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Preface 

So called self-adaptive of self-optimizing systems adjust their software architecture, i.e. the 
configuration of software modules at a certain point in time, automatically at run time. This 
behavior results in an efficient use of available (hardware) resources and makes these systems 
more robust than non self-adaptive systems in cases when the environment conditions change. 
Developing self-adaptive systems is very challenging, because the systems, which are the 
subject of this thesis, belong to the class of cyber-physical systems and exhibit a complex 
interplay between hardware and software components as well as hard real time requirements 
for inter- and intra-component communication. 

The thesis presents a holistic development approach for cyber-physical systems, which is 
based on model driven development. However, it extends this “classical” software engineer-
ing approach by means to formally specify and analyze software (architecture) reconfigura-
tions in combination with the fulfillment of hard real time constraints for reconfiguration and 
communication. A particular new and intriguing feature is to include and adapt existing simu-
lation techniques and tools from control engineering to support the analysis of a system mod-
el. 

The approach represents a significant step forward in making the development of complex 
cyber-physical systems more efficient, i.e. less costly, more rigorous and controllable con-
cerning the quality of the resulting system. It will surely make its way also into industrial use.  

Paderborn, November 6, 2015 Prof. Dr. Wilhelm Schäfer 

 





 

Summary 

Self-adaptive mechatronic systems automatically adapt their behavior to a changing environ-
ment by reconfiguring their software architecture at runtime. In particular, this includes to 
dynamically form systems of systems at runtime, where several systems collaborate with each 
other using message-based communication protocols. Often, these systems are safety-critical 
and need to satisfy hard real-time constraints, i.e., any (timing) error in their behavior may put 
lives at risk. As a consequence, the software of a mechatronic system needs to meet high qual-
ity standards. In particular, it needs to be guaranteed that reconfigurations of the software ar-
chitecture do not lead to an unsafe behavior or a violation of the real-time constraints. Testing 
alone cannot prove the correctness and thereby the safety of the mechatronic system. Existing 
approaches for model-driven development and analysis of mechatronic systems either provide 
support for analyzing real-time constraints or for analyzing reconfigurations of the software 
architecture, but none of the existing approaches supports both.  

In this thesis, we present a combination of constructive and analytical techniques that can be 
used by software engineers as part of a model-driven software engineering method for assur-
ing the correctness of the software of a self-adaptive mechatronic system. As a key novelty, 
our approach combines formal verification and simulation-based testing for achieving a scala-
ble analysis of the system's software. As a basis, our component-based software architecture 
explicitly separates discrete event-based software components from time-continuous feedback 
controllers. This enables to verify the software components using a compositional model 
checking approach that we extended by a refinement check for message-based communication 
protocols. The correct integration of software components and feedback controllers is as-
sessed by a testing-based approach based on model-in-the-loop simulation. Finally, we define 
an approach for specifying and verifying the reconfiguration behavior of software components 
that, in particular, separates the reconfiguration behavior from the functional behavior for 
improving scalability of the verification. 

We evaluated all of our contributions based on the RailCab system. In particular, we specified 
a component-based software architecture including reconfigurations for a RailCab and con-
ducted two case studies. These case studies demonstrate the viability of our techniques. 

 



Zusammenfassung 

Selbstadaptive mechatronische Systeme passen ihr Verhalten über die Rekonfiguration ihrer 
Softwarearchitektur zur Laufzeit automatisch an eine sich verändernde Umwelt an. Dies er-
möglicht insbesondere die Bildung von sogenannten „Systems-of-Systems“ zur Laufzeit, in 
denen mehrere eigenständige Systeme unter Verwendung nachrichtenbasierter Kommunikati-
onsprotokolle miteinander kollaborieren. Dabei müssen die einzelnen Systeme in der Regel 
harten Echtzeitanforderungen genügen und sind häufig sicherheitskritisch, d.h. jegliche Feh-
ler im funktionalen oder zeitlichen Verhalten können Menschenleben gefährden. Nicht zu-
letzt deshalb muss die Software eines komplexen mechatronischen Systems hohen Qualitäts-
standards genügen. Die besondere Kritikalität dieser Systeme bedingt, dass eine Rekonfigura-
tion der Softwarearchitektur nicht zu einem undefinierten bzw. gefährdenden Verhalten oder 
einer Verletzung der Echtzeitanforderungen führt. Durch die Anwendung testbasierter Ver-
fahren alleine kann die Korrektheit und damit auch die Sicherheit des mechatronischen Sys-
tems nicht garantiert werden. Existierende Ansätze für eine modellgetriebene Entwicklung 
und Analyse mechatronischer Systeme ermöglichen entweder die Analyse von Echtzeitanfor-
derungen oder die Analyse von Rekonfigurationen der Softwarearchitektur zur Laufzeit. Bis-
her existiert jedoch kein Ansatz der beides unterstützt. 

Im Rahmen dieser Arbeit wird eine Kombination aus konstruktiven und analytischen Verfah-
ren vorgestellt. Sie kann von Softwareentwicklern im Rahmen einer modellgetriebenen Soft-
wareentwicklungsmethode eingesetzt werden, um die Korrektheit der Software eines selbst-
adaptiven mechatronischen Systems zu verifizieren. Die Neuartigkeit des vorgestellten Kon-
zepts liegt in der gezielten Kombination formaler Verifikationsverfahren mit simulations-
basierten Testverfahren mit dem Ziel, einen skalierbaren Ansatz für die Analyse der Software 
eines mechatronischen Systems zu erhalten. Als Grundlage für diesen Ansatz wird ein Kom-
ponentenmodell vorgestellt, das explizit zwischen ereignisdiskreten Softwarekomponenten 
und zeitkontinuierlichen Reglern unterscheidet. Es erlaubt die formale Verifikation der Soft-
warekomponenten mit einem kompositionalen Model Checking Verfahren, das um eine Ver-
feinerungsüberprüfung für nachrichtenbasierte Kommunikationsprotokolle erweitert wurde. 
Die fehlerfreie Integration von Softwarekomponenten und Reglern wird anschließend mit 
einem Testverfahren unter Verwendung von Model-in-the-Loop Simulationen überprüft. Er-
gänzend wird ein Konzept für die Spezifikation und Verifikation von Rekonfigurationen vor-
gestellt. Dieser Ansatz trennt explizit die Spezifikation und Analyse des funktionalen Verhal-
tens vom Rekonfigurationsverhalten, um die Skalierbarkeit der Verifikation zu verbessern. 

Alle Beiträge dieser Arbeit wurden auf Basis des RailCab Systems evaluiert. Dazu wurde eine 
komponentenbasierte Softwarearchitektur für das RailCab inklusive der notwendigen Rekon-
figurationen entwickelt. Weiterhin wurden zwei Fallstudien durchgeführt, die die praktische 
Anwendbarkeit der vorgestellten Verfahren aufzeigen. 
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1 Introduction
Today’s technical systems mostly consist of mechanical, electrical, and software parts.
Examples of such systems include modern cars, trains, or airplanes. We call those sys-
tems mechatronic systems [VDI04, GKP08]. New functionality in such systems is in-
creasingly realized by embedded software. In particular, embedded software intercon-
nects previously isolated software parts of a system [PBKS07, SW07]. In addition, em-
bedded software enables to build systems of systems where several systems collaborate
with each other using application-level communication protocols [WA13]. An example
of such systems of systems is given by car platoons. In a car platoon, cars drive closely
behind each other for reducing the energy consumption and increasing the throughput
on a highway [RCC10, HESV91].

Realizing advanced functionality such as car platooning often requires an adaptation of
the software architecture at runtime [CdLG+09]. Such adaptation is called structural
reconfiguration [OMT98]. As an example, cars need to adapt their software architecture
for driving in a platoon. Followers, for example, need to take the distance to the preced-
ing car into account. The leading car needs to manage communication links to a varying
number of followers because cars may join or leave the platoon at any time.

Despite the fact that the software architecture and communication links may change
during runtime, self-adaptive mechatronic systems need to be safe [ISO10, p. 316]. Es-
pecially systems like cars or public transportation systems require high-quality software
because any software failure in such a system may put lives at risk. In particular, recon-
figurations can put a system into an unsafe state if they are executed incorrectly or only
partially.

Ensuring high quality of the software is further complicated by hard real-time constraints
that apply to such systems [But05]. That means that the correctness of the software
does not only depend on the implemented functionality but also on the correct timing
of the executed operations. That holds, in particular, for the interaction of systems by
communication protocols. In our example, a braking maneuver of a car platoon requires
that the platoon leader notifies all followers to brake at the correct point in time.

A common approach for achieving the necessary quality and mastering the inherent
complexity of such software is model-driven development [Sch06, SV06]. When apply-
ing model-driven development, the developers build models of the software instead of
implementing it directly. If these models have a defined (formal) semantics, they enable
to build the software correct by construction [Cha06], i.e., models may be analyzed in
order to find errors already at design time. In particular, such models enable to apply
analysis techniques like model checking [BK08] and simulation [ÅEM98] for guaran-
teeing correctness of the software. However, current approaches for the model-driven
development of mechatronic systems provide no or only very limited support for adapt-
ing the software architecture of a system at runtime and for reasoning over the adaptation
at design time.
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Existing standards like UML [Gro11c] or SysML [Gro10] support modeling the software
of a mechatronic system, but neither provide support for specifying real-time constraints
and runtime reconfiguration nor define a formal semantics enabling to analyze these
models. Formal models like timed automata [AD94, BY04] that are specifically dedi-
cated to the formal analysis of real-time systems also fail with respect to specifying run-
time reconfiguration. The same restriction holds for commercial tools like MATLAB/Si-
mulink [Matg] or Dymola/Modelica [Das, Mod09] that are used in industry for develop-
ing automotive software [PBKS07, KSHL12]. In contrast, graph-based approaches like
graph transformation systems [Roz97] enable the specification of runtime reconfigura-
tion but provide no means for specifying their real-time properties. Component models
for real-time systems either provide limited support for self-adaptation behavior or they
support formal verification [CSVC11, HPB+10]. Architecture description languages for
self-adaptive systems [BCDW04] do not consider the real-time properties that apply to
mechatronic systems. Hence, none of the approaches provides the necessary modeling
and analysis capabilities that are required for self-adaptive mechatronic systems.

The goal of this thesis is to extend a model-driven software engineering method by
techniques for guaranteeing the correctness of the software of a self-adaptive mecha-
tronic system. In this thesis, we will use the model-driven software engineering method
MECHATRONICUML [GTB+03, BDG+14a] as a basis for developing and illustrating
our contributions. MECHATRONICUML adapts concepts of the UML [Gro11c] for sup-
porting the model-driven development of self-adaptive mechatronic systems. In partic-
ular, it provides a domain-specific modeling language with a formal semantics that en-
ables formal verification of software models. Previous works on MECHATRONICUML
contributed, for example, the specification of feedback controller exchange [BGO06,
Hir08, OMT+08], the specification of software reconfiguration [THHO08, Tic09], and
the verification of communication protocols [GTB+03, EHH+13]. As a result, MECHA-
TRONICUML supports the specification of a software architecture including state-based
real-time behavior and reconfiguration operations for self-adaptive mechatronic systems.
In this thesis, we extend the support of MECHATRONICUML for specifying and analyz-
ing reconfigurations and message-based communication protocols that are necessary for
realizing self-adaptive mechatronic systems. As an application example, we use the
RailCab system that is introduced in the next section.

1.1 The RailCab System

The RailCab system [HTS+08a, NBP] is one representative example of a whole class
of self-adaptive mechatronic systems that applies runtime reconfiguration for adapting
their software to their changing environment [HSD+15]. The vision of the RailCab
system is a new kind of railway transportation system where autonomous vehicles, the
RailCabs, transport people and goods directly to their destination without the need for
changing trains. RailCabs drive autonomously, only controlled by software using the
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existing track systems. Figure 1.1(a) shows a RailCab prototype in scale 1:2.5 on the
test track at the University of Paderborn.

(a) RailCab Prototype in Scale 1:2.5 on Test
Track

(b) Build-up of a Convoy of Three RailCabs
at a Switch [NBP]

Figure 1.1: The RailCab System

One feature of the RailCab system is the convoy mode which is similar to the aforemen-
tioned car platoons. In convoy mode, two or more RailCabs agree on driving behind one
another at small distances in order to reduce the energy consumption [HTS+08a, HP14].
Figure 1.1(b) shows an illustration of the build-up of a convoy of three RailCabs. Joining
a convoy requires the RailCabs to adapt their software, e.g., for handling the necessary
communication inside the convoy.

In addition, building a convoy includes electing a so-called coordinator [HTS+08a,
HP14]. The coordinator is responsible for providing reference data and announcing
acceleration and braking maneuvers to all other RailCabs in the convoy, which we call
members. The necessary communication between the RailCabs is formally defined by a
message-based communication protocol called ConvoyCoordination. This communication
protocol is safety-critical because collisions are inevitable if RailCabs are not notified
correctly about acceleration or braking maneuvers.

1.2 Problem Statement

The software of a self-adaptive mechatronic system like the RailCab is complex, i.e.,
it consists of a large number of concurrent, interconnected functions. A common ap-
proach for building such software is a component-based approach where the software
architecture is specified by hierarchical, interconnected components [SGM02]. MECH-
ATRONICUML follows this approach as well. Components interact via message-based
communication protocols. In MECHATRONICUML, a reconfiguration of the system is
specified by a modification of the software architecture, i.e., adding and removing com-
ponent instances and connectors. Communication protocols and reconfigurations are
formally verified for safety properties using model checking [GTB+03, GS13] and in-
ductive analyses [BBG+06]. In this section, we outline three particular problems regard-



Page 20 Chapter 1

ing the specification and analysis of models including runtime reconfiguration that are
currently not sufficiently solved by MECHATRONICUML and other related approaches.

1. Reconfiguration of Mechatronic Systems In a component-based system, a
reconfiguration often affects several components of the software architecture. As an ex-
ample, consider two RailCabs that reconfigure their software architecture for building a
convoy as shown in Figure 1.2. Before building the convoy, both RailCabs only execute
their a VelocityController that controls their speed as shown in the upper part of Figure 1.2.
For driving in the convoy, the member RailCab needs to instantiate the software compo-
nent MemberControl that implements the communication protocols for driving in a con-
voy. In addition, this RailCab needs to replace its VelocityController by a DistanceController

that takes the distance to the preceding RailCab into account as shown in the lower part
of Figure 1.2. The coordinator only needs to instantiate the software component Convoy-

Coordination that implements the communication protocols for communicating with the
convoy members.

Thus, the reconfiguration for becoming a convoy member affects the RailCab software
component as well as the VelocityController. In such cases, all of the affected components
need to reconfigure correctly such that the intended result can be established. If recon-
figurations are only executed partially, the system may become unsafe. If the RailCab
only instantiates the MemberControl component but does not switch the feedback con-
troller, the system is unsafe. In this case, the RailCab does not consider the distance
to the preceding RailCab while driving in a convoy. If the RailCab only switches the
feedback controller but does not instantiate the MemberControl component, the system is
unsafe as well. In this case, the feedback controller does not receive the reference speed
for driving in the convoy and, as a result, the RailCab may drive too fast and cause a
collision.

To be safe, a reconfiguration approach needs to ensure, on the one hand, that the recon-
figurations can never produce an inconsistent software architecture as, e.g., executing
the DistanceController without executing the MemberControl. On the other hand, the re-
configuration approach must ensure that a reconfiguration can be executed completely
in time before actually starting it. That, in turn, requires to take the real-time constraints
of the system into account while deciding whether a reconfiguration should be executed
or not, and to verify that no reconfiguration violates the real-time constraints. Since the
component model of a self-adaptive mechatronic system is hierarchical in most cases,
the reconfiguration approach needs to support reconfiguration across different levels of
hierarchy while preserving the encapsulation of components [SGM02]. At present, no
existing approach for specifying reconfiguration of component-based systems considers
all of the aforementioned properties.

2. Refining Communication Protocols In a self-adaptive mechatronic system,
whose software is implemented in a component-based fashion, communication between



Introduction Page 21

RailCab2 : RailCab

member :
MemberControl

ctrl :
DistanceController

RailCab1 : RailCab

convoy :
ConvoyCoordination

ctrl :
VelocityController

CoordinatorMember

NoConvoy

NoConvoy

RailCab2 : RailCab
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Figure 1.2: Illustration of the Software Reconfiguration of RailCabs for Building a Con-
voy
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the components is essential for realizing the functionality of the system [SW07]. This in-
cludes both, the communication between components inside a single system but also the
communication between systems as part of a system of systems [WA13]. As a result, the
correctness of the software of a self-adaptive mechatronic system does not only depend
on the correctness of a single component but also on the correctness of the application-
level communication protocols that define the interaction between components and be-
tween different system.

Due to the safety critical nature of self-adaptive mechatronic systems, it is desirable to
apply formal verification methods like model checking [CGP00, BK08] to ensure cor-
rectness of their component-based software. Model checking gives a mathematical proof
that safety and liveness properties, which have been specified for the system, hold. How-
ever, formal verification techniques like model checking suffer from the so-called state-
explosion problem [CGP00]. It denotes the fact that the number of runtime states of a
software grows exponentially in both, the number processes and the number of states of
each process, if the system has concurrent executions [CKNZ12]. This makes the ver-
ification of component-based systems with concurrent components quickly infeasible.
Compositional verification approaches [BCC98] tackle the state-explosion problem by
verifying single components of a component-based system in isolation. Many of these
approaches are based on the assume/guarantee principle [CGP00, ch. 12], i.e., they ver-
ify the correctness of a component based on assumptions that must be guaranteed by the
component’s environment. One of the main difficulties of assume/guarantee approaches
is deriving good assumptions automatically from the software model [CAC08].

One example of a compositional verification approach based on the assume/guarantee
principle is given by the compositional verification approach of MECHATRONICUML
[GTB+03, GS13]. This approach prevents the computation of assumptions by providing
a syntactic decomposition of the system. In particular, MECHATRONICUML separately
defines components and communication protocols that define the interaction of compo-
nents. Then, components may be verified under the assumption that the interaction via
the communication protocol is correct. Guaranteeing this assumption requires two steps.
First, we need to verify the communication protocol using model checking [EHH+13].
At this point, the assume/guarantee principle requires that the protocol is independent of
the component. Second, we need to guarantee that the component correctly implements
the communication protocol without invalidating the verification results obtained for the
communication protocol in the first step.

However, implementing the communication protocol in the component requires to mod-
ify it. In particular, we need to integrate the protocol with the internal behavior of the
component, for example, for accessing data and triggering computations. As a result, we
need to verify that the component implementation of the communication protocol is a
correct refinement of the verified protocol behavior according to a refinement definition.
The refinement definition guarantees that the component implementation of a communi-
cation protocol does not invalidate the verification result that has been obtained for the
communication protocol. In particular, a refinement definition formally defines how the
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component implementation (refined protocol) may deviate from the communication pro-
tocol (abstract protocol) without invalidating a particular set of verified properties. Thus,
a suitable definition of refinement is essential for a compositional verification approach
as the one used by MECHATRONICUML.

In literature, many different refinement definitions and according verification procedures
exist [BK08, WL97, JLS00]. "Examples include timed simulation and timed bisimula-
tion [WL97]. Depending on the particular type of protocol that is refined, all refinement
definitions might be useful when building a system. A suitable refinement definition
for a compositional approach needs to be as weak as possible for enabling reuse of an
abstract protocol in as many different components as possible but as strong as neces-
sary for guaranteeing that all verified properties hold for the refined protocol. If the
refinement definition is too weak, it is not guaranteed that verified properties still hold
for the refined protocol. If the refinement definition is too strong, the refinement check
might reject the refined protocol although it fulfills all properties. This may happen, for
example, if the refined protocol removes behavior that is irrelevant for the properties,
but which is checked by the too strong refinement definition. The existing refinement
definitions provide different compromises between reuse and preserved properties. As a
consequence, there does not exist one refinement definition that is suitable for all pos-
sible protocols. Instead, a compositional verification approach should support several
refinement definitions where each of which may be suitable for a particular abstract and
refined protocol and a set of verified properties." [HBDS15]

As a result, we need an integrated approach that automatically selects a suitable re-
finement definition and, in particular, verifies it for a given pair of abstract and refined
protocols.

3. Simulation of Self-adaptive Mechatronic Systems The safe and correct op-
eration of a mechatronic system depends on the correct integration of the time-continu-
ous feedback controllers and the discrete software components. This includes, in par-
ticular, reconfiguration of the software architecture at runtime. As discussed before,
reconfiguration of the software architecture of a mechatronic system may require to ex-
change feedback controllers. Exchanging feedback controllers involves the specification
and execution of potentially complex fading functions [BGO06, OMT+08] that guaran-
tee that safe meaningful values are applied on the physical machine at any time during
the exchange. Therefore, it is absolutely mandatory to ensure correctness of the recon-
figurations.

A major objective of MECHATRONICUML is to prove the correctness of such system
models by applying formal verification. However, the integration of time-continuous
feedback controllers whose behavior is defined by differential equations hardens for-
mal verification significantly. In literature, it is often referred to as the hybrid model
checking problem [Hen96]. Hybrid model checking approaches either only use very
simple models of time-continuous behavior or they apply overapproximation techniques
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[HHMWT00]. "A primary reason for adopting overapproximation is that a precise
model, or a practical engineering model at hand, incorporates elements that no verifi-
cation tool can handle in combination. This is often the case for hybrid system models
due to their rich vocabulary. Analysis of such models can only commence after a chain
of approximation steps, some of which can be achieved automatically, others – the ma-
jority in practice – requiring manual reformulation of the model under inspection. Each
of these approximations may cause a loss of precision in the model, e.g., when capturing
nonlinear behavior by a linear model, making the analysis less likely to succeed with a
positive certificate as outcome. At the same time, as these approximations often have
to be done manually, they require extremely skilled staff, are tedious and have to be re-
peated when the original model changes." [ERNF12] In addition, even the most recent
techniques can only handle models that are "still of academic nature in the size of prob-
lems solvable." [ERNF12]. As a result, it is not yet possible to verify correctness for
large and complex reconfigurable mechatronic systems such as the RailCab.

A different approach to assess the correctness of the operations of a mechatronic system
is testing by using a model-in-the-loop (MIL) simulation [Plu06]. In a MIL simulation,
the developer tests a model of the mechatronic system against a model of its environ-
ment. The model of the mechatronic system always includes the feedback controllers
and the discrete software components, but it may also include models of the mechanic,
electric, or hydraulic parts of the system. This approach is already used in the automotive
industry [BB08, SHS12].

MIL simulation of mechatronic systems is supported by commercial-of-the-shelf sim-
ulators such as MATLAB R©/Simulink R© [Matg] or Dymola [Das] for the specification
language Modelica [Fri04, Mod09]. These tools, however, require models to be static,
i.e., once specified, components and connections may not change while running a simu-
lation. In addition, they do not provide native support for asynchronous, message-based
communication with message buffers.

As a result, we need an approach that supports MIL simulation of self-adaptive mecha-
tronic systems that communicate via asynchronous, message-based communication pro-
tocols. This approach needs to be integrated into our component-based development
approach such that model checking the event-discrete software components using the
compositional verification approach mentioned above remains possible.

1.3 Contribution

The contribution of this thesis is a combination of constructive and analytical techniques
that support the component-based specification and analysis of self-adaptive mecha-
tronic systems as part of a model-driven approach. As a key novelty compared to related
approaches, we combine formal verification and simulation-based testing for achieving a
scalable analysis for ensuring correctness of the software of a self-adaptive mechatronic
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system. In particular, we contribute a transactional execution of hierarchical reconfig-
urations including an approach for their verification (C1), a verification procedure for
showing correct refinements of communication protocols (C2), and support for simu-
lating self-adaptive mechatronic systems in MATLAB/Simulink (C3). We integrate our
contributions into the MECHATRONICUML method. As a result, our contributions en-
hance the existing development process of MECHATRONICUML [HSST13, BDG+14b]
as outlined in Figure 1.3. All of our contributions have been implemented as part of the
MECHATRONICUML Tool Suite [DGB+14].
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component model communication protocol integrated
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Figure 1.3: Excerpt of the Design Process for the Development of Self-Adaptive Mecha-
tronic Systems (cf. [HSST13, GV14])

The starting point for the process, shown in Figure 1.3, is the domain-spanning concep-
tual design [GFDK09, GSG+09] that has been created collaboratively by experts from
all disciplines involved in building the mechatronic system, e.g., mechanical engineer-
ing, control engineering, and software engineering. It includes all information about
use cases, functions, and system elements that affect more than one discipline. Based
on the domain-spanning conceptual design, each of the involved disciplines starts the
domain-specific design and development phase. In this phase, the software engineers
execute the MECHATRONICUML process [HSST13, BDG+14b], which consists of two
main phases in accordance to the model-driven architecture approach [Gro14]. Thus,
the process starts by creating a platform-independent model of the software. Then, the
software engineers derive a platform-specific model of the software and define a deploy-
ment of the software to the hardware platform. The contributions of this thesis address
the specification of the platform-independent model.

The software engineer starts specifying the platform-independent model in Step S1 by
deriving an initial component model from the domain-spanning conceptual design. In
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this thesis, we unify the existing component models of MECHATRONICUML and pro-
vide an extension that enables a concise, declarative specification of hierarchical recon-
figurations. This specification forms the basis for a transactional execution of recon-
figurations (C1) that respects ACI-properties of database systems [BHG87]. These are
atomicity, i.e., either all component instances reconfigure or none does, consistency,
i.e., each reconfiguration produces a consistent component instance configuration, and
isolation, i.e., reconfigurations do not interfere with each other.

In Step S2, the software engineer specifies a communication protocol for each interaction
between components. This includes a formal verification of the protocol behavior using
model checking [GTB+03, EHH+13, Ger13].

After specifying the communication protocols, the software engineer needs to specify
the real-time behavior for each component of the component model. This real-time be-
havior needs to include the communication protocols that have been specified and ver-
ified in Step S2 such that the verified safety and liveness properties are not invalidated.
We support the software engineer in this step by an integrated verification procedure
that verifies whether the real-time behavior of a component correctly refines a commu-
nication protocol according to a formal refinement definition (C2). As a byproduct, our
approach automatically selects a suitable refinement definition out of a set of possible
refinement definitions.

In Step S4, the software engineer specifies the reconfiguration behavior of the compo-
nents using our aforementioned extensions of the component model. In addition, we
extend this step by an approach for verifying that the reconfiguration behavior fulfills
the required ACI-properties and meets all hard real-time deadlines (C1). The result of
Steps S3 and S4 is a platform-independent model of the software.

Finally, the software engineer needs to analyze whether event-discrete software and
time-continuous feedback controllers have been integrated correctly by using a MIL
simulation in Step S5. We support the software engineer in this step by automatically
deriving a simulation model that includes both, the real-time behavior and the recon-
figuration behavior of the components. The simulation model is then extended by the
implementations of the feedback controllers and the environment model. The MIL simu-
lation may then be carried out using MATLAB/Simulink. It enables the engineers of the
different disciplines to validate the whole self-adaptive mechatronic system by simula-
tion and enables to use the code generation facilities of MATLAB/Simulink for deriving
source code for the system.

1.4 Overview

The remainder of this thesis is structured as follows. Chapter 2 introduces the founda-
tions that are required for understanding the contributions of this thesis. In Chapter 3,
we define a new component model for MECHATRONICUML. The MECHATRONICUML
component model forms the basis for the remaining contributions of this thesis. Along
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with the component model, we continue our RailCab example from Section 1.1. We
use this example throughout the remainder of this thesis. Chapter 4 introduces our con-
cept for transactional execution of reconfigurations. In addition, we explain our con-
cept for verifying reconfigurable components for ACI and timing properties. Thereafter,
Chapter 5 presents our approach for verifying that communication protocols have been
correctly refined by the components in our component model. Next, we present our
approach for MIL simulation of self-adaptive mechatronic systems in Chapter 6. In par-
ticular, we define how simulation models in MATLAB/Simulink can be derived auto-
matically from a MECHATRONICUML model. Finally, we summarize the contributions
of this thesis and give a perspective on future works in Chapter 7. We discuss the im-
plementation and evaluation of our concepts as well as related works along with our
contributions as part of the main chapters of this thesis.

The appendices provide additional, more technical information that supplement our con-
tributions. First, Appendix A presents additional parts of the RailCab model that we use
as a running example. Appendix B contains a formal definition of the semantics of Real-
Time Statecharts that we use for defining state-based behavior. Finally, we describe our
framework for performing reachability analyses (Appendix C) and the metamodels that
have been created as part of this thesis (Appendix D).





Foundations Page 29

2 Foundations
This chapter introduces the foundations for understanding the concepts presented in
the remainder of this thesis. We start by reviewing concepts and terminology related
to self-adaptive mechatronic systems in Section 2.1 that we will use in the following.
Thereafter, Section 2.2 introduces timed model checking including timed automata and
the timed computation tree logic. The latter two provide the formal basis for specify-
ing and verifying state-based behavior models of a self-adaptive mechatronic system.
Section 2.3 introduces graphs and corresponding graph transformations that form the
basis for specifying and verifying reconfiguration operations of a self-adaptive mecha-
tronic system. Finally, Section 2.4 introduces MECHATRONICUML, which is a domain-
specific language based on timed automata and graph transformations, that enables to
specify software models for a self-adaptive mechatronic system on a higher level of
abstraction. We will integrate all of the contributions of this thesis into MECHATRON-
ICUML.

2.1 Self-Adaptive Mechatronic Systems

Self-adaptive mechatronic systems automatically adapt their software architecture to a
changing environment without human intervention. That requires to integrate and asso-
ciate the software with the constituent parts of the mechatronic system such that the
system may reason about itself and its behavior in its current environment. In this
section, we introduce basic concepts and corresponding terminology related to self-
adaptive mechatronic systems that we use throughout the remainder of this thesis. In
Section 2.1.1, we describe how self-adaptive mechatronic systems may be structured
hierarchically. Thereafter, we introduce the operator-controller-module as a reference
architecture that enables to realize self-adaptive behavior in mechatronic systems (cf.
Section 2.1.2). Finally, Section 2.1.3 describes how the concept of models@runtime
may be used for executing reconfigurations.

2.1.1 Structuring

Self-adaptive mechatronic systems can be structured hierarchically as shown in Fig-
ure 2.1. In particular, they can be structured into mechatronic function modules, au-
tonomous mechatronic systems, and networked mechatronic systems (cf. [GRS14, pp. 8-
10]).

On the lowest level, a mechatronic system consists of several mechatronic function mod-
ules (MFM). An MFM embodies part of the mechanical system including sensors, actu-
ators, and software for controlling the mechanical system. An example is given by the
drive module [HZ14] or the active suspension module [KT14] of a RailCab. MFMs may,
again, be composed of other MFMs.
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Networked Mechatronic System (NMS)

Autonomous Mechatronic System (AMS)

Mechatronic Function Module (MFM)

Figure 2.1: Structuring of Self-Adaptive Mechatronic Systems (cf. [GRS14, p. 9])

The overall mechanical structure is represented by the autonomous mechatronic system
(AMS). It consists of the MFMs of the mechatronic system and includes additional sen-
sors and software components for realizing self-adaptive behavior. An example of an
AMS is a single RailCab.

Finally, AMS’ may collaborate and form networked mechatronic systems (NMS). Net-
worked mechatronic systems usually have no physical representation but are only virtu-
ally created by the AMS by using message-based communication protocols. Then, each
AMS fulfills a particular role in the NMS. An example is given by convoys of RailCabs.

2.1.2 Operator-Controller-Module

The operator-controller-module (OCM) is a reference architecture for self-adaptive
mechatronic systems that separates the behavior specification into three conceptual lev-
els [HOG04, GRS09, GRS14]. As part of this thesis, we relate our contributions to these
three conceptual levels of the OCM. The different levels are the cognitive operator, the
reflective operator, and the controller as shown in Figure 2.2.

The controller level is the lowest. It contains the feedback controllers that control the
physical system that is also called the controlled system [Kil05]. A feedback controller
continuously receives the current value of the controlled variable from the physical sen-
sors. Based on a reference value for the controlled variable, it tries to reduce the differ-
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Figure 2.2: Overview of the Operator-Controller-Module [GRS14, p. 11]

ence between the current value and reference value to zero by computing signals for the
system’s actuators.

The reflective operator forms the middle layer of the OCM. It contains event-discrete
software that is required for the operations of the mechatronic system as, for example,
the behavior for operating as a coordinator or member of a convoy. As a key element of
this behavior, the reflective operator executes communication protocols for interacting
with other AMS.

In addition, the reflective operator provides the ability to reconfigure its own software
architecture including the feedback controllers on the controller level. In accordance to
Allen et al. [ADG98] and Zhang et al. [ZC06], we distinguish between steady-state be-
havior and reconfiguration behavior. The steady-state behavior defines the behavior that
is executed by the feedback controllers on the controller level and by the reflective op-
erator based on a particular software architecture without considering reconfigurations.
The reconfiguration behavior defines possible modifications of the software architec-
ture. Using the reflective loop, self-adaptive systems continuously monitor their own
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behavior for deciding whether, when, and how they need to reconfigure. During a recon-
figuration, the system switches from one steady-state behavior to another steady-state
behavior [ADG98, ZC06]. In the following, we refer to the different steady-behaviors
of a self-adaptive mechatronic system as functional behavior [MSKC04].

The cognitive operator provides the self-optimization capabilities to the system. There-
fore, it typically manages a set of weighted goals that the AMS shall achieve at run-
time [vL01, GSB+08]. As a result, the cognitive operator contains functionality for
reasoning about the system’s behavior and the environment for optimizing the system’s
behavior according to the given goals.

The software on the controller level and part of the reflective operator are executed with
respect to hard real-time constraints [Kop97]. This includes, in particular, the reconfig-
uration of the software being executed on these levels and the communication between
different systems. The cognitive operator and the remainder of the reflective operator
are executed in soft real-time [Kop97].

2.1.3 Models@Runtime

A model@runtime is a model of a system that it manages and uses by itself during run-
time [BBF09]. In contrast to a reflective system model [Mae87], it is typically specified
on a higher level of abstraction as denoted by Blair et al. [BBF09]. Both approaches,
however, require that the model and the system are causally connected. That means
that any change in the running system is reflected into the model@runtime and, what
is even more important, any change of the model@runtime changes the running sys-
tem in the same way. As a consequence, the system can be modified by modifying the
model@runtime instead of modifying the running system directly. In this thesis, we use
this approach for defining and executing reconfigurations based on a model@runtime of
the software architecture [GS04].

model@run-time

running system

Figure 2.3: Illustration of a Model@Runtime

Figure 2.3 illustrates the principle of a model@runtime. The running system on the
lower level consists of a set of objects. The model@runtime abstracts these objects
to a component representation and associates the objects and connectors of the running
system to the model elements of the model@runtime. Changing the component structure
in the model@runtime will also change the object structure in the running system.



Foundations Page 33

2.2 Timed Model Checking

Model checking [CGP00, BK08] is an automated formal verification procedure that
gives a mathematical proof whether a software model fulfills a given set of formal re-
quirements. Thus, it may guarantee the absence of errors in a model, in contrast to
testing, which may only show the presence of errors. Timed model checking [ACD93,
HNSY94] additionally considers the real-time characteristics that apply to a model of a
mechatronic system’s software. In this thesis, we use (timed) model checking as an an-
alytical method for showing the correctness of functional and reconfiguration behavior
of a self-adaptive mechatronic system.

Timed model checking uses timed automata as introduced in Section 2.2.1 as a be-
havioral model. Therefore, timed automata provide the formal basis for specifying
state-based real-time behavior in MECHATRONICUML (cf. Section 2.4). The timed
computation tree logic as introduced in Section 2.2.2 enables the specification of for-
mal requirements. These formal requirements express the safety and liveness properties
that the timed automata need to fulfill. We require knowledge about such formal re-
quirements for defining our refinement approach in Chapter 5. Finally, a timed model
checking algorithm decides whether the timed automata fulfill the formal requirements
given based on the timed computation tree logic (cf. Section 2.2.3).

2.2.1 Timed Automata

A timed automaton [AD94, BY04] is a state-based model for specifying real-time be-
havior. Timed automata extend finite automata [Mea55] by a set of real-valued variables
called clocks and constraints over these clocks. Clocks measure the progress of time in
a system. Time progresses constantly and uniformly in all clocks. In literature, there
exist many variants of timed automata (see Waez et al. [WDR11] for a recent survey).
In this thesis, we will use timed safety automata [HNSY94] as they are defined for the
UPPAAL model checker by Bengtsson and Wang [BY04]. For the remainder of this
thesis, we will refer to timed safety automata simply as timed automata.

Like finite automata, timed automata have a set of inputs, a set of outputs, and a set of
integer variables. Each transition may consume an input and produce an output. Integer
variables may be used for guard conditions of the transitions and may be changed using
assignments while the transition fires.

In addition, timed automata support three modeling elements based on clocks. These
are invariants, time guards, and resets. An invariant is assigned to a location. The timed
automaton may only rest in a location as long as the invariant is true for the current clock
values. A time guard restricts the firing of a transition to a time interval. A reset sets a
clock back to zero while a transition fires.

Timed automata can be composed to networks of timed automata (NTA). In an NTA,
the single automata interact via their inputs and outputs using so-called channels. Then,
they use the channels as inputs (marked with ?) and outputs (marked with !).
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Figure 2.4 shows an NTA consisting of two timed automata that specify a simple convoy
behavior. The member automaton in Figure 2.4b requests to start a convoy. The coordi-
nator automaton in Figure 2.4a either starts the convoy or declines the request. Finally,
the member automaton may choose to leave the convoy and the coordinator automaton
confirms.

possible = i, c1 = 0

c1 ≥ 25 &&
possible == true

Idle

start!

Request

ConvoyMemberLeaves

c1 ≤ 50
request?

decline!

confirm!

leave?

i: int[0,1]

possible == false

(a) Coordinator

c2 = 0

c2 ≥ 25

Idle

start?

c2 ≤ 20

Wait

ConvoyWaitLeave

c2 ≤ 50
request!

decline?

confirm?

leave!c2 = 0

(b) Member

Figure 2.4: Network of Timed Automata Specifying a Simple Convoy Behavior

The two timed automata use five channels named request, start, decline, leave, and confirm

for realizing the convoy behavior. Each of the timed automata has four locations and
five transitions. As an example, the coordinator automaton in Figure 2.4a has locations
Idle, Request, Convoy, and MemberLeaves. The transition from Idle to Request specifies a
reset on clock c1, i.e., the coordinator automaton resets c1 any time it receives a request
from the member automaton. The location Request has an invariant c1 ≤ 50, i.e., the
coordinator automaton needs to send an answer to the member automaton while c1 is
less or equal 50. However, the transition from Request to Convoy may only fire if c1 is
greater of equal to 25 as specified by the time guard. Thus, the coordinator automaton
may only start the convoy 25 time units after receiving the request.

Timed automata may be nondeterministic. In particular, they may select a value non-
deterministically from a given range using selections [BDL06a]. This value may be
assigned to a variable. In our example, the coordinator automaton in Figure 2.4a uses a
selection at the transition from Idle to Request. It selects the value of i from an integer
range from 0 to 1. The value of i is then assigned to the variable possible that defines
whether it is possible to start the convoy.

The state of an NTA is defined by the discrete locations of all timed automata including
the values of their variables and their clocks. Since clocks are real-valued and time in-
creases continually, timed automata always have an infinite number of states. Therefore,
the semantics of an NTA is usually defined by means of symbolic states based on clock
zones [Alu99, BY04]. Clock zones store intervals of clock values and enable to repre-
sent the state space of an NTA using a finite zone graph. The rules for computing the
zone graph define the semantics of NTAs. We refer to paths of the zone graph as traces.
Figure 2.5 shows the zone graph of the NTA in Figure 2.4.
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Figure 2.5: Excerpt of a Zone Graph of the NTA in Figure 2.4

The execution of an NTA starts in the initial states of all timed automata (Idle in both
automata in Figure 2.4) with all clocks being zero and all variables set to their initial
values. The corresponding symbolic state S1 is the initial state of the zone graph in
Figure 2.5. Further symbolic states and transitions in the zone graph are inferred by the
following rules:

1. Delay

An NTA may delay, i.e., the values of all clocks increase, but neither the active
locations nor the values of the integer variables change. The values of the clocks
may increase as long as no invariant of an active location restricts them. In the zone
graph, these transitions are labeled with δ. As an example, consider the transition
from S1 to S2. In S2, all clocks have an unbounded value greater or equal to 0

because the Idle locations do not define invariants.

2. Single Transition

A timed automaton in an NTA may fire a transition that does not use a channel.
In this case, the active location and, potentially, the values of the integer variables
change. The active locations of all other timed automata remain unchanged. Fur-
thermore, firing transitions in an NTA takes no time and, thus, the values of the
clocks do not change except for resets that are performed by the transition. In the
zone graph, the corresponding transitions are labeled with τ .
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3. Synchronized Transitions

Two timed automata in an NTA may synchronize over a channel and synchronously
fire one transition each. The synchronization is defined by the CCS parallel com-
position operator [Mil82]. As a result, synchronization is realized by hand-shake
synchronization, i.e., the two timed automata move to the target locations of their
transitions synchronously. For synchronizing transitions, the assignments and re-
sets of the transition with the output (!) are executed prior to the assignments and
resets of the transition with the input (?). In the zone graph, the corresponding
transitions are labeled with the name of the channel. As an example, consider the
transition from S2 to S3 that corresponds to a synchronization via the channel re-

quest. As a consequence, both timed automata change their active locations and,
due to the resets, both clocks are set back to 0.

Transitions of a timed automaton do not need to fire if they are enabled unless they
are forced to. If a location specifies an invariant, the timed automaton is forced to fire
before the invariant expires. In addition, timed automata provide urgent channels as well
as urgent locations for forcing immediate progress in an NTA. If two transitions that
synchronize over an urgent channel are enabled, they need to fire instantly without delay.
In urgent locations, no delay is allowed as well. In the timed automaton in Figure 2.4a,
MemberLeaves is an urgent location.

2.2.2 Timed Computation Tree Logic

The timed computation tree logic (TCTL, [ACD93]) is a timed temporal logic for real-
time systems. It enables to specify formal safety and liveness properties [Lam77] for a
given real-time behavior model as, e.g., an NTA. "A safety property is one which states
that something will not happen" [Lam77], e.g., that it may never happen that one RailCab
assumes to be a member of a convoy after the coordinator has declined the request. "A
liveness property is one which states that something must happen" [Lam77], e.g., that
a RailCab always answers to a proposal on building a convoy. For specifying timing
properties, TCTL extends the computation tree logic (CTL, [CES86, HR04]) that was
developed for finite-state models by quantitative timing constraints. While CTL may
only specify that some condition will be true at some point in the future, TCTL may
define a quantitative time bound by defining, for example, that the condition must be
fulfilled within 5 ms.

TCTL uses a textual syntax. We may define the syntax of a TCTL formula φ inductively
via a Backus Naur form

φ ::= true | false | p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 → φ2 | AG∼c φ | EG∼c φ |
AF∼c φ | EF∼c φ | A(φ1 U∼c φ2) | E(φ1 U∼c φ2)

where p is an element of a set AP of atomic formulas, c ∈ N, and ∼ represents one of
the binary relations <,≤,=,≥, > (cf. [HR04, ACD93]).
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The set AP of atomic propositions refers to facts of an NTA that may be evaluated to true
or false for any (symbolic) state of the NTA. Considering the NTA shown in Figure 2.4,
we use the atomic proposition Coordinator.Request to express the fact that the state
Request of the coordinator automaton is active.

The temporal connectives AG, EG, AF, EF, AU, and EU define which atomic propositions
need to hold in the future. As its name indicates, TCTL is a branching time logic where
formulas are evaluated based on a computation tree. That means, TCTL acknowledges
the fact that computations of an NTA may branch. Therefore, the temporal connectives
always consist of a path quantifier (A or E) and a temporal operator (one of G, F, U).

Using the path quantifiers, the developer may express that a formula shall hold either
for all paths of a computation tree (A) or for at least one path (E). For an NTA, the
computation tree is given by its zone graph where all loops are unrolled. The temporal
operator G defines that the subformula φ must hold for any (symbolic) state of a given
path. The temporal operator F defines that φ needs to eventually hold for a (symbolic)
state in the future. The binary temporal operator U defines that φ1 needs to hold for any
(symbolic) state on a path until eventually φ2 becomes true.

In TCTL, the temporal connectives may be restricted with a time bound ∼ c. Based on
the NTA in Figure 2.4, we may specify, for example, the following formula:

ϕ1 = AG(Coordinator.Request → AF≤50 (Member.Idle or

Member.Convoy)))

It specifies that on all execution paths it globally holds that whenever the coordinator au-
tomaton is in state Request, then on all execution paths the member automaton reaches
either the Idle state or the Convoy state within 50 time units. In the above formula, we
omitted the time bound ≥ 0 of AG in the concrete syntax because it does not restrict the
temporal connective. In this case, the temporal connectives of TCTL become semanti-
cally equivalent to the temporal connectives of CTL [ACD93]. Thus, any TCTL formula
that only uses the time bound ≥ 0 is a valid CTL formula.

In accordance to UPPAAL [BDL04], we use a dedicated atomic proposition deadlock

that refers to a deadlock state. A deadlock state is a state that does not have any suc-
cessors. Using this atomic proposition, we may express that an NTA is free of deadlocks:

ϕ2 = AG ¬deadlock

In addition to the regular temporal connectives of TCTL introduced above, we use the
weak-until connective (AW and EW) as part of our example in Chapter 5. Weak-until is
a variation of the until connectives AU and EU. In contrast to until, weak-until does not
require that ψ holds eventually, i.e., φ may hold globally. A weak-until, however, may
be expressed in terms of the regular temporal connectives of TCTL [BK08, p. 327].



Page 38 Chapter 2

An alternative for specifying safety and liveness properties is given by linear-time tem-
poral logic (LTL, [Pnu77, HR04]). LTL uses a linear time model based on paths that do
not consider branching. Therefore, the temporal connectives of LTL only use a temporal
operator but no path quantifier. We discuss preservation of LTL formulas for our refine-
ment check, but do not use LTL for specifying safety and liveness properties as part of
this thesis because timed variants of LTL like the metric temporal logic (MTL, [Koy90])
are not decidable for the dense time model used by NTAs presented above [AH92] and,
thus, no model checkers exist.

2.2.3 Model Checking Procedure

A timed model checking procedure decides whether a given timed automata or NTA ful-
fills a given TCTL property [HNSY94, BDM+98, BY04]. Therefore, the model check-
ing procedure computes a zone graph for the timed automaton or the NTA. Then, it
successively labels the resulting states with the atomic propositions and the subformulas
that hold for a given state. The timed automaton or the NTA fulfills the TCTL property if
and only if the formula is true for the initial state of the zone graph. If the TCTL property
is not fulfilled, the model checker returns a counterexample. A counterexample is a
trace of the zone graph that caused that the TCTL property is not fulfilled. In the course
of this thesis, we use the model checker UPPAAL [LPY95, BDL+06b] for verifying
TCTL properties for NTAs.

2.3 Graph-Based Specifications

The theory of graph transformation systems (GTS, [Roz97]) is based on graphs. Intu-
itively, graphs consist of nodes and edges connecting the nodes. GTS define a language
consisting of words where each word is a graph. Productions of a GTS are given by
graph transformation rules that formally specify how one graph may be transformed
into another one. In this thesis, we use GTS as a basic formalism for formalizing re-
configuration operations of MECHATRONICUML that modify the software architecture
of a self-adaptive mechatronic system. This, in turn, enables to formally verify recon-
figuration operations of MECHATRONICUML, which we exploit in our reconfiguration
approach introduced in Chapter 4.

In a general GTS, the nodes and edges of a graph do not have a predefined correspon-
dence to a real-world or software entity. For defining reconfigurations of a software ar-
chitecture by graph transformations, we need to define a correspondence between nodes
and edges of a graph and the components and connectors of the software architecture.
This a achieved by using typed attributed GTS that we introduce in Section 2.3.1. Story
diagrams as introduced in Section 2.3.2 extend typed attributed graph transformation
rules by the ability to specify control flow. This enables to specify more complex recon-
figuration operations. Therefore, story diagrams are the basis for specifying reconfigu-
ration operations in MECHATRONICUML as defined in Section 3.3.
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2.3.1 Typed Attributed Graph Transformations Systems

Typed attributed GTS [EEPT06] extend GTS by a type graph and node attributes. The
type graph defines which types of nodes exist and by which types of edges they may be
connected. Node attributes enable to store values like integers or strings inside a node.
Both features are essential for modeling reconfiguration (cf. Section 3.3).

Figure 2.6 shows an example of a simple type graph that defines two nodes types and six
edge types. The two nodes types, RailCab and TrackSection, represent RailCabs and track
sections. The node type RailCab defines an attribute of type Integer that stores the size
of the convoy that the RailCab is currently driving in. The edge types define how nodes
of type RailCab and TrackSection may be connected.

RailCab
convoySize : int

railcabs

on

0..*

1

TrackSection next0..1

0..1
prev

0..1
coordinator

0..* member

Figure 2.6: Example of a Type Graph

A TrackSection has a next and a prev TrackSection. These edge types define the outline
of the track system. In addition, the edge type railcabs is used to refer to all RailCabs
currently driving on a track section. The edge type on enables to define on which Track-

Section a RailCab is currently located. Finally, coordinator and member enable a RailCab

to refer to its coordinator or its members.

A typed attributed graph is always typed over exactly one type graph, while an arbitrary
number of typed attributed graphs may use the same type graph. All nodes and edges
of a typed attributed graph must be typed over exactly one node type or edge type,
respectively, of the type graph. The type of a node or edge is immutable. In the course
of this thesis, we will assume that the type graph is given by a metamodel [Küh06].

Figure 2.7 shows an example of a typed attributed graph that is typed over the type graph
in Figure 2.6. It contains five nodes and five edges. It specifies the situation where two
RailCabs drive on two consecutive track sections. The RailCabs are not yet driving in a
convoy because they are not connected with each other by a coordinator or member edge.

ts3 : TrackSection

rc1 : RailCab
convoySize = 0

prev
ts2 : TrackSection

next
ts1 : TrackSection

prev

next

rc2 : RailCab
convoySize = 0

onon

railcabs railcabs

Figure 2.7: Typed Attributed Graph
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Each node of a typed attributed graph has values for all of its attributes. In Figure 2.7,
the nodes rc1 and rc2 both have value 0 for their convoySize attribute.

A typed attributed GTS consists of a type graph, an initial graph that is typed over
the type graph, and a set of graph transformation rules that define how graphs may be
modified. A graph transformation rule specifies a left hand side (LHS), a right hand
side (RHS), a so-called rule morphism, and a set of negative application conditions
(NAC) [EEPT06]. LHS, RHS, and NACs are typed attributed graphs based on the type
graph. The rule morphism associates nodes in the LHS to nodes in the RHS to denote
which nodes are the same. In addition, each NAC defines its own morphism that asso-
ciates nodes in the LHS to nodes in the NAC.

Rule: startConvoy

LHS

::=

RHS

NAC1

ts2 : TrackSection

rc1 : RailCab

ts1 : TrackSection
next

rc2 : RailCab

onon

ts2 : TrackSection

rc1 : RailCab
convoySize = convoySize + 1

ts1 : TrackSection
next

rc2 : RailCab

onon

coordinator

member

rc3 : RailCabrc2 : RailCab coordinator

NAC2

rc1 : RailCabrc2 : RailCab member

Figure 2.8: Graph Transformation Rule for Starting a Convoy

Figure 2.8 shows an example of a graph transformation rule startConvoy that starts a
convoy between two RailCabs that are positioned on two consecutive track sections.
The LHS specifies this situation. The RHS specifies the same situation but rc2 is now a
member of a convoy that is coordinated by rc1. In our example, we implicitly define the
rule morphism by using the same names, e.g., rc1 and rc2 for nodes in the LHS and RHS.
The graph transformation rule startConvoy defines two NACs. NAC1 defines a situation
where rc2 is already a member of a convoy that is coordinated by a different RailCab rc3.
NAC2 defines a situation where rc2 is already a member of a convoy that is coordinated
by rc1.

The application of a graph transformation rule such as startConvoy to a typed attributed
graph is performed in three steps. In the first step, we search a match of the LHS to
the typed attributed graph, the so-called host graph. Basically, a match is an occurrence
of the LHS in the host graph. The match needs to consider both, the type of the node
and the attribute values of the node. That means, nodes of type RailCab in the LHS
may only be matched to nodes of type RailCab in the host graph. If a node in the LHS
specifies an attribute value, the matched node in the host graph needs to have the same
attribute value. Attributes that are not used in the LHS are ignored while searching the
match. A match for a graph transformation rule is only valid, if no NAC of the graph
transformation rule can be matched to the host graph. In the second step, we remove all
nodes and edges that occur in the LHS but not in the RHS of the graph transformation
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rule. To determine this set of nodes, we use the rule morphism. In the third step, we
add all nodes and edges that occur in the RHS but not in the LHS. In this step, we also
modify attribute values if necessary.

When applying the graph transformation rule startConvoy in Figure 2.8 to the typed at-
tributed graph in Figure 2.7, we proceed as follows. For obtaining a match, we search
for an occurrence of the LHS in the graph. The occurrence is given by the nodes rc1, rc2,
ts2, and ts3 in Figure 2.7. Next, we need to check whether this match may be extended
such that any NAC is completely matched. This is not the case because rc2 in Figure 2.7
is not yet member of a convoy. Thus, startConvoy has been successfully matched and we
perform the graph rewriting. Therefore, we create a coordinator edge from rc2 to rc1 and a
member edge from rc1 to rc2. In addition, we update the value of the attribute convoySize

of rc1 by incrementing it by 1.

For the application of graph transformation rules, we follow the single pushout approach
with injective matches (SPO, [Roz97]). In essence, that means that different nodes of
the LHS need to be matched to different nodes in the host graph. For example, rc1 and
rc2 in the LHS of startConvoy need to be matched to different RailCab nodes in the host
graph. In addition, if the graph transformation rule specifies to delete a node without
deleting all of its incident edges, then the incident edges are implicitly deleted as well to
avoid dangling edges.

2.3.2 Story Driven Modeling

Story driven modeling (SDM, [Zün01]) is an approach for the object-oriented and mod-
el-driven software development. One essential part of SDM are story diagrams
[FNTZ00, Zün01] that are used in the design phase for formally specifying operations
of an object-oriented program. They combine an imperative control flow specification
based on UML Activity Diagrams [Gro11c] with a formal, declarative specification of
object manipulation based on typed attributed graph transformations, called story pat-
terns. Story diagrams may also be used as an endogenous in-place model transformation
language [CH06] and form the basis for defining reconfiguration operations in our ap-
proach as described in Section 3.3. In the following, we give a brief overview of story
patterns (cf. Section 2.3.2.1) and story diagrams (cf. Section 2.3.2.2) based on the latest
version by von Detten et al. [vDHP+12a].

2.3.2.1 Story Patterns

A story pattern consists of object variables and link variables that correspond to the
nodes and edges of a typed attributed graph transformation rule. Object variables and
link variables are typed over a metamodel [Küh06]. Story patterns use a concise notation
of the typed attributed graph transformation rule that visualizes LHS, RHS, and NACs in
a single graph. As an example, consider the story pattern in Figure 2.9 that is equivalent
to the typed attributed graph transformation rule in Figure 2.8.
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rc2
convoySize := convoySize + 1

rc1

ts2 : TrackSection ts1 : TrackSectionnext ►

▼  on ▼  on

coordinator ►
«create»

◄ member
«create»

◄ member

r3 : RailCab ◄ coordinator

Figure 2.9: Story Pattern

Objects variables and link variables that shall be created by the story pattern are la-
belled with a «create» annotation such as the link variables coordinator and member

in Figure 2.9. Object variables and link variables that shall be deleted are labeled with
«destroy». All object variables and link variables not carrying an annotation are not
changed by the graph rewriting.

Furthermore, object variables have a binding state. In particular, we distinguish between
bound and unbound object variables. An unbound object variable needs to be matched
by the graph matching when the story pattern is applied. A bound object variable has
already been matched to an object of the host graph during the application of another
story pattern. This matching is not changed while matching the unbound object variables
of the story pattern. In our example, the object variables ts1, ts2, and r3 are unbound,
while rc1 and rc2 are bound. In the concrete syntax, unbound variables visualize both,
their name and their type, whereas bound variables only visualize their name.

Story patterns that are embedded in a story diagram always need to have at least one
bound object variable. In addition, any unbound object variable must be reachable from
at least one bound object variable by traversing link variables. The objective of this
restriction is to reduce the matching effort for story patterns compared to typed attributed
graph transformation rules. In general, deriving a matching for a typed attributed graph
transformation rule is equivalent to the NP-complete subgraph isomorphism problem
and, thus, requires exponential runtime. The bound object variables, however, provide
starting points for the graph matcher and, in combination with the type graph, reduce
the number of possible matchings and, thus, the runtime for deriving a valid matching
significantly [SWZ95, Zün95, pp. 195ff.].

NACs are represented by so-called negative variables that are crossed out in the concrete
syntax. In our example, the negative object variable rc3 and the negative link variable
coordinator between rc2 and rc3 correspond to NAC1 in Figure 2.8. They denote that
rc2 does not have a coordinator reference to another RailCab. The negative link variable
member from rc1 to rc2 corresponds to NAC2 and defines that rc2 must not already be a
member of rc1.

Object variables may contain conditions on and assignments to object attributes as in
typed attributed graph transformation rules. In our example, the value of the attribute
convoySize of rc1 is set to one. As in typed attributed graph transformation rules, condi-
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tions on object attributes are part of the LHS, while assignments to attributed values are
part of the RHS.

2.3.2.2 Story Diagrams

A story diagram consists of activity nodes and activity edges for specifying the control
flow such as sequential and conditional execution as well as loops. As part of this thesis,
we use different kinds of activity nodes and activity edges that we illustrate below.

The kinds of activity nodes that we consider are initial nodes, final nodes, story nodes,
decision nodes, activity call nodes, and statement nodes. Each story diagram contains
exactly one initial node that marks the starting point of its execution. In addition, each
story diagram has at least one final node that marks the end of its execution. A story node
contains a story pattern and, thus, defines a modification of an object structure. Decision
nodes enable to define complex branch and merge structures for the control flow. An
activity call node [BvDHR11] enables to invoke another story diagram. Finally, state-
ment nodes contain source code and may be used, for example, to define local counter
variables.

rc1 as Coordinator

[failure]

startConvoy(RailCab rc1,RailCab rc2) : Boolean result

rc2
convoySize := convoySize + 1

rc1

ts2 : TrackSection ts1 : TrackSectionnext ►

▼  on ▼  on

coordinator ►
«create»

◄ member result := false

[success]

result := true

«create»

◄ member

r3 : RailCab ◄ coordinator

Call

rc1.enableCoordination();

[else]

[rc1.convoySize == 1]

Figure 2.10: Story Diagram with Control Flow

As an example, consider the story diagram shown in Figure 2.10. The story diagram
specifies the behavior of starting a convoy. It embeds the story pattern shown in Fig-
ure 2.9 in the story node named rc1 as Coordinator. If rc2 is the first member of rc1 as
specified by the decision node below the story node, we additionally invoke enableCoor-

dination on rc1 via the activity call node at the bottom of the figure.

Activity edges connect the activity nodes and define how the execution of the story
diagram proceeds after executing an activity node. Story diagrams support different
kinds of activity edges that are distinguished by their labels in the concrete syntax. The
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kind and number of outgoing activity edges depend on the kind of the source activity
node.

Initial nodes and activity call nodes always have exactly one outgoing default activity
edge but no other outgoing activity edges. A default activity edge has no label. Final
nodes have no outgoing edges. A story node may either have one outgoing default
activity edge or it may have one outgoing success activity edge, identified by the label
[success], and one outgoing failure activity edge, identified by the label [failure]. The
success activity edge is taken if the story pattern in the story node has been matched
successfully. The failure activity edge is taken if the story pattern could not be matched.
Finally, a decision node may have either one outgoing default activity edge (merge node)
or it has n outgoing activity edges where n ≥ 2 (branch node). In the latter case, n − 1

of the outgoing activity edges must carry a Boolean condition, while the remaining one
is an else activity edge that has the label [else]. In this case, the activity edge with a
satisfied condition is executed or, if none of the Boolean conditions is fulfilled, the else
activity edge is executed.

In addition to defining the control flow, the activity edges define how matchings are
propagated through a story diagram. An initial matching of a story diagram is provided
by the input parameters. The story diagram in Figure 2.10 has two input parameters rc1

and rc2 of type RailCab. This matching is propagated to the story node via the default
activity edge. The story pattern, which is embedded in the story node, uses rc1 and
rc2 as bound variables. If the story pattern can be applied successfully, the matching is
extended by all matched and created variables. Destroyed object variables are removed
from the matching. Then, the matching is propagated via the success activity edge to
the subsequent node. If the story pattern cannot be matched, the matching is propagated
unmodified via the failure activity edge. Decision nodes never change a matching. The
Boolean conditions at the outgoing activity edges may refer to any object variables in the
current matching and to their attributes. At a final node, object variables contained in the
current matching can be assigned to the output parameters. In our example, however, we
only assign the literals true and false to the output parameter result depending on whether
the creation of the convoy was successful.

Story diagrams may be defined as an implementation of an operation of a class of the
metamodel. In this case, the story diagram may be invoked by calling the operation for
an object of the corresponding type. In our example in Figure 2.10, the activity call node
invokes the operation enableCoordination on the object rc1 of type RailCab. In this case,
rc1 serves as an implicit parameter for the story diagram and may be used as a bound
variable with the name this in the embedded story patterns.

For defining loops, story nodes may be marked as for-each story nodes. A for-each
story node is iteratively applied to any matching that may be obtained for the embedded
story pattern in the host graph but guarantees that no matching is used twice. A for-
each story node always has one outgoing end activity edge that is taken if no further
matching may be obtained for the story pattern in the for-each story node (labeled with
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[end]). Optionally, a for-each story node may have an additional each time activity edge
(labeled with [each time]) that is taken for each matching of the embedded story pattern.

Bind each Member...

[end]

RailCab::breakConvoy()

this

member : RailCab

▼  member

… and remove it!

this
convoySize := convoySize – 1

member

▼  member

[each time]

«destroy»

Figure 2.11: Story Diagram with for-each Activity Node

Figure 2.11 shows the story diagram breakConvoy. The story diagram may be invoked
on an object of type RailCab, represented by the this variable, for dissolving a convoy.
For the RailCab the for-each story node Bind each member..., which is visualized with a
cascaded border line, matches any member of the RailCab. For each match, we exit the
for-each story node via the each time activity edge. The second story node destroys the
link to the member and decreases the convoySize by 1.

2.4 MechatronicUML

MECHATRONICUML [GTB+03, EHH+13, BDG+14a] is a model-driven software en-
gineering method for developing event-discrete software of self-adaptive mechatronic
systems. It adapts the concepts of UML 2.4 [Gro11c] for defining a component-based
software architecture, state-based behavior, and runtime reconfiguration of a self-adap-
tive mechatronic system. In the course of this thesis, we integrate all of our contributions
into MECHATRONICUML and provide an example model for the RailCab system based
on MECHATRONICUML in Appendix A.

In the following, we briefly review the most important parts for specifying platform-
independent models based on MECHATRONICUML that we use as part of this thesis.
In particular, we introduce Real-Time Coordination Protocols (Section 2.4.1), Real-
Time Statecharts (Section 2.4.2), and the assumptions on quality-of-service character-
istics that are employed by MECHATRONICUML. For a detailed description of these
parts of MECHATRONICUML, we refer to the MECHATRONICUML language specifi-
cation [BDG+14b]. We discuss the component model of MECHATRONICUML and the
specification and execution reconfigurations in detail in Chapters 3 and 4.

2.4.1 Real-Time Coordination Protocols

MECHATRONICUML uses Real-Time Coordination Protocols (RTCPs) for formally
specifying asynchronous message-based communication between two communication
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partners [GTB+03, EHH+13]. RTCPs may be used in the reflective operator and in
the cognitive operator of the OCM for defining message-based communication between
different AMS but also between different components inside a single AMS.

An RTCP defines a name and two named roles that represent the communication part-
ners. Each role has a behavior specification in terms of a Real-Time Statechart (cf.
Section 2.4.2) that defines its behavior. The roles are connected by a role connector that
specifies requirements to the physical connection such as the maximum transmission
delay for a message and the possibility of message loss (cf. Section 2.4.3).

provider receiver

DistanceTransmission

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

single rolemulti role role connector

coordination
protocol

role name label

Figure 2.12: Declaration of the RTCP DistanceTransmission

Figure 2.12 shows the declaration of a RTCP named DistanceTransmission that is used
by a convoy coordinator for periodically transmitting new reference data to the mem-
bers [HH11a, EHH+13]. The RTCP has two roles named provider and receiver. The
RTCP is represented by the dashed ellipse, while the roles are represented by the dashed
squares including the connection to the pattern ellipse. In our example, the role connec-
tor specifies a transmission delay of 1 ms for each message.

Each role defines a set of message types that it may send or receive. Message types
are used to type the messages that are exchanged at runtime. They have a name and
an optional list of typed, named parameters. Which messages may be sent or received
at a particular point in time is defined by the Real-Time Statecharts of the roles, which
we present in Section 2.4.2. If a role only receives messages, it is an in-role. If it only
sends messages, it is an out-role. If it both sends and receives messages, it is an in/out-
role [BDG+14b]. In our example in Figure 2.12, both roles are in/out-roles which is
denoted by the two triangles inside the squares.

Received messages are stored in a message buffer that we call in-buffer. In this work,
we restrict ourselves to FIFO-queues as in-buffers where all the received messages are
stored in the same queue. Each role specifies a buffer size for its in-buffer [BDG+14b].
In our example, both roles specify a buffer size of 1, i.e., they can store at most one
message in their in-buffer.

In addition, each role specifies a cardinality using a Min-Max-Notation as defined by
Coad and Yourdon [CY90, p. 127]. Thus, the cardinality of a role defines with how many
instances of the other role it may communicate at least and at most. If the upper bound
of the cardinality equals 1, then we call it a single role. If the upper bound is greater
than 1, we call it a multi role [EHH+13, BDG+14b]. In our example, the role receiver
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defines a cardinality of [1] while provider defines a cardinality of [0..∗]. Consequently, an
instance of the multi role provider may communicate with 0 to many receiver’s while any
instance of the single role receiver may only communicate with exactly one provider.

At runtime, an instance of a multi role contains of a set of subrole instances as shown
in Figure 2.13. Each subrole instance is connected via a single-cast connector to one
instance of the single role and manages the communication with it. Due to the single-
cast connectors, each subrole instance may only exchange messages with one particular
single role instance.

:receiver

:provider :receiver

:receiver

:DistanceTransmission

protocol instance label

role instance label role instance label

role connector instance

single role instance
multi role instance

subrole instance

Figure 2.13: Instance of the RTCP DistanceTransmission (cf. [BDG+14b])

Multi role instances are ordered, i.e., there exists a total order of the subrole instances.
One subrole instance is the first one in the ordering, another one is the last one in the
order. Adjacent subrole instances in the order have a successor-predecessor relationship.
In our example in Figure 2.13, we may assume that the top most subrole instance is the
first one while the bottom most subrole instance is the last one. The subrole instance in
the middle is the successor of the first one and the predecessor of the last one.

2.4.2 Real-Time Statecharts

Real-Time Statecharts (RTSCs) as defined by Becker et al. [BDG+14b] are a combina-
tion of UML statemachines [Gro11c] and timed automata (cf. Section 2.2.1). Thus, they
enable to specify hierarchical, state-based real-time behavior.

Basically, RTSCs consist of states and transitions. They use clocks with corresponding
invariants, time guards, and resets as defined for timed automata (cf. Section 2.2.1).
In addition, they may use variables for storing data and operations for encapsulating
complex computations. As in UML statemachines, states may define actions that are
executed upon entering (entry event) or leaving (exit event) a state.

As an example, we provide the RTSCs of the roles receiver and provider of the RTCP Dis-

tanceTransmission in Figures 2.14 and 2.15, respectively. They implement the behavior
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that the provider periodically sends an update message with a new reference distance and
speed to all receivers. Each receiver acknowledges the receipt with an ack message.

receiver variable: int dist, int speed;
clock: c2;

SendAck
c2 ≤ 1 ms

entry/ {reset: c2;}
WaitUpdate

update /
{dist := update.distance;
speed := update.speed;}

[1ms;1ms]

/ ack()

[1ms;1ms]

Figure 2.14: RTSC of Role receiver of DistanceTransmission

The RTSC of receiver shown in Figure 2.14 contains two states WaitUpdate and SendAck

that are connected by two transitions. The state WaitUpdate is the initial state. The state
sendAck defines an invariant based on c2 and an entry event that resets c2 upon entering
the state. Thus, SendAck may be active for 1 ms. In contrast to timed automata, RTSCs
use SI-units [BIPM06] for defining time values used in time guards, invariants, and
deadlines.

A transition of a RTSC defines an enabling condition, an effect, and optionally a dead-
line. The enabling condition is a Boolean condition that defines whether a transition is
enabled. If a transition is enabled, it may fire and thereby cause a state change in the
RTSC. Upon firing, the effect of the transition is established. The deadline provides a
lower and an upper bound on how long it takes to establish the transition effect. Thus,
transitions of a RTSC are time-consuming in contrast to timed automata.

The enabling condition consists of a time guard, a guard condition using the variables
of the RTSC, a synchronization, and a trigger message. Synchronizations based on syn-
chronization channels are used in the same way as in timed automata. The trigger mes-
sage defines the type of message that needs to be located at the head of the message
buffer. All parts of the enabling condition are optional. In the concrete syntax, the
enabling condition is placed before the "/" of the transition label.

The effect consists of an action, a raise message, and a clock reset. All are optional
and executed in the given order. The action may modify the variables of the RTSC, call
operations, and, in particular, invoke story diagrams that define reconfiguration behavior.
The raise message defines a message that is sent including values for the parameters.

In the RTSC in Figure 2.14, the transition from WaitUpdate to SendAck requires an update

message to be at the first position in the message buffer. The transition action assigns
the values contained in the parameters distance and speed of the message update to the
integer variables dist and speed. Executing the effect takes at least 1 ms and at most 1 ms
as denoted by the deadline. The transition from SendAck back to WaitUpdate defines no
enabling condition and sends a message ack as a part of its effect. Thus, this transition is
always enabled.
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In contrast to timed automata, RTSCs define urgency based on transitions rather than
synchronization channels. In Figure 2.14, the transition from WaitUpdate to SendAck is
urgent as denoted by the solid line, i.e., it fires as soon as it is enabled. The transition
from SendAck to WaitUpdate is non-urgent, i.e., it fires at some point in time after it was
enabled and before the invariant in SendAck expires.

Figure 2.15 shows the RTSC of the multi role provider. RTSCs of multi roles have a
fixed form. They consist of one hierarchical state with two regions [BDG+14b]. The
adaptation region contains the adaptation RTSC while the subrole region contains the
subrole RTSC [EHH+13]. At runtime, each multi role instance executes exactly one
instance of the adaptation RTSC. In addition, it executes one instance of the subrole
RTSC for each subrole instance.

provider

Provider_Main

2

channel: send[Role], done;

1

adaptation

subrole

SendUpdate
c1 ≤ 10 ms

Idle

send[self]? /
{reset: c1;}

AwaitAck
c1 ≤ 50 ms

/ update(newDist, newSpeed)

[30ms;30ms]

[self = last]
ack done! /

variable: int newDist, int newSpeed;
clock: c1;

ack
send[self.next]! /

variable: boolean newMember;
operation: void newSubRole();

clock: c3;

AddMember
c3 ≤ 500 ms

NoConvoy

/ {newSubRole();}

[10ms;10ms]
[10ms;10ms]

Convoy

Update
c3 ≤ 499 ms

InitUpdates
c3 ≤ 500 ms

entry/ {newMember := int<0,1>;}

done? /

[c3 = 500ms]
send[first]! /
{reset: c3;}

[newMember]
[c3 ≤ 489ms] // {newSubRole();}

convoy

Figure 2.15: RTSC of Multi Role provider of DistanceTransmission

Hierarchical states optionally define a set of synchronization channels as, e.g., send and
done in state Provider_Main. Then, transitions may specify synchronizations based on
these synchronization channels as in timed automata. A synchronization always syn-
chronizes two transitions whose enabling conditions are fulfilled. These transitions fire
in an atomic fashion where the effect of the initiating transition (denoted by !) is exe-
cuted before the effect of the receiving transition (denoted by ?). As in UPPAAL, the
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initiating transition is blocked if no receiving transition is enabled. Synchronizing tran-
sitions only fire urgently if both transitions are urgent. Otherwise, they fire non-urgently.

In RTSCs, synchronization channels may optionally use selectors that generalize the
concept of channel arrays used in UPPAAL timed automata [BDL04]. Then, a synchro-
nization channel defines a type for the selector while synchronizations provide a selector
expression in square brackets that evaluates to the given type. A selector expression is
either of type integer or, if it is used in a multi role, of type role. In both cases, the
selector expressions define an additional condition for enabling the transition. Two tran-
sitions may only synchronize if they specify the same value in their selector expressions.
Synchronizations that do not use a selector are called plain synchronizations.

As an example, consider the synchronization channel send in Figure 2.15 that specifies
a selector of type role. If a selector of type role is used, two transitions may synchronize
if they refer to the same subrole instance in their selector expressions. We support five
dedicated keywords for referring to subrole instance with respect to the order of the multi
role instance. These are self, first, last, next, and prev. Self refers to the subrole instance
that executes the RTSC. First (last) refers to the first (last) subrole instance of the multi
role instance. Both return null if the multi role has no subrole instances. The keywords
next and prev may only be applied to a subrole instance. Then, next (prev) returns the
next (previous) subrole instance with respect to the order of the multi role instance. Next
(prev) returns null if it is applied on the last (first) subrole instance.

In our example, the adaptation RTSC periodically triggers the first subrole RTSC of the
ordered multi role instance via send at the transition from InitUpdates to Update to send
an update to the receiver. This transition synchronizes with transition Idle to SendUpdate

of the first subrole instance. Upon receiving the ack, the subrole instance either synchro-
nizes via send with the next subrole instance in the multi role instance or, if it is the last
one as expressed by the guard condition, it synchronizes via done with the adaptation
RTSC.

RTSCs are deterministic except for so-called non-deterministic choice expressions. A
non-deterministic choice expression defines an integer range and non-deterministically
selects one value out of this range similar to a selection in a timed automaton (cf. Sec-
tion 2.2.1). The value may be assigned to a variable as a part of an action. In our exam-
ple, the entry action of InitUpdates uses a non-deterministic choice expression for assign-
ing a value to newMember. newMember indicates that a new member wants to join the
convoy. This decision is made outside the RTCP and, therefore, we non-deterministically
choose whether a new subrole shall be created.

The hierarchical state Convoy of the adaptation RTSC uses an entry-point and an exit-
point. An entry point enables to activate particular substates upon entering a hierarchical
state. If Convoy is entered via the entry-point at its bottom, the substate InitUpdates be-
comes active. An exit-point enables to define that a hierarchical state may only be left if
a particular substate is active. In our example, Convoy may only be left if InitUpdates is
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active. When using entry- and exit-points, only the transition entering the entry- or exit-
point may carry an enabling condition. In addition, only the transition leaving the entry-
or exit-point may carry an effect [BDG+14b]. In this thesis, we require that RTSCs of
single roles as well as the adaptation RTSC and the subrole RTSC of a multi role only
use hierarchical states with one embedded region. Since hierarchical RTSCs with more
regions may be flattened [DMY03, Ger13], this is no general limitation but eases the
descriptions of our contributions.

In our example, the operation newSubRole that is called in the adaptation RTSC imple-
ments a reconfiguration rule. This reconfiguration rule adds a new subrole instance to an
instance of the multi role provider. It may be formalized by a story diagram [EHH+13].

A snapshot1 of an RTSC is defined by the active discrete state of the RTSC including the
values of their variables and their clocks. As for timed automata, there exists an infinite
number of snapshots for an RTSC. Therefore, we define the operational semantics of
RTSCs by a zone graph using symbolic states as for an NTA. In particular, we define
the operational semantics based on a network of flat timed automata as described in Sec-
tion 2.2.1. Hierarchical states of RTSCs may be flattened to NTAs [DMY02, DMY03,
Ger13]. Asynchronous communication using buffers may be mapped to additional timed
automata representing the connector and buffer using shared integer variables for stor-
ing messages [KMR02, Ger13]. Deadlines as well as entry and exit actions may be
resolved by intermediate states and transitions [GB03, DMY03]. Urgent transitions may
be mapped to urgent channels using an additional automaton [DMY03]. Then, the rules
for computing the zone graph are the same as those described in Section 2.2.1 with two
exceptions. First, RTSCs use time guards at urgent transition, i.e., during a delay, time
may only progress as long as no urgent transition becomes enabled. Second, urgent
transitions have precedence over non-urgent transitions.

We provide a full formalization of the semantics of RTSCs based on NTAs in Ap-
pendix B that forms the basis of our refinement check in Chapter 5. Since our re-
finement check does not yet support reconfiguration of multi roles such as provider

described above, we do not consider reconfiguration in our formalization. We refer
to [EHH+13, HH11b] for a formal definition of the operational semantics of multi roles
with reconfiguration.

2.4.3 Assumptions on Quality-of-Service Characteristics

In this thesis, we only consider platform-independent models of the discrete software of
the self-adaptive mechatronic system. Thus, the underlying hardware resources and the
network infrastructure [PMDB14] that are used for executing the software and for trans-
porting messages are not part of our model. Nevertheless, our models cannot entirely
ignore the timing and quality-of-service characteristics of the underlying networking

1NTAs as introduced in Section 2.2.1 use the term state. We use the term snapshot in accordance to
Gerking [Ger13] to avoid confusion with the states that are part of the syntax of an RTSC.
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infrastructure. We capture these quality-of-service (QoS) characteristics by a set of as-
sumptions that we call QoS assumptions for the remainder of this thesis. Then, a RTCP
may be safely executed using a networking infrastructure if this networking infrastruc-
ture guarantees to fulfill the QoS assumptions [HBDS15]. We present our assumptions
in the following.

A fundamental assumption for our approach is that the clocks within the two roles of
a RTCP run synchronously at the same rate. This also holds for any two ports of com-
ponents that communicate according to the RTCP. This assumption is realistic because
there exist standards like the precision clock synchronization protocol [IEE08] that may
synchronize clocks with a precision of a few microseconds. Such a precision is suffi-
cient because time constraints for mechatronic systems like cars are typically specified
in the order of magnitude of milliseconds [SLT09, p. 7]. There are approaches exist-
ing as well for clock synchronization regarding heterogeneous and adaptive hardware
platforms [BK13].

In addition, we consider several assumptions regarding the transmission of messages.
We introduce them by following a message from the sender to the receiver. For a firing
transition that defines a sender message, we assume that this message is immediately
handed over to the underlying network layer. This layer sends the message and — if
needed — buffers it before sending. Thus, we do not use buffers for outgoing messages
on the level of MECHATRONICUML.

As stated in Section 2.4.1, the transmission of a message from the sender to the receiver
takes time. Therefore, the developer has to define a message delay. We assume that the
delay defines the time between sending the message from the level of MECHATRONIC-
UML and storing the message within the receiver’s in-buffer. Thus, this delay is not just
the transmission via the physical medium but also the transport through the underlying
network layers. As a consequence, we allow that a message is retransmitted via the phys-
ical medium if it gets lost during the transmission as long as it arrives in the receiver’s
in-buffer within the delay. However, if the underlying network layer assumes by mistake
that a message got lost, duplicate messages may arrive at the underlying network layer.
We assume that the underlying network layer detects and deletes such messages using
duplicate message detection mechanisms [Kiz05]. If the in-buffer is full and another
message arrives, we assume that the incoming message is dropped. If a connector of the
RTCP guarantees that no messages get lost during communication, all messages arrive
at the receiver’s in-buffer within the transmission delay. In addition, we assume that
messages are never reordered during transmission.
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3 MechatronicUML Component Model

MECHATRONICUML follows a component-based approach for defining the software ar-
chitecture of a system. "The cornerstone of any component-based development method-
ology [SGM02] is its underlying component model, which defines what components
are, how they can be constructed and represented, how they can be composed or as-
sembled, how they can be deployed and how to reason about all these operations on
components." [Lau06] In addition, the component model defines how components inter-
act if they are composed or assembled [HC01, p. 11]. Therefore, the component model is
the central artifact for designing the software of a (mechatronic) system. Consequently,
we need a precise definition of a component model for MECHATRONICUML that serves
as a basis for formal analyses and transformations to other languages like MATLAB/Si-
mulink [Matg].

A component model for defining software architectures of self-adaptive mechatronic
systems needs to consider the properties of these systems. It needs to support message-
based communication between components and their reconfiguration at runtime (cf. Sec-
tion 1.1). This includes, in particular, to establish connections between AMS that were
previously not connected with each other such that they may collaborate in an NMS. In
addition, the component model needs to enable the specification of real-time behavior
using, for example, RTSCs for coping with the hard real-time requirements of mecha-
tronic systems. Moreover, the component model needs to enable the integration of feed-
back controllers into the software architecture because only the integration of feedback
controllers and the software components enables advanced functionality as the convoy
mode of the RailCab system [HTS+08a]. Finally, the component model shall facilitate
the specification and formal verification of reconfiguration operations such that the soft-
ware architecture remains syntactically and semantically correct after a reconfiguration.

In previous works, two component models have been developed for MECHATRONIC-
UML based on the requirements introduced in the previous paragraph. The component
model by Burmester, Giese, and Hirsch [GTB+03, GBSO04, HHG08, GS13] focuses on
integrating feedback controllers into the software architecture and reconfiguring them at
runtime. Their component model uses a state-based formalism called hybrid reconfigu-
ration charts that enumerates all possible software architectures that the system may use
at runtime and how the system may switch between them. The component model by
Tichy [THHO08, Tic09] focuses on a formal, flexible, and concise specification of re-
configuration operations using a domain-specific variant of typed attributed graph trans-
formations called component story diagrams. In this approach, the components of the
component model define the type graph for the component story diagrams. Then, the
type graph defines syntactical restrictions based on the components that guarantee syn-
tactical correctness of the software architecture after a reconfiguration. In addition, it
enables the formal verification of component story diagrams for proving correctness of
the reconfigurations.
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Both existing component models do not fulfill all of the aforementioned requirements.
The component model by Burmester, Giese, and Hirsch provides no support for instanti-
ating embedded components more than once. This and the fact that all software architec-
tures need to be enumerated lead to large models, in particular, if a component may have
several architectures at runtime. This makes the models hard to handle for a developer.
The component model by Tichy does not distinguish between software components and
feedback controllers in the type graph that is used for specifying component story di-
agrams. As a result, component story diagrams cannot specify the reconfiguration of
feedback controllers. In addition, both component models do not enable to connect soft-
ware components to feedback controllers and to establish connections between different
AMS [HB14].

In this chapter, we derive a consolidated component model for MECHATRONICUML
that combines the features of the two existing component models. In particular, we
extend the concept of the type graph used by Tichy such that the component model
may include feedback controllers and such that they may interact with software com-
ponents. As a result, we can specify software architectures on the reflective oper-
ator and controller levels of the OCM. In addition, we extend component story dia-
grams such that they can reconfigure feedback controllers as defined by Burmester and
Giese [GBSO04, Bur06, BGO06]. Finally, we provide a concept for establishing con-
nections between AMS. As a result, our new component model enables for concise and
formal specifications of components, their integration with feedback controllers, and
their reconfiguration behavior.

In the following, we illustrate our component model based on a software architecture for
the driving module of a RailCab that includes the behavior for building convoys. The re-
quirements for the convoy behavior have been presented in our technical report [Hei12].
In our example, we use ideas presented by Hirsch [Hir08], Tichy [Tic09], and Flaßkamp
et al. [FHK+13]. These ideas have been significantly extended as part of this thesis.

The remainder of this chapter is structured as follows. We start by defining how compo-
nents (Section 3.1), component instances (Section 3.2), and reconfiguration operations
(Section 3.3) are specified. Thereafter, we introduce our concepts for establishing con-
nections between AMS (Section 3.4) and for specifying architectural constraints (Sec-
tion 3.5). Next, we describe how the new component model has been implemented as
part of the MECHATRONICUML Tool Suite (Section 3.6). Finally, we discuss related
approaches (Section 3.7) and summarize the chapter (Section 3.8).

3.1 Modeling Components

"A [..] component is a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition
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standard." [HC01, p. 7] In accordance to UML [Gro11c], components are either imple-
mented directly or they are assembled from other components. We refer to the former as
atomic components and to the latter as structured components.

In both cases, the internals of a component are hidden from the outside world. This
is denoted as component encapsulation [SGM02]. Access to the capabilities or data of
a component is only allowed via its ports. This enables to replace one component by
another one with a compatible interface without affecting any other component in a sys-
tem. In addition, component encapsulation is one of the key enablers of compositional
verification [BCC98, GTB+03] because it guarantees that there may not exist more de-
pendencies to other components than those captured by ports. We will exploit this in
Chapter 5.

Our component model explicitly distinguishes between component types and component
instances. The component types are instantiated to component instances for representing
the software architecture of a system. In the following, we refer to component types
simply as components. We introduce component instances in detail in Section 3.2.

We illustrate the specification of components and component instances based on exam-
ples given in concrete syntax. A formalization of the component model is given by a
metamodel [SV06, ch. 4] whose abstract syntax is defined in Appendix D.1. The static
semantics has been formalized based on constraints in the object constraint language
(OCL, [Gro12]) that are contained in the metamodel. The OCL constraints are listed in
the MECHATRONICUML language specification [BDG+14b].

In the following, we first introduce the different kinds of ports that we support in our
component model (Section 3.1.1). They differ in the kind of information they process
and in their purpose. Based on the different kinds of ports, we define different kinds of
atomic components (Section 3.1.2) and structured components (Section 3.1.3). There-
after, we define how components may be connected via their ports using connectors (Sec-
tion 3.1.4). As an extension to the previous component models, our component model
supports that a component may expose a set of component properties (Section 3.1.5) that
we need for our reconfiguration concept presented in Chapter 4. The concepts presented
in this section have successively been integrated into the MECHATRONICUML language
specifications [BDG+11, BBD+12, BBB+12, BDG+14b].

3.1.1 Ports

In our component model, we distinguish between six kinds of ports based on their pur-
pose and the kind of data they process. We use discrete and continuous ports as defined
by Burmester and Giese [GBSO04, Bur06, BGO06]. Additionally, we use hybrid ports
that enable to connect discrete software components and feedback controllers. Further-
more, we use broadcast ports for instantiating RTCPs between AMS. Finally, we use
two kinds of reconfiguration ports, namely reconfiguration message ports (RM ports)
and reconfiguration execution ports (RE ports), that enable to execute reconfigurations
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involving several component instances. Figure 3.1 summarizes the concrete syntax of
the different kinds of ports.

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A B

RM RE

(a) Mandatory Single Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A B

n/A

(b) Optional Single Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A

n/A n/A

n/A n/A

n/A

RM RE

(c) Mandatory Multi Ports

in-port out-port in/out-port

discrete

continuous

hybrid

n/A

n/A

RM / RE

broadcast

n/A n/A

n/A n/A

n/A n/A

n/A n/A

n/A

n/A

(d) Optional Multi Ports

Figure 3.1: Kinds of Ports (cf. [BDG+14b])

Each port defines a cardinality that defines how many instances of it may be created in
one component instance. The previous component models only supported three fixed
cardinalities that defined that the port can be instantiated at most once ([0..1]), exactly
once ([1]), or arbitrary often ([0..∗]). We extend the concept of cardinalities by enabling
to specify precise cardinalities using an integer for lower and upper bound. Again, we
allow ∗ as an upper bound to indicate that the port may be instantiated arbitrary often. If
the cardinality has a lower bound of 0, we call it an optional port and visualize it with
unfilled triangles (cf. Figures 3.1b and 3.1d) according to Giese and Schäfer [GS13]. If
the lower bound of the cardinality is greater or equal to 1, we call it a mandatory port
and visualize it with filled triangles (cf. Figures 3.1a and 3.1c). Ports with an upper
bound of 1 are called single ports while ports with an upper bound greater than 1 are
called multi ports in accordance to Hirsch [Hir08, HHG08]. We visualize multi ports
with a cascaded border line as shown in Figures 3.1c and 3.1d [Hir08, HHG08, Tic09].
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In the following, we introduce the different kinds of ports in more detail.

