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Kurzfassung

Als SLAM-Verfahren (engl. Simultaneous Localization and Mapping) werden Al-

gorithmen bezeichnet, die eine zuverlässige Schätzung der Pose eines beweglichen

Fahrzeugs (Roboter) innerhalb einer Umgebung vornehmen und gleichzeitig eine

geometrische Karte der Umgebung erstellen, durch die sich das Fahrzeug be-

wegt. Um eine grobe Schätzung der Pose eines Fahrzeugs vorzunehmen, wer-

den gewöhnlich Sensoren wie Gyroskope, Radencoder oder visuelle Odometrie-

Systeme eingesetzt. Die genannten Sensoren liefern Informationen über die

momentane Bewegung des Fahrzeugs, die unter Verwendung geeigneter Bewe-

gungsmodelle zur Schätzung der Pose des Fahrzeugs in jedem Zeitschritt herange-

zogen werden können. Die damit erhaltenen Bewegungsinformationen sind je-

doch ungenau, wodurch sich die Fehler bezüglich der Schätzung der Pose des

Fahrzeugs akkumulieren. Um dieser Herausforderung zu begegnen, wurden da-

her SLAM-Verfahren entwickelt, die extrinsische Sensoren zur Durchführung

zusätzlicher Messungen verwenden und diese mit weiteren Daten verknüpfen.

Dadurch kann die Fehlerakkumulation eingeschränkt und eine genaue Karte der

Umgebung erstellt werden. Traditionelle SLAM-Verfahren verwenden extrinsis-

che Sensoren, die Abstands- und Winkelmessungen zwischen dem Fahrzeug und

speziellen Merkmalen der Umgebung (Landmarken) liefern. Zu diesem Zweck

werden in der Regel Laser-Entfernungsmesser oder Stereokameras eingesetzt.

Laser-Entfernungsmesser sind jedoch im Allgemeinen sehr teuer und hauptsäch-

lich für Innenraumumgebungen geeignet. Die Verwendung von Stereokameras

erfordert aufgrund der Assoziation von Merkmalen zwischen den beiden Kameras

zusätzliche Rechenkapazitäten. Befinden sich die Merkmale weiterhin in einem

großen Abstand zur Stereokamera, weisen die geschätzten Positionen der Land-

marken hohe Ungenauigkeiten auf, die sich nicht mehr durch gaußsche Modelle

beschreiben lassen. Daher ist in den letzten Jahren die Verwendung monokularer



Kameras in den Fokus der Forscher gerückt. Entsprechende SLAM-Verfahren

werden in der Literatur als Monocular SLAM bezeichnet und bestehen aus drei

Teilen: Erstens der Exktraktion und Verfolgung von Merkmalen zwischen Einzel-

bildern, zweitens der visuellen Odometrie und drittens der Fusion der Merk-

malsverfolgung mit Odometriedaten.

Im Rahmen dieser Arbeit untersuchen wir zunächst verschiedene Verfahren zur

Verfolgung optischer Merkmale innerhalb aufeinanderfolgender Einzelbilder. Da-

bei wird gezeigt, dass der als Lucas-Kanade Sparse Optical Flow bekannte Ansatz

in einem Vorwärts-Rückwärts-Schema im Vergleich zu anderen Arten von Verfol-

gungsalgorithmen erheblich besser bezüglich der Genauigkeit und Berechnungszeit

ist.

Weiterhin liefern wir Beiträge zur monokularen visuellen Odometrie, indem wir

im Vergleich zu existierenden Ansätzen robustere Methoden gegen Messrauschen

(8-Punkt-, 7-Punkt- und 5-Punkt-Methoden) entwickeln. Außerdem wird eine ro-

buste Methode vorgestellt, die optische Merkmale von niedriger Qualität auf sehr

homogenen Grundflächen verfolgen kann. Damit lässt sich auch die Skalierung

der Bewegung schätzen, wenn nur eine monokulare Kamera mit bekannter Höhe

auf einem beweglichen Fahrzeug mit Rädern zur Verfügung steht.

Schließlich stellen wir neue nicht-gaußsche Fusionsansätze zum Umgang mit ho-

hen Ungenauigkeiten von Tiefeninformationen vor. Bei diesen neuen Methoden

werden die Unsicherheiten bezüglich der Landmarken mit Hilfe von Linienseg-

menten modelliert, die auf Basis einer probabilistischen Triangulation angepasst

werden. Die Pose des Roboters wird in jedem Zeitschritt auf Basis von Par-

tikelfiltern oder einer Subspace-Technik angepasst.

Wir evaluieren die vorgestellten Methoden für monokulare visuelle Odometrie

und SLAM anhand von anspruchsvollen simulierten und realen Datensätzen und

zeigen signifikante Verbesserungen im Vergleich zu existierenden State-of-the-

Art-Methoden auf.



Abstract

Simultaneous Localization and Mapping (SLAM) refers to the algorithms uti-

lized to achieve a reliable estimation of the pose of a mobile vehicle (robot) and

also a geometric map of the environment through which the vehicle moves. To

have a rough estimation of a vehicle’s pose, usually, sensors such as gyroscopes,

wheel-encoders or visual odometry systems are applied. The sensors provide

instantaneous motion parameters of the vehicle which can be used along with

proper motion models to estimate the pose of the vehicle at each time instance.

Nevertheless, the mentioned sensors cannot provide precise motion parameters,

giving rise to accumulating errors concerning the vehicle’s pose. To address this

problem, SLAM algorithms have been introduced to utilize extrinsic sensors to

obtain extra measurements and to fuse those with other sources of data in order

to limit the increasing errors and generate a reliable map. In conventional SLAM

systems, extrinsic sensors are used, which deliver distance and bearing measure-

ments between the vehicle and special features (landmarks) in an environment.

The sensors for such measurements could be laser range finders or stereo cameras.

Laser range finders are generally very expensive and they are mostly suited for

indoor environments. Using stereo cameras necessitates extra computation loads

for feature associations between two cameras and if the features are far from the

camera (depending on the resolution of the camera), the estimated positions of

the landmarks have large uncertainties which cannot be modeled by Gaussian

models. Therefore, applying monocular cameras has attracted the attentions of

researchers in the recent years. This type of SLAM is known in literature as

monocular SLAM which consists of three parts. First, feature extraction and

tracking within the frames. Second, visual odometry and third, the fusion of the

feature tracking information with odometry data.



In this work, we firstly investigate different techniques for optical feature tracking

within consecutive frames and show that the Lucas-Kanade sparse optical flow

method in a forward-backward scheme outperforms other types of trackers to a

great extent both in the senses of precision and computation time.

Additionally, we contribute to monocular visual odometry by developing methods

which are more robust against measurement noise in comparison to the existing

methods (8-point, 7-point and 5-point methods). Furthermore, a robust tech-

nique is proposed to track low quality optical features on highly homogeneous

ground planes in order to estimate motion scale if the only source of data is a

single camera installed on a wheeled vehicle at a known height.

Finally, we introduce new non-Gaussian fusion methods to cope with high depth

uncertainties in the monocular SLAM problem. In these new methods, the un-

certainties of landmarks are modeled by line segments and the line segments are

trimmed based on a probabilistic triangulation. The robot pose is modified at

each time instance based on particle filters or a subspace technique.

We evaluate the proposed methods concerning monocular visual odometry and

SLAM based on demanding simulated and real datasets and demonstrate the

significant improvements in comparison to existing state-of-the-art methods.
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1 Introduction

Visual simultaneous localization and mapping (vSLAM) stands for the approaches

which use camera data to reduce the errors of a basic navigation system of a mo-

bile robot (vehicle) and generate a map of visual features.

Basic navigation systems of a mobile robot utilizes wheel encoders (for planar

motions), IMU (inertial measurement unit) sensors or visual odometry systems

to obtain the instantaneous motion parameters of the robot. The pose of a robot

at each time instance can be obtained by applying the motion parameters into the

motion model of the robot. Nevertheless, due to various disturbances, the sensors

cannot provide the motion parameters precisely. This imprecision may occur

continuously over time, resulting in an accumulating error concerning the robot

pose. To tackle this problem, extra sensors can be used which provide relative

measurements (distances or bearings) between the robot and some landmarks

in an environment. The new measurements can be fused with the odometry

data to obtain a modified version of the robot pose. This approach is known

in literature as simultaneous localization and mapping (SLAM), in which the

absolute robot and landmark positions are concurrently estimated. In common

SLAM approaches, the relative distances and bearings between the robot and

the landmarks are used. The typical sensors for these measurements are laser

range finders or stereo cameras. Laser range finders are typically very expensive

and have limited measurement ranges; additionally, the types and number of

features which can be extracted from their data are limited. Using stereo cameras

requires extra computational loads to match features in the right and the left

camera images and for the relatively far landmarks they cannot provide proper

depth estimations. Therefore, using monocular cameras for the SLAM problem

has become popular in the recent years. Using a monocular camera has, however,

the disadvantage that the relative distances to the landmarks are missing and
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it can work only as a bearing measurement sensor. Therefore, more complex

algorithms should be applied to compensate this shortcoming.

Generally, implementations of monocular visual odometry and SLAM algorithms

consist of three main parts: (i) feature extraction and association, (ii) estimation

of instantaneous motion parameters and (iii) fusion. Regarding these parts, this

chapter introduces related works for optical feature tracking in section 1.1, visual

odometry in 1.2 and fusion methods in 1.3. In section 1.4, the contribution of

this work to monocular visual odometry and the SLAM problem is discussed.

1.1 Visual Feature Extraction and Tracking

To use a camera as a measurement device, we need to extract features in one

frame and track them in the next frames. From an image, generally, three types

of low level features can be extracted: edges, corners and blobs. Edge tracking

has been investigated in some limited works, since it is usually computationally

expensive and additionally by changing scale of objects the edges cannot be

precisely localized. Therefore, in practical applications, tracking of corners or

blobs which are known as point features are much more interesting.

The point feature tracking problem has been addressed in literature from two

different points of view. In the first approach (called image matching), point

features (keypoints) are extracted from two images separately. Then, based

on surrounding points of the features, a descriptor vector for each keypoint is

defined. Finally, by comparing the descriptors of the keypoints from two images,

the best matching points are found. Several works were done concerning this

approach, of which the more robust and reliable are the scale invariant feature

transform (SIFT) [Low04] and speed up robust features (SURF) [HTG08].

Using difference of Gaussians at different scale and octaves, SIFT extracts blobs

with different scale (size) as keypoints. The SIFT descriptors are found by an-

alyzing different regions about the neighborhood of a keypoint and building up

a histogram of intensity gradients based on the intensities in the regions. The

length of a SIFT descriptor vector is typically 128. Although SIFT is known

to have a low number of wrong feature associations (outlier rate), which was

proven in different applications, it suffers from high computation time making
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it inappropriate for real time applications. To address the slow speed of SIFT,

the SURF algorithm was proposed, in which two simple masks are used to ex-

tract interest points. To find features at different scale, SURF changes the size

of the masks instead of scaling and resizing images. The descriptors are also

found using a fast convolution with first order Haar wavelets, which results in

a descriptor vector with the length of 64. The mentioned modifications have

made SURF much faster than SIFT, however, its inlier ratio is not as good as

SIFT [MM12a].

Image matching methods provide mostly a high ratio of inliers. Nevertheless,

they are sensitive to the repeatability of features in an image sequence. In other

words, if we want to track a point from one frame in the next frames, it is

necessary that the point is already detected as a keypoint in the next frames;

otherwise, there is not any chance to track the point. Therefore, usually it is not

possible to track a feature using SIFT or SURF in more than a few frames.

The second approach to address the feature tracking problem is the use of the

optical flow. Optical flow methods attempt to estimate the motion of each point

between two frames. The theory of optical flow is not based on any features.

However, since in many applications the calculation of the motion of all points

are not required, motion of feature points are calculated.

There are three types of optical flow methods: differential methods, block match-

ing methods and methods based on the frequency domain. Differential methods

solve a spatiotemporal differential equation by assuming that the intensity of a

point does not change between two frames. In the basic equation of the dif-

ferential optical flow method, there are two unknown parameters and therefore

another constraint must be used to determine the parameters uniquely. Depend-

ing on the constraints, various differential methods have been proposed [HS81],

[LK81], [UGVT88].

If the frames are noisy or they have low resolutions, the spatiotemporal differ-

entiation cannot provide reliable information about the point displacements. As

a result, the idea of block matching between frames emerged [Ana89], [Sin90].

Nevertheless, these methods are not accurate and are not appropriate for visual

odometry purposes.
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Another group of methods approach the optical flow problem in the frequency

domain by applying velocity filters in spatiotemporal space and using the output

responses of the filters. To this end, different filters each of which is sensitive to

a direction of motion are utilized. The magnitudes of the outputs of filters are

used in [Hee87] and the filter which gives the maximum magnitude determines

the velocity of a point. In [FJ90], instead of magnitude information, phase in-

formation is used. The authors discuss that phase information is less affected

by noise than magnitude information. The performance of the methods in the

frequency domain, however, depends on the number of filters. In case of large op-

tical flows, the number of filters increase dramatically, which make the methods

useless for the calculation of large optical flows.

In this work, we will evaluate feature matching techniques and a sparse optical

flow method for tracking of features in a set of consecutive frames. We will

show that if the sparse optical flow is used in a forward and backward scheme, a

fast reliable tracker is obtained, which outperforms the other methods to a great

extent.

1.2 Visual Odometry

As already discussed, SLAM algorithms require to be fed by a rough estimation

of motion parameters of a robot and then utilize relative measurements between

the robot and landmarks from an environment to enhance the estimation of the

robot pose. A well-known sensor for the motion measurement is an IMU (Inertial

Measurement Unit) sensor which can provide a rough estimation of the motion

parameters with respect to a global coordinate frame attached to the earth. In

3D cases, a mobile robot can have six degrees of freedom: three angular and three

translational velocities with respect to the three axis of the world frame (X, Y

and Z). In the case of planar movements, a robot pose can be represented by

three parameters and its motion can be determined by two translation and one

rotation parameters. For a wheeled robot the motion could be more constrained

and determined with only two parameters (forward and angular speeds). These

two parameters can be obtained from wheel encoders. Since IMU sensors are

typically expensive and the wheel encoders are only useful for the planar cases,

using a single camera to estimate the relative motion of the camera comes into
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consideration. If only a monocular camera is available, the absolute motion of

the camera cannot generally be estimated. What could be estimated are the

three angular speeds and the direction of the translation (not its amount). A

well-known approach to calculate the motion of a camera up to scale is to obtain

a 3×3 matrix (called essential matrix) from a set of correspondent points between

two images.

The oldest and simplest method in this family is the 8-point method [LH81] in

which the eight elements of the essential matrix are assumed to be independent

and then by using eight correspondent points, a system of linear equations in-

cluding eight equations is obtained. The number of the parameters of 6D motion

up to scale is five. Therefore, five independent equations could be sufficient for

their estimation. This fact shows that essential matrix elements are not inde-

pendent. This issue can give rise to a poor performance of the 8-point method if

there are measurement noises of magnitude more than half a pixel. In [Har97],

a 7-point method is proposed, in which the dependencies of the essential matrix

elements are taken into account to some degree. The 7-point method, however,

does not perform better than the 8-point method significantly. In [Nis04], Nister

managed to impose the dependency constraint of the essential matrix elements

to come up with a 5-point method which requires only five points to recover

camera motion up to scale. Nister showed that the 5-point method has a better

performance in the presence of measurement noises. Nevertheless, this method

is very time consuming as it necessitates symbolic processing techniques.

We investigate the reasons of the poor performances of the 8- and 7-point meth-

ods and propose some techniques to make the methods much more robust against

measurement noise. To this end, the effect of noise on the relevant equations is

considered.

1.3 Data Fusion

The purpose of data fusion is to use data of a feature tracking module to confine

odometry errors. Using the pinhole model of a camera, it can be verified that the

projection of a point in space on the retina of a camera depends on the relative

position of the camera and the point. However, the relation is not straightforward
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and the depth of the point cannot be calculated using a monocular camera. As

a result, the only available measurements are bearing measurements.

From geometry it is known that the position of a point in space can be uniquely

determined if at least two observations of the point at two different positions

are available. Nevertheless, as discussed earlier, in reality, we cannot initially

estimate the pose of a robot precisely due to the odometry noise. Therefore, the

complexity of the monocular SLAM problem becomes more clear, in which unlike

the usual SLAM algorithms, a depth estimation part also needs to be augmented

in formulations.

Concerning SLAM algorithms, it should be mentioned that they leverage multiple

observations of landmarks to obtain enough equations to determine parameters

of robot poses and landmark positions and also minimize the effects of odometry

and measurement noise. To this end, two approaches can be considered: the

filter based approach and the cost optimization approach.

In the filtering approach, the SLAM problem is defined in the context of the prob-

ability theory and different realizations of Bayesian filters are used to estimate

robot and landmark positions recursively in prediction and update phases. Essen-

tially, two main filtering methods have been used to cope with the SLAM prob-

lem: Kalman filter [Kal60] and particle filter [GSS93] based methods. Kalman

filters are applicable if the motion and measurement models are linear and also

the processed random vector can be assumed Gaussian. With these assumptions,

a Kalman filter estimates the mean and covariance of the vector using a recur-

sive algorithm which includes prediction and update phases. The Kalman filter

is known as an optimal estimation method for linear systems. Using Kalman

filters for nonlinear systems can be feasible based on two methods. First, ex-

tended Kalman filters (EKF) which use linearized versions of the system equa-

tions about the operating point of the system. Second, unscented Kalman filters

(UKF [JU04]) which use some points on the boundaries of Gaussian distribu-

tions to propagate in nonlinear equations. The EKF has been used for the

mobile robot localization problem firstly in [SSC90] and its convergence was dis-

cussed and proved in [DNC+01]. Since the complexity of the algorithm grows

quadratically with respect to the number of landmarks (due to the size of the
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covariance matrix used in the Kalman filter), some later works developed dif-

ferent formulations based on the assumption that the landmark positions are

independent [GN01], [LJF00] and [WDD02]. Using linear approximations of mo-

tion and measurement models in an EKF typically gives promising results as long

as the robot does not rotate noticeably. If the robot rotates or the landmarks are

very close to the robot, the linear approximation can cause the divergence of the

algorithm. Therefore, numerical approaches came into attention, by which the

nonlinear differential equations are handled. The first attempt to use a numerical

approach to the SLAM problem is reported in [TBF+98]. They discretized the

map of the environment on a grid and then defined probability density functions

on the grid map. Since the estimation of the robot position depends on the map

and the map estimation also depends on the robot position, they used an ex-

pectation maximization (EM) algorithm to estimate these two parts iteratively.

The algorithm, however, was developed for offline cases. Therefore, Murphy

in [Mur00] firstly extended the EM algorithm for real time scenarios by window-

ing data. He showed that using limited size of data, the EM algorithm often gets

stuck in local minima. Later on, he used Rao-Blackwellised particle filters to

address the SLAM problem in a grid map by ignoring the robot orientation.

In case of non-Gaussian distributions, particle filters [GSS93] are variants of

Kalman filters. In particle filters, the estimated PDF (probability density func-

tion) of a vector is represented by a set of weighted samples (particles). The

particles are propagated in a prediction phase through a motion model and their

weights are modified by receiving new measurements in the update phase. The

main problem concerning particle filters is the exponential increase of their com-

plexity with respect to the dimension of the estimated vector. Since the positions

of landmarks in a map are usually assumed constant, their evolution model is

linear. Hence, this problem can be handled by Rao-Blackwellised particle fil-

ters [CR96]. A Rao-Blackwellised particle filter is a variation of particle filters in

which the estimation of the linear part is handled by the Kalman filter and the

PDF of nonlinear part is modeled by particle filters.

In [FBDT99], Fox et al. discussed the global localization of a robot using particle

filters in a continuous pre-known map. Later, they extended their work to address

the SLAM problem using Rao-Blackwellised particle filters. They decomposed
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the joint probability of robot and landmark positions into two different parts

and then by assuming that the landmark positions were independent from each

other, for each pair of particles and landmarks, an EKF was used to handle

uncertainty of a landmark. They called their approach FastSLAM [MTKW02].

In [MTKW03], the prediction part of FastSLAM was modified to include the last

measurements to generate particles more efficiently.

The discussed filters, nevertheless, are not applicable for the monocular SLAM

problem. Since in both EKF based and Rao-Blackwellised based methods, land-

marks uncertainties are modeled using Gaussian distributions; while for the

monocular SLAM problem, the Gaussian assumption is not valid anymore since

the depths of the landmarks are not known initially. To address, this problem

two main approaches have been proposed. First, the delayed method in which

initially the depths of landmarks are estimated and then based on the approx-

imated depths the landmark uncertainties are initialized by Gaussian distribu-

tions [Bai03]. Obviously, the delayed method can result in more accumulated

error while the run of the SLAM algorithm is postponed. Hence, the un-delayed

methods have been proposed, in which landmark positions are parametrized such

that the parameters can be modeled using Gaussian distributions when they are

observed for the first time. In [KHH+05], landmark uncertainties are modeled

by mixtures of Gaussian distributions. The authors used several parallel EKF

filters initialized at different combinations of depth assumptions for the landmark

positions. These assumptions, however, cause the complexity of the algorithm

to increase exponentially depending on the number of landmarks or the max-

imum assumed depth for a landmark position. In another method proposed

in [SMDL05], given the first observation of a landmark, separate landmarks at

different depths are initialized in a Kalman filter. Consequently, the problem is

formulated using just one EKF filter. This method suffers from inconsistencies in

landmark associations in different views. Civera et al. have introduced another

technique to deal with the monocular SLAM problem in the context of EKF fil-

ters [CDM08]. They showed that if they parametrize landmark positions based

on inverse depth parameters rather than their absolute positions, it is possible to

model the uncertainties of these parameters with Gaussian distributions. This

method has a poor performance if the landmarks are initialized near to the robot
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(less than three meters). The reason of this poor performance lies in the severe

nonlinearities of the inverse depth parametrization model at the depth one. In

this case, the inverse depth parametrization method maps the depth uncertain-

ties between 1 to +∞ to the interval [0,1] and on the other hand it maps the

interval [0,1] to 1 and +∞. It means that in the neighborhood of the depth one,

a severe nonlinearity exists, which cannot be handled by linear approximations

needed in EKFs. Additionally, if landmarks are observed in low parallax angles,

it occurs very often that the landmarks get localized behind cameras (negative

depth) resulting in the fast divergence of the algorithm. The work proposed

in [PJ08] uses a logarithmic depth parametrization to avoid the negative depth

problem. The authors of this work used a second order EKF since with the log-

arithmic depth parametrization, the distributions of landmark positions are not

near to Gaussian distributions any more. Using this technique, however, does

not solve the problem of high nonlinearities in the measurement model for close

landmarks.

Unlike filtering based methods, cost optimization based methods do not rely on

linearized models, but rather they minimize a cost function between the pre-

dicted and real measurements by updating camera poses and landmark positions

iteratively. In this approach, however, parametrization of landmark positions is

still an important issue such that both close and far landmarks can be lever-

aged. In environments where there are large depth variations (such as outdoor

environments), using a normal Cartesian parametrization for landmark positions

degrades the estimation of the robot and landmark positions significantly. As

the cost functions have generally several local minima and the initial guesses

determine the final solutions. In [SMD10], the inverse depth parametrization is

used in the context of a cost optimization method. Hence, this method also suf-

fers from the negative depth problem. In [ZHYD11], a delayed method based on

the parallax angle parametrization is proposed to deal with the negative depth

problem. This method can work with the landmarks observed at high parallax

angles. Hence, it fails if it cannot observe enough landmarks at high parallax

angles.
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1.4 Contributions of this Work

We contribute to the monocular SLAM problem in two parts: visual odometry

and data fusion. Concerning the visual odometry part, firstly, we evaluate dif-

ferent feature tracking techniques based on the large KITTI dataset for visual

odometry. Then we discuss why the 8-point method has a poor performance

in the presence of measurement noise and push forward some modifications to

make the method work robustly against measurement noise of the magnitude

more than two pixels. Additionally, a regularization constraint based on the

physical properties of cameras will be obtained and augmented in different N-

point methods to especially enhance the estimation of rotation matrices. We also

propose a new method to estimate the absolute scale factors of camera motions

if the cameras are installed on wheeled vehicles with known heights over the

ground plane.

The second contribution to the monocular SLAM problem is development of

new fusion methods based on particle and UKF filters. As discussed in section

1.3, the main challenge of monocular SLAM is how to model large depth uncer-

tainties of landmark positions at the initialization time. Among the discussed

methods, the method based on the Gaussian sum filter (GSF), inverse depth

parametrization and logarithmic parametrization methods have solid theoretical

backgrounds. Nevertheless, each of them has its own shortcomings either in the

sense of complexity or in the sense of robustness. To address these problems,

for the case of planar motions, we propose new methods based on particle filters

in such a way that the uncertainty of a robot pose is handled by particles and

attached to each particle for each landmark, a line segment is assumed, of which

length models the landmark’s uncertainty. As the robot moves and makes new

observations of the landmark, the lengths of line segments are reduced and the

robot pose uncertainty is minimized through the trimmed line segments and new

observations. The high performances of the proposed methods will be proven

through demanding simulated and real experiments.
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1.5 Thesis Outline

The thesis is organized as follows: in chapter 2, a comprehensive survey of previ-

ous works concerning visual feature tracking, visual odometry and fusion methods

is presented. In chapter 3, feature tracking methods are investigated and then

new robust visual odometry methods will be proposed. The methods are eval-

uated through simulation and application to the demanding KITTI dataset for

visual odometry [KIT15]. In chapter 4, we push forward new fusion techniques

for the 2D monocular SLAM problem. The methods are evaluated in comparison

to previous methods based on simulated and real experiments.
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As mentioned in the introduction chapter, the monocular SLAM problem consists

of three main parts: feature tracking, odometry and data fusion. In this chapter,

we conduct a comprehensive survey of these topics.

