'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Fakultat fur Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut & Institut fir Informatik
Fachgruppe Algorithmen und Komplexitat

Dissertation

Bewertung von
Renderingalgorithmen fur komplexe
3-D-Szenen

Claudius Jiahn

Paderborn 2015

Gutachter: Prof. Dr. Friedhelm Meyer auf der Heide
Prof. Dr. Gitta Domik-Kienegger

Kontakt: Claudius Jihn <claudius @uni-paderborn.de>
Dokumentenversion vom 21. Dezember 2015

Zusammenfassung

Die Effizienz von Renderingalgorithmen fiir komplexe virtuelle 3-D-Szenen hingt oft stark
von der Position des Betrachters in der Szene ab. Die Bewertung der Algorithmeneffizienz
in einer gegebenen Szene erfolgt daher typischerweise durch die Messungen entlang eines
charakteristischen Kamerapfades durch die Szene. Objektive Aussagen iiber das generelle
Verhalten des Algorithmus sind dabei in ihrer Aussagekraft deutlich beschrinkt. Ich stelle ein
Verfahren vor, das die evaluierte Kenngréf3e von Renderingalgorithmen, wie die Renderingzeit
oder Anzahl durchgefiihrter Operationen, als positionsabhingige Szeneneigenschaft betrachtet,
deren Verteilung durch adaptives Sampling fiir alle Positionen der Szene angendhert wird. Die
statistische Auswertung erlaubt einen direkten, objektiven Vergleich verschiedener Renderingal-
gorithmen oder Parameterwerte; ihre Visualisierung kann zum Verstéindnis des Verhaltens von
Algorithmen beitragen. Die vorgestellte Technik lédsst sich sowohl wihrend der Entwicklung
von Renderingalgorithmen als auch zur Vorbereitung von konkreten Anwendungsfillen ver-
wenden. Des Weiteren wird das punktbasierte Progressive-Blue-Surfels-Renderingverfahren
fiir die Darstellung hochkomplexer virtueller Szenen vorgestellt. Das Verfahren generiert
sortierte Punktfolgen auf der sichtbaren Oberfliche der Geometrie der Szene, so dass jeder
Prifix der Folge eine gute Ndherung der Geometrie darstellt und die Qualitdt und Laufzeit
durch die Anzahl der dargestellten Punkte feinschrittig eingestellt werden kann. Die Techniken
sind in PADrend implementiert, einem Renderingsystem, das speziell fiir den Entwurf von
Renderingalgorithmen entwickelt wurde.

Abstract

The efficiency of rendering algorithms for complex virtual 3D scenes does not only dependent
on the scene’s overall properties, but also on the observer’s position inside the scene. To experi-
mentally evaluate an algorithm, measurements are typically performed along a characteristic
camera path. This allows only for a weak assessment of the algorithm’s general performance
even for a fixed scene. I present an approach to represent aspects of an algorithm’s behavior, like
its running time or the number of performed operations, as position dependent scene properties.
The properties’ distribution can be approximated for all positions in the scene using an adaptive
sampling technique. A distribution’s statistical evaluation allows for a direct and objective
comparison of different algorithms and parameter values. Its visualization yields intuitive
insight into the algorithms behavior. Additionally, I present the point-based Progressive Blue
Surfels rendering algorithm for visualizing highly complex virtual scenes. The algorithm places
a sorted sequence of points on the visible surface of the scene’s geometry, so that every prefix
of the points represents a complete approximation of the geometry. By choosing the rendered
sequence’s length, image quality and running time can be adjusted at runtime. The presented
techniques are implemented in PADrend, a rendering system specially designed for supporting
the process of developing rendering algorithms.

11

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung

2 Abgrenzung im Bereich der Computergrafik
2.1 Sichtbarkeit e

2.1.1
2.1.2

Globale Sichtbarkeit oo
Lokale Sichtbarkeit (Online-Occlusion-Culling)

2.2 GenidhertesRendering
2.3 Renderingsysteme e e e e

3 PADrend - Plattform for Algorithm Development and Rendering
3.1 Systembibliotheken oL oo
3.2 Szenengraph: MinSG
3.3 Anwendungsinterface
3.4 Eckdatendes Testsystems e

4 Szeneneigenschaften
4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften

4.1.1 Effiziente Bestimmbarkeit,
4.1.2 Begrenzung des Wertebereichs
4.1.3 Praktische Gutmiitigkeit des Wertebereichs
4.1.4 Determinismus e e
4.2 Betrachtete Szeneneigenschaften 0oL
4.2.1 Exakte Sichtbarkeit L L Lo
4.2.2 Pixelsichtbarkeit L oL
423 Renderingzeit
4.2.4 Anzahl von Operationen
425 Bildqualitdt
4.2.6 Kombinierte Szeneneigenschaften

5 Globale Naherung von Szeneneigenschaften
5.1 Anforderungen

5.1.1
5.1.2
5.1.3
5.14
5.15
5.1.6

Akzeptabler Zeitaufwand im Preprocessing
Kompakter Speicherplatz
Effiziente Punktabfragen
Gute Qualitdt der Ndherung
Parametrierbar, aberrobust
Einfachheit

10
12
13
15

17
17
18
20
22

23
24
24
24
24
25
26
26
26
28
30
30
31

33
34
34
34
34
35
35
35

Inhaltsverzeichnis

5.2 Allgemeine Form des Sampling-Ansatzes 35
5.2.1 Aufbau der Datenstruktur oL 35
5.3 RegelmiBiges Sampling 37
54 Adaptives Sampling L. 38
5.4.1 Beschreibung des Algorithmus 38
5.4.2 Beschreibung der weiteren Parameter 39
5.5 Parallelisierung 44
5.6 Auswertungsmoglichkeiteno 46
5.6.1 Qualitative Auswertung durch Visualisierung 47
5.6.2 Statistische Auswertung der Verteilung 47
5.7 Experimentelle Bewertung der Sampling-Verfahren 49
5.7.1 Benotigte Anzahl an Samples 51
6 Approximatives Rendering mit Progressive-Blue-Surfels 55
6.1 Vorverarbeitung: Berechnung der Surfels 56
6.1.1 Berechnung einer Surfel-Reprédsentation 57
6.1.2 Hierarchische Berechnung der Surfel-Reprédsentationen 59
6.1.3 Speicherplatzbedarf L oL oo 60
6.2 Rendering: Darstellung mit Hilfe von Surfels 60
6.2.1 Rendern eines Surfel-Prifixes 61
6.3 Uberblick iiber die Parameter des Verfahrens. 62
6.4 Experimentelle Bewertung der Sampling-Verteilung 63
6.4.1 Stabilitdt des Zufallsprozesses 63
6.4.2 Einfluss des gendherten Objektes 64
6.4.3 Sampling-Qualitdt und Laufzeit 65
6.5 Anwendungen und Erweiterungen 68
7 Anwendungen fir gendherte Szeneneigenschaften 71
7.1 Szeneneigenschaften im Bereich des Algorithm-Engineering 71
7.2 Exploration: Auswirkungen der projizierten Gro3e beim Rendering mit Progressive-
Blue-Surfels 73
7.3 Parameteroptimierung: Beste Tiefe eines Octrees fiir minimale Renderingzeit
mit CHC++ oo o o 76
7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++ 77
7.5 Auswahl von Renderingmethoden zur Laufzeit 80
7.6 Rendering: Sichtbarkeit als positionsabhidngige Eigenschaft 81
8 Fazit und Ausblick 85

vi

1 Einleitung

Im Bereich der 3-D-Computergrafik spielt, neben der optischen Qualitit der erzeugten Bilder,
die Geschwindigkeit, mit der die Bilder berechnet werden kdnnen, eine entscheidende Rolle
fiir die Anwendung. Sobald ein Benutzer sich frei in einer virtuellen Umgebung bewegen
mochte, darf eine bestimmte Bildrate nicht unterschritten werden. Bei Renderingsystemen
zur Visualisierung von 3-D-CAD-Daten konnen bereits weniger als 10 fps (frames per second)
ausreichend sein, um sich in der Umgebung zurechtzufinden und fiir das Anwendungsszenario
notwendige Aktionen auszufiihren. Fiir Computerspiele sind hingegen oft Bildraten von bis
zu 60 fps wiinschenswert, um dem Benutzer eine schnelle Reaktion auf Ereignisse in der
virtuellen Welt zu ermdglichen. Unabhingig von der tatsdchlich notwendigen Bildrate ist die
Komplexitit der darzustellenden Daten oft so grof, dass trotz mittlerweile sehr leistungsfahiger
Spezialhardware die Bilder nicht auf einfache Art in entsprechender Zeit berechnet werden
konnen. Dies gilt insbesondere fiir die Darstellung von 3-D-Daten im industriellen Umfeld, wo
die Daten durch die Anwendung vorgegeben sind (z. B. automatisch generiert aus CAD-Daten)
und nicht zum Zwecke der Darstellung erzeugt werden, wie es bei Computerspielen der Fall ist.

Um die Komplexitit der in Echtzeit darstellbaren Szenen immer weiter zu erhohen, wird
zum einen die Grafikhardware stiindig in ihrer Leistungsfahigkeit und in ihren Moglichkeiten
erweitert. Zum anderen wurden und werden eine Vielzahl unterschiedlicher Renderingalgorith-
men und Datenstrukturen entwickelt, um die 3-D-Daten zu filtern und so aufzubereiten, dass
die Grenze der handhabbaren Szenenkomplexitit bisweilen um Groflenordungen angehoben
wird. In diesem Kontext werden in dieser Arbeit drei Ziele verfolgt:

1. Der Schwerpunkt dieser Arbeit bezieht sich auf die Entwicklung einer Technik zur
Evaluierung von Renderingalgorithmen, welche speziell das Verhalten eines Algorith-
mus in Abhingigkeit der Betrachterposition innerhalb der virtuellen Szene untersucht.
Im Vergleich zu gingigen, kamerapfadbasierte Evaluierungstechniken, erlaubt die vor-
gestellte Technik eine objektivere Bewertung von Renderingalgorithmen. Durch die
Visualisierung der Messdaten liefert sie zusitzlich einen neuen und intuitiven Zugang
zum Verstdndnis des Verhaltens von Renderingalgorithmen. Vorgestellt wurde die Tech-
nik in der Arbeit ,, Evaluation of Rendering Algorithms using Position-Dependent Scene
Properties“ [JEFT13].

2. Das Progressive-Blue-Surfels-Niherungsverfahren ist ein Renderingverfahren fiir die
interaktive Darstellung von hochkomplexen Szenen. Das Verfahren beschleunigt den
Renderingprozess indem komplexe, aber weit entfernte Bereiche von Szenen durch
Folgen von Punktprimitiven dargestellt werden. Im Vergleich zu anderen, punktbasierten
Renderingverfahren, ist die zugrundeliegende geometrische Struktur und die Oberfliche-
neigenschaften der Szene nicht durch das Verfahren eingeschriankt. Erstmalig vorgestellt

1 Einleitung

wurde das Verfahren in dem technischen Bericht ,, Progressive Blue Surfels* [Jdh13];
eine weitere Publikation ist in Vorbereitung.

3. Um den Entwicklungsprozess von Renderingalgorithmen technisch zu unterstiitzen,
wurde das PADrend-System entwickelt. Das System stellt Evaluierungswerkzeuge zur
Verfiigung, um neu entwickelte Renderingalgorithmen zu bewerten und mit zahlreichen
existierenden Verfahren zu vergleichen. Vorgestellt wurde das System in der Arbeit
,,PADrend: Platform for Algorithm Development and Rendering“ [EJP11].

Im Folgenden gebe ich einen kurzen Uberblick iiber die behandelten Aspekte.

Evaluierung mit positionsabhangigen Szeneneigenschaften

Renderingalgorithmen fiir die Darstellung komplexer Szenen setzen unterschiedliche Techniken
ein, um den Berechnungsaufwand fiir ein einzelnes Bild zu reduzieren. Bei Occlusion-Culling-
Algorithmen geschieht dies beispielsweise durch Erkennen und Verwerfen von verdeckten
Teilen der virtuellen Szene moglichst frith im Renderingprozess. Das Ziel dabei ist, zur
Laufzeit moglichst wenige Ressourcen auf die Berechnung von Daten aufzuwenden, die nicht
zu dem endgiiltigen Bild beitragen. Wenn in einer Szene generell eine hohe Verdeckung
herrscht, wie beispielsweise in vielen architektonischen Szenen, kann sie dadurch fliissig
dargestellt werden, auch wenn ihre Gesamtkomplexitit die Fahigkeiten der Hardware bei einer
einfachen Darstellung ohne spezielles Verfahren iiberschreitet. Ist die Szene aber aufgrund ihrer
Struktur nicht fiir ein Verfahren geeignet oder werden die Parameter des Renderingalgorithmus
bzw. der verwendeten Datenstruktur schlecht gewéhlt, so kann der Einsatz eines Occlusion-
Culling-Algorithmus auch den Renderingprozess verlangsamen. Dabei ist das Verhalten
des Algorithmus jedoch nicht nur von der Szene als Ganzes abhingig, sondern auch von
der aktuellen Position und der Blickrichtung des Betrachters innerhalb der virtuellen Szene.
Steht ein Betrachter direkt vor einer Wand, so dass grofle Bereiche der Szene hinter der
Wand verdeckt sind, ist es wahrscheinlich, dass sich ein Occlusion-Culling-Algorithmus
auszahlt. Wird dieselbe Szene jedoch von einer anderen Position aus betrachtet, konnen grof3e
Bereiche sichtbar sein und sich das Occlusion-Culling ggf. nicht mehr lohnen und sogar
zu einer geringeren Bildrate fithren. Abbildung 1.1 verdeutlicht diese Situation an einem
einfachen Beispiel. Diese starke Abhingigkeit von Renderingalgorithmen gegeniiber der
Betrachterposition stellt in verschiedenen Situationen eine Herausforderung dar:

e Bei der Entwicklung von neuen Renderingalgorithmen muss der Entwickler das Ver-
halten von Algorithmen in méglichst vielen Situationen nachvollziehen konnen, um den
Algorithmus fiir den gewiinschten Einsatzbereich anzupassen. Bei der Evaluierung eines
neuen Verfahrens erfordert die Positionsabhingigkeit daher aufwindige Testverfahren,
um die Leistung des neuen Verfahrens objektiv gegen andere Verfahren abzugrenzen (als
Teil des Algorithm-Engineering von Renderingalgorithmen).

e Bei der Aufbereitung der Daten einer komplexen virtuellen Szene muss fiir eine aus-
reichend effiziente Darstellung ein geeigneter Renderingalgorithmus sowie eine ent-
sprechende Datenstruktur zur Speicherung der Szene gewihlt werden. Hinzu kommen

B A 8

Abbildung 1.1: Draufsicht auf eine einfache Beispielszene (Szene 1) bestehend aus einigen
Biumen und Winden. An Position A steht der Betrachter hinter einer Wand:
Occlusion-Culling lohnt sich. An Position B herrscht wenig Verdeckung im

Sichtbereich: Occlusion-Culling kann den Renderingprozess verlangsamen.

Renderingzeit in ms

1 1 1
Renderingzeit Renderingzeit Differenz
CHC++ Std CHC++ - Std.

positionsbezogene Szeneneigenschaft

Abbildung 1.2: Beispiel fiir die Auswertung der globalen Niaherung der Szeneneigenschaft
Renderingzeit fiir Szene 1 (gespeichert in einem Octree). (links) Visualisierung
der Differenz aus der Renderingzeit mit Occlusion-Culling und Renderingzeit
mit Standardrendering; griin: Occlusion-Culling ist schneller; rot: Standard-
rendering ist schneller. (rechts) Verteilung der Szeneneigenschaft iiber den
untersuchten Bereich der Szene als Box- und Violinen-Plot.

1 Einleitung

ggf. noch zahlreiche Parameter, fiir die entsprechende Werte gewihlt werden miissen.
Hierfiir benotigt man entweder entsprechendes Expertenwissen, um das Verhalten des
Algorithmus abschitzen zu konnen, oder aber wiederum aufwiéndige Testverfahren.

e Wihrend des Walkthroughs, also wihrend sich der Betrachter durch die Szene bewegt,
kann der ausgewdhlte Renderingalgorithmus mit sehr unterschiedlichen Situationen
konfrontiert werden. Ist im Algorithmus kein Mechanismus integriert, der eine situa-
tionsbedingte Anpassung ermoglicht, kann dies seine Einsatzmoglichkeiten deutlich
einschrinken.

Die gebriuchliche Herangehensweise zur Untersuchung des positionsabhéngigen Verhaltens
eines Algorithmus in einer gegebenen Szene ist die Messung der zu untersuchenden Eigenschaft,
wie etwa Laufzeit des Algorithmus, durchgefiihrte Operationen oder Menge der sichtbaren
Geometrie, entlang eines ,,typischen Kamerapfades. Bei einem gut gewéhlten Kamerapfad
kann dies wichtige Einblicke in das Verhalten des Algorithmus liefern. Die Giiltigkeit einer
statistischen Auswertung der Ergebnisse bezieht sich jedoch nur auf den gewihlten Pfad. In
dieser Arbeit stelle ich eine Technik vor, die eine weitreichendere systematische Bestimmung
und Auswertung von positionsabhédngigem Verhalten von Renderingalgorithmen erlaubt. Dazu
werden die untersuchten positionsabhéngigen Eigenschaften als Funktionen des Raumes der
Szene aufgefasst. Dabei wird die Sichtrichtung abstrahiert, so dass nur ein repridsentativer
Wert fiir eine Position verwendet wird. Diese Funktionen lassen sich durch einen adaptiven
Sampling-Ansatz global, d. h. fiir alle Positionen in der Szene, anndhern und diese Ndherung
in einer Datenstruktur speichern. Diese Datenstruktur bezeichne ich als globale Niherung
einer Szeneneigenschaft. Ein Beispiel fiir die Visualisierung der Datenstruktur sowie der
Moglichkeit der statistischen Auswertung zeigt Abbildung 1.2. Die Abbildung visualisiert
die globale Nédherung der Differenz der Renderingzeit aus einfachem Standardrendering und
Rendering mit einem Occlusion-Culling-Algorithmus (CHC++ [MBWO08]) fiir einen Bereich
in der Szene. In der farblichen Darstellung werden die Positionen in der Szene in griin
hervorgehoben, an denen die Verwendung des Occlusion-Culling-Algorithmus zu einer hoheren
Bildrate fiihrt. In den roten Bereichen ist unter den Randbedingungen das Standardrendering
schneller. Durch die Visualisierung lisst sich so das Verhalten des Algorithmus auf einen Blick
wesentlich anschaulicher darstellen, als dies allein mit der Untersuchung von Kamerapfaden
moglich ist. Die statistische Auswertung zeigt die Verteilung der Renderingzeit fiir alle
Positionen im untersuchten Bereich. Auf dieser Basis kann man nun entscheiden, welchen
Algorithmus man fiir das angestrebte Anwendungsszenario einsetzen mochte oder weitere
Varianten und Parameterwerte gegeneinander abwédgen. Fiir diese Entscheidung bietet die
statistische Auswertung der Szeneneigenschaften eine deutlich objektivere Grundlage als eine
dhnliche Auswertung eines frei gewihlten Kamerapfades in der Szene.

Progressive-Blue-Surfels: Algorithmus zur Darstellung
hochkomplexer Szenen

Ein weiterer Bestandteil dieser Arbeit ist die Vorstellung eines neuen Renderingverfahrens fiir
die Darstellung hochkomplexer Szenen: das Progressive-Blue-Surfels-Verfahren. Die grundle-

gende Idee ist die Anndherung komplexer, aber weit entfernter Bereiche der Szene durch eine
sortierte Folge von Punkten. Die Punkte liegen auf der von auflen sichtbaren Oberfliche der
angendherten Geometrie. Die wesentlichen Merkmale des Verfahrens im Vergleich zu anderen
punktbasierten Ndherungsverfahren sind die Moglichkeit, durch die Wahl der Linge des darge-
stellten Prifixes der Punktfolge die Darstellungsqualitit und Renderingzeit prizise einstellen zu
konnen, und seine Robustheit in der Art der darzustellenden Szene. Durch die Moglichkeit, die
Detaillierung kontinuierlich einstellen zu konnen, werden die bei vielen Niherungsverfahren
auftretenden, storenden Artefakte beim Umschalten zwischen verschiedenen Qualitdtsstufen
deutlich reduziert. Die Robustheit gegeniiber der Szene erlaubt die Darstellung unterschiedlich
strukturierter Objekte, inklusive komplexer CAD-Daten, gescannter Oberflichenmodelle und
prozedural generierter Landschaften. Oberflicheneigenschaften wie Texturen und dynamischer
Beleuchtung werden ebenfalls unterstiitzt. Insgesamt erlaubt das Verfahren die Darstellung von
Szenen aus mehreren Milliarden Polygonen mit interaktiven Bildraten.

PADrend: Softwaresystem fir die Entwicklung von
Renderingalgorithmen

PADrend ist ein Softwaresystem zur Darstellung virtueller Szenen, bei dem sich der Benutzer
frei durch die Szene bewegen kann. Das System wurde gemeinsam von Benjamin Eikel, Ralf
Petring und mir konzipiert und implementiert, unter Einbeziehung studentischer Arbeiten.
Im Vergleich zu anderen Renderingsystemen, wie beispielsweise Game-Engines, liegt der
Schwerpunkt nicht auf dem Rendering fiir einen speziellen Anwendungsfall, sondern in der
Unterstiitzung bei der Entwicklung und der Evaluierung von Renderingalgorithmen. Dies
spiegelt sich in mehreren Aspekten im Systemaufbau wider: Die enthaltene Szenengraphbiblio-
thek MinSG (Minimalistic-Scene-Graph) erlaubt die Ubernahme der vollstindige Kontrolle
iber den Renderingprozess — kapselt aber bei Bedarf alle technischen Details in einem High-
Level-Interface, um den Entwickler zu entlasten und die Einstiegshiirden fiir neue Entwickler
zu senken. Zum Vergleich neuer Algorithmen mit aktuellen Verfahren aus der Literatur sind
zahlreiche Occlusion-Culling- und Nédherungsverfahren im System implementiert. Das Benut-
zerinterface bietet verschiedene Messwerkzeuge an, um verschiedene Kenngrofen zur Laufzeit
zu erheben; die Bestimmung von positionsabhéingigen Szeneneigenschaften ist eines davon.
Unter anderem wurde das System bereits fiir die Entwicklung mehrerer Renderingverfahren
verwendet und diente als Ausgangsbasis zahlreicher studentischer Abschlussarbeiten. Abseits
des Algorithmenentwurfs wird das System auch im Rahmen von Industrieprojekten fiir die
Durchfiihrung von Design-Reviews virtueller Prototypen von Maschinen und Industrieanlagen
genutzt. Durch die Moglichkeit, das mechanische Verhalten der virtuellen Prototypen durch
High-Level-Funktionen nachzubilden, lassen sich mit geringem Arbeitsaufwand komplexe
Situationen virtuell nachstellen. Auf einer stereoskopischen Mehrkanalprojektion kann mit
getrackten Eingabegeriten mit dem virtuellen Prototypen interagiert werden.

1 Einleitung

Aufbau der Arbeit

In dieser Arbeit beschiftige ich mich speziell mit einem Teilbereich des Themengebietes der
Computergrafik (dem Echtzeitrendering) und baue dabei auf unterschiedlichen, existierenden
Verfahren auf. Eine Abgrenzung des Themengebietes sowie einen Uberblick iiber diese
verwendeten Arbeiten gebe ich in Kapitel 2. Als Basis fiir die Evaluierung der in dieser Arbeit
vorgestellten Methoden wurde das PADrend-Softwaresystem verwendet, welches in weiten
Teilen speziell fiir diesen Einsatzzweck entworfen wurde. Die grundlegende Architektur und
die Moglichkeiten des Systems stelle ich in Kapitel 3 vor.

Eine detailliertere Erlduterung des Konzeptes der positionsabhiingigen Szeneneigenschaft
sowie einiger konkreter Szeneneigenschaften gebe ich in Kapitel 4. Um das Konzept der
Szeneneigenschaft praktisch einsetzten zu konnen, verwende ich eine Niherung des Verlaufs
der Eigenschaft in einem Bereich der Szene — der globalen Naherung der Szeneneigenschaft.
Zur Berechnung dieser Ndherung habe ich ein adaptives Sampling-Verfahren entwickelt, dessen
Details ich in Kapitel 5 beschreibe und durch experimentelle Untersuchungen bewerte. Das
punktbasierte Progressive-Blue-Surfels-Renderingverfahren erlaubt die interaktive Darstellung
hochkomplexer Szenen. Das Verfahren und eine experimentelle Bewertung der Punktever-
teilung beschreibe ich in Kapitel 6. Fiir die Anwendung der globalen Ndherung einer Szene-
neigenschaft fiir eine Verbesserung des Renderings habe ich verschiedene Einsatzszenarien
identifiziert. Anhand von Beispielen erldutere ich diese in Kapitel 7. Dazu gehort eine Evaluie-
rung der Laufzeiteigenschaften des Progressive-Blue-Surfel-Verfahrens. AbschlieBend ziehe
ich in Kapitel 8 ein Fazit und gebe Anregungen fiir mégliche Anschlussfragen.

2 Abgrenzung im Bereich der
Computergrafik

Das mit dieser Arbeit angerissene Feld der Computergrafik erstreckt sich iiber einen grof3en
und vielseitigen Bereich. Im Folgenden grenze ich den in dieser Arbeit betrachtete Teilbereich
genauer ein. Dabei erldutere ich fachbezogene Begriffe und stelle relevante Verfahren vor.

Rendering

Mit Rendering bezeichne ich den Vorgang, in dem aus einer virtuellen Szene durch Ren-
deringverfahren ein Bild erzeugt wird. Ich beschrinke mich in dieser Arbeit dabei auf die
hardwareunterstiitzte Rasterisierung von polygonalen Daten in Pixelbitmaps (im Gegensatz z. B.
zum Raytracing oder Volumenrendering). Fiir das in dieser Arbeit angepeilte Einsatzgebiet des
Echtzeitrenderings werden kontinuierlich neue Bilder gerendert, wihrend sich der Betrachter in
einem Walkthrough frei durch die virtuelle Szene bewegen kann. Ein einzelnes Bild aus diesem
Prozess bezeichne ich als Frame. Dies entspricht im Wesentlichen dem Echtzeitrendering-
Begriff, wie er im Buch ,,Real-Time Rendering* [AMHHO8] Verwendung findet. Ein Ren-
deringverfahren oder auch Renderingalgorithmus ist eine algorithmische Beschreibung, wie
aus einer virtuellen Szene und weiteren Parametern (wie des Betrachterstandpunktes und
Blickrichtung) das Bild erzeugt wird.

Virtuelle Szene

Als virtuelle Szene bezeichne ich eine Sammlung konvexer Polygone im 3-D-Raum (0. B.d. A.
kann hier von Dreiecken ausgegangen werden), die von einem Betrachter durchwandert werden
kann, wihrend sie durch ein Renderingverfahren dargestellt wird. Eine Szene beschreibt die
geometrischen und optischen Eigenschaften von Oberfldchen, anders als z. B. im Bereich des
Volumenrenderings, wo die Szenenbeschreibung auch das Innere von Objekten umfassen kann.
Es gibt mehrere Quellen fiir die polygonalen Daten einer Szene:

e Parametrisch beschriebene CAD-Modelle konnen durch einen automatisierten Triangulie-
rungsprozess in Polygonmodelle umgewandelt werden. Das in dieser Arbeit verwendete
Power-Plant-Modell' wurde mutmaBlich urspriinglich aus einem CAD-Datensatz erstellt.

e Auf Basis von 3-D-Scans konnen hochauflosende Oberflichenmodelle realer Objekte
erstellt werden. Das in Kapitel 6 verwendete Modell eines Drachen? wurde auf diese
Weise erzeugt.

Thttp://gamma.cs.unc.edu/Powerplant/ (University of North Carolina at Chapel Hill)
Zhttp://graphics.stanford.edu/data/3Dscanrep/ (The Stanford 3D Scanning Repository)

2 Abgrenzung im Bereich der Computergrafik

e Polygonale Modelle konnen manuell mit entsprechender 3-D-Modellierungssoftware
erstellt werden. Die in dieser Arbeit verwendeten Baum-Modelle wurden auf diese Weise
erzeugt.

e Uber prozedurale Regeln lassen sich auch komplexe und weitliufige Objekte bzw. Ober-
flichen erzeugen. Die in Kapitel 6 und 7 verwendete Landschaft wurde durch ein
Regelsystem beschrieben und mit Hilfe der Grafikhardware erzeugt. Das dabei einge-
setzte Verfahren ist angelehnt an das Verfahren zur Erzeugung prozeduraler Landschaften
von Geiss [Gei07].

Raumliche Datenstrukturen

Im Rahmen dieser Arbeit wird zusitzlich zu den Polygonen und Oberflichenbeschreibungen
auch die Strukturierung der Szene in eine rdumliche Datenstruktur als Teil der Szene gesehen
und gehort damit, wie auch die Szene, zur Eingabe der vorgestellten Methoden. Eine gebriduch-
liche raumliche Datenstruktur ist die Octree-Datenstruktur. Die Datenstruktur ist ein Baum,
wobei jeder Knoten einen quaderformigen Bereich der Szene représentiert. Der Wurzelknoten
(bzw. sein Bereich) umschlieft die Geometrie der gesamten Szene. Innere Knoten besitzen
acht Kinder, deren Regionen die des Elternknotens in gleiche Teile vollstdndig aufteilen. Fiir
die Zuordnung der Objekte, aus denen die Szene besteht, zu den Knoten des Baums, gibt es
mehrere Moglichkeiten, je nach genauer Auspriagung des Octrees. Ein Objekt kann beispiels-
weise an dem Knoten mit dem kleinsten Quader gespeichert werden, der das Objekt vollstidndig
umschliet. Dadurch konnen auch sehr kleine Objekte auf der Unterteilung zwischen zwei
Kindern auf einer hohen Ebene ,,hdngenbleiben. Da jedoch oft erwiinscht ist, dass Objekte
dhnlicher Grofle gemeinsam in einem moglichst kleinen Knoten gespeichert werden, lésst sich
diesem Problem mit dem Loose-Octree [UIr00] entgegenwirken. Hierbei wird der Raum des
Elternknotens nicht disjunkt zwischen den Kindern aufgeteilt, sondern die Knoten der Kinder
werden vergroBert (z. B. um den Faktor zwei). Dadurch wird der Level im Baum, in dem die
Objekte gespeichert werden, durch ihre Groe bestimmt. Um den entstehenden Baum auf die
spezifischen Anforderungen eines verwendeten Renderingalgorithmus anpassen zu konnen,
konnen Parameter, wie die maximale Tiefe des Baums, eingestellt werden.

Eine Bounding-Volume-Hierarchie beschreibt eine rdumliche Baumdatenstruktur, bei der die
Geometrie der Szene den Knoten zugeordnet und jedem Knoten ein Hiillvolumen (Bounding-
Volume) zugeordnet ist, welches die in dem entsprechenden Teilbaum liegende Geometrie
eng umschlieBt. Betrachtet man bei den Knoten eines Octree nicht die gesamten abgedeckten
Bereiche, sondern bildet jeweils nur das Hiillvolumen, das alle in dem entsprechenden Teilbaum
liegenden Geometrie umschlieft, dann ergibt sich aus dem Octree eine Bounding-Volume-
Hierarchie. Neben Bounding-Volume-Hierarchien, die durch andere algorithmische Regeln
definiert werden, gibt es noch Hierarchien, die sich anhand des logischen (oder semantischen)
Aufbaus der Szene ergeben. Dies ist beispielsweise der Fall, wenn die Struktur der Szene aus
einem CAD-Modell iibernommen wird, in dem die Bauteile hierarchisch nach Baugruppen
abgelegt sind. Fiir das Rendering wird die Bounding-Volume-Hierarchie der Szene in Form
eines Szenengraphen gespeichert. Dieser entspricht der technischen Umsetzung der Bounding-
Volume-Hierarchie, es konnen dabei jedoch zusitzliche Daten an den Knoten hinterlegt werden.

2.1 Sichtbarkeit

Die in den Knoten des Szenengraphen verwendeten Hiillvolumen sind oft axial ausgerichtete
Quader, die Bounding-Boxen der Knoten.