3.1.1.1 Discrete Port

Discrete ports send and receive asynchronous messages. Therefore, each discrete port
defines a set of message types that it may send or receive. A message type has a name and
an ordered set of typed, named parameters. In contrast to the existing component mod-
els, we do not provide explicit interfaces in terms of required and provided interfaces.
Instead, we use a port-based specification of the interface where we directly assign mes-
sage types to the ports [CSVC11]. This approach introduces flexibility that we need for
introducing hierarchical reconfiguration in Chapter 4.

If a discrete port only sends messages, it is an in-port which is denoted by a small triangle
pointing "into" the component similar to the notation of Koala [vOvdLKM00]. If it only
sends messages, it is an out-port as denoted by the small triangle pointing "outside" the
component. If it both sends and receives messages, it is an in/out-port denoted by two
embedded triangles. Discrete ports define a message buffer in the same fashion as a role
of a RTCP (cf. Section 2.4.1).

Each discrete port needs to refine a role of an RTCP (cf. Section 2.4.1). Then, the
discrete port needs to send and receive the same message types as the role. In our
concrete syntax, we enable to visualize the role that is refined by a port by a dashed line
that is attached to the port as shown in Figure 3.5 on Page 63. Visualizing the refined
role of a port is optional.

A discrete port has a behavior specification in terms of an RTSC. The behavior that is
defined by the port’s RTSC needs to be compliant to the behavior that is defined by the
role. We describe how the RTSC of a role may be refined to an RTSC of a port in detail
in Chapter 5. The RTSC of a multi port has the same structure as the RTSC of a multi
role (cf. Section 2.4.2).

3.1.1.2 Reconfiguration Message Port and Reconfiguration Execution
Port

Reconfiguration message ports (RM ports) and reconfiguration execution ports (RE
ports) are special kinds of discrete ports. We use these kinds of ports for realizing the
communication that is necessary for our concept of transactional execution of recon-
figuration in structured components as described in Chapter 4. In the concrete syntax,
we visualize RM ports and RE ports by squares that embed the letter "RM" and "RE",
respectively.

Compared to discrete ports, RM ports and RE ports have extended interface specifi-
cations that provide additional information for the messages types that may be sent or
received. We introduce the interface specification in detail in Section 4.3.



Page 58 Chapter 3

RM ports and RE ports have message buffers and their behavior is defined by a RTSC as
for discrete ports. However, RM ports and RE ports are always mandatory in/out ports.
Both may be used as multi ports as we explain in Section 4.1.

3.1.1.3 Broadcast Port

Broadcast ports are a special kind of discrete port. We use broadcast ports only for
instantiating RTCPs between different AMS as explained in Section 3.4. In the concrete
syntax, we visualize broadcast ports by squares that embed the letter "B".

Analogously to discrete ports, broadcast ports define a set of message types that they
may send and receive as well as a message buffer. Their behavior is defined by a RTSC.
In contrast to discrete ports, broadcast ports are always in/out-ports and may only be
used as single ports. In addition, they do not refine a role of a RTCP.

3.1.1.4 Continuous Port

Continuous ports send (out-port) or receive (in-port) a signal value. "A signal is a time
varying quantity that has values at all points in time" [Matf]. The data type of the signal
must be a primitive data type or an array of primitive types.

Continuous ports are either in-ports or out-ports. In addition, continuous ports may be
optional, but we currently do not support continuous multi ports.

In the concrete syntax, continuous ports are visualized as isosceles triangles where the
top of the triangle either points into the component (in-port) or outside the component
(out-port).

3.1.1.5 Hybrid Port

Hybrid ports send (out-port) or receive (in-port) a signal value similar to a continuous
port. They enable that a discrete component sends a signal to or receives a signal from a
feedback controller. As for a continuous port, the data type of the signal must be a prim-
itive data type or an array of primitive types. Thus, we define a new semantics of hybrid
ports compared to Burmester [Bur06]. Burmester introduced hybrid ports as "multiple
discrete and continuous ports as syntactic construct to reduce visual complexity" [Bur06,
p. 56] but did not define them.

Hybrid ports are either in-ports or out-ports. Then, the RTSC of the component may
read (in-port) or write (out-port) the value of the hybrid port like a normal variable. In
addition, hybrid ports may be optional, but we currently do not support hybrid multi
ports.

For keeping the behavior specification of a discrete component discrete, hybrid ports
define a sampling interval. Then, the value of the signal only changes at the rate of the
sampling interval and we do not make any assumptions on how the value may change.
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In the concrete syntax, hybrid ports are visualized as squares that embed an isosceles
triangle. The top of the triangle either points into the component (in-port) or outside the
component (out-port).

3.1.2 Atomic Components

An atomic component directly contains a behavior specification and does not embed
other components. Our component model distinguishes three kinds of atomic compo-
nents that differ in their purpose and their behavior specification. In accordance to Bur-
mester and Giese [GBSO04, Bur06, BGO06], we distinguish between discrete and con-
tinuous atomic components. Discrete atomic components define discrete, event-based
behavior while continuous atomic components represent the feedback controllers of the
system. In addition, we introduce a new kind of atomic component: the fading compo-
nent [Vol13].

MemberControl

refDist

speedProvider

member

distReceiver

(a) Discrete Atomic Component

StandaloneDrive
refSpeed

curSpeed
force

(b) Continuous Atomic Component

+ -

ConvoyFadingstandalone

convoy
force

(c) Fading Component

Figure 3.2: Kinds of Atomic Components

Figure 3.2 illustrates the concrete syntax of the different kinds of atomic components.
In accordance to the UML [Gro11c], components are represented by rectangles with a
component icon in the upper right corner and a name label in the center. At the border
of the component, we visualize the ports of the component.

In contrast to the previous component models, we distinguish the different kinds of
atomic components by using different component icons to increase semiotic clarity.
Semiotic clarity requires that different semantic constructs of a language need to be
represented by different graphical symbols for reducing the potential for misinterpreta-
tion [Moo09]. In the following, we introduce all three kinds of atomic components in
more detail.

3.1.2.1 Discrete Atomic Component

Discrete atomic components define the discrete, event-based real-time behavior of the
system. As a result, a discrete component operates on time-discrete values and imple-
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ments message-based communication. Thus, discrete atomic components are used for
defining the behavior of the reflective operator of the OCM.

A discrete atomic component may use discrete ports for interacting with other compo-
nents based on RTCPs. In addition, it may use hybrid ports for interacting with contin-
uous atomic components (cf. Section 3.1.2.2) and broadcast ports if it implements the
instantiation of RTCPs between AMS. If the component is reconfigurable, it has one RM
port and one RE port.

MemberControl

MemberControl_Main
member

distReceiver

speedProvider

Synchronization1

Figure 3.3: Structure of a RTSC of a Discrete Atomic Component

The behavior of a discrete atomic component is defined by a RTSC that has a fixed,
hierarchical structure [Hir08, p. 133]. Figure 3.3 illustrates this structure for the com-
ponent MemberControl shown in Figure 3.2a. The RTSC always contains one hierarchi-
cal state. This state contains one region for each discrete port that embeds the port’s
RTSC. In the example, we obtain regions for the discrete ports member, distReceiver,
and speedProvider. In addition, the RTSC may contain an arbitrary number of so-called
synchronization RTSCs that may be used to synchronize the port RTSCs [GTB+03].

3.1.2.2 Continuous Atomic Component

Continuous atomic components represent the feedback controllers of the system that
are located of the controller level of the OCM. They operate on time-continuous values
that are represented by signals. Their behavior is typically defined "by block-diagrams,
differential equations, or transfer functions" [Bur06, p. 56].

A continuous atomic component may only use continuous ports for exchanging signals
with other components. In accordance to Burmester et al. [BGH+07], we only specify
the interface of the continuous component based on its ports but not the component’s
behavior. The behavior of continuous atomic components is specified in a control en-
gineering tool such as MATLAB/Simulink [Matg].

As an example, consider the continuous atomic component StandaloneDrive shown in
Figure 3.2b. It implements a feedback controller that lets a RailCab drive at a constant
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speed. It receives a reference speed via refSpeed and the current speed of the RailCab
via curSpeed. By modifying force of the electric drive emitted via force, it modifies
the speed of the RailCab such that curSpeed eventually equals refSpeed. This control
strategy, however, needs to be implemented in MATLAB/Simulink.

3.1.2.3 Fading Component

A fading component enables to switch between continuous component instances as part
of a reconfiguration if the continuous component instances produce the same output
signal. Thus, fading components operate on time-continuous values like continuous
atomic components and are located on the controller level of the OCM.

As an example, consider that the continuous component StandaloneDrive shown in Fig-
ure 3.2b is to be replaced by a continuous component ConvoyDrive as illustrated in Fig-
ure 3.4. The ConvoyDrive component implements a feedback controller that additionally
considers a reference distance (refDist) and the current distance (curDist) to the preceding
RailCab. It needs to be used by all RailCabs that are convoy members. Thus, any Rail-
Cab that wants to join a convoy needs to perform this replacement at runtime as part of
a reconfiguration.

Physical Machine

:StandaloneDrive
:refSpeed
:curSpeed

:curDist

:ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

«destroy»

«create»

Figure 3.4: Illustration of Exchanging a Controller without Fading Function

In general, continuous component instances must not be replaced instantaneously if they
produce the same output signal such as force in Figure 3.4. In the figure, the green graphs
illustrate the computed value of force over time while the vertical yellow bar denotes the
point in time where the continuous component instances are replaced instantaneously.
In this case, a jump in the value of the controlled variable force occurs at the engine and
may damage it.

For preventing such jumps, previous works integrated fading functions based on cross
fading [BGO06] and flatness-based switching [OMT+08] into MECHATRONICUML.
These are two strategies for smoothing the output signal while replacing continuous
component instances. The actual behavior of the fading function or the flatness-based
switching is specified in a control engineering tool such as MATLAB/Simulink [Matg].
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In our component model, we encapsulate fading functions and flatness-based switching
in fading components such as ConvoyFading shown in Figure 3.2c. The fading component
has one continuous out-port for the output signal and one continuous in-port for any
continuous component that may produce this output signal. Thus, ConvoyFading has one
out-port force and in-ports standalone and convoy for the two continuous components
StandaloneDrive and ConvoyDrive, respectively.

In addition to the ports, the fading component defines a set of fading functions. Each
fading function fades from the input signal of one in-port to the input signal of another in-
port. In the example in Figure 3.4, the ConvoyFading would need to fade from standalone

to convoy. At this point, we do not need to distinguish whether the fading function
implements a cross fading [BGO06] or flatness-based switching [OMT+08]. We only
need to specify how long it takes to execute the fading function. If the fading component
does not execute a fading function, it forwards the input signal unmodified to its out-port.

3.1.3 Structured Components

A structured component embeds other component types by means of component parts
as defined in the component model by Tichy [Tic09]. Component parts are defined
as an association to another component [Gro11c], i.e., the same component may be
embedded multiple times in a structured component. Component parts define a name
and a cardinality.

Structured components only define a reconfiguration behavior but no functional behav-
ior. This enables separation of concerns between reconfiguration behavior and functional
behavior. According to McKinley et al. [MSKC04], this is one of the three key enablers
for successfully developing self-adaptive systems. With respect to the OCM given in
Section 2.1.2, structured components belong to the reflective operator.

In contrast to the existing component models, our component model distinguishes be-
tween two kinds of structured components based on the kinds of components they em-
bed. These are discrete structured components (cf. Section 3.1.3.1) and hybrid structured
components (Section 3.1.3.2). The differentiation between two kinds of structured com-
ponents is helpful for defining our transactional reconfiguration approach in Chapter 4.

3.1.3.1 Discrete Structured Component

A discrete structured component (recursively) embeds discrete components only. Con-
sequently, a discrete structured component may use all kinds of ports except continuous
ports analogous to discrete atomic components (cf. Section 3.2a).

Figure 3.5 shows an example of a discrete structured component named ConvoyCoordi-

nation. It contains the behavior of a convoy coordinator, i.e., it provides behavior for
adding and removing RailCabs to/from the convoy and for announcing all acceleration
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and breaking maneuvers to the convoy members. ConvoyCoordination embeds two com-
ponents ConvoyManagement and RefGen using two component parts named man and ref-

Gen, respectively. Both of which are discrete components.

ConvoyCoordination

man :
ConvoyManagement [1]

coordinatorcoordinator

refDistProvider refDistProvider refGen : RefGen [1..*]

speedProvider speedProvider

prev next

strategy receiver

curPoscurPos

profileProvider

profileReceiver

ConvoyCoordination.coordinator

DistanceTransmission.provider

StrategyTransmission.receiver

SpeedTransmission.provider

Figure 3.5: The structured component type ConvoyCoordination

Our component model allows for a precise specification of cardinalities using integers
for lower and upper bound, but still enables to use an asterisk to support an arbitrary
number of instances. Supporting precise cardinalities is especially useful for simulations
in a simulation tool as MATLAB/Simulink as presented in Chapter 6. In Figure 3.5, the
component part man has a cardinality of [1]. That means any instance of ConvoyCoor-

dination contains exactly one instance of ConvoyManagement. We call this a single part.
refGen has a cardinality of [1..∗] such that an instance of ConvoyCoordination has arbitrary
many but at least one instance of RefGen. In accordance to Tichy, we call this a multi
part. In the concrete syntax, multi parts are visualized by a cascaded border line [Tic09,
p. 38].

In ConvoyCoordination, the ConvoyManagement is responsible for adding and removing
convoy members to the convoy and for negotiating the maximum speed of the convoy.
The interaction with the convoy members is implemented in the port coordinator that
refines the role coordinator of the RTCP ConvoyCoordination [FHK+13, FHK+14]. We
present the RTCP ConvoyCoordination in Appendix A.1.2.

For each convoy member, the ConvoyCoordination has one instance of the RefGen multi
part that generates reference data for the convoy member (cf. [Tic09]). RefGen receives
information about the corresponding convoy member and the negotiated speeds from
ConvoyManagement via profileReceiver. The information about the convoy members is
encapsulated in so-called profiles [Hir08, FHK+13, FHK+14]. The RefGen instance for
the first convoy member additionally receives the position of the coordinator RailCab via
curPos. Then, RefGen computes a reference distance to the preceding RailCab based on
the position of this preceding RailCab and the profile of the RailCab. This can be used
to adapt the distances between RailCabs within the convoy to changing environmental
conditions such as higher speeds, strong wind, or slopes. RefGen sends the new refer-
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ence distance to the convoy members using the RTCP DistanceTransmission introduced
in Section 2.4.

3.1.3.2 Hybrid Structured Component

A hybrid structured component embeds a mixture of discrete, hybrid, and continuous
components. Hybrid structured components may use all kinds of ports. Component parts
and their cardinalities are used in the same fashion as in discrete structured components.

Figure 3.6 shows the hybrid structured component RailCabDriveControl that implements
the driving functions of the RailCab. It embeds eight component parts that implement
different parts of the behavior. In the following, we provide a detailed description of the
RailCabDriveControl component because it forms the basis of our running example that
we use in the remainder of this thesis for illustrating our concepts.

member :
MemberControl [0..1]

convoy :
ConvoyCoordination [0..1]

RailCabDriveControl

ctrl : VelocityController [1]

refSpeed

curSpeed

curDist

refDist

refDist

force

strategy :
OperationStrategy [1]

peer

drive :
DriveLogic [1]

speedProvider

refSpeed

speedProvider

peer

coordinatorcoordinator member member

distReceiver refDistReceiver
curPos

receiver

B
protocolInst

B
protocolInst

strategySender

section1 section1

section2 section2

speedProvider

maxSpeed

dist : DistanceSensor [0..1]

distance

requestor requestor

requestee requestee

pos : PositionSensor [0..1]

position

sp : SpeedSensor [1]
speed

refDistProvider
refDistProvider

180 180

Figure 3.6: The component type RailCabDriveControl

The component OperationStrategy implements the operation strategy that defines, for ex-
ample, the maximum speed for the RailCab. In addition, it contains the logic for decid-
ing whether to build a convoy or not. Via the broadcast port protocolInst, it establishes
connections to other RailCabs that are eligible for building convoys (cf. Section 3.4.1).
The ports requestor and requestee implement both roles of the RTCP ProtocolInstantiation

introduced in Section 3.4.2. The ProtocolInstantiation protocol implemented in Opera-

tionStrategy only instantiates the RTCP ConvoyEntry that is refined by the peer port. This
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RTCP specifies the message exchange for negotiating whether to build a convoy or not
and which RailCab will serve as the coordinator for the convoy. We provide a description
of this RTCP in Appendix A.1.1.

The component DriveLogic defines the current speed of the RailCab that it sends via
the refSpeed port to the VelocityController. The current speed is either defined by the
OperationStrategy if the RailCab drives alone or it depends on the maximum speed that
has been negotiated for the convoy. In addition, the DriveLogic contains the two ports
section1 and section2. These ports are used for communicating with the current and the
next track section for gaining admission to drive onto a track section. This is necessary
for avoiding collisions between RailCabs that want to drive onto the same track section.
In addition, this communication may be used to obtain further information about the
track characteristics (cf. [BGO06, Hir08]) or a track specific maximum speed [Hei12].
We introduce the associated behavior in Chapter 5.

The component part convoy is typed by the component ConvoyCoordination shown in Fig-
ure 3.5. It is connected to the operation strategy because it needs to be informed about
the information that has been negotiated with new convoy members. The continuous
port curPos is connected to the PositionSensor that provides the current position of the
RailCab.

The component MemberControl, also shown in Figure 3.2a, implements the behavior for
operating as a convoy member. The ports member and distReceiver implement the com-
plementary roles of the RTCPs ConvoyCoordination and DistanceTransmission for commu-
nicating with the coordinator. In particular, MemberControl receives the reference speed
and reference distances for driving in the convoy. It sends the reference speed via speed-

Provider to the DriveLogic and the reference distance via refDist to the VelocityController.

+ -

VelocityController

standalone_ctrl :
StandaloneDrive [0..1]

refSpeed

curSpeed

curDist

convoy_ctrl :
ConvoyDrive [0..1]

refSpeed

curSpeed

refDist

force

force

curDist

refSpeed

curSpeed

refDist

force

fade :
ConvoyFading [1]

standalone

convoy
force

Figure 3.7: The component type VelocityController

Finally, the VelocityController shown in Figure 3.7 contains the feedback controllers that
control the electric motors of the RailCab. The continuous component StandaloneDrive

contains the feedback controller that is used if the RailCab drives alone or as a convoy
coordinator. Based on the current speed obtained from the SpeedSensor and the refer-
ence speed provided by the DriveLogic it computes a force to be applied by the electric
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motor. The port force is directly connected to the actuator and, therefore, remains uncon-
nected in RailCabDriveControl. If the RailCab operates as a convoy member, it needs to
execute the feedback controller implemented in the continuous component ConvoyDrive.
It additionally considers the current distance obtained from the DistanceSensor and the
reference distance provided by the MemberControl for computing the force. In addition,
the VelocityController contains the fading component ConvoyFading shown in Figure 3.2c
for switching between the two continuous components.

3.1.4 Connectors

Components in our component model are connected via their ports using connectors.
In accordance to UML [Gro11c] and to the existing component models by Burmester
and Giese as well as Tichy, we distinguish between two kinds of connectors: assembly
connectors and delegation connectors. An assembly connector connects two ports of
component parts inside the same structured component. Delegation connectors connect
ports of structured components to the ports of component parts of the same structured
component.

As an example, consider the structured component RailCabDriveControl shown in Fig-
ure 3.6. The discrete ports strategySender of strategy and receiver of convoy are connected
by an assembly connector because both are ports of component parts. The ports coordi-

nator of RailCabDriveControl and coordinator of convoy are connected by a delegation con-
nector. We use the concrete syntax defined by Burmester and Giese [GBSO04, GS13]
and visualize both kinds of connectors by solid lines.

Whether two ports may be connected by a connector depends on three conditions. First,
they need to be structurally compatible. Second, they need to have matching interface
specifications. Third, they need to have matching endpoint cardinalities. We define these
conditions in detail in the following.

To be structurally compatible, the ports need to be of compatible kinds and have com-
patible directions. Discrete ports may only be connected to discrete ports. The same
holds for RM ports and RE ports. Continuous and hybrid ports may be connected with
each other. Broadcast ports may only by delegated to broadcast ports but not connected
by assembly connectors (cf. Section 3.4). For delegation connectors, both ports need to
have the same direction. For assembly connectors, they need to have inverse directions.
Figure 3.8 summarizes the combinations of structurally compatible ports for discrete,
hybrid, and continuous ports. Only combinations marked with a checkmark are allowed.
We explain how RM ports and RE ports may be connected in more detail in Section 4.1.

As the second condition, ports need to have compatible interfaces. For continuous and
hybrid ports, we require that they send or receive a signal value with the same data type.
For discrete ports, we require that they refine the same role of the same RTCP (delegation
connector) or different roles of the same RTCP (assembly connector).
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Figure 3.8: Structurally Compatible Ports Allowing for a Connector (cf. [BDG+14b])

Finally, we require that the endpoint cardinalities of a connector match as defined by
Tichy [Tic09, p. 39]. The cardinality of an endpoint is the product of the port cardinality
and the component part cardinality. In essence, that means that a single port may only be
delegated to a single port of a single part as, e.g., the port member of RailCabDriveControl.
A multi port may either be delegated to a multi port as, e.g., coordinator of RailCabDrive-

Control, or to a single port of a multi part as, e.g., refDistProvider of ConvoyCoordinator (cf.
Figure 3.5). The same conditions hold for assembly connectors.

For a structured component, we require that all of its ports are connected by at least one
delegation connector to a port of a component part. In addition, we require that all ports
of the component parts are attached to at least one connector. The only exception to this
rule are continuous ports of component parts if they are directly connected to a hardware
component that is not part of the MECHATRONICUML component model. An example
of such port is given by the port force of the component part ctrl in RailCabDriveControl.
This port is directly connected to the electric motors. In order to prevent unconnected
ports in our component model, we visualize such ports as shown in Figure 3.6. We
use a graphical symbol that is inspired by a pin in a digital circuit diagram as defined
in IEC60617 [IEC96] to represent the hardware pin. Then, we connect this pin by a
connector to the continuous port. The notation may be used for both, in-ports and out-
ports.

3.1.5 Component Properties

A component may define a set of so-called component properties. They enable that a
component exposes information about its inner state or configuration to its parent com-
ponent. A component property has a name and a primitive data type similar to attributes
of components as defined by Tichy [Tic09, p. 36] or to attribute controllers in Frac-
tal [BCL+06]. In contrast to attributes, component properties may only be read by the
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parent component but not modified. We forbid modifications because any change that
is applied to the inner state of a component instance needs to be made through one of
its ports. This ensures encapsulation and correctness of the compositional verification
approach (cf. Chapter 5). In addition, the value of a component property is derived
(cf. [SBPM08, p. 108]), i.e., it is computed from the inner state or configuration of a
component instance but does not contribute to it.

We present a modeling language, called component story decision diagrams, for ex-
pressing component properties based on the current configuration in Section 3.5. In our
concrete syntax, we enable to optionally visualize component properties for component
instances as illustrated in Figure 3.9, but we do not visualize component properties for
components.

3.2 Component Instances

The components introduced in Section 3.1 are instantiated to component instances for
defining a software architecture of a system. Components may be instantiated multiple
times in a system. In particular, each structured component instance creates its own
instances for the components that are embedded by the component parts (cf. [Tic09]).
Upon instantiation, the variable parts of the component need to be determined. That
means, the number of port instances for each port, the number of embedded component
instances for each component part, and the connector instances need to be determined.
By default, all ports and component parts are instantiated with minimum cardinality.

Each component instance has a configuration that is defined by its currently instantiated
port instances, embedded component instances, and connector instances. If a component
is reconfigurable, as in our approach, then a component instance may switch between
different configurations at runtime by executing reconfigurations (cf. Section 3.3 and
Chapter 4). The current configurations of all component instances in the software archi-
tecture of the system define the configuration of the system itself. We refer to this as the
component instance configuration (CIC) of the system.

As on the type level, we distinguish between atomic component instances and structured
component instances. An atomic component instance is typed over an atomic component
and executes its behavior specification at runtime. A structured component instance
is typed over a structured component and embeds a CIC that contains all embedded
component instances and connector instances. Any component instance has a name and,
in case that it is embedded in a structured component instance, refers to its component
part (cf. [Tic09]).

Figure 3.9 shows the CIC of RailCabDriveControl for a RailCab driving alone. The stan-

daloneRC only embeds four component instances: os of type OperationStrategy, dl of type
DriveLogic, vc1 of type VelocityController, and sp of type SpeedSensor. Consequently, the
maximum speed for the RailCab is defined by os and provided to dl. dl sets the ref-
erence speed for the VelocityController vc1. vc1 controls the force of the electric motor
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only based on this reference speed and the current speed of the RailCab provided by sp.
Consequently, vc1 only uses the feedback controller implemented in StandaloneDrive (cf.
Figure 3.7).

standaloneRC : RailCabDriveControl

vc1 / ctrl : VelocityController
[inConvoyMode == false]

:refSpeed

:curSpeed :force

os / strategy :
OperationStrategy dl / drive :

DriveLogic
:speedProvider

:refSpeed

B
:protocolInst

B
:protocolInst

:section1 :section1

:section2 :section2

:maxSpeed

sp / sp : SpeedSensor
:speed

180 180

[isStandalone == true, isCoordinator == false]

Figure 3.9: Component Instance of Component RailCabDriveControl for a RailCab Driv-
ing Alone

The visualization of component properties for component instances is optional. For
structured component instances, we visualize component properties in an additional
compartment as shown in Figure 3.9. The compartment contains a comma-separated
list of component properties with their values in square brackets. In the example, the
value of the component property isStandalone is true while the value of the component
property isCoordinator is false. For an atomic component instance or an embedded com-
ponent instance of a structured component, we visualize component properties in square
brackets below the name label of the component instance. In Figure 3.9, the embedded
component instance vc1 visualizes the component property inConvoyMode, which is false

in the example.

A CIC is syntactically correct under the following conditions. First, the number of port
instances of a component instance complies with the cardinality of the corresponding
port of the component. For a structured component, we additionally require that the
number of embedded component instances for a given component part complies to the
cardinality of the component part. Furthermore, port instances of structured component
instances may only be delegated to port instances of embedded component instances
if the corresponding ports are connected by a delegation connector in the structured
component. Analogously, port instances of embedded component instances may only
be connected by assembly connector instances if the corresponding ports are connected
by an assembly connector in the structured component. If the component instances
are not embedded in a structured component, then they may be connected via their port
instances using assembly connector instances by applying the same rules that we defined
for connectors in Section 3.1.4.

Each discrete port instance is either connected to exactly one other port instance by
an assembly connector instance or it is delegated to exactly one port instance of the
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parent component instance. Port instances of structured component instances have an
additional delegation connector instance to a port instance of an embedded component
instance. Continuous and hybrid port instances need to fulfill the same properties, but
two exceptions apply. A continuous or hybrid out-port may have more than one out-
going connector instance, i.e., the signal value may be send to several other component
instances. In addition, continuous in-ports of a structured component instance may be
delegated to several embedded component instances. A continuous or hybrid port in-
stance may also have no connector instance if it is directly attached to hardware as, e.g.,
instances of the port force of VelocityController. In any case, component instances that
are embedded in a structured component instance may only be connected by connector
instances if the corresponding port types are connected by a connector in the structured
component type.

In addition, our component model uses three implicit composite aggregations for compo-
nent instances. First, a component instance that is embedded in a structured component
instance cannot exist without its parent. Second, a port instance cannot exist without its
surrounding component instance. Third, a connector instance cannot exist without being
attached to exactly two port instances [Tic09, p. 42].

Figure 3.10 shows an instance of ConvoyCoordination that is executed in a coordinator
RailCab with one member. It contains an instance cm of type ConvoyManagement and,
since the convoy has one member, one instance rg1 of type RefGen. Since rg1 is as-
sociated to the first convoy member, it receives the current position of the coordinator
RailCab via curPos. Furthermore, cc has instances of the coordinator and refDistProvider

multi ports for communicating with the member.

cc : ConvoyCoordination

cm / man :
ConvoyManagement

rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

Figure 3.10: Component Instance of Component ConvoyCoordination for a Convoy with
1 Member

Hirsch [Hir08] and Tichy [Tic09] did not distinguish between single port instances and
multi port instances in the concrete syntax. However, a multi port instance has the same
structure as a multi role instance (cf. Section 2.4.1), i.e., it contains several subport in-
stances that belong together. Therefore, we propose to visualize the multi port instance
by a dashed square that groups its subport instances as shown for the instances of co-

ordinator, refDistProvider, and profileProvider in Figure 3.10. The subport instances are
visualized as port instances as before.
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We present additional component instances for coordinator RailCabs and member Rail-
Cabs in Appendix A.4.

3.3 Modeling Reconfiguration

The existing component models defined two modeling languages for specifying recon-
figuration behavior of reconfigurable structured components. The component model
by Tichy uses component story diagrams (CSDs, [THHO08, Tic09]), which enable a
rule-based specification of reconfiguration behavior based on story diagrams (cf. Sec-
tion 2.3.2). They enable formal, modular, and concise models. In contrast, hybrid re-
configuration charts as proposed by Burmester and Giese [GBSO04, BGO06, Bur06]
provide a state-based model where each state contains one configuration of a structured
component instance. Hybrid reconfiguration charts quickly become very large and un-
maintainable if a component instance has several configurations. This is the case, for
example, for the component ConvoyCoordination in Figure 3.5 where we have a sequence
of RefGen instances that reflects the order of the convoy members on track. As a result,
we chose to use CSDs for specifying reconfiguration of structured and atomic compo-
nent instances in our component model. We refer to Schubert [Sch12] and our technical
report [HB14] for a detailed comparison of hybrid reconfiguration charts and CSDs.

In the following, we first introduce CSDs as they have been defined by Tichy (cf. Sec-
tion 3.3.1). Thereafter, we introduce three extensions to CSDs that we developed as
part of this thesis. These are controller exchange nodes (cf. Section 3.3.2), constraints
for multi port variables (cf. Section 3.3.3), and CSDs for atomic components (cf. Sec-
tion 3.3.4). These extensions add features to CSDs that are necessary for specifying
reconfiguration behavior in our component model. We illustrate these features based
on examples given in concrete syntax. A formalization of CSDs is given by a meta-
model [SV06, ch. 4] whose abstract syntax is defined in Appendix D.2. The static
semantics has been formalized based on OCL constraints [Gro12]. The operational
semantics of CSDs has already been defined by Tichy [Tic09, pp. 71ff] in form of a
translational semantics [SK95] by defining a transformation of CSDs to story diagrams.
Our extensions only extend the type system that is used for the story diagrams and do
not require a new definition of the operational semantics.

3.3.1 Component Story Diagrams

In our component model, we use CSDs [THHO08, Tic09] for modeling reconfiguration
of component instances. Each component contains a set of CSDs that define how in-
stances of the component may be reconfigured at runtime. We define how and when
CSDs are executed for a component instance in Chapter 4.

CSDs are based on story diagrams (cf. Section 2.3.2.2) and support the same con-
structs for specifying control flow including a set of input and output parameters. The
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story nodes of a CSD, however, contain component story patterns instead of story pat-
terns [Tic09].

A component story pattern defines the modification of a component instance and, in
case of a structured component instance, its embedded CIC. We use the components
that are defined in our component model as a type graph to type the variables of the
component story pattern. Then, all variables and links of the component story pattern
are typed by the components, ports, and connectors that are defined by the component
model. Thereby we can ensure that component instances remain syntactically correct
after applying a component story pattern. In particular, we can ensure that a component
story pattern can only be executed if its modifications do not violate the cardinalities of
ports and component parts.

Each component story pattern contains exactly one this component variable. The this

variable is typed by the component that contains the corresponding CSD. At runtime,
the this variable is automatically bound to the component instance that invoked the CSD
on itself. Thus, it is a implicit input parameter of any CSD [Tic09].

Figure 3.11 shows a CSD becomeMember of the component RailCabDriveControl. The
CSD reconfigures an instance of RailCabDriveControl of a RailCab driving alone (cf. Fig-
ure 3.9) to an instance of a RailCab driving as a member of a convoy (cf. Figure A.31).

The CSD has two story nodes. In the first story node, we match the embedded com-
ponent instances of types OperationStategy, DriveLogic, and VelocityController. We destroy
the assembly connector instance between os and dl. In addition, we invoke the recon-
figuration applyMemberStrategy on os that destroys the speedProvider port instance. We
explain this CSD in more detail in Section 3.3.4. In addition, we invoke the reconfig-
uration switchToConvoy on vc that reconfigures the feedback controllers for driving as a
convoy member. We introduce this CSD in more detail in Section 3.3.2. In the second
story node, we create an instance of MemberControl. In addition, we create an instance
of DistanceSensor and connect it to vc by an assembly connector instance. Finally, we
create port instances of member and refDistReceiver on this and connect all port instances
of mc.

A CSD may specify invocations of further CSDs on embedded component instances.
The invocation is directly attached to the corresponding component variable [Tic09,
p. 62] as shown in the first story node of the CSD becomeMember in Figure 3.11. We
define how such invocations are executed with respect to the component hierarchy in
Chapter 4.

In our component model, we restrict CSDs such that they respect component encapsu-
lation. In particular, we forbid that a CSD directly creates or destroys port instances
of embedded component instances as it is allowed by Tichy [Tic09, p. 55]. Such port
instances may only be created by the embedded component instance itself. The cor-
responding CSD that creates the port instance needs to be invoked on the embedded
component instance as shown in Figure 3.11.
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this

Switch Operation Strategy and destroy Assembly

Create MemberControl and Sensor, Connect Ports

mc / member :
MemberControl

this

vc

:curDist :refDist :refDist

dl

:speedProvider

:member

:member

:distReceiver

:refDistReceiver

:maxSpeed

ds / dist : DistanceSensor

:distance

«create»

«create»

«create»
«create» «create»

«create»

«create»

«create»

os / strategy :
OperationStrategy

applyMemberStrategy()

dl / drive :
DriveLogic

:maxSpeed

:speedProvider
«destroy»

vc / ctrl : VelocityController

switchToConvoy()

RailCabDriveControl::becomeMember()

Figure 3.11: CSD for Component RailCabDriveControl that Reconfigures the Component
Instance to Serve as a Member

In accordance to Tichy, a component may define one or more constructor CSDs. A con-
structor CSD defines how instances of the component are initialized upon instantiation.
Then, a component variable with stereotype «create»may invoke a constructor [Tic09,
p. 62]. In addition, every component defines an implicit constructor that instantiates all
ports and embedded components according to their minimum cardinality. The implicit
constructor is always used if no explicit constructor is invoked for a coponent variable
with stereotype «create». In Figure 3.11, we used implicit constructors for both, ds

and mc. We provide an example of an explicit constructor in Appendix A.6.2.

3.3.2 Controller Exchange Nodes

The component model by Tichy does not distinguish between different kinds of com-
ponents [Tic09]. Consequently, it does not enable to use fading functions, which are
typically required when replacing continuous component instances as explained in Sec-
tion 3.1.2.3.
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As a solution, Schubert [Sch12] introduced controller exchange nodes for enabling the
reconfiguration of continuous components. A controller exchange node is a special kind
of story node that enables safe execution of fading functions. It has a fixed structure
that consists of exactly three component variables. Two of which reference continuous
components where one is destroyed and one is created. The third component variable
refers to the fading component that is connected to the two continuous components.
The component variable referring to the fading component additionally specifies which
fading function needs to be executed.

Perform fading to convoy controller

VelocityController::switchToConvoy()

+ -
[150 ms;180 ms]

+ -

this

sd / standalone_ctrl :
StandaloneDrive

:refSpeed
:curSpeed

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading

fadeToConvoy()

:standalone

:convoy

«destroy»

«create»

«create»«create»

«create»

«create»

«create»

«destroy»

«destroy»

«destroy»

«create»

«create»

Figure 3.12: CSD for Component VelocityController that Reconfigures the Component In-
stance to Serve as a Member

Figure 3.12 shows the CSD switchToConvoy that uses a controller exchange node. It is
invoked by becomeMember and reconfigures an instance of VelocityController such that it
uses an instance of ConvoyDrive instead of StandaloneDrive. Consequently, it destroys the
latter and creates a new instance of the former. Since both continuous components pro-
vide a signal force, we need to use the fading component ConvoyFading to fade between
both signals. In the controller exchange node of switchToConvoy, we therefore select the
fading function fadeToConvoy for the reconfiguration as specified within the fading com-
ponent variable. As indicated in the upper right corner of the controller exchange node,
the fading takes between 150 ms and 180 ms.

3.3.3 Constraints for Multi Port Variables

Multi ports are ordered, i.e., the subport instances are arranged in a sequence as it has
been defined for multi roles (cf. Section 2.4.1). Up to now, this order cannot be used in
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component story pattern, for example, for creating a subport instance as a successor of
another subport instance.

As an example, consider the component ConvoyCoordinator shown in Figure 3.5 on
Page 63. The subport instances of an instance of the multi port coordinator shall have
the same order as the corresponding convoy members on track. Thus, if a new member
joins the convoy at a particular position, we need to insert a subport instance at the same
position into the multi port instance.

Therefore, we extend component story patterns by constraints for multi port variables
that refer to the order of the subport instances [Hei14]. They are inspired by so-called
link constraints of story diagrams [vDHP+12a]. In accordance to these link constraints,
we distinguish between multi port position constraints and multi port order constraints.
Both of which are illustrated in Figure 3.13.

Order Constraints

...

...

:port1

this

«next»
«first»

«last»

Figure 3.13: Order Constraints for Multi Port Variables

A multi port position constraint enables to refer to the first (or last) subport instance of
a multi port instance. In our concrete syntax, we visualize it by attaching a stereotype
«first» (or «last») to the corresponding subport variable. In Figure 3.13, the up-
per subport variable matches the first subport instance while the lower subport variable
matches the last subport instance.

A multi port order constraint enables to refer to the relative order of the subport instances.
We enable to define that a subport instance is a direct successor (or predecessor) of
another subport instance. In our concrete syntax, we visualize these constraints by a
dashed arrow annotated with the stereotype «next» (or «prev») to denote that the
target subport instance is a direct successor (or direct predecessor) of the source subport
instance. In Figure 3.13, the lower subport instance has to be a direct successor of the
upper subport instance of the multi port instance of type port1 for successfully matching
the component story pattern.

Multi port position constraints and multi port order constraints may be part of the LHS or
RHS of the component story pattern. A multi port position constraint is part of the LHS if
it is attached to a subport variable with no stereotype or with stereotype «destroy». In
this case, the matched subport variable needs to fulfill the multi port position constraint
for a successful matching. A multi port position constraint is part of the RHS if it
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int i := 1;

if (next != null){
tmpRefGen := next;
next := null;
tmpC := c;
c := null}

[i < position]

i++;
[success]

[else]

[else]

[position == 1]

[failure]

cPort := newC,
rPort := newR

ConvoyCoordination::addConvoyMemberAtPos(int position) : (coordinator cPort, refDistProvider rPort)

Get next RefGen
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tmpC

this

tmpRefGen
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Create Embedded Ports
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this

Create Embedded Ports
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(embC, embP) :=
createFirstMemberPorts()

this
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tmpRefGen

c
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:next
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:refDistProvider
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«create»«create»

:refDistProvider
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refDistProvider
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«create»

embP

:profileReceiver«create»

newC:coordinator «create»
«create»

next /
refGen : RefGen

:next
:prev
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:refDistProvider :refDistProvider

«next»
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«next»

«next»
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Create RefGen at Beginning
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this

newRefGen /
refGen : RefGen

embC
«next»

tmpRefGen

:next
:prev

:curPos:curPos

newR:
refDistProvider

:refDistProvider
«first»

«create»

«create»

«create»

«create»

:refDistProvider:refDistProvider

«next»

«create»

:curPos:curPos

«destroy» «destroy»«destroy»

«create»

embP

:profileReceiver
«create»

newC:
coordinator

«first» «create»

«create»

«first»

Get first RefGen

cm / man :
ConvoyManagement

tmpC:coordinator

this

«first»

tmpRefGen /
refGen : RefGen

:curPos:curPos

Figure 3.14: CSD for Adding a Convoy Member (cf. [Tic09, Sch12])
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is attached to a subport variable with stereotype «create». In this case, the created
subport instance is inserted at the specified position into the multi port, i.e., either at first
or last position. A multi port order constraint is part of the RHS if at least one of the
attached subport variables carries a «create» stereotype. It is part of the LHS in all
other cases. It is not allowed to connect a subport variable stereotyped with «create»

and a subport variable stereotyped with «destroy» by a multi port order constraint.

Figure 3.14 shows an example of a complex CSD of the component ConvoyCoordination

that implements the aforementioned use case of adding a new convoy member at a spe-
cific position of the convoy. The CSD takes a position as its input and returns the subport
instances that have been created for the multi ports coordinator and refDistProvider of Con-

voyCoordination. In addition to the subport instances, the CSD also creates an instance of
the RefGen multi part.

The behavior of the CSD addConvoyMemberAtPosition is as follows. The first story node
matches the first RefGen instance which is the only one having an instance of the curPos

port. Matching this story node will always succeed because the corresponding com-
ponent parts are both mandatory. Thereafter, the statement node initializes a counter
variable i that is used for iterating over the list of RefGen instances until the instance
at the position given as parameter has been found. The iteration is performed via the
story node and the two statement nodes in the upper right corner. The component story
pattern in the story node uses a multi port order constraint for iterating over the subport
instances of coordinator.

If the correct position has been found, the story node in the lower left corner inserts
an instance of refGen at the beginning of the list, while the story node in the lower
right inserts an instance of refGen at any other position. Along with the instance of
RefGen, we create subport instances for the multi ports coordinator and refDistProvider of
this and insert them at the corresponding positions. In the story node Create RefGen at

Beginning, we use the «first» stereotype two times within the same multi port variable.
This is allowed because one is part of the LHS for matching the previously first subport
instance while the other one is part of the RHS. Finally, the final node assigns the created
subport instances newC of type coordinator and newR of type refDistProvider to the output
parameters cPort and rPort, respectively.

3.3.4 Reconfiguration of Atomic Components

In our component model, we use CSDs for reconfiguring atomic components as well.
Tichy neither explicitly defined nor restricted CSDs in that way [Tic09]. The only dif-
ference to a CSD of a structured component is that we visualize the this component
variable as an atomic component. Then, the this component variable may only contain
port variables but no embedded component variables (cf. [BDG+14b]).

Figure 3.15 shows the CSD applyMemberStrategy that is invoked in the first story node
of becomeMember shown in Figure 3.11. OperationStrategy is an atomic component and,
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Delete speedProvider Port

OperationStrategy::applyMemberStrategy()

this

«destroy»
:speedProvider

Figure 3.15: CSD for Component OperationStrategy that Reconfigures the Ports for Being
Member

therefore, the this variable has no embedded component variables. The CSD deletes the
speedProvider port instance because the reference speed of a member is defined by the
coordinator and not by its own operation strategy.

3.4 Instantiating Real-Time Coordination Protocols on
System Level

RTCPs on the system level define the communication between different AMS while they
collaborate in an NMS. Since NMS are virtual, there does not exist a component that
contains both AMS and that may instantiate an RTCP between the AMS. Consequently,
the instantiation cannot be described by CSDs, but the AMS need to agree on instanti-
ating a particular RTCP via message-based communication. This, however, requires at
least one of the AMS to know about the existence of the other AMS. Then, one of the
AMS may initiate the communication for agreeing on the instantiation. This communi-
cation, however, cannot be handled by the discrete ports and connectors introduced in
Section 3.1 because their instances already require a connector with a RTCP.

For solving this problem, we need to relax the strict requirement of MECHATRONIC-
UML that all communication between AMS is exclusively handled by RTCPs with
single-cast connectors [GTB+03, EHH+13]. In particular, we use broadcast ports as
introduced in Section 3.1.1.3 that enable for broadcast communication. Whenever an
AMS sends a message via a broadcast port, the message is received by all other broad-
cast ports "in reach" that can process this message. Which broadcast ports are in reach
depends on the spatial distribution of the AMS as well as the transmission medium. In
general, it is not known at design time which ports will receive a message and which
will not. In order to retain the safety guarantees provided by the use of RTCPs, we only
allow the use of broadcast ports for two special purposes. First, for gaining knowledge
about the existence of other systems and, second, for instantiating one particular RTCP
called ProtocolInstantiation. This RTCP then enables to instantiate further RTCPs. No
further broadcast ports are allowed in a MECHATRONICUML model.
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Following the terminology of Baresi et. al. [BDNG06], gaining knowledge about other
systems is only required in so-called open-world scenarios. In an open-world scenario,
systems do not know each other in advance and the possible communication partners
change frequently over time. For example, RailCabs move along the track system and
do not know when or where they meet which other RailCab. In this case, we may need to
use a broadcast port that executes a so-called discovery protocol [NNSS07] that detects
and gathers knowledge about the systems in the environment. This information needs
to be stored in an environment model that may be used by the cognitive operator of the
OCM for deciding which other systems are suitable for which cooperation. We present
a simple discovery protocol and environment model in Appendix A.2.1, but we do not
consider this use case in detail as part of this thesis.

In the following, we illustrate how we use a broadcast port for instantiating the RTCP
ProtocolInstantiation for two AMS (Section 3.4.1). Thereafter, we show how to use the
RTCP ProtocolInstantiation for instantiating further RTCPs (Section 3.4.2).

3.4.1 Instantiating the RTCP ProtocolInstantiation

An AMS may use its protocolInst broadcast port for contacting another AMS for instanti-
ating a connector including the ProtocolInstantiation RTCP. ProtocolInstantiation is the only
RTCP that may be instantiated via broadcast communication. All other RTCPs need to
be instantiated via ProtocolInstantiation or as part of another, user-defined RTCP.

Assumptions For instantiating the RTCP ProtocolInstantiation, the AMS that initiates
the instantiation needs to know the other system in its environment model. Based on
this, we apply the following assumptions to the instantiation process:

1. Each AMS has a unique ID that is known to the RTSC of the broadcast port.

2. There may exist different versions of this message exchange that only differ in their
timing constraints as, e.g., timeouts, where each version has a unique identifier.
The broadcast port knows the ID of the version that it implements.

3. The IDs are represented using a data type that can be sent as a parameter of a
message.

4. No message loss occurs during the interaction.

5. No eavesdropper tries to compromise or prevent the connection setup.

Since the different versions only differ in their timing constraints, the message exchange
for instantiating the RTCP ProtocolInstantiation may be used in different systems without
modification.
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Behavior Figure 3.16 shows the message exchange for instantiating the RTCP Proto-

colInstantiation as a modal sequence diagram (MSD, [HM08a]). For better readability of
the figure, we omitted all timing constraints.

sys1:Aut.System sys2:Aut.SystemEnvironment

connect(sys2)

connectionDenial(sys1, sys2)

checkIDs

alt numOfPorts ≥  
maxNumber

connectionRequest(sys2, sys1)

startProtocolInstantiation(sys2, sys1, version)

[else] connectionApproval(sys1, sys2)

checkIDs

createPort
: thePort

confirmProtocolInstantion(sys1, sys2, thePort)

alt

[else]

version not
supported

abortProtocolInstantiation(sys1, sys2)

checkIDs

createConnector(thePort)
: theOtherPort

completedProtocolInstantiation(sys2, sys1, theOtherPort)

createConnector(theOtherPort)

Figure 3.16: MSD Specifying the Broadcast Message Exchange for Instantiating the
RTCP ProtocolInstantiation

In the MSD, sys1 initiates the instantiation of ProtocolInstantiation with sys2. It sends a
connectionRequest via the broadcast port that includes the ID of sys2 as the first parame-
ter and its own ID as the second parameter. If an AMS receives such message, it checks
whether its ID is contained in the first parameter. If so, it evaluates the message and
checks whether another instance of the port implementing the RTCP ProtocolInstantiation

may be created. If not, it answers with a connectionDenial. If the port instance can be
created, it sends a connectionApproval. sys1 then checks whether the connectionApproval

has been sent by sys2 and continues with the instantiation by sending a startProtocolIn-

stantiation message. This message contains the version ID in addition to the IDs of the
two systems. After receiving the startProtocolInstantiation message, sys2 checks whether
it supports the desired version. If not, it sends an abortProtocolInstantiation message and
the instantiation fails. If it supports the desired version, sys2 creates a port instance that
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implements the RTCP ProtocolInstantiation. Then, it answers with a confirmProtocolInstan-

tiation message that includes the created port instance. If sys1 receives this message, it
creates a port instance including the connector instance to the port instance contained in
the message. Finally, it sends a completedProtocolInstantiation message to sys2 including
the port instance it just created. Finally, sys2 receives this message and creates the con-
nector instance itself to the port instance provided by sys1. At this point, both systems
successfully instantiated the RTCP ProtocolInstantiation and may continue to instantiate
further RTCPs.

Please note that connector instances between two AMS are virtual, i.e., there exists no
shared connector instance object between the two systems. Instead, each of the AMS
knows the other one as an external system and maintains its own connector instance
object to that external system. Therefore, the connector is created two times: once in
each system.

We specified the behavior of the broadcast port by a RTSC and verified it using the
UPPAAL model checker [BDL+06b]. The RTSC is contained in Appendix A.2.2. The
behavior is free of deadlocks and ensures that if sys1 created the port instance, then
also sys2 created the port instance. Furthermore, it ensures that a third system may not
accidentally create a port instance.

3.4.2 The RTCP ProtocolInstantiation

The RTCP ProtocolInstantiation, whose declaration is shown in Figure 3.17, is a special
purpose RTCP that is intended to be used in combination with the protocolInst broadcast
port. It has two roles requestor and requestee. The system that initiated the instantiation
of ProtocolInstantiation (cf. Section 3.4.1) is always the requestor. It requests the requestee

to instantiate a particular role of a RTCP.

requestor requestee

ProtocolInstantiation

[1] [1]
buffer size: 1 buffer size: 1

Figure 3.17: Declaration of the RTCP ProtocolInstantiation

Assumptions The specification of ProtocolInstantiation as described below underlies
the following assumptions:

1. Each RTCP has a unique ID.

2. Each role of a RTCP has a unique ID within its RTCP.

3. The IDs are represented using a data type that can be sent as a parameter of a
message.
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4. The component instance that executes the requestor role at one of its port instances
is able to instantiate a port that implements the other role of the requested RTCP.

5. No message loss occurs during the interaction.

Behavior The message exchange between the two roles of the RTCP ProtocolInstanti-

ation is defined by the MSD in Figure 3.18.

requestor requesteeEnvironment

alt

[else] protocolNotSupported()

instantiationFailed()

Environment

success(port)
confirmInstantiation(port)

createPort(port)

success(port2)
finalize(port2)

createConnector(port2)

instantiate(protocolID, roleID)

supported ==
true

request(protocolID, roleID)
isSupported

(protocolID, roleID) :
supported

createPort(protocolID,
roleID)

alt

[else]

finished()
completed()

instantiationComplete()

failed()
declineInstantiation()

instantiationFailed()

Figure 3.18: MSD Specifying the Message Exchange for Instantiating an RTCP

The interaction starts with a request that is sent by the requestor. It requests the reques-

tee to instantiate a particular role (roleID) of the RTCP identified by the protocolID. The
requestee checks whether it supports the requested protocol and role. If so, it requests
its environment to create a port instance that implements the requested role. If not, it
answers with a protocolNotSupported message and the instantiation fails. In the context
of this RTCP, the environment is the atomic component instance that contains the port
instance executing one of its roles. This atomic component instance then either creates
the port instance itself or it triggers a reconfiguration using our approach presented in
Chapter 4.

If the requestee requested to create a port instance, the environment either answers with
success or failed depending on whether the port could be created successfully. In the
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latter case, the requestee sends a declineInstantiation message to the requestor and the in-
stantiation fails. In the former case, the requestor sends a confirmInstantiation message to
the requestor. This message includes the port instance that was created by the requestee.
The requestor then advises its environment to create a port instance as well and provides
the port instance of the requestor as a parameter. According to our assumptions, the cre-
ation of the port instance succeeds. The requestor then sends a finalize message including
the port instance that it created. Then, the requestee passes this port instance to its en-
vironment to create the connector instance, which finishes the connection setup. The
environment acknowledges that by sending finished. Then the requestee sends completed

to the requestor which completes the instantiation.

We present RTSCs implementing the behavior for both roles in Appendix A.2.3. The
RTSCs have been specified and verified using a connector delay of 25 ms. The verifi-
cation has been carried out using UPPAAL [BDL+06b]. The RTSCs guarantee that the
protocol is deadlock free and that either both roles succeed or both roles fail.

Usage The message exchange shown in Figure 3.18 is independent of the RTCPs that
an AMS wants to instantiate. They only appear as parameters of messages. If the de-
veloper assigns the requestee role to a port of a component of the AMS, the developer
needs to implement the isSupported function. In addition, the port that implements re-

questor needs to be integrated with the behavior that decides when to ask another system
to start collaborating. Both ports need to be integrated with the reconfiguration behavior
such that the necessary reconfigurations may be triggered.

Although the purpose of ProtocolInstantiation is instantiating RTCPs, we do not want to
instantiate all RTCPs that an AMS supports via this protocol. In general, only RTCPs
with a predefined role assignment should be instantiated via ProtocolInstantiation. As an
example, consider the RTCPs that are necessary for driving as part of a convoy. Driving
in a convoy includes the election of a coordinator and complex negotiation about the
speed for the convoy, maximum accelerations and decelerations, and the ongoing route.
As a result, we do not want to instantiate these RTCPs, but only a RTCP that can be
used to elect a coordinator for the convoy that can manage the necessary negotiations.
In our example, we only want to instantiate the RTCP ConvoyEntry that is refined by
the port peer of RailCabDriveControl shown in Figure 3.6. We introduce this RTCP in
Appendix A.1.1.

3.5 Modeling Component Properties by Architectural
Constraints

In this thesis, we define component properties (cf. Section 3.1.5) by architectural con-
straints. An architectural constraint defines a condition on the configurations of a (struc-
tured) component instance [GMW00]. In addition, we enable to define such component
properties as invariants. An invariant needs to evaluate to true for any configuration
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of the component, whereas other component properties may evaluate to false for some
configurations. Invariants enable to define valid configurations of a component, which
we exploit for verifying the correctness of the reconfiguration behavior in Section 4.5.1.

We define a new language called component story decision diagrams (component SDDs,
[Hei14]) for modeling architectural constraints. Component SDDs combine the con-
straint specification of story decision diagrams (SDDs, [KG07, Sta08]) with component
story patterns (cf. Section 3.3.1) for referring to components. They have a name and
always apply to one component of our component model. This component defines the
type of the this variable which is used in the component story patterns.

In the following, we give a brief overview of component SDDs using examples in con-
crete syntax and an informal description of their semantics. Component SDDs have
been formalized by a metamodel [SV06, ch. 4] whose abstract syntax is given in Ap-
pendix D.2.4. Their operational semantics has been formally defined in form of a trans-
lational semantics [SK95] by defining a transformation to SDDs. We describe this trans-
formation in our technical report [Hei14].

Component SDDs use the same syntactic elements as SDDs [KG07]. They consist of one
initial node, a set of pattern nodes and leaf nodes, and a set of directed edges connecting
the nodes. The initial node denotes the starting point for evaluating the component
SDD. A pattern node contains a component story pattern. Leaf nodes mark the end
for evaluating the component SDD. There exist two kinds of leaf nodes: (0)-nodes and
(1)-nodes. The nodes are connected by two kinds of edges: then-edges (also called high-
edges) and else-edges (also called low-edges). The initial node has exactly one outgoing
then-edge and no incoming edge. Each pattern node has exactly one outgoing then-edge
and one outgoing else-edge, while leaf nodes have no outgoing edges. The number of
incoming edges is not restricted for pattern nodes and leaf nodes, but nodes and edges
need to form a directed acyclic graph [Sta08, p. 60].

cc, ps

then else

01

RailCabDriveControl::isCoordinator

this

cc / convoy :
ConvoyCoordination

:curPos

ps / pos : PositionSensor

:position

Figure 3.19: Component SDD isCoordinator for Component RailCabDriveControl
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Figure 3.19 shows an example of a simple component SDD called isCoordinator. The
initial node is visualized as a filled black circle. It shows the name of the component and
the name of the component SDD. (1)-nodes are visualized as green circles containing a
1, while (0)-nodes are visualized as red circles containing a 0. Pattern nodes are visual-
ized as squares and visualize the component story pattern that they contain. It the upper
left corner, they have a label that enumerates all unbound variables of the component
story pattern. In our example, the component story pattern defines that RailCabDrive-

Control embeds instances of ConvoyCoordination and PositionSensor. The pattern node is
connected by a solid then-edge to the (1)-node and by dashed else-edge to the (0)-node.

The semantics of a component SDD is defined analogously toSDDs [Sta08]. The eval-
uation starts at the initial node with a variable binding that only assigns the this variable
of the component story pattern to the component instance on which the component SDD
should be evaluated. In our example, this is an instance of RailCabDriveControl. This
variable binding is passed to the first pattern node. If the contained component story pat-
tern can be matched on RailCabDriveControl, then the variable binding is extended with
bindings for all unbound variables (cc and ps) of the component story pattern and passed
down the then-edge. Otherwise, the variable binding remains unchanged and is passed
down the else-edge. If the evaluation ends at a (1)-node, then the component SDD is
fulfilled. If the evaluation ends at a (0)-node, then the component SDD is not fulfilled.
Thus, the component SDD in Figure 3.19 is fulfilled for an instance of RailCabDriveCon-

trol if it embeds instances of ConvoyCoordination and PositionSensor that are connected by
an assembly connector instance.

Since component SDDs are a constraint language, the component story patterns used in
pattern nodes may not use «create» or «destroy» annotations. In addition, we do
not allow to use optional or negative variables. Optional variables have no influence on
a successful matching and, thus, cannot be referenced in subsequent nodes. Thus, they
have no semantics in component SDDs. In accordance to Stallmann [Sta08], we do not
use negative variables either but express negation by switching the then- and else-edges.
As an example, consider the component SDD isStandalone shown in Figure 3.20.

The component SDD isStandalone denotes that RailCabDriveControl neither operates as a
coordinator nor as a member of a convoy. It is fulfilled if the component story patterns
in both pattern nodes cannot be matched on an instance of RailCabDriveControl. If one
of the component story pattern could be matched, the evaluation would proceed via the
then-edge and end at a (0)-node.

The pattern nodes that are used in Figures 3.19 and 3.20 are so-called existential pat-
tern nodes. A component SDD containing only existential pattern nodes is fulfilled if
and only if there exists one variable binding for the pattern nodes such that the evalua-
tion terminates at a (1)-node. In addition, there exist so-called universal pattern nodes
as shown in Figure 3.21. They are visualized with a cascaded border line [Sta08] in
accordance to CSDs. If a component SDD contains a universal pattern node, then the
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cc, ps

then
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RailCabDriveControl::isStandalone

this

cc / convoy :
ConvoyCoordination

:curPos
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mc

this

mc / member :
MemberControl

then else

0 1

else

Figure 3.20: Component SDD isStandalone for Component RailCabDriveControl

evaluation needs to terminate at a (1)-node for any matching that can be obtained for the
universal pattern node.

The invariant component SDD convoyOrder shown in Figure 3.21 specifies that any two
successive subport instances of refDistProvider are delegated to successive subport in-
stances of ConvoyCoordination. This ensures that reference speeds and distances can al-
ways be distributed within the convoy in the right order. In the component SDD, the
first pattern node matches an instance of ConvoyCoordination that is embedded in RailCab-

DriveControl. The second pattern node is a universal pattern node that matches all pairs
of successive refDistProvider port instances. For any match that may be obtained for this
pattern node, the third pattern node needs to be matched as well such that the execution
terminates at the (1)-node. If there exists no matching for the universal pattern node,
then the component SDD is fulfilled. For this reason, we only visualize one outgoing
then-edge for an universal pattern node as a shorthand notation [Sta08, p. 63].

A component SDD may require that an embedded component instance has a component
property with a particular value. This component property may be specified, again,
using a component SDD. This enables to connect architectural constraints through the
different hierarchy levels of the component model. In Figure 3.21, the part variable cc in
the universal pattern node requires that the component property convoyOrder is true for
the component instance matched to cc.
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Figure 3.21: Component SDD convoyOrder for Component RailCabDriveControl
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3.6 Implementation

The concepts presented in this chapter have been implemented as part of the MECHA-
TRONICUML Tool Suite1 [DGB+14]. We have built a metamodel (cf. Appendix D) and
several diagram editors for creating models based on our component model. In contrast
to the previous version of the tool, called Fujaba Real-Time Tool Suite [PTH+10], the
metamodel has been developed using the Eclipse Modeling Framework (EMF,
[SBPM08]). The static semantics has been completely encoded in the metamodel us-
ing OCL [Gro12]. Figure 3.22 provides a conceptual overview of the Eclipse plugins
that have been created.

«de.uni_paderborn.fujaba»
muml

«org.storydriven»
storydiagrams

«de.uni_paderborn.fujaba.muml»
reconfiguration

«de.uni_paderborn.fujaba.muml»
componentstorypattern

«de.uni_paderborn.fujaba.muml»
componentstorydiagram

«de.uni_paderborn.fujaba.muml.verification.sdd»
componentSDD

«de.uni_paderborn.fujaba.muml»
component.diagram

«de.uni_paderborn.fujaba.muml»
componentinstance

configuration.diagram

«de.uni_paderborn.fujaba.muml»
reconfiguration.ui

«de.uni_paderborn.fujaba.muml.verification.sdd»
componentSDD.diagram

«de.uni_paderborn.fujaba.muml»
componentstorydiagram.diagram

«extends»

«extends»«extends»

«extends»

«extends»

«extends»
«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«package»
plugin name

«package»
plugin nameLegend: Metamodel Plugin Diagram Editor Plugin

Figure 3.22: Plugins Implementing the Concepts of the Component Model

The plugin muml contains the core metamodel of MECHATRONICUML. It enables to
specify components and CICs including RTCPs and RTSCs. In muml, we only support
non-reconfigurable components in order to have a core language that can be used for
simple, non-adaptive systems. Reconfigurable components are modeled in the plugin
reconfiguration. This plugin also contains the metamodel for broadcast ports. The meta-
model for CSDs has been split into two plugins. The first one, called componentstorypat-

tern, enables to specify component story patterns based on reconfigurable components.
The componentstorydiagram plugin adds the story nodes that are special for CSDs. The
metamodel for CSDs extends the story diagram metamodel [HRvD+11] contained in the
plugin storydiagrams and reuses as much of the implementation as possible. In addition,
we reuse the componentstorypattern metamodel for specifying component SDDs. The
corresponding plugin componentSDD only defines the nodes and edges of component
SDDs and uses the same component story pattern implementation as CSDs. We present
class diagrams for our metamodels in Appendix D.

1https://trac.cs.upb.de/mechatronicuml
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Based on the metamodels, we developed four diagram editors using the graphical mod-
eling framework (GMF, [Gro09]). In particular, we created editors for specifying com-
ponents, CICs, CSDs, and component SDDs. The reconfiguration.ui plugin extends the
component editor such that it may also be used for modeling reconfigurable compo-
nents.

At present, our implementation does not yet support the specification component prop-
erties for a component. Component SDDs are currently only used as part of our transac-
tional reconfiguration approach as discussed in Chapter 4. Statement nodes of CSDs are
not yet supported as well.

3.7 Related Work

This section relates our new component model for MECHATRONICUML to other ap-
proaches for defining software architectures. First, we compare it to other software
component models (Section 3.7.1). Second, we relate it to architecture description lan-
guages (ADLs, [MT00]) for self-adaptive systems (Section 3.7.2). Finally, we discuss
related works regarding the specification of architectural constraints for a component-
based system (Section 3.7.3).

3.7.1 Software Component Models

The surveys by Lau [LW07] and Crnković et al. [CSVC11] review different kinds of
component models. They distinguish between general purpose component models as,
for example, CORBA [Gro11a] and EJB [Ora13], and specialized component models
for particular domains. The latter usually address business information systems or em-
bedded real-time systems. In this section, we focus primarily on component models for
embedded real-time systems and on component models that support runtime reconfigu-
ration.

Hošek et al. [HPB+10] surveyed component models for embedded real-time systems.
Only few of which support runtime reconfiguration including SOFA-HI, MyCCM-HI,
ProCom, BlueArX, and AUTOSAR. All of these component models are restricted to
mode changes [HKMU06] where a component instance moves from one implementation
to another one. SOFA-HI [PWT+08, PKH+11] is an extension of the SOFA 2.0 [HP06,
HB07] component model for real-time systems. It enables to specify hierarchical com-
ponents that are considered to be implemented manually in C. In contrast to SOFA 2.0,
reconfigurations in SOFA-HI cannot change connectors at runtime [PWT+08, HPB+10].
MyCCM-HI [BFHP09] extends the OMG CORBA Component Model (CCM, [Gro11a])
for specifying adaptive embedded systems with a textual syntax. It enables a detailed
specification of tasks and their activation but does not define how the behavior of tasks
is implemented. A mode change of a structured component may reconfigure connec-
tors. The BlueArX component model by Bosch [KKH+08, KRKH09] also provides the
specification of hierarchical components with mode changes. In BlueArX, the behavior
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of a component is defined by signal flows. In addition, each component defines a set
of tasks including a scheduling of these tasks. A mode switch may either change the
signal flow inside a component or it may change the task scheduling. Mode changes
cannot be composed hierarchically. The ProCom component model [VSC+09] has re-
cently been extended to support hierarchical reconfiguration based on mode changes
as well [HQCH13]. We discuss this approach in detail in Section 4.8 along with our
transactional reconfiguration approach. For automotive systems, the AUTOSAR stan-
dard [FMB+09] defines a component model for specifying hierarchical components.
AUTOSAR does not specify how application software components are implemented
[AUT14c]. As of version 4.0, AUTOSAR supports modes [AUT14a] and a timing
specification [AUT14b]. Modes only enable to activate and deactivate trigger events
in atomic software components thereby changing their behavior. The timing specifi-
cation enables to define periods and orders for events as well as end-to-end deadlines
for chains of events. All of these component models have in common that they do not
provide means to specify and verify asynchronous message-based communication with
real-time properties and that they only provide limited reconfiguration capabilities. In
contrast, CSDs of MECHATRONICUML provide a more powerful and flexible specifica-
tion of reconfigurations that includes control flow and reconfigurations across different
levels of hierarchy (see also Chapter 4).

Fractal [BCL+06, LLC10] provides the definition of hierarchical components includ-
ing runtime reconfiguration of structured components. Each component consists of a
membrane and a content area. The content area embeds other components while the
membrane contains so-called controllers that enable introspection and reconfiguration.
Although Fractal provides a C-implementation called Think [AHJ+09], it does not pro-
vide the ability to specify clock-based real-time properties for components or to verify
the functional behavior or the reconfiguration specification.

The DEECo component model [BGH+13] provides non-hierarchical components for
soft real-time systems based on ensembles. While being in an ensemble, components
may communicate and exchange knowledge. The communication, however, is not ex-
plicitly modeled in their approach. Components declaratively specify conditions for
being part of an ensemble and a shared runtime framework automatically constructs and
dissolves ensembles based on these conditions. De Nicola et al. [DNFLP13] present
a textual language named SCEL that enables to express these conditions as policies
including the necessary modifications of the software architecture for establishing the
ensemble. In contrast to MECHATRONICUML, both approaches neither provide further
reconfigurations of components and nor real-time constraints in their behavior specifi-
cation. In [BBCP13], Barnat et al. introduce DCCL that is a formal component spec-
ification implementing the concepts of DEECo. They provide an LTL model checking
of ensembles proving properties concerning the knowledge of components but not their
behavior or the structure of the ensembles.

CompoSE [KKTS09, ASTPH10] defines a hierarchical component model for modeling
embedded systems. Atomic components may be implemented in a different language
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comparable to our continuous components. Each atomic component defines a set of
configurations each consisting of a set of ports and a computation that defines the behav-
ior. Structured components specify configurations based on combinations of ports and
embedded component instances. At runtime, a component may switch between configu-
rations. In contrast to MECHATRONICUML, the approach does not support using fading
functions and message-based communication.

EAST-ADL2 [CFJ+10] is an architecture description language targeted to the develop-
ment of automotive systems. It provides a component specification where components
refer to an external implementation, e.g., specified in MATLAB/Simulink [Matg]. The
component model can be mapped to the AUTOSAR component model but does not
yet support modes. Similar to MECHATRONICUML, it focuses on the integration of
feedback controllers but provides no means for formal verification or runtime reconfig-
uration.

Other component models for embedded real-time systems like Koala [vOvdLKM00],
Robocop [Maa05], SaveCCM [CHP06, ÅCF+07], Rubus [HMTN+08], COMDES-II
[KSA07], PECOS [GCW+02], and CHESS [PV14] provide the ability to specify real-
time behavior on a low level of abstraction. They support formal analysis as our com-
ponent model but neither support message-based communication (except COMDES-II)
nor runtime reconfiguration.

All of the mentioned approaches except DEECo do not provide a concept for instantiat-
ing connectors on system level.

3.7.2 ADLs for Self-Adaptive Systems

ADLs [MT00] specify software architectures based on components and connectors, al-
though the term component is less strictly defined as for component models. Connectors
define the interaction of components, constraints define restrictions that the architecture
needs to follow while it evolves, and architectural styles are families of related architec-
tures [GMW00].

Bradbury et al. [BCDW04] survey ADLs that enable runtime reconfiguration of the soft-
ware architecture. They classify these ADLs into three categories: graph-based, process
algebra-based, and formal logic-based. Graph-based approaches define an initial con-
figuration that is modified by graph rewriting rules. Examples include CHAM [IW95]
and the approaches by Le Métayer [LM98] and Hirsch et al. [HIM98]. MECHATRON-
ICUML also belongs to this category. Process algebra-based approaches like Dynamic
Wright [ADG98], Darwin [KM98], or the approach by Bartels and Kleine [BK11] spec-
ify processes for each configuration using a process algebra like the π-calculus [MPW92]
(Darwin) or CSP [Hoa85] (Dynamic Wright, Bartels and Kleine). At runtime, compo-
nents switch between processes to execute reconfigurations. Formal-logic-based ap-
proaches like the approach by Aguirre and Maibaum [AM02] or GeReL [EW92] declar-
atively specify component behavior and constraints based on first-order logic. All of



Page 92 Chapter 3

the mentioned approaches rely on a textual specification and enable checking for archi-
tectural constraints. However, they do not support real-time constraints for functional or
reconfiguration behavior. Most approaches discussed above (except Darwin and GeReL)
do not support structured components.

The approach by Kacem et al. [KKJ12] specifies a system model using UML 2.0 com-
ponents [Gro05]. They specify reconfigurations by graph transformations using the con-
crete syntax of components that are guarded by OCL constraints [Gro12]. In contrast
to MECHATRONICUML, they do not support control flow in their rules. They support
verifying constraints by translating their specification to Z [Spi92]. In contrast to MECH-
ATRONICUML, they do not support hierarchical components and real-time properties.

3.7.3 Constraint Languages

We compare our approach for modeling architectural constraints by component SDDs
to two kinds of constraints languages. First, we compare it to object-based constraints
languages that are defined based on classes and objects (cf. Section 3.7.3.1). Second,
we compare component SDDs to constraint languages that were defined based on com-
ponents, mostly as part of an architecture description language (cf. Section 3.7.3.2).

3.7.3.1 Object-Based Constraint Languages

Approaches in this category enable to specify constraints for approaches that are based
on classes, references, and objects. Probably the most well-known example is OCL
[Gro12]. OCL supports the textual specification of complex structural properties for
classes, e.g., using iterators, sets, and selections.

In [FHTW05], Fish et.al. compare two visualizations of OCL: visual OCL [BKPPT01,
KTW02] and constraint diagrams [Ken97]. Visual OCL uses a graph-based syntax for
visualizing OCL constraints which is derived from the UML 1.4 notation [Gro01]. Con-
straint diagrams [Ken97] use a visual notation that is inspired by UML and Venn di-
agrams [Ven80]. In [FFH05], constraint diagrams are extended by a partial order for
quantifiers and their semantics is defined based on first-order predicate logic.

All of these approaches support the specification of architectural constraints based on
the abstract syntax of the component model. That requires the developer, who specifies
components based on concrete syntax, to translate the constraints to the abstract syntax
of the component model. This introduces additional complexity for a developer that
keeps him from effectively specifying constraints.

3.7.3.2 Component-Based Constraint Languages

Approaches in this category enable to specify constraints based on a component specifi-
cation either provided by an architecture description language or a component model.
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The ADL Dynamic Wright [ADG98] supports the specification of constraints based on
first-order logic using a textual notation. The constraints directly refer to the compo-
nents and connectors defined by the architectural style. Armani [Mon01] is a constraint
language for the Acme ADL [GMW00]. It allows to specify architectural constraints
in a first-order predicate logic using a textual concrete syntax. In contrast to our ap-
proach, neither Dynamic Wright nor Armani enable to refer to properties of embedded
components.

FPath [DLLC09] is a textual query language based on the Fractal component model. It
is inspired by XPath [W3C10] and allows to select a set of embedded components in a
hierarchical Fractal component across different levels of hierarchy. Therefore, it requires
knowledge of the implementation of all components thereby breaking encapsulation.
FPath is not explicitly defined as a constraint language, but may be used like one.

The ACL family of architecture constraint languages [TFS10, TSDF11] enables the
specification of constraints for components independent of a concrete component model.
It supports two levels of abstraction: an object level using an OCL-like language called
CCL (core constraint language) and an architecture-level constraint language. In the lat-
ter, constraints are modeled as special constraint components that are connected to the
functional components by special non-functional or constraint ports even across differ-
ent levels of hierarchy. The constraints are then verified at design-time to ensure that
components are correctly assembled and implemented. In contrast to our approach, they
do not enable to evaluate their constraints during runtime.

3.8 Summary

In this chapter, we introduce a consolidated component model for MECHATRONICUML
that enables to specify software architectures for self-adaptive mechatronic systems.
Thereby, our component model primarily addresses the reflective operator of the OCM
reference architecture but also includes the interface to the feedback controllers on the
controller level. Therefore, it combines and enhances two existing component mod-
els for MECHATRONICUML that have been created by Burmester, Giese, and Hirsch
[GTB+03, GBSO04, BGO06, HHG08, GS13] as well as Tichy [THHO08, Tic09]. In a
little more detail, we use the necessary distinction of discrete atomic components and
continuous atomic components representing feedback controllers from Burmester and
Giese [GBSO04, BGO06]. In addition, we use the specification of structured com-
ponents by means of component parts from Tichy [Tic09]. Compared to the previ-
ous component models, our new component model guarantees component encapsula-
tion, enforces a separation of concerns between functional and reconfiguration behav-
ior, and improves semiotic clarity [Moo09] of the concrete syntax. In our component
model, we use CSDs [THHO08, Tic09] for specifying reconfigurations of components
because they enable for a more concise specification compared to hybrid reconfigura-
tion charts [GBSO04, BGO06]. Furthermore, we introduce a concept for instantiating
RTCPs between AMS that are not yet connected with each other. Finally, we defined
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component SDDs that enable to specify architectural constraints and component proper-
ties based on the software architecture.

We underpin the suitability of our component model for specifying software architec-
tures of self-adaptive mechatronic systems by providing a software architecture of the
RailCab system (cf. Section 1.1) focussing on the convoy mode. Our example includes
the component definitions and the necessary CSDs for realizing RailCab convoys. Ad-
ditional CICs and CSDs of the example scenario are given in Appendix A. We use this
example as a basis for illustrating the further contributions of this thesis in the subse-
quent chapters.
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4 Transactional Execution of Hierarchical
Reconfigurations

Reconfigurations in a hierarchical component model often require the reconfiguration of
several components that are located on different levels of hierarchy. As an example, the
reconfiguration of a structured component instance may require the upfront reconfigura-
tion of one or more of its children as it has been shown in the example of Figure 3.11.
In this example, creating the instance mc of MemberControl requires to reconfigure the
instances of OperationStrategy and VelocityController first. Then, the port instances created
by these reconfigurations are connected by RailCabDriveControl. In general, we distin-
guish two use cases for such reconfigurations.

In Use Case 1, an embedded component instance, in the following referred to as child,
detects a situation that requires a reconfiguration that it cannot handle by itself. In our ex-
ample in Figure 3.6, the OperationStrategy component negotiates that the RailCab enters
a convoy, but it does not know how to do this itself. Thus, it needs to send a request to
the embedding structured component instance of type RailCabDriveControl to handle that
situation and to execute the necessary reconfiguration. We will refer to the embedding
structured component instance as parent in the following.

In Use Case 2, a structured component instance executes a reconfiguration that requires
the reconfiguration of one or more of its children. In our example, becoming a member
of a convoy requires a reconfiguration of the RailCabDriveControl (cf. Figure A.31). Exe-
cuting this reconfiguration, however, requires that the OperationStrategy changes its port
instances and that the VelocityController switches to the ConvoyDrive component instance
(cf. Figure 3.12). Therefore, RailCabDriveControl needs to trigger the corresponding re-
configurations on its children.

For both use cases, executing such reconfigurations safely demands that all component
instances, which are required to reconfigure, perform their reconfiguration in a coordi-
nated way. The necessary conditions for executing a hierarchical reconfiguration safely
are given by the ACI-properties (atomicity, consistency, and isolation) of database sys-
tems [BHG87, LLC10] and a correct timing. Atomicity requires that either all or no
component instances, which need to reconfigure, execute their reconfiguration. If re-
configurations are only executed partially, the system is usually unsafe. Consistency
requires that any component instance has a valid architecture before and after each re-
configuration. Isolation ensures that reconfigurations do not interfere with each other.
Interference of reconfigurations results in invalid architectures. A correct timing de-
mands that if a hard deadline for executing a reconfiguration exists, the system needs to
make sure that it meets the deadline before starting to reconfigure. For the remainder, we
refer to these properties as ACI-T properties. If a reconfiguration is executed according
to ACI-T properties, we denote this as transactional execution.
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For guaranteeing ACI-T properties for a distributed execution of reconfigurations, we
provide an approach that adapts the 2-phase commit protocol for distributed database
systems [BHG87, ch. 7] to the domain of mechatronic systems. In accordance to the
2-phase-commit protocol, a structured component instance asks all children that are re-
quired to reconfigure whether they can execute the required reconfiguration. If all chil-
dren confirm and if the reconfiguration can be finished in time, the children are notified
to execute their reconfiguration. Additionally, we need to check whether the reconfigu-
ration can be finished in time, which is not part of the original 2-phase-commit protocol.

Figure 4.1 summarizes our process for specifying reconfigurations based on our vari-
ant of the 2-phase-commit protocol [HSST13]. This process specifies Step S4 of our
overview process in Figure 1.3 on Page 25 in more detail. In the first Step S4.1, the
developer specifies the reconfiguration rules using CSDs as introduced in Section 3.3.
Thereafter, the developer creates a declarative, table-based specification of hierarchical
reconfigurations in Step S4.2. This specification defines in which situation which CSD
is to be executed, but it relieves the developer from specifying how the reconfigura-
tion is carried out [HB13]. Then, we automatically generate an operational behavior
specification based on RTSCs from the declarative table-based specification in Step S4.3.
The operational behavior specification additionally specifies how reconfigurations are
executed based on the 2-phase-commit protocol. In Step S4.4, the developer specifies
architectural invariants based on component SDDs (cf. Section 3.5) that define the set of
valid configurations for instances of a component. In Step S4.5, we use the component
SDDs as well as the generated RTSCs that form the operational behavior specification
for verifying that the reconfiguration specification fulfills ACI-T properties.

Specify Architectural
Invariants
(Sect. 3.5)

Specify
Reconfiguration Rules

(Sect. 3.3)

Specify Declarative
Reconfiguration Model

(Sect. 4.3)

ACI-T
properties
fulfilled

ACI-T properties not fulfilled

S4.4S4.2S4.1

Verify Behavior for
ACI-T Properties

(Sect. 4.5) S4.5

reconfiguration
behavior

component
model

Generate Operational
Behavior Specification

(Sect. 4.4) S4.3

process step artefactconditional execution

Legend

Figure 4.1: Process for Specifying Reconfiguration Behavior (cf. [HSST13])

In the remainder of this section, we first introduce the MECHATRONICUML reconfigu-
ration controller with its constituent elements that contains our declarative, table-based
reconfiguration model (Section 4.1). Thereafter, we explain how reconfigurations are
executed with respect two the 2-phase-commit protocol (Section 4.2). Section 4.3 de-
fines how we specify these reconfigurations declaratively based on tables in our recon-
figuration controller. This specification is the basis for generating operational behavior
models as described in Section 4.4. Section 4.5 describes our approach for verifying
ACI-T properties for the reconfiguration specification for guaranteeing its safety. We
describe our implementation of the hierarchical reconfiguration approach in Section 4.6
and discuss the assumptions and limitations of our approach in Section 4.7. Section 4.8
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presents related work regarding transactional execution of reconfigurations before we
summarize the contributions of this chapter in Section 4.9.

4.1 MechatronicUML Reconfiguration Controller

In the MECHATRONICUML component model, a developer defines a set of CSDs that
specify the possible reconfigurations of a reconfigurable component. This does not en-
able to specify in which situation which reconfiguration is to be executed. In addition,
the MECHATRONICUML component model as introduced in Chapter 3 does not offer
means to execute a reconfiguration hierarchically according to ACI-T properties while
preserving component encapsulation.

As a solution, we syntactically extend each reconfigurable discrete or hybrid compo-
nent with a dedicated reconfiguration controller that is inspired by the reconfiguration
controller of the Fractal component model [BCL+06, BHR09]. Our reconfiguration con-
troller as shown in Figure 4.2 introduces two syntactic elements, namely a manager and
an executor, that encapsulate the necessary behavior for deciding when to execute which
reconfiguration and for executing a particular reconfiguration. Optionally, we may add a
risk manager to the reconfiguration controller that decides whether it is safe to execute
a particular reconfiguration [PHST12].

RailCabDriveControl

RM

reconfMsg

Manager ExecutorRM

RRM

parent

embeddedCI

executor

events RRE
embeddedCI

RE

reconfExec
RE

parent

component part compartment

reconfiguration controller compartment

component name compartment

RiskManager

riskManager

manager

Figure 4.2: Reconfiguration Controller of a Structured Component (cf. [HB13])

By using a dedicated reconfiguration controller, we retain separation of concerns be-
tween functional behavior and reconfiguration behavior as advised by McKinley et al.
[MSKC04]. We use the RM ports and RE ports as introduced in Section 3.1.1.2 in our
reconfiguration controller for providing the necessary interfaces for executing reconfig-
urations across different levels of hierarchy without violating component encapsulation.

In our approach, the executor is responsible for executing reconfigurations respecting hi-
erarchy and ACI-T properties based on the 2-phase-commit protocol. Thus, it is similar
to the script interpreter of Fractal [BHR09]. The manager decides which reconfigura-
tion is executed in which situation, which is not supported by the Fractal reconfiguration
controller. The RM ports and RE ports provide the bottom-up and top-down message
flow for initiating and executing reconfigurations.
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In a little more detail: A component uses its RM ports for sending information on sit-
uations that may require a reconfiguration to its parent. Consequently, RM ports are
used for bottom-up information provision and to provide the necessary message flow for
realizing Use Case 1. A component uses its RE port for offering reconfigurations to its
parent. The parent may trigger a reconfiguration on a child by sending a message to the
RE Port of that child. Thus, RE ports are primarily used for top-down reconfiguration
initiation and to provide the necessary message flow for realizing Use Case 2. As of
[BHR09], Fractal only supports Use Case 2.

For enabling message flow across different levels of hierarchy at runtime, we connect
the manager (and executor) to the parent and all embedded component instances using
the RM ports (or RE ports). Figure 4.3 illustrates these connections for an instance of
the RailCabDriveControl component for driving alone.

standaloneRC : RailCabDriveControl

RM

:reconfMsg

: Manager : ExecutorRM

RM

:parent

:embeddedCI

:executor

:events
:embeddedCI
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:reconfExec
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RMRM RE RERE

vc1 / ctrl : VelocityController

:refSpeed

:curSpeed :force
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B
:protocolInst

B
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:speed

RM RERM RE
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180 180

[isStandalone == true, isCoordinator == false]

:riskManager

:manager
: RiskManager

Figure 4.3: Component Instance RailCabDriveControl with Reconfiguration Controller

As shown in Figure 4.2, the manager specifies two RM ports named parent and embed-

dedCI. The RM port parent implements the RM port of the structured component and is
used for sending messages to the parent. The RM multi port embeddedCI connects the
manager to the RM port instances of the embedded component instances for receiving
their messages. At runtime, one subport instance of this port exists for each child of the
structured component instance as shown in Figure 4.3. Since dc:DriveControl has three
embedded component instances, the embeddedCI port of the manager contains three sub-
port instances. The executor is connected to the parent and the embedded component
instances in the same fashion.

Since the reconfiguration controller has the same structure for any structured compo-
nent and introduces additional visual complexity, we typically use the short-hand nota-
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tion shown in Figure 4.4 for visualizing reconfigurable structured and atomic compo-
nents [HPB12].

RailCabDriveControl

component part compartment

RM

reconfExec
RE

reconfMsg

(a) Reconfigurable Structured Component

reconfExec

reconfMsg

ConvoyManagement
coordinator speedProvider

strategy

profileProvider

RM

RE

(b) Reconfigurable Atomic Component

Figure 4.4: Short-hand Notation for Reconfigurable Components

Initial ideas regarding the introduction of a manager and executor including dedicated
ports for handling reconfiguration have been presented by Dreising [Dre11]. These ideas
have been refined and extended significantly in our publications [HPB12] and [HB13].

4.2 Executing Reconfigurations

Using our reconfiguration controller, we can execute reconfigurations with respect to
hierarchy considering our two use cases. As mentioned above, we provide a variant
of the 2-phase-commit protocol [BHG87, ch. 7]. The 2-phase-commit protocol starts
with a voting phase. In the voting phase, a structured component instance queries all
of its children, which are required to participate in the reconfiguration, whether they
actually can reconfigure. The children then evaluate in parallel whether they can execute
the requested reconfiguration or not. If so, they commit otherwise they abort. Only
if all queried children have committed to the reconfiguration, it can be executed in the
execution phase as explained below.

In MECHATRONICUML, we need to use such 2-phase-commit approach because we
may only start the reconfiguration, if we can ensure that the reconfiguration can be exe-
cuted completely in time. This is necessary because the reconfiguration controllers are
executed as part of the reflective operator of the OCM of the mechatronic system that
underlies hard real-time constraints. Therefore, we must not try to reconfigure opti-
mistically and roll-back to a preexisting configuration if the reconfiguration fails as, for
example, proposed for reliable reconfiguration of Fractal components in [LLC10]. This
is for two reasons: first, the system might come into an inconsistent state that causes it to
malfunction if a reconfiguration is only executed partially. Second, it is not guaranteed
that returning to the configuration before reconfiguration has started is even possible and
safe.

