide us with a clue
of the order of magnitude, of which the actual values may be. Our primary goal is to
determine those factors that may affect the performance of the online model checking

so as to improve the online model checking mechanism.

Monitoring State Information

We’ve instrumented the source code of the task to be checked with the monitor_read()
system calls in advance. Whenever monitor_read() is executed, the “observer” (em-
bedded in the system call manager) will copy the values of the variables of interest from
the memory of the task to the ring buffer in the kernel space. We’ve measured the
time taken for copying the data of different size from 10 bytes up to 100 bytes stepping
increasingly by 10 bytes. For each setting, the measurement is done 50 times in order to
obtain an average value. The time is measured in microseconds by getting the difference

of the time from the start of the system call to its end.

Fig. 6.10 shows the average time taken for monitoring the state information in different
size settings together with the corresponding linear regression line defined by the linear
equation f(z) = 8.04x 4+ 160.72, which indicates that by increasing every 10 bytes, the

time taken for monitoring increases approximately by 80.4us.

1000
Linear Equation: f(x) = 8.04x + 160.72
9001
800 -

700

600

Time [us]

500
400
300

200
® Average time

— Linear regression line
100

0 T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 110

Data Size [Bytes]

FIGURE 6.10: Time taken for monitoring state information

It is reasonable to believe that there should also exist a similar linear relationship between
the size of the data and the time consumption in case that the measurement is done on

a real hardware platform.

102 Chapter 6. Integration of Online Model Checking with RTOS

Sending State Information to Online Model Checker

We’ve measured the time Torcos to.oime taken for transferring the data of different size
from 10 bytes up to 100 bytes stepping increasingly by 10 bytes, too. The measurement
is also done 50 times for each setting in order to obtain an average value. The time is

measured in microseconds, which consists mainly of two parts: Torcos.to.Qemy and

TQEMU,to,olmc-

The transmission time Tg gyt toolme from QEMU to the online model checker is almost
constant, i.e., about 50us, for the data of different size from 10 bytes up to 100 bytes.
The result is obtained by getting the difference of the time at which the communication
helper begins to read the data from the (communication) buffer and the time at which
the data is sent to the online model checker using the TCP/IP protocol. The constant
transmission time lies in that the communication buffer is configured to accommodate
the date of at least 100 bytes and the data is sent off to its destination in one TCP /IP
packet. This transmission time depends largely on how the online model checker is
integrated with RTOS. Shared memory seems to be the best solution whereby the time

consumption can be neglected (to some degree).

250
200

150

Time [ps]

0 T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 110
Data Size [Bytes]

FIGURE 6.11: Time taken for transferring data from ORCOS buffer to QEMU buffer

The time Torcos to.QEMU = Taeque + Tmap + Teopy tobuf, 1-€., it covers the time taken
for reading the values (of the concrete state) from the ring buffer inside ORCOS, applying
the mapping functions to them, and then writing the resulting values (of the abstract
state) into the communication buffer inside QEMU. The measured time, as illustrated in
Fig. 6.11, varies between 150us and 200us in average for the data of size from 10 bytes
up to 30 bytes, while between 200us and 250us in average for the data of size from 40
bytes up to 100 bytes. Because the time T,,,, depends mainly on the complexity of
the mapping functions, there should exist no linear relationship between the size of the
data and the time consumption. Considering that the variables to be monitored and the

mapping functions are given in advance, Torcos_to.QEMmu is hard to be reduced further.

Chapter 6. Integration of Online Model Checking with RTOS 103

Receiving Checking Result from Online Model Checker

The checking result is usually one byte* (say, 0 stands for safe, 1 for unsafe, and 2 for
unknown). Therefore, the transmission time Topnet0.0rRCOS Can be seen as constant.
The measurement is done 10 times in order to obtain an average result. The transmission
time in average is about 372.82us. Although only one byte is sent back to ORCOS,
T oimeto.ORCOS 18 somewhat greater than Torcostooime- The reason lies in that the
delegate (i.e., the worker thread) may not be active at the time when the checking result
is sent back to ORCOS. In this case, we have to wait until the delegate is activated by
the scheduler of ORCOS and then the checking result will be processed. In practice, it
is better to send the checking result back to ORCOS only when an error is detected.
Thus, the checking result can be used as signal to trigger a software interrupt with a

higher priority. In this way, the checking result can be processed earlier by ORCOS.

6.5 Discussion

In [12] four special requirements on the integration architecture are proposed for (online)

monitoring fault tolerant real-time systems:

o Functionality: the monitor does not modify the nominal functionality of the target

system, unless the target system itself violates the given (property) specification;

e Schedulability: the monitor does not interfere with the timeliness of the services
provided by the target system, i.e., the monitoring mechanism does not cause the
target system to violate its hard real-time guarantees, unless the target system

itself violates the given (property) specification;

e Reliability: the monitoring mechanism does not decrease the (required) reliability
of the target system, i.e., the reliability of the target system integrated with the

monitor is greater than or equal to the reliability of the target system alone;

e Certifiability: the monitoring mechanism does not make the re-certification of the
target system overly difficult, i.e., the monitoring mechanism does not add unduly

modifications to the source code (or object code) of the target system.

If the above criteria are met, the real-time system will benefit by introducing a monitor-
ing mechanism [12]. Obviously, the same goes for the integration of online model check-
ing with RTOS. In our case, the source code of the target program is instrumented with
predetermined finitely many monitoring points. The distance between any two adjacent
monitoring points is not more than k (steps), a predefined bound for online (bounded)
model checking. The state information is permitted to be probed only at these monitor-

ing points. No other additional modifications to the source code are needed. Therefore,

“In case that an error is detected, the online model checker can provide more information if needed.

104 Chapter 6. Integration of Online Model Checking with RTOS

the functionality of the target system is not changed. Since the number of the monitor-
ing points is fixed, so is the size of the state information to be monitored, as well as the
time limit allocated to the online model checker, the additional monitoring overhead and
communication overhead can be estimated a priori. Consequently, the schedulability of
the target system can be decided ahead of time. The online model checker only needs
to “read” the state information at monitoring points of the target program, and then
informs the underlying operating system only when a violation is detected. Theoreti-
cally speaking, the reliability and the certifiability of the target system are not affected

by online model checking.

6.6 Summary

First of all, we present a general framework for integration of online model checking with
RTOS, such as ORCOS. This integration framework can be implemented on different
hardware architectures from single-core or multicore processor to multiprocessor. As a
proof of concept, we implement a prototype on top of a (virtualized) multicore platform.
The implementation of the observer and the online model checker is mainly dependent
on the respective operating system. If the whole system is ported to a real multicore
platform, the only part of the implementation that needs to be modified is the code
segment responsible for the communication between the observer (via the RTOS) and

the online model checker.

Thereafter, we analyze qualitatively the constitution of the overhead to determine the
factors that may affect the performance of the RTOS as well as the task to be checked
and then provide a quantitive measurement of the monitoring overhead and the commu-
nication overhead. Although the experimental results can not exactly reflect the actual
values produced on a native PowerPC microcontroller, the measured values do provide
us with a clue of the order of magnitude, of which the actual values may be. According
to our analysis, there are two ways to reduce the monitoring overhead: one is to set the
native system calls in the source code as monitoring points as long as possible; the other
is to limit the number of variables to be monitored. As to the communication overhead,
it depends mainly on the time taken for sending the data to the online model checker. If
the observer and the online model checker can communicate through a shared memory,

then the overhead will be much lower.

Finally, we discuss the influence introduced by online model checking on the system to
be checked with respect to the four criteria: functionality, schedulability, reliability, and
certifiability. It turns out that our online model checking mechanism does meet these

criteria well.

Chapter 7

Case Study

The Traffic Alert and Collision Avoidance System (TCAS) is an on-board aircraft colli-
sion detection and resolution system aimed to reduce the incidence of mid-air collisions
between aircraft. TCAS is a well-known application in the domain of embedded systems,
which has been studied not only in academia but also in industry [100-104]. Therefore,

TCAS can be considered as “a benchmark for safety critical applications” [103].

In this chapter, we’d like to demonstrate the applicability of the online model checking
technique to a publicly available component of TCAS, which is responsible to provide a

solution for the pilot to avoid collision with other aircraft.

7.1 TCAS

TCAS [105] is designed to work independently of the aircraft navigation equipment and
the ground systems, which are used to provide Air Traffic Control (ATC) services. An
aircraft equipped with TCAS interrogates periodically all other aircraft equipped with a
corresponding active transponder in a determined range (i.e., protected volume) about
their position. Based on the replies received, TCAS tracks the slant range, altitude, and
relative bearing of surrounding traffic. Whenever an intruder aircraft is entering the pro-
tected volume (as shown in Fig. 7.1 and Fig. 7.2), TCAS issues a Traffic Advisory (TA)
to assist the pilot in the visual search for the intruder aircraft. TCAS then estimates a
time needed to reach the Closest Point of Approach (CPA) with the intruder. This time
value is used to calculate the vertical separation between the two aircraft. Depending
on the results obtained, TCAS may issue a Resolution Advisory (RA) to recommend
the pilot that he should either increase or maintain the existing vertical separation from

the intruder aircraft.

105

106 Chapter 7. Case Study

Collision area

-

Caution area
TA 20-48 sec.

Warning area
RA 15-35 sec.

Not to scale

FIGURE 7.1: Protected volume (horizontal view) [106]

Not to scale
Collision area
Warning area
L R RA 15-35 sec. put— 4
Caution area
TA 20-48 sec.

FIGURE 7.2: Protected volume (vertical view) [106]

Hybrid surveillance is a method that decreases the rate of surveillance interrogations
made by the TCAS unit of an aircraft [106]: with active surveillance, TCAS transmits
interrogations to the intruder’s transponder, as a reply the transponder provides the in-
formation such as range, bearing, and altitude of the intruder; with passive surveillance,
position data provided by an onboard navigation source (typically based on GPS) is

broadcast from the intruder’s transponder.

Fig. 7.3 illustrates how the system transitions from passive surveillance to active surveil-
lance as a function of the collision potential [105]: when an intruder is far from being
a threat, it is tracked with passive surveillance, and the passive surveillance position is
validated once per minute with a TCAS active interrogation; when the intruder is a near
threat in either altitude or range, but not both, it is tracked with passive surveillance,
and the passive surveillance position is validated once every 10 seconds with an active
TCAS interrogation; when the intruder is a near threat in both altitude and range, it is
tracked with active surveillance at a 1 Hz interrogation rate, i.e., once per second. The
criteria for transitioning from passive to active surveillance is designed to ensure that

all TCAS advisories should be based on active surveillance.

Chapter 7. Case Study 107

Active surveillance.
Intruder is a near threat in altitude and range.
TCAS active interrogation at 1 Hz.

Passive surveillance.
Intruder is a near threat in altitude or range.
Validate intruder with TCAS
active interrogation at 0.1 Hz.

Passive surveillance.
Intruder is not a near threat.
Validate intruder with TCAS active
interrogation once per minute.

Intruder

FIGURE 7.3: Transition from passive to active surveillance [105]

7.2 Source Code

In the Software-artifact Infrastructure Repository [107], there is a freely and publicly
available RA component of a preliminary version of TCAS in C, called tacs.c. The RA
component takes as input 12 parameters providing the positions of the two aircraft and
returns a single number as its output. The output can be 0, 1, or 2, where 0 means that
the situation is unresolved, 1 indicates an upward advisory, and 2 a downward advisory.
Based on this output, the aircraft operator is able to decide to increase or decrease the
aircraft’s altitude. The main function of the RA component is given in Algorithm 7.1.
From line 159 to line 170 the 12 state variables are set to the current values; line 172
is the special system call for monitoring these variables during runtime. In this case
study it is enough to set only one monitoring point. The complete source code of the

RA component is provided in Appendix A.1.