Objektbegriff

Die Polygone der Szene sind in mehrere in Objekten aufgeteilt, wobei im Extremfall ein Objekt
auch nur aus einem einzelnen Polygon bestehen kann. Im Rahmen dieser Arbeit gehe ich davon
aus, dass diese Objektdefinition als Teil der Szenen ein Teil der Eingabedaten ist, die jedoch,
abhingig von verwendeten Renderingverfahren, einen erheblichen Einfluss auf die Effizienz bei
der Darstellung der Szene haben kann. Héufig werden alle Polygone, die zur Darstellung eines
realen Objektes bendtigt werden, in einem virtuellen Objekt zusammengefasst; beispielsweise
konnen alle Polygone, die zu einem virtuellen Tisch gehoren, zu einem einzelnen Objekt
zusammengefasst werden. Dies hat eine Reihe von Vorteilen: Bei einer Interaktion mit der
Szene in einer Anwendungssituation kann der virtuelle Tisch als Einheit identifiziert werden
und in der Szene bewegt werden. Des Weiteren besteht die Abbildung ein reales Objekt
héufig aus einem einzelnen Material, welches sich dann einfach durch eine einzelne, an das
Objekt gebundene, Materialbeschreibung abbilden lidsst. Besteht der Tisch aus dem Beispiel
vollstindig aus Holz, kann dies einfach durch die Zuordnung einer Holztextur zu dem Objekt
abgebildet werden, anstatt die Zuordnung fiir jedes Polygon einzeln vorzunehmen. Besteht
ein reales Objekt aus Teilen mit unterschiedlich darzustellenden Materialien, bietet es sich
daher an, die entsprechenden Teile als virtuelle Objekte zu definieren (z. B. Tischplatte und
Tischbeine). Letztlich fiihrt die Definition von Objekten zu grofleren zusammenhéingenden
Gruppen von Polygonen, den Meshes. Diese lassen sich, im Gegensatz zu einer entsprechende
Menge unzusammenhingender Polygone, mit der hier betrachteten hardwareunterstiitzten
Rasterisierung wesentlich schneller darstellen.

2.1 Sichtbarkeit

Die in dieser Arbeit untersuchten Verfahren werden in vielerlei Hinsicht durch Sichtbarkeit
beeinflusst. Im Folgenden erlédutere ich die grundlegenden Konzepte und einige verwendete
Algorithmen.

Die Bestimmung derjenigen Teile einer Szene, die, abhingig von der Betrachterposition und
Blickrichtung, tatsdchlich im endgiiltigen Bild sichtbar sind, ist seit jeher eines der grundle-
genden Probleme der 3-D-Computergrafik. Das Problem, welches Polygon die Farbe eines
Pixels bestimmt, wird in der hier betrachteten Form des Renderings praktisch durch den von
Catmull 1974 vorgestellten Z-Puffer-Algorithmus [Cat74] gelost. Dank der hochentwickelten
dedizierten Grafikhardware lassen sich so mittlerweile Szenen mit mehreren Millionen Polygo-
nen in Echtzeit darstellen. Werden alle Daten einer Szene jedoch einfach nur zur Darstellung
an die Grafikkarte gesendet, erzeugen auch alle unsichtbare Objekte und Polygone Last auf der
Grafikkarte und ggf. auf der CPU. Um die zu rendernde Datenmenge zu reduzieren, existieren
mehrere grundlegende Culling-Verfahren, um unsichtbare Teile der Szene zu erkennen und
vom Rendering auszuschlieBen (siehe Abbildung 2.1). Der Teil einer Szene, der aullerhalb des
Sichtbereichs des Betrachters (Frustum) liegt, ldsst sich relativ einfach durch Frustum-Culling-

2 Abgrenzung im Bereich der Computergrafik

Verfahren identifizieren und vom Rendering aussparen, beispielsweise durch hierarchisches
Frustum-Culling [Cla76]. Bei einer komplexen Szene kann die Menge der Geometrie innerhalb
des Sichtbereichs dennoch die Fiahigkeiten der Hardware deutlich iibersteigen, auch wenn
aufgrund von Verdeckung letztlich nur ein kleiner Teil dieser Geometrie zum Bild beitrdgt. Das
Ziel von Occlusion-Culling-Verfahren ist es, die nicht verdeckte Geometrie zu identifizieren
und moglichst nur diese zu rendern. Die Relevanz dieses Problems wird unter anderem in
den zahlreichen Publikationen zu verschiedenen Sichtbarkeits- bzw. Culling-Verfahren und
entsprechender Ubersichtsarbeiten deutlich [COCSDO03, PT02]. Eine Moglichkeit der Klassifi-
zierung dieser Verfahren (nach [COCSDO03]) ist die Unterteilung in Verfahren, die die globale
oder die lokale Sichtbarkeit bestimmen oder anndhern. Verfahren zur Bestimmung der lokalen
Sichtbarkeit ermitteln nur fiir die aktuelle Position des Betrachters die Sichtbarkeit der Teile der
Szene. Sobald sich der Benutzer in der Szene bewegt, werden die Sichtbarkeitsinformationen
zur Laufzeit neu berechnet. Verfahren zur Bestimmung der globalen Sichtbarkeit berechnen
und speichern hingegen Sichtbarkeitsinformationen fiir Bereiche der Szene in der Vorverar-
beitung (im Preprocessing). Wihrend sich der Benutzer zur Laufzeit durch die Szene bewegt,
konnen diese vorher gesammelten Informationen abgefragt werden und fiir die Darstellung der
sichtbaren Teile verwendet werden.

Frustum-Culling

Backface-Culling
Abbildung 2.1: Unterschiedliche Arten von Culling (nach Cohen-Or et al. [COCSDO03])

2.1.1 Globale Sichtbarkeit

Die globale Bestimmung der Sichtbarkeit ist eng verkniipft mit der in dieser Arbeit betrachteten
globalen Néherung von Szeneneigenschaften: Sichtbarkeit ldsst sich als Szeneneigenschaft be-
schreiben und kann damit durch die vorgestellten Verfahren genihert, statistisch untersucht und
zum Rendering eingesetzt werden (siehe Kapitel 7.6). Die allgemeine Untersuchung globaler
Szeneneigenschaften kann damit als eine Verallgemeinerung der Untersuchung von globaler
Sichtbarkeit gesehen werden. Des Weiteren sind einige der untersuchten Szeneneigenschaften
in ihrer Struktur eng mit der globalen Sichtbarkeit verkniipft, wie beispielsweise die Anzahl
sichtbarer Objekte oder die Renderingzeit von Occlusion-Culling-Algorithmen.

Exakte geometrische Sichtbarkeit und die Visibility-Space-Partition (VSP)

Die geometrische Sichtbarkeit eines Polygons zeigt an, ob eine Strecke vom Betrachterstand-
punkt zu einem Punkt auf dem Polygon existiert, die keine anderen Polygone schneidet. Nach

10

2.1 Sichtbarkeit

dieser Definition konnen alle Polygone einer Szene von einem Standpunkt aus sichtbar sein.
Die von Platinga und Dyer vorgestellte VSP (Visibility-Space-Partition) [PD90] ist eine Da-
tenstruktur, bei der die Szene in Bereiche aufgeteilt wird in der die gleiche geometrische
Sichtbarkeit herrscht (oder genauer, die gleiche topologische Struktur der sichtbaren Geome-
trie). Die Ubergiinge zwischen Bereichen werden durch Sichtbarkeitsereignisse bestimmt,
beispielsweise wenn sich der Betrachterstandpunkt auf einer Geraden mit zwei Eckpunkten
von Polygonen der Szene befindet. Eine VSP ldsst sich damit prinzipiell zur Kodierung der
Sichtbarkeit einer Szene verwenden, um ausschlieBlich sichtbare Polygone darzustellen. Die
Worst-Case-Komplexitit einer VSP fiir den perspektivischen 3-D-Fall liegt bei ©(n?) in der
Anzahl der Polygone der Szene. Auch wenn diese Worst-Case-Komplexitit fiir eine realistische
Szene nicht erreicht wird, ist sie fiir relevante Szenen immer noch deutlich zu hoch.

In der 3-D-Computergrafik wird unter Sichtbarkeit oft die Pixelsichtbarkeit verstanden; d.h.
ein Polygon wird als sichtbar bezeichnet, wenn es mindestens die Farbe eines Pixels des fertigen
Bildes bestimmt oder dazu beitrdgt. Lisst man Multisampling und Blending auler Acht, ist
damit die Anzahl der maximal gleichzeitig sichtbaren Polygone durch die Bildschirmauflosung
beschrinkt.

Portalbasierte Verfahren

Eine Moglichkeit, globale Sichtbarkeit praktisch fiir Rendering nutzbar zu machen, ist, nicht
die Sichtbarkeit fiir jedes Polygon oder Objekt einzeln zu bestimmen, sondern fiir Teilbereiche
der Szene. Ziel von portalbasierten Verfahren ist es, die Szene so in Regionen aufzuteilen,
dass die Regionen untereinander nur durch raumlich begrenzte Flidchen, die Portale, zu sehen
sind. Als Aufteilung bei einem architektonischen Modell, bietet es sich beispielsweise an,
dass die Rdume die Regionen darstellen und Tiiren und Fenster die Portale bilden. Fiir jede
Region kann dann eine Menge potentiell sichtbarer Objekte (PVS — Potentially-Visible-Set) bzw.
anderer sichtbarer Regionen berechnet und gespeichert werden. Die Aufteilung in Regionen
kann beispielsweise anhand der Geometrie der Szene erfolgen. Ein frithes und bekanntes
Verfahren ist das ,, Visibility Preprocessing For Interactive Walkthroughs “-Verfahren von Teller
und Séquin [TS91]. Dieses Verfahren eignet sich jedoch fast ausschlieBlich fiir architektonische
Szenen mit axial ausgerichteten, rechteckigen Rdumen.

Sampling-basierte Sichtbarkeitsverfahren

Sobald die Szenen komplexer werden oder keine klare, geometrische Struktur mehr zu erkennen
ist, lassen sich die Regionen mit dhnlicher Sichtbarkeit auch durch Sampling bestimmen; also
durch Niherung der globalen Sichtbarkeit durch eine Reihe an stichprobenartig bestimmten
Sichtbarkeitstests. Die Samples konnen beispielsweise aus Strahlen bestehen, die im Raum
der Szene verteilt werden. Die Strahlen enden auf der Oberfldche der Objekte der Szene und
zeigen an, dass die getroffenen Objekte von jeder Position entlang des Strahls sichtbar sind. In
der Arbeit ,,Adaptive global visibility sampling “ beschreiben Bittner und andere [BMW09]
ein Verfahren, bei dem solche Strahlen adaptiv in der Szene verteilt werden. Eine Besonderheit
des Verfahrens ist, dass die Sampling-Strategie, wie die Samples in der Szene platziert werden,
im Verlauf des Prozesses automatisch angepasst wird.

11

2 Abgrenzung im Bereich der Computergrafik

Globale Sichtbarkeit mit Spherical-Visibility-Sampling (SVS)

Eine weitere Moglichkeit, globale Sichtbarkeit effizient beim Rendering einzusetzen, ist,
die dufiere Sichtbarkeit zu betrachten — fiir komplexe Bereiche einer Szene wird hierarchisch
gespeichert, welche Teile von auflen sichtbar sind. Zur Laufzeit werden dann die Teile der Szene
gerendert, die der Betrachter von auflen sieht. Der grof3e Vorteil dieser Betrachtungsweise ist,
dass der Aufwand in der Vorverarbeitung und der Speicherplatzbedarf nur in der Komplexitiit
der Szene steigt — und nicht zusitzlich mit der Ausdehnung der Szene, wie bei bei vielen
anderen globalen Sichtbarkeitsverfahren. Dies eignet sich vor allem fiir die Darstellung von
Szenen mit vielen, in sich geschachtelten Objekten, wie beispielsweise CAD-Modellen von
Maschinen oder ausmodellierten Gebduden. Ein Nachteil derartiger Verfahren ist, dass lokale
Verdeckungen, die nur in einem begrenzten Bereich der Szene auftreten, nicht erkannt und
ausgenutzt werden.

Ein auf duBlerer Sichtbarkeit basierendes Verfahren ist das Spherical-Visibility-Sampling-
Verfahren (SVS) von Eikel et al. [EJFMadH13], mit dem sich auch sehr weitldufige Szenen
darstellen lassen. Fiir die inneren Knoten der raumlichen Datenstruktur, in der die Szene
gespeichert ist, wird eine sogenannte Sichtbarkeitskugel berechnet. Diese enthiilt fiir mehrere
Richtungen, welche Objekte der Szene jeweils von aulerhalb der Kugel aus der Richtung
sichtbar sind. Zur Laufzeit werden fiir die Teilbdume der Szene, deren Sichtbarkeitskugeln
die Position des Betrachters nicht enthalten, nur die Objekte fiir die am néichsten liegenden
Richtungen gerendert (von der Position des Betrachters in Richtung des Zentrums der Kugel).
Die praktische Effizienz des Verfahrens wird in Abschnitt 7.4 als Beispiel fiir die Evaluierung
mittels Szeneneigenschaften betrachtet.

Das in dieser Arbeit vorgestellte Progressive-Blue-Surfels- Verfahren (siehe Kapitel 6) nutzt
ebenfalls die duBere Sichtbarkeit zur Beschleunigung des Renderings, da die Surfel nur auf der
von aullen sichtbaren Oberflachen der Geometrie platziert werden.

2.1.2 Lokale Sichtbarkeit (Online-Occlusion-Culling)

Bei lokalen Sichtbarkeitsverfahren wird die Sichtbarkeit von Objekten in der Szene nicht vor-
berechnet, sondern zur Laufzeit fiir die aktuelle Betrachterposition und Sichtrichtung bestimmt.
Seitdem Grafikkarten hardwareseitige Unterstiitzung fiir Verdeckungstests anbieten, haben sich
Verfahren, die dies ausnutzen, weit verbreitet. Die grundlegende Idee fiir hardwarebasierte Ver-
deckungstests wurde von Greene, Kass und Miller mit dem hierarchischen Z-Puffer [GKM93]
vorgestellt. Beim Rendern einer hierarchisch organisierten Szene wird vor dem Rendern eines
Teilbaums zunéchst gepriift, ob mindestens ein Pixel eines den Teilbaum umschlieenden
Hiillvolumens (in diesem Fall einer Bounding-Box) sichtbar wire, wenn sie gerendert wiirde.
Beim hierarchischen Z-Puffer-Verfahren wird der Test, ob ein Pixel den Tiefentest besteht,
auf der CPU durchgefiihrt. Durch eine Erweiterung der Hardware kann ein Verfahren von der
Grafikkarte die Riickmeldung iiber diesen Test erhalten. Der zusitzliche Berechnungsaufwand
auf der Grafikkarte entspricht nur in etwa der Zeit, die zum Rendern der Ersatzgeometrie
bendtigt wird. Jedoch erfolgt die Riickmeldung des Ergebnisses erst, nachdem die Pipeline der
Grafikkarte durchlaufen wurde. Wartet ein Culling-Verfahren wiederholt auf ein Ergebnis, kann
das Rendering dadurch deutlich verzogert werden. Fiir diese Problematik versuchen verschie-

12

2.2 Genihertes Rendering

dene Verfahren Losungen anzubieten: Das CHC-Verfahren (Coherent-Hierarchical-Culling)
von Bittner et al. [BWPP04] verwendet unter anderem die Informationen iiber die Sichtbarkeit
von Knoten der Datenstruktur aus vorangegangenen Bildern, um nicht auf alle Verdeckungsan-
fragen zu warten. Das Near-Optimal-Hierarchical-Culling-Verfahren von Guthe, Baldzs und
Klein [GABKO06] versucht mit statistischen Vorhersagen die Anzahl der durchgefiihrten und
vor allem die Anzahl der Situationen, in denen auf eine Verdeckungsanfrage gewartet wird,
zu minimieren. Das in dieser Arbeit als Referenzverfahren verwendete CHC+ +-Verfahren
von Mattausch, Bittner und Wimmer [MBWO08] setzt auf dem CHC-Verfahren auf, erweitert
es aber um zahlreiche Heuristiken, um die Zahl der Verdeckungstests zu minimieren. Es
werden beispielsweise mehrere Bounding-Boxen gemeinsam in Gruppen getestet, wobei die
Zuordnungen zu diesen Gruppen dynamisch wechselt.

Fiir die Effizienz all dieser Verfahren ist es notwendig, dass die Szene in einer geeigneten
rdumlichen Datenstruktur mit geeigneten Parametern gespeichert ist. Als Beispiel fiir die Opti-
mierung eines Parameterwertes mittels genidherter Szeneneigenschaften wird in Abschnitt 7.3
der Parameter der maximalen Tiefe eines Loose-Octrees fiir eine gegebene Szene und dem
CHC++-Algorithmus ermittelt.

2.2 Genahertes Rendering

Die zweite Strategie zur Darstellung komplexer Szenen neben dem Occlusion-Culling ist die
Darstellung von Ersatzreprisentationen fiir komplexe Teile der Szene, die jedoch effizienter
darstellbar sind. Der Nachteil ist, dass die Geometrie der Szene nicht mehr exakt dargestellt
wird, sondern nur angenéhert wird und dabei die Bildqualitit sinken kann. Das in Kapitel 6 vor-
gestellte Progressive-Blue-Surfels- Verfahren nutzt fiir die Darstellung der Szene eine Folge von
generierten Punktprimitiven, die die Geometrie anndhern. Im Folgenden stelle ich einige Ver-
fahren vor, die ebenfalls Punktprimitive fiir das Rendering einsetzen und ein Verfahren, das (wie
das Progressive-Blue-Surfels-Verfahren) eine feingranulare Steuerung der Naherungsqualitit
ermdglicht.

QSplats: a multiresolution point rendering system for large meshes

Das QSplat-Verfahren von Rusinkiewicz und Levoy [RLOO] wurde fiir die Visualisierung
einzelner, hochkomplexer Oberflichenmodelle entwickelt. Es baut eine hierarchische Baumda-
tenstruktur aus Kugeln auf, die die Geometrie in unterschiedlichen Qualitétsstufen reprédsentiert.
Um den Baum aus einer Menge an Polygonen zu erzeugen, wird auf unterster Ebene fiir jeden
Vertex eine Kugel erzeugt. Die Kugel kodiert die Normale und Farbe des Vertex. Die inneren
Knoten der Datenstruktur werden dann rekursiv durch groere Kugeln zusammengefasst, die
alle Kugeln in ihrem Teilbaum enthalten. Die Normale und Farbe fiir eine innere Kugel werden
aus den Werten ihrer Kinder gemittelt. Beim Rendering wird der Baum traversiert und es
werden nur die Kugeln, die auf einem Schnitt durch den Baum liegen, durch Punkte dargestellt.
Der Verlauf des Schnittes durch den Baum bestimmt die Anzahl der dargestellten Punkte und
damit Renderingzeit und Bildqualitét.

Ein Vorteil der QSplats im Vergleich zu den Progressive-Blue-Surfels ist, dass durch das

13

2 Abgrenzung im Bereich der Computergrafik

Zusammenfassen der Oberflacheneigenschaften auf hoheren Ebenen ein automatisches Filtern
durchgefiihrt wird, wodurch Aliasingeffekte bei der Darstellung reduziert werden konnen. Ein
weiterer Vorteil ist, dass durch die Art, die Kugeln zu erzeugen, keine Locher beim Rendering
entstehen. Nachteile der QSplats sind zum einen, dass die Ausgangsbasis fiir die Kugeln die
Vertices des Modells sind — wenn es sich bei dem Modell nicht um ein hochtesseliertes Oberfla-
chenmodell handelt, sondern um ein trianguliertes CAD-Modell, konnen nur wenige, grobe
Kugeln auf unterster Ebene erzeugt werden. Ein anderer Nachteil ist, dass zur Darstellung einer
Néherung der Baum traversiert werden muss — d. h. die Punktprimitive werden nacheinander,
einzeln zur Grafikkarte iibertragen. Aktuellen Grafikkarten kdnnen so nur einen Bruchteil ihrer
Leistungsfihigkeit umsetzten.

Surfels: Surface Elements as Rendering Primitives

Das Surfels-Verfahren von Pfister et al. [PZvBGO00] wurde, wie das QSplat-Verfahren, fiir die
Visualisierung komplexer Einzelmodelle durch Punkte entwickelt. In der Vorverarbeitung
wird das Modell zunichst durch Raycasting entlang der drei Hauptachsen in geschichtete
Tiefenbilder (Layered depth images [SLST96]) abgebildet. Auf Basis eines Octrees werden
daraus hierarchisch die Surfels als Oberflichenpunkte mit Farbe und Normale gebildet. Zur
Laufzeit wird der Octree traversiert und ein Schnitt des Baumes als Punkte dargestellt.

Das Surfels-Verfahren ist gegeniiber dem QSplat-Verfahren robust gegeniiber unterschiedlich
triangulierte Oberflichen und unterstiitzt Texturen. Neben der ebenfalls nicht mehr effizienten
Traversierung beim Rendering, ist ein Nachteil des Verfahrens, dass auch auf von auflen nicht
sichtbaren Flachen Punkte erzeugt werden.

The Randomized z-Buffer Algorithm: Interactive Rendering of Highly Complex
Scenes

Der randomisierte Z-Puffer von Wand et al. [WFP*01] zielt, wie das Progressive-Blue-Surfels-
Verfahren, darauf ab, nicht nur Einzelmodelle, sondern hochkomplexe Szenen darzustellen.
Dazu werden die Dreiecke der Szene in einer hierarchischen Datenstruktur abgelegt. Zur
Laufzeit werden dann fiir die aktuelle Betrachterposition Sampling-Punkte auf den Dreiecken
im Frustum gezogen und gerendert. Die erwartete Anzahl der fiir ein Dreieck gezogene Samples
ist dabei proportional zu seiner projizierten GroB3e.

Ein groBer Vorteil des Verfahrens liegt darin, dass keine aufwindigen und speicherintensiven
Vorverarbeitungen durchgefiihrt werden, da das Sampling zur Laufzeit durchgefiihrt wird.
Nachteile des Verfahrens sind, dass die Punkte nicht effizient an die Grafikkarte geschickt
werden und dass Punkte auch von unsichtbaren Oberflachen gezogen werden.

Progressive Meshes

Anstatt Teile der Szene durch eine Ersatzrepridsentation auszutauschen, lassen sich polygo-
nale Modelle auch direkt vereinfachen und somit schneller darstellen. Mit dem Progressive-
Meshes-Verfahren von Hoppe [Hop96] werden die Vertices eines Meshes in eine Datenstruktur

14

2.3 Renderingsysteme

tiberfiihrt, die es erlaubt, eine Niherung mit einer beliebigen Anzahl von Dreiecken darzustel-
len. Nacheinander werden bei der Vereinfachung jeweils zwei Vertices zusammengefasst, bis
die gewiinschte Anzahl an Dreiecken erreicht ist. Die Reihenfolge der Zusammenfassungen
wird dabei so gewihlt, dass nach verschiedenen Kriterien die Ahnlichkeit zum Original-Mesh
moglichst lange erhalten bleibt. Durch das Verfahren ldsst sich die Qualitit der Meshes zur
Laufzeit sehr feingranular anpassen (z. B. entsprechend der projizierten Grof3e des Meshes),
wodurch storende Popping-Artefakte beim Umschalten der Qualitétsstufe vermieden werden.
Das Progressive-Blue-Surfels-Verfahren folgt einem dhnlichen Ansatz fiir die Vermeidung von
Popping-Artefakten, indem die Anzahl der dargestellten Punkte progressiv in kleinen Schritten
gesteuert werden kann.

2.3 Renderingsysteme

Ein Renderingsystem ist eine Software, die das Rendering virtueller Szenen ermdglicht. Die
vermutlich leistungsfahigsten, verfiigbaren Renderingsysteme stellen Game-Engines dar, die als
Grundlage fiir 3-D-Computerspiele dienen. Diese Systeme sind jedoch hochspezialisiert auf die
Anwendung und erlauben nur begrenzte Moglichkeiten, um die enthaltenen Renderingalgorith-
men anzupassen oder neue zu entwickeln. Szenengraph-Bibliotheken wie OpenSceneGraph?
oder OGRE* geben dem Entwickler deutlich mehr Freiheiten. Renderingsysteme, die ihren
Fokus speziell auf die Entwicklung und Evaluation von Renderingalgorithmen legen, sind
jedoch selten. Ein Renderingsystem mit dieser Zielsetzung wurde von Yuan, Green und Lau im
Jahr 1997 entwickelt [YGL97]. Eine Besonderheit in dieser Arbeit ist, dass die Autoren fiir
die Generierung realistischer Kamerapfade fiir die Evaluierung aufgezeichnete Benutzerbewe-
gungen verwenden. Fiir eine Gruppe von Benutzern wird aufgezeichnet, wie sie bestimmte
vorgegebene Interaktionen mit der virtuellen Szene durchfiihrt. Ein System fiir die Entwicklung
und Evaluierung von Algorithmen zur Aufbereitung einzelner Meshes ist Meshlab [CCCT08].
Die frei verfiigbare Software enthilt bereits eine grole Menge an unterschiedlichen Algorith-
men, z. B. zum Bereinigen oder Optimieren von Gittermodellen. Durch zahlreiche Metriken
zur Bewertung von unterschiedlichen Eigenschaften von Meshes lassen sich die Ergebnisse
unterschiedlicher Verfahren direkt vergleichen. Das in Kapitel 3 vorgestellte PADrend-System
folgt dieser Idee, ein System mit der Zielsetzung des Algorithmenentwurfs zur Verfiigung zu
stellen, jedoch fiir Szenen anstatt fiir einzelne Meshes.

3http://www.openscenegraph.org
“http://www.ogre3d.org

15

3 PADrend - Plattform for Algorithm
Development and Rendering

Die in dieser Arbeit vorgestellten Arbeitsweisen und Methoden sind nicht auf die Verwendung
mit einer spezifische Renderingsystem beschrinkt, sondern sie sollten sich mit tiberschaubarem
Aufwand in die meisten der aktuell verbreiteten Systeme (wie Game-Engines oder Szenengraph-
Bibliotheken) integrieren lassen. Fiir die Entwicklung der Techniken und fiir die experimentelle
Evaluation im Rahmen dieser Arbeit wurde das PADrend-System (Platform for Algorithm
Development and rendering) [EJP11] eingesetzt, welches speziell fiir die Entwicklung und
Erprobung von Renderingalgorithmen entwickelt wird. Diese Zielsetzung unterscheidet PAD-
rend von anderen Renderingsystemen, bei denen eher andere Anwendungen im Fokus steht,
z. B. Computerspiele oder Simulationen. Der Kern von PADrend wurde zu gleichen Teilen von
Ralf Petring, Benjamin Eikel und mir entwickelt. Viele Erweiterungen des Systems wurden im
Rahmen von studentischen Arbeiten erstellt und verbessert.

Das PADrend-System besteht aus einer Reihe modular aufgebauter Bibliotheken (entwickelt
in C++) und einer darauf aufbauenden, ebenfalls modularen Anwendung (entwickelt in EScript).
Abbildung 3.1 zeigt die Struktur des Systems als Diagramm. Im Folgenden gebe ich einen
kurzen Uberblick iiber die wesentlichen Eigenschaften einiger der Komponenten.

3.1 Systembibliotheken

Um eine weitreichende Unabhingigkeit zu Systemeigenschaften wie Betriebssystem (Windows,
Linux, MacOS oder Android) oder OpenGL-Version zu erreichen, beinhaltet PADrend zwei
Bibliotheken zum Zugriff auf systemspezifische Funktionen. Die Util-Bibliothek abstrahiert
unter anderem Dateioperationen, Netzwerkzugriffe und Threads. Jeder Zugriff auf die Gra-
fikhardware erfolgt iiber die Rendering-Bibliothek. Diese enthilt High-Level-Wrapper fiir
unterschiedliche Grafikkomponenten wie Dreiecksmeshes, Frame-Buffer-Objekte oder Shader.
Um eine breite Palette von OpenGL-Systemen zu unterstiitzen (von OpenGL-ES auf Mobilsy-
stemen iiber OpenGL 2.0 auf élteren Rechnern bis zu OpenGL 4.0 auf aktuellen Workstations)
bietet die Bibliothek eine eigene Statusverwaltung an. Diese verwaltet Eigenschaften wie
Projektionsmatrizen oder Beleuchtungs- und Materialparameter und gibt sie transparent iiber
die verfiigbaren Schnittstellen an das Grafiksystem weiter. Ein Entwickler von Renderingal-
gorithmen braucht sich daher im Idealfall nicht mit systemspezifischen Low-Level-Aspekten
befassen.

17

PADrend — Plattform for Algorithm Development and Rendering

g . | § 5 2 Q

.g 9 .4: b1 .
E E E; s g PADrend-Plug-ins §
- | & 5 g 7
S - g 2
B
=
A
PADrend-Kern m

| | | | |
R 2 R 2 ¥ ¥ ¥

E_Geometry E_GUI E_MinSG E_Rendering E_Util . E)
T J T J T J T J J J P
3 3 3 3 3 3 1 2
o0 =
g o 8 2 =
Q = %) = — o= —
= - = 3 = 5 Q
o O = = D n _"_
8 > 5] Aa) +
=2 &)
Abbildung 3.1: Systemarchitektur des PADrend-Systems Eikel, Jihn, Petring

2011 [EJP11])

3.2 Szenengraph: MinSG

Die Basis des Renderingsystems bildet die Szenengraphimplementierung MinSG (Minimalistic-
Scene-Graph). Die Objekte einer virtuellen Szene werden als Knoten in einer Baumstruktur
reprasentiert. Was MinSG bei der Entwicklung und Erprobung von Renderingalgorithmen
auszeichnet, ist, dass Renderingalgorithmen als Eigenschaften von Knoten definiert werden,
und nicht als externer Prozess. So wie es moglich ist, einem Knoten eine bestimmte Materi-
aleigenschaft zuzuweisen, ist es moglich, einem Teilbaum einen Renderingalgorithmus, wie
etwa ein Occlusion-Culling-Verfahren, zuzuweisen. Dieses Renderingverfahren wird dann
zur Darstellung aller Knoten des entsprechenden Teilbaums verwendet. Durch dieses einfa-
che aber méchtige Konzept wird es moglich, verschiedene Teile einer Szene in einem Bild
mit unterschiedlichen Algorithmen zu rendern, ohne dafiir Anpassungen am Quelltext des
Renderingprozesses vornehmen zu miissen.

Viele Verfahren benétigen zusitzliche Daten fiir jeden Knoten im Szenengraph, wie bei-
spielsweise den Sichtbarkeitsstatus des Knotens in den letzten Frames. Diese Daten lassen sich
in MinSG als generische Attribute zur Laufzeit an den Knoten speichern. Dadurch lassen sich
auch komplexere Renderingalgorithmen als abgeschlossene Einheit implementieren, ohne dass
die Knotenimplementierung angepasst oder erweitert werden muss. Zusammenfassend enthilt
ein Knoten im MinSG-Szenengraph im Wesentlichen folgende Komponenten:

e Eine Beschreibung der Transformation (Translation, Rotation und Skalierung) des Kno-
tens relativ zu seinem Elternknoten.

e Referenzen auf die dem Knoten zugeordneten Kindkonten (innerer Knoten) oder alterna-

18

3.2 Szenengraph: MinSG

Abbildung 3.2: Darstellung von Szene 1 mit dem Renderingverfahren Fast rendering of complex
environments using a spatial hierarchy nach Chamberlain et al. [CDL"96]

tiv eine Referenz auf ein Geometrieobjekt (Blattknoten). Jeder Knoten ist maximal einem
Elternknoten zugeordnet, wobei ein Geometrieobjekt auch von mehreren Blattknoten
referenziert werden kann.

e Eine 3-D-Boundingbox, die alle Geometrieobjekte im Teilbaum des Knotens umschlieft.

e Eine Liste an Eigenschaften (States), die den Renderingprozess beeinflussen — wie z. B.
Materialeigenschaften, Shader oder auch Renderingverfahren.

e Eine Menge an Attributen, in denen Metainformationen zu dem Knoten gespeichert
werden konnen — z. B. Daten, die von den States beim Rendering gebraucht werden
(Sichtbarkeitsinformationen, Farbwerte etc.).

