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“In the age of automation the ability to navigate persons and devices in indoor environments
has become increasingly important for a rising number of applications.”
Rainer Mautz [1]

“Despite its current limitations, indoor navigation’s huge potential economic and sociologi-
cal capabilities are pushing forward the research, development, implementation, and sale of
low-cost systems. In the near future, this will change the way we interact with our surroun-
dings, with many advantages for the various stakeholders involved in any indoor business.”

Andrea Bottino, Giovanni Malnati and Paolo Montuschi [2]



1. Introduction

Positioning and navigation have played important roles in many aspects of human civiliza-
tion for thousands of years. Demand of this service is increasing steadily in many aspects
called location-based services (LBS) or location-aware systems [3, 4] such as transportati-
on, security, social networking, marketing, and so on. While positioning or localization is
the process to determine the coordinates of the target objects, navigation is the process to
estimate the route from one location to another.

At the beginning, positioning and navigation techniques were investigated for outdoor en-
vironment to support the transportation. Outdoor positioning and navigation were done by a
combination of celestial measurements and land marks, which helped people to control the
vessel over a very large distance. With the development of technology, satellite was inven-
ted and subsequently, satellite based navigation systems such as Global Positioning System
(GPS) by United States and Global Navigation Satellite System (GLONASS) by Russia were
developed. At the moment, there are two other systems being developed namely Galileo by
European Union and the BeiDou Navigation Satellite System by China. Among them, GPS
[5, 6] is the most popular and successful navigation system. GPS was first developed for
military purpose by the U.S. Army and it was made available for civilian use in the 1990s.
With GPS, position estimate in three dimentions is obtained by applying a circular lateration
technique, which relies on range measurements. Nowadays, GPS is used to support the trans-
portation of most of the vehicles such as airplanes, cars and ships. Moreover, GPS can now
be used on most smart devices (smartphones and tablet computers) to support the daily ac-
tivities with lower positioning accuracy than the traditional GPS devices since lower-quality
GPS chipsets are used on portable devices due to price limitation. In the ideal case of line-of-
sight condition, i.e., no or almost no obstacles between the device and the satellites, GPS can
locate a receiver with an accuracy of a few meters. However, in an urban area, the accuracy
degrades dramatically due to non-line-of-sight problems.

Beside the successful GPS, information from some other sources, e.g., Global System for
Mobile Communications (GSM), are also used for the outdoor positioning and navigation
purposes. GSM based positioning was developed to satisfy the Enhanced 911 (E-911) man-
date from the US Federal Communications Commission which requires cellular providers
to track the location of their subscribers to within 50 m for over 67% of the time. The GSM
positioning system may either solely employ the GSM information [7, 8, 9] or combine it
with other sources of information, e.g., GPS, inertial sensors and WiFi, resulting in hybrid
systems [10, 11] in order to produce a more accurate position estimation.

In an indoor environment, GPS signals are normally blocked or unreliable due to the at-
tenuation of signal through roofs or walls. As a result, the positioning accuracy is poor.
Therefore, developing a reliable indoor positioning and navigation system is of a particular
interest. This topic has been attracted the consideration of many researchers over the last de-
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cades. Many approaches emerging from different research communities such as networking,
robotics, and signal processing, have been proposed [3, 12]. However, delivering an accu-
rate position estimation with low cost and low computational costs is still a major technical
challenge.

In indoor positioning, the most popular approaches to locate mobile users are laterati-
on based, angulation based and fingerprinting based techniques using radio signals, such as
Ultra-Wideband, Zigbee, Bluetooth or WiFi. Among those possible techniques, WiFi signal
based techniques are of a particular interest because of the wide deployment of Wireless Lo-
cal Area Network (WLAN) in many public areas such as universities, museums or hospitals.
Through this dissertation, the terms WLAN and WiFi are used interchangeably, although,
stricktly speaking, WiFi refers only to devices certified by the WiFi Alliance. While some
lateration based and angulation based localization techniques use the Time Difference Of
Arrival (TDOA) [13, 14], Time Of Arrival (TOA) [15, 16] and Angle Of Arrival (AOA)
[17] which normally require additional specialized hardware, the others use the radio signal
strength information, i.e., received signal strength index (RSSI), and an estimated path-loss
model [18, 19] to obtain the necessary measurements for determining user position. The si-
gnal strength based approach seems to be more suitable for WLAN positioning since WiFi
RSSI information can be obtained directly from existing WLAN infrastructure by any device
equipped with a WLAN network adapter. However, accurate lateration based and angulation
based positioning using RF signals face many challenges due to multipath effects from re-
flection, refraction and scattering from obstacles, walls and movement of people [18, 12, 20].

The RSSI fingerprinting based technique, which was pioneered in [18], relaxes those li-
mitations. With the fingerprinting based techniques, a certain amount of training data are
collected at possible user locations. The position estimate is determined by comparing the
online observations with the training data. If a sufficient amount of training data is availa-
ble, the data represents the typical variations of RSSI values and the repertoire of pattern
classification techniques can be employed to arrive at an estimate of the user position.

Within RSSI fingerprinting based positioning, there are two common approaches to esti-
mate user location: deterministic approaches, e.g., k-nearest neighbors [18, 21, 22], and sto-
chastic approaches [23, 24, 25] which use a probabilistic model of the training data and
compute the likelihood of observing the online measurements given the position dependent
probability density function (PDF), or the posterior of being at a position given the online
observations, to come up with the position estimate. The stochastic approaches seem to be
able to efficiently cope with the variations in observed data in the training as well as the
classification procedure. There are two common categories of model of the distribution of
RSSI values: parametric and non-parametric models. With parametric model, a careful stu-
dy on the charateristics of indoor WiFi data to find out the appropriate model is needed,
and subsequently, a parameter estimation algorithm has to be developed. On the other hand,
with non-parametric model, the PDF of the RSSI data is usually estimated using histogram
methods. Therefore, more training data are needed to obtain a precise PDF compared to pa-
rametric model. Moreover, the database needs to store many parameters of a non-parametric
model while with parametric model, it only needs to store a few parameters. In the sense
of system simplicity and positioning accuracy, fingerprinting based methods are the most
promising approach with the cost of more training effort.

One remaining problem of fingerprinting based indoor positioning techniques is that the
training data cannot be used efficiently to locate the devices if the devices have different
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charateristics from the ones observed in the training phase [26]. To develop a reliable posi-
tioning system, one must answer the question: how to cope with different portable devices
when they deliver different RSSI information according to the differences of hardware and
chipset drivers? The mismatch of RSSI measurements between training and test leads to
positioning errors, and, hence, probably unsatisfactory positioning performance. To handle
such a mismatching problem, a method to align the training models with the properties of the
testing device is needed. Although this is an essential task to make indoor position systems
work in reality, not many reports have mentioned this problem.

In addition, Dead Reckoning (DR) techniques [27, 28] is another successful approach for
indoor positioning and navigation approach where inertial sensor data is employed. These
techniques aim to determine the user position by estimating the displacement and movement
heading given a known starting position. The DR techniques are able to produce precise
position estimates in a short term of operation. In the long term use, the accumulated error
makes the positioning estimation unreliable. To compensate the error accumulation, a cor-
rection procedure is needed to reset the error of the estimate at regular intervals using other
sources of information, i.e., GPS information or WiFi data. As a consequence, for indoor en-
vironment, hybrid positioning systems which combine WiFi information and inertial sensor
data have been developed to improve the positioning accuracy [29, 30, 31, 32].

Within this dissertation which aims to develop an indoor positioning and navigation sys-
tem for smartphone users, approaches employing WLAN and inertial sensor information are
presented. Inertial sensors such as accelerometers, magnetometers, gyroscopes, ect. are now
available on most modern smartphones. It is thus possible to develop an indoor positioning
system for smartphones employing the built-in sensors of the smartphones without additional
hardware.

This dissertation is organized as follows:

Chapter 1 provides a very brief introduction into positioning and navigation, particularly
for the indoor environment. It briefly presents the reason why in this investigation, WLAN
information and inertial sensor information is employed for indoor positioning purpose.

Chapter 2 discusses the fundamental positioning in general and gives more details for the
indoor environment. The principles of positioning techniques are provided here as well as
their advantages and limitations. A survey of some state-of-the-art research is reported within
the discussion of each technique.

Chapter 3 outlines the objectives of this thesis.

Chapter 4 presents an Expectation-Maximization (EM) algorithm for parameter estimation
of censored and dropped Gaussian data. This procedure is used in the training phase of the
proposed fingerprinting based indoor positioning method. The radio map which is created in
the training phase does not store the raw RSSI measurement, but instead stores the statistical
parameters of the RSSI distributions of all Access Points (APs) at all training positions.
The proposed EM algorithm is able to cope with the censoring and dropping problem in
parameter estimation of Gaussian data. An optimal classification rule within the Maximum
Likelihood (ML) framework for censored and dropped data is also derived.

Chapter 5 presents a method to adapt the training models from one device to another
device within the Maximum Likelihood Linear Regression (MLLR) framework. A method
for estimating a regression tree of adaptation matrices is also discussed here.

Chapter 6 describes a modified Hidden Markov Model (HMM) to employ the knowledge
of possible walking paths and to fuse the information from inertial sensors and WiFi APs.
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Position estimation is carried out by applying a Forward Algorithm to decode the HMM.
In addition, a brief discussion about step detection and movement heading estimation is
provided.

Chapter 7 describes some experimental results both on simulation data and real field data
in order to demonstrate the effectiveness of the proposed methods. Comparison with some
other approaches are also discussed.

Chapter 8 presents the realized indoor positioning and navigation system at the University
of Paderborn.

Chapter 9 concludes the work, highlights the limitations and discusses some potential
future work.



2. Fundamentals of Indoor Positioning
and State of Research

In this chapter, the principles of the most popular radio based indoor positioning techniques
as well as some previous studies relating to each technique are discussed. The discussion
focuses on the advantages and disadvantages of each technique, highlighting the reason why
this study follows the fingerprinting based direction. The challenges of WiFi fingerprinting
based techniques are also discussed at the end of the chapter.

Indoor positioning is a challenging research topic which has attracted a lot of research.
Over the last decades, many approaches have been proposed to address those challenges in
indoor environments employing different types of signals/information and the corresponding
methods, as reported in [1, 3].

There are many types of signals that have been taken into consideration for indoor po-
sitioning purposes such as radio, light, sound and inertial sensor data. Many positioning
approaches and systems have been built upon radio signals, i.e., Ultra-Wideband [33, 34],
Zigbee [35, 13, 36], WiFi [18, 23, 24, 25, 12, 20] or Bluetooth [37]. Among them, WiFi
signal based positioning methods are of particular interest since most mobile devices now
are equiped with a WiFi chipset and because of the wide deployment of the WLAN infra-
structure. Light and sound signals are considered for developing high precision positioning
systems [38, 39, 40, 41] which are able to achieve accuracy levels of centimeters. These si-
gnals are normally used in a much smaller deployment area in comparison with radio signals
while at the same time requiring more additional specialized hardware. Inertial sensor data,
i.e., acceleration data, gyroscope data and/or magnetic data, were first used mainly in the
robotics community to locate and track the robot position. However, with the development
of Microelectromechanical systems (MEMS) technology, many portable devices are equi-
ped with Inertial Measurement Unit (IMU), which make these data available for indoor user
tracking [27, 28].

Since the goal of the project is to develop an indoor positioning system for the smartphone
users within the campus of the University of Paderborn which is a large area with many mul-
tifloor buildings, light and sound signal based approaches do not seem to be suitable because
many additional hardware would be needed to build the system. The same limitations hold
for systems using Ultra-Wideband, Zigbee or Bluetooth signals. As a consequence, WiFi and
inertial sensor data are chosen because these data can be obtained from the existing WLAN
infrastructure and the built-in sensors of the smartphones.

In the following, common approaches which have been used for indoor positioning using
WiFi and inertial sensor data are presented. An overview of other indoor postioning approa-
ches can be found in [1, 3].
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2.1. Proximity

Proximity based positioning techniques are the simplest positioning methods. This technique
determines the position of a mobile object based on its closeness to a reference point, i.e.,
base station, in physical space. The operation of this method is based on the fact that the
radio transmitters have a limited range and if the receiver can detect a valid signal from a
transmitter, it is supposed to be in the coverage area of that transmitter, and the position of
the transmitter is considered as the estimated position of the receiver.

Moreover, signal strength is considered in addition to the information of the presence of
a signal if the receiver is at a position, where it can detect valid signals from more than one
transmitter because it is in the overlapping area between different transmitters. The estimated
position is then the position of the transmitter which has the strongest signal strength at the
receiver position. This simple decision rule must use an assumption that the distance in the
received signal strength space is propotional to the physical distance between the transmitter
and the receiver.

Fig. 2.1 illustrates the proximity based positioning technique. The estimated position of
the mobile user M, is the position of the base station B.S; since it is in the coverage area of
only BS;. For the mobile users M; and M3, the receivers can detect signals from more than
one base station, so the estimated position is the position of the base station which has the
strongest signal strength, e.g., BS; for M;, and B.S; for M.

Figure 2.1.: Proximity-based positioning: the estimated position of the mobile user M; is the position
of the base station BS; if M; detects only signal from BS);, or the observed signal
strength of BS) is the strongest among the detected singals

The Active Badge location system [42, 43] is one of the earliest proximity based indoor
positioning systems. The system consists of the mobile active badges, each of which peri-
odically generates a unique code (every 15s), and a network of sensors distributed over the
deployment area. Badges and sensors communicate to each other via pulse-width modulated
infrared signals. A server (master station) polls the sensors for badge sightings, processes the
data, and then determines the position of the badge as the position of the sensor which was
last sighted by it.

Recently, a very up-to-date positioning technique using proximity technique is the iBea-
con positioning system where the Bluetooth Low Energy (BLE) technology is used [44]. In
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an iBeacon positioning system, a number of BLE transmitters which periodically generate
advertising data packets which contain the ID of the transmitters and their pre-calibrated
transmission power, are installed at the interested positions which are distributed over the
deployment area. The optimal broadcast interval is 100 ms and the configurable broadcast
range is from a few centimeters up to hundreds of meters. The compatible mobile devices
pick up the data packets from iBeacon transmitters once they are in the broadcast range of
the transmitters and make the positioning decisions by processing the observed data packets.

2.2. Lateration

The lateration methods use the absolute range (distance) or the range differences from mul-
tiple reference points, i.e., base stations, to compute the position of a mobile object. The
distances are computed based on the estimated travelling time of the signal from the trans-
mitter to the receiver, i.e., TOA, TDOA, given the propagation speed. Alternatively the RSSI
data with the pre-estimated path loss model is employed to estimate the distances.

Once the distances are obtained, the position of the mobile object can be computed by the
following methods:

e Circular lateration:
These methods estimate the position by solving the system of equation as expressed in
Eq. (2.1) using the absolute distances:

P =(z =)+ (y — v)” (2.1)

In Eq. (2.1), (x,y) and (z;,y;) are the coordinates of the mobile object and the i-th
reference point in 2-dimentional Cartesian coordinates, respectively, and 7; is the esti-
mated distance between them, where ¢ = 1,..., N and NV is the number of observed
base stations. Theoretically, when the distances from at least 3 reference points to the
mobile object are obtained, it is possible to solve the system of equations to get the un-
ique final estimated coordinates of the mobile object. However, in practic, the distance
estimates are often accompanied with errors. Sources of error can be error in time syn-
chronization between the clocks of the transmitter and the receiver, non line of sight
(NLOS) problem [45] or variations of the signal strength which are not reflected by
the path loss model. These errors may make the system of equations as defined in Eq.
(2.1) have no unique solution, i.e., the circles in Fig. 2.2 do not intersect at one unique
point. With such situations, an approximation method is needed to solve the system of
equations such as the Least Squares (LS) solution. To use LS method, the system of
equations can be re-written as follows [3]:
ri =t = (@ —2)’ + (y—u)’ — (- 2)? = (y — )
=iyl — (@) — 22z —21) —2y(ys —y1);i=2,...,N. (22)

The system of equations as defined in Eq. (2.2) can be written in the matrix form:

Ax =b, 2.3)
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where

Y

Tg — X1 — W

(‘C (2.4)

(2.5)
IN —Z1 YN — U1

552 + ?/2 (xl + y%) - (Tg - 7”%)
b= 5 : (2.6)

(e} +y3) = (@i + 1) — (k=)
The LS solution for the above system of equations can be obtained as follows:

x = (ATA) 'ATb. .7)

Figure 2.2.: Cicular lateration based positioning: the estimated position of the mobile user M is de-
termined based on the estimated distances between the mobile user and the reference
points. At least three reference points are needed to calculate the user position.

e Hyperbolic lateration:
These methods use range differences between the mobile object and any pair of refe-
rence points to form a system of equations of hyperbolas (Eq. (2.8)) which are then
used to compute the position of the receiver:

dij =T; —T’j

= V(= -zl + (y — %) - \/(x—xj)2+(y—yj)2, (2.8)

here, d;; denotes the range difference between i-th and j-th reference points, Vi, j; 1 #
J.

The solution can be easily obtained by applying the LS method in a similar fashion as
discussed in the circular lateration based method. The above system of equations can
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be solved as follows [3]:

Since
diy =i — 11, (2.9)
we have
(ri 4+ dn)* =1}
S 1] —rf =di + 2rda (2.10)
then

(z—z)’+@y—w)’—(r—m) = (y—wn) =1l —r}
= d221 + 2T’1di1
S i+l — (2] +yD) — 2(z — x1) — 2y(y; — y1) = diy + 2rdy

1
w(x; — 1) +y(yi — 1) +dar = 3 ((373 + CUZQ) - (37% + y%) - d221) ;

2
(2.11)
wheret=1,---, V.
The above system of equations in Eq. 2.11 can be written in matrix form:
Ax = b, (2.12)
where
x
x=|w (2.13)
1
T2 =21 Yo— Y1 da
A= : (2.14)
TN — 21 Yn — Y1 dn
| (@2t ye) = (@t ) —dy
b = 3 : (2.15)
(2% +y3) — (21 +vi) — diy
The LS solution for the above system of equations is then obtained as:
x = (ATA)'ATDb. (2.16)

Many indoor localization methods employing lateration techniques have been proposed,
see the descriptions in [46, 47, 48] and the references therein. The positioning accuracy
depends on how accurate the estimate of the distance between transmitter and receiver is.
Lateration based techniques can be divided into 2 categories: time based lateration and signal
strength based lateration.
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Time based lateration techniques employ the TOA or TDOA information to compute the
distances. In [49], a time based lateration positioning system has been developed. The object
to be located is the mobile tag transmitting ultrasonic pulses in a roughly hemispherical
pattern around the top of it, once requested from a master station via a radio signal. A central
positioning unit polls the network of the ultrasonic receivers mounted on the ceiling of the
room to retrieve the time of flight (TOF) of the ultrasound emitted by the mobile tag (if
detected at the receiver). The TOF information is measured as the time difference between
the moment the master sends out the request to mobile tags for emitting ultrasonic pulse and
the first signal peak detected on the receiver. For time synchronization, the master station
sends the reset signal to all receivers simultaneously with the ultrasound emitting request.
Distances between mobile tag and receivers are then computed and the position of the mobile
tag is determined by applying the LS approach. The reported experimental results are very
impressive with a positioning error in the order of centimeters.

In addition to time based lateration, signal strength based lateration techniques are also
employed in indoor positioning. These techniques employ the dependence of signal strength
on propagation distance. Therefore, the accuracy of these techniques mostly depends on how
accurate the estimated path loss model is.

In [18], a modified path loss model for indoor environment was developed, where the
attenuation of signal penetrating through walls is considered. The parameters of the path
loss model are trained empirically. Once the distances between transmitters and receiver
are obtained, the final estimate of receiver location is obtained by various methods, e.g., by
solving the system of circular or hypecbolic equations using the LS approach as summarized
in [46].

In [47], methods for improving positioning results using RSSI based lateration techniques
were explored. Instead of using the theoretical path loss model, the authors proposed two
approaches, regression based and correlation based. In the regression based method, polyno-
mial regression was used to model the relationship between the RSSI and distance, and the
coefficients of the polynomial are estimated by employing LS approximation. The correla-
tion based method utilizes the fact that the signal propagation from close-by locations to an
AP is highly correlated as they face the similar propagation environment. This method recur-
sively performs localization in gradually reduced local areas to approach the true location.
In each iteration, a certain number of RSSI readings which are the closest training points to
the previous estimated position are kept and used to fit the propagation model. Experimental
results on both artificial data and real data showed the considerable improvements compared
to the original RSSI based lateration methods.

An overview of lateration based techniques for Ultra-Wideband signals is given in [48]
where positioning schemes for time based lateration and RSSI based lateration are discussed.

In general, time based lateration positioning techniques are more precise than RSSI based
lateration techniques, however, they require additional hardware.

2.3. Angulation

Angulation based positioning techniques employ the angle of arrival of a wireless signal to
determine the position of a mobile object. Theoretically, these techniques are able to compute
the position of the receiver when there are at least two reference points, and if the position
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of the mobile object does not lie on the line connecting the reference points.

M

BS, a1 Q2 BS,

Figure 2.3.: Angulation based positioning: the estimated position of the mobile user M is determined
based on the estimated angle a; between the mobile user and the reference points. At
least two reference points are needed to calculate the user position with the condition
that the user position does not lie on the line connecting the reference points.

Fig. 2.3 illustrates the angulation based positioning techniques. In this system, the connec-
ted line between two references can be considered as an internal reference. The angle bet-
ween the transmitter and the receiver o; can be determined by:

Y=Y
tan o; =
r — I;
& rsina; —ycosa; = x;sinay — y;cosay; i =1,--- N, 2.17)

However, these techniques also suffer from the errors caused by the NLOS problem. If
there are more than two reference points, the system of equations might not produce a unique
solution. To solve the system of equations, an approximate solution is needed. Again, the LS
method is the most common solution for solving the system of equations which is defined
by Eq. (2.17).

Eq. (2.17) can be written in matrix form as follows

Ax =b, (2.18)

X
x = (y) (2.19)

—sina;  cos oy
A= : : (2.20)

—sinay cosay

where

Y1 COS 1 — X1 8in oy
b= : (2.21)

YN COS Uy — T SN
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The LS solution for the above system of equations can be obtained as follows:
x = (ATA)'A™D. (2.22)

An indoor satellite positioning system has been proposed in [38], however, different from
the satellite based GPS. This system employs the infrared signals instead of eletromagnetic
wave and angulation technique instead of lateration technique. The system consists of 3
infrared light sources, called indoor satellites, mounted at fixed positions as emitters, and the
infrared incident angle sensors at the mobile objects measuring the incident angle from each
emitter. The position of the mobile objects are then obtained by applying the LS approach.