2.1 Feature Extraction and Association

In the terminology of image processing, a feature in an image is a point or set of

points which have special characteristic with respect to their neighborhoods and

can be distinguished from them. Edges, corners and blobs can be counted as low

level features. Feature extraction methods constitute an important and active

field of research in the image processing although it has been investigate for more

than two decades. One important application of feature extraction is tracking of

image elements, which can be used for higher level analysis of a dynamic scene

or for the estimation of camera motion.

The feature tracking problem can be approached by two different ways. First,

image matching methods in which given two images, their features are extracted

separately and then the correspondent features are found based on local descrip-

tors of the features. Several works have been done in this regard, but here we

discuss the two most cited methods which have been applied in various image

processing applications in the last decade: the Scale invariant features trans-

form (SIFT) and the speeded up robust features (SURF) methods. It is good to

mention that, in the recent years, inspired from SIFT and SURF, new feature

matching methods have been proposed, which mainly target the speed of feature

matching while trying to keep the precision of matching near to the SIFT and

SURF methods. The methods are based on binary patterns in neighborhoods of
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features. The method can be counted as: BRIEF (binary robust independent ele-

mentary features) [CLSF10], ORB (oriented robust brief) [RRKB11] and BRISK

(binary Robust invariant scalable keypoints) [LCS11].

The second approach for feature tracking is based on optical flow methods in

which motion of a point in an image sequence is calculated with the assumption

that the intensity of the point does not change within the sequence.

In this section, we firstly discuss the image matching methods and the influen-

tial theory behind them (scale space analysis), and then the optical flow based

methods will be introduced.

2.1.1 Scale Space Filtering

In digital signal processing, the description of a signal (e.g. f(x)) in a compact

way has been investigated for several years. This problem has been approached

mostly by finding some primitive descriptors or features from a signal by which

the original signal can be reconstructed.

Figure 2.1: Convolution of a signal with Gaussian functions with different vari-
ances (from [Wit83]).

Obviously, an important group of features can be the local extrema of the signal

and its derivatives (mostly first and second order derivatives). Consequently,
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it should be determined with which resolution or scale, we are interested to

reconstruct the signal. By scale, we mean how much details of the signal are

important for us. Are we interested in fine changes of the signal (low scale)

or coarse variations (high scale). To have a general answer to this question a

transform was offered by Witkin in [Wit83], in which a signal is convolved by a

Gaussian function of which the standard deviation is the scale parameter.

F (x, σ) = f(x) ∗ g(x, σ) =

∫ +∞

−∞
f(u)

1

σ
√

2π
e
− (x−u)2

2σ2 du (2.1)

As shown in Fig. 2.1, by increasing the variance of the Gaussian, more details

of the signal disappear. The feature points can be obtained at the scale value

σ by assigning the nth derivative of the smoothed signal to zero and solving the

equation:
∂nF

∂xn
= f ∗ ∂

ng

∂xn
= 0 (2.2)

Witkin used special extrema achieved from the second derivative which are known

as inflection points:

Fxx =
∂2F

∂x2
= 0;Fxxx =

∂3F

∂x3
6= 0 (2.3)

Fig. 2.2 shows the contours of inflection points. By increasing scale, we can

see how the inflection points approach each other, merge together and finally

disappear. Additionally, it can be seen that the feature points have displacements

with respect to their original position in the finest scale. Hence, if we intend to

represent a signal in coarse scale, the displacement of inflection points could be

an issue. As a result, a method is required to localize the features in the original

signal. Obviously, based on the contours diagram an inflection point can be

tracked to its position in the original signal. Witkin also proposed a chart called

tree diagram to show how a feature survives or disappears while scale increases

(Fig. 2.3).
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Figure 2.2: The contours of inflection points (from [Wit83]).

Figure 2.3: Tree diagram to show the appearance of the inflection points at dif-
ferent scales (from [Wit83]).

The scale space analysis was extended for images (2D signals) by Koendernik

in [Koe84] to extract the structures of an image at different scales. He tried to

find a kernel function and proper features by which the following goals can be

achieved:

1. Deriving a one parameter (scale) family from an image.

2. Studying the structure of each family member by considering their rela-

tions.
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His formulation was for gray scale images, and as we know, a gray scale image

can be defined by a function such as L : R2 →R where:

L(r) = L(x, y) = λ; r ∈ R2, λ ∈ R (2.4)

Then, for such a function a scale-space function can be defined:

L(x, y; s) = Λ; Λ ∈ R (2.5)

where s = σ2 is the scale parameter (L(x, y; 0) = L(x, y)). Then, he tried to find

a sensible way to generate the one parameter family by assuming a condition

called causality; meaning, the features at a coarse resolution should have causes

(not necessarily unique) in finer resolution. In other words, if we increase scale,

we expect the features to disappear or not change. It means that new features

should not emerge. Based on this assumption, he inferred that the scale space

function should satisfy the heat or diffusion equation:

∇2L = Lxx + Lyy = Ls (2.6)

where Lxx = ∂2L
∂x2

, Lyy = ∂2L
∂y2

, and Ls = ∂L
∂s

. A solution to this equation is the

convolution of the image with Gaussian kernel with the variance s:

L(x, y; s) = L(x, y) ∗ g(x, y; s) (2.7)

where g(.) is:

g(x, y; s) =
1√
2πs

e−(x2+y2)/2s (2.8)

The next step is to find some borders to classify an image at different scales.

For one dimensional signals, inflection points were selected. The 2D equivalent

of inflection points are parabolic curves:

LxxLyy − L2
xy = 0 (2.9)

But he discussed that the parabolic curves cannot always enclose single extrema.

He also claimed that zero crossing curves obtained from the Laplace equation:

∇2L = Lxx + Lyy = 0 (2.10)
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suffer from the same problem. To address this problem, he used saddle points

in blurred images and curves created from the intersection of the blurred images

and a plane which passes through the saddle points. The saddle points can be

obtained from a Hessian Matrix which is defined at each point of the image L as

follows:

H(L) =

[
Lxx Lxy

Lyx Lyy

]
(2.11)

The saddle points are the points in which the Hessian matrix becomes indefi-

nite.

Figure 2.4: Saddle points in scale-space (from [Koe84]).

Using a Gaussian kernel to create scale-space family has the following important

property:

L(.; s1) ∗ g(.; s2) = L(.; s1 + s2) (2.12)

The scale space theory has two main applications. First, image segmentation

as discussed before and second finding features in an image which are invariant

with respect to scales. In other words, features which survive in a long range of

scale variations.

As already discussed, the best features in an image are saddle points, however,

finding saddle points needs the calculation of the Hessian matrix for every point

which would be very time consuming. To solve this problem it can be verified that

the saddle points should be located mostly on the edges of an image. Therefore
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we can firstly use an edge detection method such as Laplace of Gaussian (LoG)

to find the edges in an image and then determine the saddle points among the

edges.

{(x, y)|∇2L(x, y; s) > δ} (2.13)

On the other hand, if we consider the diffusion equation (Eq. (2.6)), it can be

inferred that the LoG can be obtained from the differentiation of L(.; s) with

respect to s.

2.1.2 Pyramid Analysis

The idea of finding features at different scales has been approached by a simpler

way which is sampling and smoothing the image recursively. It is known that

sampling may result in artifacts due to aliasing which may appear in the sampled

version of a signal. To alleviate this problem, images should be smoothed with

smoothing kernels before the sampling process is performed.

Pyramid analysis was firstly introduced by Burt in [Bur81] for one dimensional

discrete signals. Given the signal f(x), he proposed the following recursive for-

mula to establish the pyramid:

gl(x) =

m∑
i=−m

w(i)gl−1(x+ irl−1); l > 1 (2.14)

where g0(x) = f(x), r is the sampling interval, l is the level of the pyramid,

2m+ 1 is the width of kernel and w(.) defines the shape of the kernel.

From Eq. (2.14), it can be obtained:

gl(x) = hl(x) ∗ f(x) =

Ml∑
i=−Ml

hl(i)f(x+ i) (2.15)

where hl(x) is called equivalent kernel at level l and 2Ml + 1 is the equivalent

kernel width which should be calculated.
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hl(x) and Ml can be calculated as follows:

hl(x) =

Ml∑
i=−Ml

w(i)hl−1(x− irl−1) (2.16)

where h0(x) = δ(x). The width of the equivalent kernel is obtained as follows:

Ml = mrl−1 +mrl−2 + ...+m = m

l−1∑
i=0

ri

= m
rl − 1

r − 1
(2.17)

Then, he assumed four constraints on the kernel such that the equivalent kernels

remain unimodal, symmetric and centered at x = 0:

m∑
i=−m

w(i) = 1 (2.18)

w(x) = w(−x) (2.19)

w(x1) ≥ w(x2) for 0 ≤ x1 ≤ x2 (2.20)
m∑

i=−m

w(j + ir) = 1/r for j : 0 ≤ j < r (2.21)

A special case which is used mostly in pyramid analysis is the kernel size 5

(m = 2). Imposing the conditions for this case and by assuming w(0) = a, w(1) =

b, w(2) = c, we have:

w(−1) = w(1) = b

w(−2) = w(2) = c

a+ 2b+ 2c = 1

a ≥ b ≥ c ≥ 0 (2.22)
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which results in:

1/4 ≤ a ≤ 1/2

b = 1/4

c = 1/4− a/2 (2.23)

For different a different kernels can be created (Fig. 2.5). For a = 0.4, the

equivalent kernel approaches to a Gaussian function as l → ∞ and for a = 0.5,

it approaches to a triangle.

Figure 2.5: Equivalant kernels at different levels (from [Bur81]).

Burt extended his approach for two dimensional signals (images) in [BA83]. As-

suming the source image L(x, y) and the kernel w(m,n) with the size 5× 5 the

recursive images can be obtained as follows:

Gl(x, y) =
2∑

i=−2

2∑
j=−2

w(i, j)Gl−1(2x+ i, 2y + j) (2.24)
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where G0(x, y) = L(x, y).

To find the weights of the kernel, he assumed the kernel to be symmetric again.

Therefor, w(m,n) can be decomposed as follows:

w(i, j) = w1(i)w2(j) (2.25)

Consequently, each of w1(i) and w2(j) can be determined using the one dimen-

sional case. For w1(0) = w2(0) = 0.4 a 2D Gaussian is obtained. In Fig. 2.6

the result of applying Gaussian pyramid on the Lena image for five levels can be

seen.

Figure 2.6: Calculating Gaussian pyramid for Lena image (from [BA83]).

2.1.3 SIFT

Looking for features which are stable at different scales or in other words scale

invariant, Lowe used the idea of scale space theory and pyramid analysis to create

a variety of blurred and sub sampled images to find stable extrema points among

them [Low04].

He created a pyramid with four levels (octaves) and then blurred the images

at each level several times to cover the large gaps between the pyramids levels.

He used the sampling rate of two for the pyramid and blurred the base image

recursively in each level (octave ) five times as follows:

Ls(x, y) = G(x, y; ks−1σ) ∗ Ls−1(x, y); s = 1...5 (2.26)
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where L0(x, y) is the base image in each octave and k is chosen
√

2 in order to

cover the gaps between the octaves with five blurred images. G(x, y;σ) is a 2D

Gaussian function with the standard deviation of σ. Reminding the diffusion

equation Eq. (2.6), he used a DoG between the images in an octave to obtain

stable extrema:

σ∇G =
∂G

∂σ
=
G(x, y; kσ)−G(x, y;σ)

kσ − σ (2.27)

and then:

D = G(x, y; kσ)−G(x, y;σ) = (k − 1)σ2∇2G (2.28)

Fig. 2.7 shows how the pyramid, the blurred images and their differentiations

are made:

Figure 2.7: Establishing pyramid and scale space and creating DoG images (from
[Low04]). The left side shows blurred images at different octaves and
the right side depicts the differences of blurred images.

After obtaining DoG images, the extrema (keypoints) are extracted in such away

that at any scale the intensity of a point in a DoG image should be greater than



24 2 Related Literature

the intensities of the eight surrounding points and also greater than the intensities

of the eighteen points in upper and lower scales (Fig. 2.8).

Figure 2.8: Extrema points (from [Low04]).

Lowe conducted several tests to find out a proper value for σ by which the base

image get blurred at each octave such that the features appear under different

transformations and noise levels more (repeatability). And he found out that for

σ = 1.6 the best repeatability occurred.

To have keypoints which are more robust against noise, Lowe used a threshold

value to reject the points at which the image had low contrasts. Assuming the

intensity of the image varies between [0,1], he experimentally found the proper

threshold value to be 0.03.

The DoG operator creates also strong responses at the points located on the

edges. These points, however, cannot be determined uniquely since they are not

distinctive from the other points located on the same edge in their neighborhoods.

This problem is known as aperture problem in image processing literature. To

reject these points, Lowe used the following Hessian matrix:

H =

[
Dxx Dxy

Dyx Dyy

]
(2.29)

and considered the fact that the ratio of eigenvalues of the matrix are propor-

tional with curvature at the point and since the points on the edges cause strong
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curvatures just in one direction, one of the eigenvalues will be much greater than

the other. If the larger eigenvalue is α and the smaller β, the ratio r = α
β
> 10

could be a simple measure to eliminate the extrema on the edges.

SIFT Correspondences

Image matching means that from two different images several keypoints are ex-

tracted and then the correspondences between the points from two images are

found. Lowe extracted a special histogram based on the neighborhood of each

keypoint and by comparing the histograms the correspondent points are found.

For each keypoint which is extracted at a special scale, the nearest blurred image

is selected to define the associated histogram for the keypoint. In the selected

blurred image, at each point, the following values named as magnitude and ori-

entation should be calculated:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(2.30)

As can be observed in Fig. 2.9, at each point, a vector based on the calculated

magnitude and the orientation can be defined. The vectors located in a squared

window (8 × 8) centered at each keypoint are used to form the histograms. In

this regard, the window is divided into four sub windows. Then, in each sub-

window eight bins are considered to create a histogram. Meaning, eight intervals

for orientation values are chosen([0◦ 45◦], [45◦ 90◦], [90◦ 135◦], [135◦ 180◦],

[0◦ -45◦], [-45◦ -90◦],[-90◦ -135◦],[-135◦ -180◦]) and the weights of each vector is

added to the related bin. This version of SIFT is called SIFT32. Lowe showed

that if the size of the main window is increased to 16 × 16, the outlier ratio

decreases noticeably. In this case sixteen 4 × 4 sub-windows exist, which result

in a descriptor vector of the length 128.

By associating a descriptor vector to each keypoint, the matched points can be

found by comparing the histograms (descriptors) of each two point from two
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images. The features which have minimum euclidean distances and are also less

than a threshold (0.3) can be considered as the matches.

Figure 2.9: Magnitude and orientation of the points around a keypoint (from
[Low04]).

To make SIFT invariant to rotations, the orientation of brightness gradient at

the keypoint is used as a reference orientation and the histogram is rearranged

based on this orientation.

The SIFT method has a robust performance against illumination change and

noises; however, it is computationally expensive in all the three main parts of the

method: blob extractions, descriptor computations and feature matching. Image

smoothing using Gaussian kernels for the purpose of blob extraction imposes

relatively high computation loads. On the other hand, computation of histogram

of gradients is time consuming due to the need for the calculations of gradient

angles. Finally to find the best match for a feature in the first image all features

in the second image should be compared with the feature in the first image,

which is also a very time consuming process. Another issue concerning the SIFT

method is the repeatability. This problem stems from the discrete sampling

of scale-space and it is possible that a feature which has been detected in the

first image may not be detected in the second image since it is not located at

the sampled scales. The three first problems, as we will see, will be addressed

by the SURF method to some extent. Nevertheless, the repeatability problem

is a common problem among all feature matching methods. An open source

implementation of SIFT for C++ is available in OpenCV library [Ope15], which

we used to evaluate SIFT for feature tracking in chapter 3.



2.1 Feature Extraction and Association 27

2.1.4 SURF

Inspired by the SIFT algorithm, Herbert et al. offered a faster method for the

detection of scale invariant features [HTG08]. They made some variations in

different parts of the SIFT algorithm, of which the important one was using the

approximations of second order Gaussian derivatives as the smoothing kernels.

The approximations are similar to the Haar wavelets. As depicted in Fig. 2.10,

the kernels include three regions: positive, negative and zero, the positive and

negative regions are called lobs with the length l0. The kernels shown in Fig.

2.10 are the basic kernels from which kernels for higher scales ban be generated.

To create a kernel at a higher scale from the lower scale, one point should be

added to the each side of each lob in the lower scale kernel. Using such kernels

gives the possibility to smooth the source image several times faster by applying

an integral image which is defined as follows:

I(x, y) =

x∑
i=0

y∑
j=0

L(i, j) (2.31)

(a) (b) (c) (d)

Figure 2.10: Second order Gaussian derivatives: (a) Lyy, (b) Lxy, (c) and (d)
their wavelet approximations (from [HTG08]).

Once an integral image is calculated, the convolution of an image with a wavelet

kernel can be obtained by only four summations. Using Haar wavelets in the

directions x and y, the values Lxx, Lyy and Lxy at any point are obtained, by

which a Hessian matrix can be formed as follows:
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H =

[
Lxx Lxy

Lxy Lyy

]
(2.32)

To determine an extrema point in scale-space, the approximated determinant of

H is considered:

|H|approx = LxxLyy − (wLxy)2 (2.33)

where w = 0.91 is selected to equalize the kernel energy with the Gaussian kernel.

In the first octave, kernels with the sizes of 9, 15, 21 and 27 are used to create

the scales. If Eq. (2.33) results in a maximum or minimum value at a point

within a cube of the size 3× 3× 3 in both scale and space, the point is selected

as an extremum.

To build up the octaves, SURF only increases the size of the kernels; unlike SIFT

which sub-samples the image. Hence, it alleviates the aliasing problem caused

by image sub-sampling. To create proper kernels for higher scale, the sizes of the

lobs of the kernels are doubled. Accordingly, in the second octave the kernel sizes

are 15, 27, 39 and 51 and in the third octave are 27, 51, 77 and 99. Searching

the extrema points in upper octaves is done by sampling the smoothed images

by the factor 2i where i is the octave number.

After detecting extrema points in scale and octaves, descriptor vectors should

be assigned to them. To make SURF invariant to rotations, firstly, similar to

SIFT, the reference (dominant) orientation for each keypoint is obtained. In this

regard, SURF uses first order Haar wavelets shown in Fig. 2.11 to calculate the

orientation vectors [ dL
dx

dL
dy

]T at a circular vicinity of each keypoint. The size of

the vicinity is chosen to be 6s where s is the scale factor. Obviously, it is not

necessary to calculate the gradient values at every point in all scales and the

points can be sampled by the factor of s. After the calculation of the gradients,

they should be weighted by a Gaussian kernel with the standard deviation σ = 2s,

which is centered on a keypoint.

After calculation of the vectors at each point, the dominant direction is found by

summing up the vectors in a window which is a π
3

sector of the circular vicinity

of the keypoint. Consequently, the summed vector which has the greatest length
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is selected as the dominant vector which determines the dominant direction (Fig.

2.12).

Figure 2.11: First order wavelets in the direction x and y (from [HTG08]).

Figure 2.12: How to find the dominant change of the illumination at a keypoint
(from [HTG08]).

SURF descriptors are obtained by assuming a square window centered on each

keypoint directed with the dominant orientation which is already obtained. The

size of the window is 16s× 16s, which is divided into 4s× 4s sub-windows (Fig.

2.13). By applying first order Haar wavelets on each sub-window, the following

values are obtained:
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∑
dx,

∑
|dx|,

∑
dy,

∑
|dy| (2.34)

Figure 2.13: The extraction of Surf descriptors (from [HTG08]).

By accumulating these values in a vector, a descriptor vector with the size of 64

is generated.

SURF improved the speed of blob detections and also descriptor calculation to

a great extent thanks to applying integral images and Haar wavelets. However,

since Haar wavelets are approximations of DoG operators, the calculated de-

scriptors are not as good as SIFT descriptors resulting in higher rate of outliers.

Additionally, the blob centers cannot be well localized. Blob localization is based

on the gradient of an image. Since the weights of the Haar kernels in their central

regions are the same, image gradients cannot be calculated well.

An open source implementation of SURF for C++ is available in OpenCV, which

was used for its evaluation in chapter 3.

2.1.5 CenSurE

Agraval et al. discussed in [AKB08] that the SIFT and SURF points are not

accurate enough for the purpose of feature tracking. In fact, the points are the

centers of blobs which cannot be localized in the original image exactly if the

blobs are detected in high scales. On the other hand, as mentioned before, corners

are not stable features against the scale changes and additionally they are not
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also completely rotational invariant. Therefore, they used again the idea of SIFT

but instead of sub-sampling images, they offered a special kernel called Center

Surrounding Extrema (CenSurE) which simulates the Laplace of Gaussian but

with a constant cost of calculations at different scales. The proposed kernels are

boxes, hexagons and octagons which all have inner and outer regions (Fig. 2.14).

The sum of the weights of the each kernel should be zero.

Figure 2.14: Censure kernels (from [AKB08]).

They clarified that box kernels are not rotation invariant and therefore offered

two other kernels. Nevertheless, using the other kernels, they could not use the

advantage of integral images which make the cost of a convolution independent

of the size of the kernel. To address this problem, they came up with a modified

version of an integral image called slanted integral image as follows:

Iα(x, y) =

y∑
j=0

x+α(y−j)∑
i=0

L(i, j) (2.35)

In Fig. 2.15, we see how a trapezoidal region is extracted using the slanted

integral image.

+

+

Figure 2.15: Left: Slanted integral image. Right: Calculation of the summation
of the weights in a trapezoid located between two corners (x, y) and
(x′, y′) (from [AKB08]).
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It can be verified that the summation over a trapezoid can be done by four sum-

mations. On the other hand, it can be shown that a box would be decomposed

into one trapezoid for α = 0, a hexagonal into two trapezoids with α = ±
√

3 and

an octagonal into three trapezoids with α = ±1, 0.

The CenSurE feature detectors are implemented in OpenCV; however, to best

of out knowledge no free implementation for the calculation of their descriptors

is available.

2.1.6 Binary Descriptors

In recent years, instead of gradient based methods introduced before, new meth-

ods have been proposed which generate binary descriptors based on the local

brightnesses about each keypoint. These methods mainly target the speed of

the descriptor generation and also matching processes. Concerning the matching

process, these methods use XOR operation and bit counting to obtain distances

between descriptors.

The first method in this family is BRIEF (binary robust independent elementary

features) [CLSF10]. In this method, based on different pairs of test points in a

rectangular neighborhood of a keypoint, a descriptor with the length 32 or 64 is

created. The authors proposed five different patterns to sample test points from

a neighborhood (Fig. 2.16).

Given an image L and each pair of points in the image such as x = (xi, yi) and

y = (xj , yj) of test points a bit is generated as follows:

τ(x,y) =

1 if L(x) > L(y)

0 else
(2.36)

By stacking all generated bits based on all test points in a vector, a descriptor

vector for a keypoint is generated.
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Figure 2.16: Five different patterns to sample test points in a neighborhood of a
keypoint in the BRIEF method (from [CLSF10]).

The BRIEF is not rotation invariant. Therefore, in [RRKB11], a rotation invari-

ant version of BRIEF known as ORB was proposed. In this method, based on

the moments of intensities in a neighborhood of a keypoint, a rotation angle is

assigned to each keypoint. Based on the obtained rotation, the test points in the

BRIEF method are rotated about the keypoint.

In another work proposed in [LCS11], a circularly symmetric pattern for the

selection of test points was utilized (Fig. 2.17). The method is known as BRISK

(binary robust invariant scalable keypoins). In this method, the intensities of the

test points are obtained based on averaging intensities in a circular neighborhood

of each sample point. As can be seen in Fig. 2.17, the vicinity for the smoothing is

increased proportional to the distances of the points from the keypoint. BRISK

is computationally more expensive than ORB and BRIEF and concerning the

quality of matching, it cannot provide better results.

As we will show in section 3, the binary descriptors are not as discriminant as

SIFT and SURF. As a result, to have a good rate of correct matches, lots of

matches should be dispelled.
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Figure 2.17: The test points used in the BRISK method and the vicinity to apply
smoothing for each test point (from [LCS11]).

2.1.7 Optical Flow

Optical flow methods attempt to find the displacement vectors of all points be-

tween two images. The basic assumption in this regard is that the intensities of

correspondent points do not change between two images. Hence, given a time

varying image L(x, y, t), we have:

L(x, y, t) = L(x+ ∆x, y + ∆y, t+ ∆t) (2.37)

On the other hand, if the point displacements are assumed small, a linear ap-

proximation for Eq. 2.37 based on the Taylor expansion can be applied:

L(x+ ∆x, y + ∆y, t+ ∆t) = L(x, y, t) +
∂L

∂x
∆x+

∂L

∂y
∆y +

∂L

∂t
∆t (2.38)

Using Eq. (2.37) and Eq. (2.38), the following equation is obtained:

∂L

∂x
∆x+

∂L

∂y
∆y +

∂L

∂t
∆t = 0 (2.39)
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Consequently, by dividing both sides by ∆t, we have:

∂L

∂x
vx +

∂L

∂y
vy +

∂L

∂t
= 0 (2.40)

where vx and vy are the displacements of a point in the directions x and y, which

are unknown parameters required to be calculated. To determine the unknowns

at least one more equation is required. Lucas and Kanade in [LK81] assumed

that points in a small square vicinity with the size (2w + 1) × (2w + 1) have

almost the same displacement vectors, meaning:

Lx(x+ i, y + j)vx + Ly(x+ i, y + j)vy + Lt(x+ i, y + j) = 0 (2.41)

where Lx = ∂L
∂x

, Ly = ∂L
∂y

and i, j = −w...w.

Eq. (2.41) provides (2w + 1) × (2w + 1) equations which are more than two

necessary equations. Therefore, we should approach the problem using the least

squares method.

Eq. (2.41) can be presented in a matrix form as follows:

Lxv = −Lt(x, y) (2.42)

where:

Lx =


Lx(p1) Ly(p1)

...
...

Lx(pn) Ly(pn)

 ; Lt =


Lt(p1)

...