Durch das sogenannte Rendering-Channel-Konzept ist es moglich, die Eigenschaften ver-
schiedener Verfahren miteinander zu kombinieren. Ein Rendering-Channel in MinSG besteht
technisch aus einer Zuordnung von einem Channel-Bezeichner zu einem Renderer — einer Soft-
warekomponente zur Darstellung eines Knotens oder Teilbaums des Szenengraphens. Bei der
Traversierung des Szenengraphen kann ein Renderer entscheiden, Teilbdumen nicht selbst dar-
zustellen, sondern sie an einen anderen Renderer weiterzugeben, der fiir einen anderen Channel
registriert ist. Als Beispiel ldsst sich so ein modulares Niherungsverfahren umsetzten: Auf dem
Standard-Channel wird ein Renderer registriert, der Knoten mit einer grolen projizierten Grof3e
weiter traversiert, bzw. Blattknoten direkt darstellt. Kleinere Knoten werden an einen anderen
Channel weitergereicht. Fiir diesen ist ein Renderer registriert, der anstatt des Teilbaums eine
farbige Bounding-Box darstellt, deren Farbe und Transparenz die Erscheinung des Teilbaums
nachbildet, aber wesentlich schneller dargestellt werden kann als die Originalgeometrie (siche
auch Abbildung 3.2). Die Kombination dieser zwei Renderer-Komponenten entspricht damit
dem ,, Fast rendering of complex environments using a spatial hierarchy “-Renderingverfahren
nach Chamberlain et al. [CDL"96]. Um diese Renderingverfahren zu einem approximativen
Occlusion-Culling-Verfahren zu erweitern, kann man nun die erste Renderer-Komponente
gegen einen Occlusion-Culling-Renderer austauschen, der verdeckte Knoten verwirft und
Knoten mit einer kleinen sichtbaren GroBe an den anderen Channel gibt. In diesem Beispiel
lasst sich natiirlich auch die Komponente, die die farbigen Boxen darstellt, durch andere Nihe-
rungsverfahren, wie Reliefboards, Textured-Depth-Meshes oder Punktrendering ersetzen. In

19

3 PADrend — Plattform for Algorithm Development and Rendering

dieser Art lassen sich durch die Rendering-Channel aus einzelnen Komponenten auch komplexe
Renderingverfahren komponieren.

3.3 Anwendungsinterface

Die eigentliche PADrend-Anwendung baut auf den als Softwarebibliotheken konzipierten
Teilen des PADrend-Systems auf. Die Anwendung stellt dem Benutzer ein Interface bereit, um
Szenen interaktiv zu begehen, zu bearbeiten und mit den implementierten Renderingverfahren
zu experimentieren. Eines der wesentlichen Designziele bei der Entwicklung des Systems ist es,
moglichst verschiedene Anwendungsszenarien zu unterstiitzen, die durch mehrere Entwickler
gleichzeitig entwickelt werden. Wird ein neues Renderingverfahren entwickelt und in das
System integriert, soll dieses moglichst einfach allen interessierten Nutzern zur Verfiigung ste-
hen. Sorgt jedoch ein neues, experimentelles Teilsystem fiir Probleme, sollen andere Benutzer
und Entwickler hiervon nicht beeintrachtigt werden. Um dieses Ziel zu unterstiitzen, wurde
die PADrend-Anwendung als modulares Plugin-System entwickelt. Einzelne Komponenten
und Funktionen werden dabei als eigenstindige Plugins entwickelt, die iiber fest definierte
Schnittstellen miteinander interagieren. Die zu ladenden Plugins kann der Benutzer unter
Beachtung der definierten Abhiingigkeiten zwischen den Plugins frei auswihlen und so in der
Entwicklung befindliche Funktionen ausblenden.

Ein weiteres Ziel bei der Entwicklung des PADrend-Systems ist es, die Entwicklung neuer
Werkzeuge und Verfahren zu unterstiitzen und zeitlich effizient zu gestalten. Auf technischer
Ebene stellt sich dabei die fiir die Bibliotheken verwendete Programmiersprache C++ als
problematisch dar. Sie erlaubt zwar das Erstellen von sehr effizienten Programmen, diese
miissen bei Anderungen jedoch zumindest neu kompiliert und neu gestartet werden. Die in
PADrend verwendeten Plugins sind daher in der Skriptsprache EScript' entwickelt. Bei EScript
handelt es sich um eine objektorientierte Sprache zur Steuerung von C++-Anwendungen, mit
JavaScript dhnlicher Syntax. Anderungen an der PADrend-Anwendung konnen damit ohne
ein Neukompilieren durchgefiihrt werden. Viele Anderungen konnen auch zur Laufzeit des
Programms angewendet werden, ohne das eine betrachtete Szene neu geladen werden muss.
Die Herausforderung bei dem Einsatz einer Skriptsprache liegt vor allem in dem deutlichen
Geschwindigkeitsunterschied im Vergleich zu nativ ausgefiihrten C++-Programmteilen. Da-
her werden geschwindigkeitskritische Funktionen in den C++-Bibliotheken implementiert
und aus dem geskripteten Hauptprogramm heraus aufgerufen. Auch wenn fiir die Aktuali-
sierung der Benutzeroberflache und fiir die Reaktion auf Benutzereingaben einige Tausend
EScript-Befehle pro Bild bearbeitet werden, wirkt sich dieses schon bei kleinen Szenen nicht
auf die durchschnittliche Bildraten des Systems aus, da die Laufzeit durch den eigentlichen
Renderingprozess dominiert wird.

In Abbildung 3.3 werden einige der Funktionen der PADrend-Anwendung anhand eines
Screenshots gezeigt. Die Funktionen werden im Folgenden kurz erldutert (die Nummern
beziehen sich auf die Abbildung).

e Der Szenengraph-Explorer erlaubt die Anzeige und Bearbeitung der Eigenschaften von

Thttps://github.com/EScript

20

3.3 Anwendungsinterface

BAEEO XS Q) F =GN @Ziij,e

ent. About Gralyzer

v & GeometryNode (620 triangles)’
vQpStates

-}
| @ (Materiaistate:0x9831b00)

GeometryNode (620 triangles)*

Frame Analyzer
Enabl

Nodeld: v
X isactive I istemporary " is semantic obj
X0 M @ e @ e e m

GeometryNode Info:
Vertices: 931

Trangles: 620
#Mesh:0x1acac910

Vertexattributes:

Name OffsetNumberType Size Action

sgPositon0 3 float 12 Remove
al 1:

sg_Norm

[Kemper minsg)
[[MA Halle1 Moritage Leer.minsg]
Add ibrary

2 4 chr4 Remove

Debugging BlLIL¢
Console | EObjnfo. Scrit

Mesh's filename filez//Data/model/pp/ppsectic
Reload mesh

> NodeEditor getSelectedNode() getBB();
(¢=-85000 125600 143200,w=27200,h=239800,d=27200

h

Retresnu | [g — e

FStats

Frame Statistics

NodeEditorgetSelectedNode(\getBB(; execute x

o
Sl

500

fs00—]

{s000—]
w0

Abbildung 3.3: Bildschirmfoto der Bedienoberfliche der PADrend-Anwendung (Erlduterung
zu den mit Ziffern hervorgehobenen Funktionen finden sich im Text)

Knoten im Szenengraph. Dazu gehdren unter anderem mit dem Knoten assoziierten
States: In der Abbildung erkennt man, dass dem selektierten Knoten ein Material-State
zugewiesen ist(1). In der Detailansicht (2) werden die Eigenschaften des im Knoten
gespeicherten Geometrieobjektes angezeigt und konnen bearbeitet werden. Mit Hilfe des
Szenengraph-Explorers werden die Renderingverfahren im Szenengraph eingefiigt und
konfiguriert.

e Der Szenen-Editor erlaubt eine interaktive Modifikation der geladenen Szene. Eine Reihe
von Transformationswerkzeugen (3) steht zur Auswahl, mit denen der selektierte Knoten
des Szenengraphen in der Szene bewegt und skaliert werden kann (4). Geometrieobjekte
rasten dabei optional an Oberfldchen ein, um genaues platzieren moglichst zeiteffizient zu
erlauben. Neben dem Modifizieren von existierenden Objekten der Szene konnen auch
neue Objekte einfach aus einer Objektbibliothek in die Szene hineingezogen werden (5).
Durch diese Moglichkeiten konnen einfach Testszenen fiir experimentelle Evaluierungen
erzeugt und bearbeitet werden.

e Fiir die Evaluierung des aktuellen Renderingprozesses stehen mehrere Funktionen direkt
in der Benutzeroberfliche bereit. Einfache statistische Daten iiber das vorangegangene
Bild (wie Renderingzeit, Anzahl der gerenderten Polygone etc.) konnen in frei konfigu-
rierbaren Statistikfenstern angezeigt werden (6). Diese Daten konnen iiber den Verlauf
mehrerer Bilder als Kurve dargestellt werden (7). Einen genaueren Einblick in das Rende-
ring eines einzelnen Bildes erlaubt das Frame-Analysetool (8). Dieses zeigt die einzelnen,
wihrend des Renderings durchgefiihrten Aktionen in Form eines Zeitstrahls an — z. B.

21

3 PADrend — Plattform for Algorithm Development and Rendering

Senden eines Geometrieobjektes an die Grafikkarte (blaue Balken), Starten eines Ver-
deckungstests (gelbe Balken), Erhalt eines Verdeckungstestergebnisses (griine Balken)
oder das Ende des Frames (roter Balken). Hierdurch lassen sich wichtige Hinweise auf
Engpisse bei der Ausfithrung eines Renderingverfahrens erkennen; beispielsweise, ob die
Verdeckungstests eines Occlusion-Culling-Verfahrens den Renderingprozess wesentlich
beeinflussen.

Die Skript-Konsole (9) erlaubt es, wahrend der Laufzeit einzelne EScript-Anweisungen
auszufiihren. Dies kann beispielsweise zur Fehlersuche verwendet werden. Fiir kom-
plexere und wiederkehrende Aufgaben stehen weitere Moglichkeiten bereit, um Skript-
Dateien zu laden — ohne dafiir ein gesondertes Plugin schreiben zu miissen. Dazu
gehoren prototypische Implementierung von neuen Werkzeugen, Renderingverfahren
oder automatisierte Testldufe fiir experimentelle Evaluierungen.

3.4 Eckdaten des Testsystems

Die in dieser Arbeit verwendete System fiir die experimentelle Evaluierung besteht aus folgen-
den Komponenten:

CPU: Intel Core 17-3770 mit 3,4 GHZ (8 virtuelle Kerne), Hauptspeicher: 32 GB, Betriebs-
system: Windows 8.1 64 Bit, Grafikkarte: AMD Radeon 7870 (2 GB DDRYS), Treiberversion:
13.251, OpenGL Version 4.3, Compiler: MinGW 4.7.1 (tdm64-1), PADrend 1.1 beta

22

4 Szeneneigenschaften

Als Szeneneigenschaft im Allgemeinen bezeichne ich alle messbaren Eigenschaften von vir-
tuellen Szenen. Eine in der Literatur iiber Renderingalgorithmen hiufig betrachtete Szene-
neigenschaft ist die Szenenkomplexitdat — meist gemessen in der Anzahl der Polygone, aus
denen die Szene besteht. Da sich diese Eigenschaft fiir eine gegebene Szene als Konstante
beschreiben lésst, bezeichne ich diese Art von Szeneneigenschaft im Folgenden als konstante
Szeneneigneschaft. Andere Beispiele sind die rdumliche Ausdehnung der Szene oder auch
die durchschnittliche Polygondichte. Wird die rdaumliche Datenstruktur, in der die Szene
gespeichert wird, als Teil der Szene gesehen, lassen sich auch verschiedene Eigenschaften
der Datenstruktur als konstante Szeneneigenschaft in diesem Sinne auffassen; wie etwa die
maximale Tiefe des Baumes, in dem sie gespeichert ist.

Die konstanten Szeneneigenschaften sind in der Literatur ein verbreitetes Mittel um ver-
schiedene Eigenschaften von Renderingalgorithmen abzuschitzen. So wird die maximale
Laufzeit von Renderingalgorithmen oft mit der Szenenkomplexitit abgeschitzt. Bei einfachem
Rendering ohne spezielle Renderingverfahren wichst die maximale Laufzeit beispielsweise
linear in der Szenenkomplexitit (falls die Szene noch im Hauptspeicher abgelegt werden kann).
Bei anderen Verfahren ist es gelungen, einen logarithmischen Zusammenhang zwischen der
Szenenkomplexitidt und der maximalen Laufzeit herzustellen, wenn verschiedene Annahmen
an die Struktur der Szene gelten (z. B. [CDL196, WFP*01]).

Die Moglichkeiten, differenzierte Riickschliisse aus konstanten Szeneneigenschaften zu
ziehen, sind jedoch begrenzt, da das konkrete Verhalten von Renderingalgorithmen auch von
der aktuellen Position und Blickrichtung des Betrachters innerhalb der Szene abhéngt. Hingen
die ermittelten Werte nur von der Szene, konstanten Rahmenbedingungen und der aktuellen
Position des Betrachters ab, dann bezeichne ich diese Werte als lokale Szeneneigenschaf-
ten'. Hingen die Werte zusiitzlich noch vom zeitlichen Verlauf der Benutzerbewegung in
der Szene ab, dann fallen diese nicht in diese Definition. Dies kann bei Eigenschaften von
Renderingalgorithmen der Fall sein, die temporale Kohérenz ausnutzen.

Definition 1 (Positionsabhiingige Szeneneigenschaft) Eine positionsabhdiingige Szeneneigen-
schaft ist im Allgemeinen definiert als eine Funktion der Positionen einer Szene im dreidimen-
sionalen Raum auf einen Wert eines prinzipiell beliebigen Wertebereichs.

Fg.ene: pos — Wert, pos € R?

Obwohl auch die Blickrichtung und der Offnungswinkel des Sichtbereichs des Betrachters
einen starken Einfluss auf die betrachteten Eigenschaften haben kann, gehe ich im Folgenden

' Anmerkung: Im Rahmen dieser Arbeit ist, soweit nichts anderes angebenden, eine lokale Szeneneigenschaft
gemeint, wenn der Begriff Szeneneigenschaft verwendet wird.

23

4 Szeneneigenschaften

von einer vereinfachten Betrachtung des omnidirektionalen Betrachters mit einer kompletten
Rundumsicht aus. Diese Betrachtungsweise vereinfacht den Umgang mit positionsabhiingigen
Eigenschaften und ist fiir viele der angestrebten Anwendungen ausreichend.

4.1 Anforderungen an praktisch auswertbare
Szeneneigenschaften

Aus der sehr offenen Definition von positionsabhéngigen Szeneneigenschaften ergibt sich eine
grofBe Menge an denkbaren Ausprigungen von Funktionen. Von diesen lassen sich jedoch nur
wenige praktisch fiir die in dieser Arbeit verfolgten Ziele der Bewertung des Verhaltens von
Renderingverfahren und deren Verbesserung einsetzen. Im Folgenden werden daher einige
Anforderungen an die hier untersuchten Eigenschaften beziiglich ihrer praktischen Relevanz
aufgelistet.

4.1.1 Effiziente Bestimmbarkeit

Um eine Szeneneigenschaft praktisch einsetzen zu konnen, ist es notwendig, dass sie fiir
eine gegebene Position effizient bestimmt werden kann. Effizient in diesem Zusammenhang
bedeutet, dass sowohl die Laufzeit, als auch der bendtigte Speicherplatz subquadratisch in der
Komplexitidt der Szene wachsen sollte; und konkret, dass die Auswertung eines Samples nur
einige Millisekunden bis hin zu wenigen Sekunden dauern sollte. Die Laufzeiten aller spiter in
dieser Arbeit vorgestellten Methoden zur globalen Niherung der positionsabhingigen Szene-
neigenschaften werden maB3geblich vom Aufwand zur Bestimmung der Szeneneigenschaften
bestimmt. Ist dieser zu hoch, lassen sich die Methoden praktisch nicht fiir grolere Szenen
einsetzen. Um dieses Kriterium zu erfiillen, bieten sich vor allem Szeneneigenschaften an,
die durch Rendern der Szene an der gegebenen Position ermittelt werden konnen. Dies ist fiir
Szenen mit bis zu mehreren Millionen Polygonen oft in wenigen Millisekunden moglich.

4.1.2 Begrenzung des Wertebereichs

Um die Werte der Funktion praktisch speichern und handhaben zu konnen, darf der Wertebe-
reich der Funktion nicht zu grof} sein. Ein einzelner Wert sollte aus wenigen Ganzzahlen oder
FlieBkommazahlen mit festem Speicherbedarf (z. B. 32 Bit) bestehen. Fiir praktisch relevante
Szenen ist dies z. B. die Anzahl der sichtbaren Objekte (oder Polygone) kodiert als einzelner
Wert. Als praktisch gerade noch handhabbare Grenze haben sich Vektoren als Wert heraus-
gestellt, die fiir jedes Objekt der Szene einen Wert besitzen. Die Eigenschaft beispielsweise,
die die Position auf ein von dort aus gerendertes und entsprechend kodiertes Bild der Szene
abbildet (z. B. mit einer Millionen Pixel), ist nicht mehr praktisch handhabbar.

4.1.3 Praktische Gutmutigkeit des Wertebereichs

Ein wesentliches Kriterium fiir eine praktikabel einsetzbare Szeneneigenschaft ist ihre prak-
tische Gutmiitigkeit. Damit bezeichne ich das Verhalten, dass sich die Werte in realistischen

24

4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften

Szenen, bei minimaler Veridnderung der Position meistens nicht, oder nur wenig, dndern. Dies
ist essentiell, da die spiter vorgestellten Verfahren zur Niherung der globalen Verteilung darauf
basieren, dass der Wert einer Szeneneigenschaft an einer Position auch mit einiger Sicherheit
als Ndherung der Werte seiner direkten Umgebung dienen kann.

Als Beispiel bietet sich wieder die Eigenschaft der Anzahl der sichtbaren Objekte an einer
Position an: Fiir einen Grofteil der praktisch relevanten Szenen gilt hier: Wenn an einer Stelle
eine Anzahl von Objekten sichtbar ist, dann sind in der niheren Umgebung an den meisten
Positionen eine dhnliche Zahl von Objekten sichtbar. Ein Beispiel fiir eine Szene, in der sich die
Sichtbarkeit in einigen Bereichen nicht gutmiitig verhilt, ist die in Abbildung 4.1 dargestellte
»Schliisselloch*-Situation. Diese enthilt Bereiche mit kleinem Volumen (im 2-D-Beispiel mit
kleiner Flidche), die eine groe Differenz beziiglich der Anzahl sichtbarer Objekte zu ihren be-
nachbarten Bereichen aufweisen. Auch in realistischen Szenen konnen Bereiche mit dhnlicher
Charakteristik auftreten; die problematischen Bereiche sind dann jedoch oft raumlich begrenzt.

Sea I....-.

- Gbjekte

Abbildung 4.1: ,,Schliisselloch““-Situation: Bei geringer Bewegung des Betrachters dndert sich
die Anzahl sichtbarer Objekte deutlich.

4.1.4 Determinismus

Unter dem deterministischen Verhalten einer Szeneneigenschaft verstehe ich, dass ihr Wert nur
von der Szene, den Rahmenbedingungen (wie der eingesetzten Hardware und Software, Bild-
schirmauflésung etc.) abhingt und nicht von zusitzlichen Variablen. Gerade bei Eigenschaften,
die auf Laufzeitmessungen beruhen, ist dies praktisch kaum strikt einzuhalten. Hier reichen
jedoch einfache Mafinahmen, wie das wiederholte Durchfiihren der Messung und Wahl des
Medians, um durch externe Stérungen verursachte AusreiBer auszugleichen. GroBere Probleme
bereiten hier Eigenschaften, die sich auf Algorithmen beziehen, welche die temporale Kohédrenz
durch die kontinuierliche Bewegung des Betrachters mit einbeziehen — d. h. Algorithmen, die
den Zustand der vorangegangenen Frames fiir die Berechnung des nichsten ausnutzen (wie z. B.
der CHC oder der CHC++; siche Abschnitt 2.1.2). Betrigt die Lange der Zeitspanne, aus der
zuriickliegende Daten noch weiterverwendet werden, nur wenige Frames, dann lassen sich diese
Eigenschaften dennoch in modifizierter Form verwenden. Darauf gehe ich in Abschnitt 4.2.3
genauer ein.

25

4 Szeneneigenschaften

4.2 Betrachtete Szeneneigenschaften

In diesem Abschnitt werden einige Szeneneigenschaften definiert und ihre Auswertungsmetho-
den erldutert. Beginnend wird zunichst die Eigenschaft der exakten Sichtbarkeit beschrieben.
Diese wird zwar im Rahmen dieser Arbeit nicht praktisch bestimmt, bietet jedoch die Grundlage
vieler weiterer Uberlegungen.

4.2.1 Exakte Sichtbarkeit

Die exakte Sichtbarkeit beschreibt die Anzahl der Polygone, von denen es eine direkte Sichtlinie
(ohne Verdeckung) zur Betrachterposition gibt (siche Abschnitt 2.1.1).

Um die exakte Sichtbarkeit gemif der Definition der positionsabhédngigen Szeneneigenschaft
zu kodieren, ldsst sie sich wie folgt definieren:

Definition 2 (Szeneneigenschaft: Anzahl geometrisch sichtbarer Polygone)

EzxakteSichtbarkeits,en.: pos — visPoly,
pos € R3,
visPoly = |Polygone aus Szene mit direkter Sichtlinie zu pos| € N.

Ebenso, wie fiir die Anzahl der sichtbaren Polygone, ldsst sich auch die Menge der Polygone,
die an einer Position sichtbar sind, als positionsabhingige Szeneneigenschaft kodieren:

Definition 3 (Szeneneigenschaft: Menge geometrisch sichtbarer Polygone)

Do

Y41

ExakteSichtbarkeitsMenges ene: pos — ,pos € R3,

Pn
n = Anzahl der Polygone in Szene,

{O keine Sichtlinie von pos zum i-ten Polygon von Szene
pi =

1 sonst.

Die Relevanz der exakten Sichtbarkeit ergibt sich primér daraus, dass sie die Grundlage fiir
alle Betrachtungen von Sichtbarkeit bildet. Die in dieser Arbeit untersuchten Renderingalgo-
rithmen werden praktisch jedoch eher von der Pixelsichtbarkeit beeinflusst.

4.2.2 Pixelsichtbarkeit

Die Definition der Pixelsichtbarkeit als Szeneneigenschaft entspricht im Wesentlichen der
exakten Sichtbarkeit — bezieht sich jedoch auf die, fiir das Rendering eher relevante, Pixel-
sichtbarkeit: Ein Teil der Szene ist sichtbar, wenn er zu der Farbe (oder genauer: zu einem
Tiefenwert) eines Pixels beitrdgt. Aus den technischen Rahmenbedingungen des Rendering-
prozesses und der Verwendung eines omnidirektionalen Betrachters ergeben sich mehrere
Besonderheiten:

26

4.2 Betrachtete Szeneneigenschaften

Projektions-
flache

| |

Nahebene

Fernebene

Abbildung 4.2: Schematische Darstellung der Bestimmung der Pixelsichtbarkeit bei einem
omnidirektionalen Betrachter mit mehreren Frusta. Im Bild sind vier der sechs
Frusta und der entsprechenden Projektionsflichen abgebildet, mit je 16 Pixeln
Auflosung. Das kleinere runde Objekt liegt vollstindig vor den Nahebenen der
Frusta und wird daher nicht als sichtbar klassifiziert.

e Anstatt von Polygonen werden bei vielen Renderingalgorithmen Objekte als kleinste Ein-
heit betrachtet; daher wird auch bei der Szeneneigenschaft die Sichtbarkeit von Objekten
anstatt von Polygonen betrachtet. Da die Zuordnung von Polygonen zu Objekten jedoch
variabel ist, kann auch in der Szene jedes Polygon als Objekt definiert werden, um so die
Sichtbarkeit von einzelnen Polygonen zu erhalten.

e Anders als bei der geometrischen Sichtbarkeit, ist die Anzahl der sichtbaren Objekte
durch die Auflésung der Projektionsfliche beschriankt. Die Auflosung der verwendeten
Projektionsfliche ist daher ein Teil der Renderingparameter, die zur Definition dieser
Szeneneigenschaft gehort.

e Ebenso verhilt es sich mit der Nah- und Fernebene des Frustums, durch den der zu
rendernde Bereich um den Betrachter herum eingeschrinkt wird. Die Entfernung zur
Nahebene ist daher Teil der Rahmenbedingungen; die Entfernung zur Fernebene wird
zur Vereinfachung so gewihlt, dass die komplette Szene eingeschlossen ist.

e Da fiir die Szeneneigenschaft ein omnidirektionaler Betrachter angenommen wird, ist eine
naheliegende Idee, die Szene nicht auf die Pixel einer iiblichen geraden Projektionsfliche
zu projizieren, sondern auf die Oberflache einer Kugel um den Betrachter. Um jedoch
fiir die Bestimmung der Sichtbarkeit die Standardrenderingverfahren nutzen zu konnen,
verwende ich als grobe Anndherung fiir diese Kugel die Oberflidche eines Wiirfels. Jede
der sechs Seiten ist definiert durch ein Frustum und eine eigene Projektionsfliche. Trigt
ein Objekt mindestens einen Pixel zu einer der Projektionsflachen bei, gilt das Objekt

27

4 Szeneneigenschaften

als sichtbar fiir die gegebene Position. Abbildung 4.2 zeigt zur Veranschaulichung eine
zweidimensionale Darstellung der Projektion der Szene unter Verwendung von vier
Frusta.

Unter Einbeziehung dieser Aspekte ist die Szeneneigenschaft der Anzahl sichtbarer Objekte
(unter Pixelsichtbarkeit) definiert als:

Definition 4 (Szeneneigenschaft: Anzahl sichtbarer Objekte)

PixelSichtbarkeits.ene, Renderingparameter : POS +— visObj,
pos € R3,

Objekte aus Szene, die einen Tiefenwert zu einer

visObj = |~ o ochs Projetionsfliichen um pos beitragen

Und analog die Menge der sichtbaren Objekte:

Definition 5 (Szeneneigenschaft: Menge sichtbarer Objekte)

Po
PixelSiChtbarkeitSM@ngeSzene,Renderingparameter: pos — e WUERS R37
Pn
n = Anzahl der Objekte in Szene,
das i-te Objekt in Szene trigt zu keinem
pi = der Tiefenwerte der sechs Projektionsflichen um pos bei,

1 sonst.

Bestimmung der Pixelsichtbarkeit Technisch erfolgt die Bestimmung der Pixelsicht-
barkeit mittels hardwareunterstiitzter Verdeckungsanfragen. Um die sichtbaren Objekte zu
identifizieren, wird zunéchst fiir jede der Seiten eines den Betrachter umschlieBenden Wiirfels
ein Frustum konstruiert, das vom Betrachter aus die Seite vollstindig abdeckt. Nun wird mit
diesen Frusta die Szene in den Tiefenpuffer gerendert. Im Anschluss wird der Tiefentest so
konfiguriert, dass nur Pixel akzeptiert werden, die den Tiefenwert aufweisen, der bereits an der
Position im Puffer steht. Jetzt wird fiir jedes Objekt eine hardwareunterstiitzte Verdeckungs-
anfrage gestartet, die ermittelt, wie viele Pixel den Tiefentest bestehen, und damit das Objekt
erneut gerendert. Das Ergebnis der Verdeckungsanfrage sagt daraufhin aus, ob mindestens
einer der Pixel des projizierten Objektes nicht durch ein anderes Objekt verdeckt wurde. Die
Menge aller Objekte, die diesen Test bestehen, wird gesammelt und zuriickgegeben.

4.2.3 Renderingzeit

Die Zeit, die ein Renderingalgorithmus fiir die Darstellung eines Bildes benétigt, gehort bei
der Untersuchung von Renderingalgorithmen zu den wichtigsten Merkmalen. M6chte man

28

4.2 Betrachtete Szeneneigenschaften

diese Zeit, anders als das iiblicherweise verwendete Messen entlang eines Kamerapfades, als
positionsabhéngige Szeneneigenschaft betrachten, sind wiederum einige Besonderheiten zu
beachten:

e Wie bei der Pixelsichtbarkeit stellt sich die Frage, wie die Renderingzeit von einem
Algorithmus fiir Rendering mit einem normalen Frustum fiir einen omnidirektionalen
Betrachter ermittelt werden kann. Mein Ziel bei der Definition der Eigenschaft ist es,
moglichst einfach eine Nédherung des hochsten Wertes zu erhalten, den ein Betrachter mit
beliebigem Blickwinkel an der Position erreichen kann. Auch wenn andere Zielvorgaben
denkbar sind (z. B. der Durchschnitt oder das Minimum), ist das Maximum bei vielen
Untersuchungen der interessanteste Aspekt, da es die maximale Bildrate beschrinkt.
Zur Ermittlung verwende ich hier wieder mehrere Renderingvorgénge in unterschiedliche
Richtungen, wobei jeder Renderingvorgang eine eigene Zeit liefert. Im Normalfall
werden wieder die sechs Seiten eines den Betrachter umgebenden Wiirfels verwendet.

e Durch die Verwendung sich nicht oder nur kaum iiberlappender Frusta ergibt sich das
Problem, dass komplexe Teile der Szene auf mehrere Frusta aufgeteilt werden konnen.
Dadurch konnte sich eine wesentlich geringere Renderingzeit ergeben, als sie durch einen
freien Betrachter erreicht wird, der den kompletten Bereich von der gleichen Position
aus komplett im Frustum hat. Um diesem Effekt entgegenzuwirken, verwende ich fiir die
Renderingzeit daher iiberlappende Frusta mit einem groBeren Offnungswinkel, so dass
die Bereiche an den Rindern auf mehr als einer Seite in Betracht gezogen werden. Wenn
sechs Richtungen verwendet werden, zeigen sich bereits ab 120 Grad Offnungswinkel
kaum mehr merkliche Auswirkungen dieses Effektes. GroBere Offnungswinkel zeigen
keine wesentliche Verbesserung, fiihren aber zu einer immer stirkeren Verzerrung der
gerenderten Bilder.

e Ein Problem ergibt sich fiir die Messung der Renderingzeit von Algorithmen, die die
temporale Kohédrenz zwischen aufeinanderfolgende Frames ausnutzen (siehe auch: An-
forderung Determinismus in Abschnitt 4.1.4). Beispielsweise nutzen viele Occlusion-
Culling-Algorithmen die Sichtbarkeitsinformationen der vorangegangenen Frames als
Basis fiir die aktuellen Berechnungen aus, was sich in der Renderingzeit niederschligt.
Um fiir die Szeneneigenschaft der Renderingzeit reproduzierbare Werte zu erhalten,
die unabhéngig von den vorher untersuchten Messungen sind, fiihre ich zwei Varianten
der Eigenschaft ein: unkonditionierte Renderingzeit und konditionierte Renderingzeit.
Bei der unkonditionierten Renderingzeit werden explizit alle Informationen aus voran-
gegangenen Frames vor jeder Messung entfernt, was im Normalfall die schlechteste
Renderingzeit an dieser Position provoziert. Bei der konditionierten Renderingzeit wer-
den jeweils so viele Frames mit den gleichen Einstellungen gerendert, bis keine weitere
Verbesserung mehr durch zusitzliche Daten zu erwarten ist. Dies entspricht im Normal-
fall der besten zu erreichenden Renderingzeit an der Position. Je nach Anwendungsfall
muss dann die passende Version ausgewihlt werden. Die Grenzen dieser Methode sind
erreicht, wenn ohne Konditionierung nur schwerlich tiberhaupt ein Bild erstellt werden
kann oder wenn im konditionierten Fall die Zeit fiir eine einzelne Messung nicht mehr

29

4 Szeneneigenschaften

praktikabel ist. Bei einem Out-Of-Core-Verfahren konnte es sein, dass fiir den unkondi-
tionierten Fall alle Daten aus dem Speicher geloscht werden und ein leeres Bild gerendert
wird. Im konditionierten Fall miisste man ggf. mehrere Sekunden warten, bis alle Daten
tatsichlich in den Speicher geladen wurden.

e Um duBere Storeinfliisse auszugleichen werden die Laufzeitmessungen immer mehrfach
durchgefiihrt und der Median verwendet.

Definition 6 (Szeneneigenschaft: (Un-)Konditionierte Renderingzeit)

(Un—)KondRenderingzeitSzene,Algorithmus,Renderingparameter: pos t)
pos € R3 t € R.

Wobei t die maximale Zeit in Sekunden ist, die beim Rendern der Szene mit dem gegebenen
(un-)konditionierten Algorithmus und Renderingparametern fiir die sechs Hauptrichtungen und
mit einem Kameraoffnungswinkel von 120° bei mehrfacher Wiederholung im Median benotigt
wird.

Bei Algorithmen ohne die Ausnutzung von temporaler Kohirenz wird die Szeneneigenschaft
Renderingzeit genannt, da hier die Konditionierung keine Relevanz hat.

4.2.4 Anzahl von Operationen

Eine weitere Moglichkeit, das Verhalten von Renderingalgorithmen mithilfe von positionsab-
hingigen Szeneneigenschaften zu beschreiben, ist die Verwendung der Anzahl von verschiede-
nen Operationen als Eigenschaft, die der Algorithmus zum Rendern durchfiihrt. Dabei definiert
jede spezifische Operation eine eigene Szeneneigenschaft, was dadurch eine ganze Klasse von
verschiedenen algorithmenspezifischen Eigenschaften eroffnet. Einige fiir die Anwendung
relevante Beispiele sind die Anzahl der gerenderten Polygone, die Anzahl durchgefiihrter
Verdeckungsanfragen (fiir Verdeckungstests) oder die Anzahl der Traversierungsschritte durch
die Datenstruktur der Szene.

