
Fakultät für Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut & Institut für Informatik

Fachgruppe Algorithmen und Komplexität

Dissertation

Bewertung von
Renderingalgorithmen für komplexe

3-D-Szenen

Claudius Jähn

Paderborn 2015

Gutachter: Prof. Dr. Friedhelm Meyer auf der Heide
Prof. Dr. Gitta Domik-Kienegger

Kontakt: Claudius Jähn <claudius@uni-paderborn.de>
Dokumentenversion vom 21. Dezember 2015

Zusammenfassung
Die Effizienz von Renderingalgorithmen für komplexe virtuelle 3-D-Szenen hängt oft stark
von der Position des Betrachters in der Szene ab. Die Bewertung der Algorithmeneffizienz
in einer gegebenen Szene erfolgt daher typischerweise durch die Messungen entlang eines
charakteristischen Kamerapfades durch die Szene. Objektive Aussagen über das generelle
Verhalten des Algorithmus sind dabei in ihrer Aussagekraft deutlich beschränkt. Ich stelle ein
Verfahren vor, das die evaluierte Kenngröße von Renderingalgorithmen, wie die Renderingzeit
oder Anzahl durchgeführter Operationen, als positionsabhängige Szeneneigenschaft betrachtet,
deren Verteilung durch adaptives Sampling für alle Positionen der Szene angenähert wird. Die
statistische Auswertung erlaubt einen direkten, objektiven Vergleich verschiedener Renderingal-
gorithmen oder Parameterwerte; ihre Visualisierung kann zum Verständnis des Verhaltens von
Algorithmen beitragen. Die vorgestellte Technik lässt sich sowohl während der Entwicklung
von Renderingalgorithmen als auch zur Vorbereitung von konkreten Anwendungsfällen ver-
wenden. Des Weiteren wird das punktbasierte Progressive-Blue-Surfels-Renderingverfahren
für die Darstellung hochkomplexer virtueller Szenen vorgestellt. Das Verfahren generiert
sortierte Punktfolgen auf der sichtbaren Oberfläche der Geometrie der Szene, so dass jeder
Präfix der Folge eine gute Näherung der Geometrie darstellt und die Qualität und Laufzeit
durch die Anzahl der dargestellten Punkte feinschrittig eingestellt werden kann. Die Techniken
sind in PADrend implementiert, einem Renderingsystem, das speziell für den Entwurf von
Renderingalgorithmen entwickelt wurde.

Abstract
The efficiency of rendering algorithms for complex virtual 3D scenes does not only dependent
on the scene’s overall properties, but also on the observer’s position inside the scene. To experi-
mentally evaluate an algorithm, measurements are typically performed along a characteristic
camera path. This allows only for a weak assessment of the algorithm’s general performance
even for a fixed scene. I present an approach to represent aspects of an algorithm’s behavior, like
its running time or the number of performed operations, as position dependent scene properties.
The properties’ distribution can be approximated for all positions in the scene using an adaptive
sampling technique. A distribution’s statistical evaluation allows for a direct and objective
comparison of different algorithms and parameter values. Its visualization yields intuitive
insight into the algorithms behavior. Additionally, I present the point-based Progressive Blue
Surfels rendering algorithm for visualizing highly complex virtual scenes. The algorithm places
a sorted sequence of points on the visible surface of the scene’s geometry, so that every prefix
of the points represents a complete approximation of the geometry. By choosing the rendered
sequence’s length, image quality and running time can be adjusted at runtime. The presented
techniques are implemented in PADrend, a rendering system specially designed for supporting
the process of developing rendering algorithms.

iii

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung 1

2 Abgrenzung im Bereich der Computergrafik 7
2.1 Sichtbarkeit . 9

2.1.1 Globale Sichtbarkeit . 10
2.1.2 Lokale Sichtbarkeit (Online-Occlusion-Culling) 12

2.2 Genähertes Rendering . 13
2.3 Renderingsysteme . 15

3 PADrend – Plattform for Algorithm Development and Rendering 17
3.1 Systembibliotheken . 17
3.2 Szenengraph: MinSG . 18
3.3 Anwendungsinterface . 20
3.4 Eckdaten des Testsystems . 22

4 Szeneneigenschaften 23
4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften 24

4.1.1 Effiziente Bestimmbarkeit . 24
4.1.2 Begrenzung des Wertebereichs . 24
4.1.3 Praktische Gutmütigkeit des Wertebereichs 24
4.1.4 Determinismus . 25

4.2 Betrachtete Szeneneigenschaften . 26
4.2.1 Exakte Sichtbarkeit . 26
4.2.2 Pixelsichtbarkeit . 26
4.2.3 Renderingzeit . 28
4.2.4 Anzahl von Operationen . 30
4.2.5 Bildqualität . 30
4.2.6 Kombinierte Szeneneigenschaften 31

5 Globale Näherung von Szeneneigenschaften 33
5.1 Anforderungen . 34

5.1.1 Akzeptabler Zeitaufwand im Preprocessing 34
5.1.2 Kompakter Speicherplatz . 34
5.1.3 Effiziente Punktabfragen . 34
5.1.4 Gute Qualität der Näherung . 35
5.1.5 Parametrierbar, aber robust . 35
5.1.6 Einfachheit . 35

v

Inhaltsverzeichnis

5.2 Allgemeine Form des Sampling-Ansatzes 35
5.2.1 Aufbau der Datenstruktur . 35

5.3 Regelmäßiges Sampling . 37
5.4 Adaptives Sampling . 38

5.4.1 Beschreibung des Algorithmus . 38
5.4.2 Beschreibung der weiteren Parameter 39

5.5 Parallelisierung . 44
5.6 Auswertungsmöglichkeiten . 46

5.6.1 Qualitative Auswertung durch Visualisierung 47
5.6.2 Statistische Auswertung der Verteilung 47

5.7 Experimentelle Bewertung der Sampling-Verfahren 49
5.7.1 Benötigte Anzahl an Samples . 51

6 Approximatives Rendering mit Progressive-Blue-Surfels 55
6.1 Vorverarbeitung: Berechnung der Surfels 56

6.1.1 Berechnung einer Surfel-Repräsentation 57
6.1.2 Hierarchische Berechnung der Surfel-Repräsentationen 59
6.1.3 Speicherplatzbedarf . 60

6.2 Rendering: Darstellung mit Hilfe von Surfels 60
6.2.1 Rendern eines Surfel-Präfixes . 61

6.3 Überblick über die Parameter des Verfahrens 62
6.4 Experimentelle Bewertung der Sampling-Verteilung 63

6.4.1 Stabilität des Zufallsprozesses . 63
6.4.2 Einfluss des genäherten Objektes . 64
6.4.3 Sampling-Qualität und Laufzeit . 65

6.5 Anwendungen und Erweiterungen . 68

7 Anwendungen für genäherte Szeneneigenschaften 71
7.1 Szeneneigenschaften im Bereich des Algorithm-Engineering 71
7.2 Exploration: Auswirkungen der projizierten Größe beim Rendering mit Progressive-

Blue-Surfels . 73
7.3 Parameteroptimierung: Beste Tiefe eines Octrees für minimale Renderingzeit

mit CHC++ . 76
7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++ 77
7.5 Auswahl von Renderingmethoden zur Laufzeit 80
7.6 Rendering: Sichtbarkeit als positionsabhängige Eigenschaft 81

8 Fazit und Ausblick 85

vi

1 Einleitung

Im Bereich der 3-D-Computergrafik spielt, neben der optischen Qualität der erzeugten Bilder,
die Geschwindigkeit, mit der die Bilder berechnet werden können, eine entscheidende Rolle
für die Anwendung. Sobald ein Benutzer sich frei in einer virtuellen Umgebung bewegen
möchte, darf eine bestimmte Bildrate nicht unterschritten werden. Bei Renderingsystemen
zur Visualisierung von 3-D-CAD-Daten können bereits weniger als 10 fps (frames per second)
ausreichend sein, um sich in der Umgebung zurechtzufinden und für das Anwendungsszenario
notwendige Aktionen auszuführen. Für Computerspiele sind hingegen oft Bildraten von bis
zu 60 fps wünschenswert, um dem Benutzer eine schnelle Reaktion auf Ereignisse in der
virtuellen Welt zu ermöglichen. Unabhängig von der tatsächlich notwendigen Bildrate ist die
Komplexität der darzustellenden Daten oft so groß, dass trotz mittlerweile sehr leistungsfähiger
Spezialhardware die Bilder nicht auf einfache Art in entsprechender Zeit berechnet werden
können. Dies gilt insbesondere für die Darstellung von 3-D-Daten im industriellen Umfeld, wo
die Daten durch die Anwendung vorgegeben sind (z. B. automatisch generiert aus CAD-Daten)
und nicht zum Zwecke der Darstellung erzeugt werden, wie es bei Computerspielen der Fall ist.

Um die Komplexität der in Echtzeit darstellbaren Szenen immer weiter zu erhöhen, wird
zum einen die Grafikhardware ständig in ihrer Leistungsfähigkeit und in ihren Möglichkeiten
erweitert. Zum anderen wurden und werden eine Vielzahl unterschiedlicher Renderingalgorith-
men und Datenstrukturen entwickelt, um die 3-D-Daten zu filtern und so aufzubereiten, dass
die Grenze der handhabbaren Szenenkomplexität bisweilen um Größenordungen angehoben
wird. In diesem Kontext werden in dieser Arbeit drei Ziele verfolgt:

1. Der Schwerpunkt dieser Arbeit bezieht sich auf die Entwicklung einer Technik zur
Evaluierung von Renderingalgorithmen, welche speziell das Verhalten eines Algorith-
mus in Abhängigkeit der Betrachterposition innerhalb der virtuellen Szene untersucht.
Im Vergleich zu gängigen, kamerapfadbasierte Evaluierungstechniken, erlaubt die vor-
gestellte Technik eine objektivere Bewertung von Renderingalgorithmen. Durch die
Visualisierung der Messdaten liefert sie zusätzlich einen neuen und intuitiven Zugang
zum Verständnis des Verhaltens von Renderingalgorithmen. Vorgestellt wurde die Tech-
nik in der Arbeit „Evaluation of Rendering Algorithms using Position-Dependent Scene
Properties“ [JEF+13].

2. Das Progressive-Blue-Surfels-Näherungsverfahren ist ein Renderingverfahren für die
interaktive Darstellung von hochkomplexen Szenen. Das Verfahren beschleunigt den
Renderingprozess indem komplexe, aber weit entfernte Bereiche von Szenen durch
Folgen von Punktprimitiven dargestellt werden. Im Vergleich zu anderen, punktbasierten
Renderingverfahren, ist die zugrundeliegende geometrische Struktur und die Oberfläche-
neigenschaften der Szene nicht durch das Verfahren eingeschränkt. Erstmalig vorgestellt

1

1 Einleitung

wurde das Verfahren in dem technischen Bericht „Progressive Blue Surfels“ [Jäh13];
eine weitere Publikation ist in Vorbereitung.

3. Um den Entwicklungsprozess von Renderingalgorithmen technisch zu unterstützen,
wurde das PADrend-System entwickelt. Das System stellt Evaluierungswerkzeuge zur
Verfügung, um neu entwickelte Renderingalgorithmen zu bewerten und mit zahlreichen
existierenden Verfahren zu vergleichen. Vorgestellt wurde das System in der Arbeit
„PADrend: Platform for Algorithm Development and Rendering“ [EJP11].

Im Folgenden gebe ich einen kurzen Überblick über die behandelten Aspekte.

Evaluierung mit positionsabhängigen Szeneneigenschaften
Renderingalgorithmen für die Darstellung komplexer Szenen setzen unterschiedliche Techniken
ein, um den Berechnungsaufwand für ein einzelnes Bild zu reduzieren. Bei Occlusion-Culling-
Algorithmen geschieht dies beispielsweise durch Erkennen und Verwerfen von verdeckten
Teilen der virtuellen Szene möglichst früh im Renderingprozess. Das Ziel dabei ist, zur
Laufzeit möglichst wenige Ressourcen auf die Berechnung von Daten aufzuwenden, die nicht
zu dem endgültigen Bild beitragen. Wenn in einer Szene generell eine hohe Verdeckung
herrscht, wie beispielsweise in vielen architektonischen Szenen, kann sie dadurch flüssig
dargestellt werden, auch wenn ihre Gesamtkomplexität die Fähigkeiten der Hardware bei einer
einfachen Darstellung ohne spezielles Verfahren überschreitet. Ist die Szene aber aufgrund ihrer
Struktur nicht für ein Verfahren geeignet oder werden die Parameter des Renderingalgorithmus
bzw. der verwendeten Datenstruktur schlecht gewählt, so kann der Einsatz eines Occlusion-
Culling-Algorithmus auch den Renderingprozess verlangsamen. Dabei ist das Verhalten
des Algorithmus jedoch nicht nur von der Szene als Ganzes abhängig, sondern auch von
der aktuellen Position und der Blickrichtung des Betrachters innerhalb der virtuellen Szene.
Steht ein Betrachter direkt vor einer Wand, so dass große Bereiche der Szene hinter der
Wand verdeckt sind, ist es wahrscheinlich, dass sich ein Occlusion-Culling-Algorithmus
auszahlt. Wird dieselbe Szene jedoch von einer anderen Position aus betrachtet, können große
Bereiche sichtbar sein und sich das Occlusion-Culling ggf. nicht mehr lohnen und sogar
zu einer geringeren Bildrate führen. Abbildung 1.1 verdeutlicht diese Situation an einem
einfachen Beispiel. Diese starke Abhängigkeit von Renderingalgorithmen gegenüber der
Betrachterposition stellt in verschiedenen Situationen eine Herausforderung dar:

• Bei der Entwicklung von neuen Renderingalgorithmen muss der Entwickler das Ver-
halten von Algorithmen in möglichst vielen Situationen nachvollziehen können, um den
Algorithmus für den gewünschten Einsatzbereich anzupassen. Bei der Evaluierung eines
neuen Verfahrens erfordert die Positionsabhängigkeit daher aufwändige Testverfahren,
um die Leistung des neuen Verfahrens objektiv gegen andere Verfahren abzugrenzen (als
Teil des Algorithm-Engineering von Renderingalgorithmen).

• Bei der Aufbereitung der Daten einer komplexen virtuellen Szene muss für eine aus-
reichend effiziente Darstellung ein geeigneter Renderingalgorithmus sowie eine ent-
sprechende Datenstruktur zur Speicherung der Szene gewählt werden. Hinzu kommen

2

Abbildung 1.1: Draufsicht auf eine einfache Beispielszene (Szene 1) bestehend aus einigen
Bäumen und Wänden. An Position A steht der Betrachter hinter einer Wand:
Occlusion-Culling lohnt sich. An Position B herrscht wenig Verdeckung im
Sichtbereich: Occlusion-Culling kann den Renderingprozess verlangsamen.

●●
●●
●●●●●●●●●
●●●
●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●

−5

0

5

10

15

 Renderingzeit
CHC++

 Renderingzeit
Std

Differenz
CHC++ − Std.

positionsbezogene Szeneneigenschaft

R
en

de
rin

gz
ei

t i
n

m
s

Abbildung 1.2: Beispiel für die Auswertung der globalen Näherung der Szeneneigenschaft
Renderingzeit für Szene 1 (gespeichert in einem Octree). (links) Visualisierung
der Differenz aus der Renderingzeit mit Occlusion-Culling und Renderingzeit
mit Standardrendering; grün: Occlusion-Culling ist schneller; rot: Standard-
rendering ist schneller. (rechts) Verteilung der Szeneneigenschaft über den
untersuchten Bereich der Szene als Box- und Violinen-Plot.

3

1 Einleitung

ggf. noch zahlreiche Parameter, für die entsprechende Werte gewählt werden müssen.
Hierfür benötigt man entweder entsprechendes Expertenwissen, um das Verhalten des
Algorithmus abschätzen zu können, oder aber wiederum aufwändige Testverfahren.

• Während des Walkthroughs, also während sich der Betrachter durch die Szene bewegt,
kann der ausgewählte Renderingalgorithmus mit sehr unterschiedlichen Situationen
konfrontiert werden. Ist im Algorithmus kein Mechanismus integriert, der eine situa-
tionsbedingte Anpassung ermöglicht, kann dies seine Einsatzmöglichkeiten deutlich
einschränken.

Die gebräuchliche Herangehensweise zur Untersuchung des positionsabhängigen Verhaltens
eines Algorithmus in einer gegebenen Szene ist die Messung der zu untersuchenden Eigenschaft,
wie etwa Laufzeit des Algorithmus, durchgeführte Operationen oder Menge der sichtbaren
Geometrie, entlang eines „typischen“ Kamerapfades. Bei einem gut gewählten Kamerapfad
kann dies wichtige Einblicke in das Verhalten des Algorithmus liefern. Die Gültigkeit einer
statistischen Auswertung der Ergebnisse bezieht sich jedoch nur auf den gewählten Pfad. In
dieser Arbeit stelle ich eine Technik vor, die eine weitreichendere systematische Bestimmung
und Auswertung von positionsabhängigem Verhalten von Renderingalgorithmen erlaubt. Dazu
werden die untersuchten positionsabhängigen Eigenschaften als Funktionen des Raumes der
Szene aufgefasst. Dabei wird die Sichtrichtung abstrahiert, so dass nur ein repräsentativer
Wert für eine Position verwendet wird. Diese Funktionen lassen sich durch einen adaptiven
Sampling-Ansatz global, d. h. für alle Positionen in der Szene, annähern und diese Näherung
in einer Datenstruktur speichern. Diese Datenstruktur bezeichne ich als globale Näherung
einer Szeneneigenschaft. Ein Beispiel für die Visualisierung der Datenstruktur sowie der
Möglichkeit der statistischen Auswertung zeigt Abbildung 1.2. Die Abbildung visualisiert
die globale Näherung der Differenz der Renderingzeit aus einfachem Standardrendering und
Rendering mit einem Occlusion-Culling-Algorithmus (CHC++ [MBW08]) für einen Bereich
in der Szene. In der farblichen Darstellung werden die Positionen in der Szene in grün
hervorgehoben, an denen die Verwendung des Occlusion-Culling-Algorithmus zu einer höheren
Bildrate führt. In den roten Bereichen ist unter den Randbedingungen das Standardrendering
schneller. Durch die Visualisierung lässt sich so das Verhalten des Algorithmus auf einen Blick
wesentlich anschaulicher darstellen, als dies allein mit der Untersuchung von Kamerapfaden
möglich ist. Die statistische Auswertung zeigt die Verteilung der Renderingzeit für alle
Positionen im untersuchten Bereich. Auf dieser Basis kann man nun entscheiden, welchen
Algorithmus man für das angestrebte Anwendungsszenario einsetzen möchte oder weitere
Varianten und Parameterwerte gegeneinander abwägen. Für diese Entscheidung bietet die
statistische Auswertung der Szeneneigenschaften eine deutlich objektivere Grundlage als eine
ähnliche Auswertung eines frei gewählten Kamerapfades in der Szene.

Progressive-Blue-Surfels: Algorithmus zur Darstellung
hochkomplexer Szenen

Ein weiterer Bestandteil dieser Arbeit ist die Vorstellung eines neuen Renderingverfahrens für
die Darstellung hochkomplexer Szenen: das Progressive-Blue-Surfels-Verfahren. Die grundle-

4

gende Idee ist die Annäherung komplexer, aber weit entfernter Bereiche der Szene durch eine
sortierte Folge von Punkten. Die Punkte liegen auf der von außen sichtbaren Oberfläche der
angenäherten Geometrie. Die wesentlichen Merkmale des Verfahrens im Vergleich zu anderen
punktbasierten Näherungsverfahren sind die Möglichkeit, durch die Wahl der Länge des darge-
stellten Präfixes der Punktfolge die Darstellungsqualität und Renderingzeit präzise einstellen zu
können, und seine Robustheit in der Art der darzustellenden Szene. Durch die Möglichkeit, die
Detaillierung kontinuierlich einstellen zu können, werden die bei vielen Näherungsverfahren
auftretenden, störenden Artefakte beim Umschalten zwischen verschiedenen Qualitätsstufen
deutlich reduziert. Die Robustheit gegenüber der Szene erlaubt die Darstellung unterschiedlich
strukturierter Objekte, inklusive komplexer CAD-Daten, gescannter Oberflächenmodelle und
prozedural generierter Landschaften. Oberflächeneigenschaften wie Texturen und dynamischer
Beleuchtung werden ebenfalls unterstützt. Insgesamt erlaubt das Verfahren die Darstellung von
Szenen aus mehreren Milliarden Polygonen mit interaktiven Bildraten.

PADrend: Softwaresystem für die Entwicklung von
Renderingalgorithmen

PADrend ist ein Softwaresystem zur Darstellung virtueller Szenen, bei dem sich der Benutzer
frei durch die Szene bewegen kann. Das System wurde gemeinsam von Benjamin Eikel, Ralf
Petring und mir konzipiert und implementiert, unter Einbeziehung studentischer Arbeiten.
Im Vergleich zu anderen Renderingsystemen, wie beispielsweise Game-Engines, liegt der
Schwerpunkt nicht auf dem Rendering für einen speziellen Anwendungsfall, sondern in der
Unterstützung bei der Entwicklung und der Evaluierung von Renderingalgorithmen. Dies
spiegelt sich in mehreren Aspekten im Systemaufbau wider: Die enthaltene Szenengraphbiblio-
thek MinSG (Minimalistic-Scene-Graph) erlaubt die Übernahme der vollständige Kontrolle
über den Renderingprozess – kapselt aber bei Bedarf alle technischen Details in einem High-
Level-Interface, um den Entwickler zu entlasten und die Einstiegshürden für neue Entwickler
zu senken. Zum Vergleich neuer Algorithmen mit aktuellen Verfahren aus der Literatur sind
zahlreiche Occlusion-Culling- und Näherungsverfahren im System implementiert. Das Benut-
zerinterface bietet verschiedene Messwerkzeuge an, um verschiedene Kenngrößen zur Laufzeit
zu erheben; die Bestimmung von positionsabhängigen Szeneneigenschaften ist eines davon.
Unter anderem wurde das System bereits für die Entwicklung mehrerer Renderingverfahren
verwendet und diente als Ausgangsbasis zahlreicher studentischer Abschlussarbeiten. Abseits
des Algorithmenentwurfs wird das System auch im Rahmen von Industrieprojekten für die
Durchführung von Design-Reviews virtueller Prototypen von Maschinen und Industrieanlagen
genutzt. Durch die Möglichkeit, das mechanische Verhalten der virtuellen Prototypen durch
High-Level-Funktionen nachzubilden, lassen sich mit geringem Arbeitsaufwand komplexe
Situationen virtuell nachstellen. Auf einer stereoskopischen Mehrkanalprojektion kann mit
getrackten Eingabegeräten mit dem virtuellen Prototypen interagiert werden.

5

1 Einleitung

Aufbau der Arbeit
In dieser Arbeit beschäftige ich mich speziell mit einem Teilbereich des Themengebietes der
Computergrafik (dem Echtzeitrendering) und baue dabei auf unterschiedlichen, existierenden
Verfahren auf. Eine Abgrenzung des Themengebietes sowie einen Überblick über diese
verwendeten Arbeiten gebe ich in Kapitel 2. Als Basis für die Evaluierung der in dieser Arbeit
vorgestellten Methoden wurde das PADrend-Softwaresystem verwendet, welches in weiten
Teilen speziell für diesen Einsatzzweck entworfen wurde. Die grundlegende Architektur und
die Möglichkeiten des Systems stelle ich in Kapitel 3 vor.

Eine detailliertere Erläuterung des Konzeptes der positionsabhängigen Szeneneigenschaft
sowie einiger konkreter Szeneneigenschaften gebe ich in Kapitel 4. Um das Konzept der
Szeneneigenschaft praktisch einsetzten zu können, verwende ich eine Näherung des Verlaufs
der Eigenschaft in einem Bereich der Szene – der globalen Näherung der Szeneneigenschaft.
Zur Berechnung dieser Näherung habe ich ein adaptives Sampling-Verfahren entwickelt, dessen
Details ich in Kapitel 5 beschreibe und durch experimentelle Untersuchungen bewerte. Das
punktbasierte Progressive-Blue-Surfels-Renderingverfahren erlaubt die interaktive Darstellung
hochkomplexer Szenen. Das Verfahren und eine experimentelle Bewertung der Punktever-
teilung beschreibe ich in Kapitel 6. Für die Anwendung der globalen Näherung einer Szene-
neigenschaft für eine Verbesserung des Renderings habe ich verschiedene Einsatzszenarien
identifiziert. Anhand von Beispielen erläutere ich diese in Kapitel 7. Dazu gehört eine Evaluie-
rung der Laufzeiteigenschaften des Progressive-Blue-Surfel-Verfahrens. Abschließend ziehe
ich in Kapitel 8 ein Fazit und gebe Anregungen für mögliche Anschlussfragen.

6

2 Abgrenzung im Bereich der
Computergrafik

Das mit dieser Arbeit angerissene Feld der Computergrafik erstreckt sich über einen großen
und vielseitigen Bereich. Im Folgenden grenze ich den in dieser Arbeit betrachtete Teilbereich
genauer ein. Dabei erläutere ich fachbezogene Begriffe und stelle relevante Verfahren vor.

Rendering

Mit Rendering bezeichne ich den Vorgang, in dem aus einer virtuellen Szene durch Ren-
deringverfahren ein Bild erzeugt wird. Ich beschränke mich in dieser Arbeit dabei auf die
hardwareunterstützte Rasterisierung von polygonalen Daten in Pixelbitmaps (im Gegensatz z. B.
zum Raytracing oder Volumenrendering). Für das in dieser Arbeit angepeilte Einsatzgebiet des
Echtzeitrenderings werden kontinuierlich neue Bilder gerendert, während sich der Betrachter in
einem Walkthrough frei durch die virtuelle Szene bewegen kann. Ein einzelnes Bild aus diesem
Prozess bezeichne ich als Frame. Dies entspricht im Wesentlichen dem Echtzeitrendering-
Begriff, wie er im Buch „Real-Time Rendering“ [AMHH08] Verwendung findet. Ein Ren-
deringverfahren oder auch Renderingalgorithmus ist eine algorithmische Beschreibung, wie
aus einer virtuellen Szene und weiteren Parametern (wie des Betrachterstandpunktes und
Blickrichtung) das Bild erzeugt wird.

Virtuelle Szene

Als virtuelle Szene bezeichne ich eine Sammlung konvexer Polygone im 3-D-Raum (o. B. d. A.
kann hier von Dreiecken ausgegangen werden), die von einem Betrachter durchwandert werden
kann, während sie durch ein Renderingverfahren dargestellt wird. Eine Szene beschreibt die
geometrischen und optischen Eigenschaften von Oberflächen, anders als z. B. im Bereich des
Volumenrenderings, wo die Szenenbeschreibung auch das Innere von Objekten umfassen kann.
Es gibt mehrere Quellen für die polygonalen Daten einer Szene:

• Parametrisch beschriebene CAD-Modelle können durch einen automatisierten Triangulie-
rungsprozess in Polygonmodelle umgewandelt werden. Das in dieser Arbeit verwendete
Power-Plant-Modell1 wurde mutmaßlich ursprünglich aus einem CAD-Datensatz erstellt.

• Auf Basis von 3-D-Scans können hochauflösende Oberflächenmodelle realer Objekte
erstellt werden. Das in Kapitel 6 verwendete Modell eines Drachen2 wurde auf diese
Weise erzeugt.

1http://gamma.cs.unc.edu/Powerplant/ (University of North Carolina at Chapel Hill)
2http://graphics.stanford.edu/data/3Dscanrep/ (The Stanford 3D Scanning Repository)

7

2 Abgrenzung im Bereich der Computergrafik

• Polygonale Modelle können manuell mit entsprechender 3-D-Modellierungssoftware
erstellt werden. Die in dieser Arbeit verwendeten Baum-Modelle wurden auf diese Weise
erzeugt.

• Über prozedurale Regeln lassen sich auch komplexe und weitläufige Objekte bzw. Ober-
flächen erzeugen. Die in Kapitel 6 und 7 verwendete Landschaft wurde durch ein
Regelsystem beschrieben und mit Hilfe der Grafikhardware erzeugt. Das dabei einge-
setzte Verfahren ist angelehnt an das Verfahren zur Erzeugung prozeduraler Landschaften
von Geiss [Gei07].

Räumliche Datenstrukturen

Im Rahmen dieser Arbeit wird zusätzlich zu den Polygonen und Oberflächenbeschreibungen
auch die Strukturierung der Szene in eine räumliche Datenstruktur als Teil der Szene gesehen
und gehört damit, wie auch die Szene, zur Eingabe der vorgestellten Methoden. Eine gebräuch-
liche räumliche Datenstruktur ist die Octree-Datenstruktur. Die Datenstruktur ist ein Baum,
wobei jeder Knoten einen quaderförmigen Bereich der Szene repräsentiert. Der Wurzelknoten
(bzw. sein Bereich) umschließt die Geometrie der gesamten Szene. Innere Knoten besitzen
acht Kinder, deren Regionen die des Elternknotens in gleiche Teile vollständig aufteilen. Für
die Zuordnung der Objekte, aus denen die Szene besteht, zu den Knoten des Baums, gibt es
mehrere Möglichkeiten, je nach genauer Ausprägung des Octrees. Ein Objekt kann beispiels-
weise an dem Knoten mit dem kleinsten Quader gespeichert werden, der das Objekt vollständig
umschließt. Dadurch können auch sehr kleine Objekte auf der Unterteilung zwischen zwei
Kindern auf einer hohen Ebene „hängenbleiben“. Da jedoch oft erwünscht ist, dass Objekte
ähnlicher Größe gemeinsam in einem möglichst kleinen Knoten gespeichert werden, lässt sich
diesem Problem mit dem Loose-Octree [Ulr00] entgegenwirken. Hierbei wird der Raum des
Elternknotens nicht disjunkt zwischen den Kindern aufgeteilt, sondern die Knoten der Kinder
werden vergrößert (z. B. um den Faktor zwei). Dadurch wird der Level im Baum, in dem die
Objekte gespeichert werden, durch ihre Größe bestimmt. Um den entstehenden Baum auf die
spezifischen Anforderungen eines verwendeten Renderingalgorithmus anpassen zu können,
können Parameter, wie die maximale Tiefe des Baums, eingestellt werden.

Eine Bounding-Volume-Hierarchie beschreibt eine räumliche Baumdatenstruktur, bei der die
Geometrie der Szene den Knoten zugeordnet und jedem Knoten ein Hüllvolumen (Bounding-
Volume) zugeordnet ist, welches die in dem entsprechenden Teilbaum liegende Geometrie
eng umschließt. Betrachtet man bei den Knoten eines Octree nicht die gesamten abgedeckten
Bereiche, sondern bildet jeweils nur das Hüllvolumen, das alle in dem entsprechenden Teilbaum
liegenden Geometrie umschließt, dann ergibt sich aus dem Octree eine Bounding-Volume-
Hierarchie. Neben Bounding-Volume-Hierarchien, die durch andere algorithmische Regeln
definiert werden, gibt es noch Hierarchien, die sich anhand des logischen (oder semantischen)
Aufbaus der Szene ergeben. Dies ist beispielsweise der Fall, wenn die Struktur der Szene aus
einem CAD-Modell übernommen wird, in dem die Bauteile hierarchisch nach Baugruppen
abgelegt sind. Für das Rendering wird die Bounding-Volume-Hierarchie der Szene in Form
eines Szenengraphen gespeichert. Dieser entspricht der technischen Umsetzung der Bounding-
Volume-Hierarchie, es können dabei jedoch zusätzliche Daten an den Knoten hinterlegt werden.

8

2.1 Sichtbarkeit

Die in den Knoten des Szenengraphen verwendeten Hüllvolumen sind oft axial ausgerichtete
Quader, die Bounding-Boxen der Knoten.

Objektbegriff

Die Polygone der Szene sind in mehrere in Objekten aufgeteilt, wobei im Extremfall ein Objekt
auch nur aus einem einzelnen Polygon bestehen kann. Im Rahmen dieser Arbeit gehe ich davon
aus, dass diese Objektdefinition als Teil der Szenen ein Teil der Eingabedaten ist, die jedoch,
abhängig von verwendeten Renderingverfahren, einen erheblichen Einfluss auf die Effizienz bei
der Darstellung der Szene haben kann. Häufig werden alle Polygone, die zur Darstellung eines
realen Objektes benötigt werden, in einem virtuellen Objekt zusammengefasst; beispielsweise
können alle Polygone, die zu einem virtuellen Tisch gehören, zu einem einzelnen Objekt
zusammengefasst werden. Dies hat eine Reihe von Vorteilen: Bei einer Interaktion mit der
Szene in einer Anwendungssituation kann der virtuelle Tisch als Einheit identifiziert werden
und in der Szene bewegt werden. Des Weiteren besteht die Abbildung ein reales Objekt
häufig aus einem einzelnen Material, welches sich dann einfach durch eine einzelne, an das
Objekt gebundene, Materialbeschreibung abbilden lässt. Besteht der Tisch aus dem Beispiel
vollständig aus Holz, kann dies einfach durch die Zuordnung einer Holztextur zu dem Objekt
abgebildet werden, anstatt die Zuordnung für jedes Polygon einzeln vorzunehmen. Besteht
ein reales Objekt aus Teilen mit unterschiedlich darzustellenden Materialien, bietet es sich
daher an, die entsprechenden Teile als virtuelle Objekte zu definieren (z. B. Tischplatte und
Tischbeine). Letztlich führt die Definition von Objekten zu größeren zusammenhängenden
Gruppen von Polygonen, den Meshes. Diese lassen sich, im Gegensatz zu einer entsprechende
Menge unzusammenhängender Polygone, mit der hier betrachteten hardwareunterstützten
Rasterisierung wesentlich schneller darstellen.

2.1 Sichtbarkeit

Die in dieser Arbeit untersuchten Verfahren werden in vielerlei Hinsicht durch Sichtbarkeit
beeinflusst. Im Folgenden erläutere ich die grundlegenden Konzepte und einige verwendete
Algorithmen.