ALGORITHM 7.1: The main function of the RA component

input: Cur_Vertical_Sep, High_Con fidence, Two_of _Three_Reports_Valid, - - -
output: 0,1, or 2

main(int argc, char xargv]])

157 initialize();

158

159 Cur_Vertical_Sep = atoi(argv[l]); //int

160 High_Confidence = atoi(argv[2]); //bool

161 Two-of Three_Reports_-Valid = atoi(argv[3]); //bool
162 Own_Tracked_Alt = atoi(argv[4]); //int

163 Own_Tracked_Alt_Rate = atoi(argv[5]); //int

108 Chapter 7. Case Study

164 Other_Tracked_Alt = atoi(argv[6]); //int
165 Alt_Layer Value = atoi(argv[7]); //int
166 Up_Separation = atoi(argv[8]); //int

167 Down_Separation = atoi(argv[9]); //int
168 Other_.RAC = atoi(argv[10]); //int

169 Other_Capability = atoi(argv[11]); //int
170 Climb_Inhibit = atoi(argv[12]); //int

171 //special system call for monitoring variables
172 monitor.read (1);
173

174 fprintf(stdout, "%d\n", alt_sep_test());
175 exit (0);
176 }

The function call to alt_sep_test () at line 174 first tests the minimum vertical separa-
tion between two aircraft and then returns an advisory. The definition of this function
is given in Algorithm 7.2. First of all, it checks if an upward advisory is needed by
calling Non Crossing Biased Climb() and Own_Below_Threat() (line 124); afterwards,
it checks if a downward advisory is needed by calling Non_Crossing Biased Descend ()
and Own_Above_Threat () (line 125). If neither or both advisories are needed, it returns

value 0 (unresolved). Otherwise, it returns the advisory computed.

ALGORITHM 7.2: The definition of the function alt_sep_test()

int alt_sep_test ()

116 enabled = High_-Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&
(Cur_Vertical _Sep > MAXALTDIFF);
117 tcas_equipped = Other_Capability == TCAS_TA;
118 intent_not_known = Two_of Three_Reports_Valid &&
(Other_.RAC == NO_INTENT);

119

120 alt_sep = UNRESOLVED;

121

122 if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))

123 {

124 need_upward_-RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

125 need_downward_RA = Non_Crossing_Biased_Descend() &&
Own_Above_Threat() ;

126 if (need_upward_RA && need_downward_-RA)

127 /* unreachable: requires both Own_Below Threat() and

128 Own_Above_Threat() to be true - that requires

129 Own_Tracked_Alt < Other_Tracked_Alt and

130 Other_Tracked_Alt < Own_Tracked_Alt, which isn’t possible */

Chapter 7. Case Study 109

131 alt_sep = UNRESOLVED; //defined as O
132 else if (need_upward-RA)

133 alt_sep = UPWARD_RA; //defined as 1
134 else if (need_downward-RA)

135 alt_sep = DOWNWARD_RA; // defined as 2
136 else

137 alt_sep = UNRESOLVED;

138}

139

140 return alt_sep;

141 }

7.3 Mapping Functions

As explained in Chapters 4 and 6, we need to map the (concrete) states at the source
code level to the corresponding (abstract) state at the model level. For this case study,
the 10 mapping functions together with the 12 variables to be monitored are provided in
Appendix A.2. Of the 12 variables there are 10 int types and 2 bool types. The actual
values of the 10 int variables are passed as parameters to the 10 mapping functions to
get 10 bool values, as shown in Fig. 7.4. The 10 bool values together with the 2 original

bool values form an abstract state, which will be sent to the online model checker.

concrete state mapping functions abstract state

p_Cur_Vertical_Sep_GE_MINSEP()
[int Cur_Vertical_Sep
p_Cur_Vertical_Sep_GT_MAXALTDIFF()

| int Own_Tracked_Alt 2 p_Own_Tracked_Alt_LT_Other_Tracked_Alt() |—>|M

| int Other_Tracked_Alt p_Other_Tracked_Alt_LT_Own_Tracked_Alt() |—>| bool v4|

| int Own_Tracked_Alt_Rate H p_Own_Tracked_Alt_Rate_LE_OLEV()

int Alt_Layer_Value
| : S e ‘- p_Up_Separation_GE_ALIM() I bool vg
p_Down_Separation_GE_ALIM()

| int Down_Separation

p_upward_preferred() | bool v
int Climb_Inhibit | :I

| int Other_Capability |—>| p_tcas_equipped() I bool v,
[int Other RAC |——={ p_Other RAC_EQ_NO_INDENT()

| int Up_Separation

........

FIGURE 7.4: From concrete state to abstract state

110 Chapter 7. Case Study

A mapping function® usually takes the values of one or more (concrete) state variables as
input and returns a bool value as output. A typical example is given in Algorithm 7.3.
The returned value will be stored into the variable p_Own_Tracked_Alt Rate_ LE_OLEV,
which is named after the corresponding mapping function. This naming convention can

make the mapping relationship more understandable.

ALGORITHM 7.3: Mapping function p_Own_Tracked Alt Rate LE_OLEV()

input: Own_Tracked_Alt_Rate

output: true or false
119 bool p_Own_Tracked_Alt_Rate_LE_OLEV ()
120 {
121 return (Own_Tracked_Alt_Rate <= OLEV);
122 }

7.4 Abstract Model

In this case study, the mapping functions are deduced from the relational expressions oc-
curring in the function alt_sep_test(). By means of replacing the relational expressions
with the corresponding bool variables, we are able to obtain an abstract version of the
function alt_sep_test() defined in Algorithm 7.4. For example, the relational expression
(Own_Tracked_Alt_Rate <= OLEV) at line 116 in Algorithm 7.2 is replaced by the bool
variable p_Own_Tracked_Alt_Rate LE_OLEV at line 72 in Algorithm 7.4. Of course, the
four functions Non_Crossing Biased Climb() and Non _Crossing Biased Descend() as
well as Own_Below_Threat () and Own_Above_Threat () are also redefined in a similar way.

The complete definitions are given in Appendix A.3.

ALGORITHM 7.4: The abstract version of the function alt_sep_test()

int alt_sep_test()

72 enabled = High_Confidence && p_Own_Tracked_Alt_Rate_LE_OLEV &&
p_Cur_Vertical_Sep_GT_MAXALTDIFF;
73 tcas_equipped = p_tcas_equipped;
74 intent_not_known = Two_of _Three_Reports_Valid &&
p_Other _RAC_EQ_NO_INTENT;
75
76 alt_sep = UNRESOLVED;
7
78 if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))

'In practice, it is better to define each mapping function as macro so as to improve the performance
of the mapping process.

Chapter 7. Case Study 111

79 |

80 need_upward-RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

81 need_downward_RA = Non_Crossing_Biased_Descend() &&
Own_Above_Threat() ;

82 if (need_upward_-RA && need_downward_-RA)

83 alt_sep = UNRESOLVED; //defined as O

84 else if (need_upward_RA)

85 alt_sep = UPWARD_RA; //defined as 1

86 else if (need_downward_RA)

87 alt_sep = DOWNWARD_RA; // defined as 2

88 else

89 alt_sep = UNRESOLVED;

90 }

91 assert(alt_sep != UNRESOLVED);

92 return alt_sep;

93 }

In this abstract version of alt_sep_test(), the so called abstract state consists of the 12
bool variables illustrated in Fig. 7.4. Their values are dependent on the 12 (concrete)
variables in the target program and never changed by the program during its execution
cycle. If all the 12 variables in the target program are selected to be monitored, then
none of the 12 bool variables in the behavioral model becomes a free variable. In this
case, this abstract version is able to demonstrate the same behavior as the original
function. That is, if an error is detected in this abstract version, then there must be an

error in the source code of the function alt_sep_test().

However, if not all the 12 variables in the target program are monitored, the values
of some bool variables in the behavioral model may be undefined, i.e., they are free
variables. As a consequence, the abstract version is an over-approximation of the original
function. This means that an error detected in this abstract version may be spurious,

i.e., the checking result is false negative.

7.5 Experimental Results

The experiment is carried out using our prototype implementation on the Linux platform
(32 bit Ubuntu 12.04 LTS) with 3GHz Pentium 4 CPU and 2GB RAM (see Section 6.3).

Monitoring State Information There are 12 variables of interest: 10 int? types

and 2 bool (char) types. Therefore, we need to copy 42 bytes to the ring buffer

2The size of an int is supposed to be 4 bytes on a 32-bit platform.

112 Chapter 7. Case Study

whenever the monitoring point is reached. The time taken is measured in microseconds
for 50 times. On average it takes about 501.78us for monitoring the state information

of 42 bytes, which is consistent with the result presented in Fig. 6.10 (in Section 6.4.2).

Monitoring Overhead We need to measure the execution time of the task (i.e., the
RA component) with and without the system call monitor_read() added respectively.
The measurement is done 50 times for both cases. The execution time Ty, of the
task without monitoring state information is about 1319.14us on average. Due to mon-
itoring state information, the average execution time of the task is increased by about
Tsyscat = 497.7us. Therefore, the monitoring overhead Poyerhead is Tsyscall/Ttask =
497.7/1319.14 = 37.7% in this case study.

Sending State Information to Online Model Checker By applying the 10 given
mapping functions we obtain 10 bool variables. Together with the two original bool
variables in the source code, we need to send only 12 bool (char) variables (12 bytes) to
the online model checker. The time TorcoS to.oime = Torc0S to.QEMU +TQEMU to0lme
is measured in microseconds and the measurement is also done 50 times. On average we

have Torcos_to.olme = 189.16s with Torcos_to.emu = 142.3us and TopepmU to_otme =
46.86us in this case study.

Receiving Checking Result from Online Model Checker As mentioned in Sec-
tion 6.4.2, since the checking result is only one byte, the transmission time can be seen
as constant. We also do the measurement 50 times. On average the transmission time
i Toime.to.oRCOS = 368.62us. This result is almost double the time taken for sending
the data to the online model checker, because the worker thread (i.e., the delegate) may

not always be active at the time when the checking result is sent back to ORCOS.

Online Model Checker The property to be checked is an assertion saying that the
function alt_sep_test() never returns 0, i.e., assert(alt_sep != UNRESOLVED) (line
91 in Algorithm 7.4). By applying the tool CBMC [108] we are able to convert the
abstract version of alt_sep_test () together with the property into a boolean expression
in CNF format. In the original program tacs.c, the bool type is defined as int type,
which takes 32 bits. For the sake of simplicity, we redefine the bool type as char type,
which takes only 8 bits. The generated CNF file has 2348 (bool) variables and 5013

clauses.

Whenever the values of the 12 (abstract) variables are available, the online model checker

(with zChaff SAT solver as its search engine) will be invoked to decide whether the CNF

Chapter 7. Case Study 113

formula is satisfiable or not. The measurement is done for 10 randomly generated test

cases. The SAT solver takes about 24ms on average to finish the checking work.

It is worth mentioning that the generated CNF formula is still highly redundant, because
each abstract (state) variable is represented by 8 bits, instead of one bit, in the formula.
Therefore, the 12 (abstract) variables need 96 bits, instead of 12 bits, to represent them.
The same goes for the other bool variables occurring in alt_sep_test (). That is, there’s

still much room to reduce the checking time.

Recall that whenever an intruder becomes a near threat, the rate of surveillance inter-
rogations made by TCAS units is at most 1 Hz, i.e., once per second. In this sense,
the monitoring overhead and the communication overhead as well as the model checking

overhead are acceptable in this case study.

Theoretically speaking, by applying the online model checking mechanism the property
is going to be checked whenever a monitoring point is reached. In this case study,
the assertion is going to be checked at line 172 in Algorithm 7.1 before the function
alt_sep_test () is invoked to run. On the other hand, by introducing the online model
checking method we are able to check different properties during program execution
without interfering with the target program too much, of course, except inserting mon-

itoring points once and for all in advance.

7.6 Summary

In this chapter we take the RA component of TCAS as case study to demonstrate the
applicability of the online model checking approach. In this case study, it is enough
to insert just one monitoring point into the source code. There are 10 int and 2 bool
variables that need to be monitored during program execution. By applying 10 mapping
functions to the 10 monitored int values we are able to obtain 10 bool values, which
together with the 2 original bool values are delivered to the online model checker. The
abstract (behavioral) model together with the property to be checked is converted into
a boolean expression in CNF format. The monitoring overhead and the communication
overhead as well as the model checking time are measured using our prototype imple-
mentation on the 32 bit Linux platform with 3GHz Pentium 4 CPU and 2GB RAM.
The experimental results indicate that the overhead introduced by online model check-
ing is acceptable in this case study. It would be much more efficient to implement our
online model checking mechanism including optimization (for this case study) on top of

a suitable real hardware platform.

Chapter 8

Online Model Checking for
Hybrid Systems

As mentioned in Section 5.1, the embedded applications are a kind of software designed
to monitor and control physical processes, which usually results in feedback loops. The
software systems are usually modeled by finite state machines, whereas the physical
systems are governed in general by differential equations. The former are discrete state
systems, while the latter are continuous state systems. Hybrid systems are the combi-
nation of the two different worlds. The safety requirements on the continuous dynamics
of such systems give rise to a new challenge. In this chapter, we’'d like to tackle this

challenge by the online model checking mechanism.