Generell gelten fiir alle Eigenschaften dieser Klasse die gleichen Rahmenbedingungen wie
fiir die Renderingzeit: jeweils Messungen fiir (mindestens) sechs Richtungen, Verwendung
von iiberlappenden Frusta und Unterscheidung zwischen konditionierter oder unkonditionierter
Anwendung der Algorithmen. Im Einzelfall muss man entschieden, ob als Wert fiir die Funktion,
wie bei der Renderingzeit, das Maximum der Einzelwerte die grofite Relevanz hat, oder ob man
hier einen anderen Wert verwenden sollte.

4.2.5 Bildqualitat

Viele Renderingalgorithmen erzeugen im Vergleich zur Darstellung der Originalgeometrie ein
fehlerhaftes Bild. Beispielsweise konnen approximative Occlusion-Culling-Verfahren auch
einen Teil der sichtbaren Geometrie verwerfen oder Niherungsverfahren ersetzen beim Rende-
ring Teile der Szene durch effizienter renderbare Ersatzrepriasentationen. Fiir die Evaluierung

30

4.2 Betrachtete Szeneneigenschaften

solcher Verfahren ist die Bildqualitit als Szeneneigenschaft von groler Bedeutung. Zur automa-
tischen Bestimmung bendétigt man zum einen ein Referenzbild und zum anderen eine Funktion,
die den Unterschied in zwei Bildern als einen Qualitidtswert ausdriicken kann. Das Referenzbild
erhélt man, indem die Szene mit einem konservativen Renderingalgorithmus (dessen Ausgabe
also der Originalgeometrie entspricht) gerendert wird. Als Qualitdtsbewertungsfunktion kann
man z. B. das einfache Zihlen der andersfarbigen Pixel verwenden. Deutlich aussagekriftigere
Ergebnisse in Hinblick auf die von einem Betrachter wahrgenommene Qualitit erzielt man
jedoch mit komplexeren Funktionen, wie dem MaB der Strukturellen Ahnlichkeit, wie es von
Wang et al. [WBSS04] fiir die automatische Qualitdtsbewertung von Bildkompressionsverfah-
ren vorgeschlagen wurde. Um die Auswirkungen groBflachiger Fehler hervorzuheben, kann das
Verfahren so ergénzt werden, dass die intern ausgewerten Fehlerbilder zusitzlich hierarchisch
gefiltert werden (nach [Bur81]). Ein einzelner absoluter Wert der Bewertungsfunktion fiir zwei
Bilder hat dabei wenig Aussagekraft, er erlaubt aber im Vergleich mit anderen Werten eine
Aussage dariiber, welches Bild eine hohere Bildqualitét aufweist.

Die Messung zur Bestimmung der Szeneneigenschaft 1duft wiederum dquivalent mit meh-
reren Richtungen, wobei die Szene jeweils zwei mal gerendert wird — mit dem betrachteten
Algorithmus und als Referenz. Der verwendete Wert ist das Minimum der Einzelwerte der
Richtungen, wenn es sich um ein Qualititswert handelt; das Maximum, wenn es sich um einen
Fehlerwert handelt.

Definition 7 (Szeneneigenschaft: Bildqualitéit)

BildqualitatSzene,Algom'thmus,Renderingparameter,Qualitdtsbewertungsfuntion :
pos — q,pos € R® ¢ € R.

Wobei q der minimale Wert der Qualititsbewertungsfunktion fiir sechs Eingaben ist. Die
Eingaben bestehen aus je zwei Bildern, die beim Rendern der Szene mit dem gegebenen
Algorithmus und Renderingparametern und einem konservativen Referenzalgorithmus, in die
sechs Hauptrichtungen und mit einem Kameraoffnungswinkel von 120° an Position pos erzeugt
werden.

4.2.6 Kombinierte Szeneneigenschaften

Eine weitere Klasse von Szeneneigenschaften ergibt sich aus der Moglichkeit, die bereits
beschriebenen Eigenschaften z. B. durch Subtraktion oder andere Operationen zu kombinieren.
Zum Effizienzvergleich zweier Algorithmen lédsst sich beispielsweise die Eigenschaft konstru-
ieren, die die Differenz der Renderingzeit der zwei Algorithmen fiir eine gegebene Position
beschreibt. Auch wenn eine bestimmte Kombination inhaltlich Sinn ergibt, miissen dennoch
weitere Punkte beachtet werden:

e Durch die Kombination kann fiir die entstehende Verteilung der Werte deren praktische
Gutmiitigkeit leiden (siehe Abschnitt 4.1.3). Dies kann zu Problemen bei der Auswer-
tung der Eigenschaften fithren. Da dieser Effekt nur schwer im Vorfeld abzusehen ist,
ist besonders fiir komplizierte Kombinationen eine kritische experimentelle Priifung
angeraten.

31

4 Szeneneigenschaften

e Mehrere Werte einer kombinierten Eigenschaft konnen urspriinglich aus Messungen in
verschiedene der sechs Richtungen entstanden sein. Dies muss bei der Konzeption der
kombinierten Eigenschaft mit bedacht werden.

32

5 Globale Naherung von
Szeneneigenschaften

Im vorherigen Kapitel wurden verschiedene positionsabhéngige Szeneneigenschaften beschrie-
ben, die fiir eine gegebene Betrachterposition in der Szene den entsprechenden Wert liefern.
Fiir die meisten Eigenschaften lésst sich die Berechnung eines einzelnen Wertes dabei innerhalb
der Zeit durchfiihren, die fiir die Darstellung einiger weniger Frames benotigt wird. Fiir die
Bewertung von Renderingalgorithmen oder die Verbesserung des Renderings wihrend des
Walkthroughs reicht die alleinige Moglichkeit, die Szeneneigenschaften an diskreten Positionen
auswerten zu konnen, jedoch nicht aus: Sollen die Werte einer Szeneneigenschaft zur Laufzeit
zur Verbesserung des Renderings benutzt werden, dauert die Ermittlung in den meisten Féllen
langer als der zu erwartende Laufzeitgewinn. Fiir die quantitative Bewertung von Renderingal-
gorithmen mochte man nicht nur Aussagen nicht iiber einzelne Werte der Szeneneigenschaft
treffen, sondern auch iiber die Verteilung der Werte im gesamten Raum einer gegebenen Szene
zu treffen.

In diesem Kapitel stelle ich Methoden vor, wie eine globale Ndiherung einer Szenenei-
genschaft praktisch ermittelt werden kann: eine Abbildung eines Teils des Raumes auf den
Wertebereich der betrachteten Szeneneigenschaft. Diese Abbildung wird in Form einer rdumli-
chen Datenstruktur gespeichert, bei der diskreten Bereichen des Raumes ein Wert zugewiesen
wird (oder alternativ auch ein Wertegradient). Als Ausgangspunkt fiir die zugewiesenen Werte
dient eine Menge an Stichproben der verwendeten Szeneneigenschaft. Diese globale Niherung
bietet dann zum einen effiziente Punktanfragen, zum anderen aber auch Bereichsanfragen und
die Moglichkeit zum Bestimmen von Werteverteilungen.

Die Niherung der Szeneneigenschaft kann dabei entweder fiir einen dreidimensionalen
Bereich der Szene (z. B. einen die komplette Szene umschlieBenden Quader) erfolgen, oder
aber man beschrinkt sich auf die Ndherung fiir einen zweidimensionalen Schnitt durch die
Szene. Der 3-D-Fall hat den Vorteil, dass man fiir alle zuldssigen Betrachterpositionen zur
Laufzeit eine Ndherung der untersuchten Szeneneigenschaft bestimmen kann. Auch eine
statistische Auswertung kann so iiber alle moglichen Betrachterpositionen erfolgen. Der
Vorteil der Betrachtung eines 2-D-Bereichs liegt darin, dass mit einer geringeren Anzahl von
Sampling-Punkten eine Niherung guter Qualitit ermittelt werden kann, die sich dariiber hinaus
noch einfach und anschaulich visualisieren ldsst. Dazu muss jedoch ein charakteristischer
Schnitt durch die Szene gewéhlt werden, was jedoch einfacher moglich ist als z. B. einen
charakteristischen Kamerapfad bei der klassischen Evaluierung von Renderingalgorithmen zu
wihlen.

Im Folgenden erldutere ich zunichst einige Anforderungen, die ich an ein spezifisches
Verfahren zu Erzeugung einer globalen Niherung identifiziert habe. In Abschnitt 5.2 stelle
ich den allgemeinen Ansatz von Sampling-basierten Verfahren zur Bestimmung der globalen

33

5 Globale Niherung von Szeneneigenschaften

Néherung vor, bevor ich konkrete Verfahren zur Ermittlung der Niherung genauer betrachte
(Abschnitte 5.3, 5.4 und 5.5). Abschlielend zeige ich in Abschnitt 5.6 mehrere Moglichkeiten
auf, die Daten einer globalen Ndherung grafisch und statistisch auszuwerten.

5.1 Anforderungen

Das generelle Ziel bei der globalen Nidherung einer Szeneneigenschaft ist der Aufbau einer
Datenstruktur, die zu Positionen innerhalb der Szene eine Niherung der entsprechenden Sze-
neneigenschaft liefert. Fiir die praktische Anwendbarkeit einer solchen Datenstruktur habe
ich mehrere Anforderungen identifiziert: sowohl an die Datenstruktur selbst, als auch an den
Prozess, um diese aufzubauen. Diese umfassen Anforderung an die Laufzeitkomplexitidt von
Operationen sowie an die Speicherplatzkomplexitit der Datenstrukturen. Obwohl sich auch
das Worst-Case-Verhalten beschrinken lisst, beziehe ich mich im Folgenden primér auf eine
anwendungsbezogene Interpretation von Effizienz.

5.1.1 Akzeptabler Zeitaufwand im Preprocessing

Ein wesentlicher Punkt, der iiber die praktische Anwendbarkeit von Verfahren zur globalen
Niherung von Szeneneigenschaften entscheidet, ist die Zeit, die benotigt wird, um die Ndherung
fiir realistische Eingaben zu ermitteln. Konkret bedeutet dies, dass eine Nédherung einer
Funktion fiir eine Szene bestehend aus mehreren Millionen Polygonen auf aktueller Hardware
in wenigen Minuten oder Stunden erstellt werden konnen soll — und das mit einer fiir den
jeweiligen Anwendungsfall passenden Qualitét.

5.1.2 Kompakter Speicherplatz

Ahnlich wie bei der Laufzeit, ist auch der Speicherplatzbedarf der Datenstruktur zur Speiche-
rung der globalen Nédherung durch die Anwendung beschrinkt. Der bendtigte Speicherplatz
fiir die Ndherung sollte dabei maximal in einer dhnlichen Grolenordnung wie die untersuchte
Szene liegen. Die exakte Ermittlung der geometrischen Sichtbarkeit auf Basis der VSP (siehe
Abschnitt 2.1.1) eignet sich daher Aufgrund der hohen Komplexitit nicht als Grundlage fiir
eine hier untersuchte Szeneneigenschaft.

5.1.3 Effiziente Punktabfragen

Wenn der genédherte Wert der Szeneneigenschaft zur Laufzeit fiir die Verbesserung des Rende-
ringprozesses genutzt werden soll, ist es wichtig, den zusitzlichen Laufzeitaufwand fiir eine
Punktanfrage (Lesen eines Wertes zu einer gegebenen Position) so gering wie moglich zu
halten. Nur so ist es moglich, einen Nutzen aus der Kenntnis dieser zusétzlichen Informationen
zu erlangen. Idealerweise sind hier sublineare Laufzeiten in der Grée der Datenstruktur, mit
kleinen Konstanten, wiinschenswert.

34

5.2 Allgemeine Form des Sampling-Ansatzes

5.1.4 Gute Qualitat der Naherung

Die Qualitit der Nidherung ergibt sich aus dem akkumulierten Fehler des Wertes der Naherung
gegeniiber dem tatsiichlichen Wert der untersuchten Funktion fiir alle Positionen. Auch wenn
sich fiir die Qualitit einer Ndherung, die sich aus einem bestimmten Verfahren ergibt, nur
schwer eine konkrete Anforderung aufstellen lésst, so lassen sich mehrere Verfahren jedoch
gut miteinander vergleichen. Dazu werden die erzielten Qualititen mehrerer Verfahren im
Verhiltnis zu den eingesetzten Ressourcen (Laufzeit und Speicher) miteinander verglichen.
Ein wesentliches Ziel beim Entwurf der im Weiteren vorgestellten Verfahren ist es, eine
moglichst hohe Qualitit fiir die eingesetzte Zeit zu erreichen; eine entsprechende experimentelle
Untersuchung folgt in Kapitel 5.7.

5.1.5 Parametrierbar, aber robust

Eine Anforderung an praktikable Ndherungsverfahren ist, dass sie so parametrierbar sind, dass
die eingesetzte Laufzeit moglichst direkt (z. B. iiber einen einzelnen Wert) gesteuert werden
kann, um so Laufzeit gegen Qualitédt tauschen zu konnen. Dariiber hinaus sollten sich die
Verfahren weitestgehend robust in Bezug auf die genauen Werte von Parametern verhalten; d.h.
nicht optimal gewihlte Parameterwerte diirfen nicht zu einschneidenden Qualititsverlusten in
der Niherung fithren. Nur so lassen sich die Verfahren einfach ohne gro8e Anpassungsschritte
und ohne gesondertes Expertenwissen seitens des Anwenders praktisch einsetzen.

5.1.6 Einfachheit

Um sich tatsdchlich im Bereich der experimentellen Algorithmenevaluation und Anpassung
durchzusetzen, sollen die Verfahren vom Aufbau moglichst einfach sein. Dadurch soll die
Hiirde gesenkt werden, dass sie in existierende Softwaresysteme integriert werden.

5.2 Allgemeine Form des Sampling-Ansatzes

Im Folgenden Abschnitt beschreibe ich die allgemeine Idee, die der Sampling-basierten,
globalen Niherung von positionsabhéngigen Szeneneigenschaften zugrunde liegt. Konkrete
Ausprdgungen dieser Technik stelle ich spiter in den Abschnitten 5.3 und 5.4 vor.

5.2.1 Aufbau der Datenstruktur

Das Ziel bei der Sampling-basierten globalen Nidherung von positionsabhéingigen Szeneneigen-
schaften ist eine vollstindige, disjunkte Aufteilung des untersuchten Raumes (ein Teilbereich
der Szene), in einfache, konvexe Regionen. Diesen Regionen ist jeweils ein konstanter Wert aus
dem Wertebereich der untersuchten Szeneneigenschaften zugeordnet, welcher als Ndherung
fiir den Funktionswert aller Positionen in der Region verwendet wird. Die Form der Regionen
richtet sich nach dem untersuchten Bereich der Szene. Wird nur ein zweidimensionaler Schnitt
durch die Szene untersucht, sind die Regionen recht- oder dreieckig. Bei der Untersuchung

35

W N =

5 Globale Niherung von Szeneneigenschaften

dreidimensionaler Bereiche sind die Regionen entweder quader- oder tetraederformig. Um
die Anforderung der effizienten Punktanfragen zu erfiillen (sieche Abschnitt 5.1.3), konnen die
Regionen in einer geeigneten rdumlichen Datenstruktur gespeichert werden. Im zweidimen-
sionalen Fall kann beispielsweise ein Quadtree oder im dreidimensionalem Fall ein Octree
verwendet werden. Bei einer gleichmédBigen Grofenverteilung der Regionen lassen sich damit
Punktanfragen in erwartet logarithmischer Zeit in der Anzahl der Regionen durchfiihren. Als
Erweiterung konnen den Regionen auch, anstatt eines einzelnen Wertes, Werte die die Ecken der
Region zugewiesen werden. Die Werte der Positionen im Inneren werden dann entsprechend
ihres Abstandes zu den Ecken interpoliert.
Der generelle Ablauf wird in Algorithmus 5.1 beschreiben:

Algorithmus 5.1: Allgemeine Formulierung des Sampling-Algorithmus fiir die globale Néhe-
rung positionsabhédngiger Szeneneigenschaften

Input: Szene s, Region r , positionsabhingige Szeneneigenschaft f
Output: Datenstruktur mit Ndherung von f im Bereich r

var positionen <— erzeugeEineMengeVonPositionen()
var werte < { }
foreach(position € positionen)
werte <— werte U {(position, fs(position))}
var bereiche < erzeugeDisjunkteAufteilungVon (1)
foreach(bereich € bereiche)
var bereichsWert < fasseWerteZusammen(w | (pos,w) € werte A pos € bereich)
assoziiere bereich mit bereichsWert
return bildeHiereachischeDatenstruktur(bereiche)

Diese sehr allgemeine Beschreibung des Sampling-Algorithmus bietet mehrere Freiheits-
grade:

1. Welche raumliche Datenstruktur wird letztlich aufgebaut?

2. Wie werden die Werte der Samples einer Region zum Wert der Region zusammengefasst?
3. Wie werden die Sampling-Positionen innerhalb der gegebenen Region gewihlt?

4. Wie wird die Gesamtregion in Teilregionen aufgeteilt?

Der erste Punkt ist praktisch relativ unkritisch fiir das Ergebnis des Sampling-Prozesses, wenn
eine der iiblichen hierarchischen Datenstrukturen gewihlt wird. Lediglich die Anfragezeit
fiir Punkt- und Bereichsanfragen wird marginal durch diese Entscheidung beeinflusst. Im
Folgenden gehe ich daher immer von einem Octree im dreidimensionalen und einem Quadtree
im zweidimensionalen Fall aus.

Fiir die Zusammenfassung der Samples zur Bestimmung des Wertes der entsprechenden
Region verwende ich, wenn nichts weiteres angegeben ist, das arithmetische Mittel der Werte.
Je nach untersuchter Szeneneigenschaft und Anwendungsfall konnen aber auch andere Kom-
binationen sinnvoll sein: beispielsweise sollte bei der Eigenschaft der Menge der sichtbaren

36

5.3 RegelmibBiges Sampling

Objekte (siehe Definition 5) eher das komponentenweise Maximum genutzt werden, um mog-
lichst alle von einer beliebigen Position in der Region sichtbaren Objekte einzuschlie3en; oder
das komponentenweise Minimum, um nur von iiberall aus sichtbare Objekte zu erhalten.

Punkte drei und vier werden maB3geblich durch die konkrete Ausprigung des Sampling-
Verfahrens bestimmt. Das Ziel fiir die Konstruktion eines guten Sampling-Verfahrens ist
dabei: Fiir eine gegebene Anzahl an Samplen, wihle diejenigen Sampling-Positionen und eine
Aufteilung, so dass die resultierende Qualitit der Niherung maximiert wird.

5.3 RegelmaBiges Sampling

Das regelméBige Sampling stellt eine sehr einfache Form der Néiherung einer Szeneneigenschaft
dar. Der untersuchte Bereich der Szene wird in ein regelméBiges zwei- oder dreidimensionales
Gitter unterteilt. Die Auflosung dieses Gitters ist ein Parameter dieses Sampling-Verfahrens.
Fiir jeden der entstehenden, quaderférmigen Teilbereiche wird am Mittelpunkt die untersuchte
Szeneneigenschaft bestimmt und der Wert dem Teilbereich zugewiesen (sieche Algorithmus 5.2).

Algorithmus 5.2: RegelmiBiges Sampling mit dem zusitzlichem Parameter Auflosung

Input: Szene s, Region r , positionsabhdiingige Szeneneigenschaft f , Auflosung res(z,y, z)
Output: Datenstruktur mit Ndherung von f im Bereich r

var bereiche < teile r in res.x - res.y - res.z viele , gleichgrolle Quader auf
/I res.x nebeneinander , res.y iibereinander und res.z hintereinander
foreach(bereich € bereiche)

var pos < wdhleMittelpunktVon(bereich)

var bereichsWert < f(position)

assoziiere bereich mit bereichsWert
return bildeHiereachischeDatenstruktur(bereiche)

Dieses Verfahren bietet einige Vorteile: Es ist sehr einfach, bendétigt nur die Auflésung als
zusitzlichen Parameter, durch den die Laufzeit und die Genauigkeit bestimmt wird, und es
entstehen keine potentiellen Ungenauigkeiten durch die Zusammenfassung von Werten, da
immer nur Einzelwerte betrachtet werden.

Dem gegeniiber stehen zwei Nachteile: Zunichst kann es durch die regelméBige Struktur
der Sampling-Punkte zu Aliasing-Effekten kommen; insbesondere bei niedrigen Auflésungen
und Szenen mit ebenfalls regelméBig angeordneten Objekten. Der entscheidende Nachteil des
Verfahrens liegt jedoch in der Laufzeit, die fiir die Erstellung einer globalen Nidherung einer
inhomogenen Szeneneigenschaft mit akzeptabler Qualitédt benotigt wird. Da das Verfahren die
Verteilung der Eigenschaft nicht mit einbezieht, werden in Bereichen mit einem homogenen
Eigenschaftswert ebenso viele Samples gezogen, wie in gleichgrolen, inhomogenen Bereichen,
in denen zusitzliche Samples jedoch insgesamt einen wesentlich groBeren Qualititszuwachs
erzeugt hitten. Fiir viele praktische Szenen, bei denen viele Szeneneigenschatten in groflen
Bereichen nur wenig variieren, in kleinen Bereichen jedoch sehr stark, ist das regelméBige
Sampling- Verfahren daher kaum geeignet.

37

5 Globale Niherung von Szeneneigenschaften

5.4 Adaptives Sampling

Eine Moglichkeit, Sampling-Punkte besser zu verteilen, so dass fiir eine gegebene Anzahl
von Punkten eine moglichst gute Niherung der Szeneneigenschaft entsteht, ist das adaptive
Sampling. Die generelle Idee ist, wihrend des Sampling-Vorgangs die bisher gesammelten
Informationen als Basis fiir die Wahl des jeweils ndchsten Sampling-Punktes zu verwenden.
Durch verschiedene Heuristiken wird versucht, einen Sampling-Punkt jeweils dort zu wihlen,
wo ein moglichst groler Qualititsgewinn durch den zusitzlichen Messwert erwartet wird.
Zunichst erlidutere ich den groben Ablauf des Algorithmus und gehe dann im Anschluss
genauer auf verschiedene Aspekte des Verfahrens sowie auf die zusitzlichen Parameter ein.

5.4.1 Beschreibung des Algorithmus

Der von mir entworfene adaptive Sampling-Algorithmus (siehe Algorithmus 5.3) arbeitet
durch eine hierarchische Aufteilung des untersuchten Raumes der Szene. Beginnend mit dem
gesamten zu untersuchenden Bereich, wihlt der Algorithmus iterativ die Region aus, die, nach
einer Qualititsheuristik, den niedrigsten Qualitdtswert aufweist. Eine niedriger Qualitdtswert
gibt an, dass innerhalb eines groen Raumes eine hohe Fluktuation der bisher gemessenen Werte
vorliegt — es sich also um einen Bereich handelt, bei dem grofle Unterschiede in der untersuchten
Szeneneigenschaft vorliegen. Eine solche Region lisst sich als Teil der globalen Niherung
der Szeneneigenschaft nur unzureichend durch einen einzelnen Wert reprasentieren. Daher
wird davon ausgegangen, dass weitere Samples in dieser Region zu einer insgesamt hoheren
Qualitédt der Niherung fithren. Zunéchst wird dafiir die Region in mehrere kleinere Regionen
unterteilt (meist gleichmifBig in acht Teilregionen im 3-D-Fall oder in vier beim 2-D-Fall). Aus
jeder dieser neuen Regionen werden dann zusitzliche Sampling-Punkte gewéhlt, bevor fiir jede
der neuen Regionen wieder ein Qualitdtswert berechnet wird. Daraufhin beginnt das Verfahren
wieder von Neuem mit der nichsten Region, die jetzt den niedrigsten Qualitdtswert besitzt.
Der Sampling-Prozess wird beendet, sobald eine konfigurierbare Abbruchbedingung erfiillt
ist, z. B. wenn eine bestimmte Anzahl von Sampling-Punkten gezogen wurde. Zum Abschluss
konnen dann die beim Sampling-Prozess gebildeten Regionen direkt als Basis fiir die globale
Niherung verwendet werden. Die globale Ndherung besteht dann im 3-D-Fall entsprechend
aus quaderformigen Regionen; bei bei der Untersuchung einer 2-D-Region entsprechend aus
rechteckigen Regionen. Alternativ kann basierend auf den einzelnen Sampling-Punkten eine
Delaunay-Triangulierung [Del34] des untersuchten Bereichs der Szene erzeugt und deren
Teilregionen als Basis fiir die globale Ndherung verwendet werden. Die resultierende Nidherung
besteht dann aus einer entsprechenden Menge an Tetraedern oder Dreiecken.

38

26

27

5.4 Adaptives Sampling

Algorithmus 5.3: Adaptiver Samplingalgorithmus

Input: Szene s, Region r , positionsabhingige Szeneneigenschaft f
Abbruchbedingung abbruch (...) — {true, false} ,
Regionsunterteilungsfunktion teileAuf(region)— {r | r C region}
Qualitatsbewertungsfunktion qualitdt(region, werte) — R,
Positionsauswahlfunktion wéhlePositionen(region,

positionen) — {pos | pos € region}
Output: Datenstruktur mit Naherung von f im Bereich r
var priorityQueue < erzeuge Priorititenwarteschlange () // Qualitit — Region

var werte <— { } I/ globale Sammlung aller (Position , Wert)— Paare
var positionen < { } // globale Sammlung aller Positionen

/1 fiige initial die gesamte untersuchte Region hinzu
fiige ein (priorityQueue <= (1r,0.0))

while(!abbruch())

var region < extrahiere Region mit geringster Qualitdit(priorityQueue)

var neueRegionen <— teileAuf(region)

foreach(neue Region € neueRegionen)
var neuePositionen <— wdhlePositionen(neueRegion , positionen)
positionen <— positionen U neue Positionen
foreach(position € neuePositionen)

werte <— werte U {(position, fs(position))}

var bereichsWerte <— sammle alle Werte aus werte , die in neue Region liegen
fige ein (priorityQueue <= (region , qualitat(region , bereichsWerte)))

| var regionen <— extrahiere alle Regionen aus priorityQueue
alternativ
| var regionen <— bilde Delaunay—Triangulierung aus Punkten in positionen

foreach(region € regionen)
var regionsWert <— kombiniereWerte(w | (pos,w) € werte A pos € region)
assoziiere region mit regionsWert

return bildeHiereachischeDatenstruktur(regionen)

5.4.2 Beschreibung der weiteren Parameter

Der vorgestellte Algorithmus zum adaptiven Sampeln von positionsabhiingigen Szenenei-
genschaften gewinnt seine Flexibilitidt durch die Menge an zusitzlichen Parametern, die das
konkrete Verhalten des Algorithmus mafgeblich bestimmen. Eine gro3ere Menge von Parame-
ter birgt jedoch auch die Herausforderung, die in Bezug auf die fiir ein Sampling-Verfahren
definierten Anforderungen (siehe Abschnitt 5.1) noch zu erfiillen. Unter Beriicksichtigung der

39

5 Globale Niherung von Szeneneigenschaften

Anforderungen stelle ich im Folgenden die einzelnen Parameter vor.

Parameter: Abbruchbedingung

Ein groBler Vorteil des vorgestellten adaptiven Sampling-Verfahrens ist, dass nach jedem
Iterationsschritt eine giiltige globale Ndherung der untersuchten Eigenschaft erzeugt werden
kann. Zusitzliche Iterationen fiihren nur zu einer insgesamt hoheren Qualitdt der Ndherung.
Diese Verbesserung ist dabei zwar nicht zwingend strikt — in einzelnen Schritten kann es je nach
Wahl der Samples auch zu einer kurzfristigen Verschlechterung fithren — praktisch konvergiert
die Niherung jedoch mit zunehmender Iterationszahl gegen die tatsichliche Verteilung der
Szeneneigenschaft. In Bezug auf die Anforderungen zeigt sich, dass sich das Verfahren daher
robust in Bezug auf die Laufzeit verhilt. Die Moglichkeit, den Prozess regelmifBig unterbrechen
zu konnen, erlaubt eine freie Wahl der Abbruchbedingung, auch in Bezug auf die angepeilte
Anwendung. Mogliche Abbruchbedingungen sind:

e Anzahl untersuchter Sampling-Punkte (Standardmethode): Die Angabe der Anzahl der
zu ziehenden Sampling-Punkte, nach der abgebrochen werden soll, erlaubt einen direkten
Qualititsvergleich unterschiedlicher Sampling-Verfahren und Parameterwerte fiir die
Gegeniiberstellung von Anzahl der Punkte zu erzielter Qualitdt. Damit eignet sich diese
Bedingung besonders fiir die experimentelle Untersuchung in Kapitel 5.7. Des Weiteren
kann durch diese Bedingung die Laufzeit des Sampling-Prozesses relativ genau gesteuert
werden, da sich diese praktisch linear zur Anzahl der untersuchten Samples verhilt. Die
ibrigen Schritte haben einen vernachldssigbaren Einfluss auf die Laufzeit.

e Zeit: Lisst sich fiir eine Anwendung sagen, wie viel Zeit genau fiir das Sampling
verwendet werden soll, kann nach einer bestimmten Zeit das Sampling einfach beendet
werden.

e Benutzerinteraktion Ist das Ziel eine visuelle Analyse des Verhaltens eines Algorith-
mus (siehe Abschnitt 5.6) und werden Zwischenschritte des Samplings kontinuierlich
visualisiert, dann kann ein Benutzer beim Erreichen des gewiinschten Ergebnisses den
Sampling-Prozess beenden.

e Erreichen eines bestimmten Qualititswertes: Prinzipiell lassen sich auch die wéhrend des
Samplings anfallenden Kennzahlen fiir eine Abbruchbedingung verwenden. Beispiels-
weise wird der Prozess abgebrochen, wenn keine Region mehr mit einem Qualititswert
unterhalb eines bestimmten Grenzwertes mehr vorhanden ist. Praktisch hat sich jedoch
gezeigt, dass sich daraus ein nicht robustes Verhalten ergibt. Bereits geringfiigige Ande-
rungen an anderen Parametern konnen zu deutlichen Laufzeitunterschieden und damit
auch Qualititsunterschieden fiihren.

Parameter: Regionsunterteilungsfunktion

Der Parameter Regionsunterteilungsfunktion beschreibt, wie die Region mit dem jeweils aktuell
niedrigsten Qualitidtswert in weitere Regionen unterteilt wird. Das Ziel dabei ist, dass durch die

40

5.4 Adaptives Sampling

getrennte Betrachtung der Teilregionen eine bessere Niherung erzeugt wird, als bei Betrachtung
der Ursprungsregion. Daher ist es wiinschenswert, eine vorher inhomogene Region moglichst
in mehrere homogenere Regionen aufzuteilen, welche zwar konvex, aber nicht zwangslaufig
rechteckig sein miissen. Eine weiteres Ziel bei der Erzeugung der Regionen ist es, moglichst
grof3e Volumen (oder Flachen bei der Untersuchung einer 2-D-Region) im Verhiltnis zu den
Oberflichen (bzw. Umfédngen) der entstehenden Regionen zu erzeugen. Vor allem bei sehr
langgezogenen Regionen kann keine lokal gleichméfige Verteilung der Samples mehr erreicht
werden.

Um moglichst dem Anspruch der Einfachheit zu geniigen, beschréinke ich mich bei der von
mir gewihlten Unterteilungsfunktion auf den zweiten Aspekt: moglichst groes Volumen. Die
folgende Beschreibung bezieht sich auf den 3-D-Fall, funktioniert aber analog fiir den 2-D-Fall:
Ausgehend von einer quaderformigen Ursprungsregion wird zunichst gepriift, ob das Verhiltnis
der lingsten Seite zur kiirzesten Seite groBer als v/2 ist. Ist dies der Fall, wird die Region entlang
der lingsten Seite gleichméBig in zwei Regionen mit nun besserem Seitenverhéltnis aufgeteilt.
Andernfalls wird dir Region entlang aller Achsen gleichméBig in insgesamt acht (bzw. vier
im 2-D-Fall) Teilregionen aufgespalten. Um die Robustheit des Verfahrens zu erhdhen, gibt
es die zusitzliche Rahmenbedingung, dass bei Erreichen einer minimalen Seitenldnge keine
weiteren Unterteilungen mehr durchgefiihrt werden. Diese minimale Linge sollte so gewihlt
werden, dass Regionen dieser Grofe fiir mogliche Anwendungen keine wesentliche Rolle mehr
spielen. Geht man beispielsweise von einem normalgrofen, humanoiden Betrachter aus, der
sich in Schrittgeschwindigkeit durch die Szene bewegt, ist eine minimale Regionsgrofle von
einem Kubikmeter angemessen. Diese zusitzliche Beschrinkung sorgt dafiir, dass ein einzelner,
kleiner Bereich trotz sehr groBBer Spriinge in den Werten der untersuchten Eigenschaft nicht zu
viele Samples auf sich konzentrieren kann.