Lt(pn)

 (2.43)

where pr ∈ {(x + i, y + j)| i, j = −w, ..., w}, n = (2w + 1) × (2w + 1) and

v = [vx vy]T . Eq. (2.42) is least squares form equation and can be solved as

follows:

v = −(LTxLx)−1LTxLt (2.44)

The constraint offered by Lucas and Kanade is a local constraint which has a poor

performance for the points located at the edges. Additionally, if two occluding

objects move differently the Lucas-Kanade method assumption would be violated

at the occluding points.
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Horn-Schunk, on the other hand, proposed a global constraint in [HS81] by defin-

ing a cost function as follows:

E(vx, vy) =

∫ [
(Lxvx + Lyvy + Lt)

2 + α(|∇vx|2 + |∇vy|2)
]
dx dy (2.45)

where ∇ is the nabla operator and α is a smoothness factor.

By defining the energy function, the displacement vectors should be determined

such that the function gets minimized. The minimization can be done using an

iterative method:

vn+1
x = v̄nx − Lx(Lxv̄

n
x + Ly v̄

n
y + Lt)/(α

2 + L2
x + L2

y)

vn+1
y = v̄ny − Ly(Lxv̄

n
x + Ly v̄

n
y + Lt)/(α

2 + L2
x + L2

y) (2.46)

where v̄x and v̄y are average displacements which are calculated as follows:

v̄x =
1

6
[vx(x− 1, y, t) + vx(x+ 1, y, t) + vx(x, y − 1, t) + vx(x, y + 1, t)]

+
1

12
[vx(x− 1, y − 1, t) + vx(x+ 1, y + 1, t)

+ vx(x− 1, y + 1, t) + vx(x+ 1, y − 1, t)] (2.47)

v̄y =
1

6
[vy(x− 1, y, t) + vx(x+ 1, y, t) + vy(x, y − 1, t) + vy(x, y + 1, t)]

+
1

12
[vy(x− 1, y − 1, t) + vy(x+ 1, y + 1, t)

+ vy(x− 1, y + 1, t) + vy(x+ 1, y − 1, t)] (2.48)

Horn-Shunk discussed that α plays only role when the the gradient of image inten-

sity in a part of the image is low. It means that at these points the displacement

vectors are obtained from the average of the vectors at that neighborhood.
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For tracking purposes, however, we do not require to obtain the displacement

vectors at all points, but rather we look for stable features to track within the

frames. Therefore, there has been lots of investigation in many works to find

such features which are also invariant to the scale and rotation. As discussed

before SIFT and SURF produce a class of such features which are the center of

blobs at different scale and octaves. The problem concerning such features is

imprecision of the features. Since by changing the sizes of the blobs in different

frames, their centers may not be localized accurately especially if the features

are extracted in high scale levels. Additionally, blobs are not proper features

to be tracked by optical flow methods since the gradient of the illumination at

their centers is almost zero. It can result in the singularity of the sparse optical

flow method. On the other hand corner features, are appropriate features for

tracking using the sparse optical flow method. Here we present two methods for

the detection of corner features.

Harris corners

For the given image L(x, y), a corner point is a point at which the gradient of

image intensity changes at least in two directions. Harris and Stephens proposed

a measure to determine if such changes occur at a point [HS88]. In this regard,

a square neighborhood with the size of (2n+ 1)× (2n+ 1) is considered and the

following matrix from intensities in the neighborhood is generated:

A(x, y) =
n∑

i=−n

n∑
j=−n

w(i, j)

[
L2
x LxLy

LxLy L2
y

]
x+i,y+j

(2.49)

where w(i, j) represents a weighting kernel (such as a Gaussian) with the size of

(2n + 1) × (2n + 1). Lx and Ly also show the derivatives of L in the directions

x and y. By calculating the eigenvalues of A, the point is considered as a corner

if the both eigenvalues of A are nonzero and do not differ greatly. Harris corner

detectors are quiet computationally expensive due to the need for calculation of

eigen values. The repeatability of the detector is also not as good as SIFT or

SURF feature detectors since the scale space analysis is not considered in the
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Harris corner algorithm. Nevertheless, Harris corners are good features to be

passed to the Lucas-Kanade method since the variations of image gradient are

mostly enough to avoid singularities in Eq. (2.42).

FAST features

Harris corners are computationally expensive and therefore Rosten and Drum-

mond proposed a new corner detector called FAST (Features from Accelerated

Segment Test) which uses a simple criterion to find out if a point is a cor-

ner [RD05]. In FAST, a circle with the radius of three pixels is centered at each

point and the intensities of the sixteen points located on the circumference of

the circle are compared with the center point; subsequently, if at least twelve

points on the circumference have intensities more or less than the center point,

it is considered as a corner (Fig. 2.18).

Figure 2.18: FAST corner detector.

FAST corner detectors are much faster than the Harris method; nevertheless,

FAST may detect low quality features which are not appropriate to be tracked by

the Lucas-Kanade method. Therefore, these features are mostly used in feature

matching techniques [RRKB11].
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2.2 Visual Odometry Using a Single Camera

Odometry in robotic literature refers to systems which provide instantaneous

motion parameters of a rigid body. The free motion of a rigid body can be

formulated by frame transformation methods to obtain its kinematic motion

model in which only instantaneous speed parameters are used. These models are

abstract models of which relations with the physical quantities such as forces or

torques are not considered. A well-known odometry system for non-holonomic

robots which have planar motions is using wheel encoders to convert the angular

wheel velocities into a heading and a rotational velocities of the robot. Clearly,

for the motion estimation of a rigid body in a 3D space wheel encoders cannot

be used. In such cases, IMU sensors could be sound but expensive options.

Therefore, using a single camera and feature tracking methods to estimate motion

of the camera in the 3D space has attracted the attention of researchers in the last

decade. These methods are known as visual odometry methods. In this section,

firstly rigid body transforms in 3D space will be presented, then cameras as

projective sensors will be discussed and finally we introduce different methods

known as 8-, 7- and 5-point methods to retrieve the motion parameters of a

monocular camera.

2.2.1 Rigid Body Transformation

Given a Cartesian frame as a world frame, a rigid body transformation maps a

subset of R3, such as A, to another subset of R3, such as B, in such a way that

the distances of the points in two subsets are preserved. h : A → B. From linear

algebra, we know that affine transformations are defined by:

b = Ra + t

a ∈ A,b ∈ B (2.50)

where R is an orthonormal matrix such that RRT = RTR = I and t = [tx ty tz]
T

is a translation vector. R is 3× 3 matrix known as rotation matrix. A rotation

matrix can be interpreted in several physical motions of which important ones
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are as follows: First consecutive rotations about three orthogonal axis Z, Y and

X with three angles φ, θ and ψ

R = RzRyRx (2.51)

Rz =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1



Ry =

 cos θ 0 sin θ

0 1

− sin θ 0 cos θ



Rx =

1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 (2.52)

Another physical interpretation of a rotation matrix is a rotation about a unit

vector such as u = [ux uy uz]
T with the angle θ:

R =

 cθ + u2
x(1− cθ) uxuy(1− cθ)− uzsθ uxuz(1− cθ) + uysθ

uyux(1− cθ) + uzsθ cθ + u2
y(1− cθ) uyuz(1− cθ)− uxsθ

uzux(1− cθ)− uysθ uzuy(1− cθ) + uxsθ cθ + u2
z(1− cθ)


where c and s represent cos and sin respectively. The important issue concerning

a rotation matrix is that it has nine elements but it can be recovered from three

parameters.

Assuming that a coordinate frame is attached to a rigid body, we denote the

pose of the frame with respect to a global frame as {R|t}, where R encodes the

orientation of the frame and t is the position of the origin of the frame in the

global frame. Now considering the point p = [px py pz]
T in the global frame,

we are interested to find the coordinate of the point in the rigid body frame:

p′ = [p′x p
′
y p
′
z]
T . It can be simply verified that p′ is obtained as follows:

p′ = RT (p− t) (2.53)
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2.2.2 Quaternion

Another way to encode the rotation of a rigid body is using a quaternion which

looks simpler and computationally more efficient than a rotation matrix. Quater-

nions are an extension of imaginary numbers. A quaternion composes of a scalar

part and a vector part as follows:

q = q0 + q1i+ q2j + q3k (2.54)

where q0, ..., q3 ∈ R, i2 = j2 = k2 = ijk = −1 and ij = k, jk = i, ki = j and

ji = −k, kj = −i, ik = −j. If we want to show a pure vector or point such as p =

[px py pz]
T by a quaternion, it should be written as follows: p = pxi+ pyj+ pzk.

Consequently, a rotation about a unit vector u = uxi+uyj+uzk with the angle

θ can be encoded by a quaternion as follows:

eu,θ = cos
θ

2
+ (uxi+ uyj + uzk) sin

θ

2
(2.55)

With this definition, it can be proved that the rotation of a point such as p =

pxi+ pyj + pzk about a unit vector u can be obtained as follows:

p′ = eu,θ p e
∗
u,θ (2.56)

where e∗u,θ = cos θ
2
− (uxi+ uyj + uzk) sin θ

2
.

2.2.3 Pinhole Camera Model

Camera is a projective sensor which projects a point in 3D space such as p =

[px py pz]
T on the camera screen (retina) [Tsa87]. Looking at Fig. 2.19, we can

see that:

x

f
=
px
pz

(2.57)

y

f
=
py
pz

(2.58)
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where f is the focal length of the camera. The above model is known as the

pinhole camera model. If we force f = 1, we obtain new coordinates for the

projected points.

Figure 2.19: Pinhole camera model. Xu and Y u are the axis of the uncalibrated
camera coordinate system, X and Y are the axis of calibrated camera
coordinate system, f is the focal length of the camera and (cx, cy) is
the projection of the focal point on the camera screen.

In case of f = 1, the obtained model is known as the calibrated camera model.

Nevertheless, what we get from a camera as measurements are the brightness or

colors of pixels. The pixels are addressed based on their horizontal and vertical

distances from the upper left corner of the screen. The units of the distances

are in pixels. As a result, we need to transform the points in the pixel form

into the normalized form such that we can benefit from the Eq. (2.58) for any

geometrical analysis. In this regard, a procedure known as calibration should be

conducted to obtain internal (intrinsic) parameters of cameras. The output of

camera calibration will be a 3× 3 matrix known as camera calibration matrix as

follows:
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K =

fx 0 cx

0 fy cy

0 0 1

 (2.59)

fx and fy are the focal lengths of the camera in directions X and Y in pixels.

The focal lengths might be different if the width and height of pixels are differ-

ent. [cx cy]T is knows as the principal point showing the coordinates of the focal

point of the camera on the uncalibrated camera screen. Given the camera cali-

bration matrix, uncalibrated camera pixel coordinates can be transformed into

normalized calibrated points as follows:xy
1

 = K−1

x
u

yu

1

 (2.60)

2.2.4 Single Camera Motion Recovery

Assuming two distinctive poses of a single camera in space and the two images

captured by the camera at the poses, we intend to find the rigid body trans-

formation {Rc, tc} which moves the camera from the first pose to the second

pose if a set of correspondent points between the two images are available. This

problem is known in literature as ego-motion estimation.

A well-known method to estimate the transformation is to obtain a 3× 3 matrix

known as the essential matrix. Once an essential matrix is obtained, the rotation

and translation parameters can be obtained from the singular value decomposi-

tion of the matrix. Higgins [LH81] and Tsai and Huang [TH84] approached the

ego-motion estimation based on the essential matrix with almost similar meth-

ods. Given a point in the space which has the position p = [px py pz]
T in the

first camera coordinate and p′ = [p′x p
′
y p
′
z] in the second camera frame, we can

write:
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p′ = Rp + t (2.61)

where RT = Rc and tc = t.

On the other hand, the point p = [px py pz]
T is projected on a 2D point such as

(x, y) on the retina of a calibrated camera as follows:

x =
px
pz

(2.62)

y =
py
pz

(2.63)

Considering the projection of a point in the space on the retina of a camera at two

different positions which are two 2D points such as (x, y) and (x′, y′) and using

Eq. (2.63), the following equation known as coplanarity equation is obtained:

[x′ y′ 1]E

xy
1

 = 0 (2.64)

where

E =

e1 e2 e3

e4 e5 e6

e7 e8 e9

 (2.65)

which is known as the essential matrix in literature.

For an uncalibrated camera a similar equation can be obtained. By plugging Eq.

(2.60) in Eq. (2.64), we have:

[x′
u
y′
u

1]K−1TEK−1

x
u

yu

1

 = 0 (2.66)

The term F = K−1TEK−1 is known as the fundamental matrix in literature

and widely used for analysis concerning uncalibrated cameras.
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Nevertheless, for robust camera motion recovery, the intrinsic parameters of cam-

eras should be known. Hence, we follow our discussion based on the essential

matrix. Expansion of Eq. (2.64) results in:

[x′x, x′y, x′, y′x, y′y, y′, x, y, 1]e = 0 (2.67)

where e = [e1...e9]T .

If e9 6= 0 both sides of Eq. (2.64) can be divided by any nonzero factor or we can

set e9 to 1. Therefore, to determine E, the eight remaining elements should be

calculated. Given eight corresponding points between two frames, an equation

system consisting of eight equations is formed, by which the eight unknowns can

be determined. To relax the necessity of e9 6= 0, an alternative solution is to

form a homogeneous equation system and solve it using SVD as follows:

Ae = 0 (2.68)

where A is a N×9 (N ≥ 8) matrix of which rows contain the coplanarity equation

coefficients of each set of matched points (Eq. (2.67)). The equation system can

be solved using the singular value decomposition under the constraint eT e = 1.

By obtaining the singular value decomposition of A = UΣV T , the column of V

which corresponds to the smallest eigen value in Σ is the solution of Eq. (2.68).

The above method is known as the 8-point method in literature [LH81].

Obviously, the eight equations should be independent in order that solving the

equation system results in a unique solution. Tsai and Huang discussed that

if seven points of the eight points lie on a plane, the equation system will be

singular and E cannot be determined uniquely.

It can be verified that:

E = RT (2.69)

where T is a skew symmetric matrix which includes only the translation param-

eters:

T =

 0 tz −ty
−tz 0 tx

ty −tx 0

 (2.70)
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Using the singular value composition (SVD) of E, T and R can be calculated:

E = UΣV T (2.71)

The matrix E should have two similar nonzero and one zero singular values.

However, if there exist measurement noises, the values will be different. It means

that the obtained E matrix does not satisfy Eq. (2.64). Tsai et al. showed that

if the smallest singular value in Σ is forced to be zero then the left side of the

equation would be minimized. Consequently, two solutions for R can be obtained

as follows:

R = UWV T ; W = ±

 0 +1 0

−1 0 0

0 0 1

 (2.72)

and also there exist two solutions for the translation as follows:

T = V ZV T ; Z = ±

 0 +1 0

−1 0 0

0 0 0

 (2.73)

Therefore, from an essential matrix four sets of solutions are obtained. Nonethe-

less, only one of them back projects the image points in front of the camera at

both positions which will be the only possible solution.

Although the 8-point method is linear and fast, it has a poor performance if there

exist minor measurement noises concerning the position of the correspondent

points. Therefore, later some nonlinear iterative methods were introduced to

calculate essential (fundamental) matrices [LDFP93]. The iterative methods

are applicable if a good initial guess of the essential matrix elements is already

available; otherwise, they get stuck in local minima.

Hartley [Har97] discussed that if the image coordinates are normalized based

on the centroids of the matched points, the 8-point method performance would

increase noticeably and even outperform some of the nonlinear methods. Looking

at the experimental results shown by Hartley, it can be seen that still 8-point
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method has poor performances for measurement noise of more than 0.1 pixel (for

the image resolution 100× 100).

One reason for the poor performance of the 8-point method is ignoring the de-

pendencies of the essential matrix elements. Based on [Fau93], the dependencies

of essential matrix elements can be represented as follows:

det(E) = 0 (2.74)

EETE − 1

2
trace(EET )E = 0 (2.75)

In [HZ04], Eq. (2.74) was used to come up with a method known as the 7-point

method. To utilize Eq. (2.74), a homogeneous equation system including seven

coplanarity equations is formed: Ae = 0. The matrix A has a null space spanned

by two vectors such as y and z. Thus, we have:

e = yy + z (2.76)

where e = [e1...e9]T . Plugging Eq. (2.76) in Eq. (2.74) results in a third order

polynomial equation of y, which may have up to three real roots. It means that

three valid essential matrices could explain the camera motion.

In [Nis04], Nister used Eq. (2.74) and Eq. (2.75) to propose his 5-point method.

In this method, a homogeneous equation system based on five matched points

is formed. The null space of the coefficient matrix of the equation system is

spanned by four vectors such as w, x, y and z. Therefore, we can say:

e = ww + xx + yy + zz (2.77)

where w, x, y and z are unknown scalar values. The scalar values, however, can

be calculated up to a common scale factor. Therefore, we can assume w = 1.

By plugging Eq. (2.77) into Eq. (2.74) and Eq. (2.75) a system of equations

is obtained. Using Jordan elimination and removing x and y, finally, Nister

achieved a polynomial equation of order ten of the parameter z. In [LH06], this
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polynomial is obtained in another method which is not as efficient as the Nister’s

method.

By solving the polynomial and obtaining its real roots, the two other parameters

x and y can also be obtained. Depending on the point arrangement, the number

of valid solutions (the real roots of the polynomial) change. Obviously, it can

be expected that there exist more than one real solution. After running several

tests, Nister found that there were in average 2.74 solutions. Then, he argued

if the five points were observed from three different views, almost in all cases a

unique solution for the motion of the camera could be obtained.

The implementation of the 5-point method is difficult since in this algorithm

symbolic processing is needed. Consequently, it will be also very slow. One

shortcoming in both 5-point and 7-point methods is forcing one of the unknowns

to one which is valid if they are not equal to zero; however, it cannot be guar-

anteed. Therefore, it can result in numerical errors if the coefficients are zero or

near to zero.

2.3 Fusion

In this section, we will have a survey of different methods to fuse odometry data

with the extrinsic sensor data. At first, typical planar motion and measurement

models of a non-holonomic mobile robot is presented and then the fusion methods

will be discussed.

2.3.1 Motion Model of a Planar Mobile Robot

As discussed in section 2.2, the instantaneous motion of a rigid body moving

freely in the space can be presented by a rotation matrix and a translation vector.

Nonetheless, a wheeled robot or vehicle can have only constrained motions; in

such a way that it can only have motion in the direction of the current orientation

of the robot. The motions of car like vehicles have one more constraint so that

they cannot rotate without any translation.
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The planar motion of a robot is a function of the rotation of its wheels. A simple

form of a mobile robot is a two wheeled drive robot as shown in Fig. 2.20.

Figure 2.20: A two wheeled differential drive robot model Pioneer P3 DX (from
[pio15]).

The pose of a robot on a plane is determined by three parameters xR, yR, θR.

and the purpose of a motion model is to determine these three variables along

the time given the torques or angular velocities of the wheels. If a motion model

is derived based on the force or torque equations, it is called a dynamic model,

and if the model is based on the angular velocities of the wheels, it is known as

a kinematic model.

left actuated
wheel

rightactuated
wheel

castor wheel

center of axle

center ofmass

Y

X

Figure 2.21: Parameters concerning a two wheeled mobile robot (from [pio15]).
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The model which is usually used for the localization purpose is the kinematic

model. Considering Fig. 2.21 the motion model of the robot can be written as

follows:

ẋRt = uf,t cos θRt

ẏRt = uf,t sin θRt

θ̇Rt = ur,t (2.78)

where uf,t = r
2

(
ωr,t + ωl,t

)
, r is the radius of the wheels, ur,t = r

b

(
ωr,t − ωl,t

)
,

ωr,t and ωl,t are the angular speeds of right and left wheels. As in Fig. 2.21 can

be seen xRt and yRt refer to the axle center of the robot. We denote the three

variables of the robot pose in the vector xRt = [xRt y
R
t θ

R
t ]T .

The validity of this model can be verified easily under the condition that no

slippage occurs during the movement of the robot.

In the case of four wheeled drive robots, since the robot should skid over its

wheels in order to rotate, xRt and yRt refers to the center of the robot mass. With

this consideration Eq. (2.78) can be extended for four wheeled robots.

The model represented by Eq. (2.78) is a continuous time model. To deal with

the motion of a robot by digital computers, Eq. (2.78) should be discretized as

follows:

xRt = xRt−1 + uf,t−1 cos θRt−1∆t

yRt = yRt−1 + uf,t−1 sin θRt−1∆t

θRt = θRt−1 + ur,t−1∆t (2.79)

The discrete time model is obtained from the linear approximation of Eq. (2.78)

about its operating point and it is valid if the sampling rate is high enough.
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2.3.2 Measurement Model

Based on odometry data, we can calculate a robot pose at any time. However,

due to various disturbances such as wheel slippages, sampling noise or imprecision

concerning the center of a robot’s mass, the pose calculation using the motion

model can have an error at each time step, which accumulates along the time

and gives rise to large errors in long expeditions. To address this problem,

extrinsic sensors are utilized to provide relative measurements between the robot

pose and landmark positions. We denote a landmark position in a 2D Cartesian

coordinate system as xLj = [xLj yLj ]T . These new measurements are fused with

odometry data in order to confine the errors. The extrinsic sensors can be sonar,

laser range finders or cameras. Range finder sensors have vast usages mostly

for indoor missions of mobile robots. A range finder sensor can provide relative

distances and angles between a robot and objects or landmarks (Fig. 2.22).

Considering Fig. 2.22, the measurement model will be as follows:

hj(x
R
t ,x

L
j ) =

[
dj,t

φj,t

]
=


√

(xLj − xRt )2 + (yLj − yRt )2

tan−1 yLj −y
R
t

xLj −x
R
t
− θRt

 (2.80)

where j = 1...M and M is the number of landmarks.

Figure 2.22: Measurements by range finder sensors.



52 2 Related Literature

2.3.3 Fusion

In [DNC+01], the SLAM problem is formulated in a state space scheme. Con-

sidering the motion and measurement models Eq. (2.79) and Eq. (2.80), a state

space model can be formed as follows:

xt = f(xt−1,ut−1)

zt = h(xt) + vt (2.81)

where f : R5+2M →R3+2M , h : R3+2M →R2M ,

xt =


xRt

xL1,t
...

xLM,t

 = f(xt−1,ut−1) =



xRt−1 + uf,t−1 cos θRt−1∆t

yRt−1 + uf,t−1 sin θRt−1∆t

θRt−1 + ur,t−1∆t

xL1,t−1

...

xLM,t−1


,

h(xt) =
[
d1,t φ1,t d2,t φ2,t ... dM,t φM,t

]T
,

and ut = [uf,t ur,t]
T is the input velocity vector is the measurement noise vector.

The input vector can be written as the summation of measured velocities ūt and

their uncertainties ũt = [ũf,t ũr,t]
T . ũt is assumed Gaussian (ũt ∼ N (0, Q)),

where:

Q =

[
σ2
f 0

0 σ2
r

]
(2.82)

σ2
f and σ2

r are the variances of the uncertainties of the forward and angular

velocities. The measurement noise vector is also considered as a Gaussian vector

vt = [v1,d v1,φ ... vM,d vM,φ]T ∼ N (0, R), where:
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R =



σ2
1,d 0 0 0 0 · · · 0 0

0 σ2
1,φ 0 0 0 · · · 0 0

0 0 σ2
2,d 0 0 · · · 0 0

0 0 0 σ2
2,φ 0 · · · 0 0

...
...

...
...

...
. . . 0 0

0 0 0 0 0 0 σ2
M,d 0

0 0 0 0 0 0 0 σ2
M,φ


(2.83)

in which σ2
j,d and σ2

j,φ are the variances of distance and bearing measurements.

By forming the state space model, it can be inferred that the position estimation

problem turns into a state estimation problem which is a classical problem in

the control theory. The state estimation can be addressed by the Kalman fil-

ter method [Kal60] if both the motion and measurement models are linear. If

the models are not linear, extended Kalman filters (EKF) are used, which ap-

ply linear approximations of the models at the operating point of the system.

Using extended Kalman filters can be problematic if the models have severe

nonlinearities. In this case, unscented Kalman filters (UKF) [JU04] or particle

filters [GSS93] are proper substitutions. In the following, we first introduce the

mentioned filters and then their special usages for the SLAM problem.

Kalman Filter

Given a linear state space model as follows:

xt = Fn×nxt−1 +Bn×p(ūt−1 + ũt−1)

zt = Hm×nxt + vt (2.84)

The goal is to have an optimal estimation of xt given the input and measurement

sequences Ut−1 = {ut−1, ...,u0} and Zt = {zt, zt, ..., z0}:

p(xt|Zt, Ut−1) (2.85)
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From the probability theory, we know that an affine transformation of a Gaussian

vector is again Gaussian; hence, we have:

p(xt|Zt, Ut−1) = N (x̄t, Pt) (2.86)

Pt is the covariance of xt and clearly the less its norm, the less uncertainty of

xt. Consequently, an error vector can be defined as follows:

et = x̄t − xt (2.87)

where xt is the real state vector. By definition we have:

Pt = E[ete
T
t ] (2.88)

The optimal estimation of the state, however, can not be obtained directly and

it should be solved recursively along the running of the system which includes

prediction and update parts.

1. Prediction

x̄t|t−1 = E[xt|Zt−1, Ut−1] = F x̄t−1|t−1 +Būt−1 (2.89)

Pt|t−1 = E[ete
T
t |Zt−1] = FPt−1|t−1F

T +BQBT (2.90)

2. Update

x̄t|t = E[xt|Zt] = x̄t|t−1 + Pt|t−1H
TS−1

t (zt −Hx̄t|t−1) (2.91)

Pt|t = E[ete
T
t |Zt] = Pt|t−1 − Pt|t−1H

TS−1
t HPt|t−1 (2.92)

in which St is known as the innovation covariance matrix and is calculated as

follows:

St = HPt|t−1H
T +R (2.93)
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Extended Kalman Filter

The derivation of Kalman filter formulations is based on the linear model shown

in Eq. (2.84). Hence, we cannot directly use the equations for nonlinear systems,

unless their Taylor approximation about the operating point of the system is

used.