For executing a reconfiguration in the execution phase of our 2-phase-commit protocol,
we need to distinguish between purely discrete reconfigurations and reconfigurations
that involve continuous components. In the former case, all affected children need to be
quiescent as explained in Section 4.2.3 and, therefore, we may reconfigure the system
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bottom-up in a single pass as explained in Section 4.2.1. We refer to this as single-
phase execution. If the reconfiguration replaces continuous components, we need to
execute fading functions (cf. Section 3.1.2.3). These fading functions require that all
port instances of the destroyed and created continuous component instance are properly
connected. This requires to split the execution phase into three sub-phases. We refer
to this as three-phase execution as explained in Section 4.2.2. In general, single phase
execution is faster and requires less messages to be exchanged between the executor of a
structured component instance and the executors of the children. Therefore, single phase
execution should be preferred whenever possible.

4.2.1 Single-Phase Execution

Using single phase execution, the reconfiguration of a structured component instance
is performed in a single, bottom-up pass over the component hierarchy. That means,
we start at the children that are nested most deeply. The reconfiguration of a structured
component instance is then executed after the parallel execution of the reconfigurations
of all children. In the following, we describe the message flow and responsibilities in
our reconfiguration controller for realizing the two use cases mentioned above with our
2-phase-commit protocol and single-phase execution.

Figure 4.5 illustrates Use Case 1 (i.e., a reconfiguration triggered by a child component)
for an instance dc of RailCabDriveControl (cf. Figure 4.3). First, the OperationStrategy

component instance sends a message via its RM port to the Manager, requesting, for ex-
ample, a reconfiguration for adding new a convoy member. Then, the Manager decides
whether to execute the reconfiguration and, if so, triggers the executor. The executor
initiates the 2-phase-commit protocol and collects the votes of the children. In our ex-
ample, only the ConvoyCoordination instance is affected by the reconfiguration. If at least
one child sends an abort, the reconfiguration will be aborted. If a child commits, it pro-
vides a commit time. The commit time denotes how long the child can assure to execute
the reconfiguration. After that time, the child is no longer bound to its commit (cf. Sec-
tion 4.3.4). If all children have committed, the executor computes the minimum of all
commit times provided by the children. If the time needed for executing the reconfigu-
ration is less than the minimum commit time, then the executor queries all children to
execute their reconfiguration. After all children have finished, the executor performs the
reconfiguration of the structured component instance and reports the result to the man-
ager. Since the reconfiguration originated from a request of a child, the result is reported
to OperationStrategy.

Figure 4.6 illustrates Use Case 2 in the same fashion. Continuing our example, we con-
sider the ConvoyCoordination instance that is triggered by its parent for adding a new
member to the convoy (cf. Figure 4.5). The ConvoyCoordination receives the message via
its RE port. The message is propagated to the manager which decides upon the request.
The manager then reports the decision to the executor. If the manager has decided not
to execute the reconfiguration, the executor immediately sends an abort to the parent.
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Coordinator : RailCabDriveControl

RM : Manager : ExecutorRM
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Figure 4.5: Use Case 1: Reconfiguration after Child Request (cf. [HB13])

If the manager has decided to execute the reconfiguration, the executor initiates the 2-
phase-commit as in Use Case 1. After it has collected the votes of the children, it checks
whether the reconfiguration can be executed in time using the commit times of the chil-
dren. Then, it sends the resulting vote to the parent. After sending the vote, the executor
waits for the answer of the parent, but no longer then the minimum commit time. If the
parent decides to execute (or abort), the executor queries the execution (or abortion) of
the reconfiguration on the children. After all children have finished, the executor per-
forms the reconfiguration of the structured component and reports to its parent that the
reconfiguration has been finished.

cc : ConvoyCoordination

RM : Manager : ExecutorRM

RM

:parent
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:executor
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:embeddedCI

RE RE

:parent

:reconfExec

1. Receive Message
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11. Execute

8. Send Vote
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ConvoyManagement

RE

:reconfMsg
:reconfExec

Figure 4.6: Use Case 2: Reconfiguration as Part of 2-Phase-Commit (cf. [HB13])

The use cases for reconfiguration are designed such that they propagate recursively for
children. If a structured component reconfigures based on Use Case 1 and invokes a
child, that child reconfigures based on Use Case 2. If the child is a structured component
instance itself and needs to invoke reconfigurations of its children as well, Use Case 2
propagates recursively. For an atomic component, only Use Case 2 may occur.
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4.2.2 Three-Phase Execution

Single-phase execution of reconfigurations as described in the previous section cannot be
applied if the reconfiguration involves replacing continuous components. As an exam-
ple, consider the reconfiguration for becoming a convoy member shown in Figure 3.11.
The reconfiguration requires that the VelocityController switches from the StandaloneDrive

to the ConvoyDrive feedback controller (cf. Figure 3.7).

Figure 4.7 shows an intermediate CIC that would occur if we executed this reconfigu-
ration according to single-phase execution. As part of the execution phase, rc1 already
queried the execution on vc1. As a result, vc1 started executing the CSD shown in Fig-
ure 3.12. vc1 already created the ConvoyDrive instance and currently executes the fadeTo-

Convoy fading function in the fading component. At this point of time, both continuous
component instances are executed in parallel. However, the ConvoyDrive instance will
not properly work because the input ports refDist and curDist have no defined values. The
reason is that these port instances are delegated by vc1 and needed to be connected in rc1

before starting to execute the fading. In particular, we needed to create instances of the
SpeedSensor and the MemberControl in rc1 prior to executing the fading function.
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Figure 4.7: Problems when Replacing Continuous Component Instances using Single-
Phase Execution



Transactional Execution of Hierarchical Reconfigurations Page 103

As a solution to this problem, we split the execution phase of our 2-phase-commit pro-
tocol into three sub-phases as proposed by Volk [Vol13] if the reconfiguration replaces
continuous components. These sub-phases are setup, fading, and teardown. Each of
these sub-phases executes part of the reconfiguration. Figure 4.8 illustrates how these
sub-phases are executed in a structured component instance. A filled bar denotes that
the instance is currently executing reconfiguration behavior, while an unfilled bar de-
notes that the instance is idle. We explain this figure in more detail along with the
different phases in the following Sections 4.2.2.1 to 4.2.2.3. The voting phase of the
2-phase-commit is executed as for single-phase execution (cf. Section 4.2.1) and will
not be described here.

Instance Phase
Parent

:RailCabDriveControl

:VelocityController

Setup Fading Teardown

Figure 4.8: Illustration of Three-Phase Execution [Vol13]

4.2.2.1 Setup

The three-phase execution starts with the setup phase. The setup phase (hierarchically)
reconfigures a component instance such that all preconditions for executing the fading
functions are established. Therefore, it changes the software architecture of the mecha-
tronic system, but it does not change the exhibited behavior of the mechatronic system.
The setup phase is executed bottom-up as shown in Figure 4.8, i.e., a component first
triggers its children in parallel and executes its own setup behavior after all children are
finished.

In the setup phase, each component instance that is affected by the reconfiguration cre-
ates all discrete, continuous, and hybrid port instances as specified by the reconfigura-
tion rule. In addition, structured component instances create all embedded component
instances and all connector instances between continuous and hybrid port instances. Dis-
crete component instances and ports are kept in a suspended mode, i.e., their RTSCs are
not being executed and their clocks do not yet progress. All hybrid port instances that
have been created during setup already emit their default value though. All affected fad-
ing components still forward the unmodified value of the continuous component that is
to be replaced.

Figure 4.9 shows component instances of RailCabDriveControl and VelocityController after
performing the setup phase for the reconfiguration becomeMember shown in Figure 3.11.
The corresponding CSD is applied on the component instance of RailCabDriveControl for
driving alone shown in Figure 3.9.
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Figure 4.9: RailCabDriveControl after Executing the Setup Phase for the Reconfiguration
becomeMember

Since the setup phase is executed bottom-up, the execution starts at vc1. vc1 creates an
instance of ConvoyDrive including the port instances refDist and curDist. In addition, it
delegates all in-ports to the corresponding port instances of the new component instance
cd. Finally, it creates the port convoy at the fading component including the assembly
instance. As a result, vc1 contains all necessary component instances, port instances,
and connector instances for executing the fading function.

After vc1 finished, rc1 executes its setup phase. According to the CSD in Figure 3.11, rc1

creates instances of DistanceSensor and MemberControl. Since MemberControl is a discrete
component, the instance mc remains suspended and only emits the default reference dis-
tance via its hybrid refDist port instance. In addition, rc1 creates the port instances mem-

ber and refDistReceiver, but it does not yet create the corresponding delegation instances.
Finally, rc1 creates the assembly connector instances between the continuous and hybrid
port instances for connecting DistanceSensor and MemberControl to vc1.
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As it can be inferred from Figure 4.9, all in-ports of vc1 are properly connected. Thus,
the fading function can now be executed and provide a meaningful result. Up to now,
the behavior of rc1 and vc1 has not been changed because vc1 still emits the force value
of sd and because the discrete connector instances in rc1 have not yet been modified and
MemberControl is still suspended.

4.2.2.2 Fading

In the fading phase, the behavior of the mechatronic system changes, but its software ar-
chitecture does not change. In particular, we execute the fading functions of all affected
fading components. As shown in Figure 4.8, we execute all fading functions in parallel,
i.e., the fading components now emit the values of the fading functions that combine
their input values. Discrete components remain idle during this phase.

In our example in Figure 4.9, the fading component f executes the switchToConvoy fading
as specified by the CSD in Figure 3.12.

4.2.2.3 Teardown

The execution of the reconfiguration finishes with the teardown phase. In this phase,
both, the behavior and the software architecture of the mechatronic system change. The
teardown phase is executed top-down as shown in Figure 4.8, i.e., a component first
executes its own teardown behavior before it triggers its children in parallel.

In the teardown phase, we destroy all component instances, port instances, and con-
nector instances as specified by the reconfiguration rule. Furthermore, we activate all
discrete component instances and port instances that were created in the setup phase in-
cluding the connector instances between discrete port instances. The fading components
now forward the unmodified value of the continuous component instance that has been
created.

Continuing our example in Figure 4.9, we now destroy the StandaloneDrive instance in-
cluding all of its port instances and adjacent connector instances. In rc1, we destroy the
assembly between speedProvider of os and maxSpeed of dl. Additionally, os destroys its
speedProvider port instance. Furthermore, we create delegation connector instances that
delegate the port instances member and distReceiver of mc to the corresponding port in-
stances of rc1. Finally, we create the assembly connector instance between speedProvider

of mc and maxSpeed of dl. The result is, as expected, equivalent to the component in-
stance Member shown in Figure A.31.

4.2.3 Quiescence

Component instances and port instances may not be deleted at any point in time. In
particular, they may not be deleted if they currently perform a computation or if they are
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engaged in executing a communication protocol that is required for the safe operation
of the system. Quiescence [KM98, ZC06] defines whether it is safe to delete a compo-
nent instance or one of its port instances at a certain point of time. Then, executing a
reconfiguration safely demands that all affected component instances are quiescent.

As an example, consider a member RailCab that leaves a convoy. As a consequence,
the RailCab will destroy its instance of MemberControl and it will switch back to the
StandaloneDrive feedback controller (cf. Section 4.2.2). However, the RailCab may not
perform this reconfiguration if it is still driving closely behind another RailCab. If it
performs the reconfiguration, it will not be notified about braking maneuvers of the
convoy and, thus, a crash is likely to occur.

Therefore, we need a concept for defining quiescence of component instances in MECH-
ATRONICUML. In particular, we need to define quiescence of discrete atomic compo-
nent instances. For continuous atomic component instances, the fading functions define
how they may be safely replaced. A structured component instance is quiescent with
respect to a particular reconfiguration if all children that are affected by this reconfigu-
ration are quiescent.

The concept for quiescence of discrete atomic component instances needs to answer the
following three questions for being usable in our 2-phase-commit protocol.

1. Is the component instance quiescent?

2. If the component instance is quiescent, how long will it remain quiescent?

3. If the component instance is not quiescent, when will it be quiescent again?

These questions need to be answered by the discrete atomic component instance during
the voting phase of the 2-phase-commit protocol. Question 1 and 3 are important for
deriving the voting result. A discrete atomic component instance may only vote for
commit if it is presently quiescent or if it will become quiescent early enough. Question 2
is important for deriving the commit time that defines how long the component instance
will stick to its commit. However, the component instance will only vote for commit if
the commit time is above a threshold that is defined by the developer as we discuss in
Section 4.3.4.

An approach that may answer the three questions given above for a self-adaptive mecha-
tronic system has been developed as part of a Master’s thesis [Sch15]. We will sketch
its core ideas in the following. Our ideas are inspired by the approach of Zhang and
Cheng [ZC06]. Their approach considers a state-based functional behavior specification
of components based on petri nets (cf. [ZC06]) or UML Statecharts (cf. [RC08]), but
they do not consider real-time constraints or properties of the physical system in their
specification. For performing a reconfiguration, the system switches between source and
target functional behaviors by executing an adaptation behavior (cf. Section 2.1.2). In
our approach, the source and target functional behaviors correspond to the CICs before
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and after executing a reconfiguration, while the adaptation behavior is represented by
our 2-phase-commit protocol.

For guaranteeing quiescence, Zhang and Cheng define a set of global invariants using
temporal logic that need to be fulfilled during the adaptation process. Then, a state s of
the source functional behavior is quiescent if there exists a state t in the target functional
behavior such that the adaptation from s to t does not violate any global invariant [ZC06].
This is ensured at design time by model checking the functional behaviors and the adap-
tation behavior [ZGC09]. Then, all states s of the source functional behavior are marked
as quiescent with respect to a given adaptation.

In a self-adaptive mechatronic system, the state of a component instance is not only
determined by the active state of its RTSC but also by the current clock values of the
RTSC and, potentially, the physical state of the mechatronic system. The physical state
of a mechatronic system is given, for example, by its current spatial position, its speed, or
its acceleration. Consider a member RailCab that wants to leave a convoy as an example.
There, we need to consider the RailCab’s distance to the preceding RailCab and its
current speed for deciding whether the component instance is quiescent. Therefore, it is
not possible to simply mark states of an RTSC as quiescent as proposed by Zhang and
Cheng.

As an additional problem, considering the clock values and the physical state of the sys-
tem induces a so-called hybrid model checking problem [Hen96]. Such model checking
problems cannot be solved efficiently with current techniques [ERNF12] as we discuss
in more detail in Chapter 6. As a possible solution, we can use our approach of motion
profiles [FHK+13, FHK+14] for avoiding hybrid verification. A motion profiles gives
an assertion on the limits of a change of the physical parameters of the mechatronic
system in the future. Each motion profile is defined with respect to a particular control
strategy, with respect to the current driving maneuver, e.g., braking or accelerating, and
with respect to optimization criteria, e.g., braking strongly vs. braking smoothly. As
a result, each system is equipped with a multitude of motion profiles. However, even
in this case the state-space that needs to be explored is significantly larger compared to
Zhang et al. [ZGC09] because we need to consider clocks and all possible motion pro-
files of the RailCab based on each possible point in time of the maneuver that is defined
by the motion profile.

Therefore, our idea is to identify quiescent states at runtime as a part of the voting phase
of our 2-phase-commit protocol. This is more efficient than computing all possible sym-
bolic states at design time [GCZ08] because we only need to check a few symbolic
states. In particular, we only need to consider symbolic states that are reachable from
the current snapshot of the component instance in a short period of time. In addition,
we only need to consider the currently applied motion profile instead of considering
all n available motion profiles which reduces the state space by factor n. Figure 4.10
summarizes the idea of our approach.
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At design time, the developer needs to specify a set of conditions for quiescence. These
conditions refer to the different parts of the atomic component instance, e.g., an active
state of the RTSC, messages that are located in the message buffer of a port instance, or
values regarding the physical state of the system that are received via a hybrid port in-
stance. In our example, we might require that the distance of the member RailCab to the
RailCab directly driving in front of it must be larger than 50 m. Then, any symbolic state
of the RTSC that fulfills all of the imposed conditions at runtime is considered to be qui-
escent. Thus, the conditions correspond to the invariants used by Zhang et al. [ZGC09].
For supporting the developer, we provide him with a checklist for typical influence fac-
tors that need to be considered for quiescence. The checklist will be derived by analyzing
influence factors on quiescence in different self-adaptive mechatronic systems such as
RailCabs or self-coordinating cars [PHMG14].

Design Time
Runtime

Discrete Atomic Component

Checklist for
Influence Factors

Developer Set of Conditions for
Quiescence

refers to

Evaluation of Conditions
via Reachability Analysis

model@runtime

Vote

Commit Time

of

Figure 4.10: Approach for Identifying Quiescent States in MECHATRONICUML

At runtime, we use our model@runtime of the atomic component instance for evaluating
the conditions as a part of the voting phase of the 2-phase-commit protocol. If the atomic
component instance is requested to execute a reconfiguration by its parent, we start a
reachability analysis on the current snapshot of the model@runtime. Then, we calcu-
late the symbolic states that the atomic component instance may reach in a short time
frame starting from the current snapshot. The time frame that needs to be considered
is defined by the time for execution of our 2-phase-commit protocol and the threshold
for the commit time. For each of the symbolic states, we evaluate the conditions that
the developer has specified at design time. The result is a zone graph (cf. Section 2.2.1)
where each symbolic state is marked as quiescent or non-quiescent. Thereby, we only
need to consider the currently active motion profile and the current physical state of the
system. Based on the clock values of the symbolic states, we may utilize the paths of the
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zone graph for calculating whether the component instance is quiescent and how long it
will remain quiescent. From this information, we derive the voting result and the commit
time that are passed to the parent.

The reachability analysis may be carried out by a variant of the reachability analysis for
RTSCs introduced in Appendix C.3 that is optimized for being executed on embedded
computing devices. This rechability analysis needs to be implemented such that its run-
time is predictable. This is necessary for guaranteeing that the component instance will
obtain a voting result within a given time that the component asserts to its parent as we
describe in more detail in Section 4.3.4. Predictability may be achieved, e.g., by limiting
the number of symbolic states that are investigated for each trace of the zone graph as
proposed by bounded model checking techniques [BCC+03].

4.3 Declarative, Table-based Specification of the
Reconfiguration Controller

In our approach, we provide a declarative specification of the behavior of the reconfigu-
ration controller based on tables. These tables extend the component model introduced
in Chapter 3 by additional syntactical elements that are tailored the 2-phase-commit
protocol. More technically speaking, the tables relieve the developer from manually
specifying RTSCs for RM ports, RE port, manager, and executor.

In a little more detail, the developer needs to specify one table for each RM port and for
each RE port of a reconfigurable component. This table enhances the interface of the
port, i.e., which messages the port may send or receive, with timing constraints for the
messages that are relevant for executing the 2-phase-commit protocol. In addition, the
developer needs to specify one table for the manager and for the executor of each recon-
figurable structured component. The entries in these tables define conditions that express
when to execute which reconfiguration, but they do not specify how the conditions are
checked and how reconfigurations are executed according to the 2-phase-commit proto-
col.

The timing constraints that are contained in our declarative, table-based specification are
requirements for an execution of the reconfiguration behavior on a hardware platform.
For a self-adaptive mechatronic system, these requirements originate from three sources.
First, they originate from conditions that are imposed by the physical environment. As
an example, consider a convoy build-up at a switch. In this case, the reconfigurations
for becoming a coordinator or member, respectively, need to be finished before com-
ing too close to the switch. Second, timing requirements are defined by the functional
safety specification. In case of a hardware failure, a reconfiguration that implements a
self-healing operation needs to be finished within a particular time in order to prevent
a hazard. This particular time may be obtained by performing a timed hazard analy-
sis [PST13]. Third, timing requirements originate from the quiescence criteria. The
component instances that are affected by a reconfiguration need to remain quiescent
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throughout the reconfiguration (cf. Section 4.2.3). As a result, the reconfiguration needs
to be finished before the component instance needs to execute some non-quiescent be-
havior that is necessary for safely operating the system.

In the following, we provide details regarding our declarative, table-based specifications
of manager and executor as well as of the interfaces of RM ports and RE ports in Sec-
tions 4.3.1 to 4.3.3.

4.3.1 Interface Specification of RM Ports

An RM port is a special kind of discrete port (cf. Section 3.1.1.2) that is solely used
for communication between the managers of reconfigurable components. Its interface
is defined by a table with four columns. The first column defines the message types
that may be sent to the parent. The second column gives additional information on the
semantics of the message using a type. We distinguish two types of messages: info
messages and requests. An info message is only provided for information and does not
necessarily require a reconfiguration. A request is sent in situations where a reconfigu-
ration is necessary from the perspective of the sending component and where it cannot
solve the situation itself. In case of a request, the developer of a component may spec-
ify an expected response time in the third column. It defines the point in time where
the component needs the information whether a reconfiguration has been executed by
the parent. The fourth column optionally contains a human readable description of the
reported situation for a developer. Each interface entry corresponds to one row in the
table.

Message Type Description

drivingAtHighSpeed RailCab travels at high speed.

Type

info

Expected
Response Time

drivingAtNormalSpeed RailCab travels at normal speed.info
---
---

distanceSensorFailure Distance sensor is broken.request 200 ms

Figure 4.11: RM Port Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.11 shows an example of an RM port specification for the RM port of the Rail-

CabDriveControl component shown in Figure 4.3. It contains three entries. First, the
RailCabDriveControl informs its parent about its speed profile using the messages drivin-

gAtHighSpeed and drivingAtNormalSpeed of type info. This information may be used to
adapt the sensing of obstacles depending on the speed. If the speed is high, obstacles
need to be sensed in larger distances to brake early enough. In addition, RailCabDrive-

Control sends a request positionSensorFailure, which denotes that the distance sensor is
broken. This request triggers a self-healing operation (cf. [Pri13, PST13]) and needs to
be finished in 200 ms for guaranteeing the convoy safety.
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4.3.2 Manager Specification

The behavior of a manager is specified declaratively using a table with eight columns.
We refer to each row of the table as an entry of the manager specification. The entries of
the manager specification define how the manager needs to react if it receives a particular
message. In our approach, the manager only reacts to messages that it receives from the
children or from the executor. We did not yet include dedicated monitoring capabilities
for structured components in our approach. The manager specification needs to contain
exactly one entry for each message that the manager may receive from the children or
from the executor.

In the manager specification, the first column contains a message type that the manager
may receive either from a child or from the executor. The second and third column
define whether the manager treats the message or whether it propagates the message to
its parent. A message that is received from the executor always needs to be treated. We
allow, however, that the manager operates as a sink with respect to messages sent by a
child by neither treating nor propagating them. We do not allow to treat and propagate a
message at the same time because that may lead to conflicting reconfiguration decisions
on different levels of hierarchy in the component model. All messages that are specified
as propagated in the manager specification need to appear in the interface specification
of the RM port parent of the corresponding reconfigurable component.

If the specification defines that a message is treated, the developer must specify a recon-
figuration rule to be executed by the executor in the fourth column. Whether a recon-
figuration may be executed at runtime depends on three conditions that are specified in
columns five to seven: (1) whether it is allowed to execute the reconfiguration (column
Structural Condition), (2) whether it is safe to execute the reconfiguration (column Safety

Relevant), and (3) whether it is useful to execute the reconfiguration (column Invoke Plan-

ner). Only if all three conditions evaluate to true during runtime, the manager will trigger
the executor to execute the reconfiguration. We explain these conditions in more detail
in the following.

For each entry of the manager specification, the developer needs to define a structural
condition. The structural condition specifies a condition on the embedded component
instances that must be fulfilled for executing the reconfiguration. Currently, we only
support specifying structural conditions based on component SDDs (cf. Section 3.5). It
is only allowed to execute a reconfiguration if the structural condition is fulfilled. If the
execution of the reconfiguration shall not be restricted, true may be used as a structural
condition as for Entries 4, 6, 7, and 8.

A reconfiguration may affect the functional safety [IEC10, ISO11a] of the system. An
example for such reconfiguration is joining a convoy as a member. The functional safety
specification puts a limit on the risk that a dangerous situation may occur during run-
time. If a RailCab joins a convoy, the risk of a collision rises due to the small distances
between the RailCabs. If, in addition, one of the sensors necessary for a convoy drive
is broken, the risk of a collision may become too high to be acceptable. In such cases,
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we need to use a runtime risk manager in the reconfiguration controller as shown in
Figure 4.2. Then, the runtime risk manager decides whether it is safe to execute the
reconfiguration [PHST12, TSL13]. If it is not safe, the reconfiguration will be blocked
and not executed. If the reconfiguration does not affect the functional safety, we do not
need to invoke the runtime risk manager. Then, it is always safe to execute the reconfig-
uration. In addition, the runtime risk manager may only be invoked if the message of the
corresponding entry is treated. The runtime risk manager introduced in [PHST12] calcu-
lates in advance which reconfigurations need to be blocked based on the current system
configuration. Therefore, we do not need to account for its runtime in our specification.

Finally, we account for the usage of a planner in our manager specification. The planner
will be contained in the cognitive operator of the OCM and decides whether it is useful to
execute the reconfiguration based on the goals of the system [ZW14]. Although we have
not explicitly added a planner to our approach, yet, we enable the developer to specify
whether to invoke a planner or not. A planner may only be invoked if the message is
treated. If a planner is invoked, the developer needs to provide the maximum time that
the planner may run in the eighth column of the table. If no planner shall be invoked, it
is always considered to be useful to execute the reconfiguration if it is requested.

Message Type Treat

becomeCoordinator No

Propagate
to parent

Yes

newMember Yes No

Structural Condition

isStandalone()

Reconfiguration Rule

becomeCoordinator()

Invoke
Planner

Yes

No

Time For
Planning
20 ms

addConvoyMember() isCoordinator() ---

noConvoyMode NoYes

enableConvoyMode Yes No

truedisableConvoyMode() No

NoenableConvoyMode() convoyDisabled() ---

---

distanceSensorFailure No Yes No--- true ---

drivingAtHighSpeed No Yes No--- true ---

drivingAtNormalSpeed No Yes No--- true ---

1

2

4

5

6

7

8

becomeMember NoYes isStandalone()becomeMember() Yes 20 ms3

Safety
Relevant

Yes

No
Yes

No

No

No

No

No

Figure 4.12: Manager Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.12 shows the manager specification of the RailCabDriveControl component in
Figure 4.3. The messages in the Entries 1 to 3 are sent by the child OperationStrategy that
negotiates with other RailCabs whether to form a convoy. These messages are treated
and not propagated. Therefore, we specify a reconfiguration rule that is contained in the
executor specification (cf. Section 4.3.3) for each of them. Each of the reconfigurations
specifies a structural condition by means of a component SDD (cf. Section 3.5). A
RailCab may only become coordinator of a convoy, if it is not yet engaged in a convoy.
This is expressed by the component SDD isStandalone in Figure 3.20. The same condi-
tion needs to be fulfilled for becoming a member of a convoy. New members can only
be added if RailCab already is the coordinator of a convoy. This is formally specified
by the component SDD isCoordinator in Figure 3.19. The reconfigurations becomeCoor-

dinator and becomeMember are safety relevant and may be blocked by the runtime risk
manager because building a convoy affects the functional safety of the system. Adding a
new member to an existing convoy is not safety relevant for the coordinator. In addition,
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we foresee invoking a planner before building a convoy. For both reconfigurations, we
permit the planner to run for 20 ms.

The messages in Entries 4 and 5 are sent by the parent of RailCabDriveControl. If a
RailCab started transporting hazardous goods, it must no longer engage in convoys and,
thus, the OperationStrategy component instance will remove its broadcast port (Entry 4).
After delivering the hazardous good, the convoy mode may be enabled again (Entry 5).
Both reconfigurations are not safety relevant and do not require to invoke a planner.

Finally, the messages in Entries 6 to 8 are sent by the VelocityController. These mes-
sages are propagated to the parent and not treated. Consequently, we neither specify a
reconfiguration rule nor one of the three conditions for executing the reconfiguration.

4.3.3 Executor Specification

The behavior of an executor is specified declaratively using a table with three columns.
Again, we refer to each row of the table as an entry of the executor specification. The en-
tries of the executor specification define an integer ID for each reconfiguration rule in the
first column. The second column contains a reference to the reconfiguration rule. In our
approach, we use CSDs as introduced in Section 3.3 for specifying reconfiguration rules.
The third column defines the maximum worst-case execution time (WCET, [Kop97,
ch. 4.5]) for executing the reconfiguration rule on a platform. Please note that this is not
the actual WCET of the CSD on a particular platform but a requirement how large the
WCET may be as described at the beginning of Section 4.3.

ID Reconfiguration Rule
1 becomeCoordinator()

2 addConvoyMember()

4 disableConvoyMode()

5 enableConvoyMode()

3 becomeMember()

WCET
50 ms

10 ms

50 ms
5 ms

5 ms

Figure 4.13: Executor Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.13 shows the executor specification of the component RailCabDriveControl (cf.
Figure 4.3). RailCabDriveControl supports five reconfiguration rules. The first one creates
the necessary components, ports, and connectors for operating as a convoy coordinator.
It is formally specified by the CSD in Figure A.53. If the component already operates
as a coordinator, the second reconfiguration rule adds another member to the convoy. It
is shown in Figure A.57. The third reconfiguration rule creates the necessary compo-
nents, ports, and connectors for operating as a convoy member as specified by the CSD
in Figure 3.11. Finally, reconfiguration rules four and five enable to remove or create the
broadcast port of OperationStrategy including the broadcast port and delegation connec-
tor instance in RailCabDriveControl. The corresponding CSDs are given in Figures A.60
and A.62.
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4.3.4 Interface Specification of RE Ports

An RE port is a special kind of discrete port (cf. Section 3.1.1.2) that is solely used
for communication between the executors of reconfigurable components. Its interface
is defined by a table with five columns. The first column defines a message type that
it accepts from its parent. The second column contains a human readable description
of the effect of sending a corresponding message to the component. The remaining
columns contain time values that define timing requirements towards the execution of
the 2-phase-commit protocol.

The third column contains the time for decision. This time value provides an upper
bound for the time that the component needs for deriving a decision whether it may ex-
ecute a reconfiguration or not. This may include the time that is necessary for moving
into a quiescent state (cf. Section 4.2.3). The fourth column contains a timing spec-
ification that defines an upper bound on how long the component needs for executing
the reconfiguration that is associated with this message in the manager specification (cf.
Section 4.3.2). If the reconfiguration may be executed according to single-phase execu-
tion, the time for execution is a single value. If the reconfiguration needs to be executed
according to three-phase execution, then the timing specification contains separate time
values for setup, fading, and teardown. We need to provide distinct time values for each
phase for correctly computing how much time a hierarchical reconfiguration needs for
being executed after deploying the component as explained below. Finally, the fifth col-
umn provides the minimum commit time that defines a lower bound on how long the
component may stick to its decision of executing the reconfiguration (cf. Section 4.2).

Message Type Description Time for
Decision

noConvoyMode The RailCab will not engage in
convoys anymore.

25 ms

Time for
Execution
20 ms

enableConvoyMode The RailCab will try to join convoys
if possible and useful.

25 ms 50 ms

Minimum
Commit Time

200 ms

200 ms

Figure 4.14: RE Port Specification of the RailCabDriveControl Component (cf. [HB13])

Figure 4.14 shows the interface specification of the RE port reconfExec of the RailCab-

DriveControl component in Figure 4.3. The component offers two reconfigurations to its
parent that correspond to the two entries in the table. The first one uses the message type
noConvoyMode. Sending this message to the RE port of RailCabDriveControl causes the
RailCab not to drive in convoys any longer. This reconfiguration will be triggered by
the RailCab if it transports hazardous goods. The second one uses the message type en-

ableConvoyMode and causes RailCabDriveControl to enable the convoy mode again. Since
both reconfigurations involve discrete components only, the entries in the fourth column
of the RE port interface specification only provide a single time value for the time for
execution.
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4.4 Generating Operational Behavior Specifications

The declarative, table-based specification of the reconfiguration controller introduced
in the previous section cannot be verified or implemented directly. In order to verify
or implement the reconfiguration behavior, we need a formal and operational behav-
ior specification. Therefore, we automatically generate a RTSC for both, manager and
executor, because RTSCs are formal and operational.

Using RTSCs for specifying the operational behavior of manager and executor enables
to reuse the existing tool chain for MECHATRONICUML. That includes model checking
support (cf. Section 4.5), WCET analyses [Bur06, BGST05], export to simulation envi-
ronments as MATLAB/Simulink (cf. Section 6) or Modelica [PSR+12, PHMG14], and
code generation [BGS05, AAB+11, Gei13].

In this section, we provide generation templates for the RTSCs of manager and execu-
tor [HB13]. The generation templates define the 2-phase-commit protocol implemen-
tation as outlined in Section 4.2 and contain placeholders for the entries of the tables
of our declarative, table-based reconfiguration specification introduced in Section 4.3.
The placeholders are automatically filled by the information given in each row of the
tables. By using the generation templates and an automatic generation process, we re-
lieve the developer from specifying a large and complicated behavior specification for
the 2-phase-commit protocol by himself. In summary, this means saving 18 states and
30 transitions for the manager RTSC given in Section 4.4.1 plus 2 states and 8 tran-
sitions for each entry of the manager specification. For the executor RTSC given in
Section 4.4.2, we save another of 71 states and 102 transitions of manual work plus 1
state and 4 transitions for each entry in the RE port specification, 2 states and 5 transi-
tions for each reconfiguration rule assuming single-phase execution, and 6 states and 7
transition for each reconfiguration assuming three-phase execution.

4.4.1 Manager Specification

Figure 4.15 shows the generation template for the manager RTSC. The RTSC template
is complex and provides many variation points that depend on the manager specifica-
tion. By using our generation template, however, we hide the complexity of the RTSC
from the developer who can reuse the template for all of his reconfigurable structured
components.

In the RTSC, all black states and transitions form the general frame of the RTSC. They
are always present and will only be generated once for every manager RTSC. The col-
ored parts are variable and are generated based on the entries of the manager specifica-
tion. The green parts are generated of each entry of the manager specification. They are
used to handle an incoming message. If the message is a request, we additionally gener-
ate the purple parts for the corresponding entry. The brown parts are generated for each
message that is treated. They specify the behavior for checking whether to execute the
reconfiguration. If the message is propagated to the parent, we generate the blue parts.
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Manager

Manager_Main

2

3

ch: reply[boolean], parentReply[boolean], executed[boolean], executeReconf, syncX;
parent

internal behavior

embeddedCI 4

1executor

variable: boolean request;

variable: int reconfiguration, int[] blockedReconfigurations;

variable: boolean request, boolean result;
operation: boolean invokePlanner(int reconfiguration), boolean isBlocked(int reconfiguration),

boolean checkStructuralConditionX();

variable: boolean executor_request;

Idle
entry/ {request := false;} AwaitReplysyncX? / x()

{request := true;}

success parentReply[true]! /
failed parentReply[false]! /

Propagated
U [request] /

[not request] /

occupied parentReply[false]! /

Idle
entry/

{executor_request = false;}

ExecuteReconf

executeReconf? / executeReconf(reconfiguration)

Request

x syncX! / {executor_request := true;}

executeReconf? /
confirmRequest(reconfiguration)WaitForConfirm reply[false]? /

declineRequest()
failed /

Finished success
executed[true]! /

failed executed[false]! /
[executor_request] reply[false]? /

U

[not executor_request] /

[executor_request] reply[true]? /

Idle
entry/ {request := false;}

syncX? /
{result := not isBlocked(R.id) && checkStructuralConditionX();

reconfiguration := R.id; request := true;}

[request] reply[true]! /

CheckX

[result == true] / {result := invokePlanner(reconfiguration);}

U

Fail [request] reply[false]! /
U

Success
U

[result == false] /

[not request] /

Plan
U

[not request] /

[result == false] /
Execute

executed[false]? /

executed[true]? /[result == true] executeReconf! /
[timeForPlanning; timeForPlanning]

EmbeddedCI_Main

subport 1

Idle
entry/ {request := false;

propagate := false;}

AwaitReply

x /
{request := true; reset: c_req;

propagate := true;}

reply[true]? / success()
reply[false]? / failed()

ReceivedMsgX
c_req ≤ β

[not request] /
variable: boolean request, boolean propagate;

clock: c_req;

DeliverMsg

[request && not propagate] /

UsyncX! /

[c_req ≥ β] / occupied()

AwaitParentReply
parentReply[true]? / success()

parentReply[false]? / failed()
[request && propagate] /

adaptation 2

β = x.expectedResponseTime – y.executionTime

Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is propagated to the parent
Generated for each reconfiguration message X that is treated.
Generated additionally for each reconfiguration message X that is request from child.
Generated for each reconfiguration message X that is received from child or executor.
Generated additionally for each reconfiguration message X that invokes planning.
Generated additionally for each reconfiguration Y that may be blocked.

5riskManager

Idle
updateRiskData /
{blockedReconfigurations := updateRiskData.reconfIDs;}

Figure 4.15: Generation Template for the Manager RTSC (cf. [HB13])
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The yellow and pink parts provide the functionality for invoking a planner and checking
whether a reconfiguration is blocked if this is specified by the corresponding manager
specification entry.

The resulting manager RTSC consists of one state Manager_Main with four or five re-
gions. The region parent implements the RM port parent of the manager that is used
for communicating with the parent. The region executor implements the executor port
for communicating with the executor. The region riskManager contains the communi-
cation with the runtime risk manager and is only present if a runtime risk manager is
actually used in the reconfiguration controller. The region internal behavior specifies the
behavior of deciding whether to execute which reconfiguration. The region embeddedCI

implements the behavior of the multi port embeddedCI that is used for communicating
with the children. The RTSC follows the standard structure of a multi port RTSC (cf.
Section 2.4.2), although we only need the subport RTSC for communicating with the
children in this case.

The information flow through the manager RTSC depends on the use cases. In Use
Case 1, messages reach the manager via the embeddedCI port and are processed by the
subport. If the message is treated, the subport triggers the internal behavior which checks
whether to execute a reconfiguration. Then, the internal behavior triggers the executor

region to send a message to the executor. The executor region waits for an answer from
the executor and reports the result to the internal behavior which, in turn, propagates the
result to the subport.

If the message is propagated to the parent, the subport triggers the parent directly. In case
of a request, the region parent waits for the answer of the parent and reports this answer
back to the subport.

In Use Case 2, the executor sends a message to the manager which is processed by the
executor region. Then, the executor RTSC triggers the internal behavior and the execution
proceeds as for Use Case 1.

If several requests reach the manager at the same time, for example, from different chil-
dren, we need to serialize these messages to ensure isolation of the reconfiguration op-
erations. This is achieved by the internal behavior that ensures that only one message is
treated at a time.

In the following, we provide a detailed, technical description of the generation template
and explain how Use Cases 1 and 2 are encoded in the template. An example of a gener-
ated manager RTSC is given in Appendix A.6.3.1 for the component RailCabDriveControl.

Use Case 1 starts with a message from a child. Therefore, we start explaining the sub-

port region. For each message x that may be sent by a child, we generate one state Re-

ceivedMsgX and a transition from Idle to that state. This transition receives the message x.
If the message is a request, we reset a clock c_req at this transition and add an invariant
c_req ≤ β to ReceivedMsgX. The invariant ensures that the RTSC will return to Idle if the



Page 118 Chapter 4

reconfiguration can no longer be executed. This is the case if the time needed for exe-
cuting the reconfiguration exceeds the expected response time. In this case, the subport

sends an occupied message to the child indicating that the reconfiguration is currently
not possible.

The state ReceivedMsgX may also be left via the transition to DeliverMsg. That transition
initiates a synchronization via the synchronization channel syncX. The synchronization
channel syncX is generated for each message x that is either propagated or treated by the
manager. The transition synchronizes either with the internal behavior if the message is
treated or with the parent if the message is propagated.

If the message is propagated, the subport synchronizes with the parent. Then, the parent

switches from Idle to Propagated and sends the message x to the parent. If the message is a
request, the parent switches to AwaitReply while the subport switches to AwaitParentReply.
When the parent answers, either by success or failure or occupied. Then, the parent uses
the synchronization channel parentReply to report the result back to the subport which, in
turn, sends the result back to the child.

If the message received by the subport is treated, the synchronization via syncX causes
the internal behavior to switch to CheckX. As its transition action, the transition checks the
structural condition of the message x by calling the operation checkStructuralConditionX.
This operation implements the structural condition that is specified in the manager spec-
ification (cf. Section 4.3.2). If the reconfiguration is safety relevant, then the operation
isBlocked checks whether the reconfiguration with the given id is currently blocked by
the runtime risk manager. Therefore, it uses the variable blockedReconfigurations that is
set by the riskManager any time the runtime risk manager provides new data via upda-

teRiskData. If the structural condition is not fulfilled or the reconfiguration is currently
blocked, then the internal behavior immediately switches to Fail. Then it reports the result
via the synchronization channel reply to the subport if the message is a request. If it is not
a request, both RTSCs return to their Idle states without synchronization. If the structural
condition is fulfilled and the reconfiguration is not blocked, the internal behavior switches
to Plan and optionally invokes a planner. If the reconfiguration should be executed, the
internal behavior synchronizes with the executor region using the synchronization chan-
nel executeReconf. Then, the internal behavior waits in state Execute for the result of the
execution.

The synchronization via executeReconf causes the executor region to switch from Idle

to ExecuteReconf. The corresponding transition sends a message executeReconf to the
executor. The reconfiguration to be executed is referred by its ID from the executor
specification and encoded by an integer parameter of the message. Then, the executor
performs the 2-phase commit protocol and reports the result, either success or failed, to
the manager. The executor region reports the result to the internal behavior using the
synchronization channel executed. Then, the executor region takes the lower transition
from Finished back to Idle. If the message has been a request, the internal behavior
reports the result to the instance of the subport that initiated the reconfiguration via the
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synchronization channel reply. The instance of the subport waits for that synchronization
in the state AwaitReply and sends the result, either success or failed, back to the child. This
finishes Use Case 1.

In Use Case 2, the executor sends a message x to the manager. This message is pro-
cessed by the executor RTSC at the transition from Idle to Request. Such transition is
generated for each message offered by the RE port of the structured component. This
transition, however, may only fire if a synchronization via the synchronization channel
syncX with the internal behavior is possible. That, in turn, is only possible if currently
no other reconfiguration is executed. Thus, we use the synchronization channel syncX

for serializing the messages inside the manager. If the synchronization is possible, the
execution proceeds as for Use Case 1. If the executor region reaches state Finished, how-
ever, it takes one of the upper two transitions back to Idle. These transitions synchronize
with the transitions from Success to Idle and Fail to Idle in the internal behavior. These
transitions enable to treat Use Cases 1 and 2 identical within the internal behavior. This
finishes Use Case 2.

4.4.2 Executor Specification

Figures 4.16 and 4.17 show the generation template for the executor RTSC. The template
includes the behavior for both, single-phase execution and three-phase execution. The
template implements the 2-phase-commit protocol including many variation points that
depend on the executor and RE port specification.

In the RTSC, all black states and transitions form the general frame of the RTSC. As
for the manager generation template, they are always present and will only be generated
once for every executor RTSC. The colored parts are variable and depend on the executor
and RE port specification. We generate the blue parts for each message that is offered by
the RE port of the component. The purple parts are generated for each reconfiguration
rule that the executor may execute. Finally, the brown parts are generated for every
reconfiguration rule that is offered by a child in its RE port.

For realizing Use Case 1, the information flows as follows through the executor RTSC:
The executor is initially triggered by the manager and receives the request in the events

region. The events region triggers the internal behavior that initializes the 2-phase-
commit protocol. The implementation of the 2-phase-commit protocol is mainly located
in the adaptation region of embeddedCI. The adaptation computes the children that are
affected by the reconfiguration. Then it performs the voting by triggering the corre-
sponding subport instances that are connected to the affected children. Then, the recon-
figuration is executed. In case of single-phase execution, the adaptation region triggers
the subport instances again. After the execution of the child reconfigurations is finished,
the adaptation reports the result to the internal behavior. Then, the internal behavior executes
the reconfiguration for the structured component. In case of three-phase execution, the
adaptation and the internal behavior execute the three phases of the reconfiguration. The
adaptation triggers the subport instances that are connected to the affected children while
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Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is offered via RE port
Generated for each reconfiguration message Z that is offered by an embedded child

Generated for each reconfiguration rule Y that is executed by the executor
Generated additionally for each reconfiguration Y1/Z1 that is executed using single-phase execution
Generated additionally for each reconfiguration Y2/Z2 that is executed using three-phase execution

Figure 4.16: Generation Template for the Executor RTSC (Pt. 1)
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Figure 4.17: Generation Template for the Executor RTSC (Pt. 2)
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the internal behavior executes the local reconfiguration operations. After the reconfigura-
tion has been completely executed, the internal behavior notifies the events region that the
reconfiguration is completed. Then, the events region notifies the manager. This finishes
Use Case 1 for the executor.

In Use Case 2, the parent region receives a message from the parent. This message is
forwarded to the events region which, in turn, forwards the message to the manager.
Then, the manager answers with the decision and, if the request is confirmed, with the
reconfiguration to be executed. Then, the 2-phase-commit protocol is executed as in Use
Case 1 except for one difference. After finishing the voting phase, the adaptation triggers
the parent region for sending the voting result back to the parent. Then, the parent region
waits for the answer of the parent and triggers the adaptation region after the answer has
been received. In case of three-phase execution, this is repeated for each of the three
phases. Finally, the parent region informs the parent that the reconfiguration has been
completed. This finishes Use Case 2.

In the following, we provide a detailed, technical description of the generation template
and explain how the Use Cases 1 and 2 are encoded in the template. An example of a
generated executor RTSC is given in Appendix A.6.3.2 for the component RailCabDrive-

Control.

In Use Case 1, the events region receives a message executeReconf from the manager.
This message is processed by the transition from Idle to AwaitVoting. The message con-
tains the ID of the reconfiguration rule to be executed as a parameter. In addition, the
transition from Idle to AwaitVoting synchronizes with the internal behavior via startExe-

cution. The corresponding transitions from Idle to Start set the variable singlePhase to
true if the reconfiguration needs to be executed with single-phase execution or false if
the reconfiguration needs to be executed with three-phase execution. Then, the internal
behavior starts the 2-phase-commit protocol using the transition from Start to Wait by
synchronizing with the adaptation RTSC in embeddedCI via init2PC. The reconfiguration
to be executed is encoded in the selector expression.

The RTSC of the multi-port embeddedCI encodes the main logic for executing the 2-
phase-commit protocol and controlling its different stages. We use the adaptation RTSC
for synchronizing the communication with the children that are affected by the reconfig-
uration. The actual communication with the children is contained in the subport RTSC.

If the adaptation RTSC is triggered via init2PC, it enters the PrepareY state. We gener-
ate such state for each reconfiguration Y that can be executed by the executor. In this
state, we compute which children are affected by the reconfiguration using the func-
tion computeAffectedChildrenY(). The result is saved in a temporary data structure of type
AffectedComponents that contains the information which reconfiguration needs to be ex-
ecuted on which child. By using this data structure, we achieve that the remainder of
the adaptation RTSC is independent of the actual reconfiguration that is executed. We
present the definition of AffectedComponents in Appendix A.6.4.1 and an example for
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computeAffectedChildrenY() in Appendix A.6.4.2. All functions that are recursively con-
tained in embeddedCI are formally specified using story diagrams that we present in
Appendix A.6.4.3.

After PrepareY, the adaptation switches to the Vote state. In the Vote state, the votes of
all affected children for executing their reconfiguration are requested and collected. In
TriggerSubPort, all subport instances communicating with an affected child are triggered
by the self-transition using the synchronization channel sendRequest.

The subport RTSC contains one transition from Idle to WaitForResponse for each mes-
sage z that is offered by a child. The message z to be sent to the particular child is stored
in the variable tmpMsg of embeddedCI. The adaptation RTSC stores this message in the
variable tmpMsg during its entry action in state TriggerSubPort. Upon synchronization
via sendRequest, the subport RTSC uses this variable in its guard for sending the corre-
sponding message z to the child. If the child does not answer in time or answers abort,
the subport switches to VotedAbort. If the child answers commit, the subport switches to
VotedCommit and stores the commit time in an internal variable.

The adaptation switches from TriggerSubPort to GetReplies after all subports have been
triggered. In GetReplies, the adaptation synchronizes with the subport, again, to receive
their voting results. We use the synchronization replyReceived for that purpose and trans-
fer the voting results using the variables tmpCommit and tmpCommitTime. After collecting
all votes, the adaptation switches to CheckResult and calls the function canCommit() upon
entry. The function determines whether all children voted for executing the reconfigura-
tion and whether the minimum commit time sent by the children is greater than the time
needed for executing the reconfiguration. If so, it is possible to execute the reconfigura-
tion.

After the voting phase has been finished, the adaptation reports the voting result via vot-

ingComplete to the events region. The RTSC either switches to DoAbort or DoExecute, re-
spectively, and triggers either the execution via performReconf or the abortion via doAbort.
Then, it waits in state Busy until the execution of the 2-phase-commit protocol has been
finished.

The further behavior of the adaptation depends on the voting result and whether the re-
configuration is executed with single-phase or three-phase execution. If the reconfigura-
tion is aborted, adaptation enters the Abort state and triggers all affected subport instances,
again, for sending the message to the corresponding children. The subport sends abort at
the transition from ReplyReceived to Idle.

If the reconfiguration is executed with single-phase execution, the adaptation enters the
Execute_SinglePhase state. In this case, the adaptation triggers all affected subport in-
stances for sending execute to the corresponding children at the transition from ReplyRe-

ceived to Execute. If the child executed, it answers with finished after successfully exe-
cuting the reconfiguration. Then, the subport reports to the adaptation that the child has
finished executing the reconfiguration using the synchronization finished. The adaptation
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waits for these synchronizations in substate Wait of Execute. After all child replies have
been received, the adaptation synchronizes with the internal behavior via the synchroniza-
tion channel finished2PC to report that all child reconfigurations have been completed.

Execute_ThreePhase

Wait
entry / {finished :=

allEmbeddedFinished(ac)}

[finished = true] /
{finished := false}

var: boolean finished := false;
op: void resetActionPerformed(AffectedComponents ac);

[finished = false]
reconfFinished? /

{setFinished(ac, subPort);}

SendSetup
entry / {curPort :=

getNextPortInstanceForAction(ac);
finished := allActionsPerformed(ac);}

U

[finished = false]
sendSetup[curPort]! /

ExecuteLocalSetup
[finished = true]

localSetup! /

FinishedSetup

localFinish? /

U
WaitFadingfinishPhase! /

{finished := false;
resetActionPerformed(ac);}

Wait
entry / {finished :=

allEmbeddedFinished(ac)}

[finished = true] /
{finished := false}

[finished = false]
reconfFinished? /

{setFinished(ac, subPort);}

SendSetup
entry / {curPort :=

getNextPortInstanceForAction(ac);
finished := allActionsPerformed(ac);}

U

[finished = false]
sendFading[curPort]! /

FinishedFading
[finished = true]
localFinish? /U

performFading? / ExecuteLocalFading
U localFading! /

WaitTeardown

finishPhase! /
{finished := false;
resetActionPerformed(ac);}

Wait
entry / {finished :=

allEmbeddedFinished(ac)}

[finished = true] /
{finished := false}

[finished = false]
reconfFinished? /

{setFinished(ac, subPort);}

SendTeardown
entry / {curPort :=

getNextPortInstanceForAction(ac);
finished := allActionsPerformed(ac);}

U

[finished = false]
sendTeardown[curPort]! /

[finished = true] .
finished2PC! /

ExecuteLocalTeardown localTeardown! /performTeardown? /
WaitLocal localFinish? /U

Figure 4.18: Internal Structure of the Execute_ThreePhase State

If the reconfiguration is executed with three-phase execution, the adaptation enters the
Execute_ThreePhase state. The internal structure of this state is shown in Figure 4.18.
The execution starts in Execute_Setup for executing the setup phase. First, the adaptation

triggers all affected subport instances for sending setup to the corresponding children
at the transition from ReplyReceived to ExecuteSetup. If the child executed, it answers
with finished after successfully executing the setup phase. Again, the adapatation waits
in substate Wait of Execute_Setup for the replies of the subport instances. After all chil-
dren have performed their setup, the adaptation synchronizes with the internal behavior

via localSetup. This causes the internal behavior to enter the LocalExecuteY2 state and to
execute the local setup. After it is finished, it synchronizes via localFinished and the adap-

tation finishes the setup phase. It reports that the phase has been finished to the events

region via finishedPhase and waits for the next phase to start. The remaining phases are
executed in the same fashion. There are only two notable differences. In the fading
phase, the adaptation first triggers the local fading. Without waiting for the finish of the
local fading, it triggers the subport instances such that all fading functions are executed
in parallel. In the teardown phase, the adaptation also triggers the local teardown first,
but waits for the local teardown to finish. After the local teardown is finished, it triggers
the subport instances for the last time. After all children have performed their teardown,
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the adaptation synchronizes via finished2PC with the internal behavior to report that the
reconfiguration has been executed successfully.

In case of three-phase execution, the synchronization via finished2PC causes the internal

behavior to switch from Finished to Execute. Since singlePhase is false in this case, it
immediately proceeds to Report. In case of single-phase execution, the synchronization
via finished2PC causes the internal behavior to switch from Wait to Execute. If twoPCRe-

sult, which stores the decision on whether to execute or not, is false, the internal behavior

switches back to Idle. If twoPCResult is true, then the internal behavior switches to Report

and calls the own reconfiguration rule in the transition action. The transition back to Idle

synchronizes with the events region to indicate that the execution has been finished.

The synchronization finish causes the events RTSC to switch from Busy to Finished. This
transition also sends a message success or failed to the manager in case that the recon-
figuration has been executed or aborted, respectively. Finally, the RTSC fires the upper
transition from Finished to Idle which finishes Use Case 1.

In Use Case 2, messages reach the executor via the parent port and are processed by the
corresponding RTSC in region parent. For each message x that the component offers via
its RE port, we generate one state CheckX including transitions from Idle to CheckX and
from CheckX to CheckSelf and SendAbort. The transition from Idle to CheckX receives the
message x. In CheckX, the parent tries to synchronize via checkX with the RTSC in the
events region. The state CheckX contains an invariant c2 ≤ γ. γ is the time for decision
specified in the RE port minus the time actually needed for deriving a decision in the
manager. If γ is exceeded, it is no longer possible to check whether the reconfiguration
can be executed within the time for decision and the RTSC switches to SendAbort. This
case will usually happen if the executor is already executing a reconfiguration when the
message x arrives. In this case, a synchronization with the events region via checkX is
not possible.

If the synchronization via checkX is possible, the parent triggers the events region and
switches to CheckSelf. The RTSC in the events region switches from Idle to Check and
forwards message x to the manager. We generate such transition from Idle to Check for
each message x in the RE port specification. In Check, the events region waits for the
decision of the manager. If the manager sends declineRequest, the events region reports
the result via the synchronization channel execute and the parent switches to SendAbort.
If the manager sends confirmRequest, then the reconfiguration may be executed. The
events region reports that result via execute to the parent which switches to AwaitVoting

and triggers the internal behavior. Then, the voting phase is performed as in Use Case 1.

In contrast to Use Case 1, the voting result is returned to the parent that sends the voting
result to the parent component. If the component needs to abort, the parent switches
via Aborted to FinalizeAbort. In FinalizeAbort, it synchronizes via finished with the events

region and both RTSCs return to their Idle states. If the component has committed the
reconfiguration, the parent waits in WaitForParent for the decision of the parent compo-
nent. If the parent component aborts the reconfiguration, the parent FinalizeAbort. The
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transition from WaitForParent to FinalizeAbort synchronizes with the adaptation RTSC of
embeddedCI via doAbort to abort the child reconfigurations. Afterwards, it synchronizes
with the events region via finished as described above. If the parent decided to execute
the reconfiguration, the parent region switches from WaitForParent to either Execution or
to ExecuteSetup depending on whether the reconfiguration is executed with single-phase
or three-phase execution. The corresponding transitions synchronize via performReconf

with the adaptation RTSC of embeddedCI. Then, the child reconfigurations are triggered
as in Use Case 1. In three-phase execution, the adaptation synchronizes with parent via
finishPhase after completely executing one of the phases. The parent then reports that
the phase has been finished to the parent. After all child reconfigurations and the own
reconfiguration have been performed, the internal behavior synchronizes with the events

region that informs the manager about the result of the execution. Finally, events takes
the lower transition from Finished to Idle and synchronizes with parent via finished. That
synchronization causes the transition from Execution to Idle to fire. This transition sends
finished to the parent component which finishes Use Case 2.

In the executor it may happen that two requests arrive at the same time: one from the
parent component, the other one from the manager. These interleavings are handled in
the events region using the states AbortParentReq, WaitForAnswer, and AnswerReceived as
well as the variable abortedReqWaiting. If the events region is in state Check as part of
Use Case 2, it may happen that the manager sends executeReconf instead of confirmRe-

quest. In this case, the manager already treated a child request according to Use Case 1
when the executor forwarded the parent request. Then, the events region first treats the
reconfiguration that was requested by the manager according to Use Case 1. Therefore,
it switches from Check to AbortParentReq. This transition aborts the parent request by
synchronizing via execute with the parent. As a result, the parent switches to SendAbort

and finishes the request. However, the request by the parent still resides in the message
queue of the manager. Therefore, after finishing the reconfiguration, the events region
does not return to Idle, but it switches to WaitForAnswer. In this state, it waits for the
confirmRequest or declineRequest message from the manager. If one of these messages
is received, the events RTSC switches to AnswerReceived and immediately replies failed

to the manager. In WaitForAnswer, it may also happen that another executeReconf mes-
sage arrives. Then, the manager has treated another child request before the request of
the executor. Then, the events RTSC switches back to AbortParentReq and the procedure
repeats as described before.

4.5 Verifying the Reconfiguration Specification

We need to verify that the specified reconfiguration behavior of a structured component
fulfills all of the ACI-T properties of the 2-phase-commit protocol. These properties
guarantee that the reconfiguration behavior of the structure component is correct and,
thus, safe. In our approach, formal verification is enabled by the operational behavior
specifications for manager and executor in terms of RTSCs.
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For verifying the ACI-T properties of the 2-phase-commit protocol, we need to verify
the following yet informal properties:

1. If the executor decides to execute (abort), then all affected children execute (abort)
(Atomicity).

2. The reconfiguration rules cannot produce an inconsistent CIC (Consistency).

3. The executor will execute no other reconfiguration than the one requested by the
manager (Consistency).

4. At any time, at most one reconfiguration is executed (Isolation).

5. The RTSCs of manager and executor are free from deadlocks (Timing).

6. Each reconfiguration is executable (Timing).

Properties 1, 3, and 4 can already be guaranteed by the correctness of the generation
templates given in Section 4.4. Therefore, they do not need to be verified again for
a particular structured component. The correctness of the generation templates with
respect to these three properties has been verified using UPPAAL [HB13, Vol13].

Property 2 specifies that reconfigurations may not produce an inconsistent CIC. A CIC
may either be syntactically inconsistent or semantically inconsistent. A CIC is syn-
tactically inconsistent if it violates the conditions for syntactical correctness that we
introduced in Section 3.2. In our approach, the CSDs guarantee that CICs remain syn-
tactically consistent after a reconfiguration due to syntactic restrictions. Thus, no further
check is necessary. A CIC is semantically inconsistent if the instantiated component
instances, port instances, and connector instances do not constitute a desired functional
behavior. In the worst case, the component may even be unsafe. As an example, con-
sider a RailCab that drives as part of a convoy as a member but which does not have an
instance of MemberControl (cf. Figure 4.7) although it switched the controller. Such situ-
ations cannot be prevented by syntactic rules but need to be verified for each structured
component as we describe in Section 4.5.1.

Finally, Properties 5 and 6 specify the conditions for a correct timing specification. In
a platform-independent model, we may verify whether the timing requirements pro-
vided in our declarative, table-based specification are satisfiable. If they are satisfi-
able, there may exist a hardware platform that enables to execute the reconfiguration
behavior without violating the timing requirements. After deriving a platform-specific
model that includes a platform model and a deployment of components to hardware
nodes [PMDB14], we may already check at design-time whether the execution of the re-
configurations on the hardware platform fulfills the imposed requirements. We describe
the verification of the timing specification in detail in Section 4.5.2.

In combination, both verification steps and the verified generation templates enable to
verify the reconfiguration behavior of our components completely with respect to the
ACI-T properties. The only part of the reconfiguration behavior that cannot be formally
verified using model checking is given by the implementations of the fading functions.
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Their correctness needs to be determined using our approach for MIL simulation intro-
duced in Chapter 6.

4.5.1 Consistency

We ensure consistency by verifying that the reconfiguration behavior cannot produce
a semantically inconsistent CIC. However, it is not possible to automatically derive
from the component model which CICs are semantically inconsistent and which are not.
Therefore, a developer needs to provide this information explicitly. In the following, we
introduce three possibilities for specifying semantically inconsistent CICs. These are
forbidden CICs (Section 4.5.1.1), architectural invariants (Section 4.5.1.2) and proper-
ties in temporal logic (Section 4.5.1.3). For each of these, we describe an approach for
formal verification.

4.5.1.1 Forbidden CICs

A forbidden CIC is a particular CIC or part of a CIC that may never occur for a given
component. As an example, consider the CIC in Figure 4.19 that defines an excerpt of
an instance inconsistent of the component RailCabDriveControl. It specifies the situation
where both, MemberControl and ConvoyCoordination, are instantiated. In our example,
we only allow RailCabs either to be the coordinator or a member but not both at the
same time. Therefore, we consider this CIC as semantically inconsistent and, thus, as
forbidden.

inconsistent : RailCabDriveControl

cc / convoy :
ConvoyCoordination

/curPos

ps / pos : PositionSensor

/position
mc / member :

MemberControl

Figure 4.19: Example of a Forbidden CIC

We have two alternatives for verifying that a forbidden CIC may not occur. First, we may
perform a reachability analysis [HSE10] using our framework described in Appendix C.
In this approach, we compute all possible configurations of a component starting from
the initial configurations. Then, we may check whether the forbidden CIC occurs in any
of these configurations. Second, we can use the inductive invariant approach by Becker
et al. [BBG+06]. This approach provides a proof that a forbidden CIC cannot have
been produced out of a semantically consistent CIC by applying a backward application
of typed attributed graph transformation rules. Backward application means that they
match the RHS and enforce the LHS of the typed attributed graph transformation rule.
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This approach has been extended towards supporting story diagrams with few branches
in the control flow by Meyer [Mey09]. The benefit of this approach is that it may even
be applied if the number of configurations of a component instance is unbounded.

Applying the inductive invariant approach requires to translate the CSDs to normal story
diagrams. This translation has been defined by Tichy [Tic09, p. 77ff]. The basic idea is
using the metamodel of our component model (cf. Appendix D.1) as a type graph for
the story diagrams.

4.5.1.2 Architectural Invariants

Our component model enables to specify architectural invariants based on component
SDDs as described in Section 3.5. Any CIC that violates an architectural invariant is
considered as semantically inconsistent. An example is given by the component SDD
in Figure 3.21 that ensures a correct ordering of the subport instances of the multi port
instance refDistProvider of a coordinator RailCab. This constraint ensures that updates
of reference speed and distance are distributed in the correct order among the mem-
bers. Component SDDs are more expressive than forbidden CICs because they enable
specifying conditional constraints and support quantification based on first-order logic.

Component SDDs may be verified by a reachability analysis on the CSDs. First, the
CSDs need to be translated to normal story diagrams as defined by Tichy [Tic09, p. 77ff].
Then, the component SDDs first need to be translated to normal SDDs [KG07] by ap-
plying the transformation by Tichy to the component story patterns that are contained
in the pattern nodes. Thereafter, the resulting normal SDDs are translated to story dia-
grams by applying the concept of Ahmadian et al. [AAB+11, p. 38ff]. Then, the SDD is
fulfilled if and only if the resulting story diagram can be executed successfully on each
configuration of the component. We can check this condition by performing a reacha-
bility analysis on the resulting set of story diagrams using the initial configuration of our
structured component. In the reachability analysis, we check whether there exists a con-
figuration to which the story diagram resulting from the SDD cannot be matched. We
may utilize the reachability analysis introduced in [HSJZ10, HSE10] for this purpose.

4.5.1.3 Properties in Temporal Logic

Temporal logic constraints based on CTL and LTL (cf. Section 2.2.2) enable to spec-
ify constraints on the evolution of a CIC. In our example, we want to specify that a
RailCab may not directly switch from being coordinator to being member. Such prop-
erties may be expressed by graph-based variants of CTL and LTL such as quantified
CTL (QCTL, [Ren06]), graph-based LTL (GLTL, [Ren08]), or first-order TCTL (FO-
TCTL, [Suc11, SHS11]).

Verifying such properties requires a graph-based model checking, for example, based
on GROOVE [KR06, Ren08] or CheckVML [SV03]. Applying GROOVE on CSDs re-
quires to translate the component model and CSDs into a typed attributed GTS. Then,
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the component model defines the type graph and the initial configuration of the struc-
tured component defines the initial graph. The CSDs need to be translated in two steps.
First, they need to be translated to story diagrams as defined by Tichy[Tic09, p. 77ff].
Second, the story diagrams need to be translated to typed attributed graph transformation
rules as defined by Reineke [Rei07].

4.5.2 Timing

We ensure a correct timing specification by applying timed model checking on the
platform-independent component model as described in Section 4.5.2.1. If the model
checking encounters a deadlock or a reconfiguration rule that cannot be executed, the
timing requirements in our declarative, table-based specification are not satisfiable. Af-
ter deriving a platform model including a deployment of component instances to hard-
ware nodes [PMDB14], we need to check whether the timing requirements are satisfied
by the platform model as described in Section 4.5.2.2.

4.5.2.1 Ensuring Correct Timing by Timed Model Checking

We apply timed model checking on the RTSCs of manager and executor for guaranteeing
that they are free from deadlocks and that they enable to execute each reconfiguration
rule. In order to achieve an efficient and scalable verification approach, we verify the
timing requirements separately for each structured component. This is enabled by using
stubs for the parent component as well as the children. These stubs abstract from the
internal behavior of the parent and the children. They only implement the relevant be-
havior based on the interfaces of the RM and RE ports that is necessary for checking a
correct vertical integration of the component with respect to timing.

For applying timed model checking, we need to translate the RTSCs of manager and
executor into an NTA as illustrated in Figure 4.20. In particular, we obtain one timed
automaton for each region of the manager RTSC and of the executor RTSC. In addition,
we need one automaton that defines the behavior of the connector between manager and
exeuctor. Finally, we add two parent stubs for the parent component and two child stubs
for each embedded component part. The number of child stubs is equal to the number
of timed automata that are generated for the subport RTSCs of the embeddedCI ports
of manager and executor (cf. Section 4.4). The arrows illustrate the information flow
between the timed automata that results from the synchronizations used in the RTSCs
and the messages being sent.

Figure 4.21 shows an executor child stub that was generated based on the RE port spec-
ification of ConvoyCoordination for verifying the correct timing of RailCabDriveControl.

The behavior of the executor child stub is as follows. It waits in Idle for being trig-
gered by RailCabDriveControl for executing a reconfiguration. In this case, only AddCon-

voyMemberAtPos may be triggered by RailCabDriveControl. This corresponds to the chan-
nel childAddConvoyMemberAtPos and the executor child stub switches to ReceivedAddCon-



Transactional Execution of Hierarchical Reconfigurations Page 131

Coordinator : RailCabDriveControl

RM
: Manager

RM

parent

embeddedCI

executor events

connector...

...

internalBehavior

manager
parent stub

manager
child stubs

: Executor RE RE

parent

embeddedCI...

...
executor
child stubs

internalBehavior

executor
parent stub

Figure 4.20: Sketch of the Generated NTA

Idle c_child <= timeForDecisioni: int[0,1]
ReceivedAddConvoyMemberAtPos Committed

ExecuteSendMessage
c_child <= timeForExecution

childAddConvoyMemberAtPos[id]?

msgChildCommit[id]!

msgChildAbort[id]!

msgChildAbort[id]?
msgChildExecute[id]?

msgChildFinished[id]?

doCommit == true &&
c_child >= timeForDecision

doCommit == false &&
c_child >= timeForDecision

c_child >= timeForExecution
c_child = 0

c_child = 0, doCommit = i,
timeForDecision = 5,

timeForExecution = 20,
minCommitTime = 500 tmpChildCommitTime =

minCommitTime,
c_child = 0

childMsgAvailable[id] = truechildMsgAvailable[id] = false

c_child <= minCommitTime

Figure 4.21: Child Stub Representing ConvoyCoordination for the Verification of RailCab-

DriveControl

voyMemberAtPos. As part of the transition, the executor child stub nondeterministically
chooses whether it will commit or abort the request. The result is stored in doCommit.
In addition, we assign the time values for the timeForDecision, the timeForExecution, and
the minCommitTime that are contained in the RE port interface specification to the epony-
mous variables. The child stub now waits in ReceivedAddConvoyMemberAtPos until the
timeForDecision has expired. Then, it either synchronizes via msgChildAbort and returns to
Idle or it synchronizes via msgChildCommit and switches to Committed. In Committed, the
invariant ensures that the executor child stub will only rest in the Committed state until
the minCommitTime expires. As a result, a deadlock occurs if RailCabDriveControl does not
sent a decision whether to execute or abort the reconfiguration in time. Based on the de-
cision by RailCabDriveControl, the executor child stub either switches to Idle (abort) or to
Execute (execute). In Execute, the executor child stub rests as long as the timeForExecution

has not expired. Then, it switches to SendMessage to check whether RailCabDriveControl

may accept the result message, which is then send at the transition from SendMessage to
Idle.

Examples for specifying parent stubs and manager child stubs may be found on the
website [Hei13] that accompanies our paper [HB13]. The resulting NTA may then be
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verified using UPPAAL [BDL+06b]. In particular, we need to check that the NTA con-
tains to deadlock and that the state Report of the internal behavior region of the executor
RTSC (cf. Figure 4.16) may be reached for each reconfiguration rule that is specified in
the executor specification.

4.5.2.2 Ensuring Correct Timing after Deployment

After creating a platform model including a deployment, we need to check whether the
deployment satisfies the timing requirements. As a basis, we need to compute WCETs
for the behavior of manager and executor as well as for the execution of the CSDs on
the given platform. Since the behavior of manager and executor is defined by RTSCs,
we may use the WCET analysis defined by Burmester [Bur06, BGST05] for this pur-
pose. In addition, we need to apply the WCET analysis for CSDs presented by Tichy et
al. [TGS06, THHO08] for checking whether the hardware platform satisfies the WCET
requirements for the CSDs given in the executor specification. Thereafter, we need to
check that the vertical integration of the components with respect to timing is still cor-
rect.

Expected Response Time First, we need to check whether the timing of child
requests that are propagated to the parent by the manager is correct. In this case, the
interface specifications of the RM ports of the structured component and of the child
that sends the request need to be consistent. For being consistent, the expected response
time tresp of the structured component must be smaller than the expected response time
tsubresp of the child such that the response arrives at the child within time as defined by the
formula:

tresp ≤ tsubresp − 2 ·msub − eoverhead

where msub is the message delay for a message sent to the child and eoverhead denotes
the WCET for executing the internal behavior of the manager.

Time For Voting Second, we need to check whether the time for decision that is
contained in the interface specification of the RE port is still satisfied. In particular, if
the reconfiguration that is associated with the interface entry of the RE port involves
reconfigurations of one or more children, the time for decision needs to be large enough
to include the execution of the voting phase by the children.

Based on the execution of the voting phase illustrated in Figure 4.6, four time values
contribute to the time for decision dd. First, we need to consider the maximum time for
decision dsubd among the children that are affected by the reconfiguration if all children
are executed in parallel. Otherwise, we first need to sum up the times for decision of all
children that are executed sequentially on the same hardware node before calculating the
maximum. Here, we additionally need to consider the message delay msub for sending
the request to the child and the message delay for the voting decision being sent back.
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Second, we need to consider the time for planning tplan (cf. Section 4.3.2) that is spec-
ified in the manager specification. Third, we need to add two times the message delay
m for a message that is exchanged between manager and executor. Finally, we need to
consider eoverhead, which is the WCET for executing the internal behavior of manager
and executor that includes, for example, checking the structural condition in the manager
and initializing the 2-phase-commit protocol in the executor. Then, the time for decision
of the structured component must be greater or equal to

dd ≥ max
i

{dsubd,i + 2·msub
i }+ tplan + 2·m+ eoverhead

where dsubd,i refers to the time for decision of the ith child that is affected by this reconfig-
uration and msub

i is the message delay for a message sent to that child. We assume that
a message sent from parent to child takes as long as a message in the opposite direction.
The computation of dd is the same for single-phase and three-phase execution.

Time For Execution Third, we need to check whether the time for execution that
is contained in the interface specification of the RE port is still satisfied. In particular,
if the reconfiguration that is associated with the interface entry of the RE port involves
reconfigurations of one or more children, the time for execution needs to be large enough
to include the child reconfigurations.

The time for execution de denotes the maximum time that the component needs to ex-
ecute the reconfiguration in the execution phase of the 2-phase-commit protocol. For
single phase execution, three time values contribute to the time for execution. First, we
need to consider the maximum time for execution dsube among the children that are af-
fected by the reconfiguration. This includes, again, two times the message delay msub

for sending a message to a child. Second, we need to consider the WCET of the recon-
figuration rule executed by the component itself. Finally, we need to consider the WCET
eoverhead for managing the 2-phase-commit protocol in the executor. Then, the time for
execution de of the structured component must be greater or equal to

de ≥ max
i

{dsube,i + 2·msub
i }+ dreconf + eoverhead

where dsube,i refers to the time for execution of the ith child that is affected by this recon-
figuration and msub

i is the message delay for a message sent to that child.

If we execute reconfigurations based on three phase execution, we need to apply the
above formula separately for each execution phase. We cannot provide a single value
for three-phase execution because a phase can only be finished after all children have
finished their executions. As a result, the duration of a phase for a single child may be
extended by a waiting period where it waits for another child to finish its execution as
illustrated in Figure 4.8. Thus, we need to compute the maximum duration separately
for each phase.
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Minimum Commit Time Finally, the minimum commit time dct denotes the mini-
mum time that the component sticks to a commit. A structured component instance may
only stick to the commit at most as long as the children do. Thus, we need to consider the
minimum among the minimum commit times dsubct of all affected children. In addition,
we need to subtract two times the message delay msub because the commit time starts
after the child sent the commit and the query to execute needs to reach the child before
the commit time expires. Thus, the minimum commit time dct of a structured component
must be less or equal to

dct ≤ min
i
{dsubct,i − 2·msub

i }

where dsubct,i refers to the minimum commit time of the ith child that is affected by this
reconfiguration and msub

i is the message delay for a message sent to that child.

4.6 Implementation

We implemented the concepts introduced in this chapter as part of the MECHATRON-
ICUML Tool Suite. In particular, we integrated the implementation into the plugins
reconfiguration and reconfiguration.ui shown in Figure 3.22 on page 88.

We extended the metamodel in plugin reconfiguration such that it includes our reconfigu-
ration controller including the declarative, table-based specification. A class diagram of
this metamodel is presented in Appendix D.2.1.

The plugin reconfiguration.ui extends the component editor such that it enables to specify
reconfigurable components including their reconfiguration controllers. In addition, it
contains the generator that enables to generate RTSCs for manager and executor based
on the generation templates given in Section 4.4. The generator has been implemented
in QVT Operational [Gro11b]. In addition, we support to convert a non-reconfigurable
component into a reconfigurable component.

4.7 Assumptions and Limitations

Our approach for the transactional execution of reconfiguration underlies the following
assumptions and limitations:

• Any reconfiguration that has been started can be finished successfully. In particular,
we assume that no hardware failures occur while executing a reconfiguration.

• All monitoring is performed by atomic components that accumulate the monitoring
data and provide accumulated data to the manager of the parent component.

• The reconfiguration controller and the generation templates for deriving an opera-
tional behavior specification for manager and executor have only been defined for
structured components because of the missing concept of quiescence for atomic
components in MECHATRONICUML (cf. Section 4.2.3).



Transactional Execution of Hierarchical Reconfigurations Page 135

• We may only trigger at most one reconfiguration on each child of a structured
component instance when executing a CSD for the structured component instance.

In addition, our implementation underlies the following limitations:

• The generation templates do not support input and output parameters of CSDs as
they are used, e.g., by the CSD in Figure 3.14 on Page 76.

• The concept for verifying consistency introduced in Section 4.5.1 has not yet been
implemented.

4.8 Related Work

Section 3.7 reviewed component models and architecture description languages that sup-
port reconfiguration of the software architecture at runtime. Only few of them consider
reconfiguration of hierarchical components supporting a transactional execution of re-
configurations. We review their reconfiguration capabilites in Section 4.8.1. Thereafter,
we discuss related approaches for achieving quiescence in a system in Section 4.8.2.

4.8.1 Approaches Supporting Reconfiguration of Hierarchical
Components

Our approach is inspired by the reconfiguration concepts of Fractal [BCL+06, LLC10]
which has been extended to distributed execution in [BHR09]. Their concept extends
each reconfigurable component with a reconfiguration interface and a reconfiguration
executor for executing reconfiguration scripts. We have adopted the concept of a re-
configuration executor and extended the remote reconfiguration invocation. In contrast
to our approach, Fractal starts reconfigurations optimistically and performs a roll-back
in case that the reconfiguration is not possible. As described in Section 4.2, this is not
safe in mechatronic systems. Their approach achieves ACI properties as well, but does
not consider timing of reconfigurations. In addition, we support a higher level modeling
language for modeling reconfigurations rather than implementing them as a script. The
approach by Boyer et al. [BGP13] also follows a roll-back approach for achieving reli-
able reconfiguration, but their approach neither treats hierarchy nor achieves any of the
ACI-T properties. The SOFA 2.0 component uses component controllers similar to Frac-
tal and to our approach, called micro-components, but does not provide a transactional
execution of reconfigurations [HB07].

The architecture description language GeReL [EW92] supports a separation of concerns
between functional and reconfiguration behavior. It uses a first-order logic to determine
whether a reconfiguration can be executed or not. This ensures consistency of the modi-
fied system, while their execution model guarantees atomicity of reconfigurations. Their
approach, however, does explicitly support hierarchical components. In addition, they
do not consider real-time properties.
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Pop et al. [PPO+12] introduce a mode change operation of embedded real-time systems
based on the SOFA-HI [PWT+08] component model. In their approach, each mode of
a component instance corresponds to a configuration. They also separate functional and
reconfiguration behavior and enable mode changes across different levels of hierarchy.
Consistent modes of a component and its children are specified by property networks.
In contrast to our approach, they cannot ensure atomicity if a child is currently not able
to reconfigure and they do not provide a formal verification support for checking for a
correct timing of reconfigurations.

The approach by Hang et al. [HCH12, HQCH13] implements a composable mode change
operator based on the ProCom component model [VSC+09]. As in [PPO+12], modes
correspond to component configurations. Similar to our approach, they use dedicated
reconfiguration components that are hierarchically connected. Reconfiguration requests
may traverse the hierarchy bottom-up or top-down. In [HH13], they adopted our ap-
proach for executing reconfigurations in two phases and use our verification approach
introduced in Section 4.5.2. In contrast to our approach, they do not provide explicit
real-time properties regarding the execution of reconfigurations in their specification.

The framework by de Oliveira et al. [DOLS13] uses several autonomic managers for
adapting cloud applications in a coordinated fashion. Their autonomic managers have a
similar purpose as our reconfiguration controller but are horizontally composed. They
share information using event-based coordination protocols for improving adaptation
decisions but do not consider transactional execution or real-time properties.

The Rainbow framework [GCH+04, CGS09] provides an implementation of the refer-
ence architecture MAPE-K [IBM06] that targets business information systems. Their
concept defines an adaptation manager and an adaptation executor that closely corre-
spond to the manager and executor in our approach. However, their approach does not
respect component encapsulation for a hierarchical component architecture. In addition,
their approach does neither support real-time properties nor guarantee ACI-T properties.

Similarly, Zhang et al. [ZCYM05] provide an approach for safe adaptation of compo-
nent-based systems. Their approach uses one central adaptation manager that orches-
trates the adaptation process, and several agents that are attached to the components
and perform their modification. If an adaptation cannot be finished successfully, they
perform a roll-back to the previous configuration. Thus, their approach guarantees ACI
properties for the execution of reconfigurations but no real-time properties. In addition,
their approach does not explicitly consider hierarchical components.

The approach by Edwards et al. [EGT+09] uses meta-level components for implement-
ing a self-adaptation control loop similar to MAPE-K [IBM06] based on a hierarchical
component model. The meta-level components fulfill a similar purpose as our recon-
figuration controller by monitoring the components on the hierarchy level below, by
evaluating whether and how to adapt, and by executing the resulting adaptation plan.
Similarly, Vromant et al. [VWMA11] connect several MAPE control loops that are lo-
cated on the same hierarchy level following a master-slave pattern. Then, the control
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loops communicate for deriving a consistent adaptation strategy. Both approaches do
not explicitly connect meta-level component or MAPE control loops, respectively, on
different hierarchy levels such that hierarchical execution are not supported and ACI-T
properties cannot be guaranteed.

EUREMA [VG14] supports the specification of self-adaptation feedback loops based on
MAPE-K [IBM06] using a graphical notation called feedback loop diagrams. The ap-
proach supports to use and to coordinate multiple feedback loops in a single system. In
addition, feedback loops on different architectural levels may be connected and coordi-
nated by using layer diagrams. Weyns et al. [WSG+13] discuss different design patterns
for connecting multiple MAPE feedback loops in a system. With respect to their pattern,
our approach is based on the hierarchical control pattern. In contrast to our approach,
the approaches do not support real-time constraints and do not explicitly consider ACI-T
properties. However, EUREMA satisfies isolation of adaptations.

Finally, the fault-tolerant component model by de Lemos et al. [dLdCGFR06] parti-
tions component behavior into normal and abnormal (exception) behavior. We follow
the same idea by separating normal behavior and reconfiguration behavior. Their ap-
proach provides horizontal propagation of exceptions, but not propagation to parent
components. With a similar objective, Strunk and Knight [SK06] provide a depend-
able reconfiguration approach for hard real-time systems where a system moves from
one configuration to another one with degraded functionality in case of a failure. The
approach, however, neither considers components nor hierarchy, but it ensures by formal
proofs that any reconfiguration can be executed successfully.

4.8.2 Quiescence of Components

In the approach by Kramer and Magee [KM98], the conditions for quiescence require
all affected component instances and all component instances that are connected to them
to be passive. In essence, this means that the component instances are shut down and
no longer executed. After the reconfiguration has been finished, they are started, again.
Given an NMS such as a convoy of RailCabs, this is not a viable approach. In the
worst case, it requires that all the RailCabs in a convoy need to shutdown if one RailCab
needs to perform a reconfiguration. This, in turn, requires the RailCab to stop for each
reconfiguration, which is not desirable. The concept of tranquility [VEBD07] relaxes
the conditions on quiescence by Kramer and Magee [KM98]. The major drawback of
their approach is that tranquility is not predictable, i.e., it cannot be decided whether a
component instance will become tranquil in a given amount of time.

The approaches by Chen et al. [CHS01], Ghafari et al. [GJSH12], and Panzica La Manna
[PLM12] support the evolution of a software architecture of a business information sys-
tem where component instances are upgraded to a new version implements the same be-
havior. The new component instance either fixes bugs of the old component instance or
provides quality of service that suites better to the current requirements. The approaches
by Chen et al. and Ghafari et al. work similar to our fading functions. The component
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instance to be removed and the new component instance are executed in parallel. Then,
new transactions are handled by the new component instance while the old component
instance remains active until it has processed all pending transactions. The approach by
Panzica La Manna tries to transfer the complete state of the old component instance to
the new one such that the new component instance may continue processing all trans-
actions that have been started using the old component instance. If this is not possible,
the approach applies a version consistent update as defined by Ma et al. [MBG+11] that
applies a similar strategy as the approaches by Chen et al. and Ghafari et al. In essence,
all of these approaches try to preserve the functional behavior of the system during and
after the update with the exception of corrected bugs and improved quality of service
characteristics. In contrast, our approach explicitly aims at modifying the functional
behavior, e.g, if a RailCab joins a convoy. Therefore, we require to add or to entirely
remove component instances from the software architecture, which is not supported by
these approaches. In addition, they do not consider the real-time constraints and the
physical movement of the system, e.g., its current speed or its distance to other vehicles.

4.9 Summary

This section introduces an approach for executing reconfigurations in a hierarchical com-
ponent model for self-adaptive mechatronic systems. On the syntactic level, we extend
each structured component by a dedicated reconfiguration controller that contains the
reconfiguration behavior. The reconfiguration controller contains a manager, an execu-
tor, and an optional runtime risk manager. The manager defines whether and how the
component shall reconfigure. The executor is responsible for executing reconfigurations
with respect to hierarchy. The runtime risk manager defines which reconfigurations may
be executed such that the functional safety of the system is retained. On the semantic
level, our reconfiguration controller implements a variant of the 2-phase-commit proto-
col [BHG87, ch. 7] that has been adapted to the domain of mechatronic systems. As a
result, our approach satisfies ACI-T properties for the execution of reconfigurations, i.e.,
atomicity, consistency, isolation, and a correct timing, even for reconfigurations span-
ning vertical compositions of components. Furthermore, our approach respects encapsu-
lation of components. For the execution of the reconfiguration, our approach supports a
single-phase execution for reconfiguring discrete component instance and a three-phase
execution for safely replacing continuous components that contains feedback controllers.

Our approach relieves the component developer from specifying the complex implemen-
tation of the 2-phase-commit protocol by hand for each component. Instead, we provide
a concise declarative specification of the behavior of manager and executor based on ta-
bles. These tables specify the conditions when to execute which reconfiguration. Then,
these tables are used as an input of a generator that automatically derives an implemen-
tation of the 2-phase-commit protocol based on RTSCs. The generated RTSCs fulfill
atomicity and isolation by construction. In addition, the generated RTSCs and the CSDs
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that define the modification of the CIC serve as inputs for our verification procedure that
verifies consistency and a correct timing of the reconfiguration behavior.
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5 Verifying Refinements based on Test Automata
Self-adaptive mechatronic systems are often intended to operate as part of an NMS. As
an example, RailCabs are intended to operate in convoys. Then, the correct function-
ality of the self-adaptive mechatronic system and, in particular, its safety do not only
depend on its own correctness but also on the correct interaction with other AMS in-
side the NMS. The interaction, in turn, is typically defined by complex application-level
communication protocols. These communication protocols define which messages are
needed to be exchanged and in which order and time intervals for realizing the intended
functionality. Equally, defining the behavior of a single AMS requires to connect the
different components of its software architecture using application-level communication
protocol as well. As an example, consider the component instances of a RailCab given
in Section 3.2 and Appendix A.4.

Due to the safety critical nature of self-adaptive mechatronic systems, we need to for-
mally verify their behavior based on model checking [CGP00, BK08] for guaranteeing
their correctness. On the one hand, this requires to verify the reconfiguration behavior
of the components as discussed in Section 4.5. On the other hand, this requires to verify
the functional behavior specification of each discrete atomic component that is used in
the software architecture. However, the correctness of a single component does not only
depend on its own behavior specification but also on the behavior specifications of the
components that it needs to interact with. The resulting software architecture as given
by a CIC consists of several interconnected component instances. Such CIC, however,
cannot be verified using standard model checking tools like UPPAAL [BDL+06b] due
to the state-explosion problem [CGP00].

Compositional verification approaches [BCC98] based on the assume/guarantee princi-
ple [CGP00, ch. 12] tackle the state explosion problem by decomposing the system into
smaller units for verification. Previous works defined such compositional verification
approach for MECHATRONICUML as well [GTB+03, Gie03, GS13]. The basic idea
of MECHATRONICUML’s compositional verification approach is a syntactic decompo-
sition of the functional behavior into RTCPs and components. It requires that RTCPs
are specified independent of components. Then, each discrete port of a discrete atomic
component refines one role of a RTCP, which results in one RTSC for each discrete port.
These port RTSCs are then composed to a component RTSC as illustrated in Figure 3.3.
This allows to verify the functional behavior of large components or even of complete
an NMS in three steps as illustrated in Figure 5.1.