Parameter: Qualitatsbewertungsfunktion

Die Qualitdtsbewertungsfunktion definiert fiir eine gegebene Region aus den bisher bestimmten
Werten einen Qualitdtswert, der die Reihenfolge bei der Abarbeitung der Regionen bestimmit.
Ziel bei der Berechnung ist es, eine Sortierung der Regionen zu erreichen, bei der die Regionen
vorne stehen, die insgesamt zur groften Verbesserung der globalen Nidherung beitragen, wenn
sie weiter untersucht werden. Der absolute Wert, den die Funktion zuriickgibt, spielt fiir den
Sampling-Algorithmus keine Rolle. (Aufler, dass, wenn der Wertebereich normiert ist, wihrend
des Sampling-Vorgangs die aktuellen Regionen gemill des Qualititswertes eingefiarbt werden
konnen, was dem Benutzer eine anschauliche visuelle Riickmeldung iiber den Status des
Prozesses liefert.) Die von mir als Grundlage fiir mogliche Bewertungsfunktionen verwendeten
Heuristiken enthalten folgende Komponenten:

o Verteilung der bisher in der Region gemessen Werte: Die Grundlage hierfiir ist die
Uberlegung, dass eine groBe Fluktuation der untersuchten Werte auch auf einen inhomo-
genen Bereich der untersuchten Eigenschaft hindeutet, welcher sich schlecht durch eine
einzelne homogene Region anndhern ldsst. Je groBer also die Fluktuation der Werte einer
Region, desto niedriger sollte ihr Qualitdtswert sein. Eine wichtiger Teil der Heuristik
ist das konkrete Maf3 der Werteverteilung, das fiir die Berechnung des Qualitidtswertes

41

5 Globale Niherung von Szeneneigenschaften

verwendet wird. Auch einzelne AusreiBer der Verteilung konnen einen wichtigen Hin-
weis darauf liefern, dass groflere inhomogene Bereiche der Region existieren, die bisher
noch nicht mi ausreichend vielen Sampling-Punkten untersucht wurden. Als Maf} der
Verteilung hat sich daher die Differenz aus Maximum und Minimum gegeniiber anderen
Malen, wie z. B. der Varianz, als funktional herausgestellt.

o Anzahl der bisher in der Region erhobenen Werte: Je mehr Werte bereits aus einer Region

untersucht wurden (wenn man von einer gleichméBigen Verteilung der Werte ausgeht),
desto hoher ist die Sicherheit, dass inhomogene Bereiche auch tatsdchlich entdeckt
wurden. Regionen mit wenigen homogenen Werten sollten demnach ein niedrigeren
Qualititswert erhalten als gleichgro3e Regionen mit dhnlicher Werteverteilung, aber
mehr Samples.

Die Grifle der Region: Grofle Bereiche tragen insgesamt mehr zu der globalen Néiherung
bei als ein kleinerer Bereich mit ansonsten gleichen Eigenschaften. Ein entsprechender
Fehler beim Sampling wirkt sich also stidrker aus als bei einer kleinen Region. Daher soll-
ten grole Regionen kleinere Qualititswerte erhalten als gleichartige Regionen geringerer
GrofBe.

Nach experimenteller Untersuchung unterschiedlicher Auspriagungen von konkreten Heuri-
stiken habe ich die folgende Qualitdtsbewertungsfunktion fiir meine Anwendungen ausgewihlt:

Anzahl der bereits in der Region gezogenen Werte,
geteilt durch das Produkt aus dem Durchmesser der Region und
der Differenz aus dem minimalen und maximalen gemessenen Eigenschaftswert.

Diese Funktion hat sich in der Praxis als sehr robust gegeniiber der Wahl der untersuchten

Szeneneigenschaft, sowie auch gegeniiber der Grof3e des untersuchten Bereichs gezeigt. Funk-
tionen mit mangelnder Robustheit machen sich insbesondere dadurch bemerkbar, dass je nach
Wahl der Parameterwerte die Samples auf zu wenige Bereiche der Szene konzentriert werden,
wodurch andere relevante Bereiche nicht identifiziert werden.

Parameter: Positionsauswahlfunktion

Die Positionsauswahlfunktion bestimmt fiir eine neue Region, an wie vielen und welchen
Positionen zusitzliche Samples gezogen werden sollen — an welchen Positionen die posi-
tionsabhéngige Szeneneigenschaft also untersucht werden sollen. Fiir die Wahl geeigneter
Sampling-Punkte konnte ich im Wesentlichen zwei Anforderungen identifizieren:

42

1. Flexible Anzahl von Sampling-Punkten: Um den gesamten Sampling-Ansatz nicht in

seiner Flexibilitit einzuschrinken, sollen sich prinzipiell beliebig viele Sampling-Punkte
in einem Bereich untersuchen lassen.

2. Gute rdumliche Verteilung: Da wihrend des Sampling-Vorgangs eine Region zunéchst

als homogener Bereich aufgefasst wird, sollten die Sampling-Punkte innerhalb einer
Region auch moglichst gleichméBig verteilt werden. Insbesondere sollten keine grofleren

5.4 Adaptives Sampling

Bereiche innerhalb der Region entstehen, in denen keine Samples liegen, wihrend es
andere gleichgrofle Bereiche gibt, in denen mehrere Samples liegen.

Wie bei den anderen Parametern gibt es bei der Positionsauswahlfunktion wieder viele
mogliche Auspriagungen, von denen ich im Folgenden einige néher betrachte:

GleichmaBiges Gitter: Eine cinfache Moglichkeit, eine Region gleichmiBig zu samplen,
liegt darin, die Sampling-Punkte jeweils auf den Punkten eines regelméBigen, rechteckigen
Gitters zu wihlen. Ein Nachteil ist, dass durch die regelmiBige Struktur Aliasing-Effekte
auftreten konnen, wie auch schon bei dem regelmiBigen Sampling; siche Abschnitt 5.3. Ein
weiterer Nachteil besteht darin, dass die Zahl der Samples nur in festgelegten Schritten aus-
gewdihlt werden kann (quadratisch oder kubisch). Abbildung 5.1a zeigt ein Beispiel fiir ein
2-D-Sampling mit einem Gitter in einem Quadrat. Im unteren Teil der Abbildung wird die
Verteilung der relativen Punktabstiinde, relativ zum Mittelpunkt des Bildes dargestellt.

Zufallig gleichverteilt: Eine weitere sehr einfache Moglichkeit, Punkte aus einer Region
zu wihlen, ist, diese zufillig gleichverteilt zu wihlen. Der Vorteil dieser Methode gegeniiber
dem Gitter ist, dass hier eine beliebige Anzahl von Punkten gezogen werden kann. Der grofie
Nachteil des Verfahrens ist, dass die Samples ungleichmifBig verteilt sind. In Abbildung 5.1b
und Abbildung 5.2 erkennt man anhand des Beispiels, dass viele Punkte dicht beieinander
liegen, dadurch aber groflere freie Regionen entstehen.

Blue-Noise-Sampling: Durch ein etwas komplexeres Verfahren zur Bestimmung der
Sampling-Positionen, lassen sich auch beliebig viele Sampling-Punkte weitestgehend gleich-
miBig verteilt erzeugen. Das Ziel der gleichmiBigen Abdeckung lésst sich auch als das Ziel
zum Erreichen der Blue-Noise-Eigenschaft beschreiben. Als Grundlage fiir das hier verwendete
Sampling-Verfahren dient ein Poisson-Disk-Sampling-Verfahren mittels Dart-Throwing nach
Cook [Co086], jedoch mit Aufhebung der harten Restriktion eines vorgegebenen Radius. Diese
Idee wurde von McCool und Fiume [MF92] aufgezeigt.

Die einzelnen Schritte des Sampling-Verfahrens sind: Fiir die Wahl des nichsten Samples in
einer gegebenen Region wird zunéchst eine feste Anzahl zuféllig gleichverteilter Punkte aus
der Region als Kandidaten gezogen. Fiir jeden dieser Kandidaten wird der kleinste Abstand zu
allen bisher gezogenen Punkten berechnet; also auch zu denen, die auB3erhalb der untersuchten
Region liegen. Als nichster Punkt wird derjenige mit dem gréf3ten Abstand gewéhlt. Die
Bestimmung des nichsten Punktes lisst sich effizient durch die Verwendung eines Octrees (fiir
den 3-D-Fall) erreichen. Die Anzahl der fiir einen Sample gezogenen Kandidaten bestimmt die
Qualitit der Verteilung. Aufgrund von Erfahrungen aus experimentellen Untersuchungen hat
sich ein Wert von 200 fiir die Praxis als ausreichend erwiesen.

Im unteren Bild in Abbildung 5.1c kann man erkennen, dass durch das Verfahren um jeden
Pixel eine kreisformige Region frei bleibt. Dies wird auch in der Verteilung der minimalen
Abstiande zwischen den Sampling-Punkten deutlich (sieche Abbildung 5.2¢). Im Unterschied
zu Poisson-Disk-basierten Sampling-Verfahren kann die Einhaltung des Freiraums zwar nicht
garantiert werden, dafiir passt sich der Radius jedoch automatisch an, wenn weitere Sampling-
Punkte gezogen werden.

43

5 Globale Niherung von Szeneneigenschaften

Blue-Noise-Sampling mit Eckpunkten: Ein Problem des normalen Blue-Noise-Samplings
tritt in Kombination mit dem verwendeten adaptiven Sampling-Algorithmus 5.3 auf. Die
Sampling-Punkte, die auf den Randbereichen von mehreren Regionen liegen, werden fiir die
Berechnung der Werte aller anliegenden Regionen herangezogen. Insbesondere die Eckpunkte
der Regionen haben so einen Einfluss auf bis zu acht anliegende Regionen. Beim Blue-Noise-
Sampling werden diese Punkte jedoch nicht betrachtet — d. h. jeder Sampling-Punkt liefert
im Normalfall nur Informationen fiir eine einzelne Region. Durch die einfache Erweiterung
lasst sich dieser Nachteil beheben: Die ersten neu gewihlten Punkte einer Region sind — wenn
nicht bereits untersucht — die Eckpunkte der Region. Bei weiteren Punkten wird nach dem
normalen Blue-Noise-Sampling Verfahren. Ein dadurch entstehender Nachteil ist, dass die
GleichmiBigkeit der Verteilung abnimmt, da die Eckpunkte dicht an bereits untersuchten
Punkten liegen konnen.

Dies kann man im unteren Bild in Abbildung 5.1d und an Abbildung 5.2d erkennen. Der freie
Bereich um einen Sampling-Punkt wird hiufiger durch andere (vorher gezogene) Sampling-
Punkte verletzt. Insgesamt entstehen durch das Blue-Noise-Sampling mit Eckpunkten jedoch
bei gleicher Sample-Anzahl Niherungen mit hoherer Qualitiit als beim reinen Blue-Noise-
Sampling. Es kombiniert dadurch die Vorteile des Gitter-Samplings mit denen des Blue-Noise-
Samplings bei einer nur leicht geminderten Sampling-Qualitét.

Die Anzahl der Samples, die fiir eine neue Region gezogen wird, wird durch folgende einfa-
che Heuristik bestimmt: Ein konstanter Wert plus der mit einer weiteren Konstante gewichtete
Durchmesser der Region. Werden die Konstanten zu klein gewdhlt, steigt das Risiko, dass
wesentliche Fluktuationen in der Eigenschaftsfunktion nicht entdeckt werden. Bei zu grof3en
Konstanten werden viele Samples fiir die groBen Regionen aufgewendet und die kleineren
Details der Funktion bleiben bei gleicher Sample-Anzahl eher unbeachtet. Fiir Walkthrough-
Anwendungen haben sich folgende Werte als relativ robust herausgestellt: Durchmesser der

Region in Metern gewichtet mit einem Faktor 0.05 S]‘fﬂfelfs plus 5 Samples.

5.5 Parallelisierung

Im Vergleich zum regelmiBigen Sampling erlaubt das adaptive Sampling die Erstellung globaler
Niherungen dhnlicher Qualitéit mit deutlich weniger Sampling-Punkten und damit in wesentlich
kiirzerer Zeit. Um die Hiirde fiir den Einsatz der in dieser Arbeit vorgestellten Methoden weiter
zu senken, kann diese Zeit durch Parallelisierung noch einmal verkiirzt werden. Wenn eine
Szeneneigenschaft untersucht wird, die sich unabhingig von der verwendeten Hardware verhiilt,
dann konnen die Samples auch unabhiéngig voneinander auf verschiedenen Rechnersystemen
erhoben werden.

Das Gesamtsystem besteht aus einem Kontrollknoten und mehreren Sampling-Knoten, die
durch ein Netzwerk verbunden sind. Die Szene ist auf allen Sampling-Knoten verfiigbar. Der
Kontrollknoten fiihrt den Sampling-Algorithmus wie in Algorithmus 5.3 aus, jedoch mit einigen
Anderungen bei der Wahl und Untersuchung der neuen Sampling-Punkte fiir neu erstellte
Regionen (sieche Algorithmus 5.4). Nachdem die Region mit dem niedrigsten Qualitdtswert in
neue Regionen unterteilt wurde, werden zunéchst alle zu untersuchenden Positionen der neuen
Regionen gesammelt. Fiir die Auswertung der Szeneneigenschaft werden dann zu jedem freien

44

5.5 Parallelisierung

a) Gitter b) zufallig c) Blue-Noise d) Blue-Noise
gleichverteilt mit Ecken

Abbildung 5.1: (oben) Durch unterschiedliche Sampling-Verfahren erzeugte Punktverteilungen
in einem Quadrat mit jeweils 1024 Punkten. (unten) Die Verteilung der relativen
Positionsdifferenzen fiir alle Punkte relativ zum Bildmittelpunkt; die Hiufung
entlang der Hauptachsen liegt technisch in der Diskretisierung der Sampling-
Positionen begriindet.

15-

1.0-

0.5-

minimaler Punktabstand

0.0-

1 1 1
b) zufallig gleichverteilt c¢) Blue—Noise-Sampling d) Blue—Noise—Sampling mit Ecken
Sampling—Verfahren

Abbildung 5.2: Verteilung minimal paarweiser Punktabstinde durch unterschiedliche Sampling-

Verfahren (2-D-Sampling in einem Quadrat). Alle minimalen Abstinde beim
Gitter-Sampling liegen bei 1.0.

45

20

21

5 Globale Niherung von Szeneneigenschaften

Sampling-Knoten die Parameter geschickt, die zum Berechnen der Szeneneigenschaft an einer
der Positionen notig sind. Sobald ein Sampling-Knoten einen Wert ermittelt hat, wird dieser
an den Kontrollknoten zuriickgesandt, der den Sampling-Knoten darauthin wieder eine neue
Position zusendet, bis alle aktuell zu untersuchenden Positionen abgearbeitet sind.

Algorithmus 5.4: Paralleler adaptiver Samplingalgorithmus

I/l Zeilen 1—6 aus Algorithmus 5.3
while(!abbruch())
var region < extrahiere Region mit geringster Qualitdt(priorityQueue)
var neueRegionen <— teileAuf(region)
var neuePositionen < { }
foreach(neueRegion € neueRegionen)
var p < wdahlePositionen(neueRegion , positionen)
neuePositionen <— neuePositionen U p
positionen < positionen U p
while(neuePositionen # { })
if(freier Samplingknoten verfiigbar)
var position = extrahiere wert aus neuePositionen
schicke (fs, position) an freien Samplingknoten
if(Wert von Samplinknoten verfiigbar)
werte < werte U { Wert von Samplingknoten }
foreach(neueRegion € neueRegionen)
var bereichsWerte <— sammle alle Werte aus werte die in neueRegion liegen
fiige ein (priorityQueue <= (region , qualitat(region , bereichsWerte)))

Il Zeilen 19—27 aus Algorithmus 5.3

Die Vorteile dieses Algorithmus liegen darin, dass das Originalverfahren fiir diese Erwei-
terung nur geringfiigig gedndert werden muss und dass durch die asynchrone Bearbeitung
der Berechnungen auch heterogene Knoten mit unterschiedlich performanter Grafikhardware
ohne groflere Probleme verwendet werden konnen (bei der Untersuchung einer entsprechenden
Eigenschaft). Ein Nachteil des Verfahrens besteht darin, dass es nicht beliebig mit der Anzahl
der verfiigbaren Knoten skaliert. Wenn mehr Rechner zur Verfiigung stehen als in einem Schritt
Sampels gezogen werden, konnen diese nicht verwendet werden. Auch konnen am Ende jeder
Runde einige Sample-Knoten leerlaufen, bis die letzten Ergebnisse zur Verfiigung stehen.

5.6 Auswertungsmoglichkeiten

Die globale Nidherung von Szeneneigenschaften lidsst sich auf mehrere Arten qualitativ und
qualitativ auswerten. Im Folgenden gebe ich einen Uberblick iiber verschiedene Moglichkeiten
der Auswertung. Zur Demonstration verwende ich dabei eine einfache, virtuelle Szene (Szene 1)
bestehend aus 626 Biumen und Wandfragmenten, die jeweils ein Objekt darstellen (siehe
Abbildung 5.3a). Die untersuchte Szeneneigenschaft ist die Anzahl sichtbarer Objekt (siehe
Abschnitt 4.2.2).

46

5.6 Auswertungsmoglichkeiten

5.6.1 Qualitative Auswertung durch Visualisierung

Das Ziel bei der Visualisierung von gendherten Szeneneigenschaften ist es, einen moglichst
einfachen und intuitiven Einblick in das Verhalten der untersuchten Funktion zu erlangen.
Insbesondere bei dem Entwurf von Renderingalgorithmen kann dies hilfreiche Hinweise fiir
Verbesserungen liefern, wenn bestimmte Aspekte des Verhaltens von Algorithmen positionsab-
hingig visualisiert werden.

Fiir die Visualisierung wird zunichst eine Abbildung des Wertebereichs der Funktion auf
Farbwerte (und optional auch Transparenzwerte) benotigt. Darauf basierend werden die
Regionen der gendhrten Szeneneigenschaft eingefirbt und dargestellt (siche Abbildung 5.3b).
Wenn den Regionen nicht einzelne Werte, sondern Werteverldufe zugewiesen sind, lassen sie
sich durch entsprechende Farbverldufe darstellen (sieche Abbildung 5.3d).

Die Darstellung lédsst sich noch durch verschiedene Parameter konfigurieren: Bei zweidi-
mensionalen Ndherungen lassen sich zusitzlich zu den Farben auch noch Hohenwerte in die
Abbildung hinzunehmen. Hierdurch kénnen ausgewihlte Bereiche des Wertebereichs zusitzlich
zur Farbgebung noch deutlicher optisch hervorgehoben werden (siehe Abbildung 5.3c).

Ein Herausforderung stellt die Darstellung dreidimensionalen Niherungen als Volumendaten
dar. Werden alle Regionen teiltransparent iibereinander gezeichnet, lassen sich daraus Infor-
mationen nur noch schwer ablesen. Um relevante Bereiche zu erkennen, lassen sich daher
zusitzlichen Filterregeln definieren, die Regionen mit einem bestimmten Wertebereich von der
Darstellung ausschlieen. So lisst sich das Volumen von Bereichen der Szene mit bestimmten
Eigenschaften visualisieren. In Abbildung 5.3e wird beispielsweise der Bereich der Szene
hervorgehoben, in dem weniger als einhundert Objekte sichtbar sind.

5.6.2 Statistische Auswertung der Verteilung

Aus der gendherten Szeneneigenschaft lassen sich direkt einzelne statistische Werte, wie Mini-
mum, Maximum und Durchschnitt, ermitteln. Grafisch darstellen ldsst sich die Verteilung der
Eigenschaft beispielsweise durch ein Histogramm; oder platzsparender durch einen Violinen-
Plot. Abbildung 5.3f zeigt beispielhaft die Verteilung der Anzahl der sichtbaren Objekte tiber
die in Abbildung 5.3b gezeigten Regionen.

Einige Punkte sind bei der Aufbereitung der statistischen Daten zu beachten:

e Von einer alleinigen Abbildung der Verteilung durch einen Boxplot rate ich ab, da man bei
der Verteilung nicht davon ausgehen kann, dass die Verteilung nur einen Hiufungspunkt
besitzt.

e Die Werte der Regionen miissen mit der GroBe der jeweiligen Region gewichtet werden.
e Das Volumen bzw. die Fliche, in der die Szeneneigenschaft genédhert wurde, muss
mit beachtet und angegebenen werden, sonst kann der Informationsgehalt der Daten

erheblich leiden — @hnlich wie die Verwendung von statistischen Daten, die auf einem
nicht beschriebenen Kamerapfad aufgenommen wurden.

47

5 Globale Niherung von Szeneneigenschaften

(a) Szene 1 (b) Gefirbte 2-D-Regionen

(c) 2-D-Regionen mit Hohen (d) Gefarbte 2-D-Triangulierung der
Sampling-Punkte

0 100 200 300 400
Anzahl sichtbarer Objekte

(e) Darstellung des Volumens mit geringer Sicht-(f) Verteilung der Eigenschaft tiber die Fli-
barkeit che als Box- und Violinen-Plot

Abbildung 5.3: Unterschiedliche Auswertungsmoglichkeiten fiir die genidherte Szeneneigen-
schaften Anzahl sichtbarere Objekte in Szene Szene 1

48

5.7 Experimentelle Bewertung der Sampling- Verfahren

5.7 Experimentelle Bewertung der
Sampling-Verfahren

Das Ziel des adaptiven Sampling-Ansatzes ist die Erzeugung einer Ndherung mit hoher Qualitéit
im Verhiltnis zur untersuchten Zahl an Sampling-Punkten. Im Folgenden vergleiche ich vier
Sampling-Varianten miteinander: gleichmifBiges Sampling auf einem Gitter, adaptives Samp-
ling mit zufillig gleichverteilten Positionen, adaptives Blue-Noise-Sampling und adaptives
Blue-Noise-Sampling mit Ecken. Als Basis fiir den Vergleich habe ich die Szeneneigenschaft
Anzahl sichtbarer Objekte (6 Richtungen, Aufldsung 10242 Pixel) gewihlt, da sich die Struktur
vieler anderer Eigenschaften stark an der Objektsichtbarkeit orientiert (z. B. Renderingzeit
von Culling-Algorithmen). Als Szene habe ich das Power-Plant-Modell gewéhlt, welches
komplexe und sehr unterschiedliche Sichtbarkeitsverhiltnisse bietet. Hinter dem Schornstein
ist beispielsweise ein GroBteil der Szene verdeckt, wobei es aber auch Positionen im Inneren
und vor dem Hauptgebédude gibt, an denen bis zu 21 Prozent aller Objekte der Szene sichtbar
sind (274 von 1171).

Fiir die Messungen werden globale Nédherungen der Szeneneigenschaft fiir 2-D- und 3-
D-Bereiche der Szene erstellt; jeweils einmal in einem Bereich, der die Szene relativ eng
umschlieBt und in einem Bereich mit doppelter Seitenlinge (siehe Abbildung 5.4). Um die
Qualitét einer Ndherung abzuschitzen, wird an 2000 gleichverteilt zufilligen Positionen inner-
halb der untersuchten Region der tatséichliche Wert der Szeneneigenschaft gemessen und der
Absolutwert der Differenz zu dem Wert der genidherten Szeneeingenschaft als Fehler gewertet.
Die Laufzeit zur Erstellung der Ndherungen verlduft in den untersuchten Fillen linear mit
der Zeit zur Messung an einer Position. Diese betrigt mit dem fiir diese Arbeit eingesetzten
Testsystems (sieche Abschnitt 3.4) jeweils ca. 22 ms. Abbildung 5.5 zeigt einige charakteri-
stische Ergebnisse, bei denen die Verteilung des ermittelten Fehlers fiir die unterschiedlichen
Messungen aufgetragen ist. Eine Haufung von kleineren Fehlerwerten entspricht einer hoheren
Qualitédt der zugrundeliegenden Nidherung der Szeneneigenschaft.

Was generell an den Messungen auffillt, ist, dass es fiir alle Sampling-Methoden Ausreif3er
gibt, an denen die gemessenen Werte weit von den Werten der geniherten Szeneneigenschaft
abweichen. Dies stellt weniger ein Problem fiir die globale Einschidtzung des Verhaltens eines
Algorithmus dar, sondern eher fiir die Verwendung der geniherten Szeneneigenschaft zur
Laufzeit. Darauf gehe ich noch einmal in den Abschnitten 7.5 und 7.6 ein.

Sowohl im 2-D-Fall als auch im 3-D-Fall zeigt von den adaptiven Sampling-Varianten
das Blue-Noise-Sampling mit Ecken die hochste Qualitit, wobei das zuféllig gleichverteilte
Sampling die niedrigste Qualitidt aufweist. Im Folgenden wird daher nur noch das adaptive
Blue-Noise-Sampling mit Ecken weiter betrachtet. Der Vergleich zwischen dem adaptiven
Blue-Noise-Sampling mit Ecken und dem Referenzverfahren ist weniger eindeutig. Das
gleichmélige Sampling ist im Vorteil, wenn relativ wenige Samples in einer insgesamt stark
fluktuierenden Region gezogen werden: Der durchschnittliche Fehler liegt im 3-D-Fall mit
1024 Samples in der kleinen Region beim Gitter bei 12.65 und beim adaptiven Sampling bei
19.22. In allen anderen Fillen dhneln sich die Verteilungen der Fehler so sehr, dass kein klarer
Vorsprung ausgemacht werden kann. Das Argument, das letztlich fiir das adaptive Blue-Noise-
Sampling mit Ecken im Vergleich zum regelmédfBigen Sampling spricht, ist die Moglichkeit,

49

5 Globale Niherung von Szeneneigenschatten

1024 Samples, kleine Region, 1024 Samples, kleine Region,
Gitter (32*32) Blue-Noise mit Ecken

4096 Samples, grofse Region, 4096 Samples, grolse Region,
Gitter (64*64) Blue-Noise mit Ecken

Abbildung 5.4: Visualisierung der gendherten Szeneneigenschaft Anzahl sichtbarer Objekte in
der Power-Plant-Szene mit unterschiedlichen Sampling-Verfahren bzw. Para-
metern; Rot: 400 Objekte, Violett: 200 Objekte, Blau: 100 Objekte, Tiirkis: 50
Objekte, Griin: 20 Objekte

50

5.7 Experimentelle Bewertung der Sampling- Verfahren

100 - \ \

Samplingverfahren

O | adaptiv zufallig
- & |adaptiv Blue Noise
n adaptiv Blue Noise mit Ecken

75 -

Fehler in der Anzahl sichtbarer Objekte

< 01

J.l

25 -
<
<
<& <&
k] O o < <
4 E l : :
0- [1 - %
2-D 2-D 2-D 3-D, 3-D 3-D,

1024 Safnp\es 1024 Saﬁwples, 4096 Sarﬁp\es, 1000 Samples 8000 Sa}nples 15625 Samples,
groRRe Region groRe Region groRe Region
Messreihe

Abbildung 5.5: Abschitzung der Qualitit unterschiedlicher Sampling-Verfahren anhand der
Verteilung der Abweichung bei 2000 zuféllig gewihlten Positionen in der
Power-Plant-Szene

die Sampling-Anzahl flexibel zu wéhlen — wobei nur bei geringer Sampling-Anzahl mit einem
Qualitédtsverlust zu rechnen ist. Um die Gesamtqualitit besser einschitzen zu konnen, zeigt
Abbildung 5.6 die Korrelation zwischen gemessenen und gendherten Werten fiir das adaptive
Blue-Noise-Sampling mit Ecken in der Power-Plant-Szene.

5.7.1 Benotigte Anzahl an Samples

Wie aus den vorangegangenen Messungen deutlich wird, ist es fiir die Qualitéit von einzelnen,
positionsbezogenen Anfragen an die gendherte Szeneneigenschaft notwendig, eine grof3e
Anzahl an Sampling-Punkten zu verwenden. Wenn jedoch keine einzelnen Werte benotigt
werden, sondern eine statistische Auswertung der Verteilung der Szeneneigenschaft, lassen sich
mit relativ wenigen Sampling-Punkten zuverldssige Aussagen treffen. Im Folgenden wird dazu
wiederum die Objektsichtbarkeit in der Power-Plant-Szene in einer 3-D-Region untersucht (mit
dem adaptiven Blue-Noise-Sampling mit Ecken) und die Verteilung der Szeneneigenschaft
fiir eine unterschiedliche Anzahl von Sampling-Punkten miteinander verglichen. Bereits ab
800 Samples veridndern sich trotz der komplexen Sichtbarkeitsverhiltnisse die 0.25-, 0.5- und
0.75-Quantile sowie der Durchschnitt nur noch leicht (siehe Abbildung 5.7 und Tabelle 5.1).
Wenn es bei einer Untersuchung um Extremwerte geht, wie beispielsweise der geschitzten
hochsten Renderingzeit, gilt jedoch wie bei Positionsanfragen auch: je mehr Samples desto
besser.

51

5 Globale Niherung von Szeneneigenschatten

300 -

N

o

o
1

100 -

genaherte Anzahl sichtbarer Objekte

0 100 200 300
gemessene Anzahl sichtbarer Objekte

Abbildung 5.6: Korrelation zwischen 2000 gemessenen und den gendherten Werte fiir die
Anzahl der sichtbaren Objekte mit dem adaptive Blue-Noise-Sampling mit
Ecken, Power-Plant-Szene, 3-D-Region mit 15625 Samples

N

o

o
1

Anzahl sichtbarer Objekte
=
o
o

1 1 1 1 1
100 200 400 800 1600 3200 6400 12800
Anzahl Samples

Abbildung 5.7: Verteilung der Werte in der gendherten Szeneneigenschaft Anzahl sichtbarer

Objekte in Abhédngigkeit der Anzahl der verwendeten Samples, Power-Plant-
Szene, 3-D-Region

52

5.7 Experimentelle Bewertung der Sampling- Verfahren

Samples | Minimum | 0.25-Quantil | Median | 0.75-Quantil | Maximum | Durchschnitt
100 76.3 96.0 101.1 113.8 165.4 106.8

200 54.8 83.0 109.0 123.6 204.8 105.8

400 55.2 82.2 107.8 132.0 204.8 107.2

800 47.7 81.0 108.2 139.3 210.4 108.6
1600 45.4 78.1 105.5 140.2 214.7 110.9
3200 12.4 75.3 105.2 141.9 222.4 111.3
6400 12.4 76.0 105.3 144.1 256.7 112.0
12800 7.6 75.4 105.4 144.7 278.2 112.2

Tabelle 5.1: Eckdaten der Verteilung der gendherten Szeneneigenschaft Anzahl sichtbarer
Objekte in Abhingigkeit der Anzahl der verwendeten Samples, Power-Plant-Szene,
3-D-Region

53

6 Approximatives Rendering mit
Progressive-Blue-Surfels

Abbildung 6.1: Beispiel fiir die Darstellung einer komplexen Szene durch das Progressive-
Blue-Surfels-Verfahren. Im Frustum befinden sich ca. 5.8 Milliarden Drei-
ecke, verteilt auf ca. 480 Tausend Szenengraphknoten. Dargestellt werden ca.
14 Millionen Dreiecke und 8 Millionen Punkte mit 11.8 fps.

Das im Rahmen dieser Arbeit entwickelte Progressive-Blue-Surfels-Niherungsverfahren
ist ein Renderingverfahren fiir die interaktive Darstellung hochkomplexer virtueller Szenen.
Die grundlegende Idee des Verfahrens ist es, weiter entfernte Teile der Szene durch eine
Punktmenge geringerer Komplexitit anzunihern und damit die Menge der tatsdchlich geren-
derten Geometrie deutlich zu reduzieren. Was das Verfahren von anderen, punktbasierten
Néherungsverfahren unterscheidet, ist im Wesentlichen die Art, in der die Punkte erzeugt und
sortiert werden: Die Punkte werden auf der Oberfliche der von auflen sichtbaren Geometrie
verteilt und dabei in einer Folge so sortiert, dass jeder Prifix der verwendeten Punkte eine
moglichst gute Ndaherung der Geometrie darstellt — je mehr Punkte verwendet werden, desto
besser wird die Qualitdt der Ndherung. Dadurch lassen sich zur Laufzeit die Anzahl der Punkte,
die als Ersatz fiir einen Teil der Szene gerendert werden, sehr feinschrittig an die projizierte
GroBe des angendherten Szenenteils angepasst werden. Dies erlaubt eine gute Ausnutzung
der Renderingkapazitit und reduziert gleichzeitig die visuellen Artefakte beim Umschalten
zwischen verschiedenen Qualitéitsstufen. Das Verfahren ist relativ robust in Bezug auf die
geometrische Struktur der angenédherten Objekte und erlaubt so die unkomplizierte Darstellung

55

6 Approximatives Rendering mit Progressive-Blue-Surfels

sehr groler Szenen mit Objekten unterschiedlicher Herkunft. Abbildung 6.1 zeigt als Beispiel
eine Szene aus komplexen CAD-Modellen (Power-Plant; einfache Materialien, hohe Komple-
xitdt), modellierten Baumen (organische Struktur, Materialien mit Texturen und Shader) und
einer prozedural generierten Landschaft.