8.1 Motivation

Hybrid systems arise in many aspects of our daily life [109], such as aerospace, trans-
portation systems, robotics, motion control, power electronics, and so on. The behaviors
of a hybrid system are characterized by the interaction of operating modes and control
laws. Each operating mode is associated with a control law in terms of partial or ordinary
differential equations or difference equations [110]. The modes are switched following a

discrete logic, i.e., a kind of finite state machine.

In hybrid systems, a control law models the behaviors (and disturbance if any) of the
physical plant under control. At a mathematical level of abstraction, the control en-
gineer derives from the behaviors of the plants the corresponding control laws as well
as the operating modes, which are then optimized and validated by means of analysis

and simulation [72]. It is worth mentioning that hybrid systems are often operating in

115

116 Chapter 8. Online Model Checking for Hybrid Systems

safety-critical situations, such as embedded controllers used in the automotive and air-
plane industries, and medical devices for monitoring serious health conditions. They are
subjected to specific potential failures. Although simulation is an easy way to validate
a hybrid system under investigation, it checks only a single trajectory of the system at
a time. No matter how many individual trajectories have been checked by simulation,

some unsafe case in deep corner may still be missed.

Typical properties studied for hybrid systems are reachability, stability and equilibria,
to name only a few. From the perspective of computer science, more attention is paid to
the reachability analysis. A hybrid system is considered safe if the unsafe states defined

in terms of state constraints are not reachable from the initial (safe) states.

For a hybrid system involving continuous dynamics, it is usually difficult to compute and
represent the set of states reachable from some initial set [111]. Decidability holds only
for those systems with simple continuous dynamics, even the most efficient algorithms
for hybrid-system verification usually have exponential time complexity with respect to
the dimension of the state space [112]. Recent research [112-116] aims to falsify, instead
of verify, the safety of the hybrid systems under investigation, i.e., tries to search for a
witness trajectory from an initial state to an unsafe state in case that such a trajectory

exists.

In this chapter we focus on ensuring the safety of the continuous dynamics of a hybrid
system by means of online model checking. The goal is to falsify the target hybrid

system during runtime.

8.2 Hybrid Automaton

Hybrid automata are a kind of formal language for modeling and analyzing the compu-
tations consisting of both continuous and discrete dynamics. A hybrid system is usually
modeled as a hybrid automaton H = (Q, X, Inv, E, G, J,U, f,I, F) [117], where

@ is the discrete and finite set of (operating) modes;

- X maps each mode ¢ € @) to the continuous state space X, C R&m(Xq).

Inv maps each mode ¢ € @ to the continuous invariant Inv, C X;
- E C @ x Q is the set of (discrete) transitions between modes;
- G maps each transition (g;,q;) € E to the guard condition G(

qi,q;) C Xog;;

J maps each transition (¢;,¢;) € E to the reset function J(%qj) : G(Qi7Qj) — Xg;3

Chapter 8. Online Model Checking for Hybrid Systems 117

- U maps each mode ¢ € @) to the set of input controls U, C Rdim(Ua),
- f maps each mode ¢ € @ to the continuous dynamics & = f,(x,u) with u € Uy;
- I C Q x X is the set of initial states; and

- F C Q x X is the set of unsafe states.

Ggo.q)

FIGURE 8.1: A hybrid system trajectory

Intuitively, a trajectory of a hybrid system consists of continuous trajectories interleaved
with discrete transitions, as illustrated in Fig. 8.1: starting from an initial state (qo, o),
the system evolves continuously in time following the control law & = f,(x,u) as long
as the invariant Invg, holds. A discrete transition from ¢p to ¢; can be triggered if the
guard condition G 4 4,) is satisfied. As a result, the state of the system is reset according
to the reset function J(4, 4. Let the state now be (@i, z¢;). Then, the system evolves
continuously in time following the control law & = f,,(z,u) until a discrete transition is

triggered. The hybrid system behaves repeatedly in this way.

A hybrid automaton is blocking if a trajectory has to leave a mode due to the violation
of the invariant associated to the mode, but no discrete transition is enabled. A hybrid

automaton is Zeno if an infinite number of mode switching within a finite time is allowed.

We restrict ourselves to non-blocking and non-Zeno hybrid automata in this chapter.

8.3 Online Falsification Problem

A hybrid system is considered unsafe if an unsafe state is reachable from an initial
state. For online falsification, we mean to check whether or not a hybrid system is safe
while the system is running by online searching for a trajectory of length up to k time
steps from an initial state to an unsafe state in the hybrid automaton of the system, as

illustrated in Fig. 8.2, where the symbol) represents the unsafe region.

To make online model checking available, we assume that the actual states of the hybrid
system under investigation can be probed periodically during runtime. Without loss of

generality, let’s monitor the actual state information every T" = kdt time units, where dt

118 Chapter 8. Online Model Checking for Hybrid Systems

is the progression of time in one step. The monitored states are stored in a predefined
ring buffer. The online model checker tries to take a state from the buffer every T' time
units. If there is a state available, the online model checker then goes to search for a
trajectory from this state to an unsafe state in the hybrid automaton within the time
limit 7. To reduce the workload of this online search, we compute offline a backward
reachable set from the unsafe states up to n time steps beforehand, thus during runtime
the online model checker needs only to search in the near future (i.e., up to k time steps
for 0 < k < n) in the state space starting from each monitored state, as illustrated in

Fig. 8.3.

Operating Mode g

X = fq(X,U)

FIGURE 8.2: Online model checking problem

FIGURE 8.3: Online forward reachability checking

In each checking cycle, the online model checker may return the following three possible

checking results:

e unsafe: the checking process is finished in time, and an error trajectory is found;
e safe: the checking process is finished in time, but no error trajectory is found;

e unknown: the checking process is enforcedly terminated due to timeout.

In the unsafe case, where an error trajectory is found within A (< T') time units, ideally
the online model checker can predict the error ndt + kdt — A time units in advance.
In the unknown case, where no error is found within 7' time units, it is reasonable to
believe that there should be no error at least in some neighborhood of the monitored

state.

Chapter 8. Online Model Checking for Hybrid Systems 119

8.4 Offline Backward Reachable Set Computation

Given a hybrid automaton H = (Q, X, Inv, E,G, J,U, f,1, F), the target set F of the
unsafe states may include different subset(s) of the continuous state space associated to
each (discrete) mode. For a mode ¢ € @, the set of unsafe states (if any) in X, can be
represented as an implicit surface function ¢, : R%m(Xq) 5 R such that ¢q(z) < 0 if
(¢,z) € F and ¢q4(x) > 0if (¢,z) & F.

The level set methods [118] are a collection of numerical algorithms for computing ac-
curately the evolution of the implicit surface functions following the dynamics defined

by Hamilton-Jacobi partial differential equations (PDEs).

The study [119] has proved that “the viscosity solution of a Hamilton-Jacobi-Isaacs (HJI)
PDE describes the continuous backward reachable set” and implemented the basic level

set methods in MATLAB! to calculate the backward reachable set for hybrid systems.

For amode ¢ € @ with an unsafe subset in X, according to [119], the backward reachable

set within X, is G; UG2 U G3 \ Ej as illustrated in Fig. 8.4, where

e (G1 C F is the initial unsafe subset;

e G is the set of states that can reach the unsafe set(s) in neighbor mode(s) due
to uncontrollable input, i.e., disturbance from the environment or the actions of
other systems;

e (33 is the set of states backward reachable from the unsafe set G; U Go;

e F) is the subset of unsafe states in G3 that can reach the safe state(s) in neighbor

mode(s) due to controllable input.

FIGURE 8.4: Computing backward reachable set [120]

In this chapter, we assume that the extended target set, denoted as F*, has already

been offline calculated by the level set methods or any other efficient methods.

lyww.mathworks. com

www.mathworks.com

120 Chapter 8. Online Model Checking for Hybrid Systems

8.5 Online Forward Reachability Checking

Given a hybrid automaton H with an extended target set F™*, we need to decide whether
or not F* is reachable within the predefined k time steps starting from each actual state
monitored during runtime (see Fig. 8.3). As a proof of concept, we’ve implemented an

online reachability checker based on the iSAT solver.

iSAT [121] is a SATisfiability checker for Boolean combinations of arithmetic constraints
over real- and integer-valued variables, which can handle not only linear constraints but
also non-linear constraints involving transcendental functions. Thanks to a tight integra-
tion of DPLL-style SAT solving with interval-based arithmetic constraint propagation,
the iSAT solver is able to deal with large Boolean combinations of multiple thousand

arithmetic constraints over some thousands of variables.

Given a formula to be checked, iSAT solver may terminate in the following three cases:

e unsatisfiable: the formula is actually unsatisfiable;
e satisfiable: the formula is satisfiable? and a solution may be generated:;

e unknown: a candidate solution may be given, but no guarantee for correctness.

The iSAT solver can conduct bounded reachability checking for hybrid systems, but it
can not be directly used for online reachability checking. In cooperation with Karsten
Scheibler, a developer of the iSAT solver from the University of Freiburg, an interface for
online reachability checking has been developed. Here we introduce mainly the following

two functions:

e isat3_register_trans_and target(is3, trans, target, k): this function un-
rolls the transition relation trans (of the hybrid system model) up to k time steps,
combines it with the set target of the unsafe states, and then registers the gener-

ated formula with the iSAT solver is3;

e isat3_solve_with_init(is3, init, T): this function reads an actual state init
monitored during system execution, and then tries to determine at runtime whether
or not there exists a trajectory from init to target within the predefined T time
units. The learned knowledge is shared by the subsequent calls to this function so

as to reduce the computation time.

2However, iSAT solver is not able to give a definite answer for some formulas being checked, because
interval arithmetic combined with splitting intervals leads to an incomplete deduction calculus.

Chapter 8. Online Model Checking for Hybrid Systems 121

Let the actual states monitored during system execution be stored in a buffer. The online

reachability checking algorithm is straightforward as shown in Algorithm 8.1 below.

ALGORITHM 8.1: Online Bounded Reachability Checking

input: trans, target, k, T

output: safe, unsafe, unknown

1 begin
2 formula = isat3_register_trans_and_target(is3, trans, target, k)
3 formula = isat3_node_simplify_detroy(is3, formula) //simplify the formula
4 while (buffer #0) do
5 init «— buffer //read a new actual state
6 result = isat3_solve_with_init(is3, init, T)
7 if (result == satisfiable) then output unsafe
8 elseif (result == unsatisfiable) then return safe
9 else output unknown
10 endif
11 endwhile
12 end

Recall that F* is obtained by calculating the reachable set from F backward up to n
time steps. It is easy to reason that the larger the n, the smaller the k, thus the shorter
the online checking time, and the higher the sampling rate for the actual states. It is up
to the user to set a proper value to k. Ideally, it is better to make n be a larger value

so that errors if any can be predicted in time in most cases.

It is worth pointing out that there exist other efficient tools that can perform forward
reachability checking. However, they need to be tailored for online reachability checking.
We adopt the iSAT solver mainly because it is convenient for us to cooperate with the
developers of the iSAT project so as to tailor the tool for our needs. The implementation

details of the iSAT tool is beyond the scope of this thesis.

8.6 Experimental Results

Case Study

The RailCab Project [122] (founded at the University of Paderborn in 1997) aims to
develop a novel on-demand traffic system for the mobility in the future, whereby small,
driverless vehicles (called RailCabs) are able to transport on demand passengers and
goods directly to their destination. The RailCabs are equipped with steerable wheels.
They can build convoy automatically [123, 124], i.e., driving within small distances with-
out mechanical coupling, so as to reduce the air resistance and the power consumption.

A test track in a reduced scale of 1 : 2.5 was built at the University of Paderborn in

122 Chapter 8. Online Model Checking for Hybrid Systems

2003. Two RailCabs can operate simultaneously at a maximum speed of 10m/s. The

motor can provide the vehicle with acceleration of +0.8m/s? on planar tracks.