Given a nonlinear state space model as follows:

xt = f(xt−1,ut−1) (2.94)

zt = h(xt) + vt (2.95)

we can derive the following linear approximation:

xt = f(x̄t−1, ūt−1) + Ft−1x̃t−1 +Bt−1ūt−1 +Bt−1ũt−1

zt = h(x̄t) +Htx̃t (2.96)

where

Ft−1 =
∂

∂x
f(.)

∣∣∣∣
x=x̄t|t−1

;Bt−1 =
∂

∂u
f(.)

∣∣∣∣
u=ūt−1

;Ht =
∂

∂x
h(.)

∣∣∣∣
x=x̄t|t−1

EKF filters work well if the the nonlinearity of a system is not severe, otherwise

the first order linearization will not be an appropriate approximation, which gives

rise to the poor performance or even divergence of EKF filters. For such cases,

particle filters or unscented Kalman filters can be applied.

Particle Filter

In [GSS93], Gordon et al. proposed a numerical method based on the random

sampling of PDFs. The algorithm which is known as the particle filter has also
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prediction-updated phases similar to the Kalman filter. Given the nonlinear state

space model Eq. (2.81), the goal is to estimate the following PDF recursively:

p(xt|Zt) (2.97)

where Zt = {zt, ..., z0}. The recursive algorithm is as follows:

1. Predict: GenerateNp samples (particles) from p(xt−1|Zt−1) such asXt−1 =

{xt−1,1, ...,xt−1,Np}, and also generateNp samples from p(ũ) such as Ũt−1 =

{ũt−1,1, ..., ũt−1,Np}. Plug Xt−1, Ũt−1 and the control input ut−1 into the

motion equation Eq. (2.94) to obtain a set of predicted samples of the next

state such asXt|t−1 = {xt|t−1,1, ...,xt|t−1,Np}. Consequently, given the pre-

dicted particles and the measurement model, the predicted measurements

are calculated:

zi = h(xt|t−1,i); i = 1...Np (2.98)

2. Update:

As soon as the new measurement vector is obtained, the update PDF:

p(xt|Zt), can be built up as follows:

p(xt|Zt) =

Np∑
i=1

wiδ(xt − xt|t−1,i) (2.99)

where wi are the weights of the samples which are obtained as follows:

wi =
1

c
e−

1
2

(zi−z)Σ−1
v (zi−z)T (2.100)

in which c =
∑
wi is a normalization constant and Σv is the covariance

matrix of the measurement noise.

Generally, the performance of a particle filter depends on the number of particles

which should be dramatically increased with respect to the dimension of the

estimated vector.
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Unscented Kalman Filter

As stated before, the EKF filter has a poor performance if the system has a strong

nonlinearity. In [JU04], Julier et al. have discussed the shortcoming in more

details and offered a new filter based on the original formulation of the Kalman

filter. The main idea is that from a PDF at each time step, some sample points

(sigma points) are selected such that the first and the second order statistics of

the samples are equal to the statistics of the PDF. Then the points are plugged

into the motion and measurement models to achieve predicted terms. The sigma

points are sampled deterministically. If the estimated vector x has a Gaussian

distribution N (x̄,Σx) a proper set of points can be obtained at the border of a

hyper ellipse presented by the following equation:

(x− x̄)
√
NxΣx(x− x̄)T = 0 (2.101)

where Nx is the dimension of the vector x. At this border, 2Nx symmetric point

are selected as follows:

xi = x̄ + (
√
NxΣx)i; i = 1, ..., Nx (2.102)

wi =
1

2Nx
(2.103)

xi+Nx = x̄− (
√
NxΣx)i (2.104)

wi+Nx =
1

2Nx
(2.105)

where (
√
NxΣx)i represents the ith column of the matrix

√
NxΣx

By introduction of sigma points, to address the state estimation problem, they

have defined an augmented vector xat and an augmented covariance matrix as

follows:

xat =

 xt

ut

vt+1

 (2.106)
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P at =

Pt 0 0

0 Σut 0

0 0 Σvt

 (2.107)

and then rewrote the state space formulation as follows:

xat = f(xat−1,ut−1) (2.108)

zt = h(xat ) (2.109)

Consequently, the prediction-update parts can be developed as follows:

1. Prediction: Form x̄at−1|t−1 vector and P at−1|t−1 covariance matrix and con-

sequently extract 2Nxa from p(xat−1|Zt−1) such asXa
t−1 = {xat−1,1, ...,x

a
t−1,Nxa

}
and plug them into the motion model and obtain a set of predicted points

Xa
t|t−1 = {xat|t−1,1, ...,x

a
t|t−1,Nxa

}. Nxa is the size of xa. Based on the

achieved points the predicted mean vector and covariance matrix can be

obtained:

x̄at|t−1 =

2Nxa∑
i=0

wi x
a
t|t−1,i (2.110)

P at|t−1 =

2Nxa∑
i=0

wi [xat|t−1,i − x̄at|t−1][xat|t−1,i − x̄at|t−1]T (2.111)

The predicted observation vectors are also as follows:

zt|t−1,i = h(xat|t−1,i) (2.112)

and the predicted mean of the measurement vector is:

z̄ =

2Nxa∑
i=0

wizt|t−1,i (2.113)

2. Update: For the update part, we need to calculate the cross covariance

matrix between the state vector and the measurement vector which is ob-

tained as follows:
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Pxz
t|t−1 =

2Nxa∑
i=0

wi(xt|t−1,i − x̄t|t−1)(zt|t−1,i − z̄t|t−1)T (2.114)

The update equations can be written similar to the standard Kalman filter:

xt|t = xt|t−1 + Pxz
t|t−1(St)

−1(zt − zt|t−1) (2.115)

Pt|t = Pt|t−1 − Pxz
t|t−1(St)

−1Pxz,T
t|t−1 (2.116)

In which St is an innovation covariance matrix and is calculated as follows:

St =

2Nxa∑
i=0

wi(zt|t−1,i − z̄t|t−1)(zt|t−1,i − z̄t|t−1)T (2.117)

SLAM Using EKF

In [GN01], [DNC+01], [WDD02], the usage of EKF to address the SLAM problem

has been discussed. Obviously, by having the motion and measurement models,

we only need to calculate the linear approximations of the models. Considering

Eq. (2.79) and Eq. (2.80), the parameters are obtained as follows:

Ft−1 =



1 0 −uf,t−1 sin(θRt−1) 0 0 ... 0 0

0 1 uf,t−1 cos(θRt−1) 0 0 ... 0 0

0 0 1 0 0 ... 0 0

0 0 0 1 0 ... 0 0

0 0 0 0 1 ... 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 ... 1 0

0 0 0 0 0 ... 0 1


(3+2M)×(3+2M)
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Bt−1 =



cos θRt−1 0

sin θRt−1 0

0 1

0 0

0 0
...

...

0 0

0 0


(3+2M)×2

Ht = [hki]2M×(3+2M) (2.118)

where hki is the element of H at the row k and column i. The row k = 2j

of H contains the derivation of the distance measurement of jth landmark with

respect to all state variables and the row k = 2j + 1 contains the derivation of

the bearing measurement of jth landmark with respect to all state variables. The

elements of H are determined as follows:

h2j,0 = − dx,j√
d2
x,j + d2

y,j

(2.119)

h2j,1 = − dy,j√
d2
x,j + d2

y,j

(2.120)

h2j,2 = 0 (2.121)

h2j,3+2j =
dx,j√

d2
x,j + d2

y,j

(2.122)

h2j,4+2j =
dy,j√

d2
x,j + d2

y,j

(2.123)
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h2j+1,0 =
dy,j

d2
x,j + d2

y,j

(2.124)

h2j+1,1 =
dx,j

d2
x,j + d2

y,j

(2.125)

h2j+1,2 = −1 (2.126)

h2j+1,3+2j = − dy,j
d2
x,j + d2

y,j

(2.127)

h2j+1,4+2j = − dx,j
d2
x,j + d2

y,j

(2.128)

where dx,j = xLj − xRt and dy,j = yLj − yRt .

Fast SLAM

Using the EKF filter is straightforward, however, it suffers from two shortcom-

ings. First, increasing the complexity of the algorithm quadratically with respect

to the number of landmarks. Second, the violation of the Gaussian assumption

if input noise or measurement noise is noticeable. To address these problems,

Montemerlo et al. have proposed a method known as Fast-SLAM [MTKW02].

The method is based on a variant of particle filters called the Rao-Blackwellized

particle filter [CR96]. They also augmented the problem of feature association

in the SLAM problem. In a probabilistic term, the SLAM problem can be stated

as follows:

p(XR
t , X

L|Zt, Ut, nt) (2.129)

where XR
t = {xRt ,xRt−1, ...,x

R
0 } is the set of all the robot poses by the time

t (path), XL = {xL1 ,xL2 , ...,xLM} denotes the set of landmark positions, Zt =

{zt, zt−1, ..., z0} is the set of all measurements by the current time, Ut = {ut,ut−1,

...,u0} is the set of all control inputs by the current time and nt ⊂ {1, ...,M} is

the set of indexes of the observed landmarks at time t.
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Since the positions of the landmarks are independent from each other, Eq. (2.129)

can be decomposed into the following form:

p(XR
t , X

L|Zt, Ut, nt) = p(XR
t |Zt, Ut, nt)

M∏
j=1

p(xLj |XR
t , Zt, Ut, nt) (2.130)

The term p(XR
t |Zt, Ut, nt) is handled by a particle filter and the terms

p(xLj |XR
t , Zt, Ut, nt) are handled by EKF filters. Hence, each particle includes a

path and M EKF filters:

{XR
t,i,x

L
1,i, ...,x

L
M,i} (2.131)

Assuming that the robot pose at the time 0 has the prior distribution p(xR0 ), and

at this time M landmarks are observed, then for each sample (particle) xR0,i from

the prior PDF, M distinct Gaussian distributions for the M landmarks can be

initialized. The initialization is done using the measurement model. From Eq.

(2.80), the following equation can be derived:

xLj,i = g(z0,x
R
0,i,v0) (2.132)

Using the linear terms of the Taylor expansion of Eq. (2.132), we have:

xLj,i = x̄Lj,i +
∂xLj,i
∂vt

∣∣
xLj,i=x̄Lj,i

vt (2.133)

where x̄Lj,i = g(z0,x
R
0,i,0).

Assuming vt ∼ N (0, R), xLj,i has a Gaussian distribution such asN (x̄Lj,i, DRD
T ),

where D =
∂xLj,i
∂vt

∣∣
xLj,i=x̄Lj,i

. Obviously, the above initialization method can be

extended for any time instance for any new landmark.

After the initialization step the following prediction-update phases can be de-

rived:

1. Prediction: From the PDF p(XR
t |Zt, Ut, nt), Np particles XR

t,1, ..., X
R
t,N

are drawn based on their correspondent weights {w1, ..., wN}. As discussed
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before, M EKF filters associated to the M landmarks are also attached to

each particle. Therefore, a particle is a set as follows:

{XR
t,i,x

L
1,t,i, ...,x

L
M,t,i} (2.134)

where xLj,t,i ∼ N (x̄Lj,t,i, Pj,t,i). The index t is also added for landmark

positions to represent the dynamic of the recursive algorithm.

For each drawn particle a predicted position xRt|t−1,i is obtained by using

the motion model. Consequently, for each predicted position, M predicted

measurements are calculated:

z̄t,j,i = hj(x
R
t|t−1,i, x̄

L
j,t|t−1,i) (2.135)

where hj(., .) = [dj , φj ]
T is the measurement model for the jth landmark.

z̄t,j,i is the predicted measurement calculated based on the ith particle and

jth landmark at time t: Since the landmarks are assumed static, predictions

of landmark uncertainties are skipped.

2. Update: As soon as, new measurements are obtained, the importance

weights of the particles can be calculated as follows:

wi =
1

c
e−

1
2

(z̄t,i−zt)
TR−1(z̄t,i−zt) (2.136)

where z̄t,i is the vector of all predicted measurements for the ith particle

and zt is the vector of all real measurements at time t. Each EKF filter

attached to each particle is updated as follows:

x̄Lj,t|t,i = x̄Lj,t|t−1,i + Pj,t|t−1,iH
T
j,i(Sj,t,i)

−1(zj − hj
(
xRt|t−1,i, x̄

L
j,t|t−1,i)

)
Pj,t|t,i = Pj,t|t−1,i − Pj,t|t−1,iH

T
j,i(Sj,t,i)

−1Hj,iPj,t|t−1,i

where

Hj,i =
∂hj

∂xj,t|t−1,i

∣∣
xj,t|t−1,i=x̄

j,t1t−1,i

, x̄j,t|t−1,i =

[
xRt|t−1,i

xLj,t|t−1,i

]
,
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zj is the real measurement corresponding to the jth landmark and Sj,t,i =

Hj,iPj,t|t−1,iH
T
j,i +R.

Since the fast SLAM method is based on the particle filter method, the number

of particles is an issue which should be increased as the uncertainty of odometry

data increases.

Cost Optimization Based Methods

The SLAM problem can also be considered as an optimization problem. In this

regard, a cost function is defined over the differences between the real measure-

ments and the expected measurements as follows:

C =

Nr∑
t=0

M∑
j=1

(
zt,j − hj(x

R
t ,x

L
j )
)T (

zt,j − hj(x
R
t ,x

L
j )
)

(2.137)

where Nr is the number of all robot poses and M is the number of all landmarks.

Consequently, the parameters of the SLAM problem (robot and landmark posi-

tions) can be obtained by the minimization of the cost function.

Obviously, in real scenarios, each robot pose is only related to some landmarks;

therefore, the optimization process can be skipped at many combinations of

robot and landmark positions. This property is known as sparsity. Since the

measurement models are typically nonlinear, Eq. (2.137) should be minimized

iteratively.

A well known method to minimize such cost functions is the Gauss-Newton

algorithm. To use this algorithm, firstly, a vector of all parameters should be

defined such as: x = [xR0
T
, ...,xRNr

T
,xL1

T
, ...,xLM

T
]T . Then Eq. (2.137) can be

rewritten as follows:

C(x) =

Nr∑
t=0

M∑
j=1

(zj,t − hj,t(x))T (zj,t − hj,t(x)) (2.138)

where hj,t(x) = hj(x
R
t ,x

L
j ) is the measurement model for jth landmark observed

at the robot pose xRt . As the measurement models are nonlinear, the minimiza-

tion should be done using iterative methods such as the Gauss-Newton method.
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To this end, to find the necessary rule to update parameters in each iteration,

the sensitivity of hj,t with respect to xt should be obtained:

hj,t(xt + δ) ≈ hj,t(xt) + Jj,tδ (2.139)

where Jj,t =
∂hj,t
∂xt

.

Therefore, we have:

C(x + δ) =

Nr∑
t=0

M∑
j=0

(zj,t − hj,t(x) + Jj,tδ)
T (zj,t − hj,t(x) + Jj,tδ) (2.140)

Eq. (2.140) can be written in a vector form as follows:

C(x + δ) = [z− h(x)− Jδ]T [z− h(x)− Jδ] (2.141)

where z, h and J stack zj,t, hj,t and Jj,t respectively. Now, the goal is to find δ

to minimize C. For this purpose, the derivation of Eq. (2.140) with respect to δ

should be set to zero, which results in the following equation:

(JTJ)δ = JT [z− h(x)] (2.142)

By solving the above equation, the modification factor δ in each iteration can be

obtained. Levenberg and Marquardt modified Eq. (2.142) by adding a damping

factor such as λ ≥ 0 to regularize the convergence rate:

(JTJ + λI)δ = JT [z− h(x)] (2.143)

where I is an identity matrix. λ takes greater values in each iteration if C de-

creases slowly. optimization based methods have two major drawbacks: Firstly,

they require a good initial guess of the parameters, otherwise, they get stuck in

local minima. Secondly, they are computationally expensive. Obviously, to deal

with the first problem, high quality odometry data is required. To alleviate the

second issue, some methods have been offered that we review in the following.
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Graph SLAM

The first method known as GraphSLAM was proposed by Thrun and Montemerlo

[TM05]. They formulated the SLAM problem as a graph of which nodes are the

robot and the landmark positions. The odometry data and measurements also

constitute the edges of the graph. With this definition, the SLAM problem turns

into a graph optimization problem which can be realized with the optimization

based methods. The cost function in this case is defined as follows:

C =
∑
t

(
xRt − f(xt−1,ut−1)

)T
Q−1
t

(
xRt − f(xt−1,ut−1)

)
+
∑
t

∑
j

(
zj,t − hj(x

R
t ,x

L
j,t)
)T
R−1
t

(
zj,t − hj(x

R
t ,x

L
j,t)
)

(2.144)

If y = [xR0
T
, ...,xRN

T
,xL1

T
, ...,xLM

T
]T is Gaussian with the covariance matrix Σ,

they followed their formulation by defining an information matrix Ω = Σ−1 and

an information vector ξ = Ωy. Most of the off-diagonal elements of Σ are zero

except the elements which link two consecutive robot poses or the elements which

link a robot pose to a landmark position which is observed at the robot pose.

The graphSLAM can be summarized in four steps:

1. Initialization: In this step, the information vector and information matrix

are initialized. For the initialization of the information matrix, firstly, using

the Taylor expansion, Eq. (2.144) is rewritten as follows:

C =
∑
t

(
xRt − f(x̄Rt−1, ūt−1)− Ft−1(xRt−1 − x̄Rt−1)

)T
Q−1
t(

xRt − f(x̄Rt−1,ut−1)− Ft−1(xRt−1 − x̄Rt−1)
)

+
∑
t

∑
j

(zj,t − hj(ȳt)−Hj,t(yt − ȳt))
T R−1

t

(zj,t − hj(ȳt)−Hj,t(yt − ȳt)) (2.145)

where yt = [xRt
T
,xL1

T
, ...,xLM

T
]T , hj(yt) = hj(x

R
t
T
,xL1

T
), Ft−1 = ∂f

xRt−1

and Hj,t =
∂hj(yt)

yt
.
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Eq. (2.145) can be rewritten as follows:

C =
∑
t

xR
T

t−1:t

[
I

−Ft

]
Q−1
t

[
I −Ft

]
xRt−1:t+

xR
T

t−1:t

[
I

−Ft

]
Q−1
t [f(ut−1, x̄t−1) + Ft−1x̄t−1]∑

t

∑
j

yTt H
T
j,tR

−1
t Hj,tyt+

yTt H
T
j,tR

−1
t [zj,t − h(ȳt)−Hj,tȳt] (2.146)

where xRt−1:t denotes a vector which consists of the robot poses xRt and xRt−1.

By defining a vector which contains all robot and landmark positions such

as y = [xR0 , ...,x
R
t ,x

L
1 , ...,x

R
M ]T we can write Eq. (2.146) as follows:

C = const. + yTΩy − 2yT ξ (2.147)

where const. is a constant, Ω and ξ accumulate the coefficients of quadratic

and linear terms respectively. Clearly, the information vector ξ and the

information matrix Ω can be initialized based on Eq. (2.146) and Eq.

(2.147).

2. Marginalizing out landmark positions: Thrun et al. used the marginal-

ization rule for a random Gaussian vector to obtain the optimal estimation

for the robot path. They proved that if p(x,y) is a joint Gaussian distri-

bution with the following information vector and matrix:

ξ̄ =

[
ξ̄x

ξ̄y

]
; Ω =

[
Ωxx Ωxy

Ωyx Ωyy

]
(2.148)

Then p(x) will be also Gaussian with the following information vector and

matrix:

ξ̄x,marg = ξ̄x − ΩxyΩ−1
yy ξ̄y

Ωxx,marg = Ωxx − ΩxyΩ−1
yyΩyx (2.149)



68 2 Related Literature

Using the above rule, the landmark positions can be marginalized out to

obtain a vector containing only robot poses and its corresponding informa-

tion matrix as follows:

ξ̄xR0:t,marg
= ξ̄xR0:t

−
∑
j

ΩxR0:t,x
L
j

Ω−1

xLj ,x
L
j
ξxLj

ΩxR0:t,x
R
0:t,marg

= ΩxR0:t,x
R
0:t
−
∑
j

ΩxR0:t,x
L
j

Ω−1

xLj ,x
L
j

ΩxLj ,x
R
0:t

(2.150)

3. Calculating the optimal path: After achieving the marginalized infor-

mation vector and matrix, the optimal path and the related covariance

matrix can be obtained:

x̄R0:t = Σ0:t ξ̄xR0:t,marg

Σ0:t = Ω−1

xR0:t,x
R
0:t,marg

(2.151)

4. Rebuilding the map: By obtaining the best estimation of the robot

poses, the map can be rebuilt using the inversion of the measurement model

and the optimal estimation of the robot poses.

The graph SLAM method is based on the marginalization technique which is

relatively computationally expensive. Additionally, it relies on the linear approx-

imations which are insufficient if the models have severe nonlinearities. These

problems are addressed by the
√
SAM method to some extent.

Square Root Smoothing and Mapping (
√
SAM)

Dellaert et al. proposed in [DK06] an optimization based method to use the

sparsity nature of the SLAM problem to optimize the related cost function. In

the
√
SAM method the cost function Eq. (2.137) is rewritten as follows:

C =

Nr∑
t=1

||f(xRt−1,ut−1)− xRt ||2Pt +

Nz∑
i=1

||hj(xRt,i,xLj,i)− zi||2Vi (2.152)
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where Nz is the number of all measurements gathered at all robot poses. ||.||2P
and ||.||2V represent the Mahalanobis distances. In Eq. (2.152), the association of

a robot pose at time t and the jth landmark position with the ith measurement

are denoted with the indexes (t, i) and (i, j) respectively. By linearizing Eq.

(2.152) we have:

C =

Nr∑
t=1

||Ft−1 δxRt−1
+Gt δxRt

− at||2Pt +

Nz∑
i=1

||Hi,t δxRt,i + Ji,j δxLj,i
− ci||2Vi

(2.153)

where j = 1...M ,

Ft−1 =
∂f

∂xt−1

∣∣
x̄Rt−1

, Hi,t =
∂hj
∂xRt,i

∣∣
x̄Rt,i

, Jj,i =
∂hj
∂xLj,i

∣∣
x̄Lj,i

, G = −I3×3,

at = x̄Rt − f(x̄Rt−1,ut−1), ci = zi − hj(x̄
R
t,i, x̄

L
j,i).

To dispose of Pt and Vi in Eq. (2.153), the terms Ft , Gt and at should be

multiplied by (P
−1/2
t )T . The terms Hi,t, Ji,j and ci should be multiplied by

V
−1/2
i

T
. Consequently, the following least square equation is obtained:

Aδ = b (2.154)

where δ concatenates δxR0
, ..., δxR

N
and δxL1

, ..., δxL
M

. The structure of A can be

presented for Nr = 3, Nz = 4 and M = 2 as follows:

A =



G1

F1 G2

F2 G3

H1,1 J1,1

H2,1 J2,2

H3,2 J3,1

H4,3 J4,2


, b =



a1

a2

a3

c1

c2

c3

c4


(2.155)

In Eq. (2.155), the elements in A which are not presented are filled with zeros.

The least squares solution of Eq. (2.154) is given by the following equation:



70 2 Related Literature

ATAδ = ATb (2.156)

Ω = ATA is an information matrix. The inversion of the matrix is the most

computationally expensive part to solve the above equation. Dellaert et al. used

the Cholesky factorization of Ω = RTR where R is an upper triangular matrix.

Thanks to the sparsity of the information matrix, Ω the Cholesky factorization

is carried out relatively fast and Eq. (2.156) can be solved efficiently.

The above discussed optimization based methods are mostly used for offline

enhancement of path estimation after the detection of loop closure. It means

if the robot after a run comes back to the starting point; while the estimated

robot pose has some error, the error can be minimized based on the weighs of

the edges in the provided graph.

2.3.4 Bearing Only SLAM

The methods discussed before had the assumptions that the uncertainties of the

landmarks can be modeled by Gaussian distributions. FastSLAM uses a particle

filter to model the robot pose uncertainties, but still uses Gaussian assumptions

for the landmark positions.

A relatively new SLAM problem is bearing only SLAM in which only bearing

measurement sensors are used. A well known example of such sensors are monoc-

ular cameras. Thanks to various existing optical feature tracking algorithms, it is

possible to extract several features from one frame and track them in next frames.

Additionally, compared to range finder sensors, cameras are much cheaper. Bear-

ing only SLAM, however, is a much more complex problem than the common

SLAM problem in which both range and bearing measurements are available.

The main challenge of the bearing only SLAM is large uncertainties of land-

mark positions which cannot be modeled by Gaussian distributions. As can be

seen in Fig. 2.23, given the robot pose xRt and the bearing measurement φj,t

with a Gaussian uncertainty, the support of the landmark position uncertainty

will be a triangle with an infinite length. Nevertheless, if the robot pose has
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also uncertainties, the distribution of the landmark position has a trapezoidal

support. Obviously, such uncertainties cannot be modeled by a single Gaussian

distribution.

Figure 2.23: Initialization of a landmark uncertainty given a robot pose (xRt ) and
a bearing measurement (φj,t).

Delayed Bearing Only SLAM

In [Bai03], a delayed method is proposed so that the initialization of a landmark

in the Gaussian form becomes possible. They used two different observations of

a landmark to have a rough estimation of its position (Fig. 2.24). This method

gives rise to increasing the uncertainty of the robot pose until the time that the

second proper observation could be achieved. Furthermore, in real scenarios, it

is possible to miss the track of many of the features before the second useful

observation can be made. Therefore, un-delayed methods have attracted the

attention of the researchers later.
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Figure 2.24: Initialization of a landmark uncertainty given two robot poses and
two measurements.

Gaussian Sum Filter Method

In [KD04], Kwok and Dissanayake proposed the first un-delayed method in which

multi-hypotheses of depths for each landmark are applied. Assuming that a land-

mark is expected to exist at a maximum range, a number of Gaussian distribu-

tions are placed along the line at which the landmark is observed (Fig. 2.25).

In this method, each hypothesis is assumed as a new landmark in the state vector.