Beim Erstellen der Surfels (Punkte auf der Oberfldche) in der Vorverarbeitung, wird ange-
strebt, dass jeder Punkt einen moglichst gro3en Teil der Oberflache abdeckt, wobei der durch
einen Punkt abgedeckte Bereich mit der Position des Punktes in der sortierten Folge (und damit
seine Relevanz) abnimmt. Anders ausgedriickt soll die kiirzeste Distanz zwischen zwei Punkten
maximiert werden (angestrebte Blue-Noise-Eigenschaft), wobei der erwartete minimale Ab-
stand mit der Linge des betrachteten Préfix abnimmt. Abbildung 6.2 zeigt beispielhaft Prifixe
unterschiedlicher Linge zum Power-Plant-Modell. Das zugrundeliegende Sampling-Verfahren
orientiert sich dabei an dem Sampling-Verfahren, dass auch fiir die Verteilung der Messpunkte
fiir die globale Approximation der Szeneneigenschaften verwendet wird (siehe Abschnitt 5.4).

In Abschnitt 6.1 beschreibe ich die Berechnung der Punkte und ihre Einbettung in den
Szenengraph. In Abschnitt 6.2 beschreibe ich das Renderingverfahren unter Verwendung der
Punkte. Eine Evaluierung des Verfahrens in Hinblick auf Laufzeit und Bildqualitit erfolgt
spéter im Rahmen der Anwendung von genéherten positionsabhiingigen Szeneneigenschaften
in Abschnitt 7.2.

20 Surfels 80 Surfels 1.2k Surfels

Original

20k Surfels 12.7M Polygons

Abbildung 6.2: Unterschiedliche Prifixe aus einer Folge von Surfels fiir das Power-Plant-
Modell. Im vorletzten Bild wird die Grof3e der Surfels individuell im Shader
angepasst. Das letzte Bild zeigt das Original.

6.1 Vorverarbeitung: Berechnung der Surfels

Das Ziel der Vorverarbeitung des Verfahrens ist es, fiir komplexe Teilbiume eines Szenen-
graphen jeweils eine Surfel-Reprisentation zu berechnen und diese mit dem jeweiligen Teil-
baumwurzelknoten zu assoziieren. Die Eingabe ist der Szenengraph in einer geeigneten,

56

6.1 Vorverarbeitung: Berechnung der Surfels

rdumlich lokalen Struktur (beispielsweise auf Basis eines Octrees) und ein Satz an Parametern
(eine Zusammenfassung aller Parameter folgt in Abschnitt 6.3). Im Folgenden beschreibe
ich zunéchst, wie eine einzelne Surfel-Reprisentation fiir einen Teilbaum berechnet wird. Im
Anschluss beschreibe ich dann, wie die Surfel-Repréisentationen fiir eine komplette Szene
generiert werden.

6.1.1 Berechnung einer Surfel-Reprasentation

Das Ziel dieses Schrittes ist die Berechnung einer Surfel-Reprisentation fiir einen Teilbaum;
d. h. eine Folge von 3-D-Punkten, von denen jeder Prifix eine Approximation der von au3en
sichtbaren Geometrie des Teilbaums darstellt. Ein einzelner Punkt besteht aus einer 3-D-
Position, eines 3-D-Normalenvektors, einer oder mehrerer Farbwerte (unbeleuchtet) und einem
Wert fiir die relative Groe des Punktes.

Erstellung einer initialen Menge moglicher Surfels

Der Algorithmus zur Erstellung der Surfel-Folge beginnt mit der Ermittlung einer initialen
Menge von moglichen Surfeln. Hierzu wird der Teilbaum aus mehreren Richtungen in einer
orthografischen Projektion gerendert. Dabei werden gleichzeitig in drei Texturen jeweils die
3-D-Positionen, die 3-D-Normalenvektoren, sowie die Farbe der Oberflichen der Geometrie
geschrieben. Die Auflosung beim Rendering ist ein Parameter des Verfahrens. AuBler der
Beleuchtung werden fiir diesen Rendervorgang alle Oberflicheneigenschaften der Geometrie,
wie etwa Materialeigenschaften, Texturemapping oder Normalmapping, verwendet. Die Bilder
der unterschiedlichen Richtungen werden nebeneinander in dieselben Texturen gerendert (Ab-
bildung 6.3 zeigt ein Beispiel hierfiir). Als Richtungen haben sich die acht Richtungen von den
Eckpunkten eines den Teilbaum umschlieBenden Wiirfels in Richtung des Wiirfelmittelpunktes
bewidhrt. Weniger Richtungen, beispielsweise entsprechend der sechs Seiten eines Wiirfels,
fithren auch bei einfachen Objekten schon zu Lochern in der Surfel-Représentation; mehr Rich-
tungen reduzieren zwar Fehler bei Objekten mit tiefen Einkerbungen abseits der untersuchten
Richtungen, erzeugen jedoch in der Praxis meist unnotigen Mehraufwand.

Im néchsten Schritt wird fiir jeden belegten Pixel ein Datensatz mit entsprechender Position,
Normale und Farbe erstellt. Diese Datensitze bilden die initiale Menge der moglichen Surfels.
Zusitzlich wird fiir die Surfel-Représentation des Teilbaums noch das Verhiltnis zwischen
der Anzahl der belegten Pixel in den Texturen zur Gesamtauflosung der Texturen ermittelt
(im Folgenden relative Abdeckung genannt). Dieser Wert wird beim Rendering als Heuristik
dafiir verwendet, wie sich die projizierte Fliche des Teilbaums relativ zur projizierten Fliche
der Bounding-Box des Teilbaums verhilt. Hierbei handelt es sich zwar nur um einen Wert
fir alle Richtungen, er erlaubt jedoch eine sehr einfache und automatische Einbeziehung
unterschiedlicher Objektformen auch bei heterogenen Szenen; ein Wiirfel bedeckt einen grofen
Teil seiner projizierten Bounding-Box, ein Baum mit diinnen Asten ggf. nur einen kleinen
Bruchteil. Das hier als Beispiel verwendete Power-Plant-Modell hat beispielsweise eine relative
Abdeckung von 0.196.

57

6 Approximatives Rendering mit Progressive-Blue-Surfels

Abbildung 6.3: Beispiel fiir die Texturen, aus denen die Menge moglicher Surfels erzeugt wird.
Oben: Farben; Mitte: Normalen in Weltkoordinaten; Unten: Positionen in
Weltkoordinaten.

Progressives Sampling

Aus der im vorherigen Schritt erzeugten initialen Surfel-Menge wird im Anschluss durch
einen Zufallsprozess eine Teilfolge ausgewihlt. Das hierbei eingesetzte Sampling-Verfahren
entspricht von der grundsétzlichen Idee dem Verfahren zur Bestimmung der Positionen bei der
Approximation globaler Szeneneigenschaften (siehe Abschnitt 5.4.2) — mit dem wesentlichen
Unterschied, dass die zu wéhlenden Positionen nicht frei aus einem 3-D-Volumen gewihlt
werden konnen, sondern aus einer gegebenen Menge von Punkten ausgewihlt werden miissen.

Der Prozess beginnt mit der Wahl eines beliebigen zufilligen Punktes aus der initialen
Menge der moglichen Surfels. Der Punkt wird in die Folge der Surfels eingefiigt und aus der
Menge der moglichen Surfels entfernt. Bis die Folge der Surfels die gewiinschte Anzahl an
Surfeln (ein Parameter des Algorithmus) erreicht hat oder die Menge der moglichen Surfels
leer ist, wird iterativ ein neuer Surfel gewihlt, dessen Position moglichst weit von allen vorher
gewihlten Surfeln entfernt liegt. Um eine fiir die Praxis anwendbare Laufzeit des Algorithmus
zu erreichen, wird nicht der insgesamt am weitesten entfernte Surfel gesucht, sondern es wird
eine zufillige Teilmenge aus der Menge der moglichen Surfel ausgewihlt. Hieraus wird der
beste Kandidat (mit dem groBten Abstand zu allen bisher gewihlten Surfels) in die Folge der
Surfel iibernommen und aus der Menge der moglichen Surfel entfernt. Die zufillige Stichprobe
wird in den ersten Runden fiir die Auswahl jedes Surfels neu gezogen. Um die Laufzeit weiter
zu senken wird eine Heuristik angewendet: Nach jeweils 500 Runden wird die Anzahl der
Runden, fiir die eine Stichprobe verwendet wird, um eins erhoht — bis irgendwann die Hilfte
der Surfels aus einer Stichprobe in die Folge iibernommen wird. Dies folgt der Uberlegung,
dass die Rolle eines einzelnen Surfels fiir die Qualitit der Ndherung mit der Linge des Prifixes
sinkt, so dass die Gesamtqualitit der erzeugten Folge nicht zu stark beeinflusst wird. Als
Startgrofle fiir die Stichprobe haben sich in der Praxis Werte in der Groenordnung von 100 bis

58

6.1 Vorverarbeitung: Berechnung der Surtels

200 Punkten bewihrt; als Standardwert wurden 160 Punkte gewihlt.

Bestimmung der relativen PunktgroBen

Wihrend des Renderings konnen die dargestellten Punkte eine unterschiedliche GroBe anneh-
men. Dies wird durch ihre Ausrichtung zur Kamera bestimmt, aber auch von der individuellen
relativen Punktgrofse der Punkte. Diese dient als Mal3 dafiir, wie grof} die dargestellte Flidche
eines Punktes relativ zur projizierten Flache des Teilbaums ist, um die Kontur des angenéherten
Teilbaums moglichst gut zu erhalten. Liegt ein Surfel mittig auf einer groBeren Fliche (im
Power-Plant beispielsweise auf dem Hauptgebiude), sollte der Wert grof3 sein, um einen grof3en
Bereich abzudecken. Liegt ein Surfel auf einer filigraneren Struktur (im Power-Plant beispiels-
weise auf dem Kran), sollte der Wert klein sein um die Struktur auch aus der Entfernung
moglichst wenig zu dndern.

Um diesen Wert zu schitzen, wird abschlieend folgende Heuristik fiir jeden Surfel ange-
wendet: Die relative Punktgrofle eines Surfels entspricht der durchschnittlichen Summe der
Cosinus-Werte der Winkel zwischen dem Normalenvektor des Surfels und den Normalenvekto-
ren seiner ndchsten Nachbarn. Als Anzahl von betrachteten Nachbarn hat sich in der Praxis 20
als guter Wert herausgestellt.

Die Vorteile der Heuristik sind, dass sie sehr einfach und schnell zu berechnen ist, jedoch vor
allem, dass sie ohne zusitzliche Annahmen iiber die geometrische Struktur des approximierten
Objektes relativ robust funktioniert. Abbildung 6.4 zeigt das Ergebnis der Heuristik durch eine
farbliche Kodierung der Punktgrofen.

Abbildung 6.4: Visualisierung der relativen Punktgrof3en fiir unterschiedliche Modelle.
Verlauf: kleine relative PunktgroBe (rot), mittlere relative Punktgrofe (griin),
grof3e relative PunktgréBe (blau)

6.1.2 Hierarchische Berechnung der Surfel-Reprasentationen

Das Ziel bei der Berechnung der Surfel-Représentationen fiir eine komplette Szene ist, dass
moglichst nur fiir die Knoten im Szenengraph Surfels berechnet werden, fiir die durch die
Verwendung der Surfels beim Rendering ein Geschwindigkeitsvorteil erreicht werden kann.

59

6 Approximatives Rendering mit Progressive-Blue-Surfels

Dazu wird der Szenengraph traversiert und eine Approximation fiir diejenigen Knoten erzeugt,
in dessen Teilbaum die Menge an Geometrie einen bestimmten Wert iibersteigt. Der Wert ist
ein Parameter des Verfahrens und sollte sich in der gleichen Groflenordnung bewegen, wie die
Anzahl der Surfels, die fiir einen Knoten berechnet werden.

Fiir instanziierte Teilbdume — d. h. fiir Teilbdume, die auch an anderer Position in der Szene,
jedoch mit der gleichen Geometrie, vorhanden sind — brauchen Surfels nur einmal berechnet zu
werden. Das eine Approximation an verschiedenen Positionen (und Ausrichtungen) benutzt
werden kann, wird dadurch ermdglicht, dass die Lichtberechnung erst zur Laufzeit durchgefiihrt
wird, und nicht bereits in die Surfels kodiert wird.

Dynamische Objekte miissen gesondert behandelt werden. Bewegt sich ein Objekt als
Ganzes, ohne sich zu verformen, kann fiir die Darstellung auch eine Surfel-Reprisentation
verwendet werden, falls fiir die Elternknoten bis zum Szenenwurzelknoten keine Surfels
dargestellt werden. Verformbar dynamische Objekte lassen sich nicht ohne Weiteres mit Surfels
darstellen.

6.1.3 Speicherplatzbedarf

Die Daten fiir einen einzelnen Surfel setzten sich im Standardfall aus einer 3-D-Position, einer
3-D-Normalen, eines RGB-Farbwertes und einem Wert fiir die relative Punktgroe zusammen.
Die Position wird als drei FlieBkommawerte mit je 4 Byte gespeichert, die Normale durch
4 Byte (es sind prinzipiell nur 3 Byte notwendig, aus technischen Griinden muss jedoch beim
Rendering ein 4 Byte Alignment verwendet werden) und die Farbe mit der relativen Punktgrof3e
zusammen mit weiteren 4 Byte; insgesamt also 20 Byte pro Surfel. Fiir eine Surfel-Niherung
eines Teilbaums werden zusétzlich noch einige Metainformationen benétigt: fiir das Speichern
in einer Datei werden in der hier verwendeten Implementierung 92 Byte Speicherplatz benotigt;
wihrend des Renderings im Hauptspeichers liegt der zusitzliche Speicherbedarf in einer
dhnlichen GroBenordnung. Fiir eine Nidherung mit 40000 Surfels werden so ca. 800 kByte
benotigt.

6.2 Rendering: Darstellung mit Hilfe von Surfels

Das Ziel bei der Darstellung der Szene mittels Surfels ist das Erreichen einer hohen Bildrate
bei gleichzeitig guter Bildqualitit. Ein weiteres Ziel ist, dass die bei vielen hierarchischen
Niherungsverfahren auftretenden Artefakte beim Umschalten der Ndherungen moglichst gering
ausfallen (sogenannte Popping-Artefakte).

Fiir das Rendering eines Frames muss fiir jeden Knoten des Szenengraphen im Frustum ent-
schieden werden, ob seine Originalgeometrie dargestellt wird, ob seine Surfel-Reprisentation
dargestellt wird oder ob der Knoten ausgelassen wird. Fiir jede dargestellte Surfel-Reprisentation
muss die Grofle und die Anzahl der dargestellten Punkte festgelegt werden. Um dies zu errei-
chen werden beginnend mit dem Wurzelknoten folgende Schritte durchgefiihrt:

e Liegt der Knoten auflerhalb des Frustums, wird er nicht weiter behandelt.

60

6.2 Rendering: Darstellung mit Hilfe von Surfels

e Ist die projizierte Groe der Bounding-Box des Knotens groBer als die maximale proji-
zierte Grofse oder enthilt der Knoten keine Surfels, dann wird fiir einen inneren Knoten
der Algorithmus fiir die Kinder ausgefiihrt oder fiir einen Blattknoten die enthaltene
Geometrie gerendert.

e Istdie projizierte GroBe der Bounding-Box des Knotens kleiner oder gleich der minimalen
projizierte Grofie und enthilt der Knoten Surfels, dann wird ein Préfix der Surfels des
Knoten gerendert und die Traversierung fiir den Teilbaum des Knotens abgebrochen.
Die Linge des Prifixes wird bestimmt durch das Produkt aus der projizierten Grof3e der
Bounding-Box des Knotens, der relativen Abdeckung des Knotens (siehe Abschnitt 6.1.1)
und einem einstellbaren Uberzeichnungsfaktor. Ubersteigt der Wert die Anzahl der
verfiigbaren Surfel wird die gesamte Surfel-Folge dargestellt. In diesem Fall wird die
vorgegebene Punktgriffe der Sampling-Punkte zusétzlich im Verhiltnis der projizierten
Flache zur Anzahl dargestellter Surfels vergrofert, um das Entstehen von Lochern in der
Oberfldache zu reduzieren.

e Liegt die projizierte Grof3e der Bounding-Box des Knotens zwischen der minimalen
projizierten Grofle und maximalen projizierten Grofse und enthilt der Knoten Surfels,
wird sowohl ein Prifix der Surfel gerendert, als auch die Kinder des Knotens weiter
traversiert (bzw. die enthaltene Geometrie gerendert). Sowohl die Lénge des Prifixes als
auch die vorgegebene Punktgrofie werden linear zwischen Null und den Werten im Falle
der minimalen Grofe interpoliert (minimale Werte bei maximaler projizierter Grof3e,
grofite Werte bei minimaler projizierter Grofle). Durch diesen Schritt wird ein optisch
weicher Ubergang zwischen der Verwendung der Niherungen auf unterschiedlichen
Ebenen im Baum erreicht und Popping-Artefakte bei der Navigation durch die Szene
reduziert.

6.2.1 Rendern eines Surfel-Prafixes

Die Darstellung eines Surfel-Préfixes geschieht technisch durch das Rendering einer Folge von
Punktprimitiven unter Verwendung eines Shaders. Die Punktprimitive sind in einem fortlau-
fenden Speicherbereich als Vertex-Daten abgelegt; vorzugsweise im Speicher der Grafikkarte.
Der Shader zur Darstellung arbeitet wie ein Standard-Shader zur Darstellung von Punktwolken
(z. B. mit Phong-Shading), wobei die Oberflicheneigenschaften in den Vertex-Daten der Punkte
kodiert sind. Eine zusitzliche Berechnung besteht darin, dass fiir jeden Punkt individuell die
PunktgroBe eingestellt wird. Dazu wird die vorgegebene Punktgrofie (vorgegeben durch das
Traversierungsverfahren) gewichtet mit der relative Punktgroe (siehe Abschnitt6.1.1) und
dem Cosinus des Winkels zwischen der Oberflachennormale des Punktes und der Sichtrichtung.
Dadurch werden der Kamera abgewandte Punkte ausgeblendet. Punkte, die auf einer zur
Kamera steilen Oberfliche liegen oder eine kleine relative Punktgrof3e besitzen, werden als
einzelne Pixel dargestellt. Punkte auf der Kamera im flachen Winkel zugewandten Oberflachen
mit einer grofleren relativen PunktgroBe werden als groere Fldchen dargestellt. Diese Fldchen
sind im Normalfall kreisférmig oder quadratisch, in Abhéngigkeit von den verwendeten Rende-
ringparametern. In Abbildung 6.5 wird die Auswirkung des Shaders auf die Bildqualitit an

61

6 Approximatives Rendering mit Progressive-Blue-Surfels

einem Beispiel verdeutlicht. Durch die individuelle Anpassung der Punktgrof3en bleiben mehr
Details erkennbar und auch die Kontur bleibt besser erhalten; insgesamt wirkt die Ndherung
jedoch noch immer etwas volumindser als die Originalgeometrie.

40k Surfels 40k Surfels + B Original
Shader 12.7M Polygons

Abbildung 6.5: Auswirkungen der individuellen Punktgroen auf die Bildqualitdt am Beispiel;
Vergroerung ohne Multisampling.

6.3 Uberblick liber die Parameter des Verfahrens

Die folgende Aufzihlung fasst alle Parameter des Verfahrens zusammen und gibt Hinweise fiir
sinnvolle Standardwerte:

Vorverarbeitung

e Die Auflosung beim Rendern der Texturen bestimmt die GroBe der initialen Surfel-Menge.
Dies hat Einfluss auf die Laufzeit der Vorverarbeitung und Qualitét der gewihlten Surfel-
Folge. Die gewihlte Auflosung sollte deutlich groBer sein, als die maximale projizierte
Grof3e wihrend des Renderings.

Standardwert: 10242 Pixel

e Die Anzahl der Surfel dient als Abbruchkriterium fiir den Sampling-Prozess. Der Wert be-
einflusst die Laufzeit der Vorverarbeitung, den Speicherbedarf der Surfel-Reprisentationen
und die maximale GroBe, fiir die eine Surfel-Reprisentation mit guter Bildqualitit ver-
wendet werden kann.

Standardwertebereich: 40000 bis 80000 Surfel

e Die Startgrofle der Stichprobe bestimmt, wie grofl die gezogene Stichprobe aus der
initialen Surfel-Menge in der ersten Runde ist. Der Wert beeinflusst zum einen die
Qualitit der Sampling-Verteilung, zum anderen die Laufzeit des Samplings. Hohe Werte
sorgen potentiell fiir eine hohere Qualitit, aber auch fiir eine hohere Laufzeit.
Standardwert: 160

62

6.4 Experimentelle Bewertung der Sampling- Verteilung

Rendering

e Die minimale projizierte Grofle bestimmt, ob ein Knoten entweder angenédhert wird oder
weiter traversiert (bzw. gerendert) wird. Bei zu kleinen Werten wird zu viel Geometrie
dargestellt (hohe Renderingzeit), bei zu groBen Werten sinkt die Bildqualitit.
Standardwert: 1002 Pixel

e Die maximale projizierte Grofse bestimmt relativ zur minimalen projizierten Grofe die
Linge der Ubergangsphase, fiir die eine Surfel-Reprisentation zusitzlich dargestellt
wird. Bei einem zu kleinen Wert wird der Wechsel der Darstellung zwischen zwei
Ebenen im Szenengraph bei Bewegung deutlicher sichtbar, bei zu groen Werten werden
uiberfliissige Punkte dargestellt; ggf. sinkt die Bildqualitét etwas.

Standardwert: 2002 Pixel

o Der Uberzeichnungsfaktor beeinflusst die Anzahl der gerenderten Punkte in Abhingigkeit
der projizierten GroBe und dient zum Ausgleich der Ungenauigkeit der geschitzten
relativen Abdeckung. Ein zu grofler Wert fiihrt zu unnotig gerenderten Punkten (hohe
Renderingzeit), ein zu kleiner Wert fiithrt zu Lochern in der Darstellung.

Standardwert: 4

e Die vorgegebene Punktgrofse beeinflusst die Groe der gerenderten Punkte. Ein zu
kleiner Wert fiihrt zu Lochern in der Darstellung bei Surfel-Reprisentationen mit groBer
projizierter GroBe. Ein zu groBer Wert fiithrt zum ,,Ausfransen der Silhouette der
dargestellten Geometrie.

Standardwert: 7

6.4 Experimentelle Bewertung der
Sampling-Verteilung

Im Folgenden werden verschiedene Eigenschaften der Sampling-Verteilung untersucht. Ein
wichtiges MaB ist dabei der minimale relative Punktabstand. Der minimale Punktabstand
gibt fiir einen Punkt die minimale euklidische Distanz zu seinem nédchsten Nachbarn an. Der
minimale relative Punktabstand ist normiert mit der Liange der Diagonalen der Bounding-Box
des untersuchten Objektes. Durch das Ziel der gleichmifBigen Verteilung der Punkte auf
der Oberflache ist die Verteilung der minimalen Punktabstinde ein MaB fiir die Qualitét der
Verteilung.

6.4.1 Stabilitat des Zufallsprozesses

Da es sich bei dem Sampling-Prozess um einen Zufallsprozess handelt, soll zunéchst die
Stabilitdt des Prozesses betrachtet werden. Dazu wurden 100-mal Surfels fiir das Power-Plant-
Modell berechnet und die Verteilung der kleinsten, mittleren und groBten, minimalen Absténde
fiir unterschiedlich lange Prifixe berechnet (siehe Abbildung 6.6).

63

6 Approximatives Rendering mit Progressive-Blue-Surfels

E groRter minimaler Abstand

E mittlerer minimaler Abstand
0.06 - i

0.03 - 1 — i :

— | = == ==

—_——

o

o

©
1

kleinster minimaler Abstand

minimale relativer Punktabstand

.

[

0.00 -

1 1 1 1 1 1 1 1 1
128 256 512 1024 2048 4096 8192 16384 32768
Lange des Préafixes

Abbildung 6.6: Verteilung der kleinsten, mittleren und gro3ten minimalen Punktabstinde in
100 Durchldufen im Verhiltnis zur Prifixldnge; Power-Plant-Modell

Es zeigt sich, dass sich die mittleren minimalen Abstédnde sehr stabil verhalten. Bei kurzen
Prifixen variieren die grofften minimalen Abstinde relativ stark; ab einer Lidnge von 1024
ndhern sich die Werte jedoch deutlich an. Die kleinsten minimalen Abstidnde zeigen im
Bereich von 512 und 1024 einige Ausreif3er, stabilisieren sich jedoch bei ldngeren Prifixen bei
Null. Aufgrund der insgesamt geringen Fluktuation gehe ich im Weiteren davon aus, dass auch
einzelne Surfel-Verteilungen eines Modells als Reprédsentanten des Prozesses in der Evaluierung
verwendet werden konnen, insbesondere fiir langere Prifixe.

6.4.2 Einfluss des gendherten Objektes

Eine wesentliche Eigenschaft des Progressive-Blue-Surfel-Verfahrens ist seine Robustheit
gegeniiber der geometrischen Struktur der geniherten Objekte. Zur experimentellen Unterstiit-
zung dieser Behauptung wurden fiir unterschiedliche Modelle (Drache, Power-Plant und ein
Wiirfel; siehe auch Abbildung 6.4) Surfels erstellt und die Verteilung der minimalen Absténde
betrachtet (siehe Abbildung 6.7). Als Referenz wurde fiir das Wiirfelmodell eine weitere
Messreihe erhoben, bei der die Punkte nicht iiber das Progressive-Blue-Surfels-Verfahren
ermittelt wurden, sondern zufillig gleichverteilt aus der Menge der initialen Surfels.

Aus den Messungen ist zu erkennen, dass sich sich die Verteilung der minimalen Abstinde
fiir die drei untersuchten Modelle dhnlich verhilt: Die minimalen Abstinde der Punkte konzen-
trieren sich relativ stark um den Median, es gibt jedoch einige Ausreifler, an denen einzelne
Surfels deutlich dichter aneinander liegen. Insgesamt nehmen die minimalen Abstinde mit der
Linge des Prifixes ab. Damit zeigen die Verteilungen bei allen Modellen insgesamt das fiir die
Progressive-Blue-Surfels gewiinschte Verhalten.

Es zeigt sich jedoch auch, dass fiir das Wiirfelmodell die Punkte einen grofleren minimalen

64

6.4 Experimentelle Bewertung der Sampling- Verteilung

Modell

Drache
PowerPlant
Wiirfel
Wiirfel(gleichverteilt)
0.04 -
0.02 -
0.00 - ‘ | 1 ié 1

1 1 1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 6000 8000 10000 12000 14000 16000 20000
Lange des Prafixes

o©

o

&
1

minimaler relativer Punktabstand

Abbildung 6.7: Verteilung der minimalen Punktabstéinde fiir unterschiedliche Modelle (Wiirfel,
Drache und Power-Plant) im Verhéltnis zur Prifixlidnge; fiir Wiirfel (gleichver-
teilt) wurden die Punkte zufillig gleichverteilt gezogen

relativen Abstand aufweisen, als bei den anderen, deutlich komplexer geformten Modellen. Bei
dem strukturell am komplexesten aufgebauten Modell, dem Power-Plant, sind die minimalen
relativen Abstinde am kleinsten. Im Vergleich zu der Verteilung der minimalen relativen
Abstinde mit zufillig gleichverteilt gezogenen Samples zeigt sich, dass die Qualitéit der
Verteilung mit dem Progressive-Blue-Surfels-Sampling bei allen Modellen deutlich besser ist.

Auch wenn es leichte Unterschiede in der erzielten Qualitit der Verteilung bei unterschiedli-
chen Modellen gibt, zeigt der Algorithmus bei allen untersuchten Modellen das gewiinschte
Verhalten.

6.4.3 Sampling-Qualitat und Laufzeit

Um fiir das vorgestellten Sampling-Verfahrens eine moglichst schnelle Laufzeit bei der Vor-
verarbeitung zu erreichen, wird nur eine relativ kleine Stichprobengrofe verwendet und die
Genauigkeit des Sampling-Auswahlprozesses wird im Laufe der Runden durch die eingesetzte
Heuristik weiter reduziert (siehe Abschnitt 6.1.1). Im Folgenden wird untersucht, wie sich dies
auf die Qualitit der Verteilung auswirkt.

In den Messungen wird das Sampling mit unterschiedlichen Startwerten fiir die Stichpro-
bengrofBe durchgefiihrt und als Variante in der in jeder Runde eine neue Stichprobe ohne die
Heuristik mit konstanter Grofle gezogen wird. Als Referenz wird wieder das Sampling mit
zufilliger gleichverteilter Wahl der Sampling-Punkte verwendet.

Die Messungen zeigen, dass alle untersuchten Varianten im Vergleich zum zufillig gleich-
verteilten Sampling dhnliche Verteilungen aufweisen (siche Abbildung 6.8). Bei einer kurzen
Prifixldnge bis 1024 zeigt das Sampling mit konstant 1000 Samples, gefolgt vom Sampling mit

65

6 Approximatives Rendering mit Progressive-Blue-Surfels

0.08 - Modell

initiale Stichprobengré3e 1000

initiale Stichprobengré3e 160 (standard)
konstante Stichprobengréf3e 1000

°
C
% 0.06 - konstante StichprobengroRRe 160
% zuféllig gleichverteilt
v
c
>
o
L0.04-
kS
9 z
5]
T 3
=
c 0.02 -
£ b

0.00 - : hadls

1 1 1 1 1 1 1
512 1024 2048 4096 8192 16384 32768

Lange des Préfixes

Abbildung 6.8: Verteilung der minimalen Punktabstinde fiir unterschiedliche Sampling-
Varianten im Verhiltnis zur Prifixlinge; Power-Plant Modell

initial 1000 Samples, die hochste Qualitit (groBere minimale Abstinde). Mit steigender Prifix-
lange sorgt die Heuristik dafiir, dass die Qualitéit der neu gezogenen Samples kontinuierlich
leicht abnimmit, so dass ab der Messung fiir Préfixlinge 2048 die Qualitit bei Verwendung der
Heuristik unter der der konstanten Stichprobengrof3e liegt. Die Standardvariante mit initialer
StichprobengroBe 160 liegt in der Qualitdt noch einmal knapp unter der Variante mit initialer
StichprobengroB3e von 1000. Abbildung 6.9 zeigt anhand eines Beispiels die Auswirkungen der
unterschiedlichen Varianten auf die visuelle Qualitdt (mit fester Punktgrof3e in einer starken
VergroBerung).

Der Qualititsunterschied ist vor allem zwischen der Variante mit zufillig gleichverteiltem
Sampling und dem Progressive-Blue-Noise-Sampling deutlich: Es fehlen Details (z. B. am
Kran), die Darstellung zeigt mehr Locher und die Kontur ist stirker ausgefranst. Zwischen den
tibrigen Varianten lisst sich noch ein leichter Qualitéitsunterschied in den Details zwischen der
Standardvariante mit initialer Stichprobengréf3e von 160 und den anderen Varianten ausmachen.
Der Unterschied zwischen den anderen Varianten liegt in einem @hnlichen Bereich, wie der
Unterschied, der sich auch durch den Zufallsprozess bei mehreren Durchldufen mit den gleichen
Parametern ergibt.