Die Bestimmung derjenigen Teile einer Szene, die, abhängig von der Betrachterposition und
Blickrichtung, tatsächlich im endgültigen Bild sichtbar sind, ist seit jeher eines der grundle-
genden Probleme der 3-D-Computergrafik. Das Problem, welches Polygon die Farbe eines
Pixels bestimmt, wird in der hier betrachteten Form des Renderings praktisch durch den von
Catmull 1974 vorgestellten Z-Puffer-Algorithmus [Cat74] gelöst. Dank der hochentwickelten
dedizierten Grafikhardware lassen sich so mittlerweile Szenen mit mehreren Millionen Polygo-
nen in Echtzeit darstellen. Werden alle Daten einer Szene jedoch einfach nur zur Darstellung
an die Grafikkarte gesendet, erzeugen auch alle unsichtbare Objekte und Polygone Last auf der
Grafikkarte und ggf. auf der CPU. Um die zu rendernde Datenmenge zu reduzieren, existieren
mehrere grundlegende Culling-Verfahren, um unsichtbare Teile der Szene zu erkennen und
vom Rendering auszuschließen (siehe Abbildung 2.1). Der Teil einer Szene, der außerhalb des
Sichtbereichs des Betrachters (Frustum) liegt, lässt sich relativ einfach durch Frustum-Culling-

9

2 Abgrenzung im Bereich der Computergrafik

Verfahren identifizieren und vom Rendering aussparen, beispielsweise durch hierarchisches
Frustum-Culling [Cla76]. Bei einer komplexen Szene kann die Menge der Geometrie innerhalb
des Sichtbereichs dennoch die Fähigkeiten der Hardware deutlich übersteigen, auch wenn
aufgrund von Verdeckung letztlich nur ein kleiner Teil dieser Geometrie zum Bild beiträgt. Das
Ziel von Occlusion-Culling-Verfahren ist es, die nicht verdeckte Geometrie zu identifizieren
und möglichst nur diese zu rendern. Die Relevanz dieses Problems wird unter anderem in
den zahlreichen Publikationen zu verschiedenen Sichtbarkeits- bzw. Culling-Verfahren und
entsprechender Übersichtsarbeiten deutlich [COCSD03, PT02]. Eine Möglichkeit der Klassifi-
zierung dieser Verfahren (nach [COCSD03]) ist die Unterteilung in Verfahren, die die globale
oder die lokale Sichtbarkeit bestimmen oder annähern. Verfahren zur Bestimmung der lokalen
Sichtbarkeit ermitteln nur für die aktuelle Position des Betrachters die Sichtbarkeit der Teile der
Szene. Sobald sich der Benutzer in der Szene bewegt, werden die Sichtbarkeitsinformationen
zur Laufzeit neu berechnet. Verfahren zur Bestimmung der globalen Sichtbarkeit berechnen
und speichern hingegen Sichtbarkeitsinformationen für Bereiche der Szene in der Vorverar-
beitung (im Preprocessing). Während sich der Benutzer zur Laufzeit durch die Szene bewegt,
können diese vorher gesammelten Informationen abgefragt werden und für die Darstellung der
sichtbaren Teile verwendet werden.

Frustum-Culling

Backface-Culling

Occlusion-Culling

Abbildung 2.1: Unterschiedliche Arten von Culling (nach Cohen-Or et al. [COCSD03])

2.1.1 Globale Sichtbarkeit
Die globale Bestimmung der Sichtbarkeit ist eng verknüpft mit der in dieser Arbeit betrachteten
globalen Näherung von Szeneneigenschaften: Sichtbarkeit lässt sich als Szeneneigenschaft be-
schreiben und kann damit durch die vorgestellten Verfahren genähert, statistisch untersucht und
zum Rendering eingesetzt werden (siehe Kapitel 7.6). Die allgemeine Untersuchung globaler
Szeneneigenschaften kann damit als eine Verallgemeinerung der Untersuchung von globaler
Sichtbarkeit gesehen werden. Des Weiteren sind einige der untersuchten Szeneneigenschaften
in ihrer Struktur eng mit der globalen Sichtbarkeit verknüpft, wie beispielsweise die Anzahl
sichtbarer Objekte oder die Renderingzeit von Occlusion-Culling-Algorithmen.

Exakte geometrische Sichtbarkeit und die Visibility-Space-Partition (VSP)

Die geometrische Sichtbarkeit eines Polygons zeigt an, ob eine Strecke vom Betrachterstand-
punkt zu einem Punkt auf dem Polygon existiert, die keine anderen Polygone schneidet. Nach

10

2.1 Sichtbarkeit

dieser Definition können alle Polygone einer Szene von einem Standpunkt aus sichtbar sein.
Die von Platinga und Dyer vorgestellte VSP (Visibility-Space-Partition) [PD90] ist eine Da-
tenstruktur, bei der die Szene in Bereiche aufgeteilt wird in der die gleiche geometrische
Sichtbarkeit herrscht (oder genauer, die gleiche topologische Struktur der sichtbaren Geome-
trie). Die Übergänge zwischen Bereichen werden durch Sichtbarkeitsereignisse bestimmt,
beispielsweise wenn sich der Betrachterstandpunkt auf einer Geraden mit zwei Eckpunkten
von Polygonen der Szene befindet. Eine VSP lässt sich damit prinzipiell zur Kodierung der
Sichtbarkeit einer Szene verwenden, um ausschließlich sichtbare Polygone darzustellen. Die
Worst-Case-Komplexität einer VSP für den perspektivischen 3-D-Fall liegt bei Θ(n9) in der
Anzahl der Polygone der Szene. Auch wenn diese Worst-Case-Komplexität für eine realistische
Szene nicht erreicht wird, ist sie für relevante Szenen immer noch deutlich zu hoch.

In der 3-D-Computergrafik wird unter Sichtbarkeit oft die Pixelsichtbarkeit verstanden; d.h.
ein Polygon wird als sichtbar bezeichnet, wenn es mindestens die Farbe eines Pixels des fertigen
Bildes bestimmt oder dazu beiträgt. Lässt man Multisampling und Blending außer Acht, ist
damit die Anzahl der maximal gleichzeitig sichtbaren Polygone durch die Bildschirmauflösung
beschränkt.

Portalbasierte Verfahren

Eine Möglichkeit, globale Sichtbarkeit praktisch für Rendering nutzbar zu machen, ist, nicht
die Sichtbarkeit für jedes Polygon oder Objekt einzeln zu bestimmen, sondern für Teilbereiche
der Szene. Ziel von portalbasierten Verfahren ist es, die Szene so in Regionen aufzuteilen,
dass die Regionen untereinander nur durch räumlich begrenzte Flächen, die Portale, zu sehen
sind. Als Aufteilung bei einem architektonischen Modell, bietet es sich beispielsweise an,
dass die Räume die Regionen darstellen und Türen und Fenster die Portale bilden. Für jede
Region kann dann eine Menge potentiell sichtbarer Objekte (PVS – Potentially-Visible-Set) bzw.
anderer sichtbarer Regionen berechnet und gespeichert werden. Die Aufteilung in Regionen
kann beispielsweise anhand der Geometrie der Szene erfolgen. Ein frühes und bekanntes
Verfahren ist das „Visibility Preprocessing For Interactive Walkthroughs“-Verfahren von Teller
und Séquin [TS91]. Dieses Verfahren eignet sich jedoch fast ausschließlich für architektonische
Szenen mit axial ausgerichteten, rechteckigen Räumen.

Sampling-basierte Sichtbarkeitsverfahren

Sobald die Szenen komplexer werden oder keine klare, geometrische Struktur mehr zu erkennen
ist, lassen sich die Regionen mit ähnlicher Sichtbarkeit auch durch Sampling bestimmen; also
durch Näherung der globalen Sichtbarkeit durch eine Reihe an stichprobenartig bestimmten
Sichtbarkeitstests. Die Samples können beispielsweise aus Strahlen bestehen, die im Raum
der Szene verteilt werden. Die Strahlen enden auf der Oberfläche der Objekte der Szene und
zeigen an, dass die getroffenen Objekte von jeder Position entlang des Strahls sichtbar sind. In
der Arbeit „Adaptive global visibility sampling“ beschreiben Bittner und andere [BMW+09]
ein Verfahren, bei dem solche Strahlen adaptiv in der Szene verteilt werden. Eine Besonderheit
des Verfahrens ist, dass die Sampling-Strategie, wie die Samples in der Szene platziert werden,
im Verlauf des Prozesses automatisch angepasst wird.

11

2 Abgrenzung im Bereich der Computergrafik

Globale Sichtbarkeit mit Spherical-Visibility-Sampling (SVS)

Eine weitere Möglichkeit, globale Sichtbarkeit effizient beim Rendering einzusetzen, ist,
die äußere Sichtbarkeit zu betrachten – für komplexe Bereiche einer Szene wird hierarchisch
gespeichert, welche Teile von außen sichtbar sind. Zur Laufzeit werden dann die Teile der Szene
gerendert, die der Betrachter von außen sieht. Der große Vorteil dieser Betrachtungsweise ist,
dass der Aufwand in der Vorverarbeitung und der Speicherplatzbedarf nur in der Komplexität
der Szene steigt – und nicht zusätzlich mit der Ausdehnung der Szene, wie bei bei vielen
anderen globalen Sichtbarkeitsverfahren. Dies eignet sich vor allem für die Darstellung von
Szenen mit vielen, in sich geschachtelten Objekten, wie beispielsweise CAD-Modellen von
Maschinen oder ausmodellierten Gebäuden. Ein Nachteil derartiger Verfahren ist, dass lokale
Verdeckungen, die nur in einem begrenzten Bereich der Szene auftreten, nicht erkannt und
ausgenutzt werden.

Ein auf äußerer Sichtbarkeit basierendes Verfahren ist das Spherical-Visibility-Sampling-
Verfahren (SVS) von Eikel et al. [EJFMadH13], mit dem sich auch sehr weitläufige Szenen
darstellen lassen. Für die inneren Knoten der räumlichen Datenstruktur, in der die Szene
gespeichert ist, wird eine sogenannte Sichtbarkeitskugel berechnet. Diese enthält für mehrere
Richtungen, welche Objekte der Szene jeweils von außerhalb der Kugel aus der Richtung
sichtbar sind. Zur Laufzeit werden für die Teilbäume der Szene, deren Sichtbarkeitskugeln
die Position des Betrachters nicht enthalten, nur die Objekte für die am nächsten liegenden
Richtungen gerendert (von der Position des Betrachters in Richtung des Zentrums der Kugel).
Die praktische Effizienz des Verfahrens wird in Abschnitt 7.4 als Beispiel für die Evaluierung
mittels Szeneneigenschaften betrachtet.

Das in dieser Arbeit vorgestellte Progressive-Blue-Surfels-Verfahren (siehe Kapitel 6) nutzt
ebenfalls die äußere Sichtbarkeit zur Beschleunigung des Renderings, da die Surfel nur auf der
von außen sichtbaren Oberflächen der Geometrie platziert werden.

2.1.2 Lokale Sichtbarkeit (Online-Occlusion-Culling)

Bei lokalen Sichtbarkeitsverfahren wird die Sichtbarkeit von Objekten in der Szene nicht vor-
berechnet, sondern zur Laufzeit für die aktuelle Betrachterposition und Sichtrichtung bestimmt.
Seitdem Grafikkarten hardwareseitige Unterstützung für Verdeckungstests anbieten, haben sich
Verfahren, die dies ausnutzen, weit verbreitet. Die grundlegende Idee für hardwarebasierte Ver-
deckungstests wurde von Greene, Kass und Miller mit dem hierarchischen Z-Puffer [GKM93]
vorgestellt. Beim Rendern einer hierarchisch organisierten Szene wird vor dem Rendern eines
Teilbaums zunächst geprüft, ob mindestens ein Pixel eines den Teilbaum umschließenden
Hüllvolumens (in diesem Fall einer Bounding-Box) sichtbar wäre, wenn sie gerendert würde.
Beim hierarchischen Z-Puffer-Verfahren wird der Test, ob ein Pixel den Tiefentest besteht,
auf der CPU durchgeführt. Durch eine Erweiterung der Hardware kann ein Verfahren von der
Grafikkarte die Rückmeldung über diesen Test erhalten. Der zusätzliche Berechnungsaufwand
auf der Grafikkarte entspricht nur in etwa der Zeit, die zum Rendern der Ersatzgeometrie
benötigt wird. Jedoch erfolgt die Rückmeldung des Ergebnisses erst, nachdem die Pipeline der
Grafikkarte durchlaufen wurde. Wartet ein Culling-Verfahren wiederholt auf ein Ergebnis, kann
das Rendering dadurch deutlich verzögert werden. Für diese Problematik versuchen verschie-

12

2.2 Genähertes Rendering

dene Verfahren Lösungen anzubieten: Das CHC-Verfahren (Coherent-Hierarchical-Culling)
von Bittner et al. [BWPP04] verwendet unter anderem die Informationen über die Sichtbarkeit
von Knoten der Datenstruktur aus vorangegangenen Bildern, um nicht auf alle Verdeckungsan-
fragen zu warten. Das Near-Optimal-Hierarchical-Culling-Verfahren von Guthe, Balázs und
Klein [GABK06] versucht mit statistischen Vorhersagen die Anzahl der durchgeführten und
vor allem die Anzahl der Situationen, in denen auf eine Verdeckungsanfrage gewartet wird,
zu minimieren. Das in dieser Arbeit als Referenzverfahren verwendete CHC++-Verfahren
von Mattausch, Bittner und Wimmer [MBW08] setzt auf dem CHC-Verfahren auf, erweitert
es aber um zahlreiche Heuristiken, um die Zahl der Verdeckungstests zu minimieren. Es
werden beispielsweise mehrere Bounding-Boxen gemeinsam in Gruppen getestet, wobei die
Zuordnungen zu diesen Gruppen dynamisch wechselt.

Für die Effizienz all dieser Verfahren ist es notwendig, dass die Szene in einer geeigneten
räumlichen Datenstruktur mit geeigneten Parametern gespeichert ist. Als Beispiel für die Opti-
mierung eines Parameterwertes mittels genäherter Szeneneigenschaften wird in Abschnitt 7.3
der Parameter der maximalen Tiefe eines Loose-Octrees für eine gegebene Szene und dem
CHC++-Algorithmus ermittelt.

2.2 Genähertes Rendering

Die zweite Strategie zur Darstellung komplexer Szenen neben dem Occlusion-Culling ist die
Darstellung von Ersatzrepräsentationen für komplexe Teile der Szene, die jedoch effizienter
darstellbar sind. Der Nachteil ist, dass die Geometrie der Szene nicht mehr exakt dargestellt
wird, sondern nur angenähert wird und dabei die Bildqualität sinken kann. Das in Kapitel 6 vor-
gestellte Progressive-Blue-Surfels-Verfahren nutzt für die Darstellung der Szene eine Folge von
generierten Punktprimitiven, die die Geometrie annähern. Im Folgenden stelle ich einige Ver-
fahren vor, die ebenfalls Punktprimitive für das Rendering einsetzen und ein Verfahren, das (wie
das Progressive-Blue-Surfels-Verfahren) eine feingranulare Steuerung der Näherungsqualität
ermöglicht.

QSplats: a multiresolution point rendering system for large meshes

Das QSplat-Verfahren von Rusinkiewicz und Levoy [RL00] wurde für die Visualisierung
einzelner, hochkomplexer Oberflächenmodelle entwickelt. Es baut eine hierarchische Baumda-
tenstruktur aus Kugeln auf, die die Geometrie in unterschiedlichen Qualitätsstufen repräsentiert.
Um den Baum aus einer Menge an Polygonen zu erzeugen, wird auf unterster Ebene für jeden
Vertex eine Kugel erzeugt. Die Kugel kodiert die Normale und Farbe des Vertex. Die inneren
Knoten der Datenstruktur werden dann rekursiv durch größere Kugeln zusammengefasst, die
alle Kugeln in ihrem Teilbaum enthalten. Die Normale und Farbe für eine innere Kugel werden
aus den Werten ihrer Kinder gemittelt. Beim Rendering wird der Baum traversiert und es
werden nur die Kugeln, die auf einem Schnitt durch den Baum liegen, durch Punkte dargestellt.
Der Verlauf des Schnittes durch den Baum bestimmt die Anzahl der dargestellten Punkte und
damit Renderingzeit und Bildqualität.

Ein Vorteil der QSplats im Vergleich zu den Progressive-Blue-Surfels ist, dass durch das

13

2 Abgrenzung im Bereich der Computergrafik

Zusammenfassen der Oberflächeneigenschaften auf höheren Ebenen ein automatisches Filtern
durchgeführt wird, wodurch Aliasingeffekte bei der Darstellung reduziert werden können. Ein
weiterer Vorteil ist, dass durch die Art, die Kugeln zu erzeugen, keine Löcher beim Rendering
entstehen. Nachteile der QSplats sind zum einen, dass die Ausgangsbasis für die Kugeln die
Vertices des Modells sind – wenn es sich bei dem Modell nicht um ein hochtesseliertes Oberflä-
chenmodell handelt, sondern um ein trianguliertes CAD-Modell, können nur wenige, grobe
Kugeln auf unterster Ebene erzeugt werden. Ein anderer Nachteil ist, dass zur Darstellung einer
Näherung der Baum traversiert werden muss – d. h. die Punktprimitive werden nacheinander,
einzeln zur Grafikkarte übertragen. Aktuellen Grafikkarten können so nur einen Bruchteil ihrer
Leistungsfähigkeit umsetzten.

Surfels: Surface Elements as Rendering Primitives

Das Surfels-Verfahren von Pfister et al. [PZvBG00] wurde, wie das QSplat-Verfahren, für die
Visualisierung komplexer Einzelmodelle durch Punkte entwickelt. In der Vorverarbeitung
wird das Modell zunächst durch Raycasting entlang der drei Hauptachsen in geschichtete
Tiefenbilder (Layered depth images [SLS+96]) abgebildet. Auf Basis eines Octrees werden
daraus hierarchisch die Surfels als Oberflächenpunkte mit Farbe und Normale gebildet. Zur
Laufzeit wird der Octree traversiert und ein Schnitt des Baumes als Punkte dargestellt.

Das Surfels-Verfahren ist gegenüber dem QSplat-Verfahren robust gegenüber unterschiedlich
triangulierte Oberflächen und unterstützt Texturen. Neben der ebenfalls nicht mehr effizienten
Traversierung beim Rendering, ist ein Nachteil des Verfahrens, dass auch auf von außen nicht
sichtbaren Flächen Punkte erzeugt werden.

The Randomized z-Buffer Algorithm: Interactive Rendering of Highly Complex
Scenes

Der randomisierte Z-Puffer von Wand et al. [WFP+01] zielt, wie das Progressive-Blue-Surfels-
Verfahren, darauf ab, nicht nur Einzelmodelle, sondern hochkomplexe Szenen darzustellen.
Dazu werden die Dreiecke der Szene in einer hierarchischen Datenstruktur abgelegt. Zur
Laufzeit werden dann für die aktuelle Betrachterposition Sampling-Punkte auf den Dreiecken
im Frustum gezogen und gerendert. Die erwartete Anzahl der für ein Dreieck gezogene Samples
ist dabei proportional zu seiner projizierten Größe.

Ein großer Vorteil des Verfahrens liegt darin, dass keine aufwändigen und speicherintensiven
Vorverarbeitungen durchgeführt werden, da das Sampling zur Laufzeit durchgeführt wird.
Nachteile des Verfahrens sind, dass die Punkte nicht effizient an die Grafikkarte geschickt
werden und dass Punkte auch von unsichtbaren Oberflächen gezogen werden.

Progressive Meshes

Anstatt Teile der Szene durch eine Ersatzrepräsentation auszutauschen, lassen sich polygo-
nale Modelle auch direkt vereinfachen und somit schneller darstellen. Mit dem Progressive-
Meshes-Verfahren von Hoppe [Hop96] werden die Vertices eines Meshes in eine Datenstruktur

14

2.3 Renderingsysteme

überführt, die es erlaubt, eine Näherung mit einer beliebigen Anzahl von Dreiecken darzustel-
len. Nacheinander werden bei der Vereinfachung jeweils zwei Vertices zusammengefasst, bis
die gewünschte Anzahl an Dreiecken erreicht ist. Die Reihenfolge der Zusammenfassungen
wird dabei so gewählt, dass nach verschiedenen Kriterien die Ähnlichkeit zum Original-Mesh
möglichst lange erhalten bleibt. Durch das Verfahren lässt sich die Qualität der Meshes zur
Laufzeit sehr feingranular anpassen (z. B. entsprechend der projizierten Größe des Meshes),
wodurch störende Popping-Artefakte beim Umschalten der Qualitätsstufe vermieden werden.
Das Progressive-Blue-Surfels-Verfahren folgt einem ähnlichen Ansatz für die Vermeidung von
Popping-Artefakten, indem die Anzahl der dargestellten Punkte progressiv in kleinen Schritten
gesteuert werden kann.

2.3 Renderingsysteme
Ein Renderingsystem ist eine Software, die das Rendering virtueller Szenen ermöglicht. Die
vermutlich leistungsfähigsten, verfügbaren Renderingsysteme stellen Game-Engines dar, die als
Grundlage für 3-D-Computerspiele dienen. Diese Systeme sind jedoch hochspezialisiert auf die
Anwendung und erlauben nur begrenzte Möglichkeiten, um die enthaltenen Renderingalgorith-
men anzupassen oder neue zu entwickeln. Szenengraph-Bibliotheken wie OpenSceneGraph3

oder OGRE4 geben dem Entwickler deutlich mehr Freiheiten. Renderingsysteme, die ihren
Fokus speziell auf die Entwicklung und Evaluation von Renderingalgorithmen legen, sind
jedoch selten. Ein Renderingsystem mit dieser Zielsetzung wurde von Yuan, Green und Lau im
Jahr 1997 entwickelt [YGL97]. Eine Besonderheit in dieser Arbeit ist, dass die Autoren für
die Generierung realistischer Kamerapfade für die Evaluierung aufgezeichnete Benutzerbewe-
gungen verwenden. Für eine Gruppe von Benutzern wird aufgezeichnet, wie sie bestimmte
vorgegebene Interaktionen mit der virtuellen Szene durchführt. Ein System für die Entwicklung
und Evaluierung von Algorithmen zur Aufbereitung einzelner Meshes ist Meshlab [CCC+08].
Die frei verfügbare Software enthält bereits eine große Menge an unterschiedlichen Algorith-
men, z. B. zum Bereinigen oder Optimieren von Gittermodellen. Durch zahlreiche Metriken
zur Bewertung von unterschiedlichen Eigenschaften von Meshes lassen sich die Ergebnisse
unterschiedlicher Verfahren direkt vergleichen. Das in Kapitel 3 vorgestellte PADrend-System
folgt dieser Idee, ein System mit der Zielsetzung des Algorithmenentwurfs zur Verfügung zu
stellen, jedoch für Szenen anstatt für einzelne Meshes.

3http://www.openscenegraph.org
4http://www.ogre3d.org

15

3 PADrend – Plattform for Algorithm
Development and Rendering

Die in dieser Arbeit vorgestellten Arbeitsweisen und Methoden sind nicht auf die Verwendung
mit einer spezifische Renderingsystem beschränkt, sondern sie sollten sich mit überschaubarem
Aufwand in die meisten der aktuell verbreiteten Systeme (wie Game-Engines oder Szenengraph-
Bibliotheken) integrieren lassen. Für die Entwicklung der Techniken und für die experimentelle
Evaluation im Rahmen dieser Arbeit wurde das PADrend-System (Platform for Algorithm
Development and rendering) [EJP11] eingesetzt, welches speziell für die Entwicklung und
Erprobung von Renderingalgorithmen entwickelt wird. Diese Zielsetzung unterscheidet PAD-
rend von anderen Renderingsystemen, bei denen eher andere Anwendungen im Fokus steht,
z. B. Computerspiele oder Simulationen. Der Kern von PADrend wurde zu gleichen Teilen von
Ralf Petring, Benjamin Eikel und mir entwickelt. Viele Erweiterungen des Systems wurden im
Rahmen von studentischen Arbeiten erstellt und verbessert.

Das PADrend-System besteht aus einer Reihe modular aufgebauter Bibliotheken (entwickelt
in C++) und einer darauf aufbauenden, ebenfalls modularen Anwendung (entwickelt in EScript).
Abbildung 3.1 zeigt die Struktur des Systems als Diagramm. Im Folgenden gebe ich einen
kurzen Überblick über die wesentlichen Eigenschaften einiger der Komponenten.

3.1 Systembibliotheken

Um eine weitreichende Unabhängigkeit zu Systemeigenschaften wie Betriebssystem (Windows,
Linux, MacOS oder Android) oder OpenGL-Version zu erreichen, beinhaltet PADrend zwei
Bibliotheken zum Zugriff auf systemspezifische Funktionen. Die Util-Bibliothek abstrahiert
unter anderem Dateioperationen, Netzwerkzugriffe und Threads. Jeder Zugriff auf die Gra-
fikhardware erfolgt über die Rendering-Bibliothek. Diese enthält High-Level-Wrapper für
unterschiedliche Grafikkomponenten wie Dreiecksmeshes, Frame-Buffer-Objekte oder Shader.
Um eine breite Palette von OpenGL-Systemen zu unterstützen (von OpenGL-ES auf Mobilsy-
stemen über OpenGL 2.0 auf älteren Rechnern bis zu OpenGL 4.0 auf aktuellen Workstations)
bietet die Bibliothek eine eigene Statusverwaltung an. Diese verwaltet Eigenschaften wie
Projektionsmatrizen oder Beleuchtungs- und Materialparameter und gibt sie transparent über
die verfügbaren Schnittstellen an das Grafiksystem weiter. Ein Entwickler von Renderingal-
gorithmen braucht sich daher im Idealfall nicht mit systemspezifischen Low-Level-Aspekten
befassen.

17

3 PADrend – Plattform for Algorithm Development and Rendering

G
eo

m
et

ry

G
U

I

M
in

SG

R
en

de
ri

ng

U
til

..
.

E
Sc

ri
pt

E_Geometry E_GUI E_MinSG E_Rendering E_Util E_. . .

C
++

-B
ib

ili
ot

he
ke

n

PADrend-Kern
C

la
ss

ifi
ca

tio
n

E
ff

ec
ts

E
va

lu
at

or

M
ea

su
re

m
en

t

Sc
en

eE
di

to
r

To
ol

s

W
ay

po
in

ts

... PADrend-Plug-ins

E
Sc

ri
pt

-S
kr

ip
te

Abbildung 3.1: Systemarchitektur des PADrend-Systems (aus Eikel, Jähn, Petring
2011 [EJP11])

3.2 Szenengraph: MinSG
Die Basis des Renderingsystems bildet die Szenengraphimplementierung MinSG (Minimalistic-
Scene-Graph). Die Objekte einer virtuellen Szene werden als Knoten in einer Baumstruktur
repräsentiert. Was MinSG bei der Entwicklung und Erprobung von Renderingalgorithmen
auszeichnet, ist, dass Renderingalgorithmen als Eigenschaften von Knoten definiert werden,
und nicht als externer Prozess. So wie es möglich ist, einem Knoten eine bestimmte Materi-
aleigenschaft zuzuweisen, ist es möglich, einem Teilbaum einen Renderingalgorithmus, wie
etwa ein Occlusion-Culling-Verfahren, zuzuweisen. Dieses Renderingverfahren wird dann
zur Darstellung aller Knoten des entsprechenden Teilbaums verwendet. Durch dieses einfa-
che aber mächtige Konzept wird es möglich, verschiedene Teile einer Szene in einem Bild
mit unterschiedlichen Algorithmen zu rendern, ohne dafür Anpassungen am Quelltext des
Renderingprozesses vornehmen zu müssen.

Viele Verfahren benötigen zusätzliche Daten für jeden Knoten im Szenengraph, wie bei-
spielsweise den Sichtbarkeitsstatus des Knotens in den letzten Frames. Diese Daten lassen sich
in MinSG als generische Attribute zur Laufzeit an den Knoten speichern. Dadurch lassen sich
auch komplexere Renderingalgorithmen als abgeschlossene Einheit implementieren, ohne dass
die Knotenimplementierung angepasst oder erweitert werden muss. Zusammenfassend enthält
ein Knoten im MinSG-Szenengraph im Wesentlichen folgende Komponenten:

• Eine Beschreibung der Transformation (Translation, Rotation und Skalierung) des Kno-
tens relativ zu seinem Elternknoten.

• Referenzen auf die dem Knoten zugeordneten Kindkonten (innerer Knoten) oder alterna-

18

3.2 Szenengraph: MinSG

Abbildung 3.2: Darstellung von Szene 1 mit dem Renderingverfahren Fast rendering of complex
environments using a spatial hierarchy nach Chamberlain et al. [CDL+96]

tiv eine Referenz auf ein Geometrieobjekt (Blattknoten). Jeder Knoten ist maximal einem
Elternknoten zugeordnet, wobei ein Geometrieobjekt auch von mehreren Blattknoten
referenziert werden kann.

• Eine 3-D-Boundingbox, die alle Geometrieobjekte im Teilbaum des Knotens umschließt.

• Eine Liste an Eigenschaften (States), die den Renderingprozess beeinflussen – wie z. B.
Materialeigenschaften, Shader oder auch Renderingverfahren.

• Eine Menge an Attributen, in denen Metainformationen zu dem Knoten gespeichert
werden können – z. B. Daten, die von den States beim Rendering gebraucht werden
(Sichtbarkeitsinformationen, Farbwerte etc.).

Durch das sogenannte Rendering-Channel-Konzept ist es möglich, die Eigenschaften ver-
schiedener Verfahren miteinander zu kombinieren. Ein Rendering-Channel in MinSG besteht
technisch aus einer Zuordnung von einem Channel-Bezeichner zu einem Renderer – einer Soft-
warekomponente zur Darstellung eines Knotens oder Teilbaums des Szenengraphens. Bei der
Traversierung des Szenengraphen kann ein Renderer entscheiden, Teilbäumen nicht selbst dar-
zustellen, sondern sie an einen anderen Renderer weiterzugeben, der für einen anderen Channel
registriert ist. Als Beispiel lässt sich so ein modulares Näherungsverfahren umsetzten: Auf dem
Standard-Channel wird ein Renderer registriert, der Knoten mit einer großen projizierten Größe
weiter traversiert, bzw. Blattknoten direkt darstellt. Kleinere Knoten werden an einen anderen
Channel weitergereicht. Für diesen ist ein Renderer registriert, der anstatt des Teilbaums eine
farbige Bounding-Box darstellt, deren Farbe und Transparenz die Erscheinung des Teilbaums
nachbildet, aber wesentlich schneller dargestellt werden kann als die Originalgeometrie (siehe
auch Abbildung 3.2). Die Kombination dieser zwei Renderer-Komponenten entspricht damit
dem „Fast rendering of complex environments using a spatial hierarchy“-Renderingverfahren
nach Chamberlain et al. [CDL+96]. Um diese Renderingverfahren zu einem approximativen
Occlusion-Culling-Verfahren zu erweitern, kann man nun die erste Renderer-Komponente
gegen einen Occlusion-Culling-Renderer austauschen, der verdeckte Knoten verwirft und
Knoten mit einer kleinen sichtbaren Größe an den anderen Channel gibt. In diesem Beispiel
lässt sich natürlich auch die Komponente, die die farbigen Boxen darstellt, durch andere Nähe-
rungsverfahren, wie Reliefboards, Textured-Depth-Meshes oder Punktrendering ersetzen. In

19

3 PADrend – Plattform for Algorithm Development and Rendering

dieser Art lassen sich durch die Rendering-Channel aus einzelnen Komponenten auch komplexe
Renderingverfahren komponieren.

3.3 Anwendungsinterface
Die eigentliche PADrend-Anwendung baut auf den als Softwarebibliotheken konzipierten
Teilen des PADrend-Systems auf. Die Anwendung stellt dem Benutzer ein Interface bereit, um
Szenen interaktiv zu begehen, zu bearbeiten und mit den implementierten Renderingverfahren
zu experimentieren. Eines der wesentlichen Designziele bei der Entwicklung des Systems ist es,
möglichst verschiedene Anwendungsszenarien zu unterstützen, die durch mehrere Entwickler
gleichzeitig entwickelt werden. Wird ein neues Renderingverfahren entwickelt und in das
System integriert, soll dieses möglichst einfach allen interessierten Nutzern zur Verfügung ste-
hen. Sorgt jedoch ein neues, experimentelles Teilsystem für Probleme, sollen andere Benutzer
und Entwickler hiervon nicht beeinträchtigt werden. Um dieses Ziel zu unterstützen, wurde
die PADrend-Anwendung als modulares Plugin-System entwickelt. Einzelne Komponenten
und Funktionen werden dabei als eigenständige Plugins entwickelt, die über fest definierte
Schnittstellen miteinander interagieren. Die zu ladenden Plugins kann der Benutzer unter
Beachtung der definierten Abhängigkeiten zwischen den Plugins frei auswählen und so in der
Entwicklung befindliche Funktionen ausblenden.

Ein weiteres Ziel bei der Entwicklung des PADrend-Systems ist es, die Entwicklung neuer
Werkzeuge und Verfahren zu unterstützen und zeitlich effizient zu gestalten. Auf technischer
Ebene stellt sich dabei die für die Bibliotheken verwendete Programmiersprache C++ als
problematisch dar. Sie erlaubt zwar das Erstellen von sehr effizienten Programmen, diese
müssen bei Änderungen jedoch zumindest neu kompiliert und neu gestartet werden. Die in
PADrend verwendeten Plugins sind daher in der Skriptsprache EScript1 entwickelt. Bei EScript
handelt es sich um eine objektorientierte Sprache zur Steuerung von C++-Anwendungen, mit
JavaScript ähnlicher Syntax. Änderungen an der PADrend-Anwendung können damit ohne
ein Neukompilieren durchgeführt werden. Viele Änderungen können auch zur Laufzeit des
Programms angewendet werden, ohne das eine betrachtete Szene neu geladen werden muss.
Die Herausforderung bei dem Einsatz einer Skriptsprache liegt vor allem in dem deutlichen
Geschwindigkeitsunterschied im Vergleich zu nativ ausgeführten C++-Programmteilen. Da-
her werden geschwindigkeitskritische Funktionen in den C++-Bibliotheken implementiert
und aus dem geskripteten Hauptprogramm heraus aufgerufen. Auch wenn für die Aktuali-
sierung der Benutzeroberfläche und für die Reaktion auf Benutzereingaben einige Tausend
EScript-Befehle pro Bild bearbeitet werden, wirkt sich dieses schon bei kleinen Szenen nicht
auf die durchschnittliche Bildraten des Systems aus, da die Laufzeit durch den eigentlichen
Renderingprozess dominiert wird.

In Abbildung 3.3 werden einige der Funktionen der PADrend-Anwendung anhand eines
Screenshots gezeigt. Die Funktionen werden im Folgenden kurz erläutert (die Nummern
beziehen sich auf die Abbildung).

• Der Szenengraph-Explorer erlaubt die Anzeige und Bearbeitung der Eigenschaften von
1https://github.com/EScript

20

3.3 Anwendungsinterface

1

2

3

4

5

6
7

8

9

Abbildung 3.3: Bildschirmfoto der Bedienoberfläche der PADrend-Anwendung (Erläuterung
zu den mit Ziffern hervorgehobenen Funktionen finden sich im Text)

Knoten im Szenengraph. Dazu gehören unter anderem mit dem Knoten assoziierten
States: In der Abbildung erkennt man, dass dem selektierten Knoten ein Material-State
zugewiesen ist(1). In der Detailansicht (2) werden die Eigenschaften des im Knoten
gespeicherten Geometrieobjektes angezeigt und können bearbeitet werden. Mit Hilfe des
Szenengraph-Explorers werden die Renderingverfahren im Szenengraph eingefügt und
konfiguriert.

• Der Szenen-Editor erlaubt eine interaktive Modifikation der geladenen Szene. Eine Reihe
von Transformationswerkzeugen (3) steht zur Auswahl, mit denen der selektierte Knoten
des Szenengraphen in der Szene bewegt und skaliert werden kann (4). Geometrieobjekte
rasten dabei optional an Oberflächen ein, um genaues platzieren möglichst zeiteffizient zu
erlauben. Neben dem Modifizieren von existierenden Objekten der Szene können auch
neue Objekte einfach aus einer Objektbibliothek in die Szene hineingezogen werden (5).
Durch diese Möglichkeiten können einfach Testszenen für experimentelle Evaluierungen
erzeugt und bearbeitet werden.

• Für die Evaluierung des aktuellen Renderingprozesses stehen mehrere Funktionen direkt
in der Benutzeroberfläche bereit. Einfache statistische Daten über das vorangegangene
Bild (wie Renderingzeit, Anzahl der gerenderten Polygone etc.) können in frei konfigu-
rierbaren Statistikfenstern angezeigt werden (6). Diese Daten können über den Verlauf
mehrerer Bilder als Kurve dargestellt werden (7). Einen genaueren Einblick in das Rende-
ring eines einzelnen Bildes erlaubt das Frame-Analysetool (8). Dieses zeigt die einzelnen,
während des Renderings durchgeführten Aktionen in Form eines Zeitstrahls an – z. B.