Hence, if we assume two hypotheses for M landmarks, 2M landmarks should be

initialized in the state vector, resulting in a complexity of O((2M)2). By motion

of the robot and gathering new measurements of landmarks, most of the wrong

hypotheses result in high predicted measurement errors and based on the errors

theses hypothesizes can be removed from the state vector. In addition to the

high complexity of the method, the method cannot deal with the ambiguities

when two different landmarks are observed at the first time at almost the same

direction.
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Figure 2.25: Landmark initialization using the multi hypothesis method.

To address the ambiguity problems, [KHH+05] Kwok et al. used Gaussian sum

filters (GSF) to model the non-Gaussian uncertainties of the landmarks more

intuitively. The implementation of GSF can be done using MNg parallel EKF

filters where Ng is the number of Gaussian distributions used to model the uncer-

tainty of each landmark. Therefore, the PDF of the state vector can be written

as follows:

p(xt) =

MNg∑
i=1

wiN (x̄t,i, Pt,i) (2.157)

where wi states the importance weight of each EKF filter, x̄t,i and Pt,i are the

mean vector and the covariance matrix of the ith EKF filter. The complexity of

this algorithm is of order of O(MNg ) and it necessitates a heavy load of calcu-

lation for a practical case in which the expected maximum range of landmarks

are more than 40 meters and the number of landmarks are more than five.

Generally, the EKF based methods have poor performance if landmarks are close

to the robot since nonlinearities of measurement models become more severe and

the linear approximation needed for the EKF filter could be poor.
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Inverse Depth Parametrization

Civera et al. proposed a new perspective in [CDM08] by using special way

of parametrization of a landmark uncertainty which is known as the inverse

depth parametrization (IDP). Civera et al. discussed that the distribution of the

inverse of a depth of a landmark with an unknown depth looks like a Gaussian

distribution. To include such distribution in an EKF filter, they proposed to

parametrize the position of a landmark using a vector including six parameters:

yj = [xLj y
L
j z

L
j θ

L
j φ

L
j ρ

L
j ]T (2.158)

The position of a landmark based on this vector can be obtained as follows:

xL =

x
L
j

yLj

zLj

+
1

ρLj
m(θLj , φ

L
j ) (2.159)

where:

m(θLj , φ
L
j ) =

cos θLj cosφLj

cos θLj sinφLj

sin θLj

 (2.160)

They also used a quaternion to encode the orientation of the camera. The motion

model they used is as follows:

xWk+1 = xWk + vWk

qWk+1 = q(wCk )× qWC
k

vWk+1 = vWk + aw∆t

ωCk+1 = ωCk + αC∆t (2.161)

where xWk+1 = [xWk+1 yWk+1 zWk+1] is the position of camera in the world frame,

vW is the linear velocity of the camera with respect to the world frame and wC

is the angular velocity with respect to the camera frame. aW and αC are the
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linear and angular accelerations of the camera with respect to the world and

the camera frames. The acceleration parameters are assumed to be zero mean

Gaussian processes.

To form the state space model, it is required to obtain the measurement model

based on the state variables. The measurements are the projections of landmark

positions on the image plane of a calibrated camera. As known, the position of a

point such as p = [px py pz]
T from the world coordinate in the camera coordinate

will be as follows:

p′ = RT (p− xW ) (2.162)

The above equation can be rewritten using Eq. (2.159) as follows:

p′ = RT

ρL,i

x

L,i

yL,i

zL,i

− xW

+ m(θL,i, φL,i)

 (2.163)

Consequently, the projection of p′ = [p′x p
′
y p
′
z]
T on the image plane of the camera

will be as follows: [
x

y

]
=

 p′xp′z
p′y
p′z

 (2.164)

Based on the mentioned equations as soon as a new landmark is observed for

the first time, six parameters concerning the landmark position are added into

the state vector. All parameters except the inverse depth parameter can be

calculated based on the camera pose and the measurement model. The block

related to the uncertainties of the parameters in the covariance matrix can also

be initialized using the linear approximation of the motion and measurement

models to transform the uncertainty of the camera pose to the landmark uncer-

tainties. The only parameter which cannot be initialized based on the camera

pose and measurements is the inverse depth parameter. To cover a large range

of uncertainties Civera et al. proposed an initial value ρL,i = 0.1 and a standard

deviation σρL,i = 0.5.

As we will discuss in the next chapters, the inverse depth parametrization method

diverges in two cases: first, if the landmarks are located close to the camera (less
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than 3 m) at their initialization time or the landmarks are observed at the low

parallax angles which could result in the localization of the landmarks behind

the camera or in another word negative depths.

Logarithmic Depth Parametrization Method

Parsely and Julier attempted to solve the problem of negative depths by propos-

ing a logarithmic depth parametrization [PJ08]. In their parametrization method,

they used a logarithmic depth parameter (LDP) such as l as follows:

l = − ln d (2.165)

It can simply be verified that the depth parameter cannot be negative under

any condition. This kind of parametrization, however, gives rise to the problem

that l cannot be modeled by a Gaussian distribution any more. To address this

problem, they used second order EKF filters in which the second order terms of

the Taylor expansion are used. Due to the high nonlinearity of the logarithm

function near to the origin, the LDP method has a very poor performance to

deal with the close landmarks. Additionally, the second order Kalman filter

could diverge in the case of relatively high odometry noises.

Iterative Inverse Depth Parametrization Method

To address the problems of the IDP method, Tully et al. proposed to perform the

update part of the EKF filter iteratively [TMKC08](IIDP). Later, we will show

that at least five iterations are required to make IDP robust in the presence of

close landmarks, which means the computation load increases five times more.

Additionally, the problem of negative depth is not solved in this method.

Parallax Angle Parametrization

Zhao et al. in [ZHYD11] tried to tackle the negative depth problem of the

inverse depth parametrization method by introducing a new parameterization

method. They proposed a delayed method in the context of the optimization
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based method (known in the computer vision society as bundle adjustment).

They parametrized a landmark with two vectors from which the landmark is

observed and the parallax angle between the vectors. In this method, a landmark

position is presented as follows:

Lj : (xR1 ,x
R
2 , αj) (2.166)

where xR1 and xR2 are the robot pose instances and αj is the parallax angle.

As soon as a landmark is initialized, it can be used to modify robot poses using

a bundle adjustment (cost optimization) method. In this regard, it is required

to predict the next measurements based on the mentioned parameterization.

It means, given the robot pose xR3 and the parallax parametrization, we are

interested to predict the projection of the Lj on the camera screen: (xj,3, yj,3).

This method depends on the visual odometry having a high quality and can-

not use the landmarks which are observed at low parallax angles as the whole

formulation depends on the parallax angle.

Other Monocular SLAM Methods

In addition to the monocular SLAM methods already discussed in this section,

there are many other methods which are based on delayed initialization of land-

marks, e.g. [KM07], [SCG13], [MAT14] and [SC14]. These methods apply bundle

adjustment (cost optimization) and mainly focus on the improvements of feature

tracking modules and leveraging different software architectures letting the meth-

ods run in real-time through parallel processing. Generally, the delayed methods

can only handle landmarks observed at high parallax angles. Consequently, they

typically have poor performances in environments where there are not enough

close landmarks such that they can be observed at high parallax angles.

2.3.5 Overall View of Different Fusion Methods

In table 2.1, different fusion methods discussed in this section are listed. The

methods are compared based on the used estimation techniques, the types of mea-
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surements, their complexity, the way they initialize newly observed landmarks

and their robustness against odometry and measurement noise.

Table 2.1: Overall view of different fusion methods.
√
SAM : Square root smooth-

ing and mapping, DI: Delayed landmark initialization, GSF: Gaussian
sum filter, IDP: Inverse depth parameterization, IIDP: Iterative in-
verse depth parameterization, LDP: Logarithmic depth parameteriza-
tion and PAP: Parallax angle parameterization.
Estimation: the estimation method. Measurement: types of measure-
ments used in the methods. Complexity: Escalation of complexity
of methods with respect to the number of landmarks. Initialization:
initialization of landmarks. Robustness: Robustness of the methods
against odometry and measurement noise. (-): poor, (+): good, (++):
very good.

Method Estimation Measurement Complexity Initialization Robustness

EKF-SLAM EKF Bearing+Range Quadratical Un-delayed +

FastSLAM PF+EKF Bearing+Range Linear Un-delayed +

GraphSLAM Optimization Bearing+Range Quadratical Un-delayed ++√
SAM Optimization Bearing+Range Linear Un-delayed ++

DI EKF Bearing Quadratical Delayed -

GSF EKF Bearing Exponential Un-delayed ++

IDP EKF Bearing Quadratical Un-delayed -

IIDP EKF Bearing Quadratical Un-delayed +

LDP EKF Bearing Quadratical Un-delayed +

PAP Optimization Bearing Quadratical Delayed -



3 Visual Odometry

In chapter 2, some of the well-known feature matching and tracking techniques

were discussed. In literature, these methods have mostly been investigated for

feature matching between two images and not a sequence of images [MM12a]

[ope11]. Additionally, for evaluation, typically, the images captured from planar

surfaces have been used as in this case, ground truths can be obtained using

homography transforms [HZ04]. These types of images are no proper test beds

for the evaluation of the feature matching methods for visual odometry purposes.

Since in visual odometry cases, we deal usually with the scenes which have high

depth variations and different change of scale of objects when cameras move. On

the contrary, in this chapter, we show how these methods can be used to track a

set of features within a sequence of images. Furthermore, we evaluate the pro-

posed trackers based on KITTI dataset [KIT15]. Next in this chapter, relative

camera motion estimation based on N-point methods are investigated and new

methods are proposed to enhance the performance of the methods against mea-

surement noise. To this end, we firstly show why the eight point method has

a poor performance in the presence of measurement noise and then we propose

modifications to enhance its performance. Additionally, we derive a regulariza-

tion term based on the second order statistics of essential matrix elements to

enhance camera motion estimation significantly. This chapter is based on the

two of our publications [MM13b] and [MM14].

3.1 Feature Tracking

In this section, feature tracking within a sequence of images is discussed. We

investigate feature tracking based on the methods introduced in section 2.1 and

compare them using four measures: (i) endurance, (ii) precision, (iii) recall and
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(iv) measurement noise. The definitions of the measures will be presented soon.

In subsection 3.1.1, the feature tracking method based on the feature matching

techniques (SIFT, SURF, ORB and BRISK) is discussed. In subsection 3.1.2,

the feature tracking method using the Lucas-Kande method is presented.

3.1.1 Feature Tracking Using Feature Matching Techniques

In feature matching methods, features and their descriptors are extracted from

two images and the matches are found based on the descriptors. To implement

feature tracking using SIFT, SURF, ORB and BRISK, the following procedure

should be considered. We define a class c including a point p, its descriptor

vector d and its identity number id and denote the class as c = {p,d, id}. By

defining this class, given a sequence of images such as L0, ..., LN , we can extract

feature points {pi} and their descriptors {di} from each image Lt and form the

class instances ct,i such that ct,i.p = pt,i, ct,i.d = dt,i and ct,i.id = i, where

i = 1, ...,Mt and Mt is the number of extracted features from Lt. With these

assumptions, the feature tracking procedure can be implemented as follows:

1. t = 0.

2. Extract Ct = {ct,1, ..., ct,Mt}.

3. Extract Ct+1 = {ct+1,1, ..., ct+1,Mt+1}.

4. Create empty sets Ĉt and Ĉt+1.

5. Fill Ĉt and Ĉt+1 with the matched points as follows:

∀ct,i ∈ Ct find two matched features in Ct+1 such as ct+1,f and ct+1,s with

the minimum Euclidean distances df and ds.

If df/ds < δm (δm < 1 is a threshold parameter), ct,i → Ĉt and ct+1,f →
Ĉt+1.

6. ∀ct+1,i ∈ Ĉt+1: ct+1,i.id = ct,i.id and ct+1,i.d = ct,i.d.

7. Ct+1 = Ĉt+1.

8. t = t+ 1.

9. Go to 3.



3.1 Feature Tracking 81

In the step 5 of the algorithm, a matching method known as 2-nn (2 nearest

neighbors) matcher is used. In this type of matcher no minimum threshold over

the minimum euclidean distances are forced, but the measure to determine if

there is a good match for a point, is taking into account how much the first and

second matches are similar. In other words if the the distances of descriptors

of the first and second matched candidates to the descriptor of a query point

are almost similar, obviously, the risk of wrong matching substantially increases.

Another important step is the step 6, in which the identity of features from the

frame 0 are transformed to the tracked features to keep the track of features.

Additionally, the descriptors of features become updated at each step with the

newest descriptor of each feature. Updating descriptors makes it possible to track

features in longer sequences.

3.1.2 Feature Tracking Based on Lucas-Kanade Method

Unlike feature matching methods, in the Lucas-Kande (LK) method, extracted

corner features from one frame are tracked based on brightness constancy of

the features and their surrounding points. Applying the optical flow method,

however, gives rise typically to a high amount of outliers. To deal with this

problem, we used forward and backward calculations of optical flows. In this

method, given two consecutive frames, corner features from the first frame are

tracked in the second frame. The corresponding points in the second frame are

fed again to the LK tracker to find their correspondent points in the first frame.

By applying the forward and backward Lucas-Kanade (FBLK), we expect to

obtain the same feature positions in the first frame. This expectation can be

used as a measure to reject most of the outliers.

By defining a class c = {p, id, s} where p is a feature point, id is its id and s

represents its status ( it could be inlier or outlier), the feature tracking procedure

will be as follows:

1. t = 0.

2. Extract corner features from Lt and form the class instances ct,id,s, where

id = 1...Mt and s = inlier.
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3. Track the features ct,i in the frame Lt+1 and store them in ct+1,i.

4. Track ct+1,i from the frame Lt+1 in Lt and store them in c′t,i.

5. Set the status of ith feature as outlier if ||ct,i.p− c′t,i.p|| > δp.

6. t = t+ 1.

7. Go to 3.

3.1.3 Comparison of Methods

In this section, we investigate the qualities of the feature tracking methods dis-

cussed in the previous section. The following measures for the evaluation of the

methods are considered:

1. Endurance: Given N features extracted from frame 0, endurance is the

ratio of the number of points tracked in the next frames to N.

2. Precision: The ratio of the number of correctly tracked features to the

number of tracked features.

3. Recall: The ratio of the number of correctly tracked features to the number

of all features which were supposed to be tracked.

4. Measurement Noise: The average distances of tracked features from

their correspondent epipolar lines.

To evaluate the discussed methods, image sequences with the ground truth of

camera poses are required. Thanks to the KITTI dataset [KIT15] provided for

visual odometry, we were able to run such tests for a variety of scenes. In this

dataset eleven long sequences with ground truths are given. The ground truth

for each camera pose is formed in a 4× 4 matrix as follows:

Poset =

[
Rt ct

0 1

]
(3.1)
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where Rt is a rotation matrix encoding the orientation of the camera at time t

with respect to the first camera pose, and ct = [cx, cy, cz]
T shows the camera

position in the coordinate frame attached to the first camera pose.

Since the depths of points are not given, the measure that we used to find how

well a feature was correctly tracked was the distance of its matched point to its

correspondent epipolar line. In case of uncalibrated cameras, we know that:

[xut y
u
t 1]F

x
u
0

yu0

1

 = 0 (3.2)

Given a point in the first frame [xui,0 y
u
i,0]T and the fundamental matrix F , the

correspondent point [xui,t y
u
i,t]

T should lie on a line with the coefficients [a b c]T =

F [xui,0 y
u
i,0 1]T . Therefore, the distance of [xui,t y

u
i,t]

T to its epipolar line will be a

good measure to determine the quality of a tracker. The error is calculated as

follows:

εdi,t =
|axui,t + byui,0 + c|
√
a2 + b2

(3.3)

Based on the epipolar distances, a matching was considered correct if εdt ≤ 1 and

wrong if εdt > 1. As a result, the two following measures can be calculated:

Precisiont =
(Number of correct matches)t
(Number of tracked features)t

(3.4)

Recallt =
(Number of correct matches)t

(Number of all features which could be tracked)t−1

≈
(Number of correct matches)t
(Number of all features)t−1

(3.5)

“Precision” reflects the the ability of a tracker to track features correctly, while

“Recall” signifies the ability of a tracker not to lose the track of a features. In

Eq. (3.5), an approximation for recall is used, where all features at time t− 1 is

taken into account instead of all features which could be tracked. The difference

is that some features at time t−1 might be occluded at time t and there is no way

to track them. Unfortunately, detection of occluded features based on epipolar

geometry is not feasible. Nevertheless, as the number of occluded features are
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usually low in comparison to the non-occluded features, we can use the mentioned

approximation and obtain a fair measure for the comparison of all methods.

Another important measure for evaluation of a tracker is the average of the

distances of matched points to their correspondent epipolar lines at each frame.

The measure signifies measurement noise which affects adversely the quality of

estimation of an essential or a fundamental matrix.

Measurement Noiset =
1

Nt

Nt∑
i=1

εdi,t (3.6)

In Fig. 3.1 and Fig. 3.1, tracked features from the sequence 0 of the KITTI

dataset can be seem. The epipolar lines are drawn with yellow lines, the inliers

are shown with green circles and outliers with pink circles.

(a)

(b)

Figure 3.1: Feature tracking using (a) FBLK, (b) BRISK. The green circles are
inliers and pink circles are outliers.
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(a)

(b)

(c)

Figure 3.2: Feature tracking using and (a) ORB, (b) SIFT and (b) SURF. The
green circles are inliers and pink circles are outliers.
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In Fig. 3.3, the endurance measure of different tracking methods can be seen. We

can see that the best endurance measure belongs to FBLK. SIFT, SURF, ORB

and BRISK have the next positions. Surprisingly, we can see most of the features

from the frame 0 cannot be tracked in frame one using ORB and BRISK. As a

result, it can be concluded that the trackers based on ORB and BRISK are not

appropriate for the multiple frame optimizations needed in SLAM algorithms.

Figure 3.3: Endurance measure of different tracking methods.

In Fig. 3.4, the precision and recall measures can be seen. FBLK outperforms

the other methods both in terms of precision and recall. In average, SIFT, ORB,

SURF and BRISK can be ranked respectively in term of precision. Concerning

the recall measure, however, the ranking is as follows: FBLK, SURF, SIFT, ORB

and BRISK. We see that all methods except FBLK fail to track many features

from the frame zero in frame one. This is due to the fact that the scale of close

features change noticeably between the first two frames and in this case many

of them cannot be detected as features in the second frame due to the discrete

sampling of scale-space.
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Figure 3.4: Precision and Recall measures for different feature tracking methods.



88 3 Visual Odometry

Among the matching based methods again ORB and Brisk have the poorest

performances as their descriptors are not as descriptive of SIFT and SURF,

resulting in rejection of many matches. Additionally, we see that FBLK is not

also much robust against the changes of scales and in the second frame cannot

track many of the features of which scales have changed significantly.

The comparison of the methods in terms of measurement noise is depicted in

Fig. 3.5. We can see that until frame 2, FBLK has better performance, but for

next frames, BRISK, ORB, SIFT and SURF have better performances. It lies

in the fact that the cornerness (based on Harris corner measure [HS88]) of the

tracked points are not verified explicitly at each time step when using FBLK.

As a result, the tracked points may drift from their real positions gradually.

Conversely, feature matching techniques localize features at each step which avoid

drifts in localization of features. As ORB and BRISK use corner features, we

can see that they have better performance than SIFT and SURF which use blob

features. These results are reasonable since blob centers cannot be calculated as

accurately as corner feature locations.

Figure 3.5: Measurement noise of different tracking methods.
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Table 3.1: Elapsed time for feature matching between two frames for an average
feature numbers equal to 1500.

Tracker FBLK BRISK ORB SIFT SURF

E. T. [ms] 10 248.3 96.3 493.6 284.3

The elapsed time of each tracker for tracking 1000 features between two frames

can be seen. We see that the FBLK tracker also outperforms the other methods

to a great extent.

The average of the four different measures are shown in table 3.2. Obviously,

the FBLK outperforms the other methods in term of endurance, precision and

recall. The measurement noise of FBLK is only a bit worse than that of the

BRISK method. As a result, we selected the FBLK feature tracker for the visual

odometry and visual SLAM methods, which will be proposed in this and the

next chapter.

Table 3.2: The average of the measures (endurance, precision, recall and mea-
surement noise) for different trackers.

Method FBLK BRISK ORB SIFT SURF

Endurance 0.37 0.06 0.16 0.18 0.20

Precision 0.68 0.33 0.52 0.54 0.46

Recall 0.37 0.06 0.16 0.18 0.20

Measurement Noise 0.21 0.18 0.22 0.26 0.30
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3.2 Inconsistencies of N-point Methods for Camera Motion

Estimation

A practical N-point (N = 8, 7 or 5) method in the context of a RANSAC algo-

rithm [FB81] consists of three steps.

1. Estimation of several essential matrices based on the random selection of

the minimum required number of matching points (minimal set).

2. Checking the validity of the estimated essential matrices and selecting the

best essential matrix which minimizes coplanarity constraints for all match-

ing points.

3. Extraction of the rotation matrix and translation vector using the SVD

decomposition and selection of the feasible solution (from four algebraic

solutions) using the Cheirality test [HZ04]. This test determines which

solution back-projects matched points in front of both cameras.

In the following, we discuss that all the methods have a shortcoming in the first

and third steps and in the next section we address the shortcomings. In essential

matrix estimation, one common problem among all N-point methods is that the

deviation of coplanarity equations from zero in the presence of measurement noise

has not been considered. Given the correct essential matrix, in the presence of

measurement noise coplanarity equations may not be zero. However, we can

calculate how much each equation can deviate from zero and solve the obtained

homogeneous equation system in the sense of Mahalanobis distances based on

the presumed deviations.

As we already discussed, using eight matched points, we can also estimate the

essential matrix by forcing e9 = 1, which works generally better than the SVD

based technique. However, it can be shown that if the camera has a constrained

motion of wheeled vehicles, e9 will be zero. Under this constraint, the translation

vector has only the forward translation at each step: t = [0, 0, tz]
T . Given this

translation vector we have:
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E = RT =

r1 r2 r3

r4 r5 r6

r7 r8 r9


 0 tz 0

−tz 0 0

0 0 0

 =

−r2tz r1tz 0

−r5tz r4tz 0

−r8tz r7tz 0

 (3.7)

It can be seen that the whole third column of E becomes zero and consequently,

the coplanarity equation cannot be divided by e9. In practice, however, tx and

ty may take small values. In this case, the other nonzero elements of E should

take very large values which may give rise to numerical errors. Therefore, we can

expect that this type of the 8-point method will have much poor performance

than the SVD based 8-point method. As already discussed in section 2.2.4, for

the 7- and 5- point methods, due to forcing one unknown to 1, we may encounter

the numerical errors, if the unknown should be zero or near to zero.

The best essential matrix can be obtained based on the distances of the matched

points to their epipolar lines. The essential matrix which results in the minimum

distances for all matched points is considered as the best matrix [HZ04].

After obtaining the best E matrix, we can obtain the rotation matrix and the

translation vector using the SVD decomposition. This decomposition results in

four mathematically valid solutions; however, only one of them can back project

the image points in space in front of both camera poses. This measure is known

as the Cheirality test. Unfortunately, this test fails if the space points are located

relatively far from the camera and there exist measurement noise. In such cases,

the points could be wrongly back projected behind the cameras. This situation

occurs in outdoor scenarios very often.

3.3 Modified N-Point Methods

In this section, we address the shortcomings of different N-point methods men-

tioned in the previous section.
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3.3.1 Considering Measurement Noise in the Estimation of E

The first step of different N-point methods is finding the null space vectors. In

this regard, a homogeneous equation system including N equations is formed as

follows:

Ae = 0 (3.8)

where A is a N × 9 matrix of which rows contain coefficients of coplanarity

equations and e = [e1 e2 ... e9]T . The above equation system can be solved

under the constraint eT e = 1. Considering the SVD decomposition of A:

A = UΣV T (3.9)

the column of V T which is correspondent to the smallest singular value will be

the solution of the equation system. In fact SVD approach minimizes the cost

function C = (Ae)T (Ae), which is the square of euclidean distances between Ae

and the origin. On the other hand, we know if we deal with noisy data, using

the Mahalanobis distance gives better results since the proper deviation of each

coplanarity equation from zero will intuitively be taken into account. As a result,

the following cost function should be minimized:

C = (Ae)TΛ(Ae) (3.10)

where Λ is the inverse of the covariance related to the coplanarity equations.

Λ−1
i,j =

var(v
T
i,2Evi,1) if i = j

0 if i 6= j
(3.11)

where i is the index of ith matched points. Since E is not initially known it is

not straightforward to calculate the diagonal elements. However, we can consider

large uncertainties for the rotation and translation parameters with zero mean

values. If we parametrize a rotation matrix with the angles φ ∼ N (0, σ2
φ), θ ∼

N (0, σ2
θ) and ψ ∼ N (0, σ2

ψ) we can write:
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R =

cθ cψ −cφ sψ − sφ sθ cψ sφ sψ − cφ sθ cψ
cθ sψ cφ cψ − sφ sθ sψ −sφ cψ − cφ sθ sψ
sθ sφ cθ cφ cθ

 (3.12)

where c and s stand for cos and sin consecutively. Since in practical cases the

amount of these angles are less than π
4

rad, we can use the following approxi-

mation of R based on the Taylor expansion and ignoring terms with the orders

more than two:

R ≈

1− θ2

2
− ψ2

2
−ψ − φθ −θ + φψ

ψ 1− φ2

2
− ψ2

2
−φ− θψ

θ φ 1− φ2

2
− θ2

2

 (3.13)

Since E = RT , we have:

e1 = −tz(ψ + φθ) + ty(θ − φψ)

e2 = tx(φψ − θ) + tz(
ψ2 + θ2

2
− 1)

e3 = ty(1− ψ2 + θ2

2
) + tx(ψ + φθ)

e4 = −tz(
φ2 + ψ2

2
− 1) + ty(φ+ ψθ)

e5 = −tzψ − tx(φ+ ψθ)

e6 = ψty + tx(
φ2 + ψ2

2
− 1)

e7 = tzφ+ ty(
φ2 + θ2

2
− 1)

e8 = −θtz − tx(
φ2 + θ2

2
− 1)

e9 = −φtx + θty (3.14)

Based on the assumption that the absolute values of rotation parameters are less

than π
4

rad, σφ = σθ = σψ = 0.5 are reasonable standard deviation values for

the parameters. Regarding the uncertainty of the translation vector, it can be
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verified if the equation system is solved using the SVD method, the following

constraint holds:

t2x + t2y + t2z =
1

2
(3.15)

It means that [tx, ty, tz]
T has a uniform distribution over a sphere with the radius

1√
2
:

p(tx, ty, tz) =

 1
2π

if t2x + t2y + t2z = 1
2

0 else
(3.16)

To calculate the mean values and variances of translation elements, we may need

to marginalize out two variables from the above distribution. However, due to

the symmetry of the distribution, it can be inferred that:

µtx = E(tx) = 0

µty = E(ty) = 0

µtz = E(tz) = 0

where E(.) is the expectation operator.