In Tabelle 6.1 sind die Laufzeiten der unterschiedlichen Schritte des Algorithmus zur Erstel-
lung einer Surfel-Représentation mit 40000 Surfels in den untersuchten Varianten aufgefiihrt.
(Die verwendete Hardware wird in Abschnitt 3.4 beschrieben.) Das zufillig gleichverteilte
Sampling ist mit 25 ms mit Abstand das schnellste untersuchte Sampling-Verfahren, liefert

66

6.4 Experimentelle Bewertung der Sampling- Verteilung

+ 160 Samples 1000 Samples Original
i. f |
1

1000 Samples

400 Surfels, Punktgré3e 2, ohne Multisampling, ohne Shader
zufallig 160 Samples + 1000 Samples

gleichverteilt Heyristik H{/ristik

40k Surfels, PunktgroRe 3, ohne Multisampling, ohne Shader

zufallig 160 Samples + 1000 Samples +
§ gleichverteilt Heuristik Heuristik

Abbildung 6.9: VergroBerte Darstellung unterschiedlicher Sampling-Varianten

I 37 px

Original

i 160 Samples

Erstellen der Texturen (8-mal Rendern der Szene) 270 ms
Transfer der Texturen in Hauptspeicher 111 ms
Erzeugung der initialen Surfel-Menge (1.3 M Eintrége) 18 ms
Sampling-Variante: zufillig gleichverteilt 25 ms
Sampling-Variante: Initiale Stichprobengrofe 160 (Standard) 520 ms
Sampling-Variante: Initiale Stichprobengrée 1000 1740 ms
Sampling-Variante: Konstante Stichprobengrofe 160 13000 ms
Sampling-Variante: Konstante Stichprobengrée 1000 81000 ms
Bestimmen der relativen Punktgrofen 456 ms
Gesamtdauer mit Standardparametern 1375 ms

Tabelle 6.1: Laufzeiten zur Berechnung einer Surfel-Reprisentation des Power-Plant-Modells
mit 40k Surfeln

67

6 Approximatives Rendering mit Progressive-Blue-Surfels

jedoch auch eine erkennbar schlechtere Ndherung. Die Standardparameter, mit einer initialen
Stichprobengrofle von 160, liefern sowohl in der statistischen Analyse der Verteilung, als auch
beim optischen Vergleich nur minimal schlechtere Ergebnisse als die anderen Varianten, ist
jedoch mit 520 ms deutlich schneller als die iibrigen Varianten mit bis zu 81 Sekunden Laufzeit.
Die Standardvariante eignet sich daher auch fiir grole Szenen, fiir die mit iiberschaubaren
Zeitaufwand eine grole Anzahl von Niherungen mit gleichzeitig guter Qualitit berechnet
werden kann.

6.5 Anwendungen und Erweiterungen

Das Progressive-Blue-Surfel-Verfahren bot die Grundlage fiir einige weiterfithrende Arbeiten,
die ich im Folgenden kurz zusammenfasse:

Projektgruppe: Algorithms for 3D Rendering using Cloud Computing (2012-
2013) In der Projektgruppe wurde von den Teilnehmern das vorgestellte Surfel-Verfahren als
Basis fiir ein Out-of-Core-Renderingsystem fiir mobile Endgerite (Smartphones und Tablets
mit Android-Betriebssystem) umgesetzt (siche Abbildung 6.10). Bei dem System muss die
virtuelle Szene nicht direkt auf den Endgeriten gespeichert werden, sondern sie kann kontinu-
ierlich von einer Serverinstanz verteilt werden. Dabei wird ausgenutzt, dass auch schon ein
kurzes Prifix das darzustellende Objekt vollstindig repréasentiert. Auch wenn nur ein kleiner
Teil seiner Gesamtdaten iibertragen wurde, kann das Objekt bereits in reduzierter Qualitét
dargestellt werden. Die Lange der dargestellten Prifixe richtet sich daher nicht nur nach der
projizierten GroBe, sondern damit auch nach der Menge an verfiigbaren Daten.

Die prinzipielle Funktion des Konzeptes konnte von der Projektgruppe gezeigt werden. Bei
der Evaluierung stellten sich im Wesentlichen folgenden limitierenden Faktoren heraus:

e Die verwendete Hardware muss geniigend Punktprimitive in Echtzeit darstellen kdnnen,
um grof3e Teile des Bildschirms mit Ndherungen bedecken zu konnen. Praktisch ist die
Darstellung mehrerer Millionen Punkte pro Sekunde notwendig, um eine ausreichende
Bildrate und Bildqualitiét zu erreichen.

e Im Nahbereich wird fiir die Darstellung fiir Objekte mit einer gro3en projizierten Grofe
in akzeptabler Qualitit eine grole Menge an Punkten oder die Originalgeometrie bendtigt.
Dies stellt in dem Szenario eine grof3e Herausforderung dar: Durch das freie Bewegen
durch die Szene existieren fast immer dem Betrachter nahe Objekte, mit einer groflen
projizierten Grofle, wobei gleichzeitig die Menge der darstellbaren Geometrie (Origi-
nale und Niherung) durch die relativ schwache Hardware und den limitierten Speicher
begrenzt wird.

Auch wenn der Ansatz fiir aktuelle Standardgerite noch nicht vollstindig einsatzfihig scheint,
bietet er bei steigender Rechenleistung und Speicherkapazitit in Zukunft Potential, auch
komplexere Szenen auf Mobilgeriten darzustellen, ohne dass die gesamte Szene zur Verfiigung
stehen muss.

68

6.5 Anwendungen und Erweiterungen

0,074,028 polygons 0,146,249 points

Rotate —

Abbildung 6.10: Punktndhrungen auf einem Android Smartphone; Szenel (Quelle: Ab-
schlussdokumentation, Projektgruppe ,,Algorithms for 3D Rendering using
Cloud Computing*, 2013)

Masterarbeit: Approximative Rendering using Sample-Based Occlusion Culling
von Jonas Knoll (2013) In der Masterarbeit untersuchte Jonas Knoll, in wieweit das
Konzept der Progressive-Blue-Surfels so abgewandelt werden kann, dass anstatt Punkten auf
der Oberfldache sichtbare Polygone der Originalgeometrie in einer sortierten Folge verwendet
werden konnen. Dazu werden fiir ein anzunidherndes Objekt zunichst die von auflen sichtbaren
Polygone bestimmt. Diese Polygone werden dann nach einem Qualitédtskriterium sortiert.
In das Qualititskriterium flieBen z. B. Grofle und eine gleichmiBige Verteilung ein, wobei
unterschiedliche Kriterien in der Arbeit untersucht werden. Wird beim Rendering ein Objekt
von auBen dargestellt, kann es durch einen Prifix der sortierten Polygone angenihert werden
(in Abhingigkeit seiner projizierten Grof3e).

Der Vorteil bei der Verwendung von Polygonen anstatt von Punkten ist, dass bei geeigneten
Modellen mit groBen Polygonen weniger Locher in der Darstellung auftreten, wenn die gleiche
Zeit fiir die Darstellung einer Polygonnidherung anstatt einer Punktndherung verwendet wird.
Nachteile des Verfahrens im Vergleich zu den Progressive-Blue-Surfels sind, dass das Verfahren
abhéngig von der polygonalen Struktur des genidherten Modells ist (fiir feiner tesselierte Objekte
funktioniert es weniger gut) und, dass Oberflicheneigenschaften, wie etwa unterschiedliche
Texturen, nur schwer abgebildet werden konnen. Das in der Arbeit entwickelte Verfahren zeigt
darin einige Parallelen zum randomisierten Z-Puffer [WFP01], bei dem optional ebenfalls
grofle Polygone direkt gezeichnet werden und nicht durch Punkte angenihert werden.

Masterarbeit: Ein Out-of-Core-Verfahren zum Rendern von groBen dynamischen
Szenen von Sascha Brandt (2014) In der Masterarbeit von Sascha Brandt wurde das
Progressive-Blue-Surfels-Verfahren als Teil eines Out-of-Core-Renderingsystems fiir sehr grof3e
Szenen eingesetzt. Hierbei besteht die Moglichkeit, nicht nur die Geometrie der Szene nicht im
Hauptspeicher vorzuhalten, sondern auch Teile des Szenengraphen nur bei Bedarf nachzuladen.
Solange ein Teil der Szene weit entfernt ist und er durch eine Surfel-Reprisentation dargestellt
werden kann, wird die Struktur des entsprechenden Teilbaums des Szenengraphen nicht bend-
tigt. Des Weiteren wurde in der Arbeit untersucht, wie sich die notwendigen Neuberechnungen

69

6 Approximatives Rendering mit Progressive-Blue-Surfels

von Surfel-Reprisentationen nach einer Anderung im Szenengraph reduzieren lassen: Wird ein
Objekt in der Szene bewegt, werden im Anschluss nur fiir so viele Hierarchien im Szenengraph
oberhalb des Objektes aktualisiert, bis im erwarteten Fall kein Surfel mehr zu dem modifizierten
Objekt gehort.

Real-Time 3D Rendering of Heterogeneous Scenes In der Arbeit von Petring et
al. [PEJ*13] wurde ein Verfahren vorgestellt, mit dem Bereichen einer Szene automatisch
unterschiedliche Renderingalgorithmen zugewiesen werden konnen. Dabei wird fiir die ak-
tuelle Betrachterposition die Bildqualitidt optimiert, wobei gleichzeitig immer eine minimale
Bildrate erreicht wird. Das Verfahren bewertet automatisch die durch einen bestimmten Rende-
ringalgorithmus erzielte Bildqualitit und Laufzeit fiir Bereiche der Szene und kann so mit fast
beliebigen Renderingalgorithmen verwendet werden. Das Progressive-Blue-Surfels-Verfahren
wurde in einer leicht vereinfachten Variante als ein mogliches Néaherungsverfahren in der
Evaluierung verwendet.

70

7 Anwendungen fur genaherte
Szeneneigenschaften

In diesem Kapitel gebe ich einen Uberblick iiber mdgliche Anwendungen, die sich aus der Be-
stimmung von Szeneneigenschaften ergeben. Die Anwendungen erstrecken sich iiber die Phase
des Algorithmenentwurfs, liber die Offline-Anpassung von Parametern fiir ein spezifisches
Szenario, bis hin zu der Verwendung der geniherten positionsabhéngigen Szeneneigenschaften
zur Verbesserung des Renderings zur Laufzeit. Fiir die Messungen wurde die in Abschnitt 3.4
beschriebenen Hardware verwendet.

7.1 Szeneneigenschaften im Bereich des
Algorithm-Engineering

Unter Algorithm-Engineering versteht man die Entwicklung von Algorithmen, bei der neben
der theoretischen Betrachtung des asymptotischen Verhaltens der entwickelten Algorithmen,
auch das praktische Verhalten der Algorithmen eine wesentliche Rolle spielt. Zu diesem
praktischen Verhalten gehoren, neben realistischen Eingaben, auch die Randbedingungen, die
durch die verwendete Hardware bestimmt werden, bis hin zu Aspekten der Implementierung des
Algorithmus. Demetrescu, Finocchi und Italiano beschreiben dies in ihrem Artikel ,,Algorithm
Egineering “ folgendermalen:

,»Algorithm Engineering is concerned with the design, analysis, implementation,
tuning, debugging and experimental evaluation of computer programs for solving
algorithmic problems. It provides methodologies and tools for developing and
engineering efficient algorithmic codes and aims at integrating and reinforcing
traditional theoretical approaches for the design and analysis of algorithms and
data structures. ““ (aus Demetrescu, Finocchi und Italiano 2003 [DFI03])

Bei der Entwicklung von Computergrafikalgorithmen spielt dieser praktisch orientierte An-
satz eine besondere Rolle. Auch wenn viele der giingigen Renderingalgorithmen beispielsweise
asymptotisch lineare Laufzeit in der Komplexitit der Szene aufweisen, zeigen sie fiir realistische
Eingaben sehr unterschiedliche Bildraten. Um die Effizienz eines Algorithmus — oder zunéchst
einmal seiner Implementierung — wihrend der Entwicklungsphase einzuschitzen und zu bewer-
ten, wird dabei tiblicherweise zunichst eine moglichst anwendungsnahe Testszene ausgewihlt.
Nun werden einige moglichst charakteristische Standpunkte in der Szene, oder auch ein mdg-
lichst charakteristischer Kamerapfad ausgewihlt, der dann als Grundlage fiir die weitere experi-
mentelle Evaluierung dient. Beispiele fiir diese Art der Untersuchung bei Culling-Algorithmen

71

7 Anwendungen fiir gendherte Szeneneigenschatten

finden sich in diversen Arbeiten ([GKM93, ZMHH97, BWPP04, MBWO08, EJF10, SKJF11]).
Da insbesondere bei Culling-Algorithmen die Laufzeit extrem von der Sichtbarkeit am Stand-
punkt des Betrachters in der Szene abhingt, sind alle Ergebnisse, die auf diesen subjektiv
gewihlten Positionen oder Pfaden basieren, in ihrer Aussagekraft deutlich beschrinkt. Bei
unzureichender Dokumentation der gewéhlten Positionen in einer wissenschaftlichen Publika-
tion, konnen diese Messungen sogar lediglich zur beispielhaften Demonstration der Effizienz
eines Algorithmus dienen; von einer systematischen Evaluierung im Sinne des Algorithm-
Engineering kann dann keine Rede mehr sein. Um neben qualitativen Aussagen auch fundierte
quantitative Aussagen treffen zu konnen (wie etwa ,,Der neue Algorithmus A ist bei der gegebe-
nen Szene und Hardware meistens schneller als Algorithmus B.*), muss man die Kamerapfade
sorgsam auswihlen (beispielsweise anhand ausgewerteten Benutzerverhaltens; siehe [YGL97]).
Zumindest muss der Pfad ausreichend gut beschrieben werden, damit er bei der Einschidtzung
der Aussagekraft der Ergebnisse mit einbezogen werden kann.

Algorithm (Realistische | J—
Engineering % ‘Reale | |
Eingabe |
Design - - :g
C g %
' B
Hypothese Experiment 3
' c
l E
—_——T Implementierung) D
Laufzeit- S
_schranken | #
- Algorithmen-
bibliotheken |)

Abbildung 7.1: Uberblick iiber den Prozess des Algorithm-Engineering mit Referenzen (in
rot) auf die Einsatzgebiete der in dieser Arbeit vorgestellten Techniken (basie-
rend auf der Ubersetzung von Abbildung 1 aus ,,Algorithm Engineering — An
Attempt at a Definition* von Sanders [San(09].)

Die in dieser Arbeit vorgestellte Ndherung von positionsabhingigen Szeneneigenschaften
bietet eine Moglichkeit, die gidngigen Techniken mit iiberschaubarem Aufwand sinnvoll zu
ergianzen. Abbildung 7.1 zeigt dabei verschiedene Punkte, an denen die hier vorgestellten
Methoden den Prozess des Algorithm-Engineering bei der Entwicklung von Grafikalgorithmen
unterstiitzen konnen:

1. Eine Hiirde beim Einsatz komplexer Evaluierungsmethoden ist ihre Implementierung.
Die hier vorgestellten Methoden wurden daher speziell mit dem Ziel entwickelt, sich
ohne groflen Aufwand in bestehende Evaluierungsumgebungen integrieren zu lassen.
Sie stehen auBlerdem bereits als Teil von PADrend (siehe Kapitel 3) als Open-Source-
Implementierung frei zur Verfiigung.

72

7.2 Exploration: Auswirkungen der projizierten Grof3e beim Rendering mit
Progressive-Blue-Surfels

2. Bei der Durchfiihrung einer experimentellen Evaluierung bieten die Methoden zur Be-
stimmung einer globalen Nidherung einer Szeneneigenschaft eine Moglichkeit, effizient
umfassende Daten zu sammeln, welche deutlich weniger von subjektiven Entscheidun-
gen abhédngen als bei einem Kamerapfad. Dadurch erhalten die gewonnenen Daten eine
wesentlich groBBere Aussagekraft. Der Algorithmenentwickler wird bei seiner Arbeit da-
durch unterstiitzt, dass die vorgestellten Methoden bei einem breiten Spektrum an Szenen
und Renderingalgorithmen weitestgehend automatisch angewendet werden konnen.

3. Bei der Auswertung bei den experimentellen Untersuchungen konnen die Messdaten
anschaulich visualisiert und einfach statistisch ausgewertet werden. Dadurch lésst sich
das Verhalten des Algorithmus sowie moglicherweise relevante strukturelle Eigenschaf-
ten der Eingabe einfacher nachvollziehen und die Bildung von Riickschliissen fiir den
weiteren Designprozess wird unterstiitzt.

7.2 Exploration: Auswirkungen der projizierten GroBe
beim Rendering mit Progressive-Blue-Surfels

Das in Kapitel 6 vorgestellte Progressive-Blue-Surfels-Verfahren bendétigt wihrend des Rende-
rings mehrere Parameter (siehe Abschnitt 6.3). Im Folgenden soll der Effekt der projizierten
Grofe auf die Renderingzeit und die Bildqualitit mit Hilfe der entsprechenden Szeneneigen-
schaften untersucht werden; d. h. im Rahmen des Algorithm-Engineering soll ein Aspekt des
Verhaltens des Algorithmus anhand eines Beispiels fiir eine realistische Eingabe untersucht
und beschrieben werden.

Als Szene fiir die Evaluierung wird ein Teil einer generierten Landschaft mit einer Reihe an
Biumen und einem mittig platzierten Power-Plant-Modell verwendet (sieche Abbildung 7.2).
Die Szene besteht aus insgesamt 162 Millionen Polygonen in 10264 Einzelobjekten, strukturiert
in einem Loose-Octree. Fiir die Szene wurden fiir alle Teilbdume mit mehr als 2 Millionen
Polygonen je 80000 Surfels erzeugt. Alle sonstigen Parameter entsprechen den Standardwerten.

Abbildung 7.2: Testszene mit 162 Millionen Polygonen und 10264 Objekten; dargestellt mit
Progressive-Blue-Surfels; minimale und maximale projizierte GroBe: [50,100]

73

7 Anwendungen fiir geniherte Szeneneigenschaften

Fiir die Messungen werden als Werte fiir die minimale und maximale projizierte Seitenldnge
(entspricht der Wurzel der projizierten Grofe) die Werte [50, 100], [100, 200] (Standardwert),
[200, 300] und [300, 400] Pixel verwendet. Die untersuchten Szeneneigenschaften sind die Ren-
deringzeit mit dem Surfel-Algorithmus und die Bildqualitit, mit dem hierarchisch angewendeten
SSIM-Verfahren [WBSS04, Bur81]. Die Szeneneigenschaften wurden je mit 1024 Sampeln
fiir einen vertikalen Schnitt durch die Szene genihert, der sowohl den Bereich dicht iiber dem
Boden, den Bereich direkt um das Power-Plant-Modell, als auch einen groB3eren freien Bereich
iber der Szene enthilt.

Renderingzeit

[50, 100] [100, 200] [200, 300]

Bildqualitat

Abbildung 7.3: Visualisierung der Szeneneigenschaften Renderingzeit (oben) und Bildqualitit
(unten) mit unterschiedlichen Werten fiir minimale und maximale projizierte
GroBe (Mitte); Extrem- und Mittelwerte sind angegeben.

Die visuelle Auswertung in Abbildung 7.3 zeigt, dass die Laufzeit erwartungskonform
insgesamt mit der Entfernung zur Szene abnimmt. Zum einen nimmt die Menge der nicht
gendherten Geometrie mit steigender Entfernung ab, bis nur noch Punkte dargestellt werden.
Zum anderen deckt die hier untersuchte Szene bei steigender Distanz einen immer kleiner
werdenden Bereich des Bildschirms ab, so dass auch weniger Punkte dargestellt werden. Be-
sonders hohe Renderingzeiten finden sich dicht an komplexen Bereichen der Szene (hier direkt
am Power-Plant-Modell), wo viele Objekte mit groBer projizierter Groe dargestellt werden
miissen. Durch groflere Werte beim untersuchten Parameter werden auch Objekte mit groBBerer
projizierter GroB3e angenihert, wodurch die Renderingzeit abnimmt. Dies macht sich insbeson-

74

7.2 Exploration: Auswirkungen der projizierten Grof3e beim Rendering mit
Progressive-Blue-Surfels

dere an den Positionen hoher Renderingzeit positiv bemerkbar. Schon bei Parameterwerten
von [100, 200] erreicht im gegebenen Rahmen die maximale Renderingzeit weniger als 45 ms —
also immer mehr als 22 fps (siehe Abbildung 7.4).

Die raumliche Verteilung der Bildqualitét zeigt eine etwas andere Verteilung als die Ren-
deringzeit. Gute Bildqualitit herrscht vor allem nah an der Oberfliche der Objekte der Szene
und oberhalb der Szene mit groBerem Abstand. Die gute Qualitdt nah an den Objekten liegt
darin begriindet, dass grof3e Teile des Bildes durch nicht genidherte Objekte bedeckt sind und
damit keinen Bildfehler erzeugen. Gleichzeitig verdecken sie jedoch auch mogliche Fehler
von dahinter positionierten, gendherten Objekten. In der Visualisierung der Qualitét in Abbil-
dung 7.3 wird dies beispielsweise lokal um den Schornstein des Power-Plant-Modells deutlich.
Mit groBerer Distanz zur Szene steigt die gemessene Bildqualitidt dadurch an, dass die gesamte
Szene projiziert einen immer kleineren Bereich des Bildes ausmacht, wodurch auch ein ggf.
grofler, jedoch rdumlich begrenzter Bildunterschied insgesamt zu hoheren Qualititswerten fiir
das gesamte Bild fiihrt. Wie die Renderingzeit, wird auch die Bildqualitit im Allgemeinen
kleiner, wenn die Werte fiir die minimale und maximale projizierte Grofle erhoht werden (siehe
Abbildung 7.4). Nur an Positionen mit hoher Verdeckung (in den Schluchten am linken Rand
der Szene) und weit iiber der Szene bleibt die Qualitdt anndhernd gleich (siehe Abbildung 7.3).
Abbildung 7.5 zeigt ein Beispiel fiir eine Position mit einem niedrigen Bildqualitdtswert von
0.85, bei der die Szene komplett das Bild bedeckt und fast vollstindig als Ndherung dargestellt
wird.

1.00 -

g 75- 0.95 -
£ =
= o
(0] =
N S
£ S 0.90 -
S @
c
[3)
Y
0.85-
1 1 1 1 I I I I
[50,150] [100,200] [200,300] [300,400] [50,150] [100,200] [200,300] [300,400]
[mln'lmale pro'Jllz'lerte Gr_(_)lLe, [minimale projizierte GroRe,
maximale projizierte Grofe] maximale projizierte Grofe]

Abbildung 7.4: Verteilung der Eigenschaften Renderingzeit und Bildqualitit in der Testszene
fiir unterschiedliche Parameterwerte fiir die minimale und maximale projizierte
Grofle

Fiir die Wahl des Parameters muss man also zwischen Bildqualitit und Renderingzeit abwé-
gen, wobei es von der konkreten Anwendung abhingt, wie die entsprechende Anforderungen
zu gewichten sind und welche Restriktionen die verwendete Hardware liefert.

75

7 Anwendungen fiir genidherte Szeneneigenschatten

“#2770riginal -Pragressive Blue Surfels JEEIIYE

Abbildung 7.5: Beispiel fiir eine Position mit Bildqualitdtswert von 0.85 mit Ausgabe der Quali-
tiatsbewertungsheuristik; minimale und maximale projizierte Grofle: [300,400];
Der Fehler ergibt sich hauptsédchlich aus der etwas volumindseren Darstellung
der Surfels, wodurch alle Silhouetten leicht gestort werden.

7.3 Parameteroptimierung: Beste Tiefe eines Octrees
fur minimale Renderingzeit mit CHC++

Als Beispiel fiir die Parameteroptimierung mit Hilfe von positionsabhéngigen Szeneneigen-
schaften soll im Folgenden der Parameter der maximalen Tiefe eines Octrees (oder genauer
eines Loose-Octrees mit VergroBBerungsfaktor 2.0) als rdumliche Datenstruktur fiir eine Szene
optimiert werden, so dass das CHC++-Occlusion-Culling-Verfahren (siehe Abschnitt 2.1.2)
die kiirzeste durchschnittliche Renderingzeit erreicht. Wird die Szene in einem Baum geringer
Tiefe gespeichert, kann der Algorithmus weniger feingranular die Sichtbarkeit gesamter Teil-
biume testen (da es nur wenige, gro3e gibt), wodurch entweder die Sichtbarkeit der Objekte
direkt getestet werden muss oder mehr Objekte durch die grobe Zusammenfassung irrtiimlich
als sichtbar klassifiziert werden. Ist der Baum sehr tief, konnen zwar feingranular auch ganze
Teilbdume getestet werden, dies kann bei zu vielen inneren Knoten auch zu einem merklichen
Zusatzaufwand fithren. Der CHC++-Algorithmus verwendet intern einige Heuristiken, die die
Anzahl der tatsédchlich durchgefiihrten Tests schwer vorhersehbar macht. Es hingt letztlich von
der Szene und der verwendeten Hardware ab, wie genau die rdumliche Datenstruktur aufgebaut
sein muss, um einen moglichst geringe durchschnittliche Renderingzeit zu erhalten.

Als Szene wird die Power-Plant-Szene verwendet. Die untersuchte positionsabhingige
Szeneneigenschaft ist die konditionierte Renderingzeit fiir den CHC++-Algorithmus mit Stan-
dardparametern. Sie wird fiir jeden Parameterwert mit je 1024 Samples in einer quaderformigen
3-D-Region gendhert; die Region entspricht einer leicht vergroferten Bounding-Box der Szene.
Mit einer linearen Suche werden fiir verschiedene Werte fiir die maximale Tiefe des Octrees
die Verteilung der Renderingzeit ermittelt, bei einem Wert von O liegen alle Objekte direkt
unter dem Szenenwurzelknoten. Anhand der statistischen Auswertung (siehe Abbildung 7.6),
ist zu erkennen, dass bei einem Octree der Tiefe 5 ein lokales Optimum der durchschnittli-
chen Renderingzeit mit 9.9 ms erreicht wird, wobei groBere Werte keinen deutlichen Nachteil
bringen. Die Messung fiir einen Parameterwert dauert unter diesen Rahmenbedingungen ca.
77 Sekunden. Diese Art der Bewertung von Parameterwerten kann automatisiert werden,
wodurch sich auch grolere Parameterrdume z. B. durch eine binidre Suche nach lokalen Optima
mit iiberschaubarem Zeitaufwand durchfiihren lassen.

76

7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++

Renderingzeit mit CHC++ in ms

0 1 2 3 4 5 6 7 8 9
Maximale Tiefe des Octrees

Abbildung 7.6: Verteilung der Renderingzeit mit dem CHC++-Algorithmus fiir unterschiedli-
che maximale Tiefen des Octrees; Power-Plant-Szene

7.4 Vergleich von Renderingalgorithmen: SVS gegen
CHC++

Neben der Optimierung von Parameterwerten kann auch die Entscheidung, welches Rendering-
verfahren fiir ein bestimmtes Anwendungsszenario verwendet werden soll, durch genédherte
Szeneneigenschaften unterstiitzt werden. Mehrere mogliche Verfahren konnen iiber die erzielte
Renderingzeit verglichen werden, was das Ergebnis jedoch stark abhingig von der Hardware
macht, die fiir die Messungen verwendet wird. Eine andere Moglichkeit besteht darin, wei-
tere, hardwareunabhingige Eigenschaften zu betrachten. Als Beispiel fiir den Vergleich von
Renderingalgorithmen anhand unterschiedlicher Kriterien wird im Folgenden ein Vergleich
zwischen dem CHC++ und dem SVS-Algorithmus [EJFMadH13] durchgefiihrt (siehe 2.1.1):
einmal beziiglich der (konditionierten) Renderingzeit und einmal beziiglich der Anzahl der
gerenderten Polygone. Zusitzlich wird noch die Menge der Polygone in sichtbaren Objek-
ten ermittelt — als untere Schranke fiir die zu rendernden Polygone, die jeder konservative
Occlusion-Culling-Algorithmus auf Objektbasis einhalten muss.

Die verwendeten Szene besteht aus vier Power-Plant-Modellen mit insgesamt 50.8 Millionen
Polygone in 4684 Objekten. Die Szeneneigenschaft wird mit 4069 Samples in einem 2-D-
Schnitt horizontal durch die Szene, durch die komplexen Gebdude des Power-Plant-Modells,
gemessen.

Die visuelle Darstellung der Ergebnisse in Abbildung 7.8 zeigt fiir den CHC++-Algorithmus,
dass sich die Strukturen der Verteilung der Renderingzeit, wie auch die der gerenderten
Polygone, erkennbar an der Struktur der sichtbaren Polygone orientieren. An Positionen mit
hoher Sichtbarkeit werden viele Polygone dargestellt, es miissen jedoch auch gleichzeitig
grofle Teile des Szenengraphen traversiert werden und dabei Verdeckungstests durchgefiihrt
werden. An Positionen mit geringer Sichtbarkeit, hinter oder im Inneren der Gebaude, sinkt

7

7 Anwendungen fiir gendherte Szeneneigenschatten

die Renderingzeit deutlich, da hier mit wenigen Tests grol3e Teile der Szene verworfen werden
konnen. Insgesamt wird die Menge der sichtbaren Objekte vom CHC++ jedoch durchgiingig
tiberschitzt.

2.5e+07 -
75 -
2.0e+07 -

1.5e+07 -

1.0e+07 - \ﬁ

5.0e+06 -

Renderingzeit in ms
3
1
A\
Q|
Anzahl Polygone

Ay

R

w\“‘ m“h” W
V

0- 0.0e+00 -

1 1 1 1 1
CHC++ SVS CHC++ SVS sichtbar
Verfahren Verfahren

Abbildung 7.7: Verteilung der Szeneneigenschaften Renderingzeit von CHC++ und SVS
(links); Verteilung der Szeneneigenschaften Anzahl gerenderter Polygone von
CHC++ und SVS, Anzahl der Polygone in sichtbaren Objekten (rechts); Szene
mit vier Power-Plant-Modellen

Die Visualisierung der Eigenschaften fiir den SVS-Algorithmus weisen die, fiir das Ver-
fahren typischen, Kreise aus. Diese entsprechen Schnitten durch die Sichtbarkeitskugeln des
Verfahrens. AuBerhalb einer Sichtbarkeitskugel werden die sichtbaren Objekte dargestellt,
die zu der Kugel aus der Richtung des Betrachters assoziiert sind. Innerhalb der Kugel wird
der Szenengraph weiter traversiert. Die Verdeckung, die durch nahe Objekte erzeugt wird,
wird beim SVS-Algorithmus nicht ausgenutzt. Dies wird auch dadurch deutlich, dass die
Struktur der Anzahl an Polygonen in sichtbaren Objekten, wenig Ahnlichkeit mit der Menge
der gerenderten Polygone aufweist. Die Abbildung lidsst auch erkennen, dass die Renderingzeit
direkt durch die Menge der gerenderten Geometrie bestimmt wird; das Verfahren benétigt zur
Laufzeit neben dem Rendering nur einen sehr geringen Zusatzaufwand fiir die Abfrage der
Menge der aktuell als sichtbar klassifizierten Objekte.

Die Auswertung der Verteilungen in Abbildung 7.7 zeigt, dass in dem untersuchten Szena-
rio der SVS-Algorithmus dem CHC++-Algorithmus im Allgemeinen deutlich iiberlegen ist.
Beispielsweise betridgt die durchschnittliche Renderingzeit des SVS-Algorithmus 18 ms; beim
CHC++ sind es 55 ms. Auch die durchschnittliche Anzahl der gerenderten Polygone betrégt
beim SVS mit 7.1 Millionen weniger als die Hilfte des CHC++ mit 15 Millionen. Des Weiteren
beachtet der SVS-Algorithmus (in der hier untersuchten Standardvariante) nicht die lokale
Verdeckung durch nahe Objekte und wird daher vom CHC++ in einigen kleinen Regionen in
der Szene durch eine geringere Renderingzeit iibertroffen. Insgesamt erreicht der CHC++ eine

78

7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++

Szene in Draufsicht Anzahl Polygone in
sichtbaren Objekten

T

min 53k

max 8.9M—

Renderingzeit CHC++ Anzahl gerenderter Polygone CHC++

~—min 174k

min 0.7ms\

/max 88ms /max 25M

Renderingzeit SVS in ms Anzahl gerenderter Polygone SVS

min 11ms/
max 40ms/

Abbildung 7.8: Szene mit vier Power-Plant-Modellen (51M Polygone): a) Szene in Draufsicht;
b-f) Visualisierung unterschiedlicher Szeneneigenschaften mit minimalem und
maximalen Wert

79

7 Anwendungen fiir gendherte Szeneneigenschatten

minimale Renderingzeit von unter einer Millisekunde, wobei diese beim SVS 11 ms betrégt.
Fiir eine weiterfithrende Evaluierung des SVS-Algorithmus ergibt sich ein Ausgangspunkt fiir
weitere Untersuchungen: Der SVS-Algorithmus ist ein approximatives Sichtbarkeitsverfah-
ren. Das bedeutet, dass nicht ausgeschlossen ist, dass auch sichtbare Objekte als unsichtbar
klassifiziert werden. In einem néchsten Schritt konnte durch eine Analyse der Bildqualitét als
Eigenschaft untersucht werden, wie grof3 der dadurch erzeugte Fehler ist.

7.5 Auswahl von Renderingmethoden zur Laufzeit

Neben der Entscheidung fiir ein bestimmtes Renderingverfahren in der Vorverarbeitung, kann
diese Entscheidung auch abhéngig von der aktuellen Kameraposition zur Laufzeit getroffen
werden. Dafiir konnen die in der Vorverarbeitung gemessenen Renderingzeiten mehrerer
Verfahren verwendet werden, um dann zur Laufzeit das fir die aktuelle Position als schnellstes
bewertete Verfahren auszuwihlen. Ein Nachteil bei der Wahl der Renderingzeit als Entschei-
dungskriterium ist, dass sich die Ergebnisse sehr stark an die bei der Messung verwendete
Hardware gebunden sind. Robuster und portabler ist es daher, anhand einer allgemeineren
Szeneneigenschaft (wie der Sichtbarkeit) auf die Situation an der Position des Betrachters
zu schliefen und daraufthin den Algorithmus auszuwihlen. Generell bleibt das Problem, das
bei allen betrachteten Szeneneigenschaften der Einfluss der Sichtrichtung des Betrachters
abstrahiert wird, so dass es bei Entscheidungen fiir eine konkrete Richtung zu Ungenauigkeiten
kommen kann.