In [50], angulation based techniques have been employed to estimate the current position
of an object. ML, LS, Total Least Squares (TLS) and Weighted LS (WLS) algorithms were
applied to solve the system of equations. To improve the performance of the positioning
system, a method based on Weighted TLS (WTLS) was derived. The optimistic results with
WTLS based approach were presented with simulation data which approach the Cramer-Rao
Lower Bound (CRLB).

Another example of an AOA based localization system can be found in [51]. The system
consists of a set of passive thermal infrared sensors installed in the room edges to detect
the thermal radiation of the human skin. The thermal sensors are thermopile-arrays, where
each contains a number of pixels and each pixel has a field of view. The heat source position
is determined via the principle of AOA by computing the intersection point created by the
directions of the pixels with the highest outputs.

2.4. Fingerprinting

Fingerprinting based positioning techniques are the methods to estimate the position of an
object which rely on training data from a set of reference points (anchor points) with known
locations. Fig. 2.4 illustrates such a fingerprinting based system.

Reference Point

o o QBSAQ ®
BS,

o [ [ L [
" Yi

® .3A [ o [

BS.
BSy

Figure 2.4.: Fingerprinting based positioning: the filled circles indicates the reference (anchor)
points, while the triangles show base station locations. The user position is the positi-
on of the anchor point whose training data best match the online measurement

Fingerprinting based methods can be well formulated as a machine learning and pattern
recognition approach. These techniques generally consist of two phases: training phase and
classification phase (also refered as offline phase and online phase). In the training phase,
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the training data, i.e., RSSI, are collected at the anchor points and used to build the database
which is often called radio map which describes the RSSI-position relationship. The radio
map can be defined as follows

where ¢}, is the k-th reference position, K is the number of reference positions in the deploy-
ment area, Fj, can be either the set of raw measurements, i.e., F, = X, = Xg 1, -, Xk.N»
where X, = [Thn1s - ThnNy P]T is the n-th measurement vector which contains the RS-
SIs from N 4p base stations, or it contains the class conditional probability density functions
(PDFs), i.e., Fr, = p(x|l), estimated from the measurements at the k-th position.

During the classification phase, the online measurements are compared against the training
data at every anchor point. The position of the anchor point whose training data best match
the online data can be considered as the estimated position of the receiver. As discussed in
chapter 1, there are two most common approaches for calculating the similarity between
training data and online data: deterministic approaches, e.g., the k-nearest neighbor rule, and
probabilitic approaches, e.g., the Bayesian classification rule.

Though radio fingerprinting based positioning techniques can be applied to both indoor
and outdoor environments, it seems that these techniques are more suitable for indoor since
the distinction of radio signal strengths observed at different positions indoor is much higher
than outdoor due to the density of obstructions in indoor environments.

In the very well-known fingerprinting based positioning system Radar [18, 21], the k-
nearest neighbor method is employed. The position of the receiver is computed by averaging
the coordinates of the £ anchor points which have highest similarity between the training data
and the online observation. The similarity is measured by computing the Euclidian distance
between the training data and online observation in signal strength space as follows

Nap
D(0,Xg) = Z(Oi — Tpni)?, Yk, Vn (2.24)
i=1
where 0 = [0y, -+ , 0N, P]T and D denote the online observation and the distance, respec-

tively. The j-th position is considered to be the nearest neighbor, i.e., the training data that
best match the online observation, if there is a training measurement X ,, which satisfies

D(0,X;m) < D(0,Xp), Yk # j,Vn (2.25)

In [22], an extensive analysis of the fingerprinting based positioning system that employs
the Euclidian distance is presented. The effect of the number of access points, the number
of training samples per position, the density of the anchor points, etc. on the performance
of the positioning system are analyzed. The analysis results provide a guideline on choosing
parameters to design and deploy an indoor positioning system.

In probabilitic approaches, in the training phase the statistical parameters of the PDF of
the signal strength are trained. During the classification phase, the similarity between trai-
ning data and online data is computed by calculating the likelihood of observing the online
data given the PDF of signal strength at anchor points [24, 25, 8], or some other criteria
to measure the similarity such as the Bhattacharyya distance [52], then again a k-nearest
neighbor algorithm can be applied to compute the final estimated position of the receiver.
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There are two methods to estimate the PDF of the training data, parametric and non-
parametric density estimation techniques [3]. Parametric estimation methods assume a mo-
del, e.g., a Gaussian, for the density function and aim to estimate the parameters of the model
[25, 8], i.e., Fr = Or = (px, Xk). On the other hand, non-parametric methods do not assu-
me any prior model but estimate the class conditional PDF by using the histogram method
[24, 52] or Kernel density estimators [23, 53].

After constructing the class conditional PDF, the final position estimate can be obtained by
computing the likelihood or the posterior using the Bayes’ rule. The position which achieves
the highest likelihood or posterior is then considered as the position of the mobile receiver.
Maximum likelihood estimator aims to find the position that maximizes the probability of
observing the online measurement o, given the class conditional PDFs at reference points,
as follows

{ = argmax p(o|ly). (2.26)
Ly
A maximum a posteriori estimator finds the position which has the highest posterior proba-
bility as

{ = argmax P((;]o). (2.27)
128

Applying Bayes’ rule, P(/;|o) can be obtained as follows

Pt - PP

__ plolty)P(t)
fo:l p(0|£k')P(£k/)’

assuming that the prior P({y) is given.

In [25], two different types of class conditional PDF are considered, one is the parametric
model (Gaussian) and the other is the non-parametric model. In the reported results, the
method employing the parametric model outperforms the other. This is because, as stated, the
parametric technique smooths the distribution shape to account for missing signal strength
values in the training phase, (due to the finite number of training samples) which avoids
obtaining a zero probability for any signal strength value that was not observed in the training
phase.

(2.28)

2.5. Dead Reckoning

Dead reckoning (DR) techniques employ the information from a system of inertial sensors,
i.e., acceleration and gyroscope sensors, in order to estimate the position of an object based
on the previous estimated position. DR techniques had been first developed for the aviation
and marine industry, nowadays they are also used in robotics [54, 55, 56], indoor positioning
[57, 58, 59, 32], and many more systems.

Fig. 2.5 illustrates the positioning procedure of DR techniques where the current positi-
on is estimated based on the previous estimate. v; is the movement vector computed from
displacement information and movement heading estimation.
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With the development of Microelectromechanical systems (MEMS) technology, ordina-
ry smartphones now often have a built-in inertial measurement unit (IMU) which allows
to employ the dead reckoning techniques for indoor pedestrian tracking without additional
hardware. However, they have lower accuracy in comparison with the IMU system used on
airplanes or in space science.

As discussed in chapter 1, these techniques are often developed in a combination with
other methods using other sources of information, such as WiFi signal or GPS, which are
used to regularly reset the error of DR techniques which accumulates over time and distan-
ce. Displacement estimation of the indoor user in DR based indoor positioning is done via
step detection and step length estimation where the observed acceleration data are used. Va-
rious methods have been proposed for step detection procedure such as peak detection [57],
zero-crossing detection as mentioned in [59] or autocorrelation approach [32]. Step length
estimation based on acceleration data is a tricky task since the accuracy of built-in sensors
on smartphones are often very low. As a result, most of the step length estimation methods
are based on a calibration phase to estimate some heuristic factors, as summarized in [60]. A
Kalman filter is often used for movement heading estimation which utilizes the information
from gyroscope and magnetic sensors [59].

V3 V3
Vi

Figure 2.5.: Dead reckoning: the user position is estimated based on the estimated movement vectors
assuming that the starting point is given.

2.6. Comparison of Techniques

All the above mentioned radio signal based techniques for positioning have their own advan-
tages and disadvantages and their suitability depends on the deployment environment.

e Proximity based techniques can be applied for any low cost positioning system for eit-
her outdoor or indoor (no requirement of additional hardware) which does not require
a high positioning accuracy. The positioning error depends on the coverage range of
the base stations, e.g., the proximity positioning systems using GSM base stations have
error in the order of hundreds of meters. An indoor positioning system may use these
techniques employing the wireless local area network (WLAN) system. However the
positioning error is about the coverage range of an AP, i.e., roughly 100 m which is
unacceptable in the indoor environment. Moreover, in indoor environments, the con-
tour of signal strength radiated from an AP is obviously not symmetric due to the
presence of obstructions. This leads to misclassification results, because the receiver
may receive a higher RSSI from a farther AP because of line of sight to this AP while
it observes a lower RSSI from a closer AP due to absence of line of sight. Positioning
using iBeacon advertising packets is another approach which aims to produce a room
precise localization system. However, the higher the accuracy requirements, the more
hardware (iBeacon transmitters) needs to be installed.
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e Lateration and angulation based techniques are able produce highly precise positio-
ning results in free space environment where signals can propagate by the direct path
from the transmitter to the receiver and almost no multipath problem occurs. Unfortu-
nately, the indoor environment is definitely not free space. It has a lot of obstructions
such as walls, furniture or movement of people that makes the accuracy of the posi-
tioning using these techniques very limited. Because of the special requirements of
the environment, these techniques may only be suitable for positioning in a single
room. Another limitation of these techniques is the requirement of additional speciali-
zed hardware, i.e., antenna, microphone arrays, etc., and deep hardware access which
seems to be not possible for a positioning system employing the existing WLAN in-
frastructure and ordinary mobile devices, i.e., smartphones. Clock synchronization is
another challenge for lateration based techniques which determines the accuracy of
positioning results.

e Fingerprinting based methods as discussed above consist of two phases, training phase
and classification phase. The first and the foremost disadvantage of these techniques
is the necessity of a training phase which is very time consuming and need to be done
very carefully because the classification results are strongly influenced by the quality
of the training data. Another disadvantage of these techniques is that the training data
need to be updated regularly in order to adapt to the changes of the infrastructure and
environment in order to maintain the accuracy of the positioning results. Despite these
disadvantages, fingerprinting based techniques are still the most promising methods
for indoor environments for three main reasons: First, they can produce a reasonable
positioning result without any additional special hardware. Second, these techniques
are suitable to be employed in an already installed WLAN system, and WLAN is
available in many places. Third, systems using these techniques can be applied in a
large area and have a good scalability.

e Dead reckoning techniques are able to produce precise positioning results given the
initial position without any knowledge of the infrastructure in the coverage area, ho-
wever, only over a short time and movement distance. The high accuracy is not kept
long because of the accumulation of error over time and distance of movement. The
errors are caused, for example, by the drift or bias of sensor systems, and also the noise
in the environments, for example the measurement from a magnetic sensor is strongly
affected by metallic materials arround the sensor and not only the magnetic field of the
earth.

From the analysis of the the advantages and disadvantages of the mentioned radio signal
based techniques, for developing a real indoor positioning system based on the regular smart-
phones and the already installed WLAN system, the combination of fingerprinting based and
dead reckoning techniques appears to be the best solution because of the following reasons:

o Sufficient accuracy: The positioning accuracy meets the requirement of indoor posi-
tioning for the common purposes such as user tracking and security, in large indoor
areas, i.e., universities, museums, hospitals or stores.

e Cost efficiency: no additional hardware is needed to build up a positioning system.
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e Deployment simplicity: WLAN is today available in almost every indoor environ-
ment. Consequently, the positioning system can be deployed in many indoor areas
easily.

e Robustness: The combination of WiFi fingerprinting based and DR techniques ma-
kes the system robust, i.e., the mobile devices can do self localization based on DR
techniques when no WiFi signal is available.



3. Scientific Objectives

This study aims to investigate methods to enhance the indoor positioning and navigation for
smartphone users employing an already deployed WLAN system and the built-in inertial
sensors of the smartphones.

First, with WiFi fingerprinting based positioning, a statistical approach in the machine
learning and pattern recognition framework is applied. The statistical approach helps to ad-
dress the variations of the WiFi signal which are obvious in the indoor environment due to
the multipath propagation caused by walls, obstructions, movement of people, and so on.
Reports of other research show that the positioning accuracy highly depends on how good
the training database is. In this study, the training database contains the statistical parameters
of the measured WiFi RSSI. Therefore, first the characteristics of the WiFi data are analysed.
WiFi data which suffer from the censoring and dropping problems have not been addressed
in any previous research. Censoring, i.e., clipping, refers to the fact that sensors are unable to
measure RSSI values below some threshold, such as —100 dBm. Dropping means that occa-
sionally RSSI measurements of access points are not available, although their value is clearly
above the censoring threshold. While censoring occurs due to the limited sensitivity of WiFi
sensors on portable devices, dropping comes from the limitation of sensor drivers and the
operation of WLAN system. Assuming that WiFi data observed from an AP at a position
follow a Gaussian distribution, our goal is to develop a parameter estimator which is able
to cope with censoring and dropping problems. It is noted that these problems also occur in
online measurements, therefore, the other goal of this study is to derive a classification rule
which takes into account the censoring and dropping problems. The details of the proposed
parameter estimator and classification rule are presented in Chapter 4.

RSSI statistics from different smartphones are not identical when the smartphones are
from different vendors because of different hardware and software. Moreover, according to
our data investigation, smartphones from the same vendor and even the same model are not
able to observe the same signal strength when they measure the data at the same conditions.
Though several previous studies have investigated methods to solve this mismatch problem,
non of which has considered the presence of censored and dropped data. As a result, another
goal of this study is to address the problem of the differences of the sensors sensitivities
amongst smartphones when censored and dropped data are present in the measurement data.
Chapter 5 discusses our proposed “smartphone adaptation” methods. Furthermore we ad-
opt an adaptation method from the speech recognition field for the first time to smartphone
adaptation.

Methods for combining the fingerprinting based and dead reckoning techniques to impro-
ve the positioning results using a hidden Markov model (HMM) or a Kalman filter have been
explored in several previous research which indicated that better positioning accuracy is ob-
tained in comparison with methods employing any single source of data. Within this work,

18
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HMM is chosen to improve positioning results since the sensor fusion and map information
are easily incorporated by an HMM where the HMM states are the positions where finger-
prints have been taken. In a large area, training data can only be collected at a fairly coarse
grid of states in order to reduce the training effort, which leads to a high quantization error.
Therefore, this work aims to deal with the problem of how to achieve a low discretization
error in the positioning results without increasing training effort. The proposed methods are
presented in detail in Chapter 6.

Another aim of this work is to develop a real positioning and navigation system which is
able to operate within the area of the University of Paderborn. The expected system must sa-
tisfy the following requirements: low cost, ease of deployment, maintenance and update, user
friendliness, robustness and high scalability of deployment area as well as system features.
The developed indoor positioning and navigation system is briefly presented in Chapter 8.



4. Parameter Estimation of Censored
and Dropped Gaussian Data

4.1. Motivation

As mentioned in previous chapters, fingerprinting based positioning techniques can be for-
mulated as a machine learning and pattern recognition task, where the training phase cor-
responds to the learning and the localization/classification phase is the pattern recognition
procedure. Localization results do not only depend on the localization procedure but also
depend highly on how well the models are trained.

The discussion in the previous chapters has stated that in fingerprinting based positioning,
probabilistic approaches perform better than deterministic approaches. Moreover, as the dis-
cussion in [25, 61] showed, the class conditional PDF can be parametric or non-parametric,
and the former seems to outperform the latter. There are several discussions about the PDF
of WiFi data. In [62, 61], researchers stated that the WiFi RSSI data follow a Gaussian while
the study in [63] shows that the distribution is not symmetric, potentially left-skewed. Ac-
cording to our investigations, data of most of the readings follow Gaussian distributions if a
sufficient amount of samples is collected. However, we also observed some readings which
follow a skewed distribution. Fortunately, the skewed tail is not much longer than the tail of
a normal PDF resulting in the similarity of the mode, the median and the mean of skewed
and normal distribution. Therefore, Gaussian distribution is chosen as the model for WiFi
data throughout this work.

According to our data investigation, we have detected two problems of WiFi RSSI data,
censoring and dropping, which strongly affect the parameter estimates, and consequently, the
positioning results. While the censoring problem is obvious because of the limited sensitivity
of the WiFi chipset, the dropping problem is not easy to be recognized. The data investigation
which points out the dropping problem is presented in [64]. The censoring and dropping
problems are illustrated in Fig. 4.1 which shows histograms obtained from field data.

Intuitively, Fig. 4.1(a) seems to show the histogram of data drawn from a Gaussian. For
this case, parameters of the Gaussian are easily obtained by using ML estimation. However,
most of the readings belong to one of the three latter cases which are shown in Fig. 4.1(b),
(¢) and (d) where the unobservable measurements are set to —100 dBm.

What does the histogram in Fig. 4.1(b) tell us? As can be seen, the left side part of the
Gaussian is missing which would be complemented by the unobservable measurements (we-
re assigned the value of —100 dBm) to make the Gaussian complete. This situation is meant
when we state that censored data are present in the measurements. Censoring occurs due to
the limited sensitivity of WiFi sensors or the sensor driver which does not report intentio-
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nally the too weak observed signal strengths, i.e., the smartphones do not report the signal
strength if it is less than a certain threshold c, e.g., in our data set c = —100 dBm.

Fig. 4.1(c) shows the histogram of data drawn from a complete, uncensored Gaussian.
However, there are still unobservable measurements reported as can be seen by the histogram
bar at —100 dBm. In this situation, these unobservable measurements are supposedly caused
by the dropping problem. Dropped data are the unobservable measurements of an AP which
is supposedly close enough to the measurement position that the smartphone should always
observe signal transmitted from that AP above the threshold c. Dropping may occur due
to the limitation of the WiFi chipset driver, i.e., limited buffer sizes or time-outs, and the
operation of the WLAN system, i.e., switch off of AP.

Finally, in Fig. 4.1(d), one part of Gaussian is missing which is similar to Fig. 4.1(b).
However, as can be seen in the figure, the amount of unobservable measurements seem to be
much larger than the missing part of the Gaussian. This phenomenon can only be explained
when in such situation, WiFi data experiences both censoring and dropping.

It has to be noted that, the unobservable data due to censoring and dropping describe dif-
ferent problems compared to the problem of not observing data for some specific values due
to limited measurement time as discussed in [25]. Therefore, if the measurement time is infi-
nite, the problem stated in [25] is solved. However, censoring and dropping problems remain
unsolved. Obviously, traditional histogram method for class conditional PDF estimation is
not able to address the missing data problems since they rely on the observable training data
only. This leads to a severe limitation of non-parametric model that the likelihood of the
unobservable measurements, i.e., censored and dropped data, cannot be computed correctly,
i.e., the likelihoods computed from unobservable data are always zero. This again motiva-
ted us to use the parametric model since all the limitations of non-parametric approaches
can be handled efficiently. As a consequence, an estimator which is able to estimate the pa-
rameters of censored and dropped Gaussian data was developed which improves the WiFi
fingerprinting based indoor positioning results.

In this chapter, a parameter estimator employing EM algorithm is developed to estimate
parameters of censored Gaussian data. Then an extension of the proposed EM algorithm is
made to cope with both censored and dropped Gaussian data. For classification, an optimal
classification rule which takes into account the presence of censored and dropped data is
derived.

For estimating parameters of censored Gaussian data, while ML estimates have been pre-
sented in [65], EM algorithm has been derived in [66]. The proposed EM algorithm to estima-
te the parameters of censored Gaussian data is built upon the result from [66]. Furthermore,
this study shows that in case of a single Gaussian model, the estimation algorithm is biasfree
and achieves the Cramer-Rao Lower Bound (CRLB) for both mean and variance estimates.
An extension of the proposed EM algorithm to cope with dropped data is new, none of the
previous research has taken into account this dropping problem.
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Figure 4.1.: Histogram of real field data illustrates censoring and dropping problem of WiFi data

4.2. Parameter Estimation using EM Algorithm

4.2.1. Introduction to the EM Algorithm

The EM algorithm is an iterative method for ML estimation of parameters of statistical mo-
dels in the presence of hidden variables. It was first introduced in [67]. This method can be
used to estimate the parameters of a Gaussian Mixture Model (GMM).

In a GMM, the PDF of an observation x is:

K
p(x;0) =Y mpi(x; 0y) (4.1)
k=1

where 7, are positive mixing weights summing to one, py is the k-th component density
function with the parameters 0y, and © = (7, -+ , 7,01, -+ ,0k) is the set of all model
parameters. Each observation is assumed to be from one of the X components. Assuming
that the component density functions are multivariate Gaussians, the parameters ;. are the
set of (g, Xk)-

Let X = (xq,...,xN) be the set of observable data and Z = (z1,..., zy) denote the
hidden variables. Then the log-likelihood function becomes:

In(p(X;0)) =In {Zp(X, Z; @)} . 4.2)
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ML estimation can be applied to Eq. (4.2) to obtain the parameter estimates. However, it is
often extremely difficult to calculate the summation. To simplify the expression, the complete
data are defined to be {X’, Z}. Then instead of computing the likelihood of observations, the
likelihood of the complete data is computed.

Since the hidden variables are not observable, instead of computing the likelihood directly,
the expected value of the log-likelihood of the complete data given the observations and the
old estimated parameters are calculated:

Q(6,0")) =E[In(p(X, 2;0)) |x; 0]
= Zln (p(X, Z; @))P(Z|X;@(“))- (4.3)

Here, ©(%) denotes the current estimate of the parameters and Q(©, ©)) is called auxiliary
function. The calculation of () is the Expectation step (E-step) of the EM algorithm. Finding
the new parameter © = ©*+1) which maximize the auxiliary function is considered as the
Maximization step (M-step) of the algorithm. The EM algorithm operates E-step and M-step
alternatingly until convergence, i.e., until the improvement of the log-likelihood is smaller
than a threshold. In [67], the authors have proved that the improvement of Q(0, O)) will
improve the log-likelihood of observable data. However, there is no guarantee that the results
will converge to a ML estimator, i.e., an EM algorithm may converge to a local maximum of
the observable data likelihood function only.

4.2.2. EM algorithm for Censored Gaussian Data

In this section, an EM algorithm for estimating parameters of the univariate single Gaussian
data in the presence of censored data is presented. The censoring problem can be regarded
as shown in Fig. 4.2:

Y T
5 max(y, ¢)
p(y) / p(x)
g _ Yn, 2n =20
Tn = ¢, zp=1
’ y c X

Figure 4.2.: Censoring problem: left figure: PDF from where y is drawn; right figure: PDF from
where the observation x is drawn.