Needless to say, driving in a convoy manner is a safety critical operation. In order to
demonstrate the applicability of online model checking to hybrid systems, we design
intentionally a simplified case study as illustrated in Fig. 8.5: two vehicles RailCabl
and RailCab2 brake along a straight line. The initial distance between the two ve-
hicles is dy = 2.22m. RailCabl brakes at the speed v; = 10m/s with the constant
deceleration a; = —0.8m/s%, while RailCab2 brakes at the speed vo = 9.87m/s with
as = [-0.8, —0.7]m/s>.

s € [0,10] | vy € [0,10]
dy = [-0.8,—0.7] | dp = —0.8
X2,V2 d 1 X1,V1
RailCab 2 1€ : > RailCab 1
0 reference point >

FIGURE 8.5: Case study

100 T T T T T -

< RailCab1
90 e ~ — ~ RaiCab2 |]|

80 - .
70+ -]
60 .]
50 ,]

a0t/ 4

30 I I L I I I
0

time {s)

FI1GURE 8.6: Distance change over time between the two vehicles

.
oF TN RailCab1 | |
\ ~ _ _RailCab2

8l 4
70 \ J

6 N 1

time (s)

FIGURE 8.7: Speed change over time of the two vehicles

Chapter 8. Online Model Checking for Hybrid Systems 123

Fig. 8.6 shows the distance change over time between the two vehicles. Fig. 8.7 shows
the speed change over time of the two vehicles. That is, the two vehicles should collide
with d = Om, v; = O0m/s and vo = 0.5m/s. In other words, (d = 0,v; = 0,v2 = 0.5) is

an unsafe state.

Offline Backward Reachable Set

In cooperation with Kathrin Flakamp from the Department of Mathematics at Univer-
sity of Paderborn, we calculate the reachable set target starting from the unsafe state
(d =0,v1 = 0,v9 = 0.5) backward up to n = 20 time steps with each (integration) step
being dt = 0.05s. Since the continuous dynamics of the two vehicles is simple, instead of
using the level set methods, we get the backward reachable set using a usual numerical
integration algorithm. The numerical solution is illustrated in Fig. 8.8 as a set of points,

from each of which there exists a trajectory to the unsafe state (d = 0,v; = 0,v9 = 0.5).
14 Backwards Reachable Set

1.3 .
1.2)

H vy

0.3

+* & B W A W

LU

FIGURE 8.8: Backward reachable set

By applying the MATLAB program vert2lcon to the backward reachable set target in
terms of points in Fig. 8.8, we obtain a polyhedron (i.e., a convex hull) illustrated in
Fig. 8.9 that covers exactly the points in the backward reachable set. The convex hull
determines an implicit surface function, denoted as ¢ : R — R, such that ¢(x) < 0 if the
point = € target; otherwise, ¢(z) > 0. The convex hull is defined by the conjunction
of 42 linear inequalities of the form ¢; - d 4+ ¢o - v1 + ¢3 - vo < ¢4, Where ¢1, co, c3 and ¢4

are constants, as shown in the following list:

124 Chapter 8. Online Model Checking for Hybrid Systems

0.000000d + 1.000000v; + —0.000000v2 < 0.800000
0.694524d + 0.243083v; + —0.677161vy < —0.305591
0.716920d + 0.215076v; + —0.663151vy < —0.300927
—0.893641d + 0.443749v1 + 0.067023v2 < 0.033512
—0.879463d + 0.475460v1 + 0.021987vy < 0.010993
0.000000d + 0.658505v1 + —0.752577Tvy < —0.376288

Convex hull approximation

v, 0 o d

FIGURE 8.9: Convex hull of the backward reachable set

Online Forward Reachability Checking

The transition relation trans of the hybrid system model is encoded as a conjunction
of the following five expressions:

oh = 1 + vidt + 0.5a;dt?

(v] =1 + aidt) or (v = 0.0 and v1 + a1dt < 0.0) or (v} = Vmag and v1 + ar1dt > Vpay)
rh = z9 + vodt + 0.5adt?

(v = vy + agdt) or (vh, = 0.0 and vy + agdt < 0.0) or (v = Vymar and ve + asdt > Vmaz)
t'=t+dt

where z1 and z9 are the positions of the two vehicles relative to a predefined reference

point; dt = 0.05s is a constant indicating that the progression of time in one step is dt

Chapter 8. Online Model Checking for Hybrid Systems 125

seconds. In addition, the primed version of each variable in the above formulas represents

the value of the same variable in the next (time) step.

The transition relation describes the behaviors of the two vehicles in one step from the
current state (z1,v1, 22, v2,t) to the next state (z, v}, 25, v, t') with two constraints: (i)
if v; + a;dt < 0.0 for i = 1 or 2, then v} remains zero; (ii) if v; + a;dt > Ve, then v/

remains Vg, = 10m/s.

The reachability problem in this case study is encoded as a formula by unwinding the

trans up to k = 10 time steps and combining it with the target (line 2 in Algorithm 8.1).

Initially, we set x; = 37.5m, v; = 10.0m/s, x2 = 35.27575m, vo = 9.87m /s and t = 0.0s.
The current state information (d = (z1—x2), v1, v2) is monitored every 0.5s by simulating
the movement of the two vehicles using a MATLAB program. The generated trajectory

is illustrated in Fig. 8.10.

FIGURE 8.10: Online forward reachability checking

We need to check the formula during runtime to see whether or not the unsafe target
is reachable from some monitored state within k£ = 10 time steps (i.e., kdt = 0.5s). This
is conducted on a Linux platform with 3GHz Intel Core 2 Duo CPU and 4GB RAM.

The experimental results are listed in Table 8.1.

As for the former 22 monitored states, the checking results are all unsatisfiable, indicating
that the unsafe target can not be reached within 500ms. Thus, the online model checker

outputs safe. The actual time taken for each checking round is not more than 45ms. As

126 Chapter 8. Online Model Checking for Hybrid Systems

for the 23rd monitored state (d = 0.69,v; = 1.20, v = 1.62), the iSAT solver does find
a solution, indicating that the unsafe target may be reached within 500ms. The online
model checker outputs unsafe in this case. The actual time taken for this checking round

is 110.990ms.

TABLE 8.1: Experimental results of online forward reachability checking

Time (ms) | Variables | Clauses | Decisions | Deductions | Conflicts | Result
1 28.815 12358 9852 0 13056 11 safe
2 28.049 12412 9895 0 12715 11 safe
3 26.832 12458 9938 0 12745 11 safe
4 27.086 12500 9981 0 12833 11 safe
5 26.695 12535 10019 0 12883 11 safe
6 27.509 12565 10052 0 12901 11 safe
7 26.968 12613 10095 0 12958 11 safe
8 26.915 12659 10138 0 12947 11 safe
9 26.729 12703 10181 0 12907 11 safe
10 26.584 12794 10224 0 12769 11 safe
11 27.168 12777 10257 0 12673 11 safe
12 28.015 12819 10300 0 13165 11 safe
13 28.219 12974 10343 0 13200 11 safe
14 29.283 13177 10386 0 13578 11 safe
15 31.379 13541 10429 0 14572 11 safe
16 32.612 13883 10462 0 15206 11 safe
17 36.017 14101 10505 0 16590 11 safe
18 37.314 14089 10548 0 17032 11 safe
19 40.483 14030 10591 0 18228 11 safe
20 42.964 13597 10629 0 19144 11 safe
21 38.913 13307 10662 0 18597 11 safe
22 31.174 13009 10705 0 15679 11 safe
23 | 110.990 35289 10764 28604 31814 26 unsafe

Recall that we set n = 20 and k& = 10 steps with each step dt = 50ms in this case study.
In the 23rd checking round the error is detected within A = 111ms. In ideal case, the
online model checker is able to predict the error ndt + kdt — A = 1,389ms in advance.

8.7 Related Work

The work in [125-127] is also concerned with online model checking for the time-bounded
behaviors of a hybrid system in the short-run future. The basic idea is to sample during
runtime the numeric values of the observable system state parameters periodically, e.g., a
set u of input controls (see Section 8.2). Let the period be T' time units. The behavioral

model of the hybrid system can thus be reduced by regarding the monitored parameters

Chapter 8. Online Model Checking for Hybrid Systems 127

as constants for the next T' time units. Obviously, the resulting model is only valid within
T time units. As a consequence, the online model checker has to provide an answer within
T time units whether or not the reduced model may violate the (safety) properties being
checked. To do this, a path-oriented reachability analysis [116] is applied, whereby a
feasibility problem of a set of linear constraints is derived and solved by the linear

programming (LP) approach.

It is worth pointing out that the state variables of the the reduced behavioral model
are not monitored at all while doing model checking during runtime. In this sense, this

online checking method is also called scenario based verification [125].

E.g., for a communication based train control (CBTC) system under investigation, the
radio block center sends the control parameter, i.e., the movement authority® (MA), to
the onboard system of the trains nearby in every T' = 500ms. Upon receiving the MA,
the onboard computer of each train needs to calculate a legal operation speed range
taking into account of the current speed of the train, the status of the track, the wind
speed, and others. Notice that the MA keeps unchanged within the next 500ms. Thus,
the behavioral model of the CBTC system can be reduced by regarding the MA as
constant. The resulting model is valid within the next 500ms. Hence, the online model
checker needs to provide an answer within 500ms whether or not the reduced model may
violate the safety property being checked. In this example, the MA is the only variable
monitored whenever it is generated or updated. The other state variables in the reduced

model are not monitored at all while doing model checking during runtime.

Our online model checking method is different from this work mainly in two aspects as

illustrated in Fig. 8.3.

On the one hand, we do not reduce the behavioral model by regarding the monitored
parameters as constants and then apply model checking to the reduced model. Instead,
we simply sample the state variables of interest in every k (time) steps with each step
being dt time units. The online model checker then tries to answer within 7" = kdt
time units whether or not the unsafe target state is reachable within k steps from each
monitored state. In our case, the monitored states are supposed to be unchanged within
dt time units (i.e., one integration step), instead of 7" time units. Here the parameters

k and dt are determined by the user.

On the other hand, we calculate offline a n-step backward reachable set F* to reduce

the workload of the online model checker.

3The distance that a train is authorized to move forward within 7" time units.

128 Chapter 8. Online Model Checking for Hybrid Systems

8.8 Conclusion

In this chapter, we extend the application of the online model checking mechanism to
hybrid systems. Our goal is to falsify, rather than verify, the safety of the hybrid system
under investigation by online reachability analysis. For this purpose, we search for a
witness trajectory from each monitored state to an unsafe state in the hybrid system
model during system execution. Analogous to the case of discrete state systems, we also
calculate offline a n-step backward reachable set from the unsafe states to speed up the
reachability checking process during runtime. Of course, parallel computing can also be
used to accelerate the reachability checking for hybrid systems. But this is not the focus
of this chapter.

As a proof of concept, we’ve implemented an online reachability checker for hybrid
systems using the tailored iSAT solver as its search engine. A simplified case study
based on two vehicles operating in a convoy manner demonstrates the applicability of
online model checking to hybrid systems. The experimental results indicate that in

theory the online model checker is able to predict errors before the errors actually occur.

Chapter 9

Conclusion and Future Work

Nowadays our world depends more and more on embedded systems. They are widely
used in industry and are reshaping the way we live. Many of us use embedded systems
every day without even knowing it. In this thesis, we concern ourselves with such kind
of embedded systems that are safety-critical, whose failure or malfunction may result in

severe damages, including loss of life.

9.1 Conclusion

Modern embedded systems are a kind of special-purpose computer systems, which are
becoming more complicated due to the advances in electronic techniques. They may fail
due to external reasons, such as mechanical stress and faulty input, or due to internal
reasons, such as design errors and physical faults. An increasing number of computer
system failures are caused by design errors in software [2]. New software technology
tends to enhance the “intelligence” of modern embedded systems. This increases the
complexity of embedded software and makes subtle errors extremely difficult to figure
out. In practice, no single checking technique, such as testing, simulation, model check-
ing, monitoring, etc., or any combination thereof, is able to completely ensure that the
embedded software does behave as desired after it is released or deployed. Against
this background, we present our online model checking mechanism as a complementary

method.

By doing model checking during system execution, we are able to monitor the actual
state information so as to reduce the state space to be explored by the online model
checker. The state space explosion problem is thus avoided to some degree by making

the online model checker look ahead in each checking cycle only finitely many steps in

129

130 Chapter 9. Conclusion and Future Work

the state space of the behavioral model of the system under investigation. Online model
checking is a lightweight and incomplete method that can falsify, rather than verify,
the behavioral model of the target system. The goal is to ensure the correctness of the
actual execution trace, instead of the universal correctness, of the target system during

runtime (with respect to the property to be checked).