In the following, we illustrate the three steps of MECHATRONICUML’s compositional
verification approach based on the RailCab system using the RTCP EnterSection. In
the RailCab system, RailCabs travel on a track system that is subdivided into different
types of sections including switches and railroad crossings. Before entering a section, a
RailCab needs to query the section whether it is allowed to enter it using EnterSection.
This is necessary for realizing collision avoidance because sensors in a RailCab may not
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Figure 5.1: Overview of the Refinement Approach [HBDS15]

detect other RailCabs if they are hidden behind a bend or some other obstacle. Therefore,
RailCabs communicate with a section for getting permission to enter it.

In the first step of the compositional verification approach, the developer needs to verify
all RTCPs that he used in the system for safety and liveness properties. The verification
may either be carried out using model checking based on UPPAAL as described by
Gerking [Ger13] or using a graph-based verification technique [EHH+13, SHS11]. In
our RailCab example, this step includes verification of the RTCP EnterSection beside
others. For the remainder of this chapter, we refer to the behavior implemented by the
roles of the RTCP as the abstract protocol.

In the second step, we verify whether the ports of a component correctly refine the
roles of the RTCP. This is necessary because the ports usually need to extend the role
behavior by additional computations. In our example, a port of a track section may not
decide on its own whether the track section is free. If several ports of a track section
communicate with different RailCabs, the ports need to be synchronized such that only
one port allows a RailCab to enter at a time. Despite the necessary modifications, the
behavior of a port must be compliant to the specified role behavior, i.e., it must be a
legal refinement according to a refinement definition. In the following, we refer to the
behavior implemented by the discrete ports as the refined protocol.

In the third step, we combine the port RTSCs to a component RTSC using additional
synchronization RTSCs (cf. Section 3.1.2.1). Then, we need to verify for each com-
ponent RTSC that it is free of deadlocks [Gie03]. We may verify additional safety and
liveness properties referring to a correct interaction of the different ports of a component
if necessary. In our RailCab example, we may verify the aforementioned property that
the track section gives permission to only one RailCab to enter at a time. Approaches
for resolving such dependencies automatically have beeen introduced by Eckardt and
Henkler [EH10] and Goschin et al. [Gos14, DGB14].
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Verifying the correctness of the refinement in the second step of the compositional verifi-
cation approach requires a formal refinement definition. It guarantees that all properties
that have been verified for the RTCP also hold for the interaction of components via
their discrete ports. A suitable refinement definition leaves the developer with as much
flexibility on refining the model as possible, but is as restrictive as necessary for guar-
anteeing that no verified property is violated. This enables to use the same RTCP for
different components. In the RailCab example, it is particularly useful to use the RTCP
EnterSection for all types of track sections. Then, the type of track section is opaque for
a RailCab. Each kind of track section, however, requires the behavior of a section to be
refined differently.

In literature, different refinement definitions have been proposed [WL97, JLS00,
HH11a]. Each of which provides a different compromise between preserved properties
and allowed modifications. Depending on the particular type of RTCP that is refined,
all of them might be useful when building a system. As a consequence, there does
not exist one refinement definition that is suitable of all RTCPs. Instead, a composi-
tional verification approach should support several refinement definitions. Presently, the
compositional verification approach supports only one particular kind of timed simula-
tion [Gie03], which is not sufficient to handle the example sketched above.

In this chapter, we extend the compositional verification approach of MECHATRONIC-
UML by supporting a total of six different refinement definitions. As our main contri-
bution, we present a refinement check that enables to verify all six refinement definitions
for a given role of a RTCP and a discrete port of a component. Our refinement check
extends the approach by Jensen et al. [JLS00] that is based on so-called test automata.
A test automaton encodes both the behavior of the role and the conditions for a correct
refinement. If (and only if) the port behavior violates the conditions for a correct refine-
ment, the test automaton enters a special error location indicating a negative verification
result. We parameterized and extended the original construction such that we may verify
all refinement definitions in a single algorithm that may easily be extended to include ad-
ditional refinement definitions if necessary. As a byproduct, our refinement check may
automatically detect which refinement definition is suitable for a given pair of role and
port behavior including the verified properties. Although the compositional verification
approach of MECHATRONICUML is primarily intended for verifying the software that
is used in the reflective operator of the OCM [GS13], our refinement check may also be
used for checking refinements of RTCPs that are used in the cognitive operator.

In the remainder of this chapter, we first describe the behavior of the RTCP EnterSection

including refined port RTSCs for the different types of track sections in Section 5.1.
Section 5.2 reviews the six refinement definitions that we consider in our approach.
Then, we introduce our refinement check based on test automata in Section 5.3 and its
implementation in Section 5.4. Thereafter, we discuss the assumptions and limitations of
our approach in Section 5.5. We evaluate our refinement check using a case study based
on the RTCP EnterSection (Section 5.6). Finally, we discuss related work (Section 5.7)
and summarize the results (Section 5.8).
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The test automaton construction presented in Section 5.3 has been developed as part of a
Master’s Thesis [Bre10]. The contents of this chapter have been published in [BHSH13]
and [HBDS15].

5.1 Refining Real-Time Coordination Protocols to Port
Implementations

In the following, we describe the RTCP EnterSection including the RTSCs of both roles
in Section 5.1.1. Then, we show in Section 5.1.2 how the role section needs to be refined
for different types of track sections.

5.1.1 Real-Time Coordination Protocol EnterSection

The RTCP EnterSection has two roles named railcab and section as shown in Figure 5.1.
The role railcab is to be implemented by RailCabs while the role section is to be imple-
mented by all types of track sections. Both roles have a buffer size of 1 and a message
has a propagation delay of 20 ms.
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variable: boolean free
clock: c2

Figure 5.2: RTSCs of Role railcab and Role section of RTCP EnterSection [HBDS15]

Figure 5.2 shows the RTSCs of the two roles railcab and section. In our behavior specifi-
cation, we assume that a track section senses upcoming RailCabs that are about to enter
and notifies these RailCabs using a message newSection. Then, the informal behavior
definition is as follows: Initially, both roles are in state Idle. As soon as role section

recognizes the RailCab, it sends the message newSection to role railcab. railcab needs to
answer with request within 100 ms. Then, role section switches to state CheckRequest.
In this state, the section checks within 1980 ms if the RailCab may enter. This check is
not part of the protocol but of the concrete component because each type of section must
execute different checks. However, the result is stored in variable free and may be true
or false. If the section is free, then the role section sends the message enterAllowed and
switches to state EnterAllowed, else it sends the message enterDenied and switches to state
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EnterDenied. The RailCab expects one of these messages within 2 s. If the track sec-
tion was not free, section will check repeatedly whether the track section becomes free.
As soon as this is the case, section sends enterAllowed and switches to the eponymous
state. For simplicity reasons, we assume that entering will eventually be allowed within
1980 ms. After receiving enterAllowed, the RailCab switches to Approved and starts en-
tering the track section. Upon entering the track section, railcab sends enterSection. This
needs to happen within 2 min. section will receive this message at most 120,040 ms (=
2 min 40 ms) after it allowed the railcab to enter and will answer with message confirmEn-

try. As soon as the RailCab leaves the section, it will send message leaveSection. Role
section will confirm this with the message confirmExit. After one second, the interaction
for this drive through is finished. Then, railcab may start a new interaction with the next
track section.

The RTCP EnterSection is safety-critical. If a RailCab is allowed to enter a track section
although the track section is occupied, a crash will happen. Therefore, we verify the
RTCP for safety and liveness properties in Step 1 of the compositional verification ap-
proach. In particular, we verify three properties φ1 to φ3 that are needed to be preserved
by the ports that refine the roles of this RTCP (cf. [HBDS15]).

The first property is: "The message enterSection will not be sent by role railcab until
section sends enterAllowed." We may formalize this property φ1 using TCTL as:
φ1 = AG(A not railcab.enterSectionMsg W section.enterAllowed)

The second property is: "A RailCab may eventually enter a track section". We may
formalize this property φ2 using TCTL as:

φ2 = EF (section.RailCabOnSection)

Finally, φ3 ensures that the RTCP does not have a deadlock.

5.1.2 Refined Port Real-Time Statecharts

The roles of EnterSection now need to be refined by discrete ports of the components.
"Typical refinement steps include adding data exchange between different ports of a
component, adding component specific functions, and accessing shared variables inside
the component. That, in turn, may require to add additional states and transitions to the
RTSC of the role." [HBDS15] This refinement results in the port RTSC.

In our RailCab example, the RailCab refines the role section at its ports section1 and
section2 of the embedded component DriveControl as shown in Figure 3.6. These two
ports are mandatory in DriveControl. We assume that they are always reconnected by the
surrounding RailCab component such that one port instance is always connected to the
current track section while the other is connected to the next track section. If the RailCab
has left and track section and returned to the Idle state, the port is reconnected to the next
track section.
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We consider three different types of track sections. These are normal track sections, rail-
road crossings, and switches. The corresponding components are shown in Figure 5.3.
By using EnterSection for all types of track sections, we enable RailCabs to register at
any type of track section without needing to distinguish them. However, each of the three
types of track sections requires the behavior to be refined differently as we illustrate in
the following.

Normal
TrackSection

rightleft
precedingSwitch

(a) Component for Normal Track Sec-
tions

Railroad
Crossing

rightleft
precedingSwitch

(b) Component for Railroad Cross-
ings

Switch
rightleft

bottom followingSection

(c) Component for Switches

Figure 5.3: Components for the Different Types of Track Sections [HBDS15]

"We start with the normal track section. A normal track section is a track section that
has only tracks but no switches, stations, or any kind of crossing. A normal track section
may need to communicate with more than one RailCab at a time, e.g., from different
directions. Then, the decision whether the track section is free does not only depend on
the communication of a single port with a RailCab, but it depends on the communication
of several ports with RailCabs. This is because if one port permits a RailCab to enter the
track section, all other ports have to deny. Thus, the decision whether the track section is
free can only be made within the component but not within the RTCP. As a consequence,
we need to refine the track section behavior as shown in Figure 5.4. We highlighted the
parts that were changed or added with respect to the RTSC in the right part of Figure 5.2
in blue color. In particular, the RTSC for ports of the normal track section reads the
variable sectionFree at the transition from RailCabApproaching to CheckRequest which is
declared inside the component RTSC. If the track section is free, then the RTSC needs
to synchronize via the synchronization channel acquire with the internal RTSC of the
component for reserving the track section. As part of this synchronization, the internal
RTSC changes the value of sectionFree to false (cf. Figure A.39 in Appendix A.5.2.1).

Having consumed the message newSection, the RTSC of the role section gives a limit of
1980 ms for deciding whether the section is free. The normal track section, however,
only needs to read the variable sectionFree that is defined in the component RTSC for
this decision. This only takes a small amount of time. Therefore, we relax the invariant
of the state RailCabApproaching from 100 ms to 1800 ms to increase the probability that
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normal_section

Idle

variable: boolean free
clock: c2

RailCabApproaching
c2 ≤ 1800ms

CheckRequest
c2 ≤ 1980ms

request /
{free := sectionFree}

RailCabOnSectionWaitPostAction
c2 ≤ 1s

leaveSection /
confirmExit() {reset: c2}

[c2 ≥ 1s]
release! /

/ newSection() {reset: c2}

EnterDenied
c2 ≤ 1980ms

[not free] /
enterDenied()
{reset: c2}

[free] acquire! /
enterAllowed() {reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[free] acquire! /
enterAllowed()
{reset: c2}

[c2 ≥ 1s] [not free] /
{free := sectionFree}

Figure 5.4: Refined Protocol Behavior for Normal Sections [HBDS15]

a RailCab currently driving on the section has already left. As a result, the normal track
section will store the request in the in-buffer beyond the point in time that was allowed
by the abstract protocol.

Normal Track
Section (ts1)

Switch (ts3)

Railroad
Crossing (ts4)

Normal Track
Section (ts2)

RailCab 2
RailCab 1

Figure 5.5: Deadlock Resulting from RailCab Stopping on a Switch [HBDS15]

The second type of track section is the switch. In addition to the requirements of a
normal track section, switches have the requirement that a RailCab must not stop on a
switch. In particular, a RailCab must stop before entering the switch if the subsequent
section is not free. Consider the situation shown in Figure 5.5. RailCab 1 entered the
switch ts3 driving to the right. It needs to stop because the subsequent section ts4 is
occupied by RailCab 2 driving to the left. Since RailCab 1 blocks the switch, RailCab 2

cannot pass. If RailCab 1 waited on ts1, i.e. before the switch, RailCab 2 would have been
able to pass. For preventing such situations, we only allow RailCabs to enter a switch
if the subsequent track section is free as well. As a consequence, the switch needs to
communicate with the subsequent track section if it receives a request from a RailCab.
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switch

Idle

variable: boolean free, boolean firstTry;
clock: c2;

RailCabApproaching
c2 ≤ 100ms

CheckRequest
c2 ≤ 1980ms

request nextSectionFree! /
{firstTry := true}

RailCabOnSectionWaitPostAction
c2 ≤ 1000ms

leaveSection /
confirmExit() {reset: c2}

[c2 ≥ 1000ms]
release! /

/ newSection() {reset: c2}

EnterDenied
c2 ≤ 1980ms

[firstTry and (not free)] /
enterDenied() {reset: c2}

[free] acquire! /
enterAllowed() {reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[c2 ≥ 1s] [not free] /
{free := sectionFree}

WaitForTrack
c2 ≤ 1900ms

exit/ {free := sectionFree}

sectionFree? /sectionOccupied? /
{free := false}

[free] nextSectionFree! /
{firstTry := false; reset: c2}

[(not firstTry) and (not free)] /
{reset: c2}

Figure 5.6: Refined Protocol Behavior for Switches [HBDS15]

Figure 5.6 shows the resulting RTSC for a switch. The switch also uses an additional
state, which is called WaitForTrack. At the transition from RailCabApproaching to WaitFor-

Track, the RTSC synchronizes with the port followingSection of the switch (cf. Figure 5.3c)
via the synchronization channel nextSectionFree. Then, the port followingSection commu-
nicates with the subsequent track section for checking whether that track section is free.
If so, the port synchronizes via sectionFree, otherwise it synchronizes via sectionOccu-

pied. Only if the switch itself and the subsequent track section are free, then the RTSC
may switch to EnterAllowed and give permission to enter the switch to the RailCab.

Finally, we consider railroad crossings where cars and pedestrians cross the tracks. In
addition to the requirements of a normal track section, we must close the gates before
allowing a RailCab to enter. The gates needs to remain closed as long as the RailCab
drives on the railroad crossing and need to be opened after the RailCab left." [HBDS15]

Figure 5.7 shows the resulting RTSC for a railroad crossing. We added an additional state
ClosingGate where the railroad crossing waits for the gates to close. At the transition from
CheckRequest to ClosingGate, the RTSC synchronizes with the internal behavior of the
railroad crossing using the synchronization channel closeGate for closing the gate. After
the gates have been closed, the internal behavior synchronizes via gateClosed and the
RTSC switches to EnterAllowed. Although the RTSC looks fine at a first glance, it does
not correctly refine the abstract protocol due to a timing error in state CheckRequest. We
deliberately added this error for illustrating in our case study (cf. Section 5.6) how we
detect such incorrect refinements using our refinement check. We present a correctly
refined RTSC in Section 5.6.4.
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rail_road_crossing

Idle

variable: boolean free
clock: c2

RailCabApproaching
c2 ≤ 100ms

CheckRequest
c2 ≤ 120ms

request /
{free := sectionFree}

RailCabOnSection

WaitOpenGate
c2 ≤ 1s

openGate!
leaveSection /
confirmExit()
{reset: c2}

[c2 ≥ 1s]
gateOpened? /

/ newSection()
{reset: c2}

EnterDenied
c2 ≤ 1980ms

[not free] /
enterDenied() {reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[c2 ≥ 1s] [not free] /
{free := sectionFree}

ClosingGate
c2 ≤ 1980ms

[free] closeGate! /
{reset: c2}

gateClosed? /
enterAllowed()
{reset: c2}

[free]
closeGate! /

Figure 5.7: Incorrectly Refined Protocol Behavior for Railroad Crossings due to a Tim-
ing Error in State CheckRequest [HBDS15]

"Although each of the three RTSCs introduced above refines the same abstract protocol
behavior, the resulting refined RTSCs look quite different. Even though the RTSCs are
only of medium size, it is already very hard to decide manually whether they have been
refined correctly." [HBDS15] Using our refinement check, we may automatically decide
whether they are correctly refined.

5.2 Considered Refinement Definitions

"A refinement definition relates an abstract model and a refined model of the same sys-
tem. In our approach, the abstract model is given by the abstract protocol while the
refined model is given by the refined protocol as shown in Figure 5.1. The refinement
definition defines how the behavior defined by the refined protocol may deviate from the
behavior defined by the abstract protocol such that verified properties still hold. That
means, if the refinement definition is fulfilled, we can avoid any explicit verification of
the refined protocol.

In a little more detail, a restrictive refinement definition guarantees that verified safety
and liveness properties, like properties φ1, φ2, and φ3 in Section 5.1.1, still hold for
the refined protocol. This is crucial for our compositional verification approach. A
less restrictive refinement definition leaves developers with more flexibility to adapt
the abstract protocol to a component and, thus, allows for more possible refined pro-
tocols. Finding a suitable refinement definition is, thus, a trade-off between flexibility
upon building the refined protocol and properties that are preserved by the refined pro-
tocol." [HBDS15]
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"In the following, we briefly explain the six most relevant refinement definitions for net-
worked mechatronic systems. Four of these, simulation [BK08], bisimulation [BK08],
timed simulation [WL97], and timed bisimulation [WL97], are especially well-known
definitions. Each of them has been shown to preserve a particular class of verified prop-
erties. We additionally consider the less well-known timed ready simulation [JLS00]
and relaxed timed bisimulation [HH11a, Hen12] because they are particularly useful for
refining MECHATRONICUML models." [HBDS15] We restrict ourselves to informal de-
scriptions of the refinement definitions because the formal definitions are not required
for understanding the presented concepts. We refer the interested reader to the literature
given above for formal definitions of all refinements.

"All of the considered refinement definitions only allow the refined protocol to include
sequences of sent and received messages that are already specified in the abstract proto-
col. None of them allows the refined protocol to add additional sequences of messages.
As a minor extension to the existing definitions, we require that the refined protocol cor-
rectly refines non-deterministic choices contained in the abstract protocol. That means
after a choice, the refined protocol needs to conform to the abstract protocol that made
the same choice." [HBDS15]

For being able to add behavior to the role RTSCs as described in Section 5.1.2, we con-
sider only so-called weak variants of the refinement definitions [WL97]. These abstract
from internal behavior that is defined by transitions not carrying a message but perform-
ing an internal computation or synchronization. Since these operations are not visible to
a communication partner, they are not relevant for the message exchange defined by the
protocol. In particular, the refinement only needs to ensure that the next message after
such internal computation is sent in the right time interval.

"The upper part of Figure 5.8 shows a timing diagram for an excerpt of the role behavior
defined by the RTSC section in Figure 5.2. The timing diagram shows when (in which
time interval) the messages newSection, request, enterAllowed, and enterDenied can be sent
or received. Here, section may send the message newSection at an arbitrary point in time.
After sending newSection, the clock c2 is reset to 0 and request must be received within
100 ms. Then, either enterAllowed or enterDenied must be sent until c2 reaches 1980 ms.
The lower part of Figure 5.8 gives six examples for port RTSCs. Each refines the role
section in a different way, resulting in different intervals for sending or receiving the
aforementioned messages. Each of the examples showcases a different combination of
changes to the intervals, e.g, the extension of intervals for received messages but not for
sent messages. As a consequence, each example fulfills a different set of refinements
as indicated in the corresponding row in the table on the right. In the following, we
introduce all six refinement definitions from left to right with respect to the table in
Figure 5.8. Along with the description of each refinement definition, we will refer to
Figure 5.8 to illustrate the differences.

All of the refinement definitions mentioned above rely on the assumptions stated in Sec-
tion 2.4.3. If a system does not fulfill these assumptions, the refinement definitions
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Figure 5.8: Example for Illustrating the Differences Between the Considered Refinement
Definitions [HBDS15]
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presented in this section cannot guarantee that the verified properties still hold for the
refined protocol." [HBDS15]

Simulation
Simulation [CGP00, BK08] is the least restrictive refinement definition that we consider.
It requires that the refined protocol only includes sequences of messages that are already
specified by the abstract protocol. The refined protocol may remove sequences of mes-
sages and define a different timing of messages. As a result, simulation preserves all
LTL formulas and all CTL formulas that only contain ∀-path quantifiers. Formulas with
an ∃-path quantifier are not preserved because the paths fulfilling the property might be
removed.

In Example 1 in Figure 5.8, the message enterDenied is removed, while enterAllowed can
still be sent later. The interval for receiving the message request, on the other hand, is
shortened. These changes are permitted by simulation but not by any other considered
refinement definition.

Bisimulation
Bisimulation [CGP00, BK08] requires that the refined protocol contains the same se-
quences of messages as the abstract protocol but allowing for a different timing. As a
result, bisimulation preserves all LTL and CTL formulas.

Example 2 in Figure 5.8 fulfills the conditions of bisimulation because it uses the same
sequences of messages with a different timing. Example 1 does not fulfill the conditions
of bisimulation because a message has been removed.

Timed Simulation
Timed simulation [WL97] imposes the same conditions as simulation but additionally
imposes timing constraints. In particular, the refined protocol may only send and receive
messages in the same or a restricted time interval compared to the abstract protocol. As
a consequence, timed simulation preserves all TCTL formulas that only contain ∀-path
quantifiers. We refer to this as ATCTL.

In Figure 5.8, the refinement in Examples 3 and 4 fulfills the conditions of timed sim-
ulation because time intervals are only reduced but never extended. Examples 1 and 2
extend the time interval for sending enterAllowed and, therefore, do not fulfill the condi-
tions of timed simulation.

Timed Ready Simulation
Timed ready simulation [JLS00] imposes the same conditions as timed simulation but
additionally requires that the refined protocol preserves all urgent transitions including
their timing. Jensen et al. [JLS00] proved that this is necessary for a compositional
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verification approach if the behavior contains urgent transitions. As a result, timed ready
simulation preserves all ATCTL properties and ensures that the refined protocol has the
same urgent behavior as the abstract protocol.

In Figure 5.8, Example 4 fulfills the timed ready simulation because the interval of the
urgent transition for receiving the message request is not changed. In addition, the be-
havior of the switch and the crossing fulfills the timed ready simulation because it sends
and receives all messages in the same time intervals as the role section.

Timed Bisimulation
Timed bisimulation [WL97] imposes the same conditions as a bisimulation but addition-
ally requires that the refined protocol sends and receives messages in exactly the same
time intervals as the abstract protocol. Therefore, it is the strictest refinement definition
that we consider. Still, the timed bisimulation allows to modify the abstract protocol dur-
ing the refinement step by inserting internal computations between the sent and received
messages if they do not affect the timing of messages. Timed bisimulation preserves all
TCTL properties.

In Figure 5.8, only the behavior of switch and crossing fulfills the conditions of timed
bisimulation because it neither removes messages nor changes time intervals of mes-
sages as it is the case in all other examples.

Relaxed Timed Bisimulation
The relaxed timed bisimulation [HH11a, Hen12] relaxes the strict conditions of timed
bisimulation. In particular, it enables to extend the time intervals for receiving message,
but it still requires that the upper bounds for sent messages remain unchanged. This re-
finement is particularly useful for networked mechatronic systems. If two mechatronic
systems coordinate on a specific task, it often does not matter when messages are re-
ceived but only that the answer is on time. In our example, it is irrelevant for a RailCab
at what point in time the track section processes its request. For the RailCab, it only
matters that it receives the answer in time. Due to the relaxation on received messages,
relaxed timed bisimulation preserves all LTL and CTL-formulas as well as all TCTL
formulas only referring to the latest sending of messages.

Relaxed timed bisimulation imposes two important conditions on the RTCP being re-
fined. First, the refined protocol needs a larger in-buffer than the abstract protocol in
order to avoid buffer overflows because message are taken out of the in-buffer later.
Second, the RTCP must be bidirectional. Otherwise, the receiving protocol will not be
restricted in its timing behavior at all.

In Figure 5.8, the behaviors of normal track section, switch, and crossing fulfill the
conditions of relaxed timed bisimulation. The behavior of normal track section (cf.
Figure 5.4) still receives request after 1800 ms which is covered by relaxed timed bisim-
ulation but violates timed bisimulation.
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5.3 Test automata-based Refinement Checking

This section introduces our approach [Bre10] for verifying correct refinements of roles
to ports. Our approach is based on test automata. "Test automata have been introduced
by Jensen et al. [JLS00] as an approach for verifying refinements for UPPAAL timed
automata. The basic idea of their approach is to encode an abstract automaton A and
the conditions for a correct refinement as an automaton TA, called test automaton. Test
constructs in TA encode which changes are allowed and which are not, according to the
conditions of the particular refinement definition (cf. Section 5.2). The test automaton
TA is then used to verify whether a refined automaton R is a correct refinement of A

according to the given refinement definition. If and only if the conditions of the refine-
ment definition are not fulfilled by R, a special state Error in TA becomes reachable via
the test constructs. Jensen et al. use a reachability analysis for deciding whether Error is
reachable or not. Figure 5.9 gives an overview of our process for refinement checking
based on test automata in MECHATRONICUML." [HBDS15]

Role RTSC A Port RTSC R

Test RTSC TA

Parallel Test System (TA || Radj)

[Error State Reachable]

2. Construct Test Automaton
(Section 7.4.2)

4. Parallel Composition
(Section 7.4.4)

5. Reachability Analysis
(Section 7.4.4)

[else]

false +
Counterexample

true

Refinement Definition

3. Adjust Refined System
(Section 7.4.3)

RTSC Radj

1. Refinement Selection
(Section 7.4.1)

Safety/Liveness
Properties

Legend: ... Artifact Control/Data Flow... Algorithm

Figure 5.9: Refinement Check using Test Automata [HBDS15]

The inputs for our refinement check are the RTSC of the role serving as the abstract
automaton A, the RTSC of the port serving as the refined automaton R, and the safety
and liveness properties that have been verified for the abstract protocol. The refinement
check is then carried out in five steps. In the first step, we automatically select the most
suitable refinement definition based on the role RTSC and the safety and liveness prop-
erties (cf. Section 5.3.1). In the second step, we construct the test automaton TA (cf.
Section 5.3.2). We extend the construction by Jensen et al. [JLS00] such that it enables
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checking all six refinement definitions introduced in Section 5.2. In particular, we intro-
duce new test constructs for checking relaxed timed bisimulation and bisimulation. Our
new construction is parameterized such that a test automaton can be built based on the
selected refinement definition. Since TA is a RTSC in our approach, we call it the Test
RTSC. In the third step, we adjust the port RTSC R to Radj such that it may be tested
by TA (cf. Section 5.3.3). In particular, TA needs to communicate via synchronizations
with R, i.e., without the additional delay of asynchronous communication, for testing
the intervals in which R sends or receives messages. Thereafter, we build the parallel
test system TA ‖ Radj . The construction of the parallel test system is based on NTAs.
We refer to Appendix B for a formal definition of the construction of an NTA for two
RTSCs. Finally, we perform a reachability analysis on the parallel test system (cf. Sec-
tion 5.3.4). If the special error state is reachable in TA ‖ Radj , the port RTSC is not
refined correctly and our algorithm returns a counterexample. If the error state is not
reachable, the refinement is fulfilled.

5.3.1 Refinement Selection

We summarized the characteristics of the six refinement definitions introduced in Sec-
tion 5.2 in the decision tree shown in Figure 5.10. Using this decision tree, we may
automatically derive the most suitable refinement definition based on the role RTSC, the
port RTSC, and the verified properties. The most suitable refinement definition is the one
that is least restrictive for the given kind of models while still preserving all properties
that were verified for the abstract protocol. A less restrictive refinement definition allows
more modifications in the refined protocol and, therefore, provides more flexibility to the
developer.

no clocks clocks

Simulation Bisimulation

only
-quantifiers else

only -quantifiers

Timed Ready
Simulation

urgent
transitions

no urgent
transitions

Relaxed Timed
Bisimulation

Timed
Simulation

same
buffer

larger
buffer

Timed
Bisimulation

larger
buffer

same
buffer

else

bidirec-
tional

unidirec-
tional

Legend: ... Refinement Definition Conditional EdgeChoice

Figure 5.10: Decision Tree for Selecting a Refinement Definition [HBDS15]

We can extract the necessary information for deriving a decision based on the decision
tree by a syntactical analysis of the inputs. For the first decision in the tree, we need to
analyze whether the RTSCs use clocks or not. Untimed refinements are not suited for
models that define time-dependent behavior. Second, we check whether the properties
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only contain ∀-path quantifiers as, e.g., Property φ1 in Section 5.1.1, or whether they also
contain ∃-path quantifiers as, e.g., Property φ2. If any property uses an ∃-path quantifier,
we need a variant of bisimulation to preserve this formula. Third, for timed refinements
we need to take into account whether the port RTSC uses a larger in-buffer than the role
RTSC. While our Relaxed Timed Bisimulation is less restrictive than the alternatives,
it can only be used in cases where a larger buffer is available. To decide whether to
select Timed Ready Simulation or Timed Simulation we also need to analyze if the role
RTSC uses urgent transitions. Finally, Relaxed Timed Bisimulation is only applicable
for bidirectional protocols. If the protocol is unidirectional, we need to apply the more
restrictive Timed Bisimulation.

In our example in Section 5.1, all three refined RTSCs use clocks. Therefore, we take
the right branch of the decision tree in all three cases. As Property ϕ2 contains an ∃-path
quantifier, we take the else-branch on the next decision. Therefore, the only suitable
refinements remaining are relaxed timed bisimulation and timed bisimulation.

The refined RTSC of the normal track section (cf. Figure 5.4) uses a larger in-buffer
than the role section. As a result, the decision tree selects relaxed timed bisimulation for
checking this refined RTSC. The refined RTSCs of switch (cf. Figure 5.6) and railroad
crossing (cf. Figure 5.7) do not use a larger buffer. Therefore, the decision tree selects
timed bisimulation for these refined RTSCs.

5.3.2 Construction of the Test Automaton

"Figure 5.11 presents the schema for the construction of a part of TA. In particular, it de-
fines how one single transition S −→ S′ of A is translated to TA. Thus, the construction
schema needs to be applied to each transition of A. Figure 5.12 shows an excerpt of a
test RTSC SectionTA_TBS that has been constructed by applying the construction schema
to each transition of the role section (cf. Figure 5.2) for checking a timed bisimulation.
In the following, we refer to this example to illustrate the constructs created as part of
TA.

TA contains test constructs for checking the different conditions of the refinement defi-
nitions. In particular, the test constructs check for allowed communication (Case 1, cf.
Section 5.3.2.1), forbidden communication (Cases 2a and 2b, cf. Section 5.3.2.2), and
required communication (Cases 3a, 3b, and 3c, cf. Section 5.3.2.3) in R. Which of
these test constructs are used in TA depends on the refinement definition to be checked
as shown in Table 5.1. In addition, Table 5.1 summarizes the definition of the function
widen used at the transitions STA −→ STA

′ in TA. We explain this function along with
the labels of the transitions in the following." [HBDS15]

5.3.2.1 Test Constructs for Allowed Communication (Case 1)

Case 1 includes allowed communication in TA, i.e., sequences of messages that are de-
fined by A. We include allowed communication in TA because all refinement definitions
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RTSC_TA

RTSC_A
S‘S

I
[cc = cclow ˄ cchigh] [g] μin /
μout() {a, reset: r}

... ...

...
1

[cTA = tmax]

3b

3a

3c

2a

2b

C3a

C3b

STA‘STAError

C3c

Neutral

μout? μin![cTA = tmax]

[not g] μout? μin!

[˄i (¬widen(ref,cci,I))]
μout? μin!

[cc ˄ I] [g]

[cchigh ˄ I] [g]

μout? μin!

...[widen(ref,cc,I)] [g] μout? μin! /
{a‘, reset: r {cTA}}

[cchigh ˄ I ˄ cTA = 0] [g]

μout? μin!

min,mout ∑(L):
mout? min!

Figure 5.11: Construction Schema for our Test Automata [HBDS15]

Table 5.1: Required Cases and Definition of widen Function for Each Refinement Defi-
nition [HBDS15]

Refinement Definition Required Cases Definition of widen

Simulation 1, 2a true

Bisimulation 1, 2a, 3c true

Timed Simulation 1, 2a, 2b cc ∧ I

Timed Ready Simulation 1, 2a, 2b, 3a (urgent) cc ∧ I

Relaxed Timed Bisimulation 1, 2a, 2b, 3b (sending), cchigh ∧ I (sending),
3c (receiving) true (receiving)

Timed Bisimulation 1, 2a, 2b, 3a cc ∧ I

allow these sequences of messages to be included in R. The white states STA and S′
TA

in the schema correspond to the states S and S′, respectively, of A. The transitions be-
tween white states correspond to the role behavior. For each transition S −→ S′ in A, we
add one corresponding transition STA −→ STA

′ to TA. In the example of Figure 5.12,
the white states and the transitions between them have been created to handle allowed
communication.

Since TA needs to communicate synchronously with Radj , we map asynchronous mes-
sages to synchronizations. If S −→ S′ sends (receives) a message μout (μin), then the
corresponding transition STA −→ STA

′ specifies a synchronization μin? (μout!). That
means, TA produces the inputs for Radj and receives its outputs. All transitions in TA
that carrying a synchronization are non-urgent even if the corresponding transition is
urgent in A. This is necessary for entering the test constructs checking for forbidden and
required communication because urgent transitions have precedence over non-urgent
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SectionTA_TBS

Error

RailCabApproachingTA

CheckRequestTA

[c2 ≤ 100ms] request! /
{reset: cTA}

EnterDeniedTA

[not free] [c2 ≤ 1980ms]
enterDenied? /
{reset: c2, cTA}

[free] [c2 ≤ 1980ms]
enterAllowed? /
{reset: c2, cTA}

EnterAllowedTAenterAllowed? /
{reset: c2, cTA}

...

variable boolean free
clock c2,cTANeutral

Error

newSection! request! request? ...

C3aIdle_newSection?

newSection?
C3aRailCabApproaching_request!

[c2 ≤ 100ms]

request!

IdleTA newSection? / {reset: c2, cTA}

request?
newSection!
newSection?
...

...

...

C3aCheckRequest_enterDenied? C3aCheckRequest_enterAllowed?

Neutral

enterDenied!
enterAllowed!
request! ...

[c2 ≤ 1980ms]
[free]

[c2 > 1980ms] enterDenied?

[c2 > 1980ms] enterAllowed?

[c2 ≤ 1980ms]
[not free]

enterDenied?

enterAllowed?

[c2 > 100ms]
request!

Error

enterAllowed!
enterDenied!
enterDenied?
...

C3aEnterDenied_enterAllowed?

enterAllowed?

[not free] enterAllowed?

[free] enterDenied?

Figure 5.12: Example Test RTSC (Excerpt) for Checking the Timed Bisimulation for
section [HBDS15]

transitions. Then, TA ‖ Radj would urgently execute the allowed behavior without
being able to enter the test constructs. All other transitions TA have the same urgency as
their corresponding transitions in A.

STA −→ STA
′ specifies the same guard g as the corresponding transition in A such that

it may only be enabled if S −→ S′ is enabled. In addition, we add all clock resets
of S −→ S′ to STA −→ STA

′. The latter includes one additional clock reset for the
clock cTA. This clock is used by TA for checking required communication as we explain
in Section 5.3.2.3.

In Figure 5.12, the transition from IdleTA to RailCabApproachingTA defines the synchro-
nization newSection?. It has been derived from the transition Idle to RailCabApproaching of
section (cf. Figure 5.2) that sends a message newSection. In addition, the transition from
IdleTA to RailCabApproachingTA specifies the clock reset for c2 and additionally resets
cTA.

The time guard of STA −→ STA
′ depends on the refinement definition to be checked,

the time guard cc of S −→ S′, and the invariant of state S in A. Based on these inputs,
the function widen assigns a time guard to STA −→ STA

′. Table 5.1 summarizes the
outputs of widen for the different refinement definitions. In any case, the state STA does
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not have an invariant. This is necessary to enable that TA may check whether R sends or
receives messages in different time intervals compared to A. If STA carried an invariant,
TA would be forced to fire a transition and would not be able to identify whether R may
exceed the time interval specified by A due to the semantics RTSCs (cf. Appendix B).

Simulation and bisimulation do not check timing conditions and, therefore, widen as-
signs true as a time guard to STA −→ STA

′. The same holds for transitions receiving a
message when checking for a relaxed timed bisimulation because relaxed timed bisimu-
lation allows to delay such transitions arbitrarily.

For timed simulation, timed ready simulation, and timed bisimulation, the time guard
returned by widen is the conjunction of the original time guard cc and the invariant
I of S. As a result, the transition STA −→ STA

′ may only fire if the corresponding
transition S −→ S′ is enabled. Since the example in Figure 5.12 has been constructed
for a timed bisimulation, all time guards at transitions between white states use time
guards of the form cc ∧ I .

Finally, the relaxed timed bisimulation uses the guard cchigh ∧ I , i.e., it conjuncts the
upper bound of the original time guard and the invariant I of S. This is because relaxed
timed bisimulation also allows transitions to send messages earlier compared to A but
not later.

The translation of the transition action a of S −→ S′ depends on whether a contains a
non-deterministic choice expression. If so, the non-deterministic choice expression is
removed from a. If not, a is added unmodified to STA −→ STA

′. All variables used
with non-deterministic choice expressions are shared in TA ‖ Radj . The reason for the
same is, R needs to refine A correctly for any choice. However, after making a choice, R
should not need to correspond to an A that made a different choice. In our example, the
RTSC for role section in Figure 5.2 and the RTSC for port normal_section in Figure 5.4,
both non-deterministically assign the variable free. Then, A and R need to show the
same behavior if the section is free (sending enterAllowed) and if the section is not free
(sending enterDenied). As a consequence, only Radj makes the non-deterministic choices
and TA follows these choices.

5.3.2.2 Test Constructs for Forbidden Communication (Case 2)

Case 2 checks for forbidden communication, i.e., messages that may not be sent or
received by R if A is in state S. Therefore, we add the special state Error to TA and create
transitions from white states to Error. Here, we need to distinguish Cases 2a and 2b.
Case 2a checks for illegal messages, i.e., messages sent or received by R in state STA

that are not defined by any outgoing transition of S in A. These messages may also not
appear in R because all refinement definitions forbid to add new sequences of messages
to R. Case 2b checks for legal messages that are sent at illegal times, i.e., messages that
may indeed be sent by R in state STA, but which do not comply to the timing restrictions
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imposed by the refinement definition. We explain both cases below in more detail. In
Figure 5.12, we included several Error states to improve the readability of the figure.

Case 2a: Illegal Message
In Case 2a, we add two types of transitions to TA. First, we add one transition STA −→
Error for each message μ that is not specified at any outgoing transition of S in A.
If R adds a forbidden message, these transitions make Error reachable. The resulting
transitions only carry the synchronization corresponding to the message μ. Second, we
add one transition for each message μin or μout that is specified at an outgoing transition
of S in A. This transition checks whether R may send μout or receive μin if the guard g is
not fulfilled. This is forbidden because R needs to behave in the same way as A under a
given decision. The resulting transition only carries the synchronization corresponding
to μin or μout and the negated transition guard ¬g. We add such transitions for any
refinement definition that we consider in our approach (cf. Table 5.1).

In our example in Figure 5.12, the thick and dashed red transition from IdleTA to Error

has been constructed based on Case 2a. It represents a set of transitions to improve
readability of the figure. In particular, we obtain one transition that checks whether R
may receive newSection in state Idle and additional transitions for any other message that
checks whether this message may be sent or received by R. All of these messages are
forbidden because R may only send newSection in state Idle. The two upper transitions
from CheckRequestTA to Error are also constructed based on Case 2a. The first one checks
whether R may send enterDenied even though the section is free. The second one checks
whether R may send enterAllowed even though the section is not free. Both are forbidden
because R needs to behave in the same way as A if the section is free or not free.

Case 2b: Legal Message at Illegal Time
In Case 2b, we add one transition STA −→ Error for each time interval in which μ may
not be sent or received in R according to the given refinement definition. This case is
only checked by refinement definitions that impose conditions on the timing of messages
(cf. Table 5.1). The resulting transitions only carry a synchronization corresponding
to the message μ and a time guard. The time guard encodes all time intervals where
transitions STA −→ STA

′ with synchronization μ may not fire.

We compute the time guard as follows. Each transition i from STA to STA
′ in TA has

a time guard of the form
∧

j lowij ≤ cj ≤ upij for clocks cj . We negate this clock
constraint to obtain time intervals where the corresponding message μ may not be sent
or received and yield a time guard of the form

∨
j(cj < lowij ∨ cj > upij). Then, we

need to conjunct the resulting time guards for all transitions i to obtain time intervals
where none of them may fire. Consequently, the transition from STA to Error has the
time guard

∧
i

⎛
⎝∨

j

(cj < lowij ∨ cj > upij)

⎞
⎠ .



Verifying Refinements based on Test Automata Page 161

For a simple example, consider a state with two outgoing transitions that send a message
a, one with the clock constraint 10 ≤ c ≤ 20 and one with 50 ≤ c ≤ 60. Then, the
resulting clock constraint is

¬((c ≥ 10 ∧ c ≤ 20) ∨ (c ≥ 50 ∧ c ≤ 60))

= (c < 10 ∨ c > 20) ∧ (c < 50 ∨ c > 60)

= (c < 10 ∧ c < 50) ∨ (c < 10 ∧ c > 60) ∨ (c > 20 ∧ c < 50) ∨ (c > 20 ∧ c > 60)

= (c < 10) ∨ (20 < c < 50) ∨ (c > 60)

Since clock constraints may only contain conjunctions, we create individual transitions
for c < 10, 20 < c < 50, and c > 60. If Radj defines the synchronization a! within one of
these time intervals, then Error becomes reachable.

In Figure 5.12, the right transition from RailCabApproachingTA to Error has been created
based on Case 2b. The transition from RailCabApproachingTA to CheckRequestTA has the
time guard c2 ≤ 100 resulting from the invariant of state RailCabApproaching in section.
Thus, the transition from RailCabApproachingTA to Error has the time guard c2 > 100 and
specifies the same synchronization.

5.3.2.3 Test Constructs for Required Communication (Case 3)

Case 3 checks for required communication, i.e., sequences of messages that must be
included in R according to the refinement definition. In particular, all variants of bisim-
ulation and the timed ready simulation require that R contains particular sequences of
messages that are contained in A. We add a neutral state Neutral to TA that is reached
when a required message is correctly sent or received by R. Case 3 is further subdi-
vided into Cases 3a to 3c. Each case is associated with one particular kind of test state
CX(X ∈ [3a, 3b, 3c]) for checking the corresponding conditions. TA contains one such
state for each required message μ that needs to be included in R. In addition, we add
transitions STA −→ CX , CX −→ Neutral, and CX −→ Error to TA. If R violates the
conditions imposed by the refinement definition, transitions CX −→ Error are enabled
and Error is made reachable. Otherwise, the transitions CX −→ Neutral lead to the
neutral state.

The Cases 3a to 3c check for different time intervals where μ needs to be sent or received
by R. Which case is used depends on the particular refinement definition that is applied
(cf. Table 5.1). We introduce the different cases in detail below.

Case 3a: Message in Same Time Interval
Case 3a with the associated state C3a checks that R sends or receives μ in exactly the
same time interval as A. This is needed for timed bisimulation and timed ready simu-
lation. Timed bisimulation does not allow R to reduce the time intervals for messages
that were defined in A. Timed ready simulation requires the same but only for messages
defined for urgent transitions.
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The transition from STA to C3a has a guard and a time guard. Both are the same as
for STA −→ STA

′ considering the definition of widen for timed bisimulation and timed
ready simulation in Table 5.1. Consequently, TA may enter C3a whenever A may send
or receive μ.

The transition from C3a to Neutral is urgent, i.e., it has precedence over the non-urgent
transition to Error. As long as R sends or receives μ, the transition to Error is never
enabled and error is not reachable. If there exists a time interval in cc ∧ I where R does
not send or receive μ, then CX −→ Neutral is not enabled and the transition to Error

may fire indicating a violation of the refinement definition.

In the example in Figure 5.12, the state Neutral, the C3a-states and all in- and outgoing
transitions of the C3a-states have been created according to Case 3a to check for required
communication according to the timed bisimulation.

Case 3b: Message Obeys Upper Bound
Case 3b with the associated state C3b checks that R does not send or receive μ later than
A. In our approach, we only apply Case 3b for checking transitions that send a message
μ when checking for a relaxed timed bisimulation.

The transition from STA to C3b has a guard and a time guard. While the guard is the
same as for STA −→ STA

′, the time guard differs. In particular, the time guard conjuncts
the upper bound cchigh of the clock constraint with the invariant I of S. Consequently,
TA may enter C3b in a time interval that is restricted by the latest point in time where μ

may be sent in A.

As long as the urgent transition to Neutral is enabled up to the upper bound of the time
interval where C3b was entered, no time may pass in C3b. Therefore, the transition to
Error has a time guard that compares the clock cTA to a maximum value that is larger
than any value used in the clock constraints of A and R. Thus, the transition to Error

may only become enabled if time passes in C3b which may not be the case if R refines
A correctly.

Case 3c: Message Eventually Sent or Received
Case 3c with the associated state C3c checks that R eventually sends or receives μ not
checking for time intervals. This is needed for bisimulation and for transitions receiving
a message μ when checking for relaxed timed bisimulation.

The transition from STA to C3b has a guard and a time guard. While the guard is the
same as for STA −→ STA

′, the time guard differs. In particular, the time guard conjuncts
the upper bound cchigh of the clock constraint with the invariant I of S and requires that
cTA is 0. Consequently, TA may enter C3c in a time interval whose upper bound is
restricted by the by the latest point in time where μ may be sent in A. The lower bound
is restricted by the point in time where STA may be entered at the earliest expressed by
cTA = 0.
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The transition to Neutral checks that R eventually sends or receives μ. The transition to
Error is again guarded by an artificial maximum value tmax that shall never be reached in
A or R. This transition will only become enabled if R never sends or receives μ.

5.3.3 Adjusting the Port Real-Time Statechart

"The port RTSC needs to be adjusted such that it may be combined with TA to the parallel
test system. The adjustments do not change the behavior of R but only ensure that the test
constructs in TA may correctly identify forbidden deviations of R from A. The result of
this step is the adjusted port RTSC Radj . Figure 5.13 shows an excerpt of an example for
Radj as constructed for the port RTSC of railroad crossings (cf. Figure 5.7)." [HBDS15]

rail_road_crossingadj

Idle

variable boolean free
clock c2

RailCabApproaching CheckRequest[c2 ≤ 100ms] request? /
{free := int<0,1>;}

newSection! / {reset: c2}

[c2 ≤ 120ms] [not free]
enterDenied! / {reset: c2}

[c2 ≤ 120ms]
[free] /

... ... ...

Figure 5.13: Adjusted Port RTSC for Railroad Crossings [HBDS15]

First, all sent and received messages need to be replaced by corresponding synchro-
nizations, i.e., a sent message mout is replaced with mout! and a received message min

is replaced with min?. This is necessary for building the parallel test system using a
network of timed automata.

Second, any invariants of states of Radj need to be removed. The corresponding clock
constraints are conjuncted with the time guards of the outgoing transitions. This pre-
vents that an invariant in Radj may stop time from progressing in TA after both have
been composed to the parallel test system. The modification does neither add nor re-
move externally visible behavior of R because a transition is only enabled if its time
guard is fulfilled and if the invariant of the source state is fulfilled. In the example in
Figure 5.13, this modification affects the states RailCabApproaching and CheckRequest

and their outgoing transitions.

Third, all transitions carrying a message are urgent in Radj as shown in Figure 5.13. They
need to synchronize urgently with the transitions from the CX states to the Neutral state
in the test constructs checking for required communication (Cases 3a, 3b, and 3c). The
transitions in Radj , however, still synchronize non-urgently with the transitions between
white states in TA because the latter are all non-urgent (cf. Section 5.3.2.1).

Fourth, we remove all synchronizations of R with other RTSCs within the component
RTSC. An example is given by the synchronization closeGate! at the transition from
CheckRequest to ClosingGate in Figure 5.7. In our refinement check, we only check
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whether the externally visible behavior of R is correct with respect to A and the se-
lected refinement definition. Checking that the integration with the remaining ports via
these synchronizations has been done correctly is subject to Step 3 of our compositional
verification approach.

"Finally, R may read and write variables of the component RTSC. An example is given
by the variable sectionFree that is read by all refined protocols introduced in Section 5.1.2.
From the perspective of R, such variables may change at arbitrary points in time. Veri-
fying their correct usage by the component and all of its ports is, again, subject to Step 3
of the compositional verification approach. Therefore, we replace read accesses to com-
ponent variables by non-deterministic choices, i.e., we assume that the variable may
have any allowed value when it is accessed. In addition, we completely remove write
accesses to component variables because they are irrelevant if the written value is never
read." [HBDS15]

5.3.4 Parallel Composition and Reachability Analysis

We combine TA and Radj to the parallel test system based on an NTA as formally defined
in Appendix B. The reachability analysis then computes the reachable state space in
terms of a zone graph (cf. Section 2.2.1). Each path in the zone graph represents a trace
consisting of a sequence of symbolic states.

In the reachability analysis, we search for a trace where the Error state of TA is active in
a symbolic state. This corresponds to verifying the formula φ EF T_A.Error. If this
formula is fulfilled for TA ‖ Radj , the reachability analysis returns the trace that leads to
the particular symbolic state where Error is active. This trace then serves as a counterex-
ample that is provided to the developer. If φ is not fulfilled, the reachability analysis
does not return a result and the conditions of the refinement definition are fulfilled for A
and R. We provide an example of a counterexample in Section 5.6.

5.4 Implementation

We have implemented all algorithms shown in Figure 5.9 in version 0.4 of the MECHA-
TRONICUML Tool Suite. Figure 5.14 shows the plugins that have been created as part
of the implementation.

The plugin muml implements the component model of MECHATRONICUML including
RTCPs and RTSCs (cf. Section 3.6). The plugin runtime enables to store the currently
active states and the current values of variables for RTSCs. The plugin reachabilityGraph

provides abstract superclasses for storing state spaces computed by a reachability analy-
sis (cf. Appendix C). This plugin is extended by reachabilityGraph.rtsc for storing a zone
graph that has been computed for a network of timed automata (cf. Section 2.4.2). In par-
ticular, this plugin uses the runtime plugin for representing the active states in TA ‖ Radj

and the current values of all variables. The clock values are stored in federations that
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Figure 5.14: Plugins Implementing our Refinement Check

are provided by the udbm plugin. Our udbm plugin [EH11] integreates an UPPAAL li-
brary [Dav06] for storing federations and executing operations on them using so-called
difference bound matrices (DBMs, [Dil90]).

The aforementioned plugins are used by the algorithm plugins on the right side of Fig-
ure 5.14. The plugin refinement.testautomata contains the main parts of the refinement
check. In particular, it implements the algorithm for selecting a suitable refinement
definition (cf. Section 5.3.1), the construction of the test automaton as described in
Section 5.3.2, and the adjustment of the port RTSC as described in Section 5.3.3. Our
implementation underlies the assumptions and limitations discussed in Section 5.5. At
present, our implementation may not yet automatically detect whether an existential
quantifier has been used in the verified properties. Instead, we ask the developer using a
dialog. All algorithms in this plugin have been implemented in Java based on the initial
implementation provided by Brenner [Bre10].

Finally, the two plugins reachanalysis.core and reachanalysis.rtsc implement the reachabil-
ity analysis on TA ‖ Radj . reachanalysis.core implements a state-space exploration based
on a breadth-first search (BFS) while reachanalysis.rtsc implements the RTSC-specific
computation of successor states. The result of the reachability analysis is a zone graph
that is constructed according to the formal semantics defined in Appendix B. We provide
a more detailed description of our framework for reachability analyses in Appendix C.
Based on the constructed zone graph, the algorithm in refinement.testautomata may de-
cide whether the refinement is fulfilled or not. Our algorithm exports counterexamples
using the PDF or SVG file formats.
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5.5 Assumptions and Limitations

Our test automaton construction underlies the following assumptions and limitations:

• Role RTSC and port RTSC are flat, i.e., they may not use hierarchical states.

• Transitions in the role RTSC may only send or receive a message but not both.
This is no general limitation because transitions with two messages may be split
into two transitions with one message each and an intermediate state.

• When checking for a relaxed timed bisimulation, the role RTSC must not use clock
resets at transitions that receive a message.

• Messages must not have parameters.

• The RTCPs and port RTSCs to be checked underlie the assumptions on quality of
service characteristics described in Section 2.4.3.

5.6 Case Study

"We evaluate our automatic refinement check based on a RTCP of the RailCab sys-
tem. We conducted a case study based on the guidelines defined by Kitchenham et
al. [KPP95]. In our case study, we investigate the correctness of our method for a re-
alistic example within our domain and do not aim at generalizing this statement in this
thesis."[HBDS15]

5.6.1 Case Study Context

The objective of our case study is evaluating whether our refinement check returns cor-
rect results for a realistic RTCP and corresponding correctly and incorrectly refined pro-
tocols. We conduct our case study based on the RailCab system using RTCP EnterSection

and the refined protocols introduced in Section 5.1.

5.6.2 Setting the Hypothesis

"In Section 5.1.2, we presented three refined protocols. According to our expertise, two
of them are correctly refined (the ones for normal sections and switches) and one is
incorrectly refined (the one for railroad crossings). In addition, we consider a refined
protocol of the role railcab where we did not apply any modification. This is a correct
refinement with respect to any refinement definition.

For our case study, we define two evaluation hypotheses. Our first evaluation hypothesis
H1 is that our refinement check correctly identifies the correctly and incorrectly refined
protocols. Our second evaluation hypothesis H2 is that the counterexample that is pro-
duced for an incorrectly refined protocol enables to identify the reason for the violation
of the conditions of the checked refinement definition.
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For evaluating our hypotheses, we manually calculate the state spaces of the role section

and of the three refined protocols. Based on the state spaces we manually check whether
the conditions of the corresponding refinement definition are satisfied. We will compare
the results of our refinement check to the results of our manual calculations. In addition,
we will derive a correctly refined protocol for railroad crossings based on the counterex-
ample returned by the refinement check. We consider our evaluation to be successful,
if the automatic refinement check returns the same results as our manual calculation
and if we succeed in correcting the refined protocol for railroad crossings based on the
counterexample."[HBDS15]

5.6.3 Preparing the Input Models

In preparation of the case study, we specify all models presented in Section 5.1 using
our implementation described in Sections 3.6 and 5.4. The created models are available
for download on our webpage [HBD13].

In particular, we define the RTCP EnterSection, the components shown in Figure 5.3, and
the refined port RTSCs presented in Section 5.1.2. "We refine the role section at the ports
NormalTrackSection.left, NormalTrackSection.right, Switch.left, Switch.right, Switch.bottom,
RailRoadCrossing.left, and RailRoadCrossing.right. In addition, we refine the role railcab

at the ports DriveLogic.section1 and DriveLogic.section2 (cf. Figure 3.6). We also specified
the internal behavior of the components in Figure 5.3. We refer to Appendix A.5.2 for a
description of these RTSCs.

5.6.4 Validating the Hypothesis

We apply our refinement check to the ports of section1 and section2 of RailCabDriveControl

and to all ports of NormalTrackSection, Switch, and RailroadCrossing that refine the role
section of protocol EnterSection.

We start by verifying the refinement for the ports of RailCabDriveControl. Our refine-
ment check first selects timed bisimulation based on the decision tree in Figure 5.10 and
the verification succeeds. Thereafter, we repeated the verification without existentially
quantified formula such that the decision tree selects the timed ready simulation. Again,
the verification succeeds as expected.

Concerning the ports of NormalTrackSection, our refinement check selects a relaxed timed
bisimulation as stated in Section 5.3.1. The verification succeeds as expected. Next, the
verification returns that the refined RTSC for the ports of the Switch is valid with respect
to a timed bisimulation.

Finally, we check the ports of the RailroadCrossing. Again, our refinement check select
a timed bisimulation. In this case, however, the refinement is invalid with respect to
timed bisimulation. Therefore, our refinement check returns the counterexample shown
in Figure 5.15 for this violation.
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S1
States: SectionTA_TBS.IdleTA

rail_road_crossing.Idle
Vars: free = true
Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0
cTA = 0

S2
States: SectionTA_TBS.RailCabApproachingTA

rail_road_crossing.RailCabApproaching
Vars: free = true
Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0
cTA = 0

newSection

S3
States: SectionTA_TBS.CheckRequestTA

rail_road_crossing.CheckRequest
Vars: free = false
Clocks: SectionTA_TBS.c2 = 0

rail_road_crossing.c2 = 0
cTA = 0

request

S4
States: SectionTA_TBS.CheckRequestTA

rail_road_crossing.CheckRequest
Vars: free = false
Clocks: SectionTA_TBS.c2 ≥ 0

rail_road_crossing.c2 ≥ 0
cTA ≥ 0

S5
States: SectionTA_TBS.C3aCheckRequest_enterDenied?

rail_road_crossing.CheckRequest
Vars: free = false
Clocks: SectionTA_TBS.c2 ≤ 1980

rail_road_crossing.c2 ≤ 1980
cTA ≤ 1980

S6
States: SectionTA_TBS.Error

rail_road_crossing.CheckRequest
Vars: free = false
Clocks: SectionTA_TBS.c2 > 120

SectionTA_TBS.c2 ≤ 1980
rail_road_crossing.c2 > 120
rail_road_crossing.c2 ≤ 1980
cTA > 120
cTA ≤ 1980

Figure 5.15: Counterexample for the Incorrectly Refined Behavior for Railroad Cross-
ings [HBDS15]

"The counterexample consists of six symbolic states. It has been obtained by performing
a reachability analysis on the parallel composition of the test RTSC shown in Figure 5.12
and the adjusted RTSC of rail_road_crossing shown in Figure 5.13. In the counterexam-
ple, the test RTSC is denoted as SectionTA_TBS while rail_road_crossing denotes the ad-
justed RTSC of rail_road_crossing. In the first symbolic state S1 of the counterexample,
both RTSCs are in their initial Idle states and all clocks are zero. Please note that we
convert all time units to milliseconds in our implementation and, therefore, do not visu-
alize time units in the counterexample. Then, the RTSCs synchronize via newSection and
enter the RailCabApproaching states. In the next step, the RTSCs synchronize via request

and enter the CheckRequest states. In both symbolic states, all clocks are still zero. In
S3, the variable free receives the value false. The next transition in the counterexample
is a delay transition (cf. Section 2.2.1). Since we removed all invariants and moved the
corresponding clock constraints to the outgoing transitions (cf. Section 5.3.2), the clock
values are not restricted. Thus, all clocks have an unbounded value greater or equal
to zero. The transition from S4 to S5 is a so-called tau transition where the test RTSC
fires a transition without synchronization (cf. Section 2.2.1). In particular, it enters the
C3aCheckRequest_enterDenied? state that checks whether rail_road_crossing may send the mes-
sage enterDenied in the same time interval as the section role. When entering the state,
all clocks have a value less or equal to 1980 resulting from the clock constraint of the
transition from CheckRequestTA to C3aCheckRequest_enterDenied?. In the final symbolic state
S6, the test RTSC is in state Error and, thus, the refinement does not hold. The clock
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values show that the Error state has been reached with all clocks having a value in the
interval 120 < c2 ≤ 1980.

From the counterexample, we can deduce that the refinement is violated by the transition
from CheckRequest to EnterDenied in rail_road_crossing that sends the message enterDe-

nied. Since the Error state has been reached via the C3aCheckRequest_enterDenied? state, we
also know that the refined RTSC of the railroad crossing does not support sending enter-

Denied in the whole time interval that is required by the section RTSC. In particular, the
transition enables to send the message enterDenied only until c2 is at 120 ms, while the
RTSC for role section allows sending until c2 is at 1980 ms.

Using this information, we derive a correctly refined RTSC for the railroad crossing that
is shown in Figure 5.16. In particular, we correct the error by introducing the state Send-

Denial. If the railroad crossing is not free, we do not immediately switch to EnterDenied,
but we switch to SendDenial. This state enables to send enterDenied until c2 is at 1980 ms
as it is required by the timed bisimulation. The resulting RTSC fulfills the conditions of
the timed bisimulation."[HBDS15]

rail_road_crossing

Idle

variable: boolean free, boolean first
clock: c2

RailCabApproaching
c2 ≤ 100ms

CheckRequest
c2 ≤ 120ms

request /
{free := sectionFree}

RailCabOnSection

WaitOpenGate
c2 ≤ 1s

openGate!
leaveSection /
confirmExit()
{reset: c2}

[c2 ≥ 1s]
gateOpened? /

/ newSection()
{reset: c2}

EnterDenied
c2 ≤ 1980ms

/ enterDenied()
{reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[c2 ≥ 1s] [not free] /
{free := sectionFree}

ClosingGate
c2 ≤ 1980ms

[free] closeGate! /
{reset: c2}

gateClosed? /
enterAllowed()
{reset: c2}

[free]
closeGate! /

SendDenial
c2 ≤ 1980ms

[not free]

Figure 5.16: Correctly Refined Behavior for Railroad Crossings [HBDS15]

5.6.5 Analyzing the Results

"The results of our case study show that our refinement check correctly identifies for
all given refined protocols whether they are refined correctly or not. Therefore, our first
evaluation hypothesis H1 is fulfilled. In addition, we were able to identify the cause of
the incorrect refinement based on the counterexample that was returned by our automatic
refinement check. That enabled us to correct the refined protocol and, as a result, our
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second evaluation hypothesis H2 is fulfilled as well. This gives rise to the assumption
that our approach is also applicable to other realistic examples within our domain.

In our case study, the most important threats to validity are as follows: (1) We might
have made mistakes in the manual calculation that identified which refined protocols
are a correctly refined and which are not. (2) We only considered one abstract protocol
and four different refinements. Even though we consider this example as realistic, other
realistic protocols could be highly different. (3) We did not check all possible refine-
ment definitions but only timed ready simulation, timed bisimulation, and relaxed timed
bisimulation. However, checking for a timed bisimulation includes checks for a (timed)
simulation and a bisimulation. In particular, the refinement definitions that we checked
explicitly cover all cases of our construction (cf. Section 5.1). (4) We are experts for
verification and refinement checking. Therefore, we could easily derive the cause for
the violation of the refinement from the counterexample which might not be true for
novices." [HBDS15]

5.7 Related Work

We discuss related work from two research areas. First, we review other approaches that
support refinements of real-time behavior and approaches that use multiple refinement
definitions (Section 5.7.1). Second, we review related works that use test automata for
verification (Section 5.7.2).

5.7.1 Refinement Checking

"Reeves and Streader [RS08a, RS08b] identify commonalities and differences of re-
finement definitions for process algebras and unify them in a generalized definition but
provide neither a selection nor a verification algorithm. Sylla et al. [SSdR05] present
a refinement definition including a refinement check where the refinement is parame-
terized by a particular LTL formula [BK08] such that only this particular formula is
preserved. In contrast to our approach, both do not consider real-time properties.

In [Bey01], Beyer introduces timed simulation for Cottbus Timed Automata which are
a special kind of timed automata. We cover this refinement definition in our refine-
ment check. In addition, there exist refinement definitions based on (timed) I/O au-
tomata [dAH05, dAHS02] as, for example, (timed) alternating simulations and bisim-
ulations [AHKV98, DLL+10]. These approaches use a two player game for deciding
whether a refined component behaves in the same way as the abstract component in an
unknown environment. In our approach, the behavior of the environment is not unknown
but formally defined by the RTCPs. Therefore, we do not need to check refinement based
on a two player game. Instead, we may use a simple reachability analysis using our test
automaton.
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The FOCUS approach [BS01] supports the specification of embedded systems. It de-
fines the behavior of components by stream-processing functions on streams of mes-
sages [Ste97] and uses, according to [BS01], three kinds of refinements. Two of them,
namely interface refinement and conditional refinement, enable to modify the input/out-
put behavior of the system. In particular, they allow to change the number of messages,
the types of parameters, and the encoding of data. These refinements support a top-
down refinement of the system’s behavior including, in particular, the modification of
component internal behavior. In contrast, we only refine the interface behavior of our
components, which is more restrictive. As a result, their approach requires to consider
the internal behavior of the sending and receiving component in addition to the inter-
face behavior. That makes refinement checking much more expensive compared to our
approach and scalability becomes a problem. The third refinement, which is called be-
havioral refinement, defines the conditions for simulation and bisimulation. According
to [HHR09], interface abstractions of component behavior are equivalent to statema-
chines that, in turn, correspond to I/O automata. Refinements for I/O automata have
been discussed in the previous paragraph. In contrast to our approach, [HHR09] sup-
ports completely non-deterministic specifications." [HBDS15]

5.7.2 Test automata-based Verification

"Test automata are used by Aceto et al. [ABBL03] for model checking temporal prop-
erties specified in SBBL (Safety Model Property Language) on timed automata rather
than verifying correct refinements. Their test automata construction encodes a temporal
logic formula. Consequently, they use a different set of test constructs compared to our
approach.

The approaches by Gerth et al. [GPVW96] and Tripakis et al. [Tri09] perform LTL model
checking [BK08] on (timed) Büchi automata and encode the properties in automata as
well. Again, they use a different construction because they encode a temporal logic
formula instead of a refinement definition.

Li et al. [LBD+10] specify safety and liveness properties for timed automata as live se-
quence charts (LSC, [HM03]). They translate the LSC into an observer timed automaton
that enters a special error location if the property is violated. Since they encode a LSC,
they also use different test constructs compared to our approach." [HBDS15]

5.8 Summary

In this chapter, we extend the compositional verification approach of MECHATRONIC-
UML by five additional refinement definitions and an integrated refinement check. Our
refinement check may automatically select a suitable refinement definition based on the
role RTSC, the port RTSC, and the properties that have been verified for the RTCP. Then,
our refinement check generates a so-called test automaton that encodes the behavior of
the role RTSC and the conditions of the applied refinement definition. Our approach
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extends the construction of test automata by Jensen et al. [JLS00] by additional test
constructs that enable to check all of the six considered refinement definitions. In our
evaluation, we showed that our approach was successfully applied to a RTCP of the
RailCab system.

Our refinement check relieves developers of NMS from choosing a refinement defini-
tion manually. As a result, developers require less detailed expertise in refinements
when refining roles of a RTCP to ports of a component. An additional advantage of our
refinement check is that additional refinement definitions, if needed, only require mi-
nor extensions of the decision tree and the test automaton construction. The remaining
algorithms do not need to be changed.
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6 Simulating Self-Adaptive Mechatronic Systems
in MATLAB/Simulink

Our component model as introduced in Chapter 3 supports to specify a software ar-
chitecture for a self-adaptive mechatronic system. Therefore, it enables to specify and
connect discrete components that contain event-discrete behavior specified by RTSCs
and continuous components that contain feedback controllers. In addition, our concept
for hierarchical reconfiguration as introduced in Chapter 4 enables to jointly reconfig-
ure both kinds of components. Such joint reconfiguration is necessary, for example, for
a RailCab that wants to join a convoy as a member. As described in Section 4.2, this
reconfiguration requires (1) to instantiate a discrete component, (2) to replace a contin-
uous component instance by another one, and (3) to connect these component instances.
As a result, correctness of the RailCab’s behavior with respect to this reconfiguration
depends on the correct interaction of discrete and continuous components as well as the
correct integration of fading functions, which are used for replacing continuous compo-
nent instances, in a hierarchical reconfiguration. Thus, an error in the interaction or an
erroneous fading function may lead to a crash when a RailCab enters a convoy.

Therefore, it is desirable to verify the correctness of the behavior by applying formal
verification techniques for proving that such errors may not occur. Verifying the behav-
ior of a RailCab for joining a convoy as a member, however, induces a so-called hybrid
model checking problem [Hen96] because it includes event-discrete RTSCs as well as
time-continuous feedback controllers and fading functions. At present, hybrid model
checking approaches like PHAVer [Fre05] or SpaceEx [FLGD+11] either use very sim-
ple models of time-continuous behavior or rely on several, manual overapproximation
steps. Both kinds of approaches suffer from a loss of precision leading to potentially
wrong verification results and may still only be applied to small models of academic
nature [ERNF12]. Therefore, the correctness of the behavior of mechatronic systems is
typically only assessed by testing, which cannot prove the absence of errors.

Our goal is to provide the best possible compromise between formal verification and test-
ing approaches while avoiding the need for hybrid verification. In particular, we want
to fully verify all of the discrete components for proving that they are free of errors.
Then, testing is only necessary for checking the behavior of continuous components
and their integration with the discrete components. As a basis, the MECHATRONIC-
UML component model syntactically decouples the event-discrete part of the behavior
specification from the time-continuous part. Discrete components may only interact
with continuous components based on hybrid ports whose values are only updated in
fixed, predefined time intervals. We do not apply any assumptions on how the values
of hybrid ports change and we do not allow, in particular, to include time-continuous
variables in RTSCs. This enables to efficiently verify the discrete components based
on MECHATRONICUML’s compositional verification approach as outlined in Chap-
ter 5. At the same time, we can use established approaches based on model-in-the-loop
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(MIL) simulation [Plu06] for testing the continuous components of the mechatronic sys-
tem using tools like MATLAB/Simulink [Matg] or Dymola [Das]/Modelica [Mod09].
MIL simulation and the corresponding tools are already successfully applied in indus-
try [TDH11, KSHL12]. In contrast to MECHATRONICUML, the tools for MIL simula-
tion of mechatronic systems do not support modifications of a simulation model during
a simulation run. Consequently, these tools do not natively support runtime reconfigura-
tion that we need, for example, for realizing the convoy mode of the RailCab system. In
addition, they do not support communication between systems based on asynchronous
messages.

In this chapter, we define an approach for performing a MIL simulation for a self-
adaptive mechatronic system whose software architecture and behavior have been spec-
ified using MECHATRONICUML. In our approach, we consider both, the reflective op-
erator and the controller level of the OCM. As our main contribution, we define how a
model specified in MECHATRONICUML may be represented in a simulation environ-
ment that provides no built-in support for message-based communication and runtime
reconfiguration. As a simulation tool, we use MATLAB/Simulink because it is widely
used in industry and well supported by code generators like TargetLink [dSP] or AS-
CET [ETA] that enable to generate production code for the final system.

Our approach solves three particular challenges. First, the reconfiguration controller
of a structured component operates on a model@runtime that is shared between man-
ager, executor, and runtime risk manager. Since MATLAB/Simulink does not have a
model@runtime, we define an explicit encoding of the model@runtime in MATLAB/-
Simulink. Second, since MATLAB/Simulink does not allow to modify the simulation
model during a simulation run, we enumerate and encode all configurations beforehand
in the MATLAB/Simulink model such that we may switch between these encoded con-
figurations at runtime. Third, MATLAB/Simulink only supports communication via
synchronous signals that may only be received as long as they are sent. Therefore, we
provide helper blocks for MATLAB/Simulink that realize message-based communica-
tion and respect the QoS assumptions of MECHATRONICUML. The helper blocks only
use build-in features of MATLAB/Simulink. In contrast to related works like Mosi-
lab [ZJS08], Sol [Zim07], or the block library by Kovácsházy et al. [KSP03], this retains
the ability to use the code generators for generating production code for the system out
of the resulting MATLAB/Simulink model.

Our translation needs to preserve the semantics of the (verified) MECHATRONICUML
model. Proving correct preservation of semantics is currently not possible because
the operational semantics of Simulink and Stateflow are intellectual property of The
MathWorks and solely defined by the implementation of the simulator and code gen-
erators [TSCC05]. Although approaches for defining a formal semantics exist for both,
Simulink [TSCC05, BC12] and Stateflow [Ham05, HR07, Wha10], these are incomplete
with respect to the features that we require and cannot guarantee to be correct because
they also have only been checked based on a few test cases [TSCC05, BC12]. There-
fore, we only provide an informal description of how we preserve semantics. In addition,



Simulating Self-Adaptive Mechatronic Systems in MATLAB/Simulink Page 175

we have tested the semantics of the resulting Simulink and Stateflow models using our
implementation.

In the following, we first introduce basic concepts of Simulink and Stateflow that are
required for understanding the concepts of our translation (Section 6.1). Thereafter,
Section 6.2 introduces our approach for MIL simulation in MATLAB/Simulink. As
part of this section, we define an algorithm consisting of several steps for translating
a MECHATRONICUML model into a MATLAB/Simulink model. Sections 6.3 to 6.5
describe the steps of the algorithm in more detail. Then, we describe our implementation
of the algorithm in Section 6.6. Section 6.7 discusses the limitations of our approach
and our implementation. Section 6.8 presents the results of our case study. Finally, we
discuss related works in Section 6.9 before summarizing the approach in Section 6.10.

The contents presented in this section have been published in [HPR+12] and [HRS13].
The translation of the reconfiguration specification has been contributed by the Bache-
lor’s Thesis of Pines [Pin12] and the Master’s Thesis of Volk [Vol13].

6.1 MATLAB/Simulink and Stateflow

MATLAB R© is a tool environment for numeric computations and visualizations
[ABRW09, Matd]. MATLAB is extended by a set of tool boxes that provide additional
modeling and simulation capabilities. The most important tool box for modeling and
simulating mechatronic systems is Simulink R© [Matg]. Simulink, in turn, is extended by
the Stateflow R© [Math] tool box for specifying state-based behavior. Since all features
of MATLAB that we require for performing MIL simulations of mechatronic systems
are offered by Simulink and Stateflow, we restrict our descriptions in Sections 6.1.1
and 6.1.2 to these tool boxes. We refer to Angermann et al. [ABRW09] for a detailed
introduction to MATLAB.

6.1.1 Simulink

The Simulink toolbox supports the model-based design and simulation of technical sys-
tems [Matg]. Since mechatronic systems are a special kind of technical systems, their
development is supported as well. A Simulink model is a block diagram that consists
of blocks and lines. Figure 6.1 shows a simple Simulink model that contains the most
important blocks that we use in our approach. The model computes a function based on
two values and plots the result if it is greater or equal to 0.

In the upper part of Figure 6.1, all blocks except Subsystem are basic blocks that are
provided by the Simulink block library. The blocks Constant1, Constant2, and Constant3

are constant blocks that constantly emit the specified value. The switch block named
Switch enables to select a data input (upper and lower input) based on a control input
(middle input). If the control input fulfills the switch criterion, >= 0 in the example,
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1
value1

2
value2

1
result

fcn

Embedded MATLAB FunctionBus
Creator

Bus
Selector

inbus outbus

5
Constant1

Subsystem

15
Constant2

value2

value1
result >=0

Switch0
Constant3

Scope

Figure 6.1: Simple Simulink Model

then the switch outputs the upper data input, otherwise the lower data input. The Scope

block visualizes a 2D-plot of its input signal.

In Simulink, blocks are connected by lines that are visualized by arrows. Lines define
how data flows between the blocks. They represent signals while "a signal is a time
varying quantity that has values at all points in time" [Matf]. A signal has, among
others, a data type and a dimension. The dimension defines whether the signal is a scalar
or an (multidimensional) array. Signals are directed and can be forked. As an example,
the signal from Subsystem to Switch in Figure 6.1 is forked into two signals. Forks are
visualized by a small black dot on the line.

A Simulink model specifies a sample time that defines how often the values of the blocks
in the model are recalculated. For a sample time of 1 ms, the values are recalculated
every millisecond with respect to the simulation time.

In Figure 6.1, Subsystem is a subsystem block that can be used to group Simulink models
hierarchically. Normal subsystems are virtual, i.e., they do not influence the semantics
of the model. Subsystem has two inports named value1 and value2 and one outport named
result. Data enters a subsystem via the inports and leaves the subsystem via the outports.

The lower part of Figure 6.1 shows the internals of the subsystem block Subsystem. The
oval shaped blocks represent the inports and outports of the subsystem. The block in the
middle is an embedded MATLAB function block that enables to specify user-defined
scripts. An embedded MATLAB function may have multiple inputs and may produce
multiple outputs.

In our example, the embedded MATLAB function operates on a bus signal that is created
by the Bus Creator block. A bus signal is a composite signal that groups a set of named
signals [Matb]. It is comparable to a structure in the programming language C [KR88].
Buses enable to group signals of different data types and dimensions. The Bus Selector

enables to extract a signal from the bus. In the concrete syntax, buses are visualized as
"a triple line with a dotted core" [Matf]. We will use bus signals in our approach for
representing messages (cf. Section 6.3.3).
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The upper half of Figure 6.2 shows a special kind of subsystem: the enabled subsystem.
In addition to a normal subsystem, it has an enable port at the top. If the signal at the
enable port is 0, then the enabled subsystem is off and not simulated. If the signal at the
enable port is 1, then the enabled subsystem is on and simulated. We will exploit this
behavior for emulating the creation and deletion of component instances in Section 6.5.4.

speed
dist

SpeedMonitor

1
speed

1
distspeed

dist

Chart

Enable

fast

2
fast

fast

Figure 6.2: Enabled Subsystem

Inside the enabled subsystem, we specified a chart block named Chart as shown in the
lower half of Figure 6.2. A chart block embeds a Stateflow chart (cf. Section 6.1.2). The
Stateflow chart may interact with the Simulink model via inports and outports which
is crucial for translating message-based communication of RTSCs to Stateflow as dis-
cussed in Section 6.3.3. In our example, the chart block receives a speed from the Simu-
link model and emits a distance via dist and an information whether the RailCab drives
fast or not via fast. We introduce the contents of the chart block in more detail in the
subsequent section.

6.1.2 Stateflow

The Stateflow toolbox extends Simulink towards "modeling and simulating combina-
torial and sequential decision logic based on state machines and flow charts" [Math].
As a result, a Stateflow model consists of states and transitions. We will use Stateflow
for mapping RTSCs of MECHATRONICUML to MATLAB. Figure 6.31 shows a simple
Stateflow chart that is embedded in the chart block of Figure 6.2. It implements a sim-
ple behavior for detecting whether a RailCab drives slow or fast and for updating the
reference distance accordingly.

The chart contains a state Main. Main has a so-called default transition that marks it as
the initial state. In addition, Main contains two embedded states SpeedMon and DistCtrl.

1Please note that we use a black and white notation of Stateflow charts instead of the default colored
notation. We do so to avoid confusion with the colored elements that appear in generation templates
for Stateflow charts that we use in the remainder of this chapter.
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Slow Fast
entry: fast = 1
exit: fast = 0

[speed >= 100]
{send(adjustDistHigh, DistCtrl);}

[speed <= 95]
{send(adjustDistLow, DistCtrl);}

SmallDist HighDist

adjustDistHigh 2DistCtrl

adjustDistLow

1SpeedMon

eM [result] = calcDist(fast)

Main

{dist = calcDist(1);}

{dist = calcDist(0);}

Figure 6.3: Simple Stateflow Chart

These states are parallel states as indicated by the dashed border line, whereas all other
states are exclusive states. If Main is active, then SpeedMon and DistCtrl are both active.
Inside SpeedMon, for example, only one of the two states Slow and Fast is active at any
point in time. Parallel states specify an execution order in the upper right corner. If the
chart is executed, then parallel states are executed according to increasing numbers.

In our example, the state SpeedMon monitors the value of the input speed and outputs
whether the RailCab drives slows or fast. DistCtrl computes a distance value based on the
RailCab’s speed that serves as an output. Initially, the RailCab drives Slow and uses a
small distance (SmallDist). If the input speed of the chart block becomes greater or equal
to 100, the transition from Slow to Fast in SpeedMon becomes active due to the transition
guard. Upon firing, the transition sends a signal event adjustDistHigh to the DistCtrl state.
A signal event may either be sent to the whole chart or to a specific hierarchical state
inside the chart. The signal event triggers the outgoing transition of SmallDist, i.e., the
transition cannot fire until it receives the signal event. The receiving transition is then
executed immediately after sending the signal. A sent signal needs to be consumed
within the same execution step and will no longer be available in the next one. After the
receiving transition has been executed completely, the execution resumes at the sending
transition.

In each simulation step, a chart only executes one transition for each hierarchical state.
The only exception to this rule is given by connective junctions. In a connective junction,
the Stateflow chart may not rest, i.e., it needs to fire transitions until it reaches a state.
As a consequence, there always needs to exist one enabled outgoing transition for a
connective junction. As an example for a connective junction, consider the outgoing
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transition of SmallDist. After entering the connective junction, which is visualized by
a circle in the concrete syntax, the chart immediately fires the outgoing transition to
HighDist.

The transition to DistHigh calls a function calcDist and assigns its return value to the output
dist of the chart block. The function is specified as an embedded MATLAB function
inside the chart. As in Simulink, these functions may have an arbitrary number of input
and output parameters. In Stateflow, functions are called according to call-by-value and
may not modify any variables of the chart. As a result, if the function needs to change a
value, it must be returned as an output parameter and explicitly assigned.

The state Fast in SpeedMon specifies an entry and an exit action. The entry action is
executed when the state becomes active, the exit action is executed when the state is left.
In our example, both, entry and exit action, assign a value to the output fast of the chart
block.

6.2 MIL Simulation of MechatronicUML Models in Simulink
and Stateflow

In the following, we describe our concept for testing the correct integration of discrete
and continuous components in a self-adaptive mechatronic system based on MIL simu-
lation. Our concept requires sofware engineers and control engineers to collaboratively
perform several steps that are summarized in the process shown in Figure 6.4. This pro-
cess specifies Step S5 of our overview process in Figure 1.3 on Page 25 in more detail.
In the following, we refer to the software engineers and the control engineers simply as
the developers if they work collaboratively on a process step.

Translate MechatronicUML
Model to MATLAB/

Simulink and Stateflow

platform-independent
SW model

MATLAB/Simulink and
Stateflow Model

integrated
platform-independent

model

S5.1 Define Scenarios for
MIL Simulation

test scenarios

MIL simulation model

Integrate Controller +
Environment Model

S5.3

S5.2

Perform Simulation
in Simulink S5.4

testable MIL
simulation

model

controller +
environment model

process step artefact

Legend
parallel execution

Figure 6.4: Process for Performing a MIL Simulation of a MECHATRONICUML Model
in Simulink and Stateflow

The software engineer starts in Step S5.1 by translating the verified MECHATRONICUML
model into a MATLAB/Simulink and Stateflow model. The next two process steps may
be performed in parallel. In Step S5.2, the developers need to integrate the controller
and environment models into the Simulink model that resulted from Step S5.1. These
models have been specified directly in Simulink by the control engineers. At the same
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time, the developers need to define scenarios for the MIL simulation in Step S5.3. These
scenarios are test cases that define a particular environmental situation and generate
suitable stimuli for the MIL simulation model. In our RailCab example, we may, for
example, define a scenario where two RailCabs start a convoy at a switch. In this case,
the scenario defines where the RailCabs will start to drive on the track system and it
configures the operation strategy such that the RailCabs will start a convoy. Based on
the MIL simulation model and the test scenarios, the developers may perform the MIL
simulation in Simulink in Step S5.4.

In the remainder of this chapter, we will focus on Step S5.1 and derive a concept for
automatizing the translation from MECHATRONICUML models to MATLAB/Simulink
and Stateflow models. Steps S5.2 to S5.4 need to be carried out manually by the develop-
ers. In particular, deriving a set of scenarios from requirements is beyond the scope of
this thesis.

Figure 6.5 summarizes the algorithm for translating a MECHATRONICUML model into
a MATLAB/Simulink model. The inputs are the (reconfigurable) components that are
used in the MECHATRONICUML model and an initial CIC of the system. The latter de-
fines how many component instances exist on the system level, e.g., how many RailCabs
should be simulated. The output is a Simulink and Stateflow model that shows the same
behavior as the MECHATRONICUML model.

The algorithm in Figure 6.5 consists of two phases. The first phase is defined by the
expansion region and consists of Steps 1 to 4. These steps explicitly enumerate all
possible configurations for each component that is used in the MECHATRONICUML
model and encode these configurations. These steps need to be executed separately for
each (reconfigurable) component. The second phase consists of Steps 5 to 7. These steps
create the simulation model in Simulink and Stateflow and are executed once after the
first phase has been finished.

In the first phase, we start in Step 1 by computing the possible configurations for each
reconfigurable component based on the CSDs contained in its reconfiguration controller.
If a component is not reconfigurable, it only has one possible configuration at runtime.
Thereafter, we create a so-called integrated CIC for the component that contains the
superposition of all possible configurations that were computed in Step 1. Based on this,
we generate a MATLAB-specific reconfiguration controller in Step 3. The MATLAB-
specific reconfiguration controller contains an additional component for encoding the
model@runtime as given by the integrated CIC. The MATLAB-specific reconfiguration
controller enables to execute reconfigurations using control signals that are computed
in Step 4. The result of this phase is one integrated CIC for each component of the
MECHATRONICUML model.

In the second phase, we create the Simulink and Stateflow models. Therefore, we use the
integrated CICs in Step 5 for generating an integrated CIC for the overall system based
on the initial system CIC. The result is a MECHATRONICUML model that (a) contains
all possible configurations that the system may use at runtime and that (b) contains an
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Algorithm: Translate MechatronicUML Model to MATLAB/Simulink and Stateflow (S5.1)
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Figure 6.5: UML Activity Diagram Defining the Algorithm for Translating a MECHA-
TRONICUML Model into a MATLAB/Simulink and Stateflow Model

explicit encoding of the model@runtime including control signals for switching between
the encoded configurations. In Step 6, we translate the integrated system CIC to a Si-
mulink block diagram. Thereby, we generate additional helper constructs for emulating
message-based communication. In Step 7, we translate the RTSCs of the component
instances in the integrated system CIC to Stateflow charts.

In Figure 6.5, we highlighted Steps 6 and 7 with different color because they may be used
without prior execution of Steps 1 to 5 for translating a MECHATRONICUML model not
employing runtime reconfiguration to MATLAB/Simulink. We address this use case in
detail in our technical reports [HRB+13, HRB+14].

In the following, we start in Section 6.3 by describing the translation of a CIC to MAT-
LAB/Simulink (Step 6). Thereafter, Section 6.4 describes the translation of RTSCs to
Stateflow charts (Step 7). We describe these steps first because this translation deter-
mines how we need to encode configurations and which control signals we require for
switching between configurations. Finally, Section 6.5 describes Steps 1 to 5 of our al-
gorithm in detail and explains how the MATLAB-specific reconfiguration controller is
integrated into the Simulink block diagram.



Page 182 Chapter 6

6.3 Translating Component Instance Configurations to
Simulink Block Diagrams

This section defines the translation of a CIC into a Simulink block diagram as introduced
in Section 6.1.1. Thus, it defines Step 6 of our algorithm shown in Figure 6.5. The input
to this step is an integrated system CIC that contains one or more hierarchical component
instances. The output is a Simulink block diagram that contains a set of subsystems.
These subsystems reflect the structure of the CIC.

In the following, we start by illustrating how we translate atomic component instances
(Section 6.3.1) and structured component instances (Section 6.3.2). Thereafter, we show
in more detail how we encode message-based communication in Simulink using several
kinds of helper blocks (Section 6.3.3). Finally, we discuss how the generated Simulink
model considers the QoS assumptions (Section 6.3.4) that are specified in MECHATRON-
ICUML (cf. Section 2.4.3).

6.3.1 Translating Atomic Component Instances

We create one enabled subsystem for each atomic component instance that appears in
the CIC. Using enabled subsystems enables to emulate the creation and deletion of com-
ponent instances by enabling and disabling the subsystem. Figure 6.6 shows the gen-
eration template for deriving the external interface of the enabled subsystem from the
atomic component instance. In particular, the generation template defines how the port
instances of a component instance are represented in Simulink. This step of the transla-
tion is identical for each type of atomic component instance.