In the following derivation we consider that Gaussian measurements are one-sided censo-
red only to simplify the exposition. An extension to the two-sided case is straightforward.

Notations

Lety = 1, ..., yn; yn € R be the unobservable, non-censored data, where NN is the number of
measurements and where the y,, are 1.1.d. with Gaussian probability density function (PDF)
py (Yn) = N (yn; i1, 0?). Observable are the data x = zy, ..., zy, where x, = max(y,, ),
with clipping threshold c. Throughout this dissertation, the words “clip” and “censor” are
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used with the same meaning. The goal is to estimate the parameters § = {u, 0%} of the
underlying Gaussian.
E-Step

Employing the EM algorithm we identify y and x to be the complete and the observed data,
respectively. Thus the expected log-likelihood of the complete data is given by

Q0;0%)) = E [In (py (y; 0)) [x; 0] 4
N S
=3 [ s 0) (i 6) 4
N
_. Z fu (9; g(ﬁ)) : 4.6)
n=1

where f, (6;60%)) = [ In (py (Yn; 0)) p (yn|zn; 6*)) dy,, and where & is the iteration in-
dex.
The term p(y,|z,; 0*)) can be determined as follows:

) (Yn — Tp) ,ifz, > ¢
p(yn|xn; 0 ) = P(zn|yn;00))p(yn;0) if _ 4.7)
p(mn;e(ﬁ)) X, =C

For the case x,, = ¢ we know that y,, < ¢. p(yy,|x,,; 0*) can thus be calculated as follows

P(@n | yn; 0" p(yn; 0))
p(w,;00))

 p(@alyn; 09)p(yn; 6))

S p(@alyn; 09))p(y,; 04))dy,

(@ = )p(yn: W)

O (@ = )p(yn; 009)dys,

P(Yn|zn; 0 =

_ N (a3 0)
To(6)
Here we have used the notation
I;(0%)) = / YN (y;0")) dy (4.8)

with j = 0. Io(#")) can be calulated as follows (see Appendix A.1.1 for the detailed com-
putation):

1 c— pt)
Io(0™) = =erfc | — . 4.9
Then we obtain
O (Yn — xn) Hifx, >c
PWnln; 0) =S M(umio) . (4.10)
10(9(“)) s lf {En = C
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Introducing the binary random variable Z,, with realization z,,, where 2, = 0 and 2,, = 1
indicate that the n-th measurement is not censored or censored, respectively, the summand
in Eq. (4.6) can be written as

Zn

+ (1= 2z) In (N (203 0)) - 4.11)

fu (0:61) =

here, the fact that y,, = x,, when z,, = 0 is exploited.

M-Step

The parameter re-estimation formulas are obtained by computing the derivatives of Eq. (4.11)
w.r.t. the elements of # and set them to zero:

8 Zn c n - %
— [ (0;07) = 7)/ !y = EN (g 0)) dy,

8# IQ (Q(K)
Ty — [
+(1—2,) =
e B ()~ (0) 1,
T 02 Io (6) + (@ = 1) 02 4.12)
0 AN Zn ¢ 1 (yn - M)Q . p(K)
1 (zp—p)®
+(1—z,) ( . + =
oz [ (0W) LO™W) |,
i {ﬁ ([0(9(”)) - QMIO(G(”)) )
B RV
Ll ((x" 2“) - 1) , 4.13)
o o

Here, we have used the notation as defined in Eq. (4.8). Setting the sumations of the above
derivatives to zeros, re-estimation formulas are readily obtained:

N
d
> 5ok (0:07) =0:
=1 OH p=ptt
1 L(0W) & al
(et1) — — 1 (1— 4.14
N
Z 3 L (0;0%) =0
n=1 do 02=(g2)"t!
N

oty [LOW) L") | aw] ]
— _9 — .
(%) [10(9(“)) s 1o (0) +07) N Zz

1 N
D=2 (= )’ (4.15)

i=1
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The computation of I, (/) and I,(6*)) are given in Appendix A.1.2 and Appendix A.1.3,
respectively.

As can be seen in Eq. (4.14) and Eq. (4.15), the unobservable data, i.e., censored data,
also contribute to the estimates beside the observable ones. Intuitively, in case of absence of
censored data, i.e., z,, = 0 for all measurements, the re-estimation formulas reduce to the
typical ML estimation formulas for mean y and variance 0.

To have a better intuition of the re-estimation formulas, the situation after convergence of
the estimates is considered. Let p*+V) ~ pu® =: i and (62)"™ ~ (62)") =: 62, using
this in Eq. (4.14) and Eq. (4.15) and solving for the estimates, we arrive at

M
M1 (y; 0)d
aoM1 xn+{1__]f o upy (y:6) y’ 4.16)
N M= JE o py(y; O)dy
y R
M 1 M ;0
=== (z,— )’ + {1 — —} S8 = py (5 6)dy : (4.17)
N M= N [ py(y;0)dy

where we assumed without loss of generality that the first M = > (1 — z,) observations
are the uncensored ones. These expressions lend themselves to the following interpretation:
Mean and variance estimates are the weighted average between their ML estimates which are
computed from the observed data and the mean and variance of the assumed truncated Gaus-
sian of the unobservable parts. The weights are the relative frequencies of the uncensored
and censored measurements, respectively.

Properties of the Estimates

In the following, the main properties of the proposed estimator are investigated. As will be
shown, the proposed EM algorithm delivers virtually biasfree and efficient estimates.
Unbiasness and Convergence
In order to study the convergence properties the expected values of the difference between
the estimates, Eqgs. (4.14) and (4.15), and the true values of the parameters are computed.
First note that Z,, is a Bernoulli random variable with

P(za=1)- [ oy (y:0)dy = 10(6)

and P(Z, =0) =1—Iy(0). Thus: E[Z,,| = E[Z2] = I,(0).
Taking the expectation of mean estimate Eq. (4.14) we have
N

E [u)] = ZE ZE[I1 (6) } (4.18)

It has to be noted that the estimate /) depends on the data and is thus random. Thus the
expectation operator also applies to this quantity. The first expectation can be evaluated as
follows:

E[(1- Z / (1 = zp)xn P(zn|xn)py (2,)day,

2n=0

_ / 2N (205 0) i = 1 — 1, (6). (4.19)

[
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Note that here we have used the notation py (x,) because x = y in case of not censored.
Here we have employed the fact that

1, ifx, >c
P(z, =0|z,) = { 0. else (4.20)
Using further E [gggi:;; zn] ~E [ggg;:;;] E [Z,] and subtracting p from either side of
Eq. (4.18) we obtain
R I, (0
E [i*+D] = —1,(0) + Io(0)E [I;EH(MH . (4.21)

where (5t = st —
In order to compute the remaining expectation, a Taylor series expansion around the true
parameter values @ = (u, 0?) is applied and truncated after the linear term:

E{w%} ~ DO g [e) 2000 | (g0 2 1O (4.22)

L(0%) | ™ Io(6) O I (0) 902 I (0)

Expectation of variance estimate Eq. (4.15) can be calulated in a similar procedure as
follows:

E[o**"V] =E [% D (1= ) (an - m?]

N
1 L(0") = 20,(0"))p + L(0")) p?
+E N;Zn [0(9(%
1 N
- N ZE [(1 — 2n)(Tn — M)Q}
n=1
N
1 L(0") = 20,0 p + L (6™))
+ ¥ ;E [zn 7060 (4.23)

The first expectation can be evaluated as follows:

E [(1 — 2n) (T, — N)Q] = Z /Oo (1= zn) (2 — M)QP(Zn|xn)pY(xn)dxn

Z2n=0" "

_ / (0 — 1) (0 0)

C

= 0% — (Io(0) — 211 (0) + p* Io(6)). (4.24)

Using further E [Zn 12(ew))72132(9(;2));?10(9(”))“2} ~E [12(9<n))72135)9(;”&))%;*10(9(”))#2} E[Z,] and

subtracting o from either side of Eq. (4.23) we obtain

E[(@)"™] = = (B(0) - 2u11(0) + #216(6))

L") — 21,(0™)u + [0(9(“))112}

ACT) (4.25)

+ Io(0)E {
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where (52)"Y = (¢2)"TD) _ 52,

In order to compute the remaining expectation, a Taylor series expansion around the true
parameter values § = (1, 02) is again applied and truncated after the linear term:

LO") = 26,(0")u + [0(9(“))13} 12(0) — 2L(0)p + Lo(0)p?

Io(0)) Io(0)
w7 0 12(0) — 20 (0)p + 1o (0) 1
PRI, To(0)
] 0 L(0) —20(0)u + Io(0)
+E[(@)"] 90? 1o(0) '

(4.26)
Writing Eq. (4.21) and Eq. (4.25) in matrix form, we arrive at

efir1) = 0 52) efor)

W W;w K+1 E [ﬂ(O)]
(W W ) <E [(5—2)@)}) ; 4.27)
where

0 Lip) B 8 L(0)
T A TT)
W, = MG)&?—? 15(0) —211[(00<)9;;+10(0)M |

0 I(0) = 2L(0)n + 1o(0)u?
Wou =1y (9)8M At |

The W entries can be readily computed by using the derivatives given in Appendix A.1.4.

Investigating all the possible values of the magnitudes of the eigenvalues of the matrix
with the W entries by changing the clipping threshold ¢ from —oo to oo, we observed that
they are always less than one (approaching one for ¢ — o0, i.e., no observable data). We
thus conclude that the estimates are biasfree because the expectation of the error decreases
exponentially over iterations. Since, however, in practice p has to be replaced by its estimate
in the estimation of the variance, we exhibit the same bias as in ordinary ML estimation of
the variance. In the application considered here, the bias of the ML estimate of the variance
can be neglected due to the large number of samples. Further, an estimate of the convergence
speed of the EM algorithms can also be obtained from Eq. (4.27), see Fig. 4.3. It can be seen
that the number of iterations quickly rises once more than 50% of the data are clipped.

Precision

In order to evaluate the precision of our proposed estimator, we calculated the Cramer-Rao
Lower Bound (CRLB) for the estimator. CRLB of the estimation error variance of the mean
and variance estimates can be obtained by inverting the information matrix I which contains
the expected values of the second-order partial derivatives of the log-likelihood function.

From the derivation of the EM algorithm it can be seen that the measurements consist of
two types of data, the number M of noncensored observations and the observations themsel-
ves. While the former type is binomially distributed, the latter type is drawn from a truncated
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Figure 4.3.: Theoretical number of EM iterations x required to reduce the estimation error to 10~4

of its initial value as a function of (c — 1) /0. Initial values (), (0?) ) have been set to

the ML estimates of ji, o> computed from the unclipped observations only.

Gaussian. It is noted that the draws from the Gaussian are independent of the binomial ran-
dom variable. Following [65] the likelihood is thus given by, where I,(f) is the probability

2
of not observing a sample and \/— exp <—% (xjf‘”) is the probability of observing

2
) ) ,  (4.28)

> —100dBm

Jj=1

and the log-likelihood function is obtained as follows:

Inp(x;60) =In <W+M) + (N —M)In(Iy(9))

M 1 Y T;— W 2
-G - 33 (21 4.29)

The information matrix I is defined as:

B E [—88—; In p(x; 0)] E|\-5. 802 In p(x; 0)

I= 2
E [—%lnp(x; 0)} E —Wlnp(x; 0)

(4.30)

The entries of matrix I can be calculated as follows (see Appendix A.1.5 for the detailed
computation):

2 N (I? — L]
E { 882 In p(x; 9) = (1[7” + 1) (4.31)
0
82 N 8]1 [0 . [1 8[0
E { 8/,@02 In p(x; 9)_ = ( [—0 (4.32)
2 7 N 1 1 8]2[ — T BI() 8]1] . 8[0
E —Llnp(x;H) =—|—=-— 0 2502 —2uf Y7
0o?00? | 02\20%2 207 I Iy
(4.33)

where the computation of the derivative terms are given in Appendix A.1.4.
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Figure 4.4.: Comparison of CRLB for mean and variance with MSE obtained from simulation for
o =25 and N = 1000.

Computing the I, we obtain CRLB on estimation error variance of y and o?:

Var(fi) > T7(1,1) (4.34)

Var(6%) > 17%(2,2) (4.35)

Fig. 4.4 compares the CRLB with the mean squared error (MSE) of the proposed estima-
tors for mean ;. and variance o2 obtained from a simulation. It can be seen that the estimator
practically achieves the bound. The differences are so small that they are not visible in the
graph. We therefore conclude that the estimator is efficient. Furthermore, for the limiting ca-
se of completely uncensored data the well-known results for ML parameter estimation from
a normal population are obtained: MSE (1) = 02 /N; MSE(0?) = o%(2N — 1) /N2

4.2.3. EM algorithm for Censored and Dropped Gaussian Data

In this subsection, the proposed EM algorithm for parameter estimation of censored Gaussian
data is extended to be able to cope not only with the censored data but also the dropped data.
Notations

The measurement model for censored and dropped data is shown in Fig. 4.5. Here, the hidden

variables d,, n = 1,... N, indicate whether an observation is dropped (d,, = 1) or not
(d, = 0), where P(d, = 1) is the dropping rate, in the following, P(d,, = 1) is denoted by
7. The variables are gathered in the binary vector d = [dy, ..., dy], where N is the number

of measurements. Furthermore, define y = vy, ..., yn, where the y,, are i.i.d. with Gaussian
probability density function (PDF) py (y,,) = N (yn; i1, 0?) if d,, = 0, and y,, = ciif d,, = 1,
where we set ¢ to the smallest measurable RSSI value (e.g., ¢ = —100dBm). It should be
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noted that y is not the complete data anymore since the data are possibly dropped. Observable
data are the censored, possibly dropped data x = z1, ..., xy, where z,, = max(y,, c), with
the censoring threshold c as above.

r— — = _d - - - — — 7
~N(p, 0% | in | | |

' dn =0 Yn | T

| max(y,,c) f—

c

| — ] |

d, =1 | |

| _powine | Cemoring

Figure 4.5.: Measurement model.

The difference between censoring and dropping can be expressed as follows: Even if the
parameters of the Gaussian are such that practically no censoring occurs (because u > c),
dropping will still possibly occur.

The goal is to estimate the parameters § = {y, 0%, 7}. This will be achieved by the Expec-
tation Maximization (EM) algorithm, where the complete data are {y, d} and the observable
are {x}.

E-Step

It is noted that x,, does not convey more information about ¢ than y,,. So, the complete data
are {y, d} rather than {x,y, d}. The expected log-likelihood of the complete data, given the
observed one, is given by:

Q(6;6")) =E [In (p(y, d; 0)) |x; 6]
N 1

= Z/ I (P(Yn; dn; 0)) P(Y, dl ;0 )y, (4.36)

n=1d,=0""

where & is the iteration index.
P(Yn, dn|z,) can be written as

D(Yns A3 0)) = pynldn, 3 0")) P(dy ] 0). (4.37)
For calculating p(,|d,,, z,,; 0*)), two cases are considered:

e For data that are not dropped (d,, = 0), see Eq. (4.10),

(vl = 0 9(“)) O Yn — xp), ifx, >c 4.38)
PYn|Gp = U, Tp; = N (yn;60) : _ :
71(3(9(”)) Lo ifa, =c
e For data that are dropped (d,, = 1)
0 ifz, >c
— . p(k) — ) n
P(Ynldn = 1, 2,;0") { Sy — ), ifz—c (4.39)
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Furthermore, the posterior of the hidden variable d,, can be computed using Bayes’ rule

nldn; 0 P(d,
2 a0 P(@ndn; 00)) P(dy)
Since there are two variables, four cases can be discerned. Using the notation

Bu(d, 2) := P(d,|z,;0")), where z, = 1 indicates that x,, = c and z, = 0 that z,, > ¢, we
obtain:

(4.40)

Ba(1,1) = P(d, = 1|z, = ¢;0")
p(z, = c|d, = 1)P(d, = 1)
" p(z, = cld, = 0)P(d, = 0) + p(an = c|d,, = 1)P(d, = 1)
()
T 1p(0™)(1 — 7)) 70

(4.41)

where the result from the previous section is employed: p(z,, = c|d,, = 0) = I,(6)) is the
probability that a measurement is censored, i.e., unobservable, given that it is not dropped.
In addition, p(x, = c|d, = 1) is always equal to 1 since if the measurement is dropped, it is
assigned the value of c. 5,(1, 1) is the probability that the measurement is dropped given it
is unobservable.

The probability that the measurement is not dropped given it is unobservable, 5, (0, 1), is
then easily obtained since 3,(0,1) + 5,(1,1) = 1.

Furthermore, it is obvious that if a measurement is observable, it cannot be dropped, so
Bn(1,0) = 0, and thus 53,(0,0) = 1.

We further note that
P(Yn, dn; 0) = P(dn; 0)p(yn|dn; 0)
| 7o(yn —©), ifd, =1
Using all the above in (4.36) we arrive at
N
‘ N (3 0™)
. (Ii) o - . 2l
Q) =3~ {xu [ (1 =m0 ) 25,0 0,

s-a) | 10 (1= DN (03 6)) 83 — 2250 (0, 0)dy,

+ zn /c In (70(yn — ¢)) 0(yn — ¢)Bn(1, 1)dyn}

= Z {zn In(1 — m)p,(0,1)
+ fofé&» /oo In (N (Yn; 0)) N (45 0))dy 8,0, 1)

+(1—2,)In(1 —7) + (1 — 2z,) In (N (z,; 6))

+ 2z, In(7) 5, (1, 1)} (4.43)
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M-Step

Computing the derivative of the auxiliary function Eq. (4.36) the following iterative parame-
ter estimation formulas can be readily derived:

N INCIG N
St (1= 2a) + ) Lons #0a(0, 1)

S N =3V 2B 1) (1:44)
- > [Zn (2555 - 20803 + 122) B0, 1)}
s NS oBa(L )
L |- e — ]
= S ) (4.45)
o) EnNzl ZnBn(1, 1). (4.46)

N
These formulas reduce to the re-estimation formulas for censored data presented in the pre-
vious section if the dropping rate is set to 7 = 0. Then 3,,(1,1) = 0 and 3,(0,1) = 1.
As can be seen in Egs. (4.44), (4.45) and (4.46), not only observable and censored data,
but also dropped data contribute to the estimates.

4.3. Optimal Classification Rule for Censored and Dropped
Gaussian Data

Above ML parameter estimation is done for all possible user locations ¢, and it is done
for the measurements of each AP seperately, assuming that data from different APs are
independent. The final parameter estimates are denoted by fux = [k, - ,ﬂk,NAP]T and
), = diag [62,, - , 62y, ], where N4p is number of observable APs.

Indoor localization can be formulated as a classification problem, where the classes are
the positions from which RSSI measurements are taken during the offline training phase.
For each position ¢, the parameters of a Gaussian class-conditional density py (x|()) of RS-
SI measurements are estimated using the EM algorithm of the last sections. During online
classification, to estimate the user’s location, an optimal classification rule is developed.

Let x = 21, -+ ,xy,, be the vector of the online measurement. First the posterior is
calculated as follows

[T pal60) P(0)
> T plail ) P(4y)
where K is the number of offline training locations and x; is the RSSI of i-th AP. P({}) is
the prior on the position. Here we have employed the assumption of the independence of the
RSSIs of different APs. It is noted that the test data are also subject to censoring.

The likelihood p(z;|¢)) in Eq. (4.47) can be calculated as follows for censored Gaussian
data

pLi|x) = (4.47)

plai]ty) = / (i) py (411 64)dui (4.48)

[e.e]
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where 5 -
N ri—y;), ifx;>c

Using Eq. (4.49) in Eq. (4.48) we arrive at

N (@; fun, 07,), if x> c

-[O(ﬂk‘,% CAT]%J)) if T; = C : (4'50)

bl = {

For censored and dropped Gaussian data, p(x;|¢x) in Eq. (4.47) can be determined as
follows

o 1
P(l’z’wk):/ Zp<xi7yiadi;9k,i>dyi

 d;=0
= / (@i, yi, d; = 0; ék,i)dyi +/ (@i, i, di = 1; ék,z‘)dyi
= / p(xi|yi, d; = 0; ék,i)P(yi|dz‘ =0 ék,z‘)P(di = 0; ék,z‘)dyi
+/ p(xilys, di = 1;0,.)p(yil di = 1; ék,i)P(di =1; ék,i)dyz‘- (4.51)

If y; > ¢, obviously no dropping problem occurs, consequently P(d; = 1; é;“) = 0 and
p(x;|yi, d;i = 0;6k,;) = 6(x; — y;). On the other hand, if y; < ¢, the term in Eq. (4.51) can be
calculated as follows

Using the above expressions in Eq. (4.51) we obtain

N(J?i; ,&k,ia 5’1%,2‘)7 ifz;, >c

(]' - ﬁ-k,i)lo(ﬂk,ia &]3,2) + ﬁk,z‘, if T, =C ' (452)

pandi) = {

In Egs. (4.50) and (4.52), (jix, &,%71-, Ti,;) are the estimated parameters of the i-th AP at loca-
tion /;. In case all observations of the i-th AP at location ¢, are clipped, the mean estimate
is set to a small value /i, ; < c and C}l?w' is set to an average value.

Using the set P of nearest neighbors which is chosen among the offline locations by taking
those with the largest posteriors, the final location estimate { is then obtained by the weighted
average

- 1
I(x) S ) kezp Gep (L |x). (4.53)



5. Smartphone Adaptation within the
MLLR Framework

5.1. Motivation

Obviously, an Indoor Positioning System (IPS) can only be applied in the real world if it is
able to deliver reasonable positioning results to many users with many different smartpho-
nes. We acknowledge that until now, most of the research in indoor positioning has been
done assuming the device in the localization phase is identical to the one which was used in
the training phase. However, this is not realistic because each vendor has its own hardware
and software for its product. Consequently, devices may measure different values, although
the underlying true value of the quantity to be measured is the same. In case of RSSI mea-
surements, this is due to different antennas and WiFi chipsets. These differences in returned
measurements have even been observed with different samples of the same product/smart-
phone model. This phenomenon is caused by the fact that it is impossible to produce two
identical devices because of the error during manufacturing procedure and also the diffe-
rences in the components, i.e., chipsets and antennas. In [26], the authors reported that the
differences of RSSI readings are as high as —30 dBm between devices of different vendors
and up to —20 dBm among devices of the same vendor.