On the other hand, by applying expectation on Eq. (3.15), we will have:

E(t2x) + E(t2y) + E(t2z) =
1

2
(3.17)

Since the mean values of the translation elements are zero, we have:

σ2
tx + σ2

ty + σ2
tz =

1

2
(3.18)

Due to the symmetry of the distribution, we can also say: σtx = σty = σtz . As

a result:

σ2
tx = σ2

ty = σ2
tz =

1

6
(3.19)
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If we consider measurement noises for the image coordinates we have:

xi = x̄i + x̃i

yi = ȳi + ỹi; i = 1, 2 (3.20)

where (xi, yi) and (x̄i, ȳi) are the measured and real feature positions respectively.

x̃i and ỹi are zero mean normal random variables modeling measurement noise.

Based on the mentioned definitions, now we are interested to find the following

variance:

σ2
c =var(vT2 Ev1)

≈var([x̄2 ȳ2 1]E[x̄1 ȳ1 1]T )

+ var
(

[x̄2 ȳ2 1]E[x̃1 ỹ1 0]T
)

+ var
(

[x̃2 ỹ2 0]E[x̄1 ȳ1 1]T
)

(3.21)

Eq. (3.21) has three terms, but the last two terms are dependent on the mea-

surement noise. These terms provide reasonable measures presenting how much

each coplanarity equation can deviate from zero. It means that we are interested

to force the first term to zero. In [MM13b], we used the last two terms to obtain

the deviation measure. Furthermore, since all the random variables are less than

one, the variances of higher order terms vanish quickly comparing to the lower

order terms. Therefore, using Eq. (3.7) and Eq. (3.13) and by ignoring the

terms with the orders more than two we have:

σ2
c ≈ var

[−tz(φ+ y2) + ty

tz(θ + x2)− tx

]T [
x̃1

ỹ1

]+ var

[−ψtx − ty + y1tz

tx − ψty − x1tz

]T [
x̃2

ỹ2

]
(3.22)

It should be noted that (x̄i, ȳi) in Eq. (3.21) is replaced with (xi, yi) in Eq. (3.22)

as only noisy measurements are available to us. The effect of these replacements,

however, can simply be overlooked as the the noise terms are generally very small,

and they vanish quickly by being multiplied with other noise terms. Applying
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the variance operation and taking into account that σ2
tx = σ2

ty = σ2
tz = 1

6
, we

will have:

σ2
c =

σ2
p

6

(
4 + σ2

φ + σ2
θ + 2σ2

ψ + (1 + σ2
φ + σ2

θ + σ2
ψ)(x2

1 + y2
1 + x2

2 + y2
2)
)

(3.23)

Since σ2
p is a common constant for all equations, it can be removed and then

each equation should be divided by its relevant σc to solve the equation system

in Eq. (3.8) based on the Mahalanobis distance.

3.3.2 Including Regularization Term

In the previous section, we saw that we can consider limited uncertainties for

the motion parameters based on the physical constraints of camera motions. As

a result, we can also calculate uncertainties for essential matrix elements in the

form of a covariance matrix such as Pe for the elements. The covariance matrix

can be used to regularize the solution of equation system for different N-point

methods. This method was published in [MM14].

Considering the approximated essential matrix elements in Eq. (3.14), the mean

values and variances of rotation and translation parameters, we can calculate

first and second order statistics of essential matrix elements:

µe = E(e) = 0 (3.24)

and

Pe = E
(

(e− µe)(e− µe)T
)

= E(eeT ) (3.25)

By plugging Eq. (3.14) in Eq. (3.25), we obtain the following covariance ma-

trix:



3.3 Modified N-Point Methods 97

Pe =



σ2
e1 0 0 0 σe1,e5 0 0 0 σe1,e9

0 σ2
e2 0 σe2,e4 0 0 0 0 0

0 0 σ2
e3 0 0 0 σe3,e7 0 0

0 σe2,e4 0 σ2
e4 0 0 0 0 0

σe1,e5 0 0 0 σ2
e5 0 0 0 σe5,e9

0 0 0 0 0 σ2
e6 0 σe6,e8 0

0 0 σe3e7 0 0 0 σ2
e7 0 0

0 0 0 0 0 σe6e8 0 σ2
e8 0

σe1e9 0 0 0 σe5,e9 0 0 0 σ2
e9


where

σ2
e1 =σ2

φσ
2
ψσ

2
ty + σ2

φσ
2
θσ

2
tz + σ2

ψσ
2
tz + σ2

θσ
2
ty ,

σe1e5 =σ2
ψσ

2
tz ,

σe1e9 =σ2
θσ

2
ty ,

σ2
e2 =σ2

φσ
2
ψσ

2
tx +

3

4
σ4
ψσ

2
tz +

1

2
σ2
ψσ

2
θσ

2
tz − σ

2
ψσ

2
tz +

3

4
σ4
θσ

2
tz + σ2

θσ
2
tx

− σ2
θσ

2
tz + σ2

tz ,

σe2e4 =− 1

4
σ2
φσ

2
ψσ

2
tz −

1

4
σ2
φσ

2
θσ

2
tz +

1

2
σ2
φσ

2
tz −

3

4
σ4
ψσ

2
tz −

1

4
σ2
ψσ

2
θσ

2
tz

+ σ2
ψσ

2
tz +

1

2
σ2
θσ

2
tz − σ

2
tz ,

σ2
e3 =σ2

φσ
2
θσ

2
tx +

3

4
σ4
ψσ

2
ty +

1

2
σ2
ψσ

2
θσ

2
ty + σ2

ψσ
2
tx − σ

2
ψσ

2
ty +

3

4
σ4
θσ

2
ty

− σ2
θσ

2
ty + σ2

ty ,

σe3e7 =− 1

4
σ2
φσ

2
ψσ

2
ty −

1

4
σ2
φσ

2
θσ

2
ty +

1

2
σ2
φσ

2
ty −

1

4
σ2
ψσ

2
θσ

2
ty +

1

2
σ2
ψσ

2
ty

− 3

4
σ4
θσ

2
ty + σ2

θσ
2
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In Eq. 3.26, the dependencies of the essential matrix elements pop up as nonzero

off-diagonal elements. According to the smoothing method proposed in [DK06],

we can leverage a smoothing technique to estimate an essential matrix by mini-

mizing an appropriate cost function. We define a cost function consisting of the

coplanarity equations as data terms and the covariance matrix in Eq. 3.26 as a

smoothness term:

C =

N∑
i=1

1

σ2
ci

(Aie)T (Aie) + eTP−1
e e (3.26)

where N is the number of matched points, Ai is a row vector of ith coplanarity

coefficients and σci is the standard deviation for the ith coplanarity equation.

In Eq. (3.23), the calculation of σci is shown. It is necessary to mention that in

Eq. (3.23), the inverse of σp determines the importance weight of the data term:

the larger σp, the more estimations of essential matrix elements are affected by

the regularization term. Therefore, σp should be chosen to attain a balance

between the data and regularization terms such that the method can work well

for a wide range of measurement noise. Based on simulation and experimental

results, we found σp = 0.5 pixel is a proper selection.
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In order to minimize the cost function in Eq. 3.26, we rewrite it as follows:

C = (Be)TP−1(Be) (3.27)

where

B =


A1

...

AN

I9×9

 and P =


σ2
c,1 0 0 0
...

. . . ... 0

0 0 σ2
c,N 0

0 0 0 Pe

 (3.28)

Now we should find the vectors which minimize the cost function. To this end,

we utilize the SVD decomposition for P−1/2B:

P−1/2B = UΣV T (3.29)

Consequently, the columns of V corresponding to the smallest eigenvalues form

the basis for different N-point methods.

3.3.3 Modified Cheirality Test

The last modification to the 8-point method concerns the Cheirality test. After

the calculation of E, firstly, it should be decomposed as follows:

E = UΣV T (3.30)

Consequently, the following solutions for R and t are obtained:

R1 = UWV T ; R2 = UWTV T

T1 = V ZV T ; T2 = −V ZV T (3.31)

where

W =

0 −1 0

1 0 0

0 0 1

 ; Z =

0 −1 0

1 0 0

0 0 0

 (3.32)
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Given the obtained rotation matrices and translation vectors, four valid solutions

can be obtained: {R1, t1}, {R1, t2}, {R2, t1} and {R2, t2}. However, the real

solution should back project the image points in front of both camera positions.

For matched points (x1, y1) and (x2, y2), we denote the position of the 3D point

in space in the first and second camera frame as p1 = [p1,x p1,y p1,z]
T and

p2 = [p2,x p2,y p2,z]
T . We know that:

p1 = d1v1

x2 =
r1(p1 − t)

r3(p1 − t)
(3.33)

where d1 is the depth of the point in the first camera frame, v1 = [x1 y1 1]T and

ri is the ith row of a rotation matrix. As a result, we will have:

d1 =
(r1 − x2r3).t

(r1 − x2r3).v1
(3.34)

Similarly, the depth of the point in the second camera frame (d2) is obtained. As a

result, the solution which yields positive d1 and d2, should be the feasible solution.

Nevertheless, generally, triangulation is very sensitive to measurement noise if

the landmarks are relatively far from the camera or the translation amount is

small. In these cases, the points which are in front of the cameras could be

wrongly localized behind the camera.

To solve this problem, we consider the elements of the rotation matrix. Con-

sidering a rotation matrix which is parametrized based on rotation angles (Eq.

(3.12)), it can be seen that if the rotation angles reside in the interval [−π
2
, π

2
],

r1 and r9 should be always greater than zero. Using this criterion, we can easily

choose the correct rotation matrix. Then, for the selection of the translation

vector we can use Eq. (3.34).

3.4 Simulation

In order to evaluate the proposed methods in the previous sections, we simulated

a camera with the resolution 2000×2000 [pixels2] and a focal length of 1000 pixels.

The camera was moved based on random translation and rotation parameters
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for two different types of motions: dominant forward (tz > tx, ty) and dominant

side translations (tx, ty > tz). The rotation parameters φ, θ and ψ in both cases

were generated randomly from a Gaussian distribution with the mean value 0.3

rad and standard deviation 0.1 rad. The camera could observe spatial points

randomly distributed at depths from 10 to 20 meters. To simulate measurement

noise, the projection of the spatial points on the camera screen was added by

zero mean Gaussian noises with different standard deviation.

For the comparison, we have implemented the original N-point methods (named

as 8-point-N, 7-point and 5-point) in MATLAB. 8-point-N stands for the nor-

malized 8-point method proposed in [Har97]. We also implemented our proposed

N-point versions: 8-point method (named as 8-point-M) in the subsection 3.3.1

and the 8-, 7- and 5- point methods based on the regularization term (named as

8-point-R, 7-point-R and 5-point-R) proposed in 3.3.2. The standard deviations

of the rotation angles (σφ, σθ and σψ) for the regularization constraint were set to

0.5 rad. For the evaluation, two different measures were used: the mean of mag-

nitudes of errors between the estimated translation and true translation vectors

(MMEt) and the mean of magnitudes of errors between the estimated rotation

angles and the true angles (MMEa). Assuming that the estimated translation

vector at time k is t̂k and the ground truth is tk, the error between two vectors

will be εt,k = t̂k − tk. Then, we have:

MMEt =
1

K

K∑
k=1

√
εTt,kεt,k (3.35)

where K is the number of frames. If the estimated rotation matrix at time k is

R̂k and the ground truth is Rk the rotation matrix error will be:

Re,k = RTk R̂k (3.36)

Consequently, using Eq. 3.13, we can calculate the angle error as:

εa,k =
180

π

√
3− trace(Re,k) (3.37)
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The mean of magnitudes of errors for angles will be:

MMEa =
1

K

K∑
k=1

εa,k (3.38)
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Figure 3.6: Mean of magnitudes of errors for translation in case of dominant for-
ward translations.

It is good to mention that since the regularization term is centered on the origin;

not surprisingly, the proposed method could perform well if the rotation pa-

rameters were also distributed about the origin. Therefore, we selected random

rotation angles with nonzero means to evaluate the method in a more challenging
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case. The comparison results for the case of dominant forward translation can

be seen in Fig. 3.6a and Fig. 3.6b. In Fig. 3.7a and Fig. 3.7b, the translation

and rotation errors for the case of dominant side translation are visualized. We

can see that the regularization constraint improved the translation estimation

slightly; however, it resulted in noticeable improvements for the rotation estima-

tion in case of forward translation and good improvements for side translation.
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Figure 3.7: Mean of magnitudes of errors for translation in case of dominant side
translations.

Surprisingly, we see that the 5-point method had a poor performance in rotation

estimation (possibly due to numerical errors) in case of side motion. As a result,

we can conclude that the 7-point-R method provides more reliable estimations if

the camera experiences different types of motions.
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3.5 Experimental Results

In this section, we first evaluate the performance of different methods for the esti-

mation of the essential matrix (ego-motion up to scale) in subsection 3.5.1 based

on the training sequences of the KITTI dataset for visual odometry [KIT15].

Then the estimation of scale of translations is taken into account in subsection

3.5.2 for the test sequences of the KITTI dataset.

3.5.1 Motion Estimation Up to Scale

To evaluate our proposed methods, we used the KITTI dataset for visual odome-

try [KIT15]. The dataset includes 22 long challenging sequences. The first eleven

sequences are for training and their ground truths are provided. In table 3.3, the

number of frames and the lengths of the training sequences are listed. As monoc-

ular camera motion can generally be estimated up to scale and absolute scale of

translations is unknown if no other source of information is used, in this exper-

iment, we replaced the scale factor from the provided ground truths of the first

eleven sequences and conducted the evaluation based on the new ground truths.

We applied the proposed regularization term for the 8-point, 7-point and 5-point

methods and compared them with the original methods. The methods were im-

plemented using C++ and ran on a computer with an Intel(R) Core(TM)2 Duo

3.33 GHz CPU. All the methods were run in the context of a random sample

consensus algorithm (RANSAC), in which several essential matrices based on

randomly selected N-matched points were calculated and then the best essential

matrix which defined the flow of all points with the minimum epipolar distance

errors was selected.

For quantitative comparisons, we used two types of accumulating errors: first,

the mean of magnitudes of errors between all estimated and ground truth camera

poses denoted as MMEp. If the camera position at time k is ck and the estimates

position is ĉk, MMEc will be:

MMEc =
1

K

K∑
k=1

√
εTc,kεc,k (3.39)
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Table 3.3: The number of frames and the lengths of training sequences of the
KITTI dataset for visual odometry.

Sequence 00 01 02 03 04 05

#Frames 4541 1101 4661 801 271 2761

Length [m] 3723.6 2453.1 5067.0 560.9 393.7 2205.5

Sequence 06 07 08 09 10 Avg.

#Frames 1101 1101 4701 1591 1201 2109.2

Length [m] 1231.5 694.7 3222.5 1705.0 919.4 2016.1

where εc,k = ĉk − ck.

The second measure is the mean of magnitudes of errors between the estimated

and ground truth angles at all poses: MMEa. If the orientation of camera at

time k is shown by the rotation matrix Rk and the estimated camera orientation

is R̂k, MMEa will be:

MMEa =
1

K

K∑
k=1

εa,k (3.40)

where εa,k = 180
π

√
3− trace(Re,k) and Re,k = RTk R̂k.

For feature tracking, we used Harris corner detectors and forward backward

Lucas-Kanade optical flow proposed in section 3.1.2 by using OpenCV library

[Ope15]. The comparison results can be seen in table 3.4 and table 3.5.

Clearly, applying the regularization constraint improves the original 8- and 7-

point methods significantly for all sequences and improves the 5-point method

for some sequences. To have a better perception of the enhancements achieved

through applying regularization terms for different methods, we visualized the

estimated paths using the 8-point-N and the 8-point-R for the sequences 0, 1 and

9 along with the errors at each frame in Fig. 3.12 to Fig. 3.14. We can observe

that the regularization term prohibited large rotation errors and consequently,

the estimated paths are very close to the ground truth paths.

The camera poses are with respect to a coordinate system attached to the first

camera pose in each sequence. In Fig. 3.8, the alignment of the axis of the

mentioned coordinate system is depicted.
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Table 3.4: Mean of magnitudes errors between the estimated and ground truth
paths. Suffix (-R) is for regularized methods. 8-point-M is the mod-
ified 8-point method based on the weighted coplanarity constraints.
8-point-N is the normalized method proposed in [Har97].

Sequence 00 01 02 03 04 05
MMEc[m/frame]

7-point-R 23.4 25.0 12.8 2.4 0.9 22.9
7-point 32.3 139.3 30.0 4.7 1.5 27.4

5-point-R 9.2 53.5 24.0 3.0 1.1 30.1
5-point 9.4 78.7 36.3 3.6 1.3 30.1

8-point-R 25.3 40.7 47.3 6.2 1.6 28.6
8-point-M 70.3 126.2 93.3 11.2 1.6 67.3
8-point-N 70.0 443.5 97.4 23.6 5.3 66.5

Sequence 06 07 08 09 10 Avg.
MMEc[m/frame]

7-point-R 5.5 12.2 58.7 11.2 8.3 11.6
7-point 10.5 14.9 61.5 25.6 12.0 30.1
5-point-R 8.3 10.5 58.0 12.0 9.2 19.9
5-point 8.8 10.8 67.3 16.6 9.4 24.75
8-point-R 13.0 13.8 67.6 16.2 14.8 25.0
8-point-M 10.2 22.8 82.9 44.0 24.3 50.4
8-point 27.3 22.7 124.9 42.0 38.6 87.4

To have an impression of the contents of different sequences, in Fig. 3.9, Fig.

3.10 and Fig. 3.11, some of sample frames from the sequences 0, 1 and 9 are

presented. In Fig. 3.15, Fig. 3.16, Fig. 3.17, the estimated paths and error charts

for the sequences 0, 1 and 9 are depicted. We can see that the regularization

term also resulted in better estimations. Finally, the comparison between the

estimated paths for the sequences 0, 1 and 9 is presented in Fig. 3.18, Fig. 3.19

and Fig. 3.20.

In average, the 7-point-R method yielded the best results. To understand the

results better, it should be mentioned that in the estimation of essential matrices,

the most challenging case is when the base line motion is small and the rotations

are high. It can be verified that in such cases the coplanarity equations tend

to zero regardless of the motion parameters. Hence, in these cases, measure-

ment noise can give rise to large errors in the estimation of essential matrices

and motion parameters (especially the rotation parameters). These situations

occur very often in the KITTI dataset when the car drives trough sharp bends.

Consequently, the 8-point methods had a very poor performance almost in all
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Table 3.5: Mean of magnitudes of errors between the estimated and ground truth
angles. Suffix (-R) is for regularized methods. 8-point-M is the mod-
ified 8-point method based on the weighted coplanarity constraints.
8-point-N is the normalized method proposed in [Har97].

sequence 00 01 02 03 04 05
MMEa[deg/frame]

7-point-R 4.58 3.40 3.56 1.16 0.53 2.71
7-point 8.07 22.95 7.37 1.12 0.75 4.63

5-point-R 1.66 7.43 5.49 1.28 0.54 5.03
5-point 1.66 9.41 7.38 1.24 0.42 5.53

8-point-R 2.59 8.72 9.07 2.02 0.39 3.47
8-point-M 9.03 56.57 9.24 2.13 1.30 17.31
8-point-N 15.80 82.65 7.38 4.49 9.29 10.46

sequence 06 07 08 09 10 Avg.
MMEa[deg/frame]

7-point-R 4.33 4.23 1.83 2.54 1.32 2.74
7-point 5.82 5.63 3.45 4.98 6.74 6.50

5-point-R 2.97 3.58 1.51 1.04 2.27 2.98
5-point 2.92 3.90 1.61 2.53 1.64 3.48

8-point-R 5.89 6.26 3.91 3.85 4.60 4.62
8-point-M 16.93 9.53 12.05 11.45 11.00 14.23
8-point-N 8.65 5.53 16.11 11.37 12.16 16.72

of the sequences. On the contrary, applying the regularization constraint made

the 8-point-R method have almost the same performance as the 7-point method

at a much lower elapsed time which shows that it could be a proper option for

real-time applications.

The 5-point-R method, as expected, had a better performance than the 7-point

method and even for the sequence 0, it outperformed 7-point-R. But for the

other sequences, it performed either similar to or worse than the 7-point-R (e.g.

sequence 1). We analyzed the sequences more precisely and noticed that in the

sequences where the outlier ratio is high, the 5-point method works more robust

than other methods. The reason lies in the RANSAC part, in which N-matched

points are selected randomly. Clearly, the less N matched points are selected,

the more it is possible that the matched points do not contain any outliers.

On the other hand, based on the simulation results, the 5-point-R method does

not perform well to estimate rotation matrices in case of dominant side motions

(occurred in sharp bends) which explains why it could not outperform the 7-

point-R method.
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Figure 3.8: Coordinate system aligned to the image plane of a camera.

The elapsed time for different methods can be seen in table 3.6. We see that

the inclusion of the regularization term increased the elapsed time which was the

cost to increase the quality of the estimation of motion parameters. According

to this table, for real-time purposes, the 8-point-R method is an appropriate

option since it is not only fast but also estimate camera motions much better

than normalized 8-point method (8-point-N).

Table 3.6: Average elapsed time (E. T.) per frame for different methods. 5PR=
5-point-R, 5p= 5-point, 7PR= 7-point-R, 8PR= 8-point-R, 8PM=
8point-M and 8PN= 8-point-N.

Method 5PR 5P 7PR 7P 8PR 8PM 8PN

E. T. [s/frame] 4.82 4.12 0.39 0.32 0.21 0.12 0.13
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(a) Frame 0 (b) Frame 20

(c) Frame 40 (d) Frame 60

Figure 3.9: Sample frames from sequence 0.

(a) Frame 0 (b) Frame 20

(c) Frame 40 (d) Frame 60

Figure 3.10: Sample frames from sequence 1.

(a) Frame 0 (b) Frame 20

(c) Frame 40 (d) Frame 60

Figure 3.11: Sample frames from sequence 9.
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Figure 3.12: Estimation of camera poses for the sequence 0 of the KITTI dataset
using the 8-point and 8-point-R methods. Top: estimated paths
and ground truth. Bottom: errors of camera position and orien-
tation at each frame. Clearly, the 8-point-R method managed to
estimate camera poses near to the ground truth, while the 8-point
method yielded a poor estimation. The errors are mainly originated
from the poor estimations of rotation matrices when the car drives
through sharp bends. In this cases, many of the points will have
large coordinates resulting in the amplification of measurement noise
significantly.
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Figure 3.13: Estimation of camera poses for the sequence 01 of the KITTI dataset
using the 8-point and 8-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. In this sequence, the car drives in an Autobahn, where
most features are far from the camera. It results in small feature
displacements subjected to measurement noise more (small signal to
noise ratio). Additionally, due to the repeated patterns of guardrails,
the number of wrong matches (outliers) is relatively high. These two
issues give rise to large errors in estimation of rotation matrices so
that the estimated path using the 8-point method is totally wrong.
Whereas, thanks to the regularization term, the 8-point-R method
was able to deal with the disturbances effectively.
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Figure 3.14: Estimation of camera poses for the sequence 09 of the KITTI dataset
using the 8-point and 8-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. The results for this sequence depict the good perfor-
mance of the 8-point-R method in the estimation of pitch and roll
angles (φ and ψ). Since the 8-point method does not take into ac-
count the dependencies of the essential matrix elements, it generally
has a poor performance in the estimation of pitch and roll angles.
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Figure 3.15: Estimation of camera poses for the sequence 0 of the KITTI dataset
using the 7-point and 7-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation
at each frame. In this sequence, the 7-point-R method was able to
estimate rotation matrices in the sharp bends better than the 7-point
method.
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Figure 3.16: Estimation of camera poses for the sequence 01 of the KITTI dataset
using th 7-point and 7-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. The 7-point method could not deal with the high ratio
of outliers effectively, resulting in large errors in estimation of the
essential matrices. Whereas, the 7-point-R method could estimate
the path very close to the ground truth.
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Figure 3.17: Estimation of camera poses for the sequence 09 of the KITTI dataset
using th 7-point and 7-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. It can be seen that the 7-point-R method has a better
performance in estimation of roll and pitch angles, resulting in better
estimation of the elevation of the car.
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Figure 3.18: Estimation of camera poses for the sequence 0 of the KITTI dataset
using the 5-point and 5-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. Both methods yielded very good estimations of motion
parameters. However, a slight better performance of the 5-point-R
method in the estimation of camera poses is also visible.
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Figure 3.19: Estimation of camera poses for the sequence 01 of the KITTI dataset
using th 5-point and 5-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. The 5-point(-R) methods deal with outliers effectively
since they use less number of matched points. But in this sequence,
they performed poorly in comparison to the 7-point-R method, show-
ing the sensitivities of the 5-point methods to relatively high mea-
surement noises.
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Figure 3.20: Estimation of camera poses for the sequence 09 of the KITTI dataset
using th 5-point and 5-point-R methods. Top: estimated paths and
ground truth. Bottom: errors of camera position and orientation at
each frame. The 5-point method had a slight better estimation of
yaw angles (θ).
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3.5.2 Absolute Scale Detection

If a camera is installed on a wheeled vehicle, an intuitive method to detect scale

of translations is to use the height of the camera over the ground plan as a

known parameter. This method has been used in [GZS11], [SCG13] and [SC14].