X

Z_send
Z_recv
Z_net_addr
Z_recv_net_addr

Y2.nameY1.name

Legend:
Generated once for a component instance X.
Generated for each continuous / hybrid in-port instance Y1.
Generated for each continuous / hybrid out-port instance Y2.
Generated for each discrete port instance Z.

Figure 6.6: Generation Template for Creating a Subsystem for an Atomic Component
Instance

Continuous and hybrid port instances are directly translated to inports2 and outports of
the subsystem because both receive or emit a signal value. The inports and outports in
Simulink have the same names as the port instances in MECHATRONICUML. We strive
at preserving the names of modeling constructs of MECHATRONICUML in Simulink

2Please note that we use the terms in-port and out-port for referring to ports of a MECHATRONICUML
component, while inport and outport refer to ports of a Simulink subsystem.
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because it enables the developers to relate simulation errors occurring in Step S5.4 of our
process in Figure 6.4 to the MECHATRONICUML model.

Discrete port instances cannot be directly translated because they may send and re-
ceive messages which are not natively supported by Simulink. Therefore, we trans-
late discrete port instances to port structures that consist of three inports and one out-
port [HPR+12, HRB+14]. Figure 6.6 shows the port structure that is generated for a
discrete port instance Z. In the port structure, the inport Z_recv is used for receiving mes-
sages while the outport Z_send is used for sending messages. The inports Z_net_addr

and Z_recv_net_addr define addresses for the message exchange that we explain in more
detail in Section 6.3.3.

In the following, we explain how we generate the internals of the enabled subsystem in
Figure 6.6. The internals of the enabled subsystem differ based on the type of atomic
component instance being translated. We explain the internals of subsystems that re-
sult from discrete atomic component instances in Section 6.3.1.1. Thereafter, we de-
scribe the internal structure generated for continuous atomic component instances in
Section 6.3.1.2 and for fading component instances in Section 6.3.1.3. We refer to Ap-
pendix A.8.1 for an example of an enabled subsystem that has been generated based on
the template in Figure 6.6.

6.3.1.1 Discrete Atomic Component Instances

Discrete atomic component instances contain a behavior specification in terms of an
RTSC including the message buffers for the port instances. Therefore, we create a block
diagram that is embedded in the enabled subsystem that has been created for the atomic
component instance. This block diagram contains, in particular, a chart block containing
the Stateflow chart that implements the RTSC of the discrete atomic component instance.
Figure 6.7 shows the generation template that is used for generating the block diagram
that is embedded in a subsystem for a discrete atomic component instance. An example
of a block diagram that results from applying the generation template to a discrete atomic
component instance is presented in Appendix A.8.1.

The chart block is shown at the top of Figure 6.7. In addition, we generate one subsys-
tem called link layer for each discrete port instance Z of the discrete atomic component
instance [HPR+12]. The link layer subsystem has been developed as a part of this thesis.
It handles the message-based communication via one port instance and implements the
message buffer of this port instance. These are directly connected to the port structure
generated for Z. We explain the link layer subsystems in more detail in Section 6.3.3.

Hybrid ports of a discrete atomic component instance are directly connected to the State-
flow chart by a line. As a result, they may be used as variables inside the Stateflow chart.
For hybrid in-port instances, we additionally generate a zero order hold block in Simu-
link. This block reads its input in fixed, predefined time steps and propagates this value
unmodified until a new input value is read. By setting the time steps to the sampling
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Legend:
Generated once for a component instance X.
Generated for each continuous / hybrid in-port instance Y1.
Generated for each continuous / hybrid out-port instance Y2.
Generated for each discrete port instance Z.

Figure 6.7: Generation Template for Creating the Internal Structure of a Subsystem for
an Atomic Component Instance

interval of the hybrid port instance, we retain the semantics of MECHATRONICUML’s
hybrid port instances as defined in Section 3.1.1.5.

Finally, the chart block always has an inport clockSignal that is connected to a digital
clock block. The digital clock provides the global simulation time and is automatically
updated. We exploit the time values provided by the digital clock block for implementing
the clock concept of MECHATRONICUML in Stateflow as we explain in Section 6.4.3.

6.3.1.2 Continuous Atomic Component Instances

For continuous atomic component instances, the enabled subsystem remains empty in
our translation. This is consistent to the MECHATRONICUML component model that
only defines the interface of continuous components but not their behavior (cf. Sec-
tion 3.1.2.2). The resulting enabled subsystem will contain the implementation of the
feedback controller which will be added in Step S5.2 of our process shown in Figure 6.4.

6.3.1.3 Fading Component Instances

For fading component instances, we generate a block diagram that is embedded in the en-
abled subsystem. This block diagram implements the behavior of the fading component
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as defined in Section 3.1.2.3. Its structure depends on the number of fading functions
that are contained in the fading component and on the number of inputs of each fading
function. Figure 6.8 shows the generation template for generating the block diagram for
a fading component instance.

F

1
ctrl

in1
out

in2

2
in1

3
in2

==α

Multiport Switch

ctrl

clock

status

state

Chart

12:34

1
status

2
out

1
2
3

Legend:
Generated once for a fading component instance.
Generated for each continuous in-port instance in1 / in2.
Generated for each fading function F.

Figure 6.8: Generation Template for Internal Structure of a Subsystem for a Fading
Component

The inports in1 and in2 represent the values that are provided by the continuous com-
ponent instances that are connected to the fading component instance. In addition, we
obtain one enabled subsystem for each fading function F that contains the implementa-
tion of the fading function. The contents for these subsystems will be added in Step S5.2

of our process shown in Figure 6.4. The enabled subsystem F is enabled if the state of
the chart block is equal to the integer constant α as defined by the compare block. The
Multiport Switch at the right determines which of the input signals is propagated to the out

outport. The Multiport Switch is also controlled by the state of the chart block.

In the following, we describe how the behavior of the fading component instance is
realized by the block diagram and the Stateflow chart that is contained in the chart block.
As an example, we use an instance of the fading component ConvoyFading shown in
Figure 3.2c on Page 59.

Figure 6.9 shows the result of applying the generation template shown in Figure 6.8 to
ConvoyFading. The block diagram contains two subsystems fadeToConvoy and fadeToStan-

dalone that correspond to the eponymous fading functions of ConvoyFading.

Figure 6.10 shows the Stateflow chart that is embedded in the chart block of Figure 6.9.
It receives the input signal ctrl and the current simulation time provided by the digital
clock block. It outputs a signal status and a signal state. The former denotes whether the
fading component is currently executing a fading function (1) or not (0). The latter is
used for controlling the block diagram shown in Figure 6.9.

The execution of the Stateflow chart starts in the Static1 state. In this state, state is set
to 1. As a result, both compare blocks evaluate to 0 and no fading function is executed.
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Figure 6.9: Example of a Simulink Model for a Fading Component [Vol13]

Static1
entry: status=0;
state=1;

Static2
entry: status=0;
state=3;

Fading1
entry: status=1;
c=reset();
state=2;

Fading2
entry: status=1;
c=reset();
state=4;

[ctrl == 1]

[ctrl == 1]

[time(c) > t1]

[time(c) > t2]

eM logicalTime = time(clock)

eM clock = reset()

Figure 6.10: Example of a Stateflow Chart for a Fading Component [Vol13]

In addition, state is forwarded as a control signal to the MultiportSwitch. There, a value
i defines that the value of the ith data input is forwarded. Thus, the fading component
forwards the value received via in1. In state Fading1, state is set to 2. Consequently, the
fading function fadeToConvoy is enabled and the MultiportSwitch forwards the output of the
fading function. After the duration of the fading function t1 has elapsed, the Stateflow
chart proceeds to state Static2. In this state, the value received via in2 is forwarded. The
execution of the fadeToStandalone fading function in state Fading2 works analogously.
As a consequence, the fading component either forwards one of its input values with-
out modification or it executes a fading function which retains the semantics of fading
components as defined in Section 3.1.2.3.

6.3.2 Translating Structured Component Instances

We create one enabled subsystem for each structured component instance that is con-
tained in the CIC. The rules for creating the enabled subsystem and its external interface
represented by the port instances are the same as for atomic component instances. As
a result, we can apply the generation template shown in Figure 6.6 for structured com-
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ponent instances as well. However, the generation of the internal structure differs for
structured component instances. In particular, we need to translate its embedded CIC
into a Simulink block diagram. The embedded CIC is translated in two steps. In the first
step, we translate all embedded component instances by recursively applying the trans-
lation for atomic and structured component instances to them. In the second step, we
translate all connector instances that connect the component instances in the embedded
CIC. This requires, on the one hand, to translate connector instances between continu-
ous and hybrid port instances as explained in Section 6.3.2.1. On the other hand, we
need to translate all connector instances between discrete port instances as explained in
Section 6.3.2.2. A complete example of a block diagram that results from translating a
structured component instance is presented in Appendix A.8.2.

6.3.2.1 Continuous Connector Instances

Continuous connector instances propagate signal values and are, thus, equivalent to lines
in Simulink. Therefore, we may directly translate continuous connector instances to
lines in Simulink that connect the outport corresponding to the source port instance to
the inport corresponding to the target port instance.

If we want to enable reconfiguration of continuous connector instances, we need to
use two additional helper blocks named MultiSourceControl and MultiTargetControl [Vol13]
shown in Figure 6.11. Both blocks are implemented using basic blocks of Simulink. We
refer to Volk [Vol13] for a description of their implementation.

outin1
in2

ctrl

(a) MultiSourceControl Block

out1

in

ctrl

out2

(b) MultiTargetControl Block

Figure 6.11: Helper Blocks that Enable Reconfiguration of Continuous Connector In-
stances in Simulink [Vol13]

The MultiSourceControl block in Figure 6.11a has one ctrl inport and one to many data in-
ports whose names are prefixed by in. ctrl defines which of the data inports is propagated
to out. If none of the data inports shall be propagated, it outputs 0. The MultiTargetControl

block in Figure 6.11b has two inports ctrl and in. In addition, it has one to many data
outports whose names are prefixed by out. For n outports, ctrl is an array of length n of
type Boolean. If the nth field of the array is true, then the value received via in is for-
warded via the nth data outport. This enables to specifically select an arbitrary number
of receivers for the input value.

Figure 6.12 shows the generation template for using the MultiTargetControl block. We
generate one MultiTargetControl block for each continuous or hybrid out-port Y of our
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Legend:
Generated for embedded component instances X / X1.
Generated for continuous / hybrid out-port instance Y
with reconfigurable outgoing connector instance.
Generated for each continuous / hybrid in-port instance Y1
that is connected to Y by a connector instance.

Figure 6.12: Generation Template for Translating Continuous Connector Instances

MECHATRONICUML model that has an outgoing connector instance that is reconfig-
urable, i.e., there exist several in-ports Y1 that may be connected to Y at runtime. Then,
we generate one outport at the MultiTargetControl including a line to every inport Y1. The
generation template for MultiSourceControl blocks is defined analogously and, therefore,
omitted. It is applied for each continuous or hybrid in-port Y of our MECHATRONIC-
UML model that has an incoming connector instance that is reconfigurable.

refSpeed
1

standalone_ctrl

curSpeed
force

refSpeed

convoy_ctrl

curSpeed

refDist

curDist

force

refSpeed

out1

in

ctrl

MultiTargetControl

out2
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2

out1

in

ctrl

MultiTargetControl1

out2

Figure 6.13: Example for Using a MultiTargetControl Block for Translating a Reconfig-
urable Delegation Connector

Figure 6.13 shows an example of using a MultiTargetControl block. The block diagram in
Figure 6.13 results from translating the embedded CIC of an instance of VelocityController

(cf. Figure 3.7) to Simulink. The inports refSpeed and curSpeed are either connected to
their counterparts in standalone_ctrl or to their counterparts in convoy_ctrl or to both (cf.
Section 3.3.2). Therefore, we connect both inports to MultiTargetControl while the out1

and out2 outports of the MultiTargetControl are connected to the embedded subsystems.
The ctrl input is then a Boolean array of length 2. If the first array entry is true, the
values are propagated to standalone_ctrl. If the second entry is true, the values are propa-
gated to convoy_ctrl. If both entries are true, the values are propagated to both embedded
subsystems.

6.3.2.2 Discrete Connector Instances

Discrete connector instances transport messages from the sending port instance to the
receiving port instance. For the translation of a CIC into a Simulink subsystem, we need
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to distinguish between the assembly connector instances and the delegation connector
instances that are used in the CIC. We present generation templates for their translation
in the following.

fcn

CommunicationSwitch

inBus outBus

BusCreator BusSelector

X2

Z2_send
Z2_recv
Z2_net_addr
Z2_recv_net_addr

B
A

X1

Z1_send
Z1_recv
Z1_net_addr
Z1_recv_net_addr

A
B

Legend:
Generated once for the structured component instance.
Generated for each embedded component instance X1 / X2.
Generated for each discrete port instance Z1 / Z2.
Generated for assembly connector instance between Z1 and Z2.

Figure 6.14: Generation Template for Translating Assembly Connector Instances

Figure 6.14 shows the generation template for translating assembly connector instances
based on a helper system called communication switch. The communication switch
forwards messages from the sending port structure to the receiving port structure. We
generate exactly one communication switch for each CIC. The communication switch is
connected to a BusCreator and BusSelector. For discrete port instances of an embedded
component instance, we generate one line from the outport of the corresponding port
structure to the BusCreator and one line from the BusSelector to the inport of the corre-
sponding port structure. Then, we use the addresses of the port structures for translating
the assembly connector instance. As an example, consider an assembly between Z1 and
Z2 in Figure 6.14. The port structure Z1 has net_addr A, while the port structure Z2 has
net_addr B. As a consequence, the recv_net_addr of Z1 is B while the recv_net_addr of Z2 is
A. We explain the behavior of the communication switch in more detail in Section 6.3.3.3
and describe how the communication switch enables to reconfigure assembly connector
instances in Section 6.5.
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Legend:
Generated once for the structured component instance.
Generated for each embedded component instance X.
Generated for each discrete port instance Z1 of structured component instance.
Generated for each discrete port instance Z2 of embedded component instance.
Generated for delegation connector instance originating from Z1.

Figure 6.15: Generation Template for Translating Delegation Connector Instances
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Figure 6.15 shows the generation template for translating delegation connector instances
based on the communication switch and an additional helper system called delegation
switch. The delegation switch is responsible for forwarding messages that have been
received (or sent) by a port structure of the structured component subsystem to the re-
ceiving (or sending) port structure of an embedded subsystem. For each port instance
Z1 of the structured component instance, we generate one port structure as introduced in
Section 6.3.1 including a delegation switch. The inports and the outport of the port struc-
ture are connected to the delegation switch. The delegation switch, in turn, is connected
to the communication switch in the same fashion as described above for an assembly
connector instance. This enables to treat assembly connector instances and delegation
connector instances identically in our MATLAB-specific reconfiguration controller as
we explain in Section 6.5. Then, we use the addresses of the port structures for translat-
ing the delegation connector instance. As an example, consider a delegation between Z1

and Z2 in Figure 6.15. The delegation switch has net_addr A, while the port structure Z2

has net_addr B. As a consequence, the recv_net_addr of the delegation switch is B while
the recv_net_addr of Z2 is A. We explain the behavior of the delegation switch in more
detail in Section 6.3.3.4.

6.3.3 Using Message-Based Communication

This section describes how we emulate message-based communication in Simulink. In
particular, we explain the encoding of messages (Section 6.3.3.1) and the behavior of
the helper blocks, namely of the link layer (Section 6.3.3.2), the communication switch
(Section 6.3.3.3), and the delegation switch (Section 6.3.3.4). For a detailed descrip-
tion of the internal implementation of the helper blocks, we refer to our technical re-
port [HRB+13] and the thesis of Volk [Vol13].

6.3.3.1 Encoding Messages

Since Simulink does not support asynchronous messages that are exchanged by discrete
component instances in MECHATRONICUML, we need to define an encoding based
on signals in Simulink. We encode messages as tuples consisting of six signals: a
package ID, a message ID, a parameter value, a sender ID, a receiver ID, and a times-
tamp [HPR+12]. The message ID is a uniquely identifiable integer that represents a
particular message type of the MECHATRONICUML model. We need to use an integer
encoding because Simulink does not support strings. The parameter encodes a single
parameter value. The sender ID is the address of the port structure sending the message,
while the receiver ID denotes the address of the message receiver. The package ID is
an incrementing integer ID that numbers the messages that are exchanged between two
port structures. We utilize this field for detecting lost messages as we explain in Sec-
tion 6.3.4. The timestamp refers to the point in time where the message was sent based
on the simulation time. We use this value for simulating message delay and identifying
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messages that arrive too late. In Simulink, we implement the six-tuple for a message by
means of a bus signal with six entries [HRB+14].

In MECHATRONICUML, a message may define more than one parameter. Since our
encoding only considers one parameter for each message in Simulink, messages with
more than one parameter need to be split into several messages [HRB+14]. As an ex-
ample, consider the message update that is sent by the port instance refDistProvider of rg1

in Figure 3.103. This message is split into two consecutive messages where the first one
contains the value for the distance parameter and the second message contains the value
for the speed parameter.

6.3.3.2 Link Layer

For each discrete port instance of an atomic component instance in MECHATRONIC-
UML, we obtain a port structure and a link layer subsystem that is connected to the port
structure as described in Section 6.3.1.1. The link layer serves as a middleware between
the application-layer component behavior contained in the Stateflow chart and the net-
work infrastructure. Upon creation of the platform-specific model for the system, the
link layer needs to be replaced by the middleware for the system that implements the
interfaces to the networking hardware.

In the following, we describe the behavior of the link layer based on the generation
template shown in Figure 6.7. If a message arrives via port_in at the link layer, the
link layer reads the message from the bus signal and checks whether it is the intended
receiver by comparing the receiver ID in the message with its own net_address. Then,
the message is stored in the message buffer for incoming messages. The message buffer
is implemented by two arrays; one for message IDs and one for parameter values. These
arrays are then sent to the Stateflow chart using the signals write_event_queue_in and
write_event_param_queue_in. Then, the Stateflow chart may consume messages from
these signals as we explain in Section 6.4.2. The modified buffer is sent back to the link
layer such that the link layer may keep track of the current buffer status. If the Stateflow
chart sends a message, it adds the message to the z_WriteOut and z_ParamWriteOut queues
that are defined analogously to the queues for received messages. Then, the link layer
reads these queues and successively sends the messages via port_out.

The idea and concept for the link layer subsystems and the encoding of messages has
been reused from Henke et al. [HTS+08b]. In their approach, each discrete component
only used one such link layer subsystem that was shared by all of the port instances. As a
result, the Stateflow chart needed to know the address of the receiving port structure. We
reimplemented their concept such that we use one dedicated link layer for each discrete
port instance of our MECHATRONICUML model, which corresponds to the semantics
of MECHATRONICUML where each discrete port instance has its own message buffer.
In addition, we extended the link layer such that it considers the QoS assumptions of

3refDistProvider implements the role provider of the RTCP DistanceTransmission introduced in Section 2.4.1



Page 192 Chapter 6

MECHATRONICUML (cf. Section 6.3.4). In our approach, the Stateflow chart is inde-
pendent of the net_address and receiver_new_address and, thus, of the concrete network
infrastructure.

6.3.3.3 Communication Switch

The communication switch shown in the middle of Figure 6.14 is responsible for routing
messages from the sender port structure to the receiver port structure. Thus, its serves
as a virtual networking infrastructure [HPR+12]. Upon creation of the platform-specific
model of the system, the communication switch is replaced by the networking hardware
(or a simulation model of it).

The behavior of the communication switch is as follows: For each message in inBus, it
reads the receiver ID and writes the message to the corresponding field in outbus that is
connected to the receiving port structure. The communication switch learns automati-
cally which field in outbus belongs to which receiver ID. First, the order of IDs in inBus

and outBus are the same. That means, if a message is contained in inBus, the communi-
cation switch learns the ID of the port structure by reading the sender ID of the message.
If a communication switch receives a message whose receiver ID is still unknown to it,
it forwards the message to all unknown receivers. Then, the right receiver will answer
with an acknowledgment and the communication switch may update its information.
This behavior is inspired by the address resolution protocol (ARP, [Plu82]) that is used
in Ethernet networks. It enables to use the same communication switch implementation
for all subsystems that were created for structured component instances and the (inte-
grated) system CIC.

6.3.3.4 Delegation Switch

The delegation switch shown in Figure 6.15 realizes a delegation connector instance be-
tween two discrete port instances by performing a network address translation (NAT,
[SH99]). In our approach, the addresses of the ports are only unique within a subsystem
that corresponds to a structured component instance, i.e., each structured component de-
fines its own private subnet. This enables that we may change connector instances inside
a structured component instance without exposing this change to another component in-
stance thereby retaining component encapsulation. In particular, a component instance
that is connected to a port instance of the structured component instance does not need
to know about the change.

Therefore, the inports extern_net_addr and extern_recv_net_addr of the delegation switch
receive the addresses that are used by the port structure for communicating with another
subsystem outside its boundaries. The inports local_net_addr and local_recv_net_addr de-
fine the addresses for communicating inside the boundaries of the subsystem. If the
delegation switch receives a message via extern_in, this message contains the external
addresses of the port structure. Then, the delegation switch replaces these addresses
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with its local ones, i.e., the sender ID is set to local_net_addr while the receiver ID is set
to local_recv_net_addr.

Consider the generation template shown in Figure 6.15 as an example. The port structure
for Z2 in the embedded subsystem X has the address B, while the delegation switch has
address A. Thus, for any message arriving at the delegation switch via extern_in, the
sender ID is set to A while the receiver ID is set to B. Consequently, the port structure
Z2 has the recv_net_addr A. Then, the message is sent via local_out to the communication
switch that routes the messages to the receiver. Messages that are sent by embedded
component instances are treated in the same fashion, however, the delegation switch
replaces the local addresses with the external ones in this case.

6.3.4 Considering QoS Assumptions

In our translation, we support the QoS assumptions that are defined for MECHATRON-
ICUML (cf. Section 2.4.3). We implemented all of these inside the link layer subsystem
rather than the communication switch, as the communication switch is shared by all
assembly connector instances and these may have different QoS assumptions. By im-
plementing them in the link layer, we may separately configure QoS assumptions for
each assembly.

The link layer implements FIFO buffers using the buffer size specified in the MECH-
ATRONICUML model. Our message buffer implementation guarantees that received
messages are never reordered. We exploit the package ID for this purpose. If the mes-
sage buffer is full, we discard the incoming message, i.e., the message buffer does not
change. If the link layer receives a message, it only inserts the message into the message
buffer after the minimum propagation delay has passed. We compare the timestamp of
the message with the current time for computing its current delay. If the message arrives
after the maximum propagation delay, it is dropped and considered as lost. Then, this
message loss needs to be handled by the component RTSC.

In addition, our implementation considers message loss with a given message loss per-
centage ϑ for simulating unreliable channels. Then, the link layer randomly drops an
incoming message with probability ϑ. In addition, the link layer configures how a mes-
sage loss is treated. First, we can ignore message loss similar to the user datagram
protocol (UDP, [Pos80]). Second, we can detect the lost messages and retransmit them
as in the transmission control protocol (TCP, [IETF81]). If the link layer receives a mes-
sage with package ID x, it sends an acknowledgment with x back to the sender. If the
sender does not receive the acknowledgment within a timeout period, it sends the mes-
sage again. The resending terminates if the message can no longer reach the receiver
before the maximum propagation delay expires.

We refer to our technical report [HRB+14] for a more detailed description of the imple-
mentation of the QoS assumptions in the link layer.
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6.4 Translating Real-Time Statecharts to Stateflow Charts

This section defines the translation of RTSCs to Stateflow charts and, thus, covers Step 7
of the algorithm shown in Figure 6.5. We reason that our translation preserves the seman-
tics of RTSCs based on the informal description of the semantics of Stateflow provided
in the online documentation [Mata].

In the course of this section, we illustrate most parts of the translation based on an ex-
ample. In particular, we use an excerpt of the Stateflow chart shown in Figure 6.16
that is generated for the RTSC of the component instance rg1 of type RefGen (cf. Ap-
pendix A.5.1.5). The Stateflow chart shows the translation of the region refDistProvider

that defines the behavior of the refDistProvider port instance4. We explain the figure in
detail in the subsequent subsections and provide explicit generation templates for com-
plex parts of the translation where no 1:1 correspondence between MECHATRONICUML
model element and Stateflow model element exists. An extensive formalization of the
transformation based on triple graph grammars (TGGs, [Sch95]) is given in our technical
report [HRB+14].

In the following, we first introduce the basic concepts of the transformation (Section
6.4.1). Thereafter, we describe in more detail how message-based communication (Sec-
tion 6.4.2), clocks (Section 6.4.3), urgency (Section 6.4.4), RTSCs of multi ports (Sec-
tion 6.4.5), and synchronizations (Section 6.4.6) may be translated to Stateflow. In this
section, we only provide a brief overview of the concepts of the translation. We refer to
our technical reports [HRB+13, HRB+14] for a detailed description of the translation.

6.4.1 Basic Transformation Concepts

We reuse the basic parts of the transformation from RTSCs to Stateflow charts from a
previous approach by Steinke [Ste07]. In particular, we translate states to states, tran-
sitions to transitions, and initial states to initial states. Furthermore, we encode parallel
regions by parallel substates in Stateflow.

For the RTSC of the component RefGen, we obtain one state RefGen_Main that embeds
five parallel states that correspond to the five embedded regions. Thus, we have one
parallel state for each of the four port instances (refDistProvider, prev, next, and profileRe-

ceiver) and one for the internal behavior. In addition, the parallel state refDistProvider

contains states Idle, SendUpdate, and AwaitAck that correspond to the eponymous states
of the port RTSC. We omitted the internals of the remaining parallel states to improve
readability of the figure.

For each transition in the RTSC, we obtain a corresponding transition in Stateflow as,
e.g., for the transition from Idle to SendUpdate. An exception are transitions with dead-
lines such as from SendUpdate to AwaitAck as we explain in Section 6.4.3. In Stateflow,

4refDistProvider refines the subport behavior of the role provider shown in Figure 2.15 on Page 49



Simulating Self-Adaptive Mechatronic Systems in MATLAB/Simulink Page 195

R
ef

G
en

_M
ai

n

2
in

te
rn

al
_b

eh
av

io
r

eM
[e

vt
Q

ue
ue

,p
ar

am
Q

ue
ue

,p
ar

am
et

er
]=

r1
_d

eq
ue

ue
(e

ve
nt

,e
vt

Q
ue

ue
In

,p
ar

am
Q

ue
ue

In
)

eM
[e

vt
Q

ue
ue

,p
ar

am
Q

ue
ue

]=
r1

_e
nq

ue
ue

(e
ve

nt
,e

vt
Q

ue
ue

In
,p

ar
am

,p
ar

am
Q

ue
ue

In
)

eM
av

ai
la

bl
e

=
r1

_c
he

ck
Q

ue
ue

(e
ve

nt
,e

vt
Q

ue
ue

)

eM
cl

oc
k

=
re

se
t()

eM
lo

gi
ca

lT
im

e
=

tim
e(

cl
oc

k)
eM

in
va

ria
nt

()

1
re

fD
is

tP
ro

vi
de

r

S
en

dU
pd

at
e_

A
w

ai
tA

ck
_D

ea
dl

in
e_

1
en

try
:[

ne
w

D
is

t,
ne

w
S

pe
ed

]=
ca

lc
ul

at
eR

ef
V

al
ue

s(
);

Id
le

en
try

:s
en

dA
va

ila
bl

eR
ef

D
is

tP
ro

vi
de

rId
le

S
en

dU
pd

at
e

=
tru

e;
ex

it:
se

nd
A

va
ila

bl
eR

ef
D

is
tP

ro
vi

de
rId

le
S

en
dU

pd
at

e
=

fa
ls

e;

[ti
m

e(
cD

ea
d)

>=
30

]
{[r

1_
W

rit
eO

ut
,r

1_
P

ar
am

W
rit

eO
ut

]=
r1

_e
nq

ue
ue

(E
V

T_
U

P
D

A
TE

_N
E

W
D

IS
T,

r1
_W

rit
eO

ut
,d

ou
bl

e(
di

st
an

ce
),

r1
_P

ar
am

W
rit

eO
ut

);
[r1

_W
rit

eO
ut

,r
1_

P
ar

am
W

rit
eO

ut
]=

r1
_e

nq
ue

ue
(E

V
T_

U
P

D
A

TE
_N

E
W

S
P

E
E

D
,

r1
_W

rit
eO

ut
,d

ou
bl

e(
sp

ee
d)

,r
1_

P
ar

am
W

rit
eO

ut
);}

[r1
_c

he
ck

Q
ue

ue
(E

V
T_

A
C

K
,r

1_
R

ea
dO

ut
)&

&
_l

as
t]

{[r
1_

R
ea

dO
ut

,r
1_

P
ar

am
R

ea
dO

ut
,p

ar
am

1]
=

r1
_d

eq
ue

ue
(E

V
T_

A
C

K
,

r1
_R

ea
dO

ut
,r

1_
P

ar
am

R
ea

dO
ut

);}

S
en

dU
pd

at
e

A
w

ai
tA

ck

In
v_

E
rr

or
en

try
:i

nv
ar

ia
nt

()

se
nd

{c
1

=
re

se
t()

;}

{c
D

ea
d

=
re

se
t()

;}

{ti
m

e(
cD

ea
d)

>
10

;}
{ti

m
e(

c1
)>

50
;}

{ti
m

e(
c1

)>
10

;}

[r1
_c

he
ck

Q
ue

ue
(E

V
T_

A
C

K
,r

1_
R

ea
dO

ut
)&

&
se

nd
_n

ex
tA

va
ila

bl
eN

ex
tId

le
Id

le
]

{[r
1_

R
ea

dO
ut

,r
1_

P
ar

am
R

ea
dO

ut
,p

ar
am

1]
=

r1
_d

eq
ue

ue
(E

V
T_

A
C

K
,

r1
_R

ea
dO

ut
,r

1_
P

ar
am

R
ea

dO
ut

);
se

nd
(s

en
d_

ne
xt

,n
ex

t);
}

3
pr

ev
4

ne
xt

5
pr

of
ile

R
ec

ei
ve

r

eM
[d

is
t,

sp
ee

d]
=

ca
lc

ul
at

eR
ef

V
al

ue
s(

)

Figure 6.16: Stateflow Chart for the Subsystem rg1
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the transition specifies a guard in square brackets and an action in curly brackets compa-
rable to MECHATRONICUML. We translate the guard conditions and transition actions
that are specified using the action language of MECHATRONICUML to corresponding
expressions in Stateflow.

Variables of RTSCs are translated to local data variables in Stateflow. We use the same
name and data type as in the MECHATRONICUML model. Operations become embed-
ded MATLAB functions of the same name. We translate the expressions contained in
the body of the operation into an equivalent embedded MATLAB script. Entry- and
exit-actions of states in MECHATRONICUML are translated to corresponding entry and
exit behavior of Stateflow states.

6.4.2 Message-Based Communication

For realizing message-based communication in Stateflow, the Stateflow chart must op-
erate on the message buffers that are provided by the link layer subsystems as described
in Section 6.3.3. We reuse the approach by Tichy et al. [THB+10] that uses three em-
bedded MATLAB functions named checkQueue, enqueue, and dequeue for operating on
the message buffers as shown in Figure 6.17. However, we need to adjust the functions
according to the changes in the link layers (cf. Section 6.3.3) such that the functions
respect the FIFO property of our message buffers.

The function checkQueue checks whether a particular message is at the first position in
our FIFO in-buffer. If so, it returns true, otherwise it returns false. The function dequeue

removes the message that is located at the first position of the in-buffer and returns the
parameter value contained in the message. Finally, enqueue adds a message including a
parameter to the out-buffer. We generate these functions once for each port RTSC that
is embedded in the component RTSC. The function names are prefixed with the name of
the corresponding discrete port instance. In our example in Figure 6.16, we obtain the
functions r1_checkQueue, r1_dequeue, and r1_enqueue for the port instance r1.

We use these three functions at the transitions of the Stateflow chart for processing
messages that appear at the transitions of the port RTSC. As defined in our genera-
tion template in Figure 6.17, we use the function X_checkQueue in the transition guard
for checking whether a received message is contained in the in-buffer. As a result, the
transition is only enabled if the message is present, which corresponds to the semantics
of RTSCs. The message is encoded by an integer constant EVT_Y1 where Y1 is the name
of the message in MECHATRONICUML. If the transition fires, the transition action calls
X_dequeue to consume the message. This call needs to be the first one in the action be-
cause the value of the message parameter needs to be available for the remainder of the
transition action. The value of the message parameter is assigned to a variable param1.
If the message had no parameter in MECHATRONICUML, the returned parameter value
is 0 and the variable is not further used. Then, the message parameter may be used in
the remaining action by accessing the corresponding variable. This is compliant to the
semantics of MECHATRONICUML. If a transition of the port RTSC sends a message Y1,
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A B

[X_checkQueue(EVT_Y1, X_ReadOut)]
{[X_ReadOut, X_ParamReadOut, param1] =

X_dequeue(EVT_Y1, X_ReadOut, X_ParamReadOut);
[X_WriteOut, X_ParamWriteOut] =

X_enqueue(EVT_Y2, X_WriteOut, param, X_ParamWriteOut);}

eM [evtQueue, paramQueue, parameter] =
X_dequeue(event, evtQueueIn, paramQueueIn)

eM [evtQueue, paramQueue] =
X_enqueue(event, evtQueueIn, param, paramQueueIn)

eM available = X_checkQueue(event, evtQueue)

Legend:
Generated for each transition from A to B.
Generated for each port RTSC X that can receive messages.
Generated for each port RTSC X that can send messages.
Generated for each received message Y1.
Generated for each sent message Y2.

Figure 6.17: Generation Template for Translating Sent and Received Messages of Tran-
sitions to Stateflow

we invoke the X_enqueue function in the transition action. As parameters, we pass the
integer constant EVT_Y2 and, optionally, the value of a message parameter. The calls of
X_enqueue are placed behind the remaining statements of the transition action such that
the message is sent after executing the transition action. This complies to the semantics
of RTSCs. If the corresponding message in MECHATRONICUML has more than one
parameter, then it is split into several messages as explained in Section 6.3.3.1. Then,
we add one call to X_checkQueue, X_dequeue, and X_enqueue for each of the resulting
messages.

In our example in Figure 6.16, consider the upper transition from AwaitAck to Idle. This
transition needs to process the received message ack. Therefore, we invoke r1_check-

Queue in the transition guard for checking whether the ack message, encoded by the
integer constant EVT_ACK, is contained in the in-buffer. In the transition action, we
invoke r1_dequeue for consuming the message. Since ack has no parameters, param1 is
0 in this case and is not further used in the transition action. In addition, consider the
transition from SendUpdate_AwaitAck_Deadline_1 to AwaitAck. This transition needs to
send the message update that has two parameters newDist and newSpeed. Thus, we invoke
r1_enqueue twice in the transition action. The first invocation enqueues a message with
the ID EVT_UPDATE_NEWDIST that contains the newDist parameter of update. As a value
of the parameter, it passes the variable distance to the enqueue function. The second
invocation enqueues a message with the parameter newSpeed in the same fashion.

The functions X_enqueue and X_dequeue always need to return the message buffers that
they modified. These are then assigned by the transition action to the outports of the
chart block due to the call-by-value semantics of Stateflow.
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6.4.3 Clock Concept

We translate clocks of RTSCs to variables in Stateflow as proposed by Steinke [Ste07].
However, we decided to develop a new concept how these variables are used. In her
approach, all clock variables are incremented by 1 each time the Stateflow chart is eval-
uated. As a consequence, it is mandatory to execute the Stateflow chart with a fixed
sample time of 1 ms and the chart needs to be aware of its own sample time. In contrast,
our approach uses the clockSignal that is attached to a digital clock block in Simulink (cf.
Figure A.95). This block provides the current simulation time in milliseconds (and may
be connected to the system clock in a real system). Thereby, the RTSC becomes inde-
pendent of its sample time. That, in turn, enables to change the sample time of the RTSC
when creating a platform-specific model including, e.g., a task mapping and scheduling
for the RTSC [BGS05, But05].

In our approach, clocks are reset by calling the function reset. It simply returns the
current value of clockSignal that is assigned to the clock variable. Then, the current value
of the clock is obtained by calling time which returns the difference between clock signal
and the value of the clock variable. As in MECHATRONICUML, the result is the time
that has passed since the last reset. Time guards are then translated to normal guards in
Stateflow using the function time. Then, the transition may only fire if the time guard is
fulfilled, which retains the semantics of RTSCs. The values of the time constraints in
MECHATRONICUML are converted to ms.

Stateflow provides no concept that is comparable to invariants of states in MECHA-
TRONICUML. However, a violation of an invariant indicates an error in the model. In
accordance to Steinke [Ste07], we add an error location, called Inv_Error in Figure 6.16,
to the chart that models a violation of an invariant. For each state that has an invariant,
we create a transition from that state to Inv_Error as, e.g., for the state SendUpdate in Fig-
ure 6.16. The transition contains a guard that corresponds to the negated time constraint
of the invariant, i.e., whenever the invariant is not fulfilled, the transition to the error
location fires. This is compliant to the semantics of RTSCs.

In Stateflow, transitions fire in zero time as in timed automata. Therefore, we map
transitions with deadlines to two transitions with an intermediate state as shown in Fig-
ure 6.18 as it has been defined for mapping RTSCs to timed automata [GB03, Ger13].
For each transition from A to B that has a deadline, we generate an intermediate state
A_B_Deadline including transitions from A to A_B_Deadline and from A_B_Deadline to B.
The transition from A to A_B_Deadline specifies the precondition of the original transition
resets an additional clock called cDead. The transition from A_B_Deadline to B specifies
the original transition’s effect including a guard that specifies that cDead is greater or
equal to the lower bound α of the deadline. Furthermore, we need to add a transition
from A_B_Deadline to Inv_Error for resolving the invariant of A_B_Deadline that results
from the transformation and described by Giese and Burmester [GB03]. In particular,
this transition will fire if cDead is greater than the upper bound β of the deadline.
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A_B_DeadlineA B{cDead = reset();} {time(cDead) >= α;}

Inv_Error
entry: invariant()

{time(cDead) > β;}

Legend:
Generated once for an RTSC.
Generated for source and target state A / B.
Generated for each transition with deadline [α;β].

Figure 6.18: Generation Template for Translating Transitions with Deadline to Stateflow

In our example in Figure 6.16, the state SendUpdate_AwaitAck_Deadline_1 including the
transitions from SendUpdate and to AwaitAck resulted from mapping a transition with
deadline based on the generation template in Figure 6.18.

6.4.4 Urgency

In each simulation step, Stateflow checks the active states in a chart for enabled outgoing
transitions. If a transition is enabled, it is immediately fired. This corresponds to the
semantics of urgent transitions in RTSCs (cf. Section 2.4.2). Non-urgent transitions are
not supported by Stateflow and can, thus, not be preserved by our translation. Due to
Stateflow’s semantics, we restrict the time intervals where non-urgent transitions may
fire. Thus, our translation preserves the behavior according to a timed ready simulation
(cf. Section 5.2). As a consequence, all verified ATCTL properties still hold for the
Stateflow chart and we retain all urgent transitions. Properties that contain existential
quantifiers need to be rechecked in Stateflow using test cases that need to be defined in
Step S5.3 of our process in Figure 6.4.

If a state is urgent in the RTSC, then the corresponding Stateflow chart may not rest in
this state and wait for the next simulation step. Therefore, we translate urgent states to
connective junctions in Stateflow. This retains the semantics of MECHATRONICUML
because no time passes in Stateflow until the connective junction is left.

6.4.5 Real-Time Statecharts of Multi Port Instances

In MECHATRONICUML, a multi port instance contains a set of subport instances where
each subport instance executes the behavior defined by the subport RTSC (cf. Sec-
tion 2.4). As an example, consider the multi port instance of type coordinator shown in
Figure 6.19 that is implemented by the component instance cm of type ConvoyManage-

ment (cf. Figure 3.5). It contains two subport instances and, thus, the RTSC for this
multi port instance executes two copies of the subrole RTSC.

As a consequence, the Stateflow chart needs to contain corresponding subport charts
for all subport instances. That means, we need to replicate the subport RTSC for each
subport instance. This replication is performed before translating the RTSC to Stateflow.
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c1:coordinator

c2:coordinator

«first»

«next»

«last»

Coordinator_Main
adaptation

subrole_c1

subrole_c2

Figure 6.19: Multi Port Instance with Resulting RTSC

6.4.6 Synchronizations

We translate synchronizations used at transitions of a RTSC to signal events in Stateflow
as proposed by Steinke [Ste07]. However, we significantly extended the transformation
because the concept by Steinke does not retain the semantics of MECHATRONICUML.
In particular, Steinke’s concept did not prevent that the transition that initiates the syn-
chronization fires even though the receiving transition cannot fire. We introduce our
new concept for translating plain synchronizations in Section 6.4.6.1. In addition, we
extend the concept such that it supports selector expressions of synchronizations in Sec-
tion 6.4.6.2.

6.4.6.1 Plain Synchronizations

For each synchronization channel, we create a signal event with the channel’s name in
Stateflow. Synchronizations that may appear at the transitions of an RTSC are trans-
lated to Stateflow based on the generation template shown in Figure 6.20. Basically,
the receiving transition waits for the signal event sync while the initiating transition re-
ceives a send operation that sends the signal event sync to RegB. Sending the signal event
needs to be the very last statement in the transition action. This is because upon send-
ing, Stateflow immediately switches to the receiving transition and completely executes
it before finishing to execute the sending transition. If sending the signal event is the
last statement, we guarantee that the transition action of the sending transition is com-
pletely executed prior to executing the transition action of the receiving transition. This
preserves the semantics of synchronizations in RTSCs.

In our example in Figure 6.16, the transition from Idle to SendUpdate receives the signal
event send that corresponds to the synchronization send in Figure A.38 on Page A-36.
The lower transition from AwaitAck to Idle sends the signal event send_next to the parallel
state next.

In contrast to RTSCs, the transition sending a signal event does not block in Stateflow
if there is no receiving transition that may fire. Therefore, we need to block the sending
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RegB

RegA

1

2

C
entry: α = enablingConditionC_D;
during: α = enablingConditionC_D;
exit: α = false;

D

A B
[α == true]

{send(sync, RegB)}

sync

Legend:
Generated based on rules for states and regions.
Generated for each outgoing transition that receives sync.
Generated additionally for transitions that receive sync.
Generated additionally for each transition that initiates sync.

Figure 6.20: Generation Template for Translating Transitions with Plain Synchroniza-
tions to Stateflow

transition using an additional transition guard until a receiving transition becomes en-
abled. For each transition that may receive a synchronization in the RTSC, we create one
Boolean variable α in Stateflow that encodes whether the transition may fire as shown
in Figure 6.20. Then, we add a transition guard to the sending transition that checks
whether α is true. Thus, the sending transition is blocked until there exists a receiving
transition that may fire. For plain synchronizations, the value of α corresponds to the
enabling condition of the receiving transition, i.e., it is the conjunction of the following
conditions: the source state is active, the transition guard of the transition is fulfilled, the
time guard is fulfilled, and the trigger message is available in the message buffer. We
assign the conjunction of these conditions to α in the entry action of the source state of
the receiving transition and periodically update α in the during action. If the source state
of the receiving transition is left, we set α to false in the exit action. If there exists more
than one receiving transition, we need to replicate the transition from A to B for each re-
gion that contains a possible receiving transition using the α associated to this receiving
transition in the transition guard. Please refer to our technical report [HRB+14] for a
detailed discussion of this translation step.

In our example in Figure 6.16, the state Idle contains a variable α1 = sendAvailableRefDist-

ProviderIdleSendUpdate. Since the transition from Idle to SendUpdate in Figure A.38 only
specifies the synchronization in its enabling condition, we only assign true to indicate
that the outgoing transition to SendUpdate may fire. We may omit the during action in
this case because the value of α1 may never change. In addition, consider the lower
transition from AwaitAck to Idle. This transition sends the signal event send_next to the
hierarchical state next. Thus, it uses the variable α2 = send_nextAvailableNextIdleIdle in
its transition guard that defines whether the receiving transition inside the next state may
fire.
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6.4.6.2 Synchronization with Selector

RTSCs support two types of selectors that we need to handle in our translation. These are
integer and port while the latter only applies to multi port RTSCs (cf. Section 2.4). These
impose an additional condition on whether two transitions may synchronize. The basic
transformation of synchronizations with selector is identical to plain synchronizations,
but we need to generate five additional constructs [HRB+14] when using selectors as
shown in Figure 6.21. The additional constructs are generated as follows:

1. We need to generate a variable β that encodes the selector expression of the receiv-
ing transition.

2. We add an additional entry action to the source state of the receiving transition that
assigns the value of the selector expression to β. As for α, we need to update β

periodically in the during action of the source state.

3. We extend the guard condition of the sending transition by a conjunction of α with
a comparison of β to the selector expression of the sending transition. As a result,
the initiating transition may only fire if there is a receiving transition that is enabled
and that has the same selector expression.

4. We add one additional variable γ for each synchronization channel with selector.
Just before sending the signal event, the sending transition assigns the value of its
own selector expression to γ.

5. We need to add a guard condition to each receiving transition that checks if β is
equal to γ. This check is necessary to ensure that only the transition with the right
selector expression may fire.

RegY

RegX

1

2

C
entry: α = enablingConditionC_D;

β = selectorExpressionC_D;
during: α = enablingConditionC_D;

β = selectorExpressionC_D;
exit: α = false;

D

A B

[α == true && β == selectorExpressionA_B]
{γ = selectorExpressionA_B;

send(sync, RegB)}

sync
[β == γ]

Legend:
Generated based on rules for states and regions.
Generated for each outgoing transition that receives sync.
Generated additionally for transitions that receive sync.
Generated additionally for each transition that initiates sync.
Generated additionally for the selector expression of transition that receives sync.
Generated additionally for the selector expression of transition that initiates sync.

Figure 6.21: Generation Template for Translating Transitions with Synchronizations
with Selectors to Stateflow
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We illustrate these constructs in more detail using the example shown in Figure 6.22. The
example shows a small excerpt of the Stateflow chart that is obtained by translating the
component RTSC of Switch (cf. Figure 5.3c) that is shown in Figure A.40 to Stateflow.
In particular, we consider the transitions from WaitForTrack to CheckRequest in the region
left that receive the synchronization sectionFree and the transition from Notify to Idle in
the region followingSection that initiates the synchronization sectionFree.

left

followingSection

1

2

WaitForTrack
entry: syncAvailableLeftWaitForTrackCheckRequest1 = true;

syncAvailableLeftWaitForTrackCheckRequest2 = true;
selCondLeft_WaitForTrack_CheckRequest1 = (0);
selCondLeft_WaitForTrack_CheckRequest2 = (1);

exit: syncAvailableLeftWaitForTrackCheckRequest1 = false;
syncAvailableLeftWaitForTrackCheckRequest2 = false;

CheckRequest

sectionFree
[syncAvailableLeftWaitForTrackCheckRequest2 ==

sendSelCond_sectionFree]

Idle Notify

[(syncAvailableLeftWaitForTrackCheckRequest1 &&
(selCondLeft_WaitForTrack_CheckRequest1 == (status))) ||

(syncAvailableLeftWaitForTrackCheckRequest2 &&
(selCondLeft_WaitForTrack_CheckRequest2 == (status)))]

{sendSelCond_sectionFree = status; send(sectionFree, left); }

sectionFree
[syncAvailableLeftWaitForTrackCheckRequest1 ==

sendSelCond_sectionFree]

21

Figure 6.22: Example of Using Transitions with Synchronizations with Selectors in
Stateflow

Since sectionFree uses a selector of type int, we need to apply the generation template
shown in Figure 6.21 to the aforementioned transitions. As a result, we obtain two vari-
ables α1 = syncAvailableLeftWaitForTrackCheckRequest1 and α2 = syncAvailableLeftWait-

ForTrackCheckRequest2. α1 is associated to the left transition from WaitForTrack to Check-

Request while α2 is associated to the right transition from WaitForTrack to CheckRequest.
Since both transitions only specify the synchronization in their enabling conditions, we
set both variables to true in the entry action of WaitForTrack. Since the values of α1 and α2

cannot change, we omit the during action. In addition, we obtain two variables β1 = sel-

CondLeft_WaitForTrack_CheckRequest1 and β2 = selCondLeft_WaitForTrack_CheckRequest2

(Construct 1). We assign the selector expressions of the corresponding transitions to β1
and β2 in the entry action of WaitForTrack (Construct 2). Thus, we assign 0 to β1 and 1

to β2. Again, we may omit the during action because β1 and β2 have constant values in
this example.

The transition guard of the transition from Notify to Idle compares the values of β1 and β2
to the variable status that is used as a selector expression by this transition (Construct 3).
Thus, the transition may only fire if the value of status equals either β1 or β2. In ad-
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dition, we generate one variable γ = sendSelCond_sectionFree for the synchronization
channel sectionFree. Then, we assign the value of status to γ in the transition action of
the transition from Notify to Idle (Construct 4).

Finally, we add a guard condition to each transition from WaitForTrack to CheckRequest

(Construct 5). Considering the left transition, this guard compares β1 (= selCondLeft_-

WaitForTrack_CheckRequest1) and γ (= sendSelCond_sectionFree). If we omitted this
guard condition, the transition from Notify to Idle could synchronize with either of the
transitions from WaitForTrack to CheckRequest in Stateflow irrespective the value of the
selector expression. By using the additional guard, we retain MECHATRONICUML’s
semantics of synchronization channels with selectors in Stateflow.

Please note that the transition from Notify to Idle needs to be replicated for each region
that contains a transition that may receive sectionFree as described in Section 6.4.6.1. As
a result, we obtain three transitions from Notify to Idle in Stateflow that send sectionFree to
the hierarchical states resulting from the regions left, right, and bottom of the component
RTSC, respectively.

Selectors of type port refer to the order of the multi port instance. As an example, con-
sider the multi port instance of type coordinator shown in Figure 6.19. The order defines
that c1 is the first subport instance while c2 is the last subport instance. In addition, c2 is
the direct successor of c1. In the RTSC of the multi port, we may refer to the order using
the keywords first, last, next, prev, and self as defined in Section 2.4. In Stateflow, we need
to encode this order explicitly into the chart using integers. The reason is that Stateflow
does not enable to define such order based on the resulting states. The resulting encoding
is inspired by the representation of multi port instances as proposed by Hirsch [Hir08].

We generate one variable η for each subport RTSC that encodes the position of the
subport. We start numbering the subport instances with 1. In our example, we obtain
variables η1 = subport_c1_pos and η2 = subport_c2_pos. The values of these variables
encode the order, i.e., subport_c1_pos = 1 and subport_c2_pos = 2. Then, we replace each
occurrence of self by η for each subport RTSC. In addition, we may replace next by η+1

and prev by η−1. Next, we replace first by 1 because the first subport instance always has
position 1. Finally, we need to generate an additional variable numOfSubports that de-
notes the currently instantiated number of subport instances. Then, last may be replaced
by numOfSubports. Thereby, we yield an integer encoding of the selector expressions
and we may translate them to Stateflow using the rules for selectors of type integer as
defined above.

6.5 Translating Reconfiguration Specifications to Simulink
and Stateflow

This section describes how we translate the reconfiguration controller and the CSDs,
which define reconfiguration behavior in MECHATRONICUML, to Simulink. Thus, this
section covers Steps 1 to 5 of the algorithm shown in Figure 6.5. In the following, we
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introduce these steps in more detail in the order given by the algorithm. In addition,
we describe how the MATLAB-specific reconfiguration controller may be represented
in Simulink and how reconfiguration of port instances may be realized in Stateflow as
part of Steps 6 and 7 of our algorithm.

6.5.1 Step 1: Compute Possible Configurations

In Step 1 of the algorithm, we compute the possible configurations for each (reconfig-
urable) component that is used in the MECHATRONICUML model. We compute these
configurations by applying a reachability analysis [HSE10] using our framework (cf.
Appendix C). The inputs for reachability analysis are (1) the initial configurations of
the component as defined by its constructors (cf. Section 3.3.1) and (2) all CSDs defin-
ing the possible reconfigurations. The result of the reachability analysis is a reachability
graph where each node corresponds to a possible configuration and where each transition
corresponds to the application of a CSD.

Figure 6.23 shows an excerpt of the reachability graph for the structured component
ConvoyCoordination shown in Figure 3.5 on Page 63. The states of the reachability graph
are represented by rounded rectangles. In our example, we have two states config1 and
config2 and three transitions. config1 is the initial state of the reachability graph. We mark
the initial states analogously to RTSCs by using a filled black circle with a transition to
the initial state.

Each state contains a CIC of ConvoyCoordination. config1 contains the initial configu-
ration that is created by the constructor instantiate1Member shown in Figure A.55. We
mark the initial state with the constructor that was used for creating it. config2 con-
tains the configuration for two convoy members that results from applying the CSD ad-

dConvoyMemberAtPos to the configuration contained in config1. We label the transitions
between configurations with the CSD that was applied. By repeatedly applying addCon-

voyMemberAtPos, we may generate additional configurations, each adding one additional
member to the convoy. For the remainder of this section, we restrict ourselves to config1

and config2 for sake of simplicity.

Computing the possible configurations of a component requires that the number of con-
figurations is finite. Otherwise, the reachability analysis will not terminate. In our ex-
ample, ConvoyCoordination has an infinite number of configurations because RefGen and
the coordinator multi port may be instantiated arbitrarily often (cf. Figure 3.5). We have
two options for ensuring that the reachability analysis terminates. First, we may restrict
cardinalities and, second, we may use a depth limitation that prunes branches of the
reachability graph if they reach the depth limit. In our example, it is sufficient to provide
a finite upper bound either for the cardinality of the RefGen multi part or of coordinator

multi port because both cardinalities imply each other. This is because the CSD shown
in Figure 3.14 creates both in the same component story pattern.
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config1
addConvoyMemberAtPos()instantiate1Member()

: ConvoyCoordination

cm / man :
ConvoyManagement

rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

: ConvoyCoordination

cm / man :
ConvoyManagement

rg1 / refGen : RefGen

:prev

:next

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

c2:coordinator c2:coordinator

rg2 / refGen : RefGen
r2:refDistProvider :refDistProvider

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider p2:profileProvider

:profileReceiver

:profileReceiver

config2
addConvoyMemberAtPos()

...

Figure 6.23: Excerpt of the Reachability Graph for the Component ConvoyCoordination
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6.5.2 Step 2: Create Integrated CIC for Component

The integrated CIC is the superposition of all configurations that appear in the states of its
reachability graph. Thus, it contains the least set of port instances, embedded component
instances, and connector instances that encodes all possibles configurations of instances
of the component. The integrated CIC is the basis for generating the MATLAB-specific
reconfiguration controller in Step 3 (cf. Section 6.5.3) and for creating the integrated
system CIC in Step 5 (cf. Section 6.5.5).

Continuing our example from Figure 6.23, we compute the integrated CIC of Convoy-

Coordination. Since the CSD addConvoyMember only adds component instances, port
instances, and connector instances, the integrated CIC is equivalent to the configuration
contained in config2.

6.5.3 Step 3: Generate the MATLAB-specific Reconfiguration Controller

The MECHATRONICUML reconfiguration controller as introduced in Section 4.1 op-
erates on an implicitly defined model@runtime that is shared between manager, ex-
ecutor, and runtime risk manager. For the translation to Simulink, we need to en-
code the model@runtime manually by enumerating and encoding all configurations of
a component instance based on the reachability graph and the integrated CIC. There-
fore, we extend the reconfiguration controller by a configuration store that encodes the
model@runtime and enables its modification. The configuration store is then integrated
with the manager and executor. This is necessary to enable that the manager reads the
current configuration and to enable that the executor may read and write the current con-
figuration. The runtime risk manager is not yet considered in our simulation approach
but needs to be connected to the configuration store as well for being able to read the cur-
rent configuration. The resulting MATLAB-specific reconfiguration controller is shown
in Figure 6.24.

ConvoyCoordination

RM

reconfMsg

Manager ExecutorRM

RRM

parent

embeddedCI

executor

events RRE embeddedCI

RE

reconfExec
RE

parent

ConfigurationStore

confStore
manager

confStore
executor

Figure 6.24: Integration of the ConfigurationStore in the MATLAB-specific Reconfigura-
tion Controller (cf. [Vol13])

Although we generate the MATLAB-specific reconfiguration controller on the level of
MECHATRONICUML, we only generate it for the translation to Simulink. It restricts the
capabilities of the reconfiguration controller as introduced in Chapter 4 to a fixed and
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finite number of configurations and also the possibility to switch between them. If the
reachability graph of the component has been finite in the first place, we do not restrict
the reconfiguration capabilities of the component. If the reachability graph is, in prin-
ciple, infinite as for ConvoyCoordination (cf. Section 6.5.1), then restrict we restrict the
reconfiguration capabilities but not significantly. This is because the reachability analy-
sis that we use in Step 1 identifies configurations that are isomorphic [HSE10, Ren07],
i.e., where the same embedded component instances, port instances, and connector in-
stances are instantiated. Thus, we only remove configurations where multi ports and
multi parts have unbounded cardinalities, e.g., for interacting with an arbitrary number
of other systems. In our RailCab example, we only restrict the maximum number of
convoy members at runtime, which is a realistic restriction.

Since the configuration store explicitly encodes the model@runtime, manager and ex-
ecutor may no longer directly access the model@runtime but need to communicate with
the configuration store. Therefore, we connect the configuration store to manager and
executor using ports and assembly connectors as shown in Figure 6.24. In addition, we
generate an RTSC for the configuration store that enables the interaction with the man-
ager and the executor and that encodes the model@runtime. We introduce a generation
template for this RTSC in Section 6.5.3.1. In addition, we need to adapt the generation
templates of the manager and the executor (cf. Section 4.4) such that they may interact
with the configuration store.

6.5.3.1 Behavior Specification of the Configuration Store

Figure 6.25 shows the generation template for generating the RTSC of the configura-
tion store of a structured component based on the reachability graph. It consists of
two regions named executor and manager. The former encodes the model@runtime and
implements the communication with the executor while the latter implements the com-
munication with the manager. Figure 6.26 shows the executor region that has been gen-
erated for the component ConvoyCoordination based on the reachability graph shown in
Figure 6.23.

The RTSC in the executor region always contains one initial state named Initial. The
remainder of the RTSC is generated based on the reachability graph. In essence, the
RTSC encodes the reachability graph. For each state of the reachability graph, we gen-
erate one blue state named StateX that has a unique ID with a corresponding operation
establishConfigX. The ID uniquely identifies the configuration that is contained in the cor-
responding state of the reachability graph. In its entry action, the ID is assigned to the
variable config. In addition, the entry action calls the operation establishConfigX. This op-
eration establishes the configuration X in Simulink using the control signals computed
in Step 4 of our algorithm (cf. Section 6.5.4). In Figure 6.26, the states State_Config1 and
State_Config2 have been generated based on the states config1 and config2 of the reacha-
bility graph in Figure 6.23. For each initial configuration of the component, we generate
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ConfigurationStore

ConfigurationStore_Main
2executor

manager 1

variable: int config;

Initial

[initial == X.id] /

StateX
entry/ {config := X.id;
establishConfigX();}

U

operation: establishConfigX();
clock: c1;

TransitionY1_X1toX2
entry / {reset: c1;}

Y1 / [c1 ≥ t_Execute] /
finished()

TransitionY2_X1toX2
operation: void setup(), void fading();

Setup

Working
entry / {reset: c1;}

exit/ {setup();}
Finished[c1 ≥ t_Setup] /

finished()
fading/

Fading

Working
entry / {fading();} Finished[fading_z <> 1] /

finished()
teardown/

Teardown

Working
entry / {reset: c1;} Finished[c1 ≥ t_Teardown] /

finished()
U

Y2 /

Idle

getConfiguration / configurationIs(state)

Legend:
Generated only once and are used by all reconfigurations
Generated for each state X of the reachability graph
Generated additionally for each state X if X is an initial state
Generated for each transition Y1 that was created based on single-phase execution
Generated for each transition Y2 that was created based on three-phase execution
Generated additionally for each transition Y2 that involves a fading component.

Figure 6.25: Generation Template for the Configuration Store RTSC (cf. [Vol13])
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one green transition from Initial to the state corresponding to the particular initial config-
uration.

ConfigurationStore

ConfigurationStore_Main
2executor

variable: int config;

Initial

[initial == 1] /

State_Config1
entry/ {config := 1;

establishConfig1();}

U

operation: void establishConfig1(), void establishConfig2();
clock: c1;

TransitionAddConvoyMember_1to2
entry / {reset: c1;}

addConvoyMember /

[c1 ≥ 5 ms] /
finished()

TransitionRemoveConvoyMember_2to1
entry / {reset: c1;}

removeConvoyMember /

[c1 ≥ 3 ms] /
finished()

State_Config2
entry/ {config := 2;

establishConfig2():}

Figure 6.26: Example of the executor Region of the Configuration Store RTSC

Finally, we generate the purple and brown parts of the configuration store RTSC based
on the transitions of the reachability graph. If the transition of the reachability graph cor-
responds to a reconfiguration that is executed according to single-phase execution (cf.
Section 4.2.1), we generate a purple state including the adjacent transitions. If the recon-
figuration is executed according to three-phase execution (cf. Section 4.2.2), we generate
the hierarchical brown state including the adjacent transitions. In Figure 6.26, we only
obtain purple states and transitions because the reconfigurations addConvoyMember and
removeConvoyMember are executed based on single-phase execution. In both cases, the
first transition leaving StateX is triggered by a reconfiguration message that is sent by the
executor.

If the reconfiguration is executed based on single-phase execution, the reconfiguration
message triggers a transition from StateX to state TransitionY1_X1toX2. In Figure 6.26,
the reconfiguration message addConvoyMember triggers the transition from State_Config1

to TransitionAddConvoyMember_1to2. The state TransitionAddConvoyMember_1to2 is active
as long as the reconfiguration is executed. Since Simulink and Stateflow do not con-
sider that actions take time, we need to introduce this intermediate state. The entry
action resets a clock c1, the outgoing transition is activated after the WCET of the
CSD has passed. Then, the transition to the state representing the target configura-
tion (State_Config2 in Figure 6.26) fires. Upon entering the target state, the result of the
reconfiguration is established and, thus, becomes visible after the WCET has passed,
which emulates the behavior of the real system.

If the reconfiguration is executed based on three-phase execution, the reconfiguration
message triggers a transition from StateX to the hierarchical state TransitionY2_X1toX2.
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The hierarchical state contains three states that correspond to the three phases setup,
fading, and teardown of the three-phase execution. In addition, it contains two opera-
tions setup and fading. setup establishes the intermediate configuration that results from
executing the setup phase (cf. Section 4.2.2.1). fading controls the execution of the fad-
ing function using the fading component in Simulink (cf. Section 6.3.1.3). The RTSC
waits in Working until the execution of the fading function has been finished. This is
indicated by the value of fading_z that is defined by a hybrid port that is connected to the
fading component. The result of the teardown phase, which is the configuration resulting
from executing the reconfiguration, is established when entering the state corresponding
to this configuration.

The RTSC in the manager region is trivial. It only consists of one state Idle with a
self-transition. The transition consumes a message getConfiguration and answers with a
message configurationIs that contains the ID of the current configuration as a parameter.

6.5.3.2 Adaptated Behavior Specification of the Manager

The manager RTSC needs to access the model@runtime for evaluating the structural
condition (cf. Section 4.3.2) that is specified by a component SDD. Since the model@
runtime is now contained in the configuration store, the corresponding operation check-

StructuralConditionForX for a reconfiguration X in the manager RTSC generation template
can no longer be implemented by accessing the model@runtime. Instead, the manager
needs to query the current configuration from the configuration store. Figure 6.27 illus-
trates how the manager RTSC (cf. Figure 4.15) needs to be adapted for translating it into
a Stateflow chart.

First, we introduce a region confStore for communicating with the configuration store.
The RTSC in this region sends the message getConfiguration when switching to AwaitReply

and receives the message configurationIs at the transition back to Idle. The received ID of
the configuration is stored in the variable currentConfig.

Second, we need to replace the transition from Idle to CheckX in the internal behavior by
three transitions with two intermediate states named ObtainConfig and WaitConfig. The
transition from Idle to ObtainConfig receives the synchronization via syncX and sets the
reconfiguration ID and the request flag as in the original template. The transition from
the urgent state ObtainConfig to WaitConfig initiates a synchronization with the region
confStore such that confStore requests the current configuration from the configuration
store. After the configuration has been received, both regions synchronize via received-

Config. Then, internal behavior checks the conditions for executing the reconfiguration
at the transition from WaitConfig to CheckX. The operation checkStructuralConditionForX

receives the ID of the current configuration as an integer parameter. The operation is
then implemented using a switch case that decides whether the configuration with the
given ID fulfills the structural condition. We may obtain the switch case by successively
matching the component SDDs that specify the structural condition to all states of the
reachability graph.
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internal behavior 3

5confStore

Idle AwaitReplyrequestConfig? / getConfiguration()

configurationIs receivedConfig!/
{currentConfig := configurationIs.config;}

variable: boolean request, boolean result;
operation: boolean checkStructuralConditionX(int config),

boolean invokePlanner(int reconfiguration), boolean isBlocked(int reconfiguration);

Idle
entry/ {request := false;}

syncX? /
{reconfiguration := R.id; request = true;}

[request == true] reply[true]! /

CheckX

[result == true] / {result := invokePlanner(reconfiguration);}

U

Fail [request == true] reply[false]! /
U

Success
U

[result == false] /

[request == false] /

Plan
U

[request == false] /

[result == false] /
Execute

executed[false]? /

executed[true]? /[result == true] executeReconf! /
[timeForPlanning; timeForPlanning]

ObtainConfig

receivedConfig? /
{result := not isBlocked(R.id) &&

checkStructuralConditionX(currentConfig);}

WaitConfig
U requestConfig! /

Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is treated.
Generated additionally for each reconfiguration message X that is request from child.
Generated additionally for each reconfiguration message X that invokes planning.
Generated additionally for each reconfiguration Y that may be blocked.

Figure 6.27: Adapted Generation Template for the Manager RTSC (cf. [Vol13])
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6.5.3.3 Adaptated Behavior Specification of the Executor

The executor RTSC, as introduced in Section 4.4.2, needs to modify the model@run-
time for executing reconfigurations. In the MATLAB-specific reconfiguration controller,
however, only the configuration store may switch between configurations and thereby
modify the model@runtime. Therefore, we need to realize modifications of the model@
runtime by a communication between executor and configuration store. As a conse-
quence, we extend the executor RTSC generation template by an additional region con-

fStore that implements the communication with the configuration store. In addition, we
may simplify the internal behavior because it no longer needs to execute the reconfigura-
tion. Figure 6.28 shows the adapted internal behavior region and the new confStore region
of the executor RTSC generation template.

internal behavior 3

5

operation: Y();

Idle

[reconfiguration == Y1.id || ...]
startExecution? / {singlePhase := true;}

Start
U

Waitinit2PC[reconfiguration]! /

Execute
finished2PC? /

U
[twoPCResult = false] finish[false]! /

Report
U

finish[true]! /
[not singlePhase] /

[reconfiguration == Y2.id || ...]
startExecution? / {singlePhase := false;}

confStore

Idle ExecuteSetup finished
localFinish! /

localFading? /
fading()

WaitFading

ExecuteFadingWaitTeardownExecuteTeardown localTeardown? /
teardown()

[reconfiguration == Y2.id]
localSetup? / Y2()

finished
localFinish! /

finished
localFinish! /

ExecuteLocal

[singlePhase &&
twoPCResult]
localReconf! /localFinish? /

ExecuteReconf[reconfiguration == Y1.id]
localReconf? / Y1()

finished localFinish! /

Legend:
Generated only once and are used by all reconfiguration rules
Generated additionally for each reconfiguration rule Y1 that is executed using single-phase execution
Generated additionally for each reconfiguration rule Y2 that is executed using three-phase execution

Figure 6.28: Adapted Generation Template for the Executor RTSC (cf. [Vol13])

The internal behavior no longer contains the hierarchical state LocalExecuteY2 (cf. Fig-
ure 4.16). The corresponding behavior is now contained in the confStore region. When-
ever the adaptation RTSC of embeddedCI synchronizes to trigger the execution of a re-
configuration, it now synchronizes directly with confStore. confStore then sends a corre-
sponding message to the configuration store which performs the desired operation.

In addition, we replace the structure type AffectedComponents, which is used by the RTSC
of the embeddedCI multi port (cf. Figure 4.17), by an array implementation. Thereby,
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we avoid the use of variable-size data structures in Stateflow. Figure 6.29 illustrates the
generated arrays and their usage at runtime for the executor of ConvoyCoordination.

:Executor
RE :embeddedCIRERE

cm rg1 rg2

1 0 0

2 0 0

embeddedCI_Main
adaptation variable: int[3] ac,

int[3] message,
... ...

Multi Port RTSC
Integrated

Component CIC

Runtime

Figure 6.29: Array Implementation of the AffectedComponents Structure

The executor of ConvoyCoordination has three subport instances in the embeddedCI multi
port instance that handle the interaction with the three embedded component instances
cm, rg1, and rg2 (cf. Figure 6.23). Therefore, we generate arrays with length 3 in the
adaptation RTSC of embeddedCI that replace the variable ac of type AffectedComponents.
We generate one array with the same length for each attribute of AffectedComponents (cf.
Figure A.71 in Appendix A.6.4.1).

Based on the array implementation and the reachability graph, we can now generate an
implementation for the operation computeAffectedChildrenForAddConvoyMemberAtPos of
the adaptation RTSC. This operation computes the embedded component instances that
need to reconfigure for executing the CSD addConvoyMemberAtPos of ConvoyCoordination

(cf. Figure 3.14). Based on the reachability graph in Figure 6.23 and the CSD, we can
determine that only the reconfiguration createMemberPortsAfter needs to be triggered on
cm. Therefore, the operation computeAffectedChildrenForAddConvoyMemberAtPos assigns
1 to the first entry of ac and 0 to the other two entries to indicate that only cm is affected
by the reconfiguration. In addition, it assigns 2 to the first entry of message to indicate
that the second message of the RE port interface specification of cm needs to be sent to
cm (cf. Figure A.52). The remaining operations for accessing ac and its attributes can be
translated by accessing and modifying the generated arrays.

6.5.4 Step 4: Encode Configurations and Generate Control Signals

In this step, we encode the configurations that are contained in the reachability graph
into the functions of the configuration store RTSC. In particular, we generate imple-
mentations for the operations establishConfigX, setup, and fading that are contained in the
executor region of the configuration store RTSC. These operations shall write the control
signals to hybrid ports that are then connected to the control inports of our helper blocks
when generating the Simulink model in Step 6 of our algorithm.
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For the integrated CIC of a structured component, we create one control signal with an
associated hybrid port at the configuration store

• for each embedded component instance that is connected to the enable port of the
corresponding enabled subsystem for activating and deactivating the instance in
Simulink

• for each embedded fading component instance that sets the ctrl inport of the corre-
sponding subsystem (cf. Section 6.3.1.3)

• for each discrete port instance of the structured component instance that defines
the local_recv_net_addr of the corresponding delegation switch (cf. Section 6.3.3.4)

• for each MultiSourceControl and MultiTargetControl that defines the ctrl input of the
blocks for rerouting the signal (cf. Section 6.3.2.1)

• for each discrete port instance of an embedded component instance that defines
the receiver_net_addr of the corresponding port structure for controlling assembly
connector instances and delegation connector instances (cf. Section 6.3.3.3)

In our example, we obtain a total of 22 control signals for the integrated CIC of Convoy-

Coordination. In particular, we obtain control signals

• cm, rg1, and rg2 for the embedded component instances

• c1, c2, r1, r2, receiver, and speedProvider for the discrete port instances of Convoy-

Coordination

• curPos for the MultiTargetControl block that handles the delegation of the continuous
port instance curPos of ConvoyCoordination

• cm.c1, cm.c2, cm.p1, cm.p2, cm.strategy, cm.speedProvider, rg1.profileReceiver, rg1.next,
rg1.r1, rg2.prev, rg2.profileReceiver, rg2.r2 for the discrete port instances of the em-
bedded component instances where the name of the port instance is prefixed with
the name of the component instance.

Figure 6.30 illustrates the hybrid ports that are generated for the control signals at the
configuration store of ConvoyCoordination.

ConfigurationStore

manager executor

cm rg1 rg2 c1 rg2.refDistProvider...c2

Figure 6.30: ConfigurationStore of the Component ConvoyCoordination with Hybrid Ports
Generated for the Control Signals (cf. [Vol13])

Based on the control signals, we now generate implementations of the establishConfigX

operations in the configuration store RTSC. We illustrate the result for the operation
establishConfig1 in Figure 6.26. The resulting implementation is shown in Listing 6.1.
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Applying the generated control signals to the Simulink model generated for the inte-
grated CIC establishes the Simulink model shown in Figure A.97 that corresponds to
config1 in the reachability graph in Figure 6.23.

Listing 6.1: "Implementation of the Operation establishConfig1"
cm := 1 ; s p e e d P r o v i d e r := 3 ; rg1 . p r o f i l e R e c e i v e r := 4 ;
rg1 := 1 ; cu rPo s := 1 ; rg1 . r e f D i s t P r o v i d e r := 8 ;
rg2 := 0 ; cm . c1 := 7 ; rg1 . n e x t := 0 ;
c1 := 1 ; cm . c2 := 0 ; rg2 . p r ev := 0 ;
c2 := 0 ; cm . p1 := 6 ; rg2 . p r o f i l e R e c e i v e r := 0 ;
r1 := 5 ; cm . p2 := 0 ; rg2 . r e f D i s t P r o v i d e r := 0 ;
r2 := 0 ; cm . s t r a t e g y := 8 ;
r e c e i v e r := 2 ; cm . s p e e d P r o v i d e r := 9 ;

The implementations for the operations setup and fading are computed analogously. setup

establishes the configuration after the setup phase as described in Section 4.2.2. fading

triggers a state change in the Stateflow chart of the fading component (cf. Figure 6.10)
to enable the corresponding fading function.

6.5.5 Step 5: Create Integrated System CIC

In this step, we replace the component instances that are contained in the initial system
CIC by the integrated CICs of the components that have been computed in the previ-
ous steps. Component instances that are contained in an integrated CIC of a component
are recursively replaced by their integrated CICs as well. The result is the integrated
system CIC that encodes all configurations that the system may have during runtime.
The integrated system CIC is then translated into a Simulink model as described in Sec-
tion 6.3. The RTSCs that define the behavior of the component instances are translated
to Stateflow charts as described in Section 6.4.

6.5.6 Integrate MATLAB-specific reconfiguration controller into the
Simulink Block Diagram

In Step 6 of our algorithm in Figure 6.5, we translate the integrated system CIC into
a Simulink block diagram. After generating the block diagram according to the rules
presented in Section 6.3, we need to integrate the MATLAB-specific reconfiguration
controller into the Simulink block diagram and connect its control signals.

Figure 6.31 shows the generation template for adding the MATLAB-specific reconfigu-
ration controller including all of its control signals and their connections. An example
of a resulting block diagram for an instance of ConvoyCoordination is presented in Ap-
pendix A.8.2.

The subsystem Reconfiguration Controller in Figure 6.31 contains the MATLAB-specific
reconfiguration controller. The subsystem has different kinds of inports and outports.
First, the four ports manager_recv, manager_send, executor_recv, and executor_send are
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generated for the reconfMsg and reconfExec port instances of the structured component
instance. Second, we obtain four ports man_X_recv, man_X_send, exec_X_recv, and
exec_X_send for each embedded component instance X that correspond to a subport in-
stance of the embeddedCI multi ports of manager and executor. Finally, we obtain one
outport for each control signal that has been computed in Step 4 of our process (cf.
Section 6.5.4), plus one additional inport for each fading component instance. In the fol-
lowing, we describe how these ports are connected to the remainder of the block diagram
that has been generated according to the rules given in Section 6.3.

Reconfiguration Controller

X.Z2
Z1

manager_recv
executor_recv

man_X_recv
exec_X_recv

manager_send
executor_send

man_X_send
exec_X_send

X

F_ctrl

Y1
Y2

reconfExec_send
2 reconfMsg_send

1

reconfExec_send
2reconfMsg_send

1

X

Z2_send

reconfMsg_recv
reconfExex_recv
Z2_recv
Z2_net_addr
Z2_recv_net_addr

reconfMsg_send
reconfExex_send

Z1_DelegationSwitch

extern_recv_net_addr

local_net_addr

local_recv_net_addr

A extern_out

local_out

local_in

extern_in

extern_net_addr

B

F

out
in1
in2

statusctrl

F_status

Legend:
Generated once for the structured component instance.
Generated for each embedded component instance X.
Generated for each embedded fading component instance F.
Generated for each delegation switch.
Generated for each discrete port instance Z2 of embedded component instance.
Generated for each MultiSourceControl block Y1.
Generated for each MultiTargetControl block Y2.

out1

in

ctrl

out2

MultiTargetControl

outin1
in2

ctrl

MultiSourceControl

Figure 6.31: Generation Template for Integrating the MATLAB-specific Reconfigura-
tion Controller into a Block Diagram of a structure component instance

The ports man_X_recv, man_X_send, exec_X_recv, and exec_X_send are directly con-
nected to the corresponding reconfMsg_recv, reconfMsg_send, reconfExec_recv, and re-

confExec_send ports of the enabled subsystem X. We use a direct connection in this case
because these assembly connector instances are immutable, i.e., as long as X is executed,
the connection to the reconfiguration controller is active as well.

The ports for the control signals are connected as follows. The control signal X that
has been generated for the embedded component instance X is connected to the enable
port of the enabled subsystem X. By setting a 0 to the control signal, we stop simulating
the subsystem and emulate the destruction of the component instance X. By setting a 1
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to the control signal, we start simulating the subsystem and emulate the creation of the
component instance X.

The control signal F_ctrl that has been generated for the embedded fading component
instance F is connected to the ctrl inport of the corresponding subsystem F. In addition,
the outport status of F is connected to the inport F_status of the subsystem Reconfiguration

Controller. These control signals enable the interaction of the configuration store with the
Stateflow chart shown in Figure 6.10 that is generated for a fading component instance.

The control signal Z1 is connected to the local_recv_net_addr inport of the delegation
switch corresponding to the port Z1 of the structured component instance. The con-
trol signal then defines the net_addr of the receiving port structure. By changing the
local_recv_net_addr via the control signal, we enable that the port instance is delegated to
a different embedded component instance.

The control signal X.Z2 is connected to the recv_net_addr inport of the port structure cor-
responding to the discrete port instance Z2 of an embedded component instance X. This
control signal defines the net_addr of the port structure that shall receive messages sent
by Z2. Thus, we can redirect assembly connector instances by changing the recv_net_addr

via the control signal.

The control signals Y1 and Y2 are used for emulating the reconfiguration of assemblies
between continuous and hybrid port instances. Therefore, the control signals are con-
nected to the ctrl inports of the corresponding MultiSourceControl and MultiTargetControl

blocks. By modifying the control signal, we may change the sender or receiver of the
signal, respectively.

The internal structure of the subsystem Reconfiguration Controller is a direct translation
of the MATLAB-specific reconfiguration controller shown in Figure 6.24 (cf. [Vol13]).
We refer to Appendix A.8.2 for a detailed description of the internals of the Reconfigura-

tionController subsystem.

6.5.7 Realizing Port Reconfiguration in Stateflow Charts

In Step 7 of our algorithm in Figure 6.5, we translate the RTSCs of the component
instances contained in the integrated system CIC to Stateflow charts as described in Sec-
tion 6.4. If the component instance is reconfigurable, we also need to integrate additional
constructs that enable to activate and deactivate parallel states in Stateflow for imple-
menting the creation or destruction of (sub-)port instances. If a (sub-)port instance is
activated in Simulink by a reconfiguration, then we also need to activate the correspond-
ing parallel state that contains the behavior for this (sub-)port instance. If the (sub-)port
instance is deactivated in Simulink, we need to deactivate the corresponding parallel
state as well. Therefore, we generate one control variable for each (sub-)port chart in
Stateflow. This control variable is true if the (sub-)port chart needs to be executed and
false otherwise. In addition, we need to adapt the generation of Stateflow charts such
that they use the control variable.



Simulating Self-Adaptive Mechatronic Systems in MATLAB/Simulink Page 219

2r1

Inactive

[ _r1_active == false]

[ _r1_active == true] /
{cDead = reset(); {c1 = reset();}

Idle
entry: sendAvailableP1IdleSendUpdate = true;
exit: sendAvailableP1IdleSendUpdate = false;

Active
[ _r1_active == false]

[ _r1_active == true]

Figure 6.32: Reconfiguration in Stateflow

Figure 6.32 shows the general structure of a parallel state that may be activated and
deactivated. The example is based on the chart for the subsystem rg1 in Figure 6.16. The
parallel state r1 in Figure 6.32 corresponds to the parallel state r1 in Figure 6.16.

Inside r1 in Figure 6.32, we generate two states: Inactive and Active. The former indicates
that the parallel state is currently inactive while the latter indicates that the parallel state
is currently active. The state Active then contains the states and transitions that define the
behavior of r1 (cf. Figure 6.16). The contents of Active are translated according to the
rules defined in Section 6.4.

Both, Active and Inactive, have a default transition with a guard condition. The guard
condition contains the control variable and defines whether the parallel state is initially
active or not. During runtime, the parallel state may be activated and deactivated by
modifying the control variable. After entering the state Active, the execution always
starts at the initial state Idle. Furthermore, the transition from Inactive to Active resets all
clock variables and set all variables that are owned by the parallel state to their initial
values.

6.6 Implementation

We have prototypically implemented all steps of the algorithm shown in Figure 6.5. Our
implementation is based on and integrated into version 0.5 of the MECHATRONICUML
Tool Suite. Figure 6.33 shows the plugins that have been created as part of the imple-
mentation.

The plugin simulink.wizard implements the UI integration and controls the execution of
the single steps of the algorithm shown in Figure 6.5. In the following, we describe
which plugins implement which steps of the algorithm. The reachability analysis in
Step 1 is implemented using our framework for reachability analysis (cf. Appendix C).
The four plugins reachabilityGraph, reachabilityGraph.sdm, reachanalysis.core, and reach-

analysis.sdm implement a reachability analysis based on story diagrams. Since we spec-
ify reconfiguration rules based on CSDs, we first translate the CSDs to story diagrams
using the model transformation in plugin componentstorydiagram.sdm.transforms. The re-
sulting story diagrams are then inserted into the reachability analysis. Step 2, i.e., com-
puting the integrated CIC for a component, has been implemented based on the Eclipse
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Figure 6.33: Plugins Implementing the Translation of MECHATRONICUML Models to
MATLAB/Simulink Models

project EMF Diff/Merge [Eclb] that enables to easily merge all configurations contained
in the states of the reachability graph. Steps 3 to 5, namely generating the MATLAB-
specific reconfiguration controller, encoding the configurations, and generating the inte-
grated system CIC, have been implemented in Java as part of the simulink.wizard plugin.

Steps 6 and 7 have been implemented as a model-to-model transformation using triple
graph grammars (TGG, [Sch95]). TGGs require a two domain metamodels and one
correspondence metamodel. The domain metamodels define the source and target meta-
models for the transformation while the correspondence metamodel associates elements
of both metamodels that are equivalent with respect to the transformation. In our case,
we use muml as the source metamodel. The plugin simulink.model contains a meta-
model for Simulink and Stateflow models that we created based on EMF [SBPM08].
It serves as the target metamodel for the transformation. Finally, simulink.corrmodel con-
tains the correspondence model while fujaba2simulink contains the TGG rules that define
the transformation. We refer to our technical reports for a detailed description of the
TGG rules [HRB+13, HRB+14]. After creating the Simulink and Stateflow models in
EMF, we perform a layouting of both models. While layouting the Simulink model is
only for usability reasons, layouting the Stateflow model is mandatory because layout
defines the semantics in Stateflow. In particular, hierarchical states are defined by x-y-
coordinates. We perform the layout using the tool Graphviz [Gra]. Finally, we generate
a Simulink model file for the resulting Simulink and Stateflow models. We implemented
this step as a model-to-text transformation using XPand [Ecla] that is contained in the
plugin simulink.m2t.
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6.7 Limitations

Our approach for the translation of MECHATRONICUML models to MATLAB/Simulink
models underlies the following limitations:

1. Steps 1 to 5 of our algorithm shown in Figure 6.5 have only been defined and imple-
mented for structured components. The reason is that we currently cannot define a
reconfiguration controller for atomic components as discussed in Section 4.7.

2. Our approach does not support user-defined structure types. Currently, we only
support the translation of the structure type AffectedComponents used in the executor
RTSC (cf. Section 4.4.2).

3. We do not support transition actions that are specified by story diagrams except for
those used in the executor RTSC. A prerequisite for translating user-defined story
diagrams is a concept for translating structure types as mentioned above.

4. We do not support entry and exit points of hierarchical states with more than one
region.

5. Do actions of states cannot be translated.

6. Complex transition actions including if-statements and loops are not supported.

7. Using multidimensional array data types for variables and using array data types
for message parameters is not possible.

While limitations 4 to 7 are minor issues, limitations 1 to 3 require significant effort for
being solved. Solving these limitations is beyond the scope of this thesis. In addition
to the conceptual limitations, our implementation introduced in Section 6.6 does not yet
cover all of the concepts presented in this chapter. In particular, our implementation does
not support:

1. Activating and deactivating parallel states for (sub-)port RTSCs as described in
Section 6.4.5

2. Translating the structure type AffectedComponents including the story diagrams that
implement the operations of the executor RTSC as described in Section 6.5.3.3.

3. Urgent states as described in Section 6.4.4

4. Using more than one initial configuration for a component when computing possi-
ble configurations as described in Section 6.5.1.

5. Deriving an implementation for the operation checkStructuralConditionX as described
in Section 6.5.3.2.

These tooling limitations prevent to automatically translate models of self-adaptive
mechatronic systems such as the RailCab using the MECHATRONICUML Tool Suite.
However, despite the limitations of our concepts and our implementation, our imple-
mentation is sufficient for translating a reasonable set of MECHATRONICUML models
to MATLAB/Simulink and Stateflow as we show in our case study in Section 6.8.
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6.8 Case Study

In this section, we evaluate our approach for enabling MIL simulation of mechatronic
systems in MATLAB/Simulink. We evaluate our approach by conducting a case study
based on the guidelines defined by Kitchenham et al. [KPP95]. In our case study, we
evaluate the translation of MECHATRONICUML models for non-adaptive mechatronic
systems to MATLAB/Simulink, i.e., models of systems that do not employ runtime re-
configuration. Thus, our case study considers Steps 6 and 7 of our algorithm shown
in Figure 6.5. We perform our evaluation for three realistic examples of mechatronic
systems but do not aim at generalizing this statement as part of this thesis.

We cannot yet conduct a case study for self-adaptive mechatronic systems such as the
RailCab example presented in this thesis due to the limitations of our implementa-
tion. However, we have tested the effectiveness and feasibility of our approach by
semi-automatically translating parts of the RailCab model from MECHATRONICUML
to MATLAB/Simulink. These experiments have been successful, i.e., we could success-
fully emulate runtime reconfiguration for discrete and continuous component instances
in Simulink. We refer to Pines [Pin12] and Volk [Vol13] for more information on the
results of our experiments.

In the following, we describe the hypotheses and results of our case study for non-
adaptive mechatronic systems.

6.8.1 Case Study Context

The objective of our case study is evaluating whether our translation of MECHATRONIC-
UML models to MATLAB/Simulink and Stateflow models produces syntactically and
semantically correct models that may be simulated in Simulink and Stateflow. We con-
sider a model to be semantically correct if it shows the same behavior as the MECHA-
TRONICUML model.