This leads to the problem that the positioning accuracy is dramatically reduced when the
test devices are different from the ones used in training. Obviously, it is not feasible to solve
the problem by building a database for each device because of the high cost of the trai-
ning effort. As a result, a question pops up: how can the database which was built upon the
measurements from one smartphone be used to localize other smartphones with a reasonable
positioning accuracy? This problem is similar to the problem in automatic speech recognition
when the database is trained by one speaker and is used to recognize the speech of the others.
To solve the problem, a very successful approach to speaker adaptation which is known as
Maximum Likelihood Linear Regression (MLLR) was developed. In this chapter, to solve
the problem of the different sensitivities of the portable devices, an adaptation method was
developed within the MLLR framework.

As discussed in previous chapters, WiFi data suffer from the censoring and dropping pro-
blem. Therefore, the proposed adaptation method was developed to be able to adapt training
models with adaptation data in the presence of censored and dropped data.

35
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5.2. Model Adaptation in the Presence of Censored and
Dropped Data

MLLR adaptation aims at determining the parameters of the adaptation matrices such that
the likelihood of the adaptation data is maximized [68, 69]. MLLR can be performed in
supervised or unsupervised procedure. In the unsupervised method, the occupying states
of adaptation data, i.e., the positions where the adaptation data have been measured, are
unknown, whereas in supervised method, the occupying states of adaptation data are known.
Since the WiFi signal varies greatly due to many factors, estimating the positions where
the observations come from is very challenging, and poor estimation of occupying positions
may result in a poor performance of adaptation procedure in the unsupervised case. Within
this work, to investigate the effectiveness of adaptation approach, supervised adaptation is
used. Though the supervised approach pose additional requirements in the collection of the
adaptation data, it still requires much less effort than collecting a completely new set of
training data.

According to [70], mean and variance adaptation can be performed in two seperate stages.
First, new means are estimated and then, given these new means, the variances are determi-
ned. This can be repeated until the changes in means and variances between iterations are
smaller than a threshold. As mentioned in [70], the iterative method does not improve results
much. However, considerable improvements have been identified within this work when ap-
plying iterative method. The reason could be that there is no censored and dropped data in
the database which was used in [70]. When censored and dropped data are present in the
data, a certain number of iterations is needed since the contribution of those unobservable
data to the estimates cannot be estimated correctly after a few iterations, except for the case
of no censored and dropped data occur.

5.2.1. Mean Adaptation

In this subsection, the procedure to adapt the trained means with adaptation data in the pre-
sence of clipped and dropped data is presented.

Let p1,; be the mean value of the Gaussian describing the PDF of the RSSI values of the
1-th AP at position /. We gather the mean values of all APs in vectors as follows

e = [ty -« -y My - kN (5.1)

for all positions (., k=1,..., K.
The goal is to estimate adapted mean vectors fu; via

fip = WeEDg, — ACE) 4 plet) (5.2)

where W = [A|b] is the (Nap X (N4p + 1))-dimensional augmented transformation matrix
which gathers the parameters of the affine transform, and &, = (u],1)7 is the extended
mean vector. Here, the general case of multiple transformation matrices is considered, where
c(k) € {1,C} is the regression class index, which indicates which of the C' affine transforms
is to be applied to the Gaussian describing position /.

To determine the maximum likelihood estimates of the transformation matrix W (c(¥))
an EM algorithm is employed which updates W (%) row-wise. Let v, (n) be the posterior
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probability that RSSI measurement vector x,, is from position /. In the case of supervised
adaptation that is being considered here it is equal to one if the measurement is indeed from
position ¢; and zero else.

Let Y = yi,---,yn, Where N is the number of adaptation measurements and y, =
Yn1, " ,YnN,p 18 the vector of the measured data of all APs in one measurement. Let
D = d;, -+ ,dy, where d,, = d,, 1, - ,dyN,ps dn; 1 the random variable which indi-
cates whether the measured data from the i-th AP in the n-th measurement is dropped or
not. Observable are censored, possibly dropped data denoted by X = x;,--- , Xy, where
Xp = Tn1, TNy aDd T = max(Yn, ).

The expected log-likelihood of the complete data {), D}, given the observed { X'}, has a
similar form as Eq. (4.36):

K N Nap 1 o
QA =Y > ) Y > / 100 (p(Yris o is A)) P (s il Ay
k=1 n=1 i=1 dp ;=0 7
(5.3)
where £ is iteration index. Here A = {A\p;;k = 1,...,K;i = 1,...,Nap}, where \;; =

{ k.4, wgc(k)), Or,i} with 0y ; = (pk, ag,i), is a short hand notation for the parameters to be
estimated. Here, w'“®) is the row vector which is the i-th row of W(*)_ In Eq. (5.3) the

i
first sum is over the locations, the second enumerates the adaptation data, while the third is
over all APs and the fourth is over the possible values of the random variable d,, ;.

The terms in Eq. (5.3) can be determined in a similar fashion as the terms in subsection

4.2.3 with the only difference that y,, ; is now assumed to be drawn from a Gaussian with

adapted parameters: y,,; ~ N (fi; = wgc(k))ﬁk, oy ;) as follows. Note that only means are
adapted in this stage

Ti0(Yni — C ,ifd,; =1
PYni dnis Aryi) = { (f_ (gkl)N(;m’ Aea)s s if dm —0 (54)
P(Yn,is A i T is )‘l(cl,iz‘)> = P(Yn,ildn,is Tnis )‘](:z))P<dnz‘xn27 A/(:Z)) (5.5)
where
Ny A :

P(ildus = 0,0 N = { “woy = (56)

I Yni — xnyi) Hifx,; >0
p@mMmzL%ﬁﬁWZ{g@“_@’gzxig- (5.7)

Using the notation Sy ;(dpi, 2n:) 1= P(dni|2n.i; A,i“i)), where z, ; indicates whether the n-th
measured data of the i-th AP is observed z,,; = 0 or not z,; = 1. B:(dn, 2n;) are then
determined as follows

B.,i(0,0) =1 (5.8)

Br,i(1,0) =0 (5.9
7t

Bri(1,1) = = (5.10)

(1 — 7N ILND)) + )
Bri(0,1) =1 — Br.i(1,1) (5.11)
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After using the determined terms as summarized above in Eq. (5.3) we arrive at:
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The goal now is to maximize the objective function Q(A\; A*)) w.r.t A. Using y,; ~
N (firi = W(C( Ve o7 ;)» Eq. (5.12) can be written as follows

Nap
)‘(K Z Z Yi(n Z {Zn,iﬂk,i(O, 1) In(1 — my,)
k=1 n=1
(k) ¢\
niBri(0,1) € 1 (?/m - W, Ek) .
Zn,i Bk, ((R) ) / In| ——exp | — 557 N(ym-; )\](w))dym-
Io(Nypi) oo \/ 270 ; Oei
2
+ (1= zp) In(1 — 7)) + (1 = 2n3) In | ——=exp [ — 5
2mo? 204,
+ 2n,iBri(1,1) ln(ﬂ'k,i)} (5.13)

Re-estimation formulas for 7y, ;, wfc(k)) are obtained by computing the derivatives of the

auxiliary function in Eq. (5.13) w.r.t. these parameters and setting them to zero.
Computing derivative of the auxiliary function w.r.t. 7, ; we arrive at

0

871’]“@'

1_7Tkz 1_7Tk,z'

) = Y ul) { s 0D 4 (1= )

+2n.iBki(1,1) ! } (5.14)
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Setting Eq. (5.14) to zero and solving it, re-estimation formula for dropping rate 7, ; is readily
obtained

0 QX A1) —0 (5.15)

87Tk7i g i=(mg,) (D)
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> () '

The derivative of the auxiliary function w.r.t. the i-th row w'“® of W(®) is computed
as follows
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The re-estimation formula for wf(’“” is readily obtained by setting Eq. (5.17) to zero and
solving it:

N (%)
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To estimate (Wi for a regression class c¢(k)-th which contains R positions

{k1, ko, -+, kgr}, Eq. (5.18) becomes
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Given the observed data and the initial values of the parameters to be estimated,
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(c(k)) FHY) :
(w< ) can be obtained as follows
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5.2.2. Variance Adaptation

Variance adaptation is performed after mean adaptation. It is noted that we assume the RSSI
measurements from different APs are independent.

Let X, be the diagonal covariance matrix of the Gaussian random vector modelling the
RSSI readings of the APs at position /;. The adapted variance can be calculated as follows
[70]:

3, = BIHW)B, (5.21)

where H(%) is the transform to be estimated and By, is the Choleski factor of ;. Since ¥},
are diagonal covariance matrices, the re-estimation formula Eq. (5.21) simplifies to &,%71- =
h(c(k O']“,Z— 1,...,Nyp.

To estimate H(C(’“)) we again employ the EM algorithm. The expected log-likelihood of
the complete data, given the observed, has the same form as in mean adaptation. However,

here A\, = {my., pLet Qk i} with h is the i-th component of the main diagonal of

)

H(®)
Using all in the expected log-likelihood function Eq. (5.12), we arrive at:
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The re-estimation fomula for is readily obtained by computing the derivative of
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Eq. (5.22) w.r.t. hgc(k)) and setting it to zero:

(k+1) 1 N
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Here fi;, ; are the new updated means which were discussed in the previous subsection.

As can be seen in the derivation, beside estimating the adaptation matrices for means
Eq. (5.18) and variances Eq. (5.23), the dropping rates of the adaptation data are simulta-
neously estimated. Eq. (5.18) and Eq. (5.23) show that not only the observable measure-
ments, but also the unobservable ones contribute to the estimate of the adaptation matrices.
If neither censoring nor dropping occurs, i.e., 7 ; = 0 and z, ; = 0, Eq. (5.18) and Eq. (5.23)
reduce to the formulas for mean and variance adaptation presented in [70].

5.3. Regression Classes

In the previous section, the method for aligning training model with adaptation data in the
presence of clipped and dropped data has been presented for the general case of multiple
transformation matrices.

If the relationship between two sets of training data and adaptation data follows only one
linear rule as mentioned in [61], only one set of adaptation matrices, i.e., mean adaptation
matrix and variance adaptation matrix, for all states is needed.

However, according to our data preliminary study, the relationship of RSSI data measu-
red by any pair of devices does not follow only one linear rule. Two possible main factors
which influence the relationship between two sets of data are signal strength range and signal
frequency. This is obvious because of the fact that the sensitivities of radio signal sensors de-
pend on the strength and the frequency of the measured radio signal. To relax the linearity
assumption, a clustering approach has been applied to seperate the user positions in multiple
regression classes that share the same linear relationship, however different from the other
clusters.

However, a critical issue is how to define the regression classes, within which the para-
meters of all states, i.e., fingerprint positions, change in the same manner. Since no prior
knowledge of which models should share the same transformation rule is available, a criteri-
on for finding regression classes must be found. Various criteria could be used for clustering,
for example, the positions with similar RSSI PDFs could share the same linear rule. The si-
milarity of the PDFs can be measured by computing the likelihood of observing the training
data collected at one position given the training models of the others. Using these criteria,
means and variances of the training models are employed. However, from our observation,
the states, i.e., positions, which transform in the same manner have similar RSSI mean va-
lues, irrespective of the actual identity of the APs. As a result, those positions should be
assigned into the same cluster. We thus apply a k-means clustering on the mean vectors gty
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of the probability density function of all location ¢, to obtain C' clusters. For each cluster,
transformation matrices are estimated as presented in the previous section.



6. Hidden Markov Model for Indoor
User Tracking

6.1. Motivation

In chapter 4, we have discussed the method to estimate the parameters of censored and drop-
ped Gaussian data and the optimal classification rule for localizing indoor users. The pro-
posed algorithms belong to the most common approach of indoor positioning which is the
fingerprinting based approach. Fingerprinting techniques are able to produce a stable posi-
tioning accuracy over time and movement distance of the user. However, there is another
approach which can also be applied successfully in indoor positioning, namely the Dead
Reckoning technique. This technique uses data from inertial sensors to locate the user posi-
tion. However, as discussed in chapter 2, the Dead Reckoning technique is often applied in
a combination with other positioning techniques since it can only produce precise position
estimates in a short period of time and small distance. For long term use and large distance,
the position error is unreasonably large because the errors are accumulated over time and
distance.

As discussed, the stability of fingerprinting based indoor positioning techniques make
them become the common candidates to accompany with DR techniques in indoor positio-
ning. Various combinations have been proposed to keep the advantages and to reduce the
disadvantages of those two approaches. Sensor fusion can be achieved by a Kalman filter
[31], particle filter [32] or with the use of a Hidden Markov Model (HMM) [29, 30]. Among
those possible solutions, we decided to employ the HMM in our system because it gives us
the possibility to employ the knowledge of possible walking path which may improve the
positioning accuracy.

6.2. Hidden Markov Model for Indoor User Tracking

In this section, the method to employ a HMM to fuse RSSI measurements and step detection
information for position estimation is presented.

First, it should be recalled that the standard HMM can be depicted as in Fig. 6.1. Here,
s; 1s the hidden state variable and x; is the observation at time ¢. It is noted that the hidden
states cannot be observed, however, the most likely sequence of states can be inferred from
the sequence of observations generated by HMM. The HMM is determined by three sets of
parameters: the emission probabilities, the state transition probabilities and the initial state
probabilities. Fig. 6.2 shows the unfolding of a state diagram over time, called trellis diagram.
Here it is assumed that the HMM has K = 4 different states, i.e., X = 4 different values

43
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St—1 St St+1
>0) >

Xt—1 X Xt4+1

Figure 6.1.: Standard Hidden Markov Model: s; is the hidden state variable and x; is the observation
at time ¢

of s s; € {1,2,3,4}. Each column in the graph (corresponding to a time instant) contains
nodes representing the states of the HMM. Each node in the graph has connections to at least
one node at an earlier and one node at a later time. The connections represent the possible
transitions between states. The transitions from one state at one time instant to the possible
states at the later time instant have probabilities which sum up to 1, i.e., E]K:l P =1,
where P, ; = P(s¢+1=j|s;=t), assuming the transition probabilities are independent of time,
given any ¢ = 1,..., K. Without any prior knowledge, the transition probabilities from one
state to the next can be assumed to follow a uniform distribution.

Pia (1)
1 > 1

» 1
Do
2 » 2 ‘ » 2
3 » 3 >
4 )@ » 4

Figure 6.2.: Trellis diagram with four different states s, € {1,2,3,4} and P, ; are the transition
probabilities from state ¢ at one time instant to state j at the later time instant

The remaining parameters of a HMM are the emission probability distributions. For each
HMM state, the emission probability distribution p(x|s;) gives the likelihood of observing x
at state s;. Those emission PDFs are supposed to be different amongst states. For positioning
purpose, we identify s, with the position of the user at time ¢: if s, = k then the user is at the
location /¢, at time ¢, where ¢, is a two-dimensional vector describing the user’s location. In
WiFi fingerprinting based indoor positioning system, the RSSI training models and the online
RSSI measurements can be considered as emission probabilities and observation sequence,
respectively.

However, with step detection information, there is another set of observations, i.e., move-
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ment observations. To incorporate the step detection information, the emission probability
distributions for this kind of observation need to be defined. Intuitively step detection infor-
mation gives us the information about moving from one state to another state, i.e., the state
transitions, instead of the information about a single state. So the solution here is to associate
an observation with a state transition rather than a state. This ends up with a modification to
the HMM to combine RSSI and step detection observations as depicted in Fig. 6.3. In the
following, this model is called modified HMM.

Vi Vit
St—1 St St41
> >

Xt—1 Xt Xt+1

Figure 6.3.: Modified HMM for position estimation based on the fusion of RSSI and movement vec-
tor observations x and v, respectively.

Here, v, is the two-dimensional movement vector which denotes the traversed route from
s¢—1 to S;. vy 1s obtained from inertial sensor measurements. Its computation will be discus-
sed in section 6.4. In the modified HMM, RSSI measurements and movement vectors are
taken as observations attached to the hidden states and the state transitions, respectively. The
transition probabilities between the states are chosen to reflect which positions are accessi-
ble from a given state within one measurement interval. Only transitions to those positions
which are accessible within one measurement interval will be given a probability greater than
zero. With the Samsung Android smartphones we have at hand, the measurement interval is
roughly 1,5s which is the required time to update a new WiFi scan of the devices.

6.3. Forward Algorithm

With the employment of a HMM, the estimation of the user position can then be carried out
either by the Forward algorithm, the Viterbi algorithm or the Forward-Backward algorithm.
While Forward algorithm computes the probability of being in a certain state by gathering
the probabilities over all possible predecessor states, the Viterbi algorithm considers only the
most probable predecessor. The Forward-Backward algorithm is only of academic interest
because the induced latency is not acceptable for an online positioning system. In the follo-
wing, the Forward algorithm which aims to estimate the most probable state at time instant ¢
given the history of observations was chosen to decode the user position.

Let x1.;, = [x3,...,%;] be the sequence of RSSI measurements up to time ¢. The step
detection information is gathered in the sequence vy, = [vy, ..., v¢]. Our goal is to compute
P(s;=k|v1.,x1.), 1.e., the probability of being in the k-th state for all possible user positions
U,k = 1,..., K, given all RSSI values and step detection vectors measured sofar. Using
Bayes’ rule, the probability can be expressed as follows:

p(5t2k7 Vi, Xl:t)

p(vl:t7 Xl:t)
08 p<5t:k7V1:t7X1:t) = Oét(k), (6.1)

P(St:k|V1:ta Xl:t) =
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where the so-called Forward variable oy (k) is the probability of being at time ¢ in state k,
while having observed the sequence of x;.; and vy.;.
Using marginal probability and chain rule, the forward variable can be written as follows

Oét(k) = ZP(St:]ﬁ St—1=1, V1.1, Xl:t)

= ZP(Vt|St:k> 8t-1=1, V1:t—1, X1:—1, X¢)

- p(Xe|se=k, 81-1=1, V141, X1:4-1)

- P(si=klsi—1=1, Vi1, X14-1)

p(St-1=0, Vi1, X1:0-1)- (6.2)

Applying the properties of the HMM, which are depicted in the graphical model of Fig. 6.3,

i.e., x; is independent of all other variables if s; is given, s; is independent of x5, ...,X;_1
and vq,..., v, if 5,4 is given, and v, is independent of everything if s, ; and s, are given,
and assuming the step detection and RSSI information to be statistically independent of each
other given the user location, the above formula simplifies to

a (k) = Zp(vt|st:k, St—1=1) - p(X¢|s:=Fk)

: P(St:k|5t71:i> 'p(5t71:i7V1:t717X1;t71) (6.3)

J

—a 1 (i)

which is a recursion of the forward variable.
The final location estimate ¢ is obtained by the weighted average over the set P of the
most likely positions:
l > ay(k) - by (6.4)

1
<ol &

Equation (6.3) shows how the different knowledge sources are combined. The transition
probabilities P(s;=k|s;_1=1) are nonzero only for those locations ¢, that can be reached
from position ¢; within one time step. The choice of the transition probabilities thus enco-
des our knowledge about the floor plan. The term p(x;|s;=k) is the likelihood of the RSSI
measurement X;, assuming that the user’s position is ¢;. The computation of emission PDF
estimation and likelihood calculation were discussed in Chapter 4. The movement informa-
tion gathered from the step detection is captured by the term p(v¢|s;=k, s;_1=1), i.e., the
likelihood of observing the movement vector v; when moving from position ¢; to (.

It is noted that this derivation requires that RSSI measurements and the movement infor-
mation are obtained at the same rate. In fact, the rate of user’s steps is often higher than RSSI
measurements. To synchronize these 2 sources of data, movement vector v, is the accumu-
lated results of the step information during 1 RSSI measurement interval.

6.4. Movement Vector Estimation

In this section, the method to infer the step detection information from data measured by
acceleration sensor, gyroscope sensor and magnetic sensor is summarized. More detailed
information about movement vector estimation can be found in [71].
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The system to estimate the movement vectors is depicted in Fig. 6.4.

! ’
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R > Angular Step length L,
gyr »| velocity

Figure 6.4.: Step detection and position estimation system overview

Here, a is the 3-dimentional acceleration vector from the accelerometer of the smartphone,
G = 9,81 m/s? is the gravity constant, which will be used to perform the step detection
procedure. m, g and gyr are the magnetometer data, gravity information and gyroscope
data, respectively, will be used to estimate the movement heading of the user. The gravity
information vector g is the 3-dimentional vector which contains the force of gravity along
three axes of the smartphone. R is the rotation matrix, v is the angle between movement
heading and the magnetic north direction, and di denotes the changes of ¢ over time. The
detail information about these data and how to retrieve them by an Android application can
be found on the website for android developers [72]. Movement vector v; is computed by
accumulating the estimated movement of all detected steps within one RSSI measurement
interval.

6.4.1. Step Detection

The step detection procedure is based on the measured acceleration data from the smartpho-
ne. The obtained samples are stored in 3-dimensional vectors a = [a,, a,, a.]” where z,, 2
are the axes in the coordinate system. This is defined in the relation with the screen of the
smartphone as shown in Fig. 6.5(a)

y
"'y
y
A
X
Z
(a) Device coordinates system (b) World coordinate system

Figure 6.5.: Device coordinate system (a) and world coordinate system (b)
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The characteristics of the user movement is captured in the acceleration data as depicted in
Fig. 6.6. As can be seen in the example the acceleration component along the z-axis clearly
shows the up and down motion caused by walking. It is noted that the measured data are
always influenced by the force of gravity. Therefore, to obtain the real acceleration data, the
contribution of the force of gravity must be eliminated. One can use this a, for step detection
purpose if that is the stable feature of the obtained data. However, this is just an example of
acceleration data when the smartphone was held in the way that its screen is in parallel with
the earth surface. If the smartphone, however, is held in an arbitrary attitude, the observed
data will not follow the example data in the figure any more. Because of that reason, instead
of using data from one specific component, the Euclidean norm of the acceleration data from
all three components is used to perform step detection, see Eq. (6.5). Fig. 6.7 shows the
calculated norm values after substracting the force of gravity constant G=9.81.

lal| = /a2 + a2 + a2 (6.5)

Raw Acceleration Data [m/s?]
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Figure 6.6.: Example of raw acceleration data if the smartphone is held with display in parallel to
earth surface when walking

To reduce the variation caused by sensor errors, a 5-Hz lowpass filter is applied, as is
suggested in [57]. Fig. 6.8 shows the output signal of the lowpass filter. Here, a Butterworth
low-pass of order 20, with a cutoff frequency of 0.2 - f,, = 5H z, where f,, corresponds to a
half of the sampling rate (50H z/2) is used.