For this purpose, the actual state information is monitored periodically during system
execution. Starting from each monitored state in the given behavioral model, the online
model checker attempts to find an error path of bounded length within an allocated
time limit. The property to be checked is specified in LTL. A nontrivial LTL formula
is either safety or liveness or a conjunction of the two. It is sufficient to make the
online model checker solve the safety checking problem as well as the liveness checking
problem. To this end, we reduce the problem of safety checking and liveness checking
to the corresponding invariant checking problem, which can be solved by reachability
analysis. As a consequence, our online model checking is in effect a kind of online
reachability checking. Because of checking on the model level, the online model checker

is able to predict potential errors during runtime.

Reachability checking is also a challenge for large complex systems, not to mention doing
it during runtime, which suffers from the limited time allocated to it. We speed up the
online reachability checking process by reducing the workload and adopting the symbolic
state-based search algorithm as well as using parallel computing. The workload of the
online model checker can be reduced by calculating offline a m-step transition relation
R™ and a n-step backward reachable set F* from the target set of error states. According
to our experience, making two symbolic state-based model checkers work in parallel can

obtain a better price/performance ratio.

We need to instrument the source code of the target system with a finite set of moni-
toring points once and for all in advance. During system execution, once a monitoring
point is reached, the state information at this point will be recorded in a (ring) buffer.
In each checking cycle, the online model checker tries to take a state from the buffer and
then conducts reachability analysis starting from this state. The monitoring points are
determined by analyzing the control flow graph of the target program. We present a par-
titioning algorithm to calculate a smaller set of monitoring points, which are distributed

more or less evenly in the control flow graph.

We present a general framework for integration of online model checking with a real-time
operating system, such as ORCOS. This integration framework can be implemented on
different hardware architectures from single-core, or multi-core to multiprocessor. We
implement a prototype on top of a (virtualized) multicore platform. At each monitoring

point, a special system call is introduced together with its system call handler to record

Chapter 9. Conclusion and Future Work 131

the actual state information. In this way, both the source code of the target program
and the underlying operating system only need minor modifications. We analyze quali-
tatively the additional overhead introduced by online model checking. According to our
experience, the monitoring overhead can be reduced by setting the native system calls
in the source code as monitoring points as long as possible or by limiting the number
of variables to be monitored; the communication overhead between the target program

and the online model checker depends largely on the underlying system architecture.

We take the RA component of TCAS as case study to demonstrate the applicability
of our online model checking method. In this case study, only one monitoring point is
inserted into the source code. 10 int and 2 bool variables are monitored during program
execution. By applying 10 mapping functions to the 10 int values monitored, we get 10
bool values, which together with the original 2 bool values are sent to the online model
checker. The property to be checked is an assertion. The experimental results indicate

that the overhead introduced by online model checking is acceptable in this case study.

We extend the application of our online model checking mechanism to hybrid systems.
Analogous to the case of discrete state systems, our goal is to falsify, rather than verify,
the safety of the hybrid system under investigation by the online reachability analysis.
We search for a witness trajectory of length up to k time steps from each monitored state
to an unsafe state in the hybrid system model during system execution. To speed up
this reachability checking process, we also calculate offline a n-step backward reachable
set from the unsafe states. A simplified case study based on two vehicles operating
in a convoy manner demonstrates the applicability of online model checking to hybrid
systems. The experimental results indicate that in theory the online model checker is

able to predict errors before the errors actually occur.

Online model checking has the following advantages over offline checking techniques:

e Avoid the state space explosion problem to some degree: in each checking cycle,
the online model checker tries to search for an error path of bounded length in the

state space;

e Detect errors ultra deep in the state space: theoretically, the online model checker

is able to reach those states that locate arbitrarily deep in the state space;

e Predict errors before they actually happen: due to checking on the model level, the
online model checker is able to predict errors, even if it falls behind the execution

of the target system.

Compared with online monitoring, online model checking has the following advantages:

132 Chapter 9. Conclusion and Future Work

e The behavioral model bridges the semantic gap between the requirements and the

source code of the target program;

e Monitoring points are placed in fixed locations in the source code independent of
the properties to be checked;

e The distance of any two adjacent monitoring points is not more than k steps;

e Look ahead up to k steps on the model level from each monitored state;

e Liveness properties can be checked on the model level during runtime.

When applying the online model checking mechanism to an embedded software system,

the schedulability analysis of the target system can be conducted offline beforehand.

The above mentioned advantages indicate that the online model checking method is

complementary to, but can not be replaced by, the existing checking techniques.

9.2 Future Work

Before the online model checking mechanism can be applied to real world applications,

there are several basic issues that remain to be investigated:

First, given a monitored state in the behavioral model M, how to calculate efficiently
the exact starting points in the state space of M x B_; for the new checking cycle is a

topic worth further research.

Second, many programming languages allow dynamic memory allocation and function
recursion, which result in dynamic data structures and dynamic function-calling chains
respectively. How to monitor the variables stored in the memory allocated dynamically
during runtime as well as how to determine the monitoring points in the source code

written in such programming languages is worth further study.

Third, whenever an error is detected by the online model checker, how to evaluate the

severity of the error is a topic worth further consideration.

Last but not least, once the detected error is identified as a severe error, how to deal

with this error during runtime is also worth further investigation.

Appendix A

Case Study: TCAS

A.1 RA Component of TCAS

1 /* —x— Last—Edit: Fri Jan 29 11:13:27 1993 by Tarak S. Goradia; —x— x/
2 /* $Log: tcas.c,v $

3 Revision 1.2 1993/03/12 19:29:50 foster

i % Correct logic bug which didn’t allow output of 2 — hf

5 % %/

7 #include <stdio.h>

8
9 #define OLEV 600 /* in feets/minute x/

10 #define MAXALTDIFF 600 /% max altitude difference in feet x/
11 #define MINSEP 300 /* min separation in feet x/

12 #define NOZCROSS 100 /% in feet =/

13

14 typedef int bool;

16 /+x variables x/

17 int Cur_Vertical_Sep;

15 bool High_Confidence;

19 bool Two_of_Three_Reports_Valid;

21 int Own_Tracked_Alt;
22 int Own_Tracked_Alt_Rate;

23 int Other_Tracked_Alt;

25 int Alt_Layer_Value; /x 0, 1, 2, 3 %/
26 int Positive_RA_Alt_Thresh [4];

28 int Up_Separation;

20 int Down_Separation;

133

134 Appendix A. Case Study: TCAS

30
31 int Other_RAC; /* NOINTENT, DONOT.CLIMB, DONOTDESCEND x/
32 #define NOINTENT 0

33 #define DONOT_CLIMB 1

34 #define DONOTDESCEND 2

36 int Other_Capability ; /* TCAS_TA, OTHER x/
37 #define TCAS.TA 1

38 #define OTHER 2

39

10 int Climb_Inhibit; /* true/false x/

11

12 #define UNRESOLVED 0

43 #define UPWARDRA 1

11 #define DOWNWARDRA 2

45

16 void initialize ()

ar {

48 Positive_RA_Alt_Thresh [0] = 400;

19 Positive_RA_Alt_Thresh [1] = 500;

50 Positive_RA_Alt_Thresh [2] = 640;

51 Positive_RA_Alt_Thresh [3] = 740;

52}

53

54 int ALIM ()

55 {

56 return Positive_RA_Alt_Thresh[Alt_Layer_Value];

57}

58

50 int Inhibit_Biased_Climb ()

6({

61 return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

62 }

63

64 bool Non_Crossing_Biased_Climb ()

65 {

66 int upward_preferred;

67 int upward_crossing_situation;

68 bool result;

69

70 upward_preferred = Inhibit_Biased_Climb () > Down_Separation;

71 if (upward_preferred)

72 {

73 result = !(Own_Below_Threat()) || ((Own_Below_Threat()) &&
(!(Down_Separation >= ALIM())));

74 }

75 else

Appendix A. Case Study: TCAS 135

7 result = Own_Above_Threat () && (Cur_Vertical_Sep >= MINSEP) &&
(Up_Separation >= ALIM()) ;

w)

79 return result;

50}

81

s2 bool Non_Crossing_Biased_Descend ()

83 {

84 int upward_preferred;

85 int upward_crossing_situation;

86 bool result;

88 upward_preferred = Inhibit_Biased_Climb () > Down_Separation;

89 if (upward_preferred)

90 {

91 result = Own_Below_Threat () && (Cur_Vertical_Sep >= MINSEP) &&
(Down_Separation >= ALIM()) ;

92 }

93 else

94 {

95 result = !(Own_Above_Threat()) || ((Own_Above_Threat()) &&
(Up_Separation >= ALIM()));

96 }

97 return result;

98 }

99

100 bool Own_Below_Threat ()

1 {

102 return (Own_Tracked_Alt < Other_Tracked_Alt);

103 }

104

105 bool Own_Above_Threat ()

106 {

107 return (Other_Tracked_Alt < Own_Tracked_Alt);

108 }

109

110 int alt_sep_test ()

11 {

112 bool enabled, tcas_equipped, intent_not_known;

113 bool need_upward_RA, need_downward_-RA;

114 int alt_sep;

116 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&
(Cur_Vertical_Sep > MAXALTDIFF) ;

117 tcas_equipped = Other_Capability = TCAS_TA;

118 intent_not_known = Two_of_Three_Reports_Valid && (Other RAC =
NOINTENT) ;

139

140

142

143

136

Appendix A. Case Study: TCAS

alt_sep = UNRESOLVED;

if (enabled && ((tcas_equipped && intent_-not_known) || !tcas_equipped))

{

need_upward_RA = Non_Crossing_Biased_Climb () && Own_Below_Threat () ;
need_downward_.RA = Non_Crossing_Biased_Descend () &&
Own_Above_Threat () ;
if (need_upward_ RA && need_downward_RA)
/% unreachable: requires Own_Below_Threat and Own_Above_Threat
to both be true — that requires
Own_Tracked_Alt < Other_Tracked_Alt and
Other_Tracked_Alt < Own_Tracked_Alt, which isn’t possible x/
alt_sep = UNRESOLVED;
else if (need_upward_-RA)
alt_sep = UPWARDRA;
else if (need_-downward_RA)
alt_sep = DOWNWARDRA;
else
alt _sep = UNRESOLVED;

return alt_sep;

main (argc, argv)

int argc;

{

5 char xargv[];

if (arge < 13)

{

fprintf(stdout, ”"Error: Command line arguments are\n”);

fprintf(stdout, ”Cur_Vertical_Sep, High_Confidence ,
Two_of _Three_Reports_Valid\n”);

fprintf(stdout, "Own_Tracked_Alt, Own_Tracked_Alt_Rate,
Other_Tracked_Alt\n”);

fprintf (stdout, 7 Alt_Layer_Value, Up_Separation,
Down_Separation\n”) ;

fprintf (stdout, ”Other RAC, Other_Capability , Climb_Inhibit\n”);

exit (1);

initialize () ;

Cur_Vertical_Sep = atoi(argv[1l]);

High_Confidence = atoi(argv[2]);
Two_of_Three_Reports_Valid = atoi(argv[3]);
Own_Tracked_Alt = atoi(argv[4]);
Own_Tracked_Alt_Rate = atoi(argv[5]);

Appendix A. Case Study: TCAS

137

164 Other_Tracked_Alt = atoi(argv[6]);

165 Alt _Layer_Value = atoi(argv|[7]);
166 Up_Separation = atoi(argv[8]);
167 Down_Separation = atoi(argv[9]);
168 Other_ RAC = atoi(argv[10]);

169 Other_Capability = atoi(argv[11]);
170 Climb_Inhibit = atoi(argv[12]);

172 monitor_read (1); /*s

pecial system call for monitoring variablessx/

174 fprintf (stdout, "%d\n”, alt_sep_test ());
175 exit (0);

A.2 DMonitored Variables and Mapping Functions

1 #include <stdio.h>

3 typedef int bool;

5 /+* monitored variables x/

6 int Cur_Vertical_Sep;
7 bool High_Confidence;
s bool Two_of_Three_Reports_Valid;

10 int Own_Tracked_Alt;
11 int Own_Tracked_Alt_Rate;
12 int Other_Tracked_Alt;

14 int Alt_Layer_Value;

16 int Up_Separation;

17 int Down_Separation;

19 int Other_.RAC;
20 int Other_Capability;
21 int Climb_Inhibit ;