21

3 PADrend – Plattform for Algorithm Development and Rendering

Senden eines Geometrieobjektes an die Grafikkarte (blaue Balken), Starten eines Ver-
deckungstests (gelbe Balken), Erhalt eines Verdeckungstestergebnisses (grüne Balken)
oder das Ende des Frames (roter Balken). Hierdurch lassen sich wichtige Hinweise auf
Engpässe bei der Ausführung eines Renderingverfahrens erkennen; beispielsweise, ob die
Verdeckungstests eines Occlusion-Culling-Verfahrens den Renderingprozess wesentlich
beeinflussen.

• Die Skript-Konsole (9) erlaubt es, während der Laufzeit einzelne EScript-Anweisungen
auszuführen. Dies kann beispielsweise zur Fehlersuche verwendet werden. Für kom-
plexere und wiederkehrende Aufgaben stehen weitere Möglichkeiten bereit, um Skript-
Dateien zu laden – ohne dafür ein gesondertes Plugin schreiben zu müssen. Dazu
gehören prototypische Implementierung von neuen Werkzeugen, Renderingverfahren
oder automatisierte Testläufe für experimentelle Evaluierungen.

3.4 Eckdaten des Testsystems
Die in dieser Arbeit verwendete System für die experimentelle Evaluierung besteht aus folgen-
den Komponenten:

CPU: Intel Core i7-3770 mit 3,4 GHZ (8 virtuelle Kerne), Hauptspeicher: 32 GB, Betriebs-
system: Windows 8.1 64 Bit, Grafikkarte: AMD Radeon 7870 (2 GB DDR5), Treiberversion:
13.251, OpenGL Version 4.3, Compiler: MinGW 4.7.1 (tdm64-1), PADrend 1.1 beta

22

4 Szeneneigenschaften

Als Szeneneigenschaft im Allgemeinen bezeichne ich alle messbaren Eigenschaften von vir-
tuellen Szenen. Eine in der Literatur über Renderingalgorithmen häufig betrachtete Szene-
neigenschaft ist die Szenenkomplexität – meist gemessen in der Anzahl der Polygone, aus
denen die Szene besteht. Da sich diese Eigenschaft für eine gegebene Szene als Konstante
beschreiben lässt, bezeichne ich diese Art von Szeneneigenschaft im Folgenden als konstante
Szeneneigneschaft. Andere Beispiele sind die räumliche Ausdehnung der Szene oder auch
die durchschnittliche Polygondichte. Wird die räumliche Datenstruktur, in der die Szene
gespeichert wird, als Teil der Szene gesehen, lassen sich auch verschiedene Eigenschaften
der Datenstruktur als konstante Szeneneigenschaft in diesem Sinne auffassen; wie etwa die
maximale Tiefe des Baumes, in dem sie gespeichert ist.

Die konstanten Szeneneigenschaften sind in der Literatur ein verbreitetes Mittel um ver-
schiedene Eigenschaften von Renderingalgorithmen abzuschätzen. So wird die maximale
Laufzeit von Renderingalgorithmen oft mit der Szenenkomplexität abgeschätzt. Bei einfachem
Rendering ohne spezielle Renderingverfahren wächst die maximale Laufzeit beispielsweise
linear in der Szenenkomplexität (falls die Szene noch im Hauptspeicher abgelegt werden kann).
Bei anderen Verfahren ist es gelungen, einen logarithmischen Zusammenhang zwischen der
Szenenkomplexität und der maximalen Laufzeit herzustellen, wenn verschiedene Annahmen
an die Struktur der Szene gelten (z. B. [CDL+96, WFP+01]).

Die Möglichkeiten, differenzierte Rückschlüsse aus konstanten Szeneneigenschaften zu
ziehen, sind jedoch begrenzt, da das konkrete Verhalten von Renderingalgorithmen auch von
der aktuellen Position und Blickrichtung des Betrachters innerhalb der Szene abhängt. Hängen
die ermittelten Werte nur von der Szene, konstanten Rahmenbedingungen und der aktuellen
Position des Betrachters ab, dann bezeichne ich diese Werte als lokale Szeneneigenschaf-
ten1. Hängen die Werte zusätzlich noch vom zeitlichen Verlauf der Benutzerbewegung in
der Szene ab, dann fallen diese nicht in diese Definition. Dies kann bei Eigenschaften von
Renderingalgorithmen der Fall sein, die temporale Kohärenz ausnutzen.

Definition 1 (Positionsabhängige Szeneneigenschaft) Eine positionsabhängige Szeneneigen-
schaft ist im Allgemeinen definiert als eine Funktion der Positionen einer Szene im dreidimen-
sionalen Raum auf einen Wert eines prinzipiell beliebigen Wertebereichs.

FSzene : pos 7→ Wert, pos ∈ R3

Obwohl auch die Blickrichtung und der Öffnungswinkel des Sichtbereichs des Betrachters
einen starken Einfluss auf die betrachteten Eigenschaften haben kann, gehe ich im Folgenden

1Anmerkung: Im Rahmen dieser Arbeit ist, soweit nichts anderes angebenden, eine lokale Szeneneigenschaft
gemeint, wenn der Begriff Szeneneigenschaft verwendet wird.

23

4 Szeneneigenschaften

von einer vereinfachten Betrachtung des omnidirektionalen Betrachters mit einer kompletten
Rundumsicht aus. Diese Betrachtungsweise vereinfacht den Umgang mit positionsabhängigen
Eigenschaften und ist für viele der angestrebten Anwendungen ausreichend.

4.1 Anforderungen an praktisch auswertbare
Szeneneigenschaften

Aus der sehr offenen Definition von positionsabhängigen Szeneneigenschaften ergibt sich eine
große Menge an denkbaren Ausprägungen von Funktionen. Von diesen lassen sich jedoch nur
wenige praktisch für die in dieser Arbeit verfolgten Ziele der Bewertung des Verhaltens von
Renderingverfahren und deren Verbesserung einsetzen. Im Folgenden werden daher einige
Anforderungen an die hier untersuchten Eigenschaften bezüglich ihrer praktischen Relevanz
aufgelistet.

4.1.1 Effiziente Bestimmbarkeit
Um eine Szeneneigenschaft praktisch einsetzen zu können, ist es notwendig, dass sie für
eine gegebene Position effizient bestimmt werden kann. Effizient in diesem Zusammenhang
bedeutet, dass sowohl die Laufzeit, als auch der benötigte Speicherplatz subquadratisch in der
Komplexität der Szene wachsen sollte; und konkret, dass die Auswertung eines Samples nur
einige Millisekunden bis hin zu wenigen Sekunden dauern sollte. Die Laufzeiten aller später in
dieser Arbeit vorgestellten Methoden zur globalen Näherung der positionsabhängigen Szene-
neigenschaften werden maßgeblich vom Aufwand zur Bestimmung der Szeneneigenschaften
bestimmt. Ist dieser zu hoch, lassen sich die Methoden praktisch nicht für größere Szenen
einsetzen. Um dieses Kriterium zu erfüllen, bieten sich vor allem Szeneneigenschaften an,
die durch Rendern der Szene an der gegebenen Position ermittelt werden können. Dies ist für
Szenen mit bis zu mehreren Millionen Polygonen oft in wenigen Millisekunden möglich.

4.1.2 Begrenzung des Wertebereichs
Um die Werte der Funktion praktisch speichern und handhaben zu können, darf der Wertebe-
reich der Funktion nicht zu groß sein. Ein einzelner Wert sollte aus wenigen Ganzzahlen oder
Fließkommazahlen mit festem Speicherbedarf (z. B. 32 Bit) bestehen. Für praktisch relevante
Szenen ist dies z. B. die Anzahl der sichtbaren Objekte (oder Polygone) kodiert als einzelner
Wert. Als praktisch gerade noch handhabbare Grenze haben sich Vektoren als Wert heraus-
gestellt, die für jedes Objekt der Szene einen Wert besitzen. Die Eigenschaft beispielsweise,
die die Position auf ein von dort aus gerendertes und entsprechend kodiertes Bild der Szene
abbildet (z. B. mit einer Millionen Pixel), ist nicht mehr praktisch handhabbar.

4.1.3 Praktische Gutmütigkeit des Wertebereichs
Ein wesentliches Kriterium für eine praktikabel einsetzbare Szeneneigenschaft ist ihre prak-
tische Gutmütigkeit. Damit bezeichne ich das Verhalten, dass sich die Werte in realistischen

24

4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften

Szenen, bei minimaler Veränderung der Position meistens nicht, oder nur wenig, ändern. Dies
ist essentiell, da die später vorgestellten Verfahren zur Näherung der globalen Verteilung darauf
basieren, dass der Wert einer Szeneneigenschaft an einer Position auch mit einiger Sicherheit
als Näherung der Werte seiner direkten Umgebung dienen kann.
Als Beispiel bietet sich wieder die Eigenschaft der Anzahl der sichtbaren Objekte an einer
Position an: Für einen Großteil der praktisch relevanten Szenen gilt hier: Wenn an einer Stelle
eine Anzahl von Objekten sichtbar ist, dann sind in der näheren Umgebung an den meisten
Positionen eine ähnliche Zahl von Objekten sichtbar. Ein Beispiel für eine Szene, in der sich die
Sichtbarkeit in einigen Bereichen nicht gutmütig verhält, ist die in Abbildung 4.1 dargestellte
„Schlüsselloch“-Situation. Diese enthält Bereiche mit kleinem Volumen (im 2-D-Beispiel mit
kleiner Fläche), die eine große Differenz bezüglich der Anzahl sichtbarer Objekte zu ihren be-
nachbarten Bereichen aufweisen. Auch in realistischen Szenen können Bereiche mit ähnlicher
Charakteristik auftreten; die problematischen Bereiche sind dann jedoch oft räumlich begrenzt.

Objekte

Abbildung 4.1: „Schlüsselloch“-Situation: Bei geringer Bewegung des Betrachters ändert sich
die Anzahl sichtbarer Objekte deutlich.

4.1.4 Determinismus

Unter dem deterministischen Verhalten einer Szeneneigenschaft verstehe ich, dass ihr Wert nur
von der Szene, den Rahmenbedingungen (wie der eingesetzten Hardware und Software, Bild-
schirmauflösung etc.) abhängt und nicht von zusätzlichen Variablen. Gerade bei Eigenschaften,
die auf Laufzeitmessungen beruhen, ist dies praktisch kaum strikt einzuhalten. Hier reichen
jedoch einfache Maßnahmen, wie das wiederholte Durchführen der Messung und Wahl des
Medians, um durch externe Störungen verursachte Ausreißer auszugleichen. Größere Probleme
bereiten hier Eigenschaften, die sich auf Algorithmen beziehen, welche die temporale Kohärenz
durch die kontinuierliche Bewegung des Betrachters mit einbeziehen – d. h. Algorithmen, die
den Zustand der vorangegangenen Frames für die Berechnung des nächsten ausnutzen (wie z. B.
der CHC oder der CHC++; siehe Abschnitt 2.1.2). Beträgt die Länge der Zeitspanne, aus der
zurückliegende Daten noch weiterverwendet werden, nur wenige Frames, dann lassen sich diese
Eigenschaften dennoch in modifizierter Form verwenden. Darauf gehe ich in Abschnitt 4.2.3
genauer ein.

25

4 Szeneneigenschaften

4.2 Betrachtete Szeneneigenschaften
In diesem Abschnitt werden einige Szeneneigenschaften definiert und ihre Auswertungsmetho-
den erläutert. Beginnend wird zunächst die Eigenschaft der exakten Sichtbarkeit beschrieben.
Diese wird zwar im Rahmen dieser Arbeit nicht praktisch bestimmt, bietet jedoch die Grundlage
vieler weiterer Überlegungen.

4.2.1 Exakte Sichtbarkeit
Die exakte Sichtbarkeit beschreibt die Anzahl der Polygone, von denen es eine direkte Sichtlinie
(ohne Verdeckung) zur Betrachterposition gibt (siehe Abschnitt 2.1.1).

Um die exakte Sichtbarkeit gemäß der Definition der positionsabhängigen Szeneneigenschaft
zu kodieren, lässt sie sich wie folgt definieren:

Definition 2 (Szeneneigenschaft: Anzahl geometrisch sichtbarer Polygone)

ExakteSichtbarkeitSzene : pos 7→ visPoly,

pos ∈ R3,

visPoly = |Polygone aus Szene mit direkter Sichtlinie zu pos| ∈ N.

Ebenso, wie für die Anzahl der sichtbaren Polygone, lässt sich auch die Menge der Polygone,
die an einer Position sichtbar sind, als positionsabhängige Szeneneigenschaft kodieren:

Definition 3 (Szeneneigenschaft: Menge geometrisch sichtbarer Polygone)

ExakteSichtbarkeitsMengeSzene : pos 7→


p0
p1
...
pn

 , pos ∈ R3,

n = Anzahl der Polygone in Szene,

pi =

{
0 keine Sichtlinie von pos zum i-ten Polygon von Szene

1 sonst.

Die Relevanz der exakten Sichtbarkeit ergibt sich primär daraus, dass sie die Grundlage für
alle Betrachtungen von Sichtbarkeit bildet. Die in dieser Arbeit untersuchten Renderingalgo-
rithmen werden praktisch jedoch eher von der Pixelsichtbarkeit beeinflusst.

4.2.2 Pixelsichtbarkeit
Die Definition der Pixelsichtbarkeit als Szeneneigenschaft entspricht im Wesentlichen der
exakten Sichtbarkeit – bezieht sich jedoch auf die, für das Rendering eher relevante, Pixel-
sichtbarkeit: Ein Teil der Szene ist sichtbar, wenn er zu der Farbe (oder genauer: zu einem
Tiefenwert) eines Pixels beiträgt. Aus den technischen Rahmenbedingungen des Rendering-
prozesses und der Verwendung eines omnidirektionalen Betrachters ergeben sich mehrere
Besonderheiten:

26

4.2 Betrachtete Szeneneigenschaften

Nahebene

Projektions-
fläche

Objekt

Fernebene

Abbildung 4.2: Schematische Darstellung der Bestimmung der Pixelsichtbarkeit bei einem
omnidirektionalen Betrachter mit mehreren Frusta. Im Bild sind vier der sechs
Frusta und der entsprechenden Projektionsflächen abgebildet, mit je 16 Pixeln
Auflösung. Das kleinere runde Objekt liegt vollständig vor den Nahebenen der
Frusta und wird daher nicht als sichtbar klassifiziert.

• Anstatt von Polygonen werden bei vielen Renderingalgorithmen Objekte als kleinste Ein-
heit betrachtet; daher wird auch bei der Szeneneigenschaft die Sichtbarkeit von Objekten
anstatt von Polygonen betrachtet. Da die Zuordnung von Polygonen zu Objekten jedoch
variabel ist, kann auch in der Szene jedes Polygon als Objekt definiert werden, um so die
Sichtbarkeit von einzelnen Polygonen zu erhalten.

• Anders als bei der geometrischen Sichtbarkeit, ist die Anzahl der sichtbaren Objekte
durch die Auflösung der Projektionsfläche beschränkt. Die Auflösung der verwendeten
Projektionsfläche ist daher ein Teil der Renderingparameter, die zur Definition dieser
Szeneneigenschaft gehört.

• Ebenso verhält es sich mit der Nah- und Fernebene des Frustums, durch den der zu
rendernde Bereich um den Betrachter herum eingeschränkt wird. Die Entfernung zur
Nahebene ist daher Teil der Rahmenbedingungen; die Entfernung zur Fernebene wird
zur Vereinfachung so gewählt, dass die komplette Szene eingeschlossen ist.

• Da für die Szeneneigenschaft ein omnidirektionaler Betrachter angenommen wird, ist eine
naheliegende Idee, die Szene nicht auf die Pixel einer üblichen geraden Projektionsfläche
zu projizieren, sondern auf die Oberfläche einer Kugel um den Betrachter. Um jedoch
für die Bestimmung der Sichtbarkeit die Standardrenderingverfahren nutzen zu können,
verwende ich als grobe Annäherung für diese Kugel die Oberfläche eines Würfels. Jede
der sechs Seiten ist definiert durch ein Frustum und eine eigene Projektionsfläche. Trägt
ein Objekt mindestens einen Pixel zu einer der Projektionsflächen bei, gilt das Objekt

27

4 Szeneneigenschaften

als sichtbar für die gegebene Position. Abbildung 4.2 zeigt zur Veranschaulichung eine
zweidimensionale Darstellung der Projektion der Szene unter Verwendung von vier
Frusta.

Unter Einbeziehung dieser Aspekte ist die Szeneneigenschaft der Anzahl sichtbarer Objekte
(unter Pixelsichtbarkeit) definiert als:

Definition 4 (Szeneneigenschaft: Anzahl sichtbarer Objekte)

PixelSichtbarkeitSzene,Renderingparameter : pos 7→ visObj,

pos ∈ R3,

visObj =

∣∣∣∣Objekte aus Szene, die einen Tiefenwert zu einer
der sechs Projetionsflächen um pos beitragen

∣∣∣∣ ∈ N.

Und analog die Menge der sichtbaren Objekte:

Definition 5 (Szeneneigenschaft: Menge sichtbarer Objekte)

PixelSichtbarkeitsMengeSzene,Renderingparameter : pos 7→


p0
p1
...
pn

 , pos ∈ R3,

n = Anzahl der Objekte in Szene,

pi =

0
das i-te Objekt in Szene trägt zu keinem
der Tiefenwerte der sechs Projektionsflächen um pos bei,

1 sonst.

Bestimmung der Pixelsichtbarkeit Technisch erfolgt die Bestimmung der Pixelsicht-
barkeit mittels hardwareunterstützter Verdeckungsanfragen. Um die sichtbaren Objekte zu
identifizieren, wird zunächst für jede der Seiten eines den Betrachter umschließenden Würfels
ein Frustum konstruiert, das vom Betrachter aus die Seite vollständig abdeckt. Nun wird mit
diesen Frusta die Szene in den Tiefenpuffer gerendert. Im Anschluss wird der Tiefentest so
konfiguriert, dass nur Pixel akzeptiert werden, die den Tiefenwert aufweisen, der bereits an der
Position im Puffer steht. Jetzt wird für jedes Objekt eine hardwareunterstützte Verdeckungs-
anfrage gestartet, die ermittelt, wie viele Pixel den Tiefentest bestehen, und damit das Objekt
erneut gerendert. Das Ergebnis der Verdeckungsanfrage sagt daraufhin aus, ob mindestens
einer der Pixel des projizierten Objektes nicht durch ein anderes Objekt verdeckt wurde. Die
Menge aller Objekte, die diesen Test bestehen, wird gesammelt und zurückgegeben.

4.2.3 Renderingzeit

Die Zeit, die ein Renderingalgorithmus für die Darstellung eines Bildes benötigt, gehört bei
der Untersuchung von Renderingalgorithmen zu den wichtigsten Merkmalen. Möchte man

28

4.2 Betrachtete Szeneneigenschaften

diese Zeit, anders als das üblicherweise verwendete Messen entlang eines Kamerapfades, als
positionsabhängige Szeneneigenschaft betrachten, sind wiederum einige Besonderheiten zu
beachten:

• Wie bei der Pixelsichtbarkeit stellt sich die Frage, wie die Renderingzeit von einem
Algorithmus für Rendering mit einem normalen Frustum für einen omnidirektionalen
Betrachter ermittelt werden kann. Mein Ziel bei der Definition der Eigenschaft ist es,
möglichst einfach eine Näherung des höchsten Wertes zu erhalten, den ein Betrachter mit
beliebigem Blickwinkel an der Position erreichen kann. Auch wenn andere Zielvorgaben
denkbar sind (z. B. der Durchschnitt oder das Minimum), ist das Maximum bei vielen
Untersuchungen der interessanteste Aspekt, da es die maximale Bildrate beschränkt.
Zur Ermittlung verwende ich hier wieder mehrere Renderingvorgänge in unterschiedliche
Richtungen, wobei jeder Renderingvorgang eine eigene Zeit liefert. Im Normalfall
werden wieder die sechs Seiten eines den Betrachter umgebenden Würfels verwendet.

• Durch die Verwendung sich nicht oder nur kaum überlappender Frusta ergibt sich das
Problem, dass komplexe Teile der Szene auf mehrere Frusta aufgeteilt werden können.
Dadurch könnte sich eine wesentlich geringere Renderingzeit ergeben, als sie durch einen
freien Betrachter erreicht wird, der den kompletten Bereich von der gleichen Position
aus komplett im Frustum hat. Um diesem Effekt entgegenzuwirken, verwende ich für die
Renderingzeit daher überlappende Frusta mit einem größeren Öffnungswinkel, so dass
die Bereiche an den Rändern auf mehr als einer Seite in Betracht gezogen werden. Wenn
sechs Richtungen verwendet werden, zeigen sich bereits ab 120 Grad Öffnungswinkel
kaum mehr merkliche Auswirkungen dieses Effektes. Größere Öffnungswinkel zeigen
keine wesentliche Verbesserung, führen aber zu einer immer stärkeren Verzerrung der
gerenderten Bilder.

• Ein Problem ergibt sich für die Messung der Renderingzeit von Algorithmen, die die
temporale Kohärenz zwischen aufeinanderfolgende Frames ausnutzen (siehe auch: An-
forderung Determinismus in Abschnitt 4.1.4). Beispielsweise nutzen viele Occlusion-
Culling-Algorithmen die Sichtbarkeitsinformationen der vorangegangenen Frames als
Basis für die aktuellen Berechnungen aus, was sich in der Renderingzeit niederschlägt.
Um für die Szeneneigenschaft der Renderingzeit reproduzierbare Werte zu erhalten,
die unabhängig von den vorher untersuchten Messungen sind, führe ich zwei Varianten
der Eigenschaft ein: unkonditionierte Renderingzeit und konditionierte Renderingzeit.
Bei der unkonditionierten Renderingzeit werden explizit alle Informationen aus voran-
gegangenen Frames vor jeder Messung entfernt, was im Normalfall die schlechteste
Renderingzeit an dieser Position provoziert. Bei der konditionierten Renderingzeit wer-
den jeweils so viele Frames mit den gleichen Einstellungen gerendert, bis keine weitere
Verbesserung mehr durch zusätzliche Daten zu erwarten ist. Dies entspricht im Normal-
fall der besten zu erreichenden Renderingzeit an der Position. Je nach Anwendungsfall
muss dann die passende Version ausgewählt werden. Die Grenzen dieser Methode sind
erreicht, wenn ohne Konditionierung nur schwerlich überhaupt ein Bild erstellt werden
kann oder wenn im konditionierten Fall die Zeit für eine einzelne Messung nicht mehr

29

4 Szeneneigenschaften

praktikabel ist. Bei einem Out-Of-Core-Verfahren könnte es sein, dass für den unkondi-
tionierten Fall alle Daten aus dem Speicher gelöscht werden und ein leeres Bild gerendert
wird. Im konditionierten Fall müsste man ggf. mehrere Sekunden warten, bis alle Daten
tatsächlich in den Speicher geladen wurden.

• Um äußere Störeinflüsse auszugleichen werden die Laufzeitmessungen immer mehrfach
durchgeführt und der Median verwendet.

Definition 6 (Szeneneigenschaft: (Un-)Konditionierte Renderingzeit)

(Un−)KondRenderingzeitSzene,Algorithmus,Renderingparameter : pos 7→ t,

pos ∈ R3, t ∈ R.

Wobei t die maximale Zeit in Sekunden ist, die beim Rendern der Szene mit dem gegebenen
(un-)konditionierten Algorithmus und Renderingparametern für die sechs Hauptrichtungen und
mit einem Kameraöffnungswinkel von 120◦ bei mehrfacher Wiederholung im Median benötigt
wird.

Bei Algorithmen ohne die Ausnutzung von temporaler Kohärenz wird die Szeneneigenschaft
Renderingzeit genannt, da hier die Konditionierung keine Relevanz hat.

4.2.4 Anzahl von Operationen

Eine weitere Möglichkeit, das Verhalten von Renderingalgorithmen mithilfe von positionsab-
hängigen Szeneneigenschaften zu beschreiben, ist die Verwendung der Anzahl von verschiede-
nen Operationen als Eigenschaft, die der Algorithmus zum Rendern durchführt. Dabei definiert
jede spezifische Operation eine eigene Szeneneigenschaft, was dadurch eine ganze Klasse von
verschiedenen algorithmenspezifischen Eigenschaften eröffnet. Einige für die Anwendung
relevante Beispiele sind die Anzahl der gerenderten Polygone, die Anzahl durchgeführter
Verdeckungsanfragen (für Verdeckungstests) oder die Anzahl der Traversierungsschritte durch
die Datenstruktur der Szene.

Generell gelten für alle Eigenschaften dieser Klasse die gleichen Rahmenbedingungen wie
für die Renderingzeit: jeweils Messungen für (mindestens) sechs Richtungen, Verwendung
von überlappenden Frusta und Unterscheidung zwischen konditionierter oder unkonditionierter
Anwendung der Algorithmen. Im Einzelfall muss man entschieden, ob als Wert für die Funktion,
wie bei der Renderingzeit, das Maximum der Einzelwerte die größte Relevanz hat, oder ob man
hier einen anderen Wert verwenden sollte.

4.2.5 Bildqualität

Viele Renderingalgorithmen erzeugen im Vergleich zur Darstellung der Originalgeometrie ein
fehlerhaftes Bild. Beispielsweise können approximative Occlusion-Culling-Verfahren auch
einen Teil der sichtbaren Geometrie verwerfen oder Näherungsverfahren ersetzen beim Rende-
ring Teile der Szene durch effizienter renderbare Ersatzrepräsentationen. Für die Evaluierung

30

4.2 Betrachtete Szeneneigenschaften

solcher Verfahren ist die Bildqualität als Szeneneigenschaft von großer Bedeutung. Zur automa-
tischen Bestimmung benötigt man zum einen ein Referenzbild und zum anderen eine Funktion,
die den Unterschied in zwei Bildern als einen Qualitätswert ausdrücken kann. Das Referenzbild
erhält man, indem die Szene mit einem konservativen Renderingalgorithmus (dessen Ausgabe
also der Originalgeometrie entspricht) gerendert wird. Als Qualitätsbewertungsfunktion kann
man z. B. das einfache Zählen der andersfarbigen Pixel verwenden. Deutlich aussagekräftigere
Ergebnisse in Hinblick auf die von einem Betrachter wahrgenommene Qualität erzielt man
jedoch mit komplexeren Funktionen, wie dem Maß der Strukturellen Ähnlichkeit, wie es von
Wang et al. [WBSS04] für die automatische Qualitätsbewertung von Bildkompressionsverfah-
ren vorgeschlagen wurde. Um die Auswirkungen großflächiger Fehler hervorzuheben, kann das
Verfahren so ergänzt werden, dass die intern ausgewerten Fehlerbilder zusätzlich hierarchisch
gefiltert werden (nach [Bur81]). Ein einzelner absoluter Wert der Bewertungsfunktion für zwei
Bilder hat dabei wenig Aussagekraft, er erlaubt aber im Vergleich mit anderen Werten eine
Aussage darüber, welches Bild eine höhere Bildqualität aufweist.

Die Messung zur Bestimmung der Szeneneigenschaft läuft wiederum äquivalent mit meh-
reren Richtungen, wobei die Szene jeweils zwei mal gerendert wird – mit dem betrachteten
Algorithmus und als Referenz. Der verwendete Wert ist das Minimum der Einzelwerte der
Richtungen, wenn es sich um ein Qualitätswert handelt; das Maximum, wenn es sich um einen
Fehlerwert handelt.

Definition 7 (Szeneneigenschaft: Bildqualität)

BildqualitätSzene,Algorithmus,Renderingparameter,Qualitätsbewertungsfuntion :

pos 7→ q,pos ∈ R3, q ∈ R.

Wobei q der minimale Wert der Qualitätsbewertungsfunktion für sechs Eingaben ist. Die
Eingaben bestehen aus je zwei Bildern, die beim Rendern der Szene mit dem gegebenen
Algorithmus und Renderingparametern und einem konservativen Referenzalgorithmus, in die
sechs Hauptrichtungen und mit einem Kameraöffnungswinkel von 120◦ an Position pos erzeugt
werden.

4.2.6 Kombinierte Szeneneigenschaften
Eine weitere Klasse von Szeneneigenschaften ergibt sich aus der Möglichkeit, die bereits
beschriebenen Eigenschaften z. B. durch Subtraktion oder andere Operationen zu kombinieren.
Zum Effizienzvergleich zweier Algorithmen lässt sich beispielsweise die Eigenschaft konstru-
ieren, die die Differenz der Renderingzeit der zwei Algorithmen für eine gegebene Position
beschreibt. Auch wenn eine bestimmte Kombination inhaltlich Sinn ergibt, müssen dennoch
weitere Punkte beachtet werden:

• Durch die Kombination kann für die entstehende Verteilung der Werte deren praktische
Gutmütigkeit leiden (siehe Abschnitt 4.1.3). Dies kann zu Problemen bei der Auswer-
tung der Eigenschaften führen. Da dieser Effekt nur schwer im Vorfeld abzusehen ist,
ist besonders für komplizierte Kombinationen eine kritische experimentelle Prüfung
angeraten.

31

4 Szeneneigenschaften

• Mehrere Werte einer kombinierten Eigenschaft können ursprünglich aus Messungen in
verschiedene der sechs Richtungen entstanden sein. Dies muss bei der Konzeption der
kombinierten Eigenschaft mit bedacht werden.

32

5 Globale Näherung von
Szeneneigenschaften

Im vorherigen Kapitel wurden verschiedene positionsabhängige Szeneneigenschaften beschrie-
ben, die für eine gegebene Betrachterposition in der Szene den entsprechenden Wert liefern.
Für die meisten Eigenschaften lässt sich die Berechnung eines einzelnen Wertes dabei innerhalb
der Zeit durchführen, die für die Darstellung einiger weniger Frames benötigt wird. Für die
Bewertung von Renderingalgorithmen oder die Verbesserung des Renderings während des
Walkthroughs reicht die alleinige Möglichkeit, die Szeneneigenschaften an diskreten Positionen
auswerten zu können, jedoch nicht aus: Sollen die Werte einer Szeneneigenschaft zur Laufzeit
zur Verbesserung des Renderings benutzt werden, dauert die Ermittlung in den meisten Fällen
länger als der zu erwartende Laufzeitgewinn. Für die quantitative Bewertung von Renderingal-
gorithmen möchte man nicht nur Aussagen nicht über einzelne Werte der Szeneneigenschaft
treffen, sondern auch über die Verteilung der Werte im gesamten Raum einer gegebenen Szene
zu treffen.

In diesem Kapitel stelle ich Methoden vor, wie eine globale Näherung einer Szenenei-
genschaft praktisch ermittelt werden kann: eine Abbildung eines Teils des Raumes auf den
Wertebereich der betrachteten Szeneneigenschaft. Diese Abbildung wird in Form einer räumli-
chen Datenstruktur gespeichert, bei der diskreten Bereichen des Raumes ein Wert zugewiesen
wird (oder alternativ auch ein Wertegradient). Als Ausgangspunkt für die zugewiesenen Werte
dient eine Menge an Stichproben der verwendeten Szeneneigenschaft. Diese globale Näherung
bietet dann zum einen effiziente Punktanfragen, zum anderen aber auch Bereichsanfragen und
die Möglichkeit zum Bestimmen von Werteverteilungen.

Die Näherung der Szeneneigenschaft kann dabei entweder für einen dreidimensionalen
Bereich der Szene (z. B. einen die komplette Szene umschließenden Quader) erfolgen, oder
aber man beschränkt sich auf die Näherung für einen zweidimensionalen Schnitt durch die
Szene. Der 3-D-Fall hat den Vorteil, dass man für alle zulässigen Betrachterpositionen zur
Laufzeit eine Näherung der untersuchten Szeneneigenschaft bestimmen kann. Auch eine
statistische Auswertung kann so über alle möglichen Betrachterpositionen erfolgen. Der
Vorteil der Betrachtung eines 2-D-Bereichs liegt darin, dass mit einer geringeren Anzahl von
Sampling-Punkten eine Näherung guter Qualität ermittelt werden kann, die sich darüber hinaus
noch einfach und anschaulich visualisieren lässt. Dazu muss jedoch ein charakteristischer
Schnitt durch die Szene gewählt werden, was jedoch einfacher möglich ist als z. B. einen
charakteristischen Kamerapfad bei der klassischen Evaluierung von Renderingalgorithmen zu
wählen.

Im Folgenden erläutere ich zunächst einige Anforderungen, die ich an ein spezifisches
Verfahren zu Erzeugung einer globalen Näherung identifiziert habe. In Abschnitt 5.2 stelle
ich den allgemeinen Ansatz von Sampling-basierten Verfahren zur Bestimmung der globalen

33

5 Globale Näherung von Szeneneigenschaften

Näherung vor, bevor ich konkrete Verfahren zur Ermittlung der Näherung genauer betrachte
(Abschnitte 5.3, 5.4 und 5.5). Abschließend zeige ich in Abschnitt 5.6 mehrere Möglichkeiten
auf, die Daten einer globalen Näherung grafisch und statistisch auszuwerten.

5.1 Anforderungen

Das generelle Ziel bei der globalen Näherung einer Szeneneigenschaft ist der Aufbau einer
Datenstruktur, die zu Positionen innerhalb der Szene eine Näherung der entsprechenden Sze-
neneigenschaft liefert. Für die praktische Anwendbarkeit einer solchen Datenstruktur habe
ich mehrere Anforderungen identifiziert: sowohl an die Datenstruktur selbst, als auch an den
Prozess, um diese aufzubauen. Diese umfassen Anforderung an die Laufzeitkomplexität von
Operationen sowie an die Speicherplatzkomplexität der Datenstrukturen. Obwohl sich auch
das Worst-Case-Verhalten beschränken lässt, beziehe ich mich im Folgenden primär auf eine
anwendungsbezogene Interpretation von Effizienz.

5.1.1 Akzeptabler Zeitaufwand im Preprocessing

Ein wesentlicher Punkt, der über die praktische Anwendbarkeit von Verfahren zur globalen
Näherung von Szeneneigenschaften entscheidet, ist die Zeit, die benötigt wird, um die Näherung
für realistische Eingaben zu ermitteln. Konkret bedeutet dies, dass eine Näherung einer
Funktion für eine Szene bestehend aus mehreren Millionen Polygonen auf aktueller Hardware
in wenigen Minuten oder Stunden erstellt werden können soll – und das mit einer für den
jeweiligen Anwendungsfall passenden Qualität.

5.1.2 Kompakter Speicherplatz

Ähnlich wie bei der Laufzeit, ist auch der Speicherplatzbedarf der Datenstruktur zur Speiche-
rung der globalen Näherung durch die Anwendung beschränkt. Der benötigte Speicherplatz
für die Näherung sollte dabei maximal in einer ähnlichen Größenordnung wie die untersuchte
Szene liegen. Die exakte Ermittlung der geometrischen Sichtbarkeit auf Basis der VSP (siehe
Abschnitt 2.1.1) eignet sich daher Aufgrund der hohen Komplexität nicht als Grundlage für
eine hier untersuchte Szeneneigenschaft.