In the literature, two common approaches which have been employed in many research to
detect steps using acceleration data are peak detection and zero crossing count. In [57] a peak
detection with a minimum threshold is used to count the steps. This has the disadvantage
that sometimes the maximum is split into two local maxima and thus an additional step
is detected. The other method for detecting steps calculates the zero crossing rate of the
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Figure 6.7.: Norm of acceleration data after substracting the force of gravity constant G=9.81

acceleration data [59], which in case of noisy data may also result in additionally detected
steps.

The proposed approach combines the strengths of peak detection and zero crossing count
approaches by counting the crossing rate of acceleration data over a certain threshold. Our
method is then able to cope with multiple local maxima and noisy data in the measured
acceleration data.

Fig. 6.9 illustrates the threshold-crossing approach. The step counter is only increased if
the threshold (magenta line) is larger than the safety threshold (red line) to avoid an erroneous
counting when the user is not moving but there is still some fluctuation of the observed
acceleration data. The threshold is not a fixed value through the whole process, instead it is
calculated for every single data block. Here a block size of 64 samples is chosen regarding
the sampling rate of acceleration sensor and processing speed. First, for each data block,
the peak mean is determined by calculating the mean of all the detected peaks. Second,
the threshold is computed by multiplying the peak mean with an experimentally determined
weighting factor. In our experiment, the weighting factor of 0.6 produces the best results.

Recently, another method, namely autocorrelation method, for detecting steps has been
proposed in [32]. This method employs the fact that the acceleration data exhibits a very
repetitive pattern. The advantage of the autocorrelation method compared to peak detection
and zero crossing count methods is that it is able to eliminate the hand gestures when the
user is not moving, transition from sitting to standing and vice versa, and so on. According
to our experimental results, the autocorrelation method outperforms the other two traditional
methods. Therefore, at the current state of our project, this method is employed in our system
for detecting steps.

However, this section aims to present our proposed approach to detect steps which has be-
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Figure 6.8.: ||a’|| after lowpass filter

en reported in [73]. It has to be noted that the autocorrelation method has not been published
when we started to develop our step detection method.

6.4.2. Movement Heading Estimation

Movement heading can be estimated by combining information from magnetic field sensor,
gravity sensor and gyroscope sensor of the smartphone. Assuming that the user holds the
smartphone with its screen in parallel with earth surface, i.e., the z-axis points toward the
sky, perpendicular with the earth surface, and the y-axis points toward the movement directi-
on of the user, the movement heading estimation simplifies to the estimation of the Azimuth
angle 1. This is the angle between the magnetic north direction and the y-axis (the smart-
phone rotates around its z-axis). Since the data from smartphone’s sensors correspond to the
device coordinate system, a rotation matrix R is needed to project observed data to the world
coordinate system (see Fig. 6.5(b)). This rotation matrix can be obtained via the Android
APIs using the measured gravity and magnetic data.

For simple movement heading estimation, one can use the estimated v from magnetic field
and gravity information which gives the absolute angle between movement direction and
the north pole. However, in indoor environment, movement heading estimation employing
only magnetic information is very unstable due to the influence from many nearby metallic
objects, i.e., elevators.

In order to obtain a more reliable and stable movement direction estimation, the combina-
tion of magnetic data and gyroscope data which are both available on most smartphones is
chosen. Fusion of these two sets of data can be done by applying a Kalman filter.
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Threshold Crossing Counting Procedure
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Figure 6.9.: Step detection procedure: In each data block, the number of steps is determined based
on the crossing rate of the acceleration data over a threshold (magenta lines). The safety
threshold is the minimum threshold value that the amplitude of noisy acceleration data
cannot exceed.

The system equation of Kalman filter for sensor data fusion can be written as follows:
an+1) =F(n)a(n) + G(n)vi(n), (6.6)

where a(n) is the state vector that contains the absolute angle 1 and its devirative ¢. F(n)
is the state transition matrix which indicates a transition of the system from time n to n +
1. v1(n) is the system noise which is assumed to be white Gaussian noise that influences
the state vector via the matrix G(n). The covariance matrix of v(n), Qi, is determined
experimentally.

The measured sensor data z(n) = (¢,¢))7 are related to the state vector by the following
measurement equation:

z(n) = H (n)a(n) + va(n) (6.7)

where H” (n) is known as measurement matrix. Measurement noise is denoted by v5(n)
which is also assumed to be white Gaussian noise. The covariance matrix Qg of v5(n) is
determined experimentally.

Within this work, the matrices F(n), G(n) and H (n) are assumed to be time invariant,
and the values of those matrices, as well as Q; and Q, are provided in Appendix A.2.

6.4.3. Movement Vector Calculation

As mentioned previously, to be able to fuse inertial sensor information with RSSI measure-
ments, those two sets of data need to be synchonized. Here we use RSSI scan interval T as
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the common interval. The movement information of the user within time interval 7T can be
computed as follows

- b ().

t;€Ts

where ¢;,1 = 1,..., N, indicates the moments when steps are detected within 75, N, 18
the number of detected steps within 7. L., is the step length which has been estimated in
advance, and v, is the movement information of the user from time instant ¢ — 1 to ¢.

Obviously, using a fixed step length is not the optimal solution since the step length may
vary according to different users or different walking styles of the same user. However, most
step length estimation methods are based on the calibration procedures in the training phase
which do not adapt well to different users either. Since the low cost built-in accelerometers on
the smartphones have very limited accuracy, it seems that estimating step length accurately
by double integration the acceleration data is unfeasible. Because of that, accurate on the fly
step length estimation still needs to be carried out in the future work.

6.5. Introduction of Pseudo States

As mentioned in Chapter 4, the positioning accuracy using fingerprinting based method de-
pends on how good the radio map is, i.e., how accurate the training parameters and how
dense the positions with training data are. The EM algorithm was proposed to estimate the
parameters of sensored and dropped data which is able to produce accurate parameter esti-
mates, so the first issue is solved. The remaining issue is the density of the grid for which
training data are gathered. Obviously, the more positions with training data, the better the
performance of fingerprinting based positioning techniques [18, 25, 3]. However, it is very
time consuming to develop an indoor positioning system for a large area, i.e., universities,
hospitals, and so on, if we try to collect training data for a dense grid of positions. It is only
feasible when we employ a fairly coarse grid of states, i.e., the average distance between two
positions is about 3 — 5m.

The coarse grid of states leads to high quantization error. In order to obtain a good po-
sitioning accuracy without increasing training effort, we reduce the quantization error by
introducing pseudo states in-between the regular HMM states of which the RSSI measure-
ments have been collected during training. By doing this, the average distance between two
possible user positions can be reduced. Fig. 6.10 illustrates our idea where states k and ¢ are
regular while the green one, i.e., state j, is the pseudo state. It is noted that the number of
pseudo states inbetween two regular states depends on how far apart these two regular states
are, and the designed maximum distance between two neighboring states after introducing
pseudo states.

However, these pseudo states lack the emission PDFs since there are no training data. The
PDFs of these pseudo states can be assumed to be related to their closest neighboring regular
states. Assuming that the closeness in physical distance strongly influences the closeness
in the measured signal strength, within this work a method was proposed to synthesize the
emission PDF of a pseudo state by computing the product of the emission PDFs of the two
closest neighboring regular states, where each PDF is raised to a power which has a value in
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Figure 6.10.: Introduction of pseudo states: The red circles are the regular states with training data,
the green circle is the pseudo state introduced inbetween the regular states.

the range from 0 to 1 and which depends on the distances of the pseudo state to the regular
ones (see Eq. (6.9)).

d(€;,¢5) A(Lg;.45)
p(z[se = j) = p(x]s; = k)" p(als, = i) 1“0 (6.9)
Obviously, if the pseudo state is at the regular state, i.e., 7 = 4, the emission PDF at

the state j is the same as it at the state 7. Eq. (6.9) intuitively gives the expected result
p(x|sy = j) = p(x|s; = i) since d(¢;,¢;) = 0 and d(¢y, £;) = d({;, Ly,).

In case of j # i, k, the PDF at the j-th state can be computed from Eq. (6.9) as follows

da(e;,¢5) A(Lg.05)
p<x|5t = ]) = p<x|5t = k) d(fi’fk)p<x|5t = Z) d(£;,0y)
d(£;,45) d(8y;,05)
a(e;,0,) a(e;,0)
(. <_<x—uek>2> L (_<x—u@>2)
2 2
2o} 207, 2o 20y,
k i
d(€;,0;) d(Ly,£;)
d(Zi,lk) d(li,Zk)
27ra§k 2noy
Eq. (6.10) can be written in a better form as follows
d(e;,45) A(Lg;.45)
a(l;,) a(t;,01,)
, 1 ’ 1 ’
plalsy=j) = | —/— ——
27ml?k A /27raz_
2
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where
A, 0 d(¢;, ¢; A(ly, L
s, (2 K _ e (; ) | he <2k ) 6.12)
O-éj O-Zk O-Ki
d(;, ¢ d(l;,¢;)  d(ly, ¢
(6 l) _ il 6) | d(l, ) (6.13)

As the result obtained above, the synchonized PDF at the state j is again a Gaussian. The
effectiveness of introducing pseudo states to the HMM on positioning accuracy is presented
in chapter 7.



7. Experimental Results on Indoor
Positioning

This chapter presents the experimental results on both artificially generated data and real field
data to demonstrate the effectiveness of the proposed algorithms. The results presented in this
chapter have been reported in some publications [74, 73, 75, 76]. At each location training
data has been gathered by a user holding a smartphone. The user turned by 90 degree, such
that measurements were taken at four different orientations. This was done to reflect the
influence of the human body, antenna orientations, etc., in the training data. Since we have
collected several sets of field data for different experiments, more detailed information about
the data collection procedure of each set of field data will be given in each section.

7.1. Parameter Estimation and Classification

First, the effectiveness of the proposed EM algorithm for censored data has been evaluated.
Comparison between the proposed methods and some other methods demonstrated that the
proposed methods outperform the others (section 7.1.1). Secondly, the experimental results,
which prove that being aware of dropping in addition to censoring improves the classification
performance, are presented in section 7.1.2. Note that, in this section, training data and test
data are collected by the same device, so the mismatch problem between training and test
data arising from using different devices does not occur.

7.1.1. EM algorithm for censored data
Artificial Data

In the following the effectiveness of the EM algorithm for an indoor localization problem
is evaluated using artificially generated data: We consider a 2-class problem with Nyp = 5
access points. For each of the two locations N = 1000 training samples are drawn from
a normal density with parameters according to Table 7.1 and then censored from the left
with a threshold of ¢ = —100 (dBm). A total of 200 test samples, 100 per location, are
generated in the same manner. Performance is measured in terms of classification error rate.
For the generated data, the percentage of uncensored data, averaged over all APs at each
position, was approximately 58%. A classification error occurs if the algorithm classifies
the measurement to a different location than the location whose PDF of RSSI values it was
drawn from.
We compared the classification error rate of the following schemes:

55
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Table 7.1.: Mean and standard deviation of APs at 2 positions for artifical data experiment

AP index | AP1 | AP2 | AP3 | AP4 | AP5
M1 -102 | -103 | -97 | -89 | -95
H2,i -105 | -100 | -99 | -86 | -101
01, 48 | 49 | 50 | 52 | 5.1
092, 50 | 48 | 48 | 54 | 50

Table 7.2.: Classification error rate on artificial censored data

Method Error rate (%)
Plain trng + recog 30.7
EM trng + plain recog 26.9
EM trng + censored recog 22.5
3-strongest APs 35.1
I-nearest neighbor 36.8

e Plain training (trng) + recognition (recog): ML parameter estimation is carried out
assuming normally distributed, uncensored data. Also recognition is performed disre-
garding any censoring.

e EM trng + plain recog: ML parameter estimation in training accounts for the censored
data using the proposed EM algorithm, while the presence of censored data is still
disregarded in recognition.

e EM trng + censored recog: Training with the proposed EM algorithm and recognition
employing eq. (4.52).

e 3-strongest APs: Select three strongest APs of each location in the training phase, then
apply EM trng + censored recog.

e 1-nearest neighbor classification rule.

Table 7.2 clearly shows the superiority of the schemes which are aware of the censoring.
Considering the presence of censored data in training improved the error rate from 30.7% to
26.9%, and a further improvement to 22.5% is obtained by accounting for censored data also
in recognition. We can also see the important role of weak APs for the recognition accuracy:
using only the three strongest APs raises the error rate to 35.1%. 1-nearest neighbor performs
worst with the error rate of 36.8%.

Field Data

In order to evaluate the performance of the proposed EM algorithm on real world data, real
WiFi RSSI measurements were gathered on a floor of an office building consisting of 10
office rooms and a long aisle having an overall size of 12m by 30m (see Fig. 7.1). RSSI
values were taken at 25 different positions, roughly evenly distributed, resulting in an average
distance of 2,7m between two locations. Two measurement campaigns were carried out
using a smartphone, with 100 measurements taken per position per campaign. Data of the
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first measurement campaign served the purpose of training and the second one was for testing
purposes. For the training data set, the percentage of uncensored observations, averaged over
all APs which were observable at each location, was found to be 36.7%.
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Figure 7.1.: Floor plan of the area where field data has been conducted.

To compare the proposed approach to a state-of-the-art system, the algorithm from [52]
was implemented. There, for each location ¢, the probability distributions of the 10 strongest
APs are determined during the training phase and compared to those of the online measu-
rements employing the Bhattacharyya coefficient. A 3-nearest neighbor rule is then applied
to decide on the user location. Furthermore, we compared with the well-known system, RA-
DAR [18], where classification is performed with a 3-nearest neighbor rule, employing the
Euclidian distance. When applying the proposed algorithm, 5 online measurements were
used for each estimate, the final location estimate was then computed using the 3 most likely
positions, see Eq. (4.53). It is noted that 5 online measurements were also employed in the
implementation of the algorithm of [52].

Fig. 7.2 shows the cumulative distribution function (CDF) of the error as a function of the
distance for each method. The CDF is defined as the probability that the positioning error €
is lower than a certain distance d:

CDF.(d) = P(e < d) d>0. (7.1)

The results in Fig. 7.2 show that the proposed method outperforms the other two, especial-
ly for the 40% error quantile. Note, also, that the computational cost of the proposed method
during the online phase is smaller than those of computing the Bhattacharyya distances bet-
ween probability distributions [52] or the nearest-neighbor based [18] methods.
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Figure 7.2.: CDF of the positioning error for different systems.
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Table 7.3.: Classification error rate on artificial censored and dropped data

Method Error rate (%)
EM trng + censored recog 29.7
Adv. EM trng + censored & dropped recog 25.7

7.1.2. EM algorithm for censored and dropped data

In the following, experimental results showing the effectiveness of EM algorithm when being
aware of dropped data in addition to censored data are presented. For convenience, let us call
the EM algorithm for parameter estimation of censored and dropped data as the advanced
EM algorithm.

Artificial Data

The artificial data were generated according to the parameters which were used in Secti-
on 7.1.1, however, the means of all APs at all positions are increased by 10 dBm to show
more impact of dropped data on the estimated parameters and consequently on classification
results. The generated Gaussian data were first censored and then dropped with the dropping
rate of 20%. Since the effectiveness of EM algorithm for censored data has been proved in
the previous sections, this section aims to compare the classification results between two
proposed EM algorithms to show the importance of the awareness of dropped data besides
censored data.

Table 7.3 shows the classification results on censored and dropped data using the proposed
EM algorithms. It can be seen that the parameter estimation formulas derived in Section 4.2.3
are able to cope with an unknown drop-out rate, which leads to the improvement in the
classification error rate from 29.7% to 25.7% if indeed drop-outs occur. The reason is if
all unobservable data are considered as censored data, the parameters estimated by the EM
algorithm which is aware of censored data only, are inaccurate, i.e., the estimated means
are biased to the left of the true means and the estimated variances are higher than the true
variances. These inaccurate estimated parameters cause the degradation of the classification
performance.

Field Data

To demonstrate the effectiveness of the advanced EM algorithm, an experiment on real field
data has been done. This experiment was done by using the same data sets as used in the ex-
periment of the EM algorithm for censored Gaussian data. Fig. 7.3 shows the experimental
results on real field data using the two proposed EM algorithms. As can be seen, being aware
of dropped data improves the positioning accuracy, though the improvement is moderate.
The reasons might be either the amount of training data, 100 samples per position, are not
sufficient for the advanced EM algorithm since it tries to estimate more parameters, or the
true dropping rates are low. Since the data sets were gathered in a real indoor environment,
true dropping rates are unknown. As our study on the results, the estimated means and va-
riances from advanced EM are better than the EM algorithm awaring of censored data only,
and the estimated dropping rate averaged over all APs and all locations was approximately
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0.37, we concluded that the limited improvement of positioning accuracy is because of the
not very accurate estimated dropping rates. As presented in section 4.3, dropping rate plays
an important role in likelihood calculation for the unobservable data, so the inaccurate esti-
mated dropping rates limit the improvement in classification results. In the bad case of low
accuracy of the estimated dropping rates, the positioning accuracy might even decrease.

Adv. EM
EM Censored ||

0 1 2 3 4 5 6 7 8 9 10
Distance d [m]

o i

Figure 7.3.: Comparing the experimental results on real data using 2 proposed EM algorithms

7.2. Smartphone Adaptation

This section investigates the impact of the proposed adaptation approach on the accuracy of
fingerprinting based indoor positioning. Some variations of the adaptation approach within
the MLLR framework such as mean and variance adaptation, mean adaptation only with full
or diagonal adaptation matrix have been implemented. In addition, the impact of the number
of adaptation data and of the number of regression classes on the performance of adaptation,
and consequently on the positioning accuracy, are also investigated.

7.2.1. Classification on Artificial Data

In this set of experiments, artificial data were generated to assess the impact of the drop-out
rate and the amount of adaptation data on the classification performance.

1000 samples of training data were generated for each of X' = 6 positions and for Nyp = 2
access points. A single affine transformation of the means of the training data is used for
each location according to fi, = Ay + b, where A = [0.9,0;0,0.9] and b = [-3,2]T.
Adaptation and test data were then generated by sampling from the transformed Gaussians
with means f1;, and variances as those of the training data. While the amount of adaptation
data was gradually increased from 1% to 5, 10, 50 and 100% of the number of training
samples, the number of test samples was fixed at 100 observations per position. The value of
the drop-out rate is set to 0% (no drop-outs, 7 = 0) and 20% (7 = 0.2).

Although the effectiveness of being aware of dropped data on classification results was
demonstrated in section 7.1.2, for the convenience of evaluating the effectiveness of the
adaptation approach, classification results employing advanced EM with the current set of
parameters are still presented. Table 7.4 discusses the impact of the drop-out rate without
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Table 7.4.: Classification results (% positions correctly classified) when training and test data are
generated from the same parameter set

Aware of dropping || yes | no
m=0 86 | 86
=02 75 | 64

Table 7.5.: Adaptation performance (% positions correctly classified) on artifical data as a function
of amount of adaptation data

No. Pos with adapt.data | 7 | 0% | 1% | 5% | 10% | 50% | 100%

3 0O | 68|81 |8 | 8 86 86
0256 |70 | 73 | 74 75 75
6 0O | 68 |8 | 86 | 86 86 86

0256|7275 | 75 75 75

adaptation. Here, the ’adaptation’ data were used for a completely new training from scratch
for each of the 6 positions. 1000 samples of adaptation data were used in this experiment. As
can be seen, if no dropping occurs, the two EM algorithms produce the same classification
result. Once the dropping occurs, the advanced EM algorithm outperforms the other.

Table 7.5 shows the effectiveness of applying the proposed adaptation algorithm. As can
be seen, the results when only 3 locations have adaptation data is comparable to the case
when adaptation data are available for all 6 locations. The reason is even if there are only
3 locations with adaptation data, still the PDFs of all locations are well adapted, since they
are from a single regression class. However, it is also noticeable that when the number of
adaptation data per position is small, i.e., less than 10% of the training data, classification
results using 6 positions with adaptation data are about 1 to 4% better than those when
adaptation data are only available for 3 positions. The column with 0% of adaptation data
shows the results when no adaptation is performed. Comparing with the results of Table 7.4
it is clear that the classification results after adaptation approach those of retraining, except
when there is only 1% of adaptation data, even if adaptation data are only available for 3 out
of 6 positions. For the case of only 1% of adaptation data available, there is still a dramatic
improvement in classification results when adaptation is employed compared to the case if
no adaptation is performed.

7.2.2. Classification on Field Data

To examine the effectiveness of the adaptation approach on real world data, measurements
were collected on 3 floors of an office building with roughly 30 rooms (lecture halls, office
and laboratory rooms), where each floor has an overall size of 35m by 35 m, RSSI values
were taken at 60 different positions with an average distance of 5.0 m between 2 positions.
200 measurements were taken per position with 2 different smartphones at each position.
Data of the first smartphone were used to estimate the training models while data from the
second smartphone were divided into 2 sets at each position. The first was used for adaptation
(0, 5, 25, or 75 samples) or retraining (150 samples) from scratch and the second was for
testing (50 samples). For the measured data, the estimated dropping rate averaged over all
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Table 7.6.: RMS positioning error (in [m]) as a function of the amount of positions having adaptation
data and the amount of adatation data

Condition Adaptation Method
No. Pos with | Amount of | u & o2, | u only, | x only,
adapt. data | adapt. data | A full | A full | A diag
0 6.15
5 5.08 4.76 3.93
15 25 4.60 4.41 3.93
75 4.62 4.52 3.93
5 3.86 3.96 3.84
30 25 3.82 3.96 3.85
75 3.76 3.91 3.85
5 3.74 3.93 3.84
60 25 3.67 3.87 3.83
75 3.65 3.87 3.84
retrain 243

APs and all positions was approximately 0.3.

For the adaptation procedure, the estimated training means were sorted at each position in
descending order, and only the 8 strongest APs were used to estimate the adaptation matrices
since the contribution of the remaining APs to the likelihood was negligible. The adaptation
matrices are then used to calculate the adapted parameters of the 8 strongest APs at all
positions being in the same regression class.

Table 7.6 shows the dependency of the positioning accuracy on the number of locations
for which adaptation data are available and the amount of available adaptation data at each
position. The results in Table 7.6 are the average of the root mean square (RMS) positioning
error of 50 experiments. In each experiment, test data, adaptation data and the positions with
adaptation data are randomly selected. As expected, the more positions there are with adap-
tation data and the more adaptation samples per position, the better the positioning results.