30 -

N
o
1

Renderingzeit in ms

1
CHC++ SVS
Verfahren

Abbildung 7.9: Vergleich der richtungsabhédngigen Renderingzeit von CHC++ und SVS in
Bereichen mit hoher Verdeckung; Messungen an 1000 zufélligen Positionen
(max. 0.5M Polygone in sichtbaren Objekten) und zufélligen Richtungen;
Szene mit vier Power-Plant-Modellen

80

7.6 Rendering: Sichtbarkeit als positionsabhingige Eigenschaft

Als Beispiel bietet sich direkt das im vorherigen Abschnitt 7.4 beschriebene unterschiedliche
Verhalten der Algorithmen CHC++ und SVS an. In Bereichen mit einer hohen Verdeckung
durch nahe Objekte funktioniert der CHC++-Algorithmus besonders gut (siche Abbildung 7.8).
Sobald der Betrachter jedoch hauptsichlich Objekte von auflen in gro3erer Entfernung sieht,
steigt die Renderingzeit deutlich. Der SVS-Algorithmus zeigt genau das gegenteilige Verhalten:
AuBenansichten funktionieren prinzipiell deutlich besser als Standpunkte innerhalb oder dicht
neben Objekten. An Positionen mit erwartet hoher Verdeckung (weniger als 0.5M Polygone
laut der Szeneneigenschaft Anzahl Polygone in sichtbaren Objekten) wird daher der CHC++-
Algorithmus verwendet, an allen iibrigen Positionen der SVS-Algorithmus. Fiir die Evaluierung
werden 1000 zufilligen Positionen und Sichtrichtungen innerhalb der Regionen mit hoher
Verdeckung betrachtet und die Renderingzeit mit beiden Algorithmen gemessen. Die Messung
wird in diesem Falle nicht durch die Bestimmung einer positionsabhiingigen Szeneneigenschaft
durchgefiihrt, um explizit den Einfluss der Sichtrichtung mit einzubeziehen. Die Auswertung
in Abbildung 7.9 zeigt, dass in den untersuchten Bereichen durch die Wahl des CHC++-
Algorithmus anstatt des SVS die Renderingzeit im Mittel von 7 ms deutlich auf 3 ms reduziert
werden kann. Da in der verwendeten Szene der Bereich mit hoher Verdeckung sehr klein ist,
ist jedoch der Vorteil der automatischen Auswahl bezogen auf die ganze Szene sehr gering.

7.6 Rendering: Sichtbarkeit als positionsabhéangige
Eigenschaft

Neben der Bewertung, Anpassung und Auswahl existierender Renderingalgorithmen durch
positionsabhingige Szeneneigenschaften, lassen auch eigenstédndige Renderingalgorithmen
auf Basis von Szeneneigenschaften entwickeln. Ein einfaches Verfahren basiert auf der Sze-
neneigenschaft der Menge sichtbarer Objekte (siehe Abschnitt 4.2.2). Diese kodiert fiir eine
gegebene Position, welche der Objekte der Szene als sichtbar klassifiziert sind — die Eigen-
schaft ndhert damit die globale Sichtbarkeit der Szene an. Zur Laufzeit wird die Menge der
potentiell sichtbaren Objekte aus der genidherten Szeneneigenschaft abgefragt und gerendert.
Das Verfahren bietet eine kurze Renderingzeit, hat jedoch einige Nachteile: Zum einen benotigt
die Kodierung der Menge der sichtbaren Objekte im Vergleich zu einer einfacheren Szenenei-
genschaft, aber auch gegeniiber anderen globalen Sichtbarkeitsverfahren, mehr Speicherplatz.
Zum anderen kommt es durch die begrenzte Genauigkeit einer gendherten Szeneneigenschaft
zu Bildfehlern, wenn eigentlich sichtbare Objekte an einer Position als unsichtbar klassifiziert
wurden. Im direkten Vergleich zum SVS-Algorithmus bietet das Verfahren den Nachteil,
dass die Sichtbarkeitsinformationen nur fiir den in der Vorverarbeitung untersuchten Bereich
giiltig sind; ndhert man die Sichtbarkeitseigenschaft nur in einer 2-D-Region, kann sich der
Betrachter auch nur in dieser Region bewegen. Die Grofle bzw. das Volumen des untersuchten
Bereichs wirken sich direkt auf die Anzahl der bendtigten Samples und auf den benétigten
Speicherplatzbedarf aus. Die Betrachtung der richtungsabhingigen Sichtbarkeit beim SVS ist
hier klar im Vorteil.

Fiir die Evaluierung verwende ich die Szene mit vier Power-Plant-Modellen aus den vor-
angehenden Abschnitten. Die Eigenschaft der Menge der sichtbaren Objekte wurde mit

81

7 Anwendungen fiir genidherte Szeneneigenschatten

4096 Samples in einem 2-D-Schnitt durch die Szene ermittelt. Die Datengrof3e fiir die Sichtbar-
keitsinformationen betrigt 31 MB (ein groBer Teil davon ist jedoch nicht verfahrens-, sonder
implementierungsbedingt). Um die Qualitédt des Algorithmus zu bewerten, wird die Rendering-
zeit und die Bildqualitét durch genédherte Szeneneigenschaften untersucht.

Renderingzeit:
globale Sichtbarkeit als Eigenschaft 40-

E_ |

w
o
1

| 8 “Nmax 14ms

=

min 0.36ms

Renderingzeit in ms
S
1

=
o
1

O_

1 1
Globale Sichtbarkeit SVS
als Eigenschaft
Verfahren

Abbildung 7.10: Renderingzeit des globalen Sichtbarkeitsverfahrens: (links) visuelle Darstel-
lung mit minimalen und maximalen Wert; (rechts) Statistische Verteilung der
Werte, inklusive Vergleichsdaten des SVS-Algorithmus aus Abschnitt 7.4

Die Renderingzeit des Verfahrens ist noch einmal kiirzer als die des SVS-Verfahrens (siehe
Abbildung 7.4). Der grofite gemessene Wert betrdagt nur 14 ms. Die Bildqualitét erreicht an
den meisten Positionen sehr gute Werte, an denen optisch kein Unterschied zum konservativen
Verfahren feststellbar sind. An den wenigen Positionen jedoch, an denen es zu Fehlern im
Sampling gekommen ist, konnen die Bildfehler sehr massiv ausfallen. In Abbildung 7.11 sieht
man ein Bild aus dem Bereich mit minimaler Qualitét: grof3e Teile der Rohrleitungen aus dem
Innenraum eines der Power-Plant-Modelle fehlen fast vollstdandig.

In der Arbeit ,, Preprocessed Global Visibility for Real-Time Rendering on Low-End Hard-
ware “ von Eikel, Jdhn und Fischer [EJF10] wurden aufbauend auf diesem einfachen Sichtbar-
keitsverfahren einige Erweiterungen entwickelt, um dadurch das Rendering von komplexen
Szenen auf Endgeriten mit leistungsschwacher Hardware zu ermoglichen. Um die GroB3e des
benotigten Speicherplatzes zu reduzieren, werden Regionen mit dhnlicher Sichtbarkeit zusam-
mengefasst und so die Anzahl der zu speichernden Regionen reduziert. Aquivalent kénnen
auch Objekte zusammengefasst werden, die weitestgehend nur aus den gleichen Regionen
sichtbar sind. Dadurch sinkt jedoch auch die Genauigkeit der genidherten Sichtbarkeitsdaten.
Obwohl die Menge der von dem Verfahren dargestellten Geometrie schon sehr gering ist, kann
sie die Leistungsfihigkeit einfacher Systeme noch iiberfordern, so dass die Menge noch einmal
reduziert wird. Dies geschieht dadurch, dass in der zugrundeliegenden Szeneneigenschaft
nicht nur die Menge der sichtbaren Objekte kodiert wird, sondern die Anzahl der sichtbaren

82

7.6 Rendering: Sichtbarkeit als positionsabhingige Eigenschaft

Bildqualitat:
globale Sichtbarkeit als Eigenschaft

max 0.99999 ' : I

J

Abbildung 7.11: Bildqualitit des globalen Sichtbarkeitsverfahrens (hierarchisches SSIM):
(links) visuelle Darstellung mit minimalen und maximalen Werten; (rechts)
Gerendertes Beispielbild und Original aus einer Position mit minimaler Bild-
qualitét

Pixel jedes Objekts. Die Eigenschaft kodiert also den geschitzten Einfluss jedes Objektes
zum gerenderten Bild. Wihrend des Renderings konnen jetzt die Objekte mit dem gréften
geschitzten Einfluss ausgewdhlt und gerendert werden, bis ein maximaler Wert an gerenderten
Polygonen erreicht ist. Dadurch vergrofert sich der Bildfehler zwar deutlich, es ist aber moglich
auch mit sehr leistungsschwacher Hardware fliissig durch die Szene zu navigieren. Sobald
der Betrachter seine Position nicht mehr veridndert, konnen kontinuierlich die verbleibenden
sichtbaren Objekte gerendert werden.

83

8 Fazit und Ausblick

Im Folgenden ziehe ich ein Fazit fiir die unterschiedlichen, in dieser Arbeit vorgestellten
Aspekte und zeige Potentiale fiir zukiinftige Arbeiten auf.

Positionsabhdngige Szeneneigenschaften

Das Konzept der positionsabhingigen Szeneneigenschaften ist ein neues Werkzeug fiir die
experimentelle Evaluierung von Renderingalgorithmen. Global genidherte Szeneneigenschaften
konnen bei Messungen deutliche Vorteile gegeniiber dem gebriduchlichen Einsatz von Ka-
merapfaden bieten. Statistische Aussagen iiber das generelle Verhalten von Algorithmen sind
durch die Auswertung global genidherter Szeneneigenschaften deutlich aussagekriftiger, da sie
nicht von der subjektiven Wahl eines Kamerapfades abhéngen. Die visuelle Darstellung kann
einen intuitiven und unmittelbaren Einblick in die Funktionsweise von Algorithmen geben;
sowohl fiir den Entwickler beim Entwurf eines Algorithmus als auch zur Veranschaulichung
des Algorithmus in einer wissenschaftlichen Publikation oder in der Lehre. Die vorgestellte
Evaluierungsmethode kann klassische Methoden jedoch nur ergédnzen und nicht ersetzen, da
das spezifische Verhalten eines Algorithmus an einer bestimmten Position und Blickrichtung
nur ungenau abgebildet wird. Auch das Verhalten von Algorithmen in Bezug auf lingerfristige
temporale Kohirenz (beispielsweise von Out-of-Core-Verfahren) ldsst sich nur schwer als
Szeneneigenschaft abbilden. Global gendherte Szeneneigenschaften konnen auch zur Laufzeit
eingesetzt werden, um das Rendering zu verbessern. Es zahlt sich jedoch meistens eher aus, die
gewonnenen Evaluierungsergebnisse eher fiir eine Verbesserung und Anpassung der verwende-
ten Renderingalgorithmen einzusetzen, da durch den Einfluss der Blickrichtung zur Laufzeit
die erzielbaren Verbesserungen meist nur marginal sind.

Mogliches Potential zur Verbesserung der Methode sehe ich vor allem in Erweiterungen
der Sampling-Methoden. Um sehr weitldufige Szenen effizienter zu untersuchen, konnten
die Sampling-Positionen beispielsweise auf die Regionen konzentriert werden, in denen sich
die Benutzer im geplanten Anwendungsszenario gehduft authalten. Eine weitere Moglichkeit
besteht darin, die Sampling-Positionen auf die Bereiche der Szene einzuschrinken, die von
einem Benutzer iiberhaupt erreichbar sind. Im Rahmen des Algorithm-Engineerings im Bereich
der Computergrafik wire es wiinschenswert, wenn sich weitere Arbeiten mit der systematischen
Evaluierung unterschiedlicher Aspekte beschiftigten, wie etwa der objektiven Bewertung der
Bildqualitdt von Ndherungsverfahren.

Progressive-Blue-Surfels

Mit dem Progressive-Blue-Surfels-Verfahren habe ich ein robustes Verfahren vorgestellt, dass
es erlaubt, sehr groe Szenen in Echtzeit darzustellen. Das Verfahren unterstiitzt unterschiedlich

85

8 Fazit und Ausblick

strukturierte Objekte, inklusive komplexer CAD-Daten, gescannter Oberflichenmodelle, weit-
laufiger, prozedural generierter Landschaften, Texturen und anderer Oberflacheneigenschaften
und dynamischer Beleuchtung. Der Laufzeit- und Speicherplatzbedarf in der Vorbereitung er-
lauben auch die Verarbeitung von sehr grolen Szenen mit mehreren Milliarden Polygonen. Auf
technischer Ebene verlduft das Rendering sehr effizient, da nur wenige, zusammenhéngende
Datenblocke (Surfel-Prifixe) von der Grafikkarte verarbeitet werden miissen. Die Bildqualitit
des Verfahrens ist in den meisten Féllen gut, auch wenn die Niherung der Szene zu erkennen
ist — es handelt sich nicht um ein konservatives Verfahren. Positiv in Bezug auf Bildqualitit
fallt auf, dass durch die flexible Wahl der Prifixlinge fast keine Popping-Artefakte beim Um-
schalten unterschiedlicher Qualitétsstufen zu erkennen sind, die sonst bei vielen hierarchisch
arbeitenden Niherungsverfahren storend auffallen. Negativ fallen jedoch Locher in Oberflichen
oder zu grob aufgeloste Oberflachen auf, die bei unpassender Parameterwahl auftreten konnen.
Bei der Wahl der Renderingparameter liegen die Grenzen in der Robustheit des Verfahrens.
Eine weitere Grenze teilt sich das Verfahren mit zahlreichen anderen Niherungsverfahren, in
denen Teile der Szene mit kleiner projizierter Groe durch Ersatzrepridsentationen angenéhert
werden: Befindet sich zu viel Geometrie mit groBer projizierter Gro3e im Sichtbereich, wird
das Verfahren fiir diese komplexen Bereiche nicht eingesetzt und die Renderingzeit steigt (oder
die Qualitit sinkt).

Obwohl das Verfahren in seiner jetzigen Form sehr gut funktioniert, sehe ich einige Ankniip-
fungspunkte fiir zukiinftige Erweiterungen:

e Es konnen weitere Eigenschaften der Originalgeometrie in die Surfels kodiert werden:
von weiteren Oberflacheneigenschaften bis hin zu Daten, die eine begrenzte Animation
der Objekte im Shader ermoglichen.

e Das Rendering sollte angepasst werden, um die Bildqualitiit weniger abhéngig von den
Renderingparametern zu machen.

e Die Form eines Surfels bei der Darstellung konnte weiter angepasst werden, um den
moglichen Beitrag eines Surfels zum Gesamtbild zu steigern und so mit weniger Surfels
auszukommen.

e Das Verfahren konnte mit existierenden Occlusion-Culling-Algorithmen kombiniert
werden, um einer zu hohen Komplexitit im Nahbereich zu begegnen.

PADrend

Das PADrend-System hat sich mittlerweile zu einem umfangreichen Renderingsystem ent-
wickelt, das bereits erfolgreich in der Entwicklung mehrerer Renderingalgorithmen eingesetzt
wurde. In der Lehre wird das System als Ausgangsbasis fiir Abschluss- und Projektarbei-
ten im Bereich Computergrafik eingesetzt. Hier sorgt es fiir eine deutliche Reduzierung des
Einarbeitungsaufwandes, so dass Studierende sich besser auf die eigentliche Fragestellung
konzentrieren konnen und weniger Zeit mit der Klidrung technischer Details verbringen. In
Projekten wird das System fiir virtuelle Design-Reviews im industriellen Kontext eingesetzt.

86

Hier werden auf Basis von CAD-Daten Fragestellungen und Varianten des technischen Designs
von komplexen Maschinen betrachtet und diskutiert.

Die grundlegende Softwarearchitektur von PADrend hat sich als sehr robust herausgestellt,
so dass es auch in Zukunft in der Algorithmenentwicklung eingesetzt werden kann. Es bleibt
jedoch notwendig, auch weiterhin neue technische Funkionen, die sich beispielsweise aus der
Weiterentwicklung von OpenGL ergeben, in PADrend zu integrieren, um aktuelle Forschungs-
fragen adidquat untersuchen zu konnen. Die wesentliche Herausforderung fiir den langfristigen
Einsatz von PADrend sehe ich in der weiteren Verbesserung der Benutzerschnittstellen und
die Erstellung geeigneter Anleitungen, um langfristig geniigend Nutzer und Entwickler fiir das
System interessieren zu konnen.

87

Literaturverzeichnis

Literaturverzeichnis

[AMHHO08]

[BMW09]

[Bur81]

[BWPP04]

[Cat74]

[CCCT08]

[CDL"96]

[Cla76]

[COCSDO03]

[Co086]

AKENINE-MOLLER, TOMAS, ERIC HAINES und NATY HOFFMAN: Real-Time
Rendering. A K Peters, Ltd., Wellesley, MA, USA, 3. Auflage, 2008.

BITTNER, JIRi, OLIVER MATTAUSCH, PETER WONKA, VLASTIMIL HAVRAN
und MICHAEL WIMMER: Adaptive global visibility sampling. ACM Transacti-
ons on Graphics, 28(3):1-10, Juli 2009.

BURT, PETER J.: Fast filter transform for image processing. Computer Gra-
phics and Image Processing, 16(1):20-51, Mai 1981.

BITTNER, JIRI, MICHAEL WIMMER, HARALD PIRINGER und WERNER
PURGATHOFER: Coherent Hierarchical Culling: Hardware Occlusion Queries
Made Useful. Computer Graphics Forum, 23(3):615-624, September 2004.
Proceedings of Eurographics 2004.

CATMULL, EDWIN EARL: A subdivision algorithm for computer display of
curved surfaces. Doktorarbeit, Department of Computer Science, University of
Utah, Salt Lake City, UT, USA, Dezember 1974.

CIGNONI, PAOLO, MARCO CALLIERI, MASSIMILIANO CORSINI, MATTEO
DELLEPIANE, FABIO GANOVELLI und GUIDO RANZUGLIA: MeshLab: an
Open-Source Mesh Processing Tool. In: SCARANO, VITTORIO, ROSARIO DE
CHIARA und UGO ERRA (Herausgeber): Eurographics Italian Chapter Confe-
rence, Seiten 129-136. Eurographics Association, 2008.

CHAMBERLAIN, BRADFORD, TONY DEROSE, DANI LISCHINSKI, DAVID
SALESIN und JOHN SNYDER: Fast rendering of complex environments using a
spatial hierarchy. In: Proceedings of Graphics Interface 1996, GI *96, Seiten
132-141, Toronto, Ont., Canada, Mai 1996. Canadian Information Processing
Society.

CLARK, JAMES H.: Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(10):547-554, Oktober 1976.

COHEN-OR, DANIEL, YIORGOS CHRYSANTHOU, CLAUDIO T. SILVA und
FREDO DURAND: A survey of visibility for walkthrough applications. IEEE
Transactions on Visualization and Computer Graphics, 9(3):412—431, 2003.

COOK, ROBERT L.: Stochastic sampling in computer graphics. ACM Trans.
Graph., 5(1):51-72, Januar 1986.

89

Literaturverzeichnis

[Del34]

[DFIO3]

[EJF10]

[EJFMadH13]

[EJP11]

[GABKO6]

[Gei07]

[GKM93]

[Hop96]

90

DELAUNAY, BORIS N.: Sur la sphere vide. 1zvestia Akademii Nauk SSSR,
Otdelenie Matematicheskikh i Estestvennykh Nauk, 6:793—-800, Oktober 1934.

DEMETRESCU, CAMIL, IRENE FINOCCHI und GIUSEPPE F. ITALIANO: Algo-
rithm engineering, Algorithmics Column. Bulletin of the EATCS, 79:48-63,
2003.

EIKEL, BENJAMIN, CLAUDIUS JAHN und MATTHIAS FISCHER: Preprocessed
Global Visibility for Real-Time Rendering on Low-End Hardware. In: BEBIS,
GEORGE, RICHARD BOYLE, BAHRAM PARVIN, DARKO KORACIN, RONALD
CHUNG, R1AD HAMMOUD, MUHAMMAD HUSSAIN, TAN KAR-HAN, ROGER
CRAWFIS, DANIEL THALMANN, DAVID KAO und L1SA AVILA (Herausgeber):
Advances in Visual Computing, Band 6453 der Reihe Lecture Notes in Computer
Science, Seiten 622—633. Springer Berlin Heidelberg, 2010. Proceedings of the
6™ International Symposium on Visual Computing (ISVC 2010).

EIKEL, BENJAMIN, CLAUDIUS JAHN, MATTHIAS FISCHER und FRIEDHELM
MEYER AUF DER HEIDE: Spherical Visibility Sampling. Computer Graphics
Forum, 32(4):49-58, Juli 2013. Proceedings of the 24" Eurographics Sympo-
sium on Rendering.

EIKEL, BENJAMIN, CLAUDIUS JAHN und RALF PETRING: PADrend: Plat-
form for Algorithm Development and Rendering. In: GAUSEMEIER, JURGEN,
MICHAEL GRAFE und FRIEDHELM MEYER AUF DER HEIDE (Herausgeber):
Augmented & Virtual Reality in der Produktentstehung, Band 295 der Reihe
HNI-Verlagsschriftenreihe, Seiten 159—170. Heinz Nixdorf Institut, Universitét
Paderborn, Mai 2011.

GUTHE, MICHAEL, AKOS BALAZS und REINHARD KLEIN: Near Optimal
Hierarchical Culling: Performance Driven Use of Hardware Occlusion Queries.
In: AKENINE-MOLLER, TOMAS und WOLFGANG HEIDRICH (Herausgeber):
Proceedings of the 17" Eurographics Symposium on Rendering, EGSR 06,
Seiten 207-214. Eurographics Association, Juni 2006.

GEISS, RYAN: Gpu Gems 3, Kapitel Generating Complex Procedural Terrains
Using the GPU, Seiten 7-37. Addison-Wesley Professional, 2007.

GREENE, NED, MICHAEL KASS und GAVIN MILLER: Hierarchical Z-Buffer
Visibility. In: Proceedings of the 20" annual conference on Computer graphics
and interactive techniques, SIGGRAPH 93, Seiten 231-238, New York, NY,
USA, 1993. ACM.

HoPPE, HUGUES: Progressive meshes. In: Proceedings of the 23" annual
conference on Computer graphics and interactive techniques, SIGGRAPH °96,
Seiten 99-108, New York, NY, USA, 1996. ACM.

[Jdh13]

[JEF*13]

[MBWO08]

[MF92]

[PD90]

[PEJ*13]

[PTO02]

[PZvBGOO0]

Literaturverzeichnis

JAHN, CLAUDIUS: Progressive Blue Surfels. Technischer Bericht, Heinz
Nixdorf Institut, Universitidt Paderborn, 2013. http://arxiv.org/abs/1307.0247.

JAHN, CLAUDIUS, BENJAMIN EIKEL, MATTHIAS FISCHER, RALF PETRING
und FRIEDHELM MEYER AUF DER HEIDE: Evaluation of Rendering Al-
gorithms using Position-Dependent Scene Properties. In: BEBIS, GEORGE,
RICHARD BOYLE, BAHRAM PARVIN, DARKO KORACIN, BAOXIN LI, FATIH
PORIKLI, VICTOR ZORDAN, JAMES KLOSOWSKI, SABINE COQUILLART,
XUN Luo, MIN CHEN und DAVID GOTZ (Herausgeber): Advances in Visual
Computing, Band 8033 der Reihe Lecture Notes in Computer Science, Seiten
108—118. Springer Berlin Heidelberg, 2013. Proceedings of the 9 International
Symposium on Visual Computing (ISVC 2013).

MATTAUSCH, OLIVER, JIRI BITTNER und MICHAEL WIMMER: CHC++: Co-

herent Hierarchical Culling Revisited. Computer Graphics Forum, 27(2):221-
230, April 2008. Proceedings of Eurographics 2008.

McCooL, MICHAEL und EUGENE FIUME: Hierarchical Poisson Disk Samp-
ling Distributions. In: Proceedings of the Conference on Graphics Interface ’92,
Seiten 94-105, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers
Inc.

PLANTINGA, HARRY und CHARLES R. DYER: Visibility, occlusion, and
the aspect graph. International Journal of Computer Vision, 5(2):137-160,
November 1990.

PETRING, RALF, BENJAMIN EIKEL, CLAUDIUS JAHN, MATTHIAS FISCHER
und FRIEDHELM MEYER AUF DER HEIDE: Real-Time 3D Rendering of Hete-
rogeneous Scenes. In: BEBIS, GEORGE, RICHARD BOYLE, BAHRAM PARVIN,
DARKO KORACIN, BAOXIN LI, FATIH PORIKLI, VICTOR ZORDAN, JAMES
KLOSOWSKI, SABINE COQUILLART, XUN LUO, MIN CHEN und DAVID
GoT1Zz (Herausgeber): Advances in Visual Computing, Band 8033 der Reihe
Lecture Notes in Computer Science, Seiten 448—458. Springer Berlin Hei-
delberg, 2013. Proceedings of the 9" International Symposium on Visual
Computing (ISVC 2013).

PANTAZOPOULOS, IOANNIS und SPYROS TZAFESTAS: Occlusion Culling
Algorithms: A Comprehensive Survey. J. Intell. Robotics Syst., 35(2):123-156,
November 2002.

PFISTER, HANSPETER, MATTHIAS ZWICKER, JEROEN VAN BAAR und MAR-
KUS GROSS: Surfels: surface elements as rendering primitives. In: Proceedings
of the 27" annual conference on Computer graphics and interactive techni-
ques, SIGGRAPH ’00, Seiten 335-342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

91

Literaturverzeichnis

[RLOO]

[San09]

[SKIF11]

[SLST96]

[TS91]

[Ulr00]

[WBSS04]

[WFP*01]

[YGL97]

92

RUSINKIEWICZ, SZYMON und MARC LEVOY: QSplat: a multiresolution
point rendering system for large meshes. In: Proceedings of the 27" annual
conference on Computer graphics and interactive techniques, SIGGRAPH
’00, Seiten 343-352, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

SANDERS, PETER: Algorithm Engineering — An Attempt at a Definition. In:
Efficient Algorithms, Band 5760 der Reihe Lecture Notes in Computer Science,
Seiten 321-340. Springer, 2009.

SuUss, Tim, CLEMENS KOCH, CLAUDIUS JAHN und MATTHIAS FISCHER:
Approximative occlusion culling using the hull tree. In: Proceedings of Graphics
Interface 2011, GI *11, Seiten 79-86, School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, Mai 2011. Canadian Human-Computer
Communications Society.

SHADE, JONATHAN, DANI LISCHINSKI, DAVID H. SALESIN, TONY DEROSE
und JOHN SNYDER: Hierarchical image caching for accelerated walkthroughs
of complex environments. In: Proceedings of the 23" annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’96, Seiten 75-82,
New York, NY, USA, 1996. ACM.

TELLER, SETH J. und CARLO H. SEQUIN: Visibility preprocessing for interac-
tive walkthroughs. In: Proceedings of the 18™ annual conference on Computer
graphics and interactive techniques, SIGGRAPH *91, Seiten 61-70, New York,
NY, USA, 1991. ACM.

ULRICH, THATCHER: Loose Octrees. In: DELOURA, MARK (Herausgeber):

Game Programming Gems, Game Programming Gems, Kapitel 4.11, Seiten
444-453. Charles River Media, Boston, MA, USA, 2000.

WANG, ZHOU, ALAN CONRAD BOVIK, HAMID RAHIM SHEIKH und EERO P.
SIMONCELLI: Image quality assessment: from error visibility to structural
similarity. Image Processing, IEEE Transactions on, 13(4):600—612, April
2004.

WAND, MICHAEL, MATTHIAS FISCHER, INGMAR PETER, FRIEDHELM
MEYER AUF DER HEIDE und WOLFGANG STRASSER: The randomized z-
buffer algorithm: interactive rendering of highly complex scenes. In: Pro-
ceedings of the 28" annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’01, Seiten 361-370, New York, NY, USA, 2001.
ACM.

YUAN, PING, MARK GREEN und RYNSON W. H. LAU: A framework for
performance evaluation of real-time rendering algorithms in virtual reality. In:

Proceedings of the ACM symposium on Virtual reality software and technology,
VRST *97, Seiten 51-58, New York, NY, USA, 1997. ACM.

[ZMHH97]

Literaturverzeichnis

ZHANG, HANSONG, DINESH MANOCHA, TOM HUDSON und KENNETH E.
HoFF, I11: Visibility culling using hierarchical occlusion maps. In: Procee-
dings of the 24" annual conference on Computer graphics and interactive
techniques, SIGGRAPH °97, Seiten 77-88, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

93

	1 Einleitung
	2 Abgrenzung im Bereich der Computergrafik
	2.1 Sichtbarkeit
	2.1.1 Globale Sichtbarkeit
	2.1.2 Lokale Sichtbarkeit (Online-Occlusion-Culling)

	2.2 Genähertes Rendering
	2.3 Renderingsysteme

	3 PADrend – Plattform for Algorithm Development and Rendering
	3.1 Systembibliotheken
	3.2 Szenengraph: MinSG
	3.3 Anwendungsinterface
	3.4 Eckdaten des Testsystems

	4 Szeneneigenschaften
	4.1 Anforderungen an praktisch auswertbare Szeneneigenschaften
	4.1.1 Effiziente Bestimmbarkeit
	4.1.2 Begrenzung des Wertebereichs
	4.1.3 Praktische Gutmütigkeit des Wertebereichs
	4.1.4 Determinismus

	4.2 Betrachtete Szeneneigenschaften
	4.2.1 Exakte Sichtbarkeit
	4.2.2 Pixelsichtbarkeit
	4.2.3 Renderingzeit
	4.2.4 Anzahl von Operationen
	4.2.5 Bildqualität
	4.2.6 Kombinierte Szeneneigenschaften

	5 Globale Näherung von Szeneneigenschaften
	5.1 Anforderungen
	5.1.1 Akzeptabler Zeitaufwand im Preprocessing
	5.1.2 Kompakter Speicherplatz
	5.1.3 Effiziente Punktabfragen
	5.1.4 Gute Qualität der Näherung
	5.1.5 Parametrierbar, aber robust
	5.1.6 Einfachheit

	5.2 Allgemeine Form des Sampling-Ansatzes
	5.2.1 Aufbau der Datenstruktur

	5.3 Regelmäßiges Sampling
	5.4 Adaptives Sampling
	5.4.1 Beschreibung des Algorithmus
	5.4.2 Beschreibung der weiteren Parameter

	5.5 Parallelisierung
	5.6 Auswertungsmöglichkeiten
	5.6.1 Qualitative Auswertung durch Visualisierung
	5.6.2 Statistische Auswertung der Verteilung

	5.7 Experimentelle Bewertung der Sampling-Verfahren
	5.7.1 Benötigte Anzahl an Samples

	6 Approximatives Rendering mit Progressive-Blue-Surfels
	6.1 Vorverarbeitung: Berechnung der Surfels
	6.1.1 Berechnung einer Surfel-Repräsentation
	6.1.2 Hierarchische Berechnung der Surfel-Repräsentationen
	6.1.3 Speicherplatzbedarf

	6.2 Rendering: Darstellung mit Hilfe von Surfels
	6.2.1 Rendern eines Surfel-Präfixes

	6.3 Überblick über die Parameter des Verfahrens
	6.4 Experimentelle Bewertung der Sampling-Verteilung
	6.4.1 Stabilität des Zufallsprozesses
	6.4.2 Einfluss des genäherten Objektes
	6.4.3 Sampling-Qualität und Laufzeit

	6.5 Anwendungen und Erweiterungen

	7 Anwendungen für genäherte Szeneneigenschaften
	7.1 Szeneneigenschaften im Bereich des Algorithm-Engineering
	7.2 Exploration: Auswirkungen der projizierten Größe beim Rendering mit Progressive-Blue-Surfels
	7.3 Parameteroptimierung: Beste Tiefe eines Octrees für minimale Renderingzeit mit CHC++
	7.4 Vergleich von Renderingalgorithmen: SVS gegen CHC++
	7.5 Auswahl von Renderingmethoden zur Laufzeit
	7.6 Rendering: Sichtbarkeit als positionsabhängige Eigenschaft

	8 Fazit und Ausblick