23 #define
24 #define
25 #define
26 #define
28 #define
20 #define
30 #define

OLEV 600
MAXALTDIFF 600
MINSEP 300
NOZCROSS 100

NOINTENT 0
DONOT_CLIMB 1
DONOTDESCEND 2

/* NOINTENT, DONOT_CLIMB, DONOTDESCEND =/

/* TCAS_TA, OTHER x/
/* true/false x/

/% in feets/minute x/

/* max altitude difference in feet

/* min separation in
/* in feet x/

feet =/

*/

138

Appendix A. Case Study: TCAS

31

32 #define
33 #define
34

35 #define
36 #define
37 #define
30 #define
10 #define
11 #define
12 #define

43

TCASTA 1
OTHER 2

UNRESOLVED 0
UPWARDRA 1
DOWNWARDRA 2

Positive_.RA_Alt_Thresh_0
Positive_RA_Alt _Thresh_1
Positive_RA_Alt_Thresh_2
Positive_.RA_Alt_Thresh_3

14 /+* mapping functions x
pping

15 bool p_Cur_Vertical_-Sep_.GE_MINSEP ()

46 {

= 400
= 500
= 640
= 740

17 return (Cur_Vertical_Sep >= MINSEP) ;

50 bool p_-Own_Tracked_Alt_LE_Other_Tracked_Alt ()

51 {

52 return (Own_Tracked_Alt < Other_Tracked_Alt);

55 bool p_Other_Tracked_ Alt_ LE_Own_Tracked_Alt ()

56 {

57 return (Other_Tracked_Alt < Own_Tracked_Alt);
58 }

59

60 bool p_Down_Separation.GE_ALIM ()

61 {

62 int Positive_RA_Alt_Thresh;

64 switch (Alt_-Layer_Value)

65 {

case 0:

Positive_.RA_Alt_Thresh = Positive_.RA_Alt_Thresh_0;

break;

case 1:

Positive_.RA_Alt_Thresh = Positive_.RA_Alt_Thresh_1;

break ;

case 2:

Positive_RA_Alt _Thresh = Positive_RA_Alt_Thresh_2;

break ;

case 3:

Positive_RA_Alt_Thresh = Positive_.RA_Alt_Thresh_3;

break ;
default :

Appendix A. Case Study: TCAS 139

79 break;

80 }

81

82 return (Down_Separation >= Positive_RA_Alt_Thresh);
83 }

84

85 bool p_Up_Separation . GE_ALIM ()

86 {

87 int Positive_RA_Alt_Thresh;

88

89 switch (Alt_Layer_Value)

90 {

91 case 0:

92 Positive_RA_Alt _Thresh = Positive_RA_Alt_Thresh_0;
93 break;

94 case 1:

95 Positive_RA_Alt _Thresh = Positive_RA_Alt_Thresh_1;
96 break;

97 case 2:

98 Positive_RA_Alt_Thresh = Positive_RA_Alt_Thresh_2;
99 break;

100 case 3:

101 Positive_.RA_Alt_Thresh = Positive_.RA_Alt_Thresh_3;
102 break ;

103 default :

104 break;

105 }

106 return (Up_Separation >= Positive_RA_Alt_Thresh);

108

109 bool p_upward_preferred ()

110 {

111 return ((Climb_Inhibit ? Up_Separation + MINSEP : Up_Separation) >
Down_Separation);

112}

113

114 bool p_tcas_equipped ()

115 {

116 return (Other_Capability = TCAS.TA);

17}

118

119 bool p_Own_Tracked_Alt_Rate_.LE_OLEV ()

120 {
121 return (Own_Tracked_Alt_Rate <= OLEV);

124 bool p_Cur_Vertical_Sep_.GT_MAXALTDIFF ()
125 {

18

140 Appendix A. Case Study: TCAS

return (Cur_Vertical_-Sep > MAXALTDIFF) ;

}
bool p_Other_ RAC_EQ_NO_INTENT ()
{
return (Other_ RAC = NOINTENT) ;
}

A.3 Abstract Model

typedef int bool;

/xabstract variablessx/

bool p_Cur_Vertical Sep.GE_MINSEP ;

bool p_Cur_Vertical_Sep_.GT_MAXALTDIFF;

bool p_.Own_Tracked_Alt_LT_Other_Tracked_Alt;
bool p_Other_Tracked Alt_LT_Own_Tracked_Alt;
bool p_Own_Tracked_Alt_Rate_.LE_OLEV

bool p_Up._Separation_.GE_ALIM;

bool p_Down_Separation . GE_ALIM ;

bool p_upward_preferred;

bool p_-tcas_equipped;

bool p.Other. RAC_EQ.NO_INTENT;

bool High_Confidence;
bool Two_of_Three_Reports_Valid;

#define UNRESOLVED 0

19 #define UPWARDRA 1

#define DOWNWARDRA 2

bool Own_Below_Threat ()

A

return p_Own_Tracked_Alt LT _Other_Tracked_Alt;
}
bool Own_Above_Threat ()
{

return p_Other_Tracked _Alt_LT_Own_Tracked_Alt;
}

bool Non_Crossing_Biased_Climb ()
{

bool upward_preferred;

bool result;

38

39

10

Appendix A. Case Study: TCAS

141

upward_preferred = p_upward_preferred;

if (upward_preferred)

{
result = !(Own_Below_Threat()) || ((Own_Below_Threat()) &&
!(p-Down_Separation GE_ALIM)) ;
}
else
{
result = Own_Above_Threat () && p_-Cur_Vertical_Sep_.GE_MINSEP &&
p-Up_Separation GE_ALIM ;
}

return result;

bool Non_Crossing_Biased_Descend ()

{

; int

bool upward_preferred;

bool result;

upward_preferred = p_upward_preferred;

if (upward_preferred)

{
result = Own_Below_Threat () && p_-Cur_Vertical _Sep_.GE_MINSEP &&
p-Down_Separation GE_ALIM ;
}
else
{
result = !(Own_Above_Threat()) || ((Own_-Above_Threat()) &&
p-Up-Separation_.GE_ALIM) ;
}

return result;

alt_sep_test ()

bool enabled, tcas_equipped, intent_not_known;
bool need_upward_RA, need_downward_-RA;

int alt_sep;

enabled = High_Confidence && p_-Own_Tracked_Alt_Rate.LE_OLEV &&

p-Cur_Vertical_Sep_.GT_MAXALTDIFF;
tcas_equipped = p-tcas_equipped;
intent_not_known = Two_of _Three_Reports_Valid &&
p-Other RAC_EQ_NO_INTENT;

alt_sep = UNRESOLVED;

if (enabled && ((tcas_equipped && intent_not_known)

!tcas_equipped))

142 Appendix A. Case Study: TCAS

79 {

80 need_upward_RA = Non_Crossing_Biased_Climb () && Own_Below_Threat () ;

81 need_downward_.RA = Non_Crossing_Biased_Descend () &&
Own_Above_Threat () ;

82 if (need_upward_ RA && need_downward_RA)

83 alt_sep = UNRESOLVED;

84 else if (need_upward_.RA)

85 alt _sep = UPWARDRA;

86 else if (need_-downward_-RA)

87 alt _sep = DOWNWARDRA;

88 else

89 alt _sep = UNRESOLVED;

90 }

91 assert (alt_sep!=UNRESOLVED) ;

92 return alt_sep;

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2
5.3
5.4
5.5

6.1

A Kripke structure example 10
The visualized explanation of some LTL formulas 11
(a) Safety property Gp and (b) Liveness property FGp 13
(a) Bgpand (b) BEGp - - « « v« v v e 13
Visualize the undefined transition in Bg, 15
(a) Bgp and (b) BRGp - -« « « v v v v e e 16
Three relationships between system model and system implementation . . 33
Online reachability checking 36
Bounded model checking during runtimeo 36
Traditional bounded model checking 37
A state-recording processo 40
Online model checking process 41
Pre-checking and Post-checking o0 43
Producer-Consumer problem 0oL 45
Biichi Automaton of =f = F(aco A G(—gro)) 51
Experimental results of online liveness checking 51
Online invariant checking by means of random BFS. 53
Online liveness checking by means of random BFS 53
k-step forward jump Lo 55
d-step forward jump L. 55
Speed up online model checking oL 56
Speed up liveness checking oL 57
Multiple virtual machines (VMs) hosted on multicore processor 60
Performance of the two decision strategies 64
Cumulative runtime of the two decision strategies 64
Performance of the three decision strategies for k=50 65
Performance comparison of multiple SAT-based model checkers 65
Two online model checkers working in parallel 66
Execution of one online model checker with the random buffer setting . . 67
Edge-cut partitioning vs. vertex-cut partitioning 76
Cut a vertex in different ways oo 76
A smaller local cut close to bottom line 77
Partition a control flow graph 00000 80
Two special cases in partitioning CFG 81
Integration Framework L L oo 84

144

List of Figures

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Architecture of ORCOS 87
Syscall processing of ORCOS 88
Architecture of prototype implementation 90
Integration of online model checking with ORCOS 91
Monitoring tool of ORCOS 92
Sending state information to online model checker 97
Receiving checking result from online model checker 98
Synchronous and Asynchronous Communication 99
Time taken for monitoring state information. 101

Time taken for transferring data from ORCOS buffer to QEMU buffer . . 102

Protected volume (horizontal view) 106
Protected volume (vertical view), 106
Transition from passive to active surveillance 107
From concrete state to abstract state 0oL 109
A hybrid system trajectoryo 117
Online model checking problem 118
Online forward reachability checking 118
Computing backward reachableset 119
Casestudy e 122
Distance change over time between the two vehicles. 122
Speed change over time of the two vehicles. 122
Backward reachableset oL 123
Convex hull of the backward reachable set 124

Online forward reachability checking 125

List of Tables

4.1 Experimental results of online invariant checking
4.2 MSI model |[M]|; with path of different lengths

8.1 Experimental results of online forward reachability checking

145

List of Selected Publications

1. Krishna Sudhakar, Yuhong Zhao, and Franz-Josef Rammig. Efficient Integra-
tion of Online Model Checking into a Small Footprint Real-Time Operating Sys-
tem. In Proc. 17th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), pages 374-383, June 2014.

2. Franz Rammig, Lial Khaluf, Norma Montealegre, Katharina Stahl, and Yuhong
Zhao. Organic Real-Time Programming — Vision and Approaches towards Self-
evolving and Adaptive Real-time Software. In Lynn Choi and Raimund Kirner,
editors, Proc. 9th Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS’13). IEEE, June 2013.

3. Mona Qanadilo, Sufyan Samara, and Yuhong Zhao. Accelerating Online Model
Checking. In Proceedings of the 6th Latin-American Symposium on Dependable
Computing (LADC’13), pages 40-47, April 2013.

4. Yuhong Zhao and Franz Rammig. Online Model Checking for Dependable Real-
Time Systems. In Proc. 15th IEEE International Symposium on Object/Com-
ponent/Service-Oriented Real-Time Distributed Computing (ISORC), pages 154-
161, Shenzhen, China, April 2012. ISBN 978-1-4673-0499-3.

5. Sufyan Samara, Yuhong Zhao, and Franz-Josef Rammig. Integrate Online Model
Checking into Distributed Reconfigurable System on Chip with Adaptable OS
Services. In Distributed, Parallel and Biologically Inspired Systems. volume 329
of IFIP Advances in Information and Communication Technology. pages 102-113.

Springer Boston, September 2010.

6. Franz-Josef Rammig, Yuhong Zhao, and Sufyan Samara. Online Model Checking
as Operating System Service. In Proc. 7th IFIP Workshop on Software Tech-
nologies for Future Embedded and Ubiquitous Systems (SEUS’09). TFTP WG 10.5,
Springer, November 2009.

147

148 List of Publications

7. Yuhong Zhao, Simon Oberthiir, and Franz-Josef Rammig. Runtime Model Check-
ing for Safety and Consistency of Self-Optimizing Mechatronic Systems. In Pro-
ceedings of the Tth International Heinz Nixzdorf Symposium: Self-Optimzing Mecha-
tronic Systems. ALB-HNI-Verlagsschriftenreihe. Heinz Nixdorf Institut, February
2008.

8. Yuhong Zhao, Martin Kardos, Simon Oberthiir, and Franz-Josef Rammig. Com-
prehensive Verification Framework for Dependability of Self-Optimizing Systems.
In Proceedings of the 3rd International Symposium on Automated Technology for

Verification and Analysis (ATVA’05). Taipei, Taiwan, October 2005.

9. Yuhong Zhao, Simon Oberthiir, Martin Kardos, and Franz-Josef Rammig. Model-
based Runtime Verification Framework for Self-Optimizing Systems. In Proceed-
ings of the 2005 Workshop on Runtime Verification (RV’05). Edinburgh, Scotland,
UK, July 2005.

Bibliography

1]

2]

Christof Ebert and Capers Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42-52, April 2009. ISSN 0018-9162.