For all considered adaptation methods, improvements in positioning accuracy are obtai-
ned, even when very few adaptation data are available. However, mean and variance adapta-
tion with a completely filled matrix A delivers only the best results if there are sufficiently
many adaptation data, while the use of only mean adaptation with a diagonal A is superior
if only few adaptation data are available, since fewer parameters need to be estimated. From
the presented results, indoor positioning system developers could have an idea of which and
how parameters can be efficiently adapted given the available adaptation data.

However, the positioning accuracy when all 60 positions have adaptation data is still well
below the accuracy achievable, when training and test data are collected by the same smart-
phone, which is 2.43 m. The reason could be one transformation rule could not describe well
the relationship between training and adaptation data for all positions which actually follows
a nonlinear rule as discussed in chapter 5.

To relax the linearity assumption between training and adaptation data, multiple regressi-
on classes are employed. For estimating the regression classes, the means of the 8 strongest
APs at each position are sorted in descending order, the resulting 8-dimensional vectors are
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Table 7.7.: Effect of number of clusters on RMS positioning error
No. of clusters 1 2 3
RMS pos. error [m] | 3.76 | 3.48 | 3.25

clustered using k-means, as discussed in section 5.3. Table 7.7 shows the positioning results
when doing clustering and estimating different adaptation matrices for each cluster, assu-
ming that in each cluster 50% of positions have adaptation data with 75 adaptation samples
per position. It has to be noted that the optimal number of regression classes depends on the
amount of available adaptation data. The more adaptation data the more transformation ma-
trices can be reliably estimated. In our setup the best results were achieved with 3 clusters,
which led to a reduction of the RMS positioning error from 3.76 m to 3.25 m.

7.3. HMM for Indoor User Tracking

This section evaluates the effectiveness of the proposed algorithms discussed in Chapter 6
for an indoor positioning problem both on artificially generated data and real field data,
especially the impact of the introduction of pseudo states on the classification/positioning
results.

7.3.1. Artificial Data

Fig. 7.4 shows the HMM states with the locations of the regular and pseudo states marked
with red and green circles, respectively.
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Figure 7.4.: The modified HMM states, i.e., the allowable user positions, and the transitions between
them. Red and green circles indicate regular and pseudo states, respectively.

The RSSI measurements of 15 randomly placed APs for training the Gaussian emission
PDF for the regular HMM states are generated artificially as follows: The signal strength fol-
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Table 7.8.: Mean positioning error on artificial data

Method Mean error [m]
RSSI only [74] 1.74
RSSI + step det. [73] 1.37
RSSI + step det. + pseudo states [75] 1.02

lows a large-scale log-normal fading model with an additional zero mean Gaussian random
variable with standard deviation o;, = 5 to model small-scale fading. At each position, we
generated a set of 300 RSSI measurements as the training data, then estimated the parameters
of RSSI distribution of each AP at each position as described in Chapter 4.

The step detection information is modeled as a bivariate Gaussian with the mean p; ; =
(; — ¢; and a diagonal covariance matrix 3, with entries 3,[1, 1] = ¥,[2, 2] = 0,25 m?. This
value has been determined in offline experiments.

In the experiment, pseudo states were introduced in the way that the Euclidean distance
between neighboring states is not more than at most 0,75 m (which is close to the measured
average step length within the experimental data), while the distance between two neighbo-
ring regular states is about 3-5 m except for some special areas such as the stairs. The total
number of pseudo states is 125, which has to be compared to the number of 81 regular states.

In the experiments we assume that a user cannot move faster than 3 m/s. User movement
is simulated by a random walk on the HMM graph. Since movement vectors and RSSI mea-
surements are generated every 1,5s, only a limited number U of HMM states can be reached
from any given state s,_;=: (on the average U=15 states) and the corresponding transition
probability P(s;=j|s,—1=4) is set to . For all states outside this neighborhood the corre-
sponding transition probabilities are set to zero.

Table 7.8 presents the mean positioning error in meters, averaged over 100 experiments,
where each experiment corresponds to a different random walk on the HMM grid of length
of about 200 m. We compare the performance of the proposed algorithm with our earlier
work of [73], which also fused RSSI and step detection information, however without the
introduction of pseudo states. Using pseudo states improves the mean positioning error from
1,37 m to 1,02 m. If step detection information is neglected and user positioning relies only
on RSSI information, a mean positioning error of 1,74 m is obtained.

7.3.2. Field Data

The proposed approach is also evaluated with the field data recorded in the office building
depicted in Fig. 7.1. In the training phase, 100 RSSI measurements per position were collec-
ted and the RSSI distribution were estimated as described in Chapter 4. In the online testing
phase, the smartphone user randomly went through the whole floor area to collect the test
data, i.e., WiFi data and inertial sensor data. Two different trajectories were recorded, each
trajectory consists of approximately 140 test potitions. The position estimate was performed
every 1,5s using the proposed approach. The step detection information is modeled in the
same fashion as in the experiments using artificial data.

According to the obtained data and experimental results, it seemed that the step detec-
tion information is more reliable than the RSSI information, as a consequence, a heuristic
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weighting factor A was introduced in the calculation of the forward variable as follows
au(j) = plods=) S p(vilsi=j. si1=0)] 0™ Plsi=jlsi1=i) - aua(i).  (7.2)

For the determination of A a jackknife procedure was employed: The data of 1 out of the 2
trajectories was used for the estimation of A\, whereas tests were conducted on the held-out
data. This was repeated 2 times, every time, one trajectory was used to estimate \. With
our collected data, the estimated value was always A ~ 0.003. The very small value of A
can be explained as follows: since the likelihood of RSSI data is much smaller than the
likelihood of step detection information, this value of A would help to avoid the problem
that the contribution of the likelihood of step detection information to the calculated forward
variable is dominated by the likelihood of RSSI data.

The proposed method was compared to our ealier work: first, using RSSI only for user
positioning [74], and second, using HMM model as described in Chapter 6, however without
the introduction of pseudo states [73]. For both trajectories the experimental results showed
that the new approach outperforms the others, especially for the 90% error quantile, in terms
of the CDF of the positioning error Eq. (7.1).

Although the test area is limited, the experimental results in Fig. 7.5 indicate that the
proposed approach is significantly better than the other approaches.
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Figure 7.5.: CDF of the positioning error for different systems. Average over 2 test trajectories.



8. Server Based Indoor Navigation
System

Navigation Server
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Figure 8.1.: Server based Indoor Navigation System.

Together with developing theoretical algorithms for the enhancement of positioning accu-
racy, a real indoor navigation system has been developed for over a period of three years with
the contributions from many employees and students at the Department of Communications
Engineering, University of Paderborn. The system is the result of our attempt to bring the
theoretical research results into reality.

Before building the indoor navigation system, one needs to answer the question: Which
criteria must the system meet? To our understanding, the most important criteria to evaluate a
real system are costs, ease of deployment, stability, security, scalability and maintainability.
The better the criteria are fullfilled, the better the system is. System architecture has the most
important impact on those criteria. As a consequence, to achieve the required criteria the
best, different system architectures have been analysed. There exist two common architectu-
res of positioning systems: First, smartphone based system in which all data are stored and
processes are performed on the smartphone itself, e.g., the solutions from WIFARER [77],
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without any communication with other devices. Second, server based system for indoor po-
sitioning purpose in which the tasks are seperated for server and clients, e.g., REDPIN [78],
and information is exchanged via a communications protocol.

Recently, a project named “GreenPAD” which aims to save the power consumption of the
WLAN infrastructure of the University of Paderborn has been reported [79]. Their proposed
method basically tries to detect the unused APs to power them off, or measures the demand
of clients to turn on or off a network interface. This might help to save energy consumption
which is the goal of their project, however, it may strongly affect the performance of a WiFi
fingerprinting based indoor positioning system. If they adjust the transmitted power to further
improve their proposed approach, all WiFi indoor positioning systems will be destroyed
or produce very unreliable results. While the problem of turning on and off the devices or
network interface might be accounted for by our proposed advanced EM algorithm, problems
caused by adjusting transmitted power remain unsolved for any WiFi positioning system. It is
noted that other systems might not work well if any of those two problems occurs. However,
as reported in [80], reducing transmitted power of a 802.11n Network Interface Controller
(NIC) does not yield significant power savings. Yielding marginal power savings at the cost
of a break down of the indoor positioning system may not be a good choice.

In the following, the advantages and limitations of a smartphone based and a server based
system are discussed.

Smartphone based System

A smartphone based navigation system has several advantages. First, it is easy to develop
since it mainly operates on the smartphones. Second, it is able to work at any time and in
any area where the required data are available. And third, it is immune to the RSSI data
mismatching problem described in chapter 5. These advantages come from the fact that the
database is built and stored locally on each individual smartphones.

However, it has some major disadvantages: first, as the RSSI training data are collected
by an individual smartphone and used for itself, it is not easy to use the data obtained by
a specific smartphone to improve the positioning accuracy of the whole system. Second,
map data might be unsynchronized among smartphones since they are stored locally. Third,
upgrading positioning algorithm requires users to reinstall the application which is not very
user friendly. And fourth, with some old or cheap smartphones of limited computational
power, it might be difficult to apply complicated positioning algorithms which normally
require high computational power to complete the calculation with a reasonable latency.

According to the advantages and the disadvantages as discussed above, smartphone based
positioning system might be only suitable for a single user or a small number of users.

Server based System

A server based architecture, on the other hand, gets rid of all the weaknesses of the smart-
phone based system. Since the database, i.e., the map data and RSSI training data, are stored
on the server, RSSI training data gathered by any individual smartphone can contribute to the
improvement of the overall system performance, resulting in better positioning accuracy for
all users. Map data are always synchronized among smartphones since they are distributed
from a server. With a server based system, once the server is developed as the processing
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center, it is also easy to develop any new and probably complicated algorithm without any
serious issue since the computational power of a server is normally much higher than a
smartphone.

However, this architecture also has some disadvantages. First, it requires an on-going net-
work connection, which is not always available, for the communication (data exchange) bet-
ween server and clients. Second, there is a need of a refining method to solve the mismatch
of the data collected by different devices. Moreover, keeping the network connection at all
times makes the application consume more battery power of the smartphones.

Fortunately, the first limitation can be solved by using the inertial sensor system which is
present on smartphones. The smartphone navigation application is able to deliver positioning
service in a short time period with a reasonable accuracy, when the connection is dropped,
using dead reckoning techniques. The second limitation can be handled efficiently by app-
lying the proposed model adaptation which was discussed in chapter 5. Power consumed by
communication procedure and keeping a network connection is reasonable since it is much
less than the power consumption of other tasks such as displaying.

Hence, a server based architecture might be suitable for an indoor positioning system with
many users and large deployment area.

Our System

Since each architecture discussed above has its own advantages and disadvantages, a mixture
of the two which combines both of them would be a good solution to keep the advantages
and get rid of the disadvantages. Within this project, a server based architecture for indoor
navigation was developed, where the server stores the database, i.e., the map data and Wi-
Fi training data, and is the processing center. In the first generation of the system [73], the
clients, i.e., smartphone application, take the resposibility of gathering data, such as WiFi
data and inertial sensor information, as well as representing the user position on the smart-
phone screen graphically. Recently, the resposibilities of the clients in the system have been
changed such that the clients do not only gather data but are also able to process the data
to come up with position estimates. The changes were made because the WiFi connection
between server and client was not very stable, especially at the areas with very few APs.
Also the handshaking moment when the connection is handed over from one AP to the next,
was problematic. These problems may cause pauses in displaying the map of the application
which annoys the users.

The system can operate in two modes: online and offline. In online mode where internet
connection is required, the client sends a request, i.e., positioning or navigation request, to
the server and waits for the response containing the corresponding result. In the offline mode,
the client can process the measured data by itself to come up with the final estimate of the
user location or the navigation path if it has the local database. This helps to handle the
problem of loss of connection which poses a significant problem in case of operating solely
based on the server as the approach used in REDPIN. The local database can be acquired
from the remote server and stored on the local storage of the smartphone to be used once the
smartphone operates in the offline mode. It is guaranteed that the local database is almost
always synchronized with the shared database stored on the server since it can be updated
at any time by the user if an internet connection is available. By doing that, we avoid the
database unsynchronization problem of the approach used in the WIFARER system where
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local databases are created on the clients.

The smartphone application was developed to interact with the user via a user interface
where the user can manage the operation mode of the application, i.e., application settings,
localization task, routing task, and so on. With our developed system, it is very easy to apply
any enhancement of algorithms for parameter estimation or changes in the map data since
all the modifications are needed to be made on the server only.

In the following, the system architecture, i.e., the server structure, the smartphone appli-
cation architecture and the communication procedure, as well as some main features of the
developed system, i.e., data gathering, positioning and navigation, are presented. As men-
tioned above, the quality of the system depends on its properties such as cost, deployment
simplicity, stability, security and scalability. Since our system is built upon the existing hard-
ware, the requirements of a low cost and ease of deployment are met. However, building up
the system requires a high effort for collecting training data which is an issue for any fin-
gerprinting based indoor positioning system. The REDPIN system can be quickly deployed
without high training effort as it asks the users to contribute training data to the server. If wi-
thout any supervision, the system must consider all the received measurements to be reliable.
This seems to be very sensitive to the behavior of the users. The database of the REDPIN
system could therefore be destroyed any time by any user which is problematic. The other
properties of our system are discussed in the following system description.

8.1. Overview of Server Architecture

The developed system contains two main components, the server and the clients. This section
presents an overview of the server architecture which is given in Fig. 8.2.

The developed server is divided in three parts, the front-end HTTP server, the FastCGI
module and the back-end. The front-end web server employs the lighttpd server [81]. This
is a free open source web server which has been tested and proved to be stable, secure
and flexible. It provides a stardardized Hyper Text Transfer Protocol (HTTP) which helps
us to avoid spending effort on designing the communications protocol between server and
clients. lighttpd is probably a good choice for the future since it is developed to optimize
the performance of server regarding speed and load problems. It would not be an issue if
many clients use the services of the system at the same time. Setting up the lighttpd server is
straightforward, please visit [81] for more detail.

The web server receives requests from clients and forwards them to the appropriate Fast-
CGI modules [82]. FastCGI, a variation on the earlier Common Gateway Interface (CGI)
supported by lighttpd, is a binary protocol for interfacing the server application programs
with web server. FastCGI has the following properties: first, FastCGI allows the server to
handle more requests at once. Second, the FastCGI module can be implemented seperately
by any programming language that supports network sockets such as C, Java or Python. And
third, the FastCGI modules run as seperate processes. The reasons that FastCGI was chosen
are because of the following properties:

e In our previous work as described in [73], a positioning server was developed by our-
selves using C++ programming language where many functions have been written for
database access, position estimation, navigation path estimation, and so on. Lately, as
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Figure 8.2.: Server architecture of the indoor navigation system.

we decided to use the lighttpd server, we needed to write the server application pro-
grams. FastCGI is a good candidate since FastCGI modules can be implemented in
C++ which simplifies the procedure of migrating the already implemented functions
in the old server to the new one.

e The old server has a severe problem that if any process crashes, the whole system
stops working. By using FastCGI in the new server, the problem is solved. As the
FastCGI modules run in seperate processes, only the crashed process stops working
while the other processes in the system still work. This makes the system more robust
and flexible because developing and testing any module on the server does not affect
the operation of the other stable modules.

In order to process the requests, the FastCGI modules need to access the database in the
back-end. There are reading and writing access tasks corresponding to specific requests. The
writing-access modules are needed to accommodate new data in the database, for example,
when the request is “SetFingerprintRequest” which asks the server to add new measured data
to the database. The reading-access modules, which are the corresponding modules for the
majority of requests, i.e., positioning request or navigation request, operate on the estimated
training models which are stored in the model database.

In the back-end, the RSSI database was seperated into 2 sub-databases: the measurement
database which stores all raw RSSI measurements, and the model database which stores the
model estimated from measured data in measurement database. The model estimation pro-
gram where the proposed EM algorithms are implemented is used to estimate training model
from measurement data. At the moment, this program is activated by the system manager
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regularly. It is not necessary to reestimate training models every time a new measurement
is added to the measurement database since the changes of the estimated parameters are
negligible. As a result, new measurements are added to the measurement database every ti-
me the server receives the “SetFingerprintRequest”, but model estimation is only performed
regularly at a longer interval, e.g., every week. This architecture of the back-end supports
the possible future feature of learning the models online such that the training database is
updated during the usage by customers.

To speed up the processing time of the data reading procedure, it was decided to use shared
memory since it helps to significantly speed up the data reading procedure. “DataProvider”
is a C++ program which simply reads the data from model database and writes them to
the shared memory in an appropriate format which helps to optimize the positioning and
navigation procedures.

8.2. Database

The indoor navigation database is part of the back-end of the server. In our system, the raw
RSSI measurements, the map information and the estimated models are stored in the PostGIS
database [83] which is an extension of the PostgreSQL database [84].

8.2.1. Map Tile Data

First of all, to represent the user position in an indoor environment, the map tiles need to be
created. After a careful survey of map creating tools, “mapnik” [85] and its associated tools,
e.g., JOSM [86] and “osm2pgsql” [87], are chosen to implement the map creation procedure
[88]. The reasons for choosing these map editing tools are, first, maps can be edited offline
and stored on a standalone computer which is important for security reasons, and second,
map data can be rendered with multiple zoom levels and configurable properties, i.e., colors,
which are very important for the quality of the map displayed on the smartphone screen. The
map files to be edited are originally downloaded from the OSM server, then with the use of
the JOSM tool, the details of the indoor floor plan can be added. Each of the edited OSM
map files containing the information of one floor level of all buildings within the university is
imported to a PostGIS database using “osm2pgsql”. The information in this seperate database
is then used to render the map tiles of the corresponding floor levels using “mapnik”. The
map tiles are stored in the server as “/Floor/z/x;e/yiie-.png”’, where “Floor” is the name of
the rendered floor level, z is the zooming level, x;. and ;. are the integer indicators of a
map tile which can be computed from the specific longitude, latitude (lon, lat) coordinates
using the following equations

, (longeg + 180)
360 ’
e = 251 (1 _ log(tan(lat,ea) + cosl(latmd))) ’
T

Lile = 2

where the subscripts deg and rad indicate the units of the [on and [at are degree and radian,
respectively.
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Fig. 8.3(a) shows a smartphone screenshot when the original OSM map without any detail
of the floor plan is displayed. After editing with JOSM and rendering with mapnik, the detail
information of indoor map is added. As a result, the map with room, corridor, stair, and so
on, is displayed as shown in Fig. 8.3(b). Fig. 8.4 shows a snapshot of the JOSM environment
which is used to edit OSM map files. As can be seen, plenty of objects are added to the OSM
map file. Since the map is edited manually, map creating procedure is a very time consuming
task for a large deployment area. Since no modification of the standard rendering procedure
with mapnik is made, except for some definitions for map rendering boundaries and colors,
the details of the rendering procedure are skipped in this report. More information can be
found in [88] and on the website of the mapnik project [85].
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Figure 8.3.: Examples of original map and edited map

Figure 8.4.: Map editing with JOSM

However, since the map information is stored in seperate Geographical Information Sys-
tem (GIS) database for each floor, for multi floors navigation purposes, calculating the na-
vigation path by searching across multiple databases is inconvenient. To solve this problem,
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markerid connectionid

lon markerid

lat linkedmarker

room distance

layer highway

ref access
markerlocations markerconnections

Table 8.1.: Map information tables in the database: storage of the geographical information of fin-
gerprint positions, and the information about the direct connection between any pair of
positions.

we decided to combine all the seperate OSM map files into one global OSM map file. The
navigation database is then built up by importing the information from the global map file to
the PostGIS database.

The rendered map tiles are stored on the server and delivered to the clients for map dis-
playing purposes once the server receives map requests from clients. Map information stored
in the navigation database is the information of fingerprinting positions and the connections
among those. This information is gathered from the standard tables by a C++ program and
stored in two new tables (see Table 8.1 for an illustration). The bold fields are the so-called
unique keys or master keys of the tables. Table markerlocations contains all the in-
formation about any fingerprinting position such as longitude, latitude, room number, layer
(floor level) and ref (corridor, toilet, ect.). These fingerprinting positions are the positions
where training data will be collected. It is very convenient to distribute the training positions
during the map editing procedure since one can choose the critical and interesting points on
the maps to mark them as fingerprinting points. It is also easy to manage the density of the
fingerprint grid. Table markerconnections contains the information about the direct
connection between any pair of positions, e.g., ID of current considered position (markerid),
ID of the connected position (linkedmarker), spatial distance between these positions (di-
stance), type of connection (highway), i.e., footway or bicycle, and accessibility information
(access) to indicate whether the connection is blocked or if there is free access. The informa-
tion in Table markerconnections is needed for the route estimation procedure and the
employment of the HMM which was discussed in Chapter 6.

8.2.2. RSSI data

RSSI data are divided into two types: raw data (RSSI measurements) and processed data
(the estimated training models). Table 8.2 shows the tables in the database which store the
measurement data. There are several reasons for storing the raw data. For example, raw data
can be used for future research, i.e., if new algorithms are used to estimate the training model
from measured data, or for comparison purposes, i.e., evaluating the positioning accuracy of
other algorithms on the same data set. By storing the raw data in the way as described in
Table 8.2, it is possible to re-generate the original measurements. Tables scanresults,
measurements and hardwareinformation are used together to store the RSSI mea-
surements, the position, ID and orientation of the device, and the time stamp of the measu-
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scanid measurementid hwid
measurementid lon modelid
mac lat uniqueid
rssi layer

hwid hardwareinformation

scanresults orientation
measurementtime
measurements

Table 8.2.: Measurement tables in the database: contain the RSSI measurements, the position, ID and
orientation of the device which has been used to collect data, and the time stamp of the
measurements

parameterid macid
markerid bssid
macid
numberofmeasurement macaddresses
numberofobservation
mean

variance

rate
sumofobservations
sumofsquare
updatedtime

parameters

Table 8.3.: Training model information tables in the database: contain the estimated parameters and
the sufficient statistics information.

rements. The information about the smartphone hardware is stored to support the adaptation
procedure as described in chapter 5.