To utilize this parameter, it is necessary to track features on the ground plane.

Nevertheless, tracking features belonging to ground planes is challenging since

typically ground planes are highly homogeneous and the feature are not distinc-

tive enough to be tracked uniquely. Such features cannot be tracked using the

Lucas-Kanade optical flow method as it relies on the relatively high amount of

brightness gradients about the feature points. Hence, feature matching or dense

matching techniques should be utilized to track points on the ground planes.

Among the feature matching methods, those with binary descriptors such as

ORB or BRISK also fail in most cases as they cannot capture reliable binary

patterns if a neighborhood is homogeneous. In such cases, a small amount of

noise changes the binary patterns significantly. On the other hand, SIFT or

SURF descriptors which are based on gradient patterns could be good variants;

however, unfortunately, they are computationally expensive. In [GZS11], a sim-

ple descriptor with the length of eighteen based on the gradients about each

feature in a window with the size 3× 3 is utilized. This method works well if the

homogeneity is not high. Hence, in [SC14], a dense matching over a region of

interest between two frames was conducted, which yielded relatively good esti-

mations of scale factors. However, this method is computationally expensive.

To deal with this problem, we push forward a new descriptor and a new matching

technique which are concurrently fast and accurate. In our method, we extract

corner features from two consecutive frames at different pyramid levels and assign

a compact version of the SURF descriptor to them. The mentioned descriptor

contains the average of image gradients in the four windows in the neighborhood

of each feature. The length of the descriptor is eight, which results in a very

fast matching process. We call this descriptor distributed averages of gradients

(DAG). Given two frames, features in the ith frame (i = 1, 2) is denoted as

fj,i = (xj,i, yj,i) with the descriptors dj,i, where j = 1...Mi and Mi is the number
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of features in the ith frame. The Euclidean distance between two descriptor

vectors is denoted as:

er,s = ||dr,2 − ds,1|| (3.41)

For each feature in the second frame e.g. fr,2, two matches in the first frame

with the minimum distances are found:

(fr,2, fs,1)

(fr,2, ft,1) (3.42)

where er,s < es,t. Practically, we found that if er,s/e(r, t) < 0.4, it is highly

probable that the first match is correct. Otherwise, both of the matched features

can be potential candidates for the correct match. One important criterion to

reject many of the outliers are the distances of the matched points to their

correspondent epipolar lines. In the matching process if the candidate matched

points have distances more than five pixels, we do not consider them as possible

matches. In Fig. 3.21, tracking of low quality features on the ground plane is

visualized. It can be seen hat the ground plane is highly homogeneous, but the

method managed to track many features.

Figure 3.21: Tracking low quality features on the ground plane based on the DAG
descriptors and epipolar constraint. The green lines represent feature
tracking using FBLK and the blue lines represent feature tracking
using DAG and the epipolar constraint.
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After finding two possible matches for each feature in the second frame, we

consider both possibilities and calculate the scale factor for both cases. Given N

features in the second frame, more thanN scale factors are calculated. Obviously,

the best scale factor is the one which is more repeated. To find the most repeated

scale factor, a median filter can be used. To this end, all the obtained scale factors

are sorted and then the most probable scale factor will be the middle value.

The above procedure should be run if the number of tracked features on the

ground plane is less than a threshold. We used the proposed method for scale

determination and submitted the results to the KITTI portal under the name

RCMPE+GP (relative camera pose estimation + ground plane). In table 3.7,

the ranking of all submitted methods to the KITTI portal on the date 15.07.2015

is presented. Not surprisingly, the best estimations are delivered using the point

cloud data (V-LOAM) [ZS15]. These methods require high computation load.

Additionally, point cloud data is produced by a 3D laser scanner (LIDAR) which

is very expensive and heavy. Following, the methods based on LIDAR, stereo

vision based methods are ranked. We notify that both of the LIDAR and stereo

vision based methods enjoy range and bearing measurements, while in monocular

methods, only bearing measurements are utilized. Nevertheless, it can be seen

that our method outperforms many of the stereo vision based methods.

Among the published monocular methods, our method has the rank second after

the MLM-SFM method [SC14]. In Fig. 3.22, the average of translation errors

and the average of rotation errors at different distances of the paths are depicted.

We can see that libviso method [GZS11] has large drifts both in the estimations

of rotation matrices and translation vectors. In average, our method has 2.55%

error in the estimation of translation and the MLM-SFM method has 2.54% error.

It should be considered that MLM-SFM is based on the multiple observations of

features and iterative optimization of a set of consecutive camera poses. For the

scale detection, MLM-SFM uses dense plane matching and a Kalman filter to

estimate scale more smoothly. Furthermore, this method uses extra processes to

detect moving objects and remove features on the moving objects. Whereas, in

our method, we achieved good estimations based on only two consecutive frames

and sparse matching of features on the ground plane.
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From the eleven submitted sequences, X − Z plots of the first five sequences

are visualized in the KITTI Portal. In Fig. 3.23 and Fig. 3.24, the estimated

paths based on our method (RCMPE+GP), MLM-SFM and libviso are depicted.

Visually, it can be seen that our method is near to the ground truths in sequences

11, 13 and 15. MLM-SFM has better estimation for the sequence 12. The better

performance of the MLM-SFM method lies in the fact that the method uses a

separate process to detect features on moving objects. As a result, it has better

performance in the sequences in which many moving objects (cars) exist.

Figure 3.22: Averages of translation and average of rotation errors for the test se-
quences of KITTI dataset: RCMPE+GP (top), MLM-SFM (middle)
and libviso (bottom). The images are adapted from [KIT15].
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Table 3.7: Ranking of all methods in the KITTI website on 15.07.2015. pc: point
cloud, st: stereo, m: monocular.

Rank Method data T. error [%] R. error [deg/m] Published

1 VLOAM pc 0.75 0.0018 yes

2 LOAM pc 0.88 0.0022 yes

3 SOFT st 1.03 0.0029 no

4 cv4xv1-sc st 1.09 0.0029 yes

5 DEMO pc 1.14 0.0049 yes

6 MFI st 1.3 0.003 yes

7 TLBBA st 1.36 0.0038 yes

8 2FO-CC st 1.37 0.0035 yes

9 VoBa st 1.46 0.003 no

10 MuProV st 1.5 0.0041 no

11 StereoSFM st 1.51 0.0042 yes

12 JDO st 1.55 0.0039 no

13 SSLAM st 1.57 0.0044 yes

14 Stereo VO st 1.59 0.0033 no

15 BackwardVO st 1.6 0.0036 no

16 MVO m 1,6 0.0029 no

17 BA-MFT st 1.62 0.003 no

18 eVO st 1.76 0.0036 yes

19 SOVI st 1.8 0.0079 no

20 D6DVO st 2.04 0.0051 yes

21 MICP VO st 2.13 0.0065 no

22 SSLAM-HR st 2.14 0.0059 yes

23 W-SFM m 2.16 0.0033 no

24 FTMVO m 2.24 0.0049 no

25 NOSM st 2.28 0.004 no

26 LCMVO m 2,33 0.005 no

27 VISO2-S st 2.44 0.0114 yes

28 MLM-SFM m 2.54 0.0057 yes

29 GT VO3pt st 2.54 0.0087 yes

30 BoofCV-SQ3 st 2.54 0.0073 no

31 RCMPE+GP m 2.55 0.0086 yes

32 VO3pt st 2.69 0.0068 yes

33 CDR st 2.75 0..0045 no

34 TGVO st 2.94 0.0077 yes

35 FA m 2.98 0.0073 no

36 SVO st 3.01 0.008 no

37 VO3ptLBA st 3.13 0.0104 yes

38 MSD VO st 3.57 0.0109 no

39 CFORB st 3.73 0.0107 no

40 VOFS st 3.94 0.0099 yes

41 VOSLABA st 4.17 0.0112 yes

42 CFROB st 5.32 0.0128 no

43 VISO2-M+GP m 7.46 0.0245 yes

44 RMVO m 8.33 0.0233 no

45 LPF m 8.98 0.0246 no

46 VISO2-M m 11.94 0.0234 yes

47 OABA m 20.95 0.0135 no
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Ground Truth Visual Odometry Sequence Start

Figure 3.23: Estimated X − Z paths using different methods: RCMPE+GP
(left column), MLM-SFM (middle column) and libviso (right col-
umn).The images are adapted from [KIT15].
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Ground Truth Visual Odometry Sequence Start

Figure 3.24: Estimated X −Z paths using different methods: RCMPE+GP (left
column), MLM-SFM (middle column) and libviso (right column).
The images are from [KIT15].
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4 2D Monocular SLAM

In this chapter, new techniques are proposed to localize mobile robots and create

maps of landmarks simultaneously using a monocular camera. To this end, unlike

the visual odometry methods, we leverage multiple observations of landmarks.

Multiple observations generally enhance the estimation of robot and landmark

positions as the effect of measurement noise is suppressed more. In the case of

monocular (bearing only) SLAM, a natural way to consider the uncertainty of

a landmark at the initialization time is to assume a uniform distribution over

a ray at which the landmark is observed for the first time. This distribution

gradually tends towards a Gaussian distribution if the landmark is observed

again at more parallax angles. Nevertheless, we can consider a line segment as a

support for these distributions of which ending points have direct relations with

the 2σ confidential region of a Gaussian distribution or a uniform distribution.

In this chapter, we discuss how to use line segments to model the uncertainties

in the positions of landmarks in the 2D monocular SLAM problem. This chapter

is based on our works in [MM12b], [MM12c] and [MM13a].

4.1 A Particle Filter Based Method

As illustrated in chapter 2.3, the main problem of bearing only SLAM is how to

handle the large uncertainties of landmarks. Considering Fig. 4.1, in the presence

of measurement noises vt ∼ N (0, σv), if a robot at the position xRt observes the

landmark Lj at the bearing angle φj , the landmark position is distributed over a

trapezoidal support. However, since measurement noise is a relative quantity, we

can consider measurement noise at the initialization time zero, and consequently
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the distribution will be simply on a line segment. Therefore, the distribution of

a landmark at the initialization time is:

p(xLj |xRt , φj,t) =

1/(rmax − rmin), if c

0, else
(4.1)

where

c : yLj = mj,t x
L
j + bj,t &

rmin cosψj,t + xRt < xLj < rmax cosψj,t + xRt

ψj,t = φj,t + θRt , mj,t = tanψj,t, bj,t = yRt − tan(ψj,t)x
R
t . rmin, rmax are

parameters which state the minimum and maximum ranges in which we expect

the landmark exists. it means that we assume a uniform distribution for a

landmark on a line segment in a predefined range given the position of the robot.

A line segment can be represented as a function such as Γ as follows:

Γ(xLj,c,t, λj,t, αj,t) (4.2)

where xLc,t = (xLc,t, y
L
c,t) is the center of the line segment with the length λt and

the angle αj,t with respect to the X axis. Consequently, we can denote the line

segment for the jth landmark as Γj,t which is Γj,t = Γ(xLj,c,t, λj,t, αj,t).

4

Figure 4.1: Landmark initialization using a trapezoid.
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After the initialization of a landmark, the goal is to minimize the uncertainties

of the robot and the landmark positions while the robot moves. The main idea is

that the bounded uncertainty of the landmark results in the bounded uncertainty

of the robot pose and vice-versa. Such a mutual relation in EKF based methods

is implemented using a covariance matrix. In the following, considering the

proposed model for a landmark uncertainty, such a relation in the context of a

probability density function will be derived.

First, we start with the depth estimation of a feature if at least two different

bearing observations of the feature are available. We know that if the landmark

Lj is observed at two angles φj,1 and φj,2 at two different robot poses xR1 and xR2 ,

the landmark is located on the intersection of the lines along which the landmark

is observed, meaning:

yLj = mj,1x
L
j + bj,1

yLj = mj,2x
L
j + bj,2

Solving the above equation system results in:

xLj = (bj,2 − bj,1)/(mj,1 −mj,2)

yLj = mj,1x
L
j + bj,1

If we consider measurement noise, the landmark should be localized on a line

segment created by the intersection of a line segment and a trapezoid (Fig. 4.2).

Clearly the distribution of the intersection points on the line segment depending

on the parallax angle will not be uniform any more, but the ending points are

always equivalent to the 2σv borders of a Gaussian distribution. As a result we

can always keep the support of the distribution over a line segment.

The above calculation is valid if and only if the exact positions of the robot are

available. Otherwise, minor errors in the robot pose can cause major errors in the

calculation of the landmark positions, especially if the landmarks are observed at
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x

x

x

Figure 4.2: Trimming of a line segment in the presence of measurement noises.

low parallax angles. However, the intersecting method can be used in the context

of a recursive Bayesian filter which includes prediction and update phases. Now,

the problem is the estimation of the robot and the landmark positions, given the

following measurement sequence:

{Φt} = {Φ1,t, ...,ΦM,t}

where Φj,t = {φj,t, φj,t−1, ..., φj,0}, j = 1...M .

Speaking in probabilistic terms, if the vectors xRt = [xRt yRt θRt ]T and xLj =

[xLj y
L
j ]T are defined, the following PDF (probability density function) should be

estimated:

p(xRt , {xLj,t}|{Φt}) (4.3)

We first decompose Eq. (4.3) using the conditional probability rules as follows:

p(xRt , {xLj,t}|{Φt}) = p({xLj,t}|xRt , {Φt})p(xRt |{Φt}) (4.4)

Given Eq. (4.4), the recursive algorithm can be formed as follows:

Prediction:

p(xRt+1|{Φt}) =

∫
p(xRt+1|xRt ,ut)p(xRt |{Φt})p(ut)dxRt dut (4.5)

where ut = [uf,t, ur,t].
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Update:

p(xRt+1|{Φt+1}) =
p({φt+1}|xRt+1, {Φt})
p({φt+1}|{Φt})

p(xRt+1|{Φt}) (4.6)

Since the positions of the landmarks are independent of each other, Eq. (4.6)

becomes:

p(xRt+1|{Φt+1}) =

M∏
j=1

p(φj,t+1|xRt+1,Φj,t)

M∏
j=1

p(φj,t+1|Φj,t)

p(xRt+1|{Φt}) (4.7)

where

p(φj,t+1|Φj,t) =

∫
p(φj,t+1|xRt+1,Φj,t)p(x

R
t+1|Φj,t)dxRt+1 (4.8)

and

p(φj,t+1|xRt+1,Φj,t) =∫
p(φj,t+1|xRt+1,x

L
j,t)p(x

L
j,t| xRt ,Φj,t)p(xRt |Φj,t) dxLj,t dxRt

(4.9)

The term p(xLj,t|xRt ,Φj,t) in Eq. (4.9) can be presented by a distribution located

over a line segment which starts at the robot position and has a direction with

the angle θRt + φj,t and is bounded by the border of the last estimation of xLj,t

(Fig. 4.3).

The next step is to update the PDF of xLj , meaning:

p(xLj,t+1|Φj,t+1) =

∫
p(xLj,t+1|xRt+1,Φj,t+1)p(xRt+1|Φj,t+1)dxRt+1 (4.10)

In Eq. (4.10), p(xLj,t+1|xRt+1,Φj,t+1) again represents a distribution over a line

segment which is limited by the border of p(xLj,t|Φj,t+1). This results in the re-

quired rule to trim the length of the line segments. However, the implementation
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Figure 4.3: The possible landmark position given the robot pose and all the pre-
vious measurements.

of such an algorithm requires again to store the landmark regions as polygons

and then find the intersection points, which gives rise to a very time consuming

algorithm as discussed before. To ease this problem, we attempt to generalize

the idea of using line segments attached to each robot pose which belongs to

p(xLj,t|Φj,t+1) in order to represent part of the landmark uncertainty, but not

necessarily along the line between the robot and the landmark. For the sake of

simplicity, the initial angles of line segments, {αj,t}, are kept constant, and then

the centers and lengths will be modified. Therefore, Eq. (4.10) is decomposed

again as follows:

p(xLj,t+1|Φj,t+1) =

∫
p(xLj,t+1|xRt+1,Γj,t,x

R
t ,Φj,t+1)×

p(xRt+1|xRt ,Φj,t+1)p(Γj,t|xRt ,Φj,t+1)×

p(xRt |Φj,t+1) dxRt+1dx
R
t dΓj,t (4.11)

where Γj,t is the line segment for the jth landmark Lj . Considering the fact that

Γj,t can be uniquely determined when xRt and Φj,t+1 are given, then p(Γj,t|xRt ,Φj,t+1)

will be a dirac-delta function of which integration will be one. Furthermore, in

the first probability term, the conditions (xRt ,Φj,t+1) do not give any more in-

formation if Γj,t is available. Therefore, Eq. (4.11) becomes:
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p(xLj,t+1|Φj,t+1) =

∫
p(xLj,t+1|xRt+1,Γj,t, φj,t+1)×

p(xRt+1|xRt ,Φj,t+1)p(xRt |Φj,t+1) dxRt+1dx
R
t

(4.12)

This decomposition gives us the possible locations of xLj,t+1 over Γj,t. Obviously,

based on distribution of the locations over the line segment, the centers and

lengths of the updated line segments can be achieved. In Eq.(4.12), the term

p(xLj,t+1|xRt+1,Γj,t, φj,t+1)p(xRt+1|xRt ,Φj,t+1) has the interpretation that assuming

a robot pose xRt , a set of xRt+1s denoted as XR
t+1|xRt can be achieved. Then, for

each xRt+1 ∈ XR
t+1 and given φj,t+1 a line segment can be assumed which intersects

Γj,t. These intersected regions can be included again in new line segments in a

way shown in Fig. 4.2 with the centers xLj,c,t+1|xRt+1. Based on the numerical

simulation and also as we will show in section 4.2, we observe that the distribution

of these centers would have a non-symmetric shape as shown in Fig. 4.4. As can

be seen, the density of the centers decreases for the further locations on line

segments. This issue should be considered when we want to sample the PDF of

the robot and the landmark positions to work with particle filters. In this case,

the lengths of the updated Γ should be determined in such a way that we do not

lose any piece of data by which the algorithm may diverge.

Figure 4.4: The PDF of new centers over the Γj,t. ψj,t+1,1 = θRt+1 +φj,t+1 +2σv+
2σw2 and ψj,t+1,2 = θRt+1 + φj,t+1 − 2σv − 2σw2



134 4 2D Monocular SLAM

4.1.1 Particle Filter Implementation

The recursive algorithm mentioned in the previous section can be implemented

using a modified particle filter approach. In such an approach, the possible

positions of the robot are assumed as a finite set of points in R3 space, while the

uncertainty of landmarks are modeled by a set of line segments Γ each of which

is bound to a robot pose. Thus, the estimated vector will be [xRt , {Γj,t}]T .

Based on the derived formulation in the previous section, the following algorithm

can be generated:

Prediction:

Generate Np samples (particles) from the PDF p(xRt |Φj,t+1) such as XR
t =

{xRt,1, ...,xRt,Np}, and the Np attached line segments (Γj,t,i) for each landmark

such as XL
j,t = {ΓLj,t,1, ...,ΓLj,t,Np}, where j = 1, ..,M . Generate also Np samples

from p(ũt) such as Ũt = {ũt,1, ..., ũt,Np}. By plugging XR
t and Ũt into the mo-

tion model (Eq. 2.79), the next possible robot poses X̂R
t+1 = {x̂Rt+1,1, ..., x̂

R
t+1,Np}

are obtained.

Considering XL
j,t and X̂R

t+1, a predicted range of the measurement for each pair

of a robot pose and a landmark position (x̂Rt+1,r,Γj,t,r), (r = 1...Np), such as

φ̄j,t+1,r is obtained (Fig. 4.5):

φ̄j,t+1,r = [φ̂j,1,t+1,r, φ̂j,2,t+1,r] (4.13)

i

r

,r

,r

Figure 4.5: The expected range of the bearing measurement in the next step.
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Update:

As soon as the new measurements {φj,t+1} are achieved the weights of the new

particles can be calculated as follows:

ωr =
1

c

M∏
j=1

e
−

(φj,t+1−φ̂j,t+1,r)
2

2σ̂2
j,t+1,r

where

φ̂j,t+1,r =
φ̂j,1,t+1,r+φ̂j,2,t+1,r

2
, σ̂j,t+1,r = | φ̂j,2,t+1,r−φ̂j,1,t+1,r

4
| + σv and c is a

normalization factor.

The next step is to associate line segments Γj,t+1,r to the update particles.

It is clear that for each particle xRt,i a predicted distribution can be assumed

such as p(xRt+1|xRt,i). However, from this distribution we expect only ni,t+1 =

Np × p(xRt,i|Φj,t+1) samples to exist in X̂R
t+1. Therefore, considering Fig. 4.4, in

order not to filter out important hypothesizes of a landmark position in sampling

phases, Γj,t+1,rs should be cut out from Γj,t,i cautiously. A robust way for this

purpose is to intersect Γj,t,i with two lines starting at the point x̂Rt+1,r|xRt,i with

the following angles:

ψj,r,1 = θ̂t+1,r,1 + φj,t+1 + 2σv + σw2 and

ψj,r,2 = θ̂t+1,r,1 + φj,t+1 − 2σv − σw2.

4.2 A Subspace Method with Minimal Number of Samples

The method offered in the previous section was based on a particle filter approach.

In particle filter based methods, the sufficient number of particles is always an

issue so that the number of particles should be increased exponentially if the the

uncertainty of a state vector or the dimension of the vector increase. To alleviate

this problem inspired from the FastSLAM2.0 [MTKW03], we use the current

measurement to shrink the uncertainties of the robot pose. Consequently, the

number of samples can be kept constant in a wide range of odometry noise. To

sample the PDF of the robot pose efficiently with a minimal number of samples,

we use the sampling method used in the UKF filter. As already mentioned,
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the sampled points are known as sigma points. In the UKF sampling method,

from a vector of the length n, 2n+ 1 samples are obtained. Consequently, given

the robot pose vector [xRt , y
R
t , θ

R
t ]T with the distribution xRt ∼ N (x̄Rt ,Σ), seven

samples can be obtained:

xRt,0 = x̄Rt

xRt,r = x̄Rt +

(√
3

1− w0
Σ

)
r

xRt,r+3 = x̄Rt −

(√
3

1− w0
Σ

)
r

w0 =
1

3

wr = wr+3 =
1

9
; r = 1, 2, 3 (4.14)

where (.)r is the rth column of the matrix.

4.2.1 Intersection of Two Line Segments Under the Uncertainties of

Parameters

Similar to the particle filter based method, we should localize the landmarks

using the intersection of line segments. However, since we use minimal number of

samples, the parameters of the line segments have uncertainties and consequently

the intersection points have also uncertainties. In this section, we discuss given

a sample such as xRt,i from p(xRt |.), uf,t, ur,t and Φj,t+1, what would be the

distribution of the intersection points.

We know that a line equation can be presented in a vector form as follows:

x = x0 + dp (4.15)

where x = [x y]T represents the point locations on the line, x0 = [x0 y0]T is

a known point of the line, d is a scalar depth variable and p = [p1 p2]T is a

vector which stands for the orientation of the line. In a line equation, the depth
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parameter varies between −∞ and +∞. For a line segment, however, it lies in a

limited interval such as [dmin, dmax].

We should mention that in the line segment method once a landmark at the

time step l is initialized with a line segment such as Γj,l,t, its orientation is kept

almost constant but its starting point and the depth parameter will be changed

by receiving the new measurements. The changes of these parameters are based

on the intersection point of the two lines: Γj,l,k,i and the line at where the same

landmark at the new robot pose is observed (Γj,k+1,i). For the simplicity, we

remove the index i and also replace the indexes (j, l, k) and (j, k+ 1) with 1 and

2. Therefore, based on Eq. (4.15), the line equations will be:

xL1 = xL1,0 + d1p1

xL2 = xL2,0 + d2p2 (4.16)

where xL2,0 = [xRt+1 yRt+1]T , p1 = [cosα1 sinα1]T : α1 = θRl + φj,l and p2 =

[cosα2 sinα2]T : α2 = θRt+1 + φj,k+1.

Eq. (4.16) can be solved for d1:

[
p1| − p2

] [d1

d2

]
=

[
∆xL

∆yL

]
(4.17)

where ∆xL = xL2,0 − xL1,0, ∆yL = yL2,0 − yL1,0.

The solution for d1 is:

d1 =
∆xL sinα2 −∆yL cosα2

sin(α2 − α1)
(4.18)

Considering the motion model of a differential drive robot:

xRt+1 = xRt + uf,t cos(θRt )

yRt+1 = yRt + uf,t sin(θRt )

θRt+1 = θRt + ur,t (4.19)
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Eq. (4.18) can be rewritten as:

d1 =
(xRt − xL1,0) sinα2 − (yRt − yL1,0) cosα2 + uf,t sin(α2 − θRt )

sin(α2 − α1)
(4.20)

Since φj,l, φt+1 and uf,t are Gaussian random variables as follows:

φj,l ∼ N (φ̄j,l, σ
2
v)

φj,t+1 ∼ N (φ̄j,t+1, σ
2
v)

uf,t ∼ N (ūf,t, σ
2
ũf ) (4.21)

we can write:

α1 = ᾱ1 + α̃1

α2 = ᾱ2 + α̃2 (4.22)

where ᾱ1 = θ̄Rl + φ̄j,l, α̃1 ∼ N (0, σ2
v) and ᾱ2 = θRt + ūr,t+ φ̄j,t+1, α̃2 ∼ N (0, σ2

v +

σ2
ũr ).

By plugging Eq. (4.22) into Eq. (4.20) we have:

d1 =

(xRt + uf,t cos θRt − xL1,0) sin(ᾱ2 + α̃2)−
(yRt + uf,t sin θRt − yL1,0) cos(ᾱ2 + α̃2)

sin(ᾱ2 − ᾱ1 + α̃2 − α̃1)
(4.23)

Simplifying Eq. (4.23) gives:

d1 =

∆x sin(ᾱ2 + α̃2)−∆y cos(ᾱ2 + α̃2)+

(ūf,t + ũf,t) sin(ᾱ2 − θRt + α̃2)

sin(∆ᾱ+ ∆α̃)
(4.24)

where ∆x = xRt − xL1,0, ∆y = yRt − yL1,0, ∆ᾱ = ᾱ2 − ᾱ1 and ∆α̃ = α̃2 − α̃1.
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4.2.2 Posterior Distributions of ũf,t and α̃2 Given the Landmark

Positions

To minimize the uncertainty of the robot pose at each time step, we use Eq.