We conduct our case study based on models of three mechatronic systems that do not
employ runtime reconfiguration. In the following, we give a brief description of the sys-
tems and denote the characteristics of the corresponding MECHATRONICUML models.

First, we consider the cooperating delta robots that are shown in Figure 6.34 [GTS14,
PTD+14]. These robots are able to juggle a ball without utilizing a camera system.
Instead, they sense the ball by sensors on the plate and compute a prediction when and
where the ball will arrive at the other robot. This prediction is then sent to the other robot
using a message and the other robot strikes based on the prediction and, in turn, computes
a new prediction after hitting and thereby sensing the ball. The resulting MECHATRON-
ICUML model of the discrete components is simple but relies on tight integration with
the continuous components that contain the sensors for sensing the ball.

Second, we consider a coordinated overtaking of cars shown in Figure 6.35 as introduced
by Gerking [Ger13] and Pohlmann et al. [PHMG14]. There, the overtaking red car
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Figure 6.34: Cooperating Delta Robots (cf. [PTD+14])

communicates with the overtaken yellow car such that the overtaking is safe, i.e., the
overtaken car will not accelerate or decelerate if it is not safe. The MECHATRONICUML
model contains hierarchical states and a complex timing specification.

Figure 6.35: Coordinated Overtaking of Two Cars [PHMG14]

Finally, we consider the registration of RailCabs at track sections that we already used
in our case study in Section 5.6. In particular, we simulate the scenario shown in Fig-
ure 6.36 where two RailCabs try to enter the same switch ts3. The MECHATRONICUML
model extensively uses synchronizations and the coordination involves several compo-
nent instances (cf. Section 5.1.2).

6.8.2 Setting the Hypothesis

The three example models that we use have been verified based on UPPAAL and our
refinement check. Therefore, we consider them as correct with respect to their specifi-
cations.

For our case study, we define two evaluation hypotheses. Our first evaluation hypothe-
sis H1 is that the generated MATLAB/Simulink and Stateflow models are syntactically
correct. Our second evaluation hypothesis H2 is that the behavior of the generated MAT-
LAB/Simulink and Stateflow models in a simulation complies to the behavior defined
by the MECHATRONICUML model.

We evaluate our evaluation hypothesis based on MATLAB Release R2009b and our
implementation described in Section 6.6. In particular, we evaluate H1 by compiling the
generated model in MATLAB/Simulink. For evaluating H2, we first need to implement
all continuous components in Simulink. Then, we simulate the models in Simulink and
manually compare the behavior of the simulated model to the results of our verification
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Figure 6.36: RailCabs Trying to Enter the Same Switch (cf. [HBDS15])

procedures (cf. Section 4.5 and Chapter 5). For comparing the behavior, we plot values
of variables using scope blocks (cf. Section 6.1.1) and analyze Stateflow charts using
the Stateflow debugger [Matc].

6.8.3 Preparing the Input Models

In preparation of the case study, we obtained MECHATRONICUML models for the co-
operating delta robots and the blind overtaking scenario. In addition, we use the RailCab
models for entering a track section as described in Section 5.6.3. All of the models have
been created using our implementation described in Section 3.6.

Each of the models contains the specification of RTCPs and components including their
RTSCs. In addition, we created a CIC for each model that serves as an input for our
translation.

6.8.4 Validating the Hypothesis

We start by translating the MECHATRONICUML model of the cooperating delta robots
to MATLAB/Simulink. Then, we compile the resulting model and the compilation suc-
ceeds without errors. Thereafter, we integrate a Simulink model of the physical envi-
ronment that includes, in particular, the movement of the ball and the sensing of the
ball. Then, we simulate the resulting model. The simulation results show that the two
robots can successfully exchange their predictions. The observed behavior in Simulink
and Stateflow is compliant to the behavior specified in MECHATRONICUML.

Next, we translate the model for coordinated overtaking to MATLAB/Simulink. The
compilation of the model succeeds without errors. Then, we integrate the generated
model with a simple behavior of the overtaking car that signals that the overtaking has
been finished. Thereafter, we simulate the resulting model. The simulation results show
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that the two cars can successfully coordinate during the overtaking. The observed behav-
ior in Simulink and Stateflow is compliant to the behavior specified in MECHATRONIC-
UML.

Finally, we translate the RailCab model for entering track sections to MATLAB/Simu-
link. Then, we compile the resulting model and the compilation succeeds without errors.
In the step next, we implement a simple behavior for the continuous component Gates

that represents the feedback controller of the gates of the railroad crossing (cf. Fig-
ure A.26 on Page A-22). Thereafter, we simulate the resulting model. The simulation
results show that the RailCabs may successfully register at the switch ts3. In partic-
ular, the simulation results show that only one RailCab at a time is allowed to enter
the Switch. Thus, the observed behavior in Simulink and Stateflow is compliant to the
behavior specified in MECHATRONICUML.

6.8.5 Analyzing the Results

The results of our case study show that our translation of MECHATRONICUML models
into models of MATLAB/Simulink and Stateflow produces syntactically correct models.
Thus, our first evaluation hypothesis H1 is fulfilled. In addition, the translation was fully
automatized and did not require manual intervention. The simulation results show that
the generated models behave as expected based on the verification results that have been
obtained for the MECHATRONICUML models. Thus, our second evaluation hypothesis
H2 is fulfilled as well and we conclude that our translation preserves the semantics of
MECHATRONICUML.

In our case study, the most important threats to validity are as follows: (1) Our transla-
tion and its implementation do not yet support all modeling constructs of MECHATRON-
ICUML as outlined in Section 6.7. Thus, models that use these modeling constructs
will not be translated correctly. (2) We only tested the preservation of the semantics
of MECHATRONICUML based on three examples. Although we consider all of these
examples as realistic, other examples from other domains could be highly different. (3)
We only checked manually that the generated Simulink and Stateflow models show the
same behavior as the MECHATRONICUML models. Although we did not identify any
deviations, we might have missed some minor deviation.

6.9 Related Work

This section discusses related works from four research areas. First, we review other
approaches that enable reconfiguration of MATLAB/Simulink models (Section 6.9.1).
Second, we compare our approach to other tools targeting the development of mecha-
tronic systems (Section 6.9.2). Third, we discuss approaches enabling reconfiguration
in AUTOSAR version 3.x (Section 6.9.3). Fourth, we relate our approach to approaches
for hybrid verification (Section 6.9.4) that try to replace MIL simulation by a formal
verification of the system.
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6.9.1 Reconfiguration in MATLAB/Simulink

Cancare [Can08] and Paiz et al. [PKP07] describe approaches for simulating reconfig-
urable FPGA-boards in Simulink. They only switch between implementation variants of
the same block using switches but provide no means for message-based communication
and adding/removing components from the simulation. Schulze et al. [SWB12] provide
a concept for product line support in Simulink where a concrete variant is configured
via control signals. In addition, they support to switch between different variants of a
component at run-time. In contrast to our approach, they do not enable to reconfigure
connectors or to remove components completely.

The Quanser Real-Time Control Software (QUARC, [Qua]) provides special blocks for
switching between two Simulink models during runtime. They stop the simulation,
transfer variables, and restart the simulation on the target model. In contrast to our
approach, this approach does not permit to simulate the transient phase where the re-
configuration is executed. In particular, this is necessary for correct simulation of fading
functions. Kovácsházy et al. [KSP03] provide a block library for simulating reconfig-
urable digital signal processors (DSPs). Both approaches use self-defined blocks, which
hinders the use of production code generators like TargetLink [dSP] or ASCET [ETA].

6.9.2 Reconfiguration in other Simulation Environments

There exist several competitors of MATLAB/Simulink. These include Modelica
[Mod09, Fri04] with the commercial simulator Dymola [Das], CAMeL-View [iXt],
SCADE [Est], and ASCET [ETA], that support the development and simulation of
feedback controllers. None of these approaches natively supports runtime reconfigura-
tion. CAMeL-View supports message-based communication using concepts of MECH-
ATRONICUML [THB+10, BGSH11], Modelica can be extended by a library implement-
ing RTCPs of MECHATRONICUML [PDS+12, PDM+14].

For Modelica, two extensions named Mosilab [ZJS08] and Sol [Zim07] exist that support
reconfiguration. Both approaches rely on their own simulators because their extensions
are not supported by Dymola. In contrast to our approach, they cannot use existing pro-
duction code generators. ter Beek et al. [tBGS13] provide an approach for simulating a
reconfigurable e-Banking system, which has been specified using Reo [Arb04], in Dy-
mola. Reconfigurations are specified using graph transformations as in our approach, but
the approach for simulation seems to be limited to supporting one particular application
example with only two configurations.

Burmester et al. [BGH+07] provide an approach for simulating reconfigurable systems
in CAMeL-View. They require to generate C++-Code for the reconfigurable discrete
software that needs to be integrated manually with the controller code. The simulation
is performed based on code rather than on models as in our approach. In contrast to our
approach, this significantly hardens the inspection of the model while performing MIL
simulations in Step S5.4 of our process in Figure 6.4.
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Güdemann et al. [GAOR07] support simulation of self-adaptive robots in SCADE. They
model reconfiguration by manually specifying flags to switch between different function
implementations in each robot. In contrast, our approach automatically generates control
signals and may enable and disable parts of the model if they are not needed.

6.9.3 Reconfiguration in AUTOSAR 3.x

Since version 4.0, AUTOSAR supports reconfiguration based on modes as discussed in
Section 3.7.1. For AUTOSAR 3.x [AUT11], which does not support reconfiguration,
several approaches for integrating reconfiguration have been developed.

Becker et al. [BGN+10] define an extension for AUTOSAR to support architectural re-
configuration which makes it closest to our approach. In their approach, a developer
needs to specify all configurations of a system manually including an automaton defin-
ing how to switch between the configurations. This is very similar to our approach, but
our approach may automatically derive this information from a declarative rule set intro-
ducing less effort for a developer. Based on the automaton and the configurations, they
generate an AUTOSAR system containing all configurations including code for a so-
called StateManager and a RoutingComponent. The StateManager controls the current
configuration, while the RoutingComponent redirects signals based on the current con-
figuration. In contrast to our approach, their approach does not allow for early validation
using MIL simulations.

Berger and Tichy [BT12] extend the AUTOSAR watchdogs towards transactional re-
configurations with rollback support, but they do not consider simulation of the system.
Zeller et al. [ZPW+11, ZP12] and Klobedanz et al. [KKMR11] provide reconfiguration
of networked embedded systems by reallocating software components to new ECUs at
runtime. Their approaches can be used for technically realizing reconfiguration but not
for MIL simulations in Simulink.

Trumler et al. [THP+07] and Feng et al. [FCT08] propose middlewares for automo-
tive systems supporting runtime reconfiguration by migrating tasks (Trumler et al.) or
switching between different component implementations (Feng et al.). Their middle-
wares are supposed to replace the AUTOSAR Runtime Environment (RTE) but do not
support MIL simulation.

6.9.4 Hybrid Verification

Hybrid verification tries to formally prove that safety and liveness properties hold for a
mixed discrete-continuous system. Such systems are usually formalized by a variant of
hybrid automata [Hen96] that consist of a set of discrete locations where each location
embeds a set of equations that defines how the continuous variables of the system evolve.
The verification of hybrid automata is undecidable in the general case [HKPV98]. Thus,
hybrid verification techniques fall in two categories. Approaches in the first category
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restrict themselves to simpler variants of hybrid automata whose verification is decid-
able. Approaches in the second category apply approximation techniques for retrieving
a finite state space. For recent surveys on hybrid verification approaches, we refer to
Zaki et al. [ZTB08] and Alur [Alu11].

Approaches in the first category are typically based on variants of linear hybrid au-
tomata [Hen96, DISS11a]. Examples include HyTech [HHWT97], PHAVer [Fre05],
RED [Wan05], and approaches by Damm et al. [DISS11a, DISS11b, DDD+12]. The
property that all of these approaches have in common is that they significantly restrict
continuous dynamics such that most systems of practical relevance cannot be speci-
fied with them [HHMWT00]. In particular, they do not support ordinary differential
equations (ODEs) and differential algebraic equations (DAEs) that are essential for de-
scribing many physical phenomena. Since MATLAB/Simulink supports both [XC13,
ch. 5.4], our approach supports such systems.

Approaches in the second category apply over-approximations of the continuous dy-
namics. Most approaches are based on flow pipes [CK99] where the system states
are represented by polyhedra. Examples include HyperTech [HHMWT00], Check-
Mate [SK00, SRKC00], d/dt [ADM01, ADM02], an approach by Alur et al. [ADI06],
and SpaceEx [FLGD+11]. A new class of approaches encodes hybrid models using con-
straints and solves them with a SAT-solver as, e.g., approaches by Ishii et al. [IUH11]
and Eggers et al. [ERNF12]. All of the mentioned approaches have in common that they
may only verify small system models with up to 200 variables [FLGD+11]. However,
realistic examples that may be simulated in Simulink use thousands of blocks [SP12]
where each block defines at least one variable.

In addition, none of the approaches mentioned above supports runtime reconfiguration
which is supported by our simulation-based approach.

6.10 Summary

In this chapter, we introduce an approach for MIL simulation of self-adaptive mecha-
tronic systems in MATLAB/Simulink and Stateflow. Our approach provides a syntactic
decoupling of discrete and continuous components that enables to efficiently verify the
discrete part of the system’s behavior based on the compositional verification approach
of MECHATRONICUML. Thus, we only need to rely on MIL simulations for testing the
correctness of (1) the feedback controllers contained in the continuous components, (2)
the fading functions used for replacing continuous components, and (3) the correct inter-
action of discrete and continuous components. As our main contribution, we define an
algorithm that translates a MECHATRONICUML model into a MATLAB/Simulink and
Stateflow model. In our approach, we explicitly compute and encode all possible con-
figurations of the self-adaptive mechatronic system. The resulting Simulink model then
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enables to switch between the encoded configurations for emulating runtime reconfigu-
ration. This enables to emulate runtime reconfiguration without needing to structurally
modify the simulation model, which is not supported by Simulink.

Although our contributions have been illustrated based on MATLAB/Simulink and State-
flow, our approach for emulating reconfigurations of the software architecture of a sys-
tem may easily be transferred to other languages and tools for MIL simulation such as
Dymola [Das]/Modelica [Mod09].
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7 Conclusions

7.1 Summary

Introducing self-adaptation into mechatronic systems increases the complexity of de-
veloping the software for them. In particular, it introduces more sources for errors
that may occur at runtime and hardens to predict the behavior of the system. How-
ever, self-adaptive behavior is the basis for self-healing [Sha02, Pri13] and self-opti-
mization [GRS09, GRS14] that enable to improve safety, availability, and (resource)
efficiency of the system. The contributions of this thesis enable software engineers of
self-adaptive mechatronic systems to cope with the additional complexity such that they
may safely unleash the full potential of self-adaptive behavior when developing the next
generation of mechatronic systems. In the scope of this thesis, all of our contributions
have been defined based on the MECHATRONICUML method, but our contributions
may also be transferred to other model-driven approaches that provide support for devel-
oping platform-independent models of software for self-adaptive mechatronic systems.
We have implemented all of our contributions as part of the MECHATRONICUML Tool
Suite [DGB+14].

As our first contribution, we define a component model that enables to specify a soft-
ware architecture for a self-adaptive mechatronic system. The component model explic-
itly includes the necessary variability in the definition of component types and provides
CSDs, which enable the model-driven specification of runtime reconfigurations of the
software architecture. In particular, CSDs improve comprehensibility of reconfiguration
behavior by providing a visual representation based on the concrete syntax of compo-
nents [Moo09, HB14]. As a key benefit of our component model compared to related
approaches, we explicitly consider the integration of feedback controllers including their
reconfiguration into the software architecture. In addition, our component model enables
to establish RTCPs between AMS for dynamically building NMS and provides com-
ponent SDDs that allow specifying architectural constraint based on components. We
illustrate the effectiveness of our component model by creating a model of the RailCab
system including the reconfiguration behavior for building convoys that is documented
in detail in Appendix A.

As our second contribution, we define a formal execution semantics for reconfigurations
in a hierarchical component model that is based on an adaption of the 2-phase-commit
protocol [BHG87, ch. 7]. In our approach, we syntactically extend the components
in our component model by a dedicated reconfiguration controller that executes the 2-
phase-commit protocol. The reconfiguration controller enables to execute reconfigu-
rations across different levels of hierarchy without violating component encapsulation.
Our approach significantly reduces the complexity of specifying such hierarchical re-
configurations by providing a rather simple declarative specification based on tables that
enables to automatically generate an implementation of the 2-phase-commit protocol.
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We extended the existing 2-phase-commit protocol such that it can execute reconfigu-
rations in a self-adaptive mechatronic system including the exchange of feedback con-
trollers according to ACI-T properties. The ACI-T properties are atomicity, consistency,
isolation, and correct timing. While our 2-phase-commit protocol specification guaran-
tees atomicity and isolation offhand, we define a verification approach for guaranteeing
consistency and a correct timing of reconfigurations. Thereby, we can ensure the cor-
rectness and, thus, the safety of the reconfigurations. We demonstrated the effectiveness
of our approach by specifying a hierarchical reconfiguration behavior for our RailCab
model. In addition, we generated the 2-phase-commit protocol implementation and ver-
ified the resulting models as described on our website [Hei13]. Recently, our approach
for hierarchical reconfigurations has been integrated into the ProCom component model
by Hang and Hansson [HH13].

As our third contribution, we enhance MECHATRONICUML’s compositional verifica-
tion approach [GTB+03] by a new refinement check. Our refinement check enables
to verify that the ports of the components in our component model correctly refine the
roles of the RTCPs that define the interaction of components. In particular, our approach
enables to prove that all safety and liveness properties that have been verified for the
RTCPs still hold for the ports of the components. Our refinement check is based on test
automata. The test automaton encodes both, the behavior of the role and the conditions
of the refinement definition that is to be checked. Our construction of the test automaton
is parameterized such that it supports to verify correct refinements based on six different
refinement definitions. Each refinement definition supports different kinds of constructs
that may be used in RTSCs and different kinds of safety and liveness properties. Com-
bined with an automatic selection of the refinement definition to be used, our approach
enables for a fully automatic verification of refinements as part of the compositional ver-
ification approach. We evaluate our approach by conducting a case study based on the
RailCab system. In particular, our case study shows the viability of the automatic selec-
tion and verification of different refinement definitions. In addition, we illustrate how
the returned counterexamples enable to identify the root cause of a refinement violation.

As our fourth and final contribution, we provide an approach for MIL simulation of
self-adaptive mechatronic systems. This approach enables to test the correct integration
of discrete components and feedback controllers, which cannot be tackled by formal
verification techniques for complex systems such as the RailCab. As our main con-
tribution, we defined how message-based communication of discrete components and
reconfiguration behavior of structured components may be realized in a tool for MIL
simulation that has no built-in support for such behavior. We illustrated our contributions
based on MATLAB/Simulink, which is a de facto standard tool in industry for develop-
ing and simulating feedback controllers. However, our contributions are not limited to
MATLAB/Simulink but may also be used in related transformations [PHMG14] to other
simulation tools that share the same restrictions with respect to reconfiguration such as
Dymola/Modelica [Das]. Since the simulation model may not structurally change within
these simulation tools while executing a simulation, we encode all possible configura-
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tions of the system into the simulation model. During a simulation, we may then switch
between the different configurations and thereby simulate the reconfiguration behavior
of the system. In our approach, we define how a MATLAB/Simulink and Stateflow
model can be derived from a MECHATRONICUML model by an automatic model trans-
formation. We evaluate our model transformation by a case study where we translate
MECHATRONICUML models of three different mechatronic systems to MATLAB/Si-
mulink. The results of our case study show that our model transformation preserves the
semantics of MECHATRONICUML and that the MECHATRONICUML models are much
more concise compared to the resulting Simulink and Stateflow models.

In combination, our contributions reduce the complexity of specifying reconfiguration
behavior for a hierarchical component model. Moreover, our integrated analyses enable
software engineers to proof the correctness of the reconfiguration behavior and thereby
re-establish the predictability of the system’s behavior at runtime.

7.2 Future Work

The results of this thesis give rise to different possibilities for future works that we
highlight in the following. As a basis, future works may enhance the contributions of
this thesis by overcoming the limitations and possibly relaxing the assumptions that we
described in the corresponding sections of the previous chapters. In addition, all of the
contributions should be further evaluated in industrial projects and by using models from
different domains such as automotive [FMB+09], avionics, or factory automation. In the
following paragraphs, we discuss further directions for future works.

Requirements Engineering The input for the contributions of this thesis is the
domain-spanning conceptual design of the self-adaptive mechatronic system that has
been created by experts from all involved disciplines [GFDK09, GSG+09]. This specifi-
cation uses a state-based technique for describing different configurations of the sys-
tem as we illustrated in our paper [HSST13]. State changes in this approach typi-
cally translate to reconfigurations in MECHATRONICUML. Future works should in-
vestigate how this specification may be complemented by model-based requirements
engineering techniques that focus particularly on software reconfiguration. Examples
include adapt cases [LNGE11] and goal-based techniques like the approach by Cheng et
al. [CSBW09]. Such approaches would improve the early consideration and traceability
of reconfiguration-related requirements.

Cognitive Operator Our component model supports to define a software architec-
ture including reconfiguration operations for the reflective operator of the OCM. In ad-
dition, it includes an interface to the controller level by using continuous components.
Future works should provide a similar interface to the cognitive operator of the OCM (cf.
Section 2.1.2). A starting point is given by using unsafe ports as proposed by Giese and
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Schäfer [GS13] that define interactions with non-real-time parts of the software. How-
ever, the interface to the cognitive operator needs to be integrated with our concept for
transactional execution of reconfigurations such that the cognitive operator may trigger
the execution of reconfigurations.

Monitoring Monitoring the environment and the operations of the mechatronic sys-
tem itself are crucial for self-adaptive behavior. At present, we assume that all relevant
monitoring data is gathered and accumulated by discrete atomic components in our com-
ponent model. At present, MECHATRONICUML does not support the developer in spec-
ifying monitoring behavior. Therefore, future works should integrate monitoring of the
system behavior [DGR04, WH07] into MECHATRONICUML, e.g., using a framework
like Kieker [vHWH12]. In particular, this should also enable to specify additional mon-
itoring in the reconfiguration controller of a structured component, e.g., for monitoring
information entering the structured component. An example is given by monitoring the
current speed in the component VelocityController (cf. Figure 3.7 on Page 3.7) for deriving
whether the RailCab drives slow or fast.

Uncertainty The decision about executing a reconfiguration is made based on moni-
toring data, which reflects information about the system itself and its physical environ-
ment, and based on communication with other systems in the environment. As a result,
the effectiveness of the reconfigurations is determined by the quality of the knowledge
about the environment. Often, this knowledge is incomplete or inconsistent, e.g., due to
false assumptions, unpredictable phenomena in the environment, or even imprecise and
inaccurate sensors [RJC12]. Therefore, future work should investigate whether the re-
configuration behavior in our approach may be improved by explicitly addressing uncer-
tainty during the development, e.g., using RELAX [WSB+09] or ActiFORMS [IW14].

Quiescence The concept for quiescence of discrete atomic component instances that
we outline in Section 4.2.3 needs to be further elaborated and evaluated. In particular,
future works should investigate whether it is possible to perform part of the necessary
runtime analysis already at design time, e.g., by identifying states that always fulfill
a part of the imposed conditions for quiescence and by labeling these beforehand. In
addition, it might be possible to automatize the creation of the condition for quiescence
at least partially. An idea is introducing an ontology [GOS09] that may be used for
relating monitored signals at port instances to properties of the physical system such
as speed or distance to another system. Then, we may specify constraint patterns that
automatically translate typically unsafe situations like high speed combined with a small
distance into conditions for quiescence.

Learning Reconfigurations Our approach for transactional execution of reconfig-
urations only applies pre-programmed reconfigurations based on monitored situations.
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That means that the system will always react with the same reconfiguration to the same
environmental situation. Future works may utilize the cognitive operator of the OCM
for evaluating the effect of a particular reconfiguration in a specific situation. Then, we
can provide several reconfiguration rules for a situation and the system can adjust the
decision which rule to execute based on past decisions. It would also be possible that
systems share their experiences to learn from each other. This, in turn, could provide
a data set that is large enough to apply machine learning [Mit04] to further optimize
reconfiguration decisions and predictions of the system. In our current approach, this
would require an adaptation of the RTSCs for manager and executor at runtime as illus-
trated, for example, by Schäfer and Wehrheim [SW07]. In addition, this would enable
to inject new reconfiguration rules or even completely new components including their
reconfigurations into the system at runtime. In addition, that would require a modifica-
tion of the allocation and to check at runtime whether this change does not compromise
the consistency and timing properties of the 2-phase-commit protocol.

Security At present, our approach only addresses the safety of the system by apply-
ing formal verification and MIL simulation for guaranteeing that the system adheres to
its specification. At runtime, however, security becomes an issue because self-adaptive
mechatronic systems shall engange in NMS where they communicate via wireless com-
munication links. These wireless communication links could be used by an intruder to
perform, for example, a man-in-the-middle attack [Kiz05] that compromises the safe
operation of the NMS. As a consequence, future works first need to integrate an au-
thentication mechanism [DVOW92, BCK98] into the instantiation of RTCPs on sys-
tem level to ensure that no unauthorized system enters an NMS. Second, future works
need to integrate the use of encryption standards like the Advanced Encryption Stan-
dard (AES, [NIS01, DR02]) into RTCPs to enable secure communication. Such security
measures may probably be generated into the system automatically when deriving the
platform-specific model.

Executing Reconfigurations Our reconfiguration approach integrates flat switch-
ing for replacing feedback controllers [OMT+08]. In this approach, the decision whether
a reconfiguration is possible may, in some cases, depend on the values of the new con-
troller. These values cannot be obtained before executing the setup phase in our current
approach but at this point no abort is allowed. Thus, it may happen that a reconfiguration
that has been started cannot be finished. A solution would be to extend our approach to-
wards a 3-phase-commit protocol [BHG87, SS83] consisting of a voting, pre-commit,
and commit phase. Then, the execution of the setup phase would be part of the pre-
commit phase. After executing the precommit phase, children are still able to abort the
reconfiguration. Since no modification of the behavior took place in the setup phase, this
will be possible and safe. In addition, it might be necessary to integrate roll-back behav-
ior [ZCYM05, LLC10] or a controlled transition into a fail-safe behavior [dLdCGFR06]
if an unexpected hardware failure occurs while executing the reconfiguration.
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Refinement of Multi Roles At present, our refinement check is only applicable to
single roles and single ports. Future works should extend this approach towards check-
ing correct refinements for multi roles that include reconfigurations, i.e., the instantia-
tion and removal of subrole instances. In [HH11a], the relaxed timed bisimulation has
already been extended towards multi roles, but it requires a dedicated refinement check.
Therefore, future works should extend our test automaton construction such that we
may verify refinement of multi roles. Initial ideas towards such extended test automaton
construction have already been presented by Brenner [Bre10] but require significant ex-
tensions of the approach. In this context, especially refinements of multi roles to ports
of multi parts as for the multi part RefGen in Figure 3.5 are challenging and require
additional concepts for constructing the test automaton.

Counterexample Analysis The counterexamples returned by our refinement check
are tool-specific and refer to the generated test automaton. The test automaton, however,
is not familiar to a developer and, therefore, interpreting the counterexample still re-
quires a detailed knowledge of our test automaton construction. Future works should
provide means for translating counterexamples back to the role and port RTSCs using,
for example, the approaches by Gerking [Ger13] or Hegedüs et al. [HBRV10]. This
back-translation of counterexamples may additionally provide an automatic root cause
analysis of the refinement violation. The counterexample may be associated to the spe-
cific test construct described in Section 5.3.2 that lead to the error state which, in turn,
can be associated to the root cause of the violation.

Synthesis of Component Behaviors The RTSC of a discrete atomic component
is assembled from the port RTSCs. Typically, the port RTSCs of a component are not
independent of each other. For example, they may need to exchange data or one port
may only enter a particular state if one of the other ports is (or is not) in a specific state.
In previous works, Eckardt and Henkler [EH10] as well as Goschin [Gos14] provided an
automatic synthesis of component behaviors that resolves such dependencies automati-
cally based on a formal dependency language [DGB14]. These approaches need to be
extended towards supporting multi ports and runtime reconfiguration.

Model-Based Testing At present, our approach for MIL simulation of a self-adap-
tive mechatronic system only supports the developer in translating the MECHATRONIC-
UML model into a MATLAB/Simulink model. Future works shall provide additional
support for the remaining process steps for performing MIL simulations. In particular,
Steps S5.3 and S5.4 of our process in Figure 6.4 need to be extended by a framework for
model-based testing. This framework shall support the developers in deriving scenarios
from the requirements in an (semi-) automatic fashion. In addition, it needs to support
the automatic execution of the resulting test cases and the computation of metrics like
test coverage [JFA+07, OHY11, T-V, Mate]. For Step S5.3, an approach for automati-
cally deriving test scenarios from a scenario-based requirements specification [Gre11]
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could significantly reduce the effort for testing and may positively influence test cover-
age.

Deployment The platform-independent models that may be created using the con-
tributions of this thesis need to be deployed on a hardware platform [PMDB14] for
being executed. The hardware platform need to provide enough resources for executing
the reconfigurations and for executing the resulting CICs. This can be guaranteed by a
using a deployment approach [TMD09, Dea07, MMMR12] that considers reconfigura-
tions [Poh13].
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[MMMR12] MALEK, S.; MEDVIDOVIĆ, N.; MIKIC-RAKIC, M.: An extensible
framework for improving a distributed software system’s deployment
architecture. IEEE Transactions on Software Engineering, 38(1):73–
100, 2012. ISSN:0098-5589. doi:10.1109/tse.2011.3.

[Mod09] ASSOCIATION, M.: Modelica - A Unified Object-Oriented Language
for Physical Systems Modeling. Modelica Association, May 2009. Ver-
sion 3.1.

[Mon01] MONROE, R. T.: Capturing software architecture design expertise with
Armani. Technical Report CMU-CS-98-163R, Computer Science De-
partment, School of Computer Science, Carnegie Mellon University,
January 2001.

[Moo09] MOODY, D. L.: The "physics" of notations: Toward a scientific basis
for constructing visual notations in software engineering. IEEE Trans-
actions on Software Engineering, 35(6):756 –779, November 2009.
ISSN:0098-5589. doi:10.1109/tse.2009.67.

[MPW92] MILNER, R.; PARROW, J.; WALKER, D.: A calculus of mobile pro-
cesses. Information and Computation, 100(1):1–40, September 1992.
ISSN:0890-5401. doi:10.1016/0890-5401(92)90008-4.

[MSKC04] MCKINLEY, P. K.; SADJADI, S. M.; KASTEN, E. P.; CHENG, B.
H. C.: Composing adaptive software. Computer, 37(7):56 – 64, July
2004. ISSN:0018-9162. doi:10.1109/mc.2004.48.
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Appendix A

Complete RailCab Example

This appendix introduces a complete example of a self-adaptive mechatronic system
whose software has been specified using MECHATRONICUML. In particular, we con-
tinue the RailCab system [HTS+08a, HSD+15] that we already used in the main chapters
of this thesis for illustrating our concepts. In the remainder of this chapter, we introduce
the remaining parts of the MECHATRONICUML model of the RailCab system. We omit
all models that have already been introduced in the main chapters and only provide refer-
ences to those models in this appendix. All models presented in the following have been
implemented in the MECHATRONICUML Tool Suite as far as possible under the given
limitations of our tooling as discussed in the respective sections of our main chapters.
The model is available on our website [HS15]. At present, the example is still limited in
the number of use cases that it supports. In particular, we currently only enable to build
and extend convoys with additional RailCabs. We do not yet support dissolving convoys
and that RailCabs leave a convoy.

In the following, we start in Section A.1 by presenting the RTCPs that are used by the
discrete components of the RailCab’s software architecture. Thereafter, we introduce
the behavior models and a simple environment model that can be used for instantiating
RTCPs on system level in Section A.2. Section A.3 introduces one additional component
that has not been included in Section 3.1, while Section A.4 introduces instances of these
components for different convoy situations. In Section A.5, we present RTSCs for all
discrete atomic components that we defined in our component model. Next, we describe
the reconfiguration behavior of all structured components including a declarative, table-
based specification of the reconfiguration behavior and the CSDs of the components.
Section A.7 presents the component SDDs of our components. Finally, Section A.8
presents an excerpt of a generated Simulink model for the components RefGen and Con-

voyCoordination.

A.1 RTCPs

This section introduces the RTCPs that specify the communication between the discrete
components of the RailCab. In particular, we introduce the RTCPs ConvoyEntry (Sec-
tion A.1.1), ConvoyCoordination (Section A.1.2), ProfileDistribution (Section A.1.3), Speed-

Transmission (Section A.1.4), StartExecution (Section A.1.5), StrategyExchange (Section
A.1.6), and NextSectionFree (Section A.1.7). The RTCP DistanceTransmission has been
introduced in Section 2.4, while the RTCP EnterSection has been introduced in Sec-
tion 5.1.
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A.1.1 ConvoyEntry

The RTCP ConvoyEntry, whose declaration is shown in Figure A.1, provides a simple
negotiation of a convoy coordinator. ConvoyEntry only has one role peer with a cardi-
nality 2. Thus, two communication partners execute the same behavior for electing a
coordinator. The RTCP defines a message buffer for one message and a message delay
of 10 ms. In our RailCab example, ConvoyEntry is refined by the port peer of the compo-
nent OperationStrategy as shown in Figure 3.6. The initial version of the RTCP has been
derived from the real-time coordination pattern Master-Slave-Assignment [DBHT12] but
significantly extended for the RailCab system.

peer

ConvoyEntry

[2]
in-buffer size: 1

delay: 10 ms

Figure A.1: Declaration of the RTCP ConvoyEntry

Figure A.2 shows the RTSC of the role peer. The behavior that is specified by the RTSC
is as follows. Both peers start in the state NoAssignment. In the following, we will refer
to them as "the one peer" and "the other peer" for explaining the interaction between the
two peers. The RTSC uses two Boolean variables masterPossible and slavePossible that
encode whether a peer can operate as a coordinator or as a member, respectively.

If masterPossible is true, then the one peer may nondeterministically switch to Master-

Proposed by sending a youSlave message to the other peer. If the other peer cannot be a
member, it fires the self transition of NoAssignment and answers with cannotSlave. In this
case, the one peer switches back to NoAssignment as well. If the other peer may still be a
member (slavePossible is true), then the other peer switches to AcceptSlave after receiving
the youSlave message and sends a confirm. Then, the other peer switches from AcceptSlave

to StartingSlave. This transition is used for triggering the reconfiguration for becoming a
member in a component that uses this RTCP. Therefore, it specifies a deadline of 50 ms.
The one peer switches from MasterProposed to StartingMaster. This transition is used for
triggering the reconfiguration for becoming a coordinator in a component that uses this
RTCP.

The further behavior depends on whether the reconfigurations have been successful or
not. In the RTSC, we model both results by using non-deterministic choice expres-
sions in the entry actions of the states StartingSlave and StartingMaster. If the one peer
has successfully executed the reconfiguration for becoming coordinator (member), then
masterStarted (slaveStarted) is true. If masterStarted is true, then the one peer sends mas-

terReady otherwise it sends cannotMaster while switching to WaitForSlaveFinish. In the
same fashion, the other peer sends slaveReady if slaveStarted is true and cannotSlave,
otherwise, while switching to WaitForMasterFinish.
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Figure A.2: RTSC of the Role peer of the RTCP ConvoyEntry
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If the other peer receives cannotMaster from the one peer, then it switches back to No-

Assignment regardless of the value of slaveStarted and sets slavePossible to false. Thus,
it cannot be member because the one peer cannot be the coordinator. If slaveStarted is
true and the other slave receives masterReady, it switches to Slave and the assignment
is finished for the other peer. If slaveStarted is false and the other peer receives master-

Ready, then the other peer switches back to NoAssignment. The one peer reacts in the
same way as the other peer based on the messages slaveReady and cannotSlave. If both,
masterPossible and slavePossible are false, then RTSC switches to Failed. In Failed, the
one peer may still receive youSlave messages from the other peer, which it answers with
cannotSlave. In addition, the one peer will switch from NoAssigment to Failed if it has
not received a message for 10.000 ms. These two transitions are necessary to prevent
deadlocks in case that one or both peers start with one of the variables masterPossible or
slavePossible being false at the start of execution.

We verified the RTCP using UPPAAL. We have verified the following properties:

• The RTCP is free from deadlocks.

• None of the message buffers may overflow.

• If one peer reaches the Master state, then the other peer will always eventually enter
the Slave state.

• If one peer enters the Fail state, then the other peer will always eventually enter the
Fail state as well.

A.1.2 ConvoyCoordination

The RTCP ConvoyCoordination, whose declaration is shown in Figure A.3, is responsible
for managing the convoy. In particular, this RTCP finally decides whether a RailCab
may join a convoy as a member and it defines the position where the RailCab may enter
the convoy. Both decisions are made based on so-called motion profiles. A motion
profile, in the following simply referred to as profile, is a certificate how a RailCab
moves in a particular driving maneuver such as braking. For driving in a convoy, each
RailCab needs to be equipped with one or many of such profiles in order to guarantee
safe convoys [FHK+13, FHK+14].

coordinator member

ConvoyCoordination

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

Figure A.3: Declaration of the RTCP ConvoyCoordination

The RTCP consists of two roles, namely coordinator and member. coordinator is a multi
role such that a coordinator RailCab may coordinate a convoy with many members. If a
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new member wants to enter the convoy, it sends all of its profiles to the coordinator. Then,
the coordinator checks whether an assignment of profiles to convoy members exists such
that the convoy is safe in all driving maneuvers. If so, the new member may enter the
convoy, otherwise it may not enter. Figure A.4 shows the RTSC that defines the behavior
of the coordinator role while Figure A.5 shows the RTSC of the member role.

The behavior of the coordinator is slightly extended compared to our previous publica-
tions [FHK+13, FHK+14]. In particular, it enables that the profiles of RailCabs that
already drive as part of the convoy may be changed if a new RailCab wants to enter. We
describe the behavior executed by coordinator and member in the following.

The coordinator starts by initializing its variables. In particular, it must create a new Pro-

fileStore that stores all received profiles and that is assigned to variable allProfiles. Then,
at an arbitrary point in time, a new member may appear and a corresponding subrole is
created by the transition from Idle to HandleNewMember. The member fires the transition
from Idle to Request and creates its profiles. In addition, it sends requestConvoyEntry to
the coordinator. The subrole receives this message and synchronizes via newMemberPos-

sible with the adaptation RTSC. Then, the adaptation RTSC checks whether it is possible
and useful to add a new convoy member at the given point in time. If not, it synchronizes
via entryFail and the subrole will decline the convoy entry. If the member may enter, the
adaptation RTSC synchronizes via entrySuccess and the subrole approves the convoy
entry.

After this, the member initiates sending its profiles using the message startProfileTrans-

mission while entering the Wait state. The subrole acknowledges that it is readyForPro-

fileTransmission and the transmission of the profiles starts. As long as the member has
unsent profiles, it switches from Transmit to awaitAck and sends a profile to the subrole.
The subrole stores the profile in allProfiles and acknowledges via profileReceived. After all
profiles have been transmitted, the member sends endOfProfileTransmission, which causes
the subrole to switch to ProfilesReceived. Using this transition, the subrole synchronizes
with the adaptation RTSC via requestPosition in order to request an entry position for the
new member.

The adaptation RTSC then invokes calculateProfiles. This function compares the profiles
of all RailCabs with each other in order to obtain an assignment of profiles to Rail-
Cabs such that the convoy is safe [FHK+13, FHK+14]. If no such assignment could be
found, newRailCabPosition is 0 and the adaptation RTSC synchronizes via entryFail with
the subrole. Then, the subrole declines the convoy entry and switches to Fail. Similarly,
the member switches from WaitForPosition to Declined and the convoy entry has failed.
Finally, the adaptation RTSC deletes the subrole including its profiles and returns to Idle.

If calculateProfiles could obtain a profile assignment, the adaptation RTSC switches to
UpdateRequired. If changed is false, then no profiles of the current convoy members have
been changed. In this case, the adaptation switches to Finished and synchronizes via
entrySuccess with the subrole. Then, the subrole sends the profile and the position to the
member. The member acknowledges by sending startConvoy and enters the Convoy state.
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coordinator

Coordinator_Main

adaptation

subrole

1

2

channel: newMemberPossible, entryFail, entrySuccess, requestPosition, sendNewProfile[Role], finished[Role], convoy;
variable: Role curSubRole, Role tmpSubRole, int members := 0, const int maxNumMembers := 3;

clock: c1, c2;

variable: bool memberPossible, int newRailCabPosition, bool changed, Profile newProfile, ProfileStore allProfiles;
operation: bool isMemberPossible(), bool calculateProfiles();

variable: int newPos;
clock: c3, c4;

Idle NewQuery

[members < maxNumMembers]/
{curSubRole :=

createSubRoleInstance(self);
members := members + 1; reset: c1;}

HandleNewMember
c1 ≤ 10ms

NewMember
c1 ≤ 1000msCalculate

UpdateProfiles
c1 ≤ 10ms && c2 ≤ 1000ms

entry/ {reset: c1;}

WaitForSubrole
c1 ≤ 100ms

newMemberPossible? /
{memberPossible :=

isMemberPossible ( ) }

[not memberPossible] entryFail! /

[memberPossible]
entrySuccess! /

{reset: c1}

requestPosition? /
{calculateProfiles()}

[newRailCabPosition > 0] /

[tmpSubRole <> curSubRole]
sendNewProfile[tmpSubRole]! /

{newProfile := getProfile(allProfiles, tmpSubRole);}

finished[tmpSubRole]? /
{tmpSubRole := tmpSubRole.next}

U

U

[500ms;500ms]

UpdateRequired

[changed] /
{tmpSubRole := first;

reset: c2;}

UFinish
c1 ≤ 200ms

[tmpSubRole == null]/
{reset: c1;}

[not changed] entrySuccess! /
{newProfile := getProfile(allProfiles, curSubRole);

reset: c1;}

DeleteSR
c1 ≤ 200ms

[newRailCabPosition == 0]
entryFail! /

[c2 ≥ 200ms] /
{deleteSubRoleInstance(curSubRole);
deleteSRProfiles(allProfiles, curSubRole);
members := members – 1;}

convoy? /
{curSubRole := null;}

[tmpSubRole == curSubRole] entrySuccess! /
{newProfile := getProfile(allProfiles, tmpSubRole);

tmpSubRole := tmpSubRole.next;}

Initialize

/ {allProfiles := initializeVariables(); }

U

Idle
c3 ≤ 10ms Request

requestConvoyEntry
newMemberPossible! / EntryPossible

c3 ≤ 50ms

entrySuccess? /
{reset: c3;}

approveConvoyEntry()

Perform Transmission
c3 ≤ 100ms && c4 ≤ 1000ms

entry/ {reset: c3}

startProfileTransmission /
{createProfileList(allProfiles, self); reset: c4;}

readyForProfileTransmission()

Profiles
Received

endOfProfileTransmission
requestPosition! /

Wait
c3 ≤ 200ms Convoy

entrySuccess? /
{newPos := newRailCabPosition;
reset: c3;}
enterConvoyAt(newPos, newProfile)

convoy!
acceptPosition /
startConvoy()

NewProfile
c3 ≤ 100ms

sendNewProfile[self]? /
{reset: c3}

updateProfile(newProfile)
confirmProfileUpdate

finished[self]! /

profile /
{addProfile(allProfiles, self, profile.p);}

profileReceived()

Failed
entryFail? /

declineConvoyEntry()

entryFail? / declineConvoyEntry()

Figure A.4: RTSC of the Role coordinator of the RTCP ConvoyCoordination (cf.
[FHK+14])
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member

Idle
c ≤ 10ms Declined

/ {profiles :=
obtainProfiles(numOfProfiles)}

requestConvoyEntry()

variable: const int numOfProfiles := 5, boolean hasNext, int entryPosition, Profile curProfile;
Profile tmpProfile, ProfileIterator iterator, ProfileList profiles;

clock: c;

Request
c ≤ 75ms

Wait
c ≤ 50ms

Transmit
c ≤ 10ms

entry/ {reset: c;
hasNext := hasFurtherProfile(iterator);}

WaitForPosition
c ≤ 1000ms

declineConvoyEntry /

approveConvoyEntry /
{reset: c} startProfileTransmission()

declineConvoyEntry /

readyForProfileTransmission /
{iterator := getIterator(profiles);} [not hasNext] /

{deleteIterator(iterator);}
endOfProfileTransmission()

ReceivedPosition
c ≤ 100ms

AwaitAck
c ≤ 50ms

[hasNext] /
{tmpProfile := getNextProfile(iterator);}

profile(tmpProfile)

profileReceived /

enterConvoyAt /
{entryPosition := enterConvoyAt.pos;
curProfile := enterConvoyAt.profile;}

acceptPosition()

Convoy startConvoy /

updateProfile /
{curProfile := updateProfile.profile}

confirmProfileUpdate()

Figure A.5: RTSC of the Role member of the RTCP ConvoyCoordination

After receiving this message, the subrole also switches to Convoy and synchronizes via
convoy with the adaptation RTSC, which finishes the convoy entry.

If calculateProfiles derived a profile assignment that requires to change the profiles of the
existing convoy members, the adaptation RTSC switches to UpdateProfiles. Then, the
adaptation RTSC iterates all subroles and synchronizes via sendNewProfile with them. In
this case, the corresponding subrole switches from Convoy to NewProfile and sends the
new profile to the corresponding member. The member processes the message at the self-
transition at Convoy and confirms the update. The subrole of the new member is treated
as before and the convoy setup finishes after all members have been informed about their
new profiles.

A.1.3 ProfileDistribution

The RTCP ProfileDistribution, whose declaration is shown in Figure A.6, is responsible
for propagating profiles and the data, which is necessary for using the profile, inside
the coordinator RailCab. This profile is used within the ConvoyCoordination component
shown in Figure 3.5. The multi role profileProvider sends the profile information to many
profileReceivers and receives information about the current maximum speeds for the pro-

fileReceivers. The latter information may be used for adjusting the convoy speed after a
profile change.



Page A-8 Appendix A

profileProvider profileReceiver

ProfileDistribution

[0..*] [1]
in-buffer size: 1 in-buffer size: 1

delay: 1 ms

Figure A.6: Declaration of the RTCP ProfileDistribution

Figure A.7 shows the RTSC of the multi role profileProvider, while Figure A.8 shows the
RTSC of the role profileReceiver. The execution of the profileProvider starts in the Idle

state of the adaptation RTSC. At an arbitrary point of time, it may add a new subrole by
firing the self-transition at the Idle state. Thus, it will be defined by the implementing
component at which point in time a new instance is required.

profileProvider

ProfileProvider_Main

adaptation

subrole

1

2

channel: startUpdate[Role], finished;

clock: c5;

variable: int minDistance, int newConvoySpeed, int convoySpeed, int ownMaxSpeed,
bool updateProfiles := false, ProfileStore allProfiles;

variable: Profile tmpProfile, int tmpMemberSpeed;
operation: int updateConvoySpeed(int newSpeed);

clock: c6;

Idle
c5 ≤ 1s

entry/ {reset: c5;}

sendUpdate
c5 ≤ 950ms

[c5 ≥ 1s] startUpdate[first]! /
{newConvoySpeed := ownMaxSpeed; reset: c5;}

finished? / {convoySpeed := newConvoySpeed;}

[c5 ≤ 950ms]/
{createSubRoleInstance(self);}

[10ms;10ms]

Idle startUpdate[self]? /

WaitAnswer
c6 ≤ 45 ms

entry/ {reset: c6;}

SendMsg
U

TriggerNext
c6 ≤ 1 ms

entry/ {newConvoySpeed :=
updateConvoySpeed(tmpMemberSpeed;

reset: c6;}

[updateProfiles == true] /
{tmpProfile := getProfile(allProfiles, self);

updateProfiles := false;}
newProfile(tmpProfile, convoySpeed,

minDistance, ownMaxSpeed)

[updateProfiles == false] /
newData(convoySpeed,

minDistance, ownMaxSpeed)

updateStrategy /
{tmpMemberSpeed :=

updateStrategy.speed;}

[self == last]
finished! /

[self <> last]
startUpdate[next]! /

Figure A.7: RTSC of the Role profileProvider of the RTCP ProfileDistribution

Once per second, the adaptation RTSC switches from Idle to sendUpdate and synchro-
nizes with the first subrole via startUpdate. This initiates and update process where new
data and profile information are sent to the receivers. The synchronization causes the
first subrole to switch from Idle to SendMsg. If a new profile is available, it sends a
newProfile message to the profileReceiver. This message contains the profile and infor-
mation that is necessary for using the profile such as the current reference speed of the
convoy, the minimum distance to be kept, and the own potential maximum speed of the
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coordinator. If no new profile is available, then the subrole sends newData that contains
the same information as newProfile except for the profile. Thereby, we acknowledge the
fact that applying a new profile requires more complicated operations by the profileRe-

ceiver and that the profiles will change less frequently than the remaining information
because the remaining information depends on the goals of the RailCabs and the current
environmental conditions such as strong wind or slopes.

profileReceiver

Idle

newData/
{convoySpeed := newData.convSpeed;

convoyMinDist := newData.minDist;
coordMaxSpeed := newData.coordMaxSpeed;}

variable: int convoyMinDist, Profile curProfile, int convoySpeed,
int ownPotentialMaxSpeed, int coordMaxSpeed;

clock: c2;

NewData
c2 ≤ 1ms

entry/ {reset: c2;}
newProfile/

{curProfile := newProfile.profile;
convoySpeed := newProfile.convSpeed;

convoyMinDist := newProfile.minDist;
coordMaxSpeed := newProfile.coordMaxSpeed;}

/ updatedStrategy(ownPotentialMaxSpeed)

Figure A.8: RTSC of the Role profileReceiver of the RTCP ProfileDistribution

After receiving either newProfile or newData, the profileReceiver switches to NewData.
Then, it sends updatedStrategy containing its new potential maximum speed back to the
subrole of profileProvider. Then, the subrole switches to TriggerNext and updates the con-
voy speed. The corresponding operation updateConvoySpeed computes the minimum of
all speeds provided by the profileReceivers and stores it in newConvoySpeed. Then, the
subrole either triggers the next subrole or, if it is the last one, it synchronizes via finished

with the adaptation RTSC. Finally, the adaptation RTSC returns to Idle and sets the con-

voySpeed to the newConvoySpeed. As a result, the new convoy speed will be applied as
part of the next update.

A.1.4 SpeedTransmission

The RTCP SpeedTransmission, whose declaration is shown in Figure A.9, is used for
periodically transmitting the current speed of the RailCab. It has been derived from the
Real-Time Coordination Pattern PeriodicTransmission [DBHT12].

sender receiver

SpeedTransmission

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.9: Declaration of the RTCP SpeedTransmission
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The behavior of the two roles sender and receiver, as given by the RTSCs in Figure A.10,
is quite simple. Every 100 ms, the sender sends the current speed of the RailCab via
newSpeed. The receiver waits in PeriodicReceiving for the new speed value. If newSpeed

arrives, it fires the self-transition at PeriodicReceiving and stores the new speed value in
the variable speed. If the new speed value does not arrive within 100 ms, then the receiver

switches to Timeout. If eventually a new speed value arrives, the receiver switches back
to PeriodicReceiving. The Timeout state may be used for handling a delayed update if
necessary.

sender variable: int speed;
clock: c;

PeriodicSending
c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] / newSpeed(speed)

receiver

Timeout

newSpeed / {speed := newSpeed.speed;}
variable: int speed;

clock: c;

PeriodicReceiving
c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] /

newSpeed / {speed := newSpeed.speed;}

Figure A.10: RTSCs of the Roles sender and receiver of the RTCP SpeedTransmission

A.1.5 StartExecution

The RTCP StartExecution, whose declaration is shown in Figure A.11, enables the initiator

to trigger the executor to execute some behavior on demand. We use this RTCP inside
the ConvoyCoordination component (cf. Figure 3.5 on Page 63) such that one instance of
RefGen may trigger the next one after it has finished its computation.

initiator executor

StartExecution

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.11: Declaration of the RTCP StartExecution

The behavior of the two roles initiator and executor, as given by the RTSCs in Figure A.12,
is quite simple. At an arbitrary point of time, the sender sends a startExecution message
containing a newSpeed and a curPos parameter to the executor. The executor receives this
message and may perform a computation using the parameter values.

sender variable: int newSpeed,
int curPos;

Idle

/ startExecution(curPos, newSpeed)

executor

Execute

startExecution

Figure A.12: RTSCs of the Roles initiator and executor of the RTCP StartExecution
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The conditions when the sender is required to trigger the executor need to be defined by
the component that uses this RTCP. In the same fashion, the operation to be executed by
the executor needs to the defined by the component.

A.1.6 StrategyExchange

The RTCP StrategyExchange, whose declaration is shown in Figure A.13, is used for dis-
tributing information about the current operating strategy of the RailCab inside RailCab-

DriveControl. Since we are currently using a very simple operating strategy, the resulting
behavior of the two roles sender and receiver, as given by the RTSCs in Figures A.14 and
A.15, is rather simple.

sender receiver

StrategyExchange

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 0 ms

Figure A.13: Declaration of the RTCP StrategyExchange

At an arbitrary point in time, the sender sends a updateStrategy message to the receiver

that contains information about the new strategy. At present, this message only con-
tains the new maximum speed and minimum distance as parameters. Upon sending, it
resets c1 and waits for 10 ms for an ackStrategy of the receiver. Upon receiving the up-

dateStrategy message, the receiver stores the parameters into two variables and returns to
WaitForUpdate after 5 ms thereby sending ackStrategy.

sender variable: int curMinDistance, int curMaxSpeed;
clock: c1;

Idle Wait
c1 ≤ 10 ms

/ updateStrategy(curMaxSpeed, curMinDistance)
{reset: c1;}

ackStrategy /

Figure A.14: RTSC of the Role sender of the RTCP StrategyExchange

receiver

WaitForUpdate

updateStrategy /
{newMaxSpeed := updateStrategy.speed;
newMinDistance := updateStrategy.dist;

reset: c2}

variable: int newMaxSpeed, int newMinDistance;
clock: c2;

NewStrategy
c2 ≤ 5 ms

/ ackStrategy()

Figure A.15: RTSC of the Role receiver of the RTCP StrategyExchange

At present, the message exchange has been derived from the Real-Time Coordination
Pattern Producer-Consumer [DBHT12]. If a more complicated operating strategy is ap-
plied, it might be necessary to extend this RTCP.
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A.1.7 NextSectionFree

The RTCP NextSectionFree, whose declaration is shown in Figure A.16, has two single
roles named tracksection and switch. The role switch is to be implemented by a switch
while the role tracksection is to be implemented by the track section following the switch.
Both roles have an in-buffer of size one. The transmission delay for a message is 3 ms.

tracksection switch

NextSectionFree

[1] [1]
in-buffer size: 1 in-buffer size: 1

delay: 3 ms

Figure A.16: Declaration of the RTCP NextSectionFree

Figure A.17 shows the RTSCs of both roles. The behavior implemented by the RTSCs
is as follows: Initially, both RTSCs are in their Idle states. Then, switch sends a message
requestSectionStatus to the tracksection at an arbitrary point in time thereby resetting its
clock c2. Then, it waits for at most 500 ms in state WaitForSection for the answer of
tracksection. tracksection receives the message requestSectionStatus at the urgent transition
to Request and, thus, processes the message as soon as it arrives. Then, tracksection

determines whether it is free, which modeled by the non-deterministic choice expression
in the entry-action. After at least 400 ms, tracksection answers with sectionStatus where
the current status is encoded as a Boolean parameter. After 550 ms, switch processes this
message at the transition from WaitForSection to Idle. While firing the transition, switch

assigns the parameter value of the message sectionStatus to its variable status.

tracksection

Idle Request
c1 ≤ 5 ms

entry/ {free := INT<0,1>;}

requestSectionStatus /
{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;
clock: c1;

switch

Idle WaitForSection
c2 ≤ 20 ms

/ requestSectionStatus()
{reset: c2}
[c2 ≥ 20 ms] sectionStatus /
{status := sectionStatus.free;}

variable: boolean status;
clock: c2;

Figure A.17: RTSCs of the Roles tracksection and switch of the RTCP NextSectionFree

We verified the behavior of the RTCP in UPPAAL and showed four properties:

1. The behavior is free of deadlocks.

2. If tracksection and switch are in their idle states, then free and status have the same
value.

3. If switch is in state WaitForSection, it will always eventually return to Idle.

4. There exists a execution where switch eventually enters WaitForSection.
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A.2 Instantiating Real-Time Coordination Protocols on
System Level

This section provides additional models for instantiating RTCPs on system level. In
particular, we provide a simple discovery protocol that enables to store information about
other systems in the environment in Section A.2.1. Thereafter, we introduce the RTSC
of the protocolInst broadcast port that enables to instantiate the RTCP ProtocolInstantiation

in Section A.2.2. Finally, Section A.2.3 presents the RTSCs of the roles requestor and
requestee of the RTCP ProtocolInstantiation (cf. Section 3.4.2).

A.2.1 A Simple Discovery Protocol and Environment Model

In an open-world scenario [BDNG06], we need to gain knowledge about other systems
in the environment for being able to collaborate with them. This is achieved by using
a discovery protocol. A discovery protocol (periodically) broadcasts information about
the system itself and listens to broadcast messages by other AMS. The information pub-
lished via the broadcast port includes the networking address of the broadcast port and a
short system identification.

The information about other AMS that is received by the broadcast port needs to be
stored locally. We developed a simple environment model for storing this information.
In the environment model, we distinguish between known types of systems and unknown
types of systems. A known type of system is a type of system that the mechatronic sys-
tem needs to interact with for realizing its functionality. In the RailCab system, other
RailCabs and track side systems like track sections or switches are considered to be
known systems. In contrast, an unknown type of system is a type of system that the
mechatronic system usually does not interact with, but which it meets nevertheless. In
the RailCab system, we may consider cars as unknown systems. In a close-world sce-
nario, this model needs to be loaded from a local storage.

Figure A.18 shows a class diagram of an environment model for the RailCab system.
It consists of an application independent part and an application specific part. The ap-
plication independent part is the same for all AMS. It specifies the Enviroment which
consists of an arbitrary number of ExternalSystems. For each ExternalSystem, we store its
address and the timestamp indicating the last receipt of a message from the particular
system. In addition, the application independent part contains a class UnknownSystem

that is used for storing information about unknown types of systems. The application
specific part contains a class RailCabKnownSystem that stores all the information about
known systems. In addition, the enumeration RailCabKnownType contains one literal for
each type of system that the RailCab knows. In this case, it knows other RailCabs and
track sections.

The environment models needs to be managed by the discovery protocol. If a message
of a system that is not yet contained in the environment model is received, the discovery
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Application Specific

Application
Independent

UnknownSystem
identification : string

ExternalSystem
lastTimestamp : double
address : int

RailCabKnownSystem
type : RailCabKnownType

Environment
* systems

<<enum>>
RailCabKnownType

RAILCAB
TRACKSECTION

Figure A.18: Environment Model for the RailCab System

protocol needs to add an instance of RailCabKnownSystem or UnknownSystem to the en-
vironment model. If a message of a system that is already contained in the environment
model is received, only the time stamp is updated. The timestamp may be used to clean
the environment model from time to time. If no message of a particular system has been
received for a longer period in time, it can be assumed that the corresponding system has
moved out of reach and may no longer be contacted. The corresponding object is then
removed from the environment model.

Most networking standards already include such discovery protocols. Examples include
the Neighbor Discovery Protocol for IPv6 networks [NNSS07], the Bluetooth Service
Discovery Protocol [Blu10], or ZigBee’s device discovery protocol [Zig08]. They all
fulfill the requirements stated above. In particular, any device sends broadcast messages
including its own identification and listens to broadcast messages of other devices. De-
pending on the particular radio technology used for realizing communication between
AMS, the discovery protocol for this technology should be used to fill the environment
model given in Figure A.18.

In course of this thesis, we only consider platform independent models. These do not
contain platform specific information like a concrete radio technology. However, we
want to support simulation of AMS as early as possible (cf. Chapter 6) based on the
platform independent models. In such simulations, we cannot rely on technology spe-
cific discovery protocols. Therefore, we provide a simple discovery protocol for plat-
form independent models that is to be replaced by the technology specific protocol when
creating the platform specific model.

The behavior of the broadcast port in our simple discovery protocol is given by the RTSC
in Figure A.19. The RTSC contains two states: Idle and Update. Initially, the RTSC is
in state Idle. Every 5 s, the RTSC fires the self-transition at the lower right of Idle. This
transition sends a systemInformation message via the broadcast port. The systemInforma-

tion message contains the address of the mechatronic system, a short identification, and
a timestamp. If the broadcast port receives such a message from another system, then
the transition from Idle to Update fires. The transition consumes the message and stores
the information on the other system in temporal variables. The entry action of Update

updates the information on the system in the environment model. If the system has al-
ready been contained in the environment model, the method returns true. In this case, the
RTSC returns to Idle using the upper transition not performing any further actions. If the



Complete RailCab Example Page A-15

system has not been contained in the environment model, the RTSC fires the lower tran-
sition from Update to Idle. This transition invokes the operation addSystem that adds a
new system to the environment model based on the received information. If c1 becomes
larger than 10min, the RTSC fires the self-transition at the upper left of Idle. This tran-
sition invokes the clean operation that removes all systems from the environment model
where no systemInformation message has been received for the past 10 min.

Idle
c0 ≤ 6s

variable: int tmpAddress, string tmpID, double timestamp; boolean result; Environment env;
operation: void clean(Environment e),

boolean updateEnvironment(Environment e, int address, double timestamp)
void addSystem(Environment e, int address, double timestamp, string sysType)

clock: c0, c1;

3

2

System Identification

1

[c0 < 4s] systemInformation() /
{ tmpAddress := systemInformation.address;

tmpID := systemInformation.sysID;
timestamp := systemInformation.timeStamp; }

[c0 ≥ 5s] /
systemInformation(address, sysInfo, sysTime)
{reset: c0}

[c1 > 5 min] /
{clean(env);
reset: c1;}

Update
entry/ {result := updateEnvironment(env,

tmpAddress, tmpID)

2

[result == true]

U

1

[result == false]
/ {addSystem(env, tmpAddress, timestamp, tmpID)

Figure A.19: RTSC for the SystemIdentification Protocol

We specified the operations used in the RTSC of the discovery protocol formally by
story diagrams. The operations updateEnvironment and clean are application independent
in our specification. The operation addSystem is application dependent, because it needs
to instantiate a <Sys>KnownSystem object with the corresponding enum literal depending
on the short identification contained in the systemInformation message.

The story diagram for the operation updateEnvironment is shown in Figure A.20. It takes
the Environment object, the address which has been received, and the time stamp of the
message as parameters. Then, the first story node tries to match an ExternalSystem in the
environment with the given address. If such ExternalSystem can be found, the attribute
lastTimestamp is set to the time given as a parameter. In this case, the matching was
successful and the story diagram assigns true to the out parameter result. If no External-

System with the given address could be found, the story diagram assigns false to the out
parameter result.

The operation addSystem shown in Figure A.21 is application specific and needs to be
generated using the enumeration RailCabKnownType. The story diagram contains one
story node for each entry of the enumeration and an additional entry for UnknownSystems.
The control flow specifies one decision node for each entry of the enumeration where
one outgoing activity edge compares the id given as a parameter to the identification
of the known system. In the example, the first decision node specifies the guard id ==

"RailCab". The else activity edge leads to the next decision node. The final else edge
leads to the story node creating an UnknownSystem in the Environment.
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Update existing system

updateEnvironment(env: Environment, addr: int, time: double):
result : boolean

env systems
►

[success]

e: ExternalSystem
address == addr
lastTimestamp := time

[failure]

result := true

result := false

Figure A.20: Story Diagram Implementing the Operation updateEnvironment

Add RailCab

addSystem(env: Environment, addr: int, time: double, id: string): void

env
«create»
systems

►

[success]

[id == „RailCab“]

«create»
r: KnownSystem

address := addr
lastTimestamp := time
type := RailCabKnownType.RAILCAB

Add TrackSection

env
«create»
systems

►

[id == „TrackSection“]

«create»
r: KnownSystem

address := addr
lastTimestamp := time
type := RailCabKnownType.TRACKSECTION

[success]

Add Unknown System

env
«create»
systems

►

«create»
r: UnknownSystem

address := addr
lastTimestamp := time
identification := id

[else]

[else]

Figure A.21: Story Diagram Implementing the Operation addSystem
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The clean operation is formalized by the story diagram shown in Figure A.22. As pa-
rameters, it takes the Environment object and the current time. Then, the for-each activity
node matches all ExternalSystems whose timestamp has not been updated during the last
10 minutes. These systems have not provided a systemInformation message for the last 10
minutes and are considered to be out of reach.

Remove vanished systems

clean(env: Environment, time: double): void

env
«destroy»
systems

►

[end]

e: ExternalSystem
lastTimestamp <= time – 10 min

Figure A.22: Story Diagram Implementing the Operation clean

A.2.2 Instantiating the RTCP ProtocolInstantiation

Figure A.23 shows the RTSC of the broadcast port that is used for instantiating the RTCP
ProtocolInstantiation. The RTSC implements the behavior described in Section 3.4.1. The
RTSC has one state Broadcast with two regions named actor and reactor. The region actor

contains the RTSC defining the behavior sys1 in Figure 3.16, i.e., of the system that
initiates the instantiation. The region reactor contains the RTSC defining the behavior of
sys2 in Figure 3.16, i.e., of the system that reacts to the instantiation request. The shared
variable mutex and corresponding guards at the transitions in both regions ensure that at
any point in time at most one of the two regions may execute.

In the following, we describe the behavior that is specified by the RTSC. Although we
describe the interaction of the RTSCs in the two regions, of course these two regions
never interact within the same broadcast port instance. The actor region of one broad-
cast port instance always communicates with a reactor region in another broadcast port
instance.

Initially, both regions are in their Idle states. Then, the actor starts the interaction by
sending a connectionRequest with the address of the intended communication partner
and its own address as parameters. The address of the communication partner needs
to be provided by the component implementing the broadcast port. We also assume
that the component triggers the transition from Idle to Start in actor. This transition may
only be fired if the variable mutex is false, i.e., the reactor is currently not engaged in an
interaction. Upon firing, the transition sets mutex to true thereby indicating that it started
an interaction.

The reactor receives the connectionRequest at the transition from Idle to CheckIDs. It stores
the two addresses in the parameters in the variables tmpReceiverAddr and tmpSenderAddr.
In CheckIDs, the reactor checks if it was the intended receiver of the message. If not or
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broadcast

Broadcast
2

1

actor

reactor operation: Port createRequesteePort(), createConnector(Port reqPort);
clock: c1;

operation: Port createRequestorPort(Port reqPort);
clock: c;

PortCreated

Idle
entry/ {partnerAddr := 0;
tmpReceiverAddr := 0;
tmpSenderAddr := 0;}

connectionRequest /
{tmpReceiverAddr = connectionRequest.addr1;
tmpSenderAddr = connectionRequest.addr2;}

ApproveRequest

CheckRequest
c1 ≤ 500 ms

[tmpReceiverAddr != ownAddr || mutex == true]

[numOfPorts < maxNumPorts] /
{partnerAddr := tmpSenderAddr;}
connectionApproval(partnerAddr,

ownAddr)

CheckIDs
U

[tmpReceiverAddr == ownAddr
&& mutex == false] /

{mutex := true; reset: c1;}

[numOfPorts >= maxNumPorts] / {mutex := false;} connectionDenial(tmpSenderAddr, ownAddr)

CheckIDs2
entry/ {result := checkIDs();}

[result == true && partnerVersion == ownVersion] /
{ownPort := createRequesteePort();}

confirmProtocolInstantiation(partnerAddr, ownAddr, ownPort)

U

startProtocolInstantiation() /
{tmpReceiverAddr := startProtocolInstantiation.addr1;
tmpSenderAddr := startProtocolInstantiation.addr2;
partnerVersion := startProtocolInstantiation.version;}

[result == false]

[result == true && partnerVersion != ownVersion] /
{mutex := false;}

abortProtocolInstantiation(partnerAddr, ownAddr)

CheckIDs3
entry/ {result := checkIDs();}

U

completedProtocolInstantiation() /
{tmpReceiverAddr := completedProtocolInstantiation.addr1;
tmpSenderAddr := completedProtocolInstantiation.addr2;

partnerPort := completedProtocolInstantiation.port;}

[result == false]

[result == true] /
{createConnector(partnerPort);

mutex := false;}

variable: const int ownAddr, const int ownVersion, int partnerAddr, int partnerVersion, Port partnerPort, Port ownPort, int tmpReceiverAddr,
int tmpSenderAddr, boolean result, boolean mutex := false;

operation: boolean checkIDs();

Idle
entry/ {partnerAddr := 0;
tmpReceiverAddr := 0;
tmpSenderAddr := 0;}

[mutex == false] /
{mutex := true; reset: c;}

connectionRequest(partnerAddr, ownAddr) Start

connectionDenial /
{tmpReceiverAddr := connectionDenial.addr1;
tmpSenderAddr := connectionDenail.addr2;} CheckIDs_Denial

entry/ {result := checkIDs();}
U

[c ≥ 1000 ms] / {mutex := false;} [result == false] /

[result == true] / {mutex := false; }

CheckIDs_Approval
entry/ {result := checkIDs();}

U

connectionApproval /
{tmpReceiverAddr := connectionApproval.addr1;
tmpSenderAddr := connectionApproval.addr2;}

[result == false] /

Started

[result == true] /
startProtocolInstantiation(partnerAddr, ownAddr, ownVersion)

CheckIDs_Abort
entry/ {result := checkIDs();}

U

CheckIDs_Confirm
entry/ {result := checkIDs();}

U

abortProtocolInstantiation /
{tmpReceiverAddr := abortProtocolInstantiation.addr1;
tmpSenderAddr := abortProtocolInstantiation.addr2;}

[result == false] /

[result == true] / {mutex := false;}

confirmProtocolInstantiation /
{tmpReceiverAddr := confirmProtocolInstantiation.addr1;
tmpSenderAddr := confirmProtocolInstantiation.addr2;

partnerPort := confirmProtocolInstantiation.port}

[result == false] /

[result == true] /
{ownPort := createRequestorPort(partnerPort); mutex := false;}
completedProtocolInstantiation(partnerAddr, ownAddr, ownPort)

Figure A.23: RTSC Implementing the Broadcast Communication for Instantiating the
RTCP ProtocolInstantiation
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if mutex is true, the reactor returns to Idle without any further action. If the reactor is the
intended receiver and if mutex is false, it switches to CheckRequest thereby setting mutex

to true. If the maximum number of ports has been reached, reactor switches back to Idle

and sends a connectionDenial. As for any message, it includes the address of the receiver
as well as its own address as parameters. In addition, it sets mutex back to false because
it stopped the interaction. If the maximum number of ports has not yet been reached, the
reactor proceeds to ApproveRequest and sends a connectionApproval back to the actor. In
addition, it stores the sender’s address, which was temporarily stored in tmpSenderAddr,
in the variable partnerAddr that denotes it communication partner for the remainder of
the interaction.

If the actor receives a connectionDenial, it switches from Start to CheckIDs_Denial. Upon
entering, it checks whether the message has been sent by the communication partner. If
not, it returns to Start and waits for the message from the communication partner. If the
message was from the communication partner, the actor switches back to Idle and sets mu-

tex back to false thereby terminating the interaction. If actor receives a connectionApproval,
it also checks the addresses. This time using the entry action in state CheckIDs_Approval.
If the message has not been sent by the communication partner, then actor switches back
to Start and waits for the message of the communication partner. Otherwise, actor pro-
ceeds to Started and sends a startProtocolInstantiation including its own protocol version
to the communication partner.

If reactor receives the startProtocolInstantiation message, it switches to CheckIDs2. If the
protocol version is not supported, reactor sends a abortProtocolInstantiation to the commu-
nication partner, switches back to Idle, and sets mutex back to false. Then, the interaction
terminates. If the protocol version is supported by reactor, it proceeds to PortCreated.
At this transition, the reactor creates a port instance implementing the requestee role of
ProtocolInstantiation (cf. Section 3.4.2). This operation is a stub in the RTSC and needs to
be replaced if the RTSC is integrated in a component. After the port instance has been
created, the transition sends a confirmProtocolInstantiation message including the created
port instance.

After receiving the confirmProtocolInstantiation messagen, the actor fires the transition
from Started to CheckIDs_Confirm. If the message has been sent by the communication
partner, the actor creates a port instance implementing the requestor role of ProtocolIn-

stantiation including its virtual connector instance to the port instance partnerPort of the
communication partner. After creating the port instance, actor sets mutex to false and
sends a completedProtocolInstantiation message to the reactor. This message includes the
newly created port instance. After sending this message, the actor returns to the Idle state
and the interaction is finished.

The reactor waits in state PortCreated for the answer of the actor. After it has received the
completedProtocolInstantiation message and confirmed that it has been sent by the commu-
nication partner, it creates its virtual connector instance to the port instance of the actor.
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Thereafter, it sets mutex back to false and returns to the Idle state. Now, the instantiation
of ProtocolInstantiation is complete for both, actor and reactor.

A.2.3 The RTCP ProtocolInstantiation

Figures A.24 and A.25 show the RTSCs of the roles requestor and requestee of the RTCP
ProtocolInstantiation introduced in Section 3.4.2. In particular, the RTSCs implement the
behavior defined by the modal sequence diagram in Figure 3.18.

Initially, both RTSCs are in their Idle states. The requestor starts executing by firing the
transition from Idle to Request where it choses a protocol and a role within the proto-
col that should be instantiated. On the protocol level, we use non-deterministic choice
expressions. If the requestor role is refined to a port RTSC, then this transition needs
to synchronize with the component behavior for defining the ID of the protocol to be
instantiated. Thereafter, requestor sends a request with the protocol ID and the role ID to
the requestee while it switches to SentRequest.

requestor variable: int reqProtocolID, int reqRoleID, Port ownPort, Port otherPort;
clock: c1;

Idle

/ {reqProtocolID := int<0,10>;
reqRoleID := int<1,2>;}

AwaitCreation
c1 ≤ 300 ms

confirmInstantiation /
{otherPort :=

confirmInstantiation.port;
reset: c1;}

Aborted
declineInstantiation /

NotSupported
protocolNotSupported /

WaitFinish
c2 ≤ 350 ms

[c1 ≥ 250 ms] /
finalize(ownPort) {reset: c1;}Success

completed /

Request SentRequest
c1 ≤ 400 ms

/ {reset: c1;}
request(reqProtocolID, reqRoleID);

Figure A.24: RTSC Implementing the Role requestor of the RTCP ProtocolInstantiation

The requestee consumes the request at the transition from Idle to CheckRequest and re-
sets c2. The entry action in state CheckRequest calls the operation isSupported with the
requested protocol ID and role ID. Based on this information, the operation decides
whether the requested protocol and role are supported by the requestee. This operation
needs to be implemented for any port that refines the requestee role. This decision may
take up to 50 ms as specified by the invariant. In the role RTSC, this operation is simply
implemented by a non-deterministic choice. If the protocol or role are not supported, the
requestee switches to Abort and sends protocolNotSupported to the requestor. In this case,
the requestor switches from SentRequest to NotSupported. Since both RTSCs are now in
final states, the interaction is terminated.

If the requested protocol and role are supported by the requestee, it fires the transition
from CheckRequest to CreatePort. This transition shall initiate the creation of the corre-
sponding port instance implementing the requested role of the requested protocol. Thus,
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requestee variable: boolean supported, boolean success, int requestedProtocol, int requestedRole, Port ownPort, Port otherPort;
operation: boolean isSupported(int protocolID, int roleID);

clock: c2;

Idle request /
{requestedProtocol := request.protocolID;

requestedRole := request.roleID;
reset: c2;}

CheckRequest
c2 ≤ 50 ms

entry/ {supported := isSupported(requestedProtocol, requestedRole);}

CreatePort
c2 ≤ 300 ms

[supported] /
{success := int<0,1>;

reset: c2;}Abort

[not supported] /
protocolNotSupported()

Failed

[not success] [c2 ≥ 250 ms] /
declineInstantiation()

WaitRequestor
c2 ≤ 450 ms

[success] [c2 ≥ 250 ms] /
{reset: c2;}

confirmInstantiation(ownPort)

CreateConnector
c2 ≤ 150 ms

finalize /
{otherPort := finalize.port;

reset: c2;}

Finished

[c2 ≥ 100ms] /
completed()

Figure A.25: RTSC Implementing the Role requestee of the RTCP ProtocolInstantiation

this transition needs to be refined by a port RTSC and needs to be integrated with the
reconfiguration behavior of the component. In the role RTSC of requestee, the success
of the reconfiguration is, again, realized by a non-deterministic choice. If the creation
was not successful, the requestee switches to Failed and sends declineInstantiation. In this
case, the requestor switches from SentRequest to Aborted. Since both RTSCs are now in
final states, the interaction is terminated.

If the creation of the port instance has been successful, the requestee switches from Cre-

atePort to WaitRequestor. Thereby, it sends a confirmInstantiation message to the requestor

and resets c2. Then, it waits for 450 ms for the reply of the requestor. The requestor pro-
cesses the confirmInstantiation message at the transition from SentRequest to AwaitCreation.
At this transition, the requestor triggers the instantiation of the port instance implement-
ing the other role of the requested protocol. In a port that refines this role, this transition
needs to be refined such that it may trigger the actual reconfiguration. After the port
has been created, the requestor switches to WaitFinish and sends a finalize message to the
requestee.

The requestee receives the finalize message at the transition from WaitRequestor to Create-

Connector. This state and transition need to be refined by a port such that they trigger the
creation of the (virtual) connector instance to the port instance created by the requestor.
After the connector instance has been created, the requestee switches to Finished and
sends completed to the requestor. The requestor finally switches from WaitFinish to Suc-

cess after receiving this message. Then, both RTSCs are in final states and it interaction
terminates with success.
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A.3 Components

We have introduced all but one component of our RailCab example in the main chap-
ters of this thesis. In particular, we use three structured components for the RailCab
itself. These are RailCabDriveControl shown in Figure 3.6, ConvoyCoordination shown in
Figure 3.5, and VelocityController shown in Figure 3.7. We do not repeat the component
definitions in this section. In addition, we use five discrete atomic components, five con-
tinuous atomic component, and one fading component for the RailCab. These are all
contained in the three structured components and will not be presented in the section,
again. Finally, we defined three components for the different kinds of track sections in
Figure 5.3 on Page 146. Of these components, NormalTrackSection and Switch are atomic
components whereas RailroadCrossing is a hybrid structured component. We introduce
RailroadCrossing in more detail in Section A.3.1.

A.3.1 RailroadCrossing

The component RailroadCrossing is a hybrid structured component as shown in Fig-
ure A.26. It contains one component part infProcessing of type Crossing_InfProf and one
component part gates of type Gates. The former is a discrete atomic component that im-
plements the communication with the RailCabs via ports left and right and, if necessary,
with a preceding switch via port precedingSwitch. The latter component part refers to a
continuous atomic component that controls the gates of the crossing. Both component
parts are connected such that infProcessing may advise gates to open or close the gates
via the hybrid port gateAction. In addition, gates provides the current state of the gates
(either open or closed) via status. Both continuous ports are Boolean-valued.

RailroadCrossing

infProcessing :
Crossing_InfProc [1]

gates : Gates [1]

action

gateAction

status

gateStatus

leftleft

rightright

precedingSwitch

precedingSwitch

Figure A.26: Structured Component RailroadCrossing

A.4 Component Instances

In this section, we introduce additional component instances for the RailCab exam-
ples. We have already introduced the component instance standaloneRC in Figure 3.9
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on Page 3.9, which we will not repeat in this section. In the following, we present com-
ponent instances for a RailCab driving as a coordinator (Section A.4.1) and for a RailCab
driving as a member (Section A.4.2).

A.4.1 RailCab Driving as a Coordinator

Figure A.27 shows an instance of RailCabDriveControl for a coordinator RailCab that co-
ordinates a convoy with one member. As the main difference to the component instance
standaloneRC shown in Figure 3.9, Coordinator has an instance cc of type ConvoyCoordi-

nation that is attached to an instance ps of the PositionSensor. Furthermore, Coordinator

has instances of the coordinator and refDistProvider multi ports for communicating with
the member.

cc / convoy :
ConvoyCoordination

Coordinator : RailCabDriveControl

vc1 / ctrl : VelocityController

:refSpeed

:curSpeed

:force

os / strategy :
OperationStrategy dl / drive :

DriveLogic

:refSpeed

:curPos

:receiver

B
:protocolInst

B
:protocolInst

:strategySender

:section1 :section1

:section2 :section2
:speedProvider

:maxSpeed

ps / pos : PositionSensor

:position

sp / sp : SpeedSensor

:speed

:refDistProvider

:coordinator

:refDistProvider

:coordinator

180 180

Figure A.27: Component Instance of Component RailCabDriveControl for a Coordinator
RailCab

In a coordinator RailCab, the instance os of OperationStrategy is no longer directly con-
nected to dl of type DriveLogic. As a result, the operation strategy does no longer directly
determine the reference speed of the RailCab. Instead, the reference speed determined
by os is passed to cc which uses this value as a basis for defining a reference speed for
the convoy. Then, cc sends the reference speed that it defined for the convoy to dl.

Figure A.28 shows the inner structure of the instance vc of type VelocityController that is
embedded in Coordinator. vc1 executes an instance of StandaloneDrive that is connected
to the instance f of type ConvoyFading.

Figure A.29 shows the inner structure of the component instance cc of type ConvoyCo-

ordination that is embedded in Coordinator. It is used for computing reference data for a
convoy with one member. Therefore, it contains an instance cm of type ConvoyManage-

ment and, since the convoy has one member, one instance rg1 of type RefGen. Since rg1
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+ -

vc1 : VelocityController

sd / standalone_ctrl :
StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed :force

f / fade :
ConvoyFading:standalone :force

Figure A.28: Component Instance of Component VelocityController that is used by a Co-
ordinator RailCab

is associated with the first convoy member, it receives the current position of the coor-
dinator RailCab via curPos. It is connected to cm for receiving the current profile of the
member.

cc : ConvoyCoordination

cm / man :
ConvoyManagement

rg1 / refGen : RefGen

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider

:profileReceiver

Figure A.29: Component Instance of Component ConvoyCoordination for a Convoy with
1 Member

Figure A.30 shows an instance cc2 of type ConvoyCoordination that is used for a coordi-
nator RailCab with two members. Compared to cc shown in Figure A.29, it contains one
additional instance rg2 of type RefGen including one additional subport instance for each
multi port instance.

In particular, Figure A.30 illustrates how the RefGen instances are arranged in a se-
quence. rg1 generates reference data for the first member that drives directly behind the
coordinator. rg2 generates reference data for the member driving at the last position in
the convoy. Then, rg1 and rg2 are connected via their next and prev port instances, thereby
defining a sequence. Thus, the reference data that is calculated for a RailCab depends
on the reference data of the RailCab driving in front of it.

A.4.2 RailCab Driving as a Member

Figure A.31 shows the CIC of RailCabDriveControl for a convoy member. The main dif-
ference to standaloneRC shown in Figure 3.9 is that the member has an instance of Mem-

berControl for communicating with the coordinator. In addition, os is disconnected from
the remaining components because a convoy member may not voluntarily decide upon
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cc2 : ConvoyCoordination

cm / man :
ConvoyManagement

rg1 / refGen : RefGen

:prev

:next

:curPos:curPos

r1:refDistProvider :refDistProvider

c1:coordinator c1:coordinator

c2:coordinator c2:coordinator

rg2 / refGen : RefGen
r2:refDistProvider :refDistProvider

:speedProvider :speedProvider

:strategy :receiver

p1:profileProvider p2:profileProvider

:profileReceiver

:profileReceiver

Figure A.30: Component Instance of Component ConvoyCoordination for a Convoy with
2 Members

a new speed. This information is solely provided by the coordinator and received by the
member via the refDistReceiver port instance. The reference speed is then send to dl via
the speedProvider port instance of mc.

In addition, the convoy member uses a different VelocityController vc2 that controls the
speed of the RailCab based on speed and distance to the preceding RailCab. As a result,
Member has an instance ds of type DistanceSensor to obtain the current distance that is
provided to vc2.

Figure A.32 shows the corresponding instance vc2 of type VelocityController that is used
by Member. vc2 embeds an instance cd of type ConvoyDrive that is connected to the
instance f of type ConvoyFading.

A.5 Component RTSCs

This section introduces the component RTSCs that we created for the discrete atomic
components that we used in the RailCab example. The components for the RailCab
itself have been introduced in Section 3.1. We present their RTSCs in Section A.5.1.
The components for the different kinds of track sections have been introduced in Sec-
tion 5.1.2. We present their RTSCs in Section A.5.2. For each of the component RTSCs,
we focus on describing the internal behavior regions and the differences of the port
RTSCs to their corresponding role RTSCs.

A.5.1 RTSCs of the RailCab Components

In this section, we present the component RTSCs of the discrete atomic components that
are (recursively) contained in RailCabDriveControl. In particular, we present the compo-
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mc / member :
MemberControl

Member : RailCabDriveControl

vc2 / ctrl : VelocityController

:refSpeed

:curSpeed :curDist

:refDist
:refDist

:force

os / strategy :
OperationStrategy dl / drive :

DriveLogic

:refSpeed

:speedProvider

:member :member

:distReceiver :refDistReceiver

B
:protocolInst

B
:protocolInst :section1 :section1

:section2 :section2
:maxSpeed

ds / dist : DistanceSensor

:distance

sp / sp : SpeedSensor

:speed

180 180

Figure A.31: Component Instance of Component RailCabDriveControl for a Member Rail-
Cab

+ -

vc2 : VelocityController

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist :force

f / fade :
ConvoyFading:convoy :force

Figure A.32: Component Instance of Component VelocityController that is used by a
Member RailCab
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nent RTSCs of OperationStrategy (Section A.5.1.1), DriveLogic (Section A.5.1.2), Mem-

berControl (Section A.5.1.3), ConvoyManagement (Section A.5.1.4), and RefGen (Sec-
tion A.5.1.5).

A.5.1.1 OperationStrategy

The component RTSC of OperationStrategy is shown in Figures A.33 and A.34. Op-

erationStrategy is embedded in RailCabDriveControl (cf. Figure 3.6 on Page 64) and is
responsible for negotiating the convoy entry of further RailCabs and for setting the op-
eration strategy. The RTSC has eight regions; five of which embed the port RTSCs of
the five discrete ports of OperationStrategy, one embeds the RTSC of the broadcast port,
and two embed the RTSCs of the RM and RE port.

The region reconfMsg contains the RTSC of the RM port. It has been derived manually
from the parent region of the manager RTSC generation template shown in Figure 4.15
and satisfies the message exchange for the 2-phase-commit protocol. However, it does
not yet incorporate a decision whether the reconfiguration shall be executed or not. The
RTSC supports sending the three reconfiguration messages that appear in the RM port
interface specification shown in Figure A.49. All of which are requests and, thus, the
RTSC waits for a reply by the parent in AwaitReply. It synchronizes via started with the
peer region and uses the selector expression of type Boolean to indicate the result of the
request.