5.1.3 Effiziente Punktabfragen

Wenn der genäherte Wert der Szeneneigenschaft zur Laufzeit für die Verbesserung des Rende-
ringprozesses genutzt werden soll, ist es wichtig, den zusätzlichen Laufzeitaufwand für eine
Punktanfrage (Lesen eines Wertes zu einer gegebenen Position) so gering wie möglich zu
halten. Nur so ist es möglich, einen Nutzen aus der Kenntnis dieser zusätzlichen Informationen
zu erlangen. Idealerweise sind hier sublineare Laufzeiten in der Größe der Datenstruktur, mit
kleinen Konstanten, wünschenswert.

34

5.2 Allgemeine Form des Sampling-Ansatzes

5.1.4 Gute Qualität der Näherung

Die Qualität der Näherung ergibt sich aus dem akkumulierten Fehler des Wertes der Näherung
gegenüber dem tatsächlichen Wert der untersuchten Funktion für alle Positionen. Auch wenn
sich für die Qualität einer Näherung, die sich aus einem bestimmten Verfahren ergibt, nur
schwer eine konkrete Anforderung aufstellen lässt, so lassen sich mehrere Verfahren jedoch
gut miteinander vergleichen. Dazu werden die erzielten Qualitäten mehrerer Verfahren im
Verhältnis zu den eingesetzten Ressourcen (Laufzeit und Speicher) miteinander verglichen.
Ein wesentliches Ziel beim Entwurf der im Weiteren vorgestellten Verfahren ist es, eine
möglichst hohe Qualität für die eingesetzte Zeit zu erreichen; eine entsprechende experimentelle
Untersuchung folgt in Kapitel 5.7.

5.1.5 Parametrierbar, aber robust

Eine Anforderung an praktikable Näherungsverfahren ist, dass sie so parametrierbar sind, dass
die eingesetzte Laufzeit möglichst direkt (z. B. über einen einzelnen Wert) gesteuert werden
kann, um so Laufzeit gegen Qualität tauschen zu können. Darüber hinaus sollten sich die
Verfahren weitestgehend robust in Bezug auf die genauen Werte von Parametern verhalten; d.h.
nicht optimal gewählte Parameterwerte dürfen nicht zu einschneidenden Qualitätsverlusten in
der Näherung führen. Nur so lassen sich die Verfahren einfach ohne große Anpassungsschritte
und ohne gesondertes Expertenwissen seitens des Anwenders praktisch einsetzen.

5.1.6 Einfachheit

Um sich tatsächlich im Bereich der experimentellen Algorithmenevaluation und Anpassung
durchzusetzen, sollen die Verfahren vom Aufbau möglichst einfach sein. Dadurch soll die
Hürde gesenkt werden, dass sie in existierende Softwaresysteme integriert werden.

5.2 Allgemeine Form des Sampling-Ansatzes

Im Folgenden Abschnitt beschreibe ich die allgemeine Idee, die der Sampling-basierten,
globalen Näherung von positionsabhängigen Szeneneigenschaften zugrunde liegt. Konkrete
Ausprägungen dieser Technik stelle ich später in den Abschnitten 5.3 und 5.4 vor.

5.2.1 Aufbau der Datenstruktur

Das Ziel bei der Sampling-basierten globalen Näherung von positionsabhängigen Szeneneigen-
schaften ist eine vollständige, disjunkte Aufteilung des untersuchten Raumes (ein Teilbereich
der Szene), in einfache, konvexe Regionen. Diesen Regionen ist jeweils ein konstanter Wert aus
dem Wertebereich der untersuchten Szeneneigenschaften zugeordnet, welcher als Näherung
für den Funktionswert aller Positionen in der Region verwendet wird. Die Form der Regionen
richtet sich nach dem untersuchten Bereich der Szene. Wird nur ein zweidimensionaler Schnitt
durch die Szene untersucht, sind die Regionen recht- oder dreieckig. Bei der Untersuchung

35

5 Globale Näherung von Szeneneigenschaften

dreidimensionaler Bereiche sind die Regionen entweder quader- oder tetraederförmig. Um
die Anforderung der effizienten Punktanfragen zu erfüllen (siehe Abschnitt 5.1.3), können die
Regionen in einer geeigneten räumlichen Datenstruktur gespeichert werden. Im zweidimen-
sionalen Fall kann beispielsweise ein Quadtree oder im dreidimensionalem Fall ein Octree
verwendet werden. Bei einer gleichmäßigen Größenverteilung der Regionen lassen sich damit
Punktanfragen in erwartet logarithmischer Zeit in der Anzahl der Regionen durchführen. Als
Erweiterung können den Regionen auch, anstatt eines einzelnen Wertes, Werte die die Ecken der
Region zugewiesen werden. Die Werte der Positionen im Inneren werden dann entsprechend
ihres Abstandes zu den Ecken interpoliert.

Der generelle Ablauf wird in Algorithmus 5.1 beschreiben:

Algorithmus 5.1: Allgemeine Formulierung des Sampling-Algorithmus für die globale Nähe-
rung positionsabhängiger Szeneneigenschaften

Input: Szene s , Region r , positionsabhängige Szeneneigenschaft f
Output: Datenstruktur mit Näherung von f im Bereich r

1 var positionen← erzeugeEineMengeVonPositionen(r)
2 var werte← { }
3 foreach(position ∈ positionen)
4 werte← werte ∪ {(position, fs(position))}
5 var bereiche← erzeugeDisjunkteAufteilungVon (r)
6 foreach(bereich ∈ bereiche)
7 var bereichsWert← fasseWerteZusammen(w | (pos, w) ∈ werte ∧ pos ∈ bereich)
8 assoziiere bereich mit bereichsWert
9 return bildeHiereachischeDatenstruktur(bereiche)

Diese sehr allgemeine Beschreibung des Sampling-Algorithmus bietet mehrere Freiheits-
grade:

1. Welche räumliche Datenstruktur wird letztlich aufgebaut?

2. Wie werden die Werte der Samples einer Region zum Wert der Region zusammengefasst?

3. Wie werden die Sampling-Positionen innerhalb der gegebenen Region gewählt?

4. Wie wird die Gesamtregion in Teilregionen aufgeteilt?

Der erste Punkt ist praktisch relativ unkritisch für das Ergebnis des Sampling-Prozesses, wenn
eine der üblichen hierarchischen Datenstrukturen gewählt wird. Lediglich die Anfragezeit
für Punkt- und Bereichsanfragen wird marginal durch diese Entscheidung beeinflusst. Im
Folgenden gehe ich daher immer von einem Octree im dreidimensionalen und einem Quadtree
im zweidimensionalen Fall aus.

Für die Zusammenfassung der Samples zur Bestimmung des Wertes der entsprechenden
Region verwende ich, wenn nichts weiteres angegeben ist, das arithmetische Mittel der Werte.
Je nach untersuchter Szeneneigenschaft und Anwendungsfall können aber auch andere Kom-
binationen sinnvoll sein: beispielsweise sollte bei der Eigenschaft der Menge der sichtbaren

36

5.3 Regelmäßiges Sampling

Objekte (siehe Definition 5) eher das komponentenweise Maximum genutzt werden, um mög-
lichst alle von einer beliebigen Position in der Region sichtbaren Objekte einzuschließen; oder
das komponentenweise Minimum, um nur von überall aus sichtbare Objekte zu erhalten.

Punkte drei und vier werden maßgeblich durch die konkrete Ausprägung des Sampling-
Verfahrens bestimmt. Das Ziel für die Konstruktion eines guten Sampling-Verfahrens ist
dabei: Für eine gegebene Anzahl an Samplen, wähle diejenigen Sampling-Positionen und eine
Aufteilung, so dass die resultierende Qualität der Näherung maximiert wird.

5.3 Regelmäßiges Sampling

Das regelmäßige Sampling stellt eine sehr einfache Form der Näherung einer Szeneneigenschaft
dar. Der untersuchte Bereich der Szene wird in ein regelmäßiges zwei- oder dreidimensionales
Gitter unterteilt. Die Auflösung dieses Gitters ist ein Parameter dieses Sampling-Verfahrens.
Für jeden der entstehenden, quaderförmigen Teilbereiche wird am Mittelpunkt die untersuchte
Szeneneigenschaft bestimmt und der Wert dem Teilbereich zugewiesen (siehe Algorithmus 5.2).

Algorithmus 5.2: Regelmäßiges Sampling mit dem zusätzlichem Parameter Auflösung
Input: Szene s , Region r , positionsabhängige Szeneneigenschaft f , Auflösung res(x, y, z)
Output: Datenstruktur mit Näherung von f im Bereich r

1 var bereiche← teile r in res.x · res.y · res.z viele , gleichgroße Quader auf
2 // res.x nebeneinander , res.y übereinander und res.z hintereinander
3 foreach(bereich ∈ bereiche)
4 var pos← wähleMittelpunktVon(bereich)
5 var bereichsWert← fs(position)
6 assoziiere bereich mit bereichsWert
7 return bildeHiereachischeDatenstruktur(bereiche)

Dieses Verfahren bietet einige Vorteile: Es ist sehr einfach, benötigt nur die Auflösung als
zusätzlichen Parameter, durch den die Laufzeit und die Genauigkeit bestimmt wird, und es
entstehen keine potentiellen Ungenauigkeiten durch die Zusammenfassung von Werten, da
immer nur Einzelwerte betrachtet werden.

Dem gegenüber stehen zwei Nachteile: Zunächst kann es durch die regelmäßige Struktur
der Sampling-Punkte zu Aliasing-Effekten kommen; insbesondere bei niedrigen Auflösungen
und Szenen mit ebenfalls regelmäßig angeordneten Objekten. Der entscheidende Nachteil des
Verfahrens liegt jedoch in der Laufzeit, die für die Erstellung einer globalen Näherung einer
inhomogenen Szeneneigenschaft mit akzeptabler Qualität benötigt wird. Da das Verfahren die
Verteilung der Eigenschaft nicht mit einbezieht, werden in Bereichen mit einem homogenen
Eigenschaftswert ebenso viele Samples gezogen, wie in gleichgroßen, inhomogenen Bereichen,
in denen zusätzliche Samples jedoch insgesamt einen wesentlich größeren Qualitätszuwachs
erzeugt hätten. Für viele praktische Szenen, bei denen viele Szeneneigenschaften in großen
Bereichen nur wenig variieren, in kleinen Bereichen jedoch sehr stark, ist das regelmäßige
Sampling-Verfahren daher kaum geeignet.

37

5 Globale Näherung von Szeneneigenschaften

5.4 Adaptives Sampling
Eine Möglichkeit, Sampling-Punkte besser zu verteilen, so dass für eine gegebene Anzahl
von Punkten eine möglichst gute Näherung der Szeneneigenschaft entsteht, ist das adaptive
Sampling. Die generelle Idee ist, während des Sampling-Vorgangs die bisher gesammelten
Informationen als Basis für die Wahl des jeweils nächsten Sampling-Punktes zu verwenden.
Durch verschiedene Heuristiken wird versucht, einen Sampling-Punkt jeweils dort zu wählen,
wo ein möglichst großer Qualitätsgewinn durch den zusätzlichen Messwert erwartet wird.
Zunächst erläutere ich den groben Ablauf des Algorithmus und gehe dann im Anschluss
genauer auf verschiedene Aspekte des Verfahrens sowie auf die zusätzlichen Parameter ein.

5.4.1 Beschreibung des Algorithmus
Der von mir entworfene adaptive Sampling-Algorithmus (siehe Algorithmus 5.3) arbeitet
durch eine hierarchische Aufteilung des untersuchten Raumes der Szene. Beginnend mit dem
gesamten zu untersuchenden Bereich, wählt der Algorithmus iterativ die Region aus, die, nach
einer Qualitätsheuristik, den niedrigsten Qualitätswert aufweist. Eine niedriger Qualitätswert
gibt an, dass innerhalb eines großen Raumes eine hohe Fluktuation der bisher gemessenen Werte
vorliegt – es sich also um einen Bereich handelt, bei dem große Unterschiede in der untersuchten
Szeneneigenschaft vorliegen. Eine solche Region lässt sich als Teil der globalen Näherung
der Szeneneigenschaft nur unzureichend durch einen einzelnen Wert repräsentieren. Daher
wird davon ausgegangen, dass weitere Samples in dieser Region zu einer insgesamt höheren
Qualität der Näherung führen. Zunächst wird dafür die Region in mehrere kleinere Regionen
unterteilt (meist gleichmäßig in acht Teilregionen im 3-D-Fall oder in vier beim 2-D-Fall). Aus
jeder dieser neuen Regionen werden dann zusätzliche Sampling-Punkte gewählt, bevor für jede
der neuen Regionen wieder ein Qualitätswert berechnet wird. Daraufhin beginnt das Verfahren
wieder von Neuem mit der nächsten Region, die jetzt den niedrigsten Qualitätswert besitzt.
Der Sampling-Prozess wird beendet, sobald eine konfigurierbare Abbruchbedingung erfüllt
ist, z. B. wenn eine bestimmte Anzahl von Sampling-Punkten gezogen wurde. Zum Abschluss
können dann die beim Sampling-Prozess gebildeten Regionen direkt als Basis für die globale
Näherung verwendet werden. Die globale Näherung besteht dann im 3-D-Fall entsprechend
aus quaderförmigen Regionen; bei bei der Untersuchung einer 2-D-Region entsprechend aus
rechteckigen Regionen. Alternativ kann basierend auf den einzelnen Sampling-Punkten eine
Delaunay-Triangulierung [Del34] des untersuchten Bereichs der Szene erzeugt und deren
Teilregionen als Basis für die globale Näherung verwendet werden. Die resultierende Näherung
besteht dann aus einer entsprechenden Menge an Tetraedern oder Dreiecken.

38

5.4 Adaptives Sampling

Algorithmus 5.3: Adaptiver Samplingalgorithmus
Input: Szene s , Region r , positionsabhängige Szeneneigenschaft f ,

Abbruchbedingung abbruch (...)→ {true, false} ,
Regionsunterteilungsfunktion teileAuf(region)→ {r | r ⊆ region}
Qualitätsbewertungsfunktion qualität(region, werte)→ R ,
Positionsauswahlfunktion wählePositionen(region,

positionen)→ {pos | pos ∈ region}
Output: Datenstruktur mit Näherung von f im Bereich r

1 var priorityQueue← erzeuge Prioritätenwarteschlange () // Qualität → Region
2 var werte← { } // globale Sammlung aller (Position , Wert)−Paare
3 var positionen← { } // globale Sammlung aller Positionen
4

5 // füge initial die gesamte untersuchte Region hinzu
6 füge ein (priorityQueue⇐ (r, 0.0))
7

8 while(!abbruch())
9 var region← extrahiere Region mit geringster Qualität(priorityQueue)

10 var neueRegionen← teileAuf(region)
11 foreach(neueRegion ∈ neueRegionen)
12 var neuePositionen← wählePositionen(neueRegion , positionen)
13 positionen← positionen ∪ neuePositionen
14 foreach(position ∈ neuePositionen)
15 werte← werte ∪ {(position, fs(position))}
16 var bereichsWerte← sammle alle Werte aus werte , die in neueRegion liegen
17 füge ein (priorityQueue⇐ (region , qualität(region , bereichsWerte)))
18

19 | var regionen← extrahiere alle Regionen aus priorityQueue
20 alternativ
21 | var regionen← bilde Delaunay−Triangulierung aus Punkten in positionen
22

23 foreach(region ∈ regionen)
24 var regionsWert← kombiniereWerte(w | (pos, w) ∈ werte ∧ pos ∈ region)
25 assoziiere region mit regionsWert
26

27 return bildeHiereachischeDatenstruktur(regionen)

5.4.2 Beschreibung der weiteren Parameter

Der vorgestellte Algorithmus zum adaptiven Sampeln von positionsabhängigen Szenenei-
genschaften gewinnt seine Flexibilität durch die Menge an zusätzlichen Parametern, die das
konkrete Verhalten des Algorithmus maßgeblich bestimmen. Eine größere Menge von Parame-
ter birgt jedoch auch die Herausforderung, die in Bezug auf die für ein Sampling-Verfahren
definierten Anforderungen (siehe Abschnitt 5.1) noch zu erfüllen. Unter Berücksichtigung der

39

5 Globale Näherung von Szeneneigenschaften

Anforderungen stelle ich im Folgenden die einzelnen Parameter vor.

Parameter: Abbruchbedingung

Ein großer Vorteil des vorgestellten adaptiven Sampling-Verfahrens ist, dass nach jedem
Iterationsschritt eine gültige globale Näherung der untersuchten Eigenschaft erzeugt werden
kann. Zusätzliche Iterationen führen nur zu einer insgesamt höheren Qualität der Näherung.
Diese Verbesserung ist dabei zwar nicht zwingend strikt – in einzelnen Schritten kann es je nach
Wahl der Samples auch zu einer kurzfristigen Verschlechterung führen – praktisch konvergiert
die Näherung jedoch mit zunehmender Iterationszahl gegen die tatsächliche Verteilung der
Szeneneigenschaft. In Bezug auf die Anforderungen zeigt sich, dass sich das Verfahren daher
robust in Bezug auf die Laufzeit verhält. Die Möglichkeit, den Prozess regelmäßig unterbrechen
zu können, erlaubt eine freie Wahl der Abbruchbedingung, auch in Bezug auf die angepeilte
Anwendung. Mögliche Abbruchbedingungen sind:

• Anzahl untersuchter Sampling-Punkte (Standardmethode): Die Angabe der Anzahl der
zu ziehenden Sampling-Punkte, nach der abgebrochen werden soll, erlaubt einen direkten
Qualitätsvergleich unterschiedlicher Sampling-Verfahren und Parameterwerte für die
Gegenüberstellung von Anzahl der Punkte zu erzielter Qualität. Damit eignet sich diese
Bedingung besonders für die experimentelle Untersuchung in Kapitel 5.7. Des Weiteren
kann durch diese Bedingung die Laufzeit des Sampling-Prozesses relativ genau gesteuert
werden, da sich diese praktisch linear zur Anzahl der untersuchten Samples verhält. Die
übrigen Schritte haben einen vernachlässigbaren Einfluss auf die Laufzeit.

• Zeit: Lässt sich für eine Anwendung sagen, wie viel Zeit genau für das Sampling
verwendet werden soll, kann nach einer bestimmten Zeit das Sampling einfach beendet
werden.

• Benutzerinteraktion Ist das Ziel eine visuelle Analyse des Verhaltens eines Algorith-
mus (siehe Abschnitt 5.6) und werden Zwischenschritte des Samplings kontinuierlich
visualisiert, dann kann ein Benutzer beim Erreichen des gewünschten Ergebnisses den
Sampling-Prozess beenden.

• Erreichen eines bestimmten Qualitätswertes: Prinzipiell lassen sich auch die während des
Samplings anfallenden Kennzahlen für eine Abbruchbedingung verwenden. Beispiels-
weise wird der Prozess abgebrochen, wenn keine Region mehr mit einem Qualitätswert
unterhalb eines bestimmten Grenzwertes mehr vorhanden ist. Praktisch hat sich jedoch
gezeigt, dass sich daraus ein nicht robustes Verhalten ergibt. Bereits geringfügige Ände-
rungen an anderen Parametern können zu deutlichen Laufzeitunterschieden und damit
auch Qualitätsunterschieden führen.

Parameter: Regionsunterteilungsfunktion

Der Parameter Regionsunterteilungsfunktion beschreibt, wie die Region mit dem jeweils aktuell
niedrigsten Qualitätswert in weitere Regionen unterteilt wird. Das Ziel dabei ist, dass durch die

40

5.4 Adaptives Sampling

getrennte Betrachtung der Teilregionen eine bessere Näherung erzeugt wird, als bei Betrachtung
der Ursprungsregion. Daher ist es wünschenswert, eine vorher inhomogene Region möglichst
in mehrere homogenere Regionen aufzuteilen, welche zwar konvex, aber nicht zwangsläufig
rechteckig sein müssen. Eine weiteres Ziel bei der Erzeugung der Regionen ist es, möglichst
große Volumen (oder Flächen bei der Untersuchung einer 2-D-Region) im Verhältnis zu den
Oberflächen (bzw. Umfängen) der entstehenden Regionen zu erzeugen. Vor allem bei sehr
langgezogenen Regionen kann keine lokal gleichmäßige Verteilung der Samples mehr erreicht
werden.

Um möglichst dem Anspruch der Einfachheit zu genügen, beschränke ich mich bei der von
mir gewählten Unterteilungsfunktion auf den zweiten Aspekt: möglichst großes Volumen. Die
folgende Beschreibung bezieht sich auf den 3-D-Fall, funktioniert aber analog für den 2-D-Fall:
Ausgehend von einer quaderförmigen Ursprungsregion wird zunächst geprüft, ob das Verhältnis
der längsten Seite zur kürzesten Seite größer als

√
2 ist. Ist dies der Fall, wird die Region entlang

der längsten Seite gleichmäßig in zwei Regionen mit nun besserem Seitenverhältnis aufgeteilt.
Andernfalls wird dir Region entlang aller Achsen gleichmäßig in insgesamt acht (bzw. vier
im 2-D-Fall) Teilregionen aufgespalten. Um die Robustheit des Verfahrens zu erhöhen, gibt
es die zusätzliche Rahmenbedingung, dass bei Erreichen einer minimalen Seitenlänge keine
weiteren Unterteilungen mehr durchgeführt werden. Diese minimale Länge sollte so gewählt
werden, dass Regionen dieser Größe für mögliche Anwendungen keine wesentliche Rolle mehr
spielen. Geht man beispielsweise von einem normalgroßen, humanoiden Betrachter aus, der
sich in Schrittgeschwindigkeit durch die Szene bewegt, ist eine minimale Regionsgröße von
einem Kubikmeter angemessen. Diese zusätzliche Beschränkung sorgt dafür, dass ein einzelner,
kleiner Bereich trotz sehr großer Sprünge in den Werten der untersuchten Eigenschaft nicht zu
viele Samples auf sich konzentrieren kann.

Parameter: Qualitätsbewertungsfunktion

Die Qualitätsbewertungsfunktion definiert für eine gegebene Region aus den bisher bestimmten
Werten einen Qualitätswert, der die Reihenfolge bei der Abarbeitung der Regionen bestimmt.
Ziel bei der Berechnung ist es, eine Sortierung der Regionen zu erreichen, bei der die Regionen
vorne stehen, die insgesamt zur größten Verbesserung der globalen Näherung beitragen, wenn
sie weiter untersucht werden. Der absolute Wert, den die Funktion zurückgibt, spielt für den
Sampling-Algorithmus keine Rolle. (Außer, dass, wenn der Wertebereich normiert ist, während
des Sampling-Vorgangs die aktuellen Regionen gemäß des Qualitätswertes eingefärbt werden
können, was dem Benutzer eine anschauliche visuelle Rückmeldung über den Status des
Prozesses liefert.) Die von mir als Grundlage für mögliche Bewertungsfunktionen verwendeten
Heuristiken enthalten folgende Komponenten:

• Verteilung der bisher in der Region gemessen Werte: Die Grundlage hierfür ist die
Überlegung, dass eine große Fluktuation der untersuchten Werte auch auf einen inhomo-
genen Bereich der untersuchten Eigenschaft hindeutet, welcher sich schlecht durch eine
einzelne homogene Region annähern lässt. Je größer also die Fluktuation der Werte einer
Region, desto niedriger sollte ihr Qualitätswert sein. Eine wichtiger Teil der Heuristik
ist das konkrete Maß der Werteverteilung, das für die Berechnung des Qualitätswertes

41

5 Globale Näherung von Szeneneigenschaften

verwendet wird. Auch einzelne Ausreißer der Verteilung können einen wichtigen Hin-
weis darauf liefern, dass größere inhomogene Bereiche der Region existieren, die bisher
noch nicht mi ausreichend vielen Sampling-Punkten untersucht wurden. Als Maß der
Verteilung hat sich daher die Differenz aus Maximum und Minimum gegenüber anderen
Maßen, wie z. B. der Varianz, als funktional herausgestellt.

• Anzahl der bisher in der Region erhobenen Werte: Je mehr Werte bereits aus einer Region
untersucht wurden (wenn man von einer gleichmäßigen Verteilung der Werte ausgeht),
desto höher ist die Sicherheit, dass inhomogene Bereiche auch tatsächlich entdeckt
wurden. Regionen mit wenigen homogenen Werten sollten demnach ein niedrigeren
Qualitätswert erhalten als gleichgroße Regionen mit ähnlicher Werteverteilung, aber
mehr Samples.

• Die Größe der Region: Große Bereiche tragen insgesamt mehr zu der globalen Näherung
bei als ein kleinerer Bereich mit ansonsten gleichen Eigenschaften. Ein entsprechender
Fehler beim Sampling wirkt sich also stärker aus als bei einer kleinen Region. Daher soll-
ten große Regionen kleinere Qualitätswerte erhalten als gleichartige Regionen geringerer
Größe.

Nach experimenteller Untersuchung unterschiedlicher Ausprägungen von konkreten Heuri-
stiken habe ich die folgende Qualitätsbewertungsfunktion für meine Anwendungen ausgewählt:

Anzahl der bereits in der Region gezogenen Werte,
geteilt durch das Produkt aus dem Durchmesser der Region und

der Differenz aus dem minimalen und maximalen gemessenen Eigenschaftswert.

Diese Funktion hat sich in der Praxis als sehr robust gegenüber der Wahl der untersuchten
Szeneneigenschaft, sowie auch gegenüber der Größe des untersuchten Bereichs gezeigt. Funk-
tionen mit mangelnder Robustheit machen sich insbesondere dadurch bemerkbar, dass je nach
Wahl der Parameterwerte die Samples auf zu wenige Bereiche der Szene konzentriert werden,
wodurch andere relevante Bereiche nicht identifiziert werden.

Parameter: Positionsauswahlfunktion

Die Positionsauswahlfunktion bestimmt für eine neue Region, an wie vielen und welchen
Positionen zusätzliche Samples gezogen werden sollen – an welchen Positionen die posi-
tionsabhängige Szeneneigenschaft also untersucht werden sollen. Für die Wahl geeigneter
Sampling-Punkte konnte ich im Wesentlichen zwei Anforderungen identifizieren:

1. Flexible Anzahl von Sampling-Punkten: Um den gesamten Sampling-Ansatz nicht in
seiner Flexibilität einzuschränken, sollen sich prinzipiell beliebig viele Sampling-Punkte
in einem Bereich untersuchen lassen.

2. Gute räumliche Verteilung: Da während des Sampling-Vorgangs eine Region zunächst
als homogener Bereich aufgefasst wird, sollten die Sampling-Punkte innerhalb einer
Region auch möglichst gleichmäßig verteilt werden. Insbesondere sollten keine größeren

42

5.4 Adaptives Sampling

Bereiche innerhalb der Region entstehen, in denen keine Samples liegen, während es
andere gleichgroße Bereiche gibt, in denen mehrere Samples liegen.

Wie bei den anderen Parametern gibt es bei der Positionsauswahlfunktion wieder viele
mögliche Ausprägungen, von denen ich im Folgenden einige näher betrachte:

Gleichmäßiges Gitter: Eine einfache Möglichkeit, eine Region gleichmäßig zu samplen,
liegt darin, die Sampling-Punkte jeweils auf den Punkten eines regelmäßigen, rechteckigen
Gitters zu wählen. Ein Nachteil ist, dass durch die regelmäßige Struktur Aliasing-Effekte
auftreten können, wie auch schon bei dem regelmäßigen Sampling; siehe Abschnitt 5.3. Ein
weiterer Nachteil besteht darin, dass die Zahl der Samples nur in festgelegten Schritten aus-
gewählt werden kann (quadratisch oder kubisch). Abbildung 5.1a zeigt ein Beispiel für ein
2-D-Sampling mit einem Gitter in einem Quadrat. Im unteren Teil der Abbildung wird die
Verteilung der relativen Punktabstände, relativ zum Mittelpunkt des Bildes dargestellt.

Zufällig gleichverteilt: Eine weitere sehr einfache Möglichkeit, Punkte aus einer Region
zu wählen, ist, diese zufällig gleichverteilt zu wählen. Der Vorteil dieser Methode gegenüber
dem Gitter ist, dass hier eine beliebige Anzahl von Punkten gezogen werden kann. Der große
Nachteil des Verfahrens ist, dass die Samples ungleichmäßig verteilt sind. In Abbildung 5.1b
und Abbildung 5.2 erkennt man anhand des Beispiels, dass viele Punkte dicht beieinander
liegen, dadurch aber größere freie Regionen entstehen.

Blue-Noise-Sampling: Durch ein etwas komplexeres Verfahren zur Bestimmung der
Sampling-Positionen, lassen sich auch beliebig viele Sampling-Punkte weitestgehend gleich-
mäßig verteilt erzeugen. Das Ziel der gleichmäßigen Abdeckung lässt sich auch als das Ziel
zum Erreichen der Blue-Noise-Eigenschaft beschreiben. Als Grundlage für das hier verwendete
Sampling-Verfahren dient ein Poisson-Disk-Sampling-Verfahren mittels Dart-Throwing nach
Cook [Coo86], jedoch mit Aufhebung der harten Restriktion eines vorgegebenen Radius. Diese
Idee wurde von McCool und Fiume [MF92] aufgezeigt.

Die einzelnen Schritte des Sampling-Verfahrens sind: Für die Wahl des nächsten Samples in
einer gegebenen Region wird zunächst eine feste Anzahl zufällig gleichverteilter Punkte aus
der Region als Kandidaten gezogen. Für jeden dieser Kandidaten wird der kleinste Abstand zu
allen bisher gezogenen Punkten berechnet; also auch zu denen, die außerhalb der untersuchten
Region liegen. Als nächster Punkt wird derjenige mit dem größten Abstand gewählt. Die
Bestimmung des nächsten Punktes lässt sich effizient durch die Verwendung eines Octrees (für
den 3-D-Fall) erreichen. Die Anzahl der für einen Sample gezogenen Kandidaten bestimmt die
Qualität der Verteilung. Aufgrund von Erfahrungen aus experimentellen Untersuchungen hat
sich ein Wert von 200 für die Praxis als ausreichend erwiesen.

Im unteren Bild in Abbildung 5.1c kann man erkennen, dass durch das Verfahren um jeden
Pixel eine kreisförmige Region frei bleibt. Dies wird auch in der Verteilung der minimalen
Abstände zwischen den Sampling-Punkten deutlich (siehe Abbildung 5.2c). Im Unterschied
zu Poisson-Disk-basierten Sampling-Verfahren kann die Einhaltung des Freiraums zwar nicht
garantiert werden, dafür passt sich der Radius jedoch automatisch an, wenn weitere Sampling-
Punkte gezogen werden.

43

5 Globale Näherung von Szeneneigenschaften

Blue-Noise-Sampling mit Eckpunkten: Ein Problem des normalen Blue-Noise-Samplings
tritt in Kombination mit dem verwendeten adaptiven Sampling-Algorithmus 5.3 auf. Die
Sampling-Punkte, die auf den Randbereichen von mehreren Regionen liegen, werden für die
Berechnung der Werte aller anliegenden Regionen herangezogen. Insbesondere die Eckpunkte
der Regionen haben so einen Einfluss auf bis zu acht anliegende Regionen. Beim Blue-Noise-
Sampling werden diese Punkte jedoch nicht betrachtet – d. h. jeder Sampling-Punkt liefert
im Normalfall nur Informationen für eine einzelne Region. Durch die einfache Erweiterung
lässt sich dieser Nachteil beheben: Die ersten neu gewählten Punkte einer Region sind – wenn
nicht bereits untersucht – die Eckpunkte der Region. Bei weiteren Punkten wird nach dem
normalen Blue-Noise-Sampling Verfahren. Ein dadurch entstehender Nachteil ist, dass die
Gleichmäßigkeit der Verteilung abnimmt, da die Eckpunkte dicht an bereits untersuchten
Punkten liegen können.

Dies kann man im unteren Bild in Abbildung 5.1d und an Abbildung 5.2d erkennen. Der freie
Bereich um einen Sampling-Punkt wird häufiger durch andere (vorher gezogene) Sampling-
Punkte verletzt. Insgesamt entstehen durch das Blue-Noise-Sampling mit Eckpunkten jedoch
bei gleicher Sample-Anzahl Näherungen mit höherer Qualität als beim reinen Blue-Noise-
Sampling. Es kombiniert dadurch die Vorteile des Gitter-Samplings mit denen des Blue-Noise-
Samplings bei einer nur leicht geminderten Sampling-Qualität.

Die Anzahl der Samples, die für eine neue Region gezogen wird, wird durch folgende einfa-
che Heuristik bestimmt: Ein konstanter Wert plus der mit einer weiteren Konstante gewichtete
Durchmesser der Region. Werden die Konstanten zu klein gewählt, steigt das Risiko, dass
wesentliche Fluktuationen in der Eigenschaftsfunktion nicht entdeckt werden. Bei zu großen
Konstanten werden viele Samples für die großen Regionen aufgewendet und die kleineren
Details der Funktion bleiben bei gleicher Sample-Anzahl eher unbeachtet. Für Walkthrough-
Anwendungen haben sich folgende Werte als relativ robust herausgestellt: Durchmesser der
Region in Metern gewichtet mit einem Faktor 0.05Samples

Meter
plus 5 Samples.

5.5 Parallelisierung

Im Vergleich zum regelmäßigen Sampling erlaubt das adaptive Sampling die Erstellung globaler
Näherungen ähnlicher Qualität mit deutlich weniger Sampling-Punkten und damit in wesentlich
kürzerer Zeit. Um die Hürde für den Einsatz der in dieser Arbeit vorgestellten Methoden weiter
zu senken, kann diese Zeit durch Parallelisierung noch einmal verkürzt werden. Wenn eine
Szeneneigenschaft untersucht wird, die sich unabhängig von der verwendeten Hardware verhält,
dann können die Samples auch unabhängig voneinander auf verschiedenen Rechnersystemen
erhoben werden.

Das Gesamtsystem besteht aus einem Kontrollknoten und mehreren Sampling-Knoten, die
durch ein Netzwerk verbunden sind. Die Szene ist auf allen Sampling-Knoten verfügbar. Der
Kontrollknoten führt den Sampling-Algorithmus wie in Algorithmus 5.3 aus, jedoch mit einigen
Änderungen bei der Wahl und Untersuchung der neuen Sampling-Punkte für neu erstellte
Regionen (siehe Algorithmus 5.4). Nachdem die Region mit dem niedrigsten Qualitätswert in
neue Regionen unterteilt wurde, werden zunächst alle zu untersuchenden Positionen der neuen
Regionen gesammelt. Für die Auswertung der Szeneneigenschaft werden dann zu jedem freien

44

5.5 Parallelisierung

a) Gitter b) zufällig
gleichverteilt

d) Blue-Noise
mit Ecken

c) Blue-Noise

Abbildung 5.1: (oben) Durch unterschiedliche Sampling-Verfahren erzeugte Punktverteilungen
in einem Quadrat mit jeweils 1024 Punkten. (unten) Die Verteilung der relativen
Positionsdifferenzen für alle Punkte relativ zum Bildmittelpunkt; die Häufung
entlang der Hauptachsen liegt technisch in der Diskretisierung der Sampling-
Positionen begründet.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0.0

0.5

1.0

1.5

b) zufällig gleichverteilt c) Blue−Noise−Sampling d) Blue−Noise−Sampling mit Ecken
Sampling−Verfahren

m
in

im
al

er
 P

un
kt

ab
st

an
d

Abbildung 5.2: Verteilung minimal paarweiser Punktabstände durch unterschiedliche Sampling-
Verfahren (2-D-Sampling in einem Quadrat). Alle minimalen Abstände beim
Gitter-Sampling liegen bei 1.0.