In addition to storing the raw data, the RSSI database also contains the tables to store the
information of the estimated training models as well as the sufficient statistics information
as depicted in Table 8.3. Table parameters stores the estimated parameters as well as
the sufficient statistics information. The estimated parameters are the means, variances and
rate (dropping rate) of the observed RSSI data of the AP, specified by macid, at a locati-
on, specified by markerid. Sufficient statistics parameters such as number of measurements,
number of observations, sum of observations and sum of observations squared, are used for
incrementally updating the training model to reduce the estimation time using the EM algo-
rithm. Obviously, estimation time is not a serious problem when the amount of training data
is small. However, training data are collected over the course of time and model estimati-
on from scratch would take much more time than applying the incremental update method.
For convenience of AP searching, the table macaddresses is created to store the MAC
addresses of all the observed access points.
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8.3. Shared Memory

As mentioned above, shared memory is used to represent the database in order to speed up
the data reading procedure. The structure of the data stored in shared memory is similar to the
structure used in the PostGIS database as presented in the previous section. Seperate shared
memory areas are created to store the information of fingerprinting positions, connections,
MAC addresses and trained models. In addition, to speed up the localization procedure,
other areas are created to store the information of the pre-computed positions at which a
given MAC address was observed in the training data. The reason is that in fingerprinting
based positioning, online measured data are compared with the training data in the database
to come up with the decision of the user position estimate. Obviously the bigger the database
becomes, the more computation time is needed to complete the comparison procedure. To
get rid of this problem, instead of computing the similarity between the online measurement
with the whole database, the localization module has to compute it at the possible positions
only, where at least one of the APs, which is present in the online measurement, was observed
in the training data.

8.4. Overview of Smartphone Application

This section presents an overview of the smartphone application. Although the developed
application is able to support many tasks, e.g., data gathering, localization, navigation, social
features (peer group finding) and 3-D representation of the routing path, in the following,
only the structure which is related to the main features, which are localization and navigation,
is presented.

Fig. 8.5 gives an overview of the reduced version of the smartphone application architec-
ture as a class diagram.

It should be noted that in Fig. 8.5, the details of each class, i.e., variables and methods, are
not presented since this would extremely extend the size of the graph. In the following, the
role of each class in the application and the relation of classes will be summarized.

As can be seen in Fig. 8.5, besides the regular classes, there are several special types of
classes in an Android application such as activity, service, application which operate dif-
ferently [72] as summarized below:

e Activity: An activity is an application component that provides a single window with
a user interface that interacts with the users in order to do an action. An application
may consist of several activities to handle different tasks. An activitiy can start ano-
ther activity. Once a new activity starts, the previous activity is stopped. The system
preserves the previous activity in a “last in, first out” stack. Therefore, when the user
is done with the current activity and presses the “Back” button of the smartphone, the
previous activity will resume.

e Service: A service is an application component that can operate in the background
and does not provide a user interface. A service can be started by another application
component, i.e., activity, and keeps running in the background even if the user switches
to another application. Several types of service implementation can be used to manage
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Figure 8.5.: Class diagram of Java application architecture

the lifecycle of a service that the service may stop itself when it completes the task or
its binding component stops or an activity stops it.

e Application: An application is a base class to maintain global application state.

In our application, the main activity is “IndoorNavMap” which is launched when the user
starts the application. All other activities, i.e., WiFi scanning, setting, etc., can be activated
from this activity, see the manifest file of the application in Appendix A.3.1 for information
of all activities. Fig 8.6 shows a snapshot of the application when it is launched by the users.

In the following discussion, the relation between the classes in Fig. 8.5 and the role of
each class are summarized:

e “IndoorNavMap” uses the setting information and initialized information stored in
“MapScrollApplication” and the appropriate methods implemented in “CellMapSurfa-
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Figure 8.6.: Java application showing floor plan information and user position (red dot).

ceView” to display map and other information such as current user position, navigation
path, etc. .

“MapScrollApplication”, the application class, is implemented to maintain all the glo-
bal states and the data which are needed for map displaying, offline localization, navi-
gation, and so on. For map drawing, positioning and navigation, “MapScroll Applicati-
on” stores the metadata of map data, i.e., objects of “Map” and “MapTile” classes, and
the information for localization and navigation purposes, i.e., “BinaryModel*, "Ma-
cObject*, "NodeObject* and “"RoutingPathElement®, as descibed in section 8.2.

“CellMapSurfaceView” extends the “SurfaceView” class provided by Android APIs,
and contains all methods to manage map drawing and user interaction.

“IServerConnection” is the interface declaring all the methods which are implemen-
ted in “HttpServerConnection” to support the communication procedure between the
application and the server. These methods can be called by “IndoorNavMap” for data
downloading or by “LocalizationService” in case of doing localization in online mode.

As all the messages are in the pre-defined XML format, methods for writing/parsing
data to/from XML format messages are implemented in “XmIWriter” and “XmlRea-
der” for communicating with the server.

“LocalizationService” is the service for handling the tasks related to the localizati-
on procedure. This service is started by “IndoorNavMap” and calls the methods im-
plemented in “LocalizationManager” to perform localization. This service is stopped
automatically by the system once the user terminates the application.

“IndoorNavMapBroadcastReveiver” and “LocalizationServiceBroadcastReceiver” are
implemented to support the data exchange between “LocalizationService” and “In-
doorNavMap”. These two classes extend the “BroadcastReceiver” provided by the
Android APIs.

“WiFiScanner” is responsible for WiFi data acquisition for localization procedure.
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e “RouteCalculate” contains all the methods related to navigation path calculation. The-
se methods are activated by “IndoorNavMap” via “MapScrollApplication” where the
information of the calculated route is stored. By doing this, if the user switches to any
other activities or applications, once user gets back to the “IndoorNavMap” activity,
the navigation path will be displayed without re-calculation. More details about the
navigation procedure will be presented in section 8.5.3.

8.5. System Operation

This section presents the operation of the main features of our indoor positioning system
from a user’s view, as well as the flow sequence of the smartphone application for each
feature. The developed indoor navigation system is able to support several services such as
gathering of training data, localization, navigation, some initial versions of social features
such as peer group finding, and 3-D representation of the routing path. The main features,
i.e., gathering of training data, localization, and navigation, are discussed in detail, a short
introduction about the other features is given at the end of the section.

8.5.1. Data Gathering

This feature is responsible for gathering training data. To do this, the smartphone application
performs WiFi scans and writes the measured data to a “SetFingerprintRequest”. It should
be noted that on the smartphones, at the moment, this feature is only available when the
application runs in the development mode in order to avoid problems in case someone tries
to harm the database. In future, for extending the system towards online learning, this feature
could be performed in the background of the smartphone application during the usage by
users. The development mode is activated by the developers by choosing the option “Activate
developer view”, as shown in Fig. 8.7.

A o

.Ij Settings

Server Address !
https://ntnavserver.uni-paderborn.de:31415/
Universal Unique ID
Hide 355136050665226

[

[] Show gridlines

[ Activate developer view

[+ Only load tiles when in WLAN
)

[ ] Use GPS
[ ] Always rotate

Figure 8.7.: Java application showing setting options.

The development view of the smartphone application is illustrated in Fig 8.8. In the figure,
the red circles indicate the positions at which RSSI training data have already been collected.
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By doing so, the developers can then choose the fingerprint positions which have not been
trained to collect RSSI data. The red “+” sign on the map shows the position where WiFi
data are going to be collected. The developers can modify the position of the red “+” sign
by moving the map. To collect the RSSI data, since each position needs a sufficient amount
of measurements to accurately estimate training models, an activity named “WLANDataAs-
semblerActivity” was developed to support this requirement.
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Figure 8.8.: Java application showing the development mode: the red circles are the positions where
training data were already collected, the red “+” sign on the map shows the position
where WiFi data are going to be collected.

Once the developer starts the data gathering procedure, a window appears which allows
the developer to verify the information of the current position and enter additional informa-
tion, i.e., name of the position, amount of scans and scan interval, see Fig. 8.9(a). Depending
on the sampling rate of the WiFi sensor of the test smartphone, the scan interval need to be
large enough to avoid duplication of the measurement data, We observed the sufficient scan
interval of about 1,5s for Samsung smartphones, while for a Sony device it is roughly 5s.
Once the information is validated and entered, the measurement process will be started by
simply clicking the “Start scan” button. Fig. 8.9(b) shows the screenshot when the smartpho-
ne performs a WiFi scan, where the number of measurements and scanned data are shown.

The measured data are then written into an XML file which is stored on the local storage of
smartphone once the scanning procedure is completed. The XML file contains the measured
RSSIs, MAC addresses of the observed APs, the smartphone information, as well as the
information of the location where the measurements are taken. It should be noted that each
XML file contains the training data at one position only.

After the measurement campaign, all XML files are imported into the database on the ser-
ver using a C++ module named setfingerprint. This module parses the request and accesses
the PostGIS database to insert the measured data. For each file, setfingerprint produces a
response message to inform whether the data are successfully inserted to the database or not.
Appendix A.4.1 shows an example of the “SetFingerprintRequest” and response messages.

Our system is also able to support the online mode of the measurement campaign, i.e., the
measured data are sent directly to the server after each measurement via a wireless network,
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Figure 8.9.: WiFi training data gathering

if we use the setfingerprint module as a FastCGI module. This option provides the possibi-
lity of gathering data during the usage of users for an online learning approach. However, at
the moment, no algorithm has been developed to measure the reliability of a measurement.
Therefore, we temporarily disable this option to avoid accidental measurements containing
wrong information which may harm the database. The indoor environment and WLAN net-
work are subject to change over time, this requires regular database maintenance (update) to
keep the positioning accuracy. It is infeasible to retrain the database after every change of the
environment or the network infrastructure. The reason is collecting training data is very time
consuming, especially for the large deployment area. Therefore, a method for automatically
updating database, i.e., the online learning approach, could be a solution.

The sequence diagram of Fig. 8.10 shows how the smartphone application performs WiFi
scanning in offline mode, i.e., the scanned data are written in an XML file and stored in the
local storage of the smartphone.

8.5.2. Localization

For localization, users can choose either the offline localization mode or the online localiza-
tion mode in the settings of the smartphone application . In offline mode, position estimation
is performed locally on the smartphone using the database which is stored on its local sto-
rage without any need of internet connection. In online localization mode, which requires
network connection for data exchange, position estimation is performed on the server. Figu-
re 8.11 shows the options for localization, i.e., operation mode and the data source.

The sequence diagrams shown in Fig. 8.12 and Fig. 8.13 present the communication
among the components of the smartphone application to perform localization in offline mode
and online mode using WiFi information, respectively.

To perform the localization using WiFi data, smartphones periodically log the WiFi data
which are the MAC addresses of the observed APs and their measured RSSIs. An estimator
is then used to process the scanned data to determine the user positions In offline localiza-
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Figure 8.10.: Sequence diagram showing the data gathering procedure.

tion, the estimator is implemented as a method in the smartphone Java application which
uses the local database to compare with observed data. Several issues may arise in offline
localization, for example, the local database or the positioning algorithms might be out of
date, as discussed in the beginning of this chapter. To solve this problem, the local RSSI
database can be reloaded from server regularly, i.e., once a week, automatically or manually
if network connection is available. The problem with positioning algorithms is unsolvable
unless the user updates the application. Within this work, an automatic update procedure for
smartphone application has not been developed yet.

For online localization, scanned data are sent to the server via the WLAN connection in an
XML format. On the server, a FastCGI module named “positionestimate” was developed to
parse the request and perform the localization procedure. The position estimation algorithm
was implemented using the classification rule which was discussed in Chapter 4, the same
algorithm is used for offline localization. This module uses the training models stored in the
shared memory to carry out the localization procedure.

Sensor fusion for the improvement in positioning accuracy as discussed in Chapter 6, is
not implemented on the server side, but on the client side. The reason is that the server must
be a stateless server since there would be an explosion of the amount of HMM states which
need to be stored if many clients request the localization service at the same time using RSSI
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Figure 8.11.: Setting screen showing options for localization.

and step detection information. This would dramatically degrade the response time of the
Server.

Once the position estimate is obtained, a localization response is sent from the server to
the client which contains the information of the estimated user position. The client parses the
response and shows the user location on the smartphone screen, see Fig. 8.6 where the red
dot represents the current user position.

8.5.3. Navigation

For navigation purpose, the user can input the information of the source and destination
positions, i.e., room numbers, and the options for the expected route, i.e., using elevators or
stairs. Fig. 8.14 shows an example of a smartphone screen when the user starts the routing
function of the smartphone application.

Navigation, similar to localization, can be performed in either offline mode or online mo-
de. In online mode, a navigation request with the information inserted by the user is generated
by the smartphone application and sent to the remote server. On the server, a FastCGI modu-
le named “routeestimate” was developed which is able to parse the request and perform the
route calculation. Data for the route calculation process are obtained by reading the shared
memory. To perform the path search, several path finding algorithms have been considered
such as the well known Dijkstra’s algorithm, the A* algorithm (a variant of Dijkstra’s algo-
rithm) and the jump point algorithm. In navigation, the path cost is simply the geographical
distance of any pair of connected positions. While Dijkstra’s algorithm examines all nodes
to find the shortest path between the source and the destination, the A* algorithm is trying to
examine the nodes which are potentially on the shortest path first to optimize the computatio-
nal demand. This is the reason why the A* is also called goal-oriented Dijkstra’s algorithm.
However, the A* algorithm needs heuristic weights to guarantee the solution is the shortest
path. The jump point algorithm tries to optimize A* in case of uniform-cost grids, which is
normally not suitable for an indoor environment since distributing the indoor fingerprinting
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Figure 8.12.: Sequence diagram presents the offline localization procedure.

nodes uniformly is very difficult, probably not possible. Because of that, Dijkstra’s and A*
algorithm have been implemented to compare their performance, i.e., computational time
and route estimate. Using the map data of almost the whole University, these two algorithms
are able to finish the calculation in a very short time and the difference of the calculation
time is unnoticeable. While the result of Dijkstra’s algorithm is always the shortest path,
A* sometimes provides a suboptimal solution since its performance depends on the heuri-
stic weights. The larger the weights, the faster the algorithms is, however, the larger the risk
to find not the optimal solution. As a consequence, Dijkstra’s algorithm is chosen for our
system.

Another reason for choosing Dijkstra’s algorithm is the following: For the navigation fea-
ture, we would like to, first, display the shortest complete path between the source and the
destination. Second, during the movement of the user, the current user position will be con-
sidered as the source of the route to adjust the guided path. In reality, the user is likely to
move away from the guided path at some time and at some areas. For this case, a new route
needs to be computed to guide the user from the current position to the expected destination.
It means that the path is not fixed but changing over time according to the current position
of the user. This is similar to how the car navigation works: if the driver drives the car away
from the guided path, a new route is needed to guide the driver to get to the destination. To
avoid re-calculating the routing path all the time, we modify the method of implementing
Dijkstra’s algorithm in a way that the algorithm starts from the destination and stops when
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Figure 8.13.: Sequence diagram presents the online localization procedure.

all the nodes are examined. The calculated information is then stored temporarily during the
current navigation process until the user terminates the navigation process. By doing that,
everytime the displayed route needs to be updated, the current position of the user is estima-
ted and the new path can be calculated quickly using the stored information. Note that A*
cannot be used for this option since it is not designed to examize all the nodes but only for
finding path between one pair of nodes.

The sequence diagram shown in Fig. 8.15 presents the communication among the com-
ponents of the smartphone application to perform navigation.

Once the routing path is estimated a navigation response which contains the list of the
positions forming the path is created and sent to the client. The client parses the response
and displays the path on the smartphone screen, see Fig. 8.16.

To navigate through the university which includes multiple buildings, the system is able
to provide outdoor navigation in addition to indoor navigation, as illustrated in Fig. 8.17.
The green line indicates the indoor path while the blue one indicates the outdoor path which
together form a complete path to navigate from one position in a building to another position
in another building. In the outdoor environment, the position of the user is determined by
using GPS information.

8.5.4. Features Under Development

At the moment, there are several features which are under development, i.e., peer group
finding, 3-D representation of the routing path and iBeacon based localization. Since these
features are in the testing mode, in the following, a brief introduction about them is given.
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Peer Group Finding

Peer group finding, such as learning group finding, helps students to search for other students
who have the same study interest to form a learning group. According to our opinion, this
is an interesting feature of the system for students since in daily tasks, once the students are
familiar with the university, positioning and navigation features are not really needed, except
for emergency cases. As a consequence, social features like peer group finding help to keep
the system alive. To use this feature, the user must create an account and register with the
system. Every time the user wants to find the interested group, he must log in the system with
the registered account. Users can choose to share their current positions with others. They
can also decide not to do so if they do not want to share their current positions. Fig. 8.18
shows the screenshots when the user starts the peer group finding feature and after logging
in the system.

3-D Representation of Routing Path

3-D representation of the routing path gives the users a nice overview of the path that they
would need to follow in order to travel to the desired destination. At the current state of
the system, the 3-D video is played once the user activates it, showing the 3-D path from
the source to the destination. Fig. 8.19 shows some screenshots of the application when
performing the 3-D representation of the estimated routing path. According to our opinion,
this is a very interesting feature of an indoor navigation system since it shows the path and the
nearby objects in detail. In the university this feature might be not very impressive. However,
once the system is deployed in a museum, for example, the visitors can make a virtual tour
around the museum before deciding which areas they will visit. In the future, this can be
developed to show the 3-D view of the path following the movement of the user which
is more user friendly. One challenge with this feature is that building the 3-D database is
very time consuming. This feature was developed under a project which was granted by the
University of Paderborn by combining the work of our department with that of another group
which takes the responsibility for creating the 3-D map database. At the moment, 3-D map
database contains the information of the main buildings of the university, the data for the
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Figure 8.15.: Sequence flow presents the offline navigation procedure.

other parts are still under development.

iBeacon based User Localization

The iBeacon technology works using the Bluetooth Low Energy (BLE) technology which
intends to provide considerably reduced power consumption compared to WiFi or ordina-
ry Bluetooth. User location is obtained by applying the proximity technique using iBeacon
information. To do localization, the smartphone continuously scans the iBeacon advertise-
ments and determines the user position as the position of the iBeacon transmitter which has
the strongest measured signal strength, assuming that the locations of iBeacon transmitters
are known. It should be noted that this feature works only on the smartphones with Bluetooth
Core Specification Version 4.0 (Bluetooth v4.0) or higher.

Since the proximity technique requires low computational demand, the positioning proce-
dure using iBeacon information is performed on the clients. The position information of the
iBeacon transmitters, i.e., positions, transmitted power, is stored on the server and smartpho-
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Figure 8.17.: Java application showing the indoor and outdoor routing path.

nes can update that information regularly. This is to ensure that the smartphones always have

the same up-to-date information of the iBeacon system.

8.6. Communication Sercurity

As mentioned in section 8.1, the lighttpd server supports standardized HTTP to exchange
data between the server and the clients. However, as the exchange messages in our system
are very sensitive, i.e., floor plan, personal information, etc., the sercurity of the system must
be taken into consideration. Fortunately, with the lighttpd server, it is possible to enable the
Secure Sockets Layer (SSL) in addition to standard HTTP which allows us to use Hyper Text
Transfer Protocol Secure (HTTPS) for the communication over the network. With HTTPS,
all the exhange messages between the server and the clients in our system are encrypted to

prevent any attack from a third party.
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9. Conclusions

Within this thesis, the techniques to improve the accuracy of WiFi fingerprinting based in-
door positioning are presented.

The accuracy of indoor positioning employing WLAN information can be enhanced by a
statistical approach which is able to account for the variation of the measured RSSIs in the
indoor environment. The positioning accuracy depends on two factors: training models and
classification rule. As our careful study on WiFi data in indoor environment showed, RSSI
measurements suffer from two problems namely censoring and dropping. As discussed in
chapter 2 and chapter 4, these two problems of the indoor WiFi data have not been addressed
in any previous research. Therefore, within this work, methods for estimating the parameters
of the training model and classification in the presence of censored and dropped data were
proposed. For parameter estimation, an EM algorithm was proposed in chapter 4 which ef-
ficiently copes with the censoring and dropping problem. The proposed EM algorithm for
censored Gaussian data was proved to be a virtually biasfree and efficient estimator. Impro-
vements in positioning accuracy are demonstrated both on artificially generated data and in
real field data experiments compared to some other approaches. The experiments presented
in chapter 7 showed the superiority of the statistical approach compared to a deterministic
approach. It is noted that the computational demand for positioning using a parametric stati-
stical approach is less than the other mentioned approaches.

Another problem that has been considered in this work is the mismatch between the mea-
sured data of the training device and the test devices as discussed in chapter 5 which leads to
a serious reduction of the positioning accuracy. In the literature, we found only one solution
which tried to address this problem using Least Squares approach where the authors ass-
umed a linear relationship between the RSSI readings of different devices. However, what
we observed is that this relation is not linear which renders the LS approach inappropria-
te. An effective method to cope with this problem must be developed to make WiFi signal
based indoor positioning realistic. Therefore, we proposed a method for aligning the trai-
ning model with the properties of the test devices while relaxing the linearity assumption in
chapter 5. The proposed aligning method called “smartphone adaptation” was developed wi-
thin the MLLR framework which is a very well known and successful technique for speaker
adaptation in automatic speech recognition. It has to be noted that the proposed adaptation
method is able to cope with censored and dropped data in the adaptation data, resulting in
reliable adapted models. During the adaptation procedure, the dropping rate of the adapta-
tion data is also estimated which will be used in the classification procedure. Experimental
results presented in chapter 7 demonstrated the effectiveness of doing adaptation in indoor
positioning. Assuming the RSSI readings from different devices follow one linear relation-
ship, applying the proposed approach showed a big improvement in positioning accuracy,
however, still well far below the achievable accuracy. Employing clustering approach before
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doing adaptation relaxed the linearity assumption resulting in assuming piecewise linearity.
As a result, better position accuracy was obtained.

Improvements in positioning accuracy can be obtained by fusing the information from dif-
ferent sources such as WiFi information and inertial sensor information. These two kinds of
information are obtainable on most modern smartphones. Inertial navigation which utilizes
the data from the built-in sensors of the smartphones is able to produce precise position esti-
mation in a short term (time and distance) only. Unfortunately the precise positioning results
cannot be maintained for a longer period of time due to error accumulation over time and
distance, resulting in unreliable position estimates. WiFi fingerprinting based positioning,
on the other hand, can provide a stable positioning accuracy without the error accumulation
problem. As discussed in chapter 2, these two positioning techniques can be combined in
order to produce better positioning results compared to using any individual approach alone.
Therefore, chapter 6 presented a modified HMM for data fusion of WiFi data and inertial
sensor data and utilizing the possible walking path of the user to come up with position esti-
mates. More accurate positioning results were obtained by employing HMM in comparison
with using WiFi information or inertial sensor information alone. Furthermore, a method to
reduce the quantization error caused by the coarse grid of trained positions was proposed in
chapter 6. By introducing pseudo states to the HMM inbetween the regular states and syn-
thesizing the emission PDFs of the pseudo states from those of neighboring regular states,
we obtained a dense grid of states without additional training effort. Experimental results
showed that employing the extended HMM improved the positioning accuracy.