The region reconfExec contains the RTSC of the RE port. It has been specified manu-
ally and satisfies the message exchange for the 2-phase-commit protocol. The specified
behavior, however, is very simple such that any request by the parent will be executed.
The RTSC contains four states CheckApplyCoordinationStrategy, CheckApplyMemberStrat-

egy, CheckDisableConvoyBuildUp, and CheckEnableConvoyBuildUp that are reached from
Idle by receiving one of the messages that are offered by the RE port interface spec-
ification shown in Figure A.50. We manually defined a unique reconfID four each of
the corresponding reconfiguration operations in accordance to the executor RTSC gen-
eration template (cf. Figure 4.16). In our example, the reconfExec RTSC checks the
structural condition for executing the reconfigurations itself at the transitions from the
Check∗ states to the Checked state. In particular, applyCoordinationStrategy (or applyMem-

berStrategy) may be executed if the RailCab is not in member mode (or in coordinator
mode) as defined by the component SDD in Figure A.91 (or the component SDD in Fig-
ure A.90, respectively). Finally, the RTSC returns to Idle either by receiving abort from
the parent or by receiving execute from the parent. In the latter case, the reconfID is used
to define the transition that is fired and that executes the corresponding CSD.

The region broadcast contains the RTSC of the broadcast port. It is almost unchanged
compared to Figure A.23 and, therefore, we only show a small excerpt of the broadcast
port RTSC in Figure A.33. The only change is that we inserted a state TriggerReq in the
actor region of the Broadcast state. The transition from TriggerReq to Idle synchronizes
with the RTSC of the requestor port such that the instantiation proceeds after the requestor
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OperationStrategy

OperationStrategy_Main
channel: startInstantiation, becomeCoord, addMember, becomeMember, started[boolean];

variable: int numRequesteePorts, const int maxNumRequesteePorts := 1, int numRequestorPorts,
const int maxNumRequestorPorts := 1, boolean isMaster, int maxSpeed := 120, int minDistance := 1,

const int convoyEntryID := 1711, const int peerRoleID := 1712;

variable: boolean request;reconfMsg

reconfExec

broadcast

variable: boolean result, int tmpCommitTime, int reconfID;
clock: c2;

variable: const int ownAddr, const int ownVersion, int partnerAddr, int partnerVersion, Port partnerPort,
Port ownPort, int tmpReceiverAddr, int tmpSenderAddr, boolean result, boolean mutex := false;

Idle
entry/ {request := false;} AwaitReply

[not isMaster] becomeCoord? /
{request := true;} becomeCoordinator()

success started[true]! /

failed started[false]! /

Propagated
U [request == true] /

occupied started[false]! /

Idle
entry/ {reconfID := 0;}

CheckApplyCoordinationStrategy
c2 ≤ 1 ms

CheckEnableConvoyBuildUp
c2 ≤ 1 ms

Checked
U

applyCoordinationStrategy /
{reconfID := 1; reset: c2;}

enableConvoyBuildUp /
{reconfID := 4; reset: c2;}

/ {result := true;
tmpCommitTime := 2000;}

/ {result := not inMemberMode();
tmpCommitTime := 200;}

[result == false] / abort()

WaitForParent

[result == true] /
confirm(tmpCommitTime)

abort /
[reconfID == 1] execute / {applyCoordinationStrategy();}
[reconfID == 2] execute / {applyMemberStrategy();}

[isMaster] becomeCoord? /
{request := true;} newMember()

becomeMember? /
{request := true;} becomeMember()

CheckApplyMemberStrategy
c2 ≤ 1 ms

applyMemberStrategy /
{reconfID := 2; reset: c2;}

CheckDisableConvoyBuildUp
c2 ≤ 1 msdisableConvoyBuildUp /

{reconfID := 3; reset: c2;}

/ {result := not inCoordinatorMode();
tmpCommitTime := 200;}

/ {result := true;
tmpCommitTime := 2000;}

[reconfID == 3] execute / {disableConvoyMode();}
[reconfID == 4] execute / {enableConvoyMode();}

requestor variable: int reqProtocolID, int reqRoleID;
clock: c1;

Broadcast
2

1

actor

reactor clock: c1;

clock: c;

Idle
entry/ {partnerAddr := 0;
tmpReceiverAddr := 0;
tmpSenderAddr := 0;}

[mutex == false] /
{mutex := true; reset: c;}

connectionRequest(partnerAddr, ownAddr)

[c ≥ 1000 ms] / {mutex := false;}

[result == true] / {mutex := false; }

CheckIDs_Confirm
entry/ {result := checkIDs();}

U

[result == true] / {mutex := false;}

...

TriggerReq
U

[result == true] /
{ownPort := createRequestorPort(); mutex := false; numRequestorPorts++;}
completedProtocolInstantiation(partnerAddr, ownAddr, ownPort)

startInstantiation! /

...

Figure A.33: RTSC of the Component OperationStrategy (Pt. 1)
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peer variable: boolean masterPossible, boolean slavePossible, boolean masterStarted, boolean slaveStarted;
clock: c0;

requestor variable: int reqProtocolID, int reqRoleID;
clock: c1;

requestee variable: boolean supported, boolean success, int requestedProtocol, int requestedRole;
operation: boolean isSupported(int protocolID, int roleID);

clock: c2;...

Idle startInstantiation! /
{reqProtocolID := convoyEntryID;

reqRoleID := peerRoleID;}

AwaitCreation
c1 ≤ 300 ms

entry/ {createPeerPort();}

confirmInstantiation /
{reset: c1;}

Aborted
declineInstantiation /

NotSupported
protocolNotSupported /

WaitFinish
c2 ≤ 350 ms

[c1 ≥ 250 ms] /
finalize(ownPort) {reset: c1;}Success

completed /

Request SentRequest
c1 ≤ 400 ms

/ {reset: c1;}
request(reqProtocolID, reqRoleID);

NoAssignment
entry/ {reset: c0;}

MasterProposed
c0 ≤ 100 ms

entry/ {reset: c0;}

WaitForSlaveFinish
c0 ≤ 100 ms

entry/ {reset: c0;}

StartingMaster
c0 ≤ 600 ms

WaitForMasterFinish
c0 ≤ 700 ms

entry/ {reset: c0;}

StartingSlave
c0 ≤ 600 ms

[c0 ≥ 50] [masterPossible] /
youSlave()

confirm
becomeCoord! /

{reset: c0;}

youSlave /

cannotSlave /
{masterPossible := false;}

started[false]? /
{masterPossible := false;
masterStarted := false;}

cannotMaster()

[not masterPossible &&
not slavePossible] /

[slavePossible] youSlave /
confirm()

[not slaveStarted]
masterReady /

started[true]? /
{slaveStarted := true;}

slaveReady()

[50ms;
50ms]

FailedMaster Slave

started[true]? /
{masterStarted := true;}

masterReady()

[masterStarted]
slaveReady() /

[not masterStarted]
slaveReady /

AcceptSlave

[slaveStarted]
masterReady() /

U

becomeMember! /
{reset: c0;}

started[false]? /
{slavePossible := false;
slaveStarted := false;}

cannotSlave()
cannotMaster /

{slavePossible := false;}

[c0 ≥ 10000 ms]
[not masterPossible] /

[c0 ≥ 50 ms] cannotSlave /
{masterPossible := false;

reset: c0;}

[not slavePossible] youSlave /
cannotSlave() {reset: c0;}

[c0 ≥ 100 ms] / {masterPossible := false;}

Init
U

/ {masterPossible := not inMemberMode(); isMaster := inCoordinatorMode();
slavePossible := not inCoordinatorMode();}

strategySender clock: c1;

speedProvider clock: c;...
...

Figure A.34: RTSC of the Component OperationStrategy (Pt. 2)
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port has been created by the broadcast RTSC using the CSD createRequestorPort shown
in Figure A.64, which is called at the transition from CheckIDs_Confirm to TriggerReq.

The region requestor contains the port RTSC of the requestor port. The port RTSC has
been adapted as follows compared to the role RTSC shown in Figure A.24. First, the
transition from Idle to Request now waits for the synchronization startInstantiation initiated
by the broadcast port. Second, we replaced the non-deterministic choice expressions
by assigning the IDs of ConvoyEntry and its peer role to the variables reqProtocolID and
reqRoleID because we only enable to instantiate the peer port of OperationStrategy via the
RTCP ProtocolInstantiation. Finally, we moved calling the createPeerPort CSD shown in
Figure A.66 to the entry action of AwaitCreation.

The region requestee contains the port RTSC of the requestee port. The RTSC is un-
changed compared to the role RTSC shown in Figure A.25 except that we replaced the
non-deterministic choice expression at the transition from CheckRequest to CreatePort by
a call to the CSD createPeerPort shown in Figure A.66. Therefore, we omit the RTSC in
Figure A.34.

The region peer contains the RTSC of the peer port. Compared to the role RTSC shown
in Figure A.2, we added a new initial state Init. The transition from Init to Idle initial-
izes the variables masterPossible, isMaster, and slavePossible by evaluating the component
SDDs inMemberMode and inCoordinatorMode shown in Figures A.91 and A.90, respec-
tively. These variables define whether the RailCab may become coordinator or mem-
ber of the convoy. After an initial assignment has been proposed by switching to the
MasterProposed and AcceptSlave states, the peer region synchronizes with the reconfMsg

region via becomeCoord and becomeMember for executing the reconfigurations for be-
coming a coordinator or member of a convoy. The transitions from StartingMaster to
WaitForSlaveFinish now wait for the answer of reconfMsg using the synchronization chan-
nel started. The same holds for the transitions from StartingSlave to WaitForMasterFinish.
Thereby, we integrated the peer port with the reconfiguration behavior that executes the
requested reconfigurations based on the 2-phase-commit protocol.

Finally, regions speedProvider and strategySender contain the port RTSCs of the ports
speedProvider and strategySender. Both RTSCs are unchanged compared to their port
RTSCs shown in Figures A.10 and A.14 except that they access the variables of the
component RTSC instead of their local variables. Therefore, we omit the RTSCs in
Figure A.34.

A.5.1.2 DriveLogic

The component RTSC of DriveLogic is shown in Figure A.35. DriveLogic is embedded in
RailCabDriveControl (cf. Figure 3.6 on Page 64) and is responsible for setting the speed
of the RailCab and for requesting permission to enter track sections. The component
RTSC contains three regions that correspond to the three discrete ports of DriveLogic.
Since DriveLogic is not reconfigurable, it has no RM port and no RE port.
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DriveLogic

DriveLogic_Main

variable: int speed := 0;

clock c1;section1

section2

maxSpeed

Idle WaitForAnswer
c1 ≤ 2s

Approved
c1 ≤ 2min

enterAllowed /
{reset: c1}

DriveOnSectionLeaveSection
c1 ≤ 100ms

/ leaveSection()
{reset: c1}

confirmExit /

newSection /
request()
{reset: c1}

Waiting

enterDenied /
{refSpeed := 0;} enterAllowed /

{refSpeed := speed;
reset: c1}

EnterSection
c1 ≤ 100ms

confirmEntry /

/ enterSection()
{reset: c1}

... clock: c1;

Timeout

newSpeed / {speed := newSpeed.speed;}
clock: c;

PeriodicReceiving
c ≤ 100 ms

entry/ {reset: c;}

[c ≥ 100 ms] /

newSpeed / {speed := newSpeed.speed;}

Figure A.35: RTSC of the Component DriveLogic

The region section1 contains the port RTSC of section1 that refines the railcab role of
SectionEntry. Compared to the role RTSC shown in Figure 5.2 on Page 144, we only
applied two changes. First, whenever the RailCab is denied to enter a track section
(transition from WaitForAnswer to Waiting), we set the value of the hybrid port refSpeed to
0 such that the RailCab stops. If the RailCab eventually receives permission to enter the
track section and switches from Waiting to Approved, we set refSpeed back to the current
maximum speed of the RailCab.

The RTSC of section2 contained in region section2 is refined in the same way and, there-
fore, omitted in Figure A.35.

Finally, the region maxSpeed contains the port RTSC of the maxSpeed port. It is respon-
sible for receiving the current maximum speed for the RailCab and for storing it in the
variable speed.

A.5.1.3 MemberControl

The component RTSC of MemberControl is shown in Figure A.36. MemberControl is em-
bedded in RailCabDriveControl (cf. Figure 3.6 on Page 64) and is responsible for execut-
ing the behavior that is necessary for driving in a convoy as a member. The component
RTSC contains four regions; three of which correspond to the three discrete ports of
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MemberControl while the fourth one contains internal behavior. Since MemberControl is
not reconfigurable, it has no RM port and no RE port.

MemberControl

MemberControl_Main
channel: updateValues;

variable: int speed := 0, int distance := 100, Profile curProfile;

clock: c;
var: const int numOfProfiles := 5, boolean hasNext, int entryPosition,

Profile tmpProfile, ProfileIterator iterator, ProfileList profiles;

member

refDistReceiver

speedProvider

clock: c2;

clock: c3;

internal behavior operation: int sanityCheck(int speed, int dist, Profile profile);
clock: c4;

PeriodicSending
c3 ≤ 100 ms

entry/ {reset: c3;}

[c3 ≥ 100 ms] / newSpeed(speed)

SendAck
c2 ≤ 1 ms

entry/ {reset: c2;}
WaitUpdate

update /
{dist := update.distance; speed := update.speed;}

[1ms;1ms]

updateValues! / ack()

[1ms;1ms]

Processing
c4 ≤ 1 ms

entry/ {speed := sanityCheck(speed, distance, curProfile);
reset: c4;}

Idle updateValues? /

/ {refDist := distance;}

...

Figure A.36: RTSC of the Component MemberControl

The region member contains the RTSC of the member port that refines the role RTSC of
the member role of ConvoyCoordination shown in Figure A.5. The RTSC is identical to
the role RTSC and, therefore, is omitted from the figure.

The region refDistReceiver contains the RTSC of the refDistReceiver port that refines the
role RTSC of the receiver role of DistanceTransmission shown in Figure 2.14. After the
RTSC received an update from the coordinator, it stores the new reference speed and
distance in the variables speed and distance of the component RTSC. Before sending the
ack, it synchronizes with the internal behavior region via updateValues to indicate that new
reference values are available.

The region speedProvider contains the RTSC of the speedProvider port that refines the
role RTSC of the sender role of SpeedTransmission shown in Figure A.10. It periodically
sends the value of the variable speed as a parameter of the newSpeed message.

Finally, the region internal behavior contains an internal behavior of DriveLogic. The RTSC
waits in Idle until refDistReceiver initiates the synchronization via updateValues. Then,
the RTSC switches to Processing and calls the operation sanityCheck in its entry action.
sanityCheck checks the reference values that have been provided by the coordinator based
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on the current profile. The reference values are adjusted if necessary. In addition, the
transition from Processing back to Idle sets the value of distance to the hybrid port refDist.

A.5.1.4 ConvoyManagement

The component RTSC of ConvoyManagement is shown in Figure A.37. ConvoyManage-

ment is embedded in ConvoyCoordination (cf. Figure 3.5 on Page 63) and is responsible
for managing the members of a convoy. The RTSC has six regions; four of which embed
the port RTSCs of the four discrete ports of ConvoyManagement, two of which embed the
RTSCs of the RM and RE port.

The region reconfMsg contains the RTSC of the RM port. It has been derived manually
from the parent region of the manager RTSC generation template shown in Figure 4.15
and satisfies the message exchange for the 2-phase-commit protocol. However, it does
not yet incorporate a decision whether the reconfiguration shall be executed or not. The
RTSC supports sending the stopCoordination message that is defined in the RM port in-
terface specification shown in Figure A.51. Sending this message is triggered by a syn-
chronization via stopCoordination that is initiated by the RTSC in the coordinator region.

The region reconfExec contains the RTSC of the RE port. It has been specified manually
and satisfies the message exchange for the 2-phase-commit protocol. The specified be-
havior, however, is very simple such that any request from the parent will be executed.
The RTSC contains two states CheckCreateFirstMemberPorts and CheckCreateMemberPort-

sAfter that are reached from Idle by receiving one of the messages that are offered by the
RE port interface specification shown in Figure A.52. We manually defined a unique
reconfID for each of the corresponding reconfiguration operations in accordance to the
executor RTSC generation template (cf. Figure 4.16). In our example, the reconfExec

RTSC checks the structural condition for executing the reconfigurations itself at the
transitions from the Check∗ states to the Checked state. In particular, executing both
reconfigurations is possible if the current number of members is less than maxNumMem-

bers indicating the maximum number of convoy members. Finally, the RTSC returns to
Idle either by receiving abort from the parent or by receiving execute from the parent. In
the latter case, the reconfID is used to define the transition that is fired and that executes
the corresponding CSD. In addition, both of these transitions increase the number of
members of the convoy.

The region speedProvider contains the RTSC of the speedProvider port that refines the
RTSC of the role provider of SpeedTransmission shown in Figure A.10. It has not been
modified and, therefore, we omit it is the figure.

The region coordinator contains the RTSC of the coordinator port that refines the RTSC
of the role coordinator of ConvoyCoordination shown in Figure A.4. Most of the RTSC are
unchanged with respect to the role RTSC and, therefore, we only show a small excerpt
in Figure A.37. We applied the following changes. First, the transition from Idle to
HandleNewMember does no longer check the condition for executing a reconfiguration
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ConvoyManagement

ConvoyManagement_Main
channel: newMember, stopCoordination;

variable: int ownMaxSpeed, boolean updateProfiles := false, int minDistance, int convoySpeed, ProfileStore
allProfiles, int maxNumberMembers := 10, profileProvider curPPort, coordinator curCPort, int members := 0;

variable: boolean request;reconfMsg

reconfExec

coordinator

variable: boolean result, int tmpCommitTime, int reconfID, coordinator ccPort, profileProvider ppPort;
clock: c2;

variable: boolean memberPossible, int newRailCabPosition, boolean changed, Profile newProfile;
operation: boolean isMemberPossible(), boolean calculateProfiles();

strategyReceiver clock: c2;

Idle
entry/ {request := false;} AwaitReply

stopCoordination? /
{request := true;}

stopCoordination()

success /

failed /

Propagated
U [request == true] /

occupied /

Idle
entry/ {reconfID := 0;}

CheckCreateFirstMemberPorts
c2 ≤ 1 ms

CheckCreateMemberPortsAfter
c2 ≤ 1 ms

Checked
U

createFirstMemberPorts /
{reconfID := 1; reset: c2;}

createMemberPortsAfter /
{reconfID := 2; reset: c2;}

/ {result :=
(members < maxNumMembers);

tmpCommitTime := 500;}

/ {result :=
(members < maxNumMembers);

tmpCommitTime := 500;}

[result == false] / abort()

WaitForParent

[result == true] /
confirm(tmpCommitTime)

abort /

[reconfID == 1] execute newMember! /
{[curCPort, curPPort] := createFirstMemberPorts(); members := members + 1;}

[reconfID == 2] execute newMember! /
{[curCPort, curPPort] := createMemberPortsAfter(ccPort, ppPort); members := members + 1;}

speedProvider clock: c;

Coordinator_Main

adaptation

subrole

channel: newMemberPossible, entryFail, entrySuccess, requestPosition, sendNewProfile[Role], finished[Role], convoy;
variable: coordinator tmpCPort;

clock: c1, c2;

variable: int newPos;
clock: c3, c4;

Idle NewQuerynewMember? / {reset: c1;} HandleNewMember
c1 ≤ 10ms

NewMember
c1 ≤ 1000msCalculate

newMemberPossible? /
{memberPossible :=

isMemberPossible ( ) }

[not memberPossible]
entryFail! /

[memberPossible]
entrySuccess! /

{reset: c1}

requestPosition? /
{calculateProfiles()}

[newRailCabPosition > 0] /

U

U

[500ms;500ms]
DeleteSR

c1 ≤ 200ms
[newRailCabPosition == 0]

entryFail! /convoy? /
{curCPort := null;}

Initialize

/ {allProfiles := initializeVariables(); }

U

CheckCoordination
U

[c2 ≥ 200ms] /
{deleteSRProfiles(allProfiles, curSubRole);
members := members – 1; curCPort := null;}

[members > 0]

[members == 0]
stopCoordination! /

...

...

profileProvider variable: int newConvoySpeed;

...

...

...

Figure A.37: RTSC of the Component ConvoyManagement
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and for executing the reconfiguration rule. Instead, it synchronizes via newMember with
the reconfExec region, which now contains the behavior for executing the reconfiguration.
Then, this transition will fire any time after a new subport has been created by reconfExec.
As our second modification, we inserted the CheckCoordination state. After the entry of
the new member has failed, the transitions from CheckCoordination to Idle check whether
there still exists a member in the convoy (members is greater than 0). If not, then the
RTSC synchronizes via stopCoordination with the reconfMsg region such that a request
for stopping the coordination of a convoy is sent. Currently, this request is not further
processed in our behavior model because we only consider building convoys yet. The
remaining behavior of coordinator is unchanged except that we use variables that are
typed by the coordinator port instead of variables typed by the role while iterating all
subports of coordinator.

Finally, the regions strategyReceiver and profileProvider contain the RTSCs of the strate-

gyReceiver and profileProvider ports. The RTSC of strategyReceiver is unchanged com-
pared to the role RTSC shown in Figure A.15. The RTSC of profileProvider is unchanged
compared to the role RTSC shown in Figure A.7 except that we removed the self-
transition from the Idle state of the adaptation RTSC. The reason is that the reconfig-
uration executed by this transition is now contained in the reconfExec RTSC.

A.5.1.5 RefGen

The component RTSC of RefGen is shown in Figure A.38. ConvoyManagement is embed-
ded in ConvoyCoordination (cf. Figure 3.5 on Page 63) and is responsible for computing
reference values for the convoy members based on their profiles. The component RTSC
contains five regions; four of which correspond to the four discrete ports of RefGen while
the fifth one contains internal behavior. Since RefGen is not reconfigurable, it has no RM
port and no RE port.

The region refDistProvider contains the RTSC of the refDistProvider port that refines the
role provider of DistanceTransmission shown in Figure 2.15. Since refDistProvider is a single
port, the port RTSC only refines the subrole behavior of the multi role provider. The
creation of new RefGen instances, which corresponds to the creation of a new subrole
instance in the role RTSC, is implemented by the parent component ConvoyCoordination.
The synchronization behavior that triggers sending new reference values periodically is
implemented by the internal behavior region as well as the next and prev port RTSCs.

The behavior is as follows. The internal behavior starts in the state InitUpdates. Every
500 ms, it fires the transition to UpdateVars and checks whether it is the first or the last
RefGen instance in the sequence of RefGen instances inside ConvoyCoordination using the
component SDDs isFirst and isLast given in Section A.7.5. If it is not the first instance,
it returns to InitUpdates without action. If it is the first instance, it triggers the refDist-

Provider RTSC via the synchronization channel send. Then, the refDistProvider performs
the update similar to the subrole RTSC of the provider role. However, it uses the curProfile

and, if it is the first instance, the value of curPos for computing new reference values.
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RefGen

RefGen_Main
channel: send, send_next;

variable: Profile curProfile, int currentPos, int prevPos, int prevSpeed,
int newSpeed, int convoySpeed, int convoyMinDist, int coordMaxSpeed,

int newDist, boolean _first, boolean _last;
operation: void calculateRefValues();

clock: c1;refDistProvider

clock: c2;profileReceiver

internal behavior clock: c3;

next

prev

SendUpdate
c1 ≤ 10 ms

Idle

send? /
{reset: c1;}

AwaitAck
c1 ≤ 50 ms

/ {calculateRefValues();}
update(newDist, newSpeed)

[30ms;30ms]

[_last]
ack /

ack
send_next! /

InitUpdates
c3 ≤ 500 ms

entry/ {reset: c3;}

[_first] send! /

[not _first] /

UpdateVars

[c3 == 500 ms] /
{_first := isFirst(); _last := isLast();} U

Idle
send_next? / startExecution(currentPos, newSpeed)

Idle startExecution send! /
{prevPos := startExecution.position;
prevSpeed := startExecution.speed);}

...

Figure A.38: RTSC of the Component RefGen
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Finally, it waits in AwaitAck for the ack of the member. If it is the last instance, it returns
to Idle without further action after receiving the ack. If it is not the last instance, it trig-
gers the next region via send_next. The RTSC in region next refines the role initiator of
StartExecution shown in Figure A.12. Thus, it sends a startExecution message to the prev

port of the next RefGen instance in the sequence. Upon receiving this message, the prev

region synchronizes via send with the refDistProvider region and the behavior proceeds as
described above.

Finally, the profileReceiver region contains the RTSC of the profileReceiver port that refines
the role profileReceiver of ProfileDistribution shown in Figure A.8. It is responsible for
receiving the profile that has been selected for the corresponding convoy member by
ConvoyManagement. The RTSC is identical to the role RTSC except that all variables of
the role became variables of the component RTSC. Therefore, the RTSC is omitted in
Figure A.38.

A.5.2 RTSCs of the Section Components

In this section, we present the component RTSCs of the components NormalTrackSection

(Section A.5.2.1), Switch (Section A.5.2.2), and RailroadCrossing (Section A.5.2.3) that
were used in Chapter 5 for illustrating our refinement check.

A.5.2.1 NormalTrackSection

Figure A.39 shows the RTSC of the component NormalTrackSection shown in Figure 5.3a
on Page 146. The component RTSC defines one state NormalTrackSection_Main and one
variable sectionFree that denotes whether the section is currently free or not.

The state NormalTrackSection_Main has four regions. The regions left and right contain
the port RTSCs of the ports left and right that both refine the role section of the RTCP
EnterSection. The RTSCs in both regions are identical to the RTSC shown in Figure 5.4
on Page 147. Therefore, we omitted the RTSC for right to improve readability of the
figure.

The region internal behavior defines the internal behavior of the component. It consists
of two states Free and Occupied that denote the current status of the track section. In our
example, only the internal behavior may write the variable sectionFree. When the internal

behavior switches from Free to Occupied, it sets sectionFree to false. The transition in
the opposite direction sets the value of sectionFree back to true. The internal behavior
synchronizes via the channels acquire and release with the RTSCs of left and right. In
particular, left and right use acquire to block the section for the RailCab they are commu-
nicating with. Only if the synchronization via acquire succeeds, one of these RTSCs may
send enterAllowed to a RailCab at the transition from CheckRequest to EnterAllowed. After
the RailCab left the track section, left or right synchronizes via release to report that the
track section is free again.
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NormalTrackSection

NormalTrackSection_Main
channel: acquire, release;

variable: boolean sectionFree;

Idle

variable: boolean free;
clock: c2;

RailCabApproaching
c2 ≤ 1800ms

CheckRequest
c2 ≤ 1980ms

request /
{free := sectionFree}

RailCabOnSectionWaitPostAction
c2 ≤ 1s

leaveSection /
confirmExit() {reset: c2}

[c2 ≥ 1s]
release! /

/ newSection() {reset: c2}

EnterDenied
c2 ≤ 1980ms

[not free] /
enterDenied()
{reset: c2}

[free] acquire! /
enterAllowed() {reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[free] acquire! /
enterAllowed()
{reset: c2}

[c2 ≥ 1s] [not free] /
{free := sectionFree}

left

variable: boolean free;
clock: c2;

right ...

Free Occupiedacquire? /
{sectionFree := false}
release? /
{sectionFree := true}

internal behavior

Idle Request
c1 ≤ 5 ms

entry/ {free := sectionFree;}

requestSectionStatus /
{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;
clock: c1;

precedingSwitch

Figure A.39: RTSC of the Component NormalTrackSection
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Finally, the region precedingSwitch implements the role tracksection of the RTCP Next-

SectionFree. The RTSC is almost identical to the RTSC shown in Figure A.17. The
only difference is that the entry action of Request now assigns the value of the variable
sectionFree to the local variable free.

A.5.2.2 Switch

Figure A.40 shows the RTSC of the component Switch shown in Figure 5.3c on Page 146.
The component RTSC defines one state Switch_Main and one variable sectionFree that
denotes whether the switch is currently free or not.

The state Switch_Main has five regions. The regions left, right, and bottom contain the port
RTSCs of the ports left, right, and bottom that all refine the role section of the RTCP Enter-

Section. The RTSCs in these regions are identical to the RTSC shown in Figure 5.6 on
Page 148. Therefore, we omitted the RTSCs for right and bottom to improve readability
of the figure.

The region internal behavior defines the internal behavior of the component. It is identical
to the internal behavior of the normal track section shown in Figure A.39 and interacts
with the RTSCs in left, right, and bottom in exactly the same way.

The region followingSection implements the role switch of the RTCP NextSectionFree. The
RTSC in followingSwitch refines the role RTSC by introducing one additional state No-

tify including a transition from Notify to Idle and a synchronization channel sectionFree

for synchronizing with the regions left, right, and bottom. After one of the latter three
regions received request, the transition from RailCabApproaching to WaitForTrack synchro-
nizes with followingSection via nextSectionFree. Then, followingSection switches to Wait-

ForSection and sends requestSectionStatus to the following track section. After the track
section has answered with sectionStatus, followingSection switches to Notify. The transition
from Notify to Idle then synchronizes with one of the regions left, right, or bottom. The sta-
tus (free or not free) of the following track section is encoded in the selector expression
of sectionFree.

A.5.2.3 RailroadCrossing

Figure A.41 shows the RTSC of the component Crossing_InfProc. The component RTSC
defines one state Crossing_InfProc_Main and one variable sectionFree that denotes whether
the railroad crossing is currently free or not.

The state Crossing_InfProc_Main has four regions. The regions left and right contain the
port RTSCs of the ports left and right that both refine the role section of the RTCP En-

terSection. The RTSCs in both regions are identical to the RTSC shown in Figure 5.16
on Page 169, i.e., they contain the correctly refined behavior for a railroad crossing. We
omitted the RTSC for right to improve readability of the figure.
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Switch

Switch_Main
channel: acquire, release, nextSectionFree, sectionFree[int];

variable: boolean sectionFree;

Idle RailCabApproaching
c2 ≤ 100ms

CheckRequest
c2 ≤ 1980ms

request nextSectionFree! /
{firstTry := true}

RailCabOnSectionWaitPostAction
c2 ≤ 1000ms

leaveSection /
confirmExit() {reset: c2}

[c2 ≥ 1000ms]
release! /

/ newSection() {reset: c2}

EnterDenied
c2 ≤ 1980ms

[firstTry and (not free)] /
enterDenied() {reset: c2}

[free] acquire! /
enterAllowed() {reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[c2 ≥ 1s] [not free] /
{free := sectionFree}

WaitForTrack
c2 ≤ 1900ms

exit/ {free := sectionFree}

sectionFree[1]? /sectionFree[0]? /
{free := false}

[free] nextSectionFree! /
{firstTry := false; reset: c2}

[(not firstTry) and (not free)] /
{reset: c2}

variable: boolean free, boolean firstTry;
clock: c2;

left

... variable: boolean free, boolean firstTry;
clock: c2;

right

... variable: boolean free, boolean firstTry;
clock: c2;

bottom

Free Occupiedacquire? /
{sectionFree := false}
release? /
{sectionFree := true}

internal behavior

followingSection

Idle WaitForSection
c2 ≤ 20 ms

nextSectionFree? /
{reset: c2} requestSectionStatus()

variable: boolean status;
clock: c2;

Notify
c2 ≤ 20 ms

[c2 ≥ 20 ms] sectionStatus /
{status := sectionStatus.free; reset: c2;}

sectionFree[status]! /

Figure A.40: RTSC of the Component Switch
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Crossing_InfProc

Crossing_InfProc_Main
channel: closeGate, openGate, gateClosed, gateOpened;

variable: boolean sectionFree;

variable: boolean free;
clock: c2;

left

Idle RailCabApproaching
c2 ≤ 100ms

CheckRequest
c2 ≤ 120ms

request /
{free := sectionFree}

RailCabOnSection

WaitOpenGate
c2 ≤ 1s

openGate!
leaveSection /
confirmExit()
{reset: c2}

[c2 ≥ 1s]
gateOpened? /

/ newSection()
{reset: c2}

EnterDenied
c2 ≤ 1980ms

/ enterDenied()
{reset: c2}

EnterAllowed
c2 ≤ 120040ms

enterSection /
confirmEntry()

[c2 ≥ 1s] [not free] /
{free := sectionFree}

ClosingGate
c2 ≤ 1980ms

[free] closeGate! /
{reset: c2}

gateClosed? /
enterAllowed()
{reset: c2}

[free]
closeGate! /

SendDenial
c2 ≤ 1980ms

[not free]

... variable: boolean free;
clock: c2;

right

internal behavior

Free

Closing
c3 ≤ 1800ms

closeGate? /
{gateAction := true;
reset: c3;}

Opening
c3 ≤ 1800ms

Closed

[not gateStatus]
gateOpened! /
{sectionFree := true}

openGate? /
{gateAction := false;
reset: c3}

[gateStatus] gateClosed! /
{sectionFree := false}

clock: c3;

Idle Request
c1 ≤ 5 ms

entry/ {free := sectionFree;}

requestSectionStatus /
{reset: c1}

[c1 ≥ 4 ms] / sectionStatus(free)

variable: boolean free;
clock: c1;

precedingSwitch

Figure A.41: RTSC of the Component Crossing_InfProc



Page A-42 Appendix A

The region internal behavior defines the internal behavior of the component. It synchro-
nizes with the regions left and right for closing the gates when a RailCab wants to enter
the railroad crossing. Initially, the railroad crossing is in state Free that denotes that the
railroad crossing is free. If a RailCab wants to enter, the transition from CheckRequest to
ClosingGate synchronizes via closeGate with the transition Free to Closing in the internal

behavior. In the transition action, the transition from Free to Closing sets the value of
the hybrid port gateAction to true. This indicates that the gates need to be closed. As a
result, the continuous component Gates closes the gates and sets the port status to true as
soon as the gates are closed. Then, gateStatus becomes true in Crossing_InfProc and the
transition from Closing to Closed fires. It synchronizes via gateClosed with left or right to
indicate that the gate is now closed. After the RailCab left the railroad crossing, left or
right synchronizes via openGate with the internal behavior to open the gates again. Then,
the transition from Closed to Opening sets the hybrid port gateAction to false which causes
Gates to open the gates. After the gates are open, gateStatus becomes false and the tran-
sition from Opening to Free may fire. This transition synchronizes with left or right to
indicate that the section is free again.

Finally, the region precedingSwitch implements the role tracksection of the RTCP NextSec-

tionFree. The RTSC is identical to the one in region precedingSwitch of NormalTrackSec-

tion_Main and works in exactly the same fashion.

A.6 Reconfiguration Behavior Specification of Components

This section introduces the remaining parts of the reconfiguration behavior specification
of the three structured components RailCabDriveControl, ConvoyCoordination, and Velocity-

Controller. For the atomic components, we present the reconfiguration behavior only par-
tially due to the current restrictions of our approach as denoted in Section 4.7. We start by
describing the declarative, table-based reconfiguration specifications in Section A.6.1.
Thereafter, we present the remaining CSDs used by the components in Section A.6.2.
Finally, we present a manager and an executor RTSC that have been generated for the
component RailCabDriveControl in Section A.6.3 and story diagram implementations of
the operations used by the executor in Section A.6.4.

A.6.1 Declarative, Table-based Reconfiguration Specification

Section A.6.1.1 presents the declarative, table-based specification of ConvoyCoordination

while Section A.6.1.2 presents the specification of VelocityController. The specification
of RailCabDriveControl has already been given in Section 4.3. In addition, we present
RM port and RE port interface specifications of OperationStrategy in Section A.6.1.3
and ConvoyManagement in Section A.6.1.4. Although we cannot yet define generation
templates for deriving an executable reconfiguration behavior specification for atomic
components, the interface specifications of RM ports and RE ports need to be identical
to structured components. Otherwise, we would violate component encapsulation.
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A.6.1.1 ConvoyCoordination

Figure A.42 shows the manager specification of ConvoyCoordination. ConvoyCoordination

may react to two messages. First, it may receive stopCoordination from ConvoyManage-

ment. This message indicates that the RailCab shall no longer coordinate the convoy, e.g.,
after all members have left the convoy. This message is not further processed because
we do not yet consider dissolving convoys. Second, ConvoyCoordination may receive
addConvoyMemberAtPos from the parent component. This message will be treated by
executing the reconfiguration rule addConvoyMemberAtPos (cf. Figure 3.14 on Page 76).
This reconfiguration has no structural condition, is not safety relevant, and requires no
planning.

Message Type Treat

stopCoordination No

Propagate
to parent

No

addConvoyMember
AtPos

Yes No

Structural ConditionReconfiguration Rule Invoke
Planner

No

No

Time For
Planning

addConvoyMemberAt
Pos()

true ---

--- true ---1

2

Safety
Relevant

No

No

Figure A.42: Manager Specification of the ConvoyCoordination Component

Figure A.43 shows the executor specification of ConvoyCoordination. The executor only
contains the reconfiguration rule addConvoyMemberAtPos that defines a WCET require-
ment of 50 ms.

ID Reconfiguration Rule
1 addConvoyMemberAtPos(int pos) :

(coordinator cp, refDistProvider rpp)

WCET
50 ms

Figure A.43: Executor Specification of the ConvoyCoordination Component

Since addConvoyMemberAtPos shall be received from the parent component, it is con-
tained in the RE port specification of ConvoyCoordination shown in Figure A.44. The
entry defines that ConvoyCoordination needs 50 ms for deriving a decision whether to ex-
ecute the reconfiguration and that the execution takes another 100 ms.

Message Type Description Time for
Decision

addConvoyMember
AtPos(int pos) :
(coordinator cp,
refDistProvider rpp)

The ConvoyCoordination will
create and return port instances for
communicating with a new convoy
member.

50 ms

Time for
Execution
100 ms

Minimum
Commit Time
200 ms

Figure A.44: RE Port Specification of the ConvoyCoordination Component

At present, ConvoyCoordination does not send reconfiguration messages to its parent and,
thus, the RM port interface specification is empty.

A.6.1.2 VelocityController

Figure A.45 shows the RM port interface specification of VelocityController. It sends three
messages to its parent. These are drivingAtHighSpeed, drivingAtNormalSpeed, and distance-
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SensorFailure. The former two are info messages that indicate that the RailCab drives
at high speed or normal speed, respectively. The latter message indicates a hardware
failure of the distance sensor and requests a self-healing operation from the parent.

Message Type Description

drivingAtHighSpeed RailCab travels at high speed.

Type

info

Expected
Response Time

drivingAtNormalSpeed RailCab travels at normal speed.info
---
---

distanceSensorFailure Distance sensor is broken.request 250 ms

Figure A.45: RM Port Specification of the VelocityController Component

Figure A.46 shows the manager specification of VelocityController. The manager specifi-
cation defines the three messages contained in the RM port specification are propagated
to the parent. These are meant to be collected by a monitor of VelocityController as dis-
cussed in Section 7.2. In addition, the manager handles the message switchToConvoy that
is received from the parent. This message will be treated and is connected to the epony-
mous reconfiguration rule. In addition, it defines a structural conditions that is specified
by the component SDD inStandaloneCtrl shown in Figure A.87. Before switching to the
convoy controller, VelocityController invokes a planner for 10 ms. Finally, the manager
contains an entry for the message switchToStandalone that may be used by a member for
leaving a convoy. The corresponding reconfiguration rule switchToStandalone will only
be executed if the VelocityController is in convoy mode as expressed by the component
SDD inConvoyCtrl shown in Figure A.88.

Message Type Treat

switchToConvoy No

Propagate
to parent

Yes

switchToStandalone Yes No

Structural Condition

inStandaloneCtrl()

Reconfiguration Rule

switchToConvoy()

Invoke
Planner

Yes

No

Time For
Planning
10 ms

switchToStandalone() inConvoyCtrl() ---

distanceSensorFailure No Yes No--- true ---

drivingAtHighSpeed No Yes No--- true ---

drivingAtNormalSpeed No Yes No--- true ---

1

2

4

5

3

Safety
Relevant

Yes

No

No

No

No

Figure A.46: Manager Specification of the VelocityController Component

Figure A.47 shows the executor specification of VelocityController. It contains the recon-
figuration rules switchToConvoy (cf. Figure 3.12) and switchToStandalone. For both recon-
figuration rules, it defines that the reconfiguration rules must be executable in 65 ms.

ID Reconfiguration Rule
1 switchToConvoy()

2 switchToStandalone()

WCET
65 ms

65 ms

Figure A.47: Executor Specification of the VelocityController Component

Finally, Figure A.48 shows the RE port interface specification of VelocityController. It
defines two entries, one for switchToConvoy and one for switchToStandalone. The entry for
switchToConvoy defines a time for decision of 20 ms. Since this reconfiguration includes
a fading function for replacing a controller, it denotes separate times for execution of
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the setup, fading, and teardown phases. The entry for switchToStandalone is specified
analogously.

Message Type Description Time for
Decision

switchToConvoy The VelocityController operates as
a convoy member and considers
the distance to the preceding
RailCab.

20 ms

Time for
Execution
Setup: 10 ms
Fading: 50 ms
Teardown: 5 ms

switchToStandalone The VelocityController operates as
standalone or coordinator RailCab
and will control speed solely based
on a reference speed.

20 ms

Minimum
Commit Time

200 ms

200 msSetup: 10 ms
Fading: 50 ms
Teardown: 5 ms

Figure A.48: RE Port Specification of the VelocityController Component

A.6.1.3 OperationStrategy

Figure A.49 shows the RM port interface specification of OperationStrategy. It sends three
messages to its parent. These are becomeCoordinator, newMember, and becomeMember.
All of which are requests. The first message indicates that OperationStrategy negotiated
that the RailCab shall become the coordinator of a convoy. The second message indicates
that an additional member shall be added to the convoy. The third message indicates that
OperationStrategy negotiated that the RailCab shall become member of a convoy.

Message Type Description

becomeCoordinator RailCab should start operating
as a convoy coordinator.

Type
Expected
Response

Time

newMember RailCab is coordinator and
needs to add a new member
to the convoy.

request 500 ms

request 500 ms

becomeMember RailCab should start operating
as a convoy member.

request 500 ms

Figure A.49: RM Port Specification of the OperationStrategy Component

Finally, Figure A.50 shows the RE port interface specification of OperationStrategy. It
defines four entries that use four messages. These are applyCoordinationStrategy, apply-

MemberStrategy, disableConvoyBuildUp, and enableConvoyBuildUp. applyCoordinationStrat-

egy causes OperationStrategy to instantiate the port instances that are required for driving
as a coordinator. In the same way, applyMemberStrategy causes OperationStrategy to in-
stantiate the port instances that are required for driving as a member. Since becoming a
member requires three-phase execution, the entry specifies distinct times for execution
for the setup, fading, and teardown phases. Finally, the latter two entries allow to disable
and to enable that the RailCab may engage in convoys.

A.6.1.4 ConvoyManagement

Figure A.51 shows the RM port interface specification of ConvoyManagement. It sends
one message to its parent, namely stopCoordination. This message indicates that all mem-
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Message Type Description Time for
Decision

applyCoordination
Strategy

The OperationStrategy will no
longer send a reference speed but
information on the current strategy.

5 ms

Time for
Execution

5 ms

applyMemberStrategy The OperationStrategy will no
longer send a reference speed.

5 ms

Minimum
Commit Time

200 ms

200 ms

disableConvoyBuildUp The RailCab will not try to engage
in convoys anymore.

5 ms 5 ms

enableConvoyBuildUp The RailCab will try to join convoys
if possible and useful.

5 ms 5 ms

2000 ms

2000 ms

Setup: 0 ms
Fading: 0 ms
Teardown: 2 ms

Figure A.50: RE Port Specification of the OperationStrategy Component

ber RailCabs have left the convoy and that the RailCab shall stop operating as a coordi-
nator.

Message Type Description

stopCoordination RailCab stops being convoy
coordinator.

Type Expected
Response Time

250 msrequest

Figure A.51: RM Port Specification of the ConvoyManagement Component

Finally, Figure A.52 shows the RE port interface specification of ConvoyManagement. It
defines two entries that use two messages. These are createFirstMemberPorts and create-

MemberPortsAfter. Both messages are required for adding new members to the convoy.
The first message, createFirstMemberPorts, is used for adding a member at the first posi-
tion, i.e., directly behind the coordinator. The second message, createMemberPortsAfter,
is used for adding a member after the one whose port instances are passed as parameters.

Message Type Description Time for
Decision

createFirstMemberPorts() :
(coordinator cPort,
profileProvider pPort)

Creates new port instances for
dealing with an additional member
driving at first position.

5 ms

Time for
Execution

5 ms

createMemberPortsAfter
(coordinator c,
profileProvider p) :
(coordinator cPort,
profileProvider pPort)

Creates new port instances for
dealing with an additional member
driving behind the RailCab whose
corresponding port instances are
given as parameters.

5 ms 5 ms

Minimum
Commit Time

500 ms

500 ms

Figure A.52: RE Port Specification of the ConvoyManagement Component

A.6.2 Reconfiguration Rules

This section introduces the reconfiguration rules specified as CSDs that we use in our
RailCab example for building convoys. In our example, we build convoys by first estab-
lishing a convoy of two RailCabs and then adding additional RailCabs one after the other
later on. As a result, we need two reconfigurations. The first one reconfigures the CIC of
a RailCab driving alone (cf. Figure 3.9 on Page 69) to a CIC of a coordinator with one
member (cf. Figure A.27 on Page A-23). We explain the necessary CSDs and construc-
tor CSDs in Section A.6.2.1. The second reconfiguration adds one additional member
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to a convoy. We explain this reconfiguration in Section A.6.2.2. The CSDs defining
the reconfiguration for a RailCab to become a member of a convoy have already been
introduced in Section 3.3 and will not be repeated in this section. In addition, we in-
troduce the CSDs that are used by RailCabDriveControl for enabling and disabling the
convoy mode in Section A.6.2.3. Finally, we present the CSDs that are used by the
component OperationStrategy for handling the instantiation of RTCPs on system level in
Section A.6.2.4.

A.6.2.1 Becoming Coordinator

Figure A.53 shows the CSD becomeCoordinator that reconfigures the component instance
standaloneRC of Figure 3.9 such that it is equivalent to Coordinator in Figure A.27.

Create ConvoyCoordination and connect Ports

RailCabDriveControl::becomeCoordinator()

this

os / strategy :
OperationStrategy

applyCooordinationStrategy()

dl / drive :
DriveLogic

:maxSpeed

:speedProvider
«destroy»

c / convoy :
ConvoyCoordination

instantiate1Member()

this

os dl

:curPos

:receiver

:strategySender

:speedProvider

:maxSpeed

ps / pos : PositionSensor

:position

:refDistProvider

:coordinator

:refDistProvider

:coordinator

«create»
«create»

«create»

«create»
«create»

«create»

«create»

«create»

«create»

Switch Operation Strategy and destroy Assembly

Figure A.53: CSD for Component RailCabDriveControl that Reconfigures the Component
Instance to Serve as a Coordinator
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In the first story node, we match the embedded component instances of types Opera-

tionStrategy and DriveLogic. Then, we destroy the assembly connector instance between
both component instances and invoke the reconfiguration applyCoordinationStrategy on
the component instance matched by os. Since both component parts referenced by os

and dl have cardinality [1] (cf. Figure 3.6), this story node is not expected to fail.

In the second story node, we create instances of ConvoyCoordination and PositionSensor.
For instantiating ConvoyCoordination, we use a constructor instantiate1Member that ini-
tializes the component instance such that it is equivalent to cc shown in Figure 3.10.
In addition, we create an assembly connector instance between speedProvider of c and
maxSpeed of dl. Furthermore, we create the multi port instances coordinator and refDist-

Provider with one subport instance each and delegate them to the corresponding port
instances of c. Since the VelocityController does not change if a RailCab becomes coordi-
nator of a convoy, it is not used in the CSD.

Delete Provide Port, Create Strategy Port

OperationStrategy::applyCoordinationStrategy()

this
:strategySender

«create» «destroy»
:speedProvider

Figure A.54: CSD for Component OperationStrategy that Reconfigures the Ports for Be-
ing Coordinator

Figure A.54 shows the CSD applyCoordinationStrategy that is invoked in the first story
node of becomeCoordinator shown in Figure A.53. OperationStrategy is an atomic compo-
nent and, therefore, the this variable has no embedded part variables. The CSD deletes
the speedProvider port instance and creates a strategySender port instance.

Figure A.55 shows the constructor instantiate1Member of the component ConvoyCoordina-

tion that is used by the CSD becomeCoordinator shown in Figure A.53. Since the CSD
is a constructor CSD, all variables of the component story pattern carry a «create»

stereotype. The constructor creates instances of ConvoyManagement and RefGen. For
RefGen, it recursively invokes the constructor CSD initWithCurPos shown in Figure A.56
for creating an instance with a curPos port instance. For ConvoyManagement, we use the
default constructor. In addition, the constructor creates the necessary port instances for
an instance of ConvoyCoordination including the delegations to cm and rg1. The result-
ing instance of ConvoyCoordination is equivalent to the component instance cc shown in
Figure 3.10 on Page 70.
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Constructor: ConvoyCoordination::instantiate1Member()

Initialize Port Instances and Embedded Component Instances

this

cm / man :
ConvoyManagement

rg1 / refGen :
RefGen

initWithCurPos()

:curPos:curPos

:refDistProvider :refDistProvider

:coordinator c1:coordinator

:speedProvider :speedProvider

:strategy :receiver

:profileProvider

:profileReceiver

«create»

«create»

«create»
«create»

«create»«create»

«create»

«create»

«create» «create»

«create»
«create»

«create»

Figure A.55: Constructor CSD for Creating an Instance of ConvoyCoordination

Constructor: RefGen::initWithCurPos()

Initialize Port Instances

this

:curPos

:refDistProvider

:profileReceiver«create»«create»

«create»

«create»

Figure A.56: Constructor CSD for Creating an Instance of RefGen
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A.6.2.2 Adding Convoy Members

Having established a convoy with one member, we may add additional members by ex-
ecuting the CSD addConvoyMember shown in Figure A.57 on a component instance of
type RailCabDriveControl. In the first story node, addConvoyMember triggers the recon-
figuration addConvoyMemberAtPos on the ConvoyCoordination instance. Then, ConvoyCo-

ordinator reconfigures itself to include the new member at the given position pos. The
necessary reconfiguration of ConvoyCoordination is defined by the CSD shown in Fig-
ure 3.14 on Page 76. The CSD addMemberAtPos returns the two port instances cp and
rpp that it created. These are assigned to the variables cp and rpp.

Reconfigure ConvoyCoordination

RailCabDriveControl::addConvoyMember(int pos)

c / convoy
: ConvoyCoordination

(cp, rpp) :=
addConvoyMemberAtPos(pos)

this

[else]

[position == 1]

Create PortInstances at First Position

c

this
cp

«create»

:coordinator

«first»
:coordinator

«create»

«next»

rpp
«create»

:refDistProvider

«first»
:refDistProvider
«create»

«next»

Create PortInstances in the Middle

c

this

cp«create»

:coordinator

:coordinator
«create»

«next»

:coordinator

«prev»

:coordinator

«next»

:coordinator

«prev»

rpp«create»

:refDistProvider

:refDistProvider
«create»

«next»

:refDistProvider

«prev»

:refDistProvider

«next»

:refDistProvider

«prev»

«first»

«first»

Figure A.57: CSD for Component RailCabDriveControl that Adds an Additional Convoy
Member

The decision node after the first story node distinguishes two cases, namely, whether
the new member is added at the first position or in the middle of the convoy. In the
former case, the execution of the CSD proceeds with the story node at the bottom left.
It matches the first subport instances of coordinator and refDistProvider of this, which are
both optional. Then, it creates new subport instances for both multi port instances which
both carry the «first» constraint. As a result, they will be inserted at the first position
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and the previously first subport instances are their direct successors. In addition, the
component story pattern creates delegation connector instances to cp and rpp, respec-
tively.

If the new member is not added at the first position, we proceed with the story node
at the bottom right. This story node creates new subport instances for coordinator and
refDistProvider as well. It inserts these port instances at the same position where cp and
rpp have been inserted in ConvoyCoordination. Again, cp and rpp are delegated to the
newly created port instances of this.

The CSD addConvoyMemberAtPos in Figure 3.14 on Page 76 invokes two reconfigura-
tions on ConvoyManagement: createFirstMemberPorts and createMemberPortsAfter that we
will explain in more detail in the following.

The CSD createFirstMemberPorts of ConvoyManagement is shown in Figure A.58. It con-
sists of three story nodes. The first story node in the upper left corner matches the first
subport instances of coordinator and profileProvider. If these subport instances could be
matched successfully, the story node at the bottom left creates new subport instances
at the first position. The previously matched subport instances tmpC and tmpP become
direct successor of the newly created subport instances. If the first story node could not
be matched successfully, then no subport instances exist in coordinator and profileProvider.
In this case, the story node in the upper right corner creates new subport instances and
inserts them at the first position. In both case, the created subport instances newC and
newP are assigned to the output parameters cPort and pPort, respectively, at the final node.

Try to match first Ports

ConvoyManagement::createFirstMemberPorts() : (coordinator cPort, profileProvider pPort)

this
tmpC:coordinator

«first»

«first»tmpP:profileProvider

Create Ports at first position

this
tmpC

«first»

«first»
newP:profileProvider

newC:coordinator
«create»

«next»

«create»

«next»

Create first Ports

this
newC:coordinator

«first»

«first»newP:profileProvider

«create»

«create»

[failure]

[success]

cPort := newC,
pPort := newP

tmpP

Figure A.58: CSD for Component ConvoyManagement that Adds Port Instances for an
Additional Convoy Member at the Beginning of the Convoy

The CSD createMemberPortsAfter of ConvoyManagement is shown in Figure A.59. It takes
two subport instances of the multi ports coordinator and profileProvider as its inputs. The
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subport instances that are created in the story node will be direct successors of these sub-
port instances. If these subport instances already had direct successors, they would be
matched by the optional variables. Then, the subport instances matched by the optional
variables become direct successors of the newly created subport instances for maintain-
ing a correct order of the subport instances.

Create Ports

ConvoyManagement::createMemberPortsAfter(coordinator c, profileProvider p) :
(coordinator cPort, profileProvider pPort)

cPort := newC,
pPort := newP

this

c

newP:profileProvider

newC:coordinator
«create»

«next»

«create»

«next»

«next» «next»

:coordinator
«next»

«next»
p :profileProvider

Figure A.59: CSD for Component ConvoyManagement that Adds Port Instances for an
Additional Convoy Member in the Middle of the Convoy

A.6.2.3 Enabling and Disabling the Convoy Mode

In our example, we implement stopping the RailCabs from engaging in convoys and that
they may start engaging in convoy, again.

The CSD disableConvoyMode is executed by RailCabDriveControl for stopping to engage
in further convoy. Therefore, the CSD deletes the broadcast port that is used for es-
tablishing new connections to other RailCabs. Without the broadbast port, the RailCab
will not be able to instantiate the requestor and requestee ports and, thus, it may not start
collaborating with other RailCabs.

If the instance of RailCabDriveControl contains instances of the requestor and requestee

ports, then these instances are deleted as well by the optional port variables. Along
with the port instances, we delete all delegation connector instances. Finally, the second
activity node of the CSD invokes the reconfiguration disableConvoyBuildUp on os.

The CSD of OperationStrategy that corresponds to disableConvoyBuildUp is shown in Fig-
ure A.61. This CSD operates in the same fashion as disableConvoyMode, i.e., it deletes
the broadcast port instance and the possibly existing instances of requestor and requestee.

If the RailCab shall engage in convoys, again, it executes the CSD enableConvoyMode

on RailCabDriveControl. The CSD is shown in Figure A.62. This CSD consists of two
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RailCabDriveControl::disableConvoyMode()

:protocolInst

this

Delete Port Instances and Delegations of this

os / strategy :
OperationStrategy

B
:protocolInst

B

:requestor :requestor

:requestee :requestee

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

this

Trigger OperationStrategy

os

disableConvoyBuildUp()

Figure A.60: CSD for Component RailCabDriveControl that Disables the Convoy Mode
by Deleting the Necessary Port Instances for Convoy Build-up

OperationStrategy::disableConvoyBuildUp()

:protocolInst

Delete Port Instances

this

B

:requestor

:requestee

«destroy»

«destroy»

«destroy»

Figure A.61: CSD for Component OperationStrategy that Disables the Convoy Mode by
Deleting the Port Instances that are Necessary for Convoy Build-up
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story nodes. The first story node invokes the reconfiguration enableConvoyBuildUp on
os. The second story node creates a new instance of the broadcast port including a
delegation connector instance to the broadcast port instance of os that has been created
by enableConvoyBuildUp.

RailCabDriveControl::enableConvoyMode()

this

Trigger OperationStrategy

os / strategy :
OperationStrategy

enableConvoyBuildUp()
:protocolInst

this

Create Port Instance and Delegation

osB
:protocolInst

B«create»
«create»

Figure A.62: CSD for Component RailCabDriveControl that Enables the Convoy Mode by
Creating the Necessary Broadcast Port Instance

The CSD of OperationStrategy that corresponds to the reconfiguration enableConvoyBuild-

Up is shown in Figure A.63. Similar to enableConvoyMode, it creates a new instance of
the broadcast port for the instance of OperationStrategy.

OperationStrategy::enableConvoyBuildUp()

:protocolInst

Create Port Instances

this
B«create»

Figure A.63: CSD for Component OperationStrategy that Enables the Convoy Mode by
Creating the Necessary Broadcast Port Instance

A.6.2.4 Handling Connection Setup in OperationStrategy

Our concept for instantiating RTCPs on system level as introduced in Section 3.4 in-
volves several reconfigurations inside OperationStrategy. We introduce the CSDs that
specify these reconfigurations in the following.

The RTSC of the broadcast port (cf. Section A.2.2) triggers the instantiation of an in-
stance of requestor or requestee depending on whether it initiated the instantiation or not.



Complete RailCab Example Page A-55

The resulting CSDs that create these port instances are shown in Figures A.64 and A.65.
Both CSDs contain only one story node that creates the port instance.

OperationStrategy::createRequestorPort()

:requestor

Create Port Instance

this«create»

Figure A.64: CSD for Component OperationStrategy that Creates a requestor Port In-
stance

OperationStrategy::createRequesteePort()

:requestee

Create Port Instance

this«create»

Figure A.65: CSD for Component OperationStrategy that Creates a requestee Port In-
stance

Thereafter, both RailCabs use the RTCP ProtocolInstantiation for instantiating the Con-

voyEntry RTCP. As a consequence, OperationStrategy needs to instantiate the peer port,
which is specified by the CSD in Figure A.66.

A.6.3 Generated RTSCs for Manager and Executor of RailCabDriveControl

This section presents examples of a manager RTSC (Section A.6.3.1) and an executor
RTSC (Section A.6.3.2) that have been derived for the component RailCabDriveControl

based on the generation templates given in Section 4.4.

A.6.3.1 Manager RTSC

Figures A.67 and A.68 show the manager RTSC of the component RailCabDriveControl

that has been derived based on the generation template shown in Figure 4.15 and the
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OperationStrategy::createPeerPort() : Boolean b

:peer

Create Port Instance

this«create»

[failure][success]

b := true b := false

Figure A.66: CSD for Component OperationStrategy that Creates a peer Port Instance

declarative, table-based specification introduced in Section 4.3. In the following, we
briefly describe how the RTSC resulted from the template and we do not repeat the gen-
eral behavior of the RTSC. We reused the color coding of the template in order to relate
generated constructs in the manager RTSC to their corresponding template elements.

The parent region contains three transitions from Idle to Propagated that result from the
three messages that are propagated to the parent as defined in the manager specification
in Figure 4.12. These transitions send the messages distanceSensorFailure, drivingAtH-

ighSpeed, and drivingAtNormalSpeed to the parent component. In addition, three cor-
responding synchronization channels syncDistanceSensorFailure, syncDrivingAtHighSpeed,
and drivingAtNormalSpeed have been created for synchronizing the parent region with the
subport that initially received this message.

The executor region contains two transitions from Idle to Request that result from the two
messages that are received by the RE port of RailCabDriveControl (cf. Figure 4.14) and
propagated by the executor. These are noConvoyMode and enableConvoyMode. Along
with the transitions, we generated two synchronization channels syncNoConvoyMode and
syncEnableConvoyMode for synchronizing the executor region and the internal behavior.

The internal behavior regions received five additional states; one for each entry of the
manager specification in Figure 4.12 that is treated. These states are CheckBecomeCoor-

dinator, CheckBecomeMember, CheckNewMember, CheckNoConvoyMode, and CheckEnable-

ConvoyMode. The transitions from Idle to these states are triggered by synchronizations
via the corresponding synchronization channels. In addition, these transitions check the
structural condition, if any, and whether blockable reconfigurations are indeed blocked.
In the example, we replaced the checkStructuralConditionForX operations by the compo-
nent SDDs that define the structural condition. For CheckBecomeCoordinator and Check-

BecomeMember, the outgoing transitions to Plan invoke the planner and have a deadline
that corresponds to the time for planning as specified in the manager specification in
Figure 4.12.
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Finally, the subport contains six additional states with adjacent transitions. These states
and transitions have been created for messages that may be sent by the RM ports of
embedded components. In our example, we need to handle messages that are defined
in the RM port interface specifications of OperationStrategy (cf. Figure A.49) and Ve-

locityController (cf. Figure A.45). For the four requests becomeCoordinator, newMember,
becomeMember, and distanceSensorFailure, we additionally create an invariant and a tran-
sition back to Idle. The invariant is derived from the expected response time of the child,
the time for planning, and by considering an additional overhead for the internal com-
putation of the manager.

A.6.3.2 Executor RTSC

Figures A.69 and A.70 show the executor RTSC of the component RailCabDriveControl

that has been derived based on the generation template shown in Figure A.69 and the
declarative, table-based specification introduced in Section 4.3. In the following, we
briefly describe how the RTSC resulted from the template and we do not repeat the gen-
eral behavior of the RTSC. We reused the color coding of the template in order to relate
generated constructs in the manager RTSC to their corresponding template elements. In
addition, we omitted parts of the RTSCs that only consist of black states and, therefore,
do not differ from the template.

The region parent contains two additional states CheckNoConvoyMode and CheckEnable-

ConvoyMode that result from the two entries of the RE port interface specification in
Figure 4.14. The parent region receives the corresponding message at the incoming tran-
sitions of these states and tries to synchronize with the events region at the transitions
leading to CheckSelf. This results in two synchronization channels checkNoConvoyMode

and checkEnableConvoyMode that are generated for the RE port interface entries. The
invariants of the two states result from the time for decision given in the RE port inter-
face entries minus the time that is necessary for checking the request by the manager. If
the manager can no longer finish checking the request on time after waiting for a given
amount of time, then parent directly switches to SendAbort.

The region events contains two additional transitions from Idle to Check that correspond
to the two entries of the RE port interface specification. In particular, these transitions
synchronize with the parent and forward the message that has been received by parent to
the manager.

The region internal behavior contains additional constructs for executing the CSDs that
are contained in the executor specification (cf. Figure 4.13). First, the transitions from
Idle to Start are extended by a guard condition that enables to distinguish between recon-
figurations that are executed based on single-phase execution and three-phase execution.
In our example, only becomeMember with ID 3 (cf. Figure 4.13) needs to be executed
based on three-phase execution and, thus, we only set singlePhase to false if becomeMem-

ber shall be executed. In addition, we receive four transition from Execute to Report; one
for each CSD that is executed based on single-phase execution. Finally, we receive the
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Manager

Manager_Main

2

3

channel: reply[boolean], executed[boolean], executeReconf, syncDistanceSensorFailure, syncDrivingAtHighSpeed, syncDrivingAtNormalSpeed,
syncNoConvoyMode, syncEnableConvoyMode, syncBecomeCoordinator, syncNewMember, syncBecomeMember;

parent

internal behavior

embeddedCI 4

1executor

variable: boolean request;

variable: int reconfiguration, int[] blockedReconfigurations;

variable: boolean request, boolean result;
operation: invokePlanner(int reconfiguration);

variable: boolean executor_request;

Idle
entry/ {request := false;}

AwaitReply
syncDistanceSensorFailure? / distanceSensorFailure()

{request := true;}

success parentReply[true]! /

failed parentReply[false]! /

Propagated
U [request] /

[not request] /

syncDrivingAtHighSpeed? / drivingAtHighSpeed()

syncDrivingAtNormalSpeed? / drivingAtNormalSpeed()

occupied parentReply[false]! /

noConvoyMode syncNoConvoyMode! / {executor_request := true;}

enableConvoyMode syncEnableConvoyMode! /
{executor_request := true;}

Idle
entry/

{executor_request = false;}

ExecuteReconf

executeReconf? / executeReconf(reconfiguration)

Request executeReconf? /
confirmRequest(reconfiguration)WaitForConfirm reply[false]? /

declineRequest()
failed /

Finished success
executed[true]! /

failed executed[false]! /
[executor_request] reply[false]? /

U

[not executor_request] /

[executor_request] reply[true]? /

Idle
entry/ {request := false;}

syncBecomeCoordinator? /
{result := not isBlocked(1) && isStandalone();

reconfiguration := 1;
request := true;}

[request] reply[true]! /

[request]
reply[false]! /

CheckBecomeCoordinator

[result == true] /
{result := invokePlanner(1);}

U

Fail

U Success
U

[result == false] /

[not request] /

Plan
U

[not request] /

[result == false] /

Executeexecuted[false]? / executed[true]? /

[result == true]
executeReconf! /

[20ms;20ms]

CheckNewMember
U

syncNewMember? /
{result := isCoordinator();

reconfiguration := 2;
request := true;}

[result == true] /

CheckNoConvoyMode
U

syncNoConvoyMode? / {result := true;
reconfiguration := 4; request := true;}

[result == true] /

CheckEnableConvoyMode
U

syncEnableConvoyMode? /
{result := convoyDisabled();

reconfiguration := 5;
request := true;}

[result == true] /

[result == false] /

[result == false] /

[result == false] /

CheckBecomeMember
U

syncBecomeMember? /
{result := not isBlocked(2)

&& isStandalone();
reconfiguration := 3;

request := true;}

[result == false] /

[result == true] /
{result :=

invokePlanner(3);}
[20ms;
20ms]

5riskManager

Idle
updateRiskData /
{blockedReconfigurations := updateRiskData.reconfIDs;}

Figure A.67: Generated RTSC of the Manager of RailCabDriveControl (Pt. 1)
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embeddedCI 4

EmbeddedCI_Main
adaptation

subport

2

1

Idle
entry/ {request := false;

propagate := false;}

AwaitReply

becomeCoordinator /
{request := true; reset: c_req;}

reply[true]? / success()

reply[false]? / failed()

ReceivedMsgBecomeCoordinator
c_req ≤ 430ms

[not request] /
variable: boolean request, boolean propagate;

clock: c_req;

Idle

DeliverMsg

[request && not propagate] /

UsyncBecomeCoordinator! /

[c_req = 430ms] / occupied()
newMember /

{request := true; reset: c_req;} ReceivedMsgNewMember
c_req ≤ 450ms

syncNewMember! /

[c_req = 450ms] / occupied()

ReceivedMsgDistanceSensorFailure
c_req ≤ 200ms

syncDistanceSensorFailure! /distanceSensorFailure /
{request := true; reset: c_req;}

[c_req = 200ms] / occupied()

ReceivedMsgDrivingAtHighSpeeddrivingAtHighSpeed / syncDrivingAtHighSpeed! /

ReceivedMsgDrivingAtNormalSpeeddrivingAtNormalSpeed / syncDrivingAtNormalSpeed! /

AwaitParentReply
[request && propagate] /parentReply[false]? / failed()

parentReply[true]? / success()

ReceivedMsgBecomeMember
c_req ≤ 430ms

syncBecomeMember! /

becomeMember /
{request := true; reset: c_req;}

[c_req = 430ms] / occupied()

Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is propagated to the parent
Generated for each reconfiguration message X that is treated.
Generated additionally for each reconfiguration message X that is request from child.
Generated for each reconfiguration message X that is received from child or executor.
Generated additionally for each reconfiguration message X that invokes planning.
Generated additionally for each reconfiguration Y that may be blocked.

Figure A.68: Generated RTSC of the Manager of RailCabDriveControl (Pt. 2)
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Executor

Executor_Main

variable: boolean singlePhase, int reconfiguration, int tmpCommitTime, boolean twoPCResult;

2

1

clock: c2;

channel: checkNoConvoyMode, checkEnableConvoyMode, execute[boolean], startExecution, votingComplete[boolean], doAbort, finished,
performReconf, finish[boolean], init2PC[int], finished2PC, localSetup, localFading, localTeardown, localFinish;

parent

events

internal behavior

embeddedCI

3

4

variable: int deadline, boolean fromParent, boolean abortedReqWaiting;
clock: c1;

operation: becomeCoordinator(), addConvoyMember(), disableConvoyMode(), enableConvoyMode();

variable: Port subPort, int tmpMsg, boolean tmpCommit, int switchToConvoyMsg := 1, int switchToStandaloneMsg := 2,
int addConvoyMemberAtPosMsg := 3, int disableConvoyBuildUpMsg := 4, int enableConvoyBuildUpMsg := 5,

int applyCoordinationStrategyMsg := 6, int applyMemberStrategyMsg := 7;

Idle
CheckNoConvoyMode

c2 ≤ 23ms
noConvoyMode /

{reset: c2;}

/ abort()

CheckSelf
checkNoConvoyMode! /

execute[false]? /

SendAbort
U

[c2 ≥ 23ms] /

CheckEnableConvoyMode
c2 ≤ 23ms

enableConvoyMode /
{reset: c2;}

[c2 ≥ 23ms] /
checkEnableConvoyMode! /

Idle
entry/ fromParent := {false;}

Check
c1 ≤ deadline 

checkEnableConvoyMode? /
{deadline := 15; reset: c1; fromParent := true}

enableConvoyMode()
declineRequest

execute[false]! / failed()

TimeOut [c1 == deadline]
execute[false]! /

confirmRequest /
failed()

declineRequest / failed()

checkNoConvoyMode? /
{deadline := 15; reset: c1; fromParent := true}

noConvoyMode()

...

...
...

...

...

Idle

[reconfiguration == 1 || 2 || 4 || 5]
startExecution? / {singlePhase := true;}

Start
U

Waitinit2PC[reconfiguration]! /

Execute

finished2PC? /
U[twoPCResult = false] finish[false]! /

Report
U

[singlePhase && twoPCResult
&& reconfiguration == 1] / {becomeCoordinator()}finish[true]! /

LocalExecuteBecomeMember

Setup localFinish! / WaitFading
{becomeMember

_setup();}
localFading? /

{becomeMember_fading();}

operation: becomeMember_setup(), becomeMember_fading(), becomeMember_teardown();

[not singlePhase] /

Fading

WaitTeardown

localFinish! /

Teardown localTeardown? /
{becomeMember_teardown();}Finish localFinish! /finished2PC? /

[reconfiguration == 3] localSetup? /

[reconfiguration == 3]
startExecution? / {singlePhase := false;}

[singlePhase && twoPCResult
&& reconfiguration == 2] / {addConvoyMember()}

[singlePhase && twoPCResult
&& reconfiguration == 4] / {disableConvoyMode()}

[singlePhase && twoPCResult
&& reconfiguration == 5] / {enableConvoyMode()}

Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is offered via RE port
Generated for each reconfiguration message Z that is offered by an embedded child
Generated for each reconfiguration rule Y that is executed by the executor
Generated additionally for each reconfiguration Y1/Z1 that is executed using single-phase execution
Generated additionally for each reconfiguration Y2/Z2 that is executed using three-phase execution

Figure A.69: Generated RTSC of the Executor of RailCabDriveControl (Pt. 1)
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embeddedCI 4variable: Port subPort, int tmpMsg, boolean tmpCommit, int switchToConvoyMsg := 1, int switchToStandaloneMsg := 2,
int addConvoyMemberAtPosMsg := 3, int disableConvoyBuildUpMsg := 4, int enableConvoyBuildUpMsg := 5,

int applyCoordinationStrategyMsg := 6, int applyMemberStrategyMsg := 7;

embeddedCI_Main

adaptation

subport

2

1

channel: sendRequest[Port], replyReceived, sendCommit[Port], sendAbort[Port], sendSetup[Port], sendFading[Port], sendTeardown[Port],
reconfFinished;

variable: AffectedComponents ac, int executionTime, int minCommitTime, Port curPort;
operation: Port getNextPortInstanceForAction(AffectedComponents ac), Port allActionsPerformed(AffectedComponents ac),

void setFinished(AffectedComponents ac, Port port), boolean allEmbeddedFinished(AffectedComponents ac);

variable: int commitTime, int timeForDecision, int timeForExecution, int timeForSetup, int timeForFading, int timeForTeardown;
clock: c2;

Idle

finished2PC! /

init2PC[1]? /

Report
U

finished2PC! /

Abort

Execute_SinglePhase

Vote

WaitForParent votingComplete[TwoPCResult]! /
{tmpCommitTime := minCommitTime;}

[singlePhase] performReconf?/

doAbort?/

init2PC[2]? /

init2PC[4]? /

init2PC[5]? /

init2PC[3]? /

Execute_ThreePhase [not singlePhase]
performReconf?/finished2PC! /

PrepareBecomeCoordinator

Start
/ {ac := computeAffected

ChildrenForBecomeCoordinator(); executionTime := 50;}

U
Finished

U

operation: computeAffectedChildrenForBecomeCoordinator();

PrepareAddConvoyMember

Start
/ {ac := computeAffected

ChildrenForAddConvoyMember(); executionTime := 10;}

U
Finished

U

operation: computeAffectedChildrenForAddConvoyMember();

PrepareDisableConvoyMode

Start
/ {ac := computeAffected

ChildrenForDisableConvoyMode(); executionTime := 5;}

U
Finished

U

operation: computeAffectedChildrenForDisableConvoyMode();

PrepareEnableConvoyMode

Start
/ {ac := computeAffected

ChildrenForEnableConvoyMode(); executionTime := 5;}

U
Finished

U

operation: computeAffectedChildrenForEnableConvoyMode();

PrepareBecomeMember

Start
/ {ac := computeAffected

ChildrenForBecomeMember(); executionTime := 50;}

U
Finished

U

operation: computeAffectedChildrenForBecomeMember();

WaitForResponse
c2 ≤ timeForDecision

Idle
entry/ {commitTime := 0;} [tmpMsg == applyCoordinationStrategyMsg] sendRequest[self]? /

{timeForDecision := 5; timeForExecution := 5; reset: c2;}
applyCoordinationStrategy()

abort /[c2 ≥ timeForDecision]

VotedAbortAwaitFinish replyReceived! /
{subPort := self; tmpCommit := false;

tmpCommitTime := 0;}

sendAbort[self]? /

[tmpMsg == applyMemberStrategyMsg] sendRequest[self]? /
{timeForDecision := 5; timeForSetup := 0; timeForFading := 0;

timeForTeardown := 0; reset: c2;} applyMemberStrategy()

[tmpMsg == enableConvoyBuildUpMsg] sendRequest[self]? /
{timeForDecision := 5; timeForExecution := 5; reset: c2;}

enableConvoyBuildUp()

[tmpMsg == disableConvoyBuildUpMsg] sendRequest[self]? /
{timeForDecision := 5; timeForExecution := 5; reset: c2;}

disableConvoyBuildUp()

[tmpMsg == addConvoyMemberAtPosMsg] sendRequest[self]? /
{timeForDecision := 50; timeForExecution := 100; reset: c2;}

addConvoyMemberAtPos()

[tmpMsg == switchToStandaloneMsg] sendRequest[self]? /
{timeForDecision := 20; timeForSetup := 10; timeForFading := 50;

timeForTeardown := 5; reset: c2;} switchToStandalone()

[tmpMsg == switchToConvoyMsg] sendRequest[self]? /
{timeForDecision := 20; timeForSetup := 10; timeForFading := 50;

timeForTeardown := 5; reset: c2;} switchToConvoy()

...

...

Figure A.70: Generated RTSC of the Executor of RailCabDriveControl (Pt. 2)
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hierarchical LocalExecuteBecomeMember state for the reconfiguration becomeMember that
is executed based on three-phase execution.

The adaptation region of embeddedCI contains five additional hierarchical states; one for
each entry of the executor specification (cf. Figure 4.13). In particular, we receive
PrepareBecomeCoordinator, PrepareAddConvoyMember, PrepareBecomeMember, Prepare-

DisableConvoyMode, and PrepareEnableConvoyMode. Each of these is connected to Idle

and the corresponding transition uses the ID of the reconfiguration in the executor speci-
fication as a selector expression for Idle. Inside each of the hierarchical states, we obtain
an operation that is executed at the transition from Start to Finished that computes which
children are affected by the reconfiguration. These operations need to be defined for
each of the reconfigurations. We present the specification of computeAffectedChildrenFor-

BecomeMember for the reconfiguration becomeMember in Section A.6.4.2.

Finally, the subport region of embeddedCI contains seven additional transitions. These
transitions enable to sent messages to children that are defined in the children’s RE port
interface specifications. In our example, the executor of RailCabDriveControl may sent
messages to OperationStrategy, to ConvoyCoordination, and to VelocityController. For each
of the messages, we generate a constant in embeddedCI, e.g., switchToConvoyMsg for the
message switchToConvoy, that defines an integer ID for this message. This ID is used
by computeAffectedChildrenForBecomeMember for denoting that executing becomeMember

requires sending switchToConvoy to the VelocityController. In addition, we store the time
for execution that appears in the RE port interface specification entry of the child in
corresponding variables upon firing one of the seven transitions.

A.6.4 Specification of the Executor Operations

This section presents an implementation of the operations that are contained in the ex-
ecutor RTSC. Section A.6.4.1 introduces an implementation of the AffectedComponents

type. Section A.6.4.2 presents an example for the component-specific operation com-

puteAffectedChildrenForY. Finally, Section A.6.4.3 introduces story diagrams that specify
the behavior of all other operations that are used in the executor RTSC.

A.6.4.1 Structure Type AffectedComponents

Figure A.71 shows the structure type AffectedComponents. This type is used by the ex-
ecutor RTSC. The function computeAffectedChildrenForY introduced in the next section
instantiates this type and creates one AffectedComponentEntry for each child that needs to
perform a reconfiguration.

The AffectedComponentEntry defines an integer ID for the message that needs to be sent to
the child for triggering the required reconfiguration. In addition, it refers via portInstance

to the subport instance of the embeddedCI multi port instance of the executor that is
connected to this child. Finally, the AffectedComponentEntry contains several Boolean
attributes for keeping track of the progress of the interaction with the child.
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AffectedComponents portInstance

1
entries

0..*
PortInstance

AffectedComponentEntry
action : boolean
reply : boolean
finished : boolean
message : int
request : boolean
voteCommit : boolean

Figure A.71: Definition of the AffectedComponents Data Type

A.6.4.2 Component-Specific Story Diagrams

The executor RTSC uses one component-specific operation computeAffectedChildrenForX

for each reconfiguration X that appears in the executor specification. Each of these oper-
ations is implemented by a component-specific story diagram and is responsible for cre-
ating an instance of the AffectedComponents structure type introduced in Section A.6.4.1.

Figure A.72 shows a story diagram that implements the operation computeAffectedChil-

drenForBecomeMember for the CSD becomeMember shown in Figure 3.11 on Page 73.
The story diagram consist of three story nodes and returns an instance of AffectedCompo-

nents.

The first story node simply creates the result object using the object variable ac.

The second story node is equivalent to the first story node of becomeMember except that
the component story pattern has been translated into a normal story pattern and that all
binding operators have been removed. Removing the binding operators ensures that the
story pattern does not modify the model@runtime. Matching the story pattern to the
model@runtime yields all component instances that will be matched by the component
story pattern. In particular, we match the instances of OperationStrategy and VelocityCon-

troller that trigger a child reconfiguration.

The third story node creates the AffectedComponentEntry objects for the two child invo-
cations. In particular, we create e1 for OperationStrategy and e2 for VelocityController. For
each entry, we need to add the ID of the message that needs to be sent to this particular
child. For OperationStrategy, we need to send the message applyMemberStrategy, which
has received ID 7 in the executor RTSC (cf. Figure A.70). Thus, we assign 7 to the at-
tribute message. For e2, we obtain ID 1 because switchToConvoy has ID 1 in the executor
RTSC. Starting from object variable os, which has been matched to the ComponentIn-

stance of OperationStrategy in the second story node, we match the REPortInstance of this
ComponentInstance. Then, we traverse the ConnectorInstance to the REPortInstance re1

that belongs to the executor. Finally, we add this REPortInstance to the AffectedCompo-

nentEntry e1. For vc, we proceed in the same way.

Since the second story node of becomeMember does not contain further invocations of
child reconfigurations, we do not need to evaluate this story node. Thus, we may termi-
nate computeAffectedChildrenForBecomeMember after the third story node and assign ac to
the output parameter resultAC at the final node.
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StructuredComponentInstance::
computeAffectedChildrenForBecomeMember() :
AffectedComponents resultAC

«create»

resultAC := ac

Create Result Object

ac : AffectedComponents

Match first component story node

◄ 
componentType

rcdc : StructuredComponent this cic : ComponentInstanceConfiguration► 
embeddedCIC

vc : ComponentInstance
pi1 : PortInstance

pi2 : PortInstance

name == „speedProvider“

p1 : Port

name == „maxSpeed“

p2 : Port

con : ConnectorInstance

embedded
▼ Component

Instances

dl : ComponentInstance

name == „drive“

drive : ComponentPart

name == „DriveLogic“

driveC : Component

▼ componentType

▼  componentPart

▼  componentType

os : ComponentInstance

name == „strategy“

strategy : ComponentPart

name == „OperationStrategy“

strategyC : Component

▼  componentPart

▼ componentType

▼  componentType

► 
ports

► 
portInstances

portType ▼

► 
ports

► 
portInstances

portType ▼

connector
Endpoint   ▲ 
Instances

connector
Endpoint   ▲ 
Instances

◄ 
embeddedComponentInstances

◄ 
embeddedComponentInstances

► 
embedded
Component

Parts

embedded
Component  ▼
Parts

Create AffectedComponentEntries

ac

▼  entries

«create» «create»

entries  ▼

re1 : REPortInstance

message := 7

e1 : AffectedComponentEntry
«create»

message := 1

e2 : AffectedComponentEntry
«create»

▼  portInstance

re2 : REPortInstance
▼  portInstance

con1 : ConnectorInstance con2 : ConnectorInstance

cic

re3 : REPortInstanceos vcre4 : REPortInstance

connectorEndpointInstances  ▲ ▲  connectorEndpointInstances

connectorEndpointInstances  ▲ ▲  connectorEndpointInstances

► 
portInstances

◄ 
portInstances

«create» «create»

portConnector ▲
Instances

▲ portConnector
Instances

Figure A.72: Story Diagram Implementing the Operation computeAffectedChildrenForBe-

comeMember
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A.6.4.3 Component-Independent Story Diagrams

The executor RTSC uses ten operations whose behavior we specify using story diagrams.
The story diagrams operate on the AffectedComponents structure and are the same for any
executor RTSC independent of the component. We introduce all story diagrams briefly
in the following.

Figure A.73 shows the story diagram getNextPortInstanceForRequest that returns a subport
instance of embeddedCI that has not yet sent its message to the child. Based on the input
parameter ac, it matches an AffectedComponentEntry where request is false. Then, it sets
request to true and returns the portInstance that belongs to entry.

entry : AffectedComponentEntry
request = false
request := true

pi : PortInstance

ac

portInstance
►

▼ entries

search next unhandled port instance

[success]

getNextPortInstanceForRequest
(AffectedComponents ac) : PortInstance portInst

portInst := pi

portInst := null

[failure]

Figure A.73: Story Diagram Specifying the Behavior of getNextPortInstanceForRequest

Figure A.74 shows the story diagram getMessage that returns the message that needs to
be sent to a child for triggering the required reconfiguration. Therefore, it matches the
AffectedComponentEntry that belongs to portInst and returns the ID of the message that is
stored in the entry.

entry : AffectedComponentEntry portInst

ac

portInstance
►

▼ entries

retrieve entry for portInst and return message

getMessage(AffectedComponents ac,
PortInstance portInst) : int msgID;

msgID := entry.message

Figure A.74: Story Diagram Specifying the Behavior of getMessage
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Figure A.75 shows the story diagram setReply that stores the voting result of a child in the
corresponding AffectedComponentEntry. Therefore, the inputs are the AffectedComponents

structure, the portInst that has provided its voting result, and the vote itself. Then, the
story diagram simply matches the AffectedComponentEntry that belongs to portInst and
assigns the vote to voteCommit. In addition, it sets reply to true to indicate that the voting
result of the corresponding child has been received.

entry : AffectedComponentEntry
reply := true portInst

ac

portInstance
►

▼ entries

mark reply as received and store decision

setReply(AffectedComponents ac,
PortInstance portInst, boolean vote)

voteCommit := vote

Figure A.75: Story Diagram Specifying the Behavior of setReply

Figure A.76 shows the story diagram allRepliesReceived that checks whether all affected
children have submitted their result of the voting phase. Therefore, the story diagram
matches an AffectedComponentEntry where reply is still false. If the matching succeeds,
then it returns false because there still exists at least one child that has not yet submitted
the voting result. Otherwise, it returns true.

entry : AffectedComponentEntry
reply = false

ac

▼ entries

search port instance without reply

[success]

allRepliesReceived
(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.76: Story Diagram Specifying the Behavior of allRepliesReceived

Figure A.77 shows the story diagram canCommit that decides whether the executor can
commit the reconfiguration. Therefore, the story diagram matches an AffectedCompo-

nentEntry where voteCommit is false. If the matching succeeds, then at least one child
aborted the reconfiguration. Then, the story diagram returns false to indicate that the
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reconfiguration cannot be committed. Otherwise, the story diagram returns true and the
reconfiguration will be executed.

entry : AffectedComponentEntry
voteCommit = false

ac

▼ entries

search port instance without commit

[success]

canCommit(AffectedComponents ac) :
boolean result

result := false

result := true

[failure]

Figure A.77: Story Diagram Specifying the Behavior of canCommit

Figure A.78 shows the story diagram getNextPortInstanceForAction that returns a subport
instance of embeddedCI that has not yet sent its execute or abort message to the child.
Based on the input parameter ac, it matches an AffectedComponentEntry where action is
false. Then, it sets action to true and returns the portInstance that belongs to entry.

entry : AffectedComponentEntry
action = false
action := true

pi : PortInstance

ac

portInstance
►

▼ entries

search next unhandled port instance

[success]

getNextPortInstanceForAction
(AffectedComponents ac) : PortInstance portInst

portInst := pi

portInst := null

[failure]

Figure A.78: Story Diagram Specifying the Behavior of getNextPortInstanceForAction

Figure A.79 shows the story diagram allActionsPerformed that checks whether all affected
children have received their execute or abort message. Therefore, the story diagram
matches an AffectedComponentEntry where action is still false. If the matching succeeds,
then it returns false because there still exists at least one child that has not yet received
its message. Otherwise, it returns true.

Figure A.80 shows the story diagram setFinished that marks that a child has finished its
reconfiguration. Therefore, the story diagram matches the AffectedComponentEntry that
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entry : AffectedComponentEntry
action = false

ac

▼ entries

search port instance without action

[success]

allActionsPerformed
(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.79: Story Diagram Specifying the Behavior of allActionsPerformed

belongs to the corresponding subport instance of embeddedCI. Then, it sets finished to
true.

entry : AffectedComponentEntry
finished := true

portInst

ac

portInstance
►

▼ entries

mark entry as finished

setFinished(AffectedComponents ac,
PortInstance portInst)

Figure A.80: Story Diagram Specifying the Behavior of setFinished

Figure A.81 shows the story diagram allEmbeddedFinished that checks whether all chil-
dren have finished their reconfigurations. Therefore, the story diagram matches an Affect-

edComponentEntry where finished is still false. If the matching succeeds, then there exists
at least one child that has not yet finished its reconfiguration. Then, the story diagram
returns false. Otherwise, it returns true.

Figure A.82 shows the story diagram resetActionPerformed that resets the values of action

and finished back to false for all AffectedComponentEntries. This function enables to reuse
the attributes action and finished for all phases while executing a reconfiguration based
on three-phase execution.