45

5 Globale Näherung von Szeneneigenschaften

Sampling-Knoten die Parameter geschickt, die zum Berechnen der Szeneneigenschaft an einer
der Positionen nötig sind. Sobald ein Sampling-Knoten einen Wert ermittelt hat, wird dieser
an den Kontrollknoten zurückgesandt, der den Sampling-Knoten daraufhin wieder eine neue
Position zusendet, bis alle aktuell zu untersuchenden Positionen abgearbeitet sind.

Algorithmus 5.4: Paralleler adaptiver Samplingalgorithmus
1 ...
2 // Zeilen 1−6 aus Algorithmus 5.3
3 while(!abbruch())
4 var region← extrahiere Region mit geringster Qualität(priorityQueue)
5 var neueRegionen← teileAuf(region)
6 var neuePositionen← { }
7 foreach(neueRegion ∈ neueRegionen)
8 var p← wählePositionen(neueRegion , positionen)
9 neuePositionen← neuePositionen ∪ p

10 positionen← positionen ∪ p
11 while(neuePositionen 6= { })
12 if(freier Samplingknoten verfügbar)
13 var position = extrahiere wert aus neuePositionen
14 schicke (fs, position) an freien Samplingknoten
15 if(Wert von Samplinknoten verfügbar)
16 werte← werte ∪ { Wert von Samplingknoten }
17 foreach(neueRegion ∈ neueRegionen)
18 var bereichsWerte← sammle alle Werte aus werte die in neueRegion liegen
19 füge ein (priorityQueue⇐ (region , qualität(region , bereichsWerte)))
20 ...
21 // Zeilen 19−27 aus Algorithmus 5.3

Die Vorteile dieses Algorithmus liegen darin, dass das Originalverfahren für diese Erwei-
terung nur geringfügig geändert werden muss und dass durch die asynchrone Bearbeitung
der Berechnungen auch heterogene Knoten mit unterschiedlich performanter Grafikhardware
ohne größere Probleme verwendet werden können (bei der Untersuchung einer entsprechenden
Eigenschaft). Ein Nachteil des Verfahrens besteht darin, dass es nicht beliebig mit der Anzahl
der verfügbaren Knoten skaliert. Wenn mehr Rechner zur Verfügung stehen als in einem Schritt
Sampels gezogen werden, können diese nicht verwendet werden. Auch können am Ende jeder
Runde einige Sample-Knoten leerlaufen, bis die letzten Ergebnisse zur Verfügung stehen.

5.6 Auswertungsmöglichkeiten
Die globale Näherung von Szeneneigenschaften lässt sich auf mehrere Arten qualitativ und
qualitativ auswerten. Im Folgenden gebe ich einen Überblick über verschiedene Möglichkeiten
der Auswertung. Zur Demonstration verwende ich dabei eine einfache, virtuelle Szene (Szene 1)
bestehend aus 626 Bäumen und Wandfragmenten, die jeweils ein Objekt darstellen (siehe
Abbildung 5.3a). Die untersuchte Szeneneigenschaft ist die Anzahl sichtbarer Objekt (siehe
Abschnitt 4.2.2).

46

5.6 Auswertungsmöglichkeiten

5.6.1 Qualitative Auswertung durch Visualisierung

Das Ziel bei der Visualisierung von genäherten Szeneneigenschaften ist es, einen möglichst
einfachen und intuitiven Einblick in das Verhalten der untersuchten Funktion zu erlangen.
Insbesondere bei dem Entwurf von Renderingalgorithmen kann dies hilfreiche Hinweise für
Verbesserungen liefern, wenn bestimmte Aspekte des Verhaltens von Algorithmen positionsab-
hängig visualisiert werden.

Für die Visualisierung wird zunächst eine Abbildung des Wertebereichs der Funktion auf
Farbwerte (und optional auch Transparenzwerte) benötigt. Darauf basierend werden die
Regionen der genährten Szeneneigenschaft eingefärbt und dargestellt (siehe Abbildung 5.3b).
Wenn den Regionen nicht einzelne Werte, sondern Werteverläufe zugewiesen sind, lassen sie
sich durch entsprechende Farbverläufe darstellen (siehe Abbildung 5.3d).

Die Darstellung lässt sich noch durch verschiedene Parameter konfigurieren: Bei zweidi-
mensionalen Näherungen lassen sich zusätzlich zu den Farben auch noch Höhenwerte in die
Abbildung hinzunehmen. Hierdurch können ausgewählte Bereiche des Wertebereichs zusätzlich
zur Farbgebung noch deutlicher optisch hervorgehoben werden (siehe Abbildung 5.3c).

Ein Herausforderung stellt die Darstellung dreidimensionalen Näherungen als Volumendaten
dar. Werden alle Regionen teiltransparent übereinander gezeichnet, lassen sich daraus Infor-
mationen nur noch schwer ablesen. Um relevante Bereiche zu erkennen, lassen sich daher
zusätzlichen Filterregeln definieren, die Regionen mit einem bestimmten Wertebereich von der
Darstellung ausschließen. So lässt sich das Volumen von Bereichen der Szene mit bestimmten
Eigenschaften visualisieren. In Abbildung 5.3e wird beispielsweise der Bereich der Szene
hervorgehoben, in dem weniger als einhundert Objekte sichtbar sind.

5.6.2 Statistische Auswertung der Verteilung

Aus der genäherten Szeneneigenschaft lassen sich direkt einzelne statistische Werte, wie Mini-
mum, Maximum und Durchschnitt, ermitteln. Grafisch darstellen lässt sich die Verteilung der
Eigenschaft beispielsweise durch ein Histogramm; oder platzsparender durch einen Violinen-
Plot. Abbildung 5.3f zeigt beispielhaft die Verteilung der Anzahl der sichtbaren Objekte über
die in Abbildung 5.3b gezeigten Regionen.

Einige Punkte sind bei der Aufbereitung der statistischen Daten zu beachten:

• Von einer alleinigen Abbildung der Verteilung durch einen Boxplot rate ich ab, da man bei
der Verteilung nicht davon ausgehen kann, dass die Verteilung nur einen Häufungspunkt
besitzt.

• Die Werte der Regionen müssen mit der Größe der jeweiligen Region gewichtet werden.

• Das Volumen bzw. die Fläche, in der die Szeneneigenschaft genähert wurde, muss
mit beachtet und angegebenen werden, sonst kann der Informationsgehalt der Daten
erheblich leiden – ähnlich wie die Verwendung von statistischen Daten, die auf einem
nicht beschriebenen Kamerapfad aufgenommen wurden.

47

5 Globale Näherung von Szeneneigenschaften

(a) Szene 1 (b) Gefärbte 2-D-Regionen

(c) 2-D-Regionen mit Höhen (d) Gefärbte 2-D-Triangulierung der
Sampling-Punkte

(e) Darstellung des Volumens mit geringer Sicht-
barkeit

0 100 200 300 400
Anzahl sichtbarer Objekte

(f) Verteilung der Eigenschaft über die Flä-
che als Box- und Violinen-Plot

Abbildung 5.3: Unterschiedliche Auswertungsmöglichkeiten für die genäherte Szeneneigen-
schaften Anzahl sichtbarere Objekte in Szene Szene 1

48

5.7 Experimentelle Bewertung der Sampling-Verfahren

5.7 Experimentelle Bewertung der
Sampling-Verfahren

Das Ziel des adaptiven Sampling-Ansatzes ist die Erzeugung einer Näherung mit hoher Qualität
im Verhältnis zur untersuchten Zahl an Sampling-Punkten. Im Folgenden vergleiche ich vier
Sampling-Varianten miteinander: gleichmäßiges Sampling auf einem Gitter, adaptives Samp-
ling mit zufällig gleichverteilten Positionen, adaptives Blue-Noise-Sampling und adaptives
Blue-Noise-Sampling mit Ecken. Als Basis für den Vergleich habe ich die Szeneneigenschaft
Anzahl sichtbarer Objekte (6 Richtungen, Auflösung 10242 Pixel) gewählt, da sich die Struktur
vieler anderer Eigenschaften stark an der Objektsichtbarkeit orientiert (z. B. Renderingzeit
von Culling-Algorithmen). Als Szene habe ich das Power-Plant-Modell gewählt, welches
komplexe und sehr unterschiedliche Sichtbarkeitsverhältnisse bietet. Hinter dem Schornstein
ist beispielsweise ein Großteil der Szene verdeckt, wobei es aber auch Positionen im Inneren
und vor dem Hauptgebäude gibt, an denen bis zu 21 Prozent aller Objekte der Szene sichtbar
sind (274 von 1171).

Für die Messungen werden globale Näherungen der Szeneneigenschaft für 2-D- und 3-
D-Bereiche der Szene erstellt; jeweils einmal in einem Bereich, der die Szene relativ eng
umschließt und in einem Bereich mit doppelter Seitenlänge (siehe Abbildung 5.4). Um die
Qualität einer Näherung abzuschätzen, wird an 2000 gleichverteilt zufälligen Positionen inner-
halb der untersuchten Region der tatsächliche Wert der Szeneneigenschaft gemessen und der
Absolutwert der Differenz zu dem Wert der genäherten Szeneeingenschaft als Fehler gewertet.
Die Laufzeit zur Erstellung der Näherungen verläuft in den untersuchten Fällen linear mit
der Zeit zur Messung an einer Position. Diese beträgt mit dem für diese Arbeit eingesetzten
Testsystems (siehe Abschnitt 3.4) jeweils ca. 22 ms. Abbildung 5.5 zeigt einige charakteri-
stische Ergebnisse, bei denen die Verteilung des ermittelten Fehlers für die unterschiedlichen
Messungen aufgetragen ist. Eine Häufung von kleineren Fehlerwerten entspricht einer höheren
Qualität der zugrundeliegenden Näherung der Szeneneigenschaft.

Was generell an den Messungen auffällt, ist, dass es für alle Sampling-Methoden Ausreißer
gibt, an denen die gemessenen Werte weit von den Werten der genäherten Szeneneigenschaft
abweichen. Dies stellt weniger ein Problem für die globale Einschätzung des Verhaltens eines
Algorithmus dar, sondern eher für die Verwendung der genäherten Szeneneigenschaft zur
Laufzeit. Darauf gehe ich noch einmal in den Abschnitten 7.5 und 7.6 ein.

Sowohl im 2-D-Fall als auch im 3-D-Fall zeigt von den adaptiven Sampling-Varianten
das Blue-Noise-Sampling mit Ecken die höchste Qualität, wobei das zufällig gleichverteilte
Sampling die niedrigste Qualität aufweist. Im Folgenden wird daher nur noch das adaptive
Blue-Noise-Sampling mit Ecken weiter betrachtet. Der Vergleich zwischen dem adaptiven
Blue-Noise-Sampling mit Ecken und dem Referenzverfahren ist weniger eindeutig. Das
gleichmäßige Sampling ist im Vorteil, wenn relativ wenige Samples in einer insgesamt stark
fluktuierenden Region gezogen werden: Der durchschnittliche Fehler liegt im 3-D-Fall mit
1024 Samples in der kleinen Region beim Gitter bei 12.65 und beim adaptiven Sampling bei
19.22. In allen anderen Fällen ähneln sich die Verteilungen der Fehler so sehr, dass kein klarer
Vorsprung ausgemacht werden kann. Das Argument, das letztlich für das adaptive Blue-Noise-
Sampling mit Ecken im Vergleich zum regelmäßigen Sampling spricht, ist die Möglichkeit,

49

5 Globale Näherung von Szeneneigenschaften

1024cSamples,ckleinecRegion,c
Gitterc(32*32)

1024cSamples,ckleinecRegion,c
Blue-NoisecmitcEcken

4096cSamples,cgroßecRegion,c
Gitterc(64*64)

4096cSamples,cgroßecRegion,c
Blue-NoisecmitcEcken

Abbildung 5.4: Visualisierung der genäherten Szeneneigenschaft Anzahl sichtbarer Objekte in
der Power-Plant-Szene mit unterschiedlichen Sampling-Verfahren bzw. Para-
metern; Rot: 400 Objekte, Violett: 200 Objekte, Blau: 100 Objekte, Türkis: 50
Objekte, Grün: 20 Objekte

50

5.7 Experimentelle Bewertung der Sampling-Verfahren

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

2−D,
 1024 Samples

2−D,
 1024 Samples,
 große Region

2−D,
 4096 Samples,
 große Region

3−D,
 1000 Samples

3−D,
 8000 Samples

3−D,
 15625 Samples,

 große Region
Messreihe

F
eh

le
r

in
 d

er
 A

nz
ah

l s
ic

ht
ba

re
r

O
bj

ek
te

Samplingverfahren

Gitter

adaptiv zufällig

adaptiv Blue Noise

adaptiv Blue Noise mit Ecken

Abbildung 5.5: Abschätzung der Qualität unterschiedlicher Sampling-Verfahren anhand der
Verteilung der Abweichung bei 2000 zufällig gewählten Positionen in der
Power-Plant-Szene

die Sampling-Anzahl flexibel zu wählen – wobei nur bei geringer Sampling-Anzahl mit einem
Qualitätsverlust zu rechnen ist. Um die Gesamtqualität besser einschätzen zu können, zeigt
Abbildung 5.6 die Korrelation zwischen gemessenen und genäherten Werten für das adaptive
Blue-Noise-Sampling mit Ecken in der Power-Plant-Szene.

5.7.1 Benötigte Anzahl an Samples
Wie aus den vorangegangenen Messungen deutlich wird, ist es für die Qualität von einzelnen,
positionsbezogenen Anfragen an die genäherte Szeneneigenschaft notwendig, eine große
Anzahl an Sampling-Punkten zu verwenden. Wenn jedoch keine einzelnen Werte benötigt
werden, sondern eine statistische Auswertung der Verteilung der Szeneneigenschaft, lassen sich
mit relativ wenigen Sampling-Punkten zuverlässige Aussagen treffen. Im Folgenden wird dazu
wiederum die Objektsichtbarkeit in der Power-Plant-Szene in einer 3-D-Region untersucht (mit
dem adaptiven Blue-Noise-Sampling mit Ecken) und die Verteilung der Szeneneigenschaft
für eine unterschiedliche Anzahl von Sampling-Punkten miteinander verglichen. Bereits ab
800 Samples verändern sich trotz der komplexen Sichtbarkeitsverhältnisse die 0.25-, 0.5- und
0.75-Quantile sowie der Durchschnitt nur noch leicht (siehe Abbildung 5.7 und Tabelle 5.1).
Wenn es bei einer Untersuchung um Extremwerte geht, wie beispielsweise der geschätzten
höchsten Renderingzeit, gilt jedoch wie bei Positionsanfragen auch: je mehr Samples desto
besser.

51

5 Globale Näherung von Szeneneigenschaften

0

100

200

300

0 100 200 300
gemessene Anzahl sichtbarer Objekte

ge
nä

he
rt

e
A

nz
ah

l s
ic

ht
ba

re
r

O
bj

ek
te

Abbildung 5.6: Korrelation zwischen 2000 gemessenen und den genäherten Werte für die
Anzahl der sichtbaren Objekte mit dem adaptive Blue-Noise-Sampling mit
Ecken, Power-Plant-Szene, 3-D-Region mit 15625 Samples

●●

●

●

●
●

●●

●

●●●

●

●

0

100

200

 100 200 400 800 1600 3200 6400 12800
Anzahl Samples

A
nz

ah
l s

ic
ht

ba
re

r
O

bj
ek

te

Abbildung 5.7: Verteilung der Werte in der genäherten Szeneneigenschaft Anzahl sichtbarer
Objekte in Abhängigkeit der Anzahl der verwendeten Samples, Power-Plant-
Szene, 3-D-Region

52

5.7 Experimentelle Bewertung der Sampling-Verfahren

Samples Minimum 0.25-Quantil Median 0.75-Quantil Maximum Durchschnitt
100 76.3 96.0 101.1 113.8 165.4 106.8
200 54.8 83.0 109.0 123.6 204.8 105.8
400 55.2 82.2 107.8 132.0 204.8 107.2
800 47.7 81.0 108.2 139.3 210.4 108.6

1600 45.4 78.1 105.5 140.2 214.7 110.9
3200 12.4 75.3 105.2 141.9 222.4 111.3
6400 12.4 76.0 105.3 144.1 256.7 112.0

12800 7.6 75.4 105.4 144.7 278.2 112.2

Tabelle 5.1: Eckdaten der Verteilung der genäherten Szeneneigenschaft Anzahl sichtbarer
Objekte in Abhängigkeit der Anzahl der verwendeten Samples, Power-Plant-Szene,
3-D-Region

53

6 Approximatives Rendering mit
Progressive-Blue-Surfels

Abbildung 6.1: Beispiel für die Darstellung einer komplexen Szene durch das Progressive-
Blue-Surfels-Verfahren. Im Frustum befinden sich ca. 5.8 Milliarden Drei-
ecke, verteilt auf ca. 480 Tausend Szenengraphknoten. Dargestellt werden ca.
14 Millionen Dreiecke und 8 Millionen Punkte mit 11.8 fps.

Das im Rahmen dieser Arbeit entwickelte Progressive-Blue-Surfels-Näherungsverfahren
ist ein Renderingverfahren für die interaktive Darstellung hochkomplexer virtueller Szenen.
Die grundlegende Idee des Verfahrens ist es, weiter entfernte Teile der Szene durch eine
Punktmenge geringerer Komplexität anzunähern und damit die Menge der tatsächlich geren-
derten Geometrie deutlich zu reduzieren. Was das Verfahren von anderen, punktbasierten
Näherungsverfahren unterscheidet, ist im Wesentlichen die Art, in der die Punkte erzeugt und
sortiert werden: Die Punkte werden auf der Oberfläche der von außen sichtbaren Geometrie
verteilt und dabei in einer Folge so sortiert, dass jeder Präfix der verwendeten Punkte eine
möglichst gute Näherung der Geometrie darstellt – je mehr Punkte verwendet werden, desto
besser wird die Qualität der Näherung. Dadurch lassen sich zur Laufzeit die Anzahl der Punkte,
die als Ersatz für einen Teil der Szene gerendert werden, sehr feinschrittig an die projizierte
Größe des angenäherten Szenenteils angepasst werden. Dies erlaubt eine gute Ausnutzung
der Renderingkapazität und reduziert gleichzeitig die visuellen Artefakte beim Umschalten
zwischen verschiedenen Qualitätsstufen. Das Verfahren ist relativ robust in Bezug auf die
geometrische Struktur der angenäherten Objekte und erlaubt so die unkomplizierte Darstellung

55

6 Approximatives Rendering mit Progressive-Blue-Surfels

sehr großer Szenen mit Objekten unterschiedlicher Herkunft. Abbildung 6.1 zeigt als Beispiel
eine Szene aus komplexen CAD-Modellen (Power-Plant; einfache Materialien, hohe Komple-
xität), modellierten Bäumen (organische Struktur, Materialien mit Texturen und Shader) und
einer prozedural generierten Landschaft.

Beim Erstellen der Surfels (Punkte auf der Oberfläche) in der Vorverarbeitung, wird ange-
strebt, dass jeder Punkt einen möglichst großen Teil der Oberfläche abdeckt, wobei der durch
einen Punkt abgedeckte Bereich mit der Position des Punktes in der sortierten Folge (und damit
seine Relevanz) abnimmt. Anders ausgedrückt soll die kürzeste Distanz zwischen zwei Punkten
maximiert werden (angestrebte Blue-Noise-Eigenschaft), wobei der erwartete minimale Ab-
stand mit der Länge des betrachteten Präfix abnimmt. Abbildung 6.2 zeigt beispielhaft Präfixe
unterschiedlicher Länge zum Power-Plant-Modell. Das zugrundeliegende Sampling-Verfahren
orientiert sich dabei an dem Sampling-Verfahren, dass auch für die Verteilung der Messpunkte
für die globale Approximation der Szeneneigenschaften verwendet wird (siehe Abschnitt 5.4).

In Abschnitt 6.1 beschreibe ich die Berechnung der Punkte und ihre Einbettung in den
Szenengraph. In Abschnitt 6.2 beschreibe ich das Renderingverfahren unter Verwendung der
Punkte. Eine Evaluierung des Verfahrens in Hinblick auf Laufzeit und Bildqualität erfolgt
später im Rahmen der Anwendung von genäherten positionsabhängigen Szeneneigenschaften
in Abschnitt 7.2.

20 Surfels 80 Surfels 320 Surfels 1.2k Surfels

5.1k Surfels 20k Surfels
40k Surfels +

Shader
Original

12.7M Polygons

Abbildung 6.2: Unterschiedliche Präfixe aus einer Folge von Surfels für das Power-Plant-
Modell. Im vorletzten Bild wird die Größe der Surfels individuell im Shader
angepasst. Das letzte Bild zeigt das Original.

6.1 Vorverarbeitung: Berechnung der Surfels
Das Ziel der Vorverarbeitung des Verfahrens ist es, für komplexe Teilbäume eines Szenen-
graphen jeweils eine Surfel-Repräsentation zu berechnen und diese mit dem jeweiligen Teil-
baumwurzelknoten zu assoziieren. Die Eingabe ist der Szenengraph in einer geeigneten,

56

6.1 Vorverarbeitung: Berechnung der Surfels

räumlich lokalen Struktur (beispielsweise auf Basis eines Octrees) und ein Satz an Parametern
(eine Zusammenfassung aller Parameter folgt in Abschnitt 6.3). Im Folgenden beschreibe
ich zunächst, wie eine einzelne Surfel-Repräsentation für einen Teilbaum berechnet wird. Im
Anschluss beschreibe ich dann, wie die Surfel-Repräsentationen für eine komplette Szene
generiert werden.

6.1.1 Berechnung einer Surfel-Repräsentation

Das Ziel dieses Schrittes ist die Berechnung einer Surfel-Repräsentation für einen Teilbaum;
d. h. eine Folge von 3-D-Punkten, von denen jeder Präfix eine Approximation der von außen
sichtbaren Geometrie des Teilbaums darstellt. Ein einzelner Punkt besteht aus einer 3-D-
Position, eines 3-D-Normalenvektors, einer oder mehrerer Farbwerte (unbeleuchtet) und einem
Wert für die relative Größe des Punktes.

Erstellung einer initialen Menge möglicher Surfels

Der Algorithmus zur Erstellung der Surfel-Folge beginnt mit der Ermittlung einer initialen
Menge von möglichen Surfeln. Hierzu wird der Teilbaum aus mehreren Richtungen in einer
orthografischen Projektion gerendert. Dabei werden gleichzeitig in drei Texturen jeweils die
3-D-Positionen, die 3-D-Normalenvektoren, sowie die Farbe der Oberflächen der Geometrie
geschrieben. Die Auflösung beim Rendering ist ein Parameter des Verfahrens. Außer der
Beleuchtung werden für diesen Rendervorgang alle Oberflächeneigenschaften der Geometrie,
wie etwa Materialeigenschaften, Texturemapping oder Normalmapping, verwendet. Die Bilder
der unterschiedlichen Richtungen werden nebeneinander in dieselben Texturen gerendert (Ab-
bildung 6.3 zeigt ein Beispiel hierfür). Als Richtungen haben sich die acht Richtungen von den
Eckpunkten eines den Teilbaum umschließenden Würfels in Richtung des Würfelmittelpunktes
bewährt. Weniger Richtungen, beispielsweise entsprechend der sechs Seiten eines Würfels,
führen auch bei einfachen Objekten schon zu Löchern in der Surfel-Repräsentation; mehr Rich-
tungen reduzieren zwar Fehler bei Objekten mit tiefen Einkerbungen abseits der untersuchten
Richtungen, erzeugen jedoch in der Praxis meist unnötigen Mehraufwand.

Im nächsten Schritt wird für jeden belegten Pixel ein Datensatz mit entsprechender Position,
Normale und Farbe erstellt. Diese Datensätze bilden die initiale Menge der möglichen Surfels.
Zusätzlich wird für die Surfel-Repräsentation des Teilbaums noch das Verhältnis zwischen
der Anzahl der belegten Pixel in den Texturen zur Gesamtauflösung der Texturen ermittelt
(im Folgenden relative Abdeckung genannt). Dieser Wert wird beim Rendering als Heuristik
dafür verwendet, wie sich die projizierte Fläche des Teilbaums relativ zur projizierten Fläche
der Bounding-Box des Teilbaums verhält. Hierbei handelt es sich zwar nur um einen Wert
für alle Richtungen, er erlaubt jedoch eine sehr einfache und automatische Einbeziehung
unterschiedlicher Objektformen auch bei heterogenen Szenen; ein Würfel bedeckt einen großen
Teil seiner projizierten Bounding-Box, ein Baum mit dünnen Ästen ggf. nur einen kleinen
Bruchteil. Das hier als Beispiel verwendete Power-Plant-Modell hat beispielsweise eine relative
Abdeckung von 0.196.

57

6 Approximatives Rendering mit Progressive-Blue-Surfels

Abbildung 6.3: Beispiel für die Texturen, aus denen die Menge möglicher Surfels erzeugt wird.
Oben: Farben; Mitte: Normalen in Weltkoordinaten; Unten: Positionen in
Weltkoordinaten.

Progressives Sampling

Aus der im vorherigen Schritt erzeugten initialen Surfel-Menge wird im Anschluss durch
einen Zufallsprozess eine Teilfolge ausgewählt. Das hierbei eingesetzte Sampling-Verfahren
entspricht von der grundsätzlichen Idee dem Verfahren zur Bestimmung der Positionen bei der
Approximation globaler Szeneneigenschaften (siehe Abschnitt 5.4.2) – mit dem wesentlichen
Unterschied, dass die zu wählenden Positionen nicht frei aus einem 3-D-Volumen gewählt
werden können, sondern aus einer gegebenen Menge von Punkten ausgewählt werden müssen.

Der Prozess beginnt mit der Wahl eines beliebigen zufälligen Punktes aus der initialen
Menge der möglichen Surfels. Der Punkt wird in die Folge der Surfels eingefügt und aus der
Menge der möglichen Surfels entfernt. Bis die Folge der Surfels die gewünschte Anzahl an
Surfeln (ein Parameter des Algorithmus) erreicht hat oder die Menge der möglichen Surfels
leer ist, wird iterativ ein neuer Surfel gewählt, dessen Position möglichst weit von allen vorher
gewählten Surfeln entfernt liegt. Um eine für die Praxis anwendbare Laufzeit des Algorithmus
zu erreichen, wird nicht der insgesamt am weitesten entfernte Surfel gesucht, sondern es wird
eine zufällige Teilmenge aus der Menge der möglichen Surfel ausgewählt. Hieraus wird der
beste Kandidat (mit dem größten Abstand zu allen bisher gewählten Surfels) in die Folge der
Surfel übernommen und aus der Menge der möglichen Surfel entfernt. Die zufällige Stichprobe
wird in den ersten Runden für die Auswahl jedes Surfels neu gezogen. Um die Laufzeit weiter
zu senken wird eine Heuristik angewendet: Nach jeweils 500 Runden wird die Anzahl der
Runden, für die eine Stichprobe verwendet wird, um eins erhöht – bis irgendwann die Hälfte
der Surfels aus einer Stichprobe in die Folge übernommen wird. Dies folgt der Überlegung,
dass die Rolle eines einzelnen Surfels für die Qualität der Näherung mit der Länge des Präfixes
sinkt, so dass die Gesamtqualität der erzeugten Folge nicht zu stark beeinflusst wird. Als
Startgröße für die Stichprobe haben sich in der Praxis Werte in der Größenordnung von 100 bis

58

6.1 Vorverarbeitung: Berechnung der Surfels

200 Punkten bewährt; als Standardwert wurden 160 Punkte gewählt.

Bestimmung der relativen Punktgrößen

Während des Renderings können die dargestellten Punkte eine unterschiedliche Größe anneh-
men. Dies wird durch ihre Ausrichtung zur Kamera bestimmt, aber auch von der individuellen
relativen Punktgröße der Punkte. Diese dient als Maß dafür, wie groß die dargestellte Fläche
eines Punktes relativ zur projizierten Fläche des Teilbaums ist, um die Kontur des angenäherten
Teilbaums möglichst gut zu erhalten. Liegt ein Surfel mittig auf einer größeren Fläche (im
Power-Plant beispielsweise auf dem Hauptgebäude), sollte der Wert groß sein, um einen großen
Bereich abzudecken. Liegt ein Surfel auf einer filigraneren Struktur (im Power-Plant beispiels-
weise auf dem Kran), sollte der Wert klein sein um die Struktur auch aus der Entfernung
möglichst wenig zu ändern.

Um diesen Wert zu schätzen, wird abschließend folgende Heuristik für jeden Surfel ange-
wendet: Die relative Punktgröße eines Surfels entspricht der durchschnittlichen Summe der
Cosinus-Werte der Winkel zwischen dem Normalenvektor des Surfels und den Normalenvekto-
ren seiner nächsten Nachbarn. Als Anzahl von betrachteten Nachbarn hat sich in der Praxis 20
als guter Wert herausgestellt.

Die Vorteile der Heuristik sind, dass sie sehr einfach und schnell zu berechnen ist, jedoch vor
allem, dass sie ohne zusätzliche Annahmen über die geometrische Struktur des approximierten
Objektes relativ robust funktioniert. Abbildung 6.4 zeigt das Ergebnis der Heuristik durch eine
farbliche Kodierung der Punktgrößen.

Abbildung 6.4: Visualisierung der relativen Punktgrößen für unterschiedliche Modelle.
Verlauf: kleine relative Punktgröße (rot), mittlere relative Punktgröße (grün),
große relative Punktgröße (blau)

6.1.2 Hierarchische Berechnung der Surfel-Repräsentationen

Das Ziel bei der Berechnung der Surfel-Repräsentationen für eine komplette Szene ist, dass
möglichst nur für die Knoten im Szenengraph Surfels berechnet werden, für die durch die
Verwendung der Surfels beim Rendering ein Geschwindigkeitsvorteil erreicht werden kann.

59

6 Approximatives Rendering mit Progressive-Blue-Surfels

Dazu wird der Szenengraph traversiert und eine Approximation für diejenigen Knoten erzeugt,
in dessen Teilbaum die Menge an Geometrie einen bestimmten Wert übersteigt. Der Wert ist
ein Parameter des Verfahrens und sollte sich in der gleichen Größenordnung bewegen, wie die
Anzahl der Surfels, die für einen Knoten berechnet werden.

Für instanziierte Teilbäume – d. h. für Teilbäume, die auch an anderer Position in der Szene,
jedoch mit der gleichen Geometrie, vorhanden sind – brauchen Surfels nur einmal berechnet zu
werden. Das eine Approximation an verschiedenen Positionen (und Ausrichtungen) benutzt
werden kann, wird dadurch ermöglicht, dass die Lichtberechnung erst zur Laufzeit durchgeführt
wird, und nicht bereits in die Surfels kodiert wird.

Dynamische Objekte müssen gesondert behandelt werden. Bewegt sich ein Objekt als
Ganzes, ohne sich zu verformen, kann für die Darstellung auch eine Surfel-Repräsentation
verwendet werden, falls für die Elternknoten bis zum Szenenwurzelknoten keine Surfels
dargestellt werden. Verformbar dynamische Objekte lassen sich nicht ohne Weiteres mit Surfels
darstellen.

6.1.3 Speicherplatzbedarf

Die Daten für einen einzelnen Surfel setzten sich im Standardfall aus einer 3-D-Position, einer
3-D-Normalen, eines RGB-Farbwertes und einem Wert für die relative Punktgröße zusammen.
Die Position wird als drei Fließkommawerte mit je 4 Byte gespeichert, die Normale durch
4 Byte (es sind prinzipiell nur 3 Byte notwendig, aus technischen Gründen muss jedoch beim
Rendering ein 4 Byte Alignment verwendet werden) und die Farbe mit der relativen Punktgröße
zusammen mit weiteren 4 Byte; insgesamt also 20 Byte pro Surfel. Für eine Surfel-Näherung
eines Teilbaums werden zusätzlich noch einige Metainformationen benötigt: für das Speichern
in einer Datei werden in der hier verwendeten Implementierung 92 Byte Speicherplatz benötigt;
während des Renderings im Hauptspeichers liegt der zusätzliche Speicherbedarf in einer
ähnlichen Größenordnung. Für eine Näherung mit 40000 Surfels werden so ca. 800 kByte
benötigt.

6.2 Rendering: Darstellung mit Hilfe von Surfels

Das Ziel bei der Darstellung der Szene mittels Surfels ist das Erreichen einer hohen Bildrate
bei gleichzeitig guter Bildqualität. Ein weiteres Ziel ist, dass die bei vielen hierarchischen
Näherungsverfahren auftretenden Artefakte beim Umschalten der Näherungen möglichst gering
ausfallen (sogenannte Popping-Artefakte).

Für das Rendering eines Frames muss für jeden Knoten des Szenengraphen im Frustum ent-
schieden werden, ob seine Originalgeometrie dargestellt wird, ob seine Surfel-Repräsentation
dargestellt wird oder ob der Knoten ausgelassen wird. Für jede dargestellte Surfel-Repräsentation
muss die Größe und die Anzahl der dargestellten Punkte festgelegt werden. Um dies zu errei-
chen werden beginnend mit dem Wurzelknoten folgende Schritte durchgeführt:

• Liegt der Knoten außerhalb des Frustums, wird er nicht weiter behandelt.

60

6.2 Rendering: Darstellung mit Hilfe von Surfels

• Ist die projizierte Größe der Bounding-Box des Knotens größer als die maximale proji-
zierte Größe oder enthält der Knoten keine Surfels, dann wird für einen inneren Knoten
der Algorithmus für die Kinder ausgeführt oder für einen Blattknoten die enthaltene
Geometrie gerendert.

• Ist die projizierte Größe der Bounding-Box des Knotens kleiner oder gleich der minimalen
projizierte Größe und enthält der Knoten Surfels, dann wird ein Präfix der Surfels des
Knoten gerendert und die Traversierung für den Teilbaum des Knotens abgebrochen.
Die Länge des Präfixes wird bestimmt durch das Produkt aus der projizierten Größe der
Bounding-Box des Knotens, der relativen Abdeckung des Knotens (siehe Abschnitt 6.1.1)
und einem einstellbaren Überzeichnungsfaktor. Übersteigt der Wert die Anzahl der
verfügbaren Surfel wird die gesamte Surfel-Folge dargestellt. In diesem Fall wird die
vorgegebene Punktgröße der Sampling-Punkte zusätzlich im Verhältnis der projizierten
Fläche zur Anzahl dargestellter Surfels vergrößert, um das Entstehen von Löchern in der
Oberfläche zu reduzieren.

• Liegt die projizierte Größe der Bounding-Box des Knotens zwischen der minimalen
projizierten Größe und maximalen projizierten Größe und enthält der Knoten Surfels,
wird sowohl ein Präfix der Surfel gerendert, als auch die Kinder des Knotens weiter
traversiert (bzw. die enthaltene Geometrie gerendert). Sowohl die Länge des Präfixes als
auch die vorgegebene Punktgröße werden linear zwischen Null und den Werten im Falle
der minimalen Größe interpoliert (minimale Werte bei maximaler projizierter Größe,
größte Werte bei minimaler projizierter Größe). Durch diesen Schritt wird ein optisch
weicher Übergang zwischen der Verwendung der Näherungen auf unterschiedlichen
Ebenen im Baum erreicht und Popping-Artefakte bei der Navigation durch die Szene
reduziert.