Hermann Kopetz. Real-time systems: design principles for distributed embedded
applications. Kluwer international series in engineering and computer science:

Real-time systems. Kluwer Academic Publishers, 2011. ISBN 9780792398943.

Donna Tam. Google’s Sergey Brin: You'll ride in robot cars within 5 years. CNet
News, September 25. 2012.

Jaikumar Vijayan. Amazon’s efforts to test drones for package delivery gain sup-

port. Computerworld News, Aug 27. 2014.

Walt Truszkowski, Harold Hallock, Christopher Rouff, Jay Karlin, James Rash,
Michael Hinchey, and Roy Sterritt. Autonomous and Autonomic Systems: With

Applications to NASA Intelligent Spacecraft Operations and Fxploration Systems.
Springer, 2009. ISBN 1846282322.

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, January 2003. ISSN 0018-9162.

Philip Koopman, Charles Shelton, Beth Latronico, and Jen Morris. Roses: Robust
self-configuring embedded systems. URL http://www.ece.cmu.edu/~koopman/

roses/.

Collaborative Research Centre 614. Self-optimizing concepts and structures in

mechanical engineering. URL http://www.sfb614.de/en/home/.

Franz-Josef Rammig, Lial Khaluf, Norma Montealegre, Katharina Stahl, and
Yuhong Zhao. Organic real-time programming —vision and approaches towards
self-evolving and adaptive real-time software. In Lynn Choi and Raimund Kirner,
editors, Proc. 9th Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS’13). IEEE, 17 - 18 2013.

149

http://www.ece.cmu.edu/~koopman/roses/
http://www.ece.cmu.edu/~koopman/roses/
http://www.sfb614.de/en/home/

150

Bibliography

[10]

[11]

[12]

[14]

[15]

[21]

Arjan van der Schaft and Hans Schumacher. An introduction to hybrid dynam-
ical systems, volume 251 of Lecture Notes in Control and Information Sciences.

Springer, London, 2000.

C.W. Johnson and C.M. Holloway. The dangers of failure masking in fault-tolerant
software: Aspects of a recent in-flight upset event. In Proceedings of the 2nd
Institution of Engineering and Technology International Conference on System
Safety, pages 6065, Oct 2007.

Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: A survey
and future directions. Technical Report NASA /CR-2010-216724, NASA Langley
Research Center, July 2010.

David M. Cummings. Haven’t found that software glitch, Toyota? Keep trying.
Los Angeles Times, March 11. 2010.

Associated Press. Safety agency studying Toyota acceleration problem. Fox News,
September 30. 2014.

Jim Turley. Cars, Coding, and Carelessness. FElectronic Engineering Journal,
November 27. 2013.

Andrew Glover. In pursuit of code quality: Monitoring cyclomatic complexity.
IBM developerWorks, March 28. 2006.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley
& Sons, 2004. ISBN 0471469122.

Edmund M. Clarke, Orna Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

J. van Leeuwen, J. Hartmanis, and G. Goos, editors. Partial-Order Methods for the
Verification of Concurrent Systems: An Approach to the State-Explosion Problem.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Composi-
tional Reasoning in Model Checking. In COMPOS’97: Revised Lectures from the
International Symposium on Compositionality: The Significant Difference, pages

81-102, London, UK, 1998. Springer-Verlag. ISBN 3-540-65493-3.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512-1542, 1994. ISSN
0164-0925.

Bibliography 151

[22]

23]

[24]

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:118-149, 2003.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson and
A. Prasad Sistla, editors, Computer Aided Verification, 12th International Con-
ference (CAV 2000), pages 154-169. Springer, 2000. ISBN 3-540-67770-4.

Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diam-
eters. In Proceedings of the 4th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI 2003, pages 298-309, London, UK,
UK, 2003. Springer-Verlag. ISBN 3-540-00348-7.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEFE Trans.
Dependable Secur. Comput., 1(1):11-33, January 2004. ISSN 1545-5971.

Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure predic-
tion methods. ACM Comput. Surv., 42(3):10:1-10:42, 2010. ISSN 0360-0300.

A. Avizienis. The four-universe information system model for the study of fault
tolerance. Proceedings of the 12th Annual International Symposium on Fault-

Tolerant Computing, Santa Monica, California, pages pp. 6-13, 1982.

B. Plattner and J. Nievergelt. Special feature: Monitoring program execution: A
survey. Computer, 14(11):76-93, Nov 1981. ISSN 0018-9162.

Amir Pnueli. The temporal semantics of concurrent programs. Theor. Comput.
Sci., 13:45-60, 1981.

Bowen Alpern and Fred B. Schneider. Recognizing Safety and Liveness. Distributed
Comp., 2:117-126, 1987.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125-143, March 1977. ISSN 0098-5589.

Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata

generation for linear temporal logic. In CAV, pages 249-260, 1999.

Fabio Somenzi and Roderick Bloem. Efficient biichi automata from 1tl formulae.
In CAV, pages 248-263, 2000.

Paul Gastin and Denis Oddoux. Fast Itl to bilichi automata translation. In CAV,
pages 53-65, 2001.

152

Bibliography

[35]

[36]

[38]

[39]

[44]

[45]

[46]

Xavier Thirioux. Simple and efficient translation from ltl formulas to biichi au-
tomata. Electr. Notes Theor. Comput. Sci., 66(2), 2002.

Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving

translation of 1tl formulae to biichi automata. In FORTE, pages 308-326, 2002.

Carsten Fritz. Constructing biichi automata from linear temporal logic using

simulation relations for alternating biichi automata. In CIAA, pages 35-48, 2003.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. A system of
specification patterns. URL http://patterns.projects.cis.ksu.edu.

Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72-99, January/February 1983.

Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form.
Methods Syst. Des., 19(3):291-314, October 2001. ISSN 0925-9856.

Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293-318, 1992. ISSN 0360-0300.

Nina Amla, Robert P. Kurshan, Kenneth L. McMillan, and Ricardo Medel. Ex-
perimental analysis of different techniques for bounded model checking. In Hubert
Garavel and John Hatcliff, editors, TACAS, volume 2619 of Lecture Notes in Com-
puter Science, pages 34-48. Springer, 2003. ISBN 3-540-00898-5.

Kenneth L. McMillan and Nina Amla. Automatic abstraction without counterex-
amples. In Proceedings of the 9th international conference on Tools and algorithms
for the construction and analysis of systems, TACAS’03, pages 2-17, Berlin, Hei-
delberg, 2003. Springer. ISBN 3-540-00898-5.

N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. Software Engineering, IEEE Transactions on, 30

(12):859-872, Dec 2004. ISSN 0098-5589.

Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michael Brazell. A lightweight
architecture for program execution monitoring. In Proceedings of the ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and en-
gineering, pages 67-74, New York,USA, 1998. ACM. ISBN 1-58113-055-4.

Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally
specified programs. Computer, 26(3):32-41, March 1993. ISSN 0018-9162.

http://patterns.projects.cis.ksu.edu

Bibliography 153

[47]

[49]

[50]

[55]

Bernd Bruegge, Tim Gottschalk, and Bin Luo. A framework for dynamic program
analyzers. In Proceedings of the 8th annual conference on Object-oriented program-
ming systems, languages, and applications, OOPSLA’93, pages 65-82, New York,
USA, 1993. ACM. ISBN 0-89791-587-9.

Michel Diaz, Guy Juanole, and Jean-Pierre Courtiat. Observer-a concept for for-
mal on-line validation of distributed systems. IEEE Trans. Softw. Eng., 20(12):
900-913, December 1994. ISSN 0098-5589.

A. Q. Gates, S. Roach, O. Mondragon, and N. Delgado. DynaMICs: Comprehen-
sive Support for Run-Time Monitoring. In Proceedings of the First Workshop on
Runtime Verification (RV’01), pages 61-77. Elsevier, 2001.

Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter. Falcon: On-
line monitoring for steering parallel programs. In In Ninth International Con-
ference on Parallel and Distributed Computing and Systems (PDCS’97), pages
699-736, 1998.

Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike Wehrheim. Jass -
java with assertions. Electr. Notes Theor. Comput. Sci., 55(2):103-117, 2001.

Klaus Havelund and Grigore Rosu. Java pathexplorer - a runtime verification
tool. In Proceedings of the 6th International Symposium on Artificial Intelligence,

Robotics and Automation in Space: A New Space Odyssey, June 2001.

Moonjoo Kim, Mahesh Viswanathan, Hanéne Ben-Abdallah, Sampath Kannan,
Insup Lee, and Oleg Sokolsky. MAC: A Framework for Run-time Correctness
Assurance of Real-Time Systems. Technical Report MS-CIS-98-37, University of
Pennsylvania, 1998.

Feng Chen and Grigore Rogu. Towards Monitoring-Oriented Programming: A
Paradigm Combining Specification and Implementation. In Proceedings of the
Workshop on Runtime Verification (RV’03), volume 89(2) of ENTCS, pages 108
- 127, 2003.

Jeffery. J. P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A noninterference
monitoring and replay mechanism for real-time software testing and debugging.
IEEE Trans. Softw. Eng., 16(8):897-916, August 1990. ISSN 0098-5589.

Sarah Chodrow and Mohamed G. Gouda. Implementation of the sentry system.
In Software Practice and Experience, 25:373-387, 1994.

Doron Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings
of the Tth International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 323-330, London, UK, 2000. Springer. ISBN 3-540-41030-9.

154

Bibliography

[58]

[60]

[64]

Marta Kwiatkowska. Quantitative verification: Models techniques and tools. In
Proceedings of the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of Software En-
gineering, pages 449-458, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
811-4.

Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. Self-
adaptive software needs quantitative verification at runtime. Commun. ACM, 55
(9):69-77, September 2012. ISSN 0001-0782.

Gerd Behrmann, Kim Guldstrand Larsen, and Radek Peldanek. To store or not
to store. In Proceedings of the 15th International Conference on Computer Aided
Verification (CAV), volume 2725 of Lecture Notes in Computer Science, pages
433-445. Springer, 2003.

Yuhong Zhao and Franz Rammig. Online Model Checking for Dependable Real-
Time Systems. In Proceedings of the 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
pages 154-161, Shenzhen, China, April 2012. IEEE Computer Society. ISBN 978-
1-4673-0499-3.

Viktor Schuppan. Liveness checking as safety checking to find shortest counterez-

amples to linear time properties. PhD thesis, ETH Zurich, 2006.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In Proceedings of the 21st interna-
tional conference on Software engineering, ICSE 99, pages 411-420, New York,
NY, USA, 1999. ACM. ISBN 1-58113-074-0.

Radek Pelanek. Beem: benchmarks for explicit model checkers. In Proceedings of
the 14th international SPIN conference on Model checking software, pages 263267,
Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-73369-0.

S. Baehni, R. Baldoni, R. Guerraoui, and B. Pochon. The driving philosophers.
In Proceedings of the 3rd IFIP International Conference on Theoretical Computer
Science (TCS), 2004.

Bryon Moyer, editor. Real World Multicore Embedded Systems. Newnes, 2013.

Joe ‘Zonker’ Brockmeier. Containers vs. Hypervisors: Choosing the Best Virtual-

ization Technology. The Linux Foundation, April 13. 2010.

Chris Ault. Challenges of safety-critical multi-core systems. Embedded Newsletter,
April 23. 2011.

Bibliography 155

[69]

[70]

[75]

[76]

Mona Qanadilo, Sufyan Samara, and Yuhong Zhao. Accelerating online model
checking. In Proceedings of the 6’th Latin-American Symposium on Dependable
Computing (LADC’13), pages 40-47, April 2013.

O. Shacham and E. Zarpas. Tuning the VSIDS Decision Heuristic for Bounded
Model Checking. In Proc. Fourth International Workshop on Microprocessor Test
and Verification, Common Challenges and Solutions (MTV 2003). IEEE Com-
puter Society, 2003.

Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In 2007 Future of Software Engineering, FOSE ’07,
pages 37-54, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2829-5.

Thomas A. Henzinger, Benjamin. Horowitz, and Christoph M. Kirsch. Giotto: a
time-triggered language for embedded programming. Proceedings of the IEEE, 91
(1):84-99, Jan 2003. ISSN 0018-9219.

Farnam Jahanian and Aloysius K. Mok. Modechart: a specification language for
real-time systems. Software Engineering, IEEE Transactions on, 20(12):933-947,
Dec 1994. ISSN 0098-55809.