A.7 Component SDDs

This section presents the component SDDs that we use in our RailCab model for ex-
pressing component properties based on the current software architecture of the RailCab
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entry : AffectedComponentEntry
finished = false

ac

▼ entries

search port instance not finished

[success]

allEmbeddedFinished
(AffectedComponents ac) : boolean result

result := false

result := true

[failure]

Figure A.81: Story Diagram Specifying the Behavior of allEmbeddedFinished

reset action and finished to false

[end]

resetActionPerformed
(AffectedComponents ac)

entry : AffectedComponentEntry
action := false
finished := false

ac

▼ entries

Figure A.82: Story Diagram Specifying the Behavior of resetActionPerformed
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and for defining invariants. We introduce the component SDDs component-wise starting
with RailCabDriveControl in Section A.7.1. Thereafter, we describe the component SDDs
of ConvoyCoordination (Section A.7.2), VelocityController (Section A.7.3), OperationStrat-

egy (Section A.7.4), and RefGen (Section A.7.5).

A.7.1 RailCabDriveControl

We already introduced three component SDDs for the component RailCabDriveControl,
namely isCoordinator, isStandalone, and convoyOrder, in Section 3.5. We do not repeat
these component SDDs in this section.

Figure A.83 shows the component SDD isMember. The component SDD formalizes
the component property that defines that a RailCab operates as a member of a convoy.
Therefore, the component story pattern in the first pattern node simply matches an in-
stance of MemberControl. If this instance can be matched, the component SDD is fulfilled,
otherwise it is not fulfilled.

RailCabDriveControl::isMember

mc

this

mc / member :
MemberControl

then else

01

Figure A.83: Component SDD isMember for Component RailCabDriveControl that Speci-
fies that an Instance of the Component Operates as a Convoy Member

Figure A.84 shows the component SDD convoyDisabled. This component SDD formal-
izes the property that the instance of RailCabDriveControl will not engage in convoys.
Therefore, the component story pattern in the first story node matches an instance of
OperationStrategy including the broadcast port instances of RailCabaDriveControl and os.
If os including the broadcast port instances and the delegation connector instance could
be matched, then the component SDD is not fulfilled. In this case, the instance of Rail-

CabDriveControl may still engage in convoys via the broadcast port instance. Otherwise,
the component SDD is fulfilled.

Figure A.85 shows the invariant component SDD validConvoyState. This component
SDD specifies that a RailCab may not be coordinator and member of a convoy at the
same time for being in a valid convoy state. The component story pattern expresses
this fact by matching instances of both, MemberControl and ConvoyCoordination with the
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RailCabDriveControl::convoyDisabled

os

this

os / strategy :
OperationStrategy

then else

0 1

B
:protocolInst

B
:protocolInst

Figure A.84: Component SDD convoyDisabled for Component RailCabDriveControl that
Specifies that an Instance of the Component will not Engage in Convoys

attached PositionSensor. If both instances may be matched for an instance of RailCab-

DriveControl, then the invariant is violated, otherwise it is fulfilled.

cc, ps, mc

then

0

«invariant»
RailCabDriveControl::validConvoyState

this

cc / convoy :
ConvoyCoordination

:curPos

ps / pos : PositionSensor

:position
mc / member :

MemberControl

1

else

Figure A.85: Invariant Component SDD validConvoyState for Component RailCabDrive-

Control that Defines that a RailCab may not be Coordinator and Member at
the Same Time

A.7.2 ConvoyCoordination

Figure A.86 shows the invariant component SDD convoyOrder of ConvoyCoordination.
This component SDD defines an invariant that ensures that the subport instances of the
refDistProvider and the RefGen instances have the same order.
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this

«invariant»
ConvoyCoordination::convoyOrder

/ refGen : RefGen

:curPos:curPos

:refDistProvider

rdp1:refDistProvider
«first»

this

rdp1

then else

0

then else

01

rdp2, rdp3

this

rdp2:refDistProvider
«next»

rdp3:refDistProvider

rg1, rg2

rg1 / refGen : RefGen

:prev

:nextrdp2

:refPosProvider

rg2 / refGen : RefGen
rdp3 :refPosProvider

then

Figure A.86: Invariant Component SDD convoyOrder for Component ConvoyCoordination

for Specifying a Correct Order of the RefGen Instances
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The first pattern node matches the first subport instance of refDistProvider and the first
RefGen instance in the sequence of RefGen instances. The first RefGen instance needs to
have an instance of the curPos port that needs to be delegated to the curPos instance of
ConvoyCoordination. We require that any instance of ConvoyCoordination contains at least
one instance of RefGen. Therefore, the component SDD is not fulfilled if the first pattern
node cannot be matched.

The second pattern node is a universal pattern node that matches all pairs of subsequent
subport instances of refDistProvider. These are used in the third pattern node for checking
the correct order of the RefGen instances. Therefore, the third pattern node matches two
instances of RefGen using the variables rg1 and rg2. If rdp2 is delegated to rg1 and rdp3

is delegated to rg2, then rg1 and rg2 need to be connected by an assembly connector
instance. The assembly connector instance needs to connect the next port instance of rg1

to the prev port instance of rg2. If the third pattern node may be matched for any pair of
subsequent subport instances of refDistProvider, then the invariant holds, otherwise it is
violated.

A.7.3 VelocityController

We use three component SDDs for the component VelocityController in our example. We
introduce these in the following.

Figure A.87 shows the component SDD inStandaloneCtrl that formalizes the component
property that the VelocityController executes the feedback controller for driving alone or as
a coordinator. Therefore, the first story node matches an instance of the StandaloneDrive

component that contains the corresponding feedback controller. In addition, the compo-
nent story pattern of the first story node matches an instance of the fading component
of type ConvoyFading. Finally, it checks whether the instance of StandaloneDrive is con-
nected to the fading component instance by an assembly connector instance such that
the output of sd is forwarded by the fading component. If the component story pattern
can be matched successfully, the component SDD is fulfilled.

Figure A.88 shows the component SDD inConvoyCtrl that formalizes the component
property that the VelocityController executes the feedback controller for driving as a mem-
ber. Therefore, the first story node matches an instance of the ConvoyDrive component
that contains the corresponding feedback controller. In addition, the component story
pattern in the first story node matches an instance of the fading component of type Con-

voyFading. Finally, it checks whether the instance of ConvoyDrive is connected to the
fading component instance by an assembly connector instance such that the output of cd

is forwarded by the fading component. If the component story pattern can be matched
successfully, the component SDD is fulfilled.

Figure A.89 shows the invariant component SDD validCtrl. This component SDD con-
sists of three pattern nodes. The first pattern node is identical to the pattern node of
inConvoyCtrl. Thus, it denotes that the VelocityController executes the feedback controller
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sd, f

then else

01

VelocityController::inStandaloneCtrl

+ -

this

sd / standalone_ctrl :
StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

f / fade :
ConvoyFading:standalone

Figure A.87: Component SDD inStandaloneCtrl for Component VelocityController for
Specifying that an Instance of the Component Executes the StandaloneDrive

Controller

cd, f

then else

01

VelocityController::inConvoyCtrl

+ -

this

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading:convoy

Figure A.88: Component SDD inConvoyCtrl for Component VelocityController for Specify-
ing that an Instance of the Component Executes the ConvoyDrive Controller
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for driving as a member. If this pattern node can be matched successfully, the second
pattern node at the lower left denotes that additionally an instance of StandaloneDrive

is instantiated and connected to f. This situation may only occur while performing a
reconfiguration but it may not occur before and after a reconfiguration. Therefore, we
consider the invariant as violated if the second story can be matched as well. Otherwise,
the invariant component SDD holds.

cd, f

then else

«invariant»
VelocityController::validCtrl

+ -

this

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading:convoy

sd

then else

0 1

+ -

this

sd / standalone_ctrl :
StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

f
:standalone

sd, f

then else

01

+ -

this

sd / standalone_ctrl :
StandaloneDrive

:refSpeed

:curSpeed

:force:refSpeed

:curSpeed

f / fade :
ConvoyFading:standalone

Figure A.89: Invariant Component SDD validCtrl for Component VelocityController for
Specifying that an Instance of the Component does not Execute both Con-
trollers at the Same Time

If the first pattern node cannot be matched, the third pattern node at the lower right
is matched. It is identical to the pattern node of inStandaloneCtrl. If this pattern node
cannot be matched, then the instance of VelocityController does not execute any feedback
controller. This situation shall never occur and, thus, we consider the invariant com-
ponent SDD as violated if the third pattern node cannot be matched. Otherwise, the
invariant component SDD holds.
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A.7.4 OperationStrategy

We use two component SDDs for the component OperationStrategy in our example that
are used by the peer region of the component RTSC in Figure A.34. We introduce these
in the following.

Figure A.90 shows the component SDD inCoordinatorMode that formalizes the compo-
nent property that the instance of OperationStrategy is executed in a coordinator RailCab.
In a coordinator RailCab, the instance of OperationStrategy needs to have instances of
speedProvider and strategySender as shown in Figure A.27. Thus, the component story
pattern in the pattern node matches these two port instances and the component SDD is
fulfilled if the matching succeeds.

• 

then else

01

OperationStrategy::inCoordinatorMode

this

:strategySender
:speedProvider

Figure A.90: Component SDD inCoordinatorMode for Component OperationStrategy for
Specifying that an Instance of the Component Operates in a Coordinator
RailCab

Figure A.91 shows the component SDD inMemberMode that formalizes the component
property that the instance of OperationStrategy is executed in a member RailCab. In a
member RailCab, the instance of OperationStrategy may not have an instance of speed-

Provider as shown in Figure A.31 because the reference speed is solely defined by the
coordinator of the convoy. Thus, the component SDD matches this port instance and the
component SDD is fulfilled if the matching fails.

A.7.5 RefGen

We use two component SDDs for the component RefGen in our example that are used
by the component RTSC shown in Figure A.38. We introduce these in the following.

Figure A.92 shows the component SDD isFirst that formalizes the component property
that the instance of RefGen is the first one in the sequence of RefGen instances. Since the
first instance of RefGen has an instance of curPos as shown in Figure 3.10, the component
story pattern matches this port instance. The component SDD is fulfilled, if the matching
succeeds.
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• 

then else

0 1

OperationStrategy::inMemberMode

this
:speedProvider

Figure A.91: Component SDD inMemberMode for Component OperationStrategy for
Specifying that an Instance of the Component Operates in a Member Rail-
Cab

• 

then else

01

RefGen::isFirst

this
:curPos

Figure A.92: Component SDD isFirst for Component RefGen for Specifying that an In-
stance of the Component is the First One in the Sequence of RefGen In-
stances
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Figure A.92 shows the component SDD isLast that formalizes the component property
that the instance of RefGen is the last one in the sequence of RefGen instances. Since
the last instance of RefGen has no instance of the next port as shown in Figure 3.10, the
component story pattern matches this port instance. The component SDD is fulfilled, if
the matching fails.

• 

then else

0 1

RefGen::isLast

this
:next

Figure A.93: Component SDD isLast for Component RefGen for Specifying that an In-
stance of the Component is the Last One in the Sequence of RefGen In-
stances

A.8 Excerpt of Generated MATLAB/Simulink Model

This section introduces examples of MATLAB/Simulink models that have been created
based on our generation templates given in Sections 6.3 and 6.5.6. In Section A.8.1,
we illustrate the result of translating an instance of the atomic component RefGen to
Simulink. In Section A.8.2, we show the result of translating an instance of ConvoyCoor-

dination (cf. Figure 3.10) to Simulink including the integration of the MATLAB-specific
reconfiguration controller.

A.8.1 Simulink Model for Atomic Component Instance of Type RefGen

Figure A.94 shows the subsystem that has been generated for the discrete atomic com-
ponent instance rg1 of type RefGen shown in Figure 3.10 on Page 70 using the generation
template shown in Figure 6.6. The resulting subsystem has the same name as the com-
ponent instance. The hybrid port instance curPos has been translated to an inport curPos

of the subsystem rg1. The two discrete port instances refDistProvider and profileReceiver

have been translated to port structures consisting of three inports and one outport.

Figure A.95 shows the internal structure of the subsystem rg1 in Figure A.94. The inter-
nal structure has been generated based on the generation template shown in Figure 6.7.

The resulting block diagram contains the chart block RefGen_Statechart and two link
layer subsystems; one for refDistProvider and one for profileReceiver. The link layer sub-
systems are connected to the chart block using four signals that are used for transmitting
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profileReceiver port instance

rg1

profileReceiver_send
profileReceiver_recv
profileReceiver_net_addr
profileReceiver_recv_net_addr

refDistProvider port instance
refDistProvider_send

refDistProvider_recv
refDistProvider_net_addr
refDistProvider_recv_net_addr

curPos

Figure A.94: Subsystem corresponding to Component Instance rg1 of Type RefGen

the message buffers for received and sent messages from the link layer to the chart block
and back again.

A.8.2 Simulink Model for Structured Component Instance of Type
ConvoyCoordination

Figure A.96 shows the subsystem that has been generated for the structured component
instance cc of type ConvoyCoordination shown in Figure 3.10 on Page 70 using the gen-
eration template shown in Figure 6.6. Again, the hybrid port instance curPos has been
directly translated to an inport of the subsystem in Simulink. In addition, we obtain
four port structures corresponding to the four discrete port instances c1, r1, receiver, and
speedProvider of cc.

Figure A.97 shows the internal structure of the subsystem cc that results from translating
the embedded CIC of the structured component instance cc. As a result of the first step
of the translation, we obtain embedded subsystems cm and rg1 in Figure A.97 for the two
eponymous embedded component instances. These subsystems have been created based
on the template shown in Figure 6.6. Their internals are created by recursively applying
the rule for translating atomic and structured component instances.

In Step 2 of our translation, we translate all connector instances between continuous and
hybrid port instance by applying the generation template shown in Figure 6.12. As a
result, we connect the inport curPos to the inport curPos of the embedded subsystem rg1

using a MultiSourceControl block.

In Step 3 of our translation, we translate all connector instances between discrete port
instances. In particular, we translate all assembly connector instances according to the
generation template shown in Figure 6.14 and all delegation connector instances accord-
ing to the generation template shown in Figure 6.15. As a result, we obtain the com-
munication switch shown in the middle of Figure A.96. In addition, all of the discrete
port instances of the embedded component instances are connected to the bus creator
and bus selector blocks that belong to the communication switch. Although all of these
lines transport messages and are, thus, bus signals, we visualize them as normal lines
for reducing the visual complexity of the figure at least a little bit. Finally, we obtain
four delegation switch subsystems; one for each of the four discrete port instances of
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Link Layer r1

clockSignal

refDistProvider_ReadIn

refDistProvider_ParamReadIn

refDistProvider_WriteIn

refDistProvider_ParamWriteIn...

refDistProvider_ReadOut

refDistProvider_ParamReadOut

refDistProvider_WriteOut

refDistProvider_ParamWriteOut...

RefGen_Statechart

read_event_queue_in

read_event_param_queue_in

read_event_queue_out

read_event_param_queue_out

write_event_queue_in

write_event_param_queue_in

write_event_queue_out

write_event_param_queue_out

refDistProvider
_send

refDistProvider
_recv
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Figure A.95: Subsystem Corresponding to the Internal Structure of Atomic Component
Instance rg1 of Type RefGen
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Figure A.96: Subsystem corresponding to Component Instance cc of Type ConvoyCoor-

dination

cc. These are connected, on the one hand, to the inports and the outport of the corre-
sponding port structures. On the other hand, the delegation switches are connected to
the communication switch.

The assembly and delegation connectors are defined by the addresses of the port struc-
tures. As an example, consider the assembly between p1 of cm and profileReceiver of
rg1 in Figure 3.10. The port structure for p1 has net_addr 4 in Figure A.97, while the
port structure for profileReceiver has net_addr 6. Then we set the recv_net_addr of the port
structure for p1 to 6 and the recv_net_addr of the port structure for profileReceiver to 4

for realizing the assembly connector instance in Simulink. Then, the communication
switch ensures that all messages sent by either of the port structures arrives at the other
port structure. Delegation connector instances are defined in the same way by using the
local_net_addr of the delegation switch and the net_addr of the receiving port structure
of the embbedded subsystem. As an example, consider the delegation from r1 of cc to
refDistProvider of rg1. Then, the net_addr of the refDistProvider port structure, which is 5 in
Figure A.97, is used as local_recv_net_addr of the delegation switch r1_DelegationSwitch

and vice versa.

In Figure A.97, the assembly and delegation connectors have been encoded in a fixed,
immutable way by using constant blocks for the recv_net_addrs. In order to obtain a
reconfigurable subsystem, we need to apply Steps 1 to 5 of our translation as described
in Section 6.5 and we need to integrate the MATLAB-specific reconfiguration controller
into the Simulink model. Figure A.98 shows the Simulink model that results from adding
the MATLAB-specific reconfiguration controller to the Simulink model shown in Fig-
ure A.97 using the generation template shown in Figure 6.31. For reducing the size of
the figure, we omitted the communication switch including all connections from it and
to it in the figure. In addition, we restrict ourselves to translating config1 contained in
Figure 6.23 including the control signals as described in Section 6.5.4.
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Figure A.97: Subsystem corresponding to the Embedded CIC of the Structured Compo-
nent Instance cc of Type ConvoyCoordination
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Figure A.98: Subsystem of Figure A.97 Including the Generated MATLAB-specific Re-
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The subsystem Reconfiguration Controller in Figure A.98 contains the MATLAB-specific
reconfiguration controller. The subsystem has inports and outports that correspond to
the reconfMsg, reconfExec, and embeddedCI port instances of the reconfiguration con-
troller (cf. Figure 6.24). We directly connect the embeddedCI inports and outports of the
reconfiguration controller to their counterparts in cm and rg1. We use a direct connection
in this case because these assembly connector instances are immutable, i.e., as long as
cm is executed, the connection to the reconfiguration controller is active as well.

Furthermore, we obtain one outport at the reconfiguration controller for each control
signal. The control signals cm and rg1 are connected to the enable ports of the sub-
systems cm and rg1. By setting a 0 to the control signal, we stop simulating them
and emulate their destruction. By setting a 1 to the control signal, we start simulat-
ing them and emulate their creation. The control signals c1, rg1, receiver, and speed-

Provider, which correspond to the port instances of ConvoyCoordination, are connected to
the local_recv_net_addr inports of the corresponding delegation switches. These control
signals define the net_addr of the receiving port structure for realizing the delegation con-
nector instances. By changing the local_recv_net_addr via the control signal, we enable
that the port instance is delegated to a different port instance of an embedded compo-
nent instance. The control signal rg1.curPos is connected to the MultiSourceControl block
of the curPos inport of rg1. By setting a 0 to the control signal, we stop delegating
the inport curPos of cc to rg1. By setting a 1 to the control signal, we enable the del-
egation again. Finally, the control signals cm.c1, cm.p1, cm.strategy, cm.speedProvider,
rg1.refDistProvider, and rg1.profileReceiver are connected to the recv_net_addr inports of
the corresponding port structures of the subsystems cm and rg1. They define the net_addr

of the receiving port structure. By changing the recv_net_addr, we can redirect assembly
connector instances.

Figure A.99 shows the internal structure of the ReconfigurationController subsystem shown
in Figure A.97. It has three embedded subsystems Manager, Executor, and Configura-

tionStore that correspond to the three elements of the MATLAB-specific reconfiguration
controller shown in Figure 6.24.

The Manager subsystem implements the manager of the MATLAB-specific reconfigura-
tion controller. Therefore, we connect the inports manager_recv, man_embeddedCI1_recv,
and man_embeddedCI2_recv as well as the outports manager_send, man_embeddedCI1_-

send, and man_embeddedCI2_send to this subsystem. The Executor subsystem imple-
ments the executor of the MATLAB-specific reconfiguration controller. Therefore, we
connect the inports executor_recv, exec_embeddedCI1_recv, and exec_embeddedCI2_recv

as well as the outports executor_send, exec_embeddedCI1_send, and exec_embeddedCI2_-

send to this subsystem. Finally, the Configuration Store subsystem implements the config-
uration store of the MATLAB-specific reconfiguration controller. Therefore, we connect
all outports that correspond to control signals to the Configuration Store subsystem.

The internal connections resemble the three assemblies that are used by the MATLAB-
specific reconfiguration controller. We use direct connections instead of a communica-
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Figure A.99: Internal Structure of the ReconfigurationController Subsystem Generated for
Component Instance cc of Type ConvoyCoordination
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tion switch in this case because all three assemblies are immutable in MECHATRONIC-
UML.
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Appendix B

Formalization of the Real-time Statechart
Semantics
This chapter introduces a formalization of the RTSC semantics that is used by our test
automata-based refinement check in Chapter 5. The formal semantics of RTSCs is im-
plemented by the reachability analysis for RTSCs described in Chapter C.

We formalize RTSCs based on networks of flat timed automata (cf. Section 2.2.1) that
are formally defined by Bengtsson and Yi [BY04]. It is sufficient to consider net-
works of flat timed automata because all other features of hierarchical RTSCs can be
mapped to this formalism. Hierarchical states may be flattened to a network of timed
automata [DMY02, DMY03, Ger13]. Asynchronous communication using buffers may
be mapped to additional timed automata representing the connector and buffer using
shared integer variables for storing messages [KMR02, Ger13]. Deadlines as well as
entry and exit actions may be resolved by intermediate states and transitions [GB03,
DMY03]. Urgent transitions may be mapped to urgent channels using an additional
automaton [DMY03].

Networks of timed automata as defined by Bengtsson and Yi, however, do not support
time guards for urgent transitions. In addition, urgent transitions do not have precedence
over non-urgent transitions in their approach. These two features are essential for the
correctness of our test automaton construction in Section 5.3.2. Consequently, we need
to provide a new definition of networks of timed automata that was informally introduced
by Brenner [Bre10].

We start by defining the syntax of NTAs. First, we define clock constraints that are used
as invariants and time guards.

Definition B.1 (Clock Constraint)

Let C be a set of real-valued clocks and V be a set of integer variables. A clock
constraint ϕ is a conjunctive formula of atomic clock constraints of the form c1 ∼ x or
c1 − c2 ∼ x for c1, c2 ∈ C, ∼∈ {<,≤,=,≥, >} and x ∈ N ∪ V . We use B(C) to denote
the set of clock constraints. [BY04]

Next, we define a simple expression language on integers which is the basis for defining
variable updates and integer constraints that can be used as transition guards.

Definition B.2 (Integer Expression) Let V be a set of integer variables. We define
Exp(V ) the set of integer expressions over V . Each exp ∈ Exp(V ) is recursively defined
by the rules:

exp := x|v|(exp)|exp ∼ exp

for x ∈ Z, v ∈ V , and ∼∈ {+,−, ∗, /}. (cf. [HR04, p. 260])
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Definition B.3 (Integer Variable Constraint)

Let V be a set of integer variables. An integer variable constraint ψ is a conjunctive
formula of atomic integer variable constraints of the form v ∼ exp for v ∈ V , ∼∈ {<
,≤,=,≥, >} and exp ∈ Exp(V ). We use V(V ) to denote the set of integer variable
constraints. [BGK+96]

Using the above definitions, we can now define a single timed automaton with urgent
transitions that may be used in a network of timed automata.

Definition B.4 (Timed Automaton with Urgent Transitions)

A timed automaton with urgent transitions is a tuple A = (L, l0, C, V,Σ, E, U, I) where

• L is a finite set of locations

• l0 ∈ L is the initial location

• C = CL ∪ CG is a finite set of clocks where CL is a set of local clocks and CG is a
set of global clocks

• V = VL ∪ VS is a set of integer variables where VL is a set of local variables and
VS is a set of shared variables

• Σ = (Ch× {?, !}) ∪ {τ} is a finite set of events where Ch is a set of channels and
τ is the empty event

• E ⊆ L×B(C)×V(V )×Σ× 2C ×U ×L is the set of transitions where ϕ ∈ B(C)

is the time guard, ψ ∈ V(V ) is the transition guard, λ ∈ 2C are the clock resets, U
with (v, exp) ∈ U , v ∈ V , exp ∈ Exp(V ) is a set of assignments

• U ⊆ E is the set of urgent transitions

• I : L → B(C) assigns clock constraints to locations, the invariants.

We shall write l
ϕ,ψ,σ,λ,u−−−−−−→ l′ when (l, ϕ, ψ, σ, λ, u, l′) ∈ E. (cf. [BY04, BGK+96])

Next, we may define networks of timed automata with urgent transitions which con-
cludes the definition of the syntax of NTAs.

Definition B.5 (Network of Timed Automata with Urgent Transitions)

A network of timed automata with urgent transitions is a tuple NTA = (A, Ch, CG, VS)

where

• A is a set of n timed automata with urgent transitions A1, . . . , An with n ∈ N and
n ≥ 1

• Ch is a set of channels

• CG is a set of global clocks

• VS is a set of shared integer variables
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For all Ai, Aj ∈ NTA with i, j ∈ {1, . . . , n}, i �= j: Li ∩ Lj = ∅, Ci ∩ Cj = CG,
Vi ∩ Vj = VS and Σi = Σj = Σ. (cf. [BY04])

All timed automata in the NTA share the same set of channels and, thus, the same set of
events Σ. In addition, the NTA defines global clocks and shared integer variables that
may be used by each automaton in the network. Moreover, we do not allow time guards
at transitions using an urgent channel [BY04].

We continue with a definition of the operational semantics of an NTA. The semantics of
an NTA is defined by a timed transition system [Alu99]. Since clocks of timed automata
are real-valued, the timed transition system contains infinitely many states [BY04].
Therefore, we use the symbolic semantics based on clock zones that provides a finite
timed transition system [Alu99, BY04]. We call that timed transition system the zone
graph of the NTA.

The formalization of zone graphs requires a formalization of clock zones and feder-
ations which store the possible values of clocks. "A [clock] zone is the solution set
of a clock constraint, that is the maximal set of clock assignments satisfying the con-
straint" [BY04].

Definition B.6 (Clock Zone, Federation) Let C be a set of clocks and Φ ∈ 2B(C). A
clock zone z is a set of clock interpretations described by conjunction of clock con-
straints each of which puts a lower or upper bound on a clock or on the difference of
two clocks, i.e., z =

∧
ϕ∈Φ ϕ. If C has k clocks, then z represents a convex set in the

k-dimensional Euclidean space [Alu99]. A federation h is a disjunction of a set χ of
convex clock zones, i.e., h =

∨
z∈χ z [DHLP06].

In addition, we need integer variable value assignments to keep track of the values of
integer variables in the NTA.

Definition B.7 (Integer Variable Value Assignment, Evaluation) Let V be a set of in-
teger variables. An integer variable value assignment ν : V → Z is an injective func-
tion that assigns a value out of Z to each variable in V . An evaluation is a function
� : Exp(V ) × ν → Z that evaluates an integer expression exp ∈ Exp(V ) to an integer
with respect to the integer variable value assignment ν.

Using federations, we can define a symbolic state of an NTA.

Definition B.8 (Symbolic State of NTA) Let NTA be a network of timed automata. A
symbolic state of NTA is a tuple s = (l, h, ν) where l is a location vector that stores the
active location for each automaton, h is a federation storing the possible clock interpre-
tations, and ν is an integer variable assignment.

In addition to these definitions, we need a function that returns the set of clock con-
straints that any urgent transition leaving a location enabled in a symbolic state uses as a
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time guard. At this point, we check whether the transitions are enabled except for their
time guards. We need this function for specifying the delay operation because NTA

may only delay until an urgent transition becomes enabled. In addition, we need this
function for detecting time intervals where no urgent transition is enabled. In these time
intervals, non-urgent transitions may fire. Please note that synchronizing transitions only
fire urgently if both transitions are urgent.

Definition B.9 (Clock Constraints of Available Urgent Transitions) Let NTA be a
network of timed automata with urgent transitions with Ai ∈ A = (Li, l0,i, Ci,Σ, Ei, Ui,

Ii). Let s = (l, h, ν) be a symbolic state of NTA. The set clock constraints of available
urgent transitions in s is defined by a function Ξ : S → B(C) where s �→ Ξτ (s) ∪ Ξσ(s)

for s ∈ S where

• Ξτ : S → B(C) where s �→ {ϕ|∀li ∈ l, ∀ei ∈ Ui with li
ϕ,ψ,τ,λ,u−−−−−→ l′i where

ψi[v/ν(v), exp/�(exp, ν)] ≡ true} for s ∈ S

• Ξσ : S → B(C) where s �→ {ϕj ∧ ϕm|∀lj ∈ l, ∀lm ∈ l with j �= m, ∀ej ∈
Uj , ∀em ∈ Um with lj

ϕj ,ψjσ?,λj ,uj−−−−−−−−→ l′j , lm
ϕm,ψm,σ!,λm,um−−−−−−−−−−→ l′m where ψj [v/ν(v),

exp/�(exp, ν)] ∧ ψm[v/ν(v), exp/�(exp, ν)] ≡ true} for s ∈ S

Given Definition B.9, we may now define the operational semantics of NTA based on a
zone graph.

Definition B.10 (Zone Graph of NTA with Urgent Transitions) Given an NTA with
urgent transitions NTA = (A, Ch, VG, CG) with Ai ∈ A = (Li, l0,i, Ci, Σ, Ei, Ui, Ii),
i ∈ N. Its reachable state space is given by a zone graph Z = (S, s0, T ) where S is
the set of symbolic states, s0 is the initial symbolic state, and T ⊆ S × S is the set of
transitions.

For a symbolic state s = (l, h, ν), let li denote the ith element of the location vector l

representing the active location of Ai and l[l′i/li] the vector l with li being substituted
with l′i. In s0 = (linit, hinit, νinit), linit,i = l0,i for all Ai, all clocks c0j ∈ hinit have
value 0, and all integer variables v0j ∈ νinit are set to their initial values. Let ej =

(lj , ϕj , ψj , σj , λj , uj , l
′
j) ∈ Ej and em = (lm, ϕm, ψm, σm, λm, um, l′m) ∈ Em with j �= m.

I(l) =
∧

li∈l I(li) are the invariants of the active locations. dj = (vj , expj) and dm =

(vm, expm) are the assignments of ej and em. The transitions of the zone graph Z are
defined by the rules:

1. (l, h, ν)
δ−→ (l, h′, ν) with h′ = relax(h⇑ − ((

∨
ϕ∈Ξ(l) ϕ)− h⇓)⇑) ∧ I(l)

2. (l, h, ν)
(j,τ)−−−→ (l[l′j/lj ], h

′, ν ′) if ej = lj
ϕj ,ψj ,τ,λj ,uj−−−−−−−−→ l′j and ψj [v/ν(v),

exp/�(exp, ν)] ≡ true where

• h′ = h1 if ej ∈ Uj , h′ = h2 otherwise where

– h1 = ((h ∧ ϕj)[λj �→ 0]) ∧ I(l[l′j/lj ])
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– h2 = ((h ∧ ϕj ∧ (
∨

z∈Ξ(s) ¬z))[λj �→ 0]) ∧ I(l[l′j/lj ])

• ν ′ = [vj �→ �(expj , ν)]

3. (l, h, ν)
((j,σ?),(m,σ!))−−−−−−−−−→ (l[l′j/lj ][l

′
m/lm], h′, ν ′) if ej = lj

ϕj ,ψjσ?,λj ,uj−−−−−−−−→ l′j , em =

lm
ϕm,ψm,σ!,λm,um−−−−−−−−−−→ l′m and ψj [v/ν(v), exp/�(exp, ν)] ∧ ψm[v/ν(v),

exp/�(exp, ν)] ≡ true where

• h′ = h1 if ej ∈ Uj ∧ em ∈ Um, h′ = h2 otherwise where

– h1 = ((h ∧ ϕj ∧ ϕm)[λj ∪ λm �→ 0]) ∧ I(l[l′j/lj ][l
′
m/lm])

– h2 = ((h ∧ ϕj ∧ ϕm ∧ (
∨

z∈Ξ(s) ¬z))[λj ∪ λm �→ 0]) ∧ I(l[l′j/lj ][l
′
m/lm])

• ν ′ = [vj �→ �(expj , [vm �→ �(expm, ν)])] (cf. [BY04, BGK+96])

In Definition B.10, Case 1 defines the new delay operation compared to the definition
by Bengtsson and Yi [BY04]. Since urgent transitions do not allow the time to pass if
they are enabled, time may only progress until an urgent transition gets enabled. The
function Ξ returns the time guards of all urgent transitions (or pair of synchronizing ur-
gent transitions) that are enabled, potentially except for their time guards. These clock
constraints are combined into a single federation by disjuncting them. The operation h⇓

removes the lower bounds from the current federation h. By subtracting this federation
from the disjunction of enabled urgent constraint, we remove all clock constraints that
are before h, i.e., they may not be fulfilled by letting time progress. Then, we let time
progress for the resulting federation. The resulting federation includes the earliest point
in time where an urgent transition gets enabled. By subtracting this federation from the
current federation h⇑, we obtain the time interval where no urgent transition is enabled.
The relax operation relaxes strict bounds (< or >) to non-strict bounds (≤ or ≥) and
includes the single point in time where the urgent transition gets enabled into the fed-
eration. This construction only works if we restrict time guards at urgent transitions
to non-strict clock constraints. Finally, we intersect against the invariants of the active
locations.

Case 2 defines the conditions for firing a single transition. In contrast to Bengtsson and
Yi [BY04], we need to give precedence to urgent transitions, i.e., as long as an urgent
transition is enabled, no non-urgent transition is enabled. In general, a transition, either
urgent or non-urgent, may only be fired if the time guard ϕj is true for the current fed-
eration h and if the transition guard ψj is fulfilled for the current integer variable value
assignment ν. If the time guard is not fulfilled, the federation h′ will be false. For urgent
transitions, h′ is defined by h1. If the transition fires, the federation is updated by inter-
secting it with the time guard, applying the resets, and intersecting it with the invariants
of the target locations. In addition, the integer variable value assignment is updated by
applying the assignments of the transitions. For non-urgent transitions, we use h2. For
computing h2, we first obtain the time guards of all urgent transitions using the function
Ξ. By Definition B.1, these time guards are conjunctions of atomic clock constraints.
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Then, we negate each of these clock constraints for obtaining the time intervals where
the urgent transition is not enabled. Then, we disjunct these negated clock constraints in
a single federation. This federation combines all time intervals where no urgent transi-
tion is enabled. This federation is then conjuncted with the current federation h and the
time guard ϕj of the transition ej . As a result, ej is restricted to time intervals where no
urgent transition is enabled as intended.

Case 3 defines the conditions for firing two transitions that synchronize via a channel σ.
Again, we need to distinguish between urgent and non-urgent transitions when comput-
ing the successor federation h′. Both cases, however, are identical to Case 2 but need to
consider the time guards, resets, and integer variable value assignments of both transi-
tions. The integer variable value assignments of the sending transition (em) are applied
prior to the integer variable value assignments of the receiving transition (ej).

Finally, we may define traces of an NTA that formalize counterexamples produced by a
timed model checker.

Definition B.11 (Trace of NTA) Let Z = (S, s0, T ) be a zone graph of an NTA. A trace
ζ is a path in Z such that s0 →T s1 →T . . . →T sn where ∀i, j ∈ {0, . . . , n − 1} :

(si, si+1 ∈ T ) ∧ si = sj ⇒ i = j.

A trace is a finite path in a zone graph that starts at the initial state and that does not
contain any state twice.
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Appendix C

A Framework for Reachability Analyses
As part of our implementation, we created a framework for conducting reachability anal-
yses. A reachability analysis computes the state space of a given behavior model. Our
framework consists of two core plugins that are independent of a concrete behavior
model. They provide the basic state space traversal algorithm and a metamodel for stor-
ing the state space in a reachability graph (cf. Section C.1). Based on our framework, we
implemented two reachability analysis algorithms; one for computing the state space of
a story diagram specification (cf. Section C.2) and one for computing the state space of
a set of RTSCs (cf. Section C.3) based on the formal semantics defined in Appendix B.
The latter requires an implementation of clock zones (cf. Definition B.6) based on dif-
ference bound matrices (DBMs, [Dil90]) (cf. Section C.4).

Figure C.1 shows the plugins of the reachability analysis framework and the two reach-
ability analyses that have been created based on the framework. We describe the figure
in detail in the subsequent subsections.

«de.uni_paderborn.fujaba.muml.reachanalysis»
reachabilityGraph

«de.uni_paderborn.fujaba.muml.reachanalysis»
reachabilityGraph.rtsc

«de.uni_paderborn.fujaba»
udbm

«de.uni_paderborn.fujaba.muml»
reachanalysis.core

«de.uni_paderborn.fujaba.muml»
reachanalysis.rtsc

«extends»

«uses»

«uses»

«uses»

«extends»

«de.uni_paderborn.fujaba.muml»
reachanalysis.sdm

«de.uni_paderborn.fujaba.muml.reachanalysis»
reachabilityGraph.sdm

«uses»

«extends»

«extends»

«de.uni_paderborn.fujaba.muml»
reachanalysis.sdm.transform

«uses»

«uses»«de.uni_paderborn.fujaba»
udbm.ruby

«extends»

UDBM Server

«package»
plugin name

«package»
plugin nameMetamodel Plugin Algorithm Plugin

«package»
plugin name Model Transformation Plugin

Legend«communication»

Figure C.1: Framework for Reachability Analyses

C.1 Reachability Analysis Framework

The reachability analysis framework consists of two plugins shown in Figure C.1. The
plugin reachanalysis.core contains the main implementation of the algorithm that per-
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forms the state space traversal while reachabilityGraph contains the metamodel for storing
the resulting reachability graph.

C.1.1 Metamodel

Figure C.2 shows a class diagram of the metamodel for storing the reachability graph.
The class ReachabilityGraph represents the reachability graph that contains a set of Reach-

abilityGraphStates and ReachabilityGraphTransitions. Each ReachabilityGraphState repre-
sents one particular state of the state space of the behavior model. A ReachabilityGraph-

Transition connects one source ReachabilityGraphState to one target ReachabilityGraphState.
In this case, the target ReachabilityGraphState has been derived from the source Reachabil-

ityGraphState by a single execution step of the behavior model. Both classes are abstract.
In particular, a concrete reachability analysis needs to define a concrete Reachability-

GraphState that contains the information of a state of the corresponding state space. The
ActionTransition is a concrete subclass of the ReachabilityGraphTransition that may be used
for an arbitrary execution step of the behavior model.

Figure C.2: Class Diagram of the Core Metamodel of the Reachability Analysis Frame-
work

A ReachabilityGraphState has two attributes that are used by the reachability analysis al-
gorithm. The pathDepth defines how many execution steps have been taken at least for
reaching this ReachabilityGraphState from the startState of the ReachabilityGraph. This
attribute is used for realizing a depth limitation in the state space traversal to ensure
termination. The second attribute is a hash value of the ReachabilityGraphState. Each
reachability graph state may receive a hash value that follows the general hashing con-
straint. In particular, it must hold for two ReachabilityGraphStates obj1 and obj2

obj1 ≡ obj2 =⇒ hash(obj1) = hash(obj2)

That means if two ReachabilityGraphStates are considered to be equivalent with respect to
the behavior model, then these ReachabilityGraphStates must have identical hash values.
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This information may be used to speed up the identification of equivalent states. Iden-
tifying equivalent states enables to reduce the computation and storage effort and may
enable termination if the behavior model runs in a loop.

For managing the hash values, the ReachabilityGraph additionally contains a map where
the hash value is the key and the value is a list of all ReachabilityGraphStates having this
particular hash value. In EMF, this map is realized by the HashToStateListMapEntry and
the HashToStateList.

C.1.2 Reachability Analysis Algorithm

Based on the metamodel as described above, the main reachability analysis algorithm is
defined as shown in Algorithm 1. In essence, the algorithm is an adapted breadth first
search (BFS, [Pea84, pp. 36-45]) that searches for a state satisfying a solution criterion.
The solution criterion may be used, for example, to check for deadlocks or for identifying
the error state in our refinement check (cf. Section 5.3). By using false as a solution
criterion, we may compute the whole reachability graph of the behavior model. The
behavior model to be explored needs to be set by a custom constructor of a concrete
reachability analysis using the framework.

Algorithm 1 Core Algorithm for Computing the Reachability Graph
1: function COMPUTEREACHABILITYGRAPH

2: reachabilityGraph := createReachabilityGraph() � Initialization Phase
3: initialize()
4: startState := createInitialState()
5: reachabilityGraph.startState := startState
6: computeHashValue(startState)
7: TODO.push(startState)
8:

9: while TODO �= ∅ do � Expansion Phase
10: curState := TODO.pop()
11: if isPreSolution(curState) then

12: return

13: end if

14: if curState.pathDepth < maxPathLength and not isDeadEnd(curState) then

15: expand(curState)
16: end if

17: if isPostSolution(curState) then

18: return

19: end if

20: end while

21: end function



Page C-4 Appendix C

The algorithm starts with an initialization phase where it first creates the Reachability-

Graph. The creation has been encapsulated into a function such that concrete reacha-
bility analyses may create more specific reachability graphs. Thereafter, the algorithm
calls initialize in Line 3. This function enables concrete reachability analyses to initialize
themselves, e.g., by initializing further variables or performing a preprocessing. In the
next step, the algorithm creates the initial state for the reachability graph. This func-
tion is abstract and needs to be implemented by a concrete reachability analysis. After
creating the initial state, we set it as a start state for the reachability graph. Finally, we
compute the hash value for the start state and add it to the TODO list. The TODO list
contains all states that have not yet been expanded.

Then, the expansion phase starts, which is executed in a loop as long as there exists at
least one state in the TODO list. The algorithm takes the state out of the TODO list and
checks whether the state represents a solution. If so, the algorithm terminates. If not,
the algorithm checks whether exploring the state will exceed the depth limitation and
whether the state is a dead end. A dead end is a state that will not lead to a solution.
If both is not the case, the algorithm expands the state and finally checks once again
whether the state is a solution. We added an additional check for a solution after the
expansion because we may only identify that a state represents a deadlock situation after
expanding it. The code for identifying solutions is encapsulated in a separate class such
that different strategies for identifying solutions may be used in combination with the
same reachability analysis.

Algorithm 2 shows the function expand that is used for expanding a state. The expand

function first calls computeSuccessors to obtain all states that may be reached from cur-
rent state by a single execution step of the behavior model. Therefore, this function is
abstract and needs to be implemented by a concrete reachability analysis. Thereafter, the
function iterates all successors. First, it sets the path depth and, second, it invokes uni-

fyStates in order to check whether the reachability graph already contains an equivalent
state with respect to the behavior model.

Algorithm 2 The expand Function
1: function EXPAND(ReachabilityGraphState state)
2: successors := computeSuccessors(state)
3: for all s ∈ successors do

4: s.pathDepth := s.pathDepth + 1
5: unifyStates(s)
6: end for

7: end function

The function unifyStates is given by Algorithm 3. First, unifyStates computes the hash
value for the new state. Since the hash value depends on the behavior model, this func-
tion needs to be implemented by concrete reachability analyses. Then, unifyStates com-
putes all candidates that might be equivalent to the new state in Line 4. Therefore, it
utilizes the hash value and retrieves all states having the same hash. Then, unifyStates
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checks for each candidate whether it is equivalent to newState by calling isIsomorphic in
Line 6. This function needs to be implemented by a concrete reachability analysis and
returns true if and only if both states are equivalent with respect to the behavior model.
If the new state is equivalent to an existing state, then we redirect the transition leading
to the new state to the existing state (oldState).

Algorithm 3 The unifyStates Function
1: function UNIFYSTATES(ReachabilityGraphState newState)
2: computeHashValue(newState)
3: isoStateFound := false
4: candidates := reachabilityGraph.getStatesWithHash(newState.hash)
5: for all oldState ∈ candidates do

6: if isIsomorphic(oldState, newState) then

7: trans = newState.incomingTransition
8: redirectTransition(oldState, trans, newState)
9: isoStateFound := true

10: end if

11: end for

12: if not isoStateFound then

13: TODO.add(newState)
14: reachabilityGraph.add(newState)
15: end if

16: end function

If no equivalent existing state has been found, we execute Lines 13 to 14. These lines
add the new state to the TODO list and to the reachability graph.

C.2 Story Diagram Reachability Analysis

Based on our framework introduced in Section C.1, we implemented a reachability anal-
ysis on story diagrams. The reachability analysis and the accompanying metamodel ex-
tension are contained in the plugins reachanalysis.sdm, reachabilityGraph.sdm, and reach-

analysis.sdm.transform in Figure C.1. Our reachability analysis computes all typed at-
tributed graphs that may be derived from an initial graph based on a set of story dia-
grams. We use our reachability analysis for computing the possible configurations of
a component instance, which is the basis for checking consistency in our transactional
reconfiguration approach (cf. Section 4.5.1).

C.2.1 Metamodel Extension

Figure C.3 shows the metamodel extensions for the story diagram reachability analysis.
The metamodel is built based on concepts presented by Zündorf [Zün09] and based on
concepts presented in our previous publications [HSJZ10, HSE10]. The input to the
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reachability analysis is given by the GraphTransformationSystem that refers to all story
diagrams to be used by the reachability analysis. Each story diagrams is modeled as
an Activity [HRvD+11]. In addition, the GraphTransformationSystem refers to classes of
unchangeableNodes. Objects of these types will never be modified by the activities.

Figure C.3: Class Diagram of the Metamodel for Reachability Analysis on Story Dia-
grams

The SDMReachabilityGraph refers to the unchangeableNodes of the initial graph that is
used for the reachability analysis. The initial graph is given as a set of EObjects includ-
ing their references. As a utility reference, the SDMReachabilityGraph may contain all
unchangeableNodes that are not contained elsewhere.

The states of the SDMReachabilityGraph are given by the StepGraph. Each StepGraph rep-
resents one graph that may be obtained based on the initial graph by applying a story di-
agram including the initial graph. The StepGraph refers to all changeable nodes using the
changeableNodes reference. Optionally, it may contains these nodes via containedNodes if
they are not contained elsewhere. In addition, it derives the unchangeableNodes from the
SDMReachabilityGraph. Finally, contains is the union of changeableNodes and unchange-

ableNodes. SuccessorStepGraph is a helper class that is used for collecting all successors
that have been computed via the computeSuccessors function in Line 2 of Algorithm 2.

The transitions of the SDMReachabilityGraph are given by the SDMTransition. The SDM-

Transition refers to the Activity that has been applied for deriving the target StepGraph. In
addition, the SDMTransition contains two maps that may optionally be created. First, the
MatchingEntry objects store the matching of the appliedActivity into the source StepGraph

where the name of the object variable is used as the key. This enables to check which
objects have been matched by which object variable for applying the story diagram.
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Second, the IndexEntry objects associate objects of the source StepGraph to the target
StepGraph that are the same with respect to the underlying graph. In order to compute
the whole reachability graph, deriving successors requires to copy the source StepGraph

before applying the story diagram because applying the story diagram would destroy the
source StepGraph otherwise. Then, the key refers to the object in the source StepGraph

while value refers to the object in the target StepGraph that has been created as a copy.
The use of the index has been reused from Zündorf [Zün09].

C.2.2 Functions of the Reachability Analysis

In addition to the metamodel extension, we also implemented the abstract functions of
our reachability analysis framework. The algorithms for copying graphs and for com-
puting hash values have been obtained from Zündorf [Zün09] but reimplemented using
reflection in EMF [SBPM08]. We will not go into details on these functions but refer to
the given paper. In the following, we briefly describe our concepts for identifying un-
changeable nodes (Section C.2.2.1), for computing successor graphs (Section C.2.2.2),
and for computing isomorphisms between two graphs (Section C.2.2.3).

C.2.2.1 Unchangeable Node Detection

We consider a node of a graph as unchangeable if it will never be modified, either directly
or indirectly, by applying a story diagram to the graph. By identifying nodes that will
never be changed, we may remove these nodes from the single StepGraphs and store
them only once for the whole SDMReachabilityGraph. This may reduce the size of the
StepGraphs significantly. This, in turn, improves the performance of the reachability
analysis because it requires fewer objects to be copied and fewer objects to be considered
for computing hash values and isomorphisms. The computation of unchangeable nodes
is performed as a part of the initialize function (cf. Algorithm 1).

We derive a conservative decision on which nodes are unchangeable by a static analysis
of the story diagrams and the metamodels that are used as type graphs for the story
diagrams. Our decision is conservative in a sense that it marks all nodes typed by the
same class as changeable if one node type by this class might potentially be changed by
a story diagram.

In order to define which nodes are unchangeable, we first define the conditions that make
a node changeable. We consider eight conditions that make a node typed by a class A

changeable. Conditions 1-4 provide conditions based on the story diagrams. Conditions
5-8 provide conditions based on the metamodels and explicitly consider inheritance and
EMF’s containment hierarchy.

1. There exists a story diagram that contains an object variable of type A with a bind-
ing operator «create» or «destroy» in one of its story patterns.
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2. There exists a story diagram that contains an object variable of type A with an
attribute assignment in one of its story patterns.

3. There exists a story diagram that contains a link variable typed by a reference
originating from A that has binding operator «create» or «destroy».

4. There exists a story diagram that contains a link variable typed by a reference
targeting A that has binding operator «create» or «destroy» and that has an
opposite reference (making it bidirectional).

5. There exists a class B marked as changeable and nodes of type B (recursively)
contain nodes of type A.

6. There exists a class B marked as changeable and nodes of type A (recursively)
contain nodes of type B.

7. There exists a class B marked as changeable and A is (direct or indirect) subclass
of B.

8. There exists a class B marked as changeable and A has a bidirectional reference to
B.

In our analysis, we first analyze the story diagrams for Conditions 1-4, which gives an
initial set of changeable nodes. Then, we expand this set by analyzing the metamod-
els used as type graphs for the story diagrams based on Conditions 5-8. In particular,
Conditions 5-7 require the computation of closures on the containment and inheritance
hierarchies and must be applied repeatedly.

The result is a set of classes where each node type by one of these classes is potentially
changeable by the story diagrams. Then, a node x is unchangeable if x is contained in
the initial graph and if x is typed by a class C that is not considered to be changeable by
the above conditions.

C.2.2.2 Successor Computation

For computing the successors of a StepGraph, we need to apply all story diagrams to any
possible matching that may be obtained for the StepGraph. This does not resemble the
semantics of a regular story diagram, which is only applied to the first matching that
can be obtained (not considering for-each nodes). At this point, we reused the idea by
Zündorf [Zün09] also used in our previous publications [HSJZ10, HSE10] of enhancing
the story diagrams such that they implement the necessary behavior for the reachability
analysis. The benefit of this approach is that we may use any kind of story diagram
interpreter [GHS09] or code generation [GSR05, GBD07, Zün09] as a black box.

The concept for enhancing the story diagrams by Zündorf [Zün09] has been automatized
by a model transformation that is contained in the plugin reachanalysis.sdm.transform

shown in Figure C.1. The transformation is illustrated abstractly in Figure C.4 for a
story diagram sd1 shown on the left side of the figure. It contains an arbitrary number
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of story nodes starting with the story node A. This story diagram is transformed into the
story diagram sd1_forEach shown on the right side of Figure C.4.

A

sd1()

Z

...
[each time]

Method Call

copyState(step, trans) : (StepGraph succ)

sd1_forEach(StepGraph step,
SuccessorStepGraphs successors)

A_forEach

Z

...

trans : SDMTransition
«create»

[end]

Restore Matching

succ successorssuccessors
►

«create»

Execute A

Figure C.4: Enhancing Story Diagrams for Computing Successors

The model transformation works as follows. The first story node A becomes a for-each
story node A_forEach that matches all possible matchings of sd1. This implies the re-
striction that the whole application condition for sd1 must be contained in A. A_forEach

contains the LHS of the story pattern contained in A, i.e., all object variables without
binding operator and all object variables with binding operator «destroy». However,
the object variables having binding operator «destroy» in A have no binding operator
in A_forEach in order to preserve step. In addition, A_forEach creates a new SDMTransition

for each successful matching.

Then, we insert three additional activity nodes into the story diagram. The first one is a
method call node that passes step and trans to the method copyState that creates an exact
copy of step, called succ, and sets succ as the target of trans. The second one is a story
node called Restore Matching. This node utilizes the index map (cf. Section C.2.1) to
restore the matching that has been obtained based on step in A_forEach on the successor
StepGraph succ. In addition, it adds succ to the set of SuccessorStepGraphs given by
the object variable successors. Finally, the story node Execute A performs the rewrite
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step of the story pattern contained in A on succ using the restored matching. Thus, after
executing the story pattern in Execute A, succ is isomorphic to the graph that would have
resulted from applying the story node A of sd1 to step. After Execute A, the remaining
activity nodes of sd1 are applied without modification to succ and the restored matching.

Finally, whenever sd1 enters a final node, we remove the final node and redirect the
activity edge leading to the final node to A_forEach. Thus, after completely computing
one successor, we backtrack to the for-each story node in order to search for another
matching of A leading to another successor.

The model transformation that enhances the story diagrams is invoked as a part of the
initialize function in Algorithm 1. In computeSuccessors, which is called in Line 2 of
Algorithm 2, we invoke the story diagram interpreter [GHS09] using the enhanced story
diagrams. After the interpreter finished executing a story diagram, all successors are
contained in the SuccessorStepGraphs and passed to the unifyStates function in Algo-
rithm 3.

C.2.2.3 Isomorphism Computation

The unifyStates function illustrated in Algorithm 3 requires an implementation of the
isIsomorphic function that is invoked in Line 6. In our reachability analysis on story
diagrams, this requires to decide whether two StepGraphs s1 and s2 are isomorphic. This,
in turn, requires to compute a total bijective graph morphism iso that assigns each node
of s1 to exactly one node of s2. In the general case, this computation is NP-hard but
the consideration of typed attributed graphs allows us to reduce the computation effort
significantly.

In the first step, we group the nodes of s1 and s2 based on their type such that we obtain
one set for each type. Then, we check whether the number of elements in each set is
the same for s1 and s2. If not, there cannot exist an isomorphism because there exists at
least one node which cannot be mapped to a node of the same type by iso.

In the second step, we derive a partial mapping that contains all nodes where only one
possible mapping exists. Therefore, we check all sets obtained in the first step whether
they contain only one element. After adding the corresponding pairs of nodes to the
mapping, we evaluate their references whether they refer to a single node.

In the final step, we need to check all possible mappings for the remaining nodes. At
this point, we may utilize the attribute values of the nodes because the attribute values
of nodes that are mapped by iso need to be identical.

C.3 RTSC Reachability Analysis

Based on our framework introduced in Section C.1, we implemented a reachability anal-
ysis on RTSCs. The reachability analysis and the accompanying metamodel extension
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are contained in the plugins reachanalysis.rtsc and reachabilityGraph.rtsc in Figure C.1.
Our reachability analysis computes a zone graph as defined in Definition B.10. We use
the reachability analysis on RTSCs in our refinement check for deciding whether the
error state is reachable.

C.3.1 Metamodel Extension

The input for the reachability analysis is an NTA as defined in Definition B.5. We encode
the NTA based on the metamodel of RTSCs (cf. [BDG+14b, pp. 267ff]), i.e., all RTSCs
that are contained in the NTA are contained in a single hierarchical state that defines all
shared integer variables and synchronization channels of the NTA. Figure C.5 shows the
metamodel for storing the resulting zone graph.

Figure C.5: Class Diagram of the Metamodel for Reachability Analysis on RTSCs

The class ZoneGraph represents the zone graph itself. The ZoneGraph refers to the Clocks
of the RTSCs in order to associate them to the clocks of the UDBM library (cf. Sec-
tion C.4). The ZoneGraphState inherits from ReachabilityGraphState and represents a
single symbolic state of the NTA (cf. Definition B.8). Therefore, it contains a set of
RealtimeStatechartInstances (cf. Section D.1.4) and refers to their active locations. The
RealtimeStatechartInstance contains the integer variable value assignments as defined in
Definition B.7. In addition, the ZoneGraphState contains a federation that stores the values
of the clocks of the RTSCs.

Finally, the metamodel defines two additional ReachabilityGraphTransitions, namely, the
ZoneGraphTransition and the DelayTransition. A DelayTransition represents a δ transition of
the zone graph (cf. Definition B.10). A ZoneGraphTransition represents both, τ transi-
tions and transitions resulting from a synchronization. Therefore, the ZoneGraphTransi-

tion refers to the transitions of the RTSCs that were fired. In case of a τ transition, the
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firedRTSCTransitions reference refers to exactly one transition. In case of synchronizing
transitions, the firedRTSCTransitions reference refers to exactly two transitions.

C.3.2 Functions of the Reachability Analysis

In addition to the metamodel changes, we also implemented the abstract functions of
our reachability analysis framework. We implemented the computeSuccessors function
called in Line 2 by the expand function shown in Algorithm 2. This function imple-
ments the three cases for successor transitions of Definition B.10. Furthermore, we
implemented the isIsomorphic function for two ZoneGraphStates. Two ZoneGraphStates
are equivalent if and only if the same states of the RealtimeStatechartInstances are active
and if all variables of the RealtimeStatechartInstances have the same value for the inte-
ger variable value assignment and if the federations are equivalent. Two federations are
equivalent if they allow for the same clock values for all clocks. The initialize function in
Line 3 of Algorithm 1 converts all time units of the RTSCs to the smallest time unit in
order to ease the computations of the clock values in the UDBM library (cf. Section C).

For the using the RTSC reachability analysis in our refinement check, we additionally
implemented the isPreSolution and isDeadEnd functions used in Lines 11 and 14 of Al-
gorithm 1. A ZoneGraphState is a solution if the error state of the test RTSC is active. A
ZoneGraphState is a dead end if the neutral state is active.

C.4 UDBM Library

In our reachability analysis on RTSCs, we use DBMs [Dil90] for representing clock
zones and federations (cf. Definition B.6). In particular, we integrated an existing DBM
library of the UPPAAL model checker [Dav06] into our implementation. In Figure C.1,
the integration of the library is given by the udbm plugin.

We chose a client-server architecture for integrating the DBM library [EH11]. The DBM
library resides in a server component implemented in Ruby, called UDBM Server in Fig-
ure C.1, that interacts via sockets with the client that resides in the udbm.ruby plugin. The
clock zones and federations are actually stored on the client side using the metamodel
shown in Figure C.6. Whenever the client is requested to perform an operation on a
federation, it encodes the federation and the requested operation and sends both to the
server, which executes the operation. The resulting federation is sent back to the client
and translated back into the metamodel. We refer to Eckardt and Heinzemann [EH11]
for more information on the server implementation.

In the following, we give a brief description of the metamodel. Although the metamodel
is visualized as a class diagram based on EMF, it is a plain Java library and independent
of EMF. The basis of the metamodel is given by Federation that represents a federation of
ClockZones that it contains. In addition, it contains a map of UDBMClocks that represent
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Figure C.6: Class Diagram of the Interface of the UDBM Library

the clocks that are used in the clock zones. The clocks are identified by a unique key and
may be shared among all federations.

A clock zone contains a set of ClockConstraints that represent the inequalities that put
lower and upper bounds on each clock. We distinguish four kinds of clock constraints.
These are the TrueClockConstraint, FalseClockConstraint, and two kinds of Comparative-

ClockConstraints, namely the SimpleClockConstraint and the DifferenceClockConstraint. The
TrueClockConstraint represents a true value. It is only used for clock zones that do not
restrict the values of the clocks at all. Analogously, the FalseClockConstraint represents a
false value. It is used for empty clock zones that cannot be fulfilled by any assignment
of values to the clocks. The ComparativeClockConstraints compare the values of clocks to
an integer value using one of the RelationalOperators. A SimpleClockConstraint compares
the value of a single clock to the value. A DifferenceClockConstraint put a condition on the
difference of two clocks. It compares minuend − subtrahend to the value. Finally, the
FederationFactory is used for creating new Federations and ClockZones.
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Appendix D

Metamodels

In this chapter, we present the metamodels that we created as part of our implemen-
tation. Our metamodels provide a formal specification of the abstract syntax and the
static semantics of our modeling languages. The abstract syntax has been specified us-
ing EMF [SBPM08]. The static semantics has been defined by OCL constraints [Gro12]
that are contained in the EMF model. The operational semantics of RTSCs and CSDs,
which are the two behavioral models of MECHATRONICUML, is defined based on timed
automata and graph transformations as described in Chapter 3 and Appendix B.

In the following, we present our metamodels using class diagrams that visualize the ab-
stract syntax. In particular, Section D.1 introduces the metamodel of the MECHATRON-
ICUML component model for specifying components and components instances that do
not employ runtime reconfiguration. Section D.2 introduces the metamodel for speci-
fying reconfigurable components (cf. Chapter 3.6) including transactional execution of
reconfigurations (cf. Section 4.6). Finally, we present the metamodels for MATLAB/Si-
mulink and Stateflow that we created as part of our translation of MECHATRONICUML
models to MATLAB/Simulink models (cf. Chapter 6.6). We refer to the MECHATRON-
ICUML language specification [BDG+14b] for a listing of the OCL constraints that
define the static semantics.

D.1 MechatronicUML Component Model

The metamodel of the MECHATRONICUML component model is separated into differ-
ent packages. In this section, we present class diagrams for three of these packages.
We first introduce several core classes in Section D.1.1 that provide a common basis for
components and component instances. Thereafter, Sections D.1.2 and D.1.3 introduce
the metamodels for specifying components and component instances that do not employ
runtime reconfiguration.

D.1.1 Core

The classes shown in the class diagram in Figure D.1 are the super classes for all classes
in the MECHATRONICUML metamodel. These classes have been developed as part of
the new metamodel for story diagrams [HRvD+11]. We refer to them as core in the
following. The classes shown in the class diagram in Figure D.2 form the basis for
modeling components and component instances. They inherit from the core classes and
we refer to them as component core in the following.
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Figure D.1: Class Diagram of the Abstract Super Classes used by the MECHATRONIC-
UML Metamodel

The root element of the core is the class ExtendableElement that, in combination with the
class Extension, defines an extension mechanism. Each ExtendableElement may be ex-
tended by an arbitrary number of Extensions. An Extension enables to store additional
information in the metamodel without modifying it. The four operations of Extend-

ableElement have not been formalized based on OCL but implemented in Java. Although
this contradicts with the aim of formally specifying the metamodel, we consider the
extension mechanism to be useful. By using extensions, our metamodel is upward com-
patible, i.e., we may specify new modeling features and algorithms that require addi-
tional classes in the metamodel without needing to modify the existing metamodel and,
thereby, breaking compatibility to older versions of our tooling.

In addition, the core package defines subclasses NamedElement and CommentableElement

of ExtendableElement. These are used for all modeling elements of MECHATRONIC-
UML that have a name or may be commented by the user. The class Expression is the
root for the MECHATRONICUML action language that is used for specifying guards
and actions in RTSCs (cf. Section 2.4.2). We refer to the MECHATRONICUML spec-
ification [BDG+14b] for a detailed overview of the action language metamodel. The
TextualExpression enables to store expressions in an arbitrary textual language, e.g., Java
or MATLAB Script, in a MECHATRONICUML model.

The component core shown in Figure D.2 defines ConnectorEndpoints and Connectors. Con-

nectorEndpoint is the super class for all metamodel elements that may be connected by
Connectors such as roles or ports. Any ConnectorEndpoint has an arbitrary number of
Connectors. In MECHATRONICUML, examples of connectors include assembly and del-
egation connectors. As a special type of ConnectorEndpoint, the component core defines
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Figure D.2: Class Diagram of the Abstract Super Classes of Components and Compo-
nent Instances
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DiscreteInteractionEndpoints. This type of ConnectorEndpoint has a Behavior (via super
class BehavioralElement) and it sends or receives asynchronous messages. Therefore, it
has a set of MessageBuffers where each MessageBuffer may store received messages of
particular MessageTypes. The size of the message buffer is given as a NaturalNumber.
In MECHATRONICUML, examples of DiscreteInteractionEndpoints are roles and discrete
ports. Both have a Cardinality that defines a lower and upper bound based on a Natural-

Number.

In addition, the component core defines ConnectorEndpointInstances and ConnectorIn-

stances. They are the super classes for all instances of ConnectorEndpoints and Con-

nectors. Similar to components, we use DiscreteInteractionEndpointInstance as a special
type of DiscreteInteractionEndpoint. For instances, we additionally need to distinguish
between DiscreteSingleInteractionEndpointInstances and DiscreteMultiInteractionEndpointIn-

stances. The former is the super class for single port instance and subport instances.
The latter is the super class for multi port instances. Consequently, a DiscreteMultiIn-

teractionEndpointInstance refers to a set of subInteractionEndpointInstances, which are the
subport for a discrete multi port instance. In addition, we use references first, last, next,
and previous that are used for specifying the order of a multi role or multi port (cf. Fig-
ure 2.13 on Page 47).

D.1.2 Components

Figure D.3 shows a class diagram of the component package. The component package de-
fines the classes for modeling Components that are not reconfigurable. In the metamodel,
they are referred as StaticComponents. In addition, we have abstract subclasses of Com-

ponent for AtomicComponents and StructuredComponents. Finally, StaticAtomicComponent

and StaticStructuredComponent represent non-reconfigurable atomic and structured com-
ponents. A StructuredComponent contains a set of ComponentParts while a ComponentPart

is typed over a Component.

Any Component has a set of Ports. In our metamodel, we distinguish betweeen Dis-

cretePorts and DirectedTypedPorts. DirectedTypedPort is the super class for HybridPorts and
ContinuousPorts. Both have a kind that defines their direction (either in-port or out-port),
a type (via super class TypedNamedElement), and they may be optional. Furthermore, out-
ports may be initialized by an initializeExpression using the MECHATRONICUML action
language that defines a sane initial value that is emitted after instantiated the port. Hy-

bridPorts additionally define a samplingInterval based on TimeValue that provides a value
and a TimeUnit.

ComponentParts refer to the Ports of the componentType by PortParts. Any PortPart is
typed by a Port. Additionally, StructuredComponents embed a set of PortConnectors for
connecting Ports and PortParts. We distinguish DelegationConnectors that connect a Port

with a PortPart and AssemblyConnectors that connect two PortParts.
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Figure D.3: Class Diagram of the Component Metamodel
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D.1.3 Component Instances

Figure D.4 shows a class diagram of the instance package. The instance package defines
the classes for specifying CICs. Thus, the root class for the package is ComponentIn-

stanceConfiguration that contains a set of ComponentInstances. As on the type level, we
distinguish between AtomicComponentInstances and StructuredComponentInstances. How-
ever, we do not need to distinguish between static components and reconfigurable com-
ponents on the instance level because this is already defined by the component type of
the instance.

Figure D.4: Class Diagram of the Component Instance Metamodel

The metamodel for ComponentInstances is structured recursively. Any StructuredCompo-

nentInstance contains a ComponentInstanceConfiguration, again, that defines its embedded
component instances and their connections.
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A ComponentInstance contains a set of PortInstances. As on the type level, we distinguish
between HybridPortInstances, ContinuousPortInstances, and DiscretePortInstances. Further-
more, we distinguish DiscretePortInstances into DiscreteSinglePortInstances and Discrete-

MultiPortInstances that inherit from DiscreteSingleInteractionEndpointInstance and Discrete-

MultiInteractionEndpointInstance, respectively, of the component core.

In addition to the ComponentInstances, a ComponentInstanceConfiguration contains the set
of PortConnectorInstances that connect the ComponentInstances. A PortConnectorInstance

always connects two PortInstances, while a PortInstance may be attached to multiple Port-

ConnectorInstances. A PortInstance of a StructuredComponentInstance typically has two
PortConnectorInstances. One of these is a DelegationConnectorInstance that connects the
PortInstance with a PortInstance of an embedded ComponentInstance. The other one is
either a DelegationConnectorInstance to a PortInstance of the parentStructuredComponentIn-

stance or it is an AssemblyConnectorInstance that connects it with another ComponentIn-

stance in the same ComponentInstanceConfiguration.

D.1.4 Runtime Model

Figure D.5 shows a class diagram of the runtime package. The runtime package defines
the classes for capturing a symbolic state of a MECHATRONICUML model. Thus, it
forms the basis for a model@runtime of MECHATRONICUML. Therefore, the runtime

package extends the instance package introduced in Section D.1.3 by additional runtime
information such as variable values and the active states of the RTSCs.

The base classes of the runtime package are RuntimeBehavioralElement and RealtimeStat-

echartInstance. The RuntimeBehavioralElement is the super class for all metamodel ele-
ments that execute an RTSC at runtime. It refers to the RealtimeStatechartInstance that it
executes. The RealtimeStatechartInstance has an active State that is located in the RTSC.
In addition, it contains a set of VariableBindings that assign a concrete value to a Variable of
the RTSC. Since RTSCs may contain hierarchical states, we enable that a RealtimeStat-

echartInstance contains subRealtimeStatechartInstances if a hierarchical state is currently
active. The values of the clocks of the RealtimeStatechartInstance are not stored as part
of the runtime metamodel but using the udbm library (cf. Section C.4). The clocks of
the RealtimeStatechartInstance are associated to the clocks of the udbm library by a name
mapping.

In accordance to the instance package, we distinguish between different types of Run-

timeBehavioralElements. First, we distinguish between RuntimeComponentInstances and
RuntimeDiscreteInteractionEndpointInstances. The latter are further distinguished into Run-

timeDiscretePortInstances and RoleInstances. Both classes have subclasses for single and
multi role/port instances that inherit from DiscreteInteractionEndpointInstance and Dis-

cretePortInstance, respectively.

In addition to the RealtimeStatechartInstance, a RuntimeBehavioralElement contains a Run-

timeMessageBuffer with a bufferSize. The RuntimeMessageBuffer contains the RuntimeMes-
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Figure D.5: Class Diagram of the Runtime Metamodel
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sages that have been received from a communication partner and that need to be pro-
cessed by the RealtimeStatechartInstance. A RuntimeMessage is typed by a MessageType

and contains a set of RuntimeParameters that assign concrete values to the parameters of
the MessageType.

Finally, the runtime package defines a RuntimeConnectorInstance with subclasses for Run-

timeAssemblyConnectorInstances, which connect two RuntimeDiscretePortInstances, and
RuntimeRoleConnectorInstance, which connect two RoleInstances. Since role connectors
and assembly connectors have a delay, messages need time for being transmitted from
the sender to the receiver. Therefore, each RuntimeConnectorInstance contains a set of
transientMessages that are stored by the class MessageOnConnector. In addition to the
RuntimeMessage, the MessageOnConnector defines the receiver of the RuntimeMessage,
which is a RuntimeBehavioralElement in any case.

D.2 MechatronicUML Reconfiguration

This section introduces the metamodels for specifying reconfigurable components (Sec-
tion D.2.1), component story patterns (Section D.2.2), component story diagrams (Sec-
tion D.2.3), and component SDDs (Section D.2.4).

D.2.1 Reconfigurable Components

Figure D.6 shows a class diagram of the metamodel for reconfigurable components that
is part of the reconfiguration package. The upper part of the figure shows the classes
for the different component kinds. First, we have a new subclass of Component called
ReconfigurableComponent. This is the super class for all kinds of reconfigurable compo-
nents. Based on this, we define classes for ReconfigurableAtomicComponents and Recon-

figurableStructuredComponents that inherit from the corresponding abstract super classes
AtomicComponent and StructuredComponent of the component metamodel (cf. Figure
D.3).

The FadingComponent on the right side of Figure D.6 is used for defining fading compo-
nents. It is a special kind of AtomicComponent and defines a set of FadingFunctions. Each
FadingFunction, in turn, defines a fading from one port (the fromPort) to another port (the
toPort) of the FadingComponent.

In addition, the metamodel defines an abstract class ReconfigurationRule that serves as a
super class for all kinds of reconfiguration rules that specify a modification of a Recon-

figurableComponent. As part of this thesis, we only use CSDs (cf. Section D.2.3) as a
subclass of ReconfigurationRule. Each reconfiguration rule has a Signature that defines it
name as well as its input and output parameters.

Finally, we define special ports and connectors for ReconfigurableComponents. The class
ReconfigurationPort serves as a super class for all kinds of ports that may only be used



Page D-10 Appendix D

Figure D.6: Class Diagram of the Metamodel for Reconfigurable Components



Metamodels Page D-11

for ReconfigurableComponents. We use three subclasses. First, ReconfigurationMessage-

Port defines RM ports of ReconfigurableComponents and of the reconfiguration controller.
Second, ReconfigurationExecutionPort defines RE ports in the same fashion. Third, Inter-

nalReconfigurationCommunicationPort is used for connecting manager and executor inside
the reconfiguration controller. In addition, we define PortConnectors for connecting Re-

configurationPorts. A ReconfigurationPortAssemblyConnector connects two reconfiguration
ports. We cannot use an AssemblyConnector of the component package because an Assem-

blyConnector connects two PortParts instead of two Ports. However, since the reconfigu-
ration controller belongs to the ReconfigurableComponent instead of referring to another
component, we do not use PortParts for referring to the ports of manager and executor.
For the same reason, we need to define a ReconfigurationPortDelegationConnector for del-
egating the RM ports and RE ports of a ReconfigurableStructuredComponent to manager
and executor, respectively.

Figure D.7 shows the metamodel for specifying the reconfiguration controller includ-
ing the declarative, table-based specification of manager, executor, RM ports, and RE
ports. Each ReconfigurableStructuredComponent contains at most one Controller. In fu-
ture works, this reference may be used for integrating additional controllers into Re-

configurableStructuredComponents, for example, for performing monitoring. At present,
our metamodel only supports ReconfigurationControllers and, in particular, the RuleBase-

dReconfigurationController that executes reconfigurations according to the 2-phase-com-
mit protocol. The RuleBasedReconfigurationController contains the Manager and the Ex-

ecutor. Both are BehavioralElements, i.e., their behavior is defined by an RTSC.

The Manager contains a set of ManagerSpecificationEntry objects. Each ManagerSpecifica-

tionEntry defines one row of the table that defines the behavior of the Manager (cf. Sec-
tion 4.3.2). The ManagerSpecificationEntry contains Boolean attributes treat, propagate,
invokePlanner, and blockable for the four Boolean columns treat, progate to parent, invoke
planner, and safety relevant. In addition, it refers to a ReconfigurationRule, a Structural-

Condition, a MessageType, and a TimeValue that defines the timeForPlanning.

The interface of the ReconfigurationMessagePort is defined by ReconfigurationMessage-

PortInterfaceEntry. Each ReconfigurationMessagePortInterfaceEntry specifies one row of the
table that defines the interface of the RM port (cf. Section 4.3.1). It inherits from Recon-

figurationPortInterfaceEntry which defines the common features of the interface specifica-
tion of RM ports and RE ports. These are a MessageType and a description. In addition,
the ReconfigurationMessagePortInterfaceEntry specifies whether it defines an info message
or a request and it contains a TimeValue for specifying the expectedResponseTime.

The Executor contains a set of ExecutorSpecificationEntry objects. Each ExecutorSpecifica-

tionEntry defines one row of the table that defines the behavior of the Executor (cf. Sec-
tion 4.3.3). An ExecutorSpecificationEntry defines an id and refers to a ReconfigurationRule.

The interface of the ReconfigurationExecutionPort is defined by ReconfigurationExecution-

PortInterfaceEntry that, in turn, inherits from ReconfigurationPortInterfaceEntry. Each Re-

configurationExecutionPortInterfaceEntry defines one row of the table that defines the in-
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Figure D.7: Class Diagram of the Metamodel for Transactional Execution
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terface of the RE port (cf. Section 4.3.4). In addition to the feature of its super class,
ReconfigurationExecutionPortInterfaceEntry contains a TimeValue for defining the timeFor-

Planning and an ExecutionTimingSpecification. The ExecutionTimingSpecification defines the
time that is necessary for the execution phase of the 2-phase-commit protocol. It has two
subclasses ExecutionTimingSpecificationSinglePhase, which contains the timing specifica-
tion for single-phase execution, and ExecutionTimingSpecificationThreePhase, which con-
tains the timing specification for three-phase execution. Both classes contain TimeValues
for defining the corresponding times for execution.

D.2.2 Component Story Patterns

The class diagram in Figure D.8 shows the metamodel for component story patterns. It
transfers the metamodel by Tichy [Tic09] to the new MECHATRONICUML metamodel
as introduced in Section D.1 and D.2.1 and reuses concepts from the new story diagram
metamodel [HRvD+11] where possible.

A ComponentStoryPattern always contains exactly one ComponentVariable, which is the
this-variable. The ComponentVariable contains a set of PortVariables, PartVariables, and
ConnectorVariables. The common superclass for these three types of variables is Com-

ponentStoryPatternVariable. It has three attributes for modifying the variable. First, the
bindingSemantics defines whether the variable is mandatory for the matching or whether
it is optional or negative. The bindingOperator defines whether the variable only matches
or whether the matched object is created or destroyed. Finally, the bindingState defines
whether it is a bound or unbound variable.

The PortVariables are typed by the ports of the component that is used as type of the
this-variable. Similar to port instances, we distinguish between SinglePortVariables and
MultiPortVariables, where each MultiPortVariable has a set of subPortVariables. Each Sin-

glePortVariable contains a set of MultiPortPositionContraints that enable to define that a
subPortInstance is the FIRST or LAST one in the MultiPortVariable. The MultiPortInstance

contains a set of MultiPortOrderConstraints that specify that the tgtSubPortVariable is the
successor (NEXT) or predecessor (PREV) of the srcSubPortVariable.

A PartVariable is typed over a component part of the component that is used as type of the
this-variable. We distinguish two types of PartVariables: ComponentPartVariables and Fad-

ingComponentVariables. A ComponentPartVariable refers to a normal component part and
contains a set of PortVariables that refer to the ports of the component part. In addition, it
optionally specifies a TriggerEmbeddedComponentExpression that enables to trigger a re-
configuration of the component instance that is matched by the ComponentPartVariable. A
FadingComponentVariable is typed by a component part that is, in turn, typed by a fading
component. We use an additional class for FadingComponentVariables for integrating the
particular syntactical constraints of fading components into the metamodel by means of
OCL constraints.
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Figure D.8: Class Diagram of the Component Story Pattern Metamodel
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ConnectorVariables connect the PortVariables. As on the type level, we distinguish between
AssemblyVariables and DelegationVariables that both have a corresponding type.

D.2.3 Component Story Diagrams

The class diagram in Figure D.8 shows the metamodel for CSDs. It is based on the
new metamodel for story diagrams [HRvD+11] but introduces additional classes for
integrating component story patterns.

Figure D.9: Class Diagram of the Component Story Diagram Metamodel

The class ComponentStoryRule represents the CSD. It inherits from ReconfigurationRules

and contains an Activity from the story diagram metamodel [HRvD+11]. The Activity con-
tains the ActivityNodes and ActivityEdges that constitute the control flow of the CSD. Each
ActivityEdge connects two ActivityNodes and may specify a guardExpression for adding a
Boolean condition to the ActivityEdge.
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The CSD metamodel defines several ActivityNodes. These are StatementNode, Junction-

Node, InitialNode, ActivityFinalNode, ComponentStoryNode, and ControllerExchangeNode.
Only the latter two a specific for CSDs. The ComponentStoryNode contains a Compo-

nentStoryPattern. The ControllerExchangeNode specifies the replacement of continuous
component instances as described in Section 3.3.2.

Finally, the CSD metamodel defines a SendReconfigurationMessageExpression that refers
to a MessageType and contains a set of ParameterBindings. It is contained in a Compo-

nentPartVariable and enables to invoke a reconfiguration on an embedded component by
sending a reconfiguration message to the component. The reconfigurationMessageType

specified by the SendReconfigurationMessageExpression must be contained in the RE port
interface specification of the component that is used as a type of the ComponentPartVari-

able.

D.2.4 Component Story Decision Diagrams

The class diagram in Figure D.10 shows the metamodel for component SDDs. The
metamodel reuses concepts of the metamodel by Stallmann [Sta08] and integrates it
with the metamodel for component story patterns (cf. Section D.2.2).

The ComponentStoryDecisionDiagram inherits from StructuralCondition such that it may be
used in the ManagerSpecificationEntry (cf. Section D.2.1). In addition, it inherits from
AbstractStoryDecisionDiagram that defines the Nodes and Edges that constitute the struc-
ture of an SDD. In addition to the LeafNodes of normal SDDs, the component SDD
metamodel uses ComponentStoryPatternNodes that contain a ComponentStoryPattern.

Finally, the component SDD metamodel defines an EvaluateComponentSDDExpression

that inherits from TriggerEmbeddedComponentExpression. It enables to refer to a compo-
nenSDD that is defined by a embedded component. It is contained in a ComponentPart-

Variable of the ComponentStoryPattern.

D.3 MATLAB/Simulink and Stateflow

This section introduces the metamodel for MATLAB/Simulink and Stateflow that we
use as an intermediate model in our transformation of MECHATRONICUML models
to MATLAB/Simulink. The metamodel reflects the model structure of Simulink and
Stateflow, but is restricted to those language features of Simulink that we need for our
transformation. In the following, we first present the metamodels for Simulink (Sec-
tion D.3.1) and Stateflow (Section D.3.2). Thereafter, we introduce two utility meta-
models for realizing message-based communication (Section D.3.3) and reconfiguration
in Simulink (Section D.3.4). These utility metamodels do not reflect the Simulink model
structure but ease the transformation and are translated to complex Simulink subsystems.
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Figure D.10: Class Diagram of the Component Story Decision Diagram Metamodel
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D.3.1 Simulink

The class diagram in Figure D.11 shows the core of the Simulink metamodel. The
metamodel has been derived by reverse engineering the Simulink model structure, but
includes several optimizations that ease the specification of a model transformation.

The root of a Simulink model is the SimulinkContainer that contains a set of SimulinkModels
and SimulinkLibrary objects, both of which are SimulinkFiles. This enables to split a model
over several files and libraries.

Figure D.11: Class Diagram of the Simulink Metamodel

A Simulink model and everything that is contained therein is an Element. Besides the
SimulinkContainer, the metamodel defines three types of Elements. These are Block, Line,
and Bus. Each element has an id and a set of Parameters that define the properties of the
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Element. Parameters are specified as name/value pairs where the data type of the Parameter

is given by an additional type attribute.

The basic building block of a Simulink model or library is the Block. SubSystems are
special Blocks that contain further Blocks and thereby enable to structure the model hier-
archically. Each SubSystem has a set of PortBlocks, which are either InPortBlocks where
information enters the SubSystem or OutPortBlocks where information leaves the Sub-

System. By adding an EnablePort to a SubSystem, the SubSystem becomes an enabled
subsystem. In the same way, a SubSystem becomes a triggered subsystem by adding a
TriggerPort. The TriggerPort also specifies whether it triggers the execution of the trig-
gered subsystem when the input signal rises or falls or in either case by the TriggerEvent

enum.

Two special kinds of Blocks are the LibraryReference and the ChartBlock. A LibraryRef-

erence enables to include a Block or even a complete Subsystem from a SimulinkLibrary.
We utilize this feature for including an implementation of the link layer blocks (cf. Sec-
tion 6.3.3.2) from a library.

The ChartBlock enables to include a Stateflow chart into a Simulink model. The Chart-

Block provides the InPortBlocks and OutPortBlocks for connecting the ChartBlock with the
remaining Simulink model. The ChartBlock refers to the Chart which contains the State-
flow chart. We introduce the Stateflow metamodel in detail in Section D.3.2. The Charts
are contained in a StateflowMachine that is part of the SimulinkFile.

A SubSystem contains a set of Lines that connect the Blocks. Each Block may have several
outgoingLines and incomingLines, but each Line connects exactly two Blocks. A Line refers
to a Bus if it represents a bus signal.

A Bus has a name and contains a set of named BusElements, each having a DataType and
a dimension. In addition, our metamodel contains two Blocks for handling Busses. These
are BusSelector for retrieving a signal from the Bus and BusCreator for creating a Bus

from a set of signals.

Figure D.12 shows additional types of Blocks. These are ZeroOrderHold, Constant, Digi-

talClock, UnitDelay, and EmbeddedMatlabFunction. All of these Blocks have the intended
functionality as described in Chapter 6. The EmbeddedMatlabFunction specifies the code

that defines its behavior as an attribute.

A special case is given by the MiscBlock. The MiscBlock enables to represent any type
of Block that may occur in a Simulink, but which is not explicitly represented in our
metamodel.

D.3.2 Stateflow

The class diagram in Figure D.13 shows the Stateflow metamodel. The root of the
metamodel is the StateflowElement. It is the super class for all elements of a Stateflow
chart.
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Figure D.12: Class Diagram of Additional Blocks of the Simulink Metamodel

A Stateflow chart consists of Nodes and Transitions that connect the Nodes. Stateflow
charts support three types of Nodes. These are States, Junctions, and History elements.
States may again contain further Nodes, which enables to specify hierarchical state ma-
chines. The Chart itself is a special State. The subStateType defines whether a hierarchical
State is an EXCLUSIVE or a PARALLEL State. In addition, States may be marked as initial

and have a priority that defines the execution order for PARALLEL States.

A State contains a set of Data elements that enable to define local variables and constants
for a State. A Data element has a name, a type, an initial value, and a size that defines
whether the Data element is an array. A Chart additionally defines input and output Data

elements. They have a 1:1 correspondence to the InPortBlocks and OutPortBlocks of the
ChartBlock in Simulink. As a result, the signals that are received from and send to the
Simulink model are used as regular variables in the Stateflow chart.

In addition, a State may define a set of EmbeddedFunctions. Each EmbeddedFunction

has a name and a behavior specification that is given by the code. The input and output

parameters of the EmbeddedFunction are specified by Data elements.

States and Transitions may contain a set of Actions. In a State, the Action is used for
defining entryActions, exitActions, and duringActions. The initialGuard enables to select an
initial State in case that the Stateflow chart contains more than one initial state, which is
supported. For a Transition, an Action is used for defining the transition guard as well as
the transition action.

Finally, a State defines a set of Events and a Transition may specify a received event.
Sending an Event is an Action that is defined by a special expression String.

D.3.3 Message-Based Communication

The class diagram in Figure D.14 shows the metamodel for realizing message-based
communication in Simulink. The metamodel only contains two classes that both inherit
from Block. These are CommunicationSwitch and LinkLayer. Both are specific for our
approach and have no direct correspondence to a block in Simulink, but are implemented
by subsystems in Simulink.
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Figure D.13: Class Diagram of the Stateflow Metamodel
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Figure D.14: Class Diagram of the Simulink Message Metamodel

The CommunicationSwitch represents a communication switch as defined in Section
6.3.3.3. The LinkLayer represents a link layer block as defined in Section 6.3.3.2. The
LinkLayer specifies attributes for all QoS assumptions of MECHATRONICUML that we
support in our transformation as described in Section 6.3.4.

The class diagram in Figure D.15 shows the metamodel for realizing message-based
communication in Stateflow. In particular, message-based communication is realized
by three BufferFunctions that are special EmbeddedFunctions. These functions realize the
enqueue, dequeue, and checkQueue functions as defined in Section 6.4.2.

Figure D.15: Class Diagram of the Stateflow Buffer Metamodel

The subclasses of BufferFunction define two sets of buffer functions for realizing two vari-
ants of message buffers. The classes on the left side of Figure D.15 realize the Enqueue,
Dequeue, and CheckQueue functions if there exists a separate message buffer for each
message type. The classes on the right side of Figure D.15 realize the SharedEnqueue,
SharedDequeue, and SharedCheckQueue functions if all message types share the same
buffer, i.e., there exists one message buffer that contains all message types.
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D.3.4 Reconfiguration

The class diagram in Figure D.16 shows the metamodel that enables to emulate recon-
figuration of continuous components in Simulink. The reconfiguration of discrete com-
ponents is solely realized by features of Simulink already introduced in Section D.3.1.

Figure D.16: Class Diagram of the Simulink Reconfiguration Metamodel

The metamodel defines three additional types of Blocks: MultiSourceControl, MultiTarget-

Control, and FadingComponent. MultiSourceControl and MultiTargetControl enable to recon-
figure signals between continuous ports (cf. Section 6.3.2.1). The FadingComponent

block represents a fading component. We provide a separate class for fading compo-
nents because they have a fixed internal structure as defined in Section 6.3.1.3.
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