6.2.1 Rendern eines Surfel-Präfixes

Die Darstellung eines Surfel-Präfixes geschieht technisch durch das Rendering einer Folge von
Punktprimitiven unter Verwendung eines Shaders. Die Punktprimitive sind in einem fortlau-
fenden Speicherbereich als Vertex-Daten abgelegt; vorzugsweise im Speicher der Grafikkarte.
Der Shader zur Darstellung arbeitet wie ein Standard-Shader zur Darstellung von Punktwolken
(z. B. mit Phong-Shading), wobei die Oberflächeneigenschaften in den Vertex-Daten der Punkte
kodiert sind. Eine zusätzliche Berechnung besteht darin, dass für jeden Punkt individuell die
Punktgröße eingestellt wird. Dazu wird die vorgegebene Punktgröße (vorgegeben durch das
Traversierungsverfahren) gewichtet mit der relative Punktgröße (siehe Abschnitt 6.1.1) und
dem Cosinus des Winkels zwischen der Oberflächennormale des Punktes und der Sichtrichtung.
Dadurch werden der Kamera abgewandte Punkte ausgeblendet. Punkte, die auf einer zur
Kamera steilen Oberfläche liegen oder eine kleine relative Punktgröße besitzen, werden als
einzelne Pixel dargestellt. Punkte auf der Kamera im flachen Winkel zugewandten Oberflächen
mit einer größeren relativen Punktgröße werden als größere Flächen dargestellt. Diese Flächen
sind im Normalfall kreisförmig oder quadratisch, in Abhängigkeit von den verwendeten Rende-
ringparametern. In Abbildung 6.5 wird die Auswirkung des Shaders auf die Bildqualität an

61

6 Approximatives Rendering mit Progressive-Blue-Surfels

einem Beispiel verdeutlicht. Durch die individuelle Anpassung der Punktgrößen bleiben mehr
Details erkennbar und auch die Kontur bleibt besser erhalten; insgesamt wirkt die Näherung
jedoch noch immer etwas voluminöser als die Originalgeometrie.

40k Surfels Original
12.7M Polygons

40k Surfels +
Shader

140 px

Abbildung 6.5: Auswirkungen der individuellen Punktgrößen auf die Bildqualität am Beispiel;
Vergrößerung ohne Multisampling.

6.3 Überblick über die Parameter des Verfahrens

Die folgende Aufzählung fasst alle Parameter des Verfahrens zusammen und gibt Hinweise für
sinnvolle Standardwerte:

Vorverarbeitung

• Die Auflösung beim Rendern der Texturen bestimmt die Größe der initialen Surfel-Menge.
Dies hat Einfluss auf die Laufzeit der Vorverarbeitung und Qualität der gewählten Surfel-
Folge. Die gewählte Auflösung sollte deutlich größer sein, als die maximale projizierte
Größe während des Renderings.
Standardwert: 10242 Pixel

• Die Anzahl der Surfel dient als Abbruchkriterium für den Sampling-Prozess. Der Wert be-
einflusst die Laufzeit der Vorverarbeitung, den Speicherbedarf der Surfel-Repräsentationen
und die maximale Größe, für die eine Surfel-Repräsentation mit guter Bildqualität ver-
wendet werden kann.
Standardwertebereich: 40000 bis 80000 Surfel

• Die Startgröße der Stichprobe bestimmt, wie groß die gezogene Stichprobe aus der
initialen Surfel-Menge in der ersten Runde ist. Der Wert beeinflusst zum einen die
Qualität der Sampling-Verteilung, zum anderen die Laufzeit des Samplings. Hohe Werte
sorgen potentiell für eine höhere Qualität, aber auch für eine höhere Laufzeit.
Standardwert: 160

62

6.4 Experimentelle Bewertung der Sampling-Verteilung

Rendering

• Die minimale projizierte Größe bestimmt, ob ein Knoten entweder angenähert wird oder
weiter traversiert (bzw. gerendert) wird. Bei zu kleinen Werten wird zu viel Geometrie
dargestellt (hohe Renderingzeit), bei zu großen Werten sinkt die Bildqualität.
Standardwert: 1002 Pixel

• Die maximale projizierte Größe bestimmt relativ zur minimalen projizierten Größe die
Länge der Übergangsphase, für die eine Surfel-Repräsentation zusätzlich dargestellt
wird. Bei einem zu kleinen Wert wird der Wechsel der Darstellung zwischen zwei
Ebenen im Szenengraph bei Bewegung deutlicher sichtbar, bei zu großen Werten werden
überflüssige Punkte dargestellt; ggf. sinkt die Bildqualität etwas.
Standardwert: 2002 Pixel

• Der Überzeichnungsfaktor beeinflusst die Anzahl der gerenderten Punkte in Abhängigkeit
der projizierten Größe und dient zum Ausgleich der Ungenauigkeit der geschätzten
relativen Abdeckung. Ein zu großer Wert führt zu unnötig gerenderten Punkten (hohe
Renderingzeit), ein zu kleiner Wert führt zu Löchern in der Darstellung.
Standardwert: 4

• Die vorgegebene Punktgröße beeinflusst die Größe der gerenderten Punkte. Ein zu
kleiner Wert führt zu Löchern in der Darstellung bei Surfel-Repräsentationen mit großer
projizierter Größe. Ein zu großer Wert führt zum „Ausfransen“ der Silhouette der
dargestellten Geometrie.
Standardwert: 7

6.4 Experimentelle Bewertung der
Sampling-Verteilung

Im Folgenden werden verschiedene Eigenschaften der Sampling-Verteilung untersucht. Ein
wichtiges Maß ist dabei der minimale relative Punktabstand. Der minimale Punktabstand
gibt für einen Punkt die minimale euklidische Distanz zu seinem nächsten Nachbarn an. Der
minimale relative Punktabstand ist normiert mit der Länge der Diagonalen der Bounding-Box
des untersuchten Objektes. Durch das Ziel der gleichmäßigen Verteilung der Punkte auf
der Oberfläche ist die Verteilung der minimalen Punktabstände ein Maß für die Qualität der
Verteilung.

6.4.1 Stabilität des Zufallsprozesses

Da es sich bei dem Sampling-Prozess um einen Zufallsprozess handelt, soll zunächst die
Stabilität des Prozesses betrachtet werden. Dazu wurden 100-mal Surfels für das Power-Plant-
Modell berechnet und die Verteilung der kleinsten, mittleren und größten, minimalen Abstände
für unterschiedlich lange Präfixe berechnet (siehe Abbildung 6.6).

63

6 Approximatives Rendering mit Progressive-Blue-Surfels

●
●

●

●

●
●

●
●
●

●
●

●
●
●●

●●

●

●●

●●●●●●●● ●●● ●

●

●

●

●●

●

●
●

●●
●

●

0.00

0.03

0.06

0.09

128 256 512 1024 2048 4096 8192 16384 32768
Länge des Präfixes

m
in

im
al

e
re

la
tiv

er
 P

un
kt

ab
st

an
d

größter minimaler Abstand

mittlerer minimaler Abstand

kleinster minimaler Abstand

Abbildung 6.6: Verteilung der kleinsten, mittleren und größten minimalen Punktabstände in
100 Durchläufen im Verhältnis zur Präfixlänge; Power-Plant-Modell

Es zeigt sich, dass sich die mittleren minimalen Abstände sehr stabil verhalten. Bei kurzen
Präfixen variieren die größten minimalen Abstände relativ stark; ab einer Länge von 1024
nähern sich die Werte jedoch deutlich an. Die kleinsten minimalen Abstände zeigen im
Bereich von 512 und 1024 einige Ausreißer, stabilisieren sich jedoch bei längeren Präfixen bei
Null. Aufgrund der insgesamt geringen Fluktuation gehe ich im Weiteren davon aus, dass auch
einzelne Surfel-Verteilungen eines Modells als Repräsentanten des Prozesses in der Evaluierung
verwendet werden können, insbesondere für längere Präfixe.

6.4.2 Einfluss des genäherten Objektes

Eine wesentliche Eigenschaft des Progressive-Blue-Surfel-Verfahrens ist seine Robustheit
gegenüber der geometrischen Struktur der genäherten Objekte. Zur experimentellen Unterstüt-
zung dieser Behauptung wurden für unterschiedliche Modelle (Drache, Power-Plant und ein
Würfel; siehe auch Abbildung 6.4) Surfels erstellt und die Verteilung der minimalen Abstände
betrachtet (siehe Abbildung 6.7). Als Referenz wurde für das Würfelmodell eine weitere
Messreihe erhoben, bei der die Punkte nicht über das Progressive-Blue-Surfels-Verfahren
ermittelt wurden, sondern zufällig gleichverteilt aus der Menge der initialen Surfels.

Aus den Messungen ist zu erkennen, dass sich sich die Verteilung der minimalen Abstände
für die drei untersuchten Modelle ähnlich verhält: Die minimalen Abstände der Punkte konzen-
trieren sich relativ stark um den Median, es gibt jedoch einige Ausreißer, an denen einzelne
Surfels deutlich dichter aneinander liegen. Insgesamt nehmen die minimalen Abstände mit der
Länge des Präfixes ab. Damit zeigen die Verteilungen bei allen Modellen insgesamt das für die
Progressive-Blue-Surfels gewünschte Verhalten.

Es zeigt sich jedoch auch, dass für das Würfelmodell die Punkte einen größeren minimalen

64

6.4 Experimentelle Bewertung der Sampling-Verteilung

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●
●●

●●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●
●

●
●
●●
●

●

●
●
●
●

●
●●●

●●

●●

●

●

●

●●

●

●
●

●●

●
●●●

●●

●●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●
●

●
●

●●

●

●●

●
●●●
●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●
●●
●

●

●

●
●
●

●●

●●●

●

●
●●
●

●

●
●●●
●

●●●

●●
●
●
●●
●
●

●●
●

●

●

●●

●●

●●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●
●

●

●

●●●
●

●

●

●●

●

●●

●

●
●
●

●
●●

●

●●

●●

●

●

●●

●●

●

●

●

●
●●●●

●●

●●

●

●●

●●

●●

●
●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●
●●
●
●

●

●
●●

●

●
●●

●●

●●

●●

●●

●●
●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●●

●●●●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●
●

●●

●

●
●
●●●●

●●

●●

●●

●●

●●

●

●●
●

●●

●●

●●

●●

●●

●●

●●
●

●
●

●

●

●
●

●●

●
●
●

●●

●
●

●
●
●

●●

●

●

●

●●

●

●●

●●
●●

●●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●
●
●

●●●
●
●●

●●

●

●

●●

●

●●

●●●
●
●●

●●

●

●●

●

●

●

●●

●
●●

●

●
●●

●

●

●

●

●

●●

●●

●

●●

●●●
●●
●
●

●●●●

●●●

●●

●

●
●●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●●

●

●
●
●●

●

●

●

●●
●

●

●

●

●

●●●●
●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●●

●
●

●●

●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●●

●●

●●
●

●●

●

●
●

●●

●

●
●
●
●
●

●

●●

●
●

●

●●

●●

●●

●●
●
●

●

●●
●

●●

●●●●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●

●●

●

●●

●●

●●

●

●

●

●●

●
●

●●

●

●

●
●
●

●

●●

●

●

●

●

●
●
●

●●

●

●

●●●
●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●

●

●

●●

●
●
●●
●●

●
●

●

●
●

●●

●

●●

●●●●
●
●

●
●
●

●

●●

●

●●●●●

●

●

●●●

●

●

●

●

●●●●●
●

●●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●
●
●
●●

●

●

●●

●

●

●
●●●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●●

●●●
●
●

●●

●

●●

●
●
●●●

●

●●

●●

●

●

●●

●

●
●

●●

●●
●

●
●
●●
●
●●

●
●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●
●

●
●

●
●

●

●
●●

●

●●●
●●●

●
●●
●
●
●

●●●●
●●●
●

●

●

●
●
●
●
●

●
●
●
●●
●●

●●

●●

●●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●
●●
●
●
●●

●

●

●

●

●●

●
●

●●

●●
●
●

●●

●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●
●

●

●
●
●
●
●

●

●

●●

●

●

●

●●

●
●●●

●
●●●

●●

●

●●
●
●
●
●
●

●

●●

●●

●

●
●

●

●
●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●
●

●
●

●

●●
●●
●
●

●

●

●
●

●

●
●

●

●●●●

●●
●●●●
●

●

●●●

●●

●
●●
●

●●●

●
●●
●●
●●

●●

●
●

●
●

●●

●
●

●

●
●
●●

●●

●

●
●
●

●●●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●
●

●

●
●
●

●

●
●
●
●●
●

●●

●

●

●●

●

●
●

●

●●

●●●

●●

●
●●●

●

●

●

●

●
●●●●
●

●●
●

●
●

●●
●
●
●
●
●
●
●

●●●●●●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●●

●
●●

●

●

●

●

●

●
●●●●●
●
●

●

●●
●●
●

●

●●●●

●●

●

●
●

●
●

●

●

●●

●

●
●

●●
●

●●

●

●
●●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●●

●

●●

●

●●

●

●
●
●

●

●

●

●
●
●●●

●●

●

●

●●●●

●

●
●
●

●

●

●

●●

●
●
●

●
●
●●●●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●●

●

●●

●

●

●

●●
●
●

●
●
●
●

●

●
●●

●●

●

●●
●●

●

●
●
●
●●
●

●●

●●●

●
●
●
●●

●

●

●

●
●

●
●
●

●
●●

●
●
●
●●
●

●
●●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●
●●
●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●●

●●

●

●

●●

●●

●

●●

●
●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●●●

●

●

●

●●

●●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●
●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●●
●
●

●

●

●●
●●
●●
●

●
●

●
●
●
●●

●

●
●

●

●

●●●

●
●●●

●

●

●

●●

●●●
●
●●●●

●
●

●●

●

●

●

●
●
●

●

●●
●●

●

●

●

●●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●●
●
●

●
●

●
●
●
●

●

●

●
●

●●●●

●

●●

●

●
●
●

●

●
●

●
●
●
●

●●

●

●

●●●●
●●●

●

●

●

●
●
●

●
●
●●

●●
●●●
●
●

●●

●

●●

●●●
●

●

●●

●
●
●
●

●

●
●
●

●

●

●●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●●

●
●

●●

●

●
●
●

●●●●●
●

●

●

●

●

●
●●
●

●

●
●●

●

●●
●

●

●●
●

●
●

●
●●
●

●

●

●

●●●

●

●

●
●

●●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●

●●
●

●

●

●●
●●
●
●
●●
●

●

●

●

●

●

●

●

●

●●●●
●
●●

●●

●
●●
●●●

●

●

●

●●

●

●
●

●●

●●

●
●

●

●

●

●

●●
●

●
●

●●

●

●

●
●●

●

●●

●

●

●

●●

●
●
●

●

●

●●

●

●

●
●●

●

●●
●
●
●

●

●
●
●
●

●

●●
●

●

●

●

●

●●●●

●

●
●
●

●
●●●

●

●

●
●

●

●

●
●

●●

●●●

●●

●

●

●

●

●●●
●

●
●
●

●●●
●

●
●

●
●
●

●●
●●

●
●
●

●
●

●●
●
●●●●
●
●●

●
●●

●●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●
●●

●

●●●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●
●
●

●

●●

●

●

●
●●

●●

●
●●

●

●

●

●●

●

●●

●
●
●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●●
●
●

●

●

●●
●●●●

●

●

●

●
●
●●●●
●

●

●●

●

●
●
●

●

●●
●
●

●

●●●●

●

●

●

●●
●●

●

●

●
●
●

●

●
●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●
●●

●

●

●
●

●

●

●

●●●
●●
●
●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●
●

●

●●

●●
●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●●
●
●
●
●
●

●
●
●●

●

●●

●●

●
●
●
●
●●●●●●●●●
●
●

●

●●●
●
●●
●
●
●●
●
●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●●
●●
●

●●
●●
●
●
●
●

●

●●

●●
●●●●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●
●

●
●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●

●

●
●
●

●
●●

●

●●
●

●

●

●

●

●

●●
●●
●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●●●●

●
●

●

●
●

●
●

●

●
●
●

●
●

●●
●
●●

●

●●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●
●●●

●

●
●

●

●
●
●

●●●●

●

●
●
●
●●

●●●●
●
●

●

●

●

●

●

●●●

●
●

●●●

●

●●

●

●
●●●●●
●●●●●
●
●
●●

●
●
●

●●

●

●

●
●
●●

●●

●
●●●●

●
●

●●

●
●

●●

●●

●

●

●

●
●

●

●
●
●●

●
●●●

●●

●●

●

●●

●●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●
●

●●●●

●●
●

●

●
●●
●

●●

●
●●

●

●

●

●●●

●

●●

●

●
●
●
●

●

●●●

●

●
●●
●
●●●●●●●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●
●

●●●●

●

●
●
●

●

●●

●●●

●
●
●●
●
●
●●
●

●●
●●
●●

●

●●●

●

●●
●●●
●●

●
●
●

●●●
●
●●●

●

●●
●●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●

●
●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●
●●

●●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●●

●

●

●

●●
●
●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●●●

●

●
●

●●●

●

●●

●●
●

●

●●
●●
●

●

●●●●●

●●

●

●

●
●

●

●●●

●

●●

●

●●

●

●

●

●●
●

●
●

●

●
●

●

●
●●
●
●

●

●●

●
●●●

●

●

●

●
●
●

●●

●
●

●

●

●
●
●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●
●
●
●

●

●
●●●
●
●
●
●
●

●

●●●●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●●
●
●
●
●
●

●

●

●
●●●●●●
●
●
●●

●●

●

●
●●
●●●●●●

●

●
●
●

●

●

●●

●
●●●●
●●

●●

●

●

●●
●

●

●
●●

●●

●●

●

●
●
●
●
●

●

●●

●
●●●
●
●

●●
●●

●

●

●●

●●

●●●
●
●●

●
●●
●

●

●

●

●

●
●
●●

●
●

●●●●●●
●●

●
●

●
●●

●
●●
●●
●●●
●
●
●

●

●

●

●

●

●●●●●
●
●
●
●

●

●

●

●●●

●
●●
●
●●●

●

●
●

●

●●
●
●●●
●
●
●
●
●
●

●●

●

●●●●

●

●

●

●

●

●●
●
●
●
●●
●
●

●

●

●●
●●●●
●
●
●●

●

●●
●
●●●●●●●

●

●●
●
●
●
●

●

●●●●●●

●
●
●●

●●

●

●
●

●

●
●●●●●●●
●

●

●●

●

●

●●

●●
●

●●
●●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●
●
●

●●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●●

●

●

●

●

●

●●●
●●
●

●

●

●

●
●

●
●●
●
●
●●●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●
●
●

●
●
●
●●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●
●

●
●
●

●
●

●

●

●●●

●
●

●●●●●

●

●●●●

●●

●

●

●

●
●●
●●
●

●

●
●

●

●
●
●

●

●●
●
●

●●
●

●

●

●

●

●
●●
●●

●

●
●●
●●

●
●

●●●●
●●

●

●●●●●
●●●
●●
●●
●●
●
●

●

●

●

●
●●
●
●●
●
●

●

●
●
●

●
●

●●●

●

●

●

●●●
●
●

●

●

●

●
●
●
●

●

●●●
●
●

●
●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●
●
●
●

●●

●●

●●
●

●

●
●●

●

●●

●●

●

●

●●
●

●
●

●

●

●

●●

●

●

●●
●
●●
●

●

●●●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●
●

●
●
●
●

●

●
●
●

●
●

●●
●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●●
●
●
●
●

●

●

●

●

●

●
●●
●

●●

●●

●

●●

●

●

●●

●

●

●

●●●
●
●
●
●

●

●

●

●
●
●
●●

●

●●●

●

●
●
●●
●●

●●
●

●

●●

●
●●

●

●

●●

●●
●

●

●●

●
●

●●

●
●

●

●

●●
●●●
●
●●

●

●

●●

●

●●
●●
●
●●
●●
●

●●●
●

●

●●

●●
●

●

●●

●

●
●●
●

●●●

●

●●

●
●

●●

●

●

●

●

●●

●
●

●
●●

●

●●
●
●●
●

●●

●

●

●

●●

●

●

●

●●

●

●
●●
●●

●●

●
●

●
●
●

●●

●
●
●●
●●●

●

●●●
●

●

●

●●●●

●

●

●
●
●
●
●
●●●

●●
●

●

●●

●
●
●●
●●

●

●
●●

●

●

●

●
●

●
●

●●
●●
●●

●●

●

●●
●

●

●●●●
●
●●●●
●

●
●

●

●●

●

●

●
●
●

●●●
●
●

●

●●●

●

●●●

●●

●

●

●
●
●
●●●
●
●●
●
●●

●●

●
●
●●

●

●

●
●●
●
●
●

●

●

●
●
●●

●

●●●
●●●

●

●

●
●
●
●●●
●
●

●

●
●●

●
●

●

●
●●

●

●

●●
●

●

●●●●

●●

●

●●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●
●●

●

●
●●●

●
●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●
●

●●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●●

●

●

●●
●●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●
●●●●●

●

●
●●
●
●

●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●●●

●

●●

●
●
●

●●

0.00

0.02

0.04

0.06

1000 2000 3000 4000 6000 8000 10000 12000 14000 16000 20000
Länge des Präfixes

m
in

im
al

er
 r

el
at

iv
er

 P
un

kt
ab

st
an

d

Modell

Drache

PowerPlant

Würfel

Würfel(gleichverteilt)

Abbildung 6.7: Verteilung der minimalen Punktabstände für unterschiedliche Modelle (Würfel,
Drache und Power-Plant) im Verhältnis zur Präfixlänge; für Würfel (gleichver-
teilt) wurden die Punkte zufällig gleichverteilt gezogen

relativen Abstand aufweisen, als bei den anderen, deutlich komplexer geformten Modellen. Bei
dem strukturell am komplexesten aufgebauten Modell, dem Power-Plant, sind die minimalen
relativen Abstände am kleinsten. Im Vergleich zu der Verteilung der minimalen relativen
Abstände mit zufällig gleichverteilt gezogenen Samples zeigt sich, dass die Qualität der
Verteilung mit dem Progressive-Blue-Surfels-Sampling bei allen Modellen deutlich besser ist.

Auch wenn es leichte Unterschiede in der erzielten Qualität der Verteilung bei unterschiedli-
chen Modellen gibt, zeigt der Algorithmus bei allen untersuchten Modellen das gewünschte
Verhalten.

6.4.3 Sampling-Qualität und Laufzeit

Um für das vorgestellten Sampling-Verfahrens eine möglichst schnelle Laufzeit bei der Vor-
verarbeitung zu erreichen, wird nur eine relativ kleine Stichprobengröße verwendet und die
Genauigkeit des Sampling-Auswahlprozesses wird im Laufe der Runden durch die eingesetzte
Heuristik weiter reduziert (siehe Abschnitt 6.1.1). Im Folgenden wird untersucht, wie sich dies
auf die Qualität der Verteilung auswirkt.

In den Messungen wird das Sampling mit unterschiedlichen Startwerten für die Stichpro-
bengröße durchgeführt und als Variante in der in jeder Runde eine neue Stichprobe ohne die
Heuristik mit konstanter Größe gezogen wird. Als Referenz wird wieder das Sampling mit
zufälliger gleichverteilter Wahl der Sampling-Punkte verwendet.

Die Messungen zeigen, dass alle untersuchten Varianten im Vergleich zum zufällig gleich-
verteilten Sampling ähnliche Verteilungen aufweisen (siehe Abbildung 6.8). Bei einer kurzen
Präfixlänge bis 1024 zeigt das Sampling mit konstant 1000 Samples, gefolgt vom Sampling mit

65

6 Approximatives Rendering mit Progressive-Blue-Surfels

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●●

●●

●●
●●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●●●
●
●

●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●

●
●
●●
●●

●

●

●
●

●

●
●●●
●
●
●

●
●●

●

●

●●
●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●●●

●

●●●
●
●
●
●●
●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●

●

●
●
●
●

●●

●●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●●
●●

●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●
●
●
●
●

●

●

●

●

●
●●
●●
●
●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●
●
●
●

●

●

●●●

●

●
●
●●●

●

●●●●●

●

●
●●●

●

●
●
●
●
●●●
●
●

●

● ●

●

●

●●
●
●●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●●

●●
●●●●●
●

●
●
●

●

●●

●●

●●●

●

●
●
●
●●●
●●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●
●
●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●●

●●

●●●
●
●

●●

●

●●

●
●
●●●

●

●●

●●

●

●

●●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●●
●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●●●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●

●●

●

●
●

●●
●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●●●

●
●
●

●

●

●●●

●

●

●●●●

●

●●●

●
●

●●●●
●

●

●
●●
●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●
●●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●
●
●
●
●
●
●

●
●

●

●

●●
●
●
●

●

●

●●●
●

●

●
●
●
●●●●
●
●

●●●●●●●
●●
●
●●●●●
●
●

●
●●●

●
●
●●●
●
●●●
●●
●

●

●●
●

●

●

●

●●●●

●

●
●

●

●
●
●
●

●
●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●●

●

●

●

●
●
●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●
●●●
●
●

●
●
●
●

●

●
●●●
●

●
●

●

●

●

●●
●

●

●

●
●●●
●
●

●

●

●
●

●●

●

●
●●

●
●

●
●

●●

●
●
●
●
●
●

●

●●

●

●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●●●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●●

●

●

●
●

●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●
●
●

●

●●

●

●
●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●
●
●

●●
●

●

●

●
●●
●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●
●

●
●

●

●

●
●
●

●
●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●●●

●

●●
●
●

●

●
●
●
●

●
●●●●

●

●
●
●
●●

●
●
●●
●
●

●

●

●●

●

●

●●
●

●
●

●●●

●

●●●

●

●
●●●●●
●
●●●●●

●●●

●
●
●

●●

●

●
●

●

●●●●

●●

●
●●●●

●

●

●

●●

●

●

●

●●
●

●
●
●

●●●

●

●●
●
●

●

●

●

●●

●
●
●●

●
●●●

●

●●

●●

●

●●●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●●
●

●

●●

●

●●

●

●
●

●

●●●●

●

●
●
●

●

●
●●

●●

●

●

●

●●●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●●●
●
●

●
●●●●●

●●●

●

●●
●

●

●
●●●●●

●

●
●●

●

●
●●

●

●
●

●
●
●

●

●

●

●●

●●
●●

●

●

●

●●

●●

●●

●●

●

●

●
●

●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●
●●
●●
●

●

●●

●
●

●
●

●

●
●

●
●
●
●
●●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

● ●
●●

●

●●●

●

●

●

●

●
●●
●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●●●

●

●

●

●●

●

●

●
●
●●
●
●
●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●
●

●

●
●
●

●
●

●●●●●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●●

●

●

●
●●

●
●●

●●

●
●

●

●

●
●
●
●

●
●

●
●
●

●●

●

●
●
●

●

●

●

●●●

●
●●
●●
●

●●

●●●
●
●●

●●
●

●
●●

●

●
●●●●
●●●●
●

●
●
●●
●
●●

●

●

●

●
●
●
●●●●●●

●

●
●
●●●●●●●

●

●●●●
●
●
●
●
●●●●●●
●●●●
●●
●
●
●●●●●●
●●
●●●●●●●
●
●
●●●
●
●
●
●●●●●●●●

●

●

●

●●
●
●●●●●●

●

●
●●●●●
●

●

●●●
●●

●

●●●●
●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●
●

●
●

●

●

●
●
●●●

●

●

●

●

●

●
●
●●
●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●●
●
●

●●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●●
●●

●

●
●

●
●

●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●
●
●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●●●

●

●

●

●
●●●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●
●

●

●●●●●
●

●

●

●●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●
●●

●
●

●●●

●

●●●
●●
●
●

●

●

●●

●●

●●●

●
●

●●
●
●

●
●●●

●

●

●

●
●●
●
●

●●
●
●

●●
●●
●●●
●●●●●●

●
●

●

●
●

●

●
●
●
●

●

●
●●
●●

●●●●●

●
●●
●
●
●
●●●

●●●

●●●

●●
●
●

●

●●
●
●●●
●●●●
●●●
●●●●

●●

●

●

●

●
●●

●

●

●

●

●●●
●
●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●

●
●●

●

●

●●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●
●●

●

●

●
●
●●

●●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●
●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●●
●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●●
●
●●

●

●
●

●

●●●

●
●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●●●
●

●

●
●

●

●●

●●

●●
●

●

●

●

●

●●

●●

●

●
●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●
●

●●

●
●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●
●

●

●●

●●

●
●

●

●

●
●
●

●

●●

●●●
●

●

●

●

●●

●●●

●

●
●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●
●

●●●
●●
●

●

●●●
●●●●
●

●

●●

●

●

●
●
●●

●

●
●●●
●
●

●

●
●

●
●

●

●

●●
●
●

●●●
●
●●

●
●●●●
●
●
●

●

●

●

●●

●●

●●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●●
●
●●

●

●

●

●

●

●

●
●
●
●

●●
●
●●●
●

●

●

●

●●●
●
●●

●

●

●

●●
●

●

●●●

●

●●

●

●

●

●

●

●
●

●●

●

●●●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●
●●●

●●●

●

●

●●
●●●
●●
●

●
●

●

●●●
●

●

●
●

●●

●
●●●
●

●

●

●

●

●

●●
●
●
●

●

●●●●

●
●

●
●

●
●

●

●

●

●
●●●
●

●

●●
●
●

●●●
●

●

●

●

●
●
●
●
●
●

●

●●●

●

●●
●
●●
●

●

●

●

●
●
●
●
●●●
●
●●●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●
●●

●
●

●

●●

●

●

●
●
●

●
●
●

●●
●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●●

●●
●●●

●
●

●

●

●

●
●

●●

●●●

●

●
●
●

●
●

●

●

●

●
●
●●●

●
●

●

●●

●
●
●

●

●●

●

●
●

●

●●
●
●●
●
●

●●
●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●
●

●●●

●

●

●

●●

●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●●

●
●
●

●●●●

●

●

●
●

●

●●
●

●

●

●

●
●
●

●●

●

●
●
●
●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●
●●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●●●
●
●

●●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●●

●●

●
●

●
●●

●

●

●
●●

●
●
●
●

●

●●
●●
●●●●

●
●

●●

●

●
●
●

●

●

●

●●●●

●

●●

●
●

●●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●●
●●
●
●

●

●●
●

●●

●

●●

●

●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●
●

●●

●●
●●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●
●

●●●●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●●●

●

●
●●●

●●

●

●

●

●●

●

●
●

●
●

●

●

●●●
●●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●●
●

●●
●
●

●

●
●

●

●●
●
●

●
●
●●
●
●●●●

●

●
●●●●

●

●●
●●

●
●

●●

●

●

●

●

●

●●

●
●●●
●
●

●

●●●

●

●

●
●

●●

●

●

●

●●●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●●
●
●●
●

●

●

●

●●

●

●
●
●

●

●●
●
●
●●

●
●●
●
●

●

●

●
●●

●

●●

●
●

●

●

●

●

●●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●
●

●

●●
●●

●
●
●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●●
●
●
●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●
●●
●

●

●

●●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●●

●

●●●

●
●

●
●

●

●

●

●
●●
●
●
●●

●

●

●

●
●

●
●
●●

●
●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●
●●
●

●

●●

●

●●

●
●●

●

●
●
●
●

●

●●
●
●

●

●
●●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●●

●
●
●

●

●●
●

●

●

●●

●

●
●
●
●

●

●

●

●

●
●●
●
●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●●

●
●
●●

●

●●

●●

●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●●

●

●
●●

●

●●

●

●
●
●●

●
●●

●

●

●

●

●●●●●
●
●
●
●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●
●

●●

●

●●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●
●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●●●

●

●

●

●

●●●

●

●●
●

●

●●●
●
●●

●
●
●

●

●●
●

●●●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●●
●

●

●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●●●

●

●●

●

●

●
●●

●

●
●●
●●
●●

●
●

●●
●●●

●

●

●

●

●
●
●
●●
●

●

●

●
●●●
●

●

●
●
●
●
●
●
●●

●

●

●

●●●

●

●
●

●

●
●●

●

●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●●

●

●

●●

●●

●●

●●●●●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●
●
●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●
●

●●●

●

●

●
●●●
●

●●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●●●●
●●
●
●

●

●

●

●

●

●●
●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●●

●●

●●

●

●
●
●●
●

●
●●

●

●

●●

●
●
●

●
●

●

●

●
●
●●
●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●●

●
●●●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●●

●
●
●
●●

●●
●●●

●

●●

●

●●
●
●
●●●

●

●●●●

●

●
●

●
●

●●●

●

●●
●
●
●
●

●

●

●●

●●

●

●
●
●

●

●
●

●

●

●
●
●●

●
●

●●●

●
●
●

●
●
●

●

●●
●
●●●

●

●
●●

●
●●

●

●

●

●
●
●
●
●●
●

●

●●
●●●●
●●●
●
●●
●

●
●●
●

●
●●

●

●

●
●●

●
●

●●●
●
●●●
●

●●
●
●
●●
●●●
●
●
●●●
●
●

●●●●
●
●
●●●
●●●●
●●●●●●●●
●

●
●
●
●
●●●
●●
●
●
●●●
●
●●

●●

●●●●
●
●●●
●●●●●
●●
●●●
●
●●●●
●●
●●●●
●
●
●●●●●●●
●
●●
●●
●●●●
●●
●
●
●
●●●●●●●●●●●●●●●

●

●
●●

●
●
●

●

●●●●
●●
●●●●●●●●●
●●
●●

●

●●
●●
●●●●
●●
●
●
●
●●
●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●

●

●
●●●
●
●
●
●
●

●●●
●
●
●
●

●

●

●●

●

●

●

●
●
●●
●

●

●●

●

●●●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●●
●

●

●
●

●

●

●

●●●●

●●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●
●

●

●
●
●

●●
●

●

●

●
●
●●

●

●

●

●
●●
●

●

●
●●
●

●

●●●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●●
●
●●

●

●●

●

●●●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●
●
●

●
●

●●
●●

●

●

●●

●●

●

●

●
●

●

●

●●●
●

●

●

●
●
●●

●

●
●●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●●●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●●

●

●
●
●●
●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●
●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●
●

●
●●
●

●
●

●

●

●●
●
●
●
●

●●

●

●●

●
●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●●

●

●●●
●

●

●

●

●
●

●

●●
●

●

●
●●●●
●

●

●
●

●●
●

●
●●
●

●

●●

●

●●●
●●

●
●
●
●
●

●●

●

●

●

●

●

●●

●
●
●

●

●
●●

●

●●

●
●

●

●

●
●

●●

●

●

●●●

●

●

●●
●●

●●

●
●

●

●●●●●

●

●●●

●●
●

●

●
●●

●
●

●

●
●●
●●●

●

●

●

●

●
●

●●

●●

●
●

●
●
●

●
●●
●●
●
●

●●
●
●

●

●
●

●

●●
●●●

●●

●

●

●

●

●●
●
●●

●
●●●
●
●

●

●
●

●
●

●

●

●

●●●●
●
●●
●
●●

●

●
●
●
●●●
●
●●
●●●●
●●

●

●
●●

●●●●
●
●
●

●

●
●●●●●●●●

●
●●
●●

●

●●●

●

●
●
●

●●●
●

●
●

●

●

●
●
●●●
●

●

●
●●

●

●

●

●

●
●

●
●●●
●

●

●

●
●●
●●
●●
●
●

●
●●

●●
●●

●

●

●
●
●
●●
●●
●
●●●●●●●

●

●
●●●
●
●
●

●●●
●
●●●●

●

●●
●
●●
●●●●
●●●

●

●

●

●●
●●●●

●

●●●●●●●

●●
●

●●●●
●
●
●●
●●●
●●
●

●
●

●

●
●●●

●

●

●

●●●●●
●●

●

●
●
●●
●
●
●●
●

●

●●●●

●

●●●
●●
●

●

●●●

●
●●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●●
●

●

●●●
●
●

●

●●●

●● ●

●

●
●

●●

●

●

●●●

●

●

●
●

●●

●
●
●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●
●
●

●

●

●●

●●

●

●
●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●
●
●
●
●

●

●
●●

●

●

●

●
●●

●

●
●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●●●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●
●

●
●

●

●

●
●
●

●

●●●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●
●●●
●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●
●
●
●

●
●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●●
●
●

●

●
●●

●

●●
●

●

●
●●●●

●
●

●

●
●

●

●

●
●
●

●
●

●

●
●

●●●
●

●

●●

●

●
●

●

●

●●●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●●

●
●

●●

●

●

●

●●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●
●
●

●

●

●
●●●
●

●

●

●
●
●

●

●
●
●

●●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●

●

●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●
●
●●●

●
●

●●●

●

●

●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

0.00

0.02

0.04

0.06

0.08

512 1024 2048 4096 8192 16384 32768
Länge des Präfixes

m
in

im
al

er
 r

el
at

iv
er

 P
un

kt
ab

st
an

d

Modell

initiale Stichprobengröße 1000

initiale Stichprobengröße 160 (standard)

konstante Stichprobengröße 1000

konstante Stichprobengröße 160

zufällig gleichverteilt

Abbildung 6.8: Verteilung der minimalen Punktabstände für unterschiedliche Sampling-
Varianten im Verhältnis zur Präfixlänge; Power-Plant Modell

initial 1000 Samples, die höchste Qualität (größere minimale Abstände). Mit steigender Präfix-
länge sorgt die Heuristik dafür, dass die Qualität der neu gezogenen Samples kontinuierlich
leicht abnimmt, so dass ab der Messung für Präfixlänge 2048 die Qualität bei Verwendung der
Heuristik unter der der konstanten Stichprobengröße liegt. Die Standardvariante mit initialer
Stichprobengröße 160 liegt in der Qualität noch einmal knapp unter der Variante mit initialer
Stichprobengröße von 1000. Abbildung 6.9 zeigt anhand eines Beispiels die Auswirkungen der
unterschiedlichen Varianten auf die visuelle Qualität (mit fester Punktgröße in einer starken
Vergrößerung).