Manfred Broy, Sascha Kirstan, Helmut Krcmar, Bernhard Schétz, and Jens Zim-
mermann. What is the benefit of a model-based design of embedded software
systems in the car industry? In Jérg Rech and Christian Bunse, editors, Emerg-
ing Technologies for the Fvolution and Maintenance of Software Models, pages
343-369. IGI, 2011.

Steven P. Miller, Elise A. Anderson, Lucas G. Wagner, Michael W. Whalen, and
Mats P. E. Heimdahl. Formal verification of flight critical software. In Proceedings
of AIAA Guidance, Navigation, and Control Conference, San Francisco, USA,
August 2005.

Matthew Staats and Mats Per Erik Heimdahl. Partial translation verification for
untrusted code-generators. In Shaoying Liu, T. S. E. Maibaum, and Keijiro Araki,
editors, Proceedings of thel0th International Conference on Formal Engineering
Methods (ICFEM’08), pages 226-237, Kitakyushu, Japan, October 2008. ISBN
978-3-540-88193-3.

MISRA. Guidelines for the Use of the C Language in Vehicle Based Software.
Motor Industry Research Association, Nuneaton, UK, 1998. ISBN 0-9524159-9-0.

Motor Industry Software Reliability Association. Guidelines for the Use of the C
Language in Critical Systems. Mira Books Limited, 2004. ISBN 0-9524156-2-3.

156

Bibliography

[79]

[81]

[82]

[83]

[85]

MISRA. Guidelines for the Use of the C Language in Critical Systems. Motor
Industry Research Association, Warwickshire, UK, 2013. ISBN 978-1-906400-10-
1.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, USA, 1992. ISBN 0-387-97664-7.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.
Surv., 41(4):21:1-21:54, October 2009. ISSN 0360-0300.

Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1-19, July 1970.
ISSN 0362-1340.

Mijung Kim and K. Selguk Candan. Sbv-cut: Vertex-cut based graph partitioning
using structural balance vertices. Data Knowl. Eng., 72:285-303, February 2012.
ISSN 0169-023X. With permission of Elsevier.

Krishna Sudhakar. Integrating a real time operating system with an online model
checker. Master thesis, Heinz Nixdorf Institute, University of Paderborn, Pader-

born, Germany, December 2013.

Krishna Sudhakar, Yuhong Zhao, and Franz-Josef Rammig. Efficient integration of
online model checking into a small-footprint real-time operating system. In Proc.
2014 IEEFE 17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pages 374-383, June 2014.

Colin Walls. Multicore basics: AMP and SMP. Embedded Newsletter, March 15.
2014.

AUTOSAR. Specification of Operating Systems (Version 5.0.0). Technical report,
Automotive Open System Architecture GbR, 2011.

Franz-Josef Rammig, Yuhong Zhao, and Sufyan Samara. Online model checking
as operating system service. In Proc. 7th IFIP Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS’09). IFIP WG 10.5, Springer,
November 2009.

John A. Carbone. An RTOS for an SMP Multicore Processor. Software Tools and
Techniques (Special Section), October 2006.

M. Vaidehi and T. R. Gopalakrishnan Nair. Multicore applications in real time
systems. CoRR, abs/1001.3539, 2010. URL http://arxiv.org/abs/1001.3539.

Research Group Rammig at University of Paderborn. ORCOS (Organic ReConfig-
urable Operating System). URL https://orcos.cs.uni-paderborn.de/orcos/

www/.

http://arxiv.org/abs/1001.3539
https://orcos.cs.uni-paderborn.de/orcos/www/
https://orcos.cs.uni-paderborn.de/orcos/www/

Bibliography 157

[92]

[96]

[99]

[100]

[101]

[102]

Franz-Josef Rammig, Katharina Stahl, and Gavin Vaz. A framework for en-
hancing dependability in self-x systems by artificial immune systems. In Uwe
Brinkschulte, M. Theresa Higuera-Toledano, and Achim Rettberg, editors, Proc.
4th IEEE Workshop on Self-Organizing Real-Time Systems (SORT) 2013. IEEE,
June 2013.

Timo Kerstan and Simon Oberthiir. A configurable hybrid kernel for embedded
real-time systems. In Achim Rettberg, editor, Proceedings of the International
Embedded Systems Symposium. IFIP WG 10.5, Springer-Verlag, 29 May - 1 June
2007.

Carsten Ditze. A step towards operating system synthesis. In Proc. of the 5th
Annual Australasian Conf. on Parallel And Real-Time Systems (PART). IFIP,
IEEE, 1998.

Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling
Algorithms And Applications (Real-Time Systems Series). Springer-Verlag TE-
LOS, Santa Clara, CA, USA, 2004. ISBN 0387231374.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46-61, January 1973. ISSN 0004-
5411.

Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks in dynamic priority
systems. REAL-TIME SYSTEMS, 10:179-210, 1996.

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ATEC’05,
pages 41-46, Berkeley, CA, USA, 2005. USENIX Association.

Markus Becker. Univ. of Paderborn, Paderborn, Germany. Personal comm., 2015.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specification for process-control systems. IEEE Transactions
on Software Engineering, 20(9):684-706, September 1994.

Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS II. In
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA’96, pages 79-83, New York, USA, 1996. ACM. ISBN
0-89791-787-1.

William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Mod-
ugno, David Notkin, and Jon D. Reese. Model checking large software specifica-
tions. IEEE Transactions on Software Engineering, 24(7):156-166, 1998.

158

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé. Using
symbolic execution for verifying safety-critical systems. In Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-9,
pages 142-151, New York, USA, 2001. ACM. ISBN 1-58113-390-1.

Arnaud Gotlieb. TCAS software verification using constraint programming.
Knowledge Engineering Review, 27(3):343-360, July 2012. ISSN 0269-8889.

Federal Aviation Administration (FAA) U.S. Department of Transportation. In-
troduction to TCAS II version 7.1, February 2011.

The European Organization for the Safety of Air Navigation (EUROCONTROL).
ACAS II Guide, January 2012.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its potential impact.
Empirical Softw. Engg., 10(4):405-435, October 2005. ISSN 1382-3256.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture
Notes in Computer Science, pages 168-176. Springer, 2004. ISBN 3-540-21299-X.

Michael S. Branicky and Sven Erik Mattsson. Simulation of hybrid systems. In
Hybrid Systems IV, pages 31-56, London, UK, 1997. Springer-Verlag. ISBN 3-
540-63358-8.

MichaelS. Branicky. Introduction to hybrid systems. In Dimitrios Hristu-Varsakelis
and WilliamS. Levine, editors, Handbook of Networked and Embedded Control Sys-
tems, Control Engineering, pages 91-116. Birkhduser Boston, 2005. ISBN 978-0-
8176-3239-7.

Claire Tomlin, Ian Mitchell, Alexandre M. Bayen, and Meeko Oishi. Computa-
tional techniques for the verification of hybrid systems. In Proceedings of the IEEE,
91(7):986-1001, 2003.

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Hybrid systems: From veri-
fication to falsification by combining motion planning and discrete search. Formal
Methods in System Design, 34(2):157-182, April 2009. ISSN 0925-9856.

Amit Bhatia and Emilio Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In Proceedings of Hybrid Systems:

Computation and Control, pages 142—-156. Springer, 2004.

Bibliography 159

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

M.S. Branicky, M.M. Curtiss, J. Levine, and S. Morgan. Sampling-based planning,
control and verification of hybrid systems. In IEE Proceedings of Control Theory
and Applications, 153(5):575-590, 2006. ISSN 1350-2379.

Lei Bu, Jianhua Zhao, and Xuandong Li. Path-oriented reachability verification of
a class of nonlinear hybrid automata using convex programming. In Gilles Barthe
and Manuel Hermenegildo, editors, Proceedings of Verification, Model Checking,
and Abstract Interpretation (VMCAI), volume 5944 of Lecture Notes in Computer
Science, pages 78-94. Springer, 2010. ISBN 978-3-642-11318-5.

Lei Bu and Xuandong Li. Path-oriented bounded reachability analysis of composed
linear hybrid systems. International Journal on Software Tools for Technology

Transfer, 13(4):307-317, 2011. ISSN 1433-2779.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3-34, February 1995. ISSN 0304-3975.

Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer, November 2002. ISBN 0387954821.

Tan Mitchell. Application of Level Set Methods to Control and Reachability Prob-
lems in Continuous and Hybrid Systems. PhD thesis, Stanford University, Stan-
ford, USA, August 2002.

Tan M. Mitchell and Claire J. Tomlin. Overapproximating reachable sets by
hamilton-jacobi projections. Journal of Scientific Computing, 19(1):323-346, 2003.
ISSN 1573-7691. With permission of Springer.

Martin Franzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. Efficient solving of large non-linear arithmetic constraint systems with com-
plex boolean structure. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 1:209-236, 2007.

University of Paderborn. RailCab Preject. URL http://www.railcab.de.

C. Henke, N. Frohleke, and J. Bcker. Advanced convoy control strategy for au-
tonomously driven railway vehicles. In IEEE Conf. on Intelligent Transportation
Systems (ITSC), 2006.

Christian Henke, Matthias Tichy, Tobias Schneider, Joachim Boécker, and Wilhelm
Schéfer. System architecture and risk management for autonomous railway con-
voys. In Proceedings of the 2nd Annual IEEFE International Systems Conference,
Montreal, Canada, April 2008.

http://www.railcab.de

160

Bibliography

[125]

[126]

[127]

Lei Bu, Xin Chen, Linzhang Wang, and Xuandong Li. Online verification of control
parameter calculations in communication based train control system. Computing
Research Repository (CoRR), abs/1101.4271, 2011.

Lei Bu, Qixin Wang, Xin Chen, Linzhang Wang, Tian Zhang, Jianhua Zhao, and
Xuandong Li. Toward online hybrid systems model checking of cyber-physical
systems’ time-bounded short-run behavior. SIGBED Rev., 8(2):7-10, June 2011.
ISSN 1551-3688.

Tao Li, Feng Tan, Qixin Wang, Lei Bu, Jian-Nong Cao, and Xue Liu. From Of-
fline Toward Real-Time: A Hybrid Systems Model Checking and CPS Co-design
Approach for Medical Device Plug-and-Play (MDPnP). In Proceedings of the
2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, 1C-
CPS’12, pages 13—22, Washington, DC, USA, 2012. IEEE Computer Society. ISBN
978-0-7695-4695-7.

	1 Introduction
	2 Preliminaries
	2.1 Fault, Error and Failure
	2.2 Behavioral Model
	2.3 Property Specification
	2.3.1 Linear Temporal Logic
	2.3.2 Büchi Automaton

	2.4 LTL Model Checking
	2.5 Bounded Model Checking (BMC)

	3 Related Work
	4 Online Model Checking Mechanism
	4.1 Online Model Checking
	4.1.1 Problem Statement
	4.1.2 Online Model Checking for Safety Properties
	4.1.3 Online Model Checking for Liveness Properties
	4.1.4 Discussion
	4.1.5 Prototype Implementation and Experimental Results

	4.2 Accelerating Online Model Checking
	4.2.1 Reducing Workload
	4.2.2 Online Symbolic Model Checking
	4.2.3 Parallel Computing
	4.2.4 Prototype Implementation and Experimental Results

	4.3 Summary

	5 Model Generation and Source Code Instrumentation
	5.1 Embedded Control Applications
	5.2 Model Generation
	5.3 Source Code Instrumentation
	5.3.1 MISRA C
	5.3.2 Control Flow Graph
	5.3.3 Graph Partitioning

	5.4 Summary

	6 Integration of Online Model Checking with RTOS
	6.1 Integration Framework
	6.2 ORCOS
	6.3 Prototype Implementation
	6.4 Evaluation
	6.4.1 Overhead Analysis
	6.4.2 Overhead Measurement

	6.5 Discussion
	6.6 Summary

	7 Case Study
	7.1 TCAS
	7.2 Source Code
	7.3 Mapping Functions
	7.4 Abstract Model
	7.5 Experimental Results
	7.6 Summary

	8 Online Model Checking for Hybrid Systems
	8.1 Motivation
	8.2 Hybrid Automaton
	8.3 Online Falsification Problem
	8.4 Offline Backward Reachable Set Computation
	8.5 Online Forward Reachability Checking
	8.6 Experimental Results
	8.7 Related Work
	8.8 Conclusion

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	A Case Study: TCAS
	A.1 RA Component of TCAS
	A.2 Monitored Variables and Mapping Functions
	A.3 Abstract Model

	List of Figures
	List of Tables
	List of Publications
	Bibliography