(4.24) to obtain posterior distributions for ũf,t and α̃2. Solving Eq. (4.18) for

ũf,t and α̃2 results in the following equations:

ũf,t =

d1 sin(∆ᾱ+ ∆α̃)−∆x sin(ᾱ2 + α̃2)+

∆y cos(ᾱ2 + α̃2)− ūf sin(ᾱ2 − θRt + α̃2)

sin(ᾱ2 − θRt + α̃2)
(4.25)

α̃2 = tan−1

∆x sin ᾱ2 −∆y cos ᾱ2+

(ūf,t + ũf,t) sin(ᾱ2 − θRt )− d1 sin(∆ᾱ− α̃1)

−∆x cos ᾱ2 + ∆y sin ᾱ2+

uf cos(ᾱ2 − θRt ) + d1 cos(∆ᾱ− α̃1)

Calculation of the posterior distributions of ũf,t and ũr,t from the above equations

are not straight forward. Nevertheless we can calculate 2σ equivalent boundaries

for them. Given the 2σ borders of ũf,t, α̃1, α̃2 and a line segment such as x̄Lj,l,k,i,

we define the following intervals:

Σuf = [−2σũf , 2σũf ] (4.26)

Σα1 = [−2σα̃1 , 2σα̃1 ] (4.27)

Σα2 = [−2σα̃2 , 2σα̃2 ] (4.28)

Σd,j,i = [0, λj,l,i,t] (4.29)

By plugging the eight combinations of the borders of Σα1 , Σα2 and Σd,j,i into

Eq. (4.25), eight values for ũf,t are obtained. Consequently, an interval including

the minimum and maximum of the eight values can be formed as follows:

Rũf,k,j = [ũf,k,j,min, ũf,k,j,max]
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For each landmark a similar interval can be obtained. Obviously, the best valid

interval can be obtained by the intersection of all these intervals with the prior

interval of ũf,t:

Rũf,t = [ũf,k,1, ũf,k,2] =
(⋂M

j=1 Rũf,k,j
)
∩ Σũf,t . Using Rũf,t , finally we can

obtain the following posterior distribution for ũf,t

ũpf,t ∼ N (
ũf,k,1 + ũf,k,2

2
,

(ũf,k,1 − ũf,k,2)2

4
) (4.30)

Using the same procedure, a posterior distribution for α̃2 denoted as α̃p2 is ob-

tained. Since α̃2 = ũr,t + φ̃j,t and since φ̃j,t is a zero mean random Gaussian

variable, the best posterior estimation ũpr,t is equal to α̃p2.

To weight the samples, we utilize the Mahalanobis distance between the prior

and posterior distributions. We should remind that the obtained posterior dis-

tributions are for a given sample. To be more specific, we add the index i to the

posterior distributions ũpf,k,i and α̃p2,i. Consequently, the weight of the sample i

will be:

wi,t+1 = ηwi,t exp[−
(ūpf,t,i − ūf,t)

2

2σ2
f,i

−
(ᾱp2,i − ᾱ2,i)

2

2σ2
r,i

] (4.31)

where σ2
f,i = σ2

ũ
p
f,t,i

+ σ2
ũf,t

, σ2
r,i = σ2

α̃
p
2

+ σ2
α̃2

and η is a normalization factor.

In common Bayesian filter methods, the update of a distribution is usually based

on the Mahalanobis distance between the predicted measurements and the real

measurements. However, in our method, we calculated this relation backward

and the updated distribution was obtained based on the comparison between

prior and posterior distributions of the input commands.

4.2.3 Optimal Trimming of Line Segments

After obtaining the posterior distributions for ũpf,t and ũpr,t, now we should obtain

the projection of p(xRt+1|xRt , ũpf,t, ũ
p
r,t) on each line segment. We drop the upper

index p in the following for the sake of simplicity.
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d1 is a random variable which is a function of three random variables α̃1, α̃2 and

ũf,t. If |α̃1|, |∆α̃| < 0.15 rad, the sin(.) function can be approximated using the

first order term in its Tailor expansion. Consequently, Eq. (4.18) can be written

as follows:

d1 ≈
A

B + C∆α̃
=

Ā+ Ã

B + C∆α̃
(4.32)

where

Ā =∆y cos ᾱ2 −∆x sin ᾱ2 + ūf,t sin(ᾱ2 − θRt ),

Ã =
(
−∆y sin ᾱ2 −∆x cos ᾱ2 + ūf,t cos(ᾱ2 − θRt )

)
α̃2

+ ũf,t sin(ᾱ2 − θRt ) = γ1α̃1 + γ2ũf,t,

B = sin ∆ᾱ, C = cos ∆ᾱ

For larger ∆α̃, the above approximations will be gradually violated. However,

since sin(.) function compresses a zero mean random variable towards zero, using

the approximation in the derivation of the equations means that we considered

larger uncertainties rather than the real cases which makes our calculation still

valid but not optimal.

In Eq. (4.32), A has a Gaussian distribution: N (Ā, γ2
1σ

2
α1

+ γ2
2σ

2
ũf,t

). If we

obtain the distribution of p(d1|A) then p(d1) can be calculated as follows:

p(d1) =

∫
p(d1|A)p(A)dA (4.33)

The above equation means to smooth p(d1|A) with a Gaussian kernelN (0, γ2
1σ

2
α1

+

γ2
2σ

2
ũf,t

). The smoothing operation expands p(d1|A) proportional to the stan-

dard deviation of the Gaussian. Therefore, we firstly calculate p(d1|Ā) and with

the mentioned consideration, trim the line segment optimally. Using the random

variable algebra, the PDF of d1 given A can be obtained as follows:

p(d1|A) =
1√

2πσ∆α̃

|A|
Cd2

1

exp

(
− (A−Bd1)2

2C2σ2
∆α̃
d2

1

)
(4.34)

In Fig. 4.6a, the PDF for A = 1, σ∆α̃ = 0.1 and ∆ᾱ = 0, 0.1 can be seen.



142 4 2D Monocular SLAM

The integral in Eq. (4.33) cannot be solved analytically. However, as we already

mentioned, it should look like p(d1|Ā) but smoothed and expanded (Fig. 4.6b).

The extrema points of p(d1) are the key-points to trim a line segment, considering

the fact that d1 should be always non negative. The PDF p(d1) has three extrema
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Figure 4.6: (a) p(d1|Ā) for two different parallax angles. (b) p(d1|Ā) and p(d1)
for ∆ᾱ = 0.1. In both cases, the standard deviation of the random
variables are: σũf,t = σα̃2 = 0.1 and σα̃1=0.001

points if B 6= 0. The extrema points can be obtained as follows:

∂p(d1)

∂d1
= 0 (4.35)

However, since the closed form of p(d1) is not available, based on the above

discussions, We firstly calculate the extrema of p(d1|Ā) and then consider the

effect of the uncertainty of Ā. Therefore we have:

∂p(d1|A)

∂d1
= 2σ2d2

1 +ABd1 −A2 = 0 (4.36)

The solution of this equation always results in real roots one of which is at least

positive. By inserting the two roots from Eq. (4.36) in Eq. (4.32) two solutions

for ∆α̃ such as ∆1α̃ and ∆2α̃ are obtained. We can compensate the effect of ∆α̃

by recalculation of Eq. (4.32), given ∆rα̃, r = 1, 2. It results in three distances
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such as d1,1 < d1,2. To compensate the effect of ũf,t we use its 2σ confidence

region to obtain the following term:

br =

∣∣∣∣∣2σũf,t sin(ᾱ2 − θRt )

sin(∆ᾱ+ ∆rα̃)

∣∣∣∣∣ ; r = 1, 2 (4.37)

Then we modify d1,r as follows:

d1,j,r =

d1,r − br, if d1,r ≥ 0

d1,r + br, if d1,r < 0
(4.38)

We sort the obtained values ascending: d1,1 < d1,2 and define the following

interval based on the two greatest values:

d̄1 = [d1,2, 2
d1,3 − d1,2

u(|∆α| − 2σ∆α̃)
] (4.39)

where u(.) is a step function. After the calculation of the above interval, d̄1 is

intersected with the interval [0, λj,l,i] to obtain the updated line segment. In

Eq. (4.39), the infinity depth is preserved if the parallax angle is less than the

confidence region of ∆α̃.

4.2.4 Resampling

We can fit a Gaussian distribution to the statistics including seven weighted

samples. To obtain a Gaussian distribution for the robot pose based on the

statistics and also preserve the dependency between the robot and landmark

positions, we define the following vector for each set of robot sample and the

parameters of the line segment:

xi,j = [xi, yi, θi, x
L
j,i, y

L
j,i, α

L
j,i, λ

L
j,i]

T (4.40)

Consequently, the following mean vector and covariance matrix can be obtained:
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xj =

7∑
i=1

wixi,j

Σj =

7∑
i=1

wi(xi,j − xj)(xi,j − xj)
T (4.41)

Then the new samples are obtained as follows:

x0,j = xj

xr,j = xj −

(√
9

2
Σj

)
r

x3+r,j = xj +

(√
9

2
Σj

)
r

where r = 1, 2, 3. Obviously, for all robot and landmark combinations the mean

and covariance of the robot pose will be the same but we have to calculate the

mean vector and covariance matrices the way mentioned above, in order not to

lose the dependency between the robot pose and the landmark positions.

4.3 Complexity Analysis

Unlike the EKF based methods, the complexity of the proposed algorithms grow

linearly with respect to the number of landmarks (M). The complexity of EKF

based methods have direct relation to the size of their covariance matrices. Hence,

the IDP (inverse depth parametrization) and LDP (logarithmic depth parame-

terization) methods in 2D cases have the complexity of O
(
(3 + 4M)2

)
since

four parameters are used to initialize each landmark in the state vector. For

the GSF based method, since it uses nMg parallel EKF filters (ng is the num-

ber of Gaussians used to model each landmark uncertainty), its complexity is

O
(
nMg (3 + 2M)2

)
.

The complexity of our particle filter based algorithm is O
(
2MN

)
where N is the

number of particles. The complexity is related to the calculation of intersected
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lines at each step. It means if e.g. 150 particles are used, our algorithm has

less complexity than the inverse depth parametrization method for the number

of landmarks more than eighteen.

Concerning the subspace method algorithm, its complexity also grows linearly

with respect to the number of landmarks (M) which is O
(
N2 ×M

)
where N is

the number of samples. This complexity is related to the resampling phase of the

algorithm. For N = 7, we can conclude that for any number of landmarks our

algorithm has less complexity than the inverse depth parametrization method.

4.4 Simulation

To show the performance of the proposed algorithms, an environment including

one robot and 80 landmarks was simulated. The robot was driven firstly on a

linear path which is the most challenging case for monocular SLAM since many

landmarks are observed at low parallax angles for many steps. Then to observe

the performance of the algorithms in the case of rotations, we let the robot also

rotate on a circular path as well. For the linear part, the forward and rotation

speeds were uf = 0.3 m/step, ur = 0 rad/step and for the circular part, they

were uf = 0.3 m/step, ur = 0.08 rad/step. The standard deviation of odom-

etry noise varied between 0.02 to 0.1 (m/step or rad/step). We compared our

methods with IDP (inverse depth parametrization), IIDP (iterative inverse depth

parametrization), LDP (logarithmic depth parametrization), GSF (Gaussian sum

filter) and a SLAM method based on UKF. We notify that the computation time

of GSF method for more than 5 landmarks is getting extremely high and for

more than 10 landmarks running the algorithm is not feasible. Hence, we used 5

randomly selected landmarks out of 80 ones and ran the GSF method. To mini-

mize the effect of random selection of landmarks, we ran the simulation several

times and then calculated estimation errors in average. The root mean square

error (RMSE) between the ground truth and the real paths are shown in Fig.

4.7. Additionally, to achieve a visual perception of the performances of differ-

ent methods, the estimated paths and the landmark positions based on different

methods for σuf = σur = 0.05 are depicted in Fig. 4.8.
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Figure 4.7: Root mean square error between the ground truth and estimated
paths for different methods.

We can observe that the IDP method only managed to converge with five itera-

tions in its update phase. But even in this condition it had a biased estimation

of the robot and landmark positions. The LDP method had a better estimation

of the path. However, it could not reduce the landmark uncertainties effectively

and also it started to diverge for the odometry noises with the standard devi-

ations more than 0.05. The reason is the usage of second order Kalman filters

which include high amount of uncertainties even if the landmarks are observed

at high parallax angles. Concerning the line segment based methods, we see that

the particle filter based method with 50 particles gave results better than the

IIDP method (with much lower complexity). Finally, for the subspace method,

we see that the path was estimated very well for the wide range of the odometry

noises.
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(b) IIDP with five iterations
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Figure 4.8: Localization and mapping using different methods for σuf = 0.5
m/step, σur = 0.05 rad/step and σv = .001 rad. The continuous
paths (red) are the ground truth paths and the dashed paths (blue)
are the estimated paths using different methods. The estimated posi-
tion of landmarks are shown with ellipses or line segments. The pink
path in (f) is the odometry path.
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An important issue concerning the UKF based method is that it highly depends

on the initial depths for the landmarks. It should be almost near to the average

depths of the landmarks, otherwise the algorithm diverges. Fig. 4.9 shows the

RMSE for three different initial depth values. We see that it only converged at

the initial depth values of 30 m and for greater or smaller initial values, the UKF

method has diverged. It means that for this method, we still need some prior

knowledge about the uncertainties of the depths in an environment.

R
M

S
E
 [

m
]

Figure 4.9: Root Mean square error between the ground truth and estimated
paths based on the UKF filter depending on the initial depths for
landmarks.

4.5 Experimental Results

We implemented the line segment algorithms on a pioneer four wheeled robot

which was equipped with a laptop with an Intel Core 2 Duo (3.33 GHz) processor.

A consumer webcam with a resolution of 960 × 720 and the field of view about

60◦ was also installed on the robot. We ran two experiments: an outdoor and
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an indoor scenario. For both cases we used the forward backward Lucas-Kanade

tracker to track Harris corner features.

In our application, landmarks were extracted from a frame and tracked in the

next frames until 70% of them disappeared. Obviously, since the algorithms are

developed for 2D case, we only used the displacement of the features along the

horizontal vector of the camera to achieve the bearing measurements.

To detect outliers, the predicted ranges of measurements were taken into account.

The ranges were obtained based on the projections of landmarks on the retina

of the camera, odometry data and the minimum and the maximum expected

depths of the landmarks.

Figure 4.10: The square about which the robot was driven. The starting point
and its X − Y coordinate are marked.

The initial number of landmarks was 150 by which the algorithms managed to

work in real time at the frame rate 20 Hz This rate was used if the robot rotated

and for the linear movements, we only used 5 Hz. For the particle filter based

method the number of particles was set to 100.

For the outdoor scenario, the robot was driven two times about an square. The

square and the starting point of the run can be seen in Fig. 4.10. The robot

passed the starting point two times. The generated path by the odometry and

the modified path using the algorithm in addition to the extracted landmarks

with the length uncertainties less than 15 m can be seen in Fig. 4.11a and Fig.
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4.11c. It can be observed that the subspace method had a high performance such

that it managed to correct a relatively high amount of odometry errors and close

the loop with a precision 0.56 m. The particle filter based method also had a

good performance with the error 1.23 m in both turns. Our method extracted

and registered about 2000 landmarks. The landmark uncertainties are presented

as line segments. It should be mentioned that although the life times of the

tracks of the landmarks were mostly short (in average less than ten frames), and

also in outdoor scenarios we should consider relatively high measurement noises

due to the vibration of the camera, the proposed algorithms managed to extract

many landmarks with the length uncertainties less than 15 m.

The second experiment was conducted in an indoor hallway. The run included

both straight and rotational motions. The map of the hallway, the odometry and

modified paths and additionally the landmarks with the length uncertainties less

than 1 m can be seen in Fig. 4.12. We can observe that the subspace method

managed again to correct the odometry path very well and also localized lots

of landmarks with low uncertainties. The particle filter based method, however,

had an error of about 3 m. The indoor experience was challenging since there

were not many robust features to track and also due to the shadowing, there

were lots of outliers which could be hardly detected.
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Figure 4.11: Outdoor experiment: Odometry path (dashed curve), modified paths
generated by the line segment methods (continuous curve). (a),(c)
Extracted landmarks with length uncertainties less than 15 m.
(b),(d) Extracted landmarks with the length uncertainties less than
60 m.
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Figure 4.12: Indoor experiment: Odometry path (dashed curve), modified paths
generated by line segment methods (continuous curve) and extracted
landmarks with length uncertainties less than 1.5 m.



5 Conclusion and Outlook

In this chapter, the contribution of this work to monocular visual odometry and

SLAM problems is summarized and future work is discussed.

5.1 Conclusion

In this thesis, two related fields of monocular SLAM has been investigated: vi-

sual odometry and data fusion. Concerning visual odometry, we studied feature

tracking in consecutive frames using two approaches: (i) the feature matching

approach based on the SIFT, SURF, ORB and BRISK descriptors and (ii) the

sparse optical flow method (Lucas-Kanade). Conventionally, feature trackers are

evaluated based on only a limited set of paired images captured from planar

surfaces. The reason for using planar surfaces is that ground truth for matched

features can accurately be calculated using homography transforms. We used

long sequences from the training KITTI dataset for visual odometry to evalu-

ate different trackers. In this regard, due to the availability of ground truth for

camera poses in the dataset, we were able to provide appropriate measures using

epipolar geometry to evaluate different methods in highly challenging outdoor

environments. We also discussed how to track features in several consecutive

frames robustly. Different feature trackers were evaluated based on four mea-

sures: endurance, precision, recall and measurement noise. On the basis of these

measures, it was demonstrated that the forward backward Lucas-Kanade method

outperformed the trackers using the feature matching approach to a great ex-

tent. Actually, use of the Lucas-Kanade method without the forward-backward

manner typically results in a high percentage of outliers. It could be the rea-

son that in most of the relevant literature feature matching techniques such as

SIFT and SURF have been used. Interestingly, applying the forward-backward
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technique, many of the outliers can be detected and removed. We also investi-

gated the poor performance of different N-point methods for the relative camera

motion recovery. The major problem stemmed from ignoring the effect of noise

in each coplanarity equation. It was shown that in the presence of measure-

ment noise, each coplanarity equation can deviate from zero. By considering

relatively large uncertainties for motion parameters, we obtained deviations for

each equation and solved the related homogeneous equation system based on

the Mahalanobis distance. Additionally, a regularization term in the form of a

covariance matrix for the essential matrix elements was obtained which regu-

larized the final solution based on the physical constraints of cameras. These

two modifications yielded significant improvements for the 8-point and 7-point

methods, which was proved by experiments with simulated data and the KITTI

dataset. We also introduced a modified Cheirality test which was simpler and

more effective than previous Cheirality test especially for the case that a cam-

era moves in depth and observes features at low parallax angles. In this case,

the points can be back projected behind the camera wrongly resulting in wrong

decisions for motion directions. Furthermore, a new technique was proposed to

estimate scale of translations by tracking low quality features on ground planes.

As the Lucas-Kanade method can track high quality features (features with rel-

atively high brightness gradients), this method fails to track low quality features

on ground planes very often. Hence, the main challenge of scale detection is

how to track low quality features. We proposed a new compact descriptor to

find for hundreds of low quality features in one image at least two matches in

the consecutive image. Many of the wrong matches were filtered out based on

the distances of matching candidates to their corresponding epipolar lines. This

technique resulted in substantial improvements in the estimation of scale factors.

The overall performance of the discussed method was demonstrated based on the

training and test KITTI dataset.

We also contributed to the monocular SLAM problem by proposing non-Gaussian

techniques for the fusion part of monocular SLAM. The main part of the methods

was modeling landmark uncertainties over line segments with a uniform distri-

bution if landmarks are observed at low parallax angles. In these methods, the

distribution of a robot pose is presented with weighted samples and attached
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to each sample a line segment for each landmark is initialized. Two different

methods were proposed to update the samples and to reduce the uncertainties

of landmarks (lengths of line segments). In the first method, a particle filter

based method was used, in which the distribution of the robot pose was modeled

by more than hundred weighted particles and the lengths of the corresponding

line segments were reduced by intersecting the lines with trapezoids established

from the new observations of landmarks. In this method, the number of par-

ticles should be increased if the uncertainties of odometry data increase. To

alleviate this problem, a new method was proposed, which used minimal efficient

samples of the robot pose distribution that was acceptably assumed Gaussian.

Using such a minimal number of samples led to introducing an efficient method

for line segment trimming namely probabilistic triangulation. We demonstrated

that the depth parameter for a landmark has the distribution of the ratio of

two Gaussian random variables. This distribution has a very complex form and

extraction of useful information from it is very difficult. To deal with this prob-

lem, we used a conditional probability approach to obtain initial guesses for the

extrema points of the distribution and then proposed an optimal solution to trim

the lengths of line segments. Additionally, to localize robots, instead of iterative

optimization techniques, we used a subspace method. If landmarks are observed

at low parallax angles, optimization techniques give rise to biased estimation

of robot poses and landmark positions in favor of initial beliefs and do not de-

lay decisions concerning robot poses until the time that enough evidences are

gathered. Through simulation, we observed this effect using the iterative inverse

depth parameterization (IIDP) method which had a poor performance in the

estimation of scale of motions and gave rise to a shifted estimation of robot and

landmark positions. Finally, we proved the high performance of the line segment

and subspace method through simulation and experimental results and showed

that the method outperformed other methods to a great extent with a constant

computation cost with respect to the amount of odometry uncertainties.



156 5 Conclusion and Outlook

5.2 Outlook

In this thesis, robust techniques for monocular visual odometry and 2D SLAM

problems in case of static scenes were proposed. We are extending our proposed

line segment technique for the 3D monocular SLAM problem [MM15] and plan-

ning to consider highly dynamic scenes, in which several moving objects exist.

In a simple case where static background still constitutes most of a scene, the

discussed methods could be applied by the detection of the landmarks on moving

objects as outliers. On the contrary, if moving objects are dominant, the SLAM

problem should be formulated in a different way that the relative velocity of the

robot to each object should be taken into account and instead of a static map a

dynamic map should be defined in which for each object in addition to its posi-

tion, its velocity is also considered. Other future work is simultaneous estimation

of optical flows and vehicles’ motions. In this regard, epipolar geometry can be

used to add an extra constraint for the calculation of optical flows resulting in

better estimations of flows, especially for low textured scenes [MMM15]. Con-

sequently, the enhanced estimations of flows can be utilized to achieve better

estimation of a vehicle’s motion.
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List of Notations

Notation Explanation

(x, y) Coordinate of a point in the retina of
a calibrated camera

(xu, yu) Coordinate of a point on the retina of
an uncalibrated camera

ξ Information vector

c Class

d Feature descriptor vector

p = [px py pz]
T Coordinate of a point in 3D space

Γ Line segment

q Quaternion

ut = [uf,t ur,tT ] Motion velocities

xLj = [xLj y
L
j ]T jth Landmark position

xRt = [xRt yRt θRt ]T Robot pose at time t

xt State vector

zt Measurement vector

E(.) Expectation operator

N (µ,Σ) Gaussian vector distribution with the mean µ and
the covariance Σ

R Real number set

Ω Information matrix

σ Standard deviation

E Essential matrix

F Fundamental matrix

f(.) a one dimensional function
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Notation Explanation

F (x, σ) Convolution of function f(x) with a Gaussian function
with the standard deviation σ

H Hessian matrix

h(x) Measurement function given the state vector x

hj(x) Measurement function for the jth landmark

hj(x
R
t ,x

L
j ) Measurement function given the robot pose xRt and the landmakr xLj

id identification number of a feature

I(x, y) Integral image

Iα(x, y) Slanted integral image

Jα(x, y) Jacobian matrix

K Camera calibration matrix

k an integer factor

l level of pyramid

L(x, y) Gray scale image

M Number of landmarks

Ml half width of a Kernel at the level l

Ng Number of Gaussians per landmark

Np Number of particles

Nr Number of robot poses

P Covariance matrix of a state vector

p(.) probability distribution function

R Covariance matrix of measurement noises

R Rotation matrix

s Variance

Ut−1 Set of all motion commands until time

w(.) a one dimensional kernel

X, Y and Z Axis of a Cartesian coordinate system

Zt Set of all measurements until time



List of Abbreviations

Abbreviation Explanation
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scale Keypoints
CenSurE Centered Surround Extrema
DAG Distributed Averages of Gradients
EKF Extended Kalman Filter
EM Expectation Maximization
E. T. Elapsed Time
FAST Features from Accelerated Segment Test
FBLK Forward Backward Lucas-Kanade
GSF Gaussian Sum Filter
IDP Inverse Depth Parametrization
IIDP Iterative Inverse Depth Parametrization
IMU inertial Measurement Unit
LDP Logarithmic Depth Parametrization
LK Lukas-Kanade
LoG Laplace of Gaussian
MLM-SFM Monocular Multicore Large Scale SFM
MMEc Mean of Magnitudes of Errors for estimation of camera positions
MMEa Mean of Magnitudes of Errors for estimation of camera orientations
PDF Probability Density Function
ORB Oriented Robust BRIEF
RANSAC Random Sample Consensus
RCMPE+GP Relative Camera Pose Estimation
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
SURF Speeded Up Robust Features
SVD Singular Value Decomposition
UKF Unscented Kalman Filter
V-LOAM Vision-Lidar Odometry and Mapping
vSLAM visual SLAM
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List of Tables

2.1 Overall view of different fusion methods.
√
SAM : Square root

smoothing and mapping, DI: Delayed landmark initialization, GSF:

Gaussian sum filter, IDP: Inverse depth parameterization, IIDP:

Iterative inverse depth parameterization, LDP: Logarithmic depth
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