Der Qualitätsunterschied ist vor allem zwischen der Variante mit zufällig gleichverteiltem
Sampling und dem Progressive-Blue-Noise-Sampling deutlich: Es fehlen Details (z. B. am
Kran), die Darstellung zeigt mehr Löcher und die Kontur ist stärker ausgefranst. Zwischen den
übrigen Varianten lässt sich noch ein leichter Qualitätsunterschied in den Details zwischen der
Standardvariante mit initialer Stichprobengröße von 160 und den anderen Varianten ausmachen.
Der Unterschied zwischen den anderen Varianten liegt in einem ähnlichen Bereich, wie der
Unterschied, der sich auch durch den Zufallsprozess bei mehreren Durchläufen mit den gleichen
Parametern ergibt.

In Tabelle 6.1 sind die Laufzeiten der unterschiedlichen Schritte des Algorithmus zur Erstel-
lung einer Surfel-Repräsentation mit 40000 Surfels in den untersuchten Varianten aufgeführt.
(Die verwendete Hardware wird in Abschnitt 3.4 beschrieben.) Das zufällig gleichverteilte
Sampling ist mit 25 ms mit Abstand das schnellste untersuchte Sampling-Verfahren, liefert

66

6.4 Experimentelle Bewertung der Sampling-Verteilung

128,px

Originalzufällig
gleichverteilt

160,Samples,+
Heuristik

1000,Samples,+
Heuristik

160,Samples 1000,Samples

40k,Surfels,,Punktgröße,3,,ohne,Multisampling,,ohne,Shader

400,Surfels,,Punktgröße,2,,ohne,Multisampling,,ohne,Shader

37,px

Originalzufällig
gleichverteilt

160,Samples,+
Heuristik

1000,Samples,+
Heuristik

160,Samples 1000,Samples

Abbildung 6.9: Vergrößerte Darstellung unterschiedlicher Sampling-Varianten

Erstellen der Texturen (8-mal Rendern der Szene) 270 ms
Transfer der Texturen in Hauptspeicher 111 ms
Erzeugung der initialen Surfel-Menge (1.3 M Einträge) 18 ms

Sampling-Variante: zufällig gleichverteilt 25 ms
Sampling-Variante: Initiale Stichprobengröße 160 (Standard) 520 ms
Sampling-Variante: Initiale Stichprobengröße 1000 1740 ms
Sampling-Variante: Konstante Stichprobengröße 160 13000 ms
Sampling-Variante: Konstante Stichprobengröße 1000 81000 ms

Bestimmen der relativen Punktgrößen 456 ms

Gesamtdauer mit Standardparametern 1375 ms

Tabelle 6.1: Laufzeiten zur Berechnung einer Surfel-Repräsentation des Power-Plant-Modells
mit 40k Surfeln

67

6 Approximatives Rendering mit Progressive-Blue-Surfels

jedoch auch eine erkennbar schlechtere Näherung. Die Standardparameter, mit einer initialen
Stichprobengröße von 160, liefern sowohl in der statistischen Analyse der Verteilung, als auch
beim optischen Vergleich nur minimal schlechtere Ergebnisse als die anderen Varianten, ist
jedoch mit 520 ms deutlich schneller als die übrigen Varianten mit bis zu 81 Sekunden Laufzeit.
Die Standardvariante eignet sich daher auch für große Szenen, für die mit überschaubaren
Zeitaufwand eine große Anzahl von Näherungen mit gleichzeitig guter Qualität berechnet
werden kann.

6.5 Anwendungen und Erweiterungen

Das Progressive-Blue-Surfel-Verfahren bot die Grundlage für einige weiterführende Arbeiten,
die ich im Folgenden kurz zusammenfasse:

Projektgruppe: Algorithms for 3D Rendering using Cloud Computing (2012-
2013) In der Projektgruppe wurde von den Teilnehmern das vorgestellte Surfel-Verfahren als
Basis für ein Out-of-Core-Renderingsystem für mobile Endgeräte (Smartphones und Tablets
mit Android-Betriebssystem) umgesetzt (siehe Abbildung 6.10). Bei dem System muss die
virtuelle Szene nicht direkt auf den Endgeräten gespeichert werden, sondern sie kann kontinu-
ierlich von einer Serverinstanz verteilt werden. Dabei wird ausgenutzt, dass auch schon ein
kurzes Präfix das darzustellende Objekt vollständig repräsentiert. Auch wenn nur ein kleiner
Teil seiner Gesamtdaten übertragen wurde, kann das Objekt bereits in reduzierter Qualität
dargestellt werden. Die Länge der dargestellten Präfixe richtet sich daher nicht nur nach der
projizierten Größe, sondern damit auch nach der Menge an verfügbaren Daten.

Die prinzipielle Funktion des Konzeptes konnte von der Projektgruppe gezeigt werden. Bei
der Evaluierung stellten sich im Wesentlichen folgenden limitierenden Faktoren heraus:

• Die verwendete Hardware muss genügend Punktprimitive in Echtzeit darstellen können,
um große Teile des Bildschirms mit Näherungen bedecken zu können. Praktisch ist die
Darstellung mehrerer Millionen Punkte pro Sekunde notwendig, um eine ausreichende
Bildrate und Bildqualität zu erreichen.

• Im Nahbereich wird für die Darstellung für Objekte mit einer großen projizierten Größe
in akzeptabler Qualität eine große Menge an Punkten oder die Originalgeometrie benötigt.
Dies stellt in dem Szenario eine große Herausforderung dar: Durch das freie Bewegen
durch die Szene existieren fast immer dem Betrachter nahe Objekte, mit einer großen
projizierten Größe, wobei gleichzeitig die Menge der darstellbaren Geometrie (Origi-
nale und Näherung) durch die relativ schwache Hardware und den limitierten Speicher
begrenzt wird.

Auch wenn der Ansatz für aktuelle Standardgeräte noch nicht vollständig einsatzfähig scheint,
bietet er bei steigender Rechenleistung und Speicherkapazität in Zukunft Potential, auch
komplexere Szenen auf Mobilgeräten darzustellen, ohne dass die gesamte Szene zur Verfügung
stehen muss.

68

6.5 Anwendungen und Erweiterungen

Abbildung 6.10: Punktnährungen auf einem Android Smartphone; Szene1 (Quelle: Ab-
schlussdokumentation, Projektgruppe „Algorithms for 3D Rendering using
Cloud Computing“, 2013)

Masterarbeit: Approximative Rendering using Sample-Based Occlusion Culling
von Jonas Knoll (2013) In der Masterarbeit untersuchte Jonas Knoll, in wieweit das
Konzept der Progressive-Blue-Surfels so abgewandelt werden kann, dass anstatt Punkten auf
der Oberfläche sichtbare Polygone der Originalgeometrie in einer sortierten Folge verwendet
werden können. Dazu werden für ein anzunäherndes Objekt zunächst die von außen sichtbaren
Polygone bestimmt. Diese Polygone werden dann nach einem Qualitätskriterium sortiert.
In das Qualitätskriterium fließen z. B. Größe und eine gleichmäßige Verteilung ein, wobei
unterschiedliche Kriterien in der Arbeit untersucht werden. Wird beim Rendering ein Objekt
von außen dargestellt, kann es durch einen Präfix der sortierten Polygone angenähert werden
(in Abhängigkeit seiner projizierten Größe).

Der Vorteil bei der Verwendung von Polygonen anstatt von Punkten ist, dass bei geeigneten
Modellen mit großen Polygonen weniger Löcher in der Darstellung auftreten, wenn die gleiche
Zeit für die Darstellung einer Polygonnäherung anstatt einer Punktnäherung verwendet wird.
Nachteile des Verfahrens im Vergleich zu den Progressive-Blue-Surfels sind, dass das Verfahren
abhängig von der polygonalen Struktur des genäherten Modells ist (für feiner tesselierte Objekte
funktioniert es weniger gut) und, dass Oberflächeneigenschaften, wie etwa unterschiedliche
Texturen, nur schwer abgebildet werden können. Das in der Arbeit entwickelte Verfahren zeigt
darin einige Parallelen zum randomisierten Z-Puffer [WFP+01], bei dem optional ebenfalls
große Polygone direkt gezeichnet werden und nicht durch Punkte angenähert werden.

Masterarbeit: Ein Out-of-Core-Verfahren zum Rendern von großen dynamischen
Szenen von Sascha Brandt (2014) In der Masterarbeit von Sascha Brandt wurde das
Progressive-Blue-Surfels-Verfahren als Teil eines Out-of-Core-Renderingsystems für sehr große
Szenen eingesetzt. Hierbei besteht die Möglichkeit, nicht nur die Geometrie der Szene nicht im
Hauptspeicher vorzuhalten, sondern auch Teile des Szenengraphen nur bei Bedarf nachzuladen.
Solange ein Teil der Szene weit entfernt ist und er durch eine Surfel-Repräsentation dargestellt
werden kann, wird die Struktur des entsprechenden Teilbaums des Szenengraphen nicht benö-
tigt. Des Weiteren wurde in der Arbeit untersucht, wie sich die notwendigen Neuberechnungen

69

6 Approximatives Rendering mit Progressive-Blue-Surfels

von Surfel-Repräsentationen nach einer Änderung im Szenengraph reduzieren lassen: Wird ein
Objekt in der Szene bewegt, werden im Anschluss nur für so viele Hierarchien im Szenengraph
oberhalb des Objektes aktualisiert, bis im erwarteten Fall kein Surfel mehr zu dem modifizierten
Objekt gehört.

Real-Time 3D Rendering of Heterogeneous Scenes In der Arbeit von Petring et
al. [PEJ+13] wurde ein Verfahren vorgestellt, mit dem Bereichen einer Szene automatisch
unterschiedliche Renderingalgorithmen zugewiesen werden können. Dabei wird für die ak-
tuelle Betrachterposition die Bildqualität optimiert, wobei gleichzeitig immer eine minimale
Bildrate erreicht wird. Das Verfahren bewertet automatisch die durch einen bestimmten Rende-
ringalgorithmus erzielte Bildqualität und Laufzeit für Bereiche der Szene und kann so mit fast
beliebigen Renderingalgorithmen verwendet werden. Das Progressive-Blue-Surfels-Verfahren
wurde in einer leicht vereinfachten Variante als ein mögliches Näherungsverfahren in der
Evaluierung verwendet.

70

7 Anwendungen für genäherte
Szeneneigenschaften

In diesem Kapitel gebe ich einen Überblick über mögliche Anwendungen, die sich aus der Be-
stimmung von Szeneneigenschaften ergeben. Die Anwendungen erstrecken sich über die Phase
des Algorithmenentwurfs, über die Offline-Anpassung von Parametern für ein spezifisches
Szenario, bis hin zu der Verwendung der genäherten positionsabhängigen Szeneneigenschaften
zur Verbesserung des Renderings zur Laufzeit. Für die Messungen wurde die in Abschnitt 3.4
beschriebenen Hardware verwendet.

7.1 Szeneneigenschaften im Bereich des
Algorithm-Engineering

Unter Algorithm-Engineering versteht man die Entwicklung von Algorithmen, bei der neben
der theoretischen Betrachtung des asymptotischen Verhaltens der entwickelten Algorithmen,
auch das praktische Verhalten der Algorithmen eine wesentliche Rolle spielt. Zu diesem
praktischen Verhalten gehören, neben realistischen Eingaben, auch die Randbedingungen, die
durch die verwendete Hardware bestimmt werden, bis hin zu Aspekten der Implementierung des
Algorithmus. Demetrescu, Finocchi und Italiano beschreiben dies in ihrem Artikel „Algorithm
Egineering“ folgendermaßen:

„Algorithm Engineering is concerned with the design, analysis, implementation,
tuning, debugging and experimental evaluation of computer programs for solving
algorithmic problems. It provides methodologies and tools for developing and
engineering efficient algorithmic codes and aims at integrating and reinforcing
traditional theoretical approaches for the design and analysis of algorithms and
data structures. “ (aus Demetrescu, Finocchi und Italiano 2003 [DFI03])

Bei der Entwicklung von Computergrafikalgorithmen spielt dieser praktisch orientierte An-
satz eine besondere Rolle. Auch wenn viele der gängigen Renderingalgorithmen beispielsweise
asymptotisch lineare Laufzeit in der Komplexität der Szene aufweisen, zeigen sie für realistische
Eingaben sehr unterschiedliche Bildraten. Um die Effizienz eines Algorithmus – oder zunächst
einmal seiner Implementierung – während der Entwicklungsphase einzuschätzen und zu bewer-
ten, wird dabei üblicherweise zunächst eine möglichst anwendungsnahe Testszene ausgewählt.
Nun werden einige möglichst charakteristische Standpunkte in der Szene, oder auch ein mög-
lichst charakteristischer Kamerapfad ausgewählt, der dann als Grundlage für die weitere experi-
mentelle Evaluierung dient. Beispiele für diese Art der Untersuchung bei Culling-Algorithmen

71

7 Anwendungen für genäherte Szeneneigenschaften

finden sich in diversen Arbeiten ([GKM93, ZMHH97, BWPP04, MBW08, EJF10, SKJF11]).
Da insbesondere bei Culling-Algorithmen die Laufzeit extrem von der Sichtbarkeit am Stand-
punkt des Betrachters in der Szene abhängt, sind alle Ergebnisse, die auf diesen subjektiv
gewählten Positionen oder Pfaden basieren, in ihrer Aussagekraft deutlich beschränkt. Bei
unzureichender Dokumentation der gewählten Positionen in einer wissenschaftlichen Publika-
tion, können diese Messungen sogar lediglich zur beispielhaften Demonstration der Effizienz
eines Algorithmus dienen; von einer systematischen Evaluierung im Sinne des Algorithm-
Engineering kann dann keine Rede mehr sein. Um neben qualitativen Aussagen auch fundierte
quantitative Aussagen treffen zu können (wie etwa „Der neue Algorithmus A ist bei der gegebe-
nen Szene und Hardware meistens schneller als Algorithmus B.“), muss man die Kamerapfade
sorgsam auswählen (beispielsweise anhand ausgewerteten Benutzerverhaltens; siehe [YGL97]).
Zumindest muss der Pfad ausreichend gut beschrieben werden, damit er bei der Einschätzung
der Aussagekraft der Ergebnisse mit einbezogen werden kann.

Realistische
Modelle

Design

Algorithm
Engineering Reale

Eingabe

Laufzeit-
schranken

Analyse

Algorithmen-
bibliotheken

Implementierung

Experimente

A
nw
endungen

Hypothese

1.
2.

3.

Abbildung 7.1: Überblick über den Prozess des Algorithm-Engineering mit Referenzen (in
rot) auf die Einsatzgebiete der in dieser Arbeit vorgestellten Techniken (basie-
rend auf der Übersetzung von Abbildung 1 aus „Algorithm Engineering – An
Attempt at a Definition“ von Sanders [San09].)

Die in dieser Arbeit vorgestellte Näherung von positionsabhängigen Szeneneigenschaften
bietet eine Möglichkeit, die gängigen Techniken mit überschaubarem Aufwand sinnvoll zu
ergänzen. Abbildung 7.1 zeigt dabei verschiedene Punkte, an denen die hier vorgestellten
Methoden den Prozess des Algorithm-Engineering bei der Entwicklung von Grafikalgorithmen
unterstützen können:

1. Eine Hürde beim Einsatz komplexer Evaluierungsmethoden ist ihre Implementierung.
Die hier vorgestellten Methoden wurden daher speziell mit dem Ziel entwickelt, sich
ohne großen Aufwand in bestehende Evaluierungsumgebungen integrieren zu lassen.
Sie stehen außerdem bereits als Teil von PADrend (siehe Kapitel 3) als Open-Source-
Implementierung frei zur Verfügung.

72

7.2 Exploration: Auswirkungen der projizierten Größe beim Rendering mit
Progressive-Blue-Surfels

2. Bei der Durchführung einer experimentellen Evaluierung bieten die Methoden zur Be-
stimmung einer globalen Näherung einer Szeneneigenschaft eine Möglichkeit, effizient
umfassende Daten zu sammeln, welche deutlich weniger von subjektiven Entscheidun-
gen abhängen als bei einem Kamerapfad. Dadurch erhalten die gewonnenen Daten eine
wesentlich größere Aussagekraft. Der Algorithmenentwickler wird bei seiner Arbeit da-
durch unterstützt, dass die vorgestellten Methoden bei einem breiten Spektrum an Szenen
und Renderingalgorithmen weitestgehend automatisch angewendet werden können.

3. Bei der Auswertung bei den experimentellen Untersuchungen können die Messdaten
anschaulich visualisiert und einfach statistisch ausgewertet werden. Dadurch lässt sich
das Verhalten des Algorithmus sowie möglicherweise relevante strukturelle Eigenschaf-
ten der Eingabe einfacher nachvollziehen und die Bildung von Rückschlüssen für den
weiteren Designprozess wird unterstützt.

7.2 Exploration: Auswirkungen der projizierten Größe
beim Rendering mit Progressive-Blue-Surfels

Das in Kapitel 6 vorgestellte Progressive-Blue-Surfels-Verfahren benötigt während des Rende-
rings mehrere Parameter (siehe Abschnitt 6.3). Im Folgenden soll der Effekt der projizierten
Größe auf die Renderingzeit und die Bildqualität mit Hilfe der entsprechenden Szeneneigen-
schaften untersucht werden; d. h. im Rahmen des Algorithm-Engineering soll ein Aspekt des
Verhaltens des Algorithmus anhand eines Beispiels für eine realistische Eingabe untersucht
und beschrieben werden.

Als Szene für die Evaluierung wird ein Teil einer generierten Landschaft mit einer Reihe an
Bäumen und einem mittig platzierten Power-Plant-Modell verwendet (siehe Abbildung 7.2).
Die Szene besteht aus insgesamt 162 Millionen Polygonen in 10264 Einzelobjekten, strukturiert
in einem Loose-Octree. Für die Szene wurden für alle Teilbäume mit mehr als 2 Millionen
Polygonen je 80000 Surfels erzeugt. Alle sonstigen Parameter entsprechen den Standardwerten.

Abbildung 7.2: Testszene mit 162 Millionen Polygonen und 10264 Objekten; dargestellt mit
Progressive-Blue-Surfels; minimale und maximale projizierte Größe: [50,100]

73

7 Anwendungen für genäherte Szeneneigenschaften

Für die Messungen werden als Werte für die minimale und maximale projizierte Seitenlänge
(entspricht der Wurzel der projizierten Größe) die Werte [50, 100], [100, 200] (Standardwert),
[200, 300] und [300, 400] Pixel verwendet. Die untersuchten Szeneneigenschaften sind die Ren-
deringzeit mit dem Surfel-Algorithmus und die Bildqualität, mit dem hierarchisch angewendeten
SSIM-Verfahren [WBSS04, Bur81]. Die Szeneneigenschaften wurden je mit 1024 Sampeln
für einen vertikalen Schnitt durch die Szene genähert, der sowohl den Bereich dicht über dem
Boden, den Bereich direkt um das Power-Plant-Modell, als auch einen größeren freien Bereich
über der Szene enthält.

[50,6100] [100,6200]

R
e
n
d
e
ri

n
g
ze

it
B

ild
q
u
a
lit

ä
t

3.4ms

102ms

31ms

1ms

8.5ms

45ms
21ms

0.7ms

0.88
0.99

0.95

0.86

0.94

0.980.99

0.95

0.86

4.4ms

[200,66300]

Abbildung 7.3: Visualisierung der Szeneneigenschaften Renderingzeit (oben) und Bildqualität
(unten) mit unterschiedlichen Werten für minimale und maximale projizierte
Größe (Mitte); Extrem- und Mittelwerte sind angegeben.

Die visuelle Auswertung in Abbildung 7.3 zeigt, dass die Laufzeit erwartungskonform
insgesamt mit der Entfernung zur Szene abnimmt. Zum einen nimmt die Menge der nicht
genäherten Geometrie mit steigender Entfernung ab, bis nur noch Punkte dargestellt werden.
Zum anderen deckt die hier untersuchte Szene bei steigender Distanz einen immer kleiner
werdenden Bereich des Bildschirms ab, so dass auch weniger Punkte dargestellt werden. Be-
sonders hohe Renderingzeiten finden sich dicht an komplexen Bereichen der Szene (hier direkt
am Power-Plant-Modell), wo viele Objekte mit großer projizierter Größe dargestellt werden
müssen. Durch größere Werte beim untersuchten Parameter werden auch Objekte mit größerer
projizierter Größe angenähert, wodurch die Renderingzeit abnimmt. Dies macht sich insbeson-

74

7.2 Exploration: Auswirkungen der projizierten Größe beim Rendering mit
Progressive-Blue-Surfels

dere an den Positionen hoher Renderingzeit positiv bemerkbar. Schon bei Parameterwerten
von [100, 200] erreicht im gegebenen Rahmen die maximale Renderingzeit weniger als 45 ms –
also immer mehr als 22 fps (siehe Abbildung 7.4).

Die räumliche Verteilung der Bildqualität zeigt eine etwas andere Verteilung als die Ren-
deringzeit. Gute Bildqualität herrscht vor allem nah an der Oberfläche der Objekte der Szene
und oberhalb der Szene mit größerem Abstand. Die gute Qualität nah an den Objekten liegt
darin begründet, dass große Teile des Bildes durch nicht genäherte Objekte bedeckt sind und
damit keinen Bildfehler erzeugen. Gleichzeitig verdecken sie jedoch auch mögliche Fehler
von dahinter positionierten, genäherten Objekten. In der Visualisierung der Qualität in Abbil-
dung 7.3 wird dies beispielsweise lokal um den Schornstein des Power-Plant-Modells deutlich.
Mit größerer Distanz zur Szene steigt die gemessene Bildqualität dadurch an, dass die gesamte
Szene projiziert einen immer kleineren Bereich des Bildes ausmacht, wodurch auch ein ggf.
großer, jedoch räumlich begrenzter Bildunterschied insgesamt zu höheren Qualitätswerten für
das gesamte Bild führt. Wie die Renderingzeit, wird auch die Bildqualität im Allgemeinen
kleiner, wenn die Werte für die minimale und maximale projizierte Größe erhöht werden (siehe
Abbildung 7.4). Nur an Positionen mit hoher Verdeckung (in den Schluchten am linken Rand
der Szene) und weit über der Szene bleibt die Qualität annähernd gleich (siehe Abbildung 7.3).
Abbildung 7.5 zeigt ein Beispiel für eine Position mit einem niedrigen Bildqualitätswert von
0.85, bei der die Szene komplett das Bild bedeckt und fast vollständig als Näherung dargestellt
wird.

●●
●●●
●
●●
●●
●●
●●●
●●●●●
●●
●

●

●●●
●●●

●●●●●●●
●●●●●●
●●●●●
●●●

●●●●
●●●●●
●●●●●●
●●●●●●●
●●

0

25

50

75

100

[50,150] [100,200] [200,300] [300,400]
[minimale projizierte Größe,
maximale projizierte Größe]

R
en

de
ri

ng
ze

it
in

 m
s

●
●
●

0.85

0.90

0.95

1.00

[50,150] [100,200] [200,300] [300,400]

B
ild

qu
al

itä
t

[minimale projizierte Größe,
maximale projizierte Größe]

Abbildung 7.4: Verteilung der Eigenschaften Renderingzeit und Bildqualität in der Testszene
für unterschiedliche Parameterwerte für die minimale und maximale projizierte
Größe

Für die Wahl des Parameters muss man also zwischen Bildqualität und Renderingzeit abwä-
gen, wobei es von der konkreten Anwendung abhängt, wie die entsprechende Anforderungen
zu gewichten sind und welche Restriktionen die verwendete Hardware liefert.

75

7 Anwendungen für genäherte Szeneneigenschaften

Original Progressive Blue Surfels
Qualitätsberechnung
SSIM & Hierarchie

Abbildung 7.5: Beispiel für eine Position mit Bildqualitätswert von 0.85 mit Ausgabe der Quali-
tätsbewertungsheuristik; minimale und maximale projizierte Größe: [300,400];
Der Fehler ergibt sich hauptsächlich aus der etwas voluminöseren Darstellung
der Surfels, wodurch alle Silhouetten leicht gestört werden.

7.3 Parameteroptimierung: Beste Tiefe eines Octrees
für minimale Renderingzeit mit CHC++

Als Beispiel für die Parameteroptimierung mit Hilfe von positionsabhängigen Szeneneigen-
schaften soll im Folgenden der Parameter der maximalen Tiefe eines Octrees (oder genauer
eines Loose-Octrees mit Vergrößerungsfaktor 2.0) als räumliche Datenstruktur für eine Szene
optimiert werden, so dass das CHC++-Occlusion-Culling-Verfahren (siehe Abschnitt 2.1.2)
die kürzeste durchschnittliche Renderingzeit erreicht. Wird die Szene in einem Baum geringer
Tiefe gespeichert, kann der Algorithmus weniger feingranular die Sichtbarkeit gesamter Teil-
bäume testen (da es nur wenige, große gibt), wodurch entweder die Sichtbarkeit der Objekte
direkt getestet werden muss oder mehr Objekte durch die grobe Zusammenfassung irrtümlich
als sichtbar klassifiziert werden. Ist der Baum sehr tief, können zwar feingranular auch ganze
Teilbäume getestet werden, dies kann bei zu vielen inneren Knoten auch zu einem merklichen
Zusatzaufwand führen. Der CHC++-Algorithmus verwendet intern einige Heuristiken, die die
Anzahl der tatsächlich durchgeführten Tests schwer vorhersehbar macht. Es hängt letztlich von
der Szene und der verwendeten Hardware ab, wie genau die räumliche Datenstruktur aufgebaut
sein muss, um einen möglichst geringe durchschnittliche Renderingzeit zu erhalten.

Als Szene wird die Power-Plant-Szene verwendet. Die untersuchte positionsabhängige
Szeneneigenschaft ist die konditionierte Renderingzeit für den CHC++-Algorithmus mit Stan-
dardparametern. Sie wird für jeden Parameterwert mit je 1024 Samples in einer quaderförmigen
3-D-Region genähert; die Region entspricht einer leicht vergrößerten Bounding-Box der Szene.
Mit einer linearen Suche werden für verschiedene Werte für die maximale Tiefe des Octrees
die Verteilung der Renderingzeit ermittelt, bei einem Wert von 0 liegen alle Objekte direkt
unter dem Szenenwurzelknoten. Anhand der statistischen Auswertung (siehe Abbildung 7.6),
ist zu erkennen, dass bei einem Octree der Tiefe 5 ein lokales Optimum der durchschnittli-
chen Renderingzeit mit 9.9 ms erreicht wird, wobei größere Werte keinen deutlichen Nachteil
bringen. Die Messung für einen Parameterwert dauert unter diesen Rahmenbedingungen ca.
77 Sekunden. Diese Art der Bewertung von Parameterwerten kann automatisiert werden,
wodurch sich auch größere Parameterräume z. B. durch eine binäre Suche nach lokalen Optima
mit überschaubarem Zeitaufwand durchführen lassen.

76

7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++

●
●

●●●●
●●
●●●

●●●●●●
●●●
●
●
●
●
●

●

●●

●

●

●

●
●●

●

●●●●
●●
●●●
●●
●●●
●
●●●●
●●●●●
●●●●
●●●●
●●●●
●
●●
●
●●●●
●●●
●●●●
●●

●●
●

●
●●

●

●

●
●

●
●●
●●●●
●
●●
●●
●●

●
●●●
●●
●●
●●●
●
●●
●●●
●●●●●●
●●
●●●●
●●
●●
●●●●●
●●
●
●●●●
●●●●
●●●●●
●●●●●
●●●
●●
●●●●

●●
●●●

●●

●

●

●
●
●
●●
●●●●●●
●●●
●
●●●
●●●
●
●
●●●
●●●
●
●●

●●●●
●
●●
●●●●●
●●●
●●●
●●●●●
●●●●
●●
●
●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●
●●●●●
●●●●

●●●●
●●●
●●●●●●●
●●●●●
●●
●●●●
●●●
●●
●●
●
●●●
●●
●●
●●
●●●●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●
●●●●
●●●●●●●●●
●●●●
●●
●
●●●
●●●
●●●●●●●●●
●●●●●
●●●●
●●
●●●●
●●●●●●●
●●●
●●●●●
●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●

●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●
●●
●●●
●●
●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●
●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●
●●●●●
●●
●●●
●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●

●●

●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●●
●
●●
●●●●●
●●
●●
●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●
●
●●●●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●

●
●●

●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●
●
●●●
●●●
●●●
●

●●
●●
●●●●●
●●●●●
●●●●●
●●●
●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●●●
●●●●●
●●●●●●
●●●●
●●
●●●●●●
●●●●●●●
●●
●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●

●

●●●●●
●●●●●●●
●●●●●
●●●
●●
●●●

●●
●●●●
●
●●●●●
●●●●●●
●●●
●●
●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●
●●●●●●●
●●●●●●●●
●●●●
●●●●
●●●●
●●
●●●●
●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●
●●

●●●●●●●●●●
●●●●●●
●●●●
●

●●
●
●●
●●●
●
●
●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●
●●●●●
●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●
●●●●●●●
●●●●●●●
●
●●●●●
●●●●
●●
●●●●●
●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●

●

●

●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●
●●
●●●
●●
●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●
●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●
●●●●●
●●
●●●
●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●

●●

5

10

15

 0 1 2 3 4 5 6 7 8 9
Maximale Tiefe des Octrees

R
en

de
rin

gz
ei

t m
it

C
H

C
+

+
 in

 m
s

Abbildung 7.6: Verteilung der Renderingzeit mit dem CHC++-Algorithmus für unterschiedli-
che maximale Tiefen des Octrees; Power-Plant-Szene

7.4 Vergleich von Renderingalgorithmen: SVS gegen
CHC++

Neben der Optimierung von Parameterwerten kann auch die Entscheidung, welches Rendering-
verfahren für ein bestimmtes Anwendungsszenario verwendet werden soll, durch genäherte
Szeneneigenschaften unterstützt werden. Mehrere mögliche Verfahren können über die erzielte
Renderingzeit verglichen werden, was das Ergebnis jedoch stark abhängig von der Hardware
macht, die für die Messungen verwendet wird. Eine andere Möglichkeit besteht darin, wei-
tere, hardwareunabhängige Eigenschaften zu betrachten. Als Beispiel für den Vergleich von
Renderingalgorithmen anhand unterschiedlicher Kriterien wird im Folgenden ein Vergleich
zwischen dem CHC++ und dem SVS-Algorithmus [EJFMadH13] durchgeführt (siehe 2.1.1):
einmal bezüglich der (konditionierten) Renderingzeit und einmal bezüglich der Anzahl der
gerenderten Polygone. Zusätzlich wird noch die Menge der Polygone in sichtbaren Objek-
ten ermittelt – als untere Schranke für die zu rendernden Polygone, die jeder konservative
Occlusion-Culling-Algorithmus auf Objektbasis einhalten muss.

Die verwendeten Szene besteht aus vier Power-Plant-Modellen mit insgesamt 50.8 Millionen
Polygone in 4684 Objekten. Die Szeneneigenschaft wird mit 4069 Samples in einem 2-D-
Schnitt horizontal durch die Szene, durch die komplexen Gebäude des Power-Plant-Modells,
gemessen.

Die visuelle Darstellung der Ergebnisse in Abbildung 7.8 zeigt für den CHC++-Algorithmus,
dass sich die Strukturen der Verteilung der Renderingzeit, wie auch die der gerenderten
Polygone, erkennbar an der Struktur der sichtbaren Polygone orientieren. An Positionen mit
hoher Sichtbarkeit werden viele Polygone dargestellt, es müssen jedoch auch gleichzeitig
große Teile des Szenengraphen traversiert werden und dabei Verdeckungstests durchgeführt
werden. An Positionen mit geringer Sichtbarkeit, hinter oder im Inneren der Gebäude, sinkt

77

7 Anwendungen für genäherte Szeneneigenschaften

die Renderingzeit deutlich, da hier mit wenigen Tests große Teile der Szene verworfen werden
können. Insgesamt wird die Menge der sichtbaren Objekte vom CHC++ jedoch durchgängig
überschätzt.

●●●●●●●●●●●●●●●
●●●
●●
●●●
●●●
●●●●
●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●●●●●●●
●●●●●●●●●
●●●●

0

25

50

75

CHC++ SVS
Verfahren

R
en

de
rin

gz
ei

t i
n

m
s

●
●●●

●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●
●●●
●●●●
●●●●●●
●●●●
●●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

 CHC++ SVS sichtbar
Verfahren

A
nz

ah
l P

ol
yg

on
e

Abbildung 7.7: Verteilung der Szeneneigenschaften Renderingzeit von CHC++ und SVS
(links); Verteilung der Szeneneigenschaften Anzahl gerenderter Polygone von
CHC++ und SVS, Anzahl der Polygone in sichtbaren Objekten (rechts); Szene
mit vier Power-Plant-Modellen

Die Visualisierung der Eigenschaften für den SVS-Algorithmus weisen die, für das Ver-
fahren typischen, Kreise aus. Diese entsprechen Schnitten durch die Sichtbarkeitskugeln des
Verfahrens. Außerhalb einer Sichtbarkeitskugel werden die sichtbaren Objekte dargestellt,
die zu der Kugel aus der Richtung des Betrachters assoziiert sind. Innerhalb der Kugel wird
der Szenengraph weiter traversiert. Die Verdeckung, die durch nahe Objekte erzeugt wird,
wird beim SVS-Algorithmus nicht ausgenutzt. Dies wird auch dadurch deutlich, dass die
Struktur der Anzahl an Polygonen in sichtbaren Objekten, wenig Ähnlichkeit mit der Menge
der gerenderten Polygone aufweist. Die Abbildung lässt auch erkennen, dass die Renderingzeit
direkt durch die Menge der gerenderten Geometrie bestimmt wird; das Verfahren benötigt zur
Laufzeit neben dem Rendering nur einen sehr geringen Zusatzaufwand für die Abfrage der
Menge der aktuell als sichtbar klassifizierten Objekte.