In addition to the theoretical research, a real server based indoor positioning and naviga-
tion system was developed as presented in chapter 8. At the moment the system is able to
provide the localization and navigation services for the students of the University of Pader-
born. The system employs the lighttpd web server and the FastCGI protocol which allows
to handle thousands of connections in parallel on the server. In addition, the FastCGI mo-
dules, which are written in C++, run in seperate processes which make the system stable,
and further, easy to scale and easy to maintain. A Java application for Android smartpho-
nes was developed which is able to run as a standalone positioning system or as a client
in the system. As discussed in chapter 8, developing two possible operation modes for the
smartphone application solves the problem of loss of internet connection, unsynchronization
of map data and fingerprinting training model, and so on. As a result, the system seems to
satisfy the requirements of low cost, high robustness and simplicity in deployment, scaling
and maintenance.

Outlook

An interesting direction for future research is how to improve/update the radio map with the
measured data reported by the users during the online phase. To do that, a possible soluti-
on is to develop a semi-supervised online learning system where the already built database
is continuously updated during the system operation using the measurements reported by
users. This kind of system can automatically handle the changes of the indoor environment
or WLAN infrastructure without re-training the database from scratch after a certain amount
of time. This also helps to improve the accuracy of the training model since more training
data are available. The challenge is how to determine the position where the measurement is
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taken. The REDPIN system believes in the information that is reported from any users which
does not seem to be fault tolerant since the database can be corrupted on purpose or unin-
tentionally through wrong user positions. Simultaneous Localization And Mapping (SLAM)
is a common approach in the robotics community which mainly relies on inertial sensor in-
formation to track the position of a mobile robot and build the map simultaneously. This
approach can be used to determine the position at which a specific RSSI measurement is col-
lected. However, as discussed before, this technique suffers from the error accumulation over
time and distance and, as a consequence, estimated positions are not reliable. Map matching
can be formulated as a fingerprinting based localization problem where the user position is
assigned to a route segment based on the online observation and training data. Therefore, the
combination of SLAM and map matching approach would be a relevent solution to estimate
the position of the user where RSSI measurement is collected since the accumulated error in
inertial navigation are corrected globally by RSSI data and floor plan information.

Our proposed EM algorithms presented in chapter 4 are efficient for estimating the para-
meters of censored and dropped Gaussian data. However, we employed the empirical fixed
clipping threshold for data measured by all devices. This might degrade the parameter esti-
mation performance if the clipping threshold of different devices are not identical. Therefore,
estimating clipping threshold from training data should be done before parameter estimati-
on procedure to ensure the precision of the estimated parameters. As a result, a method for
clipping threshold estimation is needed.

Employing a Gaussian mixture model estimation to estimate the RSSI distribution instead
of the assumption of a single Gaussian would be an interesting try. This method might help to
improve the precision of signal strength distribution estimation, since it is able to capture all
the modes in the training data distribution. However, since censoring and dropping are severe
in WiFi data, methods for dealing with censored and dropped data during the parameter
estimation procedure would need to be taken into consideration.
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V20

Az

To compute A,, integration by parts is again applied, let

Uy =Yy duy = dy
_ (R = — (R ,
dv; = erf (y—\/ﬁ’;(—n)) dy vy = [erf (y—\/ﬁ’;(—n)) dy

c c (®)
y—p
_ £ d
—o0 / ver ( \/_U () ) Y

(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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For calculating vy, let t = f/—"i&)
= V20" / erf (¢) dt (A.15)
and applying integration by parts
ug = erf (t) duy = % exp (—t%)dt
{ dv, — dt = { vy — t ; (A.16)
we arrive at
= 20" <t.erf (t) — 2t exp (—t2 dt)
‘V/__ ( )
1
= V20" <t.erf (t) + N exp (—t%) ) (A.17)
Using t = i’f“;&; in v; then we obtain
e _ ) 1 ()
:\/50,(@{3/ p erf(y p )+ ( y—p 2)}
V20" Vao®w ) T E T ( V20 )
CN ), |2 y— Y A.18
= (y — p\")er (\/50(“))+U — exp —(\/50(5)) . (A.18)

Now, A, can be calculated as follows

—/ viduy
) 9 N
_ — o Nerf (L ZH (n>\/j _ (Y
y{(y uer (\/ég(“))+0- —exp 2o

Ay = w1y

(

i
oo () s o - (225))
/

— () c _ (k)
YK (%) Yy—H
— erf | —— |d f d
—o ye < \/50'(“) ) Y /_OO . ( 20 (k) ) y

P ~
v1|
c _ )\ 2
2\ (k) 1 y—p
g — €X — (1
) /oo V2o (®) P ( < V25" ) ) Y

-~

10(09(”))

c K K 2
(y — p*))erf y—r A + U(“)\/gexp (1= e
. V20 ") - 90 ()

(A.19)
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Simply using the limits, A, is readily obtained:
Ay = %errf (y _2:(:)) ‘C_OO - = { ()2 4 (02) (erf( _5((:))) + 1)
a2
%Zﬂerf (y\/%:(:)) C T (1?2 + (0%) ") 1o (6"
+ (e + ) .g(“)\/g_ﬂ_exp < (C\;:H ) ) (A.20)

Plugging A, into Eq. (A.13), the calculation of /5 ends up with

1 c— M(H)
L0 = (6209 4 260 [0} — g, ®) 4 o) ox _(

A.1.4. Computation of W Entries

0 o [°
@10(9) = o mp(yﬁ)dy
1 C
= — | (y—wp(y;0)dy
9 —00
1
= g(fl(e)—ﬂfo(e))
0 o [€
@11(9) - @/wy-p(yﬁ)dy
1 C

= = y(y — u)p(y; 0)dy

= (B(6) — ()

0
@12(9) - a/ y>.p(y; 0

= = | v(y—wpy;0)dy

o —00

= 5 (0) — uhx(6))

%10(9) = %/c p(y; 0)dy
= g o) + g (1(6) — 2 (B)+ T(6)”)

2
) ) (A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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0 0 ¢
Wh(e) = @/ yp(y; 0)dy
1 1
= —ﬁh(ﬁ) + ﬁ(l?,(e) — 2L,(0)pu + [1(0)/ﬁ) (A.26)
0 0 ¢
52 2(0) = @/_ y*p(y; 0)dy
1 1
= —@[2(9) + ﬁ(h(@) — 213(0)pu + LI(0)1”) (A.27)

where I3(0) and 1,(0) can be computed by using integration by parts as the computation of
I,(0), however lengthier computation

I3(0) = / c y’p(y; 0)dy

—00

1 O
=L (30‘2 + M2) Iy(0) — \/—270[20-2 + p? + pe + ¢ exp <_ <C :H ) ) (A.28)

14(0) = / y'p(y; 0)dy

— 00

= (30" +6p°0° + p") I (9)

2
1 2 3 2 2, 3 <C—M(H)>
— ——0ol|o“(bu + 3¢) + u® + pc + uct + c’lex — A.29
o [0 (5p )+ u + % J exp ( )

A.1.5. Computation of Information Matrix I

For convenience, the log-likelihood function and the information matrix are recalled as fol-
lows

Inp(z;6) =In <W+M) + (N —M)In(Iy(9))
_ % In (270 — %Z (xj — “) . (A.30)

j=1

E [—;—;lnp(x; 9)} E —%;ﬂlnp(x; 0)

E [—%{;2 In p(x; 9)] E 2 Inp(x;0)

" 902802

I— (A31)

In the following, to shorten the notation, the parameters of the /; functions are removed.
Here the derivative computations of the /; which were given in Eq. (A.22) to (A.27) are em-
ployed. Since I, is the probability that a measurement is censored, in the following derivati-
on, the expected number of uncensored measurements is determined by E [M] = N (1 — I,),
where NV is the total number of measurements.
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e E —aa—; Inp(x; 9)} ;
First derivative of log-likelihood function w.r.t. i

0 1 0 1 & T — [
9 ) — (N w2 YL _ 9%
o5 Inp(x;0) = (N M)Io aujo 5 ;:1 ( 2 g )

M

11 1
= (N—M)I—Og(fl—ﬂfo)+§jzl(%—#) (A.32)

Second derivative of log-likelihood function w.r.t. j:

2

0 0 1 1 Y
@PmP@ﬂyzalcN_A@Ea(h_“%%hﬁgyw_ﬂo

o2  Ou \ Iy o?
N-M (G- L} M
- o2 I2 o?
. N-M J%([Q—Mll)[()—lla%(ll—lu]o) 1 _%
o2 I3 o?
N-M (Lly—1> ,\ M
pum —_— O' —_—
ot I2 o2
N—M [(Il,— 12\ N
= - — A33
o4 ( I2 o? ( )

Expectation of the second derivative of log-likelihood function w.r.t. y:

0? N—M (LI, —I? N
-] e[ 2528

o I2 o?
B | (Lly— 12\ N
——E[N—M]g(l_i02 +t 3
| (LIy— 12\ N
— _NL— (2 ) 2
004( I2 +02

N [(I? - LI,
== |—+1 (A.34)
0'2 [0
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e E auaa2 In p(x; 9)}

62

0 11
auao_Q Inp(x; 0) = 902 <(N - M)I—Og(fl /ﬂo

a2
“mnge e (o)) f}

1 (1 1 (851, —L3%
1 M
- =S - ) (A.35)

Expectation of the second derivative of log-likelihood function w.r.t. ; and o

0 1 (1, 1 (951, - 154
— 1 | =NI,{ = [ = — _ = 920 102
E[ 5o P )] 0{0—4 <Io “) o—2< I

+ 014E [Z( Ty~ M)] , (A.36)

Jj=1

where the remaining expectation can be computed as follows

M
E|> (2 M)] = EB[M](E[z] — 1)
j=1
1 o
= N(1 - Io) (1_710/ yp(y; 0)dy — u)
1
=N(1 - 1) (1_7]()(# —h) - M)
= N(ulp — ). (A.37)
Using this in Eq. (A.36) we arrive at
82 N ol [0 o Il 0lg
E[ 91007 In p(x; 6)} = ( [—0) (A.38)

. El 2 p(x; 9)}

First derivative of log-likelihood function w.r.t. o>

0 10 M1 1/ 1\«
oz 9050) = (Y =Mt = 5 5 () Dot -

7j=1
1 1 I Lo,
=(N=M){——t — (2 2L

M
M 1
~ 507 T ogd § (zj — p)? (A.39)
j=1
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Second derivative of log-likelihood function w.r.t. o’

02 1 1
Y mpx0) = (N=M)d— — = (29,2
Jdo200? np(x;0) = ){204 of (IO 'LLIO+M>

204 002 \ | I :
7=1
1 1 /L L
—(N-M){— — = (29t
( ){20'4 0'6 <[0 [0_'_ )
| (Bl -5l -1
207 2 B
0 0
M1 g )
j=1

Expectation of the second derivative of log-likelihood function w.r.t. o2

02 1 1 (L _ L
E —7lnp(x;9)] :_NIO{@_;<_0_2M_+M

002002
1 (%10 - L3 QM%[O - 11%> }

204 I2 I3
(I
2

where

= N(1 - L) <1 : I /Coo(y = 1)*py; Q)dy)

=N (0% — I+ 2ul, — 1i° 1) (A.42)

Using this in Eq. (A.41) we arrive at

Bl % ppmen] = XL L (GR b ol — Bk
0o?00? 7 02 | 202 202 Iy Iy
(A.43)
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A.2. Parameters of Kalman Filter
Time interval length 7" = 20 ms.

0.999 0.01
0 1

10
0 1

(
(

- <o.99 0.01
(

F =

0 1

0.00001 0
0 0.0006

Q, = 0.00006 0
2 0 0.0000001

A.3. Android Smartphone Application

A.3.1. Manifest File

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

1 f<?xml version="1.0" encoding="utf-8"?>

2 || <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="de.nt.INM"

4 android:versionCode="1"

5 android:versionName="1.0">

6 <uses-sdk android:minSdkVersion="17" android:targetSdkVersion="19"/>

7 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

8 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

9 <uses-permission android:name="android.permission.READ_PHONE_STATE" />

10 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
11 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
12 <uses-permission android:name="android.permission.INTERNET"/>

13 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
14 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
15 <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION"/>

16 <uses-permission android:name="android.permission.BLUETOOTH"/>

17 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

18

19 <application android:name="de.nt.INM.Main.MapScrollApplication"

20 android:uiOptions="splitActionBarWhenNarrow"

21 android:allowBackup="true"

22 android:largeHeap="true"

23 android:icon="@drawable/logo"

24 android:label="Q@string/app_name"

25 android:theme="Q@style/AppTheme" >

26 <activity android:name="de.nt.INM.Main.IndoorNavMap"

27 android:label="@string/app_name">

28 <intent-filter>

29

30 <action android:name="android.net.wifi.WIFI_STATE_CHANGED"/>

31 <action android:name="android.net.wifi.SCAN_RESULTS"/>

32

33 <action android:name="android.intent.action.MAIN" />

34 <category android:name="android.intent.category.LAUNCHER" />

35 </intent-filter>

36 </activity>

37 <activity android:name="de.nt.INM.Util.SettingsActivity"

38 android:label="Settings">

39 </activity>

/>
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40 <activity android:name="de.nt.INM.Social.Account.AccountSettingsActivity"

41 android:label="Account Settings">

42 </activity>

43 <activity android:name="de.nt.INM.Social.Friends.FriendsActivity"

44 android:label="Friends">

45 </activity>

46 <activity android:name="de.nt.INM.Social.LearningGroups.LearningGroupsActivity"

47 android:label="Learning Groups">

48 </activity>

49 <activity android:name="de.nt.INM.Social.LearningGroups.
LearningGroupsListActivity"

50 android:label="Learning Groups">

51 </activity>

52 <activity android:name="de.nt.INM.Social.Account.
AccountSettingsChangeAvatarActivity"

53 android:label="Change Avatar">

54 </activity>

55 <activity android:name="de.nt.INM.Measurement.WLANDataAssemblerActivity"

56 android:label="WDA"

57 android:screenOrientation="portrait">

58 </activity>

59 <activity android:name="de.nt.INM.GUI.StreamActivity"

60 android:label="Video Guide">

61 </activity>

62

63 <service android:name="de.nt.INM.Util.MapDownloadService" ></service>

64 <service android:name="de.nt.INM.Localization.LocalizationService" ></service>

65 </application>

66 || </manifest>

List A.1: Manifest file of the smartphone application

A.4. Requests and Responses of the Communication in
Indoor Navigation System

A.4.1. Set FringerPrint Request and Response

List A.2 shows an example of a SetFingerprintRequest which is sent by client.

1]l <?xml version=’'1.0’ encoding=’UTF-8’ standalone=’'yes’ ?>

2 || <SetFingerprintRequests>

3 <Smartphone HardwareType="Nexus 4" HardwareID="355136050665226" />
4 <SetFingerprintRequest Date="2013-07-22 08:33:34">

5 <Marker Floor="0" X="8.7678" Y="51.7088" Orientation="280.47" />
6 <AP MAC="b4:e9:00:32:c3:b1" strength="-55" />

7 <AP MAC="b4:e9:00:32:c3:b0" strength="-56" />

8 <AP MAC="b4:e9:00:32:c3:b3" strength="-57" />

9 <AP MAC="b4:e9:b0:32:c3:bf" strength="-68" />

10 <AP MAC="b4:e9:b0:32:c3:be" strength="-68" />

11 <AP MAC="b4:e9:b0:32:c3:bc" strength="-69" />

12 <AP MAC="00:26:cb:93:be:41" strength="-81" />

13 <AP MAC="a4:0c:c3:d1:db:50" strength="-83" />

14 <PressureSensor>997.7616</PressureSensor>

15 </SetFingerprintRequest>
16 || </SetFingerprintRequests>

List A.2: Set Fingerprint Request

List A.3 shows an example of a SetFingerprintRequestAnswer which is generated by server
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for the case of successfully adding new measurements to the database.

1 || <?xml version='1.0’ standalone='yes’ ?>
2 || <SetFingerprintRequestAnswer error="0" description="OK">
3|| </SetFingerprintRequestAnswer>

List A.3: Set Fingerprint Response
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E[] .o, Expectation

()T Transpose
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()7 Inversion
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p(x[lr) e Class conditional probability density function
() v Diract delta function

erf (:) ...l Error function
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Ciooei Vector consists of coordinates of the k-th position

P Fingerprint at the k-th position

X oo Set of measurement vectors at the k-th position

Xk eeeeeeee e The n-th measurement vector at the k-th position

D(0,Xpp) wovnvnnnn. Euclidian distance between online sample o and training sample
Xk,n

O v Set of the parameters of the Gaussian describing the signal strength

distribution at the k-th position

Kl oo Mean vector of the Gaussian describing the signal strength distri-

bution at the k-th position

D Covariance matrix of the Gaussian describing the signal strength

distribution at the k-th position
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Parameter Estimation of Censored and Dropped Gaussian Data

C o Clipping threshold

O Set of parameters of a GMM

Tk eeeeeeeeeeeeennn. Mixing weight of the k-th component of a GMM

Op oo Set of the parameters of the k-th component of a GMM

X o Set of observable data

Z e Set of hidden variables

Y Set of unobservable, non-censored, possibly dropped data

Yn e The n-th measurement, scalar value

X e Set of observable data

O Set of the parameters of a univariate single Gaussian

Bb e Mean of a univariate single Gaussian

o Variance of a univariate single Gaussian

W . Set of the estimated parameters of a univariate single Gaussian after
the x-th iteration of an EM algorithm

I; (0(“)) ............ The j-th moment of the truncated part of a censored Gaussian, de-
fined in Eq. (4.8)

2y e Realization of the binary random variable Z,, indicate whether the
n-th measurement is censored (z, = 1) or not (z,, = 0)

N Number of measurements

M o Number of observable measurements

71 Difference between the estimated mean after the x-th EM iteration

and the true mean

............. Difference between the estimated variance after the x-th EM itera-
tion and the true variance

I oo Information matrix

Ay o Hidden variables indicate whether the n-th measurement is dropped
(d,, = 1) ornot (d,, = 0)

7S Dropping rate, defined as 7 = P(d,, = 1)

Bn(d,z) oo, Probability that d,, = 0 ord,, = 1 given z, =0 orz, = 1

Smartphone Adaptation within MLLR Framework

Bk oo Mean vector consists of means of all APs at the k-th position

Er Extended mean vector consists of means of all APs at the k-th po-
sition and a offset term factor

1 Adapted mean vector at the k-th position

Nap ool Total number of observable APs

(k) oo Regression class c¢(k) where the Gaussian describing k-th position
belongs to

C o Total number of regression classes

W) Mean transformation matrix to be applied to the regression class
c(k)

Ye(n) o The posterior probability that RSSI measurement vector x,, is from

position ¢
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Y o Set of measurement vectors

Vi e The n-th measurement vector consists of RSSI from N4p APs

Ynyi  vevei e The non-censored, possibly dropped measured data of the n-th mea-
surement from the i-th AP

Do Set of hidden variable vectors

d, ................. The n-th hidden variable vector consists of random variables, each
indicates whether the measured data from corresponding AP is
dropped or not

Qi oo Random variable indicates whether the n-th measurement from the
i-th AP is dropped or not

X o Set of observable, censored, possibly dropped measurement vectors

Xp) e The n-th measurement vector consists of observable, censored, pos-
sibly dropped measured data from N4p APs

e The censored, possibly dropped measured data of the n-th measu-
rement from the :-AP

wgc(k)) .............. The row vector which is the i-th row of W (¢(*))

A Set of parameters, i.e., dropping rate, mean and variance adaptation
matrices, to be estimated for adaptation purpose

DY Set of parameters, i.e., dropping rate, mean and variance adaptation
matrices, to be estimated of the i-th AP at the k-th position

£y Dropping rate of the adaptation data of the ¢-th AP at the k-th posi-
tion

Wi ovenn Mean of the Gaussian describing the RSSI distribution of the i-th
AP at the k-th position

o778 A Variance of the Gaussian describing the RSSI distribution of the ¢-th
AP at the k-th position

S R Random variable indicates whether the n-th measurement from the
1-th AP is observed or not

Brmi(d,z) oo, Probability that d,,; = O or d,,; = 1 given z,; = O or z,; = 1 at
the k-th position

S Adapted covariance matrix of the Gaussian describing the RSSI rea-
dings of the APs at the k-th position

B, ... The Choleski factor of >3,

HE®) Variance transformation matrix to be applied to the regression class
c(k)

hgc(k)) .............. The i-th component of the main diagonal of H(¢(*))

Hidden Markov Model for Indoor User Tracking

St e Hidden state variable at time ¢

Xi e RSSI observation at time ¢

P oo Transition probability from the i-th to the j-th state

Vi e Two-dimensional movement vector computed from inertial sensor

data
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ag(k) ool Forward variable: The probability that the user is at time ¢ in state
k given the observed sequence of o;.; and vy

a . 3-dimentional acceleration data vector

Gz e Acceleration data along x-axis

Uy oo Acceleration data along y-axis

Gy oo Acceleration data along z-axis

G o Gravity constant

Mmoo Magnetor data vector

G Gravity data vector

YT Gyroscope data vector

R oo Rotation matrix

Voo Azimuth angle

a(n) oo, State vector that contains the absolute Azimuth angle and its deri-
vative

Fn) ..o, Transition matrix which indicates a transition of the system from
time n to n + 1 in Kalman filter

vi(n) oo White Gaussian system noise in Kalman filter

Vo(n) coiiiiiii. White Gaussian measurement noise in Kalman filter

G(n) coov Matrix that describes the influences of the system noise on the state
vector in Kalman filter

Q1 Covariance matrix of the white Gaussian system noise in Kalman
filter

Qo i Covariance matrix of the white Gaussian measurement noise in Kal-
man filter

H(n) ...oooooioii.. Measurement matrix that describes the influences of the measure-
ment on the state vector in Kalman filter

Lgtep «ovovvviiiiin. Step length

Experimental Results on Indoor Positioning

A Weighting factor between inertial sensor information and WiFi in-
formation in the calculation of forward variable
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