Die Auswertung der Verteilungen in Abbildung 7.7 zeigt, dass in dem untersuchten Szena-
rio der SVS-Algorithmus dem CHC++-Algorithmus im Allgemeinen deutlich überlegen ist.
Beispielsweise beträgt die durchschnittliche Renderingzeit des SVS-Algorithmus 18 ms; beim
CHC++ sind es 55 ms. Auch die durchschnittliche Anzahl der gerenderten Polygone beträgt
beim SVS mit 7.1 Millionen weniger als die Hälfte des CHC++ mit 15 Millionen. Des Weiteren
beachtet der SVS-Algorithmus (in der hier untersuchten Standardvariante) nicht die lokale
Verdeckung durch nahe Objekte und wird daher vom CHC++ in einigen kleinen Regionen in
der Szene durch eine geringere Renderingzeit übertroffen. Insgesamt erreicht der CHC++ eine

78

7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++

SzeneminmDraufsicht AnzahlmPolygoneminm
sichtbarenmObjekten

RenderingzeitmCHC33

RenderingzeitmSVSminmms

AnzahlmgerendertermPolygonemCHC33

AnzahlmgerendertermPolygonemSVS

minm11ms

maxm40ms maxm20M

maxm8.9M

minm53k

minm174k

maxm25M

minm0.7ms

maxm88ms

minm3.9M

a9 b9

c9 d9

e9 f9

Abbildung 7.8: Szene mit vier Power-Plant-Modellen (51M Polygone): a) Szene in Draufsicht;
b-f) Visualisierung unterschiedlicher Szeneneigenschaften mit minimalem und
maximalen Wert

79

7 Anwendungen für genäherte Szeneneigenschaften

minimale Renderingzeit von unter einer Millisekunde, wobei diese beim SVS 11 ms beträgt.
Für eine weiterführende Evaluierung des SVS-Algorithmus ergibt sich ein Ausgangspunkt für
weitere Untersuchungen: Der SVS-Algorithmus ist ein approximatives Sichtbarkeitsverfah-
ren. Das bedeutet, dass nicht ausgeschlossen ist, dass auch sichtbare Objekte als unsichtbar
klassifiziert werden. In einem nächsten Schritt könnte durch eine Analyse der Bildqualität als
Eigenschaft untersucht werden, wie groß der dadurch erzeugte Fehler ist.

7.5 Auswahl von Renderingmethoden zur Laufzeit

Neben der Entscheidung für ein bestimmtes Renderingverfahren in der Vorverarbeitung, kann
diese Entscheidung auch abhängig von der aktuellen Kameraposition zur Laufzeit getroffen
werden. Dafür können die in der Vorverarbeitung gemessenen Renderingzeiten mehrerer
Verfahren verwendet werden, um dann zur Laufzeit das für die aktuelle Position als schnellstes
bewertete Verfahren auszuwählen. Ein Nachteil bei der Wahl der Renderingzeit als Entschei-
dungskriterium ist, dass sich die Ergebnisse sehr stark an die bei der Messung verwendete
Hardware gebunden sind. Robuster und portabler ist es daher, anhand einer allgemeineren
Szeneneigenschaft (wie der Sichtbarkeit) auf die Situation an der Position des Betrachters
zu schließen und daraufhin den Algorithmus auszuwählen. Generell bleibt das Problem, das
bei allen betrachteten Szeneneigenschaften der Einfluss der Sichtrichtung des Betrachters
abstrahiert wird, so dass es bei Entscheidungen für eine konkrete Richtung zu Ungenauigkeiten
kommen kann.

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

0

10

20

30

CHC++ SVS
Verfahren

R
en

de
rin

gz
ei

t i
n

m
s

Abbildung 7.9: Vergleich der richtungsabhängigen Renderingzeit von CHC++ und SVS in
Bereichen mit hoher Verdeckung; Messungen an 1000 zufälligen Positionen
(max. 0.5M Polygone in sichtbaren Objekten) und zufälligen Richtungen;
Szene mit vier Power-Plant-Modellen

80

7.6 Rendering: Sichtbarkeit als positionsabhängige Eigenschaft

Als Beispiel bietet sich direkt das im vorherigen Abschnitt 7.4 beschriebene unterschiedliche
Verhalten der Algorithmen CHC++ und SVS an. In Bereichen mit einer hohen Verdeckung
durch nahe Objekte funktioniert der CHC++-Algorithmus besonders gut (siehe Abbildung 7.8).
Sobald der Betrachter jedoch hauptsächlich Objekte von außen in größerer Entfernung sieht,
steigt die Renderingzeit deutlich. Der SVS-Algorithmus zeigt genau das gegenteilige Verhalten:
Außenansichten funktionieren prinzipiell deutlich besser als Standpunkte innerhalb oder dicht
neben Objekten. An Positionen mit erwartet hoher Verdeckung (weniger als 0.5M Polygone
laut der Szeneneigenschaft Anzahl Polygone in sichtbaren Objekten) wird daher der CHC++-
Algorithmus verwendet, an allen übrigen Positionen der SVS-Algorithmus. Für die Evaluierung
werden 1000 zufälligen Positionen und Sichtrichtungen innerhalb der Regionen mit hoher
Verdeckung betrachtet und die Renderingzeit mit beiden Algorithmen gemessen. Die Messung
wird in diesem Falle nicht durch die Bestimmung einer positionsabhängigen Szeneneigenschaft
durchgeführt, um explizit den Einfluss der Sichtrichtung mit einzubeziehen. Die Auswertung
in Abbildung 7.9 zeigt, dass in den untersuchten Bereichen durch die Wahl des CHC++-
Algorithmus anstatt des SVS die Renderingzeit im Mittel von 7 ms deutlich auf 3 ms reduziert
werden kann. Da in der verwendeten Szene der Bereich mit hoher Verdeckung sehr klein ist,
ist jedoch der Vorteil der automatischen Auswahl bezogen auf die ganze Szene sehr gering.

7.6 Rendering: Sichtbarkeit als positionsabhängige
Eigenschaft

Neben der Bewertung, Anpassung und Auswahl existierender Renderingalgorithmen durch
positionsabhängige Szeneneigenschaften, lassen auch eigenständige Renderingalgorithmen
auf Basis von Szeneneigenschaften entwickeln. Ein einfaches Verfahren basiert auf der Sze-
neneigenschaft der Menge sichtbarer Objekte (siehe Abschnitt 4.2.2). Diese kodiert für eine
gegebene Position, welche der Objekte der Szene als sichtbar klassifiziert sind – die Eigen-
schaft nähert damit die globale Sichtbarkeit der Szene an. Zur Laufzeit wird die Menge der
potentiell sichtbaren Objekte aus der genäherten Szeneneigenschaft abgefragt und gerendert.
Das Verfahren bietet eine kurze Renderingzeit, hat jedoch einige Nachteile: Zum einen benötigt
die Kodierung der Menge der sichtbaren Objekte im Vergleich zu einer einfacheren Szenenei-
genschaft, aber auch gegenüber anderen globalen Sichtbarkeitsverfahren, mehr Speicherplatz.
Zum anderen kommt es durch die begrenzte Genauigkeit einer genäherten Szeneneigenschaft
zu Bildfehlern, wenn eigentlich sichtbare Objekte an einer Position als unsichtbar klassifiziert
wurden. Im direkten Vergleich zum SVS-Algorithmus bietet das Verfahren den Nachteil,
dass die Sichtbarkeitsinformationen nur für den in der Vorverarbeitung untersuchten Bereich
gültig sind; nähert man die Sichtbarkeitseigenschaft nur in einer 2-D-Region, kann sich der
Betrachter auch nur in dieser Region bewegen. Die Größe bzw. das Volumen des untersuchten
Bereichs wirken sich direkt auf die Anzahl der benötigten Samples und auf den benötigten
Speicherplatzbedarf aus. Die Betrachtung der richtungsabhängigen Sichtbarkeit beim SVS ist
hier klar im Vorteil.

Für die Evaluierung verwende ich die Szene mit vier Power-Plant-Modellen aus den vor-
angehenden Abschnitten. Die Eigenschaft der Menge der sichtbaren Objekte wurde mit

81

7 Anwendungen für genäherte Szeneneigenschaften

4096 Samples in einem 2-D-Schnitt durch die Szene ermittelt. Die Datengröße für die Sichtbar-
keitsinformationen beträgt 31 MB (ein großer Teil davon ist jedoch nicht verfahrens-, sonder
implementierungsbedingt). Um die Qualität des Algorithmus zu bewerten, wird die Rendering-
zeit und die Bildqualität durch genäherte Szeneneigenschaften untersucht.

max 14ms

Renderingzeit:
globale Sichtbarkeit als Eigenschaft

min 0.36ms

●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●
●●●●●●●
●

●
●
●

●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●
●●
●
●●●●
●●●●●●
●
●●●
●●●●●●
●●
●●

0

10

20

30

40

Globale Sichtbarkeit
als Eigenschaft

SVS

Verfahren
R

en
de

rin
gz

ei
t i

n
m

s

Abbildung 7.10: Renderingzeit des globalen Sichtbarkeitsverfahrens: (links) visuelle Darstel-
lung mit minimalen und maximalen Wert; (rechts) Statistische Verteilung der
Werte, inklusive Vergleichsdaten des SVS-Algorithmus aus Abschnitt 7.4

Die Renderingzeit des Verfahrens ist noch einmal kürzer als die des SVS-Verfahrens (siehe
Abbildung 7.4). Der größte gemessene Wert beträgt nur 14 ms. Die Bildqualität erreicht an
den meisten Positionen sehr gute Werte, an denen optisch kein Unterschied zum konservativen
Verfahren feststellbar sind. An den wenigen Positionen jedoch, an denen es zu Fehlern im
Sampling gekommen ist, können die Bildfehler sehr massiv ausfallen. In Abbildung 7.11 sieht
man ein Bild aus dem Bereich mit minimaler Qualität: große Teile der Rohrleitungen aus dem
Innenraum eines der Power-Plant-Modelle fehlen fast vollständig.

In der Arbeit „Preprocessed Global Visibility for Real-Time Rendering on Low-End Hard-
ware“ von Eikel, Jähn und Fischer [EJF10] wurden aufbauend auf diesem einfachen Sichtbar-
keitsverfahren einige Erweiterungen entwickelt, um dadurch das Rendering von komplexen
Szenen auf Endgeräten mit leistungsschwacher Hardware zu ermöglichen. Um die Größe des
benötigten Speicherplatzes zu reduzieren, werden Regionen mit ähnlicher Sichtbarkeit zusam-
mengefasst und so die Anzahl der zu speichernden Regionen reduziert. Äquivalent können
auch Objekte zusammengefasst werden, die weitestgehend nur aus den gleichen Regionen
sichtbar sind. Dadurch sinkt jedoch auch die Genauigkeit der genäherten Sichtbarkeitsdaten.
Obwohl die Menge der von dem Verfahren dargestellten Geometrie schon sehr gering ist, kann
sie die Leistungsfähigkeit einfacher Systeme noch überfordern, so dass die Menge noch einmal
reduziert wird. Dies geschieht dadurch, dass in der zugrundeliegenden Szeneneigenschaft
nicht nur die Menge der sichtbaren Objekte kodiert wird, sondern die Anzahl der sichtbaren

82

7.6 Rendering: Sichtbarkeit als positionsabhängige Eigenschaft

Bildqualität:O
globaleOSichtbarkeitOalsOEigenschaft

maxO0.99999

minO0.38

OriginalGerendert

Abbildung 7.11: Bildqualität des globalen Sichtbarkeitsverfahrens (hierarchisches SSIM):
(links) visuelle Darstellung mit minimalen und maximalen Werten; (rechts)
Gerendertes Beispielbild und Original aus einer Position mit minimaler Bild-
qualität

Pixel jedes Objekts. Die Eigenschaft kodiert also den geschätzten Einfluss jedes Objektes
zum gerenderten Bild. Während des Renderings können jetzt die Objekte mit dem größten
geschätzten Einfluss ausgewählt und gerendert werden, bis ein maximaler Wert an gerenderten
Polygonen erreicht ist. Dadurch vergrößert sich der Bildfehler zwar deutlich, es ist aber möglich
auch mit sehr leistungsschwacher Hardware flüssig durch die Szene zu navigieren. Sobald
der Betrachter seine Position nicht mehr verändert, können kontinuierlich die verbleibenden
sichtbaren Objekte gerendert werden.

83

8 Fazit und Ausblick
Im Folgenden ziehe ich ein Fazit für die unterschiedlichen, in dieser Arbeit vorgestellten
Aspekte und zeige Potentiale für zukünftige Arbeiten auf.

Positionsabhängige Szeneneigenschaften
Das Konzept der positionsabhängigen Szeneneigenschaften ist ein neues Werkzeug für die
experimentelle Evaluierung von Renderingalgorithmen. Global genäherte Szeneneigenschaften
können bei Messungen deutliche Vorteile gegenüber dem gebräuchlichen Einsatz von Ka-
merapfaden bieten. Statistische Aussagen über das generelle Verhalten von Algorithmen sind
durch die Auswertung global genäherter Szeneneigenschaften deutlich aussagekräftiger, da sie
nicht von der subjektiven Wahl eines Kamerapfades abhängen. Die visuelle Darstellung kann
einen intuitiven und unmittelbaren Einblick in die Funktionsweise von Algorithmen geben;
sowohl für den Entwickler beim Entwurf eines Algorithmus als auch zur Veranschaulichung
des Algorithmus in einer wissenschaftlichen Publikation oder in der Lehre. Die vorgestellte
Evaluierungsmethode kann klassische Methoden jedoch nur ergänzen und nicht ersetzen, da
das spezifische Verhalten eines Algorithmus an einer bestimmten Position und Blickrichtung
nur ungenau abgebildet wird. Auch das Verhalten von Algorithmen in Bezug auf längerfristige
temporale Kohärenz (beispielsweise von Out-of-Core-Verfahren) lässt sich nur schwer als
Szeneneigenschaft abbilden. Global genäherte Szeneneigenschaften können auch zur Laufzeit
eingesetzt werden, um das Rendering zu verbessern. Es zahlt sich jedoch meistens eher aus, die
gewonnenen Evaluierungsergebnisse eher für eine Verbesserung und Anpassung der verwende-
ten Renderingalgorithmen einzusetzen, da durch den Einfluss der Blickrichtung zur Laufzeit
die erzielbaren Verbesserungen meist nur marginal sind.

Mögliches Potential zur Verbesserung der Methode sehe ich vor allem in Erweiterungen
der Sampling-Methoden. Um sehr weitläufige Szenen effizienter zu untersuchen, könnten
die Sampling-Positionen beispielsweise auf die Regionen konzentriert werden, in denen sich
die Benutzer im geplanten Anwendungsszenario gehäuft aufhalten. Eine weitere Möglichkeit
besteht darin, die Sampling-Positionen auf die Bereiche der Szene einzuschränken, die von
einem Benutzer überhaupt erreichbar sind. Im Rahmen des Algorithm-Engineerings im Bereich
der Computergrafik wäre es wünschenswert, wenn sich weitere Arbeiten mit der systematischen
Evaluierung unterschiedlicher Aspekte beschäftigten, wie etwa der objektiven Bewertung der
Bildqualität von Näherungsverfahren.

Progressive-Blue-Surfels
Mit dem Progressive-Blue-Surfels-Verfahren habe ich ein robustes Verfahren vorgestellt, dass
es erlaubt, sehr große Szenen in Echtzeit darzustellen. Das Verfahren unterstützt unterschiedlich

85

8 Fazit und Ausblick

strukturierte Objekte, inklusive komplexer CAD-Daten, gescannter Oberflächenmodelle, weit-
läufiger, prozedural generierter Landschaften, Texturen und anderer Oberflächeneigenschaften
und dynamischer Beleuchtung. Der Laufzeit- und Speicherplatzbedarf in der Vorbereitung er-
lauben auch die Verarbeitung von sehr großen Szenen mit mehreren Milliarden Polygonen. Auf
technischer Ebene verläuft das Rendering sehr effizient, da nur wenige, zusammenhängende
Datenblöcke (Surfel-Präfixe) von der Grafikkarte verarbeitet werden müssen. Die Bildqualität
des Verfahrens ist in den meisten Fällen gut, auch wenn die Näherung der Szene zu erkennen
ist – es handelt sich nicht um ein konservatives Verfahren. Positiv in Bezug auf Bildqualität
fällt auf, dass durch die flexible Wahl der Präfixlänge fast keine Popping-Artefakte beim Um-
schalten unterschiedlicher Qualitätsstufen zu erkennen sind, die sonst bei vielen hierarchisch
arbeitenden Näherungsverfahren störend auffallen. Negativ fallen jedoch Löcher in Oberflächen
oder zu grob aufgelöste Oberflächen auf, die bei unpassender Parameterwahl auftreten können.
Bei der Wahl der Renderingparameter liegen die Grenzen in der Robustheit des Verfahrens.
Eine weitere Grenze teilt sich das Verfahren mit zahlreichen anderen Näherungsverfahren, in
denen Teile der Szene mit kleiner projizierter Größe durch Ersatzrepräsentationen angenähert
werden: Befindet sich zu viel Geometrie mit großer projizierter Größe im Sichtbereich, wird
das Verfahren für diese komplexen Bereiche nicht eingesetzt und die Renderingzeit steigt (oder
die Qualität sinkt).

Obwohl das Verfahren in seiner jetzigen Form sehr gut funktioniert, sehe ich einige Anknüp-
fungspunkte für zukünftige Erweiterungen:

• Es können weitere Eigenschaften der Originalgeometrie in die Surfels kodiert werden:
von weiteren Oberflächeneigenschaften bis hin zu Daten, die eine begrenzte Animation
der Objekte im Shader ermöglichen.

• Das Rendering sollte angepasst werden, um die Bildqualität weniger abhängig von den
Renderingparametern zu machen.

• Die Form eines Surfels bei der Darstellung könnte weiter angepasst werden, um den
möglichen Beitrag eines Surfels zum Gesamtbild zu steigern und so mit weniger Surfels
auszukommen.

• Das Verfahren könnte mit existierenden Occlusion-Culling-Algorithmen kombiniert
werden, um einer zu hohen Komplexität im Nahbereich zu begegnen.

PADrend

Das PADrend-System hat sich mittlerweile zu einem umfangreichen Renderingsystem ent-
wickelt, das bereits erfolgreich in der Entwicklung mehrerer Renderingalgorithmen eingesetzt
wurde. In der Lehre wird das System als Ausgangsbasis für Abschluss- und Projektarbei-
ten im Bereich Computergrafik eingesetzt. Hier sorgt es für eine deutliche Reduzierung des
Einarbeitungsaufwandes, so dass Studierende sich besser auf die eigentliche Fragestellung
konzentrieren können und weniger Zeit mit der Klärung technischer Details verbringen. In
Projekten wird das System für virtuelle Design-Reviews im industriellen Kontext eingesetzt.

86

Hier werden auf Basis von CAD-Daten Fragestellungen und Varianten des technischen Designs
von komplexen Maschinen betrachtet und diskutiert.

Die grundlegende Softwarearchitektur von PADrend hat sich als sehr robust herausgestellt,
so dass es auch in Zukunft in der Algorithmenentwicklung eingesetzt werden kann. Es bleibt
jedoch notwendig, auch weiterhin neue technische Funkionen, die sich beispielsweise aus der
Weiterentwicklung von OpenGL ergeben, in PADrend zu integrieren, um aktuelle Forschungs-
fragen adäquat untersuchen zu können. Die wesentliche Herausforderung für den langfristigen
Einsatz von PADrend sehe ich in der weiteren Verbesserung der Benutzerschnittstellen und
die Erstellung geeigneter Anleitungen, um langfristig genügend Nutzer und Entwickler für das
System interessieren zu können.

87

Literaturverzeichnis

Literaturverzeichnis
[AMHH08] AKENINE-MÖLLER, TOMAS, ERIC HAINES und NATY HOFFMAN: Real-Time

Rendering. A K Peters, Ltd., Wellesley, MA, USA, 3. Auflage, 2008.

[BMW+09] BITTNER, JIŘÍ, OLIVER MATTAUSCH, PETER WONKA, VLASTIMIL HAVRAN

und MICHAEL WIMMER: Adaptive global visibility sampling. ACM Transacti-
ons on Graphics, 28(3):1–10, Juli 2009.

[Bur81] BURT, PETER J.: Fast filter transform for image processing. Computer Gra-
phics and Image Processing, 16(1):20–51, Mai 1981.

[BWPP04] BITTNER, JIŘÍ, MICHAEL WIMMER, HARALD PIRINGER und WERNER

PURGATHOFER: Coherent Hierarchical Culling: Hardware Occlusion Queries
Made Useful. Computer Graphics Forum, 23(3):615–624, September 2004.
Proceedings of Eurographics 2004.

[Cat74] CATMULL, EDWIN EARL: A subdivision algorithm for computer display of
curved surfaces. Doktorarbeit, Department of Computer Science, University of
Utah, Salt Lake City, UT, USA, Dezember 1974.

[CCC+08] CIGNONI, PAOLO, MARCO CALLIERI, MASSIMILIANO CORSINI, MATTEO

DELLEPIANE, FABIO GANOVELLI und GUIDO RANZUGLIA: MeshLab: an
Open-Source Mesh Processing Tool. In: SCARANO, VITTORIO, ROSARIO DE

CHIARA und UGO ERRA (Herausgeber): Eurographics Italian Chapter Confe-
rence, Seiten 129–136. Eurographics Association, 2008.

[CDL+96] CHAMBERLAIN, BRADFORD, TONY DEROSE, DANI LISCHINSKI, DAVID

SALESIN und JOHN SNYDER: Fast rendering of complex environments using a
spatial hierarchy. In: Proceedings of Graphics Interface 1996, GI ’96, Seiten
132–141, Toronto, Ont., Canada, Mai 1996. Canadian Information Processing
Society.

[Cla76] CLARK, JAMES H.: Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(10):547–554, Oktober 1976.

[COCSD03] COHEN-OR, DANIEL, YIORGOS CHRYSANTHOU, CLÁUDIO T. SILVA und
FRÉDO DURAND: A survey of visibility for walkthrough applications. IEEE
Transactions on Visualization and Computer Graphics, 9(3):412–431, 2003.

[Coo86] COOK, ROBERT L.: Stochastic sampling in computer graphics. ACM Trans.
Graph., 5(1):51–72, Januar 1986.

89

Literaturverzeichnis

[Del34] DELAUNAY, BORIS N.: Sur la sphère vide. Izvestia Akademii Nauk SSSR,
Otdelenie Matematicheskikh i Estestvennykh Nauk, 6:793–800, Oktober 1934.

[DFI03] DEMETRESCU, CAMIL, IRENE FINOCCHI und GIUSEPPE F. ITALIANO: Algo-
rithm engineering, Algorithmics Column. Bulletin of the EATCS, 79:48–63,
2003.

[EJF10] EIKEL, BENJAMIN, CLAUDIUS JÄHN und MATTHIAS FISCHER: Preprocessed
Global Visibility for Real-Time Rendering on Low-End Hardware. In: BEBIS,
GEORGE, RICHARD BOYLE, BAHRAM PARVIN, DARKO KORACIN, RONALD

CHUNG, RIAD HAMMOUD, MUHAMMAD HUSSAIN, TAN KAR-HAN, ROGER

CRAWFIS, DANIEL THALMANN, DAVID KAO und LISA AVILA (Herausgeber):
Advances in Visual Computing, Band 6453 der Reihe Lecture Notes in Computer
Science, Seiten 622–633. Springer Berlin Heidelberg, 2010. Proceedings of the
6th International Symposium on Visual Computing (ISVC 2010).

[EJFMadH13] EIKEL, BENJAMIN, CLAUDIUS JÄHN, MATTHIAS FISCHER und FRIEDHELM

MEYER AUF DER HEIDE: Spherical Visibility Sampling. Computer Graphics
Forum, 32(4):49–58, Juli 2013. Proceedings of the 24th Eurographics Sympo-
sium on Rendering.

[EJP11] EIKEL, BENJAMIN, CLAUDIUS JÄHN und RALF PETRING: PADrend: Plat-
form for Algorithm Development and Rendering. In: GAUSEMEIER, JÜRGEN,
MICHAEL GRAFE und FRIEDHELM MEYER AUF DER HEIDE (Herausgeber):
Augmented & Virtual Reality in der Produktentstehung, Band 295 der Reihe
HNI-Verlagsschriftenreihe, Seiten 159–170. Heinz Nixdorf Institut, Universität
Paderborn, Mai 2011.

[GABK06] GUTHE, MICHAEL, ÁKOS BALÁZS und REINHARD KLEIN: Near Optimal
Hierarchical Culling: Performance Driven Use of Hardware Occlusion Queries.
In: AKENINE-MÖLLER, TOMAS und WOLFGANG HEIDRICH (Herausgeber):
Proceedings of the 17th Eurographics Symposium on Rendering, EGSR ’06,
Seiten 207–214. Eurographics Association, Juni 2006.

[Gei07] GEISS, RYAN: Gpu Gems 3, Kapitel Generating Complex Procedural Terrains
Using the GPU, Seiten 7–37. Addison-Wesley Professional, 2007.

[GKM93] GREENE, NED, MICHAEL KASS und GAVIN MILLER: Hierarchical Z-Buffer
Visibility. In: Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’93, Seiten 231–238, New York, NY,
USA, 1993. ACM.

[Hop96] HOPPE, HUGUES: Progressive meshes. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’96,
Seiten 99–108, New York, NY, USA, 1996. ACM.

90

Literaturverzeichnis

[Jäh13] JÄHN, CLAUDIUS: Progressive Blue Surfels. Technischer Bericht, Heinz
Nixdorf Institut, Universität Paderborn, 2013. http://arxiv.org/abs/1307.0247.

[JEF+13] JÄHN, CLAUDIUS, BENJAMIN EIKEL, MATTHIAS FISCHER, RALF PETRING

und FRIEDHELM MEYER AUF DER HEIDE: Evaluation of Rendering Al-
gorithms using Position-Dependent Scene Properties. In: BEBIS, GEORGE,
RICHARD BOYLE, BAHRAM PARVIN, DARKO KORACIN, BAOXIN LI, FATIH

PORIKLI, VICTOR ZORDAN, JAMES KLOSOWSKI, SABINE COQUILLART,
XUN LUO, MIN CHEN und DAVID GOTZ (Herausgeber): Advances in Visual
Computing, Band 8033 der Reihe Lecture Notes in Computer Science, Seiten
108–118. Springer Berlin Heidelberg, 2013. Proceedings of the 9th International
Symposium on Visual Computing (ISVC 2013).

[MBW08] MATTAUSCH, OLIVER, JIŘÍ BITTNER und MICHAEL WIMMER: CHC++: Co-
herent Hierarchical Culling Revisited. Computer Graphics Forum, 27(2):221–
230, April 2008. Proceedings of Eurographics 2008.

[MF92] MCCOOL, MICHAEL und EUGENE FIUME: Hierarchical Poisson Disk Samp-
ling Distributions. In: Proceedings of the Conference on Graphics Interface ’92,
Seiten 94–105, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers
Inc.

[PD90] PLANTINGA, HARRY und CHARLES R. DYER: Visibility, occlusion, and
the aspect graph. International Journal of Computer Vision, 5(2):137–160,
November 1990.

[PEJ+13] PETRING, RALF, BENJAMIN EIKEL, CLAUDIUS JÄHN, MATTHIAS FISCHER

und FRIEDHELM MEYER AUF DER HEIDE: Real-Time 3D Rendering of Hete-
rogeneous Scenes. In: BEBIS, GEORGE, RICHARD BOYLE, BAHRAM PARVIN,
DARKO KORACIN, BAOXIN LI, FATIH PORIKLI, VICTOR ZORDAN, JAMES

KLOSOWSKI, SABINE COQUILLART, XUN LUO, MIN CHEN und DAVID

GOTZ (Herausgeber): Advances in Visual Computing, Band 8033 der Reihe
Lecture Notes in Computer Science, Seiten 448–458. Springer Berlin Hei-
delberg, 2013. Proceedings of the 9th International Symposium on Visual
Computing (ISVC 2013).

[PT02] PANTAZOPOULOS, IOANNIS und SPYROS TZAFESTAS: Occlusion Culling
Algorithms: A Comprehensive Survey. J. Intell. Robotics Syst., 35(2):123–156,
November 2002.

[PZvBG00] PFISTER, HANSPETER, MATTHIAS ZWICKER, JEROEN VAN BAAR und MAR-
KUS GROSS: Surfels: surface elements as rendering primitives. In: Proceedings
of the 27th annual conference on Computer graphics and interactive techni-
ques, SIGGRAPH ’00, Seiten 335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

91

Literaturverzeichnis

[RL00] RUSINKIEWICZ, SZYMON und MARC LEVOY: QSplat: a multiresolution
point rendering system for large meshes. In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, SIGGRAPH
’00, Seiten 343–352, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[San09] SANDERS, PETER: Algorithm Engineering – An Attempt at a Definition. In:
Efficient Algorithms, Band 5760 der Reihe Lecture Notes in Computer Science,
Seiten 321–340. Springer, 2009.

[SKJF11] SÜSS, TIM, CLEMENS KOCH, CLAUDIUS JÄHN und MATTHIAS FISCHER:
Approximative occlusion culling using the hull tree. In: Proceedings of Graphics
Interface 2011, GI ’11, Seiten 79–86, School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, Mai 2011. Canadian Human-Computer
Communications Society.

[SLS+96] SHADE, JONATHAN, DANI LISCHINSKI, DAVID H. SALESIN, TONY DEROSE

und JOHN SNYDER: Hierarchical image caching for accelerated walkthroughs
of complex environments. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’96, Seiten 75–82,
New York, NY, USA, 1996. ACM.

[TS91] TELLER, SETH J. und CARLO H. SÉQUIN: Visibility preprocessing for interac-
tive walkthroughs. In: Proceedings of the 18th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’91, Seiten 61–70, New York,
NY, USA, 1991. ACM.

[Ulr00] ULRICH, THATCHER: Loose Octrees. In: DELOURA, MARK (Herausgeber):
Game Programming Gems, Game Programming Gems, Kapitel 4.11, Seiten
444–453. Charles River Media, Boston, MA, USA, 2000.

[WBSS04] WANG, ZHOU, ALAN CONRAD BOVIK, HAMID RAHIM SHEIKH und EERO P.
SIMONCELLI: Image quality assessment: from error visibility to structural
similarity. Image Processing, IEEE Transactions on, 13(4):600–612, April
2004.

[WFP+01] WAND, MICHAEL, MATTHIAS FISCHER, INGMAR PETER, FRIEDHELM

MEYER AUF DER HEIDE und WOLFGANG STRASSER: The randomized z-
buffer algorithm: interactive rendering of highly complex scenes. In: Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’01, Seiten 361–370, New York, NY, USA, 2001.
ACM.

[YGL97] YUAN, PING, MARK GREEN und RYNSON W. H. LAU: A framework for
performance evaluation of real-time rendering algorithms in virtual reality. In:
Proceedings of the ACM symposium on Virtual reality software and technology,
VRST ’97, Seiten 51–58, New York, NY, USA, 1997. ACM.

92

Literaturverzeichnis

[ZMHH97] ZHANG, HANSONG, DINESH MANOCHA, TOM HUDSON und KENNETH E.
HOFF, III: Visibility culling using hierarchical occlusion maps. In: Procee-
dings of the 24th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’97, Seiten 77–88, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

93

	1 Einleitung
	2 Abgrenzung im Bereich der Computergrafik
	2.1 Sichtbarkeit
	2.1.1 Globale Sichtbarkeit
	2.1.2 Lokale Sichtbarkeit (Online-Occlusion-Culling)

	2.2 Genähertes Rendering
	2.3 Renderingsysteme

	3 PADrend – Plattform for Algorithm Development and Rendering
	3.1 Systembibliotheken
	3.2 Szenengraph: MinSG
	3.3 Anwendungsinterface
	3.4 Eckdaten des Testsystems

	4 Szeneneigenschaften
	4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften
	4.1.1 Effiziente Bestimmbarkeit
	4.1.2 Begrenzung des Wertebereichs
	4.1.3 Praktische Gutmütigkeit des Wertebereichs
	4.1.4 Determinismus

	4.2 Betrachtete Szeneneigenschaften
	4.2.1 Exakte Sichtbarkeit
	4.2.2 Pixelsichtbarkeit
	4.2.3 Renderingzeit
	4.2.4 Anzahl von Operationen
	4.2.5 Bildqualität
	4.2.6 Kombinierte Szeneneigenschaften

	5 Globale Näherung von Szeneneigenschaften
	5.1 Anforderungen
	5.1.1 Akzeptabler Zeitaufwand im Preprocessing
	5.1.2 Kompakter Speicherplatz
	5.1.3 Effiziente Punktabfragen
	5.1.4 Gute Qualität der Näherung
	5.1.5 Parametrierbar, aber robust
	5.1.6 Einfachheit

	5.2 Allgemeine Form des Sampling-Ansatzes
	5.2.1 Aufbau der Datenstruktur

	5.3 Regelmäßiges Sampling
	5.4 Adaptives Sampling
	5.4.1 Beschreibung des Algorithmus
	5.4.2 Beschreibung der weiteren Parameter

	5.5 Parallelisierung
	5.6 Auswertungsmöglichkeiten
	5.6.1 Qualitative Auswertung durch Visualisierung
	5.6.2 Statistische Auswertung der Verteilung

	5.7 Experimentelle Bewertung der Sampling-Verfahren
	5.7.1 Benötigte Anzahl an Samples

	6 Approximatives Rendering mit Progressive-Blue-Surfels
	6.1 Vorverarbeitung: Berechnung der Surfels
	6.1.1 Berechnung einer Surfel-Repräsentation
	6.1.2 Hierarchische Berechnung der Surfel-Repräsentationen
	6.1.3 Speicherplatzbedarf

	6.2 Rendering: Darstellung mit Hilfe von Surfels
	6.2.1 Rendern eines Surfel-Präfixes

	6.3 Überblick über die Parameter des Verfahrens
	6.4 Experimentelle Bewertung der Sampling-Verteilung
	6.4.1 Stabilität des Zufallsprozesses
	6.4.2 Einfluss des genäherten Objektes
	6.4.3 Sampling-Qualität und Laufzeit

	6.5 Anwendungen und Erweiterungen

	7 Anwendungen für genäherte Szeneneigenschaften
	7.1 Szeneneigenschaften im Bereich des Algorithm-Engineering
	7.2 Exploration: Auswirkungen der projizierten Größe beim Rendering mit Progressive-Blue-Surfels
	7.3 Parameteroptimierung: Beste Tiefe eines Octrees für minimale Renderingzeit mit CHC++
	7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++
	7.5 Auswahl von Renderingmethoden zur Laufzeit
	7.6 Rendering: Sichtbarkeit als positionsabhängige Eigenschaft

	8 Fazit und Ausblick

